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ABSTRACT 

THE CA19-9 ANTIGEN AND STRA GLYCANS DEFINE INDEPENDENT PANCREATIC 
DUCTAL ADENOCARCINOMA SUBPOPULATIONS IMPROVING DIAGNOSTIC 

ACCURACY AND APPROACH TO PROGNOSTIC CLASSIFICATION 
 

By 

Daniel Mark Barnett 

Pancreatic cancer is the third deadliest cancer annually in the United States. Although the vast 

majority of pancreatic cancer belongs to a single type called pancreatic ductal adenocarcinoma 

(PDAC), tremendous heterogeneity exists within and between PDACs in their biology and 

clinical behavior, making it difficult to optimize treatment strategies and therapeutics research. 

The possibility exists that the heterogeneity results from the fact that PDACs actually 

encompass several distinct subtypes. Recent research has uncovered much evidence for such 

subtypes, but so far, the research has not produced clear definitions of the subtypes or 

associated biomarkers that define them. PDACs express a unique set of glycans derived largely 

from their origins as duct cells with a protective glycocalyx, including the CA19-9 antigen sialyl-

Lewis A (sLeA), which serves as the only approved biomarker of pancreatic cancer, and its near 

relative sTRA. I hypothesized that the neoplastic cells of pancreatic ductal adenocarcinoma can 

be separated into subpopulations by their specific glycan expression of sTRA and CA19-9 and 

that these subpopulations have different functional characteristics and risk for disease 

dissemination. To test this hypothesis, I used several methods involving both primary 

specimens and model systems. First, I used multimarker immunofluorescence to detect sTRA 

and CA19-9 and compare their cellular locations, morphologies, and protein co-expression in 

tumor and matched adjacent uninvolved tissue, lymph nodes, and metastases. 

Immunofluorescence was detected by automated microscopy and quantified by novel 

automated software developed specifically for this project. Clear differences were observed 

between cancer cells that expressed only CA19-9 and those that expressed only sTRA, as well 

as a third cell subpopulation represented by dual expression. Dual expression represented a 



 

well differentiated epithelial population of cells in well-formed glandular tissue; CA19-9-only 

expression represented poor to moderately differentiated cell subpopulations of epithelial and 

flat (mesenchymal) characteristics; and sTRA-only expression represented poor to moderately 

differentiated cell subpopulations present in “foamy cytoplasm” and flat (mesenchymal) cell 

features. The co-expression of MUC5AC and beta-catenin was different between the subsets, 

indicating differences in differentiation. The differences were preserved in cell-line and patient-

derived mouse xenografts. I next tested for differences in metastatic propensity. Xenograft 

tumors expressing sTRA were more strongly correlated with metastasis than those expressing 

CA19-9, and primary tumors showed differential correlations with lymph-node or liver metastasis 

depending on glycan expression. Finally, we tested whether blood plasma levels of these 

glycans correlate with tissue expression and whether elevations occur in distinct subpopulations 

of patients. The secretion of glycans into cell-culture media, mouse sera, or plasma from human 

patients generally correlated with glycan expression in the cancer cells, indicating the value of 

the glycans as serological biomarkers to indicate the tumor type. Certain tissues expressing 

only CA19-9 did not secrete to blood plasma, particularly in hyperglandular and very high 

stromal tissue, suggesting a new cause of false negative CA19-9 patients in PDAC detection. 

CA19-9 and sTRA were elevated in separate subgroups of patients, each with low false-positive 

rates. As a result, CA19-9 and sTRA together gave better accuracy of PDAC diagnosis than 

CA19-9 alone (97% specificity, 65% sensitivity vs. 96% and 46%). In summary, these studies 

support the concept that distinct subtypes of PDAC can be identified by the expression of sTRA 

or CA19-9. Additionally, sTRA co-expression with CA19-9 also identified a third subpopulation 

of PDAC with different morphology, likely aggressiveness, and secretion characteristics. Clinical 

translation is potentially enabled by the detection of these biomarkers in blood plasma, which 

provides a new approach to improve diagnosis, prognosis and treatment development.  
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Chapter 1: Introduction 
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1.1 Introduction 

Pancreatic cancer is currently the third most deadly cancer in the United States and mortality is 

continuing to rise 1.  Tumor resection has shown the best prognosis of all treatments to date, but 

few patients are caught early enough and with the right conditions for resection to be attempted.  

To address this, the field has worked diligently to develop better early detection.  To date, there 

have been no new diagnostics developed to successfully detect tumors early, and no test has 

firmly established superiority over the only approved biomarker, CA19-9.  CA19-9 has both too 

many false positives and false negatives to accurately serve as a sole diagnostic or screening 

test, but it has found utility tracking response to therapy.   

Once pancreatic tumors are confirmed, they are usually metastatic and no treatment has been 

shown to sufficiently treat tumors to consistently prevent early death.  Survival rates at 5 years 

have improved to 8%, but most tumors are metastatic at diagnosis (81-90%)1 and develop 

resistance to treatment quickly.  Tumors detected early often fall in the 10-20% of patients with 

surgically resectable (local and locally-advanced) disease, where average overall survival is 19 

months and 5-year survival is 15-25% 2.  In all others, the current best (first-line) treatment 

regimens are FOLFIRINOX and gemcitabine with nanoparticle albumin-bound (nab)-paclitaxel 

where overall survival rates in metastatic disease are 11.4-13.8 months and 9.8-12.1 months, 

respectively, and average duration to treatment failure is 4.3 months and 3.7 months3,4.  Despite 

very short average survival time, there are a small subset of patients that live longer and some 

very long (>10 years), but currently there are no strong clinical or molecular predictors of long-

term patient survival.  A few weak indicators (up to 40-50% survival >5 years) have been 

described and include low detectable CA19-9 (<200U/mL), small tumor size (<20mm), and no 

invasion of lymph node, nerve, or portal vein in post-resection patients 5.     

In the last decade, there has been extensive work completed in the field to characterize 

pancreatic tumor morphology, genetics, epigenetics, and metabolism for better understanding of 
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their biology.  Tumor characterization also aims to develop strategies for earlier diagnosis, 

prognosis prediction, and better treatment efficacy, particularly by identifying informative 

molecular biomarkers.  It is now well known that pancreatic tumors often have low cellularity 6, 

live in harsh environments7, and are very heterogeneous with clonal cell subpopulations 

expressing various patterns of gene mutations, as well as RNA and protein expression 

patterns8.  With high intratumor heterogeneity, it is likely that not all tumor cells have the same 

potential for involvement in invasive and metastatic disease that will eventually result in 

progression and death of patients.  I hypothesize that stratification and identification of 

subpopulations of neoplastic cells with invasive and metastatic potential could allow both better 

biomarkers for identification and prognosis of disease as well as development of more effective 

and targeted treatments of pancreatic cancer.  Here, I present the current state of molecular 

characterizations of pancreatic tumors with perspective on how those characterizations 

represent the biology and clinical state of patients with pancreatic tumors and the state of 

cancer screening relative to other cancers.  

1.2 Clinical and Molecular Cancer Screening 

Diagnosis of cancer is a complicated and varied process for most cancers. It may include tests 

of biological specimens, physical examination, diagnostic imaging, as well as invasive and non-

invasive procedures as dictated by symptoms, clinical data, and physician judgement. The 

reliability and costs of tests are widely variable across cancers and even more so for cancer 

screening. For cancers with long survival from early detection or where costs of screening tests 

are low, there has been significant clinical adoption of cancer screening tests. Several examples 

of screening tests are well-recognized including prostate specific antigen (PSA) urine screening 

for prostate cancer, guaiac tests and colonoscopies for colon cancer, and mammography for 

breast cancer. Although significant cancer mortality reduction has been realized, cost benefits of 

these tests have come into question more recently in the United States, particularly by the 
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United States Preventative Services Task Force (USPSTF), presenting new cost-benefit 

considerations for the efficacy and costs of screening tests. 

The most prevalent and deadly cancers in the United States are summarized in Table 1.1 and 

the most common screening modalities for these cancers are summarized in Table 1.2.  The 

sex-specific prostate and breast cancers are the most prevalent cancers (131.1 and 105 cases 

per 100k)9 and both have widely adopted screening tests.  Both prostate and breast cancers 

have high overall 5-year survival.  Lung cancer remains the most prevalent all-sex cancer 

(50.99 cases per 100k)9 in the United States and has a survival profile and disease distribution 

at diagnosis most similar to pancreatic cancer. Screening by radiography is recommended for 

the highest risk groups, but poor early detection and poor survival are still evident in the 

population. Colon cancer is the second most prevalent all-sex cancer with 26.1 cases per 100k9 

and has numerous screening modalities available.  Pancreatic cancer has a much lower 

prevalence of 12.79 cases per 100k,9 but it is now the third most deadly cancer in the United 

States due to poor early detection and poor survival regardless of clinical stage at diagnosis.  As 

long adopted standards of cancer screening, clinical performance of screening tests for these 

cancers should serve as performance benchmarks for the development of new biomarkers and 

screening modalities. 

Prostate cancer is the most common cancer in males with 164,690 estimated new cases in 

2018 in the United States and the second most frequent cause of cancer deaths in males with 

29,430 deaths expected in 2018.1 The digital rectal exam has been in regular use for more than 

a century10 and has varied estimates of specificity and sensitivity from 40 - 90.7% and 28.6 - 

81%, respectively.11,12 The PSA glycoprotein was discovered in 1971 and gained significant use 

by the early 1990s as a test for prostate cancer, supplanting Prostate Acid Phosphatase (PAP) 

as a primary biochemical test for prostate cancer.13 At a cutoff of 4.0mg/mL, PSA specificity and 

sensitivity are 93.8% and 20.5%.14  The American Urological Association recommends a shared 

decision between patient and physician for patient screening by PSA for men 55-69 with PSA 
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testing every two years for patients opting for screening.15 Prostate cancer has 100% 5 year 

survival when found with only local or regional invasion, but 30% when discovered after distant 

metastasis.9 PSA has shown clinical utility in detection of prostate cancer and serves as a 

valuable benchmark for a successful cancer screening test. 

Breast cancer is the most common cancer in females with 266,120 estimated cases in 2018 in 

the United States and the second most frequent cause of cancer deaths in females with 40,260 

deaths expected in 2018.1  Regular examination by palpation is no longer recommended for all 

patients, but for patients that express interest, physician instruction is recommended by the 

American College of Obstetricians and Gynecologists (ACOG).16 Mammography has been 

recommended since the1970s,17 though criticism has been offered that it may be too sensitive 

and early cancers that would not develop significant malignancy are overtreated as potentially 

aggressive cancer.18 Average cost of mammography in the United States is $266, though there 

is considerable regional variation.19 There is little doubt that breast cancer has seen increased 

treatment success with mammography, though significant questions remain about whether that 

success is related to treating cancers that would not advance without treatment. Regardless, 5-

year survival of localized breast cancer is 98.7%, regionally invasive is 85.3% and distant 

metastatic breast cancer is 27.0%,9 indicating the importance of identifying breast cancers early. 

Mammography has a sensitivity of 90.5-92.5% and specificity of 83.2-97.9%.20  Mammography 

has long served as a benchmark for other cancer screening tests. 

Colon cancer is second most common all-sex cancer and second most frequent cause of 

cancer deaths annually in the United States. There were 97,220 estimated new cases 

diagnosed and 50,630 estimated deaths in the United States in 2018.1 Colon cancer is 

frequently highly treatable when found early with 90.4% 5-year survival for localized disease 

and 71.4% survival for regionally invasive disease.9 However, the 23% of cases discovered with 

distant metastasis only have a 5 year survival of 13.5%,9 indicating the importance of early 

detection.  The USPSTF recommends using stool fecal occult blood tests (sensitivity 7.2%, 
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specificity 98.8%) for annual screening of blood in stools, although fecal immunochemical tests 

(FIT) have shown higher accuracy (sensitivity 23.2-68%, specificity 87.6-97%).21,22 Colonoscopy 

is recommended every 10 years for most adults starting at age 50 with high sensitivity and 

specificity.23 Early detection and removal of cancerous and pre-cancerous growths by 

colonoscopy have likely played a significant role in reducing colon cancer mortality by over half 

in the last 40 years.9 Colonoscopy is a significant benchmark for cancer screening tests.   

Colonoscopies have compliance of about 60% due to patient and physician compliance, groups 

with contraindicating risks for performing colonoscopies, financial barriers and lack of access to 

services.24  For these patient populations, new tests have been developed and adopted, such 

as Cologuard and Epi procolon.  Cologuard tests stool samples for multiple DNA target genes 

and has a specificity of 89.8% and sensitivity of 92.3%, though its performance is noted to be 

similar to less expensive FIT options in some studies.25,26 It has received clinical adoption in 

limited use and has served as a benchmark for other new molecular tests, such as Epi procolon.  

Epi procolon detects hypermethylation of the SEPT9 gene shed into the bloodstream of colon 

cancer patients.  It has also received FDA approval and has a specificity of 81-90% and 

sensitivity of 70-73%.22 These newer blood tests show promise, but best practices and 

screening algorithms are still being determined for these tests in relation to FOBT, FIT, and 

colonoscopy.     

Lung cancer is the most common all-sex cancer in the United States with 234,030 estimated 

new cases and the most deadly with 154,050 deaths expected in 2018.1 Lung cancer incidence 

in smokers is 1259.3-1308.9 per 100,000 compared to 20.3-25.3 per 100,000 in people who 

have never smoked.27 Annual low-dose computed tomography (LDCT) has been used as a 

screening test for the targeted population of current and previous smokers.  In this group, LDCT 

has a sensitivity and specificity of 80-100% and 28-100%.28  Although the risk of radiation 

exposure, cost, and compliance have not been found to be cost beneficial for the general 

population, the opportunity for early detection in the high risk group of smokers has likely 
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increased survival by early detection.28  The mortality of one common type of lung cancer in 

smokers, small cell lung cancer, has decreased by nearly half since its peak in 1988.9  Annual 

chest radiography in lung cancer presents a reasonable benchmark for screening of high risk 

populations in cancer.   

New screening tests are being developed for other cancers, though adoption has not been 

significant for most.  The OVA1 tests has been developed and approved by the FDA for ovarian 

cancer.  It has a specificity of 35-40% and sensitivity of 94-99%.29  Ovarian cancer has an 

incidence of 11.49 per 100,000 women and is the seventh most common cancer in women.9  

Mortality is high due to late detection.  CA125 has also been used to track disease progression 

and assist in diagnosis but with a specificity of 77% and sensitivity of 47%, it has only moderate 

clinical adoption for use in diagnosis, but is regularly tested for pelvic mass due to gynecologic 

society recommendations.29  The OVA1 test was approved in 2009 and its adoption is still 

underway, but it presents a new benchmark for ovarian cancer screening. 

Pancreatic cancer is the third most common cause of cancer mortality and does not have a 

widely accepted screening test.  Pancreatic cancer is expected to have 55,440 new cases 

diagnosed and 44,330 deaths in the United States in 2018.1  At diagnosis, only 10% of patients 

have localized disease, 29% of patients have regionally invasive and 52% of patients have 

distant metastasis, indicating a high need for early detection and diagnosis.9  Further, 5-year 

survival in localized disease is 34.3%, regionally invasive disease is 11.5% and distant 

metastatic disease is 2.7%.9  CA19-9 is the only FDA-approved biomarker for pancreatic cancer 

and its sensitivity of 79% and specificity of 82%30 lags the performance of the screening tests 

adopted for other cancers.  Several new tests have been presented in early stages of research 

and validation, but as yet, none has achieved clinical adoption or FDA approval. 

Cancer screening has seen significant improvement over the last three decades, but pancreatic 

cancer significantly lags in clinical screening performance relative to other cancers of similar 

absolute cancer mortality.  Although there are no absolute standards, sensitivity or specificity 
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exceeding 90% with high specificity or sensitivity, respectively, has been important for clinical 

adoption. There is a significant need to develop better biomarkers or screening modalities with 

these higher predictive values to detect and diagnose pancreatic cancer. To develop better 

biomarkers with better detection performance, it is necessary to gain better understanding of the 

biology of pancreatic tumors to identify new molecular targets for screening, diagnosis and 

prognosis of pancreatic cancer patients.   

1.3 Clinical Subtypes 

Malignant pancreatic cancers are divided into four primary clinical types: neuroendocrine, 

mucinous/cystic adenocarcinomas, acinar cell carcinomas, and pancreatic ductal 

adenocarcinomas.   

Neuroendocrine tumors (PNET) derive from the primary neuroendocrine tissues of the pancreas 

(islets of Langerhans) and are often also called islet cell tumors.  They represent 3-5% of all 

detected pancreatic tumors,31 though incidence in autopsy studies was more than 1000 times 

higher, suggesting very few express clinical symptoms.32  When these tumors exhibit clinical 

symptoms, they are divided into two groups: functioning and non-functioning, where functioning 

tumors express specific hormones (i.e. gastrin, insulin, glucagon, vasoactive intestinal peptide 

(VIP), or somatostatin) whereas non-functioning tumors do not.33  Symptoms often appear late 

in disease progression.  The majority of functional neuroendocrine tumors are insulinomas, 

which present clinically with flushing (i.e. bouts of bodily redness and heat) and hypoglycemia, 

though nonfunctional tumors are equally common.32   

Mucinous/cystic adenocarcinomas of the pancreas are characterized by cysts secreting mucin 

proteins and are usually benign.  They are separated into two groups: Mucinous cystic 

neoplasms (MCN) and intrapapillary mucinous (IPMN) neoplasms.  Both are often incidental 

findings from radiologic imaging and benign conditions (78-90%),34,35 but share similarities with 

pancreatic ductal adenocarcinoma when they are malignant.36  Mucinous and malignant cystic 

tumors represent 6-7% of all detected pancreatic tumors.31  
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Acinar cell carcinomas are extremely rare (0.3 - 2%) 31,37 and derive from the primary exocrine 

cells of the pancreas.  Acinar neoplasms are primarily characterized by non-specific symptoms 

such as fatigue, jaundice, abdominal pain, nausea and vomiting.38  They are largely 

distinguished by large cells and lacking the major driver mutations of pancreatic ductal 

adenocarcinomas, though SMAD4 mutations have been observed in a subset of patients.39   

The vast majority (80-90%) of pancreatic cancers are pancreatic ductal adenocarcinomas 

(PDAC).31   PDAC tumors are thought to arise through a series of transformation stages in 

ductal cells known as pancreatic intraepithelial neoplasms (PanINs) or acinar cells that have 

undergone acinar-to-ductal metaplasia (ADM), after cell reprogramming.40  Clinically, PDAC 

tumors often arise in patients who have a history of smoking (attributable in 25% of PDAC), 

heavy alcohol consumption (>3 drinks per day), and/or chronic pancreatitis.41  PDAC patients 

also have a high incidence of diabetes (47%), particularly new onset diabetes (27% of all 

PDAC).42  All of these environmental disease predispositions are thought to lead to increased 

inflammatory states in the pancreas. Patients with a family history of breast, ovarian, colon and 

pancreatic cancer have an increased incidence of pancreatic cancer.43  Due to the high risk of 

both environmental and genetic patient risk groups, there is significant interest in developing 

screening and diagnostic tests capable of accurately detecting pancreatic cancer in these high 

risk populations.  Each risk factor is also suggestive of biology and genetics with potential for 

diagnostic and treatment targeting. 

Pancreatic ductal adenocarcinoma represents 80-90% of pancreatic cancers, but the remaining 

pancreatic cancers (i.e. neuroendocrine, mucinous tumors, acinar cell carcinomas and other 

extremely rare neoplasms) still represent valuable biology and dysregulation of normal tissue 

maintenance in the pancreas.  Normal pancreas, chronically or acutely inflamed pancreas, and 

precursor lesions (i.e. PanINs) also provide valuable information on the processes leading to 

pancreatic cancer.  Each of these pancreatic states helps to understand the roles of cells and 

interactions that lead to and sustain cancers of the pancreas.   
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1.4 Pancreatic cancer cell subpopulations 

With high intratumor heterogeneity and multiple potential cells of origin, even in cancer there are 

likely subpopulations of cells that represent more harmful clinical outcomes for patients.  Here, 

the subpopulations of pancreatic cancer cells and subtypes of pancreatic cancers will be 

explored for their biological roles in cancer and their impact on outcomes of patients, with a 

primary focus on pancreatic ductal adenocarcinoma.   

A large number of subtypes and tumor cell populations have been reported for pancreatic 

cancer.  These will be considered first by cellular subcompartments (neoplastic cells vs stroma) 

and then by populations of primary cell types (immune, fibroblasts, other non-cancerous cells, 

neoplastic, and benign exocrine and endocrine cells) and subpopulations within those cell types 

in pancreatic cancer.  Next, these subpopulations will be considered for their roles in defining 

subtypes as well as other factors leading to subtype determination.  These subtypes will then be 

considered for their associations and potential significance for outcomes and treatment success. 

1.5 Neoplastic Cells in PDAC Precursor Lesions 

Morphologically, pancreatic ductal adenocarcinomas are widely viewed as comprisng two 

cellular subcompartments: neoplastic cells and stroma (Figure 1.1).  Neoplastic cells derive from 

epithelial pancreatic exocrine cells or their progenitors 40.  The 2010 WHO consensus 

classification recognized four types of precursor populations: pancreatic intraepithelial 

neoplasias (PanINs), Intraductal papillary mucinous neoplasm (IPMN), mucinous cystic 

neoplasm(MCN) and intraductal tubulopapillary neoplasm(ITPN) 44.  

Hruban et al. initially proposed a sequential progression from normal ducts through three stages 

of PanINs with characteristic genetic alterations before progression to adenocarcinoma 45.  They 

described PanIN IA as characterized by Her2/neu2 (when present) and KRAS point mutations 

with ductal cell polarization resulting in a cuboidal to columnar transition with basal nuclei.  

PanIN IB is characterized by early formation of papillae in the membrane.  PanIN IB/II is 
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characterized by p16 mutations and increasing papillae (number and size).  PanIN III is 

characterized by increasing pseudocolumnar cells in the increasingly neoplastic ductal wall 

structure with budding and detaching cell structures.  They also described accumulation of 

combinations of p53, DPC4 (SMAD4), and BRCA2 genetic mutations as driver mutations for the 

progression of cells through pre-cancerous and cancerous stages.   Hruban et al. suggested 

these transitions and genetic mutations could be used to identify potential diagnostic tests and 

therapy targets.  Early PanINs were proposed to rarely advance into adenocarcinoma, while late 

PanINs have higher risk of development into adenocarcinoma, though multiple stages of PanIN 

may be simultaneously present.  More recently, the Baltimore consensus has suggested 

eliminating the PanIN 2 state along with moderate grade designations, downgrading these due 

to their low likelihood of advancement to carcinoma-in-situ.46  PanINs may also be generated by 

nearby PDAC lesions and retain characteristics of their precancerous cells of origin.47 

In a mouse model of pancreatic cancer, the ER stress response protein, anterior gradient 2 

(AGR2), was shown to separate cells of acinar origin and ductal (tubular) origin where acinar 

cells lead to PanINs, while AGR2-expressing PDAC cells resulted from ductal origin cells that 

transitioned to PDAC without PanIN stages.47 In the same study, bystander PanIN lesions were 

induced by PDAC lesions where cell subpopulations retained their cell of origin AGR2 

expression.  Similar expression was also demonstrated in clinical samples where AGR2 was 

shown in cell subpopulations adjacent to tubular and early PanIN lesions.48  Dumartin et al. also 

showed ER-stress-induced pancreatic stellate cells induced ER stress, AGR2 expression, and 

inflammatory marker (IL-6) expression in PDAC cell lines by paracrine signaling.  Prior studies 

have shown that AGR2 is TGF-β responsive and suppressed by SMAD4 expression.49  These 

authors also showed that MUC1 is exclusively co-expressed with AGR2 and dependent on 

AGR2 for expression as such suggested that AGR2 and MUC1 are indicators of TGF-β 

transition from tumor suppressor to tumor promoter.  These findings suggest that MUC1 may be 

a potential secreted biomarker and AGR2 as a valuable tissue biomarker of a unique 
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subpopulation of pancreatic cancer cells of acinar origin with SMAD4 loss in a pro-inflammatory 

ER-stress state.  

Much like PanINs, mucinous cystic neoplasms (MCNs) and intrapapillary mucinous neoplasms 

(IPMNs) are thought to serve as precursor lesions with sequential genetic mutations leading to 

PDAC.    Both MCNs and IPMNs are heavy mucin-secreting neoplasms, though both are benign 

until they progress to a PDAC phenotype.  

IPMNs have a distinct phenotype marked by mucinous secretion and extensive papillary 

formation that can often be identified early by diagnostic imaging.50  IPMNs are divided in 

clinicopathologic subtypes of intestinal, gastric, pancreatobiliary and oncocytic due to their 

morphology, protein expression, and behavior.  They are initiated by genetic “driver” mutations 

distinctly different from PDACs, RNF43 and GNAS, though not all clinicopathologic types have 

the same driver mutation profiles.51,52  For example, GNAS is present in all intestinal, half of 

gastric, and 71% of pancreatobiliary, but no oncocytic-type IPMNs.51 Patients affected by IPMNs 

with malignancy have much longer survival than other pancreatic cancers, though there is no 

significant difference in pathological state from other patients’ tumors, suggesting better 

detection of early lesions.53  MCNs are cysts that are also mucin-secreting.  When sufficiently 

large, they can also be identified on radiologic imaging, though diagnosis typically requires 

further diagnostic testing.54   

Like IPMNs, up to half of all patients with MCNs often have RNF43 mutations. 52  Malignant 

MCNs also often show KRAS mutations and have genetic (KRAS and RNF43 mutations), 

morphologic (stromal pattern), and patient demographic (increased risk in females) similarities 

to mucinous ovarian tumors.55  It has been hypothesized that these ovarian-type MCNs are 

germline tumors present from birth and derive from germ cells deposited during development as 

they traffick to their normal location.55 If this hypothesis is correct, subsequent studies may 

elucidate biomarkers and pathways to identify and target this unique cell subpopulation.  In 

other work, aggressive subpopulations of ovarian-type MCNs have been shown to express 
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carcinoembryonic antigen (CEA), HER2, maspin and neuroendocrine proteins (progesterone 

receptor, synaptophysin, CD56, and neuron-specific enolase), which together or separately form 

functional subpopulations.56 

Like IPMNs, intraductal tubulopapillary neoplasms (ITPNs) are intraductal, but unlike IPMNs and 

MCNs, they are not mucin-secreting.  Histopathology of ITPNs is well-characterized, but as a 

rare precursor lesion and eventual carcinoma (1% of exocrine tumors), the prognosis and 

progression of ITPNs are not well understood.  ITPNs often present as a solid duct-obstructing 

mass and share many characteristics with non-ductal pancreatic masses (acinar cell carcinoma 

and neuroendocrine tumors).  Biomarker expression may include cytokeratins, CEA, 

neuroendocrine proteins (synaptophysin, chromogranin A, somatostatin), exocrine enzymes 

(e.g. alpha 1 antichymotrypsin), and glycans (e.g. CA19-9/sialyl Lewis A).57 Though by definition 

lacking mucins,44 ITPNs have been shown to be lacking expression in MUC2 and MUC5AC, but 

frequently express MUC1 and MUC6.58 

Each of these precursors lesions  has a unique genetic expression profile and baseline 

phenotype from which it begins development into PDAC.  Although ultimately converging on a 

similar end phenotype, the precursor lesions likely provide an imprint reflected in the future 

adenocarcinoma.  Early in development there may even be type switching or early fate-

determining steps from a precursor to these precursor lesions.59  Defining and understanding 

the subpopulations that form a tumor and the origins of those subpopulations may help to 

develop better diagnostic and prognostic assays as well as develop more effective treatments.  

1.6 Neoplastic Cells in PDAC 

Neoplastic cells in PDAC have been shown to be comprised of diverse clonal cell populations 

spread across wide areas.8  Pancreatic cancer is highly stromal, which leads to wide spatial 

separations between clonal cell populations (clones).  The fragmentation of clones shows some 

similarity to fragmentation studied in ecology and evolution.  In similarly approaching the 

pancreas with dysplasia, it has been shown that subclones evolve to form unique 
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subpopulations but that those subpopulations carry the mutations and genetic marks of parental 

lines.8,60  These genetic marks as well as their expressed phenotypes are both important for 

understanding the biology of tumors and identification of high risk subpopulations. 

The presence of several biomarkers has been shown to be indicators of functional 

subpopulations of neoplastic cells.  Dpc4/Smad4 immunostaining was present in 70% of patient 

tumors with widespread metastasis at death, but not the 30% of patients with localized disease 

alone.61  Overexpression and loss of expression of SMAD4 are both correlated with SMAD4 

genetic dysregulation62 and have a significant effect on TGFβ signaling, a key pathway in 

pancreatic cancer.63  Moreover, SMAD4 has a dose response relationship for radiosensitivity 

with overexpression increasing radiosensitivity and loss making tumors resistant.64  β-catenin 

has shown utility, first with upregulation in stressed membranes and then with a nuclear shift as 

the cell progresses to a more aggressive disease state due to loss of adhesion from separation 

of the E-cadherin/ β-catenin complex.65 

Cancer stem cells are another subpopulation of interest for pancreatic cancer.  If a true cancer 

stem cell can be identified, both the origins and progression of pancreatic cancer might be 

better studied and targeted for therapy.  The concept of a cancer stem cell in pancreatic cancer 

is a cell that may be multipotent (multiple potential terminal cell types), self-renewing, malignant 

and a cell of origin for new neoplastic clones.66  Potential cancer stem cell subpopulations have 

been identified with CD133 and they were associated with aggressive proliferation and 

metastasis.67  DCLK1 has also been shown to be associated with presumed cancer stem cells 

with an appearance similar to gastrointestinal tuft cells.68  CD44 has also been proposed as a 

marker of pancreatic cancer stem cells as well, and when colocalized with CD133 is found as a 

marker of centroacinar cells, which is thought to be the progenitor for acinar and ductal cells.69,70  

It is possible that there is more than one subpopulation of pancreatic cancer stem cells that 

might also address the concerns of lack of expression of all cancer stem cell markers in all 
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tissues69 with a convergence of the most successful phenotype in the milieu of pancreatic 

tumors as a result in any individual patient. 

Mucins and glycoproteins may be other useful biomarker to separate subpopulations of 

neoplastic cells.  Several mucin proteins (MUC1, MUC4, MUC5AC, MUC16) and their 

associated glycans have also been shown to have various functional (gel-formation, structure, 

receptor binding) and signaling roles (phosphorylation sites and Epidermal Growth Factor 

domains) both as membrane-bound and secreted proteins.71 Various glycans, glycan variants, 

and glycosaminoglycans have been recognized as well, both specifically (i.e. glypican 1, sialyl 

Lewis A, sialyl Lewis X, and SDC1) and as contributing factors to the functions of glycoproteins 

(CEA, mucins) in neoplastic cells.72-75  Combinations of specific mucins, glycoproteins, and their 

associated glycans may also define more specific subpopulations of pancreatic cancer cells with 

biological and clinical significance. 

These functional proteins and glycans are not expressed in all cells and are often represented in 

multiple clonal populations within pancreatic tumors.  In that state, they may be used as 

biomarkers to represent a neoplastic state or even a prognostic state based on the outcomes 

associated with their expression.  Further work is needed to associate specific identified 

subpopulations with their metastatic and outcomes potential for pancreatic tumors. 

