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ABSTRACT 

 

POSTMORTEM MICROBIOME COMPUTATIONAL METHODS AND APPLICATIONS 

 

By 

 

Sierra Frances Kaszubinski 

 

Microbial communities have potential evidential utility for forensic applications. However, 

bioinformatic analysis of high-throughput sequencing data varies widely among laboratories and 

can potentially affect downstream forensic analyses and data interpretations. To illustrate the 

importance of standardizing methodology, we compared analyses of postmortem microbiome 

samples using several bioinformatic pipelines, while varying minimum library size or the 

minimum number of sequences per sample, and sample size. Using the same input sequence 

data, we found that pipeline significantly affected the microbial communities. Increasing 

minimum library size and sample size increased the number of low abundant and infrequent taxa 

detected. Our results show that bioinformatic pipeline and parameter choice significantly affect 

the resulting microbial communities, which is important for forensic applications. One such 

forensic application is the potential postmortem reflection of manner of death (MOD) and cause 

of death (COD). Microbial community metrics have linked the postmortem microbiome with 

antemortem health status. To further explore this association, we demonstrated that postmortem 

microbiomes could differentiate beta-dispersion among M/COD, especially for cardiovascular 

disease and drug-related deaths. Beta-dispersion associated with M/COD has potential forensic 

utility to aid certifiers of death by providing additional evidence for death determination. 

Additional supplemental files including tables of raw data and additional statistical tests are 

available in supplemental files online, denoted in the text as table ‘S’.   



 

iii 

 

This thesis is dedicated to my family- my biggest supporters and inspirations. Thank you for 

believing in me, and not letting me drop out to be a police officer. It was for the best.



 

iv 

ACKNOWLEDGMENTS 

 

 

I first would like to thank my committee members, Drs. Mariah H. Meek, M. Eric 

Benbow, Jennifer L. Pechal, and Sarah E. Evans for their contribution to my scientific growth. 

Dr. Meek, I am forever grateful for the day I became your ‘bonus’ student, thank you for your 

endless support. Dr. Benbow, I’m glad I finally realized all my favorite forensic studies were 

coming from one floor below me, thank you for all the adventures. Dr. Pechal, thank you for all 

your help, you truly shaped me into a scientist I am proud to be. Dr. Evans, I appreciate your 

comments that made instrumental improvements to my studies, thank you for your support.   

I would also like to thank Drs. Carl J. Schmidt and Heather R. Jordan for their 

contributions to my research. I truly enjoyed our forensic conversations. Thank you to Drs. Ruth 

Smith and Mary Finn, you are a large part of the reason this thesis is completed. I also want to 

thank the Meek lab: Charlene, Miranda, Nadya, Sara, and Shannon. Thank you for all the coffee 

runs and conversations. To the Benbow lab (past and present): Breanna, Courtney L., Courtney 

W., Emily, Joe, Katelyn, and Nick. I enjoyed every part of fieldwork, most of lab work, and 

some of coding with you. Thanks for making my time in grad school so much more enjoyable.  

Thank you to the SMART scholarship program, and the Defense Forensic Science 

Center. Because of you, I have my dream job. To Thomas Meyer and Henry Maynard, thank you 

for your mentorship and great discussions. Thank you to the Department of Integrative Biology, 

despite my unusual admittance, I felt at home in the program. Finally, thank you to my friends 

and family. Thank you for believing in me, even when I didn’t believe in myself. Thank you for 

listening to my endless complaints about Michigan weather, and being there for me through 

every defeat and every triumph. I literally could not have done this without you, your support 

means everything to me. This one’s for you.  



 

v 

TABLE OF CONTENTS 

 

LIST OF TABLES .................................................................................................................vi 

LIST OF FIGURES ...............................................................................................................vii 

CHAPTER I: EVALUATING BIOINFORMATIC PIPELINE PERFORMANCE FOR 

FORENSIC MICROBIOME ANALYSIS ............................................................................1 

            Introduction ................................................................................................................2 

            Material and Methods ................................................................................................8 

                        Sample Collection, DNA Extraction, and Sequencing ..................................9 

                        Pipeline Comparison ......................................................................................10 

                        Data Analysis and Bioinformatics .................................................................13 

                        A Priori Power Analysis ................................................................................16 

                        Data Availability ............................................................................................16 

            Results ........................................................................................................................17 

                        Pipeline Comparison ......................................................................................18 

                        Minimum Library Size ...................................................................................23 

                        Sample Size ....................................................................................................26 

            Discussion ..................................................................................................................29 

                        Pipeline Comparison ......................................................................................30 

                        Minimum Library Size ...................................................................................31 

                        Sample Size ....................................................................................................33 

            Conclusion .................................................................................................................35 

 

CHAPTER II: DYSBIOSIS IN THE DEAD: HUMAN POSTMORTEM MICROBIOME 

BETA-DISPERSION AS ONE INDICATOR OF MANNER AND CAUSE OF DEATH 

DURING AUTOPSY.............................................................................................................37 

            Introduction ................................................................................................................38 

            Materials and Methods ...............................................................................................43 

                        Sample Collection, DNA Extraction, and Sequencing ..................................44 

                        Data Analysis and Bioinformatics .................................................................44 

                                    Method Selection ...............................................................................45 

                                    Model Selection .................................................................................46 

                                    Case Studies .......................................................................................48 

                        Data Availability ............................................................................................49 

            Results ........................................................................................................................50 

                        Method Selection ...........................................................................................51 

                        Model Selection .............................................................................................52 

                        Case Studies ...................................................................................................59 

            Discussion ..................................................................................................................62 

            Conclusion .................................................................................................................68 

APPENDIX ............................................................................................................................70 

REFERENCES ......................................................................................................................75 



 

vi 

LIST OF TABLES 

 

Table 1: Summary of parameter differences among pipelines compared. .............................13 

 

Table 2: Summary of sample number and sequence read differences among pipelines. .......20 

 

Table 3: Random forest classification error among pipelines. ..............................................20 

 

Table 4: Total number of sequences that remained after filtering, and unclassified sequences 

(phylum and family taxonomic level) among sample area, sample size, and minimum library 

size. ........................................................................................................................................25 

 

Table 5: Random forest classification error among sample sizes and minimum library sizes.  

................................................................................................................................................28 

 

Table 6: Case metadata stratified by manner/cause of Death (M/COD). ..............................54 

 

Table 7: Summary of logistic regression models classifying natural vs. accident,  

cardiovascular vs. drug-use, and disease vs. non-diseased state............................................58 

 

 

 

 

 

 

 

 

 



 

vii 

LIST OF FIGURES 

 

Figure 1: Workflow for bioinformatic analysis. ....................................................................12 

 

Figure 2: In silico data error among pipelines. ......................................................................19 

 

Figure 3: Microbial community composition among pipelines. ............................................22 

 

Figure 4: Microbial community composition among sample sizes and minimum library  

sizes. .......................................................................................................................................24 

 

Figure 5: Core microbiome among sample sizes and minimum library sizes. ......................27 

 

Figure 6: Beta-dispersion values among body sites and manners/causes of death (M/CODs).  

................................................................................................................................................53 

 

Figure 7: Multinomial logistic regression model comparison among full community and  

random forest indicator community beta-dispersion for manners/causes of death  

(M/CODs). .............................................................................................................................57 

 

Figure 8: Logistic regression models of the best performing pair-wise comparisons. ..........59 

 

Figure 9: Proposed workflow with suicide matched-design case study. ...............................61 

 

Supplemental Figure 1: Summary of Kruskal-Wallis results for normalization strategies 

determining beta-dispersion. ..................................................................................................71 

 

Supplemental Figure 2: Summary of Fligner-Killeen results for normalization strategies 

determining beta-dispersion. ..................................................................................................72 

 

Supplemental Figure 3: Alpha-diversity metrics across normalization strategies and levels . 

................................................................................................................................................73 

 

Supplemental Figure 4: Shannon diversity across sequencing depth among microbial  

samples. ..................................................................................................................................74 

 

 

 

 

 

 

 

 

 



 

1 

CHAPTER I:  

EVALUATING BIOINFORMATIC PIPELINE PERFORMANCE FOR FORENSIC 

MICROBIOME ANALYSIS 
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Before the widespread use of next-generation sequencing (NGS), forensic microbiology 

was limited to identifying pathogens of bio-crimes with culture-based methods, such as the 2001 

anthrax letter attacks (Budowle et al. 2003). Now with the advent of NGS technology, amplicon 

sequencing can describe entire microbial communities from evidence rather than just targeting a 

single microbe of interest. Microbes are an important forensic resource as they are ubiquitous 

organisms, with community compositions specific to different environments or hosts (i.e., the 

location of a body or body part) and that vary over time, such as during decomposition (Pechal et 

al. 2018; Metcalf et al. 2016).  

NGS has expanded microbial forensics to many potential applications including: body 

fluid identification, human identification, and postmortem interval estimation (Schmedes, 

Sajantila, and Budowle 2016). Targeted amplicon sequencing of 16S rRNA identified potential 

microbial biomarkers for sensitive body fluid identification (Dobay et al. 2019), and a clade 

based, single nucleotide polymorphism approach identified human individuals using their skin 

microbiome (Schmedes, Woerner, and Budowle 2017). Postmortem microbiome studies have 

included a diverse set of investigative circumstances to better understand how microbial 

communities after death can inform forensic investigation. Studies have used human-surrogates, 

such as swine (Benbow et al. 2015), humans (Pechal et al. 2018), and grave soil (Metcalf et al. 

2016), as well as experiments in anthropologic facilities (Pechal et al. 2014) and during routine 

autopsy for death investigation (Pechal et al. 2018). Researchers have developed models for 

forensic applications (i.e., postmortem interval estimation), and described microbial community 

function and succession during decomposition(Benbow et al. 2015; Metcalf et al. 2016; Pechal et 

al. 2018). While recent research suggests excellent potential for microbial community use in
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forensics (Metcalf et al. 2013, 2017; Carter et al. 2016; Johnson et al. 2016), additional 

foundational work is needed before forensic microbiology using postmortem microbial 

community assemblages can be applied in the criminal justice system. Needed foundational work 

includes standardizing parameters for transforming raw microbial sequences into a usable data 

format for downstream analyses.  

For bioinformatic analysis of microbial data, raw sequence data files generated from 

NGS undergo a series of transformations using executable command line software known as 

pipelines (Leipzig 2017). Forensic microbiological data created by high-throughput sequencing 

platforms are processed using complex analyses that require users to make processing decisions 

along these pipelines (e.g., Should samples be normalized? Which taxonomic database should be 

used?). It is hypothesized that different decisions could have downstream effects on results and 

their interpretation (Sivarajah et al. 2017; Golob et al. 2017). For any downstream application of 

forensic microbiology in the criminal justice system, there is a need for streamlined standard 

operating procedures (SOPs) (Carter et al. 2016). 

There are self-contained pipelines for processing sequence data for characterizing 

microbial communities. Three of the most often used self-contained pipelines are: QIIME2 

(Bolyen et al. 2019), mothur (Schloss et al. 2009), and MG-RAST (Keegan, Glass, and Meyer 

2016). QIIME2 and mothur require some command line experience, whereas MG-RAST has a 

web-based graphical user interface (GUI) (Plummer and Twin 2015). Several studies determined 

that the microbial communities generated from different pipelines were comparable; however, 

these studies used simulated data (Golob et al. 2017; Siegwald et al. 2017; Mysara et al. 2017; 

Nilakanta et al. 2014; McMurdie and Holmes 2014; Weiss et al. 2017), small sample sizes (n < 

40) 
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(Plummer and Twin 2015; McMurdie and Holmes 2014; Weiss et al. 2017; D’Argenio et al. 

