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ABSTRACT

A COMPUTATIONAL STUDY OF VORTEX RINGS INTERACTION WITH A CONSTANT-
TEMPERATURE HEATED WALL

By
Hussam Hikmat Jabbar

This study is motivated by understanding the connections between the vortical structures
in impinging jets and the wall heat transfer. The particular objectives of the study are: (1)
examining how the stage of evolution of vortex pairing in the jet might influence the wall heat
transfer; (2) establishing correlations between the vortex characteristics and the Nusselt number
(Nu) distribution; (3) exploring the physics of the thermal boundary layer behavior and the
associated near-wall flow that causes the enhancement and the deterioration in heat transfer
during vortex-wall interaction; and finally (4) evaluating a newly published hypothesis of the
mechanisms of the heat transfer enhancement and deterioration during this interaction.

To address the first two objectives, CFD simulations are conducted of three simplified
model problems involving the interaction of isolated axisymmetric vortex rings with a flat,
constant-temperature, heated wall. The cases represent three scenarios of vortex-wall interaction:
before (Case I), during (Case II) and after (Case III) pairing. The results show that when two
vortices concurrently interact with the wall and undergo pairing (Case II), a significant
instantaneous enhancement in Nu is attained in comparison to that associated with a single vortex
interacting with the wall (Cases I and III). In all three cases, a deterioration in Nu is observed
simultaneously with the enhancement (but at different radial locations) due to the formation of the
secondary vortex (SV). However, the net effect of vortex-wall interaction on the heat transfer

remains positive with Case II producing the highest heat transfer rate than the other cases.



Two additional CFD cases are conducted to address the third objective. Both cases are the
same as Case I except for one parameter. In the first of the additional cases, the thermal diffusivity
is set to zero (o = 0) to understand the role of diffusion in heat transfer enhancement. Analysis of
this case is complemented with a simple analytical model based on the unsteady 1D energy
equation with wall-normal (axial) velocity perturbation. The results lead to the hypothesis that the
axial velocity induced by the primary vortex (PV) toward the wall is the main factor for
enhancement of the heat transfer on the downwash side of the vortex core by causing thinning of
the thermal boundary layer (TBL). Thermal diffusion is found to limit this enhancement and cause
the TBL to thicken when the downwash velocity weakens.

In the second of the additional cases, the wall shear stress is set to zero (T = 0) to eliminate
separation of the boundary layer, and hence evaluate the role of separation in deterioration of Nu.
As in the case of Nu enhancement, the results show that the axial velocity is the leading factor
driving the Nu deterioration. Surprisingly, eliminating separation leads to even smaller minimum
Nu; found to be caused by closer approach of the PV toward the wall in the absence of the
secondary vortex (due to separation elimination). Nevertheless, the overall effect of eliminating
separation is positive since the closer proximity of the PV to the wall also causes significant Nu
enhancement on the downwash side, producing a net positive Nu change.

Finally, trajectories of selected fluid particles are tracked in a thermofluidic boundary-
layer-resolved Lagrangian analysis in order to evaluate a recently published “surface renewal
model” that explains the mechanisms of heat transfer due to vortex-wall interaction. The results
show that while some elements of this hypothesis, regarding the heat transfer enhancement on the
downwash side, are valid, the hypothesis is based on the wrong physics when it comes to the heat

transfer deterioration on the upwash side.
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CHAPTER 1
INTRODUCTION

1.1. Background

The present study is motivated by impinging jet flows. One of the most common uses of
these jets is the heating and cooling of the impingement surface, because of their ability to produce
high heat transfer rates. Many studies exist on characterizing this heat transfer process, and on
relating these characteristics to the flow parameters and features; e.g. see Jambunathan et al. [1],
Carlomagno and laniro [2] and references therein. In existing works, connections between the jet
vortices and the heat transfer are described from a phenomenological point of view without
establishing a quantitative correlation between the characteristics and evolution of the vortices and
the surface heat transfer. Such information is necessary to formulate a robust, in-depth
understanding of how the interaction of the jet vortices with the impingement wall affects the
convective heat transfer coefficient. The resulting insight should be valuable for developing

effective flow control strategies to improve the heating/cooling effectiveness of impinging jets.

To focus on understanding the physics of the wall thermal transport in the presence of
vortex-wall interaction, the present investigation considers simple model problems involving the
interaction of isolated vortex rings with a heated wall in the absence of the jet flow. Before
discussing existing knowledge on the heat transfer from vortex-wall interaction, a very brief
summary is provided of the main features of impinging conventional and synthetic jets. This is
followed with a review of studies of the influence of the vortical structures on wall heat transfer,

either as features of an impinging jet or as isolated vortices interacting with the wall.



1.1.1. Impinging Conventional Jets

Impinging jets are widely used in industrial and manufacturing processes. The flow
configuration of an impinging jet consists of a jet flow impinging on a surface, which is typically
a flat plate (see Figure 1.1). There are several classifications of impinging jets, depending on
different factors. For example, the angle of impingement of the jet (oblique or normal relative to
the wall), the shape of the jet exit (round, slit, etc.), among others. Regardless of the classification,
the flow is characterized by three main regions. The free jet region, which extends from the jet exit
to the point where there is no significant influence due to the presence of the wall. In this region,
the flow acts as a free jet, and the shear layer of the jet is inviscidly unstable such that small
disturbances can grow exponentially immediately downstream of the jet exit. The early
amplification of these shear layer disturbances can be predicted using linear stability theory; e.g.
see Drubka et al [3] and Drazen [4]. The initial instability ultimately leads to “rolling up” of the
shear layer to form vortices which in turn interact with each other and merge as they move farther
downstream from the jet exit; e.g. see Michalke [5] and Popiel and Trass [6]. The merging of the
vortices was studied by Ho and Huang [7] in a free shear layer. By controlling the forcing
frequency of the shear layer, they were able to control the number of vortices involved in the
merging process. In a natural jet, merging typically occurs between vortex pairs, leading to
doubling of the vortex size and halving of the vortex-passing frequency. This mechanism leads to
the growth of the jet shear layer, to ultimately reach the jet centerline at the end of the potential

core.

The second region is the stagnation region, which corresponds to the zone where there is
a change in the main flow direction from being normal to being parallel to the wall, and the flow

becomes directed outwards in the radial direction (). This region is typically defined to extend



from the jet centerline to /D =1. The third region is the wall-jet region, in which the mean flow
takes the form of a wall jet. In this zone, which is established for r/D > 1, unsteady boundary
layer separation occurs due to the interaction of the jet vortices with the wall. This separation
frequently leads to the formation of a secondary vortex with an opposite sense of vorticity to that

of the jet vortices; e.g. see Walker et al. [8].
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Figure 1.1 A schematic of the normally impinging conventional jet.

1.1.2. Impinging Synthetic Jets

A synthetic jet is different from a conventional jet in that, while the former adds mean
momentum to the fluid as the latter, the synthetic jet has zero net mass flow rate through the jet
orifice. As illustrated in Figure 1.2, a typical synthetic jet consists of a cavity with an oscillating
diaphragm forming one of the cavity walls, and an orifice existing in one of the other walls. The
oscillating diaphragm generates suction and ejection of the fluid, which leads to the production of
vortical structure during the ejection phase. The vortices advect away from the orifice by their self-
induced velocity. Unlike free jets, vortex merging has not been observed to occur in synthetic jets.
For more information, see Glezer and Amitay [9], for non-impinging synthetic jets, and Greco et

al. [10], for impinging ones.
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Figure 1.2 Schematic of a synthetic jet during the suction (top) and the ejection (bottom) phase.

1.1.3. Heat Transfer from Vortex-Wall Interaction Arising in Jets or in Isolation

The main flow features are well documented in the literature when a single vortex ring, or
a pair of counter-rotating rectilinear vortices, interacts with a flat wall in an isothermal flow field
(e.g. see Doligalski and Walker [11], Fabris ef al. [12], Orlandi and Verzicco [13] and Gendrich et
al. [14]). The vortex ring (primary vortex) moves towards the wall via the “self-induced” velocity
while being stretched parallel to the wall, increasing the ring’s diameter. As the primary vortex
(PV) nears the wall, the opposite-sign boundary layer vorticity beneath the vortex intensifies. A
consequent inviscid (primary vortex’s pressure signature)/viscous (boundary layer) interaction
leads to unsteady separation of the boundary layer. Subsequently, a secondary vortex (SV) ring
forms from the erupting shear layer, leading to reversing of the initial primary vortex motion; an
effect known as “vortex rebound”. Tertiary and higher-order vortex rings are also produced if the

primary vortex retains sufficient energy while hovering near the wall in the rebound process.



One of the very few studies considering vortex-wall interaction in the presence of wall heat
transfer is Martin and Zenit [15]. These authors numerically studied a pair of two-dimensional
counter-rotating line vortices interacting with a flat constant-temperature heated wall. They found
that the spatial mean Nusselt number (Nu) over the heated wall segment reached its maximum
when the vortices “arrived at the wall”, followed by a decrease due to boundary layer separation
and formation of the secondary vortex. The correlation between the Nusselt number and the
vortical structures was made based on simultaneous observations of the instantaneous vorticity
and temperature fields, together with the temporal evolution of the mean Nusselt number. No effort
was made to quantify the vortex properties and correlate them with the Nusselt number. Moreover,
the characteristics of the surface distribution of the Nusselt number and their connections with the

vortical structures were not examined.

Reulet et al. [16] conducted an experimental study of a two-dimensional vortex interacting
with a laminar boundary layer on a flat plate placed downstream of the vortex generator. They
found the unsteady behavior of the boundary layer and the convective heat transfer coefficient to
be strongly coupled with the dynamic evolution of the vortex. Specifically, they observed
modulation of the boundary layer thickness in the form of thinning followed by thickening as the
vortex advected past the location of measurement of the unsteady heat transfer coefficient. The
thinning and the thickening of the boundary layer was accompanied by an increase and a decrease

in Nusselt number respectively.

The effect of convective heat transfer on unsteady boundary layer separation resulting from
vortex-wall interaction was studied by Cassel [17]. His results showed that there is a strong
coupling between fluid motion induced by the vortex and the heat transfer within the boundary

layer. Specifically, he showed that the unsteady separation of the boundary layer causes a high



temperature gradient in the temperature field and enhances the mixing between the fluid near the

wall, in the thermal boundary layer region, and the outer flow.

Chung and Lou [18], in their study of the unsteady heat transfer of an impinging jet, relate
the strong fluctuation in the instantaneous Nusselt number to the unsteadiness of the flow field.
They propose that “unsteady separation induces a secondary maximum and a local minimum of
the instantaneous heat transfer along the impinging wall”. The unsteady separation causes
thickening in the thermal boundary layer and decreases the heat transfer rate, while the formation
of the secondary vortex was reasoned to cause reduction of the thermal boundary layer by

engulfing the outer cold fluid around the secondary vortex.

Hadziabdi¢ and Hanjali¢ [19] performed large-eddy simulations of a round normally
impinging jet for an orifice-to-plate distance of two jet diameters in order to study the vortical
structures and turbulence, and their correlation with the local heat transfer coefficient. They
concluded that the dip (local minimum) between the primary and secondary peaks in the radial
distribution of the Nusselt number is a consequence of local periodic separation of the boundary
layer and thickening of the thermal boundary layer. Specifically, the recirculating fluid trapped

within the separation zone was heated, causing a reduction in the fluid’s heat removal capacity.

Pavlova and Amitay [20] conducted an experiment using an impinging synthetic jet to cool
a heated surface. They found the synthetic jet to be three times more effective in cooling the surface
than a continuous jet at the same Reynolds number. Also, the authors used different operating
frequencies for the synthetic jet, and they found the heat removal from the surface to be better at
high frequencies, for a small jet-to-plate distance, while low frequencies provided more effective

cooling for large jet-to-plate spacing. The cooling enhancement for small spacing was attributed



to the promotion of near-wall accumulation and breakdown of vortices by high-frequency forcing
before the vortices reach the plate. At large jet-to-plate separation, the low frequency excitation
resulted in individual vortices impinging separately on the heated surface. The former scenario

resulted in approximately 20-25% higher maximum Nusselt number.

Another interesting study of cooling via an impinging synthetic jet was reported by Greco
et al. [21]. These authors found differences in the quantitative and the qualitative Nusselt number
distribution on the impingement plate, depending on the stroke length of the synthetic jet. These
differences were attributed to the change in the vortical structures of the jet and their interaction
with the wall as the stroke length was varied. The connection between the stroke length and the
flow features was identified in an earlier study by Greco et al. [9]. At low stroke length, the jet
produced periodic vortex rings that interacted with the wall. At large stroke length, each ejection
of a primary vortex from the jet’s orifice was followed by a trailing jet surrounded by a number of
vortices, forming from Kelvin-Helmholtz instability. The trailing jet possessed a relatively long
potential core and the overall heat transfer characteristics, in this case, were very similar to a
continuous free jet flow. In contrast, for a short stroke length, the potential core was shorter and
the characteristic inner (primary) peak in the Nusselt number at small jet-to-plate spacing
disappeared altogether for sufficiently short stroke length. In this case, the heat transfer was

affected by individual interactions of the periodic vortex rings with the wall.

More recently, Hubble ef al. [22] conducted simultaneous particle image velocimetry and
unsteady-heat-transfer measurements when an axisymmetric vortex ring impinges on a flat wall.
The resulting detailed data set demonstrated substantial enhancement in the convective heat
transfer coefficient, relative to natural convection, beneath the vortex ring. The enhancement

occurred at a radial location that was offset from the core center of the vortex, on the side where a



downwash toward the wall is “induced” by the ring. On the upwash side of the induced flow, no
heat transfer enhancement was found. This asymmetric influence of the vortex on the wall heat
transfer was explained through a “surface renewal model”, where particles on the downwash side
exhibit short residence time in the thermal boundary layer (TBL), making them relatively cool
when they reach the wall. In contrast, particles on the upwash side are assumed to pass beneath
the vortex first, lengthening their residence time in the TBL, and hence exhibit more heating before
reaching the wall. The hypothesis is based on the behavior of fluid particles within the thermal

boundary layer, which the authors do not resolve in their work.

1.2. Motivation and Scope

The collective outcome of the above studies leads to two main conclusions regarding the

influence of vortex-wall interaction on the wall heat flux:

1. The interaction leads to enhancement in the heat transfer rate (relative to pure conduction
or natural convection) on the “downwash side” of the vortex, where the boundary layer
becomes thin;

2. An accompanying reduction in the heat transfer rate takes place on the “upwash side”,

where the boundary layer becomes thick and separates.

Though valuable, these findings do not provide a detailed understanding of the vortex-wall
interaction physics leading to the observed change in the heat transfer character. These connections
between the vortices and the heat transfer are made based on phenomenological, qualitative,
description rather than through quantifying the vortex properties and correlating them with the
wall heat flux and the thermal boundary layer behavior. This limitation is presumably in part due

to the need to have access to spatio-temporal information of the velocity and the temperature fields



with sufficient resolution to resolve the hydrodynamic and thermal boundary layers, along with
the various flow features. With the exception of the work of Martin and Zenit[15], the subset of
the above studies concerned with isolated vortex-wall interaction, are experimental and do not
resolve the boundary layer or measure the temperature field. On the other hand, although the study
of Martin and Zenit [15] is computational, the authors only report on gross characterization of the

concurrent evolution of the vortex and the average Nu on the wall.

Given the above, the present study is planned to take advantage of CFD’s ability to provide
access to the time- and the space-resolved velocity and temperature fields. The computation is
done using the commercial code Ansys-Fluent to solve problems involving a single and two
axisymmetric vortex rings interacting with a heated constant-temperature flat wall. Problems

utilizing a single vortex are studied for two reasons:

1. To quantify the time evolution of the vortex properties (core center location and
circulation) and correlate these properties with the characteristics of the time-dependent,
radial distribution of Nu;

2. To study the details of the vortex-wall interaction and how they affect the hydrodynamic
and thermal development of fluid particles within the boundary layer. This study is not
only aimed at understanding the interaction physics leading to Nu augmentation/reduction
but also at directly assessing the validity of the recent “surface renewal model” hypotheses

of Hubble et al. [22].

On the other hand, computations involving two vortex rings are motivated by gaining basic
understanding of the effect of vortex pairing on heat transfer in impinging jets. A significant
parameter in impinging jets is the distance H between the jet exit and the impingement plate

relative to the jet diameter D. This distance can fundamentally alter the details of the vortex-wall
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interaction. At small H/D, the jet vortices interact with the wall after they first form via the initial
Kelvin-Helmholtz instability of the jet’s shear layer. As H/D increases, the jet vortices have room
to pair before reaching the wall, but this pairing could happen while the vortices travel past, and
interact with the wall; or, if H/D is sufficiently large, before reaching the wall. In the former
scenario, vortex-vortex interaction takes place simultaneously with vortex-wall interaction, which
could have a significant influence on wall effects. An example of such effects (details are shown
in Figure 1.3) is found in the Ph.D. study of Al-Aweni [23]. Al-Aweni found that the pairing of
two vortex rings as they travel past the wall in the wall-jet region of an impinging jet produced
very strong spikes of negative wall pressure of magnitude of the order of the dynamic pressure of

the jet.

Though surface pressure is not necessarily linked with surface heat transfer, Al-Aweni’s
finding raises questions concerning the possibility of other significant surface effects of near-wall
vortex pairing. Of specific importance to the present work is what influence does such pairing have
on the heat transfer from the impingement surface? And, how does the interaction of pairing
vortices with a flat wall differ from that of a single vortex, produced before or after pairing, from

the perspectives of both the flow and the heat-transfer details?
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Figure 1.3 Time-resolved flow visualization and concurrent radial wall-pressure distribution of an
axisymmetric impinging jet at four time instants, as indicated on top of the images. The
impingement wall is located at z/D = 2, and the jet centerline at r/D = 0. Yellow arrows track the
pairing of two vortices. Seen in the figure is the development of a strong negative surface-pressure
spike in the wall-jet region (r/D > 1) from an initially broad negative peak of approximately -2
Paatr/D = 0.9 and time ¢t = 5 ms (top left plot), to a focused negative peak of -7 to -8 Pa at /D =
1.3 and time ¢ = 8 ms (bottom right plot). The jet exit velocity is 4.3 m/s and the jet Reynolds

number based on diameter and exit velocity is Rep=7,334. Based on Al-Aweni [23].
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The present thesis is also intended to inform concurrent impinging-jet control efforts in the
Flow Physics and Control Laboratory (FPaCL) at Michigan State University. One of the control
strategies in these efforts, which are aimed at the enhancement of heat transfer in impinging jets,
targets acceleration/deceleration of vortex pairing such that the phase of vortex-vortex-wall
interaction is most favorable from heat transfer perspective. Therefore, the present work is
instrumental in providing insight for informed development of the aforementioned control

strategy.

The present computations are only concerned with axisymmetric interactions of vortex
rings with a flat wall. This focus might seem disconnected from the reality of jet vortices which
evolve from the initially axisymmetric form to complex 3D structures by the end of the potential
core in naturally developing free and impinging jets (e.g. see Yule [24], Kataoka et al. [25] and
Violato et al. [26]). However, as mentioned above, this research is specifically motivated by
developing jet control strategies to enhance the heat transfer rate resulting from vortex-wall
interactions. Under the effect of control via axisymmetric forcing, it is well known that the jet
vortical structures can remain coherent and axisymmetric over a larger domain of development
than possible under natural, unforced conditions. Examples may be found in the works of Schram
[27] at a jet Reynolds number of up to 93,000, for free jets, and Didden and Ho [28] at a jet
Reynolds number of 19,000, for impinging jets. Moreover, even for natural impinging jets, we
expect axisymmetric interactions to be relevant at small H/D values that do not extend to the
vicinity of the potential core. This is demonstrated in the flow visualizations of Popiel and Trass
[6] for H/D = 1.2 and 2 at Reynolds numbers up to 20,000. Finally, from the perspective of

understanding of fundamental phenomena, developing physical insight into the influence of the
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interactions of axisymmetric vortices on thermal transport with a flat wall is an important first step

prior to tackling the more complex problem involving three-dimensional, distorted vortex rings.

1.3. Objectives

The specific objectives of this research are as follows:

1.

To set up the CFD simulation of the vortex-ring-wall interaction problem in Ansys-Fluent
and validate the approach using the experimental data of Gendrich ef al. [14] in the absence
of heat transfer. This step employs experimental data to initialize the computation and is
intended to provide confidence in the overall computational approach for the velocity field.
No equivalent experimental data were accessible for validation of the thermal aspects of
the computations.

To compare the effect of pairing of two vortices as they interact with the wall to that of a
single vortex on the unsteady wall heat transfer. Two “single-vortex” cases are considered:
one where the vortex is identical to one of the vortices in the “pairing problem”, and the
other with the vortex having twice the circulation and the core radius of one of the pairing
vortices. These two single-vortex cases represent situations where a vortex approaches the
wall before and after pairing. These simulations are initialized using a model vortex having
Gaussian vorticity distribution within the core. The analysis of this part of the investigation
will include quantifying the vortex characteristics and correlating their time-dependent
behavior to the Nusselt number, the wall shear stress, and the thermal boundary layer.

