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ABSTRACT

HUMAN ACTIVITY MONITORING BY SMART DEVICES

By

Chongguang Bi

The topic of the Internet-of-Things (IoT) has been discussed and studied extensively since

2010. It provides various solutions for enhancing the user’s experience, monitoring the user’s

behaviors, and improving the lifestyle. With careful design, these systems can be built with

off-the-shelf smartphones and wearables. The detected result can be used as feedback for the

user to understand his/her behavior, improve the lifestyle, or avoid the danger. Furthermore,

the result also provides a valuable data source for the studies in psychology and sociology.

However, designing an IoT system to monitor human activities is challenging due to

multiple factors. Some systems require high computing capability or a long time of data col-

lection; some systems must detect some specific behaviors as quickly as possible in real-time;

some systems suffer constant and irregular noise. In order to address these challenges, the

designer must carefully consider the use case of the IoT system and select proper machine

learning algorithms. This dissertation shows three designs of the IoT systems for the im-

provement of family mealtime experience and driving safety. The procedure for each design

is introduced in detail, including the architecture of the system, the selection of features,

and the evaluation of algorithms.

From the case studies in this dissertation, several special aspects of monitoring human

activities are discovered. Since human activity is strongly related to the time-series and may

change along time, the algorithm should be sensitive to context, be adaptive to dynamic

conditions, process readable features, and benefit directly from prior knowledge. This dis-

covery will serve as a guide about how to analyze and solve a problem with the IoT systems

in the future.
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CHAPTER 1

INTRODUCTION

The topic of the Internet-of-Things (IoT) has been discussed and studied extensively since

2010. A large amount of hardware with embedded sensors and applications is developed to

enable network connectivity and data exchange between vehicles, buildings, and other items.

The IoT provides cheap and convenient solutions for some problems, such as augmented

reality, activity and health monitoring, voice control, motion control, etc. The off-the-

shelf smartphones and wearables are common choices for a host in the IoT, because of the

variety of built-in sensors. The sensors include motion sensors or inertial measurement unit

(IMU), microphone, camera, light sensors, thermometers, etc. The data from these sensors

contain detailed and accurate information about our daily life, such as the user’s movement,

voice, and ambient noise. If that information is carefully processed, the user’s action or the

ongoing activity can potentially be inferred. This inspires an idea to develop a system that

can monitor the user’s activity based on the sensed data.

According to the clinical study, monitoring the activity is important in our daily life. It is

not only a critical process of a large-scale study in human and sociology but also stimulation

for the user’s to improve their skills or daily routine. For example, the mealtime activity is

important evidence for a family’s status of employment and income, and it is strongly related

to the children’s obesity or relationship between the family members. However, except for

keeping diary or video-recording, the mealtime activity is rarely monitored by an unobtrusive

approach. Another example is the driving scenario. By monitoring the driver’s action, the

dangerous behavior can be detected and reported, to invoke the driver’s alertness and reduce

the risk for a road accident. Moreover, gesture recognition is a hand-free controlling method

for the in-vehicle infotainment (IVI), which reduces the time of distraction while driving.

Due to the large variety of human activities, it is still challenging to conduct a study that

captures all the detailed daily behaviors of a person. However, research on some common
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activities can be a good start towards the ultimate goal. In this dissertation, the case

studies focus on two major parts of daily life – eating and transporting. Meal plays a

critical role in the physical wellness [37]; the conversation around the family’s dining table

is the most important sharing time between family members [21]. Driving is a popular

choice of transportation, but the road accident is a major cause of injury nowadays [66]. If

those activities can be monitored, the log of the daily behavior can stimulate the user to

improve their lifestyle and fix improper habits. This also benefits other studies in sociology,

like understanding the behavior of a group of people from the daily routine [45] or design

training courses [11].

From the case study of those activities, several interesting aspects of designing an IoT

system to monitor human activities are discovered. This is referred to as ”Three Rules”

hereafter. Specifically, a machine-learning algorithm that recognizes human activity should,

• be sensitive to context. Human activity is based on time-series. One activity is

strongly related to the activity before and after it as well as other ambient conditions.

For example, TV viewing and conversation may occur around the family mealtime.

The Conditional Random Fields (CRFs) is an example that is sensitive to context. A

simple implementation of the Support Vector Machine (SVM) is an opposite example

of this, which only recognizes the activity within a short time frame.

• be adaptive to dynamic condition. Although in the short term, the activity has a

relation to the context, one’s behavior and habit may gradually change in the longer

term. For example, the posture of the driver may constantly change during a long

trip. Reconstructing the training data set and model is an example of the adaption to

the dynamic condition. Using the fixed algorithm, training data set, and model is an

opposite example of this.

• process readable features. Human activity can be generally described and recog-

nized by a human. The information in human activity is mostly readable features,
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like the clattering sound and conversation during a family meal. Different from the

feature-based pattern recognition, the neural network uses a massive amount of the

unreadable parameters, which is an opposite example here.

This dissertation introduces the systems that monitor those activities based on mobile

devices, then evaluates the performance and summarizes the discovery from those studies.

The three studies in this dissertation are from three levels of human activities respectively.

High-level monitoring means recognizing an activity that lasts for minutes, like eating, TV

viewing, driving. Mid-level monitoring means recognizing some details of the user’s action

but presenting the result with a classifier, like detecting whether the hand is holding the

steering wheel. Low-level monitoring means describing the human’s action or voice with

real numbers, like localizing the hand position in a coordinate system in real-time. This

dissertation argues that the algorithms for the monitoring of all levels should be selected

according to the Three Rules introduced above. In the last chapter of this dissertation,

the reason for selecting those rules are discussed and concluded.
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CHAPTER 2

MONITORING FAMILY MEALTIME ACTIVITIES

This chapter introduces FamilyLog – a system to monitor the family mealtime activities

with mobile devices. This chapter is adapted from a publication [16]. The author of the

dissertation is the first author of the original work. ”We” in this chapter refers to the author

of the original publication. This work contains the software design on Android devices and

the algorithm design in Matlab. The author recruited all the subjects, then collected and

processed the data and the ground truth.

Monitoring the family mealtime activities is a high-level monitoring. It cares about the

occurrence and duration of the family meal as well as the TV viewing and conversation. It

does not recognize the detailed action or voice of the user.

2.1 Background

Research has shown that the family mealtime plays a critical role in establishing good

relationships among family members and maintaining their physical and mental health

[21][37][33]. In addition to the implications for family health, fine-grained analysis of family

mealtime enables important studies in sociology and home economy. For instance, research

has showed that the amount of shared time (including conversation and eating) between

spouses and between parents and children have strong links with family income, mother’s

employment status, ages of children, and geographic location (urban or rural) [22][45][44].

However, according to a national survey in 2014, American families with children on an aver-

age work day spend almost 3 hours watching TV accounting for more than half of the leisure

and sport time, while only 1 hour for family meal [91]. Moreover, the TV viewing during

the family meal decreases the communication among the family members and increases the

food consumption [10].

It is shown that activity logging is a very effective approach to improve the self-awareness

4



and motivate people to modify their behaviors toward a healthy lifestyle [39]. According to

a study [116], a detailed analysis of the existing family routine helps parents choosing how

to make positive changes to avoid the developmental delay of their children. Moreover, one’s

internalization of knowledge and behavior change can come from sharing and observing each

others’ family routines and the consequences of them [7]. Unfortunately, to date, there

has been no unobtrusive and convenient methods to log family meals and related activities.

Some of the available methods for family activity monitoring rely on video-taping [35], which

not only incurs considerable installation/analysis costs, but also raises privacy concerns.

There has been a number of studies on activity recognition using personal wearables and

smartphones [62] [110]. However, as we argue in this work, detecting the activity of individual

family members separately is insufficient for studying family communications, e.g., due to

the fact that young children are usually not allowed to carry personal devices.

2.2 Related Work

In order to monitor family mealtime activities, several systems are designed to detect the

usage of electrical appliances based on the electromagnetic interference and ambient sensors

[94][47][57]. However, these systems can only detect the activities that involve substantial

appliance usage. Recently, activity monitoring using mobile devices has received significant

attention. Several systems are designed to detect food and drink intakes. For example, [62]

presents the design of a fork with sensing abilities to help track and improve user’s eating

behaviors. In [110], the authors propose an approach of profiling user’s gesture while eating

using motion sensors on smartwatches. However, these systems are focused on tracking eating

behavior of individuals, and are not suitable for detecting family mealtime activities, which

may involve children without wearing any devices, and conversations among family members.

Moreover, some mobile health systems are designed based on off-the-shelf smartphones to

monitor human activities, such as sleep quality [48] or physical activities [97]. Several recent

studies are focused on user experiences with mobile health systems such as privacy concerns
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[6] and sharing behaviors [96]. However, these efforts are not concerned with studying family

meals or group activities.

Acoustic event recognition algorithms have been widely adopted in smartphone-based

activity monitoring systems. Auditeur [89] is designed as a mobile-cloud service platform to

allow client’s smartphone to recognize various sound events such as car honks or dog barking.

SoundNet associates environmental sounds with words or concepts in natural languages to

infer activities [84]. Recent work shows that the eating activity can also be detected by the

acoustic features [111]. However, this work does not pinpoint main features for detecting

family meals. It requires a large amount of data, and employs complex signal processing and

machine learning methods, which raise burden of the implementation on mobile devices.

In order to detect the participants in the conversation, Crowd++ [118] counts the number

of speakers using MFCC (Mel-frequency cepstral coefficient) [104] features. Row mean vector

of spectrogram [65] is a simple but effective method for speaker recognition by comparing

the Euclidean distance of the energy distributional features.

2.3 Requirement and Challenges

In order to improve the self-awareness and motivate people to modify their behaviors

toward a healthy lifestyle, a detailed analysis of the existing family routine is proved to be

necessary [39] [116]. It is shown that, by reviewing detailed activity logs, not only people

are motivated to modify their behaviors [39] [22] [45] [44], but also researchers in sociology

are inspired to propose better solutions toward a healthy lifestyle [7].

There has been a number of studies on personal activity recognition using wearables and

smartphones [62] [110]. However, we argue that detecting the activity of individual family

members separately is insufficient. First, the existing solutions typically require the mobile

device (smartphone or wearable) to be carried by the user. As a result, they cannot be

applied to detect many activities of young children who are usually not allowed to carry

personal devices. Second, many people do not carry smartphone or wear watch constantly
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at home, making it difficult to monitor one’s activity continuously. Moreover, detecting each

individual’s behavior is often unnecessary or significantly more challenging when she/he is

participating in a group activity. For instance, detecting whether a particular family member

is eating based on sound is more difficult when the family is having dinner together due to

the higher level of ambient noise.

FamilyLog is designed to be an unobtrusive system that helps users keep track of their

family mealtime activities. It employs the built-in accelerometer and microphone of smart-

phones and smartwatches to detect various information and activities related to a family

meal. Specifically, FamilyLog is designed to meet the following requirements: 1) FamilyLog

should be able to detect the occurrence of each family meal, which is defined as a shared

dining activity among the family members [39]. Specifically, in our design, we focus on the

participants and conversations during the family meal to avoid video/audio-recording the

detail of the activities, which raise privacy concerns and are beyond the design based on mo-

bile devices. 2) Since FamilyLog needs to operate in parallel with family mealtime activities.

It must to be unobtrusive to use. It should minimize the burden on the user, e.g., without

requiring the users to carry extra devices, and should not interfere with the users’ daily ac-

tivities by any means. 3) FamilyLog needs to monitor the details of family meals, including

their start/end time, participants, and possible TV viewing, in a robust fashion, i.e., across

different users, smartphones, smartwatches and households. 4) Since family meals involve

privacy sensitive activities such as family conversation, the privacy of the family needs to be

strictly protected. For example, the system should process the collected sensor samples on

the fly and only keep the results, instead of storing or transmitting any raw data, which may

contain sensitive information such as contents of the conversations. The sensing algorithms

we develop can accurately classify a number of important contextual features of activities

such as arm gestures from wearables, eating sounds, environmental noise, conversations, etc.

As a result, in the future, these algorithms can be adapted and used as building blocks to

detect a wide range of family activities such as parties, family meetings, gaming etc.
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Figure 2.1: Architecture of FamilyLog

2.4 System Design

FamilyLog detects family meals by using the built-in sensors of mobile devices, namely

microphone on smartphone/tablet and both microphone and accelerometer on smartwatch1.

However, FamilyLog is designed to leverage these sensing modalities in an opportunistic

manner depending on the availability of mobile devices in a home. In particular, FamilyLog

may achieve satisfactory sensing performance even with a single smartphone when it is placed

in the proximity of family activities (see Section 2.5). When multiple devices are available,

FamilyLog runs separately on each individual device and fuses the detection results to achieve

better performance and extended coverage.

As shown in Fig. 2.1, the proposed design consists of four components: pre-processing,

acoustic feature extraction, motion feature extraction, and CRFs-based activity classification.

In pre-processing, sensors are sampled at certain rate and the samples are framed. Further

processing will not be performed if the device is taken out of home (detected by the wireless

network status) or the acoustic data only contains noise. Otherwise, the acoustic data is

processed to extract energy features using filters based on Mel-frequency cepstrum coefficients

(MFCC). In the acoustic and motion feature extraction components, FamilyLog groups data

1Most off-the-shelf smartwatches ship with microphone for voice control and making calls.
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frames (50ms by default, which covers the sound with frequency larger than 20Hz, i.e.

the range of the human’s auditory perception) into a detection window (3min by default),

and extracts a set of distinct features for each window. Specifically, FamilyLog extracts

gesture-related motion features such as the average X-axis acceleration and changing rate,

and acoustic features to detect the clattering sounds and the human voice.

To detect activities from extracted features, FamilyLog adopts a CRFs-based classifier.

Compared with several commonly used classifiers like Support Vector Machine (SVM) that

are only applicable to discrete event detection, CRFs can naturally capture the temporal

pattern of family activities by incorporating continuous sensor input. The CRFs-based

classifier is trained by a combination of short period of sensor data, e.g., a one-day family

activities labeled by users, and some general knowledge of family meals which can be obtained

from a one-time user input or a brief survey with simple questions such as “how much time

does your weekday dinner usually take?”.

2.4.1 Pre-processing

The primary objective of admission control and pre-processing is to reduce unnecessary

computation as well as to prepare data for feature extraction. Specifically, it consists of the

following three components.

First, FamilyLog reduces the unnecessary computation by discarding detection windows

that likely contain only environmental noises (e.g., noise of appliances). Specifically, the

noise detection is achieved by first calculating the root mean square (RMS) (i.e., the sound

volume of signal) for each frame, and then computing the variance of RMS of all the frames

within each window. A key observation is that a window with low RMS variance only contains

ambient noise. Similarly, FamilyLog discards the motion data with low RMS variance, which

typically indicates a stationary smartwatch not worn by the user.

