IDENTIFYING AND DEFINING THE COMPUTATIONAL PRACTICES
OF INTRODUCTORY PHYSICS

By

Michael Jonathon Obsniuk

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Physics — Doctor of Philosophy

2020

ABSTRACT

IDENTIFYING AND DEFINING THE COMPUTATIONAL PRACTICES OF
INTRODUCTORY PHYSICS

By

Michael Jonathon Obsniuk

Computation is an important skill that is used in almost all modern scientific investi-
gations. For this reason, the task of educating the population on the use of computation
in engineering is of primary interest to many professionals — from industry to academia.
Although there has been much prior research on computation in education broadly, prior
research within the particular sub-discipline of introductory physics still has many unan-
swered questions that must be addressed. At the forefront of these unanswered questions,
there is increasing interest in the various computational practices that students engage in
and the types of thinking that accompany them. Accordingly, this thesis attempts to deepen
the understanding of computation by identifying and defining the computational practices
that are indicative of computational thinking that introductory physics students frequently
engage in.

First, we identified the common, less common, and unobserved computational practices
in a novel physics classroom — Projects and Practices in Physics (P3) — by using a theoretical
framework and two qualitative methodologies. Identifying the broad and sometimes vague
computational practices defined by the theoretical framework was facilitated by both a task
and a thematic analysis applied to in-class video data.

Next, we defined those practices in concrete terms relative to the course from which data
was collected. Each practice has a set of characteristics, and each characteristic has a set of

qualities that can be defined in terms of the physical concepts that students must grapple

with in this and related courses.

Finally, we provide discussion on the possible lines of reasoning behind a given prac-
tice’s frequency. Many of the learning goals that the course was designed around inevitably
influenced the types of frequencies of the practices that we identified.

Answering these types of questions is of importance to anyone interested in integrating
computation into the undergraduate physics curriculum. A better understanding of the
different computational practices that students engage in can only help to mitigate the
many challenges associated with teaching computation. Accordingly, this thesis is meant to
shed light on the computational practices that students frequently engage in while solving

introductory physics and engineering problems.

TABLE OF CONTENTS

LIST OF TABLES e e e vi
LIST OF FIGURES e d e viii
Chapter 1 Introduction 1
Chapter 2 Background Lo 7
2.1 Computational thinking o 0L 7
2.2 Physics Education Research 0oL 11
2.2.1 Implementation L Lo 11

2.2.2 Prior findings 16

2.2.3 Remaining questions oo 20

2.3 Framework Lo 21
2.4 Task analysis L 23
2.5 Thematic analysis 27
Chapter 3 Context 31
3.1 Course schedule 31
3.2 VPython 32
3.3 Preclasswork 33
3.4 In-class work 34
3.4.1 Analytic problem oo 36

3.4.2 Computational problem 36

3.4.2.1 Minimally working programs 37

3.4.2.2 Tutor questions 38

3.4.3 Feedback/Assessment 40

3.5 Post-class work 41
Chapter 4 Motivation 43
4.1 Debugging e 44
4.1.1 Analysis 45

4.1.1.1 Recognition oo 46

4.1.1.2 Physics debugging Lo 47

4.1.1.3 Resolution.0 49

4.1.2 Discussion e 50

4.1.3 Conclusion e 52
Chapter 5 Observations 53
5.1 Analysis 53
5.1.1 Datareduction 54

5.1.2 Coding process 56

v

5.1.3 Inter-rater reliability oo 60

5.2 Computational practices 62
5.2.1 Creatingdata 64

5.2.2 Analyzing data Lo 68

5.2.3 Designing models Lo 73

5.2.4 Assessingmodels L 7

5.2.5 Creating abstractions L oo 82

5.2.6 Troubleshooting and debugging 85

5.2.7 Thinkinginlevels Lo 89

5.2.8 Communicating information 93
Chapter 6 Discussion 97
6.1 Findings 97
6.1.1 Common practices 97

6.1.2 Less common practices Lo 101

6.1.3 Unobserved practices 104

6.2 Limitations L 105
6.2.1 Framework 106

6.2.1.1 Data 106

6.2.1.2 Modeling 107

6.2.1.3 Problem solving 108

6.2.1.4 Systems 108

6.2.2 Course 109

6.2.2.1 Group vs. individual 0oL 109

6.2.2.2 Scaffolding vs. discovery 109

6.2.2.3 Introvs. advanced 111

6.2.3 Activity 111

6.2.4 Analysis 112
Chapter 7 Conclusiono 114
7.1 Summary . .o ... 114
7.2 Futureresearch 116
7.3 Concluding remarkso 117
APPENDICES e 118
Appendix A Common practiceso 119
Appendix B Less common practices 136
Appendix C Unobserved practices 145
BIBLIOGRAPHY e 148

Table 2.1:

Table 2.2:

Table 3.1:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

LIST OF TABLES

The framework developed by Weintrop et. al to describe the computational
practices observed in science and mathematics classrooms. Each category
contains between five and seven individual practices, and each practice has
between two and seven fundamental characteristics.

Some of the necessary steps that must be taken when constructing a New-
tonian gravitational force in code. Each step is associated with the con-
struction/modification of a line of code.

A schedule for the semester focusing on topics covered, homework /reading
deadlines, and in-class problems. 0oL

The characteristics and associated qualities pertaining to the computational
practice of creating data: automating the creation of data that helps to
advance toward goals. Lo o

The characteristics and associated qualities pertaining to the computa-
tional practice of analyzing data: a general process of analysis leading to
conclusions based on evidence. L.

The characteristics and associated qualities pertaining to the computational
practice of designing a computational model: defining components, relating
them to one another, and using them to make predictions.

The characteristics and associated qualities pertaining to the computational
practice of assessing a computational model: identifying assumptions and
validating them. L L oL

The characteristics and associated qualities pertaining to the computational
practice of creating computational abstractions: representing physical con-
cepts. . . . L L e

The characteristics and associated qualities pertaining to the computational
practice of troubleshooting and debugging: isolating an unexpected error
and correcting it in a systematic manner.

The characteristics and associated qualities pertaining to the computational

practice of thinking in levels: breaking a program into different levels and
attributing features to them.

vi

Table 5.8:

Table 6.1:

Table 6.2:

The characteristics and associated qualities pertaining to the computational
practice of communicating information: a general process of communication
that demonstrates an understanding.o

The computational practices that have been deemed common are shown
with the number of times each practice was identified, the percentage of
its category that it occupies (i.e., the number of times a practice was ob-
served divided by the total number of practices from that category), and
the percentage of all the practices that it occupies (i.e., the number of times
a practice was observed divided by the total number of practices from all
categories). Horizontal dividers separate the different categories (i.e., data,
modeling, problem solving, and systems thinking).

The computational practices that have been deemed less common are shown
with the number of times each practice was identified, the percentage of
its category that it occupies, and the percentage of all the practices that it
OCCUPIES. & v v v v v v e e e e e e e e e e e e e

Vil

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

Figure 3.1:

LIST OF FIGURES

Graphical user interface for BOXER showing the graphics data (e.g., the
step instructions) and the resulting graphic for a sprite named “mickey.”

A program illustrating that the basic control structure and integration
algorithm are pre-written so that students can focus on the computational
force model that must be constructed in line 11.

Graphical user interface for an EJS illustrating the “drag-and-drop” nature
of the software. Elements (e.g., a pendulum bob) can be added or removed

from the different panels (e.g., the drawing panel) in the simulation view.

A PhET simulation illustrating the dependence of pendulum motion on
the length of the pendulum, the mass of the pendulum bob, the magnitude
of the local acceleration due to the gravity, and any frictional forces. . . .

Glowscript output demonstrating its ability to generate three-dimensional
visualizations of objects, vectors, and graphs. The ability to quickly and
accurately generate three-dimensional vectors allows for more flexibility
and a deeper understanding of electric fields.

A sample of the in-depth analysis Weatherford performed. Each particular
line of code that the group is focusing on is tracked in time and coded
according to a researcher-developed scheme.

An expected solution to a computational satellite-Earth problem where
the Newtonian gravitational force has been constructed from a separation
vector and its magnitude. The force calculation has been incorporated
into the momentum through Newton’s second law, and the momentum is
incorporated into the position through a position update.

A final thematic map showing the components of a theme named “compu-
tation as asset.” The main components of this theme are “power,” “fun”,
and “enjoyment.” L e e

Portion of on-line notes that is made available to the students during the

first week of the course. These notes introduce the fundamental program-
ming ideas and a list of common errors with tips and tricks.

viil

12

14

15

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 4.1:

Figure 4.2:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Pre-class homework question focusing on the different ways that the mag-
nitude of a vector can be constructed in VPython code: explicitly coding
the square root of the sum of the squares of the components and using
the pre-defined Python “magnitude” function.

The Newtonian gravitational force problem statement delivered to the
students in the third week of class.

The initial code and visualization of the MWP that is given to the students
in the third week of the course.

A selection of tutor questions that focus on the computational model each
group has constructed.o

A snippet of written feedback given to a student after the third week. . .
A portion of a post-class homework question delivered in the third week
of the course. This question requires students to troubleshoot and debug

the code. L

Interactions between individuals form a group, and the group interacts
with the computer.

The debugging process necessarily corresponds to a phase beset on either
side by the phases of recognition and resolution. Note the absence of a

vertical scale, as the vertical separation merely acts to distinguish phases.

A portion of transcript meant to highlight the indication of unspoken and
inferred actions. For example, line 367 shows this group looking in their
notes for an equation. The equation that they find is written down in line
370, . e

The template used for the coding process. Each excerpt is numbered,
each line of speech/action is numbered and attributed to an individual
member of the group, and the three types of rationale are used to justify
the classification of a particular practice.

Examples of the three levels of confidence are shown in green, yellow,
and red to indicate high, medium, and low confidence, respectively. Each
inter-rater suggestion is used to modify or solidify the level of confidence
given to a particular practice. Lo Lo

ix

46

Figure 5.4:

Figure 5.5:

Figure 6.1:

The initial rationale generated for an excerpt along with inter-rater sug-
gestions and subsequent modification over time. With the addition of
some requested information, the strength of the rationale was improved
and the confidence was promoted from medium to high.

The frequency of each practice that was found within our unique data set.

The iterative process of modeling physical systems that was described to
the class on the first day.

61

63

Chapter 1

Introduction

Since the advent of relatively inexpensive and powerful computers, researchers have been
interested in their use as both professional and pedagogical tools. Their ability to quickly
and precisely perform extremely large amounts of numerical calculations makes them well
suited for modeling and solving modern problems in the STEM fields (e.g., engineering or
biostatistics). Similarly, their ability to easily generate realistic visualizations makes them
well suited for the communication of scientific information. For these reasons, computation is
indispensable in modern scientific pursuits and has increasingly been the focus of education
research [1, 2].

Computation, or the use of computers to analyze complicated systems, continues to grow
in many fields. Given its utility in these types of professional domains, the task of effectively
training students in computation has risen to the forefront of STEM education research.
However, this important task has been shown to involve challenges, as there are varied skills
and pieces of knowledge that students must develop a mastery of in order to effectively
utilize computation. Still, the desire to integrate computation into the STEM curriculum is
stronger than ever [3].

While using computation to solve complex physics and engineering problems, practi-
tioners often engage in what are called computational practices. Computational practices

can be defined, in one way, as a synthesis of computational knowledge and computational

skill — highlighting the importance of being able to put theoretical ideas to practical work
[4]. Although knowledge and skill alone are important, being able to combine the two into
an effective practice is even more so. Although attempts have been made to define com-
putational practices broadly [4, 5, 6, 7|, they are still lacking clear and precise definition
within many particular domains (e.g., computational physics). Accordingly, this thesis fo-
cuses on identifying the common computational physics practices that students engage in
while solving realistic physics and engineering problems in an introductory mechanics course
for engineering students.

Computational practices can be defined, in another way, as the things that students
will actually be doing when they have graduated and, presumably, get a job in the field.
These practices are probably discipline specific (e.g., physics may have different practices
than biologists) and industry specific (e.g., manufacturing materials probably has difference
practices than testing materials).

There are a number of reasons for focusing on computational physics and its associated
computational practices. Perhaps most important is that there is a high demand for compu-
tational skills in the workplace for recent physics graduates [4]. With many students entering
school for future job prospects, being able to effectively prepare future graduates for entering
industry or continuing education requires in-depth research to develop best practices. As
documented in a recent report from the AIP, there is high demand for computational skills
in the workplace for recent physics degree holders — things like programming, simulating, or
modeling [8]. Modern physics curricula should reflect the modern practices of professional
physicists, and computation is now seen to be just as important as theory and experiment.
For this reason, faculty from physics departments across the nation call for more computation

in the curriculum [3].

Perhaps most important, computational skills are becoming increasingly necessary 21st
century skills, especially for anyone using physics. With most theory on solid foundation,
computation can be used to apply it to complex, non-linear, and realistic modern engineering
problems.

Additionally, it is believed that students of computational physics gain a deeper under-
standing of the physical concepts |9, 10] along the way. Visual packages such as VPython
or Glowscript [11] allow novice programmers to create three-dimensional visualizations that
allow them to more easily interact with the fundamental concepts.

Further, computation allows for the analysis of realistic problems that have no closed-
form solution. Its ability to numerically integrate supports a more exploratory approach
to analyzing physical systems and learning physics. That is, the repeated application of
Newton’s second law allows for a more general analysis. This more exploratory approach is
thought to encourage students to construct more realistic and accurate (e.g., including air
resistance) computational models through computational thinking [4].

Computational thinking is a term that has become increasingly popular since its intro-
duction in the early 1980s [12, 13, 14, 15]. This term, although frequently used today, is
difficult to concisely explain given its many and varied definitions. Even within the fields
of education and computer science, many different viewpoints exist on the topic, and the
corresponding definitions are just as varied [16]. However, many of these definitions share
one fundamental characteristic: solving complex problems through abstraction and analytic
thinking with the aid of computer algorithms. In other words, this type of thinking is any
type of thinking that focuses on using computer algorithms to solve problems. This type
of thinking is extremely important in engineering, where differential equations are solved

numerically to solve problems. Accordingly, computational thinking focuses on the use of

computer algorithms.

This type of thinking is so highly valued by the modern enterprise of science education
that the Next Generation Science Standards (NGSS) includes elements of computational
thinking in K-12 settings. As early as the fifth grade, students are expected to be able to
think computationally. The NGSS describes computational thinking, at this level, in terms
of analyzing data and comparing approaches. By the time students reach middle school,
computational thinking advances to analyzing large data sets and generating explanations.
Finally, in high school, computational thinking expands to constructing computational mod-
els and using them to answer questions [5]. Clearly, computational thinking is a complicated
concept which requires substantial explanation.

Experts in the field still have a ways to go when it comes to clearly defining computational
thinking within science education, and within physics education more specifically. However
defined, though, this type of abstract and algorithmic thinking is pervasive — it extends
beyond computer science into fields from geology to astronomy, and even beyond STEM
[2]. Tt is becoming increasingly clear that “computational thinking is a fundamental skill for
everyone, not just computer scientists [13].”

Given recent interest in scientific practices, and computational thinking more specifically,
a taxonomy of the computational practices indicative of computational thinking has been
proposed be Weintrop et. al [7]. This taxonomy, comprised of twenty-two individual yet
inter-related practices, fitting into four different categories, is meant to help guide instructors
and researchers as they attempt to teach and better understand computational thinking in
science classrooms. Each practice, according to the taxonomy, is defined broadly and from
an expert level so as to be applicable to a wide range of science classrooms.

However, the broad and expert-generated definitions that make the taxonomy widely

applicable also leave it relatively vague and difficult to apply to any particular situation.
Reducing the vagueness and difficulty of applying this taxonomy to a specific domain of
inquiry (i.e., introductory physics) is a challenging but important task. Having a taxonomy
that is both precise and easy to apply will provide a solid foundation for instructors to gen-
erate/validate computational problems and for researchers to analyze the learning process.

Accordingly, this thesis attempts to answer the following questions:
1. what are the computational practices common to introductory mechanics,
2. how are those practices defined in terms of concrete examples, and
3. why do we see those practices?

It cannot be overstated that it is the culture of P? — the active and social engagement of
students in learning that is encouraged through continual tutor interaction — that influences
the practices that we see in our data heavily.

Ultimately, this thesis is meant to illustrate the process of identifying the common prac-
tices that groups of students engage in while solving a realistic computational introductory
physics problem. In Ch. 2 we explicate the prior research on computation and its results,
as well as the theoretical and methodological underpinnings of the study. This includes the
historical and more recent results from Physics Education Research (PER) and Computer
Science Education Research (CSER). In Ch. 3, we describe the course from which our data
has been collected — a calculus-based introductory physics course with a focus on engineering,
working in groups, and computation. We also describe the types of computational problems
students are working on while in class. In Ch. 4, we provide a motivation for not only the

existence of the study, but also the theories and methods that we decided on using. Finally,

in Chs. 5-7, we present the analysis and results of our current study with discussion and

concluding remarks.

Chapter 2

Background

In order to better understand the analysis and results of this thesis, there are three broad
and underlying topics that deserve elaboration. First, the concept of computational thinking
and its definition. Next, the results from Physics Education Research (PER), including the
various implementations of computational physics and its effect on learning. Finally, the

qualitative methodologies and the framework that we have used to guide our analysis.

2.1 Computational thinking

As mentioned in the introduction, computational thinking and its associated practices within
introductory physics are of primary interest to this thesis. These practices are the observables
that we can look for within our data. Building on previous research that focuses on scientific
practices [4, 5, 7], we have attempted to more clearly and precisely define the computational
practices within introductory physics.

The history of computational thinking and its definition is long but incomplete [12,
17, 13, 14, 15, 16, 2|. The term was first introduced by Seymour Papert as it related to
students actively constructing knowledge through the production of an artifact — ideally,
but not necessarily, a computer program. This idea of learning through construction, often
called “constructionism,” was built on the Piagetian idea of “constructivism.” Constructivism

states that students learn best when they are actively involved in the construction of their

knowledge [18]. Constructionism, on the other hand, believes that it is the construction of
a tangible object that is of critical importance when actively constructing knowledge [12].

Papert was very interested in looking at how computers could be used to teach. Some
of his earliest research into an educational programming language (i.e., Logo, aptly named
for its focus on reasoning) and its use as a learning tool focused heavily on the construction
of two-dimensional shapes on a computer screen [19]. However, Papert did not initially at-
tempt to define computational thinking in terms of constructionism. Rather, he commented
that attempts to integrate computational thinking into everyday life had failed because of
the insufficient definition of computational thinking. He optimistically claimed that more
attempts to define computational thinking would be made, and eventually “the pieces will
come together [12].” Papert would later go on to say that computational thinking involves
“forging new ideas” that are both “accessible and powerful [17].”

More recently, building on Papert’s preliminary observations, Jeanette Wing defined
computational thinking as it related to the processing power of modern computers with the
addition of human creativity. This echoed the core sentiments expressed by Papert of using
human creativity to “forge new ideas” that are “computationally powerful”. She states that
“computational thinking involves solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental to computer science. [13]”

Wing was careful to remind readers that computational thinking is a fundamental skill
for everyone, not just computer scientists [14]. This speaks to the robust nature of compu-
tational thinking, but also speaks to the difficulty in clearly defining it. She believed that
computational thinking should be taught at the introductory college level, and should even
go so far back as to be introduced at the pre-college level. Wing made substantial progress

in defining computational thinking, but still falls short — especially within particular sub-

domains like computational physics or chemistry.

Further elaboration by Alfred Aho pointed out that the process of finding the right
tool (e.g., a software package like Excel or a model like the Euler-Cromer algorithms) for
the right job is a clear indicator of computational thinking. He considered computational
thinking to be the “thought processes involved in formulating problems so their solutions can
be represented as computational steps and algorithms.” Mathematical abstraction is at the
heart of computational thinking, and being able to choose between competing abstractions
is of critical importance [15]. Aho made clear that although there are many useful definitions
of computational thinking within the field of computer science, new domains of investigation
(e.g., introductory physics) require definitions of their own. It is important to have these
domain-specific definitions to better encourage the associated practices.

Theoretical definitions aside, The Next Generation Science Standards has most recently
attempted to operationalize a definition of computational thinking in K-12 science class-
rooms. They have included computational thinking as one of their core practices, and
identify a handful of expectations for K-12 students that require computational thinking.

According to the NGSS, students should be able to [5]:

E1. Recognize dimensional quantities and use appropriate units in scientific application of

mathematical formulas and graphs.

E2. Express relationships and quantities in appropriate mathematical or algorithmic forms

for scientific modeling and investigations.

E3. Recognize that computer simulations are built on mathematical models that incorpo-

rate underlying assumptions about the phenomena or system being studied.

E4. Use simple test cases of mathematical expressions, computer programs, or simulations

to check for validity.

E5. Use grade-level-appropriate understanding of mathematics and statistics in analyzing

data.

These expectations, though useful, are still rather broad and can be reasonably applied
to any science classroom. For example, the expectation of being able to recognize dimensions
in a mathematical formula (E1) might show up in a chemistry classroom focusing on mass
conservation before and after a chemical reaction. Alternatively, the expectation of students
understanding that simulations rely on mathematical models (E3) might show up in a biology
course involving predator/prey predictions based on an underlying computational algorithm
(e.g., the Lotka-Volterra equations).

More clearly and precisely defining these expectations is an important task, especially
within a particular domain of interest. Without precise and domain-specific definitions,
applying them to a particular classroom is rather difficult for practitioners. Accordingly, one
field whose precise definitions are particularly lacking (though, progress is being made on)
is physics.

Similarly, although defining computational thinking within K-12 is an ideal starting point,
it should also be extended to more advanced levels. There are many concepts requiring
computational thinking that are unique to the university level and above, and as students
advance throughout their educational career, it is important that we study them. To wit, the
AAPT Recommendations for Computational Physics in the Undergraduate Physics Curricu-
lum has identified the skills (physics-related and technical) and tools that should be included
in a modern physics curriculum [4]. These recommendations include roughly ten skills like

debugging, testing, and validating code and tools like Excel or Python.

10

Still, more research is needed to not only more clearly define the computational practices
observed in introductory physics, but also to more clearly understand the habits of mind
and types of thinking that students are engaging in. It is important that we further define
expectations around computational thinking within a particular domain of interest (i.e.,

introductory physics) and at a particular level (i.e., university calculus-based).

2.2 Physics Education Research

This section focuses on the development of the different implementations of computational
physics problems (e.g., BOXER) [20, 21, 3, 22|, the results from PER (e.g., student chal-

lenges) [9, 23, 24, 25, 26, 27|, and most importantly the remaining questions.

2.2.1 Implementation

The focus on computational thinking in Physics Education Research (PER) has been in-
creasing over the past decade. Historically, computation as a pedagogical tool has taken
many forms, but its implementation has usually focused on two things: its ability to handle
tedious calculations and its ability to generate precise visualizations.

For example, one of the earliest forms of computation at the introductory level, called
BOXER, used “simple programming” to generate two-dimensional shapes on a computer
screen [20]. This “reconstructible medium” allowed even novice programmers to take advan-
tage of the processing and visualization power of computers. To illustrate, Fig. 2.1 shows
the graphical user interface for a program in BOXER that is meant to generate a star and a
triangle for two different objects. The underlying algorithms are laid out in sequential steps

that repeat a specified number of times.

11

nGraphics Nata -IGI"QDI‘II'CS[

[mickey ki
Data Data
o.oo0es] HAHp 3°]
Data
m& input size
orward size
right 135
forward size A
left 135 ~ | ™~
[<hape prYER 7
repeat 5§ |
forward 33‘
right 144

Figure 2.1: Graphical user interface for BOXER showing the graphics data (e.g., the step
instructions) and the resulting graphic for a sprite named “mickey.”

A more recent implementation of computation takes the name VPython: the Python
programming language with the Visual module. Historically, the goal of developing VPython
was to “make it feasible for novice programmers in a physics course to do computer modeling
with 3-dimensional visualizations [11].” The current version of VPython does just that.
Although VPython was ideal for novice programmers, it also catered to more advanced users.
Its underlying algorithm is an Euler-Cromer style integration to calculate the constantly
updating position and momentum (or velocity) of an object within a while loop that depends
on time. For example, Fig. 2.2 shows the basic structure of a very simple but powerful
program. This Euler-Cromer algorithm can be used to analyze rudimentary situations (e.g.,
free-fall motion) as well as more complicated and realistic (e.g., the motion of satellites and
rockets).