To utilize the CFD data sets to understand the fundamental vortex-wall interaction physics
through boundary-layer-resolved analysis. This study, which is undertaken in an attempt

to understand the mechanisms of Nusselt number augmentation/reduction, includes
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tracking of fluid particles within the thermal and hydrodynamic boundary layer in order to

evaluate the surface renewal hypothesis of Hubble et al. [22].
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CHAPTER 2
COMPUTATIONAL DETAILS AND VALIDATION

Three different sets of computations are conducted in the present work. The first of these
(referred to as set A) involves velocity field calculations only and is used for validation of the
computational approach by comparing against experimental data. The second (set B) is employed
for the investigation of the heat transfer due to the interaction of one or two vortex rings with a flat
constant-temperature heated wall. Two different single-vortex cases are considered. The first (Case
I) employs a vortex ring that is identical to one of the rings in the two-vortex simulation (Case II).
The second, utilizes a vortex ring with twice the circulation and core-radius size (Case III). The
three simulations in set B represent three scenarios where vortex-wall interaction takes place before
(Case I), during (Case II) and after (Case III) vortex pairing. The third (set C) is an additional set
of calculations employed for getting more information of the detailed physics of the vortex
interaction with the heated wall. Two cases are conducted in this set: the first case is in the absence
of thermal diffusivity (¢ = 0), and the second one employing a slip-wall boundary condition (by
setting the wall shear stress T = 0). For simplicity, these cases will be referred to as (Case a = 0),

and (Case T = 0). The computational details of each set are given below.

2.1. Validation of the Computational Approach: Set-4 Computations

No experimental data sets were found for the case of an isolated vortex-ring pair
interacting with a wall. In contrast, there are a few experimental studies of the velocity field of an
isolated vortex-ring interacting with a flat wall (e.g. Fabris ef al. [12] and Gendrich et al. [14]).
However, none of these works includes heating or cooling of the impingement wall. Therefore,

validation of the current CFD approach is only done for velocity field calculations. For this
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purpose, the whole-field data of Gendrich et al. [14] were readily accessible to the author. This
data set includes measurements of the radial and wall-normal components of the velocity of an
axisymmetric vortex ring impinging on a flat wall. The initial circulation I, of the vortex ring
results in a Reynolds number Rer = I, /v =4500; where v is the kinematic viscosity. Significantly,
at the experiment’s Reynolds number and initial vortex-ring parameters, the entire flow remains
axisymmetric and non-turbulent (i.e. without the development of 3D instability and small-scale
turbulence) for the entire duration of the measurements; which extends well beyond the duration
of all computations conducted here. Thus, this case is appropriate for comparison against the

unsteady, laminar, axisymmetric calculation framework used in the present investigation.

The flow features and sequence of events of an isolated vortex ring impinging normally on
a flat wall is well understood from literature. The flow evolution (which may be seen via the
vorticity field snapshots in Figure 3.4 for computation set B) starts with the ring propelling itself
towards the wall via the “self-induced” velocity, while stretching radially outwards, because of the
no-penetration wall boundary condition (i.e. the “induced” velocity influence of the image vortex).
In the process, a radially-outward flow near the wall is established, creating a boundary layer with
vorticity opposite in sign to that of the primary vortex. When the initial (primary) vortex (also
referred to as PV hereafter) gets sufficiently close to the wall, its surface pressure imprint causes
the boundary layer (BL) to separate, and the resulting shear layer rolls up into a secondary vortex
(SV) of opposite vorticity sign to the PV. Subsequent mutual interaction of the PV and SV arrests
the outward radial movement of the PV, while the SV orbits around the PV, making its way from
a radially outboard position relative to the PV towards the axis of symmetry. The SV eventually
ejects away from the wall, if sufficiently strong, and the PV produces tertiary and ‘“higher order”

vortices, in a process similar to that of generating the SV; if the PV retains sufficient energy.
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Ansys Fluent 17.1 is employed for the present computations by using water, with
temperature-dependent properties, as the fluid. The computational domain is half of axisymmetric
box with three sides walls, extending over a domain of 0.06 m by 0.06 m in the radial () and wall-
normal (z) directions (the domain is the same as illustrated in Figure 2.5 for computational set B).
The domain size was set to be sufficiently large so that the side and the top wall presence does not
influence the vortex evolution (see Table 2.1). A uniform grid with the same resolution in the radial
and wall-normal directions, Ar = Az = 0.00012 m, is employed. Grid-independence studies
(Figure 2.1a) show that this grid size (corresponding to 500x500 grid points) is sufficient to resolve
the vorticity (w) evolution of the primary vortex. An implicit second-order scheme is selected for
the time advancement with a time step size of At = 0.001 s. Figure 2.1b demonstrates that this
time step size is appropriate. The no-slip boundary condition is used on three of the domain
boundaries, with the condition of axisymmetry imposed on the fourth boundary. Experimental data
of the velocity field are used to initialize the calculation. Because the computational grid is more
than eight times smaller than the experimental grid (1 mm), linear interpolation is used to map the

initial velocity field from the experiments onto the CFD grid.

A pressure-based solver is used for the simulation, employing pressure-velocity coupling
(PISO scheme) with zero skewness correction and one neighboring correction. The spatial
discretization is least squares cell-based for gradients, standard for pressure, second-order upwind
for density and third-order MUSCL for both momentum and energy. A second order implicit
scheme is used for the transient formulation. The solution control employed the default under-
relaxation factors in Ansys Fluent 17.1, and the solution is monitored by setting the residual to a

very small value to obtain 200 iterations per time step, ensuring the convergence of the solution
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for all quantities. Solution convergence with a number of iterations is checked by conducting

several simulations with different number of iterations.
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Figure 2.1 Effect of the grid resolution (a) and the computational time step (b) on the temporal

evolution of the peak vorticity within the core of the primary vortex. Computations are done using

experimental data from Gendrich et al. [14] as initial condition. The legend in the left plot shows

the number of grid elements in the » and z directions, while the legend in the right plot provides

the computational time step size.

The vorticity (w) in Equation 2.1 is used to calculate the out of plane vorticity (where u,

and u, are the radial and wall-normal components of velocity). The derivatives in Equation 2.1

are calculated using the central second-order-accurate finite-difference method for the entire

domain, while forward and backward second-order-accurate finite differences are used for the

boundaries. Equations 2.2 through 2.4 show the finite-difference form for the central, forward and

backward difference (e.g. see Fornberg [29]), respectively, for a generic function {(x):
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Considering some of the vortex characteristics, Figure 2.2 shows the temporal evolution of
the maximum and the minimum azimuthal vorticity value within the core of the primary and the
secondary vortex respectively. The spatial locations of the vorticity peaks correspond to the vortex
core “centers”, the locus of which at different time instants is used to identify the motion trajectory
of the vortices (Figure 2.3). In Figure 2.2, the initial PV vorticity increases due to the outward
motion of the ring and associated vortex stretching. As mentioned earlier, subsequent to the
formation of SV, the outward radial motion of the PV ceases, which causes the vortex stretching
to stop, and the PV vorticity decays while getting subtly modulated due to jitter in the radial
location of the PV. In contrast, the vorticity magnitude of the SV generally decreases

monotonically with time.

The qualitative features of the vorticity evolution described above are in excellent
agreement between the experiment and the computation. Quantitatively, the PV vorticity is
captured very well in the computation; though some small differences are seen in the vorticity
modulation during the decay phase. On the other hand, initially, there is a sizable difference

between the experiment and the computation in capturing the vorticity of the SV. With the progress
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of time, this difference disappears, and the two data sets provide the same results. The cause for
the initial discrepancy is unknown. The computational vorticity results are computed using
velocity data extracted at locations matching those in the experiment (i.e. on a 1-mm grid, which
is coarser than the CFD grid). Therefore, the discrepancy is not attributed to the influence of the

lower spatial resolution of the experiments on calculating vorticity.
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Figure 2.2 Comparison between the experimental and the computational results of the temporal
evolution of the maximum and minimum vorticity value in the core of the primary (PV) and the
secondary (SV) vortices respectively. The origin of the time axis is based on the experiments of
Gendrich ef al. [14] and it corresponds to the time of the velocity field data employed to initialize

the computation.

Figure 2.3 shows that the CFD reproduces the experimentally observed trajectories of the
primary and secondary vortices reasonably well. Again, the qualitative agreement is very good,
while some quantitative differences are present. These differences relate primarily to the fine
details of the modulation of the r and z locus of the PV core center, and the SV trajectory as it

ejects away from the wall towards the end of the computation.
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Figure 2.3 Comparison between the experimental and the computational results of the trajectories

of the primary and the secondary vortices (PV and SV respectively).

Another quantity that is considered in comparing the experimental and the computational
results is the maximum boundary layer vorticity at a given time instant (which is proportional to
the negative of the maximum wall shear stress). The maximum BL vorticity is tracked in time and
compared to the corresponding experimental results in Figure 2.4 The figure depicts a generally
good agreement in the quantitative and qualitative features of the BL vorticity evolution. The main
difference between the two results is a rather small time delay in the evolution of the boundary
layer in the CFD case. Also noteworthy is that given the small discrepancy between the two cases,
the discrepancy in the early evolution of the SV vorticity (Figure 2.2) is apparently not caused by

a difference in boundary layer evolution.
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Figure 2.4 Comparison between the experimental and the computational results of the temporal
evolution of the maximum vorticity value of the boundary layer (BL). The origin of the time axis
is based on the experiments of Gendrich et al.[14] and it corresponds to the time of the velocity

field data employed to initialize the computation.

2.2. Main Computations: Set-B Computations

The second (main) computation set is employed for the investigation of the heat transfer
due to the interaction of one or two vortex rings with a flat constant-temperature heated wall, using
air as the working fluid. Three computational cases are conducted: the first utilizing an initial
condition of a single vortex ring (Case I). The second, using two vortex rings (Case II) with the
initial circulation and core radius of each vortex equal to those of the vortex in the first case. And
the third (Case III), is for a single vortex with twice the circulation and the core radius of the first
case. The three simulations in this set represent three scenarios where vortex-wall interaction takes
place before (Case I), during (Case II) and after (Case III) vortex pairing. Because no experimental
data could be found in the literature concerning the interaction of two isolated vortex rings with a

wall, it was not possible to conduct the main simulation for this work employing an initial
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condition based on experimental data. Instead, the initial condition is defined mathematically using

Gaussian vorticity distribution in the vortex core; specifically:

(T - Ro)z + (Z - Zo)z
w(r,z,t =0) = w,e a? (2.5)

[,b=m a(z) Wy (2.6)

where w,, , R, and Z,, are the initial vorticity and radial and wall-normal coordinates of the vortex
core center respectively, a,, is the initial vortex core radius and [, is the initial vortex circulation.

The corresponding radial (u,.) and wall-normal (u,) velocity components are given by:

o _ (7" - RO)Z + (Z - ZO)Z (Z — Zo)

u(r,z,t =0) = o 1—e a2 Rt G-Z) (2.7)
I, _ (r— Ro)z +(z - Zo)z (r— Ro)

uz(r, zZ,t= 0) = % 1—e a(z) (r — Ro)z n (Z — ZO)Z (28)

Equations 2.7 and 2.8 are derived from a 2D vortex with Gaussian vorticity distribution in
the core. While the problem examined is axisymmetric, the associated velocity is expected to
approach that of a 2D vortex in the limit of ag /R, < 1, which is satisfied for Case 1. For the other
cases, the largest a, /R, is 0.32, which may lead to some errors in the initial condition satisfying

the Navier-Stokes equations. However, any initial errors should die out quickly in the iterative
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numerical solution, so that by the time the averaged Nusselt number starts to be affected by the
primary vortex (Figure 3.15a), the solution adheres to the Navier-Stokes equations. This is also
confirmed by Shrikhande [30] who found that the Gaussian vortex model given by Equations 2.7
and 2.8 provide reasonable comparison with the experimental data of an axisymmetric vortex ring

interacting with a flat wall.

Generally speaking, the initial coordinates R, and Z, of the vortex core center, in the
single-ring case, and the relative placement of core centers, in the dual-ring case could significantly
affect the details of the vortex-wall/vortex-vortex interaction. Though this initial placement may
be parameterized and varied systematically, this would require running numerous cases
(particularly for the scenario with two vortex rings) and will likely make it difficult to reach useful
general conclusions. Thus, to define the initial locations of the vortex rings in a focused, physically
meaningful way, use is made of the application motivating this work: impinging jets. Specifically,
the initial location of the core centers is selected to match typical locations of vortices in the

impinging-jet flow visualization images of Al-Aweni [23].

The top half of Figure 2.5a and 2.5b shows sample flow visualization of the jet flow when
the impingement wall is placed at 2D and 3D (D is the jet diameter) respectively away from the
jet exit. In the former case, two vortices (labeled “inner” and “outer”) are seen near the wall. From
time-resolved visualization of these vortices, it is known that they pair as they travel radially
outwards parallel to the wall. The r and z coordinates of the core centers of these vortices are
approximated from the image in the top of Figure 2.5a and used for defining the initial condition
for Case II. For the single-vortex “pre-pairing” case, a vortex with the identical characteristics of
the outer vortex is used for the initial condition. Similarly, for the “post-pairing” single-vortex

case, where pairing is complete before reaching the wall, the initial vortex core center location is
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found using the flow visualization in Figure 2.5b. This is demonstrated in the latter figure for a
vortex that is visually larger than the vortices in Figure 2.5a due to the completion of vortex pairing

ahead of the impingement wall when the plate is farther away from the jet.
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Figure 2.5 Sketch illustrating the computational domain and boundary and initial conditions for
Cases II and III of computational set B: a) a pair of Gaussian-core vortices (Case I1); b) a single
Gaussian-core vortex with twice the initial circulation and core radius (Case III). The problem
setup of Case I is the same as Case II with the only difference being the removal of the inner
vortex. The computational domain spans only one single azimuthal plane due to flow axisymmetry.
The flow visualization images on top are taken from Al-Aweni [23] and are used to determine R,

and Z, shown on the corresponding sketches on bottom.
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For Cases I and II, the initial outer vortex core radius, a, is set to be an order of magnitude
smaller than the vortex ring radius to minimize the influence of this parameter on the results (i.e.
in the limit of a thin vortex ring; a,/R, — 0). Specifically, a,/R, is set to 0.1 in Case 1. In Case
I, a, for the inner vortex is kept the same as for the outer, and in Case III, the post-pairing single-
vortex case, the initial core radius is chosen to be twice that used in the other two cases, as

previously mentioned.

The computational domain is illustrated in the bottom part of Figure 2.5. Because of the
flow axisymmetry, the computation is conducted in a single azimuthal plane of size 0.06 m x 0.06
m (28.6a, in Case I and II, and 14.3a, in Case III). The spatial and temporal resolutions of the

simulations are Ar = Az = 8.39 x 10~ > m (Ar = Az ~ 0.04a, in Case I and II, and 0.02a, in

1.42a3 0.71a3

Case III) and At = 0.0001s (At =

in Case I and II, and At =

l-‘O o

in Case III)

respectively.

The grid and the temporal resolutions, and the domain size are selected by conducting
domain, grid, and time-step independence studies (see Appendix A). Upon convergence, the

maximum error in different flow and thermal quantities is summarized in the Table 2.1.
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Table 2.1 Maximum percentage errors for the results in Appendix A

Maximum percentage error %

Nusselt number

Spatial Temporal L Number of
. : Domain size . .
resolution resolution 1terations
Primary vortex 1.2 0.57 0.25 1.5x107%8
peak vorticity
Secondary
vortex peak 1 3.4 0.36 2x10°08
vorticity
Boundary layer 17 LS 0.8 4108
vorticity
Maximum 0.6 0.4 0.4 0

The initial vortex circulation is found by setting the vortex Reynolds number Reyr = I, /v =
4,000 for the inner and outer vortices. For the post-pairing case (Case III), the circulation is
doubled, resulting in Rer = 8000. The gravity term in the governing equations is turned off to

exclude the influence of buoyancy and natural heat convection. This enables focus on heat transfer

mechanisms that are only related to the vortex-wall interaction.

The temperature of all boundaries is set to 300 K, except for the bottom wall which is kept
at a higher temperature of 350 K. In early simulations, a uniform temperature field of 300 K was
prescribed everywhere for the initial condition of the fluid. However, the “step” change in
temperature near the wall made it difficult to properly resolve the early evolution of the thermal
boundary layer. To resolve this issue, an initial thermal boundary layer (TBL) is prescribed based

on the semi-infinite-domain unsteady-diffusion solution above an infinite constant-temperature

flat wall (Incropera and et al. [31]):
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T(z,t)—T, z (2.9)
——— =cerf

T = Tw Z/at

where T, and T,, are the temperatures of the fluid,

outside the thermal boundary layer, and the wall respectively, « is the thermal diffusivity and ¢ is
time.

Figure 2.6a shows the wall-normal temperature profile evolution with time using Equation
2.9 in increments of 5At (where At is the computational time step). The profile obtained after ten
increments (shown with a thick black line) is chosen to initialize the temperature field in order to
avoid the initial infinite temperature gradient at the wall associated with a step temperature profile
(depicted in the same plot with a thick broken black line). The selected time instant of 0.005s
provides a reasonable balance between ensuring that multiple grid points are present within the
initial thermal boundary layer (approximately twelve points for the selected time) and that the TBL
is small enough such that it is initially unaffected by the vortical flow. The latter condition enables
observation of the evolution of the interaction of the vortical flow with the TBL from the
beginning. The resulting initial temperature field is depicted in Figure 2.6b, which includes a

magnified view of the initial thermal boundary layer.
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Figure 2.6 a) Temporal evolution of the wall-normal temperature profile obtained from Equation
2.9. The profile evolves monotonically in the direction indicated by the arrow. Different times are
represented by different line colors, with the time step between two successive lines equal to 5At.
The thick solid black line outlines the temperature profile selected to initialize the temperature

field; b) The initial temperature field of the computational domain, with a magnification of the

TBL.
2.3. Additional Computation: Set-C Computations

Two additional computations are conducted in order to get more information about the
detailed physics of the heat transfer enhancement and deterioration during vortex-wall interaction.
Both of these cases focus on single-vortex-ring interaction with the wall, and they have the same
exact working fluid (air) and parameters as Case I except for one parameter of interest that is

altered. The first additional case (Case a = 0) is conducted by setting the thermal conductivity of

. K . .
the fluid k = 0; where a = o and p and c, are the density and the constant-pressure specific
p

heat, respectively, of the fluid. The initial temperature field is kept the same as in Case I, in spite
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of setting the thermal diffusivity to zero. This case enables examination of the vortex interaction
with the thermal boundary layer without the thermal diffusivity, aiding in exploring the role of
thermal diffusion on the temporal evolution of the radial distribution of the Nusselt number Nu;.
In other words, Case a = 0 facilitates observing how the temperature field evolves under pure

convective effects resulting from the flow field of vortex-wall interaction.

A computational difficulty was encountered in simulating Case @ = 0. As will be seen in
Chapter 3, the PV is associated with both a downwash towards, and an upwash away from the
wall. On the downwash side, the TBL becomes thinner due to the movement of the fluid towards
the wall. This results in increasing the temperature gradients in the TBL, which strengthens
diffusive effects that oppose the convective thinning of the thermal boundary layer. Thus, thermal
diffusion limits the thinning of the boundary layer. When a = 0, the opposing mechanism
disappears, and the TBL continuously thins on the downwash side, eventually making the
computational mesh resolution inadequate to correctly resolve the temperature field and compute
the wall temperature gradient (which is necessary for obtaining the Nusselt number). Figure 2.7
demonstrates this problem by showing the corresponding number of the grid points (which are
depicted as fractional multiple of the grid spacing of the original CFD calculation) in the minimum
thermal boundary layer thickness (8¢, min) at a given time instant for both Case a=0 and Case 1.
As seen from the figure, the number of grid points reduces to only two grid points within the
O¢n,min halfway through the computation. In comparison, the thinnest TBL thickness encountered

in Case I contains seven grid points.
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Figure 2.7 Comparison of the number of the grid points (n) within 8¢, i, for Case I and Case a =
0 versus time. The number of grid points is depicted as fractional multiple of the grid spacing. The
actual number of grid points, which is an integer, is the largest integer number below the value

shown.

In order to avoid the added cost of computational time when using a finer mesh resolution,
an alternative technique is used to compute the temperature field from post-processing of the
velocity field. Since the present computation is incompressible, the velocity field calculation is
unaffected by the temperature calculation and the issues arising from setting @ = 0. The post-

processing calculation method is based on this point, along with the fact that, when a = 0, the
thermal energy equation reduces to the material derivative of temperature is equal to zero, i.e. % =

0. This means a fluid particle’s temperature stays the same as the particle moves due to the

presence of the vortex-wall interaction flow field.

Based on the above, by treating temperature as a passive scalar, the evolution of the initial
temperature field with time is obtained via a Lagrangian description by following the particle

trajectories. To obtain the equivalent Eulerian description at any given time, the spatially non-
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uniform instantaneous Lagrangian description of the temperature field is interpolated on a uniform
Eulerian grid that is much denser than the original computational grid. MATLAB is used for
coding a program that implements this approach. In this program, the particles' locations are
advanced over one time step At using the velocity field from Case I, employing the equations

below:

T, =1+u, XAt (2.10)

Zn = Z+u, XAt (2.11)

where 7;, and z,, are the new radial and axial positions of the particle respectively.

The starting particle positions at each time step always coincide with the fine-mesh
Eulerian grid. At every time instant, the velocity field on this grid is found by interpolating the
CFD solution onto the finer grid. The initial temperature field is the same as in Case I but
interpolated on the denser grid. This gives an initial Eulerian description of the temperature field
T(r,z,t = 0). The new positions (1;,, z, ) of the particles after one time step result in a Lagrangian
description of the field at time At by simply replacing the Eulerian grid coordinates with the
particle coordinates; i.c. att = At, T = T (1, z,, At). Before evolving the temperature field further
to the next instant, t = 2At, the second step is to interpolate the temperature field on the non-
uniform grid T (1, z,,, At) on the uniform Eulerian grid to advance the Eulerian field in time; i.e.
to get T(r,z, At). This two-step Lagrangian-Eulerian evolution is repeated for every time step,
starting with the Eulerian field from the previous time step. The new fine mesh spacing is set to
Az /20 in the axial direction from the wall to z = 0.005m. On the other hand, the radial direction

interval is set to Ar/4 from r = 0.01 m to r = 0.05 m, where Az = Ar, are the size of the mesh
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elements of the CFD calculations. This X 20 and X 4 enhancement in spatial resolution of the
temperature field in the z and r directions respectively, is focused in the near-wall, near-PV
domain. Outside this domain (where no “action” is happening), the grid resolution is maintained

the same as in the CFD calculations.