2014) or were composed of the same sample type (i.e., human gut microbial data) (Plummer and 

Twin 2015; D’Argenio et al. 2014), which does not readily apply to many forensic datasets that 

can include highly variable sampling locations or contextual circumstances (Benbow et al. 2015; 

Metcalf et al. 2016; Pechal et al. 2018). 

In addition to choosing the pipeline, microbial sequence data analyses can be confounded 

by different library sizes, or the number of sequence reads per sample (McMurdie and Holmes 

2014). The common library size normalization procedure for microbial analysis is referred to as 

rarefying (McMurdie and Holmes 2014). To rarefy data, a minimum library size is chosen, 

samples with too few reads are discarded, and the remaining sample reads are subsampled 

without replacement to the minimum library size (McMurdie and Holmes 2014). Minimum 

library size is often chosen by selecting the smallest library size of a non-defective sample, 

which is a subjective assessment that can add uncertainty to microbial community analysis 

(McMurdie and Holmes 2014). Minimum library size can also be chosen based on rarefaction 

curves: taxon-based re-sampling curves that indicate species richness and coverage analysis to 

justify a certain library size. Potentially useful data are omitted during rarefying, which can 

decrease the power and specificity of analyses as samples are discarded, and the samples that 

remain may not be distinguishable using a fraction of the original reads (McMurdie and Holmes 

2014). While rarefying can decrease power, sample size is an additional factor to consider for 

downstream analysis of microbial data.  

Most postmortem microbiome studies have small sample sizes (Pechal et al. 2018). 

Often, this is due to space, time or resource limitations of using human donated bodies or 

surrogate carcasses, such as swine. Prior to 2018, when Pechal et al. (2018) characterized and 
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modeled postmortem microbiomes using 188 autopsies, sample sizes for postmortem 

microbiome studies range from 2 to 48 (Metcalf et al. 2016; Hyde et al. 2013). Small samples 

sizes can decrease statistical power and inflate effect sizes, which can lead to unreliable 

conclusions that may not be generalizable to other data sets (Ioannidis 2005), which can have 

important consequences in forensics (Clarke et al. 2017). Given this, it is important to evaluate 

data analysis parameters with large, spatially and temporally heterogenous datasets with multiple 

sample areas (i.e., body locations) in order to improve the reliability of postmortem microbiome  

data. 

Downstream analytical methods for forensic microbiology studies are still being 

evaluated. Recently, machine learning algorithms and parameterization were comprehensively 

tested for potential direct forensic applications to postmortem interval estimation, manner of 

death determination, and location of death (i.e. inside, outside, hospital death) for this particular 

dataset (Zhang et al. 2019). Therefore, we focus on preceding steps of microbial analysis before 

modeling applications for comparing forensic predictions. The overall goal was to provide an 

initial assessment of how pipeline choice and data processing parameter differences affect data 

outcomes that are used as inputs for downstream modeling and prediction, with the intention that 

forensic researchers and examiners could make informed decisions about study design, data 

analysis methods, and applications relevant to their forensics needs. A better understanding of 

performance among bioinformatic pipelines and parameters is needed to reveal potentially 

significant differences in downstream analysis and data interpretation, especially for future use in 

the forensic sciences. To determine how different microbiome data processing parameters affect 

downstream analytical outcomes, we determined how pipeline software, library size 

normalization by rarefying, and sample size affect common microbiome community metrics and 
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machine learning model results using a large postmortem microbiome dataset (n=188). We have 

emphasized using standardized, recognizable, and user- friendly methods encountered in open-

access microbiome analyses tools for forensic applications.
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Materials and Methods
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Sample Collection, DNA Extraction, and Sequencing  

Postmortem microbiome data were obtained from our previously published study that 

characterized the microbial communities from multiple body sites in 188 routine autopsy cases 

(Pechal et al. 2018). The postmortem microbiome data for this study represented the microbial 

communities from the mouth and rectum, with cases that spanned all four seasons (Spring, 

Summer, Fall, and Winter), manners of death (accident, homicide, suicide, natural), postmortem 

intervals (< 24h - > 73+ h), and ages (18-55+ years) (Table S1). Detailed methods for sample 

collection, DNA extraction, and sequencing are available in Pechal et al. (2018). In short, trained 

personnel at Wayne County Medical Examiner’s Office in Detroit, Michigan took swab samples 

during routine autopsy using DNA-Free sterile cotton-tipped applicators (25–806 1WC FDNA, 

Puritan®, Guilford, MA, USA). Each swab was rotated for 3-5 seconds on the body location to 

sample the microbial community. Samples were placed in sterile microfuge tubes and 200 μl of 

100% molecular grade ethanol (BP2818-4, Fisher Scientific, Waltham, MA, USA) and stored at 

-20℃. Metadata were collected for each case including: sampling date (season), anatomic region 

sampled, sex, ethnicity, estimated age (years), postmortem interval (PMI), body mass index 

(BMI; kg/m2), event location (indoors, outdoors, hospital, vehicle), and manner of death (Table 

S1). Manner of death and PMI estimates were determined by a board-certified forensic 

pathologist at the time of autopsy.  

To determine the microbial communities, total DNA was extracted in a biological safety 

cabinet with aseptic conditions using PureLink® Genomic DNA Mini Kit (Thermo Fisher 

Scientific, Waltham, MA, USA) following manufacture instructions except an additional 5 ng/μl  

of lysozyme was added during the lysis step for each sample reaction (Pechal et al. 2017). The 

samples were quantified by Qubit 2.0 and the Quant-iT dsDNA HS Assay kit (Thermo Fisher
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 Scientific, Waltham, MA, USA). Microbial DNA was sequenced at the MSU Genomics Core 

Facility (East Lansing, MI, USA) using an Illumina MiSeq. The MSU Genomics Core Facility 

prepared the 16S rRNA gene amplicon library and sequenced the samples using a modified 

version of the protocol adapted for the Illumina HiSeq2000 and MiSeq. The V4 region 16S gene 

amplicon 2 x 250 bp paired-end reads were generated with region specific primers [515 f (5′ 

GTGCCAGCMGCCGCGGTAA) and 806 r (5′ GGACTACHVGGGTWTCTAAT)] that 

included Illumina flowcell adapters (Caporaso et al. 2010). PCR products were normalized and 

pooled with Invitrogen SequalPrep DNA Normalization Plates. A combination of Qubit dsDNA 

HS, Caliper LabChipGX HS DNA, and Kapa Illumina Library Quantification qPCR assays were 

used to quantify the pooled library. Amplicons were sequenced with custom primers 

complementing amplification primers to avoid primer sequencing after cluster formation as 

described by Kozich et al. (Kozich et al. 2013). Pooled sequences were loaded on an Illumina 

MiSeq standard flow cell (v2) and sequenced using a 500 cycle reagent cartridge. Filtering 

parameters were optimized for detecting low abundance phylogenetic diversity (Caporaso, 

Knight, and Kelley 2011; Caporaso et al. 2012). Bases were called by the Illumina Real Time 

Analysis (RTA) v1.18.54, and the output was demultiplexed and converted to FastQ format by 

Illumina Bcl2fastq v1.8.4. 

 

Pipeline Comparison 

Sequence reads from postmortem microbiome samples were analyzed with mothur 

v1.39.5 (Schloss et al. 2009), QIIME2 v2018.11 (Bolyen et al. 2019), and MG-RAST v4.0.3 

(Keegan, Glass, and Meyer 2016) to determine how the microbial community composition and 
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diversity metrics (alpha- and beta-diversity) varied among pipelines. The SOP for mothur 

(Kozich et al. 2013), the QIIME 2 moving pictures tutorial (Caporaso et al. 2011), and the MG-

RAST manual (Glass et al. 2010) were used for reference to analyze the samples. For mothur and 

QIIME2, the SILVA small subunit database v132 (Quast et al. 2013) was used at a 99% 

similarity cutoff for taxonomic classification. The database version of SILVA used by MG-

RAST is unknown, as it is not reported by the authors or on the website, even after multiple 

inquires. An overview of each pipeline workflow, including commands used to run the mothur 

and QIIME2, are represented in Figure 1. Some steps were conserved among pipelines (i.e., 

quality control and classify sequences/assign taxonomy) but the number and order of steps 

occurred in different succession among pipelines depending on how the pipeline developers 

created the software (Figure 1). For QIIME2, DADA2 v1.8.0 (Callahan et al. 2016) corrected 

Illumina amplicon sequencing data, including removing phiX reads. Sequence were aligned 

using MAFFT v7.397 (Katoh and Standley 2013) and FastTree v2.1 (Price, Dehal, and Arkin 

2010) created the phylogenetic tree. Biom tables were created using biom-format package 

v2.1(McDonald et al. 2012) and exported. For mothur, OTUs (Operational Taxonomic Units) 

and taxonomy tables were exported as column separated values (csv) files. For MG-RAST, 

identified sequences were clustered using UCLUST v6 (Edgar 2010). OTUs and taxonomy 

tables were exported as tab separated values (tsv) files. As many parameters were standardized 

as possible, but analysis methods among pipelines differed (Table 1). For example, all pipelines 

used the SILVA database for taxonomic classification, and VSEARCH v2.8.0 (Rognes et al. 

2016) for chimera detection and removal, while the taxonomic classification algorithms and 

alignment methods differed (Table 1).  
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To calculate error rate for each pipeline, in silico sequences were taken from 

“mockrobiota” (Bokulich et al. 2016), an online repository of sequences used to assess pipeline 

error rate. The mock-3 16S rRNA dataset contained sequence data, corresponding taxonomy, and 

relative abundance of the OTUs. Using pipeline workflows mentioned above, four samples were 

run through each of the pipelines: two samples representative of an “even” (all taxa have the 

same relative abundance) community composition and two “staggered” (taxa have varied relative 

abundances) community composition samples.  

 

Figure 1: Workflow for bioinformatic analysis. Several of the steps were shared among 

pipelines including quality control and aligning sequences. Commands from the code are in  

square brackets, while parameters are in parentheses. OTU: Operational taxonomic unit. 
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Table 1: Summary of parameter differences among pipelines compared. Adapted from 

Plummer et al. (2015). Bolded text were parameters chosen for running the pipelines.   

  QIIME2 mothur MG-RAST 

License Open-Source Open-Source Open-Source 

Language Python C++ Perl 

Current 

Version 

2019.1 1.39.5 4.0.3 

Cited 

(Google 

Scholar) 

18,800 14,300 4,620 

Web Based 

Interface 

GUI, API, CLI API, CLI GUI, API 

Quality 

Control 

YES YES YES 

16S rRNA 

Database 

SILVA, 

Greengenes, 

UNITE 

SILVA, Greengenes, 

RDP 

SILVA, Greengenes, 

RDP, ITS 

Alignment 

Method 

mafft Needleman-Wunsch BLAT 

Taxonomic 

Assignment 

Naive Bayes 

classifier  

Wang BLAT 

Chimera 

Detection 

VSEARCH VSEARCH VSEARCH 

User 

Support 

Forum, tutorials, 

FAQs 

Forum, SOPs, FAQs, 

user manual 

Video tutorials, 

FAQs, user manual, 

‘How to’ section on 

website 

 

Data Analysis and Bioinformatics   

Pipeline outputs were quantitatively compared using Biom files from QIIME2, and OTUs 

and taxonomy files from mothur and MG-RAST were combined with metadata as phyloseq 

v1.24.0 (McMurdie and Holmes 2013) objects in R v3.5.1 (R Core Team) and rarefied to 1,000 

sequences to account for the variability of library size among pipelines. Taxonomic names were 

corrected so that outputs could be properly merged with comparable taxa names (Table S2). Two 

methods were used to compare pipelines: statistical analyses of pipeline outputs from 

postmortem autopsy case microbiome data and pipeline error analysis using in silico data. These 
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comparison methods were chosen based on previous pipeline comparison research, which either 

compared pipeline output or in silico data (Plummer and Twin 2015; Sivarajah et al. 2017). 