1.7 Tumor Stroma 

In PDAC, stroma often comprises up to 95% of the tumor.76  PDAC tumors are typically 

hypovascular and hypoxic.  Likely due to their ductal origin and organization, PDAC cells are 

often well distributed within a tumor and arranged in small pockets or duct-like structures.77  

Stroma forms the interconnections between all of these distributed centers of neoplastic cells 

and serves a variety of roles in antagonizing and supporting the neoplastic cells as the regulator 

of the tumor microenvironment. The biology of tumor stroma and its relative composition have a 

significant role in determining the phenotype of a tumor.  Biomarkers may be used to identify the 
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state and composition of tumor stroma and provide information on the state of neoplastic cell 

subpopulations. 

Stroma is primarily comprised of fibroblasts (activated and quiescent), immune cells (T cells, B 

cells, NK cells, macrophages, neutrophils), other non-cancerous cells (endothelial cells and 

nerve cells in neurovascular bundles), and high deposition of fibrotic extracellular matrix.78  

PDAC stroma is often organized with fibroblasts and connective tissues, mainly composed of 

collagen and α smooth muscle actin depositions, to form high tension in tumors adjacent to 

cancer cells.79,80  Fibroblasts are thought to have two states in PDAC tumors, activated and 

quiescent.  Cancer-activated fibroblasts (CAFs) have been proposed to assist in tumor signaling 

and metabolism of byproducts from tumors.81  Fibroblasts may also supply critical structure and 

nutrient supply for the cancer cells within the highly hypoxic environment of most pancreatic 

tumors.81  Quiescent fibroblasts serve a more traditional role of maintaining connective tissues 

within the tumor and likely do not immediately impact the viability and proliferation of cancer 

cells, though they do store vitamin A and produce matrix metalloproteinases (MMPs).82  

Fibroblasts serve as the vital core of activity in pancreatic cancer stroma supporting structure, 

invasion, migration, and metabolism. 

Immune cells also serve a large role in stroma, though they are largely quiescent in most 

tumors.  Immune cells sparsely populate central areas in PDAC tumors, especially in advanced 

tumors, where they have been observed at higher density at the perimeters of tumors.83  Non-

macrophage immune cells are often characterized as depleted, inactive, suppressed, or burned 

out, though depletion of tumor associated macrophages  (TAMs) may restore activity of other 

immune cells.84  Immune cells may play an early role in regulating tumor growth, but late stage 

tumors are largely not impacted by immune response.  Some have argued that tumor 

associated macrophages (TAMs) may actually play a role in stimulating tumor growth and there 

is strong evidence for their role in immune suppression.83   
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As a tumor compartment, stroma is thought to have roles in signaling, metabolism, and diffusion 

of drugs to cancer cells. There are several notable biomarkers used to define the state of these 

characteristics of tumor stroma.  Cancer activated fibroblasts (CAFs) are identified by αSMA, 

fibroblast activation protein (FAP), and vimentin expression, although vimentin is found on most 

quiescent fibroblasts, as well.85,86  Various collagens and the sizes of collagen bands have been 

characterized for stromal state and even their contributions to prognosis.79  Tenascin C and 

SPARC have been identified as indicators of tissue tension,87 which can indicate tumor 

resistance to drug diffusion. Immune cells have been characterized for numerous markers of 

activation state, activity, or cell type.  Among these are the markers often used to separate 

immune cell types, but also cancer relevant markers for T cells (CD3, CD4, CD4, PD-1), 

macrophages (CD204, PD-L1), B cells (CD20), and NK cells.88 The relative expression and 

distribution of these markers in pancreatic tumors can be used to indicate the immune activation 

or suppression. Each of these markers may be used for phenotype and cell subpopulation 

characterization to distinguish between cells of different function.  Many of these cells have 

functional roles in interactions with pancreatic cancer cells and together they may help elucidate 

the tumor-stroma interaction that is thought to drive the advancement of pancreatic cancer. 

1.8 Pancreatic Cancer Subtypes 

Subtypes of pancreatic cancer can be defined by collections of cell subpopulations or by bulk 

tumor analysis.  Subtype definitions are derived from multiple molecular approaches and can be 

separated by the type of characterization: DNA sequencing, RNA sequencing, methylation, 

miRNA, proteomic, and glycomic.  Some subtypes are developed by combining multiple 

modalities, though most are defined by a single modality.  These markers alone or in 

conjunction with other characterization may form the basis for subtypes of pancreatic cancers. 
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1.9 DNA Subtypes 

DNA subtypes have been used as one approach to pancreatic cancer subtype identification.  

Early studies explored the evolution of cancers and resulted in the identification of potential 

“driver” mutations necessary to advance progression of cancers to more advanced states.  Later 

studies attempted to identify gene mutations and DNA states to separate tumors by genetic 

alterations.  These studies have provided valuable information on the biology of pancreatic 

tumors, although they have not yet resulted in changes to treatment. 

In 2010, Yachida et al.8 described clonal subtypes in a precursor to The Cancer Genome Atlas 

studies. The authors took sequential slices of the pancreas then subsampled the slices to 

examine the genetics and pathology of pancreatic tumors to describe the variation between 

neoplastic clones.  Metastatic clones were also analyzed and compared to the primary tumor 

samples.  The authors determined that pancreatic tumors have high heterogeneity with 

consistent driver mutations and both varied and increasing numbers of “progressor” mutations.  

The metastases showed a very different picture with homogeneous clonality within each 

metastasis with high concordance to a primary tumor clone, but a variation in which clone 

provided the likely founder clone for the metastasis.  Although they did not identify gene lists to 

determine particular subpopulations, they proposed clonal associations and evolution of 

pancreatic cancers are drivers of development, metastasis, and recurrence. 

Subsequently, TCGA project produced a new set of subtypes and a different analytical 

approach to pancreatic cancer in 2015.  Waddell et al89 showed that a genomic approach could 

be used to assess pancreatic cancers by looking at 100 PDACs for chromosomal 

rearrangements by copy number variation and whole-genome sequencing.  They confirmed the 

well characterized mutations of pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A, and 

ROBO2) to be particularly susceptible to chromosomal rearrangements.  The authors also 

showed that the minority of patients with inactivation or deficiency of DNA repair and 

maintenance genes (i.e. BRCA1, BRCA2, and PALB2), which have been previously shown to 
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be present as susceptibility mutations for PDAC 90, were 80% responsive to platinum-based 

therapies.  Waddell et al. found the chromosomal rearrangements fit into four subtypes: stable, 

locally rearranged, scattered, and unstable.  The authors defined the stable group (20% of 

patients) for its relatively low structural variations (<50).  They defined the locally rearranged 

group (30% of patients) for clusters of mutations or amplifications.  They noted that these 

contained rare (1-2%), but potentially actionable changes in some patients (e.g. ERBB2, MET, 

CDK6, PIK3CA, PIK3R3).  Roles for many of these genes/proteins have been previously noted 

by others 91,92, but this study validated their rates with a larger sample set (n=100).  They 

defined the scattered subtype (36% of patients) as “a moderate range of non-random 

chromosomal damage and less than 200 structural variation events.”89  The unstable subtype 

(14% of patients) was defined by >200 structural variations.  They noted that 10 of 14 samples 

exhibited a high BRCA signature indicating poor DNA maintenance and a likely driver of this 

group.   

Pancreatic cancer subtypes based on DNA characteristics have provided pertinent findings 

informing the development of further subtypes, but they have yet to be established as subtypes 

to inform treatment.  The earlier studies that examined the clonal evolution of pancreatic cancer 

provided useful information on the likely progression of pancreatic cancer. The determination by 

these studies that metastatic clones developed from diverse primary clones, but that within each 

metastatic locus there was homogeneity indicated multiple metastasizing events likely occurred 

suggests that multiple cell subpopulations will likely need to be identified and treated to prevent 

and eliminate metastases.  These early studies also showed a consistent set of “driver” 

mutations leading cells to an eventual state of progression, suggesting that early cancer and 

precancer may be broadly treatable and identifiable by cells expressing common pathways.  

Subsequent studies took a broader genomic approach in an attempt to separate tumors into 

subtypes by DNA stability and mutational state. In further studies, these DNA states have been 

noted to exist in a set of tumors with much higher than average cellularity.  DNA subtypes have 
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provided one approach to subtyping pancreatic tumors and the results of their work have been 

used to guide subsequent studies of pancreatic cancer subtyping. 

1.10 RNA Subtypes  

Several studies have attempted pancreatic cancer subtyping by RNA expression using primary 

approaches of microdissection and whole-tumor analysis. Microdissection was initially 

performed by cutting regions of interest to separate neoplastic cell types from non-neoplastic 

cell types and in later was performed by computational virtual microdissection.  Whole-tumor 

RNA analysis examined molecular pathways to classify tumor states with biological and 

treatment relevance.  Both approaches identified both biology and potential treatment 

approaches for pancreatic cancer. 

In an initial RNA subtyping study, Collison et al. 93 separated PDAC tumors and cell lines by 

RNA expression signatures in 2011 and named the subtypes based on their apparent functional 

expressions of Exocrine-like, Classical, and Quasimesenchymal.  Gene lists were determined 

by non-negative matrix factorization (NMF) and found 62 genes that separated the 

microdissected PDAC tumors and PDAC cell lines into the three groups.  Although the authors 

were reassured of the validity of the exocrine group by gross immunohistochemical staining for 

digestive enzymes, they had some skepticism of its validity when the group did not appear in 

any of their PDAC cell line samples. These first three subtypes and their underlying gene lists 

have served as a basis for molecular subtyping for subsequent studies in pancreatic cancer.   

The strength of the Exocrine subgrouping was bolstered by Moffitt et al in 2015,94 who showed 

an overlap of 17/17 genes in their own NMF analysis of pancreatic tumors and patient-derived 

xenografts.  Moffitt et al were also able to validate the Collisson classical grouping with an 

overlap of 20/22 genes.  The Moffitt model was developed using a virtual microdissection based 

on separating stroma from cancer cell expression.  However, they identified a completely 

different third grouping called “basal-like” tumors based on an additional 20 genes and indicated 

a separation of tumors based on stromal activation state of tumors.  They found the 



 

21 
 

quasimesenchymal grouping represented a split between classical and basal-like when 

analyzed by their gene set. The Moffitt subtypes have found significant adoption in subsequent 

studies and represent a more complete view of pancreatic tumors than previous studies with 

consideration of both neoplastic and stromal tumor compartments. 

Subsequently, TCGA analysis by Bailey et al.63 took a broader view of PDAC and examined 

whole pancreatic tumors of all subtypes, including tumors with associated mucinous dysplasias 

(IPMN and MCN) as well as adenosquamous tumors to develop RNA expression subtypes.  

Perhaps not surprisingly, the adenosquamous tumors grouped into a squamous subtype, 

IPMNs and mucinous tumors grouped into a pancreatic progenitor subtype, and exocrine-like 

tumors grouped with an aberrantly differentiated endocrine exocrine (ADEX) subtype, though an 

additional group called immunogenic subtype for its high activity of immune-related genes 

suggested a group of tumors with potential for immune activation.  This study approached 

tumors globally. The immune group suggests an increase in immune cells in the tumor, but it 

also suggests room to increase the activation of those immune cells for treatment of the tumors.  

Subsequent studies have clinically explored activation of CTLA4 and PD1/PDL1 95, with 

unfortunately little positive outcome, to date.  This immune-depleted subtype is still an area of 

active study. 

RNA-expression-based subtyping has presented new insight into the genes and pathways that 

separate tumors with suggestions for potential directions for treatment. It has presented new 

modes of tumor separation that give quantitative methods for classifying degree of neoplastic 

and stromal involvement. RNA-expression-based subtyping presents a valuable approach for 

use in research, although the time to produce results clinically is still too slow for early treatment 

decisions. 

1.11 miRNA Subtypes 

miRNA is an RNA type expressed by tumors and in use as a diagnostic or prognostic modality 

in clinical use.  Several groups have published miRNAs associated with pancreatic cancer, but 
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the only miRNA-based assay with high performance in a large cohort is the panel published by 

Cote et al.96  The authors used a panel of miRNAs (miR-10b, -155, -106b, 30c, and 212) for 

diagnostic discrimination.  They showed the panel had 95% sensitivity and 100% specificity.  

They used chronic pancreatitis (+/- bile duct involvement), healthy controls, and PDAC samples.  

Cote et al. showed the value of using miRNAs for diagnosis, but they did not perform a blinded 

validation, and only showed a limited set of controls.  Further validation may still prove this 

miRNA panel as a valuable diagnostic assay.  

Cote et al also linked biological relationships for miR-10b (PDAC and CAF cells) and miR-155 

(CD45+ T cells), though not in matched tumors expressing these miRNAs.  They also noted that 

miR-21 has biological activity in the same cells as miR-10b, but that miR-21 did not perform well 

as a plasma biomarker for diagnosis of pancreatic cancer despite previous work showing miR-

21 association with poor prognosis in pancreatic cancer 97.  They also were not able to perform 

a direct comparison to CA19-9 in matched samples.  Subsequently, they published a larger set 

of miRNAs with prognostic value in a prospective cohort [ref Int J Cancer], but these new 

findings are yet to be validated.   

In other unvalidated studies groups of miRNAs have been shown to separate into subgroups 

with differential survival.  One study used 19 miRNAs to separate pancreatic cancers into three 

subgroups with differential survival [ref namkung j gastroent hepat 2016].  In this study, two 

significant signaling pathways, p53 and COX2, were impacted by a subset of miRNAs.  Another 

study showed a panel of 13 miRNAs with differences in survival outcomes based on a score 

developed by relative expression of the 13 miRNAs [oncotarget 2016 zhou et al]. Across all 

three panels, only miR-106b was included in multiple panels.  Although there may be significant 

value to miRNA subtyping of pancreatic tumors, there is still significant need for further 

validation of miRNA targets and potential diagnostic and prognostic subtypes.  
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1.12 Integrated Genomic Characterization Subtypes 

One potential method to increase the power of molecular characterization for subtype 

development is to integrate multiple molecular characterization modalities. The TCGA group 

followed up their analyses of DNA and RNA by synthesizing the results of genomics studies and 

made a strong point of the role of stroma in the variation of subgroups.76  The authors cited the 

2012 Wood and Hruban 77 study for determining “5-20% of neoplastic cellularity” of primary 

pancreatic tumors, while genomic studies, such as Waddell et al., selected only tumors over 

40% cellularity for analysis.  The implication is that true subgroups may be underrecognized by 

the biased population of analyzed tumors.  This may also contribute to the stronger alignment of 

subsequent studies with subtypes using broader sampling and true or virtual microdissection 

(Moffitt, Bailey).  After reclassifying neoplastic cellularity as “purity,” the authors assessed the 

various described subtypes by purity in a group of 150 tumors consisting of 76 high purity and 

74 low purity tumors.  They showed that Moffitt subtypes segregated equally between basal and 

classical types by purity.  Collison subtypes showed higher purity in classical, but exocrine and 

quasimesenchymal showed low purity.  Bailey types showed higher purity tumors segregated 

into squamous and progenitor types, while ADEX and immunogenic were both low purity 

subtypes.  This study then attempted to integrate miRNA analysis based on previous studies, 

but clustering was a little weak.  The subgroups identified only showed a significant separation 

between the three clustered groups with miR21, which has previously been shown to be 

associated with prognosis.  Cluster group 2 also showed a higher mutation rate in previously 

identified driver mutations.  Further, cross-platform analysis with Similarity Network Fusion 

(cluster of clusters analysis), showed miR 192 and miR 194 as integrally associated with 

classical vs basal tumor status. 

Whole genome sequencing required for genomic and transcriptomic subtyping is slow clinically.  

This presents a current weakness in using genomic data for subtyping and clinical decision-
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making as data is not usually available until the second- or third-line treatment decision in 

pancreatic cancer.   

1.13 Protein Subtypes 

Molecular subtyping of pancreatic cancers has been a goal of pancreatic cancer researchers for 

at least two decades. In the 2000s, Hruban and Adsay defined molecular characteristics for a 

set of subtypes of pancreatic cancer based largely on protein expression. 36  Precursor lesions 

and malignant cancers often contain the same pancreatic cancer driver mutations.  Iacobuzio 

Donahue et al cancer evolution studies showed that cells expressing favorable mutations for the 

environmental constraints are selected and enriched as precursors lead to cancer and cancer 

becomes more advanced and aggressive 8,61.  Various protein immunolabeling biomarkers show 

significant associations with pancreatic cancer subtypes.  E-cadherin indicates moderate- to 

well-differentiated cancers, while loss of E-cadherin indicates poor differentiation.  Similar to E-

cadherin, loss of β-catenin also indicates loss of cell-cell adhesion and progression to poorer 

differentiation.  Both are associated with poorer prognosis.  A series of markers (CD10, α-1 

antitrypsin, vimentin, neuron-specific enolase, and progesterone receptor) are associated with 

“foam cells, clear cells, cholesterol clefts, and eosinophilic hyaline globules” 36 in solid-

pseudopapillary neoplasms, which carry better prognosis than other malignant neoplasms.  

More, these tumors have a unique loss of cohesion that associates with loss of both E-cadherin 

and a shift in β-catenin from the membrane to the cytoplasm and nucleus, which further 

associates with increases in c-myc and cyclin D1.  By protein immunolabeling, the biology and 

progression of pancreatic tumors have become better understood. 

These studies explored the use of one to two modalities to define subtypes of pancreatic cancer 

with biological and clinical relevance.  A future goal for studies should be to combine significant 

biomarkers of each modality in an integrated analysis, much as the recent integrated genomic 

analysis from the TCGA consortium did with genetic data. 
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1.14 Glycan Subtypes of Pancreatic Cancer 

Although there has been significant recent expansion in attempts to develop genetic biomarkers 

for pancreatic cancer, the only widely-adopted and approved biomarker for pancreatic cancer is 

a glycan.  Glycans are present on the surface of many cell types and many secreted proteins. In 

normal pancreatic tissues, glycans are expressed on the glycocalyx of pancreatic ducts. 

Pancreatic ducts in normal pancreas transport digestive enzymes from the producing acini to 

the common bile duct for secretion to the intestines. The glycocalyx provides a physical barrier 

for tissue to prevent damage from digestive enzymes. When dysplasia develops in the 

pancreas, it is frequently in pancreatic ducts where mucin proteins are widely expressed with 

glycan motifs. Although several mucin proteins have been characterized as biomarkers, none 

have been shown to be as frequently or consistently expressed in pancreatic tumors as the 

most frequent glycan motifs. Most glycans have not been well-characterized for functional 

significance, but several glycans have been shown to have biological function in non-cancer 

systems. Due to their frequent expression in pancreatic cancers, glycan biomarkers have strong 

potential for use in detection and subtyping of pancreatic tumors and cancer cells, and some 

may have potential biological functions that could be exploited in the study and treatment of 

pancreatic tumors.  

Glycan biomarkers present additional opportunities for pancreatic subpopulation identification 

and subtype, but functional characterizations and outcomes of specific glycan-expressing 

subpopulations are lacking in the understanding of pancreatic cancer.  The only currently 

approved biomarker for pancreatic cancer is the CA19-9 antigen, which is the sialyl Lewis A 

(sLeA) glycan (Figure 2).  sLeA is closely related to the blood group antigens including A, B, and 

H 98 and belongs to a family of glycans called the Lewis glycans.  Of clinical and biological 

relevance, it is also closely related to the E selectin-binding epitope sialyl Lewis X (sLeX), the 

neutrophil antigen Lewis X (LeX, CD15) and the human embryonal stem cell biomarkers TRA 1-
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60 and TRA 1-81 98.  Although expression of these glycans has been characterized in normal 

tissues, their presence and functional roles in tumors is poorly characterized. 

Though they have shown promise for limited application for diagnosis and help inform the larger 

clinical picture of PDAC tumors, current glycan biomarkers of pancreatic cancer have several 

limitations for clinical use.  As the only approved biomarker, CA19-9 is not very predictive of 

disease progression with a drop of 20-50% in blood serum resulting in improved prognosis 99.   

CA19-9 alone also results in both too many false positives and false negatives for diagnosis or 

screening due to prevalence in chronic benign conditions and lack of expression in many 

individuals. 

The absence of CA19-9 in some patients has two primary causes: 1. The lack of the enzyme to 

add the final monosaccharide to produce it, and 2. competition for its precursor by upregulation 

of another glycan in the synthesis pathway. CA19-9 is expressed in 80-90% of PDAC patients 

100. Of the 10-20% of patients lacking CA19-9, 7-10% lack the fucosyltransferase 3 (FUT3) 

enzyme required for most sLeA production 101-103, represented in Figure 1.2A. Another 19.7-

22.5% of patients have secretor status where fucosyltransferase 2 (FUT2) consumes the 

precursor to sLeA 101,103, significantly reducing sLeA expression. Although not as well 

characterized, sLeX and the sialylated variant of TRA 1-60 (sTRA) have also been shown to be 

elevated in blood serum of PDAC patients, both with and without sLeA 104. sLeX and sTRA 

represent an alternate precursor and incomplete synthesis of sLeA, respectively.  They may 

also account for some of the patients lacking CA19-9. 

With the primary group of patients lacking CA19-9 coming from patients lacking FUT3, detection 

of sTRA is a prime candidate to reduce false negatives in the detection of PDAC.  sLeA is a 

terminal tetrasaccharide Type I LacNAc consisting of Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAc 

(Figure 1.2B) that is displayed at the terminal ends of glycan chains on proteins and potentially 

glycolipids 105.  sTRA is detected indirectly by applying a sialidase treatment to a sample and 

detecting with the TRA 1-60 antibody 104.  The TRA 1-60 antigen was initially described as a 
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terminal structure of keratin sulfate (KS) on podocalyxin in human teratocarcinomas 106,107.  

Glycan array data has since shown TRA 1-60 binds very specifically to a terminal 

tetrasaccharide with a Type 1 and Type 2 LacNAc with high specificity for the N-Acetyl group on 

the glycan root glucose and no terminal sialic acid 108.  This presents a structure of Galβ1-

3GlcNAcβ1-3Galβ1-4GlcNAc and an sTRA implied structure of Neu5Acα2-3Galβ1-3GlcNAcβ1-

3Galβ1-4GlcNAc with terminal structural similarity to sLeA without fucose (Figure 1.2B).  Due to 

the terminal end structure of sTRA containing the sLeA antigen without the fucose added by 

FUT3, it represents a prime candidate for a biomarker to reduce false negatives of CA19-9.    

Although CA19-9 has long been characterized to detect sLeA, it likely also binds fucosylated 

sTRA containing sLeA, which further suggests a potential valuable role for sTRA in PDAC.  The 

Consortium for Functional Glycomics glycan array data shows that all tested CA19-9 antibody 

clones bind a fucosylated glycan variant of sTRA Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAcβ1-

3Galβ1-4(Fucα1-3)GlcNAc 109-111 (Figure 1.2B) with similar to higher affinity than terminal sLeA 

alone.  This structure contains the sTRA glycan with two fucose modifications, α1-4 on the Type 

1 LacNAc and α1-3 on the Type 2 LacNac. Only one antibody shows very low binding to the 

sTRA glycan itself.  This suggests that the primary CA19-9 ligand in tissue could be the 

fucosylated sTRA glycan rather than the shorter sLeA terminal tetrasaccharide.  Also of note, all 

of the antibodies bind the fucosylated, sialylated Type I-Type I polylactosamine (Neu5Acα2-

3Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-3(Fucα1-3)GlcNAc) with equally high affinity as the sTRA 

variant.  CA19-9 antibody binding to these glycans suggests both sTRA and sialyl 

polylactosamine (Type 1) may be informative for pancreatic cancer diagnosis, particularly in 

Lewis-negative patients lacking FUT3 or secretors with high FUT2.   

Over the next three chapters, I will examine the importance of cancer cell subpopulations and 

the use of glycan biomarkers to identify them.  I hypothesize that the expression of sTRA and 

CA19-9 glycans represent two separate subpopulations of pancreatic cancer cells and these 

subpopulations have different phenotypes for aggressiveness of pancreatic cancer.   
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To examine this hypothesis, I tested pancreatic ductal adenocarcinoma (PDAC) tumors and 

matched adjacent uninvolved tissues to quantify differences in CA19-9 and sTRA expression by 

quantitative immunofluorescence.  After demonstrating significant differences between tumor 

and normal for CA19-9 and sTRA, I examined the spatial distributions of both markers in 

neoplastic pancreatic cells.  I determined sTRA and CA19-9 had significant differences in spatial 

and morphological distribution both individually and together as dual expression, implying the 

existence of three cell subpopulations. In these populations, I compared the tissue expression of 

the glycans to matched serum values and examined secretion to determine the value and 

constraints of these glycans as biomarkers.   CA19-9 and sTRA were then tested as 

independent and combined biomarkers for pancreatic cancer detection.  As validated 

biomarkers with distinct morphological characteristics, the markers were tested in additional 

tissues to validate preliminary findings and then in matched tumors and metastases to 

determine whether there were differences in trafficking and establishment of metastasis.  Tissue 

glycan expression was then tested for prognostic value with progression-free survival in one 

sample set and overall survival in a second sample set.  Together these measures asked 

whether sTRA and CA19-9 represent independent subpopulations of neoplastic cells and 

whether those subpopulations express different phenotypes affecting pancreatic cancer 

progression and outcome. 
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2.1 Abstract 
 

Molecular markers to detect subtypes of cancer cells could facilitate more effective treatment. 

We recently identified a carbohydrate antigen, named sTRA, that is as accurate a serological 

biomarker of pancreatic cancer as the cancer antigen CA19-9. We hypothesized that the cancer 

cells producing sTRA are a different subpopulation than those producing CA19-9. The sTRA 

glycan was significantly elevated in tumor tissue relative to adjacent pancreatic tissue in 3 

separate tissue microarrays covering 38 patients. The morphologies of the cancer cells varied in 

association with glycan expression. Cells with dual staining of both markers tended to be in well-

to-moderately differentiated glands with nuclear polarization, but exclusive sTRA staining was 

present in small clusters of cells with poor differentiation and large vacuoles, or in small and ill-

defined glands. Patients with higher dual-staining of CA19-9 and sTRA had statistically longer 

time-to-progression after surgery. Patients with short time-to-progression (<2 years) had either 

low levels of the dual-stained cells or high levels of single-stained cells, and such patterns 

differentiated short from long time-to-progression with 90% (27/30) sensitivity and 80% (12/15) 

specificity. The sTRA and CA19-9 glycans define separate subpopulations of cancer cells and 

could together have value for classifying subtypes of pancreatic adenocarcinoma.  
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2.2 Introduction 
 
Pancreatic cancers display significant diversity in their rates of growth and dissemination and in 

their responses to drugs, leading to uncertainty in determining the best treatment for each 

patient. Methods to subclassify pancreatic cancers to predict behavior clearly would be valuable 

both for patient care and drug research. At the histomorphological level, several variants of 

pancreatic ductal adenocarcinoma (PDAC) have clinical implications36. For example, medullary 

adenocarcinomas usually are microsatellite-instable and have better prognoses112; 

adenosquamous cancers may respond better to platinum-based agents113; colloid cancers 

typically are less aggressive114; undifferentiated carcinomas frequently have amplifications of 

mutant KRAS and are more aggressive115, and undifferentiated with osteoclast-like giant cells 

may have better prognoses than conventional PDAC116. These variants, however, are the 

minority; most are conventional PDAC. Further subtypes of PDAC may require molecular 

biomarkers for identification, as they would be largely indistinguishable by morphology.  

Stratification by particular DNA mutations may provide additional guidance in treatment. 

Mutations in DNA repair genes, such as BRCA2 or PALB2, are often sensitive to poly(ADP-

ribose) polymerase (PARP) inhibitors and cisplatin117,118, and mutations in the mismatch repair 

genes confer increased susceptibility to immune checkpoint inhibitors119. Subtyping by genome-

wide signatures also has shown promise for subtyping tumors. Recent studies identified 

recurrent classes that were distinguished by genes relating to development, differentiation, and 

immune infiltration63,94,120,121, and a squamous class showed shorter survival121. Nevertheless, 

further research is needed to link practical biomarkers with cancer behavior.  

One of the difficulties associated with the molecular profiling of pancreatic cancers is 

heterogeneity in the tumors. Multiple types of cells may be present at variable levels, all amidst 

hugely varying backgrounds of extracellular matrix. With methods that use homogenized tissue, 

one cannot determine which cells produce each marker, or whether certain cells co-express 
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various markers. A bioinformatics method could sort out the information indirectly94, but with 

limited precision. An additional challenge stems from the possibility that more than one 

subpopulation of cancer cell could coexist in a tumor. In support of this concept, studies 

involving isolations of tumor cells with particular stem-cell antigens suggest a minority subtype 

with heightened tumor-forming capability122,123, and analyses of tumor cells in the blood suggest 

a subpopulation that is able to disseminate prior to clinical manifestations of a primary 

tumor124,125. As indirect evidence, the fact that chemotherapy often reduces tumor volume 

without eliminating the cancer suggests a subpopulation of cancer cells that is more resistant to 

treatment than the rest.  

To distinguish between individual cells in their expression of one or more markers, a cell-by-cell 

analysis is required. In the present research we took such an approach using multimarker 

immunofluorescence (IF)126. The method involves probing a single section of formalin-fixed, 

paraffin-embedded (FFPE) tissue with multiple rounds of multispectral immunofluorescence, 

each round involving two or more unique antibodies. Multimarker IF gives direct observation of 

the locations and morphologies of the cells producing each marker, and it is compatible with 

FFPE tissue, which is easier to obtain than frozen tissue.  

We were particularly interested in glycan expression. In previous research we identified a glycan 

that is a strong serological biomarker of pancreatic cancer127. It performed as well as the current 

best serological biomarker for pancreatic cancer, CA19-9, which also detects a glycan, and it 

was elevated in about half of the patients with low CA19-9, indicating independent regulation. 

These facts led us to speculate that the glycan, which we call sTRA, is produced by a different 

subpopulation of cancer cells than produce the CA19-9 antigen. To test that hypothesis, we 

sought to immunologically detect sTRA and CA19-9 in tumor tissue and test for differences in 

location, morphology, and molecular expression of the cancer cells that produce each glycan. 
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Furthermore, we asked whether particular glycan levels show an association with the rate of 

progression of pancreatic cancer.  
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2.3 Results 

2.3.1 The sTRA glycan is elevated in PDAC independently from CA19-9 

The CA19-9 antigen is a tetrasaccharide (Fig. 2.1A) that can be detected with high specificity 

using monoclonal antibodies (mAbs). The TRA-1-60 and TRA-1-81 mAbs128 detect a 

tetrasaccharide that, unlike the CA19-9 antigen, is neither fucosylated nor sialylated108. To 

indirectly detect the sialylated version of the TRA antigen (referred to as sTRA), we incubate the 

labeled TRA mAb to detect and mask the non-sialylated antigens, treat with sialidase, and again 

incubate the labeled TRA mAb (Fig. 2.1A) to detect the newly-exposed antigens. A view of the 

structures shows the similarity between the CA19-9 and sTRA antigens, as well as their main 

difference of a branched fucose on CA19-9 (Fig. 2.1B).  

The treatment of tumor tissue with sialidase markedly increased staining by the TRA antibody 

(Fig. 2.1C), indicating higher levels of the sialylated antigen relative to the non-sialylated. The 

central question explored here is whether the cancer cells producing sTRA are different in their 

locations and characteristics than the cancer cells producing the CA19-9 antigen (referred to 

simply as CA19-9).  

