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ABSTRACT 

MACHINE LEARNING FOR POSE SELECTION 

By 

Jun Pei 

Scoring functions play an important role in protein related systems. In general, scoring functions 

were developed to connect three dimensional structures and corresponding stabilities. In protein-

folding systems, scoring functions can be used to predict the most stable protein structure; in 

protein-ligand and protein-protein systems, scoring functions can be used to find the best ligand 

structure, predict the binding affinities, and identifying the correct binding modes. Potential 

functions make up an essential part of scoring functions. Each potential function usually represents 

a different interaction that exists in a protein or protein-ligand system. In many traditional scoring 

functions, energies calculated from individual potential functions were simply sum up to estimate 

the stability of the whole structure. However, it is possible that those energies cannot be directly 

added together. In other words, some of those potential functions might describe more important 

interactions, whereas other potential functions are used to represent insignificant interactions. 

Hence, it will be useful to construct a model, which can emphasize the important interactions, and 

ignore the insignificant ones.  

With the development of machine learning (ML), it became possible to build up a model, which 

can address the importance of different interactions. In this work, we combined random forest (RF) 

algorithm and different potential function sets to solve the pose selection problem in protein-

folding and protein-ligand systems. Chapter 3 and chapter 5 show the results of combing RF 

algorithm with knowledge-based potential functions and force field potential functions for protein-

folding systems. Chapter 4 shows the result of combining the RF method with knowledge-based 



potential functions for protein-ligand systems.  As the results from chapter 3, chapter 4, and chapter 

5, it is obvious that the RF model based on potential functions outperformed all of the traditional 

scoring functions in accuracy and native ranking tests. In order to test the importance of potential 

functions, scrambled and uniform artificial potential function sets were generated in chapter 3, the 

test results suggest that the potential function set is important in the model, and the most useful 

information from knowledge-base potential functions are the peak positions. In chapter 5, the 

importance of the RF algorithm and potential functions were tested. The results also suggest that 

the potential functions are important, and the RF model is also necessary to achieve the best 

performance.  
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CHAPTER 1: INTRODUCTION 

 

1.1   Introduction for protein-folding pose selection 

 

According to the “thermodynamic hypothesis”, the native protein in its preferred chemical 

environment should have a structure with the lowest Gibbs free energy.1 Identifying the three 

dimensional protein structure with the lowest Gibbs free energy is important in many applications 

to protein systems, including protein folding,2-40 protein structure prediction,41-52 and protein 

design problems.53-61 It is a challenge to understand the relationship between the three dimensional 

structure of a protein and the corresponding stability. For example, in the protein design field, it is 

important to predict the native structure of a protein (most stable structure) to tailor the properties 

of that protein. Scoring functions were developed to connect three dimensional structures and 

corresponding stabilities. Currently, there are three broad categories of scoring functions for 

protein-folding. (i) Physics-based scoring functions,62-68 this kind of scoring functions usually 

employ relatively simple equations to represent bond, angle, dihedral, van der Waals, and 

electrostatic interactions and calculate the score of a protein at atomic level. (ii) Knowledge-based 

scoring functions,2-33 also referred to as statistical-based scoring functions. Those functions use 

crystal structures of proteins as the data source and extract the radial distribution functions of 

atom/residue pairs based on protein crystal structures. Then, the reference state can be constructed 

based on different statistical models to generate the “pure” interactions between different 

atom/residue pairs. Hence, those scoring functions can generate scores of proteins at 

atomic/residual level. (iii) Machine learning-based scoring functions (ML-based scoring 

functions),34-40 those functions usually include more features of a protein, which is hard to be 
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involved in physics-based and knowledge-based scoring functions. ML-based scoring functions 

utilize different ML algorithms and information from protein structures to predict the stabilities of 

protein structures.  
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1.2   Introduction for protein-ligand pose selection 

 

Similar to protein-folding pose selection described in section 1.1, scoring functions are also needed 

for protein-ligand pose selection problems. In drug discovery, it is important to identify the binding 

mode of a small ligand (identify the most stable binding pose). Without the information of the 

correct binding mode, it will be hard to optimize the lead structures. The existing scoring functions 

for protein-ligand systems can be classified as four groups: physics-based,69-79 knowledge-

based,80-91 empirical based,92-98 and ML-based scoring functions.99-110 The physics-based, 

knowledge-based and ML-based scoring functions are similar to those functions discussed in 

protein-folding pose selection. Empirical based scoring functions were constructed upon an 

assumption that the total binding affinity between a protein and ligand can be decomposed into 

basic components with different coefficients. The coefficients can be determined with a 

multivariate regression model and a benchmark contains experimentally determined protein-ligand 

structures and corresponding binding affinities.  
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1.3   Combine machine learning and conventional scoring function 

 

Currently, with the success of ML in the computer vision area, there are more ML-based scoring 

functions were developed for protein-folding and protein-ligand systems.34-40, 99-110 With the 

flexibility of ML algorithms, a large variety of information was employed as features in ML-based 

scoring functions. For example, in protein-folding systems, the secondary surface area of proteins 

and solvent accessible surface area were used as input features.35, 38 In protein-ligand systems, 

topological fingerprint  and three dimensional graph of a protein-ligand complex were used as 

inputs.100-101 And some of the information used in ML-based scoring functions cannot be used in 

other traditional scoring functions. Although those ML-based scoring functions achieved higher 

accuracy and lower computational cost than conventional scoring functions, some important 

information might be lost when the ML-based scoring functions were constructed.  

 

As we know, there are some well performed scoring functions in protein-folding and protein-

ligand systems. Hence, important information might be buried in those conventional scoring 

functions. Physics-based, knowledge-based, and empirical based scoring functions share a 

common character that, all of them employed potential functions to describe interactions between 

atoms/residues. Potential functions can be used to denote three dimensional structures as a series 

of pair wise energies. In conventional scoring functions, the importance of all pair wise energies 

were treated as the same. However, the importance of each pair wise energy might be different. 

Due to date and algorithm limitations, it is hard to address the importance of different pair wise 

interactions in the past. With the development of ML algorithms, it became possible to utilize ML 

models to address the importance of different interactions.  
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It is important to understand basic ML algorithms in order to select the suitable ML models, which 

can emphasize more important pair wise interactions and ignore insignificant ones. In general, 

most machine learning problems can be classified into two groups: supervised and unsupervised 

learning problems. Supervised learning refers to the cases when a model is fitted to predict values 

or categories. Unsupervised learning refers to the cases when there are no real values or classes to 

be predicted. In supervised learning, there are two categories of models, regression and 

classification. Regression models are usually used to predict continuous values, and classification 

models tend to predict the category of each input. In this study, the goal is to build up a ML model 

that can correctly identify the most stable structure in protein-folding and protein-ligand systems. 

Hence, supervised models can be used to solve the problem. On the other hand, it is hard to find 

experimentally determined values to describe different protein-folding and protein-ligand poses, 

therefore, classification models should be used to solve the problem.  

 

Considering ML classification models, logistic regression, decision tree, support vector machine, 

and random forest classifiers are basic models. Here, brief introductions about those methods will 

be discussed.111  
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1.4   Logistic regression 

 

In statistics, logistic regression models are usually used to calculate the probability of a certain 

event existing. This method is based on linear regression and used the sigmoid function to 

transform the continuous probabilities to binary classes. In general, for a linear regression model, 

if considering the input features as (x1, x2, x3, …, xm), the probability p can be calculated as 

following: 

𝑝(𝑥) = 	  𝜃*𝑥 = 	  𝜃+ +	  𝜃-𝑥- +	  𝜃.𝑥. + ⋯+	  𝜃0𝑥0                                                                      (1.1) 

where 𝜃+, 𝜃-, … , 𝜃0 are coefficients before each input element. In linear regression, probability p 

has continuous values in the range of (−∞,+∞). However, in logistic regression, the predicted 

value is expected to be 0 or 1. Hence, in logistic regression, a sigmoid function is usually needed 

to transform the continuous probabilities into binary classes. Following is the example of a sigmoid 

function: 

𝑔(𝑥) = 	   -
-6789

	  	  	  	  	  	                                                                                                                          (1.2) 

 

In logistic regression, the predictions can be calculated by using the following equation: 

ℎ;(𝑥) = 𝑔(𝜃*𝑥) = 	   -
-678<=9

	                                                                                                        (1.3) 

 

The above equation is usually called the logistic equation or sigmoid equation. Figure 1.1 shows 

the shape of the sigmoid equation. It is clear that when 𝜃*𝑥 is close to +∞, 𝑔(𝜃*𝑥) is near 1; and 

when 𝜃*𝑥 is close to −∞, 𝑔(𝜃*𝑥) is near 0. By using the sigmoid function, the range of predicted 

values can be changed from (−∞,+∞) to (0, 1).  
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The coefficients 𝜃 should be calculated to determine the functional form of ℎ;(𝑥). Usually, with 

a training set contains a set of inputs and corresponding classes, the parameters can be calculated 

by maximizing the likelihood between the predicted probabilities and actual classes.  

 

If we assume that: 

𝑃(𝑦 = 1|𝑥; 	  𝜃) = 	  ℎ;(𝑥)                                                                                                             (1.4) 

𝑃(𝑦 = 0|𝑥; 	  𝜃) = 	  1 −	  ℎ;(𝑥)                                                                                                     (1.5) 

 

If considering a training set contains m independently generated examples, the likelihood of the 

parameters can be written as below: 

𝐿(𝜃) = 	  ∏ 𝑝F𝑦(G)H𝑥(G); 	  𝜃)0
GI- = ∏ (ℎ;F𝑥(G)J)K

(L)(1 − 	  ℎ;F𝑥(G)J)-M	  K
(L)0

GI- 	                                 (1.6)  

 

Instead of maximizing the likelihood in equation (1.6), it will be easier to maximize the logarithm 

of the likelihood as below: 

𝑙(𝜃) = 𝑙𝑜𝑔𝐿(𝜃) = ∑ 𝑦(G) logℎ;F𝑥(G)J + (1 − 𝑦(G))log	  (1 − ℎ;F𝑥(G)J)0
GI-                                 (1.7)       

 

There are many methods (for example, gradient ascent, conjugate gradient, BFGS, L-BFGS) that 

can be used to maximize equation (1.7). Here, the gradient ascent method is discussed as an 

example. If we assume the learning rate is 𝛼, the update of 𝜃 will be 𝜃 = 	  𝜃 + 	  𝛼 UV(;)
U;

. One training 

example (𝑥, 𝑦) was used to show the calculation details as below: 

𝑙(𝜃) = 	  𝑦 logℎ;(𝑥) + (1 − 𝑦)log	  (1 − ℎ;(𝑥)                                                                           (1.8) 
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UV(;)
U;

= W K
X<(Y)

−	   -MK
-M	  X<(Y)

Z UX<(Y)
U;

= W K
X<(Y)

−	   -MK
-M	  X<(Y)

Z ℎ;(𝑥)F1 − ℎ;(𝑥)J
U;=Y
U;

= 	   (𝑦F1 −

ℎ;(𝑥) − (1 − 𝑦)ℎ;(𝑥)J𝑥 = F𝑦 − ℎ;(𝑥)J𝑥                                                                                                (1.9) 

 

Here UX<(Y)
U;

= 	  ℎ;(𝑥)F1 − ℎ;(𝑥)J
U;=Y
U;

 has been used, the derivation is in equation (1.10) as below: 

UX<(Y)
U;

= 	  
U [

[\]8<=9

U;
= (−1) × -

W-678<=9Z
_ × 𝑒M;

=Y × (−1) × U;=Y
U;

= 	   -
-678<=9

× 78<
=9

-678<=9
×	  U;

=Y
U;

=

	  	  ℎ;(𝑥)F1 − ℎ;(𝑥)J
U;=Y
U;

                                                                                                             (1.10) 

 

Hence, the update of parameters 𝜃 should be: 

𝜃 = 	  𝜃 + 	  𝛼F𝑦 − ℎ;(𝑥)J𝑥                                                                                                           (11) 

 

For one iteration, the parameters 𝜃 can be updated once, after several iterations, the parameters 

will be converged. Then, a logistic regression model will be constructed.  
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1.5   Decision tree 

 

The decision tree classification model is another important classifier other than logistic regression 

models. The decision tree algorithm can be used for both regression and classification problems. 

Based on the training data, decision tree models can learn a series of questions to infer the class 

labels of different examples. Figure 1.2 shows an example of a simple decision tree model. 

 

Considering the decision tree model in Figure 1.2, the most important challenge is to locate all 

questions, in other words, how to get the right order of questions  (condition) is the most significant 

problem of constructing a decision tree model. Here, we will go through the decision tree working 

methodology from first principles to understand the details about how to locate every question in 

the model. For example, a decision tree model is needed to predict if it is good to go out for jogging 

or not. First of all, a collection contains weather and jogging information can be obtained in Table 

1.1. 

 

Considering Table 1.1, every feature (includes weather, temperature, humidity, and wind) can be 

used to decide jogging or not. The order of the features to be used is needed to construct a decision 

tree for predicting the jogging decision. For example, should humidity or weather to be considered 

first? Which feature is the most insignificant one to make the decision? Here, the feature humidity 

is used as an example of calculations to determine the order of features. Table 1.2 contains the 

relationship between humidity and jogging decisions. Here, three values (Chi-square automatic 

interaction detection, information gain, Gini) can be calculated based on Table 1.2, and by using 

those three values, the order of features will be identified. 
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(1)  Chi-square automatic interaction detection (CHAID)  

 

Chi-square and degrees of freedom can be calculated using the following equations: 

𝐶ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 = 	  ∑ (+Mh)_

h
= 	   (M+.j)

_

k.j
+	  (+.j)

_

k.j
+	  (-.j)

_

k.j
+	  (M-.j)

_

k.j
= 1.4                                      (1.12) 

𝑑𝑒𝑔𝑟𝑒𝑒𝑠	  𝑜𝑓	  𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = (𝑟 − 1) × (𝑐 − 1) = (2 − 1) × (2 − 1) = 1                                   (1.13) 

In equation (1.13), r represents the number of row components in Table 1.2, c is the number of 

response variables. 

 

With Chi-square and degrees of freedom, the p-value (the right-tailed probability of the chi-square 

distribution) can be calculated with the function called “CHIDIST” in EXCEL. Here, the 

calculated p-value is 0.237. 

 

Similarly, p-values for each feature will be calculated, based on the calculated p-values, the order 

of features can be obtained, the best feature is the one with the lowest p-value. 

 

(2)  Information gain 

 

Based on Table 1.2, entropy can be calculated using the following equation. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	  −∑𝑝 × 𝑙𝑜𝑔.𝑝                                                                                                         (1.14) 

 

The concept entropy came from information theory, it represents the impurity in data. Entropy 

values are in the range of [0, 1]. As an example, the total entropy of humidity can be obtained with 

the equation as below: 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦*uvwV = 	  −
x
-y
× 𝑙𝑜𝑔. W

x
-y
Z − x

-y
× 𝑙𝑜𝑔. W

x
-y
Z = 1                                                           (1.15) 

 

Entropy values for high humidity and normal humidity can be calculated with equation (1.16) and 

(1.17) as following: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦zG{X = 	  	  −
k
|
× 𝑙𝑜𝑔. W

k
|
Z − j

|
× 𝑙𝑜𝑔. W

j
|
Z = 0.9544                                                       (1.16) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦�u�0wV = 	  	  −
y
�
× 𝑙𝑜𝑔. W

y
�
Z − .

�
× 𝑙𝑜𝑔. W

.
�
Z = 0.9183                                                   (1.17) 

 

With the three entropy values above, information gain can be generated as following: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	  𝑔𝑎𝑖𝑛 = 	  𝐸𝑛𝑡𝑟𝑜𝑝𝑦*uvwV −	  
7
14 × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦zG{X −	  

7
14 × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦�u�0wV 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  = 0.06365	                                                                                         (1.18) 

 

In equation (1.18), information gain represents the reduction in entropy if the feature humidity is 

split to “high humidity” and “normal humidity”. The goal of the decision tree is that, by splitting 

data, the resultant node only contains examples from a specific class. Hence, the feature with the 

largest information gain should be the most important feature. 

 

Similarly, the values of information gain for each feature can be calculated. Based on this 

information gain values, the order of features will be determined, the feature with the largest 

information gain is the best feature among all features. 

 

(3)  Gini 
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The value of Gini represents the degree of misclassification, it works similar to entropy but can be 

calculated faster. Equation (1.19) is the general way to obtain the value of Gini.  

𝐺𝑖𝑛𝑖 = 1 −	  ∑ 𝑝G.G                                                                                                                         (1.19) 

 

Here, the humidity is taken as an example of calculating the corresponding Gini value. 

𝐺𝑖𝑛𝑖zG{X = 1 −	  Wk
|
Z
.
−	  Wj

|
Z
.
	  = 0.4688                                                                                   (1.20) 

𝐺𝑖𝑛𝑖�u�0wV = 1 −	  Wy
�
Z
.
−	  W.

�
Z
.
	  = 0.4444                                                                               (1.21) 

 

Based on 𝐺𝑖𝑛𝑖zG{X  and 𝐺𝑖𝑛𝑖�u�0wV , the value of expected Gini can be calculated with the 

following equation: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	  𝐺𝑖𝑛𝑖 = 	   |
-y
× 0.4688 +	   �

-y
× 0.4444 = 0.4583                                                       (1.22) 

 

With the calculation details discussed above, the values of expected Gini can be obtained for other 

features, based on those values, the order of features can be generated. The best feature is the one 

with the lowest expected Gini.  

 

Based on the discussions above, one of CHAID, information gain, and expected Gini can be used 

to obtain the order of features. Then, the decision tree classifier will be generated with the order 

of features. 
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1.6   Support vector machine  

 

Besides logistic regression and decision tree classifier, another important classification algorithm 

is the support vector machine (SVM). In general, the SVM method is trying to construct 

hyperplanes by maximizing the boundaries between different types of data points, and those 

hyperplanes can create sub regions with the most homogeneous points. Based on working 

algorithms, support vector machines can be classified into three major methods: maximum margin 

classifier, support vector classifier, and support vector machine.  

 

(1)  Maximum margin classifier 

 

If considering a dataset which contains two categories of examples, and those examples can be 

separated by using a hyperplane. As we know, there will be an infinite number of hyperplanes can 

be used to separate the data set. The most challenge question is, which hyperplane is the best one 

to be used? The maximum margin classifier answers question that the hyperplane with the 

maximum margin of separation width is the best.  

 

If considering a dataset contains n training examples, 𝑥-, 𝑥., 𝑥k, … , 𝑥� (each x is a column vector 

and contains p elements), with corresponding labels, 𝑦-, 𝑦., 𝑦k, … , 𝑦� ∈ {−1, 1} . Then, the 

hyperplane defined by the maximum margin classifier is the solution to the following optimization 

problem: 

max
��,�[,…,��	  

𝑀                                                                                                                                   (1.23) 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡	  1:	   ∑ 𝛽G.
�
GI+ = 1                                                                                                         (1.24) 
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𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡	  2:	  𝑦GF𝛽+ +	  𝛽-𝑥G- +⋯+ 𝛽�𝑥G�J 	  ≥ 𝑀	  ∀	  𝑖 = 1, 2,… , 𝑛                                           (1.25) 

ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒:	  𝛽+ +	  𝛽-𝑥- +⋯+ 𝛽�𝑥� = 0                                                                                 (1.26) 

 

In equation (1.23), M is the width of the margin. Equation (1.25) represents the distance between 

an observation and the hyperplane. Equation (1.26) shows the form of the hyperplane. With the 

two constraints showed in equation (1.24) and (1.25), the hyperplane obtained will be the one with 

the maximum margin.  

 

Figure 1.3 shows the comparison between general hyperplanes which can be used to separate a 

data set and the hyperplane determined by the maximum margin classifier. The three points with 

a vector showed in Figure 1.3 (b) are called “support vectors”. The hyperplane determined with 

the maximum margin classifier can be obtained only with those three support vectors. If the support 

vector changes, the function of the hyperplane will change. On the other hand, if examples other 

than support vectors change, the hyperplane will stay the same.   

 

(2)  Support vector classifier 

 

A maximum margin classifier can only be used if there is at least one hyperplane that can separate 

the whole data set. However, there might be cases cannot be separated by a hyperplane. For those 

cases, a support vector classifier can be used instead of a maximum margin classifier. A support 

vector classifier works similarly to a maximum margin classifier, but they allow some observations 

in the margin area or on the wrong side of the hyperplane. The support vector classifier sacrifices 

some observations to guarantee the majority of data points are on the right side of the hyperplane.  
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In general, the hyperplane determined by a support vector classifier is the solution of the 

optimization problem as below: 

max
��,�[,…,��	  

𝑀                                                                                                                                               (1.27) 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡	  1:	   ∑ 𝛽G.
�
GI+ = 1                                                                                                        (1.28) 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡	  2:	  𝑦GF𝛽+ +	  𝛽-𝑥G- +⋯+ 𝛽�𝑥G�J 	  ≥ 𝑀(1 − 𝜖G)	  ∀	  𝑖 = 1, … , 𝑛                                (1.29) 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡	  3: 𝜖G 	  ≥ 0,∑ 𝜖G�
GI- 	  ≤ 𝐶                                                                                            (1.30) 

ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒:	  𝛽+ +	  𝛽-𝑥- +⋯+ 𝛽�𝑥� = 0                                                                                 (1.31) 

 

Here, equation (1.27), (1.28), and (1.31) are the same as the maximum margin classifier. The 

difference between a support vector classifier and a maximum margin classifier is the second and 

the third constraints. In a maximum margin classifier, the second constraint showed in equation 

(1.25) requires every observation to be on the right side of the margin area. In support vector 

classifier, the second constraint (equation (1.29)) allows some observations in the margin area or 

on the wrong side of the hyperplane.  Variable 𝜖  controls the positions of observations, and 

variable 𝐶  controls the total number of observations that are on the wrong side of margin or 

hyperplane. For example, if 𝜖G = 0, the corresponding point will be on the right side of the margin; 

if 𝜖G > 0	  𝑎𝑛𝑑	  𝜖G ≤ 1, the corresponding point will be on the wrong side of the margin and the right 

side of the hyperplane, in other words, the observation has violated the margin; if 𝜖G > 1, the 

corresponding example will be on the wrong side of the hyperplane. By tuning variable C in 

equation (1.30), we can control the number and severity of violations that the model tolerates. If 

𝐶 = 0, the support vector classifier is the same as a maximum margin classifier; if 𝐶 increases, 

more observations will be allowed to violate the margin, and the model will become more flexible. 
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(3)  Support vector machine 

 

Support vector classifier and maximum margin classifier require that there is at least one 

hyperplane can be used to separate the majority of the data set. However, there are data sets that 

cannot be separated by using a hyperplane. In order to separate those data sets, a support vector 

machine is needed.  

 

Figure 1.4 is an example of the support vector machine. In Figure 1.4 (a), the data points in a 

dataset are linearly distributed, all of the points are one dimensional points. It is obvious that there 

is no hyperplane can be used to separate the two classes. Hence, a maximum margin classifier and 

support vector classifier cannot be used in this case. By using a support vector machine, a concept 

called “kernel function” is used. In the specific case shown in Figure 1.4 (b), values of x12 are 

calculated to transfer those one dimensional data points to two dimensional. With the two 

dimensional points, a support vector classifier can be used to build up a hyperplane to separate the 

two classes. 

 

The general idea of support vector machine is to include more features to make the whole dataset 

in a higher dimension, then the support vector classifier can be used to separate those higher 

dimensional points. The challenge in a support vector machine is to find the best kernel function. 

There are four popular kernel functions, linear kernel, polynomial kernel, radial basis function 

(RBF) / Gaussian kernel, and sigmoid kernel functions. The polynomial and RBF kernel functions 

are popular choices.  
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1.7   The random forest algorithm 

 

Random forest (RF) model is an ensemble learning method, the algorithm can be used for 

classification, regression, and other tasks. A large number of decision trees were constructed to 

build up the RF model. The prediction from the RF model can be calculated as the vote result from 

all individual decision trees (classification) or the mean value of the predictions from all decision 

trees (regression).  

 

The first algorithm of RF was created by Tin Kam Ho,122 then, Leo Breiman116 and Adele Cutler123 

developed the extension of the algorithm and registered “Random Forests” as a trademark. RF 

model is built on single decision trees, to understand why the RF algorithm needs to be developed, 

it is necessary to understand the limitations of a single decision tree model. As discussed in section 

1.5, the decision tree model can be constructed by using CHAID, information gain, and Gini 

calculations. Based on those values, the order (importance) of each feature can be calculated. 

However, the decision tree model has a high risk of overfitting. If considering a whole data set be 

randomly split as two subsets (80% training, 20% testing), and two decision tree models are trained 

on the two different training sets. The order of features can be totally different for those two models. 

This is because the examples in the training data can strongly affect the importance (values of 

CHAID, information gain, and Gini) of each feature. In order to make the decision tree model with 

a lower variance, a bagging strategy is first used. Here, the bagging classifier is introduced.  

 

Bagging is referred to as bootstrap aggregation. It usually repeats training with the replacement of 

examples and performs aggregation of the result. It is a general methodology to reduce the variance 
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in a model. Figure 1.5 is an example of bagging. For example, the whole data set contains six 

observations (in real cases, the number will be much larger). Instead of fitting a decision tree model 

based on all six examples, the bagging algorithm selected subsets of the whole data set. In Figure 

1.5 there are two subsets selected (orange and blue). Based on the selected examples, two decision 

trees can be constructed to reduce the variance of the decision tree model built upon all examples. 

Theoretically, this procedure should reduce the variance value. However, this algorithm cannot 

reduce the variance efficiently. For all subsets selected by the bagging algorithm, they contain all 

features (columns). This might make the decision trees constructed on subsets correlated with each 

other. And those correlated trees might not be good enough to solve the overfitting problem from 

the decision tree model.  

 

RF model was developed to solve the problem that decision trees built on subsets might be 

correlated. Figure 1.6 shows an example of the RF algorithm. In the bagging algorithm, decision 

trees built upon different subsets tend to be correlated because every subset contains all existed 

features. In order to reduce the correlation between decision trees, the features considered in each 

subset should be different. In the RF algorithm, the RF model randomly selected some features in 

each subset to construct decision trees, and the correlation between those trees will be reduced. 

Hence, with the two dimensional randomness of selecting examples and features, the RF algorithm 

can effectively reduce the risk of overfitting.  
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CHAPTER 2: METHOD 

 

2.1 From potential functions to descriptors 

  

The general protocols for calculating descriptors for protein-folding and protein-ligand system are 

similar. Here, protein-folding system is used as an example to describe how to calculate the 

descriptors based on potential functions.  

 

If all independent pair wise probabilities with different magnitudes in an n-body system are known, 

the probability of the whole n-particle system can be obtained as: 

 

𝑝� = 	  ∏ 𝑐G� ∗ 𝑝G��
G,�I-,	  G�� ,                                                                                                         (2.1) 

where pn is the probability of the n-particle system, cij is the scaling factor, which can be evaluated 

using the random forest model, of pair wise probability pij, i and j represent two different particles. 

Using a knowledge-based potential with pair wise independent interactions, the independent pair 

wise probabilities for the bond, angle, torsion, and non-bonding terms can be obtained. If the 

protein structure is treated as a n-particle system, the probability is: 

𝑝��uv7G� = (∏ 𝑐G� ∗ 𝑝G�)(∏ 𝑐�V ∗ 𝑝�V)(∏ 𝑐0� ∗ 𝑝0�)(∏ 𝑐�� ∗ 𝑝��)�u� u�¡vu�¢Gu�w�{V7 u�¡      (2.2)    

pprotein is the protein structure probability, cab and pab represent the scaling factor and the 

probability of atom pair a and b, the subscripts ij, kl, mn, and pq correspond to bond, angle, torsion, 

and non-bonded atom pairs, respectively. In this work, we make two further assumptions: (i)  

∏ 𝑝 u�¡ u�¡  and ∏ 𝑝w�{V7w�{V7  are similar for native and all decoys, hence, the product of those 
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two values is treated as a constant C; (ii) the probabilities for the torsion and nonbond atom pairs 

are independent, since a reference state is used to remove contributions from the ideal-gas state. 

With these assumptions, the probability of a n-atom protein can be written as: 

𝑝��uv7G� = 𝐶(∏ 𝑐0� ∗ 𝑝0�)(∏ 𝑐�� ∗ 𝑝��)�u� u�¡vu�¢Gu�      (2.3)                                                                      

 

Taking the logarithm on both sides of equation (2.3) we get: 

𝑙𝑜𝑔F𝑝��uv7G�J = 	  𝑙𝑜𝑔(𝐶) + ∑ 𝑥0� ∗ 𝑙𝑜𝑔(𝑝0�)	   + 	  ∑ 𝑥�� ∗ 𝑙𝑜𝑔	  F𝑝��J�u� u�¡vu�¢Gu�  (2.4)                 

where xmn and xpq are the logarithm of  cmn and cpq, respectively. A detailed potential database, 

KECSA2, was utilized to obtain pmn and ppq. Below we use O-MET-CG-MET as an example for 

what is involved in calculating the pair wise probability of a given protein. From KECSA2, the 

probability versus distance function, shown as a red curve in Figure 2.1, can be found. If the 

distance between O-MET-CG-MET in the protein is 4.5 Å, we first obtain the corresponding 

probabilities for the distances from 4 Å to 5	  Å with an interval of 0.005 Å.  Next, we take the 

logarithm of the average of the 201 probabilities obtained in the previous step, and use it to 

represent the probability at distance 4.5 Å.  

 

Equation (2.5) shows a general way to obtain the probability of atom pair A-B with distance r1, 

where KECSA2A-B is the potential function of atom pair A-B obtained from the KECSA2 potential 

data base,  rABi is a distance between r1-0.5 and r1+0.5 with an interval of 0.005 Å.  

𝑝£M¤(𝑟-) = log¥∑ 𝐾𝐸𝐶𝑆𝐴2£M¤(𝑟£¤G)
�[6+.j
�[M+.j © − log	  (201)                                                      (2.5) 
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Using equation (2.5), the probability for each atom pair present in the protein can be calculated; 

for the same atom pairs, the probabilities were summed yielding the final probability. In this way, 

the probability list for each protein examined can be generated.  
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2.2 Random Forest model 

 

A traditional native structure recognition problem is detecting the native or most native-like 

structure from a collection of decoys. Many different scoring functions have been described2, 10-40, 

47-53  that attempt to address this problem. At first glance, it is hard to use unbalanced decoy sets 

as the training data set directly. Yet a balanced data structure can be generated if the decoy set is 

replaced with a ‘comparison’ data set. Instead of training ML model that focuses on directly 

finding the native structure from hundreds of decoys, we can create a ML model that can accurately 

distinguish between native and decoy structures. 

 

In a ‘comparison’ data set for decoy detection native structure should have the highest probability, 

which means: 

 

𝑙𝑜𝑔(𝑝�wvGª7)	   − 𝑙𝑜𝑔F𝑝¡7«uKJ	   > 0 

𝑙𝑜𝑔F𝑝¡7«uKJ	   − 𝑙𝑜𝑔(𝑝�wvGª7)	   < 	  0                                                                                             (2.6) 

 

Figure 2.2 shows a detailed workflow for our protocol. If a decoy set consists of one native and m 

decoys, for each structure, an atom pair wise descriptor (probability) can be built as described 

above. For each descriptor set, there are 16029 elements in total (KECSA2 has 2001 torsion atom 

pairs and 14028 nonbonded atom pairs, yielding 16029 = 2001+14028.). The descriptor sets are 

defined as the ‘Descriptor vector’ in Figure 2.2 Next, the descriptor vector of the native minus the 

vector of each decoy are classified as class ‘1’, which means ‘more stable than’ since the native 

structure is always more stable than the decoys; the descriptor vector of each decoy minus the 
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vector of the native is defined as class ‘0’, which represents ‘less stable than’. The resultant 

descriptors are described as the ‘final descriptor vector’ in Figure 2.2 In this way, equal members 

of class ‘0’ and class ‘1’ can be generated, which is an ideal situation for classification. Hence, a 

RF model can be obtained based on using those two classes. Through the use of this classification 

system a RF model can be generated where the relative probabilities of two proteins with the same 

sequence can be compared. A final descriptor vector can be generated using the descriptor vector 

of the first protein minus the second’s. Then the RF model can be used to predict the class for that 

final descriptor vector. If the prediction from the RF model is ‘1’, it means the first protein is ‘more 

stable than’ the second one, and if the prediction is ‘0’, the first protein is ‘less stable than’ the 

second one.  