Relative abundance was determined by combining all samples analyzed within each pipeline and 

sample area, removing taxa that were less than 1% abundance, and determining the proportional 

contribution of each taxa to the total community. Differentially abundant taxa among pipelines 

were determined from relative abundance at the phylum and family level using ANCOM 

(Mandal et al. 2015). Alpha-diversity metrics (observed richness, Chao1, Shannon diversity (1-

D), Inverse Simpson diversity (1/D)) were calculated using phyloseq. Alpha-diversity metrics 

were compared using Kruskal-Wallis and Nemenyi post hoc tests with the R stats and PMCMR 

packages (Pohlert 2018). Beta-diversity metrics, evaluated using Principal Coordinates Analysis 

(PCoA) of Jaccard distances, were plotted using phyloseq. Jaccard was chosen as a 

presence/absence method to buffer against relative abundance differences found among 

parameters. PERMANOVA (permutational multivariate analysis of variance) from the vegan 

v2.5-2 (Oksanen et al. 2019) package confirmed beta-diversity and dispersion differences among 

pipelines. In addition to diversity metrics, a measure of divergence was assessed (Kullback-

Leibler Divergence) (la Rosa et al. 2012) and found to be generally consistent with trends of 

diversity metrics (Table S3). Classifications were made of sample area and manner of death 

using random forest (randomForest package v4.6-14) (Breiman et al. 2018) among pipelines. 

Out-of-bag (OOB) error rates were reported. However, test-set validation (70% training sets, 

30% test sets) was also tested and the error rates were within 2% of the OOB error rates. For a 

more extensive comparison of random forest methods on the larger dataset of these postmortem 

microbiome data, please see Zhang et al. (2019). 
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We also used “mockrobiota” (Bokulich et al. 2016) reference samples to compare the 

accuracy of the pipeline outputs. For the in silico data analysis, three metrics were assessed: 

correct taxa, false positives, and false negatives. Taxa that were present in both mockrobiota 

taxonomic reference dataset and the pipeline output was labeled ‘correct taxa’. Taxa present in 

only the mockrobiota taxonomic reference dataset were considered false negatives, while taxa 

present only in the pipeline outputs were considered false positives. Concordance with the 

mockrobiota dataset was assessed based on pipeline outputs of abundance (sequence number) 

regressed with the expected abundances of mockrobiota as the R2 value. False negative taxa were 

indicated by negative abundance values, while false positive taxa fell along the X- axis with no 

expected abundance value. 

Based on the results of comparisons (see Results: Pipeline Comparison), the QIIME2 

pipeline was chosen for conducting sample size and library size comparisons. Subsamples of the 

original 188 cases were chosen at random [R; sample()] without replacement for 60 and 120 

cases (see A Priori Power Analysis below). Rarefaction levels used for comparison were 1,000 

sequences, 7,000 sequences, and no rarefaction. Rarefying to 7,000 sequences was based on the 

alpha-rarefaction curve generated in QIIME2, while rarefying to 1,000 sequences was based on a 

subjectively chosen minimum library size. Outputs among subsamples and rarefaction levels 

using statistical analyses were compared using methods described above, including relative 

abundance, ANCOM, alpha-diversity, and beta-diversity. Changes in core microbiome  

characterization and random forest accuracy were also evaluated. In this case, the core 

microbiome was defined as shared OTUs among defined groups (i.e., sample areas, minimum
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library sizes, and sample sizes) (Shade and Handelsman 2012) and determined using log 

abundance vs. occupancy plots. Classifications were made of sample area and manner of death 

using random forest (randomForest package v4.6-14) (Breiman et al. 2018), and the model error 

rate was compared among subsamples and normalization methods.    

 

A Priori Power Analysis 

To determine statistically significant sample size, an a priori power analysis was 

completed using G*Power 3 v3.0.5 (Faul et al. 2007). Body locations (mouth and rectum) were 

compared using the mean and standard deviation of Faith’s phylogenetic diversity from previous 

bioinformatic analysis (Pechal et al. 2018) calculated using R. An independent mean two tail t-

test was used to determine sample size needed for significant power. For each body location 

(mouth and rectum), 27 samples were required for significant power (α = 0.05; 1-β = 0.80). 

Three random subsample sizes were chosen based on the number of cases to include that all have 

significant power: 60, 120, 188. Random subsamples were generated using R, sampling without 

replacement. 

 

Data Availability 

Postmortem microbiome samples collected, extracted, and targeted amplicon 16S 

sequenced from 188 cases in Pechal et al. (2018) were used as a large dataset for comparing 

pipelines, sample size, and minimum library size for downstream analyses. Sequence data are  

archived through the European Bioinformatics Institute European Nucleotide Archive 

(www.ebi.ac.uk/ena) under accession number: PRJEB22642. The microbial community analysis 

is available as R code on GitHub (https://github.com/sierrakasz/postmortem-analysis).  

https://github.com/sierrakasz/postmortem-analysis
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Results 
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Pipeline Comparison 

Despite having an easy to implement web-based GUI, MG-RAST was not an appropriate 

tool for this forensic dataset. Although the concordance of MG-RAST (R2 = 0.24) was 

comparable to QIIME2 (R2 = 0.27) for the in silico dataset (Figure 2), the in silico dataset 

represented very low diversity (< 20 taxa present) and simplistic community structure (even and 

staggered), with a low sample size (n = 4) and was not an accurate approximation of forensic 

data. For postmortem data, MG-RAST had a much smaller effect size than mothur and QIIME2  

due to the twofold reduction in samples (Table S4). MG-RAST had an average library size ~ 20-

times smaller than QIIME2 and mothur, tenfold reduction in sequences after filtering, and the 

highest numbers of unclassified sequences at the family and phylum level (Table 2, Table S5), 

representing a loss of valuable and forensically relevant data. MG-RAST also had the highest 

error rates for the random forest modeling in all cases (Table 3; Table S6).  

Compared to mothur and QIIME2, MG-RAST had more differentially abundant taxa and 

significantly reduced alpha- and beta-diversity metrics indicative of a very different microbial 

community structure, despite the input of the same data. Although the top five most abundant 

phyla were consistent among pipelines, MG-RAST’s mean relative abundances at the phylum 

and family taxonomic level were reduced for both mouth and rectum sample areas (Figure 3A, 

Figure 3B, Table S7-S8). MG-RAST had the most differentially abundant taxa (taxa for which 

relative abundances significantly differ from each other based on statistical tests) at both the 

phylum (9) and family level (39), which were represented by about 20-times more sequences 

than mothur and QIIME (ANCOM; Table S9-S11). When considering all samples, MG-RAST 

produced around 50% lower alpha-diversity for all three metrics compared to mothur and 

QIIME2 (Kruskal-Wallis p < 0.05; post hoc Nemenyi p < 0.05; Table S12B; Table S13A-
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Figure 2: In silico data error among pipelines. In silico raw sequence data were obtained from 

mockrobiota and processed through each pipeline using the same methods as the postmortem 

microbiome dataset. Four samples were processed: two ‘even’ and two ‘staggered’ samples 

representing different microbial community compositions. (A) Taxa output from each pipeline 

were compared to the taxonomic reference dataset available on mockrobiota. Taxa that were 

present in both the mockrobiota taxonomic reference dataset and the pipeline output was labeled 

‘correct taxa.’ Taxa present in only the mockrobiota taxonomic reference dataset were 

considered false negatives, while taxa present only in the pipeline outputs were considered false 

positives. Samples within each pipeline are ordered along the x-axis as: even, even, staggered, 

staggered. (B-D) Abundance of taxa (based on sequence number) from pipeline output versus 

expected abundance of taxa based on the mockrobiota abundance reference dataset for each 

sample. Negative abundances were assigned to samples that were considered false negatives. The 

R2 line represented the actual concordance. (B) MG-RAST (C) mothur (D) QIIME2. 
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Table 2: Summary of sample number and sequence read differences among pipelines. The 

total number of samples among pipeline differed, as some samples were removed for not having 

the minimum required sequences (1,000), or in the case of MG-RAST, for not having the 

minimum 1,000,000 base pairs before filtering.  

 

Pipeline 

Total 

Number 

of 

Samples 

Number 

of 

Mouth 

Samples 

Number 

of 

Rectum 

Samples 

Total 

Number of 

Reads 

after 

Filtering 

Number of 

Unclassified 

Phylum 

Reads 

Number of 

Unclassified 

Family Reads 

QIIME2 324 169 155 11,375,659 2,399 2,832 

mothur 324 169 155 12,861,356 594 2,419 

MG-

RAST 150 97 53 
2,167,164 40,530 43,576 

 

 

Table 3: Random forest classification error among pipelines. Random forest classifications 

were made with 1,000 trees, and out-of-bag (OOB) error was reported. Classifications of sample 

area (mouth and rectum) and manner of death (suicide, homicide, accident, natural) were made 

for phylum and family taxonomic level. Percentages and number of misclassifications from the 

total number of samples were included. 

 

Taxonomic 

Level 
Pipeline 

Sample Area Error Rate 

(Misclassifications/ Total)  

Manner of Death  

Error Rate 

(Misclassifications/ 

Total) 

Phylum QIIME2 16.05% (52/324) 58.64% (190/324) 

Phylum mothur 12.65% (41/324) 56.79% (184/324) 

Phylum MG-RAST 16.67% (25/150) 72% (108/150) 

Family QIIME2 4.94% (16/324) 57.72% (187/324) 

Family mothur 4.01% (13/324) 57.41% (186/324) 

Family MG-RAST 5.33% (8/150) 60% (90/150) 

 

 

13B). MG-RAST samples clustered closely together (Figure 3D), reflective of MG-RAST’s 

significantly lower dissimilarity (0.850 ± 0.139) than QIIME2 and mothur (PERMANOVA, p < 

0.05, Table S14). The loss of sequences and samples during the filtering process was also  
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reflected in the reduced microbial community metrics downstream for MG-RAST.  

QIIME2 and mothur had more comparable results but key differences among the pipeline 

outputs made QIIME2 the most appropriate pipeline to use for downstream analysis. Richness 

and diversity (evenness and richness) metrics from mothur and QIIME2 quantified similar levels 

of diversity (Figure 3C, Table S12A-12B). However, QIIME2 had around 20% lower observed 

richness than mothur (Table S12B, Table S13B) in contrast to previous studies (Plummer and 

Twin 2015). While QIIME2 had slightly higher levels of unclassified sequences (Table 2), 

mothur had a higher number of unclassified taxa at the phylum (3) and family level (4) 

(ANCOM, Table S9-S10), which artificially inflated richness measured by mothur. For random 

forest classification, mothur had slightly lower error rates than QIIME2 (Table 3), indicator taxa 

differed among mothur and QIIME2 possibly due to the inflated richness from mothur (Table 

S15). Despite mothur and QIIME2 samples’ admixture (Figure 3D) and comparable dissimilarity 

(QIIME2: 0.874 ± 0.146; mothur: 0.872 ± 0.144), microbial community structure was 

distinguishable (PERMANOVA, p < 0.05, Table S14). However, the effect size was small (R2 < 

0.1, Table S14). 

