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ABSTRACT 

CHARACTERIZATION OF RESISTANCE GENE DIVERSITY AND STRUCTURAL 

VARIATION IN BETA VULGARIS 

By 

Andrew Joseph Funk 

Plants are under threat from bacteria, viruses, fungi, and nematodes in their environment. 

Plants deploy a sophisticated network of defense responses to avoid and defeat these pathogens, 

and in response pathogens counteract plant defenses through their own suite of biochemical 

weapons and signaling molecules. These battles are pervasive in both natural settings and 

agriculture. The goal of this dissertation research is to provide insight into genetic variation 

present in diverse populations of Beta vulgaris and identify patterns of disease resistance (R) 

gene variation. 

Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of R 

genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem 

duplication and transposition, with high sequence diversity among crops and their wild relatives. 

I used the conserved NB-ARC domain to build a B.vulgaris-specific hidden Markov model 

(HMM). The HMM identified 231 tentative NB-ARC loci in a highly contiguous genome 

assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-

length sequences. The putative NB-ARC-associated proteins contained NLR resistance gene 

domains, including Toll/interleukin-1 receptor (TIR), coiled-coil (CC), and leucine-rich repeat 

(LRR), as well as other integrated domains.  

HMM-based domain detection was extended to 23 populations encompassing four crop 

types of B. vulgaris. Whole-genome sequences were generated by pooling 25 individuals per 

population, then sequencing each population in a single bulk reaction using 2x150 bp chemistry. 



 

These reads were assembled de novo to efficiently capture population-wide genetic variation. 

The nucleic-acid-based NB-ARC HMM was used to scan de novo contigs and infer genetic 

variation within and between populations, which identified an average of 139.5 NB-ARC 

domains per population.  

The pooled population sequencing strategy was expanded to 71 populations total. Short 

reads were used in a targeted reassembly pipeline to detect structural variation in each of the 71 

populations. This method identified 4,995,443 indels with lengths under 1 kb. These indels were 

analyzed for chromosome position, length in bp, and frequency across populations, and revealed 

non-random patterns of indel variation. Half of the indels were detected in five or more 

populations, suggesting that indel assembly from pooled population sequences is reproducible. 

Furthermore, indels were sufficient to differentiate populations by crop type, supporting the 

conclusion that the data modeled genetic differences originating in historical crop development. 

Divergence in the population-wide distribution of seven- and eight-bp indels led to identification 

of an enriched sequence motif, suggesting possible biological function of the sequence such as a 

TE target site duplication or transcription factor binding site. 

This work presents the first detailed view of NLR family composition in a member of the 

Caryophyllales and demonstrates an additional nucleic-acid-based method for resistance gene 

prediction in non-model plant species. Pooled population sequencing was used to access novel 

variation in breeding populations of B. vulgaris and identify structural variants that reflected 

underlying genotypic relationships. Future work will build on resistance gene modeling, pooled 

population sequencing, and detection of genetic variation to aid breeding for disease resistance.
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CHAPTER ONE 

INTRODUCTION 

Plants are sessile and need to cope with their environment to survive. There is no fight-

or-flight for plants, the decision is always fight. Pathogens are a constant threat to plant 

productivity, attacking both above and below ground, leading to the development of myriad 

strategies for plants to avoid or defeat pathogens. These strategies include systems for direct 

perception of pathogens, indirect perception, local and systemic signaling, and self-inflicted cell 

death via the hypersensitive response (Jones & Dangl 2006). These mechanisms can be active 

against general classes of pathogens as well as specific species, races, or strains (Kourelis & Van 

Der Hoorn 2018). 

Attacks by pathogens create selection pressures on plant populations that reward novel 

variation able to mitigate the effects of the attacker. Once a plant develops a defense against a 

certain pathogen, it creates new pressure selecting for variants of the pathogen able to counteract 

the defense response (Brown 2015). This cycle means defense responses are rarely solved, rather 

they are in a constant state of flux as selection pressure oscillates between host and pathogen. 

This in turn encourages cycles of birth and death of novel genetic variation, as genetic drift, 

mutation, and recombination create a maelstrom of genetic components with unforeseen effects 

on fitness (Zhang et al. 2014; Shao et al. 2014). This interplay is evidenced by the large families 

of some resistance (R) genes, which can number from hundreds to thousands depending on the 

specific plant species under consideration (Monteiro & Nishimura 2018).  

NLR AND RECEPTOR-LIKE KINASE RESISTANCE GENES 

The most well-studied R genes produce intracellular proteins containing nucleotide 

binding (NB) and leucine-rich repeat (LRR) domains, collectively known as NB-LRR (NLR) 
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(Kourelis & Van Der Hoorn 2018). These NLR genes are often divided into two groups based on 

their N-terminal signaling domain, which often consists of a coiled-coil (CC) domain or 

Toll/Interleukin-1-like receptor (TIR) domain (Jones & Dangl 2006). NLRs are found in 

mammals as well as plants, although they appear to have distinct evolutionary origins (Maekawa 

et al. 2011). NLRs comprise 61% (191/314) of the R genes cloned from plants to date (Kourelis 

& Van Der Hoorn 2018). The second-most studied class encodes membrane-bound receptor-like 

kinases (RLKs) and associated receptor-like proteins (RLPs), collectively representing an 

additional 19% (60/314) of cloned R genes. Unfortunately, the pathogen elicitor, mechanism of 

resistance, or both, remains unknown for 70% (177/251) of cloned mediators of resistance 

(Kourelis & Van Der Hoorn 2018). 

How genomic features contribute to the development of novel disease resistance is a core 

question of this dissertation research. Gene duplication is a fundamental process generating new 

variants of NLRs and RLKs (Leister 2004; Lauer et al. 2018). The mechanisms of gene 

duplication are varied, including whole-genome and segmental duplications, tandem duplication, 

transposition, non-allelic homologous recombination, and replication-based mechanisms related 

to altered DNA polymerase template recognition (Carvalho & Lupski 2016). These mechanisms 

can be facilitated by homologous sequences in close physical proximity, whether on the same 

chromosome or on different chromosomes brought together during DNA replication and repair. 

Homologous sequences could include repetitive sequences such as transposable elements, other 

low-complexity repetitive sequences, or homologous genes sharing high sequence identity. 

Interactions between similar sequences can lead to gene duplications, deletions, and 

recombinations that shuffle genes, promoters, exons, and domains between loci, leading to novel 

organizations of coding regions (Shao et al. 2014; Bailey et al. 2018). NLRs and RLKs are often 
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found clustered in the genome and interspersed with repetitive sequences (Shiu & Bleecker 

2003; Pan et al. 2000). These repetitive genomic landscapes create difficulty when resolving the 

identity and location of R genes. 

NLRs and RLKs contain conserved sequences that are required for their core function 

and diverse sequences required for specific resistance interactions. This fact provides an 

opportunity to detect candidate resistance genes based on the presence of conserved domains, 

and then investigate novel resistance mechanisms by characterizing accessory domains. Strong 

conservation occurs in the NB domain of NLRs, which are constrained by the need to interact 

with ATP and ADP (van der Biezen & Jones 1998). The Serine/Threonine kinase domain of 

RLKs is similarly constrained due to the need for functioning kinase activity to propagate signals 

to downstream partners (Shiu & Bleecker 2001). It is not universally true that NB and kinase 

domains be functional to participate in the defense response network: functional 

complementation by heteromeric protein-protein interactions allows perception and signaling 

domains to be supplied by separate entities (Franck et al. 2018; Jones et al. 2016). However, the 

majority of cloned NLRs and RLKs contain conserved NB and kinase domains and thus this 

conservation remains a viable guideline for identifying resistance genes in a genomic context. 

Unfortunately, the high sequence similarity between some family members can confound 

attempts to resolve similar loci using short-read sequencing techniques, which remain the most 

common and cost-effective approach for whole-genome sequencing and assembly. Alternative 

methods are needed for cost-effective genomic analysis of resistance genes. 

Duplicated and recombined R gene variants can provide candidates for new disease 

resistance, yet it is more likely their effects confer negative or neutral fitness rather than positive 

(Zhang et al. 2014; Leister 2004). Low fitness releases loci from selection pressure, leading to 
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the accumulation of mutations and indels through genetic drift (Keightley et al. 1998). For a 

time, these loci, even if non-functional, could act as a reservoir for genetic variation accessed 

through recombination. Eventually these sequences will become pseudogenes and be washed 

away into the genomic landscape (Freeling 2009). Alternatively, some loci confer high fitness to 

their host and are maintained through natural selection (Keightley et al. 1998). These loci 

propagate through lineages and populations.  

STRUCTURAL VARIATION AND GENETIC DIVERSITY 

In eukaryotes, genetic information does not exist in a vacuum, rather, it is carried along 

through the concerted action of biochemical processes that convey chromosomes from one 

generation to the next. Physical properties of chromosomes and the associated replicative 

machinery influence how information is maintained or altered over time (Lynch et al. 2016). 

Recombination is a fundamental source of organismal diversity, able to generate nearly infinite 

combinations of the thousands of gene and regulatory sequences found within populations (Ma et 

al. 2009). On a more basic level, sequence variation can arise either through single nucleotide 

polymorphisms (SNPs) or through structural changes to multiple nucleotides at once 

(Hodgkinson & Eyre-Walker 2011). Sequence differences between stretches of two or more 

nucleotides are termed structural variants and are often divided into short insertion/deletion 

variants <1,000 bp (indels) and longer structural variation >1,000 bp (SVs) (Wala et al. 2018). 

The most common genotyping method in modern genetics is assessment of bi-allelic 

SNPs. However, there is reason to believe SNPs are not always in linkage disequilibrium with 

important genomic features.  Pan-genomic investigation of maize revealed that 90% of the maize 

genome contained structural variants in at least one accession, and 70% of the genome had 

variations in 10 or more accessions (Chia et al. 2012). However, approximately 20% of structural 
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variants in the maize genome were not associated with SNPs (Chia et al. 2012). In humans, the 

number of structural variants without linked SNPs was slightly higher at 23% (Sudmant et al. 

2015). One explanation for the lack of linkage between SNPs and structural variants is that 

generation of structural variation could occur more rapidly than SNP variation. This is an 

intriguing proposition given the rapid changes in selection pressure dynamics between pathogens 

and plant defenses. 

Various lines of evidence support the hypothesis that structural variation is 

disproportionately responsible for phenotypic variation compared to SNPs. Indels were recently 

associated with ~80% of de novo gene evolution events in rice (Zhang et al. 2019), implicating 

indels as a major source of novel genes. Studies have shown that structural variation is 

disproportionately enriched near SNPs statistically associated with phenotypic variation in 

humans and maize (Sudmant et al. 2015; Chia et al. 2012). In a meta-genomic association 

mapping study of rice,  42% of trait-associated SNP loci were absent from the reference genome, 

suggesting those SNPs reside on indels (Yao et al. 2015). Increased resolution of structural 

variation should improve our understanding of relationships between genome biology and R 

gene diversity. 

BETA VULGARIS  

Research presented in this dissertation focuses on the crop plant Beta vulgaris spp. 

vulgaris. These plants are members of order Caryophyllales, situated at the base of the eudicot 

clade after divergence from monocots (Dohm et al. 2014). B. vulgaris spp. vulgaris has nine 

chromosomes with an estimated genome size between 569 and 758 MB and 42 to 63% repetitive 

sequences (Dohm et al. 2014; Arumuganathan & Earle 1991). The most economically important 

crop type is sugar beet, cultivated for processing of refined sugar from root extracts (Cooke & 
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Scott 1993). Table beet and chard are grown for direct human consumption, and the fourth crop 

type, fodder beet, is used as feed for livestock (Cooke & Scott 1993). B. vulgaris is naturally 

biennial and outcrossing, although modern plant breeders have adopted genetic self-

compatibility to facilitate development of advanced cultivars (McGrath & Panella 2018). 

 Sugar beet was thought to contain only CC-NLR resistance genes until recently (Tian et 

al. 2004; Funk et al. 2018; Dohm et al. 2014). The predominance of CC-NLR genes groups B. 

vulgaris more closely with early plant lineages: Selaginella moellendorffii, Brachypodium 

distachyon, and the monocots maize, rice, and sorghum all have CC-NLRs but no TIR-NLRs. 

This is in contrast to eudicots such as Solanaceous species, Arabidopsis, and soybean, which all 

contain both CC and TIR NLRs (Jacob et al. 2013). How R genes evolved to fill different roles 

in different plant lineages is an ongoing subject of research. 

In summary, NLRs and RLKs are key classes of resistance genes which exist as large 

gene families containing a continuum of functional and non-functional elements. These elements 

contain highly conserved as well as diverged domains and are often physically clustered together 

on chromosomes. The combination of sequence similarity and physical proximity creates 

difficulties when attempting to resolve similar loci. Still, given the central role of these types of 

genes in disease resistance, resolving each NLR and RLK in a species should provide increased 

resolution to determine candidate genes for deployment in crop production. Beyond the practical 

applications, characterizing the genomic functions that lead to novel disease resistance could 

lead to further insights into the mechanisms of disease resistance evolution more broadly. These 

insights could be applied to wild relatives to increase the search space for novel disease 

resistance genes, and ultimately could inform attempts to design disease resistance genes de 

novo, contributing to a new approach for mitigating the effects of pathogens in agriculture. 



7 

CHAPTER TWO 

 

NUCLEOTIDE-BINDING RESISTANCE GENE SIGNATURES IN SUGAR BEET 

INTRODUCTION 

A wide range of organisms threaten the productivity of beets (Beta vulgaris L.), including 

bacteria, fungi, viruses, and nematodes (De Lucchi et al., 2017; Haverson et al., 2009; Leucker et 

al., 2016; Stevanato et al., 2014b, 2015; Webb et al., 2016). Sugar beet growers expend 

significant time and money protecting crops from pathogens, whether through chemical 

treatments, use of resistant varieties, or pursuing cultural practices. Deploying genetic resistance 

is a proven way to protect crop production while reducing costs and environmental impacts of 

agriculture (reviewed in Boyd et al., 2013). Because of this, disease resistance is one of the more 

important traits pursued by plant breeders. Complexities of the beet breeding system (e.g. self-

incompatibility, biennial lifecycle) have generally precluded deep understanding of the 

inheritance and genetics of most disease resistance traits in sugar beet. 

The NB-ARC protein domain  is a nucleotide-binding (NB) domain initially found in 

human Apaf1, plant R genes, and Caenorhabditis elegans Ced4 (van der Biezen & Jones 1998). 

The majority (60.8%) of R genes cloned to date contain NB-ARC and leucine-rich repeat (LRR) 

motifs, which have been implicated in gene-for-gene resistance to pathogens (Jones & Dangl 

2006; McHale et al. 2006; Maekawa et al. 2011; Kourelis & Van Der Hoorn 2018). NB-ARC-

LRR (NLR) genes often exist as large, homologous gene families with conserved NB domains 

along with variable signaling, perception, and aggregation domains (Duxbury et al. 2016; 

Steinbrenner et al. 2015; Casey et al. 2016; Wang et al. 2015). Two common signaling domains 

are coiled-coil (CC) and Toll-interleukin1-receptor-like (TIR) at the N-terminus, and LRR 

domains are common at the C-terminus. NLR exist in smaller families in mammalian systems 
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(e.g. ~25 genes in humans) compared to hundreds of copies in plants (Sarris et al. 2016; 

Maekawa et al. 2011). Historically these genes have been difficult to identify via nucleotide 

sequence searches (Zhang et al. 2014). A recurring strategy in resistance gene identification has 

been to use the conserved NB-ARC domain as a predictor of putative resistance genes 

(Christopoulou et al. 2015; Jupe et al. 2012; Meyers et al. 2003; Monosi et al. 2004). Target-

capture methods to enrich NLR-like sequences from genomic DNA, followed by motif-based 

annotation of CC, TIR, NB-ARC, and LRR domains is a promising additional means to identify 

potential R genes (Jupe et al. 2013; Steuernagel et al. 2015).  

Beyond the classical gene-for-gene hypothesis of disease resistance (Flor 1942), 

experimental evidence shows that higher-order NLR complexes play an important role in many 

host-pathogen interactions (Belkhadir et al. 2004; Loutre et al. 2009; Césari et al. 2014; 

Sinapidou et al. 2004; Yuan et al. 2011; Huh et al. 2017). Multiple schemes for pathogen 

detection by NLRs have been established, including direct recognition of pathogen components, 

indirect recognition of pathogen effectors, and integration of target domains into host NLRs 

(reviewed in Jones et al., 2016; Li et al., 2015; Kourelis and van der Hoorn, 2018). Pairs of 

interacting NLRs are common, and the classic CC/TIR-NB-ARC-LRR domain organization is 

present across multiple interacting proteins, such that domains missing in one protein may be 

complemented by a partner (Bonardi et al. 2011; Hayashi et al. 2010; Nishimura et al. 2017). 

Based on these cited studies, determining the NLR complement in B. vulgaris should provide the 

basis for identification and deployment of new resistance genes for crop protection. 

One of the most widely-deployed traits in the sugar beet industry, and one whose genetic 

basis is better known, is resistance to the root disease rhizomania, which is caused by Beet 

necrotic yellow vein virus (BNYVV) (Biancardi et al. 2002; Biancardi & Tamada 2016). 
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Rhizomania ('crazy root') is found worldwide, with symptoms of deformed hairy roots leading to 

reduced sugar yield. The only current control is genetic resistance conferred by either of two 

loci, Rz1 and/or Rz2. These loci segregate as dominant, monogenic traits located between 5 and 

25 cM from one another on Chromosome 3 (Barzen et al. 1997, 1992; Lewellen 1991; Scholten 

et al. 1999). The molecular basis of Rz1 resistance is unknown. The nucleotide sequence of Rz2 

shows a classic CC-NLR located on Chromosome 3 (Capistrano-Gossmann et al. 2017). Other 

published sources of resistance also co-locate to the chromosomal region (Gidner et al. 2005; 

Grimmer et al. 2008, 2007).  

Here, an 850 bp hidden Markov model (HMM) of a canonical beet NB-ARC domain was 

constructed from predicted mRNA nucleotide sequences and deployed to identify tentative NB-

ARC sequences in a new sugar beet genome assembly (McGrath et al. unpublished). This 

genome was assembled from PacBio long reads, then scaffolded with BioNano optical mapping 

and Hi-C proximity-guided assembly. The resulting EL10 genome provides an opportunity to 

investigate duplicated and repetitive sequences that were previously difficult to resolve and place 

in their genomic context. The HMM scan revealed 231 tentative NB-ARC loci with homology to 

the NB-ARC model in this genome sequence.  

RESULTS 

Identification of NLR sequences in EL10 

An HMM of B. vulgaris NB-ARC domains was developed using nucleotide sequences to 

allow direct interrogation of the genome assembly. A preliminary EL10 predicted protein set 

contained 185 proteins with NB-ARC domains. Transcript sequences corresponding to these 

predicted domains were filtered for lengths above 400 bp and Expectation values (e-values) 

below 1 x e-10 then realigned and converted into an HMM of 850 bp. Probing the EL10 genome 
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with this nucleotide-based HMM identified 250 sequences with similarity to the NB-ARC 

domain model. Domain lengths ranged from 54 to 933 bp and included 183 of the 185 domains 

in the predicted protein set. Two domains from the predicted protein set that were not identified 

by nucleotide HMM had e-values of 3.1 e-6 and 3.3e-11, suggesting divergence from both the 

model in the Pfam database as well as the HMM generated from the bulk of NB-ARCs in B. 

vulgaris.  

The 250 initial domains were named Bv.nbarc.0001 through Bv.nbarc.0250 (Table S2.1). 

Some domains appeared to be incomplete fragments that could be joined together with a nearby 

fragment to form a single domain. In these cases, distances between fragments ranged from 39 

bp to 7.2 kb. A BLAST search of the incomplete domains against the predicted gene set revealed 

that pairs of domains aligned to the same transcript, supporting the hypothesis that these 

fragments should be merged (Table S2.2). These fragments were joined with adjacent domains to 

form 18 distinct NB-ARC domains for subsequent analysis, including one set of three domains. 

This resulted in 231 tentative NB-ARC-like domains identified in the EL10 genome assembly, 

48 of which were not present in the predicted proteins (Table S2.1).  