 

Constructing a RF model that can accurately differentiate native and decoy structures is not enough. 

For a native recognition blind test, in order to identify the native structure, a ranking of all 

structures should be generated. Thus, the RF model needs to be used to obtain the ranking list for 

a decoy set. 

 

Figure 2.3 gives the protocol used to obtain the ranking of a decoy set with n structures. First, the 

probability descriptor of each protein structure can be built using the KECSA2 database. Second, 

a table for each structure was obtained from the probability descriptor of the individual protein 

structure minus the probability vectors of all the other structures. Then, the RF model is used to 

predict the class of each column in all tables; in other words, the RF model is used to ‘compare’ 

two structures. Finally, a row with length n-1 can be generated for each structure. The value of 

each column in the resultant row is either ‘0’ or ‘1’, which represents the comparison result of each 
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structure with all other structures. The sum of the resultant row is defined as a ‘score’, which 

indicates if the corresponding structure is more stable than the “score” amount of decoys. In this 

way, the score of each structure can be generated, thereby, creating a ranking list.  
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2.3 Decoy sets 

 

The decoy sets we used for protein-folding systems include the multiple decoy sets from the 

Decoys ‘R’ Us collection (http://compbio.buffalo.edu/dd/download.shtml), which include the 

4state_reduced, fisa, fisa_casp3, hg_structal, ig_structal, ig_structal_hires, lattice_ssfit, lmds, and 

lmds_v2 decoy sets. The MOULDER decoy set was downloaded from 

https://salilab.org/decoys/; the I-TASSER decoy set-II was obtained from 

https://zhanglab.ccmb.med.umich.edu/decoys/decoy2.html; and the ROSETTA all-atom decoy 

set from https://zenodo.org/record/48780#.WvtCA63MzLF.  

 

Our RF model for protein-folding systems was compared to the following potentials designed for 

decoy detection: KECSA2, GOAP,2 DFIRE,40 dDFIRE,37, 43 and RWplus.39 The programs for these 

methods were downloaded from the corresponding author’s website.  

 

For protein-ligand systems, 191 systems were selected out of the 195 systems in CASF-2013112 

due to formatting issues with our program. CASF-2013112 is known as the ‘Comparative 

Assessment of Scoring Functions’, it includes data sets for testing the scoring, docking, screening, 

and ranking powers of scoring functions. Here, we only used the data sets, which were designed 

to test the docking power of scoring functions. The decoy ligand binding poses were prepared with 

three popular molecular docking programs: GOLD(v5), Surflex-Dock implemented in 

SYBYL(v8.1), and the docking module built in MOE(v2011). These three programs have different 

algorithms for ligand pose sampling, therefore, the resultant decoy set is more complete and avoids 
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the bias inherent in using only one program. In total, we used 191 protein ligand systems, 15802 

ligand decoy poses, and 31604 native-decoy comparisons.  
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2.4 Structure preparation 

 

All protein structures (including both native and decoys) for protein-folding systems were 

converted into their biological oligomerization state and prepared with the Protein Preparation 

Wizard, REF which adds missing atoms, optimizes the H-bond network, and performs energy 

minimization to clean up the structures for subsequent calculations. The decoy sets can be found 

here https://github.com/JunPei000/protein_folding-decoy-set. 

 

Ligand pose structures are directly obtained from CASF-2013112 for protein-ligand systems. 
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2.5 Potential functions  

 

KECSA2 potential function set was used for the first project about protein-folding pose selection. 

KECSA2 is developed based on KECSA potential function set. KECSA REF is a potential data 

base originally designed for protein-ligand systems, we applied the same methodology used to 

derive KECSA to protein structures to generate KECSA2, a potential data base only for protein 

systems. The detailed derivation and parameters for KECSA can be found in reference 91. 

PDBbind v2014113 was used as the protein crystal structure source, two criteria were used to filter 

these structures, (1) protein structures with resolution better than 2.5 Å were selected; (2) Metal 

ions and residues within 4 Å around the metal ions were deleted. After filtering, 9606 protein 

crystal structure were selected as the protein structure source. A detailed atom type definition was 

used in the KECSA2 potential; in other words, every atom type represents a specific heavy atom 

in the twenty naturally occurring amino acids. For instance, ‘CA_ALA’ corresponds to the alpha 

carbon in alanine. In total, there are 167 atom types in KECSA2. The methodology of KECSA 

was used to construct the reference state and remove ideal gas contributions. Finally, 2001 torsion 

and 14028 nonbond atom pairwise interactions were generated. The follow function was used to 

describe the nonbond interactions between each atom pair: 

𝐸£¤(𝑟G) = 	   𝜀- W

�L
Z
®
−	  𝜀. W


�L
Z
�

                                                                                                  (2.7) 

 

The five parameters in equation (1), 𝜀-, 𝜀., 𝜎, 𝛼 and 𝛽 for each atom pair in KECSA2 can be found 

at https://github.com/JunPei000/protein_folding-decoy-set. 
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For protein-ligand systems, we used the GARF114 potential to calculate the pairwise probabilities 

for each protein ligand complex. GARF is a potential database developed by our group. It 

employed a graphical-model-based approach with Bayesian field theory to construct atom pairwise 

potential functions. There are 20 atom types for the protein atoms and 24 atom types for the 

ligands. All definitions of the atom types are listed in Table 2.1. Further details regarding GARF 

can be found in the original article.114 

 

The force field parameter sets ff94120 and ff14SB121 from Amber were also used for protein-folding 

pose selection. For ff94, atom types with their corresponding charges were obtained from file 

“all_amino94.lib” in directory “$AMBERHOME/dat/leap/lib/". Rmin,  𝜀 , and torsion related 

parameters ( 𝑉� , 𝑛 , and 𝛾 ) were from file “parm94.dat” in directory 

“$AMBERHOME/dat/leap/parm/". For ff14SB, atom types with corresponding charge values 

were obtained from file “amino12.lib” in directory “$AMBERHOME/dat/leap/lib/". Rmin and 𝜀 

values for each atom type were from file “parm10.dat”, in directory 

“$AMBERHOME/dat/leap/parm/". Torsion related parameters (𝑉�, 𝑛, and 𝛾) were gained from 

file “frcmod.ff14SB”, in directory “$AMBERHOME/dat/leap/parm/".  
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2.6 Machine learning and validation 

 

The sklearn.ensemble.RandomForestClassifier function from Scikit-learn was used to create the 

proposed classification model.115 One training-testing iteration includes: (1) Randomly split the 

whole data set into two parts, 80% as the training data set and 20% as the test set. (2) A grid search 

with five-fold cross validation was performed on the training set in order to identify the best set of 

hyperparameters for the RF model. (3) The RF model with the best set of hyperparameters was 

then validated on the test set. Although the data set is randomly split as training and testing sets, 

there is still a bias buried in the splitting procedure. In this work, ten independent iterations were 

performed on the combined decoy set in order to avoid bias from data partitioning scheme.  

 

Accuracy, a typical evaluation for ML classifiers, was used to evaluate the performance of RF 

models. An accuracy value can be calculated based on a “confusion matrix”, which is usually used 

in the supervised ML field. The general format of a confusion matrix is presented as Table 2.2.  

 

There are four values in a confusion matrix, which are True Positives (TP), False Positives (FP), 

False Negatives (FN), and True Negatives (TN). TPs refers to the cases whose predicted classes 

are class 1 - same as their actual classes. FPs are the cases predicted as class 1 whereas their actual 

class is class 0. FNs represent cases whose predicted class are class 0, however, their actual class 

is class 1. TNs represent the cases where the predicted class is class 0, which is the same as their 

actual class. Accuracy can be calculated based on these four numbers from the confusion matrix 

using: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	   *²6*�
*²6*�6³²6³�

                                                                                                                   (2.8) 
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In many cases, accuracy cannot be used to judge the performance of a ML classifier. For example, 

if considering a data set with 90 positive samples and 10 negative ones, a naïve classifier will 

predict all samples as positive. At the same time, the accuracy of that naïve classifier is 0.90. 

However, it is obvious that the naïve classifier is not able to provide reliable predictions. In this 

work, accuracy can be selected to represent the performance of RF models due to the fact that, the 

data base is evenly distributed (the numbers of positive and negative samples are the same). On 

the other hand,  ten accuracy values can be obtained from ten independent RF models built with 

different data partitioning schemes, the highest, lowest, and averaged accuracy values were used 

to represent the general performance of RF models. 
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CHAPTER 3: RANDOM FOREST MODEL WITH KECSA2 FOR 

PROTEIN-FOLDING POSE SELECTION 

 

3.1 Accuracy of individual decoy set training 

 

The most important characteristic of the resultant scoring function is its ability to differentiate the 

native structure from decoys. Table 3.1 shows the accuracy for both the RF models and traditional 

scoring functions. Since ten cycles of independent training and testing were performed for each 

decoy set, the highest, lowest, and averaged accuracy were used to represent the general 

performance of RF models on that specific decoy set. In this way, the performance of the RF model 

can be better interpreted. In general, the RF model shows higher accuracies than all traditional 

methods for all of the decoy sets. For some decoy sets, like fisa, ig_structal, lmds_v2, and rosetta, 

RF models significantly improved the averaged accuracy to nearly 1.000, and the lowest accuracy 

values are still higher than the best accuracies of the other scoring functions. For the other decoy 

sets, such as 4state_reudeced, fisa_casp3, hg_structal, ig_structal_hires, I-TASSER, lattice_ssfit, 

lmds, and MOULDER, the averaged accuracies from the RF models are similar to the best 

accuracies of traditional scoring functions, while the lowest accuracies of the RF models are 

similar to the accuracies of other methods. Overall, the RF models show better performance. 
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3.2 Native ranking of individual decoy set training 

 

Although the accuracies of RF models are higher than other methods, we still wanted to further 

validate their performance. Other than accuracy, another important criteria for judging a 

model/scoring function is whether the model/scoring function identifies the native structure as 

having the lowest rank. Hence, native structure ranking from the different methods were also 

compared. Table 3.2 shows the rankings of the native structures from several different models. 

The highest, lowest, and averaged rankings are shown to assess the performance of RF models. 

For the decoy sets fisa, ig_structal, lmds, lmds_v2, and ROSETTA, the RF models substantially 

improves native structure ranking over the other models. In the remain decoy sets, the averaged 

rankings of native structures are similar to the best performance of the other scoring functions. It 

can be concluded that, in general, the RF model shows a better performance in ranking the native 

structure over other methods we tested. 
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3.3 1st decoy RMSD and TM-score of individual decoy set training 

 

Although the ability to recognize the native structure as the most stable structure is a crucial 

characteristic of a good model/potential. For a model/potential to be useful for guiding 

conformation sampling, it should have a good correlation with structural quality. The RMSD and 

TM-score were used as two criteria for assessing the quality of each decoy structure.  RMSD is 

the root mean squared deviation of all Ca pairs of the decoy to the native structure. TM-score47 

gives a large distance a small weight and makes the magnitude of TM-score more sensitive to the 

topology. Table 3.3 and Table 3.4 summarize the results of best model selection of different 

methods. 

 

Table 3.3 shows the 1st decoy’s RMSD of RF models and against a range of available scoring 

functions. The RMSD values of available methods are generally within the range of lowest and 

highest RMSD values of the RF models for each decoy set. This means the performance of those 

traditional scoring functions are within the confident range of our RF models. Table 3.4 shows the 

1st decoy’s TM-score for the RF model and against several models; these results are similar to 

what we observed for the RMSD analysis. In each decoy set, the 1st decoy’s TM-score is within 

the range of the lowest and the highest TM-score from the RF models. Considering that the 

independent training and testing process was done ten times, the range of lowest to highest 

RMSD/TM-score values show the confidence range of RF models for each decoy set.  In general, 

the RMSD/TM-score performance of available models are within the confidence range of the RF 

models, and the averaged values are similar in RF models and models we tested against. In other 
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words, the performance of the RF models against a range of models, when it comes to selecting 

the best decoy structure, were similar. 
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3.4 Feature importance analysis for the overall decoy set 

 

It is important to understand whether the better performances of RF models are due to overfitting 

because a large number of descriptors were used. To this end, a feature importance analysis was 

performed and is shown in Figure 3.1. Based on the analysis, new RF models using only the top 

500 features were constructed using the previous procedure. Table 3.5 shows the comparison of 

the accuracies between using only the top 500 and all 16029 features. In general, the highest, 

lowest, and averaged accuracy values of the RF models using the top 500 features for each decoy 

set are similar to the corresponding values of the RF models using all features. Hence, we conclude 

that the better performance of RF models with all features is not simply due to overfitting and the 

current method is robust even in the face of potentially non-essential features.  

 

 

 

 

 

 

 

 

 

 

 

 



   37 

3.5 Comparison of overall RF model with traditional scoring functions 

 

Besides creating RF models for each individual decoy set, combined RF models using all decoy 

sets were also constructed. This examines the situation where in a study one might generate decoys 

using one method and then score them with another. There were 291 individual systems across the 

12 decoy sets that were combined finally, yielding 235 different protein systems (several proteins 

overlapped amongst the decoy sets). In these studies, 80% of the combined data set was used as 

the training data to build the RF models instead of choosing several specific decoy sets (like 

4state_redueced, fisa, etc.). This was done to insure that the training and testing data set covered 

the same feature space and had the same distribution – this is known as an independent and 

identical distribution (IID).116 The feature space and distribution of decoys from different decoy 

sets are different because different models were used to generate those structures.  

 

Table 3.6 shows the result of comparing the overall performance of RF models with a number of 

available potentials. Due to the large number of descriptors, it is impossible to obtain RF models 

using the entire 16029 feature set. Based on the importance analysis discussed previously, instead 

of using all features, top 100 and 500 features were used to build up the overall RF models on the 

combined decoy sets. First, all RF models with different importance features provide higher 

averaged accuracy values than other traditional scoring functions. Clearly, the accuracies of the 

RF models outperform the other conventional methods. Second, the highest rankings of the native 

structure from RF models are smaller than the rankings of other methods, and all of the averaged 

rankings of the RF models were ~10 or less, which means the RF models can identify the native 

structure within the top ten structures. Hence, the RF models outperform other methods on this 
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task. Finally, the RMSD and TM-score values of conventional potentials are within the 

corresponding confidence range of the RF models, and those values are similar to the averaged 

RMSDs and TM-scores of the RF models. Both the RMSD and TM-score results suggest that the 

performance of the RF models is similar to other conventional potentials. 
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3.6 Importance of potential 

 

Based on the previous discussion, it is clear that the RF models with KECSA2 perform the best in 

accuracy and ranking both on individual and overall decoy sets. This directly leads to the 

interesting question: does the potential plays a significant role in RF models? Here, two analyses 

were done to address the importance of the KECSA2 potential in the performance of the RF model. 

First, the probability functions of top 100 and 500 features (atom pairs) were scrambled to test if 

the probability functions played a role in the RF model, for example, after scrambling, the 

probability function of atom pair O-PRO and N-ALA might be changed to the probability function 

of CA-GLY and C-THR. If the KECSA2 potential plays a role in RF models, the performance of 

the scrambled probability functions should be worse than KECSA2. The peak positions in the 

probability functions represent the most favorable distances between different atom pairs found in 

the experimental structure database. For example, the peak position of the atom pair O-PRO and 

N-ALA is 3.04 Å, which means those two atoms are most stable when they form a hydrogen bond 

at that distance. However, after scrambling, the peak position might change to 4.51	  Å  (peak 

position of CA-GLY and C-THR), which no longer represents a hydrogen bond. Thus, the 

scrambled probability function suggests that the atom pair O-PRO and N-ALA is most stable when 

they do not form a hydrogen bond. It is clear that the scrambled probability functions are 

unphysical. We expect that it would be unlikely that the RF model, as employed herein, could 

correct these deficiencies so, the performance of the scrambled probability function is expected to 

be worse than original KECSA2. 
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Second, the uniform probability functions (or potential functions) were built for the top 100 and 

500 atom pairs to test if the KECSA2 probability peak heights (or well-depths) are important in 

RF models. The uniform probability functions have the same peak positions found in KECSA2, 

but with same heights. By doing so, the interaction strength ‘bias’ of different atom types from 

KECSA2 can be eliminated via use of uniform probability functions. If the KECSA2 probability 

peak heights (or interaction potentials) are significant, the performance of uniform potential should 

be worse than KECSA2.  

 

The comparison of the result between the original KECSA2 potential, scrambled potential, and 

uniform potential are shown in Table 7. From the comparison between the original KECSA2 and 

the scrambled potentials, we find the accuracy of the models decreased by ~0.15, which gives a 

clear signal that the full KECSA2 potential (well depth and energy minimum) plays a role in RF 

models. The comparison between the uniform and original KECSA2 potential gives an evidence 

of how important the rmax component of the KECSA2 potential is in building an effective model. 

For the RF models with the top 100 features, the averaged, highest, and lowest accuracies based 

on the original KECSA2 potential are slightly higher than the corresponding accuracies from the 

RF models based on uniform potentials. However, if the number of features is increased to 500, 

the averaged, highest, and lowest accuracies from the RF models based on the original KECSA2 

are similar to the uniform potentials. This provides strong evidence that only peak positions in the 

probability functions are critical in building up RF models for native protein structure detection. 

More importantly, the result also implies that RF models can be used to tune the height of peaks 

in probability functions (or the depth of potential functions) only with the information of peak 

positions in protein structures. 
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3.7 Conclusion 

 

In this work, we utilized a ‘comparison’ concept to construct RF models on an unbalanced data 

set. With these RF models, the knowledge-based potential, KECSA2, was refined via assignment 

of different importance factors to different atom pairs present in the scoring function. The 

performance of the resultant RF models were assessed with individual and combined decoy sets 

and compared with the results from conventional models. We find that the RF models perform 

better in accuracy and native ranking and have similar performance in the RMSD and TM-score 

tests. In other words, the RF models improved the effectiveness of finding native structures from 

a set of decoys, without compromising their ability to find the best decoy structures. This RF model 

based refinement not only can be used to improve the performance of KECSA2, but it can also be 

applied to other atom/residue pair based potentials. More importantly, we find that only peak 

positions in probability functions play a significant role in constructing the RF models. This result 

implies that, with peak position information, RF models can be created to construct probability 

functions (or potential functions) by tuning the height of peaks in those functions based on native 

and decoy protein structures.  
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CHAPTER 4: RANDOM FOREST MODEL WITH GARF FOR 

PROTEIN-LIGAND POSE SELECTION 

 

4.1 Accuracy 

 

The most important goal of a scoring function is to accurately identify the native structure among 

a plethora of decoy structures. In order to evaluate the ability of a scoring function to identify the 

native structure, the concept of accuracy is used in this work. If a decoy set contains 100 decoy 

structures but only one native, the scoring function is expected to make 200 correct comparisons 

to identify the native pose. The higher the accuracy of the comparison, the better the performance 

of the scoring function. The third column in Table 4.1 shows the comparison of accuracies from 

RF models and 29 other scoring functions. The averaged, highest, and lowest accuracy of the RF 

models are 0.953, 0.969, 0.942. The averaged accuracy value is higher than all of the other tested 

scoring function, and the lowest accuracy value is still higher than all of the other accuracies. It is 

clear that the RF models have a higher accuracy, which means that the RF models perform better 

than all other scoring functions in comparing the ligand native pose to decoy poses. 
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4.2 Native ranking 

 

Other than accuracy, another criteria for evaluating a scoring function is the ranking of the ligand 

native pose. In other words, a scoring function is expected to give the ligand native pose the lowest 

rank. The fourth column in Table 4.1 shows the result of ligand native pose ranking from each 

method. The averaged, highest, and lowest ligand native pose ranking from RF models are 4.49, 

5.54, and 3.54, respectively. The confidence interval of the native pose’s ranking from RF models 

is [3.54, 5.54]. It is clear that all 29 scoring functions have ligand native rankings higher than the 

averaged native ranking obtained from the RF models, and of these rankings they are larger than 

the highest native ranking from the RF models. Thus, it can be concluded that the RF models 

perform better in selecting the ligand native pose than existing models. 

 

If the accuracy values are compared with the ligand native pose rankings, a correlation between 

those two sets of data can be found. The higher the accuracy, the lower the native pose ranking. 

The most important goal of a scoring function is to identify the most stable ligand pose (native 

pose), therefore, the minimum standard for a scoring function is to correctly compare native pose 

to decoy ones. Using our previous example of a decoy set containing 100 decoy structures and one 

native pose we have 200 comparisons between the native and decoy poses. Hence, minimally the 

scoring function should make 200 correct comparisons to obtain the native structure. With more 

correct comparisons, the native pose has a higher chance to be found at a lower rank. For example, 

if the scoring function makes ten mistakes, the accuracy is around 0.95, and the ligand pose ranking 

would be ≥ 5. 
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4.3  Random Forest model with decoy comparison information 

 

Our RF model is focused on identifying the native binding pose of a ligand among all decoy poses. 

However, it is not effective in identifying the best decoy due to the lack of comparison information 

between the best decoy structure and the other decoy poses. In order to include the comparison 

information between decoy poses into the RF analysis we made the following assumption. The 

assumption is that the ligand decoy pose with the lowest RMSD is the most stable decoy structure 

(best decoy pose). Figure 4.1 shows the protocol of adding comparisons between the best decoy 

pose and other decoy poses. For example, a decoy set contains m decoy structures and one native 

pose, two kinds of comparisons were considered when the model was trained: (1) the comparison 

between the native binding pose and all other decoy poses, in total there are 2m comparisons (m 

comparisons for each class); (2) without the native binding pose, the best decoy pose was compared 

with all other decoy poses for a total of 2(m – 1) comparisons. Then, RF models, which were 

trained on these comparisons, were used to select the best decoy through the protocol discussed in 

chapter 2. 
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4.4 1st decoy RMSD and TM-score 

 

Besides accuracy and native pose ranking, there is another criteria, RMSD of the best decoy 

structure, which is used to judge the performance of a scoring function. The best ligand decoy pose 

refers to the decoy structure that is selected by a scoring function as the structure among all decoy 

poses most similar to the native pose. Scores generated by a scoring function are expected to be 

correlated with the quality or native-likeness of a structure. The RMSD value between the ligand 

native binding pose and a decoy binding pose is often used to represent the quality of that decoy 

pose. If the RMSD is below a predefined cutoff (RMSD < 2 Å), the decoy binding pose is believed 

to be “native-like”. The last column in Table 4.1 shows the RMSD values from each of the scoring 

functions. The averaged, highest, and lowest RMSD values from RF models are 3.87 Å, 4.47 Å, 

and 3.38	  Å, respectively. The confidence interval for the RF models is [3.38, 4.47]. It is clear that 

there are 26 scoring functions that can identify ligand decoy poses with RMSDs lower than 3.38	  Å, 

and two scoring functions provide RMSD values within the confidence range of the RF models. 

In general, 28 scoring functions perform better than our initial RF models in selecting the best 

decoy structure. 

 

The RF models used in Table 4.1 only contain comparisons between native and decoy poses, while 

comparison information between decoy poses was not considered when the models were trained.  

Hence, we conclude, that these RF models do not have enough information to find the “best” ligand 

decoy poses among a large number of decoy structures. In order to improve our RF models’ ability 

to identify the best decoy structure, comparison information between decoy poses should be added 

when training the RF models. Here, we make an assumption that, among all decoy poses, the pose 



   46 

with the lowest RMSD is perhaps the most stable of all the decoys because it is most “native-like”. 

With this assumption, the comparison between the best decoy and other decoy poses could be 

generated. Instead of just using comparisons between native and all decoy poses, the new training 

set also included comparisons between the best decoy pose and all other decoy poses. Table 4.2 

shows the result when different number of decoy structures were identified as the most stable 

poses. Four sets of training data were used: (1) only including comparisons between the native and 

decoy poses; (2) including comparisons between the native and decoy poses, and between the 

decoy structure with the lowest RMSD with all other decoy poses; (3) including comparisons 

between the native and decoy poses, between the two lowest RMSD decoy poses and all other 

decoy poses; (4) including comparisons between the native and decoy poses and, between the three 

lowest RMSD decoy poses with all other decoy poses. Table 4.2 gives the overall performance on 

accuracy, ligand native pose ranking, and the best decoy RMSD. With the inclusion of decoy 

structures in the training set, the accuracy of the RF models and the ligand native binding pose’s 

ranking were slightly negatively affected. On the other hand, the best decoy pose’s RMSD dropped 

dramatically. The averaged, highest, and lowest RMSD of the best decoy pose from RF models 

trained on data set only including comparisons between native and decoy binding poses are 3.87 

Å, 4.47 Å, and 3.38 Å, respectively. Alternatively, the corresponding values from RF models 

including the three lowest RMSD decoy structures are 2.27 Å, 2.44 Å, and 1.73 Å, respectively 

(confidence interval is [1.73, 2.44]). By including low RMSD decoy structure comparisons we 

obtain RF models (see Table 4.1) that give better first decoy RMSDs than 13 scoring functions, a 

further 15 scoring functions have first decoy RMSDs with the confidence interval of the RF model 

and only one scoring function gave a RMSD smaller than 1.73 Å. Hence, we conclude that the 
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overall performance (i.e., accuracy, native rank, and low RMSD first decoy) of RF models can be 

improved by including lowest RMSD decoy comparisons in the fitting of the model.  

 

Based on previous discussion, it is clear that with a higher accuracy, a scoring function can give 

the native binding pose a lower rank. If the accuracy values are compared with the RMSD of the 

best decoy, it is obvious that those two sets of data do not appear to correlate. Some scoring 

functions are better at selecting the native pose but provide a relatively larger RMSD value, 

whereas other scoring functions do a better job selecting the best decoy structure but do not have 

the ability to identify the native binding pose. This leads to a basic philosophical question: which 

one is more important, accuracy or RMSD? Both of them should be important in the limit that all 

decoy poses can be obtained. However, it is almost impossible to generate all relevant decoy poses 

using contemporary approaches. In our opinion, the basic requirement for a scoring function is that 

the function can accurately identify the native pose. To some degree, RMSD might be useful in 

judging if a structure has a low free energy, but it is obvious that a decoy structure can have a high 

free energy while enjoying a low RMSD value. Hence, if two scoring functions were compared 

solely on identifying the best decoy and one gives a RMSD larger than 2 Å while another is less 

than 2 Å, it is unclear, at least to us, how to judge which one is better. On the other hand, accuracy, 

the factor that represents the performance of a scoring function when comparing native and decoy 

poses, is a clear standard. The explicit hypothesis we are making when docking and scoring is that 

the native structure always has a lower free energy than the decoys. When comparing two scoring 

functions, the better scoring function should be the one with a higher accuracy. Put another way, 

when creating, for example, ML models for a self-driving car what is more important – accurately 
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identifying an obstacle or being close to identifying an obstacle? Therefore, we believe that 

accuracy is the more important criteria.  
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4.5 Uniform probability function 

 

The RF models perform better than all other scoring function on accuracy and native binding pose 

ranking. It is interesting to consider if the GARF potential is critical in these RF models. Two tests 

were set up in order to test the importance of the GARF potential database. First, a scrambled 

probability function set was constructed based on GARF followed, by a uniform probability 

function set to test whether GARF’s peak position is more important or if the peak height is more 

critical.  

 

The scrambled probability function set was generated by randomly mixing up the atom pairs in 

the GARF potential database. Taking the 480 atom pairwise potential functions in GARF we 

randomly scrambled the atom pair names. For example, before scrambling, one probability 

function represented the interaction between N and O.co2, while after scrambling, the same 

probability function might be used to describe the interaction between C and F. Hence, the 

scrambled probability function set is physically unrealistic. Based on the scrambled probability 

function set, ten independent RF models were constructed following the same procedure described 

in the methods section. Since the scrambled function set is physically unrealistic, it is expected 

that the performance of these RF models would be worse than models using the original GARF 

potential. 

 

There are two kinds of information embedded in the GARF potential, peak positions (well 

position) and peak heights (well depth). Which is more important – or are both important? To 

address this a uniform probability function set was built up to probe this fundamental question. 
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Uniform probability functions share the same peak positions with the original GARF potential, but 

set all the peak heights at a constant value eliminating the impact of prior peak heights. If the 

obtained RF models based on a uniform probability function set performs similarly to models 

obtained with the original GARF, peak positions will be more important than peak height.  

Alternatively, if the obtained RF models perform more poorly than original the models peak height 

is significant.  

 

Table 4.3 compares the accuracy result from RF models based on the original, scrambled, and 

uniform GARF potential database. If we compare the accuracy values between RF models based 

on original and scrambled GARF, it is clear that the averaged, highest, and lowest accuracies from 

RF models with a scrambled probability function perform poorer. The accuracy value did not drop 

as much as we have seen in the past51 because the GARF potential only contains intermolecular 

interactions found in protein ligand systems. Moreover, the 480 peak positions found in GARF are 

all in the range of [2.5, 5.1] with 355 peak positions in the range of [3.4, 4.4] (see Table 4.4). 

Therefore, the scrambled peak positions in the scrambled probability function set might be similar 

to the original positions in GARF. It is reasonable to expect that the accuracy of RF model based 

on scrambled probability function set is lower than the corresponding values from original models. 

On the other hand, if we compare the accuracy values from the uniform probability function set to 

the values provided by the original RF models, it is obvious that the averaged accuracy values 

from those two sets of models are the same. This further supports the notion that peak position is 

more important than well depths in given a potential function used to build a RF model.117  

 

 



   51 

4.6 Influence of training set size 

 

Usually in the field of supervised machine learning, especially when the data set does not contain 

a large number of data points, it is common to split the data set into training (80% of total, 16% 

cross validation set, five-fold cross validation in training data) and test sets (20% of total). The 

80:20 ratio works well in most cases, but we wanted to test whether the RF models can achieve a 

similar accuracy with a smaller training set. Table 4.5 shows the accuracy result from RF models 

based on the original and uniform GARF data base trained on data sets of differing sizes. Figure 

4.2 is the corresponding plot obtained using the data of Table 4.5. The blue and orange lines in 

Figure 4.2 represent the performance of RF models based on the original and uniform GARF 

database, respectively. Both lines show that by increasing the size of the training set, the accuracy 

of RF models generally increased. Accuracy values converge with training sets >60% and the RF 

models based on the original and uniform GARF potential have the same trend.  
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4.7 Conclusion 

 

In this work, we constructed RF models on unbalanced data sets utilizing the ‘comparison’ concept 

to identify native protein-ligand poses. Using RF, the GARF potential database was refined by 

assigning different importance factors to each atom pair in that potential. The resultant RF models 

were tested on a well-known protein-ligand decoy set, CASF-2013,5 which includes decoy 

structures generated from three docking packages using different docking algorithms. The results 

suggest that our RF models outperformed other scoring functions on accuracy and native binding 

pose selection. By including comparisons between the best decoy pose and the remaining decoy 

pose structures, the RMSD value of the best decoy was reduced. We also tested the importance of 

GARF in creating the corresponding RF models. The use of a scrambled GARF probability 

function to build a RF model provided evidence for the significance of the GARF potential, while 

the uniform GARF potential indicated that peak position (or the well position) is most relevant in 

building a RF model. Finally, we tested the influence of training set size, which showed that the 

accuracy converged when ~60% of the data set was used in building the RF model. Overall, we 

showed that potential function based RF models perform at a high level when identifying a native 

pose from a collection of decoys.  
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CHAPTER 5: COMBINE RANDOM FOREST WITH AMBER FORCE 

FIELD FOR PROTEIN-FOLDING POSE SELECTION 

 

5.1 Definitions of atom types, torsion types, and nonbond types 

 

For protein systems, Amber has its unique definition for atom types. It uses three parameters – 

atomic charge, potential well depth-𝜀, and van der Waals radii - to assign different atoms in various 

chemical environments. Atoms sharing the same values for 𝜀 and van der Waals radii were defined 

as one atom type; however, atoms belonging to the same atom type by this criteria might have very 

different charges due to different chemical environments. For example, the gamma carbon (defined 

as ‘CG2’ in pdb format and ‘CT’ in Amber atom type format) in isoleucine has a charge value of 

-0.3204, whereas the delta carbon (defined as ‘CD’ in pdb format and ‘CT’ in Amber atom type) 

in proline has a positive charge as 0.0192. Hence, atoms with different charge values but the same 

Amber atom type necessarily had to separated into different atom types. In this work, charge, 𝜀, 

and van der Waals radii were used to define different atom types. Table 5.1 and Table 5.2 

summarizes the names of our atom types, their corresponding values of charge, 𝜀, and van der 

Waals radii in ff94 and ff14SB force field, respectively. In total, there are 191 detailed atom types 

for both the ff94 and ff14SB force fields.  