Despite the similar microbial communities, mothur and QIIME2 diverged when testing 

the in silico dataset. QIIME2 had no false positives, while mothur had the most false positives 

(range: 10-20) of all pipelines (Figure 2A, Table S16). Many of mothur’s false positives were 

unclassified taxa at multiple taxonomic levels, which disrupted the relative abundances of the 

whole microbial community reflected in concordance. QIIME2 had the highest concordance to 

the mockrobiota taxonomy reference dataset (R2 = 0.27), while mothur had the lowest (R2 = 

0.08) (Figure 2C-2D).  
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Figure 3: Microbial community composition among pipelines. (A) Relative abundances of the 

five most predominate phyla for mouth samples among pipelines (MG: MG-RAST, M: mothur, 

Q: QIIME2). (B) Relative abundances of the five most predominate phyla for rectum samples 

among pipelines (MG: MG-RAST, M: mothur, Q: QIIME2). (C) Alpha-diversity metrics for 

each sample area (mouth and rectum) and pipeline including: observed richness, Chao1, Shannon 

diversity, and Inverse Simpson diversity (InvSimpson). Kruskal-Wallis and post hoc Nemenyi 

tests for alpha-diversity metrics detected significant differences (p < 0.05) among pipelines and 

sample areas. (D) The principal coordinate analysis (PCoA) of Jaccard distances among sample 

area and pipeline. Ellipses indicated sample area, for a 95% confidence interval. Permutational 

multivariate analysis of variance (PERMANOVA) detected significant differences (p < 0.05) 

among pipelines for each sample area, and all pairwise differences were statistically significant 

(p < 0.05). 
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Based on the pipeline comparison results above, QIIME2 was chosen as the best pipeline 

to examine the effect of rarefying and sample sizes on modeling results due to the lowest error 

rate and reduced unclassified taxa compared to mothur, and therefore more accurate microbial 

community structure. 

 

Minimum Library Size   

Key differences in microbial community metrics were among minimum library sizes, 

indicating the importance of considering minimum library size during forensic microbiome 

analysis. The number of unclassified sequences at phylum and family level decreased 

proportionally as the minimum library size decreased from no rarefaction, 7,000 sequences, to 

1,000 sequences for each sample area (Table 4). Relative abundances of the top five phyla 

changed among minimum library size, as smaller minimum library sizes (1,000 vs. 7,000) 

showed low abundance taxa (not the top five) phyla as a larger component of the relative 

abundances due to the random subsampling to a specified library size (Figure 4A, Table S17). 

The differences in microbial community structure among minimum library sizes were evident in 

the very distinct clustering of minimum library sizes (Figure 4F). Minimum library size had large 

effects beta-diversity (PERMANOVA, p < 0.05, R2 = 0.297-0.426, Table S18). Due to the 

effects of minimum library size on microbial community structure, including beta-diversity and 

relative abundance, minimum library size should be considered for downstream analyses.  

However, a large majority of taxa were captured within each minimum library size, as 

indicated by alpha-diversity and core microbiome analysis. Only the minimum library size of 

1,000 had around 25% reduced richness compared to 7,000 and no rarefaction library sizes. 
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Figure 4: Microbial community composition among sample sizes and minimum library 

sizes. (A) Relative abundances of the five most predominate phyla among subsamples with no 

rarefaction. (B) Relative abundances of the five most predominate phyla among minimum library 

sizes of subsample 188. (C) Alpha-diversity metrics for each sample size with no rarefaction 

including: observed richness, Chao1, Shannon diversity, and Inverse Simpson diversity 

(InvSimpson). Kruskal-Wallis and post hoc Nemenyi tests for alpha-diversity metrics did not 

detect significant differences (p < 0.05) among subsamples. (D) Alpha-diversity metrics for each 

minimum library size of subsample 188 including: observed richness, Chao1, Shannon diversity, 

and Inverse Simpson diversity. Kruskal-Wallis and post hoc Nemenyi tests for alpha-diversity 

metrics detected significant differences (p < 0.05) among pairwise comparisons including the 

1,000 sequence minimum library size for observed richness. (E) The principal coordinate 

analysis (PCoA) of Jaccard distances among subsamples with no rarefaction. Permutational 

multivariate analysis of variance (PERMANOVA) did not detect significant differences (p < 

0.05) among sample sizes. (F) The principal coordinate analysis (PCoA) of Jaccard distances 

among minimum library sizes of subsample 188. PERMANOVA detected significant differences 

(p < 0.05) among rarefaction levels and all pairwise differences were statistically significant (p < 

0.05).  
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Table 4: Total number of sequences that remained after filtering, and unclassified 

sequences (phylum and family taxonomic level) among sample area, sample size, and 

minimum library size. 

Pipeline 
Sample 

Area 

Sample 

Size 

Minimum 

Library 

Size 

Total Number of 

Sequences 

Unclassified 

Phylum 

Unclassified 

Family 

QIIME2 Mouth 60 
No 

Rarefaction 
2,115,130 4,988 7,660 

QIIME2 Mouth 60 7,000 405,998 1,059 1,481 

QIIME2 Mouth 60 1,000 60,000 157 207 

QIIME2 Rectum 60 
No 

Rarefaction 
2,349,815 27,026 30,707 

QIIME2 Rectum 60 7,000 405,981 5,200 5,438 

QIIME2 Rectum 60 1,000 59,996 733 772 

QIIME2 Mouth 120 
No 

Rarefaction 
4,182,126 7,721 12,999 

QIIME2 Mouth 120 7,000 811,998 1,935 2,703 

QIIME2 Mouth 120 1,000 119,000 265 381 

QIIME2 Rectum 120 
No 

Rarefaction 
3,834,632 35,019 36,583 

QIIME2 Rectum 120 7,000 734,993 6,154 6,762 

QIIME2 Rectum 120 1,000 106,999 862 958 

QIIME2 Mouth 188 
No 

Rarefaction 
5,874,406 14,099 22,323 

QIIME2 Mouth 188 7,000 1,154,999 4,044 5,424 

QIIME2 Mouth 188 1,000 168,999 612 819 

QIIME2 Rectum 188 
No 

Rarefaction 
5,463,539 63,667 70,089 

QIIME2 Rectum 188 7,000 1,056,993 12,498 13,963 

QIIME2 Rectum 188 1,000 155,000 1,798 2,017 

 

(Kruskal-Wallis, post hoc Nemenyi; p < 0.05, Figure 4C, Table S19-S20) When comparing core 

microbiome taxa among rarefaction levels, most OTUs (695) were shared among 

all minimum library sizes and were represented in higher log abundance (greater than the mean 

log abundance) compared to non-core taxa (Figure 5B, Table S21). Some taxa only occurred in 

non-rarefied samples (62) and amounted to about 10% of the core taxa among all minimum 

library sizes (Figure 5B, Table S21). Despite changing minimum library sizes, a majority of taxa 
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were still represented. However, the low abundant and infrequent taxa still have downstream 

effects for forensic analysis. 

Random forest modeling was affected by low abundant and infrequent taxa. While 

sample area classification error (14% for phylum and 4% for family) was lower than manner of 

death classification error (phylum and family error rates were nearly 56%), among all minimum 

library sizes, sample area classification error and manner of death classification error were 

relatively similar (Table 5, Table S22). Although the error rates among library sizes were overall 

similar, some of the important indicator taxa for classifications were unique to certain groups. 

For example, Bifidobacteriaceae was an important (one of the highest mean Gini decrease) 

indicator of manner of death for subsamples 60 and 120 and at rarefaction levels 0 and 1,000, 

while Spirochaetales was an indicator for sample area using subsamples 120 and 188 (Table 

S23). For downstream applications in forensic microbiology, changing indicator taxa among 

minimum library sizes indicated that lack of standardization among studies can lead to 

differentiation among results interpretation.  

 

Sample Size  

Overall, sample size did not affect overall microbial community metrics in a significant 

way. Sample size remained relatively constant among minimum library sizes (standard 

deviations- no rarefaction: 47.4; 7,000: 45.1; 1,000: 46.0) (Table S24). The total number of 

sequences, as well as the number of unclassified sequences at phylum and family level, increased 

1.5 to 2-times with increasing sample number from 60, 120, to 188 (Table S24), but there were 

no differentially abundant taxa among subsamples (Figure 4B). Alpha-diversity metrics did not 

significantly differ among sample sizes (Kruskal-Wallis; p > 0.05; Figure 4D, Table S19- 
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Figure 5: Core microbiome among sample sizes and minimum library sizes. In this case, core 

microbiome is considered by OTU (operational taxonomic unit) membership among defined 

groups (sample size or minimum library size). (A) Occupancy vs. log abundance of shared OTUs 

among sample sizes at no rarefaction. The horizontal line indicated mean log abundance. (B) 

Occupancy vs. log abundance of shared OTUs among minimum library sizes for 188 subsample. 

The horizontal line indicated mean log abundance. 

 

 

 

S20), but observed richness did increase with increasing sample size, as larger sample sizes 

captured more infrequent taxa. For subsamples within each sample area and minimum library 

size, there were no significant differences (PERMANOVA; p > 0.05) among beta-diversity and 

beta-dispersion and no clear clustering by subsample (Figure 4E; Table S18).  

However, increasing sample size changed the number of low abundant and infrequent taxa. 

Comparing the core microbiome, most OTUs (569) were shared among all sample sizes, and 

were represented in higher log abundance (greater than the mean log abundance) compared to 

non-core taxa (Figure 5A, Table S25). Although, there were a few OTUs shared among 

subsamples and unique to the subsample 188 (Figure 5A, Table S25). Much like minimum 

library size, error rates for predicting sample area among sample sizes were around 14% for 
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Table 5: Random forest classification error among sample sizes and minimum library sizes. 

Random forest classifications were made with 1,000 trees, and out-of-bag (OOB) error was 

reported. Classifications of sample area (mouth and rectum) and manner of death (suicide, 

homicide, accident, natural) were made for each taxonomic level, rarefaction level, and 

subsample. Percentages and number of misclassifications from the total number of samples were 

included.  

 

Taxonomic 

Level 

Minimum 

Library Size 

Sample 

Size 

Sample Area Error 

Rate 

(Misclassifications/ 

Total)  

Manner of Death  

Error Rate 

(Misclassifications/ 

Total) 

Phylum 1,000 60 14.17% (17/120)  55.83% (67/120) 

Phylum 1,000 120 15.49% (35/226) 58.41% (132/226) 

Phylum 1,000 188 17.59% (57/324) 57.41% (186/324) 

Phylum 7,000 60 14.66% (17/116) 57.76% (67/116) 

Phylum 7,000 120 14.03% (31/221) 57.47% (127/221) 

Phylum 7,000 188 14.24% (45/316) 56.33% (178/316) 

Phylum 

No 

Rarefaction 60 12.50% (15/120) 54.17% (65/120) 

Phylum 

No 

Rarefaction 120 14.29% (33/231) 58.44% (135/231) 

Phylum 

No 

Rarefaction 188 14.50% (48/331) 58.61% (194/331) 

Family 1,000 60 5.83% (7/120) 54.17% (65/120) 

Family 1,000 120 3.10% (7/226) 56.64% (128/226) 

Family 1,000 188 4.63% (15/324) 56.17% (182/324) 

Family 7,000 60 5.17% (6/116) 55.17% (64/116) 

Family 7,000 120 4.07% (9/221) 59.28% (131/221) 

Family 7,000 188 5.06% (16/316) 58.54% (185/316) 

Family 

No 

Rarefaction 60 4.17% (5/120) 54.17% (65/120) 

Family 

No 

Rarefaction 120 4.76% (11/231) 57.58% (133/231) 

Family 

No 

Rarefaction 188 3.93% (13/331) 58.31% (193/331) 

 

phylum and 4% for family, and around 56% for manner of death classifications (Table 5). Again, 

there were indicator taxa unique to certain subsamples (Table S23). The increase of infrequent 

and low abundant taxa among the sample sizes are indicative that sample size should be taken 

into consideration for downstream application for forensic microbiology studies, and 

comparisons across studies.
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Discussion
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Our bioinformatic parameter comparison using a large postmortem microbiome dataset 

showed that parameters can affect downstream analyses, including microbial community 

structure results. We also show that sample size and minimum library size affect the resulting 

number of low and infrequent taxa and potential indicator taxa for model building. While the 

results here are specific to this postmortem dataset of targeted amplicon (16S rRNA) sequencing 

on the Illumina platform, similar considerations should be made for other pipelines and platforms 

that may be used in downstream applications of forensic microbiology in the criminal justice 

system.  