Phylogenetic analysis and Subfamily classification of NB-ARC domains 

NB-ARC sequences were arranged in a phylogenetic analysis to predict evolutionary 

relationships. The 231 nucleic acid HMM matches included 21 with e-values above 1e-10 and 

lengths less than 400 bp. These matches were withheld from the initial analysis due to difficulty 

incorporating partial sequences into the alignment and phylogeny. The remaining 210 high-

confidence matches revealed distinct clades with bootstrap support between 50 and 100 (Figure 

2.1, Figure 2.S1). NB-ARC subfamilies, as revealed by the phylogeny, were defined as 

sequences sharing at least 60% pairwise identity, resulting in 27 subfamilies identified in total, 
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named Sf. 1-27 (Figure 2.1). The 21 low-confidence HMM sequences were added to the initial 

tree using the evolutionary placement algorithm (EPA) of RAxML (Figure 2.1), resulting in 204 

sequences assigned to 27 subfamilies, and 27 independent sequences (Table S2.1). The largest 

subfamily contained 22 loci, and six of the 27 subfamilies were composed of two loci. Domains 

with lengths less than 400 bp and/or above an HMM e-value of 1e-10 were distributed throughout 

the phylogeny. 

Physical organization of NB-ARC domains and cluster analysis 

Relationships between sequence identity and physical location of the NB-ARC domains 

were examined to assess gene family diversification. Genomic locations of NB-ARCs were 

classified as clusters or singletons (Figure 2.2). Clusters were defined as loci within 200 kb of 

their nearest neighbor. A total of 183 loci were found in 47 clusters, whereas 48 loci were 

singletons. There were NB-ARCs on each of the nine chromosomes, with 61.9% (143 of 231) 

occurring on Chromosomes 2, 3, and 7. Depending on whether the clustered loci came from 

same or different Subfamilies, 32 clusters were homogeneous and 15 were heterogeneous. Links 

between Subfamilies (Figure 2.3) were used to juxtapose the phylogenetic relationships and 

physical locations of domains in the genome. Some Subfamilies were clustered at one or two 

positions (e.g. Sf. 1, 4, 17, and 21), while others were distributed across five or more locations 

(e.g., Sf. 7, 8, 12, and 25). 

Domain composition of proteins associated with genomic NB-ARC sequences 

Predicted proteins associated with predicted NB-ARC domains were assayed for domain 

composition to determine the number and type of NLRs in the EL10 assembly. Preliminary gene 

annotations of the EL10 whole genome assembly overlapped 208 of the 231 NB-ARC 

predictions. The overlapping proteins were analyzed using InterProScan to determine their cis-
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linked domain content (Supplementary file S1). Whole-protein domain organization indicated 

CC-NB-LRR was the most common domain arrangement (76 instances) followed by NB-LRR 

(69 instances). The most abundant domains observed were NB-ARC (183 predictions) and P-

loop NTPase (180), which is a component of the NB-ARC domain (Table 2.1). Other abundant 

domains were leucine-rich repeat domains from several classes, including IPR032675 (155 

predictions), IPR001611 (61), IPR003591 (20), IPR006553 (1), and IPR013210 (1). Seven 

proteins contained predicted AAA+ ATP hydrolase cis-domains, which overlapped predicted 

NB-ARC domains, however AAA+ e-values were low (0.029 to 4.4e-6), and may be spurious 

due to weak similarity between the AAA+ domain and the NB-ARC (Martin & Lupas 2013). An 

additional 38 non-CC, non-NB, or non-LRR cis-domains were found across 24 proteins, which 

may be additional components of disease resistance (Table 2.1). A summary of the CC, TIR, NB, 

and LRR organizations of the NB-ARC associated proteins is provided in Table 2.2. 

Partial NB-ARC sequences detected by the HMM analysis 

Seven HMM matches had lengths less than 100 bp and e-values between 6.5e-01 and 

4.7e-10 yet were associated with predicted proteins (Table 2.3). Inspection of these proteins 

revealed one partial NB-ARC domain detected by Pfam (Bv.nbarc.0098), with a length of 70 

amino acids and e-value of 1.6e-8. Other proteins contained LRRs with unusual domains; VQ (a 

short valine and glutamine-containing motif of unknown function), RNA-recognition motif, 

winged helix-turn-helix DNA binding domain, and tetra- or pentatricopeptide repeats (Table 

2.3). Four HMM matches were grouped in Sf. 8, one with Sf. 22, while two had no Subfamily 

association. Three full-length NB-ARC HMM matches were also part of Sf. 8, located on 

Chromosomes 3, 4, and 7 (Figure 2.2). A BLASTx search using these domains identified three 

homologous proteins in RefBeet 1.2.2 predicted proteins, and these also contained CC, LRR, 
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VQ, and B3 DNA-binding cis-domains, but not NB-ARC (Table S2.3). The HMM which was 

designed to detect NB-ARC domains also detected a short homologous sequence that appeared 

to be present in predicted LRR-containing proteins and perhaps could represent diverged NB-

ARC domains.  

Cross-validation of R gene domain organization 

Each of the 231 nucleotide domain sequences was queried against the RefBeet protein set 

to cross-validate class assignments (Table S2.1). Domain organizations from the two protein sets 

were in agreement for 118 loci. Disagreements were resolved using the union of the both sets, 

resulting in 204 NB-ARC-containing protein models in EL10 and RefBeet (Table 2.2). A total of 

180 EL10 NB-ARC loci had similarity to 148 RefBeet proteins, using a minimum 90% identity 

threshold. Twenty-one NB-ARC HMMs matched EL10 genome without a de novo predicted 

proteins, compared to 48 matches in the RefBeet 1.2.2 protein set. When data were combined, 12 

NB-ARC HMM predictions were found without a predicted protein observed in either genome.   

TIR detected in B. vulgaris 

InterProScan identified five proteins with TIR domains (IPR000157) on five 

chromosomes (Table 2.4). Pfam identified two of these domains as TIR (PF01582) and two 

others as TIR_2 (PF13676), and the fifth TIR domain detected by InterProScan module 

SUPERFAMILY was not detected by Pfam. One predicted protein, EL10Ac4g07495, contained 

an NB-ARC domain that was not identified by the nucleic acid HMM. This NB-ARC domain 

was incomplete, matching 136 amino acids of the Pfam model with an e-value of 3.1e-6, 

suggesting divergence compared to the rest of the NLR family in beets.  The protein 

EL10Ac6g13736 overlapping Bv.nbarc.0184 contained TIR, NB-ARC, and Leucine-rich repeat 
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domains (Table 2.4). To our knowledge, protein EL10Ac6g13736 is the first indication of TIR-

NLR presence in B. vulgaris (Tian et al. 2004). 

Orthology  

Each of the 231 NB-ARC HMM matches were used as a BLASTx query against the 

curated UniProt Swiss-Prot database to investigate the relationship between B. vulgaris NB-ARC 

domains and those from other species (Table S2.4). The single best-scoring match (by e-value) 

was retained as a classifier of the domains phylogenetic Subfamilies. Fifteen sequences had no 

matches, using an e-value cutoff of 1e-5. The best-scoring matches were placed in the B. vulgaris 

phylogeny using RAxML EPA as before (Figure 2.6). Phylogenetic Sf. 1 through 7 were 

predominantly associated with 16 different proteins annotated from A. thaliana, Sf. 8 through 17 

were associated with a mix of annotated A. thaliana and Solanum bulbocastanum proteins, while 

Sf. 18 through 27 were associated with Solanum bulbocastanum. The closest homolog of 

Bv.nbarc.0184 was Nicotiana glutinosa resistance protein N, a TIR-NB-LRR (TNL) class 

resistance gene, further supporting the assignment of Bv.nbarc.0184 to the TNL class of 

resistance loci. 

Characterization of NB-ARC surrounding Rz2 

The Rz2 gene sequence (Capistrano-Gossmann et al. 2017) overlapped Bv.nbarc.0121 at 

9.3 MB on Chromosome 3 (Figure 2.4). Previous estimates of the genetic distance between Rz1 

and Rz2 resistance loci range from 5 to 20 centimorgans (Barzen et al. 1997; Stevanato et al. 

2015). The 20 MB surrounding the Rz2 gene contained 25 other NB-ARC-like sequences (Figure 

2.4). Twenty-one of these were assigned to seven phylogenetic Subfamilies, and four additional 

trans-domains lacked a Subfamily association. Twenty-four loci were contained within eight 

physical clusters (i.e. domains located within 200 kb of each other), while two of the loci 
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(including Rz2) were not clustered (i.e. singletons). Rz1 likely resides within this 20 MB interval, 

however no obvious candidate was detected. 

Description of the Rz2 locus and phylogenetic subfamily 

The Rz2 gene in EL10 showed approximately 8 kb of Gypsy and Helitron elements 

inserted, as reported by Capistrano-Gossmann et al., (2017). The Bv.nbarc.0121 domain 

associated with Rz2 was part of Sf. 26, which had 17 members unevenly distributed across five 

chromosomes. Sf. 26 was comprised of two large clades, two small clades of two domains each, 

and one basal domain (Figure 2.1). The basal member of its clade, Bv.nbarc.0194 domain, 

appeared to be a singleton on Chromosome 7, and the six remaining domains associated with the 

Bv.nbarc.0194 subclade formed a homogeneous physical cluster on Chromosome 9 (Figure 2.2). 

The other large clade within Sf. 26 was similarly dispersed, with the Bv.nbarc.0047/0048 domain 

on Chromosome 2 and the other four members of Sf.26 located within 2 MB of each other on 

Chromosome 3 (Figure 2.2). 

DISCUSSION 

NLR genes in plants exist as large families with capacity for diversification and 

differentiation. Diversification may be the result of co-evolution of plants and pathogens 

adapting to molecular changes in their adversaries. The diversity that makes disease resistance 

possible also confounds understanding the underlying genetics. Here we have taken steps 

towards identifying NLR resistance gene analogues in the EL10 genome using a novel 

nucleotide-based model search, and clarifying NLR gene family number and context in the 

agronomically important Rz resistance region. 

NB domains of NLR genes are highly conserved across plant and animal species (Sarris 

et al. 2016; Seo et al. 2016; Urbach & Ausubel 2017). Identifying these domains through 
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homology-based approaches is an established method of NLR gene detection (Meyers et al. 

2003; Monosi et al. 2004; Zhou et al. 2004). We extended NB-ARC domain detection beyond 

predicted protein-coding genes by using a nucleic acid based search model to search for more 

distantly-related and perhaps ancestral sequences. Adding search strategies based on homology 

to known proteins at the nucleic acid level might reveal diverged or inactivated sequences that 

are not recognized by current gene prediction algorithms. An expanded search was accomplished 

using a nucleic acid-based HMM applied directly to genomic sequence, which identified 48 

putative NB-ARC signatures not present in the predicted protein set. 

The 5’ ends of NLR resistance genes are often thought to be associated with signaling, 

aggregation, or other processes downstream of pathogen perception. Two common domains at 

this position are CC and TIR, with numerous species containing both CC and TIR resistance 

genes (Arabidopsis, various Solanaceae, lettuce), while some species had been thought to contain 

only CC genes (e.g. monocots) (Christie et al. 2016; Christopoulou et al. 2015; Van Ghelder & 

Esmenjaud 2016; Meyers et al. 2003; Monosi et al. 2004; Pan et al. 2000; Shao et al. 2014; Zhou 

et al. 2004). This paradigm was revised due to the discovery of a second class of TIR domain 

persisting as a small family in all flowering plants, called TIR_2 (Nandety et al. 2013; Sarris et 

al. 2016). Until now, it was thought that B. vulgaris did not contain any TIR-type NLRs (Tian et 

al. 2004). In the current study, TIR, TIR-NB, and TIR-NB-LRR proteins were detected in EL10. 

Both TIR (PF01582) and TIR_2 (PF13676) domains were found, extending the evolutionary 

placement of these domains to the Caryophyllales. Further genomic analysis of diverse B. 

vulgaris accessions should help resolve the prevalence and diversity of TNL resistance gene 

analogues in sugar beet and advance efforts to identify additional molecular sources of disease 

resistance in this species. 
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There were 38 non-CC-TIR-NB-LRR domain types detected in NLR proteins from EL10 

(Table 2.1). Kroj et al. (2016) identified 94 non-CC/TIR/NB-ARC/LRR domains across 31 

genomes as hypothetical integrated decoys (Cesari et al. 2014; van der Hoorn & Kamoun 2008). 

Three of the 94 integrated domains were present in more than one species, one of which was also 

found in an EL10 NLR (kinase IPR011009).  The Hs1pro-1 gene, a historically important 

sequence for plant nematode resistance, contained N-terminal leucine-rich repeats, a 

transmembrane domain, but no CC, TIR, or NB-ARC (Cai et al. 1997). Similarly, our analysis 

identified putative proteins interspersed in a large cluster of NLRs on Chromosome 3 containing 

LRR domains but not full NB-ARCs. Possible defense-related domains in the EL10 NB-ARC-

associated proteins included Calmodulin-binding-protein 60 (CBP60, found in positive 

regulators of plant immunity), various second messenger system components such as 

phosphatases and kinases, an RNAse H (IPR012337), and a poorly-characterized phloem 

protein-2-like domain (IPR025886) that was suggested to function in defense against phloem 

sucking insects (Dinant et al. 2003; Kehr 2006). Regulators of chromatin condensation domains 

in EL10 NLRs (IPR000408 and IPR009091) could also be involved in defense responses 

(Latrasse et al. 2017). The single EL10 NLR-associated concavalin-A-like lectin/glucanase 

domain could be associated with decoy function related to perception of pathogen carbohydrate 

signatures (Rüdiger & Gabius 2002).  

The disease rhizomania is a major concern for sugar beet production worldwide 

(Biancardi & Tamada 2016). Two sources of resistance have been commercially deployed, both 

derived from the sea beet, B. vulgaris spp. maritima, a wild relative of cultivated B. vulgaris 

(Biancardi et al. 2002; Lewellen 1991). Two loci on Chromosome 3 confer resistance, Rz1 and 

Rz2, and additional loci have been described (Grimmer et al. 2008; Litwiniec et al. 2015; 
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Stevanato et al. 2015). Generation of molecular markers across the Rz region has been ongoing 

for over two decades (Barzen et al. 1992, 1997; Francis & Luterbacher 2003; Gidner et al. 2005; 

Grimmer et al. 2008; Stevanato & Trebbi 2012; Stevanato et al. 2015; Scholten et al. 1999). 

Long after being reported as a separate source of resistance, a specific CC-NB-LRR gene 

associated with Rz2 was identified (Capistrano-Gossmann et al. 2017). The molecular basis of 

Rz1 resistance is still poorly understood (Biancardi and Tamada, 2016; Lewellen, 1991).  

Seven phylogenetic Subfamilies of NB-ARCs have members on the arm of Chromosome 

3 associated with rhizomania resistance (Figure 2.4). Multiple tandem duplication events appear 

to have generated three distinct interspersed Subfamilies in this 20 MB region. For instance, Sf. 

26 had separate clusters at 11 and 22 MB, one of which included the Rz2-associated domain 

Bv.nbarc.0121 (Figure 2.4). These two clusters formed well-supported independent subclades in 

the phylogenetic analysis of the Rz region, supporting the hypothesis that these domains arose 

from localized tandem duplications rather than large-scale segmental duplication. Another clade 

within Sf. 26 appears to be the result of a progenitor sequence, represented by Bv.nbarc.0194, 

being translocated from Chromosome 7 to Chromosome 9 and subsequently duplicating into six 

new copies (Figures 1, 2, 3). The chromosome context of disease resistance genes could be a key 

component of local duplications and could play a critical role in the generation of new disease 

resistance (Bornemann & Varrelmann 2013; Bornemann et al. 2015; Liu et al. 2005; 

Pferdmenges et al. 2009). 

The design of novel resistance genes has been demonstrated with some success in 

Arabidopsis, where a target of NLR surveillance was modified to interact with a different 

pathogen, causing new resistance specificity (Kim et al. 2016). NLRs transferred between 

closely-related species, as well as between monocots and dicots, have successfully conferred 
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disease resistance (Narusaka et al. 2013; Jacob et al. 2013). New strategies are emerging capable 

of reducing fitness costs of engineered resistance (Xu et al. 2017). The ability to design 

resistance genes and edit them into plant genomes is quickly becoming reality, and will be 

facilitated by contiguous genome assemblies able to resolve duplicated sequences and repetitive 

elements such as the present study. 

Methods to identify functional resistance genes in diverse accessions of crops and their 

wild relatives are of continuing importance to agricultural sustainability. Nucleotide-based 

HMMs provide a tool for screening new genome assemblies without the need for computational 

prediction of transcripts or proteins. The NB-ARC HMM generated here was able to detect 

fragmented NB-ARC sequences, which is an important feature given that de novo assemblies are 

often composed of contigs of gene- or exon-sized fragments. A single reference genome does not 

capture the sequence diversity of a species (Hirsch et al. 2014; Horton et al. 2012; Lam et al. 

2010; Schnable et al. 2012; Zhang et al. 2012; Hardigan et al. 2015). Fragmented NLR loci 

detected in one genome could be the site of full-length resistance alleles in other accessions. This 

is the case for the Rz2 locus, which is interrupted by an ~8 kb transposable element in some 

accessions (Capistrano-Gossmann et al. 2017), making detection by homology-based methods 

more difficult. HMM searches could help generate molecular markers able to track resistance 

gene variation in populations and across gene pools, with application to a wide variety of 

diseases. 

 

METHODS 

A five-generation inbred of the sugar beet genome named ‘EL10’ was assembled using 

several approaches (McGrath et al., in preparation). Briefly, one inbred plant was chosen for 
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Illumina sequencing, optical mapping (Tang et al. 2015), PacBio RSII sequencing (using P6-C4 

chemistry), and Hi-C scaffolding (van Berkum et al. 2010; Burton et al. 2013), and was largely 

able to reduce the number of scaffolds to the same number of chromosomes in beet (e.g., n = x = 

9). Scaffolds were polished and gap-filled using a combination of approaches (PBJelly, Arrow, 

Pilon following Bickhart et al., 2017), and EL10 scaffolds showed high concordance with 

genetic maps and the RefBeet genome sequence (Dohm et al. 2014). This Whole Genome 

Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession 

PCNB00000000. The version used in this paper is version PCNB01000000 

(https://www.ncbi.nlm.nih.gov/assembly/GCA_002917755.1). The full genome sequence, gene 

annotations, and predicted NB-ARC domains are available for download and to browse at the 

Comparative Genomics portal (https://genomevolution.org/coge/GenomeInfo.pl?gid=37197). 

Building the Beta vulgaris NB-ARC model 

Predicted protein sets were generated with the MAKER pipeline (Law et al. 2015) and 

analyzed with InterProScan v. 5.19-57.0 (Philip Jones et al. 2014) for NB-ARC (IPR002182) 

domains of 200 amino acids or more. The nucleic acid sequences underlying the NB-ARC 

protein domains were extracted, and a consensus alignment was derived from the nucleic-acid-

based NB-ARC domains using MAFFT v 7.215 with the --leavegappyregion option (Katoh & 

Standley 2013). The nucleotide alignment was converted into an HMM using the hmmbuild 

function of HMMER v. 3.1b2 (hmmer.org) (File S2.1), and the resulting nucleic acid HMM was 

used to query the EL10 genomic sequence using the nhmmer function of HMMER v. 3.1b2. 

Phylogenetic analysis 

Preliminary phylogenetic analysis was restricted to genomic NB-ARC sequences with e-

values lower than 1e-10. A consensus alignment was created as described, and a phylogenetic 
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tree was constructed using RAxML v. 8.0.6 (Stamatakis 2014). The ‘-f a’ function was used to 

conduct a rapid Bootstrap analysis and search for the best-scoring maximum likelihood tree, in a 

single run using 1,000 bootstrap replicates. The model of substitution was GTRGAMMA. This 

process was repeated five times using different random number seeds, retaining the highest 

scoring tree. Placement of incomplete NB-ARC sequences onto the full tree was done with the 

evolutionary placement algorithm (EPA) of RAxML (Berger et al. 2011) using the ‘-f v’ 

command. Bootstrap values from the initial tree were combined with the EPA output using the 

labelled_tree function of Genesis software v. 0.19.0 (Czech & Stamatakis 2017). Trees were 

visualized with FigTree v1.4.2. 

Association of NB-ARC sequences with other domains 

Custom python scripts (available from the authors) were used to assess overlap between 

predicted NB-ARC domains and preliminary gene predictions in the EL10 genomic sequence. 

