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ABSTRACT

ONLINE INNOVIZATION : TOWARDS KNOWLEDGE DISCOVERY AND
ACHIEVING FASTER CONVERGENCE IN MULTI-OBJECTIVE
OPTIMIZATION

By
Abhinav Gaur

“Innovization” is a task of learning common principles that exist among some or all of the
Pareto-optimal solutions in a multi-objective optimization problem. Except a few earlier
studies, most innovization related studies were performed on the final non-dominated so-
lutions found by an evolutionary multi-objective algorithm either manually or by using a
machine learning method. Recent studies have shown that these principles can be learned
during intermediate iterations of an optimization run and simultaneously utilized in the same
optimization run to repair variables to achieve a faster convergence to the Pareto-optimal
set. This is what we are calling as “online innovization” as it is performed online during
the run of an evolutionary multi-objective optimization algorithm. Special attention is paid
to learning rules that are easier to interpret, such as short algebraic expressions, instead of
complex decision trees or kernel based black box rules.

We begin by showing how to learn fixed form rules that are encountered frequently in
multi-objective optimization problems. We also show how can we learn free form rules, that
are linear combination of non-linear terms, using a custom genetic programming algorithm.
We show how can we use the concept of ‘knee’ in PO set of solutions along with a custom
dimensional penalty calculator to discard rules that may be overly complex, or inaccurate or
just dimensionally incorrect. The results of rules learned using this custom genetic program-
ming algorithm show that it is beneficial to let evolution learn the structure of rules while

the constituent weights should be learned using some classical learning algorithm such as



linear regression or linear support vector machines. When the rules are implicit functions of
the problem variables, we use a computationally inexpensive way of repairing the variables
by turning the problem of repairing the variable into a single variable golden section search.

We show the proof of concept on test problems by learning fixed form rules among
variables of the problem, which we then use during the same optimization run to repair vari-
ables. Different principles learned during an optimization run can involve different number
of variables and/or variables that are common among a number of principles. Moreover, a
preference order for repairing variables may play an important role for proper convergence.
Thus, when multiple principles exist, it is important to use a strategy that is most beneficial
for repairing evolving population of solutions.

The above methods are applied to a mix of test problems and engineering design problems.
The results are encouraging and strongly supports the use of innovization task in enhancing
the convergence of an evolutionary multi-objective optimization algorithms. Moreover, the
custom genetic program developed in this work can be a useful machine learning tool for

practitioners to learn human interpretable rules in the form of algebraic expressions.
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Chapter 1

Introduction

These are exciting times for academicians, practitioners and entrepreneurs who are working
in the field of Multi-objective optimization (MOO). Figure|l.1|shows the increasing attention
this field has been receiving from academia over the last two decades. Commercial MOO
software, especially catering to the computer aided engineering industry, has seen a lot of
growth in the past decade. Now, practitioners have many options available for commercial
MOO software; HEEDS [1], modeFrontier [2], , iSight [3], Optimus [4] and optiSLang [5] are
to name a few. Figure [1.2|shows the rising use of these softwares in research. FEvolutionary
algorithms (EA) are a popular method of solving MOO problems in practice. In this work,
we refer to EAs designed to solve MOO problems as evolutionary multi-objective optimization
(EMO) algorithms. The key reason for the wide spread adoption of EMOs in tackling MOO
problems is their flexibility in handling real world problem complexities such as non-linearity,
non-convexity, and non-differentiability [6].

As the adoption of MOO is increasing in the industry, so are the expectations of practi-
tioners from MOO solving software in terms of what it can do apart from providing optimal
or near-optimal solution(s). Two key areas where researchers can try to address those ex-

pectations are;

1. Offering some insight or knowledge about the problem, and

2. Using the aforementioned knowledge in making an EMO algorithm converge faster
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Figure 1.1: Number of publications in the last two decades using search key “multi-objective
optimization” (Source : Scopus).

towards the PO front.

EMO algorithms or any population based MOO problem solving algorithm are uniquely
positioned to deliver on both the aforementioned needs of MOO software users. Let us

discuss the two aforementioned requirements in the context of this work.

1.1 Search for Knowledge in MOO Problems

The Oxford dictionary defines knowledge as, “the theoretical or practical understanding of a
subject”. In older Artificial Intelligence (Al) literature [7], “having knowledge” corresponds
to recognizing something as information about the world or part of it. In the context of
an engineering design and optimization problem, this is equivalent of understanding the
optimal behaviour in relation to the objectives and the design variables of the problem. A
closely related concept of “knowledge representation” is defined as fundamentally a surrogate,

a substitute for the thing itself, used to enable an entity to determine consequences by
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Figure 1.2: Number of publications in the last two decades that have used atleast one of
the following MOO software-HEEDS, Mode-Frontier, iSight, Optimus, OptiSlang (Source :
Scopus).

reasoning about the world rather than taking action in it [§]. Let us further discuss what
we mean by knowledge in the context of this MOO problems. The MOO problems with
two or more conflicting objectives have more than one optimal solution to the problem.
These pareto optimal (PO) solutions may possess certain special properties that makes them
PO in the first place. For example, in a mathematically well behaved MOO problem with
convex, continuous and differentiable functions, the PO solutions must adhere to at least
the Fritz-John or Karush-Kuhn-Tucker necessary conditions for Pareto optimality [9]. Even
in real world engineering design problems that lack the aforementioned regularities around
optima(s), the PO solutions may still possess certain special patterns or “rules” that sets
them apart from non-optimal or even random solutions. This idea of looking for rules in
PO solutions of MOO problem was coined by the authors of [10] as innovization. The
authors showed the existence and manual extraction of such rules from PO solutions of
many engineering design problems. Since then, the idea of innovization has been applied to

many MOO problems in engineering design |11H13].


www.scopus.com

A recent work [14] provides an extensive survey of various forms of knowledge sought af-
ter in MOO problems. Knowledge representation in a MOO problem can be categorized into
implicit or explicit forms based on representation [15]. Although very popular, knowledge in
implicit form has no formal notation and may require user to have a specific experience. Most
of the visual data mining methods such as parallel coordinate plots |16], value paths [17],
heat-maps [18] and self-organizing maps [19] fall in this category. Explicit knowledge on the
other hand has crisp mathematical form and can be interpreted by humans unambiguously.
A couple of examples of explicit form of knowledge representation in MOO problems are de-
cision trees [20] and regression rules [21]. In this work, we have decided to pursue knowledge
in explicit form which has crisp mathematical notation and is amenable to consistent human
“interpretation”. Although we could not find a mathematical definition of interpretabil-
ity, [22] defines it as the degree to which a human can consistently predict a model’s result.
For example, a model having power law structure in terms of design variables, which are
common in the problems from engineering and physics [23], are easier to interpret compared
to a model based on deep neural networks [24]. Christoph [25] presents a nice case for the
need of interpretability in machine learning models. Figure [1.3| shows a sharp increase over
last five years in the amount of research trying to address interpretability in machine learn-
ing. In this work, rules refer to explicit mathematical expressions involving MOO problem
variables or functions thereof, that are adhered to by some or all of the PO solutions.

Another important aspect of rule learning in practical MOO problems is of adherence
to principle of dimensional homogeneity [26]. In any rule representing some aspect of a
physical or engineering system, adding or subtracting two dimensionally incommensurate
quantities can never produce physically meaningful knowledge. For example, a rule should

not be adding physical quantities having the dimensions of length and time. This is another
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Figure 1.3: Number of publications per year in the last decade which have the keywords
“machine learning” and “interpretable” in their title, abstract or keywords ( Source : [Sco-

pus).

aspect that we have paid attention to while deciding the kind of rules that we want to learn
from PO data. It is for these reasons of maintaining interpretability and easy verifiability of
dimensional consistency, that we chose to learn only certain kind of rules in this work such as
power law rules or rules involving basic operations of {4+, —, X, +} over problem variables.
For the latter, we developed a bi-objective genetic programming (GP) [27] based method

which we will go over in the coming chapters.

1.2 Using Discovered Knowledge in Expediting Con-

vergence of EMO Algorithms

The EMO algorithms tend to be computationally inefficient because they evaluate many
alternative solutions in the population of solutions before converging to PO solutions. There
have been examples |28, 29] in which researchers have learned some heuristics about the

problem from some initial EMO runs on a problem and then adopted those heuristics as
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part of the problem solving EMO to expedite its convergence. This method is known as
derived heuristics in the literature. In the above examples, the authors waited for the
EMO algorithm run to completion, first to obtain a PO solutions set followed by a manual
innovization procedure conducted over the solutions to come up with the rules. In this work,
we intend to learn explicit mathematical form rules from a select set of solutions (say non-
dominated set) during an EMO algorithm run and then use those rules to directly repair
variables for expediting the convergence to PO solutions set. There are many challenging

questions in this approach including;
e When to begin the learning process?

e What are some computationally efficient ways of repairing solution variables without

making extra evaluations of the objective function?

e How to learn rules in MOQO problems where different parts of PO front adhere to

different set of rules?

We have tried to answer these questions towards the later half of this dissertation.

1.3 Organization of Dissertation

This dissertation is organized as follows. Chapter [2|presents relevant literature on the subject
of innovization, existing literature on interpretable rule learning from data and on the idea
of finding dimensionally consistent rules. Dimensional awareness here refers to adherence to
the law of dimensional homogeneity by the learned rules. Then the dissertation is presented
in two parts. Part [[| focuses on learning interpretable mathematical rules from data. Part

consists of four chapters. Chapter |3|illustrates how prevalent power laws are in engineering



problems and how can they be learned by using ordinary least square method of linear
regresssion [30]. Chapters [4] and [f| show how can we learn free form rules use bi-objective GP
for non-linear regression and classification tasks. We developed this GP as part of solving a
real world industry problem. Chapter [5[then illustrates how can the principle of dimensional
homogeneity be useful in generating or choosing physically meaningful rules from a set of
rules which may all be acceptable to a user in terms of regression/classification accuracy.
Part [T then focuses on how can we use rules learned during an optimization task to expedite
the convergence of an EMO algorithm. Chapter [7| shows results of online innovization on
test and engineering MOO problems when we learn power law rules based on design variables
only. Chapter |8 shows results of online innovization on test and engineering MOO problems
when we learn power law rules based on design variables as well as some function of the same
such as the objective functions. Furthermore, a methodology is devised to handle transition
points in PO fronts and still be able to expedite the convergence of the EMO algorithm. We
present the main conclusions of this work in Chapter [9] along with some interesting research

threads worth pursuing in future research.



Chapter 2

Literature Survey and Proposed

Online Innovization

2.1 Multi-objective Optimization

Many real-world design problems from engineering can be formulated as a Multi-objective
optimization (MOO) problem [6,[31]. This approach is particularly useful when it is difficult
to capture the decision makers’ preference in the objectives in terms of some convex set
of weights and consequently turning the problem into a single objective problem using the
weighted sum approach . The goal of MOO is to provide the decision maker with a set of
optimal trade-off solutions in terms of the objectives and let the decision maker develop a
preference and finally make a choice. Equation shows a formulation of a MOO problem

with ny objectives (minimize all), n; design variables with known lower and upper bounds



and ng inequality constraints.

Minimize all in  f(x)

Subect to  g(x) <0

where x = [z 22 ... p,]T,
(2.1)
£(x) = [1(x) fo(x) - fu, GO,
g(x) = [g1(x) g2(x) ... gng(x)]T and
i <x;p<w 1€ {1,2,...,713;}.
A solution x* = [z] x5 ... z;,,]T to such a problem is a vector of n decision variables and

must satisfy the variable bounds and ng4 inequality constraints. Otherwise, it is an infeasible
solution. Figure [2.1] illustrates the objective, design and feasible spaces for a bi-objective

Objective Space Design Space

Feasible Region

f2 (minimize)

Y

f1 (minimize)

Figure 2.1: Ilustration of the objective and design space of a MOO problem.

minimization problem having three design variables.



Concept of Dominance

In a single objective optimization problem, it is straight forward to compare two solutions
simply based on their corresponding objective values. In case of minimizing an objective,
the solution with lower objective value is considered better than the other. However, in case

of MOO problem, the comparison is based on the concept of dominance [31].

Definition 2.1.1. A solution x() is said to dominate a solution X(2), if the following con-

ditions are true:

2)

1. The solution x(!) is no worse than x(2) in all objectives.

2)

2. The solution x(1) is strictly better than x(2) in at least one objective.

We denote x() dominating x(2) as x(D) < x(2) and x(?) dominating x(D) as x(2) =< x()
If neither of two solutions dominate each other, then we denote this condition as x(1) || x(2).

In Figure , upon doing pairwise comparisons of solution x(2) with all others, x(2) < X(4),

A
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f1 (minimize)

Figure 2.2: An illustration of the concept of dominance.

x) < x0) and x(2) < x6) while x(2) || x(!) and x?) || x(®). Another important concept is

10



of the non-dominated set [31].

Definition 2.1.2. Among a set of solutions P, the non-dominated set of solutions P’ are

those that are not dominated by any member of the set P.

In Figure , set P =1{1,2,3,4,5,6} and set P’ = {1,2,3}. Furthermore, when the set
P is the entire search space, the resulting non-dominated set P’ is called the Pareto-optimal
set.

Sometimes, we are interested in dividing a set P into different non-domination levels or
ranks. If a set P contains J = {1,2,...,j} non-domination levels, then it means that the

set P can be partitioned into j levels, i.e.

r=Jp
ieJ
and

P.NPs=2VreJandr+#s,

such that a point in a set with lower non-domination rank are never dominated by a point in
any set of higher non-domination rank. In Figure [2.2] there are three non-domination ranks

present. Set P = {1,2,3}, P, = {4,5} and P3 = {6}.

2.2 Evolutionary Multi-objective Optimization Algo-

rithms

Real world optimization problems have many complexities built into the problem such as

non-linearity, discontinuity, non-differentiability, discrete variables etc. These complexities

11



make it impossible to apply known classical optimization algorithms, such as gradient de-
scent algorithm [32], without making strong simplifying assumptions about the problem. An
evolutionary algorithm (EA) mimics natural evolutionary principles to conduct search and
optimization tasks. Some of the popular EAs are genetic algorithms [33], evolution strate-
gies [34] and genetic programming [35]. Evolutionary algorithms (EAs) have shown to have
an edge in optimizing MOO problem for finding multiple trade-off solutions, simply because
EAs are capable of finding and storing multiple solutions from generations to generations.
The population approach of EAs and their ability to build multiple niches within a popu-
lation enabled EA researchers to develop evolutionary multi-objective optimization (EMO)
algorithms [31,36]. EMO algorithms are extensively applied to MOO problems from the real
world [37-H44]. However, EMO algorithms are considered computationally inefficient because
they sample the space stochastically and require many function evaluations to reach a high
quality solution set. This inefficiency can be partly reduced if the algorithm is made to take
advantage of some problem knowledge discovered during or at the end of the optimization

from PO or non-dominated solutions set.

2.3 Innovization

While multiple PO solutions allow decision-makers to choose a single preferred solution by
making a comparative analysis of them, multiple PO (or high-performing) solutions may
also provide users with valuable information about the problem being solved. These PO
solutions may possess certain special properties that makes them PO in the first place. For
example, in a mathematically well behaved MOO problem with convex, continuous and

differentiable functions, the PO solutions must adhere to at least the Fritz-John or Karush-
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Kuhn-Tucker necessary conditions for Pareto optimality [9]. Even in real world engineering
design problems that lack the aforementioned regularities around optimaf(s), the PO solutions
may still possess certain special patterns or “rules” that sets them apart from non-optimal or
even random solutions. The idea of learning from the PO solutions and deciphering design
principles that are unique to the optimization problem was first presented in [10]. This
concept is called innovization and it is pictorially illustrated in Figure 2.3} Originally, the
innovization task was conceived to be performed once at the end of an EMO run in order to

decipher principles that are common to most or all PO solutions [10].

Innovization Converged

Sepll | Design
Principles

Moo | EMO
problem | §eep |

Y

Figure 2.3: An illustration of the concept of innovization.

Since an innovization task involves learning from a set of equivalent trade-off solutions,
it is appealing to couple this idea with EMO algorithms. There are examples in the litera-
ture, where the innovization task has been conducted on the results of an EMO algorithm
to decipher interesting knowledge about the problem. For example, [45] uses innovization
to discover new design principles in three engineering case studies. Another example [46]
proposes a novel recommendation tool for software re-factoring based on innovization. [11]
suggests a way to automate the finding of salient problem design principles for engineering
problems. [13] uses the innovization task in a simulation based MOO problem and suggest
different ways to couple the innovization with the EMO that can throw light on important
principles of the problem. In recent literature [14], the idea of innovization has also been

referred to as knowledge discovery in MOQO problems. Before moving on to discuss some
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examples of knowledge extracted from MOO problems, let us look at a taxonomy of the

innovization procedures.

2.4 A Taxonomy of Innovization

In the following sections, we will try to cover the various kinds of innovization procedures

that exist in the literature.

2.4.1 Manual Innovization

This was first proposed in [10] as a way of manually extracting innovative design principles
from PO data of MOO design problems. As shown in Figure [2.3] it requires first solving
a MOOQO problem and obtaining its PO set of solutions followed by manually plotting dif-
ferent variables, objectives and constraints for PO solutions against each other one by one
in 2-dimensional and 3-dimensional plots and then manually deciphering innovative design

knowledge from the same based on the plots.

2.4.2 Automated Innovization

Automated innovization was first proposed in [11] as a way to automate the labour of manual
innovization but at the cost of fixing the form of rules to power law form. This approach
has produced some interesting case studies in engineering design evident in [45]. Note that

both manual and automated innovization are based on the approach shown in Figure [2.3

14
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Figure 2.4: An illustration of the concept of higher level innovization.
2.4.3 Higher Level Innovization

Upon changing certain parameters of a MOQO problem, it is possible that the shape or
location or both may change for the PO front of the problem. Figure illustrates this for a
hypothetical problem where changing some parameter results in some shift in the PO front as
well. In such a case, if an innovization study is performed for multiple fronts resulting from
multiple parametric studies, it is possible that we may encounter certain rules or principles
that remain invariant across the fronts. Such a procedure is called a higher level innovization
procedure. Both [47,|48] present some good engineering design case studies of higher level

innovization.

2.4.4 Lower Level Innovization

Lower level innovization task is performed when we can divide the solutions of a problem into
two sets, namely the preferred set and the not preferred set. Figure shows a hypothetical

case where the user may be interested in patterns that are present in the preferred set of

15
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Figure 2.5: An illustration of the concept of lower level innovization.

solutions but not otherwise. A lower level innovization procedure learns the most discrimi-
natory rules that completely adhered to by the preferred class of solutions but not so much
by the not preferred class of solutions. [49] presents a case study of lower level innovization

procedure applied to the Car side impact problem [50].

2.4.5 Temporal Innovization

Temporal innovization is the innovization procedure aimed at learning the relative hierarchy
of design principles in an overall solution to a MOO problem. The design principles in the
PO front are searched in all previous generations and their significance is recorded. When
looked over the time line of all the generations of an EMO, it can be seen which principles
evolve earlier in the solutions and which one appear later. The ones that appear earlier are
hierarchically more important than the ones that appear later in the evolution of solutions.
The authors of [51] present an interesting analogy between the evolution of design of a MEMS

resonator using an EMO and the evolution of human beings.
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2.5 Proposed Online Innovization

Target data set | |nnovization
- in population

No .
e.g. non—-dominated)
Problem
g Faster Specific
= Convergence Knowledge
MOO ~—CStar>
problem -

Active
Intervention

Figure 2.6: The concept of Online Innovization.

Figure illustrates the idea of online innovization. An online innovization procedure

has three components namely;
1. Target data set(s) for extracting knowledge,
2. Type of knowledge representation being extracted, and
3. How to use the extracted knowledge to expedite the convergence of EMO algorithm.

Let us look at these aspects.

2.5.1 Target Data Set(s)

When solving a MOO using an EMO or any population based optimization algorithm, the
algorithm carries a number of data sets possessing important as well as unimportant knowl-

edge about the problem. For example, the objective values data, variable values data and

17



constraint violation values data for non-dominated solutions set [31] can be considered im-
portant for problem information and the same data for dominated solutions may not hold
the same importance, especially during initial generations of the EMO. However, the infor-
mation contained the same dominated solutions becomes important if one is interested in
finding knowledge that can discriminate between the dominated and non-dominated sets.
Another way to select a target data set is if the preference of decision maker is known at

every step of the optimization process [52].

2.5.2 Type of Knowledge Representation

The Oxford dictionary defines knowledge as, “the theoretical or practical understanding of a
subject”. In older Artificial Intelligence (Al) literature [7], “having knowledge” corresponds
to recognizing something as information about the world or part of it. As mentioned in
Section [L.1] “knowledge representation” is defined as fundamentally a surrogate, a substitute
for the knowledge, used to enable an entity to determine consequences by reasoning about
the world rather than taking action in it [8]. Knowledge representation in MOO problem can
be categorized into implicit or explicit forms based on representation [15]. Although very
popular, knowledge in implicit form has no formal notation and may require user to have a
specific experience [53]. Most of the visual data mining methods used for extracting implicit
knowledge about MOO problems such as parallel coordinate plots |16], value paths [17],
heat-maps [18], RadViz visualization method [54] and self-organizing maps [19] fall in this
category. [14] provides a good survey of such methods used for knowledge extraction in MOO
problems.

Explicit knowledge on the other hand has crisp mathematical form and can be interpreted

by humans unambiguously. Furthermore, it can be implemented as a computer program [55].
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A couple of examples of explicit form of knowledge representation in MOO problems are
decision trees [20] and regression rules [21]. Kernel based Support vector machines [56],
artificial neural networks [57,58] are other examples but rules learned through them are not
very amenable to easy human interpretation. [59] applies classification rule mining [60] to
extract rules of the form A — B where A is a design feature and B is a class-label that
determines the quality of the design (e.g. non-dominated). However the rules in disjunctive
normal form combining many design features and permutations thereof become difficult
to interpret by human unless we limit the maximum number of features allowed in such
rules. [11,/61] have developed a custom unsupervised learning algorithm based on a genetic
algorithm to learn power law relations from the data of PO solutions of a MOO problem.
This method does produce very interpretable rules in power law form, however it may fail
to capture knowledge if it exists in any other form, say a rule with addition or substration
operations. [62] employs classification trees to extract decision rules that distinguish between
dominated and non-dominated solutions. These rules also stay easy to interpret only until
the number of levels in the decision tree stays under five.