Along with the development of VPython, a software called Easy Java Simulations (EJS)
was increasing in use [28]. These simulations were meant to give students a little more
control behind the scenes, similar to VPython, while still limiting the generalizability like
PhET simulations (described below). For example, a simulation of a pendulum could be

constructed in EJS by dragging a particular object (e.g, a pendulum bob) into the model

12

1 bead = sphere(pos=vector(0,0,0), radius=6.1, color=color.red)
2

3 bead.m = ©

4 bead.q =9

5 bead.v = vector(e,1,0)

6

7 g = vector(e,9.81,0)

8 E = vector(e,0,0)

9

10 Fg = -bead.m*g

11 FE = vector(9,0,0)

12

13 Fnet = Fg + FE

14

15 bead.a = Fnet/bead.m

16

17 t =90

18 tf =10

19 dt = 8.01

20

21 ~ while t < tf:

22 rate(100)

23

24 bead.pos = bead.pos + bead.v*dt
25 bead.v = bead.v + bead.a*dt
26

27 t=1t+dt

Figure 2.2: A program illustrating that the basic control structure and integration algorithm
are pre-written so that students can focus on the computational force model that must be
constructed in line 11.

and using their built-in editor to solve the associated differential equation (see Fig. 2.3).
Only a small amount of modification is needed, reducing the load on novice programmers —
something shared with the VPython programs of PER [29].

Another implementation of computation, frequently used today, are the Physics Edu-
cation Technology (PhET) simulations [30]. These simulations have realistic graphics that
display buttons, sliders, and knobs that can be graphically tweaked to change parameters
in a system. This type of testing — searching for the effect on a physical system with the
variation in a parameter — is meant to be more engaging and conducive to learning. For
example, the PhET simulation shown in Fig. 2.4 is meant to demonstrate the dependence of
a pendulum’s motion (e.g., its period or amplitude of oscillation) on the various parameters

of the system (e.g., the length of the pendulum or the magnitude of friction). Being able to

13

C‘Easv Java Simulations - C:\Ejs\Simulations\Pend | _]D] xl

© Introduction © Model ® View _ITI_I . —H_I =

Trea of Flamants Flamants for tha view
=8 Simulation View r Containers:
¢ = mainFrame = O =
¢ O panel
@ [panelBulluns L Ol 'k: E'
= Play Rasic:
= Pause coWoe 3o omom
=i Step
= Reset A I & =g
@ [panelFields b
QEdiawith‘éﬂel s " Jd T @ @
N = -
® Dbob iR
) v o
. velocity - | //: ﬁ
T @

i

You will receive output messages here

ile succesiully read CAEjs\Simulzalions\Pendulum xml

Figure 2.3: Graphical user interface for an EJS illustrating the “drag-and-drop” nature of
the software. Elements (e.g., a pendulum bob) can be added or removed from the different
panels (e.g., the drawing panel) in the simulation view.

hold one parameter constant while varying the other helps students to confidently identify
its qualitative effect.

Finally, one of the most recent implementations of computation at the introductory level
is called Glowscript [9]. Glowscript is an on-line Integrated Development Environment (IDE)
using VPython which is designed, in part, to easily generate three-dimensional visualizations.
For example, the rather complicated Glowscript program shown in Fig. 2.5 uses an inverse-
square electric field model with “for” and “if” loops to generate a visual representation of the
electric vector field at any point in space surrounding a discrete charge distribution.

This more realistic and descriptive three-dimensional visualization leveraged by Glowscript
and VPython is thought to encourage students to form a deeper understanding of the un-
derlying physics concepts. Although many different implementations of computation exist

[19, 20, 30, 9], research focusing on improving those implementations in PER is still lacking.

14

]

0.70m

T

Length 1

l'i'_“_:IEI

Mass 1 1.00 kg

@ 01 15 @

Gravity
Hone Lots
Eath | ¥ |
Friction
Hone Lots

n.I_I_A_A_LA_A_A_I_l

[Ruler
L o D® & ®©

Figure 2.4: A PhET simulation illustrating the dependence of pendulum motion on the length
of the pendulum, the mass of the pendulum bob, the magnitude of the local acceleration
due to the gravity, and any frictional forces.

GlowScript 2.7 VPython

scale = 4e-14/1e17
ec = 1.6e-19 # electron charge
kel = 9e9 # Coulomb constant
scene.range = 2e-13

charges = [sphere(pos=vector(-1e-13,0,0), Q=ec, color=color.red, size=1.2e-14x%
sphere(pos=vector(1e-13,0,0), Q=-ec, color=color.blue, size=1.2e-14%*

s = "Click or drag to plot an electric field vector produced by the two charges.\n
s += "On a touch screen, tap, or press and hold, then drag.\n"

s += "Arrows representing the field are bluer if low magnitude, redder if high."
scene.caption = s

def getfield(p):
f = vec(0,0,0)
for ¢ in charges:
f =f + (p-c.pos) * kel * c.Q / mag(p-c.pos)#*3
return f
def mouse_to_field(a)
p = scene.mouse.pos
f = getfield(p)
m = mag(f)
red = max(1-1e17/m, 0)
blue = min(1e17/m, 1)
if red >= blue:
blue = blue/red
red = 1.0
else:
red = red/blue

Click or drag to plot an electric field vector produced by the two charges.
On a touch screen, tap, or press and hold, then drag.
Arrows representing the field are bluer if low magnitude, redder if high.

o

Figure 2.5: Glowscript output demonstrating its ability to generate three-dimensional visu-
alizations of objects, vectors, and graphs. The ability to quickly and accurately generate
three-dimensional vectors allows for more flexibility and a deeper understanding of electric

fields.

15

Some of the critical results, though, are described below.

2.2.2 Prior findings

In the early 2000s, Chabay began to research the integration of computation into the in-
troductory calculus-based physics course using VPython [9]. This course included a com-
putational curriculum following that presented by Matter and Interactions. Primarily, the
courses studied by Chabay focused on the application of the integral equation governing
the linear motion of objects (i.e., dp’ = Flet dt and dF = p/mdt). These equations were
applied iteratively through an Euler-Cromer style integration algorithm, and allowed a more
thorough analysis of position-dependent forces (e.g., the spring force).

Chabay found that one of the positive aspects of including computation at the introduc-
tory level was to stimulate creativity in students [9]. This creativity in approaching problem
solving is thought to lead students to the construction of more realistic computational mod-
els. In other words, computation allows students to easily verify and/or modify a model,
encouraging creativity and an “educated guess and check” approach to problem solving.

She also found that requiring students to program at the introductory physics level was
a difficult barrier to overcome. Given that there is so much content to be covered in so little
time in most introductory physics courses, finding the room/time to discuss the basics of
programming is difficult. One of the ways in which this difficulty is overcome is by providing
Minimally Working Programs (MWPs) to students. The MWP for a particular problem
usually runs without error from the start, and requires small (or at least localized) changes
to the underlying computational models. For example, see the MWP in Fig. 2.7 and its
different components.

Around that same time, Kohlmyer dug deeper into student performance [10]. He found

16

that, among other things, computational modeling students struggled to recognize that com-
puters could even be used to solve physics problems. Furthermore, once they did decide to
use a computer, they struggled with the concepts and components of creating a computa-
tional model. These results were generated from two experiments: looking at how students
approach novel problems with computation and looking at the differences in the fundamental
principles used as compared to traditional (i.e., a non-computational curriculum) students.
Interestingly, he found that students decided to take advantage of the Euler-Cromer style
integration in discrete form even when they weren’t using a computational model. That is,
students made use of the key conceptual tool that they were taught — even if just on paper.

He also found that the complex procedure needed to model attractive position-dependent
forces was a difficult challenge for students. Reducing this and other difficulties can be
achieved through increasing the frequency of computation throughout the course or requiring
computational homework problems. However, Kohlmyer made explicit the wide variety of
unanswered questions that could be pursued in further research, hinting that the process
of “making assumptions” and incorporating them into a computational model would be of
particular interest.

In 2011, Weatherford began to look at integrating computation into the physics lab
curriculum and the sense-making that students engage in [29]. His study was an in-depth
qualitative analysis of group problem solving, focusing on three different contexts: a scat-
tering problem, a spring-mass problem, and a spacecraft-Earth problem. A coding scheme
was developed to help categorize different portions of transcript, as shown in Fig. 2.6.

He found, among other things, that computational physics students were able to reason-
ably interpret physical quantities according to their variable name. For example, the mass

of a satellite might be defined as m.satellite = 1, or the net force acting on an object may

17

ihlboard i 1 from _.futun‘a_ import diw
{ Prediction ! 12 from visual import *
I i 13 scene.width =800
i E E 14 scene.height = 800
Co | H5 #CONSTANTS
el — - 16 G = 6.7e-11
P i 47 mEarth = 6e24
i ; 18 mcraft = 15e3
— 5 H9 deltat = 60
=" z H10 #OBJECTS AND INITIAL VALUE
E E H11l Earth = sphere (pos=vector
i : 112 craft = sphere (pos=vector (
T E \ 413 vcraft = vector(0,2e3,0)
i E E 414 pcraft = mcraft*vcraft
— ! H15 trail = curve(color=craft.
% E::x:i?:rpret : : : H16 t=20
ZooSey b H17 while t < 10%365%24*60%60:
E:;:zmrmt - E E E H18 rate (100)
— 4 H19 craft.pos = craft.pos
i E i 120 trail.append (pos=craft.
] 1 1 TRy fam—ra— b H21 t = t+deltat
175 195 205 235 255
Lab Time (s)
@ Logistics
149 Sensemaking
® Off-Task
0 141 281 422 562

Lab Time(s)

Figure 2.6: A sample of the in-depth analysis Weatherford performed. Each particular line
of code that the group is focusing on is tracked in time and coded according to a researcher-
developed scheme.

18

be defined as Fnet = vector(0,-m*g,0). These pre-written variables are named so as to
suggest to the students what physical quantity they represent. However, the more compli-
cated the definitions get (e.g., a function of multiple variables like Fnet = -k * (ball.pos
- origin.pos) / mag(L), the more students struggled at recognizing it.

Additionally, Weatherford was able to encourage students to begin to incorporate a com-
putational model in a MWP by providing a minimum level of support. That is, only omitting
the fundamental physics calculations that students are meant to engage with (e.g., various
computational force models) helps to keep students focused on the physics. Other tasks
that are not physical in nature have a tendency to derail the physics discussion and the
problem solving process in general. For example, ensuring that the end of a spring is con-
nected to the end of a mass in a computational spring-mass analysis begins to overshadow
the more fundamental task of incorporating/constructing a position-dependent linear spring
force. Similarly, figuring out how to use the mag() function in Python can sidetrack the
ultimate goal of constructing a position dependent gravitational force.

Weatherford clearly pointed out that the MWP activities in their study had much room
for improvement, and that more research was needed on fostering student proficiency in
computational physics. The sequence of MWPs in his study didn’t quite raise students’
program comprehension and program interpretation skills to a certain proficiency, but he
believes that more research will shed light on the subject.

In 2011, Caballero was able to identify a number of frequent student mistakes with a
satellite-Earth MWP, shown in Fig. 2.7, that were grouped into three different categories:
initial condition mistakes, force calculation mistakes, and second law mistakes [31]. An initial
condition mistake might take the form of an incorrect initial velocity or momentum of the

satellite. A force calculation mistake might manifest in a constant spring force rather than

19

19 * while t <tf:

20

21 r = craft.pos-Earth.pos

22 rhat - r/mag(r) Force calculation
23 Fgrav = -G*mEarth*mcraftt/mag(r)**2*rhat

24

25 pcraftt = pcraft + Fgrav®dt Newton's second law
26 craft.pos = craft.pos + pcraft/mcraft®dt Position update
27

28 trail.append(pos = craft.pos)

29 t =1t + dt

30

31 print 'Craft final position: ', craft.pos, 'meters.’

Figure 2.7: An expected solution to a computational satellite-Earth problem where the New-
tonian gravitational force has been constructed from a separation vector and its magnitude.
The force calculation has been incorporated into the momentum through Newton’s second
law, and the momentum is incorporated into the position through a position update.

a position dependent spring force. A second law mistake might involve missing the division
of the mass from the net force on an object so that the velocity is correctly updated accord-
ing to the acceleration. These frequent mistakes result in both unexpected and physically
inaccurate visualizations.

Based on his analysis of the satellite-Earth problem, Caballero concluded that the major-
ity of students (~ 60 %) were able to correctly computationally model novel physics problems
and that, among other things, the practice of debugging would serve students well. Partic-
ularly, the act of troubleshooting syntax errors as well as the act of troubleshooting physics

errors.

2.2.3 Remaining questions

Although many aspects of computation and computational thinking at the introductory
level have been studied, there are still many unanswered questions within physics educa-

tion. Particularly, as to the types of practices students are engaging in that are indicative of

20

computational thinking. More research is needed to not only more clearly define the com-
putational practices observed in introductory physics, but also to more clearly understand
the habits of mind and types of thinking that students are engaging in. This thesis attempts
to provide clear and precise definitions of the various practices, indicative of computational

thinking, that students engage in within introductory physics.

2.3 Framework

Recently, a framework for identifying the computational practices that are indicative of com-
putational thinking has been proposed by Weintrop et. al [7]. This framework was developed
using existing literature on computational thinking, interviews with mathematicians and sci-
entists, and computational activities from general science and mathematics classrooms.

In order to develop their framework, a literature review was performed to generate an
initial set of 10 math and science practices. These initial practices are repeatedly cited
by Weintrop et. al as being central to computational thinking. For example, the broad
and repeatedly cited practice of generating algorithmic solutions might require a student to
engage with a differential equation algorithm. These broad initial practices were used to
guide the subsequent qualitative analysis.

Using the initial practices resulting from the literature review, two reviewers indepen-
dently coded for the various “facets” of computational thinking that were required by the
curricular materials. They analyzed 32 different computational activities from chemistry to
programming, resulting in 208 facets which were grouped into 45 different practices.

Next, a review process incorporating feedback from multiple sources (e.g., teachers, con-

tent experts, and curriculum designers) was used to reduce the 45 practices into 27, which

21

were further organized into 5 different categories. Further, external interviews were con-
ducted with 16 K-12 science and mathematics teachers, helping to reduce the 27 practices

into 22 fitting 4 different categories, summarized in Tab. 2.1.

Data Modeling Solving Systems
Creating Concepts Preparing Investigating
Collecting Testing Programming Understanding
Manipulating Assessing Choosing Thinking
Creating Communicating

Debugging Defining

Table 2.1: The framework developed by Weintrop et. al to describe the computational
practices observed in science and mathematics classrooms. Each category contains between
five and seven individual practices, and each practice has between two and seven fundamental
characteristics.

Finally, 15 interviews with STEM professionals were conducted to rate their framework
according to its applicability to authentic professional practices and to give direction for
future improvement. For example, interviews showed that the practice of testing and debug-
ging was a crucial practice (see Sec. 2.7) that was not adequately captured by the framework
— an improvement that should be made on future iterations of the framework.

The four different categories of practices are labeled as data, modeling and simulation,
computational problem solving, and systems thinking practices. The data practices focus
mostly on the creation and visualization of data. The modeling and simulation practices
focus mostly on the design, construction, and assessment of a computational model. The
problem solving practices focus mostly on programming and debugging, while the systems
thinking practices are more abstract and focus mostly on the structure of the program itself.

As a more concrete example, the computational practice of creating data, one of the data
practices, has three fundamental characteristics: the creation of a set of data, an articulation

of the underlying algorithm, and a use of the data to advance understanding of a concept.

22

The more of the characteristics that we observe in a particular situation, the more confident
we are that that situation can be classified as that practice.

Although each practice is defined like this, according to Weintrop et. al, the characteris-
tics themselves are rather vague — similar to the operational definitions from the NGSS. For
example, the computational practice of assessing computational models requires the iden-
tification of a phenomenon, a computational model, and a comparison made between the
two. Although it is clear what a comparison would look like in any situation, the phenomena
studied and the models used will depend greatly on the context (see Ch. 3). For this rea-
son, more work must be done to clearly define computational thinking within introductory
physics classrooms.

Ultimately, Weintrop found three main benefits to including computation: it builds on
the reciprocal relationship between computational thinking and STEM domains, it engages
learners as well as instructors, and it introduces an authentic and modern element of doing
science. However, he is clear to indicate that more research is needed to better address
the challenge of educating a technologically and scientifically savvy population. This thesis
attempts to improve that education process by providing clear and precise definitions with
examples of the computational practices that are indicative of computational thinking at the
introductory physics level. Accordingly, we have used both a task and thematic analysis,

described in the sections that follow, to facilitate those clear and precise definitions.

2.4 Task analysis

A task analysis is a procedure that can be used to better understand the requirements of a

particular task and the way an “operator” (or group of operators) might work to satisfy those

23

requirements [32]. This type of task analysis is usually focused on the observable actions
that an operator might engage in while working toward a particular goal (e.g., producing a
graph or diagram), but there is also a strong cognitive link between the observed actions and
the requirements of the task [33]. This indispensable type of procedure helped us to focus
on the most important steps that students were taking while solving problems.

Before beginning a task analysis, data must first be collected. Often, the method for
data collection is observation based (e.g., observing the actions of a group of operators as
they carry out a task), although data can also be subject based (e.g., asking an expert what
the ideal actions would be to carry out a task). Either way, the task itself generally guides
the collection of data.

Once the data has been collected, there are different types of descriptions that can be
attached to it and different techniques that can be used to generate them. For example,
one of the techniques frequently used is to chart and network the data. These descriptions
can be written, but are most often presented visually through information flow charts or
Murphy diagrams. This thesis leverages a technique for generating an organized hierarchy
of description of the data: complex tasks are broken down into multiple smaller but more
manageable tasks.

This type of task analysis is frequently used in the fields of mathematics and computer
science [34, 35, 36, 37]. The smaller but more manageable sub-tasks are the “unit of analysis”
that can then be searched for within data. For example, an expert group might proceed in
predicting the motion of an object by first constructing an Euler-Cromer style algorithm,
constructing the various forces, and then constructing the initial parameters of the system.
These steps can be done in any order, but are all necessary to the overarching task.

This type of process was used by Catrambone to show that breaking a problem down

24

into smaller but more manageable sub-tasks helps students to transfer knowledge to new and
novel problems [34]|. He believes that it is a hierarchical structure of tasks rather than a linear
structure of tasks that students need to transfer knowledge to new and novel situations. The

flexibility of a hierarchical structure is thought to support a more expert approach to solving

problems.
Step (Sub-Task) Associated Code
Construct separation vector sep = obj2.pos
between interacting objects - objl.pos
Construct the unit vector usep = sep/mag(sep)
Construct the net force Fnet — -G*m1*m2*usep
vector /mag(sep)**2

Integrate the net force over obj.p = obj.p + Fnet*dt
time into momentum

Table 2.2: Some of the necessary steps that must be taken when constructing a Newtonian
gravitational force in code. Each step is associated with the construction/modification of a
line of code.

Catrambone performed three experiments, each focusing on how students transfer knowl-
edge to new and novel problems. The first experiment was a comparison between the mean-
ingfulness of a label’s name. He found that the more meaningful the label was, the better
prepared students were to solve new and novel problems. The second was a deeper study
of the connections between labels and sub-tasks. He found, to a reasonable degree, that
there was a fundamental connection between labels, sub-tasks, and how they were grouped.
The third was a talk-aloud study that looked at self-explanation while solving problems. He
found that aptly named labels could be used to cue students to group sub-tasks and explain
their purpose through self-explanation.

Although we have used the concept of a task analysis to help focus on specific aspects
of our data, we have not used it in the same way as Catrambone. There are a myriad of

expected and unexpected tasks that students engage in while solving a particular problem

25

in any type of classroom. For example, taking the time to name a variable with meaning,
working to construct a multiple-variable function, or changing the color of an object within
a program. Given the almost limitless number of tasks that might draw students’ (and
our) attention, the task analysis was used to reduce the initial set of tasks that we focused
our attention on. This initial set of tasks was modified and expanded during subsequent
qualitative analysis (see Sec. 2.5).

The task analysis of the problem that this thesis focuses on was initially constructed
by a single content expert. After the first iteration it was presented to additional experts.
Through the discussions surrounding these iterations, it became clear that the construction
of the position dependent Newtonian gravitational force in code is a multi-step procedure
involving a number of different sub-tasks. The task analysis was iteratively refined through
this process until all experts agreed that the sub-tasks shown in Tab. 2.2 were sufficiently
described /defined to be useful in video analysis.

On top of this expert generated solution, there are many other (both expected and
unexpected) student generated solutions that we observe in the data. However, the expert
generated solution is an ideal path to follow and so the instructors try to keep groups moving
in this direction. For example, a sufficient force model can be constructed in terms of the
polar and azimuthal angle of the satellite, although it requires a substantial amount of work
to code. Both the expert and student generated solutions are a good place to look for

evidence of computational thinking and its accompanying practices.

26

2.5 Thematic analysis

Thematic analysis is a commonly used type of qualitative analysis that is commonly used
within psychology. However, Braun makes the well-supported case that thematic analysis
can effectively be used in many other fields (e.g., nursing or physics education) and clearly
defines the sufficient steps that can be taken in order to complete a reasonably reliable and
valid thematic analysis [38, 39, 40, 41, 42, 43, 44].

Within PER, thematic analysis is usually used for analyzing interview or work-aloud
data of students solving problems. For example, Irving found that there were many different
themes that came from the various perceptions students have about what it means to “be a
physicist” [45]. These themes were then broken down into 12 sub-categories (e.g., high or low
interest in research), highlighting the different perceptions students had about what it means
to “do physics.” This type of analysis, as demonstrated by Irving, can be used to generate
robust themes that can be used to inform instructional changes/improve instruction.

However, thematic analysis is just one of many qualitative techniques that can be used to
analyze qualitative data. The various qualitative methodologies can be broken into roughly
two main types: those strongly tied to a theory/epistemology and those that are developed
independent of a guiding theory/epistemology. Thematic analysis, according to Braun, is
of the second type. So as to guard against the often cited critique of thematic analysis as
being ill-defined [44], Braun presents a method to conducting a reliable and valid thematic
analysis.

This method consists of 6 different phases, usually followed linearly, to finally produce
a report (e.g., a thematic map) of the various themes and their relationships within a set

of qualitative data. However, before entering the first of the 6 phases, there are a few

27

fundamental decisions that must be made and explicitly stated. Ideally, these decisions will
be made in relation to the research question and the goal of the study.

First, it is crucial that researchers explicitly state the metric by which they plan to
identify themes. For example, a theme that shows up more frequently is not necessarily
more important. Additionally, a theme that shows up less frequently is not necessarily less
important. Rather, it is important to be consistent throughout analysis. This thesis mostly
focuses on the more frequent themes, but consideration is also given to themes that are
particularly illustrative yet infrequent.

Second, researchers must decide between a rich description of the entire data set or a
more detailed account of a particular sub-set. For example, within physics education, you
might be interested in a rough description of the entire process that a group followed to
successfully solve a complicated problem. Alternatively, you might want to focus in on a
particular sub-task and its nuance. This thesis focuses on a more detailed account of a
particular sub-set of the themes (i.e., those involving computational thinking).

Third, researchers must decide between an inductive and a more theoretical approach to
the generation of themes within their data. An inductive approach often leads to themes that
are not related to the original research questions, but rather are emergent during analysis and
are more strongly tied to the data itself. A theoretical approach, on the other hand, often
leads to a set of themes that are less descriptive but are better suited to answer a particular
research question. This thesis follows a more theoretical approach, using the theoretical
framework presented in Sec. 2.1 as a foundation for the generation of our themes.

Fourth, researchers must decide whether they will be looking for semantic or latent
themes within their data. Semantic themes are those that are clearly indicated within

the data, whereas latent themes often go beyond what is actually being observed. For

28

example, within physics education, a group of students might be struggling with a particular
problem. The reason for this struggle might otherwise go unnoticed without looking beyond
the immediate and recognizing that each student had a late and mentally taxing chemistry
exam the previous night. Usually a thematic analysis focuses on one level — this thesis
primarily focuses on the semantic themes that are directly tied to the actions observed
during the problem solving process.

Fifth, researchers must choose between an essentialist and a social constructionist the-
matic analysis. An essentialist thematic analysis allows researchers to theorize student un-
derstanding and meaning in a straightforward way [43, 46]. A social constructionist approach
focuses more on the overarching sociocultural and structural environment that each student
lives within. This thesis focuses on a more essentialist approach, paying special attention to
the computational thinking and habits of mind that students are engaging in.

Once these decisions have been made, the qualitative analysis can proceed through the
6 phases laid out by Braun. The first phase focuses on (1) transcribing and familiarizing
yourself with the data. Reading through the transcripts multiple times helps to generate
preliminary ideas that can be (2) coded for further investigation. Next, each code must be (3)
collated with the corresponding transcript so as to provide a context. After the codes have
been collated with the corresponding transcript, (4) themes begin to emerge. Reviewing
any themes that emerge, particularly against the coded extracts and the transcript as a
whole, leads to the next phase of (5) defining, validating, and naming any themes. These
themes can finally be presented in a (6) scholarly report with step-by-step transcript analysis
and/or a thematic map. A thematic map, like the one shown in Fig. 2.8, shows not only the
components of a theme, but also the relationships between those components.