The preliminary gene predictions were analyzed with InterProScan v. 5.19-57.0, which 

incorporates a suite of feature detection applications including SUPERFAMILY, PANTHER, 

Gene3D, Hamap, Coils, ProSiteProfiles, ProSitePatterns, TIGRFAM, PRINTS, Pfam, and 

ProDom (Philip Jones et al. 2014). NB-ARC loci predicted from EL10 were used to extract 

cognate gene models, and these models were classified according to their combinations of CC, 

TIR, NB-ARC, and LRR domains determined by the InterProScan analysis. The HMM-based 

NB-ARC sequences were also used as translated protein queries (BLASTx search v.2.2.3) 

against the predicted proteome of RefBeet v1.2.2 (Dohm et al., 2014). Predicted proteins with at 

least 90% sequence identity were used to determine homology between EL10 and RefBeet 

sequences. RefBeet protein domains were identified using the same InterProScan method used 

for EL10. EL10 and RefBeet annotations were merged to create a consensus assignment of 
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domains for each putative NB-ARC locus. Identification of domains other than CC, TIR, NB-

ARC, and LRR was based solely on the predicted protein set in the EL10 genome. 
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Table 2.1. Domains identified in predicted NB-ARC-associated transcripts in B. vulgaris. 

Proteins overlapping the HMM-based NB-ARC domains are shown in the first column as 

“HMM-associated”. Proteins with NB-ARC domains in the predicted protein set are shown as 

“predicted proteins only”. Count is the number of proteins with one or more of the listed 

domains. 

IPR code Name HMM-associated proteins Predicted proteins only

IPR002182 NB-ARC 183 185

IPR027417 P-loop_NTPase 180 179

IPR032675 Leucine-rich repeat domain 155 146

IPR001611 Leu-rich_rpt 61 59

IPR003591 Leu-rich_rpt_typical-subtyp 20 19

IPR003593 AAA+_ATPase 7 8

IPR000504 RRM_dom 3 1

IPR012677 RNA recognition motif domain 3 1

IPR029058 AB_hydrolase 3 3

IPR002885 Pentatricopeptide repeat 2 0

IPR004910 Yippee/Mis18/Cereblon 2 0

IPR000073 AB_hydrolase_1 1 1

IPR000157 TIR_dom 1 2

IPR000232 HSF_DNA-bd 1 0

IPR000408 Reg_chr_condens 1 1

IPR000719 Prot_kinase_dom 1 1

IPR000760 Inositol_monophosphatase-like 1 0

IPR001878 Znf_CCHC 1 1

IPR004696 Tpt_PEP_transl 1 0

IPR004853 Sugar_P_trans_dom 1 0

IPR005814 Aminotrans_3 1 1

IPR006050 DNA_photolyase_N 1 1

IPR006239 Bisphos_HAL2 1 0

IPR006553 Leu-rich_rpt_Cys-con_subtyp 1 1

IPR008271 Ser/Thr_kinase_AS 1 1

IPR008808 Powdery_mildew-R_dom 1 1

IPR008889 VQ 1 0

IPR009091 RCC1/BLIP-II 1 1

IPR011009 Kinase-like_dom 1 1

IPR011990 TPR-like_helical_dom 1 0

IPR011991 WHTH_DNA-bd_dom 1 0

IPR012337 RNaseH-like_dom 1 1

IPR012416 CBP60 1 1

IPR013210 LRR_N_plant-typ 1 1

IPR013320 ConA-like_dom 1 1

IPR014729 Rossmann-like_a/b/a_fold 1 1

IPR015422 PyrdxlP-dep_Trfase_sub2 1 1

IPR015424 PyrdxlP-dep_Trfase 1 1

IPR018000 Neurotransmitter_ion_chnl_CS 1 1

IPR020550 Inositol_monophosphatase_CS 1 0

IPR020583 Inositol_monoP_metal-BS 1 0

IPR022739 Polyphenol_oxidase_cen 1 1

IPR023566 PPIase_FKBP 1 0

IPR025886 PP2-like 1 1

IPR027725 HSF_fam 1 0

IPR029472 UBN2_3 1 0
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Table 2.2. NLR domain organizations in the B. vulgaris EL10 genome based on de novo 

transcript prediction and 90% identity with publicly available transcripts. The combined 

number was derived from the union of the domain predictions. 

  

Domain 

organization

Composition using 

only EL10 transcripts

Composition using 

only RefBeet blastx 

Combined 

number

CNL 76 72 97

CN 10 21 16

COIL 3 0 0

TNL 1 1 1

TN 0 0 0

TIR 0 0 0

NLR 69 54 64

NB-ARC 30 26 26

CL 3 5 5

LRR 4 4 6

Protein missing 

CC/TIR/NB/LRR 14 0 4

No predicted 

protein 21 48 12
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Table 2.3. Partial NB-ARC sequences detected by the HMM in B. vulgaris.   

Domain Chromosome HMM start HMM stop

HMM 

Phylogenetic 

subfamily Predicted Protein Domains

Bv.nbarc.0069 Chr3 13724032 13724086 22 HSF_DNA-bd, WHTH_DNA-bd_dom, 

HSF_fam

Bv.nbarc.0098 Chr3 51533578 51533673 0 NB-ARC, Leucine-rich

Leu-rich_rpt, VQ

Bv.nbarc.0118 Chr3 51975010 51975105 0 Leu-rich_rpt, Leu-rich_rpt_typical-subtyp, 

Leucine-rich

Bv.nbarc.0101 Chr3 51556392 51556488 8 RRM_dom, Pentatricopeptide_repeat, 

Nucleotide-bd_a/b_plait_sf

Leucine-rich

Bv.nbarc.0104 Chr3 51652191 51652287 8 -

Bv.nbarc.0109 Chr3 51713080 51713176 8 Leucine-rich

Bv.nbarc.0116 Chr3 51925255 51925351 8 RRM_dom, Pentatricopeptide_repeat, 

Nucleotide-bd_a/b_plait_sf

Leu-rich_rpt, Leucine-rich
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Table 2.4. Domain composition of predicted TIR-containing proteins in B. vulgaris.  

 

Protein ID IPR Code InterPro Domain Name Chromosome Genomic Position

EL10Ac1g01449 IPR000157 TIR_dom 1 22,858,717

EL10Ac4g07495 IPR000157 TIR_2_dom 4 98,329

IPR002182 NB-ARC

IPR003593 AAA+_ATPase

IPR027417 P-loop_NTPase

EL10Ac5g12796 IPR000157 TIR_dom_unknown 5 55,158,173

IPR003593 AAA+_ATPase

IPR027417 P-loop_NTPase

EL10Ac6g13736 IPR000157 TIR_dom 6 9,786,798

IPR001611 Leu-rich_rpt

IPR002182 NB-ARC

IPR003591 Leu-rich_rpt_typical-subtyp

IPR003593 AAA+_ATPase

IPR027417 P-loop_NTPase

IPR032675 Leucine-rich repeat domain

EL10Ac8g20309 IPR000157 TIR_2_dom 8 52,781,311
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Figure 2.1. Phylogenetic relationships of putative NB-ARC domains in the EL10 genome of 

B. vulgaris. Clades with at least 60% pairwise identity are numbered and colored to distinguish 

between nearby Subfamilies. Bootstrap values of 1,000 replications are shown at branch points. 
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Figure 2.2. Location of NB-ARC domains and their phylogenetic associations in the B. 

vulgaris EL10 genome. The symbols depict chromosomes (grey rectangles), NB-ARC domains 

(green squares), winged helix-turn-helix domains (black squares), and physical clusters from the 

same Subfamily (blue rectangles) or different Subfamilies (orange rectangles). The phylogenetic 

relationships of NB-ARC domains are depicted as colored links, with each color representing a 

different Subfamily. Subfamilies with only two locations are shown with gray lines.  
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Figure 2.3. Physical distribution of phylogenetic Subfamilies (Sf.) across the B. vulgaris 

EL10 genome. Chromosomes are ordered and labeled as in Figure 2. Subfamilies with at least 

four members are shown in their physical locations in the EL10 genome. Lines are drawn linking 

adjacent family members within each plot. Multiple clustered domains form a straight line along 

the radial axis, e.g. Sf. 2, 3, and the portion of Sf. 4 on chromosome 4. The number of Subfamily 

members is denoted within each plot. 
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Figure 2.4. Phylogenetic relationship and physical location of putative NB-ARC domains in 

the Rz region of Chromosome 3 from B. vulgaris. A) Phylogeny of the 26 domains between 0 

MB and 25 MB on Chromosome 3. Colored boxes represent four different Subfamily 

assignments based on the whole genome phylogeny (purple = Sf. 26, green = Sf. 11, blue = Sf. 

25, yellow = Sf. 21). B) Physical locations of domains and their orientation. Colored boxes 

correspond to the Subfamily identity of the domains from panel A. Domains without boxes do 

not have a Subfamily member in the region and/or were not part of any Subfamily. The location 

of the Rz2 gene is shown overlapping Bv.nbarc.0121. 
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Figure 2.5. Initial tree of 210 B. vulgaris NB-ARC domains with initial lengths greater than 

400 bp and e-values less than 1e-10. 
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Figure 2.6. SwissProt homolog NB-ARC domains placed onto the B. vulgaris NB-ARC 

phylogeny. Clades without SwissProt domains are highlighted in magenta. Line thickness is 

proportional to the bootstrap support value of that branch. 
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APPENDIX B 

 

Supplementary Tables, Figures, and Data 
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All supplementary tables and files available at 

https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.13977 

Table S2.1. Putative NB-ARC domains and predicted transcripts in the EL10 genome. 

Phylogenetic Subfamily assignment was based on minimum 60% pairwise identity with other 

sequences in the clade.  

Table S2.2. Domains concatenated into longer NB-ARC predictions.  

Table S2.3. RefBeet proteins homologous to EL10 partial NB-ARC domains. 

Table S2.4. Predicted NB-ARC domains with orthologous protein relationships. 

File S2.1. Annotation file for EL10 predicted proteins overlapping HMM-derived genomic NB-

ARC, from InterProScan 

 

 

 

 

  

https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.13977
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CHAPTER THREE 

DETECTING SIGNATURES OF DISEASE RESISTANCE GENES IN WHOLE-

POPULATION DE NOVO GENOME ASSEMBLIES 

INTRODUCTION 

Improved disease resistance is a perennial target for plant breeders. Tremendous effort is 

put into screening germplasm and wild accessions in the hope of identifying novel genetic 

variation to counteract pressure from pathogens (Capistrano-Gossmann et al. 2017; Young 1996; 

Poland & Rutkoski 2016). New sources of resistance are incorporated into elite germplasm and 

deployed in the field, which benefits growers by increasing yield and/or reducing the need for 

costly inputs (Boyd et al. 2013). Unfortunately, successful disease resistance often acts as a 

source of selection pressure, leading to the proliferation of pathogens able to defeat plant genetic 

defenses (reviewed in Brown 2015). For example, the spread of resistance-breaking pathogens 

has been observed in sugar beet, as strains of Beet necrotic yellow vein virus (BNYVV) begin to 

overcome genetic resistance conferred by Rz resistance loci (Liu & Lewellen 2007; Bornemann 

et al. 2015; Broccanello et al. 2018). Dynamic pathogen adaptation and spread will only increase 

in the future, as global connectivity and climate change further disrupt agriculture world-wide 

(Cilas et al. 2016). 

Existing breeding populations balance genetic diversity for environmental adaptation and 

disease resistance against a core set of agronomic traits necessary for crop production (Tester & 

Langridge 2010). This allows breeders to target ongoing challenges while maintaining a baseline 

set of crop characteristics. One concern when breeding for disease resistance is whether 

resistance found in separate populations has the same genetic basis, or whether combining the 

two resistances could provide synergistic protection from pathogens (J. D. G. Jones et al. 2014). 
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These questions can be addressed with classic breeding techniques, but each new generation of 

plants requires expenditure of time and resources. Furthermore, genetic mapping strategies could 

struggle to differentiate one locus with multiple alleles versus two or more closely linked genes 

(Lipka et al. 2015). Defining members of common resistance gene families could provide 

information to help design crosses and breeding experiments, subsequently speeding the rate of 

crop improvement. 

The two most prevalent disease resistance proteins are nucleotide-binding leucine-rich-

repeat (NLR) and receptor-like kinase (RLK) (Kourelis & Van Der Hoorn 2018). Numerous 

reports have detailed the organization of NLR families in reference genome assemblies such as 

Arabidopsis, Brassica rapa, tomato, potato, pepper, lettuce, papaya, poplar, and peach (Jupe et 

al. 2012; Seo et al. 2016; Christopoulou et al. 2015; Andolfo et al. 2014; Van Ghelder & 

Esmenjaud 2016; Porter et al. 2009; Mun et al. 2009; Kohler et al. 2008; Meyers et al. 2003). In 

contrast, the receptor-like kinase superfamily encompasses diverse structures and functions 

compared to NLRs, precluding straightforward genome-wide characterization (Shiu & Bleecker 

2003). The serine/threonine (Ser/Thr) subfamily of kinases is known to be involved in defense 

responses, providing guidance for parsing the diverse kinase superfamily of genes (Zhou et al. 

1995; Gómez-Gómez & Boller 2000; Song et al. 1995). 

NLRs and RLKs both contain domains critical for their function: the NB-ARC domain 

for NLRs and the kinase domain for RLKs (van der Biezen & Jones 1998; Shiu & Bleecker 

2001). NLRs have been identified by parsing predicted proteins for R gene domains (Steuernagel 

et al. 2015), exome capture in the form of resistance gene enrichment (Jupe et al. 2013), and NB-

ARC modeling from genomic sequences (Funk et al. 2018). RLK detection has been based 

primarily on protein prediction from reference genomes (Vij et al. 2008; Shiu et al. 2004). 
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Current knowledge of NLRs and RLKs has provided insights regarding evolution of these gene 

families, but expanding current approaches for R gene detection could aid understanding and 

deployment of disease resistance in plants. 

In this report, I sought to apply model-based protein domain detection to two new areas. 

First, I tested the viability of using hidden Markov models (HMMs) to identify Ser/Thr kinase 

domains in a reference-quality sequence of sugar beet. Second, I asked whether de novo 

assembly of whole-population pooled sequences of B. vulgaris could differentiate paralogous 

NB-ARC domains such that they could be parsed using the HMM-based modeling scheme of 

Funk et al. (2018). Despite challenges with intron/exon structure, I identified 598 Ser/Thr kinase 

domains in the EL10 genome, with 146 (23%) existing in physical clusters on chromosomes. I 

constructed de novo assemblies of 23 populations using pooled reads to capture population-wide 

diversity in a single sequencing library. I assessed the completeness of the assemblies by 

quantifying single-copy conserved orthologs, finding 78-94% (median 90%) of query genes in 

each population despite 8-30% (median 17%) fragmented genes. Assembled contigs were 

mapped to the EL10 reference, with average 1-to-1 mapping identity covering 351-425 MB of 

the 540 MB genome with >97% average identity. Searching assembled contigs with an NB-

ARC-derived HMM identified between 114 and 142 full-length domains per population, in line 

with the numbers found in the EL10 reference genome. I constructed phylogenetic trees for two 

different NB-ARC loci and observed distinct subclades suggesting allelic or copy-number 

variation. These results indicate HMM-based strategies can be used to define kinase diversity in 

genomic samples, and de novo assembly of pooled population sequences is a viable strategy for 

detecting kinase and NB-ARC diversity in whole populations. Subsequent analysis should add to 

improved understanding of R gene diversity and function. 
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RESULTS 

Kinase detection in the EL10 reference genome 

My first goal was to use HMM modeling to identify kinase domains in the EL10 genome 

assembly. This was accomplished with a similar strategy used to identify NB-ARC domains 

previously (Chapter 2, Funk et al. 2018). The predicted InterPro domains for kinase superfamily 

(IPR011009) and Ser/Thr kinase (IPR000719) were aligned separately and used to generate 

distinct HMMs of 577 and 576 bp, respectively (Philip Jones et al. 2014). The EL10 genome was 

scanned using each model, resulting in 1477 superfamily matches and 1590 Ser/Thr matches 

with maximum domain e-values of 1 (Figure 3.1). The median lengths of HMM matches were 

less than 60% of the full model length (309 and 349 bp for the Ser/Thr and superfamily domains, 

respectively) indicating that many of the matches are incomplete kinase domains. A 400 bp 

threshold was implemented to avoid double-counting domains split by introns or indels, resulting 

in 884 kinase domains total (Table 3.1). This included 598 Ser/Thr kinase domains and an 

additional 286 superfamily domains without an overlapping Ser/Thr kinase. Domains were 

unevenly distributed among chromosomes, with an average of 64.7 and standard deviation of 

12.5 (Table 3.1).  

I next asked if the putative Ser/Thr kinase domains were physically clustered in the 

genome in a similar manner as NB-ARC domains. I defined a cluster as two domains separated 

by 200 kb or fewer (following Christopoulou et al. (2015)), which resulted in 15 clusters 

encompassing 24% (146/598) of predicted Ser/Thr kinase domains (Table 3.2). There were 

clusters on all nine chromosomes. Chromosomes 1 and 5 had the fewest clustered Ser/Thr kinase 

domains, in line with those chromosomes also having the fewest total domains. Conversely, 
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Chromosome 7 was above average for domain count but had the fewest domains in clusters. The 

largest number of total domains and the largest cluster was found on Chromosome 4. 

De novo assembly of pooled whole-population sequences 

Mapping short sequencing reads to a reference genome could miss novel variation 

present in the sample but absent in the reference. To address this concern, I examined de novo 

whole-genome assemblies of the pooled populations. Total assembly lengths for the 23 

populations ranged from 398 to 573 Mb, with contig N50 between 3.7 and 12.9 kb (Table 3.3). 

The single plant sample C869_US and the inbred population W357B generated the largest N50s 

of 11.9 and 12.9 kb, respectively, suggesting that decreased heterozygosity improved de novo 

assembly. The length of the C869_US assembly was 436 MB compared to the EL10 reference 

length of 540 MB. Given that these two assemblies were derived from DNA isolated from the 

same plant, the reduced length of the C869_US assembly suggests ~20% of the reference 

genome is unable to be assembled from short reads. 

If the de novo assemblies are coherent representations of genomes, the assembled contigs 

should map with some specificity to the EL10 reference genome. I aligned the de novo 

assembled contigs with lengths greater than 200 bp to the reference genome to determine exact 

1-to-1 alignments and length of total coverage (Table 3.4). The average identity of mapped 

contigs ranged from 96.8 to 99.56%. The total length of reference bases covered by each 

assembly was between 351 and 420 MB. The C869_US sample represented the highest reference 

base coverage as well as highest percent identity. The percent identity of mapped contigs was 

partitioned by crop type: the C869 reference population and other sugar beet samples had the 

highest percent identity scores, while table beet, fodder beet, and chard (leaf beet) samples were 
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lower (Table 3.4). Length of reference coverage did not follow the same crop-type trend, with 

two chards and one fodder sample exceeding the average coverage length of sugar samples. 

To ascertain how well the gene space of each population was assembled, the de novo 

assemblies were searched for the presence of conserved orthologous genes identified using 

Benchmarking Universal Single-copy Conserved Orthologs (BUSCO) (Simão et al. 2015). My 

first query used a set of 303 genes thought to be conserved in all eukaryotes (Waterhouse et al. 

2018). My samples contained 55-83% of complete conserved orthologs, with an additional 5-

20% of orthologs identified as gene fragments (Table 3.5). In comparison, the EL10 reference 

genome contained complete copies of 87% of the queried genes, with an additional 1% as 

fragments. An increase in the portion of fragmented genes was seen between the genetically 

related samples of the EL10 reference genome, C869_US single plant, and C86925 pooled 

population. To test whether the table beet populations had more complete assemblies due to their 

presumed inbreeding (Paul Galewski, personal communication), I compared the means of the 

table beet and sugar beet pooled populations complete + fragmented gene sets, but there was no 

significant difference (t-test, p < 0.3). Parsing the table of 303 conserved genes revealed that 

some orthologs were missing from all B. vulgaris samples including the EL10 reference genome 

(Figure 3.2). It is possible that some genes considered universally conserved reside in intractable 

portions of the beet genome, which were unassembled even using long-read technology. 

Alternately, some genes tagged as “universally conserved” could be authentically absent from B. 

vulgaris. 

To further investigate gene representation in the de novo assemblies, I used a set of 1,375 

genes thought to be universal and single-copy across all embryophyta (Waterhouse et al. 2018). 

The EL10 reference genome contained 96% (1318/1375) of the queried genes. The most 
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complete de novo assemblies were C869_US (single plant) and W357B at 84% and 83%, 

respectively (Table 3.6). This is in line with the results from the eukaryote gene set, reinforcing 

the observation that these samples had the most complete gene space assembly. The remaining 

de novo assemblies contained 45% to 76% of the embryophyta query as complete gene models. 

