
EXTRACTING RANSOMWARE’S KEYS
BY UTILIZING MEMORY FORENSICS

By

Pranshu Bajpai

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2020

ABSTRACT

EXTRACTING RANSOMWARE’S KEYS
BY UTILIZING MEMORY FORENSICS

By

Pranshu Bajpai

Ransomware continues to evolve and has established itself as the cyber weapon-of-choice for

the financially motivated cybercriminals. The current state of ransomware threats necessi-

tates the deployment of defense-in-depth strategies. Particularly, more response and recovery

solutions are required to thwart ransomware in the late stages of the attack. To that end,

we introduce pickpocket which exploits a side-channel vulnerability in ransomware: in-

memory key exposure during encryption. Perpetrators do not control the host performing

the encryption and thus this “white box” system affords access to the decryption keys by

facilitating an in-memory attack on ransomware. Since it is these keys that are ransomed,

the user’s ability to extract the keys cripples the attack. Such key extraction is the only

recourse in the frequent scenario where both intrusion prevention and backups have failed.

The novelty of pickpocket is the extraction of cryptographic material from system memory

during the process of malicious encryption. The primary insight of this work is that con-

ventional implementations of cryptographic algorithms deployed by ransomware are highly

vulnerable when a hostile entity controls the execution environment. Our work differs from

existing solutions in that we provide response and recovery when all existing solutions have

failed, that is, we provide the last line of defense. By providing access to the decryption

keys, we remove ransomware’s leverage over the victim by enabling an alternative path to

file restoration and thus eliminate the requirement of paying the ransom.

Copyright by
PRANSHU BAJPAI

2020

ACKNOWLEDGEMENTS

I have been privileged to have Dr. Richard J. Enbody as my advisor during this PhD. His

constant support and guidance has played an instrumental role in shaping my doctoral stud-

ies. In addition to our discussions concerning academic research, I have enjoyed numerous

conversations with him on a wide array of subjects and learned something new every time.

Through passive observation of his managerial style, I have realized the significance of being

kind, patient, and generous towards students, subordinates, and people in general. I am

grateful to Dr. Aditya K. Sood for introducing me to Dr. Enbody.

I would like to thank the members of my PhD committee, Dr. Arun A. Ross, Dr. Abdol

Esfahanian, and Dr. Thomas J. Holt, for the helpful feedback, comments, and discussions

throughout the pursuit of my PhD.

I am grateful towards the information security team at Michigan State University for

hosting me for three consecutive summers as an intern. I would like to thank Tyler Olsen

and Rob McCurdy for their interest and support throughout my work.

I would like to thank Adam Lewis and Ronnie Flathers at Motorola Solutions Inc. for

their strong support and encouragement during my summer internship as part of the Security

Architecture Team. Particularly, thank you Adam for continually reminding me of the

positive practical impact of this work.

I also wish to thank Dr. Arun A. Ross and Dr. Betty HC Cheng for the lively and

enjoyable classroom experience.

I would like to thank Michigan State University and its community of students, faculty,

researchers, and staff for welcoming me and supporting me every day throughout these years.

Finally, and most importantly, I would like to thank my mother, Dr. Rashmi Vajpayee,

for instilling in me the deep desire to excel in my pursuits. It is from her that I have learned

the significance of perseverance and tenacity in life.

iv

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ALGORITHMS . xii

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis statement . 2
1.2 Contributions . 3

CHAPTER 2 BACKGROUND . 5
2.1 Introduction . 5
2.2 The state-of-the-art in existing solutions . 5

2.2.1 Backup solutions . 6
2.2.2 Static-signature-based solutions . 7
2.2.3 Dynamic-behavior-based solutions . 7

2.2.3.1 File-access-patterns-based approaches 8
2.2.3.2 Honeyfile-based approaches 8
2.2.3.3 Machine-learning-based approaches 9

2.2.4 User-training-oriented solutions . 10
2.2.5 Vulnerability management solutions 10
2.2.6 Cryptography-oriented solutions . 11

2.3 Comparative analysis of existing solutions 12
2.4 Summary . 15

CHAPTER 3 KEY MANAGEMENT IN RANSOMWARE 17
3.1 Introduction . 17
3.2 Cryptography basics revisited . 18

3.2.1 Symmetric key . 19
3.2.2 Asymmetric key . 19
3.2.3 Hybrid of Symmetric and Asymmetric 20

3.3 Types of key management in ransomware . 21
3.3.1 No key or no encryption . 22
3.3.2 Decryption essentials in user domain 23

3.3.2.1 Decryption essentials on host machine 23
3.3.2.2 Decryption essentials distributed among peers 24

3.3.3 Decryption essentials in attacker domain 25
3.3.3.1 Decryption essentials on a C&C server: single encryption . . 25
3.3.3.2 Decryption essentials on a C&C server: hybrid encryption . 28

3.4 Empirical study of key generation strategies in ransomware 30
3.4.1 Classification of key generation in ransomware 31

3.4.1.1 Static asymmetric key . 32

v

3.4.1.2 Dynamically-generated asymmetric key 32
3.4.1.3 Static symmetric key . 33
3.4.1.4 Dynamically generated symmetric key 36
3.4.1.5 Using standard encryption algorithms embedded within . . 39
3.4.1.6 Derivation from password string 40
3.4.1.7 Deploying a network key . 42

3.4.2 Experimental results . 43
3.4.3 Pseudo code of ransomware deploying hybrid cryptosystem in Win-

dows context . 47
3.5 Key-management-based taxonomy for ransomware 49

3.5.1 Category 1 . 50
3.5.2 Category 2 . 51
3.5.3 Category 3 . 52
3.5.4 Category 4 . 53
3.5.5 Category 5 . 53
3.5.6 Category 6 . 54
3.5.7 Classification Results . 55

3.6 Novel characteristics observed in modern ransomware 59
3.6.1 Bundled cryptojacking routines . 60
3.6.2 Deploying elliptic curve cryptography 60
3.6.3 Explicit destruction of backups . 60
3.6.4 Dropping spyware . 60
3.6.5 Expanding to multiple attack vectors 61

3.7 Summary . 61

CHAPTER 4 CONSTRAINTS ON MODERN RANSOMWARE 63
4.1 Introduction . 63
4.2 Identifying the kill chain . 65
4.3 Proof of constraints . 66
4.4 Empirical evidence of constraints observed in ransomware 71

4.4.1 Initial entry and execution . 71
4.4.2 Exclusive knowledge of the random integer 72

4.4.2.1 RSA-based approach in ransomware 73
4.4.2.2 ECIES-based approach in ransomware 73

4.4.3 Exclusive knowledge of the encryption key 74
4.4.4 File access and modification . 75
4.4.5 Denial of access to critical data . 76
4.4.6 Functional payment route . 76

4.5 Experimental results . 79
4.6 Summary . 82

CHAPTER 5 STATIC AND DYNAMIC ANALYSIS 85
5.1 Introduction . 85
5.2 Static dissection of ransomware . 86

5.2.1 Delivery and preparation phase . 86

vi

5.2.2 Key generation phase . 87
5.2.3 File enumeration and encryption . 91
5.2.4 Post-encryption phase . 92
5.2.5 Experimental results . 95

5.3 Evaluating dynamic API calls in ransomware 96
5.4 Ransomware’s dependence on API calls . 97

5.4.1 Process-oriented calls (POC) . 99
5.4.2 String-oriented calls (SOC) . 100
5.4.3 File-oriented calls (FOC) . 100
5.4.4 Crypt-oriented calls (COC) . 100

5.5 Extracting relevant API calls from ransomware 101
5.5.1 Experimental results . 102

5.6 Summary . 106

CHAPTER 6 USING MEMORY FORENSICS FOR KEY EXTRACTION 107
6.1 Introduction . 107
6.2 Background . 109

6.2.1 Attack vectors . 109
6.2.2 Encryption models . 109
6.2.3 Key generation . 110
6.2.4 Key persistence . 111
6.2.5 Key deletion . 112

6.3 Design . 114
6.3.1 Filesystem monitoring . 115
6.3.2 Key extraction from memory . 116
6.3.3 Key vault . 117

6.4 Implementation . 117
6.5 Evaluation . 119

6.5.1 True positives . 123
6.5.1.1 Successful extractions . 123
6.5.1.2 Failed extractions . 124

6.5.2 False positives . 124
6.5.3 Impact on Benign Processes . 125

6.6 Case study: LockCrypt and WannaCry . 125
6.7 Discussion and Limitations . 126

6.7.1 Improving the efficiency of key extraction 128
6.7.2 Countermeasures against pickpocket 130

6.8 Summary . 130

CHAPTER 7 EXPECTED FUTURE TRENDS IN RANSOMWARE 132
7.1 Introduction . 132
7.2 Preparing smartcities for ransomware attacks 133

7.2.1 Tiers of ransomware attacks in smart cities 133
7.2.2 Ransomware risk equation . 134
7.2.3 NIST Cybersecurity framework . 136

vii

7.2.4 Experimental results . 137
7.3 Summary . 143
7.4 Ransomware targeting automobiles . 144

7.4.1 Automobile versus traditional IT security 146
7.4.2 Rethinking ransomware . 148

7.4.2.1 Attack vectors . 149
7.4.2.2 Attack focus . 150

7.4.3 Experimental results . 151
7.4.3.1 Discovering attack vectors 153
7.4.3.2 Traditional ransomware versus vehicular ransomware 154
7.4.3.3 Observed attack vectors . 156
7.4.3.4 Denial of data . 157
7.4.3.5 Denial of service . 158

7.5 Summary . 158

CHAPTER 8 CONCLUSION . 161

CHAPTER 9 FUTURE WORK . 163

APPENDICES . 165
APPENDIX A ALGORITHM OF CLASS A RANSOMWARE 166
APPENDIX B ALGORITHM OF CLASS B RANSOMWARE 167
APPENDIX C PSEUDO CODE OF HYBRID ENCRYPTION IN THE CON-

TEXT OF WINDOWS CRYPTOAPI 168

BIBLIOGRAPHY . 169

viii

LIST OF TABLES

Table 2.1: Comparison of proposed solutions against ransomware 15

Table 3.1: Summary of key generation strategies in ransomware 44

Table 3.1: (cont’d) . 45

Table 3.2: Key generation strategies observed in infamous ransomware 48

Table 3.2: (cont’d) . 49

Table 3.3: Ransomware classification . 55

Table 3.3: (cont’d) . 56

Table 3.3: (cont’d) . 57

Table 4.1: Kill chain observed in potent ransomware 64

Table 4.1: (cont’d) . 65

Table 4.2: Proposed solutions in light of constraints on ransomware 79

Table 4.2: (cont’d) . 80

Table 5.1: .NET ransomware samples studied . 95

Table 5.2: API calls extracted from real-world ransomware 104

Table 6.1: Extracting keys from modern ransomware 121

Table 7.1: Risk factors inviting malware in smart city infrastructure 135

Table 7.2: Empirical evidence of malware attacking smart city infrastructure 139

Table 7.3: Differences in automobile and traditional IT security 147

ix

LIST OF FIGURES

Figure 2.1: Locky ransomware searching for network backups 6

Figure 2.2: SamSam ransomware deleting shadow volume copies on host 7

Figure 3.1: Basic hybrid encryption model in ransomware 21

Figure 3.2: Single encryption model in ransomware 27

Figure 3.3: Encryption with embedded public key 33

Figure 3.4: Encryption with victim-specific public key 34

Figure 3.5: Hybrid key generation in NotPetya . 38

Figure 3.6: Random password string generation observed in a decompiled .NET ran-
somware . 42

Figure 3.7: A timeline of key generation strategies in ransomware 47

Figure 3.8: Key points in ransomware categories . 51

Figure 3.9: Ransomware infections over the years. 58

Figure 4.1: ECIES scheme in modern ransomware 74

Figure 4.2: Disassembly of modern ransomware . 78

Figure 4.3: Ransomware life cycle and identified constraints. 84

Figure 5.1: Key generation in AdamLocker . 88

Figure 5.2: Password string, key, and IV in AdamLocker 88

Figure 5.3: Key generation in WhiteRabbit . 88

Figure 5.4: Key generation in Alphalocker . 89

Figure 5.5: Key generation in Alphabet . 90

Figure 5.6: Encryption of AES key with an RSA public key in Alphabet 91

x

Figure 5.7: File encryption in Alphabet . 92

Figure 5.8: Jigsaw communicating with its CC server 93

Figure 5.9: Geographic location lookup in BlackRuby 94

Figure 5.10: A mining routine ships embedded within BlackRuby 94

Figure 5.11: Generalized flow of execution in .NET ransomware 96

Figure 5.12: CSPs in Windows CryptoAPI . 98

Figure 5.13: Visualization of API calls made by WannaCry 99

Figure 6.1: Symmetric key schedule in memory. 112

Figure 6.2: Cryptographic implementation of a Class B, Category 6 ransomware. . . 113

Figure 6.3: Structure of an RSA private key in memory. 116

Figure 6.4: pickpocket system design. 118

Figure 6.5: Process execution times with and without key extraction. 119

Figure 6.6: Files decrypted with the extracted private key. 127

Figure 6.7: Key exposure durations in memory for languages. 128

Figure 7.1: Defense strategy against ransomware for a smart city. 137

Figure 7.2: Ransomware attacks on cities by sector. 138

Figure 7.3: Popular search category ‘Industrial Control Systems’ on Shodan. 143

Figure 7.4: Attacker’s view of the automobile platform. 149

Figure 7.5: Experimental setup for evaluating the risk of ransomware in automobiles 152

Figure 7.6: Ports open on the QNX box. 153

Figure 7.7: GDB allows remote code execution via QCONN. 154

Figure 7.8: Denial of service realized with a fork bomb. 160

xi

LIST OF ALGORITHMS

6.1 Search for AES key schedule . 119

A.1 Category 6, Class A ransomware . 166

B.1 Category 6, Class B ransomware . 167

xii

CHAPTER 1

INTRODUCTION

The menace of ransomware continues to threaten modern computing systems causing bil-

lions of dollars in damage and reaping millions for the perpetrators [1]. Cryptographic

ransomware constitute the most virulent subset of malicious software as these ransomware

perform unauthorized encryption of victim’s data and demand a ransom in exchange for the

decryption key(s). The ease of ransomware implementation and deployment, the strength of

standard cryptographic algorithms, and the general unavailability of data backups, makes

data recovery following a ransomware attack an especially challenging problem. In a novel

solution to this issue, we recognize and highlight the prominence of key management in the

ransomware operation and present methodologies to acquire the encryption secrets that the

ransomware must protect in order to succeed in extracting the ransom.

Ransomware are causing widespread mayhem by attacking individuals and organizations.

In fact, ransomware have been rated as the top threat to security [2] and an integral part

of the underground cyber economy due to their persistent nature and widespread impact.

With most research efforts focused on the prevention and detection phases, recovery still

remains a major issue following a ransomware attack. This work focuses on the aftermath

of a ransomware infection, that is, we assume all preventative measures have failed and the

infection is operating on the host.

Our solution builds on the fundamental truth that the most virulent crypto-ransomware

encrypt files on the host which is a white-box to the user. Conventional implementations

of encryption algorithms are highly susceptible to attacks when the encryption occurs in a

hostile environment. This weakness occurs because these algorithms are designed to protect

data post-encryption and hence there are no attempts to conceal the secrets that are exposed

during the encryption process on the host. This realization allows us to extract cryptographic

secrets, such as keys, from memory, and break the chain of fundamental constraints on

1

modern crypto-ransomware [3]. These secrets (keys) facilitate file recovery.

The implementation of pickpocket is built upon knowledge derived from the areas of ap-

plied cryptography, memory forensics, and reverse engineering and as such presented multiple

challenges. The primary technical challenge we faced during implementation was combating

the volatility of system memory. The window for extraction of a ransomware’s cryptographic

secrets can be small depending on the ransomware. For instance, there is a larger window

for key extraction in ransomware that deploy the same key for encryption of multiple files

on host. However, this window can shrink significantly if the ransomware is deploying one

encryption key per file and securely wiping keys from memory following file encryption. We

mitigated this issue in two ways: first, by recognizing that we do not need to recover every

symmetric file encryption key if we can recover the asymmetric key that protects these keys

as detailed in Section 6.6, and second, by exploiting data locality in memory as discussed in

Section 6.7. We validated this hypothesis by recovering files encrypted by several real-world

ransomware belonging to different families.

We successfully recovered keys from all ransomware that we tested. In most instances we

successfully decrypted all files, but with a few ransomware, very small files were encrypted

too quickly for our in-memory attack to succeed. Our worst case on real ransomware still

permitted recovery of ≈92% of the encrypted files. Our results show that it is feasible to

nullify the impact of modern cryptographic ransomware by acquiring keys from memory to

enable file recovery. Our solution provides a fail-safe when all preventative measures and

backups have failed.

1.1 Thesis statement

The thesis of this research is that the most severe form of Category 6 ransomware can be

debilitated using advanced memory forensics to transparently recover cryptographic secrets

during the process of unauthorized encryption. This is made possible by recognizing that

conventional implementations of encryption algorithms are highly vulnerable to side-channel

2

attacks on an adversarial system. Since ransomware operates in an adversarial environment

that is a whitebox to the victim, it becomes feasible to extract cryptographic material ex-

posed by the ransomware process. This extraction occurs transparent to the process and the

system user and does not cause any noticeable performance degradation. Furthermore, it is

possible to enhance the performance of this search for the ephemeral cryptographic material

by utilizing knowledge of spatial locality. Ultimately, this methodology becomes a viable

response and recovery strategy against cryptographic malware.

1.2 Contributions

This research provides the following original contributions:

• Analyzing the evolution of key management in ransomware.

• Introducing a classification system that groups ransomware according to the potency

of their encryption model (Figure 3.8).

• Classifying various real-world ransomware samples using our proposed classification

system as shown in Table 3.3.

• Presenting the first systematic study of key usage in modern ransomware that spans

key generation, key deletion, and key protection (Section 3.4).

• Highlighting novel characteristics observed in modern ransomware (Section 3.6).

• Providing a comprehensive study of cryptographic operations performed by modern

ransomware.

• Proposing and proving fundamental constraints that constitute the ransomware kill

chain (Chapter 4).

• Reviewing existing solutions against ransomware in light of the proposed constraints

(Section 2.3).

• Presenting static dissection of various ransomware families in order to highlight the

underlying functionality and dependencies (Section 5.4).

• Detailing API calls in real-world ransomware.

3

• Classifying the 4 major classes of API calls observed in ransomware that can be used

for profiling (Section 5.4).

• Mapping of API call classes to the constraints in the ransomware kill chain that these

calls are meant to satisfy (Section 5.4).

• Presenting the visualization of API call logs derived from different families of real-world

ransomware (Figure 5.13).

• Proposing a ransomware recovery approach based on real-time key extraction from

system memory and identifying the time periods for which a key is exposed in memory

for multiple programming languages (Chapter 6).

• Implementing our approach by creating a key extraction utility and testing it against

10 families of real-world ransomware (Section 6.3). We further validate our results by

performing actual decryption of files encrypted by these infamous ransomware (Sec-

tion 6.4).

• Adding a significant component towards a defense-in-depth approach to combating

ransomware.

• Recognizing alternative attack tiers that ransomware operators will seek to deploy in

the context of Internet-of-Things (IoT) infrastructure (Section 7.2).

• Identification of the three primary elements that govern the motivation of threat ac-

tors in targeting a smart city component and use this knowledge to formulate the

Ransomware Risk equation (Section 7.2.2).

• Presenting a study of attack vectors and attack focus pertaining to 20 malware types

that attacked smart cities in recent years (Table 7.1).

• Practical risk analysis of ransomware targeting automobiles (Section 7.4).

4

CHAPTER 2

BACKGROUND

Ransomware have been a major threat to systems security for over a decade and have matured

to implement sophisticated targeted attacks against organizations. Consequently, several

solutions have been proposed against this form of malware with the ultimate objective of

protecting user’s data against the unavailability attack affected by ransomware. In this

chapter, we organize and evaluate these existing solutions against ransomware.

2.1 Introduction

Existing solutions must be objectively analysed in order to evaluate their efficacy in

providing a complete and practical solution against novel forms of ransomware. For instance,

signature-based-detection employed in antivirus software offer the ultimate protection by

recognizing ransomware statically (before execution), however are ineffective against novel

ransomware. In the next sections, we structure and objectively analyse the existing solutions

based on a variety of defined criteria to comprehend their true potential. Note that the

appropriateness of a particular solution will also depend on the environment in which it is

being deployed.

2.2 The state-of-the-art in existing solutions

A variety of solutions have been proposed as countermeasures against cryptoviral extor-

tions and can be classified as follows:

1. Backup solutions

2. Static-signature-based solutions

3. Dynamic-behavior-based solutions

4. User-training-oriented solutions

5. Cryptography-oriented solutions

5

Figure 2.1: Locky ransomware searching for network backups

6. Vulnerability management solutions

Next, we discuss each of these existing solutions against ransomware in brief.

2.2.1 Backup solutions

Backups are proposed as the ultimate solution against all cryptoviral infections. Theoret-

ically, they do work since ransomware are effectively executing a denial-of-control attack

against victim’s resources. By making the data unavailable to the victim, ransomware oper-

ators have the required leverage to demand the ransom. Thus when backups are available,

the victim can simply wipe the machine clean, reinstall the host OS, and load the data back

on the system. Consequently, the ransomware threat can be reduced to a mere annoyance.

However, a major issue with this approach is that backups are often unavailable, incom-

plete, and infrequent. Maintaining complete and regularly updated copies of data offsite is

a complex and expensive process and ransomware developers comprehend and exploit this

postulate. In addition, we have observed modern ransomware explicitly seeking to encrypt

backups available on the internal network (Figure 2.1) and the cloud, and execute quiet

commands to destroy shadow files on the host to deny the victim any opportunity to recover

the data (Figure 2.2). Shadow files are maintained by default on a Windows host to provide

restoration capabilities in the event of failures [4].

6

Figure 2.2: SamSam ransomware deleting shadow volume copies on host

2.2.2 Static-signature-based solutions

Similar to other malware, ransomware can be identified using static signatures created for

the binaries that are integrated into virus definition files used by antivirus solutions. This

is a tried-and-tested method of detecting known threats. However, the primary issue with

this approach is the underlying assumption for detection: a ransomware must have been

previously observed and analyzed to create a signature before it can be detected and neu-

tralized. This implies that novel variants of ransomware will escape detecting and hence

the system will be consistently ineffective against novel families of ransomware. Further-

more, malware developers in general are known to deploy packers to obfuscate malware in

order to change its signatures and consequently avoid any signature-based detection. Ulti-

mately, static signature-based detection methodologies are insufficient against modern novel

ransomware threats and should only be deployed as part of a layered defense approach.

2.2.3 Dynamic-behavior-based solutions

Cryptographic ransomware’s primary objective is to encrypt user’s data using a unique secret

held for ransom by the attacker. As such, ransomware performs a series of expected tasks on

the host and this constitutes a partially unique dynamic signature that reflects ransomware

7

behavior during its execution. This behavior is partially unique since legitimate applications

can behave similarly on the host. The signature thus realized will be dynamic since it was

obtained as a result of discovering common patterns created by the ransomware process

during execution on the host. While dynamic-behavior-based solutions seem promising on

the surface, their primary weakness is the large number of false positives generated. Appli-

cations existing in real-world environment will create dynamic footprints that are similar to

ransomware behavior. For instance, applications such as archiving utilities and legitimate

encryption software will sequentially increase the entropy of files in directories similar to a

ransomware process. Therefore, practical installation of these solutions outside of laboratory

conditions is challenging. Some notable approaches within this category are detailed below:

2.2.3.1 File-access-patterns-based approaches

Since cryptographic ransomware ransom files on the host, these malware change the state

of the existing files to an encrypted state. Encryption is high entropy operation in that

encrypted data is in a higher state of randomness than the original data. Solutions have been

proposed to capitalize on these known file access patterns that cryptographic ransomware is

expected to create. However, sequential mass file modification that modifies data to a high

state of entropy is not unique to ransomware leading to high amount of false positives in

most practical implementations.

2.2.3.2 Honeyfile-based approaches

Honeyfile-based approaches for intrusion detection was first described by Yuill et al. [5] where

alarms were set off when these bait files were accessed on a system. This concept was based on

the original work by Stoll [6] with regards to their investigation of certain German hackers.

More recently, Hernández et al. discussed using the honeyfile-based detection approach

against ransomware in the form of a tool called “R-Locker” [7] (detailed in Section 2.3).

Similar honeypot folder based approach is discussed by Chris Moore [8].

8

There are several limitations to deploying honeyfiles and honeypot folders against ran-

somware.

• Carefully crafted ransomware attacks will seek to avoid the honeyfiles. For ransomware

to hold leverage over the victim, it only needs to encrypt data that is crucial to the

victim. A ransomware could therefore get selective in what it encrypts and avoid the

honeyfiles altogether depending how and where the honeyfiles are placed on the host.

• On multi-host systems, there is strong possibility of a high number of false alarms due

to accidental access or manipulation of honeyfiles. This requires that users either be

made aware of their existence and consciously avoid them or honeyfiles be concealed

enough to not be manipulated over regular system user but still be able to detect

ransomware intrusions. This delicate balance is hard to reach.

• Some honeyfile based approaches conceal “invisible” folders containing honeyfiles in

every directory on the host system. This creates unnecessary clutter on the host which

the user might want to avoid.

• Honeyfile systems are known to cause problems in environments which require regular

searching and indexing [5]. This will clearly cause a lot of false positives which will

eventually lead to alert fatigue.

2.2.3.3 Machine-learning-based approaches

These approaches depend on determining if a processes’ behavior resembles that of a ran-

somware instance based on certain criteria. A feature vector used to train such a machine

learning model could be a combination of several behavioral characteristics, the presence or

absence of which could convey confidence in the program being a ransomware. For example,

the feature vector could consist of dimensions such as file access patterns, sequential file

modifications, types of files being modified (system files versus user data files) etc.

The main issue with these approaches is that there are a significant amount of false

positives in real-world environment as discussed before. There are legitimate applications

9

that display file access patterns and process characteristics similar to that of ransomware.

In such cases, legitimate applications are being flagged as ransomware by the monitoring

application causing user alert fatigue. Moreover, we are observing instances of ransomware

designed to evade machine learning solutions. For instance, Cerber ransomware’s packaging

and loading mechanism is designed to cause issues with machine learning approaches [9].

2.2.4 User-training-oriented solutions

Traditionally, ransomware attacks, much like other malware attacks, have focused on social

engineering tactics such as phishing to get unsuspecting users to download and execute

malicious content. For example, ransomware distributors are known to lure victims by using

phishing emails with attachments such as “invoice.docx.exe” or “resume.txt.js”. Hence, user

awareness and training plays a critical role in ensuring humans involved in the security chain

are capable of identifying common social engineering tactics used by attackers.

The main issue with relying on user awareness and training is that although it reduces

the probability of a social engineering attack succeeding, it does not eliminate it. User aware-

ness and training against social engineering attacks is best used as a complementary strategy

that adds to other defenses [10] [11]. More importantly, ransomware, such as WannaCry and

NotPetya, exploit known vulnerabilities and propagate similar to a worm with no human

involvement which renders such solutions completely ineffective. Targeted ransomware at-

tacks have also deployed other, more manual, tactics to infiltrate host systems including

bruteforcing Remote Desktop Protocol (RDP).

