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ABSTRACT 

 

TO SPRAY OR NOT TO SPRAY: THE ECONOMICS OF WEED AND INSECT 

MANAGEMENT UNDER EVOLVING ECOLOGICAL CONDITIONS 

 

By 

 

Braeden Van Deynze 

 

The protection of crops from insect pests and weeds is fundamentally a problem of 

ecological management. Modern pesticides used to perform such management are essential to 

efficient production of corn and soybean, the two most widely grown crops in the United States. 

What pesticides are sprayed where, when, and by whom is both shaped by and shapes ecological 

conditions. This dissertation consists of three essays on how American corn and soybean growers 

make insect and weed management decisions, and the impacts of these decisions on the 

environment. 

The first essay measures the impact of glyphosate-resistant weeds on farmers' tillage 

practices using field-level data from across the United States, demonstrating how selection 

pressure within weed populations can limit the long-term benefits of pesticide technologies. 

Using a two-stage, panel data econometric model, we estimate that the spread of glyphosate-

resistant weeds has led to reduction in the adoption of conservation tillage by soybean growers 

by as much as 8.5 percentage points. Nationally, we estimate that the reduction in conservation 

tillage adoption due to glyphosate-resistant weeds has increased soil erosion into water ways by 

over 65 million metric tons and carbon emissions due to fuel consumption by 226,000 metric 

tons. 

The second essay measures the impact of farmers' pesticide use on butterfly abundance. 

By examining a full suite of pesticides in a single model, we account for substitution effects 

between products. We find neonicotinoids, the most widely used class of insecticides, have a 



 

detrimental impact on butterfly populations, both in aggregate and for prominent species such as 

Monarchs. Overall, our results show that changes in pesticide use between 1998 and 2014 

accounted for a 9% decrease in total butterfly abundance. 

Finally, the third essay examines farmers' decisions to custom hire to spray insecticides 

rather than performing such field tasks on their own. Using a pilot choice experiment, we 

demonstrate how the value farmers place on timeliness when custom hiring varies according to 

farmer characteristics. We find risk-averse farmers are more sensitive to potential delays, while 

those with more developed social networks are less sensitive.
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Introduction 

 

Pesticides use is almost ubiquitous in American row crop agriculture. Since the 1980s, 

over 90% of corn and soybean acres in the United States have been sprayed with one or more 

pesticides (Fernandez-Cornejo et al., 2014). Herbicides and insecticides, which provide 

protection from weed competition and insect pest damage respectively, represent the two most 

widely applied classes of pesticides in corn and soybeans (Fernandez-Cornejo et al., 2014). This 

dissertation consists of three essays on the economics of the use of these pesticides in these two 

crops, the most widely grown crops in the United States. 

Farmers spray pesticides because they provide more value over mechanical control, 

cultural control, and no protection alternatives. Pesticides prevent crop loss. Without control, 

corn yield would be potentially reduced 50% in the United States and Canada, a production value 

of over $26 billion annually (Soltani et al., 2016). Global wheat yields in 2001-2003 would been 

potentially 30% lower without crop protection, 50% lower in corn, and 45% lower in soybeans 

(Oerke, 2006). And among pest control options, pesticides protect crops more reliably and at 

lower financial cost to farmers than other pest control alternatives (Cooper & Dobson, 2007; 

Swinton & Van Deynze, 2017). 

While pesticides provide undeniable benefits to farmers, their use can also impose costs 

on the environment and to human health. The negative impacts of pesticides were brought to the 

forefront of public consciousness by the publication of Rachel Carson’s Silent Spring in 1962, 

soon after their use became widespread (Carson, 1962). Certain pesticides have been found to 

alter the behavior, metabolism, and development of wildlife in detrimental ways, which in turn 

has led to population declines (Köhler & Triebskorn, 2013). Pesticides can also be hazardous to 



2 

human health, with effects ranging from mild and short-term (e.g. headaches, dizziness) and to 

long-term and debilitating (e.g. asthma, cancer) (Kim et al., 2017). 

Economists have long had an interest in pesticide use as a study system. Economists have 

contributed to important management tools, including the concept of economic density 

thresholds for pests after which spraying becomes profitable (e.g. Auld & Tisdell, 1987; Hueth & 

Regev, 1974; Marra & Carlson, 1983). Other avenues of research have examined the roles of 

uncertainty and farmer attitudes towards risk in driving pesticide decisions (Horowitz & 

Lichtenberg, 1994; Pannell, 1991) and the impacts of emerging crop protection technologies on 

the use of alternatives (e.g. Perry, Ciliberto, et al., 2016; Perry, Moschini, et al., 2016). 

This dissertation contains three essays that contribute to the literature on the economics 

of pesticides by examining pest control decisions in corn and soybean fields. Each of the essays 

relates to either how ecological factors affect or are affected by farmers decisions, and therefore 

also contribute to the modeling of agriculture as a managed ecosystem (Swinton et al., 2007). 

The results highlighted in these analyses will help policymakers, farmers, and agribusinesses 

make more well-informed decisions by better projecting the environmental effects of changes in 

environmental conditions and technologies. 

The first essay is an econometric evaluation of the effects of glyphosate-resistant weeds 

on the adoption of conservation tillage in soybeans. The broad-spectrum herbicide glyphosate, 

commonly marketed as Roundup, quickly became the most widely applied soybean pesticide 

following the commercial introduction of varieties with genetically engineered tolerance to the 

chemical (Fernandez-Cornejo et al., 2014; Perry, Ciliberto, et al., 2016; Swinton & Van Deynze, 

2017). Glyphosate-tolerant soybean seed allowed farmers to more readily adopt conservation 

tillage practices, as the broad-spectrum weed control value of tillage diminished relative to 
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glyphosate (Perry, Moschini, et al., 2016). Meanwhile, an overreliance on glyphosate quickly 

resulted in the evolution of resistance in targeted weed populations (Livingston et al., 2015). 

Using panel data from thousands of U.S. soybean growers over 18 years, this essay shows that 

glyphosate-resistant weeds have diminished the conservation benefits of a glyphosate-based 

weed control system by reducing the adoption of conservation tillage in soybeans by as much as 

8.5 percentage points in some states. 

The second essay evaluates data from over a decade of butterfly population and pesticide 

use tracking surveys to measure the effects of pesticide use decisions on butterfly abundance. 

Previous studies have found negative impacts on butterfly abundance from specific pesticides 

such glyphosate (Saunders et al., 2018) or neonicotinoid insecticides (Forister et al., 2016; 

Gilburn et al., 2015). This study is the first to empirically link butterfly abundance to regional-

scale pesticide use measures that account for contemporaneous changes in pesticide technology 

adoption by farmers. The resulting analysis finds that changes in pesticide use between 1998 and 

2014 resulted in a 9% decrease in total butterfly abundance, and a 30%, 46%, and 39% decrease 

in the abundances of monarchs, silver-spotted skippers, and cabbage whites respectively. The 

increasing use of neonicotinoid seed coatings in corn and soybeans drives this result. 

Finally, the third essay presents a conceptual model of a farmer’s decision to custom hire 

for pest control. When farmers custom hire for pest control, they expose themselves to increased 

risk of yield loss due to late completion of field operations (referred to as timeliness costs) 

relative to when they choose to provide pest control on their own. The proposed model is rooted 

in transaction cost theory, which posits that firms’ choices between contracting out production 

activities or completing them on their own is driven by frictions in contracting that can prevent 

potentially mutually beneficial trades (Coase, 1937; Williamson, 1979). The model suggests 
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farmer characteristics and resources such as social capital, risk aversion, and equipment capital 

affect their sensitivity to timeliness losses from custom hiring when considering custom pest 

control options. The resulting implications are illustrated empirically with a pilot choice 

experiment. 

Tying these three essays together is a focus on socio-ecological feedbacks in agricultural 

systems. As farmers adopt new technologies to control weeds and pests, ecosystems respond. 

Weeds evolve resistance to a popular herbicide and farmers respond by returning to old 

technologies. Farmers adopt new insecticidal seed treatments, and butterfly populations fall as 

new toxins are introduced to their habitats. And the feasibility of custom pest control depends on 

the potential for timeliness costs, which are derived from the speed at which pest populations can 

damage a crop. Using economic theory and econometric modelling, this dissertation highlights 

how socio-ecological linkages shape farmer incentives. The findings presented therein can help 

guide policy attempts to align these incentives with public objectives. 
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CHAPTER 1. Are Glyphosate-Resistant Weeds a Threat to Conservation Agriculture? 

Evidence from Tillage Practices in Soybeans 

 

Abstract 

The use of conservation tillage in American soybean production has become increasingly 

common since the 1950’s, improving soil health, reducing soil erosion, and reducing fuel 

consumption. This trend has been reinforced by the availability of the general-purpose herbicide 

glyphosate and glyphosate-resistant seed genetics since the mid-1990’s. Weeds have since 

evolved to resist glyphosate, reducing its effectiveness. In this paper, we provide evidence that 

the spread of glyphosate-resistant weeds is responsible for significant reductions in the use of 

conservation tillage in soybean production. To capture the effects of glyphosate-resistant weeds 

on tillage adoption, we estimate a probit model of tillage choice, using a large panel of field-level 

soybean management decisions from across the United States, spanning 1999-2016. We find that 

while the first two glyphosate-resistant weed species have little effect on tillage practices, by the 

time that eight glyphosate-resistant weed species are present, conservation tillage use falls by 5.7 

percentage points and no-tillage use falls by 10.0 percentage points. Using a simple benefit 

transfer model to illustrate how these results can be applied, we conservatively estimate that 

between 2005 and 2016, farmers’ tillage responses to the spread of glyphosate-resistant weeds 

have caused water quality and climate damages valued at nearly $390 million. This total is likely 

to grow as glyphosate-resistance becomes more widespread and farmers continue to turn to 

tillage for supplemental weed control. 
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Introduction 

 Since the mid-1900’s, chemical herbicides have been an essential tool for weed control in 

the conventional production of soybeans and other U.S. field crops. Prior to the first commercial 

herbicides, farmers typically relied on mechanical weed control, characterized by multiple tillage 

passes to uproot established weeds and disrupt weed seedling emergence. While intensive tillage 

can provide effective weed control, it comes at a cost to the environment, leading to increased 

soil erosion and energy use, which can impair water quality and increase the carbon footprint of 

agricultural production (Uri et al., 1999). In this paper, we explore how the declining efficacy of 

glyphosate, the most widely used herbicide in American soybean production, has led farmers to 

increase the use of tillage as a weed control tool. 

When first introduced, herbicides were rapidly adopted by American field crop farmers.  

Herbicides offered weed control as good or better than tillage at lower cost (Swinton and Van 

Deynze, 2017). The introduction of soybean varieties genetically engineered to resist glyphosate 

(and later other herbicides), has further shifted soybean weed control away from tillage (Perry, 

Moschini, and Hennessy, 2016; Fernandez-Cornejo et al., 2012). Glyphosate is a broad-spectrum 

herbicide that could effectively control virtually all weeds when resistant seed varieties were first 

introduced. Glyphosate-tolerant crops, like Roundup ReadyTM soybeans, allow farmers to spray 

the herbicide throughout the growing season without damaging their crop. Farmers utilizing 

these technologies could rely exclusively on glyphosate for weed control, forgoing tillage passes 

and therefore providing cost savings to farmers and averting environmental damages. 

As glyphosate use became more frequent in soybeans and other crops, weeds soon 

evolved to resist the chemical. In 2000, a population of horseweed growing in a soybean field in 

Delaware became the first identified case of glyphosate-resistance in weeds (VanGessel, 2001). 
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As of 2017, glyphosate-resistance had been identified in 17 weed species in the United States 

(Heap, 2017). The rise of glyphosate-resistant weeds (GRWs) has led to a growing literature on 

best practices to delay and manage the onset of herbicide-resistance in weeds (Beckie, 2006; 

Evans et al., 2015; Bonny, 2016; Beckie and Harker, 2017). The increased use of tillage for weed 

control is frequently found amongst these recommendations.  

A smaller literature has focused on how farmers have responded to the onset of GRWs. 

Livingston et al. (2015) reports the results of cross-sectional surveys of corn and soybean 

growers in 2010 and 2012, respectively. They find that farmers experiencing problems with 

GRWs frequently supplemented glyphosate-based weed control with non-glyphosate herbicides, 

increased their use of glyphosate, and increased the use of tillage. Wechsler et al. (2017), using 

farm-level cross-sectional data from corn-growing states in 2005 and 2010, find that low 

numbers of GRWs have a fairly small impact on corn farmers’ weed control practices, costs, and 

yields. Perry, Ciliberto, et al. (2016) observe a sharp increase in the use of non-glyphosate 

herbicides in corn and soybeans from 2007 to 2011 and speculate that this increase is due to 

GRWs. Most recently, Lambert et al. (2017) find that weed control costs increase by $34-55/acre 

following the emergence of GRWs in upland cotton fields as farmers adopt labor-intensive 

alternatives to glyphosate. 

In this paper, we contribute to the literature on weed management in the face of herbicide 

resistance by providing the first estimate of the impact of GRWs on the adoption rates of 

conservation tillage practices in soybeans. We do so first by developing a conceptual model of a 

cost-minimizing farmer who chooses among multiple herbicide and tillage options to meet 

predetermined weed control targets. This model indicates a non-linear response to herbicide-

resistance: As more weed species develop herbicide resistance, farmers become increasingly 
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likely to make major changes to their weed control practices. We test this model empirically with 

data on the field-level weed control choices of thousands of soybean farmers during 1999-2016. 

Our econometric results indicate that while low numbers of GRWs have little impact on tillage 

choices, by the time that eight GRWs are present, conservation tillage falls by 5.7 percentage 

points and no-till adoption falls by 10.0 percentage points. Extrapolating from literature 

estimates of soil erosion and carbon emissions from tillage, and their environmental costs, we 

estimate that the shift towards more intensive tillage practices in response to GRWs has caused 

water quality and climate damage worth nearly $390 million. These damages accrued from 2005-

2016 and have been most acute in the southern states where GRWs are most prevalent. 

The rest of this paper is structured as follows: We first present a conceptual model of a 

cost-minimizing farmer who seeks to control several weeds with many herbicide and tillage 

options. We then present our empirical strategy, followed by a discussion of the data. After 

presenting of our econometric results, we conduct a benefit-transfer simulation to illustrate 

potential environmental costs. We close with a discussion of the policy implications of our 

findings and directions for future research. 

 

Conceptual Model 

 We model a farmer’s tillage decision as a two-stage cost-minimization problem, 

assuming a farmer has already determined optimal levels of weed control that are consistent with 

maximization of expected utility (Lichtenberg and Zilberman, 1986). Letting 𝑘 ∈ {1, ⋯ , 𝐾} 

index different weed species, a farmer sets a weed control target for each of their soybean fields, 
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denoted in vector form as 𝒈̅ = (𝑔̅1, ⋯ , 𝑔̅𝐾). This target represents the minimum level of control 

acceptable for each weed in the field.1 

A farmer can achieve these weed control targets through a combination of tillage systems 

and chemical herbicides. A farmer selects a single tillage system 𝜏 from the choice set {𝜏𝐶𝑇 , 𝜏𝐼𝑇}, 

where CT denotes conservation tillage and IT denotes conventional, intensive tillage. A farmer 

can select any combination of 𝐿 alternative herbicides to supplement weed control provided by 

his tillage system. Let ℎ𝑙 denote the (non-negative) quantity of herbicide 𝑙 ∈ {1, ⋯ , 𝐿}, so that a 

farmer’s herbicide choice set is 𝑯 = ℝ+
𝐿 .2 Together, a farmer’s weed control choice set is 

{𝜏𝐶𝑇 , 𝜏𝐼𝑇}  × 𝑯. 

These choices provide weed control through a “kill function” for each weed, denoted by 

𝑔𝑘(𝒉, 𝜏). We assume that for all weeds 𝑔𝑘(𝒉, 𝜏) is twice continuously differentiable, that larger 

quantities of herbicide increase control at a decreasing rate (𝜕𝑔𝑘 𝜕ℎ𝑙⁄ > 0 and 𝜕2𝑔𝑘 𝜕ℎ𝑙
2⁄ < 0, 

∀𝑘, 𝑙), and that intensive tillage provides greater weed control than conservation tillage for any 

given choice of herbicides (𝑔𝑘(𝒉̅, 𝜏𝐼𝑇) >  𝑔𝑘(𝒉̅, 𝜏𝐶𝑇), ∀𝑘, 𝒉̅ ∈ 𝑯). Notice that when weed 𝑘 has 

adapted to resist herbicide 𝑙, then 𝜕𝑔𝑘 𝜕ℎ𝑙⁄ = 0 for all quantities of that herbicide. 

We now turn to the costs of weed control. Denote the per unit costs of herbicide 𝑙 as 𝑤𝑙 

and the costs of tillage system 𝜏 as 𝑐(𝜏). These costs include labor, fuel, and chemical expenses, 

as well as potential capital investments for new tillage equipment if adopting a system for the 

first time. A farmer’s objective is to minimize these costs while achieving their weed control 

target. To do so, the farmer first determines the herbicide combination that minimizes total weed 

 
1 Farmers and weed control experts typically utilize a maximum acceptable density of weeds in a field measured as 

individuals per area (e.g. weeds/m2). This value is typically an “economic threshold” at which control action is cost 

efficient (Marra and Carlson, 1983; Swinton and King, 1994). In this model, we instead use a functionally identical 

concept of minimum acceptable control. 
2 Note that farmers can combine different products via tank mixes. We envision 𝑯 as a farmer’s herbicide choice set 

accounting for all feasible tank mixes and other combinations of retail products. 
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control costs for each of the two tillage systems subject to 𝐾 constraints (one for each weed 

species): 

min
𝒉

𝒘 ∙ 𝒉 + 𝑐(𝜏̅)  (1.1) 

𝑠. 𝑡. 𝒈(𝒉, 𝜏̅) ≥ 𝒈̅  

The optimality conditions for this problem are: 

𝑤𝑙 = ∑ 𝜆𝑘 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄𝑘  ∀𝑙 (1.2) 

𝜆𝑘[𝑔𝑘(𝒉, 𝜏̅) − 𝑔̅] = 0 ∀𝑘 (1.3) 

where 𝜆𝑘 are Lagrange multipliers for each constraint. Call the solution to the above 

minimization problem 𝒉∗(𝜏̅), and call the value function for this solution 𝑉(𝜏̅): 

𝑉(𝜏̅) ≡ 𝒘 ∙ 𝒉∗(𝜏̅) + 𝑐(𝜏̅) (1.4) 

A farmer then compares the solutions to these first-stage cost-minimization problems for 

each tillage type and selects the least-cost option: 

𝜏∗ = argmin
𝜏∈{𝜏𝐶𝑇,𝜏𝐼𝑇}

𝑉(𝜏) (1.5) 

The full solution to a farmer’s weed control problem is thus the tillage-herbicide pairing, 

(𝜏∗, 𝒉∗(𝜏∗)). 

 

Comparative Statics of Herbicide Resistance 

Now we use an exercise in comparative statics to consider how a decrease in the 

effectiveness of a given herbicide 𝑙 against a given target weed 𝑘, represented by a decrease in 

𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ , would affect  𝒉∗(𝜏̅). Let 𝒉̃∗(𝜏̅) denote the optimal herbicide choices in a scenario 

with a different, separate kill function denoted 𝑔̃𝑘(𝒉, 𝜏) where weed 𝑘 has evolved genetic 

resistance to herbicide 𝑙. That is, we assume that 𝜕𝑔̃𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ < 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ , ceteris 



14 

paribus. Under what conditions does 𝒉̃∗(𝜏̅) ≠ 𝒉∗(𝜏̅)? That is, under what conditions does the 

optimal herbicide regime for a given tillage system differ when one herbicide becomes less 

effective against a given target weed?  

If the weed control constraint for weed 𝑘 is binding under either kill function (hence 

𝜆𝑘 > 0), then 𝒉̃∗(𝜏̅) ≠ 𝒉∗(𝜏̅), as 𝜕2𝑔𝑘 𝜕ℎ𝑙
2⁄ < 0 and therefore, by the continuity and strict 

monotonicity of 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ , 𝒉∗(𝜏̅) cannot satisfy equation (1.2) if 𝜕𝑔̃𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ <

𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ . 

But if the weed control constraint for weed 𝑘 is non-binding in both scenarios (hence 

𝜆𝑘 = 0 in both pre-resistance and post-resistance weed control cost minimization problems), 

then 𝒉̃∗(𝜏̅) = 𝒉∗(𝜏̅), as 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄  would be multiplied by 𝜆𝑘 = 0 in equation (1.2) and play 

no role in the solution. Thus, decreasing herbicide effectiveness from 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄  to 

𝜕𝑔̃𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄  has no effect on herbicide or tillage choices for weeds that were “over-

controlled” prior to evolving to resist the herbicide. 

Further, this result implies that decreasing herbicide effectiveness weakly increases weed 

control costs for a given tillage choice, and therefore a single weed evolving resistance towards a 

single herbicide is likely not to influence tillage choices. As more weeds develop resistance to a 

herbicide, changes in herbicide use, and hence tillage practices as well, become more likely as 

farmers seek alternative methods to reach their weed control targets. But because some weeds 

may and are in fact likely to be over-controlled (i.e. the weed target constraint is non-binding) 

the response to herbicide resistance is inherently non-linear. If the herbicide costs associated with 

conservation tillage outweigh savings in tillage costs, then a farmer will switch to intensive 

tillage. 
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The Case of Glyphosate and Glyphosate-Resistant Weeds 

  Glyphosate is a broad-spectrum herbicide which, in the absence of genetic resistance, is 

highly effective at controlling essentially all weeds. The introduction of glyphosate-resistant crop 

varieties allowed farmers to rely heavily (sometimes exclusively) on this specific herbicide for 

weed control in soybeans throughout the growing season at a relatively low cost. Glyphosate was 

rapidly adopted as the use of other herbicides declined (Livingston et al., 2015). Swinton and 

Van Deynze (2017) attribute this trend to the cost-dominance of glyphosate-based weed control. 

When used in conjunction with glyphosate-resistant crops, pre- and post-emergent applications 

of glyphosate make tillage passes for weed control redundant, providing no additional weed 

control but incurring additional fuel, machinery, and labor costs for a farmer. 

In terms of our conceptual model, this implies that glyphosate has a non-zero marginal 

weed control effectiveness under conservation tillage (𝜕𝑔𝑘(𝒉, 𝜏𝐶𝑇) 𝜕ℎ𝑙⁄ ) for all weeds, leading 

to over control (i.e. 𝜆𝑘 = 0) for many weeds. When a weed develops resistance to glyphosate, 

the marginal weed control effectiveness of glyphosate falls. If this weed is not sufficiently 

controlled by other methods under lower glyphosate resistance (i.e. 𝜆𝑘 > 0), then either the use 

of another herbicide must increase or the farmer must switch to intensive tillage in order to 

continue to meet their weed control targets. For a single weed, this can be achieved by adopting a 

specialized herbicide. However, as more weeds evolve to resist glyphosate, we its advantage as a 

broad-spectrum weed control method over intensive tillage falls as additional herbicides are 

necessary to maintain weed control targets. Therefore, we expect compounding pressure to 

utilize intensive tillage over conservation tillage as glyphosate-resistance becomes more 

widespread. In other words, as the number of glyphosate-resistant weeds increases, we expect 
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both that intensive tillage becomes more common and that the rate at which it becomes more 

common in response to the occurrence of glyphosate-resistance to increase. 

