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ABSTRACT 

ASSOCIATION BETWEEN EMERGENCY DEPARTMENT VISITS DURING 

PREGNANCY AND ENHANCED PRENATAL HEALTH CARE PROGRAM 

PARTICIPATION – AN APPLICATION OF FIXED-EFFECTS COUNT MODELS 

 

By 

Zhiheng Chen 

We study the number of Emergency Department (ED) visits during pregnancy for low 

income women in one county in southwest Michigan. The outcome distribution has a large 

proportion of zeros. This study examines the association between ED visits during pregnancy 

and the enhanced prenatal health care programs (Maternal Infant Health Program and Strong 

Beginning program). These enhanced prenatal health care programs enrolled high-risk 

women who might use ED more often than those with low-risk pregnancy. Due to self-

selection and potential measurement errors in measuring the enrollment in enhanced prenatal 

health programs, fixed-effects models were used to fit the data. Results show that having 

enhanced prenatal health care programs helps reducing the expected number of ED visits 

during pregnancy. 

 

Keywords: Count Data; Endogenous variables; Fixed-effects models; Enhanced Prenatal 

Health Care Programs; Emergency Department  
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Chapter 1 Introduction 

 

Adverse perinatal outcomes such as preterm birth and low birth weight represent a substantial 

clinical and public health problem. Getting early and regular prenatal care improves the chance 

of a healthy pregnancy. Many pregnant women continue to use the emergency department (ED) 

possibly due to lack of appropriate prenatal care. If unnecessary ED visits can be prevented, 

significant resources can be redirected toward more urgent needs.  

Maternal Infant Health Program (MIHP) and Strong Beginnings (SB) are two enhanced 

prenatal health care programs for pregnant women and infants in Michigan (SB is based in 

Kent county, Michigan). MIHP is Michigan’s largest home visiting program for Medicaid-

eligible pregnant women and infants. It provides home visitation supports and care 

coordination to supplement regular prenatal care and promote healthy pregnancies and positive 

birth outcomes. The SB program is focused on high-risk pregnant African American women 

and infants in the Greater Grand Rapids area. It provides intensive outreach and case 

management in addition to MIHP. 

Our research question is whether there is an association between the ED visits during 

pregnancy and participation in different types of enhanced prenatal health care programs. We 

hypothesize that women in MIHP and SB will have fewer ED visits during pregnancy 

compared to similar women in neither program. Because of the potential measurement error in 

measuring the enrollment in MIHP and self-selection, which will be discussed in Chapter 3, 

the results from usual count models might be biased. For this reason we will use fixed-effects 

model to fit our data. 
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Chapter 2 Background 

2.1 Count Data Models 

2.1.1 Poisson Model 

As the outcome of this study, the number of ED visits is a count variable, the benchmark model 

is the Poisson model. Suppose there is a random variable � under Poisson distribution with 

mean �, � > 0. The density of � is  

�(� = �) = �	�(�)
�! , � = 0,1,2, … 

and  

�(�) = ���(�) = �. 
Similar to the linear regression models, Poisson regression models connect � with � covariates, 

� = (1, ��, ��, … , ��) with unit as its first element. The Poisson model takes the form  

log��(�|�) = �! 

2.1.2 Negative Binomial Model 

There are 13 different derivations for the negative binomial (NB) distribution identified by 

Patil and Boswell in 1970 (Patil and Boswell, 1970). The most often cited one is the mixture 

of a Poisson and a gamma distribution. Suppose the gramma distribution has mean 1 and 

variance ", then the unconditional NB distribution is #$%(�, "), with density 

�(� = �) = Γ(� + "	�)Γ(� + 1)Γ("	�) ( "	�"	� + �)*+, (1 − "	�"	� + �)
 , � = 0,1,2, … 

where " > 0.  

" is called the overdispersion parameter and Γ() is the gamma function: 

Γ(�) = / 01	��	2304
5 . 

One of the advantages of using a NB model instead of a Poisson model is that NB models can 
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deal with overdispersion. If �~#$%(�, "), then  

�(�) = � 

���(�) = �(1 + "�). 
Because " is always greater than 0, the NB model is not able to model underdispersion. This 

is why researchers do not simply fit count data using a NB model instead of a Poisson model 

(Hilbe, 2013). Hilbe (2013) suggests researchers to fit the data using Poisson regression first, 

and if apparent overdispersion is found, then use NB models instead. According to Hardin and 

Hilbe’s definition, 

apparent overdispersion – indicates the lack of fit, possibly due to: 

(a) the model omits important explanatory predictors; 

(b) the data include outliers; 

(c) the model fails to include interaction terms; 

(d) a predictor needs to be transformed to another scale; or 

(e) the assumed linear relationship between the link-function transformed response and 

predictors is misspecified. 

2.1.3 Hurdle Model 

When the outcome contains a large proportion of zeros, the usual Poisson or NB models may 

not adequately fit the data. For example, in our study, there was a large proportion of pregnant 

women (39%) who had not gone to the ED during pregnancy. The decision to use ED or not 

might be governed by a different process from the process that determines how many times ED 

is used. A hurdle model (Cragg, 1971) can be used to deal with the different processes. Let the 

first process for using the ED at all be governed by density 8�(�; :�) and the second process 

for the number of times using ED by density  8�(�; :�). Then the density of a hurdle model is 

�(� = �) = ;8�(0; :�),                                               <8 � = 0
�1 − 8�(0; :�) 8�(�; :�)1 − 8�(0; :�) , <8 � > 0 
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Specifically, take a logit-Poisson hurdle model as an example, suppose =5 = �(� = 0)  is 

modeled by a logistic regression, and � is the mean of the Poisson part, then the density of the 

model is  

�(� = �) = ;                      =5,                       <8 � = 0
(1 − =5) �	>�
�! (1 − �	>) , <8 � > 0 

2.1.4 Zero-inflated Model 

Another way to fix the problem of excess zeros is the zero-inflated models. The zero-inflated 

models (Lambert, 1992) were introduced to allow the count data with a large proportion of 

zeros. Suppose there is a base count density 8�(�), but it doesn’t predict too many zeros. One 

solution is to add another component that inflated the probability of zero. Then the density 

function for the zero-inflated model is 

�(� = �|�) = ?= + (1 − =)8�(0), <8 � = 0(1 − =)8�(�),           <8 � > 0  

where = is the proportion of the part that generate structural zeros. It can be a constant or a 

random probability depending on covariates via a binary outcome model such as logit. 