Second, to increase computational efficiency, FamilyLog represents acoustic data with

MFCC-based features, which will be used in later feature extraction. For each frame, Fami-
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lyLog first calculates its energy spectrum from 80Hz to 8kHz with the Fast Fourier Trans-

form (FFT) [109]. Then the resulting spectrum is transformed into 21 energy channels on

the frequency domain by applying the Mel Filters [69][107], as shown in Fig. 2.2. In order to

describe the pitch and the volume of the sound, we measure the energy of channel i, which

will be represented as ei hereafter. Different from MFCC, which is applied widely in speech

recognition, especially in cases that requires user speaking directly towards microphone [93],

our design does not apply logarithm and discrete cosine transform. Although MFCC can

eliminate the impact from sound’s pitch, it is not very robust in the presence of additive

noise. In our case, to identify a sound as human voice or clattering sound, pitch is the most

effective feature. The ambient noise are necessary to detect mealtime activities, such as

sound from TV. Fig.2.3 shows the reason that we prefer the Mel Filter to the whole process

of MFCC. Furthermore, if the result from Mel Filter satisfies our requirement, we can reduce

the computational overhead by skipping other steps in MFCC.

Third, to preserve power, FamilyLog turns on sensor sampling only when the device is

home, which can be determined by the system’s location. Moreover, as an optional feature,

FamilyLog can start the sensor sampling of a new detection window probabilistically based

on the percentage of historical noise frames in a predefined time window. For example, for a

particular family, they generally do not have a meal around 3:00pm on any day, FamilyLog

can skip the detection at that time based on historical observations.

2.4.2 Feature Extraction

FamilyLog identifies the occurrence of the family meals by several key characteristics, based

on sounds and gestures associated with dining and whether the family members are currently

in close proximity to one another. Specifically, we use the following features to characterize

the family meals. The first feature is the clattering sound caused by clashes between table-

ware. This is because the clattering sound is the most distinctive acoustic characteristic of

family dining activity, regardless of other dynamics, such as the type of food and variation of
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tableware. The second feature is the gesture of the users captured by smartwatches. When

the user is holding food or using tableware, the arm of the user often exhibits a certain

pattern of movements. The third feature is the human voice, i.e. the conversation between

family members, which implies that the family members are near each other.

2.4.2.1 Clattering Sound

To infer family meal events, FamilyLog calculates the occurrences and frequency of clatter-

ing sound within a detection window. It looks for an energy peak from channel 12 to 16
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(associated with frequency ranging from 1 − 4kHz ) for each 50ms frame. Specifically, for

each frame, it computes eall, the average energy over all channels, and e12−16, the average

energy across channel 12 to 16. The feature associated with clattering sound is calculated

as r = e12−16/eall. For example, Fig.2.4 shows an example of clattering sound detection

in a typical family meal scenario. Fig.2.4(a) shows the energy on 21 channels over time,

and Fig.2.4(b) shows the corresponding e12−16 and eall. We can see that one occurrence

of clattering sound may result in several continuous clattering frames with higher e12−16,

even when the clattering sound and human voice overlapped around 1 second. Therefore,

comparing e12−16 and eall is a simple and effective way of detecting clattering sound in typ-

ical family meal scenarios. After obtaining r for each acoustic frame, FamilyLog calculates

E[Nclattering] which represents the expectation of amount of clattering sound contained in

a detection window. Specifically, E[Nclattering] is calculated as the sum of P (clattering|r)

which is preset in the system and generated using the data collected from 5 families.

Fig.2.5 shows an example of clattering sound detection based on the real data set collected

in a home. We can see that all family meal windows contain large numbers of clattering

frames. The clash of other objects such as keys and coins can also produce a similar sound.

Different from clattering frames of dining activity, such false alarms are usually isolated and

not likely to occur in a burst.
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Figure 2.6: Examples of activities and motion features

2.4.2.2 Arm Movement

When smartwatch is available, FamilyLog also extracts motion-based features that charac-

terizes dining behavior, which include the acceleration on the X-axis (Accx) and the changing

rate of the acceleration (Rc). According to the fact shown in Fig. 2.6, the direction of the

X-axis is always parallel to the arm. Furthermore, the acceleration on X-axis on a smart-

watch is mainly determined by the gravity and the overall gesture of the arm. Therefore,

it can be used as a simple and effective feature for inferring arm gesture while avoiding the

overhead of data processing on the other two dimensions. Specifically, FamilyLog samples

the built-in motion sensor on smartwatch and calculates two features for each frame. The
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X-axis acceleration is directly read from the accelerometer. The changing rate between two

frames can be computed as the angle between two acceleration vectors from them. Since

the acceleration is mostly corresponded to the gravity, the angle describes how much the

orientation of the watch face is turned along with the user’s action. For a detection window,

Accx is calculated as the average acceleration on X-axis for all frames, and Rc is calculated

by the average changing rate of all neighboring frames. Fig.2.6 shows three typical activities

and the motion features. We can see that the arm gesture and the movements of wrist during

meal show distinct distributions.
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2.4.2.3 Human Voice

An important acoustic feature for the detection is the conversation, which identifies human

speech, as well as the family members who participate in it. Among all the family communi-

cations, the family meal is typically accompanied by a considerable amount of conversations.
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The speaker recognition technique presented in [38] shows that pronunciation of vowels is a

identical characteristic of human. However, maintaining a database for voice of each family

member is costly for mobile devices. Here, row mean vector of spectrogram [65] provides

an effective and efficient approach to recognize speakers by measuring Euclidean distance

of energy distribution on frequency domain. Specifically, the family members are required

to register their voice to FamilyLog by reading a short sentence. Fig.2.7 shows an exam-

ple of the extracted signature of each family member’s voice. We can see that each one’s

voice exhibits distinctive energy distribution. For example, in this family, the energy of the

child’s voice is mainly concentrated on channel 6 and 7, whereas the energy of the father’s

voice is concentrated on channel 4 and 5. For each frame, FamilyLog compares the vector

from MFCC-based processing with the ones obtained during training, and calculates the

probability that the frame contains voice of at least one family member by cosine similar-

ity, represented as P (voice|E), where E is the energy distribution in the frame, as shown

in Fig.2.8. In a detection window, FamilyLog sums P (voice|E) for each frame to extract

E[Nvoice], representing the expection of number of frames that contains family members’

voice.

2.4.2.4 Localization-based TV Sound

TV viewing detection is challenging because its acoustic signal often consists of a vast variety

of different sounds. Even for a particular TV program, it is often challenging to find the

underlying acoustic features to uniquely identify the TV viewing activity. Therefore, instead

of relying on frame-based acoustic features, FamilyLog exploits the characteristics within a

detection window to detect TV viewing. These characteristics, reflecting energy distribution

and variance of pitch, are not only efficient to calculate, but also more robust across different

TV programs, and much less susceptible to dynamics such as distance between the smart

devices and TV. Specifically, to detect TV viewing, the system applies three features for

each detection window, which are the volume distribution, pitch variance, and the sound

15



source. The pitch is defined as,

pitch = arg max
i∈[1,21]

ei (2.1)

The Plow reflects the energy distribution within the window, and works well in separating

TV sound from other “foreground” sounds that often involve human activities, such as family

meal and conversation. This is primarily due to the fact that TV sound is usually more

continuous (i.e., containing less pauses or quiet frames), as opposed to foreground sounds.

Therefore, the energy distribution of TV sound is more right-skewed, resulting in less low-

energy frames, and therefore has smaller Plow. V arpitch also focuses on the low-energy frames

within a detection window and describes the stability of pitch, making it a good supplement

to identify TV sound. Due to its continuous nature, TV sound has a more stable pitch for

low-energy frames, compared with other foreground sounds. Fig.2.9 shows an example of

identifying TV viewing activity based on the feature space formed by Plow and V arpitch.

We can see that, the dining and TV viewing activities can be separated in the feature space.
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Figure 2.9: Data set of TV viewing

In order to detect TV viewing, two features is effective for each detection window. 1)

Percentage of low-energy frames (Plow): The percentage of frames with RMS less than 50%

of the mean RMS within a detection window. 2) Variance of pitch of low-energy frames

(V arpitch): The variance of pitch for frames with RMS less than 50% of the mean RMS
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within a detection window. In our design, the pitch of the sound signal in a frame corresponds

the channel with the highest energy. Thus, the number of dominating channel can be used

to describe the pitch feature of acoustic signal.

Moreover, the performance of TV deteciton can be significantly improved by inferring

sound sources in a detection window. Our idea is based on the following observation: TV is a

sound source with fixed location, whose volume stays within a limited range for a relatively

short period of time. Therefore, TV viewing detection can be translated into detecting

single sound source with fixed location and limited volume range. To infer the location

change of the sound source, FamilyLog employs an innovative approach based on Interaural

Level Difference (ILD) [17] that fuses acoustic features captured by different devices to

determine the origin of sounds. In this section we only focus on the fusion algorithm for

two devices although it can be extended to more generic scenarios. Specifically, the process

of feature fusion consists of three steps: similarity check, sound source detection in high-

energy frames, and sound source detection in low-energy frames. In the first step, the goal

of similarity check is to figure out whether two devices are at home and near each other by

examining the similarity between sound captured by two devices. We define the detection

windows that cover the same period of time on two different devices as the binaural detection

windows. The similarity between binaural detection windows A and B can be calculated as

folllows,

C(A,B) =

l∑
i=1

cos(E(A, i),E(B, i))

l

(2.2)

where vector E(X, i) is the energy distribution for frame i in detection window X. FamilyLog

only proceeds to conduct sound source detection if C(A,B) is above a threshold, indicating

the two devices are in proximity to one another. The sound source detection aims to detect

the number of sound sources in binaural detection windows. A key observation is that if

all the acoustic signal originates from a single sound source, it is more likely caused by

TV. In contrast, if the acoustic signal originates from multiple sound sources, it is more
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likely to be caused by human activities other than TV. The method we use to detect sound

sources is based on acoustic localization by ILD . Specifically, if the acoustic signal is from

a single source and captured by two receivers, it satisfies V1/V2 = d2
1/d

2
2 = ∆V , where V1

and V2 are volumes received by receivers and d1 and d2 are distances between receivers

and sound source, calculated by the RMS. This equation can be applied to compute the

relative distances between the sound source and the devices. In indoor scenarios, ∆V may

be impacted by various factors (e.g., echoes and obstacles), but its coefficient of variation

is limited when d1 and d2 are fixed. To detect whether the acoustic signals come from the

same source, we define Coefficient of Variation of Volume Ratio per Frame (CV (A,B)) in

binaural detection windows A and B as:

CV (A,B) =
σ(∆V (A,B))

µ(∆V (A,B))

∆V (A,B) =

{
VA,i

VB,i
, i ∈ [1, l]

} (2.3)

Here, the volume of frame i in detection window X is represented by VX,i, µ(∆V (A,B)) is

the mean of volume ratios between A and B, and σ(∆V (A,B)) is the standard deviation of

volume ratios. CV (A,B) thus is the ratio of the standard deviation to the mean. The lower

CV (A,B) is, the more likely the acoustic signals come from a single source. Fig.2.10 shows

an example of how to detect sound sources by volume ratio. In the first 20 seconds, phone
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B is carried by user from the dining table to the sofa. TV is turned on at the 30th second.

During the 70th-75th second and the 140th-150th second, the subjects talk to each other.

We can see that when the frames only contain TV sound, volume ratio is relatively stable.

In contrast, as conversation involves multiple sound sources, the variance of the volume ratio

is significantly increased.

By detecting the sound source with multiple devices, the accuracy of the detection of

family meals can be improved in several challenging scenarios. Although TV programs that

contain similar sound as family meal or conversation may be misclassified, the frames contain

clattering sound and conversation still come from a single source, and they will be more likely

from TV than family activities.

TV sound during the family meal can be separated from “foreground” sounds (clattering,

conversation, etc.) by extracting low-energy frames, i.e. the frames that have a RMS less

than the average RMS in a detection window. To detect whether TV is on during the family

meal, we can check the volume of sound from all low-energy frames, and whether the acoustic

signal is probably from a single sound source. If the TV is on, the continous sound from

TV will rise the volume of low-energy frames, and CV (A,B) of all low-energy frames will

have a relatively low value, indicating the sound comes from a single sound source with fixed

location.

2.4.3 CRFs-based Classification

Similar to speech and gesture recognition, the family meal detection involves identifying a

temporal pattern rather than detecting discrete events. We design the classifier of FamilyLog

based on CRFs, where we treat extracted features as observations, and the family event

contained in each detection window as hidden state. Therefore, the primary goal of the

our CRFs-based classification is to recover the family events overtime using the features

extracted from a sequence of detection windows.

Fig.2.11 shows the graph of the CRFs. We can see that in this case, the state is either
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Figure 2.11: CRFs model of one family mealtime activity

Y1 as “activity” or Y2 as “no activity”, and the emissions includes all features related to

this activity from each detection window. Because the transition probability from Y2 to Y1

is correlated to the duration of the activity, we additionally define state Y1,i, which means

the activity lasts for i detection windows. With the features in a sequence of the detection

windows as the input, the classifier outputs a sequence of the states for the detection windows

with the maximum likelihood.

2.4.4 Transition Probabilities

The set of transition probabilities contains four entries {p(Y1|Y1), p(Y1|Y2), p(Y2|Y1), p(Y2|Y2)}.

According to the definition of our CRFs, we have p(Y1|Y1) + p(Y1|Y2) = 1, and p(Y2|Y1) +

p(Y2|Y2) = 1. This means, in order to calculate all the transition probabilities, we only need

two known values, which are the probability to start an activity and the probability to stop

an activity. The first value corresponds to the probability distribution of one activity’s oc-

currence related to time/date. The second value corresponds to the probability distribution

of the duration of one activity. These can be estimated based on one-time user answers to

questions like “What’s the typical frequency and duration of your weekday family meals?”.

Alternatively, they can be derived from historical detection results.

To improve the accuracy of such an approach, FamilyLog presents intuitive system UIs

that allow users to rate previous detection results. The characteristics of family meal, in-

cluding time, duration, and frequency are often highly dependent on the day of the week.

Therefore, FamilyLog generates different models for the weekdays and weekends.
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2.4.5 Emission Parameters

The set of emission probabilities contains entries as p(X|Y ), which describes the probability

to observe the features X in state Y . The observation p within a detection window is

represented as a vector of features, i.e. X =< x1, x2, x3, ... >, where xi corresponds to a

feature related to the activity. For the detection of the family meals and TV viewing, the

features are shown in Table.2.1 and Table.2.2. Here, each feature is represented as a real

number.

