
CALABI-YAU SUBMANIFOLDS OF JOYCE MANIFOLDS OF THE FIRST
KIND

By

Barış Efe
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ABSTRACT

CALABI-YAU SUBMANIFOLDS OF JOYCE MANIFOLDS OF THE
FIRST KIND

By

Barış Efe

Akbulut and Salur suggested the study of Calabi-Yau submanifolds of G2 mani-

folds that come from a certain process. The author, in a joint paper with Akbulut and

Salur, applied this process to a Joyce manifold, more specifically, to the Joyce man-

ifold J(1/2, 0, 0, 1/2, 1/2), and obtained a pair of Borcea-Voisin 3-folds with Hodge

numbers h1,1 = h2,1 = 19.

In this thesis, we first list all possible Joyce manifolds of the first kind. Then we

describe the Calabi-Yau submanifolds of these manifolds that come from the process,

we mentioned above, using the coordinate directions. This way we obtain two different

Borcea-Voisin manifolds, as well as T2 ×K3 and T6.
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Chapter 1

Introduction

In this thesis we study Calabi-Yau submanifolds of a family of G2 manifolds con-

structed by Joyce in [J1, J2]. The method we use to find these Calabi-Yau 3-folds

is given by Akbulut and Salur in [AS2]. We first find a (locally) non-vanishing vec-

tor field on the G2 manifold, then the submanifold normal to this vector field has a

Calabi-Yau structure induced from the G2 structure. Akbulut and Salur defines 2

such submanifolds to be a mirror pair if they come from the same G2 structure. They

call this as a mirror duality inside a G2 manifold. This is an interesting concept as we

will see in our examples. As we will note later in the text, in some cases the concept

of mirror duality and mirror symmetry coincides, in other words, some mirror pairs

are actually mirror symmetric.

Another motivation comes from string theory. As far as the author understands,

in string theory electrons and quarks are considered to be 1-dimensional strings rather

than 0-dimensional objects. Physicists study the motion of these strings. In different

theories, they consider the space time to have not only 4 dimensions (space plus time)

but as many as 26 (bosonic case), 10 (superstring theory) or 11 (M-theory) dimen-

sions. To model the extra 6 dimensions in superstring theory they use Calabi-Yau

manifolds, and to model the extra 7 dimensions in M-theory they use G2 manifolds.
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Therefore, considering Calabi-Yau manifolds as submanifolds of G2 manifolds might

have interesting meanings from the point of view of a physicist. Again, these are only

interpretations of the author who does not know physics.

The outline of this thesis is as follows: In the second chapter we give basic defi-

nitions and some well known facts on holonomy and Calabi-Yau manifolds. Also we

introduce a famous type of Calabi-Yau manifold constructed by Borcea and Voisin.

This 3-folds will appear in our examples on the last chapter. In chapter 3 we give the

definition and examples of G2 manifolds, and we explain the construction of Akbulut

and Salur. In the last chapter, we give our results. We consider Joyce manifold of the

first kind and study their Calabi-Yau submanifolds obtained by the method given by

Akbulut and Salur.
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Chapter 2

Background Material

In this chapter we will recall basic definitions and some examples. In the first section

we introduce the notion of holonomy for Riemannian manifolds and give a classifying

theorem of Berger. For further reading on holonomy groups we refer the reader to

[Bes],[J3] and [P]. In the second section we define Calabi-Yau manifolds. In the

third section we define orbifolds and give some facts on their resolutions. Finally,

on the last section we give an important example to Calabi-Yau manifolds, namely,

Borcea-Voisin 3-folds.

2.1 Holonomy Groups

Let (M, g) be a Riemannian manifold of dimension n and let ∇ be the Levi-Civita

connection. Suppose that γ : [0, 1] −→ M is a smooth curve with γ(0) = x and

γ(1) = y, where x, y ∈ M . Then for each u ∈ TxM there exists a unique section

s of γ∗(TM) satisfying ∇γ̇(t)s(t) = 0 for each t ∈ [0, 1], with s(0) = u. Define

Pγ : TxM −→ TyM by Pγ(u) = s(1). Pγ is a well-defined linear map, called the

parallel transport map. One can generalize this definition to the case when γ is

continuous and piecewise smooth by requiring s to be continuous, and differentiable
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whenever γ is differentiable.

Definition 2.1.1. The holonomy group Holx(g) based at x is defined to be

Holx(g) =
{
Pγ : γ is a loop based at x

}
⊆ GL(n)

If M is connected, the holonomy group is independent of the base point because if

x, y ∈M can be connected by a piecewise smooth curve γ inM then PγHolx(g)P−1γ
∼=

Holy(g). Therefore in this case, we can drop the subscripts x and write the holonomy

group as Hol(g). Under certain assumptions on M and g, Berger [Ber] gave a list of

all possible holonomy groups:

Theorem 2.1.2. (Berger) Suppose that (M, g) is a simply-connected Riemannian

manifold of dimension n, and that g is irreducible and non-symmetric, then exactly

one of the following seven cases holds.

i) Hol(g) = SO(n),

ii) n = 2m with m ≥ 2, and Hol(g) = U(m) in SO(2m),

iii) n = 2m with m ≥ 2, and Hol(g) = SU(m) in SO(2m),

iv) n = 4m with m ≥ 2, and Hol(g) = Sp(m) in SO(4m),

v) n = 4m with m ≥ 2, and Hol(g) = Sp(m)Sp(1) in SO(4m),

vi) n = 7 and Hol(g) = G2 in SO(7),

vii) n = 8 and Hol(g) = Spin(7) in SO(8).

2.2 Calabi-Yau Manifolds

There are several inequivalent definitions of Calabi-Yau manifolds in use in the liter-

ature. We will use the following as our definition which is equivalent to saying that
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Hol(g) ⊆ SU(n), which is also equivalent to saying that the canonical bundle of the

manifold is trivial (see [J3]).

Definition 2.2.1. A compact n dimensional Kähler manifold (N, J, ω) is called a

Calabi-Yau manifold if N has a holomorphic n-form Ω that vanishes nowhere.

Example 2.2.2. In dimension one the only examples are tori, T 2. In dimension two

all Calabi-Yau manifolds are either T 4 or K3 surfaces (compact, complex surface with

h1,0 = 0 and trivial canonical bundle).

Example 2.2.3. Let N be a hypersurface of degree n+ 1 in CPn, so

N = {[z0, z1, ..., zn] ∈ CPn : f (z0, z1, ..., zn) = 0}. One can show that (for example

[J3],section 6.7) N is a Calabi-Yau manifold of complex dimension n − 1. This is

perhaps the simplest known method of finding Calabi-Yau manifolds. But all nonsin-

gular hypersurfaces in CPn of degree n+ 1 are diffeomorphic, and thus, this method

provides only one smooth manifold in each dimension.

Some of the well-known properties of Calabi-Yau manifolds are given by the fol-

lowing two propositions. For proofs, we refer the reader to [J3].