 

Pipeline Comparison   

Pipelines differed in many ways, including the development, parameters, and usability 

(Plummer and Twin 2015). To accurately compare pipelines, we standardized as many steps as 

possible; i.e. using SILVA as a reference database. The steps that could not be standardized 

among pipelines, including different taxonomic assignment and alignment algorithms, were 

likely responsible for the differences in microbial community characterizations (Siegwald et al. 

2017). 

Overall, we showed that MG-RAST finds a different microbial community structure 

compared to mothur and QIIME2, due to reduced diversity metrics and increased unclassified 

and differentially abundant taxa. These results are similar to previous work comparing MG-

RAST to other pipelines (D’Argenio et al. 2014). However, there are few studies that did not 

find the same reduction in diversity metrics and increased unclassified reads (Plummer and Twin 

2015; Golob et al. 2017). Although, both studies focused on a smaller sample size of similar 
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microbial communities (35 infant gut microbiome samples) or in silico generated data that does 

not approximate forensic data. Due to the results from this postmortem dataset, the reduction in 

microbial information (samples, classified sequences), the varied community structure 

(differentially abundant taxa, reduced alpha- and beta-diversity), and the higher random forest 

classification error, MG-RAST is not the appropriate tool for this type of forensic dataset moving 

forward.  

The overall microbial community structure had minimal differences among QIIME2 and 

mothur, which was a similar result to previous studies (Plummer and Twin 2015; Golob et al. 

2017). It is important to note that we rarefied samples to 1,000 sequences, to account for the 

sequence reduction in MG-RAST, but this could be limiting the differences among mothur and 

QIIME2. This study was comparison of bioinformatic pipelines using machine learning 

outcomes. Rather than an exhaustive search of machine learning algorithms (Zhang et al. 2019), 

we used a standardized user-friendly methodology of random forest classification (out-of-bag 

error) after comparison to the test-set validations were within 2% error rate as OOB error rate. 

QIIME2 had a higher overall classification error than mothur but resulted in less than 1% 

difference from mothur at the family taxonomic level. Overall, the increased unclassified taxa 

and in silico data error for mothur made QIIME2 the more appropriate choice for downstream 

analyses in this study.  

 

Minimum Library Size 

Rarefying, as a method of normalizing varying library sizes, should be of interest for 

forensic applications in the future as standardizing methodology among labs will be important 

for actual casework. Many of the current postmortem microbiome studies have a variety of 
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minimum library sizes chosen based on alpha-rarefaction curves (Metcalf et al. 2016; Pechal et 

al. 2018) or based on minimum library size of the samples (DeBruyn and Hauther 2017). We 

chose three levels of rarefying for the postmortem data, based on these different approaches: no 

rarefaction, 7,000 (based on alpha-rarefaction curves), and 1,000 (minimum library size). 

Previous research determined that in large enough datasets of very different microbial 

communities (postmortem data across body site) (Pechal et al. 2018), rarefying should not 

negatively impact downstream analysis (Weiss et al. 2017) . However, we found differences 

among the normalization strategies, indicating that rarefying should be taken into consideration 

for forensic microbiome analysis. While we showed that more low abundance and infrequent 

taxa among cases are captured without rarefying, downstream statistical analyses commonly 

used in forensic microbiology studies (i.e. ANCOM, PERMANOVA) assume similar library 

sizes (Weiss et al. 2017). Demonstrated by the PCoA plot (Figure 4F) a large majority of the 

postmortem samples in this study clustered by minimum library size, a result that was found in 

previous normalization research (Weiss et al. 2017). This clustering, and indication of distinct 

microbial communities, could possibly limit the ability for laboratories to compare data across 

studies if normalization was not standardized.  

For standardization in forensic analyses, normalization of library size should be taken 

into consideration due to the effect on downstream statistical analyses. Random forest 

classification has potential forensic applications for many analyses including manner of death 

determination. Error rates of classifications (both of sample area and manner of death) were 

generally stable among minimum library size but decreased with larger library sizes, perhaps as 

more of the infrequent taxa become important for classification. While classification of sample 

area is generally consistent with other studies (Pechal et al. 2018), the classifications of manner 
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of death in this study are generally lower than previously reported studies with the same dataset 

(Zhang et al. 2019). However, a previous study provided a comprehensive evaluation of machine 

learning algorithms, which was not the major focus of this study. Rather, by using a 

standardized, user-friendly open-access methodology of random forest classification, we 

illustrated the importance to future researchers to consider parameters, such as library size, even 

if they are not a primary focus of the study. Indicator taxa that are important for classifications 

changed among minimum library sizes, which has implications for forensic cases, as indicator 

taxa among classifications will be potentially very important for downstream applications in 

casework.  

 

Sample Size  

There is a tradeoff for researchers to consider when including more samples in analyses. 

Sample sizes for studies are mostly limited by resource availability, including funding. It is not 

realistic for all studies to have very large sample sizes. However, to improve forensic 

microbiology for future use in the criminal justice system, more robust tools that capture low 

abundant and infrequent taxa encountered in real cases are needed.  

Our postmortem microbiome dataset is the largest analyzed to date for postmortem 

microbiome studies (Pechal et al. 2018). For downstream forensic applications, including more 

samples in predictive models makes those models more robust to the variability present in real 

forensic cases. We found patterns of relative abundance did not change as more samples were 

included in the analysis, but observed richness did increase with increasing sample size, as larger 

sample sizes captured more infrequent taxa. As expected, increasing subsample size increased 
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error rate for the random forest classifications (sample area and manner of death). However, 

those random forest models are arguably more robust for downstream forensic applications 

(Zhang et al. 2019), therefore including as many samples as possible in forensic microbiology 

studies is best practice moving forward.  
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Conclusion
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This work was the first to compare pipeline and parameters for a forensically relevant, 

large, and heterogenous dataset. Based on the results of this study, we make the following 

recommendations for future forensic microbiology studies: 1. The QIIME2 pipeline is the most 

suitable pipeline for this type of postmortem microbiome dataset; 2. Rarefying data is the best 

normalization practice for downstream statistical analyses (Weiss et al. 2017). However, an 

appropriate minimum library size should be chosen based on richness captured (alpha-rarefaction 

plots), instead of the smallest library size among samples; and 3. Sample size should be 

maximized to captures lower abundant and infrequent taxa among the data for more robust 

model building. However, sample size must be weighed with other practical considerations, such 

as financial constraints.  

Considering the potential application of forensic microbiology to the criminal justice 

system, continued research to optimize computational methodology will be important for 

downstream applications. While model building was not the focus of this study, the preliminary 

results show how parameter choice can potentially affect downstream applications, which is 

important for future research and casework. Applying bioinformatic workflows necessary for 

microbial data in forensic casework will be challenging as command line software and microbial 

data analysis is not already part of the examiner workflow. The constant influx of pipelines 

available, changing parameter options, and updates will be a barrier to creating an SOP for 

forensic casework. However, this study is an important part of laying the groundwork for 

standardizing computational methodology for forensic microbiology research, and will help set 

the precedent for forensic casework in the future.
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CHAPTER II:  

DYSBIOSIS IN THE DEAD: HUMAN POSTMORTEM MICROBIOME BETA-

DISPERSION AS ONE INDICATOR OF MANNER AND CAUSE OF DEATH DURING 

AUTOPSY
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Introduction
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The organisms represented in microbiomes have important functional roles for host life, 

influencing health, development, and disease susceptibility, among many others (Zaneveld, 

McMinds, and Thurber 2017; Turnbaugh et al. 2007). Microbes also play an important functional 

role in decomposition (Pechal et al. 2014), as the communities change with dispersal, 

competition, and other interactions after host death (Pechal et al. 2014, 2018; Metcalf et al. 

2016). These dynamic, yet predictable, microbial community profile changes after death make 

the postmortem microbiome a potential forensic resource for postmortem interval (PMI) 

estimation. PMI estimation is indeed the most studied forensic application of the postmortem 

microbiome (Pechal et al. 2014; Metcalf et al. 2013); but, this community has additional 

potential for forensic applications as well, like indicating antemortem health conditions (e.g., 

cardiovascular disease or violent death) (Pechal et al. 2018) and the living environment (e.g., 

neighborhood blight) (Pearson et al. 2019). 

The postmortem microbiome is thought to be structured by a decedents’ antemortem 

health condition and the suite of stressors that impact the human host including drug/alcohol 

abuse or high stress lifestyle conditions such as neighborhood blight, that are associated with 

certain manners of death (i.e., homicide) (Pechal et al. 2018; Pearson et al. 2019; Zhang et al. 

2019). Importantly, the postmortem microbiome does not significantly change from the 

antemortem microbiome for approximately 48 hours after death (Pechal et al. 2018). Due to the 

stability of the postmortem microbiome within 48 hours after death, and potential connection to 

lifestyle condition, microbial community metrics have been shown to indicate certain manners of 

deaths (MOD) or causes of deaths (COD). However, there have been few studies that have tested 

associations of postmortem microbial communities with MOD or COD (Pechal et al. 2018; 

Pearson et al. 2019; Zhang et al. 2019). 
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In past work, microbial diversity and indicator taxa were shown to reflect antemortem health 

conditions and MOD (Pechal et al. 2018; Pearson et al. 2019; Zhang et al. 2019). In some cases 

lower microbial alpha-diversity was associated with cardiovascular disease, non-violent deaths, 

and neighborhood blight (e.g., abandoned building, inactivity, and dumping) (Pechal et al. 2018; 

Pearson et al. 2019); however, it is difficult to capture the variability in a large sample set using 

diversity alone, as it does not account for taxon relative composition that makes up the 

community. In one of two studies, Zhang et al. combined microbial indicator taxa and case 

metadata found in autopsy reports (e.g., decedents age, sex, race, etc.) to test machine learning 

models for classifying M/COD (Zhang et al. 2019).While indicator taxa are a useful reflection of 

antemortem conditions, microbial indicator taxa may not be present in all cases (e.g., 

Haemophilus influenzae), or they may be ubiquitous (e.g., Staphylococcus), and therefore less 

useful (Pechal et al. 2018). For this study, we tested a new metric that captures microbial 

variability and does not specifically rely on indicator taxa: beta-dispersion. We hypothesized that 

postmortem microbiome beta-dispersion could be an additional tool for determining M/CODs 

during death investigation.  

Increased beta-dispersion among living individuals has been associated with obesity, 

infection, and smoking (Zaneveld, McMinds, and Thurber 2017; Barbian et al. 2015). Following 

the conceptual context of the ‘Anna Karenina Principle’ (AKP), after prolonged exposure to any 

array of stressors, the microbiomes of unhealthy individuals becomes more variable compared to 

the microbial communities of healthy individuals (Zaneveld, McMinds, and Thurber 2017). In 

other words, increased variation in the microbial communities reflects dysbiosis, and this 

community variability can be quantified through calculations of beta-dispersion (Zaneveld, 

McMinds, and Thurber 2017; Barbian et al. 2015). Beta-dispersion is calculated within the 
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context of a dataset, based on the multivariate distance from the centroid for each case sample, as 

defined by a grouping factor (Oksanen et al. 2019). Based on the link between increased beta-

dispersion and health status, we considered M/COD as grouping factors to quantify microbial 

signatures associated with M/COD determinations. Such association of beta-dispersion with 

M/COD could conceivably be additional evidence during death investigation.  