2.2.5 Vulnerability management solutions

Regular patching of systems helps administrators in blocking malware that rely on exploit-

ing known vulnerabilities to gain initial entry. Recently, ransomware such as WannaCry and

Petya have been in news for exploiting a known SMB vulnerability [12] using the Eter-

nalBlue exploit. With effective vulnerability management, such ransomware attacks can be

10

avoided. Regularly installing updates and patches against known security issues augments

other security layers but is ultimately not a definitive solution for ransomware since it serves

to protect against only one of several attack vectors deployed by modern ransomware.

2.2.6 Cryptography-oriented solutions

Since encryption activities are central to the operation of cryptographic ransomware, these

approaches largely target deficiencies in the implemented cryptosystem within the ran-

somware. For instance, the ‘nomoreransom’ project [13] which represents a coalition of

security entities collectively creating ‘decryptors’ for ransomware with flawed cryptosys-

tems. For instance, a ransomware with a statically embedded symmetric key within the

binary will reveal the symmetric key during reverse engineering. The primary issue with

this approach is that as Ransomware-as-a-Service (RaaS) matures and ransomware improve,

these implementation flaws do not exist in virulent ransomware.

Recently, dynamic hooking into CryptoAPI key generation has been suggested as a re-

active defense against ransomware. Other than backups, it is the only defense that is able

to restore control over data after a ransomware has successfully encrypted files on the host.

The primary idea behind the proposed key escrow systems is to backup all symmetric keys

generated on the host. Escrowing the decryption keys in this manner permits file recovery at

a later stage [14]. However, there are several issues with the suggested key escrow approach.

The most significant issue is the heavy assumption that ransomware will be using a moni-

tored API for key generation. Ransomware do not necessarily use the Windows CryptoAPI

for key generation. Further, authors suggested creating signatures for other APIs that could

be used for key generation. Since ransomware are written in a wide variety of languages with

each language offering multiple API choices for cryptographic tasks, this approach is unlikely

to succeed. In conclusion, hooking key generation routines is not a definitive solution against

modern ransomware.

11

2.3 Comparative analysis of existing solutions

We found a small number of discussions on key management in ransomware scattered

across a few papers. In many papers, specific key management techniques were discussed

indirectly as part of behavior analysis while dissecting a particular ransomware variant.

Young and Yung [15] first discussed key management approaches such as public key encryp-

tion and key splitting among peers (discussed in detail later). Since then, ransomware have

adopted more resistant key management models. Kharraz et al. [16] focus on all aspects of

ransomware of which key generation and management techniques are a part—whereas our

entire emphasis is on that. They consider a wide variety of variants, including GPCode, Cryp-

toWall and CryptoLocker, across 15 ransomware families. Cabaj et al. [17] discuss network

activity of Cryptowall. Further insights into key derivation by ransomware on a Windows

hosts are provided by Palisse et al. [18], while Puodzius [19] discusses how cryptography

was pivotal in shaping ransomware using specific case studies. Young [20] demonstrated the

use of Microsoft’s CryptoAPI in cryptoviral extortions. Gazet [21] presents a comparative

analysis of several ransomware variants as seen prior to 2008.

Young and Yung [15] first highlighted the information extortion attack that would power

crypto-malware and enable extraction of ransom. They further recognized the potential mis-

use of Microsoft’s CryptoAPI to perform unauthorized encryption [22]. Ransomware have

since established their reputation as a severe threat to security for over a decade. During this

time, several solutions have been proposed against this form of malware. Scaife et al. [23]

used a set of ransomware indicators and monitored the file system for changes to detect signs

of ransomware activity in real-time. The primary issue with this approach is that the indica-

tors are not necessarily able to differentiate between ransomware activity and activity from

benign programs with similar file modification patterns, resulting in an unacceptable rate of

false positives. For instance, file compression utilities and legitimate user-initiated encryp-

tion software, such as VeraCrypt, will lead to false positives and cause alert fatigue for the

user. Continella et al. [24] similarly relied on features that detect ransomware-like behavior

12

and trigger a copy-on-write mechanism in ShieldFS. The implemented system depends heav-

ily on its detection abilities and false positives will cause unnecessary copy-on-write. The

authors do not clarify how ShieldFS differentiates between ransomware and benign soft-

ware that create similar I/O patterns. Moreover, collecting normal usage I/O datasets and

training an accurate classifier based on the collected dataset will become infeasible in certain

environments due to computational overhead. Kharraz et al. [25] introduced Redemption

that also detects ransomware-like behavior based on a feature set that feeds a “Malice Score

Calculation” function. The authors acknowledge the presence of the inevitable false positives

arising from applications such as AXCrypt and resort to manual confirmation from the user

in such cases. Such manual input is impractical in most environments where an encryption

or archiving utility is regularly used. In another work, Kharraz et al. [26] introduced UN-

VEIL to detect ransomware-like behavior based on file modifications (I/O requests). Here,

the authors calculate Shannon entropy for every file operation since high entropy implies

an encryption operation. The authors acknowledge the possibility of false positives arising

when the original file is deleted because of a benign application after encryption or compres-

sion. The assumption that benign applications generate I/O requests for a single file at a

time will generate a high amount of false positives in practical settings. Additionally, false

negatives will be observed for certain ransomware depending on their I/O activity as alluded

to by the authors. Kolodenker et al. [14] introduced PayBreak which monitors the use of

cryptographic APIs and escrows all generated keys by dynamic hooking. However, the pro-

posed mechanism depends heavily on the assumption that ransomware will use a monitored

cryptographic API. Hence, the system is trivially beaten by avoiding use of the monitored

API by a ransomware bringing in a modified version of a cryptographic API for key genera-

tion. Gómez-Hernández et al. presented R-Locker which set honeyfile-based traps over the

system to detect modifications by ransomware. However, the authors acknowledge that poor

distribution of these traps can result in false negatives. In addition, these traps proliferating

over the system’s file structure quickly gets intrusive and confusing for the system user [27].

13

Finally, application whitelisting has been proposed against ransomware such that only a

finite set of trusted, legitimate applications will be permitted to modify files on the system.

Microsoft has implemented this approach in the form of controlled folder access [28] as part

of Windows Defender. However, a fundamental issue with this approach is that modern

ransomware, similar to parasitic malware [29], will masquerade as legitimate applications

and inject themselves into trusted, running processes, thus subverting the applied controlled

folder access.

Ultimately, all existing solutions can be evaluated in terms of the constraints on the

ransomware [3] that are violated and the phase of the NIST Cyber Security Framework

(CSF) [30] that the solution operates within. The primary constraints on ransomware are

identified as: {C1, C2, C3, C4, C5, C6, C7, C8} and are detailed in Chapter 4. Briefly, con-

straints Cn ∈ S in the set S that govern all ransomware operations are as follows:

• C1. Infiltrating the host system

• C2. Gaining execution privileges

• C3. Establishing a unique cryptographic secret

• C4. Enumerating files on the file system

• C5. Modifying files in view of the encryption scheme

• C6. Removing access to original files

• C7. Protecting the encryption secret until ransom is paid

• C8. Maintaining a ransom payment channel

The NIST CSF (detailed in Section 7.2.3) recognizes the five phases of controls as: 1)

identify, 2) protect, 3) detect, 4) respond, and 5) recover. Table 2.1 summarizes these

parameters for existing solutions against ransomware. We observe that the majority of the

existing solutions are understandably focused on the prevention phase of ransomware security

controls with PayBreak [14] being the only existing solution that caters to the recovery phase.

Most solutions such as Redemption, R-Locker, UNVEIL, and Microsoft’s Controlled Folder

Access (CFA) focus on the behavioral patterns of ransomware, thus utilizing constraint

14

{C4, C5}—a ransomware must access and modify files to encrypt them. The severity of

modern ransomware attacks requires that a defense-in-depth strategy be deployed which

places equal importance on recovery following a ransomware strike.

Table 2.1: Comparison of proposed solutions against ransomware

Existing Solutions NIST Functions Constraint

R-Locker [31] Detect, Respond C5

PayBreak [14] Detect, Recover C7

ShieldFS [24] Detect, Respond C5, C5

UNVEIL [26] Detect, Respond C4

CryptoLock [23] Detect, Respond C5

Redemption [25] Detect, Respond C5

Microsoft CFA Protect C4

To the best of our knowledge, there is no previous work on comprehensively classify-

ing ransomware samples or using the pseudo random number generator (PRNG) against

ransomware that derive the symmetric encryption key on the host. In general, the term

‘scareware’ is used while referring to malicious software that prey upon victim’s fear of los-

ing data or private information. Ransomware is a special type of scareware [16] that encrypts

user data and demands payment. Broadly speaking, two main classes of ransomware have

been discussed [32]: 1) locker ransomware, that focus on locking users out of the host ma-

chine, and 2) crypto ransomware, that focus on denying users access to their files or data on

the host machine.

2.4 Summary

Most research on malware focuses on the attack vectors that the malware uses to infect a

machine in order to devise prevention strategies. Our solution takes an alternative approach

which targets cryptographic operations of malware after it has successfully evaded all pre-

15

vention and detection strategies that exist on the host. Since ransomware focuses on altering

the state of data (file encryption), we have focused on the management of encryption keys

– a unique approach that is largely overlooked. With an exception of backups (which are

currently the only true solution against ransomware) and key escrow, all of these approaches

focus on preventing ransomware from encrypting data. That is, these are preventative ap-

proaches which depend on the assumption that the ransomware variant is detected and

stopped before any encryption takes place. Naturally, this is a big assumption, especially

when there exist hundreds of ransomware families and variants.

16

CHAPTER 3

KEY MANAGEMENT IN RANSOMWARE

Ransomware encrypts user files making management of the encryption key(s) critical to

its success. Developing a better understanding of key management in ransomware is a

necessary prerequisite to finding weaknesses that can be exploited for defensive purposes.

We describe the evolution of key management as ransomware has matured and examine key

management in 25 samples. Based on that analysis, we introduce a ransomware taxonomy

that is analogous to hurricane ratings: a Category 5 ransomware is more virulent from a

cryptographic standpoint than a Category 3. In our analysis of samples in light of the

taxonomy, we observed that poor cryptographic models appear as recently as 2018.

After studying ransomware belonging to several ransomware families over the span of

2005 to 2020, we were able to classify key management models deployed in ransomware

variants. Key management is crucial to the operation of a cryptoviral extortion campaign.

A unique infection-specific key has to be created by the ransomware for each victim, lest

victims share decryption keys among each other and neutralize the entire campaign. This

unique key needs to be protected as it is this cryptographic secret that provides the required

leverage to the ransomware operator. Key management plays a central role in generating,

deploying, concealing and securely wiping this key that is ultimately held for ransom.

3.1 Introduction

In this chapter, we present key management and cryptography models that are deployed

in these ransomware with the objective of providing a deeper comprehension of potential

flaws in cryptoviral infections. Our goal is to show how key management in cryptoviral

extortions has evolved over time. Exploring and discovering vulnerabilities in key manage-

ment in these ransomware helps to mitigate the threat. Certainly ‘prevention is better than

a cure’ holds for ransomware, but we assume that the ransomware has successfully com-

17

promised the victim’s computer. We explore options from this point forward to combat the

ransomware infection other than restoring from backups. In theory, regular backups facilitate

easy restoration. However, the sad truth is that backups are not always available, are partial,

or are unacceptably outdated due to infrequent sync ups. In some cases, ransomware are

known to explicitly search for backups over the network and encrypt any discovered backups

as well [33]. Network shares are usually mapped to drive letters on host systems and discov-

erable by the ransomware. The trade-off between security and backup cost in organizations

is favoring ransomware developers for now. So a better defense is to exploit weaknesses in

design and implementation of cryptographic models deployed by ransomware which in turn

warrants the need to comprehend the evolution of key management in cryptoviral extortions.

Note that terms such as ‘cryptoviral extortion’ or ‘cryptovirus’ can be used interchange-

ably with ‘ransomware’ throughout this document. Also, we do not recommend paying the

ransom since there is no guarantee of file recovery even after payment is successfully made

according to terms [34] and because payment invigorates the ransomware business model by

making it profitable. Furthermore, note that the term ‘decryption essentials’ is used to refer

to any knowledge that is required to decrypt victim’s encrypted files. For instance, this could

refer to either a symmetric AES key or the knowledge of how a custom encryption algorithm

functions or both a key and an algorithm. Usually cryptovirii deploy well known algorithms

(e.g. RSA or AES) and some form of key is the secret needed for data decryption.

The key management models that we have uncovered after a detailed study of real-world

ransomware variants are discussed below. However, before we dive into the specifics of

these models deployed in ransomware, we provide a refresher of symmetric and asymmetric

cryptography.

3.2 Cryptography basics revisited

This section serves as a refresher towards cryptography types that are popularly used by

modern ransomware. Broadly, cryptographic algorithms are divided into the following two

18

types:

3.2.1 Symmetric key

As the name suggests, symmetric key cryptography uses the same key for encryption and

decryption. For example, Advanced Encryption Standard (AES) [35] is a symmetric cipher

we have found to be deployed by many ransomware variants. A clear advantage that sym-

metric key encryption offers cryptovirii is that encryption is a lot faster than in asymmetric

algorithms. Like any other crime, the goal is to quickly intimidate the victim and extort

money before any interruptions occur so speed is of the essence. For example, an antivirus

program may notice file access and modification patterns and quarantine the cryptovirus.

The more user data that has been encrypted before such quarantine, the more leverage the

cryptovirus has and hence the better the chances of getting the ransom. Therefore, sym-

metric key cryptography is enticing to ransomware developers. A disadvantage of symmetric

key cryptography, however, is that improper key management results in key disclosure. Ran-

somware needs to securely deploy the key for performing the encryption and then conceal

the key in a way that it is out of reach of the victim until payment is made.

3.2.2 Asymmetric key

Also known as public key cryptography, asymmetric key cryptography uses a mathematically-

related key pair, e.g. a public key for encryption and the paired private key for decryption

(or the reverse). The RSA algorithm is an asymmetric cipher popularly used by ransomware.

It is currently not feasible to decipher the encryption or recover the private key relying solely

on the public key and the algorithm. When implemented correctly, this approach offers more

flexibility to attackers and makes it impossible to reverse the encryption without knowledge

of attacker’s private key as shown later in this paper. However, a major disadvantage to

attackers is that asymmetric key encryption is slow and increases the size of the cryptogram

when compared to the corresponding plaintext. Thus, the encryption process is lengthy

19

and the encrypted data requires more storage space on the host. Increasing time and space

increases the probability of ransomware detection. For this reason, asymmetric encryption is

mainly deployed to securely encrypt a symmetric ‘session key’, after said session key has been

used by the ransomware to encrypt user data as explained in the hybrid approach below.

Elliptic Curve Diffie-Hellman (ECDH) asymmetric encryption is deployed by some of the

more recent variants, such as PetrWrap, in place of the more common RSA encryption. The

cryptographic model behind a cryptoviral infection based on ECDH typically operates similar

to RSA encryption except that the ransomware developer decides on a predefined elliptic

curve (e.g. secp192k1) needed to generate the keys on both sides. Encryption trends in

modern cryptoviral extortions have thus shifted from RC4 to RSA+AES to ECDH+AES [36].

An obvious question is: why use ECDH over RSA? Although ECDH has shorter key size

while providing comparable security to RSA and a slight performance boost, ECDH does

not offer any major cryptographic advantages over RSA. It is speculated by Kotov and

Rajpal [36] that ECDH is not as well scrutinized for security flaws and is consequently

better for marketing in the underground communities.

3.2.3 Hybrid of Symmetric and Asymmetric

Generally, we found that a hybrid of the two schemes are deployed by recent ransomware to

take advantage of the best of both types. User data is encrypted using a symmetric cipher

for speed, while the symmetric key used for the encryption is then encrypted using the public

key of the attacker. The public key may come embedded in the ransomware as shown in

Figure 3.1.

This basic hybrid (symmetric+asymmetric) key model works in the following steps:

1. Ransomware compromises host and commences execution.

2. Cryptographic APIs available on the host are used to generate a symmetric encryption

key such as an AES-256 key.

3. Ransomware encrypts this symmetric key with a hard-coded asymmetric key (e.g. RSA-

20

Figure 3.1: Basic hybrid encryption model in ransomware

2048) and communicates a copy of the now encrypted symmetric key to the attacker.

4. User data is encrypted using the symmetric key.

5. Ransomware securely destroys the symmetric key on the host machine, now making

the attacker the sole possessor of the decryption key.

6. A ransom note is displayed to the user while ransomware awaits payment.

There are variations where the encrypted key is securely stored on the host machine so the

only communication with the attacker is during the ransom payment.

3.3 Types of key management in ransomware

Key management in ransomware has gone through several changes during the years as

cryptovirii developers learn from past oversights. The result is an ever evolving cybercrime

operation that continues to be profitable as long as it is correctly implemented. In effect, all

cryptoviral infections follow these very elementary steps:

1. Infect host and commence execution.

21

2. Acquire encryption secret (key).

3. Encrypt user data.

4. Demand ransom.

The ‘encryption secret’ is usually a symmetric key. Protecting this secret is crucial for

the attacker to have leverage over the victim and this is where key management comes in.

Here we present the primary key management techniques as observed in several cryptoviral

extortion programs. We will discuss the following main types of key management in this

paper:

1. No key or no encryption

2. Decryption essentials in user domain

a) Decryption essentials on host machine

b) Decryption essentials distributed among peers

3. Decryption essentials in attacker domain

a) Decryption essentials on a command and control, C&C, server—single encryption

b) Decryption essentials on C&C server—hybrid encryption

• hybrid encryption model with multiple layers

3.3.1 No key or no encryption

Some scareware are used mainly to deceive people into believing their security is compro-

mised. They deploy scam tactics to frighten users into making hasty decisions while under

stress. It is beneficial for fake scareware to piggyback on the recent success of large-scale

ransomware infections and pose as functional ransomware. Being a fake, the software will

not actually encrypt files. Instead, it might simply obfuscate user data on the host or delete

it and display a ransom note asking for payment. The fake AnonPop “ransomware”, which

deleted user files and asked for $125 for “decryption” is an example. In reality, there is no

file restoration procedure in this fake scareware. However, because the files were not securely

deleted, they can easily be recovered. There is no reason to make a ransom payment. Since

22

there is no actual encryption, there is no key management. The motive behind such fake

ransomware is to make a quick buck without going through the actual acrobatics of perform-

ing secure file encryption, decryption and the relevant key management. It is a low-effort

operation for cybercriminals to pursue while authorities are busy working on actual, bigger

malware threats. Moreover, not performing encryption operations means that scareware

have a greater chance of slipping through heuristics-based detection procedures deployed by

antivirus solutions such as a trigger caused when a program demands access to CryptoAPI

in Windows.

Examples of ransomware that follow this model: AnonPop and original variants of Con-

soleCrypt and Nemucod and, more recently, certain WannaCry imitators such as

Aron WanaCrypt0r 2.0.

3.3.2 Decryption essentials in user domain

Certain ransomware strains have failed to protect decryption essentials such as the decryption

key from the user. Note that when saying ‘decryption essentials in user domain,’ we are

including cases where the “one key” that is essential for decryption can be discovered by

reverse engineering the ransomware code or analyzing a hidden file in the system or network

where the ransomware has “secretly” stored the key. As long as decryption essentials are

within a user’s reach, the cryptovirus variant fits this category.

3.3.2.1 Decryption essentials on host machine

If the decryption key can be gleaned from analysis of the host machine either during or

after the ransomware encryption process, then it fits this category. Use of a static hard-

coded key significantly weakens an encryption model. For example, a key hard-coded in the

JigSaw ransomware was recovered by reverse engineering the ransomware. The section of

de-obfuscated code that holds the AES key and initialization vector (IV) [37] is shown in

Listing 1. Note that the AES key binary data is encoded as base-64 digits which can be

23

decoded on the host using a standard method FromBase64String(). The result is an 8-bit

integer array that contains the AES key.

using(AesCryptoServiceProvider aesCryptoServiceProvider = new
AesCryptoServiceProvider()) {↪→

aesCryptoServiceProvider.Key =
Convert.FromBase64String(''OoIsAwwF23cICQoLDA00De=='');↪→

aesCryptoServiceProvider.IV = new byte[] {
0, 1, 0, 3, 5, 3, 0, 1, 0, 0, 2, 0, 6, 7, 6, 0 }; }

Listing 1: Key and IV embedded in the Jigsaw ransomware

This category also includes cases where a symmetric key is generated uniquely on the

infected host and then protected using the hard-coded public key available in the ransomware.

The attacker holds the private key corresponding to this public key at a remote location.

However, this is classified as ‘key on host machine’ since the key was ineffectively concealed

on the host machine, which enables easy key recovery by the victim. Since the symmetric

encryption key was generated within the user’s domain, it may be possible to access this key

without paying the ransom. At times, programming blunders in ransomware coding have

made such key retrieval fairly straightforward [38]. For example, CryptoDefense ransomware

never executed the crucial step—securely destroying the key on host. Thereafter, retrieving

the decryption key was as easy as looking in the right folder [38].

Examples of ransomware that follow this model: JigSaw, CryptoDefense, AIDS.

3.3.2.2 Decryption essentials distributed among peers

In this model, attackers attempt to obfuscate the decryption key by breaking it into parts,

potentially encrypting those parts, and distributing it among a peer group such as com-

promised hosts in an organizational network [15]. The clear advantage of this approach

for the attacker is that the key does not reside with one host making reverse engineering

more difficult. Furthermore, attackers rest easy knowing that encryption does not depend

24

on successful communication with a C&C server post-infection which can prove fatal for

the ransomware as explained later in this paper. There is a risk, however, that one of the

users restores their host machine from a backup and loses their part of the key, rendering it

impossible to decrypt the rest of the infected peers since the key cannot be reconstructed.

This is a serious concern for attackers since the overall success of a cryptoviral extortion

campaign depends on successful decryption upon payment—otherwise, future victims have

no motivation to pay. Ransomware authors now emphasize in the ransom notes that at-

tempted restoration will result in losing critical information needed for decryption and cause

loss of data for other nodes as discussed by Young and Yung [15].

Examples of ransomware that follow this model: (None seen so far).

3.3.3 Decryption essentials in attacker domain

This model covers all instances where the attacker has the only copy of decryption essentials.

In general, this model offers the tactical advantage to the attacker of safeguarding the key

with themselves. We describe two variants.

3.3.3.1 Decryption essentials on a C&C server: single encryption

Certain variants are known to deploy only public key cryptography in their encryption mod-

els. A ransomware following this model may have a hard-coded public key or acquire an

infection-specific public key in the following manner:

1. Upon initial infection, proceed to encrypt user files using the public key embedded

within (alternatively, acquire this public key via communication with a C&C server).

2. Display a ransom note to the victim.

3. Send private key for decryption after receiving payment.

Clearly, the model’s strength lies in its simplicity and the fact that the decryption key

never leaves the attacker until the ransom is paid. However, this model is weak for the

following reasons:

25

• Only one key pair exists, if the public key came hard-coded in the ransomware, so all

victims can be decrypted by the same private key. Hence, if one victim makes the

payment and obtains the private key to decrypt files, this user can share it with all

victims and neutralize the ransomware’s entire campaign.

• Asymmetric key encryption is slow when compared to symmetric key encryption and

increase file size.

CryptoLocker is a prime example of a single encryption approach that works in the

following steps:

1. Ransomware compromises the host system and sends a notification to a C&C server.

2. A C&C server acknowledges the client and requests an ID from the client.

3. Ransomware sends a unique ID derived from the compromised host and campaign ID

to a C&C server.

4. A C&C server uniquely generates an asymmetric key pair for that particular host and

sends the public key to the host.

5. Ransomware sends a final acknowledgment of having received the public key and closes

the connection.

6. Ransomware proceeds to encrypt user data using the acquired public key.

In this way CryptoLocker encrypts user data using a host-specific asymmetric public

key which prevents victims from sharing decryption keys as shown in Figure 3.2.

Depending on the particular ransomware strain, this communication between a C&C

server and a host machine may or may not be encrypted. Older variants of CryptoLocker

used custom encryption or obfuscation to secure this communication. However, newer vari-

ants are using standard schemes such as transport layer security (TLS). Using TLS hinders

any kind of network analysis so it provides ransomware with a layer of protection.

This model followed by CryptoLocker does not have any cryptographic flaws when im-

plemented correctly. Nevertheless, it is disappearing in the more modern variants of ran-

somware such as WannaCry. One cause is that asymmetric key encryption is slow. However,

26

Figure 3.2: Single encryption model in ransomware

the ultimate reason is the fundamental operational constraint: connection to a C&C server.

Encryption does not start until the ransomware has received the public key from the C&C

server. It is possible to block this communication by identifying a request being sent to a

potential C&C server. Network administrators maintain and share a list of such blacklisted

IP addresses where C&C servers are known to exist [39]. Over time, such crowd-sourced

lists of identified C&C servers grow and can be used to effectively set blocks at border fire-

walls. If the communication is not successful, the cryptoviral infection stays dormant and

the overall ransomware operation crumbles. CryptoDefense tried to fix this operational flaw

by generating keys on host machines by following these steps:

1. Ransomware compromises host system and sends a notification to C&C server.

2. C&C server acknowledges client and requests ID from client.

3. Ransomware uses cryptographic APIs on the host to generate an RSA-2048 key pair.

27

4. Ransomware proceeds to encrypt user files using the public key and transfers the private

key to the attacker.

5. Ransomware destroys private key on the host machine, making attacker the sole pos-

sessor of decryption key.

6. Ransomware displays a ransom note to user.

The clear advantage of this approach is that the ransomware is fully-independent in its

extortion operation in that it does not need to reach an external server to obtain the en-

cryption key after initial infection as it does in the case of CryptoLocker. Such independent

ransomware does not reach out to an external entity for an encryption key; rather it gener-

ates a key locally. However, CryptoDefense had a flaw in that it did not effectively remove

the private key from the host machine. Cerber on the other hand, implemented the model

correctly and has no known flaws.

There are several examples of ransomware that follow this model. zCrypt attempts to use

the public key to encrypt user data if the connection to a C&C server fails. Initial variants

of CryptoWall and CryptoLocker used a public key to encrypt files.

3.3.3.2 Decryption essentials on a C&C server: hybrid encryption

We previously described a hybrid encryption model. Here we present the case of ransomware

that deploys a slightly modified hybrid model.

Hybrid encryption with multiple layers: WannaCry gained particular attention because

its distribution did not require active user involvement such as clicking the wrong link.

It exploited an unpatched vulnerability on a host machine and propagated like a worm.

However, the encryption model differed little from earlier hybrid models. The following

steps detail the encryption procedure in a WannaCry infection.

1. Ransomware compromises a host machine and generates an infection-specific RSA key

pair, (Ks, Kp).

2. A public key hard-coded (KA) in the ransomware is then used to encrypt the private

28

key, Ks, from the key pair generated in step 1. Note that the attacker holds the private

key, KB , corresponding to this public key hard-coded in the ransomware.