In this work, we have decided to pursue knowledge of the following two explicit forms:

e Power law form and

e Free form or algebraic expressions containing {4, —, X, +} operations on operands.

We call these mathematical expressions as “rules” and target them as they are amenable to
consistent human “interpretation”. Although we could not find a mathematical definition
of interpretability, [22] defines it as the degree to which a human can consistently predict a
model’s result. For example, a model having power law structure in terms of design variables,

which are common in the problems from engineering and physics [23], are easier to interpret

19



compared to a more accurate model based on, say deep neural networks [24]. Christoph [25]
presents a nice case for the need of interpretability in machine learning models. Although
[11,61] have used a custom unsupervised learning algorithm to learn power law relations, such
a method can be computationally very expensive, given that power laws can be learned using
a combination of log-linear modeling along with ordinary least square regression method [63].
Such a method can be applied repeatedly without much cost, however we need to find the
transition points in the MOO set via some other method. A transition point in a PO front is a
point across which there is a quantitative change in the nature of rules that are adhered to by
the PO solutions |10]. Encountering a constraint boundary is a common cause for appearance
of transition points in PO fronts for MOO problems from engineering. Furthermore, we have
also developed a custom bi-objective genetic programming (GP) method that can be used
for learning simple “free form rules from data involving only 4, —, X, =+ operations. This is
because adding rule parsimony as another objective in GP [64,/65] has been known to control
the problem of bloating [66] when using GP for regressing rules from data. Furthermore, we
designed our GP to be able to learn the constants/coefficients involved in rules accurately
without the constants being provided by the user. This capability is only known to be present
in a commercial software named Furega [67] which is again a GP based software. For target
rules involving only +, —, X, + operations, our GP is quite competitive to Eureqa software.
In addition to this, our GP has additional capability of conducting dimensional consistency

checks on the obtained rules.

2.5.3 Using Extracted Knowledge to Expedite the Convergence

There are EAs that are hybridized with machine learning methods to acquire knowledge

extraction from a set of solutions and knowledge application to affect the convergence. For
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example Bayesian optimization [68,69] and Estimation of Distribution Algorithms [70]. The
probabilistic models constructed and updated in these algorithms guide the algorithm on
how to sample the decision space to improve the objective values. However, the constructed
probabilistic models are relatively difficult to interpret by humans compared to say alge-
braic expressions. Authors of [29] first discover the salient principles by using a manual
innovization task with the solutions found at the end of an EMO run and then use those
principles as a heuristic for local search and obtain a faster convergence than the EMO ap-
plied alone. |71] suggest learning the ‘innovized’ rules using decision trees and then adding
the learned rules as if-then-else statement type of constraints during the EMO run. |71] learns
distance based regression trees to extract rules differentiating between solutions near and far
from PO region of interest and introduces these regression trees as constraints to guide the
EMO algorithm towards the region of interest. Learnable evolution models (LEM) [72] gen-
erates multiple logical rules that relate specific design features to the high-quality solutions
in the population. The rules are combined into one logical sentence in a disjunctive nor-
mal form, and future solutions must satisfy the sentence by conforming to at least one of
the rules. [59] uses an adaptive operator selection to track the efficacy of each evolutionary
operator and manually introduced knowledge dependent operator at consistently creating
improved solutions and focus on using the most effective ones using a credit assignment
strategy.

Since, we are learning rules in the form of mathematical expressions, we try to use the
same for directly repairing/modifying solutions and possibly expedite the convergence of the
EMO algorithm. Furthermore, we have tried to investigate different repair strategies for rule

and repair-variable selection. We will learn more on this in Part{I] of this dissertation.
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2.6 Dimensional Awareness in Rule Learning

For rules to be physically meaningful, especially the ones coming from problems in engi-
neering and physics, it is a must that the rules should at least adhere to law of dimensional
homogeneity [26]. The first work to address the issue of learning dimensionally consistent
rules from data using Genetic Programming (GP) was [73]. The authors modified the defi-
nitions of terminal set and function set to include the physical dimensions of the quantities,
such as length, mass and time etc. Furthermore, an additional function DimTransform()
is defined to guarantee closure. In addition to goodness-of-fit objective, an additional ob-
jective “goodness of dimension” is introduced to reduce the number of applications of the
DimTransform() function necessary to make dimension based repairs. Figure shows how
the DimTransform() function is applied with an example. Here the input tree is adding
two dimensionally inconsistent terms, namely “F” with physical dimensions M Ll T2 and
another quantity “m” with dimensions M! L0 T0. The DimTransform() function multiplies
the term “m” with a random physical constant “¢” having physical dimensions of M0 L T—2
and a numeric value randomly chosen from the set of allowed random terminal constants.
Consequent to this dimension matching operation, this transform adds a dimensional penalty
of three units to the output tree. The work showed that addition of dimension information
as another objective produced more parsimonious results instead of results having high fit-
ness and low interpretability. Nevertheless, the algorithm did not perform well when exact
scientific constants (e.g. 9.81 m/s?) were not provided to the algorithm.

[74] is another work that tries to address the issue of finding meaningful rules using
dimension information using the idea of grammar based GPs [75,/76]. The authors do so

by enforcing dimensional constraints through formal grammars in the GP tree construction
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Figure 2.7: An example of DimTransform() function.

and manipulation rules. Furthermore, the authors also suggest a way of initialization so
that feasible trees can be generated in pre-specified maximum tree depth. This approach
is impractical for real problems because of the size of grammar that needs to be defined
even for problems of small size. As an example, consider three elementary units mass (M),
length (L) and time (T) to be present in the variables. Further assume that the powers of
these basic units are restricted to the integer set {—2,—1,0,1,2} and no fractional powers
of basic units are allowed. Thus one needs to exclude operators that yield fractional powers,
e.g. square root operator. Using a restricted function set of {4, —, +, x }, a full specification
of grammar requires 5% = 125 symbols each having many rules. For example, for a symbol

50,0,0 representing expressions which are dimensionless, can be obtained using multiplication
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function using the following 125 rules.

< So’()?() >i=< 5070,() > X < S(]?O’Q > |
< 51,00 > X < S-10,0 > |

< 52,00 > X < S8-20,0 > |

[122 more such definitions for multiplication.

Correctly so, the authors of [77] have termed this context-free-grammar approach to be unfit
or impractical for modeling the “units of measurement” or uwom system. It is very difficult
to produce a set of feasible initial population with so many constraints, even with a limited
set of allowed exponents.

The authors of [78] suggest using a set of dimensionless quantities as terminal set for
the GP. From an initial set of variables, they generate a set of normalized variables which
are dimensionless and then use those as part of the terminal set of the subsequent GP. This
method, although guaranteed to produce dimensionally consistent expressions, is impractical
when number of variables of interest is large. In such a case, finding a set of dimensionless
quantities that can be produced using those variables of interest with elementary operations
such as multiplication or division is not trivial and itself becomes an optimization problem.

The authors of [79] try addressing the dimensional consistency of GP individuals (trees)
the following way. It first assumes an upper bound on the largest possible exponent for any
fundamental unit (length, mass or time) to be u (say). Then for any tree, with maximum
depth D, the maximum exponent of any fundamental quantity can be u x 2D For each

fundamental quantity, it then evaluates the resultant exponent which will exceed u X oD
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for trees combining dimensionally incommensurate quantities. Such trees become infeasible
in subsequent optimization procedure to induce rules from data. However, such penalty
approach makes it almost impossible to find rules having addition or subtraction operations,
which are the only operations that make them different from power law rules. This is the
reason that out of forty rules found by the author over three engineering design problems,
only one rule has an addition operation.

In the rest of the chapters, we will focus on applying the idea of online innovization
on MOO problems from the engineering design domain where the problem variables are of

continuous nature. In the following chapters, we will see how can we:

e Part-I : learn mathematically explicit rules from data that are simple to interpret, and

e Part-II : then use them to make variable repairs to EMO population members to bring

them closer to the PO front faster.

This concludes our literature survey chapter.
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Part 1

Rule Learning
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Chapter 3

Learning Fixed Form Rules

3.1 Introduction

In a MOO problem being solved by any EMO or population based optimization algorithm
generates a myriad of data related to the design variables, objective functions and constraint
values/violations. Recall from Section that we are interested in discovering knowledge
from this data that can be expressed in the form of mathematical algebraic expressions which

we will be referring to as rules in this work. Thus we are looking for rules of the form

b(x,f(x), g(x)) = ¢ (3.1)

where x is the set of design variables, f(x) are the objective functions and g(x) are the set of
constraint functions for the problem and c is some constant. We can re-write Equation (3.1))

as

1/}(3717'"'7xn337f17‘"7f’flf7gl7"'7gng) = C. (32)

Borrowing the terminology from [11], let us call each design variable and any function of de-
sign variables (including objective functions and constraint functions) as a basis function and

we will represent a basis function using the symbol ‘¢’.Thus, we can re-write Equation ((3.2])
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as

V(o1 0a,...) =c. (3.3)

Figure shows a typical scenario of data availability while solving a MOO problem of
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o
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f1 (minimize)

Figure 3.1: Data availability when solving a MOO using an EMO algorithm.

two objectives, three variables and one inquality constraint. In some MOO problems, user
may want to use additional basis functions other than the ones included in Equation ({3.1),
e.g. some composite function of first objective and a constraint. This is acceptable and
would require us to calculate this additional basis function during the optimization run.
We will focus our attention to the general case of including only variables, objectives and
constraints for our study. An underlying assumption in applying these methods is that the
values for each basis function are always non-negative, which is generally the case for MOO
problems from engineering design domain. Note that the methodology to learn the two
types of rules being presented in this chapter already exists in literature. We are presenting

them for completeness, maintaining coherency of thesis structure and their suitability for

28



computationally efficient application to MOO engineering design problems.

3.2 Learning Constant Rules

We call a rule of the form

(D1, 92,5 bny) = 03 = ¢ (3.4)

as a “constant” rule where ¢; is some basis function from the set of ny basis functions being
considered for rule learning from MOO problem and c is some constant. These are one of
the most commonly encountered design rules in MOO problems in engineering designs. A
few examples of a constant rule would be a variable or a constraint reaching its boundary

value and being same for a set of high quality solutions.

3.2.1 Estimating Rule Parameters and Quality

In Equation , there is only one parameter, ¢ to be estimated. Consider a hypothetical
MOO problem which requires its PO solutions to have some variable x; = 0.5. Let z1 be
named the first basis function, ¢1. Figure |3.2| shows this scenario for this problem as the
EMO algorithm progresses in the optimization run. Since EMO algorithms work based on
stochastic sampling, a non-dominated front at the end of an EMO run is very likely not the
PO front for the problem but an approximation of the same. EMO algorithms rarely reach
the PO front of MOO problems unless they are followed by some local search from a set
of non-dominated solutions which are close to the PO solutions of the problem. Hence, the
value of z; cannot be expected to be exactly 0.5 for all solutions at the end. Figure (3.2
reflects this thought, where the values of the variable 1 can be seen to be moving, on

average, closer and closer to the value of 0.5 but are never exactly 0.5. Hence, the value of
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Figure 3.2: Data availability when solving a MOO using an EMO algorithm.

parameter ¢ in Equation (3.4]) can be estimated using the mean of basis function ¢; as

¢ = puy, (3.5)

7

which in this example would be just the mean of variable x1 of the target data set.
Furthermore, we use coefficient of variation or C, of ¢; values of target data set to assess

the quality of a constant rule. Coefficient of variation for a data set is defined as

Cp = (3.6)

o
1
where o is the standard deviation and p is the mean of data. Coefficient of variation is a
dimensionless quantity and is useful for comparing the variability of a sample of numbers
drawn from distributions with different units. For example, C, of the weights of a group of

students will be the same whether the data is in kilograms or pounds. The lower the value
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of Cy, for data of some basis function, the closer it is to being called a constant rule. Let
us now look at the other type of rule we are focusing on in this chapter, i.e. the power law

rules.

3.3 Learning Power Law Rules

A power law form rule involving basis functions from a MOO can be represented as

g
G(o1,02, - ony) = [[ 6 =c (3.7)
=1

where ng is the number of basis functions being considered for learning a power law rule
from data, b; is exponent of ith basis function and ¢ is some constant.

Equation is a multi-variate power law. Such laws are very common in many nat-
ural phenomenon [23] and have been commonly found in MOO problems from engineering
design [10,|11}45,[80,81]. By using such a universally occurring functional form for the de-
sign principles, it is expected that most correlations between various basis functions can be

captured.

3.3.1 Estimating Parameters

Given the data for ng number of basis functions, and if we want to learn a multi-variate
power law relation involving all k& basis functions, then we can use the log-linear modeling

followed by ordinary least square regression [82] method.

b b b
Gt do? -9y = c, then (3.8)
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taking log on both sides,

bylog ¢1 +bolog da + -+ + by log ¢, = logc, (3.9)

which is a linear equation. If log ¢1 is chosen as the regressand and others as regressors then,

—b —b —b log ¢
logp1 = —210g¢2 + —310g¢3 +--- 4 —klogqﬁk + i, or
b1 b1 b1 b1
(3.10)
= Polog ¢y + PB3log ¢3 + - -+ + By log oy, + 4.
Parameters 32, 53, e ,ﬁk and ¥ are estimates returned by a Ordinary Least Square linear

regression (OLSR). OLSR also returns the R?L dj value which can be used as metric to signify
the quality of such a learned rule. Ofcourse we can choose any logarithmic term in Equa-
tion as a regressand and the rest as regressors. Let us say that the ith log term in
Equation is chosen as the regressand to apply OLSR. In that case, Equation can
be re-written as

k

logdi = 3 (,leogqﬁj)Jw, (3.11)

j=1.

which upon taking an anti-log on both sides can be re-written as

i BB
si=c - 11 ¢ | (3.12)
J=Lj#

3.3.2 Comparison with Automated Innovization

The authors of [11] developed an unsupervised machine learning method by combining grid

based clustering [83] method with a genetic algorithm to learn rules of the form given by

Equations (3.4) and (3.7). As part of automated innovization (see Section [2.4.2)), authors

32



of [11] needed to learn such rules only once at the end of a MOO task using an EMO
algorithm. However, in case of online innovization (see Section , we may have to learn
such rules multiple times while, a MOO task is going on. If we use the method suggested
in [11] to learn these rules, it will be computationally very inefficient because of an EA (for
learning rules from MOO problem data) nested inside an EMO algorithm (for solving MOO
problem).

Although our method is computationally much faster in obtaining power-law rules as
compared to the method of automated innovization, however it holds a disadvantage as well.
Our method cannot identify the rules that are applicable to only part of the PO front, say
50% of the PO front, and not the entire front. We will come back to this point in Part{7.2]

where we have tried to address this shortcoming.

3.3.3 Learning Multiple Rules Simultaneously

It is possible that the non-dominated solutions of a MOO problem carry multiple design rules
simultaneously. For example, not only some constraint g is some constant upper bound but
also two variables x1 and x9 are related in a power law form. Using the method given in
Section we can efficiently learn as many as our computational budget allows.

Consider a MOO problem shown in Equation having n s objectives, ng design vari-
ables and ng inequality constraints. Hence, if we are considering only variables, objective
functions and constraint functions as basis functions, we have a minimum of ng = nz+ng+ng
basis functions for learning rules. With ng basis functions, exhaustively we have 2" — 1
number of constant and power-law rules for which we have to estimate the parameters and
quality. These numerous rules for learning can become prohibitively large very quickly. Fur-

thermore, the interpretability and use of such design rules for an engineer quickly diminishes
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as the number of basis functions in a rule increases. For these reasons, we limit ourselves to
learning rules with a maximum of two or three basis functions.

This chapter has covered the rule forms that are commonly encountered in MOO en-
gineering design problems and their quality can also be ascertained quickly. However, we
are also interested in learning rules where the form is not constrained a priori. In the next

chapter, we will look at an efficient way of learning “free-form” non-linear rules from data.
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Chapter 4

Learning Free Form Rules Using a

Symbolic Regression Task

In Chapter [3, we saw how can we efficiently learn rules of two fixed forms, constant rules
and power-law rules, in MOO data. These two forms are commonly encountered in MOO
engineering design problems and can be learned quickly from data. However, in this chap-
ter, we wish to expand our scope of knowledge extraction to rules with a weaker set of
constraints limiting the form of the rules that we learn. Yet, we want to stay in the territory
of mathematical /algebraic expressions that are simpler to interpret than, say some kernel

based rules [84] and yet have the ability to capture complex physical behavior.

4.1 Form of Rules

We are focusing on learning rules of the form
nt
V(A1 02, Ony) =0 =wo + Y wj-ty, (4.1)
j=1,j#i

where 1) represents one such rule, ¢ are the basis functions explained in Section that
represent the data from MOO problem, ¢; is one of the basis functions that can either be a

regressand in a symbolic regression problem or a class label in a classification problem, w
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and w;s are numerical weights, ny is the number of terms in the rule where each term ¢; is
some function of ¢;, j € {1,2,...,n4} \ i using the operations {+, —, x, +}. Such rules are

a good candidate for learning using genetic programming [35].

4.2 A Primer on Genetic Programming

A GP can be considered an application of GAs when the space of solutions to search con-
sists of programs or equations for solving a task [27,35,85]. Instead of decision variables,
an individual is a program or an equation to solve a task. In order to create an initial
population, a terminal set 7 and a function set F must be pre-specified. A terminal set
consists of operands (constants and variables) where as a function set consists of operators
or basic functions. Like other evolutionary computation techniques, a typical GP starts with
a population of randomly created individuals, which in this case are math expressions. The
fitness for each individual is determined by evaluating the rules. High fitness individuals are
selected to form the mating pool, on which primary genetic operations, namely crossover and
mutation, are applied to create a new population of programs. The process is repeated until
some termination criterion (like maximum number of generations) is met. An individual
in a GP can be represented using different data structures such as string of words [86], or
trees [87] or graphs [88]. We will be using the tree data structure to represent a rule, hence
we will discuss a few important concepts in the context of tree-based GPs.

Consider a GP with terminal set 7 = {1,2,2} and function set F = {4, —, *}. Then,
Figure {4.1] shows two candidate solutions that belong to the set of valid GP individuals
for such a GP. Furthermore, sub-tree swap crossover [89] is a popular crossover mechanism

used in tree based GPs. An example of the same is shown in Figure 4.2l A sub-tree to be

36



O,
RO
ORONG

Y(X) = 2%x*x — 2%x + 1 y(x) =1+x

Figure 4.1: Example of two GP solutions using tree representation.

exchanged between two GP individuals (parents) is first chosen at random in each parent.
Then, the sub-tree crossover operation is completed by exchanging the chosen sub-trees
between the two parents. A Koza-style sub-tree mutation [35] involves swapping either a
terminal with another element from the terminal set or a function with another element from
the function set. Figure shows an example of subtree mutation for an individual. When
swapping functions, care must be taken to maintain the arity of functions being swapped

are the same.

Y(X) = 2% — 2*% + 1 y(x) =1+Xx y(X) = 2% + 1 y(x) =x
Parent-1 Parent-2 Child-1 Child-2

Figure 4.2: An example of a sub-tree crossover between two GP individuals.
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y(X) = 2*x*x+ 1 Y(X) = 2¥X*X + 2
Before Mutation After Mutation

Figure 4.3: An example of a sub-tree Koza-style mutation of a GP individual.

4.3 A Custom GP (CGP)

GPs are used extensively at inducing mathematical models based on observations. Currently,
two of the most popular commercial products for inducing mathematical models from data,
Eureqa [67] and DataModeler [90], are GP based products. We developed our own customized
GP or CGP by experimenting and combining with many different ideas from literature as
well as our own to improve its performance. Some of the ideas exist in literature, however
they have not been tried all together in the same GP implementation. This section describes
the important ideas implemented in CGP along with its flowchart description towards the

end.

4.3.1 Two Objectives : Prediction Error and Rule Complexity

Designer of any classification or regression technique faces this dilemma, i.e. whether to learn
rules that are accurate or the ones that are simple for human interpretation [91]. Prediction
error and rule complexity are conflicting objectives and we usually decide (unknowingly)
apriori which one is more important for us by choosing a method. For a given problem, it

is critical to have a clear idea of the which is a priority, accuracy or interpretability so that
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this trade-off can be made explicitly rather than implicitly. Figure shows this typical
trade-off dilemma when selecting a machine learning method.

We decided to minimize both simultaneously by basing our GP on the bi-objective op-
timization algorithm NSGA-IT [92]. Furthermore, having more than one objectives in a GP
has known to reduce the problem of bloat |93]. Complexity of rule can be defined in many
ways [94]. We define complexity of a rule as the number of nodes in a binary tree needed to

represent the rule.

A Linear Regression
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Figure 4.4: The two conflicting objectives in any machine learning algorithm.

4.3.2 Using Multiple Small Trees

As the complexity of rules to be learned increases, so does the size of its binary tree rep-
resentation. This tree representation, which resides in the phenotype space of the GP is
the object that undergoes important crossover and mutation operations. If the size of this

tree is big, the possibility of a beneficial crossover reduces drastically. For this reason, [95]
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suggested having multiple depth-limited small binary trees as phenotype of a GP individual
instead of a single big tree and called the GP multi-gene genetic program or MGGP. Unlike
traditional GP, each symbolic model (and each member of the GP population) in MGGP
is a weighted linear combination of the outputs from a number of GP trees. Each of these
trees may be considered to be a “gene”. Figure shows an example of a multi-gene GP
individual. This fits very nicely with the type of rules shown in Equation that we are

aiming to learn.

Gene-1 Gene-2
y=wo+wp - (11 X T9) + wy - (x1 + 23)

Figure 4.5: An MGGP individual composed of many small binary expression trees instead
of one big binary expression tree.

MGGP however treats the problem as a single objective optimization problem and faces
the problem of horizontal bloat . Horizontal bloating is the tendency of multi-gene models
to acquire genes that are either performance neutral (i.e. deliver no improvement in predic-

tion error on the training data) or offer very small incremental performance improvements.