 

Definitions of torsion types in Amber are based on Amber atom types, hence, with detailed atom 

types, representations of torsion interactions must also be redefined. In Amber, it primarily uses 

four atoms to define a torsion type, for example, X-CT-CT-X (X represents any atom), represents 
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torsion interactions between any two atoms connected by two CT atoms. This definition eliminates 

the total number of torsion interactions, however, it lumps different and unique torsion information 

together. Here, it is necessary to split the Amber torsion types based on our more detailed atom 

type definitions. For example, the Amber torsion type “H -N-C- O” (ff94) is split by us into 14 

torsion types as “H-0 -N-C- O-0”, “H-0 -N-C- O-1”, “H-0 -N-C- O-3”, “H-0 -N-C- O-5”, “H-1 -

N-C- O-0”, “H-1 -N-C- O-1”, “H-1 -N-C- O-3”, “H-1 -N-C- O-5”, “H-4 -N-C- O-2”, “H-5 -N-C- 

O-0”, “H-5 -N-C- O-1”, “H-5 -N-C- O-3”, “H-5 -N-C- O-5”, and “H-6 -N-C- O-4”. In this way, 

torsion interactions in different chemical environments can be classified as different torsion types.  

For instance, torsion type “H-4 -N-C- O-2” represents the torsion interaction between the HD and 

OD1 atoms in ASN’s sidechain. 

 

Other than torsion angles, nonbond interactions are also redefined based on the available atom 

types. For example, “C-0_C-1” represents the nonbond interaction between C-0 and C-1 atoms, 

and so on. Briefly, in this work, for ff94, there are 191 detailed atom types, 1,143 torsion types, 

and 18,336 nonbond types; for ff14SB, there are 191 detailed atom types, 1,175 torsion types, and 

18,336 nonbond types. 
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5.2 From Amber parameters to descriptors 

 

In Amber, the total energy of a protein structure can be calculated as follows:118 

 

𝐸vuvwV = 	  ∑ 𝑘 (𝑟 −	  𝑟+). u�¡¢ +	  ∑ 𝑘;(𝜃 −	  𝜃+).w�{V7 +	  ∑ 𝑉�[1 + 𝑐𝑜𝑠(𝑛𝜙 − 	  𝛾)]¡GX7¡�wV¢ +
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Where 𝑘  and 𝑘; are force constants,  𝑟+ and 𝜃+ are equilibrium bond lengths and bond angles, 

respectively. 𝑉�, 𝑛, and 𝛾 are the torsion barrier, phase, and periodicity, respectively. 𝑅0G� is the 

sum of van der Waals radii of atoms i and j. 𝜀 is the depth of the potential well for the interaction 

between atoms i and j. 𝑞G and 𝑞� are charges on atoms i and j. 𝑅G� is the distance between atom i 

and j. Here, we make the first assumption that, in both native and decoy protein structures, all bond 

and angle interactions are identical. Hence, the total energy of a structure can be simplified to: 

 

𝐸vuvwV = 	  𝐶𝑜𝑛𝑠 + ∑ 𝑉�[1 + 𝑐𝑜𝑠(𝑛𝜙 − 	  𝛾)]¡GX7¡�wV¢ +	  ∑ ∑ ¸¹º»L¼
[_
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Where Cons is the total energy for the bond and angle interactions. With parameters extracted from 

Amber, the energy of one specific torsion interaction, which is the sum of the dihedral, 1_4 van 

der Waals, and 1_4 electrostatics energies, can be calculated using equation (3): 
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𝐸£M¤MÁMÂ = 	  𝑉£M¤MÁMÂ[1 + 𝑐𝑜𝑠(𝑛£M¤MÁMÂ𝜙 −	  𝛾£M¤MÁMÂ)]                                                      (5.5) 

 

In the Amber software package, three parts of equation (3) were calculated separately, and 

belonged to different energy components, Edihedral, E1-4-vdW, and E1-4-EEL, respectively. Edihedral, E1-

4-vdW, and  E1-4-EEL  are energies of dihedral, van der Waals, and electrostatics between terminal 

atoms (for example, atom A and D in torsion A-B-C-D), respectively. Here, instead of calculating 

energies for torsions separately (using three energy components), only one value was generated to 

represent a torsion interaction based on equation (5.3). In equation (5.3), 2.0 and 1.2 are scale 

factors for the energies of the 1-4 van der Waals and electrostatics interactions.118 Similarly, 

equation (5.4) is used to obtain the pair wise nonbond energies, which include energies for both 

van der Waals and electrostatics. Other than general torsion and nonbond interactions described in 

equation (5.3) and (5.4), there is another torsion interaction considered in Amber. Out-of-plane 

terms, also referred as improper torsions, represent “branched” four atoms systems. In these 

branched systems, there are three bonds between the central atom and other three atoms, and the 

central atom is forced into the plane of the other three. Equation (5.5) was used to calculate the 

torsion energies of these branched systems. In out-of-plane systems, the torsion energies do not 

contain energies from van der Waals and electrostatics, hence, the out-of-plane torsion definitions 

in this work are the same as in Amber. In this way, the total energy of a protein structure can be 

simplified as: 
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𝐸vuvwV = 	  𝐶𝑜𝑛𝑠 + ∑ 𝑒G�vu�¢Gu� +	  ∑ 𝑒�V�u� u�¡                                                                                  (5.6) 

where 𝑒G� and 𝑒�V are pair wise energies for the torsion and nonbond interactions, respectively. 

 

It is known that by assigning different importance factors to emphasize more significant pair wise 

interactions can efficiently improve a scoring function’s ability to identify the native protein 

structure,117 therefore, equation (5.7) was used to represent the final score (Stotal) of a given protein 

structure. 

𝑆vuvwV = 	  𝐶 + ∑ 𝑝G� × 𝑒G�vu�¢Gu� +	  ∑ 𝑝�V × 𝑒�V�u� u�¡                                                               (5.7) 

where C is a constant, 𝑝G�  and 𝑝�V are the pair wise importance factors, which are to-be-determined 

parameters, for torsion and nonbond interactions, respectively. In this way, a three dimensional 

protein structure can be represented using a series of atom pair wise energies. Specifically, with 

the known amount of torsion and nonbond interactions in this work, the total score of a protein 

structure can be obtained using: 

𝑆vuvwV = 𝐶 +	  ∑ 𝑝G� × 𝑒G�	  --yk	  u�	  --xj
vu�I- +	  ∑ 𝑝�V × 𝑒�V-|kk�

�u� I-                                                         (5.8) 

 

In one protein structure, a specific torsion / nonbond atom pair might exist several times. For each 

torsion / nonbond atom pair, 𝑒G� / 𝑒�V in equation (5.8) is the sum of all the energies of the specific 

atom pairs that exist in the protein structure. For example, if torsion “H-5 -N-C- O-5” is present 

three times in a protein structure, there are three corresponding energies that can be obtained using 

equation (5.3). The sum of these three energies is assigned as the energy of torsion “H-5 -N-C- O-

5” in equation (5.8). In this way, the total score 𝑆vuvwV  for any protein structure can be represented 

as the sum of 19479 (19479 = 1143 + 18336, ff94) pair wise energies or 19511 (19511 = 
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1175+18336, ff14SB) pair wise energies. With equation (5.8), a three dimensional structure can 

be represented as a one dimensional vector. 
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5.3 Structures for encoding validation 

 

The first and most important thing is to make sure that the calculations from both FFENCODER 

and Amber are consistent. In FFENCODER, there are five assumptions: (1) only 20 common 

amino acids were considered; (2) terminal amino acids were not treated differently; (3) amino 

acids HIP, HIE, and HID were treated as HID; (4) there is no energy cutoff when the repulsion is 

too strong; (5) no metal ions were considered in the calculation. Assumptions (1) ~ (3) were made 

to control the total number of atom pairs used in RF models.  

 

In order to test if FFENCODER was consistent with the Amber package, two sets of structures 

were constructed.  The first test set contains 20 different amino acid structures in order to test if 

torsion / nonbond pairs, which exist in the same amino acid structure, were encoded correctly. The 

second test set, which consists of 210 dipeptide structures (all possible connections between those 

20 amino acids), was used to test if torsion / nonbond atom pairs exists in different amino acids 

were correctly encoded.  

 

The LEaP module, which is from AMBERTools 18,118 was used to generate the topologies of the 

single amino acids and dipeptides. Systems were first minimized in implicit solvent described by 

the generalized Born model.119 25000 cycles of steepest descent minimization followed by 25000 

cycles of conjugate gradient minimization were performed. Without considering solvent, by setting 

the minimization step to zero, energies of the minimized single amino acids / dipeptides were 

calculated. All simulations were performed with pmemd.cuda from the Amber18 package.118 No 

periodicity was applied and the cut off was set as 9999 Å to include all long range interactions. 
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5.4 Encoding validation 

 

In order to confirm the force field parameters were correctly encoded,  calculated results from 

FFENCODER and Amber were compared. Based on the RF algorithm described in the method 

section, it is necessary to guarantee all atom pair wise energies were encoded correctly. Because 

of the complexity of protein structures, it is hard to compare all pairwise energies in a protein 

structure. Here, two sets of relatively simple structures were used instead of using whole proteins 

as test structures. The first test set contains 20 common amino acids, and the second one contains 

210 (21×20/2) dipeptides. Although the structures in these two test sets are relatively simple, they 

cover most of the parameter space of the Amber force fields. As a compromise, five energy 

components were compared instead of comparing all pairwise energies. Here, the total energies of 

dihedral, 1_4_van der Waals (1_4_vdW), 1_4 electrostatics (1_4_EEL), van der Waals (vdW), and 

electrostatics (EEL) interactions were compared. Those five energy values calculated using 

FFENCODER and the Amber software package are listed in Table 5.3 -Table 5.14.  Figure 5.1 

shows the comparisons of different energy components between the two programs. The x-axis is 

the energy calculated with Amber, and the y-axis represents the corresponding energies provided 

by FFENCODER. Panels (a)-(e) represent the comparisons of the dihedral, 1_4_vdW, 1_4_EEL, 

vdW, and EEL between the two programs. Columns (1) and (3) represent the comparison for ff94 

for the single amino acid and the dipeptide test sets, respectively. Similarly, columns (2) and (4) 

are the comparisons for ff14SB. The trend line, equation of the trend line, and R-squared value are 

presented in each plot to evaluate the overall performance of FFENCODER. Theoretically, the 

trend line equation should be 𝑦 = 𝑥. Thus, if the trend line equations showed in the plot are closer 

to y = x, that means the results calculated from FFENCODER are closer to the original Amber 
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output. In Figure 2, all trend line equations are close to y = x, the range of slopes from those trend 

lines is [0.9985, 1.0003], and the range of absolute intercept value is [0.000002, 0.0046]. It is clear 

that the ranges of both slope and intercept are small. Furthermore, R-squared values for all plots 

are equal to 1. 

 

Table 5.15 gives a brief summary of the absolute energy difference results given in Table 5.5, 

Table 5.8, Table 5.11, and Table 5.14. For the single amino acid test set, the ranges of energy 

differences for ff94 and ff14SB are [-0.0177, 0.0244 kcal/mol] and [-0.0191, 0.0247 kcal/mol], 

respectively. For the dipeptide test set, the range of energy differences for ff94 is [-0.0519, 0.0807 

kcal/mol], and the corresponding range for ff14SB is [-0.0434, 0.0584 kcal/mol]. It is clear that 

for both the ff94 and ff14SB parameter set, our results are consistent with the Amber force fields. 

Based on Figure 5.1 and Table 5.15, we conclude that we are modeling canonical Amber force 

fields. 
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5.5 Feature importance analysis 

 

Based on the definitions of atom types, torsion types, and nonbond types given in the method 

section, there are 191 atom types, 1143 pair wise torsion types, and 18336 pair wise nonbond types 

in ff94, and 191 atom types, 1175 pair wise torsion types, and 18336 pair wise nonbond types in 

ff14SB. Because of the limited number of data points (around 154,000 ), it is computationally 

more intensive and largely unnecessary to include all pair wise interactions as features for our RF 

models. Here, before building up the final RF model, a feature importance analysis was performed 

to filter the pair wise interactions. Figure 5.2 shows the importance analyses for features in the 

ff94 and ff14SB parameter sets. In Figure 5.2, the red points in each plot are the 500th most 

important feature in the corresponding parameter set. After the 500th feature, contributions from 

atom pairs are trivial. Hence, in this work, top 100, 200, 300, 400, and 500 features were used to 

construct RF models. At the same time, the risk of overfitting and the computational cost can also 

be diminished with these smaller feature sets. 
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5.6 Accuracy 

 

The most important criteria to judge a scoring function is its ability to identify the native structure. 

In this work, accuracy values are considered to represent the ability of scoring functions to locate 

native structures. The accuracy values used here is defined in the method section, it evaluates the 

capability of a scoring function to compare two structures. A scoring function with a high accuracy 

is expected to perform better in identifying the native structure. For example, if a decoy set contains 

one native and 100 decoy structures, in order to locate the native structure, the scoring function is 

required to make 200 correct comparisons between native and each decoy structure. In other words, 

the native structure cannot be detected if the scoring function makes one wrong comparison. In 

general, the higher the accuracy value is, the better the scoring function performs.  

 

In Table 5.16, from column 3 to column 5 are comparisons of accuracy between RF models and 

other scoring functions. The results can be analyzed from three perspectives: (i) If RF models with 

force field parameters are compared with traditional scoring functions (RWplus, DFIRE, dDFIRE, 

and GOAP), it is obvious that RF models achieved higher averaged accuracy values, and the lowest 

accuracies are still higher than accuracies from conventional scoring functions. Therefore, RF 

models have a better performance when differentiating native and decoy structures relative to 

traditional scoring functions. (ii) If RF models with force field parameters are compared with RF 

models based on knowledge-based potentials (KECSA2), for models based on different numbers 

of input features (top 100 to 500), RF models with force field parameters always provide a higher 

average accuracy than models based on a knowledge-based potential (KECSA2). (iii) If RF models 

with ff94 are compared with models based on ff14SB, with the same number of input features (100 
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to 500), models based on each force field parameter sets generated similar averaged accuracies, 

and the confidence ranges ([lowest accuracy, highest accuracy]) are similar as well. With 

increasing number of input features, averaged accuracy values from RF models based on ff94 and 

ff14SB remain similar.  

 

Based on this we conclude that RF models with force field potentials perform better than all other 

scoring functions considered in this work, and the RF models depend on ff94 and ff14SB perform 

similar with the same number of input features.  
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5.7 Native ranking 

 

Other than accuracy, another important criteria to evaluate the performance of a scoring function 

is native ranking. A scoring function is always expected to give the native structure the lowest 

rank. In Table 5.16, from column 6 to column 8 are the comparisons of native ranking between 

different scoring functions. The comparison results can be analyzed again in three ways: (i) If the 

RF models with force field parameters are compared with traditional scoring functions (RWplus, 

DFIRE, dDFIRE, and GOAP), it is clear that the averaged native rankings from RF models are 

smaller than the corresponding values from conventional scoring functions. Furthermore, the 

native rankings provided by conventional scoring functions are higher than all of the highest native 

ranking generated by RF models with force field parameters. Hence, RF models with force field 

parameters outperformed the traditional scoring functions considered in this work. (ii) If RF 

models based on force field parameters are compared with RF models based on knowledge-based 

potential (KECSA2), with the same number of input features, RF models with force field potentials 

can always achieve lower native rankings than models with KECSA2. (iii) If RF models based on 

ff94 are compared with RF models based on ff14SB, with the same number of input features, the 

averaged native rankings generated by RF models with each potential set are similar.  

 

In summary, we can conclude that, in the native ranking test, RF models with force field 

parameters outperformed all other scoring functions considered in this work; RF models with ff94 

and ff14SB perform similar; with increasing number of input features, RF models with force field 

potentials provide native rankings of around 4.  
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When comparing native rankings with the corresponding accuracies, a correlation can be found. 

In general, the higher the accuracy is, the lower the native ranking will be. Here, a decoy set with 

one native and 100 decoys can be used as an example. In order to locate the native structure, the 

scoring function is required to make 200 correct comparisons between the native structure and 

each decoy. If a scoring function has an accuracy value of 0.95, that means it made 10 incorrect 

comparisons. The ranking of native structure provided by that scoring function will be larger or 

equal to 5.  If a scoring function made more incorrect comparisons, it will have a lower accuracy 

value, and a higher native ranking. Hence, in general the higher the accuracy, the lower the native 

ranking. 
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5.8 1st decoy RMSD and TM-score 

 

Besides accuracy and native ranking, there are other two values, 1st decoy RMSD and TM-score,79 

usually used to evaluate the capability of a scoring function to identify the best decoy structure. 

The best decoy is the most stable decoy structure selected by a scoring function among a set of 

candidates. In the protein design and protein structure prediction fields, the scoring function is 

expected to identify the most stable decoy structure among a large number of structure candidates. 

RMSD and TM-score are often used to represent the quality of a decoy structure. RMSD refers to 

the root mean squared deviation of all Ca pairs of the decoy to the native structure. TM-score gives 

a large distance a small weight, and makes the magnitude of TM-score more sensitive to topology. 

The best decoy structure selected by a scoring function is always expected to have low RMSD and 

a high TM-score value.  

 

Table 5.17  shows the 1st decoy RMSD and TM-score comparisons between different scoring 

functions. In general, all scoring functions in Table 4 provide 1st decoy RMSD values around 4.5 

Å, and a 1st decoy TM-score around 0.62. Some of them generate a RMSD or TM-score slightly 

better than others. The RMSD difference between the highest and lowest RMSD values is smaller 

than 1	  Å, and the TM-sore difference is within 0.1. When comparing RF based scoring functions, 

no matter which potential data set was used (force field potential like ff94 and ff14SB, or 

knowledge-based potentials like KECSA2), the performances in selecting the best decoy are 

similar. This common performance from RF models is due to the fact that the RF models were 

trained on native-decoy comparisons, and the decoy-decoy comparisons are missing in the training 

data set. However, the decoy-decoy comparisons are necessary to locate the best decoy structure 
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from a large number of candidates. In our previous work,124 we proved that with more decoy-decoy 

comparisons included in the training set, the ability of RF models to identify the best decoy can be 

improved. In this work, it is hard to include more decoy-decoy comparisons due to the sparseness 

of the data. Table 5.18 shows the distribution of the decoys lowest RMSD values in all 234 protein 

systems, there are only 75 systems that provide one decoy structure with a RMSD smaller than 1 

Å. Compared to the total size of native-decoy comparisons in the training data, the decoy-decoy 

comparison information is insufficient. Therefore, it is hard to improve the ability of RF models 

with force field potentials to identify the best decoy structure in this work. Taken altogether, it can 

be concluded that, RF models with force field potentials perform similar to other scoring functions 

considered in this work for the best decoy selection test.  
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5.9 Impact of the RF algorithm 

 

RF models with force field potentials can achieve a higher accuracy value and a lower native 

ranking than other scoring functions considered in this work. At the same time, all scoring 

functions used here perform similar in selecting the best decoy structure. It is interesting to test 

whether the better performance from RF models is the result of the RF algorithm or not. In order 

to test the importance of RF refinement, accuracy values from scoring functions with and without 

RF models should be compared. RF models can emphasize more important pair wise interactions 

and ignore insignificant ones, on the contrary, a scoring function without RF refinement should 

treat every pair wise energy as the same. In other words, without RF refinement, a score value can 

be directly calculated as the sum (the sum of each descriptor) of all pair wise energies obtained 

from FFENCODER with the ff94 or ff14SB parameter sets. Then, an accuracy can be obtained 

based on these calculated scores. Table 5.19 shows the comparison between scoring functions 

with and without RF refinement. It is clear that with RF refinement, the accuracy values can be 

improved from ~0.65 to ~0.99. With both the ff94 and ff14SB force field parameters, the trend 

was the same. Therefore, it can be concluded that the RF refinement protocol is important, and it 

helped the scoring functions to achieve higher accuracy values.  
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5.10 Potential analysis 

 

The performance of scoring functions with force field descriptors can be improved by RF 

refinement. On the other hand, it is also necessary to test whether the force field parameters are 

important or not. In order to test the importance of force field potentials in RF models, the 

performance of RF models with and without force field parameters need to be compared. A set of 

RF models constructed based on counts of interactions were used as a reference. In potential 

functions, different distances between atoms will provide different pair wise energies, using counts 

of interactions eliminates the impact from potential functions on RF models. In detail, there are no 

energy difference between different atom pairs, and the same atom pair with different distances 

are treated as the same. For example, if an atom pair ‘H-0_C-0’ exists five times in a protein, the 

count of interactions of that atom pair is five, and five will be used instead of total energy. In this 

way, the torsion and nonbond potential function in force fields were replaced by horizontal lines 

with intercepts of 1. Table 5.20 shows the comparison between scoring functions with and without 

force field parameters. Without force field potential functions, the RF models can only generate 

accuracy values of 0.679 and 0.712, with 100 and 500 features, respectively. On the other hand, 

with force field parameters, the accuracy values increased to ~0.99 using either 100 or 500 features. 

Hence, the force field parameters are also important in the model. Furthermore, it can be concluded 

that both force field potential functions and the RF refinement algorithm are important in the RF 

model, and none of them can generate high accuracies by itself, combining them together is the 

only way to achieve the best performance.  
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5.11 Conclusion 

 

In this work, Amber force field pairwise potentials from ff94 and ff14SB were successfully 

encoded based on five assumptions: (1) only 20 common amino acids are considered; (2) terminal 

amino acids are not treated differently; (3) amino acids HIP, HIE, and HID are all treated as HID; 

(4) there is no energy cutoff if the repulsion is too strong; (5) no metal ions were considered in the 

calculation. Detailed pair wise energies obtained from FFENCODER were used as input features 

to construct RF models. 12 popular protein folding decoy sets were combined based on protein 

systems, and used to train and test RF models. The comparisons between RF models and other 

scoring functions suggest that RF models with force field parameters outperformed other scoring 

functions in accuracy and in native ranking tests, and perform similar to other scoring functions in 

selecting the best decoy. The importance of the RF algorithm was tested by comparing scoring 

functions with and without RF refinement and the results clearly showed that the RF algorithm is 

an important reason for the observed high accuracies. On the other hand, counts of interactions 

were used to replace all force field potential functions in order to test the importance of the force 

field potentials. The comparisons between RF models with and without force field potentials 

suggest that force fields also play a key role in the observed high accuracy values. A model cannot 

achieve high accuracy without both RF refinement and appropriate force field parameters. 

Moreover, in this work we only showed one example where we built ML models using force field 

potential functions. FFENCODER makes it possible to combine other novel ML algorithms with 

pair wise energies as encoded by Amber force field potentials. 
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APPENDIX A: TABLES 

 

Table 1.1. An example of training data to construct a decision tree. 
Day weather Temperature Humidity Wind Jogging 

1 Sunny Hot Normal Weak No 
2 Sunny Mild High Weak Yes 
3 Overcast Mild High Strong Yes 
4 Overcast Hot Normal Weak No 
5 Rain Cool High Strong No 
6 Rain Cool High Strong No 
7 Sunny Mild Normal Weak Yes 
8 Sunny Mild Normal Weak Yes 
9 Sunny Hot High Strong No 

10 Overcast Hot High Strong Yes 
11 Overcast Hot Normal Weak Yes 
12 Rain Cool High Weak No 
13 Rain Cool High Strong No 
14 Overcast Mild Normal Weak Yes 
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Table 1.2. Relationship between humidity and jogging decisions. 
Humidity Jogging Expected Difference 

 Yes No Yes No Yes No 
High 3 5 3.5 3.5 -0.5 1.5 

Normal 4 2 3.5 3.5 0.5 -1.5 
total 7 7 7 7 - - 
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Table 2.1. Atom types in the GARF potential database.a 

Atom type definition 
Protein atom types 

C sp2 carbonyl carbon and aromatic carbon with hydroxyl 
substituent in tyrosine  

C* sp2 aromatic carbon in 5-membered ring with one 
substituent 

CA sp2 aromatic carbon in 6-membered ring with one 
substituent 

CB sp2 aromatic carbon at junction between 5- and 6-
membered rings 

CC sp2 aromatic carbon in 5-membered ring with one 
substituent and next to a nitrogen atom 

CN sp2 aromatic junction carbon in between 5- and 6-
membered rings 

CR sp2 aromatic carbon in 5-membered ring between two 
nitrogen atoms and bonded to one hydrogen atom (in 

HIS) 
CT sp3 carbon with four explicit substituents 
CV sp2 aromatic carbon in 5-membered ring bonded to one 

nitrogen atom and bonded to an explicit hydrogen 
CW sp2 aromatic carbon in 5-membered ring bonded to one 

N−H group and an explicit hydrogen 
N sp2 nitrogen in amide group  
N2 sp2 nitrogen in base NH2 group or arginine NH2 

N3 sp2 nitrogen with four substituents 
NA sp2 nitrogen in 5-membered ring with hydrogen 

attached 
NB sp2 nitrogen in 5-membered ring with lone pairs 
O carbonyl oxygen  
O2 carboxyl oxygen  
OH alcohol oxygen 
S sulfur in disulfide linkage or methionine 

SH sulfur in cysteine 
Ligand atom types 

C.3 sp3 carbon without polar group substituent 
C.2 sp2 carbonyl carbon without polar group substituent 
C.1 sp carbon 
C.ar sp2 aromatic carbon without polar group substituent 
O.3 alcohol oxygen 

O.3P ether oxygen 
O.2 carbonyl oxygen 

O.co2 carboxylate oxygen 
O.2v sulfate/phosphate oxygen 
N.2 sp/sp2/aromatic nitrogen 

N.1h sp3 nitrogen with one hydrogen atom attached 
N.2h sp3 nitrogen with two hydrogen atoms attached 
N.3h sp3 nitrogen with three hydrogen atoms attached 

P Phosphorus 
F Fluorine 
Cl Chlorine 
Br Bromine 
I Iodine 

C.cat carbon cation 
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Table 2.1. (cont’d) 

S.3 thiol/thioether sulfur 
S.o sulfoxide sulfur 

C.3X sp3 carbon with polar group substituent 
C.2X sp2 carbonyl carbon with polar group substituent 
C.arX sp2 aromatic carbon with polar group substituent 

a.   This table is as same as Table 2 in GARF paper, reference 114.  
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Table 2.2. General form of a confusion matrix. 
 Predicted (class 1) Predicted (class 0) 
Actual (class 1) TP FN 
Actual (class 0) FP TN 
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Table 3.1. Accuracy values for different models.a  
Decoy sets RF model KECSA2 RWplus DFIRE dDFIRE GOAP 

Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

4state_reduced 1.000 1.000 0.998 0.997 1.000 1.000 1.000 1.000 
fisa 1.000 1.000 0.997 0.751 0.775 0.810 0.761 0.816 
fisa_casp3 1.000 1.000 0.999 0.842 1.000 1.000 0.989 1.000 
hg_structal 0.971 0.994 0.939 0.828 0.902 0.882 0.881 0.934 
ig_structal 1.000 1.000 0.999 0.887 0.540 0.536 0.895 0.955 
ig_structal_hires 1.000 1.000 1.000 0.953 0.580 0.567 0.942 1.000 
I-TASSER 0.982 0.998 0.966 0.971 0.914 0.856 0.919 0.857 
lattice_ssift 0.999 1.000 0.998 1.000 1.000 1.000 1.000 1.000 
lmds 0.999 1.000 0.997 0.963 0.722 0.727 0.735 0.798 
lmds_v2 0.999 1.000 0.990 0.762 0.861 0.899 0.871 0.906 
MOULDER 0.988 1.000 0.969 0.829 0.982 0.985 0.982 0.991 
ROSETTA 1.000 1.000 1.000 0.776 0.939 0.770 0.537 0.798 

a) RF models were trained on different decoy sets. 
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Table 3.2. Native structure’s ranking of different models.a 
Decoy sets RF model KECSA2 RWplus DFIRE dDFIRE GOAP 

Averaged 
native 
ranking 

Highest 
native 
ranking 

Lowest 
native 
ranking 

4state_reduced 1.70 7.00 1.00 3.29 1.00 1.00 1.00 1.00 
fisa 1.50 3.00 1.00 125.50 113.5 95.75 120.25 92.75 
fisa_casp3 1.00 1.00 1.00 228.60 1.60 1.60 17.20 1.00 
hg_structal 2.43 5.67 1.33 5.93 3.79 4.38 4.41 2.90 
ig_structal 1.01 1.08 1.00 8.03 29.7 29.98 7.57 3.79 
ig_structal_hires 1.00 1.00 1.00 1.90 8.95 9.20 2.10 1.00 
I-TASSER 13.26 39.17 2.83 13.71 38.13 63.25 36.16 62.89 
lattice_ssift 1.05 1.50 1.00 1.38 1.00 1.00 1.00 1.00 
lmds 1.05 1.50 1.00 138.91 138.90 136.50 132.2 101.10 
lmds_v2 1.40 5.00 1.00 29.50 17.70 13.10 16.5 12.30 
MOULDER 5.65 11.50 1.00 55.15 6.65 5.75 6.65 3.80 
ROSETTA 1.00 1.00 1.00 23.33 7.07 23.84 47.16 21.07 

a) RF models were trained on different decoy sets. 
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Table 3.3. 1st decoy’s RMSD for different models.a  
Decoy sets RF model KECSA2 RWplus DFIRE dDFIRE GOAP 

Averaged 
1st decoy 
RMSD 

Highest 
1st decoy 
RMSD 

Lowest 
1st decoy 
RMSD 

4state_reduced 3.28 6.06 1.34 3.17 2.69 2.61 2.25 1.83 
fisa 6.13 9.60 4.68 6.51 5.26 5.77 6.05 4.48 
fisa_casp3 11.67 15.76 6.35 12.30 11.80 11.10 9.88 10.40 
hg_structal 2.62 4.88 1.39 2.59 2.31 2.45 2.66 2.43 
ig_structal 2.21 2.62 1.73 2.02 2.00 2.06 1.86 1.88 
ig_structal_hires 2.63 4.10 1.48 2.06 2.14 2.13 2.10 2.08 
I-TASSER 1.71 2.21 1.27 1.73 1.73 1.70 1.70 1.65 
lattice_ssift 10.37 11.44 9.17 9.55 9.26 9.17 9.21 10.01 
lmds 7.91 10.75 4.13 7.72 8.08 8.23 6.69 8.55 
lmds_v2 7.60 9.38 4.46 8.01 7.74 7.82 7.67 7.36 
MOULDER 9.18 12.83 6.67 10.77 9.74 9.98 10.08 9.96 
ROSETTA 7.27 8.75 5.88 8.54 7.65 7.36 7.53 7.53 

a) RF models were trained on different decoy sets. 
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Table 3.4. 1st decoy’s TM-score of different models.a 
Decoy sets RF model KECSA2 RWplus DFIRE dDFIRE GOAP 

Averaged 
1st decoy 
TM-score 

Highest  
1st decoy 
TM-score 

Lowest  
1st decoy 
TM-score 

4state_reduced 0.620 0.864 0.278 0.617 0.700 0.714 0.725 0.791 
fisa 0.398 0.468 0.315 0.411 0.467 0.432 0.389 0.472 
fisa_casp3 0.263 0.318 0.233 0.296 0.285 0.286 0.313 0.313 
hg_structal 0.871 0.924 0.790 0.888 0.894 0.892 0.869 0.891 
ig_structal 0.931 0.941 0.923 0.943 0.945 0.943 0.951 0.950 
ig_structal_hires 0.936 0.950 0.914 0.939 0.948 0.947 0.949 0.951 
I-TASSER 0.431 0.529 0.377 0.451 0.442 0.451 0.445 0.444 
lattice_ssift 0.224 0.291 0.179 0.240 0.270 0.258 0.277 0.249 
lmds 0.347 0.430 0.283 0.333 0.344 0.336 0.376 0.342 
lmds_v2 0.367 0.484 0.296 0.363 0.442 0.451 0.445 0.444 
MOULDER 0.429 0.555 0.211 0.394 0.426 0.418 0.416 0.422 
ROSETTA 0.487 0.573 0.410 0.438 0.460 0.466 0.477 0.471 

a) RF models were trained on different decoy sets. 
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Table 3.5. Comparison of accuracies of RF models with different numbers of features.a 
Decoy sets RF model_with_IMP_500 RF_model_with_all_features 

Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

4state_reduced 1.000 1.000 0.999 1.000 1.000 0.998 
fisa 1.000 1.000 1.000 1.000 1.000 0.997 
fisa_casp3 0.992 0.999 0.987 1.000 1.000 0.999 
hg_structal 0.955 0.977 0.909 0.971 0.994 0.939 
ig_structal 0.999 1.000 0.998 1.000 1.000 0.999 
ig_structal_hires 1.000 1.000 1.000 1.000 1.000 1.000 
I-TASSER 0.978 0.997 0.955 0.982 0.998 0.966 
lattice_ssift 1.000 1.000 0.997 0.999 1.000 0.998 
lmds 0.994 1.000 0.948 0.999 1.000 0.997 
lmds_v2 1.000 1.000 1.000 0.999 1.000 0.990 
MOULDER 0.989 1.000 0.974 0.988 1.000 0.969 
ROSETTA 0.999 1.000 0.996 1.000 1.000 1.000 

a) RF models were trained on different decoy sets. 
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Table 3.6. Comparison of the overall performance of RF models (with different number of features) 
with traditional potentials on overall data set.  

  nIMP
_100 

nIMP
_500 

KECSA2 RWplus DFIRE dDFIRE GOAP 

Accuracy Averaged 0.963 0.981 0.908 0.916 0.886 0.904 0.917 
Lowest 0.931 0.965 - - - - - 
Highest 0.987 0.994 - - - - - 

Ranking of 
native 
structure 

Averaged 10.62 7.95 25.67 23.43 31.35 26.49 23.09 
Lowest 4.86 2.77 - - - - - 
Highest 21.64 17.59 - - - - - 

RMSD of 1st 
selected 
decoy 

Averaged  4.62 4.57 4.84 4.53 4.51 4.44 4.45 
Lowest 3.77 3.52 - - - - - 
Highest 5.49 5.72 - - - - - 

TM-score of 
1st selected 
decoy 

Averaged 0.634 0.614 0.610 0.622 0.623 0.625 0.674 
Lowest 0.574 0.536 - - - - - 
Highest 0.685 0.695 - - - - - 
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Table 3.7. Comparison of RF models based on different potentials. 
 RF model_nIMP_100 RF model_nIMP_500 

Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

Original 0.963 0.987 0.931 0.981 0.994 0.965 
Scrambled 0.822 0.854 0.805 0.827 0.864 0.799 
Uniform 0.940 0.968 0.872 0.977 0.990 0.959 
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Table 4.1. Comparisons between RF models and 29 other scoring functions. 
  accuracy Native’s ranking 1st decoy RMSD 
RF models Averaged 0.953 4.49 3.87 
 Highest 0.969 5.54 4.47 
 Lowest 0.942 3.54 3.38 
Conventional SFs GOLD-ASP 0.924 6.13 1.74 
 GOLD-ChemPLP 0.923 6.25 1.51 
 DS-PLP1 0.917 6.68 1.80 
 DS-PLP2 0.914 7.07 1.87 
 MOE-Affinity_dG 0.900 8.23 2.42 
 Xscore-HMScore 0.891 8.89 2.45 
 Xscore-Average 0.886 9.33 2.38 
 GOLD-ChemScore 0.882 9.58 1.72 
 DS-PMF04 0.874 10.58 3.38 
 SYBYL-PMF 0.874 10.53 3.42 
 Xscore-HPScore 0.871 10.63 2.75 
 MOE-Alpha 0.870 10.38 1.85 
 Xscore-HSScore 0.869 10.80 2.64 
 DS-LigScore2 0.867 10.67 1.83 
 MOE-London_dG 0.863 11.38 2.52 
 DS-PMF 0.857 11.89 3.48 
 MOE-ASE 0.856 11.88 2.91 
 GlideScore-SP 0.832 13.20 1.72 
 DS-LigScore1 0.823 14.28 2.31 
 GlideScore-XP 0.823 14.07 1.86 
 GOLD-GoldScore 0.819 14.70 1.88 
 DS-LUDI2 0.807 15.62 2.23 
 DS-LUDI1 0.799 16.35 2.34 
 DS-LUDI3 0.783 17.48 2.87 
 SYBYL-

ChemScore 
0.782 17.70 2.40 

 SYBYL-Gscore 0.725 22.64 3.13 
 dSAS 0.692 25.48 3.96 
 DS-Jain 0.685 25.63 2.90 
 SYBYL-Dscore 0.674 26.70 4.03 
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Table 4.2. Comparison between RF models with considering different number of decoy pose in 
training set. 

