
 

 

 

 

 

 

 

FROM LAND TO STREAM: AN ASSESSMENT OF WATERSHED-SCALE  

BIOGEOCHEMICAL INTERACTIONS AT THE STREAM-GROUNDWATER INTERFACE 

By 

Joseph Albert Lee-Cullin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

Geological Sciences —Doctor of Philosophy 

 

2020 



 

 

ABSTRACT 

FROM LAND TO STREAM: AN ASSESSMENT OF WATERSHED-SCALE 

BIOGEOCHEMICAL INTERACTIONS AT THE STREAM-GROUNDWATER INTERFACE 

By 

 Joseph Albert Lee-Cullin 

 The stream-groundwater interface (SGI) is typically studied at scales <1000 m, whereas 

watershed management needs to understand outcomes of stream-groundwater interactions at 

scales of tens of kilometers. As a ubiquitous reactive ecotone, the SGI plays a critical role in 

biogeochemical cycling across stream networks. Process-based models have examined these 

needed larger scales, but there is a distinct absence of field data to validate modeling efforts. Due 

to the paucity of these data, this dissertation sets out to be among the first efforts to sample 

across the SGI at the watershed scale. The three primary goals are to 1) identify the grain of 

measurements needed to assess the SGI across a stream network, 2) determine whether landscape 

biogeochemical signals are modified by the SGI at the watershed scale, and finally 3) to 

investigate whether the SGI acts consistently to modify biogeochemical inputs from the 

landscape. This work was done through the lens of common solutes found in streams, 

specifically focusing on dissolved organic carbon, an important driver of many stream 

biogeochemical reactions.  

 In Chapter 1, I evaluate how to sample the SGI across a stream network. I test two 

fundamental sampling schemes, focusing on local heterogeneity (i.e., features or plots) compared 

to longitudinal heterogeneity (i.e., stream reaches). There was previously no clear guidance as to 

which kind of sampling scheme would be most appropriate. This was necessary because 

sampling in the SGI is time and labor consuming, and one must determine how to distribute a 

finite number of sampling points. These data were collected in two synoptic sampling campaigns 



 

 

in a third-order stream network in southwest Michigan. Here, I found that longitudinal sampling 

accounted for similar stream network variance as localized heterogeneity. Therefore, it may be 

useful to focus on longitudinal sampling as local sampling becomes redundant. 

 In Chapters 2 and 3, I investigate, first, how different watershed delineations are used to 

understand landscape contributions to the biogeochemical signal of the stream water. I compared 

surface watershed and novel groundwatershed delineations to evaluate which areal delineation of 

the landscape would best predict stream biogeochemistry. Both delineations were then used to 

investigate how the biogeochemical signal propagated from the land into the SGI, and whether 

this signal was modified as it entered the SGI by way of spatially lagged linear models. I found 

that both watersheds were comparable, and therefore the groundwatersheds may be appropriate 

for lowland watersheds, with strongly upwelling groundwater. Further, I found that the landscape 

signal found in surface waters through linear modeling was modified as models were propagated 

into the SGI, given the decreasing performance of linear models in the stream subsurface. 

 In Chapter 4, I evaluated the SGI effects from multiple watersheds on various sources of 

dissolved organic carbon and its molecular components. I used mixed-effects linear models to 

test if there was a consistent modification of dissolved organic carbon across a multitude of SGIs 

as compared to stream water alone. I found that for most optical properties tested, the interaction 

between the specific carbon source and the SGI sediments was important, functionally obscuring 

the effects of the sediment alone. The one exception to this was a proxy for humic substances 

called Peak T, for which the SGI sediment had a significant, identifiable effect. These results 

indicate that it may be difficult to make broad generalizations about the function of SGIs, where 

local heterogeneity might be an important consideration.  
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This dissertation is dedicated to Mordred the hedgehog. May he receive mealworms to his tiny 

heart’s content across the Rainbow Bridge
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PREFACE 

 The surface water-groundwater (SGI) interface, where surface and sub-surface waters 

mix, is an ecotone that encapsulates much of the metabolic activity controlling the fate and 

transport of reactive solutes across stream networks (Grimm and Fisher 1984). The unique 

chemical and physical gradients observed in this region produce metabolic rates that are 

regularly orders of magnitude greater than in surface waters alone (Findlay and Sobczak 1996). 

Because of the high level of reactivity in the SGI, many researchers have dedicated time to 

understanding when and where this zone exists and have worked towards elucidating whether it 

has an overall function across catchments. This has produced interesting observations such as the 

overall ubiquity of this interface and its role as a control point across watersheds (e.g., McClain 

et al. 2003; Bernhardt et al. 2017). Others have proposed that contact time of stream water within 

the SGI will be the dominant factor regarding net changes of pore water chemistry (e.g., Valett et 

al. 1996; Pinay et al. 2009; Zarnetske et al. 2012; Briggs et al. 2014).  

 Over the last 30+ years, several models of water and solute transport in streams have 

included terms for water temporarily stored in the SGI or surface storage zones, collectively 

referred to as transient storage (e.g., Bencala et al. 1983; Runkel et al. 1998; Wörman and 

Wachniew 2007; Ward et al. 2017). The goals of these models are diverse. Some work towards 

separating the surface and stream-groundwater compartments (e.g., Briggs et al. 2009; Jackson et 

al. 2012), while others are working towards addressing metabolically active transient storage 

zones, allowing us to hone in on reactive characteristics in these transient storage zones 

(Haggerty 2009; Argerich et al. 2011). Still other models have been used to identify physical 

parameters that control biogeochemical cycling within the SGI (Gomez et al. 2012; Zarnetske et 

al. 2012). While these models are useful in furthering our understanding of certain solutes (e.g., 
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denitrification of NO3
- across large river networks, Kiel and Cardenas 2014; Gomez-Velez et al. 

2015), they have 1) largely ignored solutes like dissolved organic carbon (DOC), because the 

fate and function of DOC is poorly understood and 2) not been validated with field data at the 

scales of interest. 

 Despite tremendous modeling work and the collective effort of researchers to understand 

what SGIs are and their function in the landscape, there is a paucity of data from this ecotone at 

larger scales. Most studies within the SGI have been conducted at scales smaller than 1 km 

(Ward 2016), meaning that the primary focus across all studies is at points, features, or reaches. 

In contradiction to where our knowledge of SGIs is focused, modelers, land managers, and 

society at-large need an increased understanding at scales exceeding 1 km, particularly at the 

watershed scale (Krause et al. 2011). 

 There is evidence that aquatic respiration, fueled by organic carbon, tends to decrease 

from headwaters to downstream locations (Battin et al. 2008). This evidence falls in line with 

proposed conceptual frameworks such as the River Continuum Concept (Vannote et al. 1980) 

and the Reactive Pipe Model (Cole et al. 2007). Given this respiration, SGIs have been estimated 

to account for as much as 88% of ecosystem respiration in some stream systems (Kaplan and 

Newbold 2000). Although researchers have identified scales of various process controls on 

surface water biogeochemistry (e.g., McGuire et al. 2014), there is a paucity of information on 

the scales of various process controls on SGI biogeochemistry (Boano et al. 2014), due, in part to 

the absence of field data reflecting this scale.  

 This dissertation is constructed as three distinct, but complementary parts, with the goal 

of addressing three critical questions: 1) How do we sample at the SGI to gain meaningful 

insight at the watershed scale? 2) What is the role of the SGI as a biogeochemical reactor at this 
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watershed scale? 3) Is there consistency across SGIs in processing unique DOC sources derived 

from the surrounding landscape? I have conceptualized this as a progression addressing how we 

measure aquatic biogeochemistry at a relatively understudied scale of the SGI, once we have 

these data how do we gain insight into the processes occurring at this scale, and finally I flip 

these studies on their head and scale back down to investigate how individual DOC sources 

interact with the SGI. The first two parts investigate SGI controls on landscape inputs while the 

last part investigates landscape input controls on the SGI. 

 In this dissertation, I rely largely on empirically based statistical analyses of field and 

laboratory data. The data used in these statistical models were collected from studies that I 

designed in conjunction with my laboratory group. Across all four chapters, there is a consistent 

theme of using this method of analysis to develop a conceptual framework of pushing the 

boundaries of the SGI community’s understanding of the SGI at a larger scale than we have 

historically studied.  

 The first chapter, “Toward measuring biogeochemistry within the stream-groundwater 

interface at the network scale: an initial assessment of two spatial sampling strategies,” sets out 

to resolve an issue of the spatial resolution needed when sampling the SGI at the watershed 

scale. Collecting samples from the SGI is time and labor consuming, and it is therefore important 

to know whether one must focus on local heterogeneity or if a coarser scale is permissible. 

Through a comparison of two synoptic SGI studies across the Augusta Creek watershed, this 

chapter investigates the variance of measurements when focusing on fewer overall sites across 

the watershed but with more samples at any given point as compared to fewer samples at any 

given point but with greater focus on longitudinal sampling. This chapter was published in the 

journal Limnology and Oceanography: Methods and is cited as Lee-Cullin et al. (2018) 
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 The second part, composed of chapters two and three, assesses first 1) the methods by 

which landscape units are delineated within a watershed and 2) how the biogeochemistry of 

those landscape units contributes to the stream water quality, and are subsequently modified by 

the SGI. Chapter two assesses the use of a typical surface watershed (i.e., the watershed defined 

by surface topography) compared to the use of a groundwatershed (i.e., the watershed defined by 

groundwater level topography) as a method of landscape delineation across the synoptic 

sampling campaign from chapter one. The use of a groundwatershed is novel and potentially 

useful delineation tool in lowland watersheds, where groundwatersheds are often distinct as 

compared to surface watersheds (Boutt et al. 2001). 

This second study was done through the lens of biogeochemistry, where landscape units 

within each delineation are used in statistical models to predict biogeochemical parameters of the 

stream surface water (after e.g., Soranno et al. 1996; Dillon and Molot 1997; Hollister et al. 

2008). This entailed the implementation of a mixed regressive-spatial autoregressive model to 

account for spatial autocorrelation (Anselin 1988; Overmars et al. 2003), or as a geographer 

might tell a person, “things that are close together are more similar than things that are far apart.” 

Sampling points in the stream that are near to each other, especially those in the same stream 

reach, have similar controls and could lead to improperly weighted predictions in a statistical 

model. This chapter ultimately compares the predictive power of surface watershed and 

groundwatershed delineations.  

 The third chapter builds upon the second. Here the statistical models of surface water 

biogeochemistry are used as representing the landscape biogeochemical ‘fingerprints.’ The 

models are then propagated into six discrete depths within the SGI to evaluate whether this 

landscape fingerprint is preserved in the interface, or if it is effectively removed, creating a new, 
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unique subsurface fingerprint. This was done simply by using the selected model parameters and 

seeing if the predictive power in the subsurface at 2.5 through 20 cm was comparable to the 

predictive power in the surface water.  

 Finally, the fourth chapter focuses on specific landscape inputs into the SGI, and how 

DOC from these inputs is ultimately broken down across several different watersheds. This was 

a laboratory bioassay study (after Dahm 1981) assessing whether watershed-specific DOC would 

break down similarly across watersheds when exposed to SGI sediments as compared to the 

same DOC when exposed only to stream water. There were several watersheds selected and for 

each of these watersheds, two to four DOC sources were selected. They were then allowed to 

decompose in a controlled setting of treatments with only stream water and treatments of stream 

water and sediment from their specific watershed. This decomposition across different 

watersheds with different DOC sources was assessed using a mixed-effects linear model (Baayen 

et al. 2008a; Bates et al. 2015) which uses model parameters that do not vary concomitant with 

model parameters that vary randomly. This modeling effort was meant to address whether 

changes in the molecular composition of DOC were consistent across watersheds and across 

DOC sources derived from these watersheds.  
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CHAPTER 1: TOWARD MEASURING BIOGEOCHEMISTRY WITHIN THE STREAM-

GROUNDWATER INTERFACE AT THE NETWORK SCALE: AN INITIAL ASSESSMENT OF 

TWO SPATIAL SAMPLING STRATEGIES 

A version of this chapter appeared in the journal Limnology & Oceanography: Methods (16:11, 

pp. 722-733). 

Abstract  

 It is important to understand how point measurements across spatially heterogeneous 

ecosystems are scaled to represent the system of interest. Stream biogeochemistry presents an 

illustrative example because water quality concerns within stream networks and recipient water 

bodies motivate heterogeneous watershed studies. Measurements of the stream-groundwater 

interface (SGI, i.e., the shallow subsurface of streams) are well-documented for small, point-

scale sampling density measurements (i.e., cm2-m2 features), but poorly characterized for larger, 

watershed scale sampling density measurements (i.e., km2; stream reaches and networks). 

Further, sampling the SGI is more time- and labor-intensive than surface water sampling, 

meaning sample point selection must be made with care when attempting a network-scale 

analysis. In this study, we endeavor to determine which of two common spatial sampling 

schemes is appropriate for characterizing the biogeochemistry of the SGI across a temperate, 

third-order stream network, focusing on dissolved organic carbon. The first scheme, called here 

Local Sampling, focuses on characterization of the small-scale (< 10 m2) variability produced by 

the local physical and biogeochemical heterogeneity, with fewer points across the stream 

network. The second scheme, called here Longitudinal Sampling, has approximately the same 

number of measurements distributed over many more points across the stream network with less 

characterization of local variability. This comparison reveals that selection of a Local Sampling 
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versus a Longitudinal Sampling scheme influences the interpretation of biogeochemical patterns 

at the stream network scale. Additionally, this study found an increase in observation efforts at 

the local scale added limited information for reach- to network-scale biogeochemical patterns, 

suggesting that emphasis should be placed on characterizing variability across broader spatial 

scales with the Longitudinal Sampling approach. 

Introduction 

At what spatial resolution do we make measurements and observations to characterize 

patterns and processes across stream networks? It is well-established in terrestrial landscape 

ecology that measurements made at a certain spatial sampling density (i.e., resolution or grain 

size) can be extrapolated to different scales of spatial extent (e.g., Schneider 1998; Wu and Li 

2006). However, the best practices for extrapolating between scales are continually evolving, 

including many methods that have been developed to upscale or downscale observations to 

different resolutions (Turner and Gardner 2015). Few studies have presented best sampling 

practices and methods across scales for aquatic ecosystems. Streams and their interfaces with 

groundwater are particularly challenging for choosing the most appropriate sampling resolution 

due to the inherent effects of directionality in flowing water and logistical challenges of 

measuring surface water and groundwater parameters. To determine the ecological conditions 

and functioning of the stream-groundwater interface (SGI) that are relevant to landscape 

biogeochemical budgets, watershed management, and ecosystem theories at the reach to network 

scales (Krause et al. 2011; Bernhardt et al. 2017), we must address how best to measure SGI 

interactions across spatial and temporal scales.  

At stream network scales, the River Continuum Concept (RCC; Vannote et al. 1980) was a 

key step in starting to address the landscape ecology of stream networks, including the effects of 
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directional flow through streams. The RCC postulated a gradient, moving from headwaters to 

higher-order streams, to explain the downstream movement and transformation of organic matter 

by physical and biological processes. Although aspects of the RCC are still debated (see, e.g., 

Creed et al. 2015; Rosi-Marshall et al. 2016), the general conceptual model of a gradient wherein 

the biogeochemistry of stream reaches changes systematically from upstream to downstream in 

networks is central to contemporary literature of stream ecosystems (e.g., Poole 2002; Thorp and 

Bowes 2017). The RCC is raised here not to debate its strengths and weaknesses in explaining 

how conditions may change through a river network, but because it did not specify what scale of 

measurements is needed to assess the ecological hypotheses of the RCC. Hence, there is still 

uncertainty in how to assess the RCC. However, in a review of stream ecology and 

biogeochemistry, Fisher et al. (2004) identified a broad understanding that streams are largely 

influenced by longitudinal (i.e., upstream/downstream) changes, and are composed of a 

multitude of parallel flowpaths leading to a high degree of heterogeneity. Other studies have 

stressed that nearby sampling points of stream chemistry were very similar but were able to 

maintain a broader heterogeneous trend (Dent and Grimm 1999).   

Generally, spatial biogeochemical variation in surface waters decreases with increasing 

stream order (Temnerud and Bishop 2005), but there is evidence in some streams that 

comparable variability can be found at all scales depending on the sampling density (Zimmer et 

al. 2013; Abbott et al. 2018). This spatial biogeochemical variability suggests that the role of 

study design, especially the spatial resolution of sampling, can introduce bias or confusion in our 

understanding of stream ecology. Furthermore, the biogeochemical variability in SGIs across 

stream networks is virtually unknown and almost never documented in the literature (but see 

Ruhala et al. 2018). This is particularly true for assessing the structure and dynamics of the 
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hyporheic zone (HZ), the ecotone where stream water readily interacts and exchanges properties 

with groundwater (Boulton et al. 1998). The HZ is a known biogeochemical control point in 

watersheds influencing ecosystems and water quality (McClain et al. 2003; Bernhardt et al. 

2017). The primary limitation with sampling sediment pore water in the SGI is that it can be 

time- and labor-intensive, given that porewater must be drawn out slowly to avoid disrupting 

stream, hyporheic, and groundwater flow fields (i.e., typically < 5 ml min-1) (e.g., Duff et al. 

1998). The SGI is also known to exhibit large spatiotemporal heterogeneity in physical and 

biological conditions (Boano et al. 2010). 

Our understanding of SGI biogeochemistry at stream network scales has been limited by a 

lack of understanding of how to best allocate sampling efforts in space and time. The local scale 

(i.e., the within-reach scale) over which SGI data are typically collected does not match the 

stream network scale at which many environmental problems need to be addressed (Krause et al. 

2011). In fact, most SGI studies do not make direct measurements in the SGI, and instead use 

indirect measurements (i.e., tracer studies) that span a longitudinal scale of 10-1000 m (Ward 

2016). These indirect measurements are often rife with model uncertainty and interpretation, 

especially for quantifying SGI exchange (Kelleher et al. 2013). Despite the lack of direct 

measurements, significant advances in process-based modeling of SGI processes at the stream 

network scale have proceeded, including the transport and fate of nutrients (Kiel and Cardenas 

2014; Gomez-Velez et al. 2015). Unfortunately, there is still a paucity of data sets of the SGI at 

the network scale available to validate these types of models.  

In thinking about a sampling scheme of the SGI across an entire stream network, one must 

consider the effort spent for an individual sampling point while ensuring that the limited 

available number of sampling points reasonably represent the entire network.  Generally, there 
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are two stream network-scale sampling schemes that appear in the literature (Figure 1): 1) high-

resolution characterization of local-scale variability at few sites across the network (e.g., Zimmer 

et al. 2013; hereafter Local Sampling), wherein effort is focused on taking many samples at 

specific local-scale features in a watershed instead of fewer samples at more locations, or 2) low-

resolution characterization of local-scale variability at many sites across the network, (e.g., 

McGuire et al. 2014; hereafter Longitudinal Sampling), wherein effort is focused on taking 

samples at more locations across the entire network instead of more samples at specific local-

scale features. The schemes are either deliberately or arbitrarily selected to investigate properties 

relevant to stream network biogeochemistry. Local Sampling is often applied for investigations 

of specific SGI processes, while there are very few examples of Longitudinal Sampling studies 

for any type of SGI processes (Ward 2016). However, it is unknown whether one of these two 

sampling schemes is more appropriate for research questions dealing with characterization of 

SGI biogeochemistry at the network-scale. Our objectives in this paper are to raise awareness 

regarding SGI sampling design unknowns and to begin addressing these unknowns in our 

investigation of network-scale SGI interactions by comparing the two common sampling 

schemes across a stream network. Determining which scheme, Local Sampling or Longitudinal 

Sampling, best characterizes the overall stream network will help advance SGI investigations 

and thus guide best sampling practices (Krause et al. 2011). To direct these main objectives, we 

developed the following hypotheses:  

H1: A single point profile is representative of multiple point profile measurements of SGI 

biogeochemistry, because inter-reach variability will be greater than intra-reach variability. This 

hypothesis will assess whether sampling of the SGI should focus on fewer points at more sites in 
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a network or if it is necessary to have many points to characterize each individual site, which, in 

turn, will guide sampling design for future SGI studies. 

H2: Variance in SGI biogeochemistry profiles will decrease with increasing stream order, 

because the effects of upstream processes are integrated downstream due to directional flow. 