In case of CGP, having a bi-objective formulation helps allay this issue.

4.3.3 Learning Weights Using a Faster Method

Unlike traditional GPs that try to learn the constants/coefficients/weights in rule as well

along with the rule structure, we separate that task completely from the GP. Figure
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shows a sample individual with multiple genes. Like MGGP [95], we let evolution optimize
the structure of the rule but use some gradient based optimization method, such as OLSR

or linear support vector machines, to learn the weights in the rule.

Optimize Rule Structure with GP
(e.g. Custom bi—-Objective GP)

v

Candidate Rule

/Q AN

F—— W2 s w3 X1 T5

w1y

Optimize Rule Weights with a Classical Method
(e.g. Regression, SVM)

Figure 4.6: Our GP learns the rule structure and their weights separately.

4.3.4 Diversity Preserving Mechanism

In the bi-objective problem formulation mentioned in Section [£.3.1] the rule complexity
objective is discrete in nature. This highly discretized objective space causes good individuals
encountered early on in the CGP run to be reproduced and selected multiple times to produce
many copies of these good solutions found early on. This leads to the population reducing
to a few individuals and their duplicates, thus leading to complete loss in diversity and
premature convergence of the algorithm [93].

To counter this, we need to adopt a strategy that can:
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e Penalize all but one of each solution having duplicates (in both objectives) so that the

ranking of the duplicate solutions worsens.

e The aforementioned penalization would push the non-domination rankings of dupli-
cate solutions higher. However, the penalized duplicate(s) corresponding to a solution
having a lower non-domination rank should continue to have lower non-domination
rank compared to the penalized duplicate(s) corresponding to a solution having higher

non-domination rank.
Figure [4.7) illustrates this idea with the help of a hypothetical example.
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f1 (minimize) f1 (minimize) f1 (minimize)

Penalize fitness for Soln-4 Penalize fitness for Soln-6
& update worst objective vector & update worst objective vector

Figure 4.7: Fitness adjustment by penalizing duplicate solutions to promote population
diversity in CGP. (A) shows the original state with two non-dominated fronts present in the
population and total of seven solutions. (B) Solution-4, which is a duplicate of solution-3
after penalization. (C) Solution-6 which is a duplicate of solution-5 after penalization.

Part-A of Figure

e Part-A of Figure [4.7] shows the starting state of solutions. There are a total of seven

solutions including two duplicate solutions.
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e Solutions 1,2,3,5 and 7 are shown with black dots. Solution-4, which is a duplicate of
solution-3, is shown with a blue circle. Similarly, solution-6, which is a duplicate of

solution-5, is shown with a red circle.
e The green dot represents the worst objective vector [31].

e The non-dominated front F1 is comprised of solutions {1,2,3,4}. The non-dominated

front F2 is comprised of solutions {5,6,7}.

e We begin by penalizing solution-4, the duplicate solution present in front F1. Let
solution-4 be represented by objective vector ( f1(4), f2(4)) and the worst objective vector
be represented as ( fl(w), fQ(w) ). Then the updated objective vector of solution-4 is given
by

(5 S 1 50+ 1) (1.2

This results in creating another non-dominated front, F3, for updated solution-4.

Part-B of Figure

e Part-B of Figure shows the updated state of the solutions where updated solution-
4 now belongs to a new non-dominated front F3 and the worst objective vector is

updated as

(F1), {0y Geston @) gy (4.3)

e Next solution to be penalized is solution-6 (shown with red-circle) which is a duplicate
of solution-5 (shown with a black dot). As in the case of solution-4, solution-6 is

penalized as

assign

(719 £y (O 1 plo) g6 4 plw)y (4.4)
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This results in creating another non-dominated front, F4, for updated solution-6.

Part-C of Figure 4.7

e Part-C of Figure 4.7|shows the updated state of the solutions where penalized solution-
4 now belongs to a new non-dominated front F3, penalized solution-6 now belongs to

a new non-dominated front F4, and the worst objective vector is updated as
; 6 6
() ) &2 (1O 4 ), (45)

e Note that the relative non-domination ranking of solutions 4 and 6, both before and
after penalizing, remains the same. Thus, the non-domination hierarchy of penalized

solutions is preserved in this method.

e At this stage, no more duplicate solutions are present in any of the non-dominated

fronts prompts the penalizing algorithm to stop.

This penalizing of duplicate solutions helps in reducing the clout of duplicates of good solu-
tions and gives poorer solutions in higher non-dominated ranks a better chance at surviving

and participating in parent selections of evolutionary algorithm.

4.3.5 Higher and Lower Level Crossovers

Recall from Section that the genotypic space of CGP consists of many small trees
or genes. Borrowing the idea from [95], CGP uses two types of crossovers namely low-
level crossover and a high-level crossover. Any two parent individuals chosen to reproduce

undergo a crossover with a probability p.. With a (preferably) small probability when the
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individuals do not go through a crossover operation, the outcome of the crossover operation
are two child individuals that are identical copies of their parents. When crossover does
happen, then it can either be of high-level type with a probability of p.;, or of low-level type
with a probability p; =1 — pp,-

Consider two individuals from the CGP population, having three and two terms respec-
tively as shown in the left half of Figure[4.8] Then for a high-level crossover to occur between
these two individuals, CGP randomly chooses one term from each individual to cross and
then swaps them between the individuals to create two children. This process is pictorially
shown in Figure where the second term of parent-1 is swapped with the second term of

parent-2.

High Level

Crossover Child—2

A.

Figure 4.8: Example of the high-level crossover used in CGP.

If a low-level crossover need to be carried out, then CGP first chooses one term from
each parent to cross and then carries out a sub-tree crossover among those two terms. This

process is shown in Figure [£.9
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Parent-1

i ' Low Level
Crossover Child-2

Figure 4.9: Example of the low-level crossover used in CGP.
4.3.6 CGP Flowchart for Rule Learning

Figure [4.10| shows the flowchart for the rule learning part of CGP. Except for one block,
penalizing duplicates, everything else is same as that of NSGA-II algorithm. The algorithm
begins with initialization of a population, say of N of individuals, composed of tree structures
as explained in Section each with not more than n; trees. Each individual represents
a rule of the form given in Eqation . The maximum depth [96] of each tree, say dpmaz,
is also specified at time of initialization. Then the fitness functions are invoked to evaluate
both prediction error on training set and complexity objectives for entire initial population.
Then these individuals are assigned non-domination ranks and crowding distances [31] just
like NSGA-IT [92].

Once this parent population is ranked, the parent selection process produces list a of
parents that are allowed to reproduce children for the next generation. CGP uses binary
tournament selection |31] for selecting parents to reproduce. Such a parent selection process
promotes the fittest individuals in the population to mate more often. Once these parents

are selected, they go through genetic operations of crossover and mutation to produce a child
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Figure 4.10: The flowchart for Custom Genetic Program or CGP.

population of N individuals. The crossover operation transpires via one of the two alterna-
tives, either higher lever crossover or a lower-level crossover, both of which are explained in
Section [4.3.5]

After the crossover operation, the IV child individuals undergo mutation operation. For
an individual, a mutation is carried out with probability p,, otherwise the child individual
is left unchanged. In CGP, to mutate an individual (composed of many trees), first one of
the trees is randomly selected for carrying out the mutation operation and then a Koza-style

sub-tree mutation [35] is carried out on the chosen tree.
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After undergoing the crossover and mutation operations, CGP evaluates the fitness of
the N child individuals. Now these N children are combined with the N parent individuals
of the current generation to obtain a merged population of size 2N. This population of 2N
individuals is passed on to the survivor selection procedure, where all the 2N individuals
are again ranked and assigned crowding distances before selecting N individuals using the
crowded tournament selection operator |31] used in NSGA-II.

This population of N individuals may then contain certain duplicate solutions. These
duplicate solutions are penalized using the method given in Section and the entire
population is again assigned rank and crowding distance values. If termination condition is
not met, these N individuals become the parent population for the next generation. This
process goes on until the termination condition is met and the final PO set of solutions is
reported. Table shows the list of parameters for CGP.We now look at how can we use

CGP for a symbolic regression task.

Table 4.1: List of parameters in CGP.

Symbol | Description Suggested
Value
N Population size 50-200
G Number of generations 100-500
ng Maximum number of terms in a CGP individ- | 3-10
ual

dmax | Maximum depth of trees representing individ- | 4-10
ual terms of an individual

De Probability of crossover 0.8-0.95
Deh Probability of high level crossover 0.2-0.3

Del Probability of low level crossover 1 —pep
Pm Probability of mutation 0.05-0.2
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4.4 Using CGP for Symbolic Regression Task

Now that we are familiar with the working of CGP, recall that we wish to use CGP to learn
rules of the form given by Equation from MOO data as part of online innovization.
This is a problem of symbolic regression and it is a type of regression analysis that searches
the space of mathematical expressions to find the model that best fits a given data set.
It is different and a difficult task as compared to conventional regression analysis which
seeks to optimize the parameters for a pre-specified mathematical model structure involving

regressand and regressors.

4.4.1 Evaluating Fitness of a CGP Individual for a Symbolic Re-
gression Task

Recall from Section that CGP approaches rule learning problem as a bi-objective op-
timization problem minimizing prediction error and rule complexity as the two objectives.
Lets look at how these two objectives are calculated one by one.

The prediction error fitness function in CGP for symbolic regression task is an extension
of ordinary least squares regression (OLSR) estimation method of linear regression. Consider

a linear regression model

y=Zw +e, (4.6)

where Z € R"*(k+1) ig 4 matrix with n observations on k independent variables and the first

column of Z contains only ones to include the bias term in the regression model, y € R?*!

Rnxl

is a vector of observations on the dependent variable, € € is a vector of errors and

w € REFDXL ig 5 vector of unknown regression coefficients including the wq bias term that
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we wish to estimate. Equation (4.6)) in expanded form can be written as

o _ - g o
Y1 1 Znn - Zpy €1
wq
Y2 1 Zoy -+ Zpo €9
= w9 + (4'7>
Yn 1 Zp1 - gy €n
|77 ] L S Na

Then, the OLS estimate of the regression coefficients [97] w;, i € {0,1,...,k} is given by

w=(ZT2) 12Ty. (4.8)

Consider a five variable data set having n observations where we wish to symbolically
regress a relation of the form x4 = f(@x1,®s, ®3,x5). When we try to solve this problem
using CGP , the CGP will initialize with a number of random CGP individuals. Consider
an example of such an individual as shown in Figure |4.6| having three terms, x3./(x] + x2),
x9./x3 and x1. * x5, where the operations ‘./” and ‘.’ represent element wise division and
multiplication of two vectors. For finding rules of the form shown in Equation (4.1)) using
this individual, the problem boils down to finding the appropriate weights w;, ¢ € {0,1,2,3}

in the relation
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Comparing Equation (4.9) with , then we can obtain the weight estimates using
Equation (4.8). The x4 calculated for all observations can then be compared with the actual
x4 values to get prediction error as e = x4 —a4. Note that e € R™*1 i a vector of prediction
errors where n is the number of observations. Then for this individual, the fitness value or

error objective, say ferror, can be calculated as a root mean square of e over all observations.

elTe
ferror = 4/ W (4.10)

The complexity fitness function simply calculates the total number of nodes in the trees

of all terms of a CGP individual, i.e.
fcomplexity = Z( Nodes in all terms of CGP individual). (4.11)

Again, consider the example of a CGP individual shown in Figure having three terms.

The fcomplexity = 11 for this individual.
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4.5 CGP Results on Test Problems

Let us look at some results of symbolic regression on test problems using CGP .

4.5.1 Test Problem-1

This problem has a single variable x1 as regressor for the regressand y. The data for this

problem was generated using the equation
y=2x1— = +— (4.12)

where 100 values of 1 are sampled from a uniform distribution over [—m, x]. Figure [£.11]

shows the relation between x1 and y graphically. The CGP parameters used in solving

1:{
+— L1

Figure 4.11: Graphical representation of test problem of Section m

this problem are given in Table [£.2l The PO solutions obtained by CGP for this problem
are shown in Figure in which each point represents a regressed non-linear relation
between y and x1. Also shown in Figure is the regressed rule for a knee [98] solution.
The trees corresponding to the three terms in this knee solution are shown in Figure [£.13]
The expression for the chosen knee solution is almost same as the true relation shown in

Equation (#.12)) except for a small bias term of 1.155 - 10~ which is a numerical error and

can be ignored.
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Table 4.2: List of CGP parameters used for solving symbolic regression problem of Sec-
tion @

Parameter ‘ N ‘ G ‘ ng ‘ dmag ‘ De ‘ Dch ‘ Del ‘ Pm

Value 120 30| 10| 10 |0.95|0.20 | 0.80 | 0.05

0.35

0.3

0.25

0.2

FError

y = 0.008333 z;° — 0.1667 1% + x;

0.15 +1.15410°1 1
0.1 1
0.05 1
0r ‘ e—*o ‘ © ]
10 20 30 40 50

Complexity

Figure 4.12: PO set of solutions found by CGP on solving the symbolic regression test

problem of Section .

4.5.2 Test Problem-2

This problem has a single variable x1 as regressor for the regressand y. The data for this

problem was generated using the equation

r1+1

S 4.13
YTt (4.13)

where 100 values of z1 are sampled from a uniform distribution over [—2,2]. Figure [{.14]
shows the relation between z1 and y graphically. The CGP parameters used in solving this
problem are given in Table [4.3] The PO solutions obtained by CGP for this problem are
shown in Figure in which each point represents a regressed non-linear relation between

y and z1. Also shown in Figure is the regressed rule for the solution with least error
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(c) 3

Figure 4.13: The three trees corresponding to the chosen knee solution shown in Figure m

L1

T
—2 —0.333 * 2

Figure 4.14: Graphical representation of test problem of Section m

and highest complexity among the PO solutions. The tree corresponding to this term is
shown in Figure [4.16] The expression for the chosen solution is exactly the same as the true
relation shown in Equation (4.13)).

Table 4.3: List of CGP parameters used for solving symbolic regression problem of Sec-
tion [£.5.2]

Parameter ‘ N ‘ G ‘ n ‘ dmaz ‘ Pe ‘ Pch ‘ Pel ‘ Pm

Value 150 |50 [10| 6 |0.85]|0.200.80 | 0.05

4.5.3 Test Problem-3

The Bernoulli equation [99] is a famous equation from the subject of fluid mechanics. Con-

sider an incompressible fluid flowing under steady flow condition. Then, valid at any arbi-
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0.35

037 214+1.0

y= FL.0)+L0
025 | @1 (21+1.0)

0.2 r

0.15

Error

0.05

0 5 10 15
Complexity

Figure 4.15: PO set of solutions found by CGP on solving the symbolic regression test
problem of Section [4.5.2]

trary point along a stream line is:

Yhggt o= (4.14)

Figure 4.16: The tree corresponding to the chosen knee solution shown in Figure m
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where

y is the elevation of the point above a reference plane

v is the fluid flow speed at a point on a streamline,

p is the pressure at the chosen point,

g is acceleration due to gravity,

p is the density of the fluid at all points in the fluid, and

¢ is a constant for the streamline chosen and also called energy head.
To generate data to test CGP | we assumed the fluid to be water (p = 1000 kg/m?) and value
of g to be 9.81 m/ s2 and we chose the value of ¢ = 20 m of energy head for some streamline
in some water flowing under steady flow conditions. We then randomly sampled 100 values
each for the variables v and p from uniform distribution over [0,10] m/s and [101325,400000]

Pa respectively. The atmospheric pressure at the surface of Earth is ~ 101325 Pa. For these

values of v, p, g, p and ¢, we then calculated 100 values of z using the relation

y=20—0.051-v%—1.0194 x 107% - p. (4.15)

Note that Equation is obtained by substituting the values of g,p and ¢ assumed
above in Equation . Considering y as the regressand variable and variables v and p
as regressors, CGP was supplied with this data to learn the non-linear relation among these
variables.

The CGP parameters used in solving this problem are given in Table 1.4, The PO
solutions obtained by CGP for this problem are shown in Figure |4.17| in which each point
represents a regressed non-linear relation between y and (v,p). Also shown in Figure m

is the regressed rule for a knee solution. The trees corresponding to this term are shown
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in Figure [4.18, The expression for the chosen solution is exactly same as the true relation
shown in Equation (4.14]).

Table 4.4: List of CGP parameters used for solving symbolic regression problem of Sec-
tion [£.5.3]

Parameter ‘ N ‘ G ‘ ng ‘ dmazx ‘ De ‘ Pch ‘ Del ‘ DPm

Value 12830 6] 4 ]095]0.20]0.80 | 0.05
1.2
1 L
0.8 f
S
£ 06 I y = 20.0 — 0.05097 v* — 0.0001019 p
50
0.4 r
0.2t
O L oO-O0-0-0-0 o o Fat o
5 10 15 20 25
Complexity

Figure 4.17: PO set of solutions found by CGP on solving the symbolic regression test

problem of Section {4.5.3|

4.5.4 Test Problem-4

Let us look at the equation of deflection of a simply supported beam [100]. Consider a simply
supported beam of length [ having a mass per unit length of w. If E is the Young’s modulous
of the material of the beam and [ is the area moment of inertia of the beam (about axis of

bending), then the deflection of the beam at a distance x from one end is given by

wr
A, —
T o4E]

(13 = 202? + 23). (4.16)
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(a) t1 (b) 12

Figure 4.18: The two trees corresponding to the chosen knee solution shown in Figure m

To generate data to test CGP , we assumed the beam to be made of steel with the

following knowns parameters:

E = 29,000,000 psi, w = 0.568 1b/inch, I = 0.167 inch?, I = 39.37 inch. (4.17)

Substituting these values in Equation (4.16]), we get

Ay =4.89x 10792 —3.85 x 10772 +2.98 x 10 42 (4.18)

Using this relation, we then calculated 100 values of A, based on 100 value of z € (0,].
Considering A, as the regressand variable and variable x as the regressor, CGP was supplied
with this data to learn the non-linear relation among these variables.

The CGP parameters used in solving this problem are given in Table 1.5, The PO
solutions obtained by CGP for this problem are shown in Figure in which each point
represents a regressed non-linear relation between A, and x. Also shown in Figure 4.19
is the regressed rule for a knee solution. The trees corresponding to this term are shown

in Figure [4.20, The expression for the chosen solution is exactly same as the true relation

shown in Equation (4.14)).
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Table 4.5: List of CGP parameters used for solving symbolic regression problem of Sec-
tion @

Parameter ‘ N ‘ G ‘ ng ‘ dmaa ‘ De ‘ Dch ‘ Del ‘ Pm

Value 13030 6 | 6 [0.95]0.20]0.80]0.05

10

A, =4.89 x 10772* — 3.85 x 10722

—

o 6 1

é:'. +2.98 x 10~*x + 2.6 x 10712
4 i
2 L 4
0 L O O O O O o

Complexity

Figure 4.19: PO set of solutions found by CGP on solving the symbolic regression test

problem of Section .
4.6 Noise Study

For the test problem of Section |4.5.3] a noise study was also performed. The purpose of this
study was to understand, how much noise needs to be added to the regressand before the
true relation is no longer present among the PO set of solutions of CGP . Gaussian white

noise was added to the value of original regressand y as

g=y-+axN(0,1), (4.19)

where a or noise factor is some numeric value to change the level of noise and N(0, 1) is the

standard normal distribution. The noise levels are represented in terms of signal to noise
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(a) t1 (b) t2 (c) t3

Figure 4.20: The three trees corresponding to the chosen knee solution shown in Figure m

(SNR) ratio and measured in decibels or dBs using the formula

zf;LéyQ( D] 4. (420

SNR = 1010g10 [ 5
a

where n is the index of observed value, L is the number of observations which is 100 in this
case and a2 is the variance of the signal § having noise. This formula is taken from the
work [101]. A high SNR means low noise. The value of regressors v and p were not changed.

Effectively, CGP attempted to learn the relation
=20 —0.051- 0% +1.0194x 1074 p (4.21)

instead of the one given by Equation (4.15)). Note that the regressands are different in the
two equations.

Table shows the results of this study. The first column carries the value of noise
factor a, the second column carries value of SNR in dBs, the third column carries the rule
corresponding to the knee solution from among the PO set obtained by CGP on noisy data

and the last column carries the RC2L dj value or goodness of fit value of the knee solution. This
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study shows that the true solution is present among the PO set of solutions even until a high

noise level of SNR = 15 dB, although the goodness of fit suffers a lot at that level of noise.

Table 4.6: Results of noise study performed on test problem of Section m

a SNR | Knee soln rule RCQL g
(in dB)

0.0010 | 100 | ¢ =20—0.051v% —1.019 x 10~ %p 1

0.1925 | 30 | §=20—0.051v% —1.000 x 10~4p 0.9882
0.3431 25 | §=20-0.0510v2—9.9 x 10~°p 0.9622
0.6090 | 20 |§=19—0.05102—9.7x 10 %p 0.8484
1.0825 | 15 | §=19—0.0520> —9.2 x 10™%p 0.6993
5.4315 1 § = 28—6.30+1.9x 10" 4p+2.6 x 10~ *up—4.7024+0.7203—0.036v* | 0.0125

4.7 Choosing a Solution

The results in the previous section show that CGP is competitive at symbolically regressing

a set of PO rules that provide a good trade-off between prediction error and rule complexity.

However, recall from Sections [2.5| and that to perform online innovization, we not only

have to learn the rules present in MOO data but also use that knowledge to modify solutions

to expedite the EMO algorithm’s convergence. Hence, if we use CGP for rule learning, once

we have a set of PO solutions from CGP, we also need to choose a solution before passing

the control back to the EMO algorithm. This can be done in two ways:

1. Choosing a knee solution :

In PO solutions of bi-objective optimization problems, a

knee point is a special solution. This is because choosing any solution other then the

knee solution requires a large sacrifice in one objective to gain a small amount in the

other objective. There is good amount of literature available on detecting and choosing

a knee solution in a PO front [98,]102]. It can be seen from the PO fronts shown in

Figures [4.12|4.154.17) and [4.19| that these problems show a strong propensity for knee
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points. Hence choosing a knee solution in an automated way can be one way to choose

one of the many PO solutions of CGP.

