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ABSTRACT 

 

INVESTIGATION OF THE DEGRADATION OF LIGNOCELLULOSIC MATERIALS IN 

ANAEROBIC DIGESTION 

By 

Juan Pablo Rojas-Sossa 

 Biogas produced through anaerobic digestion of lignocellulosic materials, is largely 

recognized as one of the only carbon negative fuel sources. The study consisted of two parts; 1) 

codigestion of AFEXTM-pretreated corn stover and cow manure and 2) degradation of plant cell 

wall components (different compounds) in agricultural biogas plants. It was concluded from the 

first part of the study that AFEXTM-pretreated corn stover promotes conversion of methane 

production in anaerobic digestion but has a smaller impact on consumption of the plant cell wall 

components. The corresponding biogas production (213 L/kg VS loading) of the AFEX treated 

co-digestion was 22% higher than that (175 L/kg VS loading) of the untreated co-digestion. The 

second part of the study led to the conclusion that biogas is produced mainly from nonstructural 

carbohydrates in the influent, and the plant cell wall makes a smaller contribution to biogas 

generation. Was observed greater correlations between the biogas productivity and the reduction 

of two organic components (TOC=17.8% & Protein=18.1%). On the other hand, lower correlations 

were detected between the consumptions of the plant cell was components (Lignin=12.5%, 

Cellulose=3.7% & Xylan=0%) and the biogas productivity.   
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1. INTRODUCTION 

1.1. Statement of the Problem 

The world is currently transitioning from fossil fuel–dominated energy sources to more 

renewable-energy–based approaches, like bioenergy technologies. Bioenergy generation has been 

promoted in many countries (e.g., Germany, Sweden, Italy, and USA) by tax incentives and public 

policies. However, the extensive application of bioenergy technologies is not yet a reality around 

the world. Many technologies such as pyrolysis, gasification, transesterification, and 

saccharification are still at the bench and pilot scale. Anaerobic digestion (AD), however, the most 

widely applied bioenergy technology, has been deployed globally at residential and commercial 

scales.  The advantages of AD over other bioenergy technologies are the production of renewable 

energy in addition to organic-waste disposal, environmental protection, and  greenhouse emission 

reduction (Mao, Feng, Wang, & Ren, 2015).  

Application of AD to convert recalcitrant carbon into usable carbon—methane—attracted 

increasing attention in recent years. Recalcitrant carbon is most commonly found in nonfood 

biomass, or lignocellulosic biomass (e.g., corn stover, wood biomass), specifically in the plant cell 

wall (Keegstra, 2010). This advancement may significantly increase the diversity of feedstocks for 

methane production and contribute to non–food-based bioenergy generation. Because of the 

recalcitrant nature of lignocellulosic biomass, pretreatment needs to be utilized to treat biomass 

before digestion. Numerous efforts have been made to develop pretreatment processes. One of the 

most developed pretreatments is Ammonia Fiber Expansion (AFEXTM). The goal of the AFEXTM 

process is to break important linkages between plant cell wall components, thus paving an 

accessible way to usable carbon sources. The AFEXTM -technology has reached the pilot scale 

operation and could be a valid pretreatment process for AD of lignocellulosic biomass.  
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Many countries worldwide have established public policies to promote the AD technology 

and its implementation. For example, countries like the United States (US) have the Renewable 

Fuel Standard (RFS). The RFS promotes the production of biogas from lignocellulosic sources 

and manufacture of “renewable natural gas” in the D3/D7 category known as cellulosic fuel (from 

a lignocellulosic source) (EPA, 2014). This framework requires obligated parties involved in the 

vehicle fuel supply chain to source a portion of the fuel from renewable lignocellulosic feedstocks.  

For biogas producers utilizing animal manures, biosolids, or landfill gas this provides new 

opportunities to market renewable natural gas (methane sourced from biogas). However, the 

degradation of cellulosic biomass and its contribution to biogas production via AD are not fully 

understood.  

To fulfill the needs mentioned above, this thesis covers two important topics: codigestion of 

pretreated lignocellulosic biomass and degradation of lignocellulosic biomass during the digestion 

process.  

1.2. Goals & Objectives 

To achieve the project goals, the following specific objectives were pursued: 

“Dynamic microbiome assembly and the effect on the performance of AD of AFEX-pretreated 

corn stover and conventional corn stover.” 

a) To study the impact of codigestion of conventional corn stover and AFEX-pretreated corn 

stover on digestion performance.  

b) To elucidate dynamic changes of microbial communities during the codigestion. 

c) To identify correlations in order to explain the relation between digestion performance and 

microbial communities.  

 “Degradation of lignocellulosic feedstocks at agricultural biogas plants”  
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d) To perform broad characterization of the influents and effluents of different commercial 

agricultural biogas plants (ABPs) by different methods from the literature. 

e) To carry out the biomethane potential testing of from influent samples.  

f) To determine the consumption of different components in the influent samples and their 

contribution to biogas production. 

g) Conduct a sensitivity analysis to rank the importance of the components in terms of biogas 

productivity. 
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2. LITERATURE REVIEW 

In 2017, renewable power accounted for 70% of net additions to global power-generating 

capacity (REN21, 2018). The uses of this energy are diverse in such sectors as heating and cooling, 

power, and transportation. Contributing to this progress are advancements in enabling technologies 

and political efforts to develop the institutional conditions that encourage the use of more 

renewable sources in the worldwide energy matrix. This review focuses specifically on the status 

of this bioenergy transition in the US and the application of AD of lignocellulosic biomass to 

produce biogas and eventually renewable natural gas (RNG).  

2.1. Transition to a renewable-based portfolio in the United States 

To produce more renewable energy, the US government has established the RFS, created under 

the Energy Policy Act of 2005, which amended the Clean Air Act (EPA, 2017). The Energy Policy 

Act establishes requirements for the minimum volume of renewable fuel production to replace 

fossil fuel production. In 2007, the program was renewed, and changes were made in the long-

term goals to redefine various parameters such as greenhouse gas (GHG) emissions and the 

definitions of renewable biomass. The new RFS approved and updated the “fuel pathways,” 

categorizing renewable fuel into different types depending on the sources. Fuel pathways include 

four critical parameters serving to categorize different fuels. The parameters are (1) the feedstock, 

(2) production process (type of technology), (3) fuel type (form of fuel), and (4) capacity for 

reduction of GHG emissions as compared to 2005 petroleum baseline. 

By statute, the RFS includes four categories of renewable fuel each with a specific fuel 

pathway and a renewable identification number (RIN D-Codes). The categories are advanced 

biofuel (D5), biomass-based diesel (D4), cellulosic biofuel (D3 & D7), and renewable fuel (D6). 

Figure 1 shows how the Environmental Protection Agency (EPA) categorizes each fuel according 
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to the GHG emissions reduction capacity. Categories D4 and D5 (Advanced & Biodiesel fuel) 

must meet 50% of lifecycle GHG reduction and can be produced from renewable biomass 

(excluding cornstarch). The renewable fuel (D6) typically refers to ethanol derived from corn 

starch and must meet 20% of the GHG reduction.  

 

Figure 1. Categorization of renewable fuels by the RFS Act. Adapted from ref. (EPA, 2017). 

The third category is D3 and D7, called Cellulosic Fuels. The sources of these types of fuel 

include cellulose, hemicellulose, and lignin (plant cell wall components also called lignocellulosic 

biomass). Cellulosic fuel can reach 60% of the GHG reduction as compared to 2005 petroleum 

baseline. With this categorization, the EPA has approved several pathways such as ethanol made 

from sugarcane, cellulosic ethanol made from corn stover, biogas from landfills, municipal 

wastewater facilities, agricultural digesters, and any other biogas from the cellulosic components.  

In the case of biogas, there are two kinds of possible pathways: Q and T. The Q pathway 

is designated for biogas produced from cellulosic biomass transformed by AD and is assigned the 

D6 D4 & 

D5 

D3 & 

D7 
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D3 code (cellulosic fuel). In pathway T, biogas1 is produced from no lignocellulosic feedstocks 

(carbohydrates, proteins, and lipids among others) and will be assigned code D5. Nowadays, many 

US biogas plants are registered as energy producers at the EPA, splitting between D3 and D5, 

using both categorizations to produce and sell their energy on the market. Within this framework, 

biogas is required to be purified to pipeline quality natural gas standard, resulting in a fuel 

commonly called RNG. Since 2014, there has been a linear positive increase in RNG production 

in the US, and a stable increase is predicted until 2022 (Hanson, 2017). Hanson (2017) showed 

that in 2016, the RNG produced was used to reach 82% of the federal targets set for cellulosic fuel. 

Producers are utilizing feedstocks such as dairy manure (DM), biosolids, and landfill gas with 

codigestion of food waste or starch, to produce D5 RNG. Biogas producers have been able to 

increase their revenue by 78%, whereas the ones being compared register only as D5 producers. 

Although AD and biogas production look promising, the capacity for energy production from 

plant cell wall components and the rate at which this production is possible continue to be explored. 

At this moment, it is important to more deeply understand the ability of AD to process these 

materials to link them with the actual market of RNG. 

2.2. AD 

AD is a microbiome-based bioprocess that consumes organic matter and produces mainly a 

mixture of methane (CH4) and carbon dioxide (CO2) called biogas, under warm conditions 

(typically >35C) and in reactors with minimal oxygen (<1%). This mixed culture forms a 

microbial community where ecological principles drive metabolic fluxes and affect the operation 

 
1 Also called in the Act and US Policies as “Renewable Natural Gas” (RNG). 
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and performance of the process. The biogas can be transformed into usable energy in several ways, 

including engine combustion or purification to a natural gas standard to produce RNG.  

AD can turn organic residues to high-value resources such as renewable energy and fertilizer 

in comparison with conventional disposal as wastewater (activated sludge) or solid waste (landfill) 

(McCarty, Bae, & Kim, 2011). Currently, over 2,000 AD plants produce biogas in the United 

States (USDA, USEPA, & USDOE, 2015), whereas Europe has over 17,000 biogas plants (Brijde, 

Dumont, & Blume, 2014). China is the world leader in biogas production, with 17 million digesters 

(Changda, Xiang, Wu, & Yifeng, 1994). Countries in Africa and South and Central America have 

been developing (and investing in) biogas technologies in the last decade owing to their high 

potential in those regions (Flavin et al., 2014; Roopnarain & Adeleke, 2017). These regions have 

high viability of residual organic biomass and high solar radiation: both conditions are favorable 

for integration of these technologies with AD exploitation (Aguilar Alvarez et al., 2016).  

2.3. AD principles 

AD involves a complex syntrophic association of producers/consumers that interact to attain 

effective transport of electrons. The digestion process is based upon three stages: (1) hydrolysis of 

complex compounds, (2) volatile fatty acid (VFA) formation, and (3) methane production (Fang 

& Liu, 2002). AD proceeds in the absence of oxygen; therefore, organic acids assume the role of 

an electron acceptor in the fermentation process and turn into methane at the methanogenic stage 

(Rittmann & McCarty, 2001). There exists a direct correlation between carbon mineralization and 

microbial community structure.  

The first metabolic pathway involved here is hydrolysis. The hydrolyzed compounds are 

broken into monomers and oligomers by different enzymes such as amylase, cellulose, and 

protease, among others (Nayono, 2010; Singh nee’ Nigam & Pandey, 2009). The hydrolysis flux 
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is proportional to the organic loading rate (OLR) applied to a reactor. Penaud et al. (1997) showed 

that the best conditions for high consumption of organic matter and high VFA concentrations occur 

at pH 8.5 and at high OLRs (~5 kg of chemical oxygen demand [COD] per m3 per day) with solid 

retention times (ϴx) higher than 2 days; this condition is normally not considered in the design of 

AD reactors, owing to the high variability in other factors (like feedstock composition) with time. 

With respect to modeling of AD, the hydrolysis step normally is not considered because of the 

complex waste pool. The combination of lysis, nonenzymatic decay, phase separation, and 

physical breakdown is defined as hydrolysis thus creating a lot of complexities when modeling is 

attempted (Batstone et al., 2002). After this initial step, the products of hydrolysis are fermented. 

Acidogenesis (VFA formation) follows hydrolysis. During acidogenesis, fermentative bacteria 

consume monosugars and fatty acids formed during the hydrolysis to produce organic acids, 

hydrogen, and CO2 (Batstone et al., 2002). During acidogenesis, most of the energy and mass flow 

from the organic polymers thereby going to organic acids (76%), such as acetic, propionic, 

isobutyric, butyric, valeric, isovaleric, isocaproic, and caproic, among others. There is less molar 

production of H2, acetate, and CO2 (Speece, 1983). The acidogenesis rate grows with the OLR. 

Goux et al., (2015) increased the OLR of mesophilic reactors until reaching acidosis and studied 

the microbial community of the reactors before, during, and after, thus demonstrating that there is 

a shift of the fermenters under these unbalanced conditions. Acidogenesis is a crucial upstream 

process for methane production. It should to be controlled, monitored, and maintained at low 

concentrations. Nevertheless, it is most important to monitor the consumption of VFA by the 

downstream processes. Moreover, maintaining low VFA concentrations keeps alkalinity and pH 

in the appropriate range for the downstream processes of acetogenesis and methanogenesis. 
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Acetogenesis proceeds simultaneously with acidogenesis. Acetogenesis uses products from 

acidogenic fermentation (e.g., propionate, butyrate, and valerate) and generates more acetic acid. 

From a thermodynamic standpoint, this process does not happen spontaneously because the 

standard Gibbs free energy of the reaction is positive (ΔG0 > 0). This condition changes its window 

from pH ~4 to pH ~6. Elevated temperatures will also influence the process of switching the 

reaction into a spontaneous state. Digestion of VFAs will be more effective with supplemental 

heat. This whole process may happen at 35 °C for mesophilic conditions or at 47 °C under 

thermophilic conditions (Oh & Martin, 2010).  

Finally, methanogenesis is the last metabolic process necessary to create methane. This 

process derives from two main metabolic pathways: the hydrogenotrophic pathway and 

acetotrophic pathway (Demirel & Scherer, 2008). They are classified as based on two different 

groups of methanogens: acetate fermenters and hydrogen oxidizers (Rittmann & McCarty, 2001). 

The acetate fermenters employ acetate as an electron donor and as a carbon source and are slow 

growers. Hydrogen oxidizers grow faster but require a high concentration of H2 to favor the process 

(Demirel & Scherer, 2008). Because methanogens must be present to produce methane, the normal 

pH requirement is in the range of 6.5 to 8.2 (Safferman, Kirk, Faivor, & Wu-haan, 2012). 

Furthermore, due to the energy available from the electron donor–acceptor setup, AD has a slow 

growth rate (fs
0 = 0.05) and requires long solids retention time (θx) because of the methanogens’ 

growth requirements (Rittmann & McCarty, 2001). During AD startup, the concentration of VFAs 

increases, and the conditions become less favorable for the growth of methanogens. In this stage, 

it is also important to maintain pH in the right range for methanogens. If pH is not maintained, the 

methanogenic population could be hurt and gas production may decrease (Goux et al., 2015). 

Normally, during the establishment process, it is possible to observe low gas production. During 
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this establishment, VFA concentrations are normally high (12,000 mg kg−1). Then, the 

concentration of VFAs decreases, and the abundance of methanogens increases, leading to 

increased alkalinity and CO2 concentration (Rittmann & McCarty, 2001). The increase in 

alkalinity directly affects pH; the initial alkalinity depends directly on the feedstock but can 

increase during the process owing to the formation of cation salts. Regardless of this stable state, 

the systems always require normal evaluation of the parameters. AD systems are stable when the 

culture strikes a balance between VFA formation and methane production (Y. Chen, Cheng, & 

Creamer, 2008; Demirel & Scherer, 2008). This condition is the most important factor to ensure 

good operation and effective energy production. By following this recommendation, it is possible 

to maintain a healthy process and a productive anaerobic digester.  

On the other hand, the process has also been studied from the energetic or stoichiometric point 

of view. After assuming that carbon dioxide is the electron acceptor, one can write the 

stoichiometric equation for generalized organic waste (Rittmann & McCarty, 2001): 

𝐶𝑛𝐻𝑎𝑂𝑏𝑁𝑐 + (2𝑛 + 𝑐 − 𝑏 −
9𝑑𝑓𝑠

20
−

𝑑𝑓𝑒

4
) 𝐻2𝑂

→
𝑑𝑓𝑒

8
𝐶𝐻4 + (𝑛 − 𝑐 −

𝑑𝑓𝑠

5
−

𝑑𝑓𝑒

8
) 𝐶𝑂2 +

𝑑𝑓𝑠

20
𝐶5𝐻7𝑂2𝑁

+ (𝑐 −
𝑑𝑓𝑠

20
) 𝑁𝐻4

+ + (𝑐 −
𝑑𝑓𝑠

20
) 𝐻𝐶𝑂3

− 

(1) 

where 𝑑 = 4𝑛 + 𝑎 − 2𝑏 − 3𝑐, and 𝑓𝑠 represents the fraction of waste organic matter synthesized 

or converted to cells, and 𝑓𝑒 denotes the portion converted to energy, such that 𝑓𝑠 + 𝑓𝑒 = 1. The 

value of 𝑓𝑠 depends on the energy generation and synthesis reactions as well as the decay rate 𝑏 

and 𝜃𝑥. For a reactor in operation steady state, fs can be estimated using equation 2: 
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𝑓𝑠 = 𝑓𝑠
0 [

1 + (1 − 𝑓𝑑)𝑏𝜃𝑥

1 + 𝑏𝜃𝑥
] (2) 

Table 1 summarizes the values of 𝑓𝑠
0 and 𝑏 for methane-producing fermentation of 

common organic compounds. 

Table 1. Coefficients for stoichiometric equations for anaerobic treatment of various organic 

materials (Rittmann & McCarty, 2001).  