 

Empirical Model 

To test the implications of the conceptual analysis presented above, we estimate a 

dynamic probit model with the tillage decision as the dependent variable. We include farm-level 

random effects to control for unobserved, time-invariant heterogeneity and a first-stage control 

function to account for potentially endogenous herbicide use. The unit of analysis, is the field-

level (𝑗) tillage decision on each farm (𝑖) in a year (𝑡). With 𝑦𝑗𝑖𝑡
𝐶𝑇 as an indicator for the use of 

conservation tillage, 𝑧𝑖𝑡 as the number GRWs, 𝑦𝑗𝑖𝑡
𝑁𝐺𝐻 as an indicator for the use of non-

glyphosate herbicides, 𝑦𝑖,𝑡−1
𝐶𝑇  as an indicator for the farms conservation tillage decision in the 

previous period, 𝑝𝑡
𝑓𝑢𝑒𝑙

 as an index for fuel prices, 𝒙𝒊𝒕 as a vector of farm-level conditioning 

variables, and 𝛿𝑖 as a time-invariant, normally-distributed, farm-level random effect to account 

for unobserved heterogeneity, the structural function we seek to estimate is the probability that 

conservation tillage is chosen: 

Pr(𝑦𝑗𝑖𝑡
𝐶𝑇 = 1|𝑧𝑖𝑡, 𝑦𝑗𝑖𝑡

𝑁𝐺𝐻, 𝑦𝑖,𝑡−1
𝐶𝑇 , 𝒑𝒕, 𝒙𝑖𝑡, 𝑡, 𝛿𝑖) = Φ(𝛽0 + 𝑧𝑖𝑡𝛽1 + 𝑧𝑖𝑡

2 𝛽2 + 𝑦𝑗𝑖𝑡
𝑁𝐺𝐻𝛽3 +

+𝑦𝑖,𝑡−1
𝐶𝑇 𝛽4 + 𝑝𝑡

𝑓𝑢𝑒𝑙
𝛽5 + 𝒙𝑖𝑡𝜷𝟔 + 𝑡𝛽7 + 𝛿𝑖)  (1.6) 

where Φ(∙) is the standard normal cumulative distribution function. 

In this specification, we account for a non-linear response to additional GRWs suggested 

by our conceptual model by including the variable 𝑧𝑖𝑡 in quadratic form. As controls we include 

variables, 𝒙𝒊𝒕, including measures of farm size (for scale economies in use of tillage equipment), 

soil erodibility (which affects tillage difficulty and soil water retention), and drought incidence 

(as tillage tends to reduce water retention). We include a time trend 𝑡 to capture the effects of 
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other unobserved time-varying factors that may have contributed to shifts in the use of 

conservation tillage over time. 

Before estimating this structural function via maximum likelihood, we must first address 

two issues: the initial conditions problem induced by including a lagged dependent variable and 

the potential endogeneity of non-glyphosate herbicide use. 

 Adopting conservation tillage requires significant farmer investment in both learning new 

skills and acquiring new equipment (Krause and Black, 1995; Uri, 1999). Farmers who have 

made these investments in previous seasons face lower costs associated with conservation tillage. 

To account for this effect, we use the farmer’s lagged tillage decision across all observed fields, 

𝑦𝑖,𝑡−1
𝐶𝑇 = max

𝑗
{𝑦𝑗𝑖,𝑡−1

𝐶𝑇 }, assuming that previously used conservation tillage equipment remains 

available in following period. However, including the lagged dependent variable in a panel data 

model forces us to address the initial conditions problem (Arellano and Honore, 2001). This 

problem occurs when the modelled process is not observed from its beginning. Therefore, the 

initial condition, 𝑦𝑖0
𝐶𝑇, is likely correlated with the farm-level random effect, 𝛿𝑖. 

One approach to address this issue in non-linear models is to explicitly model the 

distribution of the random effect conditional on the initial condition and the other explanatory 

variables (Wooldridge, 2005). While this method can take several forms, we follow a 

specification for the random effect that has been shown to produce unbiased estimates for 

parameters: 

𝛿𝑖 = 𝛼0 + 𝑦𝑖0
𝐶𝑇𝛼1 + 𝒙̅𝑖𝜶𝟐 + 𝒙𝑖0𝜶𝟑 + 𝜃𝑖;  𝜃𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜃

2)  (1.7) 

where 𝒙𝑖0 is a vector of all initial period explanatory variables and 𝒙̅𝑖 is a vector of explanatory 

variables averaged across all periods (Rabe-Hesketh and Skrondal, 2013). While Wooldridge 

(2005) suggests including all explanatory variables from all time periods in this auxiliary model, 
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doing so results in a model that is often computationally unwieldly due to the large number of 

incidental parameters. Rabe-Hesketh and Skrondal (2013) show that the above constrained 

model performs similarly to the original Wooldridge solution. In this form, the random effect 𝛿𝑖 

is constrained to depend on 𝒙𝑖𝑡 in the same fashion for 𝑡 > 0. But because the presence of any 

non-zero parameters in the tillage model implies that 𝑦𝑖0
𝐶𝑇 is directly dependent on 𝒙𝑖0, we 

include 𝒙𝑖0 separately from 𝒙̅𝑖 to account for this potential effect. This expression can be 

substituted directly into the structural equation, Equation (1.6), and estimation can proceed. 

 The second issue relates to the use of non-glyphosate herbicides, 𝑦𝑗𝑖𝑡
𝑁𝐺𝐻. As herbicide use 

decisions are made simultaneously with tillage decisions, this variable is potentially endogenous. 

As our primary goal is to achieve consistent estimation of the parameters on the GRW terms of 

the tillage model, one could consider omitting this variable to avoid the issue of endogeneity 

entirely. However, the use of non-glyphosate herbicides is almost certainly correlated with 

GRWs, so its omission would induce omitted variable bias in the parameters of interest. 

In cases like this one, where both the dependent variable and potentially endogenous 

variable are discrete, straight-forward approaches like two-stage least squares are unavailable 

(Wooldridge, 2015). Alternatives in this setting include bivariate probit models jointly estimated 

with maximum likelihood and “plug-in” methods where the fitted values for a first-stage model 

of the potentially endogenous variable are directly included in the structural model (Wooldridge, 

2015). The bivariate probit approach is computationally complex especially when random 

intercepts are included, while the “plug-in” methods generally estimate coefficients and partial 

effects inconsistently (Wooldridge, 2015). 

 A third option, which we use here, is a control function approach for binary endogenous 

variables in binary dependent variable models known as two-stage residual inclusion 
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(Wooldridge, 2014; Terza et al., 2008). This method offers computational simplicity when 

compared to jointly-estimated, bivariate techniques. Prior to estimating the tillage model, we 

estimate a first-stage reduced-form model for the distribution of the endogenous variable, 

calculate generalized residuals of this model, and include these residuals, denoted as 𝑟̂𝑗𝑖𝑡 in the 

structural model as an explanatory variable. The idea is that the residuals serve as a sufficient 

statistic for the degree of endogeneity in the explanatory variable. The unobserved variables that 

are the source of the endogeneity, for example unobserved latent weed pressure, are captured in 

the error term of the first-stage model. By including the residuals of the first-stage model in the 

second-stage, structural model, we essentially control for endogeneity by including an imperfect 

but sufficient aggregate measure of the unobserved variables which induce the problem in the 

first place. 

 The reduced form model we estimate for the first-stage model of non-glyphosate 

herbicide use is: 

Pr(𝑦𝑗𝑖𝑡
𝑁𝐺𝐻 = 1|𝑧𝑖𝑡, 𝑦𝑖,𝑡−1

𝐶𝑇 , 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻, 𝒙′𝑖𝑡, 𝑡, 𝜇𝑖) = Φ(𝛾0 + 𝑧𝑖𝑡𝛾1 + 𝑧𝑖𝑡

2 𝛾2 + 𝑦𝑖,𝑡−1
𝐶𝑇 𝛾3 + 𝑝𝑡

𝐺𝐻−𝑁𝐺𝐻𝛾4 +

𝒙′
𝒊𝒕𝜸𝟓 + 𝑡𝛾6 + 𝜇𝑖) (1.8) 

The price variable, 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻, is the difference between the indexed price of glyphosate and an 

index of non-glyphosate herbicide prices, while 𝒙′
𝒊𝒕 is a vector of farm size indicator variables, 

omitting the soil and drought measures included in the tillage model. The farm-level random 

effect, 𝜇𝑖, is assumed to follow a normal distribution with zero-mean and variance 𝜎𝜇
2. To 

account for the joint determination between tillage and herbicide choices, we include lagged 

tillage choice 𝑦𝑖,𝑡−1
𝐶𝑇 . This first-stage model is estimated following standard maximum likelihood 

procedures for probit models with random effects. 
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To ensure identification of the second-stage tillage model, at least one exclusion 

restriction is required so that the first-stage residuals have independent variation that is not 

entirely determined by variables already in the model (Wooldridge, 2014). We argue that the 

indexed price differential between glyphosate and non-glyphosate prices, 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻, satisfies the 

exclusion restriction. 

To satisfy the exclusion restriction, 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻 must satisfy three conditions: (1) it must not 

have a direct influence on the dependent variable in the structural model, 𝑦𝑗𝑖𝑡
𝐶𝑇; (2) it must be 

uncorrelated with omitted explanatory variables in the structural model; and (3) it must be 

strongly correlated with the potentially endogenous variable, 𝑦𝑗𝑖𝑡
𝑁𝐺𝐻 (Terza et al., 2008). We argue 

these three conditions are satisfied. First, we assume that these prices only affect farmers’ tillage 

choices via their effects on the herbicides required for each alternative system, thereby satisfying 

condition (1). A similar assumption is maintained in Perry, Moschini, and Hennessy (2016), 

where the premium for glyphosate-tolerant seed is assumed not to directly affect tillage 

decisions. The remaining two conditions are addressed in the following sections. 

With residuals from the first-stage model and the auxiliary model for 𝛿𝑖 in hand, the 

structural function we ultimately estimate is: 

Pr(𝑦𝑗𝑖𝑡
𝐶𝑇 = 1|𝑧𝑖𝑡, 𝑦𝑗𝑖𝑡

𝑁𝐺𝐻, 𝑦𝑖,𝑡−1
𝐶𝑇 , 𝑝𝑡

𝑓𝑢𝑒𝑙
, 𝒙𝑖𝑡, 𝑡, 𝑟̂𝑖𝑡, 𝑦𝑖0

𝐶𝑇 , 𝒘̅𝑖, 𝒘𝑖0, 𝜃𝑖) = Φ(𝛽′0 + 𝑧𝑖𝑡𝛽1 + 𝑧𝑖𝑡
2 𝛽2 +

𝑦𝑗𝑖𝑡
𝑁𝐺𝐻𝛽3 + 𝑦𝑖,𝑡−1

𝐶𝑇 𝛽4 + 𝑝𝑡
𝑓𝑢𝑒𝑙

𝛽5 + 𝒙𝑖𝑡𝜷𝟔 + 𝑡𝛽7 + 𝑟̂𝑗𝑖𝑡𝛽8 + 𝑦𝑖0
𝐶𝑇𝛼1 + 𝒘̅𝑖𝜶𝟐 + 𝒘𝑖0𝜶𝟑 + 𝜃𝑖) (1.9) 

This structural function can be estimated using standard maximum likelihood procedures for 

probit models with random effects.3 

 

 
3 We specifically use a Laplace approximation of the likelihood function. Estimation is performed using the R 

package lme4 (Bates et al., 2015). 
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Data 

The core of our data are field-level survey data, representative at the Crop Reporting 

District level, collected by the market research company Kynetec. These data contain 

observations on chemical and mechanical weed control practices of 22,151 farmers from 1999 

through 2016 in 31 soybean-growing states4 across the United States with more intensive 

sampling in regions where soybeans are more widely grown, for a total of 93,345 field-level 

observations. Sample lists for each year are constructed from the previous year’s list 

supplemented with payment recipient lists from the United States Department of Agriculture, 

agricultural publication subscription lists, and the membership lists of state and regional 

agricultural associations. Survey data were collected via computer assisted telephone interviews. 

Non-respondents were recontacted a minimum of eight times to reduce non-response error and 

up to 25 times in areas where response rates were low. Respondents were compensated 

monetarily upon completion of the interview. All interviews were recorded for verification 

purposes and data was crosschecked against established ranges for prices, application rates, and 

consistency with other reported practices. 

Many farms provide data for multiple fields per year and responses in multiple years, 

giving the data an unbalanced panel structure necessary to estimate the preceding empirical 

model. Tillage decisions, non-glyphosate herbicide use, herbicide prices, and farm size variables 

are all sourced from this dataset. 

The Kynetec survey data include three levels of tillage intensity: conventional, 

conservation, or no-till. Following Perry, Moschini, and Hennessy (2016), where  a shorter 

 
4 The states sampled are: Alabama, Arkansas, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, 

Kentucky, Louisiana, Maryland, Michigan, Minnesota, Mississippi, Missouri, Nebraska, New Jersey, New York, 

North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, 

Virginia, West Virginia, and Wisconsin.  
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subset of these data are used, we define two binary tillage decision variables: a conservation 

tillage indicator equal to one when either conservation or no-till is used, and no-till indicator 

equal to one when no-till is used, grouping other conservation tillage practices along with 

conventional tillage. Because the effect of GRWs on no-till use is of particular interest, we 

estimate our empirical model twice, once with each of our two definitions of tillage practices as 

the dependent variable. The proportion of fields in the sample classified as no-till and 

conservation tillage is presented in Figure 1.1. 

The practice data also identify the herbicide products applied over each field in each year. 

We identify the active ingredients in each of these products and define a binary variable equal to 

one whenever the field is treated with a product containing a non-glyphosate active ingredient. 

Figure 1.1. Percentage of Fields in Sample Under No-Till and Conservation Tillage Over 

Time. Conservation tillage includes no-till fields as well as other forms of reduced tillage. 
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The proportions of fields in the sample treated with glyphosate and non-glyphosate herbicides is 

presented in Figure 1.2. Early in the sample period, the use glyphosate became increasingly 

common, and the use of non-glyphosate products fell rapidly, likely due to the advent of 

glyphosate-tolerant soybean seed. Starting in 2006, this trend reversed, and non-glyphosate 

products were used more and more commonly. Glyphosate use reached near-saturation in the 

same year and continued to be used on over 90% of fields through 2016. 

We use the practice data to compute price indices for both glyphosate and non-glyphosate 

herbicides. For glyphosate prices, we calculate the mean price paid in dollars per pound each 

year. Because non-glyphosate herbicides represent a basket of several related products, we 

Figure 1.2. Percentage of Fields in Sample Treated with Glyphosate and Non-

Glyphosate Herbicides Over Time. 
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construct a Laspeyres index of prices and quantities for all non-glyphosate herbicide products 

used throughout the sample period, with the mean dollar per pound and volume shares from 

across the full sample used as the base. These indices are scaled so that both equal one in 1999, 

the first year of our sample. These input price indices enter the empirical model as relative prices 

and are therefore differenced as  𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻 = 𝑝𝑡

𝐺𝐻 − 𝑝𝑡
𝑁𝐺𝐻. These price indices are presented in 

Figure 1.3. 

Glyphosate prices dropped significantly following the expiration of Monsanto’s patent in 

2000 while non-glyphosate prices remained steady, so 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻 is negative in all years. During 

2007-2009, glyphosate prices spiked relative to non-glyphosate prices. Because 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻 is 

Figure 1.3. Price Indices for Glyphosate and Non-Glyphosate Herbicides Over Time. 

Both prices normalized to 1 in 1999. 
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driven primarily by patent law and global demand trends, we argue that this variable is 

uncorrelated with omitted variables in the structural function and therefore satisfies condition (2) 

of the exclusion restriction. We address condition (3) in the results section that follows. 

The field-level practice dataset describes farm size as one of five categories: less than 100 

acres, l00-249 acres, 250-499 acres, 500-999 acres, and 1,000 acres or more. These are included 

as a series of binary variables in the empirical model, with the less than 100 acres category 

excluded as the baseline. 

We supplement the field-level practice data with state-level data on the number of 

reported glyphosate-resistant weed species at the beginning of the growing season, as reported by 

the International Survey of Herbicide Resistant Weeds (Heap, 2017).5 The number of species 

resistant to glyphosate in each state in our sample in 2004, 2008, 2012, and 2016 is presented in 

Figure 1.4. To the best of our knowledge, the ISHRW is the best available measure for this 

variable, providing consistent reporting on the development of herbicide resistance by mode of 

action across the full timeframe and the geographic region of our panel. As the primary 

contributors to the ISHRW data are university extension weed scientists, we assume that these 

counts represent the knowledge available to a typical farmer when making tillage decisions 

through an extension weed control guide (e.g., Sprague and Burns, 2017). 

We rely on NASS annual price indices for diesel fuel (National Agricultural Statistics 

Service, 2018). As conservation tillage typically requires lighter field implements and therefore 

less fuel, we expect its use to be more frequent when fuel prices are higher (Lal, 2004).  

 
5 These data were provided to us through personal communication with Ian Heap, via email, as a custom report on 

herbicide-resistance in the United States generated from the ISHRW database. These data are consistently updated 

and can be viewed publicly on the ISHRW website (http://www.weedscience.org/). 

http://www.weedscience.org/
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Finally, we include a pair of variables to control for a field’s soil conditions. Previous 

studies have shown that conservation tillage systems are more likely to be adopted on highly-

erodible lands (Uri, 1999; Soule et al., 2000). Past research has also found that the use of 

conservation tillage (but not no-till) is more likely in years following drought conditions (Ding et 

al., 2009). Therefore, for each farm we include the proportion of the land in a farm’s county that  

Figure 1.4. Number of Weed Species Resistant to Glyphosate (GRWs) by State. Prior to 

2001, no species had been identified as glyphosate resistant at the start of the growing season. 
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Table 1.1. Descriptions of Variables Included in Empirical Model. 

Variable Description 

Geographic 

Scale Source 

Tillage Decision, 

No-Till 

Binary indicator of use of a no-till system Field GfK 

Tillage Decision, 

Cons. Till 

Binary indicator of use of a conservation 

tillage system (including no-till) 

Field GfK 

Non-Glyphosate 

Herbicide Use 

Binary indicator of use of a herbicide other 

than glyphosate 

Field GfK 

GRWs Count of glyphosate resistant weeds at the 

start of the year 

State ISHRW 

Glyphosate Price Average price of glyphosate in dollars per 

gallon, normalized to 1 in 1999 

National GfK 

Non-Glyphosate 

Price 

Laspyres index of non-glyphosate herbicide 

prices, normalized to 1 in 1999 

National GfK 

Fuel Price Index of diesel fuel prices, normalized to 1 

in 1999 

National NASS 

Palmer's Z-Index Index of anomalous moisture conditions, 

where negative values indicate drier 

conditions than usual, measured in 

September of the prior year 

Climate 

Division 

NOAA 

Soil Erodibility 

Index 

Proportion of farmland classified as highly 

erodible 

County NRCS 

Farm Size Acres of farmland operated by farm, 

categorized into five bins 

Farm GfK 

 

National Resources Inventory has classified as highly-erodible (National Resource 

Conservation Service, 2018). We also include the Palmer’s Z-index as a measure of moisture 

conditions. This value is measured at the climate division level in the September of the prior 

year, where a more negative Z-index score indicates drier conditions (National Environmental 

Satellite, Data, and Information Service, 2018). 

In all, we bring together variables from several sources measured at disparate geographic 

scales. Brief descriptions of each of the variables ultimately included in the empirical model are 

presented in Table 1.1, along with the scale at which they are measured and their original source. 
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Results and Discussion 

In this section, we present the results of our empirical model. First, we offer a brief 

discussion of our first-stage models of non-glyphosate herbicide use before discussing the 

coefficients and goodness-of-fit for our second-stage models of tillage adoption. We present two 

measures of goodness-of-fit: the percentage of observations correctly predicted and pseudo-R2 

measures widely used when generalized linear mixed-effects models are reported (Nakagawa 

and Schielzeth, 2013). We then turn to the implications of our tillage decision models, examining 

predicted probabilities of conservation tillage and no-till adoption at extant GRW species counts. 

Finally, we use our tillage decision model for conservation tillage adoption to explore a counter-

factual scenario in which no weed species adapt to resist glyphosate to get a sense of the degree 

of environmental damages induced by GRWs through farmers’ tillage responses. 

 

First-Stage Non-Glyphosate Herbicide Use Models 

The first-stage model of non-glyphosate herbicide use is estimated twice, once with past 

no-till use and again with past conservation tillage use as independent variables for the 

estimation of control functions for corresponding second-stage models. Results from each are 

presented in Table 1.2. In both estimations, coefficients on both GRW terms indicate that 

glyphosate-resistant weed species are statistically significant and similar in scale. The negative 

coefficient on the linear term and positive coefficient on the quadratic term indicate that although 

the first GRW species to appear have relatively little impact on the use of non-glyphosate 

herbicides, the probability of non-glyphosate herbicide use rises faster as GRW counts reach 

higher levels. 
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Table 1.2. Results from First-Stage, Non-Glyphosate Herbicide Use Models. Models 

estimated separately for use with no-till and conservation tillage second-stage models. 

P-values in bold are less than 0.05. 

  Dep. Var.: Non-Glyphosate Herbicide Use 

    No-Till Model   Cons. Till Model 

    Est. p   Est. p 

(Intercept)   -0.782 <.001   -0.781 <.001 

GRWs   -0.043 <.001   -0.042 <.001 

GRWs (squared)   0.026 <.001   0.026 <.001 

Glyphosate Price Difference   0.433 <.001   0.434 <.001 

Past Tillage Decision   0.033 .017   0.018 .197 

Year Trend   0.040 <.001   0.040 <.001 

Size (100 - 249 Acres)   0.322 <.001   0.323 <.001 

Size (250 - 499 Acres)   0.516 <.001   0.517 <.001 

Size (500 - 999 Acres)   0.636 <.001   0.637 <.001 

Size (1000 Acres or more)   0.737 <.001   0.738 <.001 

Random Effects   Farm-level   Farm-level 

Unique Farms   22,151   22,151 

Observations   93,345   93,345 

Percent Correct (Dep. Var. = 1)  63.1%  62.9% 

Percent Correct (Dep. Var. = 0)  56.3%  56.4% 

Percent Correct  59.6%  59.6% 

Marginal R2  0.119  0.119 

Conditional R2   0.579  0.579 

The coefficient on the price differential between glyphosate and non-glyphosate 

herbicides is positive and statistically significant for both models. As expected, in years when 

glyphosate is expensive relative to alternatives, non-glyphosate herbicides are more likely to be 

used. The statistical significance of this coefficient has been proposed as a test of condition (3) of 
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the exclusion restriction (Wooldridge, 2014). As the coefficient is statistically significant at even 

very low alpha thresholds, we conclude that this condition is met and therefore all three 

conditions for the exclusion restriction are met and the price differential serves as a valid 

candidate for exclusion in the second-stage models. 

 

No-Till and Conservation Tillage Models 

The results from the second-stage, tillage choice models are presented in Table 1.3, 

estimated for both no-till and conservation tillage use as the dependent variable. Both models 

correctly predict the tillage decision for a field about four-fifths of the time. Further, the models 

correctly predict tillage decisions at roughly the same rate for fields regardless of the observed 

outcome. This balance is important for modelling counter-factual scenarios, because if the 

model’s accuracy depended largely on its target, then prediction would be systemically biased 

towards the model’s naturally favored outcome. 

  Both models explain the majority of the variance in tillage adoption outcomes, as 

measured by the pseudo-R2 metrics proposed for generalized linear mixed-effect models by 

Nakagawa and Schielzeth (2013). Marginal R2 measures the variance explained by fixed factors 

alone (i.e. the observed independent variables), while conditional R2 measures the variance 

explained by the full model, including random effects. These measures are preferred to 

alternatives such as the commonly used McFadden’s pseudo-R2 because (a) they can be 

interpreted on the same unit-scale as the usual R2 commonly reported for ordinary least-square 

models, and (b) they separately identify the contributions of fixed and random effects. For both 

models, around two thirds of the total explained variance is accounted for via the observed  
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Table 1.3. Results from Second-Stage, Tillage Decision Models. Models are estimated 

separately for no-till and conservation tillage. P-values in bold are less than 0.05. 