2. Checking dimensional consistency : Recall from Section 2.6 that one of the advantages
of learning rules in form of mathematical algebraic expressions is that once can check
if the learned rule adheres to the law of dimensional homogeneity. A rule that adds
a physical quantity having the dimensions of length with a physical quantity having
the dimensions of mass cannot add anything to the knowledge of a designer, even if
rule has a low prediction error on training data. Hence, once CGP provides a set of
PO solutions, we can check the dimensional consistency of those rules and discard the
ones that violate it. We call this as serial dimensional awareness check because we
are using the dimensionality check at the end of the CGP algorithm. Thus we can use
this idea to shortlist some candidates from the PO set of CGP and then follow it up
with a knee solution choosing method. Even in the absence of a knee in the PO front,
it may be possible to parametrize the user preference in terms of rule complexity and

prediction error and we can automatically choose a rule based on user’s preference.

In the next chapter, we look at how can we check dimensional consistency of rules obtained

by CGP.
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Chapter 5

Using Dimensional Awareness with

Rule Learning

For any physical law, adherence to the law of dimensional homogeneity is of utmost impor-
tance. The law of dimensional homogeneity [26] states that, “only commensurable quantities
(physical quantities having the same dimension) may be compared, equated, added or sub-
tracted”. Although, the rule learning part of CGP can learn rules that accurately fit the
data, but if any rule adds or subtracts two incommensurable quantities, then such a rule is
physically meaningless. Hence, we need to quantify the degree of dimensional mismatch in
a rule found by CGP. Such a quantification of dimensional mismatch for the PO rules found
by rule learning part of CGP can give us additional information, if we need to choose only

one or very few solutions out of the PO solutions of CGP.

5.1 Measuring Dimension Mismatch Penalty

Let us try to figure out how can we quantify dimensional mismatch penalty in a rule found
by CGP. Say, the rule learning part of CGP is used for solving a symbolic regression problem

relating regressand (y) and regressors (zy, k € {1,2,...,nz}), which yields a set of PO rules.
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Consider one such PO rule having the form

ng
TEy:w0+Zwi'tia (51)
i=1

where wyq is a bias term, n; is the total number of terms, w; is the regression coefficient for

term ¢; and ¢; is some function of regressors x, k € {1,2,...,nz}.

5.1.1 Case-I : Terms with Only Product and Division Operations

In this case, we will show how dimensional mismatch penalty, say P, is calculated if the
terms ¢; in Equation (5.1)) is comprised of only multiplication and division operations among

the regressors ., k € {1,2,...,n;}. Let us further assume that;

e The number of fundamental dimensions present in data is three and they are the fun-
damental physical dimensions of mass (M), length (L) and time (T). Of course there can
be more (for example temperature (), current (I etc.) but we are choosing aforemen-

tioned three for ease of representation.
e The derived physical dimensions of a term t; is M% LA,

e Cj, jE {1,2,...,nc} are a set of n. physical constants relevant to the process that
is generating the data. These have to be chosen by subject matter experts. For
example, when studying a fluid flow problem, some of the physical constants that may
be considered important for the process are acceleration due to gravity, density of
fluid and fluid viscosity. These C; constants have dimensionless numeric values ¢;, j €
{1,2,...,n¢} and derived dimensions of i L 1% The symbol C; encapsulates both

numeric value Cj as well as units information.
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e To mend the dimensional inconsistencies between y and all terms ¢; in Equation ([5.1)
using the constants C;’s, the constants may appear in dimensionally consistent form
of Equation (5.1)) with a limited set of exponents, say € = {eq,ea,...,e}} where k is

number of such chosen exponents. For example,

£=1{-2.0, —1.0, —0.5, 0.0, 0.5, 1.0, 2.0}. (5.2)

e The fundamental units of the left hand side or regressand y in regressed rule shown in

Equation (5.1)) are M°LPT.

If the derived physical dimensions of term t; and regressand y are different, then a natural
question to ask is, in what way can different physical constants C; of the process be multiplied
with the term t; such that dimensional homogeneity can be maintained between t¢; and y.
One way to achieve this is as follows. For the it" term t;, there may exist a set of real values
{z@,l), 26,2)0 0 Z(ime) } such that a product of ¢; with H ( 7) yields dimensional

equivalence between term t; and y. This can be represented as

Ne
MELPTY = (MYLPiTY) H LT ) %), (5.3)

which can be re-written as

uE=ai) po=8i) o) D1 g | LD L p e ) (5.
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Solving Equation (5.4)) is equivalent to the system of simultaneous linear equations given by

i IBEC I
Al Ay o A € —
~(i,2)
771 772 77nc = QO - B@ ) (5 5)
101 0o On Wi |
~ ~"~ Z(z,nc) A/_/
A - - b

From theory of linear algebra [103], solution z to Equation (5.5)) is;
I The exact solution if A is full rank and square matrix,
IT The least square solution if A is full rank and skinny matrix (ny > nc),

III The least square and least norm solution if A is full rank and fat matrix (ny < ne),

and
IV The least square solution using Singular Value Decomposition method if A is singular.

Let the solution to Equation (5.5)) be z; where

Recall from Equation (5.3)) that %(i,j)S represent the exponents of the chosen physical con-
stants Cjs. Also, we are looking to quantize these exponents to a set of select few given by
some set &, an example of which is given by Equation (5.2]). Hence, all the elements of z;

are quantized to their nearest value in set £. This quantization on the elements of z; yields
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us the set z;, where

Z; = [Z(Z',l) 2(1’,2) Z(i,ng)]T where E(Z,j) eRVi. (57)

For example, if z; = {—0.95 0.55 1.89} and set £ is given by Equation (5.2), then the
quantized set will be given by

z; = [-1.0052.0]T.

Once a quantized set of exponents z; is obtained, we then obtain the residue vector d;

corresponding to the dimensional inconsistency in the i term in Equation (5.1)) as

1 1T KR
d; 1) € — A Ao Ane
“(i,2)
di = |dio| = [¢=Bi| — |m m e (5.8)
d(; 3 w—"i| |01 02 One | |
[“(imc) ]

The Root Mean Square or RMS value of residue vector d; can then be treated as penalty P;

of dimensional mismatch corresponding to the " term in Equation (5.1) as

2+ d2 . +d2

This dimensional mismatch penalty is a non-negative value and it will be zero if the physical
dimensions of y and term ¢; in Equation can be matched exactly by multiplying ¢; with
just the right combination of physical constants, C; where j € {1,2,...,n¢}, when raised to
a particular set of exponents given by z; in Equation . Once this penalty value can be

calculated for all n; the terms of Equation (5.1), we can calculate the overall dimensional
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mismatch penalty P for the expression given by Equation (5.1)) as

;

nt
ZP'L nt
=1 .
- ZT if ;6731'70 > 0, 10
=9 nt—257)i70 = ( : )
=1
0 otherwise,

\

where 0; ; is the Kronecker delta function such that

1 ifi=j,
8ij = (5.11)

0 otherwise.

If Equation (j5.10|) evaluates to zero, then it implies that the original equation can be
made dimensionally consistent using the set of chosen constants C;s and a set of exponents

such as given by (5.7)). In such a case, its beneficial to modify the original equation given by

(5.1) to include the chosen constants as

g ne s
rEy:wo—i—Z wi.tich(Z’J) , where (5.12)
i=1 j=1
A wy
H o (4)
. J
j=1

This is done so that we do not affect the regression or classification accuracy of the original
equation while making it dimensionally consistent at the same time. Recall that c¢; rep-
resents the dimensionless numerical value of some physical constant C; and the symbol C;

encapsulates both numeric value c¢; as well as units information.
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5.1.2 Dimensionally Inconsistent Example

Let us understand the above procedure with an example. Consider the symbolic regression
problem (Bernoulli equation case) presented in Section We chose variable y as the
regressand and variable v and p as regressors. The rule learning part of CGP returns a set
of PO rules as shown in Figure [4.17} Suppose we want to check the dimensional consistency

of a one of the PO solutions given by

r=y= 20 —0.05097- v> —0.0001019- p +39x1078. v . (5.14)
w wy 1 w2 to w3 t3

The rule shown in Equation is different from the knee solution shown in Figure [4.17
In this rule, there are three terms (n; = 3) namely, ¢t = v2, tg = p and t3 = v and
their corresponding weights are w; = —0.050907, wy = —0.0001019 and w3 = 3.9 x 1078
respectively. Also, there is a bias term wqy = 20. Recall that the units of v and p are m/s
and Pa respectively. Therefore, the derived units for ¢; are MOL2T~2, for t9 are M!L~1T—2
and for t3 are MOLIT1.

Let us choose two physical constants (n. = 2) in the Bernoulli problem, namely acceler-
ation due to gravity, ‘g’ and density of fluid (water here), p. These are measured in m/ 52
and kg/m? respectively. Hence,

g=C1 =981 m/s> and , (5.15)

<~
‘1

p=Cy=1000 kg/m?. (5.16)
)

The derived units for these physical constants of the problem are MYLIT=2 for g and ML 3TV
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for p. Furthermore, let us choose the set given in as the set of allowed exponents for
the constants.

Since y is the elevation of a point on a streamline in fluid, it is measured in meters. Thus,
the derived dimensions of regressand y is given by MOLLTY. This information is summarized

below.

ap =0 p1 =2 1 =-2
ag =1 fo =—1 Yo = —2
az =0 p3 =1 3= -1
AL=0 m =1 6 = —2
A =1 m = —3 0 =0
e=0 p=1 w=20

Let us look at the dimensional consistency of each term one by one.

5.1.2.1 First Term

For term 1 in Equation (5.14)), Equation (5.5)) is given by

0 1 0
#(1,1)
1 -3 = [-1]>
#(1.2)
-2 0| ~—— 2
L J z] L 7
A by
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which upon solving and quantizing to allowed exponent values yields

zZ] = [—1 O]T.

Substituting z; in Equation (5.8)) and then using Equation ([5.9)), we obtain the dimensional

mismatch penalty for first term of Equation (5.14) as

P1=0. (5.17)

5.1.2.2 Second Term

For term to in Equation (5.14)), Equation (5.5)) is given by

0 1 —1
#(2,1)
1 -3 =121
#(2,2)
-2 0| ~—— 2
L J Z9 R
A by

which upon solving and quantizing to allowed exponent values yields

zZo = [—1 — 1]T.

Substituting Zo in Equation (5.8)) and then using Equation ([5.9)), we obtain the dimensional

mismatch penalty for second term of Equation ([5.14) as

Py = 0. (5.18)
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5.1.2.3 Third Term

For term t3 in Equation (5.14)), Equation (5.5)) is given by

0 1 0
“(3,1)
1 =3 = 101>
“(3,2)
-2 0| ~—— 1
L _ 24 L
A bs
which upon solving yields
z3 = [—0.4878 — 0.1463]T. (5.19)

Since we chose the allowed set of exponents to be

£=1{-20, —1.0, —0.5, 0.0, 0.5, 1.0, 2.0},

hence quantizing the exponents in (5.19) to values in £ yields

zZ3 = [—0.5 O.O]T.

Substituting z3 in Equation (5.8)) and then using Equation ([5.9)), we obtain the dimensional

mismatch penalty for third term of Equation (5.14)) as

Py = 0.2887. (5.20)
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The total dimensional penalty for symbolic regression solution given by ((5.14)) is found using

Equation (5.10)), i.e.

g
S
1=1

ny
= OP;.0
i=1

0+ 0+0.2887

P= T 3-(1+1+0)

= 0.2887 # 0 (5.21)

This should be the case because if we compare Equation (5.14) with the correct Bernoulli
equation of Equation (4.15)), the third term of Equation ({5.14]) is not commensurate with

the physical dimensions of the regressand y.

5.1.3 Dimensionally Consistent Example

Again consider the symbolic regression problem presented in Section [4.5.3l Suppose that the
rule learning part of CGP returns a set of PO rules, and we want to check the dimensional

consistency of one such rule given by

=y = — 0. - v7 —0. - p . .
r 20 —0.05097- v? —0.0001019 5.22
N~ N T N—— ,
wo w1 3 w2 t9

Equation (5.22)) is actually a knee region solution among the PO solutions found by CGP in

Bernoulli test data, shown in Figure [4.17 From Sections [5.1.2.1] and [5.1.2.2] we know that

this equation can be made dimensionally consistent using the chosen physical constants. The
first chosen constant (acceleration due to gravity) Cy is symbolically represented by ¢ and
numerically equal to ¢; = 9.81 m/ s in SI units. The second chosen constant (density of
water) Co is symbolically represented by p and numerically equal to co = 1000 kg/ m3 in SI

units. Hence, we can re-evaluate the weights in Equation ([5.22]) to include these chosen phys-
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ical constants using Equations (5.12)) and (5.13)). Substituting values from Equations (5.17]),

(5.18) and (5.22)) in Equation (5.13)), we get

. S—— “O05097 ) 50001 and (5.23)
2(1,1) 71,2)  9.81~1 10000
‘1 &
—0.0001019
Py = — 2 _ . - = —0.99964. (5.24)
%(2,1) #22)  9.81~1 1000~
G G

Using Equation (5.12)), the modified form of Equation ([5.22)) that includes the chosen physical

constants can be written as

z z zZ z
=20+ -0 gt p g pgTtpT!
v2 D PN .
=20 — 0.50001— — 0.99964— (upon substituting w & wy). (5.25)
g P9

Compare Equation with known form of Bernoulli’s equation given in Equation (4.14))
and notice that two are same (within a small tolerance) if ¢ = 20. Figure shows the PO
solutions of the Bernoulli equation problem shown in Figure along with the dimension
mismatch penalty information. The solutions having a non-zero penalty value are shown in
red. Note that only the knee solution has a zero dimension mismatch penalty in this case.
Hence, we can use dimensional mismatch penalty at the end of a CGP run to discard PO

solutions which do not adhere to law of dimensional homogeneity.
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Complexity

Figure 5.1: PO set of solutions found by CGP on solving the symbolic regression test problem
of Section followed by a dimensional penalty calculation for each case. Only the knee
solution, which is also the exact solution, has a dimensional mismatch penalty of zero.

5.1.4 Case-II : More Complex Terms

In Section [5.1.1] we limited our study to cases where the term t; in Equation (5.1)) is only
composed of product and division operators among the regressors. However as shown in

Sections [£.5.1] £.5.2) and [£.5.3], CGP is capable of much more, including rational functions

and functions involving addition and subtraction operators. In such a case, we have to make
a slight change to the procedure outlined in Section for calculating dimensional penalty

values for a term t; of Equation (5.1)). We know that in Equation (/5.1),

ti = f(r1,72,...,7ny) (5.26)

where z; € {1,2,...,n;} are the regressors and function f() is some function involving
the operations of addition, subtraction, division and multiplication. Upon substituting the

physical dimensions of the regressors in ([5.26)), lets say that the derived physical dimensions
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of term t; are obtained as some rational function of the fundamental dimensions as
(5.27)

where P() and and Q() are some polynomials in M, and T. Using partial fractions, we can

decompose ((5.27) as

(5.28)
such that

e The denominator, ¢;(M, L, T), of each fraction is a power of an irreducible (not factorable

into polynomials of positive degree) polynomial and
e The numerator, p;(M,L,T), is a polynomial of smaller degree than that of ¢;(M, L, T).

In such a case, both p;() and ¢;() are polynomials in M,L. and T that cannot be broken down
further. Let us fully expand both of these polynomials as sums of product terms, then we

can re-write Equation (5.28)) as

Zr”(M L,T)

qZ( L Z Eszk (M, L, T) (5.29)

In Equation , each term r; ;(M,L, T) and s; (M, L, T) are purely product terms in M,L,T.
In the CGP code, we implement this using the Symbolic Math Toolboxr of MATLAB.

Now we can use the method of Section to find the dimension mismatch penalty
value for each product term separately. The only difference being that now the dimensions
of the numerator terms, r; ;(M,L,T), have to be matched with those of numerator of the

left hand side of Equation (5.1)) (i.e. ). Similarly, the dimensions of the denominator
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terms, s; 1.(M,L, T), have to be matched with those of denominator of the left hand side of
Equation (i.e. 1). Summing together the penalty values for all the numerator and
denominator terms gives us the total dimension mismatch penalty associated with a term
t; that has addition and subtraction operators as well combined with product and division
operators.

Until now, we have looked at how can we use CGP for a symbolic regression task and then
follow it up with a dimension mismatch check on the PO solutions. In the next chapter, we
will look at using CGP as a binary classifier and produce the decision boundaries as algebraic
expressions. Note that the procedure explained in this chapter will be applicable even when
CGP is being used for a classification task. The only difference in that case will be that the
regressand y will be replaced by a class label )V which is dimensionless. Lets now move on

to another interesting capability of CGP, i.e. solving binary classification tasks.
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Chapter 6

Learning Free Form Rules Using a

Classification Task

In this chapter, we will learn how to use the CGP developed in Chapter {4 for a classification
task. Recall from Sections [2.4 and 2.5 that when solving a MOO using an EMO algorithm,

knowledge can be derived in one of two ways, namely:

e By searching for rules in some preferred set of solutions, say the non-dominated set.

The methods of rule learning developed in Chapters |3 and 4] can be used in this case.

e By searching for discriminatory rules between a preferred set and an unpreferred set of
solutions, say non-dominated versus dominated solutions set. This is the case of rule

learning that we will address in this chapter.

We will present as to how we can use the CGP developed in Chapter 4! for a classification
task. This work was developed as part of an industry project. The methodology developed
as part of this project is directly applicable to task of online innovization as well for learning
decision boundary in a classification task as an algebraic expression in terms of features. Let
us quickly learn about the classification problem first before learning about how to use CGP

for a classification task.
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6.1 Target Classification Problem

This goal of this project was to develop a computationally efficient machine learning method-

ology that can:

e Automate the process of selecting a few important features from a set of features and

then building a classifier using those features,

e And learn the classifier (decision boundary) as an algebraic expression involving the

selected important features.

The data is being produced by a fast manufacturing process in which it is being captured
as a multi-variate time series data via many sensors. This time series data is then processed
to extract many features using basic mathematical functions such as differentiation and
integration without any expert knowledge for feature creation. This part of feature extraction
is not being shared in this work because of non-disclosure agreement with the industry
partner.On similar grounds, we will not describe the exact manufacturing process as well.
However, our method of extracting rules based classifier is applicable to any manufacturing
process where we are collecting a lot of data about the process while the process is still going
on. For example, if we are collecting multiple sensors data for a welding process such as
welding current, voltage and distance of electrode from the weld region.

Reiterating, that the term ‘interpretable-rules’ in the context of this research refers to
rules in the form of mathematical expressions/equations involving the process features, pro-
cess constants and some simple operations such as addition, subtraction, multiplication and
division. The term ‘meaningful-rules’ in the context of this research refers to the idea of
aforementioned expressions being physically meaningful by being dimensionally consistent.

Now, let us now look as how can we use the CGP developed in Chapter [4] for a classification
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task.

6.2 Using CGP for a Classification Task

In Chapter 4, we saw how CGP learns a rule of the form given by Equation (4.1)), i.e.

n
(D1, 02, Pny) = i = wo + Z wj -t

J=1,j#i

where 1) represents one such rule, ¢ are the basis functions explained in Section that
represent the data from MOO problem, ¢; is one of the basis functions that is a regressand,
rest of the basis functions are regressors and we use CGP as a symbolic regression tool
to learn the aforementioned form of rules. In this case, CGP optimizes the structure of
rules and learns the weights using OLSR. However, if the basis function ¢; is a class label
instead of a regressand, then we can use a linear support vector machine (SVM) [56] learning
algorithm for learning the weights. This is because the results of linear SVM are considered
very interpretable. The challenge lies in finding the right number of higher dimensions (of
feature space) and the right features/derived-features corresponding to those dimensions, in
which the data is linearly separable. In such a space, a linear SVM will be able to find out
an appropriate separation plane with relative ease, provided the that the decision boundary
is not discontinuous. By derived features, we mean features that are composed from the
initial set of features provided to CGP using basic operations such as addition, subtraction,
multiplication and division. Let us look at an example.

Consider the binary data shown in Figure [6.1] which is generated using the following
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equation of an ellipse

y = —a2 +2.02z1 - 29 — 3.0523 + 1.98 = 0, (6.1)

where 21 and z9 are the two features for this data. The data of hypothetical Go class (y < 0)
is shown in green and the data of hypothetical NoGo class (y > 0) is shown in red. Clearly,

Equation (6.1]) defines the decision boundary for this problem. Upon trying to classify this

2 ey AR TR T KW ALTORIT (R RI5 8 T S0 DR ¥ RPN R KA IRY

—-3.0

Figure 6.1: A hand crafted example of binary class data.

data set using a tree classifier, the learned tree model has 13 levels and 147 nodes as shown in
Figure What is interesting to note is that, if we provide only the features x1 and z9 to a
linear SVM algorithm, it will perform very poorly as the data is not linearly separable. Now
consider the following three features, namely x%, :c% and x1 - z9. We call these three features
as derived features as they were not provided with the original features of the problem but
are derived from the same. Now if we provide these three features to a linear SVM algorithm,
it will perform exceedingly well on the same data. The reason being that in this modified

3-Dimensional feature space, the data is linearly separable. This can be seen in Figure [6.3
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Figure 6.2: Binary classification tree model for classifying the two class data shown in

Figure

where the sub-figures show the same data in the derived feature space from three different

camera angles.

As can be seen in Figures [6.3a) [6.3b and [6.3c, a linear SVM could find a plane (in blue)

clearly separating the Go and NoGo data. Not surprisingly, the equation of the plane is
same as Equation (6.1]).

One may argue, why don’t we use a quadratic or polynomial kernel based SVM for this
problem. That may work in this problem but what if the problem requires a rational function
as one of the dimensions of the expanded feature space? Furthermore, the choice of what
kernel to select with keeping the interpretability of the classifier/decision-boundary in mind

is not very straight forward. Also, having the decision boundary in terms of some algebraic
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(a) Camera angle-1 (b) Camera angle-2 (c) Camera angle-3

Figure 6.3: The binary class data of Figure shown in a derived feature space where the
data is linearly separable.

equation in terms of features and not some kernel which corresponds to an infinite dimen-
sional feature space such as radial basis functions helps us later in checking the dimensional
consistency of learned model. Maintaining dimensional consistency is an important handle
available with engineers to do a sanity check of models learned for some physical process or

system.