While the complete gene model count was relatively low, there was a concurrent increase in 

fragmented gene models. These fragmented genes could be due to poor assembly of introns 

leading to splitting of exons between multiple contigs. Adding fragmented genes to complete 

genes increased the range of detection to 77-94% of the 1,375 embryophyta genes, with an 

average of 89% and standard deviation of 3.8% (Table 3.6). I compared mean numbers of 

complete + fragmented BUSCO genes between table and sugar beet due to possible differences 

in crop type heterozygosity. I found that table beets had a slight but significant increase in total 

BUSCO genes detected, 91.1% vs 88.4%, respectively (t-test, p<0.015). These results suggest 

the assemblies captured the majority of the gene space, sufficient to detect individual protein 

domains such as NB-ARCs. 

NB-ARC detection in de novo assemblies 

My next goal was to assess NB-ARC variation in each population. I used the nucleotide-

based NB-ARC strategy described previously to scan the de novo assemblies (Chapter 2, Funk et 

al. 2018), finding from 333 to 1278 domains per population (Figure 3.3). Many of these domains 

were only a fraction of the full 850 bp domain model, so I applied a series of size and statistical 

filters (based on e-value) to create higher-confidence sets, which led to convergence of domain 

numbers across samples (Figure 3.3).  

The EL10 reference genome, C869_US reference single plant, and C869_25 pooled 

population samples were all acquired from the same inbred population, providing a comparison 
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of how the assembly method and presumed heterozygosity influenced NB-ARC detection. 

Before filtering, the EL10 reference genome contained 250 domains, the fewest of the three 

genetically related samples. This is in comparison to the C869_US single plant assembly (343 

domains) and the C96825 pooled population sample (559 domains). Filtering out short domains 

with statistical scores less than 1e-10 reduced the number of predicted domains, affecting the 

pooled samples disproportionately to the EL10 reference genome (Figure 3.3). The three related 

samples converged at the 650 bp filter, with 168 domains in each de novo assembly and 169 

domains in the reference genome. This indicates that the NB-ARC domains over 650 bp in the 

reference genome were recovered in the pooled de novo assemblies. Similar convergence was 

seen across all samples, resulting in the 650 bp threshold being chosen to provide a conservative 

set of NB-ARC domains for further analysis.  

Comparison of de novo and reference NB-ARC domains 

I next wanted to classify the de novo domains and group them into homologous 

sequences. To accomplish this, I aligned predicted domains from the de novo assemblies to the 

reference genome. I counted the number of domains that mapped to each of the 231 reference 

loci and compared this number to the total domains found in each assembly (Figure 3.4). Non-

sugar genotypes had the fewest matches to EL10 reference domains. The C869_US sugar beet, 

which is genetically related to the reference genome plant, had the most matches at 142. There 

was no correlation between overall number of domains and number of reference domains 

matched (Figure 3.4). This could be indicative of allelic variation within samples, locus-specific 

duplication, or novel NB-ARC domains present in some lineages. 

I counted the number of homologous sequences mapping to each of the 231 reference 

NB-ARC domains to test if specific reference domains were over- or under-represented. I found 
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that thirty-seven reference domains below 650 bp in length had no representatives in the 23 de 

novo assemblies, owing largely to the fact that short reference domains would have their matches 

filtered by the quality control steps in the de novo analysis. Eighty-eight reference loci had 

multiple matches per assembled sample (Table 3.7). All of the reference NB-ARC domains 

greater than 650 bp had at least one homologous domain detected in the de novo assemblies, with 

the exception of 13 reference domains that were assembled from multiple concatenated 

fragments each fewer than 650 bp (Funk et al. 2018). Individual populations contained on 

average 139.5 of the 165 reference domains over 650 bp, with each reference domain found in 

78% of populations (median 18, stdev 7.15). Only 23% of domains (43/165) had representatives 

in every population, confirming that different accessions and crop types harbor subsets of pan-

genomic diversity. 

Thirty-seven reference loci shorter than 650 bp had no assembled domains map to their 

position. This suggests that these domains were also below 650 bp in the assemblies and 

therefore removed by the 650 bp filter. In contrast, twenty-two reference domains had more than 

23 mapped domains, indicating multiple alleles or duplicated domains in some populations. The 

reference locus with the most assembled domains was Bv.nbarc.0077, which had 65 separate 

sequences across all 23 assemblies. The NB-ARC domain associated with the Rz2 resistance 

gene, Bv.nbarc.0121, was overlapped by 21 domains from 20 assemblies (Table 3.7) (Chapter 2, 

Funk et al. 2018).  

Phylogenetic analysis of the most abundant NB-ARC domain Bv.nbarc.0077 

If the assembled NB-ARC domains are genuine representations of sequences present in 

the populations, there should be phylogenetic relationships apparent between domains. To test 

this hypothesis, I constructed phylogenetic trees of domains mapping to the most-represented 
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domain Bv.nbarc.0077 as well as the Bv.nbarc.0121 domain associated with the Rz2 resistance 

locus.  

There were 65 predicted domains that mapped to Bv.nbarc.0077, which resolved into five 

well-supported clades (Figure 3.5). The two basal clades contained single domains from 17 

different assemblies, with representatives of each crop type present in both clades. The two large 

terminal clades contained representatives from all 23 assemblies. The C869_25 assembly had a 

domain in one basal clade as well as both terminal clades. In contrast, the C869_US single plant 

assembly was only in one terminal clade, which could indicate successful assembly of the 

reference domain in both C869 samples as well as assembly of alleles or close paralogs in the 

more heterozygous C869_25 pooled sample.  

Other assemblies also generated domains in a basal clade and both terminal clades, such 

as the four chard populations LUC, Vulcan, RHU, and FGSC, as well as sugar beets SP7322, 

GP9, GP10, SR98, and L19 (Figure 3.5). Some assemblies were only present in terminal clades, 

such as W357B (table), SR102 (sugar), EL50 (sugar), and EL51 (sugar). The strong bootstrap 

support for each clade, combined with patterns of presence/absence between clades, suggests that 

domain assembly was consistent between samples and that the phylogenetic relationships 

between domains are likely based on underlying genetic differences between populations rather 

than random artifacts. The Bv.nbarc.0077 domain could represent a highly polymorphic locus 

that cannot not be represented in a traditional haploid reference sequence. 

Phylogenetic analysis of the Rz2 CNL-associated NB-ARC domain Bv.nbarc.0121 

My next goal was to investigate genetic diversity of the known resistance locus Rz2. I 

constructed another phylogenetic tree from the 21 domains that mapped to the Rz2-associated 

NB-ARC domain Bv.nbarc.0121 (Figure 3.6). This tree clearly linked the domain from the 



47 

C869_US single plant with the reference allele Bv.nbarc.0121, which remained separate from the 

largest two clades. Two chard varieties, Vulcan and RHU, formed outgroups to the tree, a third 

chard, TGSC, was grouped in the main clade, and the fourth chard, LUC, did not contain a 

domain mapping to this locus. Unlike the often-duplicated Bv.nbarc.0077 domains, only one 

assembly (table beet DDRT) had multiple Bv.nbarc.0121 domains. The two DDRT domains and 

another table beet, W357B, formed a well-supported clade clearly separated from the other 

assemblies, resulting in four total clades with bootstrap support of 96 or greater (Figure 3.6). The 

clade containing C86925 included chard, fodder, and table beet populations but no other sugar 

beet material from the East Lansing breeding program, which could coincide with segregation of 

an Rz2 allele in the C86925 population that differs from the allele in the EL10 reference genome. 

DISCUSSION 

The goal of this study was to characterize genetic diversity in B. vulgaris with a focus on 

NB-ARC and Ser/Thr kinase protein domains. I extended the use of nucleic-acid-based HMMs 

to detection of kinase domains, identifying 598 putative Ser/Thr kinase domains and an 

additional 289 non-Ser/Thr kinase domains in the EL10 reference genome. To begin to 

characterize genetic diversity of disease resistance-related genes across B. vulgaris, I analyzed de 

novo assemblies of pooled sequences from 23 diverse populations. I scanned the assemblies for 

NB-ARC domains, finding on average 167 putative full-length domains per population. This 

allowed preliminary assessment of diversity at the most abundant locus, CNL Bv.nbarc.0077, as 

well as the Rz2 resistance locus. 

The nucleotide-based HMM is a powerful tool that can detect complete, fragmented, and 

diverged sequences that may or may not be part of coding sequences (Funk et al. 2018). This 

sensitivity is a benefit when attempting to identify novel genetic features and infer evolutionary 
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processes, but sensitivity creates challenges due to the gradient between functional sequences, 

non-functional duplications, pseudogenes, and spurious genomic noise (Krattinger & Keller 

2016). It is possible that the presence of introns in the genome results in multiple model matches 

for what should be a single domain. This is less of a concern for NB-ARC domains, which are 

only rarely interrupted by introns (Funk et al. 2018). However, kinase domains are frequently 

split across multiple exons, as noted by previous literature (Shiu & Bleecker 2001) and their 

smaller domain fragments in EL10 (Figure 3.1). Despite these challenges, counting kinase 

domains that were clearly more than 50% of the HMM length led to 598 RLK domains in beet 

(Table 3.1). This is in agreement with numbers of RLKs in rice (646) and Arabidopsis (615) 

(Shiu et al. 2004; Shiu & Bleecker 2003), which supports the notion that the kinase HMM search 

was specific and complete. For NB-ARCs in the de novo populations, using a filter of 650 bp 

(~75%) recovered every reference allele in at least one assembly. This finding confirms that 

every reference NB-ARC locus was able to be assembled in the pooled population sequences. 

These two results taken together imply that conservative filtering of nucleotide HMM searches 

can be used to define a core set of non-redundant loci.  

Identification of R gene loci across populations is not the same as defining R gene 

diversity. The methods employed here build upon the foundation that nucleotide HMMs have the 

sensitivity and specificity to capture target sequences in a high-quality reference genome (Funk 

et al. 2018). The extension of those methods to de novo assemblies from short reads, combined 

with the heterogeneity of pooled population sequencing, adds significant uncertainty. Evidence 

that the pooled short-read assemblies are reliable is crucial before making inferences about the R 

gene sequences found within. The evidence I used to ascertain assembly validity was based on 

two analyses: 1) the proportion of recovered genes in the eukaryote and embryophyta 
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orthologous gene sets, and 2) what proportion of the reference genome was covered by 1-to-1 

unique mapping contigs. 

Benchmarking Universal Single-copy Conserved Orthologs (BUSCO) is predicated on 

the notion that some core genes are preserved as single copies across the genomes of many 

species (Waterhouse et al. 2018). I assayed two sets of genes: a group of 303 genes for all 

eukaryotes, and a group of 1,375 plant-focused genes targeted at embryophyta (Tables 3.6 and 

3.7, respectively). The number of fragmented eukaryotic BUSCOs was noticeably higher in the 

assemblies versus the reference, yet the total number of missing genes was comparable between 

all samples. This is remarkable considering the different methodology used to generate the 

genomes. Examining putative orthologous genes revealed that 24 of the “missing” genes were in 

fact missing from all Beta samples, including the reference (red lines, Figure 3.2). These missing 

genes could be in areas of the genome resistant to assembly, even with long-read sequencing 

technologies. Alternately, the missing orthologs could have diverged sufficiently to be outside 

the range of detection using universal gene models. Additional analysis might be able to identify 

these genes in the EL10 genome based on relaxed thresholds of homology. Finally, it’s possible 

that what constitutes a “universal” gene is poorly understood, and different organisms could have 

satisfied core requirements for life using independent mechanisms. The embryophyta set more 

clearly differentiated the assembly methods, with more fragmented and missing genes in the 

pooled de novo assemblies vs the reference (Table 3.6). The fact that table beet populations had a 

small but significant increase in total complete + fragmented genes (91.1% vs 88.4%) could 

reflect differences in assembly quality based on the lower heterozygosity in table beet 

populations (Paul Galewski, in press). Overall the BUSCO analysis provides confidence that the 

assemblies capture true genetic features of the populations. 
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The other level of validation for each assembly was assessing the length of sequence that 

had unique mapping locations in the reference. The MUMmer analysis asked what portion of 

contigs had a single unique mapping location in the reference genome. The assemblies were 

between 65% and 80% of the 540 MB reference (median 73%). These are reasonable scores 

considering that repetitive sequences are not likely to be assembled into contigs over 200 bp 

using only short reads, and whatever did assemble is unlikely to be mapped uniquely. These 

lengths should cover the majority of gene space in the genome, providing access to unique 

population sequences.  

Once I generated a baseline level of plausibility of the assemblies, I wanted to look at 

genetic diversity of individual loci. I began with phylogenetic analysis of the most abundant 

locus Bv.nbarc.0077 (Figure 3.5). Three clades comprising 74% (48/65) of the domains were 

characterized by extremely short branch lengths and high bootstrap support, which is what I 

would expect from sequences coming from recent shared ancestors. The fact that these three 

clades and the two basal outgroups were so clearly resolved lends additional weight to the idea 

that whatever is happening during pooled population sequencing is highly reproducible. The de 

novo domains shared enough identity to Bv.nbarc.0077 that they didn’t inadvertently map to 

other NB-ARC loci in the reference genome, and yet three clades and two outgroups were 

consistently assembled into separate sequences and not chimeras. The precise topology of the 

phylogenetic tree could be characteristic of copy-number variation or multiple alleles. 

Distinguishing these two possibilities could be resolved by targeted cloning or sequencing and 

then extrapolated to other candidate loci in the future. The same molecular characterization, in 

combination with additional phenotyping, could also clarify whether genetic variation at a given 

locus correlates with phenotypic differences. 
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One of the most-studied genes in beets is Rz2, which confers partial resistance to the 

rhizomania disease caused by Beet Nectotic Yellow Vein Virus (Lewellen 1991). I applied the 

same phylogenetic analysis used for Bv.nbarc.0077 to the predicted domains that mapped to the 

Rz2 locus Bv.nbarc.0121 (Figure 3.6). The resulting tree revealed two clades with extremely 

short branch lengths similar to the tree for Bv.nbarc.0077. The other central clade subdivision 

was exclusively sugar beet, although the intra-clade branch lengths were relatively long, 

indicating more variation within this group. The EL10 domain Bv.nbarc.0121 (Chapter 2, Funk 

et al. 2018) was added to the analysis and formed a distinct clade with the domain from the 

C869_US single plant. However, it is somewhat surprising that only one domain was identified 

from the related pooled population C86925. This could indicate that the EL10 reference allele for 

Bv.nbarc.0121 is at low frequency in the C86925 population, but the exact frequency is 

unknown. The germplasm release of C869 reported segregation for Rz1 rhizomania resistance 

but did not mention Rz2 (Lewellen 2004). If there was a minor allele of Rz2 assembled from the 

C86925 pooled sequences, the associated domain was below the 650 bp threshold, the 1e-10 

statistical threshold, or both. The large central clade had one subdivision with domains of high 

sequence similarity comprised of table beets, one chard, and, strangely, also the C86925 pooled 

sugar beet population (Figure 3.6). To my knowledge, the East Lansing sugar beet breeding 

program does not contain functional Rz2 alleles, although they have not been targeted for 

detection in the system (J.M. McGrath, personal communication). The existing Rz2 alleles could 

be subject to genetic drift heading toward pseudogenization. If this is the case, the alleles would 

have loosened selection pressure and begin to accumulate random lineage-specific mutations. 

This could be one explanation for the looser shape of the sugar beet clade. If that is true, then the 

SR102 domain forming an outgroup to the other sugar beets could be indicative of a unique 
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functional domain or simply a different history of drift. The other major feature of the tree is the 

extreme outlier formed by the domain from BBTB. The low bootstrap score means placement on 

the tree was nearly random, which is a feature shared with the other outliers Vulcan, RHU, and 

WT. It could be worth pursuing why two chard domains and two table beet domains are so 

different from everything else observed, and also from each other. 

In summary, de novo assembly of pooled sequencing data is a promising strategy to 

efficiently characterize genetic diversity in existing populations. Both NB-ARC and kinase 

domains appear to be tractable targets of HMM scans, which together represent over 80% of 

known disease resistance genes in plants (Kourelis & Van Der Hoorn 2018). Further work is 

needed to fine-tune assembly parameters and validate the domains derived from de novo 

assemblies, but the preliminary results presented here provide a basis for further exploration of 

pan-genomic disease resistance diversity. Knowledge of relationships between disease resistance 

sequences could inform crossing decisions, candidate gene analysis, and help stack durable 

disease resistance for improved crop varieties. 

METHODS 

Domain HMM generation and scanning 

Kinase superfamily domain IPR011009 and Ser/Thr kinase domain IPR000719 were 

identified in the InterProScan results of the preliminary protein prediction for the EL10 genome. 

The nucleotide coding sequences of domains with e-values below 1e-20 were extracted from the 

associated transcripts and aligned with MAFFT v. 6.716 with parameters --linsi --

leavegappyregion. An HMM was generated from the alignment using the hmmbuild function of 

HMMER v 3.1 (Wheeler & Eddy 2013) with default parameters. The NB-ARC HMM was from 
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Funk et al. (2018). The nucleic acid HMM was used to query the EL10 v1.2 reference genome 

and de novo assemblies using the nhmmer function of HMMER with default parameters.  

Population sampling, Illumina sequencing, and assembly 

Seeds from twenty-three populations of B. vulgaris were soaked in 0.3% hydrogen 

peroxide for 24 hours to facilitate germination. These seeds were germinated in potting mix in 

plastic containers (24” W x 16 “ D x 12” H) in the greenhouse under 16h day/8h night light cycle 

and temperatures between 65 and 80 degrees. Tissue was harvested at the two-leaf seedling 

stage, approximately two weeks after germination. For each population, leaf tissue was collected 

from twenty-five individuals and placed into a 50 mL conical polypropylene centrifuge tube 

(VWR, Radnor, PA) to create population-specific pools of tissue. These tissues were lyophilized 

and ground to a powder using a bead beater. For each population, DNA was isolated from 20 mg 

of lyophilized tissue using NucleoSpin Plant II kit (Macherey-Nagel, Duren, Germany). Libraries 

were prepared by the Michigan State Research Technology Support Facility (East Lansing, MI, 

USA) using Illumina TruSeq kits (Illumina, San Diegoi, CA, USA). Libraries were sequenced to 

80x depth using HiSeq 2500 2 x 125bp paired-end chemistry. Illumina adapters were trimmed 

from the raw reads using Trimmomatic v.0.36 (Bolger et al. 2014) with parameters 

ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36. The raw reads were assembled by Paul Galewski using 

ABySS 2.0 with default parameters (Jackman et al. 2017).  

Assessment of conserved orthologous gene assembly 

Conserved orthologous genes were assessed with BUSCO v. 2.0.1 using default 

parameters (Simão et al. 2015). The two query gene sets were “eukaryota odb9” and 

“embryophyta odb10” available at https://busco.ezlab.org/. 

https://busco.ezlab.org/
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Mapping NB-ARC domains to the reference genome 

Predicted domains were mapped to the EL10 reference genome v. 1.2 (McGrath et al., in 

prep) using GMAP v. 2019-2-26 and default parameters (Wu & Nacu 2010). The single best 

mapping site was retained. 

Phylogenetic analysis 

Predicted NB-ARC domains were extracted from the genome assemblies and aligned 

with MAFFT v 7.215 with the –leavegappyregion option (Katoh & Standley 2013). The 

phylogenetic trees were constructed using RAxML v. 8.0.6 (Stamatakis 2014). The ‘-f a’ 

function was used to conduct a rapid bootstrap analysis and search for the best-scoring maximum 

likelihood tree, in a single run using 1000 bootstrap replicates. The model of substitution was 

GTRGAMMA (Shapiro et al. 2006). 

Whole genome alignment  

Assembled genomes were aligned to the EL10 reference genome v. 1.2 using the nucmer 

module of  MUMmer v. 4.0.0 (Marçais et al. 2018). Alignments were filtered using the delta-

filter function with parameters ‘-i 80 -l 200’ specifying minimum 80% identity and 200 bp query 

length, respectively.  
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Table 3.1. Kinase domains at least 400 bp long in the EL10 sugar beet reference genome.  

Chromosome non-Ser/Thr Ser/Thr Total

Chr1 25 44 69

Chr2 25 64 89

Chr3 37 74 111

Chr4 32 81 113

Chr5 26 46 72

Chr6 31 71 102

Chr7 35 68 103

Chr8 38 72 110

Chr9 28 62 90

Scaffold_0001 0 1 1

Scaffold_0002 2 2 4

Scaffold_0003 1 1 2

Scaffold_0004 0 1 1

Scaffold_0005 2 3 5

Scaffold_0006 4 5 9

Scaffold_0007 0 2 2

Scaffold_0009 0 1 1

Sum 286 598 884
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Table 3.2. Clusters of Ser/Thr kinase domains in the B. vulgaris EL10 reference genome. 

Shading was applied to differentiate chromosomes.  