  Dep. Var.: Tillage Decision 

    No-Till Model   Cons. Till Model 

    Est. p   Est. p 

(Intercept)   -1.373 <0.001   -1.000 <0.001 

GRWs   0.009 0.488   0.022 0.097 

GRWs (Squared)   -0.010 <0.001   -0.007 <0.001 

Non-Glyphosate Use   0.345 0.008   0.352 0.003 

Non-Glyphosate Use (Residuals)   -0.137 0.012   -0.143 0.004 

Fuel Price   0.074 <0.001   0.059 <0.001 

Past Tillage Decision   0.637 <0.001   0.770 <0.001 

Palmer’s Z-Index   -0.001 0.826   -0.005 0.079 

Soil Erodibility Index   0.650 <0.001   0.445 <0.001 

Year Trend   0.026 <0.001   0.017 <0.001 

Size (100 - 249 Acres)   0.009 0.748   0.063 0.010 

Size (250 - 499 Acres)   0.004 0.891   0.060 0.023 

Size (500 - 999 Acres)   -0.027 0.370   0.056 0.041 

Size (1000 Acres or more)   -0.112 <0.001   -0.029 0.328 

Initial Conditions Correction   Yes  Yes 

Random Effects  Farm-level  Farm-level 

Unique Farms/Observations  22,151/93,345  22,151/93,345 

Percent Correct (Dep. Var. = 1)  72.3%  82.4% 

Percent Correct (Dep. Var. = 0)  81.2%  73.1% 

Percent Correct (All Obs.)   77.6%  79.4% 

Marginal R2   0.467  0.413 

Conditional R2   0.707  0.625 
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heterogeneity (i.e. the fixed effects) and allowing for a random intercept for each farm to account 

for unobserved heterogeneity improves model fit substantially. 

 The statistical significance of the residuals from the first-stage, non-glyphosate herbicide 

use models in both second-stage models allows us to reject the null hypothesis that non-

glyphosate use is exogenous to tillage decisions (Wooldridge, 2014). The use of non-glyphosate 

herbicides is positively associated with the use of conservation tillage and no-till practices, as the 

coefficients on this term are positive and statistically significant in both models. When farmers 

move away from intensive conventional tillage practices, they give up a weed control tool and 

must supplement lost weed control through other means. As glyphosate is used on nearly all 

fields in our sample regardless of tillage system, this means supplementing with non-glyphosate 

herbicides. 

 Fuel price has a statistically significant coefficient of the expected sign in both models. 

The positive coefficients on fuel price likely stem from the fact that conservation tillage systems 

require less fuel than conventional tillage and are therefore more likely to be selected when fuel 

is costly (Lal, 2004; Perry, Moschini, and Hennessy, 2016). 

 Previous use of conservation tillage has a statistically significant and positive effect. This 

indicates that some “inertia” is present for conservation tillage: farms that use conservation 

tillage today are more likely to use it in the future, perhaps due to increased familiarity with the 

system (Uri, 1999). This pattern holds when no-till is modelled separately from other 

conservation tillage systems. 

 The remaining coefficients follow their expected signs. Fields experiencing recent 

drought (represented with negative Palmer’s Z-index values) are more frequently under 

conservation tillage (though this coefficient is only statistically significant at the 10% level), but 



33 

not no-till. This pattern follows results found in the literature on tillage adoption (Ding et al., 

2009). Fields in counties with more highly-erodible land are also more likely to be under 

conservation tillage systems. The positive time trend likely reflects the effects of payments 

through federal conservation programs and state-level extension efforts to promote conservation 

tillage adoption, as well as increased familiarity with these practices over time. Medium sized 

farms are slightly more likely to adopt conservation tillage than the largest (1,000 acres or more) 

and smallest farms (less than 100 acres), while the largest farms are slightly less likely to adopt 

no-till. 

 

Effects of GRWs on Tillage Decisions 

 The primary focus of this paper is the effect of glyphosate-resistant weeds on farmers’ 

tillage practices. In models for both conservation tillage and no-till, the coefficient on the linear 

term for GRWs is positive but statistically insignificant and the coefficient on the quadratic term 

is negative and statistically significant. This indicates that GRWs have a negative effect on 

conservation tillage use, and the emergence of additional GRWs has increasing impact. 

The predicted probabilities of adoption of conservation tillage and no-till for the observed 

range of GRW counts, with other variables held at their means, are presented in Figure 1.5. 

These curves show the negative and compounding effect of GRWs on the use of conservation 

tillage, consistent with the expectations of the conceptual model. Through the first two 

glyphosate resistant weed species, the predicted rate of no-till use remains statistically 

indistinguishable from the rate at zero GRWs (44% adoption). However, by the eighth GRW, the 

predicted rate of adoption falls by 10.0 percentage points, a 22.5% reduction among no-till users. 

The impact of GRWs on conservation tillage is similar, though less severe. Through the first two 
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GRWs, conservation tillage is used at rates not statistically different from zero GRWs (66.9% 

adoption). But by the eighth reported GRW, conservation tillage rates fall by 5.7 percentage 

points, an 8.6% reduction among CT users generally. The magnitude of predicted reduction in 

conservation tillage and no-till use due to eight identified GRWs corresponds with that of the 

increase in use attributed to the introduction of glyphosate-resistant soybean seeds (Perry,  

Figure 1.5. Predicted Adoption of No-Till and Conservation Tillage by the Number of 

Glyphosate Resistant Weeds. The shaded region indicates a 95% confidence interval, 

computed via the delta method. 
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Table 1.4. GRW Coefficients Under Alternative Specifications. P-values 

are presented in parentheses. P-values in bold are less than 0.05. 

 No-Till  Cons. Till 

Alternative Specification Linear Quadratic  Linear Quadratic 

Machinery Price Included 
0.023 

(0.141) 

-0.010 

(<0.001) 
 

0.014 

(0.343) 

-0.006 

(<0.001) 

Soybean Price Included 
0.025 

(0.088) 

-0.011 

(<0.001) 
 

0.013 

(0.339) 

-0.006 

(<0.001) 

Quadratic Term Omitted 
-0.051 

(<0.001) 
–  

-0.030 

(<0.001) 
– 

Moschini, and Hennessy, 2016). In effect, the advent of GRWs is undoing the stimulus to adopt 

conservation tillage that was prompted by the introduction of glyphosate-tolerant crop varieties. 

The negative effect of GRWs on conservation tillage and no-till adoption is robust to 

alternative specifications. Table 1.4 presents estimated coefficients for the linear and quadratic 

GRW terms for both no-till and conservation tillage models estimated with alternative covariate 

structures. In our first alternative specification, we include a NASS machinery price index 

representing price changes over time for both tillage-related implements and other machinery. 

Including this covariate from our analysis does not affect the direction, significance, or relative 

magnitude of coefficients on either the linear or quadratic GRW terms. In our next specification, 

we include soybean prices, measured annually at the state-level in September of the previous 

year from NASS. Including soybean prices does not meaningfully change our key result relative 

to the base model. Finally, excluding the quadratic GRW term results in a negative and 

statistically significant coefficient on the linear term, corroborating that GRWs have a negative 

effect overall on no-till and conservation tillage adoption. 

To test whether including the quadratic term improves the model fit over the linear terms 

alone, we conduct a likelihood ratio test of the full model versus a specification where the 

quadratic terms for GRWs are excluded. For the no-till model the likelihood ratio is 54.886 (p-

value for Chi-squared test < 0.001) and for the conservation tillage model the ratio is 23.033 (p-
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value < 0.001). Both models exhibit significantly better fit when the quadratic terms are 

included, providing further support for the non-linear tillage response to GRWs suggested by the 

conceptual model. 

 

Simulation of GRW Effects on Tillage Use 

To demonstrate the impact that GRWs have had on farmers’ tillage decisions over time 

and space, we compute the shares of acres under conservation tillage predicted by the model 

given realized GRW emergence patterns (denoted 𝐴𝑐 for “actual”) and a counterfactual scenario 

in which no weed species evolve to resist glyphosate, all else equal (denoted 𝐶𝑓 for 

“counterfactual”). The counterfactual scenario is simulated by setting 𝑧𝑖𝑡 = 0 for all observations 

in a counterfactual dataset, leaving all other variables the same as observed. 

We first simulate farmers’ field-level tillage decisions in the counterfactual scenario, 

giving us for each field in the sample 𝑃𝑗𝑖𝑡
𝐶𝑓

, the counterfactual predicted probability of 

conservation tillage use on field 𝑗, operated by farmer 𝑖, in year 𝑡. We then simulate the same 

predicted probabilities of conservation tillage use under realized GRW emergence patterns (i.e. 

the original data), denoted for each field as 𝑃𝑗𝑖𝑡
𝐴𝑐. 

The shares of soybean acres in each year under conservation tillage in both scenarios 

(𝑆𝑡
𝐴𝑐 and 𝑆𝑡

𝐶𝑓
) are calculated by summing the predicted probabilities weighted by the number of 

acres each field represents in the population of soybean acres in a given year, denoted 𝐴𝑗𝑖𝑡: 

𝑆𝑡
𝑛 =

∑ ∑ 𝑃𝑗𝑖𝑡
𝑛 𝐴𝑗𝑖𝑡

𝐽𝑖𝑡
𝑗=1

𝐼𝑡
𝑖=1

∑ ∑ 𝐴𝑗𝑖𝑡
𝐽𝑖𝑡
𝑗=1

𝐼𝑡
𝑖=1

, 𝑛 ∈ {𝐴𝑐, 𝐶𝑓}  (1.10) 

As a display of the spatial variation in the effect of GRWs on tillage decisions over our 

sample period, the differences between the acre-shares under conservation tillage, 𝑆𝑡
𝐶𝑓

− 𝑆𝑡
𝐴𝑐, are 
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calculated separately for each state and presented in four maps for 2004, 2008, 2012, and 2016 in 

Figure 1.6. On the majority of soybean acres, GRWs have had negligible impact on tillage 

practices, with increases in intensive tillage adoption of less than 5%. However, the impact of 

GRWs on tillage decisions is particularly noticeable where GRWs are most prevalent: southern 

states such as Mississippi, Missouri, Arkansas, and Tennessee where glyphosate is commonly 

Figure 1.6. Increases in Percentage of Soybean Acres Under Conventional Tillage 

Attributed to GRWs. 
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used as the primary weed control tool on glyphosate-resistant cotton in addition to soybeans and 

corn. In Mississippi in 2016 for example, conservation tillage would be used on 8.5% more 

soybean acres had GRWs been absent. 

 

Environmental Damages Resulting from Farmers’ Tillage Responses to GRWs 

The use of conservation tillage systems is known to reduce soil erosion and carbon 

emissions, two types of agricultural pollution that impair water quality and contribute to global 

climate change respectively (Uri et al., 1999). An intuitive follow-up to the preceding analysis of 

farmers’ tillage responses to GRWs is to estimate the resulting environmental damages from 

increased tillage. 

We develop rough conservative estimates of the social costs of increased intensive tillage 

use on two environmental outcomes, soil erosion and carbon emissions from fuel, by drawing 

upon values from the literature and applying a simple benefit transfer model to monetize social 

costs (Wilson and Hoehn, 2006). Tillage practices have wide-ranging impacts on the 

environment (Uri et al., 1999), and a full accounting of these impacts is outside the scope of the 

present study. However, this exercise suggests that the spread of GRWs is a problem not just for 

farmers, but for society. Our general approach follows the methods presented in Perry, Moschini, 

and Hennessy (2016). 

To quantify the soil erosion impact of increased use of conventional tillage, we rely on 

median erosion rates for soils under conventional and conservation tillage as reported in a review 

of 495 studies (Montgomery, 2007). For conventional tillage, the reported median erosion rate is 

1.54 mm per acre-year. For conservation tillage, the median erosion rate is 0.08 mm per acre-

year. Assuming a soil density of 1,200kg/m3, this implies a 6.8 ton/acre-year reduction in soil 



39 

erosion in fields under conservation tillage when compared to a conventional tillage baseline 

(Montgomery, 2007). 

Conventional tillage leads to increases in carbon emissions over conservation tillage both 

through increased fuel consumption and by reducing the capacity of the soil to retain carbon. 

However, given that the potential carbon sequestration ability of soil is highly variable and 

dependent on the sustained practice of conservation tillage over time, we choose to focus only on 

carbon emissions from fuel consumption (Uri et al., 1999). Lal (2004) synthesizes the literature 

on fuel consumption required for various tillage operations, reporting the results as mean 

kilograms CO2-equivalent emissions (CE) per hectare. We convert these means to metric tons 

CE/acre. The resulting mean increase in carbon emissions from fuel consumption when 

switching from conservation to conventional tillage is 0.0234 metric tons CE/acre. 

To monetize the effects of these environmental impacts, we use prices previously used by 

federal policymakers for benefit-cost analysis. The National Resource Conservation Service 

estimates the costs of increased soil erosion at $4.93 per ton in water quality damage (National 

Resource Conservation Service, 2009). For carbon emissions, we rely on the global Social Cost 

of Carbon (SSC), as reported by the United States Government (Interagency Working Group on 

Social Cost of Greenhouse Gases, 2016). This measure, widely used in policymaking prior to 

2017, estimates the social costs of a metric ton of CO2 released into the atmosphere for each year 

beginning in 2010. We rely on the reported average SCC estimate at a 3% discount rate, a 

conservative estimate. As the annual growth in this measure is almost exactly linear, we estimate 

the SCC for years prior to 2010 by regressing the SCC on a year trend (R2 = 0.987). These prices 

are adjusted using the Consumer Price Index to reflect the real value of damages in each year, 

and range from $22.73 per ton CO2 in 2000 to $37.51 in 2016. 



40 

Table 1.5. Estimated Social and Environmental Damages Resulting from Increased Use 

of Intensive Tillage in Response to GRWs. Prior to 2007, GRWs had yet to reach impactful 

levels in any state. 

 Social Damages  Environmental Damages 

Year 

Current Value a 

(USD) 

Present Value b 

(USD 2016) 

 
Soil Erosion c 

(Metric Tons) 

Carbon Emissions d 

(Metric Tons CE) 

2007                2,200,000                 2,800,000                    450,000                2,000  

2008                5,200,000                 6,500,000                 1,020,000                4,000  

2009              13,800,000               16,900,000                 2,730,000                9,000  

2010              19,200,000               23,000,000                 3,730,000              13,000  

2011              32,300,000               37,400,000                 6,090,000              21,000  

2012              41,600,000               46,800,000                 7,650,000              26,000  

2013              48,200,000               52,600,000                 8,730,000              30,000  

2014              61,600,000               65,400,000               11,000,000              38,000  

2015              63,800,000               65,700,000               11,400,000              39,000  

2016              72,100,000               72,100,000               12,770,000              44,000  

Total            359,800,000             389,300,000               65,560,000            226,000  
a  Soil erosion priced at $4.93/ton in 2009 dollars, adjusted to current year prices with CPI (National Resource 

Conservation Service, 2009); carbon emissions priced following Social Cost of Carbon at 3% discount rate 

(Interagency Working Group on Social Cost of Greenhouse Gases, 2016). 
b  Computed with a 3% annual discount rate. 
c  Assuming a 6.8 ton/acre reduction in soil erosion from conservation tillage use (Montgomery, 2007). 
d  Accounts only for reduced fuel consumption; assuming a 0.0234 tons/acre reduction in emissions from 

conservation tillage use (Lal, 2004). 

Finally, the conservation tillage acre-share differentials computed in the previous 

subsection are multiplied by the acres planted to soybean in each year (National Agricultural 

Statistics Service, 2018), providing an annual estimate of the number of acres that would be 

under conservation tillage in the absence of GRWs, but are instead under conventional practices. 

The environmental impact and social value coefficients are applied to these acres, providing an 

estimate for the value of damages to water quality and the climate. Annual social and 

environmental damages are presented in Table 1.5. Social damages are presented as lost value in 

current year price levels and as 2016 present value. 

 In total, we estimate that the net present value of water quality and climate damage from 

farmer’s tillage responses to GRWs in U.S. soybean fields is approximately $390 million, 
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accumulated between 2006 and 2016. This social cost has been growing, exceeding $70 million 

annually in the latest years of our panel. Water quality damage will be greatest in regions where 

GRWs are most prevalent, such as the southern region of the Mississippi Basin, while the 

climate damage will be realized globally. If weed species continue to evolve to resist glyphosate 

across the country, and farmers continue increase tillage to achieve similar levels of weed 

control, we expect the rate at which these damages grow to accelerate. Further, this analysis only 

considers tillage-related water quality damages and the climate effects of increased fuel 

consumption so it is only a partial accounting of the full environmental damages induced by 

GRWs. For example, increased fuel consumption and soil disturbance under conventional tillage 

systems may have localized air quality impacts, while herbicide substitutes for glyphosate may 

have additional water quality, air quality, and human health impacts. 

 

Conclusion 

Herbicide resistant weeds, GRWs in particular, have become a widespread issue for 

farmers across the United States. This paper provides new and robust evidence that farmers 

respond to the decreasing effectiveness of glyphosate by increasing tillage intensity. We do so by 

observing the field-level weed control decisions of thousands of soybean farmers across the 

country during the period that GRWs first emerged and subsequently spread. We find evidence 

that farmers’ tillage responses to GRWs follow a non-linear pattern. Our empirical model further 

allows us to estimate the marginal, causal effects of additional GRWs on the use of alternative 

tillage systems. We use these estimates to provide a rough calculation of the scale of social 

damages that GRWs have caused by increasing tillage in soybean fields. 
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Our approach represents a novel direction in the herbicide resistance literature in two 

ways. First, we focus on how farmers have changed their management behavior in response to 

herbicide resistance, while other economic studies focus on how resistance has affected costs, 

returns, or yields (Livingston et al., 2015; Wechsler et al., 2017; Lambert et al., 2017). Second, 

we quantify the environmental damages from farmers’ responses to herbicide resistance, which 

would not be possible without our focus on practices. In doing so, we provide evidence of an 

evolving technological landscape for farmers, where the efficacy of a ubiquitous weed control 

tool is waning and additional tools are needed for supplemental control. The environmental 

damages from these additional tools, partially accounted for in this paper, imply that weed 

susceptibility to herbicides is a resource that provides value to not only farmers, but the public as 

well.  

While this paper focuses on tillage practices, too little is known about how herbicide 

resistance affects the use of other weed control tools available to farmers. Future research should 

explore which non-glyphosate herbicides farmers are choosing to combat GRWs, which seed 

traits farmers select, and what those choices imply for environmental quality. 

Meanwhile, agrochemical companies have responded to GRWs by developing new crop 

seed genetics resistant to other herbicides (Mortensen et al., 2012; Green, 2014; Bonny, 2016). 

Farmers remain optimistic that agrochemical companies will develop new solutions that will 

maintain the simplicity of glyphosate-based weed management (Dentzman and Jussaume, 2017). 

However, public weed scientists have questioned whether this path forward is sustainable, as 

weeds will continue to evolve resistance to more and more biochemical modes of action (Duke, 

2011; Mortensen et al., 2012). Davis and Frisvold (2017) suggest that the current dominant weed 
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control regime, based on specific herbicides paired with resistant seed, may come to an end 

within the foreseeable future if action is not taken. 

Fortunately, numerous solutions have been proposed to alleviate the threat posed by 

GRWs and weed resistance to other herbicides. Mortensen et al. (2012) call for increased public 

investment in research and promotion of integrated weed management systems, which rely on a 

more diverse suite of weed management practices in order to delay the onset of resistance of any 

specific method. A recent simulation study suggests that this approach can be profit-maximizing 

for farmers with longer time horizons (Frisvold et al., 2017). Davis and Frisvold (2017) suggest 

adapting current federal subsidies of crop insurance and other conservation programs such as the 

Environmental Quality Incentive Program to create incentives for the adoption of integrated 

weed management and other resistance management strategies. Ervin and Frisvold (2016), 

noting the common pool resource nature of herbicide resistance, envision community-based 

approaches for encouraging resistance management, modelled after drainage districts and insect 

eradication programs. Further research into policies to delay the onset of resistance is needed. 

Such studies should consider not only the private benefits to farmers from the delayed onset of 

resistance, but also the public damages to the environment that could result if resistance 

management is ignored.
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CHAPTER 2. Measuring the Effects of Pesticide Technology Change on Midwestern 

Butterfly Populations 

 

Abstract 

Changing pesticide use is frequently implicated as a driver of declines in butterfly abundance. 

Existing empirical evidence of linkages between pesticide use and butterfly abundance is limited 

to studies that fail to account for the full suite of pesticides used by farmers, which fail to 

account for the effects of substitute pesticides. In this paper, we bring together data on the use of 

the six principal pesticide groups on corn and soybean fields and butterfly abundance data to 

create a unique county-level panel dataset spanning the 60 counties in the American Midwest 

over 17 years. We estimate count data models of total butterfly abundance and the abundance of 

three important species to measure the effects of each pesticide group. We find that 

neonicotinoids, a group of systemic insecticides applied to corn and soybean seeds before 

planting, have a strong negative association with total butterfly abundance and two of our three 

indicator species. Further, we find a positive association between the planting Bacillus 

thuringiensis (Bt) traited corn seeds and butterfly abundance, though only in counties with large 

areas of cropland where interaction between butterflies and affected cropland is likely. We 

estimate that farmers’ changes in pesticide use since 1998 has accounted for a 9% decrease in 

overall butterfly abundance in the median county in our sample, driven by a shift towards 

neonicotinoid seed treatments since the mid-2000s. 
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Introduction 

Butterfly populations are in decline in the United States and globally. Total butterfly 

abundance in Ohio declined 33% from 1996 to 2016, a 2% decline per year (Wepprich et al., 

2019). The decline observed in the American Midwest is consistent with a 35% global decline in 

the abundance of lepidoptera, the taxonomic order including both butterflies and moths, from 

1970 to 2010 (Dirzo et al., 2014). Declines in butterfly populations also coincide with a 45% 

decline in insect abundance across all taxa during the same period (Dirzo et al., 2014). Despite 

ample evidence that butterfly populations are in decline, direct evidence pointing to specific 

causes remains weak (Belsky & Joshi, 2018; Braak et al., 2018; Fox, 2013). 

 In this research, we evaluate associations between the decline of butterfly abundance and 

changes in the levels and types of agricultural pesticides applied and in the American Midwest. 

Pesticides are agricultural chemicals applied in order to protect crops and include both 

insecticides which target insect pests and herbicides which target weeds. American farmers apply 

hundreds of millions of pounds of pesticides every year to protect their crops from pest damage 

and weed competition (Osteen & Fernandez‐Cornejo, 2013). Since the 1980s, pesticides have 

been sprayed on nearly every field of the most widely grown crops in the Midwest, corn and 

soybeans, suggesting widespread demand for at least some crop protection (Fernandez-Cornejo 

et al., 2014). 

 Historically farmers have always sought to control pest and weed populations, investing 

heavily in labor-intensive practices to provide even low levels of protection for their crops 

(Swinton & Van Deynze, 2017). Because crop protection is both a critical and costly component 

of production, farmers change their crop production practices as new technologies become 

available seeking improved quality of control and/or lower costs. When synthetic pesticides were 
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first introduced, they were rapidly adopted by farmers as they provided several advantages over 

status quo crop protection practices (Fernandez-Cornejo et al., 2014; Osteen & Fernandez‐

Cornejo, 2013; Swinton & Van Deynze, 2017). Pesticide use often reduces profit risk by 

reducing the risk of catastrophic crop loss, making their use attractive to risk-averse farmers 

(Horowitz & Lichtenberg, 1994; Pannell, 1991). Pesticide-based crop protection systems are also 

simpler than alternative practices, which often require a combination of several methods 

(Bastiaans et al., 2008; Castle et al., 2009; Lechenet et al., 2017). Finally, pesticide-based 

systems are frequently cheaper and provide better protection than non-chemical alternatives 

(Osteen & Fernandez‐Cornejo, 2013; Swinton & Van Deynze, 2017). 