6.2.1 Evaluating Fitness of a CGP Individual for a Binary Classi-

fication Task

Consider a classification problem with n, observations, n; number of features z;, and n,
binary class labels (y; € {0,1}) initially provided with the problem. When solving a classi-
fication problem using CGP, consider a CGP individual with same rule structure as shown
in Equation(5.1)), i.e.

g
rzy:w0+2wi-ti,
i=1
where ny is the number of terms in the rule. The terms ¢; can be considered as derived

features obtained by simple operations of {4, —, X, =} on the original features. The weights

of this individual are then learned using a linear SVM method and the miss-classification
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error rate at the end of weight optimization by SVM is assign as error fitness to the individual.
This is measured as

(trn)

trn
ferror = € I (irn)

+e;r (6.2)

(¢rn) (tlm) represent the type-I and type-II error rates (in %) [104] on the training

where e T and e T

set. The complexity fitness is calculated same as in case of the symbolic regression case given

by Equation (4.11)), i.e.
J complexity = Z( Nodes in all terms of CGP individual).

Furthermore, in case of industry’s classification problem, the cost of miss-classifying NoGo
product was much more then the cost of miss-classifying a Go product. For this reason, the

cost matrix used by the linear SVM for arriving at the weights is kept to be:

i.e. cost of making type-II error on the training set is set 25 times higher than cost of making

a type-I error.

6.3 Performance on Small Feature Space

Let us now look at some results obtained for classifying real production data. We chose
production data from two dates for our study. We will name these two data sets as data
set-1 and data set-2. The details of the production data from these two days is given in

Table . A total of ten features, namely x; such that ¢ € {1,...,10} were extracted.
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Table 6.1: Production data details used for testing CGP classifier.

Date # of Go prod- | # of NoGo
ucts products
Data set-1 | 2381 6
Data set-2 | 1882 6

Table shows the physical dimensions of these ten features. Due to highly imbalanced

datasets, we used adaptive smote method [105/106] to oversample the minority NoGo class.

Table 6.2: Small feature set and their details.

Feature(s) | Physical Dimension
1, T2, T3 L2 Ml 72

T4 L MmO T
T5, TG T e
T L0 MO TV

xg, xg, 210 | LY MO 71

6.3.1 Results on Production Data Set-1

Here we discuss the CGP results for production data set-1. Training was conducted over

70% of data. Table shows the CGP parameters used in this case. Figure shows the

Table 6.3: List of CGP parameters used for solving binary classification problem of Sec-
tion [6.3.1}

Parameter‘ N ‘ G ‘nt ‘ dmax‘ De ‘ Pch ‘ Del ‘ Pm

Value 1200 (200 |10 6 ]0.85]0.20 | 0.80 | 0.15

set of PO classifiers obtained for production data of data set-1. The vertical axis of the
figure represents misclassification error in percent of training data set and the horizontal
axis represents the complexity of a decision rule.

Three solutions are highlighted with different colors with some extra information about

the corresponding classifier. These three solutions/classifiers represent three different trade-
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offs with respect to accuracy and complexity, starting with a classifier which is simplest
but most inaccurate (shown in blue), to a solution with intermediate values of classification
error and complexity (shown in red), and finally a solution which is very complex but highly
accurate (shown in brown). For each of these solutions, we have also shown the type-I and
type-II error obtained on the test data set. Table shows this information in a tabular
form. Note that for all three solutions shown in Table [6.4] only six features of the original
ten features appear in the discovered classification rules. The features z7, xg, rg9 and x1g do
not appear in any of these solutions.

Furthermore, Figure [6.5| shows the decision boundary and segregation of the Go and
NoGo classes in the feature space for the knee solution classifier of Figure [6.4 The NoGo
class shown in Figure [6.5] includes both real and synthetic NoGo class data of data set-1.

Interestingly, the CGP algorithm is able to find the right feature space, namely ¢; = 2—2,

T

T
to = 25 and t3 = 963%64’

4

in which the production data is linearly separable.

Table 6.4: Summary of classification rules found for binary classification problem of Sec-
tion and their corresponding error rates on training and test sets.

Soln Rule for NoGo prod- efrm etﬁ” efreSt etIeISt
Desc. ucts
Simplest| —20.08 + 7.385 2] >0 30.90% 0.00% 32.18% 0.00%
4
1.348
Knee —25.72  + 2970%8 3.61% 0.00% 4.57% 0.00%
Z6
3.028 3.141
5 + 1 >0
x4 xr3 T4
0.23
Most | —34.76 S 036% | 0.00% | 125% | 0.0%
Accu- rx
0.65 0.17
rate 0.5303 + ——22 | 22115
T4T6 T4Tg
4.07
L)
r4(r3 — 14)
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Figure 6.4: PO set of solutions found by CGP on solving the binary classification problem

of Section .

6.3.2 Results on Production Data Set-2

Here we discuss the CGP results for production data from data set-2. Training was con-
ducted over 70% of data and rest of the data was kept unseen to the training stage of CGP.

Table [6.5] shows the CGP parameters used in this case. Figure [6.6]shows the set of PO clas-

Table 6.5: List of CGP parameters used for solving binary classification problem of Sec-
tion [6.3.2]

Parameter‘ N ‘ G ‘nt ‘ dmax‘ %e ‘ Dch ‘ D¢l ‘ Pm

Value 100 | 100 [ 10| 6 | 0.85]0.20 [ 0.80 | 0.15

sifiers obtained for production data of data set-2. The vertical axis of the figure represents
misclassification error in percent of training data set and the horizontal axis represents the

complexity of a decision rule. Notice that CGP has performed relatively better in terms of
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Figure 6.5: Decision boundary for the knee solution classifier of PO set of classifiers shown
in Figure

finding very accurate classifiers on data from data set-2 as compared to classifiers learned
on data from data set-1.

Again, we have highlighted three solutions with different colors and we provide some extra
information about the corresponding classifier. These three solutions/classifiers represent
three different trade-offs with respect to accuracy and complexity, starting with a classifier
which is simplest but most inaccurate (shown in blue), to a solution with intermediate
values of classification error and complexity (shown in red), and finally a solution which is
very complex but highly accurate (shown in brown). For each of these solutions, we have
also shown the type-I and type-II error obtained on the test data set. Table shows the
same information in a tabular form.

One result that may bother a careful eye is that of the error rates obtained for the knee

solutions classifier shown in Table As shown, both type-I and type-II errors on the test
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Figure 6.6: PO set of solutions found by CGP on solving the binary classification problem

of Section W

set for the knee classifier discovered in data set-2 data are zero. One reason for such a result
can be that these results are based on single runs of the CGP on the data. If multiple runs
are made and classification errors are calculated by averaging the results of multiple runs,
then we should at least be able to see a non-zero type-I error on the test set as has been the

case with other results.
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Table 6.6: Summary of classification rules found for binary classification problem of Sec-

tion and their corresponding error rates on training and test sets.

Soln Rule for NoGo prod- etf" etﬁ” etIeSt etfft

Desc. | ucts

Simplest| 2.68 4+ 3.92z5 > 0 1.51% 0.00% 1.96% 0.00%
0.6 x5

Knee —0.039 — 0 0.15% 0.00% 0.00% 0.00%
9 + x5

Most —3.88 + 6.06z1 + | 0.08% 0.00% 0.18% 0.00%

Accu- | (9 x 107)z9(21 4 24) -0

rate r4(T46 + T5710)

6.4 Results on Larger Feature Space with Dimension

Check

In the previous section, we presented some results showing the performance of CGP as a
classifier on real production data, but with just ten features. After these initial encouraging

results, our collaborators were much more interested in knowing

e How the CGP performs with a larger set of features. Furthermore,

e If a set of suitable constants for the process is provided, can dimensional analysis
identify a set of dimensionally consistent classifiers from the PO set obtained from

CGP?

6.4.1 Data and Results

Although, we conducted experiments on 5 years worth of production data ( > 6 Terabytes
of data), here we are presenting the results of two successive days of production where first

day’s data is used as training set and the next day’s data is used as test set. In this case, we
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extracted a total of 56 features from the data, x; where i € {1,...,56}. These are shown in

Table [6.7. We were also provided the units of measurement of those features. Furthermore,

Table 6.7: Larger feature set and their dimensions.

Feature(s)

Physical Dimension

2|

9, T3

Tj, 1€ {4,5,..
z;, i € {14,15,
L24

x;, i € {25, 26,
x;, i € {37,38,
T;, 1€ {47, 48,

., 13}

...,23)

...,36}
...,46}
...,56}

LV MO T!
Y N
L2 Mt 74
Y N
L MY 10
L mO -t
LMY 1!
.0 MY 7t

a list of four physical constants relevant to the physics of the process was also provided.

These are listed in Table Upon applying CGP as a classifier followed by the dimensional

Table 6.8: The set of physical constants which were considered relevant to the underlying

physics of the production process.

Symbol Name Numeric Value SI units Physical Dimension
P Material Density 2.7x 103 kg/m? L73 M! TO

E Young’s Modulus 7.0 x 1010 Pq L1 w172

H, Vickers Hardness 2.55 x 105 Pa L~ m! 72

T Material thickness 20x 1074 m Lt MmO 10

consistency check, the results of CGP are shown in Figure[6.7] Note that the classifiers found

to be dimensionally inconsistent are marked in red. Table shows the details of the 14 PO

classifiers obtained by CGP for this case along with their type-I and type-II errors on the

test set. Table shows the classifiers shown in Table [6.9] after conducting the dimensional

consistency check.
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Figure 6.7: PO set of classifiers found by CGP for two day’s worth production data described

in Section [6.4.1]
6.5 Concluding Remarks

In this chapter we showed how can we apply CGP followed by dimensional analysis to learn
simple and interpretable rules binary data. We could obtain dimensionally consistent rules
from real world production data from industry. Such models bring valuable insight about the
underlying physics of the process and can be used for both, for validating existing analytical
laws obtained known from data as well as aid in building analytical models for physical
processes which are not yet completely understood by researchers.

This concludes Part{l] of this thesis in which we presented various ways in which we can
learn simple and interpretable rules from data. Now, we move on to the other important

aspect of online innovization, i.e. using this derived knowledge to intervene during an EMO
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Table 6.9: Details of PO classifiers shown in Figure .

‘fgln Expression (NoGo:=y > 0) et (%) | et (%)

1 y = 2.531 (x4 + x12) (x25 + x50) — 0.2903 x7 — 0.3398 x94 — 0.7 0.0
230255 — T e + 0.7842

2 y = 2.446 (X4 +X12) (X25 —l—X50) — 0.3075x7 — 2.446x¢ — 0.9 0.0
e 40,9329

3 |y = 07485xq — 2999% — 0.4648x; — IS 4 1.4 0.0
2.999 (x4 +x12) (x25 + x50) — 1.432

4 |y = 04964x4 — 1465x5 — 2.401x5 — 0.2713x7 + 1.0 0.0
2.401 (x4 + x12) (x25 + X50) + 0.5066

5 | y=04421x; — 1.301 x5 — 1.803 xg + 3.468 x95 + 2.917 x45 — 1.9 0.0
20 4 0.0814

6 |y =0.7815%4—2.063 x6-+3.934 x95+4.339 X45—%‘3—2.6 2.6 0.0

7 |y =1.124x4— 0.1635x7 + 7.317x95 + L0258 | 3 309 2.8 0.0

8 = 098423 — 0.1513 %7 + 6.852 55 + “- 28 4 3.21 3.2 0.0

0 | y=4.768xg5 — 0.448Tx7 — 1.274x5 + % + 4121 2.4 0.0

10| y=5.59Tx05 — 1631 x5 + a8 45,252 3.9 0.0

11 | y=0.7103%4 — 1.761 x5 — 1.342x7 + 4.998 95 + 4.906 3.5 0.0

12 | y=4.894x95 — 1.677x7 — 1747 x6 + 5.896 4.2 0.0

13 | y = 6.097 x5 — 2.237x + 6.353 8.8 0.0

14 | y=6.516xg5 + 6.321 52.7 0.0

run and hopefully expedite its convergence to the PO front. We will look at this aspect in

the next part.
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Table 6.10: Details of PO classifiers shown in Figure after dimensional check.

ID | Original Expression Dim. Updated expression
(NoGo:=y > 0) Penalty| (with Physical constants of Table
T [y = 2531 (x4 +x19) (xo5 +x509) — | 2.309 | NA
0.2903x7 — 0.3398x9q — 2.302xg —
1.142x
Wﬁ + 0.7842
2 |y = 2446 (X4+X12) (x95 +x50) — | 2.309 | NA
0.3075x7 — 2.446 xG — 2;{5 +0.9329
3 |y = 07485%g - 2999xg — | 2374 | NA
0.6235 x
0.4648 x7 = g +
2.999 (X4 + X12) (X25 + X50) —1.432
4 |y = 04964xq — 1.465x5 — | 4041 | NA
2.401 xg -~ 0.2713x7 +
2.401 (x4 +x19) (x95 + x50) + 0.5066
5 |y = 0.4421x4 — 1.301x5 — 1.803xg + | 0.707 | NA
3.468 x95 +2.917 x5 — %w 0814
6 = 0.7815x4 — 2.063xg + 3.934x95 + | 0.707 | NA
4.339x45 — o.s}ggx ~2.6
7 |y = 1.124x4 — 0.1635x7 + 7.317x95 + | 0.0 y = 148 x 10!2 Eisra — 212 x
0.4802x8 o a0 1 p
x5 T3 10 pfp—ar + 224954 x25 -
—80'%;8; +3.31
8 | y = 0.9842x — 0.1513x7 + 6.852x95 + | 0.0 y = 130 x 10'2 yor pe X4 — 20 x
0.4642 xg 1
—xg  T32 10 EH x7 4+ 2105.69 x25 -
0. 46462 X8 . 391
9 |y = 4.768x95 — 0.4487x7 — 1.274x5 + | 0.0 y = 1465.25 HLUX% — 593 x
0.3278 x4
202192 4 4121 11 _p _ 12 _p
<t 100 pfrrxy — 168 x 1012 pffxs +
70'32}(768 X4 44121
10 | y = 5.591x95 — 1.631 x5 + 0'15}(768}( + 1 0.0 Y = 1718.17,/7{%X25 — 216 x
5.252 12 p 0'1578X8
10 pfp—xs + 5 +5.252
11 2938 0.7123;306— 1.761xg — 1.342x7 + | 0.0 y = 939 x 10 EIQUTXZL — 233 x
998 x . 12 12
25 10 E—}LX6 = L77 x 10 pfp—xy +
1535.93 | / 4705 + 4.906
12 | y = 4.894x95 —1.677 x7 — 1.747 x5 +5.896 | 0.0 y = 1503.97 H%X% — 168 x
12
10 Elf,wm — 1.747xg + 5.896
13 | y = 6.097 x95 — 2.237xg + 6.353 0.0 y =  1874.62 HLUX% — 296 x
12
10 EH xg + 6.35
14 | y = 6.516 x95 + 6.321 0.0 y = 2003.69 , /HLUX% +6.32
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Part 11

Rule Based Repair
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Chapter 7

Performing Repairs Based on Fixed
Form Rules for Expedited

Convergence

Part [I] of this dissertation has discussed ways in which we can distill fixed and free form rules
or mathematical expressions from data. Recall from Figure that when we use an EMO

algorithm to solve a MOO problem, applying an online innovization procedure involves:

e First choosing a set of solutions to learn rules from, then
e Learning rules or patterns that exist in those solutions and then,

e Perform an intervention in the EMO algorithm to expedite its convergence rate.

The two chapters in Part |II| will focus on using learned rules of fixed form discussed in
Chapter [3| to intervene in the EMO algorithm and possibly expedite its convergence towards

the PO front of MOO problem.

7.1 Rule Based Repair

Recall from Section [3.1] that basis function(s) for a rule in the context of innovization can

be any scalar function ¢ of the design variables including variables, objectives, constraints
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and any function thereof. Fixed form rules of constant type, given by Equation (3.4)), and of

power-law form, given by Equation (3.7)), can be represented in a single equation using the

form given by Equation ([7.1)) as

T
¢i(¢17¢27---,¢n¢) = H¢jw Y = ¢;, where,
J (7.1)

ajj € {0,1}, ¢, bij € R, ng = # of basis functions.

In Equation (|7.1)), ¥; represents ith candidate rule, ¢; represents the jth basis function in
the list of ny basis functions being considered for learning rules, a;; is a binary variable

that decides if j" basis function is included in it"

candidate rule ¢; and, b;;, ¢; are rule
parameters that are estimated during an EMO/I run. If 1; is a constant rule, say ¢; = ¢;

then
1 if j =1,
aij = (7.2)
0 otherwise.

This chapter considers candidate rules involving only design variables as basis functions,

thus Equation (7.1)) takes the form

Ny b

Qs 5054
diley,ag,.ng) = [V =¢ (7.3)
Jj=1

where n; is the number of design variables in a MOO problem. We refer to the set of rules
represented by Equation as candidate rules. In a problem with n, design variables, a
maximum of ZZi 1@ Cy = 2"% — 1 candidate rules of fixed form involving just variables as
basis functions can be evaluated. Out of those, n; rules are constant type rules corresponding

to each variable and the rest are power law type of rules.
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Figure shows a flowchart of the online innovization applied to EMO algorithms or
“EMO/I” method proposed in Section Except for the three regular blocks, namely
the Rule Basis and Quality block, Learn block and Repair block and two decision blocks,
namely L and R blocks, the rest of the flowchart is that of a generic EMO algorithm. In this
work, we used NSGA-II algorithm as the EMO algorithm of choice but it can be any

population based optimization method. The following sections provide a brief description of

@ Rule Basis & /

R Quality

\ i
Initialize Pop
gen =0

PO
Y

Assign
gen ‘:i—— 1 |—> Evaluate — Fitness

P(t),Q(t) or, l
p® , Q(f) , R®
@ >CStopd
N
R(:> Repair Evolutionary
Operators
Y|P, AY P“),le
p(t)’Q(t) N

Figure 7.1: The flowchart of an EMO/I algorithm.

the flowchart with a focus on the aforementioned blocks that are specific to EMO/I.

7.1.1 Rule Basis and Quality Block

The rule basis and quality or RBQ block carries information on:
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1. Which rules out of the maximum of 2% — 1 that we wish to learn? and,

2. What is the threshold quality measure on a candidate rule to consider it suitable for

variable repair?

Information for both of these questions is sought from the user at the beginning of EMO/I
procedure. For example, if a MOO problem has three variables but if the user wants to

discover rules with a maximum two variable interactions, then we can set a;; as shown in

Table [T.1]
Table 7.1: An example of candidate rule information available in RBQ block.

Rule Id a;j Rule
(i) values type
1 a1 =1 a2 =0 a3 =0 Constant rule
2 as1 =0 agg =1 agg =0 | Constant rule
3 az1 =0 azg =0 agz3 =1 Constant rule
4 as1 =1 asg=1 ay3 =0 | Power law rule
) as1 =1 aso =0 as3 =1 | Power law rule
6 ag1 =0 aga =1 agy =1 | Power law rule

Each candidate rule is learned and evaluated for its quality. For a constant rule, this

quality is measured using the coefficient of variation (C,) metric (see Section[3.2)). A constant
C(maz)

rule is considered good quality and ready for making repairs if its C;, < CY . Similarly

for power-law type of rules, we use the RZ dj metric from OLSR to assess its quality (see

Section . A power-law type of rule is considered good quality and ready for making repairs
(max)

if its R?L dj > de(jmm). We have kept the default value of these thresholds as Cj =0.05

and de(jmm) = 0.95. The user may change these values as per his/her requirement.

A Note on Transition Points

A transition point in a bi-objective PO front is a point across which the nature of mathe-

matical relations among the PO solutions changes. The innovized principles on either side
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of the transition point are different. Some reasons for encountering transition points are:

(a) Some constraint or variable bound becomes active (or inactive) and forces (or eases) the

PO solutions to adhere to additional (or fewer) rules across the transition boundary,

(b) The nature of one or more of the objective functions changes significantly across the

transition boundary.

In this chapter, we will consider optimization MOO problems that do not have a transition
point and we will come back to addressing it in Chapter [§f Thus for problems in this
chapter, the rules of the form given by Equation (7.1)), if discovered, are applicable to all the

PO solutions.

7.1.2 Decision Block-L

Once the EMO/I begins and a population of individuals is initialized, evaluated, assigned
fitness and operated by genetic operators (crossover and mutation), the decision block ‘L’
decides how long should the algorithm wait before it begins to learn the parameters and
quality of candidate rules. This is necessary as in the initial phases of an EMO algorithm,
the solutions may still be far away from the PO-front and not adhere to any rule. Such a

waiting decision can be implemented in many ways such as:

e If some minimum fraction of maximum function evaluations (MFEs) allowed for a

problem have passed or,
e If the number of solutions in the non-dominated set is above a minimum threshold or,

e If the increase in hypervolume has slowed down to some pre-specified level.
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In this work, we have gone ahead with using the first one, i.e. some fraction of MFEs, to be

the deciding criterion to start learning rules.

7.1.3 Learn Block

This block attempts to learn the rule parameters b;; and ¢; shown in Equation , as well
as the quality of each candidate rule. Once EMO/T meets the criterion set by the decision
block ‘L, a copy of the parent population, Pc(ﬁ%y, is sent to the ‘Learn’ block. The rule
parameters and the rule quality for constant rules and power-law rules are estimated as

follows :

7.1.3.1 Constant Type Rules

Consider a rule of the form given in Equation ([7.3)) and a MOO problem with n, variables.