Proposition 2.2.4. If (N, J, g) is a compact Kähler manifold of dimension n and

Hol(g) is SU(n) or Sp(n/2), then g is Ricci flat and irreducible and N has finite

fundamental group.

Proposition 2.2.5. Let (N, J, g) be a Calabi-Yau manifold of dimension n with

Hol(g) = SU(n) and let hp,q be its Hodge numbers. Then h0,0 = hn,0 = 1 and

hp,0 = 0 for p 6= 0, n.

Therefore, for Calabi-Yau manifolds of complex dimension 3 with holonomy SU(3),

the Hodge diamond is given by:
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1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

2.3 Orbifolds

In this section we will give definition and some facts on orbifolds. For further reading

refer to Satake [Sat], who calls them V-manifolds, and Joyce [J3].

Definition 2.3.1. An orbifold is a singular real manifold X of dimension n where

singularities are locally isomorphic to quotient singularities Rn/G for finite subgroups

G ⊂ GL(n), such that if 1 6= γ ∈ G then the subspace Vγ of Rn fixed by γ has

dim Vγ ≤ n− 2.

Definition 2.3.2. For each singular point x ∈ X in an orbifold X, there is a finite

group Gx ⊂ GL(n), unique up to conjugation, such that an open neighborhood of

x ∈ X is homeomorphic to an open neighborhood of 0 ∈ Rn/Gx. We call x an

orbifold point of X and Gx the orbifold group of x.

Example 2.3.3. If M is a manifold and G is a finite group that acts smoothly on

M , with non-identity fixed point sets of codimension at least two, then M/G is an

orbifold.

The following proposition, taken from [J3], describes the singular set of M/G.

Proposition 2.3.4. Let M be a smooth manifold and G be a finite group acting

smoothly and faithfully on M preserving orientation. Then M/G is an orbifold. For
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each x ∈ M define the stabilizer subgroup of x to be Stab(x) = {γ ∈ G : γ · x = x}.

If Stab(x) = {1} then xG is a non-singular point of M/G. If Stab(x) 6= {1} then xG

is a singular point of M/G and has orbifold group Stab(x). Thus the singular set of

M/G is

S = {xG ∈M/G : x ∈M and γ · x = x for some γ ∈ G}

Definition 2.3.5. A complex orbifold is a singular complex manifold of dimension n

whose singularities are locally isomorphic to Cn/G, where G is a finite subgroup of

GL(n,C). The orbifold points and orbifold groups are defined as above.

Recall that a metric g on a complex manifold (M,J) is called a Hermitian metric

if g(u, v) = g(Ju, Jv) for all vectors u, v on M . The corresponding Hermitian form

ω is the 2-form defined by ω(u, v) = g(Ju, v). This form ω is called a Kähler form if

it is closed (dω = 0), and in this case g is called a Kähler metric and M is called a

Kähler manifold.

Definition 2.3.6. We say that g is a Kähler metric on a complex orbifold (X, J),

if g is Kähler in the usual sense on the non-singular part of X, and wherever X is

locally isomorphic to Cn/G, we can identify g with the quotient of a G−invariant

Kähler metric defined near 0 ∈ Cn. In this case (X, J, g) is called a Kähler orbifold.

Many definitions and results about manifolds can be generalized to orbifolds, such

as the definition of Kähler metrics above. In particular, the ideas of smooth k-forms,

(p,q)-forms makes sense, De Rham and Dolbeault cohomology are well defined and

have nearly all their usual properties. If all the orbifold groups of X lie in SL(n,C),

then the canonical bundle KX (nth exterior power of the cotangent bundle) is a

genuine line bundle over X. The singularities of orbifolds may be resolved to obtain

non-singular manifolds. To understand these resolutions we need to understand them

locally first.
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Definition 2.3.7. A resolution (X, π) of Cn/G is a nonsingular complex manifold

X of dimension n with a proper biholomorphic map π : X → Cn/G that induces

a biholomorphism between dense open sets. We call X a crepant resolution if the

canonical bundles are isomorphic, KX
∼= π∗(KCn/G).

Each singularity C2/G for G a finite subgroup of SU(2) admits a unique crepant

resolution ([M]). For G ⊂ SL(n,C) any finite subgroup, C3/G admits a crepant

resolution ([R]). For n ≥ 4, C4/G may or may not admit a crepant resolution.

There is a conjecture from [IR], usually called the McKay Correspondence, which

aims to describe the topology and geometry of crepant resolutions (X, π) of Cn/G in

terms of the group G. We need the following definition to state the conjecture, and

after the conjecture we will give the cases that have been proved.

Definition 2.3.8. Let G ⊂ SL(n,C) be a finite subgroup. Then each γ ∈ G has n

eigenvalues e2πia1 , ..., e2πian , where a1, ..., an ∈ [0, 1) are uniquely defined up to order.

Define the age of γ to be age(γ) = a1+ ...+an. Since det(γ) = 1 = e2πi age(γ), age(γ)

is an integer between 0 and n− 1.

Conjecture 2.3.9. Let G be a finite subgroup of SL(n,C), and (X, π) a crepant

resolution of Cn/G. Then there exists a basis of H∗(X,Q) consisting of algebraic

cycles in 1 − 1 correspondence with conjugacy classes of G, such that conjugacy

classes with age k correspond to basis elements of H2k(X,Q). In particular, b2k(X)

is the number of conjugacy classes of G with age k, and b2k+1(X) = 0, so the Euler

characteristic χ(X) is the number of conjugacy classes in G.

The case n = 2 is already known to be true by McKay [M]. Ito and Reid [IR]

proved that the conjecture is true for n = 3, Batyrev and Dais [BD] proved for

arbitrary n when G is abelian, using toric geometry, and also gave their own proof

for n = 3 case.
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2.4 Borcea-Voisin 3-folds

In this section we will give an important example to Calabi-Yau 3-folds, constructed

by Borcea [Bo] and Voisin [V].

The proofs of the following Lemma and Theorem can be found in [V].

Lemma 2.4.1. If S is a K3 surface with and involution j such that j induces a non-

trivial automorphism on H2,0(S), then the fixed points of j have several possibilities:

i) no fixed points,

ii) a finite number of rational curves and at most one curve with genus > 0, or

iii) two elliptic curves.

Theorem 2.4.2. Let E be an elliptic curve C/Λ and i the involution induced by

the involution on C, z 7→ −z. Let S be a K3 surface with involution j inducing a

non-trivial automorphism on H2,0(S), and let k(e, s) := (i(e), j(s)) be the product

automorphism on E×S. Then X = ˜(E × S)/k, the minimal resolution of the orbifold

(E × S)/k, is a Calabi-Yau manifold.