Table 2.1: Features for the family meal detection

Term Description

E[Nclattering] The expectation of number of

frames containing clattering sound

E[Nvoice] The expectation of number of frames
containing the family members’ voice

Accx The average acceleration on X-axis

Rc The changing rate of acceleration

Table 2.2: Features for the TV viewing detection

Term Description

Plow The percentage of low-energy frames

V arpitch The variance of pitch of low-energy frames

CV (A,B) The coefficient of variation of volume ratio per
(optional) frame in binaural detection windows A and B

The CRFs classifier is trained by a period of sensor data. Typically, at least a whole day is

required to fully cover the communication of family. After training, we apply Gaussian Kernel

Density Estimation (KDE) to calculate the Probability Density Function, corresponding to

the observations associated to each state [53].

2.5 Performance Evaluation

In order to evaluate the performance of FamilyLog, we have collected 77 days of data

from 37 subjects in 8 families (details shown in Table 2.3). The procedure of the data

collection has been approved by the Institutional Review Boards (IRB) at the Michigan
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State University. The period of data collection was one or two weeks for each family. We

intentionally chose families with young children for this study because family routine analysis

has important implications for children’s health. Our results also showed that small children

often sometimes presented challenges to event detection due to the excessive noise they make

at home.

Table 2.3: Families that participated in the experiment

Children Phone Smartwatch Data Meals
(Ages in Years) (Weeks)

1 1 daughter(5) Nexus 4 N/A 1 4

2 1 daughter(4) Nexus 4 N/A 1 6

3 2 daughters(5, 8),2 sons(1, 3) Nexus 4 Sony Smartwatch 3 2 9

4 3 sons (1, 3, 5) Nexus 3 Sony Smartwatch 3 2 16

5 2 sons (3, 5) Moto G N/A 1 5

6 2 daughters(1,3),1 son(7) Moto G2 × 2 Sony Smartwatch 3 × 2 2 22

7 2 daughters(3,11),2 sons(7,13) Moto G2 × 2 N/A 1 10

8 3 daughters(7,10,18) Moto G2 × 2 Sony Smartwatch 3 1 6

Family Meal{ SVM Detection

Ground Truth
HMM Detection

Day 1

7:00pm 8:00pm 7:00pm

Day 2

8:00pm

Day 3

7:00pm

Day 4

8:00pm 9:00pm

Day 5

Figure 2.12: Detected family meals based on data collected from family 4 during 5 days
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Family Meal

Smartwatch Detection

Ground Truth

Smartphone DetectionTV Viewing{
Meal

TV
Combined Result

Smartwatch Detection

Ground Truth

Smartphone Detection{ Combined Result

Figure 2.13: Detected family routine by one smartwatch, one smartphone, and their
combination

We provided each family one or multiple devices. An app pre-installed on the devices

continuously records audio and motion unless the device is taken out of home. Users may

manually start/end the app on any device. The parents of the family are required to carry
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a smartphone as his or her personal smartphone, and another smartphone is kept at a

relatively fixed location at home (e.g., kept charging in the living room). At least one of

the parents of the family are required to wear a smartwatch if smartwatches are provided.

These requirements take into account the habits of different users (i.e., carrying the phone

or leaving the phone at a relatively fixed position at home, etc.). We also offer family

members the opportunity to review the recording and delete the part of recording that

raises privacy concerns. We adopted two methods to obtain the ground truth, which include

an interview with family members immediately after data collection is finished, and listening

to the recordings to manually label family activities.

2.5.1 Micro-scale Routine Analysis

FamilyLog is designed to provide fine-grained family routine logging, which allows family

members to review their activities and improve family lifestyle. To evaluate the performance

of our CRFs-based classifier, we compare our classification result with the result classified

by the Support Vector Machine (SVM), which recognizes the activities only based on fea-

tures in individual detection windows rather than considering their temporal nature. The

overall performance of FamilyLog and its comparison with SVM will be discussed later in

Section2.5.2.

Fig.2.12 shows the detection results along with the ground truth of the data from 5

days in Family 4. We can see that the family usually has dinner around 7-8 pm for about

an hour, except for day 5, which is Friday, when they started dinner at around 8 pm for

about 20 minutes. Compared with the ground truth, we can see that FamilyLog is accurate in

detecting most of the meals. In day 3 and 5, the SVM classifier yields a few misclassifications

due to the interferences caused by TV viewing. However, FamilyLog’s CRFs-based classifier

is able to avoid such false negative errors. Furthermore, by taking into account the temporal

nature of family routine activities, CRFs is able to minimize the short false negative and

false positive classification results.
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When multiple devices are available in the family, the output of FamilyLog is a combi-

nation of detection results from all devices. Fig.2.13 shows the detail of the detection result

of the 4th day in Fig.2.12. In this case, the smartphone was put on a coffee table near TV,

and the smartwatch was worn by a subject. The TV sound was correctly detected by the

smartphone. However, some of the family members including the wearer of the smartwatch

were having a meal around 7:00pm, and they were far away from the TV. Therefore, the

smartwatch was the only device that was able to detect the family meal, but it failed to

detect the TV viewing at that moment. The combination of both results shows a completed

detection result by FamilyLog, which included all activities that are able to be detected.

2.5.2 Evaluation of Activity Detection

In this section, we investigate the overall performance of HomeLog in detecting family rou-

tine activities. For each individual family, the CRFs-based classifier is trained using the

information from the survey and data labeled by the subjects collected in the first day. We

use the precision and recall as the metrics for this evaluation. Specifically, the precision of

detecting activity A is defined as the ratio of the number of true-positive windows to the

total number of windows detected as A. The recall of detecting activity A is defined as the

number of true-positive windows divided by the total number of windows labeled as A. We

do not take into account the true negatives, because most of the windows containing no

activities are able to be detected and discarded. In addition, we also present the evaluation

result after making certain relaxation (e.g., ±3min) on the start/end time of family activi-

ties. Note that our design objective will not be affected by minor errors in start/end time,

as long as the the system is able to accurately identify the occurrences of the family routine

activities.
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Figure 2.14: Overall accuracy of family meal detection in detection windows
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Figure 2.15: Accuracy of family meal detection using only motion or acoustic data
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Figure 2.16: Accuracy of family meal detection by a single phone or all the available devices

2.5.2.1 Family Meal Detection

The evaluation result of family meal detection is shown in Fig.2.14. Our CRFs-based classifier

outperforms SVM by 6.82% on average in recall. This is primarily because CRFs is more

effective in correcting isolated false negatives. We can also observe that FamilyLog achieves

an overall precision of 81.1%, with the highest being 91.1% for family 1 and lowest being

62% for family 4. We found that the two major causes of the relatively low precision in
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Figure 2.17: Accuracy of detection for each occurrence of family meal by relaxing the
start/end time by 3min and 9min

family 4 and 5 are the high pitch voice from children and music, which have similar acoustic

features as clattering sound during meal. However, since these sounds usually have a short

duration, FamilyLog is able to correct a considerable amount of the resulting false positives.

For the detection that is only based on the motion data from the smartwatch or the

acoustic data, the accuracy is shown in Fig.2.15 for Family 3, 4, and 6. For the Family 3 and

4, the precision is very low when only motion data is used. The reason is that the motion

data for the eating action can be very similar to some activities like reading or writing,

especially when the smartwatch is wear on the non-dominant hand. On the other side, the

recall is relatively high, because most of the family meals are able to be correctly detected

by the motion data. Moreover, the smartwatch in Family 6 is rarely worn when they are

at home, and the detection based on the motion data is not always reliable. Generally, the

features from the acoustic data contribute the major part of the detection, and the motion

data can assist the detection in some special cases. For example, depending on the food, the

clattering sound may be weak for a family meal, but the detection result can still be correct

due to the conversation between the family members and the eating action.

Fig.2.16 shows a comparison of the accuracy of the detection by a single smartphone or

all the available devices in a family. If FamilyLog only runs on a single device, the sound

source detection will be unavailable. This happens in Family 6, where the sound from a TV

program about cooking is wrongly detected as a meal without knowing the sound sources.

Furthermore, during a family meal, if one device is left far away from the dining table but
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another device is near, it is possible that the meal can only be detected by one device. By

combining the results from all the available devices, FamilyLog is less likely to miss a family

meal than only relying on one of them.

Fig.2.17 shows the detection accuracy of the occurrence of each family meal. We can see

that FamilyLog rarely fails to detect an occurrence of family meals with the 9min-relaxation

on the starting/ending time, achieving 88.7% precision and 93.3% recall on average. The

detection error in each family meal’s duration is about 4 minutes on average.

2.5.2.2 TV Viewing Detection

Next, we investigate the performance of TV viewing detection with data collected from 7

families. From the interview with the family, we learned that family 1 usually does not

view TV. Fig 2.18 shows the accuracy for each family. We can see that HomeLog is able to

achieve more than 95% precision for family 4 and 5, and over 90% recall for family 2, 3 and

4. Moreover, compared to other families, family 3 has a relatively lower precision (76.65%).

The main reason is that the data from family 3 contains a considerable amount of sound

from the parents and children singing along with guitar, which was only captured by one

device. Therefore, the system is not be able to infer the number of sound sources which is

considered as the key feature that helps differentiate between such activity and TV viewing.

Family 5 has watched several TV programs containing discontinuous sound, which is also

a typical scene where the TV detection loses accuracy. When more devices are deployed

in family 6, 7, and 8, the sound source can be accurately detected, which helps distinguish

the dining sounds from TV. The precision is raised by 5% comparing with other families on

average. In our experiment, a number of party-like events are observed in which children

were playing and talking to each other. The noise (e.g., those from pets or party-like events)

can also possibly be detected as continuous sound from TV. By taking into account the

detected sound sources, we observe that the recalls in family 6, 7 and 8 also outperform

other families, because the discontinuous low-volume TV sounds can be correctly classified.
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It is worth mentioning that this kind of TV programs is not often observed in our recordings

(less than 20min/week in each family).
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Figure 2.18: The evaluation of TV viewing detection

Figure 2.19: Accuracy of detection for each occurrence of TV viewing by relaxing the
start/end time by ±3min and ±9min

Fig.2.19 shows the detection errors of the occurrence of the TV viewing. The detection

error in each TV viewing’s duration is about 6 minutes on average. Under the 9min relax-

ation on the starting/ending time, HomeLog achieves 92.4% precision and 90.8% recall on

average.

2.5.2.3 Conversation Detection

The human voice serves as a clue for family meals, and is also unique feature of a participant.

With the permissions from the Family 1-5, we listened to the raw acoustic data provided by

them, and manually labeled the family members who have talked during each family meal.

For each family, we only focus on the mother, the father, and one selected child aged between

5-12. We count the number of detection windows that FamilyLog can correctly detect all

the participants, and calculate the precision and recall. Fig.2.20(c) shows that, FamilyLog

achieves high accuracy in participant detection across different families, with the average
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precision and recall being 97.8% and 92.8%, respectively. This means most of the detection

windows yields correct results for participant detection. This also ensures a high accuracy

for detecting all participants for each occurrence of the family meal.
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Figure 2.20: Evaluation of participant detection

Fig.2.20(a) shows the participant identification result for each family member. One key

observation is that the overall recognition accuracy of other family members are better than

that of fathers. This is mainly due to the fact that father usually speaks with short sentences

or only phases, which are more difficult to detect. Fig.2.20(b) shows the proportion for each

family member in overall conversation. We can see that father speaks less frequently that

other family members, which is also consistent with the findings from social behavior studies

[108]. Another observation is that the child from family 5 has a relatively low recall. This

is mainly because he often speaks with different tones, thus the voice is difficult to identify

using the signature extracted from his training data.

2.6 Interview and Discussion

In addition to quantitative performance evaluation, we also have investigated user ex-

perience by conducting 1-hour interviews with each of the 6 families (family 3 to 8) that

participated in our experiments. The feedbacks from interviews shed lights on the usability

of FamilyLog as well as the challenges of long-term deployment in real families. During the

interview, the subjects discussed following topics about the performance of FamilyLog, the

user experience, and the ideas of improvement.
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• Was FamilyLog convenient to use?

• Were there any privacy concerns?

• Was FamilyLog accurate?

• What was your own opinion about your family routine?

• Would FamilyLog be useful, and why?

• Which new function should be added to FamilyLog in the future?

According to the feedback, all six families expressed great interests in tracking their

routines by using mobile devices. They believed a precise and obtrusive monitoring can help

the improvement of their behaviors. They were also very interested in comparing results

with other families since they could be more aware of the problems of themselves. This

discovery may inspire a new application on the social media in the future.

Only one subject felt uncomfortable of recording and uploading acoustic features, and

the most of the subjects mentioned that they only felt slightly uncomfortable on the first one

or two days. To mitigate the privacy concern, FamilyLog processes sensor data locally and

only uploads extracted features, which cannot be used to recover the raw data, to the cloud.

It does not store or upload raw data without the user’s permission. We believe FamilyLog

can be developed along with the emerging IoT devices like Amazon Echo [29] to meet the

requirement of the privacy and security.

2.7 Conclusion of Study

FamilyLog monitors high-level activities, like conversation, TV viewing, and meals. It

satisfies the Three Rules. Specifically, FamilyLog

• is sensitive to context. The CRFs-based classifier considers the transition proba-

bilities among states. This is a strong context-sensitive classifier. The assumption is
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a complete activity should not be discrete or only lasts for a short time. It is proved

that this classifier has better performance than simple SVM.

• is adaptive to dynamic condition. FamilyLog is able to build the training data set

for each family individually. It could use the user’s feedback and historical features as

the training data set for the future processing.

• processes readable features. All the features that are used in FamilyLog are read-

able by human, like the clattering sound, action of eating, and human voices. They

are listed in Table 2.2 and Table 2.1.
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CHAPTER 3

MONITORING DRIVER’S HAND POSITION

This chapter introduces SafeWatch. This is a system that aligns the coordinate systems

of the mobile devices to the vehicle, thus it enables the devices to know their attitude and

position in the real time. This chapter is adapted from a publication [14]. The author of

the dissertation is the first author of the original work. ”We” in this chapter refers to the

author of the original publication. This work contains the App design on Android devices.

The author recruited all the subjects, then collected and processed the data and the ground

truth.

Monitoring the hand position is a mid-level monitoring. It outputs the current position

of the hand like ”at the higher position of the steering wheel” or ”at the lower position,

away from the steering wheel”. The system works when the user is driving and it does not

describe the hand position in a coordinate system.