Waste component 
Typical Chemical 

Formula 

 

𝒇𝒔
𝟎 

Y 

(gVSSa/g BODL 

removed) 

𝒃 
(d-1) 

Carbohydrates C6H10O5 0.28 0.20 0.05 

Proteins C16H24O5N4 0.08 0.056 0.02 

Fatty acids C16H32O2 0.06 0.042 0.03 

Municipal sludge C10H19O3N 0.11 0.077 0.05 

Ethanol CH3CH2OH 0.11 0.077 0.05 

Methanol CH3OH 0.15 0.110 0.05 

Benzoic acid C6H5COOH 0.11 0.077 0.05 
 

2.4. AD: Microbial communities 

As explained before, biogas is produced by a biological process called AD. The process is 

performed by a specialized and sophisticated microbial community, where different actors have 

different roles in the structure of the joint organization (Campanaro et al., 2016). The different 

members of the organization have different functions, and they are linked by interactions forming 

networks. If these interactions are established, then the consortium can turn diverse kinds of 

macromolecules into methane and carbon dioxide mainly. Figure 2 shows the gene diversity 

present in an AD microbial community, and how the organization looks like a “funnel.”  
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Figure 2. Functional roles in the biogas production. Each box shows a list of genes (and their 

abundance) identified for each metabolic pathway of all the processes (Campanaro et al., 2016). 

This functional structure manifests an increase of specialization as it reaches the final 

metabolic pathway of the process. This means that there are more diverse kinds of genes able to 

act in the first main steps of AD, and later steps require more unique kinds of microbes to finally 

produce biogas. That is why it is possible to see high species diversity in the fermentation steps 

and more unique species of microbes that are involved in methane formation. That is why it is 

mandatory to study the guild (metabolic diversity) and the clade (phylogenetic diversity) of an AD 

microbial community. 

The phylogeny in an AD community is based on two main domains: bacteria and archaea. The 

archaea population mainly belongs to the phylum Euryarchaeota and is mainly dominated by 

acetoclastic methanogenic genera such as Methanosaeta, followed by hydrogenoclastic genera 
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such as Methanospirillum and Methanobrevibacter (Demirel & Scherer, 2008). Thermophilic 

reactors are dominated by the hydrogenoclastic genus Methanothermobacter followed by versatile 

Methanosarcina (Kirkegaard et al., 2017). On the other hand, the phylogeny of the bacterial 

community is more diverse (≈46 phyla) and more abundant (≈90% of total abundance) (Kirkegaard 

et al., 2017; Rojas-Sossa et al., 2017). Phyla such as Firmicutes, Proteobacteria, Chloroflexi, 

Actinobacteria, Bacteroidetes, Synergistetes, and Acidobacteria, are the most abundant in AD 

reactors. What is still not clear is whether the microbes are enriched in the reactors or if the 

microbes immigrate to the reactors via the feedstocks. Kirkegaard et al., (2017) tested whether the 

immigrating microorganisms tend to die, survive, or grow in the reactors. It was found that there 

was a peak of microorganisms who were highly enriched in the reactor. Those authors found that 

the microorganisms that were enriched represented 60% of the total abundance in the reactors. 

Improving the understanding of these relationships will allow scientists and engineers to focus on 

controlling and changing those relations with the objective of improving the feedstock-to-methane 

conversion or attenuating the inhibitory effects in the process. Some of the substrates whose 

conversion to methane needs to be improved are plant cell wall components, lignocellulosic 

biomass. These compounds are the most abundant carbon source on Earth (Tye, Lee, Wan 

Abdullah, & Leh, 2016).  

2.5. Plant cell wall components 

The term “lignocellulosic biomass” or nonfood plant biomass refers to a portion of plant matter 

composed mainly of structural carbohydrates that form the plant cell wall (Chundawat, Donohoe, 

et al., 2011). These structures have been mostly categorized into three groups—two kinds of 

polysaccharides (cellulose and hemicellulose) and one type of polymer (lignin)—that form the 

complex and strong structures providing support to a plant as well as protection against microbial 
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invasion (Keegstra, 2010). These materials have been driven by evolution to become highly 

recalcitrant toward bacterial enzymes. The main components of the plant cell wall are cellulose, 

hemicelluloses, lignin, and pectin (V Balan, Sousa, Chundawat, Humpula, & Dale, 2012). In 

Figure 3, readers can see the reported chemical structures of cellulose, hemicelluloses, and lignin. 

2.5.1. Cellulose 

In Figure 3a, there is a diagram of the crystalline cellulose nanofibril structure, with the 

formula (C6H10O5)n. These compounds form straight cylinders strongly bound and giving rigidity 

to the plant cell wall. Glucose is a homogeneous polysaccharide held together via covalently (1,4)-

linked β-D-glucans. These carbon chains interact with one another via hydrogen bonds to form a 

crystalline structure (Keegstra, 2010). This material is the main component of the plant cell wall 

(V Balan et al., 2012).  

a. b. 

  

Figure 3. Chemical structure of polysaccharides and polymers that constitute the plant cell wall; 

these materials are also called lignocellulosic biomass. a. Cellulose (V Balan et al., 2012). b. 

Hemicelluloses (V Balan et al., 2012). c. Lignin (Sarkanen & Ludwig, 1971). 
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Figure 3 (cont’d) 

c. 

 

2.5.2. Hemicelluloses 

Hemicellulose has two common structures: xyloglucan and arabinoxylan (Figure 3b). 

Scheller & Ulvskov, (2010) described hemicelluloses as a group of polysaccharides that are neither 

cellulose nor pectin and contain linked backbones of glucose, mannose, or xylose. These 

polysaccharides are more heterogeneous in their structure and in their physicochemical properties 

than cellulose is (Scheller & Ulvskov, 2010). The presence of the different kinds of hemicelluloses 

varies among plant families or species, but it is known that hemicelluloses bind tightly to cellulose 

microfibrils via hydrogen bonds (Keegstra, 2010). Hemicellulose engages in complex binding to 

lignin, called the lignin–carbohydrate complex (LCC).  

2.5.3. Lignin 

Lignin is the second most abundant constituent after cellulose and is reported to be more 

abundant (by mass) in plant cell walls (Norgren & Edlund, 2014). Figure 3c provides an overview 

of lignin structure. It is a heterogeneous and amorphous macromolecule with variable composition 
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dependent on the plant source (Sjöström, 1993). However, lignin can be classified by three 

monomers: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which all differ in the 

positions of the aromatic rings (V Balan et al., 2012; Norgren & Edlund, 2014).  

2.5.4. Pectin 

Voragen, Coenen, Verhoef, & Schols, (2009) described pectin as one of the most complex 

macromolecules in nature, because it can be composed of as many as 17 different monosaccharides 

and with 20 different linkages. Due their anionic nature, these polysaccharides are involved in the 

transport of ions and in the porosity of the plant cell wall. On the other hand, several studies 

indicate the importance of the characterization of these compounds in the plant cell wall and of 

their complex interactions with the other components of the cell wall (V Balan et al., 2012; 

Keegstra, 2010; Scheller & Ulvskov, 2010). 

2.6. Lignocellulosic-biomass degradation in AD 

AD of lignocellulosic materials is inefficient because most of the carbon is recalcitrant. These 

materials show poor solubilization, thus resulting in low biogas production and poor digestion 

performance (Y. Chen et al., 2008; Mao et al., 2015; Raposo, De La Rubia, Fernández-Cegrí, & 

Borja, 2012). Important findings on this topic started with advances in the quantification of fiber 

content in forage samples (Goering & Van Soest, 1975). The publication of this method allowed 

researchers to address the degradation of different components of the plant cell wall. Hills, (1979) 

showed how pure microcrystalline cellulose is consumed in AD and how cellulose combined with 

other organic compounds in complex waste may not be totally bioavailable for bacteria. Later, 

Hills & Roberts, (1981) published one of the first optimization efforts to maximize gas production 

during the degradation of dairy manure and field crop residues. They found optimum performance 

was achieved when the nonlignin carbon-to-nitrogen ratio was ~25 and ~32. On the other hand, 
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Yue et al., (2013) demonstrated how the codigestion of dairy manure and corn stover promotes 

biogas productivity. However, the conversion of nonrecalcitrant carbon from corn stover directly 

correlates with the microbial community structure. Besides, some plants generate resin extracts, 

and these extracts could be inhibitory for AD (Speece, 1987). Finally, there is evidence of 

inhibition of AD by lignin derivates obtained with aldehyde; they are highly toxic to methanogens 

(Y. Chen et al., 2008). To optimize this process, it is necessary to pretreat these materials to 

improve the bacterial enzyme accessibility or detoxify the feedstock to make it bioavailable as an 

energy source to microbes.  

2.7. Pretreatment technologies for lignocellulosic materials 

The nature of lignocellulosic materials makes them very resistant to an enzymatic attack. The 

main objective of the pretreatment is to change or weaken these properties to prepare the material 

for the downstream process (AD and ethanol production, among others). Different kinds of 

pretreatment methods exist, including physical, chemical, physicochemical, and biological 

(Taherzadeh & Karimi, 2008). Different challenges make the pretreatment of these materials 

effective, this due the high disparity presented in the lignocellulose structure between specific 

plants, specific plant tissues, and plant cells. Actually this materials shows a complexity paradigm 

across scale of systems who are tried to be studied (Chundawat, Donohoe, et al., 2011). Factors 

such as crystallinity of cellulose, surface area protection by lignin and hemicellulose, the degree 

of cellulose polymerization, and acetylation of hemicelluloses affect the pretreatment of 

lignocellulosic biomass (Karimi & Taherzadeh, 2016). Analytical methods, imaging, and 

crystallinity analyses are normally used to evaluate pretreatment methods. Existing pretreatments 

include milling, irradiation, microwaving, steam explosion, supercritical CO2, alkaline and acid 

hydrolysis, AFEXTM, and others (Taherzadeh & Karimi, 2008). 
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2.8. AFEXTM  

AFEXTM is an important pretreatment technology. It is an ammonia-based pretreatment that 

has proven to be a cost-effective way to reduce the recalcitrance of plant cell wall components 

(e.g., lignocellulosic materials) and improve microbial fermentation (Chundawat et al., 2013). This 

technology is currently being scaled up for potential commercialization. One of the important 

features of AFEXTM is the reversible nature of the interaction of ammonia (NH3) with biomass; 

this feature allows most of the ammonia to be recovered (Chundawat et al., 2013). The 

conventional method is to use liquid ammonia (0.3–2.0 [g NH3]/[g dry biomass]) in moist biomass 

(0.1–2.0 g in H2O per gram of dry biomass) with supplemental heat at high pressure (~2.25 MPa). 

The process takes place in a batch reactor, but could occur in a plug flow reactor or in a packed 

bed reactor (Chundawat et al., 2013). First, ammonia reacts with water to cause a rapid increase in 

temperature. Later, more heating is supplied to maintain a constant reaction temperature (~100 

°C); this process lasts for 30 min, then NH3 is exhausted, thereby releasing the pressure from the 

reactor (Perez-Pimienta et al., 2016).  

Three physicochemical changes exist in AFEX; (1) the LCC split and product formation, (2) 

lignin/hemicellulose redistribution, and (3) cellulose decrystallization (Chundawat, Beckham, 

Himmel, & Dale, 2011; da Costa Sousa, Chundawat, Balan, & Dale, 2009). The LCC linkages are 

some of the most important impediments to cellulase. By ammonolysis (an NH3 reaction with 

esters) and hydrolysis (acid formation), AFEXTM breaks these bonds and produces amides and 

organic acids (Balan et al., 2012). The decrystallization effect could be observed scanning sample 

surfaces at the microscale by atomic force microscopy (AFM). In Figure 4, AFM pictures of 

conventional corn stover are presented (Figure 4a), as is AFEXTM-pretreated corn stover (Figure 

4b). In the AFM images, is possible to observe visually how AFEXTM changed the geometry on 
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the architecture of the cell wall. With the AFEXTM technology is not possible to observes the 

normal array of the typical microfibril. Here is possible to observe changes in the normal crevices 

and cracks that formed part of the natural cell wall surface landscape, changing the AFM surface 

roughness factor from 16 to 30. The action mechanism of AFEXTM consists in several chemical 

processes. Ammonia first reacts and evaporates; this event results in the formation of nanoporous 

(10 to 500 nm width) tunnel-like networks due to the rapid decompression and volatilization of 

ammonia; then, the extractives redeposit out of the cell wall surface. Chundawat et al., (2011) 

found on AFEXTM-reaction products a strong enrichment of lignin-derived phenolics. This, due a 

strong stain by Safranin die between samples of untreated corn stover (Figure 4c) and AFEXTM 

corn stover (Figure 4d). 

a.  

 

b.  

 

Figure 4. AFM images of untreated a. and AFEXTM-pretreated b. corn stover. Confocal 

fluorescence imaging analysis of untreated c. and AFEXTM-pretreated d. corn stover. Adapted from 

ref. (Chundawat, Donohoe, et al., 2011) with permission. 
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Figure 4 (cont’d) 

c.  

 

d.  

 

The nanoporous networks enhance a microbial attack (Lau & Dale, 2009) without removing 

any of lignin and hemicelluloses into separate liquid streams. Interest in the testing of AFEXTM 

materials as an AD substrate comes from the ability of the AFEXTM process to improve activity of 

the enzymes toward the cellulose/hemicellulose/lignin system at the same time releasing acetic 

and lactic acids (V Balan et al., 2012; Venkatesh Balan, Bals, Chundawat, Marshall, & Dale, 

2009). 

In conclusion, it is necessary to optimize AD. This optimization requires the use of different 

social and scientific disciplines. For example, it is crucial to develop better policies regarding 

biogas production where the framework is aligned to the abilities of the technology. Additionally, 

it is important to understand the ecological principles of the microbial communities that control 

the process. Research should focus on understanding the nature of these cooperating species and 

the relations among them. Finally, it is necessary to improve analytical characterization of the AD 

feedstocks, specifically lignocellulosic compounds, in order to better determine what they are and 

improve their exploitation in AD. 
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3. MATERIALS & METHODS 

To obtain the results mentioned in the Objectives section, two experiments were performed 

and are described in detail in this section. The experimental design was different between the two 

projects. Nonetheless, the experiments are structured in the same way: sample collection and 

description, experimental setup, analytical methods, biological analysis (if necessary), 

performance evaluation, and statistical analysis. 

The first experiment is a novel evaluation of two kinds of semicontinuous codigestion of 

manure and corn stover,conventional corn stover (CS) and AFEXTM-pretreated corn stover 

(AFEX) . The continuous digestion was monitored for performance and microbial community 

dynamics for 75 days. All the statistical analyses were conducted using nonparametric statistics 

and ecological statistics. 

The second experiment was evaluation of the digestion of plant cell wall components at 

ABPs in the state of Michigan. Here samples were collected from the influent and effluent and 

characterized; then, the samples were evaluated in terms of the biogas potential, and finally, 

statistical analysis was performed to try to explain the correlation of these characteristics with the 

observed biogas productivity. The main objective was to examine the contribution of the plant cell 

wall components to the biogas production from the plants. 

Below is a description of both experiments. 



22 

 

3.1. Dynamic microbiome assembly and the effect on the performance of AD of AFEX-

pretreated corn stover and CS 

3.1.1. Feedstock sample collection 

Corn Stover, corn stover pretreated2 with AFEXTM, and DM samples served as feedstocks for 

this study. CS samples were collected from the Michigan State University (MSU) Beef Cattle 

Teaching & Research Center in November 2015; AFEXTM samples were obtained from the 

Michigan Biotechnology Institute in October 2015, and DM samples were collected from the MSU 

Dairy Cattle Teaching & Research Center in January 2016. After collection the samples, CS and 

AFEX were stored at room temperature (~20 °C) in airtight bags, after which they were air dried 

and milled using a Willey Mill (Standard Model No. 3; Arthur H. Thomas, Philadelphia, PA). 

Finally, CS and AFEX samples were sieved through a 2 mm coarse mesh (No. 8, W.S. Tyler, 

Cleveland, Ohio) prior to use. Meanwhile, the DM samples were stored at −18 °C and thawed 2 

days before the experiment. 

The AFEX samples were pretreated in a high-pressure Parr® stainless-steel reactor. For this 

purpose, anhydrous liquid ammonia was added into the reactor at a 2:1 ratio (dry mater basis); the 

reaction was allowed to proceed for 30 min at a temperature of 102 °C and pressure 2.25 MPa.  

3.1.2. Feedstock mixture preparation 

Two feedstock mixtures containing DM, one with CS and the other with AFEX, were prepared 

for the laboratory scale AD experiment. Both feedstock mixtures were prepared 2 to 5 days prior 

to use and stored at −4 °C. The feedstock mixtures were a 4:1 dry matter ratio of DM to CS or 

AFEX. Distilled water was added to the mixtures to prepare a group with a TS content of 5%. The 

mass of manure needed was calculated using equation 3: 

 
2 For the benefit of usage, AFEXTM is going to continue being called AFEX. 
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𝑚𝐷𝑀 =
4

5
(

5% ∙ 100 𝑔

𝑇𝑆𝐷𝑀
) (3) 

where 𝑚𝐷𝑀 is the mass of raw manure needed to obtain a feedstock mixture containing 5% of TS 

(g), and 𝑇𝑆𝐷𝑀 is the TS content of raw manure (%). On the other hand, the necessary mass of CS 

or AFEX was calculated via equation 4: 

𝑚𝐶𝑆 𝑜𝑟 𝐴𝐹𝐸𝑋 =
1

5
(

5% ∙ 100 

𝑇𝑆𝐶𝑆 𝑜𝑟 𝐴𝐹𝐸𝑋
) (4) 

where 𝑚𝐶𝑆 𝑜𝑟 𝐴𝐹𝐸𝑋 is the mass of CS or AFEX needed to obtain a feedstock mixture containing 

5% of TS (g), and 𝑇𝑆𝐶𝑆 𝑜𝑟 𝐴𝐹𝐸𝑋  is the TS content of CS or AFEX (%). 

3.1.3. Semicontinuous AD experiment 

Nine semi—continuous—feed completely stirred tank reactors (CSTRs) as anaerobic digesters 

with a liquid volume of 0.75 L were setup in triplicate for each feedstock mixture. Wheaton® 

bottles with rubber septa screw caps served as the CSTR vessels. The working volume of the 

digesters was 0.75 L. Needles were used to puncture the septa to release the biogas. The biogas 

production was measured by the water displacement method. Figure 5 shows the configuration of 

the digestion unit.  
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Figure 5. Flow direction of biogas and water in the water displacement method. 