This hypothesis will help inform the development of network continuum concept in the SGI, 

such as the continuum concepts of the RCC.  
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Figure 1 - Simplified plan view of stream network reaches illustrating the main conceptual 

differences for Local Sampling (L) and Longitudinal Sampling (R) sampling schemes. Local 

Sampling represents high characterization of local heterogeneity with low characterization of 

longitudinal heterogeneity, while Longitudinal Sampling has low characterization of local 

heterogeneity and high characterization of longitudinal heterogeneity. Note that each 

MINIPOINT sample location includes up to six depths of porewater samples in the present 

study. 

To evaluate these objectives and hypotheses, we analyzed a spatially intensive sampling of 

SGI biogeochemistry (as compared to other SGI studies in the literature) in a stream network that 

spans the two study sampling schemes (Ruhala et al. 2018). Specifically, we focus on the surface 

water and SGI pore-water concentrations of dissolved organic carbon (DOC) in a lowland, third-
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order, mixed land use watershed. DOC was selected as the focus for this initial assessment 

because it is a fundamental control on water quality and ecosystem ecology of freshwaters due, 

in part, to its role in nutrient and metal cycling, ability to influence pH, effect on net carbon 

balances, and control of photochemistry (Aiken 2014) In addition to DOC, we include analyses 

for select anions, including chloride (Cl-) and nitrate (NO3
-) to represent nonreactive and reactive 

solutes, respectively (e.g., Triska et al. 1993; Barber et al. 2005; Zarnetske et al. 2011; Bernhardt 

et al. 2017).   

Materials and Methods 

Site description 

 The data sets used in this study were generated by Ruhala et al. (2018) in Augusta Creek 

(Figure 2), which is a low gradient, third-order watershed draining 98 km2 in southwest 

Michigan, USA. The watershed is composed of glacial till, and flows through a mixed-use 

landscape that includes wetlands, lakes, agriculture, and upland forests. The stream is primarily 

groundwater-fed, gaining water along much of its length, and the low overland runoff as well as 

abundant wetlands and lakes along its course buffer the stream discharge response to storm 

events (Poff et al. 1997; Hamilton et al. 2018). Stream reaches included in this study range from 

first- to third-order, with variable origins including lake outflows, wetland outflows, and forested 

headwater streams (Figure 2). Located near the W.K. Kellogg Biological Station of Michigan 

State University (KBS), Augusta Creek is a historically important site for freshwater 

biogeochemical and ecological research. For example, it was a site in the seminal RCC and 

Natural Flow Regime papers (Vannote et al. 1980; Poff et al. 1997), is part of the KBS Long 

Term Ecological Research site activities, and has an active, long-term (>50y) United States 

Geological Survey (USGS) gaging station (04105700).  
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Figure 2 - Map illustrating sediment porewater sampling locations for the Local Sampling and 

Longitudinal Sampling campaigns, where the large, green circle symbols are the Local Sampling 

scheme locations, and small, yellow circle symbols are the Longitudinal Sampling scheme 

locations. Stream orders are identified by color, where first order streams are purple, second 

order streams are orange, and third order streams are green. 

Sampling schemes 

Ruhala et al. (2018) collected data that span the Local Sampling and Longitudinal 

Sampling schemes, and importantly, each sampling date represented roughly the same field 

sampling effort (~10 field work days for 4 researchers), the same sampling techniques and 

equipment, and a comparable total number of SGI biogeochemical sample locations (n≈40). 

However, the team distributed these sampling points differently across the stream network, 

stratifying the sampling to capture most subwatersheds and all stream orders in the Augusta 

Creek watershed. The sampling scheme roughly corresponded to the two study scheme types, 

Local and Longitudinal (Figure 2).   
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 In the data set, Local Sampling samplings characterized the local heterogeneity of a 

limited number of sites across the network and were carried out from 10-17 August 2015. In the 

Local Sampling scheme, 16 locations, stratified by stream order (first through third) were 

selected across the network (Figure 2). Within each location, 3 MINIPOINT porewater 

piezometers (Duff et al. 1998) were deployed close to each other (<3 meters apart), and hereafter 

the group of three samplers will be referred to as a plot (Figure 1). The MINIPOINT porewater 

piezometers are relatively non-invasive and allow sampling of pore water profiles from six 

discrete depths in the SGI (Duff et al. 1998), set between 2.5 and 20 cm as detailed in the next 

section and Ruhala et al. (2018). Thus, there were 18 SGI samples collected at each of the 16 

plots for a total of 288 unique SGI biogeochemical sample locations from the Local Sampling 

approach. In Augusta Creek, most of the stream sediment is unconsolidated sandy and gravelly 

sediments, which is compatible with the MINIPOINT technology. However, the exact 

MINIPOINT porewater piezometer location at a selected site depended on the capacity to 

physically insert all the piezometers the specified depth into the sediment (i.e., sites with cobble 

or armored sediments could not be sampled). 

 The Longitudinal Sampling scheme represented a coarser characterization of local 

heterogeneity but increased the total number of plots across the stream network and thus was 

meant to capture the spatial variability across the stream network. This sampling was carried out 

from 16-22 August 2016 during similar seasonal, stream DOC conditions, and daily discharge 

conditions as the Local Sampling campaign (Figure 3), though 2016 data was collected during 

discharge recession from a preceding high flow event. For Longitudinal Sampling, a similar field 

effort yielded 39 points across the network. At each location, a single MINIPOINT porewater 
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piezometer was sampled, optimally collecting six porewater samples per point for a total of 230 

unique SGI biogeochemical sampling locations from the Longitudinal Sampling. 

 

Figure 3 - Discharge conditions at the downstream USGS gaging station on Augusta Creek 

(04105700) for water years 2015 (red) and 2016 (blue), with shading corresponding to the Local 

Sampling (red) and Longitudinal Sampling (blue) efforts described in this study. 

Furthermore, given that we are specifically interested in the biogeochemistry with respect 

to DOC at larger spatial scales, we also analyzed data grouped by stream order similar to the 

RCC (Vannote et al. 1980). Stream order acts as a proxy for the physical hydrography of stream 

reaches, which in turn is fundamental to ecological patterns and processes (Harvey and Gooseff 

2015). It is a simple method to discretize the network that allows for quick analysis of how an 

ecological variable related to DOC varies from upstream to downstream through a stream 

network (e.g., Creed et al. 2015). In the Local Sampling scheme there were 6 first-order, 5 

second-order, and 5 third-order locations, while the Longitudinal Sampling scheme was 

composed of 16 first-order, 14 second-order, and 9 third-order plots. This enables an assessment 

of how the biogeochemistry changes with different hydrological characteristics distributed from 

headwaters to mainstem outlet (as addressed by H2 above). 
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Sample and data collection 

To illustrate the procedure and effort involved in collecting SGI samples, here we briefly 

review the sampling protocol from Ruhala et al. (2018). Each MINIPOINT porewater piezometer 

was deployed to collect six discrete samples at 2.5, 5, 7.5, 10, 15, and 20 cm depth. The 

MINIPOINTs were attached to a Masterflex peristaltic pump (Cole-Parmer) using L/S Tygon 

tubing, and water was drawn from the SGI at a rate of 2.5 ml min-1. They collected 80 mL of 

water from each depth. They used 20 mL of sample as a rinse through the filter (Whatman GF/F, 

0.7 μm nominal pore size) to remove particulate matter. The remaining 60 mL was filtered 

through the 0.7 μm filter to remove particulates and larger microbes the placed in acid-rinsed 

HDPE amber bottles and stored on ice. At the end of the sampling day, 10 mL were first used to 

rinse through a filter (Sartorius Stedim cellulose acetate, 0.2 µm nominal pore size), then the 

remaining 50 mL were filtered and stored in the dark at 4°C and analyzed within 28 days. Each 

filtered sample was analyzed for non-purgeable organic carbon using a TOC-L total organic 

carbon analyzer (Shimadzu) with Pt-catalyzed oxidation at 680°C. Concentrations for Cl- and 

NO3
- were analyzed on a Dionex ICS-2100 Ion Chromatography System (ThermoScientific).  

Data analysis 

The Local Sampling data were divided into points, representing a single MINIPOINT 

with six samples at vertically distributed depths, and plots representing three MINIPOINTs with 

eighteen samples, varying in depth, at a single site (Figure 4).  The Longitudinal Sampling data 

was simply divided into points, as there was only a single MINIPOINT with six vertically 

distributed samples deployed at each individual site. We calculated variance for a point as the 

variance across the six individual depths from a MINIPOINT sampling, and variance for a plot 
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as variance across all eighteen samples (6 depths at 3 points) from the clustered MINIPOINTs 

(Figure 5) as:  

  (1) 

where X is a biogeochemical concentration value at one discrete piezometer (within a 

MINIPOINT array for point variance and within the three MINIPOINT arrays for plot variance), 

µ is the mean of all concentration measurements (again, within a single MINIPOINT array for 

point variance and for all three MINIPOINT arrays for plot variance), and N is the number of 

observations (N=6 for point variance, N=18 for plot variance).  

For the Local Sampling data, to assess the relative utility of a single MINIPOINT as 

compared to three MINIPOINTs we took the ratio of the plot variance to point variance (F), 

shown as: 

  (2) 

where σ2 is the variance (Equation 1) and the subscripts represent the plot and points. Finally, to 

compare the full distributions of point and plot measurements across stream orders we used a 

non-parametric Wilcoxon Rank Sum Test (Wilcoxon 1945) implemented in the software R v 

3.4.2 (R Core Team 2017). The Wilcoxon Rank Sum Test allows us to assess whether the 

distribution of samples within orders are increasing or decreasing across first, second, and third 

orders. This assessment is used to determine if similar patterns emerge when comparing point 

and plot measurements and when comparing Local Sampling to Longitudinal Sampling. 
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Figure 4 - Field example of the division between "points" and "plots." A point representing a 

single MINIPOINT array at a site and a plot representing all three MINIPOINT arrays at a site 

under Local Sampling scheme, whereas there would only be one MINIPOINT array point in a 

plot under Longitudinal Sampling scheme. 
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Figure 5 - Illustration of the distinction between point variance (on left) and plot variance (on 

right) in this study. Point variance represents the variance of 6 discrete depths of a single 

MINIPOINT, while plot variance represents the variance between all 18 measurements of the 

three MINIPOINTs at a site. 

Results 

Concentrations of DOC in the SGI were comparable between the Local Sampling and 

Longitudinal Sampling schemes across the network and across samplings grouped by stream 

order (Figure 6). Minimum and maximum SGI DOC concentration values for the Local 

Sampling were 1.50 and 15.70 mg L-1, respectively, while minimum and maximum SGI DOC 

concentration values for the Longitudinal Sampling were 1.34 and 17.04 mg L-1, respectively 

(Figure 6).  
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Figure 6 - Point and whisker plots representing the mean (points) and range (whiskers) of 

observed porewater dissolved organic carbon (DOC) concentrations in Augusta Creek (all depths 

included) for both Local Sampling and Longitudinal Sampling schemes across the all of the 

network and grouped by stream order. 

Local Sampling scheme results 

Point measurements of DOC exhibited a general decrease in variance from first- to third-

order (Figure 7a), where there are significant differences among first- to third-order variances (p 

< 0.05). Plot measurements of DOC also exhibited decreasing variance from first- to third-order 

(Figure 7b) with significant differences noted (p < 0.05). The DOC variance ratio, F from 
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equation 2, ranged from 0.4 to 4.3, 0.5 to 2.3, and 0.4 to 2.4 for first-, second-, and third-order 

streams, respectively (Figure 8a). The corresponding median ratio values for first-, second-, and 

third-order streams were 1.2, 1.0, and 1.2, respectively.  
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Figure 7 - Box and whisker plots illustrating the distribution of variance for Local Sampling (i.e., 

high local characterization) and Longitudinal Sampling (i.e., low local characterization, but 

greater longitudinal characterization) for measurements of dissolved organic carbon (DOC; a-c), 

NO3
- (d-f), and Cl- (g-i) at points (a single MINIPOINT at a site) and plots (three MINIPOINTs 

at a site) across first, second, and third-order reaches of the Augusta Creek system. Distributions 
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Figure 7 (cont’d) of the same sampling type are all significantly different per a Wilcoxon Rank 

Sum Test (p < 0.05), as noted with an * or otherwise stated with the specific p-value.  

 
Figure 8 - Point (single MINIPOINT) to plot (three MINIPOINTs) variance ratios across stream 

orders during the Local Sampling (high local characterization) sampling campaign. The box and 

whiskers represent the quartiles at each stream order for the Local Sampling scheme, with the 

solid line indicating median values. The red diamonds represent mean values. Ratio values less 

than 1 indicate point variability is greater than plot variability, values greater than 1 indicate that 

point variability is less than plot variability, and values equal to 1 indicate point variability is 

equal to plot variability.  The red dashed line represents a value of 1. 

Variance of NO3
- point measurements appeared to decrease from first- to second-order 

and then increase from second- to third-order (Figure 7d) and were significantly different across 

orders (p < 0.05). Plot-scale variance of NO3
- indicates a decrease from first- to second-order 

and a decrease from second- to third-order (Figure 7e), with first- through third-order exhibiting 

significant differences (p < 0.5). The NO3
-
 variance ratio ranged from 0.4 to 40.1, 0.5 to 5.9, and 

0.4 to 70.9 for first-, second-, and third-order streams, respectively (Figure 8b). The 

corresponding median values for first-, second-, and third-order streams were 1.3, 1.0, and 1.1, 

respectively. 

Point measurements of Cl- increased from first- to third-order (Figure 7g) and were 

significantly different (p < 0.05). Variances of plot measurements of Cl- were not significantly 

different from first- to third-order streams (Figure 7h, p = 0.35). The Cl- variance ratio ranged 
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from 0.5 to 22.6, 0.5 to 14.7, and 0.6 to 2.4 for first-, second-, and third-order streams, 

respectively (Figure 8c). The corresponding median values for Cl- in first-, second-, and third-

order streams were respectively 1.0, 0.8, and 1.0. 

Longitudinal Sampling scheme results 

The plot variances of DOC had an apparent increase from first- to third-order streams 

(Figure 7c) and were significantly different among orders (p < 0.05). Plot variances of NO3
- 

decreased from first- to third-order (Figure 7f) and were significantly different (p < 0.05). The 

plot variances of Cl- decreased from first- to second-order (Figure 7i) and were significantly 

different (p < 0.05), but a post-hoc Dunn test (Dunn 1964) indicated that there was no significant 

difference between second- and third-order plot variances (p = 0.09). 

Discussion 

 Our analysis of spatial heterogeneity of porewater chemistry from samples throughout the 

Augusta Creek network reveals several critical insights into how to best collect spatial data from 

the SGI at the network-scale. Further, this analysis helps demonstrate that SGI investigators must 

be cognizant of how to sample when interested in larger spatial patterns, especially when 

considering how stream networks remove or transform reactive biogeochemical solutes.  

Guiding future sampling  

The results offer an indication of how to best invest our future sampling efforts when a 

network-scale assessment of SGI biogeochemistry is the goal. Primarily, in Augusta Creek, we 

find that there is little added value in increasing characterization of the local, plot-scale spatial 

heterogeneity, particularly for the reactive biogeochemical components DOC and NO3
-. The 

point:plot ratio in the Local Sampling scheme generally centered on a value of 1 (Figure 8) for 

reactive (DOC and NO3
-) and nonreactive solutes (Cl-), meaning that a single sampling array at a 
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site can approximate the variance of a site as well as three separate sampling arrays at a site. In 

fact, new patterns of variability emerge when focusing on sampling across the stream network as 

opposed to more detailed local characterization (e.g., Figures 7a and 7b to 7c and Figures 7d and 

7e to 7f for DOC and NO3
-, respectively), wherein the patterns of variance moving from 

headwaters to downstream locations actually changes when enacting a Longitudinal Sampling 

scheme as compared to a Local Sampling scheme.  

These results indicate that a Longitudinal Sampling scheme may be preferable to a Local 

Sampling scheme when investigating the biogeochemistry of the SGI at the network-scale. This 

finding is corroborated by two recent papers that present conceptual and reduced complexity 

models to understand DOC (Hotchkiss et al. 2018) and NO3
- (Marzadri et al. 2017) processing as 

they move from headwater to downstream locations (i.e., from low to high order streams), 

including the potential differential effects of the SGI across the river network. Our assessment of 

the two main spatial sampling schemes for SGI and the specific results from Augusta Creek 

inform how future researchers can attempt to evaluate and validate these new conceptual and 

modeling frameworks as well as historically important frameworks such as the RCC (Vannote et 

al. 1980).  

The variance ratios observed between the two sampling strategies suggest that point 

measurements are reasonably representative of plot measurements in Augusta Creek, because 

median values for all ratios are generally equal to unity (i.e., the ratio of the variance within a 

plot is close to the variance of each individual point). A Wilcoxon Rank Sum Test of the 

distributions of variance ratios indicates that point and plot (mean of three points) measurements 

are similar for most chemistry samples, except for DOC and NO3
- in third-order reaches. 

However, the median values of plot to point ratios in third-order streams are still relatively close 
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to unity (1.23 for DOC, 0.99 for Cl-, and 1.12 for NO3
-). Therefore, for this stream network under 

summer baseflow conditions, the results suggest that the SGI biogeochemistry of first- and 

second-order streams can be characterized with less focus on the local intra-site heterogeneity, 

which allows more focus on the inter-reach heterogeneity. In other words, more valuable data 

about network-scale SGI biogeochemical conditions can be collected using the Longitudinal 

Sampling scheme as compared to the Local Sampling scheme.  

The observed reduction in variances of porewater concentrations moving downstream 

was dependent upon the biogeochemical species of interest. In the Local Sampling campaign, 

DOC variance at different sampling densities generally decreased moving from first- to third-

order streams (Figure 7a and b). Conversely, Cl- variance in Local Sampling increased from first- 

to third-order streams for both sampling densities (Figure 7g and h). NO3
- variance exhibited an 

inconsistent trend in Local Sampling, wherein it increased from first- to second-order, then 

decreased from second- to third-order (Figure 7d and e). In Longitudinal Sampling the NO3
- 

variance generally decreased with increasing stream-order (Figure 7c). The reduction in DOC 

variance with increasing stream order reflects the accumulation and mixing of all upstream 

inputs (Abbott et al. 2018). Synthesis studies of DOC across stream networks indicate that, 

indeed, the variability of DOC typically decreases with an increase in disconnection from 

terrestrial sources (e.g., Creed et al. 2015).  

 Most stream networks have the majority of total stream length in first- and second-order 

streams (e.g., first-order = 52% and second-order = 25%, Downing et al. 2012), so the finding 

that the low-order streams in Augusta Creek can be characterized with less focus on intra-site 

heterogeneity means that more low-order locations should be sampled (i.e., the Longitudinal 

Sampling scheme), rather than investing efforts in plot replication at each location. Historically, 
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SGI research has disproportionately focused on second-, third-, and fourth-order streams (Ward 

2016), so more effort should be directed to first and >fifth-order stream SGIs in networks if we 

are to better represent SGI conditions in future network scale biogeochemical studies and 

models. Headwaters are demonstrably important in terms of the contribution of biogeochemical 

processes to downstream nutrient export (Alexander et al. 2007; Boano et al. 2014). Further, 

smaller networks tend to display the highest variability in water quality (Wolock et al. 1997; 

Temnerud and Bishop 2005; Abbott et al. 2018). 

Different sampling resolution concerns 

The Longitudinal Sampling campaign, with low local characterization in favor of higher 

longitudinal spatial resolution across the stream network, can potentially result in an entirely 

different interpretation of SGI conditions and DOC stream processing. DOC and Cl- trends 

across orders were the opposite as compared to the trends observed in the Local Sampling 

scheme. Here, DOC variance is generally increasing, while Cl- is generally decreasing moving 

from upstream to downstream (Figure 7c, f). While Cl- fits our hypothesis (H2), DOC does not 

support it. This is an important revelation given that the same stream system was sampled under 

similar weather and hydrologic conditions (albeit in a different year) but changing the spatial 

SGI sampling scheme yielded a completely different apparent pattern across the network. These 

fundamental differences moving from headwaters to downstream locations have raised concerns 

particularly for empirical and mechanistic modeling. If data input into a model has a different 

pattern of variance depending on the sampling scheme, then the results of those models and 

conclusions that can be drawn from them will be entirely different from one scheme to the next. 