3. Ransomware generates AES keys using a cryptographically-secure pseudorandom num-

ber generator (CSPRNG) [40] on the host to encrypt files (one AES key per file-to-be-

encrypted) and commences file encryption.

4. Ransomware encrypts all AES keys, S = {K1, K2, ...Kn}, using the infection-specific

public key, Kp, generated in step 1.

5. Delete all AES keys from memory so they cannot be recovered.

6. Ransomware displays ransom note.

WannaCry thus follows a hybrid encryption model with the added step of generating an

infection-specific asymmetric key pair on the host. Upon successful payment, the attacker

can use their unique private key to decrypt the infection-specific private key. This decrypted

private key can be used to decrypt AES keys that are then used to decrypt user files as

shown below.

{{Ks}KA
}

KB
= Ks (3.1)

{{S}Kp}Ks = S (3.2)

{{data}S}S = data (3.3)

One obvious advantage of this model is that it does not suffer from drawbacks of any of

the previous models. The advantages of this model are highlighted below:

• Encryption is fast since symmetric encryption (such as AES) is used to encrypt files.

• Communication with an external entity such as C&C server only happens at the time

of payment. This payment message contains the encrypted AES key(s) as well as the

encrypted private key(s).

• Attacker’s private key is never sent anywhere and is kept safe with the attacker.

29

Note that while the same AES key could be used to encrypt all files on an infected host,

attackers use different AES keys—one to encrypt each file, possibly due to these reasons:

• Ransomware developers are wary of the scenario where an antivirus’s heuristic de-

tection engine notices the ransomware mid-encryption and hibernates the machine to

extract a key from swap storage. If a different key is used to encrypt each file, all the

victim would be able to extract is the particular symmetric key being used to encrypt

one file. The victim can decrypt one file using this key but others are still held hostage.

In other words, such ransomware are doing contingency planning for the event where

the encryption operation is interrupted.

• Reusing key and IV pairs for encrypting different files in block ciphers leaves them

vulnerable to attacks and make it possible to recover plaintext from ciphertext without

knowledge of key [41].

3.4 Empirical study of key generation strategies in ransomware

Key generation lies at the heart of a ransomware’s cryptosystem [42]. The decryption

key(s) are held hostage. The data still resides with the victims, albeit in a modified state

(encrypted). The state of this data cannot be reversed until specific decryption secrets

(keys) are known. Hence, a systematic study of key generation techniques facilitates building

effective solutions against ransomware. However, existing solutions against ransomware are

built primarily on classifying behavioral characteristics such as I/O patterns.

In a large subset of modern ransomware, symmetric encryption is used to encrypt user

files due to its speed and efficiency in bulk data encryption [43]. Attackers must protect

the secrecy of this symmetric key until the ransom is paid. Therefore, a detailed study of

key generation strategies used in modern ransomware permits us to devise effective solutions

that deny the attackers the required unique access to the decryption key. Depending on the

vulnerabilities discovered in key generation routine in a ransomware, it is feasible to regain

access to the data without paying the ransom.

30

The primary technical challenge we faced during this study was the manual unpacking

and deobfuscation of ransomware samples to locate the key generation routine. We extracted

unpacked malware instances from system memory during dynamic analysis (ransomware will

unpack itself in memory during execution) and performed manual deobfuscation procedures

to reveal key generation routines. We validated our results by freezing sample execution at

breakpoints in a debugger and verifying that the observed key generation is analogous to the

key generation revealed by static reverse engineering.

Our results show that cryptographically insecure key generation procedures continue to

exist in modern ransomware and can be utilized to construct a decryption key without paying

the ransom.

3.4.1 Classification of key generation in ransomware

Certain early variants of ransomware relied on custom encryption algorithms to attain a

denial-of-data. However, security by algorithm obscurity is widely recognized as a funda-

mentally flawed concept in cryptography. Consequently, files encrypted by these ransomware

were trivially decrypted with cryptanalysis. Ransomware developers, thus, have largely

abandoned the use of custom encryption algorithms and have understandably progressed to

deploy standard encryption algorithms such as AES and RSA. For this purpose, dynamic

cryptographic libraries resident on the host are deployed by most ransomware.

While ransomware variants ultimately have different implementations for their cryptosys-

tems, there exists similarities in their key generation strategies that can be used to system-

atically group ransomware. The knowledge of where and how the key generation occurs is a

prominent part of preparing response and recovery solutions against ransomware. Accord-

ingly, we present the core key-generation strategies observed in ransomware variants in the

wild.

31

3.4.1.1 Static asymmetric key

Earlier variants of ransomware came embedded with a public key, generated within the

attacker’s Command-and-Control (C&C) domain, which was subsequently deployed in data

encryption. In this approach, decryption can only be performed with the corresponding

private key that is never observed on the host and is kept safe with the attacker. Data

encryption with a static public key hence eliminates the need for key management since

the public key does not require secrecy. However, a major operational disadvantage for

the attacker is the requirement to surrender the private key upon ransom payment. Once

surrendered, this private key can decrypt other victims of the same ransomware campaign,

which is a direct detriment to the ransomware’s objective function. Moreover, asymmetric

encryption is not suited for bulk data encryption for reasons of speed and efficiency [44].

This inefficiency provides an opportunity for the victim’s defense to respond against the

threat. Therefore, static asymmetric key encryption is not common in modern ransomware,

although it is feasible.

An example of such ransomware is GPCode. While initial variants of GPCode ransomware

depended on a custom encryption algorithm, the developer(s) realized the need for a standard

algorithm to ensure proper security [45]. Hence, later variants of GPCode were observed

encrypting data with an RSA-1024 public key such that the attackers held the private key

as depicted in Figure 3.3.

3.4.1.2 Dynamically-generated asymmetric key

In this approach, an asymmetric keypair is generated on the host using the resident Cryp-

toAPI. The private key is either sent over the network to the attacker’s C&C server or

encrypted with the attacker’s embedded public key and stored on the disk as shown in Fig-

ure 3.4. A clear advantage of this approach is that the attacker now has a set of decryption

keys pertaining to individual victims preventing one victim from providing a decryption key

to another. However, the disadvantage of this approach remains to be the unsuitability of

32

Figure 3.3: Encryption with embedded public key

asymmetric keys for bulk data encryption.

3.4.1.3 Static symmetric key

An encryption key can be derived using static key information that comes embedded in the

ransomware binary. In these instances, the ransomware executable contains, for example, a

symmetric key string that can be used to formulate the required encryption key. Generally,

a standard Windows API call such as CryptStringToBinary can be used to convert the

string to raw bytes. These raw bytes can then be used to construct an encryption key

using CryptImportKey. The handle to this key is now used for subsequent data encryption.

Alternatively, the string can be used to create a hash object using CryptCreateHash which

can then be used to derive a key using CryptDeriveKey as shown in Listing 2.

33

Figure 3.4: Encryption with victim-specific public key

The obvious advantage of this approach is that there is no requirement for complex key

management. This implies that the implementation is unambiguous and hence less prone

to errors. Additionally, the speed of symmetric encryption is promising for ransomware

developers. However, a major disadvantage of this model is the embedded static symmetric

key. Symmetric keys are essentially secrets since encryption and decryption is performed

using the same key. Attempts at concealing the “hardcoded” symmetric key within the

ransomware prove futile as this key can be recovered by reverse engineering and can then be

used for decryption, circumventing the ransom demand. Consequently, this key generation

approach is avoided by most effective modern ransomware. However, a large subset of low-

effort ransomware are frequently observed using this approach.

This approach is illustrated in Listing 2 which shows the AutoIT ransomware using em-

34

bedded static information to derive an encryption key.

Func _crypt_derivekey($vpassword, $ialg_id, $ihash_alg_id = $calg_md5)
...
$aret = DllCall(__crypt_dllhandle(), "bool", "CryptCreateHash",

"handle",↪→

__crypt_context(), "uint", $ihash_alg_id, "ptr", 0, "dword", 0,
"handle*",↪→

0)
...
$aret = DllCall(__crypt_dllhandle(), "bool", "CryptHashData",

"handle",↪→

$hcrypthash, "struct*", $hbuff, "dword", DllStructGetSize($hbuff),
"dword",↪→

$crypt_userdata)
...
$aret = DllCall(__crypt_dllhandle(), "bool", "CryptDeriveKey",

"handle",↪→

__crypt_context(), "uint", $ialg_id, "handle", $hcrypthash, "dword",
$crypt_exportable, "handle*", 0)

Func _crypt_encryptfile($ssourcefile, $sdestinationfile, $vcryptkey,
$ialg_id)↪→

...
$vcryptkey = _crypt_derivekey($vcryptkey, $ialg_id)
...

For $i = 1 To $y[0] Step +1
If NOT StringInStr($y[$i], "Lock.") Then

$dd1 = StringReplace($y[$i], "Fixed.", "")
_crypt_encryptfile(@DesktopDir & "/" & $y[$i], @DesktopDir &

"/Lock." &↪→

$dd1, "888", $calg_des)
FileDelete(@DesktopDir & "/" & $y[$i])

EndIf
Next

Listing 2: Static key 888 in AutoIT ransomware

35

3.4.1.4 Dynamically generated symmetric key

The most commonly observed key generation strategy in modern ransomware is dynamically

generating a symmetric key, s, to be used for encryption. However, because of the nature

of symmetric encryption, it becomes incumbent to properly and promptly dispose the key

following encryption. Since the key is required for later file decryption, this symmetric en-

cryption key is then encrypted with the attacker’s public key, Ppub such that only the attacker

can decrypt s with their private key, Ppri. This combination of symmetric and asymmetric

encryption, known as a hybrid cryptosystem, is observed in most effective ransomware today.

The procedures for encryption and decryption of data are summarized below.

Encryption:

data
encryption−−−−−−−→ {data}s

s
encryption−−−−−−−→ {s}P pub

Decryption:

{{s}P pub}Ppri

decryption−−−−−−−→ s

{{data}s}s
decryption−−−−−−−→ data

The symmetric key required for encryption can be generated in a number of ways as

discussed below.

Using the standard CryptoAPI The most virulent ransomware, Category 6 as de-

scribed by Bajpai et al. [43], use this hybrid encryption strategy discussed above. In these

cases, ransomware frequently utilizes the resident CryptoAPI on a Windows host [18] to

generate unique encryption key(s) to be used to encrypt files.

For instance, the assembly snippets shown in Figure 3.5 are taken from the NotPetya

ransomware that uses the hybrid cryptosystem. NotPetya commences operation by securely

generating an AES-128 key as denoted by ALG ID CALG AES 128 (0x00006610E) [46] in the

36

disassembly shown in Figure 3.5a. Among the parameters required for the call to Crypt-

GenKey, the standard API function that is used to generate the unique key, phKey will serve

as the handle to the generated AES key, while hProv is the handle to the Cryptographic

Service Provider (CSP). Next, the ransomware imports the attacker’s public key embedded

in string format within the binary. A call to the standard API function CryptStringToBi-

nary is used to convert this public key from string format to raw binary bytes that can be

imported as a key as shown in Figure 3.5b. Finally, the ransomware is able to deploy this

imported public key to protect the generated AES key used for encryption (Figure 3.5c).

This is accomplished by calling CryptExportKey which allows for encryption of hKey with

hExpKey, where hKey is the symmetric AES key to be securely exported and hExpKey is the

public key that is used to encrypt the symmetric key. Once the key export is complete, the

ransomware begins enumerating and encrypting specific files based on an embedded inclu-

sion or exclusion list of file extensions. All traces of the encryption key are then wiped from

memory using an explicit call to CryptDestroyKey (Figure 3.5d).

Using ephemeral data Certain ransomware use strategies to derive a key on a host by

using a combination of pseudo random data. The idea is to use ephemeral system parameters

to derive a symmetric key and then encrypt victim’s files with this key. However, in our

analysis of ransomware samples using this strategy, we have discovered that every one of them

failed to effectively generate a secure encryption key. This failure is because the process of

key derivation was repeatable at a later time due to deficiencies evident in the process of

random secret generation. For instance, consider kimcilware, a PHP-based ransomware

meant to infect servers. The key derivation function, as shown in Listing 3, constructed

the encryption key in four parts. All of the parts consisted of ephemeral input that was

reproducible at a later time. Part 1 and 2 are easily reconstructed since DOCUMENT ROOT and

SERVER NAME are both reproducible for the infected server. Part 3 acquires the current date

in various formats such as Y-Y-Y and Y/m/d. This date is also easily obtained post-infection

37

(a) Generating a unique AES-128 key (b) Importing attacker’s public key

(c) Secure key storage until ransom pay-
ment (d) Secure key deletion

Figure 3.5: Hybrid key generation in NotPetya

since it is either the same date as when the infection is first noticed or the previous day since

most ransomware will reveal their presence immediately following encryption. Part 4 of the

key construction process includes unnecessary encodings, compressions, and concatenations

that offer no security and all of which are repeatable. This futile series of encodings and

compressions demonstrates an attempt at obfuscation by the attackers. This ransomware is

a good example of performing ineffectual operations over otherwise static data in hopes of

achieving randomness. Since no part of this key is random enough to be a secret, decryption

is possible by first deobfuscating the key generation routine within the ransomware and then

reconstructing the key post-infection.

38

$key[1] = $_SERVER["DOCUMENT_ROOT"];
$key[2] = $_SERVER['SERVER_NAME'];
$key[3] = $key[1] . "Y" . $key[2] . "K" . date('Y/m/d') . "B" .
date('d-/Y:m') . "H" . date('Y-Y-Y');
$key[4] =
substr(md5(urlencode(md5(gzcompress(md5(base64_encode(md5(sha1(
"wh0#$c@$%ˆ&nd3$@#@!cr8//>yPˆ&*t1t5-$"%.$key[3])))))))),0,25);
return $key[4];

Listing 3: Key generation routine in kimcilware

Using statically linked libraries Since hooking dynamic libraries on a host could pose

key leakage problems for ransomware developers [14], ransomware can ship with their own

statically linked cryptographic libraries to perform encryption tasks—including key genera-

tion. For instance, LockerGoga ransomware uses the Boost and Crypto++ libraries to per-

form encryption tasks. Hence, a defense approach that relies on monitoring the CryptoAPI

to create a key escrow, or observe signs of a ransomware infection based on CryptoAPI calls,

will fail to detect such ransomware. However, it is possible to create signatures for static

cryptographic libraries that the ransomware may deploy and identify the threat using those

signatures as demonstrated by Kolodenker et al. [14]. Another disadvantage of this approach

for ransomware developers is that bringing in statically linked cryptographic libraries in this

manner makes the infection payload bulky, increasing the likelihood of detection.

3.4.1.5 Using standard encryption algorithms embedded within

Ransomware developers can choose to implement the needed cryptographic routines from

scratch in the source code. This is an extremely tedious and error prone process for the aver-

age ransomware developer. However, some ransomware are known to carry the cryptographic

routines implemented within the binary. For instance, PandaBanker carries an AES imple-

mentation within its payload and hence avoids using the CryptoAPI on host for encryption.

One advantage of this approach is that the ransomware has now completely circumvented

any use of cryptographic libraries for encryption and is more self-contained (has less depen-

39

dencies). However, a major disadvantage of this approach is the complexity of implementing

an encryption algorithm from scratch and the potentially fatal cryptographic errors that are

introduced as a result. Evident cryptographic flaws in most ransomware [38] [16] demon-

strate that only a very small subset of ransomware developers possess the technical ability

to implement all required cryptographic functionality from scratch in the malware without

weakening the cryptosystem.

3.4.1.6 Derivation from password string

Encryption keys can be derived from a password string using standard calls such as Pass-

wordDerivedBytes and RFC2898DerivedBytes. The Password-Based Key Derivation Func-

tion (PBKDF) implementations allow for the secure transformation of string passwords to

raw bytes that can formulate the key to be used for encryption [47]. Windows has an imple-

mentation of PBKDF in the form of PasswordDerivedBytes. A .NET ransomware identified

by the hash e7bd6739e482645e2ca01d9f2ee204fb is decompiled and the key derivation

function is shown in Listing 4. The ransomware implements a CreateKey routine that ac-

cepts a string password and returns a 32-byte key using the API call PasswordDerivedBytes.

Similarly, a 16-byte Initialization Vector (IV) is also created by the ransomware. The key

and IV length indicate that the ransomware is deploying the AES-256 algorithm for file en-

cryption. The password string itself is created using Random random = new Random() as

shown in Figure 3.6.

An advantage of this approach is the use of secure PBKDF during key generation.

PBKDF is purposefully slow to thwart potential brute force attacks [48]. However, the Sys-

tem.Random used for the password string generation is not cryptographically secure and the

resultant encryption key makes the cryptosystem weak. Microsoft’s documentation for Sys-

tem.Random explicitly advises against using System.Random for generating passwords [49].

For instance, ransomware ShiOne uses RNGCryptoServiceProvider which is cryptograph-

ically secure. Randomness modules such as System.Random are meant to provide speed

40

// Token: 0x06000035 RID: 53 RVA: 0x00002E9C File Offset: 0x0000109C
public static byte[] CreateKey(string strPassword)
{

byte[] bytes = Encoding.ASCII.GetBytes("salt");
PasswordDeriveBytes passwordDeriveBytes = new

PasswordDeriveBytes(strPassword, bytes);↪→

return passwordDeriveBytes.GetBytes(32);
}

// Token: 0x06000036 RID: 54 RVA: 0x00002ED0 File Offset: 0x000010D0
public static byte[] CreateIV(string strPassword)
{

byte[] bytes = Encoding.ASCII.GetBytes("salt");
PasswordDeriveBytes passwordDeriveBytes = new

PasswordDeriveBytes(strPassword, bytes);↪→

return passwordDeriveBytes.GetBytes(16);
}

// Token: 0x06000018 RID: 24 RVA: 0x0000240A File Offset: 0x0000060A
private void Button1_Click(object sender, EventArgs e)
{

enc.bytKy = crypt.CreateKey(this.TextBox1.Text);
enc.bytV = crypt.CreateIV(this.TextBox1.Text);
enc.getF("C:\\Users\\");

}

Listing 4: Key derivation using a password string

rather than security since generating truly cryptographically random data is slower. For ran-

somware developers that fail to comprehend this subtle distinction, key recovery is feasible.

System.Random uses a 32 bit integer key and if that key is negative only the absolute value is

used [50]. This reduces the search space to 31 bits. Furthermore, System.Random uses Envi-

ronment.Tickcount as its seed value. This Tickcount indicates the number of milliseconds

elapsed since system bootup. Depending on when the ransomware called System.Random,

this value could be easily predicted by working backwards from when we observe the ransom

notes and trying all possible tickcounts. This search space is finite enough to be bruteforced

on an end user’s system within hours.

41

Figure 3.6: Random password string generation observed in a decompiled .NET ransomware

3.4.1.7 Deploying a network key

Once a ransomware binary has infiltrated a host and executed, it can obtain a network key

by communicating with its C&C server. C&C servers are well known in the malware domain

for providing post-infection functionality and support to the malware infection instances and

allow attackers a degree of control over their criminal operations. In the case of ransomware,

we have observed instances of ransomware binaries communicating with the C&C servers

to obtain a key that is subsequently used for file encryption. All traces of this symmetric

encryption key are destroyed on the infected host immediately after encryption. A disad-

vantage of this approach is the dependence on the communication between the ransomware

and the C&C server. Communication failure implies that the ransomware never acquires a

key and lies dormant. This operational flaw in the ransomware model has been exploited

blocking all known C&C servers at the border firewall. The ransomware binary is not truly

42

independent in this model. Additionally, it is possible to obtain the key from network packet

captures if the communication channel is unencrypted.

3.4.2 Experimental results

We set up a virtual lab environment to facilitate both static and dynamic analysis of ran-

somware. Static analysis was performed on a REMNUX [51] Linux distribution, while dynamic

analysis was facilitated by FLARE VM, a Windows-based malware analysis platform. Malware

samples were obtained from a variety of repositories online [52] [53] [54] [55]. Malware often

come packed [56] or obfuscated to thwart analysis by security researchers. This requires

slow, manual deobfuscation and limits our sample size. The entropy of the malware sample

provides a good indication on whether the malware is packed [57]. For such ransomware,

we went through a series of deobfuscation procedures that varied depending on the sample

being analyzed. All examples shown in this paper pertain to ransomware that were either

unpacked or were deobfuscated during our analysis.

For certain variants, the corresponding C&C servers have become unavailable and these

variants are now dormant since they cannot obtain the needed keys. For such ransomware,

a static analysis was performed to comprehend key generation. Moreover, for a large subset

of ransomware, we did not have access to the source code but only the binary. For these

instances, relevant assembly code was studied to discover key generation routines. A smaller

subset of ransomware were written in languages such as PHP (e.g. kimcilware) or JavaScript

(e.g. RAA), which made it feasible to study actual source code for the ransomware after

deobfuscation. For ransomware written in certain interpreted languages, it became feasible

to decompile the binary to generate comprehensible source code. For instance, the .NET

ransomware was decompiled successfully using dnSpy, a .NET decompiler, as shown in Figure

3.6. This is because decompilers reveal a more human-readable source code for interpreted

languages such as Java, .NET, AutoIT, and C# since they are compiled to an intermediary

language rather than machine code. In the examples shown so far, we have preferred to show

43

actual code pertaining to ransomware that were decompiled (and source code is readable),

and for others, we have provided the corresponding assembly code.

Table 3.1: Summary of key generation strategies in ransomware

Key

Generation

Technique

Crypto-

system

Security Operational

Viability?

Comment(s) Examples
Nota-

tion

Static asymmet-

ric key

3 7 Single decryp-

tion key for

all infection

instances ; Slow

encryption

GPCode A

Dynamic asym-

metric key

3 7 Slow encryption Paradise B

Static symmet-

ric key

7 3 Key discovered

with reverse en-

gineering

Jigsaw,

AutoIT,

Apoca-

lypse

C

Dynamically

generated us-

ing standard

CryptoAPI

3 3 Flawless when

implemented

correctly

NotPetya,

WannaCry,

Cerber

D

Dynamically

generated using

ephemeral data

7 3 Key can be re-

constructed

Kimcilware E

44

Table 3.1: (cont’d)

Key

Generation

Technique

Crypto-

system

Security Operational

Viability?

Comment(s) Examples
Nota-

tion

Dynamically

generated using

static libraries

3 3 Payload be-

comes bulkier

LockerGoga F

Dynamically

generated us-

ing random

numbers

7 3 System.Random

is not cryp-

tographically

random

E7BD673-

9E482645E-

2CA01D9F2-

EE204FB

G

Generated in at-

tacker’s domain

(C&C)

3 7 Depends on net-

work connectiv-

ity to acquire en-

cryption key

CryptoWall H

Table 3.1 compares the various key generation strategies observed in ransomware. A

binary decision of pass (3) or fail (7) indicates whether the ransomware’s cryptosystem is

secure and operationally viable. Here, operational viability refers to how appropriate this

key generation strategy is in the ransomware paradigm. For example, encryption with an

asymmetric key is cryptographically secure but not operationally viable since asymmetric

encryption is slow and not meant for encrypting bulk data. Dynamic generation of symmet-

ric keys is a cryptographically secure and operationally viable route taken by ransomware

developers. Alternative statragies were observed to weaken a ransomware’s cryptosystem.

As a result of this study, we have highlighted the following critical questions surrounding

45

a new ransomware variant’s cryptosystem: 1) Are the encryption keys acquired over the net-

work from a C&C server or generated on the infected host? 2) What encryption algorithm

uses the generated key? This can be inferred by studying the malware. 3) Was the key

generation static or dynamic? That is, were the keys shipped with the ransomware or were

they generated on host? 4) Is the encryption key symmetric or asymmetric? 5) Was the

encryption key properly wiped from memory and disposed within the system post encryp-

tion? 6) Was the encryption generated using a standard library or ephemeral data? Can

the ephemeral data be reproduced? 7) Was the encryption key generated using a statically-

binded or dynamic cryptographic library? 8) Was the key created using a cryptographically

secure random number generator? 9) Does the key generation procedure depend on success-

ful communication with the attacker’s domain (C&C servers)? If yes, does the ransomware

have a secondary procedure for key generation if the communication fails?

Table 3.2 shows some examples of different ransomware with their key generation strate-

gies observed over the years. The notations for the key-generation strategies correspond with

Table 3.1. Figure 3.7 shows a timeline of different key generation strategies that we observed

in ransomware during our analysis. The Y-axis represents the year that a ransomware variant

was first observed in the wild. For instance, GPCode was first seen in 2006 and used a static

asymmetric key for encryption (denoted by ‘A’ in Table 3.2). Furthermore, we observed that

alternative key generation strategies exist as a fail-safe in certain ransomware such that if

strategy 1 fails, strategy 2 delivers the key. For example, the CryptoMix ransomware at-

tempts to acquire AES-256 encryption key from a remote C&C server. Connection failure

results in the use of a static embedded key, also known as an offline key. In general, a more

secure key generation procedure is preferred, while a secondary key generation technique

serves as a fail-safe compromise.

46

2006 2014 2016 2017 2018 2019

H

G

F

E

D

C

B

A

Year

#
 R

a
n
s
o
m

w
a
re

0
1

2
3

4

Figure 3.7: A timeline of key generation strategies in ransomware

3.4.3 Pseudo code of ransomware deploying hybrid cryptosystem in Windows
context

The encryption procedure of ransomware using a hybrid encryption approach on a Windows

host is illustrated using pseudo code in Appendix C. Modern ransomware such as Petya are

known to encrypt Windows hosts using this procedure:

1. Generate Symmetric Key

a) The ransomware’s encryption thread creates a handle for an AES key using HCRYP-

TKEY, while a handle to the cryptographic service provider (CSP) is created using

HCRYPTPROV, and a cryptographic context is generated using CryptAcquireCon-

text. A call to a key generation function is then made using the key handle.

b) The AES key generation function in turn calls CryptGenKey with hProv, a handle

to the CSP, and CALGAES128 (algorithm ID), as parameters. The attacker now

sets cipher mode to Cipher Block Chaining (CBC). The symmetric key is then

returned to the calling function.

2. Encrypt Files

47

The calling function now invokes a file encryption function with hProv and AES key

as parameters. This file encryption function then performs batch encryption of specific

file types using the symmetric key with the standard CryptEncrypt function. Control

is then returned to the calling function.

3. Encrypt Symmetric Key

The AES key and handle to the CSP are passed to this function.

a) The function grabs the RSA public key shipped with the ransomware using

CryptImportKey.

b) The AES key is encrypted with the RSA public key and then Base64 encoded.

During these operations, LocalAlloc is used to allocate memory to hold key blobs

and keys are securely exported using CryptExportKey.

c) This encrypted and base64 encoded version of AES key is stored on disk in a

file along with a ransom note. A crucial call to LocalFree frees all associated

memory and invalidates handles. Control is then returned to the calling function.

4. Clean Up

The calling function now invokes CryptDestroyKey, which frees the hkey handle to the

AES key. After this step is executed, the key is destroyed and all associated memory

is freed. Depending on the CSP, the memory area where the key was held is also

scrubbed before freeing it. This scrubbing ensures that the user cannot recover the key

from memory. Finally, CryptReleaseContext is used to release handle to CSP.