Braun is clear to point out that there are many pitfalls associate with thematic analysis,

29

computation as asset

power enjoyment

fun

Figure 2.8: A final thematic map showing the components of a theme named “computation
as asset.” The main components of this theme are “power,” “fun”, and “enjoyment.”

and that researchers must be cognizant of them through every phase of the process. For
example, one of the pitfalls she highlights is a possible mismatch between the data and the
analytic claims that are being made. In other words, it is important to always closely tie
your claims to the actual data. This closeness of the claims to the data can be ensured
through frequent inter-rater reliability checks.

As we have shown, thematic analysis is a powerful and flexible qualitative methodology.
Accordingly, this thesis leverages thematic analysis to guide our study of group problem solv-
ing in introductory computational physics with the hopes of highlighting the various practices
students engage in that are indicative of computational thinking. A detailed account of this

process is described in Sec. 5.

30

Chapter 3

Context

It is important to understand the course from which we have collected our data to better
understand the results of our study. That course — called Projects and Practices in Physics
(P3) — is based on a social constructivist theory of learning and a flipped/problem-based
pedagogy [47]. In other words, students familiarize themselves with relevant material before
coming to class, where they will work in small groups to actively and socially construct knowl-
edge while solving complex analytical and computational physics and engineering problems.
The course has intentionally been designed to encourage computational thinking wherever
possible. Specifically, computational thinking has been incorporated into the notes, pre-
and post-class homework, in-class feedback and assessments, and a selection of the in-class

problems.

3.1 Course schedule

Each week in P3, students are expected to accomplish a number of tasks. They must com-
plete the pre-class homework which is based on information that they should gather from
the pre-class notes. They must then work in small groups (usually between three and four
members) on two related analytical problems or a mixture of one analytical and one related
computational. These problems are delivered during the two two-hour weekly meetings (See

Fig. 3.1). For the computational problem, that means reading and interpreting pre-written

31

code (i.e., a minimally working program) while they design, assess, and construct various
computational models. The small group is facilitated by either a course instructor, graduate
teaching assistant, or undergraduate learning assistant who will ask relevant and pertinent
follow-up questions to check for conceptual understanding. There are also post-class home-
work questions based on information gathered from the pre-class notes and the in-class
problems that are due at the end of the week. This all occurs while students simultaneously

prepare for the following week.

3.2 VPython

Given that the vast majority of students enter P3 with little to no prior programming ex-
perience, we need to ensure that they are prepared to handle computational problems early
in the semester. One way that we can ensure this is by requiring students to engage with
the fundamental programming ideas (e.g., iteration through a while loop control structure or
pre-defined mathematical functions) before coming to class through pre-class homework and
notes. These notes and homework questions highlight the fundamental physical and pro-
gramming ideas specific to VPython and the computational problems that will be delivered
in class.

For example, consider the portion of the course notes shown in Fig. 3.1. These notes are
made available to the students at the beginning of the semester and are meant to provide
students with a basic understanding of the utility of VPython along with a list of common
errors that novice programmers must frequently deal with. These notes provide not only a
description of the error, but also a procedure for removing it while students are troubleshoot-

ing code. Troubleshooting and debugging are two of the problem solving practices indicative

32

of computational thinking that we focused our analysis on.

« import CSV data

VPython

VPython is built from the Python programming language. It adds some features that were Pytho n Trou bleshootl ng
traditionally difficult to have Python do. With very little code, VPython can:

« create visual objects in 3 dimensions, « Syntax errors — A syntax error occurs when python is unable to interpret a line of
« animate the motion of objects, and code. This usually occurs because of a simple typo, misspelling, capitalization
= move the visualization around with mouse interactions inconsistency, or incorrect parentheses in the line above.

« Indentation errors — This is caused by an inconsistency in the indentation of the
while loop. To fix this highlight the while loop, click “Format” (on the top bar of the
laptop), click “dedent region”, then use tab to re indent everything that was indented

. to start.

PhySUtll « Float Error: scalar vs. vector — when coding using both scalar and vector values,

keep in mind that you cannot multiply, divided, or put a vector to the power of a

Extensive documentation for VPython is %/ available here.

o . . . number without first taking the magnitude of the vector (to make the vector a scalar
PhysUtil is a module for VPython that makes it simpler to create highly visual simulations.

) value). When putting a value to the power of something the common format for this
With very little code, PhysUtil lets you

is ("#), but in python the format (**#) is used to depict this.
+ Name Error — This error occurs when you are trying to call a variable that has not
already been defined above. To fix this, the line that defines the variable must be
moved above the equation that the variable is being used in. This also occurs if the
defined variable is misspelled.
Type Error — This error is much like a float error. Python will display this error
message when you are trying to do something “strange”. A common reason that we

ann VPythen

see this error in class is from trying to multiply/divide a scaler by a vector.
« Spazzing Graph — When putting in the first line of code it needs to be placed under

* generate motion maps, the #MotionMap/Graph, this is where you indicate the number of lines that you

Figure 3.1: Portion of on-line notes that is made available to the students during the first
week of the course. These notes introduce the fundamental programming ideas and a list of
common errors with tips and tricks.

3.3 Pre-class work

There are other weekly notes, made available to the students at the beginning of every week,
focusing more on the fundamental physical ideas that will be used during class. For example,
during the third week the notes focus on uniform circular motion (most heavily used during
the week’s analytical problem) and the Newtonian gravitational force (most heavily used
during the week’s computational problem).

Aside from notes, material is also delivered to the students through weekly pre-class
homework questions. Consider the pre-class homework question shown in Fig. 3.2 that is
made available at the beginning of the third week of the course. This question is meant
to demonstrate that there are multiple correct ways that a unit vector can be constructed

in code. Given the nature of the corresponding week’s computational problem, we expect

33

students to be able to draw on and take advantage of this knowledge when faced with a
related albeit more complicated problem in class. That is, we expect students to be choosing
between competing solutions. Choosing between competing solutions is a problem solving

practice indicative of computational thinking that we focused our analysis on.

9. Calculating a unit vector in VPython

Students in your class are continuing to model the motion of Triton (one of
Neptune's 13 moons) around Neptune, but now using VPython. The code
your class has received contains the following snippet of VPython code.

Neptune = sphere (pos=vector (100,200,300), radius=1
Trion = sphere (pos=vector (10,20,30), radius=2)

(a) From this snippet, which of the following lines of code might your group
write to describe the separation vector pointing from Neptun to Triton?

rvec Triton.pos - Neptune.pos

rvec = Neptune.pos - Triton.pos

(b) Several groups have written different lines of code to calculate the
magnitude of the separation vector; some are correct and some are not.
From your understanding of the line(s) of code below, which of them
correctly represent the magnitude of the separation vector?

rmag = mag (Neptune.pos) - mag(Triton.pos)

rmag = mag (Triton.pos - Neptune.pos)

rmag = sqrt((Triton.pos.x - Neptune.pos.x)**2
+(Triton.pos.y - Neptune.pos.y) **2
+(Triton.pos.z - Neptune.pos.z)**2)

rmag sqgrt ((Neptune.pos.x - Triton.pos.x)**2
+ (Neptune.pos.y - Triton.pos.y)**2
+ (Neptune.pos.z - Triton.pos.z)**2)

rmag = mag (Neptune.pos - Triton.pos)

rmag = mag (Triton.pos) - mag (Neptune.pos)

Figure 3.2: Pre-class homework question focusing on the different ways that the magnitude
of a vector can be constructed in VPython code: explicitly coding the square root of the sum
of the squares of the components and using the pre-defined Python “magnitude” function.

3.4 In-class work

There are a number of in-class computational problems spread out throughout the semester,
scheduled in Tab. 3.1. The first few computational problems focus on different force models
(i.e., no force, a constant force, a non-constant force) and the resulting motion of objects.

The last few computational problems focus on extended objects and their rotation. While

34

Monday Tuesday Thursday Sunday
W1 Pre-H1 due Al: constant velocity motion C1: constant velocity motion Post-H1 due
W2 Pre-H2 due A2: constant acceleration motion C2: projectile motion Post-H2 due
W3 Pre-H3 due A3: Satellite orbit C3: Newtonian gravitational force | Post-H3 due
W4 Pre-H4 due Ada: Spring force A4db: Young’s modulus Post-H4 due
W5 Pre-H5 due Aba: Friction Abb: Friction Post-H5 due
W6 Pre-H6 due A6a: Circular motion A6b: Circular motion Post-H6 due
W7 Pre-H7 due A7a: Gravitational potential energy | AT7b: Spring potential energy Post-H7 due
W8 Pre-H8 due A8: Energy C4: Energy Post-H8 due
W9 Pre-H9 due A9a: Heat A9b: Thermal energy Post-H9 due
W10 | Pre-H10 due | AlOa: Rolling motion A10b: Rotational energy Post-H10 due
W11 | Pre-H11 due | All: Elastic collisions Cb: Inelastic collisions Post-H11 due
W12 | Pre-H12 due | Al2a: Statics A12b: gears Post-H12 due
W13 | Pre-H13 due | Al3: Angular momentum C6: Angular momentum Post-H13 due
W14 | Pre-H14 due | Al4: Angular collisions CT7: Angular collisions Post-H14 due
W15 | Pre-H15 due | Alba: Choose your own adventure Alb5a: Choose your own adventure | Post-H15 due

Table 3.1: A schedule for the semester focusing on topics covered, homework /reading dead-

lines, and in-class problems.

solving these problems, groups are expected to engage in a number of practices that the

problems have been designed around [5]:

P1. developing and using models,

P2.

P3.

P4.

P5.

P6.

P7.

planning and carrying out investigations,

analyzing and interpreting data,

constructing explanations,

engaging in argument from evidence.

using mathematics and computational thinking,

and obtaining, evaluating, and communicating information.

One of the scientific practices used heavily on both analytic and computation days is that
of (P1) developing and using models. Whether those models be mathematical or computa-
tional, we expect students to not only work together in groups to develop the model, but

also to utilize that model in further investigations. This type of scientific practice (P1) and

35

its associated learning goals [47] were further used to generate the in-class project that this

thesis focuses on.

3.4.1 Analytic problem

In the third week of the course, students are asked to analyze the motion of a satellite
orbiting Earth both analytically and computationally. For the analytic day, the groups were
asked to solve for the magnitude of the velocity and radius needed by a satellite to be held in
a geostationary orbit. This involves identifying two relevant equations in two unknowns and
combining them to solve for the desired radius and magnitude of velocity. The information
gathered during this problem can be used in the following computational problem, and the

group facilitators are often observed referencing this information.

3.4.2 Computational problem

This thesis focuses on the third and most complicated computational problem delivered
to the students, shown in both Figs. 3.1 and 3.3. Given its complexity, we developed a
framework to help guide and ground our analysis. This framework was constructed with
the help of a task analysis (see Sec. 2.4) of the problem. Ultimately, students must design,
construct, and asses a computational model for the Newtonian gravitational force acting on
a satellite in geostationary and other more general orbits.

Once the correct force has been correctly coded, the group must also grapple with adding
in a visualization of a vector representing the force that they have just added. This type
of motion diagram is meant to show that the gravitational force vector resulting in the

orbit always points radially inward (toward the Earth). This task requires students to

36

Project 3: Part B: Geostationary orbit

Carver is impressed with your work, but remains unconvinced by your predictions. He has asked you to write a simulation that models the orbit of the satellite. To truly convince
Carver, the simulation should include representations of the net force acting on the spacecraft, which has a mass of 15 x 10° kg. Your simulation should be generalized enough
to model other types of orbits including elliptical ones.

Code for Project 3: Part B
& Keep them in the same directory.
= gaProject 3 Code (satellite.py)
o PhysUtil Module

Figure 3.3: The Newtonian gravitational force problem statement delivered to the students
in the third week of class.

program as well as allows them to more easily check their conceptual understanding. Using
computational models to understand a concept is a computational modeling and simulation
practice that is indicative of computation thinking, and one that we focused our analysis on.

Additionally, in order to check that their model can produce a geostationary orbit, groups
are asked to generate a graph showing the magnitude of the separation between the satellite
and the center of the Earth vs. time. This allows them to check for a constant distance
which implies a circular orbit. This task of producing a graph is meant, among other things,
to encourage students to visualize data, yet another computational practice indicative of

computational thinking.

3.4.2.1 Minimally working programs

While beginning the problem, the group uses a Minimally Working Program (MWP) similar
to those seen in the two previous computational problems listed in Tab. 3.1. This MWP
has all of the structure of the code correct (the while/calculation loop and the Euler-Cromer
integration) but is missing the computational force acting on the satellite (along with some
inaccurate numerical values). The initial MWP code with its initial visualization are shown
in Fig. 3.4.

Thus, the main task of the group is to construct a physically correct force model in code.

37

#Window setup
scene.range=7E7

#0bjects
Earth = sphere(pos=vector(e,0,0), radius=6.4e6)
Satellite = sphere(pos=vector(7*Earth.radius, ©,0), radius=1e6)

[RN RV, VU N

#Parameters and Initial Conditions
9 mSatellite = 1

1@ pSatellite = vector(®e,5000,0)
12 #Time and time step

13 t =0

14 tf

15 dt

= 60%60°24
=1

17 #Calculation Loop
18 ~ while t < tf:

19 rate(160000)

20

21 Fnet = vector(0,9,0)

22

23 psatellite = psSatellite + Fnet*dt

24 satellite.pos = Satellite.pos + (pSatellite/mSatellite)*dt
25

26 t=1t+dt

27

28 #Earth Rotation (IGNORE)

29 theta = 7.29e-5%dt

30 Earth.rotate(angle=theta, axis=vector(e,0,1), origin=Earth.pos)

Figure 3.4: The initial code and visualization of the MWP that is given to the students in
the third week of the course.

Secondarily, they must modify numerical values to reflect the phenomenon being modeled.
Ideally, this force model will be of a Newtonian gravitational form (i.e., Fg ~ 1/r2) with
a direction coded in terms of a separation vector (i.e., Fg ~ # ~ 7/r). However, there are
many other ways to go about this, and we do frequently observe groups working with other

models (e.g., a centripetal force).

3.4.2.2 Tutor questions

There are a number of pre-written tutor questions as well as many on-the-fly questions
generated by the tutors while in class. These questions are meant to check the students
for conceptual understanding as well as to direct students toward the correct solution. For
example, the tutor questions shown in Fig. 3.5 are meant to ensure that the model the group
has constructed is actually general enough to generate all types of elliptical orbits given
various initial conditions.

On the other hand, a tutor interaction like the one shown below that happens on-the-fly

38

Tutor Questions:

* Question: How can you prove that the orbit is actually circular?
* Expected Answer:

Aside from just eyeballing it, we can add in a graph of the distance from the
center of Earth!

#MotionMap/Graph
separationGraph = PhysGraph(numPlots=1

#Calculation Loop
separationGraph.plot(t,mag(Satellite.pos

Question: Can you simulate other trajectories with your program?
Expected Answer: We can change the initial conditions of radius and
velocity to show this.

i

Question: Can you use your program to demonstrate your answer
from Tuesday about the dependence on mass?

Expected Answer: Yes, changing the mass doesn't change its
motion.

Question: What does dt stand for? What happens if you make it
bigger? What is going on here? (Remember when
increasing/decreasing dt you must accordingly decrease/increase the
rate by the same factor.)

Expected Answer: It is the step in time that passes every loop of the
calculation loop. Increasing the time step makes for a “rougher”
approximation to the real world phenomenon.

Figure 3.5: A selection of tutor questions that focus on the computational model each group
has constructed.

might encourage students to use a more general force rather than a more restricted one:

TA: You guys wanna talk about what your strategy is at the moment?

SB: I don’t think we know.

SA: We just, we need to figure out how to get the velocity of the spacecraft correct, as well

as the force net correct, and then it should be fine...

TA: Yeah, my request, can I point in your program that’s what you have for F net now

constant components.

TA: My request is to use a completely different strategy where that formula [points to

39

GmM /r? on the board| is in for Fnet.
SC: Yeah, we tried to make that, yeah...
SA: Can we just put the number in?

TA: Umm, in principle you could, but I'd really rather you not... I would like the program
to be able to respond if the satellite is father away, so the force would be less, if the

satellite is closer the force would be more...
TA: So I would like it to be a dynamic program and not one that always have a fixed force.

In this on-the-fly interaction, the question of weather or not their computational model will
be able to handle all types of orbits is enough to indicate that the group needs to switch
their model up. In this way, the tutor is able to make sure the groups stay on the desired

path without directly telling them exactly what to do.

3.4.3 Feedback/Assessment

Groups are assessed on many levels in P3. One of the most important forms of assessment is
given weekly, in the form of written feedback and a numerical score. The written feedback
is based on the observed in-class performance and is designed to point out deficiencies and
suggests ways to improve. The numerical scoring is based on performance in three categories:
group understanding, group focus, and individual understanding.

Often the written feedback pertains to group activity with the computer. For example,
the portion of written feedback shown in Fig. 3.6 is encouraging a student to allow other

group members to do some of the typing. This could be requested for any number of reasons

40

— most likely, though, because the students with less prior programming experience are not

being given a chance to participate.

Feedback Group . Group Individua!
Understanding Focus Understanding
Doug, first and foremost let me say good job on working 3.25 35 3.25

through a very difficult problem on Thursday. If you
remember last feedback, we had hoped to see you plyaing
more of an overseer role with VPython. Although we
definitely saw more group involvement, not many other
hands were doing the typing. Itis going to be important that
others have a chance at typing! For the future, try to use
your familiarity with the computer to play more of a guiding
role. As a post script, this will be your last feedback before
our first exam. A few tips for success: it might be a good
idea to have a designated scribe to make sure things are
being written down in an organized and coherent manner.

Also, don't forget to play what you are doing... Good luck!

Figure 3.6: A snippet of written feedback given to a student after the third week.

In this way, instructors can encourage their groups to share the programming load. While
doing the typing, it is very difficult to follow along without knowing exactly what is going

on. This helps to engage all of the students with the material.

3.5 Post-class work

There are a number of post-class homework questions that are meant to reinforce the physics
and computational concepts seen in class. During the third week of the course, these ques-
tions focus mostly on the Newtonian gravitational force. However, the post-class homework
question shown in Fig. 3.7 that is delivered in the third week focuses on the previous week’s
computational problem (i.e., it involves a local gravitational force as opposed to a Newtonian
gravitational force). Nevertheless, this post-class question involves the same Euler-Cromer
style of numerical integration as seen in all computational problems. The students are ex-

pected to use the error message in order to identify an error in the code.

41

for +: 'vector' and

The program as written appears below.

from visual import *

car = box (pos=vector(-120,0,0), size=(4.7,1.9,1),
color=color.red)

ground = box (pos=vector(0,-1,0), size=(300,1,1),
color=color.green)

mcar = 1050
vcar = 8.65
t =20

dt = 0.01

while t < 0.6:
rate (150)

car.pos = car.pos + vcar*dt

Identify the error(s) in your program, indicate which line(s) should be
changed, and write the line(s) that should be changed below:

Figure 3.7: A portion of a post-class homework question delivered in the third week of the
course. This question requires students to troubleshoot and debug the code.

This type of problem helps to encourage students to identify, isolate, reproduce, and
correct unexpected problems that arise while constructing computational models. Ideally, it
requires students to interpret the names given to the variables being used and verify that

they are defined in a correct form.

42

Chapter 4

Motivation

Aside from a general interest in introductory computational physics, it is important to un-
derstand the underlying motivation(s) for this thesis. Sections from the following chapter,
detailing some of those motivations, were published in the proceedings of the 2015 Physics
Education Research Conference [4], and are presented here with minor modifications from
their appearance in publication. It was published with second and third authors Paul W.
Irving and Marcos D. Caballero, respectively.

The process of identifying an interesting computational practice, described in Sec. 4.1,
was the earliest motivation for this study. We found that it was extremely difficult to define
and identify the particular practice of what we named “physics debugging.” Not only did the
practice need to be clearly defined, it also needed to be clearly identified in the data. This
required a lot of in-depth qualitative analysis and inter-rater reliability, motivating our use
of the Weintrop framework and the qualitative methods of Clarke et. al.

Additionally, we found that it was very difficult to understand the qualitatively differ-
ent ways in which students experienced computational introductory physics. This difficulty
motivated a task analysis with a focus on identifying practices that the students were en-
gaging in through in-class observation, as opposed to their experiences through out-of-class

interviews.

43

Figure 4.1: Interactions between individuals form a group, and the group interacts with the
computer.

4.1 Debugging

In this section, we present a case study of a group of students immersed in this P3 environ-
ment solving a computational problem. This problem requires the translation of a number of
fundamental physics principles into computer code. Our analysis consists of qualitative ob-
servations in an attempt to describe, rather than generalize, the computational interactions,
debugging strategies, and learning opportunities unique to this novel environment.

We focus this case study on the interactions between group and computer, illustrated in
Fig. 4.1, to begin to understand the ways in which computation can influence learning. Par-
ticularly, we are interested in the interactions occurring simultaneously with social exchanges
of fundamental physics principles specific to the present task (e.g., discussing dr = v dt on
a motion task) and the display of desirable problem solving strategies (e.g., divide-and-
conquer). These group-computer interactions vary in form, from the more active process of
sifting through lines of code, to the more passive process of observing a three-dimensional
visual display.

One previously defined computational interaction that reinforces desirable strategies,
borrowing from computer science education research, is the process of debugging [36]. Com-
puter science defines debugging as a process that comes after testing syntactically correct

code where programmers “find out exactly where the error is and how to fix it. [48]” Given

44

the generic nature of the application of computation in computer science environments (e.g.,
data sorting, poker statistics, or “Hello, World!” tasks), we expect to see unique strategies
specific to a computational physics environment. Thus, we extend this notion of computer
science debugging into a physics context to help uncover the strategies employed while groups

of students debug fundamentally correct code that produces unexpected physical results.

4.1.1 Analysis

In Fall 2014, P? was run at Michigan State University in the Physics Department. It was
this first semester where we collected in situ data using three sets of video camera, micro-
phone, and laptop with screencasting software to document three different groups each week.
From the subset of this data containing computational problems, we purposefully sampled a
particularly interesting group in terms of their computational interactions, as identified by
their instructor. That is, we chose our case study not based on generalizability, but rather
on the group’s receptive and engaging nature with the project as an eztreme case [49].

The project that the selected group worked on for this study consists of creating a com-
putational model to simulate the geosynchronous orbit of a satellite around Earth. In order
to generate a simulation that produced the desired output, the group had to incorporate a
position dependent Newtonian gravitational force and the update of momentum, using real-
istic numerical values. The appropriate numerical values are Googleable, though instructors
encouraged groups to solve for them analytically.

This study focuses on one group in the fourth week of class (the fourth computational
problem seen) consisting of four individuals: Students A, B, C, and D. The group had
primary interaction with one assigned instructor. Broadly, we see a 50/50 split on gender,

with one ESL international student. Student A had the most programming experience out

45

Recognition Debugging Resolution

More Less
Strategic Strategic

>
t

Figure 4.2: The debugging process necessarily corresponds to a phase beset on either side by
the phases of recognition and resolution. Note the absence of a vertical scale, as the vertical
separation merely acts to distinguish phases.

of the group. It is through the audiovisual and screencast documentation of this group’s
interaction with each other and with the technology available that we began our analysis.
To focus in on the group’s successful physics debugging occurring over the 2 h class period,
we needed to identify phases in time when the group had recognized and resolved a physics
bug. These two phases in time, bug recognition and bug resolution are the necessary limits
on either side of the process of physics debugging, as represented in Fig. 4.2. We identified
these two bounding phases at around 60 minutes into the problem, and further examined the
process of debugging in-between. That is, we focused on the crucial moments surrounding
the final modifications that took the code from producing unexpected output to expected

output.

4.1.1.1 Recognition

At around 55 min into the problem, following an intervention from their instructor, the group

began to indicate that they were at an impasse:

SB: We're stuck.

SD: Yeah...

The simulation clearly displayed the trajectory of the satellite falling into the Earth not the

46

geostationary orbit they expected as observed on the screencast. This impasse was matched
with an indication that they believed the fundamental physics principles necessary to model

this real world phenomenon were incorporated successfully into the code:

SB: And it’s gonna be something really dumb too.

SA: That’s the thing like, I don’t think it’s a problem with our understanding of physics,

it’s a problem with our understanding of Python.

Instead of attributing the unexpected output with a mistake in their understanding or en-
coding of the fundamental physics principles, they instead seemed to place blame on the
computational aspect of the task.

During this initial phase, we see a clear indication that the group has recognized a bug

— there is an unidentified error in the code, which must be found and fixed:

SA: I don’'t know what needs to change here...

SD: I mean, that error means we could have like anything wrong really.

Although they have identified the existence of the bug, they still are not sure how to fix it

— this necessitates the process of debugging.

4.1.1.2 Physics debugging

Within the previously identified phase of bug recognition, the group developed a clear and
primary task: figure out exactly how to remove the bug. Eventually, following a little off-
topic discussion, the group accepted that in order to produce a simulation that generates

the correct output, they must once again delve into the code to check every line:

SA: I'm just trying to break it down as much as possible so that we can find any mistakes.