3.1 Background

Recent studies revealed that the distractions and the secondary tasks occurring inside

the vehicle increase the risk of a road accident by 2 to 10 times [67]. Examples of secondary

tasks include using a mobile phone, adjusting air conditioners, operating the on-vehicle

entertainments, eating and drinking, etc [23] [59]. Relaxing due to the boredom may also

lead to unsafe driving behavior, e.g., one hand unconsciously moves away from the steering

wheel. When the drivers are distracted or losing alertness, their braking response time is

significantly longer than usual, and they could fail to maintain the control of the vehicle [72].

It is shown that similar to aggressive driving and risky driving, lost concentration and minor

loss of control are among the top conditions related to traffic accidents [31].

It is recommended by the American Automobile Association (AAA), the driver should

hold the steering wheel firmly with both hands at the 9 o’clock and 3 o’clock positions [5].
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However, it is difficult for a driver to maintain self-awareness of their hand positions due

to boredom or drowsiness of a relatively long trip [103] [101]. Stimulation like music may

improve the alertness of the driver while sometimes causing distraction and increasing their

mental efforts [113]. Research shows that a system that accurately detects the incoming

danger and warns the driver can not only invoke the driver’s alertness but also enable them

to self-improve their driving skills [11]. Moreover, the detection can provide valuable in-

formation for constructing a Vehicle-to-Vehicle (V2V) system for safety[50]. Recently, the

emerging of Internet of Things (IoT) systems for smart driving provides a promising solution.

Several methods have been developed to detect the driver’s dangerous actions [70] [68] [73]

[74] [75]. However, these designs require additional devices such as cameras, PPG sensors or

pressure sensors, presenting the barrier to wide adoption. More recently, several systems are

developed to track the user’s hand movement with smartwatches [121][88]. However, they

often yield unreliable performance while driving due to the impact of the vehicle’s movement.

Some study shows that the smartwatches can be used to detect several important driving

behaviors like the angle of the steering wheel [79] [64]. However, these detections are not

effective in some cases, especially when the hands are staying somewhere other than the

steering wheel.

Several major challenges must be addressed in the design of high-performance driving

monitoring systems based on wearable devices. The motion sensor samples from a smart-

watch in a moving vehicle not only contains the hand’s movement, but also includes impacts

from the vehicle’s acceleration, turning, and Noise, Vibration, and Harshness (NVH) from

the engine and the road condition. Due to the significant variation across different devices,

drivers, and vehicles, it is difficult to design a robust classification algorithm to detect the

hand’s position based on motion features. Moreover, the driver may switch postures during

one driving trip, resulting in several different sets of the motion data.
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3.2 Related Work

The dangerous action by the driver is mainly caused by drowsiness and distraction [63].

To keep the driver concentrating on the driving, the effective methods are alerting the driver

for the incoming danger [11] or giving feedback for the driver’s level of drowsiness [4]. These

methods require a way to monitor the driver’s mental or physical status. The driver’s

behavior can be recorded by a camera. However, video-recording raises privacy concerns.

Another approach is to leverage various sensors including motion sensor, barometer, and

GPS on the smartphone to monitor the driving style (e.g. risky or aggressive), track the

vehicle and learn the road information [61] [26] [51]. However, this approach only analyzes

the vehicle’s movement, and it cannot acquire knowledge about the driver’s behavior inside

the vehicle. Several efforts attempt to monitor the drivers’ drowsiness with proprietary

biomedical sensors (e.g. heart rate sensors) [76][20] . However, these sensors are not readily

available on off-the-shelf mobile devices.

In recent years, several approaches are proposed to detect the driver’s hand position. For

example, using the sensors around the steering wheel, the driver will be alerted when his or

her hand is not holding the steering wheel due to drowsiness or distraction [70] [68]. Another

viable method is to detect the grip strength of the hands with pressure sensors on gloves

[73]. However, these methods require additional equipment and raise the burden of usage.

Hand posture recognition using motion sensors on wearables or smartphones has been

studied extensively. For instance, the user’s finger-writing [119] and the hand gesture

[121][88] can be classified using motion features. A common limitation of these methods

is that they assume the movement of the user’s arm or hand is the only cause of the smart-

watch’s movement. However, in our case, the vehicle’s movement continuously impacts the

motion data captured by any device inside the vehicle, and thus those methods cannot be

applied here. If the hand is always on the steering wheel, the turning operation can be

traced by the smartwatch, including the starting and ending position [79]. A recent study

shows that, by detecting the direction of the hand’s movement, it can be inferred that when
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the hand leaves from or returns to the steering wheel [75]. However, these methods require

precise alignment between the coordinate systems among multiple devices based on mag-

netometer and compass. Those sensors are often highly inaccurate or unavailable on some

devices. Moreover, the direction of the hand’s movement only provides partial information of

the hand’s position. For example, if the driver is handling a complex task like eating, drink-

ing or grabbing an item, the hand’s movement will contain a series of different directions,

resulting in difficulty to infer when the hand returns to the steering wheel.

Another study of ours shows that the secondary task while driving can be classified by

the angle of the driver’s forearm rotation [100]. Although this method is effective to detect

and identify the driver’s behavior, it still needs to know the moment that the hand is on the

steering wheel, because the basic assumption is the hand’s movement always starts at the

steering wheel.

3.3 Requirements and Challenges

A system called SafeWatch is designed to help drivers keep concentrated on driving.

Specifically, it detects whether the driver holds the steering wheel with both hands, and

reports the dangerous actions, e.g. one hand is away from the steering wheel or keeping

moving.

SafeWatch needs to meet the following requirements: 1) As it operates in parallel with

driving, it must be unobtrusive to use. It cannot interfere with the driver’s activity or

require any manual input by the drivers at runtime. (2) To ensure wide adoption practice,

the training process of the system should be intuitive and require the minimum amount of

efforts/time. (3) It needs to detect the positions of hands relative to the steering wheel

robustly, i.e., across different drivers, vehicles, and smartwatches.

To meet these requirements, three challenges need to be addressed. First, SafeWatch

must be able to detect hand motions using accelerometer and gyroscope readings in the

presence of significant interference from the movement of the vehicle. For example, the
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gyroscope on the smartwatch produces highly similar motion features when the vehicle is

turning left or the driver is rotating the arm towards left. As a result, the driver hand motion

may be falsely classified due to the impact of vehicle movement.

Second, it is challenging to design the training process due to several reasons. First, to

detect fine-grained hand motions, a training process is necessary for each combination of

driver and vehicle. However, the ground truth is difficult to collect without a user’s man-

ual input or video-recording equipment. Moreover, traditional machine learning algorithms

require the training set to contain data from both positive and negative classes. That is,

SafeWatch should record the motion data not only when the driver’s hands are holding the

steering wheel, but also when the driver’s hands are away from the steering wheel. Such

a process is not feasible as it poses potential dangers for drivers. Furthermore, the driver

may handle various secondary tasks during driving. Thus the distribution of motion data is

highly unpredictable when a hand is away from the steering wheel, presenting challenges for

training an accurate classifier.

Third, the motion data captured by the smartwatch is highly dependent on how it is

worn. A typical issue is that the position of the smartwatch on the user’s wrist might change

due to the hand/arm movement. Moreover, the driver’s posture also can change during one

driving trip. SafeWatch must adapt itself to such dynamics to maintain the accuracy of

detection.

3.4 System Design

3.4.1 System Overview

SafeWatch is a wearable sensing system that can accurately track distracted driver hand

gestures. Specifically, it detects whether the driver’s hands are on/off the steering wheel or

on the upper/lower positions of it, which is an enabling primitive for various applications

of smart driving and has important implications for improving driving safety. To this end,

SafeWatch senses the motion of the vehicle and the driver’s hands using a smartphone
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placed in the vehicle, along with the smartwatches worn on the driver’s left or right wrist,

respectively. A detector running on the smartphone collects data from different devices and

accurately classifies driver hand gestures despite the strong interference introduced by the

vehicle’s acceleration and turning, as well as noise, vibration, and harshness from engine and

road conditions.

Hand Movement
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Figure 3.1: Architecture of SafeWatch

Fig. 3.1 illustrates the architecture of SafeWatch’s sensing pipeline. SafeWatch contin-

uously samples and processes the built-in accelerometers and gyroscopes of smartwatches

and smartphone. Samples collected from every device are transferred to the smartphone and

fused with a hand movement detector, which first mitigates interference introduced by the

move of vehicle, and then detects hand movement based on cleaned motion signals. When

the hand is moving, SafeWatch detects driver distraction by inferring whether the gesture is a

steering wheel manipulation or behavior related to secondary tasks such as drinking/eating,

tuning radio, etc. When the hand is still, SafeWatch classifies hand postures based on two

features, including the posture of the driver’s forearm learned from the gravity direction of

smartwatch, and the vibration sensed on the driver’s wrist, which manifests distinct magni-

tudes when the hand is on/off the steering wheel. In practice, the above features may exhibit

different characteristics depending on various factors including the user’s driving habits, the

posture of the smartwatch, as well as the model of engine that may affect the vibration mag-

nitude of car body. To maintain detection accuracy across different environments, SafeWatch
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employs an auto-calibrator that leverages sensing data collected while driving to train the

hand posture classifier at run-time. Once the distracted driver hand gestures are detected,

the alert will be triggered by the smartwatch. In the following sections, we will describe the

design of SafeWatch components in details.

3.4.2 Sensor Sampling

In SafeWatch, the smartphone placed in the vehicle is employed to monitor the vehicle’s

movement, while the smartwatches on the driver’s wrists track the motion and posture of

the driver’s hands. To collect motion data, SafeWatch continuously samples the built-in

accelerometers and gyroscopes on the smartphones and the smartwatches. The sampling

rate is set to 50Hz. Each sample contains an acceleration vector −→a and a rotation vector

−→w . For one smartwatch, the motion samples are continuously transferred to the smartphone

through the Bluetooth with 5Kbps rate. The classification is done in a sliding window, which

contains 1 second of data and is built for every 0.5 seconds. The window size is determined

based on two observations. First, it is not necessary to trigger an alert when the driver’s

hand is only away from the steering wheel less than 1.0s, because the unsafe actions last

more than 2.5s as defined by the American Society of Safety Engineers (ASSE) [12]. Second,

if we wish to trigger the alert when the hand is away from the steering wheel for a relatively

long time, e.g. 5.0s, we wish to analyze the motion data from a considerable amount of

previous windows. Thus, we select the length of the window as 1.0s for each 0.5s, in order to

capture the detailed motion of the driver’s hand while minimizing the computing overhead.

3.4.3 Hand Movement Detection

The goal of hand movement detection is to determine whether the driver’s hand is moving.

Although the variance of −→a is effective to detect whether a device is moving at a constant

speed or at rest, it cannot be used for detecting whether a device is moving in a driving

environment, where −→a is interfered by the movement of the vehicle. SafeWatch addresses
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this challenge by comparing −→a from the smartwatch and −→a from the smartphone. Since

the coordinates of the smartphone and the smartwatches are not aligned, we cannot directly

compare the direction of −→a from those devices. However, an important observation is that

|−→a | from those devices should be similar if no relative movement exists between them. Based

on this observation, SafeWatch determines if the driver’s hand is moving by comparing |−→a |

from each device, and examining the following inequality,

l∑
i=1

||−−−−−→ai,watch| − |−−−−−→ai,phone||

l
≤ ε (3.1)

where l is the length of the window. When the inequality is satisfied, SafeWatch claims that

there is a relative movement between the driver’s hand and the vehicle. The performance of

the detector given in Eq. 3.1 depends on the choice of ε. Specifically, a small ε may degrade

the classifier’s robustness in the presence of noise motion signals, resulting in an increased

false alarm rate. If ε is too large, SafeWatch may fail to recognize the movement of the hand,

reducing the detection rate. We optimize the performance of the detector shown in Eq. 3.1

by choosing ε based on empirical measurements. Fig. 3.2 illustrates detection accuracy for

different values of ε. According to our experiment, ε = 1.0m/s2 can be common settings for

most cases, considering the native offset of the sensors across various devices.

According to a study by ASSE, such distracted movements usually last for longer than

2.5s [12]. SafeWatch checks the hand movement in L consecutive sample windows and

whether these windows contains the operation of the steering wheel. If the steering wheel

is detected as not operated by the method introduced in Section 3.4.8, but the hand keeps

moving, an unsafe action will be detected. The performance of the detection can be adjusted

by the different choice of L. The hand movement with a short time can be detected as unsafe

when L is small. If L is large, SafeWatch will only detect the unsafe action when the hand

movement lasts for a long time. In our design, SafeWatch provides an open interface for

choosing L. We recommend this value to be chosen by the professionals of safety engineering.
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Figure 3.2: Accuracy of detecting the movement of a hand

3.4.4 Gravity Extraction

The goal of the gravity extraction module is to learn the attitudes of a device. Moreover, it

separates the real acceleration of the device from the effect of the gravity. Since the mea-

surement data −→a from the accelerometer is always interfered by the gravity, two acceleration

vectors can be obtained by decomposing −→a . The first one is a virtual acceleration that neu-

tralizes the impact of gravity, which is denoted as −→g . The other one is the real acceleration,

which is denoted as −→aL. According to the characteristics of the gravity, we have:

|−→g | ≈ 9.8, −→a = −→g +−→aL (3.2)

Here, −→g indicates the attitude of the device, and −→aL can be used to track the movement.

Fig. 3.3(a) and Fig. 3.3(b) illustrate the components of −→a . Traditionally, −→g can be derived

by applying a low-pass filter on −→a [41]. The idea is, while the device is moving at a constant

speed or at rest, −→aL is close to 0, and −→a is close to −→g . If the variance of −→a is low and −→a

is close to 9.8m/s2 in a period of time, the low-pass filter is the most effective method to

calculate −→g .

Due to the movement of the vehicle or the driver’s action, we cannot expect the variance

of −→a is always low. When the device is moving at non-uniform speed, the variance of −→a

will be high. For example, the variance of −→a of the smartwatch is usually high when the

driver is moving his or her hand or the vehicle is accelerating. As shown in Fig. 3.4(a), the
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Figure 3.4: The acceleration on X-axis with hand movement

impact of gravity on X-axis estimated by the low-pass filter is interfered by the significant

motion. However, by considering that the direction of gravity is only changed due to the

device’s rotation, we can use the rotation value −→w measured by the gyroscope to calculate the

attitude of the watch. Unfortunately, the value−→w contains errors and bias, and the calculated

gravity drifts away from the truth as shown in Fig. 3.4(b). To address the challenge, we

apply Kalman Filter [85][13][82]. This algorithm estimates the watch’s attitudes (i.e. the

direction of gravity) at each moment based on all the factors, including the directions of

gravity before and after the movement, −→w by the gyroscope.