Voisin gives a formula for the Hodge numbers of X of this theorem: Let n be the

number of fixed curves of j on S as in the above Lemma (n is possibly 0), and let n′

be the total genus of these n fixed curves. Then the Hodge numbers of X are given

by

h1,1 = 11 + 5n− n′ and h2,1 = 11 + 5n′ − n. (2.4.1)

The importance of this construction is that Nikulin’s classification [N] implies that

if (S, j) is a K3 surface with an involution that has n fixed curves with total genus n′,

then there exists a complementary pair (S′, j′) with n′ fixed curves with total genus

n. If we let X ′ to be the manifold obtained by Borcea-Voisin construction on S′, then

9



X ′ will have Hodge numbers h1,1 = 11 + 5n′ − n and h2,1 = 11 + 5n− n′. Therefore

manifolds constructed using this method always come in mirror pairs.
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Chapter 3

G2 Manifolds

3.1 Holonomy Group G2

For the proofs of the facts listed in this section we refer to [AS2], [Br1], [J3].

Definition 3.1.1. Let (x1, ..., x7) be coordinates on R7. Write dxij...l for the exterior

form dxi ∧ dxj ∧ ... ∧ dxl on R7. Define a 3-form ϕ0 on R7 by

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 (3.1.1)

The subgroup of GL(7) preserving ϕ0 is the exceptional Lie group G2.

Theorem 3.1.2. The subgroupG2 ⊆ GL(7) is compact, connected, simply-connected

and of dimension 14. Moreover, G2 acts irreducibly on R7 and transitively on the

spaces of lines in R7 and 2-planes in R7. Finally, G2 is isomorphic to the group of

algebra automorphisms of octanions.

Definition 3.1.3. A smooth 7-manifold M has a G2 structure if there is a 3-form

ϕ ∈ Ω3(M) such that at each x ∈M the pair (TxM,ϕ(x)) is isomorphic to (T0R7, ϕ0).

We call (M,ϕ) a manifold with G2 structure.
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A G2 structure ϕ on M gives an orientation µ ∈ Ω7(M) on M , and µ determines

a metric gϕ =<,> on M by:

< u, v >= (uyϕ ∧ vyϕ ∧ ϕ)/6µ (3.1.2)

Definition 3.1.4. A manifold with G2 structure (M,ϕ) is called a G2 manifold if

Hol(gϕ) ⊆ G2.

Equivalent definitions can be given by the following proposition which follows from

[Sal](section 11.5).

Proposition 3.1.5. Let (M,ϕ) be a 7-manifold with a G2 structure. Then the fol-

lowing are equivalent:

i) Hol(gϕ) ⊆ G2

ii) ∇ϕ = 0, where ∇ is the Levi-Civita connection of gϕ

iii) dϕ = d∗ϕ = 0

iv) dϕ = d(∗ϕϕ) = 0

Example 3.1.6. Let (N,ω,Ω) be a Calabi-Yau 3-fold, then N × S1 has holonomy

SU(3) ⊂ G2. In this case ϕ = ReΩ + ω ∧ dt. Similarly, N × R is a non-compact G2

manifold.

Example 3.1.7. Let Y be a Riemannian 3-manifold with constant sectional curvature

+1. Bryant and Salamon [BS] gave an explicit metric on the spinor bundle S ∼=

Y × R4.

Example 3.1.8. Joyce [J1, J2] gave the first examples of compact 7-manifolds with

holonomy G2. We will give details to this construction in section 3.4.
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3.2 Akbulut-Salur Construction

In this section we will describe the method of finding Calabi-Yau submanifolds of G2

manifolds given by Akbulut and Salur [AS2]. Let (M,ϕ) be a 7-manifold with a G2

structure, and let gϕ =<,> be the corresponding metric given by equation (3.1.2).

Definition 3.2.1. Define a cross product structure × on the tangent bundle of M

as follows

ϕ(u, v, w) =< u× v, w > (3.2.1)

We can also view cross product as a tangent bundle valued 2-form ψ ∈ Ω2(M,TM)

defined by ψ(u, v) = u× v

Definition 3.2.2. Define the tangent bundle valued 3-form χ ∈ Ω3(M,TM) by

< χ(u, v, w), z >= ∗ϕ(u, v, w, z) (3.2.2)

Definition 3.2.3. Let ξ be a nonvanishing vector field of M . We can define a

symplectic ωξ and a complex structure Jξ on the 6-plane bundle Vξ = ξ⊥ by

ωξ =< ψ, ξ >= ξyϕ and Jξ(X) = X × ξ (3.2.3)

And define a complex valued (3,0) form Ωξ = ReΩξ + i ImΩξ by

ReΩξ = ϕ|Vξ and ImΩξ =< χ, ξ >= ξy ∗ ϕ (3.2.4)

Example 3.2.4. (example of section 3.1 in [AS2]) Consider M = T 7 as G2 manifold

with calibration 3-form ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356 where

{e1, ..., e7} is the basis of TM . If we choose ξ = e7, then Vξ =< e1, ..., e6 >, the

symplectic form is ωξ = e16−e25−e34, the complex structure Jξ is e1 7→ −e6, e2 7→ e5,
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e3 7→ e4, and the complex valued (3,0) form is Ωξ = (e1+i e6)∧(e2−i e5)∧(e3−i e4);

note that this is just Ωξ = (e1 − i Jξ(e1)) ∧ (e2 − i Jξ(e2)) ∧ (e3 − i Jξ(e3)).

Example 3.2.5. (continued from previous example) If we choose ξ′ = e3, then

Vξ′ =< e1, ..., ê3, ..., e7 >, the symplectic form is ωξ′ = e12 − e47 − e56, the com-

plex structure Jξ′ is e1 7→ −e2, e4 7→ e7, e5 7→ e6, and Ωξ′ = (e1 + i e2)∧ (e4− i e7)∧

(e5 − i e6) which is just Ωξ′ = (e1 − i Jξ′(e
1)) ∧ (e2 − i Jξ′(e

2)) ∧ (e3 − i Jξ′(e
3)).

Now let ξ ∈ Ω0 (M,TM) be a non-vanishing unit vector field, which gives a

codimension one distribution Vξ = ξ⊥ on M , which is equipped with the structures(
Vξ, ωξ,Ωξ, Jξ

)
as in the definitions above. Let ξ] be the dual 1-form of ξ. Let

e
ξ]

and ξy denote the exterior and interior product operations respectively. Since

e
ξ]
◦ ξy + ξy ◦ e

ξ]
= id we have

ϕ = e
ξ]
◦ ξy (ϕ) + ξy ◦ e

ξ]
(ϕ) = ωξ ∧ ξ] +ReΩξ (3.2.5)

Recall that the condition that the distribution Vξ be integrable (the involutive

condition which implies ξ⊥ comes from a foliation) is given by

dξ] ∧ ξ] = 0 (3.2.6)

By Thomas [T], even if Vξ is not integrable, it is homotopic to a foliation. Let Xξ

be a page of this foliation, and for simplicity assume that this 6-manifold is smooth.