47

In this way, the group began to not only determine the correctness of lines of code that have
been added/modified, but also began to examine the relationships between those lines of
code.

For example, the group began by confirming the correctness of the form of one such line

of code:

SA: Final momentum equals initial momentum plus net force times delta t. True?
SC: Yeah...

SB: Yes.

SA: O.K. That’s exactly what we have here. So this is not the problem. This is right.
SD: Yeah.

That is, Student A (1) read aloud and wrote down the line of code py = p; + Flet * dt
while the entire group confirmed on its correct form. This written line was then boxed, and
was shortly followed up with (2) a similar confirmation of the line 7'y = 75 + @' * dt that
immediately prompted (3) the confirmation of ¥ = p/m. Thus, not only do we see the group
determining the correctness of added/modified lines of code as in 1, 2 and 3, we further see
confirmation with the links between those lines. The confirmation of the link between the
lines of code 1 and 2, representing the incremental update of position and momentum in
time, respectively, was evidenced not through the mere addition of the linking equation (3)
to the list of lines added, but further through the gestures exhibited by student A. Pointing
at (3), the ¢'in (2), and the py in (1), demonstrated that the group understood that without
this linking equation (3), the velocity used in (2) would not reflect the time updated velocity

by means of (1).

48

The group ran through these types of confirmations with fundamental physics principles
rapidly over the span of a few minutes. Once the group had confirmed all the added /modified
lines of code to their satisfaction, the discussion quieted down. The fundamental physics
principles were winnowed from the discussion, and after a little more off-topic discussion we

find them seeking help from the instructor:

SD: Maybe we should just stare at him until he comes help us...

Suddenly, a haphazard change to the code:

SA: You know what, I’'m gonna try something...

where Student A changed the order of magnitude of the initial momentum a few times. This

modification eventually resulted in a simulation that produced the correct output.

4.1.1.3 Resolution

At about 65 min into the problem, Student A changed the order of magnitude of the mo-

mentum one final time, which produced something closer to the output that they expected:

SA: Oh wait... Oh god...

SD: Is it working?

The satellite now elliptically orbited the Earth. This marks the end of the debugging phase
and the beginning of the resolution phase given that the bug had successfully been found
and remedied. Given that the only line of code modified to produce this change was the

initial momentum, they began to rethink the problem:

SD: I think that is the issue is that we don’t have the initial momentum...

49

SA: Momentum correct?

That is to say, the group pursued the issue of determining the correct initial momentum

with the added insight gained through debugging fundamentally correct VPython code.

4.1.2 Discussion

To summarize, in analyzing this particular group, we first identified the two phases in time
when the group had recognized and resolved a physics bug. We then necessarily identified
the phase in-between as the process of physics debugging in P3, where the fundamentally
correct code was taken from producing unexpected output to producing expected output.
Given our assumption that the process of computer science debugging encourages desirable
strategies, we then began to analyze this process of physics debugging further for strategies
unique to P3.

Given the actions exhibited during the debugging phase, we can separate them into two
distinct parts: a more strategic part and a less strategic part, as shown in Fig. 4.2. The group
initially gave indication that they were working in a considerate, thorough, and consistent
manner, which we classify as more strategic. This is contrasted by the later indications
of more haphazard actions, which we classify as less strategic. These are the two physics
debugging strategies that, together, led to the resolution of the bug in this context.

The more strategic strategy was exhibited through the confirmation of individual FPPs
as well as their relation to others. Not only did the group confirm through discussion, they
simultaneously wrote, boxed, and referenced equations in the code — this helped to reduce the
number of fundamental physics principles they needed to cognitively juggle at any given time

[4]. This confirmation of FPPs through discussion presented a great learning opportunity

20

for the entire group, where creative and conceptual differences could be jointly ironed-out.
Accordingly, we tentatively refer to this strategy as self-consistency.

Although the resolution of the bug might not be tied directly to this self-consistency,
that does not negate the learning opportunities afforded to the group along the way. Specif-
ically, we saw the group double-checking every fundamental idea used and, possibly more
importantly, the links between those ideas. Being physically self-consistent in this manner
is a desired strategy in P3.

The less strategic strategy was exhibited during the haphazard changes to the initial
momentum. These changes to the code that eventually resolved the bug, though one of the
benefits of computation (i.e., the immediacy of feedback coupled with the undo function),
could have been more thoughtful. A deeper understanding of the physics or computation
could have tipped the group off to the fact that the initial momentum was too small.

Again, this does not negate the learning opportunities afforded to the group through this
less strategic strategy, which resembles that of ““productive messing about.” [4] Accordingly,
we tentatively refer to this strategy as play.

Both of these strategies identified here, self-consistency and play, provided learning op-
portunities to the group which are bolstered by the computational nature of the task. In
other words, the necessity of translating a collection of physical ideas into lines of code which
must logically flow and the benefit of immediate visual display resulted in learning opportu-
nities which might otherwise have been missed in an analytic task. More research is needed
to dissect these learning opportunities and to deepen our understanding of the strategies

themselves.

ol

4.1.3 Conclusion

This case study has described two strategies (one more and one less strategic) employed
by a group of students in a physics course where students develop computational models
using VPython while negotiating the meaning of fundamental physics principles. These
strategies arose through the group’s process of debugging a fundamentally correct program
that modeled a geostationary orbit. The additional data we have collected around students’
use of computation is rich, and further research is needed to advance the depth and breadth
of our understanding of the myriad of ways in which students might debug computational

models in physics courses.

22

Chapter 5

Observations

Throughout our analysis in this thesis, we have made many different types of observations,
and have used those observations to help answer our research question (i.e., what are the
computational practices indicative of computational thinking that are common to P3?)

Accordingly, it is important that we take some time to elaborate on the process of and
results from those observations. More specifically, in this chapter, we detail the method of
our analysis (i.e., the data reduction, the coding process, and the inter-rater reliability) and
illustrate the identification of some of the most interesting practices (e.g., troubleshooting
and debugging, assessing computational models, and creating computational abstractions).

The remaining practices are presented in Ch. 6 and Apps. A-C.

5.1 Analysis

Our full analysis involves different stages: first, the initial data was collected and subse-
quently reduced in order to provide a manageable set of data; next, a coding scheme was
generated — using the Weintrop framework from Sec. 2.1 — to help identify computational
practices; and finally, inter-raters were used to ensure the reliability of the analysis. Each of

these three stages are detailed below.

23

5.1.1 Data reduction

Our total set or corpus of data consists of in-class video of nine groups of four individuals
working. Each group works on three computational problems (twenty-seven videos in total)
that increase in difficulty /complexity as the semester progresses. These computational prob-
lems, presented in Sec. 3.1, require students to construct various computational force models
in code. Each week, the appropriate force model increases in complexity and generality.
Specifically, the first problem involves a constant zero force, the second problem involves a
constant non-zero force, and the third problem involves a non-constant force.

In order to first reduce the corpus of our data to a more focused and manageable set, we
followed the suggestions of task analysis (see Sec. 2.4). That is, we paid attention to when
students were making the most progress toward a solution. The frequency of independent
progress being made increased as the complexity of the problem increased (i.e., students made
the most independent progress on constructing the Newtonian gravitational force model).
Here, we are defining “independent progress” as progress that is ultimately made by the group
without any instructor intervention. We believe this rapid increase of independent progress
is due, in part, to their lack of prior programming experience coming into the course. For
example, on the first problem, many groups struggled with a basic calculation loop. By the
time they see the third problem, they have already gained a little experience and know what
to expect in the course.

Our initially reduced set of data consists of transcripts from in-class video (both side-
view and overhead-view) of nine groups working on the geostationary satellite problem from
Sec. 3.3. We also collected computer screencasts to capture exactly what students are doing

when they type/click on their group laptop. Following the suggestions of thematic analysis

o4

SA SB SC SD TA
365 That's close to...
Nine point eight is
366 meters per
second though...

367 [Looks in notes] |[Looks in notes]

368 Yeah, it's that.
Gravity equals to

360 like gravity, of

gravity equals F
net...

Equals to gravity
equals to {writes

370 .
Newtonian force
on whiteboard}.

371 What's that?

372 That's the
constant of ...

373 Oh the G, yeah.

374 six point six...

Figure 5.1: A portion of transcript meant to highlight the indication of unspoken and inferred
actions. For example, line 367 shows this group looking in their notes for an equation. The
equation that they find is written down in line 370.

(see Sec. 2.5), we began with a full transcription of the in-class video. Any inaudible sections
are indicated, with long pauses being indicated by ellipses (...). To distinguish between un-
spoken actions (e.g., pointing to an equation) and inferences made by the primary researcher
(e.g., a group referring to a previously used equation), we follow the convention of square
brackets ([]) and curly brackets ({ }), respectively. For example, Fig. 5.1 shows a portion of
transcript highlighting these various indications.

Once we had reduced our data corpus to a more manageable and focused set of nine
transcripts, we continued our investigation into the computational practices students were
engaging in. Each transcript was read multiple times in order to generate a low-resolution
but coherent picture of what each group was doing. This type of “familiarization” with the
data is a crucial step as outline by Braun et. al. Ultimately, this low-resolution picture
helped us to identify the off-topic and otherwise irrelevant discussion in order to remove

those portions of the data from our analysis.

25

More specifically, each transcript was initially analyzed with an eye towards identifying
discussion where students were solving the satellite problem. All other discussion then could
be considered off-topic and safely discarded. For example, groups are often seen discussing
homework for other classes that in no way relates to the Newtonian problem. Similarly,
groups can often be seen discussing recent social events (e.g., a concert). This type of off-
topic and otherwise irrelevant discussion, although important for the social cohesion of the
group, can safely be discarded. In this way, we further reduce our data set by about one
quarter. With each of nine transcript being about fifteen-hundred lines of speech/action,
this translates to about fifteen-thousand lines of on-topic discussion for further analysis.

A closer analysis of this on-topic discussion is where we begin to more clearly define what
computational practices look like within our data. This closer analysis started with the search
for a number of characteristics (as described in Sec. 2.1), within the on-topic discussion. For
example, the key characteristics for the practice of troubleshooting and debugging are: i)
to identify and isolate an unexpected error, ii) articulate how to reproduce the error, and
iii) work to systematically correct it. These characteristics, once identified, can be used to
justify the classification of an excerpt as the computational practice of troubleshooting and
debugging. Recall that each computational practice may be indicative of the computational
thinking as described in Sec. 2.1. This justification allows us to define the computational
practices we see in our data. A detailed account of this process of justification is described

below, with applications to specific examples following in Sec. 5.2.

5.1.2 Coding process

In order to justify the classification of an excerpt as a particular computational practice,

we started by systematically coding our data. This systematic coding process was applied

26

to three streams of data: the side-view video, over-head video, and computer screencasts.
These three streams were then used to generate three types of rationale: rationale according
to the framework, rationale within an individual excerpt, and rationale beyond an individual
excerpt. These three types of rationale are described in detail below.

In terms of the framework, we identified the various characteristics that manifested them-
selves in the actions and speech of each group and compared them to the Weintrop framework.
Each practice, according to the framework, has any number (between one and seven) of re-
lated characteristics. The more related characteristics that we see in an excerpt, the more
confident we are in classifying that excerpt as a particular practice. For example, “identi-
fying an unexpected error in code” is one of the required characteristic of troubleshooting
and debugging. Similarly, “working to systematically rectify the unexpected error” is clearly
a related but distinct characteristic. The identification of either of these characteristics in-
dividually would be hinting at the practice of troubleshooting and debugging, but both of
them simultaneously makes a stronger claim. This type of rationale can be found in Column
G of Fig. 5.2.

Within an individual excerpt, we are able to focus in on what each member of the group
says and does as they work toward a clear and focused goal. Any rationale of this type usually
references line numbers pertaining to specific lines of speech/action within the excerpt that
embodies the characteristic in question. In this way, we closely tie our rationale and the
framework to the data. For example, a group might identify an unexpected error in their

program and say:

SC: (756) Oh there it is {the error message}.

SB: (757) Where?

o7

SC: (758) In the thing {shell} on the screen...

In this exchange, Student C has found the error message from the shell buried under a few
other windows. This error message is ultimately used by the group to track down the cause of
the unexpected error. In this way, we clearly see a group working to identify an unexpected
error in our data. This type of rationale can be found in Column H of Fig. 5.2.

Beyond each individual excerpt (i.e., looking at each transcript as a whole), we are able
to generate a low-resolution picture that captures the overarching goals that each group is
working toward. This low-resolution picture helps us to contextualize each individual excerpt
within the broader transcript. There are different ways to contextualize a particular excerpt
of data (e.g., in the context of the group, the classroom, the university, the state, etc.), and
relating it to other excerpts is one of the most important. For example, within an individual

excerpt, a group might reference — without defining — an equation:
SA: (894) Should we try that one equation?

SB: (895) Yeah, I think we should do that...

SA: (896) Okay.

SC: (897) Yeah that’s a good idea, let’s use that one.

Using our low-resolution picture of the transcript as a whole, we can track back through
time (often minutes, sometimes longer) to find out exactly what vague equation they are

referencing:
SC: (120) How about we use the equation...
SC: (121) |writes GmM /r?].

o8

A B © D [F G H i

Excerpt #
SA SB SC SD TA Tags Framework Within Beyond
Student A Student B Student C Student D TA speech and |Here we Rationale according|Rationale Rationale
speech and speech and speech and speech and action. classify the to the framework |within the beyond the
action. action. action. action. excerptasa goes here. This excerpt goes excerpt goes
particular includes language |here. Itusually [here. It usually
practice from the references references
Line # according to definitions specific line #s. |other exerpt #s.

the Weintrop |according to
framework. Weintrop and
language used in
the other two
levels of rationale.

Figure 5.2: The template used for the coding process. Each excerpt is numbered, each line
of speech /action is numbered and attributed to an individual member of the group, and the
three types of rationale are used to justify the classification of a particular practice.

SC: (122) And then multiplied by r hat...

SD: (123) I dunno...

Any rationale provided at this level usually references the number of another excerpt that
provides the necessary additional information. This level of rationale can be found in Column
[of Fig. 5.2.

This coding process was followed for nine groups to generate about five-hundred candidate
excerpts, each excerpt having multiple practices, and each practice having the three types
of rationale described above. Each excerpt has anywhere from one to four possible practices
identified with supporting rationale. That equates to roughly three-thousand individual
justifications that must be found within our data. After concluding our inter-rater reliability,
described below, we had a reduced data set of roughly one seventh the initial set.

The three types of rationale described above, though not necessarily persuasive individ-
ually, when taken together can provide a reasonable justification for the classification of an
excerpt as belonging to a particular computational practice: the rationale from the frame-
work provides incomplete but guiding definitions, the rationale within an individual excerpt

ties us closely to the data and the immediate actions that a group is taking, and the rationale

29

Inter-Rater comments

Tag

Rationale from
framework

| actually think this is an
example of abstraction.

Creating computational
abstractions

The group is identifying,
creating, and using a
computational
abstraction as they
work toward a goal.

Inter-Rater comments

Tag

Rationale from
framework

I think I am struggling
with what is meant by
levels here. | see them
trying to write a
constant, but | don't see
the larger connections.

Thinking in levels

The group has identified
the different levels in a
system.

Inter-Rater comments

Tag

Rationale from
framework

What is abstraction?
I'm not seeing it, but
maybe I'm using some

Creating computational
abstractions

The group has identified
a computational
abstraction as they

advanced toward some
goal.

colloquial lens that is
inappropriate.

Figure 5.3: Examples of the three levels of confidence are shown in green, yellow, and red to
indicate high, medium, and low confidence, respectively. Each inter-rater suggestion is used
to modify or solidify the level of confidence given to a particular practice.

beyond an individual excerpt helps to contextualize those immediate actions and speech.

5.1.3 Inter-rater reliability

In order to ensure not only reasonable, but also reliable justifications for the classification
of the various computational practices within our data, we followed an iterative process of
inter-rater reliability. One primary researcher was joined by three inter-raters, ensuring a
robust coding process and stronger claims through iterative critique and discussion.
Initially, the data was coded by the primary researcher, relying heavily on the Weintrop
framework and the qualitative methods described in Ch. 2, to generate an initial set of
rationale for each candidate excerpt. This initial set of rationale for a particular excerpt,

consisting of the three types of rationale described in the section above, was then taken as a

60

Inter-Rater

Comments Tag
The group has identified
an unexpected problem
Troubleshooting and working to correct it in
and debugging a systematic manner
Inter-Rater
Comments Tag Rationale from framework
| think this a
good example. |
think you will

want to have

the shell output

put into the

example to

make clear

what the

students The group has identified
recongized and an unexpected problem
what they dealt | Troubleshooting and working to correct it in
with. and debugging | a systematic manner.

Rationale from framework Rationale within excerpt

The group has identified a
problem through the output
of VPython error shell (line
57). The unexpected
problem is that they have
defined their force as a
scalar but it needs to be
given a direction (line 67)

Rationale within excerpt

The group has identified a
problem through the output
of VPython error shell {line
57). The unexpected
problem is that they have
defined their force as a
scalar but it needs to be
given a direction (line 67).

Rationale beyond excerpt

Rationale beyond excerpt

TypeError: unsupported
oeprand type(s) for +:
‘vector' and 'float’

t

Figure 5.4: The initial rationale generated for an excerpt along with inter-rater suggestions
and subsequent modification over time. With the addition of some requested information,
the strength of the rationale was improved and the confidence was promoted from medium
to high.

whole to formulate an initial level of confidence: low, medium, or high. Low confidence was
usually given to excerpts containing only a few of the characteristics needed by a practice,
or to excerpts where the identification of an individual characteristic was in serious question.
Medium confidence was given to excerpts containing most of the characteristics required by
a practice, or to excerpts where the identification of individual characteristics was probable.
High confidence was given to excerpts containing all of the required characteristics for a
practice, or to excerpts where the identification of each individual characteristic was self-
evident. Examples of excerpts belonging to these different levels of confidence are shown in
Fig. 5.3.

A subset of the data containing a variety of computational practices and levels of confi-
dence was then shared with inter-raters, ranging from undergraduate students to professors.

Each inter-rater subsequently tested the strength of our initial claims through discussion by

61

asking questions and making suggestions. These suggestions, once mutually agreed upon,
were incorporated into the rationale. For example, Fig. 5.4 shows one inter-rater asking
a clarification question as to what the verbatim output of the shell in a particular excerpt
was. The answer to this clarification question, though not obvious given the initial rationale,
proves to be relevant and necessary to the strength of the rationale. This process of gener-
ating reliability through asking questions and making suggestions was followed iteratively to

further strengthen each claim.

5.2 Computational practices

By analyzing all of the data with the methods described above, we have identified a number
of practices that show up in our data. These practices and their frequencies within our data
are summarized in Fig. 5.5. In total, we identified roughly 300 occurrences of individual
practices, with some practices occurring frequently and some occurring never. The most
frequent practices, though found within our data, can be expected to arise just as frequently
in sufficiently similar classrooms and deserve a fair amount of attention.

The remainder of this section provides concrete examples of some of the most frequent
computational practices that we found in our data. We are focusing on those practices that
occur with high frequency within one group or occur with moderate frequency across multiple
groups. These practices are (in no particular order): creating and analyzing data within
the data practices; designing, constructing, and assessing computational models within the
modeling and simulation practices; programming, creating abstractions, and troubleshooting
and debugging in the computational problem solving practices; and thinking in levels and

communicating information within the systems thinking practices.

62

Data

Collecting data
Creating data
Manipulating data
Analyzing data
Visualizing data

H
~

Modeling and simulation

Designing computational models

Constructing computational models

Assessing computational models

Using computational models to find and test solutions 13
Using computational models to understand a concept 7
Computational problem solving 67
Preparing problems for computational solutions 0
Choosing effective computational tools 0
Assessing different approaches/solutions to a problem 9

Creating computational abstractions

Developing modular computational solutions

Programming

Troubleshooting and debugging

Systems thinking 67
Defining systems and managing complexity 0
Investigating a complex system as a whole 13
Understanding the relationships within a system 13
Thinking in levels

Communicating information about a system

Figure 5.5: The frequency of each practice that was found within our unique data set.

63

Characteristic ‘ Qualities

Automating | The data that is being created should be done so in an automatic or al-
gorithmic manner. For example, an Euler-Cromer style integration is fre-
quently used to generate large sets of numerical data representing various
physical phenomena in time.

Advancing | Each group should ultimately be advancing toward completion of the spec-
ified task. For example, creating an algorithm that generates the various
momenta of the satellite can ultimately be used to help generate a simu-
lation of its trajectory.

Table 5.1: The characteristics and associated qualities pertaining to the computational prac-
tice of creating data: automating the creation of data that helps to advance toward goals.

Although the examples that follow are meant to clearly illustrate some of the common
computational practices that we have observed, they do not come without their own limita-
tions. Accordingly, Ch. 6 provides a discussion of those limitations, as well as presents some

of the less common and unobserved practices.

5.2.1 Creating data

The computational practice of creating data, as defined by Weintrop et. al, involves the
generation (as opposed to the collection) of computer data while “investigating phenomena
that cannot be easily observed or measured or that are more theoretical in nature.” This
type of data creation frequently arises in physics and engineering given that data collection
is infeasible in many realistic situations. For example, complex computer models can be used
to generate data that can be used to optimize launch conditions for satellites and manned
rockets when real-world collection of data is too costly or dangerous. The fundamental
characteristics associated with this practice, as summarized in Tab. 5.1, are: i) defining a
computational procedure that automatically/algorithmically creates data and ii) using that
procedure or the resulting data to advance the overall goals of the task.

Consider Excerpt 9 from Group H. Over the course of two hours, this group can be seen

64

ensuring that their MWP will dynamically update the position of the satellite. This entails
ensuring that the momentum of the satellite will also dynamically update. Accordingly, the
group works to construct a computational algorithm that will automatically create sets of
data representing the position and momentum of the satellite over time. These sets of data
are then ultimately used to advance toward completing the goal of producing of a realistic
visualization of the trajectory of the satellite.

Early on, the group can be seen discussing their goal of generating a visualization of the
satellite’s orbit (lines 195-196). They consider changing the initial position of the satellite

(line 199) to what they calculated from the previous problem:

SD: (195) So, it’s mostly just trying to figure out how to get it {the program} to display

an orbit...

SA: (196) Yeah, it is.

SC: (197) Wait, we have to change the position, don’t we?

SB: (198) I think the initial position stays there, we have to update position though...

SC: (199) Yeah, we have to change the initial position to what we found... it was this far

away, you know?

SA: (200) Yeah.

SB: (201) Yeah.

SA: (202) Which was... four point four two times ten to the seven.

SB: (203) Four point two... [codes]

65

They make the distinction between changing the initial position of the satellite and changing
the way that the position updates over time (line 198). This is an important distinction
because each change involves vastly different amounts work to accomplish, and only one
results in the automatic/algorithmic creation of data. That is, changing the initial position
of the satellite is a simple change of a numerical value, whereas changing the way that the
position updates over time involves defining a set of algorithms with multiple variables inside
of the calculation loop. Ensuring that the position updates properly is a big advancement
toward their goal of producing a realistic visualization.

Eventually, they propose an Euler-Cromer style algorithm to automatically update the

position of the satellite (line 222) in terms of its momentum, mass, and time:

SB: (217) Alright...

SB: (218) Okay, so we have to add its new position.

SA: (219) But it has to update its position every time...

SB: (220) Right.

SA: (221) So we have to make it update.

SB: (222) Satellite position plus momentum of the satellite...
SA: (223) Over the mass?

SB: (22/) Times the change in time... yeah so it’s, yeah.

SB: (225) But the momentum is always changing...

Although the group has clearly laid out the way that the position of the satellite will need

to change (line 222), they have raised another concern in terms of the momentum of the

66

satellite (line 225). In other words, they have defined a procedure to automatically calculate
the positions of the satellite, but still need to define a procedure to automatically calculate
the momenta.

Later, as the group works toward defining a procedure to change the momentum of the
satellite over time, they recall the concept of both iterative prediction (line 684) and Newton’s

second law (line 695) from the notes:

SB: (681) So we gotta figure out how to change the momentum in there {the code}.
SB: (682) What was the equation from last week?

SA: (683) Umm... F grav... No.

SD: (684) What about using iterative prediction for like future positions?
SD: (686) Right?

SC: (687) The change in momentum would be the net force times...

SB: (688) Because the force is mass times acceleration...

SC: (689) That would be it, yeah.

SB: (690) So integrate that.

SC: (692) Changing momentum is force times change in time...

SB: (693) Oh, there we go, nice.

SA: (694) Wait what is it?

SB: (695) The change in momentum is the net force times change in time.

67

With these two algorithms defined, their MWP is ready to automatically and dynamically
update the position and momentum of the satellite. Afterward, the group spends a fair
amount of time incorporating the appropriate force model into their code. The construction
of these algorithms, along with the correct force model, shows a clear advancement toward
their goal (line 195) of generating a visualization of the satellite’s orbit.