Chr Start End # Domains

Chr1 4,673,171 4,931,655 6

Chr2 676,787 717,896 10

Chr2 42,446,420 42,783,557 6

Chr2 49,593,854 49,724,247 5

Chr3 15,179,793 15,948,666 18

Chr4 56,105,830 56,849,766 25

Chr5 3,827,192 3,879,711 5

Chr6 6,921,781 7,994,442 11

Chr6 51,773,326 51,818,532 5

Chr6 60,070,057 60,411,923 5

Chr7 3,434,216 3,463,633 6

Chr8 43,625,244 43,932,126 8

Chr8 44,680,944 45,218,207 11

Chr8 49,914,043 50,133,051 9

Chr9 27,272,234 27,830,146 11



58 

Table 3.3. Metrics for de novo assembly of pooled populations of B. vulgaris. The three 

genetically-related samples are the reference genome EL10, the C869_US sequenced from the 

same DNA as EL10, and the pooled C86925 population from which the EL10 plant was 

obtained. 

 

  

Sample Type

Number 

of contigs

Contigs

> 500 bp L50 N75 N50

Max contig

(bp)

Total length

(bp)

FGSC chard 2,298,060 124,314 18,984 2,164 5,676 67,200 403,600,000    

LUC chard 6,836,362 225,936 41,148 1,628 3,720 63,564 567,800,000    

RHU chard 4,750,885 179,962 30,258 2,088 4,926 122,425 563,800,000    

Vulcan chard 2,427,916 126,944 19,070 2,551 6,586 85,653 477,700,000    

MAM fodder 4,228,318 155,723 24,956 2,130 5,252 85,199 503,600,000    

WGF fodder 4,916,463 184,342 30,885 1,998 4,746 66,355 557,500,000    

C869_US sugar 1,935,503 76,330 10,333 4,434 11,913 145,217 436,400,000    

C86925 sugar 2,391,073 132,171 19,585 2,345 6,173 76,035 460,300,000    

EL50 sugar 2,245,505 126,530 18,536 2,460 6,544 78,725 459,200,000    

EL51 sugar 2,152,524 120,037 17,066 2,609 7,124 86,382 458,700,000    

GP10 sugar 2,292,629 126,058 18,426 2,393 6,426 81,576 447,000,000    

GP9 sugar 4,214,181 209,937 35,771 1,781 4,212 70,685 573,000,000    

L19 sugar 5,077,152 184,733 32,147 2,071 4,791 89,113 571,500,000    

SP7322 sugar 2,528,915 141,392 21,098 2,268 5,940 89,352 480,900,000    

SR102 sugar 2,265,602 121,068 17,657 2,468 6,632 76,705 437,200,000    

SR98 sugar 2,216,075 123,023 17,564 2,595 7,022 155,679 466,900,000    

BBTB table 1,914,427 105,592 15,214 3,125 8,311 81,701 470,200,000    

Crosby table 2,044,428 106,914 15,561 2,729 7,297 89,693 418,100,000    

DDRT table 2,017,523 104,925 15,012 2,847 7,666 86,975 425,800,000    

RQ table 2,237,760 112,369 16,175 2,759 7,456 85,116 451,000,000    

TGSC table 1,673,213 87,369 12,951 3,345 8,654 81,509 397,700,000    

W357B table 1,842,781 68,689 9,641 5,081 12,926 125,442 430,400,000    

WT table 2,048,310 106,104 15,353 2,914 7,785 86,534 442,000,000    
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Table 3.4. MUMmer alignment of de novo assembled contigs of 23 populations of B. 

vulgaris. Contigs were aligned to the sugar beet EL10 reference genome. 

 

 

  

Sample Type

Contigs mapping 

1-to-1

Total 

Length (bp)

Average 

Length

Average 

Identity (%)

FGSC chard 270,562 351,154,809    1297.87 96.80

LUC chard 399,032 401,205,993    1005.45 96.81

RHU chard 312,417 413,221,578    1322.66 97.29

Vulcan chard 245,835 389,675,512    1585.11 97.20

MAM fodder 308,195 397,319,242    1289.18 97.60

WGF fodder 313,406 413,347,133    1318.89 97.45

C869_US sugar 160,063 429,968,206    2686.24 99.56

C86925 sugar 227,457 396,959,171    1745.21 98.05

EL50 sugar 228,473 390,535,774    1709.33 97.59

EL51 sugar 225,898 391,786,636    1734.35 97.55

GP10 sugar 242,188 386,702,655    1596.7 97.69

GP9 sugar 291,881 425,770,026    1458.71 97.81

L19 sugar 325,107 421,951,081    1297.88 97.95

SP7322 sugar 246,520 398,507,205    1616.53 97.65

SR102 sugar 242,387 383,183,748    1580.88 97.63

SR98 sugar 229,338 395,140,302    1722.96 97.68

BBTB table 213,995 393,654,653    1839.55 97.21

Crosby table 236,422 367,810,632    1555.74 97.20

DDRT table 228,462 372,737,989    1631.51 97.20

RQ table 230,843 384,641,950    1666.25 97.29

TGSC table 216,869 361,589,180    1667.32 97.19

W357B table 190,163 384,835,309    2023.71 97.28

WT table 228,039 379,865,789    1665.79 97.26
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Table 3.5. Query of de novo assemblies using the eukaryota gene set of Benchmarking 

Universal Single-copy Conserved Orthologs (BUSCO) (Waterhouse et al. 2018). 

  

Sample Complete

Complete - 

single-copy 

Complete - 

duplicated Fragmented Missing 

Complete + 

Fragmented

FGSC 209 (69%) 191 18 39 55 82%

LUC 168 (55%) 131 37 62 73 76%

RHU 206 (68%) 165 41 48 49 84%

Vulcan 226 (74%) 194 32 30 47 84%

MAM 209 (69%) 174 35 45 49 84%

WGF 194 (64%) 150 44 55 54 82%

BBTB 234 (77%) 206 28 34 35 88%

Crosby 224 (73%) 200 24 38 41 86%

DDRT 228 (75%) 208 20 31 44 85%

RQ 219 (72%) 196 23 40 44 85%

TGSC 224 (73%) 202 22 31 48 84%

W357B 245 (80%) 217 28 22 36 88%

WT 232 (76%) 203 29 31 40 87%

C86925 213 (70%) 184 29 42 48 84%

C869_US 253 (83%) 227 26 15 35 88%

EL50 232 (76%) 204 28 27 44 85%

EL51 229 (75%) 199 30 32 42 86%

GP10 226 (74%) 200 26 37 40 87%

GP9 194 (64%) 163 31 48 61 80%

L19 197 (65%) 152 45 46 60 80%

SP7322 226 (74%) 193 33 32 45 85%

SR102 223 (73%) 192 31 39 41 86%

SR98 235 (77%) 205 30 30 38 87%

EL10 264 (87%) 240 24 4 35 88%

Total BUSCO groups searched: 303

Horizontal lines separate crop type groups top to bottom: chard, fodder, table, and sugar
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Table 3.6. Query of de novo assemblies using the embryophyta gene set of Benchmarking 

Universal Single-copy Conserved Orthologs (BUSCO) (Waterhouse et al. 2018).  

 

 

 

  

Sample Complete 

Complete - 

single-copy 

Complete - 

duplicated Fragmented Missing 

Complete + 

Fragmented

FGSC 904 (66%) 860 44 307 164 88%

LUC 622 (45%) 529 93 435 318 77%

RHU 879 (64%) 743 136 305 191 86%

Vulcan 994 (72%) 926 68 248 133 90%

MAM 910 (66%) 822 88 282 183 87%

WGF 818 (59%) 702 116 340 217 84%

BBTB 1049 (76%) 991 58 200 126 91%

Crosby 1015 (74%) 970 45 232 128 91%

DDRT 1019 (74%) 987 32 225 131 90%

RQ 1032 (75%) 993 39 222 121 91%

TGSC 1030 (75%) 1011 19 211 134 90%

W357B 1139 (83%) 1116 23 149 87 94%

WT 1051 (76%) 1008 43 192 132 90%

C86925 998 (73%) 950 48 237 140 90%

C869_US 1152 (84%) 1114 38 111 112 92%

EL50 954 (69%) 917 37 260 161 88%

EL51 1019 (74%) 967 52 221 135 90%

GP10 975 (71%) 937 38 268 132 90%

GP9 846 (62%) 732 114 333 196 86%

L19 823 (60%) 682 141 322 230 83%

SP7322 964 (70%) 900 64 269 142 90%

SR102 975 (71%) 934 41 249 151 89%

SR98 1010 (73%) 946 64 211 154 89%

EL10 1318 (96%) 1287 31 12 45 97%

Total BUSCO groups searched: 1375

Horizontal lines separate crop type groups: chard, fodder, table, and sugar
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Table 3.7. Predicted domains mapping to NB-ARC loci in the sugar beet EL10 reference 

genome. Phylogenetic group assignment derived from Chapter 2 and Funk et al. 2018. 

 

  

Domain chard sugar table fodder

Number of 

populations with 

domain

Number of 

predicted 

domains Chr Position

Length 

(bp)

Phylogenetic 

group

Bv.nbarc.0077 17 26 16 6 23 65 Chr3 2,526,326 882 8

Bv.nbarc.0196/

Bv.nbarc.0197 15 20 14 7 23 56 Chr7 44,685,699 861 25

Bv.nbarc.0063 11 23 11 5 23 50 Chr3 10,751,095 833 26

Bv.nbarc.0182 14 18 12 5 23 49 Chr6 42,007,184 834 19

Bv.nbarc.0012 12 19 11 6 23 48 Chr1 57,718,800 862 20

Bv.nbarc.0168 14 12 9 6 23 41 Chr5 44,161,416 854 22

Bv.nbarc.0129 9 16 6 5 23 36 Chr4 4,301,909 792 0

Bv.nbarc.0072 8 16 6 5 23 35 Chr3 15,832,082 782 0

Bv.nbarc.0068 9 15 6 3 23 33 Chr3 13,708,377 832 17

Bv.nbarc.0085 8 16 7 2 23 33 Chr3 3,793,573 849 21

Bv.nbarc.0236 8 11 9 2 23 30 Chr9 15,266,297 820 23

Bv.nbarc.0232 6 12 8 2 23 28 Chr8 46,866,939 786 0

Bv.nbarc.0191 5 13 6 4 23 28 Chr7 21,093,593 870 8

Bv.nbarc.0204 5 13 7 2 23 27 Chr7 56,275,021 657 1

Bv.nbarc.0202 6 12 6 2 23 26 Chr7 56,225,603 810 3

Bv.nbarc.0050 7 10 6 2 23 25 Chr2 48,382,459 859 0

Bv.nbarc.0231 6 10 6 2 23 24 Chr8 46,206,033 841 0

Bv.nbarc.0014 5 10 6 3 23 24 Chr1 7,707,563 898 18

Bv.nbarc.0158 5 10 6 3 23 24 Chr5 13,528,818 828 4

Bv.nbarc.0060 5 11 6 2 23 24 Chr2 6,210,542 851 14

Bv.nbarc.0089 5 11 6 2 23 24 Chr3 46,107,603 858 25

Bv.nbarc.0161 5 11 6 2 23 24 Chr5 3,284,084 836 27

Bv.nbarc.0015 5 10 6 2 23 23 Chr1 7,714,137 877 18

Bv.nbarc.0010 5 10 6 2 23 23 Chr1 42,983,211 783 9

Bv.nbarc.0016 5 10 6 2 23 23 Chr2 1,530,537 851 27

Bv.nbarc.0062 5 10 6 2 23 23 Chr2 7,037,682 845 14

Bv.nbarc.0119 5 10 6 2 23 23 Chr3 7,472,443 763 11

Bv.nbarc.0064 5 10 6 2 23 23 Chr3 11,368,213 863 25

Bv.nbarc.0070 5 10 6 2 23 23 Chr3 15,746,962 861 25

Bv.nbarc.0071 5 10 6 2 23 23 Chr3 15,792,701 796 0

Bv.nbarc.0097 5 10 6 2 23 23 Chr3 51,527,853 886 17

Bv.nbarc.0122 5 10 6 2 23 23 Chr4 16,926,661 823 8

Bv.nbarc.0171 5 10 6 2 23 23 Chr5 44,172,397 933 22

Bv.nbarc.0184 5 10 6 2 23 23 Chr6 9,791,224 716 0

Bv.nbarc.0198 5 10 6 2 23 23 Chr7 55,820,419 879 21

Bv.nbarc.0199 5 10 6 2 23 23 Chr7 56,133,936 648 1

Bv.nbarc.0200 5 10 6 2 23 23 Chr7 56,148,648 654 1

Bv.nbarc.0201 5 10 6 2 23 23 Chr7 56,167,061 827 3

Bv.nbarc.0213 5 10 6 2 23 23 Chr7 56,504,438 817 3

Bv.nbarc.0227 5 10 6 2 23 23 Chr8 14,165,838 808 0

Bv.nbarc.0229 5 10 6 2 23 23 Chr8 35,544,883 787 27

Bv.nbarc.0238 5 10 6 2 23 23 Chr9 24,745,296 817 23

Bv.nbarc.0250 5 10 6 2 23 23 Chr9 49,904,363 779 0

Count of predicted 

domains by crop type Location in EL10
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Table 3.7 (cont’d) 

Bv.nbarc.0034 14 13 15 3 22 45 Chr2 3,563,556 829 14

Bv.nbarc.0128 10 15 8 3 22 36 Chr4 4,254,666 789 6

Bv.nbarc.0130 6 11 8 3 22 28 Chr4 4,321,501 785 6

Bv.nbarc.0033 6 13 6 2 22 27 Chr2 3,552,119 836 14

Bv.nbarc.0074 7 10 6 3 22 26 Chr3 20,840,767 854 26

Bv.nbarc.0036 6 11 6 2 22 25 Chr2 40,643,651 794 10

Bv.nbarc.0210 5 12 6 1 22 24 Chr7 56,460,251 767 3

Bv.nbarc.0002 4 10 7 2 22 23 Chr1 12,964,204 784 12

Bv.nbarc.0239 4 10 6 3 22 23 Chr9 24,880,509 864 25

Bv.nbarc.0120 5 9 6 2 22 22 Chr3 7,617,311 739 11

Bv.nbarc.0088 5 9 6 2 22 22 Chr3 44,825,379 797 14

Bv.nbarc.0013 4 10 6 2 22 22 Chr1 6,746,597 807 26

Bv.nbarc.0018 4 10 6 2 22 22 Chr2 15,909,900 820 14

Bv.nbarc.0037 4 10 6 2 22 22 Chr2 40,679,823 778 10

Bv.nbarc.0049 4 10 6 2 22 22 Chr2 48,372,030 811 22

Bv.nbarc.0208 4 10 6 2 22 22 Chr7 56,426,426 783 3

Bv.nbarc.0209 4 10 6 2 22 22 Chr7 56,451,912 815 2

Bv.nbarc.0052 7 9 6 3 21 25 Chr2 48,680,966 799 14

Bv.nbarc.0194 7 10 5 2 21 24 Chr7 42,024,505 860 26

Bv.nbarc.0172 6 10 6 2 21 24 Chr5 5,665,746 782 13

Bv.nbarc.0147 5 10 6 2 21 23 Chr4 54,002,101 845 24

Bv.nbarc.0043 6 9 5 2 21 22 Chr2 44,826,286 857 20

Bv.nbarc.0093 6 9 5 2 21 22 Chr3 49,686,639 795 19

Bv.nbarc.0164 5 10 6 1 21 22 Chr5 43,595,309 803 0

Bv.nbarc.0051 5 10 5 2 21 22 Chr2 48,673,998 804 14

Bv.nbarc.0027 5 9 6 1 21 21 Chr2 1,825,884 843 27

Bv.nbarc.0100 5 9 6 1 21 21 Chr3 51,550,251 760 0

Bv.nbarc.0206 4 9 6 2 21 21 Chr7 56,347,144 695 1

Bv.nbarc.0203 5 10 4 2 21 21 Chr7 56,241,312 637 1

Bv.nbarc.0207 4 10 5 2 21 21 Chr7 56,372,326 852 2

Bv.nbarc.0185 3 10 6 2 21 21 Chr7 14,975,714 863 25

Bv.nbarc.0065 5 9 6 3 20 23 Chr3 11,375,854 868 25

Bv.nbarc.0076 3 11 6 2 20 22 Chr3 21,988,362 860 26

Bv.nbarc.0121 4 9 6 2 20 21 Chr3 9,281,663 856 26

Bv.nbarc.0225 4 8 6 2 20 20 Chr7 56,796,048 772 3

Bv.nbarc.0056/

Bv.nbarc.0057 4 9 5 2 20 20 Chr2 49,832,616 848 12

Bv.nbarc.0111 3 9 6 2 20 20 Chr3 51,721,900 804 17

Bv.nbarc.0173 4 10 5 1 20 20 Chr5 5,673,545 779 13

Bv.nbarc.0075 2 10 6 2 20 20 Chr3 21,956,199 848 26

Bv.nbarc.0084 6 9 14 3 19 32 Chr3 3,786,095 846 21

Bv.nbarc.0040 5 11 6 2 19 24 Chr2 44,794,361 860 20

Bv.nbarc.0078 5 12 4 1 19 22 Chr3 2,663,692 686 0

Bv.nbarc.0211 4 8 7 2 19 21 Chr7 56,476,724 635 1

Bv.nbarc.0092 4 8 6 1 19 19 Chr3 48,160,569 750 19

Bv.nbarc.0102 4 8 6 1 19 19 Chr3 51,568,329 797 16

Bv.nbarc.0150 2 9 6 2 19 19 Chr4 8,635,156 624 0

Bv.nbarc.0096 9 9 5 3 18 26 Chr3 51,504,455 835 15

Bv.nbarc.0114 6 10 6 3 18 25 Chr3 51,766,681 753 16

Bv.nbarc.0219 4 8 5 1 18 18 Chr7 56,640,134 648 1
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Table 3.7 (cont’d)  

Bv.nbarc.0094 5 10 1 2 18 18 Chr3 51,177,270 755 0

Bv.nbarc.0003 8 13 5 1 17 27 Chr1 13,221,944 774 12

Bv.nbarc.0035 5 15 7 0 17 27 Chr2 3,586,743 836 14

Bv.nbarc.0032 2 9 8 5 17 24 Chr2 3,532,153 834 14

Bv.nbarc.0044 3 8 7 3 17 21 Chr2 44,837,375 858 20

Bv.nbarc.0157 3 7 6 3 17 19 Chr5 10,691,853 767 13

Bv.nbarc.0103 4 7 6 1 17 18 Chr3 51,637,898 718 15

Bv.nbarc.0234 2 11 3 2 17 18 Chr8 55,840,666 840 24

Bv.nbarc.0212 4 6 6 1 17 17 Chr7 56,484,802 658 1

Bv.nbarc.0061 4 10 1 2 17 17 Chr2 6,916,353 826 14

Bv.nbarc.0030 9 8 13 0 16 30 Chr2 2,756,956 832 14

Bv.nbarc.0156 4 16 2 2 16 24 Chr5 10,616,231 768 13

Bv.nbarc.0233 6 13 3 0 16 22 Chr8 55,834,354 837 24

Bv.nbarc.0087 6 11 2 1 16 20 Chr3 3,812,887 864 21

Bv.nbarc.0154 4 7 5 1 16 17 Chr4 9,339,104 825 4

Bv.nbarc.0110 1 8 5 2 16 16 Chr3 51,718,521 884 17

Bv.nbarc.0187 1 9 10 2 15 22 Chr7 16,860,855 857 20

Bv.nbarc.0086 1 9 5 3 15 18 Chr3 3,801,295 865 21

Bv.nbarc.0153 4 8 1 2 15 15 Chr4 9,329,735 830 4

Bv.nbarc.0073 2 10 1 2 15 15 Chr3 20,833,240 859 26

Bv.nbarc.0042 1 10 2 2 15 15 Chr2 44,814,665 857 20

Bv.nbarc.0082 1 12 5 1 14 19 Chr3 3,773,883 848 21

Bv.nbarc.0240 3 6 6 3 14 18 Chr9 28,727,870 832 24

Bv.nbarc.0188 4 5 6 2 14 17 Chr7 17,120,791 853 20

Bv.nbarc.0151 2 7 5 1 14 15 Chr4 9,272,315 821 4

Bv.nbarc.0059 4 8 0 2 14 14 Chr2 6,112,630 831 14

Bv.nbarc.0117 2 10 0 2 14 14 Chr3 51,935,689 772 15

Bv.nbarc.0189 3 8 7 0 13 18 Chr7 17,151,726 857 20

Bv.nbarc.0054 1 11 5 1 13 18 Chr2 4,934,197 829 14

Bv.nbarc.0045 6 6 3 1 13 16 Chr2 44,870,240 859 20

Bv.nbarc.0143 3 3 6 1 13 13 Chr4 45,618,316 268 14

Bv.nbarc.0218 5 6 4 1 12 16 Chr7 56,612,457 652 1

Bv.nbarc.0024 5 6 4 0 12 15 Chr2 1,710,379 775 27

Bv.nbarc.0001 0 11 3 0 12 14 Chr1 12,930,202 768 12

Bv.nbarc.0041 1 9 2 1 12 13 Chr2 44,803,073 813 20

Bv.nbarc.0021 4 4 4 0 12 12 Chr2 1,660,825 756 27

Bv.nbarc.0216 3 5 2 2 12 12 Chr7 56,547,668 797 2

Bv.nbarc.0190 2 5 5 0 12 12 Chr7 17,285,303 890 7

Bv.nbarc.0023 4 6 0 2 12 12 Chr2 1,704,997 148 27

Bv.nbarc.0123 3 6 2 1 12 12 Chr4 1,882,767 857 25

Bv.nbarc.0026 2 6 4 0 12 12 Chr2 1,819,277 888 27

Bv.nbarc.0247 2 7 3 0 12 12 Chr9 48,251,017 859 26

Bv.nbarc.0031 4 5 4 1 11 14 Chr2 3,516,321 834 14

Bv.nbarc.0148 2 7 2 2 11 13 Chr4 8,470,174 849 5

Bv.nbarc.0105 5 4 1 1 11 11 Chr3 51,658,816 884 17

Bv.nbarc.0144 2 7 1 1 11 11 Chr4 45,642,671 581 14

Bv.nbarc.0205 2 4 3 1 10 10 Chr7 56,344,391 658 1

Bv.nbarc.0169/

Bv.nbarc.0170 1 5 4 0 10 10 Chr5 44,166,728 897 22

Bv.nbarc.0214 5 3 2 1 9 11 Chr7 56,520,764 672 1
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Table 3.7 (cont’d)  