Now we will give the following two Lemmas with proofs from [AS2].

Lemma 3.2.6. Jξ is compatible with ωξ, and it is metric invariant.
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Proof. Let u, v ∈ Vξ, then

ωξ
(
Jξ (u) , v

)
= ωξ (u× ξ, v) = ϕ (u× ξ, v, ξ)

= −ϕ (ξ, ξ × u, v) = − < ξ × (ξ × u) , v >

= − < − |ξ|2 u+ < ξ, u > ξ, v >

= |ξ|2 < u, v > − < ξ, u >< ξ, v >

= < u, v >

The first line comes from the definitions of ωξ and Jξ, the second line comes from the

definition of cross product, and the identity ξ × (ξ × u) = − |ξ|2 u+ < ξ, u > ξ for

the third line is from [Br2]. Hence < Jξ (u) , Jξ (v) >= −ωξ
(
u, Jξ (v)

)
=< u, v >

Lemma 3.2.7. Ωξ is a nonvanishing (3,0) form.

Proof.

(−i/2)Ωξ ∧ Ω̄ξ = ImΩξ ∧ReΩξ = (ξy ∗ ϕ) ∧
(
ξy(ξ] ∧ ϕ)

)
= −ξy

(
(ξy ∗ ϕ) ∧ (ξ] ∧ ϕ)

)
= ξy

(
∗(ξ] ∧ ϕ) ∧ (ξ] ∧ ϕ)

)
=

∣∣∣ξ] ∧ ϕ∣∣∣2 ξyvol(M)

= 4
∣∣∣ξ]∣∣∣2 (∗ξ]) = 4 vol(Xξ)

Third line is from the identity ∗(ξyα) = (−1)k+1(ξ] ∧ ∗α) for α ∈ Ωk(M). And

the identity |ϕ ∧ β|2 = 4 |β|2 for β ∈ Ω1(M) is from [Br2].

The following observations is again from [AS2]. One can show that ∗ReΩξ =

−ImΩξ ∧ ξ] and ∗ImΩξ = ReΩξ ∧ ξ]. And if ? is the star operator of Xξ, then

?ReΩξ = ImΩξ. Note that ωξ is a symplectic structure on Xξ whenever dϕ = 0

and Lξ(ϕ)|Vξ = 0, where L is the Lie derivative. This comes from ωξ = ξyϕ and

dωξ = Lξ(ϕ) − ξydϕ = Lξ(ϕ). We also have d∗ϕ = 0 ⇒ d?ωξ = 0, since ∗ϕ =
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?ωξ − ImΩξ ∧ ξ], and hence d(?ωξ) = d(∗ϕ|Xξ ) = 0. Also dϕ = 0 ⇒ d(ReΩξ) =

d(ϕ|Xξ ) = 0. Furthermore, if d∗ϕ = 0 and Lξ(∗ϕ)|Vξ = 0 then d(ImΩξ) = 0, which

follows from ImΩξ = ξy(∗ϕ). Also, Jξ is integrable when dΩ = 0 ([H]). Using the

following definition, all these observations sum up to the theorem below.

Definition 3.2.8. (X6, ω,Ω, J) is called an almost Calabi-Yau manifold, if X is a

Riemannian manifold with a non-degenerate 2-form ω which is co-closed, and J is

a metric invariant almost complex structure which is compatible with ω, and Ω is a

non-vanishing (3,0) form with ReΩ closed. Furthermore, when ω and ImΩ are closed,

we call this a Calabi-Yau manifold.

Theorem 3.2.9. Let (M,ϕ) be a G2 manifold, and ξ be a unit vector field which

comes from a codimension one foliation on M , then (Xξ, ωξ,Ωξ, Jξ) is an almost

Calabi-Yau manifold with ϕ|Xξ = ReΩξ and ∗ϕ|Xξ = ?ωξ. Furthermore, if Lξ(ϕ)|Xξ =

0 then dωξ = 0, and if Lξ(∗ϕ)|Xξ = 0 then Jξ is integrable; when both of these con-

ditions are satisfied, (Xξ, ωξ,Ωξ, Jξ) is a Calabi-Yau manifold.

3.3 MirrorDuality

In this section, we will define the concept of mirror duality of Calabi-Yau manifolds

inside a G2 manifold, introduced by Akbulut and Salur in [AS1, AS2].

Definition 3.3.1. Let (M,ϕ) be a manifold with a G2 structure. A 4-dimensional

submanifold X ⊂M is called a co-associative if ϕ|X = 0. A 3-dimensional submani-

fold Y ⊂M is called an associative if ϕ|Y = vol(Y ).

By a theorem of Thomas, all orientable 7-manifolds admit non-vanishing 2-frame

fields [T]. Using this, one obtains an additional structure on the tangent bundle of

G2 manifolds [AS1].
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Lemma 3.3.2. A non-vanishing oriented 2-plane field Λ on a manifold with G2

structure (M,ϕ) induces a splitting of TM = E⊕V, where E is a bundle of associative

3-planes, and V = E⊥ is a bundle of coassociative 4-planes. The unit sections ξ of

the bundle E→M give complex structures Jξ on V.

Proof. Let Λ = span {u, v} be the 2-plane spanned by the basis vectors of an orthonor-

mal 2-frame {u, v} in M . Then we define E = span {u, v, u× v}, and V = E⊥. We

can define the complex structure on V by Jξ(x) = x× ξ.

Note that, this complex structure Jξ extends naturally to a complex structure on

Vξ as in section 3.2.

Definition 3.3.3. Two Calabi-Yau manifolds are mirror pairs of each other, if their

complex structures are induced from the same calibration 3-form in a G2 manifold.

Furthermore, we call them strong mirror pairs if their normal vector fields ξ and ξ′

are homotopic to each other through non-vanishing vector fields.

Example 3.3.4. If we reconsider the examples 3.2.4 and 3.2.5 with the notions of

this section, we have Λ = span {e1, e2} and E = span {e1, e2, e3 = e1 × e2}, V =

span {e4, e5, e6, e7}. For ξ = e3 and ξ′ = e7 we obtained two different complex

structures on T6, which are by definition mirror pairs of each other. In this case the

notion of mirror duality in a G2 manifold and the famous notion of mirror symmetry

(h1,1(Vξ) = h2,1(Vξ′) and h1,1(Vξ′) = h2,1(Vξ)) coincides.

Example 3.3.5. In [AES], we considered a Joyce manifold of the first kind, more

specifically J(1/2, 0, 0, 1/2, 1/2), and we found a pair of Borcea-Voisin 3-folds with

Hodge numbers h1,1 = h2,1 = 19 as mirror pairs, which are again mirror symmetric.