 Experiments were carried out on MaxQ 4000 incubator shakers (Thermo Scientific, Odessa, 

TX) at a temperature of 35 ± 0.5 °C and a shaking speed of 150 rpm. The hydraulic retention time 

(HRT) of the digesters was 20 days, and the duration of the digestion experiment was 75 days. 

Fifty milliliters of the AD effluent was discharged, and 50 mL of the feedstock mixture was fed 

every other day. pH was controlled in a range from 6.9 to 7.1 using a 30% (v/v) sodium hydroxide 

solution. All these operations were carried out in an anaerobic chamber (PLAS Lab, Lansing, MI), 

and the chamber was purged with a medical grade specialty gas (85% N2, 10% H2, 5% CO2). A 

palladium catalyst heater was employed to ensure that the chamber was completely anaerobic. 

Two milliliters of the AD effluent were stored at −80 °C for microbial-community analysis. Ten 

milliliters of this effluent was used to quantitate TS and volatile solids (VS); the rest of the AD 

effluent was employed for quantitation of VFAs and structural carbohydrates. 
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3.1.4. Analytical methods 

3.1.4.1. Gas Chromatography (GC) 

Biogas concentrations of CH4 and CO2 were measured on an SRI 8610C GC system equipped 

with a HayeSep® column and a thermal conductivity detector. Biogas samples were collected at 

standard temperature from the bottle headspace using a 5 mL Hamilton® syringe after gas 

production was recorded. Hydrogen (H2) and helium served as carrier gases with pressure set to 

145 kPa. The thermal conductivity detector was kept at a constant temperature of 150 °C. The 

injection volume was 3 mL with 100 µL transferred to the GC column.  

3.1.4.2. TS/VS 

Ten-milliliter samples were used to measure the TS/VS ratio following the standard method 

(APHA, 1989). The samples were dried for 24 h at 105 °C in a convection oven to quantify TS; 

the dried sample was then volatilized at 550 °C to obtain the VS.  

3.1.4.3. National Renewable Energy Laboratory (NREL) Structural Carbohydrates 

Fiber content was measured by the NREL method “Determination of Structural Carbohydrates 

and Lignin in Biomass” developed by the NREL (A. Sluiter et al., 2012). Raw samples were dried 

at 45 °C in a food dehydrator (Tribest Sedona® SD-P9000). Then, low-concentration hydrolysis 

was performed in an autoclave, Getinge® 533LS. A Shimadzu® UV-1800 spectrophotometer was 

employed to measure absorbance for lignin quantitation. The monosugars from the hydrolysis of 

cellulose and hemicellulose were quantified using a Shimadzu® HPLC system equipped with a 

Bio-Rad Aminex HPX-87H analytical column and a refractive index detector. The mobile phase 

was 0.005 mol/L sulfuric acid at a flow rate of 0.6 mL/min. The column temperature was set to 65 

°C. 
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3.1.4.4. Concentrations of VFAs 

Ten milliliters of the AD effluent was centrifuged at 7,025 × g for 10 min in a Beckman® 

centrifuge (Allegra X-12R, Beckman Coulter, Inc., Brea, CA) to collect the supernatant for 

measurement of VFA concentration. The supernatant was washed with 25% (w/w) 

metaphosphoric acid at a ratio of 1 to 5 (acid to sample) to remove remaining solids. The VFAs 

were quantified on a Shimadzu GC system (GC-2010, Shimadzu Corp., Kyoto, Japan) equipped 

with a capillary column (122-3232 DB-FFAP, Agilent Technologies, Santa Clara, CA) and a flame 

ionization detector (Shimadzu Corp., Kyoto, Japan). Helium served as a carrier gas with the 

pressure set to 79 kPa. The injection volume was 10 µL with 1 µL transferred to the GC column. 

The column temperature was set to 150 °C for 2 min and raised to 220 °C at a rate of 15 °C/min, 

then maintained at 220 °C for 1 min. The temperatures of the injector and detector were set to 250 

and 270 °C, respectively. The volatile free acid mixture (CRM46975, Sigma–Aldrich, St. Louis, 

MO) served as the VFA standard. The acids quantified were acetic acid, propionic acid, isobutyric 

acid, butyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, and heptanoic acid. 

A final VFA concentration was determined by summing all the concentrations of the VFA profile 

described above. Due to the importance of the behavior of acetic (Hac) and propionic acid (Hpa), 

these were separately studied and plotted. 

3.1.4.5. Carbon and Nitrogen 

Raw materials dried at 45 °C were used to measure carbon and nitrogen content. Total organic 

carbon (TOC) (TMECC 04.01-A) and total nitrogen (TMECC 04.02-D) were measured to 

calculate the carbon-to-nitrogen ratio (TMECC 05.02-A) by the Test Methods for the Examination 

of Composting and Compost (USDA & CCREF, 2001). 
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3.1.5. Microbial Community Analysis 

3.1.5.1. Amplicon preparation and sequencing procedures 

The PowerLyzer® PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Carlsbad) was used 

to extract DNA from the DM sample and DNA from the AD effluent of the CS and AFEX reactors 

at various time points. The DNA concentrations were measured on a NanoDrop Lite 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). The DNA samples with the 

DNA concentration less than 25 ng/µL were concentrated using 5 M NaCl and cold ethanol (200 

proof). The extracted DNA was stored at −80 °C before use as a template for amplicon preparation 

with universal primers: forward primer Pro 341 F (5′-CCTACGGGNBGCASCAG-3′) and reverse 

primer Pro 805 R (3′-GACTACNVGGGTATCTAATCC-5′), to amplify both archaeal and 

bacterial DNAs (Takahashi, Tomita, Nishioka, Hisada, & Nishijima, 2014). Twenty-five 

microliters of the master mix solution containing 12.5 μL of the GoTaq® Green Master Mix 

(Promega, Madison, WI), 1 μL of forward primer (10 μM), 1 μL of reverse primer (10 μM), 0.5 

μL BSA, and 1 μL of extracted DNA (~40 ng/ μL), were mixed with 9 μL of DNase- and RNase-

free water for PCR. The PCR program started with a denaturing step at 95 °C for 5 min, followed 

by 30 cycles of the touchdown steps (denaturing at 95 °C for 2 min, annealing at 58 °C for 5 s, and 

elongation at 48 °C for 5 s), and ended with a final extension at 72 °C for 5 min. PCR products 

were loaded onto a Bio-Rad® 1% TAE Mini ReadyAgaroseTM precast gel with 1% ethidium 

bromide and were visualized using an electrophoresis unit (Bio-Rad, Hercules, CA). 

After the PCR products showed correct bands on the electrophoresis gel (1% agarose, dyed 

with ethidium bromide) for all the samples, samples containing the original DNA template were 

analyzed at the Research Technology Support Facility at MSU. Then, at this facility, the V3-V4 

region (positions 341–806) of the 16S rRNA gene was amplified by nested PCR with a set of 
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primers designed to detect bacteria and archaea (Takahashi et al., 2014). First, primary PCR was 

carried out with chimeric primers containing target-specific portions (as described in Takahashi’s 

report) and Fluidigm CS oligos at their 5′ ends. Secondary PCR targeting the CS oligos was then 

carried out to add sequences necessary for Illumina sequencing and unique barcodes. The PCR 

products were normalized via Invitrogen SequalPrep DNA normalization plates, and normalized 

eluates from the plates were pooled. After validation and quantification, a pool was sequenced in 

an Illumina MiSeq flow cell (v2) with a 500-cycle reagent kit (2×250 bp paired-end reads). Custom 

sequencing primers matching the Fluidigm CS1 and CS2 oligos were used. Base calling was done 

by Illumina Real Time Analysis (RTA) v.1.18.54 software, and the output of RTA was 

demultiplexed and converted to FASTQ format in Illumina Bcl2fastq v.1.8.4. 

3.1.5.2. Bioinformatics 

The FASTQ files from Illumina sequencing were analyzed with BION, a semi-commercial 

open-source package for microbial-community analysis from the Danish Genomic Institute, 

Aarhus, Denmark. Primer sequences were utilized to extract the paired sequences from the raw 

reads, and minimum quality of 99% was set as a requirement for at least 14 of 15 bases for forward 

reads and 28 of 30 for reverse reads. A minimum length of 50 was imposed. Paired reads were 

joined where there was at least a 25-base overlap and 85% similarity. Sequences were then filtered 

for length (250 minimum) and quality (99.6%), dereplicated, preclustered at 99%, and checked for 

chimeras by an algorithm unique to BION. Nonchimeric sequences were clustered at 99% 

stringency and a minimum length of 300. The sequences were then matched to reference sequences 

using a K-mer length of 8 with a step size of 4 and were compared with the region 340–807 in 

RDP 11.04. The sequence similarities of each sample were converted to a taxonomic profile, using 
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the RDP taxonomy, and the profiles were combined into abundance tables and counted as 

operational taxonomic units (OTU). 

3.1.6. Evaluation of Digestion Performance 

To evaluate the performance of the digesters, it was assumed that the reactors are under steady-

state conditions, where the mass is being conserved and there is no change in stored mass with 

time. Under these assumptions, four performance parameters were determined to evaluate the 

digestion: biogas productivity, VS concentration reduction, and xylan and cellulose content 

reductions. Biogas productivity was determined using equation 5:  

𝐵𝑃 =
𝑉𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 1𝐸 − 6

20 ∙ 𝑚𝑓𝑒𝑒𝑑 ∙ 𝑉𝑆𝐹𝑒𝑒𝑑
 (5) 

where 𝐵𝑃 is biogas productivity (m3 of biogas/[kg VS]), 𝑉𝑠𝑎𝑚𝑝𝑙𝑒  is the accumulated 

produced biogas for each HRT (mL), 𝑚𝑓𝑒𝑒𝑑 is the total mass fed into the reactors around each 

HRT (g), and 𝑉𝑆𝐹𝑒𝑒𝑑  is the VS percentage in feed mixtures (%). Meanwhile, the VS content 

reduction was determined via equation 6: 

𝑉𝑆𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑚𝑓𝑒𝑒𝑑𝑉𝑆𝑓𝑒𝑒𝑑 − 𝑚𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑉𝑆𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡

𝑚𝑓𝑒𝑒𝑑𝑉𝑆𝑓𝑒𝑒𝑑
∙ 100 (6) 

where 𝑉𝑆𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the VS reduction in the reactor (%), 𝑉𝑆𝑓𝑒𝑒𝑑 is the VS percentage in 

feed mixtures (%), 𝑚𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡  is the total mass of the AD effluent (g), and 𝑉𝑆𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡  is the VS 

percentage in the AD effluent (%). The cellulose reduction was determined by means of equation 

7: 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑚𝑓𝑒𝑒𝑑𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑓𝑒𝑒𝑑 − 𝑚𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡

𝑚𝑓𝑒𝑒𝑑𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑓𝑒𝑒𝑑
∙ 100 (7) 
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where 𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the cellulose reduction in the reactor (%), 𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑓𝑒𝑒𝑑  is the 

cellulose content (%) of feed mixtures (%), and 𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 is the cellulose content (%) in 

the effluent (%).  

The xylan reduction was determined using equation 8: 

𝑋𝑦𝑙𝑎𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑚𝑓𝑒𝑒𝑑𝑋𝑦𝑙𝑎𝑛𝑓𝑒𝑒𝑑 − 𝑚𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑋𝑦𝑙𝑎𝑛𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡

𝑚𝑓𝑒𝑒𝑑𝑋𝑦𝑙𝑎𝑛𝑓𝑒𝑒𝑑
∙ 100 (8) 

where 𝑋𝑦𝑙𝑎𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the xylan reduction in the reactor (%), 𝑋𝑦𝑙𝑎𝑛𝑓𝑒𝑒𝑑  is the xylan content 

(%) of feed mixtures, and 𝑋𝑦𝑙𝑎𝑛𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 is the xylan content (%) of the effluent. Because we 

assumed steady-state conditions (i.e., 𝑚𝑓𝑒𝑒𝑑 = 𝑚𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡), the mass terms are cancelled out in 

equations 6 to 8, making the calculation of the performance parameters simpler.  

3.1.7. Statistical analysis of microbial-community data & of digestion performance 

To understand the microbial ecological conditions of the reactors and their effect on the 

operation of the reactors, a series a statistical analysis was performed. First ANOVA was 

conducted, with the objective to find statistically significant differences among the operational 

parameters. Then alpha (α) and beta (β) diversity were calculated and analyzed. α-Diversity 

describes the structure of the community by itself, in the context of the study; this is the structure 

of each sample sequenced (Bolker, 2008). Meantime, β-diversity measures the turnover of species 

between two places. In the context of this analysis, β-diversity is the comparison between different 

reactor communities (Bolker, 2008). 

The OTU table from the bioinformatics pipelines was employed to interpret the microbial data 

and correlate the microbial communities with digestion performance. The R statistical software 

(version 3.5.0) was used to carry out the analysis. Software code is presented in the Appendix. 
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Three data files—the OTU table, taxonomy table, and metadata table—were generated for R to 

run the analysis. All these tables were saved as tab limited TXT files. 

3.1.7.1. ANOVA & Normality 

The Shapiro–Wilk normality test was performed on the digestion performance data 

transformed to a logarithmic scale (R function log). The digestion performance data included 

biogas productivity, VS content reduction, VFA concentration, cellulose content in the AD 

effluent, xylan content in the AD effluent, and lignin content of the AD effluent. The R function 

shapiro.test was executed. A one-way ANOVA was then performed separately for each 

HRT (1, 2, & 3) using the R function aov. On the ANOVA results, the Tukey pairwise comparison 

was performed to find statistically significant differences between the various operational 

parameters via the R function TukeyHSD. 

3.1.7.2. -Diversity 

By means of R libraries vegan (Oksanen et al., 2016), phyloseq (McMurdie & Holmes, 

2013), MASS (Venables & Ripley, 2002), and tidyverse (Wickham, 2009), a detailed -

diversity analysis was performed, to study the diversity in each sample. Several diversity indices 

(i.e., Shannon’s, Simpson, Inverse Simpson, and Fisher) were calculated using the diversity 

function. The sampling curve or richness curve was calculated using the rarecurve formula; 

this approach allows us to observe the change in diversity. Both formulas are a part of the vegan 

package. The sampling curve is a plot of the species accumulation versus the sample size; the rate 

at which new species are added reflects useful richness diversity (Bolker, 2008). 
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3.1.7.3. -Diversity 

A class object was constructed to unify all data at the experiment level using phyloseq() 

from library phyloseq. Before the samples were analyzed, the dataset was rarefied. Rarefication 

allows a researcher to normalize a dataset thereby enabling a comparison of the relative species 

richness in a normalized base. Because the rarefication procedure requires random subsampling, a 

constant random number was set using set.seed(). This technique allowed to reproduce the 

results every time the same code was running. The dataset was rarefied by means of the function 

rarefy_even_depth from phyloseq. Four hundred thirty OTUs were removed from the 

datasets thereby allowing me to normalize the abundance of all the datasets. The function 

merge_samples() was executed to merge the duplicates of each run. The data were 

transformed to relative values using the function transform_sample_counts in 

phyloseq. The relative values served to compare relative abundance levels of individual taxa 

between different samples. Based on the normalized data, abundance bar plots were built. In 

addition, some ordination analysis was performed as well. Finally, to obtain a multivariate 

understanding of this effect in the microbial communities, nonmetric multidimensional scaling 

analysis was performed on the OTU data at the family level using the metaMDS() function from 

vegan. Bray distance was chosen as a dissimilarity index. Functions subset_taxa() and 

taxa_glom()were employed to cluster similar taxa at different levels from a domain to genus.  

3.2. Degradation of lignocellulosic feedstocks at ABPs 

3.2.1. Influent and effluent sampling at ABPs 

Fresh influent and effluent samples were collected at three ABPs in Michigan. The samples 

were obtained on two farms (Farm A and Farm B) and from the MSU South Campus Anaerobic 
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Digester (SCAD) on a weekly basis. Farms A and B were sampled on May 22 and 30 and June 6, 

whereas the SCAD samples were collected on June 5, 11, and 19, 2018. The main characteristics 

of the sampled ABPs are listed in Table 2. The samples were transported and stored at a 

temperature of 3 °C prior to the analysis at the Anaerobic Digestion Research and Education 

Center (ADREC) of MSU.  

Table 2. Description of the ABPs sampled 

Name 
Reactor 

Units 

Effluent 

streams per 

reactor 

Feedstocks Type 

Farm A 3 1 Dairy manure/FOG CSTR 

Farm B 2 1 Dairy manure Plug-Flow 

SCAD 1 1 Dairy manure/FOG CSTR 

The ABPs have different reactor designs, effluents streams and configurations. For instance, 

Farm A and SCAD are CSTR reactors. For this type, the feedstock is introduced in tanks which 

are generally stirred by impellers or pumps (Doran, 1995). The performance of these reactors is 

dependent of reaction kinetics and the HRT in which the reactor operates (Fogler, 1999). The 

digester at Farm A consists of three reactor units each with a mass flow of feedstock of 604,74 m3 

per day. Therefore, one sample from each the influent and the effluent were sampled for each unit. 

Then, the samples were mixed using a volume ratio 1:1:1 in the laboratory. Regarding SCAD, this 

ABP consists of only one reactor tank and a single input–output stream; therefore, the samples 

obtained from the streamlines were used as is. On the other hand, Farm B is a plug-flow digester, 

in which the fluid is pumped through a pipe or tunnel where the feedstock reacts. Here, the 

chemical reactions proceed as the feedstock travels through the reactor volume like a piston. 