Bv.nbarc.0004 1 4 6 0 9 11 Chr1 13,237,558 777 12

Bv.nbarc.0244 2 3 4 0 9 9 Chr9 48,153,337 859 26

Bv.nbarc.0167 2 7 0 0 9 9 Chr5 44,132,111 861 22

Bv.nbarc.0017 2 6 0 1 8 9 Chr2 1,582,676 792 27

Bv.nbarc.0224 2 3 1 2 8 8 Chr7 56,746,673 570 2

Bv.nbarc.0155 0 4 4 0 8 8 Chr4 9,391,065 827 4

Bv.nbarc.0113 0 4 3 1 7 8 Chr3 51,734,884 752 16

Bv.nbarc.0019 2 6 0 0 7 8 Chr2 1,596,627 858 25

Bv.nbarc.0145 1 3 3 0 7 7 Chr4 4,937,580 795 19

Bv.nbarc.0246 1 3 3 0 7 7 Chr9 48,242,437 858 26

Bv.nbarc.0107/

Bv.nbarc.0108 4 1 4 1 6 10 Chr3 51,701,706 569 15

Bv.nbarc.0160 0 3 5 0 6 8 Chr5 22,999,237 831 5

Bv.nbarc.0223 0 2 4 1 6 7 Chr7 56,722,969 688 1

Bv.nbarc.0055 1 3 3 0 6 7 Chr2 4,943,690 836 14

Bv.nbarc.0124 0 2 4 0 6 6 Chr4 1,913,572 854 25

Bv.nbarc.0058 1 3 2 0 6 6 Chr2 5,000,636 831 14

Bv.nbarc.0249 2 4 0 0 6 6 Chr9 48,287,349 856 26

Bv.nbarc.0020 2 4 0 0 5 6 Chr2 1,650,948 742 27

Bv.nbarc.0038 0 1 4 0 5 5 Chr2 44,780,392 859 20

Bv.nbarc.0241 0 7 0 0 4 7 Chr9 28,754,759 841 24

Bv.nbarc.0152 1 2 0 2 4 5 Chr4 9,305,033 823 4

Bv.nbarc.0221 3 1 0 0 4 4 Chr7 56,659,535 688 1

Bv.nbarc.0248 2 2 0 0 4 4 Chr9 48,263,009 856 26

Bv.nbarc.0215 0 2 2 0 4 4 Chr7 56,539,263 673 1

Bv.nbarc.0222 0 4 0 0 4 4 Chr7 56,684,938 779 2

Bv.nbarc.0125 2 1 0 0 3 3 Chr4 34,558,483 322 0

Bv.nbarc.0053 1 1 1 0 3 3 Chr2 4,918,682 839 14

Bv.nbarc.0046 1 2 0 0 3 3 Chr2 47,369,433 263 0

Bv.nbarc.0146 0 2 1 0 3 3 Chr4 5,050,630 795 19

Bv.nbarc.0162 0 3 0 0 3 3 Chr5 42,252,844 801 19

Bv.nbarc.0106 2 0 0 0 2 2 Chr3 51,682,457 389 17

Bv.nbarc.0245 1 0 1 0 2 2 Chr9 48,209,642 859 26

Bv.nbarc.0066 1 1 0 0 2 2 Chr3 11,491,939 841 26

Bv.nbarc.0029 0 0 2 0 1 2 Chr2 2,742,904 835 14

Bv.nbarc.0047/

Bv.nbarc.0048 1 0 0 0 1 1 Chr2 48,308,428 583 26

Bv.nbarc.0217 0 0 1 0 1 1 Chr7 56,590,628 651 1

Bv.nbarc.0011 0 1 0 0 1 1 Chr1 42,989,247 383 11

Bv.nbarc.0028 0 1 0 0 1 1 Chr2 2,715,384 830 14

Bv.nbarc.0115 0 1 0 0 1 1 Chr3 51,902,160 797 16

Bv.nbarc.0174 0 1 0 0 1 1 Chr6 10,519,056 304 0

Bv.nbarc.0005 0 0 0 0 0 0 Chr1 18,669,315 145 12

Bv.nbarc.0006/

Bv.nbarc.0007/

Bv.nbarc.0008 0 0 0 0 0 0 Chr1 38,224,584 748 14

Bv.nbarc.0009 0 0 0 0 0 0 Chr1 41,307,114 343 12

Bv.nbarc.0022 0 0 0 0 0 0 Chr2 1,676,563 374 27

Bv.nbarc.0025 0 0 0 0 0 0 Chr2 1,766,028 585 27

Bv.nbarc.0039 0 0 0 0 0 0 Chr2 44,792,516 309 20
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Table 3.7 (cont’d) 

 

Bv.nbarc.0079/

Bv.nbarc.0080 0 0 0 0 0 0 Chr3 2,670,498 826 0

Bv.nbarc.0083 0 0 0 0 0 0 Chr3 3,782,072 253 21

Bv.nbarc.0067 0 0 0 0 0 0 Chr3 13,703,588 85 22

Bv.nbarc.0069 0 0 0 0 0 0 Chr3 13,724,032 54 22

Bv.nbarc.0081 0 0 0 0 0 0 Chr3 36,387,225 147 0

Bv.nbarc.0090 0 0 0 0 0 0 Chr3 46,120,105 86 25

Bv.nbarc.0091 0 0 0 0 0 0 Chr3 46,120,587 181 25

Bv.nbarc.0095 0 0 0 0 0 0 Chr3 51,471,887 87 27

Bv.nbarc.0098 0 0 0 0 0 0 Chr3 51,533,578 95 0

Bv.nbarc.0099 0 0 0 0 0 0 Chr3 51,536,211 204 0

Bv.nbarc.0101 0 0 0 0 0 0 Chr3 51,556,392 96 8

Bv.nbarc.0104 0 0 0 0 0 0 Chr3 51,652,191 96 8

Bv.nbarc.0109 0 0 0 0 0 0 Chr3 51,713,080 96 8

Bv.nbarc.0112 0 0 0 0 0 0 Chr3 51,727,265 203 17

Bv.nbarc.0116 0 0 0 0 0 0 Chr3 51,925,255 96 8

Bv.nbarc.0118 0 0 0 0 0 0 Chr3 51,975,010 95 0

Bv.nbarc.0126/

Bv.nbarc.0127 0 0 0 0 0 0 Chr4 362,526 701 7

Bv.nbarc.0149 0 0 0 0 0 0 Chr4 8,632,594 556 0

Bv.nbarc.0131/

Bv.nbarc.0132 0 0 0 0 0 0 Chr4 43,642,613 838 7

Bv.nbarc.0133/

Bv.nbarc.0134 0 0 0 0 0 0 Chr4 43,763,563 839 7

Bv.nbarc.0135/

Bv.nbarc.0136 0 0 0 0 0 0 Chr4 44,096,241 835 7

Bv.nbarc.0137/

Bv.nbarc.0138 0 0 0 0 0 0 Chr4 44,112,203 835 7

Bv.nbarc.0139/

Bv.nbarc.0140 0 0 0 0 0 0 Chr4 44,135,021 833 7

Bv.nbarc.0141/

Bv.nbarc.0142 0 0 0 0 0 0 Chr4 44,186,624 827 7

Bv.nbarc.0159 0 0 0 0 0 0 Chr5 16,216,648 419 7

Bv.nbarc.0163 0 0 0 0 0 0 Chr5 43,574,643 85 0

Bv.nbarc.0165/

Bv.nbarc.0166 0 0 0 0 0 0 Chr5 43,624,210 807 0

Bv.nbarc.0177/

Bv.nbarc.0178 0 0 0 0 0 0 Chr6 3,706,524 730 7

Bv.nbarc.0179 0 0 0 0 0 0 Chr6 3,727,205 226 7

Bv.nbarc.0180/

Bv.nbarc.0181 0 0 0 0 0 0 Chr6 3,737,398 770 7

Bv.nbarc.0175 0 0 0 0 0 0 Chr6 13,174,097 308 20

Bv.nbarc.0176 0 0 0 0 0 0 Chr6 25,821,110 308 20

Bv.nbarc.0183 0 0 0 0 0 0 Chr6 52,432,576 102 24

Bv.nbarc.0186 0 0 0 0 0 0 Chr7 15,986,651 135 12

Bv.nbarc.0192 0 0 0 0 0 0 Chr7 32,143,206 596 1

Bv.nbarc.0193 0 0 0 0 0 0 Chr7 39,496,010 133 12

Bv.nbarc.0195 0 0 0 0 0 0 Chr7 44,659,105 174 25

Bv.nbarc.0220 0 0 0 0 0 0 Chr7 56,642,615 634 1
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Table 3.7 (cont’d)  

 

 

 

  

Bv.nbarc.0226 0 0 0 0 0 0 Chr7 56,821,347 621 1

Bv.nbarc.0228 0 0 0 0 0 0 Chr8 27,969,672 595 1

Bv.nbarc.0230 0 0 0 0 0 0 Chr8 38,571,249 429 9

Bv.nbarc.0235 0 0 0 0 0 0 Chr9 13,926,539 346 26

Bv.nbarc.0237 0 0 0 0 0 0 Chr9 18,991,181 135 12

Bv.nbarc.0242/

Bv.nbarc.0243 0 0 0 0 0 0 Chr9 33,474,866 761 0
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Figure 3.1. Total kinase domains detected in the sugar beet EL10 reference genome by each 

of two hidden Markov models (HMMs).There were 1,477 matches for the kinase superfamily 

domain and 1,590 matches for the Ser/Thr kinase domain. Each domain (x-axis) is defined by 

length in bp and e-value of HMM match. 
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Figure 3.2. Single-copy universal conserved orthologs in de novo assemblies of B. vulgaris. 

Assemblies and EL10 reference genome are depicted in columns according to crop type (chard, 

fodder, table beet, sugar beet, EL10 reference). Each row represents a unique conserved gene. 

Cells are shaded according to the result of each specific gene in each assembly sample. Green: 

complete single-copy, blue: complete duplicated, yellow: fragmented, red: missing. 
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Figure 3.3. NB-ARC domains detected in de novo assemblies of B. vulgaris. Each sample is 

color coded according to its crop type. Blue: sugar, green: chard, yellow: fodder, red: table, 

black: reference. The EL10 reference genome is solid black, the single reference plant assembled 

from short reads (C869_US) is dot-dash black, and the assembly from pooled reads of the 

reference population (C86925) is dotted black. All domains detected at default HMM e-value of 

1 are shown in the first column labeled All. Applying filters based on domain length in bp and 

domain e-value are shown in subsequent columns: 200 bp  1e-10, 450 bp 1e-10, 650 bp 1e-10, 

and 700 bp 1e-50. 
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Figure 3.4. Number of NB-ARC domains per de novo assembly versus number of reference 

domains covered after alignment to the sugar beet EL10 reference genome. Populations are 

grouped left to right by crop type: chard, fodder, sugar, and table beet.  
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Figure 3.5. Phylogeny of NB-ARC domains mapping to Bv.nbarc.0077 in the B. vulgaris 

EL10 reference genome. Domains were extracted from 23 de novo assemblies of B. vulgaris. 

Populations are colored by crop type: green is chard, red is table beet, gold is fodder beet, and 

black is sugar beet. Bootstrap scores of 1000 replications are shown at branch points. 
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Figure 3.6. Phylogeny of NB-ARC domains mapping to Bv.nbarc.0121 in the B. vulgaris 

EL10 reference genome. Domains were extracted from 23 de novo assemblies of B. vulgaris. 

Populations are colored by crop type: green is chard, red is table beet, gold is fodder beet, and 

black is sugar beet. Bootstrap scores of 1000 replications are shown at branch points. 

 

 

 

 

  



74 

CHAPTER FOUR 

WHOLE-POPULATION STRUCTURAL VARIANT DETECTION USING POOLED 

POPULATION SEQUENCING 

INTRODUCTION 

Genetic variation is the raw material fueling selection, creating phenotypic differences 

between individuals conditioned by genotype-by-environment interactions (Hammer et al. 2006). 

Knowledge of genetic variation within and between populations can be leveraged to improve 

agricultural crops as well as help expand basic understanding of genome biology. Advances in 

population-specific genotyping technology have accelerated the speed at which breeders can 

make selections for crop improvement (Elshire et al. 2011; Wijnen & Keurentjes 2014; Huang & 

Han 2014). The availability and quality of reference genomes across a range of organisms has 

been increasing at an accelerating rate (Armstrong et al. 2019), providing a basis for comparison 

of genetic variation within and between whole species. Unfortunately, a single reference genome 

is incapable of capturing pan-genomic variation, highlighting the need for additional sequence 

data to more fully characterize population- and species-wide genetic resources. 

Single-nucleotide polymorphism (SNP) genotyping has emerged over the past decades as 

the most common tool to measure genetic variation (Rafalski 2002; Davey et al. 2011; Lipka et 

al. 2015). Combining short-read shotgun sequencing with reduced-representation library 

construction allowed the development of genotyping-by-sequencing (GBS), leading to cost-

effective SNP genotyping of each individual within a population without the need for a reference 

genome (Davey et al. 2011). Statistical associations between SNPs and phenotypes could 

identify SNPs comprising the causal basis of the trait. Alternatively, SNPs could be in linkage 
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disequilibrium with the loci underlying the phenotype, providing rough genetic associations 

without illuminating the molecular genetic cause.  

In addition to SNPs, other types of genetic variation can influence phenotypic expression. 

One example of non-SNP-based genetic variation is the presence of structural variation, 

including sequence insertions, deletions, translocations, and inversions (Wu et al. 2017; Krumm 

et al. 2012; Abyzov et al. 2015; Miles et al. 2016). Insertions and deletions (indels) are often 

treated as short features in the literature, while longer variants are referred to as structural 

variants (SVs). In this work I will use the term “indel” to define insertions and deletions shorter 

than 1,000 bp, and SVs as an inclusive term encompassing all forms of sequence changes longer 

than 1 kb. Indels can be deduced by whole-genome shotgun sequencing but are not directly 

detected using current genotyping strategies, while indels and SVs longer than the length of the 

sequencing reads require dedicated detection pipelines and analysis  (Sudmant et al. 2015; Alkan 

et al. 2011; Kosugi et al. 2019). Re-sequencing projects have attempted to fill gaps in knowledge 

of structural variation, but to date resequencing diversity panels has been expensive, time-

consuming, and focused on a few major animal and plant species (Hamilton & Buell 2012; 

Salgotra et al. 2014). Because of the additional resources required to identify indels compared to 

SNPs, many non-model systems are still awaiting descriptions of pan-genomic indel variation. 

Additional work is needed to understand the extent of indels and SVs in breeding populations, 

and how they function during population development across multiple generations. 

Pan-genomic structural variation is a critical component of adaptation and selection, as 

revealed by existing SV detection in plants and animals. The first efforts in human genomics 

illuminated wide-spread structural differences between genome assemblies, which has led to 

comparisons of ever-increasing numbers of genomic sequences (Iafrate et al. 2004; Khaja et al. 
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2006; Kidd et al. 2008; Genome of the Netherlands Consortium 2014). More recently, plant 

resequencing efforts have identified SVs in a number of model plant species such as rice, maize, 

soybean, poplar, Chlamydomonas, and Arabidopsis (Pinosio et al. 2016; Flowers et al. 2015; 

Lam et al. 2010; Xu et al. 2012; Cao et al. 2011; Chia et al. 2012). While these studies are major 

contributions to understanding of pan-genomic variation, they remain missing from the literature 

of non-model systems. 

Structural variation has been associated with a range of biological phenomena. 

Generation of novel coding sequences in rice was preferentially driven by indels that modified 

the reading frames of transcribed non-coding sequences (Zhang et al. 2019). Small deletions 

have been implicated in genome size differences between A. lyrata and A. thaliana (Hu et al. 

2011). Fungal effector genes were found to associate with regions of genomic instability prone to 

acquisition of novel SVs (Plissonneau et al. 2017). Copy-number variation, a form of SV, was 

enriched in stress-responsive gene clusters in diploid potato (Hardigan et al. 2015; Pham et al. 

2017, 2019), and mapping maize presence/absence variants revealed an enrichment in significant 

GWAS associations compared to SNPs (Lu et al. 2015). Indels fewer than 20 bp were implicated 

in 7% and 17% of human mutations causing heritable diseases, respectively (Ball et al. 2005). 

Taken together, indels and SVs are emerging as important components of the genetic 

underpinnings of phenotypic variation.  

My work focuses on the crop species Beta vulgaris, which encompasses the root crops 

sugar beet, table beet, and fodder beet, as well as the leaf vegetable chard. B. vulgaris is a 

predominantly outcrossing species, 2n = 18, with the population generally representing the unit 

of genetic improvement (McGrath & Panella 2018). Cultivar development is based on increasing 

the frequency of desirable alleles in populations rather than selecting upon individual plant 
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genotypes (McGrath & Panella 2018). An open question concerns the number of novel variants 

generated during each cycle of population development, and to what extent novel indels and SVs 

contribute to genetic diversity. Defining the rate of indel generation within populations could 

expand our understanding of genome biology, adaptation, and the targets of selection.  

In this paper I analyzed the genetic variation of B. vulgaris found in short-read sequence 

data of pooled populations. For each of 71 populations, 25 individuals were pooled into a single 

library. These libraries were sequenced to produce ~80 reads covering each base pair in the 

genome. I mapped these short-read data to the EL10 reference genome (McGrath et al., in prep) 

and identified total indels and SVs using the targeted reassembly pipeline SvABA. This revealed 

4,999,533 indels across the 71 populations. The genotypic data contained in the indels were used 

to cluster populations, which clearly distinguished each of the four crop types and identified sub-

groupings of table beet and chard. The density of short and long indels was calculated across 

chromosomes to compare the spatial arrangement of these features. I observed enrichment of 

longer indels towards the end of chromosome arms, while 1-bp indels were more evenly 

distributed across chromosomes. Pan-genomic hotspots of indel fluctuation, as well as 

population-specific sites of variation, each contribute to genome variation across B. vulgaris and 

illustrate the fluid nature of structural variation between populations. 

RESULTS 

Sequencing whole-population samples and mapping to the EL10 reference genome 

My first goal was to efficiently acquire the genomic sequence of whole populations using 

short-read shotgun sequencing. Leaf tissue was collected from 25 two-week-old seedlings of 

each of 71 populations and pooled prior to DNA isolation (Table 4.1). Each pooled population 

sample was sequenced to a target depth of 80x using the Illumina HiSeq 2500 or NovaSeq 
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platforms. The final number of reads mapped from each population ranged from 278 to 862 

million, with median depth of coverage between 49x and 165x (Table 4.2). The EL10 reference 

genome contains nine chromosome-size pseudomolecules representing ~95% of the total 

assembly. These sequences were used for all subsequent analysis.  