Microbial community metrics could potentially aid medical examiners and other certifiers of 

death, as determining M/COD can be error prone. While COD is the injury/disease a person died 

from which spans a variety of causes, MOD encompasses only five major categories: natural, 

accident, suicide, homicide, and undetermined (Randy, Hunsaker III, and Davis 2002). Medical 

examiners and other certifiers of death qualify their MOD determination with incremental 

degrees of certainty considering multiple pieces of evidence (Randy, Hunsaker III, and Davis 

2002). Given the possibility for mismatch between the MOD determination and the actual MOD, 

the postmortem microbiome could provide another piece of evidence to justify M/COD 

determination.   

To evaluate how postmortem microbiome variability associated with M/CODs, we modeled 

postmortem microbiome beta-dispersion from five body sites of 188 routine autopsy with known 

M/COD (as determined by a board-certified medical examiner). We predicted that certain 

M/CODs, such as natural deaths and cardiovascular disease, would have higher beta-dispersion 

than other M/CODs due to the previous antemortem health condition links found in previous 

studies (Pechal et al. 2018). However, the effect of life environment was predicted to increase 

beta-dispersion as well, in a way that could potentially factor into homicides or blunt force 

trauma/gunshot wounds (Pearson et al. 2019). Quantifying beta-dispersion by using M/COD as a 
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grouping factor could provide reliable and usable tool in death investigation for M/COD 

determination.
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Materials and Methods
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Sample Collection, DNA Extraction, and Sequencing  

The postmortem microbiome data used in this study were acquired from Pechal et al. 

(2018) but re-analyzed to test M/COD determination from beta-dispersion. This dataset contains 

postmortem microbiome samples obtained from 188 Wayne County Medical Examiner’s Office 

autopsy cases (Detroit, MI 2014-2016), representing multiple MODs (accident, homicide, 

suicide, natural) and CODs (asphyxiation, blunt force trauma, cardiovascular disease, drug-

related deaths, gunshot wounds, etc.) (Table S1) (Pechal et al. 2018). The cases also represent a 

cross-section of the Detroit area populace and were nearly evenly divided among females and 

males (83:105) and black and white (90:98) (Table S1). Cases in the dataset used were from 

people 18–88 years with a body mass index (BMI) from 8.5–67.5 kg/m2 (Table S1). The dataset 

is the largest postmortem microbiome available to test beta-dispersions potential to aid M/COD 

determination. 

Detailed methods for sample collection, DNA extraction, and sequencing can be found in 

(Pechal et al. 2018). In summary, trained personnel at Wayne County Medical Examiner’s Office 

took microbial community swab samples from five body sites (nose, mouth, rectum, ears, and 

eyes) during routine autopsy. Microbial DNA was extracted and sequenced to characterize the 

microbial communities. The Michigan State University (MSU) Genomics Core Facility (East 

Lansing, MI, USA) sequenced the 16S rRNA V4 region using an Illumina MiSeq standard flow 

cell (v2) using a 500-cycle reagent cartridge.  

Data Analysis and Bioinformatics   

Sequence reads from postmortem microbiome samples were analyzed with QIIME2 

(v2018.11) (Bolyen et al. 2019) following the methodology outlined in (Kaszubinski et al. 2019).  

Taxonomy and amplicon sequencing variant (ASV) tables were exported as csv files to be used 
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as input data for all downstream analysis. ASV and taxonomy files were combined with 

metadata obtained from autopsy reports (age, sex, race, BMI etc.) as phyloseq (v1.28.0) objects 

in R (v3.6.1) (McMurdie and Holmes 2013; R Core Team). ASVs less than 0.01% of the mean 

library size were trimmed, removing 22,214 ASVs for a total of 8,692 ASVs. Phyloseq objects 

were split among the body sites (nose, mouth, rectum, ears, and eyes) and analyzed separately.  

Method Selection 

We needed to determine the optimal methodology for calculating beta-dispersion before 

moving forward with classifying M/COD. To do this, we compared standardization approaches 

of the microbial communities, distance matrices, the number of significant M/COD comparisons, 

and alpha-diversity to select the optimal method for beta-dispersion calculation. For 

standardization, rarefying (randomly subsampling ASVs to a specified minimum library size) 

and normalizing (removing ASVs not present in a specified percentage of samples) were 

compared for each body site using three minimum library sizes (3,000, 5,000, and 7,000 

sequences) sample percentage cut off (1%, 3%, 10%), respectively. While rarefaction has been 

debated (Weiss et al. 2017; McMurdie and Holmes 2014), we sought to eliminate bias associated 

with different library sizes that could inflate differences in beta-dispersion among M/CODs 

(Kaszubinski et al. 2019).  

We also compared unweighted and weighted unifrac distances matrices for calculating 

beta-dispersion. Unifrac is commonly used in forensic studies (Javan et al. 2017; Pechal et al. 

2018). We wanted to determine whether considering abundances would affect the beta-

dispersion calculation and should be considered for downstream modeling. Beta-dispersion was 

calculated among MODs and CODs using the vegan package (v2.5-5) in R (v3.6.1) for each 

minimum library size and sample percentage cutoff (Oksanen et al. 2019). The betadisper 
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function from vegan reports the distance from the centroid for each sample, as defined by a 

grouping factor (in this case, M/COD). Every postmortem microbiome sample had two 

corresponding beta-dispersion values, with either MOD or COD as a grouping factor. Kruskal-

Wallis and Fligner-Killeen tests among beta-dispersion values determined differences among 

M/CODs and were reported with a Bonferroni correction (Pohlert 2018). Additionally, alpha-

diversity metrics (Chao1 and Shannon diversity) for each minimum library size and sample 

percentage cutoff were calculated using phyloseq (v1.28.0). We selected a methodology 

(standardization approach, distance matrix) for calculating beta-dispersion based on the number 

of significant differences in beta-dispersion identified by Kruskal-Wallis as well as the highest 

alpha-diversity (see Results: Method Selection). We wanted to select a method that had potential 

for distinguishing M/COD but did not lose microbial diversity. For subsequent analyses, 

microbial communities were rarefied to 5,000 sequences and beta-dispersion was calculated 

using unweighted unifrac distance. 

Model Selection  

We chose logistic regression modeling to showcase how beta-dispersion and case 

metadata could be reliable and usable tool in death investigation for M/COD determination. We 

built multinomial logistic regression models to classify M/COD from beta-dispersion values and 

case metadata (Böhning 1992) using the lme4 (v1.1-21) and mlogit package (v1.0-1) (Bates et al. 

2019; Croissant 2019). Multinomial logistic regression models included all categories of interest 

for classifying M/COD (e.g., homicide, suicide, natural, and accidental death for MOD; 

cardiovascular disease, drug related deaths, blunt force trauma, asphyxiation, gunshot wounds, 

and other deaths for COD). Metadata of interest [age, BMI, sex, race, PMI (<48 h; > 49 h), 

season, and event location (outdoors, indoors, hospital, vehicular)] were summarized and tested 
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with Kruskal-Wallis among M/CODs with a Bonferroni correction to determine the covariates 

for model building. (Pohlert 2018). We wanted to identify if metadata were indicative of certain 

M/CODs (e.g., age significantly higher in natural deaths or for cardiovascular disease) and were 

useful to supplement beta-dispersion in downstream modeling.  

We built and tested multiple logistic regression models for each body site, classifying 

M/COD. Only models with significant (p < 0.1) beta-dispersion contribution were selected for 

further modeling with case metadata. We chose a slightly less conservative cut off for the p-

value so that potentially important metadata were not prematurely removed. The best performing 

models were considered based on Akaike information criterion (AIC) (Bozdogan 1987), 

McFadden R2, and classification success (correct classifications / total number of samples). We 

used multinomial logistic regression model results were used to determine which body sites beta-

dispersion classified M/COD well. Based on initial model building results, models could be 

improved (see Results: Model Selection).  

To improve logistic regression models, we considered three microbial community types 

for beta-dispersion calculation: full communities, random forest indicator communities, and 

‘non-core’ communities. While the grouping factor (M/COD) remained the same, the microbial 

communities used to calculate beta-dispersion differed. “Full community’ beta-dispersion was 

calculated from the entire filtered and rarefied community within each body site. “Random forest 

indicators” were determined by Boruta (v6.0.0) using confirmed and tentative taxa of importance 

(p < 0.05) (Kursa and Rudnicki 2018), and beta-dispersion was calculated from identified 

significant indicator taxa. Random forest classification error was determined using the 

randomForest package (v4.6-14) (Breiman et al. 2018). While the “core microbiome” definition 

is widely debated (Shade and Handelsman 2012), we determined ‘non-core’ taxa in this case as 
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taxa present in only one M/COD of interest (e.g., accidents, blunt force trauma, etc.). ‘Non-core’ 

taxa were removed, and beta-dispersion was calculated from the remaining taxa. 

Lastly, we also test binary logistic regression (classifying between two categories) 

compared to multinomial logistic regression (multiple categories). Binary logistic regression 

models were also built using the lme4 (v1.1-21) and mlogit package (v1.0-1) (Bates et al. 2019; 

Croissant 2019), and the best performing models were considered based on Akaike information 

criterion (AIC) (Bozdogan 1987), McFadden R2, and classification success (correct 

classifications / total number of samples) much like the multinomial logistic regression models. 

Case Studies 

Using the methodology outlined above, we tested data from two case studies for 

classifying MOD from nose communities, to showcase the forensic potential beta-dispersion has 

as a tool for medical examiners. For the first case study, we chose a matched design of cases 

examining suicide vs other manners of death, including similar ages, races, and sexes to limit the 

effect of metadata for a total of 43 cases (22 suicides; 21 accidents/homicide/natural) (Table 

S26). For the second case study, we examined MOD within COD; examining gunshot wound 

homicides (n = 25) vs. suicides (n = 4) (Table S26). As previous studies have identified indicator 

taxa (Pechal et al. 2018; Pearson et al. 2019; Zhang et al. 2019), we determined potential 

indicator taxa using Boruta. We also evaluated the potential beta-dispersion differences using 

Permutational multivariate analysis of variance (PERMANOVA), and classified MOD using 

binary logistic regression (Anderson 2017). We calculated a priori power using G*Power 3 

v3.0.5 (Faul et al. 2007). Case study beta-dispersion was compared using the mean and standard 

deviation using an independent mean two‐tailed t-test (α = 0.05; 1−β = 0.80).  
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Data Availability 

 All postmortem microbiome case data can be found as supplemental material or associated 

archived data of (Pechal et al. 2018). Sequence data were archived through the European 

Bioinformatics Institute European Nucleotide Archive (www.ebi.ac.uk/ena) under accession 

number: PRJEB22642. The microbial community analysis is available as R code on GitHub 

(https://github.com/sierrakasz/AKP-betadisp-paper).

https://github.com/sierrakasz/AKP-betadisp-paper
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Results 
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Method Selection 

Beta-dispersion among M/CODs was calculated using either unweighted or weighted 

unifrac distance matrices from microbial communities that were either rarefied or normalized 

(Figure S1-2, Table S27). Microbial communities were rarified to three minimum library sizes 

(3,000, 5,000, and 7,000 sequences), or normalized to three sample percentage cut offs (1%, 3%, 

10%). Each body site was considered separately. Therefore, we had a total of 120 comparisons to 

determine which beta-dispersion calculation method was most appropriate for downstream 

model building.  

We determined that unweighted compared to weighted unifrac distances were the 

optimum distance matrix for this study. Unweighted unifrac distances had three-times as many 

significant comparisons than weighted unifrac (Kruskal-Wallis p < 0.05; Figure S1, Table S27), 

while unweighted unifrac distances had four-times less significant deviations of variance 

compared to weighted unifrac (Fligner-Killeen p < 0.05; Figure S2, Table S27). We showed that 

unweighted unifrac distances were more robust against rarefying and normalizing, as significant 

comparisons occurred with both standardization (Kruskal-Wallis and post hoc Nemenyi p < 0.05; 

Figure S1; Table S27). For normalizing combined with weighted unifrac, we found a bias of 

library size among the significant comparisons (Table S28). Most of the significant comparisons 

(7 out of 10) had differential library sizes, reflecting that the significance did not originate from 

M/COD differences in beta-dispersion (Kruskal-Wallis and post hoc Nemenyi p < 0.05; Table 

S28). Due to the number of significant comparisons across standardization strategies, less 

deviations of variance, and lack of library size bias, we chose unweighted unifrac as the 

appropriate metric for additional analyses. 