This example will be considered in a more general setting in chapter 4 in which we

will see that mirror pairs are not always mirror symmetric.
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3.4 Joyce Manifolds

Joyce’s construction of 7-manifolds with holonomy G2 is similar to the Kummer

construction for K3 surfaces, and he calls his construction as the generalized Kummer

construction. For more details reader is referred to [J1, J2, J3]. He starts with a flat

Riemannian 7-torus T7, divide it by the action of a finite group, Γ, of automorphisms

of T7 (not an arbitrary group but one that gives nice singularities), then resolves the

singularities to obtain the 7-manifold M . Then he shows the existence of a G2 metric

on this manifold. Let’s give a little more detail on this construction.

Definition 3.4.1. Let Tn be an n-torus with a flat Riemannian metric. Let Γ be

a finite group of isometries of Tn. Let S be the singular set of Tn/Γ. Let M be a

compact, smooth n-manifold and Φ : M → Tn/Γ be a surjective continuous map that

is smooth except at S. The quadraple (Tn,Γ,M,Φ) is called a generalized Kummer

construction if it has the following properties:

i) Φ is injective on Φ−1(M − S),

ii) Φ−1(S) is a finite union of compact submanifolds of M , and

iii) for each s ∈ S, Φ−1(s) is a connected, simply-connected, finite union of compact

submanifolds of M .

To avoid “bad” types of singularities where two or more singular submanifolds of

S intersect, we put a condition on Γ:

Condition*. Let Γ be a finite group of orientation preserving isometries of Tn.

Suppose that whenever γ1, γ2 are non-identity elements of Γ that have fixed points

in Tn, then either γ1γ2 has no fixed points in Tn or γ1 = γk2 for some k ∈ Z.

This condition on Γ guarantees the following (Lemma 2.1.3 of [J2]):
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Lemma 3.4.2. S is a disjoint union of connected components, and each connected

component has a neighborhood isometric to a neighborhood of the singular set in

(Tn−2l × (R2l/Zp))/F . Here l is a positive integer with 2l ≤ n, Z2 is a nontriv-

ial cyclic subgroup of SO(2l) acting freely on R2l − {0}, and F is a finite group of

isometries of Tn−2l × (R2l/Zp) that acts freely on Tn−2l.

Definition 3.4.3. Let G be a finite subgroup of SO(n) that acts freely on Rn−{0} (so

n is even, otherwise G has fixed points). An ALE (asymptotically locally Euclidean)

space X is a complete Riemannian manifold with one end modeled on the end of

Rn/G, such that the metric g on X is asymptotic to the Euclidean metric h on Rn/G

in the sense that,

There exists a surjective continuous map φ : X → Rn/G that is smooth in the

appropriate sense, such that φ−1(0) is a connected, simply-connected, finite union

of compact submanifolds of X and φ induces a diffeomorphism from X − φ−1(0) to

(Rn − {0})/G such that

φ∗(g)− h = O(r−4), ∂φ∗(g) = O(r−5), ∂2φ∗(g) = O(r−6) for large r,

where r is the distance from the origin in Rn/G and ∂ is the flat connection on Rn/G.

To construct M , Joyce uses Tn−2l × X to desingularize the singular component

modeled on Tn−2l × (R2l/Zp) where X is an ALE space for the group Zp ⊂ SO(2l).

In his paper, he considers only the cases n = 7 and l = 2 or 3. And he proves the

following (Theorem 2.2.2 of [J2]):

Theorem 3.4.4. Let ϕ̂ be a flat G2 structure on T7, and let Γ be a finite group of

diffeomorphisms of T7 preserving ϕ̂. Let S1, ..., Sk be the connected components of

the singular set S of T7/Γ. Suppose that for each j = 1, ..., k either

(i) Sj has a neighborhood isometric to a neighborhood of the singular set of (T3 ×

C2/Gj)/Fj , where T3 is a flat Riemannian torus, Gj a finite subgroup of SU(2), and

Fj is a group of isometries of T3×C2/Gj acting freely on T3. There is an ALE space
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Xj with holonomy SU(2) asymptotic to C2/Gj , and an action of Fj on Xj such that

(T3 ×Xj)/Fj is asymptotic to (T3 × C2/Gj)/Fj , or

(ii) Sj has a neighborhood isometric to a neighborhood of the singular set of (S1 ×

C3/Gj)/Fj , where Gj a finite subgroup of SU(3) acting freely except at 0, and Fj

is a group of isometries of S1 × C3/Gj acting freely on S1. There is an ALE space

Xj with holonomy SU(3) asymptotic to C3/Gj , and an action of Fj on Xj such that

(S1 ×Xj)/Fj is asymptotic to (S1 × C3/Gj)/Fj .

Then there exists a compact 7-manifold M constructed from T7/Γ and X1, ..., Xk, a

positive constant θ, and a family {ϕt : t ∈ (0, θ]} of smooth, closed sections of Λ3
+M .

Let gt be the metric on M associated to ϕt. There exists a family {ψt : t ∈ (0, θ]} of

smooth 3-forms on M with d∗ψt = d∗ϕt, where d∗ is defined using gt. There exist

positive constants D1, ..., D5 independent of t, such that the following five conditions

hold for each t ∈ (0, θ], where all norms are calculated using gt:

i) ‖ψt‖2 ≤ D1t
4 and ‖ψt‖C2 ≤ D1t

4

ii) the injectivity radius δ(gt) satisfies δ(gt) ≥ D2t

iii) the Riemannian curvature R(gt) of gt satisfies ‖R(gt)‖C0 ≤ D3t
−2

iv) the volume vol(M) satisfies vol(M) ≥ D4 and

v) the diameter diam(M) satisfies diam(M) ≤ D5

Then Joyce shows that on this manifold M , for small t one can deform ϕt (by

adding dηt where ηt is a small 2-form) to obtain a family of torsion free G2 structures

ϕ̃t, and he proves the following (Theorem 2.2.3 of [J2]):

Theorem 3.4.5. M of the previous theorem admits a smooth family of torsion free

G2 structures of dimension b3(M).
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Chapter 4

Calabi-Yau Submanifolds of Joyce

Manifolds

4.1 Joyce Manifolds of First Kind: J(b1, b2, c1, c2, c3)

In this section we will consider a special family of Joyce manifolds, which is usually

referred as Joyce manifolds of the first kind. Let (x1, ..., x7) be coordinates on T7 =

R7/Z7 where xi ∈ R/Z. Define a section ϕ̂ of Λ3
+T7 by:

ϕ̂ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx4 ∧ dx5 + dx1 ∧ dx6 ∧ dx7 + dx2 ∧ dx4 ∧ dx6

−dx2 ∧ dx5 ∧ dx7 − dx3 ∧ dx4 ∧ dx7 − dx3 ∧ dx5 ∧ dx6

Let Γ =< α, β, γ >∼= Z3
2 defined by:

x1 x2 x3 x4 x5 x6 x7

α x1 x2 x3 −x4 −x5 −x6 −x7
β x1 −x2 −x3 x4 x5 b1 − x6 b2 − x7
γ −x1 x2 c1 − x3 x4 c2 − x5 x6 c3 − x7

Table 4.1: The action of generators of Γ on T7
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where bi, ci ∈ {0, 1/2}.