Just as the first pesticides reduced the risk, cost, and complexity of crop production, new 

pesticide technologies have improved on older systems. Which pesticides farmers use has 

changed drastically over time as farmers substitute among different products (Fernandez-Cornejo 

et al., 2014; Osteen & Fernandez‐Cornejo, 2013; Perry et al., 2016; Perry & Moschini, 2019; 

Swinton & Van Deynze, 2017). The latest waves of technological change began in the mid-

1990s as genetically engineered seed varieties with herbicide and insect resistant traits were 

introduced, followed by the introduction of insecticidal seed coatings in the mid-2000s (Douglas 

& Tooker, 2015; Perry et al., 2016). These technologies allowed for novel pest and weed control 

systems that provided protection at historically similar levels at lower costs and reduced 

complexity. Pesticide products associated with these systems were rapidly adopted and the use of 

other products fell considerably as farmers replaced older technologies (Fernandez-Cornejo et 

al., 2014; Perry et al., 2016; Perry & Moschini, 2019). We aim in this paper to distinguish 

between the effects of different pesticide groups on butterfly abundance while accounting for 

substitution patterns among pesticide technologies. 
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While pesticides provide clear benefits to farmers, their use is frequently suggested as a 

driver of declines in butterfly abundance (Agrawal & Inamine, 2018; Belsky & Joshi, 2018; 

Braak et al., 2018; Thomas, 2016). In order for pollinator populations to be affected by 

pesticides, they must be exposed to pesticides, either directly or through interaction with 

environments damaged by pesticides (Sponsler et al., 2019). Butterflies often rely on habitat in 

close proximity to cropland during different stages of their lifecycles, using vegetation along 

field edges and in hedgerows for food and shelter (Braak et al., 2018). Butterflies in such areas 

can potentially be exposed to pesticides by coming into contact with treated crops or plants 

contaminated inadvertently through spray drift or translocation via water (Braak et al., 2018; 

Sponsler et al., 2019). While pesticides can move through the environment, proximity of 

butterfly populations to treated cropland is likely to impact the effects of the pesticide use. 

Pesticides represent a diverse class of agrochemicals. There are multiple mechanisms 

through which pesticides might affect exposed butterfly populations (Sponsler et al., 2019). 

Insecticides can be applied via sprayer or via chemical seed coatings that are incorporated into 

the crops tissue upon germination. Sprayed insecticides, used specifically for their acute toxicity 

to insects, pose a self-evident threat when butterflies are directly exposed to spray or residues. 

Residues from seed-applied neonicotinoid insecticides persist in the soil and water and can 

contaminate non-target plants (Douglas et al., 2015; Douglas & Tooker, 2015; Nuyttens et al., 

2013). Herbicides are only applied via sprayer and even though they are not known to cause 

acute harm to insects, they may have indirect effects on butterfly abundance by reducing suitable 

habitat and forage (Belsky & Joshi, 2018; Pleasants & Oberhauser, 2013). 

Empirical evidence directly linking spatial patterns of agricultural pesticide use to 

butterfly abundance is sparse, and past studies have examined the effects of only a single 
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pesticide active ingredient group at a time (Braak et al., 2018). Saunders et al. (2018) find 

evidence of a negative association between glyphosate use and monarch abundance in areas of 

Illinois with heavily concentrated agriculture, though this pattern was only present from 1994 to 

2003. Forister et al. (2016) find a negative association between neonicotinoid use and butterfly 

abundance in Northern California since neonicotinoid pesticides were first approved in 1995. 

Gilburn et al. (2015) find a similar negative association between neonicotinoid use and butterfly 

abundance in the United Kingdom. 

These papers each examine the effects of a single pesticide active ingredient group (e.g. 

glyphosate herbicides, neonicotinoid insecticides) at a time. Therefore they cannot assess the 

relative impact of different pesticides. Changes in the use of specific pesticides are often 

associated with changes in the use of substitutes which may have their own negative (or positive) 

associations with butterfly abundance. As a result, the results of the aforementioned papers are of 

little use for assessing the net effect of contemporaneous changes in the use of multiple 

pesticides. Expected positive effects of reductions in single pesticides may be overstated if the 

substitute pesticides are more harmful. 

A related branch of research assesses changes in the relative toxicity of pesticides used by 

farmers over time by applying active-ingredient specific measures of toxicity to insects and other 

taxa to pesticide application data, creating a kind of ambient toxicity measure. DiBartolomeis et 

al. (2019) find a 48-fold increase in the average oral insect toxicity to bees of insecticides used in 

the United States from 1992 to 2014, driven largely by the large increase in the use of 

neonicotinoids. Perry and Moschini (2019) observe a decrease in ambient insecticide toxicity to 

bees between 1998 and 2006, attributable to reductions in sprayed insecticide use as farmers 
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adopted Bt seed varieties, though this decrease is offset by a neonicotinoid-fueled return to 1998 

levels by 2012. 

While studies that examine multiple classes of pesticides simultaneously better account 

for substitution patterns between pesticides, no such studies directly link changes in pesticide use 

to butterfly abundance. Past studies rely on lab-based acute toxicity measures and cannot account 

for sub-lethal effects such as reduced fertility, increased predation risk due to behavioral change, 

or reduced habitat availability (DiBartolomeis et al., 2019). Further, robust toxicity data is 

unavailable for butterfly species, so applying results from these studies to butterfly populations 

would require imputation from bee data (Braak et al., 2018). 

In this research, we address shortfalls from each of these branches of research by 

incorporating pesticide use measures for a wide suite of pesticide classes directly into population 

models of butterfly abundance. By modelling butterfly populations explicitly as a function of 

pesticide application measures, we capture lethal, sub-lethal, and indirect effects of pesticides on 

abundance. Our models further allow for the assessment of the relative impact of different 

classes of pesticides on abundance, allowing for comparisons of impact size and direction 

between substitutes and across pesticide types. Finally, our models can be used to calculate the 

net impact of observed changes in pesticide use on butterfly abundance over time in way that 

accounts for patterns of substitution between pesticide products. 

 The remainder of this paper is organized as follows. In the next section, we present our 

conceptual framework, which we use to examine potential linkages between pesticide use and 

butterfly abundance. We then describe the data used in this research, followed by a description of 

the statistical methods used to measure pesticide effects on butterfly abundance. Next we present 
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results, before providing a discussion of the findings in context of previous studies of pesticide 

externalities and policy.  

 

Conceptual Framework 

 In this section, we present a conceptual framework integrating a model of farmer’s 

pesticide application choices and a model of local butterfly population abundance. By examining 

the intersections of these two models, we identify two key implications for measuring pesticide 

effects on butterfly abundance which we will use to motivate the remainder of the paper. 

 We model farmers as profit maximizers who choose the optimal level of control for pest 

and weed damage, following a two-step procedure where they first determine the profit-

maximizing level of damage control and then choose a combination of damage control 

technologies (i.e. pesticides) to achieve the optimal level of pest control at the least cost 

(Lichtenberg & Zilberman, 1986). The types of costs farmers consider when choosing among 

pesticides include labor and capital costs (Osteen & Fernandez‐Cornejo, 2013; Swinton & Van 

Deynze, 2017), risk (Pannell, 1991), as well as complexity (Castle, Goodell, & Palumbo, 2009). 

Different combinations of pesticides have different cost levels for each of these types of costs, so 

farmers must make trade-offs when choosing between different alternatives. These trade-offs 

depend on characteristics at the farm (e.g. equipment availability, labor availability, acreage 

farmed, etc.) and regional (e.g. yield potential, pest and weed pressure, etc.) levels. As new 

technologies become available to a farmer and the suite of available pesticides expands, farmers 

will respond and adopt these new technologies if they provide sufficient damage control at lower 

costs. 
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 Farmers’ pesticide choices can also create external social costs (Zilberman & Millock, 

1997). These social costs include acute and chronic human health effects (Brethour & Weersink, 

2001), as well as damage to environmental quality through detrimental effects to non-target 

plants, insects, and wildlife.  Not least of these are butterfly species. Butterflies are herbivores 

and rely on vegetation for habitat and forage. The degree to which butterfly habitat and forage 

range intersects with cropland and cropland-adjacent areas varies between butterfly species. 

Species characteristics such as migratory behavior and dietary diversity (i.e. specialist or 

generalist) may influence the likelihood that butterflies of that species interact with cropland. 

For pesticides to influence butterfly abundance, butterflies must be exposed to pesticides 

in the environment, either through contact during application, consumption of toxic compounds 

during foraging, or destruction of potential forage or habitat. The likelihood of such exposure 

depends on the distance between butterfly habitat and the cropland on which farmers apply 

pesticides. The effect of distance on pesticide effects will depend both on the tendency of 

specific butterfly species to forage or inhabit in cropland or cropland-adjacent areas and on the 

specific pesticides used, which may have different potentials to reach butterflies and remain in 

the environment (Sponsler et al., 2019). 

Our conceptual framework has two key implications for identifying the effects of changes 

in pesticide use on butterfly abundance. First, farmers substitute between pesticides as new 

technologies improve on older systems, providing less costly means of achieving the same goal. 

As a result, increases in the use of one pesticide are frequently associated with decreases in the 

use of others that achieve the same goal. Such displacement occurs within pesticide classes (i.e. 

herbicides and insecticides) rather than between. Displaced technologies may themselves 

influence butterfly abundance, so attempting to measure the effects of one pesticide without 
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accounting for changes in the use of others risks biasing estimates due to omitted variables. 

Further, measures of the effects of one pesticide without similar measures for the effects of 

substitutes are of limited policy value, as the damage from one pesticide should be evaluated 

relative to what will replace it if the full effects of possible regulation are to be accounted for 

(Zilberman & Millock, 1997). 

Second, the effect of a pesticide on butterfly abundance is a function of the distance 

between butterfly habitat and where the pesticide is applied. This implies an interaction effect 

between geographic proximity to cropland and cropland pesticide use mediating the effects of 

the pesticide on butterfly abundance. Additionally, the traits of specific butterfly species may 

affect the strength of this effect, as differences in foraging and migratory behavior may affect 

how frequently or closely butterflies interact with cropland.  

 

Data 

 We bring together data from several sources to construct a unique panel dataset. The unit 

of observation is a county-year: the base geographic unit in the panel is a county and the base 

temporal unit is a year. The panel includes observations from 60 counties and 17 years (1998-

2014). The annual number of monitored counties ranges from 15 to 37 based on data availability. 

Figure 2.1 shows the counties included in the panel and the number of years they contribute data. 

 

Butterfly Abundance Data 

 For butterfly abundance, we use county-year aggregates of monitoring surveys conducted 

by four volunteer programs associated with the North American Butterfly Monitoring Network.   
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Both the Illinois Butterfly Monitoring Network and the Ohio Lepidopterists provide data  

throughout the period of study, while the Iowa Butterfly Survey Network and Michigan Butterfly 

Network provide data beginning in 2006 and 2011, respectively. At approximately weekly 

intervals, citizen-scientist volunteers travelled along a fixed path, counting individuals by species  

Figure 2.1. Counties Monitored in North American Butterfly Monitoring Network. 

Crop-reporting district (CRD) boundaries indicated in bold. County boundaries indicated by 

dashed lines. Grey indicates no monitoring. 
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within a 5-meter buffer of the path (Pollard & Yates, 1994). Subsets of these data have been 

previously analyzed to assess overall butterfly population trends in Ohio (Cayton et al., 2015; 

Wepprich et al., 2019) and Monarch population trends in Illinois (Saunders et al., 2016, 2018). A 

brief summary of Pollard survey methods is provided in Appendix B. 

 Counts by species and in total (across species) are summed across surveys conducted 

during June through August for each county-year. To better understand how pesticide effects 

may vary by species, we consider three specific butterfly species: monarchs (Danaus plexippus), 

silver-spotted skippers (Epargyreus clarus), and cabbage whites (Pieris rapae). These species  

are selected for specific examination because of they are consistently observed throughout the 

study region and timeframe. 

These three species also exhibit distinct behavioral and lifecycle traits that allow for 

examination of how such traits might influence vulnerability to specific pesticides. Pollinator 

traits identified as particularly relevant to pesticide exposure include breadth of diet (i.e. 

specialist vs. generalist) and range (i.e. migratory vs. resident) (Sponsler et al., 2019). Monarchs 

are both migratory and host plant specialists. Silver-spotted skippers are residents to the region, 

host generalists, and are also known to be found feeding in soybean fields as caterpillars. 

Cabbage whites are residents, though invasive, host generalists, and the most frequently 

identified species in the data. 

Table 2.1 summarizes behavioral traits for each of these three species. Table 2.2 presents 

the mean count per hour of sampling during four periods to illustrate changes in populations over 

time. In accordance with recent studies of subsets of the same survey data, we observe declines 

in the abundance of each of the three species-of-interest and across all species over the period of 

our sample (Saunders et al., 2018; Wepprich et al., 2019). 
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Pesticide Use Data 

Pesticide application data was collected via paid phone interviews by Kynetec USA, Inc., 

a market research company. These data were collected via computer-assisted telephone 

interviews of soybean and corn growers. Lists of eligible growers were constructed from lists of 

growers who receive federal payments, membership lists of state and national growers 

associations, and subscription lists to agricultural periodicals. Sampling lists were constructed to 

ensure representativeness of applications at the level of the crop reporting district (CRD), 

USDA-designated groupings of counties in each state with similar geography, climate, and 

cropping practices. Non-respondents were recontacted at least eight times to reduce non-response 

error. Respondents were asked to detail their field-level pesticide, tillage, and seed choices 

during the previous growing season. Respondents were compensated monetarily upon survey 

completion, and responses were crosschecked against realistic application rates and consistency 

with other reported practices. 

Table 2.1. Butterfly Species-of-Interest and Selected Traits. 

Species Breadth of Diet Mobility Other Notes 

Monarch Specialist Migratory  

Silver-Spotted Skipper Generalist Non-migratory Feeds on soybean 

Cabbage White Generalist Non-migratory 
Invasive, most common 

species 

Table 2.2. Butterfly Species-of-Interest Mean Counts per Survey-Hour. 

Species 1998-2002 2003-2007 2008-2012 2013-2014 

Monarch 2.6 3.6 2.2 1.0 

Silver-Spotted Skipper 1.3 1.5 1.3 0.6 

Cabbage White 5.1 7.1 5.0 4.8 

All Species 53.2 49.3 42.7 34.9 
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Pesticide use is measured in area-treatments for each pesticide group. Area-treatments are 

defined as the average number of times a pesticide within a group is applied on a field within a 

defined region in a season (Kniss, 2017). Area-treatment measures are preferred over volumetric 

measures because they account for dramatic differences in application rates and associated 

toxicity between different products (Kniss, 2017; Perry & Moschini, 2019). More precisely, acre-

treatments are calculated for each pesticide group as the sum of soybean and corn acres treated 

on respondent farms within each CRD divided by the total planted acres of soybean and corn in 

each CRD for each year. 

Farmers apply hundreds of distinct pesticide products to soybeans and corn. To simplify 

our analysis, we identify six groups of pesticides, divided into three classes, herbicides, sprayed 

insecticides, and systemic insecticides. These groups of pesticides together represent the majority 

and diversity of pesticide use on these crops. The first class is herbicides, represented by 

glyphosate, and non-glyphosate herbicides. The second class is sprayed insecticides, which is 

comprised of pyrethroids and organophosphates. The final class is systemic insecticides, which 

includes neonicotinoids and Bt traited seed. Average area-treatments of each pesticide on 

soybean and corn fields for CRDs in our sample are presented in Figure 2.2. 

Glyphosate and non-glyphosate herbicides represent farmer use of herbicides. Our 

glyphosate variable measures all applications of herbicides containing glyphosate as an active 

ingredient, while non-glyphosate herbicides measures all other herbicide applications. 

Glyphosate is a broad-spectrum herbicide for which soybean and corn seed with genetically 

engineered resistance has been available since the late 1990s. Such seed increased the flexibility 

of glyphosate, allowing season-wide protection from any weed. Through the early period of our 

sample, glyphosate use rose while the use of non-glyphosate herbicides fell as farmers adopted 
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glyphosate-resistant soybean and corn seed. Since 2008, non-glyphosate herbicide use has risen, 

likely in response to the spread of glyphosate-resistant weeds. 

Pyrethroids and organophosphates constitute the two sprayed insecticide groups as the 

two insecticide chemistries most frequently applied via broadcast spray. These pesticides 

represent the two primary sprayed insecticide groups used to control insect pests in corn and 

soybean (Furlan & Kreutzweiser, 2015). Organophosphate use has declined since 2005 as 

neonicotinoid seed treatments and Bt traited seed has spread, while pyrethroid use has remained 

steady on average. 

The final two pesticide groups, neonicotinoids and Bt traited seed, represent the systemic 

insecticides available to farmers. Systemic insecticides remain present in crop tissue for several 

Figure 2.2. Pesticide Use in Sampled Crop-Reporting Districts. Points represent mean 

acre-treatments for each pesticide group for crop-reporting districts represented in each 

year. Vertical lines represent one standard deviation above and below the mean. 
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weeks post application. When pests feed on crops protected with systemic insecticides, they 

consume compounds toxic to insects. Bt traited seed is genetically modified to produce 

insecticidal proteins. Such seed has been available only in corn since 1996 and is targeted to 

European corn borer and, since 2003, corn rootworm and earworm. We observe increasing 

adoption over the period of our study. Neonicotinoids are most frequently applied via seed 

treatments in the form of an insecticidal dust coating corn or soybean seed that is taken up by 

plant tissue as the crop develops. When neonicotinoids are present in plant tissue, they provide 

protection from a broad spectrum of insect pests. Their use has grown dramatically since their 

introduction in 2004 in response to the appearance of soybean aphid and demand for additional 

systemic insecticides to supplement Bt traited corn, which target insects were quickly evolving to 

resist (Douglas & Tooker, 2015). 

 

Land Cover Data 

 We measure cropland cover as the proportion of land within each county planted to 

soybeans and corn using the USDA Cropland Data Layer (CDL) (USDA National Agricultural 

Statistics Service Cropland Data Layer, 2019). The CDL has used satellite images to classify 

land cover into distinct categories at 30m x 30m resolution consistently across the region of 

study since 2010 with over 90% accuracy for major crops (Lark et al., 2017). 

Because of inconsistent data availability from the CDL prior to 2010, we use a time-

invariant measure, averaging the proportion of land under soybeans or corn for each county 

between 2010 and 2014. There is little interannual variability in these measures over this period 

(Figure 2C.1), so we use the same value for each county across years, assuming the proportion 

remains roughly constant through the earliest years of the panel. A similar method is used in 
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Saunders et al. (2018) using Illinois land cover data from the National Land Cover Database over 

a similar time period. To verify that interannual variability at the county level is not an artifact of 

the CDL data generating process, we also examine the proportion of total land area planted under 

soybeans or corn using NASS acreage estimates for the full sample period (Figure 2C.2), where 

we find a similar pattern of steady cropland cover was also present from 1998 to 2014 for the 

sampled counties. The cropland variable ranges from 0.00 – 0.85 with a mean of 0.44, 

representing a broad spectrum of agricultural intensity (Figure 2C.3). 

 

Weather Data 

 Local weather patterns have been previously shown to affect butterfly distributions,  

abundances, and the timing of life, though the strength of such associations varies by species and 

land cover (Cayton et al., 2015; Diamond et al., 2014; Saunders et al., 2016, 2018; Zipkin et al., 

2012). To control for potential weather effects on annual butterfly abundance, we generate 

county-level measures of precipitation and temperature that capture variation between years and 

within seasons.   

Daily weather data was gathered from NASA Daymet, a 1km x 1km spatial grid of daily 

weather conditions using data from a network of weather stations (Thorton et al., 2018). To 

aggregate to the county-level, we average daily Daymet data over a 0.2 x 0.2 decimal degree 

(approximately 10km x 10km) rectangle centered at the centroid of each county. Temperature is 

measured in growing degree days (GDDs), which measures the number of degrees Celsius within 

a range in which butterflies can develop (11.5°C to 33°C) (Cayton et al., 2015). Precipitation is 

measured in millimeters. We partition each season into three intervals: early (March and April), 

mid (May and June), and late (July and August) season. Daily accumulation of precipitation and 
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GDD are summed over each interval and the resulting variables measure accumulated 

precipitation and GDDs for each county during each interval for each year. 

Monarchs annual migration brings Midwestern populations through Texas each spring, 

where GDD and precipitation variation has been found to correlate with summer abundance in 

Illinois (Saunders et al., 2018). To account for climate factors during Monarchs spring migration, 

we construct annual measures by calculating average accumulated GDD between March 22 and 

May 2 and precipitation during February, March, and April over Texas.  

 

Data Analysis 

Count Models 

 We develop a Poisson regression model to estimate expected butterfly counts, for each 

species-of-interest and in aggregate, in each county-year. For county 𝑖 located in CRD 𝑐(𝑖) in 

year 𝑡, we treat the observed butterfly count (𝑦𝑖𝑡) as a Poisson random variable with covariates 

on the log-link scale. 

log(𝑦𝑖𝑡) = 𝛽0 + 𝛽𝐶 ⋅ 𝑐𝑟𝑜𝑝𝑖 + 𝜷𝑷  ⋅ 𝒑𝒆𝒔𝒕𝒄(𝒊)𝒕 + 𝜷𝑷𝑪 ⋅ (𝒑𝒆𝒔𝒕𝒄(𝒊)𝒕 ⋅ 𝑐𝑟𝑜𝑝𝑖) + 𝜷𝑾 ⋅ 𝒘𝒆𝒂𝒕𝒉𝒆𝒓𝒊𝒕 +

𝜷𝒊 + 𝜷𝒕 + log(𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑡)  (2.1) 

For covariates, we include the vector of weather variables (𝒘𝒆𝒂𝒕𝒉𝒆𝒓𝒊𝒕), cropland cover (𝑐𝑟𝑜𝑝𝑖), 

the vector of CRD-level pesticide area-treatments (𝒑𝒆𝒔𝒕𝒄(𝒊)𝒕), and the interactions of pesticide 

area-treatments and cropland cover (𝒑𝒆𝒔𝒕𝒄(𝒊)𝒕 ⋅ 𝑐𝑟𝑜𝑝𝑖). We also include vectors of fixed effects 

for county (𝜷𝒊) and year (𝜷𝒕) to control for unmeasured temporally invariant factors within each 

county and spatially invariant factors within each year (Wooldridge, 2010). Finally, we control 

for changes in sampling by including the summed duration in minutes of all surveys in each 
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county-year (𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑖𝑡) as an offset. As a result, the exponentiated dependent variable can be 

interpreted as the rate of butterflies counted per minute. 

For the total abundance, silver-spotted skipper, and cabbage white models, we include 

only local weather variables. For the monarch models, we estimate an additional specification of 

the model including Texas spring weather variables as described in the data section to account 

for climatic variation along the population’s spring migration route. 

We include the interaction between cropland cover and pesticide area-treatments to 

provide a more proximate measure of pesticide applications than CRD-level pesticide area-

treatments alone. Our measure of cropland cover is measured at the county level for the crops for 

which we have associated CRD-level pesticide application data (soybean and corn) and 

distinguishes between counties where soybean and corn dominate the landscape and counties 

where such land cover is less common. This serves as a proxy for the distance between the 

habitat and foraging range of the sampled butterfly populations and where pesticides are applied. 

Including this term identifies how the magnitude, and direction, of the pesticide-abundance 

relationship varies between counties where butterflies are likely to come into direct contact with 

fields where pesticides are applied and counties where they are not. Previous studies have made 

similar use of interaction terms in multiple regression models to identify complex relationships 

between potential drivers of butterfly abundance, including interactions between temperature and 

urbanization as well as between glyphosate adoption and cropland cover (Diamond et al., 2014; 

Saunders et al., 2018). 

By including pesticide area-treatments, cropland proportion, and interaction terms, we 

measure the impact of agriculture on butterfly abundance in three distinct but related ways. The 

linear pesticide area-treatment terms capture the effects of pesticide use overall. The interaction 
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terms capture how the effects of pesticide use change as the likelihood that butterflies come 

across cropland varies. Finally, the linear cropland proportion term captures how cropland affects 

butterfly abundance through mechanisms other than pesticide use.1 

We obtain quasi-maximum likelihood coefficient estimates via R 3.5.1 (R Core Team, 

2018). We compute standard errors for coefficients via sandwich estimators that are robust to 

violations of the typical assumption used in Poisson regression that the conditional mean equals 

the conditional variance2 (Wooldridge, 2010). We assess model fits via McFadden’s pseudo R-

squared and a likelihood ratio test against the null model with only the fixed effects. We use the 

robust standard errors to perform z-tests (𝛼 = 0.05) against the null hypotheses that each 

coefficient is equal to zero. 