Additionally, Farm B has two effluent lines (Table 2). Thus, in the case of Farm B, the composites 

were prepared at a volume ratio 1:1. In addition, jugs of 5 L with the composites were prepared 

and stored at 4 °C. 
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3.2.2. Analytical Methods  

Influent and effluent samples were characterized in terms of a variety of parameters. The 

samples were dried at 45 °C for 3 days. Then, the dry sample material was characterized following 

the method  presented by Templeton, et al., (2010). Such parameters as cellulose, xylan, lignin, 

ash, protein content, water extractives (H2O.Ext), and ethanol extractives (C2H6O.Ext) were 

measured. Quantification of the extractives in the samples was based on the method 

“Determination of Extractives in Biomass” NREL/TP-510-42619 (A Sluiter, Ruiz, Scarlata, 

Sluiter, & Templeton, 2008). The extraction procedures were performed in 600 mL Tall Form 

Kimble® Berzelius Beakers using a reflux system called Labconco® Crude Fiber Apparatus 

(Kansas City, MO); the process lasted for 2 h. For the aqueous extraction, 2 g of a raw dry sample 

was placed in 100 mL of deionized (DI) water mixed with 4 mL of 30% v/v thermostable 

Novozymes Thermamyl® 120 L (Franklinton, North Carolina). For the ethanol extraction, 1 g of 

a sample already water extracted was placed with 100 mL of 71.25% v/v ethanol and digested for 

2 h again. After the samples were digested, they were transferred to 50 mL vials. Next, these 

samples were centrifuged at 4,427 × g on a HERMLE Z206A (Wehingen, Germany). After that, 

the supernatant was discarded, and the tubes were centrifuged again with 50 mL of DI water. This 

process was repeated twice. Finally, the precipitate and some of the supernatant were transferred 

to a 20 mL tube for drying and were dehydrated at 45 °C. In both extraction procedures, a small 

sample was dried at 105 °C to correct the final extractive content for moisture. Protein content was 

calculated using a nitrogen protein conversion multiplier of 6.25 (J. B. Sluiter, Ruiz, Scarlata, 

Sluiter, & Templeton, 2010).  

Parameters such as COD, soluble chemical oxygen demand (sCOD), total Kjeldahl nitrogen 

(TKN), and ammonia (NH3) were analyzed in the wet samples (Patel & Nakhla, 2006). COD was 
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measured by an EPA-approved Hach method 8000. For measuring sCOD, the samples were 

centrifuged at 4427 x g and then passed through a 0.45 µm filter with the help of a vacuum pump. 

Next, the filtered samples served as input for COD Hach method 8000. TKN was quantified by 

the EPA-approved Hach method 10242. Ammonia analysis involved EPA-approved Hach method 

10205. The samples were analyzed at room temperature. All the described Hach methods involved 

a Hatch DRB200 reactor and Hatch DR5000 spectrophotometer (Loveland, Colorado). In addition, 

TS/VS, TOC, total organic nitrogen, structural carbohydrates, methane content, and biogas were 

quantitated by the method described in subsection 1.1.4.  

3.2.3. Biochemical Methane Potential (BMP) in ABPs influents 

BMP assays were performed on the samples from the ABPs influents. Considering the need 

for a relatively large amount of a dry sample for fiber content analysis, a modified BMP method 

was adopted (Faivor & Kirk, 2011). The samples were blended using a Nutri-Ninja Professional 

BL450 900 Watt without the addition of water (Hansen et al., 2004). The blended samples were 

mixed with the digestion filtrate at a sample-filtrate VS ratio of 2:1. The mixtures contained 200 g 

of the filtrate and blended sample. DI water was used to bring the reactor volume to 1 L. Each 

sample was analyzed in triplicates. The control contained 200 mL of filtrate and 800 mL of DI 

water without the blended samples. The samples of the mixtures were mixed on a stir plate for 10 

min and then poured into a 0.75 L graduated Wheaton® bottle. The bottles were sealed with 

Wheaton® screw caps that have a septum for poking needles to measure the gas production. The 

bottles were flushed with nitrogen at a constant flow rate of 750 mL min−1 for 15 min and incubated 

under mesophilic conditions (35 °C) on a Thermolyne Bigger Bill Oscillator shaker. After 2 h of 

incubation, the gas was released from the bottles. Then, the experiment was started, lasting for 50 
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days. Finally, once the experimental data were obtained, biogas productivity was calculated using 

equation 9, usually called the raw method productivity: 

𝐵𝑃𝑟𝑎𝑤 𝑚𝑒𝑡ℎ𝑜𝑑 =
(𝑉𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉̅𝑠𝑒𝑒𝑑)

(𝑉𝑆𝑟𝑎𝑤 ∙ 𝑚𝑠𝑎𝑚𝑝𝑙𝑒)
∙ 1000 (9) 

where 𝐵𝑃𝑟𝑎𝑤 𝑚𝑒𝑡ℎ𝑜𝑑 is the biogas productivity of the raw sample (L/[kg initial VS]), 𝑉𝑠𝑎𝑚𝑝𝑙𝑒  is the 

accumulated volume of the gas produced in the BMP (mL), 𝑉̅𝑠𝑒𝑒𝑑  denotes the average accumulated 

volume of gas produced by the control BMP (mL), 𝑉𝑆𝑟𝑎𝑤  is the VS of feedstock mixtures (mg/kg), 

and 𝑚𝑠𝑎𝑚𝑝𝑙𝑒  represents the sample mass added into the BMP (kg). 

3.2.4. Statistical analysis of ABP data 

3.2.4.1. ANOVA & Normality 

An R script was written in-house to analyze the dry matter, characterize the raw samples, and 

to model the possible effect of this characterization on biogas productivity. First, all the data were 

transformed to dry matter basis by dividing each obtained data point by the TS determined in the 

sample. The parameters studied were sCOD, COD, NH3, TKN, protein, TOC, H2O.Ext, 

C2H6O.Ext, cellulose, xylan, acid lignin, and biogas productivity. Then, the Shapiro–Wilk test was 

performed with transformation to the logarithmic scale for each parameter measured, with 

clustering of the samples for each biogas plant, and by taking a difference between the influent 

and effluent. Function shapiro.test was utilized to perform this analysis. Later, one-way 

ANOVA was performed separately for each parameter measured by means of the factors: “plant” 

(Farm A, Farm B, or SCAD) and “flow” (influent or effluent). The ANOVA was performed via 

function aov. Due to the high variation observed in the data, for significance, a p value of 0.1 was 

selected. On the ANOVA results, the Tukey pairwise comparison was performed to find 
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statistically significant differences in various operational parameters, using the TukeyHSD 

function.  

3.2.4.2. Average percentage of a parameter decrease on dry matter 

In addition, an average percentage of reduction in each parameter was calculated via the 

average of the influent and effluent data, by means of equation 10: 

𝑅̅ =
𝐼 ̅ − 𝐸̅

𝐸̅
 (10) 

where 𝑅̅ is the average content reduction percentage (%), 𝐼 ̅is the average concentration of each 

substance (% dry matter), and 𝐸̅ is the average effluent concentration of the same substance (% 

dry matter basis). These values were used as inputs of the variance-based sensitivity analysis. 

3.2.4.3. Variance-based sensitivity analysis 

To gain a deeper insight into the impact of the characteristics of the influents and their decrease 

on the BMP biogas productivity, a sensitivity analysis was performed assuming a linear model and 

with calculation of the covariance matrix of the reduction samples. The model assumed 

noninteraction among the parameters. The description of the model is given in equation 11: 

𝐵𝑃 = 𝑓(𝑅𝑠𝐶𝑂𝐷 , 𝑅𝐶𝑂𝐷 , 𝑅𝑁𝐻3
, 𝑅𝑇𝐾𝑁 , 𝑅𝑃𝑟𝑜𝑡𝑒𝑖𝑛, 𝑅𝑇𝑂𝐶 , 𝑅(𝐻2𝑂)𝐸𝑥𝑡

, 

𝑅(𝐶2𝐻6𝑂)𝐸𝑥𝑡
, 𝑅𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 , 𝑅𝑋𝑦𝑙𝑎𝑛, 𝑅𝐿𝑖𝑔𝑛𝑖𝑛) 

(11) 

where 𝐵𝑃 is the biogas productivity obtained in the BMP experiments (L/[kg initial VS]), 𝑅𝑠𝐶𝑂𝐷 

is the average decrease in sCOD (%), 𝑅𝐶𝑂𝐷 is the average decrease in COD (%), 𝑅𝑁𝐻3
 is the 

average decrease in NH3 content (%), 𝑅𝑇𝐾𝑁 is the average decrease in TKN content (%), 𝑅𝑃𝑟𝑜𝑡𝑒𝑖𝑛 

is the average decrease in protein content (%), 𝑅𝑇𝑂𝐶 is the average reduction in TOC content (%), 

𝑅(𝐻2𝑂)𝐸𝑥𝑡
 is the average reduction in (H2O)Ext (%), 𝑅(𝐶2𝐻6𝑂)𝐸𝑥𝑡

 is the average reduction in 
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(C2H6O)Ext content (%), 𝑅𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 is the average decrease in cellulose content (%), 𝑅𝑋𝑦𝑙𝑎𝑛 is the 

average decrease in xylan content (%), and 𝑅𝐿𝑖𝑔𝑛𝑖𝑛 is the average decrease in acid lignin content 

(%).  

The programming code for the analysis is presented in Appendix 7.4 in part 9 of the Rscript 

developed. The code was written via Oracle Crystal Ball specifically, and this analysis was 

performed using the newly developed function contribution_to_variance()3. Here, the 

variance contribution is calculated by squaring the rank correlation coefficients and is normalized 

to obtain 100%; these results are only an approximation and are not precisely variance 

decomposition. The rank correlation shows that positive coefficients indicate an increase in the 

assumption, whereas negative coefficients imply the opposite situation. The larger the absolute 

value of the correlation coefficient, the stronger is the relation. Finally, the constructed plot showed 

a contribution and rank correlation. 

  

 
3 http://mattgrogan.info/stats/contribution-to-variance/ 
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4. RESULTS 

The results section will be described in two subsections (4.1 and 4.2). The first subsection 

describes the evaluation of the codigestion of manure with the two kinds of corn stover, CS and 

AFEX. Here, readers can see a description of feedstock mixtures and their characterization, the 

digestion performance observed, and the details about the microbial community established during 

both kinds of digestion. 

On the other hand, in subsection 4.2, readers will see dry-matter and raw characterization of 

the ABPs studied, the results of the BMP experiments performed with the ABP influents, and the 

sensitivity analysis of biogas productivity on the basis of the reductions observed in the parameters 

being measured. 

4.1. Dynamic microbiome assembly and the effect of the performance of AD of AFEX-

pretreated corn stover and CS 

4.1.1. Feedstock characterization and codigestion mixture mass ratios 

Table 3 summarizes the characteristics of DM, CS, and AFEX used in the study. It is apparent 

that the TS concentrations of the CS and AFEX samples are much higher in comparison with DM 

samples. This phenomenon is mainly caused by rumen digestion. DM is the digested residue of 

plant biomass and other nutrients in the animal feed. These three feedstocks all contain significant 

amounts of cellulose, xylan, and lignin and are considered lignocellulosic biomass. Among them, 

CS has the highest cellulose content; at 37.30%, AFEX has the highest hemicellulose content 

(21.73%), and DM has the highest lignin concentration (21.86%). Meanwhile, DM has a much 

lower C/N ratio (18.2) than CS and AFEX do. This result makes it possible to mix DM with CS 

and AFEX to obtain feedstock mixtures with desired C/N ratios (between 15 and 30) for healthy 

and efficient AD. In addition, DM has a much higher moisture content of 85.55% than do CS 
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(7.40%) and AFEX (2.64%). Mixing DM, CS, and AFEX can significantly reduce the demand for 

water needed to carry out the digestion. 

Table 3. Characteristics of assay feedstocks. 

Characteristic DM CS AFEX 

Raw Total solids (%) 14.45 ± 0.59 92.60 ± 0.19 92.68 ± 0.14 

Volatile solids (% raw TS) 88.40 ± 0.64 95.66 ± 0.23 97.36 ± 0.07 

TOC (% raw TS) 37.6 46.61 ± 0.16 46.40 ± 0.04 

Nitrogen (% raw TS) 2.07 0.51 ± 0.08 1.55 ± 0.08 

C/N 18.2 91.39 29.94 

Cellulose (% TS) 22.63 ± 0.27 37.30 ± 0.24 28.96 ± 1.60 

Xylan (% raw TS) 9.29 ± 0.32 19.61 ± 0.55 21.73 ± 0.21 

Lignin (% raw TS) 21.86 ± 1.14 17.62 ± 1.06 18.44 ± 0.68 

 

4.1.2. Digestion Performance 

Figure 6 summarizes different patterns of biogas production, methane content, VS content 

reduction, cellulose/xylan content reduction, and VFA content as parameters of the anaerobic 

codigestion of two feedstock mixtures (CS and AFEX). During the 75-day semi-continuous 

digestion, three stages: 1 (days 0–20), 2 (days 21–40), and 3 (days 41–75), were chosen based on 

the HRT of 20 days to investigate dynamic changes during the anaerobic codigestion. 

a. b. 

  

Figure 6. Digestion performance of AFEX and CS during the digestion (three HRTs). a. Biogas 

productivity, b. methane content, c. VS content reduction, d. cellulose content reduction, e. xylan 

content reduction, f. total VFA concentration. 
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Figure 6 (cont’d) 

c. d. 

  

e. f. 

  

 

The experimental data revealed that the factors of feedstock and digestion time had a 

significant (p < 0.05) influence on biogas production (Table 3), and both digestion procedures had 

a lag phase in biogas production (Figure 6a). The lag phases for the CS and AFEX-pretreated corn 

stover digestion were approximately one and two HRTs, respectively. Biogas production by the 

CS codigestion rapidly increased to 225 ± 5 L/[kg VS loading] per day in the 2nd HRT relative to 

the 1st HRT (91 ± 5 L/[kg VS loading] per day), and then leveled off in the 2nd HRT to reach 

stable biogas production of 175 ± 8 L/[kg VS loading] per day (Figure 6a). As for the AFEX-

pretreated corn stover codigestion, biogas production kept increasing from 79 ± 4 L/[kg VS 

loading] per day in the 1st HRT gradually to 130 ± 6 L/[kg VS loading] per day, and then stabilized 
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at 213 ± 0 L/[kg VS loading] per day in the 3rd HRT. In the stabilized 3rd HRT, the AFEX-

pretreated corn stover codigestion indicated significantly (p < 0.05) higher biogas production in 

comparison with the CS codigestion.  

In terms of CH4 content, feedstock and HRT had a significant (p < 0.05) impact on methane 

content in the biogas during the digestion (Table A1). Both codigestion procedures started at 

slightly but significantly (p < 0.05) higher methane contents (62% ± 1% and 65% ± 2% for the 

AFEX-pretreated corn stover and CS digestion reactions, respectively) in the 1st HRT than the 

subsequent HRTs (Figure 6b). Methane contents stabilized at 61% ± 1% and 62% ± 0% for the 

corresponding digestion reactions in the 3rd HRT without a significant (p > 0.05) difference 

between the two digestion groups (Figure 6b). The variation observed in the content of the biogas 

samples is normal during the establishment of methanogenic communities. 

As for the VS content reduction, it was similar to VFA in that feedstock and digestion time 

generally had no significant (p > 0.05) influences on the VS content reduction in both digestion 

reactions (Table A1). However, the VS content reductions largely fluctuated in the first two HRTs 

(Figure 6c). After the 1st HRT, the AFEX-pretreated corn stover codigestion yielded a greater VS 

content reduction than did the CS codigestion, particularly in the 2nd HRT where the VS content 

reduction of the AFEX-pretreated corn stover codigestion (47% ± 5%) was significantly higher 

than that (31% ± 1%) in the CS codigestion. This observation along with the higher biogas 

productivity of the AFEX-pretreated corn stover codigestion could be explained by the chemical 

and structural changes of the corn stover during the AFEX treatment. Anhydrous ammonia in the 

AFEX pretreatment reacts with feruloyl or coumaryl ester bonds in biomass to form amides, 

especially acetamide (Chundawat et al., 2013; Chundawat, Donohoe, et al., 2011). Guyot et al. 

demonstrated that amide compounds can be easily degraded by anaerobes and methanogens 
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(Guyot, Ferrer, & Florina, 1995). Accordingly, the AFEX-pretreated corn stover codigestion 

manifested more efficient biogas formation from VS than did the control CS codigestion.  

Both factors—digestion time and feedstock—generally had no significant (p > 0.05) 

impact on cellulose and xylan content reduction, except that the digestion time was a significant 

factor for cellulose content reduction. However, high variations of cellulose and xylan degradation 

were observed during AD (Figure 6d & 6e). The AD of the AFEX-pretreated corn stover yielded 

significantly (p < 0.05) higher cellulose and xylan content reductions in the 1st HRT than that of 

the CS digestion. After the 2nd HRT, the differences in cellulose and xylan content reductions 

between the two codigestion experiments were not significant (p > 0.05). The original mixtures of 

both codigestion reactions had higher concentrations of fresh AFEX-pretreated corn stover and CS 

in the reactor at the beginning of the digestion (the 1st HRT). Accordingly, more cellulose and 

xylan from AFEX-pretreated corn stover and CS were released into the reactors. Because the 

cellulose and xylan in the AFEX-pretreated corn stover were relatively easy to digest by microbes 

owing to the loose carbohydrate–lignin bonds (V Balan et al., 2012), the larger amount of the 

AFEX-pretreated corn stover in the 1st HRT led to significantly greater cellulose and xylan content 

reductions than did the CS digestion. After the 1st HRT, 20% of AFEX-pretreated corn stover and 

CS in the feed for codigestion might be too little to reveal significant impacts on the overall 

cellulose and xylan content reductions (Figure 6d & 6e). 

The VFA data further verified the performance patterns of these two digestion reactions 

(Figure 2f). A large variation (2.6 ± 2.7 g/L) between replicates of the AFEX corn stover digestion 

and a high VFA concentration (4.3 ± 0.8 g/L) of the CS digestion indicated unstable digestion 

during the 1st HRT. With progression of the digestion, the VFA concentrations stabilized at 2.8 ± 
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0.1 and 3.4 ± 1.4 g/L for the AFEX-pretreated corn stover and CS digestion reactions, respectively 

(Figure 2f).  