Note that details of these Windows CryptoAPI functions are available in Microsoft’s

documentation [58].

Table 3.2: Key generation strategies observed in infamous ransomware

Ransomware Year Key Generation

WannaCry 2017 D

GPCode 2006 A

48

Table 3.2: (cont’d)

Ransomware Year Key Generation

Paradise 2017 B

JigSaw 2016 C

NotPetya 2017 D

Cerber 2016 D

Kimcilware 2016 E

E7BD67... 2018 G

CryptoWall 2014 H

Apocalyse 2016 C

LockerGoga 2019 F

Annabelle 2018 C

3.5 Key-management-based taxonomy for ransomware

We propose a ransomware classification system that is based on the hurricane classifi-

cation system: Saffir-Simpson scale. Accordingly, we propose six categories of ransomware

virulence based on how time-consuming and technically convoluted it would be to reverse

the encryption without paying the ransom once the infection is successful in encrypting user

data. Ransomware variants often make design, operation, and implementation flaws in their

cryptoviral extortion campaigns and it is possible to take advantage of such flaws to reverse

the encryption. Our classification system is designed to quickly convey to security profession-

als and end-users alike if there are any possibilities of decrypting user data without paying

the ransom based on observed flaws.

We analyzed samples from 25 ransomware families and classified them into the following

categories that are similar to the well-known hurricane classification. Samples were collected

from several malware repositories [59] [60] [61]. During sample collection, we gave preference

49

to the ransomware that were well-known for their impact and we included some recently seen

ransomware variants as well. We assigned ‘year’ to a ransomware based on when its first

variant was reported. Note that while we realize multiple strains exist for a particular case of

ransomware, we analyzed one variant per ransomware, but kept the analysis broad enough to

cover all potential characteristics that would impact classification. We performed static and

dynamic analysis of ransomware binaries in many cases to comprehend their functionality

and execution behavior. Static analysis included reverse engineering the binary and dynamic

analysis included executing samples under Cuckoo Sandbox [62] on a Windows XP SP3

hosted on a virtual machine. Internet connectivity was simulated to observe ransomware

behavior.

The objective of this classification is to provide a sense of how virulent a ransomware

infection is in terms of its encryption model. In other words, our classification system is

designed to gauge how time consuming and challenging it is to reverse encryption without

paying the ransom. Note that it is possible for a ransomware strain to shift up or down the

categories over time. For example, a new ransomware instance with no apparent vulnerability

might be in a severe category at first but shift down if a flaw is eventually discovered in its

encryption model. A summary of ransomware categories is shown in Figure 3.8.

A ransomware belongs to one of these categories if one or more of the following conditions

are true for that ransomware:

3.5.1 Category 1

• Fake scareware (no real encryption): infection merely poses as a ransomware by dis-

playing a ransom note while not actually encrypting user files

• Displaying the ransom note before encryption process commences. As seen in the case

of Nemucod, some ransomware will display a ransom note before file encryption [38].

This is a serious operational flaw in the ransomware. The victim or their antivirus

solution could effectively take prompt evasive action to prevent ransomware from com-

50

Category 1
• No actual encryption (fake scareware)
• Demanded ransom before encryption

Category 2
• Decryption essentials extracted from binary
• Derived encryption key predicted
• Same key used for each infection instance
• Encryption circumvented (decryption possible without key)
• File restoration possible using Shadow Volume Copies

Category 3
• Key recovered from file system or memory
• Due diligence prevented ransomware from acquiring key
• Click-and-run decryptor exists
• Kill switch exists outside of attacker’s control

Category 4
• Decryption key recovered from a C&C server or network communications
• Custom encryption algorithm used

Category 5
• Decryption key recovered under specialized lab setting
• Small subset of files left unencrypted

Category 6
• Encryption model is seemingly flawless

Figure 3.8: Key points in ransomware categories

mencing encryption.

3.5.2 Category 2

• Decryption essentials can be reverse engineered from ransomware code or the user sys-

tem. For example, if the ransomware uses a hard-coded key, then it becomes straight-

forward for malware analysts to extract the key by disassembling the ransomware

binary. Another possibility of reverse engineering the key is demonstrated in the case

51

of the Linux.Encoder.A ransomware where a timestamp on the system was used to

create keys for encryption resulting in easy decryption provided that the timestamp is

still accessible [38].

• Ransomware uses the same key for every victim. If the same key is used to encrypt all

victims during a campaign, then one victim can share the secret key with others.

• Files can be decrypted without the need for a key due to poor choice or implementation

of the encryption algorithm. Consider the case of desuCrypt that used an RC4 stream

cipher for encryption. Using a stream cipher with key reuse is vulnerable to known

plaintext attacks and known-ciphertext attacks due to the key-reuse vulnerability [63]

and hence this is a poor implementation of the encryption algorithm.

• Files can be restored using system backups, e.g. Shadow Volume Copies on the New

Technology File System (NTFS), that were neglected by the ransomware.

3.5.3 Category 3

• Decryption key can be retrieved from the host machine’s file structure or memory by

an average user without the need for an expert. In the case of CryptoDefense, the

ransomware did not securely delete keys from the host machine. The user can look in

the right folder to discover the decryption key [38].

• User can prevent ransomware from acquiring the encryption key. Ransomware be-

longs in this category if its encryption procedure can be interrupted or blocked by

due diligence on part of the user. For example, CryptoLocker discussed above cannot

commence operation until it receives a key from the C&C server. A host or border

firewall can block a list of known C&C servers hence rendering ransomware ineffective.

• Easy ‘Click-and-run’ solution such as a decryptor has been created by the security

community [64] such that a user can simply run the program to decrypt all files.

• There exists a kill switch outside of attacker’s control that renders the cryptoviral

infection ineffective. For example, in the case of WannaCry, a global kill switch existed

52

in the form of a domain name. The ransomware reached out to this domain before

commencing encryption and if the domain existed, the ransomware aborted execution.

This kill switch was outside the attacker’s control as anyone could register it and

neutralize the ransomware outbreak [65].

3.5.4 Category 4

• Key can be retrieved from a central location such as a C&C server on a compromised

host or gleaned with some difficulty from communication between ransomware on the

host and the C&C server. For instance, in the case of CryptoLocker, authorities were

able to seize a network of compromised hosts used to spread CryptoLocker and gain

access to decryption essentials of around 500, 000 victims [66].

• Ransomware uses custom encryption techniques and violates the fundamental rule of

cryptography: “do not roll your own crypto.” It is tempting to design a custom cipher

that one cannot break themselves, however it will likely not withstand the scrutiny of

professional cryptanalysts [67] [68]. Amateur custom cryptography in the ransomware

implies there will likely soon be a solution to decrypt files without paying the ransom.

An example of this is an early variant of the GPCoder ransomware that emerged in

2005 with weak custom encryption [32].

3.5.5 Category 5

• Key can only be retrieved under rare, specialized laboratory settings. For example,

in the case of WannaCry, a vulnerability in a cryptographic API on an unpatched

Windows XP system allowed users to acquire from RAM the prime numbers used to

compute private keys and hence retrieve the decryption key [69]. However, the victim

had to have been running a specific version of Windows XP and be fortunate enough

that the related address space in memory has not been reallocated to another process.

In another example, it is theoretically possible to reverse WannaCry encryption by

53

exploiting a flaw in the pseudo-random-number-generator (PRNG) in an unpatched

Windows XP system that reveals keys generated in the past [70]. Naturally, these

specialized conditions are not true for most victims.

• A small subset of files left unencrypted by the ransomware for any number of reasons.

Certain ransomware are known to only encrypt a file if its size exceeds a predetermined

value. In addition, ransomware might decrypt a few files for free to prove decryption

is possible. In such cases, a small number of victims may be lucky enough to only need

these unencrypted files and can tolerate loss of the rest.

3.5.6 Category 6

• Encryption model is resistant to cryptographic attacks and has been implemented

seemingly flawlessly such that there are no known vulnerabilities in its execution.

Simply put, there is no proven way yet to decrypt the files without paying the ransom.

If a ransomware satisfies specified conditions in multiple categories above, it should be

categorized as the lowest of those set of categories. For example, Apocalypse ransomware

uses custom encryption (Category 4) but also has a symmetric key hard-coded in the ran-

somware (Category 2) and a decryptor is available online (Category 3). Hence, it becomes

min{4, 2, 3} = Category 2.

Note that such classification becomes challenging not just because a ransomware variant

can change categories over time, but also because the same ransomware may have different

variants, each belonging to a different category according to its encryption model. Hence,

it makes sense to keep track of which variant was grouped under a certain category by

specifying an MD5 or SHA checksum while performing the classification.

This classification system is not meant to provide a quantitative score to the ransomware,

rather it is an indication of the cryptographic strength of the cryptoviral infection. Hence,

we do not consider cases where all master keys were released by ransomware developers due

to one reason or the other [66]. While release of all master keys by attackers turns the

54

ransomware from a deadly infection into a mere annoyance, such a condition does not reflect

on the cryptographic model of the ransomware—which is what our methodology rates.

Being hit by a Category 3 ransomware implies that files can be potentially successfully

recovered without paying the ransom whereas a Category 6 indicates that there is no known

method of recovering files without payment. By ‘current,’ we mean how potent the ran-

somware presently is. For example, a ransomware variant might have a seemingly effective

encryption model and hence a Category 6 at one time, but eventual discovery of implemen-

tation flaws in the encryption model might bring it down to a Category 3 or 2.

3.5.7 Classification Results

We classified 25 ransomware samples as shown in Table 3.3 using the methodology described

above. In the samples classified, we discussed the primary reasoning behind why they belong

in a category as a ransomware may meet conditions across different categories.

Table 3.3: Ransomware classification

Ransomware

Variant

Year Classification Primary Reasoning

Nemucod 2016 Category 1 Displays ransom note before actual en-

cryption [38]

AIDS 1989 Category 2 Decryption key extracted from ran-

somware code [71]

DirCrypt 2014 Category 2 Used same RC4 keystream for multiple

files [38]

Poshcoder 2014 Category 2 Decryption key extracted from ran-

somware code [38]

TorrentLocker 2014 Category 2 Used same key and IV for multiple files

[72]

55

Table 3.3: (cont’d)

Ransomware

Variant

Year Classification Primary Reasoning

Linux.Encoder.1 2015 Category 2 Timestamp used to generate keys can

be used for decryption [38]

Jigsaw 2016 Category 2 Decryption key extracted from ran-

somware code [37]

desuCrypt 2018 Category 2 Used same RC4 keystream for multiple

files [73]

RaRuCrypt 2018 Category 2 Decryption key extracted from ran-

somware code

CryptoDefense 2014 Category 3 Decryption key not securely deleted on

host [19]

CryptoWall 2014 Category 3 Ineffective if it cannot reach the C&C

server [17]

CTB-Locker 2014 Category 3 Ineffective if it cannot reach the C&C

server [74]

Locky 2016 Category 3 Ineffective if it cannot reach the C&C

server [75]

KeRanger 2016 Category 3 Ineffective if it cannot reach the C&C

server [76]

zCrypt 2016 Category 3 Ineffective if it cannot reach the C&C

server [77]

HydraCrypt 2016 Category 3 Decryptor available [78]

WannaCry 2017 Category 3 Global killswitch renders ransomware

ineffective [65]

56

Table 3.3: (cont’d)

Ransomware

Variant

Year Classification Primary Reasoning

GPCoder 2005 Category 4 Weak custom encryption algorithm [32]

PowerWare 2016 Category 4 Decryption key extracted from plain-

text communication with C&C server

[79]

CryptoLocker 2013 Category 6 No known weakness exists in the ran-

somware [80]

Petya 2016 Category 6 No known weakness exists in the ran-

somware

Crysis 2016 Category 6 No known weakness exists in the ran-

somware

Cerber 2016 Category 6 No known weakness exists in the ran-

somware [81]

RAA 2016 Category 6 No known weakness exists in the ran-

somware [82]

NotPetya

(GoldenEye)

2017 Category 6 No known weakness exists in the ran-

somware

A classification system can indicate one of the following characteristics:

1. Technical prowess: potency of the cryptosystem.

2. Overall effectiveness: potential ways to recover files without paying the ransom.

The difference between these two becomes clear with the following example. Consider

a ransomware variant that has an extremely effective cryptographic model, but master de-

cryption keys have been released by ransomware developers. The technical prowess makes

the infection potent however overall effectiveness presently is extremely low because of the

57

0 2 4 6 8 10 12

1989
2005
2013
2014
2015
2016
2017
2018

1
1
1

6
1

11
2
2

Number of ransomware instances

Ye
ar Category1

Category2
Category3
Category4
Category5
Category6

Figure 3.9: Ransomware infections over the years.

availability of master decryption keys. Our classification system only considers the technical

prowess of initial cryptographic implementation.

Classification results demonstrate that though Category 6 cryptoviral infections raised

the bar in 2016, certain recent ransomware seen as late as 2017 or 2018 are Category 2 or

Category 3, as shown in Figure 3.9, due to poor design or implementation by ransomware

developers. For example, desuCrypt, seen in 2018, uses the same keystream in encrypting

different files while using RC4 encryption which allows victims to decrypt files without proper

decryption essentials as long as a victim can produce a file that is encrypted with the same

key in its decrypted form [63]. This implies that victims should not be quick to pay the

ransom when hit by a new ransomware since it may not be a Category 6 infection and

certain file recovery procedures may exist that do not require paying the ransom.

It is worth noting that this process of classification reveals the true potency of a cryp-

toviral infection in terms of its encryption model. For example, despite all of the media

attention focused on WannaCry, it fits in Category 3 due to the embedded global kill switch.

WannaCry was special primarily because its infection vector exploited an unpatched vulner-

ability which made it worm-like and differentiated it from other ransomware. Its encryption

model, however, was not exceptionally different. Figure 3.9 also indicates that only a few

58

ransomware variants possess high potency, while the rest contain serious cryptographic flaws.

Both Figure 3.9 and Table 3.3 indicate a continued lack of technical prowess in the majority

of cryptoviral infections.

3.6 Novel characteristics observed in modern ransomware

Modern ransomware present multi-faceted threats that present challenges beyond data

loss. These ransomware include routines that drop trojans and cryptocurrency mining plugs.

Some include state of the art elliptic curve cryptography, advanced key management models,

new infection vectors, purging backups and more. In this section, we discuss the future

of the most potent cryptoviral extortions as predicted via empirical analysis of real-world

ransomware samples that are defying general trends and differentiating themselves from their

peers.

Before we delve into the unique characteristics observed in some modern ransomware,

we introduce the primary elements observed in every ransomware infection. The primary

elements of ransomware are follows:

• Compromise host: gain initial entry into the system. This is traditionally done via

phishing emails.

• Acquire encryption secret: every infection instance needs to be unique lest victims

share decryption secret among themselves, neutralizing the entire campaign (one victim

pays the ransom and shares the decrypting key thus acquired with other victims).

The encryption secret (usually a key) needs to be acquired after each infection for

this reason. Ransomware can either generate this on the host or import it from the

attacker’s C&C servers.

• Encrypt user files: locate and encrypt all user data to gain leverage over the victim.

This is an essential step since ransomware effectively executes a denial-of-control over

user data for extortion.

• Collect ransom: generally done using secure channels such as The Onion Router (TOR)

59

in terms of cryptocurrencies such as bitcoin. Since these attacks tend to be financially

motivated, this is an essential final step for the cryptoviral campaign operators.

Modern ransomware are presenting threats beyond just data encryption (denial-of-control

over data) as explained above, and so such ransomware go beyond these elementary steps.

The intricacies of other threats that we have observed to come bundled with these modern

ransomware are detailed below.

3.6.1 Bundled cryptojacking routines

Cryptojacking is on the rise and ransomware developers are no strangers to illicit crypto-

mining. The latest trend is to bundle a mining routine with the ransomware to generate

revenue. For instance, BlackRuby ransomware hides a miner in the background while it

waits for ransom payment.

3.6.2 Deploying elliptic curve cryptography

Certain new ransomware such as Petya and PetrWrap are known to use ECIES algorithm

as opposed to the more traditional RSA algorithm for protecting the encryption key. The

ECIES scheme as observed in modern ransomware has been detailed in Section 4.4.2.2.

3.6.3 Explicit destruction of backups

An increasing number of variants now ensure that they explicitly hunt for and encrypt

backups available on the network. They also permanently purge VSS files to eliminate the

possibility of file recovery.

3.6.4 Dropping spyware

Certain ransomware strains such as RAA are known to drop other malware such as trojans to

spy on users. If the ransom is paid, the ransomware might surrender the decryption key for

60

file recovery. However, we did not find any evidence of trojan removal post-payment.

3.6.5 Expanding to multiple attack vectors

For a long time, the primary infection vector for malware has been social engineering via

emails. This requires human interaction and is not as efficient as exploiting a known vul-

nerability. WannaCry particularly received attention due to its wormlike propagation which

involved exploiting the now infamous EternalBlue vulnerability. An increasing number

of targeted ransomware attacks are using advanced manual reconnaissance to gain entry

on hosts and then spread via the internal network. Attacking poorly authenticated RDP

services is another attack vector that is gaining traction among ransomware operators.

3.7 Summary

A crucial factor that differentiates a cryptoviral extortion program from a regular on-

the-fly encryption program, such as TrueCrypt or VeraCrypt, is that the decryption key is

unknown to the owner. Moreover, the encryption was not commenced or authorized by the

user. If a user can obtain access to the decryption essentials in some manner, the ransomware

becomes ineffective. It is crucial for modern ransomware to generate a unique encryption

key for each victim so that victims cannot cooperate and share decryption keys. Every

infection instance needs to be different from the other in terms of decryption essentials,

such as the key. In fact, WannaCry uses a different key for every file likely so that if at

any point the operation is interrupted and a key is acquired from the host, only one key is

compromised which implies that the victim can at most decrypt one file using that current key

in memory. Key management is thus a crucial component of effective and potent ransomware

operation [83].

In this chapter, we presented the evolution of key management in ransomware and studied

some novel characteristics observed in modern ransomware. We also introduced a method-

ology to classify ransomware and used the methodology to classify 25 ransomware samples.

61

Our classification system only considers the technical prowess of the ransomware and not the

overall effectiveness. To this effect, a Category 6 ransomware will remain a Category 6 even

after its master decryption keys are leaked online since such a leak does not reflect upon

the technical capability of the cryptosystem implemented initially. In the future, we plan

to expand this work to reflect the overall effectiveness of a ransomware variant so that the

general public can use it as a reference to comprehend the potency of a ransomware variant.

This will facilitate informed decision making. One could imagine an online ransomware ob-

servatory that anybody could query. By acquiring the category of a ransomware, one could

comprehend immediately if an easy fix is available or not.

Our discussions in this work were focused on the aftermath of successful ransomware

execution. We assumed that the ransomware has already infiltrated a host machine. It

is clear that an error made by the attacker in implementing the cryptosystem, such as

neglecting key security, is the only way to reverse the damage without paying the ransom.

Ultimately, the solution to the threat of ransomware lies in comprehending key management

in ransomware operations.

62

CHAPTER 4

CONSTRAINTS ON MODERN RANSOMWARE

Ransomware deploy cryptographic techniques in encrypting victim’s data such that the per-

petrators hold unique access to the decryption secret. All cryptographic ransomware, no

matter how virulent, operate under certain fundamental constraints. These constraints are

essentially conditions that the ransomware requires to realize before achieving its primary

objective of generating the ransom payment. In this chapter, we have identified the con-

straints that constitute the ransomware kill chain such that removal of one or more of these

conditions severely debilitates our adversary’s ransom model. We also examine currently

existing solutions against ransomware that are ultimately focused on attacking one or more

of these constraints to neutralize the ransomware threat. Through case studies, detailed

analysis of ransomware cryptographic systems and the relevant existing solutions, our re-

sults show that only a small subset of solutions successfully attack a fundamental constraint

on ransomware and have feasible implementations.

4.1 Introduction

The set S represents the ransomware kill chain such that all fundamental constraints,

Cn ∈ S, bind ransomware operations as detailed in Table 4.1. These constraints are neces-

sary and sufficient conditions for all ransomware and facilitate building effective solutions

since attacking one or more of these constraints severely debilitates our adversary’s attack

model. For instance, maintaining the secrecy of the symmetric keys used for encryption is

a fundamental constraint since key leakage results in the disruption of the ransomware kill

chain. In Table 4.2, we evaluate the solutions proposed against ransomware in light of these

constraints and the NIST Cybersecurity Framework. Note that {C8} serves the financial

interests of ransomware operators are not constraints on the cryptographic functionality of

the ransomware. Ultimately, all ransomware abide by these constraints and all effective

63

solutions must violate one or more of these constraints.

A key insight of this work is that the effectiveness of data security against ransomware is

calculated in terms of the comprehension of the fundamental constraints on the ransomware,

criticality and exposure of the protected data, and effectiveness and feasibility of implemented

security solutions. Delineating the fundamental constraints allows us to strategically consider

the effectiveness of solutions proposed against ransomware and is universally true for all

entities (organizations). However, the importance and exposure of data is dependent on the

environment and is thus variable for different entities.

The primary challenge faced during this study was the determination of the fundamental

constraints that bind all cryptographic ransomware such that no cryptographic malware are

technically and operationally viable outside these constraints. We studied a large subset of

ransomware to determine the constraints and subsequently validated these constraints by

reviewing all existing solutions against ransomware in light of the recognized constraints.

Our analysis suggests that 8 fundamental constraints exist for the financially-motivated

cryptographic ransomware such that all proposed solutions against ransomware violate one

or more of these constraints.

Table 4.1: Kill chain observed in potent ransomware

Cn Condition Description

C1 Infiltration Ransomware’s initial entry into the host machine

C2 Execution Execution privileges to infect the host

C3 Preparation Process injection or hijacking; generation of crypto-

graphic secrets

C4 Enumeration Identifying valuable files and resources on the host

C5 Encryption Modifying the host system to bring it to an infected

state

C6 Destruction Removing victim’s access to original data

C7 Protection Protecting the encryption secret until ransom is paid

64

Table 4.1: (cont’d)

Cn Condition Description

C8 Extraction Maintain payment channel to acquire the ransom

4.2 Identifying the kill chain

The concept of the cyber kill chain has been introduced in the past. This kill chain

identifies the path an adversary takes in order to execute an attack on the target [84].

Removing one element of the kill chain has the potential to neutralize the attack. Thus,

the kill chain can help shape effective solutions against the relevant attack. In this paper,

we identify fundamental constraints on ransomware such that violating these constraints

breaks our adversary’s extortion model. Some constraints are more intuitive than others.

For instance, an obvious fundamental constraint is that the attacker should be the sole

possessor of the decryption secret (key) to have leverage over the victims. This implies that

after successful file encryption, a symmetric encryption key should be safely purged from

the host after transferring an encrypted copy of the key to the attacker. Alternatively, the

symmetric encryption key could be safely preserved on the host after encrypting it with the

attacker’s public key. Ultimately, the encryption secret must be kept confidential by the

attacker. This insinuates protection of the encryption key and any other secrets, such as the

pseudo random number, used to derive the key.

To the best of our knowledge, there is no existing work that seeks to define the fundamen-

tal constraints on modern ransomware. In this paper, the term ‘proposed constraints’ refers

to the set of constraints that we have identified, while the term ‘proposed solutions’ refers to

existing or proposed solutions against ransomware. In addition, the term attacker refers to

both the ransomware developer and the operator. Note that in light of the RaaS model preva-

lent in the cybercrime underground, ransomware developers are the entities that develop the

malware and ransomware operators are the entities that disseminate the ransomware and

65

collect the ransom. These entities coexist in an ecosystem where everyone pockets a part of

the ransom payment. Finally, the term ‘host’ refers to the victim’s machine that is being

attacked by the ransomware.

4.3 Proof of constraints

Ransomware perform unauthorized encryption of user data. Since the encryption is unau-

thorized and covert, these malicious software operate under certain fundamental constraints

that govern success. In this section, we organize and scrutinize those constraints on modern

ransomware. Fundamental constraints limit every ransomware in the wild. Two types of

fundamental constraints have been identified in this work: hard and soft. The use of ‘soft’

versus ‘hard’ is meant to provide some indication towards the severity of the constraint for

the ransomware developer. Hard constraints are a subset of fundamental constraints that

apply to specific ransomware depending on their infection strategy. However, just like fun-

damental constraints, violating a hard constraint requires ransomware developers to retreat

and reinvent. Thus, a hard constraint limits the ransomware developer in such a way that

the limitation imposed cannot be circumvented. Violating a soft constraint, however, is a

minor set back for the ransomware developer that can be easily overcome. For example, us-

ing an attack vector to gain initial entry into the system is a hard constraint for the attacker.

Without this step, the ransomware operation fails and hence there is no way around it. How-

ever, the absence of cryptographic libraries on the host can be easily circumvented by either

bringing in custom cryptographic libraries with the infection or by embedding the encryp-

tion key within in the ransomware binary [85]. Unlike hard constraints, soft constraints can

be circumvented by the ransomware developers. Attacking these constraints merely poses

hurdles for the ransomware developers to overcome, but does not debilitate their operation.

Soft constraints are still a subset of fundamental constraints, but are easily overcome and

pose little to no challenge to the ransomware developer.

We begin by formally defining effective crypto-ransomware as follows. Note that here

66

the word effective indicates merely the ability to encrypt data and extract ransom but does

not provide any indication towards the quality of the cryptosystem implementation in the

ransomware. Furthermore, we assume that the ultimate objective, O, of an effective crypto-

ransomware is to serve the financial interests of the ransomware operators and developers.

Definition 1. An effective crypto-ransomware is a malicious software that executes on the

host computer without authorization, modifies data on the host using an encryption algorithm

and secret knowledge such that data becomes unavailable to the victim, freezes data in the

encrypted state until the ransom is paid, and establishes a functional payment route to extract

ransom with the ultimate objective of serving the financial interests of its operators.

Theorem 1 then draws from Definition 1 to hypothesize the following constraints on

crypto-ransomware.

Theorem 1. Fundamental constraints in the set S = {C1, C2, C3, C4, C5, C6, C7, C8} that

bind all effective crypto-ransomware are proposed as claims as follows:

• C1. Initial entry into the host

• C2. Gaining execution privileges

• C3. Establishing a cryptographic secret

• C4. Enumerating files on the host

• C5. Modifying files on the host for encryption

• C6. Denying access to critical files

• C7. Protecting the cryptographic secret until the ransom is paid

• C8. Maintaining a functional payment route

We now prove Theorem 1 by proving that constraints in the set S are necessary and

sufficient conditions for an effective crypto-ransomware to attain its malicious objective O.

Constraints from set S are individually necessary and the presence of them all, the set S, is

sufficient. In other words, removing any of the constraints debilitates the crypto-ransomware

67

while the presence of all of the constraints implies that the ransomware has successfully

realized objective O.

Lemma 1. The constraint C1 is a necessary condition for crypto-ransomware to attain

objective O.

Proof. Let us assume that Lemma 1 is false. This implies that crypto-ransomware is able

to extract ransom to attain objective O without infiltrating the host. This is contradictory

to Definition 1 of crypto-ransomware. Therefore, we prove by contradiction that our initial

assumption is false. Hence, Lemma 1 must be true.