To probe this question in primary tissue we chose multimarker immunofluorescence, which 

allows for the performance of multiple antibody incubations and staining with hematoxylin and 

eosin (H&E) on a single section from FFPE tissue. We performed three rounds of 

immunofluorescence, in each round detecting blue fluorescence from a DNA stain, green 

fluorescence from a Cy3-labeled antibody against a protein, and red fluorescence from a Cy5-

labeled protein against a glycan (Fig. 2.1D). We applied the TRA and CA19-9 mAbs in the first 

and second rounds, respectively, treated the section with sialidase, and then applied the TRA 

mAb again in the third round.  

We applied the method to six separate TMAs, four made from primary tumors and two made 

from xenograft tumors (Fig. 2.2A). We acquired tiled images across the entire TMA. The field-of-
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view of each image was 500 x 400 m, requiring 6-9 images to cover a core (Fig. 2.2B). Each 

field-of-view comprised a stack of 35 images collected at various wavelengths, from which we 

selected the three images corresponding to the fluorescent dyes used here. We quantified the 

amounts of signal using custom software that employs the SFT signal-finding algorithm129, and 

we then quantified the relationships between the signals from each color. Of particular interest 

was the possibility that the exclusive expression of a particular marker, i.e. the presence of one 

marker in the absence of another, could be a marker of phenotype. We therefore designed 

software to quantify exclusive expression as well as colocalization (Fig. 2.2B).  

We first wanted to know which glycans or glycan combinations are elevated in pancreatic 

tumors relative to adjacent tissue from the pancreas. We examined the signals from CA19-9, 

sTRA, CA19-9 in the absence of sTRA (referred to as CA19-9-only), sTRA in the absence of 

CA19-9 (referred to as sTRA-only), and colocalized expression of both CA19-9 and sTRA 

(referred to as dual-labeling). Both CA19-9 and sTRA were significantly elevated in the tumors, 

as were the exclusive and dual expression of the markers in most cases (Fig. 2.2D). Using 

combined data from TMAs 2, 5, and 6, each of the five markers was significantly elevated (p < 

0.001 based on Wilcoxon signed rank test, with false discovery rate < 0.001 accounting for the 

five markers tested) in the tumors relative to paired adjacent tissue (Table 2A.1). Without 

sialidase pretreatment, detection with the TRA-1-60 mAb did not show significant elevations in 

the tumors (not shown).  

We asked whether the sTRA expression occasionally occurs in locations and tumors that are 

separate from CA19-9, or whether it is simply an overlapping subset of CA19-9 expression. To 

begin, we recorded how often a tumor core had only CA19-9 expression, only sTRA expression, 

both, or neither (Fig. 2.2E). (If the marker was expressed in >1% of the tissue pixels, we 

counted the core as expressing the marker.) We saw the repeatable occurrence of tumors with 

predominant sTRA or CA19-9, with good agreement across the TMAs and among individual 
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sections of the same TMA (Fig. 2.2C). An aberration was the first section of TMA2, which was 

the first section run and had some poor quality images due to lack of optimization. Also, TMA6 

had no cores with only sTRA expression, which we attributed to natural variation between 

tumors because the images showed no obvious defects in data quality. The two TMAs 

containing xenograft tumors were similar to the other TMAs, indicating that the expression of 

each marker persists in culture and in animals. The consistent occurrence of tumors that 

predominantly express sTRA (Fig. 2.2E), as well as the elevation of sTRA-only regions in the 

tumors relative to adjacent tissue (Fig. 2.2D), affirm that sTRA is a marker of pancreatic cancer 

independent of CA19-9. 

2.3.2 The sTRA and CA19-9 glycans identify spatially and morphologically distinct 

subsets of cancer cells 

We next explored whether the cells expressing one or the other marker have divergent locations 

or histomorphologies. The quantification of TMA5 showed that cores were present with various 

levels of each marker (Fig. 2.3A). Some consistent patterns emerged upon examination of the 

tissue. In areas of well-differentiated PDAC, CA19-9 staining generally was more prevalent than 

sTRA (Fig. 2.3B). High CA19-9 in the absence of sTRA also occurred in moderately-to-poorly 

differentiated PDAC (Figs. 2.3C and 2A.1). Cells that primarily or exclusively expressed sTRA 

showed other morphologies. A common feature was vacuolated cells130 (Figs. 2.3B and 2.3D); 

and less common was sparse, moderately-differentiated glands amidst heavy desmoplasia (Fig. 

2.3E). In some cases, the non-invasive ductal epithelium stained mostly with CA19-9 while the 

invasive cells were strongly positive for sTRA (Fig. 2.3B). Certain tumors showed a 

subpopulation of sTRA-expressing cells with large cytoplasm (Fig. 2.3F) adjacent to moderately-

differentiated glands expressing CA19-9 (Fig. 2.3F). We found that the well-differentiated 

epithelium with foamy cytoplasm131 always expressed both sTRA and CA19-9 (Fig. 2.3G and 

2A.1).  
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The two markers, therefore, are present in non-identical subsets of cancer cells. The cancer 

cells variously express either one, both, or neither of the markers, and the morphologies of the 

cells group into a few categories in association with the exclusive or dual expression of CA19-9 

and sTRA.  

We asked if the above observations hold true in model systems. The results from a TMA 

containing cell-line xenografts and a TMA containing patient-derived xenografts were similar to 

the results from the primary tumors. Among the 10 cell lines on TMA68, some expressed both 

markers, others only one marker, and others neither (Fig. 2.4A). The 14 PDX models on TMA69 

showed divergent expression of the two markers; eight primarily expressed CA19-9, and six 

primarily sTRA (Fig. 2.4B). The tumors from the cell-line xenografts generally showed less 

stroma and ductal epithelium than primary tumors, whereas the PDX models had better 

recapitulation of the primary tumors. The tumors expressing primarily CA19-9 or sTRA were 

largely similar to each other in histomorphology (Figs. 2.4C, 2.4D, 2A.2 and 2A.3), although one 

of the cell lines with exclusive sTRA expression, Panc05.04, showed a lipid-rich phenotype (Fig. 

2.4C). We observed this phenotype also in primary tissue with heavy sTRA staining (Fig. 2A.1). 

These analyses show that the CA19-9 and sTRA expression phenotypes persist in cultured 

cancer cells and are not just unique to the primary tumors.  

2.3.3 Protein expression differs based on glycan type and differentiation 

We next asked if the expression of key markers of phenotype are different between the groups 

identified above. We stained for various protein markers in a separate color from the glycans 

(Fig. 2.1D), acquiring measurements of three proteins in each of two sections from TMAs 2 and 

5. In one section we stained for E-cadherin, vimentin, and cytokeratin 19 (CK19). We found that 

nearly all cells expressing either CA19-9 or sTRA also expressed CK19 and E-cadherin, 

regardless of morphology (Fig. 2A.4), and that none expressed vimentin (not shown), indicating 

a consistent epithelial phenotype.  
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We saw more diversity between cells in MUC5AC, a marker of neoplastic and mucin-producing 

glands, and -catenin, a marker of regeneration or adhesion (Fig. 2.5). We probed for these 

proteins along with PDX-1 in another section. The well-differentiated PDACs expressing both 

sTRA and CA19-9 showed membranous expression of -catenin, but the poorly-differentiated 

cells generally showed weaker membranous staining, consistent with a loss of epithelial 

adhesion. The dual-labeled epithelium with clear cytoplasm always expressed MUC5AC, as did 

well-differentiated neoplastic glands with luminal secretions, but the poorly-differentiated 

neoplastic cells never expressed MUC5AC. A tumor with exclusive expression of CA19-9 in 

moderately-differentiated PDAC with no surrounding stroma expressed neither -catenin nor 

MUC5AC, but a moderately-differentiated PDAC secreting primarily sTRA expressed both. 

These analyses provide evidence that the dual-labeled cells often represent cohesive and 

secretory epithelia, and that the single-labeled cells are more frequently dyshesive and non-

secreting, although additional phenotypes occur.  

2.3.4 The expression patterns of sTRA and CA19-9 predict time-to-progression 

We next explored whether certain patterns of glycan expression are associated with the rate of 

disease progression. For one of the TMAs, Pan CA4, we had information for 45 of the 61 

patients about the time from surgery to progression of the disease. We constructed Kaplan-

Meier curves of time-to-progression (TTP) grouped by low (< median) and high (>= median) 

expression of each of the five markers (Fig. 2.6A). The amount of staining of neither the 

individual CA19-9 or sTRA markers nor their exclusive expression markers were related to TTP, 

but the amount of dual expression was related to TTP (p = 0.008 based on log-rank test). The 

expression of this glycan type was significantly different (p = 0.01 based on Wilcoxon rank-sum 

test) between patients with long TTP (>2 years) and those with short TTP (<2 years) (Fig. 2.6B).  

We used the Marker State Space (MSS) method132 to test if any patterns of glycan expression 

distinguish tumors with long TTP from those with short TTP. The method revealed that below a 
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certain threshold in dual-marker expression, most patients (20/23) had short TTP (Fig. 2.6B). 

Among the patients above the threshold in dual-marker expression, high levels of both CA19-9-

only and sTRA-only were present only in patients with short TTP (Fig. 2.6B).  

A three-marker panel consisting of CA19-9-only, sTRA-only, and dual-labeled formed a 

candidate biomarker for predicting TTP. By classifying patients with high expression of all three 

markers or with low expression of the dual marker as short TTP, we observed 90% sensitivity 

(27 correct out of 30) and 80% specificity (12 correct out of 15) for predicting short TTP (Fig. 

2.6C). When we ran 10-fold cross validation five separate times, the average accuracy of panels 

from the training sets applied to set-aside samples was 78% (Table 2.1), which is less than the 

87% accuracy (39/45 correct) found for the true grouping, as expected, but robust. Random 

groupings of the 45 samples as cases and controls resulted in no marker panels (except for one 

occurrence out of 50) that met the minimum performance of 80% sensitivity and 80% specificity 

in the training sets (Table 2.1). These results—the good performance in the true grouping and 

the poor performance in the random groupings—support the interpretation that the marker panel 

is detecting a true difference between short and long TTP. 

An examination of the staining patterns and histomorphology also suggested differences 

between the groups (Figs. 2.6D and 2A.5). The short TTP tumors were of two types: high in all 

three markers, or low in the dual marker (Fig. 2.6C). The short-TTP tumors that are high in all 

three markers frequently showed clusters of poorly-differentiated cells expressing either sTRA 

or CA19-9 and a lack of differentiated glands (Fig. 2.6D, top row), and in other cases, abundant 

vacuolated cells or densely-populated, well-differentiated glands (Fig. 2A.5). The short-TTP 

tumors that are low in the dual marker did not have differentiated glands but rather scattered 

cells expressing one or the other glycan (Fig. 2.6D, middle row). The long-TTP tumors with 

expression of the dual marker generally showed well-differentiated PDACs with polarized nuclei 

and sometimes with vacuole-type cytoplasm (Fig. 2.6D, bottom row). The three short-TTP 
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tumors that were misclassified did not have well-differentiated glands, nor did the misclassified 

long-TTP tumors (Fig. 2A.6); additional modifications to the biomarker panel may be required for 

such tumors.  

We asked whether the glycan levels associated with location and type of recurrence (distant or 

local) or presence of SMAD4 staining (the absence of which is a surrogate for SMAD4 genetic 

deletion). We did not see significant associations among the 12 patients for which we had the 

information, but we saw suggestive trends, such as higher dual-marker expression in patients 

with local recurrence, and higher CA19-9-only staining in lesions that are negative for SMAD4 

(Table 2A.2). 

The protein expression in the cancer cells was similar to the protein expression presented 

above, but with higher -catenin (not shown). Differences in protein levels and morphologies 

may have been induced by the prior treatment with chemotherapy of the tumors in TMA Pan 

CA4. In aggregate, these analyses provide preliminary indications that the quantification of the 

exclusive and dual expression of sTRA and CA19-9 could be useful for classifying tumors and 

for predicting the risk of disease progression.  

2.4 Discussion 

Here we show that subpopulations of cancer cells in pancreatic adenocarcinomas are 

distinguishable by whether they express sTRA, CA19-9, or both. Tumors variously displayed 

one or more of the subpopulations, sometimes more than one in the same tumor. Each 

subpopulation had its own characteristics of morphology. Cells expressing both markers 

typically were part of well-differentiated and mucin-secreting PDACs, whereas those expressing 

just one were often poorly differentiated and vacuolated and never mucin secreting. Evidence 

that the glycan-defined subpopulations have predictive value comes from the associations with 

TTP. We found indications that tumors with short TTP come in at least two varieties: one with an 

absence of dual-labeled cells, and another with high levels of both the CA19-9-only cells and 
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the sTRA-only cells. Nearly all patients with long TTP had high levels of the dual-labeled cells 

without high levels of the single-labeled cells. The findings suggest that the dual-labeled glands 

indicate a functioning and recovering pancreas, while the dispersed, single-labeled cells mark 

uncontrolled growth and dispersion. The predictive value of the biomarkers must be validated in 

follow-up research; at this point, the current research confirms that the sTRA and CA19-9 

glycans in combination identify separate subpopulations of cancer cells. In the second place, 

the research provides an initial look at differences between the subpopulations.  

An enabling component of the present work was the automated and quantitative analysis of 

multimarker fluorescence data. The huge number of images generated in this study would have 

been impossible to analyze manually, and the analysis would have been only semi-quantitative. 

The method used here allowed quantification of image data from multiple markers and multiple 

TMAs and ultimately identification of staining patterns that showed associations with outcome. 

Another important component was the quantification of exclusive and the dual expression of the 

markers, which provided better classifications than individual measurements. We foresee such 

a system having usefulness for research and eventually for clinical applications. In clinical 

applications, automated image analysis could help to remove inter-operator variability or to pick 

out rare or subtle features. For example, in OGCs, where the malignant type can be a 

histiocyte-like sarcomatoid carcinoma cell116, automated image analysis could find signals from 

a stain for such cells amidst an overwhelming background of non-malignant cells.  

Most of the previous studies aimed at categorizing pancreatic tumors concentrated on protein or 

genomics markers. An integrated analysis of mutational status, expression profiles, and 

histopathology found four subtypes of tumors, defined respectively as low exocrine and high 

squamous differentiation; increased pancreas-specific progenitor programs; high exocrine 

and/or endocrine features; or increased expression of immune-specific genes63. Other research 

emphasized the epithelial-mesenchymal transition (EMT) as a means of identifying invasive 
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cells (see reviews133,134). The biomarkers of EMT were not highly specific to cancer cells, but 

immunostaining for SMAD4—a key node in signal transduction relating to EMT and other 

functions—may be useful for predicting distant metastasis61. Further research focused on 

developmental pathways, stem-cell antigens, markers of acinar-ductal metaplasia, among 

others135-137.  

Linking the glycan types found here to the biological programs and genomics classes mentioned 

above could be important for further defining and understanding the subpopulations. We could 

not directly link our data to the genomics classes, but some inferences are possible. For 

example, the squamous subtype found earlier had low pancreatic differentiation and worse 

prognosis, suggesting a connection to the single-labeled sTRA and CA19-9 cells in the present 

study, which were often in nests of undifferentiated cells with no glandular differentiation and 

were associated with short TTP. Secondly, the previously-defined progenitor subtype had high 

pancreatic differentiation and mucin expression, suggesting a link with the dual-labeled, mucin-

secreting cells found here. Such comparisons could facilitate studies of the biology of tumors, 

but for practical application, distilling the information down to a small number of immunostains 

may have significant value. The use of a small number of markers limits the possible number of 

subgroups; cellular stains provide a direct look at minority cancer cells within complex 

backgrounds; and cell-surface markers open the opportunity for immunological targeting.  

Studies of glycans in subpopulations of cancer cells are less common than studies of proteins 

and nucleic acids, but they have strong foundations. Several glycans are widely used as 

markers of cell type, including the CD15 antigen for neutrophils138, the TRA-1-60 and TRA-1-81 

antigens for induced pluripotent stem cells139, the ABO antigens for red blood cells, and the 

target of the Lycopersicon esculentum lectin for endothelial cells140. Considering that specific 

glycans frequently have roles in regulating cellular interactions, it follows that the glycans would 

be remodeled when cells change states. Pancreatic cancer cells exhibit such behavior. Glycans 



 

43 
 

altered in pancreatic cancer include CA19-9141, members of the Lewis blood group family142, and 

ABO blood group antigens142. Except for CA19-9, such glycans were not highly specific to 

cancer cells. In contrast, sTRA appears to be highly specific to cancer cells, at least in the 

context of pancreatic tumors. A similar glycan that is present on a glycolipid called 

sialosyllactotetraosylceramide, or LSTa, has been observed in small-cell lung carcinoma143 and 

glioma144, and its non-sialylated version is a marker of embryonic stem cells and induced 

pluripotent stem cells139. Consistent with expression on newly-differentiating cells, the sTRA 

antigen is potentially the precursor of the CA19-9 antigen145. These factors suggest that a stem-

like population expresses the non-sialylated TRA antigen, and that as cells transform into 

PDACs, they modify the TRA antigen with sialylation and/or fucosylation. The glycans do not 

have fully characterized functions, but alterations by fucosylation or sialylation can modulate 

binding with selectins146 and galectins147, which in turn could alter signal transduction, cell 

differentiation, and cell migration. The functions may depend on the protein or lipid carriers of 

the glycans, which have not been characterized for sTRA.  

 A model arising from this work is that particular glycan and protein combinations define unique 

differentiation states of cancer cells, making it possible to differentiate tumors based on their 

content of each type of cancer cell. Such markers could be readily applied to cytologic smears 

from FNA, which can be difficult to interpret by morphology. An area for potential application 

would be to help determine which patients should have surgery and which should immediately 

begin drug treatment. If further research shows that distinct subpopulations have differential 

responses to available therapies, another application is to select therapeutic regimens. 

Considering the increasing range of drugs available for PDAC, the opportunities are expanding 

for matching subtypes to their optimal drugs.  
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2.5 Materials and Methods 

2.5.1 Tissue samples and tissue microarrays 

The study was conducted under protocols approved by the Institutional Review Boards at the 

Van Andel Research Institute, the University of Pittsburgh Medical Center, and the Medical 

University of South Carolina. All subjects provided written, informed consent, and all methods 

were performed in accordance with the relevant guidelines and regulations. The tissue samples 

were collected from extra portions of surgical resections for pancreatic cancer. At each site, 

tissue microarrays were generated from 1 mm cores of formalin-fixed, paraffin-embedded 

(FFPE) tissue.  

2.5.2 Multimarker immunofluorescence and chemical staining 

We performed immunofluorescence and chemical stains on 5 m thick sections cut from 

formalin-fixed, paraffin-embedded blocks. We removed paraffin, performed antigen retrieval by 

incubating the slides in citrate buffer at 100°C for 20 minutes, and blocked the slides in 1X 

phosphate-buffered saline containing 0.05% Tween-20 (PBST0.05) and 3% bovine serum 

albumin (BSA) for 1 hour at RT. We labeled two primary antibodies respectively with Sulfo-

Cyanine5 NHS ester (13320, Lumiprobe) and Sulfo-Cyanine3 NHS ester (11320, Lumiprobe) 

according to the supplier protocol. Each round of immunofluorescence used two different 

antibodies, one against a glycan and one against a protein (see Table S3 for details about the 

antibodies). After dialysis to remove unreacted dye, we prepared a solution containing both 

antibodies at 10 g/mL in PBST0.05 with 3% BSA. We incubated the antibody solution on a 

tissue section overnight at 4 C in a humidified chamber. 

The next day, we decanted the antibody solution and washed the slide twice for 3 minutes each 

in PBST0.05% and once for 3 minutes in 1X PBS. We dried the slide by blotting and incubated 

Hoechst 33258 (1:1000 dilution in 1X PBS) for 10 minutes at RT to stain nuclei. Following two 

five-minute washes in 1X PBS, we added a coverslip and scanned the slide using a scanning-
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fluorescence microscope (Vectra, PerkinElmer). The microscope collected 35 images at each 

field-of-view, each image at a different emission wavelength.  

We stored the slides in a humidified chamber between rounds of immunofluorescence. Prior to 

the next round, we removed the coverslip by immersing the slide in deionized water at 37 C for 

30-60 minutes, or until the coverslip came off, and quenched the fluorescence using 6% H2O2 in 

250 mM sodium bicarbonate (pH 9.5-10) twice for 20 min. each at RT. The subsequent 

incubations and scanning steps were as described above.  

To treat the slide with sialidase, we incubated a 1:200 dilution (from a 50,000 U/mL stock) of the 

enzyme (α2-3,6,8 Neuraminidase, P0720L, New England Biolabs) in 1X enzyme buffer (5 mM 

CaCl2, 50 mM pH 5.5 sodium acetate) overnight at 37 °C. We washed the slides as above prior 

to the following antibody incubations. The hematoxylin and eosin (H&E) staining followed a 

standard protocol.  

2.5.3 Image and data processing 

We used in-house software called SignalFinder to locate pixels containing signal in each image. 

The program uses our recently-published SFT algorithm129 without user intervention or 

adjustment of settings. From the 35 images captured for each region, we selected the three that 

corresponded to the emission maxima of Hoechst 33258, Cy3, and Cy5. For each image, 

SignalFinder creates a map of the locations of pixels containing signal and computes the 

percentage of tissue-containing pixels that have signal. To arrive at a final number for each 

core, we averaged over all images for a core. To quantify exclusive or colocalized signals 

between markers, we used in-house software called ColocFinder. The program allows the user 

to build up expressions of AND, OR, and NOT between scans, and then quantifies the 

percentage of pixels that fulfill the expression. The AND operator requires signal pixels to be 

present in both scans, the OR operator requires pixels to be present in either scan, and the 

NOT operator requires pixels to be present in the first but not the second scan.  
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We further analyzed and prepared the data using Microsoft Office Excel and GraphPad Pro, and 

we prepared the figures using Canvas 14 and Canvas Draw (ACD Systems). The SignalFinder 

and ColocFinder programs are available upon request.  

2.5.4 Statistical analysis 

We used Wilcoxon signed rank test to compare the distribution of a biomarker score between 

paired samples (e.g. tumor tissue versus adjacent tissue). In the presence of multiple 

biomarkers (CA19-9, CA19-9-only, sTRA, sTRA-only, Dual), false discovery rate was computed 

using the Benjamini & Hochberg method. We used Wilcoxon rank sum test to compare the 

distribution of a biomarker score between two independent groups (i.e. patients with short TTP 

and patients with long TTP). Kaplan-Meier curves were plotted to characterize the distribution of 

time-to-progression. Log-rank test was conducted to compare TTP distributions between two 

groups (i.e. patients with low and high marker values).  

2.5.5 Biomarker panel selection using MSS 

We selected marker panels using the Marker State Space (MSS) method132. The program 

searches for marker “states,” or patterns of high and low marker values, that are predominant 

either in cases or controls and that form accurate classification rules. MSS limits the initial size 

of panels to 3 markers, with the option of adding markers iteratively. The MSS software is 

available upon request. 

The MSS software has the option of 10-fold cross validation. The program randomly divides all 

samples into 10 groups, sets aside one group as a test set, and runs the marker search process 

on the remaining samples. It scans through all threshold combinations to find any panels that 

meet a minimum accuracy (set by the user, here 80% sensitivity and 80% specificity) in the 

training samples. The program then applies each panel to the set-aside samples to classify 

each sample as a case or a control. It compares the true states of the set-aside samples to the 
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classifications made by the panel to determine the accuracy of the classifications. The accuracy 

is given as the percentage of classifications that were correct. If no panels give the minimum 

performance in the training set of a particular split, no panels are applied to the set-aside 

samples, and no accuracies are given. The program repeats the entire process for all 10 splits.  

For further testing, we randomly assigned each of the 45 samples as a case or control. That is, 

instead of using the actual case or control status of each sample as the input to the program, we 

used a random assignment of case or control status for each sample. If the marker selection 

method were simply overfitting classifiers to the data, it would find good classifiers regardless of 

how the samples are grouped. But if real differences exist between the actual groups, the 

performance of the panels should greatly decrease when the grouping is randomized. 

2.5.6 Patient-derived xenograft (PDX) and cell-line xenograft models 

All animal studies were approved by the VARI Institutional Animal Care and Use Committee 

(IACUC), and all experiments were performed in accordance with relevant guidelines and 

regulations. The xenograft studies used 6–8 week old mice from the VARI breeding colony.  

The tissue for the PDX models was obtained from surgical resections for pancreatic cancer 

performed at regional hospitals in Grand Rapids, Michigan, under protocols approved by 

institutional review boards at the respective institutions. Unused portions of the resections 

selected by the attending pathologist were placed in a sterile receptacle and transported 

immediately on ice to the VARI. Upon receipt, the tumor tissue for implantation was placed into 

a sterile dish containing sterile phosphate buffered saline and carefully teased into ≤3 

millimeters (longest axis) tumor fragments. 

The original PDX models were developed in athymic nu/nu mice as reported earlier148. 

Dependent on tumor tissue availability, tumor fragments were implanted in a maximum of five 

mice. Mice for each PDX model were gender matched to the donor patient. Following 
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administration of general anaesthesia (isoflurane), the right flank was cleaned with 70% ethyl 

alcohol, a small incision made, and a subcutaneous pocket created by blunt dissection. The 

tumor fragment was inserted into the pocket and the incision closed using a surgical staple. 

Immediately following surgery, the mouse received a single dose of the analgesic Ketoprofen 

(5 mg/kg body weight). Mice were monitored for health and tumor growth for the duration of the 

study, and body weights were recorded weekly. Tumorgraft volumes (½ x length x depth x 

height) were measured 1x/week when volumes ≤50 mm3 and 3x/week at tumor volume 

>50 mm3. A tumorgraft model that failed to develop within 6 months in the 1st generation mice 

was discontinued and the mice euthanized. When a tumorgraft reached a volume of ≥1500 mm3 

the mouse was euthanized, and the tumorgraft was aseptically harvested. 

For the PDX tumors used for this study, cryopreserved PDX fragments were thawed rapidly, 

rinsed in sterile phosphate buffered saline containing 1% penicillin/streptomycin (Invitrogen), 

and implanted into NSG mice. Following administration of general anesthesia (isoflurane), the 

right flank was cleaned with 70% ethyl alcohol, a small incision made, and a subcutaneous 

pocket created by blunt dissection. The tumor fragment was inserted into the pocket and the 

incision closed using a surgical staple. Immediately following surgery, the mouse received a 

single dose of the analgesic Ketoprofen (5 mg/kg body weight). The monitoring and harvesting 

were as described above. A portion of the tumor was fixed and processed in a standard manner 

for histological analysis and TMA construction.  

To develop cell-line xenograft models, athymic nu/nu mice were injected with 1x106 cells/100 L 

phosphate buffered saline in their right flank using a 1 cc syringe with a 27 g needle. The cell 

lines were obtained from the American Type Culture Collection (Manassas, VA) and grown in 

recommended conditions prior to subcutaneous injection. The rest of the methods were identical 

to those described for the patient-derived xenograft models.  
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3.1 Translational Relevance 

Here we report a new biomarker for pancreatic cancer, called sTRA, that yields better 

performance than CA19-9, the current best biomarker for pancreatic cancer. sTRA is produced 

by pancreatic cancers that do not produce CA19-9. As a result, biomarker panels including 

sTRA gave improved specificity or sensitivity. In a rigorous, double-blinded study, the panels 

performed well enough to potentially warrant clinical use. One panel could be valuable for 

surveillance for incipient pancreatic cancer among people with elevated risk, and another panel 

could be valuable for differential diagnosis relative to benign pancreatic disease. Such 

biomarkers could lead to improved outcomes for many patients afflicted with pancreatic cancer.  
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3.2 Abstract 

Purpose. The CA19-9 biomarker is elevated in a substantial group of patients with pancreatic 

ductal adenocarcinoma (PDAC), but not enough to be reliable for the detection or diagnosis of 

the disease. We hypothesized that a glycan called sTRA is a biomarker for PDAC that improves 

upon CA19-9. Experimental Design. We examined sTRA and CA19-9 expression and secretion 

in panels of cell lines, patient-derived xenografts, and primary tumors. We developed candidate 

biomarkers from sTRA and CA19-9 in a training set of 147 plasma samples and used the panels 

to make case/control calls, based on predetermined thresholds, in a 50-sample validation set 

and a blinded, 147-sample test set. Results. The sTRA glycan was produced and secreted by 

pancreatic tumors and models that did not produce and secrete CA19-9. Two biomarker panels 

improved upon CA19-9 in the training set, one optimized for specificity, which included CA19-9 

and two versions of the sTRA assay, and another optimized for sensitivity, which included two 

sTRA assays. Both panels achieved statistical improvement (p < 0.001) over CA19-9 in the 

validation set, and the specificity-optimized panel achieved statistical improvement (p < 0.001) 

in the blinded set: 95% specificity and 54% sensitivity (75% accuracy), compared to 97%/30% 

(65% accuracy). Unblinding produced further improvements and revealed independent, 

complementary contributions from each marker. Conclusions. sTRA is a validated serological 

biomarker of PDAC that yields improved performance over CA19-9. The new panels may 

enable surveillance for PDAC among people with elevated risk, or improved differential 

diagnosis among patients with suspected pancreatic cancer.  
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3.3 Introduction 

The proper management and treatment of cancer begins with reliable detection and diagnosis of 

the disease. Reliable detection and diagnosis can be particularly challenging for pancreatic 

ductal adenocarcinoma (PDAC), owing to the internal location of the tumors, similarities to 

benign conditions, and heterogeneity between patients in the makeup of the tumors. A 

molecular feature shared by most PDACs is increased levels of a glycan called the CA19-9 

antigen. CA19-9 is used for specific purposes, such as to confirm the diagnosis of PDAC, 

assess responses to treatment, or screen for recurrence, but it has limitations 149-151. It is not 

useful for the substantial group of patients without elevations in the marker, and it shows a 

~25% false-positive rate among patients with benign conditions of the pancreas using a 

threshold that gives a ~75% true-positive rate 152. Elevated cutoffs provide <5% false-positive 

rates, but with detection of just 25-50% of patients 149. CA19-9 by itself, therefore, is not 

sufficient for rendering a diagnosis or for unequivocally assessing responses to treatment. On 

the other hand, it detects a major subset of patients and is still one of the most-used biomarkers 

in oncology. In fact, over the several decades since the discovery of CA19-9, no biomarker has 

been established to surpass it performance.  

We previously investigated the concept that the tumors that do not overproduce CA19-9 are 

different from those that do, and that they produce alternate glycans that are structurally similar 

to the CA19-9 antigen. One class of glycans we found is based on a structural isomer of the 

CA19-9 antigen called sialyl-Lewis X 153,154. The sialy-Lewis X glycan showed elevations in 30-

50% of the patients with low CA19-9 but also showed elevations in about 10% of patients with 

benign pancreatic diseases. Another glycan, referred to as sTRA, was elevated in up to half of 

the patients with low CA19-9, with very low false-positive rates 127. In subsequent research, we 

found that the cells producing sTRA are different in location, morphologies, and molecular 

characteristics than the cells producing CA19-9 155. The above findings suggested that the sTRA 

glycan would be a serological biomarker for pancreatic cancer that could improve upon CA19-9.  
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Many previous studies have examined candidate biomarkers for PDAC (see reviews 156-158 and 

discussion). Based on information from the previous work, we incorporated several 

considerations into this study. The most rigorous test of a biomarker is to apply it to 

independent, blinded samples, make case/control calls on each sample, and assess 

performance by comparing the calls to a “true” case/control status based on a gold standard. 

Most reports of candidate biomarkers do not include such a test. In this study, the gold standard 

was the diagnosis arrived at through the full information available for each patient, and a 

benchmark was the performance of CA19-9. We further ensured a rigorous test of performance 

by emphasizing the detection of resectable cancer (stage I/II cancers), and by testing specificity 

for cancer relative to benign conditions of the pancreas.  