 

Pesticide Effects by Group 

 To explore the effects of each pesticide group we graphically examine each group’s 

effect on butterfly abundance as implied by our models. We do so by plotting predicted expected 

counts per hour over the observed ranges of each pesticide variable. To examine the differential 

impacts of pesticides at different levels of county cropland cover, we plot predictions calculated 

with the share of county land area planted to corn and soybean set at 0.15 and 0.65, representing 

the first and third quartiles of the variable, with all other covariates set at their means (Greene, 

 
1 Note that by including the interaction term, we are including both the effects of pesticide applications per cropped 

acre at the CRD level (𝜷𝑷) and the effects of pesticide applications per total land acre at the county level (𝜷𝑷𝑪). This 

is a result of simple unit analysis between the pesticide application measure where units are applications per CRD 

cropped acre and the cropland measure where units are county cropped acre per county land acre. 
2 Fully robust standard errors are obtained from the square-root of the diagonal of the asymptotic variance matrix 

estimator for 𝜷̂, given as (∑ 𝑨̂𝑖
𝑁
𝑖=1 )

−1
(∑ 𝒔̂𝒊

𝑁
𝑖=1 𝒔̂𝒊′)(∑ 𝑨̂𝑖

𝑁
𝑖=1 )

−1
, where 𝑨̂𝑖 is the expected value of the Hessian of the 

log likelihood for observation 𝑖 and 𝒔̂𝒊 is the transposed gradient (i.e. the score). 
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2010). We include 90% confidence intervals for these predictions, computed using Delta-method 

standard and the asymptotic variance matrix for the estimated model parameters. 

 

Net Pesticide Effects 

 To estimate for the cumulative impact of all changes in pesticides over the course the 

period of study, we compare predictions in expected values between two pesticide use scenarios 

for each county-year observation in our panel. We compute the difference between predicted 

population values computed using observed pesticide values (𝑦̂𝑖𝑡) and predictions computed 

using pesticide values observed for each county in 1998 (𝑦̂𝑖𝑡
98), the first year of the period of 

study. With 𝑓(∙) as the exponentiated right-hand side of Equation (3.1), 𝒙𝒊𝒕 as a vector of all 

covariates other than 𝒑𝒆𝒔𝒕𝒊𝒕, and 𝜷̂ as the vector of estimated coefficients, these predicted values 

are calculated as: 

𝑦̂𝑖𝑡 = 𝑓(𝒑𝒆𝒔𝒕𝒄(𝒊)𝒕, 𝒙𝒊𝒕;  𝜷̂); and  (3.2) 

𝑦̂𝑖𝑡
98 = 𝑓(𝒑𝒆𝒔𝒕𝒄(𝒊),𝒕=𝟏𝟗𝟗𝟖, 𝒙𝒊𝒕;  𝜷̂).  (3.3) 

This difference is divided by 𝑦̂𝑖𝑡
98 to compute proportional change: 

𝑦̂𝑖𝑡−𝑦̂𝑖𝑡
98

𝑦̂𝑖𝑡
98 .  (3.4) 

We estimate Delta-method standard errors for both 𝑦̂𝑖𝑡 and 𝑦̂𝑖𝑡
98 using the fully robust 

asymptotic variance matrix. Using these standard errors, we test the hypothesis 𝐻𝑎: 𝑦̂𝑖𝑡 < 𝑦̂𝑖𝑡
98 

against the null of no difference using a z-test (𝛼 = 0.05) to establish when net changes in 

pesticide use in county 𝑖 between year 𝑡 and 1998 have contributed to a statistically significant 

decline in butterfly abundance. 
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Results 

 Poisson model results are presented in Table 2.3. All four models represent a good fit of 

the data; each model has McFadden’s pseudo R-squared statistics exceeding 0.80. For all four 

models, the addition of explicit covariates for pesticide use, cropland cover, and weather 

provides a significant improvement over equivalent models with only county and year fixed 

effects, as evidenced by likelihood ratio tests. 

None of the coefficients on local seasonal precipitation and temperature are statistically 

significant. This result, suggesting that local weather conditions are not consistently linked to 

local annual abundance, is consistent with a previous analysis of a subset of these butterfly 

abundance data focused on Illinois monarch populations (Saunders et al., 2018). The cropland 

coefficient is statistically insignificant in all four models, suggesting that the row crop proportion 

of county land cover is not consistently associated with butterfly abundance after accounting for 

variation in pesticide use and other county fixed effects. 

For monarch butterflies, spring GDD accumulation and precipitation in Texas is 

correlated with summer abundance at a statistically significant level, corroborating the findings 

in Sanders et al. (2018) (Table 2A.1). However, these variables only vary temporally and not 

over counties in each year. Because the effects of these variables are controlled for equivalently 

in the base model by including annual fixed effects and their inclusion does not affect the 

estimates for the pesticide and land cover coefficients, we use the base model to report results for 

Monarchs. 

Our Poisson model estimates include statistically significant coefficients for at least one 

pesticide group for all three species-of-interest and total abundance. In the total abundance 

model, coefficients for all pesticide groups except for glyphosate are statistically significant,   
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Table 2.3. Poisson Models of Butterfly Abundance. Standard errors robust to dispersion 

assumptions. All models include county and year fixed effects. 

Species Variable Estimate Std. Error z-score Pr(>|z|) 

Total Intercept -1.61 0.71 -2.25 0.025 

 Precipitation, early 0.000083 0.00043 0.19 0.847 

 Precipitation, mid -0.00054 0.00043 -1.27 0.204 

 Precipitation, late 0.000013 0.00030 0.04 0.966 

 GDD, early -0.00062 0.00092 -0.67 0.503 

 GDD, mid -0.00007 0.00067 -0.11 0.914 

 GDD, late 0.00040 0.00060 0.67 0.503 

 Cropland 1.60 1.15 1.39 0.163 

 Glyphosate 0.39 0.27 1.46 0.144 

 Non-glyphosate -0.23 0.10 -2.25 0.024 

 Pyrethroids 0.90 0.38 2.34 0.019 

 Organophosphate -2.24 0.60 -3.74 < 0.001 

 Bt -1.47 0.54 -2.70 0.007 

 Neonicotinoids -1.28 0.48 -2.68 0.007 

 Cropland X Glyphosate -0.16 0.86 -0.18 0.856 

 Cropland X Non-glyphosate 0.73 0.35 2.09 0.037 

 Cropland X Pyrethroids -1.27 1.43 -0.89 0.374 

 Cropland X Organophosphate 0.98 2.18 0.45 0.654 

 Cropland X Bt 3.18 1.55 2.06 0.040 

 Cropland X Neonicotinoids -0.31 0.94 -0.33 0.744 

 N 401    

 Pseudo R-squared 0.811    

 Likelihood ratio (vs. f.e.only) 139,793 (Pr(>Chi-squared) < 0.001) 

Monarch Intercept -1.71 1.39 -1.23 0.221 

 Precipitation, early -0.000038 0.00088 -0.04 0.965 

 Precipitation, mid 0.00083 0.00075 1.10 0.270 

 Precipitation, late 0.000494 0.00044 1.11 0.266 

 GDD, early 0.00017 0.00186 0.09 0.928 

 GDD, mid -0.00081 0.00137 -0.59 0.553 

 GDD, late 0.00074 0.00111 0.67 0.505 

 Cropland -3.80 2.10 -1.81 0.071 

 Glyphosate 0.85 0.52 1.63 0.102 

 Non-glyphosate -0.32 0.20 -1.64 0.100 

 Pyrethroids 0.72 1.14 0.63 0.530 

 Organophosphate -1.58 1.86 -0.85 0.397 

 Bt -2.09 0.88 -2.36 0.018 

 Neonicotinoids -2.09 0.87 -2.41 0.016 

 Cropland X Glyphosate -1.49 1.37 -1.09 0.278 

 Cropland X Non-glyphosate 0.68 0.43 1.59 0.113 

 Cropland X Pyrethroids -3.86 2.30 -1.68 0.093 

 Cropland X Organophosphate 2.23 3.04 0.73 0.463 

 Cropland X Bt 7.14 2.10 3.40 0.001 

 Cropland X Neonicotinoids -2.83 1.14 -2.49 0.013 

 N 396    

 Pseudo R-squared 0.829    

 Likelihood ratio (vs. f.e.only) 6,185 (Pr(>Chi-squared) < 0.001) 
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Table 2.3 (cont.). 

Species Variable Estimate Std. Error z value Pr(>|z|) 

Silver-Spotted 

Skipper 

Intercept -4.79 1.56 -3.08 0.002 

Precipitation, early 0.000102 0.00118 0.09 0.931 

 Precipitation, mid -0.00134 0.00123 -1.09 0.275 

 Precipitation, late -0.001323 0.00069 -1.93 0.054 

 GDD, early 0.00230 0.00153 1.50 0.133 

 GDD, mid -0.00200 0.00129 -1.55 0.121 

 GDD, late 0.00048 0.00105 0.46 0.647 

 Cropland 0.59 4.23 0.14 0.889 

 Glyphosate 1.42 0.65 2.19 0.028 

 Non-glyphosate 0.95 0.28 3.45 0.001 

 Pyrethroids -0.18 1.02 -0.17 0.863 

 Organophosphate -5.04 1.20 -4.19 < 0.001 

 Bt -0.98 1.48 -0.66 0.509 

 Neonicotinoids -2.82 1.45 -1.94 0.053 

 Cropland X Glyphosate -3.10 1.56 -1.98 0.047 

 Cropland X Non-glyphosate -1.91 0.82 -2.34 0.019 

 Cropland X Pyrethroids -3.22 3.28 -0.98 0.325 

 Cropland X Organophosphate 7.04 3.59 1.96 0.050 

 Cropland X Bt 6.08 3.56 1.71 0.088 

 Cropland X Neonicotinoids -2.71 1.95 -1.39 0.165 

 N 388    

 Pseudo R-squared 0.865    

 Likelihood ratio (vs. f.e.only) 4,890 (Pr(>Chi-squared) < 0.001) 

Cabbage White Intercept -5.73 1.76 -3.26 0.001 

 Precipitation, early 0.000550 0.00099 0.55 0.580 

 Precipitation, mid -0.00099 0.00079 -1.25 0.210 

 Precipitation, late 0.000321 0.00060 0.53 0.593 

 GDD, early -0.00070 0.00274 -0.25 0.799 

 GDD, mid 0.00220 0.00143 1.54 0.123 

 GDD, late 0.00198 0.00195 1.02 0.310 

 Cropland 0.10 2.65 0.04 0.970 

 Glyphosate -0.15 0.62 -0.23 0.815 

 Non-glyphosate -1.25 0.36 -3.48 0.001 

 Pyrethroids 1.72 1.30 1.32 0.185 

 Organophosphate -4.94 2.15 -2.30 0.021 

 Bt -2.11 1.26 -1.67 0.094 

 Neonicotinoids -4.87 1.28 -3.80 < 0.001 

 Cropland X Glyphosate 0.41 1.95 0.21 0.835 

 Cropland X Non-glyphosate 2.03 0.56 3.61 < 0.001 

 Cropland X Pyrethroids -6.99 3.67 -1.91 0.057 

 Cropland X Organophosphate 8.76 4.26 2.06 0.040 

 Cropland X Bt 8.30 3.18 2.61 0.009 

 Cropland X Neonicotinoids 0.21 1.44 0.15 0.882 

 N 387    

 Pseudo R-squared 0.904    

 Likelihood ratio (vs. f.e.only) 21,384 (Pr(>Chi-squared) < 0.001) 
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while the cropland interaction coefficient is significant and positive for non-glyphosate 

herbicides and Bt traited seed. The positive interaction terms imply that the relationship between 

these pest control inputs and total butterfly abundance is more positive in counties where 

cropland in more common. For the monarch model, neonicotinoids and Bt traited seed 

coefficients are statistically significant, both for coefficients on area-treatments and on cropland 

interaction terms, but neither herbicide group has a significant effect. By contrast, in the silver-

spotted skipper model, both herbicide coefficients are statistically significant for both the area-

treatment and cropland interaction terms. Among insecticides, only the organophosphate 

coefficient is statistically significant.  Finally, in the cabbage white model, the non-glyphosate 

herbicides, organophosphate, and neonicotinoid coefficients are statistically significant, as well 

as the cropland interaction coefficients for non-glyphosate herbicides, organophosphate, and Bt 

seed. The effects of each pesticide group on total abundance and abundance of each species-of-

interest are displayed visually in Figure 2.3. 

Many pesticide effects have notable differences between counties with abundant cropland 

and ones without (Figure 2.3). Non-glyphosate herbicide use is negatively related to total 

abundance in areas with low amounts of cropland but positively related in areas with high 

amounts of cropland. Pyrethroids have a positive association with total abundance at low levels 

of cropland but display no association at higher levels. Both organophosphates and 

neonicotinoids have strong negative associations with total abundance at both low and high 

levels of cropland. 

For monarchs, neonicotinoid pesticides and Bt traited seed, both systemic pesticides, have 

significant associations with abundance. Neonicotinoids have a strong negative association with 

monarch populations at both high and low levels of cropland. Bt seed adoption has a weak  
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Figure 2.3. Pesticide Effects by Species and Cropland. Expected counts are predicted using 

Poisson abundance models with methods described in the text. Color indicates either the 

primary or cropland interaction coefficient is statistically significant (𝛼 = 0.05) for the given 

pesticide for the Poisson abundance models. 
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Figure 2.3 (cont’d). 
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negative association with monarch populations in counties with low amounts of cropland, but a 

strong positive association in counties with high amounts of cropland as a result of the cropland 

interaction coefficients. 

Silver-spotted skipper abundance is positively associated with herbicide use, both 

glyphosate and non-glyphosate products, at low levels of cropland, though slightly, and 

negatively associated with organophosphate use. We do not find these associations at higher 

levels of cropland, though silver-spotted skippers are rarely observed in high cropland counties. 

Cabbage white abundance has a strong negative association with neonicotinoid use at both high 

and low levels of cropland. Cabbage white abundance is also negatively associated with 

organophosphate, Bt seed, and non-glyphosate use at low levels of cropland. At high levels of 

cropland, Bt seed use is positively associated with cabbage white abundance, and the negative 

associations with non-glyphosate and organophosphate use is no longer detected. 

To examine the net effects of substitution between pesticide technologies over time, we compare 

the predicted values for every observation in the panel to the predicted values for the same 

observations under a counterfactual pattern of pesticide use where the pesticide use variables are 

held constant at the levels used in that county in 1998 (Figure 2.4). The net effect of pesticides 

over time on the abundance of all three species-of-interest, and total abundance, has become 

increasingly negative over time. Net negative effects are first detected at a statistically significant 

level in 2003 for silver-spotted skippers, 2004 for monarchs and across all species, and in 2005 

for cabbage whites. By 2014, the last year of our panel, over 75% of counties displayed 

statistically significantly negative net effects from pesticides on silver-spotted skipper, monarch, 

and total abundance, and 66% of counties display statistically significant net effects on cabbage 

white abundance. 
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Figure 2.4. Net Pesticide Effect Since 1998 by Species. Red filled dots indicate a 

statistically significant difference between predicted values fitted with observed pesticide 

levels and pesticide levels from 1998 (𝛼 = 0.05).  
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Figure 2.4 (cont’d). 
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Changes in pesticide use between 1998 and 2014 account for a 9% decrease in total 

butterfly abundance in the median county. For monarchs, silver-spotted skippers, and cabbage 

whites, changes in pesticide use account for median decreases in abundance of 30%, 46%, and 

39% respectively. 

 

Discussion and Conclusion 

 Our results show that neonicotinoid insecticide use is negatively associated with butterfly 

abundance both across landscape configurations and across species. Neonicotinoids are 

negatively associated with total abundance and with the abundance of both monarchs and 

cabbage whites. Silver-spotted skippers show a similar pattern, but the model driving this result 

is estimated with statistically insignificant parameters (though coefficient on neonicotinoid use is 

marginally so, with p = 0.053). For all four models, neonicotinoids display the largest magnitude 

effects at both high and low cropland levels. 

The finding of a negative association between butterfly abundance and neonicotinoid use 

is broadly consistent with previous studies. Past studies of regional-level butterfly abundance 

find a similar negative relationship between abundance and neonicotinoid use in California and 

the United Kingdom (Forister et al., 2016; Gilburn et al., 2015). These studies examined 

neonicotinoids but no other pesticide groups; our findings suggest that this result persists even 

when other pesticides are accounted for. The increase in neonicotinoid use from 2004-2014 

coincides with increasingly negative net pesticide effects and largely drives this result, mirroring 

results in past studies which rely on bee toxicology data (DiBartolomeis et al., 2019). 

The negative effect of neonicotinoids stands in stark contrast to the associations between 

butterfly abundance and Bt seed use, the other systemic pesticide option available to farmers. In 
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all four models, Bt seed use is positively associated with butterfly abundance in those counties 

with high levels of cropland, though the parameters driving this result for silver-spotted skippers 

are noisily estimated. Bt adoption is linked to sharp reductions in the use of sprayed insecticides 

(Osteen & Fernandez‐Cornejo, 2013; Perry & Moschini, 2019). It is possible that the positive 

effect we observe is an indirect effect that results from the adoption of Bt decreasing the 

frequency of application of sprayed insecticides that may be more harmful to butterflies, though 

one would expect including sprayed insecticide variables as covariates would control for this 

effect. Another possibility is that Bt adoption leads to changes in sprayed insecticide use beyond 

adjusting the frequency of spraying. One possible mechanism includes changes in the timing of 

sprayed insecticide application. Changes in the timing of insecticide spraying may lead to 

applications during periods when butterflies are less vulnerable. Future research could address 

this hypothesis with data on the precise timing of in-season insecticide applications.  

 Our results for sprayed insecticides are less conclusive. Organophosphate use is 

negatively associated with total butterfly abundance, though unassociated with monarch 

abundance. Pyrethroid use on cropland is positively associated with total abundance in less 

agricultural landscapes, but this pattern does not hold in more agricultural counties or for any of 

the three individual species-of-interest. Our findings indicate that pyrethroids are less harmful 

than organophosphates in all contexts we examine, and so the decreasing use of 

organophosphates since 2004 has been a boon to butterfly populations, offsetting some of the 

negative pressure from increased neonicotinoid use. 

 Our herbicide results suggest that herbicides have little impact on the abundance of any 

of the species-of-interest and an inconsistent association with total abundance. Most importantly, 

our results find no impact of herbicide use on monarch abundance. Previous studies have pointed 
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to increased glyphosate use as a driver of monarch decline. Pleasants and Oberhauser (2013) find 

large declines in both milkweed, the plant species used as a breeding host for monarchs and a 

weed targeted by corn and soybean farmers, and monarchs between 1999 and 2010. Saunders et 

al. (2018) find a negative relationship between county-level glyphosate purchases and site-level 

monarch abundance, particularly in areas where agriculture is most intensive, though only prior 

to 2005. Our results, which account for changes in glyphosate use as well as contemporaneous 

changes in the use of other herbicide and pesticides, do not corroborate these past findings and 

show no link between monarch populations and the use of either glyphosate or non-glyphosate 

herbicides. 

The direction and magnitude of the net pesticide effects we estimate are consistent with 

observed declines in the abundance of Midwestern butterfly populations reported in the 

literature. Total butterfly abundance in Ohio declined 33% from 1996 to 2016, and monarch and 

cabbage white abundance were declining during the same period (Wepprich et al., 2019). Our 

findings suggest that changes in pesticide use patterns, namely the widespread adoption of 

neonicotinoid insecticides, can account for at least part of these declines. The net pesticide effect 

on total butterfly abundance between 1998 and 2014 that we estimate accounts for about a third 

of magnitude of total decline in abundance over the same period, leaving two-thirds of the 

decline unexplained. 

Understanding the full range of externalities associated with the full suite of pesticide 

technologies available to farmers is critical to understanding tradeoffs associated with their use 

and regulation (Zilberman & Millock, 1997). Our results suggest that the use of pesticides, 

notably neonicotinoids, creates a negative environmental externality by reducing butterfly 

abundance. By contrast, Bt traited seed adoption creates a positive externality through a positive 
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association with butterfly abundance. These findings improve the understanding of the full social 

costs (and benefits) of pesticides and can be used in evaluating regulations and farmers’ 

incentives. 

To prevent further declines in butterfly abundance, farmers may reduce pesticide use 

voluntarily. Recent studies in France and the United States suggest that pesticide use could be 

reduced in row crop production without negatively affecting profits for the median farm in each 

region (Lechenet et al., 2017; Mourtzinis et al., 2019). However, these studies are based on 

deterministic cost models that do not account for the reductions in risk and complexity that 

pesticides frequently provide over alternatives. In order to overcome these barriers to reducing 

pesticide use, farmers may require compensation in the form of a payment-for-environmental-

services program. Studies have found that farmers will enter such programs at lower payment 

rates when farmers believe their participation meaningfully impacts environmental outcomes 

(Chèze et al., 2020; Ma et al., 2012). The results of the present study can be used to improve 

farmer knowledge of the non-target effects of pesticide use. 

Alternatively, regulatory agencies may consider imposing restrictions on pesticide use. 

Pesticide externalities, both in terms of butterfly losses and other environmental and health 

outcomes, vary widely depending on which pesticides are used, where they are used, and how 

they are used, creating challenges for implementing efficient externality taxes (Zilberman & 

Millock, 1997). As a result, pesticide regulation typically takes the form of bans on specific 

technologies.  

There is recent precedent for regulating pesticides specifically to protect insect 

populations. In the European Union, neonicotinoid seed treatments have been banned since 2013 

due to concerns about toxicity to pollinators (Auteri et al., 2017). A similar ban in the United 
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States is predicted to lead to pest management substitutions that decrease pesticide toxicity to 

bees by 19%, albeit with offsetting increases in toxicity to mammals, fish, and birds (Perry & 

Moschini, 2019). Our findings here indicate that, like bees, butterflies would benefit from 

reductions in neonicotinoid use. However, given that farmers would find substitute pesticides, 

these gains must be balanced against non-butterfly related social costs, including damage to other 

species and threats to human health, associated with potential substitutes. 
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APPENDIX A: Monarch Results with Texas Weather Controls 

 

Table 2A.1. Poisson Models of Monarch Abundance with Spring Texas Weather Controls. 

Standard errors robust to dispersion assumptions. All models include county and year fixed 

effects. 

Species Variable Estimate Std. Error z-score Pr(>|z|) 

Monarch Intercept -6.40 3.14 -2.04 0.041 

 Precipitation, early -0.000038 0.00088 -0.04 0.965 

 Precipitation, mid 0.00083 0.00075 1.10 0.270 

 Precipitation, late 0.000494 0.00044 1.11 0.266 

 GDD, early 0.00017 0.00186 0.09 0.928 

 GDD, mid -0.00081 0.00137 -0.59 0.553 

 GDD, late 0.00074 0.00111 0.67 0.505 

 Precipitation, Texas Spring -0.0221 0.00540 -4.08 <0.001 

 GDD, Texas Spring 0.0249 0.00713 3.50 <0.001 

 Cropland -3.80 2.10 -1.81 0.071 

 Glyphosate 0.85 0.52 1.63 0.102 

 Non-glyphosate -0.32 0.20 -1.64 0.100 

 Pyrethroids 0.72 1.14 0.63 0.530 

 Organophosphate -1.58 1.86 -0.85 0.397 

 Bt -2.09 0.88 -2.36 0.018 

 Neonicotinoids -2.09 0.87 -2.41 0.016 

 Cropland X Glyphosate -1.49 1.37 -1.09 0.278 

 Cropland X Non-glyphosate 0.68 0.43 1.59 0.113 

 Cropland X Pyrethroids -3.86 2.30 -1.68 0.093 

 Cropland X Organophosphate 2.23 3.04 0.73 0.463 

 Cropland X Bt 7.14 2.10 3.40 0.001 

 Cropland X Neonicotinoids -2.83 1.14 -2.49 0.013 

 N 396    

 Pseudo R-squared 0.829    

 Likelihood ratio (vs. f.e.only) 6,185 (Pr(>Chi-squared) < 0.001) 
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APPENDIX B: Pollard Survey Methods 

 

 Each butterfly monitoring network makes use of methods described in Pollard (1977). 