Then, for a candidate rule ; composed of jth variable x;, the constant rule is given by

Vi(95) =15 = ¢;. (7.4)

Comparing with Equation ([7.3]), we know in this case that

a;p. = 1 if k = j, 0 otherwise,
(7.5)

bjr. =1, it k = 7, 0 otherwise,

where k € {1,2,...,n;}. From Section we know that the value of parameter ¢; can

be estimated as

& = Iy (7.6)
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where 15 is the mean of jt" decision variable over the non-dominated solutions set
Furthermore, the coefficient of variation (Cy), of the jth variable over the non-dominated
solutions set is considered as a measure of the quality for such a rule. This quality parameter

is later used in the decision block R shown in Figure

7.1.3.2 Power Law Type of Rules

As shown in Section [3.3.1], to estimate the parameters and quality of power law rules, we
use log-linear modeling followed by applying OLSR on data of non-dominated solutions to
learn the parameters.Consider an example of a three variable MOO problem, and we want

to learn the parameters of a two variable power law rule as:
b1 b
x11x33 = ¢, then (7.7)

taking log on both sides,

b1 log x1 + bz log x3 = logc,

which is a linear equation. If log z; is chosen as the regressand then,

1
logx1 = b_1310gx3 + (;ilc, or

= Blogz +7, (7.8)

— 11 = e'yazg

Parameters B and 4 are estimates returned by a Ordinary Least Square linear regression
(OLSR) method using the log of 15! and 3" variables from non-dominated set. OLSR also

returns the R?L dj value which is later used to assess the quality of such a candidate rule in
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repair stage.

7.1.4 Decision Block-R

This block decides if some rule is good enough in quality to qualify for the repair stage. As

mentioned in Section [7.1.1]

e The quality of one variable rules is measured using coefficient of variation (Cy) values

and,

e The quality of rules with more than one variable is measured using RZ dj value returned

from OLSR.

EMO/T is provided with threshold quality parameters namely, the maximum coefficient of

(min)

variation (ngmaw) ) for constant type rules and R? for power law rules, in the RBQ

block at the start of EMO/I. A rule is said to qualify for repair in next stage as follows:

e For constant rules, C, < ngmax) and

2 (min)

e For power law rules, R? > R dj

adj

We refer to the candidate rules for which the quality parameters surpass the threshold quality

parameter values as Qualifying Rules. As set of u such qualifying rules in generation t of

EMO/I, say \Ifg) = {¥qy: V9>, Vg, }, along with a copy of parent population, say
1 . . - .

Peopy, is passed on to the Repair block as shown in Figure (7.1} In this work, we refer to the

union of set of variables constituting the qualifying rules as Qualifying Variables.
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7.1.5 Repair Block

In some generation ¢ of EMO/I, the repair block receives a copy of parent population ( Pég;,y)
and a set of qualifying rules (\I/g) = {Yq%q9>- -+, Vgy}), and yields a population with
repaired variables (R(t)). The procedure for making such a repair is given by Algorithm
and is named REPAIRPOP( ). Next, we briefly describe the overall algorithm and followed

by detailed explanation its important components.

Algorithm 7.1 REpPAIRPOP( )

input: Pc(gz),y, \I/g) = {qy,¥gy, -+ 1%q,} Parent population, List of Qualifying rules
output: R Repaired population
1: R(t) «— 0

2. for k + 1 to \Pc%y‘ do
3. Py + Eth individual of Pc(gz,y

4: T+ 0 Initialize set of repaired variables in P.
5 \ifg) “— WRSHUFFLE(‘IJg)) Wtd. random shuffle w.r.t rule length preference.
6: for m <« 1 to |\ifg)\ do

7: ¥+ mth rule of \I/g)

8: Ty < GETVARS(%) Get set of variables in rule .
9: J <+ Iy\T Get set of variables in rule 1) and not yet repaired in F.
10: if 7 # () then
11: v <= CHOOSEVAR(J) Get variable w.r.t frequency preference.
12: MAKEREPAIR (P}, v) Repair variable v of individual F.
13: 1<+ TIUvw
14: R® « Ry Py Update repaired population set.

(t)

REPAIRPOP( ) procedure takes pPeopy and AQ as input and further line wise descrip-

tion is as below:

e Lines 1-4 : The output R is initialized as an empty set. It then loops over all
individuals of PC<£Z)7?J to repair them one by one. For the Kt individual of Pc(gz),y, Py,

the set of repaired variables in P} is initialized to an empty set.

(t)

e Lines 5-6 : The rules present in \IIQ are shuffled using WRSHUFFLE() function with
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respect to some probability distribution based on length of rules. This is discussed in
Section [7.2.1] We refer to the number of variables in a rule as the length of a rule. For
example, the rule A = x1 - x9 = 3 has length two. The procedure then sequentially

(t)

goes over all rules in the sorted list \TJQ .

e Lines 7-9 : For some m!” rule in the shuffled rule list \Pg), say 1, the set of variables
involved in rule v is stored in Z,, using GETVARS() function. For example, for the rule
Y =179 =3, Ty = {w2, 73}. Subsequently, set of variables that are involved in rule

1 and have not been repaired in the individual P is stored in J.

e Lines 10-13 : If J = 0, then the control passes back to the for loop of line-6. Else,
some variable v € J is chosen using CHOOSEVAR() function. This choice depends on a
probability distribution based on frequency of the variables in the qualifying rules and
is explained in Section [7.2.2] Subsequently, the variable v is repaired in individual Py,
using MAKEREPAIR() function and its operation is explained in Sections and

7.1.5.2] After repairing variable v, the set Z is updated.

e Line 14 : Once all possible repairs have been performed to the individual Py, it is
added to the repaired population R, This continues until for loop of line-2 covers

all individuals of Pc(égjy.

Next we discuss the working of the MAKEREPATR() function of Algorithm

7.1.5.1 Repairing Variables Based on Constant Rule

Consider a rule of the form given in Equation (7.4)) corresponding to a candidate rule W,
composed of jth variable x;.
V; = xj = ¢;, where (7.9)
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c; is as estimated as given in Equation ((7.6). Then, the 4" variable in an individual of Pc(gg,y

population is repaired as,
:f?j :L{(uj —Jj,,uj—l—dj), where (7.10)

Zy is the repaired value of variable x;, y1; and o; are the mean and standard-deviation re-
spectively of x; decision variable over the non-dominated solutions set and U (a, b) represents

a uniform random distribution between a and b.

7.1.5.2 Repairing variables based on power law rules

To explain the repair method involved in this case, we take the example shown in Sec-

tion |7.1.3.2, From Equation (|7.8)), we can get the repaired value of variable x| as

T = eﬁxg. (7.11)

Similarly, the repaired value for the regressor variable x3 can be obtained as

1

By = (ﬂ) s (7.12)

eV

For cases with more than two variables as well, a similar logic follows. Note that if the
repaired value of a variable lies outside its a priori defined bounds, then the repaired variable

is set to its nearest bound value.
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7.2 Repair Strategies

This section discusses three rule-preference strategies, corresponding to the WRSHUFFLE()
function, and three variable-preference strategies corresponding to the CHOOSEVAR() func-
tion, used in Algorithm [7.1]

Recall that we call a set of rules for which the quality parameters surpass the threshold
value of quality set in RBQ block of Figure as qualifying rules, and the union of set
of variables constituting these qualifying rules as qualifying variables. The following two
choices need to be made before any repair of the kinds illustrated in Section is made

to solution individuals of P(gﬁ},y;
e Choose one of the possibly many qualifying rules on which to base the repair and,
e Choose one of the possibly many variables for repair from the chosen qualifying rule.

For example, choosing a random rule from the qualifying rules pool and then choosing a
random variable from the variables of the chosen qualifying rule can be one such strategy.Both

these choices have an effect on:
1. The parameters used to make a repair and,

2. The sequence in which variables are repaired.

7.2.1 Rule Preference Strategies

We investigate three rule-preference strategies. We call the number of variables in a rule
to be the length of that rule. Before discussing these strategies, lets look at the WRSHUF-
FLE() function as it is used in implementing all three rule preference strategies in Line-5 of
Algorithm [7.1}
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The WRSHUFFLE() function stands for weighted random shuffle (WRS) and it is same as
weighted random sampling from a sequence without replacement. Let a = (ay,a9,...,ap)
and w = (wq,ws, ..., wy) be a sequences of n objects and unnormalized weights respectively
such that weight w; corresponds to element a;. Then Algorithm describes a pseudo code

for WRSHUFFLE() function.

Algorithm 7.2 WRSHUFFLE( )

input: a = (a1, a9,...,an), w= (w1, ws,...,wy)

output: r Wtd. Random Shuffled sequence
Lr<+ 0
2: n < SIZEOF(a) get number of elements in sequence a

3: while n > 0 do
4: S(—-Ejzzlluk

5: P <« (p1,p2,--.,pn) Where p; = w;/s Probability mass value sequence.
1 2 n
6: C+ (0, DDk D, Phs -5 > Pk) Cumulative distribution value sequence.
k=1 k=1 k=1

: o r<«Uu,1) Random no. in 0-1 using uniform random distribution.
8: 1+ 1
9: while true do
10: if C; <r < ;41 then C; is it" element of C
11: break
12: else
13: 14— 1+1
14: rer <a; > Append a; to sequence 7 at end.
15: a<+a\<a; > Remove element a; from sequence a.
16: n<n—1

Lets look at the rule preference strategies next. Let there be m rules in the qualifying rules

list Ag) = (A1, A2, ..., Ap) of Algorithm with lengths (I1,l9, ..., L) respectively. Then

the three rule-preference strategies assign different weights sequences to the m qualifying

rules in WRSHUFFLE() function.

(i) No preference: In this strategy, no rule is given preference over others based on its

length and a weights sequence of w = (1,1,...,1) is used by WRSHUFFLE() function.

(ii) Prefer long rules: In this strategy, lengthier rules are preferred over shorter rules and

108



a weights sequence of w = (I1,1l9,...,l;) is used by WRSHUFFLE() function.

(iii) Prefer short rules: In this strategy, shorter rules are preferred over lengthier rules and

a weights sequence of w = (1/l1,1/lo,...,1/l,) is used by WRSHUFFLE() function.

7.2.2 Variable Preference Strategies

We investigate three variable-preference strategies which are based on the frequency of a vari-
able among the qualifying rules and it is implemented using the CHOOSEVAR() function in
Algorithm In Algorithm , let there be n qualifying variables, Vg) ={vy,v2,...,upn},

in the list of qualifying rules \Ifg) = (1,9, ...,%py). Furthermore, let the frequency of each

(t)

qualifying variable in VQt be represented by .7-"8) = {f1,f2,---, fn} where f; is frequency

of qualifying variable v;. Let some rule v; € \I/g) be under consideration for making vari-
able repair to population individual P}, at some step of for loop of line-6 of Algorithm [7.1]
Then, J C Vg), represents the set of variables in rule )\; that have not been repaired in the
individual P, until that instant. Let,

J =1{vj;,Vjy,.--,vj,}, and
b ’ (7.13)

F = {fjlufj27---7fj5}, where

[ju € F is the frequency of variable v;, € J in the qualifying variable set VS) and u €

{1,2,...,s}. Let us discuss the variable-preference strategies.

(i) No preference: In this strategy, no variable is given preference over others based on
its frequency among the qualifying variables. In this case, the CHOOSEVAR() function

randomly picks one variable from the set J defined in Equation (|7.13)).
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(ii) Prefer common variables: In this strategy, qualifying variables that are more frequent
among the qualifying variables are given a higher preference of getting selected first to
get repaired. In this case, the CHOOSEVAR() function picks some variable v;, € J of
Equation ([7.13) with probability p, defined as;

Fju

S - 7.14
P Zrzl fjr ( )

(iii) Prefer less-common variables: In this strategy, qualifying variables that are less fre-
quent among the qualifying variables are given a higher preference of getting selected
first to get repaired. In this case, the CHOOSEVAR() function picks some variable

vj,, € J of Equation (7.13) with probability p,, defined as;

1/fj
Py = —— (7.15)
" Zi:1 1/fju

These aforementioned strategies in Sections|7.2.1]and[7.2.2] when permuted together form

a total of nine strategy combinations. These are listed in the first nine rows of Table [7.2]

The tenth strategy is of a pure EMO algorithm without any innovization based repairs.

110



Table 7.2: Different variable repair strategies for EMO/I studied in this work.

ID | Rules Preference Variable Preference Abbrev.
1 | None None NN
2 | None Common variables NC
3 | None Uncommon variables NU
4 | Long rules None LN
5 | Long rules Common variables LC
6 | Long rules Uncommon variables LU
7 | Short rules None SN
8 | Short rules Common variables SC
9 | Short rules Uncommon variables SU
10 NSGA-II with No Repair - NI

7.3 Test Problems

All test problems in this work have been derived from the ZDT1 problem [107] and have the

following form.

Minimize f1(x) = 7,
fo(x) = g(x) h(f1(x), g9(x)), (7.16)
Where h(f1,9) =1—+/fi/g.

Every problem has a different ¢ function, variable bounds and Pareto-optimal set and they

are described in the following sections.

7.3.1 ZDT1-1

This problem is designed to have rules in the PO set such that:
e No variable is common among any two rules and,

e Different rules may have different number of variables.

111



The problem is given by Equations ([7.16)) where g(x) is given by Equation ((7.17)).

g(x) =1+ |xg — 0.5 + |r324 — 0.5| + |252627 — 0.5,
(7.17)

19 € 0, 1], 3456 € [0.5,1], x7 € [0.5,2].

Equation ([7.18) shows the PO solutions set for this problem and Figure shows the

corresponding PO front.

0.0 <z <1.0, 25 =0.5, 5 -2y = 0.5, and, 23 -z - 27 = 0.5. (7.18)

This problem is specifically designed to test repair strategies: NI, NN, SN and LN. Refer to

0 0.2 0.4 0.6 0.8 1 0.5 0.75 1

fl fl

(a) Pareto-optimal front for ZDT1-1 prob- (b) Pareto-optimal front for ZDT1-2 and
lem. ZDT1-3 problems.

Figure 7.2: Pareto-optimal fronts for the test problems.

Table [7.2] for description of these strategies.

7.3.2 ZDT1-2
This problem is designed to have rules in the PO set such that

e Some variables are common among two or more rules and,

e Fach rule has the same number of variables.
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The ZDT1-2 problem is given by Equation ([7.16]) where g(x) is given by Equation (7.19)).

g(x) = 1+ |vy29 — 0.5 + [29%23 — VO.5| + [2524 — 0.25] + |25 5 — V0.5,
(7.19)

x19 € [0.5,1], z3 € [V/0.5,1], 24 € [0.25,1], 25 € [0.5,v0.5].
The Pareto-optimal region for this problem is given by Equation (7.20) and Figure
shows the corresponding PO front.

o xh =05, (25)0° 23 =05, (#5)? 25 =0.25 and, (25)7%° - 2f =05, (7.20)

This problem is designed to test repair strategies: NI, NN, NC and NU, shown in Table [7.2]

7.3.3 ZDT1-3
This problem is designed to have rules in the PO set such that:

e Some variables may be common among two or more rules and,

e Each rule may have different number of variables.

The ZDT1-3 problem is given by Equation ([7.16]) where g(x) is given by Equation (7.21]).

g(x) =14 |xjz0 — 0.5] + |x(1)'5:c2:c3 — 0.5 + |z5 — 0.5] + \:cl_o'5:c%:c3x4 —0.25],
(7.21)

r12 € [0.5,1], 3 € [V0.5,1], x4 € [0.25,1], x5 € [0, 1].

The Pareto-optimal region for this problem is given by Equation (7.22) and Figure

shows the corresponding PO front.

o -xh =05, (@) 2325 =05, 2f = 0.5 and, ()70 (43)% -2k -2 =025 . (7.22)
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This problem is designed to test and compare all the repair strategies given in Table [7.2]

7.4 Results on Test Problems

This section compares the performance of an EMO algorithm, NSGA-II in this work, with
that of an EMO/I algorithm using the different variable repair strategies of Table on
the test problems of Section [7.3] The tables and figures in this section refer to different
contending algorithms by their respective abbreviations mentioned in Table[7.2] For example,
an EMO algorithm without any variable repair strategy is referred to as ‘NT’.

Furthermore, the different algorithms are compared on the metrics of median Gener-
ational Distance (GD) and median Inverse Generational Distance (IGD) [31] over thirty
runs. All claims of one algorithm being better than the other are backed with results of
Wilcoxon Rank Sum (WRS) test [108] of statistical significance. We use the following con-
vention to represent a test hypothesis. Ha <p represents the left tailed hypothesis test, where
the alternative hypothesis states that the median of distribution A is lower than the median
of distribution B at some significance level «. A significance level of o = 5% is used in
all the statistical tests. For all the statistical tests, both h and p values are shown in the
results. An h-value of ‘No’ means that the aforementioned alternative hypothesis cannot be
accepted at the desired significance level and an h-value of ‘Yes’ means otherwise. Also, for
the aforementioned alternative hypothesis to be accepted, the corresponding p-value must
be lower than the chosen a. The EMO parameters used for solving the test problems are

given in Table|7.3]
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Table 7.3: EMO parameters used in the test problems discussed in Section .

ZDT1-1 ZDT1-2 ZDT1-3
Population Size 72 52 72
Max Func. Evals 36,000 36,400 50,400
Prob. of Crossover 0.9 0.9 0.9
Prob. of Mutation 1/7 1/5 1/5
Crossover Index 15 15 15
Mutation Index 20 20 20
Start of Learning (% of Max FEs) 5 5 5

7.4.1 ZDT1-1 Results

This problem is designed to test the variable repair strategies NN, LN and SN of Table
against each other as well as their performance relative to the no-repair case, i.e. NI. Fig-
ure shows the median GD and IGD results for ZDT1-1 problem. The plots show that
EMO/I with any of the three repair strategies NN, LN and SN perform better than the
NI strategy in both GD and IGD for same number of objective function evaluations. This
observation is supported by the WRS results shown in Table [7.4 The table shows that the
three alternate hypothesis namely, Hxn<NT, HiNn<nNT and Hgn<ni, can be accepted at 5%
significance level in case of GD as well as IGD in ZDT1-1 problem at the end of maximum
function evaluations (36,000 in case of ZDT1-1 problem). Furthermore, Figure shows
that the variable repair strategies namely, NN, LN and SN, have very similar performance

and none can claim to be better than the other in this problem.

Table 7.4: Results of Wilcoxon rank sum test for GD and IGD of ZDT1-1 problem at 36,000
function evaluations and 5% significance level.

Hypothesis
HNN<NT Hin<NT  HsN<NI
A h Yes Yes Yes
O pl <10 <100 <1076
A h Yes Yes Yes
S p| <106 <106 <107
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Figure 7.3: Median GD and IGD results for ZDT1-1 problem over 30 runs.

7.4.2 ZDT1-2 Results

This problem is designed to test the variable repair strategies NN, NC and NU of Table
against each other as well as their performance relative to the no-repair case, i.e. NI. Fig-
ure [7.4] shows the median GD and IGD results for ZDT1-2 problem. The plots show that
EMO/I with any of the three repair strategies NN, NC and NU perform better than the
NI strategy in both GD and IGD for same number of objective function evaluations. This
observation is supported by the WRS results shown in Table [7.5] The table shows that the
three alternate hypothesis namely, HNn<NT, HNe<NT and HNU<Ni, can be accepted at 5%
significance level in case of GD as well as IGD in ZDT1-2 problem at the end of maximum
function evaluations (36,400 in case of ZDT1-2 problem). Furthermore, Figure shows

that the variable repair strategies namely, NN, NC and NU, have very similar performance

and none can claim to be better than the other in this problem.
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Figure 7.4: Median GD and IGD results for ZDT1-2 problem over 30 runs.

Table 7.5: Results of Wilcoxon rank sum test for GD and IGD of ZDT1-2 problem at 36,400
function evaluations and 5% significance level.

Hypothesis
HNN<NT HNo<NI HNU<NI
A h Yes Yes Yes
O pl <106 <106 <106
A h Yes Yes Yes
€ pl <106 <106 <106

7.4.3 ZDT1-3 Results

This problem is designed to test all nine variable repair strategies of Table namely: NN,

NC, NU, LN, LC, LU, SN, SC and SU, against each other as well as their performance

relative to the no-repair case, i.e. NI. To avoid illegible plots, these results are discussed in

three parts.

7.4.3.1 Part-A : Strategies Preferring Short Rules

Figure [7.5] shows the median GD and IGD results for ZDT1-3 problem comparing variable

repair strategies SN, SC and SU against each other as well as the no-repair case NI. The
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plots show that EMO/I with any of the three repair strategies SN, SC and SU performs
better than the NI strategy in both GD and IGD for same number of objective function
evaluations. This observation is supported by the WRS test results shown in Table [7.6, The
table shows that the three alternate hypothesis namely, Hgn<N1, Hsco<nN1 and Hgy <N, can
be accepted at 5% significance level in case of GD as well as IGD in ZDT1-3 problem at the
end of corresponding maximum function evaluations (50,400 in case of ZDT1-3 problem).
Furthermore, Figure shows that the variable repair strategies SN, SC and SU, have very

similar performance and none can claim to be better than the other in this problem.
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Figure 7.5: Median GD and IGD results for ZDT1-3 problem over 30 runs comparing NI,
SN, SC and SU repair strategies of EMO/L

Table 7.6: Results of Wilcoxon rank sum test for GD and IGD of ZDT1-3 problem com-

paring EMO/I repair strategies NI, SN, SC and SU at 50,400 function evaluations and 5%
significance level.

Hypothesis
Hsn<N1 Hsc<ni Hsu<ni
A h Yes Yes Yes
U pl <109 <106 <106
A h Yes Yes Yes
© pl <108 <106 <1076
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7.4.3.2 Part-B : Strategies with no Preference Based on Length of Rules

Figure [7.6 shows the median GD and IGD results for ZDT1-3 problem comparing variable

repair strategies NN, NC, NU and SN against each other as well as the no-repair case NI.

The plots show that:

e The repair strategies NN, NC and NU perform better than NI in both GD and IGD.

This is backed by results shown in the Hypothesis (group-1) column of Table . Repair
strategy SN too performs better than NI but the corresponding results are already

shown in Section [7.4.3.1]

e Furthermore, the repair strategy SN performs better than NN, NC and NU in terms of
GD whereas their performance in terms of IGD metric are similar. The corresponding

WRS test results are shown in Hypothesis (group-1I) column of Table 7.7

w
o
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—— NN
— — NC
—-—=*NU
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1 2 3 4 5 1 2 3 4 5
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(a) GD results for ZDT1-3. (b) IGD results for ZDT1-3.