Another unique aspect of this study is an examination of the biomarker production and secretion 

in tumor models and primary tumors. The most effective cancer markers are the ones produced 

and secreted by the cancer cells, rather than as secondary effects from the liver or inflammatory 

processes. An analysis of biomarker production across tumor models and primary tumors, 

together with an assessment of the secreted levels in each, could help to confirm that the 

biomarker is directly produced by the cancer cells and that elevations in the blood plasma result 

from secretion by the cancer cells. Such a study also could confirm the complementary 

relationship between CA19-9 and sTRA, that many cancers that do not produce CA19-9 

produce sTRA.  

In this study, we demonstrate that sTRA provided significantly improved performance over 

CA19-9 in a double-blinded test using preset thresholds and classification rules. The improved 

performance was the result of complementary elevations among CA19-9 and two versions of 

the sTRA assay, comprising a three-marker panel. Studies of cell-culture and patient-derived 

xenograft models of pancreatic cancer and primary tumors confirmed these relationships.  
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3.4 Methods 

3.4.1 Human specimens 

The study was conducted under protocols approved by the Institutional Review Boards at the 

Van Andel Research Institute, the University of Pittsburgh Medical Center, MD Anderson 

Cancer Center, the Mayo Clinic, and the Medical University of South Carolina. All subjects 

provided written, informed consent, and all methods were performed in accordance with an 

assurance filed with and approved by the U.S. Department of Health and Human Services. 

All collections took place prior to any surgical, diagnostic, or medical procedures. The donors 

consisted of patients with pancreatic cancer or a benign condition involving the pancreas, and 

from healthy subjects (Table 1). The healthy subjects had no evidence of pancreatic, biliary or 

liver disease. All blood samples (EDTA plasma) were collected according to the standard 

operating procedure from the Early Detection Research Network and were frozen at -70 °C or 

colder within 4 hours of time of collection. Aliquots were shipped on dry ice and thawed no more 

than three times prior to analysis.  

3.4.2 Sandwich immunoassays 

The antibody array methods followed those presented earlier 159-161 with slight modifications. 

The capture antibodies were CA19-9 (1116-NS-19-9, MyBioSource), anti-MUC5AC (45M1, 

Thermo Scientific), and anti-MUC16 (X325, Abcam). The biotinylated primary antibodies were 

CA19-9 (clone 1116-NS-19-9, MyBioSource) or TRA-1-60 (TRA-160, Novus Biologicals). The 

secondary detection agent was Cy5-conjugated streptavidin (Roche Applied Science). The 

Supplementary Methods contain details of the assays, the calibrators and controls, and the 

processing of biomarker data and the acquisition of immunofluorescence data.  

3.4.3 Statistical methods 

The case/control comparisons of individual biomarker values measured on a continuous scale 

were performed using the two-sided Student’s t-test. The case/control comparisons of gender 

used the Fisher’s Exact test, and the comparisons of age used the Wilcoxon rank-sum test. To 
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assess relationship between biomarkers and covariates, we presented Spearman correlation 

between biomarker and continuous covariates and tested for equivalence in biomarker 

distribution across covariate categories using Wilcoxon Rank Sum test (when there are two 

categories) or the Kruskal-Wallis rank sum test (when there are more than two categories). To 

test for difference in the average of sensitivity and specificity between a panel and CA19-9, we 

computed bootstrap standard error of the summary measure using nonparametric bootstrap 162 

with 1000 resamples stratified on case/control status, and computed two-sided p-value with 

Wald test. Statistical analyses were performed using R statistical software (version 3.5.1). 

3.5 Results 

3.5.1 Detecting the sTRA and CA19-9 glycans 

The CA19-9 antigen (Fig. 3.1A) is a tetrasaccharide detected by the CA19-9 monoclonal 

antibody 163. A monoclonal antibody called TRA-1-60 128 detects the presumed precursor of the 

CA19-9 antigen, a non-fucosylated and non-sialylated tetrasaccharide 108 (Fig. 3.1A). In order to 

indirectly detect the sialylated version of the TRA-1-60 antigen, which is referred to as sTRA 

(sialylated TRA), we treat the antigen with sialidase prior to detection (Fig. 3.1A). Both CA19-9 

and sTRA appear on multiple glycoproteins and glycolipids 164,165. In the blood of pancreatic 

cancer patients, we previously detected the glycans primarily on the mucins MUC1, MUC5AC, 

and MUC16, and more rarely on MUC5B and MUC3A 127,160,166. We further showed that the 

cancer cells producing CA19-9 are separate from those producing sTRA 155. If the cancer cells 

secrete the antigens accordingly (Fig. 3.1B), we would expect plasma samples to show 

elevations of one, both, or neither of the markers with frequencies similar to observed in tissue.  

The standard CA19-9 assay uses a CA19-9 antibody for both capture and detection (Fig. 3.1C). 

For sTRA, we detected the antigen on three different capture antibodies: CA19-9, anti-

MUC5AC, and anti-MUC16 (Fig. 3.1C). The combinations of capture and detection antibodies 

are referred to as CA19-9:sTRA, MUC5AC:sTRA, and MUC16:sTRA, respectively.  



 

57 
 

3.5.2 The sTRA antigen in CA19-9-negative cancer models and primary tumors 

To determine whether various models of pancreatic cancer make and secrete sTRA, and 

whether it is produced by some that do not produce CA19-9, we examined a panel of 10 cell 

lines derived from pancreatic cancers. Some of the cell lines produced only CA19-9, others only 

sTRA, and others both or neither (Fig. 3.2A & 3.2B). The amount secreted into the media 

roughly corresponded to the amount on the cell surfaces (Fig. 3.2B and Fig. 3A.1), and certain 

cell lines secreted almost exclusively only one of the glycans (Fig. 3.2B). Patient-derived 

xenograft (PDX) models potentially provide a more faithful representation of primary tumors. 

Across a panel of 13 PDX models, sTRA was produced and secreted by several tumors 

showing low levels of CA19-9 (Figs. 3.2C & 3.2D), and the levels of sTRA and CA19-9 in the 

sera correlated with tumor expression (Fig. 3A.1). The prevalence of each type could be 

different from those observed in clinical plasma samples, since differences could exist between 

the types in the take rates in culture or in PDX mice, but the models confirm that some PDACs 

make only one of the glycans, and others make both. 

Next, we used a tissue microarray to determine glycan expression in the primary tumors of 52 

patients, and we used the CA19-9 and sTRA sandwich assays (Fig. 3.1D) to determine the 

levels in matched blood plasma. The staining in the tumors was diverse (Fig. 3.3A & 3.3B), as 

observed in the cell lines and PDX models, and the levels in blood plasma showed that certain 

patients had elevations in only CA19-9 or sTRA (Fig. 3.3B). The blood levels of each marker 

correlated with the tissue levels (Fig. 3A.1). Overall, the models and primary tumors showed 

that sTRA is produced by a substantial subset of PDACs, that the secreted levels reflect the 

tumor levels, and that it occurs in many cases not showing production or secretion of CA19-9.  

3.5.3 Improved classification performance using the combined markers  

To explore the performance of sTRA as a plasma biomarker, we measured CA19-9 and the 

three sTRA assays (complete data in Table 3A.1) in an initial set of blood plasma from 147 

subjects (Table 3.1). As an individual marker, the CA19-9:sTRA assay performed similarly to 
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CA19-9 (Fig. 3.4A). The CA19-9 performance was in agreement with previous reports 149 and 

our previous studies 152 on similar cohorts, yielding 70-75% sensitivity at 70-75% specificity (Fig. 

3.4A). All markers except MUC5AC:sTRA had significantly-higher (p < 0.05) means in stage III-

IV than in stage I-II cancer (Table 3A.2), but the overall biomarker performance, as assessed by 

receiver-operator characteristic analysis, was only slightly higher in stage III-IV cancer (Fig. 

3A.2). None of the markers showed a significant difference between control types (Table 3A.2).  

The relationships between the assays were the same as in the model systems—

complementary, non-correlated elevations in the sTRA and CA19-9 assays (Fig. 3.4B). We 

therefore sought to develop a biomarker panel that included any combination of CA19-9 and the 

sTRA assays. Using the MSS method 132, we identified two lead panels, one that provided high 

specificity for the detection of cancer (low false positive rate), and another with high sensitivity 

(low false negative rate). A threshold is applied to each of 2 or 3 markers, and each pattern of is 

assigned as a “case state” or a “control state” (Fig. 3.4C, and Supplementary Methods for 

details on the thresholds used for each marker). By classifying the subjects with an elevation in 

any member of the panel as a case, overall performance was improved relative to CA19-9, both 

for the specificity-optimized panel and for the sensitivity-optimized panel that did not include 

CA19-9 (Fig. 3.4D).  

We then applied the biomarker panels to independent samples, comprising 25 cases and 25 

controls with similar makeup as the training set (Table 3.1). We used the predetermined 

thresholds and classification rules from the 147-sample training set to make a case/control call 

on each sample (complete data in Table 3A.1). For CA19-9, the thresholds also were based on 

the training set—one to give high specificity, and another to give high sensitivity—and subjects 

with levels above the threshold were called as cases. The increases in average sensitivity and 

specificity over CA19-9 was statistically significant for both panels (p < 0.001, 1000-fold 

bootstrapping), and improvements in either sensitivity or specificity relative to CA19-9 were 

consistent with the training set (Fig. 3.4D).  
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In both panels, we saw that a substantial percentage of patients were in the complementary 

subsets of patients that were classified as cases (Fig. 3.4E), indicating that each member of the 

panels contributed independent information. In addition, the complementary contributions of the 

individual panel members were consistent between the training and validation sets.  

3.5.4 Blinded validation of improved sensitivity and specificity 

We then applied each panel to a new set of 147 samples that was run blinded. We applied the 

predetermined thresholds, made a case/control call on each sample, and sent the calls to a 

separate site for determination of performance. The predetermined thresholds for both the panel 

biomarkers and CA19-9 were based on the combined 147-sample training and the 50-sample 

validation sets. The data and thresholded results are in Tables 3A.3 and 3A.4.  

The panel optimized for specificity gave high specificity and improved sensitivity over CA19-9 

from 30% to 54%. The panel optimized for sensitivity gave moderate gains over CA19-9 in both 

sensitivity and specificity (Fig. 3.5A). The difference in the average of specificity and sensitivity 

was statistically significant (p < 0.001) for the specificity panel, and the difference was positive 

but not statistically significant (p = 0.18) for the sensitivity panel (Fig 3.5A).  

The performance of the individual panel members and their relationship to each other was 

consistent with the training and validation sets. The individual CA19-9:sTRA assay performed 

similarly to CA19-9 and better than the other sTRA assays (Fig. 3.5B), and complementary 

elevations were observed between CA19-9 and the sTRA assay (Fig. 3.5C). The CA19-9 and 

CA19-9:sTRA assays were correlated, due to two samples with high levels in both, but several 

samples were elevated in only one or the other of the assays. The marker levels were higher (p 

< 0.05) in stage III-IV cancers (Table 3A.2), but the AUCs in ROC analysis were similar between 

stage I-II and stage III-IV cancers (Fig. 3A.2). Among the controls, benign biliary stricture and 

chronic pancreatitis showed higher levels than the other control groups in CA19-9 and CA19-

9:sTRA (Table 3A.2). Such elevations are commonly observed, and the difference from the 

training set is likely due to natural variation.  
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Because the training set may not fully represent the whole population of cases and controls, we 

investigated whether a simple adjustment of the individual marker thresholds would improve the 

performance of the panels or CA19-9. The adjusted specificity-optimized panel gave 96% 

specificity and 65% sensitivity, better than the optimized CA19-9 performance of 96% specificity 

and 46% sensitivity (Fig. 3.5D). The adjusted sensitivity-optimized panel gave 96% sensitivity 

and 37% specificity, but CA19-9 gave just 9% specificity at 96% sensitivity (Fig. 3.5D). The 

improvements of the panels relative to CA19-9 were very similar between the test set and the 

full 197-sample training set.  

In both the test set and the full, 197-sample training set, each member of the panels provided 

independent, complementary value (Fig. 3.5E). The percentages in patient subsets were 

remarkably similar between the sets. These results indicate that the relationships between the 

individual markers were consistent over all sets, and that the marker panels gave consistently 

improved performance over CA19-9. 

3.6 Discussion 

A biomarker that improves upon CA19-9 would be a significant advance in diagnostics for 

pancreatic cancer, given the fact that no biomarker has achieved that feat in the several 

decades since the development of CA19-9. The uses for such a biomarker could include 

screening or surveillance for pancreatic cancer, and differential diagnosis of pancreatic cancer 

relative to benign conditions. Whether a new biomarker will find value in clinical application 

depends on the performance requirements of the application.  

For the early detection of pancreatic cancer, screening among the general population is not 

viable because the prevalence of the disease is too low to justify the cost. An alternative 

strategy is surveillance for incipient pancreatic cancer among a population with elevated risk. An 

elevated-risk condition that has gained attention in recent years is sudden-onset type-2 diabetes 

167. In that group, the prevalence of pancreatic cancer may be as high as 0.8% 168. At such a 

prevalence, a biomarker with 96% specificity and 65% sensitivity would have a positive 
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predictive value (PPV) of 11.6% and negative predictive value (NPV) of 99.7%, which could be 

acceptable in a cost-benefit analysis. Thus, the biomarker panel presented here is achieving the 

performance required for use in surveillance among elevated risk groups.  

For differential diagnosis, the goal is to differentiate cancer from non-cancer among people with 

a suspected abnormality of the pancreas, for example individuals with abnormal imaging of the 

pancreas in an initial evaluation. In the application of a blood test to such patients, those 

positive for the test could receive further workup or treatment, and those negative for the test 

could be spared unnecessary procedures, thus reducing cost, risk, and emotional burden to the 

patient. In this use of a blood test, high sensitivity is critical. The prevalence of pancreatic 

cancer among referral patients with abnormal imaging would vary greatly between centers, but it 

could be as high as 15% (the experience of the collaborators in the present study). As such 

prevalence, a biomarker with 96% sensitivity and 50% specificity would have PPV = 25.3% and 

NPV = 98.6%, potentially high enough to find adoption.  

Other serological biomarkers have shown promise for the diagnosis of pancreatic cancer and 

will be important for comparative studies. Many have been investigated 156-158, more than can be 

listed individually, but the following are some important examples. Plasma thrombospondin-2 

was combined with CA19-9 to yield high specificity and sensitivity in multiple sample sets 169, 

and a drop in specific isoforms of apolipoprotein AII strongly discriminated pancreatic cancer 

from healthy controls, although not from benign diseases, in a blinded study 170. Panels of 

biomarkers including metabolic markers 171 and protein indicators of a migratory signature 172 

showed particularly encouraging results in recent studies. One of the most promising 

developments has been the detection of mutated, cell-free DNA in the circulation of cancer 

patients. The great majority of patients with pancreatic cancer harbor oncogenic mutations in 

the KRAS genes in their tumors. A PCR-based assay to detect such mutated DNA in the 

circulation identified about 30% of pancreatic cancer patients with near-perfect specificity 

relative to healthy controls, and the combination with CA19-9 and other markers could increase 
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sensitivity to 64% at 99.5% specificity173. The generalization of this strategy to include additional 

mutations showed promise for screening for eight common cancer types, including pancreatic 

cancer174. Further research will address specificity among benign conditions and performance in 

blinded studies. The performance of the panels in this study compares favorably with those 

cited above, and the precise, relative merits could be determined in comparison studies using 

common samples. Given that combining CA19-9 with the PCR-based assay improved 

sensitivity173, it is reasonable that the addition of sTRA would further improve sensitivity.  

The present study has certain limitations. The samples were collected prior to knowledge of 

diagnosis, which is one of the PROBE design requirements 175, but they were not collected in 

prospective manner that mimicked clinical application. The training and validation sets included 

cases and controls all collected from the same location and same setting, but in the test set, 

some controls were collected at a separate site to include subjects with diabetes. For further 

validation, the sample size should be expanded; prospective sample collection at multiple sites 

should be used; and the measurements should be acquired using the clinical assay that would 

be used in practice176. 

The overall performance of the panels potentially could be improved through additional glycans 

in the Lewis blood group, of which CA19-9 is a member called sialyl-Lewis A (sLeA). Some 

pancreatic cancers have upregulated tumor expression of an isomer of sLeA called sialyl Lewis 

X (sLeX)142, which we153,154 and others177 found elevated in the circulation of many pancreatic 

cancer patients. Other patients elevate a glycan detected by the DUPAN-2 monoclonal antibody 

178,179, identified primarily as type 1 sialyl-LacNAc180,181. The elevation of CA19-9 in the blood 

potentially results from accumulations in the stroma followed by leakage into the capillaries or 

lymph 182,183. Therefore, new leads potentially could be found by analyzing tumors with a non-

glandular histopathology using glycan-discovery methods such as whole-tissue MALDI 

imaging184.  
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This research establishes the sTRA glycan as a new biomarker for PDAC that improves 

diagnostic accuracy over CA19-9. This is the first biomarker, to our knowledge, to statistically-

significantly improve upon CA19-9 in a double-blinded test with preset thresholds and 

classification rules. The applicability of the findings to future PDAC samples is supported by the 

similar breakdowns of distinct, complementary groups in each set and the similar improvements 

in performance between sets. Furthermore, the importance of sTRA was supported by its 

expression and secretion in pancreatic cancer models and primary tumors that do not produce 

CA19-9. The true value will become clearer over time, but at this point it appears the new 

biomarker identifies a distinct subset of PDACs. Based on the performance observed here, the 

biomarker panels could be valuable for surveillance among elevated-risk people or for the 

differential diagnosis of pancreatic cancer.  
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Chapter 4: sTRA and CA19-9 expression distinguish independent 
pancreatic tumor cell subpopulations and prognosis 
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4.1 Abstract 

 

Subpopulations of cancer cells that express specific and necessary characteristics are likely to 

be predisposed to facilitate or initiate invasion and metastasis.  Identification of these cells could 

provide a critical tool for studying and targeting metastasis in pancreatic cancer.  We have 

previously characterized the sTRA glycan and CA19-9 antigen (sialyl-Lewis A glycan) as 

independent subpopulations of pancreatic ductal adenocarcinoma (PDAC) cells.  We 

hypothesized that the expression of these glycans identifies subpopulations of PDAC cells with 

predisposition to invasion and metastasis in pancreatic tissues.  The glycans sTRA and CA19-9 

as well as their co-expression and independent exclusive expression are validated in 5 tissue 

microarrays (TMAs) with 64 matched tumor and adjacent tissues.  Tumors showed significant 

(p<0.001) elevation over adjacent uninvolved tissues in all glycan expression groups.  The three 

glycotype states, sTRA-only, CA19-9-only and their co-expression (“dual”) are correlated 

between tumor and lymph node and tumor and metastases. There were strong Pearson 

correlations for CA19-9 (0.6685) and dual (0.7134) in lymph nodes, and moderate correlation 

(0.4724 and 0.4650) in lymph nodes and metastases.  Patients with long-term overall survival 

had high dual expression. Validation of survival thresholds applied to overall survival had a 

positive predictive value of 86.2% and negative predictive value of 50% for short-term survival.  

Together, glycan-expressing subpopulations of pancreatic cancer may show prognostic 

differences for metastasis and survival that could be exploited for future study and intervention.   
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4.2 Introduction 

 

In part due to such high resistance to therapy as well as poor early diagnosis and high 

recurrence rates post-resection, pancreatic cancer is now the third leading cause of cancer 

mortality in the United States with 8% survival at 5 years.185  Multiple mechanisms of 

chemotherapy and other treatment resistance have been proposed.186-188  Strong evidence has 

suggested stromal density is part of the resistance to chemotherapies and indeed it has been 

demonstrated that chemotherapy penetration of tumors can be poor,186 but removal of stroma 

actually resulted in worse clinical outcomes.189  Other studies have suggested a role for PD-1, 

CTLA4  and other immunotherapy targets,190 but clinical trials also showed equivocal 

response.95 Thus far, many potential therapies have shown promise in animal studies, but none 

have shown high success in humans and some have even resulted in poorer outcomes from 

treatment. The standard of care therapies are FOLFIRINOX and Gemcitabine/nab-paclitaxel 

with best survival of 11.4-13.8 months and 9.8-12.1 months with average duration to treatment 

failure of 4.3 and 3.7 months.3,4 

In pancreatic cancers and particularly in pancreatic ductal adenocarcinomas (PDAC), tumors 

tend to have low neoplastic cellularity with significant implication for biological activity of 

pancreatic tumors.76  Within those limited neoplastic cells there is high clonal heterogeneity that 

also show significant biological and clinical implications for treatment and survival.8,191  Further, 

these subpopulations tend to have varied abilities to become quiescent or activate as 

environmental conditions dictate to evade harsh conditions present in PDAC tumors and death 

by treatments.7,192  

Even without consideration for the also heterogeneous stroma of PDAC tumors, the 

characteristics of neoplastic subpopulations vary widely and discovery of biomarkers to identify 

the most aggressive neoplastic cell subpopulations could provide stratification for treatment and 

outcomes-based decisions.  Further, discovery of biomarkers to identify high risk vs low risk 
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subpopulations could also provide insight into the biology of cells and allow isolation or 

categorization for further study and treatment development. 

Most neoplastic subpopulation studies to date have examined DNA, RNA, and epigenetic 

modifications for tumor population partitioning and/or subtype stratification.8,63,76,89,94,193 Other 

studies have identified populations of cells by gross immunohistochemical staining of individual 

protein markers in tissue.36,61 We have previously shown that subpopulations can also be 

separated by glycan expression state.155,194 Specifically, we demonstrated differences in tissue 

and serum expression of CA19-9 (sLeA glycan) and its near relative glycan, sTRA in pancreatic 

cancer.   

When dually-expressed, these glycans together potentially suggest a baseline cancerous 

phenotype with longer survival of patients, while expression of CA19-9 alone or sTRA alone 

potentially show shorter survival.155 Further, we previously demonstrated that some tumors 

expressing only CA19-9 have glycan expression in patient tumors without detectable secretion 

to blood plasma.194 Meanwhile sTRA was detected in blood plasma of all patients expressing 

sTRA in tissue194.  Although only some carriers of these glycans have been identified (e.g. 

mucins, like MUC1, MUC3, MUC5AC, MUC16),195 the variable expression of these glycans 

suggests differences in release and trafficking of sTRA and CA19-9 from and on cells in 

pancreatic tumors.   

We also preliminarily demonstrated the use of the three biomarkers (dual, CA19-9 only, and 

sTRA only) as a biomarker panel for tissue to assess risk for short- or long-survival in 

neoadjuvant-treated patients.  This suggests a potential application to develop subtypes to more 

accurately determine clinical patient risk of progression based on the presence of neoplastic cell 

subpopulations.   

In this work, we hypothesize that neoplastic pancreatic cells co-expressing sTRA and CA19-9 

form a subpopulation of pancreatic cancer cells that represent a baseline less aggressive 

glycotype and cell subpopulations that lose expression of one glycan represent a more 
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aggressive pancreatic cancer glycotype presenting higher risk for metastasis and changes in 

resistance to treatment.  Therefore, each of the three subpopulations of neoplastic cells (Dual, 

CA19-9 only, and sTRA only) represents an independent cell subpopulation, each with its own 

implications for clinical progression and response. 

We previously presented a method of multimarker immunofluorescence with quantification by 

the SignalFinderIF tissue immunofluorescence analysis software.129,155,196 Here, we utilized this 

method to validate the separation of glycotype subpopulations on additional tissue microarrays.  

We then evaluated the expression of the glycotypes in tumors against their matched lymph 

nodes and metastasis samples to evaluate metastatic risk of tumor glycotypes.  We then 

compared these results to survival of patient groups to validate our previous findings.   

4.3 Materials and Methods 

4.3.1 Multimarker Immunofluorescence (MMIF) 

The multimarker immunofluorescence method has been previously described.155  In brief, 

antibodies are labeled with Cy5 or Cy3 for each round of immunofluorescence staining.  All 

antibodies to be applied in any round are tested for cross reactivity prior to use.  Formalin fixed 

and paraffin embedded (FFPE) tissue is deparaffinized and rehydrated and antigen retrieval is 

performed by 30 minute incubation at 100˚C in citrate buffer.  Slides are washed with 1X 

phosophate buffered saline (PBS) then incubated with Cy3- and Cy5-labeled antibodies for 2 

hours at room temperature or overnight at 4˚C.  Slides are incubated with Hoechst die for 10 

mins and a coverslip applied with aqueous mounting medium.  Slides are imaged on a Vectra2 

(Perkin Elmer, Hopkinton, MA) fluorescence microscope at 20X (0.5um pixel resolution).  The 

slide is incubated overnight in a humidified chamber then incubated in milli-Q or equivalent 

water at 37˚C for 10-20 minutes to remove the coverslip.  The slide is quenched with 6% 

hydrogen peroxide in 250mM sodium bicarbonate (pH 9.5) for 20 minutes, twice.  After quench 

successive rounds of antibody application, imaging and quenching are repeated until all 

antibodies have been run.  For sTRA detection, pan-neuraminidase is applied to slides at 37˚C 
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overnight and then detected with the TRA-1-60 antibody (Novus Biologicals, Littleton, CO) 

labeled as above.   

4.3.2 SignalFinderIF Software Analysis 

SignalFinder-IF and its algorithm have been previously described.129,196  Quantification is 

performed with the Segment Fit Thresholding (SFT) algorithm and provides robust signal 

determination by analyzing local background to threshold signal.  Quantified images are then 

analyzed by ColocFinder196 with 0.5 inclusion and 5 pixel box size for colocalization (e.g. 

glycan1 AND glycan2) or exclusion (e.g.  glycan1 NOT glycan2) parameters.    

4.3.3 Tissue Microarrays 

Tissue microarrays were assembled by the University of Pittsburgh Medical Center (UPMC), the 

Medical University of South Carolina (MUSC), and the University of Nebraska Medical Center 

(UNMC).  Survival data was collected by UPMC. All human samples are used in compliance 

with Institutional Review Board protocols approved by the University of Pittsburgh Medical 

Center, Medical University of South Carolina, University of Nebraska Medical Center and the 

Van Andel Institute. Written and informed consent was provided by all subjects.  The UPMC 

samples were collected from surgical resection tissue and assembled in 1mm punch cores (1-2 

punches per patient per tissue).  The MUSC samples were collected from surgical resections 

with matching adjacent uninvolved (“Normal”) tissue and lymph node biopsies or as autopsy 

samples with matching tumor, adjacent uninvolved tissues, and metastases.  The UNMC 

sample collection was through the Rapid Autopsy Program (RAP).  They were assembled as 

5mm punch cores and include matching tumor and metastatic tissues collected within 2-6 hours 

of death.   

4.3.4 Statistical Analysis 

Tumors, tumor lymph nodes and metastases were tested for normality and log-normalized, then 

normalized to a 0-1 scale by marker by tissue prior to correlation.  Correlations were tested by 

Pearson’s correlation.  Linear regressions were performed by ordinary least squares and the 
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95% confidence interval displayed using R software (R-project, Vienna, Austria).  Significance 

testing was performed by Wilcoxon Rank Sum for all non-normalized data.  Kaplan-Meier 

curves were graphed for Time-To-Progression (TTP) or Overall Survival (OS) analysis and log-

rank test was used to test for significance between marker groups. 

4.4 Results 

4.4.1 Validation of sTRA and CA19-9 elevations as independent indicators of PDAC 

CA19-9 antibodies have been well-characterized as antibodies that detect the sLeA glycan (i.e. 

type-1 LacNAc with terminal sialic acid and fucose modifications, Figure 4.1A).197  sTRA is an 

antigen detected indirectly by applying pan-neuraminidase (α-2-3,6,8) to tissues then detecting 

with the TRA-1-60 antibody.  TRA-1-60 is an antibody that has been characterized as detecting 

a unique moiety consisting of a terminal type-1 LacNAc β1-3 linked to a type-2 LacNAc with the 

antibody having a very high selectivity against the sialylated variant (sTRA) and high specificity 

for the N-acetyl on the glucose on the glycan root108.  The sTRA glycan has near relative 

glycans, such as LSTa ending in a glucose at the base of the glycan, often found as a 

glycolipid,108,179 and the likely glycan detected by DUPAN2 (sialylated type-1 LacNAc),179 but 

none have shown the specificity and sensitivity we have demonstrated for discrimination of 

pancreatic cancer with sTRA and CA19-9.194   

Our previous work showed significant elevation of sTRA, CA19-9 and a combination of the two 

glycans in tumors on three clinical tissue microarrays (TMAs) including matched adjacent 

uninvolved tissue.155  Prior to pursuing further analysis, we sought to validate the significance of 

the biomarker findings in additional clinical TMAs of matched PDAC tumor and adjacent 

uninvolved tissues.  In Figure 4.2B, there was significant variation between TMAs, which may 

indicate natural clinical variation or variable staining and imaging conditions. Despite this, there 

were significant positive outliers or distributions trending toward significant differences from 

adjacent tissues on every TMA, even with the relatively small n on each individual TMA (Figure 

4.2B). In aggregrate (Figure 4.2C), the glycan expression levels were much more significant.  All 
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five groups showed significant elevation (P<0.001 or lower) in tumor against matched adjacent 

uninvolved tissue, demonstrating utility in sTRA as an adjunct marker to CA19-9, as well as the 

exclusive subpopulations (Dual, CA19-9-only, and sTRA-only).  It also serves as a validation of 

the previous comparisons performed on the smaller TMA set. 

4.4.2 Glycan expression in tumors are correlated with distant recurrence 

Glycan expression between tumors, lymph nodes, and metastases may indicate whether glycan 

expression is an inherent condition of a clonal population of cells or induced by environment. 

Either outcome may be exploited for diagnostic state or treatment effect, but the answer has 

significant implications for future studies.  Prior to this study, sTRA expression had not been 

characterized in lymph nodes, although the presence of CA19-9 is typically negative in 

lymphatic tissues.  We show sTRA is negative in normal lymph nodes on both TMAs with 

significant differences in tumor lymph nodes and normal lymph nodes for all markers (Figure 

4.3A).  The expression of all glycans in all tissues with neoplastic cells over their normal 

matched tissue further validates sTRA as a biomarker of neoplastic pancreatic cancer cells. 

We then examined the relationship between primary tumor expression and tumor lymph node 

glycan expression and found strong Pearson correlation values within the CA19-9-only (0.6685) 

and Dual (0.7134) expression subpopulations. Between primary tumors and metastases, 

primary tumor expression of sTRA-only showed moderate correlations with sTRA-only (0.4650) 

in distant metastases as well as dual (0.5297) expression in distant metastases (Figure 4.3B).  

With higher correlation values between tumors and lymph node metastases for CA19-9-only 

and dual expression, this suggests that CA19-9 may play a role in entry of tumor cells into 

lymphatics for malignant pancreatic cancer.  The role of CA19-9 for lymphatic metastases is 

bolstered by moderate correlation between sTRA-only in tumor with dual expression in lymph 

nodes as these populations rise in CA19-9 expression.  It is also notable that neither CA19-9-

only nor sTRA-only expression was correlated with a direct switch to the other solo-expressing 

glycotype in lymph node metastases.  CA19-9-only was weakly correlated with dual expression 



 

72 
 

in tumor lymph nodes suggesting that sTRA is not a critical factor in cancer progression to 

lymph nodes. 