Figure 2.8a and 2.8b show the difference in calculating the maximum Nu, (which, as will
be seen in Chapter 4, occurs where &¢p, min 1S located) using different orders of accuracy of finite
difference in Case I and Case @ = 0 respectively. The equations of the 1% and 4" order of accuracy
of the forward finite difference employed in Nu, calculation are listed below, while the 2™ order

of accuracy was given in Equation (2.3).

00(x) _ —¢(x) + {(xiv1) (2.12)
ax Ax

00 (—52)G) +40(xien) — 3¢(in) + (§) S Cxiaa) — (3) S xina)
ox Ax

(2.13)
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Figure 2.8 The evolution of Nu, 4, calculated using different orders of accuracy of the finite
difference applied to data from; a) CFD on the old computational mesh; b) Lagrangian-Eulerian
(L-E) passive scalar evaluation on the new fine mesh. Plot (a) also contains the second-order finite-

difference result from plot (b) for direct comparison.

The results in Figure 2.8 show that, except for a short duration in the early evolution, the
calculation of Nu, 4, does not converge with increasing finite-difference-scheme order when
using the CFD data. This demonstrates the issue of “resolution loss™ discussed in connection with
Figure 2.7. In contrast, by tracking particle temperatures and interpolating on a dense Eulerian

grid, the computation of Nu,. 4, 1s convergent even using first-order finite-difference.

The second additional computational case investigated is motivated by a deeper
examination of the mechanism of the deterioration of the Nusselt number on the upwash side of
the PV (see Chapter 3). Once boundary layer separation occurs, the minimum Nu, is always found
in the vicinity of the separation point (Section 3.4). To better understand the role of separation on
this heat transfer deterioration, a study case is considered where separation is eliminated by

allowing the flow to slip at the wall. This is achieved by setting the boundary conditions T = 0 at
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the heated wall, while keeping all other initial and boundary conditions the same as Case I (set-B).

More details about the T = 0 and the @ = 0 cases will be discussed in Chapter 4.
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CHAPTER 3
VORTEX-WALL INTERACTION AND HEAT TRANSFER

3.1. General Considerations
3.1.1. Normalization

With the exception of the Nusselt number (see Equation 3.10 below), length scales are
normalized by the initial core radius of the primary vortex a,, while time scales are normalized
using the primary vortex’s “turn over time” a2 /T,, where T, is the initial circulation. With these
choices, the relevant velocity scale is I,/a,. For the two-vortex problem (Case II), these
parameters are applicable to the inner primary vortex since, as will be seen, it is the one responsible
for the initial interaction with the wall and the formation of the secondary vortex. In addition,
temporal evolution is considered relative to a time offset ¢, at which the primary vortex effect on
the overall wall heat transfer is perceptible. This offset is determined by finding the time at which
the radially-averaged Nusselt number starts to deviate from the unsteady semi-infinite heat
diffusion solution (see Figure 3.15a and section 3.4). Thus, by plotting the evolution of Nusselt
number versus t* = (t —t,)/(a2/T,), the period corresponding to the primary vortex
approaching the wall with no significant vortex-wall interaction is removed from the history. This
makes the results independent of the initial vortex ring height above the wall. Similarly, to remove
the dependence on the initial vortex ring radius, R, is subtracted from r when presenting the radial

coordinate information.

The choice of a, as a length scale is judged to be more appropriate than the vortex-ring
radius R,. To clarify, consider two vortex rings with equal initial strength, core radius and core
center location above the wall but with one ring having a significantly larger ring radius. This will

cause a difference in the self-induced velocity and, hence the speed at which the rings approach
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the wall. However, once both rings interact with the wall, the local induced velocity, surface

pressure gradient, etc., are expected to be primarily linked to the core rather than the ring radius.
3.1.2. Calculation of Vortex Characteristics

While the PV is identified by region of the same sign (positive) vorticity, the SV is
identified using the “Q-criterion” in order to separate it at earlier time of formation from the BL
vorticity which has the same sign as the SV. The “Q-criterion” is a method used to determine the
characteristics of a vortex, specifically, the vortex-core area and the boundary of the vortex core

(see Hunt et a/ [32] and Jeong and Hussain [33]) and it is identified by applying the equation:
1 2 2
Q=sQI=Is1%)>0 3.1)

where ((1) and (S) are the antisymmetric (rate of rotation) and symmetric (rate of strain) parts of
the velocity gradient tenor (Vu). Il Q | and || S || are the Euclidian norms of Q and S respectively.

The terms above are mathematically represented in Equations 3.2 through 3.7 below:

Vu=S+Q (3.2)
1

S= > [Vu + VuT] (3.3)
1

O= 5 [Vu — VuT] (3.4)

Il S lI=[tr(SST)]/? (3.5)

I Q lI= [tr(QQT)]*/? (3.6)
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where tr(a) is the trace of the (n X n) square matrix A whose entries (a;;) of ith row and ith

column are used to compute the trace as defined below:

tr = z": a (.7)

The procedure for the derivation of the matrices of the strain rate and the rotation rate components
is given in Appendix B. All the velocity derivatives appearing in the above equations are calculated
using the second-order-accurate finite difference (see Equations 2.2 through 2.4). Once the SV
core boundary is identified (i.e. @ boundary equal to 10% of Q4 ), the center of the vortex is

found by finding the position of the maximum vorticity inside the core.

As Equation 3.1 shows, a vortex is identified in a region where rotational effects dominate
over those of deformation. To give a sense of what this criterion yields in the case of a well-defined
vortex flow with known core radius, The Q-criterion is applied to a Gaussian vortex with vorticity
distribution given by Equation 2.5. Figure 3.1 shows the vorticity distribution of the Gaussian
vortex, along with two circles corresponding to the core radius a, of the vortex (green line) and
that determined using the Q-criterion (blue line). As seen from the figure, the Q-criterion gives a

result comparable to a,, which is about 10% more than the core radius of the vortex.

The circulation I' of a vortex is calculated by integrating the vorticity over the area A

occupied by the vortex, specifically:

'=| wdA (3.8)

S
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Figure 3.1 Vorticity distribution of a Gaussian vortex demonstrating the vortex border as defined

by the core radius and the Q-criterion (Equation 3.1).

Equation 3.8 is evaluated numerically by multiplying the vorticity of each node (inside the
specified vortex) by the area of the grid element and then summing the results to find the total
circulation. Two methods are used to determine the integration area of Equation 3.8. The first
method, used for calculation of the circulation of the PV, simply integrates all positive vorticity
present within the domain. On the other hand, the second method is used for calculation of the
circulation of SV by integrating the negative vorticity over the area encompassed by the borders
identified using the Q-criterion. This automatically excludes the region of the BL, which also
possess negative vorticity, from the secondary vortex. The vorticity field and the vortex border
calculated by the Q-criterion method for SV from Case I are exemplified in Figure 3.2 at a the

early time of SV formation, where the vortex is still connected to the BL.
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Figure 3.2 Time evolution of the vorticity field (Case I), showing an example snapshots during the
early stages of SV formation. The broken red line represents the SV border calculated by the Q-

criterion.
3.1.3. Wall Friction Coefficient and Nusselt Number Calculation

The wall friction coefficient (Cr) and the radial distribution of Nusselt number (Nu;) are

computed using:

#aur
T oz | _
Cr = W 5 = Z—g (3.9)
1 (&) 1 (L
2P a, 2P a,
N L, 0T
U, To—T, 9zl,_, (3.10)
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where p is the dynamic viscosity and L, is a characteristic length; taken here as the radial extent
of the heated wall (a different representation of Nu,., based on the thermal boundary layer thickness
will also be discussed in Chapter 4). A second-order-accurate forward finite difference scheme
(Equation 2.3) is employed to compute the derivatives in Equations (3.9) and (3.10). Higher-order

finite difference formulae are also tested without significant change in the outcome.
3.1.4. Separation Detection

As will be seen in Section 3.3, the radial distribution of Nusselt number (Nu,) exhibits a
local minimum for all time instants. The r location of this minimum is always found in the vicinity
of the boundary layer separation point (which is predominantly found directly beneath or on the
“upwash side” of the vortex). In most instants, the separation location is found to coincide with
the location of zero wall friction coefficient (Cr = 0). However, in the time period between the
formation of the SV and its subsequent movement away from the wall, a secondary separation of
a positive-vorticity boundary layer is formed beneath the SV (see Figure 3.3) which makes
identification of the primary-vortex-induced separation point (hereafter referred to as the primary
separation point) using Cr = 0 inaccurate. During these periods, it is found that the primary
separation point is more properly identified with a local minimum in C¢. This is demonstrated in
Figure 3.3, where the “primary separation point”, associated with the negative-vorticity boundary
layer originating from beneath the PV (seen in both subplots a and b in Figure 3.3), is compared
to the “secondary separation point” of the positive-vorticity boundary layer, forming beneath the
SV (seen in subplot b). The lifting of the positive-vorticity boundary layer causes the formation of
a new negative-vorticity boundary layer next to the old negative-vorticity boundary layer, and the
disappearance of the negative to positive vorticity transition (Cr = 0) at the separation point of the

boundary layer beneath the PV. In this case, the separation point of the original negative-vorticity
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boundary layer (primary separation point) appears to correspond to a local minimum in the wall

shear stress.
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Figure 3.3 a) and b) show two snapshots of the normalized near-wall vorticity field and the
concurrent radial distribution of the wall friction coefficient (Cr) and Nusselt number (Nu,) of Case

I. The ordinate is stretched relative to the abscissa in the vorticity-field plot to magnify the view,

distorting the appearance of the flow features.
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3.2. Evolution of the Flow Field and Nusselt Number

Figures 3.4 through 3.6 provide snapshots of the vorticity field w* = wa?2/T,, near-wall
temperature field 8 = (T — T,,)/(Ts — T,,), and the radial distribution of wall-friction coefficient
(Cr) and local-Nusselt number (Nu;) for all three cases investigated. The time instants at which the
snapshots are captured, and the presentation style are kept the same in all three figures. Figures
3.4a to 3.4f show a time sequence from Case I, depicting a single vortex ring as it interacts with
the heated wall. Each subplot in the figure contains the normalized vorticity field (top), the

normalized near-wall temperature field (middle), and the concurrent C; and Nu,.

Between Figures 3.4a and 3.4b, the PV approaches the wall while moving radially
outwards and the BL deforms. The wall shear stress is highest beneath the PV and, the Nusselt
number is seen to have a local maximum in the same vicinity, but not directly beneath the PV
center. Consistent with the literature, the maximum Nu; is always seen on the “downwash” side of
the vortex, and the temperature field also shows that the TBL (the zone of dense contour lines near
the wall) is thinnest in the vicinity of the local Nu, maximum. In fact, these two locations seem to
coincide as seen from the plots of the Nusselt number distribution, where the black broken line
identifies the location of the thinnest TBL. The thermal boundary layer thickness &;;, is defined as

the z coordinate of the isotherm 8 = (T —T,,) /(T — T,,) = 0.99.

As time progresses, the BL separates leading to the formation of the SV, which is seen first
in Figure 3.4b. In Figure 3.4b through 3.4f, The SV and PV mutually interact, causing the PV to
“rebound”, i.e. move away from the wall and radially inwards. Meanwhile, the SV orbits the PV,

moving from outboard to inboard of the PV.
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During the flow evolution, the peak Cy and Nu, remain beneath the PV. However, the

radial location of the two peaks do not coincide, with the Nu, peak mostly found at a slightly
smaller radial location than that of the Cr peak (this will be demonstrated more clearly in Section
3.3). Moreover, the Cr and the Nu, distributions have different shapes during the formation and
early evolution of the SV, suggesting that Reynolds analogy is not applicable during the PV-wall
interaction. Overall, the observations suggest a direct connection between the PV and the
maximum Nu,, where, likely, the near-wall “induced” velocity by the PV causes thinning of the
TBL beneath the PV, and hence intensification of the wall-normal temperature gradient at the wall,
and associated enhancement in the wall heat transfer. This hypothesis will be explored further in
Chapter 4, employing boundary-layer-resolved analysis.

For all time instants in Figure 3.4, the radial distribution of Nu, also exhibits a local
minimum. The r location of this minimum is always found in the vicinity of the boundary layer
separation point (which, as will be seen in Section 3.4, is mostly found directly beneath or on the
“upwash side” of the vortex). This may be seen in the line plots in Figure 3.4, where the separation

location is identified with a vertical broken gray line.

Figures 3.5a to 3.5f exhibit the pair of vortex rings as they interact with the heated wall
(Case II). The two vortex rings mutually interact before they reach the wall (not depicted in Figure
3.5). The inner vortex (the core center of which is initially located at a smaller radial location than
the outer vortex) moves towards the wall and in the positive radial direction faster than the outer
vortex due to a faster self-induced velocity coupled with the influence of the outer vortex. In Figure
3.5b and 3.5c, the two rings orbit around each other, while the initially smaller ring is getting
stretched and “squeezed” between the outer ring and the wall, before the two rings completely

merge (Figure 3.5¢). In the time between that corresponding to Figures 3.5¢ and 3.5d, the SV forms
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due to the separation of the BL and the remainder of the flow evolution becomes qualitatively
similar to that of the single vortex ring interaction with the wall. This similarity includes the overall
characteristics of the Nu, radial distribution and the connection of its peak and valley with the
radial location of the PV, the maximum wall-friction coefficient, the primary separation point and

the TBL thickness.

Figures 3.6a to 3.6f show the evolution of Case III vortex ring (with twice the circulation
and twice the core radius of Case I) as the ring interacts with the heated wall. As would be expected,
the overall evolution of the flow is similar to Case I while exhibiting quantitative differences. The
details of the quantitative differences between the three cases will be discussed further in the

remainder of the document.
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Figure 3.4 Time evolution of the initially-Gaussian-core vortex as it interacts with a heated wall
(Case I). Shown at each time instant: the azimuthal-vorticity field (top), the near-wall temperature
field (middle) and line plots (bottom) of Nusselt number (Nu,) and the wall-friction coefficient

(Cr). The broken gray line represents the primary separation point of the hydrodynamic boundary

layer beneath the PV, and the broken black line depicts the location of the minimum &,.
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Figure 3.5 Time evolution of the two initially-Gaussian-core vortex rings as they interact with a
heated wall (Case II). Shown at each time instant: the azimuthal-vorticity field (top), the near-wall
temperature field (middle) and line plots (bottom) of Nusselt number (Nu,) and the wall-friction

coefficient (Cr). The broken gray line represents the primary separation point of the hydrodynamic

boundary layer beneath the PV, and the broken black line depicts the location of the minimum &;,.
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Figure 3.6 Time evolution of the initially-Gaussian-core vortex (with twice the initial circulation
and core radius of Case I) as it interacts with a heated wall (Case III). Shown at each time instant:
the azimuthal-vorticity field (top), the near-wall temperature field (middle) and line plots (bottom)
of Nusselt number (Nu,) and the wall-friction coefficient (Cr). The broken gray line represents the
primary separation point of the hydrodynamic boundary layer beneath the PV, and the broken

black line depicts the location of the minimum &;y,.
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3.3. Heat Transfer Enhancement: Maximum Nu,

To analyze the heat transfer enhancement associated with vortex-wall interaction, the

maximum Nu, value (NU;. mqy) and radial location (7, . . ) where the maximum occurs are found

at each time instant. The existence of possible correlation between these quantities and the PV
trajectory, the wall-friction coefficient and the TBL thickness is examined and compared between
the three cases studied. The evolution of the maximum Nu;, is depicted in Figure 3.7 versus time
in both dimensional and non-dimensional forms. The dimensional plot is included to enable
comparison with Nu, for the semi-infinite transient-diffusion solution (based on Equation 2.9) for
reference. Overall, the CFD results are substantially higher than those of the diffusion-solution,
commensurate with the expected enhancement of the heat transfer rate due to convective versus

diffusive heat transfer.

For all cases, the maximum Nu, exhibits up/down modulation with time. As seen earlier,
in the discussion of Figures 3.4 through 3.6, the maximum Nu, appears to be predominantly
affected by the PV. Consequently, the modulation behavior seen in Figure 3.7 is likely caused by
changes in the location and characteristics of the PV. These changes initially manifest themselves
as an increasing influence of the PV as it gradually approaches the wall, which appears to produce
a corresponding increase in Nu,. 4, up to a local peak for all three cases (which corresponds to
snapshot ¢ in Figures 3.4 through 3.6) within the t* range of 40-60. This peak is largest for the
case of two vortex rings, demonstrating an ability to produce a higher heat transfer rate in

comparison to the single vortex ring in both Case I and Case III; i.e. “before and after pairing”.

As time progresses, the initial Nu,. 4, peak decays with time, reaching a local minimum

(corresponding to snapshot f in Figures 3.4 and 3,5) in the vicinity of t* = 174.9 and 170.5, for

49



Cases I and II respectively, before starting to increase again. For Case III, the local minimum

occurs at t* = 109.5. The connection between the temporal evolution of the maximum Nusselt

number and some of the vortex characteristics (specifically, the circulation and the radial and wall-

normal location of the PV core center) is examined further below.
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Figure 3.7 Comparison of the maximum Nusselt number evolution with time for the one- and the
two-vortex rings interacting with a heated wall: a) dimensional, and b) non-dimensional time. The

semi-infinite transient-diffusion solution (based on Equation 2.9) is included for reference in (a).

In order to examine possible connections between the vortex strength and the enhancement
in the heat transfer, the circulation associated with the primary vorticity is calculated from the area
integral of all positive vorticity. For Case II, this accounts for the circulation of both primary
vortices. As seen in Figure 3.8, which shows the evolution of circulation versus time in both
dimensional and non-dimensional forms, the circulation remains relatively constant initially before
exhibiting monotonic decay with time. The decay starts approximately around the time when the
secondary vortex forms. This decay is expected due to vorticity cancellation associated with the

diffusion of negative and positive vorticity. Interestingly, the initial significant rise of N, ;45 t0
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its peak value in Figure 3.7 takes place during the time when the circulation is constant. Thus, the
initial heat transfer enhancement for a given case is not connected to change in the vortex strength.
Furthermore, since Case II and Case III have the same initial circulation, yet the former case leads
to better heat transfer enhancement, this demonstrates that the initial configuration of the vortices
(i.e. the specific spatial distribution of vorticity) can have a significant effect on the wall heat

transfer.
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Figure 3.8 Comparison of the temporal evolution of the total circulation associated with the
primary vorticity for the one- and the two- vortex rings interacting with a heated wall: a)

dimensional; and b) non-dimensional plot.

Figure 3.9 shows the time evolution of the radial locations of the Nu; 45, the PV core
center, the maximum wall friction coefficient, and the minimum TBL thickness (6th,mm) for all
cases. For Case II, initially there are two curves representing the radial loci of the inner and the
outer vortices (Rpy ; and Rpy , respectively), until the two vortices fully merge into a single vortex
and only a single vorticity peak can be detected in the core (starting from approximately t* =

150). A magenta line depicts the average of these two loci. For all cases, Figure (3.9) reveals that
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the Nu, pqy 1s always located at a smaller radial location than that of the PV core center (i.e.
inboard, or to the left of the PV, where a downwash flow towards the wall is present). In addition,
the radial location of the maximum C; generally falls between the radial location of the PV core
and that of the Nu,. ,,,4, (although at certain times the two locations might approximately coincide).

Significantly, Nu, 4, 1s practically collocated with the location of the thinnest TBL.

The main difference between the single-vortex and the two-vortex radial core-center
trajectories is that for the latter, the inner and the outer rings undergo some leap-frogging before
merging into a single vortex. Referring to Figure 3.9b, initially, the radial location of the inner
vortex is smaller than that of the outer. The two vortices then exhibit four leap-frogging actions,
in which the inner moves twice ahead of, then back behind the outer vortex in the radial direction.
This type of mutual interaction is reflected in the “out-of-phase sinusoidal” modulation of the
radial location of the cores of these vortices before merging. Interestingly, these sinusoidal
modulations of the vortices radial trajectory are not seen in either the radial location of the

maximum Cr or the peak Nu,. In fact, the trajectory of the maximum wall friction coefficient and
N, max are very similar in shape to the average trajectory of the inner and outer vortices (shown

in magenta in Figure 3.9b). Moreover, all of these trajectories are qualitatively similar to those for

Cases I and II1.

Notable is that, in non-dimensional terms, Case III evolves faster than the other two cases,
so that over the same non-dimensional time duration, the qualitative behavior seen for Cases I and
IT is repeated twice in Case III. This is also evident in Figure 3.7b, where two cycles of Ny ;a5
oscillation are captured within the same t* window for Case IIl, in comparison to only one cycle

for Cases I and II. This behavior is associated with the occurrence of two PV rebound cycles in
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Case III, in comparison to a single cycle in Cases I and II. The first rebound cycle is associated
with the interaction with the SV, and the second with the formation of a tertiary vortex.
Qualitatively, the behavior of the PV associated with the tertiary and higher-order vortices is
similar to that resulting from interaction with the SV. Therefore, the flow behavior is analyzed

through the first rebound cycle only.