Figure 7.6: Median GD and IGD results for ZDT1-3 problem over 30 runs comparing NI,
SN, NN, NC and NU repair strategies of EMO/I.
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Table 7.7: Results of Wilcoxon rank sum test for GD and IGD of ZDT1-3 problem comparing
EMO/I repair strategies NN, NC, NU, SN and NI at 50,400 function evaluations and 5%
significance level.

Hypothesis (group-I) Hypothesis (group-11)
HNN=<NI HNo<NI HNu<NI | Hsn<NN  Hsn<nc  HsN<NU
A b Yes Yes Yes Yes Yes Yes
O pl <1006 <1076 <1076 [20x1073 36x107° 1.1x107°
A h Yes Yes Yes Inconclusive
S p|l <106 <100 <1076

7.4.3.3 Part-C : Strategies Preferring Long Rules

Figure [7.7 shows the median GD and IGD results for ZDT1-3 problem comparing variable
repair strategies LN, LC, LU and SN against each other as well as the no-repair case NI.

The plots show that:

e The repair strategies LN, LC and LU perform better than NI in both GD and IGD. This
is backed by results shown in the Hypothesis (group-I) column of Table 7.8 Repair

strategy SN too performs better than NI but the corresponding results are already

shown in Section [7.4.3.1]

e Furthermore, the repair strategy SN performs better than LN, LC and LU in terms of
GD whereas their performance in terms of IGD metric are similar. The corresponding

WRS test results are shown in Hypothesis (group-II) column of Table [7.8]

7.4.4 Summary of Results on Test Problems

Based on the results shown in Sections|7.4.1] [7.4.2 and [7.4.3]| we can conclude the following:

e EMO/I with any of the nine variable repair strategies, namely, NN, NU, NC, SN, SU,

SC, LN, LU and LC, performs better than no variable repair case (NI), in terms of GD
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Figure 7.7: Median GD and IGD results for ZDT1-3 problem over 30 runs comparing LN,
LC, LU, SN and NI repair strategies of EMO/I.

Table 7.8: Results of Wilcoxon rank sum test for GD and IGD of ZDT1-3 problem comparing

EMO/I repair strategies LN, LC, LU, SN and NI at 50,400 function evaluations and 5%
significance level.

Hypothesis (group-I) Hypothesis (group-11I)
Hin<NI Hico<nt Hpu<ni | Hsn<LN - Hgn<pnc  HsN<Lu
A b Yes Yes Yes Yes Yes Yes
O pl <109 <10 <100 | <106 <106 <1076
A h Yes Yes Yes Inconclusive
© pl <106 <106 <1076

and IGD on all three test problems.

e Results of Section show that EMO/I with the variable repair strategy SN performs
better than the repair strategies NN, NU, NC, LN, LU and LC in terms of GD. In

terms of IGD, there is no single clear winner.

Following the implication of above summary, we compare the performance of EMO/I

with SN repair strategy with that of no-repair NI strategy on three engineering design MOO

problems presented in following sections.
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7.5 Engineering Problems

This section describes three MOO problems from engineering design. All three problems are
slightly modified from their original form so that there are no transition points in the final
PO front. Doing so makes all the rules among PO solutions set to be applicable for the

entire PO front.

7.5.1 Two Bar Truss Problem (TBT)

100 kN

Figure 7.8: A two membered truss structure.

In this problem, a two bar truss structure shown in Figure is designed to carry a
certain load without elastic failure. The truss members have cross sectional area 21 m? and
x5 m? respectively and the point of loading is at a vertical distance of x5 m from the truss
member hinge. The two objectives, both to be minimized, are the volume of the structure
and the maximum stress developed in its two members. Its mathematical formulation is
given by Equation (7.23). The original formulation of the problem given in [31] did not

contain the constraint go given in Equation (7.23). The constraint g9 is added to avoid any
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transition points in the PO front so that rules found are applicable to all the PO solutions.
The transition point in this problem is encountered because the cross sectional area z9 hits
its upper limit in order to minimize both objectives in a PO way. The reader is referred

to [10] for more details on the reason and location of transition point at V = 0.044 m3.

Minimize V = x14/16 + x% + x94/1 4+ x%,
S =max(c4c,0B0C),

Subject to g1 = max(c 4, 0p0) < 10,

(7.23)
g2 =V <0.044,
204/16 + 23 804/1 + 23
Where ocp0=—"———,0pc = ——m,
31 319

x1,x9 € [0,0.01], x5 € [1.0,3.0].

Figure shows the PO front for this problem obtained using NSGA-II. To ascertain that
the black curve shown in Figure is indeed the true PO front, a local search is run from
six points (shown with gray circles) using e-constraint method [109]. An e-constraint is set
on the volume objective while maximum stress objective is minimized with local search. As
can be seen, the local search is not able find any point very different from the start point.
Furthermore, the new front obtained by running a local search from all the points of NSGA-
IT front amounts to a minor increase of 0.0132% in the Hypervolume [31]. Thus, the front of
Figure [7.9) can safely be assumed to be very close to the idea PO front and hence it is used

for evaluating GD and IGD value results in later sections.
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Figure 7.10: A diagram of metal turning process.
7.5.2 Metal Cutting Problem (MC)

This MOO problem involves optimizing the twin objectives of operation time (7)) and tool
life (£) during the turning process of a steel bar on a CNC lathe with a P20 carbide tool
as shown in Figure . Equation presents the mathematical formulation of this
problem. The formulation given in Equation contains an additional constraint g4
compared to the original formulation of the problem given in [110]. This constraint on the
operation time objective is put to avoid transition points in the PO front so that the rules

found are applicable to all PO solutions. The location of this transition point at T} ~ 0.9545

124



minutes is discovered manually in [29).

Minimize Tp(x),

§(x),
. P(x) Fq(x)
Subject to  ¢g1(x) =1 — o pmaz >0, ¢px)=1- F:T”“x >0,
R(x)
L+ 769 21,991,200
T(x
Wh T =0.154+219912 | —————~ 0.05 =
ere. Tp(x) TN rppng | O ) = R TRo
i) A8 X 109 6.56 x 103 f091741.10
(x) = 1346 £0.696,,0.46” o(x) = 0-286 ’ (7.24)
vF, 1252
P(x) = —%,  MRR(x) = 1000 R(x) =
%) = 50,000 (x) vfa, RG)=—"m,

PMaT — 10 kW, F™MT — 5000 N, R™4% = 50 yum,
rp = 0.8 mm, n = 0.75,

v =1 € [250.0,400.0] in m/min,

f =x9 €[0.15,0.55] in mm/rev and,

a = z3 € [0.5,6.0] in mm.

Figure [7.11] shows the PO front for this problem obtained using NSGA-II. To ascertain
that the black curve shown in Figure [7.11]is indeed the true PO front, a local search is run
from six points (shown with gray circles) using e-constraint method. An e-constraint is set
on the operation time objective, T}, while the used tool life objective, &, is minimized with
local search. As can be seen, the local search is not able find any point very different from
the start point. Furthermore, the new front obtained by running a local search from all the

points of NSGA-II front amounts to a minor increase of 0.0692 % in the Hypervolume. Thus
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Figure 7.11: Pareto-optimal front for the Metal Cutting problem.

the front of Figure [7.11| can safely be assumed to be very close to the idea PO front and

hence it is used for evaluating GD and IGD value results in later sections.

7.5.3 Welded Beam Problem (WB)

In this problem, a beam needs to be welded to another beam and must carry a load F' [10].
It is desired to find four design parameters (thickness of the beam, b, width of the beam ¢,
length of weld [, and weld thickness h) for which both, the cost of the beam C' and the vertical
deflection at the end of the beam D, is minimized. Its mathematical formulation is given by
Equation (|7.25)). The original formulation of the problem did not contain the constraint gs
given in Equation ([7.25). The constraint g5 is added to avoid any transition points in the
PO front so that rules found are applicable to all the PO solutions. The transition point in
this problem is encountered because beyond a deflection of 0.004 inches, weld thickness h

encounters its maximum possible value, i.e. beam thickness b. This value is obtained using
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manual innovization as outlined in [10].

Minimize C(x) = 1.10471 k21 + 0.04811 tb(14.0 + 1),

2.1952
Do) ="

Subject to  g1(x) = 13,600 — 7(x) >0, g¢2(x) = 30,000 — o(x) > 0,
g3(x)=b—h >0, g4(x)= P.(x)—6000 >0,

g5(x) = 0.004 — D(x) > 0,

Where 7(x) = \/ (T2 4+ ("2 + (1’7" /\/ (0.25(12 + (h + 1)2)), (7.25)

7 = 6000/v/2Al,

n6000(14 4 0.51)4/0.25(12 + (h + t)%)?
— 2{0.707hl(12/12 + 0.25(h + )2)}

o(x) = 504,000/¢%b,
P.(x) = 64,746.022(1 — 0.0282346¢)tb°,

0.125 < h,b < 5.0 inches, 0.1 <[,t < 10.0 inches.

Figure shows the PO front for this problem obtained using NSGA-II. To ascertain
that the black curve shown in Figure is indeed the true PO front, a local search is run
from six points (shown with gray circles) using e-constraint method. An e-constraint is set
on the cost objective, C', while the deflection objective, D, is minimized with local search.
As can be seen, the local search is not able find any point very different from the start
points. Furthermore, the new front obtained by running a local search from all the points
of NSGA-II front amounts to a minor increase of 0.0017 % in the Hypervolume. Thus the

front of Figure can safely be assumed to be very close to the idea PO front and hence
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Figure 7.12: Pareto optimal front for the WB problem.

it is used for evaluating GD and IGD results in later sections.

The EMO parameters used for these engineering design problems are shown in Table [7.9]
Next we discuss the performance of no repair strategy NI and variable repair strategy SN
from Table in solving these engineering design problems.

Table 7.9: EMO parameters used for solving the engineering problems discussed in Sec-

tion |7;5|

Parameter Name TBT MC WB
Population Size 52 72 92
Max Func. Evals 10,036 36,000 25,024
Prob. of Crossover 0.9 0.9 0.9
Prob. of Mutation 1/3 1/3 1/4
Crossover Index 10 10 10
Mutation Index 50 50 50
Start of Learning (% of Max FEs) 5 5 5
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7.6 Results on Engineering Problems

The repair strategy SN was shown to be the best performer among all other repair strategies
(in Table [7.2) on test problems at the end of Section . Hence, this section compares the
performance of an EMO algorithm with that of an EMO/I algorithm with repair strategy
SN. As in Section [7.4], the different algorithms are compared on the metrics of median GD
and median IGD over 30 runs. All claims of one algorithm being better than the other
are backed with results of WRS test of statistical significance. As before, Ha - represents
the left tailed hypothesis test, where the alternative hypothesis states that the median of
distribution A is lower than the median of distribution B at some significance level a. A
significance level of o = 5% is used in all the statistical tests. For all the statistical tests, both
h and p values are shown in the results. An h-value of No means that the aforementioned
alternative hypothesis cannot be accepted at the desired significance level and an h-value of
Yes means otherwise. Also, for the aforementioned alternative hypothesis to be accepted,

the corresponding p-value must be lower than the chosen «.

7.6.1 Two Bar Truss Problem Results

Figure [7.13| shows the median GD and IGD results for TBT problem. The plots show that
EMO/I with SN repair strategy performs better than the NI strategy in terms of GD. This
observation is supported by the WRS test results shown in the TBT column of Table [7.10]
In terms of IGD, the NI strategy performs marginally better. This is expected as EMO/T is
designed to focus more on convergence than diversity. Figure [7.14] shows PO front for the
best GD case out of the thirty runs for EMO/I with SN strategy in TBT problem overlaid

with PO front of TBT problem taken from Figure [7.9]
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Figure 7.13: Median GD and IGD results for TBT problem over 30 runs.

Table 7.10: Results of Wilcoxon rank sum test for GD of TBT, MC and WB problem at
their respective maximum function evaluations and 5% significance level.

Hypothesis
TBT MC WB
Hsn<NI  Hsn<ni HsN=<NI
- h Yes Yes Yes
U p|l <106 12x107* <1076

7.6.1.1 Rules Found in TBT Problem

The rules detected and used in repairing the PO solutions of TBT problem towards the end

of EMO/I (with SN) in the best GD run are:

o 10982 g = 2,075 and 3 = 1.9449 + 0.0674. (7.26)

Figures [7.15 and [7.16| show the PO solutions (corresponding to the PO front shown in

Figure shown with black points, overlaid with the learned variable relations of Equa-
tion ([7.26]) shown with a gray line. The two overlaid plots are very close, thus a close up of

a part of the plot is shown in the inset for clarity. The two learned rules of Equation ([7.26))
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Figure 7.14: Front coverage by EMO/I method in TBT problem for the best GD run.

are very close to the analytical relations that exist in the PO solutions of TBT problem, i.e.

zo/x1 = 2.0 and a3 = 2.0 [10].

7.6.2 Metal Cutting Problem Results

Figure shows the median GD and IGD results for MC problem. The plots show that
EMO/T with SN repair strategy performs better than the NI strategy in terms of GD. This
observation is supported by the WRS test results shown in the MC column of Table In
terms of IGD, the NI strategy performs marginally better. This is confirmed in Figure [7.18
that shows PO front for the best GD case out of the thirty runs for EMO/I (with SN
strategy) in MC problem overlaid with PO front of MC problem taken from Figure .

This is expected as EMO/T is designed to focus more on convergence than diversity.
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Figure 7.15: Rule between variables x1 and x9 identified by EMO/I in TBT problem at the
end of best GD run.

7.6.2.1 Rules Found in MC Problem

The rules detected and used in repairing the PO solutions of MC problem towards the end

of EMO/I (with SN) in the best GD run are:

f=055+54x107% and v - a!"*20 = 804.6058. (7.27)

Figures [7.19) and [7.20| show the PO solutions (corresponding to the PO front shown in

Figure [7.11]) shown with black points, overlaid with the learned variable relations of Equa-
tion ([7.27)) shown with a gray line. The two overlaid plots are very close, thus a close up of

a part of the plot is shown in the inset for clarity.

7.6.3 Weld Beam Problem Results

Figure shows the median GD and IGD results for MC problem. The plots show that

EMO/T with SN repair strategy performs better than the NI strategy in terms of GD. This
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Figure 7.16: Rule for variable xg identified by EMO/I in TBT problem at the end of best
GD run.

observation is supported by the WRS test results shown in the WB column of Table [7.10]
In terms of IGD, the SN strategy appears to perform better (Figure but NI catches
up towards the end. Also, for the intermediate function evaluations where SN appears to
have a lower IGD is not supported by WRS test results. Figure that shows PO front
for the best GD case out of the thirty runs for EMO/I (with SN strategy) in WB problem

overlaid with PO front of WB problem taken from Figure

7.6.3.1 Rules Found in WB Problem

The rules detected and used in repairing the PO solutions of WB problem towards the end

of EMO/T (with SN) in the best GD run are:

h- 198842 = 0.0386 , b b 09600 — 07239  1.p706323 — 13408 , + = 9.9939 + 0.0087.

(7.28)
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Figure 7.17: Median GD and IGD results for MC problem over 30 runs.
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Figure 7.18: Front coverage by EMO/I method in MC problem for the best GD run.

Figures [7.23] [7.24] [7.25| and [7.26| show the PO solutions (corresponding to the PO front

shown in Figure [7.12)) shown with black points, overlaid with the learned variable relations
of Equation ([7.28)) shown with a gray line. The two overlaid plots are very close, thus a close

up of a part of the plot is shown in the inset for clarity.
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Figure 7.20: Rule among variables v and a identified by EMO/I in MC problem at the end
of best GD run.

7.7 Concluding Remarks

The results in Sections [T.4] and [T.6] show that the idea of online innovization can be useful
in expediting convergence of EMO algorithms, however this may come at an expense of

the diversity achieved in final PO front. The PO fronts of all the problems that we have

135



7
o ~3 —N
|
o S ——SN
—
X x
3 8 ||
5
kS 5
g z
. : , 0.2 . . |
0.5 1.5 2.5 0.5 1.5 2.5
Funcn Evals x 10 2 Funcn Evals x 104
(a) GD results for WB problem. (b) IGD results for WB problem.

Figure 7.21: Median GD and IGD results for WB problem over 30 runs.
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Figure 7.22: Front coverage by EMO/I method in WB problem for the best GD run.

considered till now do not have any transition points. Also, the rules on which we tested
the EMO/T idea were composed solely of MOO problem’s variables and no rules were con-
tained any other possible basis functions in them such as MOO problem’s objective values

or constraints. In the coming chapter, we will look at ideas that can address these issues.
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Figure 7.23: Rule between variables h and [ identified by EMO/I in WB problem at the end
of best GD run.
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Chapter 8

Issues of Transition Points and

Repairs Based on Complex Rules

8.1 Handling Transition Points

Until now, we have avoided dealing with transition points in the PO fronts and assumed
that whatever rules we find are applicable to all the solutions of a PO front. However, this
is not the case in practice and usually PO solutions to MOO problems contain one or more
transition points [10]. A transition point is a point on a PO front across which the design
rules being adhered to by the solutions, change significantly. Although such “points” can be
lines or regions in case the PO front is a surface in three or more dimensional objective space,
in case of bi-objective problems, these invariably are points and hence we will stick with the
term transition point or TP from hereon. In problems with transition points present in the
PO front, our methods developed in Chapter [/ may not work because there we assumed that
the rules being learned are applicable to the entire front. In this section, we will see how can
we learn rules and repair solutions as part of EMO/I in the presence of transition points.
Let us first try to understand the concept of a transition point with an example.

Equation shows another version of the two bar truss problem. Recall that this truss

problem is also presented earlier in Section by Equation (7.23]). Note that the problem
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description given in Equation (8.1)) has one less constraint, namely go = V' < 0.044, than

the problem given in Equation ((7.23)).

Minimize V = x1\/16—|—x§ +x2\/1+x%,

S =max(c4c,0B0),

Subject to g1 = max(c4¢,0pc) < 105, (8.1)
204/16 + 22 804/1 + 3
Where ocyp0=—"—"——,0pc = )
371 L3T2

x1,x9 € [0,0.01], x3 € [1.0,3.0].

This change in problem description introduces a transition point in the PO front of the
problem. Figure 8.1 shows this transition point in the objective space and Figure (8.2 shows

it in the variable space.

100 :
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\
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Figure 8.1: Transition point encountered in Truss problem shown in objective space.

As is analytically and numerically shown in [10], the location of this transition point in

the objective space is (V = 0.04472 m?, S = 8.94426 MPa) and in the variable space is
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z1 = 0.0025/(16 + 23) /(1 + 22)
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Figure 8.2: Transition point encountered in Truss problem shown in variable space.

(1 = 0.005 m, 9 = 0.01 m, x3 = 2.0 m). The reason for such a transition point to appear
is as follows. Until variable x9 reaches its upper bound of 0.01m, to achieve a solution with
smaller maximum stress, S (and larger volume V') optimally, both cross sections z1 and x9
need to be increased linearly in the ratio of x1/x9 = 0.5 while keeping z3 = 2.0. Hence
Equation shows the rules that exist before encountering the transition point. This

region is shown in blue in Figures [8.1] and [8.2]

r1/x9 = 0.5, y = 2.0m (8.2)

Beyond this critical point (T), since x9 cannot be increased any further, the only way
to reduce the stresses is to increase the length x3 in a manner so as to make the stresses in
both members equal. An increase of x3 increases the length of the members, but decreases
the component of the applied load on each member. Thus, a smaller cross-sectional area can
be used to withstand the smaller load causing a smaller developed stress. Equation

shows the rules that the variables adhere to in order to reduce the maximum stress (while
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increasing volume) in an optimal manner. This region is shown in red in Figures and

.2

16 4 2
29 = 0.01m, 7 = 0.0025 2 m (8.3)
1+ a3

Now, if we attempt to apply the method of rule learning and variable repair discussed
in Chapter [7] directly to all non-dominated solutions of a MOO problem using EMO/I, we
will learn the wrong rule parameters, because we will be trying to learn a rule using data of
all non-dominated solutions instead of over individual partitions. As seen in case of two bar
truss problem, the rules are very different across the transition point shown in Figure |8.1
and [8.2] Furthermore, we will also make poor repairs, waste function evaluations and worsen

the algorithm performance. To avoid this, the following is necessary:

e Detect disjoint regions of PO solutions separated by transition points,
e Learn rules separately for each of these regions, and

e Repair solutions belonging to different regions using learned rules of corresponding
regions. If no rules of desired quality can be learned from a region, then do not

attempt to repair solutions of that region.

To apply the above line of thought, it becomes imperative to first detect such regions in PO

solutions that are separated by transition points. This is discussed in the next section.
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8.1.1 Identifying Regions Separated by Transition Points (Active
Set Partitioning)

Transition points may appear in the PO fronts of MOO problems usually because of two

reasons, which are;
(a) Making a constraint active or inactive, or
(b) A sudden change in the nature of objective function(s).

The former is a more common cause of transition points and is addressed in this work. Recall
from Section that the transition point encountered in the truss problem was because of
meeting the upper bound for variable x9. The latter is not only less common in practice but
also needs a more subtle mathematical treatment to first define what is meant by a “sudden”
change in objective function(s). Although change in nature of any function can be defined
in terms of higher order derivatives of a function, but it is currently not been studied in this
work.

For every solution in a population of non-dominated solutions, we can find out which
constraints are active and which ones are inactive. Then we can partition the solutions into
groups based on proximity to different constraint boundaries. If all the transition points in
a problem are a result of meeting some constraint bounds and not any other reason, then
such a partitioning is all we want, to be able to learn the right rules for solutions of each
partition rather than trying to learn a single rule for all of the solutions.