  Accuracy Native’s ranking 1st decoy RMSD 
 
With no decoy structure 

Averaged 0.953 4.49 3.87 
Highest 0.969 5.54 4.47 
Lowest 0.942 3.54 3.38 

 
With one lowest RMSD decoy 
structure 

Averaged 0.958 4.28 2.41 
Highest 0.974 7.49 2.72 
Lowest 0.921 3.03 2.13 

 
With two lowest RMSD decoy 
structure 

Averaged 0.950 5.03 2.50 
Highest 0.957 6.08 2.99 
Lowest 0.937 4.39 1.95 

 
With three lowest RMSD 
decoy structure 

Averaged 0.947 5.21 2.27 
Highest 0.963 6.56 2.44 
Lowest 0.930 3.97 1.73 
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Table 4.3. Comparison between RF models with different probability function sets. 
 RF models 
 Averaged accuracy Highest accuracy Lowest accuracy 

Original GARF 0.953 0.969 0.942 
Scrambled GARF 0.933 0.951 0.911 
Uniform GARF 0.953 0.980 0.918 
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Table 4.4. Summary of peak positions and number of probability functions at each peak 
positions in GARF. 

Peak position / Å number of Probability functions 
2.5 2 
2.6 2 
2.7 5 
2.8 14 
2.9 9 
3.0 6 
3.1 5 
3.2 2 
3.3 14 
3.4 23 
3.5 23 
3.6 23 
3.7 53 
3.8 43 
3.9 34 
4.0 36 
4.1 24 
4.2 28 
4.3 38 
4.4 30 
4.5 8 
4.6 12 
4.7 13 
4.8 17 
4.9 8 
5.0 4 
5.1 4 
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Table 4.5. Accuracy values for different training set sizes from RF models with original and 
uniform GARF.  

Training size 
/ % 

Original GARF Uniform GARF 
Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

Averaged 
accuracy 

Highest 
accuracy 

Lowest 
accuracy 

5 0.883 0.926 0.833 0.900 0.929 0.867 
10 0.923 0.939 0.912 0.916 0.936 0.879 
15 0.919 0.941 0.884 0.933 0.948 0.913 
20 0.926 0.947 0.887 0.936 0.946 0.902 
25 0.938 0.953 0.918 0.939 0.960 0.919 
30 0.943 0.953 0.935 0.945 0.965 0.933 
35 0.947 0.962 0.928 0.942 0.960 0.914 
40 0.945 0.959 0.924 0.946 0.951 0.933 
45 0.941 0.951 0.925 0.949 0.969 0.922 
50 0.953 0.966 0.938 0.944 0.957 0.935 
55 0.952 0.973 0.916 0.945 0.968 0.923 
60 0.954 0.975 0.935 0.950 0.968 0.937 
65 0.945 0.964 0.937 0.949 0.965 0.921 
70 0.954 0.980 0.922 0.955 0.972 0.924 
75 0.953 0.980 0.922 0.952 0.977 0.924 
80 0.953 0.969 0.942 0.953 0.980 0.918 
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Table 5.1. Summary of charge, 𝜀, and van der Waals radii for each atom type in ff94 force field. 
Atom type Charge Van de Waals 

radii 
𝜀 Atom type charge Van de Waals 

radii 
𝜀 

C*-0 -0.1415 1.9080 0.0860 H1-1 0.1560 1.3870 0.0157 
C-0 0.5973 1.9080 0.0860 H1-10 0.0881 1.3870 0.0157 
C-1 0.7341 1.9080 0.0860 H1-11 0.0869 1.3870 0.0157 
C-2 0.713 1.9080 0.0860 H1-12 0.0922 1.3870 0.0157 
C-3 0.7994 1.9080 0.0860 H1-13 0.1426 1.3870 0.0157 
C-4 0.5366 1.9080 0.0860 H1-14 0.0440 1.3870 0.0157 
C-5 0.6951 1.9080 0.0860 H1-15 0.0684 1.3870 0.0157 
C-6 0.8054 1.9080 0.0860 H1-16 0.0978 1.3870 0.0157 
C-7 0.5896 1.9080 0.0860 H1-17 0.0391 1.3870 0.0157 
C-8 0.3226 1.9080 0.0860 H1-18 0.0641 1.3870 0.0157 

CA-0 0.8076 1.9080 0.0860 H1-19 0.0843 1.3870 0.0157 
CA-1 0.0118 1.9080 0.0860 H1-2 0.0687 1.3870 0.0157 
CA-10 -0.1906 1.9080 0.0860 H1-20 0.0352 1.3870 0.0157 
CA-11 -0.2341 1.9080 0.0860 H1-21 0.1007 1.3870 0.0157 
CA-2 -0.1256 1.9080 0.0860 H1-22 0.0043 1.3870 0.0157 
CA-3 -0.1704 1.9080 0.0860 H1-23 0.1123 1.3870 0.0157 
CA-4 -0.1072 1.9080 0.0860 H1-24 0.0876 1.3870 0.0157 
CA-5 -0.2601 1.9080 0.0860 H1-25 0.0969 1.3870 0.0157 
CA-6 -0.1134 1.9080 0.0860 H1-3 0.1048 1.3870 0.0157 
CA-7 -0.1972 1.9080 0.0860 H1-4 0.0880 1.3870 0.0157 
CA-8 -0.2387 1.9080 0.0860 H1-5 0.1124 1.3870 0.0157 
CA-9 -0.0011 1.9080 0.0860 H1-6 0.1112 1.3870 0.0157 
CB-0 0.1243 1.9080 0.0860 H1-7 0.0850 1.3870 0.0157 
CC-0 -0.0266 1.9080 0.0860 H1-8 0.1105 1.3870 0.0157 
CN-0 0.138 1.9080 0.0860 H1-9 0.0698 1.3870 0.0157 
CR-0 0.2057 1.9080 0.0860 H4-0 0.1147 1.4090 0.0150 
CT-0 0.0337 1.9080 0.1094 H4-1 0.2062 1.4090 0.0150 
CT-1 -0.1825 1.9080 0.1094 H5-0 0.1392 1.3590 0.0150 

CT-10 0.0213 1.9080 0.1094 HA-0 0.1330 1.4590 0.0150 
CT-11 -0.1231 1.9080 0.1094 HA-1 0.1430 1.4590 0.0150 
CT-12 -0.0031 1.9080 0.1094 HA-2 0.1297 1.4590 0.0150 
CT-13 -0.0036 1.9080 0.1094 HA-3 0.1572 1.4590 0.0150 
CT-14 -0.0645 1.9080 0.1094 HA-4 0.1417 1.4590 0.0150 
CT-15 0.0397 1.9080 0.1094 HA-5 0.1447 1.4590 0.0150 
CT-16 0.056 1.9080 0.1094 HA-6 0.1700 1.4590 0.0150 
CT-17 0.0136 1.9080 0.1094 HA-7 0.1699 1.4590 0.0150 
CT-18 -0.0252 1.9080 0.1094 HA-8 0.1656 1.4590 0.0150 
CT-19 0.0188 1.9080 0.1094 HC-0 0.0603 1.4870 0.0157 
CT-2 -0.2637 1.9080 0.1094 HC-1 0.0327 1.4870 0.0157 

CT-20 -0.0462 1.9080 0.1094 HC-10 0.0187 1.4870 0.0157 
CT-21 -0.0597 1.9080 0.1094 HC-11 0.0882 1.4870 0.0157 
CT-22 0.1303 1.9080 0.1094 HC-12 0.0236 1.4870 0.0157 
CT-23 -0.3204 1.9080 0.1094 HC-13 0.0186 1.4870 0.0157 
CT-24 -0.0430 1.9080 0.1094 HC-14 0.0457 1.4870 0.0157 
CT-25 -0.066 1.9080 0.1094 HC-15 -0.0361 1.4870 0.0157 
CT-26 -0.0518 1.9080 0.1094 HC-16 0.1000 1.4870 0.0157 
CT-27 -0.1102 1.9080 0.1094 HC-17 0.0362 1.4870 0.0157 
CT-28 0.3531 1.9080 0.1094 HC-18 0.0103 1.4870 0.0157 
CT-29 -0.4121 1.9080 0.1094 HC-19 0.0621 1.4870 0.0157 
CT-3 -0.0007 1.9080 0.1094 HC-2 0.0285 1.4870 0.0157 
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Table 5.1. (cont’d) 

CT-30 -0.2400 1.9080 0.1094 HC-20 0.0241 1.4870 0.0157 
CT-31 -0.0094 1.9080 0.1094 HC-21 0.0295 1.4870 0.0157 
CT-32 0.0187 1.9080 0.1094 HC-22 0.0213 1.4870 0.0157 
CT-33 -0.0479 1.9080 0.1094 HC-23 0.0253 1.4870 0.0157 
CT-34 -0.0143 1.9080 0.1094 HC-24 0.0642 1.4870 0.0157 
CT-35 -0.0237 1.9080 0.1094 HC-25 0.0339 1.4870 0.0157 
CT-36 0.0342 1.9080 0.1094 HC-26 -0.0297 1.4870 0.0157 
CT-37 0.0018 1.9080 0.1094 HC-27 0.0791 1.4870 0.0157 
CT-38 -0.0536 1.9080 0.1094 HC-3 0.0797 1.4870 0.0157 
CT-39 -0.0024 1.9080 0.1094 HC-4 -0.0122 1.4870 0.0157 
CT-4 0.039 1.9080 0.1094 HC-5 0.0171 1.4870 0.0157 

CT-40 -0.0343 1.9080 0.1094 HC-6 0.0352 1.4870 0.0157 
CT-41 0.0192 1.9080 0.1094 HC-7 -0.0173 1.4870 0.0157 
CT-42 0.0189 1.9080 0.1094 HC-8 -0.0425 1.4870 0.0157 
CT-43 -0.007 1.9080 0.1094 HC-9 0.0402 1.4870 0.0157 
CT-44 -0.0266 1.9080 0.1094 HO-0 0.4275 0.0000 0.0000 
CT-45 -0.0249 1.9080 0.1094 HO-1 0.4102 0.0000 0.0000 
CT-46 0.2117 1.9080 0.1094 HO-2 0.3992 0.0000 0.0000 
CT-47 -0.0389 1.9080 0.1094 HP-0 0.1135 1.1000 0.0157 
CT-48 0.3654 1.9080 0.1094 HS-0 0.1933 0.6000 0.0157 
CT-49 -0.2438 1.9080 0.1094 N-0 -0.4157 1.8240 0.1700 
CT-5 0.0486 1.9080 0.1094 N-1 -0.3479 1.8240 0.1700 

CT-50 -0.0275 1.9080 0.1094 N-2 -0.9191 1.8240 0.1700 
CT-51 -0.005 1.9080 0.1094 N-3 -0.5163 1.8240 0.1700 
CT-52 -0.0014 1.9080 0.1094 N-4 -0.9407 1.8240 0.1700 
CT-53 -0.0152 1.9080 0.1094 N-5 -0.2548 1.8240 0.1700 
CT-54 -0.0875 1.9080 0.1094 N2-0 -0.5295 1.8240 0.1700 
CT-55 0.2985 1.9080 0.1094 N2-1 -0.8627 1.8240 0.1700 
CT-56 -0.3192 1.9080 0.1094 N3-0 -0.3854 1.8240 0.1700 
CT-6 0.0143 1.9080 0.1094 NA-0 -0.3811 1.8240 0.1700 
CT-7 -0.2041 1.9080 0.1094 NA-1 -0.3418 1.8240 0.1700 
CT-8 0.0381 1.9080 0.1094 NB-0 -0.5727 1.8240 0.1700 
CT-9 -0.0303 1.9080 0.1094 O-0 -0.5679 1.6612 0.2100 
CV-0 0.1292 1.9080 0.0860 O-1 -0.5894 1.6612 0.2100 
CW-0 -0.1638 1.9080 0.0860 O-2 -0.5931 1.6612 0.2100 
H-0 0.2719 0.6000 0.0157 O-3 -0.5819 1.6612 0.2100 
H-1 0.2747 0.6000 0.0157 O-4 -0.6086 1.6612 0.2100 
H-2 0.3456 0.6000 0.0157 O-5 -0.5748 1.6612 0.2100 
H-3 0.4478 0.6000 0.0157 O2-0 -0.8014 1.6612 0.2100 
H-4 0.4196 0.6000 0.0157 O2-1 -0.8188 1.6612 0.2100 
H-5 0.2936 0.6000 0.0157 OH-0 -0.6546 1.7210 0.2104 
H-6 0.4251 0.6000 0.0157 OH-1 -0.6761 1.7210 0.2104 
H-7 0.3649 0.6000 0.0157 OH-2 -0.5579 1.7210 0.2104 
H-8 0.3400 0.6000 0.0157 S-0 -0.2737 2.0000 0.2500 
H-9 0.3412 0.6000 0.0157 SH-0 -0.3119 2.0000 0.2500 
H1-0 0.0823 1.3870 0.0157     
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Table 5.2. Summary of charge, 𝜀, and van der Waals radii for each atom type in ff14SB force field. 
        
Atom type Charge Van de Waals 

radii 
𝜀 Atom type Charge Van de Waals 

radii 
𝜀 

2C-0 -0.2041 1.9080 0.1094 H1-1 0.1560 1.3870 0.0157 
2C-1 -0.0303 1.9080 0.1094 H1-10 0.0881 1.3870 0.0157 
2C-10 0.0018 1.9080 0.1094 H1-11 0.0869 1.3870 0.0157 
2C-11 0.2117 1.9080 0.1094 H1-12 0.0922 1.3870 0.0157 
2C-2 -0.1231 1.9080 0.1094 H1-13 0.1426 1.3870 0.0157 
2C-3 -0.0036 1.9080 0.1094 H1-14 0.0440 1.3870 0.0157 
2C-4 -0.0645 1.9080 0.1094 H1-15 0.0684 1.3870 0.0157 
2C-5 0.0560 1.9080 0.1094 H1-16 0.0978 1.3870 0.0157 
2C-6 0.0136 1.9080 0.1094 H1-17 0.0391 1.3870 0.0157 
2C-7 -0.0430 1.9080 0.1094 H1-18 0.0641 1.3870 0.0157 
2C-8 -0.1102 1.9080 0.1094 H1-19 0.0843 1.3870 0.0157 
2C-9 0.0342 1.9080 0.1094 H1-2 0.0687 1.3870 0.0157 
3C-0 0.1303 1.9080 0.1094 H1-20 0.0352 1.3870 0.0157 
3C-1 0.3531 1.9080 0.1094 H1-21 0.1007 1.3870 0.0157 
3C-2 0.3654 1.9080 0.1094 H1-22 0.0043 1.3870 0.0157 
3C-3 0.2985 1.9080 0.1094 H1-23 0.1123 1.3870 0.0157 
C-0 0.5973 1.9080 0.0860 H1-24 0.0876 1.3870 0.0157 
C-1 0.7341 1.9080 0.0860 H1-25 0.0969 1.3870 0.0157 
C-2 0.7130 1.9080 0.0860 H1-3 0.1048 1.3870 0.0157 
C-3 0.5366 1.9080 0.0860 H1-4 0.0880 1.3870 0.0157 
C-4 0.6951 1.9080 0.0860 H1-5 0.1124 1.3870 0.0157 
C-5 0.5896 1.9080 0.0860 H1-6 0.1112 1.3870 0.0157 
C-6 0.3226 1.9080 0.0860 H1-7 0.0850 1.3870 0.0157 

C*-0 -0.1415 1.9080 0.0860 H1-8 0.1105 1.3870 0.0157 
C8-0 -0.0007 1.9080 0.1094 H1-9 0.0698 1.3870 0.0157 
C8-1 0.0390 1.9080 0.1094 H4-0 0.1147 1.4090 0.0150 
C8-2 0.0486 1.9080 0.1094 H4-1 0.2062 1.4090 0.0150 
C8-3 -0.0094 1.9080 0.1094 H5-0 0.1392 1.3590 0.0150 
C8-4 0.0187 1.9080 0.1094 HA-0 0.1330 1.4590 0.0150 
C8-5 -0.0479 1.9080 0.1094 HA-1 0.1430 1.4590 0.0150 
C8-6 -0.0143 1.9080 0.1094 HA-2 0.1297 1.4590 0.0150 
CA-0 0.8076 1.9080 0.0860 HA-3 0.1572 1.4590 0.0150 
CA-1 0.0118 1.9080 0.0860 HA-4 0.1417 1.4590 0.0150 
CA-10 -0.1906 1.9080 0.0860 HA-5 0.1447 1.4590 0.0150 
CA-11 -0.2341 1.9080 0.0860 HA-6 0.1700 1.4590 0.0150 
CA-2 -0.1256 1.9080 0.0860 HA-7 0.1699 1.4590 0.0150 
CA-3 -0.1704 1.9080 0.0860 HA-8 0.1656 1.4590 0.0150 
CA-4 -0.1072 1.9080 0.0860 HC-0 0.0603 1.4870 0.0157 
CA-5 -0.2601 1.9080 0.0860 HC-1 0.0327 1.4870 0.0157 
CA-6 -0.1134 1.9080 0.0860 HC-10 0.0187 1.4870 0.0157 
CA-7 -0.1972 1.9080 0.0860 HC-11 0.0882 1.4870 0.0157 
CA-8 -0.2387 1.9080 0.0860 HC-12 0.0236 1.4870 0.0157 
CA-9 -0.0011 1.9080 0.0860 HC-13 0.0186 1.4870 0.0157 
CB-0 0.1243 1.9080 0.0860 HC-14 0.0457 1.4870 0.0157 
CC-0 -0.0266 1.9080 0.0860 HC-15 -0.0361 1.4870 0.0157 
CN-0 0.138 1.9080 0.0860 HC-16 0.1000 1.4870 0.0157 
CO-0 0.7994 1.9080 0.0860 HC-17 0.0362 1.4870 0.0157 
CO-1 0.8054 1.9080 0.0860 HC-18 0.0103 1.4870 0.0157 
CR-0 0.2057 1.9080 0.0860 HC-19 0.0621 1.4870 0.0157 
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Table 5.2. (cont’d) 
CT-0 -0.1825 1.9080 0.1094 HC-2 0.0285 1.4870 0.0157 
CT-1 -0.0462 1.9080 0.1094 HC-20 0.0241 1.4870 0.0157 

CT-10 -0.2438 1.9080 0.1094 HC-21 0.0295 1.4870 0.0157 
CT-11 -0.005 1.9080 0.1094 HC-22 0.0213 1.4870 0.0157 
CT-12 -0.0152 1.9080 0.1094 HC-23 0.0253 1.4870 0.0157 
CT-13 -0.3192 1.9080 0.1094 HC-24 0.0642 1.4870 0.0157 
CT-2 -0.3204 1.9080 0.1094 HC-25 0.0339 1.4870 0.0157 
CT-3 -0.0660 1.9080 0.1094 HC-26 -0.0297 1.4870 0.0157 
CT-4 -0.4121 1.9080 0.1094 HC-27 0.0791 1.4870 0.0157 
CT-5 -0.0536 1.9080 0.1094 HC-3 0.0797 1.4870 0.0157 
CT-6 -0.0343 1.9080 0.1094 HC-4 -0.0122 1.4870 0.0157 
CT-7 0.0192 1.9080 0.1094 HC-5 0.0171 1.4870 0.0157 
CT-8 0.0189 1.9080 0.1094 HC-6 0.0352 1.4870 0.0157 
CT-9 -0.0070 1.9080 0.1094 HC-7 -0.0173 1.4870 0.0157 
CV-0 0.1292 1.9080 0.0860 HC-8 -0.0425 1.4870 0.0157 
CW-0 -0.1638 1.9080 0.0860 HC-9 0.0402 1.4870 0.0157 
CX-0 0.0337 1.9080 0.1094 HO-0 0.4275 0.0000 0.0000 
CX-1 -0.2637 1.9080 0.1094 HO-1 0.4102 0.0000 0.0000 
CX-10 -0.0518 1.9080 0.1094 HO-2 0.3992 0.0000 0.0000 
CX-11 -0.2400 1.9080 0.1094 HP-0 0.1135 1.1000 0.0157 
CX-12 -0.0237 1.9080 0.1094 HS-0 0.1933 0.600 0.0157 
CX-13 -0.0024 1.9080 0.1094 N-0 -0.4157 1.8240 0.1700 
CX-14 -0.0266 1.9080 0.1094 N-1 -0.3479 1.8240 0.1700 
CX-15 -0.0249 1.9080 0.1094 N-2 -0.9191 1.8240 0.1700 
CX-16 -0.0389 1.9080 0.1094 N-3 -0.5163 1.8240 0.1700 
CX-17 -0.0275 1.9080 0.1094 N-4 -0.9407 1.8240 0.1700 
CX-18 -0.0014 1.9080 0.1094 N-5 -0.2548 1.8240 0.1700 
CX-19 -0.0875 1.9080 0.1094 N2-0 -0.5295 1.8240 0.1700 
CX-2 0.0143 1.9080 0.1094 N2-1 -0.8627 1.8240 0.1700 
CX-3 0.0381 1.9080 0.1094 N3-0 -0.3854 1.8240 0.1700 
CX-4 0.0213 1.9080 0.1094 NA-0 -0.3811 1.8240 0.1700 
CX-5 -0.0031 1.9080 0.1094 NA-1 -0.3418 1.8240 0.1700 
CX-6 0.0397 1.9080 0.1094 NB-0 -0.5727 1.8240 0.1700 
CX-7 -0.0252 1.9080 0.1094 O-0 -0.5679 1.6612 0.2100 
CX-8 0.0188 1.9080 0.1094 O-1 -0.5894 1.6612 0.2100 
CX-9 -0.0597 1.9080 0.1094 O-2 -0.5931 1.6612 0.2100 
H-0 0.2719 0.6000 0.0157 O-3 -0.5819 1.6612 0.2100 
H-1 0.2747 0.6000 0.0157 O-4 -0.6086 1.6612 0.2100 
H-2 0.3456 0.6000 0.0157 O-5 -0.5748 1.6612 0.2100 
H-3 0.4478 0.6000 0.0157 O2-0 -0.8014 1.6612 0.2100 
H-4 0.4196 0.6000 0.0157 O2-1 -0.8188 1.6612 0.2100 
H-5 0.2936 0.6000 0.0157 OH-0 -0.6546 1.7210 0.2104 
H-6 0.4251 0.6000 0.0157 OH-1 -0.6761 1.7210 0.2104 
H-7 0.3649 0.6000 0.0157 OH-2 -0.5579 1.7210 0.2104 
H-8 0.3400 0.6000 0.0157 S-0 -0.2737 2.0000 0.2500 
H-9 0.3412 0.6000 0.0157 SH-0 -0.3119 2.0000 0.2500 
H1-0 0.0823 1.3870 0.0157     
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Table 5.3. Torsion and nonbond energies calculated by an encoded program with ff94 parameters 
for single amino acid test set. 

 Energies / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA 0.0088 0.5494 45.9693 -0.1578 -24.2543 
ARG 0.0706 1.8904 -260.3572 -1.2202 148.0743 
ASN 4.1250 1.3423 -23.2339 -0.8248 -39.3539 
ASP 0.0194 0.8207 56.3004 -0.4736 -36.3626 
CYS 0.0447 0.7164 39.1112 -0.3116 -16.1384 
GLN 4.2578 1.3251 -30.2072 -0.8694 -14.0307 
GLU 0.0742 1.3344 46.5920 -0.7514 -15.0577 
GLY 0.0000 0.4985 37.1013 -0.0511 -21.1957 
HID 0.0158 0.5368 23.8454 -1.2102 -10.6580 
ILE 0.3316 2.1826 21.2849 -0.0174 -7.2089 
LEU 0.0679 2.3109 16.3250 -0.4998 -21.3487 
LYS 0.0743 1.6171 58.9714 -0.8348 -1.7579 
MET 0.0668 0.8724 36.1038 -0.7017 -17.0426 
PHE 0.0120 4.3120 36.2859 -1.3411 -17.6305 
PRO 3.1304 0.4955 14.0621 -0.3670 -3.2757 
SER 0.0115 0.6387 12.8409 -0.1832 1.0681 
THR 0.0783 1.5075 -21.1780 -0.2961 12.0923 
TRP 0.0115 3.5231 52.6121 -2.2212 -26.2422 
TYR 0.0131 4.2971 24.5879 -1.4562 -23.3515 
VAL 0.1042 1.8272 -10.7949 -0.0816 9.0526 
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Table 5.4. Torsion and nonbond energies calculated by Amber software with ff94 parameters for 
single amino acid test set. 

 Energies / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA 0.0088 0.5492 45.9746 -0.1578 -24.2532 
ARG 0.0704 1.8940 -260.3507 -1.2195 148.0715 
ASN 4.1252 1.3436 -23.2274 -0.8252 -39.3537 
ASP 0.0184 0.8247 56.3181 -0.4730 -36.3870 
CYS 0.0446 0.7168 39.1207 -0.3116 -16.1453 
GLN 4.2583 1.3287 -30.1907 -0.8689 -14.0280 
GLU 0.0740 1.3323 46.5987 -0.7506 -15.0496 
GLY 0.0000 0.4957 37.0937 -0.0510 -21.1894 
HID 0.0155 0.5387 23.8397 -1.2100 -10.6602 
ILE 0.3327 2.1786 21.2916 -0.0195 -7.2120 
LEU 0.0676 2.3076 16.3301 -0.5007 -21.3532 
LYS 0.0750 1.6158 58.9735 -0.8338 -1.7559 
MET 0.0663 0.8775 36.1123 -0.7021 -17.0471 
PHE 0.0120 4.3059 36.2908 -1.3421 -17.6348 
PRO 3.1301 0.4933 14.0603 -0.3672 -3.2746 
SER 0.0115 0.6394 12.8384 -0.1832 1.0766 
THR 0.0789 1.5039 -21.1695 -0.2965 12.0833 
TRP 0.0123 3.5237 52.6181 -2.2210 -26.2490 
TYR 0.0128 4.2906 24.5879 -1.4566 -23.3583 
VAL 0.1039 1.8261 -10.7968 -0.0813 9.0583 
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Table 5.5. Comparisons of torsion and nonbond energies calculated by encoded programs and 
Amber software with ff94 parameters for single amino acid test set. 

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA 0.0000 0.0002 -0.0053 0.0000 -0.0011 
ARG 0.0002 -0.0036 -0.0065 -0.0007 0.0028 
ASN -0.0002 -0.0013 -0.0065 0.0004 -0.0002 
ASP 0.0010 -0.0040 -0.0177 -0.0006 0.0244 
CYS 0.0001 -0.0004 -0.0095 0.0000 0.0069 
GLN -0.0005 -0.0036 -0.0165 -0.0005 -0.0027 
GLU 0.0002 0.0021 -0.0067 -0.0008 -0.0081 
GLY 0.0000 0.0028 0.0076 -0.0001 -0.0063 
HID 0.0003 -0.0019 0.0057 -0.0002 0.0022 
ILE -0.0011 0.0040 -0.0067 0.0021 0.0031 
LEU 0.0003 0.0033 -0.0051 0.0009 0.0045 
LYS -0.0007 0.0013 -0.0021 -0.0010 -0.0020 
MET 0.0005 -0.0051 -0.0085 0.0004 0.0045 
PHE 0.0000 0.0061 -0.0049 0.0010 0.0043 
PRO 0.0003 0.0022 0.0018 0.0002 -0.0011 
SER 0.0000 -0.0007 0.0025 0.0000 -0.0085 
THR -0.0006 0.0036 -0.0085 0.0004 0.0090 
TRP -0.0008 -0.0006 -0.0060 -0.0002 0.0068 
TYR 0.0003 0.0065 0.0000 0.0004 0.0068 
VAL 0.0003 0.0011 0.0019 -0.0003 -0.0057 

Maximum 0.0010 0.0065 0.0076 0.0021 0.0244 
Minimum -0.0011 -0.0051 -0.0177 -0.0010 -0.0085 
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Table 5.6. Torsion and nonbond energies calculated by an encoded program with ff14SB 
parameters for single amino acid test set. 