This method is briefly summarized in this appendix. Routes are designed by volunteers in 

coordination with network coordinators to (a) transect a variety of habitat types, (b) follow 

existing pathways so not to disturb habitat, (c) be easily located by other volunteers, and (d) take 

between 30 minutes to two hours to complete. For each route, a single volunteer walks at a 

consistent pace along routes (called a “run”) a minimum of six times per year during the months 

of June, July, and August, with additional runs during these months or others if possible. Runs 

are conducted between 10:00am and 3:30pm on days with (a) less than 50% cloud cover and (b) 

light to moderate winds. During the run, the volunteer records all individuals by species sighted 

within roughly 20 feet to each side of the route. Volunteers are instructed to only identify species 

with certainty and not to guess.  
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APPENDIX C: Supplemental Figures 

 

 

 

 
Figure 2C.1. Land Cover Patterns by County (Cropland Data Layer). Each line represents 

the proportion of a county in the sample classified as corn or soybean over the period with 

consistent Cropland Data Layer availability. 
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Figure 2C.2. Land Cover Patterns by County (NASS Acreage Estimates). Each line 

represents the proportion of a county in the sample planted with corn or soybean over the study 

period. Sudden drops are the result of missing values for either corn or soybean acreage in a 

given year. 
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Figure 2C.3. Cropland Variable Geographic Distribution. Crop Reporting District boundaries 

(CRD) indicated in bold.
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CHAPTER 3. The Value of Timeliness: How Soybean Farmers Choose to Custom Hire for 

Pest Control 

 

Abstract 

Farmers frequently outsource machinery-intensive field operations to custom operators. 

In doing so, farmers expose themselves to the risk that fieldwork will not be completed in a 

timely manner, potentially reducing their yields and revenue. Custom hiring occurs even for 

activities such as pest control, where losses from late spraying can be particularly large. These 

potential losses, known as timeliness costs, can be exacerbated when contracting, and therefore 

can be considered a form of transaction costs. This paper develops a farmer choice model of 

custom hiring for pest control that is rooted in transaction cost theory. Hypotheses derived from 

this model are then illustrated through a discrete choice experiment conducted via a web survey 

of soybean growers in Michigan, Illinois, and Indiana. In this pilot study, farmers respond to a 

hypothetical pest infestation by choosing between custom operators, spraying on their own, or 

leaving the field to its fate. Our results imply that, among farmers who choose to spray, the mean 

willingness-to-pay for marginal increases in timeliness (as defined as the chance of late spraying) 

ranges from 37 to 52 cents per acre. We also find that farmers who are more averse to risk are 

more sensitive to custom operator timeliness; farmers with better developed social networks are 

less sensitive to risk of delay. The results of this pilot study can be used to motivate future 

avenues of research into the drivers of custom hire behavior in pest control and other field 

operations. 
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Introduction 

Many fieldwork activities necessary to produce field crops (i.e. corn, soybean, wheat) in 

the Midwestern United States require large, and often expensive, agricultural machinery. While 

the need for such machinery is ubiquitous, the assignment of property rights over such 

investments often differs from operation to operation. Some farmers choose to invest in and 

operate such machinery themselves, while others choose to hire custom operators, who own and 

operate their own machinery, to complete specific machinery-intensive activities. 

Custom hiring is used extensively by farmers across the Midwest, though not universally. 

Figure 3.1 presents trends for custom work. Between 2007 and 2012, the number of farms in 

Illinois, Indiana, and Michigan hiring custom for any fieldwork increased 23%, 37%, and 29% 

respectively (USDA NASS, 2014). Expenditures on custom work rose significantly as well 

during the same period, increasing by 75%, 104%, and 56% in Illinois, Indiana, and Michigan 

respectively (USDA NASS, 2014). 

The aim of this paper is to examine why some farmers choose to custom hire while others 

choose ownership: a question of vertical control (Coase, 1937; Klein, 2005). Such questions are 

frequently studied in the context of transaction costs economics (TCE), which is focused on 

conditions under which vertical control of multiple stages of production is efficient relative to 

contracting as means of mitigating costs that emerge from conflicting incentives between 

contracting parties. Whether contracting or vertical control emerges as the efficient institutional 

arrangement is often a function of both the transaction and the potential participants in question 

(Williamson, 1979). 

While custom hiring is widespread, the use of custom operators varies widely by 

production task (e.g. planting, fertilizer application, pesticide application, harvesting). Among 
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Figure 3.1. Custom Hiring Trends in Three Soybean-Growing States. Author’s data 

collected in 2017 via a mail survey of 1,478 soybean farmers across Illinois, Indiana, and 

Michigan. 
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corn and soybean growers in Illinois, Indiana, and Michigan, custom operators are hired to apply 

fertilizers much more frequently than they are to apply pesticides (author’s data). These tasks are 

distinguished by the degree to which they are vulnerable to unexpected events leading to lapses 

in work quality or timeliness, which in turn can lead to decreased yields and farm profitability 

(Allen & Lueck, 2004). The window for effective completion of many field operations (referred 

to as  “field days”) can be unexpectedly limited by adverse weather (Apland, 1993). For pest 

control in particular, the window for applying insecticides to is particularly stochastic, as insect 

pest populations, such as soybean aphid (Aphis glycines), can arrive unexpectedly and grow 

exponentially if left untreated (Johnson et al., 2009a; Ragsdale, Voegtlin, & O’Neil, 2004). 

Further, the degree of yield loss if pest control is not completed in a timely manner can be 

catastrophic, leading to potential soybean yield losses of as much as 50% (Johnson et al., 2009). 

From the perspective of the farmer, choosing custom contracting over vertical control 

adds another layer of uncertainty, as the completion of the task is dependent on the actions of 

another agent under imperfect observability. Because pest control is especially vulnerable to 

field day stochasticity and the penalties for lapses in timeliness are so extreme, pest control is an 

attractive task through which to examine the decision to hire custom operators. 

Previous research has examined drivers of farmer choices to contract at either end of the 

production cycle. Some studies focus on the choice to access different marketing channels and 

the characteristics of contracts that govern them (Davis & Gillespie, 2007; Dorward, 2001; 

Franken, Pennings, & Garcia, 2009; Hobbs, 1997; Hudson & Lusk, 2004; Hueth, Ligon, Wolf, & 

Wu, 1999; Royer, 2011). Others focus on the control of property rights and contracting 

characteristics for arable land (Allen & Lueck, 1992, 1992, 1993). These studies model the 

choice to contract or among contracts as functions of drivers of transaction costs, or the presence 
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of factors that mitigate them. Such studies typically find support for the hypothesis that the 

contracts or organizational structures that minimize transaction costs are ultimately selected, 

confirming the central hypothesis of transaction cost economics. 

Both uncertainty and the value of the asset subject to uncertainty are cited as drivers of 

transaction costs, creating frictions that prevent efficient contracting (Williamson, 1979). In this 

paper, we examine the role of uncertainty in driving transaction costs in pest control, which we 

expect can explain the relatively low rate of custom hiring (i.e. contracting) for this field 

operation. In the following section, we build a conceptual model for custom hiring in pest control 

based around uncertainty and the probability a custom operator provides timely service. Beyond 

examining the role of uncertainty in increasing transaction costs, we also examine the role of 

social capital in mitigating such costs by providing information networks and reputational 

punishment mechanisms to distinguish between trustworthy and untrustworthy custom operators 

(Williamson, 1993; Wilson, 2000). 

In the third section, we describe a choice experiment conducted with farmers in 

Michigan, Indiana, and Illinois designed to illustrate the implications of our conceptual model. In 

the fourth section, we describe our empirical strategy for analyzing the choice experiment data, 

followed by results. We close with a discussion of our findings in the context of our hypotheses 

and broader transaction costs literature, and implications for the future of custom hiring in pest 

control and other activities. 

 

Conceptual Model 

In this section, we first describe a simple choice model in which a farmer faces an acute 

pest infestation and chooses among three possible responses: (1) spraying with their own 
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equipment, (2) hiring a custom operator to spray for them, or (3) not spraying at all. We then 

elaborate on the model with transaction costs theory and expected utility theory to motivate 

hypotheses as to what factors drive farmers’ custom hiring decisions for pest control. These 

models provide insight into the tradeoffs involved in custom hiring for pest control and the 

characteristics of farmers who might be more likely to custom hire. 

In what follows, we assume for simplicity that the farmer’s pest control decision is 

separable from the rest of their production activities. All production costs not related to pest 

control are assumed to be unaffected by the farmer’s pest control decisions and are therefore 

omitted from the analysis. 

 

Base Model 

To begin, assume a profit maximizing farmer with one field growing a generic crop. The 

field has yield potential of 𝑌 (assumed to be certain for simplicity) which sells at a price we set 

to one as the numeraire. The farmer’s field is infested with a generic insect pest. If sprayed with 

the appropriate insecticide on time, the pest infestation does no yield damage. If the insecticide is 

applied late, the pest inflicts damage 𝑑 ∈ (0, 1] as a proportion of the field’s yield potential 𝑌. 

The farmer chooses a response 𝑎 ∈ 𝐴 = {𝑠𝑒𝑙𝑓, 𝑐𝑢𝑠𝑡𝑜𝑚, 𝑛𝑜𝑠𝑝𝑟𝑎𝑦}, where 𝑠𝑒𝑙𝑓 

represents the ownership option in which the farmer sprays with their own sprayer, 𝑐𝑢𝑠𝑡𝑜𝑚 

represents the custom hiring option, and 𝑛𝑜𝑠𝑝𝑟𝑎𝑦 represents the option to not spray at all and 

accept all damages. Each alternative has an associated profit 𝜋𝑎, where 𝑐𝑎 is the alternative-

specific cost of pest control and 𝑌𝑎 is yield realized when option 𝑎 is selected: 

𝜋𝑎 = 𝑌𝑎 − 𝑐𝑎  (3.1) 
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For now, we assume that choosing either 𝑠𝑒𝑙𝑓 or 𝑐𝑢𝑠𝑡𝑜𝑚 will lead to on-time treatment with 

certainty, and so 𝑌𝑠𝑒𝑙𝑓 = 𝑌𝑐𝑢𝑠𝑡𝑜𝑚 = 𝑌 and no damage occurs. When 𝑛𝑜𝑠𝑝𝑟𝑎𝑦 is selected yield 

damage is realized and no costs associated with spraying are accrued, so 𝜋𝑛𝑜𝑠𝑝𝑟𝑎𝑦 = (1 − 𝑑)𝑌. 

For the remainder of the analysis, we will focus on differences between 𝑠𝑒𝑙𝑓 and 𝑐𝑢𝑠𝑡𝑜𝑚, 

though it should be noted that for values of 𝑑 close to zero and spraying costs sufficiently high, 

spraying will not occur, consistent with the concept of an economic damage threshold (Ragsdale 

et al., 2018). 

It is clear in the above model that the crucial differences between spraying options is the 

alternative-specific cost of treatment, 𝑐𝑎. These costs are given as: 

𝑐𝑠𝑒𝑙𝑓 = 𝑐ℎ𝑒𝑚 + 𝑙𝑎𝑏𝑜𝑟 + 𝑒𝑞𝑢𝑖𝑝; (3.2) 

𝑐𝑐𝑢𝑠𝑡𝑜𝑚 = 𝑐ℎ𝑒𝑚 + 𝑓𝑒𝑒. (3.3) 

In Equation (3.2) and Equation (3.3), insecticides chemical costs, labelled as 𝑐ℎ𝑒𝑚, are incurred 

under both alternatives and therefore ignored in the comparative analysis. 

When 𝑠𝑒𝑙𝑓 is chosen, additional costs incurred include 𝑙𝑎𝑏𝑜𝑟, the wages (or equivalently 

opportunity cost of time) of the farmer applying the chemicals, and 𝑒𝑞𝑢𝑖𝑝, the cost of owning 

and operating the sprayer. Equipment costs embody fuel, maintenance, and depreciation, as well 

as any costs involved with procuring a sprayer if one is not readily available such as search costs 

or rent. Because the farmer’s window of time to react to the infestation is limited, these 

procurement costs can be prohibitively high if a farmer has not made prior arrangements via 

long-term rental or ownership of a sprayer. For 𝑐𝑢𝑠𝑡𝑜𝑚, the only additional cost is 𝑓𝑒𝑒, the 

amount paid to the operator in return for services. 

This simple cost comparison leads to three proposed hypotheses: 

H1: When on-farm labor is more costly, custom hiring is more likely. 
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H2: When a farmer owns their own sprayer, custom hiring is less likely. 

H3: When a custom operator charges a higher fee, they are less likely to be hired. 

 

Transaction and Timeliness Costs 

A farmer’s decision to custom hire has clear parallels to a traditional firm’s choice 

between producing its own inputs or procuring them via contracting with another firm. Referred 

to as the make-or-buy decision, this topic is frequently examined in the transaction costs 

economics (TCE) literature (Coase, 1937; Klein, Crawford, & Alchian, 1978; Klein, 2005; 

Shelanski & Klein, 1995; Williamson, 1979). In the custom pest control context, the input is the 

application of insecticides on a specific insect-infested field. The farmer chooses between 

spraying with their own equipment (the vertical integration option) and hiring a custom operator 

(the contracting option). 

The key insights of TCE are (a) that transactions require costly governance; (b) that these 

costs, referred to as transaction costs, vary among alternative governance structures depending 

upon the characteristics of the activity or asset exchanged and the identities of the trading 

partners; and (c) that firms will utilize governance structures that minimize such transaction costs 

(Shelanski & Klein, 1995). Transactions vary in many ways, but TCE studies have identified two 

transaction characteristics as especially important: asset specificity and uncertainty (Klein, 

2005). 

Asset specificity is typically defined as the degree to which investment in assets or 

actions are specific to the transaction and therefore cannot be recovered should the transaction 

fall through.  Uncertainty in this case relates to the value of said assets or actions and the 

behavior of trading partners (Klein, 2005). Asset specificity and uncertainty can create 
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circumstances for trading partners to act opportunistically (Klein, 2005). Governance structures 

(e.g. contracts, markets, or vertical integration) can mitigate the incentives to do so, though such 

structures often create additional administrative costs (e.g. monitoring, enforcement, etc.) (Klein, 

2005). 

Asset specificity can manifest itself temporally, especially for pesticide application. Once 

an economically significant pest infestation is recognized, there often exists a critical period 

during which the infestation can be treated before risking significant yield loss. The value of 

these losses due to late treatment are referred to as timeliness costs (Allen & Lueck, 2004). 

However, the exact dates during the growing season when pests will approach economically 

damaging levels, or whether a pest infestation will occur at all, is impossible to know a priori 

(Johnson et al., 2009). Typically, farmers must choose whether they will spray on their own or 

hire a custom operator before such uncertainty is resolved. 

When custom hiring, a farmer forfeits control over when and where the sprayer is used, 

which can increase the likelihood of delays in treatment, amplifying potential timeliness costs 

(Allen & Lueck, 2004). A farmer who owns and operates their own sprayer can more readily 

apply pesticides precisely when and where they are needed once uncertainty regarding a 

potential pest infestation is resolved. The custom operator may have other customers with pest 

infestations simultaneously occurring and must choose whose field to treat first. Random 

occurrences that would lead to delays even if the farmer chose to spray on their own, like 

unexpected weather, are amplified if they chose to custom hire as they further increase the 

likelihood of overburdening the custom operator. Because of the high degree of uncertainty, 

limited optimal treatment window, and large potential yield losses surrounding pest control, 

timeliness costs have the potential to be sizable. 
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We include timeliness costs into the model by introducing uncertainty, from the 

perspective of the farmer, over whether pest control will be completed within the optimal 

window. Rather than assuming each 𝑌𝑎 is certain, instead now assume that each 𝑌𝑎 is a binary 

random variable with support {𝑌, (1 − 𝑑)𝑌}, the full yield when spraying occurs within the 

optimal window and the damaged yield when late spraying occurs. Let 𝑝𝑎be the alternative-

specific probability that treatment is delayed from the perspective of the farmer, so that 

𝐸(𝑌𝑎) = (1 − 𝑝𝑎)𝑌 + 𝑝𝑎[(1 − 𝑑)𝑌] = (1 − 𝑝𝑎𝑑)𝑌. (3.4) 

Assuming all other variables are known with certainty, then 

𝐸(𝜋𝑎) = (1 − 𝑝𝑎𝑑)𝑌 − 𝑐𝑎.  (3.5) 

Under assumptions of expected-profit maximization, the farmer chooses the alternative 

that maximizes Equation (3.5). Assume for simplicity that 𝑝𝑠𝑒𝑙𝑓 = 0 and 𝑝𝑛𝑜𝑠𝑝𝑟𝑎𝑦 = 1. For 

𝑝𝑛𝑜𝑠𝑝𝑟𝑎𝑦, this assumption is trivial because there is no chance of damage avoidance if no 

spraying occurs, so the application is late by definition. For 𝑝𝑠𝑒𝑙𝑓, this assumption is equivalent 

to assuming that the spray will always occur on time if farmer is doing so themselves.1 

The probability of on-time pest control for custom operators, 𝑝𝑐𝑢𝑠𝑡𝑜𝑚, is more complex. 

From the perspective of the farmer, the probability that a custom operator sprays on time is 

related to the concept of trust. Bhattacharya et al. (1998) propose a formal definition of trust 

expressed verbally as “an expectancy of positive (or nonnegative) outcomes that one can receive 

based on the expected action of another party in an interaction characterized by uncertainty.” In 

this model of trust, agents hold “conjectures” about other agents, defined as the probability from 

the agent’s perspective that other agents will complete specific actions (Bhattacharya et al., 

 
1 Equivalently, the problem be scaled so that 𝑝𝑠𝑒𝑙𝑓  is the baseline probability and custom operators are compared to 

that baseline. Then the assumption becomes that all relevant external drivers such as weather influence 𝑝𝑠𝑒𝑙𝑓  no 

more than they do 𝑝𝑐𝑢𝑠𝑡𝑜𝑚 so that all additional uncertainty can be attributed to the custom operator. 
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1998). In the above model, 𝑝𝑐𝑢𝑠𝑡𝑜𝑚 serve as conjectures in the Bhattacharya et al. sense. 

Bhattacharya et al. do not hypothesize as to how conjectures are formed. At this stage, we will 

assume simply that conjectures exist; factors supporting favorable or unfavorable conjectures 

will be discussed later in this section. 

With timeliness costs included in the model as above, it is clear that farmers will be less 

likely to choose a custom operator when 𝑝𝑐𝑢𝑠𝑡𝑜𝑚 is closer to one, all else equal. Further, 𝑑, the 

damage suffered when spraying is late, now appears in the 𝐸(𝜋𝑎) function, Equation (3.5). Each 

alternative is associated with a 𝑝𝑎𝑑𝑌 term, which we define as “expected damage,” and when 

timeliness costs are larger, the alternative becomes less attractive to the farmer. Timeliness costs 

are composed of the probability of delay, the damage from delay, and the yield potential. We 

propose the following hypotheses: 

H4: When the the damage from delay is higher (i.e. dY is larger), custom operators are less 

likely to be hired. 

H5: When the probability a custom operator is delayed in spraying is higher (i.e. 𝑝𝑐𝑢𝑠𝑡𝑜𝑚 is 

closer to one), that custom operator is less likely to be hired. 

 

Risk Aversion 

In the development of the preceding model, the farmer is assumed to be risk neutral and 

would be indifferent between two alternatives: an alternative with a pre-determined profit and 

one with multiple possible outcomes but the same profit in expectation. In this modification of 

the model, we allow for a more general case where farmers may be risk averse, preferring non-

stochastic options to stochastic alternatives with equivalent expected profit. Rather than 

assuming that farmers maximize expected profit, we instead assume farmers choose the response 
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to potential pest infestation which maximizes their expected utility, 𝑢, a function of profit 

conditioned by a risk attitude parameter 𝑟, where larger values indicate more aversion towards 

risk. Each custom operator can be thought of as a lottery, with payoffs 𝑌 and (1 − 𝑑)𝑌 and 

conjectures about the reliability of the custom operator serving as probabilities of each outcome 

Not spraying and spraying on one’s own are essentially degenerative lotteries. Costs 𝑐𝑎 serve as 

the price of each lottery. For each alternative, the expected utility is then represented as: 

𝑢𝑎 = 𝑢(𝑌, 𝑑, 𝑐𝑎, 𝑝𝑎; 𝑟). (3.6) 

By including risk attitude parameter 𝑟, we allow for a variety of possible behavioral 

theories, including the curvature of the utility function (Von Neumann & Morgenstern, 1944), 

loss aversion and probability weighting schemes (Tversky & Kahneman, 1992), and models that 

do not rely on weighted averages of outcomes and allow uncertainty to directly affect utility 

(Gneezy, List, & Wu, 2006). If some farmers are more averse to risk than others, then this should 

be reflected in their custom hiring decisions, and farmers who are more risk averse will be less 

likely to select risky options. This constitutes our sixth hypothesis: 

H6: More risk averse farmers (i.e. 𝑟 is larger) are more sensitive to potential delays in spraying. 

 

Conjectures and Social Capital 

Because a farmer’s conjecture about a custom operator is ultimately subjective, it can be 

viewed as a function of not just the relationship between the farmer and the operator themselves, 

but also other circumstances surrounding the relationship relevant to the decision in question. In 

this section, we draw on social capital theory to form an additional hypothesis as to what factors 

drive custom hiring decisions. 

Social capital theory proposes that social institutions and relationships between people 

can be viewed as productive assets (Schmid & Robison, 1995). Personal relationships and social 
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networks can reduce transaction costs by easing the flow of information and establishing 

informal punishment systems for those who violate norms (Schmid & Robison, 1995). For 

example, empirical research analyzing over 3,000 cropland rental contracts, both formal and 

informal, from Nebraska and South Dakota finds evidence supporting reputational enforcement 

mechanisms in which farmers with more developed social networks are more likely to participate 

in informal (i.e. unwritten) contracts (Allen & Lueck, 1992b). 

In the context of custom pest control, a similar social capital mechanism may exist. 

Farmers who consistently communicate with many other farmers can both rely on other farmers 

for additional information about the custom operator’s reliability and easily spread news of late 

spraying by a specific operator. Therefore, the probability that a custom operator delays pesticide 

application, 𝑝𝑐𝑢𝑠𝑡𝑜𝑚, may depend on the social network of the farmer who is contracting for the 

work. To capture this possible effect, we present 𝑝𝑐𝑢𝑠𝑡𝑜𝑚 as a function of a farmer’s social 

capital, represented as 𝑠𝑜𝑐𝑖𝑎𝑙: 

𝑝𝑐𝑢𝑠𝑡𝑜𝑚 = 𝑝𝑐𝑢𝑠𝑡𝑜𝑚(𝑠𝑜𝑐𝑖𝑎𝑙).  (3.7) 

When farmers have more social capital, they can rely on these networks to punish custom 

operators who provide late service by damaging their reputation among potential customers. All 

else equal, such punishment introduces additional costs to the operator for spraying late. 

Therefore, from the perspective of the farmer, any given operator is less likely to provide late 

service, and farmers are likely to weight probabilities of delay downward (i.e. 
𝑑𝑝𝑐𝑢𝑠𝑡𝑜𝑚

𝑑𝑠𝑜𝑐𝑖𝑎𝑙
< 0). This 

leads to the following proposed hypothesis: 

H7: When a farmer has a more developed social network, they are less sensitive to potential 

delays in spraying by custom operators. 
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Choice Experiment and Survey 

As an illustration of the implications of the custom hire model presented above (i.e. 

hypotheses H1-H7), we deployed a discrete choice experiment. A choice experiment allows the 

researcher to gather choice data on important decisions even when they occur infrequently and 

allows the researcher to observe the full choice set because the choice set is designed by the 

researcher themselves (Hensher, Rose, & Greene, 2015). We deployed the choice experiment 

described below as a pilot study to motivate future, in-depth analysis of the potential roles 

transaction cost drivers play in the decision to custom hire. While the choice experiment 

presented in this study does not definitively test hypotheses H1-H7, it does provide initial data on 

which of the hypotheses may be most promising for further analysis. 