Though studies comparing biogeochemistry at different scales are generally absent from the 

literature for the SGI, several researchers have identified the importance of scale in studies of 
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SGI processes. The concerns of how sampling resolution will impact attempts to interpret or 

model the biogeochemical function of SGI interactions is more important than ever now that data 

users, including modelers, managers, and decision makers, are often thinking at river network 

scales (Krause et al., 2011). This will lead to an increase in demand for river network scale SGI 

biogeochemical data, and those seeking to collect that data must grapple with sampling effort 

and how resolution of sampling can impact the various data users. While SGI biogeochemical 

investigations at the network scale are limited, there are complementary ecological studies that 

offer further guidance. Ecological researchers have long known that different processes are 

scale-dependent and the scale at which one measures should answer the question being asked 

(e.g., Allen and Starr 1982; Delcourt et al. 1982). River corridor investigators addressing 

different research questions have observed spatial-resolution and extent dependent patterns, for 

example, small-scale biotic diversity as compared to larger-scale diversity in the SGI (see review 

paper by Vinson and Hawkins 1998) or comparing the riparian subsurface flow paths in small vs. 

large scales (see Dahl et al. 2007). Because it is important to understand all ecological processes 

at a variety of scales, the present study endeavored to assess how to best measure at an 

unprecedented network-scale in the SGI. This study helps raise some potential concerns about 

sampling schemes and their impact on understanding the SGI across spatial scales, and therefore 

should help guide future research interested in collecting and using data to compare processes 

across spatial scales. It also underscores that researchers cannot ignore that they must carefully 

consider what spatial sampling scheme may be best for the SGI question being asked.  

A need for more assessment of sampling schemes 

This study has a couple notable limitations that must be acknowledged in assessing the key 

differences between a Local Sampling and Longitudinal Sampling schemes. First and foremost, 
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both studies from the Ruhala et al. (2018) data sets are snapshots in time. While they sampled at 

approximately the same time of year and season for Local Sampling and Longitudinal Sampling 

schemes, they are not capturing any of the potential sub-annual temporal dynamics of the 

biogeochemistry in the SGI. In SGIs, the biogeochemistry is typically highly variable in relation 

to seasonal variation in nutrients, organic matter quantity and quality, and flow conditions. For 

example, Lambert et al. (2013) found that low aromaticity DOC accumulated in the HZ in the 

summer and was replaced in the wet season by more aromatic DOC, updating earlier research 

that had concluded that seasonal removal of DOC was relatively stable (Findlay and Sobczak 

1996). Others have found that NO3
- removal in the HZ is highly variable and dependent upon the 

distribution of precipitation across different seasons, as precipitation controls both productivity 

and routing of water through the HZ (Rahimi et al. 2015). In part, the biogeochemical variability 

found in this study may be due to flow variation between the two Ruhala et al. (2018) sampling 

periods as they observed similar biogeochemical conditions in the surface and groundwaters 

between sampling periods. Additionally, some variability could be due to the imprecise site 

selection from one year to the next, where the Longitudinal Sampling samples, while selected to 

overlap with the Local Sampling sites, were not taken at the exact same locations. However, 

given that Ruhala et al. (2018) attempted to collect at approximately the same locations both 

years and the results from the Local Sampling indicating that variability is fairly well-

characterized by a single MINIPOINT at a location as compared to three MINIPOINTs at the 

same location, we expect that the variability captured in the Longitudinal Sampling should 

reflect the specific site from year to year. 

This difference in flow conditions raises a second notable limitation to this study in that it is 

a comparison between two separate years. While Ruhala et al. (2018) attempted to carry out the 
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study at similar times and seasonal conditions in each year, the hydrologic conditions were not 

identical, nor will they ever be in most stream systems between different sampling events.  In 

many stream systems, shifts from high to low or low to high flow conditions can weaken or even 

reverse SGI exchange patterns (e.g., Wroblicky et al. 1998; Boano et al. 2010) as well as change 

the quantity and quality of solutes delivered to the SGI, such as DOC (e.g., Byrne et al. 2014; 

Fasching et al. 2015). Many of the limitations listed above are allayed due to the well 

documented hydrologic stability of Augusta Creek (e.g., Poff et al. 1997). Given that the 

majority of Augusta Creek stream water arrives in the channel through groundwater flowpaths 

(Hamilton et al. 2018), the surface water flow fluctuations and impacts on the SGI exchange 

patterns are buffered and minimized. This is to say, many of the variable flow and storm 

response effects commonly seen in the SGI of other streams are attenuated by the consistent 

groundwater inputs in this particular stream system and do not seem to shift the overall 

biogeochemical conditions of the stream (Figure 8). Consequently, despite these potential 

limitations with the data, we think that the comparison of the Local Sampling and Longitudinal 

Sampling data sets is useful and informative for assessing how the two sampling schemes yield 

different information, especially given that there is a paucity of network-scale SGI 

biogeochemical assessments available.  

In many cases available data do not exist or, in the case of Ruhala et al. (2018), are not ideal 

for comparing Local Sampling and Longitudinal Sampling schemes. Therefore, in the future, if 

there were sufficient people and equipment to conduct simultaneous sampling using both Local 

Sampling and Longitudinal Sampling schemes, it would make for a more robust assessment of 

the strengths and weaknesses of each sampling scheme as well as tests of our hypotheses. Still, 

the present study results suggest that this larger investment in testing each study scheme is likely 
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warranted, because it may illustrate that different network-scale patterns of the SGI 

biogeochemistry appear depending upon where you sample in the stream network, and inform 

how researchers and water quality managers can expand methods to conduct SGI studies at 

larger scales compatible with current watershed management plans and models (Hester and 

Gooseff 2010; Krause et al. 2011; Harvey and Gooseff 2015). 

Conclusions 

 Based on the findings in this study, we recommend an increased focus on spatial 

sampling schemes in SGI studies. We also found evidence in the study watershed that 

longitudinal sampling of the SGI in favor of characterizing local heterogeneity when one is 

interested in characterizing the SGI across a network. We must find the most efficient means of 

sampling, because SGI sampling is highly demanding of both labor and costs. From our initial 

assessment here, we determined that there was not much added value (i.e., detection of 

biogeochemical variability) with an increased effort in the characterization of local plot-scale 

heterogeneity (Local Sampling). There were, however, new biogeochemical patterns revealed in 

the watershed as the sampling scheme shifted to increase the number of plots sampled in 

longitudinal directions (Longitudinal Sampling), because it allowed the same sampling effort to 

be distributed across more of the stream network.  

Overall, there is a need to investigate what the best practices are for collecting SGI data 

at watershed scales. Without data from the SGI at the scales of watersheds and across river 

networks, if may not be possible to assess and upscale the ecological function that SGIs play in 

network-scale processes, such as nutrient budgets and water quality management (Harvey and 

Gooseff 2015; Abbott et al. 2016).  As highlighted here, a clear, current limitation to assessing 

the role of SGIs in river corridors is the absence of studies of the SGI attempted at a watershed 
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scale.  Hence, a possible way forward is to collect more SGI data sets at the stream network-

scale from different study regions and from a particular stream network across different seasons. 

Overcoming this data gap will permit future researchers to evaluate if our findings from the 

Augusta Creek data set are robust in terms of sampling strategy suggestions and, importantly, 

facilitate assessments of current sampling effort utility and inspire new sampling strategies. 
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CHAPTER 2: GROUNDWATERSHED VERSUS A SURFACE WATERSHED APPROACH TO 

LANDSCAPE MODELS OF STREAM CHEMISTRY: AN INITIAL ASSESSMENT OF EACH 

APPROACH IN A LOWLAND STREAM NETWORK 

Abstract 

It is increasingly important to understand stream biogeochemistry at network- and landscape 

scales. One common method to investigate stream biogeochemistry at these large scales is to 

relate characteristics of potential contributing areas of the landscape to stream biogeochemistry 

at different points across the stream network. This approach has been applied almost exclusively 

using surface watersheds delineated from surface topography. While surface watersheds are an 

obvious choice for many types of landscapes, we assert that groundwatersheds—the area of 

landscape contributing water to the stream via groundwater pathways—may be useful in a 

variety of settings, especially low-gradient stream networks. In this study, we conduct an initial 

assessment of this assertion by building linear models to predict stream biogeochemistry using 

surrounding land cover from both surface watershed and groundwatershed delineated areas, and 

compare their performance across a third-order, mixed land-use, lowland stream network. We 

conducted a synoptic sampling campaign across this network to collect biogeochemical data 

including dissolved organic carbon concentration, SUVA254, nitrate, and chloride—five common 

biogeochemical measurements. First, this study found that groundwatersheds and surface 

watersheds were substantially different across the lowland stream network. Second, linear 

models predicting observed stream chemistry using groundwatershed land use often performed 

as well or better than models using the more traditional surface watersheds approach. Together, 

these findings suggest that future measurement and modeling efforts of stream network 

biogeochemistry may benefit from incorporating a groundwatershed approach, but it also 
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highlights that the availability of groundwater data still limits rigorous assessments of the 

strengths and weaknesses of a groundwatershed versus surface watershed approach to modeling 

chemistry in most streams 

Introduction 

Stream water quality management is enhanced by understanding stream biogeochemistry at 

network to landscape scales, and how it relates to the surrounding land use. In particular, 

research over the last two decades has increasingly sought to assess stream biogeochemistry at 

the network scale, generating a better understanding of the contributions of subsurface and non-

channel flow to surface water biogeochemical expressions (e.g., Fisher et al., 2004; Lowe et al., 

2006). Network scale analyses in lowland, mixed land use watersheds often present a unique 

challenge in that researchers must go to many sites across the network, requiring building 

relationships with landowners or traversing difficult landscapes. Hence, remotely evaluating and 

predicting stream chemistry is desired as it will allow a greater capacity to assess more streams.  

Statistical modeling can be used to predict stream chemistry based on broadly available 

spatial landscape characteristics or on prevalence of specific land use types that exert controls on 

chemical sources and sinks (e.g., Dillon and Molot, 1997; Frost et al., 2006; Walker et al., 2012). 

Commonly, these statistical models are done by determining the surface watershed drainage area 

(i.e., the topographically determined area that hydrologically drains) to a given point in the 

stream network and then using the land use characteristics within that drainage area to predict 

biogeochemical properties of the stream (i.e., as the watersheds relate to surface water chemistry; 

see e.g., Hollister et al., 2008; Soranno et al., 1996). An alternative drainage area is the 

groundwatershed, which can be delineated using subsurface drainage information (i.e., the 

groundwater levels that determine groundwater flow in the subsurface). The groundwatersheds 
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represent the cumulative groundwater flowpaths contributing to surface water at a point in the 

stream network. Yet with few exceptions groundwatersheds have almost never been considered 

in the prediction of surface water biogeochemical conditions, even for lowland watersheds where 

nearly all stream flow is derived from groundwater inflows (see e.g., Martin et al., 2017). While 

all the reasons for the omission of groundwatershed considerations from these landscape models 

is not clear, the main barrier to using a groundwatershed approach is that the spatial and temporal 

resolution of groundwater conditions is limited in most watersheds. This study serves as an 

initial assessment to compare use of surface watersheds to groundwatersheds.  

Stream biogeochemistry often has a strong relationship to the surrounding land use and land 

cover (LULC; see e.g., Herlihy et al., 1998; Inwood et al., 2005). In the last few decades, 

research has revealed that local spatial heterogeneity can alter this relationship, especially at 

sediment-water interfaces (e.g., riparian and hyporheic zones) that may function as highly 

reactive control points and cause dramatic changes in surface water concentrations of reactive 

biogeochemical constituents through various retention and transformation processes (McClain et 

al. 2003; Bernhardt et al. 2017). However, larger scale patterns are often observed despite these 

important localized process heterogeneities. McGuire et al. (2014), for instance, found that large 

scale patterns in stream carbon chemistry were related to landscape scale controls on stream 

network biogeochemistry.  

Landscape ecologists have long understood the utility of statistical models to predict spatial 

patterns across the landscape (see Turner and Gardner, 2015 for a thorough review of spatial 

statistics in ecological studies). In watersheds and streams, ecologists have applied these spatial 

modeling tools to predict surface water biogeochemical constituents as they relate to the 

landscape features (i.e., LULC attributes). For example, multiple linear regression models have 
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been used to predict concentrations dissolved organic matter (Mattsson et al. 2005), heavy metals 

(Xiao and Ji 2007), and nutrients (Dodds and Oakes 2006), all in relation to the surrounding 

LULC. These models are generally successful in predicting surface water chemistry because 

landscape interactions have strong influence on the hydrology and chemistry of the landscape 

that is connected to the freshwater systems (Kratz et al. 1991).  

It is well established that in many watersheds, source areas identified through topographic 

delineation of hydrology (i.e. surface watersheds) do not necessarily match observed chemistry 

in stream networks (Hinton et al. 1993). To some degree, this mismatch is often attributed to 

subsurface hydrogeologic heterogeneities driving preferential flow paths that are not represented 

by surface topography, thus affecting the overall source area for stream waters. This mismatch 

can be more pronounced in lowland landscapes and river networks with large fluvial plains (e.g., 

Hinton et al., 1993; Woessner, 2000). For example, a regional modeling effort in Grand Traverse 

Bay, MI indicated that groundwatersheds in low-relief areas may vary substantially from surface 

watersheds (Boutt et al. 2001). Further, in some glaciated landscapes groundwater flow does not 

conform to topographic divides, with the areas of groundwatersheds deviating from those of 

overlapping surface watersheds by as much as 57% (Hinton et al. 1993).  

There is a long history of calls to further integrate our understanding of groundwater into 

stream ecological studies driven by the idea that most lotic systems are primarily fed by 

groundwater (Hynes 1983), with lowland streams being almost entirely fed by groundwater (Sear 

et al. 1999). Given the typically high contributions of groundwaters to lowland stream flows, 

several studies have since illustrated the biogeochemical importance of groundwater inputs to 

surface waters. For example, we now know that groundwater inputs can dramatically change the 

dissolved organic matter composition in the stream (Mulholland 1997) as well as the nitrogen 
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chemistry in streams (Hill 1990), two important reactive biogeochemical constituents that 

fundamentally control many water quality and ecosystem conditions in streams. Consequently, 

Stanford (1998) argued that groundwater upwelling is one of the three dimensions that is often 

overlooked and must be considered by stream ecologists, with lateral inputs and longitudinal 

flow being the other two dimensions. Despite the need to incorporate the role of landscape 

groundwater conditions in stream biogeochemical studies, the actual inclusion of these 

conditions in stream reach and network studies has been difficult given limitations stemming 

from a lack of groundwater flow observations and uncertainties in modeling groundwater flow. 

There are many potential methods to define the area over which LULC contributes to 

freshwater systems, including riparian corridors (Allan et al. 1997; Strayer et al. 2003), flow 

distance from a feature (Brazner et al. 2007), buffered influence zones along the stream network 

(Floyd et al. 2009), and entire upgradient watersheds (Soranno et al. 1996; Wang et al. 2011; 

Martin et al. 2017).  For this study, we focus on the upgradient watersheds as areas where LULC 

contribute to the stream network of interest. However, we look at two different ways of 

delineating upgradient watersheds, either based on topographic (i.e., surface watershed) or water 

table surface (i.e., groundwatershed). We do this because there remains uncertainty about which 

delineation method is most appropriate to determine LULC contributing area that affects stream 

biogeochemistry. The surface watershed area includes the entire potential area that could 

contribute to any given point in the stream if water exclusively flowed over the landscape surface 

(i.e., overland flow), however it may only be a fraction of the landscape that is contributing to a 

point in the stream due to surface and subsurface hydrologic routing (e.g., Hinton et al., 1993). 

However, in many watersheds overland flow is not the main pathway for water to move from 

land to the stream network; rather, subsurface flow paths can be dominant. Hence, 
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groundwatersheds may also be used, provided enough data (measured or modeled) are available 

to define the groundwater source (recharge) area, which requires knowledge of groundwater 

levels and flow direction.  

 This study serves as an initial assessment comparing use of surface watersheds to 

groundwatersheds in a lowland stream network. Our goals in this study are two-fold. First, in 

order to improve modeling of how LULC relates to stream water chemistry, we assert that for 

many streams it is important to assess stream hydrologic and chemical conditions using 

groundwatersheds as well as surface watersheds. This assertion is timely because groundwater 

elevation measurements are increasingly available, which facilitates the consideration of 

groundwatershed approaches. Further, there is a recent precedent supporting the use of 

groundwatersheds to understand surface water quality as it relates to LULC (Martin et al., 2017), 

although it was not focused on streams. Our second goal is to directly test this groundwatershed 

assertion with observations in Augusta Creek, a heavily-researched lowland watershed in the 

Midwest United States which is predominantly fed by groundwater (e.g., Hamilton et al., 2018; 

Poff et al., 1997; Vannote et al., 1980) (Figure 9). Hence, in this study, we assess whether 

surface water biogeochemistry across a stream network is more appropriately modeled using 

surface watershed drainage areas derived from surface topography or from groundwatersheds 

derived from regional water table levels. We hypothesized that groundwatersheds would 

outperform surface watersheds in modeling stream water biogeochemistry of Augusta Creek, 

given the lowland landscape and predominance of groundwater discharge to the stream network. 
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Figure 9 - The Augusta Creek watershed (black outline) and stream network (blue lines), with its 

location highlighted in the inset map of Michigan, USA (upper right). Sampling sites (yellow 

points) are distributed across all orders in the stream network. 

Materials and Methods 

Site Description 

 The stream chemistry data used in this study were collected in the Augusta Creek 

watershed, a third-order, lowland, groundwater-fed stream in southwest Michigan (Figure 9) 
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over the period of August 16-22, 2016. Augusta Creek is composed of mixed-use landscape 

including wetlands, lakes, pasture, upland forests, and row crops. The stream network of Augusta 

Creek overlies a surface geology of glacial tills. The surface flow is groundwater dominated with 

minimal contributions from overland flow (Poff et al. 1997; Hamilton et al. 2018). This data set 

encompasses sampling points across all three stream orders and includes sampling representative 

of the different stream headwater origins (e.g., lake outflows, upland forests, wetland outflows). 

The Augusta Creek network passes through the Kellogg Biological Station Long Term 

Ecological Research program, possesses an active USGS gaging station (04105700) with more 

than 50 years of discharge data, and is of historical research significance as part of the Natural 

Flow Regime (Poff et al. 1997) and River Continuum Concept (Vannote et al. 1980) studies.  

Synoptic Sampling Campaign 

 Stream chemistry was collected via a spatially-extensive synoptic sampling campaign, 

detailed in Ruhala et al. (2018). Briefly summarized here, stream water was collected across 39 

sites that include sites within first-, second-, and third-order stream reaches. For each sample 80 

mL of water was collected. First, 20 mL of water were used to prime and rinse two filters in 

series: a 0.7 µm nominal pore size prefilter (Whatman GF/F filters) followed by a 0.2 µm filter 

(Sartorius Stedium cellulose acetate). The remaining 60 mL was then filtered into acid-rinsed 

HDPE amber bottles and stored on ice until the end of the sampling day after which it was stored 

at 4°C and analyzed within 28 d.  

 Each filtered sample was analyzed for Dissolved Organic Carbon (DOC) as non-

purgeable organic carbon on a TOC-L total organic carbon analyzer (Shimadzu Scientific 

Instruments, Kyoto, Japan) with Pt catalyzed oxidation at 680°C. Samples were all analyzed for 

anions, in particular for this study Cl- and NO3
-, on a Dionex ICS-2100 Ion Chromatography 
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System (Thermo Fisher Scientific, Massachusetts, USA). Finally, all samples were assessed for 

their optically-derived DOC properties through absorbance measurements on a Shimadzu dual-

beam ultra-violet 1800 spectrophotometer (Shimadzu Scientific Instruments, Kyoto, Japan). In 

this study we assessed Specific Ultraviolet Absorbance at 254 nm (SUVA254, the absorbance at λ 

= 254 nm divided by DOC concentration; Weishaar et al., 2003), (L mg-C-1 m-1).  