 Energies / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA 0.1711 0.5419 45.9076 -0.1566 -24.1773 
ARG 0.6312 1.9243 -260.1021 -1.2163 147.9333 
ASN 10.7889 1.3478 -23.4786 -0.5022 -39.5225 
ASP 6.0681 1.3423 58.0559 -0.1236 -38.6990 
CYS 2.1838 0.7572 38.8337 -0.3214 -15.8136 
GLN 9.2666 1.5997 -30.421 -0.6938 -12.3584 
GLU 6.0002 1.5892 46.1863 -0.6777 -14.6146 
GLY 0.7558 0.4869 37.0364 -0.0505 -21.1259 
HID 4.0438 0.8284 26.7941 -1.0869 -13.7885 
ILE 4.7027 2.5636 26.2700 -0.1579 -12.1176 
LEU 3.4216 2.3113 16.4199 -0.5225 -21.4754 
LYS 1.0358 1.6150 59.0155 -0.8341 -1.7977 
MET 3.4048 0.8709 35.9177 -0.7018 -16.8777 
PHE 1.2477 4.5331 39.0332 -1.5347 -20.8393 
PRO 3.6242 0.4790 14.0622 -0.3663 -3.2798 
SER 2.4248 1.0014 14.0655 -0.2804 -0.8490 
THR 7.6226 1.5090 -21.5826 -0.2696 12.7759 
TRP 1.5419 3.7928 55.3833 -2.3750 -29.7700 
TYR 1.5085 4.5045 27.0749 -1.6484 -26.6298 
VAL 2.6052 2.2623 -7.2995 -0.2499 5.5357 
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Table 5.7. Torsion and nonbond energies calculated by Amber software with ff14SB parameters 
for single amino acid test set. 

 Energies / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA 0.1712 0.5424 45.9121 -0.1567 -24.1781 
ARG 0.6313 1.9285 -260.0866 -1.2161 147.9086 
ASN 10.7881 1.3465 -23.4731 -0.5034 -39.5127 
ASP 6.0686 1.3472 58.0653 -0.1221 -38.7120 
CYS 2.1834 0.7575 38.8367 -0.3212 -15.8130 
GLN 9.2677 1.6053 -30.4211 -0.6948 -12.3676 
GLU 5.9995 1.5870 46.1810 -0.6764 -14.6191 
GLY 0.7553 0.4867 37.0303 -0.0505 -21.1246 
HID 4.0424 0.8261 26.7944 -1.0859 -13.7808 
ILE 4.7030 2.5634 26.2721 -0.1615 -12.1235 
LEU 3.4221 2.3102 16.4172 -0.5229 -21.4743 
LYS 1.0363 1.6139 59.0196 -0.8337 -1.7965 
MET 3.4055 0.8690 35.9189 -0.7020 -16.8745 
PHE 1.2475 4.5322 39.0335 -1.5350 -20.8375 
PRO 3.6209 0.4811 14.0628 -0.3666 -3.2788 
SER 2.4255 1.0041 14.0670 -0.2803 -0.8570 
THR 7.6225 1.5065 -21.5635 -0.2691 12.7765 
TRP 1.5421 3.7865 55.3799 -2.3752 -29.7711 
TYR 1.5077 4.5149 27.0864 -1.6483 -26.6331 
VAL 2.6041 2.2635 -7.2958 -0.2495 5.5362 
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Table 5.8. Comparisons of torsion and nonbond energies calculated by encoded programs and 
Amber software with ff14SB parameters for single amino acid test set. 

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA -0.0001 -0.0005 -0.0045 0.0001 0.0008 
ARG -0.0001 -0.0042 -0.0155 -0.0002 0.0247 
ASN 0.0008 0.0013 -0.0055 0.0012 -0.0098 
ASP -0.0005 -0.0049 -0.0094 -0.0015 0.0130 
CYS 0.0004 -0.0003 -0.0030 -0.0002 -0.0006 
GLN -0.0011 -0.0056 0.0001 0.0010 0.0092 
GLU 0.0007 0.0022 0.0053 -0.0013 0.0045 
GLY 0.0005 0.0002 0.0061 0.0000 -0.0013 
HID 0.0014 0.0023 -0.0003 -0.0010 -0.0077 
ILE -0.0003 0.0002 -0.0021 0.0036 0.0059 
LEU -0.0005 0.0011 0.0027 0.0004 -0.0011 
LYS -0.0005 0.0011 -0.0041 -0.0004 -0.0012 
MET -0.0007 0.0019 -0.0012 0.0002 -0.0032 
PHE 0.0002 0.0009 -0.0003 0.0003 -0.0018 
PRO 0.0033 -0.0021 -0.0006 0.0003 -0.0010 
SER -0.0007 -0.0027 -0.0015 -0.0001 0.0080 
THR 0.0001 0.0025 -0.0191 -0.0005 -0.0006 
TRP -0.0002 0.0063 0.0034 0.0002 0.0011 
TYR 0.0008 -0.0104 -0.0115 -0.0001 0.0033 
VAL 0.0011 -0.0012 -0.0037 -0.0004 -0.0005 

Maximum 0.0033 0.0063 0.0061 0.0036 0.0247 
Minimum -0.0011 -0.0104 -0.0191 -0.0015 -0.0098 
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Table 5.9. Torsion and nonbond energies calculated by an encoded program with ff94 parameters 
for double amino acid test set. 

 Energies / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA_ALA 2.4541 2.4645 118.0755 -1.3252 -96.9829 

ALA_ARG 2.5390 3.7265 -155.1786 -2.6131 57.5582 
ALA_ASN 6.6826 3.0835 50.9307 -2.1937 -111.2274 

ALA_ASP 2.4786 3.0685 139.1431 -1.9733 -122.5850 

ALA_CYS 2.4849 2.6440 116.2346 -1.6243 -93.4271 

ALA_GLN 6.7149 3.2556 53.4273 -2.2422 -96.5684 
ALA_GLU 2.5180 3.2527 132.1015 -2.1393 -105.8521 

ALA_GLY 1.6734 2.1374 123.1075 -0.9507 -105.6187 

ALA_HID 2.4609 2.6784 106.8670 -2.7616 -95.8874 

ALA_ILE 2.7927 4.5115 118.8190 -1.8707 -102.5848 
ALA_LEU 2.5165 4.1994 97.7516 -1.9502 -98.8091 

ALA_LYS 2.5381 3.4659 161.4802 -2.2229 -90.8739 

ALA_MET 2.5177 2.8025 122.6702 -2.0665 -102.5814 

ALA_PHE 2.4561 6.4551 121.5178 -2.9508 -103.4251 
ALA_PRO 6.6337 2.9762 112.4849 -1.3731 -86.7326 

ALA_SER 2.4803 2.8831 109.0765 -1.6101 -95.8092 

ALA_THR 2.7028 3.2771 85.3268 -2.0097 -93.7234 

ALA_TRP 2.4672 5.4390 139.2381 -3.8377 -109.2930 
ALA_TYR 2.4550 6.4463 109.7341 -3.0755 -109.3333 

ALA_VAL 2.5765 4.1802 95.8870 -1.9082 -95.3666 

ARG_ARG 3.5989 5.0196 -464.1369 -4.2882 250.8879 

ARG_ASN 7.6781 4.4892 -271.0586 -3.6803 63.7242 
ARG_ASP 3.7294 4.0194 -187.4092 -3.5980 16.2763 

ARG_CYS 3.5285 3.9415 -204.7689 -3.2842 80.1727 

ARG_GLN 7.7672 4.5536 -265.7064 -3.8918 77.1582 

ARG_GLU 3.5508 4.5561 -191.2274 -3.7826 35.4200 
ARG_GLY 2.7520 3.3233 -195.2478 -2.4176 66.3483 

ARG_HID 3.5023 3.9778 -213.3264 -4.4010 78.3238 

ARG_ILE 4.0226 5.4434 -198.7507 -3.5590 67.2681 

ARG_LEU 3.5625 5.4637 -221.5235 -3.5774 74.1001 
ARG_LYS 3.5979 4.7507 -148.3798 -3.8962 103.1412 

ARG_MET 3.5586 4.0921 -195.4928 -3.7156 68.8743 

ARG_PHE 3.4939 7.7531 -197.9532 -4.5825 68.5464 

ARG_PRO 8.1324 4.0358 -191.2188 -3.5445 73.4977 
ARG_SER 3.6510 4.0405 -207.3283 -3.3388 71.8203 

ARG_THR 3.9047 4.4901 -227.9708 -3.8193 69.9015 
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Table 5.9. (cont’d) 
ARG_TRP 3.5026 7.0099 -176.9734 -5.6027 55.4917 

ARG_TYR 3.4931 7.7412 -209.6550 -4.7163 62.5798 

ARG_VAL 3.7927 5.0970 -218.4410 -3.5805 71.2631 

ASN_ASN 11.0339 3.8413 -20.3290 -3.0611 -127.1591 
ASN_ASP 6.8400 3.6823 68.0288 -3.1432 -135.1406 

ASN_CYS 6.8886 3.2317 45.1966 -2.6885 -108.1918 

ASN_GLN 11.1264 3.8336 -17.6676 -3.2636 -111.5403 

ASN_GLU 6.8894 3.8464 60.8697 -3.2337 -117.7684 
ASN_GLY 6.0943 2.5801 51.4823 -1.7582 -119.7158 

ASN_HID 6.8701 3.2598 35.7919 -3.8110 -110.8099 

ASN_ILE 7.1218 5.1757 47.8864 -3.0779 -117.5689 

ASN_LEU 6.9373 4.7856 26.7859 -2.9730 -113.4098 
ASN_LYS 6.9685 4.0641 90.7499 -3.1775 -107.9412 

ASN_MET 6.9262 3.3775 51.5919 -3.1027 -116.9573 

ASN_PHE 6.8602 7.0480 50.4911 -4.0217 -117.9304 

ASN_PRO 12.7024 3.3361 42.5972 -3.2959 -105.3569 
ASN_SER 6.8498 3.4902 38.0614 -2.7114 -110.4575 

ASN_THR 7.1053 3.8595 14.5698 -2.9901 -110.8819 

ASN_TRP 6.9157 6.0046 68.1078 -4.7112 -127.2461 

ASN_TYR 6.9122 6.8035 36.8430 -3.7995 -122.2596 
ASN_VAL 6.9041 4.8457 25.0682 -3.0967 -110.4704 

ASP_ASP 3.1607 3.2354 144.2870 -3.4380 -78.8422 

ASP_CYS 3.1835 2.8171 122.5938 -2.9579 -101.4878 

ASP_GLN 7.3641 3.4838 58.9727 -3.5224 -106.3848 
ASP_GLU 3.1665 3.4410 136.4192 -3.4401 -69.0539 

ASP_GLY 2.0169 2.2660 126.9188 -1.1338 -116.5652 

ASP_HID 3.1247 2.8672 112.6631 -4.0776 -105.7256 

ASP_ILE 3.5392 4.6492 123.9353 -3.2977 -105.8915 
ASP_LEU 2.9222 4.5808 103.5540 -2.6487 -108.6484 

ASP_LYS 2.9092 3.8309 166.3842 -2.7405 -137.4003 

ASP_MET 3.1749 3.0066 128.0064 -3.3565 -110.0100 

ASP_PHE 3.1360 6.6599 127.2950 -4.3028 -110.1849 
ASP_PRO 8.0789 3.2402 115.2603 -2.5744 -79.6765 

ASP_SER 3.1873 3.0302 113.4443 -2.9438 -99.9177 

ASP_THR 2.9886 3.6904 87.1147 -2.4968 -100.6664 

ASP_TRP 3.1386 5.8814 146.8720 -5.3003 -120.3027 
ASP_TYR 3.1347 6.6239 115.4293 -4.4321 -115.9908 
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Table 5.9. (cont’d) 
ASP_VAL 3.3172 4.3338 99.9173 -3.3141 -97.6671 

CYS_CYS 2.9858 2.5885 106.2667 -1.6170 -82.7387 

CYS_GLN 7.1923 3.2100 43.3146 -2.2132 -86.1207 

CYS_GLU 3.0456 3.2067 121.0599 -2.1566 -92.1949 
CYS_GLY 2.1382 2.0243 112.8776 -0.8067 -94.5699 

CYS_HID 2.9452 2.6232 96.8071 -2.7539 -85.4161 

CYS_ILE 3.3271 4.4902 108.9223 -1.9375 -91.9022 

CYS_LEU 3.0051 4.1647 87.7933 -1.9280 -88.1488 
CYS_LYS 3.0124 3.4130 152.2366 -2.1891 -82.3759 

CYS_MET 3.0035 2.7517 112.5730 -2.0482 -91.7585 

CYS_PHE 2.9505 6.4087 111.4804 -2.9572 -92.6200 

CYS_PRO 6.8531 3.1440 111.6524 -1.7290 -82.1681 
CYS_SER 2.9942 2.8136 98.9303 -1.6165 -84.8319 

CYS_THR 3.1399 3.2513 75.0342 -1.9495 -83.5785 

CYS_TRP 2.9437 5.3702 128.8096 -3.7325 -99.0577 

CYS_TYR 2.9509 6.3918 99.6718 -3.0864 -98.5395 
CYS_VAL 3.1088 4.1469 85.9137 -1.9688 -84.6144 

GLN_GLN 12.0125 3.8958 -29.4666 -3.4373 -79.1768 

GLN_GLU 7.7871 3.8965 47.4288 -3.3190 -88.8434 

GLN_GLY 6.9803 2.7353 40.1925 -2.0050 -88.5248 
GLN_HID 7.8438 3.1434 22.3377 -3.9581 -74.7281 

GLN_ILE 8.1410 4.7107 34.3822 -2.9965 -82.7077 

GLN_LEU 7.8086 4.8222 14.9122 -3.1315 -81.6610 

GLN_LYS 7.8463 4.1136 80.2541 -3.4401 -73.8852 
GLN_MET 7.8095 3.4372 39.8187 -3.2595 -85.3447 

GLN_PHE 7.8348 6.8875 36.9260 -4.1157 -83.3885 

GLN_PRO 12.2978 3.4309 32.6702 -3.0442 -70.9782 

GLN_SER 7.8505 3.3561 25.9878 -2.8537 -77.7492 
GLN_THR 8.0483 3.8781 3.1903 -3.3084 -78.8237 

GLN_TRP 7.8317 6.0764 56.6957 -5.1470 -94.4435 

GLN_TYR 7.8354 6.8930 25.4572 -4.2521 -89.4582 

GLN_VAL 7.9239 4.3761 12.1612 -3.0337 -76.3121 
GLU_GLU 3.6441 3.6768 120.8392 -3.1749 -50.3009 

GLU_GLY 2.7831 2.5925 113.6088 -1.8125 -85.6407 

GLU_HID 3.5662 3.1174 97.7211 -3.7862 -76.3207 

GLU_ILE 3.9177 4.9371 108.8633 -2.9739 -79.8023 
GLU_LEU 3.6198 4.6441 88.9800 -2.9597 -78.8607 
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Table 5.9. (cont’d) 
GLU_LYS 3.6384 3.9212 152.6513 -3.2500 -100.1574 

GLU_MET 3.6275 3.2404 113.1587 -3.0892 -82.0002 

GLU_PHE 3.5659 6.8793 112.2930 -3.9829 -82.5193 

GLU_PRO 8.0638 3.2750 104.4112 -2.7713 -63.5008 
GLU_SER 3.6084 3.3089 98.6877 -2.6488 -72.9980 

GLU_THR 3.8444 3.7322 73.5535 -3.0288 -68.0000 

GLU_TRP 3.6527 5.8363 129.3251 -4.9669 -84.5115 

GLU_TYR 3.5642 6.8681 100.4585 -4.1154 -88.2992 
GLU_VAL 3.7021 4.5986 85.0392 -2.9978 -71.8262 

GLY_GLY 1.5000 1.6585 102.8303 -0.6707 -92.2244 

GLY_HID 2.2982 1.9844 85.8240 -2.3846 -81.1907 

GLY_ILE 2.6346 3.8167 98.1373 -1.4559 -88.3262 
GLY_LEU 2.3558 3.5112 77.0045 -1.5708 -84.4465 

GLY_LYS 2.3749 2.7742 143.0126 -1.8421 -78.7054 

GLY_MET 2.3556 2.1040 101.7901 -1.6939 -88.0633 

GLY_PHE 2.2971 5.7707 100.5821 -2.5727 -88.8199 
GLY_PRO 5.9381 2.5873 96.9794 -1.0577 -77.4042 

GLY_SER 2.3166 2.1843 88.2247 -1.2364 -81.3288 

GLY_THR 2.5377 2.5896 64.4826 -1.6198 -79.3192 

GLY_TRP 2.2977 4.7539 118.2816 -3.4389 -94.5748 
GLY_TYR 2.2959 5.7412 88.7830 -2.6974 -94.7276 

GLY_VAL 2.4186 3.4758 75.3282 -1.4954 -81.2503 

HID_HID 2.7411 2.7769 82.2093 -5.3569 -80.8651 

HID_ILE 3.3192 4.5185 94.0478 -3.7986 -91.7020 
HID_LEU 2.7948 4.3076 73.2120 -4.5351 -83.5880 

HID_LYS 2.8364 3.5823 138.0382 -4.7869 -77.3242 

HID_MET 2.7975 2.9080 98.0181 -4.6417 -87.0351 

HID_PHE 2.7464 6.5656 96.8807 -5.5492 -88.2746 
HID_PRO 8.2597 2.8998 90.6641 -4.2738 -81.9202 

HID_SER 2.7973 2.9601 84.2997 -4.1701 -80.5401 

HID_THR 3.0268 3.5179 62.7066 -4.5594 -85.3626 

HID_TRP 3.0908 5.8468 116.3558 -5.7944 -103.4417 
HID_TYR 2.7466 6.5465 85.0769 -5.6854 -94.2045 

HID_VAL 2.9019 3.9920 70.9571 -4.1012 -83.0132 

ILE_ILE 3.9864 6.1954 84.5272 -2.7266 -77.4666 

ILE_LEU 3.7072 5.8961 63.4315 -2.7114 -73.6186 
ILE_LYS 3.7414 5.1632 130.3178 -3.0124 -68.8156 
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Table 5.9. (cont’d) 
ILE_MET 3.7185 4.4992 88.1964 -2.8384 -77.2333 

ILE_PHE 3.6532 8.1476 86.8547 -3.7223 -77.8879 

ILE_PRO 8.4893 4.3784 84.7914 -2.4266 -67.7552 

ILE_SER 3.7002 4.5634 74.5719 -2.3869 -70.5831 
ILE_THR 3.9212 4.9769 51.2479 -2.8167 -68.8712 

ILE_TRP 3.6978 7.1315 104.8627 -4.6951 -84.3497 

ILE_TYR 3.6557 8.1320 75.0594 -3.8572 -83.7759 

ILE_VAL 3.7748 5.8484 61.7970 -2.7504 -70.4904 
LEU_LEU 3.5751 5.7919 63.1293 -3.1584 -93.7915 

LEU_LYS 3.6360 5.0654 128.5000 -3.4701 -87.1845 

LEU_MET 3.5843 4.3928 87.9066 -3.2875 -97.4388 

LEU_PHE 3.5154 8.0419 86.5862 -4.1762 -98.1084 
LEU_PRO 8.5188 4.4980 80.8828 -2.9783 -83.8714 

LEU_SER 3.5617 4.4836 74.3449 -2.8578 -90.8153 

LEU_THR 3.8547 4.8451 51.0380 -3.2704 -89.1047 

LEU_TRP 4.6167 6.7250 102.9661 -4.9713 -102.9845 
LEU_TYR 3.5145 8.0406 74.8016 -4.3098 -103.9483 

LEU_VAL 3.5938 5.7632 61.4935 -3.2261 -90.6281 

LYS_LYS 3.5837 4.4076 171.7248 -3.4583 -46.3914 

LYS_MET 3.5439 3.7477 125.0376 -3.2698 -80.5089 
LYS_PHE 3.6336 7.2059 121.1888 -4.1676 -79.4678 

LYS_PRO 8.1071 3.7199 128.3801 -3.1028 -76.3896 

LYS_SER 3.5235 3.8554 113.4248 -2.8400 -77.7344 

LYS_THR 3.8315 4.1794 92.4664 -3.3389 -79.9144 
LYS_TRP 3.6313 6.3921 141.9639 -5.1972 -91.5786 

LYS_TYR 3.4805 7.3876 110.9817 -4.2773 -86.8944 

LYS_VAL 3.6041 5.1130 102.6601 -3.1837 -79.3747 

MET_MET 3.5960 2.9323 103.7658 -3.1716 -87.6575 
MET_PHE 3.6690 6.4674 101.1667 -4.1196 -85.1823 

MET_PRO 8.0672 2.9715 97.8373 -3.0239 -75.7004 

MET_SER 3.5540 3.0426 90.2650 -2.7477 -81.1390 

MET_THR 3.8860 3.3612 66.9389 -3.2329 -79.1961 
MET_TRP 3.6729 5.6313 120.8851 -5.1474 -95.9502 

MET_TYR 3.5259 6.5691 90.6895 -4.1833 -94.2637 

MET_VAL 3.6244 4.3085 77.2636 -3.0982 -80.8930 

PHE_PHE 2.9438 10.1367 107.2588 -6.0510 -92.2948 
PHE_PRO 7.5244 6.5883 101.7166 -4.9261 -80.4459 
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Table 5.9. (cont’d) 
PHE_SER 3.0410 6.4996 94.6164 -4.6578 -84.3437 

PHE_THR 2.9420 7.1106 70.5430 -4.8268 -84.2807 

PHE_TRP 2.6765 9.1694 123.8937 -6.5484 -98.3989 

PHE_TYR 2.6793 9.9424 92.6308 -5.6331 -93.3411 
PHE_VAL 3.1880 7.7654 81.6957 -5.0487 -84.0391 

PRO_PRO 9.4988 2.9215 73.0478 -2.0934 -57.4202 

PRO_SER 5.5616 2.7334 63.5137 -2.2047 -60.4104 

PRO_THR 5.7983 3.1318 39.6713 -2.6288 -58.0718 
PRO_TRP 5.5485 5.2737 93.7747 -4.4444 -73.7855 

PRO_TYR 5.5344 6.2878 64.1343 -3.6779 -73.8010 

PRO_VAL 5.6571 4.0296 50.5453 -2.5153 -60.2468 

SER_SER 2.7780 2.8641 62.7424 -1.3467 -58.8199 
SER_THR 2.8729 3.3333 38.5876 -1.7058 -57.2738 

SER_TRP 2.7289 5.4444 92.3778 -3.4552 -72.8540 

SER_TYR 2.7434 6.4582 63.4548 -2.8300 -72.4031 

SER_VAL 2.8921 4.2053 49.9412 -1.6923 -58.8025 
THR_THR 2.9842 4.3523 -0.0002 -2.5669 -32.3897 

THR_TRP 2.7521 6.5861 54.2923 -4.4176 -48.8353 

THR_TYR 2.6783 7.5370 24.0810 -3.6018 -48.1746 

THR_VAL 2.8136 5.2687 10.7400 -2.4526 -34.8625 
TRP_TRP 2.6206 8.4303 138.7384 -7.5334 -108.2350 

TRP_TYR 2.6155 9.2108 107.4267 -6.6273 -103.1310 

TRP_VAL 2.6460 6.7610 94.2838 -5.5834 -90.5809 

TYR_TYR 2.6631 9.8961 80.3178 -5.8225 -99.2140 
TYR_VAL 3.1168 7.7432 69.4624 -5.3466 -89.2782 

VAL_VAL 3.5552 5.4546 21.9492 -2.6268 -46.6209 
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Table 5.10. Torsion and nonbond energies calculated by Amber software with ff94 parameters for 
double amino acid test set.  