Clearly α, β, γ preserves ϕ̂ and α2 = β2 = γ2 = 1, αβ = βα, αγ = γα, βγ = γβ.

For any choice of bi’s and ci’s, each of α, β, γ fixes 16 copies of T3:

Fix(α) = {(x1, ..., x7) ∈ T7 : x4, x5, x6, x7 ∈ {0, 1/2}}

Fix(β) = {(x1, ..., x7) ∈ T7 : x2, x3 ∈ {0, 1/2}, x6 ∈ {b1/2, (1 + b1)/2},

x7 ∈ {b2/2, (1 + b2)/2}}

Fix(γ) = {(x1, ..., x7) ∈ T7 : x1 ∈ {0, 1/2}, x3 ∈ {c1/2, (1 + c1)/2},

x5 ∈ {c2/2, (1 + c2)/2}, x7 ∈ {c3/2, (1 + c3)/2}}

We need to put extra conditions on bi’s and ci’s so that Γ satisfies condition *. In

other words, we don’t want αβ, βγ, γα, αβγ to have any fixed points.

There are only 13 possible 5-tuples (b1, b2, c1, c2, c3) satisfying this condition as

explained below.

x1 x2 x3 x4 x5 x6 x7

αβ x1 −x2 −x3 −x4 −x5 b1 + x6 b2 + x7

βγ −x1 −x2 c1 + x3 x4 c2 − x5 b1 − x6 b2 + c3 + x7

γα −x1 x2 c1 − x3 −x4 c2 + x5 −x6 c3 + x7

αβγ −x1 −x2 c1 + x3 −x4 c2 + x5 b1 + x6 b2 − x7

Table 4.2: The action of mixed terms of Γ

i) If b1 = b2 = 0 then αβ will have fixed points,

ii) If c1 = 0 and b2 = c3 then βγ will have fixed points,

iii) If c2 = c3 = 0 then γα will have fixed points,

iv) If c1 = c2 = b1 = 0 then αβγ will have fixed points.
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We need to choose bi’s and ci’s so that they don’t satisfy any of the above condi-

tions i),...,iv). Condition iv) is unnecessary since if c1 = c2 = b1 = 0 then b2 = 1/2

from condition i) and hence c3 = 0 from condition ii) which is impossible as long as

we take care of condition iii). Now we will find all possible 5-tuples:

b1 = b2 = 1/2 =⇒ c1 = 1/2 or c3 = 0 (by ii)

=⇒ (c1, c2, c3) = (1/2, 1/2, 0) or (1/2, 0, 1/2)

or (1/2, 1/2, 1/2) or (0, 1/2, 0) (by iii)

b1 = 0, b2 = 1/2 =⇒ c1 = 1/2 or c3 = 0 (by ii)

=⇒ (c1, c2, c3) = (1/2, 1/2, 0) or (1/2, 0, 1/2)

or (1/2, 1/2, 1/2) or (0, 1/2, 0) (by iii)

b1 = 1/2, b2 = 0 =⇒ c1 = 1/2 or c3 = 1/2 (by ii)

=⇒ (c1, c2, c3) = (1/2, 1/2, 0) or (1/2, 0, 1/2)

or (1/2, 1/2, 1/2) or (0, 0, 1/2) or (0, 1/2, 1/2) (by iii)

Therefore the only posibilities are:

(1/2, 1/2, 1/2, 1/2, 0), (1/2, 1/2, 1/2, 0, 1/2), (1/2, 1/2, 1/2, 1/2, 1/2)

(1/2, 1/2, 0, 1/2, 0), (0, 1/2, 1/2, 1/2, 0), (0, 1/2, 1/2, 0, 1/2)

(0, 1/2, 1/2, 1/2, 1/2), (0, 1/2, 0, 1/2, 0), (1/2, 0, 1/2, 1/2, 0)

(1/2, 0, 1/2, 0, 1/2), (1/2, 0, 1/2, 1/2, 1/2), (1/2, 0, 0, 0, 1/2)

(1/2, 0, 0, 1/2, 1/2)

For the 13 cases that satisfy condition *, let’s see how (the neighborhood of) the

singular set looks like. Since Γ is abelian, α will preserve (setwise) Fix(β) and Fix(γ).

x ∈ Fix(β) =⇒ βα(x) = αβ(x) = α(x) =⇒ α(x) ∈ Fix(β)

x ∈ Fix(γ) =⇒ γα(x) = αγ(x) = α(x) =⇒ α(x) ∈ Fix(γ)
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Similarly β will preserve Fix(α) and Fix(γ), and γ will preserve Fix(α) and

Fix(β).

Consider the 16 T3 fixed by α. Their neighborhoods in T7/ < α > look like

T3 × C2/{±1}. As b1 and b2 are not 0 at the same time, the action of β on at least

one of x6 or x7 is x↔ 1/2−x. And the fixed T3’s of α have x6, x7 ∈ {0, 1/2}. Hence

β pairs 8 of these T3’s with the remaining 8. As c2 and c3 are not 0 at the same time,

the action of γ on at least one of x5 or x7 is x ↔ 1/2 − x. And the fixed T3’s of α

have x5, x7 ∈ {0, 1/2}. Hence γ pairs 8 of these T3’s with the remaining 8. So the

contribution to the singular set of T7/Γ coming from Fix(α) (with neighborhoods) is

either 4 copies of T3 ×C2/{±1} or 8 copies of (T3 ×C2/{±1})/ < βγ >. The latter

is the case b1 = 0, b2 = 1/2, c2 = 0, c3 = 1/2, when β and γ both changes only x7

on Fix(α). Note that in this case since b2 = c3 we must have c1 = 1/2.

Similar observations can be made on Fix(β) and Fix(γ). Consider the neighbor-

hoods T3 × C2/{±1} of the 16 fixed T3’s in T7/ < β >, the C2 part coming from

coordinates x2, x3, x6, x7. The action of α on x6 and x7 is x↔ −x. Since b1 and b2

are not 0 at the same time, α will change at least one of x6 or x7 on Fix(β). The

action of γ on x3 is x ↔ c1 − x and on x7 it is x ↔ c3 − x. So γ changes x3 on

Fix(β) if and only if c1 = 1/2 and changes x7 on Fix(β) if and only if b2 + c3 = 1/2.

Hence the contribution from Fix(β) is either 4 copies of T3 × C2/{±1} or 8 copies

of (T3 × C2/{±1})/ < γα >. The latter is the case b1 = 0, b2 = 1/2, c1 = 0, c3 = 0,

when α and γ both changes only x7 on Fix(β). Note that in this case since c3 = 0

we must have c2 = 1/2.