Here, we introduce how to apply Kalman Filter in our case. A typical movement can be

described as three phrases, which are starting, moving, and ending. Before the movement

starts, the device is at rest, which means −→a has a low variance and −−−−→gbefore can be calculated
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by the low-pass filter as a known state. It is the same case after the movement ends, and

−−−→gafter can also be calculated as another known state. The states when the device is moving

are hidden, but the only factor to change the direction, i.e. change the state, is rotation,

which can be represented as −→w including some errors and bias. Our goal is to estimate −→g

at each moment during this movement with maximum-likelihood. Suppose the movement

contains a series of n + 1 samples, and we label the index of the initial state (before the

movement) as 0 and the final state (after the movement) as n. Here −→g0 and −→gn are given by

the low-pass filter. According to the concept of the rotation matrix [30], we have

−→gi =
i∏

j=1

M(−→wj −−→ej ) · −→g0, (3.3)

where −→wj is the rotation vector for sample j, M(−→w) is the rotation matrix based on

rotation vector −→w , and −→e is the error from the gyroscope. In order to calculate the exact

value −→gi , we need prior knowledge of −→ej at each moment. Instead, we estimate the maximum-

likelihood value of −→gi by calculating the expectation of E[−→e ]. The calculation of E[−→e ] can

be done by setting i = n in the previous equation,

−→gn =
n∏

j=1

M(−→wj − E[−→e ]) · −→g0, (3.4)

where E[−→e ] is the only unknown variable. The Kalman Filter provides a method to

solve such a equation [82]. Once E[−→e ] is known, we have

−→
ĝi =

i∏
j=1

M(−→wj − E[−→e ]) · −→g0. (3.5)

As shown in Fig. 3.4(b), the impact of gravity is calculated by combing the result from

the low-pass filter and the measurement by the gyroscope. We can see that it keeps the

result from the low-pass filter before and after the movement, and it estimates how the

sensed gravity changes along with the device’s rotation.
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3.4.5 Forearm Posture Detection

In a typical driving scenario, the driver’s forearm postures will remain unchanged when the

driver’s hands are holding the steering wheel. As shown in Fig. 3.5, for a typical driving

posture, both the driver’s arms will be stretching forward, and the elbows will be naturally

lying down, yielding a unique pattern when measuring the posture of smartwatch wearing

on the driver’s wrist. When a hand is taken off from the steering wheel, the posture of the

forearms is difficult to predict. For example, the hand can hold something (mobile phone,

food, etc.) or stay on the leg. However, those postures are rarely the same as the posture as

when the hands are holding the steering wheel. Thus, in order to detect whether the hands

are on the steering wheel, the posture of the driver’s forearms can be used as a feature.

G

g

gX

X-axis

Figure 3.5: A typical driving posture

According to the coordinate system of the motion sensors, as shown in Fig. 3.6, the atti-

tude of X-axis on the smartwatch is always parallel to the forearm. Thus, the average value

on X-axis of −−−−→gwatch in a window, which is denoted as gX,watch, can be used to characterize

the vertical posture of the forearm. Specifically, different forearm postures will yield different

patterns of gX,watch measurements. For the right hand, the value decreases when the hand
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Figure 3.6: The 3-axis coordinate system for the accelerometers and gyroscopes on the
smartwatches

moves up. For example, as shown in Fig. 3.7, when the driver is holding the steering wheel,

gX,watch of the smartwatch on the right hand will be around −3.5m/s2. When the driver is

holding something in hand, the forearm rises up, and the gX,watch will be around −8.2m/s2.

If the driver puts the hand on the leg, the forearm falls downward, and the gX,watch will

be around 2.5m/s2. To further validate this assumption, we record the driving behaviors

of 2 subjects using video cameras and log the trace of gX,watch measured by the smart-

watches worn on the driver’s wrist. Fig. 3.8 shows the Probability Density Function (PDF)

of gX,watch. It can be seen that gX,watch distributes in a narrow space when the hand is

holding the steering wheel. Furthermore, if we can confirm that the hand is on the steering

wheel, the value of gX,watch, i.e. the forearm posture can be used to identify whether the

hand is on the upper or lower part of the steering wheel. Specifically, if gX,watch is greater

than the average of the training data set that the hand is on the steering wheel, it means

the right hand is on the upper part of the steering wheel or the left hand is on the lower

part of the steering wheel.

3.4.6 Vibration-based Hand Position Detection

When the engine of a vehicle is on, a continuous vibration along vertical direction will be

generated and radiated into the cabin, and then be sensed at the steering wheel and the

seat [8]. If the hand is holding the steering wheel, the vibration will be conducted to the

driver’s wrist, resulting in an increased magnitude of vibration sensed by the smartwatch.
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Figure 3.7: Three typical actions during driving
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Figure 3.8: Normalized PDF of gX,watch for three different positions of the hand

Otherwise, vibration conducted to the driver’s wrist will be much weaker as shown in Fig.

3.8. The reason is the vibration is significant attenuated when it is transmitted from the seat

via the driver’s body. Based on the above observation, SafeWatch leverages the vibration

sensed by the smartwatch’s accelerometer as another feature for inferring if the driver’s hand

is on/off the steering wheel when the hand is still.
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Specifically, SafeWatch extracts the vibration-based feature as follows. It derives the

vertical signal component by computing,

aV =
−→g · −→aL
|−→g |

. (3.6)

Then, SafeWatch measures the magnitude of vibration by computing the variance of aV .

Fig. 3.9 illustrate the vibration-based feature extraction algorithm based on two real cases.

Generally, when the hand is on the steering wheel, V ar(aV,watch) is slightly larger, as shown

in Fig. 3.9.

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Subject 2

Subject 1

Left Right
On the Steering Wheel Other Position

Var(av) Var(av)

Figure 3.9: Normalized PDF of V ar(aV,watch) for subject 1 and 2.

In some cases, the vibration is mainly caused by the movement of the vehicle and the

road condition, V ar(aV,watch) will be much larger than usual, and its distribution cannot

provide evidence for detecting the hand position. A key challenge in realizing this idea is

to address the interfering motion signals introduced by the movement of vehicle, which is

usually orders of magnitude stronger than the vibration signal of interest. If the hand holds

the steering wheel firmly, the vertical movement on the wrist will be similar to the vehicle’s.

SafeWatch estimates the interference caused by the vehicle’s movement along the vertical

direction, by measuring aV observed on the smartphone. Because the smartphone is placed

in the vehicle, its measurement of aV characterizes the vertical movement of the vehicle.
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SafeWatch then mitigates interference by computing,

RaV
=
V ar(aV,watch)

V ar(aV,phone)
. (3.7)

In this case, we have RaV
≈ 1 as shown in Fig. 3.10, which means the magnitudes of the

vibrations captured by the smartphone and the smartwatch are close. For the detection of

the hand position, V ar(aV,watch) and RaV
are both important features.

0.90 0.95 1.00 1.05 1.10
Rav

0.90 0.95 1.00 1.05 1.10
Rav

Subject 2

Subject 1

Left Right
On the Steering Wheel Other Position

Figure 3.10: Normalized PDF of RaV
for subject 1 and 2.

3.4.7 Hand Position Classifier

The classifier determines if the driver’s hand is on/off the steering wheel based on fore-

arm posture and the vibration-based features. Specifically, it builds an vector −→c =<

gX,watch, V ar(aV,watch), RaV
> containing three features from previous modules. A training

data set is necessary for this classifier. In our design, the training data set is initialized once

per driver and per vehicle, by asking the driver to start the engine and move his/her hands

from the top to the bottom of the steering wheel. As shown in Fig. 3.11, the feature vector

−→c has a narrow distribution when the hand is on the steering wheel, but it has a board

distribution when the hand is away from the steering wheel. Because it is unrealistic to

collect the data samples when the hand is away from the steering wheel, we build a training

data set that only includes the motion samples when the hand is on the steering wheel.
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Figure 3.11: Distribution of feature vector c while driving

For the test data, the classifier computes the probability of the test data fitting into the

distribution of the training data set by the statistical hypothesis testing (e.g. Welch’s t-test

[117]). Specifically, for the test data samples collected within time T , SafeWatch compares

the distribution of the test data and the training data set. A high similarity means a high

probability that the test data belongs to the training data, i.e. hand is on the steering wheel.

Then, by comparing the average of gX,watch of the test data and the training data, the hand

position on the upper or lower part of the steering wheel can be deduced according to the

introduction in Section 3.4.5.

3.4.8 Vehicle Turning Detection and Auto Calibration

A critical challenge for SafeWatch is it requires frequent training, even during one driving

trip. The driver may switch the posture, and the smartwatch can be moved to various

positions on the wrist. In order to maintain the high accuracy of the classifier, SafeWatch

must continually adapt itself into the most recent status. An important observation is the

hand must hold the steering wheel in order to turn the vehicle. Thus, the ground truth
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feedback can be obtained around the moment of turning. In order to detect the vehicle’s

turning, SafeWatch analyzes the data collected by the gyroscope on the smartphone [25].

Specifically, the rotation around the direction of the gravity indicates the angle of the vehicle’s

turning. The samples right before and after the turning is automatically labeled as “hand is

on the steering wheel” and imported into the training data set.

3.5 Evaluation

We evaluate SafeWatch with 75 real driving trips collected from six subjects. Each

subject is provided with two smartwatches and one smartphone, all installed with apps that

run in the background to record the raw data of motion sensors. In order to obtain the

ground truth of the driver’s hand gestures, we collect location data using the GPS of the

smartphone and then record the driver’s hand gestures through video-recording. The details

of collected driving trips are summarized in Table 3.1.

Table 3.1: Information of the experiment

Watch (Left) Watch (Right) Phone Trips Data
1 Moto 360 2 Moto 360 Moto G 8 132min
2 Moto 360 2 Moto 360 2 Moto G 2 10 125min
3 Sony Smartwatch 3 Sony Smartwatch 3 Moto G 2 4 86min
4 Moto 360 2 Sony Smartwatch 3 Moto G 2 12 124min
5 Moto 360 2 Moto 360 2 Moto G 2 12 118min
6 Moto 360 2 Moto 360 2 Moto G 2 19 179min

3.5.1 Hand Movement Detection

As we discussed in Section 3.4.3, the performance of detecting unsafe hand movement de-

pends on the choice of L. Fig. 3.12 shows the accuracy of distraction detection under

different values of L. It can be seen that if the hand movement lasts for more than 2.5s, the

recall is over 97.1% and the precision is over 91.0%. The detection accuracy further improves

when the hand moves for a longer period of time.
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Figure 3.12: Accuracy of detecting unsafe hand movement

3.5.2 Hand Position Classification

3.5.2.1 Classification Accuracy

When the driver is still, SafeWatch employs the hand position classifier introduced in Sec-

tion 3.4.7 to infer if the driver’s hand is on/off the steering wheel. Specifically, SafeWatch

classifies hand position by first training a Gaussian model using the approach introduced

in Section 3.4.8, and then applying Welch’s t-test to check whether the test data collected

while driving fits into the trained model. Similar to hand movement detection, the hand

posture classification is performed based on sample windows of 0.5s. SafeWatch reports a

distraction event if the driver’s hand is detected as off the steering wheel for T consecutive

sample windows.
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Figure 3.13: Accuracy of the classifier and confusion matrix (Confidence interval = 90%, T
= 6s).
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Fig. 3.13(a)(b) shows the accuracy of detection for each value of T . Here, the precision

is calculated by “number of successfully detected dangerous actions/number of all detected

dangerous actions”, and the recall is calculated by “number of successfully detected danger-

ous actions/number of dangerous actions in ground truth”. As shown in the figure, for T

larger than 6s, both of the precision and recall are higher than 90%. When the hand is on

the steering wheel, the upper or lower position can be detected with high accuracy as shown

in Fig. 3.13(c). Based on our study, the error appears when the training data set drifts

away, where the average value of gX,watch cannot represents the center of the steering wheel

accurately. This can be fixed by our auto-calibration as introduced in the next section.

3.5.2.2 Auto-calibration

If the posture of the driver changes during a driving trip, the training data set should be

updated, in order to adapt to the new environment. As we introduced in Section 3.4.8, this

happens when the driver is manipulating the steering wheel. To keep the size of the training

data set, we replace some of the oldest data to the new data. The amount of the replacement

is defined as the update rate. Here, we evaluate how the errors can be reduced with the

auto-calibration. The parameters of the classifier are set to 90% confidence interval and 6.0s

sensitivity.
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Figure 3.14: Auto-calibrated training data set and corresponded accuracy

The performance of SafeWatch with auto-calibration is shown in Fig. 3.14. In Fig.

3.14(a), we use the gX,watch to demonstrate how the training data set evolves when 40%
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of the training data set are updated after each turn (update rate is 0.4). Specifically, the

coverage expands, and the average value of gX,watch is closer to the ground truth of the

center of the steering wheel. This means the training data set is more accurate after each

update. With proper setup, the overall recall and precision rate can be both higher than

97%. In this case, the errors can be reduced to less than 1.5 per hour. However, less unsafe

actions are detected if the selected update rate is too large, resulting in lower accuracy in

the recall. The reason is a large amount of the new data brings bias to the training data set,

which is initialized when the driver’s hand moves from the top to the bottom of the steering

wheel completely and uniformly.

3.5.2.3 Contribution of Features

In our design, the positions of the hands are detected based on the forearm’s posture and the

vibration. In this section, we run the classifier using every single feature individually, in order

to understand the contribution of each feature to the detected result. We carefully checked

each moment in the collected data. When the subject’s hand is away from the steering

wheel, we labeled the subject’s behavior as three events. The “holding” event means the

hand is holding something such like a bottle or a phone. The “resting” event means the

hand is resting on the leg or the seat. The “other” event means the hand is handling

other secondary tasks that are not included in “holding” or “resting”, such as operating the

on-vehicle music player or touching the GPS navigation system on the windshield.