In Figure 7, the concentration of two VFAs being quantified is plotted: Hac and Hpa. On 

average, the sum of the concentrations of these two VFAs represents 80% of the total acid-

producing fermentation measured in the effluents. The ANOVA results (Table A1) suggested that 

in the 2nd HRT, the concentration of Hac was significantly lower (p = 0.01) in group AFEX (0.41 

g/L) in comparison with group CS (1.82 g/L).  

 

Figure 7. Average acetate (Hac) and propionic acid (Hpa) concentrations in the reactors. 

On the other hand, Hpa concentration did not show significant differences between the 

different digestion reactions and at the same time did not undergo any reduction throughout the 

whole experiment. The concentrations of these two acids could be having a strong effect on biogas 
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productivity and on microbial ecology. Wang, Zhang, Wang, & Meng, (2009) reported that 0.9 

g/L Hpa has a significant inhibitory effect on a methanogen’s growth (p < 0.01). Those authors 

also found that this inhibition resulted in the accumulation of acetate and affected the total methane 

yield. By contrast, such accumulation was not seen in the AFEX reactors according to Figure 7, 

and the concentration of acetate was significantly lower in the AFEX reactors in comparison with 

CS reactors. Moreover, Chundawat, Beckham, et al., (2011) described how the AFEX pretreatment 

produces a series of ammonolytic and hydrolytic reactions that cleave various ester linkages, 

thereby resulting in the formation of amides and acids such as acetate. This evidence may confirm 

a possible influence of AFEX pretreatment on the acetate formation and consumption by 

codigestion in the AFEX reactors. It is important to remember that the group of methanogens are 

acetate reducers, and the concentration of acetate will have a major impact on the growth of this 

group and on methane formation (Rittmann & McCarty, 2001). 

4.1.3. Microbial Community Analysis 

Figure 8 illustrates the evenness and richness diversity of the microbial species in each reactor 

(α-diversity). The average relative abundance of microbial species indicates a good fit to the 

lognormal distribution of the microbial communities and reveals high rarity of the species (Figure 

8a). Similar evenness was observed during codigestion of different feedstock mixtures elsewhere 

(R. Chen et al., 2016; Rojas-Sossa et al., 2017). The sampling richness curves for each digester are 

presented in Figure 8b. The diversity of the microbial communities in the codigestion experiment 

was significantly different from that of the inoculum. The shifts could be caused by changes of 

nutrients in the feedstock mixture as well as introduction of new microbial species in groups CS 

and AFEX (Kirkegaard et al., 2017).  
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a. 

 

b. 

 

Figure 8. Diversity of microbial communities in both digestion reactions. a. The rank abundance 

(Whittaker) plots of relative abundance of OTUs in both digesters. The dots represent the 

logarithmic percentage of the relative abundance of each species, and then the lognormal curve 

was plotted on the data. b. Examples or the diversity curves seen in the digesters. 

Figure 8b also indicates that during the stable digestion performance (the 3rd HRT), 

microbial communities of the AFEX codigestion reaction were slightly more diverse than those of 
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the CS codigestion reaction. This is because the sampling curves showed higher steepness in the 

3rd HRT. This finding indicates that AFEX-pretreated corn stover allowed for digestion to maintain 

a higher number of microbial species and a large number metabolic fluxes could be happening 

inside the reactors (Colwell & Rangel, 2009). The diversity indices of the digestion reaction for 

three HRTs are presented in Figure 9. 

 

Figure 9. Ecological diversity indices (Shannon, Simpson, Inverse Simpson, and Fisher) for each 

AD reactor. 

Much larger variation in Shannon, Simpson, and Inverse Simpson indices for the AFEX 

replicates was observed in the 1st and 2nd HRTs as compared to the CS replicates. The variation 

significantly diminished in the 3rd HRT. The results once again show that AFEX certainly has a 

bigger impact on the microbial communities of AD. Meanwhile, the Fisher diversity index 

indicates a large difference between the seed and digestion samples, consistently with the 
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rarefaction curve (Figure 8b), where the seed diversity was much lower than that of the digestion 

samples. 

Figure 10 shows the relative abundance of AFEX and CS samples at four taxonomic levels. 

At the domain level, as presented in Figure 10a, the total relative abundance of archaea was higher 

in the AFEX digesters than CS reactors in the 2nd and 3rd HRTs. The data suggest that AFEX 

codigestion has a potential to enrich the archaea population. The distribution of dominant phyla 

(Bacteroidetes, Proteobacteria, Spirochaetes, and Verrucomicrobia) is depicted in Figure 10b. 

These phyla have been detected in other digestion studies. The phylum Bacteroidetes of AFEX 

and CS digesters showed significant increases in its relative abundance as compared to the seed 

sample. Considering the high carbohydrate content in groups AFEX and CS, Bacteroidetes as 

carbohydrate-degrading microbes correspondingly increased in number at the beginning of the 

digestion to satisfy the need for nutrient utilization to support healthy digestion. With progression 

of the digestion, stable digestion was achieved, and balanced communities formed 

correspondingly. The abundance of the phylum Bacteroidetes decreased. In contrast to 

Bacteroidetes, phyla Verrucomicrobia and Proteobacteria did not undergo enrichment relative to 

the seed. Both decreased in abundance with the digestion duration. This phenomenon may be 

caused by the increased carbohydrate content and reduced protein amount of AFEX and CS 

feedstocks. Of note, the phylum Spirochaetes got enriched during the digestion of AFEX and CS 

(Figure 10b). In the 3rd HRT, the AFEX digesters showed much higher relative abundance of these 

genera compared to other genera. The rich nonrecalcitrant carbohydrates of the AFEX reaction 

could have played a key role in this shift. Two main genera from the phylum Spirochaetes were 

found: Treponema and Sphaerochaeta (Figure 10c). Turroni et al., (2016) detected a significant 
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increase in the abundance of Treponema in human gut microbiomes of hunter-gatherers who lived 

on high-plant-fiber diets. The relative abundance of archaeal genera is illustrated in Figure 10d. 

 

Figure 10. Relative abundance of different taxa found in the reactors. a. Relative abundance of the 

microbial domains. b. Relative bacterial phylum abundance. c. Relative Spirochaetes genera 

abundance. d. Relative Archaea genera abundance. 

Methanosarcina, Methanocorpusculum, and Methanobrevibacter were three dominant 

archaea in both AFEX and CS digestion reactions. Methanocorpusculum and Methanosarcina got 

enriched with the digestion duration. Greater enrichment of Methanosarcina was present in the 

AFEX digestion reaction than in the CS digestion, whereas more Methanocorpusculum was 

present in the CS digestion reaction than in the AFEX digestion reaction, however total archaea 

enrichment in group CS was lower than that in group AFEX (Figure 10a). On the other hand, the 

genus Methanobrevibacter showed a decrease in the relative abundance with an increase in HRTs. 
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This genus is known as a hydrogenotroph that oxidizes hydrogen to produce methane. This could 

be happening because of propionate accumulation, which could be affecting the growth of this 

group. Propionate is an important intermediate during AD, and this degradation produces Hac, H2, 

and CO2 (Li, Ban, Zhang, & Jha, 2012). In addition, the genus Methanobacterium manifested good 

enrichment in the AFEX digestion reaction as the digestion progressed. The changes in relative 

microbial abundance of this Archaea genus are consistent with the observed performance and the 

structural characteristics of lignocellulosic materials as the feed. The microbial community 

analysis led to the conclusion that the AFEX reaction significantly enriched Archaea communities 

during the digestion, and accordingly, biogas productivity significantly increased.  

Finally, nonmetric multidimensional scaling visualization of the microbial abundance was 

conducted to elucidate the relations between microbial communities and digestion performance; 

the results are presented in Figure 11. The visualization uncovered important correlations among 

microbial communities, biogas productivity, feedstocks, and xylan/VS content reduction. A 

similar trend has been observed in other similar studies. There was a possible inverse linear 

correlation between the AFEX biogas productivity and Hac metabolic fluxes in the reactor. 
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Figure 11. Nonmetric multidimensional scaling of the relative abundance of microbial 

communities in the digesters. 
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4.2. Degradation of Lignocellulosic Feedstocks at ABPs 

4.2.1. Influent and effluent dry matter and characterization of raw samples  

Figure 12 is a plot of the average influent and effluent composition observed at different 

ABPs.  

                              a. b. 

 

Figure 12. a. Influent and b. effluent composition analysis on a dry-matter basis. 

In Figure 12a, the relative composition of the influents of biogas plants. Table A2 shows a 

pairwise comparison for this analysis. According to the data, there were significant differences in 

the protein content and ethanol extractives. The SCAD protein content was significantly lower in 
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comparison with Farm A (p = 0.002) and Farm B (p = 0.014). In contrast, the amount of SCAD 

ethanol extractives was significantly higher than that on Farm A (p = 0.09); there were no 

significant differences in the pairwise comparison SCAD–Farm B. Meanwhile, there was some 

variation of this composition, and we found very similar data on lignocellulosic content: 12% 

cellulose, 5% xylan, and 18% lignin. These values are lower than the ones EPA recommends as 

AD feedstocks: 22% cellulose, 36% hemicellulose, and 21% lignin (EPA, 2014; Sun & Cheng, 

2003). Most of the ABPs studied practice recycling of the effluent. The digestate is normally 

filtered in a liquid–solid separator and is mixed with a fresh influent; then, it is fed into the reactor. 

This procedure increases alkalinity of the influent and maintains healthy digestion. This procedure 

may dilute the influents and could be responsible for low content of plant cell wall components at 

the ABPs studied. On the other hand, in the case of effluents, more significant differences were 

found (Table A2). 

Significant differences were found in protein, water extractives, ethanol extractives, and 

lignin content of the effluent samples. As for protein, we found again a lower concentration in the 

SCAD reactor in comparison with Farm A (p = 0.02), suggesting possible major consumption of 

protein by Farm B in comparison with the other two biogas plants. Moreover, H2O.Ext content 

was significantly lower at the SCAD ABP in comparison with the Farm B effluents (p = 0.07). 

The C2H6O.Ext concentration of the effluents showed significant differences between SCAD and 

Farm A (p = 0.04); if this parameter is compared between influents and effluents, any reactor 

showed substantial consumption of this substance. 

Significant differences were found in lignin content between SCAD and Farm B (p = 0.05); 

this pattern is suggestive of possible storage of lignin in the Farm A and B reactors, and this storage 

seems to be higher in the Farm A reactor. Yue et al. (2013) reported that AD codigestion of DM 
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normally can homogenize the AD effluents, producing very similar concentrations of plant cell 

components relative to one another in the AD effluent. Finally, ash content was evaluated here: all 

the reactors had similar contents of ash in the effluent, which contained ~2% of dry matter.  

Figure 13 presents plots of the proportions (%) of sCOD, COD, NH3 (ammonia), and TKN 

in the influent samples and effluent samples from the three ABPs sampled. In Table A2, pairwise 

comparisons of these raw parameters are detailed. 

There was higher COD relative content in the SCAD reactor in comparison with Farm A 

(p = 0.06) and Farm B (p = 0.06), and this concentration was similar between Farms A and B. As 

Figure 13A shows, effluent sCOD concentration was lower on Farm A than at SCAD (p = 0.09). 

On the other hand, Figure 13B shows the averages of nitrogen forms quantified in the 

streams: NH3 and TKN. NH3 content of influents was higher on Farm B than at SCAD (p = 0.08). 

NH3 content of effluents was higher at SCAD than on Farm B (p = 0.02), indicating a possibly 

higher ammonification rate in the SCAD reactor in comparison with Farm B. As for Farm A, 

almost nonexistence of ammonification was found. The TKN content of effluents was higher on 

Farm A than on Farm B (p = 0.02). TKN concentration (Figure 13B) increased in all the reactors, 

and on Farms A and B, this could be happening because these ABPs had a higher protein 

concentration in the diet. 
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a. 

a1.                                 a2. 

  

b. 

b1.                              b2. 

 

Figure 13. Raw sample characterization. a. Chemical oxygen composition of a1. influents, a2. 

influents. b. Concentrations of nitrogen forms: b1. influents, b2. effluents. 
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Finally, the last parameter studied was TOC; ANOVA analysis uncovered significantly 

higher TOC contents in Farm B (p = 0.08) and SCAD (p = 0.005) influents in comparison with 

Farm A influents; significant differences were not found in the effluent samples. Figure 14 depicts 

the variation of this parameter in the scatterplot on the different dates of sampling. These data 

indicate how the only reactor that showed clearly substantial consumption of TOC throughout the 

dates of sampling was the SCAD reactor. Farm A and Farm B influents fluctuated a lot throughout 

the experiment; actually, very similar TOC influent and effluent concentrations were observed. 

 

Figure 14. TOC variation in the dry matter of the influents and effluents throughout the sampling 

period. 

Table 4 presents an average reduction in each parameter across the sampling time points 

for the different ABPs. All the data showed degradation of sCOD, COD, protein, and TOC. By 

contrast, almost all the ABPs showed an increase in NH3, TKN, H2O.Ext, and C2H6O.Ext 

concentrations. Finally, in terms of decreases in cellulose, xylan, and lignin concentrations, the 
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reactors showed differences among the different ABPs. Farm A did not show a reduction in the 

amount of plant cell wall components; in contrast, Farm B manifested a stronger decrease in 

cellulose (11% ± 6%) and xylan (18% ± 3%) and lignin.  

Table 4. Decreases in the averages dry matter content of each parameter in the reactors. 

 Percentage of decrease 

Variables Farm A Farm B SCAD 

𝑅𝑠𝐶𝑂𝐷 53% ± 11% 44% ± 31% 42% ± 16% 

𝑅𝐶𝑂𝐷 14% ± 9% 7% ± 21% 11% ± 62% 

𝑅𝑁𝐻3
 

-14% ± 1% 34% ± 2% -208% ± 3% 

𝑅𝑇𝐾𝑁 -206% ± 9% -33% ± 2% -102% ± 7% 

𝑅𝑃𝑟𝑜𝑡𝑒𝑖𝑛 8% ± 2% 6% ± 1% -10% ± 3% 

𝑅𝑇𝑂𝐶 0% ± 3% 1% ± 2% 13% ± 8% 

𝑅(𝐻2𝑂)𝐸𝑥𝑡
 

17% ± 30% -6% ± 28% -6% ± 10% 

𝑅(𝐶2𝐻6𝑂)𝐸𝑥𝑡
 

-26% ± 7% -10% ± 5% -13% ± 16% 

𝑅𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 -9% ± 9% 11% ± 6% 4% ± 11% 

𝑅𝑋𝑦𝑙𝑎𝑛 
-9% ± 5% 18% ± 3% -3% ± 5% 

𝑅𝐿𝑖𝑔𝑛𝑖𝑛 
-23% ± 9% -1% ± 7% 3% ± 6% 

 

Finally, SCAD showed a reduction in cellulose (4% ± 11%) and lignin (3% ± 6%) contents 

but yielded an increase in xylan concentration (negative reduction: −3% ± 5%). It should be 

mentioned that this plant’s amounts of cell components are still lower in comparison with the 

amounts seen in 𝑅𝑠𝐶𝑂𝐷 and 𝑅𝐶𝑂𝐷. 

4.2.2. BMP Experiments on ABP influents 

The BMP experiments revealed a significant difference in biogas productivity from the 

influents between SCAD and Farm A, with SCAD being significantly better than Farm A (p = 

0.06): almost threefold higher biogas productivity in comparison with Farm A. Nonsignificant 
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differences were noted between Farm B or SCAD and Farm A BMP. Figure 15 is a plot of the 

accumulation of gas production in the reactors; it is not possible to detect any inhibition at the 

beginning of the experiment. 

The biogas productivity obtained was 278 ± 68, 390 ± 117, and 659 ± 71 L/[kg initial VS] 

for Farm A, Farm B, and SCAD, respectively. 

a. 

 
Figure 15. BMPs: accumulated gas production on different dates of sampling of influents. a. 

Accumulated gas production of Farm A, b. accumulated gas production of Farm B, c. accumulated 

gas production of the MSU south campus digester.   
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Figure 15 (cont’d) 

b. 

 

c. 
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4.2.3. Variance-based sensitivity analysis of the downregulation of each compound and 

the effect on biogas productivity 

The objective of this analysis was to explain the biogas productivity observed in the BMP with 

the data on downregulation of substances obtained above. The input of the model (equation 11) is 

the data on concentration reductions (Table 4). Figure 16 illustrates the output of the analysis. The 

contribution to the variance was ranked for each parameter. This approach allows us to infer 

possible sensitivity of biogas productivity to each parameter. There were possible positive 

correlations with 𝑅𝑇𝑂𝐶, 𝑅𝐿𝑖𝑔𝑛𝑖𝑛, 𝑅(𝐶2𝐻6𝑂)𝐸𝑥𝑡
, 𝑅𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒, and 𝑅𝑇𝐾𝑁. On the other hand, there was a 

possible negative correlation of biogas productivity with 𝑅𝐶𝑂𝐷, 𝑅(𝐻2𝑂)𝐸𝑥𝑡
, 𝑅𝑠𝐶𝑂𝐷 , 𝑅𝑁𝐻3

, and 

𝑅𝑃𝑟𝑜𝑡𝑒𝑖𝑛. The magnitude of a correlation is dependent on the absolute value of the contribution to 

the variance. It can be noted that there were greater correlations of biogas productivity with 𝑅𝑇𝑂𝐶 

(17.8%) and 𝑅𝑃𝑟𝑜𝑡𝑒𝑖𝑛 (−18.1%), relative to the other parameters, with 𝑅𝑇𝑂𝐶 showing a positive 

correlation and 𝑅𝑃𝑟𝑜𝑡𝑒𝑖𝑛 a negative one. These two parameters are direct measurements of carbon 

(TOC) and nitrogen (protein). The ABPs have different diets namely Farm A and Farm B diets 

contain a low concentration of carbon and high content of protein. On the other hand, SCAD 

nutrition contains more TOC in comparison with the other two ABPs studied. Then, the other 

parameters (with lesser correlation) were ranked: 𝑅𝐿𝑖𝑔𝑛𝑖𝑛 (12.5%), 𝑅(𝐶2𝐻6𝑂)𝐸𝑥𝑡
 (6.6%), 𝑅𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 

(3.7%), and 𝑅𝑇𝐾𝑁 (2.9%). The negative ranking was 𝑅(𝐻2𝑂)𝐸𝑥𝑡
 (−9.9%), 𝑅𝑠𝐶𝑂𝐷(−13.0%), and 𝑅𝑁𝐻3

 

(−14.7%). These results can be explained by the high productivity observed at SCAD in 

comparison with the other ABPs. SCAD had a higher content of lignin and C2H6O.Ext in the 

influents and effluents and manifested substantial production of NH3 (Table 4). 
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Figure 16. The ranking of contributions to the variance of biogas productivity by each of the 

parameters measured. 