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA_ALA 2.4544 2.4627 118.0785 -1.3248 -96.9775 
ALA_ARG 2.5391 3.7338 -155.1922 -2.6129 57.5772 
ALA_ASN 6.6843 3.0813 50.9371 -2.1954 -111.2287 
ALA_ASP 2.4792 3.0652 139.1533 -1.9718 -122.5947 
ALA_CYS 2.4851 2.6409 116.2341 -1.6264 -93.4288 
ALA_GLN 6.7146 3.2590 53.4295 -2.2435 -96.5693 
ALA_GLU 2.5170 3.2510 132.1055 -2.1362 -105.8683 
ALA_GLY 1.6730 2.1359 123.1055 -0.9506 -105.6109 
ALA_HID 2.4599 2.6777 106.8644 -2.7612 -95.8808 
ALA_ILE 2.7934 4.5113 118.8296 -1.8709 -102.5990 
ALA_LEU 2.5162 4.2023 97.7498 -1.9472 -98.8072 
ALA_LYS 2.5390 3.4660 161.4899 -2.2236 -90.8720 
ALA_MET 2.5178 2.7988 122.6631 -2.0685 -102.5792 
ALA_PHE 2.4571 6.4543 121.5168 -2.9501 -103.4290 
ALA_PRO 6.6365 2.9748 112.4853 -1.3720 -86.7384 
ALA_SER 2.4817 2.8791 109.0744 -1.6111 -95.8011 
ALA_THR 2.7032 3.2769 85.3299 -2.0119 -93.7124 
ALA_TRP 2.4685 5.4374 139.2497 -3.8380 -109.2967 
ALA_TYR 2.4567 6.4398 109.7249 -3.0767 -109.3268 
ALA_VAL 2.5777 4.1744 95.8936 -1.9052 -95.3793 
ARG_ARG 3.5997 5.0160 -464.2176 -4.2875 250.9398 
ARG_ASN 7.6774 4.4885 -271.0645 -3.6819 63.7411 
ARG_ASP 3.7284 4.0150 -187.3786 -3.5989 16.2760 
ARG_CYS 3.5283 3.9402 -204.7583 -3.2870 80.1704 
ARG_GLN 7.7688 4.5507 -265.7263 -3.8927 77.1420 
ARG_GLU 3.5495 4.5547 -191.1995 -3.7789 35.4041 
ARG_GLY 2.7524 3.3212 -195.2521 -2.4169 66.3516 
ARG_HID 3.5017 3.9840 -213.3195 -4.4024 78.3416 
ARG_ILE 4.0238 5.4497 -198.7196 -3.5621 67.2394 
ARG_LEU 3.5602 5.4658 -221.4991 -3.5768 74.0706 
ARG_LYS 3.5993 4.7538 -148.3877 -3.9016 103.1335 
ARG_MET 3.5566 4.0948 -195.5267 -3.7152 68.8839 
ARG_PHE 3.4919 7.7516 -197.9175 -4.5855 68.4979 
ARG_PRO 8.1292 4.0352 -191.2415 -3.5461 73.5166 
ARG_SER 3.6525 4.0429 -207.3750 -3.3379 71.8319 
ARG_THR 3.9021 4.4818 -227.9744 -3.8195 69.8984 
ARG_TRP 3.5026 7.0102 -177.0093 -5.6061 55.4896 
ARG_TYR 3.4934 7.7420 -209.6527 -4.7161 62.5689 
ARG_VAL 3.7929 5.1030 -218.4348 -3.5826 71.2634 
ASN_ASN 11.0334 3.8400 -20.3347 -3.0666 -127.1316 
ASN_ASP 6.8370 3.6817 68.0145 -3.1457 -135.1461 
ASN_CYS 6.8863 3.2332 45.2105 -2.6877 -108.2019 
ASN_GLN 11.1274 3.8422 -17.6776 -3.2635 -111.5313 
ASN_GLU 6.8896 3.8416 60.8696 -3.2354 -117.7836 
ASN_GLY 6.0926 2.5825 51.4769 -1.7563 -119.7288 
ASN_HID 6.8698 3.2619 35.7755 -3.8100 -110.8445 
ASN_ILE 7.1217 5.1775 47.8983 -3.0761 -117.5813 
ASN_LEU 6.9374 4.7896 26.7930 -2.9731 -113.4332 
ASN_LYS 6.9672 4.0655 90.7454 -3.1776 -107.9458 
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Table 5.10. (cont’d)  
ASN_MET 6.9241 3.3836 51.5909 -3.1037 -116.9608 
ASN_PHE 6.8606 7.0463 50.4930 -4.0226 -117.9426 
ASN_PRO 12.7031 3.3373 42.6040 -3.3021 -105.3404 
ASN_SER 6.8512 3.4881 38.0507 -2.7182 -110.4764 
ASN_THR 7.1072 3.8617 14.5607 -2.9917 -110.8854 
ASN_TRP 6.9151 6.0066 68.1072 -4.7071 -127.2454 
ASN_TYR 6.9142 6.7951 36.8455 -3.8035 -122.2804 
ASN_VAL 6.9034 4.8491 25.0748 -3.0930 -110.4792 
ASP_ASP 3.1600 3.2306 144.2811 -3.4409 -78.8267 
ASP_CYS 3.1859 2.8250 122.5939 -2.9569 -101.5003 
ASP_GLN 7.3615 3.4733 58.9701 -3.5203 -106.3775 
ASP_GLU 3.1683 3.4438 136.4099 -3.4423 -69.0742 
ASP_GLY 2.0171 2.2736 126.9328 -1.1311 -116.5589 
ASP_HID 3.1246 2.8712 112.6762 -4.0788 -105.7152 
ASP_ILE 3.5394 4.6457 123.9222 -3.2958 -105.8612 
ASP_LEU 2.9237 4.5787 103.5521 -2.6510 -108.6535 
ASP_LYS 2.9100 3.8307 166.3765 -2.7342 -137.4193 
ASP_MET 3.1772 3.0039 127.9881 -3.3566 -109.9989 
ASP_PHE 3.1335 6.6542 127.2905 -4.3022 -110.1798 
ASP_PRO 8.0744 3.2427 115.2702 -2.5702 -79.6948 
ASP_SER 3.1877 3.0286 113.4609 -2.9425 -99.9249 
ASP_THR 2.9870 3.6916 87.0965 -2.4957 -100.6566 
ASP_TRP 3.1385 5.8781 146.8618 -5.2980 -120.2735 
ASP_TYR 3.1348 6.6333 115.4404 -4.4336 -115.9782 
ASP_VAL 3.3180 4.3218 99.9057 -3.3178 -97.6521 
CYS_CYS 2.9818 2.5847 106.2724 -1.6156 -82.7409 
CYS_GLN 7.1915 3.2086 43.3375 -2.2185 -86.1317 
CYS_GLU 3.0453 3.2110 121.0603 -2.1576 -92.1871 
CYS_GLY 2.1393 2.0234 112.8800 -0.8104 -94.5822 
CYS_HID 2.9454 2.6218 96.7936 -2.7541 -85.4031 
CYS_ILE 3.3274 4.4852 108.9150 -1.9379 -91.8907 
CYS_LEU 3.0044 4.1645 87.7902 -1.9265 -88.1597 
CYS_LYS 3.0131 3.4162 152.2474 -2.1883 -82.3812 
CYS_MET 3.0019 2.7471 112.5761 -2.0484 -91.7541 
CYS_PHE 2.9505 6.4050 111.4871 -2.9550 -92.6174 
CYS_PRO 6.8521 3.1381 111.6451 -1.7317 -82.1610 
CYS_SER 2.9935 2.8133 98.9338 -1.6176 -84.8356 
CYS_THR 3.1392 3.2624 75.0432 -1.9480 -83.5826 
CYS_TRP 2.9426 5.3762 128.8149 -3.7309 -99.0455 
CYS_TYR 2.9525 6.3886 99.6839 -3.0857 -98.5499 
CYS_VAL 3.1089 4.1492 85.9173 -1.9668 -84.6098 
GLN_GLN 12.0110 3.8942 -29.4624 -3.4372 -79.1611 
GLN_GLU 7.7898 3.8917 47.4497 -3.3223 -88.8583 
GLN_GLY 6.9762 2.7326 40.1859 -2.0034 -88.5262 
GLN_HID 7.8450 3.1454 22.3377 -3.9603 -74.7360 
GLN_ILE 8.1417 4.7129 34.3919 -2.9997 -82.7214 
GLN_LEU 7.8088 4.8238 14.9147 -3.1325 -81.6566 
GLN_LYS 7.8437 4.1130 80.2583 -3.4370 -73.8935 
GLN_MET 7.8068 3.4379 39.8478 -3.2607 -85.3444 
GLN_PHE 7.8342 6.8882 36.9509 -4.1175 -83.3861 
GLN_PRO 12.3028 3.4305 32.6720 -3.0451 -70.9599 
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Table 5.10. (cont’d)  
GLN_SER 7.8519 3.3569 25.9844 -2.8528 -77.7516 
GLN_THR 8.0497 3.8803 3.1854 -3.3087 -78.8275 
GLN_TRP 7.8325 6.0791 56.7260 -5.1509 -94.4490 
GLN_TYR 7.8369 6.8984 25.4729 -4.2536 -89.4721 
GLN_VAL 7.9232 4.3765 12.1859 -3.0318 -76.3078 
GLU_GLU 3.6440 3.6797 120.8308 -3.1756 -50.2902 
GLU_GLY 2.7825 2.5935 113.5969 -1.8134 -85.6298 
GLU_HID 3.5660 3.1174 97.7237 -3.7887 -76.3215 
GLU_ILE 3.9172 4.9340 108.8781 -2.9737 -79.8164 
GLU_LEU 3.6213 4.6447 88.9770 -2.9630 -78.8664 
GLU_LYS 3.6432 3.9187 152.6442 -3.2493 -100.1717 
GLU_MET 3.6271 3.2411 113.1626 -3.0886 -82.0180 
GLU_PHE 3.5658 6.8935 112.2770 -3.9848 -82.5250 
GLU_PRO 8.0626 3.2689 104.3902 -2.7755 -63.4770 
GLU_SER 3.6104 3.3156 98.6891 -2.6492 -73.0100 
GLU_THR 3.8443 3.7273 73.5461 -3.0266 -67.9961 
GLU_TRP 3.6489 5.8355 129.3415 -4.9667 -84.4984 
GLU_TYR 3.5664 6.8780 100.4523 -4.1151 -88.2858 
GLU_VAL 3.7046 4.6008 85.0406 -2.9988 -71.8135 
GLY_GLY 1.5000 1.6571 102.8327 -0.6700 -92.2307 
GLY_HID 2.2986 1.9853 85.8342 -2.3853 -81.1880 
GLY_ILE 2.6343 3.8187 98.1352 -1.4533 -88.3262 
GLY_LEU 2.3559 3.5132 77.0051 -1.5720 -84.4497 
GLY_LYS 2.3755 2.7771 143.0221 -1.8434 -78.7119 
GLY_MET 2.3558 2.1078 101.7965 -1.6936 -88.0565 
GLY_PHE 2.2967 5.7624 100.5767 -2.5726 -88.8228 
GLY_PRO 5.9399 2.5833 96.9601 -1.0596 -77.3908 
GLY_SER 2.3163 2.1858 88.2293 -1.2359 -81.3223 
GLY_THR 2.5366 2.5890 64.4655 -1.6185 -79.3202 
GLY_TRP 2.2977 4.7396 118.2748 -3.4395 -94.5778 
GLY_TYR 2.2958 5.7470 88.7782 -2.6979 -94.7217 
GLY_VAL 2.4178 3.4846 75.3170 -1.4933 -81.2464 
HID_HID 2.7414 2.7761 82.1977 -5.3610 -80.8640 
HID_ILE 3.3216 4.5215 94.0431 -3.8031 -91.7022 
HID_LEU 2.7939 4.3138 73.2260 -4.5333 -83.5980 
HID_LYS 2.8377 3.5796 138.0366 -4.7862 -77.3246 
HID_MET 2.7976 2.8991 97.9979 -4.6444 -87.0275 
HID_PHE 2.7464 6.5613 96.8854 -5.5503 -88.2734 
HID_PRO 8.2695 2.9031 90.6678 -4.2754 -81.9213 
HID_SER 2.7989 2.9605 84.2969 -4.1717 -80.5334 
HID_THR 3.0262 3.5205 62.7036 -4.5587 -85.3689 
HID_TRP 3.0918 5.8445 116.3516 -5.7936 -103.4272 
HID_TYR 2.7477 6.5433 85.0745 -5.6842 -94.2101 
HID_VAL 2.9015 3.9975 70.9666 -4.0980 -83.0187 
ILE_ILE 3.9893 6.1898 84.5022 -2.7263 -77.4548 
ILE_LEU 3.7068 5.8945 63.4259 -2.7123 -73.6242 
ILE_LYS 3.7416 5.1646 130.3269 -3.0102 -68.8154 
ILE_MET 3.7173 4.4936 88.1951 -2.8379 -77.2311 
ILE_PHE 3.6519 8.1484 86.8631 -3.7280 -77.8917 
ILE_PRO 8.4908 4.3771 84.7955 -2.4262 -67.7631 
ILE_SER 3.6965 4.5701 74.5959 -2.3879 -70.5793 
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Table 5.10. (cont’d) 
ILE_THR 3.9209 4.9757 51.2420 -2.8164 -68.8646 
ILE_TRP 3.7009 7.1316 104.8576 -4.6936 -84.3266 
ILE_TYR 3.6532 8.1342 75.0667 -3.8582 -83.7737 
ILE_VAL 3.7771 5.8522 61.7753 -2.7475 -70.4835 
LEU_LEU 3.5758 5.7878 63.1173 -3.1598 -93.7925 
LEU_LYS 3.6350 5.0664 128.4960 -3.4687 -87.1873 
LEU_MET 3.5843 4.3960 87.9149 -3.2904 -97.4306 
LEU_PHE 3.5127 8.0506 86.5882 -4.1764 -98.1057 
LEU_PRO 8.5212 4.4980 80.8836 -2.9817 -83.8724 
LEU_SER 3.5623 4.4851 74.3365 -2.8558 -90.8023 
LEU_THR 3.8552 4.8466 51.0338 -3.2705 -89.1112 
LEU_TRP 4.6172 6.7301 102.9716 -4.9758 -102.9842 
LEU_TYR 3.5157 8.0369 74.7967 -4.3086 -103.9834 
LEU_VAL 3.5903 5.7649 61.4958 -3.2258 -90.6297 
LYS_LYS 3.5815 4.4049 171.7302 -3.4559 -46.4067 
LYS_MET 3.5450 3.7468 125.0406 -3.2716 -80.5012 
LYS_PHE 3.6350 7.2086 121.1929 -4.1695 -79.4669 
LYS_PRO 8.1075 3.7240 128.3883 -3.1022 -76.4028 
LYS_SER 3.5211 3.8529 113.4396 -2.8401 -77.7377 
LYS_THR 3.8299 4.1699 92.4868 -3.3378 -79.8854 
LYS_TRP 3.6354 6.3872 141.9460 -5.1986 -91.5772 
LYS_TYR 3.4809 7.3927 110.9881 -4.2775 -86.8880 
LYS_VAL 3.6019 5.1101 102.6591 -3.1806 -79.3695 
MET_MET 3.5965 2.9354 103.7696 -3.1733 -87.6672 
MET_PHE 3.6705 6.4660 101.1788 -4.1244 -85.1871 
MET_PRO 8.0664 2.9726 97.8380 -3.0201 -75.6937 
MET_SER 3.5577 3.0452 90.2541 -2.7482 -81.1389 
MET_THR 3.8853 3.3582 66.9378 -3.2337 -79.1920 
MET_TRP 3.6734 5.6287 120.8928 -5.1500 -95.9500 
MET_TYR 3.5277 6.5796 90.6851 -4.1868 -94.2762 
MET_VAL 3.6268 4.3164 77.2806 -3.0987 -80.9085 
PHE_PHE 2.9417 10.1371 107.2569 -6.0531 -92.3045 
PHE_PRO 7.5262 6.5884 101.7216 -4.9263 -80.4541 
PHE_SER 3.0406 6.4960 94.6190 -4.6570 -84.3487 
PHE_THR 2.9373 7.1091 70.5480 -4.8241 -84.2736 
PHE_TRP 2.6793 9.1659 123.9031 -6.5492 -98.3957 
PHE_TYR 2.6789 9.9335 92.6355 -5.6323 -93.3557 
PHE_VAL 3.1874 7.7650 81.6879 -5.0488 -84.0534 
PRO_PRO 9.4985 2.9231 73.0407 -2.0938 -57.4253 
PRO_SER 5.5604 2.7348 63.5045 -2.2033 -60.4158 
PRO_THR 5.7972 3.1312 39.6629 -2.6273 -58.0726 
PRO_TRP 5.5493 5.2889 93.7669 -4.4449 -73.7840 
PRO_TYR 5.5369 6.2911 64.1512 -3.6784 -73.8046 
PRO_VAL 5.6553 4.0326 50.5590 -2.5144 -60.2538 
SER_SER 2.7792 2.8633 62.7370 -1.3553 -58.8400 
SER_THR 2.8733 3.3342 38.5763 -1.7091 -57.2605 
SER_TRP 2.7291 5.4406 92.3879 -3.4544 -72.8563 
SER_TYR 2.7413 6.4489 63.4493 -2.8300 -72.4056 
SER_VAL 2.8957 4.2003 49.9344 -1.6929 -58.7845 
THR_THR 2.9849 4.3608 0.0107 -2.5675 -32.4047 
THR_TRP 2.7528 6.5830 54.2738 -4.4163 -48.8367 
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Table 5.10. (cont’d)  
THR_TYR 2.6785 7.5363 24.0798 -3.6039 -48.1608 
THR_VAL 2.8117 5.2668 10.7514 -2.4545 -34.8742 
TRP_TRP 2.6185 8.4391 138.7433 -7.5365 -108.2237 
TRP_TYR 2.6174 9.2155 107.4061 -6.6271 -103.1196 
TRP_VAL 2.6448 6.7645 94.2846 -5.5814 -90.5867 
TYR_TYR 2.6629 9.8953 80.3259 -5.8205 -99.2277 
TYR_VAL 3.1148 7.7502 69.4697 -5.3431 -89.2894 
VAL_VAL 3.5552 5.4500 21.9507 -2.6293 -46.6316 
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Table 5.11. Comparisons of torsion and nonbond energies calculated by the encoded program and 
Amber software with ff94 parameters for double amino acid test set. 

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA_ALA -0.0003 0.0018 -0.0030 -0.0004 -0.0054 
ALA_ARG -0.0001 -0.0073 0.0136 -0.0002 -0.0190 
ALA_ASN -0.0017 0.0022 -0.0064 0.0017 0.0013 
ALA_ASP -0.0006 0.0033 -0.0102 -0.0015 0.0097 
ALA_CYS -0.0002 0.0031 0.0005 0.0021 0.0017 
ALA_GLN 0.0003 -0.0034 -0.0022 0.0013 0.0009 
ALA_GLU 0.0010 0.0017 -0.0040 -0.0031 0.0162 
ALA_GLY 0.0004 0.0015 0.0020 -0.0001 -0.0078 
ALA_HID 0.0010 0.0007 0.0026 -0.0004 -0.0066 
ALA_ILE -0.0007 0.0002 -0.0106 0.0002 0.0142 
ALA_LEU 0.0003 -0.0029 0.0018 -0.0030 -0.0019 
ALA_LYS -0.0009 -0.0001 -0.0097 0.0007 -0.0019 
ALA_MET -0.0001 0.0037 0.0071 0.0020 -0.0022 
ALA_PHE -0.0010 0.0008 0.0010 -0.0007 0.0039 
ALA_PRO -0.0028 0.0014 -0.0004 -0.0011 0.0058 
ALA_SER -0.0014 0.0040 0.0021 0.0010 -0.0081 
ALA_THR -0.0004 0.0002 -0.0031 0.0022 -0.0110 
ALA_TRP -0.0013 0.0016 -0.0116 0.0003 0.0037 
ALA_TYR -0.0017 0.0065 0.0092 0.0012 -0.0065 
ALA_VAL -0.0012 0.0058 -0.0066 -0.0030 0.0127 
ARG_ARG -0.0008 0.0036 0.0807 -0.0007 -0.0519 
ARG_ASN 0.0007 0.0007 0.0059 0.0016 -0.0169 
ARG_ASP 0.0010 0.0044 -0.0306 0.0009 0.0003 
ARG_CYS 0.0002 0.0013 -0.0106 0.0028 0.0023 
ARG_GLN -0.0016 0.0029 0.0199 0.0009 0.0162 
ARG_GLU 0.0013 0.0014 -0.0279 -0.0037 0.0159 
ARG_GLY -0.0004 0.0021 0.0043 -0.0007 -0.0033 
ARG_HID 0.0006 -0.0062 -0.0069 0.0014 -0.0178 
ARG_ILE -0.0012 -0.0063 -0.0311 0.0031 0.0287 
ARG_LEU 0.0023 -0.0021 -0.0244 -0.0006 0.0295 
ARG_LYS -0.0014 -0.0031 0.0079 0.0054 0.0077 
ARG_MET 0.0020 -0.0027 0.0339 -0.0004 -0.0096 
ARG_PHE 0.0020 0.0015 -0.0357 0.0030 0.0485 
ARG_PRO 0.0032 0.0006 0.0227 0.0016 -0.0189 
ARG_SER -0.0015 -0.0024 0.0467 -0.0009 -0.0116 
ARG_THR 0.0026 0.0083 0.0036 0.0002 0.0031 
ARG_TRP 0.0000 -0.0003 0.0359 0.0034 0.0021 
ARG_TYR -0.0003 -0.0008 -0.0023 -0.0002 0.0109 
ARG_VAL -0.0002 -0.0060 -0.0062 0.0021 -0.0003 
ASN_ASN 0.0005 0.0013 0.0057 0.0055 -0.0275 
ASN_ASP 0.0030 0.0006 0.0143 0.0025 0.0055 
ASN_CYS 0.0023 -0.0015 -0.0139 -0.0008 0.0101 
ASN_GLN -0.0010 -0.0086 0.0100 -0.0001 -0.0090 
ASN_GLU -0.0002 0.0048 0.0001 0.0017 0.0152 
ASN_GLY 0.0017 -0.0024 0.0054 -0.0019 0.0130 
ASN_HID 0.0003 -0.0021 0.0164 -0.0010 0.0346 
ASN_ILE 0.0001 -0.0018 -0.0119 -0.0018 0.0124 
ASN_LEU -0.0001 -0.0040 -0.0071 0.0001 0.0234 
ASN_LYS 0.0013 -0.0014 0.0045 0.0001 0.0046 
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Table 5.11. (cont’d) 
ASN_MET 0.0021 -0.0061 0.0010 0.0010 0.0035 
ASN_PHE -0.0004 0.0017 -0.0019 0.0009 0.0122 
ASN_PRO -0.0007 -0.0012 -0.0068 0.0062 -0.0165 
ASN_SER -0.0014 0.0021 0.0107 0.0068 0.0189 
ASN_THR -0.0019 -0.0022 0.0091 0.0016 0.0035 
ASN_TRP 0.0006 -0.0020 0.0006 -0.0041 -0.0007 
ASN_TYR -0.0020 0.0084 -0.0025 0.0040 0.0208 
ASN_VAL 0.0007 -0.0034 -0.0066 -0.0037 0.0088 
ASP_ASP 0.0007 0.0048 0.0059 0.0029 -0.0155 
ASP_CYS -0.0024 -0.0079 -0.0001 -0.0010 0.0125 
ASP_GLN 0.0026 0.0105 0.0026 -0.0021 -0.0073 
ASP_GLU -0.0018 -0.0028 0.0093 0.0022 0.0203 
ASP_GLY -0.0002 -0.0076 -0.0140 -0.0027 -0.0063 
ASP_HID 0.0001 -0.0040 -0.0131 0.0012 -0.0104 
ASP_ILE -0.0002 0.0035 0.0131 -0.0019 -0.0303 
ASP_LEU -0.0015 0.0021 0.0019 0.0023 0.0051 
ASP_LYS -0.0008 0.0002 0.0077 -0.0063 0.0190 
ASP_MET -0.0023 0.0027 0.0183 0.0001 -0.0111 
ASP_PHE 0.0025 0.0057 0.0045 -0.0006 -0.0051 
ASP_PRO 0.0045 -0.0025 -0.0099 -0.0042 0.0183 
ASP_SER -0.0004 0.0016 -0.0166 -0.0013 0.0072 
ASP_THR 0.0016 -0.0012 0.0182 -0.0011 -0.0098 
ASP_TRP 0.0001 0.0033 0.0102 -0.0023 -0.0292 
ASP_TYR -0.0001 -0.0094 -0.0111 0.0015 -0.0126 
ASP_VAL -0.0008 0.0120 0.0116 0.0037 -0.0150 
CYS_CYS 0.0040 0.0038 -0.0057 -0.0014 0.0022 
CYS_GLN 0.0008 0.0014 -0.0229 0.0053 0.0110 
CYS_GLU 0.0003 -0.0043 -0.0004 0.0010 -0.0078 
CYS_GLY -0.0011 0.0009 -0.0024 0.0037 0.0123 
CYS_HID -0.0002 0.0014 0.0135 0.0002 -0.0130 
CYS_ILE -0.0003 0.0050 0.0073 0.0004 -0.0115 
CYS_LEU 0.0007 0.0002 0.0031 -0.0015 0.0109 
CYS_LYS -0.0007 -0.0032 -0.0108 -0.0008 0.0053 
CYS_MET 0.0016 0.0046 -0.0031 0.0002 -0.0044 
CYS_PHE 0.0000 0.0037 -0.0067 -0.0022 -0.0026 
CYS_PRO 0.0010 0.0059 0.0073 0.0027 -0.0071 
CYS_SER 0.0007 0.0003 -0.0035 0.0011 0.0037 
CYS_THR 0.0007 -0.0111 -0.0090 -0.0015 0.0041 
CYS_TRP 0.0011 -0.0060 -0.0053 -0.0016 -0.0122 
CYS_TYR -0.0016 0.0032 -0.0121 -0.0007 0.0104 
CYS_VAL -0.0001 -0.0023 -0.0036 -0.0020 -0.0046 
GLN_GLN 0.0015 0.0016 -0.0042 -0.0001 -0.0157 
GLN_GLU -0.0027 0.0048 -0.0209 0.0033 0.0149 
GLN_GLY 0.0041 0.0027 0.0066 -0.0016 0.0014 
GLN_HID -0.0012 -0.0020 0.0000 0.0022 0.0079 
GLN_ILE -0.0007 -0.0022 -0.0097 0.0032 0.0137 
GLN_LEU -0.0002 -0.0016 -0.0025 0.0010 -0.0044 
GLN_LYS 0.0026 0.0006 -0.0042 -0.0031 0.0083 
GLN_MET 0.0027 -0.0007 -0.0291 0.0012 -0.0003 
GLN_PHE 0.0006 -0.0007 -0.0249 0.0018 -0.0024 
GLN_PRO -0.0050 0.0004 -0.0018 0.0009 -0.0183 
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Table 5.11. (cont’d) 
GLN_SER -0.0014 -0.0008 0.0034 -0.0009 0.0024 
GLN_THR -0.0014 -0.0022 0.0049 0.0003 0.0038 
GLN_TRP -0.0008 -0.0027 -0.0303 0.0039 0.0055 
GLN_TYR -0.0015 -0.0054 -0.0157 0.0015 0.0139 
GLN_VAL 0.0007 -0.0004 -0.0247 -0.0019 -0.0043 
GLU_GLU 0.0001 -0.0029 0.0084 0.0007 -0.0107 
GLU_GLY 0.0006 -0.0010 0.0119 0.0009 -0.0109 
GLU_HID 0.0002 0.0000 -0.0026 0.0025 0.0008 
GLU_ILE 0.0005 0.0031 -0.0148 -0.0002 0.0141 
GLU_LEU -0.0015 -0.0006 0.0030 0.0033 0.0057 
GLU_LYS -0.0048 0.0025 0.0071 -0.0007 0.0143 
GLU_MET 0.0004 -0.0007 -0.0039 -0.0006 0.0178 
GLU_PHE 0.0001 -0.0142 0.0160 0.0019 0.0057 
GLU_PRO 0.0012 0.0061 0.0210 0.0042 -0.0238 
GLU_SER -0.0020 -0.0067 -0.0014 0.0004 0.0120 
GLU_THR 0.0001 0.0049 0.0074 -0.0022 -0.0039 
GLU_TRP 0.0038 0.0008 -0.0164 -0.0002 -0.0131 
GLU_TYR -0.0022 -0.0099 0.0062 -0.0003 -0.0134 
GLU_VAL -0.0025 -0.0022 -0.0014 0.0010 -0.0127 
GLY_GLY 0.0000 0.0014 -0.0024 -0.0007 0.0063 
GLY_HID -0.0004 -0.0009 -0.0102 0.0007 -0.0027 
GLY_ILE 0.0003 -0.0020 0.0021 -0.0026 0.0000 
GLY_LEU -0.0001 -0.0020 -0.0006 0.0012 0.0032 
GLY_LYS -0.0006 -0.0029 -0.0095 0.0013 0.0065 
GLY_MET -0.0002 -0.0038 -0.0064 -0.0003 -0.0068 
GLY_PHE 0.0004 0.0083 0.0054 -0.0001 0.0029 
GLY_PRO -0.0018 0.0040 0.0193 0.0019 -0.0134 
GLY_SER 0.0003 -0.0015 -0.0046 -0.0005 -0.0065 
GLY_THR 0.0011 0.0006 0.0171 -0.0013 0.0010 
GLY_TRP 0.0000 0.0143 0.0068 0.0006 0.0030 
GLY_TYR 0.0001 -0.0058 0.0048 0.0005 -0.0059 
GLY_VAL 0.0008 -0.0088 0.0112 -0.0021 -0.0039 
HID_HID -0.0003 0.0008 0.0116 0.0041 -0.0011 
HID_ILE -0.0024 -0.0030 0.0047 0.0045 0.0002 
HID_LEU 0.0009 -0.0062 -0.0140 -0.0018 0.0100 
HID_LYS -0.0013 0.0027 0.0016 -0.0007 0.0004 
HID_MET -0.0001 0.0089 0.0202 0.0027 -0.0076 
HID_PHE 0.0000 0.0043 -0.0047 0.0011 -0.0012 
HID_PRO -0.0098 -0.0033 -0.0037 0.0016 0.0011 
HID_SER -0.0016 -0.0004 0.0028 0.0016 -0.0067 
HID_THR 0.0006 -0.0026 0.0030 -0.0007 0.0063 
HID_TRP -0.0010 0.0023 0.0042 -0.0008 -0.0145 
HID_TYR -0.0011 0.0032 0.0024 -0.0012 0.0056 
HID_VAL 0.0004 -0.0055 -0.0095 -0.0032 0.0055 
ILE_ILE -0.0029 0.0056 0.0250 -0.0003 -0.0118 
ILE_LEU 0.0004 0.0016 0.0056 0.0009 0.0056 
ILE_LYS -0.0002 -0.0014 -0.0091 -0.0022 -0.0002 
ILE_MET 0.0012 0.0056 0.0013 -0.0005 -0.0022 
ILE_PHE 0.0013 -0.0008 -0.0084 0.0057 0.0038 
ILE_PRO -0.0015 0.0013 -0.0041 -0.0004 0.0079 
ILE_SER 0.0037 -0.0067 -0.0240 0.0010 -0.0038 
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Table 5.11. (cont’d) 
ILE_THR 0.0003 0.0012 0.0059 -0.0003 -0.0066 
ILE_TRP -0.0031 -0.0001 0.0051 -0.0015 -0.0231 
ILE_TYR 0.0025 -0.0022 -0.0073 0.0010 -0.0022 
ILE_VAL -0.0023 -0.0038 0.0217 -0.0029 -0.0069 
LEU_LEU -0.0007 0.0041 0.0120 0.0014 0.0010 
LEU_LYS 0.0010 -0.0010 0.0040 -0.0014 0.0028 
LEU_MET 0.0000 -0.0032 -0.0083 0.0029 -0.0082 
LEU_PHE 0.0027 -0.0087 -0.0020 0.0002 -0.0027 
LEU_PRO -0.0024 0.0000 -0.0008 0.0034 0.0010 
LEU_SER -0.0006 -0.0015 0.0084 -0.0020 -0.0130 
LEU_THR -0.0005 -0.0015 0.0042 0.0001 0.0065 
LEU_TRP -0.0005 -0.0051 -0.0055 0.0045 -0.0003 
LEU_TYR -0.0012 0.0037 0.0049 -0.0012 0.0351 
LEU_VAL 0.0035 -0.0017 -0.0023 -0.0003 0.0016 
LYS_LYS 0.0022 0.0027 -0.0054 -0.0024 0.0153 
LYS_MET -0.0011 0.0009 -0.0030 0.0018 -0.0077 
LYS_PHE -0.0014 -0.0027 -0.0041 0.0019 -0.0009 
LYS_PRO -0.0004 -0.0041 -0.0082 -0.0006 0.0132 
LYS_SER 0.0024 0.0025 -0.0148 0.0001 0.0033 
LYS_THR 0.0016 0.0095 -0.0204 -0.0011 -0.0290 
LYS_TRP -0.0041 0.0049 0.0179 0.0014 -0.0014 
LYS_TYR -0.0004 -0.0051 -0.0064 0.0002 -0.0064 
LYS_VAL 0.0022 0.0029 0.0010 -0.0031 -0.0052 
MET_MET -0.0005 -0.0031 -0.0038 0.0017 0.0097 
MET_PHE -0.0015 0.0014 -0.0121 0.0048 0.0048 
MET_PRO 0.0008 -0.0011 -0.0007 -0.0038 -0.0067 
MET_SER -0.0037 -0.0026 0.0109 0.0005 -0.0001 
MET_THR 0.0007 0.0030 0.0011 0.0008 -0.0041 
MET_TRP -0.0005 0.0026 -0.0077 0.0026 -0.0002 
MET_TYR -0.0018 -0.0105 0.0044 0.0035 0.0125 
MET_VAL -0.0024 -0.0079 -0.0170 0.0005 0.0155 
PHE_PHE 0.0021 -0.0004 0.0019 0.0021 0.0097 
PHE_PRO -0.0018 -0.0001 -0.0050 0.0002 0.0082 
PHE_SER 0.0004 0.0036 -0.0026 -0.0008 0.0050 
PHE_THR 0.0047 0.0015 -0.0050 -0.0027 -0.0071 
PHE_TRP -0.0028 0.0035 -0.0094 0.0008 -0.0032 
PHE_TYR 0.0004 0.0089 -0.0047 -0.0008 0.0146 
PHE_VAL 0.0006 0.0004 0.0078 0.0001 0.0143 
PRO_PRO 0.0003 -0.0016 0.0071 0.0004 0.0051 
PRO_SER 0.0012 -0.0014 0.0092 -0.0014 0.0054 
PRO_THR 0.0011 0.0006 0.0084 -0.0015 0.0008 
PRO_TRP -0.0008 -0.0152 0.0078 0.0005 -0.0015 
PRO_TYR -0.0025 -0.0033 -0.0169 0.0005 0.0036 
PRO_VAL 0.0018 -0.0030 -0.0137 -0.0009 0.0070 
SER_SER -0.0012 0.0008 0.0054 0.0086 0.0201 
SER_THR -0.0004 -0.0009 0.0113 0.0033 -0.0133 
SER_TRP -0.0002 0.0038 -0.0101 -0.0008 0.0023 
SER_TYR 0.0021 0.0093 0.0055 0.0000 0.0025 
SER_VAL -0.0036 0.0050 0.0068 0.0006 -0.0180 
THR_THR -0.0007 -0.0085 -0.0109 0.0006 0.0150 
THR_TRP -0.0007 0.0031 0.0185 -0.0013 0.0014 
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Table 5.11. (cont’d) 
THR_TYR -0.0002 0.0007 0.0012 0.0021 -0.0138 
THR_VAL 0.0019 0.0019 -0.0114 0.0019 0.0117 
TRP_TRP 0.0021 -0.0088 -0.0049 0.0031 -0.0113 
TRP_TYR -0.0019 -0.0047 0.0206 -0.0002 -0.0114 
TRP_VAL 0.0012 -0.0035 -0.0008 -0.0020 0.0058 
TYR_TYR 0.0002 0.0008 -0.0081 -0.0020 0.0137 
TYR_VAL 0.0020 -0.0070 -0.0073 -0.0035 0.0112 
VAL_VAL 0.0000 0.0046 -0.0015 0.0025 0.0107 
Maximum 0.0047 0.0143 0.0807 0.0086 0.0485 
Minimum -0.0098 -0.0152 -0.0357 -0.0063 -0.0519 
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Table 5.12. Torsion and nonbond energies calculated by an encoded program with ff14SB 
parameters for double amino acid test set. 