Specifically, for a zero-inflated Poisson (ZIP) model, the base distribution is a Poisson 

distribution with mean � (Mullahy et al, 1986). The density is  

�(� = �|�) = ;= + (1 − =)�	>, <8 � = 0
(1 − =) �	>�
�! ,      <8 � > 0  

The mean of ZIP is: 

�(�|�) = (1 − =)�, 
and its variance is: 

���(�|�) = (1 − =)(� + =��). 
Moreover, for a zero-inflated Negative Binomial (ZINB) variable �, the base distribution is a 

#$(�, "), so the ZINB density is  
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�(� = �|�) = @ = + (1 − =)(1 + �")	*+, , <8 � = 0(1 − =)ℎ(�, �, "),                             <8 � > 0 

where ℎ(�, �, ") is the NB density. The mean of ZINB is: 

�(�|�) = (1 − =)�, 
and its variance is: 

���(�|�) = (1 − =)B�(1 + "�) + =��C. 
2.2 Causal Inference Methods 

2.2.1 Causal Model 

A causal model contains  BD, �, �C , where D  is a set of exogenous variables, �  is a set of 

endogenous variables and �  is a set of structural equations (Pearl et al, 2000). Exogenous 

variables are independent variables that have some effects on a model but are determined by 

some factors outside the model. Instead, an endogenous variable is dependent on other 

variables in the model. 

2.2.2 Identification of Causal Effects 

For a randomize control trial (RCT), the assignment of treatment is random, thus exogenous. 

If the experiment is conducted properly, the effect of the treatment can be directly estimated by 

comparing the outcome between the treated and control groups.   

However, for observation studies, take this study as an example, the participation in either 

MIHP or SB programs is voluntary, likely determined by many factors. Women in different 

programs may be systematically different in terms of risks for poor birth outcomes. One way 

to solve this problem is matching using propensity scores (PS). Although PS matching is not 

the same as randomization, it can balance observed baseline characteristics for study 

population under different exposures (Mnatzaganian et al, 2015). 

However, if there are some endogenous variables in the model, the PS matching method is no 
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longer valid. In this study, the enrollment of MIHP cannot be determined exactly by all the 

information we have. Measurement errors and self-selection might exist. Usually instrumental 

variables method is used to deal with these problems. A fixed-effects model can also be used. 

Despite the great usefulness of these methods, there are lots of assumptions for these methods. 

As Imbens and Rubin stated: “The potential outcomes for any unit do not vary with the 

treatments assigned to other units, and, for each unit, there are no different forms or versions 

of each treatment level, which lead to different potential outcomes” (Imbens & Rubin, 2015). 

We describe the fixed-effects models we use to mitigate the endogeneity problem with count 

data.  
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Chapter 3 Model and Data 

3.1 Model Specification 

3.1.1 Fixed-Effects Models 

Fixed-effects models are often used with panel data (Grafarend et al, 2006). Unlike the random-

effects models, the distribution of “effect” parameter EF  in fixed-effects models may have any 

distributions. Whether EF  are correlated with other covariates or not is the important difference 

between random-effects and fixed-effect models (Wooldridge, 2002; Cameron, 2013). 

Linear fixed-effects models have the following form: 

�FG = �FG! + EF + HFG  

where the index < represents individuals and I represents the I0ℎ observation for individual <.  
The error terms are assumed to be independent with other covariates and EF . Fixed-effects 

models for count outcomes can be written as: 

�FG = �(�FG|�FG , EF) 
J��FG = �FG! + EF 

where g is the log link. If the conditional distribution for �FG given by �FG  and EF  is assumed to 

be Poisson distribution, the coefficients can be estimated using conditional maximum 

likelihood estimator (CMLE) or MLE with dummy variables. In other cases, if the conditional 

distribution is assumed to be NB distribution, then only MLE with dummy variables can be 

used (Gardiner et al, 2009). 

3.1.2 Fixed-Effects Count Models 

Suppose there are � treatment groups and a control group, each individual < chooses a group 

from (� + 1) choices. Like the linear fixed-effects models, we have exogenous covariates with 

associated coefficients, and an “effect” term which is allowed to be depend on those exogenous 
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covariates.  

Suppose binary variables 35, 3�, … , 3�  represent the observed treatment choices, and we 

assume the probability of treatment has a mixed multinomial logit structure. Let EF =
(EF�, EF�, … , EF�) denote the individual fixed-effects term and KF denotes exogenous covariates, 

then the density function is defined as 

��3FG = 1LKF , EF = �MN*OPQNO1 + ∑ �MN*SPQNS�2T�  

for I = 1, … , �. 
For a fixed-effects count data, the conditional outcome equation for each subject < is 

log B�(�F|3F , �F, EF)C = �F! + U VG3FG + U EFG�
GT�

�
GT�  

where �F are the exogenous covariates with associated parameters !. 

For a fixed-effects hurdle model, we assume that the second process which determines the 

counts is governed by the Poisson distribution, so that we can write the density of the hurdle 

model 

8(�F|3F , �F , EF) = ;1 − WF ,                    <8 �F = 0
WF �	>N�F 
N�F! (1 − �>N) ,    <8 �F > 0 

where log (�F) = �(�F|3F , �F, EF) and XYJ<0(WF) = �F!Z + ∑ VGZ3FG + ∑ EFG�GT��GT�  . 