The correlation between the magnitude of the maximum local Nu and the wall-normal
location of the PV core center (Zpy) is examined with the aid of Figures 3.10 for all cases. In Figure
3.10a (Case I), it is evident that some correlation exists between the proximity of the PV to the
wall and Nu, 14, down and up movement of the PV are followed by increase and decrease,
respectively, of N, 144; 1.€. the closer the PV is to the wall, the stronger the peak heat transfer
rate. However, a delay At is observed between the change in Zpy and the corresponding change in
Nuymax. The same type of correlation between Zp, and Nu, pq, 1s seen for Cases II and III in

Figures 3.10b and 3.10c respectively.

The time delay At implies the presence of some inherent dynamics in the response of the
temperature field to variation in the velocity field. These dynamics are hypothesized to lead to the
inability of the temperature field, and hence Nu;,max, to respond immediately to variation in the PV
vortex location (this point is explored further in Chapter 4 with the aid of a simple analytical
problem). Interestingly, the faster modulation of the inner- and outer-vortex core-center location
due to leap frogging in Case II do not appear in the Nu,. y,4, €volution. As was the case for the
radial trajectory of the PV for Case II (Figure 3.9b), variation in N, 4, seems to correspond

better to variation in the average wall-normal trajectory of the inner and outer vortices.
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Another interesting observation from Figure 3.10 is regarding the difference between the
single- (Cases I and III) and the two-vortex (Case II) situations. Because of the interaction/merging
process of the inner and outer vortices, the inner vortex reaches closer to the wall in Case Il relative
to Cases I and III (reaching 50% and 80% of the minimum height of the PV in these two cases
respectively). This may be the primary factor leading to the substantially larger Nu, ;45 In the
two-vortex-ring case Figure 3.7. The plots in Figure 3.10 also include the history of the minimum
TBL thickness (magnified five times). Consistent with the earlier observations, the TBL thickness
variation 1s “180 degrees” out of phase with Nu, ,,,4,. Specifically, peaks in the latter coincide

with minima of the former and vice versa.
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Figure 3.9 Temporal evolution of the radial locations of the maximum local Nusselt number, the
maximum wall friction coefficient, the minimum TBL thickness, and the core center of the primary
vortex: a) Case I; b) Case II; ¢) Case III. The magenta line in (b) displays the average of the radial

loci of the inner and the outer vortex cores.
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Figure 3.10 Temporal evolution of the maximum local Nusselt number, the minimum TBL
thickness, and the wall-normal location of the core center of the primary vortex: a) Case I; b) Case
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outer vortex cores.
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3.4. Heat Transfer Deterioration: Minimum Nu,

The evolution of the minimum local Nu (N, ;) for all cases is plotted in Figure 3.11a
versus t to compare with the unsteady diffusion. Figure 3.11b depicts the same results versus t*.
An immediate observation is that the smallest Nu, produced in vortex-wall interaction is
significantly smaller than even that associated with unsteady diffusion. Though not perfectly
collapsing in non-dimensional form, the results in all cases seem to lead to a practically similar

Nu, min history, both qualitatively and quantitatively.
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Figure 3.11 Comparison of the minimum Nusselt number evolution with time for the one- and the
two- vortex rings interacting with a heated wall: a) dimensional; and b) non-dimensional time. The

semi-infinite transient-diffusion solution (based on Equation 2.9) is included for reference in (a).

Figure 3.12 depicts the temporal evolution of the radial locations of N, 1., the PV core
center, and the boundary layer separation location (7p5). As mentioned earlier, because a secondary
separation zone forms beneath the SV when the latter is sufficiently close to the wall, only the
primary separation location closest to the PV is considered in order to focus on the PV-driven

separation process. As seen from Figure 3.12, the Nu,,min for each case stays in the vicinity of the
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separation point, beneath or outboard (on the “upwash” side) of the PV, which is an indication of
the connection between the deterioration of Nu and the thickening and unsteady separation of the
boundary layer (this point will be investigated in more details in Chapter 4). The “jumps” seen at
certain times in the primary separation point location occur at time periods where a secondary
separation zone is present and identifying the separation point using the wall shear stress is
difficult. As discussed earlier, during such times, a local minimum in the wall friction coefficient
(see Figure 3.3) seems to work better in identifying the primary separation point than Cf = 0.
However, even this different criterion is imperfect, which leads to the observed jumps in the

separation location.

Figure 3.13 depicts variation in Nu,. ,;, and the concurrent change in the z location of the
PV core center (Zpy ). Overall, the magnitude of the Nu,. ,,;,, does not seem to be closely correlated
with the proximity of the PV to the wall as is the case for Nu, ,,,4, (Figure 3.10). More specifically,
while Zpy, exhibits sinusoidal-like down/up change, Nu,. ,;, initially decreases monotonically
then reaches an apparent plateau. Careful inspection of videos, from which the snapshots in Figures
3.4 through 3.6 are taken, reveals that the initial decrease in N, 1,4, 1s accompanied by thickening
of the boundary layer and early development of the separation zone, within which Nu,. ,,,,, occurs.
Subsequently, once the SV is sufficiently removed from the wall, the flow very near the wall within
the separation zone seems to reach a state that is approximately steady and predominantly
unaffected by further evolution of the primary and higher-order vortices. In this late stage of
evolution, the rate of decay of Nu, ,,,;, looks comparable to that of unsteady diffusion (see Figure

3.11).
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Figure 3.12 Temporal evolution of the radial locations of the Nu,. ,;,, the primary separation point
and the core center of the primary vortex: a) Case I; b) Case II; ¢) Case III. The magenta line in

(b) displays the average of the radial loci of the inner and the outer vortex cores.

59



125 T 5
(a) _Nur’,r’m‘n

PV

z/a,

0 0
0 50 100 150 200 250
t*
125 A 5
(b) —u
100 -
-------- Z
= PV.0
£ 70 &
=" ~
= 50 "
25
0 0
0 50 100 150 200 250
t*
©) 125 : : : . 5 —
—Z
100 1 14 =
=
e
3&.
Z 50
25+
0

. g g 0
0 50 100 150 200 250
t*

Figure 3.13 Temporal evolution of the Nu,. ,,;;, and the wall-normal location of the core of the

primary vortex: a) Case I; b) Case II; c) Case III. The magenta line in (b) displays the average of

the radial loci of the inner and outer vortex cores.
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3.5. Overall Effect: Average Nu,

The results from Sections 3.3 and 3.4 demonstrate that at a given time instant, vortex
interactions with the wall have both positive and negative influences on the enhancement of the
wall heat flux. To examine the net effect of the interactions, the radial distribution of Nusselt
number is averaged over the radial domain influenced by vortex-wall interaction. Defining a
domain of influence is necessary in order to only take into account the radial region that is affected
by the interaction of the vortices with the wall; enabling a fair comparison among the cases. The
domain of influence in this case is defined, somewhat arbitrarily yet consistently, as that extending
from the axis of symmetry to the maximum radial coordinate of the secondary vortex core center.
Another criterion was also applied based on the fact that sufficiently far away from the axis of
symmetry, Nu, reaches a plateau corresponding to the unsteady diffusion value. In this criterion,
the domain of influence is defined as that extending from r = 0 to where Nu, asymptotes to within
10% of unsteady diffusion. Figure 3.14 visually demonstrates both criteria for Case I for the time
step where the center of the SV core reaches its maximum radial location. Both criteria give similar

results.

Because of the axisymmetry of the present problem, the radially-averaged Nusselt number

is computed using an area-weighted average; specifically:

0=2m T=Tsv,max

Nu, rdrd6

6=0 r=0

Ny gpg = . (3.11)
7TT‘SV,max

where, 75y max 15 the maximum radial location of the domain of influence.
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Figure 3.14 A snapshot of the evolution of vortex-wall interaction for Case I, demonstrating the
two criteria used to define the radial domain boundary for calculation of the radially-averaged
Nu,(t): vorticity field (top) and concurrent radial distribution of the Nusselt number (bottom). The
figure shows the SV at its maximum radial location. (I) and (II) in the figure represent,
respectively, the maximum radial location of the SV, and the radial location where Nu, deviates

by 10% from the unsteady diffusion value.

Figure 3.15 displays the temporal evolution of Nu, 4,4 for all three cases (with time shown
in both dimensional and non-dimensional form). As before, the dimensional-time plot (Figure
3.15a) enables comparison with the unsteady diffusion solution. Furthermore, this plot
demonstrates the difference in the initial time period t, before the PV affects the average heat
transfer for the different cases. Comparing Figure 3.15b to Figure 3.7b (where Nu,. 4, €volution
is depicted), it is clear that the magnitude of the radially-averaged Nusselt number is substantially
less than Nu, 4, for all three cases. The maximum in the average Nusselt number is

approximately half of the peak value of Nu, pmqy, but generally Nu, 4, remains significantly
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higher than unsteady diffusion. Thus, notwithstanding the presence of positive and negative
influences of vortex-wall interaction on the heat transfer, overall the interaction improves the heat
transfer rate. Moreover, similar to Nu,. 4, results, when the two vortices pair while interacting
with the wall (Case II) they result in the highest heat transfer enhancement. The pre-pairing and
post-pairing, single-vortex scenarios (Cases I and III respectively) produce lower, but

comparatively similar average Nusselt number.

-8-Case |
-©—-Case |l
Case lll

—e—Case |

30 r|—<—Case ll 1 30
& Case lll

= | Insteady diffusion

0 0.004 0.008 0.012 0.018 0 50 100 150 200 250
t(s) t*

(a) (b)
Figure 3.15 Comparison of the radially-averaged Nusselt number evolution with time for the one-
and the two-vortex rings interacting with a heated wall: a) dimensional; and b) non-dimensional
time. The semi-infinite transient-diffusion solution (based on Equation 2.9) is included for

reference in (a).

Though Case II leads to better heat transfer rate than Case I for an isolated vortex ring/pair
interaction with a heated wall, this may not necessarily produce a net time average enhancement
in an impinging jet. In particular, in the latter case, the jet’s vortex rings interact periodically with
the wall. Before pairing (Case 1), the frequency of the interactions will be twice that occurring

during pairing (Case II). Consequently, even though a single interaction before pairing results in
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less cooling of the wall than during pairing (per Figure 3.15), the number of interactions per unit
time in the former case is twice the latter. Thus, in order for Case II to provide a net improvement
in cooling relative to Case I, Case II must produce more than twice the cooling effect of Case I per
interaction. The results in Figure 3.15 do not demonstrate such a strong effect. However, as will
be discussed in the following paragraph, one of the main factors in limiting the cooling
effectiveness of vortex-wall interaction, is boundary layer separation and formation of the
secondary vortex, which is particularly strong for Case II. It is possible that with proper control of
separation and the SV that the Nusselt number enhancement in Case II would be sufficiently strong

to be more advantageous than Case I. This point is outside the scope of the present research.

Another noteworthy point is that in Case II, the swing between the peak and the valley of
both Ny jnax and Nu, g4 (see Figures 3.7 and 3.15 respectively) is larger than in Cases I and III.
That is, in Case II, once Nu, 4, reaches its first peak, it exhibits a stronger relative deterioration
during vortex-wall interaction in comparison to the other two cases. Based on the analysis in
Section 3.3, this deterioration is predominantly correlated with the primary vortex rebound (i.e.
moving away from the surface after reaching the initial minimum height). It is well known from
the literature that this rebound is connected to the induced velocity by the SV on the PV after the
formation of the former. To compare the strength of the secondary vortex among the three cases,
the SV circulation is computed using the Q criterion. By integrating the vorticity within this area
of SV, the vortex circulation is obtained. The use of the Q criterion to define the core area instead
of integrating all negative vorticity enables exclusion of the boundary layer vorticity in calculating

the circulation.
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Figure 3.16 shows the history of the circulation of SV for all three cases. As seen from the
figure, the SV circulation is almost twice as strong (i.e. having about twice the initial PV
circulation) in Case II, in comparison to Case I and Case III. This is believed to be in part due to a
stronger vortex-wall interaction brought about by the influence of vortex-vortex interaction in Case
IT during pairing, which causes the inner vortex to be driven to a closer distance to the wall than
in Cases I and III. This can be seen in Figure 3.17, where the trajectory of the PV for all three cases
is shown (for Case II, only the inner vortex trajectory is shown since the SV results from the

interaction of the inner vortex with the wall).
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Figure 3.16 Temporal evolution of the SV circulation for all three cases.

For Cases I and II1, Figure 3.17 also implicitly demonstrates the known connection between
the PV rebound and the SV. Specifically, as indicated on the plot, in both of these cases, the PV
starts its movement away from the wall immediately after the formation of the SV. Interestingly,
for Case I1, the initial phase of the rebound occurs prior to the formation of the SV. It is not difficult
to see that the induced velocity by the outer PV drives the early phase of the rebound of the inner

vortex. Thus, while the outer PV has a strong positive effect on the maximum Nusselt number, it
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also has an adverse effect in aiding in the subsequent decay of Nu, 1,4, associated with the PV
rebound. However, the particular strength of the SV in Case II seems to be the primary driver of
the overall strong PV rebound and Nu, ,,4, decay in Case II. This may be seen by comparing the
wall-normal trajectory of all three cases in Figure 3.10. In Case II, the average (i.e. collective)
trajectory of the inner and the outer PV undergoes the largest excursion from the nearest to the
highest location above the wall with the ratio of the two locations being 2.4. The corresponding
ratio for Case I is 1.7 and Case II is 1.6. This highlights the stronger influence of the SV in Case

IT in reducing the maximum achievable Nu,.

==Case Il,i

“Case Il
PIN
A )

=(Case | ‘

('V_Ra) / a,

Figure 3.17 Trajectory of the core center of the PV (for Cases I and III), and the inner vortex (for
Case II). The black markers on each trajectory show the initial position of the PV, while the

similar-shaped colored markers on the same line indicate the initial time of formation of SV.

The above discussion implies that the primary benefit of pairing taking place while the
vortices interact with the wall (Case II) is that the vortex-vortex interaction leads to deeper
penetration of the inner vortex towards the wall and subsequent stronger interaction and maximum,

as well as average, Nu (Figures 3.7 and 3.15 respectively) relative to Cases I and III. However, a
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drawback of this stronger interaction is the formation of a stronger SV, which causes a larger
rebound of the pairing vortices after the initial interaction and greater decay in Nu. This
deterioration could offset the initial benefit of the stronger interaction with the wall. However, it
is not clear if this deterioration would necessarily be important for impinging jets. As discussed
earlier, secondary vortex detachment and orbiting around the PV is not generally observed in
impinging jets due to the advection by the mean jet flow. Therefore, in impinging jets, scenario II
may remain advantageous in comparison to scenarios I and III in terms of heat transfer

enhancement.
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CHAPTER 4
BOUNDARY-LAYER-RESOLVED ANALYSIS OF NUSSELT NUMBER BEHAVIOR

The results discussed in the previous chapter show that the maximum Nu, occurs on
the downwash side of the PV while the Nu,. ,,, magnitude is out of phase with the wall-
normal location of the PV. On the other hand, the minimum Nu, is found in close proximity
of the primary separation point with the magnitude of the former initially correlated with the
wall-normal PV location. After this initial period, Nu, .,;, magnitude is not affected
significantly by further modulation in the PV’s wall-normal location. In order to better
understand the physics underlying these observations, a more detailed analysis is carried out
in this chapter of the behavior of the thermal boundary layer and the associated near-wall
flow. The analysis focuses on the area in the vicinity of the maximum and the minimum Nu,,
and is augmented with two special cases. The first case involves the computation of a zero-
thermal-diffusivity (a = 0) problem, which aids in understanding the physics of heat transfer
enhancement. In the second case, the boundary layer separation is eliminated by setting a zero
wall shear stress (t = 0) at the heated wall as a boundary condition to help understand the
physics of heat transfer deterioration. All results are described in an Eulerian frame of
reference with its origin fixed to the core center of the primary vortex in the radial direction

only.

The aforementioned Eulerian analysis is complemented with a Lagrangian exploration.
The main point of the latter is to evaluate a recently published hypothesis (“surface renewal
model”) concerning the mechanisms of enhancement and deterioration of the Nusselt number due

to vortex-wall interaction (Hubble et al. [22]). This hypothesis is based on a phenomenological
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description of fluid particle trajectories near the wall during the interaction. Hubble ef al. [22] did
not have access to the near-wall boundary-layer-resolved information in formulating and
supporting their hypothesis. Given that such information is available from the present study, one

of the present objectives is to evaluate the basis of the renewal hypothesis.

4.1. Eulerian Analysis

4.1.1. Maximum Nu,: Case I and Case a = 0 Comparison

To examine the essential differences regarding the heat transfer physics for the two cases
considered, specific time steps are chosen. In Figure 4.1, the evolution of Nu,. 4, for both cases
are plotted, and the vertical broken lines mark the selected time steps. The first time Step is selected
at (t* = 0), while the second time step (t* = 10) is selected as the Nu,. ;45 for Case a = 0 starts
to diverge from the Nu, ,,,4, 0f Case 1. Because there is no special characteristic in the way Nu,. of
Case a = 0 evolves (it simply monotonically increases with time), the other time steps are chosen
depending on the heat transfer and the flow characteristics of Case 1. Specifically, the third and the
sixth time step are chosen when Nu,. 4, reaches its peak and valley (t* = 59.7 and t* = 174.9,
respectively). The fourth time step (t* = 98.1) is selected when the SV reaches its maximum
radial location, and the fifth time step (t* = 156.4) when the SV core center is aligned vertically

on top of that of PV during the SV orbiting of the PV.

Figure 4.2 shows snapshots at the selected time steps of different quantities in the PV frame
of reference in the radial direction only; i.e. the origin of the radial coordinate coincides with the
PV core center, while the origin of the wall-normal direction remains at the wall. Each snapshot
consists of three subplots, the velocity vector field superposed onto the vorticity field (top), the

near-wall temperature field 8 = (T —T,,) /(T — T,,) (middle) and the radial distribution of the
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local Nusselt number Nu, (bottom). Snapshots for each time step from both cases are displayed

side by side to facilitate comparison as time progresses.
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Figure 4.1 Evolution of Nu; ;,4, With time for Case I and Case @ = 0. The vertical black broken

lines represent the selected time steps that are used for comparison between the two cases.

The flow field evolution for both cases should be identical to that described in Section 3.2
for Case I. For both cases, Figure 4.2a and 4.2b show that as the TBL starts to deform, the Nt ;5,4
is seen on the “downwash” side of the vortex. From Chapter 3, it is already established that the
TBL is thinnest at the location of N, 4. Interestingly, this is not the case for Case @ = 0, where
NUy mayx 1 found at a larger radial offset from the PV core center than that of the minimum TBL.
This radial offset between the minimum TBL thickness and Nu,. 4, when @ = 0 is seen more
clearly at later time instants (Figure 4.2c through 4.2d). These time instants occur as the BL
separates leading to the formation of the SV, and the SV and the PV mutually interact, causing the
“rebound” of the PV. Figure 4.3 demonstrates quantitatively the difference in the radial location

of Ny jpqx With and without thermal diffusivity. As seen from the figure, the radial location of the
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Case a = 0 is shifted farther away from the PV core center in comparison with Case I for the entire

history of evolution.

Figure 4.2¢ through 4.2f show that the TBL thickness (&;;) on the “downwash” side for
Case a = 0 keeps thinning, increasing the wall-normal temperature gradient, even after the PV
moves away from the wall. This monotonic thinning with time produces a significantly higher
Ny max When a = 0 in comparison to Case I. This is distinctly different from Case I, where the
presence of thermal diffusivity clearly prohibits such excessive thinning of the TBL. These
observations imply that thermal diffusivity plays an important role in balancing the intensification
of the temperature gradient (and hence limiting the heat transfer enhancement) due to downward
advection by the induced velocity of the PV. This also implies that for a vortex with the same core

radius; a higher Prandtl-Reynolds number product (expressing the relative importance of flow
convective to thermal diffusion effects: Pr X Re = il;—" = %") should produce higher Nu, gy
This statement can be generalized by using the induced axial velocity u, instead of [,(i.e. 7 X

Re % ). A 1D heated-plate model problem with wall-normal velocity perturbation will be

discussed (in Section 4.1.3) to examine the interplay between the downward velocity component
and thermal diffusion, and how this interplay affects the unsteady behavior of the temperature field

and the wall-normal temperature gradient.
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Figure 4.2 Time evolution of the initially-Gaussian-core vortex ring as it interacts with a heated
wall: left (Case I) and right (Case @ = 0). Shown at each time instant: the azimuthal-vorticity field
and velocity-field vectors (top), the near-wall temperature field (middle) and a line plot (bottom)
of Nusselt number (Nu,.). The broken black line depicts the location of the maximum Nu,. In
snapshots ¢ through f, Nu,. 4, for @ = 0 (right column) is scaled before plotting to fit in a similar

plot window as shown in the left column. The scaling factor is included in the axis label.
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Figure 4.2 (cont’d)
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Figure 4.2 (cont’d)
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Figure 4.3 Temporal evolution of the radial location of the maximum local Nusselt number for

Case I and Case 0=0.