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA_ALA 6.5280 2.3126 117.6865 -1.4025 -96.1481 
ALA_ARG 7.0166 3.6239 -155.1195 -2.6920 57.7425 
ALA_ASN 17.1385 3.0982 49.9245 -1.8712 -111.5289 
ALA_ASP 12.4042 3.1055 137.8428 -1.5128 -122.4079 
ALA_CYS 8.5105 2.5530 115.5498 -1.7194 -92.5868 
ALA_GLN 15.6410 3.3854 52.9007 -2.1378 -95.2512 
ALA_GLU 12.3539 3.3747 131.5935 -2.1234 -104.8375 
ALA_GLY 4.0157 2.1425 123.3087 -1.0269 -106.0016 
ALA_HID 9.9732 2.4055 106.3553 -2.7117 -95.0531 
ALA_ILE 11.0335 4.3097 118.5912 -1.9128 -102.1124 
ALA_LEU 9.7861 4.0513 97.5048 -2.0554 -98.1436 
ALA_LYS 7.4148 3.3108 161.3028 -2.3049 -90.6006 
ALA_MET 9.7597 2.6423 122.2876 -2.1289 -101.7359 
ALA_PHE 7.5967 6.3179 121.1512 -3.0358 -102.6852 
ALA_PRO 14.0934 2.9264 112.2445 -1.5247 -86.3372 
ALA_SER 8.7284 2.7859 108.3262 -1.6823 -95.0701 
ALA_THR 13.1230 3.5712 87.2247 -2.1949 -95.7348 
ALA_TRP 7.8911 5.5500 140.9540 -4.0232 -114.0306 
ALA_TYR 7.8507 6.2878 109.4003 -3.1586 -108.6624 
ALA_VAL 8.9258 4.0006 95.4875 -1.9366 -94.7429 
ARG_ARG 7.9093 4.9418 -464.2798 -4.3308 251.9799 
ARG_ASN 18.0246 4.4111 -271.9103 -3.4613 64.5626 
ARG_ASP 13.2676 4.4496 -186.8101 -3.0997 19.1102 
ARG_CYS 9.3903 3.8928 -205.3387 -3.3387 82.6308 
ARG_GLN 16.5225 4.7283 -266.3321 -3.7592 78.5311 
ARG_GLU 13.2131 4.7245 -191.7080 -3.7306 39.4793 
ARG_GLY 4.8914 3.4126 -194.9461 -2.5079 66.8828 
ARG_HID 10.8838 3.7354 -213.8339 -4.3277 81.2921 
ARG_ILE 11.8959 5.6543 -197.8616 -3.5909 67.7083 
ARG_LEU 10.6662 5.3722 -221.7754 -3.6701 76.2546 
ARG_LYS 8.3084 4.6439 -148.5852 -3.9435 104.1729 
ARG_MET 10.6426 3.9693 -196.0188 -3.7440 71.5125 
ARG_PHE 8.4738 7.6443 -198.3676 -4.6517 70.9449 
ARG_PRO 15.2728 4.1005 -191.1913 -3.6667 73.5006 
ARG_SER 9.6089 4.1231 -207.8877 -3.2955 74.3369 
ARG_THR 14.1231 4.8720 -226.8575 -4.0157 66.6243 
ARG_TRP 8.7656 6.8922 -177.4498 -5.6548 57.8402 
ARG_TYR 8.7314 7.6511 -210.0522 -4.7774 64.8574 
ARG_VAL 9.7880 5.3323 -218.1662 -3.6080 72.3257 
ASN_ASN 27.9845 3.7466 -20.8185 -2.8517 -126.6835 
ASN_ASP 23.2611 3.7717 66.9269 -2.5927 -133.8336 
ASN_CYS 19.3692 3.1944 44.8261 -2.7487 -107.1895 
ASN_GLN 26.4816 4.0282 -17.9992 -3.1324 -109.5975 
ASN_GLU 23.1964 4.0255 60.5317 -3.2025 -116.2429 
ASN_GLY 14.9039 2.8194 52.7182 -1.9765 -120.5007 
ASN_HID 20.7802 3.0410 35.3693 -3.6568 -110.5193 
ASN_ILE 21.8810 4.9814 47.9360 -3.0682 -116.3531 
ASN_LEU 20.6334 4.7090 26.7883 -3.0481 -112.9382 
ASN_LYS 18.2466 3.9508 90.7423 -3.2222 -107.8708 
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Table 5.12. (cont’d) 
ASN_MET 20.6045 3.2704 51.3683 -3.1206 -116.2559 
ASN_PHE 18.4480 6.9523 50.3266 -4.0792 -117.1698 
ASN_PRO 26.9232 3.4028 42.5466 -3.5477 -104.6211 
ASN_SER 19.5877 3.4210 37.4947 -2.7528 -109.3346 
ASN_THR 24.6294 4.0473 15.6958 -3.2017 -111.0090 
ASN_TRP 18.7492 6.1818 70.2015 -5.0988 -128.4517 
ASN_TYR 18.7043 6.9387 38.6138 -4.2082 -123.2203 
ASN_VAL 19.7815 4.6713 24.8437 -3.0867 -108.9964 
ASP_ASP 18.9973 3.6512 141.7389 -1.7719 -83.9246 
ASP_CYS 15.0767 3.0595 120.7193 -1.9233 -103.0556 
ASP_GLN 22.1663 3.9078 57.1436 -2.2825 -104.4918 
ASP_GLU 18.9232 3.8978 134.6703 -2.3619 -70.8014 
ASP_GLY 10.6740 2.7197 127.8023 -1.2125 -113.8296 
ASP_HID 16.4189 2.9559 110.8170 -2.7748 -108.9906 
ASP_ILE 17.6283 4.8410 122.4760 -2.2940 -107.8805 
ASP_LEU 16.3337 4.6208 102.5449 -2.2155 -108.7822 
ASP_LYS 13.9114 3.8506 165.4792 -2.3452 -136.9553 
ASP_MET 16.2893 3.1785 126.2913 -2.2814 -111.5839 
ASP_PHE 14.1524 6.8256 125.6892 -3.2719 -111.8069 
ASP_PRO 22.4531 3.3107 115.1372 -2.5028 -81.7720 
ASP_SER 15.2961 3.2847 111.4700 -1.9350 -101.6278 
ASP_THR 20.6377 3.7235 87.0424 -2.1337 -99.0827 
ASP_TRP 14.4596 6.0729 145.2762 -4.2969 -121.8024 
ASP_TYR 14.4070 6.8155 113.8923 -3.4045 -117.7040 
ASP_VAL 15.5271 4.5476 98.3364 -2.3175 -99.4558 
CYS_CYS 10.9090 2.3820 104.4951 -1.9397 -79.8821 
CYS_GLN 18.0289 3.2132 41.7873 -2.3490 -82.6290 
CYS_GLU 14.7703 3.1908 119.4827 -2.3647 -89.3800 
CYS_GLY 6.4282 2.0082 112.2790 -1.1685 -93.3558 
CYS_HID 12.3470 2.2323 95.2076 -2.9147 -82.7586 
CYS_ILE 13.4405 4.1231 107.5202 -2.1709 -89.1540 
CYS_LEU 12.1801 3.8890 86.4928 -2.2614 -85.5853 
CYS_LYS 9.7930 3.1453 151.0383 -2.5100 -80.0173 
CYS_MET 12.1512 2.4645 111.1543 -2.3366 -89.0926 
CYS_PHE 9.9940 6.1437 110.0443 -3.2649 -89.9671 
CYS_PRO 16.2765 2.6795 102.4443 -2.4433 -75.3615 
CYS_SER 11.1365 2.6122 97.1852 -1.9034 -82.0838 
CYS_THR 15.4396 3.3550 75.9955 -2.5582 -81.5455 
CYS_TRP 10.2893 5.3699 129.8747 -4.2597 -101.2032 
CYS_TYR 10.2463 6.1186 98.2846 -3.3865 -95.9285 
CYS_VAL 11.3392 3.8139 84.3884 -2.1964 -81.7533 
GLN_GLN 25.1965 4.3181 -30.5644 -3.1758 -76.8539 
GLN_GLU 21.8911 4.3081 46.4162 -3.1491 -86.8118 
GLN_GLY 13.5618 3.0293 39.8007 -1.9474 -87.5874 
GLN_HID 19.5461 3.3314 22.7876 -3.7452 -76.2270 
GLN_ILE 20.5590 5.2572 35.2401 -2.9972 -84.4041 
GLN_LEU 19.3402 4.9763 14.1147 -3.0926 -79.9226 
GLN_LYS 16.9780 4.2589 79.4603 -3.3551 -72.6103 
GLN_MET 19.3138 3.5751 38.9063 -3.1609 -83.4619 
GLN_PHE 17.1457 7.2553 37.6332 -4.0693 -84.4708 
GLN_PRO 23.9525 3.7069 32.2013 -3.0117 -72.0316 
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Table 5.12. (cont’d) 
GLN_SER 18.2711 3.7387 24.9622 -2.7113 -77.2972 
GLN_THR 22.7446 4.4935 3.8166 -3.3947 -79.2694 
GLN_TRP 17.4348 6.5009 57.5191 -5.0727 -95.9935 
GLN_TYR 17.3970 7.2267 25.8928 -4.1949 -90.4446 
GLN_VAL 18.4576 4.9438 12.3060 -3.0158 -77.1930 
GLU_GLU 18.6469 4.1410 119.8831 -3.1349 -49.2654 
GLU_GLY 10.2981 2.9417 113.2641 -1.9266 -84.1324 
GLU_HID 16.2416 3.1823 96.7034 -3.7083 -75.6152 
GLU_ILE 17.3143 5.0948 108.1624 -2.9681 -79.1952 
GLU_LEU 16.1185 4.7117 88.2765 -2.8534 -77.9850 
GLU_LYS 13.6872 4.1099 151.8997 -3.3098 -99.1985 
GLU_MET 16.0387 3.4182 112.2653 -3.1265 -80.8048 
GLU_PHE 13.8727 7.0954 111.4195 -4.0475 -81.4035 
GLU_PRO 20.5202 3.4694 104.0916 -2.6343 -62.9287 
GLU_SER 15.0082 3.5810 97.4747 -2.6851 -72.0477 
GLU_THR 19.4009 4.3377 75.4383 -3.3655 -67.5472 
GLU_TRP 14.1706 6.3260 131.0136 -5.0503 -91.7576 
GLU_TYR 14.1272 7.0818 99.6316 -4.1777 -87.1942 
GLU_VAL 15.2073 4.7776 84.1698 -2.9840 -71.0269 
GLY_GLY 4.0568 1.6628 102.7650 -0.6670 -92.1571 
GLY_HID 10.0112 1.9220 85.5779 -2.2987 -80.9198 
GLY_ILE 11.0758 3.8174 98.1305 -1.4620 -88.3679 
GLY_LEU 9.8318 3.5648 77.0117 -1.6355 -84.3610 
GLY_LYS 7.4595 2.8325 143.0816 -1.8874 -78.8953 
GLY_MET 9.8050 2.1521 101.6555 -1.7154 -87.7890 
GLY_PHE 7.6425 5.8266 100.4681 -2.6193 -88.6530 
GLY_PRO 14.1084 2.5868 96.6969 -1.2354 -77.0594 
GLY_SER 8.7689 2.3038 87.7694 -1.2733 -81.1589 
GLY_THR 13.1815 3.0914 66.6990 -1.7132 -81.9155 
GLY_TRP 7.9347 5.0726 120.3785 -3.5978 -100.1006 
GLY_TYR 7.8962 5.8082 88.7199 -2.7418 -94.6132 
GLY_VAL 8.9699 3.5072 75.1814 -1.4938 -81.1571 
HID_HID 13.8723 2.3360 81.3216 -5.2920 -78.6067 
HID_ILE 14.8938 4.2318 93.7811 -4.6085 -85.2229 
HID_LEU 13.6837 3.9912 72.6270 -4.6440 -81.4766 
HID_LYS 11.3069 3.2492 137.4771 -4.9035 -74.4730 
HID_MET 13.6595 2.5665 97.3235 -4.7074 -84.7784 
HID_PHE 11.4934 6.2439 96.2257 -5.6568 -85.7839 
HID_PRO 18.4480 2.8698 90.4206 -4.2054 -81.3746 
HID_SER 12.6064 2.7177 83.4012 -4.2505 -78.3310 
HID_THR 16.8116 3.7174 64.8478 -4.3805 -89.1514 
HID_TRP 11.7783 5.4720 116.0573 -6.6665 -97.2551 
HID_TYR 11.7490 6.2120 84.4592 -5.7844 -91.8738 
HID_VAL 12.7866 3.9258 70.6870 -4.6053 -77.8978 
ILE_ILE 15.8893 5.9655 84.2998 -2.6350 -77.1191 
ILE_LEU 14.6457 5.7084 63.2005 -2.7063 -73.1160 
ILE_LYS 12.2767 4.9821 130.0936 -2.9701 -68.6753 
ILE_MET 14.6201 4.3029 87.8457 -2.7763 -76.5255 
ILE_PHE 12.4555 7.9848 86.5235 -3.6973 -77.3056 
ILE_PRO 19.2547 4.4081 84.5870 -2.5322 -67.5111 
ILE_SER 13.5915 4.4535 73.8938 -2.3300 -70.0161 
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Table 5.12. (cont’d) 
ILE_THR 17.9678 5.2311 52.7670 -3.0057 -70.5951 
ILE_TRP 12.7474 7.2226 106.4756 -4.7046 -88.7978 
ILE_TYR 12.7106 7.9674 74.7862 -3.8266 -83.2669 
ILE_VAL 13.7835 5.6578 61.4502 -2.6499 -70.0550 
LEU_LEU 13.5945 5.6899 63.0049 -3.3027 -93.3937 
LEU_LYS 11.2464 4.9581 128.3883 -3.5745 -87.2265 
LEU_MET 13.5768 4.2700 87.6483 -3.3772 -96.8095 
LEU_PHE 11.4064 7.9611 86.3356 -4.2916 -97.6166 
LEU_PRO 18.5714 4.4984 80.7557 -3.1356 -83.7364 
LEU_SER 12.5473 4.4305 73.6836 -2.9347 -90.3296 
LEU_THR 16.9417 5.1981 52.6275 -3.6534 -90.9104 
LEU_TRP 11.6967 7.1828 106.3209 -5.3009 -109.1064 
LEU_TYR 11.6591 7.9309 74.5793 -4.4222 -103.5734 
LEU_VAL 12.7080 5.6387 61.2403 -3.2638 -90.2831 
LYS_LYS 8.6939 4.2781 171.3038 -3.5314 -45.4134 
LYS_MET 11.0330 3.6081 124.4217 -3.3356 -78.2226 
LYS_PHE 8.8668 7.2951 122.1350 -4.2423 -78.8246 
LYS_PRO 15.6520 3.7526 128.2222 -3.2329 -76.2325 
LYS_SER 10.0010 3.7651 112.4688 -2.8809 -75.3101 
LYS_THR 14.4987 4.5370 93.5142 -3.5840 -82.7968 
LYS_TRP 9.1591 6.5259 143.0397 -5.2445 -91.8499 
LYS_TYR 9.1216 7.2670 110.4253 -4.3677 -84.9175 
LYS_VAL 10.1856 4.9676 102.1771 -3.1953 -77.2144 
MET_MET 13.4350 2.8200 103.0089 -3.2060 -86.3285 
MET_PHE 11.2652 6.4971 101.7498 -4.1168 -87.2333 
MET_PRO 18.0173 2.9833 97.5342 -3.1331 -75.5615 
MET_SER 12.3963 2.9839 89.0948 -2.7589 -79.9252 
MET_THR 16.8934 3.7504 67.9690 -3.5088 -81.1402 
MET_TRP 11.5585 5.7433 121.6639 -5.1254 -98.6982 
MET_TYR 11.5213 6.4843 90.0092 -4.2453 -93.1956 
MET_VAL 12.5811 4.1817 76.5158 -3.0688 -79.8849 
PHE_PHE 8.8690 10.0964 107.0504 -6.1741 -92.1391 
PHE_PRO 15.4840 6.5747 101.4620 -5.0988 -79.9522 
PHE_SER 10.0096 6.5360 94.1256 -4.7424 -84.2691 
PHE_THR 14.2474 7.2030 72.8452 -5.4750 -83.0128 
PHE_TRP 9.1665 9.3161 126.8904 -7.1916 -103.3919 
PHE_TYR 9.1257 10.0721 95.2836 -6.3051 -98.1342 
PHE_VAL 10.2077 7.7409 81.4624 -5.1171 -83.9398 
PRO_PRO 17.5120 2.8868 72.8938 -2.2480 -57.3659 
PRO_SER 12.2004 2.6706 63.0541 -2.2137 -60.5165 
PRO_THR 16.6168 3.4533 41.8183 -2.7470 -61.0888 
PRO_TRP 11.3682 5.4203 95.7614 -4.5660 -79.3417 
PRO_TYR 11.3270 6.1699 64.1022 -3.7006 -73.9033 
PRO_VAL 12.3954 3.8743 50.4475 -2.4789 -60.3810 
SER_SER 11.2371 2.7488 61.0942 -1.7591 -55.9101 
SER_THR 15.5318 3.5052 39.9507 -2.3943 -55.1979 
SER_TRP 10.3993 5.5132 93.7906 -4.1119 -74.9205 
SER_TYR 10.3531 6.2666 62.1423 -3.2397 -69.6242 
SER_VAL 11.4523 3.9602 48.5044 -2.0396 -55.7095 
THR_THR 19.2257 4.6269 1.2414 -2.7763 -34.8942 
THR_TRP 13.9779 6.5994 54.8633 -4.5659 -52.6021 
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Table 5.12. (cont’d) 
THR_TYR 13.9386 7.3544 23.1877 -3.6970 -47.1025 
THR_VAL 15.0228 5.0458 9.7650 -2.4901 -33.8353 
TRP_TRP 9.3833 8.5720 140.8008 -8.5027 -109.7283 
TRP_TYR 9.3402 9.3300 109.1063 -7.6203 -104.3638 
TRP_VAL 11.7296 6.6231 92.8557 -6.1057 -88.1176 
TYR_TYR 9.3749 10.0634 83.1288 -6.6073 -102.9884 
TYR_VAL 10.4433 7.7158 69.3328 -5.4419 -88.8127 
VAL_VAL 11.6396 5.3037 21.1357 -2.5695 -45.7340 
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Table 5.13. Torsion and nonbond energies calculated by Amber software with ff14SB parameters 
for double amino acid test set. 

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA_ALA 6.5282 2.3091 117.6841 -1.4026 -96.1489 
ALA_ARG 7.0170 3.6214 -155.1509 -2.6933 57.7762 
ALA_ASN 17.1392 3.0909 49.9035 -1.8698 -111.5165 
ALA_ASP 12.4040 3.1048 137.8546 -1.5127 -122.4424 
ALA_CYS 8.5098 2.5578 115.5685 -1.7206 -92.5853 
ALA_GLN 15.6404 3.3884 52.9085 -2.1389 -95.2611 
ALA_GLU 12.3527 3.3713 131.5812 -2.1224 -104.8197 
ALA_GLY 4.0146 2.1422 123.3091 -1.0269 -106.0097 
ALA_HID 9.9729 2.4023 106.3461 -2.7109 -95.0422 
ALA_ILE 11.0312 4.3062 118.5851 -1.9103 -102.1069 
ALA_LEU 9.7864 4.0532 97.5104 -2.0542 -98.1581 
ALA_LYS 7.4157 3.3160 161.3121 -2.3042 -90.5891 
ALA_MET 9.7609 2.6382 122.2837 -2.1295 -101.7366 
ALA_PHE 7.5973 6.3132 121.1507 -3.0366 -102.6976 
ALA_PRO 14.0927 2.9197 112.2296 -1.5277 -86.3184 
ALA_SER 8.7280 2.7884 108.3392 -1.6829 -95.0772 
ALA_THR 13.1223 3.5711 87.2368 -2.1952 -95.7339 
ALA_TRP 7.8912 5.5500 140.9576 -4.0233 -114.0243 
ALA_TYR 7.8514 6.2958 109.4072 -3.1600 -108.6725 
ALA_VAL 8.9269 3.9916 95.4977 -1.9359 -94.7606 
ARG_ARG 7.9099 4.9417 -464.2442 -4.3340 251.9600 
ARG_ASN 18.0242 4.4043 -271.9286 -3.4648 64.5757 
ARG_ASP 13.2674 4.4491 -186.8442 -3.1060 19.1445 
ARG_CYS 9.3891 3.8967 -205.3971 -3.3413 82.6710 
ARG_GLN 16.5234 4.7258 -266.3313 -3.7600 78.5323 
ARG_GLU 13.2153 4.7238 -191.7468 -3.7332 39.4827 
ARG_GLY 4.8920 3.4106 -194.9587 -2.5090 66.8844 
ARG_HID 10.8851 3.7338 -213.8494 -4.3274 81.2735 
ARG_ILE 11.8945 5.6490 -197.8503 -3.5930 67.7062 
ARG_LEU 10.6667 5.3734 -221.8038 -3.6715 76.2732 
ARG_LYS 8.3086 4.6396 -148.6216 -3.9451 104.1923 
ARG_MET 10.6430 3.9709 -195.9901 -3.7467 71.5163 
ARG_PHE 8.4747 7.6495 -198.3387 -4.6529 70.9472 
ARG_PRO 15.2757 4.0963 -191.2041 -3.6702 73.5045 
ARG_SER 9.6097 4.1278 -207.9238 -3.2953 74.3420 
ARG_THR 14.1231 4.8727 -226.8921 -4.0152 66.6317 
ARG_TRP 8.7665 6.8905 -177.4064 -5.6572 57.8598 
ARG_TYR 8.7297 7.6336 -210.0276 -4.7785 64.8528 
ARG_VAL 9.7899 5.3299 -218.1479 -3.6102 72.3134 
ASN_ASN 27.9848 3.7478 -20.8155 -2.8476 -126.6976 
ASN_ASP 23.2596 3.7634 66.9171 -2.5902 -133.8253 
ASN_CYS 19.3676 3.1900 44.8419 -2.7493 -107.1840 
ASN_GLN 26.4813 4.0234 -17.9978 -3.1309 -109.6119 
ASN_GLU 23.1974 4.0234 60.5460 -3.1982 -116.2772 
ASN_GLY 14.9037 2.8193 52.7154 -1.9774 -120.5051 
ASN_HID 20.7816 3.0441 35.3851 -3.6560 -110.5166 
ASN_ILE 21.8834 4.9776 47.9255 -3.0698 -116.3440 
ASN_LEU 20.6328 4.7050 26.7914 -3.0464 -112.9472 
ASN_LYS 18.2463 3.9543 90.7562 -3.2184 -107.8911 
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ASN_MET 20.6039 3.2760 51.3890 -3.1217 -116.2577 
ASN_PHE 18.4486 6.9534 50.3511 -4.0785 -117.1686 
ASN_PRO 26.9224 3.4016 42.5755 -3.5515 -104.6450 
ASN_SER 19.5868 3.4227 37.4880 -2.7506 -109.3075 
ASN_THR 24.6287 4.0420 15.7161 -3.1990 -111.0184 
ASN_TRP 18.7472 6.1894 70.2149 -5.1032 -128.4556 
ASN_TYR 18.7036 6.9341 38.5993 -4.2090 -123.2130 
ASN_VAL 19.7796 4.6664 24.8189 -3.0872 -108.9721 
ASP_ASP 18.9974 3.6566 141.7366 -1.7714 -83.9031 
ASP_CYS 15.0738 3.0641 120.7395 -1.9229 -103.0825 
ASP_GLN 22.1672 3.9166 57.1639 -2.2846 -104.4838 
ASP_GLU 18.9239 3.8998 134.6789 -2.3561 -70.8137 
ASP_GLY 10.6717 2.7244 127.7975 -1.2064 -113.8517 
ASP_HID 16.4164 2.9555 110.8062 -2.7735 -108.9838 
ASP_ILE 17.6335 4.8453 122.4809 -2.3007 -107.8662 
ASP_LEU 16.3341 4.6208 102.5543 -2.2113 -108.7919 
ASP_LYS 13.9133 3.8490 165.4784 -2.3478 -136.9650 
ASP_MET 16.2923 3.1735 126.2859 -2.2781 -111.5886 
ASP_PHE 14.1537 6.8407 125.6969 -3.2740 -111.7951 
ASP_PRO 22.4506 3.3064 115.1461 -2.5038 -81.7805 
ASP_SER 15.2951 3.2852 111.4828 -1.9388 -101.6421 
ASP_THR 20.6374 3.7314 87.0484 -2.1300 -99.0745 
ASP_TRP 14.4583 6.0683 145.2645 -4.3018 -121.7983 
ASP_TYR 14.4095 6.8174 113.8966 -3.4065 -117.7014 
ASP_VAL 15.5282 4.5469 98.3435 -2.3158 -99.4606 
CYS_CYS 10.9100 2.3817 104.5054 -1.9379 -79.8937 
CYS_GLN 18.0295 3.2153 41.7720 -2.3502 -82.6228 
CYS_GLU 14.7725 3.1898 119.4726 -2.3617 -89.3755 
CYS_GLY 6.4300 2.0053 112.2827 -1.1687 -93.3515 
CYS_HID 12.3455 2.2341 95.1971 -2.9113 -82.7579 
CYS_ILE 13.4402 4.1245 107.5194 -2.1703 -89.1386 
CYS_LEU 12.1810 3.8890 86.4840 -2.2630 -85.5892 
CYS_LYS 9.7949 3.1438 151.0466 -2.5078 -80.0327 
CYS_MET 12.1524 2.4671 111.1535 -2.3387 -89.1061 
CYS_PHE 9.9926 6.1396 110.0459 -3.2636 -89.9577 
CYS_PRO 16.2760 2.6776 102.4500 -2.4416 -75.3708 
CYS_SER 11.1345 2.6103 97.1729 -1.9056 -82.0977 
CYS_THR 15.4373 3.3564 75.9967 -2.5560 -81.5378 
CYS_TRP 10.2921 5.3722 129.8671 -4.2635 -101.2073 
CYS_TYR 10.2482 6.1211 98.2938 -3.3890 -95.9400 
CYS_VAL 11.3381 3.8127 84.3965 -2.1921 -81.7574 
GLN_GLN 25.1965 4.3243 -30.5645 -3.1760 -76.8420 
GLN_GLU 21.8907 4.3089 46.4066 -3.1492 -86.7995 
GLN_GLY 13.5617 3.0394 39.7990 -1.9483 -87.5960 
GLN_HID 19.5480 3.3332 22.8073 -3.7448 -76.2269 
GLN_ILE 20.5604 5.2530 35.2455 -2.9977 -84.3988 
GLN_LEU 19.3382 4.9808 14.1123 -3.0886 -79.9226 
GLN_LYS 16.9792 4.2608 79.4663 -3.3553 -72.6036 
GLN_MET 19.3146 3.5733 38.8806 -3.1620 -83.4509 
GLN_PHE 17.1451 7.2502 37.6421 -4.0719 -84.4789 
GLN_PRO 23.9502 3.7046 32.2167 -3.0092 -72.0375 
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GLN_SER 18.2733 3.7322 24.9567 -2.7114 -77.2824 
GLN_THR 22.7461 4.4885 3.8052 -3.3946 -79.2634 
GLN_TRP 17.4344 6.4919 57.5225 -5.0740 -95.9908 
GLN_TYR 17.3992 7.2338 25.9013 -4.1971 -90.4286 
GLN_VAL 18.4552 4.9370 12.2917 -3.0152 -77.1943 
GLU_GLU 18.6487 4.1413 119.8938 -3.1346 -49.2682 
GLU_GLY 10.2968 2.9371 113.2688 -1.9271 -84.1351 
GLU_HID 16.2436 3.1839 96.6895 -3.7066 -75.6186 
GLU_ILE 17.3121 5.0882 108.1523 -2.9666 -79.2074 
GLU_LEU 16.1179 4.7079 88.2605 -2.8551 -77.9815 
GLU_LYS 13.6894 4.1101 151.9113 -3.3092 -99.2071 
GLU_MET 16.0368 3.4216 112.2724 -3.1272 -80.7798 
GLU_PHE 13.8753 7.0947 111.4143 -4.0489 -81.4068 
GLU_PRO 20.5160 3.4710 104.0921 -2.6301 -62.9401 
GLU_SER 15.0077 3.5758 97.4635 -2.6833 -72.0663 
GLU_THR 19.4001 4.3390 75.4564 -3.3651 -67.5732 
GLU_TRP 14.1693 6.3326 131.0126 -5.0513 -91.7557 
GLU_TYR 14.1292 7.0770 99.6367 -4.1748 -87.2148 
GLU_VAL 15.2079 4.7771 84.1734 -2.9838 -71.0673 
GLY_GLY 4.0571 1.6663 102.7669 -0.6665 -92.1614 
GLY_HID 10.0137 1.9185 85.5641 -2.2972 -80.9031 
GLY_ILE 11.0750 3.8193 98.1415 -1.4622 -88.3655 
GLY_LEU 9.8317 3.5702 77.0255 -1.6373 -84.3646 
GLY_LYS 7.4591 2.8330 143.0797 -1.8861 -78.8947 
GLY_MET 9.8045 2.1546 101.6800 -1.7160 -87.7888 
GLY_PHE 7.6422 5.8286 100.4684 -2.6192 -88.6522 
GLY_PRO 14.1074 2.5911 96.6984 -1.2380 -77.0469 
GLY_SER 8.7684 2.3052 87.7668 -1.2730 -81.1536 
GLY_THR 13.1819 3.0889 66.6964 -1.7144 -81.9070 
GLY_TRP 7.9352 5.0654 120.3817 -3.5973 -100.1118 
GLY_TYR 7.8957 5.8108 88.7200 -2.7416 -94.6265 
GLY_VAL 8.9702 3.5071 75.1746 -1.4934 -81.1613 
HID_HID 13.8729 2.3383 81.3272 -5.2944 -78.5939 
HID_ILE 14.8953 4.2373 93.7686 -4.6061 -85.2148 
HID_LEU 13.6844 3.9917 72.6274 -4.6461 -81.4784 
HID_LYS 11.3083 3.2481 137.4761 -4.9013 -74.4760 
HID_MET 13.6590 2.5692 97.3191 -4.7082 -84.7790 
HID_PHE 11.4937 6.2437 96.2157 -5.6565 -85.7706 
HID_PRO 18.4450 2.8695 90.4082 -4.2075 -81.3837 
HID_SER 12.6047 2.7181 83.3998 -4.2492 -78.3228 
HID_THR 16.8114 3.7095 64.8340 -4.3792 -89.1386 
HID_TRP 11.7805 5.4768 116.0556 -6.6675 -97.2560 
HID_TYR 11.7450 6.2253 84.4679 -5.7820 -91.8666 
HID_VAL 12.7876 3.9261 70.6911 -4.6109 -77.8877 
ILE_ILE 15.8877 5.9732 84.3253 -2.6350 -77.1453 
ILE_LEU 14.6445 5.7113 63.2066 -2.7042 -73.1167 
ILE_LYS 12.2764 4.9827 130.1112 -2.9697 -68.6922 
ILE_MET 14.6221 4.2991 87.8321 -2.7770 -76.5238 
ILE_PHE 12.4562 7.9745 86.5202 -3.6956 -77.2997 
ILE_PRO 19.2531 4.4099 84.5980 -2.5348 -67.5243 
ILE_SER 13.5922 4.4533 73.8963 -2.3312 -70.0281 
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ILE_THR 17.9664 5.2206 52.7832 -3.0056 -70.5953 
ILE_TRP 12.7503 7.2130 106.4955 -4.7046 -88.8111 
ILE_TYR 12.7109 7.9575 74.7720 -3.8214 -83.2649 
ILE_VAL 13.7825 5.6585 61.4601 -2.6494 -70.0597 
LEU_LEU 13.5940 5.6858 63.0026 -3.3027 -93.3972 
LEU_LYS 11.2465 4.9574 128.3958 -3.5757 -87.2341 
LEU_MET 13.5761 4.2746 87.6406 -3.3781 -96.8174 
LEU_PHE 11.4052 7.9490 86.3375 -4.2959 -97.6069 
LEU_PRO 18.5746 4.5002 80.7675 -3.1374 -83.7435 
LEU_SER 12.5444 4.4279 73.6941 -2.9369 -90.3152 
LEU_THR 16.9427 5.2028 52.6326 -3.6550 -90.9020 
LEU_TRP 11.6953 7.1875 106.3052 -5.3042 -109.1018 
LEU_TYR 11.6601 7.9322 74.5923 -4.4227 -103.5727 
LEU_VAL 12.7097 5.6310 61.2493 -3.2665 -90.3028 
LYS_LYS 8.6952 4.2772 171.3113 -3.5313 -45.4004 
LYS_MET 11.0333 3.6107 124.4326 -3.3344 -78.2293 
LYS_PHE 8.8658 7.2889 122.1373 -4.2427 -78.8203 
LYS_PRO 15.6536 3.7499 128.2239 -3.2305 -76.2389 
LYS_SER 10.0019 3.7673 112.4833 -2.8832 -75.3285 
LYS_THR 14.4996 4.5276 93.5190 -3.5844 -82.7711 
LYS_TRP 9.1589 6.5282 143.0227 -5.2453 -91.8419 
LYS_TYR 9.1210 7.2727 110.4476 -4.3681 -84.9413 
LYS_VAL 10.1855 4.9699 102.1546 -3.1944 -77.2011 
MET_MET 13.4340 2.8189 103.0132 -3.2066 -86.3307 
MET_PHE 11.2657 6.4954 101.7523 -4.1213 -87.2293 
MET_PRO 18.0155 2.9767 97.5353 -3.1302 -75.5661 
MET_SER 12.3981 2.9768 89.0866 -2.7593 -79.9232 
MET_THR 16.8929 3.7465 67.9793 -3.5080 -81.1601 
MET_TRP 11.5571 5.7361 121.6680 -5.1263 -98.7293 
MET_TYR 11.5201 6.4790 90.0090 -4.2468 -93.1910 
MET_VAL 12.5809 4.1823 76.5132 -3.0690 -79.8933 
PHE_PHE 8.8691 10.0936 107.0462 -6.1755 -92.1359 
PHE_PRO 15.4860 6.5744 101.4619 -5.0999 -79.9568 
PHE_SER 10.0113 6.5467 94.1375 -4.7430 -84.2849 
PHE_THR 14.2484 7.1953 72.8453 -5.4724 -83.0104 
PHE_TRP 9.1682 9.3181 126.8987 -7.1934 -103.3995 
PHE_TYR 9.1249 10.0724 95.2835 -6.3031 -98.1220 
PHE_VAL 10.2036 7.7438 81.4659 -5.1192 -83.9486 
PRO_PRO 17.5127 2.8886 72.8967 -2.2462 -57.3684 
PRO_SER 12.1990 2.6669 63.0465 -2.2128 -60.5143 
PRO_THR 16.6148 3.4496 41.8326 -2.7460 -61.0971 
PRO_TRP 11.3664 5.4249 95.7587 -4.5677 -79.3411 
PRO_TYR 11.3261 6.1706 64.1092 -3.7004 -73.8992 
PRO_VAL 12.3973 3.8713 50.4373 -2.4812 -60.3802 
SER_SER 11.2379 2.7509 61.0849 -1.7581 -55.9137 
SER_THR 15.5296 3.5013 39.9627 -2.3935 -55.1953 
SER_TRP 10.3988 5.5147 93.8043 -4.1144 -74.9394 
SER_TYR 10.3529 6.2659 62.1415 -3.2397 -69.6217 
SER_VAL 11.4515 3.9557 48.5157 -2.0406 -55.7108 
THR_THR 19.2258 4.6262 1.2434 -2.7759 -34.8859 
THR_TRP 13.9776 6.6122 54.8779 -4.5681 -52.6080 
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THR_TYR 13.9395 7.3578 23.1922 -3.6967 -47.1002 
THR_VAL 15.0208 5.0505 9.7613 -2.4891 -33.8293 
TRP_TRP 9.3826 8.5740 140.7899 -8.5034 -109.7377 
TRP_TYR 9.3407 9.3261 109.1256 -7.6196 -104.3716 
TRP_VAL 11.7309 6.6227 92.8398 -6.1037 -88.1134 
TYR_TYR 9.3730 10.0502 83.1507 -6.6067 -102.9952 
TYR_VAL 10.4448 7.7262 69.3126 -5.4425 -88.8102 
VAL_VAL 11.6387 5.3042 21.1595 -2.5726 -45.7387 
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Table 5.14. Comparisons of torsion and nonbond energies calculated by the encoded program and 
Amber software with ff14SB parameters for double amino acid test set. 