Lemma 2. The constraint C2 is a necessary condition for crypto-ransomware to attain

objective O.

Proof. Let us assume that Lemma 2 is false. This implies that crypto-ransomware is able to

extract ransom to attain objective O without gaining execution privileges on the host. This

is contradictory to the known assertion that a set of instructions must be executed on the

system to methodically change the state of the data on the system. Therefore, we prove by

contradiction that our initial assumption is false. Hence, Lemma 2 must be true.

Lemma 3. The constraint C3 is a necessary condition for crypto-ransomware to attain

objective O.

Proof. Let us assume that Lemma 3 is false. This implies that crypto-ransomware is able

to extract ransom to attain objective O without establishing a unique cryptographic secret.

This is contradictory to Kerckhoffs’s principle [86] which states that an encryption algorithm

requires some form of secret to protect the confidentiality of data even when the algorithm

itself is public knowledge. Therefore, we prove by contradiction that our initial assumption

is false. Hence, Lemma 3 must be true.

Lemma 4. The constraint C4 is a necessary condition for crypto-ransomware to attain

objective O.

68

Proof. Let us assume that Lemma 4 is false. This implies that crypto-ransomware is able

to extract ransom to attain objective O without enumerating files on the host. This is

contradictory to the known assertion that all encryption algorithms require plaintext to gen-

erate mathematically-related ciphertext. Thus, without enumerating data to be encrypted,

crypto-ransomware cannot encrypt the data. If the encryption is unsuccessful then so is

the objective O according to Definition 1. Hence, we prove by contradiction that our initial

assumption is false which implies that Lemma 4 must be true.

Lemma 5. The constraint C5 is a necessary condition for crypto-ransomware to attain

objective O.

Proof. Let us assume that Lemma 5 is false. This implies that crypto-ransomware is able

to extract ransom to attain objective O without encryption. This assertion is in violation of

Definition 1 of crypto-ransomware where files on the host system must be modified to create

the required leverage. Hence, we prove by contradiction that our initial assumption is false

which implies that Lemma 5 must be true.

Lemma 6. The constraint C6 is a necessary condition for crypto-ransomware to attain

objective O.

Proof. Let us assume that Lemma 6 is false. This implies that crypto-ransomware is able

to extract ransom to attain objective O without removing victim’s access to the original

data. This is clearly a contradiction since O cannot be realized without removing victim’s

access to the original data. This is because when alternative routes for data restoration

exist, the crypto-ransomware is not effective in generating the required leverage. We prove

by contradiction that our initial assumption is false which implies that Lemma 6 must be

true for an effective crypto-ransomware.

Lemma 7. The constraint C7 is a necessary condition for crypto-ransomware to attain

objective O.

69

Proof. Let us assume that Lemma 7 is false. This implies that crypto-ransomware is able

to extract ransom to attain objective O without protecting the secrecy of the encryption

secret. Without ensuring confidentiality of the cryptographic secret, or key, the data cannot

be maintained in an encrypted state which violates Definition 1 of crypto-ransomware where

freezing the data in an encrypted state is necessary until ransom payment. Hence, we prove

by contradiction that our initial assumption is false which implies that Lemma 7 must be

true.

Lemma 8. The constraint C8 is a necessary condition for crypto-ransomware to attain

objective O.

Proof. Let us assume that Lemma 8 is false. This implies that the crypto-ransomware is

unable to extract ransom to attain objective O and is in direct violation of maintaining a

functional payment route as stated in Definition 1. Hence, we prove by contradiction that

our initial assumption is false which implies that Lemma 8 must be true.

We have hence established that claims, or constraints, from set S must be independently

true for an effective crypto-ransomware to exist. We now prove that these conditions are

sufficient and that no other conditions are required.

Definition 1 establishes the requirements for an effective crypto-ransomware. Constraints

in the set, S, are sufficient to satisfy these requirements as follows:

1. {C1, C2} → execution on the host

2. {C3, C4, C5} → encryption with a cryptographic secret on the host

3. {C6, C7} → freeze data in encrypted state until ransom is paid

4. {C8} → functional payment channel

Hence, constraints in the set, S, are necessary and sufficient for an effective crypto-

ransomware.

All of the hard constraints thus satisfy the following properties:

• P1. Violating a single constraint severely debilitates a ransomware attack.

70

• P2. Constraints are independent of each other.

• P3. Hard constraints cannot be circumvented by the ransomware.

4.4 Empirical evidence of constraints observed in ransomware

The concept of the cyber kill chain has been previously discussed. This kill chain identi-

fies the path an adversary takes in order to execute an attack on the target [84]. Removing

one element of the kill chain has the potential to neutralize the attack. Thus, the kill chain

can help shape effective solutions against the relevant attack. In this paper, we identify

fundamental constraints on ransomware such that violating these constraints breaks our ad-

versary’s extortion model. Some constraints are more intuitive than others. For instance,

a clear fundamental constraint is that the attacker should be the sole possessor of the de-

cryption secret (key) to have leverage over the victims. This implies that after successful file

encryption, a symmetric encryption key should be safely purged from the host after transfer-

ring an encrypted copy of the key to the attacker. Alternatively, the symmetric encryption

key could be safely preserved on the host after encrypting it with the attacker’s public key.

Ultimately, the decryption secret must be kept confidential by the attacker. This require-

ment of secrecy necessitates adequate protection of the encryption key and any other secrets,

such as the pseudo random number, used to derive the key.

The elements of the cyber kill chain are discussed as constraints on ransomware as follows.

4.4.1 Initial entry and execution

A parasitic malware is able to exhibit its malicious functionality only after successful execu-

tion on the host. Without execution, parasitic malware lies dormant as simply a file on the

host. Hosts that are secure enough to deny entry to such malware threats remain impervious

to the infection. Execution privileges are required by ransomware on the host machine to

commence file encryption. Consequently, ransomware operators have been known to deploy

social engineering tactics such as spreading malicious emails attachments. These attach-

71

ments often have seemingly benign and luring file names such as invoice or resume. More

carefully crafted phishing emails are designed to further lure the victim into acquiring and

executing the attached payload. Other malware delivery techniques such as deploying known

exploits (e.g. EternalBlue [87]) or brute forcing RDP [88] are gaining popularity since these

techniques require no user involvement and therefore do not depend on user gullibility. For

instance, WannaCry ransomware became infamous for its ability to propagate like a worm [89]

by exploiting systems vulnerable to CVE-2017-0144 [90]. Ultimately, all ransomware oper-

ate under the requirement of seeking initial entry and execution on the host system. Hence,

the fundamental constraint here is the ability to execute arbitrary, malicious code on the

host. This can be realized with or without user involvement. For instance, enticing users to

download and execute malicious ransomware code requires user involvement. On the other

hand, exploiting a critical vulnerability in software or gaining unauthorized access to RDP

can be performed covertly.

4.4.2 Exclusive knowledge of the random integer

For file encryption to commence, an infection-specific encryption secret must be acquired.

This encryption secret is usually a key and it must be unique to prevent a victim from de-

crypting another victim’s files after acquiring a decryption key. The hybrid cryptosystem

deployed in a large subset of effective, modern ransomware is presented by Bajpai et al. [85].

In this hybrid cryptosystem, ransomware use symmetric encryption for its speed and asym-

metric encryption for its flexibility. Public cryptosystems used within ransomware include

RSA and Elliptic Curve Integrated Encryption Scheme (ECIES). The encryption key itself

is derived from the hash of a secret, random integer (Figure 4.2b). Clearly, protecting the

secrecy of this random integer used for key derivation becomes a fundamental constraint on

the ransomware.

72

4.4.2.1 RSA-based approach in ransomware

Ransomware can deploy an RSA public key modulus n with the factorization n = pq being

a secret that is known only to the ransomware operator (private key). The ransomware

then generates a random, nonnegative integer x usually using a Pseudorandom Number

Generator (PRNG) available on the host. Ransomware can now encrypt this symmetric key

x by computing y = x3 mod n, and y is stored for later. Here, y is the encrypted symmetric

key. A hash function, h = H(x), over the nonnegative integer x then generates a key h

that can be used for subsequent data encryption using symmetric encryption. The resulting

ciphertext then becomes c = AESh(data). Following encryption of victim’s data, ransomware

proceeds to wipe {data, h, x} from the host. If implemented correctly, data recovery is now

possible only with knowledge of {p, q} which is held for ransom by the attacker.

Upon ransom payment, the attackers possess the unique ability to decrypt data. The en-

crypted symmetric key, y, can be decrypted by the ransomware operator with the knowledge

of p and q by computing x = yd mod n, where d is given by 3d ≡ 1(mod(lcm(p− 1, q− 1))).

Now that the ransomware operator has obtained the secret integer x, the symmetric key can

be reconstructed by performing the same hash computation h = H(x). This symmetric key,

h, is then provided to the victim to decrypt the data by calculating data = AESh(c).

4.4.2.2 ECIES-based approach in ransomware

The ransomware operator chooses an elliptic curve, say secp192k1 , and embeds the curve

parameters in the infection binary. These parameters are specified by the sextuple T =

(p, a, b, G, n, h). The curve, E, becomes y2 = x3 + ax + b. G is the base point, n is the order,

and h is the cofactor [91]. The ransomware operator chooses a public rational point, P such

that P = [s]G. Here, s becomes the operator’s private key and P becomes the public key

that ships with the malware.

Once the host is infected with the ransomware, the binary will then generate a nonnega-

tive integer, x using a PRNG function such as CryptGenRandom in the Windows CryptoAPI

73

or /dev/urandom on Unix. The symmetric key, h, is derived from this secret integer x by

calculating h = H([x]P), where H is a hash function. The ransomware also computes and

stores an encrypted form of this secret integer x by calculating Q = [x]G. Victim’s data is

then encrypted with a symmetric cipher such as AES by performing c = AESh(data). The

ransomware then wipes {x, h, data} and demands the ransom.

Upon receipt of the payment and Q, the ransomware operator has the unique ability to

calculate x from [s]Q = [x]P since the secret integer s, the encrypted integer Q, and the

public rational point P are known. The integer x thus obtained can be hashed to derive the

symmetric encryption key h = H([s]Q) = H([x]P), which can then be sent back to the user

to perform data decryption by calculating data = AESh(c).

Embed

Choose curve,

Choose , where

Embed public key, , in ransomware

Hold private key,

Generate random,

Calculate encryption key,

Calculate encrypted key,

Encrypt victim's data,

Wipe

Demand ransom

Acquire ransom and from victim

Calculate , from

Derive the encryption key

Send for decryption

Preparation Encryption

Acquire

Restoration
Decryption

Figure 4.1: ECIES scheme in modern ransomware

4.4.3 Exclusive knowledge of the encryption key

Despite the secure generation, deployment, and disposal of the secret integer, the resulting

symmetric encryption key could still be attacked at any stage of key management within the

74

ransomware process. Since this encryption key—which is usually symmetric for swift bulk

data encryption—must be infection-specific, the ransomware must acquire this key shortly

after execution on the host. File encryption cannot commence in the absence of this required

key. Broadly, this encryption key can be acquired either over the network or on the host.

While acquiring this key over the network, the ransomware reaches out to a C&C server with

a unique infection ID. The server generates an infection-specific key and communicates a copy

to the ransomware. This communication can be protected by a TLS tunnel to prevent key

leakage during transit. When the key is acquired on the host, the ransomware can generate

the unique encryption key by using the available cryptographic library routines (Figure

4.2a) or by deploying an embedded symmetric key. Since the use of an embedded symmetric

key is highly vulnerable to reverse engineering, ransomware frequently utilize cryptographic

libraries. These libraries could be available as dynamic libraries on the host, e.g. Windows

CryptoAPI, or be statically linked and shipped with the ransomware.

4.4.4 File access and modification

File search and modification privileges are needed by ransomware to implement the denial-

of-data attack. Thus, a fundamental constraint on ransomware is the ability to discover

and modify data that is valuable to the user in such a way that it cannot be replaced.

For example, an Excel sheet with valuable financial data is more likely to be irreplaceable

than a Windows DLL file. Therefore, after acquiring the encryption key, the ransomware

populates a list of files that are to be encrypted based on file extensions as shown in Listing

5. Specific file extensions are sought on the host, while other files are ignored. In most

cases, user files such as ‘.txt’, ‘.jpg’, ‘.pdf’, ‘.docx’, ‘.xlsx’ provide the needed leverage and are

hence appealing to the attackers, while system files such as ‘.ini’ and ‘.dll’ are left intact.

Such selective encryption is efficient for the ransomware and permits the victim continued

use of the system to pay the ransom. Following the determination of the files-of-interest

(the files to be encrypted), the ransomware commences encryption. This involves mass file

75

modifications and therefore success is determined by the ransomware’s ability to discover

and modify the state of existing data on the host.

push eax
lea eax, [esp+87Ch+var_208]
push offset aWs ; "%ws."
push eax ; LPWSTR
call ds:wsprintfW
add esp, 0Ch
lea eax, [esp+878h+var_208]
push eax
push offset a3ds7zAccdbAiAs ;

".3ds.7z.accdb.ai.asp.aspx.avhd.back.bak"...↪→

call ebx ; StrStrIW
test eax, eax
jz short loc_10001B25

Listing 5: Disassembly of NotPetya ransomware illustrating an embedded list of files-of-
interest

4.4.5 Denial of access to critical data

Ransomware must deny access to data needed by the user to gain the leverage necessary for

extortion. Potential of data restoration removes this leverage. Consequently, ransomware

explicitly search and destroy connected network backups and debilitate all data restoration

abilities on the host. On a Windows host, volume shadow copies provide snapshots of files for

the purpose of system restoration. Ransomware are known to explicitly purge these shadow

copies. For instance, in Listing 6, we observe LockCrypt ransomware removing shadow

copies silently on host before demanding the ransom.

4.4.6 Functional payment route

The objective function of financially-motivated ransomware is profit maximization gain for

the perpetrators. This implies that the ransomware operators require an anonymous and

reliable payment route that is accessible to the victim. While the existence of this payment

76

push offset aConsentpromptb ; "ConsentPromptBehaviorAdmin"
push [ebp+phkResult] ; hKey
call RegSetValueExA
push [ebp+phkResult] ; hKey
call RegCloseKey
push 5DCh ; nSize
push [ebp+lpString2] ; lpBuffer
push offset Name ; "ComSpec"
call GetEnvironmentVariableA
push 0 ; nShowCmd
push 0 ; lpDirectory
push offset Parameters ; "/c vssadmin delete shadows /all"

Listing 6: LockCrypt purging volume shadow copies

route is not a technical constraint on the cryptosystem of the ransomware, it is a fundamental

constraint on the operational viability of the financially-motivated ransomware campaign.

When ransomware was first observed in 1989, the AIDS ransomware [75] asked for $189 to be

sent to a PO Box address in Panama. In contrast, cryptocurrencies in the present scenario

permit ransomware operators to extract the ransom anonymously and indiscriminately. This

distributed, decentralized nature of cryptocurrencies is a major contributor to the growth of

ransomware. Since the bitcoin ledger is public, we can track ransom payments made to the

perpetrators’ wallets, but ultimately there is no regulation or control over cryptocurrency

transactions. Figure 4.2d shows the wallet ID of the NotPetya ransomware embedded within

the binary.

There are no solutions that seek to attack this constraint on ransomware because by this

stage, data is already encrypted. Technically, removing the ability to extract payments

over anonymous cryptocurrency-based channels would deter future financially-motivated

ransomware campaigns. However, the very nature of cryptocurrencies does not allow for

solutions to exist within this constraint since any entity can set up an anonymous payment

channel.

The proposed constraints are summarized in Figure 4.3 as {C1− C6}, while the overall

77

(a) Key generation in LockCrypt
(b) Random number generation in
Matrix ransomware

(c) Data encryption by NotPetya
(d) Embedded wallet ID establishing
payment route in NotPetya

Figure 4.2: Disassembly of modern ransomware

ransomware process execution is shown as {P1−P8}. Note that constraints are an integral

subset of an effective ransomware’s process execution flow. P7 is realized post-payment and

ensures the availability of the decryption secret. Ransomware usually carry a decryption

routine that possesses the ability to decrypt data when provided with the correct decryption

secret. While {P7, P8} (data restoration) is identified as part of the ransomware process

execution, ransomware do not always restore data post-payment. However, a large subset of

ransomware will provide data restoration after successful payment to motivate other victims

of the same campaign to pay. Solutions such as key escrow techniques [14] enables {P7, P8}

without ransom payment, and functional backups enable P8.

78

4.5 Experimental results

During this study, we classified existing solutions against ransomware by recognizing the

constraint(s) that these solutions violate. The existing solutions that are evaluated next were

chosen for their prevalence or novelty. It is possible for a solution to violate a fundamental

constraint on ransomware but contain an infeasible implementation. For instance, if a solu-

tion detects and blocks ransomware activity by dynamically studying process heuristics but

generates an intolerable amount of false positives during its operation, then such a solution

is considered infeasible. Thus, the term feasibility ultimately depends on the environment

where the solution is deployed (since some environments are more tolerant to false positives

than others). For instance, while key extraction by hooking the CryptoAPI [14] does vio-

late a fundamental constraint, it is not a feasible solution against ransomware if users in

the environment cannot be brought to trust an escrow system duplicating all cryptographic

material.

The proposed solutions, the constraints that these solutions violate, and their effective-

ness are summarized in Table 4.2. We have also indicated the general feasibility of the

solution, but ultimately, this feasibility should be determined by the administrators of the

environment where these solutions are to be implemented.

Table 4.2: Proposed solutions in light of constraints on ransomware

Solution Violates

con-

straint?

Constraint

violated Feasi-

ble?

Comments

User awareness and

training [92]

7 None 3 Forces ransomware to seek

other attack vectors

Regular patching [93] 7 None 3 Forces ransomware to seek

other attack vectors

79

Table 4.2: (cont’d)

Solution Violates

con-

straint?

Constraint

violated Feasi-

ble?

Comments

Firewall policies and

strong passwords [94]

7 None 3 Forces ransomware to seek

other attack vectors

Escrowing the crypto-

graphic secrets [14]

3 {C6, C7} 7 Requires user trust on the

escrow system

Blacklisted C&C do-

mains

7 None 3 A small subset of ran-

somware cannot encrypt

without communication

with the C&C server

Key extraction from

memory

3 {C6, C7} 7 Keys are short lived in

memory

Honey file traps [31] 3 C4 7 Large subset of user files

might be encrypted before a

dummy file is triggered

Heuristics-based

detection [26] [25]

3 {C2, C4} 7 Large number of false posi-

tives

Complete and fre-

quent backups

3 C6 3 Although feasible, restora-

tion frequently fails in real-

life

Signature-based

detection

3 C2 7 Unable to detect new

threats.

User awareness and training can be an effective solution against ransomware that tar-

get user gullibility using social engineering attack vectors. However, ransomware that con-

80

tain other attack vectors (e.g. exploiting known vulnerabilities, bruteforcing weak RDP

passwords), can still affect the host. The fundamental constraint, C1, can be violated by

eliminating all attack vectors, which user awareness and training, by itself, cannot realize.

Similarly, regular patching (prevents ransomware seeking to exploit known vulnerabilities)

and proper firewall policies and authentication (debilitates bruteforce attempts) fail to vi-

olate a fundamental constraint on their own. However, when combined, all three of these

solutions present a strong front on attacking the fundamental constraint C1 on ransomware.

Escrowing cryptographic secrets [14] directly eliminated the required leverage that the

ransomware seeks over the victim. Ultimately, it is this cryptographic secret that is held

for ransom and removing attacker’s unique access to this secret facilitates data restoration

without ransom payment. Similarly, it is possible to extract ransomware keys from memory

during the process of encryption. However, a large subset of successful ransomware generate

different keys for encrypting different files such that a different key is used for every file.

In this case, key extraction from memory is ineffective unless all keys can be successfully

extracted from the highly volatile system memory. Hence, this methodology of data recovery

is marked as infeasible.

Certain ransomware have been known to acquire the needed encryption key(s) by means

of communication with a remote C&C server. These ransomware are highly dependent on

this communication since data encryption cannot commence without the required key(s).

Thus, network administrators maintaining a shared blacklist of known C&C servers can

debilitate the operation of such ransomware. However, no fundamental constraint is violated

here since, ultimately, alternative strategies exist that can provide the required key(s) (e.g.

using the CryptoAPI [18]). Indeed, we have observed secondary key generation procedures

existing in certain ransomware such that when the primary key generation strategy fails, the

secondary strategy can be invoked as a fail-safe.

Honeyfile-based traps [31] are suggested as a potential solution against ransomware such

that dummy (bait) files are scattered throughout the system to act as tripwire for the ran-

81

somware. This solution violates constraint {C4, C5} on the ransomware, but it infeasible

for most environment since it is not clear where to place the baitfiles on the system. The

location of honeyfiles is an important consideration lest ransomware begin file encryption in

a directory where no such honeyfiles exist and the threat, consequently, escapes detection.

The strategy of scattering these honeyfiles throughout the system can get confusing for the

users. Similarly, heuristics-based detection solutions can be infeasible when generating a

high amount of false positives due to activity from legitimate applications that resemble

ransomware such as archiving utilities and file encryption programs.

Finally, backups and signature-based detection are popularly used solutions against ran-

somware. Signature-based detection violates constraint C2 on previously observed ran-

somware, but cannot detect novel threats and hence is infeasible. Backups restore access to

the critical data and thus violate constraint C6, but empirical evidence from the continual

success of modern cryptographic ransomware suggests that backups are often non-existent,

partial, or infrequent in many environments.

4.6 Summary

The constraints highlighted in this paper contain partial ordering such that certain con-

straints must be realized before others. For instance, {C1, C2} are realized before any other

constraint, but the sequence of C3 and C4 is flexible. The NIST Cybersecurity Frame-

work [30] highlights 5 core functions: identify, protect, detect, respond, and recover. During

this work, we observed that a large set of data security efforts are geared towards the pro-

tect and detect functions. There is a clear need for data security solutions that target the

response and recovery functions against ransomware. Currently, key escrow techniques [14]

and data backups are the only solutions that can facilitate data recovery without ransom

payment.

It follows from our analysis that a primary reason why ransomware has gained trac-

tion within the cybercrime underground is due to the presence of a highly limited set of

82

fundamental constraints on ransomware which permits the ransomware operators to easily

achieve their nefarious objective. A small set of constraints effectively shortens the kill chain

which improves the viability (and hence likelihood) of the attack. Ransomware pose a severe

threat to organizational security and necessitate the use of defense-in-depth strategies. Our

adversaries operate under tight constraints that must be capitalized on for building effective

solutions. A layered defense that targets multiple constraints is a required data security

strategy in organizations.

83

Figure 4.3: Ransomware life cycle and identified constraints.

84

CHAPTER 5

STATIC AND DYNAMIC ANALYSIS

In order to build effective solutions against ransomware, a systematic study of primary func-

tionality in modern ransomware is indispensable. In this chapter, we highlight the results

of our static and dynamic analysis efforts against samples of real-world ransomware. These

samples were obtained from a variety of malware repositories as detailed later. Static analy-

sis pertains to the disassembly and decompilation of the ransomware binary in order to read

the relevant source code (often in a low-level language). Sifting through the ransomware

binary code can be time consuming and laborious, but reveals hidden functionality and

logic embedded within the malware. Perhaps the most challenging part of static analysis is

the manual unpacking required for samples that packed specifically to thwart such analysis.

Dynamic analysis includes actual execution of the ransomware threat in a controlled envi-

ronment and contains its own set of challenges. Primarily, it is crucial to properly isolate

the virtual environment before ransomware execution and monitor all activities initiated by

the ransomware process on the host system after execution.

5.1 Introduction

As with most malware, analysts studying ransomware do not have the luxury of reading

plain source code. However, interpreted languages such as .NET offer the next best alter-

native in that ransomware written in these languages can be decompiled [95]. The result of

the decompilation is significantly closer to the actual source code in the case of interpreted

languages. Thus, while it is possible for these ransomware to still carry some level of obfus-

cation, analysis becomes easier when the malware is written with an interpreted language.

In contrast, ransomware written in compiled languages can only be statically disassembled

to reveal the relevant assembly code when the ransomware is unpacked. However in most

cases, ransomware come heavily packed to thwart reverse engineering.

85

5.2 Static dissection of ransomware

Static analysis is performed by reverse engineering the sample to study its functionality.

Disassemblers such as IDA and Ghidra reveal the underlying assembly code without the

requirement to execute the ransomware. Similarly, decompilers such as ILSpy, dnSpy, and

RetDec attempt to create a source code file in a high level language that is close to the

actual source code. While decompilers cannot provide the actual source code, some of these

attempts are successful in generating a legible high level code that is easier to analyse than

the assembly code. Next, we discuss the several phases of ransomware infection as observed

via static dissection of .NET executables.

5.2.1 Delivery and preparation phase

Delivery and preparation is the first stage of ransomware impacting a host. Numerous

delivery mechanisms are deployed by ransomware operators to propagate the malware. These

include phishing, exploiting known vulnerabilities, and bruteforcing weak RDP passwords.

Once the malware establishes initial foothold into the system, execution starts with the

preparation phase and may include procedures to conceal the ongoing infection. For instance,

ransomware process names are usually benign to avoid suspicion. In the case of the Jigsaw

ransomware, the infection binary is dropped with the following filenames:

Config.TempExeRelativePath = "Drpbx\\drpbx.exe";

Config.FinalExeRelativePath = "Frfx\\firefox.exe";

Similarly, BlackRuby ransomware was observed concealing itself as a legitimate Windows

process svchost.exe:

process.StartInfo.FileName = "Svchost.exe";

86

In other cases, ransomware have been observed to inject themselves into benign processes

running on the host. Thus, during the preparation phase, ransomware seek to ensure that the

remaining execution completes covertly and successfully with no hindrance from the host.

5.2.2 Key generation phase

Once the preparation phase is complete, ransomware require a cryptographic secret to com-

mence encryption. Key generation is a crucial part of the infection model since the ran-

somware must acquire unique key(s) to infect the victim as previously stated. A plethora of

options exist that facilitate key generation but not all of them are cryptographically effective

as shown next. The primary approaches for key generation in ransomware are as follows:

• Embedded symmetric key: Hard-coding obfuscated secrets within the binary is clearly

highly vulnerable to reverse engineering and yet several ransomware variants are known

to carry an embedded symmetric key that is used for encryption. As an example,

Adamlocker is shown in Figure 5.1 using the following string as a password to derive

the encryption key: 8jg7RPUMOvLBwr6WK6tf

The key derivation function in Adamlocker, conveniently named CreateKey(), simply

calculates a SHA-512 hash of the password string. Since SHA-512 always returns 64

bytes, the first 32 bytes of this byte array are used as an AES-256 key to encrypt all

files and the IV is constructed with the next 16 bytes in the byte array. The key and

the IV are then observed in the ransomware’s process memory as shown in Figure 5.2.

Clearly, this is an ineffective approach to generating an encryption key. Not only is

the password string hard-coded in the binary, but a SHA hashing function is used to

derive the needed key which is not designed to slow down bruteforce attempts like a

Password-based Key Derivation Function (PBKDF) shown later.