Figure 4.4a shows the correlation between the magnitude of Nu,. 4, for Case I and Case
a = 0, on one hand, and the wall-normal location of the PV core center (Zpy ), on the other. Unlike
Case I, which shows some correlation between the proximity of the PV to the wall and Nuy. 4y,
Case a = 0 shows initially a correlation between the PV and Nu,; ,,,4, (With the latter increasing
as the PV approaches the wall, similar to Case I), but as time progresses N, ;45 keeps increasing
irrespective of the height of the PV above the wall (because of the continued thinning of the TBL
seen in Figure 4.2). For Case I, the correlation between Zp, and the Nusselt number is
hypothesized to be as follows: when the PV approaches the wall between t* = 0 and 50, the
downwash velocity (u,) becomes stronger, causing the TBL to be thinner and the Nusselt number
to increase. The opposite occurs as the PV moves away from the wall, and subsequent modulation
in the PV height results in modulation of u, and a corresponding modulation in N, 4. The lack
of similar modulation of N, 1,4, When a = 0 is surprising because, in the absence of thermal

diffusivity, the temperature field can only evolve via advection, which, on the downwash side, is
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connected directly to the evolution of the PV. However, upon closer inspection, it is found that a
correlation does indeed exist between Zpy, and the time rate of change of Nu,. ;4 when a = 0.
This can be seen in Figure 4.4b, where the slope of the Case @ = 0 plot in Figure 4.4a is shown
together with the PV height evolution. As seen from the figure, modulation in Zp, does indeed
produce a corresponding modulation in the d(Nu; 14, )/dt”. The underlying physics causing the
correlation of the vortex height (and hence, by hypothesis, downwash velocity) with the Nusselt
number, when a # 0, and with its rate of change, when a = 0, will be clarified using a simple

analytical problem in Section 4.1.3.
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(a) (b)
Figure 4.4 a) Temporal evolution of Nu, ;,4,, for Case I and Case a = 0, and the wall-normal
location of the core center of the PV. For Case @ = 0, Nu,. 4, 1s divided by a factor of 3 to fit on
the same plot with Case 1. b) The temporal evolution of the rate of change of Nu,. 4, for Case

a = 0, and the wall-normal location of the core center of the PV.

4.1.2. Thermal Boundary Layer Profiles and Nusselt Number Based on TBL Thickness

Based on the above discussion, for Case I, the enhancement of Nusselt number as

exemplified by Nu, 4, 1s a direct consequence of thermal boundary layer thinning via the axial
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downwash velocity, and the modulation of Nu,. ., is caused by changes in the TBL thickness
(6¢r) , produced by the interplay of the time-varying axial downwash velocity and thermal
diffusion. The correlation between the enhancement of heat transfer and local thinning of TBL is
further investigated by examining the TBL temperature profile and using 8, as a length scale.
These profiles are shown in Figure 4.5 for the time steps identified in Figure 4.1, and at the radial
location of N, 14, Figure 4.5a and 4.5b show the results for Case I and Case @ = 0 respectively,

along with the unsteady diffusion solution, used to initialize the temperature field, for reference.

1.5 T T T T H 1.5 T
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Figure 4.5 Normalized temperature profiles versus the axial coordinate scaled with &;: a) Case I,

and; b) Case @ = 0. The solid black curve represents the unsteady diffusion solution normalized

in the same manner as the other profiles. The temperature profiles chosen at the radial location of

Ny gy for different time steps.

Considering Figure 4.5a, the temperature profiles at the different time instants collapse on
one another as well as on the unsteady diffusion solution, as if the temperature field evolution is
self-similar. The implication of this collapse is that the TBL temperature profile shape remains
invariant from its initial unsteady-diffusion form. Consequently, the net influence of the PV on the

TBL is to modulate its thickness, which implies that the variation in Nu, 4, 1S indeed a
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consequence of boundary layer thinning as hypothesized in the literature. This connection can be

made explicit in the present case as outlined below.

Based on the collapse in Figure 4.5a, it is concluded that the non-dimensional temperature

gradient at the wall remains invariant at the location of the maximum Nusselt number; i.e.

a0

o % ) ~C 4.1)

z=0
where C is a constant. Since the Nusselt number is essentially the non-dimensional temperature
gradient at the wall, Equation 4.1 shows that if the TBL thickness is used as the length scale in
calculating the Nu, ;,4,, then the value of the latter will remain constant during the PV evolution.
This can be seen by plotting the evolution of Nu,. 4, When scaled with &,y,. Figure 4.6 shows this

plot for both Case I and Case @ = 0, in comparison with the theoretical value obtained from the

semi-infinite unsteady diffusion solution (Equation 2.9). The latter is found by setting T Ty _

Too— w
0.99 in Equation 2.9 to find &,,/2vat = 1.825. Substituting for 2v/at from the last equation in

Equation 2.9, yields,

_Tt2)-T,

= ) 4.2
0 T.—T, erf (1.825n) (4.2)
do 2 2
= — x 1.825 18257 (4.3)
dz-) V@
th

where n = SL. Taking the derivative of Equation 4.2 with respect to n and evaluating at the wall
th

(n=0),
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= 2.05 (4.4)

Figure 4.6 shows that for Case I, the Nusselt number is practically constant when normalized by
the TBL thickness, and it has a value that is close to that of the initial TBL. This approximate
scaling of the Nusselt number with &;, implies that the wall-normal temperature gradient is
inversely proportional to the local §;, , and the latter is the only significant parameter affecting the

heat transfer enhancement. Specifically,

NU g = Sth—| =~ C (4.5)

where Nuy 4, 1s the maximum Nusselt number scaled with &;,. Equation 4.5 leads to

a0 1

az o X 5th (4.6)

— Case |
m— g5 o =0
0 50 100 150 200 250
t*

Figure 4.6 Evolution of Nu, 4y, scaled with &4y, for Case I and Case @ = 0. The broken black

line represents the unsteady-diffusion theoretical value obtained from Equation 4.4.
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Therefore, by plotting Nu, ;45 (scaled with constant length scale L,; see Equation 3.3) as
it evolves with time, together with the 8¢ ymin evolution (Figure 4.7a) for Case I, Nu, gy 1S

observed to be “180 degree” out of phase with &;p, in-
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Figure 4.7 Evolution of Nu;. 1,4, and minimum thickness of TBL (8¢, min); @) Case I; and b) Case

o=0.

For Case a = 0, Figure 4.5b shows that the TBL temperature profiles do not collapse at all
times. Thus, it is not possible to conclude that the Nu,. 4, variation is only due to variation in the
overall thickness of the TBL. This is consistent with the observations made earlier from Figure
4.2, where the radial location of Nu, .4, did not coincide with that of the minimum &,,. Moreover,
an inspection of the evolution of the Nu,. 4, and &,y in Figure 4.7b shows that although there is
a correlation at the start and end of the evolution, where the Nu, .4, increases as the minimum
O¢p, decreases, between t* = 100 and 200, the minimum 6, reaches a plateau, yet the N, ;05
continues to increase. This implies that in the absence of thermal diffusivity, the variation in the
heat transfer enhancement is not a simple direct effect of the change in the TBL thickness as in

Case 1. This idea is also reflected in Figure 4.6b, where the Nusselt number based on §;, exhibits
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significant variation with time for Case @ = 0, in comparison to Case I. A better understanding of
the differences between these two cases is sought using a simple analytical model in the following

section.
4.1.3. Analytical Model

A suitable model problem that represents the downwash-side heat transfer during the
vortex-wall interaction should exhibit competition between advection effects of the wall-normal
velocity and thermal diffusion in establishing the thermal boundary layer. It is also necessary to
impose unsteadiness on this problem via time variation in order to understand how the speed of
variation influences the “dynamic response” of the temperature field and the wall heat transfer.
The problem should also be simple, ideally having an analytical solution that can be used for

examining the unsteady thermal boundary layer behavior.

A model problem that incorporates the above elements was formulated. Figure 4.8 shows
a sketch of this problem, where the fluid is sucked through a constant-temperature heated wall

with uniform but unsteady wall-normal suction velocity -v, (t).

0,(t,©) =1
0,(t,0) =0

AL

u,(t) = —v,(t), 6,(t,0) = 0,0,(t,0) =0

Figure 4.8 Sketch of the problem of one-dimensional thermal boundary layer with uniform suction.
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To solve this problem, we first consider the case of constant (steady) suction. The energy

equation for this steady, one-dimensional temperature field is given by:

)
° dz dz?

(4.7)

T(z)-Ty
Too—Tw

where 6,(z) = , U, is the magnitude of the axial suction velocity, subscript (o) denotes

steady quantities, and a is the thermal diffusivity. Equation 4.7 is subject to the boundary
conditions: (z=0,6, =0)and (z - 0,6, - 1). This problem formulation is exactly
analogous to the asymptotic hydrodynamic boundary layer with constant suction velocity
(Schlichting [34]), where the streamwise velocity is the analog of 6,. The solution is
straightforward and is given by,

-V,

6,=1—ea? (4.8)

Based on Equation 4.8, one can deduce that the steady response of the temperature field
depends on the balance between the downward velocity magnitude (advection) and the upward

diffusive heat transfer. Specifically, the 99% TBL thickness is calculated by setting 8, = 0.99 in

Equation 4.8, leading to &;, = 4.6052 vi Increasing a results in a thicker TBL, while increasing

o

v, does the opposite. The length scale (I, = %) is proportional to the boundary layer thickness

and will be used later for non-dimensionalization of quantities.

Moving to the unsteady version of the above problem, the unsteady form of Equation 4.8

1S:
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a6 a6 0%6
il ) — = g — 4.9
o T, = 05,3 49

To solve Equation 4.9, we use the method of asymptotic expansion, exemplified in
Schlichting [34] in solving the unsteady boundary layer problem beneath a freestream with small
harmonic perturbation (which had been studied extensively by Lighthill [35], Stuart [36] and

Watson [37]). Specifically, the unsteadiness is produced by superposing a complex harmonic

perturbation on the steady velocity field, resulting in the form:

u (t) = —v,(1 +ge'@t) (4.10)

where (&) denotes a very small number and (w) and (t) are the angular frequency and time
respectively. Equation 4.10 is the result of truncating an infinite power series of the perturbation
parameter (&) to only include the first order term. As such, the solution obtained here is only
applicable for small-amplitude variation in u,. It follows that the solution of Equation 4.9 is

assumed to have the form,

0(z,t) = 0,(2) +¢6,(z) et (4.11)

The solution of Equations 4.9 through 4.11 is given in Appendix C. The unsteady part of

the temperature solution is given by:

01(@,2°,t*) = R{6; (&,2*)e'®"} (4.12)
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4wl3

a

where, R denotes the real part of the bracketed quantity, and (& = )and (t* = Z—lz) are the

normalized angular frequency and time respectively. The final solution becomes:

6, = A(®,2°) cos(@t" — D(@,2")) (4.13)

where (z* = ﬁ) is the normalized axial coordinate, and A(®, z*) and @(@, z*) are the
o

amplitude and the phase delay of the temperature field respectively, which are given by:

A®, z°) = JA@,2*)% + B(®,2*)? (4.14)
A(@,z")
A~ %\ _ -1 -~z

®(D,z") = tan (B(é),z*)) (4.15)

A(@,z*) = i [e"“* — e 2(+DZ" o5 (ﬁz*ﬂ (4.16)

A o
B(®,2") = ie—z(n*+1)z*sin (ﬁz*> (4.17)
) a !2* :

and (Q* = ”—V”(‘T’)Z),

2

The temperature gradient at the wall for the unsteady part is obtained by taking the
derivative of Equation 4.13 with respect to z*, setting z* = 0. The result can be again in terms of

cosine function of time, as given below:
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do _ _
— __ = A@)os (at - &@)) (4.18)
where,
A(D) = /C(@)? + D(d)> (4.19)
& (®) = tan™t ( % ) (4.20)
C(@) = [;6 + 8(0;+ Dl 4.21)
D) = % (4.22)

where A (&) and ®(&@) are the amplitude and the phase delay of % respectively.
z*=0

Plots of the amplitude and the phase response of the wall temperature gradient are shown
in Figure 4.9. The results show increasing attenuation and phase delay of the unsteady wall heat
with increasing frequency. This implies that at low normalized frequency, the response of the
temperature gradient is in phase with the suction velocity, and the problem will become quasi-
steady heat transfer with suction. Specifically, using the steady state solution, Equation 4.8, when
the unsteady suction velocity is maximum in the oscillation cycle, the boundary layer thickness
will be thinnest and the temperature gradient at the wall will be highest, and vice versa. At the
opposite end of the spectrum, as @ tends to infinity, the temperature-gradient’s lag w.r.z. the

suction velocity asymptotes to 45°.
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Figure 4.9 a) Amplitude, and b) phase shift response of the unsteady temperature gradient at the

wall due to harmonic variation in the suction velocity in the form —v,cos(@t*).

The above behavior is qualitatively consistent with known diffusion physics. Specifically,
at very small @ = 4wl2/a, the oscillation period is sufficiently long and/or the diffusivity is

sufficiently high that a change in the temperature field due to flow variation can diffuse over a
domain size /ﬁ, that is much larger than the characteristic length of the temperature field ,,.

Accordingly, the temperature field adapts to the changing suction velocity as if the field is steady
and subjected to a suction velocity having a magnitude equal to the instantaneous value of u,(t);
i.e. quasi-steady response. As the frequency increases, the cycle time decreases, and the diffusion
length becomes shorter and the adaptation to u,(t) lags behind and becomes attenuated. Based on
this, w™ is effectively the square of the ratio of a characteristic length of the TBL to the diffusion

length. Thicker TBL leads to larger @, and slower TBL response and vice versa.

The results from the simple, linearized model problem are intended to help grasp the

leading-order physics affecting the interplay of wall-normal advection and thermal diffusion. This
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understanding is now used in interpreting observations related to Nusselt number enhancement in
vortex-wall interaction at a fixed radial location. In Figure 4.10, the normalized radial location
((r — Ry)/a, = 1) of the maximum of Nu,. 4, of Case I (which occurs at t* = 59.7; see Figure
3.4c and Figure 4.1, noting that R,, is a the initial core radius of PV and not the instantaneous) was
chosen to follow the history of Nu and the wall-normal velocity of the first node above the wall.
The same is done for Case @ = 0, but in order to get a fair comparison for both Case I and Case
a = 0, the same radial location is used for both cases to ensure that the wall-normal velocity
history is the same. The history u,(t) is plotted after multiplying by -1, which makes it easier to

visualize the correlation between Nu, and the wall-normal velocity.

In analyzing Figure 4.10, we focus on the period where the wall-normal velocity is towards
the wall (—u; > 0), so it is acting in opposition to thermal diffusion as in the model problem. As
seen from the figure, the velocity is initially away from the wall then it switches sign at
approximately t* = 40, and stays towards the wall for the remainder of the time. For t* > 40, the
shape of —u,(t) is very similar to Nu(t), supporting the idea that the wall-normal velocity is
directly impacting the change in Nu. Early in the time window t* > 40, when Nu increases to a
peak then decreases, —u,(t) and Nu(t) appear in phase with both of them reaching their peak
simultaneously. Later in time, as both quantities reach an approximate plateau, the small

modulation in Nu(t) lags the corresponding modulation in —u;(t).
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Figure 4.10 a) Evolution of Nu and the normalized axial velocity of the first node above the wall,

and; b) Evolution of Nu and the TBL thickness, at (r — R,)/a, = 1, where the maximum of

Nu, may of Case I occurs. The black broken line in (a) shows the zero value of uj.

Per the 1D model physics, the observations in Figure 4.10, indicate fast temperature field

response initially (i.e. quasi-steady or corresponding to low @, which become progressively slower

(corresponding to high @). This idea would be consistent with a smaller characteristic length [,

early in the t* > 40 period, and a larger one towards the end. Indeed, as seen from Figure 4.10b,

the TBL thickness is initially one half that at the end of the period. In fact, the shape of the TBL

thickness history is “mirror image” of that of Nu(t), showing the correlation between TBL

thinning and Nu enhancement. This direct correlation is further emphasized with the collapse of

the normalized temperature profiles at the radial location considered in Figure 4.11 when using the

TBL thickness to normalize z.
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Thus, in summary, the shape similarity of —u(t) and Nu(t), and the dynamic behavior
of both quantities in a manner that is qualitatively consistent with the findings of the 1D model
indicate that the downwash velocity is probably the most significant factor affecting the temporal
evolution of Nu on the downwash side of the PV. The effect is directly related to the change in the

TBL thickness in response to variation in the downwash velocity of the PV as it interacts with the

wall.
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Figure 4.11 Normalized temperature profiles versus the axial coordinate scaled with &, at (r —
R,)/a, = 1, the same radial location considered in Figure 4.10, for Case I. The solid black curve

represents the unsteady diffusion solution normalized in the same manner as the other profiles.

An interesting aspect of the result in Figure 4.10 for the time period when the wall-normal
velocity is away from the wall (i.e. for t* < 40) is that even though the u}(t) > 0, the boundary
layer is thinning and the Nu is increasing. In this case, it is evident that the boundary layer thinning
is not caused by the wall normal velocity, which if anything should make the TBL thicker. The
switch in the sign of u,(t) in Figure 4.10 indicates that the point of observation is initially located
on the upwash side of the PV then it switches to the downwash side at t* = 40. Inspection of the

temporal evolution of the flow and temperature fields shows that this switch occurs when the PV
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advects radially outwards past the given position at the wall. As the PV does so, the thinned TBL
on the downwash side of the PV is advected past the fixed point on the wall, causing TBL thinning,
and Nu enhancement, while the point remains on the upwash side of the vortex. This “special
case” of enhancement is associated with radial rather than wall-normal advection. Illustrative flow
and temperature field snapshots for the case considered in Figure 4.10 are shown in Figure 4.12 to
demonstrate the behavior just described. Note that the plots shown on top represent time instants
when the radial location of concern is on the upwash side, the bottom left plot when beneath the

center of the PV, and the bottom right plot when on the downwash side.
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Figure 4.12 Time evolution of the initially-Gaussian-core vortex ring as it interacts with a heated
wall (Case I) in the original Eulerian frame of reference (as in Chapter 3). Shown at each time
instant: the azimuthal-vorticity field and velocity-field vectors (top) and the near-wall temperature

field (bottom). The broken black line depicts the location of the maximum of Nu,. 4, at ((r —

Ry)/a, = 1).
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Considering the same analysis of Figure 4.10 in Case a = 0, Figure 4.13a displays the
temporal variation of —u(t) and Nu at the same radial location considered in Figure 4.10 (i.c.
where the u;(t) history at the first node above the wall is identical to its counterpart for Case I).
As was the case in Figure 4.4a, where no correlation between the PV height above the wall with
Nu; 1mqx Was obvious when a = 0, Figure 4.13a also shows no obvious similarity in the shape of
—u,(t) and Nu at ((r — R,)/a, = 1) (as for example is the case in Figure 4.10a. This implies
that the physical connection between u(t) and Nu is different in Case & = 0, in comparison to

Case 1.
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Figure 4.13 a) the evolution of Nu and the normalized axial velocity of the first node above the

wall, and b) the evolution of Nu and I* = fot —uy(t)dt, at ((r — R,)/a, = 1) for Case a = 0.

To explore the wall-normal-velocity connection with the Nusselt number in the absence of

thermal diffusivity, we set @ = 0 in Equation 4.9, leading to:

AN (4.23)
¢ Tug, = '
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If we assume a separation of variable type solution of Equation (4.23); i.e. 8 = Z(2)T(t),

it can be shown that the solution has the form:

ft _Ug(t)dt
0 & (4.24)

0(z,t) =0(z0)e

where, 8(z,0) is the initial temperature field, and §, is a characteristic length scale of the initial
temperature field (e.g. TBL thickness). Assuming | Ot u,(t)dt < 8,, and linearizing the

exponential term of Equation 4.24 via truncation of Taylor’s series:

0(z,t) = 6(z,0)[1 + fo [— u}it)l dt] (4.25)

and the unsteady temperature field can be written as,

oug(t)
0'(z,t) = 0(z,t) —0(z,0) = 0(z, 0)f l— 5 ldt (4.26)
0 o

Taking the derivative of Equation 4.26 w.r.t. z, and setting z=0 at the wall, then the fluctuating
temperature gradient at the wall is given by

do’
dz

de
) = 1z
=0

. (0) j [—ug(t)l dt (4.27)

Equation 4.27 shows that in the absence of thermal diffusivity, the wall temperature
gradient, and hence Nu, is influenced by the entire history of u,(t), rather than being a
damped/delayed response to the instantaneous u, value when a # 0. This reasoning is because

the left hand side of Equation 4.23 represents the material derivative of the temperature of the fluid
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particles. Hence, the equation indicates that the fluid particles travel with constant temperature as
they approach the wall, leading to increasing the temperature gradient at the wall over time. With
this insight from the simple 1D model, we reexamine, the results of Figure 4.13a but instead of
comparing Nu with —u(t), we compare Nu to [* = | Ot —u,(t)dt. The result of this comparison
is shown in Figure 4.13b, where the similarity between the latter two quantities is evident. Equation
4.27 also implies that the time rate of change of the wall temperature gradient and Nu, should be
proportional to the wall-normal velocity. This is consistent with the correlation identified earlier
in Figure 4.4b between dNu,. 4, /dt and the PV height (which is correlated with the wall-normal
velocity) when a = 0. Furthermore, given the dependence of Nu at a given point on the entire
history of u(t) for Case @ = 0, in comparison to the instantaneous value of u(t) under quasi-
steady conditions for Case I, it is not surprising that maximum Nu, is not collocated with the
instantaneous minimum &, for the former case (found from the inspection of Figure 4.2), as it is

for the latter.
4.1.4. Minimum Nu,: Case I and Case T = 0 Comparison

The time instants for the investigation of Nu,. ,,;,, are set depending on the evolution of the
location of N, ;i, shown in Figure 4.14a. The three regions in Figure 4.14a, which are marked
I, IT and III, represent the pre-separation (region I) and the post-separation (regions II and III) flow.
The latter region is subdivided further into two periods: where the minimum Nusselt number is
located on the upwash side (region II), versus when it lies directly beneath the PV core center
(region III). The beginning of region III also approximately coincides with the formation of the
SV. The time period beyond region III is not considered in this analysis because it corresponds to

the formation of the tertiary vortex, and the same scenario of events will be repeated.
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The three identified regions exhibit distinctly different normalized temperature profiles
within the instantaneous TBL at the radial location of Nu,. ;. Figure 4.14b shows these profiles
for two selected instances of time for each of the three regions. The figure also includes the
unsteady semi-infinite diffusion profile for reference. As time progress, the profiles change in
shape from that of unsteady diffusion, which does not have an inflection point (pre-separation;
t* =0and t* = 7.1) to a profile with an inflection point (post-separation; t* = 21.3, t* = 28.4,
t* = 64 and t* = 78.2). The change in profiles shape is such that within region I, they behave as
if the TBL is self-similar, and they reach this apparent self-similarity again, but with a different
shape in region III. The change from the initial to the final state occurs in region II. As discussed
before, whenever the normalized temperature profiles collapse on one another, the Nu, variation
is inversely proportional to the TBL thickness. Based on Figure 4.14b, Nu,. ,;, exhibits this
proportionality within regions I and III. However, for region II and as the flow progresses from
one region to the next, changes in the shape of the profile also affect the variation in the minimum
Nusselt number. Each region and profile shape will be discussed in detail in the following

paragraphs.