Finally, consider the neighborhoods T3 × C2/{±1} of the 16 fixed T3’s in T7/ <

γ >, the C2 part coming from coordinates x1, x3, x5, x7. The action of α on x5 and

x7 is x↔ −x. Since c2 and c3 are not 0 at the same time, α will change at least one

of x5 or x7 on Fix(γ). The action of β on x3 is x↔ −x and on x7 it is x↔ b2 − x.

So β changes x3 on Fix(γ) if and only if c1 = 1/2 and changes x7 on Fix(γ) if
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and only if b2 + c3 = 1/2. Hence the contribution from Fix(γ) is either 4 copies of

T3×C2/{±1} or 8 copies of (T3×C2/{±1})/ < γα >. The latter is the case c2 = 0,

c3 = 1/2, c1 = 0, b2 = 0, when α and β both changes only x7 on Fix(γ). Note that

in this case since b2 = 0 we must have b1 = 1/2.

Therefore, the contributions to singular set (with neighborhoods) for each case is

given by:

case from Fix(α) from Fix(β) from Fix(γ)

(0, 1/2, 0, 1/2, 0) 4T3 × C2/± 8(T3 × C2/±)/Z2 4T3 × C2/±

(0, 1/2, 1/2, 0, 1/2) 8(T3 × C2/±)/Z2 4T3 × C2/± 4T3 × C2/±

(1/2, 0, 0, 0, 1/2) 4T3 × C2/± 4T3 × C2/± 8(T3 × C2/±)/Z2

other 10 4T3 × C2/± 4T3 × C2/± 4T3 × C2/±

Table 4.3: Fixed point sets for all possible 5-tuples

To obtain the smooth 7-manifold underlying the Joyce manifold, Joyce uses Eguchi-

Hanson space (we will call it X) which is a complete hyperkähler metric on T ∗CP 1.

So he replaces the neighborhoods (of the singular sets) of the form T3 × C2/{±1}

by T3 × X and (T3 × C2/{±1})/Z2 by (T3 × X)/Z2. The former resolution is the

unique crepant resolution, yet the latter can be made in topologically two different

ways: depending on the induced action of Z2 on [CP 1] ∈ H2(T ∗CP 1), which can be

chosen as either id or −id.

4.2 Calabi-Yau Submanifolds

In this section we describe Calabi-Yau submanifolds of Joyce manifolds of the first

kind that are obtained by the construction of Akbulut-Salur that we mentioned in the

previous chapter, by choosing ξ to be the direction corresponding to each coordinate

of T7 separately.

In the following diagrams, for the left diagram T7 = S1×T6 where S1 is the base
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T6 is the fiber, empty circles are fixed T3’s of α, β or γ, filled circles are T2’s (parts of

fixed T3’s on fibers). The right hand diagram is T7/Γ as a fibration over the interval

[0, 1/2] or [0, 1/4] depending on what we obtain as S1/Γ (image of the base of left

hand diagram) with generic fiber shown. In each case, the singular set of this generic

fiber is a number of copies of T2 × C2/{±1} which will be resolved by replacing it

with T2×X where X is the Eguchi Hanson space. Fixed sets in each graph from up

to down comes from α, β and γ in this order. Numbers near the fixed sets gives the

number of fixed T3’s or T2’s.

4.2.1 x1 direction

0 1/20 1/2

1/4

3/4

16

16

8 8

8

8

Figure 4.1: Base S1 has x1 coordinate

In this case (figure 4.1), the base is S1 corresponding to x1 coordinate. Fixed T3’s

of α and β have x1 component, therefore they are drawn as dotted circles on the left

hand graph where these circles meet each fiber at a T2. Fixed T3’s of γ lies on the

two fibers x1 = 0 and x1 = 1/2. The action of γ on x1 is x1 ↔ −x1 so it will pair the

fibers as shown in the graph, fixing the fibers over x1 = 0 and x1 = 1/2. Therefore,

26



after taking the quotient we obtain a fibration over the interval [0, 1/2] (right hand

diagram in figure 4.1) with fibers over (0, 1/2) equal to T6/ < α, β >, whose fixed set

is now 16 copies of T2, 8 from α and 8 from β, since α pairs the fixed set of β and β

pairs the fixed set of α.

x2 x3 x4 x5 x6 x7

α x2 x3 −x4 −x5 −x6 −x7
β −x2 −x3 x4 x5 b1 − x6 b2 − x7

Table 4.4: The action of < α, β > on T6

Let N be the corresponding resolution of T6/ < α, β > in M . We can think of the

resolution that gives N in two steps. First, resolve T6/ < α >= T2 × T4/Z2, where

Z2 action on T4 (with coordinates x4, x5, x6, x7) is {±1}.

(0, 0) (12 ,
1
2) (0, 12)(12 , 0)

Figure 4.2: The action of α on T4

Figure 4.2 explains the Z2 action of α on T4. We think T4 as T2 × T2, base T2
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corresponding to the coordinates x6, x7 and fiber T2 corresponding to the coordinates

x4, x5 (as in the first diagram of figure 4.2). α will fold the base making it a pillow

(sphere with 4 singular points), fibers over non-singular points will be T2’s and fibers

over singular points will be T2/Z2, which are again pillows (as in the diagrams on the

right in figure 4.2). 16 fixed points (4 corners of pillow fibers above 4 corners of the

base pillow) of this action on T4 will be replaced by Eguchi-Hanson spaces X (blow

up of C2 at the origin), which gives a K3 surface. Hence after resolving T6/ < α >

we obtain T2 ×K3.

The action of β can be extended trivially on T2 ×K3. β will act by {±1} on T2

and by a holomorphic involution that acts by −1 on its holomorphic two form lifted

from dz1 ∧ dz2 on T4 (z1 = x4 + ix5, z2 = x6 + ix7). The fixed set of the action of β

on K3 consists of two copies of T2’s. These tori, in the last diagram of figure 4.2, are

two regular fibers at two points on one of the belt circles (dotted circle on the base

pillow). For example, if (b1, b2) = (1/2, 1/2) then the fibers are at the points that are

the images of (x6, x7) = (1/4, 1/4), (1/4, 3/4).

Therefore, N is a Borcea-Voisin 3-fold as we described in section 2.4. Fixed points

of the involution on K3 is two copies of T2’s as in part iii) of lemma 2.4.1, so the

formula 2.4.1 with n = n′ = 2 gives the Hodge numbers of N as h1,1 = h2,1 = 19.

4.2.2 x2 direction

In this case (figure 4.3), the base is S1 corresponding to x2 coordinate. The generic

fiber of T7/Γ is T6/ < α, γ > with the following action:

x1 x3 x4 x5 x6 x7

α x1 x3 −x4 −x5 −x6 −x7
γ −x1 c1 − x3 x4 c2 − x5 x6 c3 − x7

Table 4.5: The action of < α, γ > on T6
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Figure 4.3: Base S1 has x2 coordinate

Note that, all of the analysis of the previous section can be done here, by changing

the roles of β and γ. And we obtain the same manifold N , a Borcea-Voisin 3-fold

with Hodge numbers h1,1 = h2,1 = 19.