To summarize, the group can be seen automating the generation of sets of data repre-
senting the position and momentum of the satellite over time. Further, with these sets of
data, the group is ultimately advancing their progress toward producing a visualization of
orbital motion. Given the identification of these two characteristics, we classify this excerpt

as the computational practice of creating data.

5.2.2 Analyzing data

The computational practice of analyzing data, as defined by Weintrop et. al, usually involves
large sets of data (that have either been created or collected) where groups are “looking for
patterns or anomalies, defining rules to categorize, and identifying trends and correlations.”
This type of analysis shows up frequently within the field of physics, especially given the
computational nature of many (if not most) modern investigations. For example, extremely
large sets of data are generated while investigating the formation and evolution of galaxies
throughout the universe. Being able to effectively analyze a large set of data is a crucial
skill within many interdisciplinary fields. The fundamental characteristics associated with
this computational practice, as summarized in Tab. 5.2, are: i) a general process of analysis
(detailed in Tab. 5.2) and ii) a conclusion being drawn based on that analysis.

Consider Excerpt 35 from Group H. Overall, this group can be seen engaging in the

process of analysis of a set of data that represents the net force acting on the satellite, and

68

Characteristic ‘ Qualities

Analyzing | This is a broad term that usually involves at least one of many types
of analysis. For example, sorting a set of data into different categories,
looking for trends or patterns within a given set, looking for correlations
between multiple sets, and/or identifying outliers and anomalies are all
considered to be different types of analysis.

Concluding | The information (e.g., a pattern or trend) gathered from the analysis of a
set of data should ultimately be used to make or draw some conclusion.
This characteristic, though an important one, is not necessarily required
for a group to be analyzing data.

Table 5.2: The characteristics and associated qualities pertaining to the computational prac-
tice of analyzing data: a general process of analysis leading to conclusions based on evidence.

drawing a conclusion based on the results of that analysis. The particular process of analysis
observed in this excerpt involves both categorization and patterning. The categories that
the data are placed in are: a) large-scale numbers and b) vector quantities. The trend that
the group recognizes is that the set of data representing the net force is time dependent.
Prior to the beginning of this excerpt, the group adds a print statement (i.e., print (Fnet))
into their calculation loop to print off the numerical values (2-, y-, and z-components) of
the net force acting on the satellite over time. They do this to check that their model is

producing the expected values:

SD: (1330) How many times does this calculation loop run through?

SB: (1831) A lot...

SD: (1332) Yeah.. a lot [looking at the output].

SB: (1333) However many seconds are in a day.

SA: (133/) Eighty six thousand.

SD: (1335) Wow...

69

SB: (1336) Yeah doing it line by line is not gonna be easy.

With this print statement, they are creating a large set of data (line 1332) that is subsequently
analyzed.

The group confirms that their print statement is displaying a large set of data that
represents the net force on the satellite (line 1338). At the same time, they begin to categorize

the data and look for trends:

SD: (1337) It’s not showing the satellite because I think the {window} scale is too small.
SD: (1338) But it’s outputting all of the forces, and it is...

SD: (1339) It’s changing too I think.

SB: (1340) How big are they?

SB: (1541) I'm assuming were talking about F grav...

SC: (1342) Yeah, it is big.

One trend that the group suggests (line 1339) is that the values in the set have some sort
of time dependence. Similarly, one category that the group places the data in (line 1342) is
that of having a large order of magnitude — which is expected given the type of force that
they are analyzing.

Mistakenly, the group believes that the trend of time dependence that they have identified
in their data is not the expected or desired one. In other words, they suggest that the set of

data should be constant in time (line 1343):
SB: (1343) Uhh... I don’t think it’s supposed to be changing.

SB: (1344) Not a good sign.

70

SB: (1345) Do we have it as a vector or a scalar right now?

SD: (1346) Right now we have it as a vector.

Additionally, the group further categorizes the set of data as being a collection of vectors as
opposed to a collection of scalars (line 1346). This focus on the vectorial nature of the net
force ultimately helps them to draw a conclusion about how it should behave as the satellite
changes position.

After a little off-topic discussion, the group begins to consider how the various components
of the net force should not only change in time (line 1425), but should also remain a particular

size (line 1434):

SB: (1420) We need F grav to be a vector.

SD: (1421) We have it as a vector... it is a vector right now.

SB: (1422) How?

SA: (1423) How do you have it as a vector?

SD: (1424) 1 initiated it as a vector.

SB: (1425) Right, but it needs to move.

SD: (1426) Oh, does it have to be negative?

SB: (1427) Either way, it has to be in the x and the y direction...

SD: (1428) Oh well then you just do this |adds the force for the x-component]...

SB: (1429) Because... But it’s the components that would make F grav bigger than we

need it to be?

71

SD: (1430) Why?

SB: (1431) Because a component vector... If we have one like that [draws a vector toward

the fourth quadrant| then it’s gonna be out to there...

SC: (1432) No, it would be double.

SB: (1433) Right it would be that long.

SB: (1434) And we just need it to be that long.

SD: (1435) So just divide it by two then?

SB: (1436) Except it changes in time...

SB: (1437) Because when it’s right here, it’s only going down, and when it’s right here it’s

only going across...

SB: (1438) But when it’s right here, it’s going down and across...

SC: (1439) Yeah.

In other words, although the net force has been initiated as a vector, it has been initiated as
a constant vector (pointing only in the y-direction). The group reaches the conclusion (line
1437) that the force must be modified so that it can change directions depending on where
the satellite is located relative to the Earth. Furthermore, they conclude that it is important
that magnitude of the net force remain a constant (line 1434). These conclusions ultimately
lead them to rethink their force model.

To summarize, this group can be seen analyzing a set of data representing the net force

acting on the satellite over time. They have identified the trend that the data changes over

72

time, and the data were placed in the categories of being large-scale numbers and being
vectors quantities. The conclusion that the group makes is that the net force should not
only be a vector, but that its components should be able to oscillate between the x- and
y-components depending on where the satellite is. Given this process of analysis and the
conclusions being drawn, this excerpt is thought to illustrate the computational practice of

analyzing data.

5.2.3 Designing models

The computational practice of designing computational models, as defined by Weintrop et.
al, involves the process of making “technological, methodological, and conceptual decisions.”
These types of decisions are frequently dealt with in the STEM discipline given the com-
plexity of modern scientific endeavors. Scientific rigor and sound methodology must be
maintained while using tools at the forefront of technology (i.e., computation) to investigate
modern phenomena. At the same time, developing a deep conceptual understanding of the
models and the phenomena that they represent is playing an increasingly important role
in the sharing and communication of scientific information. Accordingly, the fundamental
characteristics associated with this computational practice, as summarized in Tab. 5.3, are:
i) defining the components of a model, ii) describing how the components of the model in-
teract, and iii) articulating what predictions can be made with the model. In keeping with
the recent literature on modeling in education research, we limit our investigation to models
pertaining to the force acting on the satellite (e.g., a local gravitational force model or a
Newtonian gravitational force model).

Consider Excerpt 11 from Group B. Throughout this excerpt, the group can be seen

, 2
working to incorporate a centripetal force model (i.e., Feent = —"5—(cosf,sin6,0)) into

73

Characteristic ‘ Qualities

Defining

Relating

Predicting

Each individual component of a model must be separately defined in code.
For example, the mass of an object and the local acceleration due to a
planet can be separately defined and used to construct the corresponding
local gravitational force.

The group must describe the way that the individual components of the
model relate to the phenomenon that is being studied. This relationship
usually mirrors an equation or an expected type of behavior. For exam-
ple, the Newtonian gravitational force follows an inverse square position-
dependence.

The group must articulate what information their model will provide them,
and use that information to make predictions about the time evolution of
a phenomenon given initial conditions. For example, a force model can
generate the various values of the force acting on an object at different
positions in time. This set of data can then be used to make predictions
about the motion of the object.

Table 5.3: The characteristics and associated qualities pertaining to the computational prac-
tice of designing a computational model: defining components, relating them to one another,
and using them to make predictions.

their code. Ultimately, the group is dissuaded from using this particular model through

discussion with the TA. Nevertheless, this excerpt is a clear illustration of the practice of

designing a computational model.

A few minutes into beginning the problem, the group has recognized that they need to

use a force model (line 118) to calculate the trajectory of the satellite, as opposed to just

plotting it using the expected radius (line 116):

SA

SA

SB

SA

: (111) Now were saying that it’s {the radius} a variable...

: (112) So what do we want to do with this other number?

2 (113) Well,

you said the radius from here to here is not gonna be the same as from

here to here?

: (114) Yeah.

74

SB: (115) Well, should we... Could we Google how, like how much farther or shorter it is

from here to here?

SD: (116) Okay, I think actually what it’s trying to get us to say is that we can’t just plot

its path around by using the radius of the orbit...

SA: (117) Right.

SD: (118) We have to actually use the force that is acting on it to find it’s path.

SA: (119) We have to use the force.

SD: (120) We have to use the force.

The group has begun to articulate the information that their model will provide them, even
if they have not yet decided on the particular model. In other words, their force model will
allow them to make predictions about the position and trajectory of the satellite.

After a little off-topic discussion, the group decides on a particular force model to use:

SD: (152) The force is like v squared... The force is uhh v squared times m over the radius

of orbit.

SD: (153) Correct me if I'm wrong...

SA: (154) Sorry?

SD: (155) The force is equal to mass times v squared over the radius of the orbit.

SB: (156) So maybe we could just find it {the force} at that distance?

SD: (157) Well, we have access to a variable that represents our radius of orbit...

75

SB: (158) And we have mass.

SD

SC

SB

SB

: (159) And we have mass.
: (160) We found the velocity last time...
: (161) And we know the radius and know the velocity.

: (162) So we can just find the net force.

Here, the group is clearly identifying the individual components of the centripetal force model

(lin

es 157-161) and making sure that they are separately defined in code. Additionally, they

have identified a clear mathematical relationship between them (line 152) that they recall

from memory.

tim

SD

SD:

SA:

SD:

SA:

SA:

Before jumping into the construction of the newly proposed model, they spend a little

e discussing its behavior and how it relates to the phenomenon:

: (182) If we could get it {the force} to oscillate between maximums we could get a

rotation...

(183) But how do we represent that as a force... Because it’s obvious that they want

us to do that.
(184) Sine and cosine?
(185) Sine and cosine?

(186) 1f we do sine and cosine, if we have both of them, one in the x, one in the y, like

this [points to notes| is saying...

(187) Then even if one goes to zero, like you were saying, then the other one is gonna

be close to one.

76

SA: (188) And so...

SD: (189) We have to use our angles?

SC: (190) Ohhh...

SD: (191) And we have access to angles that are defined below.

SD: (192) Oh my god, that’s so great, that’s perfect, you're totally right.

Specifically, they articulate the way that the components of their force model will need to
oscillate to cause a rotation (line 182). This oscillatory behavior has a direct relation to the
mathematical sine and cosine functions that they plan to use (line 184) — as one component
approaches a value of zero, the other component will approach a value of one (line 187).
They also identify yet another individual component of their model (line 191) with the angle
of the satellite.

To summarize, the group begins by recognizing that using a force model will allow them
to predict the trajectory of the satellite in a more general way (line 118). After deciding on a
centripetal force model, they then separately define the individual components of the mass,
velocity, radius, and angle of the satellite (lines 157-161 and 191). Finally, they relate the
sinusoidal nature of the model to the expected sinusoidal behavior of the satellite’s trajectory
(lines 182 and 186). Given these three characteristics, this excerpt is a clear illustration of

the computational practice of designing a model.

5.2.4 Assessing models

The computational practice of assessing a computational model, as defined by Weintrop et.

al, involves “understanding how the model relates to the phenomenon being represented.”

7

Characteristic ‘ Qualities

Assuming | In designing a computational model, certain assumptions are invariably
taken into account. These assumptions — regardless of how appropriate
or valid — should be identified and clearly articulated by the group. For
example, the assumption that the satellite will always be traveling in a
perfectly circular orbit, although a poor one, is still an assumption.
Validating | As more assumptions are built into a model, its validity should continually
be checked to ensure its predictive accuracy. For example, assuming that
an orbiting satellite is acted on by a constant net force is not valid for
long periods of time.

Table 5.4: The characteristics and associated qualities pertaining to the computational prac-
tice of assessing a computational model: identifying assumptions and validating them.

This is a crucial step in the process of modeling — without an assessment of the validity
and meaning of the results (i.e., without a deep understanding), the model is almost cer-
tainly useless. The fundamental characteristics associated with this crucial computational
practice, as summarized in Tab. 5.4, are: i) identifying assumptions built into the model
and ii) validating the model. These two characteristics, if confidently observed within an
excerpt, would serve to classify that excerpt as the computational practice of assessing a
computational model.

Consider Excerpt 9 of Group C. Generally speaking, the group can be seen working to
incorporate a gravitational force into their code. Early on, they recognize that their code is
missing the net force on the satellite, and subsequently spend about thirty minutes deciding
if and how they should should incorporate one. Eventually, they reach a conclusion to add
a gravitational force based on their assessment of a couple of different models (i.e., a local
gravitational force and a Newtonian gravitational force).

A few minutes into the problem, the group considers what happens to the initial momen-

tum of the satellite as their program runs (line 256):

SA: (253) Umm...

78

SB: (25/) Okay.

SA: (255) So that’s our initial momentum.

SA: (256) And then what happens {to the momentum}?

SD: (257) And then...

SA: (258) We need, we have it...

SA: (259) The net force equation is what’s wrong...

SD: (260) Yeah and the net force equals to like gravity, right?

Obviously the group is concerned with the state of the net force equation (line 259), and a
proposal is made to set the net force equal some sort of gravitational force (line 260). This
is the beginning of the assessment of their net force model.

They continue to discuss and validate the type of gravitational force that they plan to
incorporate into their code. Specifically they wonder what numerical value they should be

using (line 262), and they suggest using the local gravitational constant (g = 9.81m/s?):
SD: (261) So we just need to like plug in the value of gravity right?

SA: (262) Yeah... but what’s the value that we need?

SA: (263) Because we have um... we have um... we have...

SA: (264) Mass in kilograms and we have the radius of orbit in kilometers, obviously we

all know like nine point eight number...

SC: (265) That’s only close to the surface of the Earth...

79

SA: (266) Nine point is meters per second though...

However, they recognizes that their satellite is not particularly close to the surface of the
Earth (line 265), and that the local gravitational constant is not particularly valid at the
actual distance. In other words, the group can be seen validating their computational model
based on the particular situation.

Eventually, the group does decide on a particular gravitational force to use (line 270):
SC: (267) [looks in notes]
SD: (268) Yeah it’s that [points to equation].
SD: (269) Gravity equals to like gravity, of gravity equals F net...
SD: (270) Equals to gravity equals to [writes Newtonian force on board]...
SB: (271) What’s that?
SD: (272) That’s the constant of...
SB: (273) Oh the G yeah.
SB: (274) Six point six...

This force involves the universal gravitational constant (G = 6.61 x 10711 Nm?/kg?) as
opposed to the local gravitational constant, which they clearly state (line 273). Again, the
group has ensured the validity of their net force model by assessing the location of the
satellite and subsequently using the appropriate gravitational constant.

Before getting to far, the group takes some time to clearly articulate an assumption (line

275) built into their model:

80

SA:

SD:

SD:

SD:

SD:

SA:

SA:

SC:

275) Sorry i just wanted to write here that we’re making an assumption [writes on
y1l g

WhH.

(276) Yes.

(277) F net equals to gravity.

(278) Yes.

(279) Equals to...

(280) 1 just did that [adding an E| to show that that’s of the Earth.

(281) Does everyone agree that this is an assumption?

(282) Yeah.

The fact that the only force acting on the satellite is a gravitational force is really just an

assumption (although a good one) made at this point. The group specifically takes the time

to articulate and agree upon this important assumption.

To summarize, this excerpt demonstrates two fundamental characteristics: the group is

validating their model when they compare which gravitational force/constant they should be

using, and the group is assuming things about their model when they say that the net force

is comprised of only a gravitational force. Given these two characteristics, we feel confident

in categorizing this excerpt as a strong illustration of the computational practice of assessing

a computational model.

81

Characteristic ‘ Qualities

Conceptualizing | There needs to be some concept that a group is focusing on. Concepts usu-
ally range from individual physical quantities to more complicated physical
relationships.

Representing | A particular concept should be represented mathematically. This pro-
cess of representation usually involves translating a mathematical equation
from the notes into a more general computer function.

Table 5.5: The characteristics and associated qualities pertaining to the computational prac-
tice of creating computational abstractions: representing physical concepts.

5.2.5 Creating abstractions

The computational practice of creating abstractions, as defined by Weintrop et. al, requires
“the ability to conceptualize and then represent an idea or a process in more general terms.”
This ability show up frequently in the STEM domains — especially within introductory com-
putational physics. The two fundamental characteristics of this computational practice, as
summarized in Tab. 5.5, are: i) conceptualizing an idea and ii) representing it in more general
terms. These two characteristics, if confidently observed within an excerpt, would serve to
classify that excerpt as the computational practice of creating computational abstractions.

Consider Excerpt 13 from Group D in the following analysis. Overall, the group can
be seen giving their net force a direction through the use of a unit vector (7). They first
recognize that their force needs to be a vector, and propose an equation to use that specifically
involves a direction (F o #/r%). Once they have their equation to work with, they begin to
discuss how they can define it as a general function. In other words, the group can be seen
conceptualizing and representing an idea in general terms.

They start by looking for an equation that they can use to try to calculate the net force

on the satellite:

SA: (108) [calculating the magnitude of the force on his calculator]

82

SC: (109) Yeah just try that one equation first.

SC: (110) If that’s not gonna work, then {I} think {the} other...
SD: (111) But the direction of F is {a vector}...

SD: (112) So we need to turn the r into a vector.

SC: (113) 1 think we should...

SD: (114) [writes force equation with 7|

Here the group can be seen deciding (or at least suggesting in line 109) that the computational
force model that they are using will need to take a direction into account (i.e., it needs to
be a vector). This equation, F o #/r2 (retrieved from their notes), is written down on the
WB. Notice that it involves using 7 to give the force a direction. This unit vector is the
computational abstraction that the group identifies and ultimately begins to construct in
their program. This abstraction helps them to work toward their goal of constructing the
non-constant Newtonian gravitational force on the satellite.

Once the unit vector (7) has been identified as a computational abstraction, they begin

its creation in code:

SD: (115) So just put the r value, vector value...

SD: (116) Just put this [points to r hat| uhh function...

SB: (117) As a parameter?

SD: (118) Just give the computer a function so we don’t have to calculate F like SA is

doing.

83

SB: (119) That’s a good idea.

Although they are clearly focusing on the concept of the direction of the Newtonian grav-
itational force, they are a little stuck on how to actually go about creating it. However,
they at least know that they want it to be a function (line 118) rather than just a constant
numerical value. Presumably, this is because they know that the numerical values will need

to change in time (line 271):

SD: (269) No I mean this is the distance... and it has a direction...

SB: (270) So it’s a vector.

SD: (271) Yeah this the position of the satellite is a vector.

SD: (272) Change with time...

SC: (273) Yeah I'm talk about the very beginning with the D... here [points to WB].
SB: (274) So the D is the radius...

To summarize this excerpt, the computational abstraction that the group has created
is a function for the unit vector of the position of the satellite (line 116). They decide to
create a function (as opposed to a hard-coded value) so that it will be able to change over
time (line 272). That is, the group has conceptualized the direction of the force with a unit
vector (]3 « 7) and have represented that idea as position dependent and therefore more
generalizable function (rhat = satellite.pos/R). Given these characteristics, this excerpt

illustrates the computational practice of creating computational abstractions.

84

Characteristic ‘ Qualities

Isolating | The cause of an unexpected error that arises in a program must be tracked
down. This sometimes involves retracing steps (or keystrokes) through
the undo command, but usually involves testing the program through a
process of guessing and checking.

Correcting | The unexpected error must ultimately be corrected in a long-term and
generalizable manner.

Systematizing | When isolating or correcting the unexpected error, it should be done is
a systematic and efficient way. This characteristic is not necessarily re-
quired.

Table 5.6: The characteristics and associated qualities pertaining to the computational prac-
tice of troubleshooting and debugging: isolating an unexpected error and correcting it in a
systematic manner.

5.2.6 Troubleshooting and debugging

The computational practice of troubleshooting and debugging, as broadly defined by Wein-
trop et. al, refers to “the process of figuring out why something is not working or behaving as
expected.” This process is frequently undertaken by students in all fields of study — especially
within introductory computational physics, given their reliance on incomplete /approximate
computational and physical models. The three fundamental characteristics of this compu-
tational practice that we have identified, as summarized in Tab. 5.6, are: i) isolating an
unexpected error, ii) correcting that unexpected error, and iii) doing so in a systematic/effi-
cient way. These three characteristics, if confidently observed within an excerpt, would serve
to classify that excerpt as troubleshooting and debugging.

For example, consider Excerpt 2 from Group I in the following analysis. Broadly, the
group can be seen working to incorporate realistic values and generalizable functions into
their MWP. A couple of minutes into starting the problem (Sec. 3.3), they modify the pre-
written numerical value for the mass of the satellite from 1 to 1E4. This leads, over the course

of about thirty minutes, to the group defining the momentum of the satellite as a function.

85

That is, the group can be seen isolating the cause of an unrealistic satellite trajectory and
ultimately correcting it in a systematic way by redefining the momentum of the satellite
from a hard-coded value to computer function.

The group begins by reading through the Euler-Cromer update of the position of the
satellite in the calculation loop (line 6). This update involves the position of the satellite,
the momentum of the satellite, the mass of the satellite, and the discrete time step (i.e.,

satellite.pos = satellite.pos + satellite.p/msatellitexdt):

SC: (6) It {the MWP} does the satellites position plus, vector, zero, five thousand, zero,

thats the momentum of the satellite...

SC: (7) Divided by the mass, so, satellites position...

They also begin to consider the numerical values that have been assigned to the physical
quantities being used (i.e., the initial position and momentum of the satellite and the mass
of the satellite). Notably, the group points out (line 8) that the mass of the satellite should

be changed to reflect the realistic value given in the problem statement:

SD: (8) This |points to the screen| is the mass? should we change that then?

SC: (9) Yeah we know that this is... they gave it to us didn’t they?

SD: (10) Fifteen times ten to the third [reading from the problem statement].

SA: (11) I have all of the numbers up here [points to 4Q).

SC: (12) |changes the mass of the satellite from 1 to 1.5E4]

By changing the mass of the satellite from 1 to 1.5E4 (line 12), they have correctly modified

the program to reflect the realistic situation presented to them. However, by changing the

86

mass of the satellite they have also introduced an unexpected error — their satellite looks as
if it is floating motionless in space.

After making their change to the program (line 12), the group begins to wonder (line
15) what the new visualization will look like. After some back and forth about what the
visualization used to look like (line 18), they decide to run the program and observe the new
visualization. The group discovers (line 20) that the satellite, although it used to travel in a

straight line trajectory, now remains stationary relative to the rotating Earth:
SA: (15) Well I wonder what it {the visualization} looks like now...

SD: (16) 1t just like shoots straight.

SA: (17) Are you {sure}, did you already try it?

SC: (18) Yeah {previously}, but it might be different...

SD: (19) We just changed the mass.

SC: (12) |runs the program]|

SA: (20) Uhh its not moving, maybe we should...

Given this unexpected error, the group begins to isolate the cause of the unexpected error.
They consider that they may have introduced a syntax error since they last ran the program
(e.g., in using E as opposed to **), resulting in it crashing the program (line 22). They also
consider that changing the mass might have lead to the unexpected error, and work to at

least temporarily rectify it (line 25):
SC: (21) We probably wrote it wrong...

SC: (22) Maybe it might have crashed the...

87

SA: (23) Well just exit out then.
SD: (24) Yeah.
SD: (25) Should we change it back and see if it runs again?

SC: (26) Well if we change it back to one it’ll probably run again because we didn’t change

anything else.
SA: (27) Well can I see what it looks like when it runs with one?
SC: (28) Yeah.

Changing the mass of the satellite back to its initial dummy value is indeed a temporary
fix to their unexpected error. However, a more long-term correction is needed to ensure the
generalizability of their program. Ultimately, the group does work to correct the error in a

more systematic and long-term manner:

SB: (745) So, okay so, we're all in understanding of why we are doing it like this {defining
the momentum of the satellite as the mass times velocity} instead of declaring this {a

hard-coded numerical value}?

SB: (746) It also like it makes it really explicit too, like when we go down here and do this

thing where you take p divided by m you are literally just left with velocity...
SB: (747) So that’s good.
SD: (7/8) Yeah.

Here, the group recognizes that the momentum of the satellite should be defined as a function

utilizing the velocity and mass of the satellite separately (line 745). That way, when the

38

momentum is used in the Euler-Cromer update, it will correctly divide out the mass no
matter what value they use (line 746).