The joint distribution of treatment and outcome variables can be written as the product of these 

two marginal densities 

�(�F, 3F|�F , KF, EF) =
[\]
\̂ (1 − WF) �MN*OPQNO1 + ∑ �MN*_PQN_àT� ,                <8 �F = 0

WF �	>N�F 
N�F! (1 − �	>N) �MN*OPQNO1 + ∑ �MN*_PQN_àT� ,    <8 �F > 0 

Similar to the hurdle model, the fixed-effect Zero-inflated Poisson model has density  
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�(�F , 3F|�F , KF , EF) =
[\]
\̂B=F + (1 − =F)�	>NC �MN*OPQNO1 + ∑ �MN*_PQN_àT� ,    <8 �F = 0

(1 − =F) �	>N�F 
N�F! �MN*OPQNO1 + ∑ �MN*_PQN_àT� ,      <8 �F > 0  

3.1.3 Estimations 

Because the fixed-effects terms are unknown, which incorporate the unobserved characteristics 

common to individual <′c treatment choice and outcome (Deb et al, 2006), we cannot estimate 

the model using the maximum likelihood estimators. We turn to the simulated maximum 

likelihood method. A STATA command “mtreatnb” was used to fit the Fixed-effect Negative 

Binomial model (Deb et al, 2006). All estimators for the FE-Hurdle model and FE-ZIP model 

were computed with Stata version 14.2 on a 2.4-GHz PC running macOS Sierra. There is no 

existing command for FE-Hurdle model and FE-ZIP model, we wrote our own programs using 

Stata’s ml routine to run the regression. First we assume that EFG  are independently and 

identically distributed draws from the standard normal distribution and J(EF)  is the joint 

distribution of EFG . J(EF) will be integrated out of the joint conditional (on the fixed effects) 

density �(�F, 3F|�F , KF , EF)  to derive the joint unconditional (on the fixed effects) density 

�(�F , 3F|�F , KF). 

For the FE-Hurdle model and the FE-ZIP model, 

�(�F, 3F|�F , KF) = / W(�F, 3F|�F , KF, EF)J(EF)3 EF 
Using simulation-based estimation (Gouriéroux et al, 1996), we can get the simulated joint 

density by drawing EFG # times from the density J(EF), let EdFe be the f_0ℎ draw. The simulated 

density can be write by 
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�(�F, 3F|�F , KF) ≈ 1# U W(�F, 3F|�F, KF , EdFe)i
eT�  

In our case, we can write our simulated log-likelihood function for the FE-Hurdle models as 

ln �(�F , 3F|�F, KF) ≈ 

ln �i ∑ {B(1 − WF) lmNnoOpqNO
�P∑ lmNno_pqN_rst, C(
NT5)ieT� + BWF l+uN>NvN
N!(�	l+uN) lmNnoOpqNO

�P∑ lmNno_pqN_rst, C(
Nw5)}.  

The simulated log-likelihood function for FE-ZIP model is 

ln �(�F , 3F|�F, KF) ≈ 

ln
�i ∑ {{B=F + (1 − =F)�	>NC lmNnoOpqNO

�P∑ lmNno_pqN_rst, }(
�T5)ieT� + B(1 − =F) l+uN>NvN
N
lmNnoOpqNO

�P∑ lmNno_pqN_rst, C(
Nw5)}.  
3.2 Data Collection 

As mentioned above, many pregnant women still have been visiting the ED possibly due to 

lack of appropriate prenatal care. While MIHP and SB program aim to provide enhanced 

prenatal care to pregnant women, we would like to see if these programs can reduce the number 

of ED visits during pregnancy.  

3.2.1 Sample 

African American women in Medicaid in Kent county with singleton birth without congenital 

anomalies are our study population. From the vital record data, there were totally 445,331 

births from 2009 to 2015 in Michigan. Among them, 31,613 were in Kent County. There were 

6,752 births by African American women, of which 6,171 were by women who had full 

Medicaid four months before birth and 5,920 were singleton. 12 births were excluded because 

of fetal death. Four were excluded because of congenital anomalies. Congenital anomalies were 

defined if a birth had any of the following records: anencephaly, meningomyelocele/spina 

bifida, congenital heart disease, cyanotic congenital heart disease, omphalocele, gastroschisis, 

limb reduction, cleft lip with or without palate, cleft palate alone, Down syndrome – karyotype 
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confirmed, Down syndrome – karyotype pending, suspected chromosomal disorder – 

confirmed, suspected chromosomal disorder – pending, and hypospadias. After that, 71 births 

were excluded because their gestation ages were either shorter than 20 weeks or greater than 

46 weeks, and another seven births were excluded because there were no claims records for the 

mothers. In the end, 5,826 births were included in this study. 533 women enrolled in MIHP and 

SB, 2,490 enrolled in MIHP only and the other 2,803 enrolled in neither of the two programs. 

The detailed numbers of births in each study group were given in Appendix - Figure 1. 

3.2.2 Missing Value 

There were a few missing values in the study data set. The number of missing values for each 

variable was shown in Appendix - Table A1. To deal with the problem of missing values, the 

most frequent category of the variable was imputed for missing values of categorical variables. 

For continuous variables, the missing values were imputed with the mean of the non-missing 

values of the variable. Appendix - Table A1 also shows the imputed values for each variable 

with missing values. 

After solving the problem of missing values, the characteristics of the study population were 

shown in Table 1. 

3.2.3 Outcome 

The outcome of this study is the number of ED visits during pregnancy. An ED visit was 

defined by using administrative claims data. Out-patient claims with revenue codes between 

0450 and 0459 were defined as ED claims. Each unique date of those ED claims was counted 

as a unique ED visit, and only those visits during pregnancy were used to generate the outcome 

variable. The number of ED visits during pregnancy was counted as an overall outcome in our 

study. The distribution of the total number of ED visits during pregnancy was shown in 

Appendix – Figure 2a.  