• Using the random module: WhiteRabbit ransomware uses System.Random() to choose

random characters from a long ASCII string as shown in Figure 5.3.

An analysis of System.Random() reveals that this method is not suitable for generating

87

Figure 5.1: Key generation in AdamLocker

Figure 5.2: Password string, key, and IV in AdamLocker

Figure 5.3: Key generation in WhiteRabbit

88

Figure 5.4: Key generation in Alphalocker

cryptographic secrets. The seed value used by the constructor is Environment.Tickcount

which counts the number of milliseconds since the last computer bootup. Conse-

quently, this tickcount value can be predicted by bruteforcing all possibilities within

the search space since most users restart their computer at least every day, mak-

ing exhaustive search within this space quite feasible. Even with using the standard

PBKDF2, Password-based Key Derivation Function that is designed to slow down

bruteforce password attacks, the seed value is still within a search space finite enough

to be feasibly exhausted on an end-user laptop without specialized hardware.

• Acquiring key over the network: Alphalocker reaches out with the victim’s ID to

its Command-and-Control (CC) server as shown in Figure 5.4. An RSA key pair is

then generated at the CC server and the corresponding public key is sent back to the

ransomware client. Alphalocker then generates unique AES keys on host and encrypts

files with AES. The AES keys are then encrypted with the RSA public key returned by

the server which is a variation of the hybrid encryption approach discussed previously.

Alphalocker derives the AES keys using the Rfc2898DeriveBytes() method using

the following statement:

deriveBytes = new Rfc2898DeriveBytes(passwordBytes,

(byte[])obj2, 1000);

89

Figure 5.5: Key generation in Alphabet

In case of Alphalocker, malware developers justifiably deployed the

Rfc2898DeriveBytes() method which implements password-based key derivation func-

tionality as specified by PBKDF2. Using PBKDF2 is better for deriving an AES key

than simply computing SHA or other hash (as seen in the case of Adamlocker), since

PBKDF2 is, by design, slow to provide resistance against bruteforce attempts. There-

fore, upon receiving the cryptographic material from the CC server, Alphalocker can

be quite effective in accomplishing its objective. However, ransomware that rely on

communication with the CC server are rated less virulent2 since this dependency proves

fatal when the CC server is offline or blocked at the firewall. While the ransomware

client waits in a loop for response from the CC, encryption cannot commence in the

absence of the required key. Note that some ransomware carry a secondary approach

in the form of a hard-coded key as a failsafe in the event the ransomware cannot

communicate with the CC server.

• Using cryptographically secure approaches: Category 6 ransomware avoid dependency

on the CC server and can generate unique encryption keys on host using cryptographically-

secure random modules. Alphabet ransomware demonstrates this ability as shown in

Figure 5.5.

Alphabet fills a byte array with 32 random bytes to be used as an AES-256 key. It uses

the standard crypto library call RNGCryptoServiceProvider().GetBytes which is

cryptographically random and hence secure. This implies that once the key is generated

there is no way to predict or reproduce this key or byte sequence post-infection.

90

Figure 5.6: Encryption of AES key with an RSA public key in Alphabet

In line with the hybrid cryptosystem in Figure 3.1, Alphabet later uses an RSA public

key to protect the AES key as shown in Figure 5.6.

The EncryptionEngine class observed in Figure 5.6 is embedded in the ransomware

and it ultimately utilizes the following well-known library call to encrypt the AES key:

RSACryptoServiceProvider.Encrypt()

5.2.3 File enumeration and encryption

Once the key generation is successful, the ransomware now needs to enumerate files-of-

interest on the host and commence encryption. Files-of-interest are generated using either

an inclusion or exclusion list of file extensions. The ransomware will either carry a list of file

extensions to encrypt or a list of file extensions to exclude from encryption. For instance,

an inclusion list will likely include .docx and .xlsx whereas exclusion list might specify

excluding DLL.

The file encryption procedure for Adamlocker is shown in Figure 8. The ransomware

deploys the FileSystem.GetDirectories() and FileSystem.GetFiles() function calls to

generate a list of files to be encrypted. These calls are standard practice for file enumeration

in .NET.

To minimize errors, ransomware developers prefer the cryptographic abstraction pro-

vided by the dynamic libraries that exist on the host since writing the encryption rou-

tines from scratch gets convoluted and hence error prone. RijndaelManaged class from

the System.Security.Cryptography namespace is used to perform the encryption in most

.NET ransomware. Specifically, CreateEncryptor() is used to create a symmetric Rijndael

encryptor object. Alphabet ransomware is also observed using the .NET Cryptostream class

91

Figure 5.7: File encryption in Alphabet

to encrypt a file as shown in Figure 5.7.

The KeySize is set to 256 bits (or 32 bytes) and the BlockSize to 128 bits (16 bytes),

both of which correspond with AES-256. The Cipher Block Chaining (CBC) mode is used

for encryption, using an IV on the first block of data.

5.2.4 Post-encryption phase

Besides key generation and encryption, ransomware performs additional background activ-

ities on the host depending on the variant. For instance, a large subset of variants were

observed explicitly purging volume shadow copies on the host to hinder file recovery by

starting a new cmd terminal process that uses vssadmin to quietly delete all shadow copies

similar to this:

"C:\Windows\System32\cmd.exe" /c vssadmin delete shadows /all

/quiet & wmic shadowcopy delete & bcdedit /set {default}

bootstatuspolicy ignoreallfailures & bcdedit /set {default}

recoveryenabled no & wbadmin delete catalog -quiet

On the decryption front, we discovered that all 8 .NET ransomware studied contained

a decryption component that was set to decrypt the files if the correct key was provided as

an input. However, the decryption component is not always a part of the infection binary

92

Figure 5.8: Jigsaw communicating with its CC server

and can be delivered to the victim post-ransom payment. It should be noted that in the

long term, it is in the best interest of the underground ransomware industry to decrypt

data following a successful ransom payment to encourage other victims to pay. In fact, a

recent report indicates that ransomware operators provided decryption tools upon successful

ransom payment in 98% of the cases. The password or string that is used to construct the

decryption key, can be encrypted and left on the host or sent back to the C&C server as

observed in the case of the Jigsaw ransomware in Figure 5.8.

Jigsaw sends the machine name, username, and password, all concatenated as a string

to the C&C server. Finally, a ransom message is shown to the user informing them of

the data encryption and payment route and convincing them to pay the ransom. These

ransom messages can either be displayed in a message box using the standard Message()

call in the case of .NET ransomware or be placed in a how-to-decrypt.txt file that the user can

access. Alphabet ransomware allows 5 hours for the payment before it executes the following

command, quietly wiping the C: partition on host:

Process.Start("cmd", "/c rd C:\\ /s /q ");

Alphabet and RansomAES also launch a guard thread that kills the Task Manager in an

attempt to prevent user from killing the ransomware process:

93

Figure 5.9: Geographic location lookup in BlackRuby

Figure 5.10: A mining routine ships embedded within BlackRuby

Process.GetProcessesByName("taskmgr")[0].Kill();

Similar to other ransomware, .NET ransomware will ensure that unencrypted secret keys

do not persist on the host by explicitly setting corresponding parameters in the cryptographic

service provider. For instance, RansomAES sets this parameter to False as follows:

rsacryptoServiceProvider.PersistKeyInCsp = false;

Interestingly, BlackRuby looks up victim’s geographic location based on the IP address

and does not commence encryption if the country code is IR (IRAN) as shown in Figure 5.9.

Furthermore, BlackRuby drops a mining routine set to simultaneously mine Monero on

the host computer as shown in Figure 5.10.

94

5.2.5 Experimental results

During this study, we conducted static and dynamic analysis for the following .NET ran-

somware samples on an isolated Windows 10 sandbox. MD5 hashes are shown in Table 5.1

to indicate the variants studied.

Table 5.1: .NET ransomware samples studied

Ransomware MD5 Hash

Cryptoransomware 84C44DF77EFB8A55ABD217A379C2589A

Jigsaw 07046473F9BC851178EBC155D0BB916B

Alphabet DBE78231174B03239EB262CC2D2D0900

Alphalocker C8EF7849A40DBC220B6B3CB5C9FAE496

Adamlocker D4452ADFC41A7075F5E5796172775898

WhiteRabbit E3F2CC2ADEEAABDF1B331153DE14174B

BlackRuby 4958DDE3003BD4A89A6E82DC9ABD16CB

RansomAES 2B745E0A8DADAC6B2BECCD26DDB8C08D

ILSpy and dnSpy were used for decompiling and debugging the ransomware. Based on

the evidence collected from these samples, we have generalized the flow of execution in .NET

ransomware in Figure 5.11.

This execution flow can be comprehended as follows. The .NET ransomware infects the

host and gains execution privileges {C1, C2} and then takes steps to conceal itself. It then

acquires a key for encryption {C3}. Depending on the variant, a connection could be es-

tablished with the CC server for this purpose. Files are enumerated {C4} and encrypted

{C5}. Original files are now replaced with their encrypted counterparts {C6} and all plain-

text encryption keys are removed from host {C7}. Finally, a ransom demand is made {C8}.

Abstraction is used by ransomware variants in the form of appropriate library calls as shown

in Figure 5.11.

95

Figure 5.11: Generalized flow of execution in .NET ransomware

5.3 Evaluating dynamic API calls in ransomware

Ransomware heavily rely upon Windows Application Programming Interface (API) calls

during execution and these calls carry descriptive details of ransomware behavior. Without

this abstraction, ransomware developers would face adverse complexity that would inevitably

lead to errors in implementation. Therefore, it is possible to dynamically log all API calls

made by ransomware during execution to understand their true functionality. These logs

can ultimately be used to quickly comprehend key management, obfuscation, file access

patterns, network communication, child processes and threads, and other intricacies of novel

ransomware variants. Moreover, partial ordering derived from these API logs can be used

to build effective classifiers to detect previously unseen ransomware.

There were several challenges in logging all API calls made by ransomware. Primarily, the

96

particularly virulent Category 6 ransomware [85] often carry anti-forensics components that

are launched by the core staging binary to determine if the ransomware is being executed

in a controlled research environment (sandbox). Next, in many cases, this primary stager

launches secondary components via subprocesses where each component serves a purpose

(e.g. encryption, network probing to spread the infection on neighboring nodes, purging any

existing backups, etc.). Therefore, we must follow all of these components in memory to

acquire a complete picture of ransomware execution. Finally, ransomware makes 1000s of

unique API calls during its lifetime, thus it becomes incumbent to filter out the noise by

selecting API calls of interest.

Our results demonstrate that API call logs provide a complete understanding of novel

ransomware and the intricacies of its cryptosystem, file access patterns, network communi-

cation, and other critical components. We also observe API calls that are common across

different families of ransomware, which can permit profiling API calls to detect ransomware.

CSPs are implemented in the form of several .dll files on a Windows host. Ransomware’s

interaction with the preexisting CSPs is illustrated in Figure 5.12. All cryptographic methods

shown in Algorithm A are exported by cryptsp.dll. Using signatures, cryptsp.dll also

verifies the authenticity of a CSP requested by an application. All CSPs must be digitally

signed by Microsoft. CryptoAPI is now deprecated and replaced by Microsoft’s Cryptography

API: Next Generation (CNG) but are still present on Windows hosts and ransomware can

invoke either during encryption.

5.4 Ransomware’s dependence on API calls

While S defines hard constraints on ransomware that cannot be circumvented, a soft

constraint is the use of software abstraction while developing ransomware. Ransomware

developers, similar to other developers, seek to simplify implementation by dynamically in-

volving API methods that preexist on the host. This is a soft constraint since eliminating

these API calls is technically feasible, however operationally unviable due to the underly-

97

Figure 5.12: CSPs in Windows CryptoAPI

ing complexity. In particular, cryptographic abstraction is highly desired by ransomware

developers in order to avoid introducing errors while implementing standard cryptographic

algorithms from scratch. In a study of 1, 359 ransomware by Kharraz et al. [16], 94% of

the samples were discovered to be ineffective scareware. Simultaneously, Herzog et al. [38]

elaborated errors in even simple abstracted API calls in ransomware. Consequently, the

most virulent, Category 6 [85] ransomware contain heavy abstraction in the form of API

calls to guarantee an error-free implementation. For instance, Figure 3.5 shows disassembly

pertaining to the LockCrypt2.0 ransomware and illustrates the cryptographic abstraction

sought by LockCrypt. This implementation is consistent with the hybrid encryption scheme

shown in Figure 3.1 and the individual API calls are explained in Section 5.4.4.

We have identified 4 major classes of API calls in modern ransomware. Each of these

classes aid the ransomware in satisfying one or more constraints in S.

98

(a) Layout (COC, FOC, SOC)

100 101 102 103 104 105 106
Number of calls observed

wcsicmp
FindNextFileW

WriteFile
CloseHandle
DeleteFileW
CreateFileW
MoveFileExW

GetFileAttributesW
ReadFile

FindFirstFileW
FindClose

CryptGenRandom
GetFileSizeEx
CryptEncrypt
MoveFileW

CryptImportKey
CryptDestroyKey

CryptAcquireContextA
CryptExportKey

CryptGenKey

(b) Number of API calls

Figure 5.13: Visualization of API calls made by WannaCry

5.4.1 Process-oriented calls (POC)

According to constraint {C2, C3}, ransomware seeks execution privileges on the host. As

such, process and DLL injection calls, such as OpenProcess, WriteProcessMemory, LoadLibrary,

CreateThread are deployed to ensure continued execution until file encryption is success-

ful on the host. CreateMutex is used to ensure that only a single instance of ransomware

runs at a time. RegOpenKey can be used to manipulate system registry to gain persis-

tence on the host. Ransomware typically allocate memory with RW (Read/Write) permis-

sions while unpacking and store an unpacked copy at this memory location. Eventually,

VirtualProtect is used to make this memory area executable and execute the unpacked

payload. GetTickCount is used to evaluate system uptime and determine if the uptime is less

than a preset value. This is done to evade dynamic analysis in a sandbox environment since

sandboxes normally commence malware execution immediately upon system start. We also

observed certain ransomware, such as Satan, seeking to identify laboratory environments

using IsDebuggerPresent.

99

5.4.2 String-oriented calls (SOC)

Ransomware processes invoke several string-related methods during execution to satisfy con-

straints {C4, C5}. For instance, ransomware binary often comes embedded with a list of file

extensions to encrypt (files-of-interest) since encrypting all files is inefficient and debilitates

the host. String comparison methods, such as CompareString or wcsicmp, are then used to

populate a list of files to be encrypted on the host.

5.4.3 File-oriented calls (FOC)

Since mass file modifications are characteristic of crypto-ransomware (constraints: {C4, C5}),

these ransomware deploy existing API calls to achieve the desired R/W access. Common

API calls observed in ransomware include CreateFile, WriteFile, DeleteFile, MoveFile,

MapViewOfFile (allows access to file contents via memory addresses), GetFileAttributes,

FindFirstFile (used for file enumeration), and GetFileSize (used to retrieve file size for

block encryption).

5.4.4 Crypt-oriented calls (COC)

Ultimately, traditional ransomware seek leverage by encrypting irreplaceable data on the

host. Consequently, cryptographic API calls are consistently discovered in all ransomware [85]

as seen in Figure 3.5 and discussed in Section 5.5.1. For instance, the COC observed in

LockCrypt (Figure 3.5) are explained next. CryptImportKey is used to import the at-

tacker’s embedded public key and CryptGenKey is used to securely generate an AES-256

key. This encryption key is protected with the attacker’s public key using CryptExportKey

and file encryption is performed with CryptEncrypt. Finally, the key is destroyed using

CryptDestroyKey and a ransom note is shown.

100

5.5 Extracting relevant API calls from ransomware

A primary challenge in static extraction of API calls from real-world ransomware samples

is that a large subset of ransomware carry obfuscation in the form of packers to conceal the

malicious functionality and thwart analysis. These packers and associated techniques can

vary significantly among variants which necessitates laborious manual unpacking. Conse-

quently, automated data mining based on available static samples of ransomware becomes

infeasible. A solution to this challenge is dynamic API monitoring which becomes feasible

since packed ransomware will eventually unpack themselves in system memory during exe-

cution. However, it is crucial to follow the ransomware execution as it forks and injects itself

into other processes in memory as discussed in Section 5.5.1.

We extracted API calls from 5 real-world ransomware samples. These samples were col-

lected from various malware repositories [96] [97] [98]. Our test environment consisted of a

sandboxed Windows 10 machine loaded with our API hooking routine. This hooking rou-

tine contained exhaustive definitions of all common Windows API calls. Ransomware were

serially executed with the hooking routine injecting the required DLLs in the ransomware

process memory in order to transparently intercept API calls. Following successful hooking,

all API calls made by the ransomware were recorded into an offsite log database that could

be queried post-infection. Sandbox was reverted to a clean state after complete call log ex-

traction from a sample. Each API call was recorded along with its arguments and returned

value as shown below:

LockCrypt.exe:

ADVAPI32.dll -> CryptGenKey (

HCRYPTPROV hProv = 0x81c898,

ALG_ID Algid = CALG_AES_256,

DWORD dwFlags = 0x1,

HCRYPTKEY* phKey = 0x404b20

101

) -> 0x1 [0x76 µs]

LockCrypt makes a single call to CryptGenKey (available via advapi32.dll on Windows)

throughout the process’s lifetime, which indicates that the same AES-256 key is used to

encrypt all files on the host. The handle to the key thus generated by the CryptoAPI is

loaded at the memory address 0x404b20. The non-zero return value (0x1) indicates that

the function was successful in generating the desired key. Thus, the collected logs provide

useful insights pertaining to the intricacies of the ransomware’s execution on the host.

Statistical representation of the API calls observed in modern ransomware is presented

in the following sections. Since a ransomware can make 1000s of different API calls during

its process lifetime (with log file sizes reaching 100s of MBs), it becomes incumbent to prune

this information before presentation. As such, we have chosen to only show the API calls

that are the most characteristic of a ransomware process.

5.5.1 Experimental results

Such dynamic extraction of API calls significantly simplifies the otherwise convoluted analy-

sis of a novel ransomware’s cryptosystem and directory traversal. For instance, in the case of

WannaCry, we observe that CryptGenKey was invoked once (per host) while CryptGenRandom

was invoked multiple times (once for each file encrypted).

The WannaCry ransomware is a potent Category 6 [85] ransomware that presents the most

difficult case for analysis. This malware comes encrypted in a DLL with multiple staging

components that are decrypted and unpacked in memory during execution. The 3 main

components of WannaCry in memory are briefly discussed as follows:

1. Dropper: probes to exploit the MS17-010 vulnerability and launches the next compo-

nent.

2. Task scheduler: drops the necessary configuration and TOR files, and decrypts and

launches the encryptor.

102

3. Encryptor: prepares encryption material such as keys, creates mutex, and performs

file encryption. The results shown in Figure 5.13 pertain to this encryptor component

of WannaCry.

For accurately representative API call extraction, our extraction utility followed the

encryptor component in memory. Figure 5.13a contains a colored RBG pixel into the image

for each API call observed in ransomware. Pixel color can be one of three values depending

the class of the API call. Some superfluous API calls were ignored during image generation

to enhance clarity. Figure 5.13a shows the 3 primary classes of calls as observed in the

WannaCry encryptor component. The specific API calls under COC, FOC, and SOC are

detailed in Section 5.4. As seen in Figure 5.13a and Figure 5.13b, the encryptor component

primarily makes string-oriented calls interleaved with some file-oriented calls during the early

stages of infection. This is because the infection traverses directories, extracts file names,

and compares the extensions against an embedded list of file extensions to encrypt. During

the next stage, we observe in Figure 5.13a, the ransomware generating cryptographic key

material using CryptGenRandom and then encrypting (modifying) files using this key. In our

log file, we observe the following series of correlated API calls that generate the 16 bytes

(0x10) AES-128 key:

wannacry.exe:

ADVAPI32.dll -> CryptGenRandom (

HCRYPTPROV hProv = 0xbbedd8,

DWORD dwLen = 0x10,

BYTE* pbBuffer = 0x19968c

) -> 0x1 [0x7 µs]

WannaCry imports the embedded public key using CryptImportKey as shown in Ap-

pendix A. We observe a single call to CryptGenKey which is used to generate a victim-specific

asymmetric (RSA-2048) keypair. The public key from this keypair is used to protect the set

103

of file encryption keys, while the private key is encrypted with the attacker’s embedded

public key and held for ransom [85].

Table 5.2 introduces selected API calls and their counts observed in families of real-

world, Category 6 (the most virulent) ransomware. Cerber deployed the relatively newer

CNG available in Windows. The names of these CNG calls are representative of their func-

tionality. For instance, BCryptGenerateSymmetricKey is used to generate symmetric keys

for file encryption. The symmetry between the number of BCryptGenerateSymmetricKey

and BCryptDestroyKey calls indicates that Cerber securely purges the symmetric key im-

mediately upon file encryption. In the case of BadRabbit, BCryptOpenAlgorithmProvider

is called 3 times, once each for RSA, MD5, and AES. Thus, API call logs permit us to

quickly identify the algorithms used by this ransomware. CryptDeriveKey is used once to

derive an AES-128 key from a string that is randomly generated using CryptGenRandom.

This indicates that the ransomware uses the same AES-128 key to encrypt all files on the

host. Next, Phobos is observed using Process32Next to enumerate processes running on the

system to find a process to inject into.

Table 5.2: API calls extracted from real-world ransomware

Ransomware (and MD5

sum)

Extracted API calls (and counts)

LockCrypt

3CF87E475A67977A-

B96DFF95230F8146

CryptGenKey (1); CryptEncrypt (463484); Crypt-

DestroyKey (546); CryptDuplicateKey (684); Find-

NextFileW (2162); FindFirstFileW (558); MapViewOf-

File (693); MoveFileW (730); CreateFileW (1069);

lstrcmpiW (16542); CompareStringW (18122); wcslen

(24994)

104

Table 5.2: (cont’d)

Ransomware (and MD5

sum)

Extracted API calls (and counts)

WannaCry

84C82835A5D21BBC-

F75A61706D8AB549

CryptGenRandom (684); CryptGenKey (1); CryptEn-

crypt (645); MoveFile (640); CopyFile (178); CreateFile

(49); CryptImportKey (5); CryptDestroyKey (4); Cryp-

tExportKey (3); CreateMutex (2); FindFirstFile (1097);

wcscmp (44671); wcsicmp (1045031)

Cerber

FE1BC60A95B2C2D7-

7CD5D232296A7FA4

BCryptGenerateSymmetricKey (9191); BCryptEncrypt

(8186); BCryptDestroyKey (9191);

BadRabbit

FBBDC39AF1139AEBB-

A4DA004475E8839

CryptEncrypt (19011); CryptDuplicateKey (19497);

CreateFile (19992); CryptDestroyKey (19497);

CryptHashData (19070); FindFirstFile (4008); Find-

NextFile (55900); BCryptOpenAlgorithmProvider (3);

CryptDeriveKey (1); CreateFile (19511);

Phobos

9CE44430DB1D80412-

1AAD69A219A6EF1

OpenMutex (504); CreateMutex (2); GetProcessHeap

(32634); CreateProcess (1); ReadFile (8339); WriteFile

(24732); FindFirstFile (12755); FindNextFile (132351);

Process32Next (54853);

105

5.6 Summary

Static extraction of API calls from real-world ransomware samples is a convoluted task

since similar to other malware, virulent ransomware variants come heavily packed to thwart

such analysis. However, dynamic extraction shown in this work significantly simplifies threat

analysis of novel ransomware families. It is evident that ransomware developers depend

on API calls to attain their malicious objective. Consequently, pattern identification and

redirection of suspicious API call sequences can offer an effective strategy in impeding the

impact of modern ransomware.

Extraction of API calls provided a plethora of significant information regarding the func-

tionality of ransomware. To derive an equivalent amount of information from traditional

static or dynamic analysis would require significantly more time and effort. For instance,

we were able to determine whether the ransomware used the same key to encrypt all files,

whether this key was securely wiped from memory, the number and type of encryption al-

gorithms used, unique mutexes creates (useful in creating signatures for the variant), etc.

Although we have extracted API logs for a large subset of real-world ransomware, we have

shown only 5 samples in Table 6.1 for the sake of brevity. Additionally, common API calls

are repeated in different variants making them redundant for representation in this work. In

our future work, we wish to expand upon the collected API call logs to train a classifier in

differentiating ransomware from other benign software.

One of the primary reasons behind the proliferation of ransomware in the current scenario

is the low barrier to entry. Following host infiltration by the ransomware, constraints in S are

very limited and easily realized by the malware using well-documented API calls available

on the host. Exploiting ransomware’s dependence on API calls thus has the potential to

severely debilitate the existing kill chain in modern ransomware.

106

CHAPTER 6

USING MEMORY FORENSICS FOR KEY EXTRACTION

The menace of ransomware continues to threaten modern computing systems causing bil-

lions of dollars in damage and reaping millions for the perpetrators [1]. Cryptographic

ransomware constitute the most virulent subset of malicious software as these ransomware

perform unauthorized encryption of victim’s data and demand a ransom in exchange for the

decryption key(s). The ease of ransomware implementation and deployment, the strength of

standard cryptographic algorithms, and the general unavailability of data backups, makes

data recovery following a ransomware attack an especially challenging problem. In a novel

solution to this issue, we recognize and highlight the prominence of key management in the

ransomware operation and present methodologies to acquire the encryption secrets that the

ransomware must protect in order to succeed in extracting the ransom.

6.1 Introduction

Ransomware are causing widespread mayhem by attacking individuals and organizations.

In fact, ransomware have been rated as the top threat to security [2] and an integral part

of the underground cyber economy due to their persistent nature and widespread impact.

With most research efforts focused on the prevention and detection phases, recovery still

remains a major issue following a ransomware attack. This work focuses on the aftermath

of a ransomware infection, that is, we assume all preventative measures have failed and the

infection is operating on the host.

Our solution builds on the fundamental truth that the most virulent crypto-ransomware

encrypt files on the host which is a white-box to the user. Conventional implementations

of encryption algorithms are highly susceptible to attacks when the encryption occurs in a

hostile environment. This weakness occurs because these algorithms are designed to protect

data post-encryption and hence there are no attempts to conceal the secrets that are exposed

107

during the encryption process on the host. This realization allows us to extract cryptographic

secrets, such as keys, from memory, and break the chain of fundamental constraints on

modern crypto-ransomware [3]. These secrets (keys) facilitate file recovery.

The implementation of pickpocket is built upon knowledge derived from the areas of ap-

plied cryptography, memory forensics, and reverse engineering and as such presented multiple

challenges. The primary technical challenge we faced during implementation was combating

the volatility of system memory. The window for extraction of a ransomware’s cryptographic

secrets can be small depending on the ransomware. For instance, there is a larger window

for key extraction in ransomware that deploy the same key for encryption of multiple files

on host. However, this window can shrink significantly if the ransomware is deploying one

encryption key per file and securely wiping keys from memory following file encryption. We

mitigated this issue in two ways: first, by recognizing that we do not need to recover every

symmetric file encryption key if we can recover the asymmetric key that protects these keys

as detailed in Section 6.2, and second, by exploiting data locality in memory as discussed in

Section 6.7. We validated this hypothesis by recovering files encrypted by several real-world

ransomware belonging to different families.