Detecting structural variation  

I used the targeted reassembly program SvABA (Wala et al. 2018) to detect structural 

variants based on the read mapping data for each population. Two classes of variant were 

detected, indels with lengths less than 1 kb and SVs greater than 1 kb (Table 4.2). Indels were 

determined by mapping a reassembled contig to a single site, while SVs required splitting the 

assembled contig between two mapping sites (see Methods). Allele frequency was calculated for 

each variant within each population using the number of split reads that mapped to the variant 

breakpoint divided by the total number of split reads plus non-variant reads. By default, features 

with low alternate allele frequency were assigned the homozygous reference genotype and 

flagged as false positives due to the expected 2n nature of the sample. However, in the pooled 

samples these could be true features with low minor allele frequencies. I searched the raw data 

for sites that were flagged as homozygous reference but had minor allele frequencies between 

0.05 and 0.2. These sites were added to the analysis. 

I implemented a system to distinguish indels that shared the same genomic coordinate yet 

differed in their variant sequence. Each indel was assigned a name that incorporated the 

chromosome position as well as the complete nucleotide sequence of the variant (e.g. two 10-bp 

insertions at the same site were counted as distinct if their insert sequences were different). 

Given these criteria, there were 2,636,112 insertions and 2,359,331 deletions (4,995,443 total) in 

the quality-filtered set, which is significantly distorted in favor of insertions (52.77% insertions, 
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47.23% deletions, exact binomial test, p < 2.2e-16). This set of features was termed sequence-

preserved indels (SPI) to highlight the maintenance of unique sequence identities. Because the 

relative importance of insertion sequence versus insertion position was unknown, I also 

calculated the number of unique insertion positions regardless of the identity of the inserted 

sequence, called position-preserved indels (PPI). This reduced the calculated number of 

insertions to 1,988,677, indicating that ~24.5% of insertions were at the same genomic 

coordinate as another feature but contained variable insert sequences. By this metric, the number 

of genomic positions with deletions was significantly higher than the positions with insertions 

(52.46% deletion, 47.54% insertion, p = 2.2e-16, exact binomial test). Subsequent analysis used 

the SPI set to maintain the maximum information obtained from SvABA targeted reassembly. 

Distribution of indels across populations 

I calculated the frequency of SPI (sizes less than 1kb) across populations and determined 

how often a given feature was found in more than one population. The number of SPI per 

population ranged from 432,544 to 1,281,298 (median 997,661 +/- 181,345), while the number 

of SVs (1kb or greater) ranged from 7,439 to 24,286 (median 20,947 +/- 7,548) (Table 4.2). 

Approximately 29% of SPI were found in only one population, while 50% of SPI were identified 

in five or more populations (Figure 4.1). This indicated that indel detection was reproducible 

between populations despite an increase in expected heterozygosity and confounding genetic 

variation. 

The C869_US sample had a 30-fold reduction in SPI vs the pooled population mean 

(33,297 vs 982,607, respectively) and an 18-fold reduction in number of SVs (1,116 vs 20,811). 

C869_US reads were derived from the same plant that was used to generate the EL10 reference 

genome rather than pooled population reads. Reduction in numbers of indels and SVs is 
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consistent with shared similarity between C869_US and the reference genome, as well as 

decreased allelic diversity of the single C869_US plant compared to pooled whole-population 

samples. 

Whole population indel genotypes resolved genetic relationships between populations 

Indels should be able to act as molecular markers that illuminate the genetic variation 

within and between populations (Gabur et al. 2019). Populations were clustered using SPI to test 

whether populations could be differentiated into crop type groups. The C869_US single plant 

sample was fundamentally different than the pooled samples due to reduced heterozygosity and 

increased genetic relatedness to the reference genome. Therefore, this sample was omitted from 

further analysis, resulting in 71 populations for cluster analysis. I chose to use allele frequency 

rather than presence/absence for each SPI. Determining allele frequency of SPIs was 

accomplished using a custom formula rather than the default SvABA method (see Methods). The 

results of hierarchical clustering indicated up to six partitions existed within the populations 

(Figure 4.2). To further understand the genetic relationships between populations and crop types, 

I applied a k-means algorithm to resolve additional cluster relationships.  

I began k-means clustering of populations based on SPI data. My initial cluster number 

was set to four based on the historical development of four crop types included in my sequencing 

data, which was supported by the hierarchical results. The analysis clearly separated sugar beet, 

fodder beet, table beet, and chard into distinct clusters (Figure 4.3). Crop-type-specific variation 

would have become fixed in these lineages and maintained by breeding for specific end-use 

qualities. Variation within chard and table beets would also become fixed during cultivar 

development and could be sufficient to create the subdivisions seen in my clustering analysis. 

The sugar beet populations are expected to be more heterozygous, and thus genetic diversity 



81 

between populations should have lower allele frequencies which are insufficient to create 

subdivisions in this crop type. 

Distribution of indels by length 

I examined the size distribution of SPI to see if there were trends related to chromosome 

position or spread among populations (Figure 4.4). Shorter indels were more common than 

longer indels, with 1-bp deletions or insertions accounting for 39% of total features (1,961,495 of 

4,995,443). The number of detected SPI was inversely correlated with length, with 99% of indels 

shorter than 100 bp. To better understand the relationship between SPI size and distribution 

across populations, the data was partitioned according to two metrics: 1 bp versus longer, and 

population-specific versus those found in multiple populations. SPI of 2 bp or greater were 

significantly more likely to be population-specific than SPI of 1 bp (37% vs 24%, respectively, 

Pearson’s Chi-square test, p < 3e-16).  

Indel densities on chromosomes are correlated with length and population distribution 

The next question was whether SPI density varied according to chromosome position. 

Predicted chromosomes were divided into 100kb sliding windows with 50kb overlap, and the 

number of indels of each type were calculated for each window (Figures 4.5-4.13). Absolute 

indel counts were normalized to the chromosome-wide average and used to calculate the relative 

density of SPI per window. Therefore, each window received a density score for each of four 

subcategories of SPI: 1 bp, 2 bp or longer, population-specific, and shared between 2 or more 

populations. SPI shared between populations had significantly higher variance of density scores 

versus population-specific SPIs (0.146 vs 0.089, respectively, p < 2.2e-16, F-test of two 

variances), indicating that SPI shared between populations were unevenly distributed in windows 

compared to population-specific variation. Chromosome regions with SPI density at least three 
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standard deviations above the mean are shown on the chromosome plots as clusters. There was 

no clear pattern of correlation between clusters of short SPI, long SPI, or gene density. Variation 

shared between populations was localized towards telomeres, with peaks visible on every 

chromosome (Figures 4.5-4.13). Interior chromosome regions were characterized by lower 

variance, with increased density of 1 bp indels and reduction of indels shared between 

populations. Windows of reduced variation in all SPI categories were seen on each chromosome, 

such as Chromosome 3 at 47 MB, Chromosome 4 at 40 MB, and Chromosome 9 at 17 MB 

(Figures 4.7, 4.8, and 4.13, respectively). Total loss of variation was observed at 18 MB on 

Chromosome 2 (Figure 4.6). Lower variance is consistent with the hypothetical location of 

centromeres, which could result in reduced recombination rates and therefore reduced structural 

variability. This is especially notable on Chromosome 9, where a known inversion in the 

reference assembly places a telomere in the interior of the chromosome at 35 MB (Figure 4.13) 

(McGrath et al., in prep).  

SPI greater than 1 bp showed increased variance in their density within windows when 

compared to 1 bp (0.38 vs 0.30 respectively, p < 2.2e-16, F-test of two variances). This 

difference in variance indicated 1 bp SPI were more evenly distributed across chromosomes, 

while those 2 bp or greater exhibited differing density at different chromosome positions. I 

subset the data to focus on the size range covering 99% of features (-100 bp to 100 bp) and 

plotted SPI lengths for each population (Figure 4.14). Shorter SPI were more abundant than 

longer SPI, which was a consistent trend across all populations. The C869_US single plant 

showed a similar distribution of SPI sizes as other populations despite the reduction in absolute 

numbers.  
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Although there was a broad correlation between SPI length and number of SPI detected, 

there was some enrichment of SPI at specific sizes (Figure 4.14).  As reported earlier in this 

paper, SPI were more likely to be to be population-specific than shared between populations. The 

next question was whether short, population-specific SPI had some unifying characteristics that 

were contributing to their abundance. To answer this question, the short, population-specific SPI 

were examined in more detail. 

I isolated all the SPI between -20 and 20 bp and asked what their distributions were 

across populations. Different sizes of indels had different distributions, most notably the 

proportion of population-specific SPI changed depending on length (Figure 4.15). Isolating the 

SPI found in only one population revealed differences in the proportion of insertions (25-36%) 

versus deletions (15-20%) (Figure 4.16). This indicated deletions were more likely to be shared 

between two or more populations compared to sequence-preserved insertions. Closer inspection 

revealed that deletions and insertions had a significant reduction in the number of seven or eight 

bp features that were population-specific, meaning some 7 and 8 bp SPIs were more broadly 

distributed among populations than other short SPIs (Figure 4.16).  

Identification of enriched motifs in 7 and 8 bp SPI  

The observation that 7 and 8 bp SPI were more likely to be shared among populations 

compared to other short SPI suggested some of these sequences could be biologically relevant. I 

isolated the sequences of all 326,175 SPIs with lengths 7 or 8 bp and searched for enriched 

motifs using the DREME module of MEME software suite (Bailey 2011). I identified two motif 

models, HYAYAA and TYAYRA, that were statistically enriched versus the null distribution (e-

values < 1e-50, Figure 4.17). The SPI containing HYAYAA and TYAYRA motifs were shared 

among more populations than the null 7 and 8 bp sequences (p < 0.004, Mann Whitney Wilcox 
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test, Figure 4.18). The two motifs were scanned versus JASPAR (Fornes et al. 2019) and 

Arabidopsis DAP-seq databases of transcription factor binding sites (Bartlett et al. 2017) but did 

not generate statistically significant matches (data not shown).  

DISCUSSION 

Characterization of indels in the B. vulgaris pan-genome supports the hypothesis that 

indel length, chromosome position, and interpopulation distribution are related attributes of 

structural variation. Single bp SPIs were distributed more evenly across chromosomes, while 

longer SPIs were relatively enriched towards telomeres. Population-specific SPIs were spread 

more evenly across chromosomes while variation shared between populations occurred in more 

dense windows on chromosome arms. This could be the result of increased recombination rate 

towards the ends of chromosome arms (Garcia-Diaz & Kunkel 2006). If recombination is 

enriched at certain genomic coordinates, and recombination is a source of indels greater than one 

base pair, then meiotic recombination over evolutionary time might create hotspots of indel 

variation. If this variation was biologically relevant, then selection could act on these sites, 

preferentially spreading functional alleles to subsequent populations (Halldorsson et al. 2019). 

Conversely, increased repetitive sequences in centromeres could lead to DNA replication-based 

errors (Carvalho & Lupski 2016). Strand slippage by DNA polymerase due to repetitive 

sequence or homopolymer runs would lead to short indels, with preference for deletions over 

insertions (McCulloch & Kunkel 2008; Tran et al. 1997). This is the same pattern seen in the 

interiors of chromosomes shown in the current report, including increased density of 1 bp indels 

and reduced density of genes (Figures 4.5-4.13).  

Allele frequencies of the complete set of B. vulgaris SPIs were sufficient to resolve the 

relationships between 71 diverse breeding populations representing combinations of four crop 
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types. This suggests the reported SPIs represent real genetic differences between the populations 

that reflect their history of breeding and cultivation. We expect that the table populations are 

more inbred than the sugar and fodder populations, owing to their history of selection for specific 

consumer preferences and propagation as named cultivars (Paul Galewski and Mitch McGrath, 

personal communication). Selection of differentiating features within those groups could have 

led to fixation for alternate alleles, allowing fine-grained separation of within-group differences. 

This contrasts the heterozygous sugar beet populations undergoing selection for improved 

agronomic traits (McGrath & Panella 2018). The background genetics should be more muddled 

in the sugar populations and new variation often is incorporated to maintain genetic diversity 

(Panella & Lewellen 2007), which hinders the resolution of between-population differences. 

Additional experiments could be used to test the limits of population discrimination, provide 

some indication of diversity between subpopulations, and help determine whether phenotypic 

traits of populations are derived from shared or novel variation.  

SPIs over 1 bp appeared to correlate with SPIs shared between populations. This is 

interesting considering the higher chance for genetic drift at sequence-preserved insertions, 

which should theoretically lead to higher numbers of unique insertions not shared between 

populations. One explanation for the unexpected increase in shared SPI is that they have recent 

origins in shared ancestors of the populations observed in this report. It also is possible that SPI 

greater than 1 bp have an outsized effect on phenotypic variation, as seen in human disease 

genetics (Ball et al. 2005). This could lead to their preservation across the genome. Alternatively, 

the increased numbers of 1 bp indels vs those 2 bp or greater could create a more even 

distribution of the abundant 1 bp features, effectively masking any enrichment of biologically 

relevant sequences in this subset. Regardless, the localization of shared variation provides a focal 
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point to ask what functional differences exist in those regions, why those features are shared 

between populations, and how recombination and replication-based mechanisms contribute to 

existing structural variation.  

The current project was conceived in response to numerous hypotheses about R gene 

evolution, including the role of DNA replication-based mechanisms, recombination-based 

processes, and “hotspots” of recombination in generating novel diversity in the form of structural 

variation (McDowell & Simon 2006; Mondragon-Palomino & Gaut 2005; Christie et al. 2016; 

Carvalho & Lupski 2016). Structural variants, including small indels, have long been known to 

play a role in functional variation in humans (Ball et al. 2005; Abyzov et al. 2015), 

microorganisms (Miles et al. 2016), and plants (Yan et al. 2010; Schnable et al. 2009; Chia et al. 

2012). The initial goal was to detect NLR genes with indels and copy-number variation, 

including novel sequences absent from the reference genome. In this way I hoped to integrate 

knowledge of genetic diversity with R gene evolution at the sequence level. It quickly became 

apparent that cataloging variation in the pooled population sequences was necessary before 

targeted analysis of R genes would be possible. Therefore, the main achievement of my current 

work is to advance the ability to identify structural variation in a large pool of short sequencing 

reads and differentiate features within and between populations. Such variant detection has the 

benefit of accessing sequences absent from a reference genome via targeted reassembly of 

discordant reads localized to genomic windows. 

Non-uniform distributions of indels could indicate biological function (Schatz et al. 2014; 

Conrad & Hurles 2007). There were two enriched motifs in the 7 and 8 bp SPI sequences, 

HYAYAA and TYAYRA, that were more widely distributed among populations than the other 7 

and 8 bp sequences (Figure 4.18). It is notable that any sequence was discernable against a 
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background likely dominated by relaxed selection and genetic drift (Zmienko et al. 2016; Zhang 

et al. 2014; Hardigan et al. 2015). Some of the enriched motifs could have been generated 

randomly by drift. However, the difference in population distributions between enriched motifs 

and the other 7 and 8 bp SPIs suggest that some mechanism is propagating or maintaining the 

enriched HYAYAA and TYAYRA motifs across populations. These motifs were scanned 

against known transcription factor binding sites but no putative targets were found. Transposon 

families such as copia, L1, R1, IS, Alu, P element, Tn10, and LINE could have short target site 

duplications in the 3-8 bp range (Flasch et al. 2019; Kojima & Fujiwara 2003; Tatout et al. 1998; 

Linheiro & Bergman 2012; Dewannieux et al. 2003; Liao et al. 2012; Dunsmuir et al. 1980; 

Halling & Kleckner 1982). Alternatively, transcription factor binding sites or other regulatory 

elements have variable frequency across populations. Localization of the enriched motifs and 

correlation with other genomic features could help shed light on their origins and biological 

functions, if any. Further investigation of enriched sequences at other sizes could provide insight 

into transposon activity, regulatory elements, and genome size variation in non-model plant 

systems. 

One key question is how effective indel detection was in whole-population samples. 

Heterozygosity has historically created difficulties with de novo assembly from short reads 

(Hirsch & Buell 2013), and it stands to reason that the data presented in the current report 

contain a non-zero amount of artifacts based on incorrect read mapping or assembly. To mitigate 

errors, SvABA includes numerous error-correction and validation steps to reduce false-positive 

variant calls (Wala et al. 2018). One benefit of the SvABA program is that it reduces sequence 

complexity by assembling reads in windows, rather than the full read set. This allows improved 

assembly of alleles without confounding homologous sequences from other parts of the genome. 
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Multiple indels mapped to the same base pair position but had variable lengths, and some indels 

were found with the same length but different insert sequences. This indicates that SvABA was 

able to distinguish highly similar sequences and assemble them into contigs supporting multiple 

alleles, which would be difficult with traditional de novo assembly (Flowers et al. 2015; Alkan et 

al. 2011; Bickhart et al. 2017). 

The data presented in the current report supports the possibility that population-wide 

inference of structural variation can be achieved using pooled population sequencing. A logical 

next step to further investigate the rate of false positive indel calls would be to validate such 

alleles by Sanger sequencing. PCR could be used to validate amplicon sizes using agarose gels or 

capillary gel electrophoresis, depending on indel length. Such validation could lead to additional 

applications for indel detection in plant breeding, such as improved genetic markers, as well as 

improved basic understanding of chromosome structure and function.  

METHODS 

Population sampling and Illumina sequencing 

Seventy-one populations of B. vulgaris were germinated in plastic containers (24” W x 

16 “ D x 12” H)  in the greenhouse and harvested at the two-leaf seedling stage, approximately 

two weeks after germination. For each population, leaf tissue was collected from 25 individuals 

and placed into a 50 mL conical polypropylene centrifuge tube (VWR, Radnor, PA) to create 

population-specific pools of tissue. These tissues were lyophilized and ground to a powder. For 

each population, DNA was isolated from 20 mg of lyophilized tissue using the NucleoSpin Plant 

II kit (Macherey-Nagel, Duren, Gernamy). Libraries were prepared by the Michigan State 

Research Technology Support Facility (East Lansing, MI, USA) using Illumina TruSeq kits 

(Illumina, San Diegoi, CA, USA). Libraries were sequenced to 80x depth using HiSeq 2500 2 x 
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125bp paired-end chemistry. 

Read QC and mapping 

Illumina adapters were trimmed from the raw reads using Trimmomatic v.0.36 (Bolger et 

al. 2014) with parameters ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. For each population, reads with both pairs 

intact were interleaved using BBMAP’s reformat.sh function. Reads were split into smaller files 

for parallel mapping using the fastq-splitter.pl script from Kirill Kryukov (http://kirill-

kryukov.com/study/tools/fastq-splitter/). Reads were mapped to the EL10 reference genome v1.2 

(Funk et al. 2018) using BBMap v.38.22, with parameters local=t interleaved=t k=13. Mapping 

coverage statistics per-chromosome and in 100kb bins were calculated with the BBMap 

pileup.sh script, with parameters binsize=100000 32bit=t. Output BAM files for each population 

were sorted, merged, and indexed with samtools v.1.9 (Li et al. 2009) prior to indel detection 

with SvABA. 

Variant detection with SvABA 

The sorted, indexed BAM files were analyzed individually with SvABA v. 134 (Wala et 

al. 2018)using the --germline parameter (equivalent to -I, -L 5, NM >= 3) to produce VCF files 

of filtered and unfiltered indels and structural variants (SVs). Briefly, SvABA generates 25kb 

sliding windows across the genome and identifies reads that map discordantly to the reference 

sequence (i.e. soft-clipped ends, split mapping sites, and incorrect distances between reads 

compared to the insert size). For each 25kb window, SvABA performs de novo assembly of the 

discordant reads together with the full set of unmapped reads. Two quality-control steps are 

performed: first, raw reads are mapped back to de novo contigs generating LOD scores, and 

second the contigs themselves are mapped back to the reference. High-scoring variants are 

http://kirill-kryukov.com/study/tools/fastq-splitter/
http://kirill-kryukov.com/study/tools/fastq-splitter/
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collected into a filtered variant VCF file. SvABA differentiates indels and structural variants 

based on how the de novo supporting contigaligns to the reference genome. Any contig that maps 

to the reference at a single site is considered an indel, while contigs with split mapping sites are 

termed structural variants (SVs).  The filtered VCFs were parsed to remove inter-chromosomal 

variants and then converted to BED format using a custom python script.  

Allele frequency of indels 

Allele frequencies between 0.05 and 0.2 are flagged as NONVAR, or non-variant, by 

default SvABA parameters and filtered out as a form of quality control. This is because SvABA 

was designed to call diploid samples, where allele frequencies should trend toward 0, 0.5, or 1. 