It is well known that not all ED visits are truly emergent. Ambulatory care sensitive conditions 
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(ACSCs) are “a set of medical conditions, such as asthma, diabetes, gastroenteritis, or 

hypertension, for which timely, appropriate primary care can prevent or reduce the likelihood 

of so-called ‘avoidable’ hospitalization or emergency room visits.” (Falik et al, 2001) The 

number of ED visits is the outcome of this study, and it is important to distinguish ED visits 

for ACSCs from the truly unavoidable ones. The Emergency Department Algorithm (EDA) is 

developed by the New York University (NYU) Center for Health and Public Service Research 

for identifying ACSCs (NYU ED website). The EDA describes the likelihood of an ED visit in 

each of the following four categories (Jones et al, 2013): 

“(1) Non-emergent (NE): The patient’s initial complaint, presenting symptoms, vital signs, 

medical history, and age indicated that immediate medical care was not required within 12 

hours.  

(2) Emergent/Primary care treatable (EPCT). 

(3) Emergent/ED care needed/Preventable or Avoidable (EPCA).  

(4) Emergent/ED care needed/Not preventable or Avoidable (ENPA).”  

The key to this classification is the principal diagnosis code, which is identified by the   ICD-

9 codes (change to ICD-10 codes after 10/1/2015). This algorithm was developed based on a 

sample of nearly 6,000 ED records in a general hospital in New York, including the initial 

complaint, presenting symptoms, medical history, vital signs, patient characteristics, diagnoses, 

procedures performed and resources used in ED. The researchers estimated the probabilities 

for each diagnosis code being in different categories based on these ED records. To determine 

the category of each diagnosis code, we can either using the one with highest probability or the 

one with the probability over 75%. 

Those cases under Emergent/ED care needed/Not Preventable were not supposed to be reduced 

by prenatal care programs. The first three types of ED visits were combined as another outcome 

in which we were more interested. The distribution of the number of the combination of the 
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first three types of ED visits was shown in Appendix – Figure 2b. 

Table 1. Risk characteristics of full Medicaid-insured African American women with singleton birth 
in Kent County, MI 2009-2015. 

 (1) (2) (3) 

Characteristics 

(% or mean) 

SB 

(N=533) 

MIHP not 

SB  

(N=2,490) 

No MIHP 

(N=2.803) 

Total

(N=5,826)

Average mother’s age, n (%) b    

<18 39 (6) 141 (6) 118 (4) 298 (5)

18-24 364 (55) 1223 (52) 1344 (48) 2931 (50)

25-29 147 (22) 559 (24) 764 (27) 1470 (25)

30-34 69 (10) 308 (13) 383 (14) 760 (13)

35+ 44 (7) 138 (6) 194 (7) 376 (6)

Marital status, n (%) ab    

Married 56 (8) 343 (14) 454 (16) 853 (15)

Unmarried, paternity acknowledged 274 (41) 970 (41) 1190 (42) 2434 (42)

Mother only on birth certificate 333 (50) 1056 (45) 1159 (41) 2548 (44)

Education, n (%) b    

<HS 202 (30) 737 (31) 633 (23) 1572 (27)

HS 285 (43) 964 (41) 1105 (39) 2354 (40)

>HS 176 (27) 668 (28) 1065 (38) 1909 (33)

Hispanic ancestry, n (%) ab 4 (1) 42 (2) 49 (2) 95 (2)

WIC program, n (%) b 484 (73) 1760 (74) 1886 (67) 4130 (71)

Full Medicaid before conception, n (%) ab 453 (68) 1512 (64) 1625 (58) 3590 (62)

Smoking, n (%) b 100 (15) 323 (14) 310 (11) 733 (13)

Quit smoking, n (%) 32 (5) 103 (4) 94 (3) 229 (4)

Others in household smoked, n (%) b 122 (18) 399 (17) 366 (13) 887 (15)

Drinking, n (%) 6 (1) 27 (1) 27 (1) 60 (1)

Diabetes prior to pregnancy, n (%) 8 (1) 28 (1) 26 (1) 62 (1)

Hypertension prior to pregnancy, n (%) b 31 (5) 88 (4) 60 (2) 179 (3)

Previous preterm birth, n (%)  42 (6) 163 (7) 195 (7) 400 (7)

Rapid repeat pregnancies    

<18 months from prior birth to current   
conception 

161 (24) 653 (28) 831 (30) 1645 (28)

>= 18 months from prior birth to current 
conception 

272 (41) 878 (37) 1080 (39) 2230 (38)

No prior deliveries 192 (29) 697 (29) 741 (26) 1630 (28)

Unknown 38 (6) 141 (6) 151 (5) 330 (6)

Pre-pregnancy BMI, mean (SD) b 29.6 (8.3) 28.9 (8.2) 28.6 (7.7) 28.9 (8.0)
Abbreviations: MIHP, Maternal Infant Health Program; SB, Strong Beginnings. 
a: statistical significant difference (p<0.05) when comparing (1) vs (2). 
b: statistical significant difference (p<0.05) when comparing (1) vs (3).  

For simplicity, we use the category with highest probability to determine the visit type, and let 

�%Fy denote the overall ED visits for woman < during pregnancy and �%Fz denotes the ED visits 

after using NYU classify algorithm for woman < during pregnancy (combine NE, PCT and PA 

together). 
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3.2.4 Exposure 

There were three groups of women from the cohorts: those enrolled in SB; those enrolled in 

MIHP only; those not enrolled in either program. We used the procedure codes in Medicaid 

claims data to define the enrollment of MIHP. In this study, a woman was defined to be in 

MIHP if she has used MIHP for professional visits at least once during pregnancy. The 

professional visits include preventive counseling, prenatal care risk assessment, comprehensive 

multidiscipline evaluation and program intake assessment. Except for the claims for 

professional visits, there are also other claims for MIHP such as Nonemergency transportation 

– taxi, but we did not count these claims. Since we did not have a specific indicator for the 

enrollment of MIHP, the way we defined MIHP could only give us an approximation, which 

may lead to some measurement errors in the exposure. 

3.2.5 Covariates 

A – Person Level 

Administrative claims and vital records for African American women who gave births between 

2009 and 2015 in Kent county, Michigan were used in this study. Fifteen personal-level 

covariates were included in this study: moms’ age group, marital status, educational level, 

Hispanic or not, having received WIC program or not, full Medicaid before conception or not, 

smoking, quit smoking or not, having others in household who smoked, drinking, diabetes prior 

to pregnancy, Hypertension prior to pregnancy, previous preterm birth, rapid repeat 

pregnancies and pre-pregnancy BMI. 