We determined that rarefaction was the more appropriate standardization strategy than  
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normalization for this study. While normalizing had more than double (19 vs. 9) the significant 

comparisons than rarefying, normalizing microbial communities led to a significant decrease in 

richness (Chao1) and alpha-diversity (Shannon diversity) compared to rarefying (Kruskal-Wallis 

and post hoc Nemenyi p < 0.05; Figure S1, S3, Table S27, S29). Due to loss of alpha-diversity 

and library size bias of normalizing, we chose rarefying as the appropriate standardization 

strategy.  

In conclusion, we chose a minimum library size of 5,000 sequences as more body sites 

yielded significant comparisons (Kruskal-Wallis p <0.05) and was the appropriate minimum 

library size based on alpha-rarefaction curves of sequencing depth (Figure S4). For downstream 

model building, samples were rarefied to 5,000 sequences and beta-dispersion was calculated 

using the unweighted unifrac dissimilarity matrix.  

 Model Selection 

Beta-dispersion significantly differed among body sites and M/CODs (Kruskal-Wallis p 

<0.05, Figure 6, Table S30). Every postmortem microbiome sample had two corresponding beta-

dispersion values (distances from centroid), with MOD or COD as the grouping factor. On 

average, eye microbiomes had highest beta-dispersion [MOD: 0.646 (SD = 0.0346); COD: 0.642 

(SD = 0.035); Table S30] while mouths had the lowest beta-dispersion [MOD: 0.567 (SD = 

0.0779); COD: 0.563 (SD = 0.0800); Table S30]. Beta-dispersion for all body site communities 

was significantly different for M/COD except the ears and eyes, but we considered all body sites 

for downstream modeling with logistic regression (Kruskal-Wallis p < 0.05; Table S30). Natural 

death postmortem microbiomes had the highest average beta-dispersion [0.628 (SD = 0.056); 

Table S30] compared to homicides [0.606 (SD = 0.0694)] and accidents [0.608 (SD = 0.0683); 

Kruskal-Wallis p < 0.05; Table S30]. Microbiomes of cases with cardiovascular disease had  
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Figure 6: Beta-dispersion values among body sites and manners/causes of death (M/CODs). 

A) Beta-dispersion values for MODs among body sites. B) Beta-dispersion values for CODs 

among body sites. C) Beta-dispersion values among MODs. D) Beta-dispersion values among 

CODs (Cardio = cardiovascular disease; Drug = drug-related deaths; BFT = blunt force trauma; 

Asphyx = Asphyxiation). 

 

significantly higher beta-dispersion among all body sites [0.625 (SD= 0.0565); Table S30] 

compared to asphyxiation, which had the lowest [0.598 (SD= 0.0678); Table S30]. Beta-

dispersion for cardiovascular disease was significantly higher than gunshot wounds [0.605 (SD
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Table 6: Case metadata stratified by manner/cause of death (M/COD). Age and BMI (kg/m2) were reported with means and 

standard deviations, while sex, race, PMI, event location, and season were reported as counts within M/COD.  

 

 Age  BMI  Sex  Race  PMI  

Event 

Location    Season      
Manner of 

Death mean sd mean sd Female Male Black White 

<48 

hr 

> 49 

hr Hospital Indoors Outdoors Vehicular Autumn Spring Summer  Winter 

Accident 
(n=71) 39.9 13.8 30 8.48 35 36 26 45 62 9 10 51 7 3 4 41 17 9 

Homicide 

(n=39) 36.2 12.3 26.9 6.42 9 30 34 5 37 2 9 14 12 4 2 20 6 11 

Natural (n=57) 53.7 10.7 29.8 10.1 25 32 29 28 45 12 6 49 1 1 2 33 14 8 

Suicide (n=22) 44.9 15.6 27.2 6.57 11 12 3 20 21 2 1 18 3 1 2 10 6 5 

                      

 Age  BMI  Sex  Race  PMI  

Event 

Location    Season      
Cause of 

Death mean sd mean sd Female Male Black White 
<48 
hr 

> 49 
hr Hospital Indoors Outdoors Vehicular Autumn Spring Summer  Winter 

Asphyxiation 

(n=11) 46.5 20.1 25.4 4.35 4 7 2 9 10 1 1 7 2 1 1 3 3 4 

Blunt force 

trauma (n=21) 42.6 14.7 28.9 10.3 12 9 14 7 21 0 4 7 8 2 4 9 3 5 

Cardiovascular 

disease (n=42) 54.5 11.6 29.9 9.56 20 22 23 19 34 8 6 35 1 0 2 26 7 7 
Drug-related 

deaths (n=70) 41 12.7 29.7 7.51 34 36 22 48 58 12 5 60 3 2 2 43 17 8 

Gunshot 
wounds 

(n=30) 33.8 11.8 27.5 6.34 5 25 24 6 28 2 7 10 9 4 1 16 6 7 

Other (n=16) 47.3 12 28.8 12.1 5 11 7 9 14 2 3 13 0 0 0 7 7 2 



 

55 

=0.0708)], blunt force trauma [0.601 (SD = 0.0624)] and drug-related deaths [0.611(SD = 

0.0684); Kruskal-Wallis p < 0.1; Table S30]. While beta-dispersion means differed significantly 

among MODs and CODs, there was an overlap among beta-dispersion values, indicating that 

other variables contribute to microbiome beta-dispersion (Figure 6). Therefore, we considered 

additional case metadata for downstream modeling. Metadata were differentially represented in 

MODs and CODs (Table 6; Table S31). Age, sex, race, and event location were significantly 

different among MODs/CODs (Kruskal-Wallis p < 0.05; Table S31); however, so as to not 

prematurely remove potentially important metadata we included all metadata of interest in 

downstream modeling [age, BMI, sex, race, PMI (<48 h; > 49 h), season, and event location 

(outdoors, indoors, hospital, vehicular)].   

We found that initial multinomial logistic regression models were useful for determining 

which body site beta-dispersion had the best classification potential for M/COD. Classifying 

among all MODs, nose and mouth community was a significant covariate, while nose, mouth, 

and ear beta-dispersion were a significant covariate for classifying all CODs (p < 0.1; Table 

S32). Nose community beta-dispersion on average successfully classified MODs at 61.05%, 

while ears and nose beta-dispersion successfully classified CODs on average 62.87% and 

62.79%, respectively (Table S32). ). Based on these results, we used only body sites with 

statistically significant (p < 0.05) beta-dispersion as a covariate in the models for further model 

building: nose, mouth, and ears.  

While initial multinomial logistic regression models were able to classify among all 

M/CODs at higher success rate than random (overall average 50.23%; random change: MOD: 

25%; COD: 16.67%), models could be improved (Table S32). Models classifying M/COD with 

only beta-dispersion (no case metadata) were significant (p < 0.05) but had low classification 
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success and fit (~40% average classification success; McFadden R2 of ~ 0.0244; Table S32). 

Adding case metadata to the models led to better fit (~60% average classification success; 

McFadden R2: ~0.298; Table S32). However, we attempted to improve our models by testing 

different microbial community beta-dispersion and binary logistic regression.  

Overall, we determined microbial community type (i.e., full communities, random forest 

indicator communities, and ‘non-core’ communities) did not improve logistic regression models 

(Figure 7; Table S33; Table S34). Models of non-core taxa community beta-dispersion were not 

significant (p > 0.05) and so were removed from further consideration (Table S33). Even though 

random forest indicator communities were specific to M/COD, associated beta-dispersion 

models were not more successful than full communities in classifying M/COD, and were less 

successful in some cases [full: 0.590(SD=0.0264); RF: 0.578(SD=0.0306); Figure 7; Table S34]. 

For the random forest indicator communities and full communities, models were within 7% of 

each other [full: 0.298(SD=0.0367); RF: 0.318 (SD=0.0445); Figure 7; Table S34]. As changing 

the microbial communities did not significantly improve regression models, we considered 

binary logistic regression.  

For some M/COD comparisons (natural vs. accidental death; cardiovascular disease vs. 

drug-related death; disease vs. non-diseased state), binary logistic regression models performed 

best with an average classification success of 83.04% (Table S35). For nose communities, 

pairwise comparisons beta-dispersion was a significant (p < 0.1) covariate (full community and 

random forest indicator communities) included natural vs accidental death, cardiovascular 

disease vs. drug-use, and disease (natural deaths) vs. non-diseased (accidental, homicide, suicide) 

deaths (Table 7; Table S35). While random forest indicator communities compared to full 

communities had marginally higher successful classification (full: 78.9%; RF: 83.6%) and higher  
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Figure 7: Multinomial logistic regression model comparison among full community and 

random forest indicator community beta-dispersion for manners/causes of death 

(M/CODs). For the bottom panel, the y axis indicated percent correct, or the number of correct 

classifications/ total number of samples. Each bar represented a multinomial logistic model. For 

the top panel, the y axis indicated McFadden R2. 

 

McFadden R2 (full: 0.347; RF: 0.369), in all cases the sample size was smaller (Table 7; Table 

S35). Therefore, we considered full community beta-dispersion as the most appropriate metric  
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Table 7: Summary of logistic regression models classifying natural vs. accident, cardiovascular vs. drug-use, and disease vs. 

non-diseased state. Significance of the model was determined by the p-value. For model comparisons, the McFadden R2 and percent 

correct (correct classifications/total number of samples) were considered within each body site.  

Comparison 

Beta-dispersion Community 

Profile Significant Metadata 

McFadden 

R2 

Degrees of 

Freedom 

Chi 

Sq p 

Percent 

correct 

Natural - 

Accident Full community (n=120) 

Race + Event Location + 

Age 0.314 6 51.9 0 0.783 

 Random Forest Indicators (n=117) Event Location + Age 0.388 5 62.5 0 0.829 

Cardio - Drug Full community (n=107) 

BMI + Event Location + 

PMI + Age 0.399 5 56.9 0 0.804 

 Random Forest Indicators (n=100) BMI + Age 0.356 3 47.6 0 0.820 

Disease - Non Full community (n=172) 

BMI + Race + Event 

Location + Age 0.328 5 70.3 0 0.779 

 Random Forest Indicators (n=163) 

BMI + Race + Event 

Location + Age 0.364 7 73.1 0 0.859 
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Figure 8: Logistic regression models of the best performing pair-wise comparisons. Nose 

body site was selected, as well as beta-dispersion from full communities. A-C) Logistic 

regression models with a 95% confidence interval of beta-dispersion on the x-axis and the binary 

classification on the y-axis. A) Accident: 0, Natural: 1. B) Drug-related:0, Cardiovascular 

disease:1. C) Disease: 0, Non-diseased: 1. D-F) Principle Coordinate Analysis (PCoA) plots of 

microbial samples included in the logistic regression model. Colors corresponded with the 

M/COD, while shape indicated if the sample was correctly classified by the model. D) Natural 

vs. Accidental deaths. E) Drug-related vs. cardiovascular disease deaths. F) Diseased vs. non-

diseased deaths. 

 

 

(Figure 8). There were no distinct clustering of samples suggesting that misclassification was 

randomly distributed among samples (Figure 8).  