 

Experimental Design 

In this choice experiment, farmers were asked to imagine that their largest soybean field 

is infested by a generic, unspecified insect pest. The characteristics described for the hypothetical 

pest were similar to soybean aphid, though the species was not mentioned by name. We utilized 

soybean as a model crop because soybean farmers are likely to have recent experiences with 

acute pest infestations during the spread of soybean aphid in the mid-2000’s. Farmers were 

presented with the option of hiring one of three custom operators to spray, spraying themselves 

with their own equipment, or not spraying at all. 

Farmers were presented with chemical spraying costs (in dollars per acre) and expected 

soybean price (in dollars per bushel). These attributes remained fixed for all farmers through all 

choice scenarios. Farmers were told that they would be responsible for chemical costs in all 

spraying options (as is typical in custom pesticide application contracts) and instructed to assume 
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that all custom options are available even if those specific options are not present in their area. 

The soybean price and chemical cost values were selected such that spraying dominates not 

spraying for a profit-maximizing, risk-neutral farmer in the scenario with the lowest yields and 

the highest damage.  The focus of this design, therefore, is on the choice of who sprays, though 

the option to not spray and allowing damage to occur remains. 

Respondents each completed eight choice scenarios. Each scenario included a specific 

expected pest damage attribute, which referred to the portion of yield lost to insect damage if 

spraying occurs after a three-day window. This attribute is the 𝑑 variable in the conceptual 

model. 

Within each scenario, each custom operator option was presented as one of the following: 

an agricultural cooperative (or “co-op”), an agricultural input dealer (or “dealer”), or another 

farmer. These three classes of custom operators represent the most common providers of custom 

pest control services. All three options were presented in each choice scenario, along with a 

“spray myself” option, where the farmer would treat the field with their own equipment and 

labor, and a “do not spray” option, where the farmer would leave the field to its fate and damage 

would be guaranteed. Each of the custom choices had an associated custom fee, presented as a 

dollar per acre fee paid to the operator, and a percent chance of a three-day delay, representing 

the probability that the pest damage occurs due to late spraying (𝑝𝑎). Fee levels were based on 

the range of custom spraying rates reported in extension survey reports from Ohio, Michigan, 

Illinois, Iowa, and Indiana. Levels for each variable included in the choice experiment are 

presented in Table 3.1. An example of a choice scenario as seen within the survey is presented in 

Figure 3.2. 
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Table 3.1. Levels and Descriptions of Choice Experiment Attributes. 

Attribute Description Value(s) 

Fixed   

 Chemical costs Costs of insecticides used to spray, 

measured in dollars per acre 

$5/ac 

 Soybean price Price of soybean at harvest, measured in 

dollars per bushel 

$9/bu 

Scenario   

 Pest damage Damage the insect pest would induce if 

spraying is delayed three days, measured 

in portion of yield potential (𝑑) 

10%, 20%, 30% (3) 

Choice   

 Custom fee Fee paid to operator for services, measured 

in dollars per acre (𝑓𝑒𝑒) 

$5/ac, $9/ac, $13/ac (3) 

 Chance of delay Probability spraying occurs three days late 

and pest damage occurs, measured as a 

percentage (𝑝) 

20%, 40%, 60% (3) 

 Operator identity  Identity of the custom operator Co-op, input dealer, 

another farmer (3) 

Figure 3.2. Example Choice Scenario. 
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A 24-row fractional factorial experimental design was generated using the software 

package Ngene and split into three blocks of eight scenarios each. After consulting subject-

matter experts during the design stage, eight choice scenarios was determined to be the 

maximum feasible number of scenarios per farmer.  Budget considerations pre-empted pilot data 

collection necessary for the use of priors in the generation of designs targeting efficiency criteria 

(Hensher et al., 2015). Because of these constraints, the design was generated by randomly 

selecting 24 rows from the full factorial design. 

 A common critique of stated preference methods, including choice experiments, is that 

they are potentially prone to hypothetical bias. Hypothetical bias occurs when participants 

respond differently in hypothetical settings than they do when faced with actual decisions 

(Tonsor & Shupp, 2011). To mitigate hypothetical bias, respondents were presented with an 

additional page encouraging farmers to take their time and respond as if their choices would have 

real impacts on their farm. The language was designed to be a light version of a “cheap talk” 

script, a method that has been shown to reduce hypothetical bias in a variety of settings (List, 

2001; Lusk, 2003; Silva, Nayga, Campbell, & Park, 2011), including online surveys (Tonsor & 

Shupp, 2011). 

 Before deployment, the survey was reviewed by 20 professionals in the agricultural 

community unassociated with the study, including employees of the Michigan Department of 

Agriculture and Rural Development, Michigan State University Extension, and the Michigan 

Soybean Promotion Committee, as well as active farmers. Comments from phone and email 

interviews with reviewers were incorporated into the survey design to improve clarity and ensure 

the choice experiment represented a feasible scenario.  

 



 

111 

Survey Deployment 

The target population for the survey was farmers with 100 or more acres of soybeans 

planted in 2017 in Michigan, Indiana, and Illinois, with a focus on Michigan farmers. We 

employed a web survey design, utilizing both email and postal mail contacts to improve response 

rates (Dillman et al., 2014). Sixty-five farmers completed surveys for a total of 519 completed 

choice scenarios (one choice scenario was left incomplete). The survey deployment system was 

programmed to randomly assign a block to each respondent in a balanced manner, and so two 

blocks were completed 22 times while the third was completed 21 times. 

  

Additional Survey Data 

The experimental data is supplemented with additional data from the survey. Farmers 

were asked questions about their past spraying and custom hiring activities, their capacity to 

spray with on-farm equipment, and the characteristics of their farm. Farmers were also asked 

about their general attitudes towards trust and risk, and the number of other farmers with whom 

they are comfortable discussing important business matters. The full survey instrument is 

provided in Appendix A. 

 

Empirical Analysis 

The goal of this pilot empirical model is to examine the relevance of the proposed 

hypotheses H1-7 that emerge from the conceptual model by translating the conceptual model 

into an empirically tractable form. To do so, we estimate a series conditional logit models on the 

choice experiment data and accompanying survey data on respondent characteristics. First, we 

estimate a series of candidate models using only variables for the attributes in the choice 
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experiment and select a preferred model based on a number of model selection criteria. We then 

expand on the preferred model by including farmer characteristics, allowing us to explore how 

preferences for custom hiring vary according to attitudes and resources. 

 

 M1: Base Model Candidates 

The conditional logit model is based on the random utility model, in which the farmer is 

assumed to associate a level of utility with each alternative in a choice set and select the 

alternative that provides them with the highest utility level (McFadden, 1973). The level of 

utility associated with each alternative consists of both a systemic portion for which 

characteristics (i.e. cost, quality, etc.) are known to the econometrician and a stochastic portion 

accounting for characteristics unobserved by the econometrician. By estimating conditional logit 

models using data on observed choices, one can measure farmer preferences over, and 

willingness-to-pay for, and the characteristics of those alternatives. 

Random utility models are typically applied in settings where the characteristics included 

in the systemic portion of utility are certain. More recent applications of the random utility model 

have considered cases where there is uncertainty over whether an alternative possesses one or 

more characteristics, often by including the probability that an alternative possesses a 

characteristic as a characteristic itself. Applications include measuring preferences for 

environmental quality where the outcome of a project is uncertain (Faccioli, Kuhfuss, & 

Czajkowski, 2019; Glenk & Colombo, 2011, 2013; Lundhede, Jacobsen, Hanley, Strange, & 

Thorsen, 2015; Makriyannis, Johnston, & Whelchel, 2018; Roberts, Boyer, & Lusk, 2008; Rolfe 

& Windle, 2015) and preferences for travel time reliability of transportation options (Hensher, 

Greene, & Li, 2011; B. Li & Hensher, 2017; H. Li, Tu, & Hensher, 2016; Z. Li, 2018; Z. Li & 
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Hensher, 2013; Z. Li, Hensher, & Rose, 2010). In these studies, the possible levels of the 

characteristic and the probability of the level occurring both influence how each alternative 

affects utility.  The two are frequently interacted to capture changes in the expected value of the 

uncertain characteristic. 

In our setting, the uncertain characteristic is whether the custom applicator arrives on 

time and prevents the pest from damaging the crop. This uncertainty is present only for the 

custom options.  When a farmer chooses to spray on their own the probability of delay is 

assumed to be zero, and when they choose not to spray the probability is assumed to be one (i.e. 

damage is guaranteed), consistent with the framing in the choice experiment and the conceptual 

model. 

In our simplest model (M1-ED, for expected damage), we assuming that farmers hold 

preferences over outcomes rather than probabilities and that the utility of outcomes is weighted 

by the probability they occur (Von Neumann & Morgenstern, 1944). In our setting, the outcome 

is the potential pest damage to the farmers crop, 𝑑𝑌. This value is measured in bushels per acre 

and is computed for each farmer for each choice occasion as the percent of yield loss unique to 

the choice occasion multiplied by their expected pest-free soybean yield. The probability of this 

damage occurring is given by 𝑝𝑎 for a given alternative. M1-ED can be characterized by the 

following (dis)utility expressions: 

M1-ED: 𝑢𝑎 = 𝑏𝑓𝑒𝑒 ∗ 𝑓𝑒𝑒𝑎 + 𝑏𝐸𝐷 ∗ 𝑝𝑎 ∗ 𝑑𝑌 + 𝑐𝑎 (3.8) 

The alternative-specific constants (𝑐𝑎’s), 𝑏𝑓𝑒𝑒, and 𝑏𝐸𝐷, represent coefficients to be estimated. 

The alternative specific constants capture the average of all unobserved sources of (dis)utility 

associated with each alternative (Hensher et al., 2015), including the costs 𝑙𝑎𝑏𝑜𝑟 and 𝑒𝑞𝑢𝑖𝑝 

associated with the 𝑠𝑒𝑙𝑓 option and residual preference for specific custom operator options. 
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Note that not spraying is the base level for the alternative specific constants, the probability of 

delay (𝑝𝑎) is zero if the farmer chooses to spray on their own, the probability that damage will 

occur is one if the farmer chooses not to spray at all, and 𝑓𝑒𝑒𝑎 = 0 for the non-custom 

alternatives. 

Including the interaction between 𝑑𝑌 and 𝑝𝑎 allows for a measure of the marginal 

(dis)utility for expected damages, a component of timeliness costs. This model assumes that 

farmers are risk neutral and that the utility effects of damage and probability of delay are 

inseparable. Versions have been used in settings evaluating preferences under outcome 

uncertainty in environmental and transportation settings (Burghart, Cameron, & Gerdes, 2007; 

Glenk & Colombo, 2013; Li et al., 2010; Roberts et al., 2008).  

 An alternative model, M1-DU (for direct utility), allows the probability of delay to affect 

utility both through the effect on expected damage and a direct effect on utility itself. M1-DU, 

known as the direct utility model, is a simple extension of M1-ED, with the additional term 

𝑏𝐷𝑈 ∗ 𝐼𝑎
𝑐𝑢𝑠𝑡𝑜𝑚𝑝𝑎 added to the utility expression, where 𝐼𝑎

𝑐𝑢𝑠𝑡𝑜𝑚 is an indicator variable equal to 

one for custom hiring alternatives where delay is uncertain (Glenk & Colombo, 2013). The M1-

DU model is thus characterized as: 

M1-DU: 𝑢𝑎 = 𝑏𝑓𝑒𝑒 ∗ 𝑓𝑒𝑒𝑎 + 𝑏𝐸𝐷 ∗ 𝑝𝑎 ∗ 𝑑𝑌 + 𝑏𝐷𝑈 ∗ 𝐼𝑎
𝑐𝑢𝑠𝑡𝑜𝑚𝑝𝑎 + 𝑐𝑎  (3.9) 

Including 𝐼𝑎
𝑐𝑢𝑠𝑡𝑜𝑚𝑝𝑎 separate from the interaction of 𝑝𝑎 with 𝑑𝑌 allows for residual 

preference for timeliness beyond what is measured by the interaction term. If farmers are risk 

neutral and weighting damage exactly according to the probability of its occurrence, then 𝑏𝐷𝑈 

would be estimated at zero. A negative estimate of 𝑏𝐷𝑈 would suggest that farmers are risk-

averse or otherwise have a distaste for uncertainty beyond its effects on increasing expected 

damage, indicating risk aversion or other behavioral distortions from simple risk-neutral 
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weighting of outcomes. Such direct utility models have been found to outperform expected 

utility models in various settings, including contracts for irrigation water contingent on uncertain 

rainfall and emissions reduction programs (Glenk & Colombo, 2011, 2013; Rigby, Alcon, & 

Burton, 2010). This model also allows for an “uncertainty effect” in which farmers discount 

risky alternatives because of the existence of risk itself, rather than because of the effects of risk 

on the expected utility of alternative, a result that has been used to explain apparent violations of 

the internality axiom of expected utility theory (Gneezy et al., 2006).   

M1-ED and M1-DU are also considered against a model specification that is linear in the 

choice attributes. Such a model assumes that all interaction effects are zero and farmers do not 

condition yield outcomes by the probability of their occurrence (Glenk & Colombo, 2013). 

While this is an extreme assumption, the model is retained to ensure as a test that such 

probability conditioning occurs. This model, M1-L, is presented below: 

M1-L: 𝑢𝑎 = 𝑏𝑓𝑒𝑒 ∗ 𝑓𝑒𝑒𝑎 + 𝑏𝐿 ∗ 𝑑𝑌 + 𝑏𝐷𝑈 ∗ 𝐼𝑎
𝑐𝑢𝑠𝑡𝑜𝑚𝑝𝑎 + 𝑐𝑎  (3.10) 

 To select a preferred model, we use multiple criteria. Noting that M1-EU is nested in M1-

DU, we test the linear restriction that 𝑏𝐷𝑈 = 0 in M1-DU using a likelihood ratio test to establish 

which of these two models is preferred. To compare M1-L to the preferred of M1-DU or M1-EU, 

we rely on Akaike’s information criteria2 (AIC) and the alternative Bayesian information criteria 

(BIC), as M1-L does not nest in either M1-DU or M1-EU (Burnham & Anderson, 2002).  

 

 

 

 
2 Hurvich and Tsai (1989) find that AIC performs poorly in small sample settings. However, the corrected criterion, 

AICc, introduces a bias correction term that is a function of only the number of parameters of the model and the 

sample size. Because these values are the same for the models compared by the AIC criterion, and therefore the 

rankings of AICc and AIC will be identical, we choose to rely on the simpler AIC criterion. 
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M2: Preference Heterogeneity by Farmer Characteristics 

 To examine how farmer sensitivity to delay varies across farmers and to illustrate 

hypotheses related to farmer characteristics, we expand on the base model selected from M1-ED, 

M1-DU, and M1-L by introducing variables that characterize the farmer. These variables can be 

interacted with characteristics of the alternatives (i.e. 𝑑𝑌, 𝑝𝑎) so that the resulting coefficients 

(i.e. 𝑏𝐸𝐷, 𝑏𝐷𝑈, 𝑏𝐿, the alternative specific constants) can vary by the characteristics of the farmer 

respondent. We build this model from the model that emerges from the model selection process 

and label the resulting model with interactions M2. We select characteristics relevant to our 

conceptual model and hypotheses, dividing characteristics into two classes: characteristics that 

affect utility under custom options and characteristics that affect utility when the farmer chooses 

to spray on their own. 

For custom option characteristics, we include “Number of Close Farmers” as a proxy of 

social capital to illustrate H7. This variable measures the number of other farmers, excluding 

those associated with the respondent’s operation, who the farmer feels “close enough to discuss 

important business problems with.” As an illustration of H6, that more risk averse farmers are 

wary of custom hiring, we include “Risk Score,” the farmer’s self-rating on a four-point scale 

where one is defined as “fully prepared to take risks” and four is defined as “unwilling to take 

risks.” Similar versions of this question have been shown to have strong predictive validity for 

risky behavior and responses are simpler to collect in a survey setting than alternative measures 

of risk attitudes (Beauchamp, Cesarini, & Johannesson, 2017). To examine how farms of 

different sizes respond differently to uncertainty, we include “Acres Planted,” which measures 

the total acres the farmer planted in 2018 of soybeans or any other crop. We interact each 
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selected farmer characteristic with 𝑑𝑌, 𝑝𝑎, and their interaction (for a three-way interaction) to 

examine the effects of each characteristic on farmer preferences for timeliness in custom hiring. 

For characteristics relevant when the farmer sprays on their own, we include variables 

that proxy for costs incurred when that alternative is selected. “Farm Income Share,” measured 

as a proportion of total income, proxies for the opportunity cost of labor, with a higher 

proportion of income from off-farm sources assumed to indicate a higher opportunity cost of on-

farm labor. This variable allows us to illustrate H3: that higher labor costs lead to more frequent 

custom hiring. This variable is interacted with the alternative specific constant for “Spray 

Myself,” 𝑐𝑠𝑒𝑙𝑓 to capture variation in preferences for spraying using one’s own labor. 

To aid in interpretation in the coefficients for these interactions, we center each non-

binary characteristic at zero by subtracting the sample mean. Therefore, the resulting coefficients 

can be interpreted as piecewise utility changes resulting from a unit change from the mean. 

 

Choices by Sprayer Ownership 

To illustrate H2, that farmers with their own equipment are more likely to choose to spray 

on their own, we compare the frequency that “Spray myself” was selected among alternatives 

between respondents who report owning or leasing a self-propelled sprayer, those who own a 

tractor-pulled sprayer, and those who do not own a sprayer at all. Self-propelled sprayers are 

specialized equipment that can apply chemicals over larger areas more quickly, and at lower 

equipment and labor costs, than tractor-pulled sprayers. While this method cannot distinguish 

between equipment and labor cost savings resulting from sprayer ownership, it provides an 

equipment gradient over which we can examine differences in the likelihood that custom hiring 

is selected.  
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Results 

In this section, we first discuss summary statistics for selected farmer characteristics and 

the raw choice shares from the survey data. We then present results for the M1 models and the 

results of the model selection process before proceeding to M2, the selected model with farmer 

characteristic interactions. Finally, we present willingness-to-pay measures for reductions in the 

𝑝𝑎 variable, which we define as willingness to pay for timeliness, and demonstrate the effects of 

farmer characteristics for these findings. 

 

Summary Statistics 

Most of the responding farmers report possessing both the equipment and certification to 

perform the tasks on their own. Seventy-five percent of respondents are certified to spray 

restricted use pesticides and 69 percent own or lease their own sprayer (Table 3.2). Insecticides 

are used infrequently among the respondents. The median respondent sprayed insecticides twice 

in the past ten seasons (mean 3.4) and twice on soybeans specifically (mean 2.7) (Table 3.3). 

When spraying does occur, custom spraying is not uncommon; 32 percent of respondents 

typically hire custom when spraying is needed. 

Respondents routinely hire custom operators. The median respondent hired a custom 

operator for any field operation in five of the past ten seasons (mean 5.5), and specifically for 

spraying pesticides in one of those seasons (mean 2.6) (Table 3.3). Seventy-four percent of 

respondents reported custom hiring for at least one field operation in at least one of the past ten 

seasons. 
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Table 3.2. Summary of Categorical Survey Variables. 

Variable Description Category N a 

% of 

Sample b 

Who sprays Who sprays insecticides in a 

typical year 

Custom applicator 21 32%  
Employee (family excluded) 2 3%   
Family member 5 8%   
Primary operator (myself) 34 52%   
Other 3 5% 

     

Certification Whether anyone who works on the 

farm is certified to spray 

restricted use insecticides 

No 16 25%  
Yes 49 75% 

 
 

   

Sprayer 

ownership 

Whether the farm owns a sprayer No 20 31%  
Yes 45 69% 

     

Farm revenue Gross farm income in 2017 Less than $150,000 8 12%  
$150,000 - $349,999 25 39%   
$350,000 - $999,999 16 25%   
$1,000,000 - $4,999,999 8 12%   
More than $5,000,000 1 2%   
No Response 7 11% 

     

Gender Farmer's gender Female 5 8%   
Male 56 86%   
No Response 4 6% 

     

Education Farmer's level of education High school graduate 15 23%   
Some college 12 19%   
2-year degree 14 22%   
4-year degree 18 28%   
Professional degree 5 8%   
No Response 1 2% 

     

Household 

income 

Farmer's household income in 

2017 

Less than $20,000 4 6% 

$20,000 - $39,999 2 3%   
$40,000 - $59,999 7 11%   
$60,000 - $79,999 6 9%   
$80,000 - $99,999 10 15%   
More than $100,000 26 40%   
No Response 10 15% 

     

State Farmer's state of residence IL 10 15%   
IN 22 34%   
MI 33 51% 

a Number of responses to each item, accounting for item non-response. Total number of responses is 

65. 
b Percentages may not add to 100% due to rounding. 
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Table 3.3. Summary of Numeric Survey Variables. 

Variable Description Min. 

25th-

Perc. Med. 

75th-

Perc. Max. Mean 

Std. 

Dev. N a 

Past custom Years in the last ten when custom work was 

used 

0 0.5 5 10 10 5.5 4.3 63 

Past custom, spray Years in the last ten when custom spraying 

was used 

0 0 1 3.5 10 2.6 3.3 63 

Past spray Years in the last ten when any insecticides 

were used 

0 1 2 5 10 3.4 3.1 63 

Past spray, soybeans Years in the last ten when insecticides were 

used on soybeans 

0 1 2 3 10 2.7 2.6 59 

Age Age in years 27 54 59 66 80 58   

Close farmers Not including those who work on your 

operation, about how many other 

farmers would you say you feel close 

enough to discuss important business 

problems with? 

0 2 3 5 15 4.2 3.0 61 

Risk score Are you generally a person who is fully 

prepared to take risks or do you try to 

avoid taking risks? (Fully prepared to 

take risks = 1; Unwilling to take risks = 

4) 

1 2 2 3 4 2.3 0.8 64 

Expected yield Expected yield, in bushels per acre, of 

largest soybean field 

35 53 57 65 81 58 9.3 64 

Farming income Percent of farmer's household income from 

agriculture 

0 25 52 95 100 58 34.5 62 

Planted acres Total planted acres in 2017 150 409 697 1251 3700 997 804 64 

a Number of responses to each item, accounting for item non-response. Total number of responses is 65. 
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Most respondents consult with a small circle of other farmers on important issues, though 

some have larger networks. The median respondent is close enough with three other farmers to 

discuss important business issues (mean 4.2) and a quarter of respondents are close enough to 

five or more other farmers to have such discussions (Table 3.3). Farmers on average expressed a 

slight preference for risk-taking behavior, with a mean risk score of 2.3 (Table 3.3). 

Finally, we report the unconditional rates at which each of the alternatives was selected in 

the choice experiment (Table 3.4). Respondents chose to spray with their own equipment most 

frequently (45.5% of choice occasions). Among custom options, input dealers are selected most 

frequently (24.5%), followed by co-ops (15.2%), and other farmers (11.4%). Not spraying is 

selected rarely (3.5%). 

 While we do not claim that our sample is representative of the population, we present a 

brief comparison of the demographic statistics of our sample relative to equivalent measures 

reported by the USDA for the sampled population (Appendix B). 

 

Model Selection and M1 Results 

 Results for M1-ED, M1-DU, and M1-L are presented in Table 3.5. In the first stage of 

model selection, we perform a likelihood ratio test of a single linear restriction between M1-DU  

Table 3.4. Response Shares to the Choice 

Experiment. 

Alternative N 

% of 

Responses a 

Co-op 79 15.2% 

Input dealer 127 24.5% 

Farmer 59 11.4% 

Myself 236 45.5% 

None 18 3.5% 
a Percentages may not add to 100% due to 

rounding. 
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and M1-ED, 𝑏𝐷𝑈 = 0. The likelihood ratio test statistic is 19.24, which is larger than the chi-

squared critical value at the 5% level with one degree of freedom (3.84). Therefore, we reject the 

null hypothesis that the restriction holds and proceed with M1-DU as the preferred model over 

M1-EU. 