The largest fundamental difference in physics between the Nu,. .4, and the Nu,. ., 1s the
presence of the separation of the boundary layer in the vicinity of Nu; ,,;,, and the formation of
the SV. Accordingly, the present analysis is undertaken to compare Case I against a case with zero
wall-shear-stress, which allows slip at the wall, eliminating separation in order to understand its

effect on Nu,. i, (1.€. on heat transfer deterioration).
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Figure 4.14 a) Normalized radial location of Nu, ,,,;, and the primary separation point illustrates
the three regions of study; b) TBL normalized temperature profiles at the selected time instants.

The semi-infinite unsteady diffusion temperature profile is added for reference.

Figure 4.15a shows the Nu,. ,;, evolution for Case I and Case 7 = 0. While both cases
show the same overall trend of fast initial decay, which slows down with time and reaches a
plateau. For Case 7 = 0, Nu, ,,;, reaches a smaller asymptotic value in the absence of separation.
However, it is also worth noting that this decrease in Nu,. p,;, 1s accompanied by an increase in
NUy max on the downwash side of PV (Figure 4.15b). Since there is no separation, the PV keeps
approaching the wall while moving radially outwards, resulting in increasing Nu,. 4, With time
until the effect of the right wall starts to influence the PV (t* = 152); specifically, making the PV

move away from the bottom wall, and leading to a decrease in Ny -
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To ascertain if the overall effect of eliminating separation results in better or worse heat

transfer, the average Nu “beneath” the vortex is computed.
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Figure 4.15 a) Temporal evolution of Nu,. i, ; b) Temporal evolution of N, 4, for Case I and

Case 7 = 0.

Examination of the radially-averaged Nusselt number (Nu,. 4,,4) beneath the vortex shows
an important improvement in the heat transfer during the vortex-wall interaction for Case 7 = 0
(Figure 4.16). The average Nusselt number is calculated as discussed for Case I in Section 3.5, but
considering only the heat transfer between the two radial locations of Nu, yq, and Nuy i, (i.e.
as shown in the equation below).
6=2m T=TNurmin

Nu, rdrd6

0=0 T=TNurmax

Nuy gy = (4.28)

T[(rl\zlu,rmax - r]\zlu,rmin)

96



m— (Casc |
m— (Casc =0

0 50 100 150 200 250
t*

Figure 4.16 Temporal evolution of Nu, 4,4 (see Equation 4.28) for Case I and Case 7 = 0.

The results in Figure 4.15a are rather surprising in that they show that in the absence of
boundary layer separation, the heat transfer deterioration due to vortex-wall interaction is
significantly worse than if separation occurs. Yet, since the overall spatial average of the Nusselt
number shows a significant improvement, the Nu enhancement on the downwash side without
separation must be significantly larger than with separation. To understand the difference in
physics between these two problems, snapshots of the vorticity and the thermal boundary layer are
explored below at the selected time steps for Case I and Case 1=0. As depicted in Figure 4.17, each

snapshot consists of three subplots arranged in the same format as that of Figure 4.2.

In Figure 4.17, plots (a) and (b) are in region I, (c¢) and (d) in region II, and (e) and (f) in
region III. In regions I and II, before the thermal boundary layer is distorted significantly by the
influences of the PV and SV, it is possible to identify the location of the thickest boundary layer.
In region III, the TBL is highly distorted and at certain radial locations, J;, may be multi-valued.
In regions, I and II, the TBL is thickest at the top of a “ridge” in the temperature field, representing

the upwelling (lift up) of heated TBL fluid due to the influence of the PV’s upwash. Because this
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ridge represents the largest upward displacement of heated fluid at a given z location, if it is tracked
from the edge of the TBL all the way to where it intersects the wall, the intersection point should
correspond to the minimum wall temperature gradient and Nusselt number. Tracking this ridge in
the snapshots in Figure 4.17, where the ridge is marked with a broken white line, we see that in
region I, for Case T = 0, the minimum Nu is located at the same location as the maximum TBL
thickness; essentially exhibiting the mirror-image behavior found in Section 4.1.2 for the
maximum Nu, on the downwash side of the PV. In comparison, very early in the evolution (Figure
4.17a), Case I exhibits approximately the same behavior, but later in time, even before separation

(Figure 4.17b), the Nu,. i, location moves to the left of the location of the thickest TBL.

The distinct difference in the flow field between Case I and Case 7 = 0 at t* = 7.1 (Figure
4.17b) is the presence of negative-vorticity boundary layer in Case I, which does not form when
T = 0 due to the absence of the no-slip condition. The development of this boundary layer appears
to displace the “freestream” flow of the PV, causing the near-wall upwash velocity to shift towards
the PV core center. This radially-inward shift of the upwash velocity profile, in Case I relative to
Case T = 0, can be seen in Figure 4.21, where radial profiles of u, are plotted in red at the six time
instants of interest for Case I (Figure 4.21a) and Case T = 0 (Figure 4.21b). Inspecting this figure,
which will be discussed later in more detail, and focusing on the two plots at t* = 7.1 clearly
demonstrates the shift in the peak positive u, close to the PV core center in Case I relative to Case

7=0.

In region II (Figure 4.17 c and d), as the heated fluid upwelling in Case T = 0 bends along
the expected flow trajectory around the PV, the thickest TBL is displaced leaving the minimum
Nu, located slightly to the right of the maximum &;j,. During the same time in Case I, separation

of the boundary layer is associated with further significant movement of the minimum Nu,
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location to the left of the maximum &;,. This causes the ridge to become highly distorted and even
to break into two parts: one associated with the boundary layer edge growth of the thickest TBL
and the other is related to the near-wall interaction of the PV with the separated flow. As argued
for the pre-separation period, this interaction seems to take the form of the separation zone causing
a blockage to the near-wall flow of the PV, displacing it upwards ahead of the separation point, at
a much closer location to the PV core center than when 7 = 0. These results demonstrate that the
occurrence of separation decouples the thickening of the TBL from the maximum deterioration of
Nu,. Post-separation, the near-wall features of the separation zone and its interaction with the PV

are the most significant in affecting the minimum Nu,..

The decoupling of TBL thickening and the largest Nu,. deterioration in Case I continues in
region III, after the formation of the SV (Figure 4.17 e and f). In region III, the minimum Nu,
continues to displace radially inward with the displacement of the separation point. The hot
uplifted fluid feeds the SV, and the near-wall ridge follows the path of this fluid. This is completely
different from Case T = 0, where the ridge of uplifted fluid continues to connect the location of

Nu, 1min With the hot fluid orbiting the PV.
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Figure 4.17 Time evolution of the initially-Gaussian-core vortex rings as they interact with a

heated wall: Case I (left) and Case 7 = 0 (right). Shown at each time instant: the azimuthal-

vorticity field and the velocity field vectors (top), the near-wall temperature field (middle) and line

plots (bottom) of Nusselt number (Nu,.). The broken black line depicts the location of the Nu; 1,

while the broken white line depicts the ridge of thickest TBL.
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Figure 4.17 (cont’d)
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Figure 4.17 (cont’d)
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The decoupling of the thickening of the TBL and the reduction in the Nusselt number
implies that the TBL is not only getting thicker with time but also that the shape of the TBL
temperature profile is changing; i.e. an apparent self-similarity does not exist. To examine this
point further, the TBL temperature profiles at the location of Nu,. ;,,;;, are shown in Figure 4.18 for
the six selected time instants in regions I, IT and III for both cases (Cases I and Case T = 0). Across
from the temperature profile plots, the wall-normal velocity profiles are shown at the same radial
location. Inspecting Figure 4.18, for Case I, it is interesting to note that as time progresses and the
boundary layer thickens, the temperature profile’s shape changes. This is unlike the TBL profiles
at the location of N, 1,145, €xamined in the previous section, where the shape remains essentially
the same as that of the semi-infinite unsteady diffusion (Figure 4.5). As noted previously, the most
obvious change in the profiles shape at the location of Nu,. ,;,, 1s the development of an inflection
point in the profile, seen first at t* = 21.4 in the plot in Figure 4.18 after boundary layer separation
occurs (the effect is subtle at t* = 21.4, but it may be seen more easily in the plot normalized by
O¢p, in Figure 4.14b). Considering the corresponding u;, profiles, an interesting observation is noted
of a possible correlation between the positive peak in the u, profile and the development of the
inflection point in the temperature profile. Specifically, it appears that when a peak in the velocity
profile is inside the TBL, the temperature profile possesses an inflection point. Such an inflection
point might be produced by fluid particles at the location of the peak moving away from the wall
faster than particles near the wall, on one hand, and those at the edge of the boundary layer, on the
other. This would “stretch” the TBL at z locations beneath the peak and “compress” it at locations

above the peak, consistent with the presence of an inflection profile.

The development of a peak upwash velocity inside the TBL is attributed to the near-wall

blockage by the separated flow, which displaces the radially outward flow beneath the PV in Case
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I. This reasoning is based on two observations. First, this non-monotonic u, profile is established
after the separation occurs. Second, inspecting the velocity profiles at t* = 64 and t* = 78.2, far
away from the wall the velocity is negative, indicating a downwash, rather than an upwash,
influence from the PV. This is the case since at these time instants, the Nu,. ,,;,, location is slightly
to the left of the PV core center radial location. Thus, after separation, the near-wall upwash
causing the largest deterioration in the Nu, is a creature of a local upwash associated with near-
wall separation and the PV flow blockage. This local upwash causes /ocal thickening of a near-
wall sub-layer, independent of the global thickening of the TBL, which is connected with the
upwash of the PV alone. Since the temperature gradient at the wall dictates the wall heat transfer,

the near-wall local TBL thickening is the relevant mechanism for Nu deterioration in Case 1.

Contrasting the observations made above regarding Case I to the results of Case 7 = 0 in
Figure 4.18, it is interesting to see that even in the absence of separation, the TBL profiles also
develop an inflection point, and hence a decoupling between global and local thickening of the
TBL. Unlike Case I, this decoupling is obviously connected directly with the PV. Comparing the
temperature and the velocity profiles for Case T = 0, we see again that the inflection temperature
profile develops when the peak in the u, profile becomes embedded within the TBL. This does
not take place until the last two time instants after the TBL has sufficiently thickened and the PV

has descended sufficiently towards the wall for its peak upwash velocity to fall within the TBL.
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Figure 4.18 a) Temperature profiles normalized by the core radius of the PV and; b) normalized

wall-normal velocity profiles, for the six selected time steps: Case I (top) and Case T = 0 (bottom).

It is important to note that the PV is able to approach the wall so closely when separation
does not occur due to the absence of the SV. As discussed earlier in this thesis, the SV is known
to cause PV rebound which arrests the descent and outward movement of the PV. Without the SV,
the PV continues to approach the wall and move radially outwards, such that Zp, becomes
significantly smaller in Case 7 = 0, in comparison to Case I. This can be seen in Figure 4.19,

where Zpy, for both cases is plotted using red color. While Zpy, is modulated via the PV-SV mutual
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interaction in Case I, and has a minimum near 2a,, (Figure 4.19a), in Case T = 0, Zpy, continuously

approach the wall with an asymptotic value just under a, (Figure 4.19b).
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Figure 4.19 Temporal evolution of the Nu,. ;;;;, and the wall-normal location of the core of the

PV. a) Case I; b) Case 1=0.

It is important to note that the distinction between local and global thickening of the TBL
is only useful when the temperature profiles do not assume an apparent self-similar state when
scaled with the TBL thickness. If the profiles scale with &;;, then global thickening will produce
a proportional local thickening and changes in Nu may be attributed to changes in the global length
scale of the TBL and/or a local thermal sub-layer scale. For both Case I (Figure 4.14b) and Case
T = 0 (Figure 4.20), the temperature profiles seem to start from an apparent self-similar state and
reach or approach an apparent self-similar state. The distinction between local and global TBL
thickening is thus relevant to the period of change between the initial and final state. These results
are, however, specific to the present problem parameters, initial condition, evolution time window,
etc., and we do not know of theoretical basis for the existence of such a self-similar state. As such,

we refer to cases where the temperature profiles collapse as attaining apparent self-similarity.
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Figure 4.20 Temperature profiles normalized by the TBL thickness at the six selected time steps
for Case T = 0. The profiles are the same as in the bottom of Figure 4.18a but with different

normalization of z.

The profiles in Figure 4.18 also provide a clue to the rather surprising earlier observation
in Figure 4.15 that in the absence of separation, the Nu deterioration is significantly larger than
when separation is present. The velocity profiles in Figure 4.18 show that the upwash velocity in
the absence of separation is significantly larger than that without separation. In the former case,
the upwash velocity continuously increases (presumably due to continued stretching of the PV in
the absence of rebound via the SV) and the TBL becomes significantly thicker, and the wall
temperature gradient significantly lower, than in Case 1. This implies that though the upwash effect
due to near-wall blockage effects of the separated flow is undesirable, it is relatively benign
compared to an unconstrained PV strengthening and approaching of the wall. However, as noted
earlier, these latter effects also cause significant enhancement in the Nu on the downwash side
such that the radially averaged Nu largely enhanced comparable in value between Cases I and
Case T = 0 (Figure 4.16). These findings suggest that controlling separation and SV formation

may lead to improvement in the wall heat transfer, as suggested in the previous chapter. Although,
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this may be the case for isolated vortex-wall interaction, it is not clear if this would also be true for
an impinging jet. For example, it seems likely that in an impinging jet, the trajectory of the jet
vortices and how close they approach the wall would be more heavily influenced by advection by
the mean jet flow rather than by the vortex dynamics of the vortex rings, which dominate the vortex

evolution in isolated vortex-wall interaction.

Additional insight into the connection between the upwash velocity and Nu, ,;, is
explored in Figure 4.21. This figure contains six snapshots for each of Cases I and Case T = 0,
with each snapshot containing the radial distribution of Nu, and the concurrent wall-normal
velocity at one node above the wall. A broken green line marks the radial location of the peak
upwash (positive) velocity nearest to the PV. The radial location of this velocity is always found
upstream of the location of Nu,. ;. This point is demonstrated in Figure 4.22 for both Case I and
Case T = 0, over the full evolution history considered. Also notable in Figure 4.21 is that the same
fact that the wall-normal velocity is located upstream of Nu, ,,;, applies to Nu, 4, on the

downwash side.

This relationship between the radial location of u; peak magnitude and the Nusselt number
peak/valley is sensible. Specifically, the velocity and Nu, peak locations are expected to coincide
only if the response of the TBL is instantaneous or quasi-steady and fluid particles advect in the
wall-normal direction only (as in the 1D model problem). In the vortex-wall-interaction problem,
as a fluid particle translates away/towards the wall with the maximum velocity, it will also move
radially outwards (or inwards if within the separation zone) before the particle undergoes a
perceptual wall-normal translation. Thus, it is reasonable to expect the peak/valley of u; to be
upstream of the minimum and maximum Nu locations. This is true in Figure 4.21 for both Cases

I and Case 7 = 0, on the downwash and upwash side, and for all times.
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Figure 4.21 Radial distribution of u, at the first grid point above the wall concurrently with the
radial distribution of Nu, at the six selected time steps. a) Case I; b) Case T = 0. In (b) Nu, is

divided by a factor of 2 for t* > 21.3 to fit the results on the same scale as at other times.
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Figure 4.22 The temporal evolution of the normalized radial location of uy 4, and Nu, 1. @)

Case I; b) Case T = 0.
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Further comparison between Case I and Case 7 = 0 is made in Figure 4.23a and 4.23b.
Figure 4.23a shows the radial trajectories of PV and Nu, ;. In Case 1, the Nu,. p;, location
moves from the upwash side towards the PV until it is coincident with the radial location of the
PV center (t* = 60), then it crosses over slightly to the downwash side, before it moves back
towards the upwash side again (t* = 110). The return towards the upwash side happens as the SV
moves away from the wall and the PV starts to rebound due to the mutual interaction with the SV.
When there is no separation Case =0, initially the Nu,. ;,;, location moves away from the PV then
it returns and stays at almost fixed location relative to the PV center, but always on the upwash
side. The location of Nu, ,,,;;, relative to the PV center can be seen more clearly in Figure 4.23b,
which shows the normalized offset plot "Nty i, — R pv)/a, versus time. It can be seen from the
figure that in Case I the offset approximately starts at 1.5a,, then reaching a small negative value
(coincident with the primary separation point), and then back to approximately the same original
offset value. A closer look at this variation in the offset helps one connect it with the separation,
the formation of the SV and the rebound of the PV. For Case 7 = 0, the variation in the offset
value is smaller than that in Case I with an average value (shown by the black broken line) of

approximately one PV diameter.
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Figure 4.23 a) Temporal evolution of the radial location of Nu,. ,;;, and the PV core center for

Case I and Case T = 0; b) Normalized offset from the PV core center (ryy,,,,, — Rpy) for Case I

and Case 7 = 0. The black broken line in (b) represents the average of the offset for (Case T = 0).

4.2. Lagrangian Analysis

This part of the study is carried out to examine the validity of a recent study (Hubble et al.
[22]) that introduced a new theoretical model to explain the Nusselt number enhancement and
deterioration mechanisms during vortex-wall interaction. This model, which is called “surface
renewal model”, was developed from an earlier edition introduced by Nix et al. [38] which
hypothesizes that the penetration of the flow structures through the TBL and their interaction with
the surface is responsible for the enhancement of the heat transfer. The Nix et al.’s model is purely
conductive and assumes that heat is transferred by 1D unsteady diffusion into the flow structures
during their “contact” with the wall. By further assuming that the structures represent a semi-
infinite domain, and defining a “contact” time scale as the ratio of the mean streamwise integral
length scale to the streamwise r.m.s. fluctuating velocity, the study demonstrates an agreement

between the predicted and the experimental increase in the time-averaged heat transfer coefficient.

111



4.2.1. Description of the Surface Renewal Model

Hubble ef al. [22] used an extension to the surface renewal model in order to capture the
time-dependent thermofluidic physics of vortex-wall interaction. As illustrated in Figure 4.24,
their study proposes a concept of individual particles of the fluid moving toward the wall due to
the induced velocity field associated with the presence of the vortex. The figure depicts the overall
configuration of the problem together with the corresponding qualitative change in the convective
heat transfer coefficient beneath the vortex. Two specific wall locations are considered, one falling
on the downwash side (A) and the other on the upwash side (C) with the depicted corresponding

enhancement in the convective coefficient being significantly larger at A compared to C.
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Figure 4.24 a) Schematic used in “surface-renewal” model development; b) qualitative illustration
of the convective-heat transfer augmentation prediction (Equation (4.32)) as a function of non-
dimensional location y/L from the vortex core center. The figure is reproduced from a sketch in

Hubble et al. [22].

In the surface renewal model, the fluid particle starts at the outer fluid temperature and

moves through the TBL. Once it reaches the TBL, the particle will exchange thermal energy with
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the warmer fluid inside the TBL, and this process will cause the temperature of the fluid element
to increase. The longer time the fluid particle stays inside the TBL, the higher is the temperature
reached by the fluid particle, reducing the particle’s capacity for exchanging thermal energy when
it reaches the heated wall. The characteristic time scale of the particle heating is proposed as the
time it takes for the fluid particle to travel through the TBL. This time, in turn, depends on two
factors: the distance that the fluid element travels within the thermal boundary layer to reach the
wall, and the average induced velocity during this travel. The values of these factors are estimated

from the induced velocity field of the vortex with a specified strength and location above the wall.

The Hubble et al. [22] study also proposed an approximation of the average induced
velocity by assuming a linear drop in the particle velocity to zero at the wall. Therefore, referring
to Figure 4.24, the velocity estimated for a particle originating from point B and traveling to point
A is one-half of the induced velocity at the edge of the TBL (point B). The induced velocity V;yp
is calculated by the Biot—Savart law, giving the following expression for the average particle

velocity:

T ()

o (O (4.29)

_ 1 1
V(t) = 5 Vinp(t) = 5

where dgp is the distance from the center of vortex core to the point (B) at the edge of the TBL
and I' is the circulation of the vortex. The characteristic time for point A is

dpa (1)

"W=To

(4.30)
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where dp, is the distance from point A at the wall to point B at the edge of the TBL, and it is equal

to the distance that the fluid particle travels within the thermal boundary layer.

If the vortex strength and/or location above the wall changes, the induced velocity will
change, and hence V(t) as well. The effect of this change will be felt at the wall after some delay
to account for the particle travel time through the TBL. This delayed effect was accounted for
using the shortest distance that a fluid particle would travel across the TBL; i.e. the TBL thickness.