Meanwhile, sTRA-only was the highest correlation among the glycotypes for more distant 

metastases in Set 1 (MUSC), though the correlation was moderate (0.4724) (Figure 4.3C).  The 

lack of correlation between solo glycan subpopulations was observed again with weak or no 

correlation in tumor sTRA-only against metastatic CA19-9-only as well as in the converse 

correlation.  Only weak to moderate correlations were observed from tumor dual expression to 

metastasis, indicating that dual expressing tumors may be similarly likely to switch from dual to 

a solo glycan expressing glycotype in metastasis.  

To test these findings, we obtained an independent sample set (Set 2) from the University of 

Nebraska Medical Center Rapid Autopsy Program (RAP).  In this small sample set, the 

metastases showed correlations similar to tumor lymph nodes with moderate correlation within 

CA19-9-only and a strong correlation for dual staining in metastases from both dual and sTRA-

only expressers (Figure 4.3D).  Further validation will be needed to confirm these relationships, 

but in this first assessment in matched tumors with regional and distant metastases, 

subpopulation glycotypes in tumors appear to be associated with glycotypes expressed in 

metastases.  This indicates glycan expression characteristics are retained from primary tumor to 

metastasis or restored after migration.   

4.4.3 High dual expression and high solo expression confer differences in survival in 

clinical tumors 

We previously showed high dual CA19-9/sTRA co-expression (upper 50%) associates with 

longer progression-free survival.  In the present study, we reanalyzed 42 of those subjects 

(UPMC1) in addition to 43 new subjects (UPMC2) for overall survival.  None of the markers 

tested to significance in a binary analysis, but dual expression again showed trended 

differences in longer survival with high expression (Figure 4.4B).  Upon further review, the upper 

15% of dual marker expression show a significant difference (longer survival) from the 
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remaining 85% (data not shown), though the significance of this finding will have to be validated 

in future sample sets.   

The samples were thresholded by analyzing quantified signal for combinations of CA19-9, 

sTRA, CA19-9-only, sTRA-only, and dual expression by three signal thresholding cutoffs (3 

and 6).  Thresholds for percent signal were determined by the Marker State Space (MSS) 

software, which optimizes thresholds and biomarkers for biomarker panels132.  The thresholds 

were applied to the TMAs and combined data set and class states determined for long- and 

short- survivors.  The same markers were determined to be optimum (sTRA-6, CA19-9-only - 

3, and Dual-6) in two independent optimization runs on the two UPMC TMAs, though with 

varied thresholds.  The thresholds were averaged and applied to both runs.  The analysis 

showed the panel had a specificity of 60% and a sensitivity of 80.6% with a negative predictive 

value of 50% and positive predictive value of 86.2%.  Although the performance did not replicate 

the previous high performance (90% specificity and 80% sensitivity) on progression-free 

survival, there may be room to for further improvements to obtain higher positive predictive 

value for better clinical guidance.  Kaplan Meir plots did not show significant differences in log-

rank testing (Figure 4.4C).  However, when the 8 potential combinations of the three markers 

were analyzed for contribution to survival prognosis, they showed two significantly different 

groups (Figure 4.4D).  The sTRA+/Dual+ group showed significantly longer survival and the 

CA19-9 only+/sTRA+ group showed significantly higher risk for short survival.  This result will 

need to be further validated in future data sets.   

4.5 Discussion 

We showed here that subpopulations of pancreatic ductal adenocarcinomas identified by the 

glycotypes CA19-9-only, sTRA-only, and dual expression of both CA19-9 and sTRA differentiate 

subpopulations of cells in terms of aggressiveness (i.e. propensity to metastasize or propagate).  

Both regional and distant metastases frequently expressed glycotypes similar to primary tumors. 
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In cases where metastases expressed different glycotypes from their associated primary 

tumors, the glycotype most frequently changed from dual expression in tumors to solo marker 

expression in metastases, indicating a loss of a single glycan expression.  The more frequent 

single-glycan expression in metastasis from dual-glycan expression in primary tumors suggests 

potential benefit to PDAC cell subpopulations with solo expression in metastatic formation and 

trafficking.  The role of dual expression as a less aggressive state for PDAC is also supported 

by the moderate association of dual expression in metastases with all three glycotypes.  

Further, the short survival time and time to progression for low dual-expressing tumors also 

supports dual expression as a glycotype of lower aggression for tumors and a possible marker 

for better prognosis. 

In this study we attempted to reach a prognostic biomarker based on overall survival, which is 

ultimately a more difficult, although more meaningful endpoint for all cancers.  The lack of 

separation by most of the glycotypes may demonstrate that due to the short survival of the vast 

majority of patients, these glycotypes may be better suited for prognosis of progression rather 

than overall survival. As biomarkers of progression, they could provide utility, though more 

limited than a successful biomarker with long-term stratification, but it could be an indicator of 

biology predisposition for metastasis.  Nonetheless, the significant differences in the 

sTRA+/CA19-9-only+ and sTRA+/Dual+ group further supports the hypothesis that dual 

expression represents a less aggressive tumor phenotype than solo expression of CA19-9.  

In our previous studies, we showed that CA19-9-only and sTRA-only were associated with 

poorer differentiation states in primary tumors155.  This may be an indication of loss of epithelial 

cell type and potential transition to mesenchymal cell features of epithelial to mesenchymal 

transition (EMT).  The cells that make this transition and seed metastases are thought to 

constitute a neoplastic cell subpopulation representing 1-5% of cancer cells and are known as 

metastasis-initiating cells (MICs).198  Once these cells re-establish in a pre-metastatic niche in a 

distant metastatic site, they recruit myofibroblasts to establish a new stromal compartment to 
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support the growth of the cancer cells and transition to a more epithelial phenotype.199  

Metastases may re-establish dual expression as a return to epithelial state.   

If the differences in glycan expression between lymph node metastasis and distant metastasis 

suggested here are validated in future datasets, this could define a differential role for CA19-9 

over sTRA in trafficking to lymph nodes.  The sialyl Lewis A (sLeA) antigen recognized by 

CA19-9 is known to bind E- and L-selectins,200 of which L-selectins are abundantly present in 

lymph nodes.201  Selectin binding by CA19-9 in hematogenous spread of pancreatic cancer has 

been demonstrated previously.202  Selectins have been shown to bind sialylated and fucosylated 

lactosamines,203 of which sLeA is one though sTRA is not, and may represent a differential 

route to metastasis for CA19-9.  At this time, there are no known binding targets to sTRA.  

Metastasis to lymph nodes is very frequent even in small and resectable PDAC tumors and 

have been shown occur around the same rate as CA19-9 in patients (65-90%).204-206  Standard 

histopathology may also miss tumor lymph nodes for the small micrometastases and tumor cell 

subpopulations that establish in lymph nodes.204,206  A CA19-9-only trafficking route may be 

further leveraged for diagnosis. We have previously demonstrated that some tumors expressed 

CA19-9-only without secretion to blood plasma with worse patient outcomes.194  With lymphatic 

trafficking following a different mechanism, it is possible that CA19-9 could be detectable in 

lymph fluid despite the lack of blood plasma secretion. 

Risk stratification by subpopulation glycotype could allow therapies to be targeted to higher risk 

cell subpopulations, whether metastasis has already occurred or not. Preliminary data for drug 

sensitivity to first-line treatments showed greater sensitivity for CA19-9-expressing cells (data 

not shown), suggesting that while they are more likely to follow some routes of metastasis, their 

populations may be more treatable with current therapies, if therapies can reach their targets.  

Future studies should consider testing for glycotype and determine therapies that can target 

these more resistant cells. 
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More, the analyses here add to the validity of the three glycotypes as subpopulations of 

neoplastic cells in pancreatic tumors.  We demonstrate a significant difference between tumor 

and adjacent in two additional tissue microarrays as well as between tumor and normal lymph 

nodes.  We further establish that sTRA is not natively expressed in normal lymph nodes.  sTRA 

expression has not previously been described in other tissues, although LSTa with a similar 

terminal glycan structure has been shown in glioma144 and small cell lung carcinoma,143 which 

may denote a common regulatory pathway for glycosylation or functional benefit to the terminal 

glycan structure for cancers.   

Pancreatic cancer heterogeneity has been well characterized with significant implications for its 

ability to adapt and evolve to survive harsh environmental conditions.  It is likely that not all 

pancreatic cells will be predisposed to survive these conditions or to progress the cancer.  

However, it is likely that some cell subpopulations have a differential benefit in escaping the 

primary tumor and traffic to new metastatic sites.  A model proposed here is that those cell 

subpopulations can be discriminated by glycotype.  Further, most of these glycotypes can be 

detected by blood test, though cytologic smears from fine need aspiration biopsies could also 

allow more accurate diagnosis of glycotype for the highest risk groups.  Once the glycotype is 

established, it is retained in metastasis and may be used to determine susceptibility to 

treatment.  Alternatively, future efforts could potentially develop treatments to target these cell 

subpopulations. 
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Chapter 5: Conclusions and Future directions 
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5.1 Summary 

Defining subpopulations of pancreatic cancer cells allows for the segmentation of cells to 

characterize pancreatic cancer biology, to better identify biomarkers for diagnosis and 

prognosis, and to stratify tumors by risk of clinical progression.  Pancreatic cancer and 

particularly pancreatic ductal adenocarcinomas (PDAC) are very heterogeneous, both between 

and within tumors.  PDAC tumors usually have very low neoplastic cellularity (1-20%),76,77 and 

of the cells present, they are extremely polyclonal.8  Although tumor cell populations do seem to 

follow a progressive evolution,60 clones from multiple phases of progression have potential to 

become or be deadly by differing mechanisms (e.g. locally invasive, widely metastatic, 

neuroendocrine signaling, physically obstructive).8,60,61,207,208   

Sequencing of RNA, DNA, and miRNA can provide valuable information on clonal populations, 

particularly with laser-capture microdissection and newer single-cell sequencing methods, but 

complex sequencing with clinical validity has a long turnaround time. Due to the rapid 

progression of pancreatic cancer and lack of treatment differences between the primary driver 

mutations, sequencing often requires too much time to wait for initial treatments.[ref Aguirre 

APA 2018]  Typically, sequencing does not provide information fast enough for first-line 

treatment and often not for second-line treatment in pancreatic cancer, as well.  Sequencing 

also fails to provide spatial information to determine the distribution of cells in tumors, which is 

biologically significant for understanding mechanisms of dissemination of disease in a tumor. It 

is possible to perform sequential genome-wide or exome sequencing on several microdissected 

samples from a tumor, but these methods have not been widely demonstrated in research or 

clinical settings and would be extremely costly. Thus, there is a need to identify other methods 

of determining  cell states and subpopulations.  Ideally, cell states and subpopulations would be 

identified by low cost, reproducible methods with biomarkers that could examine available 

samples and determine diagnosis, prognosis, and stratification of treatments to effectively treat 

PDAC.   
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Glycans and glycoproteins are potentially well suited to this purpose.  Glycans and glycan-

carrying glycoproteins are often displayed on the surface of cells and are frequently secreted to 

blood, making them available as diagnostic markers.  More, many glycans serve functional roles 

in signaling, transport, and inter-cellular communication and identification, so they may serve 

dual roles as both a cell subtype identification molecule and a functional target for treatment.  

With retained presence on cells, glycans can also present a display target for antibody targeting 

by new types of treatments currently in development (e.g. monoclonal antibody treatment, lipid 

and nanoparticle drug delivery).   

In the preceding three chapters, this dissertation explored three aims to investigate how sTRA 

and CA19-9 may be used as biomarkers of cell subpopulations with relevance to the diagnosis 

and prognosis of PDAC.  In the first aim, sTRA and CA19-9 expression was examined in PDAC 

tissues to determine whether they represented subpopulations of neoplastic cells.  In the 

second aim, the effect of sTRA and CA19-9 tissue expression on blood plasma presence and 

diagnostic power were determined.  In the third aim, differences in sTRA and CA19-9 

expression were tested for their indication of subpopulation aggressiveness by assessing their 

likelihood to result in metastatic retention and patient survival. 

5.1.1 Definition of Cell Subpopulations 

In the first aim of this dissertation, sTRA and CA19-9 were hypothesized to be two different 

subpopulations of pancreatic ductal adenocarcinoma (PDAC) cells.  On analysis, there were 

actually three subpopulations of PDAC cells defined by glycan expression: those only 

expressing sTRA (sTRA only); those only expressing CA19-9, CA19-9 only); and those 

expressing both (Dual expression).  The pathological phenotypes of the subpopulations showed 

spatial and morphological separation.  sTRA-only populations associated with poorer to 

moderate differentiation and foamy cytoplasm.  Although sTRA was found on the cell surface in 

dual expression, it was usually cytoplasmic as a solo expression marker.  sTRA was also 

correlated with an increase in β-catenin on cell membranes, indicating a progressing, though 
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stabilizing and intact cell adhesion between cells of the ductal membrane.  CA19-9-only 

subpopulations were present in poor to well differentiated populations that ranged from isolated 

cells in heavy stroma to hyperglandular features. CA19-9 was found both in dual expression 

with sTRA and expressed alone on cell membranes, though was rarely found in cytoplasm.  

Dual sTRA/CA19-9-expressing subpopulations were moderately- to well-differentiated with high 

nuclear polarity and pre- to early- neoplastic features.  Dual expression was predominantly 

found on both intact membranes and budding or embolic features in ductal lumens.  Further, 

these features were consistent across an initial set of clinical tumors as well as patient-derived 

xenograft and cell line xenograft model systems, indicating the stable presence of the glycans 

as biomarkers of subpopulations. Thus, based on difference in spatial location, histo-

morphological traits, and expression of certain proteins, we concluded that pancreatic cancers 

can be divided into subpopulations according to the three groups defined above.   

5.1.2 Plasma sTRA and CA19-9 in the Diagnosis of PDAC 

We further defined sTRA as a new biomarker for PDAC with sTRA increasing the diagnostic 

accuracy of CA19-9, when present. The significant value of sTRA for clinical translation is that it 

is secreted into the blood plasma. Given that pancreatic biopsies are costly, inconvenient to the 

patient, physically and emotionally burdensome, and risky, serological biomarkers have huge 

practical advantages. In the second aim, we investigated the relationships between cellular 

expression and secreted levels. We showed the association of glycan expression in tissue with 

distinct secretion patterns to blood plasma. sTRA expressing tissues were consistently 

associated with sTRA in blood plasma, suggesting sTRA expressing tissues always secrete 

sTRA to plasma. In CA19-9 expressing tissues, a subset of CA19-9 expressing tissues without 

sTRA expression (“CA19-9-only”tissues) were associated with no CA19-9 present in plasma, 

suggesting the CA19-9 glycan failed to be secreted to blood plasma.   

In non-secreting CA19-9 expressing tissues, they demonstrated either hyperglandular or blind 

duct features and scattered cells in dense stromal tissue.  In the hyperglandular tissues, there 
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was a complex network of duct structures that form with relatively little stroma and no 

organization to the duct network that resemble previously described blind duct structures.209 We 

further showed that cell cultures recapitulated the finding of CA19-9 secretion failure to culture 

media in a subset of PDAC cell lines. Thus, the plasma levels of the glycans are generally good 

indicators of the tissue phenotype, but a subset of CA19-9-positive (and sTRA-negative) tumors 

do not secret CA19-9, potentially indicating a distinct subset of PDAC. With that knowledge, we 

next investigated the value of sTRA as a diagnostic biomarker. We showed sTRA represents 

not only an independent subpopulation of cells, but an independent biomarker for diagnosis with 

equivalent performance to CA19-9 and together a stronger biomarker for diagnosis than either 

sTRA or CA19-9 alone. This aim of the dissertation established the potential for clinical 

translation of the sTRA biomarker.  

5.1.3 sTRA and CA19-9 in PDAC Dissemination 

An important remaining question was whether the distinct subpopulations are different from one 

another in their behaviors. The combined sTRA and CA19-9 biomarkers improve diagnostic 

accuracy, but can they also identify differences in aggressiveness or outcome? Subsequently in 

the third aim, the use of these glycan subpopulations as measures of relative aggressiveness 

was demonstrated by analysis of glycan retention in metastases and glycan expression 

correlaed with survival of pancreatic cancer cell subpopulations.  The TMA data from the first 

aim was validated with additional TMAs.  Lymph nodes showed a significant elevation in all of 

the glycan biomarker subpopulations in tumor over normal lymph nodes.  Metastases showed 

similar expression of glycans to their matched primary tumors.  Interestingly, there was no 

indication of glycan switching between primary tumors and lymph nodes/metastases (e.g. no 

correlation in sTRA-only in primary tumors to CA19-9-only in lymph nodes), further validating 

their representation of independent cell subpopulations and indicating a lack of type-switching 

upon dissemination.  
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Glycotypes also varied in their indication of long- and short- survival of patients. We found that 

the composition of the cells in the tumor was an important variable, rather than the presence or 

absence of any single glycotype. Tumors with single-expressing (sTRA-only or CA19-9-only) in 

the absence of any other type was associated with poor prognosis, as were tumors with high 

levels of all three types (Dual, sTRA-only, and CA19-9-only). In contrast, tumors containing 

Dual-expressing cells either alone or with only one of the single-expressing types represent a 

milder phenotype.  The sTRA/dual tissue glycotype represents a more epithelial phenotype and 

less likelihood of mobility to distant sites.  It also likely represents a stable growth environment 

with intact early progression features with few mesenchymal characteristics expected for cell 

migration.  Meanwhile, CA19-9 expression in the absence of sTRA or with cells also expressing 

sTRA without dual expressing cells are likely to result in higher mobility and metastasis.  As 

shown in the first aim, the expression pattern is found in flatter cells with poor nuclear polarity 

indicating a more mesenchymal phenotype and higher association with expression in 

metastases. Thus, this aim established that the glycotypes are stable and that they have 

differences in metastatic characteristics, with notable differences between the Dual-expressing 

and the single-expressing cells.   

Together, the developments of these three aims make a strong case for the use of glycans in 

the definition of subpopulations of pancreatic cancer cells and particularly the utility of sTRA and 

CA19-9 as defining characteristics of independent subpopulations of PDAC tumors.   

5.1.4 Development and Application of a Multimarker Quantitative Pathology System 

Further, these studies have advanced the methodology for studying marker expression in 

tissue. The studies described above were enabled by the development of a multimarker 

immunofluorescence assay, automated microscopy workflow, and automated software analysis 

that has increased the objectivity of pathological staining quantification and throughput for 

enough samples to reach statistical and biological significance.  In Barnett, Hall, and Haab 

(Appendix A), we describe a new software platform and enabling tools that provide flexible, 
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objective, and high-throughput analysis tools to perform signal quantification, colocalization, and 

overlay tools for the analysis of immunofluorescence staining with equivalent or better quality 

performance to previously described tools.  These methods will provide additional benefit to the 

field for future quantification of pathological staining.   

These findings open several questions for future analysis.  Although the validation of these 

glycotypes as subpopulations of PDAC cells is strong, the mechanisms by which the differences 

of these cells’ actions are carried out are unclear.  Two major areas to explore are the 

conditions that result in CA19-9 or sTRA secretion to blood plasma and the transit of cells 

expressing CA19-9 or sTRA for metastasis.  These are likely related to each other based on 

trafficking of proteins or cells by endothelial and lymphatic receptor expression. 

5.2 Future Directions 

5.2.1 Glycan secretion and trafficking 

Previous data suggests that CA19-9-expressing cell migration and metastasis is likely 

supported by selectins.200  This is both a target for biologic study and treatment development in 

cells expressing CA19-9.210  Binding partners of sTRA are completely unclear.  However, from 

the plasma-tissue correlation study in the second aim,194 sTRA was more consistently detected 

in blood plasma, suggesting better secretion of sTRA from tissue to blood plasma.  This also 

correlates with the strong relationship between sTRA-only expression in primary tumors and 

metastasis to liver, which likely occurs by hematogenous spread.   

Future studies should be directed at identifying potential receptors for sTRA in distant tissues 

and on endothelial cells.  One potential study could test dye- or radio-labeled sTRA carriers onto 

endothelial cell layers to determine if sTRA binds to endothelial receptors as has been used for 

trafficking studies of CA19-9 and fucose.211  sTRA could also be used as a ligand for 

immunoprecipitation of endothelial and liver lysates to attempt pulldown of receptors that could 

be identified by mass spectrometry, as has been previously demonstrated for CA19-9.212  sTRA 
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receptor identification would both contribute to the understanding of mechanism, but also 

potentially be used to reduce migration with inhibition, if sTRA directly contributes to trafficking.    

Trafficking and identification of tumors expressing sTRA or CA19-9 could also follow previous 

positron emission tomography studies in people, similar to preliminary studies performed with 

CA19-9.213  In addition to using anti-glycan antibodies, similar studies could be performed with 

labeled CA19-9 and sTRA glycans, which could identify the location of specific glycan binding 

ligands and suggest further tissues for pathological analysis.  It could also suggest potential 

routes for migration and metastasis for further characterization and inhibition.  There is strong 

evidence that pre-metastatic niche formation primes potential metastatic sites for establishment 

of metastases when metastatic emboli find appropriate conditions.82,214  As ligands, glycans are 

well known to have a role in trafficking and binding.  The presence of sLeA and other lewis 

glycans have been shown in liver and other tissues.215,216  With glycans present, it would follow 

that binding sites for these glycans may also be present.  Identification of binding sites in 

potential metastatic sites for sTRA and CA19-9 could suggest a direct role for these glycans and 

the subpopulations of cells expressing them for establishment of metastasis. 

5.2.2 Improved diagnostics by antibody development and additional glycan biomarker 

discovery 

The validation of sTRA as a viable biomarker and significant contributor to diagnostic accuracy 

suggests that other glycans may be able to help close the gap to accurate detection of all 

pancreatic cancers.  sTRA represents non-fucosylated sLeC from the Lewis synthesis pathway.  

This is only one half of the Lewis synthesis tree where ST3GAL transfers sialic acid to LeC 

(LacNAC)-containing terminal structures.  On the other half of the pathway, FUT2 adds an α2 

fucose to the terminal galactose preventing the addition of sialic acid.  This produces increased 

H group and potentially Lewis b(LeB), when FUT3 is present.  These represent two additional 

glycans that could be powerful biomarkers.  More, sTRA and CA19-9 represent accurate 

detection of 85-90% of pancreatic cancer samples,155,194 and the secretor phenotype has been 
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estimated to be present in up to 20% of patients.101,103  This suggests that the remaining portion 

of these sTRA and CA19-9 low patients may be shunting additional glycan production to H 

group and LeB glycans, analogous to sTRA and CA19-9 in the patients that are negative for 

both CA19-9 and sTRA.  This suggests that LeB and H group could identify the remaining 

double negative patients.  Further, as has been shown for separate subpopulations being 

represented by sTRA and CA19-9 detections, these groups with different glycan expression 

patterns could further represent additional subpopulations of pancreatic cancer cells with yet 

different biological characteristics. 

Although the α1-2 fucosylated H group is present in people with O blood type, H group is a 

general description for the α1-2 fucose attached to terminal galactose of a LacNAc group.  sLeA 

and sTRA are on terminal type 1 LacNAc groups (Galβ1-3GlcNAc). If H group predominant 

patients have H group or the further fucosylated LeB from FUT2 secretion, they would be 

produced on this same Type I LacNAc backbone, which is not endogenous in blood group 

expression217 in blood.  Further, H, A, and B blood groups have been shown to be expressed in 

pancreatic acinar cells natively, while sLeA has been shown to have native expression to ducts 

and centroacinar cells.215  Aside from secretor/non-secretor status, which may or may not have 

a role in pancreatic secretion,215 the H group, A, B and LeB expression may be due to the origin 

of the originating cancer cell (ductal vs acinar origin).  The expression patterns of both Lewis 

glycans and blood group antigens in pancreas may also indicate differentiation and 

developmental state of the cell.216  These correlations are further indications that the alternate 

fate for type I LacNAcs may present valuable markers to strengthen the value of CA19-9 and 

sTRA as diagnostic biomarkers of pancreatic cancer as well as biomarkers of subpopulations 

with differential biological determination. 

There is also further room to improve the diagnostic accuracy of sTRA.  Currently, sTRA is 

being detected by an indirect detection due to lack of a direct antibody.  The development of an 

antibody to sTRA is likely to give increased detection specificity and sensitivity.  In the previous 
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chapters, we have shown how increasing the number of capture antibodies increased the 

specificity and sensitivity of glycan detection.  This suggests that there are still additional sTRA 

carriers that are not being detected and the maximum sensitivity may be achieved by a direct 

sTRA capture and detection antibody.     

5.2.3 Potential Therapeutic Applications 

There are two potential mechanisms for treatment improvements utilizing glycan subpopulation 

expression: predicting resistance and susceptibility to current treatments and novel targeted 

therapeutics.  Resistance and susceptibility to current treatments may vary by glycan-

expressing subpopulations.  Preliminary cell culture data from our lab has shown potential 

susceptibility to current first-line treatments for CA19-9-only expressing cell lines and resistance 

to treatments for sTRA-expressing lines.  If validated in animal models, this may provide more 

effective selection of treatment for a subset of pancreatic tumors.  Alternatively, a clinical trial 

could be designed for patients with late-stage cancers where treatment could be selected by 

glycotype, if tissue biopsies could safely be obtained.  This could potentially be used to 

determine first-line chemotherapy treatments. 

sTRA and CA19-9 may also be used for therapeutic targeting by antibody-linked treatments due 

to their cell surface expression.  Treatments have been developed targeting CA19-9 antigen by 

antibody integration on nanoparticles and attached to liposomes for chemotherapeutic drug 

delivery.210,211  The same could be done with an sTRA targeting antibody to better target more of 

the total patient population and dual targeting could be used in dual-expressing patients with a 

likely improved efficacy over CA19-9-targeting trials.  In addition to nanoparticle-directed 

treatments, monoclonal antibodies to sTRA could be used alone or with monoclonal antibodies 

to CA19-9 as potential direct treatments to pancreatic cancers, similar to CA19-9 strategies 

tested in animal models.218  With retention of glycan expression on distant metastases, this 

could present a viable strategy to target extra-pancreatic metastases.   



 

87 
 

Glycotype-directed or targeted therapy could provide a new method for timely and effective 

therapy.  More, these therapies could potentially be guided by glycan expression detected in 

blood plasma given the determined associations from tissue-plasma correlation in chapter 3, 

though the non-secreting CA19-9-only group would need new diagnostics to track efficacy. The 

model systems characterized in chapter 2 could be used for preliminary testing of antibody 

treatments and glycotype-determined chemotherapy.  Further validation could then be 

conducted in additional organoid models.219  As an extension of preliminary treatment models 

currently in development, this would provide a much more robust application of these treatment 

modalities and represents significant potential for clinical impact of glycotype determination on 

clinical practice. 

5.3 Concluding Remarks 

Defining subpopulations of pancreatic cancer cells could provide a powerful mechanism for 

increased understanding of pancreatic cancer and allow for development of better, more 

targeted and effective therapies for a disease with very high need.  Glycans represent a rapidly 

assessable and highly informative class of molecules for the characterization of pancreatic 

cancer cell subpopulations.  The contributions of the work here show that sTRA and CA19-9 

expression can identify unique cell subpopulations of pancreatic cancer cells with differential 

morphology and differentiation states. More, these features are retained in metastatic states.  

With differential expression of glycans in metastases, these cell subpopulations also suggest 

differences in prognosis for pancreatic cancer patients and could potentially provide valuable 

targets for therapy, especially in currently untreatable metastatic disease.  The use of sTRA and 

CA19-9 for improved diagnostic accuracy provides an improvement to current diagnosis and the 

biology of glycans suggests there may be additional room for improvement with characterization 

of further glycans in the sTRA/CA19-9 synthesis pathway for Lewis antigens.  Further 

characterization of sTRA may also provide further insights into the action of glycans in trafficking 

to blood vessels, if a binding target can be identified.  In addition to these biological 



 

88 
 

contributions, the work here was facilitated by the development of efficient, precise and accurate 

quantification methods for immunofluorescence in tissues. These tools have significant potential 

to allow new rapid diagnostic and prognostic assessment of tissues for both research and 

clinical pathologists with objective and sensitive detection of disease by quantitative pathology.  

With these considerations, this thesis provides both valuable new contributions to the field of 

pancreatic cancer biomarkers and has opened new questions for future study. 
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Chapter 1 Tables 

Table 1.1 Incidence and survival of selected common cancers   

Primary Site Pancreas Breast Prostate Lung Colon Ovarian 

Incidence (per 

100k)  
12.79 131.1 105.00 50.99 26.1 11.49 

Cases (total) 61,860 343,965 345,915 264,275 144,128 34,279 

-Localized 10% 62% 78% 16% 38% 15% 

-Regional 29% 31% 12% 22% 36% 20% 

-Distant 52% 6% 5% 57% 23% 59% 

-Unknown 8% 2% 4% 5% 4% 6% 

Survival 

 (5 year) 
9.4% 89.7% 97.7% 19.0% 63.0% 48.3% 

-Localized 34.3% 98.7% 100% 56.3% 90.4% 92.3% 

-Regional 11.5% 85.3% 100% 29.7% 71.4% 74.5% 

-Distant 2.7% 27.0% 30% 4.7% 13.5% 29.2% 

-Unknown 5.5% 54.5% 80.9% 7.8% 26.2% 24.8% 

All statistics collected from SEER Cancer Statistics9 

Table 1.2 Cancer screening test performance for tests in clinical use 

Cancer (Screening Test) Specificity Sensitivity 

Prostate Cancer   

Digital Rectal Exam11,12 40-90.7% 28.6-81% 

Prostate Specific Antigen (PSA)14 93.8% 20.5% 

Breast Cancer   

Mammogram20 90.5-92.5% 83.2-97.9% 

Lung Cancer   

Low dose computed tomography (LDCT)#28 28-100% 80-100% 

Ovarian Cancer   
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Table 1.2 Cont’d 

 

 

 

 

 

 

 

 

 

# In current and former smokers 

  

CA12529 77% 47% 

OVA129 35-40% 94-99% 

Colon Cancer   

Fecal Occult Blood Test (FOBT)21 98.8% 7.2% 

Fecal Immunochemical Test (FIT)21,22 87.6-97% 23.2-68% 

Cologuard22 89.8% 92.3% 

Epi procolon25,26 81-90% 70-73% 

Pancreatic Cancer   

CA19-999 79% 82% 
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Chapter 1 Figures 

Figure 1.1 Model pancreatic cancer microenvironment.   

 

Several major cell types present in most pancreatic tumors are represented in this model. Cells 

are represented in two significant conceptualized compartments: neoplastic cells and stroma.  

The vast majority of the pancreatic tumor is stroma comprised of extracellular matrix, activated 

and quiescent (normal) fibroblasts, and immune cells (tumor associated macrophages, T cells, 

and other immune cells).  Tumor associated macrophages (TAMs) are believed to contribute to 

active tumor growth and suppression of other immune cells.  Activated fibroblasts are also 

thought to actively signal and contribute to metabolism beneficial to neoplastic cells.  Outside of 

the primary tumor, normal ductal and acinar cells are represented. 
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Figure 1.2 Glycan synthesis pathway for lewis antigens and likely binding partners for CA19-9. 