Case Studies 

Of the 188 cases, we matched nose communities of 22 cases by age, sex, and race with 

other deaths (natural, homicide, and accidental) for a total of 43 cases (Table S26). We identified 
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three significant indicator taxa of suicide (Table S36). Suicide communities had higher beta-

dispersion [0.659(SD=0.0433)] than non-suicides [0.654(SD=0.0427); Table S36]. Using 

PERMANOVA there were no significant differences in beta-dispersion among suicides (p = 

0.144; Table S36). Using logistic regression beta-dispersion without metadata classified suicide 

cases with a 58% success rate (Table S36), likely associated with low power (A priori power 

sample size needed: 916). For future studies, we proposed a potential workflow using this 

matched-design case study for other researchers to use as a reference (Figure 9; Table S36).  

Despite the low sample size, we identified ten potential indicator taxa for gunshot wound 

homicide vs. suicide (Boruta; Table S37). Beta-dispersion among gunshot wound homicides was 

significantly higher [0.626(SD=0.049)] than gunshot wound suicides [0.543(SD=0.0959); 

PERMANOVA permuted p < 0.05; Table S37)]. Significant logistic regression models of 

gunshot wound homicides vs. suicides accurately classified MOD 93.1% of the time (Table S37), 

despite uneven and low sample sizes (n=25 homicides; n=4 suicides; Table S37). For significant 

power, an a priori power sample size needed for each category was 14.  
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Figure 9: Proposed workflow with suicide matched-design case study. Left column indicates 

potential steps researchers and practitioners can follow for future studies. Right column indicates 

the results from the matched-design case study, following the workflow. Twenty-three suicide 

cases were matched by age, sex, and race with other deaths (natural, homicide, and accidental), 

and nose samples were included in the analyses. Indicator taxa were identified by Boruta, while 

beta-dispersion was calculated using unweighted unifrac distances and tested with 

PERMANOVA. A logistic regression model of beta-dispersion was constructed to classify 

suicide vs. non-suicide deaths.   
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Discussion
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In previous research the AKP concept was tested with distinct treatment vs. control 

groups based on living health conditions and in living hosts (Zaneveld, McMinds, and Thurber 

2017). However, we hypothesized that using the postmortem microbiome within 48 h or death, 

M/CODs would associate with differential beta-dispersion, which could potentially be used as 

additional evidence in future forensic investigation. We hypothesized that cardiovascular disease 

and/or natural death would have the highest beta-dispersion, as AKP predicts with disease state 

in the antemortem life condition (Zaneveld, McMinds, and Thurber 2017; Barbian et al. 2015); 

and diversity metrics in previous studies also associated with manner and cause of death (Pechal 

et al. 2018). High microbiome beta-dispersion was also predicted to be related to a stressful life 

environment often associated with homicides, gunshot wound, and blunt force trauma deaths 

(Pearson et al. 2019). Using published case data from 188 postmortem microbiome autopsies our 

best performing binary logistic regression models were able to confirm medical examiner 

M/COD assessment ~79% of the time. Our best performing multinomial logistic regression 

models were able to confirm medical examiner M/COD assessment ~62% of the time. While 

better than random chance, including all M/CODs for classification with uneven sample sizes 

was likely resulted reduced classification success in multinomial logistic regression models. 

Our dataset represents a diverse cross-section of death cases from a large metropolitan 

area, with multiple body sites, using targeted sequencing of the 16S rRNA gene. Cases included 

were predominately natural cardiovascular disease deaths and accidental drug related deaths. 

Therefore, direct comparison of the results of this study would be most applicable for cities with 

similar demographics (“U.S. Census Bureau QuickFacts: Detroit City, Michigan; Michigan”), 

such as Chicago (“U.S. Census Bureau QuickFacts: Chicago City, Illinois”) or Cincinnati (“U.S. 

Census Bureau QuickFacts: Cincinnati City, Ohio”). While the metadata lends classification 
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ability in multinomial logistic regression for cases in Detroit, areas with differing demographics 

will also need to make their own baselines. It is also important to note that beta-dispersion is 

calculated in reference to the samples included in the dataset (Anderson, Ellingsen, and McArdle 

2006). Therefore, future work should include data and cases from other geographic areas with a 

range of socio-economic diversity and overall living conditions.  

While we included five body sites (ears, nose, mouth, eyes, and rectum) that had 

differential success in classifying M/COD with beta-dispersion, there are more body sites of 

interest for the forensic community. As body site drives the microbial community composition 

more than any other factor (Pechal et al. 2018), comparisons to other body sites may be limited. 

For example, body sites sampled for the “thanatomicrobiome” (i.e., internal organs and blood) 

(Javan et al. 2016), or skin microbiome (Kodama et al. 2019) could harbor different microbial 

communities than the ones included in this study. Beta-dispersion among all body sites was 

significantly different, but mouth, nose, and ears from this data set showed the most potential for 

downstream forensic applications.   

This work revealed that beta-dispersion has potential to inform the M/COD decision 

making process during death determination. Accidental deaths, which were predominately drug 

related deaths, had overall lower beta-dispersion than natural deaths, mirroring the dysbiosis 

found in non-forensic studies (Meckel and Kiraly 2019). Accidental deaths and homicides were 

not distinguishable by beta-dispersion. While we hypothesized that high-stress lifestyle 

associated with homicidal deaths would increase beta-dispersion (Pearson et al. 2019), homicides 

had the lowest beta-dispersion among MODs. The antemortem link of high-stress lifestyle was 

not as strong as antemortem disease status in this study, compared to previous results that 

indicated higher microbial diversity associated with neighborhood blight and vacancy (Pearson 
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et al. 2019). This may be because those decedents who were victims of homicide lived relatively 

healthy lifestyles compared to decedents with a disease status. However, we do not have access 

to that information, and are constrained to information in the autopsy reports.  

Suicide postmortem microbiomes, while representing the lowest sample size, had similar 

beta-dispersion to natural deaths, similar to other, antemortem studies (Liang et al. 2018; 

Naseribafrouei et al. 2014). Microbiomes of suicidal people have higher diversity than healthy 

controls, specifically increased taxa associated with inflammation (Naseribafrouei et al. 2014). 

Therefore, there is a potential link between high microbial beta-dispersion and mental health that 

would be a promising area of future research. A previous study has documented postmortem 

microbiome diversity and other metrics being associated with heart disease (Pechal et al. 2018). 

In the current research, cardiovascular disease had significantly higher beta-dispersion than any 

other type of death. Dysbiosis in the microbiomes of people with cardiovascular disease has been 

documented, specifically as there may be a microbiome link to disease pathogenesis (Wilson 

Tang and Hazen 2017). Based on our results, some deaths may benefit from microbial evidence 

more than others. Specifically, drug-related deaths, cardiovascular disease, and suicides prompt 

further investigation with the postmortem microbiome.  

We chose multinomial logistic regression (MLR) as a simple, easy to apply model that is 

often used in clinical settings (de Jong et al. 2019). However, MLR has limitations, and biases 

towards classifying categories with larger sample sizes (de Jong et al. 2019). We achieved 

marginal improvement in these models with random forest indicator taxa compared to models 

using the full microbial community data set. This result was not entirely unexpected, as random 

forest model error rates ranged from: 53.1% - 64.4% (Table S38). Random forest indicators 

derived from error prone random forest models did not improve multinomial regression models 
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classifying M/COD. This illustrates that beta-dispersion can be calculated in a variety of ways, 

which has downstream effects on distinguishing categories of interest. Therefore, an objective 

approach to selecting beta-dispersion calculation should be used as outlined in this study.  

 Instead, binary logistic regression models were most effective at improving model 

success. The categories with the highest classification success also had largest sample size 

(natural deaths/ accidents; cardiovascular disease/ drug-related deaths), and were highly 

correlated, as most natural deaths were cardiovascular disease (42/57) and most accidents were 

drug-related deaths (59/71). There was some overlap in pathology among cardiovascular disease 

deaths and drug-related deaths (Molina et al. 2020), showcasing how our best performing logistic 

regression models have potential applications in forensic death determination. While our case 

studies would benefit from further exploration with larger datasets, we provided strong evidence 

that other comparisons differentiating MOD, such suicide vs. non-suicides could also prove 

useful for forensic death determination.  

This was not the first study to classify M/COD from microbial communities; however, 

compared to previous studies using random forest classification, logistic regression performance 

of beta-dispersion was similar for the same dataset (Kaszubinski et al. 2019; Zhang et al. 2019; 

Pechal et al. 2018). Using random forest, MOD classification success with microbial 

communities alone (Kaszubinski et al. 2019) was comparable to multinomial logistic regression 

models built with beta-dispersion alone (~40%). Adding case metadata, random forest 

classification accuracy was consistent with multinomial logistic regression models in two body 

site communities (~60%) (Zhang et al. 2019). MLR does not depend on specific indicator 

postmortem microbial taxa, which can change across studies (Kaszubinski et al. 2019; Pechal et 

al. 2018). Furthermore, we suggest that microbial community information, either taxon 
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dependent (e.g., indicator taxa) or not (e.g., beta-dispersion) could be an addition piece of 

evidence in M/COD determination. By including metadata into our models, successful 

classification was improved rather than using microbial data alone, something to consider in 

future death investigation. Indeed, to our knowledge case metadata have never been modeled or 

used alone for M/COD determination. 
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Conclusion
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Microbial community metrics, such as beta-dispersion, have potential forensic use in 

contributing to classification of M/COD during death investigation. This reflection is due to the 

antemortem link to the postmortem microbiome. We showed beta-dispersion increased based on 

disease status (cardiovascular disease) according to AKP, and beta-dispersion reflected M/COD, 

especially for cardiovascular disease and drug related deaths. While random forest is a useful 

tool for these types of datasets, MLR produced comparable results without reliance on specific 

indicator taxa. Furthermore, using two case studies we demonstrated circumstances where beta-

dispersion could be used to distinguish MOD; however, low and uneven sample size was an 

issue for all case studies. Despite the reduced power of these case studies, this workflow may be 

useful for other forensic practitioners to test within their own sample set, that encompass new 

locations and metadata, to strengthen the antemortem link to the postmortem microbiome. The 

methods outlined in this study serve as a guide to developing non-taxonomic microbiome tools 

for other researchers and medical examiners in other geographic locations and investigation 

contexts. Ultimately, modeling beta-dispersion with case metadata is a tool that could be useful 

for medical examiners during death investigation, to combine with other methods of M/COD 

determination.  
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Supplemental Figure 1: Summary of Kruskal-Wallis results for normalization strategies 

determining beta-dispersion. Each body site is represented across the x-axes. Each level for the 

corresponding normalization strategy (percent cutoff and minimum library sizes) are on the y-

axes. Each box is indicative of the results of a Kruskal-Wallis test for either manner of death (A 

and B) or cause of death (C and D). Left-hand side of the figure includes unweighted unifrac 

distances (A and C), while the right-hand side includes weighted unifrac distances (B and D). 

Significant (p < 0.05) Kruskal-Wallis tests are indicated by gold, while nearly significant (p < 

0.1) are indicated by blue. 
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Supplemental Figure 2: Summary of Fligner-Killeen results for normalization strategies 

determining beta-dispersion. Each body site is represented across the x-axes. Each level for the 

corresponding normalization strategy (percent cutoff and minimum library sizes) are on the y-

axes. Each box is indicative of the results of a Fligner-Killeen test for either manner of death (A 

and B) or cause of death (C and D). Left-hand side of the figure includes unweighted unifrac 

distances (A and C), while the right-hand side includes weighted unifrac distances (B and D). 

Significant (p < 0.05) Fligner-Killeen tests are indicated by gold, while nearly significant (p < 

0.1) are indicated by blue. 
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Supplemental Figure 3: Alpha-diversity metrics across normalization strategies and levels. 

Chao1 (richness) and Shannon diversity (richness and evenness) are reported. A significant 

decrease in alpha-diversity was found among percent cutoffs, and compared to minimum library 

sizes (Kruskal-Wallis and post hoc Nemenyi p < 0.05).  
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Supplemental Figure 4: Shannon diversity across sequencing depth among microbial 

samples. 
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