The type of systematic correction of an unexpected error seen in this excerpt can be
contrasted with our motivating case study (Sec. 4). That is, the changes that the group made
in the case study could be characterized as a more haphazard approach, as opposed to the
present excerpt where the group shows a certain level of reasoning behind their actions (line
746). Accordingly, this excerpt seems to illustrate a group working in a systematic/efficient
way as they troubleshoot and debug their program.

To summarize, the unexpected error that the group runs into is that in changing the
mass of the satellite to reflect the realistic situation, the satellite remains motionless relative
to the rotating Earth (line 20). This introduces concern to the group, presumably because
a straight line trajectory is closer to a geostationary orbit as compared to no trajectory at
all. The group works to isolate the error by changing the mass of the satellite back to its
initial dummy value and finding that this does indeed rectify the unexpected error (line 25).
Ultimately, the group works to correct this error first temporarily by changing the mass of
the satellite, and then more systematically and permanently by redefining the momentum of
the satellite as a function (line 745). Given these characteristics, this excerpt illustrates the

computational practice and process of troubleshooting and debugging.

5.2.7 Thinking in levels

The computational practice of thinking in levels, as defined by Weintrop et. al, involves the
analysis of a system that ranges “from a micro-level view that considers the smallest elements
of the system to a macro-level view that considers the system as a whole.” This type of

high- and low-resolution analysis of a system is a skill that shows up frequently in scientific

89

Characteristic ‘ Qualities

Leveling | A group should either implicitly or explicitly define the different levels of
a system. For example, every MWP can be broken down into an initial
condition level and a calculation loop level.

Featuring | The unique features of each level should be articulated by the group. For
example, a group might articulate that physical quantities that need to
change in time must be placed in the calculation loop.

Table 5.7: The characteristics and associated qualities pertaining to the computational prac-
tice of thinking in levels: breaking a program into different levels and attributing features
to them.

disciplines — and especially within the domain of computer science. The various control
structures common to computer programming (e.g., a while or a for loop) must not only work
independently (i.e., at the micro-level) but must also work together (i.e., at the macro-level)
with other control structures to produce the desired results of the program. Accordingly, the
two fundamental characteristics that we have identified for this computational practice, as
summarized in Tab. 5.7, are: i) identifying the different levels of a system and ii) correctly
attributing features of that system to the appropriate level.

For example, consider Excerpt 6 from Group A in the following analysis. Broadly speak-
ing, this excerpt focuses on the group making decisions about what needs to be added to
their code and, more importantly, where those things needs to be added. More specifically,
they work to construct a function for the momentum of the satellite (which depends on its
velocity) as well the net force acting on it.

Early on, the group decides that they should construct a function for the momentum of

the satellite in their program (line 76):

SC: (74) Umm, so we have like it’s defining p of the satellite, and that’s like p is momentum

you know? Like p equals m v.

SC: (75) But there’s nothing in here that actually defines the p of the satellite as being m

90

SC:

SC:

SB:

SB:

SB:

SB:

SB:

SC:

(76) So 1 feel like we need to put in a v, and then the velocity of the satellite is a

variable.

(77) And then make the momentum of the satellite as a combination of the mass and

velocity...

(78) Umm, my question for you, from the perspective of...

(79) We're doing circular motion, and as you go around from point a to b, your velocity

is changing cause it’s changing direction

(80) Maybe, I guess we can define speed, but uhh the trick with velocity... since it’s

going to be changing.

(81) Like you want the variable to continue changing...

(82) And for the variable to continue updating you have to put it in the calculation

loop...

(83) Umm, okay.

However, this raises the issue of where to actually place the function in the code (line 78). The

group decides that they must define the velocity inside the calculation loop (line 82) given

that it must “continue updating” as its direction continues to change. The crucial feature

that the group is articulating here is that the calculation loop is where time-dependent or

changing quantities must be placed.

After a short TA interaction focusing on the generalizability of their program, the group

returns to topic of where certain things are/should be placed in their code:

91

SB: (107) May I umm, may I uhh...
SB: (108) Okay so, there is like, there’s two sections in the code...

SB: (109) So in the code, you have your calculation loop and your parameters and initial

conditions.

SB: (110) So from what we have, we’re defining our initial conditions as this model right
here, which is just Earth and the satellite, like it’s defined these two bodies and it has

set the momentum of this...

SB: (111) And then I was thinking, in the code here in the calculation loop the force is set

to zero zero zero, so were never defining F' net at any point.

SB: (112) I think what we need to do is describe F net. The only other thing we have to

declare is the radius.

SC: (113) Yeah, sure, we could do that.

SD: (114) Okay.

Here, the group clearly articulates (line 108) the two different sections/levels of the program
(i.e., the initial conditions and the calculation loop) and details some of the components
belonging to each level. That is, the objects of the Earth and the satellite belong to the
initial conditions (line 110) and the net force acting on the satellite belongs to the calculation
loop (line 111).

To summarize, the group has broken their program into the two different levels of initial

conditions and calculation loop (line 108). Similarly, they have attributed the particular

92

Characteristic ‘ Qualities

Communicating | The act of communication can range from pure dialogue between two or
more individuals to detailed visualizations that capture the relevant infor-
mation to be shared. For example, creating a graph of a physical quantity
vs. time can be used to succinctly share information about the time de-
pendence of that physical quantity. Alternatively, this time dependence
could be articulated verbally through dialogue.

Understanding | The information being communicated should demonstrate an understand-
ing that the group has of the underlying mechanics. For example, a group
might communicate the way that the position, force, and momentum of
the satellite are interrelated as simulated time progresses.

Table 5.8: The characteristics and associated qualities pertaining to the computational prac-
tice of communicating information: a general process of communication that demonstrates
an understanding.

feature of time-dependence to the calculation loop (line 82). Given these two characteristics,

this excerpt is can be used to illustrate the computational practice of thinking in levels.

5.2.8 Communicating information

The computational practice of communicating information, according to Weintrop et. al,
usually involves a visualization or representation (e.g., a graph) that can be used to “high-
light the most important aspects of what has been learned about the system in such a
way that it can be understood by someone who does not know all the underlying details.”
This communication skill is especially important in fields involving complex and interrelated
systems, such as those observed in physics and engineering. The ability to share useful infor-
mation with colleagues without going through all of the underlying details and mechanisms
is crucial. Accordingly, the two fundamental characteristics associated with this particular
practice, as summarized in Tab. 5.8, are: i) a general process of communication (detailed in
Tab. 5.8) and ii) the demonstration of an understanding that has been reached about the

system.

93

For example, consider Excerpt 30 from Group E. At this stage, the group has begun to
construct a Newtonian gravitational force model, but is struggling with its implementation.
A brief interaction with the TA shows them communicating information about their under-
standing of the underlying concept of circular motion, as well as an understanding of the
power and generalizability of the program. After this interaction, the group continues with
the construction of the Newtonian gravitational force, and more specifically, its direction.

About halfway into the program, the group is struggling (line 231) to construct their
Newtonian force model. The TA recognizes that they need a little help, and asks for them

to explain their process (line 232):

SB: (231) Physics man... this is a mess [points to scratch work on WBJ.
TA: (232) No no, go ahead and explain...
SB: (233) Okay, so...

SB: (234) With that beautiful little formula right here [points to Newtonian force equa-

tion]...
SB: (235) We decided... this force has to be negative.
SB: (236) Because our initial momentum is five thousand in the positive y-direction.
TA: (237) Okay, I can dig that.
SB: (238) And then our unit vector {for position} right now, is one zero zero [inaudible].
SB: (239) So if we have the force multiplied by that, negative, so it has to be negative.

SB: (240) Then this {the momentum /velocity} will slowly start approaching negative five

thousand here in the x-direction.

94

SB: (241) And then once that reaches {negative} five thousand, then our position is here

at zero one zero...

SB: (2/2) And then since it’s {the force} negative, it’ll move it downward.

SB: (248) And that will happen at every step [draws four points on a unit circle].

TA: (244) Okay good.

Thus, a member of the group can be seen communicating information (lines 234-243) about
the way that the force, momentum, and position are related at various points on the z- and
y-axes for a circular trajectory. Although just one member of the group is doing a majority of
the communication, they are acting as a spokesperson or a representative for the group (line
235). This information shows a clear understanding of the rather complicated interrelation
(i.e., sinusoidal and out-of-phase) of these physical quantities.

However, the TA continues to press them on their understanding (lines 245, 248, and

250) by asking them to consider positions other than those on the z- and y-axes:

TA: (245) What about here |draws a dot in the first quadrant|?

SD: (2/6) Point five...

SB: (247) Then it’ll be... the square root of two, square root of two, zero.

TA: (248) Okay, what about here [draws a dot in the second quadrant]|?

SB: (249) Square root of two, negative square root of two, zero.

TA: (250) What if it’s not at forty five degrees?

TA: (251) What if it’s just at some arbitrary angle?

95

SB: (252) Well, the reason that were doing this...

SD: (253) The r hat is gonna update as it goes.

TA: (254) Okay...

SD: (255) So you don’t need to know that.

SB: (256) Yeah you don’t need to know that...

TA: (257) Okay, that’s fine.

In response, the group demonstrates a strong understanding of not just the interrelation
between physical quantities (lines 234-243), but also of the computational power of their
program. That is, another member of the group articulates (line 253) that their definition
of the direction of the force in code (i.e., 7) will automatically update to account for these
various/arbitrary positions.

To summarize, this excerpt shows a TA interaction focusing on the construction of the
Newtonian gravitational force acting on the satellite. The group can be seen communicating
information about the interrelation of the position, force, and momentum of the satellite.
Through this dialogue, they are demonstrating a clear understanding of these interrelations,
as well as a clear understanding of the power and generalizabilty of their program. Given
this communication and demonstration of understanding, this excerpt can be classified as

an illustration of the computational practice of communicating information.

96

Chapter 6

Discussion

This chapter provides a discussion of the reasons why we might observe certain practices,

the limitations of the underlying framework, and the constraints of the course and activity.

6.1 Findings

In the sections that follow, we present our findings of the common, less common, and the
unobserved practices within our data set. The common practices are those that were identi-
fied at least three times in a majority of the groups (individual practices occurred between
zero and seven times per group, with an average of three occurrences). The less common
practices are the remaining of the observed practices. The unobserved practices were not
identified at all. Along with some of the statistics of the frequencies of these practices (i.e.,
raw numbers and percentages), we provide their definitions and reference detailed examples
in the appendices. Additionally, and perhaps most importantly, we discuss the reasons as to

why a particular practice might have a given frequency.

6.1.1 Common practices

Eleven of the practices laid out by the framework have been identified multiple times in

eight of the groups that were analyzed. Accordingly, these practices (listed in Tab. 6.1) are

97

deemed common and are discussed below and in App. A. It is important to pay attention to
these practices because, as instructors, we not only want students to be able to accomplish
tasks, but we also want to make sure that they are engaging in things like critical and
computational thinking while doing so. Being able to identify and encourage these practices
as they occur (or don’t occur) in a classroom, therefore, is crucial to effective pedagogy and
course design. Accordingly, we must develop clear and reliable definitions for each of the

common practices.

Category Practice Number % of category % of all
Data Creating data 27 31 9
Analyzing data 23 27 8
Visualizing data 36 42 13
Modeling Designing models 32 33 11
Constructing models 18 19 6
Assessing models 27 28 9
Problem solving Creating abstractions 22 27 8
Programming 21 26 7
Troubleshooting and debugging 24 29 8
Systems Thinking in levels 18 33 6
Communicating information 23 43 8

Table 6.1: The computational practices that have been deemed common are shown with the
number of times each practice was identified, the percentage of its category that it occupies
(i.e., the number of times a practice was observed divided by the total number of practices
from that category), and the percentage of all the practices that it occupies (i.e., the number
of times a practice was observed divided by the total number of practices from all categories).
Horizontal dividers separate the different categories (i.e., data, modeling, problem solving,
and systems thinking).

Overall, there are a number of reasons that we have commonly observed these practices
in terms of the learning goals and the course design. The learning goal of being able to
use mathematical and computational thinking (P4) comes into play any time students are
dealing with the abstractions that they have defined in the calculation loop, which are needed

to be able to accurately predict motion using the Euler-Cromer algorithms. The learning

98

goal of being able to analyze and interpret data (P3) shows up anytime students print or
visualize the data representing a physical quantity, a common troubleshooting technique and
something required by the problem statement. The learning goal of being able to develop
and use models (P1) shows up whenever students are working to construct the various force
models covered in the course, which are necessary for an accurate trajectory of the satellite.
The learning goal of being able to obtain, evaluate, and communicate information (P7)
shows up continually as groups are engaging in discussion with each other and with the
tutors, something that we strongly encourage through tutor questions. All of these learning
goals seem to strongly influence the practices that we observe.

For example, the practice of visualizing data involves the production of a visualization
that clearly conveys some information. The computational production of a dynamically
updating graph of the distance between the satellite and the Earth vs. simulated time can
be produced and used to clearly convey information about the nature of the orbit (i.e., how
close the orbit is to perfectly circular). This type of practice was observed 36 times across
the data set, accounting for 42% of the data practices, and 13% of all practices.

Visualizing data is expected to show up commonly in our data given the learning goal
of analyzing and interpreting data (P3). One of the ways that data can be analyzed and
interpreted is with a visualization. Specifically, the visualizations we see students making
are that of the trajectory, the force, the momentum, and the graph of distance vs. time.
These visualizations efficiently convey information both to the students and to the TA (e.g.,
the visualization of the force conveys information about its central nature).

Additionally, students have been working with MWPs to produce dynamic visualizations
of motion since the first week of class. The first and second computational problems, focusing

on boats and hovercrafts, respectively, were visualized in a number of ways (e.g., producing

99

visualizations of their trajectories). In other words, students are familiar with the visualiza-
tion of data coming into the third problem. Not to mention, the problem statement, shown
in Fig. 3.3, explicitly asks students to produce a simulation/visualization of an elliptical
orbit.

Furthermore, after a group has correctly constructed the Newtonian gravitational force,
many of the tutor interactions focus on the generation of a graph to clearly show that the
satellite isn’t traveling in a perfectly circular orbit. For example, consider Excerpt 38 from

Group A where the TA is prompting the group to add in a graph to their code:

TA: T'd like you to graph the orbital... the magnitude of the radius of the orbit vs. a

function of time...
SC: Okay...
TA: And have that graphed as well and it updates
SC: Okay.

The tutor is presenting the additional goal of producing a graph to the group. After this
interaction, the group adds a graph to their program and using the results to conclude that
the satellite is not traveling in a perfectly circular orbit. This graph can be used to efficiently
convey information about how close the satellite is to perfectly geostationary.

Among all things, we want P3 students to understand that computers can be used to
quickly generate visualizations that can easily be tweaked, and that those visualizations can
be useful when it comes to understanding and communicating the physics of the realistic
phenomenon being modeled. Accordingly, we are likely to commonly observe this and other

(see App. A) practices in our data.

100

6.1.2 Less common practices

Five of the practices laid out by the framework have been identified relatively fewer times and
in only five of the groups that we analyzed. Accordingly, these practices (listed in Tab. 6.2)
are deemed less common and are given a reasonable amount of attention here and in App. B.
The data practices were either unobserved or commonly observed, and so this table shows

only the less commonly observed modeling, problem solving, and systems practices.

Category Practice Number % of category % of all
Modeling Understanding concepts 7 7 2
Finding and testing solutions 13 13 4
Problem Solving Assessing solutions 9 11 3
Systems thinking Investigating systems 13 13 4
Understanding relationships 13 13 4

Table 6.2: The computational practices that have been deemed less common are shown
with the number of times each practice was identified, the percentage of its category that it
occupies, and the percentage of all the practices that it occupies.

Overall, there are a number of reasons that we observed these practices given the learning
goals, the design of the course, and the actual problem students are solving. The learning
goal of being able to engage in argument from evidence (P6) manifests when students are
defending the use of a particular model, which is necessary to choosing the most appropriate
force model (i.e., the Newtonian gravitational force). The learning goal of being able to
construct explanations (P5) happens when students are comparing different force models,
which similarly is needed to choose the most appropriate force model. The learning goal of
being able to obtain, evaluate, and communicate information (P7) shows up continually as
groups are engaging in discussion with each other and with the tutors, something that we
strongly encourage through tutor questions. The learning goal of being able to plan and

carry out investigations (P2) happens frequently as groups are dealing with the complicated

101

system that we have provided to them, which is a crucial part of programming and computer
engineering. The learning goal of being able to develop and use models (P1) shows up
whenever students are working to construct the various force models covered in the course,
which must be correctly translated into code for the program to run correctly. However, one
of the reasons as to why we only observe these practices less commonly relative to the other
practices — aside from the limitations of the framework and the course design — may be due
to the variation in student preparation coming into the course.

For example, the practice of assessing solutions involves the comparison of two or more
different solutions. This is different than just testing solutions, given that it focuses on a
comparison between two or more solutions. Groups often compare the expected behavior
using a local gravitational force to using a Newtonian gravitational force. In this way,
multiple solutions are assessed in terms of their validity. This type of practice was observed
9 times across the data accounting for 11% of the systems thinking practices, and 3% of all
practices.

We expect to see this practice in our data given the learning goal of being able to construct
explanations (P5). That is, we not only wanted students to make comparisons between
models, but we also wanted them to clearly explain those differences. These long and often
complicated explanations, then, are often a clear indication of a group assessing a solution.

Additionally, many of the tutor interactions can encourage this practice. For example,
consider Excerpt 22 from Group B where the TA is asking them about the two models they

have written on their board:

TA: So these two forces that you have on your board...

TA: Fg and Fcent...

102

TA: Which of those do you want to use?

SB: We are thinking Fcent...

TA: Why?

SB: Because we have everything we need for it...

Here the models that the group is comparing are the gravitational force and the centripetal
force. Specifically, the group explains the difference between the two as being in terms of
the requirements of the model. After this interaction, the group runs through the individual
elements of the model that they have decided on, and begin to construct it in code. Given
interactions like these, we frequently observe this type of practice in our data.

However, one reason that we observe assessing solutions less commonly within our data
might be that some groups are better or worse at making comparisons — a key characteristic
of this practice. Most groups take a guess and check approach rather than a contrast and
compare approach [50], and so we only see this practices less commonly relative to the rest.

For example, Excerpt 7 from Group G shows a common exchange:

SC: But I feel like we should just try this one Fcent equation...

SC: And see if it works

SC: Because if it doesn’t, then we can worry about it later

SB: Yeah okay, lets just do that.

Here, the group tentatively decides on a model without comparing it to any other possible

models (e.g., a Newtonian gravitational force). A group with at least one member that is

103

highly motived to compare the pros and cons of different solutions will likely engage in this

and other (see App. B) practices more often.

6.1.3 Unobserved practices

Six of the practices laid out by the framework have not been observed at all. Accordingly,
these practices (i.e., collecting data, manipulating data, choosing computational tools, devel-
oping modular solutions, preparing problems, defining systems) are given their due attention
here and in the appendices. Although these practices are unobserved, it is still important to
discuss why they are unobserved.

There are a number of reasons that we did not observe these practices. Specifically,
there is a lack of learning goals related to data collection, data manipulation, choosing tools,
developing modular solutions, preparing problems for solutions, and defining systems and
managing complexity. Further, given the lack of focus on these learning goals, many tutor
interactions worked to intentionally dissuade students from engaging in these unobserved
practices.

For example, the practice of collecting data is not expected to show up in our data
given that there are no sensors or meters that are provided to students, as they might be in a
lab setting. The only tool students are required to use is the computer along with VPython.
This tool, although it can be used to handle the collection of data, is primarily meant to be
used to create the data algorithmically. This aligns with the learning goals of developing and
using models (P1) to create data, rather than collecting it. Given the lack of these types of

learning goals, we do not expect students to engage in this and other (see App. C) practices.

104

6.2 Limitations

Although the framework gives a solid foundation and a good starting place, it does not come
without its limitations that influence the practices we were able to identify. Additionally, the
course and its design invariably constrains the practices that we have and have not observed.
Furthermore, the activity itself places additional constraints on the practices available to
the students. Finally, the qualitative lens that we have used influences the analysis we have
conducted. In this section, we describe the limitations of the framework, the constraints of
the course and activity, and the primary lens we have used to guide our analysis. Finally, we
discuss how those limitations relate to the practices we have been able to confidently identify.
It is important to note that for every limitation, we also saw possible research opportunities,
which are described in Ch. 7.

It is also important to recognize that our analysis has focused on one specific problem
(i.e., the Newtonian gravitational force problem detailed in Sec. 3.3) in the early stages of
the development of P3. Even though our scope of analysis is fairly restricted, our research
is still useful in adding “second-order terms” to the broad definitions presented by Weintrop
et. al, as well as to future research on the computational practices within physics. Ex-
panding our analysis to other problems (e.g, spring forces) in future iterations of P3 or to
other implementations of the classroom (e.g., the electricity and magnetism version, aptly
named EMP3) will invariably introduce new or otherwise previously unobserved practices.
In addition, MSU’s new Studio Physics courses are specifically designed to engage students

with collecting and analyzing data.

105

6.2.1 Framework

Although the framework that we used has many benefits, there are also some limitations
that come along with it. For the most part, these limitations are centered on the broad
definitions that are provided by Weintrop et. al. Although their broad definitions are widely
applicable to many different types of science and mathematics classrooms generally, they can
be rather vague/ambiguous when applying them to a particular classroom. Accordingly, the
following sections describe the vague/ambiguous definitions within P3 in terms of the four
different categories of practices: the data, modeling, problem solving, and systems thinking
practices.

Additionally, the framework itself has a rather narrow focus (i.e., on practices indicative of
computational thinking), which could be expanded to capture practices that are indicative
of other types of thinking or cognitive development. For example, P3 does an excellent
job of facilitating the development of physics identity within its students — something the
framework is not intended to capture. Despite these limitations, the framework does capture

many practices well (see Sec. 5.2).

6.2.1.1 Data

Within the data practices, it is often difficult to identify precisely when students are advanc-
ing toward the goals of the problem through the creation of data. Although the construction
of the computational algorithm that creates the data can be easily identified in code, the
advancement that they undergo is more subjective. The goals of the problem (e.g., sim-
ulating an orbit or producing a graph) often take the entire two hours of the class to be
accomplished, and the different paths to get there are winding and often non-linear. For

example, after constructing a working force model in code, a group is ready to automatically

106

and algorithmically create a set of data representing the force on the satellite. However,
this possibly incorrect/inaccurate set of data does not immediately or completely advance
them toward their goal of creating an elliptical orbit. Still, this incorrect set of data can
eventually prompt them to correctly modify their force model — ultimately advancing them
toward their goal of creating an elliptical orbit. In other words, sometimes you need to take
a step back before you can take two steps forward. Given this difficulty in defining what

constitutes advancing toward a goal, identifying this practice was often difficult.

6.2.1.2 Modeling

Within the modeling and simulation practices, it is often difficult to identify when a group is
progressing in their understanding of a concept as they interact with the models of the course.
Although it is easy to identify the different force models, and to identify when a group is
interacting with them (e.g., designing on the whiteboard or constructing in code), it is more
difficult to say when a group is using that model to make progress in their understanding
of the underlying concepts. Not to mention, it is difficult to clearly define what it means to
truly understand something. For example, groups are frequently seen interacting with the
computational model of the Newtonian gravitational force. As they necessarily construct
the direction of the force in terms of the separation vector and its magnitude, they should
be using it to develop an understanding of the way that the force changes direction over
time. This understanding, although difficult to directly observe, can be teased out through
tutor interactions (see Sec. 5.8). It often takes a long line of tutor questioning to confidently
check a group’s understanding. Given this difficulty in defining what constitutes progressing

in the understanding of a concept, identifying this practice was difficult.

107

6.2.1.3 Problem solving

Within the problem solving practices, it can be difficult to clearly define what it means for
a group to be systematic while troubleshooting and debugging their code. Although it is
relatively easy to identify when a group has isolated and corrected an error, it is not so easy
to identify when a group is being systematic in that process. Although many groups devise
plans to methodically isolate and correct errors until they have successfully troubleshooted or
debugged their code (see Ch. 4), those plans are not always successful. Additionally, many
groups stumble haphazardly on unexpected errors, and correct them in a similar fashion.
Given this difficulty in defining what it means to systematically troubleshoot and debug,

identifying this practice was difficult.

6.2.1.4 Systems

Within the systems thinking practices, understanding relationships in a system is ambigu-
ously defined — it can have a significant amount of overlap with the practice of designing a
computational model (see Sec. 5.2.3). This overlap ultimately depends on the ambiguous
definition of a system given by Weintrop et. al. For example, if a computational force model
can be considered a system, then anytime students are designing a computational model they
are also understanding the relationships in a system. Rather, if a system refers to something
more like a collection of files that are related to one other to create a program (e.g., a Python
script that loads different modules/libraries), then understanding the relationships in a sys-
tem would most likely not occur alongside designing a computational model. This type of
ambiguity has a tendency to lower confidence during inter-rater reliability. Accordingly, this

practice is confidently observed less often.