Hence, the time delay is given by,

St
TDelay( ) V ( t) ( )
Hubble et al. [22] finally account for the heat transfer coefficient augmentation at point A as

follows,

Ah (t + Tperay (t)) = (4.32)

k
2/ mat(t)

By adding Equation 4.31 to the heat transfer coefficient of the undisturbed boundary layer, using

the square root of the squares, the total heat transfer coefficient is given by:

B+ Toutay (D)) = 15+ BB (¢ + Toutay (0)° (4.33)

In Figure (4.24), points A and C are at the same distance from the vortex core center O, yet
the augmentation in the convective heat transfer coefficient (depicted in the figure as well) is

significantly less at C compared to A. As seen from the above model and Figure 4.24, while point
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A and C are at equal distance from the vortex center, point A will experience much more

enhancement in heat transfer than point C because of dg4 < dpc.

Hubble et al. [22] compare their model prediction of the time-dependent heat transfer
coefficient with measurements obtained in an experiment involving a vortex ring interacting with
a heated flat surface. Time-resolved PIV measurements were used to capture the vortex ring
evolution concurrently with heat flux sensor data of the convective heat transfer coefficient at five
different locations on the wall. By calculating the vortex circulation versus time, it was possible to
calculate the induced velocity above the location of one of the sensors, from which the average
particle velocity, characteristic time and time delay are calculated using Equations 4.28, 4.29 and
4.30, respectively. In Equation 4.30, the authors use the steady state, undisturbed boundary layer
thickness, prior to the interaction of the vortex with the wall. Once the aforementioned quantities
are found from the experimental data, the corresponding time-dependent convective heat transfer

coefficient is found using Equations 4.31 and 4.32.

Though the comparison between the model prediction and the data in the Hubble et al. [22]
is positive, the Lagrangian phenomenological description upon which the model is based has not
been evaluated. Specifically, such an evaluation requires boundary-layer-resolved spatio-temporal
information of the velocity and the temperature field, to which the authors did not have access.
Furthermore, there are some fundamental concerns regarding some of the assumptions used in the
model, and the details of how it was implemented to predict the convective heat transfer coefficient

for the Hubble ef al. experiment. These concerns include:

1. Using a constant thermal boundary layer thickness in the model, whereas the TBL
thickness is unsteady, and according to the present study, can change significantly with

time;
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2. Using an induced velocity form that is applicable to a line rather than a ring vortex, and
not taking into account the presence of the wall (effect of the image vortex);

3. The surface renewal model does not take into account the unsteady boundary layer
separation and the SV formation (which implicitly assumes the insignificance of these
phenomena to the heat transfer process);

4. The authors do not provide sufficient details to understand how they compute the particle
travel distance dg4, which is a critical factor in computing the characteristic time, and
hence the overall prediction of the model. Specifically, it is not clear if this distance was
used as a “fit parameter” to get the best agreement between the model and the data, or
was it computed directly from the data. The latter does not seem to be an easy task,
requiring knowledge the TBL thickness and the trajectory of particles within the TBL

before reaching the wall;

4.2.2 Evaluation of the Surface Renewal Model

Given that the present study has access to boundary-layer resolved information of the
vortex-wall-interaction problem, one of the current research goals is to evaluate the hypotheses
upon which the Hubble ef al.’s model is based. To this end, a Langragian analysis was done by
tracking fluid particles that are “in contact” with the wall at times selected to correspond to certain
features on the evolution curves of both the maximum and the minimum Nu,; as shown in Figure
4.25a for Nu; 1qy, and 4.25b for N, 1in,. “In contact” is taken to mean that the particle resides at
the first grid point above the wall at the radial location where N, 4, Or Ny i 1 Observed at
the time of interest. Since the first grid point is within the linear zone of variation of the TBL
temperature profile, and the wall temperature is constant, then the particle temperature at the

instant of observation sets the wall temperature gradient and the Nusselt number. Specifically,
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cooler particles produce higher Nu,. and vice versa. With this point clear, what remains to evaluate
the assumptions of the renewal hypothesis is to track the history of the particle trajectory,
temperature, and energy exchange. The points on the Nu, ,,,4, curve (as it evolves with time in
Figure 4.25a) are chosen to be at the maximum, the minimum and an arbitrary in-between point.
On the other hand, for the Nu, ,,,;; curve, the first two points are chosen during early evolution
where Nu,. ,;, 1s decreasing as time progresses, and the last point is chosen where the curve

reaches a plateau.
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Figure 4.25 Temporal evolution of; a) Nuy. pqy ; and b) Nu, 1,1, showing the selected time instants

at which particles are identified and tracked backward in time.

To track a fluid particle, 2D linear interpolation of the velocity field is applied to refine the
original CFD grid by a factor of 32. The resulting grid spacing is 0.00125a,, which is so small
such that the velocity is almost uniform over a single grid cell. Using, the finer grid, the trajectories
of the particles are tracked backwards in time using first-order finite difference to calculate the
particle’s location one time step At earlier. Specifically, the radial and the wall-normal particle
locations at time step i — 1 can be computed from the particle velocity and location at time step i,

as follows:

117



rp‘i_l = rp,l’ + um- X (—At) (434)

Zpi—1 ® Zpi + Uy X (—AL) (4.35)

Where At is the same as the time step of the CFD. Equations 4.34 and 4.35 are applied recursively,
starting from the selected initial time and particle location. Aside from the initial time, the particle
location generally does not coincide exactly with a grid point. However, given the very fine
interpolated grid employed for particle tracking, velocity information at the current time is taken
as that at the grid point closest to the current particle location. The same technique of grid
refinement is also used for the temperature field to approximate the temperature, temperature

gradient and Laplacian of the temperature field at the location of the particle at every time step.

The results for all particles are plotted in the reference frame of the PV for both
Nuy gy and Nuy. pin, as shown in Figure 4.26a and 4.26b respectively, for the purpose of
comparison (noting that the scale of the normalized axial location in Figure 4.26a is ten times
larger than the one in 4.26b). Different particles are represented using different symbol shape and
the time instant at which the particle is at the radial location of Nu, ;45 Or NUy i (depending on
the case) is identified by giving the symbol a black color while the starting points of the particles

at the time (¢*=0) are pointed out by the colored arrows that match the color of each particle.

Focusing first on N, 4, results (Figure 4.26a), as known from earlier analysis, all three
particles that are associated with the Nu, 4, at the selected time instants are on the downwash
side and they all reside at the same radial location of (r — Rpy)/a, = —1.8 from the center of PV
at the instant when the associated Nu, 4, occurs (i.e. when the plot symbols are black).

Interestingly, the initial location of the particle that produces the largest Nu,. 4, Over the entire
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history of Nu, 4, €volution (at t* = 59.7) is deeper inside the TBL, and the particle’s initial
temperature is higher than the initial temperature of the two other selected particles. The latter can
be seen from the temperature history in Figure 4.27a. This suggests that the two other, initially
cooler particles must have exhibited more energy exchange with the hotter fluid before reaching
the wall, causing their temperature to be higher “at the wall” than the particle reaching the wall at
t* = 59.7. This is confirmed in Figure 4.28a, where the history of the diffusive heat flux term in
the energy equation is shown for each of the particles. The higher heat flux together with the longer
time to reach the wall cause the two particles arriving later at the wall to be hotter and produce

lower N, 4, than the first particle.
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Figure 4.26 The trajectories of the selected particles: a) Nuy yax; b) Nuy pmin. The black markers
on each plot indicate the starting time of backward integration (shown in the legend) to calculate

the particle trajectory history and the arrows indicating the initial position of the particles.
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Figure 4.27 Evolution of the temperature of the selected particles: a) Nuy. ;pqx; b) Nty pin. The
black markers on each plot indicate the starting time of backward integration (shown in the legend)

to calculate the particle trajectory and temperature history before reaching the wall. Noting that

(6 = 0) corresponding to the higher temperature.
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Figure 4.28 History of the rate of temperature rise of the selected particles: a) Nuy gy ; b) Nty min.
The black markers on each plot indicate the starting time of backward integration (shown in the

legend) to calculate the particle trajectory and temperature history before reaching the wall.
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The above observations show that most of the elements of Hubble ef al.’s hypothesis are
consistent with the flow and the temperature field behavior on the downwash side of the model.
Specifically, particles move across the boundary layer while their temperature increases by thermal
exchange of energy with their surroundings, and ultimately particles that arrive with the lowest
temperature at the wall produce the highest cooling. However, there are two aspects that are
overlooked in the hypothesis. First, Hubble et al. [22] assume that the coldest particles reaching
the wall are ones that take the shortest time to reach the wall. Their argument does not take into
account the specific energy exchange history. For example, a particle might take less time to reach
the wall, yet it could be exposed to higher heating rate, causing its temperature to be higher at the
wall. Though not shown here, these would be particles associated with Nu,. 4, at times preceding
the occurrence of the first peak in N, yqy; 1.€. t* < 59.7. Second, Hubble et al.’s hypothesis
assumes that the maximum Nu, is produced by cold particles originating from outside the TBL.
All particles tracked here originate from inside the TBL (as seen from their initial temperature that
is hotter than T,), with the particle providing the largest cooling originating from the bottom half

of the TBL.

On the other hand, particles that contribute to Nu,. ,,;, (Figure 4.26b) come originally from
the upwash side and they move almost horizontally (i.e. parallel to the wall) toward the center of
the PV, with their temperature becoming slightly hotter (Figure 4.27b), as time progresses. As seen
from earlier results in Section 4.1.4, the radial location of Nu,. ,,,;,, relative to the PV core center
changes significantly with time, rather than remaining roughly the same as in the case of Nu, 1,4,
because of the movement of the unsteady separation. Also, the associated low rate of heating of

the Nu, 1, particles can be seen in Figure 4.28b.
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Significant in the above results is that, prior to arrival at the radial location of Nu,. ;. the
particles stay on the upwash side of the PV. These results show an essential difference from the
statements of the surface renewal model, which assumes that the heat transfer on the upwash side
is caused by particles that move from the downwash to the upwash side. As explained before,
Hubble ef al. [22] then presume that the longer time spent by the particle to get across the vortex,
causes more heating of the particle, and hence lower Nu on the upwash compared to the downwash
side. The present results clearly show that the Hubble et al. [22] model is inappropriate for the

upwash side heat transfer.

In summary, the present analysis demonstrates that Hubble et al. [22] surface renewal
model reasonably represents the downwash-side heat transfer, though it does not account for the
particle heating history and for particles originating from inside the TBL. On the other hand, the

model is based on the wrong physics when it comes to the upwash-side heat transfer.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

A CFD study is carried out in two stages. First, employing three flow configurations of
axisymmetric vortex rings interacting with a constant-temperature heated flat wall. These
configurations constitute simplified model problems representing vortex-wall interaction scenarios
that occur in impinging jets when the jet vortices interact with the wall prior to (Case I), during
(Case II) and after (Case III) vortex pairing. The second stage is aimed at developing a deep insight
into the detailed physics of how the vortex-wall interaction affects wall heat transfer. A second
goal of this stage is to evaluate a recently published model by Hubble ef al. [22] (based on what is
known as the “surface renewal hypothesis”) of the mechanisms responsible for the enhancement
and deterioration in wall heat transfer due to this interaction. Conclusions concerning the two

stages of the study are summarized in sections 5.1 and 5.2 respectively.

5.1. Vortex Rings-Wall Interaction and Heat Transfer

General observations of the vorticity field, temperature field, wall friction coefficient and
Nusselt number (Nu) provide insight into the association of local maxima and minima in the radial
distribution of Nu with the different flow features. In comparison to unsteady heat diffusion, the
results show that there is an enhancement of heat transfer on one side of the primary vortex PV
(the one with the smaller ring diameter in the case of a vortex pair) where a downwash towards
the wall and thinning of the thermal boundary layer are present. On the opposite side of the vortex,
a decrease in the heat transfer is observed, where boundary layer thickening and unsteady
separation, and formation of secondary and higher order vortices take place. These observations

are generally consistent with the literature on single vortex interacting with a heated wall.
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The enhancement/deterioration in wall heat transfer is associated with an instantaneous
radial distribution of the Nusselt number that is characterized with a peak and a valley. A strong
correlation is found between the proximity of the primary vortex to the wall and the maximum
local Nu, while a similar correlation is identified only during early evolution of the PV for the
minimum local Nu. The correlation with the maximum local Nusselt number is such that the closer
the vortex to the wall, the higher the maximum Nusselt number. However, the Nu response seems
to lag variation in the wall-normal position of the primary vortex core center, suggesting the
presence of inherent thermal response dynamics. On the other hand, the evolution of the minimum
Nu seems to be tied to the development of the unsteady boundary layer, its subsequent separation
and the formation of the secondary vortex SV. Once separation occurs, the minimum Nu is always
found in the immediate vicinity of the separation point of the boundary layer, on the upwash side
or beneath the primary vortex. These observations are examined in detail in the second stage of
the study (see section 5.2 for related conclusions).

Notwithstanding the mixed positive and negative influences of vortex-wall interaction on
the wall heat transfer, calculation of the radially-averaged Nusselt number shows that, overall, the
interaction leads to significant improvement in comparison to unsteady diffusion. Moreover, the
results also demonstrate that when vortex-wall interaction occurs during pairing, this improvement
in the heat transfer is substantially better in comparison to single vortex-wall interaction. The better
enhancement results from the concurrent vortex-vortex and vortex-wall interactions, where the
former strengthens the latter.

While this study demonstrates the benefit of having vortex-wall interaction take place
during the pairing of vortices, it is not obvious that this benefit would persist in impinging jets

where the interactions are periodic rather than isolated as examined in the present work. In
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impinging jets, single-vortex pre-pairing interactions occur at twice the frequency of dual-vortex
during-pairing ones. As such for the latter to produce better wall cooling than the former, in the
time average sense, the interactions need to be twice as strong. The study of isolated vortex
interactions does not show such a strong enhancement during vortex pairing. However, other
factors (summarized below) also influence the strength and the persistence of the enhancement,
which makes it difficult to conclude based on this study alone whether pre- or during-pairing
vortex interactions would ultimately be more beneficial for wall cooling in impinging jets.

On the flip side, the strong vortex-vortex interaction in Case II also leads to the formation
of a particularly strong SV, which in turn leads to a relatively large decay in the enhancement of
heat transfer by causing a substantial rebound of the PV away from the wall. However, the rebound
and the SV characteristics observed in the isolated vorticity-wall interaction are not likely to be as
strong in impinging jets. Thus, the deterioration in the maximum Nusselt number in Case II may
be less problematic in impinging jets. More importantly, the study demonstrates that to capitalize
on the potential of strong Nu enhancement during near-wall vortex pairing, it is recommended that
flow control strategies of impinging jets should couple control of the jet at its exit with separation
control on the impingement wall in order to mitigate the effect of the secondary vortex. This might
lead to a sufficiently strong improvement in wall cooling to offset the reduction in the frequency
of vortex-wall interactions associated with vortex pairing in comparison to the pre-pairing single-
vortex scenario. If not, jet control efforts should target the delay of vortex pairing such that it does
not occur ahead of, or as the vortices advect past the impingement wall.

5.2. Heat Transfer Mechanism
In this stage of the study, analyses are carried out by comparing Case I from the first stage

with CFD of two additional hypothetical cases. One of the latter cases is the same as Case I, but
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with the thermal diffusivity set to zero (¢ = 0) to investigate the effect of the thermal diffusion
on the heat transfer enhancement on the downwash side of the vortex ring. This investigation also
makes use of a simple analytical calculation of a model problem of one-dimensional heat transfer
in the presence of uniform unsteady wall-normal suction velocity. The second CFD hypothetical
case is also identical to Case I, except for employing a wall boundary condition of zero wall shear
stress (7 = 0) to eliminate the separation of the boundary layer on the upwash side of the primary
vortex. This enables investigating the effect of separation on the deterioration in the heat transfer.
The analyses and comparison between Case I and Case a = 0 is focused on the location of
Ny max; While contrasting Case I and Case 7 = 0 is focused on the location of Nu, 1. In
addition to these two comparisons, further investigation is conducted using Lagrangian analysis of
Case I in order to evaluate the “renewal hypothesis” model introduced by Hubble et al. [22]

regarding the mechanism of heat transfer during vortex-wall interaction.

The analyses of Case I and Case @ = 0 regarding the heat transfer enhancement focused
on the temperature profiles at the radial locations of Nu,. 4, for selected time steps. Results show
that these profiles collapse when scaled with the thermal boundary layer (TBL) thickness, and that
the maximum Nu is effectively constant when normalized with the TBL thickness
(Nuy mayx)-These observations reveal that the heat transfer enhancement is inversely proportional
to the boundary layer thickness and that the Nusselt number enhancement on the downwash side
of the PV is a consequence of TBL thinning relative to unsteady diffusion TBL. It is hypothesized
that the most influential factors affecting the TBL thickness is the wall-normal velocity, which

thins the TBL on the downwash side, and thermal diffusion which thickens the TBL.

A simple 1D model is used to examine the balance between the downwash velocity and

thermal diffusion in the presence of sinusoidal oscillation of the velocity. The results show that in
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the limit of small normalized frequency (w*), the Nusselt number varies quasi-steadily with the
velocity. However, as w™ increases, the change in Nu lags behind the downwash velocity and the
Nu amplitude is attenuated, with the lag and attenuation increasing monotonically with frequency.
These first-order physics of the simple model problem are found to be consistent with the near-

wall downwash velocity and Nusselt number variation in Case I of the vortex-wall interaction.

In Case a = 0, it is found that the wall-normal velocity is the only mechanism altering the
TBL thickness in the absence of thermal diffusion. In this case (which is the opposite limit of
quasi-steady, or @ — 00), at any time instant the TBL thickness at a given location depends on the
entire integrated history of the wall-normal velocity (in comparison to the instantaneous value of
the velocity in the quasi-steady limit). For locations that always remain on the downwash side of
the PV, the TBL thickness decreases monotonically with time (in the absence of the thickening
mechanism of thermal diffusion), causing the Nusselt number to reach values that are significantly

higher than those found in Case I.

The heat transfer deterioration analyses are focused on the radial location of N, 1. It 1s
found that the deterioration is driven by boundary layer thickening and wall temperature gradient
weakening due to the upwash velocity. This finding is only true early in time, where the TBL
temperature profiles at different times collapse when normalized with the TBL thickness.
However, later in time, the TBL temperature profile changes, developing an inflection point.
During this change, the near-wall thickening of the TBL occurs at a rate that is different than that
of the TBL thickness, and hence the heat transfer deterioration can not be interpreted directly in
terms of global thickening of the TBL. The strong correlation between the upwash velocity and
Nusselt number deterioration is supported by strong correlation between the radial location of the

near-wall upwash velocity and that of the minimum Nu.
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For both Case I and Case t = 0, the development of an inflection point in the TBL
temperature profile seems to take place when a peak in the wall-normal velocity is established
inside the thermal TBL. For Case I, such a peak develops due to separation and formation of the
SV. For Case T = 0, the peak develops due to the ability of the PV to get very close to the wall
(due to the lack of PV rebound via the SV effect), coupled with continuous thickening of the TBL
on the upwash side of the PV. The difference in the flow dynamics on the upwash side near the
wall between the two cases leads to a different mechanism for the development of TBL thickening.
For Case I, the development of a near-wall TBL thickening mechanism is different than that of the
global thickening of TBL, is connected to separation of the boundary layer and the formation of
the SV. While in the absence of separation (Case 7 = 0) boundary layer thickening is found to be

connected to the maximum upwash velocity of PV.

The above findings are further examined by tracking the radial location of Nu, ,,,;,. As the
PV interacts with the separated layer and the SV, the maximum upwash velocity near the wall
moves with the separation point, and the minimum Nusselt number radial location moves in
synchronization. This movement is such that the minimum Nu moves from the upwash side
towards the PV core center, overshooting slightly to a smaller radial location than that of the core,
before returning to the original location as the SV moves away from the wall. On the other hand,
in the absence of separation (Case 7 = 0), the maximum upwash velocity remains approximately
at the same location relative to the PV center (about one initial core diameter) and the Nu, yin

stays at an approximately constant offset outboard of that location.

A rather unexpected finding is that the deterioration in the Nu is significantly more when
separation is not present (Case T = 0). This is attributed to a significantly stronger upwash velocity

near the wall due to the ability of the PV to get very close to the wall, in comparison to the upwash
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velocity produced by the interaction of the PV with the separation zone and the SV. However, this
closer approach of the PV toward the wall also results in a higher enhancement on the downwash
side which is in turn leads to an enhancement in the heat transfer when the Nusselt number is
radially-averaged between the locations of the maximum and minimum values. This finding
supports the conclusion in section 5.1 that significant potential enhancement in the heat transfer,
beyond that documented in the first stage of the study, could be achieved when vortex pairing
occurs during the wall interaction, if control strategies are applied to the impingement wall to

eliminate/weaken the boundary layer separation and the formation of SV.

Finally, a Lagrangian analysis is conducted to evaluate the renewal hypothesis of Hubble
et al. [22]. The findings of the analysis are partially consistent with Hubble ez.al. [22] hypothesis
regarding the enhancement of the Nusselt number. However, it is demonstrated that the hypothesis
does not take into account the fluid particles thermal energy exchange histories, and the hypothesis
assumes that the particles originate from outside TBL, which is not necessarily correct, based on
the current results. On the other hand, when it comes to the mechanism of heat transfer

deterioration, the Hubble ef al. hypothesis is found to be based on wrong physics.