 We then compare M1-DU to M1-L by their AIC and BIC, where lower values indicate 

the preferred model. For both AIC and BIC, M1-DU is preferred over M1-L, though by two units 

or less in both cases, indicating that both models perform about the same by these metrics. 

Because M1-DU both performs marginally better by both model selection criteria and is 

consistent with the conceptual model, we proceed with M1-DU as the preferred model. 

  All coefficients for the preferred model are statistically significant at the 5% level or 

better. The coefficient for 𝑓𝑒𝑒, 𝑏𝑓𝑒𝑒, is negative, suggesting that farmers custom hire less when 

options are more expensive. The coefficient for expected damage, 𝑏𝐸𝐷, is also negative, 

indicating that farmers lose utility as the expected timeliness costs associated with the alternative 

Table 3.5. Results of M1 Conditional Logit Models. 

 M1-EU   M1-DU   M1-L  
Variable Coef. S.E.  Coef. S.E.  Coef. S.E. 

Fee, 𝑓𝑒𝑒 ($/Acre) -0.10*** 0.023  -0.11*** 0.023  -0.11*** 0.023 

Delay Probability, 𝐼𝑎
𝑐𝑢𝑠𝑡𝑜𝑚𝑝𝑎    -2.6*** 0.47  -3.6*** 0.47 

Damage, 𝑑𝑌 (bu/acre)       -0.037** 0.017 

Expected Damage, 𝑝𝑎𝑑𝑌 -0.19*** 0.028  -0.088** 0.017    
ASC - Farmer 0.081** 0.35  2.3*** 0.37  3.3*** 0.37 

ASC - Co-op 1.1*** 0.33  2.8*** 0.38  3.8*** 0.38 

ASC - Dealer 1.5*** 0.34  3.1*** 0.37  4.1*** 0.37 

ASC - Self 0.52 0.37  1.5*** 0.32  2.1*** 0.32 

Log Likelihood -661.5   -651.6   -652.5  
AIC 1335.1   1317.1   1319.1  
BIC 1360.5   1346.8   1348.7  
Choice Occasions 511   511   511  
Respondents 64   64   64  
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. 
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increases. The negative estimate for coefficient 𝑏𝐷𝑈 indicates that farmers have a distaste for 

increased probability of delay separate from the effects of 𝑝𝑎 on their potential yields. The 

alternative specific constants are all positive, indicating residual preference for all spraying 

options over not spraying at all. 

 

M2-DU Results with Farmer Characteristics 

 Results for M2-DU, the preferred model M1-DU with farmer characteristics, are 

presented in Table 3.6. The core results for coefficients estimated without farmer characteristics 

remain consistent with M1-DU, including the rankings of the alternative specific constants. 

Table 3.6. Results of M2-DU, the Preferred Conditional Logit 

Model with Interactions for Farmer Characteristics. 

 M2-DU 

Variable Coef. S.E. 

Fee, 𝑓𝑒𝑒 ($/Acre) -0.12*** 0.025 

Delay Probability, 𝐼𝑎
𝑐𝑢𝑠𝑡𝑜𝑚𝑝𝑎 -3.6*** 0.74 

x Close Farmers (Count) 0.39*** 0.15 

x Risk Score (1-4, 4 is risk averse) -0.016 0.48 

x Acres Planted -0.00021 0.00091 

Expected Damage, 𝑝𝑎𝑑𝑌 -0.15*** 0.053 

x Close Farmers -0.024** 0.011 

x Risk Score -0.073** 0.034 

x Acres Planted -0.00031*** 0.000072 

ASC - Farmer 3.9*** 0.69 

ASC - Co-op 4.4*** 0.70 

ASC - Dealer 4.8*** 0.70 

ASC - Self 2.6*** 0.66 

x Farm Income Share (proportion) 0.0066* 0.0036 

Log Likelihood -527.9  

AIC 1,083.7  

BIC 1,141.9  

Choice Occasions 471  

Respondents 59  

***, **, and * indicate statistical significance at the 1%, 5%, and 

10% levels. 
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 The coefficient for “Close Farmers” interacted with the probability of delay is positive 

and statistically significant, indicating that farmers who are close to more farmers are less 

sensitive to the probability a custom operator sprays late. On the other hand, the coefficient for 

“Close Farmers” interacted with expected damage is negative, indicating that farmers with 

broader social networks are more sensitive to increases in expected damage. 

 The coefficients for the remaining two characteristics interacted with timeliness cost 

variables, “Risk Score” and “Acres Planted,” are statistically insignificant when interacted with  

the probability of delay, but negative and statistically significant when interacted with expected 

damage. The coefficient for the variable “Farm Income Share” interacted with the alternative 

specific constant for spraying on one’s own is statistically significant and positive, though only 

at the 10% level, indicating that farmers who receive a larger share of their household income 

from agriculture are more likely to choose to spray on their own. 

 

Choices by Sprayer Ownership 

 Among the 20 respondents who do not own or lease a sprayer, none chose to spray on 

their own in any choice occasion. Among the 24 respondents who own or lease self-propelled 

sprayers and the 21 who own or lease a tractor-pulled sprayer, spraying on one’s own was 

selected in 76 percent and 54 percent of choice occasions. These results suggest that respondents 

who own more specialized spraying equipment are less likely to custom hire for pest control. 

Willingness-to-Pay for Timely Spraying 

We now consider farmers willingness-to-pay (WTP) for reductions in a custom 

operator’s probability of delay, conditional on choosing to spray. Using the estimated 
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coefficients from M2-DU, WTP for reductions in the probability of delay at a given damage rate 

is calculated as 

𝑏𝐸𝐷𝑑𝑌̅+𝑏𝐷𝑈

𝑏𝑓𝑒𝑒∗100
.  (3.11) 

In this expression, 𝑌̅ is the mean expected soybean yield for respondents (58.1 bushels per acre). 

Because all characteristics interacted with the probability of delay were centered at zero prior to 

estimation, and therefore have means of zero, their effects are omitted from this calculation. We 

divide by 100 to give a measure of WTP measured in dollars per percent change in probability of 

delay per acre, rather than dollars per probability unit (i.e. on the [0, 1] scale). We find that, on 

average, farmers are willing to pay $0.37 per acre for a one percent reduction in the probability 

of delay when the potential damage rate (𝑑) is 10% of yield, $0.45 per acre when the potential 

damage rate is 20%, and $0.52 per acre when the potential damage is 30%. These WTP for a 

marginal change in the probability of delay represent 2.7 percent, 3.2 percent, and 3.7 percent of 

median custom pest control costs per acre as presented in the choice experiment ($9 per acre in 

custom fees and $5 per acre in chemical costs). 

 To show how farmer characteristics affect WTP to avoid delay, we illustrate WTP for 

each respondent in the sample according to farm size (Figure 3.3A), the number of close farmers 

(Figure 3.3B), and risk score (Figure 3.3C). Respondent-level WTP is calculated by adding the 

statistically significant interaction coefficients, multiplied by associated characteristics and 

potential damage levels, to the numerator of Equation (3.11) (Hensher et al., 2015; Rigby et al., 

2010). The potential damage rate 𝑑 is set at each of the three levels included in the choice 

experiment to further demonstrate the impact of increasing damage on WTP to avoid delay. 
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Figure 3.3. Willingness-to-Pay (WTP) for Reductions in the Probability of Delay. WTP is 

calculated for each respondent at each damage level and presented by (A) acres planted, (B) 

close farmers, and (C) risk score. Random displacement on the horizontal axis has been added 

to distinguish between overlapping points. 
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Discussion 

In this section, we discuss how the results of our pilot study relate to the hypotheses 

derived from the conceptual model, with particular focus on the roles of timeliness costs, risk 

attitudes, and social capital in shaping farmers’ custom hiring decisions. Table 3.7 reports our 

assessments of support from the pilot study for each hypothesis. 

As predicted by H3, higher custom fees reduce custom hire use. However, we find only 

weak evidence that farmers with higher opportunity costs of labor, as measured by the proportion 

of household income derived from agriculture, are more likely to custom hire, as predicted by 

H1. On the other hand, farmers who possess more specialized equipment (i.e. self-propelled 

sprayers) are less likely to custom hire, a result that provides some support for H2, that sprayer 

ownership decreases custom use. These results support the implication of the conceptual model 

that farmers are more likely to custom hire when performing a task on their own is more 

expensive. Future research should explore whether labor or equipment costs are more important 

in driving this outcome, which in turn would allow for better predictions of how changes in labor 

and equipment markets might affect custom hiring demand.  

The next hypotheses, H4 and H5, relate to how uncertainty and timeliness costs affect 

decisions to custom hire. Our results illustrate how farmers are less likely to choose to custom 

hire when expected damage is higher, supporting H4. Note that both increases in the probability 

of delay and the increase in the absolute level of damage can drive this effect, so this result also 

provides weak evidence for H5. 

By interpreting 𝑏𝐷𝑈 we can disentangle (dis)taste for uncertainty from their (dis)taste for 

pest damage and address H5 separately from H4. Changes in 𝑝𝑎 can affect utility levels through 

two mechanisms: a direct effect and an indirect effect through increasing expected damage. We 
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Table 3.7. Hypotheses, Relevant Parameters, and Determination of Support. 

 Hypothesis Relevant Evidence Support? 

H1 When on-farm labor is more costly, custom 

hiring is more likely. 

M2-DU: ASC – Self x Farm 

Income Share 
✓ 

H2 When a farmer owns their own sprayer, 

custom hiring is less likely. 

Results by sprayer 

ownership 
✓ 

H3 When a custom operator charges a higher 

fee, they are less likely to be hired. 

M1-DU/M2-DU: Fee 
✓ 

H4 When the scale of the damage from delay is 

higher (i.e. 𝑑𝑌 is larger), custom operators 

are less likely to be hired. 

M1-DU/M2-DU: Expected 

Damage ✓ 

H5 When the probability a custom operator is 

delayed in spraying is higher (i.e. 𝑝𝑐𝑢𝑠𝑡𝑜𝑚 

is closer to one), that custom operator is 

less likely to be hired. 

M1-DU/M2-DU: Delay 

Probability 
✓ 

H6 More risk averse farmers (i.e. 𝑟 is larger) are 

more sensitive to potential delays in 

spraying. 

M2-DU: Delay Probability x 

Risk Score, Expected 

Damage x Risk Score 

✓ 

H7 When a farmer has a more developed social 

network, they are less sensitive to potential 

delays in spraying by custom operators. 

M2-DU: Delay Probability x 

Close Farmers, Expected 

Damage x Close Farmers 

✓ 

 

interpret 𝑏𝐷𝑈 as the direct utility effect of 𝑝𝑎 and 𝑏𝐸𝐷𝑑𝑌 as the expected damage effect. Even for 

the farmers with the maximum potential damage (81 bushels per acre pest-free yield and 30% 

pest damage), the direct utility effect from 𝑝𝑎 is roughly equal to the utility effect through 

expected damage from increasing expected damage (-3.6 utility units per additional percent 

probability of delay for both effects). 

The fact that a direct effect of 𝑝𝑎 exists also provides potential evidence that farmers do 

not respond to potential delays in custom hiring in a risk-neutral way under the traditional 

expected utility model. While the negative estimates for coefficient 𝑏𝐷𝑈 provide evidence of 

possible risk aversion among farmers in the context of custom hiring, this finding does not 
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address how individual differences in risk attitudes affect decisions, the question at the core of 

H6. We use the interaction coefficients from M2-DU to address this hypothesis. Our findings 

suggest more risk averse farmers are more sensitive to the probability of delay, but only through 

its effect on expected damage. If the direct effect of 𝑝𝑎 represents risk averse attitudes in the 

traditional expected utility model sense, we would expect more risk averse farmers to have larger 

marginal disutility from 𝑝𝑎 alone. Our findings do not support this conclusion, so the direct 

utility effect of 𝑝𝑎 can be viewed as potential evidence that alternative models of risk attitudes 

such as prospect theory (Tversky & Kahneman, 1992) or direct uncertainty effects (Gneezy et 

al., 2006) may be more relevant in custom hiring scenarios. Future research should directly 

address alternative models of risk preferences when assessing drivers of custom hiring behavior 

among growers. 

We address H7 by examining the coefficients for interaction terms including the “Close 

Farmers” variable. Our results indicate that farmers with broader social networks are less 

sensitive to increases in the probability of delay in support of our hypothesis. While the 

coefficient for the interaction of “Close Farmers” with expected damage is negative, the 

coefficient for the interaction with delay probability is large enough to counteract this negative 

effect. We interpret the coefficient for “Close Farmers” interacted with delay probability as a 

mitigating effect of social capital on the marginal disutility of 𝑝𝑎. At the median potential yield 

damage (i.e. median pest-free yield expectation 𝑌 of 57 bushels per acre multiplied by the 

median pest damage rate 𝑑 of 20%), the mitigating effect of social capital exceeds the negative 

impact on the marginal utility from expected damage. This comparison suggests that social 

capital ultimately has a mitigating effect on the marginal disutility from the probability of delay 

for the majority of farmers. In Figure 3.3, panel B, there is a clear downward correlation between 
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respondent WTP for reductions in the probability of delay and the number of farmers the 

respondent is close with, further supporting H7. Therefore, our results on the whole provide 

some support for H7. 

That farmers with more close relationships with other farmers are more likely to custom 

hire is in line with past findings that U.S. farmers rely on informal social mechanisms to 

facilitate transactions that may otherwise not occur (Allen & Lueck, 1992b, 2004; Wilson, 2000). 

While previous findings regarding the role of social capital in facilitating agricultural contracting 

focus on land, our results provide some evidence that such mechanisms persist and in non-land 

contexts. Future research should seek to measure the relationships and social networks of both 

custom operators and the farmers who hire them in order to further explore how social capital 

might support custom hiring markets. 

We also include “Acres Planted” as a possible farmer characteristic influencing 

sensitivity to timeliness costs, finding that farmers who farm more land are more sensitive to 

expected damage. However, “Acres Planted” does not influence sensitivity to delay probability 

separate from its impact on sensitivity to expected damage. There are multiple conflicting 

theoretical expectations as to the direction of the effect of farm size on sensitivity to uncertainty 

when custom hiring. Larger farms represent more possible revenue for a custom operator, who 

are often paid by the acre. If a custom operator sprays late, a farmer can withhold future business 

and the custom operator would lose out on more revenue if that farm is large. Therefore, we 

might expect larger farms to underweight probabilities of delay in a similar way that those with 

more social capital do, suggesting a positive expectation for this coefficient. On the other hand, a 

larger farm requires more time to complete field operations. This might lead to increased 

sensitivity to the probability of delay, because if delays were to occur, then custom operators 



 

131 

would struggle more to catch up. Our null finding does not rule out either possibility. If both 

mechanisms mutually exist, their effects could counteract each other. Future research might 

examine the connection between farm size, transaction costs, and custom hiring decisions more 

closely. 

A common critique of stated preference studies, including choice experiments, is that 

they do not pass a “scope test” in that results are not sensitive to the scope or magnitude of the 

good in question (Arrow et al., 1993; Lew & Wallmo, 2011). Our finding that larger farms are 

more sensitive to greater damage is evidence that farmers are sensitive to scope. 

The alternative specific constants (𝑐𝑎’s) in M1-DU indicate a distinct ranking among 

alternative providers of custom services (Table 3.5). The alternative specific constant is largest 

for input dealers, followed by co-op providers, and then other farmers. All three custom 

alternatives have larger constants than the constant for the alternative in which farmers spray on 

their own, indicating that farmers would prefer to have a custom operator spray if there were no 

custom fees and timely service were guaranteed. 

Input dealers, and co-ops as well, often offer additional services beyond custom spraying. 

These include agricultural inputs like fertilizers, seed, and pesticides and other custom services 

such as the application of fertilizers or harvest. These additional services may provide a possible 

explanation for respondents’ preference for custom spraying from input dealers and co-ops over 

similar service from other farmers. Farmer customers of input dealers and co-ops can purchase 

other goods and services from these custom operators when hiring for custom spraying services 

(or vice versa), reducing search costs. Another possible explanation for the ordering of 

preferences between custom service providers is that other farmers have their own fields which 

may require treatment during the same critical window as their customers. Custom operators who 
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manage their own farms have a clear incentive to prioritize their own fields over their 

customers’, which may explain the preference among respondents for non-farmer providers of 

custom spraying. 

 

Conclusion 

This paper provides a model for how farmers choose between custom hiring and spraying 

themselves when their fields are threatened by insect pests and examines this model empirically 

with data from a discrete choice experiment. Although the sample size is not large enough for 

extrapolation to a farmer population, the results illustrate how timeliness can be an important 

driver in these decisions, as evidenced by strong marginal disutility from increased probabilities 

of delay even beyond the effects such increased probability of delay on increased probability of 

pest damage. 

Previous research has examined the related “lease-own” decision for agricultural 

equipment in non-stochastic environments (Ford & Musser, 1994). However, to our knowledge 

no previous study has empirically tested transaction cost theories for their ability to explain the 

common phenomenon of custom hiring in agriculture. This paper begins to fill that gap by 

proposing a theoretical model of custom pest control hiring decisions and providing results from 

a pilot study to examine the empirical basis for hypotheses regarding the drivers of the custom 

hiring decision. 

Using a discrete choice model of custom hiring in a pest control setting, we illustrate how 

uncertainty over the reliability of custom operators can create timeliness costs, a specific type of 

transaction cost that is especially relevant in agricultural contexts (Allen & Lueck, 2004). While 

previous studies have identified timeliness costs in custom hiring through case study methods 
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(Allen & Lueck, 2004), we provide indicative evidence that timeliness costs can drive farmers 

away from custom hiring and towards ownership of equipment. Further, we illustrate that risk-

averse farmers might be more sensitive to these costs. Finally, we illustrate that farmers who are 

more integrated into the agricultural community (i.e. who have more close friends who farm) are 

less sensitive to timeliness costs. 

Understanding which farmers opt to custom hire, and which custom operators they 

choose when multiple providers are available, can assist in identifying regions where demand for 

custom services may be high. Pest pressure dynamics, weather patterns, pesticide spraying 

regulations, and road infrastructure are all regional factors that can affect the ability of firms to 

provide timely services. For regions threatened by pests that affect many nearby fields 

concurrently, many farmers are likely to need to apply insecticides at the same time. In such 

setting, farmers are likely to find custom pest control unattractive, as custom operators will be 

harder pressed to provide timely services to many farmers concurrently. Areas with highly 

variable weather are more likely to have unexpected delays in spraying for a given field, which 

might create backups in a custom operator’s schedule. Problems created by weather will be 

exacerbated in states with stricter restrictions on weather conditions suitable for pesticide 

applications or regions where road conditions make moving between fields more difficult. 

Theoretical models and empirical approaches building on this first attempt to characterize 

the drivers of custom hiring can be applied to scenarios where farmers custom hire for services 

other than pest control, such as harvest or fertilizer application. These field operations are subject 

to other forms of ecological uncertainty which may induce timeliness costs in unique ways. 

Farms across the country make decisions regarding custom hiring every year for a variety of 

field operations, providing a rich context to test transaction cost theories and examine what 
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conditions lead to various distributions of property rights between farms and the operators they 

employ. Such studies would provide additional insight into how farmers view timeliness and 

other transaction costs in the context of different field operations, providing valuable information 

for custom operators while also building on the broader transaction costs economics literature.
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Appendix A: Online Survey Instrument 

 

The following pages contain images of the survey instrument. The survey was 

administered on via respondents’ web browsers and contained conditional logic leading to 

multiple versions. Notes have been added to explain where reactive elements exist and to clarify 

structure. Choice experiment blocks were removed for brevity. Unless otherwise noted, each 

panel represents a separate page of the survey instrument. 
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Figure 3B.1. Screenshots of Online Survey Instrument. 
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Figure 3B.1 (cont’d). 
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Figure 3B.1 (cont’d). 

 

If selected… 
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Figure 3B.1 (cont’d). 
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Figure 3B.1 (cont’d). 
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Figure 3B.1 (cont’d). 

 

[PAGE CONTINUES] 
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Figure 3B.1 (cont’d). 

[CONTINUED FROM PREVIOUS PAGE] 
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Figure 3B.1 (cont’d). 

 

[FOLLOWED BY 8 CHOICE EXPERIMENT QUESTIONS] 
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Figure 3B.1 (cont’d). 

 

[OPERATOR CLASS] 

Page repeats with each class of 

custom operator for which the 

farmer did not select “I don’t 

know…” on previous page 
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Figure 3B.1 (cont’d). 
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Figure 3B.1 (cont’d). 
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Figure 3B.1 (cont’d). 
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Appendix B: Survey Deployment and Sample Representativeness 

 

In this appendix, we assess the representativeness of the sample relative to the target 

population. 

Emails were purchased from the agricultural marketing data company FarmMarketID for 

9,290 Illinois farmers, 4,847 Indiana farmers, and 1,895 Michigan farmers, representing all 

available records with valid emails and 100 or more planted acres of soybeans in 2017. Farmers 

were emailed three times over the course of a week in August and September of 2018.  Emails 

included a link to an online survey hosted by Qualtrics. To further encourage response, a single 

letter was mailed to all Michigan farmers and 1,234 of the Indiana farmers directing farmers to 

visit the online survey. 

Of the 16,032 email addresses contacted, 388 were immediately returned as undeliverable 

due to spam blocking software on the receiving end. These returned emails only represent 

addresses employing spam blocking software that reports failure of delivery to the sender. We 

suspect that many more farmers’ email systems blocked all the email contacts without reporting 

the failure of delivery or filed the email contacts directly to farmers’ spam or junk folders where 

they were unlikely to be read. This hypothesis is supported by considerably larger response rates 

in Michigan and Illinois where an additional mail contact was employed. 

Choice experiments targeting farmers are frequently limited by small sample sizes 

(Chèze, David, & Martinet, 2020), including the one presented in this paper. The challenge of 

obtaining large farmer samples for choice experiment surveys is made more difficult by 

declining trends in farmer response rates (Johansson, Effland, & Coble, 2017). Further, farmers 
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are often sensitive about discussing pesticide applications due to public concerns over their 

public environmental and health effects (Chèze et al., 2020). 

Direct data on the population of farmers with 100 or more acres of soybeans planted is 

not publicly available to the best of our knowledge, so we compare demographic characteristics 

of our sample to results from the 2017 Census of Agriculture over each state, which includes 

farms smaller than 100 acres and farms that do not grow soybeans (USDA National Agricultural 

Statistics Service, 2019). Michigan farmers, and to a lesser extent Indiana farmers, are 

overrepresented in the sample relative to the population of soybean farmers in the three states 

(51% of the sample versus 23% of total farms of 100 acres or more for Michigan, 34% of the 

sample versus 28% of total farms of 100 acres or more for Indiana). This is likely the result of 

issues with email delivery, as Michigan and a subset of Indiana farmers received additional mail 

invitations to participate in the survey. As a result, the following results should be interpreted as 

representing mainly the preferences of Michigan and Indiana growers. 

The mean expected yield for respondents’ largest soybean fields was 58.1 bushels per 

acre. This value is considerably higher than the mean yields reported by the Census of 

Agriculture for Michigan (42 bushels per acre) and Indiana (53 bushels per acre), suggesting that 

respondents are either more productive than the population or hold optimistic expectations. Our 

sampling frame was limited to farms of over 100 planted acres of soybeans while the Census of 

Agriculture reports yields for all growers of soybeans, including the smallest farms which 

typically do not operate at a commercial scale and therefore often have lower yields. Such 

smaller farms make up a large portion of the total population targeted by the Census of 

Agriculture, which may also explain the discrepancy between the mean yield reported by 

respondents and the mean yield reported by the Census. 
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Respondents reported planting between 150 and 3,700 total acres across all crops, with a 

mean of 997 acres planted and median of 697 acres planted. The median planted acres for 

respondents is considerably higher than the median planted acres for all growers with over 100 

acres reported by the Census of Agriculture, which lies in the 220-259 acres range for all three 

states. The average age of respondents was 58, which is slightly older than the average age 

reported in the Census of Agriculture for farmers in Michigan and Indiana (56.6 and 55.5 

respectively), but roughly equal to the average age of farmers in Illinois (58). Overall, our 

sample represents larger and more productive farms than those in the population. 
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