108

6.2.2 Course

Although the course that we collected our data from was well designed and implemented (see
Ch. 3), it was not conducive to some of the practices laid out by the framework, stemming
from the many design choices that were made early on. These crucial design choices and

their ramifications on our analysis/findings are described in the sections that follow.

6.2.2.1 Group vs. individual

Given that the course followed a group-based approach, it was often difficult to say which
individual students were actively engaging in the practice. For example, the process of
agreeing on the assumptions of the force model often involves multiple viewpoints that must
be taken into account simultaneously. Accordingly, it is difficult to ascribe the practice to any
individual from the group. Additionally, just because individuals are not physical engaged
(e.g., talking or writing) does not mean that they are not mentally engaged. However, follow-
up interview data could be used as additional evidence for ascribing a particular practice to

a specific individual.

6.2.2.2 Scaffolding vs. discovery

At the beginning of the course, a “norming” day was held as a means to provide students with
an overview of the course structure and a reason as to why it was being run that way. An
important component of that day was on the modeling component of the course, illustrated
in Fig. 6.1. Given this focus on modeling at the beginning of the course, it is no surprise that
we frequently observed students engaging in the various computational modeling practices
defined by Weintrop et. al.

Additionally, the course was reasonably scaffolded with the pre-class reading and pre-

109

Creating

N

Real world Model world
Frds o~ ‘ Loy
= A««W?\ Rapeunl s
W &] 2’ F »
Valida¥ ' ‘/Predicting

Outcomes

Figure 6.1: The iterative process of modeling physical systems that was described to the
class on the first day.

class homework. The pre-class reading is meant to introduce the fundamental concepts
while the pre-class homework is meant to check for correct application of those concepts.
This preparation helps the students to frame the problem in a way that uses many of the
practices. For example, some of the homework problems (see Sec. 3.7) focus on VPython
errors that must be identified. Given this type of preparation, many students engaged in the
practice of things like troubleshooting and debugging and programming.

Moreover, the frequent tutor interactions throughout the course are meant to check for
understanding of the concepts and their application while in class. However, these frequent
tutor interactions make it difficult to say whether or not the practices observed are generated
by the students or by the tutors — a “social observer” effect. Many times, TAs dissuade
students from engaging in certain practices, and intentionally encourage them to engage in
others. For example, any group that gets lost in the PhysUtil system file will invariably be

encouraged to stop that and start focusing on the MWP.

110

6.2.2.3 Intro vs. advanced

The course was designed around introductory physics concepts, which limited the types
of forces and motion models that could be analyzed. The analysis of a more advanced
classroom (e.g., computational Newtonian mechanics using higher order algorithms) may
provide additional practices. For example, in more advanced physics classrooms we may
expect groups to optimize their models by adding more than just one force — something that
is lacking in the Weintrop framework. In other words, we can begin to search for new and
unique practices in a more advanced P3—style classroom.

An important limitation of the study is that we did not focus on classifying the levels of
sophistication of the practices. Rather, we just focused on identifying them. As computation
continues to grow in industry and academia [3], and as new and more advanced computational
techniques are discovered, it is important that we begin to classify the Weintrop practices in
terms of their levels of sophistication. Although we do not expect to see extremely unique
or sophisticated practices in our data, it is something that should be focused on in future

research.

6.2.3 Activity

At the level of the activity itself, its boundaries limit the practices that we observe. For
example, the problem statement contains many direct tasks, as well as a few that are im-
plied. Additionally, the focus of the activity is on relatively intuitive physical concepts (i.e.,
the gravitational force and Newton’s second law). These types of requirements and their
implications on our findings are described in the sections that follow.

Given that the problem statement contains both explicit and implied tasks, it has a large

111

influence on the practices that we do and do not observe. Specifically, the direct tasks in the
problem statement are to i) produce a simulation of an elliptical orbit, ii) produce a diagram
showing the momentum of the satellite, and iii) produce a graph of the radius of the orbit
over time. Given the direct task of (i), we expect to see groups designing, constructing, and
assessing models in code as they work to produce their physically accurate simulation (see
Sec. 5.3). Additionally, given (ii) we expect to see groups analyzing and visualize data as
they communicate information about the way that the momentum of the satellite changes
over time (see Sec. 5.2). Similarly, given (iii) we expect to see students engaging in the
practice of visualizing data as they communicate information about the radius of the orbit
over time (see Sec. 5.8). The direct tasks lead to the more commonly observed practices.
The direct tasks in the problem statement are explicitly laid out for groups and so take
precedence, whereas the implied tasks in the problem statement are often a difficult thing for
students to infer on their own. For example, one implied task is to develop a proficiency in
dealing with relatively small programming systems (i.e., the self-contained MWP). Another
implied task is to develop an understanding of the concept of a directional unit vector as
it shows up in the Newtonian force (see Sec. 5.2.8). These rather subtle implied task may

be reasons that we observe groups engaging in some of the practices less commonly (see

Sec. 6.2).

6.2.4 Analysis

It is important to note that this study was conducted through the lens of an instructor,
looking to effectively increase the amount of computation taught at the introductory physics
level. Accordingly, there was a heavy focus on the way that the tutors interacted with

the students to either encourage or discourage certain practices. Although these types of

112

student-instructor interactions are unavoidable in most classrooms — especially in P3 type
classrooms — our focus on them may have made it more difficult to identify the practices
coming solely from student-student interactions.

Additionally, given the heavy focus on computation and computational thinking in our
analysis (see Ch. 2), other important types of thinking (e.g., creative thinking) may have
been overlooked. A detailed analysis of the related analytic problem (see Tab. 3.1), which
does not have a computational element, may provide additional insight into the practices
indicative of creative and other types of thinking.

Furthermore, the type of data that we had to work with (i.e., in-class video of group work)
often made it difficult to ascertain exactly what students were thinking as they worked, and
may have influenced the practices that we observed. Conducting post-class might have
helped to validate researcher inferences — something that should be looked into in future

research.

113

Chapter 7

Conclusion

7.1 Summary

This thesis attempts to more clearly and precisely define the computational practices ob-
served within introductory computational mechanics that are indicative of computational
thinking. Although a set of preliminary practices — defined in a framework developed by
Weintrop et. al — provide a starting point (see Sec. 2.1), they were sufficiently vague and/or
ambiguous as to warrant further definition. This is especially true within the discipline of
introductory physics. Accordingly, this thesis i) describes the overall process of defining the
computational practices common to introductory physics that are indicative of computa-
tional thinking and ii) presents those definitions with concrete examples (see Chs. 5 and 6
and Apps. A-C).

We began by collecting data from a classroom that was designed according to multiple
learning goals and theories of learning. Specifically, a problem-based learning environment,
called Projects and Practices in Physics, focusing on the principles of constructive alignment
and using the theoretical framework of communities of practice [47]. This type of classroom
was a rich environment to conduct qualitative education research within, and so we collected
multiple streams of data (see Sec. 3) for possible analysis [51, 52]. Although this classroom

was an ideal place to search for instances of groups engaging in computational practices —

114

helping us to more clearly and precisely define them — it is important not to generalize our
findings to classrooms that are sufficiently different.

Early research in computational physics education suggested continuing to investigate
a phenomenon called “physics debugging [31].” Accordingly, a pilot study was conducted
in the Fall of 2016 to better understand this phenomenon — which ultimately raised more
questions than it answered (see Ch. 4). These additional questions motivated the need for a
more rigorous and in-depth analysis of the data so that we could make and support stronger
claims.

Our corpus of data, consisting of in-class video of nine groups working on three different
computational physics problems, was transcribed verbatim with gestures and actions indi-
cated. Similarly, overhead video and computer screencasts were collected to cross-reference
with the transcripts. Given these three streams of data, we performed both a task and a
thematic analysis (see Secs. 2.4 and 2.5) to help facilitate a more rigorous and in-depth anal-
ysis so as to generate clear and precise definitions of the common computational practices
that were observed.

The common practices that we observed were: creating, analyzing, and visualizing data in
the data practices; designing, constructing, and assessing models in the modeling practices;
creating abstractions, programming, and troubleshooting and debugging in the problem solv-
ing practices; and thinking in levels and communicating information in the systems thinking
practices. The less common practices that we observed were: understanding concepts and
finding and testing solutions in the modeling practices; assessing solutions in the problem
solving practices; and investigating systems and understanding relationships in the systems
thinking practices. The unobserved practices were: collecting and manipulating data in the

data practices; choosing computational tools, developing modular solutions, and preparing

115

problems for solutions in the problem solving practices; and defining systems in the systems
thinking practices. Along with these definitions (see Secs. 5.2 and 6.1, and Apps. A-C), we
provide a detailed account of the data reduction, coding process, and inter-rater reliability

(see Sec. 5.1).

7.2 Future research

Although we have attempted to precise some of the broad definitions of the computational
practices that are indicative of computational thinking as provided by Weintrop et. al, more
research is needed to fully understand them within and beyond the discipline of introductory
physics. The findings of this thesis, though useful, have raised additional questions and
present many opportunities for future research.

To start, a deeper analysis of the Newtonian gravitational force problem as presented in
P3, and focused on in this thesis, could be pursued. Additional types of data (e.g., post-class
interviews) could be collected to provide more information on the way students perceive and
experience the different practices that they are engaging in.

Additionally, a broader analysis of all of the mechanics problems presented in P3 could
be conducted. Although we have focused our analysis on one particular problem near the
beginning of the course, there are other computational problems focusing on other mechanical
concepts (e.g., collisions or rotation) occurring later in the course that my provide additional
insight into the associated practices. It may also be of interest to investigate the way that
these practices evolve over time as the course progresses.

Further, our analysis can be extended beyond an introductory mechanics course (e.g., ad-

vanced mechanics or introductory electricity and magnetism). There are many other physical

116

concepts that can be, and sometimes must be, used while solving engineering problems (e.g.,
Lagrangian mechanics or cyclotron motion). Similarly, the Euler-Cromer algorithm high-
lighted in this thesis is not the only one, and is not always the most precise. More advanced
classes focusing on more complicated yet more precise algorithms might be of future research
interest.

Although P? was well suited to the analysis that we conducted, not all classrooms sub-
scribe to its format. Accordingly, extending this type of research to other physics classrooms,

that at least utilize computers in some capacity, would be of value.

7.3 Concluding remarks

A better understanding of modern scientific practices can only help to inform the many de-
cisions that must be made while designing a course so as to foster the learning of knowledge,
skills, and computational thinking. As student-centered learning environments like P3 be-
come increasingly popular, and as computation continues to permeate the STEM disciplines,
our findings contribute to that understanding and present many opportunities for continuing

research.

117

APPENDICES

118

Appendix A

Common practices

The following sections describe the common practices that we observed.

Creating data

The practice of creating data involves the construction of an automatic or algorithmic
process that will quickly produce a large set of data and using that set of data to advance
toward their goals. For example, constructing an Euler-Cromer algorithm to create a set of
data representing the position of the satellite over time advances the group toward their goal
of simulating the orbit of the satellite (see Sec. 5.2.1). This type of practice was observed 27
times across the data set, accounting for 31% of the data practices, and 9% of all practices.

Creating data is expected to show up commonly in our data given the learning goal of
using mathematical and computational thinking (P4). We wanted students to take advantage
of the Euler-Cromer algorithms to generate the sets of data representing the position and
momentum of the satellite over time. We also wanted them to construct and use different
models to generate the set of data representing the force over time. These algorithms and
models of motion require a lot of mathematical and computational thinking, aligning well
with that learning goal.

Additionally, the problem cannot be solved analytically with just introductory level math-

ematics. However, it can be solved numerically with introductory level mathematics and

119

computation. For example, consider Excerpt 7 from Group C where the TA is prompting

the group to create data:

TA: But you need the force to keep changing direction as it moves around
SC: Right

TA: So you can’t just hard code the numerical value that you found last time

SC: Oh... because this position of the satellite is going to change, which means the force is

going to change...
TA: Exactly

SB: Oh, gotcha

Here, the tutor is facilitating the creation of data by focusing on the way that the force needs
to continually change as the satellite moves. After this interaction, the group goes on to
code their net force as a position-dependent function rather than a hard coded value. These
types of interactions usually initiate the process of designing, constructing, and assessing
computational models and algorithms that ultimately create large sets of data.

Overall, we want students in P? to be able to use simple control structures with force
models of varying complexity to generate large sets of data for complicated and realistic

motion problems — to create data.

Analyzing data

The practice of analyzing data involves a broad process of analysis that includes sorting

data into categories, looking for trends, looking for correlations, and/or identifying outliers

120

that can be used to reach some conclusion. For example, when a print statement is used to
verify that the force acting on the satellite has the trend of remaining constant in simulated
time, a conclusion can be drawn about the correctness of the underlying force model (see
Sec. 5.2.2). This type of practice was observed 23 times across the data set, accounting for
27% of the data practices, and 8% of all practices.

Analyzing data is expected to show up commonly in our data given the learning goal of
analyzing and interpreting data (P3). We recognize that large sets of data need to be gener-
ated using computational algorithms and models, and that these sets need to be analyzed in
order to asses and validate the underlying algorithms and models. There are many different
ways to analyze data, but it usually leads to some interpretation or conclusion that is made.
Given the utility of analyzing data when it comes to designing, assessing, and constructing
the underlying computational models, we expect to see this practice commonly in our data.

One technique of analysis that is often suggested is to use a print statement in the
calculation loop so the data itself can be analyzed. For example, consider Excerpt 23 from

Group I where the TA makes this type of suggestion:

TA: Check like, so I know you know how to do this... use a print statement.

TA: Check if it’'s doing anything, make sense of where it’s not, or if it’s running or if it’s

not running...

SB: Yeah, okay.

TA: Talk everybody through what you're doing though...

SB: Yeah, I will.

Here, the TA suggests that they use a print statement so that they can analyze the data

121

representing the force acting on the satellite and to make decisions based on that analysis.
After this interaction, the group constructs a print statement in their calculation loop to
print the continually updating net force acting on the satellite, thereby creating a set of
data. They then analyze this set as they assess the underlying force model. These types of
TA interactions focusing on print statements usually initiate the practice of analysis of a set
of data.

Ultimately, we want students in P? to be able to interpret and attach meaning to the

patterns that can be found in large sets of data.

Designing computational models

The practice of designing computational models involves defining the individual com-
ponents of a model, relating the model to the physical phenomenon under investigation, and
articulating what predictions the model will be able to make. For example, the mass of the
satellite, the magnitude of its velocity, the radius of its orbit, and the polar angle that it
makes can all be separately defined in code. Additionally, these individual components can
be combined, following an equation, to produce the expected oscillatory motion of the satel-
lite. Finally, the resulting force model can be used to make predictions about the motion of
the satellite (see Sec. 5.2.3). This type of practice was observed 32 times across the data set,
accounting for 11% of the data practices, and 33% of all practices.

We expect to see this practice commonly in our data given the learning goal of developing
and using models (P1). The course was specifically designed to focus on different force
models with a range of complexities. That is, the first three weeks of the course focuses

on a constant zero force, a constant non-zero force, and a non-constant force model. Given

122

that the students must actually develop these models in code, we frequently observe them
designing computational models.

Further, the four-quadrants are meant to scaffold the design process by highlighting
the knowns, unknowns, and assumptions of the model (see Ch. 3). This scaffolding often
facilitates the design process by helping groups to define the individual elements of their
model. For example, consider Excerpt 12 from Group F where one student is clear to

articulate the individual elements they are defining by writing them on the four-quadrants:
SA: So I'm just gonna go ahead and define those over there then.

SA: [writing on 4Q).

SA: Should we do that?.

SB: Yeah go ahead and... We have the mass.

SB: And the position of the satellite.

SC: And the velocity from last time.

SA: Okay hold on |writing them down)].

Here, the individual elements of the mass, position, and velocity of the satellite are individ-
ually defined. Once this is done, they begin to relate them to one another and to construct
their centripetal force model. That is, we see students using the four-quadrants to help them
design their model.

Mainly, we want students in P3 to be able to define the individual elements of a model,

relate them to each other, and make predictions using various computational force models.

123

Constructing computational models

The practice of constructing computational models involves implementing new behavior
in code by either creating a new model or by extending a previously written model. For
example, implementing an attraction between two massive objects in code can be achieved
through the construction of a force model. This behavior can be implemented in one shot
(e.g., immediately constructing a Newtonian gravitational force that can handle elliptical
orbits) or can be implemented by successively extending an approximate model (e.g., moving
from a constant gravitational force that generates a parabolic trajectory, to a centripetal force
that generates a circular orbit, to a Newtonian gravitational force that generates an elliptical
orbit). This type of practice was observed 18 times across the data set, accounting for 19%
of the data practices, and 6% of all practices.

Constructing computational models is expected to show up frequently within our data
given the learning goal of developing and using models (P1). Developing a model in code
invariably requires students to map mathematical equations onto VPython syntax. This
involves using proper operations (e.g., adding, multiplying, calculating magnitudes), using
proper order of operations (e.g., using parentheses to clear up any ambiguity), and ensuring
computational abstractions are of the proper type (e.g., that position is a vector, or that
distance is a scalar). Given that these things must all be constructed in code, we frequently
observe students constructing models.

Additionally, many tutor interactions are intended to facilitate this practice. For example,
consider Excerpt 9 from Group I where the group has designed their model and is beginning

to construct it in code:

TA: No, what you have their on the whiteboard looks good...

124

SD: Okay so we just need to like take this equation and like...
SD: Put it in the program...

TA: Right...

SD: Right, but how do we do that?

SC: So just take big G... And then like multiplied times...
SC: m sat, err, yeah the mass of the satellite.

SA: Okay... |begins to type|.

Here, the model they have designed is the Newtonian gravitational force and they begin
to construct it in code in terms of the universal gravitational constant, the mass of the
satellite and the Earth, and the satellite’s position relative to the Earth. Given these types
of interactions, we frequently observe students constructing models.

Ultimately, we want students in P? to be able to construct models in code, whether or

not the models are correct.

Assessing computational models

The practice of assessing computational models involves identifying the assumptions
built into a model and validating them by comparing to reality to ensure predictive accu-
racy. For example, groups frequently assume that the orbit of the satellite will be perfect
circular. Although this assumption is a good starting point, it is invariably checked for va-

lidity when considering arbitrary initial conditions that lead to more general elliptical orbits

125

(see Sec. 5.2.4). This type of practice was observed 27 times across the data set, accounting
for 28% of the data practices, and 9% of all practices.

Assessing computational models is expected to show up frequently within our data given
given the learning of developing and using models (P1). Once a model has been designed
and constructed to a reasonable degree, it can be used to generate information (e.g., a
trajectory of the satellite). This information can ultimately be used as evidence to make
an argument for or against the validity of that model. Thus, throughout the process of
designing, constructing, and most importantly assessing a computational model, students
should be engaging in argument based on evidence.

Many tutor interactions can help to facilitate this practice as well. For example, consider
Excerpt 15 from Group C where they articulate an assumption built into a model and validate

its use given prompting:

TA: Yeah but when is that equation good?

SB: When its in free...

SC: Like when its falling...

TA: Right, close to the Earth.

SB: Yeah.

SC: Which is why we have that written here under assumptions {on the 4Q}.

TA: Okay good but... is that what you have over here?

SB: No.

SC: No we need a different equation...

126

Here, the poor assumption is that of a uniform gravitational acceleration, which invalidates
their model. After this interaction, they scrap the local gravitational force and begin to try
a centripetal force model. Given these types of tutor interactions, we expect to frequently
observe students assessing models.

Overall, we want students in P? to be able to validate different computational models
by identifying their assumptions, whether or not they did the design and/or construction

themselves.

Creating computational abstractions

The practice of creating computational abstractions involves taking a physical concept
and representing that concept in code. For example, the physical concept of the unit vector
giving a proper direction to the Newtonian gravitational force acting on the satellite can be
most easily represented in code by combining the position of the satellite and its magnitude
(see Sec. 5.2.5). This type of practice was observed 22 times across the data set, accounting
for 27% of the data practices, and 8% of all practices.

Creating computational abstractions is expected to show up frequently within our data
given the learning goal of being able to develop and use models (P1). All of the models used in
the course (i.e., the various force and motion models) have some mathematical form that can
be translated into VPython syntax. That is, in order to construct a computational model,
you must first create the computational abstractions that it depends on. Given the focus on
modeling in the course, we expect to commonly observes students creating abstractions.

Additionally, some of the tutor interactions that we have observed facilitate this practice

well. For example, consider Excerpt 9 from Group F where the tutor questions them on the

127

definitions that they have in their code:

TA: So I see that you have those things defined on your whiteboard...
TA: But where do you have those defined in the code?

SA: But thats what I'm saying, thats what were working on.

TA: Okay, so what are you thinking then?

SA: We have these things |[points to board| defined...

SA: And we're gonna like input those values for those variables...

Here, the definitions that they have on the whiteboard are the mass of the satellite, its
speed, and radius of circular orbit. This interaction ultimately prompts them to construct
the corresponding computational abstractions in code, whether they hard code values or con-
struct more complicated functions. Given these types of interactions, we expect to commonly
observe this practice in our data.

Ultimately, we want students in P? to be able to make abstractions in code when dealing

with various physical concepts.

Computer programming

The practice of computer programming involves modifying code while arranging that
code in proper syntax. For example, while modifying the force model in the calculation
loop, all lines must be arranged with the proper indentation. In other words, aside from

the validity of the force model, the syntax must be in order for the computer to be able to

128

interpret things correctly and to run without error. This type of practice was observed 21
times across the data set, accounting for 26% of the data practices, and 7% of all practices.

Computer programming is expected to be commonly observed in our data given the
learning goal of using mathematical and computational thinking (P4). Groups are working
with MWPs in VPython (see Sec. 3.4.2.1), which comes with its own unique syntax that must
be adhered to strictly. Although the syntax in VPython is very intuitive (e.g., calculating
the magnitude of a vector can be done by calling the mag() function), small and sometimes
difficult to find syntax errors (e.g., a missing parenthesis) can lead to frustrating runtime
errors. Given these difficulties, we expect to see students engaging frequently in this practice.

Additionally, this practice is heavily scaffolded through tutor interactions. Given that
many students have little to no prior programming experience, tutors sometimes guide stu-
dents in their programming. For example, consider Excerpt 30 from Group D where the

group knows what to do, but is unsure of how to program it:

SB: TA, we need help.

TA: Okay I can try...

SB: We don’t know how to like take the magnitude of this.
TA: Where?...

SB: Right here, in our force, equation for the force.

TA: Ahh okay, you need to put parentheses.

SB: Where here?

Here, the tutor is reminding the group that the proper syntax that must be adhered to

requires parentheses. After this interaction, they modify their code, and continue to design,

129

construct, and assess the associated force model. Given these types of interactions, we
frequently observe groups to be engaging in the practice of computer programming.
Mainly, we want students in P? to have experience with programming and the difficulties

associated with it.

Troubleshooting and debugging

The practice of troubleshooting and debugging involves isolating an unexpected error
in the code, correcting that error in a long-term and generalizable manner, and doing so in
a systematic fashion where applicable. For example, without defining the initial momentum
of the satellite as a function in terms of its previously defined mass and initial velocity,
changing the mass of the satellite won’t correctly propagate through the program, leading
to unexpected and undesirable results. Systematically isolating the causes of errors (e.g.,
not defining the momentum in a dynamic way) allows for it to not only be corrected, but to
be corrected in a long-term and generalizable manner (see Sec. 5.2.6). This type of practice
was observed 24 times across the data set, accounting for 29% of the data practices, and 8%
of all practices.

Troubleshooting and debugging is expected to show up frequently within our data given
the learning goal of being able to develop and use models (P1). During the process of
developing and using a model, unexpected errors frequently occur and must be corrected.
These unexpected errors can involve things like syntax errors or unexpected/unphysical
behavior. In either case, students must identify those errors, and ultimately correct them
in a systematic manner. Given this focus on developing and using models, we expect to see

this practice commonly in our data.

130

Further, many tutors intentionally guide groups as they troubleshoot and debug. For
example, consider Excerpt 22 from Group H where the tutor points out that their force

model in code does not match their force model on the board:
TA: Oh, I see what it is...
SB: What?

TA: Okay so in the denominator of your force, you have the magnitude of the position of

the satellite.
SB: Right...
TA: But what do you have on your board?
SB: Ohhh...
SC: We need it squared.

Here, the incorrect force model produces an extremely large force that rapidly accelerates
the satellite to ludicrous speed. This small error, although syntactically correct, produces
unphysical results. After this interaction, the group modifies their code so that it accurately
reflects the equation. Given these types of tutor interactions, we expect to see this practice
commonly in our data.

Overall, we want students in P3 to be able to handle unexpected errors that arise while

programming, whether they be syntactical or physical.

131

Thinking in levels

The practice of thinking in levels involves breaking the MWP into different levels and at-
tributing those different levels with their characteristic features. For example, the program
as a whole can broken down into the two different levels of the initial conditions and the
calculation loop (see Sec. 5.2.7). Each level has its own defining features: the initial condi-
tions level is where time-independent computational abstractions can be defined, whereas the
calculation loop is where time-dependent computational abstractions must be defined. This
type of practice was observed 18 times across the data accounting for 33% of the systems
thinking practices, and 6% of all practices.