5.3. Recommendations

This study led to several recommendations, which are summarized briefly below. It is
recommended to broaden this study using experimental and computational works involving
different Reynolds and Prandtl numbers to investigate the hypothesis that the interplay between
the wall-normal velocity and thermal diffusion scales with the product PrRe in the isolated vortex-

wall interaction, and possibly in the impinging jet, heat transfer.

Based on the conclusion from both stages of the study, it is recommended to conduct a

CFD case to investigate the hypothesized significant enhancement in the heat transfer,
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corresponding to vortex pairing while interacting with the wall, when boundary layer separation is
eliminated; i.e. using zero wall shear stress (7 = 0) boundary condition. Depending on the finding
of such study, another recommendation is to expand the study by implementing CFD/experimental
studies using different, realistic, control strategies to control the unsteady separation of the

hydrodynamic boundary layer.

Finally, it is recommended to expand the Lagranagian analysis to gain deeper insight into
the heat transfer deterioration on the upwash side of the PV. This could be done by tracking more
particles at different radial locations in the vicinity of the separation region and correlate their
motion to the minimum Nusselt number. The analysis could include, but is not limited to,
Lagrangian Coherent Structure (LCS), to identify the unsteady separation and correlate it with

thermal energy exchange, near-wall velocity, etc.
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APPENDIX A: Computational Validation

In order to validate the computational results, the independence of the solution of the grid,
the domain size, and time step is checked, as shown in this Appendix. Three different grid sizes
are chosen to check the grid-size dependency of the solution, i.e. 500500, 600%600 and 715%x715
grid elements for a domain size 0.06 m x 0.06 m. All other computational parameters are the same
as given in section II.B. The results are shown in Figures A.l1 through A.4 for the maximum
vorticity at the core center of the PV, the maximum vorticity at the core center of the SV, the
maximum vorticity of the BL, and for the maximum of the Nusselt number radial distribution,

Nuy,max. Results presented in this document are obtained using 715x715-point grid.

6000
-2-715x 715
-+ =600 x 600
5500 -+ -500x 500/
w
5000
3
4500
4000 ; : ;
0 0.004 0.008 0.012 0.016

{(s)
Figure A.1 Evolution of the maximum vorticity at the core center of the PV for different grid

resolutions and a domain size of 0.06 m x 0.06 m.
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0 0.004 0.008 0.012 0.016
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Figure A.2 Evolution of the maximum vorticity at the core center of the SV for different grid

resolutions and a domain size of 0.06 m x 0.06 m.

x10%

4 -+ 715 x 715||
- = 600 x 600
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0 0.004 0.008 0.012 0.016
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Figure A.3 Evolution of the maximum vorticity of the BL for different grid resolutions and a

domain size of 0.06 m x 0.06 m.
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250

100

50

Figure A.4 Evolution of the maximum of Nu, for different grid resolutions and a domain size 0.06

m % 0.06 m.

In order to check the domain-size effect, computations are conducted for two different
domain sizes while maintaining the same grid resolution (0.00012 m); i.e. 500x500 grid elements
for a domain size 0.06 m % 0.06 m, and 715%715 grid elements for a domain size 0.0858 m x
0.0858 m. All other computational parameters are the same as given in section II.B. No effect is

seen for increasing the domain size beyond the one used for all results in the present work (0.06 m

-+ 715x715
-+ 600 x 600
== 500 x 500|]

% 0.06 m); see Figures A.5 through A.8.

6000

0.004

0.008 0.012

t(s)

0.016

=*=006mx0.06m
- +=0.0858 mx 0.0858 m

4000
0

Figure A.5 Evolution of the maximum vorticity at the center of the PV for two different domain

0.004

0.008

{(s)

0.012 0.016

sizes while keeping the same grid resolution (0.00012 m).
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Figure A.6 Evolution of the maximum vorticity at the center of the SV for two different domain

sizes while keeping the same grid resolution (0.00012 m).
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Figure A.7 Evolution of the maximum vorticity of the BL for two different domain sizes while

keeping the same grid resolution (0.00012 m).
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©
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Figure A.8 Evolution of the maximum of Nu, for two different domain sizes while keeping the

same grid resolution.

Results from three time-step sizes are compared for a domain size of 0.06 m x 0.06 m, and
715%x715 grid elements. All other computational parameters are the same as given in section I1.B.
The results, depicted in Figures A.9 through A.12, show that the time step size of 0.0001s, used

for all calculations, is sufficiently small to obtain time-step independence.

6000
- +-0.00005 s
- +-0.0001 s
5500 - +-0.00025 s
@
<5000
3

4000 ' ' :
0 0.004 0.008 0.012 0.016

Ks)
Figure A.9 Evolution of the maximum vorticity at the center of the PV for different time-step sizes,

and a domain size of 0.06 m % 0.06 m and 715 x 715 grid elements.
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Figure A.10 Evolution of the maximum vorticity at the center of the SV for different time-step

sizes, and a domain size of 0.06 m %< 0.06 m and 715 x 715 grid elements.

o x10%
-1
-2
L
=3
3
4 f
: ~+-0.00005 5|
S -+ -0.0001 s
of -+ -0.00025 s
0 0004 0008 0012 0016

t(s)

Figure A.11 Evolution of the maximum vorticity of the BL for different time-step sizes, and a

domain size of 0.06 m x 0.06 m and 715 x 715 grid elements.
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Figure A.12 Evolution of the maximum of Nu, for different time-step sizes, and a domain size of

0.06 m x 0.06 m and 715 x 715 grid elements.

Finally, the convergence of the solution is checked by using different number of iterations

(see Figures A.13 through A.16). All calculations done here utilize 200 iterations.

6000
-+ -100
- +-200
5500
@
<5000
3
4500
4000 : : :
0 0.004  0.008 0.012  0.016

{(s)
Figure A.13 Evolution of the maximum vorticity at the center of the PV for different number of
iterations, and a domain size of 0.06 m % 0.06 m and 715 x 715 grid elements. The legend shows

the number of iterations.
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Figure A.14 Evolution of the maximum vorticity at the center of the SV for different number of

iterations, and a domain size of 0.06 m X 0.06 m and 715 x 715 grid elements. The legend shows

the number of iterations.
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Figure A.15 Evolution of the maximum vorticity of the BL for different number of iterations, and

a domain size of 0.06 m x 0.06 m and 715 x 715 grid elements. The legend shows the number of

iterations.
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Figure A.16 Evolution of the maximum of Nu, evolution for different number of iterations, and a

domain size of 0.06 m x 0.06 m and 715 x 715 grid elements. The legend shows the number of

iterations.
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APPENDIX B: Derivation of Q Value in Cylindrical Coordinate

»

The transformation between the rectangular and cylindrical coordinate is shown below:

p=+x*+y? x = p cos(¢)
Q= arctan(%) y = psin(¢)
Z =27 zZ=2Z

The unit vectors of the cylindrical coordinate are:

p= g - M = X cos(@) + ysin(¢p)
P =2%xp=2x%x(Xcos(p) + ysin(p))
= cos(p) (2 X %) + sin(p) (Z X )
= y cos(p) — X sin(p)
2=2
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The derivatives of each unit vector with respect to the other coordinate are obtained from the
equations above:

0p 0P 02
o " o " » "
0w s 9 . __, 0z _
90 xsin(g) +ycos(p) = ¢ 90 X cos(¢) = ysin(g) = —p 90
0p 0p 0z
oz~ ° az " oz ="
The gradient of velocity vector defined as
7 = 0t 02T 4 5 up +uyd + g B.1
=(p p 90 p ap)(upp UpD + UzZ) oo .
K d d
plas () 3;(m0) 55D
~ Qo R 0 R d .
Vv = PEr (w,0) %(%(P) %(uzz)] .................................... B.2
[0 R 0 R d )
2|5, wp) - (upd) oo (w?) ]
0 0 0
. 0 Aaup> (/6{[‘) Aau(,,) ( gf Aauz)l
Uy =+ p——r —+ = u V1
p[( "Z? P ap *ap " ¥ 7op “dp " op
=9 ==p 0
~ P 0p Oup> < %ﬁ Aau(p> 0z Ou,
VV =—1lu +p u + o —— <u VA ) ............ B.3
p K PP " ag Ydp 7 oe “Jp " ag
0 0 0
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ou ou ou
_ P aa RPN ZﬁZA
dp ap d
= 10u, u,\ . u, Oouy,\ _ . 1lou, _,
VV: (_a_p__(p>(pp <_'D a_(p>(p(p _az(p .................. B4
p oo p p @ p oY
ou ou ou
2P as 7P sa Z 55
F) 9z ¥? 9z 27
ou 10u u ou
P s —7r_T9 op 7P ss
dp pop p 0z
T ou u u ou
V) = [Z=26p L+ 2160 Lozl B.5
o = e (Bege)er Gre
ou, 10u, _ ou, .
| dp pz p 0p vz 9z ~
¢= 1 [P7 4+ (FF)] oo B.6
2
ou, 10u, wu, OJdu,\ ou, OJdu,\ .
p p op p p p Z
1 10u u ou u ou 10u ou
S=_ <__p__"’ _"’>@ﬁ <_p _“’)@@ <_ z _"’>¢*ZA
pop p p p O¢ pop 0z
ou, 0u,\ _, 10u, Oduy\ ., ZauZM
ap oz )P? pap a0z |¥? 9z 22
.............................................................................. B.7
B.8
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0 u_‘p_laﬁ % op auz_% p2
p pdep Jdp dp 0z
1 u 10u, OJu 10du ou
0= = _(_‘p___p _"’)@ﬁ 0 <_ Z__‘P>¢,2
p pdp Op podp 0z
d ou 10 Ju
(Z2 422 ps Y e R VY 0
dp 0z p 0p 0z
............................................................................................. B.9
For (p, z) plane
ou ou, OJu
0 ; ( , _p> -
p dp 0z
Up\ .
S=3 0 2(;) PP o [ B.10
ou, du, ou,
— | pzZ 0 2 22
<6p az>pz 9z 22
du, 0u,\ .
0 0 <ap —E>p2
a==1o 0 ol B.11
du, Ju,
- ——|pz 0 0
<ap az>pz
The Euclidean norm of S given below:
du u du 10u, 10u,) B.12
2 _ Y “py2 A AY) - Z SV N [ e .
1ou, 10u,)\ 10u,\° 10u,\> 10u,ou
2(z==+==2) =2 (— Z) +s=L) +s===2 B.13
20dp 20z 2 dp 2 0z 2 dp 0z
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ou u du 1/0un?  1[0u,\’> ou,du
ISl = _pz+_pz+_zz+_( Z) i Z_ 2| B
sl [(ap) O+ G +3\5) *2\ar) Yo | B

10u 10u,\> 10u 10u,\>

o= [[-==—=2+==2 —Z P B.15

1420 [( 26p+262> +<26p 2 0z
1/0u,\> 1/[0u 2 ou, ou

Q% = —( Z) (=) — 2 B.16

142 [2 ap +2<az dp 0z
1 2 2

o o B.17
0= -1 [[0u, 2 N <up)2 N (auz 2 N Zauz du, B8

-_ 2 ap p az) ap g .............................. .

146



APPENDIX C: 1D Model Solution

Define the normalized temperature

B T(t,z)—T,
T =Ty

1.Steady state solution for 1D energy equation

Bes z=0 - 6,=0,

z—>o - 60,=1

00 9%
Y9z~ Y2

where u, = —v,

00

Assume 6 = e™ — =M e™Z e

el

629 2 ,mz
ﬁ=m e

Substitute equations C.2 and C.3 in C.1
—v, me™ = am?e™
(—v,m—am?®)e™ =0
—v,m—am?=0
m(—v, —am) =0

: . -V
Result in two solution - m =0 ,and m = —>

=,
0, =C ea _|_CZQO .............................................

147




where C; and C, are constants. Apply the B.c’s into equation C1.4
atz = 0_>Cl = _Cz

atz >0 —f0=1=-Ce "+ (C, - c; =-1, c, =1

Yo,
O, =1 — € @™ e

2. Unsteady state solution for 1D energy equation with perturbation

Assume the solution of the unsteady energy equation with perturbation is in the form of
series expression and up to the first order of €

0 =0, +0; e C2.1

where ¢ << 1and # 0, 6, is the first order solution, w is the angular frequency and t is the
time withB.c’s =0 — 0, =0,

z—>o0 - 60;,=0

the equation C2.2 below is the solution of the 1D, z-momentum equation.

U () = V(1 4+ €500 ) e C2.2

by substitute equations C2.1 and C2.2 into the 1D normalized unsteady energy equation (C2.3)

2
00 00 06 2.3

¢ twg =ag3

this leads to

. ; ; a0 ot 90 220 ot 920
lew 01 + (—vo(1 +ee ")) (G +ee =) = a(57+ee " —) ... C2.4
_ . 96, 90, a0, 96,
icw 61e't + |-, 5, Vet e'Wt — —y et — — y, g2 g2t gl
2 2
g L0 OO 2.5
0z 0z2

by collecting the term of O(¢) and neglect the higher order term of ¢, and keep in mind the
other remaining term will give the steady state solution.
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9. — PP C2.6
KT YT, T ez 372 0
001 %00 0 _ W00 e 2.7
0z? «a 0z a a 0z
690 Vg VYo . . . .
5 = e a 2 form equation C1.5. Substitute into equation C2.7
zZ «
2 2 _
0761 (D000 @ p Vo C2.8
072 a 0z a 2
equation C2.8 is a non-Homogenous PDE and the solution is
01 = O Op e C2.9
where 65 and 6 is the homogenous and particular solutions of PDE respectively.
by starting with the homogenous solution,
a0
ASSUME By = @M% 5> o m @MZ  ++oreeersssssssenits ittt C2.10
0z
2%6
N C2.11
ﬁ — mZ emz
substitute equation C2.10 and C2.11 into homogenous part of equation C2.8, will results
m2emz 4 22 memz _ (2 omz _ g
a a
% W
(m?+—=m—i—)e™ =0
a
M2 4+ 2 e i 0 e C2.12
a a

Solve equation C2.12 for m
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_Y% /&2 w .
ai (a) +4al

m= >
v, 1
m:——oi—1/v02+4aa)i ............................................................ C2.13
2a " 2a
2
et @=00_ A0 A0k C2.14
v, az a
—,
a?°
h l, =—
where [, o
1 1 —
m:——i—1/1+wl ............................................................... C2.15
21, — 21,
let J1+@i =Va+bi =p+qi
a+bi = (p+ qi)?
a+bi = p*+2pqi —q*
Q= P2 o g2 e C2.16
b= 2Dpq C2.17
find g from equation C2.17 and substitute it in equation C2.16
PRENCRNE e C2.18
p —_ ap —_ Zb — 0 ........................................................................ .
solving equation C2.16 to find p
 a+VETR |24 VEZ T
p = =
2 2
5, |a*+Va*+Db? ; ignoring the minus sign inside the square root since p
“P= 2 must be a real number
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=zt

a? +Va? + b? 1+ {1+ (@)>
...p:i\/ a _J @) _ L0 e, C2.19

2 2
b ) o
g=—-= e PP C2.20
Zp —_ 20
+2 1+.1+ (@)
2
substitute p and q in equation C2.15
1 1
-+ (+0* + ) C2.21
™= —21(,(—” 20 )

since @ > 0 — p and g must be the same sign, this will reduce the solution to two roots only

1 1 1 @ )
-t —0" + —— 0DF — 1) Fi ——— e C2.22
L TRT T ( TR
1 1 1 @ - o
m e i = (L) i e C2.23
2 21, 21, 41,0 21, 41,0
o HH = C3 emlz + C4 emZZ ................................................................. C2.24
where C5 and C, are constants
1, ., 1D -1, . 1B
8, = Cy T ™V AL | o oD T €2.25
. 1 @ 1 @
Oy = C3 o2l V7 [cos (EEZ> + i sin (4_%52)]
_1 ~
27, (474D [ _ @ ] ............... C2.26
.+Cye (41 Q*Z) lSln(4l Ik
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z
let z* = T and substitute in equation C2.26. this will lead to
o

~ ~

w w
0., =C 2(!2*—1)2*[ <_ *) P <_ *)]
y=Cze cos (2" | +isin| 5z

~ ~

(e DT [COS (Qﬂz) _ isin (_(222)] ............ C2.27
For the particular solution,
let 6, = A e_T”Oz ..................................................................... C2.28
L 90k Vo TVer e, C2.29
0z a
0%0p _ 4 Vor TVor ) 2.30

0z2 a?

substitute equations C2.28, C2.29 and C2.30 into equation C2.8

2
Vo ~Yo Vo UV, VYo ) ~Yo Vy Vo
A 2eaz+—(—A—eaz)—L—Aeaz=——Zeaz ...................... C2.31
a a a a a
rearrange equations C2.30 and solve for 4
voz voz .a) voz vOZ
Ay ——z —iz)=——7% — A=
a a a a awi
2 ; 2
Vo —awi —v,°
A= . % = | eeeerecsenseens C2.32
awi —awi aw
2
-7, ~Yo
HP = 9 I @ @ 2 e, C2.33
aw
z 4aw —4i .
v g* = cand @ = . S Gp= —— e C2.34
41, Vo o

substitute equation C2.27 and C.34 into equation C2.9, will lead to
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Ay ) )
© 0, =0y + 0p = Cy 21z [cos <§z*> +isin <§z*>]

. . ) ) 4i .
. +C -2(2*+1)z [ (_ *) it (_ *)] _ . -4z
4 € cos _Q*Z LSin _Q*Z 5 e

apply the ¥ B.c (z > o — 6;(z) =0 - 6,(z*) = 0) in equation C2.35 will lead to €3 =0

because 2*> 1 ,and (*— 1)=> 0 — e?@ V2 = for (= 1)> 0

=1for (2*—1)=0

thus; equation C2.35 become

. . o o 4i .
0, =C, e—2(2"+1)z [cos <_Z*) —isin <_Z*)] — — e C2.36
n* n* )

apply the 2" B.c (z=0 — 6;(z) =0 - 0,(z*) = 0) in equation C2.36 will lead to

4i 4i
0 = C4_ — 5 d C4_ = 5
4i I o 0] 4i .
"B, = m2(2+ 1)z [ <_ ) s (_ )] LY, C2.37
1 % e cos 0 Z LSin 0" Z % e
now let @1 — 91 el(l)t ........................................................................ C2.38
2

, substitute into equation C2.38

let t* = a_g , and from equation C2.14 @ =

substitute equation C2.37 and C2.39 will result

L0, =0, et =9, [COS(@t*) + i SIN(@E*) ] wereeereerereereemreineeneeeeen, C2.39
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4i o ) 4i
— _2(.(2*"'1)Z>’< * I . * _ —42* A% . . A L%k
0, = e [cos (—Q*Z ) isin (—Q*Z )] =€ ][cos(wt ) + i sin(&t*) ]

4i * * a * * a
== [e‘z(!2 Dz cos <§2*> cos(@t*) — i e 22 *+DZgin <§2*> cos(@dt*)...

* * * w
...—cos(@Dt)e ™ e 22+ (g (EZ*) sin(@t*) ...

* * a *
=22z gin (Ez*)sin(&)t*) — i sin(@t*) e~ ] --------- C2.40

simplify equation C2.40 and take the only real part of @

4 * * a 4 * * a
0, = —e 2+ gin (Ez*> cos(@t*) —5e_2(” D7 cos (EZ*) sin(@t*)...

)
4 .
.+ —e " sin(dt") e C2.41
rearrange equation C2.41
4 * * * a
0. = — |e—4z" _ p-2(2"+1)z (_ *)] (B,
1==\€ e cos | 5z 2 sin(ot*)
LA e g, (EZ*) COS(BLY) rrvrrerrororrrrron C2.42
) 0
let 0, =A@, z")sin(@t") + B(@,z") coS(DL*) v, C2.43
— 0y = A(B,27) CoS(DE* — D(@,2%)) wreeererreremremmrmmmie e C2.44
where A(&)\, Z*) — i [6—42* _ ie—2(0*+1)z*COS <£Z*>:|
) W (N
4 o
B(®,z) = — -2(2"+1)z" (_ *)
(@,z") > e sin Q*z

A, z7) =A@, z*)? + B(®, z*)?

~ % _ A(D, z%)
O(d,z*) =tan™?! (—B@ Z*))
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where A(®,z*) and @ (@, z") are the amplitude and the phase shift of 6, .
now, take the derivative of @, with respect to z* using equation C2.42

~

de, o

4 B D)
— | —ap—4z" _ — ,-2(0°+1)z" | _ o Lk
e &)\[ 4e Q*e ( sin (Q*Z))

* * a
..... —(=2( 2" + 1))e 2(¥+DZ o5 (EZ*)] sin(@t*).....

~

410 . X D)
..... +—|— e 2(2HDZ7 ¢ (—Z*)
A [.Q* n*

~

* * w
..... +(=2( 0" +1))e 22 +D7 giy (Ez*)] COS(@E) +rrrrrrrerrrnens C2.45

o d . )
now find the derivative of % at z* = 0 using equation C2.45

do,

[_16 D) oty + = cos(at C2.46
—_ = —— COS WL ) iviiiiiiiiiiiiiiiiiiiiiiianaa .
iz, 5 5 sin(@t") 0 cos(@t™)

do, S ~ -

= C(®) sin(@Ot™) + D(@) cos(DL™) v C2.47

dz* ;=0

de - ~

1 = A(D) COS(DE* — B(D))  +rreererererrermrersremmsirenineisieesien, C2.48

dz* ;=0

~16  8(2" + 1)
@ @

where C(@) = [

&(@) = tan™! (%)

Where A (&) and @ (&) are the amplitude and the phase shift of Z

01
az*lz =g
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