Fig. 3.15(a) shows the accuracy of detection when those dangerous events happen. We

can see that the forearm posture is the most effective feature for the classifier. Moreover, it

works best in identifying “resting” and “holding” events. The reason is that the forearm is

less likely to be pointing to the steering wheel when the driver is holding something or resting

the hand on the leg. The vibrations on the smartwatch can provide important information

about whether the hand is touching the inner parts of the vehicle, thus it is supposed to

be effective in every case. However, the classifier has relatively low accuracy when it only
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Figure 3.15: Accuracy of detecting different type of dangerous behaviors

uses the features from the vibrations, because the vibration is related to many factors and

it is not reliable all the time. If the classifier combines all the available features, it can

correctly detect over 90% of dangerous behaviors in “holding” and “resting” events. For

“other ” events, SafeWatch only fails in rare cases. For example, SafeWatch believes the

driver’s hand is on the steering wheel when the driver’s hand stays on the central console

for a long time. In this case, the forearm’s posture sensed by the impact of gravity on the

smartwatch could be similar to a driving posture, and the vibration on the central console

may be similar to the vibration on the steering wheel. However, as shown in Fig. 3.15(b),

“other” events rarely happen during a driving trip, thus SafeWatch is still able to maintain

high overall accuracy.

3.5.3 Micro-scale Driving Behavior Analysis

We next conduct a micro-scale driving behavior analysis using the result from SafeWatch. It

discovers several driving habits of the subjects. For example, in which case the driver tends

to move hands away from the steering wheel, which hand is more likely to move away from

the steering wheel, what is the method the driver uses for steering, how the road condition

affects the driving habits, etc.
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Fig. 3.17 shows the detection results along with the ground truth during a 20-minute

driving trip, which covers the route on a city road and a highway as shown in Fig. 3.18.

We can observe that, in the highway trace, the frequency of the subject’s hand movements

significantly reduces, mainly because there are fewer curves and turns on the road. In this

case, the driver’s right hand moves less frequently than his left hand. Meanwhile, the right

hand tends to stay away from the steering wheel, which implies that the right hand is relaxed.

Another observation is that the positions of the hands keep changing throughout the driving

trip. For example, both hands are on the steering wheel at the beginning of driving, but

they tend to move away from the steering wheel more frequently after the first 3-minute.

Start

City Road
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(a) (b)
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Figure 3.16: Log of the 20-minute driving trip
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Figure 3.17: Hand movement and position of the 20-minute driving trip

In order to study this in detail, we analyze the outputs of our classifier for different

driving trips of other subjects. Specifically, we check how the roads and the driving time

impact driving behavior. Fig. 3.16 shows the driving behaviors of four subjects on different
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roads. On the city road, the drivers are more likely to hold the steering wheel firmly. The

duration of each hand’s movement is short, but the frequency is high. The reason is that

drivers have to adjust the steering wheel more frequently on city road that has more turnings.

We can also observe that the dominant hand moves more frequently than the other hand

because drivers tend to use their dominant hands to operate the steering wheel. SafeWatch

also observes that the subjects we studied have different driving habits on the highway.

For example, Subject 1 and 4 tend to frequently put their non-dominant hands on the leg.

Specifically, their dominant hands always hold the top part of the steering wheel, in order

to turn it conveniently towards any direction only with one hand. For most of the time, the

dominant hand is the only hand on the steering wheel, and it rarely moves away from it.

Subject 2 and 3 usually use both hands to hold the steering wheel at 9 o’clock and 3 o’clock

positions. On the highway, they tend to relax the dominant hand and move it away from

the steering wheel, then hold the steering wheel only with the non-dominant hand.
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Figure 3.18: Driving behaviors and type of roads

Fig. 3.19 shows the driving behaviors of the subjects along with the driving time. At the

first minute of driving, the vehicle usually is being moved out of the parking lot. A series of

jobs are completed during this time, such as shifting the gear, adjusting the A/C, playing

the music, etc. The hands stay on the steering wheel at most of the time during the 2nd
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Figure 3.19: Driving behaviors and driving time

to 3rd minute. We assume that the driver just enters in a good status, and the alertness is

very high at this moment. However, after 3 minutes, the hands begin to move away from

the steering wheel, which corresponds to the driver’s lower alertness. Another study shows

the same observation with the electroencephalogram (EEG) monitoring [92].
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Figure 3.20: Example of left turn

The result of SafeWatch also shows the preferred steering methods, like hand-over-hand

or push/pull techniques [114]. Fig. 3.20 shows the example of the output of SafeWatch

with these two steering methods. As we mentioned in Section 3.4.5, the increasing value

of gX,watch means raising the left hand or lowering the right hand, and vice versa. Based

on this observation, we can see that the hand-over-hand steering method includes a “cross”

step, where the left hand moves up after the right hand reaches the highest position. This
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is different from the push/pull steering method, which does not involve in a cross of two

hands at the upper part of the steering wheel. This fact shows the upper/lower position

of the hand is a clue to classify the steering method. Another observation is, in push/pull

methods, two hands move up or down more simultaneously.

%
 o

f u
pp

er
 p

os
iti

on

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

X,left+gX,right)Var(g
0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

X,left+gX,right)Var(g

%
 o

f u
pp

er
 p

os
iti

on

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

X,left+gX,right)Var(g

Subject 1 Subject 2 Subject 3

Subject 4 Subject 5 Subject 6

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.21: Distributions of samples of turning

Because the driver’s behavior can be affected by many factors, it is difficult to clearly

recognize each steering action as a technique of steering method by reviewing the video-

recorded ground truth. To avoid bias and further investigate this, we define two values to

describe the hand movement and use the distribution of these values to show the driver’s

preference. For all the samples from a complete turn, first, we calculate the percentage

of the samples when the hand is at upper position; second, we calculate the variance of

(gX,left+gX,right) from two smartwatches, which corresponds to the similarity of the forearm

posture on both side at each moment. Fig. 3.21 shows the distribution of these two values for

each subject. Though the distributions are discrete, which means the driver’s micro behavior

is highly unpredictable, we can still see that subject 2 has an overall lower hand position and

higher similarity between the movements of two hands. We have confirmed that subject 2

performs relatively more push/pull steering method by reviewing the video recordings. We
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also have found that all the subjects prefer the hand-over-hand method, especially subject

5. This proves that the result of SafeWatch can reveal some details of the driving habits and

it can potentially serve for monitoring and training of drivers.

3.5.4 Feedback & Discussion

As we mention in the previous subsection, the collected ground truth and the detected result

show most of the subjects’ driving habits, such like the favorite position of the hand on the

steering wheel and preferred steering methods. We summarized the driving behaviors and

sent these to the subjects as the feedback of our experiment. It turns out that 5 out of

6 of the subjects were not aware of some dangerous actions or habits before we provided

the recorded video clips to them. This fact emphasizes the importance of designing such

a system because of the low self-awareness of the drivers. In addition, according to [114],

the hand-over-hand steering method is not recommended in recent years, because of the

chance to be hurt by airbags. However, the ground truth of our experiment and the result

of SafeWatch both show that the hand-over-hand steering method is still popular among the

subjects.

3.6 Conclusion of Study

SafeWatch monitors mid-level activities, like where the hand stays in the vehicle. It

satisfies the Three Rules. Specifically, SafeWatch

• is sensitive to context. The classifier takes a set of the most recent time frames

as the input rather than a single time frame. The state of the classifier is constantly

switched between two states – hand is moving or still. The alert will be triggered by

different rules according to the current state.

• is adaptive to dynamic condition. The training data set keeps updated. Based

on the fact that the hand must be on the steering wheel while operating the steering
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wheel, SafeWatch can rebuild the training data set for each turn of the vehicle.

• processes readable features. The major features used in SafeWatch are forearm

posture and vehicle’s vibration. Those numbers are readable. In this case, it is conve-

nient to track the reason of error of SafeWatch or improve it.
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CHAPTER 4

IN-VEHICLE REAL-TIME ATTITUDE AND MOTION TRACKING

This chapter introduces Real-time Attitude and Motion Tracking (RAMT) of the mobile

devices in a moving vehicle. This is a system that aligns the coordinate systems of the mobile

devices to the vehicle, thus it enables the devices to know their attitude and position in the

real time. This chapter is adapted from a publication [15]. The author of the dissertation is

the first author of the original work. ”We” in this chapter refers to the author of the original

publication. This work contains the App design on Android devices. The author recruited

all the subjects, then collected and processed the data and the ground truth.

Monitoring the attitude and motion of a mobile device is a low-level monitoring. It de-

scribes the current state of a device with numbers. Specifically, it can represent the directions

of the X, Y, Z axis of a device’s IMU in the vehicle’s coordinate system. Furthermore, the

user’s action can be tracked in detail. This work provides valuable data for further processing

like gesture recognition.

4.1 Background

Recent years have witnessed the emergence of a class of new in-vehicle technologies for

improving driving safety and experience. For instance, the smart steering wheel proposed in

[68] can detect dangerous driving behaviors and warn the driver. The systems proposed in

[106] [83] employ gesture control and auditory-only displays to avoid visual distraction. By

installing additional equipment, these systems allow the driver to focus on driving without

being distracted or handling secondary tasks. Such technologies can effectively improve

driving safety since the major causes of road accidents are the distraction and secondary

tasks, such as texting or operating the in-vehicle infotainment [23] [66] [59]. However, the

aforementioned systems are based on proprietary technologies, presenting barriers to wide

adaptation. Recently several in-vehicle systems based on off-the-shelf mobile and wearable

60



devices have been developed to improve the driver’s awareness. Specifically, smartwatches

can be used to detect the driver’s action based on inertial measurement units (IMUs) and

monitor the driving performance by recognizing possible second tasks [60] [14].

A B C

Figure 4.1: The problem of horizontal heading

However, these systems often have poor performance due to the significant dynamics of

moving vehicles. In particular, the motion of the smartwatch worn by the driver is induced

by the movement of both the driver’s hand and the vehicle. As a result, it is challenging to

use the motion sensors (accelerometer and gyroscope) of the smartwatch to accurately track

the hand motion or recognize the gesture in real time. A typical difficulty of motion-based

tracking is the estimation of horizontal heading [40]. As shown in Fig. 4.1, those gestures

cannot be distinguished based on motion signals without prior knowledge of the horizontal

heading of the smartwatch, i.e. an alignment between the smartwatch and the driver or

the vehicle. A possible solution to address this issue is leveraging GPS and compass [46] to

compute the vehicle’s moving direction and the device’s attitude relative to the earth, which

can then be combined to derive the device’s attitude in the vehicle. However, the GPS

signal is not always available or reliable. Moreover, the low sampling rate of GPS (around

1Hz) makes it impractical to track hand gestures in real time. The compass often fails to

achieve accurate measurement because of the magnetic interference from the vehicle or other

electronic devices [56]. Instead, most existing solutions still employ additional equipment

like cameras and infrared distance sensors to capture the image and calculate the gesture in
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a 3-D space [34] [9] [52] [71] [95] to capture the real-time position of the wearable.

4.2 Related Work

Recently, a number of proprietary in-vehicle technologies have been deployed to monitor

driver’s performance, record the hand motion, and improve driving safety. For instance,

drivers’ level of attention can be monitored by measuring the vehicle’s acceleration and

speed [61] [26] [51] [54], driver’s brainwave [20], heart rate [76] [19], and the holding force

on the steering wheel [73]. The hand gestures can be classified based on the video captured

by cameras [9] [52] [71] [95]. The systems proposed by [112] [106] use capacitive sensors to

track the hand motion. By introducing image-based and depth-based sensors like Kinect, the

gestures can be classified with a high accuracy based on the trajectory [115] [36]. However,

these systems are based on proprietary technologies and incur significant costs of adoption.

Several studies have been focused on gesture recognition using mobile devices in static

environments. For instance, the gesture of arm can be identified by a smartwatch by applying

a particle filter on the motion signals [105]. Deep learning algorithms are developed to

utilize motion sensors to control games [43], recognize hand gestures [18] [99], and analyze

performance of physical activities [18] [58]. However, in these works, the devices still fails

to estimate the horizontal heading. They rely on an initial coordinate system alignment

between the device and the user or the earth. They also assume that the motion of mobile

devices is solely induced by users.

With the high penetration of mobile devices, several systems utilize smartwatches and

smartphones to detect whether the driver’s hands are on the steering wheel and classify the

secondary tasks [60] [14]. However, these systems only detect the shape of the gesture but

cannot track hand motion in the 3D space. Several systems can sense the movement of the

vehicle, including speed, braking, acceleration, and turning of the vehicle [77] [120] and infer

the driving habits [79]. However, to our best knowledge, there does not exist an approach

to align the coordinate systems of mobile devices and the vehicle solely based on motion

62



sensors, which is a key enabling technology to precisely track hand motion and recognize

hand gestures.

For the gesture recognition based on motion data, some existing methods define the

segments of gestures, then recognize a single whole gesture as a combination of the segments

using the Hidden Markov Model [34] [32]. Furthermore, because the gesture is related to the

samples in the time-series, Dynamic Time Wrapping helps reducing the errors of recognizing

the gestures with various sizes and duration [24] [78]. RAMT can improve the precision of

the gesture recognition by providing fine-grained tracking of the attitude of the wearable.

In this work, we demonstrate an application with a deep learning model on mobile phone,

which shows a hand gesture can be recognized with both shape and position based on the

output of RAMT.

4.3 Requirements and Challenges

The primary goal of RAMT is to let the mobile device recognize and keep track of the

vehicle’s coordinate system. As shown in Fig. 4.2, the devices must learn the vehicle’s

forward, right, and up directions, and represent these directions under the devices’ own

coordinate systems as unit vectors r, f , and u. Once these unit vectors are determined, we

can transform any vector a under the original coordinate system of a mobile device into a

vector a′ under the vehicle’s coordinate system, by

a′ =< Project(a, r),Project(a,f),Project(a,u) > . (4.1)

Specifically, the requirements of our design are, 1) the mobile device in the moving

vehicle should learn its attitude relative to the vehicle; 2) the mobile device should be able

to distinguish the vehicle’s motion and the user’s action from the collected motion signals; 3)

the user’s hand gesture in the vehicle should be effectively and accurately recognized based

on tracking.

However, several challenges must be addressed. First, without prior knowledge, the

63



u

r f

u

r

f

u

r

f

u

r

f

Z
X

Y

Coordinate System
of Smartwatch <X, Y, Z>

Coordinate System
of Vehicle <r, f, u>

Figure 4.2: The goal of RAMT

vehicle’s motion and the user’s action are very difficult to be distinguished by the wearables.

The motion sensors can sense either motion signal but they only output a combination of

them. Second, it is difficult to learn the vehicle’s coordinate system solely based on the

motion signal, because it does not provide a concrete reference like location and orientation.

Third, the hand motion tracking and the coordinate system alignment must be performed

with a high level of accuracy and in real time during a driving trip. This requires processing

high-dimension motion signals on resource-constrained mobile devices.

4.4 System Design

4.4.1 System Overview

RAMT targets to align the coordinate system of each mobile device to that of the vehicle.