Moreover, the negative correlation could be explained by the different reductions in 

concentrations of substances among the different ABPs. For example, there is a substantial 

correlation with 𝑅(𝐻2𝑂)𝐸𝑥𝑡
 and 𝑅𝑁𝐻3

; these phenomena could be due to the activities on Farm A, 

where production of NH3 was important and consumption of H2O.Ext was important too. 

Nonetheless, this ABPs also has lower biogas productivity. Finally, regarding 𝑅𝑠𝐶𝑂𝐷, most of the 

biogas plants studied had very similar 𝑅𝑠𝐶𝑂𝐷 values but different biogas productivity; therefore, 

this parameter is not important for the explanation of differences in biogas productivity.  
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Finally, the importance of 𝑅𝑋𝑦𝑙𝑎𝑛 for biogas productivity was equal to 0%, indicating 

insignificance change in the amount of this plant cell wall component for biogas productivity 

observed at the ABPs under study. 
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5. CONCLUSIONS 

The results show a big picture of actual stages in the use of plant cell wall components as an energy 

source in AD. Presented below are specific conclusions from both research projects described 

above. 

5.1. Dynamic microbiome assembly and the effect on the performance of AD of AFEX-

pretreated corn stover and CS 

The digestion performance and the microbial community analysis indicate that AFEX-pretreated 

corn stover promotes a positive linear correlation between a reduction in cellulose content and 

biogas productivity. 

AFEX does not promote degradation of lignocellulosic materials in the reactors studied; rather, 

the impact of AFEX manifested itself in chemical reduction of acetic acid and its production rate 

in the reactors. 

AFEX codigestion promotes the enrichment with Methanosarcina and possibly increases the role 

of acetic acid as an electron acceptor because Methanosarcina is an acetic acid reducer. 

The tested CS mixtures promote the enrichment with acid fermenter Treponema; this genus has 

been proven to get enriched with high lignocellulosic inputs. 

There is possible migration of various bacteria found in the reactors, which is important. However, 

there is no migration for Archaea genera. The enrichment could be a consequence of AFEX 

codigestion. 
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5.2. Degradation of lignocellulosic feedstocks at the ABPs 

There is big variability of the inputs of the digesters sampled. 

The results revealed positive and negative effects on biogas productivity. Positive influences were 

seen where carbon concentration diminished, and negative influences were detected where 

nitrogen was abundant in the diet. 

The ABPs studied have different diets, where Farms A and B show low content of carbon and high 

concentration of protein in the diet. On the other hand, SCAD has high TOC concentration in 

comparison with the other two ABPs and is the most productive plant among those studied.  

Ranking the AD influents constituents that correlate with biogas productivity. Furthermore, it was 

revealed that the recalcitrant carbon in ADP influents does not contribute to biogas productivity.  

Finally, at the biogas plants sampled, there is no evidence of a possible contribution to biogas 

productivity from degradation of lignocellulosic materials: most of the contribution results from 

destruction of carbon-based materials that are not structural carbohydrates. 
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6. RECOMMENDATIONS 

To improve the results of operation of the AD reactors, it is recommended to operate 

semicontinuous AD for five or six HRTs and with a DM control to measure against a true baseline. 

In this case, it will be possible to attain a bigger change in the dominate microbial taxa and at the 

same time to observe uniformity in the characteristics of inputs and outputs. It will also be 

important to examine these results with a control setup that involves manure digestion. Feedback 

from the control will enable better monitoring and observation of the metabolic fluxes that take 

place inside the reactors. Furthermore, a manure control will allow investigators to examine the 

seed dynamics and the positive effect of corn stover on the diversity of possible enrichment with 

microbial immigrants fed in with the feedstock from outside. It is strongly recommended to expand 

research into possible lignocellulosic bacterial fermenter spirilla like Treponema. These studies 

may allow researchers to use this genus as a possible indicator of healthy lignocellulosic AD. 

Besides, it is important to investigate more thoroughly the relation between Treponema enrichment 

and AFEXTM digestion and their acid formation effects. To decrease the high variation observed 

at the ABPs sampled, it will be advisable to expand the study to more biogas plants and more 

sampling dates. Moreover, it will be useful to study this degradation in a more controlled model, 

for example, in a BMP reactor, where it is possible to change the number of experimental 

conditions and create triplicates. These two recommendations will decrease the observed statistical 

insignificance of the results. 
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APPENDIX 

 

RSCRIPT for microbial community analysis of digestion from an AD reactor  

## Dynamic microbiome assembly in performance  
## of co-anaerobic digestion of AFEX corn stover 
## MICHIGAN STATE UNIVERSITY 
## ADREC 
##Version 2.0 
## Using as inputs 16S OTU tables and Performance reactors data 
## Made by Juan Pablo Rojas, 2018 
cat("\014") #Erase console 

# 1. LOADING LIBRARY AND TABLES ------ 
library(vegan) 
library(phyloseq) 
library(MASS) 
library(ggplot2)  
library(grid) 
library(gridExtra) 
library(readr) 
library(VennDiagram) 
library(tidyverse) 
library(Rmisc) 
library(gtable) 
library(devtools) 
library(proto) 
library(reshape2) 

 
##Choose the OTU.Table should be a .txt 
con <- file.choose(new = FALSE) 
##Now choose the Taxanomy table should be .txt to 
con1 <-file.choose(new = FALSE) 
 
OTU_Table <- read.table(con, header = T, row.names = 1) 
 
OTU_Table_taxonomy <- read.delim(con1, header = T, row.names = 1) 
 
metadata <- read.delim("~/Thesis/ADonAFEXfiber(2016)/DNA-
data/No_manure/Metadata_v2_no_seed.txt", row.names=1) 
 
Methane <- read_delim("Methane.txt", "\t", escape_double = FALSE, trim_ws = TRUE) 

# 2 NORMALITY TEST FOR EACH DATA SET---- 
 
metadata$Lignin <- NULL 
 
#CONVENTIONAL CORN STOVER 
 
for (i in 4:10) { 
  print("#CONVENTIONAL CORN STOVER") 
  fit <- metadata %>% filter(Mix == "Conventional Corn Stover") 
  print(colnames(fit[i])) 
  print(shapiro.test(log(unlist(fit[,i])))) 
} 
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#AFEX CORN STOVER 
 
for (i in 4:10) { 
  print("#AFEX CORN STOVER") 
  fit <- metadata %>% filter(Mix == "AFEX Corn Stover") 
  print(colnames(fit[i])) 
  print(shapiro.test(log(unlist(fit[,i])))) 
} 

# 3 ANOVA TEST OF THE PARAMETERS---- 
 
metadata$Mix <- factor(metadata$Mix) ##Factor Statement 
#Biogas_Productivity 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(Biogas_Productivity))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#VS_Reduction 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(VS_Reduction))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#VFA 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(VFA))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#Hac 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(Hac))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#Hpa 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(Hpa))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#Cellulose 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
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  print(i) 
  ANOVA<- aov(log(unlist(Cellulose))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#Xylan 
for (i in 1:3) { 
  fit <- metadata %>% filter(HRT == i)  
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(Xylan))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

#Methane 
for (i in 1:3) { 
  fit <- Methane %>% filter(Mix == "AFEX Corn Stover") 
  print(shapiro.test(log(unlist(fit$CH4)))) 
  fit <- Methane %>% filter(Mix == "Conventional Corn Stover") 
  print(shapiro.test(log(unlist(fit$CH4)))) 
  fit <- Methane %>% filter(HRT == i) 
  print("HRT") 
  print(i) 
  ANOVA<- aov(log(unlist(CH4))~Mix, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
} 

# 4. PLOTTING PERFORMANCE PARAMETERS VS HRT ----- 
metadata <- read.delim("~/Thesis/ADonAFEXfiber(2016)/DNA-
data/No_manure/Metadata_v2_no_seed.txt", row.names=1) 
 
#Gas Production 
Gas_prod <- read_delim("Gas_prod.txt", "\t", escape_double = FALSE, col_types = cols(Date = 
col_date(format = "%m/%d/%Y")), trim_ws = TRUE) 
gasprod<- ggplot(Gas_prod, aes(Date, Gas, color=Mix)) + geom_point(aes(shape=Mix, color=Mix)) 
+  
  labs(x = "Date", y="mL", title="a. Biogas Production")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="none", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
gasprod 

metadata<-metadata[-13, ] 
##Calculation of summary of the data  
tgc_Biogas <- summarySE(metadata, measurevar="Biogas_Productivity", groupvars=c("Mix","HRT")) 
tgc_VS <- summarySE(metadata, measurevar="VS_Reduction", groupvars=c("Mix","HRT")) 
tgc_VFA <- summarySE(metadata, measurevar="VFA", groupvars=c("Mix","HRT")) 
tgc_Hac <-summarySE(metadata,measurevar="Hac", groupvars=c("Mix","HRT")) 
tgc_Hpa <-summarySE(metadata,measurevar="Hpa", groupvars=c("Mix","HRT")) 
tgc_Cellulose <- summarySE(metadata, measurevar="Cellulose", groupvars=c("Mix","HRT")) 
tgc_Xylan <- summarySE(metadata, measurevar="Xylan", groupvars=c("Mix","HRT")) 
tgc_Lignin <- summarySE(metadata, measurevar="Lignin", groupvars=c("Mix","HRT")) 
tgc_CH4 <- summarySE(Methane, measurevar="CH4", groupvars=c("Mix","HRT")) 
 
##Make a table 
tgc_head <-tgc_Biogas[,1:4] 
sum_table<- data.frame(tgc_head, tgc_VS$VS_Reduction, tgc_VFA$VFA,tgc_Hac$Hac,tgc_Hpa$Hpa, 
                      tgc_Cellulose$Cellulose,tgc_Xylan$Xylan,tgc_Lignin$Lignin) 
sum_table$N<- NULL 
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names(sum_table)[4]<-paste("VS_Reduction") 
names(sum_table)[5]<-paste("VFA")  
names(sum_table)[6]<-paste("Cellulose")  
names(sum_table)[7]<-paste("Xylan")  
names(sum_table)[8]<-paste("Lignin") 
names(sum_table)[9]<-paste("Hac")  
names(sum_table)[10]<-paste("Hpa")  
head(sum_table) 

#CH4 Productivity vs HRT 
Biogas<- ggplot(tgc_Biogas, aes(x=HRT,y=Biogas_Productivity, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=Biogas_Productivity-se, ymax=Biogas_Productivity+se), show.legend=F, 
width=.1,position=position_dodge(0.9))+ 
  labs(x = " ", y=expression(m^3~kg~VS^-1), title="b. Biogas Productivity")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
# Methane 
tgc_CH4$CH4<- tgc_CH4$CH4 * 100 
tgc_CH4$se<- tgc_CH4$se * 100 
CH4<- ggplot(tgc_CH4, aes(x=HRT,y=CH4, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  guides(fill=FALSE)+labs(x = " ", y="%", title="c. Methane content")+ 
  geom_errorbar(aes(ymin=CH4-se, ymax=CH4+se), show.legend=F, 
width=.1,position=position_dodge(0.9))+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
CH4   

  #VS Reduction vs HRT 
tgc_VS$VS_Reduction<- tgc_VS$VS_Reduction * 100 
tgc_VS$se<- tgc_VS$se * 100 
 
VS<- ggplot(tgc_VS, aes(HRT, VS_Reduction, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=VS_Reduction-se, ymax=VS_Reduction+se), show.legend=F, 
width=.1,position=position_dodge(0.9))+ 
  guides(fill=FALSE)+labs(x = " ", y="%", title="d. VS Reduction")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
#VFA Concentration vs HRT 
VFA<- ggplot(tgc_VFA, aes(HRT, VFA, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=VFA-se, ymax=VFA+se), width=.1,show.legend=F, 
position=position_dodge(0.9))+ 
  guides(fill=FALSE)+ labs(x = " ", y="g/L", title="e. Total VFA Concentration")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
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        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
#Cellulose vs HRT 
tgc_Cellulose$Cellulose<- tgc_Cellulose$Cellulose * 100 
tgc_Cellulose$se<- tgc_Cellulose$se * 100 
Cellulose<- ggplot(tgc_Cellulose, aes(HRT, Cellulose, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=Cellulose-se, ymax=Cellulose+se), width=.1,show.legend=F, 
position=position_dodge(0.9))+ 
  guides(fill=FALSE)+ labs(x = " ", y="%", title="f. Cellulose Reduction")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
#Xylan vs HRT 
tgc_Xylan$Xylan<- tgc_Xylan$Xylan * 100 
tgc_Xylan$se<- tgc_Xylan$se * 100 
Xylan<- ggplot(tgc_Xylan, aes(HRT, Xylan, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=Xylan-se, ymax=Xylan+se), width=.1,show.legend=F, 
position=position_dodge(0.9))+ 
  guides(fill=FALSE) + labs(x = "Reactors HRT", y="%", title="g. Xylan Reduction")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
#Lignin vs HRT 
tgc_Lignin$Lignin<- tgc_Lignin$Lignin * 100 
tgc_Lignin$se<- tgc_Lignin$se * 100 
Lignin<- ggplot(tgc_Lignin, aes(HRT, Lignin, fill=Mix)) +  
  geom_bar(stat="identity",position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=Lignin-se, ymax=Lignin+se), width=.1,show.legend=F, 
position=position_dodge(0.9))+ 
  guides(fill=FALSE) + labs(x = "Reactors HRT", y="%", title="g. Lignin Reduction")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
get_legend<-function(myggplot){ 
  tmp <- ggplot_gtable(ggplot_build(myggplot)) 
  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") 
  legend <- tmp$grobs[[leg]] 
  return(legend) 
} 
 
legend <- get_legend(Biogas) 
 
#Save the plot and addition to all plots in one page 
ga <- grid.arrange(gasprod, Biogas + guides(fill=FALSE) , CH4, 
                   VS, VFA, Cellulose, 
                   Xylan, legend, ncol=2) 
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tgc_Hac$HRT <- NULL 
tgc_Hac$N <- NULL 
tgc_Hac$sd<- NULL 
tgc_Hac$se<- NULL 
tgc_Hac$ci<- NULL 
tgc_Hac<-melt(tgc_Hac, na.rm = FALSE, value.name = "value") 

## Using Mix as id variables 

tgc_Hpa$HRT <- NULL 
tgc_Hpa$N <- NULL 
tgc_Hpa$sd<- NULL 
tgc_Hpa$se<- NULL 
tgc_Hpa$ci<- NULL 
tgc_Hpa<-melt(tgc_Hpa, na.rm = FALSE, value.name = "value") 

## Using Mix as id variables 

tgc_Ac_Pa<-rbind(tgc_Hac,tgc_Hpa) 
HRT<- c(1,2,3,1,2,3,1,2,3,1,2,3) 
tgc_Ac_Pa<-data.frame(tgc_Ac_Pa,HRT) 
 
#Acetate & Propionate vs HRT 
Ac_Pa<- ggplot(tgc_Ac_Pa, aes(fill=variable, y=value, x=HRT)) +  
  geom_bar(stat="identity")+facet_grid(.~Mix)+ ylim(0,4)+ labs(x = "HRT", y="Acid concentratio 
(g/L)", title="Acetate:Propionic Ratio")+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
Ac_Pa 

# 5. ALPHA DIVERSITY---- 
#UPLOAD OTU.Table with seeded  
##Choose the OTU.Table should be a .txt 
OTU_Table_seeded <- read.delim("~/Thesis/ADonAFEXfiber(2016)/DNA-data/No_manure/OTU_v1.txt", 
row.names=1) 
set.seed(711) 
## Now we create the data.frame used for OTU Table, let's watch it! 
## Now we create a matrix object with the data frame 
 
t.OTU.table.seeded <- t(OTU_Table_seeded)  # Conversion a matriz y transposición de tabla 
# Let's make some Alpha diversity analysis indexes 
#First Shannon 
H <- diversity(t.OTU.table.seeded, index = "shannon", MARGIN = 1, base = exp(1)) 
#Then Simpson 
D <- diversity(t.OTU.table.seeded, "simpson", MARGIN = 1, base = exp(1))  
#Third inverse Simpson 
iD <- diversity(t.OTU.table.seeded, "inv") 
# The last is Pielou's evenness 
J<-H/log(specnumber(t.OTU.table.seeded)) #Pielou's evenness 
print("ALPHA DIVERISTY WITH SEED SAMPLE") 

#Sampling Curve 
col <- c("#00BFC4", "#00BFC4", "#F8766D", "#F8766D", "#00BFC4", "#00BFC4", "#F8766D", 
"#F8766D","#00BFC4", "#00BFC4", "#F8766D", "#F8766D","forestgreen") 
lty <- c("solid") 
pars <- expand.grid(col = col, lty = lty, stringsAsFactors = FALSE) 
ra <- rarecurve(t.OTU.table.seeded, step = 20, col =col,lty = lty, cex = 0.6) # curvas de 
rarefracción 
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rad <- rad.lognormal(t.OTU.table.seeded) # Rank of Abundance 
rad1 <- plot(rad, xlab = "Rank", ylab = "Abundance") # Plotting the rank 

S <- specnumber(t.OTU.table.seeded) # observed number of species 
(raremax <- min(rowSums(t.OTU.table.seeded))) 