We successfully recovered keys from all ransomware that we tested. In most instances we

successfully decrypted all files, but with a few ransomware, very small files were encrypted

too quickly for our in-memory attack to succeed. Our worst case on real ransomware still

permitted recovery of 92% of the encrypted files. Our results show that it is feasible to nullify

the impact of modern cryptographic ransomware by acquiring keys from memory to enable

file recovery. Our solution provides a failsafe when all preventative measures and backups

have failed.

108

6.2 Background

6.2.1 Attack vectors

During the primary stage of infection, a ransomware seeks entry into the host and deploys a

variety of attack vectors towards this objective. In most instances of targeted ransomware

attacks, statistics on the attack vectors are difficult to collect since the attack vector is

seldom shared by the affected organization. On the other hand, spray-and-pray ransomware

attacks, such as WannaCry and NotPetya have well-known attack vectors [90]. The following

are the commonly deployed strategies to gain entry into the host:

• Social engineering. Sending mass or spear phishing emails to bait unsuspecting users

into malicious file execution is a well-known malware tactic [79].

• Exploitation of known vulnerabilities. Unpatched remote code execution vulnerabilities

allow the perpetrators to bypass any user engagement in the infection process and

install malicious code [90].

• Bruteforce of remote login services. Improperly configured RDP and SSH ports can

allow attackers remote access to the host. We have observed an increase of RDP-based

attack vectors in ransomware [99].

6.2.2 Encryption models

Ransomware primarily choose among 1) purely symmetric, 2) purely asymmetric, and 3) hy-

brid encryption models. With a purely symmetric encryption model, ransomware will seek

to encrypt files on the host using a symmetric encryption algorithm (e.g. AES). Naturally,

protecting the secrecy of the symmetric key then becomes paramount to the ransomware

operation. In ransomware variants where this symmetric key ships obfuscated in the binary,

this key is immediately recovered. In a purely asymmetric key model, the ransomware comes

embedded with the attacker’s public key and the file encryption is done with this public key.

The corresponding private key is held for ransom. This asymmetric model is very secure,

109

however, the speed of file encryption suffers due to the unsuitability of asymmetric algo-

rithms, such as RSA, for bulk data encryption. Furthermore, asymmetric encryption suffers

from considerable ciphertext expansion resulting in inflated file sizes after encryption. This

ciphertext expansion is as unsuitable for ransomware as it is for other encryption software.

Finally, most of the effective ransomware variants today deploy a hybrid encryption model

that utilizes the best features of both symmetric and asymmetric cryptography. Asymmet-

ric cryptography offers flexibility in key management and symmetric cryptography provides

the required swift speed of bulk encryption. Hence, a symmetric key can be deployed for

bulk data encryption while the attacker’s embedded public key can be used to encrypt and

protect the symmetric key until the ransom demand is met. The hybrid encryption model

is illustrated in Figure 3.1 and the implementation details, as observed in the LockCrypt

ransomware, are shown in Figure 6.2.

6.2.3 Key generation

Ransomware need a unique key per victim lest victims share keys amongst themselves to

neutralize the entire ransomware campaign. Interestingly, secure cryptographic key gener-

ation procedures are absent in a large subset of ransomware [38] [85]. In this section, we

discuss the key generation procedures observed in modern ransomware. Broadly speaking,

encryption keys can be generated: 1) on the host, or 2) on a remote C&C server (and then

communicated to the host). Ransomware are known to use standard cryptographic libraries,

such as the CryptoAPI [22], for key generation using functions such as CryptGenKey and

CryptGenRandom. However, many variants use insecure key generation practices such as cal-

culating hashes of fixed strings (embedded passwords) or deriving a seed value from system

time (ephemeral data) [3]. If the key is generated on the C&C server, it is communicated to

the infected host via network communication. Such ransomware become heavily dependent

on the communication channel which can be blocked at the firewall with a list of known,

blacklisted C&C servers [85], rendering the ransomware ineffective in the absence of the

110

encryption key.

6.2.4 Key persistence

Once a key is generated, the ransomware can deploy this key in data encryption. During the

process of encryption, the symmetric key being utilized for encryption persists in the host’s

system memory or RAM [100]. A ransomware has a choice to either use the same symmetric

key to encrypt all files—a choice embraced by a large subset of ransomware—or generate a

unique key for every file to be encrypted. Note that both offer the same level of cryptographic

assurance to the attacker since the end result of both is an unbreakable lock on user’s

data. However, since a symmetric key can be acquired at negligible cost from an API, some

ransomware will generate a different key per file. Naturally, a key is short-lived in memory for

ransomware that use a unique key per file and explicitly purge the current key from memory

within the file encryption loop. Unlike asymmetric keys, symmetric keys do not have a well-

defined structure in memory and exist as raw sequences of pseudorandom bytes which makes

key identification a challenge. However, similar to other programs, encryption routines load

all relevant data in memory during execution for efficiency, since I/O operations on disks are

relatively costly. This data held in memory includes the key schedule which is an array of

round keys that are computed from the symmetric key [101] [102] as shown in Figure 6.1. The

relationship between the symmetric key and the derived round keys allows key identification

in memory. For instance, in the case of AES-128, 16 bytes represent the actual key and

the next 112 bytes that follow are the round keys. Hence, the key identification routine

consists of scanning 16-byte blocks of memory and checking for the presence of expected

round keys in the next set of bytes that follow. If the expected bytes match the actual bytes

observed, then the current 16-byte block is an AES-128 key. The conundrum of key recovery

from memory has been addressed before. Halderman et al. [103] provided a methodology of

recovering AES keys in the presence of bit errors. Pettersson [104] demonstrated recovery

of keys from Linux memory dumps. Finally, Kaplan et al. [100] presented a comprehensive

111

Figure 6.1: Symmetric key schedule in memory.

review of potential key extraction from memory. However, as average computers acquire

better processing power, symmetric key extraction gets more challenging since encryption

is faster and the key does not persist long in memory for well-implemented cryptographic

applications. In the case of asymmetric keys, identification becomes trivial due to their

well-defined structure in memory [105] [106].

6.2.5 Key deletion

Upon conclusion of file encryption, a key is no longer needed in memory and needs to be se-

curely purged from the system. Fortunately, a large subset of ransomware are observed to be

neglectful of proper key hygiene which presents an opportunity for key recovery [38] [13] [85].

112

(a) Importing attacker’s public key
(b) Generating and exporting unique
AES-256 key

(c) File encryption and key deletion
(d) Secure key storage until ransom
payment

Figure 6.2: Cryptographic implementation of a Class B, Category 6 ransomware.

For instance, CryptoDefense ransomware neglected to set the flag CRYPT VERIFYCONTEXT

which resulted in its private keys persisting on disk and allowed for easy recovery. In the

context of memory, some ransomware variants may not explicitly purge keys while others ex-

plicitly wipe keys from memory using calls such as CryptDestroyKey (shown in Appendix B).

Key recovery is feasible before the ransomware executes an explicit key deletion operation.

As shown in Figure 6.2, LockCrypt demonstrates the cryptosystem and the key man-

agement cycle of a Category 6 ransomware. A context is first established with the dynamic

library CryptoAPI that exists on Windows hosts which allows for subsequent API calls.

The attacker’s embedded public key is then brought into the current cryptographic context

using CryptImportKey. Next, a cryptographically secure random AES-256 key is gener-

ated using CryptGenKey. This symmetric key is then protected with the attacker’s public

113

key using CryptExportKey and files are encrypted with the symmetric key in a loop using

CryptEncrypt. Finally, the symmetric key is explicitly wiped from memory using a call

to CryptDestroyKey. Following key deletion, the previously exported encrypted symmetric

key is saved to disk in a file DECODE.KEY. Upon ransom payment, the attacker has the ability

to decrypt this encrypted symmetric key using their private key. Minor variations of this

hybrid cryptosystem exist in most successful modern ransomware [85].

6.3 Design

In this section, we describe the three main components that constitute pickpocket and

the techniques used for the extraction of keys from different classes of ransomware. Sec-

tion 6.4 provides the implementation details for these design choices.

Pickpocket’s system design is based on the following two axioms that hold true while

the ransomware is encrypting user data:

Axiom 1. The encryption key must be held in memory during the process of encryption.

Axiom 2. Symmetric keys can be located in memory by identifying corresponding key sched-

ules. Asymmetric keys contain a structure and hence allow for signature-based detection in

memory.

Here, we recognize the significant difference between what we call Class A and Class

B ransomware where Class A use a different encryption key per file and Class B are ob-

served using the same key for every file. The algorithms pertaining to Class A and Class

B ransomware are detailed in Appendix A and Appendix B respectively. Naturally, the

duration of key exposure in Class B ransomware is significantly longer which facilitates a

higher success rate for complete data recovery. In contrast, well-implemented Class A ran-

somware will expose a key in memory for a shorter duration [107] which makes key recovery

a race against time unless external forces are applied to slow down the encryption. Since

the objective function for pickpocket is to maximize the percentage of data recovery, our

114

focus is to maximize the number of keys recovered for Class A ransomware. Note that both

Class A and Class B ransomware are capable of being Category 6 ransomware [85] since they

use a hybrid cryptosystem which, when implemented correctly, cannot be cryptographically

cracked.

For efficient use of system resources, we deploy a trigger condition to recognize a ran-

somware process with some certainty. Note that pickpocket does not require high accuracy

for the trigger condition since our approach is tolerant of false positives as discussed in Sec-

tion 6.5. There are several candidate approaches that can be deployed for trigger condition,

namely: 1) a classifier trained on I/O access patterns (similar to approaches discussed in

Chapter 2), 2) a controlled white-list of known and trusted applications, 3) bait-file based

detection. For our purposes, we implemented a bait-file based trigger condition since it

is light on system resources and can successfully detect ransomware activity regardless of

the ransomware’s characteristics since every cryptographic ransomware causes file modifi-

cation. However, we use the trigger condition as a ‘suspicion’ rather than a ‘confirmation’

of ransomware activity and hence initiate transparent key extraction rather than aggressive

termination or suspension of the process.

The design elements of pickpocket are shown in Figure 6.4 and comprise of three primary

components: 1) the monitoring module, 2) the key extraction module, and 3) the storage

vault. The monitoring module continuously checks for the satisfaction of the trigger condition

and is responsible for launching the key extraction module upon realization of the trigger.

A key is extracted, encrypted, and then communicated to an offsite storage vault for later

retrieval. Note that the key extraction module extracts multiple keys, both symmetric and

asymmetric, depending on the ransomware variant.

6.3.1 Filesystem monitoring

We placed bait files in test directories that no legitimate applications were expected to

modify. Modification by any process (especially high entropy operations) is a sign of potential

115

Figure 6.3: Structure of an RSA private key in memory.

ransomware activity and a monitoring script then triggers the key extraction component.

Note that the trigger module of pickpocket is flexible and can be substituted with another

trigger without affecting other modules of the system. The bait-file based trigger shown in

this work is for testing only and the focus of this work is the in-memory key extraction from

the ransomware process.

6.3.2 Key extraction from memory

Based on the key recovery techniques discussed in Section 6.2, we utilized the existence of

key schedules to identify symmetric keys such as AES and Serpent in memory. Asymmetric

keys were easier to identify using pre-defined structures. For instance, the memory snippet

shown in Figure 6.3 shows a raw RSA private keyblob loaded in memory. The structure of

the header bytes facilitates a signature-based extraction of keys.

116

6.3.3 Key vault

The vault is a secure off-site storage component that can be queried for keys in the event of a

ransomware strike. Since our approach is tolerant of false positives, we realize that the vault

is likely to eventually store keys pertaining to benign user applications. This raises concerns

regarding the user’s trust on the system. Consequently, the vault has to be protected such

that only the user is able to derive meaningful information from the vault and therefore is

protected with a pre-established asymmetric keypair. Upon first installation of the system,

the user is asked to setup an asymmetric keypair. The public key is used to encrypt all

incoming information into the vault and the private key is kept safe with the user. The key

vault operates in the following steps:

1. User establishes a keypair upon first installation of pickpocket: Kpub, Kpri.

2. Upon suspicious ransomware activity, a key set, S = {S1, S2, ...Sn} is extracted from

the ransomware process and encrypted to produce: {S1, S2, ...Sn}Kpub
. This set of

encrypted keys is communicated to the vault which is an append-only database.

3. Upon noticing the ransom note, user queries the database and extracts keys from S

using their private key, Kpri.

4. Keys from S are used for subsequent file decryption.

The design details of pickpocket are illustrated in Figure 6.4.

6.4 Implementation

This section describes implementation of the main components of pickpocket. A trigger

condition is needed to test pickpocket; during this testing we deployed bait files as the

trigger. Our bait-file trigger condition is implemented in the form of a Powershell Watchdog

script that monitors modifications made to the bait-files. Process memory space corre-

sponding to the process responsible for the modifications is then searched for the presence of

cryptographic keys. Symmetric keys are found in memory by locating relevant key schedules

as shown in Algorithm 6.1. Recognizing the importance of the limited lifetime of a symmetric

117

Figure 6.4: pickpocket system design.

key in memory, we performed experiments to gauge the time periods for which a symmetric

key will be exposed in memory. For Class A ransomware, the language that was used to write

the malware makes a difference since compiled languages will perform encryption inherently

faster than interpreted languages as shown in Figure 6.7. Due to the difficulty in locating

operational ransomware samples under all languages and measuring how long a particular

symmetric key was exposed in memory, we wrote our own variants of Category 6, Class A

ransomware in languages such as C++, Golang, and Python, that contained timestamps

to measure durations of key exposure. All such ransomware were written with best prac-

tices using standard cryptographic libraries such that the symmetric key was immediately

and explicitly purged from memory following successful file encryption. Consequently, these

metrics provide a realistic sense of the timeframes for which the most potent ransomware

will expose their cryptographic keys in memory. Contrast our test-code characteristics with

118

C++ Python 7ZIP Golang
0

20

40

60

80

100

120

Applications

T
im

e
in

se
co

nd
s

No key extraction
With key extraction

Figure 6.5: Process execution times with and without key extraction.

poorly written ransomware which can expose keys for much longer, even throughout the

ransomware process’s execution.

Algorithm 6.1: Search for AES key schedule
Data: Process memory bytes
Result: Symmetric key
initialization;
while not finished do

read currentBytes(offset);
compute keyScheduleBytes;
if currentBytes + nextBytes = keyScheduleBytes then

foundKey = True;
print(currentBytes);

else
offset = offset + keySize ;

6.5 Evaluation

Simulations were done on a Windows 10 system hosted in a virtual environment with an

i7 processor and 8 GB of memory. The system was tested against real-world ransomware

collected from various online malware repositories [96] [97] [108] [109] [110] [111]. The two

primary objectives during evaluation were:

119

• to determine M and N , where M is the percentage of real-world ransomware for which

pickpocket achieved a successful extraction and N is the percentage of ransomware for

which the extraction failed. The difference between a failed and successful extraction

is discussed below. We evaluated pickpocket for a sample size of 10 ransomware

families, but these results scale to all ransomware. Evaluating a larger sample size is

challenging since the final phase of evaluation is file decryption using extracted keys

which must be done manually. This manual reverse engineering is needed to determine

the exact decryption procedures pertaining to the ransomware variant.

• to assess the performance impact of pickpocket on process execution times. These

tests were conducted to ensure that pickpocket causes no user-noticeable delays to

benign processes.

To the best of our knowledge, no comprehensive database exists of the encryption al-

gorithms deployed by modern ransomware. Good practice in cryptography uses industry-

standard algorithms such as AES and RSA. Since these algorithms are also freely available

and well-supported with libraries, ransomware seek to utilize them. In an attempt to sup-

port that assertion, we constructed Table 6.1 which shows that all 10 ransomware use the

symmetric cipher, AES, for file encryption and 8 deploy the RSA algorithm for asymmetric

encryption. The table is relatively small because unpacking and reverse engineering malware

is laborious; even collecting working samples of ransomware is non-trivial.

120

Table 6.1: Extracting keys from modern ransomware

Name

(MD5

Hash)

Compiler Sym. Asym. Class DBO
1

DAO
2

NotPetya
71B6A493-

388E7D0B4-

0C83CE90-

3BC6B04

C/C++ AES-128 RSA B 100% 100%

AdamLocker
D4452AD-

FC41A7075-

F5E5796172-

775898

.NET AES-256 RSA B 100% 100%

LockCrypt
3CF87E4-

75A67977A-

B96DFF952-

30F8146

MASM32 AES-256 RSA B 100% 100%

Alphabet
DBE7823-

1174B0323-

9EB262CC2D-

2D0900

.NET AES-256 RSA B 100% 100%

121

Table 6.1: (cont’d)

Name

(MD5

Hash)

Compiler Sym. Asym. Class DBO
1

DAO
2

NotPetya
71B6A493-

388E7D0B4-

0C83CE90-

3BC6B04

C/C++ AES-128 RSA B 100% 100%

AlphaLocker
C8EF784-

9A40DBC22-

0B6B3CB5-

C9FAE496

.NET AES-256 RSA B 100% 100%

Crypto-

Ransomware

84C44DF7-

7EFB8A55-

ABD217A3-

79C2589A

.NET AES-256 N/A B 100% 100%

NotPranshu

(Homegrown)

C++ AES-256 RSA A 31.12% 93.40%

122

Table 6.1: (cont’d)

Name

(MD5

Hash)

Compiler Sym. Asym. Class DBO
1

DAO
2

NotPetya
71B6A493-

388E7D0B4-

0C83CE90-

3BC6B04

C/C++ AES-128 RSA B 100% 100%

WannaCry
84C82835-

A5D21BBC-

F75A61706-

D8AB549

C++ AES-256 RSA A 100% N/A

6.5.1 True positives

Ultimately, the definition of rates of success or failure depend on how tolerant the victim’s

environment is to partial data loss in the event where pickpocket is able to extract a partial

set of keys from a class A ransomware. For the purposes of our evaluation, we set this

tolerance limit to 50% as indicated below.

6.5.1.1 Successful extractions

These are the cases where we were able to successfully extract ransomware’s keys in order to

decrypt more than 50% of the total files encrypted. In Category 6, Class A ransomware with

perfect implementations where encryption keys are swiftly purged from memory after a file is

encrypted, extracting all symmetric keys becomes a race condition where pickpocket must

123

locate the symmetric key in memory before file encryption and subsequent key deletion. In

such cases, results are dependent on a number of factors such as the average size of files that

are being encrypted (the larger the file, the longer it takes to encrypt it, and the longer the

key is available for extraction in memory). For testing, we have implemented NotPranshu

which is a class A ransomware following the effective hybrid encryption scheme detailed in

Algorithm A.

6.5.1.2 Failed extractions

For ransomware where key extraction yield dropped below 50%, we classified the attempts

as failed extractions. This implies that we were able to recover keys with some success,

however, could only decrypt fewer than 50% of the files using the recovered keys. We had

no failed extractions for the ransomware we tested as seen in Table 6.1.

6.5.2 False positives

These are cases where a benign application modifies a bait file and hence triggers key ex-

traction. False positives are not the focus of our evaluation for two reasons: 1) the bait

files are protected and hidden such that no legitimate application (other than a set of pre-

viously defined whitelisted, trusted applications) should ever need to modify these files, and

2) in the rare occasion where a legitimate application does modify a bait file (e.g. if this

application is not present in the white-list), the process’s memory space is searched for the

presence of encryption keys. If keys are found, they are then immediately encrypted with

a pre-established master public key and then transported to a secure vault that only the

user can access with the corresponding private key. Hence, unlike other proposed solutions,

pickpocket is tolerant of any false positives generated by the trigger condition since no

aggressive action, such as killing the application, is taken based on the trigger.

124

6.5.3 Impact on Benign Processes

Figure 6.5 shows the performance of processes with and without interference from the key

extraction module. For this test we used 7Zip, a bulk compression program with file-walking

behavior similar to ransomware, and three versions of our home-grown ransomware written

in three different languages. As indicated in Figure 6.5, pickpocket caused only a small

slowdown in processes so if legitimate processes are scanned by the key extraction module,

the result will be an innocuous key extraction.

6.6 Case study: LockCrypt and WannaCry

LockCrypt is a classic representation of a Class B ransomware which is Category 6

(implements cryptographic procedures perfectly) but uses the same symmetric key for file

encryption. The implementation details of LockCrypt are shown in Figure 6.2 and its algo-

rithm is shown in Appendix B. In an average case where there exist multiple files on the host,

LockCrypt exposes a symmetric key in memory for a significant duration which allows for

easy extraction by identifying the key schedule as described in Section 6.2.4. The extracted

key was then tested in file decryption and allowed complete file recovery as shown in Table

6.1.

WannaCry, another Category 6 ransomware, gained notoriety primarily for its ability to

spread similar to a worm by exploiting a known vulnerability CVE-2017-0144 [90]. However,

the reason we chose WannaCry for this case study was due to its perfect cryptosystem similar

to that shown in Appendix A. Namely, WannaCry deploys a unique symmetric key to encrypt

each file and immediately wipes this key from memory following successful file encryption,

hence it makes for an ideal test candidate since it presents the most difficult case for key

extraction. Once the WannaCry binary has decrypted and executed the main encryption

component, file encryption will commence key management and encryption in the following

manner:

1. Generate victim-specific asymmetric keypair with a public key, KVpk , and private key,

125

KVpr.

2. Import attacker’s public key, KApk, embedded in the binary.

3. Enumerate files-of-interest (files to be encrypted).

4. For each file of interest, generate a unique session key, Ks, encrypt file with Ks, encrypt

Ks with KVpk and save to disk. Remove Ks.

5. Encrypt KVpr with KApk to produce the encrypted private key, {KVpr}KApk

Clearly, upon ransom payment, the attacker has the ability to decrypt {KVpr}KApk
with

the attacker’s private key KApr. Since KApr never leaves the attacker, it cannot be recovered

on the host. However, KVpr can be acquired in memory before it is explicitly deleted by the

malware. Pickpocket searches for asymmetric key signatures in memory and delivers these

keys to the vault. We were able to recover user files by providing WannaCry’s decryptor with

KVpr in the expected format and file name (00000000.dky) as shown in Figure 6.6. Since

WannaCry ships with its decryptor, we were only missing KVpr and therefore file decryption

was trivial and all files were recovered. In cases where a ransomware does not ship with

its decryptor, we had to go through the additional manual step of reverse engineering the

malware to determine the details necessary to write a decryption component.

6.7 Discussion and Limitations

We were able to decrypt all tested Class B ransomware and, depending on the variant, a

large subset of files encrypted by a Class A ransomware using pickpocket. During testing,

there were three outcomes observed:

• For Class B ransomware, our utility was able to recognize and extract the symmetric

key for all families of ransomware.

• Class A ransomware use a different key for each file, but for the purposes of key

extraction they can be classified into at least two sub-categories:

– Keys are correctly destroyed: we found that most implementations stored every

key in the same memory location which allows pickpocket almost instant access

126

Figure 6.6: Files decrypted with the extracted private key.

so all keys were recovered. This was the case with the NotPranshu ransomware

in Table 6.1.

– Keys not destroyed: the CryptoAPI calls do not overwrite key locations if there

hasn’t been a call to destroy the key resulting in new keys adjacent to previous keys

in memory. We recovered 92% of keys from ransomware in this sub-category—

missing only the smallest files. However, more testing is needed to understand

any edge cases in this category.

• A smaller subset of ransomware deploy a purely asymmetric encryption model. If this

key-pair was generated on the system, there is a possibility of key recovery since the

private key will exist in memory. However, if the key-pair was generated on the C&C

server, the corresponding private key cannot be recovered from memory. Fortunately,

127

0 1 2 3 4 5
·104

0

5

10

15

20

Size in KB

T
im

e
in

se
co

nd
s

Python
.NET
Java
Scala
JS
Golang
C++

Figure 6.7: Key exposure durations in memory for languages.

such ransomware are now mostly obsolete because they are easy to block using network

firewalls [85].

Key extraction from memory can be accomplished in two ways: 1) live memory analysis,

presented in this paper, and 2) offline memory dumps. Memory space allocated to a suspi-

cious process can be sampled and saved intermittently so we can capture keys for small files

that we might have missed. Memory-dump images could be analyzed later in the event of a

ransomware attack. Images could be stored offline, possibly in the cloud, in a read-only for-

mat, and are needed only for a limited time because ransomware immediately announces its

presence with its ransom demand. Space is a consideration but multiple dumps of a running

process should be gigabytes, not terabytes, and could be optimized using the observation

that the whole process image isn’t needed. Moreover, stored dumps can be purged if not

needed in next N days.

6.7.1 Improving the efficiency of key extraction

We can improve file recovery by taking advantage of locality, especially spatial locality [112]

as is capitalized by hardware caches, thus increasing the throughput of keys extracted to

128

greater than 90%. We preferentially search the memory address predicted by the locality

for the presence of the key (DAO in Table 6.1). If a key cannot be located at this memory

address, we bidirectionally expand the search space. We are parallelly running the original,

full-memory scan and thus eventually falling back on a complete search of the process. We

hypothesize that for Class A ransomware the different generated keys will appear at the

same (or neighboring) memory addresses in languages such as C and C++. We performed

tests to determine the accuracy of this hypothesis and found it to be true when keys were

destroyed within the file encryption loop as shown in Appendix A. The following cases were

observed for Class A ransomware:

• All keys appear at the same memory locations. When keys are destroyed within the file

encryption loop, newly generated keys appear at the same memory address for each

iteration of the loop.

• Keys appear in neighboring memory locations. In instances where keys were not ex-

plicitly destroyed within the loop, new keys appeared in neighboring memory locations

close to the previous key, thus reducing the search space for the key. Furthermore,

without an explicit destruction of the key, all keys now persist in memory and our

exhaustive key extraction module will discover all keys in memory in the same run

instance.

• Keys appear at sporadic locations. In certain languages within managed data types, it

is possible that keys appear at unpredictable locations. For these cases, we fall back

on the exhaustive process memory search.

In most Category 6, Class A ransomware, the HCRYPTKEY variable holding the symmetric

key is declared outside the file encryption loop and new keys are generated within the loop.

If keys are not explicitly destroyed within the loop (CryptDestroyKey), the new key is not

placed at the same memory location (to prevent key overwrite). When keys are created and

destroyed within the file encryption loop, the newly created keys are observed at the same

memory address. Thus, when two keys of size N bytes are observed starting at a memory

129

address 0xXXXXXXXX, pickpocket’s key extraction module can launch a parallel dump of

bytes from 0xXXXXXXXX to 0xXXXXXXXX+offset where offset=N, consequently eliminating

the requirement of scanning the entire process memory.

6.7.2 Countermeasures against pickpocket

Advanced ransomware developers will inevitably respond to pickpocket by adapting their

infection model. We have identified two responses:

• Create industrial-strength, white-box cryptography [113]. However, implementing ef-

fective white-box cryptography is a non-trivial, experts-only task and ransomware de-

velopers are known to introduce implementation errors even with trivial CryptoAPI

calls [38].

• Mount a targeted attack [114] using asymmetric cryptography with an infection-specific

public key for each instance. In such instances, all key recovery strategies are futile

since the private (decryption) key never enters the victim’s white-box domain. How-

ever, there are several practical challenges (e.g. slow speed, file expansion) with de-

ploying asymmetric algorithms for bulk data encryption on the host which increase the

probability of detection during encryption.