To learn the attitude and track the motion of the mobile devices, e.g. a smartphone and a

smartwatch, we process and analyze the fused motion signals from both devices. The smart-

phone, which is not being used while driving, is able to pick up the vehicle’s accelerating,

64



Gravity Sensing

Vehicle Motion
Extraction

Coordinate System
Alignment

SmartPhone SmartWatch
Coordinate System

Maintenance
Gravity Sensing

G
3D Monte Carlo Differential Projection

Motion Signal
Resampling

Coordinate System
Alignment

Monte Carlo
Test of f

Differential
Projection with f

G f

u

G

G f

u

G f

u

f'
θ=?

Acceleration on f

Rotation around u

G f

u

Motion Tracking

Figure 4.3: The pipeline of RAMT.

braking and turning. On the other side, the motion data collected by the smartwatch con-

tains not only the vehicle’s motion but also the driver’s hand motion. Our key idea is that

the smartwatch receives the information about the vehicle’s motion from the smartphone

via the Bluetooth, and uses this information to learn the attitude of itself, then extracts the

hand motion from the mixed motion signal.

Fig. 4.3 illustrates RAMT’s pipeline. Each device calculates the up direction of the ve-

hicle individually; the smartphone senses the vehicle’s movement and calculates the forward

direction, then sends this information to the smartwatch via the Bluetooth; the smartwatch

calculates the vehicle’s forward direction based on the received information and recognizes

its attitude in the vehicle. According to the concept of the orthogonal coordinates, the right

direction can then be calculated by the vector’s cross product by the up and forward direc-

tions. Specifically, the motion sensors, i.e. accelerometers and gyroscopes on the smartphone

and the smartwatch, continuously sample the motion signal. The direction of the gravity

is calculated on each device by processing the collected data. This information is used to

derive the up direction of the vehicle. The smartphone calculates the forward direction of

the vehicle by processing the captured vehicle’s motion. After the alignment of the coordi-

nate systems between the phone and the vehicle, the vehicle’s acceleration and turning at

each moment are sent to the smartwatch. By resampling the received vehicle’s motion, the

smartwatch compares the motion data collected by itself with the vehicle’s motion. Then,
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we use the gradient descent method to minimize the differential of the speed between the

smartwatch and the vehicle, which searches for the best alignment between the two coor-

dinate systems. Finally, the forward and the right directions of the vehicle are determined

and maintained continuously by the smartwatch. The motion tracking of the smartwatch is

performed simultaneously based on its real-time attitude.

4.4.2 Gravity Sensing

A common solution to determine the attitude of a device is to sense the direction of the grav-

ity under the device’s coordinate system. Since the measurement a from the accelerometer

is always interfered by the gravity, the real acceleration caused by the motion of the device,

which is denoted as aL, must be calculated by subtracting the impact of gravity from a. The

existing studies show that the reading of accelerometer can be used to represent the gravity

by applying a low-pass filter, if the device is at rest [81]. However, for the mobile devices in

a dynamic environment, e.g. in a moving vehicle, the traditional approach does not work.

In this work, we introduce a new approach that can achieve highly accurate gravity sensing

even when the device is constantly in motion. .

Hereafter, we denote the impact of the gravity on a device as g. According to the

characteristics of gravity, we have:

|g| ≈ 9.8, a = g + aL . (4.2)

The value of g can be derived by applying a low-pass filter on a while the device is moving

at a constant speed or at rest, i.e. when a is close to 9.8m/s2 in a period of time and the

reading from the gyroscope is close to 0 [42]. This state is referred to as “stable”. The other

state “moving” represents the condition in which the low-pass filter cannot yield an accurate

value of g, and this happens in the following two cases,

1) The motion data from the gyroscope shows that the device is rotating. For the

smartphone, it may be picked up but not move along with the vehicle. This is a common
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case for smartwatch since it usually rotates with the wrist of the user. This may often occur

to a smartphone in a vehicle when it is picked up by the user.

2) The device is not rotating but a is not close to 9.8m/s2. In this case, both the

smartphone and the smartwatch may pick up the vehicle’s horizontal acceleration, i.e. when

the vehicle is accelerating, braking, or turning.

In these cases, we must calculate g by leveraging the rotation, which is sampled by the

gyroscope and denoted as ω at each moment. Assume g at the previous sampling moment

is known, which is denoted as gold, and the rotation sensed by the gyroscope is also known

as ω at the current moment, then we can calculate the current impact of gravity gnew with

the following steps:

1) Transform the rotation data ω from the gyroscope to the axis-angle representation R,

following

R = { ω

|ω|
, |ω|} . (4.3)

2) Transform the axis-angle representation R to the rotation matrix M [49].

3) Calculate gnew by the matrix mulplication, as

gnew =M−1gold . (4.4)

In short, gravity sensing follows two distinct procedures in two cases. If the device is at

rest or moving at a constant speed, the measurement by the accelerometer is exactly the

impact of gravity. Otherwise, the direction of gravity can be calculated based on previous

status and the current rotation. This process can be done in real time on each device.

However, due to the bias and errors of the gyroscope, the accuracy of the sensed gravity

gradually decreases if the device keeps moving, and it will be recovered once the device

enters in the “stable” state.

The output of the gravity sensing is used to determine the upward direction of the vehicle,

which is the same as the upward direction of any device under the earth’s coordinate system.
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Since g has the same direction as u, we have

u =
g

|g|
, (4.5)

where u is the unit vector pointing to the up direction of the vehicle.
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As shown in Fig. 4.4, after the gravity sensing, we can calculate the real acceleration

aL, then decompose it with a horizontal acceleration aH and a vertical acceleration aV .

For the smartphone, aH mainly contains the vehicle’s acceleration, braking, and turning,

because the vehicle is supposed to move horizontally; aV is mostly induced by from the noise,

vibration, and harassment caused by the engine and the road condition. For the smartwatch,

the real acceleration aL not only contains the vehicle’s motion but also the motion of the

user’s hand.

4.4.3 Vehicle Motion Detection

After deriving the gravity and calculating aH , the smartphone can detect the forward direc-

tion of the vehicle based on the vehicle’s horizontal movement. Our design is based on the

following observations. First, since the smartphone is placed in the vehicle and not supposed
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Figure 4.6: The detection of the motion of the vehicle

to be used while driving, its motion sensors only pick up the movement of the vehicle. Sec-

ond, except turning, the vehicle’s movement does not involve the rotation that changes the

direction of gravity under the vehicle’s coordinate system, and the vehicle only moves along

the axis pointing to the forward direction. Considering these features, we conclude that the

smartphone can detect the forward direction of the vehicle by analyzing the collected motion

data. Specifically, once the smartphone phone senses a significant aH , the detection of the

vehicle’s movement can be done in three steps:

1) In a short period of time T , smartphone samples the rotations around the gravity.

These samples correspond to the vehicle’s turning. We use βi to denote the value of the

rotation, which is a counter-clockwise angle between the beginning of the period and the

moment i. This value can be calculated by,

βi =

 ∆t|ωi|, if ωi · ui ≥ 0;

−∆t|ωi|, if ωi · ui < 0;
, (4.6)

where ωi and ui are the readings from the gyroscope and the unit vector pointing to the

vehicle’s up direction at the moment i in a frame with length ∆t, respectively.

2) To detect the vehicle’s acceleration, the smartphone finds the largest aH in T . This

vector of acceleration is denoted as aHmax. The direction of aHmax is assumed to be either

the forward or the backward direction of the vehicle, and we can calculate the vehicle’s

forward direction under the smartphone’s coordinate system by
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f =


aHmax

|aHmax|
, if accelerating;

− aHmax

|aHmax|
, if braking;

, (4.7)

where f is the unit vector pointing to the vehicle’s forward direction.

3) The aH at each moment in the 1 second is projected to aHmax as the vehicle’s

acceleration. We define the vehicle’s acceleration at the moment i as bi, and we have

bi =

 |Project(aH,i,f)|, if aH,i · f ≥ 0;

−|Project(aH,i,f)|, if aH,i · f < 0;
, (4.8)

By calculating bi, the smartphone learns the axis that points to the forward or the

backward direction of the vehicle. In order to identify the direction of aHmax, we need to

know whether the vehicle is actually accelerating or braking at this moment. A practical

solution is to examine the amplitude of the vertical vibration. Based on our experiments,

the vibration is much more significant when the vehicle is moving as shown in Fig. 4.5.

According to this observation, whenever the vehicle starts to move or comes to a stop, the

smartphone can determine the forward and the backward direction. In some rare cases, the

measurements of the accelerometer on the smartphone cannot be directly used to derive the

forward direction of the vehicle. The first case is when the vehicle is moving backward. The

acceleration’s direction is the opposite of the forward direction. This case is rare when the

car is in normal driving condition and does not significantly affect the performance. The

second case is driving on a long curved road like the ramp on the exit of the entrance of the

freeway. The constant turning leads to a centripetal acceleration that can be sensed by the

smartphone. This error can be fixed soon when the vehicle is moving straightly. The third

case is related to the horizontal vibration caused by the road condition. However, compared

with the accelerating or braking, the vibration has a special pattern with a large variance

within a short period of time, which can be easily identified and filtered out.

Along with the detection of the vehicle’s motion, the smartphone logs a series of the ro-
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tations {β} as well as the vehicle’s accelerations {b}. These data are sent to the smartwatch.

In the next section, we introduce how the smartwatch learns the coordinate system of the

vehicle based on the vehicle’s motion.
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Figure 4.7: The maintenance of the vehicle’s coordinate system on the smartwatch

4.4.4 Adaptive Coordinate System Maintenance

Unlike the smartphone, since the smartwatch’s motion may contain the user’s hand motion,

we must ensure that the recognized vehicle’s coordinate system keeps absolutely still but not

varies with the motion. For example, as shown in Fig. 4.7 (a), the smartwatch is rotated

due to the motion of the hand. As a result, the vehicle’s forward and right axes should also

be rotated and point to the absolute directions under the smartwatch’s coordinate system.

To accomplish this, we need to process the rotations from the gyroscope and continuously

update the vehicle’s forward direction f on the smartwatch. Just like how we keep track of

the gravity, we calculate the fnew based on the fold and ω. Specifically, we transform ω

into axis-angle representation R, then to the rotation matrix M [49]:

fnew =M−1fold . (4.9)

However, due to the error and bias of the gyroscope, we need to calibrate f when the

sensed gravity g is adjusted after the smartwatch enters the “stable” state. In other words,

the recognized vehicle’s coordinate system is calibrated adaptively whenever the accumulated

errors of the gyroscope are eliminated through the gravity sensing. At this moment, fold is
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projected to the horizontal plane to calculate the direction of fnew, as shown in Fig. 4.7

(b). Moreover, the right direction of the vehicle can be determined by calculating the cross

product of u and f .

By adaptively adjusting the recognized vehicle’s coordinate system of the smartwatch,

f points to an absolute direction no matter how the smartwatch moves. The smartwatch

keeps logging f and combines them with the received vehicle’s motion to align itself to the

actual vehicle’s coordinate system, which will be discussed in detail in the next section.
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Figure 4.8: Detect the vehicle’s forward direction by the smartwatch

4.4.5 Coordinate System Alignment on Smartwatch

After receiving the vehicle’s motion detected by the smartphone, the smartwatch uses the

data to align the coordinate systems between the vehicle and itself. A key observation is

since the smartwatch stays in the vehicle, its speed should be similar to the vehicle’s speed

when the smartwatch is in the “stable” state. If the smartwatch has prior knowledge of

the vehicle’s forward direction, i.e. a set {f} containing the recognized forward direction of

the vehicle under its coordinate system for the previous moments, it is possible to calculate

the smartwatch’s acceleration along with the vehicle’s forward axis at each moment i as

Project(aH ,fi). Moreover, if each f is recognized correctly at each moment during T ,
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the accumulation of the horizontal acceleration, i.e. the smartwatch’s speed along with the

vehicle’s forward axis, must be the same value as the vehicle’s speed at the end of the hand

movement. Based on this observation, we have,

ε =

∣∣∣∣∣
n∑

i=0

(Project(aH,i,f
′
i )− bif

′
i )

∣∣∣∣∣ , ε→ 0 , (4.10)

where aH,i is the horizontal acceleration sensed by smartphone at the moment i, f ′
i is

the unit vector correctly pointing to the forward direction of the vehicle at the moment i,

and bi is the vehicle’s acceleration at the moment i. Here, for samples at moment 0 and

moment n, the smartwatch is in the “stable” state. The differential ε is generally close to 0.

Our goal is to search for a series of f ′
i that can minimize the differential based on a set of

priorly known {f} on the smartwatch and the received data from the smartwatch containing

vehicle’s turning angles {β} as well as the vehicle’s acceleration {b}.

Since the motion sensors on the smartwatch and the smartphone may have different

sampling rates, the first step of this process is to resample the motion data that represents

the vehicle’s motion by linear nearest-neighbor interpolation. Fig. 4.9 shows an example of

the process of resampling.

aVehicle

Time

Sampling Moments of Smartwatch

Figure 4.9: An example of resampling

Since the correct forward direction of the vehicle f ′ exists on the same horizontal plane

with the pirorly known one f , our goal can be simplified to be searching for θ, which is the

angle between f and f ′, and we have,

f ′
i = Rotate(fi,ui,

i∑
j=0

βj + θ). (4.11)
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where function Rotate(v,s,α) returns a vector that is calculated by rotating vector v

with angle α counter-clockwise around axis s. Fig. 4.8 shows an example of the selection of

θ and how the differential ε changes by using f ′ instead of f . According to Equation (4.10)

and (4.11), we need to solve the value of θ that minimizes ε. However, this formula is a high-

degree polynomial equation with trigonometric functions, and a general algebraic solution

does not exist according to the Abel-Ruffini theorem [3]. In the following, we propose a

gradient descent method to solve θ. Specifically, on the first attempt, we start with the

θ = 0, which is the previous alignment between the coordinate systems. Then, we search

for θ with 0.01 learning rate in a range between −90◦ to 90◦. The advantage is that not

only it requires only a small memory footprint, but also the expectation of the error can be

limited within 1◦ after around 200 trials. This algorithm can be executed within 50ms by

an off-the-shelf smartwatch.

At the startup, f on the smartwatch is set to < 0, 1, 0 >. With this method, every

time the smartwatch receives the information about the vehicle’s movement, we rotate the

current f on the smartwatch with angle θ̂ around u in order to align it to the vehicle’s actual

forward direction.