 

A. Glycan synthesis pathway for sialyl Lewis A (sLeA), Lewis B (LeB), H group (core blood 

group antigen, O type), and sTRA is represented with the requisite enzymes STGAL3, FUT2, 

and FUT3.  Lewis secretors have higher expression of FUT2 leading to production of H group 

over sLeA.  Loss of FUT3 results in inability to produce sLeA.  B. CA19-9 antibodies bind type I 

lactosamine containing glycans.  They have higher affinity for longer glycans containing the 

terminal sLeA tetrasaccharide, including the difucosylated variant of sTRA.  
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Chapter 2 Tables 

Table 2.1 Results from 10-fold cross validation 

 

Split1 Split2 Split3 Split4 Split5 Split6 Split7 Split8 Split9 Split10 Median 

Round  1 100% 84% 73% 37% 75% 70% 50% 75% 62% 23% 71% 

Round  2 53% 88% 42% 80% 53% 100% 55% 88% 88% 80% 80% 

Round  3 83% 49% 62% 71% 50% 100% 53% 100% 75% 100% 73% 

Round  4 100% 60% 48% 80% 75% 80% 88% 100% 50% 93% 80% 

Round  5 80% 96% 100% 35% 71% 68% 88% 100% 92% 70% 84% 

Random  1 - - - - - - - - - - - 

Random  2 80% - - - - - - - - - - 

Random  3 - - - - - - - - - - - 

Random  4 - - - - - - - - - - - 

Random  5 - - - - - - - - - - - 

We used the sTRA-only, CA19-9-only, and dual-labeled tissue markers to seek panels that 

distinguish 30 short-TTP samples from 15 long-TTP samples (Fig. 2.6). Each value is the 

average accuracy of the panels from the training set applied to the set-aside test samples for 

each split (see Methods for details). The median accuracy is given for five rounds of cross 

validation, and the average median was 78%. For the rounds marked ‘Random’, we randomly 

assigned a case or control status to each of the 45 samples and repeated the process. Except 

for Split1 of the second round, the program did not find any panels that met the minimum 

performance in the training sets.  
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Chapter 2 Figures 

Figure 2.1 The CA19-9 and sialyl-TRA (sTRA) antigens. 

 

 
A) In order to detect sTRA, we treat the sample with sialidase prior to applying the TRA-1-60 

monoclonal antibody (mAb). B) The CA19-9 and sTRA glycans have similar structures except 

for the presence of fucose in the CA19-9 antigen. C) The treatment of pancreatic cancer tissue 

with sialidase leads to increased binding of the TRA-1-60 mAb, revealing the presence of sTRA 

in the tissue. The overlap with the CA19-9 antigen is not known. D) The schematic shows the 

process we used for multimarker immunofluorescence. Between the second and third rounds, 

we treated the tissue with sialidase to remove sialic acid from sTRA, enabling detection by the 

TRA-1-60 mAb. 
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Figure 2.2 Quantifying signals in tissue microarrays.  

 

A) We used six TMAs from three sources. Four TMAs contained primary tumor and adjacent 

tissue, and two contained tumors from xenografts. B) We collected images that were tiled 

across the TMA. Each image captured a portion of a core, as represented by the box. C) We 

separately analyzed the blue, greed, and red channels from each of the three rounds of 

immunofluorescence, resulting in nine images per region. The first step was to locate the 

signals in each image. Next we quantified the amount of signal in each individual image as well 

as the amount of exclusive or colocalized signal among various combinations of images. D) We 

compared each of the quantified signals between the tumor cores and the adjacent tissue cores. 

The amount of signal from the nuclei (stained by Hoechst 33258) was equivalent between tumor 

and adjacent tissue in all comparisons. E) We quantified the occurrences of tumor tissue that 

contains one, both, or neither of the markers in each of the TMAs. The images provide 

examples of each type.  
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Figure 2.3 Cellular morphologies associated with each glycan. 

 

A) The cores had various levels of each antigen. The TMA contained two cores from each 

tumor, presented in pairs in the column graph. B-G) The top two images in each group are the 

raw fluorescence from the second (left) and third (right) rounds of immunofluorescence. The red 

signal in the left image is CA19-9, and the red signal in the right image is sTRA. The lower 

images in each group are zoomed pictures corresponding to the white box. The lower left image 

is the H&E image overlaid with the detected signals. The signal from CA19-9 is orange, the 

signal from sTRA is cyan, and the overlapping signal is green. The lower right image is from the 

H&E stain. The asterisk in panel B marks vacuolated, invasive cells.  
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Figure 2.4 Staining and morphologies in xenografts.  

 

A) The cell-line xenograft cores showed various amounts of each antigen. The three cores from 

each cell line are presented in groups. B) Each PDX xenograft expressed either primarily CA19-

9 or primarily sTRA. Each model had 2-6 cores on the TMA. C-D) Selected images from the 

cell-line (C) and PDX (D) xenografts are presented. In the overlaid images at the right of each 

pair, CA19-9 is orange, sTRA is cyan, and the overlapping signal is green.  
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Figure 2.5 Protein expression in various cell types. 

 

The images are grouped according to glycan expression and morphological phenotype. For 

each region, we present the H&E image, the H&E with overlaid signal (using the color scheme 

in figures 3 and 4), the signal detected for MUC5AC, and the signal detected for -catenin.  
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Figure 2.6 Associations between glycan type and time-to-progression (TTP).  
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Figure 2.6 Cont’d 

A) We divided the patients into the upper and lower halves of expression of each of the five 
indicated marker types, and then separately plotted Kaplan-Maier curves for each. B) The 
tumors with long TTP (>2 years) had significantly higher (p = 0.008, Wilcoxon rank sum test) 
dual-marker expression than the patients with short TTP. Among just the tumors with high dual-
marker expression, only tumors with short TTP had high levels of both the sTRA-only and 
CA19-9-only markers. The dashed lines indicate the threshold for each marker, and the value of 
the threshold is given. C) Patients that were high in all three of the indicated markers, or that 
were low in the dual marker, were called as cases (short TTP) and all other patients were called 
as controls (long TTP). The table shows the rules for the calls. A ‘1’ indicates the marker is 
above its threshold, ’0’ indicates below threshold, and ‘X’ indicates either above or below. TP, 
true positive; FN, false negative; FP, false positive; TN, true negative. D) We present H&E 
images both with and without overlaid signal. The colors for the overlays are the same as in 
figures 3-5. A frequent observation among short-TTP patients with high levels of all three 
markers (top row) or low levels of the dual markers (middle row) was scattered groups of poorly-
differentiated cells labeled either with sTRA or CA19-9. A common feature among long-TTP 
patients (bottom row) was moderately- or well-differentiated PDACs without scattered groups of 
single-labeled cells. The table provide the averages over all regions for each of the tumors in 
panel D.  
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Chapter 2 Supplementary Tables 

 

Table 2A.1 Comparison of biomarker values (averaged over two cores) between tumor and 
adjacent tissues. 

Biomarker  Adjacent Tissue  Tumor Tissue  Difference Tumor vs. Adjacent 
 Median  IQR  Median  IQR∗  Median  IQR  p-value

#
 FDR

$
 

CA19-9  0.438  (0.171,1.006)  5.769  (1.481,11.021)  3.588  (0.574,9.939)  2.22e-08  1.11e-07  
CA19-9-only  0.385  (0.085,0.915)  6.089  (1.684,8.069)  4.51  (1.362,7.512)  1.3e-07  3.26e-07  
sTRA  0.023  (0.01,0.201)  0.462  (0.026,6.261)  0.246  (-0.005,5.449)  0.00096  0.00096  
sTRA-only  0.022  (0.003,0.216)  0.432  (0.021,3.16)  0.3  (0.004,2.547)  0.000764  0.000955  

Dual  0.012  (0.001,0.033)  0.762  (0.095,9.546)  0.377  (0.078,10.429)  1.17e-06  1.96e-06  

 

*Interquantile range 

#p-value based on the Wilcoxon signed rank test 

$False discovery rate 

The table presents the median and interquantile range for each biomarker (averaged over two 

cores) for tumor tissue and adjacent tissue separately, as well as median and interquantile 

range for their difference in biomarker score. A significant difference between tumor and 

adjacent tissues was found for each biomarker.  

Table 2A.2 Antibody details 

 

 

 

 

  

Name Clone ID Target Source Cat. no. Species Class ID 

Anti-Sialyl Lewis A 

(CA19-9) 
9L426 Sialyl Lewis A USBio C0075-03A mouse IgG 1295 

TRA-1-60 TRA-1-60 
Terminal N-acetyl-

lactosamine, type 1 

Novus 

Biologicals 
NB100-730 mouse IgM 1497 

Anti-MUC5AC 45M1 MUC5AC ThermoScientific MS-145-P1ABX mouse IgG1 1480 

Anti-beta-catenin polyclonal Beta-catenin R&D Systems AF1329 goat IgG 1578 

Anti-E-cadherin 3F4 E-cadherin Sigma Aldrich WH0000999M1 mouse IgG1k 1581 

Anti-CK19 RCK108 Cytokeratin 19 ThermoScientific MA1-06329 mouse IgG1 1591 

Anti-vimentin V9 Vimentin Sigma Aldrich V6389 mouse IgG1 1582 

Anti-PDX1 267712 PDX1 R&D Systems MAB2419 mouse IgG2B 1551 
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Chapter 2 Supplementary Figures 

Figure 2A.1 Additional images from the primary tumors 

 

 

Cores from TMA5 are shown. The multicolor, fluorescence images are at the top of each group, 
with scan 2 on the left and scan 3 on the right. In scan 2, red was CA19-9 and green was 

MUC5AC, and in scan 3, red was sTRA and green was -catenin. Below are H&E images from 
the area defined by the white box in the fluorescence image. In the overlaid H&Es, orange is 
CA19-9, cyan is sTRA, and green is the overlap.  

Core C2 shows a moderately-differentiated duct with loose organization that stains 
mostly with CA19-9 (left), and small glands that secrete dual-labeled material into the lumen 
(right). Core C10 shows well-differentiated ducts with foamy cytoplasm that generally are 
labeled with both markers. Core D6 shows lipid-rich and vacuolated cells that label only with 
sTRA, and clusters that are dual labeled.  
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Figure 2A.2 Additional images from the cell-line xenografts 

 

In each pair, the H&E image is on the right and the overlaid image on the left, using the same 
color scheme as in Figure 2A.1. Capan2 had high staining for both markers, ASPC1 had clear 
sTRA staining with little CA19-9 staining, and the rest were low in both. The L3.6pl cell line is 
from adenosquamous carcinoma, not ductal adenocarcinoma like the rest.   
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Figure 2A.3 Additional images from the PDX xenografts 

 

The color scheme of the overlaid images is the same as in the previous figures. Most xenograft 
models stain primarily with either one or the other marker, and none was wholly absent of 
staining.  
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Figure 2A.4 E-cadherin and CK19 expression 

 

The colors for the overlaid H&E are the same as in the previous figures. The right two images 
show the detected signals corresponding to E-cadherin and CK19. The cells that stained for 
either sTRA or CA19-9 expressed E-cadherin and CK19, regardless of morphology.  
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Figure 2A.5 Additional images from each tumor group associated with time-to-progression 
(TTP)

 

The color scheme in the overlaid images is the same as in previous figures. The labels on the 
left give the Core ID and the Group ID according to the table in Figure 2.6C of the main text. 
The Group ID gives the status of each of the three markers, where a ‘1’ indicates above 
threshold, and a ‘0’ indicates below threshold. The first number is CA19-9-only, the second is 
sTRA-only and the third is dual. Thus 000 indicates low in all three markers, 111 indicates high 
in all three, etc.  

The short-TTP tumors are either high in all three markers (cores G12, E11, and G3) or 
low in the dual-labeled marker (cores B1, F6, and I12). The long-TTP tumors are high in the 
dual-labeled marker but not in all three of the markers.   
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Figure 2A.6 Images from tumors with misclassified TTP. 

 

The colors and labeling are the same as in Figure 2A.5.  
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Table 2A.3 3-marker panel threshold and core averaged marker levels for the images in Figure 
2A.5 

Marker CA19-9 Only sTRA-Only Dual 

Threshold 6.696 1.111 3.303 

B1_Region 7.617 0.207 1.529 

B1_Patient 5.455 0.115 0.883 

E11_Region 12.238 8.778 14.129 

E11_Patient 9.128 3.436 5.347 

G12_Region 13.058 16.147 10.319 

G12_Patient 7.481 7.448 11.921 

G3_Region 8.308 8.401 20.564 

G3_Patient 10.668 4.453 13.599 

F6_Region 0.000 16.399 0.305 

F6_Patient 0.001 7.531 0.403 

I12_Region 13.422 0.007 0.836 

I12_Patient 8.284 0.062 0.594 

H8_Region 5.209 7.020 21.905 

H8_Patient 3.344 9.079 17.393 

H7_Region 6.633 11.922 17.695 

H7_Patient 3.344 9.079 17.393 
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Table 2A.4 3-marker panel threshold and core averaged marker levels for the images in Figure 
2A.6 

Marker CA19-9 Only sTRA-Only Dual 

Threshold 6.696 1.111 3.303 

C5_Region 9.133 0.019 3.528 

C5_Patient 4.607 0.209 3.823 

D4_Region 1.514 3.600 7.350 

D4_Patient 3.287 2.649 5.160 

E3_Region 0.048 17.277 8.829 

E3_Patient 0.539 14.908 4.831 

A7_Region 1.762 0.000 0.043 

A7_Patient 3.389 0.650 0.876 

F1_Region 0.331 0.016 0.018 

F1_Patient 0.133 0.035 0.012 

C3_Region 4.184 0.000 0.000 

C3_Patient 6.859 0.396 3.297 
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Chapter 3 Tables 

Table 3.1 Composition of the sample sets. 

 
Training/Validation Test 

Site UPMC All UPMC MDACC Mayo 

Total samples, N 147 50 197 (147 + 50) 147 86 41 20 

Cancer, N 72 25 97 71 30 41 0 

Average age, y (SD) 65.3 (10.6) 72.8 (8.6) *67.3 (10.6) 66.3 (9.0) 68.7 (8.6) 64.5 (9.0) - 

Percent male 40 10 51.5% 52.1 50.0 53.7 - 

Control, N 75 25 100 76 56 0 20 

Average age, y (SD) 57.8 (15.6) 61.8 (15.4) *58.7 (15.5) 65.0 (10.6) 65.1 (9.2) - 64 (13.8) 

Percent male 34 12 53.0% 44.1 37.5 - 61.9 

Cancer stages 

       

Stage I, N (%) 2 (2.8) 1 (4.0) 3 (3.1) 17 (23.9) 2 (6.7) 15 (36.6) 0 

Stage II, N (%) 43 (59.7) 15 (60.0) 58 (59.8) 40 (56.3) 28 (93.3) 12 (29.3) 0 

Stage III, N (%) 14 (19.4) 6 (24.0) 20 (20.6) 5 (7.0) 0 5 (12.2) 0 

Stage IV, N (%) 13 (18.1) 3 (12.0) 16 (16.5) 9 (12.7) 0 9 (22.0) 0 

Control types 

       

Chronic pancreatitis, N (%) 33 (44.0) 13 (52.0) 46 (46.0) 15 (19.7) 15 (26.8) 0 0 

Benign biliary stricture, N (%) 14 (18.7) 9 (36.0) 23 (23.0) 8 (10.5) 8 (14.3) 0 0 

Abnormal imaging, N (%) 24 (32.0) 3 (12.0) 27 (27.0) 0 0 0 0 

Chronic diabetic, N (%) 0 0 0 24 (31.6) 4 (7.1) 0 20 (100.0) 

Healthy control, N (%) 0 0 0 20 (26.3) 20 (35.7) 0 0 

Pancreatic cyst, N (%) 4 (5.3) 0 4 (4.0) 9 (11.8) 9 (16.1) 0 0 

*Indicates a significant difference (p < 0.001, Wilcoxon rank-sum test) between cases and 
controls. Cells with an em-dash have no value because subjects were not included in that 
category.  
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Chapter 3 Figures 

Figure 3.1 The CA19-9 and sTRA assays. 

 

A) The epitopes detected by the CA19-9 and TRA-1-60 antibodies. B) Potential secretion of 

carriers of single or dual antigens. C) In the CA19-9 assay, both the capture and detection 

antibodies detect the glycan epitope of the CA19-9 antibody. In the sTRA assay, the capture 

antibodies target either the CA19-9 antigen or a protein carrier of sTRA. After sample 

incubation, the captured material is treated with sialidase and then probed with the TRA 

antibody. 
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Figure 3.2 Complementary elevations of CA19-9 and sTRA in model systems. 

 

A) Immunofluorescence staining of mouse xenografts of cell lines showed variable expression 

of the two markers. B) Quantification of the cell surface and secreted levels showed the certain 

cell lines produced primarily one or the other glycans. C) Immunofluorescence staining of PDX 

tissue also showed variable expression of the two markers. D) Quantification of the levels in the 

mouse tissue and sera showed complementary patterns of expression. 
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Figure 3.3 Complementary elevations in primary tumors and plasma. 

 

A) Immunofluorescence staining showed expression of one, both, or neither of the markers. B) 

The quantification of tissue and plasma levels revealed low correspondence between the two 

markers. A substantial group of patients was elevated in only sTRA, based on thresholds set to 

the highest control samples (dashed line)s, but the high correlation (0.74) was caused by one 

outlier value (arrowhead).   
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Figure 3.4 Biomarker panel development. 

 

A) The CA19-9 and sTRA assays were quantified in X case and X control plasma specimens. 

As an single marker, the CA19-9:sTRA assay performed similarly to CA19-9. B) The 

correlations between the sTRA markers and CA19-9 were very low, with samples elevated in 

one, both, or neither of the markers. C) A threshold was applied to each marker in the panel or 

to CA19-9 alone, and samples with an elevation in any marker were called as cases. In the 

panel optimized for specificity shown here, the panel identified more of the cases than CA19-9. 

D) The performance of both panels was better than CA19-9 in the training set and in the 

application of the predetermined thresholds to the 50-sample validation set. For both panels, the 

difference in the average of sensitivity and specificity was significant (p < 0.001). The difference 

is the average over 1000-fold bootstrapping analysis, and the error bars are the 95% confidence 

intervals. E) The breakdown of marker contributions and the improvement in final performance 

were similar between the training and validation sets. 
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Figure 3.5 Application to blinded samples 

 

The two biomarker panels were applied to a blinded set of 147 samples, using predetermined 

marker thresholds and classification rules. A) Both panels improved upon CA19-9. The 

difference in the average of sensitivity and specificity was significant (p < 0.001) for the 

specificity panel, based on 1000-fold bootstrapping analysis. B) The individual marker 

performances matched the training set. C) The sTRA and CA19-9 markers showed 

complementary elevations. The higher correlation (0.68) was caused by a sample that was very 

high in both (arrowhead). The dashed lines show the predetermined thresholds for the 

specificity panel. D) The improvements in either sensitivity or specificity were consistent 

between the training and test sets. E) The independent contributions of each panel member and 

the improvements of the panels over CA19-9 were consistent between the training and test 

sets. 
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3A.1 Supplementary Methods 

3A.1.1 Sandwich immunoassays on microarrays 

We printed forty-eight identical arrays onto glass microscope slides coated with ultra-thin 

nitrocellulose (PATH Slides, Grace BioLabs). We print microarrays using a contact printer 

(Aushon 2470, Aushon BioSystems) equipped with 110 μm diameter pins that deposit about 0.3 

nL per spot. Each array contained six replicate spots of each antibody in randomized positions 

within the array. The printed antibodies were CA19-9 (1116-NS-19-9, MyBioSource), anti- 

MUC5AC (45M1, Thermo Scientific), and anti-MUC16 (X325, Abcam). After printing, 

hydrophobic borders were imprinted onto the slides (SlideImprinter, The Gel Company, San 

Francisco, CA) to segregate the arrays and allow for individual sample incubations on each 

array. The arrays were blocked using 1% bovine serum albumin (BSA) in 1X phosphate 

buffered saline (1X PBS) plus 0.5% Tween-20 for one hour at room temperature. The slides 

were rinsed in 1X PBS plus 0.5% Tween-20, washed in the same buffer for 15 minutes, and 

dried by brief centrifugation at 160 x g, with printed arrays facing outside. 

To prepare the plasma samples, they were diluted two-fold or 25-fold into 1X PBS with final 

concentrations of 0.05% Tween-20, 0.05% Brij-35, an IgG blocking cocktail (100 μg/mL mouse 

and rabbit IgG and 50 μg/mL goat and sheep IgG (Jackson ImmunoResearch)) and protease 

inhibitor (Complete Mini EDTA-free Tablet, Roche Applied Science). We applied 6 μL of each 

plasma sample to each array and let the samples incubate overnight at 4 °C. Each unique 

sample was applied to three separate arrays. The arrays were washed in three changes of 

PBS/0.1% Tween-20 for three minutes each and dried by centrifugation (Eppendorf 5810R, 

rotor A-4-62, 1500 x g for three minutes). The arrays to be detected for the sTRA glycan were 

then treated with α2-3 neuraminidase (P0728L, New England Biolabs, Ipswich, MA) at 250 

U/mL in the supplied reaction buffer overnight at 37° C. 

The following day, the arrays were washed in three changes of PBS/0.1% Tween-20 for three 

minutes each and dried by centrifugation. We then incubated each array with a biotinylated 
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detection antibody, prepared at 3 μg/mL in PBS with 0.1% BSA and 0.1% Tween-20. The 

antibody was either CA19-9 (clone 1116-NS-19-9, MyBioSource) or TRA-1-60 (TRA-160, Novus 

Biologicals). The biotinylation was performed using a conjugation reagent (EZ-Link Sulfo-

NHSBiotin, Thermo Fisher) according to the manufacturer guidelines. After washing and drying 

the arrays as above, Cy5-conjugated streptavidin (Roche Applied Science) prepared at 2 μg/mL 

in PBS with 0.1% BSA and 0.1% Tween-20 was incubated for one hour at room temperature, 

followed by a final wash and dry. We scanned the slides for fluorescence using 633 nm 

excitation (Innopsys InnoScan 1100 AL). 

To quantify the signals, we used in-house software called SignalFinder (available upon request) 

to locate pixels containing signal in each spot. The program uses the SFT algorithm 129 without 

user intervention or adjustment of settings. We used a custom script to remove any outliers from 

the six replicate spots according to the Grubbs’ test. The script performs the Grubbs’ test for the 

spot with the greatest deviation from the mean and rejects the spot if the Grubbs’ statistic has p 

≥ 0.1. The script repeats until either no outliers or only four spots remain and outputs the 

geometric mean of the non-excluded replicate spots for each array. The script then averages 

values between replicate arrays. 

3A.1.2 Processing the samples and the biomarker data 

The samples were run in batches of 50-100 samples. Every sample was run in three replicates 

in each run, and every sample was run in at least three independent experiments. After 

quantifying the fluorescence signal for each replicate, the first step was to calibrate the signal. 

For CA19-9, we used a standard curve that was run in triplicate with each experiment. The 

fluorescence data from each replicate was calibrated to Units based on the standard curve, and 

then the value in Units was multiplied by the dilution factor to arrive at a final Units/mL value. 

The dilution factor was the amount by which the plasma sample was diluted prior to incubation 

on the array. 
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To calibrate the sTRA assays, we used a set of 15 calibrator samples. These samples were 

chosen to cover a range of high, medium, and low values for each of the assays. We used such 

samples because we had not developed standard material that could be used to produce a 

calibration curve. The mean fluorescence signal across the calibrator samples was acquired in 

initial experiments, and this value was taken as the baseline to which future experiments would 

be calibrated. For each experiment, the mean value of the calibrator samples was determined, 

and a correction factor was calculated by dividing the baseline mean by the experimental mean. 

Next, the value for each sample in the experimental set was multiplied by the correction factor to 

arrive at the final value. 

Each experimental batch included a common set of 15 control samples, by which we could 

assess reproducibility. With each experiment, we determined the correlation across the control 

samples between the new and previous data, and we determined the CV between replicates in 

the experiment and between separate experiments. 

The next step was to determine whether a sample value was above or below the threshold used 

in the biomarker evaluations. If the 95% confidence interval of the nine measurements crossed 

any of the thresholds (from the different panels) for a marker, we ran the assay again for that 

marker. If the confidence interval crossed the threshold but only one of the technical replicates 

crossed the threshold with respect to the mean, the sample was not re-run. 

To investigate the significance of the improvement, we performed bootstrapping analysis, in 

which the classification rules are applied to a sampling of the cases and controls over 1000 

iterations, and the 95% confidence interval of the difference in performance is determined. All 

statistical calculations were carried out using the R program, version R-3.2.2 

(https://cran.rproject.org/). 

3A.1.3 Threshold adjustment from 1:2 to 1:25 dilutions 

Plasma samples used in sandwich immunoassays are typically diluted into a buffer prior to 

incubation, and the amount of dilution is determined by the starting concentration of the analyte: 
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high-concentration analytes require high dilutions to achieve measureable responses, and the 

opposite is true for low-concentration analytes. 

In our previous biomarker research and in the training set, we used 2-fold dilutions to favor 

detection of the low-concentration analytes. In subsequent optmizations, however, we achieved 

better reproducibility and more accurate calibration of values using a 25-fold dilution for all 

assays. Therefore we ran the blinded test set at a 25-fold dilution. The predetermined 

thresholds derived from the training data could not simply be multipled by 12.5 (i.e. 25/2), 

because the changes in marker values were not linear with dilution. 

To convert the thresholds derived from the 197-sample training + validation sets to 25-fold 

dilution values, we ran a subset of the training set in parallel at a 2-fold dilution and at a 25-fold 

dilution. We then found the threshold in the 25-fold dilution data that provided the same 

classification—the same samples classified as high or low—as in the 2-fold dilution data. This 

process was done for each marker, and the resulting predetermined thresholds were applied to 

the blinded test-set data. 

Thus, in this study we used four thresholds for each marker: 1) derived from the 147-sample 

training set, which were applied to the 50-sample validation set; 2) derived from the combined 

training + validation sets (197 samples) at the 2-fold dilution; 3) adjusted from the 2-fold to the 

25-fold dilution, which were applied to the 147-sample, blinded test set; 4) optimized from the 

test set. The values are: 

 
 

 

 

 

 

 

 

  
Training 

(147 
samples) 

Training + 
validation 

(197 
samples) 

Test 
(adjusted 
to 25-fold 
dilution) 

Test 
(optimized) 

Specificity panel CA19-9 63.10 63.10 1500.00 136.14 
CA19-9:sTRA 398.11 794.33 9929.00 8649.68 
MUC5AC:sTRA 63.10 50.12 220.00 428.55 

Sensitivity panel CA19-9:sTRA 39.81 39.81 470.00 433.51 
MUC16:sTRA 63.10 63.10 100.00 116.68 

Specificity CA19-9 alone 31.06 21.00 208.00 115.52 
Sensitivity CA19-9 alone 0.048 0.022 6.00 0.89 
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3A.1.4 Immunofluorescence on tissue microarrays 

The multimarker-immunofluorescence methods followed those presented earlier 74,159,166. The 

tumor specimens were collected from extra portions of surgical resections for pancreatic cancer, 

and the tissue microarrays were generated from 1 mm cores of formalin-fixed, paraffin 

embedded (FFPE) samples. 

We performed immunofluorescence and chemical stains on 5 μm thick FFPE sections. We 

removed paraffin by three citrosol washes followed by ethanol/H2O rehydration (twice each at 

100%, 95%, 70%) and two washes in 1X PBS. We performed antigen retrieval by incubating the 

slides in citrate buffer at 100°C for 20 minutes, and blocked the slides in 1X phosphate-buffered 

saline containing 0.05% Tween-20 (PBST0.05) and 3% bovine serum albumin (BSA) for 1 hour 

at RT. Each round of immunofluorescence was incubated in PBST0.05 with 3% BSA containing 

two different antibodies (10μg/mL each) (see Table 3A.3 for details about the antibodies), one 

each labeled with sulfo-Cyanine5 (13320, Lumiprobe) and sulfo-Cyanine3 (11320, Lumiprobe) 

according to the supplier protocol. We incubated the antibody solution on a tissue section 

overnight at 4 °C in a humidified chamber. 

Next, we decanted the antibody solution and washed the slide three times for 3 minutes each, 

twice in PBST0.05% and once in 1X PBS. The slide was blotted dry and incubated with Hoechst 

33258 (1:1000 dilution in 1X PBS) for 10 minutes at RT. We washed the slides in 1X PBS twice 

for five minutes and added a coverslip and scanned the slide using a scanning-fluorescence 

microscope (Vectra, PerkinElmer). The microscope collected 19 images at each field-of-view, 

each image at a different emission wavelength. 

We stored the slides in a humidified chamber until removing the coverslip by slide immersion in 

deionized water at 37 °C for 30-60 minutes. We quenched the fluorescence by incubating the 

slide in 6% H2O2 in 250 mM sodium bicarbonate (pH 9.5-10) twice for 20 min. each at RT. The 

subsequent incubations and scanning steps were as described above. 
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To treat the slide with sialidase, we incubated a 1:200 dilution (from a 50,000 U/mL stock) of the 

enzyme (α2-3,6,8 Neuraminidase, P0720L, New England Biolabs) in 1X enzyme buffer (5 mM 

CaCl2, 50 mM pH 5.5 sodium acetate) overnight at 37 °C. We washed the slides as above prior 

to the following antibody incubations. The hematoxylin and eosin (H&E) staining followed a 

standard protocol with 5.5 - 6 minutes hematoxylin incubation and 3 minutes Eosin incubation.  

We used in-house software called SignalFinder (available upon request) to locate pixels 

containing signal in each image. The program uses our SFT algorithm 129 without user 

intervention or adjustment of settings. From the 19 images captured for each region, we 

selected the three that corresponded to the emission maxima of Hoechst 33258, Cy3, and Cy5. 

For each image, SignalFinder creates a map of the locations of pixels containing signal and 

computes the percentage of tissue-containing pixels that have signal. To arrive at a final number 

for each core, we averaged over all images for a core. We further analyzed and prepared the 

data using Microsoft Office Excel and GraphPad Pro, and we prepared the figures using Canvas 

14 and Canvas Draw (ACD Systems). 

3A.1.5 Cell culture and measuring cell-surface sTRA and CA19-9 

All cell lines were cultured in RPMI 1640 medium (Invitrogen) supplemented with 5% fetal 

bovine serum (Invitrogen). For three-dimensional cell culture, cells were trypsinized and washed 

with Dulbecco's Phosphate-Buffered Saline, and then suspended in culture medium (1×107 cells 

per mL). The cell suspensions were mixed with Matrigel (Corning) in a 1:3 volume ratio and 50 

μl of the Matrigel cell suspension were loaded into each well. The cells were feed with 50 μl 

culture medium on top of the Matrigel and cultured for 2-3 days prior to collection of the media 

for biomarker analysis using the antibody array methods described above. 

The following method was used to determine the cell-surface expression of the glycans. Cells 

were seeded into 96 well plate (2000 cells per well), and cultured for 3 days before fixed in 10% 

formalin for 20 min. After sialidase treatment (as above), the cells were sequentially incubated 

with biotin-conjugated TRA-1-60 or CA19-9 antibodies, and streptavidin-conjugated HRP. The 
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Relative Light Units (RUL) were generated with chemiluminescence reagents (AmershamTM 

ECLTM Western Blotting Detection Reagents, GE Healthcare), and measured with the plate 

reader Envision2104 (PerkinElmer). The cells were then stained with 20 μM Hoechst 33258 and 

the Relative Fluorescence Units (RFU) were measured. The RUL level was normalized with 

their correspondence RFU of Hoechst 33258 staining. The average of two independent 

experiments with standard error was presented. 

3A.1.6 Patient-derived xenografts 

The tissue and sera from the patient-derived xenografts were from a previously-reported study 

155. The tumor levels of the glycans were determined using immunofluorescence on tissue 

microarrays, and the biomarker levels in blood serum were determined using antibody sandwich 

arrays. Both methods are described above. 
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Chapter 3 Supplementary Figures 

Figure 3A.1 Correlations between secreted levels and cellular expression.  