B – Census Tract Level 

Data from American Community Surveys (ACS) in these years were used to create Census 

tract level social-demographic characteristics. Two neighborhood deprivation indices were 

created in the UK and were used for the UK populations – Townsend Material Deprivation 

Index (Nagaraja, 2015) and Jarman Underprivileged Area Score (Nagaraja, 2015). The  
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Table 2. Distribution of the outcomes 

Outcomes –  

mean (min-max) 

Overall NE PCT PA NPA AIDP UNCLS 

SB 2.17 (0-
17) 

1.17 
(0-11) 

0.32 (0-
5) 

0.03  
(0-2) 

0.03  
(0-1) 

0.06  
(0-2) 

0.55  
(0-6) 

MIHP, no SB 1.87 (0-
35) 

1.00 
(0-25) 

0.28 (0-
6) 

0.02  
(0-3) 

0.03  
(0-3) 

0.07  
(0-7) 

0.48  
(0-7) 

None 1.31 (0-
30) 

0.69 
(0-18) 

0.21 (0-
5) 

0.01  
(0-3) 

0.02  
(0-2) 

0.04  
(0-3) 

0.34  
(0-11) 

Abbreviations: MIHP, Maternal Infant Health Program; SB, Strong Beginnings; NE, Non-emergent; PCT, 
Emergent/Primary Care Treatable; PA, Emergent/Preventable or Avoidable; NPA, Emergent/Non-Preventable or 
Non-Avoidable; AIDP, alcohol, injury, drug or mental health; UNCLS, Unclassified. 
 

Townsend index is created based on four variables: 

1. % of households with no vehicle 

2. % of households with more than one occupant per room (i.e., overcrowding) 

3. % of dwellings renter-occupied (i.e., housing tenure) 

4. % of people above 16 years who are unemployed 

Jarman index is created based on eight variables: 

1. % elderly living alone 

2. % under 5 

3. % persons living in a single parent household 

4. % unemployment, above 16 

5. % persons living in a household with more than 1 person per room 

6. % moved within the last year 

7. % born overseas from a non-English speaking county 

8. % in social class 5, unskilled (UK) 

In 2015, these two indices were adapted to the US populations and fit for Census tract level 

data from ACS in New York and Bronx Counties by Nagaraja (Nagaraja, 2015). He found that 

both indices can identify deprived regions. However, the validity of these indices is still 

questionable in the wider US context (Nagaraja, 2015). In 2006, a standardized neighborhood 

deprivation index was created using Census tract level data from ACS (Messer et al, 2006). 
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Messer first included 20 variables and then used a principal component analysis to reduce them 

to eight variables:  

1. % with less than a high school education 

2. % unemployment rate, above 16 

3. % crowded 

4. % males in management and in professional occupations 

5. % families in poverty 

6. % female headed households on public assistance 

7. % female headed households with dependent children 

8. % households earning under $25,000/year 

A Vuong test was used to test three non-nested Poisson models (Vuong, 1989) where each 

model included all the personal covariates and one of the three indices.  The results in Table 3 

show that Messer’s index did a better job than Townsend’s and Jarman’s indices in fitting the 

data. Thus, Messer’s Neighborhood Deprivation Index was used in the following analyses. 

Table 3. Test for non-nested models 

 Test Statistics p-value 

Townsend’s vs. Jarman’s 1.489 0.136 

Townsend’s vs. Messer’s -7.731 0.000 

Jarman’s vs. Messer’s -14.062 0.000 

 

All covariates mentioned above were included in the mixed multinomial logit part for the 

treatment group. For the count part of the FE-Hurdle model and FE-ZIP model, only some of 

the covariates were included. To decide which covariates to be included into the count part of 

the model, we ran a Poisson model with all the covariates and dropped those covariates with a 

high p-value (using �%Fz as the outcome, p-value > 0.5). The results were shown below in 

Table 4. According to the results, we selected the following covariates for the Hurdle and ZIP 

part: treatment groups, mom age groups, marital status, mom education levels, Hispanic, WIC 

program, Full Medicaid Before Conception, smoking, drinking, hypertension before 
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conception, previous preterm birth, rapid repeat pregnancies, pre-pregnancy BMI and Messer 

index. 

Table 4. Results from Poisson model  
Coef. Std. Err. p-value 

Treatment group (ref: none enhanced 

prenatal health care program) 

   

  SB program 0.39 0.06 0.000 

  MIHP only 0.30 0.04 0.000 

Mother’s age group (ref: < 18)    

18-24 0.48 0.10 0.000 

25-29 0.43 0.11 0.000 

30-34 0.26 0.12 0.028 

35+ 0.15 0.15 0.318 

Marital status (ref: married)    

Unmarried, paternity acknowledged 0.29 0.07 0.000 

Mother only on birth certificate 0.31 0.06 0.000 

Education level (ref: < HS)    

HS -0.10 0.04 0.022 

>HS -0.13 0.05 0.008 

Hispanic ancestry -0.34 0.14 0.017 

WIC program -0.05 0.04 0.195 

Full Medicaid before conception 0.56 0.04 0.000 

Smoking 0.09 0.05 0.104 

Quit smoking -0.03 0.09 0.703 

Others in household smoked -0.01 0.05 0.897 

Drinking 0.25 0.26 0.342 

Diabetes prior to pregnancy 0.00 0.14 0.980 

Hypertension prior to pregnancy 0.14 0.11 0.183 

Previous preterm birth 0.22 0.06 0.000 

Rapid repeat pregnancies (ref: < 18 months 

from prior birth to current conception) 

   

>= 18 months from prior birth to current 
conception 

0.07 0.04 0.112 

No prior deliveries 0.01 0.05 0.789 

Unknown -0.00 0.07 0.989 

Pre-pregnancy BMI 0.01 0.00 0.001 

Messer Index 0.00 0.00 0.003 
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Chapter 4 Results 

Basically, in this study, two things were supposed to be checked. The first one is whether the 

estimations would change after using NYU algorithm to classify our ED visits for pregnant 

women. Two different outcomes were used in our models, one is the overall ED visits for each 

woman during pregnancy and the other one is the number of Non-emergent, Emergent/PC 

treatable and Emergent/Preventable ED visits based on the NYU algorithm. The second thing, 

which is the most important, is the validity of using the fixed-effects (FE) Hurdle model and 

FE-ZIP model when we have some potential selection bias or non-differential measurement 

error. Our data were used to fit six different models, including Poisson model, Negative 

Binomial model, ZIP model, FE-Negative Binomial model, FE-Hurdle model and FE-ZIP 

model. 