Therefore, any feature below 0.2 allele frequency is assumed to be technical error by the 

software. The pooled population samples could include up to 50 allele measurements (2n x 25 = 

50) with legitimate results between 0.05 and 0.2. Because of this, the NONVAR features were 

retrieved from the unfiltered indel files and added to the analysis. Allele frequency was 

calculated from the resulting VCF data using a custom formula: reads that mapped across a break 

point (spanning reads, SR) were divided by paired reads that bracketed the interval (depth of 

coverage, DP). This more conservative adaptation was implemented to control for variation in 

paired-end insert size as well as indel length. The allele frequency of some variants was therefore 

lower than the default 5% threshold for SvABA, but they were retained in the analysis due to the 

already conservative nature of the custom allele frequency calculation.  

Cluster analysis 

Clusters of genes, indels and SVs were detected using Clusterscan (Volpe et al. 2018) 

with the clustermean script, window size 200kb, step size 100kb, k=3 (minimum threshold of 

three standard deviations to start a cluster) and e=2 (minimum threshold of two standard 
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deviations to extend a cluster). Computation was performed in a Linux CentOS 7 environment 

on the Michigan State High-Performance Computing Cluster (Michigan State University, East 

Lansing, MI). 

Motif enrichment analysis and similarity scanning 

The DREME module of the MEME software suite (Bailey 2011)was used to scan for 

enriched motifs in 7 and 8 bp indel sequences. The e-value cutoff for motif addition during 

model generation was 1e-5, while the e-value cutoff for final model inclusion was 1e-50. To 

generate e-values, DREME randomly shuffles query dinucleotides to create a null dataset of 

equivalent shape to the query. The top one scoring motif for analysis was used as a query in the 

Tomtom module of MEME, applied against the JASPAR CORE non-redundant database, 

JASPAR plant non-redundant database, and the Arabidopsis DAP-seq database (Gupta et al. 

2007). 

ACKNOWGLEDGEMENTS 

Thanks to MSU RTSF for sequencing support, Admera Health for sequencing support, 

Paul Galewski for productive discussions, Christina Azodi and Beth Johnson in the Shiu lab for 

discussion of transcription factor binding sites. 

 

  

 

 



92 

APPENDIX



93 

Table 4.1 Germplasm accession numbers for B. vulgaris accessions used in analysis. 

Sample ID Accession ID Identifier Crop type

08storage EL-A024967 EL-A024967 sugar beet

5Estorage EL-A15-00005 EL-A15-00005 sugar beet

BBTB EL-A15-01112 Bulls Blood Table Beet table beet

BDL - Bionda Di Lyon Swiss chard

BYE - Yellow Eckendorf fodder beet

C869_US EL-A015027 C869 cms single plant sugar beet

C86925 EL-A015027 C869 cms population sugar beet

Chiog - Chioggia table beet

Crosby EL-A15-01115 Crosby’s Egyptian Table beet table beet

cylindra - Cylindra table beet

DDRT EL-A15-01114 Detroit Dark Red table table beet

EL0204 EL-A012858 PI 632750 sugar beet

EL50_2 EL-A021482 EL50/2 sugar beet

EL51 EL-A12-00030 EL51 sugar beet

EL52 EL-A012200 PI 628274 sugar beet

EL53 EL-A013523 PI 641927 sugar beet

EL54 EL-A021483 PI 654357 sugar beet

EL55 EL-A013698 PI 655304 sugar beet

EL56 EL-A022799 PI 663211 sugar beet

EL57 EL-A022809 PI 663212 sugar beet

EL57-Rbulk EL-A022809 PI 663212-Rhizoctonia resistant_bulk sugar beet

EL57-Sbulk EL-A022809 PI 663212-Rhizoctonia susceptible_bulk sugar beet

EL58 EL-A022775 PI 664913 sugar beet

EL59 EL-A029768 PI 664914 sugar beet

EL60 EL-A021740 PI 664915 sugar beet

EL61 EL-A029769 PI 664916 sugar beet

EL63 EL-A027007 PI 664918 sugar beet

EL64 EL-A022776 PI 664919 sugar beet

EL65 EL-A027017 PI 664920 sugar beet

EL66 EL-A027143 PI 664921 sugar beet

EW - Early Wonder table beet

FCxELcerc EL-A16-00016 EL-A16-00016 sugar beet

FE - Flat of Egypt table beet

FGSC EL-A15-01116 Fordhook Giant chard (leaf beet)

FK - Fuer Kugel table beet

FP - Flamingo Pink Swiss chard
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Table 4.1 (cont’d) 

Sample ID Accession ID Identifier

GB - Geante Blanche fodder beet

GP10 EL-A1402164 East Lansing Breeding Population GP10 sugar beet

Gp7&8 EL-A1402159 EL-A1402159 sugar beet

GP9 EL-A1402163 East Lansing Breeding Population GP09 sugar beet

L19 EL-A010101 L19 (PI 590690) sugar beet

LUC EL-A011917 Lucellus Chard chard (leaf beet)

MAM EL-A011928 Mammoth Red Fodder fodder beet

MYC - Mangel Yellow Cylindrical fodder beet

NNSGp3 EL-A1402161 EL-A1402161 -

Ocbordo - Okragly Ciemnoczerwony (Bordo) table beet

PS - Perpetual Spinach Swiss chard

RHU EL-A011929 Rhubarb Swiss Chard chard (leaf beet)

RQ EL-A15-01113 Ruby Queen Table Beet table beet

SF'A' EL-A029686 EL-A029686 sugar beet

SF'B3' EL-A12-00002 EL-A12-00002 sugar beet

SP7322 EL-A015030 SP22 (PI 615525) -> SP7322 (EL-A015030) sugar beet

SR100 EL-A027152 PI 664923 sugar beet

SR101 EL-A024969 PI 664924 sugar beet

SR102 EL-A15-00006 SR102 (PI 675153) sugar beet

SR80 EL-A012187 PI 607898 sugar beet

SR87 EL-A012148 PI 607899 sugar beet

SR93 EL-A012191 PI 598075 sugar beet

SR94 EL-A012172 PI 598076 sugar beet

SR95 EL-A012168 PI 603947 sugar beet

SR96 EL-A012189 PI 628272 sugar beet

SR97 EL-A012174 PI 628273 sugar beet

SR98_2 EL-A027006 SR98/2 (PI 659754) sugar beet

SR99 EL-A024983 PI 664922 sugar beet

SST - Shiraz Tall Top table beet

TGSC EL-A15-01117 Touch Stone Gold Table Beet table beet

VDT - Verde De Taglio Swiss chard

Vulcan EL-A1501111 Vulcan Swiss Chard chard (leaf beet)

W357B EL-A01406766 Wisconsin Table Beet Breeding Line table beet

WGF EL-A027193 Wintergold Fodder fodder beet

WT EL-A15-01116 Albino Table Beet table beet

ZF - Zentuar fodder beet
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Table 4.2. Statistics for Illumina shotgun sequencing reads mapped to the B. vulgaris EL10 

reference genome. Structural variants (SVs) were termed intra-chromosome when both sides of 

the variant mapped to the same chromosome. Inter-chromosome indicated split reads mapped to 

two different chromosomes.  

Sample Reads

Mapped 

reads (%)

Reference 

bases 

covered (%)

Median 

chromosome 

depth Indels

Intra-chr 

SVs

Inter-chr 

SVs

08storage 379,011,848 95.85 99.96 91.78 1217031 24407 766

5Estorage 404,352,655 96.20 99.91 99.00 924002 19040 622

BBTB 474,227,044 96.29 99.59 86.44 542182 10028 251

BDL 422,236,198 95.34 99.92 91.89 1204030 23574 724

BYE 500,454,416 95.58 99.9 106.33 997661 20191 655

C869_US 862,135,388 98.77 99.90 157.44 774542 15984 407

C86925 385,124,972 96.70 99.95 76.56 33297 1078 38

Chiog 592,096,557 95.72 99.92 124.67 952119 19384 566

Crosby 295,162,179 96.31 99.81 54.00 828502 16839 498

cylindra 382,791,420 95.36 99.88 81.44 866460 17609 516

DDRT 438,787,401 96.31 99.87 80.89 832124 16371 432

EL0204 419,106,476 96.28 99.94 102.67 1200285 24231 750

EL50 358,746,795 96.00 99.78 73.33 709740 14148 483

EL51 379,768,734 96.27 99.91 80.67 859119 17403 539

EL52 388,016,405 96.11 99.92 94.11 981231 19951 653

EL53 454,850,298 96.02 99.93 112.22 1117386 22930 718

EL54_Mfert 361,766,312 95.99 99.91 90.33 1073424 21335 651

EL55 436,362,543 96.27 99.93 110.11 1082019 22240 732

EL56 418,036,257 96.43 99.94 101.11 1025395 21104 695

EL57 405,071,537 96.18 99.94 96.22 1129170 69500 2180

EL57_Rbulk 419,683,600 96.16 99.96 102.22 1105271 22594 676

EL57_Sbulk 443,305,221 95.96 99.96 103.22 1191583 24181 745

EL58 436,121,695 96.30 99.94 107.89 1014702 20797 661

EL59 411,120,257 96.38 99.95 98.67 1094632 21755 736

EL60 539,052,732 96.51 99.96 128.44 1092651 21885 730

EL61 455,519,183 96.41 99.94 108.11 1133693 22738 773

EL63 608,452,097 96.56 99.96 143.33 1209092 24404 824

EL64 447,448,008 96.32 99.94 102.44 1134698 22741 790

EL65 439,923,770 96.35 99.93 99.44 966258 19900 641

EL66 484,777,705 96.39 99.94 115.11 1220103 24800 820

EW 397,680,654 95.05 99.92 82.33 1080541 21419 638

FCxELcerc 457,701,480 96.77 99.8 110.44 523521 11051 364

FE 403,847,044 95.52 99.88 82.56 873607 17709 558

FGSC 368,321,206 95.99 99.94 69.44 1179237 23120 668

FK 396,924,783 95.31 99.85 81.44 863991 17558 516

FP 477,384,690 95.12 99.82 99.11 812932 16526 551
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Table 4.2 (cont’d) 

  

Sample Reads

Mapped 

reads (%)

Reference 

bases 

covered (%)

Median 

chromosome 

depth Indels

Intra-chr 

SVs

Inter-chr 

SVs

GB 407,246,658 95.27 99.93 92.56 1035618 20972 745

GP10 460,618,947 96.39 99.95 91.33 985583 19906 653

GP7-8 388,893,984 96.23 99.94 93.89 1060533 21398 695

GP9 789,080,200 96.15 99.99 164.78 1159698 24504 791

L19 726,725,464 96.80 99.94 127.22 850865 17139 547

LUC 579,807,347 95.90 99.95 111.89 1281298 24661 701

MAM 377,793,987 96.40 99.94 72.56 1027276 20380 667

MYC 461,414,216 95.59 99.92 96.56 1067441 21576 702

NNSGp3 410,884,134 96.28 99.94 103.89 1045171 21254 685

Ocbordo 415,105,062 95.47 99.91 88.56 1046539 20959 626

PS 509,165,452 95.50 99.92 107.67 1131384 22223 618

RHU 508,724,580 96.29 99.92 94.33 976160 18643 613

RQ 343,178,133 96.38 99.79 67.00 699626 13711 384

SF'A' 543,782,638 96.39 99.96 126.67 1250137 25643 797

SF'B3' 396,118,015 96.43 99.94 98.33 1086641 21821 684

SP7322 509,227,577 96.11 99.94 104.22 932364 18652 653

SR100 420,547,282 95.81 99.93 103.33 999649 20553 670

SR101 404,335,856 95.65 99.95 98.67 1089581 21878 724

SR102 359,343,504 96.24 99.96 75.78 959661 19519 616

SR80 450,325,001 96.12 99.9 106.78 767659 15866 506

SR87 404,487,388 95.91 99.91 98.78 969827 19902 655

SR93 452,175,105 96.36 99.89 106.89 898768 18513 631

SR94 451,484,416 96.07 99.93 110.44 969758 20019 658

SR95 414,151,935 96.10 99.93 102.22 911182 19036 600

SR96 472,970,372 95.88 99.94 117.33 1037649 21434 731

SR97 397,628,554 95.92 99.92 98.00 898347 18742 594

SR98 401,900,530 96.11 99.92 85.00 877031 17851 513

SR99 443,692,514 95.79 99.93 110.78 993526 20641 662

SST 487,200,853 95.65 99.86 99.78 827163 16916 464

TGSC 278,431,865 96.52 99.51 49.11 575434 11215 324

VDT 398,033,591 95.01 99.95 88.78 1341613 25912 820

Vulcan 510,112,562 96.36 99.89 93.11 930707 18053 607

W357B 381,184,038 96.22 99.30 69.89 432544 7606 234

WGF 517,713,429 96.62 99.90 94.33 972214 19147 634

WT 310,986,817 96.35 99.72 56.11 738611 14382 350

ZF 393,244,039 95.55 99.93 86.11 1124919 22507 742
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Figure 4.1. Distribution of sequence-preserved indels (SPIs) among populations of B. 

vulgaris. There were 4,995,443 distinct SPIs detected across all populations. The 72 population 

total includes the C869 single plant sample that generated the reference genome. 
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Figure 4.2: Pearson correlation of 71 B. vulgaris populations based on sequence-preserved 

indel (SPI) allele frequency. More similar populations are in blue, while more dissimilar 

populations are in tan. The C869 single plant sample was excluded from this analysis because of 

its identity as the reference genome. 
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Figure 4.3: K-means clustering of 71 populations of B. vlugaris based on sequence-

preserved indel (SPI) allele frequency. Cluster input k=4. Colors correlate to the four k-means 

clusters generated by the clustering algorithm.  
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Figure 4.4: The number of unique sequence-preserved indels (SPIs) in the B. vulgaris pan-

genome according to feature length in base pairs. Deletions are negative, insertions are 

positive relative to the B. vulgaris EL10.1 reference genome. 
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Figure 4.5. B. vulgaris chromosome 1 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018).   
  



102 

Figure 4.6. B. vulgaris chromosome 2 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.7. B. vulgaris chromosome 3 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.8. B. vulgaris chromosome 4 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.9. B. vulgaris chromosome 5 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
  



106 

Figure 4.10. B. vulgaris chromosome 6 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.11. B. vulgaris chromosome 7 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.12. B. vulgaris chromosome 8 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.13. B. vulgaris chromosome 9 sequence-preserved indels (SPI) by length and 

population distribution. Points are normalized density of indels in 100kb sliding windows 

(scale left). Trend lines are calculated with Loess smoothing (scale right). Putative genes were 

derived from the EL10 annotation. Threshold for clusters of genes and indels was set at three 

standard deviations above the mean. NB-ARC domains were derived from Funk et al (2018). 
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Figure 4.14: Number of sequence-preserved indels (SPI) of given lengths per B. vulgaris 

population. The reduced indel count in the C869 single plant reference sample (lower red line) 

was clearly distinguished from the pooled population samples. Colors are used to delineate 

different populations with no reference to other population qualities.  
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Figure 4.15: Distribution of sequence-preserved indels (SPI) 20 bp or fewer across 71 B. 

vulgaris populations. There were 4,995,443 distinct SPIs detected across all populations. The 

number of SPI appearing in only one population varied dependent on SPI length, with longer SPI 

more likely to be found in only one population.  
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Figure 4.16: Proportion of 20 bp or shorter sequence-preserved indels (SPI) that are found 

in only one population of B. vulgaris. More SPI insertions (positive numbers) than deletions 

(negative numbers) were population-specific.  
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Figure 4.17: Sequence logos of the two most enriched motifs in the 7 or 8 bp sequence-

preserved indels (SPI) sequences in populations of B. vulgaris. HYAYAA (left) and 

TYAYRA (right). 
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Figure 4.18: Distribution of 7 and 8 bp sequence-preserved indels (SPI) across populations 

of B. vulgaris partitioned by enriched sequence identity. SPIs containing HYAYAA or 

TYAYRA motifs were considered enriched (purple) versus the null distribution of all other 7-8 

bp SPIs (green). SPIs containing either of the two enriched motifs were more likely to be found 

in multiple populations compared to other SPIs of similar sizes (significant difference between 

distributions, Mann-Whitney U test, P < 0.004). 
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CHAPTER FIVE 

CONCLUDING REMARKS 

The results presented in this dissertation follow my thought progression as I explored R 

gene diversity in beets over the past four years. Early questions began with “what do you do with 

a reference genome?” and expanded to questions of R gene family diversity, patterns of family 

expansion and subdivision, the mechanisms that generate genetic variation at the chromosome 

level, and how to extrapolate that to the pan-genome of a species.  

The earliest question that piqued my interest was how to find resistance genes that I 

didn’t know to look for. Protein prediction has been a shaky proposition, using transitive 

annotation to extrapolate protein sequence functions from a small set of experimentally validated 

sequences. I wondered if there could be genes in beet that were different enough from other 

model systems to be missed by current annotation pipelines. When the EL10 reference genome 

achieved chromosome-size scaffolds, I began to explore hidden Markov models to build a beet-

specific NB-ARC domain model (Chapter 2). As that effort progressed, I became intimately 

familiar with the existing gene annotations and made the decision to avoid the abstraction of 

protein prediction in favor of the raw genomic sequence. That decision paid dividends as I was 

able to detect full-length as well as partial domains. I saw an array of domain length and 

completeness that suggested there was an unannotated graveyard of NB-ARC pseudogenes, 

hinting at the long evolutionary history of this gene family.  

After successfully using nucleotide-based NB-ARC HMMs on the reference genome, I 

asked what domains existed in other populations of beets (Chapter 3). Scanning the de novo 

assemblies with the HMM was relatively straight-forward. The core set of domains detected in 

the various crop type assemblies indicated interesting subdivisions of resistance genes across the 
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B. vulgaris pan-genome. However, as I reflected on the assembly process and results, I became 

less confident in the assembly itself, and therefore felt cautious in drawing any strong 

conclusions from the data. I realized that the nature of pooled population sequences created 

additional complexity for the assembly algorithms, and we didn’t have the data to confirm or 

deny conflicting hypotheses. Would multiple assembly programs generate similar results? Could 

we differentiate alleles and close paralogs, or were the short reads from similar sequences 

combined into a sort of genome soup? I backed away from interpreting NB-ARC domain data 

and focused on validating the assemblies. I believe the initial results are encouraging, both from 

the HMM and the assembly validation. However, more work is needed to establish the veracity 

of de novo assembly of pooled population sequences. I came to a paper late in the project that 

had pursued a similar assembly strategy in rice (Yao et al. 2015). Their methods and results 

reinforce the difficulty of working with distributed, dispensable genome sequences. However, if 

the methods could be fine-tuned and validated, the concept of de novo pooled population 

assembly could provide opportunities to investigate species evolution, domestication, breeding, 

and targeted trait analysis.  

As I considered the sequences of R gene domains, I began to think about sources of 

genetic diversity in nature. A central concept in disease resistance literature is that diversity 

arises from gene duplication followed by sub-functionalization and neo-functionalization (Jones 

& Dangl 2006; Jones et al. 2016). Investigating mechanisms of gene duplication implicated 

errors in recombination, which led me to consider structural variation as an evolutionary process 

more broadly. Structural variation, whether small indels or larger chromosome rearrangements, 

has been increasingly recognized as a key component of genetic variation both mammals and 

plants (Carvalho & Lupski 2016; Thind et al. 2018). If recombination leads to structural 
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variation, and structural variation leads to R gene evolution, then we could ask whether structural 

variation in a genome actually corresponds with R gene diversity in agreement with current 

scientific understanding.  

At that point I decided to try and characterize indels using pooled population sequences 

(Chapter 4). This was the largest data set I had worked with, leading to millions of indel 

predictions derived from terabytes of short-read sequencing data. Even though the program I 

used to predict indels was not intended for meta-genomic analysis, my efforts to compare indels 

across populations led to confidence that what I was seeing was grounded in biological activity 

rather than technical artifacts. Applying the SvABA targeted resequencing strategy to bulk 

segregant data sets generated a number of candidate genes with plausible biological function. As 

with the de novo whole-genome assemblies, validating the authenticity of predicted genomic 

features is a crucial next step. I believe the strength of the results presented in Chapter 4 is 

sufficient to warrant further efforts to confirm and extend those lines of research.  

In summary, attempts to develop a nucleotide-based form of R gene detection led to 

questions of R gene pan-genomic diversity and signatures of R gene evolution in beets. My hope 

is not that I have solved anything, but that I have made tangible, well-reasoned progress to 

improve our understanding of both basic and applied biology. There are clear opportunities for 

additional research, which can be developed into stand-alone projects suitable for a variety of 

interests and skill levels. I look forward to my future efforts building on the foundation laid out 

in this dissertation. 

 

Thanks for your time and attention. 
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