Watershed delineations and land use  

 We delineated and measured areas of both surface watersheds (the area of drainage based 

on surface topography) and groundwatersheds (the area of drainage based on groundwater levels) 

to each individual surface water sampling site. These watershed delineations were completed 

using ArcGIS 10.6 (ESRI, California, USA) following the approach detailed in Martin et al. 

(2017). Surface topography was extracted from the 1/3 arc-second (10 meters) USGS 3DEP 

digital elevation model. Following topographic extraction, we then filled local sinks, determined 

flow directions using a D8 flow direction algorithm (allowing only the 8 cardinal and 

intermediate directions), and computed watersheds from those flow directions. 

For this study we selected a straightforward approach to delineate groundwatersheds that 

relies on readily available groundwater level data and groundwater flow principles. For this 

delineation, we assume that 1) flowpaths within the groundwater system are predominantly two-

dimensional (i.e. flow is lateral rather than vertical), and 2) that vertical gradients in hydraulic 

head within the unconfined glacial aquifer beneath the Augusta Creek watershed are small 

relative to larger lateral gradients in hydraulic head (Rheaume 1991). The relatively low relief, 

shallow nature of the aquifer, and relatively high hydraulic conductivity of the glacial outwash 

sands and coarse-textured tills supports these two assumptions. With these assumptions, 

groundwater flow direction is entirely dictated by the shape of the water table—the groundwater 
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topography. To create this surface, we interpolated water tables using static water levels 

collected at the time of installation from Michigan’s drinking water wells (Appendix A, Figure 

25). These measurements are scattered across and beyond the watershed, and through time—with 

some records in the region dating back to the 1970s.  

Our groundwatershed delineation method mirrors traditional surface watershed 

delineation with one additional step following Haacker et al. (2016) to better define the surficial 

aquifer water levels given the propensity of lakes in the area to be dominated by groundwater 

inflows (Robertson and Hamilton 2015). First, we interpolated the elevation of the water table 

from the static water level measurements using Empirical Bayesian Kriging, a method that 

removes much of the manual model selection and guesswork from traditional kriging approaches 

(Krivoruchko, 2012). Second, we then identified surface water features below the interpolated 

water table and assigned a DEM elevation to these features, assuming that the water table 

elevation at those locations is given by the surface elevation. These locations can then provide 

additional “measurements” of water level to better define the groundwater topography. To 

incorporate the surface water features into the interpolation, we had to reduce the spatial density 

of measurements by randomly sub-selecting the vertices of these surface water features to match 

the density of measurements from groundwater wells. Next, we merged the static water levels 

with the DEM-assigned surface water feature elevations and interpolated the merged set again 

using Empirical Bayesian Kriging. Finally, we constrained the interpolated water table to lie at or 

below ground elevation.   

 We quantified surface water and groundwatershed similarity to facilitate comparisons in 

each approach, by using two different but complementary metrics for percent unique area (i.e., 
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the area of either the surface water or groundwatershed not shared with the other). These metrics 

are defined as: 

         (1) 

         (2) 

where  is the unshared area percentage of either the groundwatershed ( ) or surface 

watershed ( ) and the A terms are the areas of either the groundwatershed, surface watershed, 

or that intersection of the two ( ) for each watershed, . A unique percentage of 0 for a 

watershed indicates that the entire watershed of one approach spatially overlaps with a watershed 

of the other approach. Likewise, a unique percentage of 100 would indicate that there is no 

spatial overlap between the surface and groundwater watershed approach.  

 Augusta Creek land use data were obtained from the National Land Cover Data Base 

(NLCD) 2011 (U.S. Geological Survey 2014; Homer et al. 2015). The NLCD 2011 is composed 

of 8 categories each with subcategories: Water, Developed, Barren, Forest, Shrubland, 

Herbaceous, Planted/Cultivated, and Wetlands. In this study, we combined all Developed sub-

categories into a single category because Augusta Creek is a rural area with sparse areas of 

development. For each surface and groundwatershed we determined the relative proportion of 

land use categories by taking the area of an individual land use within a watershed divided by the 

total area of the watershed. 

 We constructed multiple linear regression models in R (R Core Team 2017) using land 

use to predict surface water biogeochemistry. All 39 subwatersheds were included in the models. 

The primary function of these models was to compare their performance when using either 

surface or groundwatershed information per the scope of this initial study, rather than trying to 

create the best absolute model for predicting Augusta Creek stream biogeochemical conditions. 
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We recognize that a combination of both surface and groundwatershed derived landscape 

characteristics may ultimately best describe and predict stream geochemistry or water quality.  

 The multiple linear regression model construction used the following generalized 

ordinary least squares (OLS) equation:  

          (3) 

where y is the surface water parameter we wish to predict (i.e., DOC, SUVA254, Cl-, or NO3
-) 

normalized to the maximum value, x is the landscape proportion within the watersheds, β is the 

linear coefficient of the landscape unit proportion, and ε is the random error. We created separate 

OLS equations for the LULC for surface watersheds and for the LULC of groundwatersheds. 

While linear models are relatively simple and transferable method, when they are built on 

fractional land use, they can be highly multicollinear necessitating additional procedures. To 

address this multicollinearity, we implemented two stepwise procedures in sequence that 

generated a suite of reduced variable models. First, we started with all landscape variables in the 

model and removed these in a stepwise manner using the Variance Inflation Factor (VIF) to 

reduce multicollinearity in the models. We calculated VIF values for each independent variable 

in the model. If any variables had VIF values greater than a threshold, here set to 3 (Zuur et al. 

2010), then up to two variables with the highest VIF were individually removed. Each variable 

removal generated a new model, which was then subjected to this stepwise procedure. Once 

models passed the VIF criterion (i.e. no remaining variables had VIF values exceeding the 

threshold), our second stepwise procedure further reduced model complexity by selecting 

independent variables using stepwise regression, with a 0.05 significance criterion for the 

independent variables through backwards stepwise regression (after de Koning et al., 1998).   
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Once a suite of OLS models were selected using the two-step procedure above we 

developed the OLS models into mixed regressive-spatial autoregressive models to account for 

any potential spatial autocorrelation in the model residuals (see e.g., Anselin, 1988; Overmars et 

al., 2003) which may result from both the nested nature of watersheds as well as the close 

proximity of sampling points within reaches. This was done because a majority of the OLS 

models were spatially autocorrelated as assessed using the Moran’s I test for spatial 

autocorrelation. The mixed models were formulated as follows: 

          (4) 

where ρ is the autoregression coefficient and fit first, W is the spatial weights matrix based on 

distance and using nearest neighbors, X is the original predictor variable matrix from Equation 3, 

β is a vector representing slopes of the original independent variables from the predictor matrix 

(i.e.,  ), γ is the autoregression coefficient of the spatially lagged explanatory 

values (WX) and also a fit parameter, and e represents the spatially independent errors.  

Finally, we applied Akaike’s Information Criteria (AIC) to choose the most parsimonious 

models for each constituent, some of which had dissimilar structures (i.e. different numbers of 

retained predictor variables). The most parsimonious model and all models within a value of AIC 

= 2 (Burnham and Anderson 2002) of the most parsimonious models (ΔAIC) were selected as 

“best-fit” models. 

To assess model predictive power, in addition to the AIC we used a Pseudo R2 value. We 

used Pseudo R2 because R2 does not properly account for predictions from spatial lag models, 

which take spatial auto-correlation into consideration, because one cannot give each individual 

measurement equal weight in goodness of fit. Therefore, we used a Pseudo R2 measure of fit 

equal to the variance of the predicted values over the variance of the observed values (i.e., 
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; Anselin, 1992; Overmars et al., 2003). Note, by this definition the Pseudo R2 

matches the coefficient of determination R2 for OLS regression alone. A value of 1 for the model 

indicates a perfect model fit, however due to the mixed autoregressive modeling, Pseudo R2 for 

subsets of the entire dataset can exceed 1. 

After producing the mixed spatial lag models, we investigated model performance as 

compared to specific subsets of watersheds as an exploration of where our spatial lag models 

performed well or poorly. These subsets included watersheds based on predominant LULC 

category and watersheds of a particular stream order (ranging from first- to third-order). We 

evaluated performance of models within these subsets with the aforementioned Pseudo R2 

values. Ultimately, the surface versus groundwatershed approach to predicting stream chemistry 

can be quantitatively assessed by comparing the Pseudo R2 values for the different observed 

water chemistry conditions (i.e., Cl-, NO3
-, and DOC, and SUVA254) across the stream network.  

Results 

General stream network surface water biogeochemistry conditions 

A summary of the surface water biogeochemical measurements collected across the 

watershed are shown in Figure 10. Concentrations of Cl-, NO3
-, and DOC ranged from 6.4 to 

12.7, 3.8 to 14.4, and 5.3 to 16.3 mg L-1, respectively. SUVA254 values ranged from 2.7 to 4.0 L 

mg-C-1m-1. These SUVA254 values correspond to an estimated 21% to 30% aromatic content of 

DOC using a linear regression developed by Weishaar et al. (2003).  
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Figure 10 - The observed Cl-, NO3
-, DOC, and SUVA254 conditions across the entire Augusta 

Creek stream network from the surface water synoptic sampling campaign (n=39 sample sites). 

Box and whiskers represent interquartile ranges, while red diamonds represent mean values and 

black circles represent outliers.  

Watersheds and land use results 

 Surface watersheds ranged in size from 0.80 km2 at the smallest first-order watershed to 

97.38 km2 at the largest third-order watershed, while groundwatersheds varied more from 0.05 to 

112.81 km2 (Figure 11). For each water sampling point, upstream groundwatershed and surface 

watershed areas were strongly and significantly correlated (R2 = 0.98, p < 0.05). Below ~25 km2, 
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surface watersheds were typically larger than groundwatersheds, while, above ~25 km2, 

groundwatersheds were always larger than the corresponding surface watersheds. Surface 

watersheds had a range of percentage uniqueness ranging from 12.53 up to 93.89% with a 

median value of 43.90% (Figure 11). Groundwatersheds had a range of percentage uniqueness 

ranging from 0 to 96.90% with a median value of 35.05%. In terms of absolute size, 27 out of 39 

groundwatersheds had larger areas than their surface watershed counterparts (Appendix A, Table 

3).  



45 

 

 

 
Figure 11 - Violin plots showing the distribution of (a) watershed areas (b) and unshared area 

percentage for groundwatersheds and surface watersheds (defined via Equations 1 and 2). The 

curvilinear outline and color fill of the violin plot shows a mirrored kernel density plot of values, 

while the internal boxplots show interquartile ranges. It is evident in (a) that the majority of areas 

for both surface watersheds and groundwatersheds are concentrated in smaller (<30 km2) areas. 

While the overall distributions of areas vary, including a greater maximum area in 

groundwatersheds, median values are similar between both. Note that the distributions of 

unshared areas differ substantially between groundwatersheds and surface watersheds. 

In Augusta Creek, the land cover from the NLCD 2011 classification system (Homer et 

al. 2015) included Open Water, all levels of Developed (Low, Medium, High, and Open), Barren 
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Land, all types of Forest (Deciduous, Evergreen, and Mixed), Shrub/Scrub, 

Grassland/Herbaceous, Pasture/Hay, Cultivated Crops, Woody Wetlands, and Emergent 

Herbaceous Wetlands.  The predominance of LULC type was different between the surface and 

groundwatershed areas. For the largest surface watershed extent, Deciduous Forest is the 

predominant land cover, followed by Cultivated Crops and Pasture/Hay, while High Developed 

was the least common land cover, followed by Medium Developed and Barren. By contrast, for 

the largest groundwatershed extent, Pasture/Hay was predominant, followed by Cultivated Crops 

and Deciduous forest, while the least common landcover types were the same as surface 

watersheds (See Figure 12). 

 
Figure 12 - LULC in the August Creek stream network for both surface watershed (black border) 

and groundwatershed (white border) extent. Note that the groundwatershed includes large open 

water body, wetlands, and additional agricultural lands that are not captured in the surface 

watershed. 
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Model results 

 Ultimately, following stepwise variable reduction, all selected models contained between 

3 and 5 independent variables encompassing 12 land use categories (Appendix A, Table 4). The 

number of models that passed our criteria for any given biogeochemical measurement varied 

from 1 to 3 (Appendix A, Table 5) 

For all biogeochemical measurements assessed, groundwatershed models had the lowest 

AIC (i.e., performed as the best-fit models; Figure 13). If we consider a threshold ΔAIC of 2 to 

indicate similar model performance (a typical assumption; Burnham and Anderson, 2002), 

surface watershed and groundwatershed models performed similarly for both DOC and 

SUVA254. Conversely, Cl- and NO3
-surface watershed models both had poor performance as 

compared to their respective groundwatershed models.  

 
Figure 13 - An overall comparison of the groundwatershed versus surface watershed model 

performance is shown in the AIC values for all best-fit models across biogeochemical 

measurements Cl- (a), NO3
- (b), DOC (c), and SUVA254 (d). Each model is represented by a 

point, red circles are groundwatershed models and blue triangles are surface watershed models. 

All points that fall below the dashed line are considered to be comparable to the best-fit model. 

Models above the dashed line are considered to be worse than the best-fit model.  
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 For our second assessment of model performance, we found that for Cl- and NO3
- the 

groundwatershed models had greater Pseudo R2 than surface watershed models (Figure 14). In 

contrast, we found that surface watershed models outperformed the groundwatershed models—

according to Pseudo R2—for DOC and its optical property SUVA254. Overall, we found that Cl- 

models for both watershed types had the highest Pseudo R2 values, followed by DOC and NO3
-, 

and then by SUVA254.  

 
Figure 14 - A comparison of how groundwatershed and surface watershed models compare 

across solutes. Pseudo R2 values for best-fit models based on either groundwatersheds or surface 

watersheds across all biogeochemical measurements. Red circles are groundwatersheds and blue 

triangles are surface watersheds. Values closer to 1 indicate the variance of predicted values is 

closer to the variance of observed values.   
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Discussion 

Surface watershed and groundwatershed differences and potential implications 

 Only 4 groundwatershed-surface watershed pairs had comparable areas (i.e., < 10% 

difference in size) of the 39 unique surface subwatersheds delineated to our sampling points in 

Augusta Creek, , and of these four there was only a maximum of ~50% overlap between their 

surface and groundwatershed. While the relative overlap between surface watersheds and 

groundwatersheds varied depending upon location within the Augusta Creek stream network 

(Figure 15 and Appendix A, Table 3), it is clear that the selected contributing watershed 

delineation method will likely affect any subsequent analysis dependent upon the watershed area 

or spatial attributes of that watershed area. Therefore, researchers and watershed stakeholders 

should be mindful of which delineation is selected and how this decision affects their subsequent 

research objectives, analyses, and decisions. For instance, at a sampling point near to the 

headwaters of a second-order watershed in Augusta Creek, we find that a transition from a 

surface watershed to a groundwatershed shifts the land use type driving the modeled conditions 

from deciduous forest to woody wetland. This means that the initial watershed delineation step 

may influence any management decisions based on LULC made within this watershed.  
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Figure 15 - Comparison of groundwatersheds (red) and surface watersheds (blue), as well as 

their overlap (purple) in Augusta Creek. The three insets present examples of (a) a low degree of 

overlap for surface and watersheds delineated to a point, (b) a high degree of overlap for the 

groundwatershed, and (c) high degree of overlap for both surface watersheds and 

groundwatersheds. 

 We think the clear differences documented in Augusta Creek between surface and 

groundwatersheds delineations supports the need to, at a minimum, consider groundwatersheds 

in lowland freshwater ecosystem research and management. Further, there is evidence here 

suggesting that groundwatersheds and surface watersheds may differ considerably for a stream 

network. This should highlight the need for hydrologists, biogeochemists, ecologists, and 

managers to work together to understand these freshwater systems. This supports past calls (see 

e.g., Woessner, 2000) for greater interdisciplinary collaboration in efforts to understand the 
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interactions between different components of a watershed (e.g., groundwater, riparian zone, 

hyporheic zone, etc.). Here we demonstrate that the typical assumption of the surface watershed 

approach–that the surface water is derived across the topographically defined surface watershed–

could be in error if, in fact, the water is primarily sourced from the less commonly used 

groundwatershed. Reevaluating this fundamental assumption could impact, for example, how 

land managers evaluate stream water quality as it relates to the surrounding LULC. 

 It should be noted that there are many other empirical and process-based modeling 

methods of groundwater contributing area delineations that could provide different 

interpretations than those presented in this study. Again, the primary function of watershed 

delineation and linear regression models used in this study was to compare their performance 

when using either surface versus groundwatershed information, rather than trying to create the 

best absolute model for predicting Augusta Creek stream biogeochemical conditions. More 

complex, process-based approaches for groundwater flow and solute transport at the watershed 

scale are rapidly developing and are likely to outperform the approach used for this study. 

Nevertheless, we have demonstrated that groundwatershed models created from a 

straightforward, widely transferrable method can outperform surface watershed models within 

the August Creek Watershed for multiple aspects of water chemistry fundamental to water 

quality. 

Comparisons of different groundwater and mass transport modeling methods is an active 

area of hydrological research but is beyond the scope of this initial assessment focused on 

comparisons of comparable surface and groundwatershed delineation methods (i.e., comparable 

in terms of data needs and complexity of implementation). Most groundwatershed delineation 

methods require additional information and effort to implement than that used in this study. For 
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instance, Chow et al. (2016) created groundwatersheds using several different finite element and 

finite difference flow and transport models. Their models include hydraulic gradient, as we did in 

this study, as well as flow velocity and multiple hydrogeologic subsurface properties. While 

Chow et al. (2016) and the many other methods capable of  producing groundwatersheds exist 

and will likely produce unique results, there is no consensus across these models for which is the 

‘correct’ groundwatershed and often there is a large data and computational burden for the 

researcher to meet before implementing these models. Overall, we recommend that future studies 

trying to predict stream chemistry via statistical and process-based models should be pursued in 

common locations where the data burden is met for comparing multiple groundwater delineation 

methods.  

Stream Biogeochemistry: Surface watershed linear models vs. groundwatershed linear models 

 The groundwatershed linear models generally performed better than surface watershed 

linear models in predicting biogeochemistry in the stream as it relates to the land use within the 

watershed area, especially for important water quality drivers of Cl- and NO3
- . When 

groundwatershed models did not perform better it was for DOC and SUVA254, but the models 

were nearly always comparable to surface watershed model performance. This overall enhanced 

performance of groundwatershed based models in the lowland Augusta Creek watershed 

suggests that groundwatersheds may be preferable for research or water management goals, 

especially those associated with Cl- and NO3
- in the region of this study. Further, it suggests that 

groundwatershed spatial models may be comparable to surface watershed modeling efforts for 

the more complex organic matter stream properties of DOC, and SUVA254. Overall, we consider 

the linear model results to be clear initial evidence that groundwatershed-based landscape models 



53 

 

are worth including in future biogeochemical or water contamination investigations of Augusta 

Creek and similar lowland groundwater stream networks of the study region.  

 The similarity of SUVA254 and DOC model performance were most comparable between 

surface watershed models and groundwatershed models is interesting. It is unclear from our 

study approach why these DOC conditions were similar. However, it suggests that the DOC 

conditions measured across the stream network at the time of sampling were not strongly 

dominated by either surface watershed or groundwatershed attributes. This is likely due to the 

complex flowpaths and processing of DOC and SUVA254 signals in the watershed (Ruhala et al., 

2017). For SUVA254, in the groundwater dominated Augusta Creek (Poff et al. 1997; Hamilton et 

al. 2018), the groundwater is very likely acting as a constant supply of poorly aromatic (i.e., low 

SUVA254) DOC during the summer months when our stream measurements occurred, whereas 

the highly aromatic (i.e., high SUVA254) representing the landscape signature will be more 

pronounced in the stream during the wet season when hillslope soil through flow is larger and 

more readily connecting local landscape features to the stream  (see, e.g., Lambert et al., 2013). 

This could mean that the relationship between LULC and SUVA254 is not easily observed in the 

stream during the summer months, where localized processing may have a greater impact on the 

conveyance of the groundwater SUVA254 signal to the surface waters. Hence, neither surface nor 

groundwatershed approaches may be able to accurately predict SUVA254 without a more 

complex approach that includes these temporal/seasonal drivers of SUVA254. 