 Energy difference / kcal/mol 
 Dihedral 1_4_VdW 1_4_EEL VdW EEL 

ALA_ALA -0.0002 0.0035 0.0024 0.0001 0.0008 
ALA_ARG -0.0004 0.0025 0.0314 0.0013 -0.0337 
ALA_ASN -0.0007 0.0073 0.0210 -0.0014 -0.0124 
ALA_ASP 0.0002 0.0007 -0.0118 -0.0001 0.0345 
ALA_CYS 0.0007 -0.0048 -0.0187 0.0012 -0.0015 
ALA_GLN 0.0006 -0.0030 -0.0078 0.0011 0.0099 
ALA_GLU 0.0012 0.0034 0.0123 -0.0010 -0.0178 
ALA_GLY 0.0011 0.0003 -0.0004 0.0000 0.0081 
ALA_HID 0.0003 0.0032 0.0092 -0.0008 -0.0109 
ALA_ILE 0.0023 0.0035 0.0061 -0.0025 -0.0055 
ALA_LEU -0.0003 -0.0019 -0.0056 -0.0012 0.0145 
ALA_LYS -0.0009 -0.0052 -0.0093 -0.0007 -0.0115 
ALA_MET -0.0012 0.0041 0.0039 0.0006 0.0007 
ALA_PHE -0.0006 0.0047 0.0005 0.0008 0.0124 
ALA_PRO 0.0007 0.0067 0.0149 0.0030 -0.0188 
ALA_SER 0.0004 -0.0025 -0.0130 0.0006 0.0071 
ALA_THR 0.0007 0.0001 -0.0121 0.0003 -0.0009 
ALA_TRP -0.0001 0.0000 -0.0036 0.0001 -0.0063 
ALA_TYR -0.0007 -0.0080 -0.0069 0.0014 0.0101 
ALA_VAL -0.0011 0.0090 -0.0102 -0.0007 0.0177 
ARG_ARG -0.0006 0.0001 -0.0356 0.0032 0.0199 
ARG_ASN 0.0004 0.0068 0.0183 0.0035 -0.0131 
ARG_ASP 0.0002 0.0005 0.0341 0.0063 -0.0343 
ARG_CYS 0.0012 -0.0039 0.0584 0.0026 -0.0402 
ARG_GLN -0.0009 0.0025 -0.0008 0.0008 -0.0012 
ARG_GLU -0.0022 0.0007 0.0388 0.0026 -0.0034 
ARG_GLY -0.0006 0.0020 0.0126 0.0011 -0.0016 
ARG_HID -0.0013 0.0016 0.0155 -0.0003 0.0186 
ARG_ILE 0.0014 0.0053 -0.0113 0.0021 0.0021 
ARG_LEU -0.0005 -0.0012 0.0284 0.0014 -0.0186 
ARG_LYS -0.0002 0.0043 0.0364 0.0016 -0.0194 
ARG_MET -0.0004 -0.0016 -0.0287 0.0027 -0.0038 
ARG_PHE -0.0009 -0.0052 -0.0289 0.0012 -0.0023 
ARG_PRO -0.0029 0.0042 0.0128 0.0035 -0.0039 
ARG_SER -0.0008 -0.0047 0.0361 -0.0002 -0.0051 
ARG_THR 0.0000 -0.0007 0.0346 -0.0005 -0.0074 
ARG_TRP -0.0009 0.0017 -0.0434 0.0024 -0.0196 
ARG_TYR 0.0017 0.0175 -0.0246 0.0011 0.0046 
ARG_VAL -0.0019 0.0024 -0.0183 0.0022 0.0123 
ASN_ASN -0.0003 -0.0012 -0.0030 -0.0041 0.0141 
ASN_ASP 0.0015 0.0083 0.0098 -0.0025 -0.0083 
ASN_CYS 0.0016 0.0044 -0.0158 0.0006 -0.0055 
ASN_GLN 0.0003 0.0048 -0.0014 -0.0015 0.0144 
ASN_GLU -0.0010 0.0021 -0.0143 -0.0043 0.0343 
ASN_GLY 0.0002 0.0001 0.0028 0.0009 0.0044 
ASN_HID -0.0014 -0.0031 -0.0158 -0.0008 -0.0027 
ASN_ILE -0.0024 0.0038 0.0105 0.0016 -0.0091 
ASN_LEU 0.0006 0.0040 -0.0031 -0.0017 0.0090 
ASN_LYS 0.0003 -0.0035 -0.0139 -0.0038 0.0203 
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ASN_MET 0.0006 -0.0056 -0.0207 0.0011 0.0018 
ASN_PHE -0.0006 -0.0011 -0.0245 -0.0007 -0.0012 
ASN_PRO 0.0008 0.0012 -0.0289 0.0038 0.0239 
ASN_SER 0.0009 -0.0017 0.0067 -0.0022 -0.0271 
ASN_THR 0.0007 0.0053 -0.0203 -0.0027 0.0094 
ASN_TRP 0.0020 -0.0076 -0.0134 0.0044 0.0039 
ASN_TYR 0.0007 0.0046 0.0145 0.0008 -0.0073 
ASN_VAL 0.0019 0.0049 0.0248 0.0005 -0.0243 
ASP_ASP -0.0001 -0.0054 0.0023 -0.0005 -0.0215 
ASP_CYS 0.0029 -0.0046 -0.0202 -0.0004 0.0269 
ASP_GLN -0.0009 -0.0088 -0.0203 0.0021 -0.0080 
ASP_GLU -0.0007 -0.0020 -0.0086 -0.0058 0.0123 
ASP_GLY 0.0023 -0.0047 0.0048 -0.0061 0.0221 
ASP_HID 0.0025 0.0004 0.0108 -0.0013 -0.0068 
ASP_ILE -0.0052 -0.0043 -0.0049 0.0067 -0.0143 
ASP_LEU -0.0004 0.0000 -0.0094 -0.0042 0.0097 
ASP_LYS -0.0019 0.0016 0.0008 0.0026 0.0097 
ASP_MET -0.0030 0.0050 0.0054 -0.0033 0.0047 
ASP_PHE -0.0013 -0.0151 -0.0077 0.0021 -0.0118 
ASP_PRO 0.0025 0.0043 -0.0089 0.0010 0.0085 
ASP_SER 0.0010 -0.0005 -0.0128 0.0038 0.0143 
ASP_THR 0.0003 -0.0079 -0.0060 -0.0037 -0.0082 
ASP_TRP 0.0013 0.0046 0.0117 0.0049 -0.0041 
ASP_TYR -0.0025 -0.0019 -0.0043 0.0020 -0.0026 
ASP_VAL -0.0011 0.0007 -0.0071 -0.0017 0.0048 
CYS_CYS -0.0010 0.0003 -0.0103 -0.0018 0.0116 
CYS_GLN -0.0006 -0.0021 0.0153 0.0012 -0.0062 
CYS_GLU -0.0022 0.0010 0.0101 -0.0030 -0.0045 
CYS_GLY -0.0018 0.0029 -0.0037 0.0002 -0.0043 
CYS_HID 0.0015 -0.0018 0.0105 -0.0034 -0.0007 
CYS_ILE 0.0003 -0.0014 0.0008 -0.0006 -0.0154 
CYS_LEU -0.0009 0.0000 0.0088 0.0016 0.0039 
CYS_LYS -0.0019 0.0015 -0.0083 -0.0022 0.0154 
CYS_MET -0.0012 -0.0026 0.0008 0.0021 0.0135 
CYS_PHE 0.0014 0.0041 -0.0016 -0.0013 -0.0094 
CYS_PRO 0.0005 0.0019 -0.0057 -0.0017 0.0093 
CYS_SER 0.0020 0.0019 0.0123 0.0022 0.0139 
CYS_THR 0.0023 -0.0014 -0.0012 -0.0022 -0.0077 
CYS_TRP -0.0028 -0.0023 0.0076 0.0038 0.0041 
CYS_TYR -0.0019 -0.0025 -0.0092 0.0025 0.0115 
CYS_VAL 0.0011 0.0012 -0.0081 -0.0043 0.0041 
GLN_GLN 0.0000 -0.0062 0.0001 0.0002 -0.0119 
GLN_GLU 0.0004 -0.0008 0.0096 0.0001 -0.0123 
GLN_GLY 0.0001 -0.0101 0.0017 0.0009 0.0086 
GLN_HID -0.0019 -0.0018 -0.0197 -0.0004 -0.0001 
GLN_ILE -0.0014 0.0042 -0.0054 0.0005 -0.0053 
GLN_LEU 0.0020 -0.0045 0.0024 -0.0040 0.0000 
GLN_LYS -0.0012 -0.0019 -0.0060 0.0002 -0.0067 
GLN_MET -0.0008 0.0018 0.0257 0.0011 -0.0110 
GLN_PHE 0.0006 0.0051 -0.0089 0.0026 0.0081 
GLN_PRO 0.0023 0.0023 -0.0154 -0.0025 0.0059 
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Table 5.14. (cont’d) 
GLN_SER -0.0022 0.0065 0.0055 0.0001 -0.0148 
GLN_THR -0.0015 0.0050 0.0114 -0.0001 -0.0060 
GLN_TRP 0.0004 0.0090 -0.0034 0.0013 -0.0027 
GLN_TYR -0.0022 -0.0071 -0.0085 0.0022 -0.0160 
GLN_VAL 0.0024 0.0068 0.0143 -0.0006 0.0013 
GLU_GLU -0.0018 -0.0003 -0.0107 -0.0003 0.0028 
GLU_GLY 0.0013 0.0046 -0.0047 0.0005 0.0027 
GLU_HID -0.0020 -0.0016 0.0139 -0.0017 0.0034 
GLU_ILE 0.0022 0.0066 0.0101 -0.0015 0.0122 
GLU_LEU 0.0006 0.0038 0.0160 0.0017 -0.0035 
GLU_LYS -0.0022 -0.0002 -0.0116 -0.0006 0.0086 
GLU_MET 0.0019 -0.0034 -0.0071 0.0007 -0.0250 
GLU_PHE -0.0026 0.0007 0.0052 0.0014 0.0033 
GLU_PRO 0.0042 -0.0016 -0.0005 -0.0042 0.0114 
GLU_SER 0.0005 0.0052 0.0112 -0.0018 0.0186 
GLU_THR 0.0008 -0.0013 -0.0181 -0.0004 0.0260 
GLU_TRP 0.0013 -0.0066 0.0010 0.0010 -0.0019 
GLU_TYR -0.0020 0.0048 -0.0051 -0.0029 0.0206 
GLU_VAL -0.0006 0.0005 -0.0036 -0.0002 0.0404 
GLY_GLY -0.0003 -0.0035 -0.0019 -0.0005 0.0043 
GLY_HID -0.0025 0.0035 0.0138 -0.0015 -0.0167 
GLY_ILE 0.0008 -0.0019 -0.0110 0.0002 -0.0024 
GLY_LEU 0.0001 -0.0054 -0.0138 0.0018 0.0036 
GLY_LYS 0.0004 -0.0005 0.0019 -0.0013 -0.0006 
GLY_MET 0.0005 -0.0025 -0.0245 0.0006 -0.0002 
GLY_PHE 0.0003 -0.0020 -0.0003 -0.0001 -0.0008 
GLY_PRO 0.0010 -0.0043 -0.0015 0.0026 -0.0125 
GLY_SER 0.0005 -0.0014 0.0026 -0.0003 -0.0053 
GLY_THR -0.0004 0.0025 0.0026 0.0012 -0.0085 
GLY_TRP -0.0005 0.0072 -0.0032 -0.0005 0.0112 
GLY_TYR 0.0005 -0.0026 -0.0001 -0.0002 0.0133 
GLY_VAL -0.0003 0.0001 0.0068 -0.0004 0.0042 
HID_HID -0.0006 -0.0023 -0.0056 0.0024 -0.0128 
HID_ILE -0.0015 -0.0055 0.0125 -0.0024 -0.0081 
HID_LEU -0.0007 -0.0005 -0.0004 0.0021 0.0018 
HID_LYS -0.0014 0.0011 0.0010 -0.0022 0.0030 
HID_MET 0.0005 -0.0027 0.0044 0.0008 0.0006 
HID_PHE -0.0003 0.0002 0.0100 -0.0003 -0.0133 
HID_PRO 0.0030 0.0003 0.0124 0.0021 0.0091 
HID_SER 0.0017 -0.0004 0.0014 -0.0013 -0.0082 
HID_THR 0.0002 0.0079 0.0138 -0.0013 -0.0128 
HID_TRP -0.0022 -0.0048 0.0017 0.0010 0.0009 
HID_TYR 0.0040 -0.0133 -0.0087 -0.0024 -0.0072 
HID_VAL -0.0010 -0.0003 -0.0041 0.0056 -0.0101 
ILE_ILE 0.0016 -0.0077 -0.0255 0.0000 0.0262 
ILE_LEU 0.0012 -0.0029 -0.0061 -0.0021 0.0007 
ILE_LYS 0.0003 -0.0006 -0.0176 -0.0004 0.0169 
ILE_MET -0.0020 0.0038 0.0136 0.0007 -0.0017 
ILE_PHE -0.0007 0.0103 0.0033 -0.0017 -0.0059 
ILE_PRO 0.0016 -0.0018 -0.0110 0.0026 0.0132 
ILE_SER -0.0007 0.0002 -0.0025 0.0012 0.0120 
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Table 5.14. (cont’d) 
ILE_THR 0.0014 0.0105 -0.0162 -0.0001 0.0002 
ILE_TRP -0.0029 0.0096 -0.0199 0.0000 0.0133 
ILE_TYR -0.0003 0.0099 0.0142 -0.0052 -0.0020 
ILE_VAL 0.0010 -0.0007 -0.0099 -0.0005 0.0047 
LEU_LEU 0.0005 0.0041 0.0023 0.0000 0.0035 
LEU_LYS -0.0001 0.0007 -0.0075 0.0012 0.0076 
LEU_MET 0.0007 -0.0046 0.0077 0.0009 0.0079 
LEU_PHE 0.0012 0.0121 -0.0019 0.0043 -0.0097 
LEU_PRO -0.0032 -0.0018 -0.0118 0.0018 0.0071 
LEU_SER 0.0029 0.0026 -0.0105 0.0022 -0.0144 
LEU_THR -0.0010 -0.0047 -0.0051 0.0016 -0.0084 
LEU_TRP 0.0014 -0.0047 0.0157 0.0033 -0.0046 
LEU_TYR -0.0010 -0.0013 -0.0130 0.0005 -0.0007 
LEU_VAL -0.0017 0.0077 -0.0090 0.0027 0.0197 
LYS_LYS -0.0013 0.0009 -0.0075 -0.0001 -0.0130 
LYS_MET -0.0003 -0.0026 -0.0109 -0.0012 0.0067 
LYS_PHE 0.0010 0.0062 -0.0023 0.0004 -0.0043 
LYS_PRO -0.0016 0.0027 -0.0017 -0.0024 0.0064 
LYS_SER -0.0009 -0.0022 -0.0145 0.0023 0.0184 
LYS_THR -0.0009 0.0094 -0.0048 0.0004 -0.0257 
LYS_TRP 0.0002 -0.0023 0.0170 0.0008 -0.0080 
LYS_TYR 0.0006 -0.0057 -0.0223 0.0004 0.0238 
LYS_VAL 0.0001 -0.0023 0.0225 -0.0009 -0.0133 
MET_MET 0.0010 0.0011 -0.0043 0.0006 0.0022 
MET_PHE -0.0005 0.0017 -0.0025 0.0045 -0.0040 
MET_PRO 0.0018 0.0066 -0.0011 -0.0029 0.0046 
MET_SER -0.0018 0.0071 0.0082 0.0004 -0.0020 
MET_THR 0.0005 0.0039 -0.0103 -0.0008 0.0199 
MET_TRP 0.0014 0.0072 -0.0041 0.0009 0.0311 
MET_TYR 0.0012 0.0053 0.0002 0.0015 -0.0046 
MET_VAL 0.0002 -0.0006 0.0026 0.0002 0.0084 
PHE_PHE -0.0001 0.0028 0.0042 0.0014 -0.0032 
PHE_PRO -0.0020 0.0003 0.0001 0.0011 0.0046 
PHE_SER -0.0017 -0.0107 -0.0119 0.0006 0.0158 
PHE_THR -0.0010 0.0077 -0.0001 -0.0026 -0.0024 
PHE_TRP -0.0017 -0.0020 -0.0083 0.0018 0.0076 
PHE_TYR 0.0008 -0.0003 0.0001 -0.0020 -0.0122 
PHE_VAL 0.0041 -0.0029 -0.0035 0.0021 0.0088 
PRO_PRO -0.0007 -0.0018 -0.0029 -0.0018 0.0025 
PRO_SER 0.0014 0.0037 0.0076 -0.0009 -0.0022 
PRO_THR 0.0020 0.0037 -0.0143 -0.0010 0.0083 
PRO_TRP 0.0018 -0.0046 0.0027 0.0017 -0.0006 
PRO_TYR 0.0009 -0.0007 -0.0070 -0.0002 -0.0041 
PRO_VAL -0.0019 0.0030 0.0102 0.0023 -0.0008 
SER_SER -0.0008 -0.0021 0.0093 -0.0010 0.0036 
SER_THR 0.0022 0.0039 -0.0120 -0.0008 -0.0026 
SER_TRP 0.0005 -0.0015 -0.0137 0.0025 0.0189 
SER_TYR 0.0002 0.0007 0.0008 0.0000 -0.0025 
SER_VAL 0.0008 0.0045 -0.0113 0.0010 0.0013 
THR_THR -0.0001 0.0007 -0.0020 -0.0004 -0.0083 
THR_TRP 0.0003 -0.0128 -0.0146 0.0022 0.0059 
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Table 5.14. (cont’d) 
THR_TYR -0.0009 -0.0034 -0.0045 -0.0003 -0.0023 
THR_VAL 0.0020 -0.0047 0.0037 -0.0010 -0.0060 
TRP_TRP 0.0007 -0.0020 0.0109 0.0007 0.0094 
TRP_TYR -0.0005 0.0039 -0.0193 -0.0007 0.0078 
TRP_VAL -0.0013 0.0004 0.0159 -0.0020 -0.0042 
TYR_TYR 0.0019 0.0132 -0.0219 -0.0006 0.0068 
TYR_VAL -0.0015 -0.0104 0.0202 0.0006 -0.0025 
VAL_VAL 0.0009 -0.0005 -0.0238 0.0031 0.0047 
Maximum 0.0042 0.0175 0.0584 0.0067 0.0404 
Minimum -0.0052 -0.0151 -0.0434 -0.0061 -0.0402 
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Table 5.15. A brief comparison between FFENCODER and Amber with ff94 and ff14SB 
parameter sets. 

  ff94 ff14SB 
  Maximum 

(kcal/mol) 
Minimum 
(kcal/mol) 

Maximum 
(kcal/mol) 

Minimum 
(kcal/mol) 

 
 

Single amino 
acid test set 

Dihedral 0.0010 -0.0011 0.0033 -0.0011 
1_4_VdW 0.0065 -0.0051 0.0063 -0.0104 
1_4_EEL 0.0076 -0.0177 0.0061 -0.0191 

VdW 0.0021 -0.0010 0.0036 -0.0015 
EEL 0.0244 -0.0085 0.0247 -0.0098 

 
 

Dipeptide test 
set 

Dihedral 0.0047 -0.0098 0.0042 -0.0052 
1_4_VdW 0.0143 -0.0152 0.0175 -0.0151 
1_4_EEL 0.0807 -0.0357 0.0584 -0.0434 

VdW 0.0086 -0.0063 0.0067 -0.0061 
EEL 0.0485 -0.0519 0.0404 -0.0402 
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Table 5.16. Accuracy and native ranking comparison between RF models based on ff94 and 
ff14SB with other scoring functions. 

  accuracy Native ranking 
  average highest lowest average highest lowest 
 
 
RF models with 
ff94 

IMP_100 0.988 0.999 0.963 5.88 17.17 1.47 
IMP_200 0.987 1.000 0.963 5.93 17.87 1.11 
IMP_300 0.989 0.999 0.958 4.40 14.66 1.28 
IMP_400 0.988 0.999 0.965 5.01 15.06 1.26 
IMP_500 0.992 0.999 0.986 3.52 6.19 1.23 

 
RF models with 
ff14SB 

IMP_100 0.987 1.000 0.973 5.16 10.45 1.11 
IMP_200 0.987 0.999 0.962 5.83 16.85 1.17 
IMP_300 0.991 1.000 0.972 4.28 14.28 1.04 
IMP_400 0.987 0.999 0.965 4.80 11.11 1.51 
IMP_500 0.990 0.996 0.973 4.06 9.34 1.85 

RF models with 
KECSA2 

IMP_100 0.963 0.987 0.931 10.62 21.64 4.86 
IMP_200 0.972 0.989 0.947 8.01 11.17 6.05 
IMP_300 0.976 0.993 0.933 8.69 13.31 3.92 
IMP_400 0.977 0.965 0.956 6.06 15.34 2.36 
IMP_500 0.981 0.994 0.965 7.95 17.59 2.77 

RWplus - 0.916 - - 23.43 - - 
DFIRE - 0.886 - - 31.35 - - 
dDFIRE - 0.904 - - 26.49 - - 
GOAP - 0.917 - - 23.09 - - 
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Table 5.17. 1st decoy RMSD and TM-score comparison between RF models based on ff94 and 
ff14SB with other scoring functions. 

  1st decoy RMSD 1st decoy TM-score 
  average highest lowest average highest lowest 
 
 
RF models with 
FF94 

IMP_100 4.55 6.03 3.38 0.614 0.679 0.550 
IMP_200 4.83 5.51 4.05 0.618 0.654 0.551 
IMP_300 4.84 5.92 3.88 0.618 0.704 0.561 
IMP_400 4.67 5.50 3.67 0.621 0.669 0.564 
IMP_500 4.93 6.36 3.8 0.611 0.672 0.536 

 
RF models with 
FF14SB 

IMP_100 4.74 5.47 3.79 0.621 0.688 0.563 
IMP_200 4.83 5.76 4.48 0.620 0.656 0.587 
IMP_300 4.87 5.83 3.78 0.609 0.639 0.572 
IMP_400 5.22 5.66 4.57 0.594 0.628 0.564 
IMP_500 4.80 5.96 4.15 0.616 0.660 0.591 

RF models with 
KECSA2 

IMP_100 4.62 5.49 3.77 0.634 0.685 0.574 
IMP_200 5.06 5.71 4.18 0.598 0.656 0.561 
IMP_300 4.78 5.43 3.56 0.604 0.679 0.546 
IMP_400 4.74 5.48 4.00 0.629 0.684 0.582 
IMP_500 4.57 5.72 3.52 0.614 0.695 0.536 

RWplus - 4.53 - - 0.622 - - 
DFIRE - 4.51 - - 0.623 - - 
dDFIRE - 4.44 - - 0.625 - - 
GOAP - 4.45 - - 0.674 - - 
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Table 5.18. Distribution of decoys’ lowest RMSD values in the combined decoy set. 
Protein 
name 

Lowest 
RMSD 

Protein 
name 

Lowest 
RMSD 

Protein 
name 

Lowest 
RMSD 

Protein 
name 

Lowest 
RMSD 

Protein 
name 

Lowest 
RMSD 

1r69 0.195 1gaf 0.797 1nbv 1.166 1opd 1.931 1nkl 5.325 
1di2 0.202 256b 0.803 1mcp 1.169 1cew 1.954 1dxt 5.401 
1o2f 0.204 1gyv 0.804 1c8c 1.173 1c9o 2.007 1trl 5.401 
1no5 0.205 1jnu 0.805 1mla 1.185 1gpt 2.012 1ew4 5.703 
1a32 0.212 1tfi 0.812 6fab 1.191 1mfa 2.044 1pgb 5.874 
1org 0.220 1thx 0.817 1of9 1.212 1hbg 2.049 2mta 5.944 
1hbk 0.224 2cro 0.823 1fai 1.225 1ubi 2.116 1bg8 6.050 
2reb 0.227 1shf 0.831 1tif 1.230 1ash 2.254 1kpe 6.244 
1cy5 0.265 1bm8 0.843 1kjs 1.233 1cc8 2.264 2vik 6.256 
2cr7 0.271 1fpt 0.847 1yuh 1.254 4sdh 2.287 1gky 6.275 
1b72 0.290 1mlb 0.873 1fbi 1.280 2chf 2.334 1bbh 6.478 
1abv 0.290 1hil 0.878 1mrd 1.283 1mn8 2.447 1cei 6.504 
1cqk 0.343 1vcc 0.887 1ikf 1.308 1scj 2.457 1eyv 6.515 
1aoy 0.346 2cgr 0.893 1ctf 1.319 1b0n 2.466 1a68 6.620 
1mky 0.403 1igf 0.910 1sn3 1.341 2cmd 2.528 5cro 6.627 
1bq9 0.419 1frg 0.917 1kem 1.358 1fc2 2.547 1dkt 6.713 
1kvi 0.425 1igc 0.917 1dfb 1.366 1gdm 2.609 1cpc 6.873 
1hda 0.429 1hbh 0.919 2a0b 1.371 1hdd 2.722 1gvp 6.957 
1myg 0.433 1dbb 0.931 1opg 1.371 1bba 2.788 1beo 7.045 
1csp 0.438 1for 0.938 1fig 1.378 1gnu 2.816 1vie 7.152 
1ogw 0.457 3icb 0.961 4rxn 1.379 1b3a 2.883 1bk2 7.157 
2f3n 0.500 2pcy 0.962 1gig 1.410 1hlb 2.884 1jwe 7.879 
1ah9 0.510 3hfm 0.963 4pti 1.421 1a19 2.889 1tit 8.190 
1elw 0.513 1ggi 0.968 1ngq 1.429 1hlm 2.994 1bgf 8.395 
1ten 0.536 1jel 0.970 1ecd 1.478 1fna 3.009 1dhn 8.422 
2dhb 0.541 1egx 0.973 1b4b 1.491 2lhb 3.024 1bkr 8.521 
1pgx 0.552 1fgv 0.974 1mam 1.493 1acf 3.120 1cg5 8.545 
1nps 0.559 1n0u 0.980 1nmb 1.493 1igd 3.171 smd3 8.612 
1myj 0.563 1plg 1.004 1fvc 1.494 1cid 3.348 1rnb 8.778 
1af7 0.573 1myt 1.004 1ibg 1.501 1eaf 3.455 811b 9.143 
1g1c 0.576 1igm 1.028 1sfp 1.532 1cau 3.469 1who 9.170 
1itp 0.615 1iai 1.041 1eap 1.545 1c2r 3.490 1lis 9.269 
1sro 0.632 2fbj 1.046 1rmf 1.545 1bl0 3.641 1ptq 9.403 
2pgh 0.641 1aiu 1.052 1igi 1.555 1wit 3.712 1fkb 9.682 
1fad 0.644 1jhl 1.053 1bbd 1.580 1mdc 3.793 2acy 9.781 
1dvf 0.645 1flr 1.065 1vge 1.602 1onc 3.807 2ci2 9.794 
1dtj 0.656 1ail 1.071 1ith 1.614 1utg 3.900 2pna 10.803 
1tig 0.670 1ne3 1.083 2gfb 1.630 1vls 3.984 1tul 11.621 

1emy 0.690 1baf 1.087 1iib 1.662 2ovo 3.989 1lga 12.349 
1bab 0.694 1dcj 1.111 2fb4 1.675 1eh2 4.002 1urn 12.423 
1tet 0.735 1vfa 1.135 1ig5 1.704 1e6i 4.131 1col 12.427 
1hkl 0.737 1nsn 1.146 1mbs 1.715 1dtk 4.333 1hz6 12.468 
1fvd 0.772 1acy 1.148 1flp 1.719 4ubp 4.724 4sbv 14.050 
1hsy 0.772 1ncb 1.149 1enh 1.745 4icb 4.781 1mup 14.293 
1fo5 0.782 1gjx 1.156 1mba 1.824 1lou 4.974 2sim 15.671 
1lht 0.784 1ucb 1.159 7fab 1.850 1fca 5.190 2afn 19.744 
1bbj 0.791 1ind 1.162 8fab 1.913 1ugh 5.311   
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Table 5.19. Accuracy comparisons between scoring functions with and without RF refinement. 
  Accuracy 
  average highest lowest 
RF models with FF94 IMP_100 0.988 0.999 0.963 

IMP_500 0.992 0.999 0.986 
RF models with 
FF14SB 

IMP_100 0.987 1.000 0.973 
IMP_500 0.990 0.996 0.973 

FF94 without RF 
refinement 

IMP_100 0.626 - - 
IMP_500 0.564 - - 

FF14SB without RF 
refinement 

IMP_100 0.656 - - 
IMP_500 0.660 - - 
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Table 5.20. Accuracy comparisons between scoring functions with and without force field 
parameters. 

  Accuracy 
  average highest lowest 
RF models with FF94 IMP_100 0.988 0.999 0.963 

IMP_500 0.992 0.999 0.986 
RF models with 
FF14SB 

IMP_100 0.987 1.000 0.973 
IMP_500 0.990 0.996 0.973 

RF models without 
force field potentials 

IMP_100 0.679 0.768 0.593 
IMP_500 0.712 0.780 0.572 
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APPENDIX B: FIGURES 

 

 

Figure 1.1. The shape of the sigmoid function showed in equation (1.3). 
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Figure 1.2. An example of a simple decision tree. 
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Figure 1.3. The comparison between general hyperplane and hyperplane generated by the 
maximum margin classifier. (a) shows there are infinite hyperplanes can be used to separate the 
data set. (b) shows the hyperplane with the largest margin of separation width.  
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Figure 1.4. An example of a support vector machine algorithm. (a) An example of a dataset that 
cannot be separated by a hyperplane. The observations in the data set are one dimensional points. 
(b) A polynomial kernel equation is used to change those one dimensional points to 2D points. A 
hyperplane (black line) can be used to separate those observations. 
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Figure 1.5. An example of bagging. 
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Figure 1.6. An example of RF. 
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Figure 2.1.  Probability versus distance plot for atom pair O-MET__CG-MET, shaded region is 
the averaged region with the length of 1 Å. 
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Figure 2.2. The protocol used to build up the Random Forest model. Parameter p (equals to 16029) 
represents the total number of atom pairs in KECSA2. Parameter n represents the native structure, 
d1, … , dm are the 1st , …, mth decoy structures.  
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Figure 2.3.  Protocol for generating the ranking list for the Random Forest model. Parameter p 
(equal to 16029) represents the total number of atom pairs in KECSA2. S1, S2, … , Sn are the 1st , 
2nd , … , nth protein structures with the same residue sequence. 
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Figure 3.1. Feature importance analysis results for the overall decoy set. The red point represents 
the 500th atom pair.  
 

 

 

 

 

 

 

 

 

 



   147 

 

Figure 4.1. The protocol used to include the comparison information between best decoy binding 
pose and other decoy poses. 
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Figure 4.2. Accuracy trend from RF models based on original(blue line) and uniform(orange line) 
GARF data sets. 
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Figure 5.1. Comparisons between energies calculated by FFENCODER and the Amber software 
package. (a) - (e) are results for dihedral, 1_4 Van der Waals, 1_4 electrostatics, Van der Waals,  
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Figure 5.1. (cont’d)  
and electrostatic energies. Columns (1) and (3) are comparisons of single amino acid and dipeptide 
test sets for ff94. Columns (2) and (4) are comparisons of single amino acid and dipeptide test sets 
for ff14SB. 
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Figure 5.2. Importance analysis for features in ff94 and ff14SB parameter set. The red point in 
each plot represents the 500th most important feature in each parameter set.  
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APPENDIX C: COPYRIGHT NOTICE 

 

Chapter 2, 3, 4, and 5 of this dissertation (include its supporting information) are adapted with 
permissions from several publications listed below: 

(1)  Adapted with permission from ref 117. Copyright 2019 American Chemistry Society. 
(2)  Adapted with permission from ref 124. Copyright 2019 American Chemistry Society. 
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