4.4.6 Motion Tracking and Gesture Recognition

After a set of unit vectors < r,f ,u > are found and maintained by the previous procedures,

the smartwatch’s attitude is known under the vehicle’s coordinate system. Since the smart-

watch’s motion is related to the user’s action, the information of its attitude in the vehicle

can be used to recognize the user’s hand gesture in a 3-D space. According to the design

of the motion sensors, the X-axis of the smartwatch is always parallel to the user’s forearm,

the user’s gesture can be defined as how the direction of its X-axis is represented under the

coordinate system of the vehicle, i.e. where the hand points to. We denote this vector as x′,

and we have
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x′ =< Project(x, r),Project(x,u) >,

x =< 1, 0, 0 > .

(4.12)
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Figure 4.10: Basic idea of tracking-based gesture recognition
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Figure 4.11: Representation of a gesture by samples

Note that we only need to know the projection of x to < r,u > plane, because two

coordinate values are enough to determine a 3-D unit vector. We developed an application

to recognize the gesture based on the result by a Convolutional Nerual Network (CNN) deep

learning model. In our experiment, when the watch face is tilt to upward, the sampling

of a gesture starts [80]. The gesture can be represented as a series of x′ as shown in Fig.

4.10(a). To keep the consistency of size of the data that represents a gesture, we take another

resampling step as shown in Fig. 4.11(b). We pre-defined five basic and easy-to-understand

shapes of the gestures, which are the circle like “O”, the letter “Z”, the vertical down stroke

like “I”, the horizontal right stroke like “-”, and the cross like “X”. Each gesture can be

performed at one of the nine positions as shown in Fig. 4.10(b).
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The pipeline of the design of the gesture recognition is shown in Fig. 4.13. We recorded

20 sample-series of each of the 45 combinations and trained the classifier by TensorFlow [1]

on a laptop. The classifier uses a CNN model as shown in Fig. 4.12 with the input as a

series of both time-based and trajectory-based sampled x′. The model is strong in capturing

the individual connectivity patterns for each gesture according to the design of CNN. The

training can be done with those pre-defined gestures as well as additional customized ones.

After this offline training, the generated model is downloaded to the smartphone for real-time

gesture recognition with TensorFlow Lite.

Fully-connected layer

k * 2 ...
...

[3 * 2 * 10]

Time-based
Samples Convolutional

layer

...
...

Max pooling

...
...

Convolutional
layer

[2 * 1] [3 * 1 * 10 * 20]

Softmax

...

Result of
Recognized Gesture

k * 2 ...
...Trajectory-based

Samples

...
...

...
...

≈ k * 20

Figure 4.12: The structure of the CNN deep learning model

Real-time Attitude
and Motion

Trajectories of Wearable 
and Ground Truth

Gesture Recognition and
Result Display

Real-time Attitude
and Motion

Deep Learning
Model

Testing

Training

Figure 4.13: The pipeline of training and testing process of gesture recognition
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4.5 Evaluation

In order to evaluate the performance of RMAT, We have implemented it on a smartphone

(Moto G 2nd Gen.) and a smartwatch (Moto G 360 2nd Gen.). To evaluate the performance

of the alignment, the recognized coordination system of the vehicle is displayed on both

devices in real time. The displayed result can be switched between the RAMT and GPS

with compass. For gesture recognition, the smartphone runs the CNN model. The recognized

gesture is displayed on the smartphone. In addition to our pre-defined gestures, each subject

is allowed to record two more customized gestures during the experiment, and a new CNN

model will be trained immediately on a laptop.

We have recruited 10 subjects to test RAMT under the approval by the Institutional

Review Board (IRB) of the author’s institution. The experiment is done in a moving vehicle.

In the vehicle, the ground truth of the coordinate system of the vehicle is indicated as a

preset cotton string, and the gesture performed by the subject is captured by a camera

above the seat as shown in Fig. 4.14. Each subject is asked to wear the smartwatch (in our

experiment, all of the 10 subjects choose to wear the smartwatch on the left hand) and carry

the smartphone. For safety concerns, in each experimental session, the subject performing

the experiments is a passenger during a 30-min driving trip. During this trip, the subject is

responsible to regularly check the accuracy of the alignment, and he/she is also required to

perform 3 times of each customized gestures and 30 randomly chosen gestures, which comes

from the 45 pre-defined shape-position combinations, then records the errors of the gesture

recognition.

4.5.1 Computational Performance

We uses devices listed in Table. 4.1 for this experiment. As shown in Fig. 4.17, RMAT is

able to run on multiple threads on each mobile device. The processing time of each sample

is sufficiently short comparing with the sampling rate of the motion sensors. The details of
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Table 4.1: Information of the devices

Device CPU RAM TensorFlow
Moto G 2nd Gen. Qualcomm Snapdragon 400, 1.2GHz, qual-

cores
1GB TensorFlow Lite

Moto G 360 2nd
Gen.

Qualcomm Snapdragon 400, 1.2GHz quad-
core

512MB N/A

Lenovo ThinkPad Intel Core i5-7300, 2.6GHz / 2.71GHz,
quad-core

8GB TensorFlow
1.8.1

Table 4.2: Information of the deep learning model

Number of Sam-
ples

Model
Size

Time of Train-
ing

Time of Predic-
tion

Accuracy of Valida-
tion

10 45KB 2min 310ms 87.3%
20 85KB 3min 430ms 95.8%
30 125KB 6min 535ms 98.3%
40 165KB 9min 625ms 98.4%

front (f)

Figure 4.14: Setup of experiment

the average processing time of each step is listed in Table. 4.3.

The size and the processing time of the CNN model depend on the number of samples we

extracted from the gestures as shown in Fig. 4.12. In our study, we use a 0.05 learning rate

and 50000 rounds of the gradient descents to train the model. The outcomes of each setup

are summarized in Table. 4.2. In the experiment, we choose 30 samples for each gesture as

a balance between the processing time and accuracy.
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Figure 4.16: The error of alignment

Table 4.3: Processing time of each step

Smartphone Bluetooth Smartwatch
Sampling, Grav-
ity Sensing

Vehicle Mo-
tion Extrac-
tion

Transmission Sampling, Grav-
ity Sensing, etc.

Resampling Gradient
Descent

1.32ms 4.18ms 257ms 3.77ms 6.79ms 38.6ms

400300

0 50 100

Sampling and
Gravity Sensing

Vehicle Motion
Extraction

Sampling, Gravity Sensing
and Coordinate System Maintenance

Resampling Gradient Descent

350

Time (ms)

Time (ms)

Smartphone 
(Moto G 2nd Gen.)

SmartWatch 
(Moto 360 2nd Gen.)Bluetooth

Figure 4.17: The timeline of processing

4.5.2 Coordinate System Alignment and Maintenance

As mentioned in Section 4.3, RAMT searches for a set of unit vectors r, f , and u under

the native coordinate system of each device, which represents the coordinate system of the

vehicle (the forward, right, and up directions). Since u can be calculated via gravity sensing
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and r can be calculated by a cross product with f and u, we only focus on the horizontal

accuracy of f . To this end, the subject is asked to compare a horizontal cotton string in the

vehicle with the detected forward direction, which is displayed on the mobile device’s screen.

The angle between those two directions is the error of the coordinate system alignment in

the horizontal panel.
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Figure 4.18: The average error of alignment
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Figure 4.19: The error of alignment for turning

The smartphone captures the vehicle’s horizontal motion and recognizes the forward

direction of the vehicle. According to the design of RAMT, the alignment will be performed

after a significant change in the vehicle’s speed. These often occur before or after the vehicle’s

turning. As shown in Fig. 4.16 and Fig. 4.18, the average error is around 5◦ throughout

the trip. The error is lower on the city streets, where the vehicle stops and turns frequently.
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However, an error of around 15◦ can be observed when the vehicle enters or exits the freeway.

The long-lasted turning leads to a significant centripetal force, which is wrongly detected

as an acceleration. The error can be fixed soon when the vehicle leaves the ramp. The

smartwatch receives the extracted vehicle’s motion from the smartphone and calculates the

forward direction of the vehicle. The average error is around 10◦ all through the trip. In

addition to the errors occurring on the ramp, the error gradually increases while the vehicle

is driving straightly for a long distance, e.g. on the freeway or the rural road, where the

vehicle’s speed does not vary significantly. Our study shows that the error comes from the

zero drifting of the gyroscopes on both of the smartphone and the smartwatch.

As shown in Fig. 4.18, the solution based on GPS and compass is relatively better for

the smartphone when the vehicle is moving straightly. However, when the vehicle turns or

shifts a lane, the error appears in a burst. Fig. 4.19 shows a detailed result of how the

accuracy varies when the vehicle enters or exits the turn. For both the smartphone and

the smartwatch, the errors are reduced when the vehicle was braking or accelerating, and

the errors while turning are less than 20◦. The GPS and compass solution fails to maintain

accuracy while turning because the GPS must process a series of samples to estimate the

new direction, which leads to long latency. The compass and GPS solution has a relatively

low accuracy for the smartwatch. The attitude estimation by the magnetometer is not

robust for an object under frequent motion. Moreover, due to the irregular hand motion,

the smartwatch constantly travels across the magnetic field from the vehicle or other devices

[87]. As a result, the measurements of the magnetometer are not reliable for detecting a

moving device’s attitude relative to the earth.

4.5.3 Hand Gesture Recognition

Based on the result of hand gesture recognition, we build an error matrix as Fig. 4.20 to show

the accuracy. Here we have 45 rows and columns (5 shapes multiplies 9 positions) for the

pre-defined gestures and 20 rows and columns (2 customized gestures for each of 10 subjects)
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Figure 4.20: The error matrix for detecting all gestures
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Figure 4.21: The trajectories of all the customized gestures

for the customized gestures. Each cell represents the number of errors in recognition, which

corresponds to the truth on the row and predicted result on the column. In total, 360

gestures by the subjects are recognized by our application. The number of total errors is

57, which means approximately 84% accuracy. Among the predefined gestures, “z” has the
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least errors of both the recognition of the position and the shape. Gesture “o” and “x”

are often misclassified with each other, because “x” often contains a similar shape as the

circle as shown in Fig. 4.11. The recognition of the vertical position of gesture “I” has

lower accuracy, because the start and the end of this gesture have a large variety among

the subjects. This issue also happens to the horizontal position of the gesture “-”. Overall,

most of the errors appear at the upper and upper right position. This is related to the basic

idea of RAMT and the special posture of the user in the vehicle. When the user sits in the

vehicle and reaches to the upper-right position with the left hand, the lower arm actually

has more freedom. Thus, although the subject supposes that he/she moves the hand to the

upper-right position, the forearm posture, i.e. the attitude of the smartwatch, has a large

variety.

For customized gestures, most of the subject only observe two or three errors, including

false alarm and missed detection. However, the accuracy is relatively low for some customized

gestures, which are shown in Fig. 4.21. Specifically, gesture “o” is often misclassified as the

second one of the subject 1 and the second customized one of subject 10 (double circles),

because a circle exists in those customized gestures. The second gesture of subject 4 does

not only contains a circle but also contains a “z” shape. This causes some difficulty for our

system to accurately recognize it. We observe that shape “v” is a preferred choice among

most of the subjects. The result also shows that postures with “v” shape are not likely to

be confused with other gestures.

4.6 Discussion

Our results suggest that the accuracy of the alignment should be higher in a well-

controlled situation. Once the smartphone is put in a vehicle and it is not touched or

moved, the alignment of the coordinate system between the smartphone and the vehicle

only needs be executed once. However, in our experiment, it is required to check the error

of the alignment by manual operation. Thus, the alignment must constantly run on the
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smartphone to maintain accuracy. A possible improvement is only executing the alignment

when the smartphone is moved by the user. This requires RMAT to distinguish the vehicle’s

motion (e.g. accelerating, turning, braking, vibration, etc.) and the activities by the user.

The solution is left for future work.

Although deep learning has a good performance in gesture recognition, its computing

overhead is still heavy for a mobile device. A recommended technique to recognize gestures

is decomposing the gesture into multiple segments, then recognizing the whole gesture by

analyzing the combination of the segments [55]. This technique is proved to be effective with

computer vision, but it is not designed for motion-based gesture recognition, which contains

significantly more unpredictable errors in data sampling. It is hence important to develop a

better machine learning methodology for gesture recognition or motion tracking solely based

on motion signals.

Once the coordinate systems on the smartphone and the smartwatch are correctly aligned,

RAMT can maintain an accurate alignment following the procedure in Section 4.4.4. The

only factor that affects the accuracy is the accumulated zero drifting on the gyroscopes.

Several studies have been conducted to predict the value of drifting based on various factors,

such as ambient temperature [28] and the device’s attitude [90]. However, these methods

are not designed to work in real time and hence are ill-suited for our scenario. One possible

solution in the future is to periodically use the GPS and compass alignment as a reference

to mitigate the zero drifting, especially on the highway, where the acceleration and braking

are rare.

4.7 Conclusion of Study

RAMT monitors low-level activities. It describes the result of monitoring with continuous

numbers rather than discreate classes. It satisfies the Three Rules. Specifically, RAMT

• is sensitive to context. The state of each device is constantly switched between

moving or still. The position of the device at the next moment is totally decided by
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the position at the previous moment and the motion signal.

• is adaptive to dynamic condition. RAMT can leverage each significant change of

the vehicle’s speed to calibrate its model. This grants it high accuracy along the trip.

• processes readable features. It shares rotation and acceleration of the vehicle

between multiple devices. Those features are readable by human.
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CHAPTER 5

CONCLUSION

This dissertation uses the experience from three studies to introduce Three Rules of mon-

itoring human activities with mobile devices. These rules are summarized from the success-

ful designs of those systems, which are used to monitor the family mealtime activities and

driver’s behavior. In conclusion, again, this dissertation argues that such a system should,

• be sensitive to context. Human activities can be allocated into time slots. One

activity has a very strong relation to the ambient condition as well as the activities

before and after it. The basic context-sensitive model like HMM is still a good choice

to recognize activities like speech. This kind of model inspires the new design of deep

learning models in some recent studies [86] [98].

• be adaptive to dynamic condition. The system must be able to calibrate itself,

update the training data set, or accept corrections to maintain high accuracy over time.

Different from recognizing the image or translating the text, a human may change the

habit or routine constantly. This rule has attracted attention since the concept of

reinforcement learning is widely studied [102].

• process readable features. It is preferred to use readable features and predictable

classifiers in monitoring human activities rather than directly applying the neural net-

work. The reason is these systems may relate to the clinical studies or safety issue,

where the performance of the system must be carefully maintained and under control.

Some biology studies already express concern about the hidden parameters of deep

learning at the current stage [27]. However, deep learning is still a good approach

for monitoring human activities because of its outstanding performance. Some recent

studies try to integrate this rule into deep learning, like neural network with HMM for

speech recognition [2].
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la Résolution de L’equation Générale Du Cinquième Dégré... Christiania, Groendahl,
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