In Table 5, we gave the results from Poisson, Negative Binomial and Zero-Inflated Poisson 

model, using both �%Fy and �%Fz as the outcomes. 

When we used �%Fy as the outcome, the results we got were similar to the results if we used 

�%Fz as the outcome. This might be because after use NYU algorithm, there were still a lot of 

unclassified ED visits (nearly 30%). Among these unclassified ED visits, we could not know 

the distribution of non-emergent ED visits and “true” emergent ED visits, which made the 

results using �%Fz similar to the results using �%Fy as the outcome. 

For now, let’s focus on the results using �%Fz as the outcome. When we used Poisson and NB 

models to fit the data, the coefficients for treatment groups are positive, which means that both 

SB group and MIHP only group have more ED visits during pregnancy than the no-MIHP 

group. For the ZIP model, the coefficients for the treatment groups in the count part are positive, 

while they are negative for the inflated part. Remember in the inflated part, the probability is 

the proportion for the part that generate structural zeros. So, in addition to the positive 

coefficients in the count part, the negative coefficients in the inflated part also mean that the 
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treatment groups (both SB and MIHP only) have more ED visits during pregnancy than the no-

MIHP group.  

Table 5. Results from Poisson, Negative Binomial and ZIP model 

 Coefficients  Predictions – Rate Ratios  
SB MIHP only SB vs. None MIHP only vs 

None {|}~ 

Poisson 0.39*  
(0.28-0.51) 

0.30*  
(0.23-0.38) 

1.48 
(1.33-1.66) 

1.35 
(1.25-1.45) 

NB 0.42*  
(0.30-0.53) 

0.31*  
(0.24-0.39) 

1.52 
(1.35-1.70) 

1.37 
(1.27-1.47) 

ZIP, count part 0.26* 
(0.14-0.37) 

0.20* 
(0.12-0.28) 1.51 

(1.34-1.68) 
1.35 

(1.25-1.45) ZIP, inflation part -0.56* 
(-0.85 - -0.28) 

-0.35* 
(-0.50 - -0.19) {|}� 

Poisson 0.41*  
(0.28-0.54) 

0.31*  
(0.22-0.39) 

1.51 
(1.33-1.71) 

1.36 
(1.25-1.48) 

NB 0.44*  
(0.30-0.57) 

0.32*  
(0.23-0.40) 

1.55 
(1.36-1.76) 

1.37 
(1.26-1.49) 

ZIP, count part 0.25* 
(0.11-0.40) 

0.20* 
(0.10-0.30) 1.54 

(1.34-1.74) 
1.36 

(1.25-1.48) ZIP, inflation part -0.51* 
(-0.81 - -0.21) 

-0.30* 
(-0.48 - -0.12) 

Abbreviations: NB, Negative Binomial; ZIP, Zero-Inflated Poisson model; MIHP, Maternal Infant Health Program; 
SB, Strong Beginnings. 95% Confidence intervals in parentheses.  

*: statistical significance (p<0.05). 

Using the estimated coefficients, we held all the covariates except the treatment groups for 

each person constant and assumed that they were in SB group and calculated the predicted 

values of the outcome for SB group. Similarly, we calculated the predicted values of the 

outcome for MIHP only group and the reference group. Then we calculated the predicted rate 

ratio (RR) between SB group and the reference group and the predicted RR between MIHP 

only group and the reference group. The predicted RR for each model were listed in Table 5. 

Not surprisingly, for Poisson, NB and ZIP model, the RR between SB group and reference 

group and the RR between MIHP only and reference group are both greater than one. As 

discussed above, because of the measurement errors and self-selection, the results from Poisson, 

NB and ZIP model might be biased. We next used fixed-effects models to fit our data. 
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Table 6. Results from FE-NB, FE-Hurdle and FE-ZIP model 

 Coefficients  Predictions – Rate Ratios  
SB MIHP only SB vs. None MIHP only vs. 

None {|}~ 

FE-NB -0.10 
(-0.29 – 0.09) 

0.27* 
(0.09 – 0.45) 

0.92 
(0.75 – 1.10) 

1.22 
(1.09 – 1.57) 

FE-Hurdle, 
count part 

-0.47* 
(-0.64 - -0.30) 

-0.51* 
(-0.60 - -0.41) 0.80 

(0.69 – 0.92) 
0.74 

(0.67 – 0.79) FE-Hurdle, 
hurdle part 

-0.12 
(-0.40 – 0.15) 

-0.31* 
(-0.47 - -0.16) 

FE-ZIP, count 
part 

-0.46* 
(-0.61 - -0.30) 

-0.47* 
(-0.58 - -0.36) 0.67 

(0.53 – 0.80) 
0.63 

(0.49 – 0.76) FE-ZIP, 
inflation part 

-1.54 
(-4.50 – 1.37) 

-0.60 
(-1.82 – 0.59) {|}� 

FE-NB -0.11 
(-0.34 – 0.12) 

0.26* 
(0.12 – 0.40) 

0.87 
(0.71-1.12) 

1.31 
(1.13-1.50) 

FE-Hurdle, 
count part 

-0.52* 
(-0.75 - -0.27) 

-0.51* 
(-0.62 - -0.39) 0.81 

(0.70-0.93) 
0.75 

(0.69-0.81) FE-Hurdle, 
hurdle part 

-0.16 
(-0.43 – 0.11) 