Additionally, it was previously demonstrated that Augusta Creek stream water has a 

dynamic equilibrium with respect to DOC, and only has small fluctuations both within and 

between sites on a diurnal basis (Manny and Wetzel 1973). This dynamic equilibrium of DOC is 

attributed to the overall abundance of DOC and the complex influent sources of DOC within the 
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stream ranging from lakes to wetlands to groundwater flowpaths and their respective ecosystem 

processing of DOC. While these LULC categories appear in our models, the categorical nature 

does not allow for distinction in the specific function of a type of wetland at one location as 

compared to another location. While we know that SUVA254 values can increase through a 

wetland (see e.g., Pinney et al., 2000), it would be inappropriate to assume that all wetlands are 

equally connected via surface and subsurface flow paths at all times in Augusta Creek. In some 

cases, wetland connectivity, and thus DOC inputs to the stream from wetlands, is seasonal or 

related to precipitation inputs, whereas in other cases wetlands are continuously connected 

(personal communication: S. Hamilton, Michigan State University).  

We do not suggest that groundwatersheds must be considered by all watershed 

researchers and stakeholders. Together, our findings for concentrations and properties of DOC 

offer an initial highlight that the surface watershed versus groundwatershed approach may be 

less relevant when dealing with biogeochemical variables that are subject to very localized and 

rapid processing and transformation within the river network, such as what can happen to many 

solutes experiencing hyporheic, in channel, lake, or wetland transformations. These localized and 

rapid transformation locations are known as watershed “hot spots” and “control points” 

(McClain et al. 2003; Brazner et al. 2007; Bernhardt et al. 2017) and capturing them in 

watershed scale models is a challenge (Abbott et al., 2016). Or there may be broader, landscape 

scale zones adjacent to the stream network that are still smaller than the full watershed scale that 

exert greater influence on the biogeochemistry (e.g., Floyd et al., 2009). Neither surface nor 

groundwatershed scale statistical approaches will capture these more local scale drivers of 

instream chemistry and all watershed scale statistical water quality models are likely be 
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ineffective until these local scale hot spots and control points can be accounted for in the 

models–an area of rapidly growing research (e.g., Pinay et al. 2015; Abbott et al. 2016).  

 In order to produce the best possible predictive models of river network water chemistry, 

it might be useful to create combined surface watershed and groundwatershed models to 

represent all possible flowpaths to the stream. This more complex approach that utilizes 

information from both surface and groundwater topography observations so we would 

hypothesize that it would increase overall predictive power. That assessment of determining the 

best overall statistical model that uses all possible predictors for modeling Augusta Creek 

chemistry is not the goal of this initial assessment of surface versus groundwatershed. Instead we 

wanted to take a first important step toward examining whether surface watersheds and 

groundwatersheds produce similar or different outcomes when using a common modeling 

approach. This first step is part of putting forth the idea that groundwatersheds may be important 

to conceptualize in future ecological and water quality studies, and that not accounting for 

possible differences between surface and groundwatershed delineations  may ultimately affect 

the way researchers interpret results based on areal LULC delineations. Still, to start to explore 

the potential for combining information from both surface and groundwatershed approaches and 

test our hypothesis that they would outperform the more parsimonious single surface or 

groundwatershed approach models, we conducted a combined analysis using the same linear 

regression modeling approach as described for Augusta Creek. Interestingly, in most cases, the 

combined surface watershed and groundwatershed models were comparable to the best-fit 

models from the presented models (Appendix A, Figure 26 and Figure 27). In the case of Cl-, the 

combined models performed better than their surface and groundwatershed counterparts, while in 

the case of DOC they performed worse. In several instances the combined models produced were 
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exactly the same as either the surface watershed or groundwatershed models. These are 

unexpected results and, with exception of Cl-, are in opposition to our hypothesis of better 

prediction with a combined watershed approach. Again, this is more evidence that the more 

biogeochemically reactive solutes of NO3-, DOC, and SUVA254 observed in the stream network 

are also controlled by local scale hot spots and control points that our watershed scale models do 

not capture. 

Linear model performance for subsets of LULC and stream-order  

 We further explore if the different watershed delineations approaches provide further 

insight into how stream chemistry at a particular location in the stream network is or is not 

related to its upstream LULC or stream order. To do this we analyzed and modeled subsets of the 

stream network data that were partitioned by the predominant LULC and Strahler stream orders. 

While the subsets include a limited number of sites and therefore offer only some preliminary 

insights, it is seen that areas dominated by Hay/Pasture and Deciduous Forest areas yielded the 

best predictions of all measured biogeochemical properties in Augusta Creek. Conversely, both 

surface and groundwatersheds did poorly when predicting biogeochemical measurements in 

areas with a predominant LULC category of cultivated crops. While there is often a relationship 

between stream chemistry and cultivated crops in many watersheds (e.g., NO3
- Schilling and 

Libra 2000), this relationship may not be so simple that a mixed regressive-spatial autoregressive 

model using watersheds areas can be used to make robust predictions in Augusta Creek. This 

inability of the model could be due to additional factors not captured in the LULC predictive 

framework, such highly variable practices of fertilizer application and tillage across cultivated 

lands of different farmers (Birgand et al. 2007; Thomas and Abbott 2018) or transformation (i.e., 

generation or removal) of solutes along groundwater flowpaths (Hill 1996; Ocampo et al. 2006). 
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Still, it is valuable for land and water managers to consider in Augusta Creek that there may be a 

lack of relationship between cultivated crops and the stream chemistry, and therefore a different 

approach beyond using spatial LULC predictors may be needed.  

 Across stream orders there was more variability in predictive power of the second- and 

third-order reaches as compared to the first-order reaches, this is consistent with the findings of 

Hedin et al. (1998) that narrow regions of the interface between terrestrial-aquatic environments 

can act as focal points for nutrient transformation. First-order reaches were generally well 

predicted for both surface watersheds and groundwatersheds, while second- and third-order 

watersheds did relatively poorly for all biogeochemical measurements except for Cl-. This 

difference across stream orders is partially explained by the fact that first-order streams have 

substantially less area draining to them, which limits the variability of hydrologic flowpath 

lengths and biogeochemical source-sink processes contributing to the observed stream chemistry 

(Abbott et al. 2018). On the other hand, at larger watershed scales, such as the second- and third-

order sites, the streams not only drain a larger area but also function as integration points of the 

biogeochemical composition from upstream subwatersheds, which can be a further complication 

in trying to understand reactive biogeochemistry source and sink processes as a function of 

LULC (Abbott et al. 2018). Overall, the Cl- measurements are more easily predicted in second- 

and third-order streams, likely due to its more conservative nature along hydrologic flowpaths 

and through aquatic ecosystems when compared to the other more reactive N and C solutes in 

these larger order stream locations.  

 When we break up the data into subsets of particular land cover or stream order, it 

becomes less clear if using either using groundwatersheds or surface watersheds is advantageous. 

Again, as discussed above, this could be due to scale processes not captured in the LULC 
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approach are controlling the stream chemistry. Alternately, it could be due to the reduced 

statistical power of these smaller subsets. For example, it does appear that Cl- is better predicted 

by groundwatersheds in second- and third-order sampling points. This may be attributed to 

groundwater acting as a long-term reservoir for human produced Cl- (i.e., legacy effects; Kelly 

2008, Kincaid and Findlay 2009). Also, given that Cl- is a conservative (i.e., non-reactive) solute, 

it is more probable that any Cl- signature derived from the landscape will be well preserved along 

the groundwater flow paths and through reactive control points, such groundwater-surface water 

interfaces (Abbott et al. 2016; Bernhardt et al., 2017), as opposed to the other biogeochemical 

measurements investigated here (NO3
-, DOC, and DOC optical parameters) which are likely to 

undergo transformation in the groundwater and as they are transported through groundwater-

surface water interfaces.  

Limitations of this study 

 There are two primary limitations to be noted in this study. First, while the results are 

promising, in terms of using groundwatersheds to aid in future surface water biogeochemistry 

modeling and management, this study was only conducted in a single watershed during a single 

time of year. Future work should span several stream networks over multiple years and seasons 

to further assess the utility of using groundwatersheds versus surface watersheds. Second, it 

would be useful to have independent verification of the accuracy of groundwatershed 

delineations. Surface watersheds are relatively easy to delineate using high resolution digital 

elevation models, and the surface topography is relatively static through time scales of seasons 

and years. On the other hand, groundwatersheds vary with seasonal and annual hydrologic 

conditions and data collected for their delineation usually relies on aggregating multiple months 

and years of watershed measurement levels, including those used this study. Consequently, we 
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are not necessarily using the precise groundwatershed that was present at the time of 

biogeochemical sampling in Augusta Creek. However, the relatively uniform topography and 

similar soil characteristics across the study region make it reasonable to assume that even as 

climatic and seasonal conditions shift, groundwater divides are unlikely to substantially shift. 

These assumptions will not hold in regions with more topographic and subsurfaces 

hydrogeologic heterogeneity. Furthermore, the importance of vertical component of groundwater 

flowpaths varies across and within watersheds, which can affect groundwatershed area as well. 

Again, this is not a major factor for Augusta Creek, as the vertical flowpath component is 

nominal compared to the lateral components because the thickness of the aquifer is typically less 

than 50 m, compared to a typical interstream distance (and thus flow path length) of 1 km or 

more. These assumptions about surface and groundwater routing will not hold in regions with 

more topographic and subsurface hydrogeologic heterogeneity. Overall, a deeper investigation 

into the uncertainty and variability of groundwatershed delineations is important work for the 

future of surface water chemistry studies and models. For example, to fully verify the 

groundwatershed delineations from Augusta Creek used in this study would require substantial 

long-term work far beyond the scope of this initial investigation as both groundwater and 

biogeochemical synoptic sampling are limited in this watershed, as in most watersheds (McGuire 

et al. 2014; Ruhala et al. 2018; Abbott et al. 2018). Fundamentally, until more groundwater data 

is collected at greater spatiotemporal resolution, the limitation of available groundwater data is 

likely to remain a major impediment to advancing the use of groundwatershed approaches to 

predict and manage river water quality. 
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Model Performance vs. Stream Order and Dominant Land Use 

 After fitting the models on the entire dataset, we subset the sampling data and model 

predictions into two separate groupings: stream order and dominant land use to assess if the 

surface versus groundwatershed comparison is dependent on these spatial attributes. The Pseudo 

R2 for each of these groupings are shown in Figure 7. Note that because these are subsets of the 

sites in the dataset, Pseudo R2 values can exceed unity and offer limited ability to draw robust 

conclusions. Within each of the three stream orders present in Augusta Creek (first-, second-, 

and third-order) we typically found that the surface watershed models had greater Pseudo R2 

values in the first-order sampling points than for the second-order and third-order sampling 

points (Figure 16). Similarly, the groundwatershed models had Pseudo R2 values closest to a 

value of 1 within the first-order sampling points. In general, surface watershed models 

outperformed groundwatershed models at first- and third-order scales, but groundwatershed 

models performed better for the intermediate spatial scale of the second-order streams. 
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Figure 16 - A comparison of groundwatershed and surface watershed model performance as it 

relates to dominant land cover class and placement in the stream network is shown in the Pseudo 

R2 values for sampling subsets related to predominant land use within an area, cultivated crops 

(a), deciduous forest (b), and hay/pasture (c); and stream order, first-order (d), second-order (e), 

and third order (f).  

Dominant land use categories varied slightly for surface watersheds and 

groundwatersheds, but generally included cultivated crops, hay/pasture, and deciduous forest 

(Figure 16). We found that sites that predominantly drained hay/pasture or deciduous forest 

typically had Pseudo R2 values closer to a value of 1 than sites predominantly draining cultivated 

crops. This pattern was true for both surface watershedand groundwatershed models.   
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Conclusion 

In this study we investigated the relative predictive power of using LULC within 

groundwatersheds as compared to LULC within surface watersheds to predict the important 

water quality parameters of Cl-, NO3
-, DOC, and SUVA254 in the lowland Augusta Creek 

watershed in southwestern Michigan, United States. We provide clear evidence that 

groundwatersheds, created using data on groundwater levels from well logs collected over 

several decades, may be a useful tool in advancing the understanding and prediction of stream 

biogeochemistry. Specifically, in lowland watersheds, groundwatershed delineation may provide 

a better framework for relating land use to stream biogeochemistry than comparable surface 

watershed modeling approaches. In all instances of measured stream biogeochemistry at the 

network scale, groundwatersheds performed nearly as well or better than surface watersheds 

predictive models of stream biogeochemistry. Still, despite this study leveraging rarely available 

stream synoptic chemistry and having high spatial resolution of the groundwater topography, it is 

still clear that the availability of groundwater data limits rigorous assessments of the strengths 

and weaknesses of a groundwatershed versus surface watershed approach to modeling chemistry 

in Augusta Creek. Therefore, in streams where even less high spatial resolution water quality 

data is available, it will be difficult to assess the utility of surface versus groundwatershed 

approaches to managing water quality. Looking forward, this study suggests that hydrologists, 

biogeochemists, ecologists, and watershed managers should work closely together to explore 

collecting more groundwater data and to use groundwatersheds as a framework for predicting 

and protecting stream water quality conditions, much in the same way that these collaborations 

have advanced watershed sciences in the past with research on riparian buffer zones (Floyd et al. 

2009), hyporheic zones (Boano et al. 2014), and stream restoration (Brazner et al. 2007). 
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CHAPTER 3: EVIDENCE FOR STREAM WATER-GROUNDWATER INTERFACE 

MODIFICATION OF LANDSCAPE BIOGEOCHEMICAL SIGNATURES 

Abstract 

There is a need to understand the stream water-groundwater interface at stream network 

scales relevant to the needs of land managers and modelers. Currently, research within this 

interface and at this scale is typically conceptual or strictly a numerical modeling effort, with 

most field studies focused on a local or feature scale. Here, we focus on assessing the reactivity 

of the stream water-groundwater interface at the network-scale across the Augusta Creek 

watershed in southwestern Michigan, USA. We use spatially-lagged linear models to assess first, 

if there is a predictable pattern of biogeochemistry in stream water that is related to the land 

cover, and second, whether this predictable pattern, or signal, propagates into and is preserved 

within the stream water-groundwater interface. We test this for several solutes including 

chloride, nitrate, and dissolved organic carbon. Our results indicate that the landscape 

biogeochemical signature found in surface waters was not preserved as it traveled through the 

shallow subsurface, where stream water and groundwater mix. We provide evidence that at this 

aggregated scale, surface water biogeochemical signals were changed as a result of reactions at 

the stream water-groundwater interface.  

 Introduction 

The stream-groundwater interface (SGI) is an important ecotone with high rates of 

biogeochemical transformations (e.g., Findlay and Sobczak 1996; Lautz and Fanelli 2008), and 

often acts as a biogeochemical processing control point for water passing through stream 

networks (e.g., McClain et al. 2003; Bernhardt et al. 2017). Given the importance of the SGI for 

watershed biogeochemical transport and transformations, there is a need for both land managers 
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and researchers to understand this interface at scales exceeding what we have historically 

measured (Krause et al. 2011). Our fundamental understanding of the SGI is primarily based on 

studies of channel lengths ranging from less than 1 m to as much as approximately 1000 m, with 

little consideration of how processes within this interface affect biogeochemical and ecological 

patterns and processes across a river network (Ward 2016). Those studies that have investigated 

the SGI at the river network-scale are generally limited to models of reduced complexity focused 

on the river corridors and not the entire watershed (e.g., Kiel and Cardenas 2014; Gomez-Velez 

and Harvey 2014). Though the modeling community has made tremendous progress in assessing 

the physical processes occurring within the SGI at network scales, they have been limited by an 

absence of empirical biogeochemical data to inform the function with respect to biogeochemical 

processing.  

 The landscape within a catchment influences the signature of the surface water 

biogeochemistry (e.g., Herlihy et al. 1998; Inwood et al. 2005). Observed patterns of stream 

biogeochemistry through a river network cannot be explained only by the surface water 

perspectives of connectivity of streams in the network and the unidirectional movement of water. 

In fact, many stream ecosystems are controlled by varying degrees of groundwater upwelling, 

though there exists a knowledge gap in understanding exactly what type of responses freshwater 

ecosystems have to groundwater inputs (Boulton and Hancock 2006). To understand river 

network biogeochemistry  we need to understand the role of the SGI is a control point across 

stream networks (McClain et al. 2003; Bernhardt et al. 2017) that affects processes such as 

retention, biodegradation, or sorption of materials in surface water or in groundwater emerging 

into streams (Edmonds and Grimm 2011). While statistical models have had some success in 

predicting stream surface water chemistry based on land use and cover in the surrounding 
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landscape (e.g., Mattsson et al. 2005; Dodds and Oakes 2006), the role of reactive control points 

like the SGI are generally not accounted for in the models. 

  To better understand how the SGI affects water quality at the watershed scale, this study 

utilized a recently generated data set of SGI biogeochemical data collected at the network scale 

(Ruhala et al. 2018) to assess whether the SGI has a consistent function as a control point across 

the entire stream network as typically applied in models, or if their function is inconsistent. We 

hypothesize that the biogeochemical carbon and nutrient signature of the SGI will be 

independent of the overlying surface water and thus not predictable from watershed land use and 

cover upstream of the sampling point. Further, we examine this hypothesis at the relatively 

understudied network-scale with a focus on understanding how the landscape signal propagates 

into and through the SGI. The Ruhala et al. (2018) study showed that the upper 20cm of the SGI 

sediments is the approximate region where most of the surface and groundwater exchange occurs 

across the lowland Augusta Creek stream network, and therefore for our study we define the SGI 

as the upper 20cm of sediments on the stream bed. Our biogeochemical species of interest are 

dissolved organic carbon (DOC) along with its spectral properties—specific ultraviolet 

absorbance at 254 nm (SUVA254, Weishaar et al. 2003) and spectral slope ratio (SR, Helms et al. 

2008), as well as nitrate (NO3
-), and chloride (Cl-). We selected DOC because it is a fundamental 

control on water quality due to its role as an electron donor in nutrient cycling and control of 

photochemistry, among other properties (Aiken 2014). Both SUVA254 and SR are commonly 

used to investigate stream ecosystems and their relationship to land use and land cover (e.g., 

Yates et al. 2016). We included Cl- and NO3
- as conservative and reactive solutes, respectively, 

commonly studied in freshwater systems (e.g., Triska et al. 1993; Barber et al. 2005; Zarnetske et 

al. 2011), and Cl- can help assess solute transport direction given its nonreactive properties. We 
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test our hypothesis by using mixed spatial lag models to assess landscape-biogeochemistry 

correlations in surface water, then test these models at different depths beneath the SGI to 

determine if they maintain their predictive power at depth. 

Materials and Methods 

Site Description 

The water chemistry data used in this study were synoptically collected across the stream 

network of the Augusta Creek watershed (Figure 17), a third-order, low-gradient watershed 

covering 98 km2 in southwestern Michigan, United States. Augusta Creek drains a mixed-use 

landscape composed of wetlands, lakes, row crops, pasture, and upland forests. The stream 

network channel is primarily composed of eroded glacial till sediments, and surface water flows 

are predominantly groundwater-fed with a dampened discharge response to storm events due to 

its abundant wetlands and minimal overland flow (Poff et al. 1997; Hamilton et al. 2018). This 

study includes sampling sites from across all three orders originating from a variety of 

hydrologic settings including lake outflows, upland forested headwaters, and wetland outflows. 

Augusta Creek flows through the Kellogg Biological Station Long Term Ecological Research 

program and has an active USGS gaging station (04105700).  
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Figure 17 - Map of Augusta Creek including (a) with the watershed boundaries in which the 

double gray line is the groundwatershed and the solid black line is the surface (topographic) 

watershed, the blue line is the stream network, yellow points represent the sampling points, and 

the green triangle represents the USGS Gaging Station (04105700); (b) displays the National 

Land Cover Database 2011 with categories found in the Augusta Creek watershed indicated in 

the legend. 

Synoptic Sampling Campaign 

 The collection of stream water and SGI samples at 39 sites distributed across first-, 

second-, and third-order stream reaches was detailed in Ruhala et al. (2018) and is only briefly 

reviewed here. The collection locations were stratified to reflect the relative stream length of 
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each stream order with 16 first-order sites, 14 second-order sites, and 9 third-order sites. At each 

site sample collection optimally included a surface water sample, 6 SGI samples at discrete 

depths beneath the sediment surface (2.5, 5, 7.5, 10.0, 15.0, and 20 cm) for a total of 307 samples 

(38 surface water and 269 SGI). All samples were collected in the shortest period of time under 

similar weather conditions to the extent possible. In total, synoptic sampling took 7 days to 

complete between 16 and 22 August 2016.  