Srare <- rarefy(t.OTU.table.seeded, raremax) 
rarecurve(t.OTU.table.seeded, step = 20,col =col,lty = lty, sample = raremax, label = FALSE) 

# 6. BETA DIVERSITY---- 
## 6.1 ABUNDANCE PLOTS AND RICHNESS 
 
metadata_seeded <- read.delim("~/Thesis/ADonAFEXfiber(2016)/DNA-
data/No_manure/Metadata_v2_no_seed.txt", row.names=1) 
 
#Phyloseq 
OTU <- otu_table(OTU_Table_seeded,taxa_are_rows = TRUE) # OTU Table production for phyloseq 
TAX <- tax_table(as.matrix(OTU_Table_taxonomy)) ## Taxanomy production for phyloseq 
SAM <-sample_data(metadata_seeded) 
physeq <- phyloseq(OTU, TAX, SAM) ##physeq document production 
 
#Rarefication and normalization of abundance data 
physeq.r = rarefy_even_depth(physeq, rngseed = TRUE) #Function for normalize physeq object 

#Richness 
r=plot_richness(physeq, x = "Duplicate", measures = c("Shannon", "Simpson", 
"InvSimpson","Fisher"), color = "Mix") + geom_boxplot() 
r+geom_point(size = 5, alpha = 0.7)+xlab("")+  
  theme(legend.position="bottom", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 

#Normalize Abundace Plotbar Bacteria 
physeq1 <-tax_glom(physeq.r, taxrank=rank_names(physeq.r)[4], NArm=TRUE, bad_empty=c(NA, "", " 
", "\t")) 
mergedGP = merge_samples(physeq1, "Duplicate") 
physeq_1 = transform_sample_counts(mergedGP, function(x) x/sum(x)) 
p = plot_bar(physeq_1, fill = "Phylum") 
p + geom_bar(aes(color=Phylum, fill=Phylum), stat = "identity",position = "stack")+  
  scale_y_continuous(labels=scales::percent)+ 
  ylab("Relative Abundace") + labs(title = "Bacteria Abundance") +  
  theme(legend.position="right", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 

#Abundace Plotbar Spirochaetes 
physeq6 <-subset_taxa(physeq.r, Phylum== "Spirochaetes") 
physeq6_1 <-tax_glom(physeq6, taxrank=rank_names(physeq6)[6], NArm=TRUE, bad_empty=c(NA, "", " 
", "\t")) 
l = plot_bar(physeq6_1,x="Duplicate", fill = "Genus")+ geom_bar(aes(color=Genus, fill=Genus), 
stat = "identity",position = "stack") + 
  ylab("Microbial Abundance") + xlab("Samples") + scale_fill_brewer(palette="Set1")+ 
  scale_colour_brewer(palette="Set1")+ 
  labs(title = "c. Spirochaetes Abundance") +scale_y_continuous(labels=scales::percent)+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.x = element_text(15), axis.title.y = element_text(size = 15), 
        axis.text.y = element_text(size = 15), 
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        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15), 
        legend.direction="vertical") 
l 

# Top 20 Abundace Plotbar Bacteria 
topN = 20 
most_abundant_taxa = sort(taxa_sums(physeq.r), TRUE)[1:topN] 
physeq.r20 = prune_taxa(names(most_abundant_taxa), physeq.r) 
ntaxa(physeq.r20) 
length(get_taxa_unique(physeq.r20, "Phylum")) 
topp(0.3) 
f1 = filterfun_sample(topp(0.3)) 
print(f1) 
## function (x)  
## { 
##     fun = flist[[1]] 
##     fval = fun(x) 
##     for (fun in flist[-1]) { 
##         fval = fval & fun(x) 
##     } 
##     return(fval) 
## } 
## <bytecode: 0x0000000024956680> 
## <environment: 0x00000000249572c0> 
## attr(,"class") 
## [1] "filterfun" 

wh1 = genefilter_sample(physeq.r20, f1, A = round(0.5 * nsamples(physeq.r20))) 
sum(wh1) 

ex2 = prune_taxa(wh1, physeq.r20) 
mergedGP = merge_samples(ex2, "Duplicate") 
ex2_r = transform_sample_counts(mergedGP, function(x) x/sum(x)) 
physeq8_1 <-tax_glom(ex2_r, taxrank=rank_names(ex2_r)[2], NArm=TRUE, bad_empty=c(NA, "", " ", 
"\t")) 
b = plot_bar(physeq8_1, fill = "Phylum") + geom_bar(aes(color=Phylum, fill=Phylum), stat = 
"identity",position = "stack") +  
  ylab("Relative Abundace") + labs(title = "b. Bacteria Abundance") + 
scale_y_continuous(labels=scales::percent)+ 
  theme(legend.position="right", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
b 

#Abundance Plotbar Domain 
 
physeq1 <-tax_glom(physeq.r, taxrank=rank_names(physeq.r)[1], NArm=TRUE, bad_empty=c(NA, "", " 
", "\t")) 
mergedGP = merge_samples(physeq1, "Duplicate") 
physeq_dom = transform_sample_counts(mergedGP, function(x) x/sum(x)) 
a = plot_bar(physeq_dom,fill = "Domain") +  
  geom_bar(aes(color=Domain, fill=Domain), stat = "identity",position = "stack") +  
  ylab("Microbial Abundance") + labs(title= "a. Domain Abundance") 
+scale_y_continuous(labels=scales::percent)+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.x = element_blank(), axis.title.y = element_text(size = 15), 
        axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
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15),plot.title= element_text(size = 15)) 
a  

#Abundace Plotbar Archaea 
physeq5 =subset_taxa(physeq.r, Domain== "Archaea") 
physeq5_1 <-tax_glom(physeq5, taxrank=rank_names(physeq5)[6], NArm=TRUE, bad_empty=c(NA, "", " 
", "\t")) 
mergedGP = merge_samples(physeq5_1, "Duplicate") 
physeq5_2 = transform_sample_counts(mergedGP, function(x) x/sum(x)) 
d = plot_bar(physeq5_2, fill = "Genus")+ geom_bar(aes(color=Genus, fill=Genus), stat = 
"identity",position = "stack") + 
  ylab("Relative Abundance") + xlab("Samples") + labs(title = "d. Archaea Abundance") 
+scale_y_continuous(labels=scales::percent)+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.x = element_text(15), axis.title.y = element_text(size = 15), 
        axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15), 
        legend.direction="vertical") 
d 

ec <- grid.arrange(a,b, l,d, ncol=2) 

## 6.2 PCOA WITH_SEED_FILE 
GP.ord <- ordinate(physeq.r, "NMDS", "bray") 

p1 = plot_ordination(physeq.r, GP.ord, type="taxa", color="Phylum", title="taxa") 
print(p1) 

p2 = plot_ordination(physeq.r, GP.ord, type="samples", color = "HRT" ,shape="Mix")  
p2+ stat_ellipse(geom = "polygon", alpha = 0.45, aes(fill = Mix))+  geom_point(size=5) 

## Too few points to calculate an ellipse 

HRT <- list() 
HRT[[1]] <- c("CS_HRT_1_A","CS_HRT_1_B", 
              "AFEX_HRT_1_A","AFEX_HRT_1_B","SEED_DM") 
HRT[[2]] <- c("CS_HRT_2_A","CS_HRT_2_B", 
              "AFEX_HRT_2_A","AFEX_HRT_2_B","SEED_DM") 
HRT[[3]]<- c("CS_HRT_3_A","CS_HRT_3_B", 
             "AFEX_HRT_3_A","AFEX_HRT_3_B","SEED_DM") 
 
# Principal components analysis for each HRT   
 
  beta <- vegdist(t.OTU.table.seeded, binary = TRUE) 
  pcoa.obj <- capscale(t.OTU.table.seeded ~ 1, distance = "bray")  
  plot(pcoa.obj) #plot the PcoA plot 
  text(scores(pcoa.obj)$sites[,1], scores(pcoa.obj)$sites[,2]) # change of the labes 

  #labels=row.names(t.OTU.table.seeded) 
   
  #SECOND trial with metaMDS 
  vare.mds <- metaMDS(t.OTU.table.seeded, trace = FALSE) 
  vare.mds 

  stressplot(vare.mds) 

  metadata_fil <- read.delim("~/Thesis/ADonAFEXfiber(2016)/DNA-
data/No_manure/Metadata_v2_no_seed.txt", row.names=1) 
 
  ef <- envfit(vare.mds,env = metadata_seeded[4:11], permutations = 999, p.max =0.95, na.rm = 
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TRUE) 
  plt <-plot(vare.mds, display = "sites", type = "p")   
  identify(plt, what = "sites")  

  pl <- plot(ef) 
  with(metadata_fil,ordiellipse(vare.mds, HRT,col="forestgreen",kind = "se",conf = 0.95, label 
= TRUE)) 
  with(metadata_fil,ordiellipse(vare.mds, Mix,col="red",kind = "se",conf = 0.95, label = 
TRUE)) 
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Shapiro-Wilk & ANOVA results of performance data of AD reactor  

Table A1. Statistical results from the AD performance around the three HRT. 

Parameter Degree of freedom Feedstock HRT Feedstock & HRT Residuals 

Biogas 

productivity 
Sum square 1,564.0 27,646.0 9,037.0 180.0 

 F value 52.30 462.10 151.00  

 P (>F) *0.0004 *0.00003 *0.000007  

Methane 

content 
Sum square 25.5 22.2 2.3 11.3 

 F value 13.6 5.9 0.6  

 P (>F) *0.01 *0.04 0.57  

VS reduction Sum square 2.7 470.8 528.1 440.2 

 F value 0.04 3.20 3.60  

 P (>F) 0.85 0.11 0.09  

Cellulose 

reduction 
Sum square 18.8 1,070.7 464.2 399.2 

 F value 0.28 8.05 3.50  

 P (>F) 0.61 *0.02 0.10  

Xylan 

reduction 
Sum square 142.6 405.8 261.8 427.7 

 F value 2.00 2.85 1.84  

 P (>F) 0.21 0.14 0.24  

VFA 

concentration 
Sum square 2.5 1.6 1.2 15.4 

 F value 0.97 0.32 0.23  

 P (>F) 0.36 0.74 0.80  

*Significance is selected with a p-value of 0.01 
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Calculation and assumptions for increasing BMP volume for the ABPs experiments 

The objective of this calculation is to determine a dry-matter mass balance of anaerobic 

degradation of structural carbohydrates. The requirements of dry mass necessitate changing the 

volume of the normal BMP. The calculation requirements are based on the material for one sample 

and on dry-matter material. With this sample size, it is possible to obtain two NREL content points 

per sample. In addition, it is assumed that predigestion TS is 7,000 mg/L and postdigestion TS is 

4,000 mg/L for each BMP, and the TS concentration of our control/seed is ~4,000 mg/L. Similarly, 

it is assumed that the samples will be dried at 45 °C, and therefore, the sample will have ~10% 

moisture content. Finally, the BMP VS:VS Inoculum:Feed ratio will be 2. The experiments are 

based on the protocols developed by the NREL for quantitation of structural carbohydrates and 

determination of extractives in the biomass that could affect the results on the carbohydrates (A 

Sluiter et al., 2008; Amie Sluiter et al., 2004). The sample size calculation is described below: 

𝑇𝑆𝑃𝑅𝐸 ≈ 7
𝑔

𝐿
 

𝜌𝐴𝐷 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 ≈ 𝜌𝐻2𝑂  

% 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 ≈ 10% 

% 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠 ≈ 82% 

𝐌𝐚𝐬𝐬 𝐑𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝐟𝐨𝐫 𝐏𝐫𝐞𝐝𝐢𝐠𝐞𝐬𝐭𝐢𝐨𝐧 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬 

(𝑚𝑇)𝑃𝑅𝐸 = (𝑚𝑇𝑆𝑉𝑆 + 𝑚𝑁𝑅𝐸𝐿 + 𝑚𝐵𝑀𝑃)(1 + % 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒) 

𝑚𝑇𝑆𝑉𝑆 = (𝑉𝑇𝑆𝑉𝑆)𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 𝑇𝑆 

𝑚𝑇𝑆𝑉𝑆 = 0.04 𝐿 ∙ 7
𝑔

𝐿
= 0.28 ≈ 0.5 g 

𝑚𝑁𝑅𝐸𝐿 = (𝑚𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 + (𝑚𝑁𝑅𝐸𝐿)𝑠𝑎𝑚𝑝𝑙𝑒)(1 + % 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑠) 

(𝑚𝑁𝑅𝐸𝐿)𝑃𝑅𝐸 = (0.3 + 0.7)(1 + 0.82) = 1.82 g 
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𝑉𝑁𝑅𝐸𝐿 =
𝑚𝑁𝑅𝐸𝐿

𝑇𝑆
 

𝑉𝑁𝑅𝐸𝐿 =
1.82

7
= 0.26 L 

𝑚𝐵𝑀𝑃 = (𝑉𝐵𝑀𝑃)𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 𝑇𝑆 

𝑚𝐵𝑀𝑃 = 0.150 𝐿 ∙ 7
𝑔

𝐿
= 1.05 

(𝑚𝑇)𝑃𝑅𝐸 = (0.5 + 1.82 + 1.05)(1 + 0.1) = 3.7 ≈ 4 𝑔 

(𝑉𝑇)𝑃𝑅𝐸 = 0.04 + 0.26 + 0.15 = 0.45 ≈ 0.5 𝐿 

The above calculation means that it is not possible to obtain enough dry material required to run 

NREL with the actual volume size of a BMP test (0.150 L). The standard volume has to be 

increased for the preparation for the experiment (Faivor & Kirk, 2011), to obtain the dry mass 

required to run the BMP analysis and obtain the mass required for characterization of the 

lignocellulosic content in the BMP experiment. This observation implies that it is necessary to 

increase the sample volume of the BMP from 0.150 to 0.5 L. Accordingly, the final mass for the 

BMP pre- and postdigestion will be as follows: Blend the preparation for 1 L predigestion. The 

final volume of the BMP test for postdigestion characterization is 0.5 L. One should use 7 g of a 

dry sample for one sample as explained in the following calculation: 

𝑴𝒂𝒔𝒔 𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒇𝒐𝒓 𝑷𝒐𝒔𝒕𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏 𝑨𝒏𝒂𝒍𝒚𝒔𝒊𝒔 

𝑚𝐵𝑀𝑃 = (𝑚𝑁𝑅𝐸𝐿)𝑃𝑂𝑆𝑇 + 𝑚𝑇𝑆𝑉𝑆 = 1.82 + 0.5 = 2.32 g 

(𝑉𝑇)𝑃𝑂𝑆𝑇 =
(𝑚𝑁𝑅𝐸𝐿)𝑃𝑂𝑆𝑇

𝑇𝑆𝑃𝑂𝑆𝑇
=

2.32 

4
= 0.58 L 
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RSCRIPT for ABP variance-based sensitivity analysis 

## Fiber Analysis in ABP 
## MICHIGAN STATE UNIVERSITY 
## ADREC 
## Version 2.0 
## Made by Juan Pablo Rojas, 2018 
cat("\014") #Erase console 

# 1. Loading Library and Tables ------ 
library(vegan) 

library(MASS) 
library(ggplot2)  
library(grid) 
library(gridExtra) 
library(readr) 
library(VennDiagram) 

library(tidyverse) 

library(Rmisc) 

library(reshape2) 

Biogas_Plants <- read.delim("~/Thesis/Fiber Study/Biogas_Plants_071618.txt", row.names=1) 
 
# 2. Evaluate the normal test of the independen variables----------  
 
# Influent_Farm_A 
Influent_Farm_A <- Biogas_Plants %>%  filter(Flow == "Influent" & Plant== "Farm_A") 
for (i in 4:14) { 
  print(colnames(Influent_Farm_A[i])) 
  print(shapiro.test(log(unlist(Influent_Farm_A[,i])))) 
} 

# Influent_Farm_B 
Influent_Farm_B <- Biogas_Plants %>%  filter(Flow == "Influent" & Plant== "Farm_B") 
for (i in 4:14) { 
  print(colnames(Influent_Farm_B[i])) 
  print(shapiro.test(log(unlist(Influent_Farm_B[,i])))) 
} 

# Influent_SCAD 
Influent_SCAD <- Biogas_Plants %>%  filter(Flow == "Influent" & Plant== "SCAD") 
for (i in 4:14) { 
  print(colnames(Influent_SCAD[i])) 
  print(shapiro.test(log(unlist(Influent_SCAD[,i])))) 
} 

# Effluent_Farm_A 
Effluent_Farm_A <- Biogas_Plants %>%  filter(Flow == "Effluent" & Plant== "Farm_A") 
for (i in 4:14) { 
  print(colnames(Effluent_Farm_A[i])) 
  print(shapiro.test(log(unlist(Effluent_Farm_A[,i])))) 
} 

# Effluent_Farm_B 
Effluent_Farm_B <- Biogas_Plants %>%  filter(Flow == "Effluent" & Plant== "Farm_B") 
for (i in 4:14) { 
  print(colnames(Effluent_Farm_B[i])) 
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  print(shapiro.test(log(unlist(Effluent_Farm_B[,i])))) 
} 

# Effluent_SCAD 
Effluent_SCAD <- Biogas_Plants %>%  filter(Flow == "Effluent" & Plant== "SCAD") 
for (i in 4:14) { 
  print(colnames(Effluent_SCAD[i])) 
  print(shapiro.test(log(unlist(Effluent_SCAD[,i])))) 
} 

# 3. Plotting BMP Results---- 
 
Farm_A_BMP <- read.delim("~/Thesis/Fiber Study/Farm_A_BMP_080318.txt") 
 
Farm_B_BMP <- read.delim("~/Thesis/Fiber Study/Farm_B_BMP_080318.txt") 
 
SCAD_BMP <- read.delim("~/Thesis/Fiber Study/SCAD_BMP_080318.txt") 
 
#Farm_A Gas Production 
Farm_A_gasprod<- ggplot(Farm_A_BMP, aes(Time, Gas, color=Date)) + geom_point(aes(shape=Date, 
color=Date)) + ylab("mL of Biogas") +  
  geom_line(data=Farm_A_BMP[Farm_A_BMP$Date!="Gas", ])+geom_smooth()+ labs(title = "a. 
Acumulated Gas Production Farm A")+ 
  xlab("Lapsed Time (h)")+ 
  ylim(0,1500) 
 