 
A) The media levels of a marker are plotted with respect to the tissue levels of the 

corresponding marker for each cell line. Each point on the graph is a unique cell line. The matrix 

at right shows that the secreted levels of a particular marker correlated with the tissue levels of 

its corresponding marker, but not with other markers. B) For the PDX models, the serum levels 

are plotted with respect to the tumor levels. Each point is a unique PDX model. C) For the 

primary specimens, the blood plasma levels are plotted with respect to the tumor levels, and 

each point is an individual patient. The three sample types agree in the general correlation of 

the secreted and tissue levels of a given marker. 
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Figure 3A.2 Individual marker performance in stage I-II and stage III-IV cancers.  

 

 
The ROC curves for each marker are separately plotted for stage I-II and stage III-IV cancers in 
the A) training set and the B) test set. C) The summary of area-under-the-curve (AUC) values 
shows that CA19-9:sTRA was the best-performing marker in each analysis. In addition, the 
AUCs of all markers were slightly higher in stage III-IV cancers, but not substantially higher. 
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Chapter 3 Supplementary Tables 

Table 3A.1 Training set data 

  

ID 
CA19-

9 
CA19-9: 

sTRA 
MUC5A
C:sTRA 

MUC16: 
sTRA 

Status 
(0=control, 

1=case) Diagnosis type Cancer stage 

5144 0.48 116.03 0.00 0.00 0 
14 benign stricture; 
biliary dilation 0 

5146 4.81 88.01 13.86 120.04 0 
14 benign stricture; 
biliary dilation 0 

5149 0.56 169.97 8.22 7.70 0 
10 acute 
pancreatitis 0 

5150 0.40 10.29 0.00 0.00 0 
3 chronic 
pancreatitis 0 

5151 0.15 37.40 0.00 0.00 0 
10 acute 
pancreatitis 0 

5152 0.58 0.00 0.00 0.00 0 
14 benign stricture; 
biliary dilation 0 

5153 0.01 23.56 0.00 5.22 0 
14 benign stricture; 
biliary dilation 0 

5156 0.10 0.00 14.95 0.00 0 
10 acute 
pancreatitis 0 

5158 0.00 16.64 7.79 10.52 0 
3 chronic 
pancreatitis 0 

5159 4.69 35.55 13.59 1.73 0 

20 abnormal 
imaging test 
(benign) 0 

5160 0.00 14.97 5.00 8.13 0 

20 abnormal 
imaging test 
(benign) 0 

5162 3.41 70.58 14.95 0.00 0 
11 common bile 
duct stones 0 

5163 2.77 0.00 0.00 12.19 0 
11 common bile 
duct stones 0 

5164 2.52 205.72 14.29 101.81 0 

5 intraductal 
papillary mucinous 
neoplasm (surgical) 0 

5165 0.24 0.00 0.00 0.00 0 

20 abnormal 
imaging test 
(benign) 0 

5168 0.23 23.56 0.00 0.00 0 
3 chronic 
pancreatitis 0 

5177 0.21 23.56 14.95 0.00 0 

20 abnormal 
imaging test 
(benign) 0 

5178 1.99 42.43 9.23 56.28 0 

20 abnormal 
imaging test 
(benign) 0 

5184 0.52 5.65 5.13 97.10 0 

20 abnormal 
imaging test 
(benign) 0 

5185 41.21 518.51 324.72 939.66 0 
3 chronic 
pancreatitis 0 
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Table 3A.1 Cont’d 

  

5188 0.00 12.39 2.42 10.27 0 
11 common bile 
duct stones 0 

5193 0.41 0.00 0.00 0.00 0 

20 abnormal 
imaging test 
(benign) 0 

5210 16.37 213.77 9.00 49.04 0 
3 chronic 
pancreatitis 0 

5215 6.60 3.53 5.97 4.28 0 
10 acute 
pancreatitis 0 

5222 0.78 28.73 4.15 7.65 0 
10 acute 
pancreatitis 0 

5224 1.02 87.35 6.02 86.63 0 

20 abnormal 
imaging test 
(benign) 0 

5225 3.80 76.81 0.00 281.05 0 
3 chronic 
pancreatitis 0 

5227 0.00 0.00 0.00 9.49 0 
3 chronic 
pancreatitis 0 

5229 2.16 49.59 13.48 79.29 0 
3 chronic 
pancreatitis 0 

5232 2.76 15.36 3.56 58.53 0 
3 chronic 
pancreatitis 0 

5233 1.44 23.62 10.77 80.00 0 
10 acute 
pancreatitis 0 

5240 9.02 13.74 2.25 11.79 0 
14 benign stricture; 
biliary dilation 0 

5246 2.20 12.11 4.86 0.00 0 
3 chronic 
pancreatitis 0 

5248 17.18 73.12 11.33 76.59 0 
3 chronic 
pancreatitis 0 

5257 0.12 23.56 0.00 0.00 0 
10 acute 
pancreatitis 0 

5261 43.66 26.53 12.61 59.77 0 
11 common bile 
duct stones 0 

5262 6.47 35.67 3.23 3.99 0 
10 acute 
pancreatitis 0 

5263 5.81 33.17 10.35 39.38 0 
3 chronic 
pancreatitis 0 

5264 3.99 52.82 15.27 89.66 0 

20 abnormal 
imaging test 
(benign) 0 

5265 0.64 0.00 0.00 0.00 0 

55 intraductal 
papillary mucinous 
neoplasm (clinical) 0 

5269 3.08 28.10 12.86 65.67 0 

20 abnormal 
imaging test 
(benign) 0 

5278 5.10 0.00 0.00 0.00 0 
3 chronic 
pancreatitis 0 

5282 0.03 7.40 12.70 60.96 0 
3 chronic 
pancreatitis 0 
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5283 0.17 10.23 12.05 61.76 0 
14 benign stricture; 
biliary dilation 0 

5292 1.06 87.81 9.40 103.79 0 

20 abnormal 
imaging test 
(benign) 0 

5297 0.04 25.64 15.97 47.31 0 
3 chronic 
pancreatitis 0 

5302 0.08 0.00 6.53 5.22 0 
10 acute 
pancreatitis 0 

5303 2.13 28.61 15.90 7.16 0 
3 chronic 
pancreatitis 0 

5304 0.30 16.48 0.60 5.65 0 

20 abnormal 
imaging test 
(benign) 0 

5308 10.76 19.17 28.29 48.24 0 
3 chronic 
pancreatitis 0 

5310 6.17 68.84 15.50 78.12 0 
10 acute 
pancreatitis 0 

5312 0.00 28.26 11.89 8.02 0 
3 chronic 
pancreatitis 0 

5315 8.97 157.66 10.33 9.31 0 
14 benign stricture; 
biliary dilation 0 

5316 0.00 27.07 9.31 37.63 0 
10 acute 
pancreatitis 0 

5317 6.33 192.95 0.00 0.00 0 
3 chronic 
pancreatitis 0 

5326 0.09 10.95 8.77 10.50 0 
14 benign stricture; 
biliary dilation 0 

5329 5.22 27.58 8.70 12.01 0 
3 chronic 
pancreatitis 0 

5334 0.62 257.96 0.00 8.55 0 
3 chronic 
pancreatitis 0 

5335 9.10 378.59 3.17 3.63 0 

16 primary 
sclerosing 
cholangitis 0 

5337 2.07 88.77 10.09 9.47 0 

20 abnormal 
imaging test 
(benign) 0 

5343 0.25 28.54 5.51 32.42 0 

20 abnormal 
imaging test 
(benign) 0 

5344 0.74 16.05 8.59 51.13 0 

20 abnormal 
imaging test 
(benign) 0 

5358 0.02 13.87 6.91 5.42 0 

20 abnormal 
imaging test 
(benign) 0 

5361 2.21 0.00 0.00 0.00 0 
10 acute 
pancreatitis 0 

5364 0.04 19.32 5.96 11.43 0 
3 chronic 
pancreatitis 0 
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5368 0.22 57.51 16.01 31.27 0 

55 intraductal 
papillary mucinous 
neoplasm (clinical) 0 

5369 0.00 79.40 26.82 101.96 0 
14 benign stricture; 
biliary dilation 0 

5373 0.45 18.87 14.40 63.11 0 

20 abnormal 
imaging test 
(benign) 0 

5374 20.90 8.77 3.92 4.09 0 

20 abnormal 
imaging test 
(benign) 0 

5376 0.22 9.66 8.23 48.54 0 

20 abnormal 
imaging test 
(benign) 0 

5378 1.40 137.06 17.24 41.84 0 
3 chronic 
pancreatitis 0 

5379 0.10 22.02 3.38 5.13 0 

20 abnormal 
imaging test 
(benign) 0 

5382 0.63 17.77 8.56 17.97 0 

20 abnormal 
imaging test 
(benign) 0 

5383 1.25 29.63 10.76 14.04 0 

20 abnormal 
imaging test 
(benign) 0 

5387 19.99 31.93 9.28 6.04 0 

55 intraductal 
papillary mucinous 
neoplasm (clinical) 0 

5389 0.00 10.29 6.93 25.44 0 
11 common bile 
duct stones 0 

5393 0.00 0.00 0.00 0.00 0 
11 common bile 
duct stones 0 

5394 0.15 27.11 15.83 49.98 0 
11 common bile 
duct stones 0 

6069 2.85 0.00 14.95 0.00 0 
10 acute 
pancreatitis 0 

6071 1.70 0.00 0.00 0.00 0 
10 acute 
pancreatitis 0 

6073 0.56 40.81 0.00 0.00 0 
14 benign stricture; 
biliary dilation 0 

6076 0.00 9.62 0.00 0.00 0 
10 acute 
pancreatitis 0 

6078 0.78 0.00 4.32 17.24 0 

20 abnormal 
imaging test 
(benign) 0 

6079 0.12 0.00 0.00 0.00 0 

20 abnormal 
imaging test 
(benign) 0 

6084 0.00 23.56 0.00 0.00 0 
14 benign stricture; 
biliary dilation 0 

6086 0.00 0.00 0.00 0.00 0 
10 acute 
pancreatitis 0 
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6094 6.19 709.96 19.15 52.04 0 
14 benign stricture; 
biliary dilation 0 

6098 0.77 37.40 14.95 13.68 0 
10 acute 
pancreatitis 0 

6101 0.84 23.56 0.00 0.00 0 
10 acute 
pancreatitis 0 

6102 0.12 23.56 0.00 0.00 0 
10 acute 
pancreatitis 0 

6105 0.27 7.14 10.57 7.04 0 
14 benign stricture; 
biliary dilation 0 

6106 0.62 63.01 0.00 0.00 0 
10 acute 
pancreatitis 0 

6134 0.31 0.00 0.00 0.00 0 
14 benign stricture; 
biliary dilation 0 

6138 3.30 0.00 0.00 0.00 0 
3 chronic 
pancreatitis 0 

6139 1.80 0.00 0.00 0.00 0 

20 abnormal 
imaging test 
(benign) 0 

6142 59.29 3092.98 14.95 0.00 0 
14 benign stricture; 
biliary dilation 0 

6144 0.90 403.64 0.00 0.00 0 

20 abnormal 
imaging test 
(benign) 0 

6149 15.04 2783.54 0.00 0.00 0 
10 acute 
pancreatitis 0 

6151 2.04 23.56 0.00 17.24 0 
3 chronic 
pancreatitis 0 

6157 5.38 23.56 0.00 7.04 0 

20 abnormal 
imaging test 
(benign) 0 

6091 9.56 560.55 8.23 0.00 1 
1 pancreatic 
adenocarcinoma 1 

6097 4.04 0.00 0.00 0.00 1 
1 pancreatic 
adenocarcinoma 1 

6122 23.80 611.47 16.92 61.46 1 
1 pancreatic 
adenocarcinoma 1 

5092 134.35 349.83 13.63 74.61 1 
1 pancreatic 
adenocarcinoma 2 

5100 24.59 869.06 12.13 31.69 1 
1 pancreatic 
adenocarcinoma 2 

5104 4.00 91.59 14.28 94.81 1 
1 pancreatic 
adenocarcinoma 2 

5107 0.61 18.93 14.10 110.31 1 
1 pancreatic 
adenocarcinoma 2 

5111 5.31 410.17 4.08 50.66 1 
1 pancreatic 
adenocarcinoma 2 

5112 19.67 2236.53 28.76 98.53 1 
1 pancreatic 
adenocarcinoma 2 

5113 26.97 4972.93 53.39 118.97 1 
1 pancreatic 
adenocarcinoma 2 
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5114 2.95 9720.25 8383.52 0.00 1 
1 pancreatic 
adenocarcinoma 2 

5124 10.43 53.35 17.06 93.68 1 
1 pancreatic 
adenocarcinoma 2 

5125 11.98 158.69 0.00 21.72 1 
1 pancreatic 
adenocarcinoma 2 

5126 17.10 924.15 1.51 5.15 1 

1 pancreatic 
adenocarcinoma/52
8 pseudopapillary 
tumor 2 

5129 7.28 1976.18 4.28 6.13 1 
1 pancreatic 
adenocarcinoma 2 

5130 121.33 3673.97 6.44 11.78 1 
1 pancreatic 
adenocarcinoma 2 

5143 0.70 87.29 8.53 3.45 1 
1 pancreatic 
adenocarcinoma 2 

5169 6.64 434.34 26.46 54.97 1 
1 pancreatic 
adenocarcinoma 2 

5174 5.93 1620.06 9.42 53.09 1 
1 pancreatic 
adenocarcinoma 2 

5182 15.22 1339.82 0.00 360.54 1 
1 pancreatic 
adenocarcinoma 2 

5191 0.00 863.49 679.14 3483.08 1 
1 pancreatic 
adenocarcinoma 2 

5197 19.31 2582.57 43.23 88.92 1 
1 pancreatic 
adenocarcinoma 2 

5202 35.89 928.78 0.00 0.00 1 
1 pancreatic 
adenocarcinoma 2 

5209 8.33 70.69 0.00 0.00 1 

521 intraductal 
papillary mucinous 
neoplasm 
degenerated into 
adenocarcinoma 2 

5219 2.91 0.00 0.00 0.00 1 
1 pancreatic 
adenocarcinoma 2 

5221 19.00 1549.39 5.35 6.21 1 
1 pancreatic 
adenocarcinoma 2 

5235 16.53 311.48 10.56 49.11 1 
1 pancreatic 
adenocarcinoma 2 

5245 7.17 123.51 0.00 0.00 1 
1 pancreatic 
adenocarcinoma 2 

5266 1.86 147.21 10.14 8.85 1 
1 pancreatic 
adenocarcinoma 2 

5284 0.22 416.20 115.38 145.13 1 

1 pancreatic 
adenocarcinoma/5 
intraductal papillary 
mucinous 
neoplasm (surgical) 2 

5293 39.38 1524.29 10.97 69.00 1 
1 pancreatic 
adenocarcinoma 2 

5296 0.02 14.05 13.61 45.91 1 
1 pancreatic 
adenocarcinoma 2 
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5300 7.25 536.47 31.96 84.63 1 
1 pancreatic 
adenocarcinoma 2 

5322 51.26 22339.47 154.72 88.86 1 
1 pancreatic 
adenocarcinoma 2 

5324 1.95 4133.22 2459.81 137.55 1 
1 pancreatic 
adenocarcinoma 2 

5392 0.00 53.56 21.03 589.57 1 
1 pancreatic 
adenocarcinoma 2 

6059 45.73 1793.88 34.74 57.69 1 
1 pancreatic 
adenocarcinoma 2 

6061 28.67 875.08 2.29 67.08 1 
1 pancreatic 
adenocarcinoma 2 

6062 1.55 183.60 11.87 17.24 1 
1 pancreatic 
adenocarcinoma 2 

6067 49.86 1147.36 8.23 0.00 1 
1 pancreatic 
adenocarcinoma 2 

6074 27.52 534.02 0.00 17.24 1 
1 pancreatic 
adenocarcinoma 2 

6081 14.39 1287.64 70.30 17.24 1 
1 pancreatic 
adenocarcinoma 2 

6085 3.10 428.03 14.95 0.00 1 
1 pancreatic 
adenocarcinoma 2 

6087 0.00 0.00 11.87 0.00 1 
1 pancreatic 
adenocarcinoma 2 

6089 67.18 609.54 27.13 57.84 1 
1 pancreatic 
adenocarcinoma 2 

6092 101.74 2912.91 404.77 60.33 1 
1 pancreatic 
adenocarcinoma 2 

6095 23.46 486.15 10.07 119.98 1 
1 pancreatic 
adenocarcinoma 2 

6096 4.38 60.66 18.58 52.59 1 
1 pancreatic 
adenocarcinoma 2 

6099 0.39 46.32 318.12 59.30 1 
1 pancreatic 
adenocarcinoma 2 

6107 2.30 22.90 23.74 131.40 1 
1 pancreatic 
adenocarcinoma 2 

6115 94.83 7677.78 10.94 245.67 1 
1 pancreatic 
adenocarcinoma 2 

6117 11.88 453.71 9.51 52.06 1 
1 pancreatic 
adenocarcinoma 2 

6121 9.59 99.16 14.95 0.00 1 
1 pancreatic 
adenocarcinoma 2 

6128 3.51 25.21 14.25 79.31 1 
1 pancreatic 
adenocarcinoma 2 

6143 0.44 189.13 7.82 46.22 1 
1 pancreatic 
adenocarcinoma 2 

6145 0.30 39.68 11.69 73.41 1 
1 pancreatic 
adenocarcinoma 2 

6146 125.10 40800.00 86.95 7390.89 1 
1 pancreatic 
adenocarcinoma 2 

6147 0.08 17.32 10.94 76.59 1 
1 pancreatic 
adenocarcinoma 2 
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6148 40.08 338.59 32.65 75.85 1 
1 pancreatic 
adenocarcinoma 2 

6153 82.99 10107.12 59.81 973.95 1 
1 pancreatic 
adenocarcinoma 2 

6155 0.04 3918.66 3676.80 8677.99 1 
1 pancreatic 
adenocarcinoma 2 

5096 38.58 2155.24 9.10 2.54 1 
1 pancreatic 
adenocarcinoma 3 

5116 1.18 7103.85 590.17 118775 1 
1 pancreatic 
adenocarcinoma 3 

5122 3.00 10.71 84.84 207.08 1 
1 pancreatic 
adenocarcinoma 3 

5135 28.73 1380.86 10.92 102.73 1 
1 pancreatic 
adenocarcinoma 3 

5171 29.10 39.90 6.63 5.09 1 
1 pancreatic 
adenocarcinoma 3 

5207 132.66 700.71 33.12 173.25 1 
1 pancreatic 
adenocarcinoma 3 

5208 25.20 431.13 5.36 73.59 1 
1 pancreatic 
adenocarcinoma 3 

5216 49.49 2274.78 23.73 399.84 1 
1 pancreatic 
adenocarcinoma 3 

5217 258.69 5900.08 85.68 359.15 1 
1 pancreatic 
adenocarcinoma 3 

5223 1.38 0.00 0.00 257.40 1 
1 pancreatic 
adenocarcinoma 3 

5226 6.30 1769.80 6323.14 1742.62 1 
1 pancreatic 
adenocarcinoma 3 

5236 76.13 7309.85 1.21 7.35 1 
1 pancreatic 
adenocarcinoma 3 

5243 69.84 135.08 26.82 31.20 1 
1 pancreatic 
adenocarcinoma 3 

5247 99.90 1290.70 0.00 0.00 1 
1 pancreatic 
adenocarcinoma 3 

5286 51.77 3815.06 84.03 47.09 1 
1 pancreatic 
adenocarcinoma 3 

5299 37.98 141.98 0.00 0.00 1 
1 pancreatic 
adenocarcinoma 3 

5306 12.29 870.54 13.26 41.53 1 
1 pancreatic 
adenocarcinoma 3 

5355 39.50 2047.09 12.81 54.86 1 
1 pancreatic 
adenocarcinoma 3 

5357 166.63 25528.18 6621.20 
14193.6

9 1 
1 pancreatic 
adenocarcinoma 3 

5405 1175.5 2045.46 712.99 108.36 1 
1 pancreatic 
adenocarcinoma 3 

5099 56.07 15718.97 
11234.0

6 
35202.2

4 1 
1 pancreatic 
adenocarcinoma 4 

5103 76.62 390.39 55.64 11.33 1 
1 pancreatic 
adenocarcinoma 4 

5105 435.48 32598.42 4419.00 8046.11 1 
1 pancreatic 
adenocarcinoma 4 
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5127 322.25 3496.84 101.05 1263.09 1 
1 pancreatic 
adenocarcinoma 4 

5136 58.84 5557.10 46.05 7374.91 1 
1 pancreatic 
adenocarcinoma 4 

5139 1476.5 197.54 8.67 47.37 1 
1 pancreatic 
adenocarcinoma 4 

5187 313.95 296.49 90.80 0.00 1 
1 pancreatic 
adenocarcinoma 4 

5201 10.96 740.82 193.79 202.65 1 
1 pancreatic 
adenocarcinoma 4 

5214 82.12 2298.12 5.75 162.45 1 
1 pancreatic 
adenocarcinoma 4 

5250 4.20 1565.51 4.86 29.03 1 
1 pancreatic 
adenocarcinoma 4 

5259 2.32 9.85 106.08 166.72 1 
1 pancreatic 
adenocarcinoma 4 

5285 54.38 241.01 16401.9 66422.7 1 
1 pancreatic 
adenocarcinoma 4 

5323 2132.3 3347.95 60.43 517.20 1 
1 pancreatic 
adenocarcinoma 4 

5377 19.28 938.69 13.37 84.94 1 
1 pancreatic 
adenocarcinoma 4 

5397 27.39 1171.35 3.54 317.21 1 
1 pancreatic 
adenocarcinoma 4 

5398 1515.2 4312.47 2684.11 6820.12 1 
1 pancreatic 
adenocarcinoma 4 
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Table 3A.2 Analysis of covariates between the biomarker data and clinical information  

Training set  
      

  

Case 
 

Control 
  

Age 
 

N corr p-value N corr p-value 

 
CA19-9  97 -0.14 0.17 100 0.28 0.0046 

 
CA19-9:sTRA 97 0.087 0.4 100 0.11 0.29 

 
MUC5AC:sTRA 97 0.043 0.68 100 0.019 0.85 

 
MUC16:sTRA 97 -0.007 0.95 100 -0.004 0.97 

   
     

Test set        

  Case   Control   

Age  N corr p-value N corr p-value 

 CA19-9  71 -0.003 0.98 76 0.12 0.32 

 CA19-9:sTRA 71 -0.052 0.67 76 0.14 0.24 

 MUC5AC:sTRA 71 -0.1 0.39 76 0.3 0.0077 

 MUC16:sTRA 71 0.091 0.45 76 -0.18 0.13 

        

Training set 
  

Case 
   

Control 
   

Gender  
 

N(%) median IQR p-value    N (%) median IQR p-value 

 
CA19-9  Female 47(48.5) 8.3 (2.3,33.0) 0.0033 54(54.0) 0.7 (0.2,2.9) 0.69 

  
Male 50(51.5) 28.9 (9.6,80.6)   46(46.0) 0.8 (0.1,5.1)   

 
CA19-9: 

sTRA 

Female 47(48.5) 700.7 (135.4,1873.0) 0.52 54(54.0) 23.6 (6.1,42.0) 0.45 

 
Male 50(51.5) 872.8 (150.1,2830.3)   46(46.0) 23.6 (11.7,67.4)   

 
MUC5AC: 

sTRA 

Female 47(48.5) 14.9 (8.4,78.0) 0.62 54(54.0) 5.3 (0.0,12.8) 0.89 

 
Male 50(51.5) 13.9 (7.0,58.7)   46(46.0) 8 (0.0,10.5)   

 
MUC16: 

sTRA 

Female 47(48.5) 73.6 (14.3,187.9) 0.93 54(54.0) 6.5 (0.0,51.5) 0.67 

 
Male 50(51.5) 64.3 (18.4,133.2)   46(46.0) 9.5 (0.0,45.9)   

   
       

Test set   Case    Control    

Gender   N(%) median IQR p-value N (%) median IQR p-value 

 CA19-9  Female 34(47.9) 102.3 (24.9,520.6) 0.59 43(56.6) 7 (5.6,14.4) 0.49 

  Male 37(52.1) 106.1 (33.5,207.7)   33(43.4) 6.8 (5.3,12.3)   

 CA19-9: 
sTRA 

Female 34(47.9) 9399.5 (1799.8,57059.8) 0.95 43(56.6) 617.9 (355.9,1214.7) 0.66 

 Male 37(52.1) 13217.1 (2781.1,35766.5)  33(43.4) 568.3 (335.6,924.8)   

 MUC5AC: 
sTRA 

Female 34(47.9) 129.1 (70.0,190.0) 0.9 43(56.6) 79.2 (57.6,112.6) 0.98 

 Male 37(52.1) 113.8 (78.3,183.6)   33(43.4) 80.5 (53.3,114.5)   

 MUC16: 
sTRA 

Female 34(47.9) 52.5 (36.9,73.6) 0.27 43(56.6) 57.8 (32.6,74.9) 0.62 

 Male 37(52.1) 63.7 (41.2,92.9)   33(43.4) 60.7 (40.7,94.5)   
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Training set   
    

 
 

Stage 
  

N(%) median IQR p-value   

 
CA19-9  I-II 61(62.9) 9.6 

(2.3
,27.
0) 0.0000066 

  

  
III-IV 36(37.1) 53.1 

(23.
7,1
41.
2)   

  

 

CA19-9: 
sTRA I-II 61(62.9) 486.1 

(91.
6,1
549
.4) 0.021 

  

  
III-IV 36(37.1) 1473.2 

(36
6.9,
357
6.4)   

  

 

MUC5AC: 
sTRA I-II 61(62.9) 13.6 

(8.2
,32.
0) 0.052 

  

  
III-IV 36(37.1) 39.6 

(8.2
,12
8.0)   

  

 

MUC16: 
sTRA I-II 61(62.9) 57.7 

(8.8
,93.
7) 0.005 

  

  
III-IV 36(37.1) 164.6 

(38.
9,7
03.
7)   

  

       

Test set 
  

    

Stage   N(%) median IQR p-value 

 CA19-9  I-II 57(80.3) 90.9 (22.4,173.9) 0.023 

  III-IV 14(19.7) 308.2 (69.4,927.4)   

 CA19-9: 
sTRA 

I-II 57(80.3) 8901.4 (1743.8,32717.4) 0.017 

 III-IV 14(19.7) 32219.4 (11077.4,177285.9)   

 MUC5AC: 
sTRA 

I-II 57(80.3) 109.2 (67.4,173.0) 0.045 

 III-IV 14(19.7) 156.7 (103.9,1844.7)   

 MUC16: 
sTRA 

I-II 57(80.3) 59.2 (38.1,92.0) 0.57 

 III-IV 14(19.7) 52.8 (33.5,104.7)  
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  Key   

  Control types  

  1 Healthy 

  2 Benign stricture 

  3 Chronic diabetes 

  4 Chronic pancreatitis 

  5 Cyst 

    

Training set    

Control type  
 

N(%) median IQR p-value 

 
CA19-9  1 21(21.0) 0.8 (0.1,2.2) 0.63 

  
2 23(23.0) 0.5 (0.0,5.5)   

  
3 27(27.0) 0.7 (0.2,1.9)   

  
4 25(25.0) 2.2 (0.2,5.2)   

  
5 4(4.0) 1.6 (0.5,6.9)   

 
CA19-9: sTRA 1 21(21.0) 23.6 (0.0,37.4) 0.68 

  
2 23(23.0) 23.6 (10.3,83.7)   

  
3 27(27.0) 18.9 (9.2,32.6)   

  
4 25(25.0) 25.6 (15.4,73.1)   

  
5 4(4.0) 44.7 (23.9,94.6)   

 
MUC5AC: sTRA 1 21(21.0) 3.2 (0.0,9.3) 0.61 

  
2 23(23.0) 6.9 (0.0,13.2)   

  
3 27(27.0) 6 (2.0,9.7)   

  
4 25(25.0) 7.8 (0.0,12.7)   

  
5 4(4.0) 11.8 (7.0,14.7)   

 
MUC16: sTRA 1 21(21.0) 0 (0.0,7.7) 0.05 

  
2 23(23.0) 9.3 (0.0,37.7)   

  
3 27(27.0) 9.5 (2.9,53.7)   

  
4 25(25.0) 12 (7.2,49.0)   

  
5 4(4.0) 18.7 (4.5,48.9)   

       

Test set         

Control type   N(%) median IQR p-value 

 CA19-9  1 20(26.3) 7.6 (6.1,10.1) 0.000026 

  2 8(10.5) 16.1 (7.3,22.2)   

  3 24(31.6) 2.4 (0.8,7.9)   

  4 15(19.7) 19.5 (7.8,42.2)   

  5 9(11.8) 6.9 (6.7,8.4)   
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 CA19-9: sTRA 1 20(26.3) 373.8 (249.7,687.2) 0.0061 

  2 8(10.5) 1401.5 (383.8,2756.8)   

  3 24(31.6) 610.4 (446.2,973.4)   

  4 15(19.7) 1096 (607.0,2115.3)   

  5 9(11.8) 325.4 (183.5,412.4)   

 MUC5AC: sTRA 1 20(26.3) 71.9 (57.1,98.2) 0.9 

  2 8(10.5) 87.1 (66.7,111.5)   

  3 24(31.6) 89 (57.8,108.8)   

  4 15(19.7) 91.3 (51.2,106.1)   

  5 9(11.8) 79.2 (57.5,119.4)   

 MUC16: sTRA 1 20(26.3) 56.4 (39.3,76.2) 0.078 

  2 8(10.5) 63.2 (47.1,78.5)   

  3 24(31.6) 42.7 (28.4,63.3)   

  4 15(19.7) 69.9 (55.5,99.1)   

  5 9(11.8) 65.2 (42.0,91.0)   

       

 
 
 
   

   

 p-value methods   Pooled cancer stages 

 Age Spearman's correlation  I-II I, IA, IB, II, IIA, IIB 

 Gender Wilcoxon rank sum test  III-IV III-IV: III, IIIA, IV 

 Stage/control type Kruskal-Wallis rank sum test    
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Table 3A.3 Application of the specificity panel and CA19-9 to blinded samples. 



 

142 
 

Table 3A.3 Cont’d 
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Table 3A.3 Cont’d  
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Table 3A.3 Cont’d  
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Table 3A.3 Cont’d  

*FN, false negative; TP, true positive; FP, false positive; TN, true negative.  

0=benign (Control), 1=PDAC (Case) 
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Table 3A.4 Application of the sensitivity panel and CA19-9 to blinded samples. 
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Table 3A.4 Cont’d 
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Table 3A.4 Cont’d  
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Table 3A.4 Cont’d  

*FN, false negative; TP, true positive; FP, false positive; TN, true negative. 
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Chapter 4 Figures 

Figure 4.1 The CA19-9 and sTRA glycans and their detection on tissue microarrays  

 

A.  The CA19-9 and sTRA glycans in representative structural form.  B.  Multimarker 
immunofluorescence workflow shows the detection with cy5 and cy3 conjugated antibodies in 
successive rounds followed by H&E at the end of immunofluorescence used for multidetection 
of antigens on tissues. 
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Figure 4.2 Validation of the CA19-9 and sTRA determined glycotypes.   