4.2.3 x3 direction

We will divide this case into two subcases depending on the choice of the number c1,

because it will decide the position of the fixed T3’s of γ.

If c1 = 0

In this case (figure 4.4), the base is S1 corresponding to x3 coordinate. Both β and γ

changes x3 coordinate but βγ fixes it. Therefore, the generic fiber is T6/ < α, βγ >,

with fixed point set being 8 copies of T2’s coming from the fixed points of α. The

action is given by the following table (recall that from section 4.1 if c1 = 0 then

b2 6= c3):

Let N be the resulting resolution of T6/ < α, βγ >. As in section 4.2.1, we will
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Figure 4.4: Base S1 has x3 coordinate, c1 = 0

x1 x2 x4 x5 x6 x7

α x1 x2 −x4 −x5 −x6 −x7
βγ −x1 −x2 x4 c2 − x5 b1 − x6 1/2 + x7

Table 4.6: The action of < α, βγ > on T6

consider this resolution in two steps. First resolve T2×T4/ < α > as before to obtain

T2×K3. The action of βγ on T2 is {±1} and on K3 (after we lift the action to K3)

is an involution which acts by −1 on its holomorphic two form lifted from dz1 ∧ dz2

on T4 (this time z1 = x5 + ix6, z2 = x4 + ix7). But the difference in this case is, the

action of βγ on K3 has no fixed points, since βγ(x7) = 1/2 + x7.

Therefore, N is a Borcea-Voisin 3-fold with Hodge numbers h1,1 = h2,1 = 11,

which are obtained from the formula 2.4.1 with n = n′ = 0.

If c1 = 1/2

In this case (figure 4.5), fixed T3’s of β will be in fibers at x3 = 0, 1/2 and fixed T3’s

of γ will be in fibers at x3 = 1/4, 3/4. β will fold the base S1 fixing the points 0
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Figure 4.5: Base S1 has x3 coordinate, c1 = 1/2

and 1/2, while γ will fold the base in the perpendicular direction, fixing 1/4 and 3/4.

The resulting orbifold T7/Γ is then will be a fibration over the interval [0,1/4] with

generic fiber T6/ < α >, which is T2 × T4/ {±1}. The resolution N of T6/ < α > is

therefore, N = T2 ×K3. Using the Hodge diamonds of T2 and K3:

1

1 0 0

1 1 and 1 20 1

1 0 0

1

and using the Künneth formula, we obtain the Hodge numbers of N as h1,1 =

h2,1 = 21.
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Figure 4.6: Base S1 has x4 coordinate

4.2.4 x4 direction

In this case (figure 4.6), the base is S1 corresponding to x4 coordinate. This case is

similar to x1 direction. The generic fiber is T6/ < β, γ >, with fixed point set being

8 copies of T2’s coming from the fixed points of β and 8 copies coming from the fixed

points of γ. The resolution N of T6/ < β, γ > is again a Borcea-Voisin 3-fold with

Hodge numbers h1,1 = h2,1 = 19.

4.2.5 x5 direction

We have two subcases depending on the choice of c2.

If c2 = 0

In this case (figure 4.7), generic fiber of T7/Γ is T6/ < β, αγ > similar to the c1 = 0

case of the x3 direction. T6/ < β >= T2 × T4/ {±1} where T4 has coordinates

x2, x3, x6, x7. After we obtain T2 × K3, the action of αγ on K3 will have no fixed
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Figure 4.7: Base S1 has x5 coordinate, c2 = 0

points, because from section 4.1; c2 and c3 can not be 0 at the same time, therefore

αγ will change x7 coordinate. If we call N to be the resolution of T6/ < β, αγ >,

then N is a Borcea-Voisin 3-fold with Hodge numbers h1,1 = h2,1 = 11.

If c2 = 1/2

This case (figure 4.8) is similar to c1 = 1/2 case of x3 direction. Generic fiber before

resolution is T6/ < β >= T2×T4/ {±1}. And after resolution we obtain N = T2×K3

with Hodge numbers h1,1 = h2,1 = 21.

4.2.6 x6 direction

We have two subcases depending on the choice of b1.

If b1 = 0

The generic fiber before resolution is T6/ < γ, αβ > (figure 4.9). Similar to c1 = 0

case of x3 direction, we first divide by the action of γ and resolve the resulting orbifold
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Figure 4.8: Base S1 has x5 coordinate, c2 = 1/2
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Figure 4.9: Base S1 has x6 coordinate, b1 = 0

to obtain T2×K3. The action of αβ on K3 has no fixed points since αβ(x7) = 1/2+x7

(b1 and b2 can not be 0 at the same time). Therefore we obtain a Borcea-Voisin 3-fold

N with Hodge numbers h1,1 = h2,1 = 11.
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If b1 = 1/2
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Figure 4.10: Base S1 has x6 coordinate, b1 = 1/2

In this case (figure 4.10) generic fiber before resolution is T6/ < γ >. Similar to

the case c1 = 1/2 in of x3 direction, we obtain N = T2 ×K3 with Hodge numbers

h1,1 = h2,1 = 21.

4.2.7 x7 direction

We have two cases: either (b2, c3) = (0, 1/2) or (b2, c3) = (1/2, 0). In both cases

(see figures 4.11 and 4.12) The fixed T3’s of α, β and γ lie on the fibers at x7 =

0, 1/4, 1/2, 3/4. Therefore the generic fiber of T7/Γ will be T6/ < αβ >= T6 and

T6/ < αγ >= T6 respectively. So N = T6 and has Hodge numbers h1,1 = h2,1 = 9.
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Figure 4.11: Base S1 has x7 coordinate, b2 = 0
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Figure 4.12: Base S1 has x7 coordinate, b2 = 1/2

4.3 Summary of results

To sum up the results so far, as we mentioned in example 3.3.5 this work has covered

the example of our joint work with Akbulut and Salur [AES], in which we obtained
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a pair of Borcea-Voisin manifolds with Hodge numbers h1,1 = h2,1 = 19, as special

cases of sections 4.2.1 and 4.2.4. In addition, we have obtained another Borcea-Voisin

manifold with Hodge numbers h1,1 = h2,1 = 11, as well as Calabi-Yau manifolds

T2×K3 and T6 as submanifolds of Joyce manifolds of the first kind. For example, if we

consider J(1/2, 0, 0, 1/2, 1/2), x1, x2, and x4 directions give Borcea-Voisin manifolds

with Hodge numbers (19, 19), x3 direction gives a Borcea-Voisin manifold with Hodge

numbers (11, 11), x5 and x6 directions give T2 ×K3, and x7 direction gives T6. So

all of these Calabi-Yau 3-folds are mirror pairs as in the definition 3.3.3, not all pairs

are mirror symmetric, but each 3-fold is self-mirror.
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