-0.34* 
(-0.49 - -0.19) 

FE-ZIP, count 
part 

-0.52* 
(-0.70 - -0.35) 

-0.42* 
(-0.59 - -0.26) 

-- -- 
FE-ZIP, 

inflation part 
-12.94 

(-57.50 – 32.58) 
-0.22 

(-1.55 – 1.11) 
Abbreviations: FE-NB, Fixed-effect Negative Binomial; FE-Hurdle, Fixed-effect Hurdle model, FE-ZIP, Fixed-
effect Zero-Inflated Poisson model; MIHP, Maternal Infant Health Program; SB, Strong Beginnings. 
*: statistical significance (p<0.05) 

Table 6 shows the estimates of the parameters from three Fixed-effect models. The estimates 

for FE-NB model came from the Stata command “mtreatnb” (Deb et al, 2006), and we 

programmed the MLE routine to get the estimates for FE-hurdle model and FE-ZIP model 

using simulated maximum likelihood estimation method (the codes were shown in Appendix). 

For the FE-Hurdle model and FE-ZIP model, as explained in Chapter 3, they generate two 

separate models. For the Hurdle model, we used FE truncated Poisson model for those with at 

least one visit and used an FE logit model to explain whether the number of visits is zero of 

not. For the FE-ZIP model, an FE Poisson model was used for those who had some probabilities 

to have an ED visit during pregnancy and an FE logit model was used to explain the inflated 

part. People in the inflated part was supposed to have no probability to visit Emergency 



21 

Department during pregnancy, this might due to a “very” healthy pregnancy. 

Same as before, the results using different outcomes were very closed to each other. Let’s look 

at the results (using �%Fz as outcome). In the FE-Hurdle model, the estimated coefficients for 

the treatment groups in the “Count” part are -0.52 and -0.51, which means that both SB women 

and MIHP only women had fewer ED visits during pregnancy. 

For the logit part, the estimated coefficients for the treatment groups are -0.16 and -0.34. In our 

FE-Hurdle model, the probability for the logit part in the left-hand side is the probability of 

having positive outcomes. Negative coefficients for the treatment groups mean that both SB 

program and MIHP only have fewer ED visits during pregnancy. The prediction values for the 

RR’s using the estimated coefficients in FE-NB and FE-Hurdle models were less than one 

except for the predicted RR for MIHP only vs. None in the FE-NB model, which means that 

women in both SB group and MIHP only group would have fewer ED visits during pregnancy. 

We used bootstrap to get the 95% confident interval (CI) for the predicted RR for FE-Hurdle 

and FE-ZIP models. We bootstrap 800 times for each model and found the 2.5 percentile as the 

lower bound of the 95% CI and the 97.5 percentile as the upper bound. The 95% CI showed 

that the predicted rate ratios for FE-Hurdle model and FE-ZIP model were statistical significant 

different from one. For the FE-ZIP model, the estimated coefficients for the treatment groups 

in the inflated part are -12.94 (SB vs. None) and -0.22 (MIHP only vs. None) which meant that 

those people who enrolled in SB and MIHP only group had lower probabilities to create 

structural zeros. This may be because those women who enrolled in these enhanced prenatal 

health programs were supposed to have more risk in their pregnancies. But the predictions 

based on these estimated coefficients meaningless, which may require further studies. Although 

the RR from FE-NB model was not statistically significant, it also showed that the results from 

regular count models such as Poisson model were biased.  
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Table 7. Results for Fixed-Effect Hurdle model 

 Count Logit 

Parameters Coef. Std. Err. Coef. Std. Err. 

Treatment group (ref: no prenatal program)    

  SB a -0.52 0.12 -0.16 0.14

  MIHP only ab -0.51 0.06 -0.34 0.08

Mom age group (ref: < 18)    

  18 – 24 ab 0.65 0.14 0.91 0.18

  25 - 29 ab 0.59 0.16 0.65 0.20

  30 - 34 a 0.38 0.18 0.38 0.22

  35 + 0.41 0.24 -0.16 0.25

Marital status (ref: married)    

  Paternity ab 0.24 0.12 0.28 0.12

  Mom only ab 0.27 0.12 0.40 0.12

Education level (ref: < HS)    

  HS ab -0.17 0.07 -0.14 0.09

  > HS ab -0.24 0.08 -0.29 0.10

Hispanic a -0.61 0.25 -0.52 0.30

WIC program -0.05 0.07 0.07 0.08

Full Medicaid before conception ab 0.68 0.07 0.98 0.08

Smoking 0.11 0.08 0.18 0.11

Drinking -0.30 0.23 0.27 0.37

Hypertension prior to pregnancy 0.08 0.14 0.38 0.21

Previous preterm birth ab 0.29 0.10 0.47 0.15

Rapid repeat pregnancies (ref: < 18 months from 

prior birth to current conception)  

   

  >= 18 months from prior birth to current conception 
b 

0.07 0.08 0.25 0.09

  No prior deliveries 0.13 0.09 -0.04 0.11

  Unknown 0.14 0.12 0.06 0.17

Pre-pregnancy BMI b 0.01 0.00 0.01 0.00

Messer Index ab 0.01 0.00 0.01 0.00
Abbreviations: MIHP, Maternal Infant Health Program; SB, Strong Beginnings. 
a: statistical significant difference (p<0.05) for Count part (versus reference group). 
b: statistical significant difference (p<0.05) for Logit part (versus reference group). 

  

For the other covariates, such as mom’s age and education level, the estimated coefficients and 

standard errors were listed in Table 7. For mothers’ age groups, comparing with those who gave 

births before 18 years old, those moms whose age was between 18 and 29 years old were more 

likely to have more ED visits during pregnancy. For marital status, those unmarried women 

were more likely to have more ED visits during pregnancy compared with those married 

women. Higher education level for mom seems to help reducing the number of ED visits during 

pregnancy. Those women with full Medicaid before conception had more ED visits during 

pregnancy than those women without full Medicaid before conception. Another important 
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covariate was the previous preterm birth, those women who had preterm birth previously had 

more ED visits during pregnancy significantly than those without preterm birth previously. 