 

A. For tumor and metastasis analysis, we used 6 TMAs consisting of 77 cases with 64 subjects 
with matched tumor and adjacent tissues (2 cores per patient), 13 subjects with matched tumor, 
tumor lymph nodes (TLN) and normal lymph nodes (NLN), 25 total subjects with normal lymph 
nodes, and 40 subjects with matched tumors and metastases from one side and 11 matched 
tumors and metastases with larger 5mm cores from an independent site. B. Aggregate analysis 
of sTRA-only, CA19-9 only, dual expression, and all CA19-9 and all sTRA showing significant 
associations between tumor and adjacent tissues (****p<0.0001). 
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Figure 4.3 Tumor lymph nodes and metastases show correlation with their origin tumors.   

 

A. Tumor lymph node vs normal lymph node, each of the glycotypes (CA19-9 only, sTRA only, 
dual (CA19-9/sTRA) and the overall population expression for total CA19-9 and total sTRA) 
shows significant elevation over normal lymph node controls (*p<0.05, **p<0.01, ***p<0.001). B. 
Cross correlations of normalized data (normalization testing in Supplemental Figure 4A.1) for 
tumor vs tumor lymph nodes for CA19-9 only, sTRA only and dual CA19-9/sTRA expression 
showing strongest correlations within each marker from tumor (T) to tumor lymph node (TLN). 
The gray bands around the regression represent the 95% CI (B,C, and D).  C. Distant 
metastasis with correlation to baseline tumor biomarkers.  TMAs1-3 aggregate cross correlation 
analysis for CA19-9 only, sTRA only, and dual expression. sTRA expression showed the 
strongest correlation between tumor and metastasis.  Additional correlation combinations are in 
Figure 4A.3.  D. A small tumor-matched metastasis validation set from UNMC performs 
inconsistently with the previous aggregated TMA set for distant metastases, but aligned fairly 
well with the correlation patterns for lymph nodes. B-D. Pearson’s correlation grids for the cross 
correlations shown in the scatterplots adjacent show correlations consistent with the sample 
distributions adjacent to the grid. 
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Figure 4.4 Survival analysis shows weak anticorrelation for the upper and lower ends of dual 
expression.  

A. Progression-free survival analysis shows improved time to progression for dual glycan-

expressing tumors (significance testing by logrank).  A table shows 43 and 42 patients tissue 

microarrays 1 and 2, respectively, with overall survival for analysis. B. We analyzed a second 

tissue microarray independent from our preliminary data and examined overall survival on both 

tissue microarrays.  Two group stratification (high/low) fell short of validation.  Data is shown for 

markers above and below thresholds for optimized panel thresholds.  C. Three threshold data is 

shown by TMA or combined group.  Threshold 1 was set by progression-free survival 

optimization using MSS thresholding on TMA 1.  Overall survival threshold was determined for 

TMA 2, and an average of thresholds 1 and 2 was used for threshold three. D. Using the 

thresholds of the three markers determined to contribute most to survival differences by MSS 

optimization, there are 8 possible groups (left panel).  The distribution of these groups is shown 

for thresholds 1 and 3 and the survival of Groups 6 (sTRA+/Dual+) and 7 (sTRA+/CA19-9 

only+) was plotted against all non-Groups 6 and 7 for survival differences.  Group 6 shows 

longer survival and Group 7 shows short survival.  Log rank is p<0.01 for differences between 

the groups, bands represent 95% confidence interval.  
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Chapter 4 Supplemental Figures 

Figure 4A.1 Normal Distribution testing for metastatic data with normalization  

 

A. Tumor lymph node biomarker distribution shows log normal distribution for all markers except 
CA19-9.  Log-normal corrections are shown at right.  B. Metastasis biomarker distribution shows 
log normal distribution in all biomarkers with log normal distribution normalization at the right. 
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Figure 4A.2 Regional and distant metastasis glycotype correlations 
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Figure 4A.2 Cont’d 

A. Tumor vs Tumor lymph node glycotype correlations show strong the strongest correlations 

between the same glycotype (i.e. CA19-9 tumor vs CA19-9 lymph node), with notable lack of 

correlation between CA19-9 and sTRA from tumor to tumor lymph node.  Tumor sTRA also 

shows a moderate correlation to dual expression in tumor lymph nodes.  B. Set 1 Tumor vs 

Metastasis glycotype correlation shows strong correlation between sTRA and dual in tumor with 

the same glycotype in distant metastases.  Notable lack of correlation between CA19-9 and 

sTRA as in lymph node metastases.  C.  Set 2 Tumor vs Metastasis demonstrates a similar 

pattern to lymph nodes.  Linear regression calculated by least squares with 95% confidence 

interval. 

Figure 4A.3 Survival distribution and association with glycan expression  

 

A. Tertile distributions of the three markers used in panel analysis do not show significant 
differences between expression and survival.  B. The absolute value of glycan expression is not 
a significant determinant of survival.  Thresholding and glycan combination have more 
significant impact on survival. 
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Table 4A.1 Demographic data for patients on clinical tissue microarrays 

  

TMA Race Sex Age 
Vital 
Status Recurrence 

Type of 
Recurrence 

Histological 
Type 

Histological 
Grade Staging 

TMA1 WHITE M 75   Unknown   
Adeno-
carcinoma 

moderately 
differentiated T3NOMX 

TMA1 WHITE M 76   Unknown   
Cholangio-
carcinoma 

moderately 
differentiated T3N1MX 

TMA1 WHITE F 61   YES 

distant 
recurrence - 
GAST 

Adeno-
carcinoma 

well 
differentiated T3NOMX 

TMA1 WHITE M 73   YES 

Distant 
recurrence - 
CNS 

Mucinous 
Adeno-
carcinoma     

TMA1 WHITE M 80   Unknown   
Adeno-
carcinoma 

poorly 
differentiated T3N1MX 

TMA1 WHITE F 69   Unknown   
Adeno-
carcinoma 

moderately 
differentiated T3NOMX 

TMA1 BLACK M 73   Unknown   
Adeno-
carcinoma 

well 
differentiated T3N1MX 

TMA1 BLACK F 61     

metasticized 
to liver and 
omentum 

Adeno-
carcinoma 

poorly 
differentiated T4N1Mx 

TMA1 WHITE M 65   Unknown   
Adeno-
carcinoma 

well 
differentiated T3N1MX 

TMA1 BLACK F 67   Unknown   
Adeno-
carcinoma 

poorly 
differentiated T3N1MX 

TMA1 WHITE M 69   Unknown   
Adeno-
carcinoma   T3N1MX 

TMA1 WHITE M 71     
Never 
disease free 

Adeno-
carcinoma 

poorly 
differentiated T3N1MX 

TMA1 WHITE M 83     Disease free 
Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA1 WHITE F 63     
Possible 
recurrence 

Adeno-
carcinoma 

poorly 
differentiated T3N1MX 

TMA1 WHITE M 78     Disease free 
Adeno-
carcinoma 

moderately 
differentiated T3N1  

TMA1 BLACK M 66     
Never 
disease free 

Adeno-
carcinoma 

poorly 
differentiated T3N1MX 

TMA2 WHITE F 58     Disease free 
Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA2 WHITE M 69   Unknown   
Adeno-
carcinoma 

poorly 
differentiated T3NXMX 

TMA2 BLACK F 51   Unknown   
Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA2 WHITE M 42   Unknown   
Adeno-
carcinoma 

poorly 
differentiated T3N1MX 

TMA2 WHITE F 66   Unknown   
Adeno-
carcinoma 

moderately 
differentiated T2N1MX 
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TMA2 WHITE F 87     Disease free 
Adeno-
carcinoma 

moderately 
differentiated T1NOMX 

TMA2 WHITE F 54   YES 
Local 
Recurrence 

Adeno-
carcinoma   T2NOMX 

TMA2 WHITE M 56 Dead   
Never 
disease free 

Adeno-
carcinoma   T3N1MX 

TMA2 BLACK F 62     
Never 
disease free 

Adeno-
carcinoma 

poorly 
differentiated T3NOMX 

TMA2 WHITE F 76       

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3NOMX 

TMA2 BLACK F 68   YES 
Local 
recurrence 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA2 WHITE F 37   YES 
Distant 
recurrence 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA2 WHITE M 78     
Never 
disease free 

Adeno-
carcinoma 

moderately 
differentiated T2N1bMX 

TMA2 WHITE M 70     
Never 
disease free 

Adeno-
carcinoma   T2NOMX 

TMA3 BLACK M 48     
Never 
diease free 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 BLACK M 62   YES 
Local 
recurrence 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 WHITE F 69     
Never 
diease free 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 WHITE F 82     
Never 
diease free 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 WHITE F 77     Disease free 
Adeno-
carcinoma 

poorly 
differentiated T3NOMX 

TMA3 WHITE M 66     Disease free 
Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 WHITE F 51   YES 

Distant 
recurrence - 
lung 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T2NOMX 

TMA3 WHITE M 75     Disease free 
Cholangio-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 WHITE M 62     
Never 
diease free 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA3 WHITE F 82     Disease free 
Adeno-
carcinoma 

moderately 
differentiated T3NOMX 

TMA5 WHITE M 71   YES 

Distant 
Reurrence - 
Lung 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA5 WHITE F 50 DEAD YES 

Distant 
recurrence - 
Hept 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1MX 



 

160 
 

Table 4A.1 Cont’d 

  

TMA5 WHITE F 53 DEAD YES 

Distant 
recurrence - 
Lung 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T2N0MX 

TMA5 WHITE F 62   Unknown   

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1bM 

TMA5 WHITE M 62   YES 

Distant 
recurrence - 
Hept 

Adeno-
carcinoma 

moderately 
differentiated T3N1bMX 

TMA5 WHITE F 71     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N0MX 

TMA5 WHITE F 60     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA5 BLACK M 64     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T1N1bMX 

TMA5 WHITE F 78     Disease Free 
Adeno-
carcinoma 

moderately 
differentiated T1N0MX 

TMA5 WHITE M 87     Disease Free 
Adeno-
carcinoma 

poorly 
differentiated T3N1bMX 

TMA5 BLACK M 51   YES 

Distant 
recurrence - 
Hept 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA5 ASIAN M 39 DEAD   
Never 
disease free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA6 WHITE M 73   YES 

Distant 
recurrence - 
Lung 

Adeno-
carcinoma 

moderately 
differentiated T3N0MX 

TMA6 WHITE F 71   YES 
Local 
recurrence 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA6 WHITE F 64     Disease Free 
Adeno-
carcinoma   T2NXMX 

TMA6 WHITE M 71   YES 

Distant 
recurrence - 
Hept 

Adeno-
carcinoma 

moderately 
differentiated T3N0MX 

TMA6 WHITE M 69   YES 

Distant 
recurrence – 
Adrenal 
Gland 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA6 WHITE M 65     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1MX 
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TMA6 BLACK M 74   YES 

Distant 
recurrence - 
Hept 

Adeno-
carcinoma 

moderately 
differentiated T3N1MX 

TMA6 WHITE F 86     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T1N0NX 

TMA6 BLACK M 73   YES 

Local/Distan
t recurrence 
- Panc&Gast 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1 

TMA6 WHITE M 47     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N0MX 

TMA6 WHITE F 65     Disease Free 

Ductal 
adeno-
carcinoma 

moderately 
differentiated T3N1 

TMA6 WHITE F 66   YES 

Distant 
recurrence – 
Ovar 

Mixed 
Colloid/Duc
tal Adeno-
carcinoma 

well 
differentiated T3N0MX 

TMA6 WHITE M 77   YES 
Local 
Recurrence 

Adeno-
carcinoma 

poorly 
differentiated T3N1MX 
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A.1 Abstract 

 

Multimarker fluorescence analysis of tissue specimens offers the opportunity to probe the 

expression levels and locations of multiple markers in a single sample. Software is needed to 

fully capitalize on the advantages of this technology for high sensitivity, quantitative, and 

multiplexed data collection. A major challenge has been the automated identification and 

quantification of signals. We report software, called SignalFinder, that meets that need. 

SignalFinder employs a newly-developed algorithm called Segment-Fit Thresholding that 

demonstrated robust performance for automated signal identification in side-by-side 

comparisons with several current methods. Two utilities provided with SignalFinder enable 

downstream analyses. The first allows the quantification and mapping of relationships between 

an unlimited number of markers through user-defined sequences of AND, OR, and NOT 

operators. The second produces composite pictures of the signals or colocalization analysis on 

brightfield H&E images, which is useful for understanding the morphologies and locations of the 

relevant cells. SignalFinder enables high-throughput, rigorous analyses of whole-slide, 

multimarker data, and it promises to open new possibilities in various research and clinical 

applications.  

 

Keywords: Image analysis, immunofluorescence, fluorescence, tissue microarray, automated 

analysis 
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A.2 Introduction 

In the analysis of tissue specimens, researchers frequently seek to identify the locations and 

amounts of specific analytes in the tissue, and then to analyze relationships between the 

markers and other information. The detection of analytes is usually performed through 

antibodies that are incubated on the tissue, allowed to bind their targets, and detected by image 

acquisition. The conventional method of detection is the deposition of colored precipitates 

produced by the enzymatic conversion of a soluble substrate such as di-aminobenzadine to its 

insoluble form. The enzyme used for the conversion is often horseradish peroxidase, which is 

attached to a secondary antibody that localizes to the primary antibody. A brightfield image of 

the tissue typically shows brown staining on top of cells that are visible through hematoxylin and 

eosin (H&E) staining. This method has been a workhorse in clinical pathology and research for 

decades, and it continues to be the primary means of imaging specific proteins in tissue.220-223  

An increasingly useful and powerful approach for imaging antibody binding is fluorescence. 

Fluorescence has features that make it preferable to conventional immunohistochemistry in 

several respects. The signals are very sensitive—especially with continuing improvements in 

fluorescence microscopes and scanners—and are reproducibly and reliably reflective of analyte 

concentrations over a broad range. Multiple fluorescence wavelengths can be distinguished 

from each other with effectively zero crosstalk, which enables the multiplexed detection of 

multiple analytes in one image, and multiplexing can be greatly expanded through sequential 

rounds of fluorescence quenching and restaining. Furthermore, fluorescence signals do not 

obscure the brightfield images of the underlying cells, as can happen with conventional staining. 

The above features of fluorescence require software for image analysis. A variety of software 

options currently exist,224,225 but a particular challenge has been automation—the ability to 

accurately identify and quantify signals across all images without user intervention or 

adjustments. Automation is important for increasing throughput and statistical rigor. It is 
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necessary to remove the potential of user bias and to introduce truly objective analyses of large 

images and datasets, but it has been difficult to achieve. The largest challenge is the huge 

variability among images. Some images have much signal, others have little; some have signal-

producing features with unforeseen shapes or sizes; and images can have greatly varying 

backgrounds. In order to automate signal detection, it is necessary to have a fixed basis for 

determining what is signal that functions across all such characteristics. Basing the signal-

detection algorithm on assumed characteristics of the true signals therefore tends to fail for 

certain images. Preset parameters may function properly for many images, but they eventually 

require adjustments of settings by the user. Such a requirement limits throughput and potentially 

introduces bias, and it necessarily brings some level of subjectivity and arbitrariness to the 

analysis.  

We previously introduced an algorithm that does not rely on assumptions about signal 

characteristics but instead is based on properties of non-signal, or background, regions.129 It 

finds non-signal regions through assumptions about the statistical characteristics of background, 

which are considerably more predictable than those of signals. The algorithm uses the 

background regions to properly set thresholds for true signals in that image. Thus, the 

thresholds are tailored precisely to match each image. Variations between images in intensity, 

amount, shape, or distribution of signal or background are properly accounted for.  

In previous work129,155 we implemented initial versions of software for analyzing multicolor 

immunofluorescence data and microarray data. The previous software operated well but needed 

improvements. Because of the computationally-intensive nature of the algorithm, the program 

was too slow to be applied to large images. Large, high-resolution images are more regularly 

acquired with the broader availability of whole-slide fluorescence scanners. Also, the output 

formats are varied across the available fluorescence scanners and microscopes that are 

commercially available, and we needed to expand the range of image formats that could be 
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processed. 

The SignalFinder software package presented here addresses the above limitations and has 

significant, new capabilities for immunofluorescence analysis. We achieved major speed 

advances through code optimization and parallel processing, and we included broad 

compatibility for all standard types of fluorescence images. In addition, we aimed to provide a 

full system of analyzing fluorescence images, which includes downstream analyses and 

visualization. The identification and quantification of signals often is simply the first step; the 

information must be evaluated in context among multiple signals and among the cells producing 

the signals. Our system includes two utilities that use the output of the main SignalFinder 

program. One is for analyzing and quantifying colocalization among distinct signals, and the 

other is for preparing composites of the brightfield images of the tissue overlaid with the 

fluorescence signals. This software package is ready for use on Linux, Mac, and Windows 

operating systems.  

In this work, we present the basic capabilities of the package for multicolor fluorescence image 

analysis and a head-to-head comparison with several other image analysis methods. We 

compared the automation ability, using only preset parameters, without any user review or 

adjustment. We furthermore demonstrate the unique capabilities of the software for quantifying 

and visualizing relationships between distinct markers.  

A.3 Materials and Methods 

A.3.1 Software development and data analysis 

We developed and tested the software to implement SFT using MATLAB, supplemented with 

the image processing and curve fitting toolboxes, Java, and C++. We used Microsoft Excel for 

analyzing numerical output, GraphPad Prism for the preparation of graphs, and Canvas XIV for 

the preparation of figures.  

A.3.2 Immunofluorescence data and image processing 

The immunofluorescence data had been acquired previously,155 briefly summarized here. We 
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performed immunofluorescence on 5 m thick sections cut from formalin-fixed, paraffin-

embedded blocks. We labeled two primary antibodies respectively with Sulfo-Cyanine5 NHS 

ester (13320, Lumiprobe) and Sulfo-Cyanine3 NHS ester (11320, Lumiprobe) according to the 

supplier protocol. Each round of immunofluorescence used two different antibodies and nuclear 

staining with Hoechst 33258. After staining, we scanned the slides using a scanning-

fluorescence microscope (Vectra, PerkinElmer). The microscope collected 35 images at each 

field-of-view, each image at a different emission wavelength. We next quenched the 

fluorescence using 6% H2O2 in 250 mM sodium bicarbonate (pH 9.5-10), and performed 

another round of immunofluorescence using two different antibodies. The subsequent 

incubations and scanning steps were as described above. The hematoxylin and eosin (H&E) 

staining followed a standard protocol.  

From the 35 images captured for each region, we selected the three that corresponded to the 

emission maxima of Hoechst 33258, Cy3, and Cy5. For each image, SignalFinder creates a 

map of the locations of pixels containing signal and computes the percentage of tissue-

containing pixels that have signal. To arrive at a final number for each core, we averaged over 

all images for a core.   

A.4 Results  

A.4.1 Flow of SignalFinderIF processing 

The overall analysis system includes the core SignalFinder program as well as two utilities for 

analyzing the output, ColocFinder and Overlay (Fig. A.1A). The SignalFinder program begins 

with retrieving the color channels defined by the user, and then analyzing each channel 

separately in order to find the background and signal pixels. ColocFinder is for analyzing the 

relationships between the signals from individual channels, and Overlay is for producing 

composites of the individual or colocalized signals overlaid on the brightfield images.  

The package is well suited to analyze tissue microarrays (TMAs) or whole slides with multiple, 

separate pieces of tissue (Fig. A.1B). TMAs are useful for acquiring data on many tissue 
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specimens on a single slide, but the amount of information from one experiment can be 

overwhelming if processed manually or require subsampling already limited tissue. SignalFinder 

detects tissue cores automatically, or with assistance from the user if necessary, and the image 

data for each tissue core are analyzed independently. For proper quantification and 

normalization of the amount of signal, SignalFinder determines the amount of tissue present. 

This step is important because the image data for a core can include regions with no tissue, 

causing signal and signal per pixel to be skewed by the blank slide space. Sometimes only a 

minimal portion of the image contains tissue, for example if the specimen is fragmented or partly 

washed off. SignalFinder detects regions of non-tissue background, and then it divides the 

number of signal pixels by the number of tissue pixels to arrive at its final output (Fig. A.1B).  

A.4.2 Accuracy in automated analysis 

The challenge in automated image analysis is being able to handle a wide range of image 

characteristics accurately, without user review and adjustments of settings. TMA data provide a 

good test of this capability, since the individual tissue specimens have many, varied 

characteristics. We used immunofluorescence data from five different TMAs, selecting 11 

different 1-mm tissue cores. The acquisition of the images had been performed in earlier 

work,155 and it involved the multiplexed detection of 4 different markers plus a nuclear stain on 

each TMA. The acquisition of the data occurred in two rounds of staining, a method that enables 

multimarker immunofluorescence (IF) using a limited number of distinct fluorophores.126  We 

were particularly interested in a glycan called sTRA that in previous research we identified as a 

strong serological biomarker of pancreatic cancer.127 It performed as well as the current best 

serological biomarker for pancreatic cancer, CA19-9, which also detects a glycan, and it was 

elevated in about half of the patients with low CA19-9, indicating independent regulation. In 

addition to data for the two glycans, we also acquired data for the proteins MUC5AC, beta-

catenin, vimentin, and E-cadherin (Fig. A.2A). Between the four markers for each TMA and the 
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two rounds of nuclear staining for 11 different cores, we analyzed 66 different images for this 

study (Fig. A.2A).  

We compared SignalFinder to four commonly-used methods for image analysis of 

immunofluorescence data. The comparison methods were 1) the ISODATA method226; 2) the 

Huang threshold227; 3)the Otsu method228; and 4) the Triangle threshold229,230.  

For each of the five algorithms, we used the settings provided by the software for automated 

image analysis. SignalFinder is designed to handle multiple images from TMAs or similar data, 

but we needed to write a custom script to process the images using the other methods. A view 

of the overall correlations in quantified signal across the 187 images showed that the ISODATA, 

Huang, and Otsu methods correlated with each other, and that SignalFinder had different 

results from the rest but was most closely related to the Triangle method (Fig. A.2B). The 

quantified data were generally higher for the comparison methods relative to SignalFinder, with 

large differences for some of the images (Fig. A.2C).  

For demonstration, we examined selected images. SignalFinder picked out the signal pixels in 

agreement with the raw fluorescence of each color (Fig. A.2D) for the first three markers of core 

B2 from TMA69. Each of the comparison methods showed selected locations or entire images 

that set thresholds too low or that were inconsistent between the colors (e.g. Triangle). Each 

core image comprises the tiled high-magnification fields from the scanning microscope, with a 

total of 8-9 fields per core. The results between the fields are inconsistent in some cases for 

each of the comparison methods, but SignalFinder had improved consistency across the fields. 

The performance was robust over all cores, as shown for representative selections (Fig. A.2E).  

A.4.3 Analysis of relationships between markers 

A valuable feature of fluorescence in comparison to visible stains is the multiplexing capability. 

Antibodies can be labeled with different dyes to detect distinct targets, which are routinely used 

to probe 3 or 4 targets in one run. In addition, using the multi-round method used here, 
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researchers have acquired data from dozens of markers without evidence of interference or 

crosstalk between markers.126,231 As a result of this multiplexing capability, an important use of 

IF experiments is to detect colocalization of fluorescent signals from distinct probes.232  

We designed software to quantify exclusive expression as well as colocalization (Fig. A.3A). 

The ColocFinder utility allows the user to build up expressions of AND, OR, and NOT between 

scans, and then quantifies the percentage of pixels that fulfill the expression. The AND operator 

requires signal pixels to be present in both scans, the OR operator requires pixels to be present 

in either scan, and the NOT operator requires pixels to be present in the first but not the second 

scan.  

We examined the signals from CA19-9, sTRA, CA19-9 in the absence of sTRA (CA19-9 NOT 

sTRA), sTRA in the absence of CA19-9 (sTRA NOT CA19-9), and colocalized expression of 

both CA19-9 and sTRA (CA19-9 AND sTRA) (Fig. A.3B). The program first registers the images 

to be compared to each other containing the results to be evaluated. It then scans a sliding box 

of user-defined size (i.e. the colocalization radius or desired proximity to evaluate for two or 

more markers) across the data and evaluates the pixels in each segment according to the user-

defined relationship. If a pixel meets the criteria in a minimum number of the segments, it is 

counted as positive; otherwise it is negative. The three relationships defined above could be 

examined relative to another marker such as MUC5AC (Fig. A.3B). The pixel maps and 

quantification show that most of the MUC5AC is colocalized with CA19-9 in the absence of 

sTRA, but some is colocalized with both. Thus, complex relationships among multiple markers 

in their combined and exclusive expression can be visualized and quantified by this system. 

ColocFinder uses a novel algorithm that does not require complete overlap in pixels, so the 

various outputs are not mutually-exclusive. The flexibility in finding regions fulfilling the search 

terms is a good option when markers would be expected to be near one another but not 

necessarily overlapping. Examples would be two extracellular markers, or a membranous and 
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extracellular marker, or two markers in cells with unpredictable shapes. 

A.4.4 Production of composite images 

Another advantage of fluorescence is that the signals do not hinder the acquisition of a high-

quality brightfield image of the underlying cells. Obtaining a good picture of the underlying cells 

can be important for determining the types and morphologies of the cells producing certain 

markers. To facilitate this type of analysis, we developed a utility that uses the output of the 

signal-finding algorithm or the colocalization analysis to produce images of the fluorescence or 

colocalization data overlaid on the brightfield image. The program registers the SignalFinder or 

ColocFinder output to the brightfield image using the nuclei, since the nuclei give the most 

consistent signal from the Hoechst stain in every round. It extracts the appropriate color range 

for nuclei in the H&E image, and then registers the output data using the nuclei signal from the 

scan. The registration can be manually adjusted if necessary. The program then creates images 

of the output overlaid on the H&E picture, using a color scheme set by the user.  

Views of the whole tissue or core can provide information on the locations of features of interest 

(Fig. A.4A). Images zoomed into specific regions can provide information on the morphologies 

of cells with particular characteristics. For example, the epithelial layer of a gland expressing 

both CA19-9 and sTRA and secreting MUC5AC into the lumen has cells with little cytoplasm 

(Region 1, Fig.  A.4B), and the epithelium of another gland producing almost exclusively CA19-9 

has more columnar cells (Region 2, Fig. A.4B). The cells expressing primary sTRA, and not 

CA19-9, form small, ill-defined glandular features (Fig. A.4C). The ability to view side-by-side 

the original H&E with the composite images can help to identify such features.  

A.5 Discussion 

The increasing availability and quality of whole-slide fluorescence scanning has resulted in 

increased adoption of this powerful technology. We present here software that meets the 

demand for automated signal detection and flexible downstream analyses. The method used 

here allowed quantification of image data from multiple markers and multiple TMAs. Such 
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analyses would be extremely time-consuming to analyze manually, and the analysis would have 

been only semi-quantitative.  

In the analysis presented, each of the signal finding methods evaluates aspects of the 

distributions of raw signal intensities with the goal of separating background from signal, with 

some differences. The ISODATA clustering algorithm uses iterative testing to find the greatest 

Euclidean distance between signal and background clusters. Huang’s fuzzy threshold method 

steps through thresholds and uses an optimization function across thresholds to determine the 

true valley between the background and signal peaks. Otsu’s method takes the maximum point 

of intra-class variance and steps through thresholds until it finds maximum variance between 

the two classes on either side of the threshold. The Triangle method draws a line from the peak 

of the histogram to the tail of the peak and finds the maximum distance from the line to the 

curve, which sets the threshold at the inflection point at the end of the primary peak. It then 

takes anything above that as signal. SignalFinder, in contrast, uses sampling of small regions 

and the fitting across the regions of relationships between statistical parameters. It first finds the 

background pixels, and then finds signal pixels based on thresholds derived from the 

background pixels. It also has a method to disallow spurious “spikes” in the data to be counted 

as signal pixels.  The implication of these differences is that SignalFinder, though more 

processing intensive, provides more robust compensation for localized background variation in 

immunohistochemistry image analysis.   

The novel component provided by the ColocFinder utility allows explorations of relationships 

between markers that were not possible with previous software. The currently-available 

software packages typically quantify colocalization between two markers. For example, a 

frequently-used method introduced by Manders et al.233 uses correlations between color 

channels to calculate average overlap in signals. This information is useful, but additional 

relationships would be important to probe. Of particular interest is the possibility that the 

exclusive expression of a particular marker, i.e. the presence of one marker in the absence of 
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another, could be a marker of phenotype.  

Given that certain cell types or tissue phenotypes are identified by the absence and presence of 

certain markers, researchers should find utility in the quantification of both the exclusive and the 

concurrent expression of various markers. To further complement this information, the Overlay 

utility readily reveals which cells meet the various marker expression characteristics defined by 

the user. This analysis enables cell-morphology analyses to be integrated with the quantitative 

output of SignalFinder and the ColocFinder utility. 

Of additional note, other proprietary software packages have continued to proliferate with 

imaging systems.  Although we chose to benchmark against widely available image analysis 

algorithms, we recognize the existence of many proprietary software analysis systems tied to 

imaging platforms.  One significant advantage of the SignalFinder Suite is that it is platform and 

image file type agnostic and is capable of performing the same analysis across all imaging 

platforms.    

We foresee such a system having usefulness for a wide range of research and technological 

applications, such as in the analysis of immunofluorescence signals from cohorts of patients.234 

In clinical applications, automated image analysis could help to remove inter-operator variability 

or to pick out rare or subtle features. If the user requires precise and objective quantification, or 

analysis of signals that are difficult to locate by eye, or the analysis of many data sets, 

automated quantification is preferable.224,225 
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Methods Figures 

Figure A.1 The SignalFinder system.  

A) The package includes the core SignalFinder program and the utililties Colocfinder and 
Overlay. SignalFinder separately analyzes individual color channels specified by the user. It 
identifies and quantifies the signal and produces a map of the signal pixels. ColocFinder 
identifies regions of the image fulling a relationship defined by the user. It quantifies the amount 
of tissue fulfilling the terms and produces a map of the output pixels. The Overlay program 
aligns to output from SignalFinder or Coloc finder to a brightfield image and produces a 
composite, overlaid image using color schemes set by the user.  
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Figure A.2 Automated image analysis of TMA data.  

A) We selected images from 11 cores across the 6 listed TMAs. B) Pearson correlation 
coefficients for all pairwise comparisons among the five methods. The correlations were 
calculated across the 66 images. C) The plots present the quantified output from the 11 cores 
and 4 markers (excluding the Hoechst data). Each point is the %signal from one marker and 
one core. D) The images are taken from the first three markers for TMA69, core B2. The left 
column shows the raw data, and the next columns show the output for each method, with the 
percent of pixels that are positive. E) SignalFinder output from representative cores across the 
TMAs. The images are the combined signal pixels from the blue, green, and red channels. The 
overlapping signals have mixed colors. The top images are from the first three markers, and the 
bottom images are from the second three markers. 
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Figure A.3 Exploring relationships between markers.  

 

A) Three color channels were acquired in two separate scans, resulting in six markers. The 

automated signal-finding algorithm identified the signals in the blue, green, and red channels. B) 

The colocalization utility provides the mapping of user-defined relationships between any 

number of markers. The example shows the combined and exclusive expression of CA19-9 and 

sTRA, followed by adding combinations with MUC5AC. 
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Figure A.4 Composite images.  

 

A) Either the SignalFinder output or the ColocFinder output can be overlaid on the whole-core 

H&E image. B) Zooms of specific regions provide detailed views of the cells fulfilling various 

relationships between the markers. C) Detailed views show the unique morphologies of the cells 

expressing primarily sTRA. The region numbers correspond to those in panel A.  
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