 Samples at the SGI were collected using the relatively non-invasive MINIPOINT 

porewater piezometers (Duff et al. 1998; Harvey and Fuller 1998), ideal for collecting SGI 

samples in unconsolidated sandy and gravelly sediments. Each individual MINIPOINT 

porewater piezometer was attached to a Masterflex peristaltic pump (Cole-Parmer) using L/S 

Tygon tubing, with water drawn from the sediments at a rate of 2.5 mL min-1 to ensure minimal 

disruption of subsurface flowpaths (Duff et al. 1998). For each sample, 80 mL of water was 

collected. From this 80 mL, 20 mL of water was filtered through a series of filters as a rinse, first 

through a coarser filter to remove particulates and larger microbes (Whatman GF/F 0.7 µm 

nominal pore size) and then through a finer filter to remove remaining microbes, leaving only the 

dissolved components (Sartorius Stedim cellulose acetate 0.2 µm nominal pore size). The 

remaining 60 mL was filtered into acid-rinsed HDPE amber bottles and stored on ice until the 

end of the sampling day; thereafter it was stored in the dark at 4°C and analyzed within 28 d.  

 Each filtered sample was analyzed for DOC as non-purgeable organic carbon using a 

TOC-L total organic carbon analyzer (Shimadzu Scientific Instruments, Kyoto, Japan) with Pt 

catalyzed oxidation at 680°C. Concentrations of Cl- and NO3- were measured using a Dionex 

ICS-2100 Ion Chromatography System (Thermo Fisher Scientific, Massachusetts, USA). 

Optically-derived DOC properties were determined through absorbance measurements on a 
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Shimadzu dual-beam ultra-violet 1800 spectrophotometer (Shimadzu Scientific Instruments, 

Kyoto, Japan). The optical properties used in this study are SUVA254 and the SR. SUVA254 is 

defined as the absorbance at λ = 254 nm divided by the DOC concentration, and SR is the ratio of 

the absorbance slope from 275 to 295 nm to the absorbance slope from 350 to 400 nm.  

Watershed Delineation & Land Use 

 To determine the area from which drainage to the surface water occurred in this lowland 

stream network, we delineated a surface watershed area (i.e., the area of surface water drainage 

based on surface topography) and a groundwatershed (i.e., the area of surface water drainage 

based on groundwater levels) to each sampling site. Previous studies in this watershed and 

similar lowland watersheds have shown that the groundwater and surface watershed areas can be 

different (Lee-Cullin et al. Chapter 2, Boutt et al. 2001). We created surface watersheds and 

groundwatersheds for all 39 sites as detailed in  Lee-Cullin (Chapter 2; see Figure 18 for an 

example of the delineation of a surface watershed as compared to a groundwatershed). Briefly 

summarized, surface watersheds were created using the traditional approach based upon surface 

topography while groundwatersheds were created using freely available databases on static water 

levels in mostly residential water-supply wells to create groundwater flow and capture zones 

draining to a sample site. For the groundwatershed, we assumed two-dimensional flow and small 

vertical gradients in the hydraulic head. We then interpolated water table elevations using static 

water levels. With this we used the potentiometric surface of the water table (i.e., the water table 

topography) to delineate groundwatersheds.  
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Figure 18 - Comparison of surface watershed (black outline) and groundwatershed (red double 

outline) for a particular sampling point on a tributary of Augusta Creek, showing a case of 

particularly large disagreement between the two watershed areas. The image displays the 

different land use categories (various colors defined in Figure 17) that are included depending on 

which watershed was selected. 

The Augusta Creek land use data were obtained using the National Land Cover Database 

2011 (NLCD 2011; U.S. Geological Survey 2014; Homer et al. 2015). The NLCD 2011 is 

divided into 8 categories each with sub-categories: Water, Developed, Barren, Forest, Shrubland, 

Herbaceous, Planted/Cultivated, and Wetlands. For the purpose of this study, given the 

predominantly rural and undeveloped characteristics of the Augusta Creek watershed, we 

combined all Developed sub-categories (i.e., Open Space, Low Intensity, Medium Intensity, 

High Intensity) into a singular Developed category. In total, this developed area represents 2.5% 

of the largest, farthest downstream groundwatershed areal extent and 7.1% of the largest 

downstream surface watershed areal extent. All other land cover categories present were left in 

their original classification categories. We determined the relative proportion of all land use 

categories for each of the subwatersheds described above by taking the area of a land use type 

within a watershed divided by the total area of that watershed.   
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Linear Models to Assess Landscape Controls on Stream and SGI Chemistry 

We use linear models parameterized for surface water chemistry based on land use type 

from the contributing surface and groundwatershed to see if the SGI chemistry can be predicted 

by propagating surface water models to discrete SGI depths. If the linear model performance 

degrades in the SGI for a solute, it indicates additional processes unique to the SGI are altering 

the solute chemistry and hence is evidence in support of our hypothesis. If the linear model 

performance remains comparable to the surface water model for a solute, it indicates that the SGI 

is not altering the solute chemistry and refutes our hypothesis. And we predicted that linear 

models for reactive DOC and NO3
- characteristic will perform poorly in the SGI, while linear 

models for the more conservative Cl- will perform comparable in the SGI.  

An analysis of the ability of the groundwatershed versus surface watershed modeling 

approach for predicting surface water chemistry in Augusta Creek using linear models is detailed 

in Lee-Cullin (Chapter 2). We briefly review this to provide context for assessing how water 

delivered to the SGI via the surface watershed as compared to the groundwatershed controls the 

chemistry seen in the SGI. A linear modeling approach was used to assess how watershed inputs 

to the stream network may be modified by SGI interactions. This method was selected because it 

is relatively parsimonious and compatible with the available data.  

 The linear modeling approach starts with constructing spatial lag models to account for 

spatial autocorrelation while attempting to model stream biogeochemistry based on landscape 

attributes. All modeling was carried out using R (R Core Team 2017). We first constructed 

multiple linear regression models using the generalized ordinary least squares (OLS) equation: 

  

 

(1) 
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where y is the biogeochemical parameter we wish to predict (i.e., DOC, SUVA254, SR, Cl-, or 

NO3
-), x is the landscape unit proportion (note that we created both surface watershed models 

and groundwatershed models, each with distinct landscape proportions), β is the slope as it 

relates to the landscape unit proportion, and ε is the random error. Here, we used surface water 

data to calibrate the linear models. We started with all landscape variables in the model and 

removed independent variables in a stepwise fashion using the Variance Inflation Factor (VIF) to 

reduce multicollinearity in the models. We set a VIF threshold of 3 (Zuur et al. 2010) for all 

independent variables and each model that did not meet this criterion had the two variables with 

the highest VIF removed to create two new models. This created a suite of models. Once all 

independent variables had a VIF of less than 3 we used stepwise removal of variables using a 

significance threshold of 0.05 to reduce model complexity (after de Koning et al. 1998).  

 Due to spatial autocorrelation in the model residuals, as indicated using Moran’s I test on 

the OLS models, we converted all OLS models into mixed regressive-spatial autoregressive 

models, thereby accounting for spatial autocorrelation (see Anselin 1988; Overmars et al. 2003).  

The mixed spatial models were created using the following formulation: 

 (2) 

where ρ is fit first and is the autoregression coefficient, W is a spatial weights matrix developed 

using nearest neighbors, X is the predictor matrix from Equation(1) β is a vector representing 

slopes of the independent variables from the predictor matrix, γ is a fit parameter representing the 

autoregression coefficient of the spatially lagged explanatory values, and e represents the 

spatially independent errors.  

In our final step of modeling, we used Akaike’s Information Criteria (AIC) to choose the 

most parsimonious models within each biogeochemical solute category and for each type of 
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watershed (i.e., surface watershed or groundwatershed). The AIC determined the most 

parsimonious model as the one with the lowest AIC value. We also selected models within an 

AIC value of 2 relative to the models with the lowest AIC (i.e., ΔAIC < 2), a threshold 

commonly considered to indicate an equally parsimonious model (Burnham and Anderson 

2002). Therefore, the lowest AIC model for each watershed-biogeochemical pair and all models 

within a ΔAIC value of 2 were selected as “best-fit” models. Based on AIC, groundwatersheds 

and surface watersheds performed comparably for DOC and SUVA254, groundwatersheds were 

considered better for predicting Cl- and NO3
-, and surface watersheds performed better predicting 

SR across the Augusta Creek watershed (Chapter 2; Figure 19).  

 
Figure 19 - Comparison of AIC values for surface water spatial lag models, modified from Lee-

Cullin et al. (Chapter 2). Red circles indicate groundwatersheds were used for drainage area 

delineation while blue triangles indicate that surface watersheds were used for drainage area 

delineation. The dashed line indicates the threshold at which models below the line are 

considered ‘best fit’ models. In AIC, lower values mean a more parsimonious model.  

 The identified “best-fit” models for prediction of surface water chemistry from land cover 

were then used to parameterize models for each subsequent discrete SGI depth from 2.5 to 20 cm 

and the GW at 60 cm. Specifically, we used each best-fit model’s (for each surface watershed 

and groundwatershed delineations) chosen landscape characteristics and created new linear 
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models at every given depth. In creating these linear models, we simply kept the landscape 

proportions and allowed the slopes and random error to change to develop the best model 

possible. This led to the creation of a suite of models, all based off the “best-fit” surface water 

models, at each depth across the sediment water interface (2.5, 5.0, 7.5, 10.0, 15.0, 20.0, and 60.0 

cm). Each model’s performance was then assessed by its pseudo R2 value. We used a pseudo R2 

because the traditional coefficient of determination R2 is incompatible with spatial lag models. 

Pseudo R2 accounts for the fact that one cannot give each measure equal weight in a measured fit 

in spatial lag models. The pseudo R2 is given as the variance of predicted values divided by 

variance of the observed values (i.e., ; Anselin 1988; Overmars et al. 2003). Note 

that pseudo R2 used here matches R2 when used for OLS models.  

Results 

Stream Network Biogeochemistry 

 Results of biogeochemistry of the surface water and the SGI across the entire watershed 

are summarized in Figure 20. In general, DOC decreased moving from the surface water down 

through 20 cm in the SGI. The optical properties of DOC, SUVA254 and SR, both had greater 

variability at depth as compared to the surface water. The Cl- mean and median concentrations 

decreased slightly in the SGI but more notably increased in variability as compared to surface 

water. Similarly, NO3
- had greater variability at depth than in the surface water and had a 

generally increasing trend through depth. Both NO3
- and Cl- showed occasional very high 

concentrations in the SGI. 
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Figure 20 - Biogeochemical results of surface water and at various depths beneath the sediment 

surface in the SGI across Augusta Creek. Measurements include DOC, SUVA254, SR, Cl-, and 

NO3
-. Box and whiskers represent interquartile range, red diamonds represent mean values, and 

black circles represent outliers.  

Surface versus Groundwater Watersheds 

 Both surface watersheds and groundwatersheds varied in area across Augusta Creek, 

depending on the locations of the water sampling points within the stream network. For both 

types of watersheds, first-order watersheds had areas as small as < 1km2 while the third-order 

watersheds reached areas big as approximately the same size as the entire surface watershed area 

(~100 km2). The surface watersheds were typically larger than the groundwatersheds for the 

first-order sampling sites, while the opposite was true in third-order watersheds because 

groundwatersheds extended beyond topographic boundaries especially in the lowlands of 

Augusta Creek. Although different across the stream network, surface watershed and 

groundwatersheds areas for each of the 39 sampling points were strongly correlated (R2 = 0.98, p 

< 0.05). Each watershed type had different predominant landcovers at the largest areal extent—
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surface watersheds were predominantly Deciduous Forest, groundwatersheds were 

predominantly Pasture/Hay.  

Linear Models 

For all biogeochemical measurements except SUVA254, at each depth across the SGI, our 

best-fit linear models performed worse than they did for surface water (Figure 21). The 

exception, SUVA254, is where the surface watershed models performed better from 7.5 to 20 cm 

depth than in surface water. For DOC and NO3
-, both types of models performed relatively 

poorly at intermediate depths before improved performance at the greatest depth of 20 cm. Both 

SR and Cl- performed poorly relative to surface water at depth, with SR exhibiting an increase in 

model performance from 5 to 7.5 cm. 

 

 
Figure 21 - Pseudo R2 results for spatial lag models across all depths for each biogeochemical 

measurement across all depths within the Augusta Creek stream network. Solid red lines 

represent groundwatershed models while dashed blue lines represent surface watershed models.  

Pseudo R2 values close to one indicate a higher proportion of the overall variance of modeled 

values representing the overall variance of observed values.   
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Discussion 

 The decreasing performance of spatial lag models from the surface water into the SGI for 

DOC, SR, NO3
-, and Cl- across the stream network indicates that the landscape signal evident in 

the surface water chemistry across the stream network is not fully preserved in the SGI. This 

supports our hypothesis that the SGI generally functions as an ecotone that modifies the 

landscape biogeochemical signals across the entire stream network. This study also adds further 

support that the SGI functions as a biogeochemical control point across the landscape (Bernhardt 

et al. 2017) and builds upon the large number of studies finding the SGI as a highly reactive 

ecotone.  

We find that both DOC and NO3
- in the surface water samples are well predicted by 

either groundwatershed or surface watershed models. However, the ability of landscape 

attributes to predict DOC and NO3
- generally decreased when trying to model conditions in the 

SGI. These DOC and NO3
- model results suggest that both the surface water and deeper SGI 

samples are by the upstream landscape, but as these solutes move along flowpaths through the 20 

cm of observed SGI, the signals are attenuated or lost. While understudied for lowland watershed 

SGIs,  a number of studies from upland SGIs have found that concentrations of DOC and NO3
-, 

which are typically abundant solutes in surface and groundwaters, decrease through the SGI as 

compared to the surface water (e.g., Pinay et al. 1994; Schindler and Krabbenhoft 1998; Sobczak 

and Findlay 2002). Further, Zarnetske et al. (2011a; b) found that labile fraction of the DOC, 

critical to NO3
- processing within the SGI (e.g., fueling denitrification), decreased more rapidly 

along SGI flowpaths than did total DOC concentration. Hence, it is probable that the similar 

patterns of predictability in our models between DOC and NO3
- are due to their coupled 

biogeochemical relationship in SGIs.  
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It is notable that, despite the similarities in performance between the DOC and NO3
- 

predictive models, the NO3
- model does not have as large of an increase in its pseudo R2 value at 

depth in the SGI. This distinction between models at depth can be attributed to the process by 

which NO3
- is utilized in SGIs. For example, removal of NO3

- via denitrification occurs primarily 

in SGI zones absent of oxygen. Conversely, DOC processing in the SGI occurs both in the 

presence of oxygen (e.g., via aerobic respiration) as well as in the presence of NO3
- (e.g., via 

anaerobic respiration). Therefore, the DOC is likely to be processed throughout the entire SGI, 

while NO3
- may still be at an intermediate stage of its processing at depth because its removal is 

dependent upon DOC and redox conditions.  

The SR models performed poorly overall, even in surface water, with a marked decrease 

in performance when moving into the SGI. The SR is inversely correlated to molecular weight of 

DOC (Helms et al. 2008). In some cases, higher SR values have been linked to protein-like, 

generally fresher DOC as compared to terrestrially derived, humic-like DOC, often associated 

with baseflow (Fasching et al. 2015b) or upstream locations (Helms et al. 2008). Further, SR is 

associated with clearer waters (Helms et al. 2008; O’Donnell et al. 2012), consistent with 

degraded DOC in freshwater (Mann et al. 2012). Across Augusta Creek, SR generally illustrated 

that there was a decrease in molecular weight and greater variability with depth in the SGI 

(Figure 21).  Our inability to accurately predict this optical DOC property at depth indicates that 

the landscape fingerprint is modified in the SGI. This modification diminishes our ability to 

predict DOC composition in the SGI and, together with the greater variance and generally 

decreasing SR in the interface across the stream network, illustrates the reactivity of the SGI, 

especially with respect to the biotic (microbial degradation) and abiotic (sorption) processes. It is 

well established that DOC may undergo several biotic (e.g., Amon and Benner 1996) and abiotic 
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(e.g., Nelson et al. 1993; Cory et al. 2014) processes during its transportation through stream 

networks. It appears that these transformation processes are consistently occurring across the 

entire Augusta Creek network within the SGI.  

Surface watershed and groundwatershed models for SUVA254 had distinct results from 

each other, with the surface watershed models substantially outperforming the groundwatershed 

models. This is troubling as SUVA254 is one of the most frequently and readily measured 

attributes of DOC in aquatic ecosystem studies. SUVA254 has been useful in that it is well-

correlated to the aromaticity of DOC (Weishaar et al. 2003). Both surface and groundwatershed 

models performed similarly for the surface water models. However, the groundwatershed 

performance decreased moving down to 5 cm depth and the pseudo-R2 remained at lower values 

through the SGI, while the surface watershed stayed relatively consistent moving from surface 

water through the SGI. This unique result has implications for selection of a surface watershed or 

a groundwatershed delineation. Selection of one watershed delineation over the other produces 

different results across the SGI watershed and our interpretation thereof—selection of the surface 

watershed would lead to an interpretation that the landscape signature observed in surface water 

can be seen through the entire SGI, while the groundwatershed would lead to an interpretation 

that this signature is removed through the SGI.  

Our vertical profiles through the SGI showed decreasing median values of SUVA254 

moving from the surface water through the SGI, with outlier points that are substantially higher 

at each depth from 7.5 down top 20 cm. This general pattern of a decrease through the SGI can 

be interpreted as decreasing aromaticity in the DOC pool at depth. This stands in contrast to 

other studies comparing surface DOC to comparable (15-35 cm) and deeper (1.5 m) sediment 

porewater DOC (e.g., Lambert et al. 2013; Fasching et al. 2015a). There is evidence of DOC 
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processing in the SGI for this aromatic pool of DOC. However, given that we cannot determine 

whether surface watershed or groundwatershed models are superior, it is difficult to draw 

broader conclusions about the propagation of the landscape fingerprint of SUVA254 into the SGI.  

The conservative solute Cl- had the highest pseudo R2 values in surface water, in contrast 

to low pseudo R2 values deeper in the SGI. It is unlikely that this disparity can be attributed to 

reactivity, given the conservative nature of Cl-. More likely in this instance is that the surface 

water Cl- expression is closely linked to the landscape while groundwater flowpaths and mixing 

in the SGI decouple this relationship locally. The difference between the diminished pseudo R2 

for Cl- as compared to the reactive solutes can be attributed to legacy Cl- concentrations building 

up along the groundwater flow paths due to de-icing agents used in watersheds (Kaushal et al. 

2018). We assert that poorer performance of SGI models can be attributed to factors we did not 

include in the models. This includes factors such as hydrodynamic mixing between groundwater 

and surface water Cl- and local heterogeneities. The effective result from the processes listed 

above is a much greater variability of Cl- concentrations in the SGI (Figure 20). 

In this study, we focused on the biogeochemistry of the SGI across an entire stream 

network, and as a result less emphasis went into characterizing the heterogeneity at each 

individual sampling site. This is in line with the recommendations of (Lee-Cullin et al. 2018) for 

how best to characterize longitudinal heterogeneity of the SGI across the the Augusta Creek 

stream network. However, it must be noted that local heterogeneity in space and time can be 

highly variable in the SGI. For example, intrameander flow paths may cause a shift from 

upwelling to downwelling in a given bend of a river (Nelson et al. 2019), and variability in 

stream stage can change exchange rates through the SGI (Boano et al. 2014). However, small 

changes in stage are observed in Augusta Creek across variable flow conditions (Poff et al. 1997; 
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Ruhala et al. 2018) and in many cases the sediment heterogeneity is relatively small across the 

watershed as it consists of mostly well sorted and high permeability sands and gravel with sandy 

matrix (Ruhala et al. 2018). Tonina et al. (2016) showed that when there are low levels of 

sediment heterogeneity in the SGI, the hydraulics of the SGI can be assumed to be homogeneous 

when working at scales larger than a single streambed morphologic feature.  