#Farm_B Gas Production 
Farm_B_gasprod<- ggplot(Farm_B_BMP, aes(Time, Gas, color=Date)) + geom_point(aes(shape=Date, 
color=Date)) + ylab("mL of Biogas") +  
  geom_line(data=Farm_B_BMP[Farm_B_BMP$Date!="Gas", ])+geom_smooth()+ labs(title = "b. 
Acumulated Gas Production Farm B")+ 
  xlab("Lapsed Time (h)")+ 
  ylim(0,1500) 
 
#SCAD Gas Production 
SCAD_gasprod<- ggplot(SCAD_BMP, aes(Time, Gas, color=Date)) + geom_point(aes(shape=Date, 
color=Date)) + ylab("mL of Biogas") +  
  geom_line(data=SCAD_BMP[SCAD_BMP$Date!="Gas", ])+geom_smooth()+ labs(title = "c. Acumulated 
Gas Production SCAD")+ 
  xlab("Lapsed Time (h)")+ylim(0,1500) 
 
BMPS <- grid.arrange(Farm_A_gasprod, Farm_B_gasprod,SCAD_gasprod ,ncol=3) 

# 4. ANOVA test of the independen variables----------  
 
Biogas_Plants$Plant <- factor(Biogas_Plants$Plant) ##Factor Statement 
Biogas_Plants$Flow <- factor(Biogas_Plants$Flow) ##Factor Statement 
 
#ANOVA Test for parameters 
#Characterization Data 
for (i in 4:14) { 
  #Influent 
  fit <- Biogas_Plants %>% filter(Flow == "Influent") 
  print(fit[1,3]) 
  print(colnames(fit[i])) 
  ANOVA<- aov(log(unlist(fit[,i]))~Plant, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
#Effluent   
  fit <- Biogas_Plants %>% filter(Flow == "Effluent") 
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  print(fit[1,3]) 
  print(colnames(fit[i])) 
  ANOVA<- aov(log(unlist(fit[,i]))~Plant, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
  print("---------------------------------------------------------------------") 
} 

#Plant Operation 
for (i in 15:16) { 
  #Influent 
  fit <- Biogas_Plants %>% filter(Flow == "Influent") 
  print(fit[1,3]) 
  print(colnames(fit[i])) 
  ANOVA<- aov(log(unlist(fit[,i]))~Plant, fit) #ONE WAY ANOVA for Productivity 
  print(TukeyHSD(ANOVA))  #Plot results 
    print("---------------------------------------------------------------------") 
} 

# 5. Plotting the the dry matter constituents. ---- 
 
#Dry Matter 
Biogas_Plants$Date<- NULL 
Biogas_Plants$sCOD<- NULL 
Biogas_Plants$COD<- NULL 
Biogas_Plants$Ammonia<- NULL 
Biogas_Plants$TKN<- NULL 
Biogas_Plants$TOC<- NULL 
Biogas_Plants$CH4_Prod<- NULL 
Biogas_Plants$Mass_Flow<- NULL 
 
dat<-melt(Biogas_Plants, na.rm = FALSE, value.name = "value") 

## Using Plant, Flow, Reactor as id variables 

Influent<- dat %>% filter(Flow == "Influent") 
Effluent<- dat %>% filter(Flow == "Effluent") 
 
   
Dry_matter_influent<- ggplot(Influent, aes(fill=variable, y=value, x=Plant)) +  
  geom_bar( stat="identity", position="fill")+ labs(x = "Biogas Plants", y="Dry matter (%)", 
title="a. Influents")+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
 
Dry_matter_effluent<- ggplot(Effluent, aes(fill=variable, y=value, x=Plant)) +  
  geom_bar( stat="identity", position="fill")+ 
  guides(fill=FALSE)+ labs(x = "Biogas Plants", y="Dry matter (%)", title="b. Effluents")+ 
  theme(legend.position="right", axis.text.x = element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
get_legend<-function(myggplot){ 
  tmp <- ggplot_gtable(ggplot_build(myggplot)) 
  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") 
  legend <- tmp$grobs[[leg]] 
  return(legend) 
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} 
 
legend <- get_legend(Dry_matter_influent) 
 
#Save the plot and addition to all plots in one page 
dry_1 <- grid.arrange(Dry_matter_influent + guides(fill=FALSE), Dry_matter_effluent, ncol=2, 
right=legend) 

# 6. Plotting the the raw constituents. ---- 
 
Biogas_Plants <- read.delim("~/Thesis/Fiber Study/Biogas_Plants_071618.txt", row.names=1) 
 
Biogas_Plants$Ash<- NULL 
Biogas_Plants$TKN<- NULL 
Biogas_Plants$Ammonia<- NULL 
Biogas_Plants$TOC<- NULL 
Biogas_Plants$Protein<- NULL 
Biogas_Plants$H2O.Ext<- NULL 
Biogas_Plants$C2H6O.Ext<- NULL 
Biogas_Plants$Cellulose<- NULL 
Biogas_Plants$Xylan<- NULL 
Biogas_Plants$Lignin<- NULL 
Biogas_Plants$CH4_Prod<- NULL 
Biogas_Plants$Mass_Flow<- NULL 
 
 
 
dat<-melt(Biogas_Plants, na.rm = FALSE, value.name = "value") 

## Using Date, Plant, Flow, Reactor as id variables 

Influent<- dat %>% filter(Flow == "Influent") 
Effluent<- dat %>% filter(Flow == "Effluent") 
 
 
C_influent<- ggplot(Influent, aes(fill=variable, y=value, x=Plant)) +  
  geom_bar( stat="identity",position=position_dodge(0.9))+ labs(x = "Biogas Plants", y="Dry 
matter (%)", title="a. Influent ")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  scale_fill_brewer(palette="Spectral")+ 
  theme(legend.position="right", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
 
C_effluent<- ggplot(Effluent, aes(fill=variable, y=value, x=Plant)) +  
  geom_bar( stat="identity",position=position_dodge(0.9))+ 
  guides(fill=FALSE)+ labs(x = "Biogas Plants ", y="Dry matter (%)", title="b. Effluent")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  scale_fill_brewer(palette="Spectral")+ 
  theme(legend.position="right", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
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get_legend<-function(myggplot){ 
  tmp <- ggplot_gtable(ggplot_build(myggplot)) 
  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") 
  legend <- tmp$grobs[[leg]] 
  return(legend) 
} 
 
legend <- get_legend(C_influent) 
 
 
#Save the plot and addition to all plots in one page 
liq_1 <- grid.arrange(C_influent + guides(fill=FALSE) , C_effluent, ncol=2, right=legend) 

#Nitrogen Balance 
Biogas_Plants <- read.delim("~/Thesis/Fiber Study/Biogas_Plants_071618.txt", row.names=1) 
 
Biogas_Plants$Ash<- NULL 
Biogas_Plants$sCOD<- NULL 
Biogas_Plants$COD<- NULL 
Biogas_Plants$TOC<- NULL 
Biogas_Plants$Protein<- NULL 
Biogas_Plants$H2O.Ext<- NULL 
Biogas_Plants$C2H6O.Ext<- NULL 
Biogas_Plants$Cellulose<- NULL 
Biogas_Plants$Xylan<- NULL 
Biogas_Plants$Lignin<- NULL 
Biogas_Plants$CH4_Prod<- NULL 
Biogas_Plants$Mass_Flow<- NULL 
 
 
dat<-melt(Biogas_Plants, na.rm = FALSE, value.name = "value") 

## Using Date, Plant, Flow, Reactor as id variables 

Influent<- dat %>% filter(Flow == "Influent") 
Effluent<- dat %>% filter(Flow == "Effluent") 
 
 
N_influent<- ggplot(Influent, aes(fill=variable, y=value, x=Plant)) +  
  geom_bar( stat="identity",position=position_dodge(0.9))+ labs(x = "Biogas Plants", y="Dry 
matter (%)", title="a. Influent ")+ 
  theme(plot.title = element_text(hjust = 0.5))+ylim(0,1)+ 
  scale_fill_brewer(palette="Set1")+  
  theme(legend.position="right", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
15),plot.title= element_text(size = 15)) 
 
 
N_effluent<- ggplot(Effluent, aes(fill=variable, y=value, x=Plant)) +  
  geom_bar( stat="identity",position=position_dodge(0.9))+ 
  guides(fill=FALSE)+ labs(x = "Biogas Plants ", y="Dry matter (%)", title="b. Effluent")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  scale_fill_brewer(palette="Set1")+  
  theme(legend.position="right", axis.title.x = element_blank(), axis.text.x = 
element_text(size = 15), 
        axis.title.y = element_text(size = 15), axis.text.y = element_text(size = 15), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
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15),plot.title= element_text(size = 15)) 
 
legend <- get_legend(N_influent) 
 
 
#Save the plot and addition to all plots in one page 
liq_1 <- grid.arrange(N_influent + guides(fill=FALSE) , N_effluent, ncol=2, right=legend) 

# 7. Plotting TOC influent and Effluent----- 
 
Biogas_Plants <- read_delim("Biogas_Plants_071618.txt","\t",  
                            escape_double = FALSE, col_types = cols(Date = col_date(format = 
"%m/%d/%Y")),trim_ws = TRUE) 
 
 
Biogas_Plants$sCOD<- NULL 
Biogas_Plants$COD<- NULL 
Biogas_Plants$TKN<- NULL 
Biogas_Plants$Ammonia<- NULL 
Biogas_Plants$Reactor<- NULL 
Biogas_Plants$Protein<- NULL 
Biogas_Plants$H2O.Ext<- NULL 
Biogas_Plants$C2H6O.Ext<- NULL 
Biogas_Plants$Cellulose<- NULL 
Biogas_Plants$Xylan<- NULL 
Biogas_Plants$Lignin<- NULL 
Biogas_Plants$CH4_Prod<- NULL 
Biogas_Plants$Mass_Flow<- NULL 
 
 
TOC<- ggplot(Biogas_Plants, aes(x=Date,y= TOC, shape=factor(Flow),colour = factor(Plant))) +  
  geom_point(size = 3)+geom_line()+ theme(plot.title = element_text(hjust = 0.5)) 
TOC 

# 8. Reduction of average influet and Effluent---- 
Biogas_Plants <- read.delim("~/Thesis/Fiber Study/Biogas_Plants_071618.txt", row.names=1) 
Biogas_Plants$CH4_Prod<- NULL 
Biogas_Plants$Mass_Flow<- NULL 
Biogas_Plants$Date<- NULL 
Biogas_Plants$Reactor<- NULL 
 
#Calculating averages 
 
tgc_Reduction <- data.frame() 
 
for (i in 3:13) { 
  fit<- summarySE(Biogas_Plants,measurevar=colnames(Biogas_Plants[i]), 
groupvars=c("Flow","Plant")) 
  #Nulling non requiring columns 
  fit$N<- NULL 
  fit$se<- NULL 
  fit$ci<- NULL 
   
  dat<-melt(fit, na.rm = FALSE, value.name = "value") 
   
  #Average reduction 
  Influent<- dat %>% filter(Flow == "Influent" & variable != "sd") 
  Effluent<- dat %>% filter(Flow == "Effluent"& variable != "sd") 



86 

 

  Substract <- (Influent$value-Effluent$value) 
  Total<- Influent$value 
  Reduction<- Substract/Total 
  tgc_head <-Influent[,2:3] 
  tgc_Reduction<- data.frame(tgc_head, Reduction) 
  print(colnames(Biogas_Plants[i])) 
  print(head(tgc_Reduction)) 
   
    #Standard deviation 
  Influentsd<- dat %>% filter(Flow == "Influent" & variable == "sd") 
  Effluentsd<- dat %>% filter(Flow == "Effluent"& variable == "sd") 
  Substractsd <- (Influentsd$value)+(Effluentsd$value) 
  rel_Substractsd <- Substractsd 
  rel_Total <-  Influentsd$value 
  SD <-rel_Substractsd+rel_Total 
  tgc_Reduction<- data.frame(tgc_head, SD) 
  print(colnames(Biogas_Plants[i])) 
  print(head(tgc_Reduction)) 
   
   
  print("---------------------------------------------------------------------") 
} 

for (i in 3:13) { 
  fit<- summarySE(Biogas_Plants,measurevar=colnames(Biogas_Plants[i]), 
groupvars=c("Flow","Plant")) 
  #Nulling non requiring columns 
  fit$N<- NULL 
  fit$value<- NULL 
  fit$se<- NULL 
  fit$ci<- NULL 
   
  dat<-melt(fit, na.rm = FALSE, value.name = "sd") 
   
  Influent<- dat %>% filter(Flow == "Influent") 
  Effluent<- dat %>% filter(Flow == "Effluent") 
  Reduction <- (Influent$sd - Effluent$sd)/Influent$sd 
  tgc_head <-Influent[,2:3] 
  tgc_Reduction<- data.frame(tgc_head, Reduction) 
  print(colnames(Biogas_Plants[i])) 
  print(head(tgc_Reduction)) 
   
  # tgc_Reduction<- rbind(output, mtcars[i, ]) 
   
  print("---------------------------------------------------------------------") 
} 

#9. Contribution of the variance---- 
rm(list=ls()) 
setwd('/Users/rojasju2/Documents/Thesis/Fiber Study/R_Scripts/Code/Code') 
 
source('/Users/rojasju2/Documents/Thesis/Fiber 
Study/R_Scripts/Code/Code/contribution_variance.R') # Load function 
 
filename <- 'Reduction_Biogas_Plants_082918.csv' 
 
input.data <- read.csv(filename) 
var_data<- 
contribution_to_variance(CH4~sCOD+COD+NH3+TKN+Protein+TOC+H2O.Ext+C2H6O.Ext+Cellulose+Xylan+Li
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gnin, data=input.data) 
 
 
 
h <- ggplot(var_data, aes(x = var, y = pct, fill = var)) + 
  geom_bar(alpha = 0.50, stat = "identity") + 
  geom_text(aes(y = pct / 2, label = paste0(round(pct * 100, 1), "%"))) + 
  coord_flip() + labs(x = "Biogas Plants", y="Dry matter (%)", title="Contribution to 
Variance")+ 
  theme(plot.title = element_text(hjust = 0.5))+  
  theme(legend.position="right", axis.text.x = element_text(size = 11), 
        axis.title.y = element_text(size = 11), axis.text.y = element_text(size = 11), 
        legend.text = element_text(size = 11),legend.title= element_text(size = 
11),plot.title= element_text(size = 11)) 
 
 
print(h) 

 

 

  



88 

 

Shapiro–Wilk & ANOVA results on ABP characterization 

Table A2. Statistical results from characterization of the influents and effluents of three different reactors 

Parameter Flow 
Farm A Farm B SCAD 

W 𝑋̅ T W 𝑋̅ T W 𝑋̅ T 

sCOD In 0.9 0.26±0.05 A 0.9 0.27±0.15 A 0.7 0.35±0.04 A 

[% dry 

matter] 
Eff 0.9 0.12±0.01 B 0.8 0.15±0.01 AB 0.9 0.21+0.07 A 

COD In 0.9 0.84±0.03 B 0.7 0.84±0.08 B 0.9 1.04±0.13 A 

[% dry 

matter] 
Eff 0.9 0.72±0.02 A 0.8 0.78±0.04 A 0.8 0.78±0.04 A 

Ammonia In 0.9 0.02±0.01 AB 0.9 0.03±0.01 A 0.9 0.01±0.01 B 

[% dry 

matter] 
Eff 0.9 0.02±0.00 AB 0.9 0.02±0.01 B 0.7 0.05±0.02 A 

TKN In 0.9 0.04±0.01 A 0.9 0.03±0.01 A 0.9 0.03±0.02 A 

[% dry 

matter] 
Eff 0.7 0.14±0.06 A 0.9 0.04±0.00 B 0.9 0.06±0.03 AB 

Protein In 0.9 0.18±0.00 A 0.8 0.17±0.01 A 0.9 0.14±.01 B 

[% dry 

matter] 
Eff 0.9 0.17±0.01 A 0.8 0.16±0.00 AB 0.9 0.15±0.01 B 

TOC In 0.7 0.36±0.01 B 0.9 0.39±0.01 A 0.9 0.43±0.02 A 

[% dry 

matter] 
Eff 0.9 0.36±0.00 A 0.7 0.39±0.01 A 0.9 0.37±0.03 A 

H2O.Ext In 0.9 0.40±0.14 A 0.8 0.32±0.10 A 0.9 0.23±0.04 A 

[% dry 

matter] 
Eff 0.8 0.33±0.02 AB 0.9 0.35±0.08 A 0.9 0.24±0.02 B 

C2H6O.Ext In 0.8 0.06±0.03 B 0.9 0.09±0.02 AB 0.8 0.14±0.05 A 

[% dry 

matter] 
Eff 0.9 0.08±0.01 B 0.9 0.10±0.01 AB 0.9 0.16±0.05 A 

Cellulose In 0.7 0.10±0.04 A 0.8 0.13±0.02 A 0.9 0.13±0.05 A 

[% dry 

matter] 
Eff 0.9 0.10±0.00 A 0.9 0.11±0.02 A 0.8 0.13 ±0.02 A 

Xylan In 0.7 0.05±0.02 A 0.8 0.06±0.01 A 0.9 0.06±0.02 A 

[% dry 

matter] 
Eff 0.9 0.06±0.00 A 0.9 0.05±0.01 A 0.8 0.06±0.01 A 

Lignin In 0.9 0.15±0.04 A 0.8 0.15±0.02 A 0.9 0.21±0.02 A 

[% dry 

matter] 
Eff 0.7 0.18±0.01 AB 0.9 0.16±0.03 B 0.9 0.21±0.02 A 

Productivity 
In 0.8 53.4±72 B 0.9 86.9±99 AB 0.9 154.13±170 A 

[m3/kg VS] 
*T = Tukey’s test, significance is assumed at a p value of 0.01. 
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