Consider a MOO problem with ng inequality constraints {g1, g2, ..., gng} and ng contin-
uous variables {x1, 9, ..., zn, }. Without loss of generality, let all the inequality constraints

be of more than or equal to type with corresponding upper bounds being gf'. These inequality
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constraints can be represented as

gi > g or
(8.4)

g =g =120,
7

where gi' is the normalized constraint value for constraint g;. Furthermore, let :L‘i and z}
where i € {1,2,...,ny}, represent the upper and lower bounds on the variables. In a manner
similar to Equation (8.4]), we can obtain constraints gll and g{ which are given by
gé = x—% —1>0and
)

T

(8.5)

g/ =1- >0,
2

where gg and g;' are the normalized box constraints for variable z;. In total, there are
ne = ng+2%n,; number of normalized constraints for this problem. Let ctol be the tolerance
value such that if any of the normalized constraints are > 0 and <= ctol then we call them
as active constraints, else we call them inactive constraints. Let h;, i € {1,2,...,ng4} be
a boolean variable showing if the normalized constraint g;* is active or not by carrying a 1
or a 0 respectively. Similarly, f)g-, je{1,2,...,ny} and h}‘, j € {1,2,...,ny} be boolean
variables showing if the normalized constraints gé and g} are active or not.

With this information, let us look at an example to see how we can partition a set
of solutions based on the active/inactive constraints for the solutions. Consider a MOO
problem with one inequality constraint g; and two variables x1 and xz9 respectively. Based
on the aforementioned notation, the normalized constraints for this problem are g7, gll, gy,
912 and g§. The corresponding boolean variables that show if for a solution, some constraint

is active or not, are hf, b, 7, 612 and b5.
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Table 8.1: An example of partitioning of solution space based on constraint activity.

Solution ID Partition ID
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Table shows an example of ten non-dominated solutions for such a hypothetical
MOO problem. It also shows the constraint activity for these ten solutions with the boolean
variables h?, bt {, F)ZQ and bi. For a solution, if a boolean variable is 1, it means that the
corresponding constraint is active for the solution. For example, a value of hj = 1 means
that the constraint g7’ is active, otherwise its inactive. The boolean string for every solution
can then be converted to its corresponding decimal value. For example, the boolean string
for Solution ID-1 in the table is {1,0,1,0,0}. The corresponding decimal value for this

string is calculated as:

1.2040.20 11.2240.2310.24=5

We choose to call this decimal value as partition ID because it is unique for a set of ac-
tive/inactive constraints. The solutions shown in Table can be partitioned into four
groups. Three solutions belong to partition ID-5, two belong to partition ID-9, three belong
to partition ID-8 and two belong to partition ID-0. The rule learning method discussed in
Section needs some minimum number of solutions to learn meaningful rules. Hence,

we can additionally define a minimum number of solutions to be present in a partition for it
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to be considered for rule learning. All this is encapsulated in Algorithm Let us look at

Algorithm 8.1 ACTIVESETPARTITION( )

input: S, ctol, minPartSize  Non-dominated set, Constr. tol., minimum partition size

output: P, P Partition IDs, Partitioned validity
1. P, PV« 0
2: for k < 1 to |S| do
3: S < Sk
4:  h + GETBOOL(Ss,cTOL) h={hy, .. hng By, ... Bl BY, . b3
5: p < GETPARTITIONID(h)
6: PP ~p append to set P
7. [P", P¢] + GETUNIQUECOUNT(P)
8: for i < 1 to |P| do
9: p < P;

10: for j < 1 to |PY| do

11: u < P}

12: C 4 P;

13: if (u ==p) A (¢ > minPartSize) then

14: V41

15: else

16: v <0

17: PU PV ~v

a line wise explanation of this algorithm.

e Input: The algorithm receives the non-dominated solutions set S for a MOO problem,
minimum normalized constraint tolerance ctol for some constraint to be considered
active/inactive at a solution and minPartSize, which is the minimum number of mem-

bers in a partition for it to be considered a valid partition.

e Output: Output contains the partition ID P and partition validity PV, both of which
have the same size as S. The set P carries information on the partition ID of each
solution of S and set PV carries information on validity of the partition corresponding

to each solution.

e Lines 1-6: Sets P and PV are initialized to null sets. The For each non-dominated
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solution s € §, we obtain the boolean string carrying information on which constraints
are active and which ones are inactive for solution s based on the constraint values and
the ctol parameter. This boolean string h is then converted into a decimal value p,
which we are calling the partition ID to which solution s belongs. Then, the value of

p is appended to the set P.

e Line 7: Of the set of partition IDs obtained, the unique partition IDs along with their

respective count are stored in P% and P€ respectively.

e Lines 8-17: For each solution s € &, the validity of its partition v, is ascertained
based on whether the corresponding partition ID p has at least minPartSize number

of copies. The partition validity values of each solution are appended and stored in set

PY.

Once such active set partitioning is achieved, both rule learning as well as variable repair
based on those rules, is done individually for each partition. We can apply the rule learning
and variable repair methods described in Section to MOO problems having transition

points if we learn rules (Section [7.1.3) and then repair variables (Section [7.1.5) of individual

solutions of each partition separately. Let us now look at some results based on this idea.

8.1.2 Results on Problems with Transition Points

In this section, we present results for slightly modified versions of the two engineering design
problems of Section [7.5] In each problem, the modification amounts to removal of some
constraint that was earlier allowing us to get PO solutions without any transition points. In

each problem;
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e EMO/I learns the rules for each active set partition (ASP) separately and then at-

tempts to repair the solutions using corresponding rules and,

e The repair strategy “Short Rules, No Preference on Variables” or SN from Table

is used.

In the text, we refer to this strategy of combining SN repair strategy with active set parti-
tioning as ‘SNasp’. We compare SNasp against repair strategies SN and NI (refer Table [7.2))
in the results. The EMO/I parameters used for the three problems are shown in Table .

Table 8.2: EMO/I parameters used for solving the modified engineering design problems
that contain transition points in the PO front.

TBT-2 MC-2
Population Size 52 200
Max Func. Evals 10,036 100,000
Prob. of Crossover 0.9 0.9
Prob. of Mutation 1/3 1/3
Crossover Index 10 10
Mutation Index 50 50
Start of Learning (% of Max FEs) 20 20
ctol 0.001 0.01
minPartSize 5% of pop 5% of pop

8.1.2.1 Modified Two Bar Truss Problem (TBT-2)

This problem is obtained from problem description given in Equation by removing
the constraint gg = Vo < 0.044 from the problem. This leads to the induction of a transition
point in the PO front as shown in Figures [8.1] and [8.2]

Figure[8.3|shows that the SNasp repair strategy does better than both SN and NI strategy
in terms of GD, whereas, because of presence of transition point, the SN repair strategy is

unable to do better than NI strategy. The WRS results in Table|8.3|show that this difference
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in performance of SNasp and SN is indeed significant. [

n case of IGD, both SN and SNasp

perform inferior to NI. This is understandable as the repair strategies are aimed at improving

convergence to the PO front and not convergence and d

iversity at the same time.

10

median GD (x107?)
median IGD (x107?)

o
n

—NI
——-SN
SNasp

Func Evals (x10%)
(a) GD results.

Func Evals (x10%)
(b) IGD results

Figure 8.3: Median GD and IGD results for TBT-2 problem over 30 runs.

Table 8.3: Results of Wilcoxon rank sum test for GD of TBT-2 problem comparing EMO/I
repair strategies NI, SN and SNasp at 10,036 function evaluations and 5% significance level.

Hypothesis

/HSNaSp <NI HSNaSp <SN

h Yes
p

GD

2.26 x 1074 0.047

Yes

8.1.2.2 Modified Metal Cutting Problem (MC-2)

This problem is obtained from problem description given in Equation ((7.24)) by removing the

constraint g4 = T(x) < 0.9545 from the problem. This leads to the induction of a transition

point in the PO front as shown in Figures [8.4] and [8.5]
solutions into two regions shown in red and blue. The

different set of rules as shown in Figure [8.5]
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Figure 8.4: Transition point encountered in Metal Cutting problem shown in objective space.

Figure8.6|shows that the SNasp repair strategy does better than both SN and NI strategy
in terms of GD whereas because of presence of transition point, the SN repair strategy is not
able to do better than NI strategy. The WRS results in Table show that this difference
in performance of SNasp and SN is indeed significant. In terms of GD, although Figure |8.6a]
shows that strategy SN performs better than NI, but WRS results in Table do not back
this observation which means the difference is not statistically significant.

In case of IGD, although Figure shows that relative difference between the SNasp,
SN and NI repair strategies, but the WRS results in Table do not back this observa-
tion meaning that in term of IGD, the apparent difference between the three strategies is
statistically insignificant.

Now that we have studied one way of handling MOO problems with transition points,
let us now look at another idea of learning power laws involving functions of design variables

as basis functions and then repairing variables based on those rules.
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Figure 8.5: Transition point encountered in Metal Cutting problem shown in variable space.

Table 8.4: Results of Wilcoxon rank sum test for GD and IGD of MC-2 problem at 100,000
function evaluations and 5% significance level.

Hypothesis
HSNasp=<NI  HSNasp<SN  HSN<NI
- h Yes Yes No
O p|  0.0082 0.0306 -
A h No No No
S, - - -

8.2 Power Law Rule Involving Functions of Variables

In Section [7.1], we looked at ways of learning fixed form rules involving variables only from
non-dominated solutions and then repairing the non-dominated solutions based on those
learned rules. Whether we made a repair based on a constant rule (see Section
or based on power law rule (see Section , making the repair was straight forward
because the functions being learned were explicit in terms of all its constituent variables. If
the learned rule is an implicit function of the variable that needs to be changed for solution

repair, then this task may not be very straight forward. For example, if we learn a fixed form
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Figure 8.6: Median GD and IGD results for MC-2 problem over 30 runs.

rule based on problem objectives or constraint functions or if we use CGP from Chapter
or Chapter [] to find an algebraic expression involving problem variables that fits the data
of non-dominated solutions but is implicit in terms of variable to be repaired.

Consider a bi-objective optimization problem with n, variables given in Equation .

Minimize f1(x)
fa(x)
Subject to g;(x) <0Vie {1,2,...,ng4}
Where x = {z1,292,...,%n,},
vj € [ah, 24V j e {1,2,... ,n,}, and

ijRVj.

If we use f1 and f9 as our basis functions for learning power laws, we may learn functions

of the form

f-fe=c (8.7)
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from data of the non-dominated solutions. Estimating the parameters b and c is same as
explained in Section . However, for repairing variables, Equation can not be used
in the same way a power law among variables could be used as described in Section [7.1.5.2]
This is because the left hand side of Equation may no longer be assumed to be an
explicit expression in terms of the problem variables. In this section, we discuss a way we
can use a rule that is implicitly defined in terms of the variables to make variable repairs.

Recall from Section that in an MOO problem, the basis functions can be the design
variables or functions thereof including the objectives and the constraints. Let us re-write
Equation as

f(x) = (21, 22, 2ny) = ¢ (8.8)

where f(x) = f1(x) - (fa(x))?. Since data of non-dominated solutions is used to arrive at this
equation, in effect it is an implicit equation (in terms of problem variables) that describes
the dominance relation.

Without loss of generality, let us say that we wish to repair variable z, in an individual

7 of the non-dominated set. Let the individual Z be represented as

x7 ={ay,a9,...,ar,...,an,} (8.9)

in the variable space. The candidate individual, say ZT, for repair can then be represented

as

X7+ ={ar,ag, ..., Tr,... an, } (8.10)

because only variable x, of individual Z is under consideration for repair. The problem of
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repairing variable x, can be turned into a one variable minimization problem as

Minimize | f(xz4) — c| (8.11)

Subject to  z € [xLF, 24 ).

Note that the bounds of x, in Equation are not the original bounds of variable z; in
Equation (8.6)). The bounds [zlt, 28] are different from [zl 2¥] and represent the updated
bounds of variable x; derived from the non-dominated set utilized in learning the rule of
Equation (8.7). This helps in efficiently reducing the search space. The single variable
unconstrained minimization problem of Equation (8.11]) can be solved using an inexpensive
solver such as Golden Section method [111]. We can use x;, = a, as a starting point for
the algorithm. Such a method is be a computationally inexpensive way of improving the
performance of a non-dominated solution. It is true that the repaired individual Z+ may
turn out to infeasible because of not considering problem constraints in Equation (8.11)),
but we are expecting this to happen less often as we are already learning the rule from a

non-dominated solutions set. In the next section, we see how this method performs on a

simple engineering design problem.

8.2.1 Results on Truss problem

To test the method described in the previous section, we choose the two bar truss problem
given by Equation ([7.23)). This is the problem without any transition points in the PO front.
Furthermore, from [47] we know that the following relation exists between the two objectives
in the PO solutions,

V-5 = 400. (8.12)
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To avoid wrongly attributing improvements in convergence to repairs based on rules
involving variables only, which we know from Section that they work, we decided to
use only objectives as basis functions for these results. Again, the rule repair strategy SN
(refer Table [7.2) was used. Only this time, the learned rules involved objective functions
only. Once an individual is chosen for repair, we used Golden Section method to repair one
of the chosen variables by solving the minimization problem given by Equation . Every
golden section search was limited to a maximum of 100 iterations or convergence tolerance
of 1076, whichever was reached earlier. We call this repair strategy as ‘SNobj’, i.e. learning

and repairing based on rules involving objective functions only along with SN repair strategy.

Table shows the other EMO/I parameters used in the work.

Table 8.5: EMO/I parameters used for solving the truss problem when only rules involving
objective functions are learned.

Parameters TBT-2
Population Size 92
Max Func. Evals 25,024
Prob. of Crossover 0.9
Prob. of Mutation 1/3
Crossover Index 10
Mutation Index 50
Start of Learning (% of Max FEs) 5

Table 8.6: Results of Wilcoxon rank sum test for GD of truss problem comparing EMO/I
repair strategies NI and SNobj strategies at 25,024 function evaluations and 5% significance
level.

Hypothesis

HSNobj<NI
Yes

45617 x 10713

GD
o =

Figure shows that this strategy of learning only rules involving objective functions

and then making repairs based on golden section method indeed helps the algorithm converge
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Figure 8.7: Median GD and IGD results for the Truss problem over 30 runs when only rules
involving objective functions are learned.

faster to the PO front. This is backed by the WRS test results shown in Table[8.6] In terms

of IGD, there is not much difference between the repair strategies SNobj and NI.

8.3 Concluding Remarks

In this chapter, we then looked at a way of handling transition points in the PO front by
using active set partitioning method. Towards the end, we also discussed as to how we can

also learn and make solution repairs based on rules that are implicitly defined in terms of

the repairing variable using an inexpensive Golden Section method.
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Chapter 9

Conclusion and Future Studies

This thesis identified and developed methods that can help with extracting human inter-
pretable knowledge from EMO algorithms, while solving a MOO problem and using the
same knowledge to repair the EMO solutions to expedite the algorithm.

The first half of this dissertation begins by showing a couple of fixed form rules that
are prevalent in MOO engineering design problems and ways in which we can learn then on
the fly during an EMO run in a more efficient manner than what is used by [11]. We then
developed a customized GP that can be used for symbolically regressing rules from data as
well as identifying decision boundary in binary classification problems, while the learned rules
are constrained to be in the form of mathematical algebraic expressions involving regressands
(features in case of classification) to maintain easy interpretability of the rules where we use
the following definition of interpretability of rules/models, “how consistently can a human
predict the results of the models” [112].

The use of a bi-objective optimization approach — minimization of classification error
and minimization of rule complexity — has enabled us to find not one, but multiple rule
structures having a trade-off between the two objectives. This allows an user to analyze a
number of alternate trade-off rule structures for choosing a single or multiple of them for
practice. In case of the industry problem, we used basic mathematical functions such as

integration, differentiation and Fourier transform to arrive at a set of features from time
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series manufacturing data. This is very different from the standard painstaking method of
handcrafting features where each feature is created using an experts knowledge [113].

Our dimensional awareness procedure has been able to convert some of the obtained
trade-off rules to dimensionally meaningful rules by using relevant problem constants. This
technology allows a user to have a much better understanding and insights to the underlying
process producing the data. The dimensional analysis along with searching for a knee solution
provides the user with an effective decision support system when choosing from a PO set of
regressors or classifiers obtained as a result of CGP. Both these ideas can be automated as
well when we are following rule learning in an EMO with a rule based repair.

The second half of this dissertation developed methods of expediting convergence in
EMO algorithms by using the aforementioned learned rules for making direct variable repairs
during an EMO algorithm run to expedite its convergence. Unlike [71,72], which learn rules
in the form of decision trees and disjunctive normal form logical rules and add them as
constraints to guide the algorithm, we learn rules in the form of algebraic expressions that
can be used for direct variable repair to expedite the algorithm. A total of nine variable
repair strategies for rule and variable selection were tested on test problems and engineering
design problems.

The results showed that when faced with multiple qualifying rules to choose from, we
should choose the shorter rules for making repairs. We did not see any effect of choosing
variable (for repair) based on its frequency in the qualifying rules set. This was followed by
developing method to learn and repair solutions in the presence of transition points in the
PO front. Furthermore, we also proposed a computationally inexpensive method using of
repairing variables when the learned rule is implicitly defined in terms of the variable to be

repaired.
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9.1 Contributions of this Thesis

The key contributions of this thesis, presented in the order of appearance in this thesis, can

be summarized as follows:

1. We developed a custom GP for a symbolic regression task that can learn rules from
data in form of algebraic expressions. This custom GP has many interesting ideas
implemented from the literature such as, bi-objective formulation to control bloat,
multiple small expression trees instead of a single expression tree to make genetic
operations on expression trees more efficient, weights learning using a faster classical
method such as OLSR to learn constants in the rule much more efficiently as compared
to regular GPs. We also developed a custom diversity preserving mechanism in GP
that penalizes duplicate solutions in the population while maintaining the relative
non-domination rank order between the penalized duplicates belonging to different

non-domination ranks.

2. We developed a custom dimensional inconsistency penalty metric that can calculate the
level of dimensional inconsistency in an algebraic expression. This metric is very helpful

in identifying PO set of rules learned by CGP that are not dimensionally meaningful.

3. We developed a custom GP for classification task that can learn decision boundary
between two classes as an algebraic expression using the problem features. This custom
GP performed well on binary class data from industry. The CGP could provide multiple
PO rules with varying trade-off between classification error and rule complexity. It
could also select the six most important features out of more than fifty features to
build the classifiers. These important features were in line with the understanding

of the process of our industry partners which they obtained by conducting physical
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experiments and analytic studies of the same process in a controlled environment.
Furthermore, the knowledge of dimensional consistency of these classifiers was found
to be beneficial for planning future experiments studies to understand the physics of

the process.

4. We developed the EMO/I framework that combines the idea of innovization with that
of an EMO algorithm. We could evaluate various repair strategies when repairing
solutions based on multiple rules in the form of algebraic expressions. Results on test
problems and engineering design problems show that choosing smaller rules first from

qualifying rules for repair is more beneficial for faster convergence of EMO.

5. We developed a custom methodology, active set partitioning, to address the issue of
learning rules and repairing solutions in the presence of transition points in the PO
front. Furthermore, a computationally efficient method of repairing solutions when a
rule is defined implicitly in terms of the variables is also suggested, which has been

shown to work on an engineering design problem.

9.2 Future Studies

This study has opened doors for many exciting ideas/questions to be explored next. A few

of them are mentioned below:

9.2.1 GP with in Tandem Dimensional Consistency Check

In Chapters [4] to [0, we have shown how a dimensional consistency check on the final PO

solutions of CGP is a powerful tool to shortlist dimensionally meaningful rules. Instead of
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using this check at the end of CGP, i.e. serially, it may be beneficial to use it during the run

of CGP. A few ways to use this dimensional inconsistency penalty are:

e Modifying the tree crossover operator in CGP to avoid crossover operation between
trees whose dimensional inconsistency penalties are very different. Similarly, making

sure not to mutate trees that have zero dimensional inconsistency penalty.

e Using the dimensional inconsistency penalty value in survivor selection operation of

the CGP instead of the currently used crowded tournament selection operator [31].

9.2.2 Non-linear Decision Trees

Figure 9.1| shows the idea of combining CGP with that of decision tree based classifier to
capture complex and even disconnected decision boundaries in the feature space. The figure
shows an arbitrary binary classification problem where the green patches represent Go class

data and the red color data represents the NoGo class data. If one uses only a decision tree

f, g, h are function of features or decision variables and obtained using one complete run of DAGP

Figure 9.1: The idea of combining CGP with a Decision Tree classification algorithm.

based classifier in this problem, the decision tree obtained will be very deep as a decision tree
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tries to partition the feature space parallel to the coordinate axes representing the features.
However, when combined with CGP such that each decision node of the decision tree is
obtained using a CGP run minimizing node impurity, the final tree will be a smaller tree
with each node of the tree being an algebraic expression of original features. Such a method

can be utilized to derive a classifier that is both effective and interpretable.

9.2.3 Experimenting with Different Definitions of Rule Complex-
ity

The complexity aspect of a learned model can be defined in many ways [94]. In CGP, we

defined complexity of a CGP individual simply as the number of nodes in the correspond-

ing expression tree. It can also be calculated differently if we assign various operators in

the function set of CGP different complexities based on some a-priori hierarchy. For ex-

ample, the set of operations {+, —, +, x} can be assigned a lower complexity value than

say {,/,exp(),log()} functions. These hierarchies can be based on user’s preference and

knowledge to aid the CGP in finding the appropriate rules from data.

9.2.4 Measuring Efficacy of Repairs

In the repair methodology chosen in Chapters [7] and [§] once at least one qualifying rule
is found to make repairs, an extra population with same size as the population size of
EMO/I is created that carries the repaired population. This may be inefficient use of the
computational budget as we get limited number of evaluations of the objective functions.
However, if we start measuring the efficacy of repair operation in every generation and then,

keep reducing/increasing the size of population for repair from previous generation based
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on the degradation/improvement of this repair efficacy metric, we may be able to use our
computational budget more efficiently. One metric to measure the efficacy of the repair
operation is the fraction of population members present in each generation that came via a
repair operation instead of any of the genetic operations.

Finally, we should apply the methods developed in this thesis to more real world problems
to make it more generally applicable. The ideas developed in this thesis can be very useful
for practitioners in MOO as well as machine learning. I hope that this thesis contributes, in
howsoever small way, towards bridging the gap between human expertise in optimal design

and its digital analog.
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