Finally, the timescale of groundwater inputs into the stream may be well beyond the 

scope and means of the data and modeling approach of this study. Land changes over the 

timeframe of years and this is not congruent with the timescales of groundwater flow into 

recently glaciated landscapes which may be on the order of many decades (e.g., Stewart et al. 

2010; Hamilton 2012). This long residence time of solutes in the groundwater allows for 1) many 

biogeochemical processes such as sorption and uptake to occur and 2) the overlaying landscape 

to be modified. The latter means that the modeling approaches used in this study for relating the 

stream and SGI biogeochemistry to LULC may be temporally decoupled from landscape changes 

and therefore models that are better able to account for these temporal legacies in groundwater is 

an opportunity for future research.  

Conclusion 

 The reactivity of the SGI is widely documented and often included in conceptual 

biogeochemical models (e.g., McClain et al. 2003; Bernhardt et al. 2017), but this study is one of 

the first to provide a framework that quantifies patterns across a river network using SGI 

measurement. It provides clear evidence that the SGI is unique from surface and ground water 

conditions and that landscape signals are modified as they transit through the SGI. This study of 

the propagation of the landscape biogeochemical signals imparted on stream biogeochemistry 

into the SGI indicates that 1) stream surface water biogeochemistry can be predicted using both 
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surface watersheds and groundwatersheds and their landscape cover in a lowland stream, 2) this 

predictable network-wide signal associated with landscape cover diminishes as stream water and 

groundwater mix in the SGI, and 3) selection of areal delineation of watersheds draining to a 

point in the stream network should be done carefully according to this study, because, for some 

solutes, the groundwatershed delineations approach outperforms the more traditionally used 

surface watershed delineation approach. This research builds upon and provides quantitative 

evidence in support of the SGIs operating as  biogeochemical control points altering landscape 

biogeochemical conditions (McClain et al. 2003; Bernhardt et al. 2017) and provides one of the 

few efforts to date to expands the focus of SGI field assessments from point and reach scales to 

network scales as called for by Ward (2016). Consequently, this study informs water quality and 

ecological efforts attempting larger-scale watershed modeling and watershed management 

practices. 
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CHAPTER 4: EVALUATING THE SURFACE WATER-GROUNDWATER INTERFACE 

FUNCTION IN TRANSFORMING AND DEGRADING OF DISSOLVED ORGANIC CARBON 

ACROSS SIX MIDWESTERN STREAMS. 

Abstract 

Complex dissolved organic carbon (DOC) compounds are a key control of the ecology and water 

quality of freshwater systems. There is much uncertainty about the fate and transport of 

dissolved organic carbon, particularly through highly reactive stream-groundwater interfaces 

(SGIs). This study assesses the molecular composition and transformation of specific molecular 

DOC properties in surface waters and the underlying sediments of SGIs. Specifically, we attempt 

to understand what, if any, consistent DOC processing occurs within the SGI across a variety of 

stream systems. To guide this assessment, we hypothesize that distinct DOC sources, with 

unique molecular properties and composition, will decay within the SGI and the remaining DOC 

will approach similar composition signatures, regardless of DOC origin or the specific SW-

GWSGI the DOC passes through. We assess this hypothesis by using controlled laboratory 

bioassay and DOC molecular characterization methods to document changes in DOC molecular 

properties when different natural DOC sources are exposed to the surface waters and SGI 

sediments collected from 6 unique stream sites. Using a mixed-effects linear model, our results 

generally support the hypothesis but indicate that there is very little consistency in 

transformations of most components of the DOC due to interactions with stream sediments. Most 

dissolved organic carbon components decompose based on more complicated interactions 

between sources of carbon and the specific surface water components. 

Introduction 

 Organic carbon is a key control on water quality and the ecology of stream networks, 

controlling nutrient and contaminant cycles, food webs, and drinking water quality and treatment 

(Aiken 2014).  In streams, organic carbon is predominantly in the form of dissolved organic 
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carbon (DOC, Cole et al. 2007; Battin et al. 2008). The composition of DOC is complex and 

highly variable because it depends, in part, on the origin of the carbon in the landscape (e.g., high 

humic content from soils as compared to wetland vegetation; Hansen et al. 2016).  Ultimately, 

DOC composition affects its fate and reactivity in the environment (e.g., DOC participation in 

biogeochemical reactions such as denitrification). Much DOC research has relied on 

measurements of the total concentration without information of its composition or properties. 

Emerging techniques and technologies to infer the molecular properties of DOC now allow 

investigation of the complexity of DOC, enabling more advanced understanding of DOC 

reactivity and function.  

 The fate of instream DOC is largely driven by metabolic activity at the interface of 

streams and groundwaters (Grimm and Fisher 1984). The stream-groundwater interface (SGI) is 

an ecotone where metabolic rates are often orders of magnitude greater than surface waters due 

to favorable physical and chemical conditions (Findlay and Sobczak 1996). Therefore, this zone 

is considered a “hotspot” and “control point” of nutrient and reactive solute transformation in 

watersheds (McClain et al. 2003; Bernhardt et al. 2017).  Despite this interface being a known 

biogeochemical hotspot, there is still uncertainty in how DOC properties are altered in 

subsurface zones. There are few studies to date assessing DOC alteration in SGIs, and those that 

exist reveal different fates of DOC properties in the SGI. For example, Sobczak and Findlay 

(2002) did detailed characterizations at a one stream site and found that lower concentrations of 

DOC in the SGI were due to labile DOC removal and accumulation of recalcitrant DOC at depth. 

On the other hand, Helton et al. (2015), working at a single stream site, observed an increase in 

DOC lability as it moved along subsurface flowpaths. Because study observations at from 

different site SGIs can be contradictory, it is important to identify whether there are any 
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consistent patterns of DOC transformation and degradation across multiple stream sites, and to 

see what factors drive changes in DOC composition. Identifying consistent DOC transformations 

in SGIs would enable possible simplified representations SGI effects on the fate and transport of 

DOC in watershed process-based models. However, if there are not consistent DOC 

transformations across SGIs then models may need to account for local, site-specific conditions 

(e.g., water and sediment geochemistry) controlling the fate and transport of DOC through SGIs. 

 There are several factors that can complicate the interpretation of DOC transformations 

within the stream and SGI, and some of these key factors are briefly reviewed here. First, 

hydrologic conditions are highly dynamic in most stream networks and these dynamics influence 

how streams and groundwaters interact in the SGI. The SGI sometimes manifests as an ecotone 

called the hyporheic zone, where surface water enters the subsurface, mixes with groundwater, 

and returns to the surface (Boano et al. 2014). The relative presence and exchange rates of the 

hyporheic zone vary depending on factors such as the sinuosity, longitudinal elevation profile, 

and upwelling and downwelling of the stream water (Cardenas et al. 2004; Boano et al. 2014). 

Because the hyporheic zone has a substantial effect on solute transport processes (Stream Solute 

Workshop 1990; Ward et al. 2010; Aubeneau et al. 2016), variation in hyporheic zone hydrology 

will further control solute transport and transformation. Second, the source of stream DOC that 

can exchange with the SGI is highly variable. Much of the freshwater DOC may be derived from 

soil processes (e.g., Lambert et al. 2011) or from more direct inputs, such as litterfall, which are 

often exposed to highly reactive biological processes before ever reaching the stream (e.g. Amon 

& Benner, 1996). Also, DOC can be sourced from other aquatic ecosystems connected to 

streams, such as wetlands. In some cases, wetland complexes can contribute a disproportionate 

amount of DOC to streams, where DOC is tightly linked to wetland coverage within the 
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watershed (Bouchard 2007; Hansen et al. 2018). Third, DOC is highly reactive and undergoes 

both biotic and abiotic transformation processes such as photolytic degradation (e.g., Cory et al. 

2014; Wagner and Jaffé 2015) or sorption to mineral surfaces (e.g., Nelson et al. 1993). All these 

DOC fate and transport factors interact in the SGI to create a complex system that is difficult to 

isolate specific controlling factors. Here, we isolate one aspect of the complexity—the role of the 

SGI physical transport by conducting bioassay studies—to help determine how similarly or 

differently unique sources of DOC will be processed.  

 In this study, we attempt to understand what, if any, consistent DOC processing occurs 

within the SGI across a variety of stream systems. To guide this assessment, we hypothesize that 

distinct DOC sources, with unique molecular properties and composition, will decay within the 

SGI and the remaining DOC will approach similar composition signatures, regardless of DOC 

origin or the specific SGI the DOC passes through. We propose this hypothesis because there 

several biotic and abiotic factors driving the fate of DOC in SGIs discussed above may act in 

concert to homogenize DOC properties (Figure 22). The processes we expect to occur in the SGI 

include physical processes such as mineral sorption of humic substances (e.g., Murphy et al. 

1990) and biological degradation (Hur et al. 2011; Sleighter et al. 2014) of “fresher” or more 

labile DOC components. With these two processes acting as the primary modes of 

transformation of DOC, there will be a diverse array of DOC constituents remaining in solution, 

but we expect to see a predictable pattern emerging from exposure to stream water alone as 

compared to treatment with SGI sediments. We expect that the labile and sorption properties of 

DOC will be rapidly diminished, leaving relatively inert and recalcitrant DOC within the SGI. 

Over time, we expected to observe relatively inert DOC within the SGI, which ultimately would 

be available for downstream transport to other aquatic ecosystems (Kerner et al. 2003).   
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Figure 22 - Conceptual figure representing the proposed mechanisms by which DOC is 

consistently processed in the SGI. Here DOC enters the SGI as a unique, diverse pool of 

constituents. Once in the SGI processes such as sorption (e.g., Nelson et al. 1993), enzymatic 

hydrolysis (e.g., Volk et al. 1997), biological metabolism (e.g., Cammack et al. 2004), and redox 

transformation (e.g., Lovley et al. 1996) all occur, leaving only the less reactive components of 

the DOC pool to exit the SGI back into the surface stream water. 

Materials and Methods 

Field Sites and Sample collection/preparation 

 This study encompasses six sites across Michigan and Oklahoma (Table 1) including 

samples from a headwaters of the Kalamazoo River in southwest Michigan (Augusta Creek 

watershed), the Manistee and Au Sable watersheds in central Michigan, two tributaries to Lake 

Michigan coastal watersheds, and a tributary to the Red River in Oklahoma (Kiamichi River 

watershed). 

Table 1 – Outline of site locations and the types of DOC sources used across each site. 

Site Location DOC sources 

Augusta Creek Michigan floc, 2 sources fresh leaves 

Manistee Michigan aquatic vegetation, shrub foliage 

Au Sable Michigan ground vegetation, shrub foliage 

Lake Michigan Coastal 1 Michigan fresh leaves, shrub foliage 

Lake Michigan Coastal 2 Michigan aquatic vegetation, shrub foliage 

Kiamichi Watershed Oklahoma senesced leaves 
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 Sources for DOC leaching were collected within the watershed for each stream studied 

and, in total, included 12 different sources of DOC likely to interact with the site SGIs. These 

sources encompassing aquatic vegetation, ground vegetation, shrub foliage, tree leaves, and 

flocculent organic sediment (floc). Vegetation sources included freshly clipped vegetation and 

previously senesced leaves recovered from the ground during water and sediment sampling. The 

primary purpose of a wide range of DOC sources was to ensure a broad range of unique DOC 

compositional properties. Each DOC sourced was collected and prepared as follows. Floc was 

collected by visually identifying floc patches in the streambed and collecting organic sediment 

from the mineral sediment surface. This floc sediment was then filtered through a 1 mm sieve 

and stored at 4°C until use in experiments. The other fresh DOC sources were dried in an oven at 

65°C for 48 hours and stored in vacuum sealed plastic containers until use. Leachates of DOC 

were created using dried DOC sources. First, DOC sources were broken into coarse pieces. Then, 

approximately 6 g of dried mass was added to 1 L of ultrapure deionized water and allowed to 

steep for 24 hours. After 24 hours, the leachates were filtered through 0.45 µm glass microfiber 

filters (Whatman GF/F, 25 mm diameter). Leachates were stored in amber bottles at 4°C and 

used within 24 hours.  

For each study site, stream water was collected from the stream channel in I-Chem LDPE 

Cubitainers (Thermo-Scientific) that were triple rinsed with ultrapure water. Water was stored in 

the dark and kept at 4°C until use. Stream sediment at each site was collected as a core within the 

top 10 cm of the streambed and kept saturated with water and at least 3 cm of water above it. 

Sediment was also stored in the dark and kept at 4°C until use. Before use, sediment was stirred 

to create a well-mixed sediment sample.  
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Laboratory bioassays 

 Our bioassay methods followed Dahm (1981) because it is transferable across the stream 

sites and DOC sources and only required minor modifications for our particular experiment as 

detailed below. We created a series of treatments that included ultrapure water with leachate, 

stream water with leachate, stream water and sediment with leachate, stream water only, and 

stream water with sediment only. Separate leachate treatments were created for each DOC source 

(Table 1) and all treatments were conducted in triplicate. For each replicate we added 450 mL of 

water (either stream or ultrapure) to acid-washed glass amber bottles. For replicates containing 

sediment, we weighted out 5 g of sediment and added it to the 450 mL of stream water. At the 

beginning of the experiment we added 16 mL of leachate to each replicate containing leachates 

and swirled bottles to mix well. Throughout the bioassay experiment we periodically (every 6-8 

hours) mixed open bottles for 30 seconds to oxygenate the water via removing the top and 

swirling the bottle. The room temperature was monitored and maintained at 21±2°C to ensure 

there were minimal temperature effects on the experiment.  

 All treatments were sampled at three intervals: initial samples were collected from each 

bottle at 0 hours (i.e., immediately after all leachates were added and mixed); at 24 hours; and 

finally, at 48 hours. For each interval, a 60 mL sample of the solution was withdrawn. Of these 

60 mL, first 10 mL were pushed through a 0.7 µm glass microfiber filter (Whatman GF/F) and 

0.2 µm cellulose acetate filters (Sartorius) in series as a filter rinse. The final 50 mL was pushed 

through the filters into a 60 mL acid-washed plastic bottle. Filtered samples were stored at 4°C 

until sample analysis for DOC molecular properties as described below.  

DOC analysis 
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 As this study is focused on how DOC properties shift when interacting with SGI 

sediments, quantifying and analyzing multiple DOC molecular properties is the focus of the 

DOC analysis. These DOC molecular properties were characterized via optical characterization 

metrics described below. The sample optical measurements were determined using an Aqualog 

(Horiba Scientific) with 1 cm quartz cuvettes. We measured the spectral slope ratio (SR), which 

serves as a proxy for molecular weight, as the slope from 275 to 295 nm divided by the slope 

from 350 to 400 nm (Helms et al. 2008). Fluorescence spectra were measured from excitation-

emission matrices (EEMs) following Cory et al. (2010) to generate multiple DOC optical 

metrics. EEMs were all corrected for inner-filter effects as well as for instrument-specific 

corrections in Matlab (Cory et al. 2010).  Fluorescence measures included the Fluorescence 

Index (FI), Freshness Index (β:ɑ), Humification Index (HIX), Peak A, Peak C, and Peak T. The 

FI was calculated as the ratio of emission intensity of 470 nm to the intensity of 520 nm at an 

excitation wavelength of 370 nm. The ratio β:ɑ, originally used in marine environments, 

represents the relative freshness of DOC and was calculated as the ratio at an emission of 380 nm 

over the maximum emission between 420 and 435 nm both at an excitation of 310 nm (Wilson 

and Xenopoulos 2009). The HIX represents the relative level of humification and is calculated as 

the area under the emission of 435 to 480 nm divided by the peak area from 310 to 345 nm all 

using an excitation wavelength of 254 nm (Ohno 2002). Peak A and Peak C both represent 

humic-like fluorophores and are calculated as the maximum emission from 400 to 460 nm at an 

excitation of 260 nm and the emission from 420 to 460 nm at an excitation emission of 320 to 

360 nm, respectively (Coble et al. 2014). Finally, Peak T represents Tryptophan-like 

fluorophores (protein-like) and was calculated using the emission intensity at 340 nm from an 

excitation of 275 nm (Coble et al. 2014).  
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 We used principal components analysis (PCA) to visualize the optical properties of the 

various sources of DOC used in the bioassays. This multivariate analysis allows us to look at the 

multidimensional DOC optical space in a simpler two-dimensional space. We included the 

fluorescence and absorbance metrics mentioned above. This enables us to explore how DOC 

sources varied relative to each other based on their optical properties.  

Mixed effects model 

 To understand the relationship between the transformation of different sources of DOC in 

relation to their exposure to the SGI we developed mixed-effects linear models (Baayen et al. 

2008b) using the lme4 package (Bates et al. 2015) in the open source computing software R (R 

Core Team 2017). We selected a mixed effects model to assess our hypothesis because it is a 

straightforward method that is robust for our sample size and has fewer assumptions that could 

potentially be violated as compared to some other statistical methods. In this modeling technique 

we specify the fixed and random effects (i.e., those parameters that do not vary and those that 

vary randomly). In our formulation we set time, the source of DOC, and the medium (e.g., 

stream water alone or stream water and sediment together) as fixed effects and the individual 

bioassay bottle as a random effect. The bottle was the only parameter set as a random effect as it 

would also encompass any heterogeneities in inter- and intra-site heterogeneity. Each DOC 

optical property, the dependent or response variable, was given its own mixed effect linear 

model. These response variables were transformed individually using Box-Cox transformations 

(Box and Cox 1964) to meet assumptions of normality.  

 Models were fitted using restricted maximum likelihood methods, which are less likely to 

commit Type 1 Errors (false positive) than the alternative, maximum likelihood (Luke 2017). 

Restricted maximum likelihood deals with small sample sizes better than maximum likelihood 
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methods (Pinheiro and Bates).  Models were checked for normality of residuals at both the first 

(individual observations) and second (random) levels. Finally, models were evaluated in two 

ways. First, the significance of random effects was evaluated using a likelihood ratio test (LRT; 

Baayen et al. 2008) from the lmerTest package (Kuznetsova et al. 2017) in R (R Core Team 

2017) where the model with a random effect included is compared to the model with the random 

effect removed to see if the random effect produces a significantly different model (ɑ = 0.05).  

Second, we corrected p-values of the fixed effects using the Kenward-Rogers adjustment (Littell 

et al. 2002) from the package stats (R Core Team 2017), which is used to adjust p-values due to 

the high dimensionality of our mixed effects linear model (Bühlmann 2013). The Kenward-

Rogers adjustment is an approximation for degrees of freedom for the F distribution, which is 

appropriate for restricted maximum likelihood and relatively robust among other types of p-value 

adjustments (Luke 2017). 

Results 

DOC optical properties and Principal Components Analysis 

The optical properties of DOC varied within a narrow range across all DOC sources 

(Table 1) and media, with the exception of one DOC source. The DOC from Thuja occidentalis 

from a Lake Michigan coastal watershed had Peak A and Peak C values that were consistently 

several factors larger than across other DOC sources. Average optical property values for each 

DOC source/medium combination can be found in Appendix B, Table 6.  

The initial DOC properties and their changes during the bioassays were analyzed together 

in the PCA. The first principal component from the PCA explains 87.8% of the variance of the 

data, while the second principal component explains 5.9%. The first two principal components 

together explain 93.7% of the variance of the optical properties for this study (Figure 23). From 

the PCA we can see distinct clusters for DOC sources, with some sites clustering more closely 
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than others. Each DOC source has a trend of change through time of incubation, with values 

appearing to decrease along the first two principal components in several cases (Figure 24).  
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Figure 23 - Principal components 1 and 2 for all optical measurements and all DOC sources 

included in this study. Data include all time points in the bioassays. Each axis represents a 

principal component, which condenses multi-dimensional space into two-dimensional space. 

Arrows represent each DOC optical property that went into the PCA. Each unique DOC source is 

given a unique color to show its placement in this reduced dimensionality.  
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Figure 24 - PCA results of all optical measurements for all DOC sources included in this study, 

plotted the same as Figure 23 but with symbol colors indicating time of incubation in the 

bioassays, with initial samples appearing as navy blue and end point samples appearing as red. 

Mixed effects models 

 Across the mixed effects models, all fixed effect parameters and interaction parameters 

were considered significant (p < 0.05), but were dependent on each optical property (Table 2). 

For the Peak A model, the time parameter was not significant. For the FI model, one DOC source 

parameter was not significant. Finally, for the Peak T model, none of the interaction terms were 

significant. The random effects of bioassay bottle were significant for every model (p < 0.05). 