Thinking in levels is expected to show up frequently within our data given the learning
goal of developing and using models (P1). The Newtonian gravitational force model and
Euler-Cromer motion algorithms constitute a model of motion that must be developed in code
and ultimately used for some purpose. While students are developing this model of motion,
they must maintain the overall structure of the MWP written in VPython (see Fig. 3.4.2.1)
— without proper structure and syntax, the program as a whole runs into fatal errors. This
structure that must be maintained, is naturally broken down into several different levels:
the objects, initial conditions, time set-up, and calculation loop. These levels are indicated
in the MWP with comments (e.g., #Calculation Loop), and each level has its own unique
features. Maintaining these features for each level is critical to a runnable program.

Additionally, students are introduced to the concept of iterative prediction of motion
as an algorithmic change in different physical quantities over time. Specifically, ppew =
Dold + ﬁnet dt, Fnew = Toq + Udt, and t = t + dt, as described in the course notes (see

Sec. 3.1). These time-dependent physical quantities can be contrasted with time-independent

132

(or approximately time-independent) physical quantities (e.g., the local acceleration due to
gravity). Identifying the correct time-dependence of a physical quantities is necessary to
ensuring proper placement of its definition — time-independent quantities can be placed
in the initial conditions level, whereas time-dependent quantities must be placed in the
calculation loop. For example, consider Excerpt 17 from Group E where they are discussing

the placement of a line of code:

SA: Do we need F net to be calculated inside the loop?

SA: That is do we need to recalculate F' net every time? is it changing?
SB: No.

SA: So we could just throw it outside of the loop.

Here, the students (incorrectly) articulate that the net force does not need to placed in the
calculation loop because it does not need to update. That is, they identify the different levels
of inside and outside the loop, and correctly attributed the feature that updating quantities
must be placed inside the loop, whereas other can be placed outside.

Above all, we want students in P3 to understand the difference between time-dependent
and time-independent physical quantities, and to be able to properly define and place them

in code. Accordingly, we observe this practice commonly in our data.

Communicating information

The practice of communicating information involves the broad process of communication
that ranges from pure dialogue to self-contained wvisualizations that communicate some un-

derstanding that the group has achieved. For example, an understanding of the complicated

133

but powerful computational interrelation between the force, position, and momentum of the
satellite is frequently communicated verbally within and beyond groups (see Sec. 5.2.8). This
type of practice was observed 23 times across the data accounting for 43% of the systems
thinking practices, and 8% of all practices.

Communicating information is expected to show up frequently within our data given the
learning goal of being able to obtain, evaluate, and communicate information (P7). Once
information has been obtained and evaluated, it is crucial to ensure that each member of
the group can communicate an understanding of it. Accordingly, students are required to
continually explain their thought process throughout the day. Given this focus on encour-
aging explanation, we expect to frequently observe students communicating information in
our data.

Further, many tutor interactions can help to facilitate this practice. For example, consider
Excerpt 35 from Group E where the TA continues presses them on their understanding of
the direction of the force by asking them to consider positions other than those on the x-

and y-axes:

TA: What about here [draws a dot in the first quadrant|?

SD: Point five...

SB: Then it’ll be... the square root of two, square root of two, zero.

TA: Okay, what about here [draws a dot in the second quadrant|?

SB: Square root of two, negative square root of two, zero.

TA: What if it’s not at forty five degrees?

TA: What if it’s just at some arbitrary angle?

134

SB: Well, the reason that were doing this...
SD: The r hat is gonna update as it goes.
TA: Okay...

SD: So you don’t need to know that.

SB: Yeah you don’t need to know that...

In response to the TA prompting, the group demonstrates a strong understanding that their
definition of the direction of the force in code (i.e., 7) will automatically update to account
for these various/arbitrary positions. Given these types of tutor interactions, we frequently
observe this practice in our data.

Ultimately, we want students in P3 to be able to clearly communicate their understanding

of physical concepts, both through dialogue and by generating visual representations.

135

Appendix B

Less common practices

The following sections describe the less common practices that we observed.

Understanding concepts

The practice of understanding concepts involves progressing toward a deeper understand-
ing of a concept by interacting with a computational model. For example, while designing,
constructing, or assessing a Newtonian force model in code, students progress in their under-
standing of the abstract concept of a unit vector as providing purely a direction to a physical
quantity. This type of practice was observed 7 times across the data accounting for 7% of
the systems thinking practices, and 2% of all practices.

We expect to see this practice in our data given the learning goal of engaging in argument
from evidence (P6). Specifically, individuals must be able to defend their understanding of
various physical concepts while using their program as evidence. Each program produces a
number of pieces of evidence (e.g., graphs, numerical values, visualizations, etc.) that can be
used to support claims of understanding. Accordingly, we expect to see students engaging
in this practice frequently.

Further, many tutor interactions help to facilitate the understanding of many concepts.
For example, consider Excerpt 25 from Group C where the TA is asking them to illustrate

a point they are trying to make with their program:

136

SA: The force has to point in the same direction as the momentum of the satellite...

TA: Yeah but why are you saying that?

TA: Can you use your program to sort of prove that to me?

SA: Yeah, so, if you look at the arrows on the satellite.

SA: They always like move toward the Earth.

SA: So we know that the force has to be pointing toward the Earth.

SA: So our direction has to be correct....

TA: Okay... okay that makes sense.

Here, a student clearly uses the visualization of the momentum of the satellite to demonstrate
her understanding of the relationship between the force and the change in momentum. Given
these types of interactions, we expect to see groups understanding concepts in our data.
However, one reason that we observe understanding concepts less commonly within our
data might be that certain groups are more or less focused on truly understanding the
underlying material — and frame the problem as such [53]. In other words, groups are often
seen as taking on an answer-making mode rather than a sense-making mode [52|. A strong
focus on the understanding of the underlying material is a relatively rare occurrence, and so
we only see this practice less commonly relative to the rest. For example, Excerpt 13 from

Group E shows a more typical exchange that does not have a strong focus on understanding:

SD: So can you just... why are we using that {GmM over r squared equation} now?

SD: Like why don’t we have to use that {mg} one?

137

SB: Why can’t we just use this {mg} one?
SC: Well this one [points to Newtonian force]|... let’s just try it and see what happens...
SD: Okay.

Here, the group does not focus on understanding why they are using the Newtonian gravita-
tional force, rather they just guess to use it and eventually check it later. Given these types
of typical exchanges, we expect to see understanding concepts less commonly relative to the

other practices.

Finding and testing solutions

The practice of finding and testing solutions involves justifying the use of a particular
solution. Often, the particular solutions that we see are the different force models covered
in the course notes (e.g., local gravitational force). As students progress from incorrect or
approximate force models (i.e., the local gravitational or centripetal) to the correct model
(i.e., Newtonian gravitational force), we see them continually testing along the way. For
example, a group might recognize that the local gravitational force model does not allow for
the satellite to travel in a bound orbit, and move on to searching for a new model. This
type of practice was observed 13 times across the data accounting for 13% of the systems
thinking practices, and 4% of all practices.

We expect to see this practice in our data given the learning goal of obtaining, evaluating,
and communicating information (P7). Most importantly, groups are required to evaluate
information by using their program to make predictions and to evaluate it in terms of its

predictive validity. If the model is not justified, a new model must be sought out, and the

138

process of testing begins again. Given this focus on evaluating information when it comes
to the justification of a solution, we expect to see this practice in our data.

Additionally, many tutor interactions can facilitate the testing process. For example,
consider Excerpt 20 from Group A where they are using a local gravitational force model

with a deceptive satellite trajectory:

TA: So the problem is...

TA: If you look at your force, you have a local gravitational force...

TA: But that is only good when?

SB: When it’s close to Earth.

TA: And is that what we have here?

SA: But it looks like its orbiting [points to screen]

TA: Its actually parabolic, I know it looks like its gonna orbit but its not

SB: Oh cause the force here is only in the x direction

TA: Right... so you need to change that...

Here, the tutor is prompting them to justify their force model by scrutinizing the resulting
trajectory. After this interaction, they being to look for another type of force to construct
in code — one that is capable of producing a closed orbit. Given these types of interactions,
we expect to see this practice in our data.

However, one reason that we observe finding and testing solutions less commonly within

our data might be that individuals vary in their desire to justify their actions — an important

139

characteristic of this practice. This type of self-justification (i.e., being coherent and logically
consistent) is rather difficult |54, 55], and so we only see this practices less commonly relative
to the rest. For example, Excerpt 25 from Group D shows one such relatively rare instance

of a group member clearly and correctly justifying her actions:

SD: No, but we have to put it down here [points to calculation loop].
SA: Why not just with all the other stuff up here?
SD: Because... Because it has to be able to change...

SD: If it has to change it has to go down here in the calculation loop...

Here, Student D justifies defining their force model inside the calculation loop given that it
needs to change over time. Given that this exchange is atypical, we expect to see finding

and testing solutions less commonly relative to the other practices.

Investigating systems

The practice of investigating systems involves questioning and interpreting data gathered
from a system as a whole. For example, a graph of the set of data representing the distance
between the Earth and the satellite can be questioned about its qualitative time-dependence
(e.g., if it is constant, linear, quadratic, sinusoidal, etc.). This type of practice was observed
13 times across the data, accounting for 13% of the systems thinking practices, and 4% of
all practices.

Investigating systems as a whole is expected to show up in our data given the learning
goal of planning and carrying out investigations (P2). The act of planning is scaffolded by

the four-quadrants — students must list their knowns, unknowns, assumptions, and draw out

140

any representations. These quadrants help students to generate questions (e.g., “what are
we even trying to figure out?”) that can be investigated for answers. Given the focus on
questioning in Weintrop et. al’s definition of investigating systems as a whole, we expect to
see this practice in our data.

Additionally, investigating systems as a whole likely shows up in our data given the
learning goal of analyzing and interpreting data (P3). Many sets of data need to be created
(see Sec. 5.2.1) in the calculation loop. Ultimately, these sets of data need to be analyzed
(e.g., visually through a graph or manually through a print statement). For example, consider

Excerpt 49 from Group I, where a graph is used to generate meaning in their data:

TA: So if you see that wobble there [points to graph]

TA: And, and so what does that tell you about the orbit?

SB: That its not perfectly circular?

SC: Right that it doesn’t go in a perfect circle.

Here, the group is being asked to question the meaning of the sinusoidal data that they have
visualized graphically. Given the focus on interpreting data in Weintrop et. al’s definition
of investigating systems as a whole, we expect to see this practice.

However, one reason that we observe investigating systems as a whole less commonly
within our data might be that individuals vary in their levels of curiosity — a crucial char-
acteristic for this practice. Many groups struggle with the details of the problem and spend
most of their time focusing on them without taking a step back to question how they relate
to the system as a whole. For example, Excerpt 26 from Group F shows an atypical exchange

where a group member is taking a step back to check the system as a whole:

141

SC: But wait is that gonna work up here then?
SC: Wont that break the program?

SC: Because we already have it defined...

SB: No no were not defining it again

SB: We are just using it

Here, Student C is concerned about defining an abstraction in the wrong location and asks

a clarification question about its relation to the program as a whole.

Understanding relationships

The practice of understanding relationships in a system involves identifying the individ-
ual elements of the system and ezplaining their relationships to one another. For example, a
group might identify the mass and local acceleration due to gravity as the individual elements
of the system of the local gravitational force. The group could then explain the relationship
between these two elements as they relate to the force (i.e., the force is proportional to both
the mass and acceleration). This type of practice was observed 13 times across the data,
accounting for 13% of the systems thinking practices, and 4% of all practices.
Understanding relationships most likely shows up in our data given the learning goal
of being able to develop and use a model (P1). Developing a model involves an iterative
process of creating the model, making predictions with it, and validating the model based
on its results [4]. Throughout this process, the individual elements of the system must be

identified and correctly related to one another. For example, consider Excerpt 37 from Group

142

H where they are validating their model based on the relationship between the force and the

separation distance:

SC: So right now the force is just always acting in this way in the negative x-direction.

SC: But the force needs to eventually point this way in the negative y-direction...

SB: Okay...

SC: So if we put the satellite dot position down here...

SC: We could make it do that...

SA: Right so let’s do that then.

Here, the group has identified the individual elements of the force and the position of the
satellite. Further, they are explaining the way in which the two should be related (i.e., an
inverse dependence). Given these types of interactions, we expect to observe this practice in
our data.

Additionally, understanding relationships likely shows up in our data given that the course
is designed to cover multiple force models with widely varying complexity. Specifically, the
first week focuses on a constant velocity motion, with a relatively simple constant zero
force model. The second week focuses on constant acceleration motion, with a slightly more
complicated constant local gravitational force model. The third week focuses on non-constant
forces, like the centripetal force and the Newtonian gravitational force, which are general,
complex, and difficult to grapple with. Given the complexity of the models used in the third
week, it takes a significant amount of time and discussion to develop a strong understanding

— which we can then observe.

143

However, one reason that we observe understanding relationships less commonly within
our data might be that some individuals are more and some are less mathematically inclined
— one of the biggest factors in success in physics [56, 57]. Having a strong mathematical
background with a deep understanding of mathematical relationships in general (e.g., an
inverse square relationship) is relatively rare at the introductory physics level, and so we
only see this practices less commonly relative to the rest. For example, Excerpt 30 from

Group I shows a relatively rare exchange:

SA: So like if you think about making the distance really big...
SA: Since it’s in the denominator, if you make that really big...
SA: Then this the force becomes really small.

SA: Which it should right?

SB: Yeah okay that makes sense.

Here, Student A is explaining the concept of a limit in terms of the way that the force should
depend on distance (i.e., F oc 1/d?). Given the rarity of this type of interaction, we expect

to see this practice less commonly relative to the rest.

144

Appendix C

Unobserved practices

The practice of manipulating data is not expected to show up in our data given that
its definition (see Sec. 2.1) focuses on the reshaping of data (e.g., filtering a set of data or
merging two sets of data into one). Students are not required to reshape data in this way in
p3 (e.g., by using the pandas package to merge two data sets). Rather, they are required to
create the data algorithmically, which can then be visualized or analyzed.

Any manipulation of data, in its most generous sense, happens at the level of the model
or algorithm that is creating the data. Accordingly, excerpts that might generously be
considered manipulating data are better classified as creating data (see Sec. 5.2.1). Overall,
we don’t expect students in P3 to be able to reshape/clean-up large of sets of data, rather,
we want them to be able to correctly create those large sets of data using mathematical and
computational models.

The practice of choosing computational tools is not expected to show up in our data
given that the tool they are required to use it provided to them. The first three MWPs are
all implemented through VPython and require no additional tools. Accordingly, by the third
problem, students are familiar with the tool and know to take advantage of it.

It should be noted that nothing precludes students from using other tools (e.g., Microsoft
Excel) to solve the problem, however we have not observed this in our data. This is likely

due to the lack of a learning goal focusing on tool selection. Overall, we want students in P3

145

to become proficient with the tool of VPython for modeling motion, rather than being able
to choose between competing tools.

The practice of developing modular solutions is not expected to show up in our
data given that the computational problems from week to week are sufficiently different
that new models must always be used. This does not allow for much cross-over or reuse
between solutions. Specifically, the first problem involves no net force, the second problem
involves a piecewise constant net force, and the third involves a non-constant net force — all
being sufficiently different to warrant the construction of unique computational models. This
repeated design, construction, and assessment of new models, written from scratch, aligns
well with the learning goal of developing and using models (P1). Overall, we students in p3
to be able to design, construct, and assess new models from scratch, rather than be able to
reuse old models.

The practice of preparing problems for computational solutions is not expected
to show up in our data given that the problem has already been cast in a form that is
amenable to a computational solution. In fact, this is the third problem that they have
seen like this, so they already know to approach it computationally. Any preparation of a
problem, in its most generous sense, happens at the design stage. Accordingly, excerpts that
might generously be considered preparation of a problem are better classified as designing a
computational model (see Sec. 5.2.3). Overall, we don’t expect students in P3 to generate
their own problems (aside from the create your own problem day...), rather, we expect them
to be able to solve well-defined problems.

The practice of defining systems and managing complexity is not expected to show
up in our data given that most students have very little prior programming experience. This

is possibly due to the fact that there are no computational prerequisites for P3. Given this

146

lack of prior programming experience, interaction with the programming system as a whole
is restricted by design. Although there is an instructor generated system that students are
using (i.e., a MWP in Python that interfaces with PhysUtil and the Visual module), its
complexity and management are beyond the scope of the course. This is reflected in the
absence of a learning goal (see Sec. 3.4) focusing on the system as a whole. Additionally, the
problem statement itself does not explicitly require students to interact with the system as
a whole, and tutors will dissuade this action.

Further, the first three MWPs all follow the same basic program structure: using a
single calculation loop to integrate Newton’s equations of motion with a particular force
model. Accordingly, the vast majority of time is spent working on the force model, rather
than engaging with the system itself. In this way, we limit the students’ interactions with
defining systems and managing their complexity. Above all, we don’t expect students in P3
to understand or modify the underlying system itself, rather, we just expect them to be able

to use it to solve the problem.

147

BIBLIOGRAPHY

148

[1]

2]

3]

4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

Rachel Ivie and Katie Stowe. The early careers of physics bachelors. American Institute
of Physics, 2002.

Alan Bundy. Computational thinking is pervasive. Journal of Scientific and Practical
Computing, 2007.

Norman Chonacky and David Winch. Integrating computation into the undergraduate
curriculum: A vision and guidelines for future developments. American Journal of

Physics, 2008.

Undergraduate Curriculum Task Force AAPT. Recommendations for computational
physics in the undergraduate physics curriculum. Technical report, AAPT, 2016.

Committee on a Conceptual Framework for New K-12 Science Education Standards. A

framework for K-12 science education: Practices, crosscutting concepts, and core ideas.

The National Academies Press, 2012.

NGSS Lead States. Next generation science standards: For states, by states. The
National Academies Press, 2013.

David Weintrop, Elham Behesthi, Michael Horn, Kai Orton, Kemi Jona, Laura Trouille,
and Uri Wilensky. Defining computational thinking for mathematics and science class-
rooms. Journal of Science Education Technology, 2015.

Patrick Mulvey and Casey Tesfaye. Physics bachelor’s initial employment: Data from
the degree recipient follow-up survey for the classes of 2009 and 2010. American Institute

of Physics, 2012.

Ruth Chabay and Bruce Sherwood. Computational physics in the introductory calculus-
based course. American Journal of Physics, 2008.

Matthew Kohlmyer. Student performance in computer modeling and problem solving in
a modern introductory physics course. PhD thesis, Carnegie Mellon University, 2005.

David Sherer, Paul Dubois, and Bruce Sherwood. VPython: 3D interactive scientific
graphics for students. Computing in Science € Engineering, 2000.

Seymour Papert. Mindstorms: Children, computers, and powerful ideas. Basic Books,
1981.

Jeannette Wing. Computational thinking. Communications of the ACM, 2006.

149

[14]

[15]

[16]

[17]

18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

Jeanette Wing. Computational thinking and thinking about computing. The Royal
Society, 2008.

Alfred Aho. Computation and computational thinking. The Computer Journal, 2012.

Shuchi Grover and Roy Pea. Computational thinking in K-12: A review of the state of
the field. Fducational Resarcher, 2013.

Seymour Papert. An exploration in the space of mathematics education. Technology,
Knowledge, and Learning, 1996.

Jean Piaget. Origins of intelligence in children. W. W. Norton and Company, 1963.
Seymour Papert. Teaching children thinking. Mathematics Teaching, 1972.

Andrea diSessa and Harold Abelson. BOXER: A reconstructible computerional medium.
Communications of the ACM, 1986.

Edward Redish and Jack Wilson. Student programming in the introductory physics
course: M.U.P.P.E.T. American Journal of Physics, 1992.

David McIntyre and Corinne Manogue. Integrating computational activities into the
upper-level paradigms in physics curriculum. American Journal of Physics, 2008.

Andy Buffler, Seshini Pillay, Fred Lubben, and Roger Fearick. A model-based view
of physics for computational activities in the introductory physics course. American
Journal of Physics, 2008.

Mario Belloni and Wolfgang Christian. Time development in quantum mechanics using
a reduced Hilbert space approach. American Journal of Physics, 2008.

William Hoover and Christian Hoover. Computational physics wth particles. American
Journal of Physics, 2008.

David Cook. Computation in undergraduate physics: The lawrence approach. American
Journal of Physics, 2008.

Carl Weiman, Katherine Perkins, and Wendy Adams. Interactive simulations for teach-
ing physics: What works, what doesn’t, and why. American Journal of Physics, 2008.

Francisco Esquembre. Easy java simulations: An open-source tool to develop interactive
virtual laboratories using MATLAB/simulink. International Journal of Engineering

Education, 2005.

Shawn Weatherford. Student use of physics to make sense of incomplete but functional
VPython programs in a lab setting. PhD thesis, North Carolina State University, 2011.

150

[30] Katherine Perkins, Wendy Adams, Michael Dubson, Noah Finkelstein, Sam Reid, Carl
Wieman, and Ron LeMaster. PhET: Interactive simulations for teaching and learning
physics. The Physics Teacher, 2006.

[31] Marcos Caballero, Matthew Kohlmyer, and Michael Schatz. Fostering computational
thinking in introductory mechanics. In PERC Proceedings, 2011.

[32] Barry Kirwan. A guide to task analysis. Taylor & Francis, 2005.

[33] Beth Crandall, Gary Klein, and Robert Hoffman. Working minds: A practioner’s guide
to cognitive task analysis. Massachusetts Institute of Technology, 2006.

[34] Richard Catrambone. The subgoal learning model: Creating better examples so that
students can solve novel practice problems. Journal of Experimental Psychology, 1998.

[35] Balakrishnan Chandrasekaran. Design problem solving: A task analysis. AI maganize,
1990.

[36] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. Debugging: Finding, fixing and flailing, a multi-
institutional study of novice debuggers. Computer Science Education, 2008.

[37] Marzieh Ahmadzedah, Dave Elliman, and Colin Higgins. An analysis of patterns of
debugging among novice computer science students. In ITiCSE Proceedings, 2005.

[38] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative
Research in Psychology, 2008.

[39] Jennifer Fereda and Eimear Muir-Cochrane. Demonstrating rigor using thematic anal-
ysis: A hybrid approach of inductive and deductive coding and theme development.
International Journal of Qualitative Methods, 2006.

[40] Jodi Aronson. A pragmatic view of thematic analysis. The Qualitative Report, 1995.

[41] Mojtaba Vaismoradi. Content analysis and thematic analysis: Implications for conduct-
ing a qualitative descriptive study. Nursing and Health Sciences, 2013.

[42] Helene Joffe and Lucy Yardley. Research methods for clinical and health psychology.
Sage, 2004.

[43] Jonathan Potter and Margaret Wetherell. Discourse analysis as a way of analysing
naturally occurring talk. Sage, 1997.

[44] Charles Antaki, Michael Billig, Derek Edwards, and Jonathan Potter. Discourse analysis
means doing analysis: A critique of six analytic shortcomings. DAOL Discourse Analysis
Online, 2002.

151

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Paul Irving and Ellie Sayre. Developing physics identities. Physics Today, 2016.

Sue Widdicombe and Robin Wooftitt. The language of youth subcultures: Social identity
i action. Harvester Wheatsheaf, 1995.

Paul Irving, Michael Obsniuk, and Marcos Caballero. P3: A practice focused learning
environment. Furopean Journal of Physics, 2017.

Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lunda Thomas, and Carol Zander. Debugging: A review of the literature from an
educational perspective. Computer Science Education, 2008.

Bent Flyvbjerg. Five misunderstandings about case-study research. Qualitative Inquiry,
2006.

Lynne Hammann and Robert Stevens. Instructional apapproach to improving students’
writing of compare-contrast essays: An experimental study. Journal of Literacy Re-
search, 2003.

Nathaniel Hawkins, Paul Irving, and Marcos Caballero. Understanding student percep-
tions of computational physics problems in introductory mechanics. In PERC' Proceed-
ings, 2017.

Alanna Pawlak, Paul Irving, and Marcos Caballero. Development of the modes of
collaboration framework. Physical Review Special Topics - Physics Fducation Research,
2018.

David Pugalee. A comparison of verbal and written descriptions of students’ problem
solving processes. Educational Studies in Mathematics, 2004.

Pinchas Tamir. Justifying the selection of answers in multiple choice items. International
Journal of Science Education, 2007.

Keith Weber. Students’ understanding of trigonometric functions. Mathematics Educa-
tion Research Journal, 2005.

Thomas Bing and Edward Redish. Analyzing problem solving using math in physics:
Epistemological framing via warrants. Physical Review Special Topics - Physics Educa-

tion Research, 2009.

Edward Redish. Problem solving and the use of math in physics courses. In World View
on Physics Education Proceedings, 2005.

152