 

  



24 

Chapter 5 Discussion 

Firstly, as discussed in the section of results, due to the large proportion of unclassified ED 

visits, there wasn’t any significant difference when we used �%Fz as the outcome. For this study, 

we would like to know if the enhanced prenatal health care could reduce the number of ED 

visits or not. The ED visits here should exclude those non-preventable emergent situations, 

because the enhanced prenatal health cares are not designed to help with these situations. That’s 

the reason why we wanted to use the NYU algorithm to classify our ED visits. However, there 

are lots of diagnosis codes which cannot be classified based on the NYU algorithm. That makes 

our outcome �%Fz unclear. Further research is needed to refine the NYU ED algorithm. This is 

also a limitation of using claims data. 

Nevertheless, according to Table 5, we can see if we used the usual count models, such as 

Poisson, NB or ZIP model, the predictions of the RR’s (SB vs. None, MIHP only vs. None) 

were greater than one, which means that the MIHP and SB program increased the number of 

ED visits during pregnancy. On the other hand, those women who enrolled in MIHP and SB 

program were supposed to have higher risk about their pregnancy, and this makes them to more 

likely to get ED visits during pregnancy. Because of the self-selection bias, it was not a surprise 

that the predictions of the RR’s (SB vs. None, MIHP only vs. None) changed when we turn to 

FE models. The results from FE models showed that the both MIHP and SB programs would 

decrease the number of ED visits during pregnancy. Since the emergence department resources 

are very valuable, it is better to reduce those unnecessary ED visits. The results show that the 

enhanced prenatal health care programs such as MIHP and SB can efficiently reduce the 

number of ED visits during pregnancy for African American women. 
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APPENDIX A 

Figure 1. Flow Chart 
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APPENDIX B 

Figure 2a. Distribution of the overall outcome in each treatment group. 

 

Figure 2b. Distribution of the outcome (NE, PCT and PA using NYU algorithm) in each 
treatment group. 
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APPENDIX C 

Table A1. Number of Missing Values 

Variables # of missing values, N (%) Imputed values 

Mother’s age group 2 (0.03) 3 

Marital status   

Paternity 834 (14.32) 0 

Education 12 (0.21) 2 

WIC program 11 (0.19) 0 

Smoking 4 (0.07) 0 

Others in household smoked 9 (0.15) 0 

Drinking 1 (0.02) 0 

Diabetes prior to pregnancy 1 (0.02) 0 

Hypertension prior to 

pregnancy 

1 (0.02) 0 

Previous preterm birth 1 (0.02) 0 

Rapid repeat pregnancies 330 (5.66) 4 

Pre-pregnancy BMI 118 (2.03) 28.86 
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APPENDIX D 

****************************Fixed-effect Hurdle Model*************************** 

cap program drop myfehurdle 

program myfehurdle 

 args lnfj lnmu theta ome2 ome3 

 tempvar pi1 pi2 pi3 L1 mu p l pi 

  

 qui { 

  gen double `pi1' = 0 

  gen double `pi2' = 0  

  gen double `pi3' = 0 

  gen double `pi' = 0 

  gen double `mu' = 0 

  gen double `p' = 0  

  gen double `L1' = 0 

  gen double `l' = 0  

 } 

  

 foreach x of num 1/500 { 

  qui { 

   replace `pi1' = 1 / (1+exp(`ome2'+l2`x')+exp(`ome3'+l3`x')) 

   replace `pi2' = exp(`ome2'+l2`x') * `pi1' 

   replace `pi3' = exp(`ome3'+l3`x') * `pi1' 

   replace `pi' = `pi1'*d0+`pi2'*$ML_y2+`pi3'*$ML_y3 

   replace `mu' = exp(`lnmu'+l2`x'+l3`x') 

   replace `p' = exp(`theta'+l2`x'+l3`x') / (1+exp(`theta'+l2`x'+l3`x')) 

   replace `l' = (1-`p') * `pi' if $ML_y1 == 0 

   replace `l' = `p' * exp(-`mu') * `mu'^$ML_y1 / (1-exp(-`mu')) / round(exp(lnfactorial($ML_y1 )), 1) * 

`pi' if $ML_y1 > 0 

   replace `L1' = `L1' + `l'  

  } 

 } 

 quietly replace `lnfj' = ln(`L1'/500)  

end 

 

********************************Fixed-effect ZIP Model************************** 

cap program drop myfezip 

program myfezip 

 args lnfj lnmu theta ome2 ome3 

 tempvar p1 p2 p3 L1 mu p l pi 

  

 qui { 

  gen double `p1' = 0 

  gen double `p2' = 0  

  gen double `p3' = 0 

  gen double `p' = 0 

  gen double `mu' = 0 

  gen double `pi' = 0  

  gen double `L1' = 0 

  gen double `l' = 0  

 } 

  

 foreach x of num 1/500 { 

  qui { 

   replace `p1' = 1 / (1+exp(`ome2'+l2`x')+exp(`ome3'+l3`x')) 

   replace `p2' = exp(`ome2'+l2`x') * `p1' 

   replace `p3' = exp(`ome3'+l3`x') * `p1' 

   replace `p' = `p1'*d0+`p2'*$ML_y2+`p3'*$ML_y3 

   replace `mu' = exp(`lnmu'+l2`x'+l3`x') 

   replace `pi' = exp(`theta'+l2`x'+l3`x') / (1+exp(`theta'+l2`x'+l3`x')) 

   replace `l' = (`pi'+(1-`pi')*exp(-`mu')) * `p' if $ML_y1 == 0 

   replace `l' = (1-`pi') * exp(-`mu') * `mu'^$ML_y1 / round(exp(lnfactorial($ML_y1 )), 1) * `p' if 

$ML_y1 > 0 

   replace `L1' = `L1' + `l'  

  } 

 } 

 quietly replace `lnfj' = ln(`L1'/500)  

end 
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