For all models, there was no overdispersion (i.e., observed variance is higher than expected) nor 

were any of the produced models singular (i.e., perfect correlation between columns of data in 

the model matrix).  
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Table 2 - Results of each mixed effects model for individual optical properties. An 'x' denotes 

significance (p < 0.05) of model parameters. 

Independent  

Variable 

Fixed Effects Random 

Effect 

 

Optical 

Property 

 

 

Medium 

 

DOC 

Treatment 

Medium 

Treatment 

Interaction 

 

 

Time 

 

 

Bottle 

SR x x x x x 

Peak A x x x  x 

Peak C x x x x x 

Peak T x x  x x 

Β:ɑ x x x x x 

FI x x x x x 

HIX x x x x x 

Discussion 

DOC Optical Properties 

  Our PCA approach revealed discrete clusters of the various DOC sources (Figure 23) 

demonstrating that our DOC leachates were distinct in their molecular composition. While we 

did not have an a priori concept of the magnitude of difference between leachates, we did expect 

that each leachate would cluster uniquely in a PCA, expecting that the DOC leached from 

various sources will produce unique fluorescent signatures as seen in prior studies (e.g., Cuss and 

Guéguen 2015). We note that most DOC sources fall between values of -2 and 2 on the PC1 axis, 

though one DOC source is clustered very far to the left on the PC1 axis. The large separation 

between Thuja occidentalis (commonly known as northern white-cedar, the fresh leaf DOC 

source at Lake Michigan Coastal 1 site) and the other DOC sources appears to be due to a high 

fluorescent value of the Peak T value, representing tryptophan-like protein fluorescence. For 

these leaf leachates, Peak T was orders of magnitude higher than other DOC sources, including 

other kinds of tree leaves used in this study. Studies of EEMs in leaf leachates have found that 

several components of the EEMs, observed through Parallel Factor Analysis, are strongly 
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associated with proteins commonly found in conifers (see e.g., Wickland et al. 2007; Cuss and 

Guéguen 2012), and Thuja occidentalis is broadly categorized as a conifer. 

The bioassay method was used to specifically isolate the SGI effects on processing DOC. 

However, because of the controlled nature of this method there are several differences between 

the bioassay and in-stream conditions including, but not limited to, the flow of water, the 

oxic/anoxic gradient, and diurnal temperature fluctuations. There may be specific aspects of 

DOC processing that are overlooked due to maintenance of the bioassays in oxic conditions, 

such as the role of humic substances in microbial respiration under anoxic conditions (e.g., Scott 

et al. 1998). We also carried these studies out over approximately 48 hours, which is sufficient 

time to assess decomposition of the most labile DOC, but there is evidence that longer-term 

incubations can reveal more about DOC changes, particularly for the recalcitrant components 

(i.e., Peak A, Peak C) of the DOC pool (Kothawala et al. 2012).  

Mixed Effects Models 

 In the mixed effects models for each optical property, most if not all fixed effects and 

interaction terms representing DOC sources were significant. When the interaction terms were 

significant, this suggests that DOC sources and the medium of interest (either stream water alone 

or stream water with sediment) have interdependencies that we cannot separate from each other. 

This can indicate that the DOC signal we see after DOC transformations occur in the stream 

depends both on its origin in the landscape and how that specific DOC source interacts with 

either sediment or stream water alone. In other words, we cannot state with confidence that the 

SGI sediment by itself is significant to driving DOC molecular properties without also 

considering the origin of the DOC. This result does not indicate a clear homogenization of DOC 
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signal from the SGI as hypothesized in this study; rather, it suggests that unique DOC signals 

may propagate into and out the SGI.  

 The one exception to this interdependence of DOC source and SGI effects and that was 

observed Peak T properties. The Peak T model had no significant interaction terms. This means 

that although the DOC source terms in the model were significant, so too was the medium term. 

Therefore, there was a predictable, attributable role of the medium across all treatment/medium 

combinations at all sites for Peak T. This further implies that there was a difference in how the 

Peak T portion of the DOC was transformed when exposed to sediments compared to exposure 

to stream water without sediments.  For Peak T, there is no significant interaction between DOC 

sources and medium and therefore no interdependencies between Peak T and the medium. 

Together, this indicates that there is some sort of SGI homogenization effect on the Peak T signal 

across all unique sites and sources. Hence, there is the distinct possibility of a consistent function 

of the SGI across Peak T.  

 It should be noted that for several of the optical measurements of the bioassay water 

during experiments are likely impacted by the background DOC that could not be controlled for 

when adding natural SGI sediment and stream water to the bioassays. There is evidence in most 

of the bioassays that there was a background DOC source and that itis likely more highly 

decomposed DOC across systems than any of the fresher leachate derived DOC. The constant 

effect on Peak T by interaction with sediments as compared to stream water can likely be 

attributed to the specific characteristics of Peak T. Typically, Peak T is considered to be a proxy 

for labile, easily degraded DOC (Yamashita and Tanoue 2003; Nieto-Cid et al. 2006). In 

contrast, the optical properties Peak A, Peak C, and HIX all represent the humic, highly degraded 

components of the DOC pool. It is possible that these measurements could have been obscured 



100 

 

by background DOC already present in the stream water, as surface water DOC concentrations 

are strongly correlated to humic fluorescence (Wu et al. 2007). Humic substances make up a 

majority of freshwater DOC (McKnight and Aiken 1998; McKenna 2004) and undergo 

substantial decomposition upon leaving freshwater and entering into estuarine or marine systems 

(Kerner et al. 2003; Kisand et al. 2008), indicating a that there is additional processing potential 

of DOC that is not present in stream systems. FI may have similarly been obscured by the 

background measurement in the stream water. FI represents the DOC origin, binned categorically 

as allochthonous or autochthonous (McKnight et al. 2001), but is also an indicator of the 

aromaticity from fulvic acids (Battin 1998). It is highly probable that fulvic acids were already 

present in both the stream water and sediment used in this study (see e.g., Miller et al. 2006). The 

SR, indicative of the molecular weight of DOC, may have been similarly hidden by the presence 

of highly decomposed DOC in stream water samples. Larger molecules associated with fresher 

materials make up a very small portion of the entire DOC pool (Wu et al. 2003) and given the 

highly labile nature of the fresh materials, could have been degraded down to smaller molecules 

in the stream water-only treatments just as easily as the sediment treatments. 

 Overall, our results indicate that there is not necessarily a ubiquitous function of the SGI 

as we predicted. Notably, the lack of a discernable stream-groundwater effect, as evidenced by 

the interdependence of sediment/no sediment with DOC sources in the mixed effects models, 

strongly implies that DOC transformations from location to location may vary dramatically. 

These results may help to clarify the previously introduced contradictory results such as between 

Helton et al. (2015) and Findlay and Sobczak (2002), where one group found an increase in 

biodegradable DOC and the other found a decrease within the SGI. Broadly speaking, our results 

indicate that future studies should be careful about generalizing and broadly categorizing these 
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SGI zones when it comes to how they process the very complex suite of DOC found in the 

environment.  

 There is plentiful evidence that DOC composition depends upon its origin within the 

landscape (e.g., Stedmon and Markager 2005; Cuss and Guéguen 2015; Hansen et al. 2016) and 

that stream chemistry (including DOC) is often a reflection of its surrounding landscape (e.g., 

McGuire et al. 2014). However, the interaction between the stream and its specific DOC sources 

may be an important consideration for field researchers and modelers trying to understand how 

DOC is processed moving from headwaters to downstream locations or trying to upscale SGI 

function to the watershed scale (Krause et al. 2011). As mentioned above, for all variables except 

Peak T we found statistically significant interdependency between the DOC sources and the 

bioassay medium. Our inability to separate which variable has a more profound effect further 

emphasizes a need to understand a watershed’s particular placement in the landscape and the 

types of DOC inputs into the stream network. To some degree, this is already evident among 

microbial ecologists who have presented evidence that DOC source is linked to the composition 

of microbial communities (e.g., Docherty et al. 2006), but these details about quantity and 

qualities of DOC are rarely included in process-based waterhsed DOC models.   

We selected a mixed effects model to assess our hypothesis because it is a is robust for 

our sample size and contains fewer assumptions to be violated compared to other statistical 

methods that could be used for our dataset. However, given the complex results of this initial 

investigation of DOC transformations with SGI sediment interactions across a range of stream 

sites, the scope of this research needs to expand. In this initial investigation, bioassays were 

logistically limited in the number of total treatments and bottles by the amount of time necessary 

to collect and store samples, the amount of space needed to create bioassays, and the time and 
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cost necessary for the analyses listed below. Clearly, there is a need to expand the bioassay 

experiments to better assess the background DOC in the SGI sediments and stream waters and to 

do more sites. Hence, we recommend that future studies with the resources and labor to carry out 

a study with more replicates from a greater number of samples across more sites, which also has 

the added benefit of being able to use more robust statistics, such as a repeated measures 

MANOVA or Bayesian methods. 

Alternatively, there are many experiments that can be conducted within SGIs in the field 

that can also start to assess how DOC properties are altered in SGIs. These in situ studies of SGIs 

would provide a means to independently assess paired bioassay results. One of the common 

methods of testing in situ biogeochemical processing of SGI and other shallow groundwater 

environments is the push-pull method. However, this method will not work in all sites. In fact, 

this type of in situ push-pull testing was attempted to complement the bioassays of some of our 

study sites Augusta Creek. However, for these Augusta Creek SGI push-pull sites, the local 

water exchange rate through the SGI was large enough to prevent the assumptions from being 

met for of the push-pull experimental design and analysis (i.e., we observed that the tracer plume 

was being diluted by new, unlabeled groundwater). Beyond trying in situ investigations to 

complement the bioassays, there may be alternative lab experiments that can be used, such as 

column-scale experiments. Overall, bioassay efforts should be increased, and complementary 

field or laboratory investigations are likely needed to clearly flesh out a specific site, watershed, 

or cross watershed assessment of SGI functioning on DOC properties. 

Conclusion 

 In this study we found that unique DOC sources from different watersheds were not 

consistently processed in the SGI of their respective watersheds according to most DOC optical 
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properties investigated. Because the interactions between sediment and DOC across six distinct 

watersheds were significant, the relative contribution to the final, decomposed DOC product can 

neither be attributed solely to the origin of the DOC nor to the sediment within which the DOC is 

processed. The one exception was the humic-like Peak T component, for which the SGI 

sediments significantly modified its signal. The results of this study indicate that researchers 

should take care when assessing DOC transformations in SGIs, which are commonly known to 

function as biogeochemical control points and reaction hot spots across watersheds. Contrary to 

our expectations, this initial study of multiple stream SGI sites indicates that there is no common 

function across watersheds for DOC processing in SGIs, despite the high level of reactivity. 

Clearly, more work using different bioassay methods and larger spatiotemporal representations 

of DOC processing from many different sites is needed before the similarities or heterogeneities 

of SGI biogeochemical functions will be revealed. We can suggest from this study that future 

work investigating DOC or DOC coupled reactions in SGIs should consider in situ or detailed 

bioassay tests of DOC processing in their study watersheds because there is little evidence in our 

findings outside of Peak T that a study can assume a priori that and SGI consistently alters DOC 

properties..  
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APPENDIX A: Chapter 2 Supplemental Tables and Figures 

Table 3 - Information on groundwatersheds (GWshed) and surface watersheds (SWshed) across 

all 39 sampling points in the Augusta Creek watershed 

 

Watershed 

Designation 

GWshed 

Area  

(km2) 

SWshed 

Area  

(km2) 

 

Shared Area 

(km2) 

 

GWshed % 

Uniqueness 

 

SWshed % 

Uniqueness 

1 89.13 68.74 57.89 35.05 15.79 

2 0.15 2.02 0.14 5.56 93.19 

3 0.39 3.12 0.36 7.36 88.44 

4 89.13 68.74 57.89 35.05 15.79 

5 63.19 41.12 33.34 47.24 18.91 

6 62.77 40.87 33.05 47.35 19.13 

7 86.08 67.18 56.44 34.43 15.99 

8 69.45 49.14 39.41 43.25 19.79 

9 95.58 71.81 62.81 34.28 12.53 

10 69.43 49.11 39.39 43.26 19.79 

11 69.42 49.02 39.37 43.28 19.68 

12 5.11 9.21 5.09 0.4 44.69 

13 5.11 9.07 5.09 0.4 43.9 

14 5.12 9.23 5.1 0.4 44.77 

15 12.89 1.76 0.4 96.89 77.28 

16 19.97 7.25 5.66 71.64 21.86 

17 44.13 32.41 5.66 87.17 82.53 

18 44.05 32.4 18.37 58.3 43.3 

19 112.81 97.38 18.37 83.72 81.14 

20 19.97 7.25 5.66 71.64 21.89 

21 109.64 86.15 74.86 31.72 13.1 

22 26.23 26.12 12.89 50.84 50.64 

23 26.22 25.46 12.88 50.86 49.39 

24 26.18 25.45 12.85 50.93 49.51 

25 26.18 25.43 12.84 50.95 49.51 

26 1.55 7.1 1.29 16.87 81.83 

27 110.1 86.48 75.29 31.62 12.94 

28 0.06 0.81 0.06 0 93.01 

29 0.05 0.8 0.05 0 93.89 

30 0.06 0.8 0.06 0 93.05 

31 0.05 0.8 0.05 0 93.85 

32 92.52 71.72 60.19 34.94 16.07 

33 62.51 40.77 32.8 47.53 19.56 

34 62.88 40.99 33.16 47.27 19.11 

35 0.18 2.05 0.15 13.69 92.53 

36 12.89 1.76 0.4 96.9 77.31 

37 112.81 97.38 79.36 29.65 18.5 

38 1.55 7.05 1.29 16.87 81.7 

39 43.88 32.33 18.2 58.52 43.71 
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Table 4 - Best fit models for all measurements of surface watersheds (S) and groundwatersheds (G). A value in a column indicates that 

a the landcover category—Barren (B), Cultivated Crops (C), Emergent Herbaceous Wetland (EHW), Evergreen Forest (EF), 

Hay/Pasture (HP), Deciduous Forest (DF), Herbaceous (H), Open Water (OW), Shrub Scrubs (SS), Woody Wetland (WW), and 

Developed (D)—indicates coefficient value 

 B CC EHW EF HP DF H MF OW SS WW  D 

DOC S1  -0.66   -0.72  22.84  0.55 159.91   

DOC G1   -5.75 -3.29 -0.47     90.07   

DOC G2   -4.96  -0.52    1.28 39.16   

DOC G3   -4.32  -0.74   -7.30 2.05    

Cl- S1 13.35  18.32    15.64  1.53   7.66 

Cl- G1 -109.66  4.04 7.92 0.17  23.50      

NO3
- S1 -16.29  -30.89    -22.42   -72.03  -0.60 

NO3
- S2 -55.23     -1.72 -17.00     2.25 

NO3
- S3        -21.42 -1.46  -1.67  

NO3
- G1  -0.64   1.55     -47.68   

NO3
- G2    14.76 1.65  -29.25 -17.00     

SUVA254 S1 -40.08  -18.77    -16.99   59.20  -2.71 

SUVA254 S2 -53.412     -0.71 -13.13   84.68  -2.43 

SUVA254 G1 44.666  -3.355    -60.125   53.023   

SR S1         1.801 -109.903 1.479  

SR G1 -84.801  5.256  -0.03        

SR G2 -73.734  5.084          
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Table 5 - Number of models passing our criteria for each biogeochemical measurement. 

Biogeochemical 

Measurement 

Groundwatershed 

Models (n) 

Surface Watershed 

Models (n) 

DOC 3 1 

NO3
- 1 1 

Cl- 3 2 

SUVA254 1 2 

SR 3 1 
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Figure 25 - Location of groundwater wells in the Augusta Creek watershed from which 

groundwater levels were determined. The pink to red gradient represents depth to water table 

ranging from 0 feet down to 75 feet or greater. Well data available through the State of Michigan 

Environment, Great Lakes & Energy Wellogic. 
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Figure 26 - AIC values for all best-fit models across each biogeochemical measurement. Each 

model is represented by a point, red circles are groundwatershed models, blue triangles are 

surface watershed models, and purple circles are combined watersheds. All points that fall below 

the dashed line are considered to be comparable to the best-fit model. Models above the dashed 

line are considered to be worse than the best-fit model. 
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Figure 27 - Pseudo R2 for all biogeochemical measurements for surface watersheds (blue 

square), groundwatersheds (red triangle), and combined watersheds (purple circles). 



112 

 

APPENDIX B: Chapter 4 Supplemental Table 

Table 6 - Average optical properties for each medium/DOC source combination 

 

Site 

 

Medium 

DOC 

source 

 

SR 

 

FI 

 

HIX 

Peak 

A 

Peak 

C 

Peak 

T 

Augusta Creek Stream 

Water 

Ulmus 

americana 

1.34 1.58 0.83 1.50 0.56 0.46 

Augusta Creek Stream 

Water and 

Sediment 

Ulmus 

americana 

1.24 1.55 0.84 1.48 0.55 0.44 

Augusta Creek Stream 

Water 

Larix 

laricina 

1.09 1.51 0.81 1.44 0.53 0.55 

Augusta Creek Stream 

Water and 

Sediment 

Larix 

laricina 

1.15 1.53 0.82 1.44 0.53 0.52 

Augusta Creek Stream 

Water 

Organic 

flocculent 

sediment 

0.83 1.57 0.86 1.19 0.43 0.25 

Augusta Creek Stream 

Water and 

Sediment 

Organic 

flocculent 

sediment 

1.02 1.54 0.87 1.24 0.45 0.25 

Manistee Stream 

Water 

Potamogeto

n 

richardsonii 

1.22 1.48 0.83 1.52 0.65 0.57 

Manistee Stream 

Water and 

Sediment 

Potamogeto

n 

richardsonii 

1.21 1.47 0.83 1.54 0.66 0.60 

Manistee Stream 

Water 

Rosa 

palustris 

1.04 1.42 0.18 1.16 0.49 1.52 

Manistee Stream 

Water and 

Sediment 

Rosa 

palustris 

1.06 1.45 0.23 1.20 0.49 1.50 

Au Sable Stream 

Water 

ground 

vegetation 

1.43 1.38 0.59 1.01 0.45 1.13 

Au Sable Stream 

Water and 

Sediment 

ground 

vegetation 

1.64 1.38 0.63 0.99 0.43 0.95 

Au Sable Stream 

Water 

Aronia 

prunifolia 

0.78 2.03 0.41 1.88 1.19 2.58 
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Table 6 (cont’d) 

Au Sable Stream 

Water and 

Sediment 

Aronia 

prunifolia 

0.73 2.11 0.42 1.82 1.12 2.44 

Lake Michigan 

Coastal 1 

Stream 

Water 

Thuja 

occidentalis 

1.30 3.18 0.61 5.64 7.78 3.98 

Lake Michigan 

Coastal 1 

Stream 

Water and 

Sediment 

Thuja 

occidentalis 

1.24 3.27 0.63 6.20 8.13 4.24 

Lake Michigan 

Coastal 1 

Stream 

Water 

Asarum 

canadense 

0.91 1.78 0.74 4.06 1.75 1.91 

Lake Michigan 

Coastal 1 

Stream 

Water and 

Sediment 

Asarum 

canadense 

0.81 1.87 0.74 3.87 1.72 1.80 

Lake Michigan 

Coastal 2 

Stream 

Water 

Phragmites 

australis 

2.22 1.47 0.83 1.94 0.70 0.60 

Lake Michigan 

Coastal 2 

Stream 

Water and 

Sediment 

Phragmites 

australis 

2.69 1.49 0.85 1.95 0.71 0.56 

Lake Michigan 

Coastal 2 

Stream 

Water 

Cornus 

foemina 

0.99 1.66 0.84 3.03 1.69 0.88 

Lake Michigan 

Coastal 2 

Stream 

Water and 

Sediment 

Cornus 

foemina 

0.99 1.68 0.84 2.57 1.25 0.75 

Kiamichi Stream 

Water 

Platanus 

occidentalis 

1.11 1.99 0.86 2.01 1.29 0.61 

Kiamichi Stream 

Water and 

Sediment 

Platanus 

occidentalis 

1.13 2.02 0.86 1.98 1.30 0.50 
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