6.8 Summary

It is obvious that the security of the decryption keys is paramount to the ransomware

developers. Any lapse in key management has severe consequences impacting ransom ex-

traction. Studying our adversary’s key management model hence offers a multitude of op-

portunities to attack critical components of the encryption process. Ultimately, ransomware

developers can use white box cryptography to conceal the encryption key in memory. How-

ever, implementation of white box cryptography can be convoluted and attackers are con-

stantly introducing errors while implementing even simple CryptoAPI calls. Hence, it is a

safe assumption that encryption keys will be exposed in ransomware process memory.

130

We were able to identify the AES keys in ransomware process memory 100% of the time

during our experimentation. Asymmetric keys such have definitive structure in memory

that allow for signature-based identification. Besides AES, other symmetric ciphers such as

Serpent and Twofish have key schedules located in memory similar to AES and research has

already shown that these keys can be discovered in memory [115]. However, our study has

shown that almost all ransomware currently exclusively deploy AES keys for data encryption.

Ransomware pose a severe threat to organizational security and necessitate the use of

defense-in-depth strategies. However, our adversaries operate under certain constraints that

must be capitalized on for building effective solutions. Ransomware expose sensitive crypto-

graphic keys in memory during data encryption. Symmetric keys are extracted by recogniz-

ing the corresponding key schedules [115], while asymmetric keys are extracted using their

deterministic structure [103]. These keys are securely transported to an off-site database

such that decryption keys are available for self-recovery in the event of a ransomware attack.

Thus, targeting key management in ransomware allows us to integrate another effective layer

in our defense against this formidable threat.

131

CHAPTER 7

EXPECTED FUTURE TRENDS IN RANSOMWARE

Ransomware have been a menacing problem for the last decade due to their relatively easy

implementation and effectiveness in serving the financial interests of the cybercriminals. The

proliferation of modern IoT devices only compounds the problem as it opens new doors for

our adversaries. Without truly comprehending the constraints that bind ransomware and

the motivations of our adversary, effective solutions against ransomware in the smart city

infrastructure cannot exist.

7.1 Introduction

Ransomware threat actors will go through an inherent reasoning process before embarking

upon a new attack campaign. Our adversaries must determine what binds their operations

(constraints), what the focus of the attack would be, what data or service will be targeted,

and what the associated gain is. Analyzing our adversary’s process of reasoning puts us a

step ahead and helps formulate effective defense strategies in time.

The biggest challenge during this work was to formalize a set of constraints for the

ransomware operations in the IoT space, to determine the ‘entities-of-interest’ to the per-

petrators (detailed later), and to evaluate potential associated risks (tiers of attacks) using

empirical evidence from previously observed cases of malware affecting smart city infrastruc-

ture. Our results show that targeted ransomware attacks on public sector organizations are

gaining traction in smart cities and will evolve to affect critical infrastructure as well.

Richardson et al. [75] acknowledge that as the world moves to IoT, a ransomware strike on

IoT is imminent. The security industry similarly expects the rise of “ransomware-of-things”

which will inevitably affect critical components of smart cities [116]. Yaqoob et al. [117]

highlight the lack of security controls in resource-constrained IoT devices and the challenges

posed by ransomware in the IoT space. Since these insecure IoT devices are scattered

132

abundantly in modern smart cities, these challenges need to be recognized and addressed

before a Mirai-like [118] ransomware threat surfaces. A few other scattered discussions [119]

of ransomware in the IoT domain have began to emerge as the world prepares of the next

generation of ransomware attacks.

To the best of our knowledge, there exists no prior work that seeks to define the fun-

damental constraints on ransomware or examine potential attack strategies deployed by

ransomware against modern smart cities.

7.2 Preparing smartcities for ransomware attacks

We recognize the need to rethink certain crucial elements of a ransomware attack cam-

paign with respect to smart city infrastructure. As such, we present four tiers of future

ransomware attacks in the IoT space. Since IoT vary greatly in significance and value in a

smart city, the ransomware risk equation is used to approximate the likelihood of attack on

a specific IoT component. Finally, the NIST cybersecurity framework is used as a tool to

arrive at a defense strategy.

7.2.1 Tiers of ransomware attacks in smart cities

Due to high variability in IoT devices, it is difficult to generalize the target of attack in IoT

devices. However, potential ransomware attacks can be bifurcated into 4 tiers:

Tier 1 Denial-of-data. These attacks are consistent with modern cryptographic ran-

somware attacks where data is held hostage until the ransom is paid. In the traditional

computing environments, ransomware depend heavily on the presence of cryptographic li-

braries, such as the CryptoAPI, for abstraction [18]. Several alternative cryptographic li-

braries exist in the realm of IoT devices that offer attackers similar abstraction. These

libraries include WolfSSL, WiseLib, and AvrCryptoLib. Hence, it becomes very feasible to

encrypt data on IoT devices.

133

Tier 2 Denial-of-service. Availability of certain services, such as power generation and

distribution, are critical in any city and for smart cities, these services are a part of its IoT

infrastructure. Tier 2 ransomware will then seek to push such critical services offline until

the ransom demand is met.

Tier 3 Denial-of-access. Devices in the IoT space can be hijacked for short-term or long-

term durations such that they can be deployed as pivot points for other attacks or made

unavailable to the owner. For instance, hijacked smart meters can be deployed in realizing

ransomware attacks on energy management systems.

Tier 4 Denial-of-privacy. Data on certain IoT devices can be highly personal to the owner.

For instance, pictures on a smartphone or location data on an In-Vehicle Infotainment (IVI)

system in an automobile. A data extraction attack can be used to hold such private data

for ransom.

7.2.2 Ransomware risk equation

Ransomware developers and operators are a special class of cybercriminals that are primarily

motivated by financial gains. As such, this group of cyberattackers inherently performs a

cost-benefit analysis—even if it is subconscious—before commencing an attack campaign.

Mimicking this analysis allows us to comprehend the realistic risk associated with the IoT

devices in a smart city. There are three chief factors that need to be considered: relative

complexity (X) of the attack, perceived value (V) of the attacked component (which di-

rectly determines potential reward for the ransomware operator), and the number of such

components vulnerable to the same attack (N). Note that if the reward associated with

attacking one entity is low but the same attack can be repeated with little to no variance

over other entities, then the multiplier, N , determines the overall reward for the ransomware

campaign. Furthermore, the complexity involved in attacking an IoT component will vary

depending on several factors such as the component’s exposure to external, public networks

134

and the attacker’s proficiency. Ultimately, the potential reward should be significant enough

to appear lucrative in feeding the entire cybercrime chain involved in RaaS. We thus derive

the Ransomware Risk, RR, pertaining to an IoT component c in Equation 7.1.

RRc ≈
Vc

X
·Nc (7.1)

There are three cases where a ransomware attack is probable as shown in Table 7.1.

A qualitative rating of High (H), Medium (M), and Low (L) were assigned to X, V , and

N with quantitative scores being assigned using mapping in the set {H : 4, M : 2, L : 1}

to arrive at a quantitative score for RR. The WannaCry ransomware attacked Windows

hosts that were not patched against a known vulnerability. An existing exploit for this

vulnerability meant that the complexity of the attack was relatively low. The perceived

value of data on an average user’s system was determined to be medium and hence the

ransom demand was accordingly medium ($300) as opposed to targeted ransomware attacks

on organizations where the ransom demand is significantly higher. Finally, the same attack

could compromise a large number of vulnerable Windows systems which gives N a high

value. We now reach the RR score of 8 for WannaCry which highlights its attractiveness to

the ransomware developers. Note that we are attempting to quantify RR which is inherently

a qualitative element since its purpose is to simply be indicative of the level of motivation

for threat actors to target an IoT component in a smart city. Complexity could be added

to the expression, but the added complexity does not appear to add insight. For example,

one could attach weights to V L, CX, and N since threat actors may weigh them differently

depending on the IoT component. In general, an RR score of 2 or above indicates that the

component is lucrative enough for threat actors to launch an attack.

Table 7.1: Risk factors inviting malware in smart city infrastructure

X V N RR Example

L M H 8 WannaCry

135

Table 7.1: (cont’d)

X V N RR Example

L L H 4 Mirai Botnet [120]

M H L 2 Industroyer [121]

H L L 0.25 N/A

7.2.3 NIST Cybersecurity framework

Ransomware operators attack both users and organizations indiscriminately with current

trends suggesting increased targeting of public sector organizations. Hence, within a smart

city, it is crucial to identify the risk owners where risk owners are usually the owners of

the system or network being attacked. Broadly, risk owners can be divided into: 1) public

sector entities, 2) private sector entities, and 3) personal. Risk management is now the re-

sponsibility of the respective risk owners. Ransomware are known to indiscriminately attack

individuals and organizations and a well-established security framework should be adhered to

while hardening smart city infrastructure against potential ransomware attacks. The NIST

Cybersecurity Framework [30] is perfectly suited for this purpose. Next, we present a discus-

sion of this framework adapted for smart city infrastructure protection against ransomware.

The first step is to identify critical devices that are exposed on external networks. More-

over, it is crucial to conduct a risk exposure assessment of these devices pertaining to ran-

somware as shown in Table 7.1. The next step is to protect these devices against potential

ransomware attacks by strictly monitoring access and filtering out malicious connections.

Next, it is important to detect ransomware that slipped past the existing protections. Due

to the unconventional nature of IoT and smart infrastructure devices, host-level protection

and detection techniques are not always feasible due to overhead costs. For instance, a sensor

device with limited computing power cannot support a host antivirus software that performs

effective behavior-based ransomware detection. Unfortunately, all existing proposed solu-

136

tions [25] [23] [26] against ransomware have overheads and dependencies that make them

infeasible for IoT infrastructure. In the absence of host-level protections, network defenses

must be strengthened to filter out potential ransomware attacks. Finally, as the last line

of defense, well-practiced response and recovery strategies must exist to recover from ran-

somware attacks with minimum costs. The recovery procedures must highlight regularly

tested backups to services, data, and devices. Incomplete, impartial, or untested backups

fail to provide relief during a ransomware strike. If maintaining complete backups of cer-

tain services or devices is infeasible then such as a decision should be marked as accepted

risk while hardening on other fronts (such as better protection and detection). The NIST

Cybersecurity Framework based defense strategy for a smart city is mapped out in Figure

7.1.

IoT components

{RR}c ≈ Vc
X ·Nc

Identify Network filter
Access monitor

Authenticator
Signatures

Indicators of
compromise

Block

Isolate

Resume operation

Regain control

Protect

Detect

RespondRecover

Figure 7.1: Defense strategy against ransomware for a smart city.

7.2.4 Experimental results

We conducted a study of ransomware attacks in the last decade and identified the smart city

sectors that are were targeted by ransomware as shown in Figure 7.2. City municipalities

(MUN) are the top target of RaaS actors, followed closely by the medical (MED) and educa-

137

tional sector (EDU). This aligns with Ransomware Risk as proposed by Equation 7.1 in that

municipalities and medical sector both hold data of high value but also have insufficient risk

management. Ransomware attacks on other public sector entities such as law enforcement

(LWE), federal agencies (FED), and others (OTH) are relatively low.

MUN MED EDU OTH LWE FED
0

20

40

60

80

100

120
132

113

70

12 11

1

Sector

N
um

be
r

of
ra

ns
om

wa
re

at
ta

ck
s

Figure 7.2: Ransomware attacks on cities by sector.

To appreciate the feasibility of writing cryptographic malware for IoT devices, we tested

symmetric file encryption using API functions in Listing 7.1. We had two objectives for

this test: 1) to determine the availability of functional cryptographic libraries—that the

ransomware developers have come to heavily depend on—on various IoT devices, and 2) to

identify whether potential slow speeds of encryption would deter ransomware developers.

We determined that cryptographic libraries such as WolfSSL, AvrCryptoLib, RelicToolKit,

TinyECC, and WiseLib are almost always accessible on IoT devices. Moreover, a recent

study conducted by Saraiva et al. [122] found competitive encryption speeds for popular

encryption algorithms on IoT devices. Similarly, experiments by Pereira et al. [123] also

indicate that symmetric encryption in common IoT devices is very feasible. Therefore,

ransomware developers are not bound by the computing power or lack of cryptographic

abstraction on most smart city IoT.

138

wc InitRng () ; /∗ random number genera tor ∗/

wc PBKDF1() ; /∗ key d e r i v a t i o n ∗/

wc AesSetKey () ; /∗ s e t the key ∗/

wc AesCbcEncrypt () ; /∗ encryp t ion ∗/

f w r i t e () ; /∗ wr i t e encrypted b y t e s ∗/

Listing 7.1: AES encryption with WolfSSL

Table 7.2: Empirical evidence of malware attacking smart city infrastructure

Name Year IoT Type Attack Fo-

cus

Attack Vector

BlackEnergy 2007 ICS systems Availability Exploit

Conficker 2008 Police body

cameras, com-

puters

Availability Exploit

Stuxnet 2010 ICS/SCADA

systems

Availability Zero days

Havex 2010 ICS/SCADA

systems

N/A Spear-phishing,

exploit kits, tro-

janized installers

Gafgyt 2014 Game servers,

routers

Availability Brute-forcing

Sandworm 2014 Telecom, energy

sector

Availability Exploit

Irongate 2015 Siemens control

system env

Integrity Man-in-the-

middle attack

against process

I/O

139

Table 7.2: (cont’d)

Name Year IoT Type Attack Fo-

cus

Attack Vector

Mirai botnet 2016 CCTV cameras;

routers

Availability Credentials

bruteforce

Finland

DDoS attack

2016 Heating con-

trollers

Availability N/A

Nyadrop 2016 CCTV cameras,

routers

Confidentiality Brute-forcing

Crashoverride

(Industroyer)

2016 Power grids Availability Windows back-

door

SFG 2016 Energy grid Confidentiality UAC bypass and

2 CVEs

Brickerbot 2017 Cameras Availability Credentials

bruteforce

Unknown

botnet

2017 Soda machines Availability Credentials

bruteforce

TRISIS 2017 Safety instru-

ment system

controllers

Availability N/A

Smominru 2017 Windows servers N/A Exploit

STRONTIUM

attacks

2019 VoIP phone,

video decoders,

printers

Confidentiality Default creden-

tials, exploit

Silex 2019 IoT (ARM de-

vices)

Availability Default creden-

tials

140

Table 7.2: (cont’d)

Name Year IoT Type Attack Fo-

cus

Attack Vector

Echobot (Mi-

rai variant)

2019 IoT devices, en-

terprise apps

Availability Brute-force, Un-

patched vulnera-

bilities

Lookback 2019 US utilities sec-

tor

Availability Phishing

We draw the following conclusions from the empirical evidence provided by Table 7.2:

• malware attacks on smart city infrastructure are persistent and do not waver over the

years.

• malware designed for Industial Control System (ICS) Advanced Persistent Threat

(APT)s pose a growing risk to smart cities.

• attackers use a variety of attack vectors such as exploiting known vulnerabilities, de-

ploying zero-days, phishing campaigns, using default credentials, and brute forcing

passwords.

• large subset of these attacks were on devices that were not secured by traditional host-

based protections such as host-based intrusion detection systems or antivirus software.

This lack of host-based security in IoT devices calls for alternative security strategies

(e.g. strong network filters).

Top attack vectors The primary attack vectors deployed by ransomware in the traditional

computing environment will continue to serve well in the smart city devices as well. These

attack vectors include: 1) social engineering or spear phishing (used to gain credentials

from a known admin), 2) brute forcing (guessing credentials for weakly secured remote login

panels), and 3) exploits (utilizing known vulnerabilities). However, in the context of ICS

141

ransomware in smart cities, the motivation is high enough for ransomware operators to

deploy a zero-day to attain the desired objective. To the best of authors’ knowledge, there

exist no prior cases of zero-days being deployed in ransomware attacks. This is because a

true code execution zero-day can be sold for high gain in the underground market deterring

ransomware operators from risking it on a potential ransom payment. However, with ICS

systems, the potential for gain is high enough for ransomware operators to deploy a zero-

day as observed in Table 7.2. Finally, infecting supply channels for software or firmware

embedded in smart city infrastructure with backdoors is another potential attack vector for

ransomware developers.

Vulnerable infrastructure in smart cities The Shodan search engine [120] continuously

scans the Internet using random functions that generate IP addresses and scans random ports

on those addresses. This enables the discovery of exposed IoT devices such as ICS, SCADA

systems, webcams, routers, RDP etc. The front page for Shodan currently features ICS as a

popular category (Figure 7.3) and presents listings of 15 ICS protocols for easy discovery. The

attention on critical smart city infrastructure is clear. Recon utilities such as Shodan should

be regularly utilized by administrators, especially those managing critical infrastructure, to

ensure no path exists from a public network to the infrastructure.

Practical remote attacks have been demonstrated on smart automobiles [124] and since

automotives hold considerable value with relatively new technologies being tested, we can

expect autonomous vehicles to be primary targets for ransomware attacks in a smart city.

Smaller IoT devices, such as webcams, may hold less value but can still be leveraged by

attackers in large numbers as shown by Table 7.2. For such smaller IoT devices, mapping

strategies have been discussed [125] that aim at recognizing existing IoT devices and associ-

ated risks within the infrastructure. Lastly, smartphones will always be an entity-of-interest

for malware operators as cellphones carry information that can be highly personal in nature.

142

Figure 7.3: Popular search category ‘Industrial Control Systems’ on Shodan.

7.3 Summary

During this work, we discovered that ransomware are a very viable and immediate threat

to the security of smart cities. Several malware attacks in the past have used a variety of

attack vectors (including zero-days) to cripple infrastructure and IoT devices. Furthermore,

there exists 4 tiers of ransomware-based extortion attacks on smart cities that will affect

not just data, but services and critical devices as well. Finally, risk owners need to identify

and protect the various IoT devices that are operational within their environment. The

ransomware risk equation should be used to quantify the exposure of an IoT component to

threats and appropriate risk mitigation steps (Figure 7.1) must be taken.

Ransomware is a growing menace against smart cities that requires immediate addressing

via effective, feasible solutions. Towards that end, we identified the fundamental constraints

that govern ransomware activity. Existing and new solutions must violate one or more of

these constraints in the ransomware kill chain to effectively debilitate ransomware. Violating

a soft constraint needs to be identified as a minor hack that can be easily circumvented by

143

ransomware developers and operators. Differentiating hard constraints from soft constraints

helps with quality control of proposed solutions against ransomware. Any solution that

violates only a soft constraint on ransomware is not a solution at all. Proposed solutions

must therefore be checked for violation of a hard constraint. One of the primary reasons

why ransomware has gained traction within the cybercrime underground is because there are

only a few hard constraints before ransomware operators achieve their nefarious objective.

This effectively shortens the kill chain which improves the feasibility of the attack.

There are certain operational constraints on ransomware that were outside the scope

of this paper. For instance, ransomware operate under the operational constraint of being

able to restore access to data, service, or device remotely post-payment. Once the ransom

payment is made, it is in the best interest of the ransomware underground industry to

provide restoration. Failing this, ransomware “reputation” suffers, along with future ransom

payments and associated financial gains from the extortion campaigns.

7.4 Ransomware targeting automobiles

IoT systems continue to grow and the automotive industry plays a significant role in

this trend [126]. As vehicles become “smarter” with increasingly sophisticated features that

involve both onboard and outward facing communication, a new threat surface has emerged

for automobiles that must be thoroughly assessed for potential vulnerabilities. In the wake

of the highly synergistic RaaS underground, smart automobiles need preemptive protection

against potential ransomware attacks. Unlike other application domains plagued by cyberse-

curity crime (e.g., financial systems and privacy data), financial motivations for cybercrime

are not obvious, except in the context of ransomware attacks. Potential vulnerabilities in the

automobile systems, combined with the tenacity of malware developers, makes automobile

security against ransomware a challenging problem. In an attempt to highlight vulnerabilities

and motivate research to prevent breaches, this paper describes our efforts to clarify the au-

tomobile ransomware kill chain, identify potential attack vectors, and illustrate ransomware

144

vulnerability for targeted data and services on automobile IVI systems.

Malware developers are known to be opportunistic in exploiting improperly secured sys-

tems to infect these vulnerable devices with malware. For instance, the infamous WannaCry

ransomware exploited multiple vulnerabilities in Message Block 1.0. In another example,

the Mirai botnet infected over 600, 000 vulnerable IoT devices at its peak [118] [127]. In

parallel, remote exploitation of automobiles has been demonstrated [124]. It seems inevitable

that ransomware developers target automobiles and yet there is a lack of research on system-

atic evaluation of the associated risk. In light of these realizations, it is incumbent that we

recognize and eliminate the attack vectors in modern automobiles before malware developers

seek to exploit them.

In this section, we highlight the constraints that ransomware developers face while at-

tacking automobile systems, where the information was then used to enumerate data and

services of potential interest to ransomware developers. After an extensive review of the

state-of-the-art automotive cybersecurity vulnerabilities and techniques, complemented with

feedback from automotive industrial partners, we were able to better understand the moti-

vation, likelihood, and impact of ransomware attacks on an automobile IVI system. With

this knowledge, we performed several experiments that simulated attacks on an IVI system

and studied the outcomes [128].

Our results show that it is viable for ransomware developers to implement effective ran-

somware attacks by satisfying all constraints in a kill chain in automobiles. The abstraction

that ransomware developers seek is present in the form of dynamic libraries on the IVI sys-

tems. Implementing cryptographic functionality then becomes trivial for malware developers.

The attack vector most likely to be exploited is configuration and authentication oversights

in the IVI systems and ransomware will target not just denial-of-data in the IVI, but also

denial-of-service (denial of resources) and denial-of-privacy to gain sufficient leverage over

the victim.

We performed experiments to exercise these vulnerabilities. Specifically, we tested a

145

proof-of-concept crypto-ransomware that encrypts data on a QNX-based IVI system (denial

of data). We also tested resource exhaustion by creating a fork bomb on the QNX-based

IVI (denial of service). And finally, we tested exploitation of configuration errors by gaining

execution via an exposed QCONN service on an IVI system. We were able to confirm the

adverse consequences of these attacks by measuring system resource usage before and after

the simulated attacks.

The threat of malware in the automotive domain has been previously considered [129].

The need for rethinking modern automobile platforms to incorporate security with the ex-

isting notion of safety has been acknowledged [130]. While these papers acknowledge the

looming threat of malware over automobiles, there has been no prior work on explicitly

studying the constraints on ransomware developers in the context of automobiles. To the

best of our knowledge, we are not aware of any prior studies done to simulate a ransomware

attack on a vehicular system to identify just how viable certain attack vectors are and if ran-

somware on automobiles is an immediate or near future concern in the realm of automobile

security.

7.4.1 Automobile versus traditional IT security

Automobile security is made particularly challenging by the fact that many of the traditional

IT security concepts cannot be directly applied to vehicles due to several fundamental dif-

ferences between vehicles and traditional computers. A summary of these differences is pre-

sented in Table 7.3. In summary, automobiles have longer life spans, relatively new security

standards, new and potentially insecure IoT components, limited resources for implementing

security controls, and real-time performance constraints.

146

Table 7.3: Differences in automobile and traditional IT security

Metric Automobile Security Traditional IT Security

Primary concern Protecting human lives Protection against losses result-

ing from breaches

Standards ISO/SAE 21434 is relatively

new [131]

ISO27001 is well-established [132]

Life span Up to 15 years [133] Much shorter life span

Updates Lack of regular Over-The-

Air (OTA) updates

Regular OTA updates and patch

management cycles

Network security No authentication and no

confidentiality in CAN

broadcasts [134]

Provisions for authentication and

confidentiality

Design Designed with isolated Con-

troller Area Network (CAN)

in mind

Designed with interconnectivity

in mind

Resources Limited memory and pro-

cessing capabilities

Greater processing power and

memory

Impact of unavailabil-

ity

Life threatening Financial, reputation, or informa-

tional losses

Blackbox security as-

sessment

Difficult due to proprietary

technology

Easier since most technologies are

well documented and publicly ac-

cessible

Security solutions Need to be highly resource

efficient

More computing power means se-

curity solutions are not as con-

strained

147

7.4.2 Rethinking ransomware

Traditional ransomware attacks target data residing on computer systems and perform unau-

thorized encryption of user files. This encryption is performed using a unique secret, a key

known only to the attacker, and standard encryption algorithms such as AES and RSA [85].

A symmetric encryption algorithm is deployed for fast bulk data encryption, while an asym-

metric encryption algorithm is used to protect the secrecy of the symmetric key until the

ransom is paid. Attackers often deploy dynamic cryptographic libraries available on host

to perform the encryption [18] and subsequently demand a ransom payment. Targeted ran-

somware attacks are gaining prominence indicative of the strategic decision-making deployed

by the attackers towards profit maximization.

In light of the differences between the traditional computing environments and the auto-

motive domain, ransomware developers will need to rethink certain strategies. The attacker’s

view of the automobile platform is shown in Figure 7.4. Internal and external filters as shown

in Figure 7.4 pertain to security controls in place to prevent unauthorized access. Ideally,

both of these controls should prevent the attacker from accessing the automobile subsystems.

However, the internal filter should be more restrictive and hardened than the external filter

to ensure an infection does not crossover from the IVI system to the internal CAN. To this

effect, air-gapping [135] the IVI from the CAN is the best strategy. This ensures that a

malware infection on the IVI cannot severely debilitate the vehicle by accessing the CAN.

However, if such air-gapping is infeasible in the interest of functionality, and communication

between IVI and CAN is necessary, this communication should be minimized and thoroughly

validated to ensure malicious input from the IVI does not crossover to the CAN. In other

words, the vulnerable internal network, CAN, should be treated as ring 0, while the more

exposed IVI system running user applications can be treated as ring 2 according to the

Multics rings of protection [136].

Propagation to other areas that communicate with the infotainment system is theoreti-

cally possible, however, research is needed to comprehend the real probability of an IVI to

148

Figure 7.4: Attacker’s view of the automobile platform.

CAN (or other subsystems) crossover infection. Even if the malware is able to bypass the

internal filter, it is now in a completely different architectural environment and thus needs

to be cross-platform to operate. The complexity involved in such a ransomware attack is

extreme and a large subset of ransomware developers are known to engage in cargo-cult pro-

gramming [38]. Furthermore, studies have shown that 94% of ransomware seen in the wild

are ineffective scareware [16]. Hence, the complexity of breaking out of the infotainment

and spreading to more critical subsystems and networks needs to be carefully studied for

a realistic risk assessment. In this paper, we focus only on the intricacies of a ransomware

attack that bypasses the external filter and is able to execute on the IVI system.

7.4.2.1 Attack vectors

Traditionally, ransomware – and malware threats in general – have depended on phishing

as their primary attack vector [99]. A security chain is only as strong as its weakest link

and studies have shown that humans often prove to be the weakest link in the security

149

chain [137]. However, sending a phishing email to a user on an IVI system is not feasible since

the IVI systems are not typically designed for opening email attachments. The ransomware

developers hence need to rethink their attack vectors.

During our experimentation, we discovered exploitation of configuration errors, brute

forcing of remote login services, and exploitation of known code execution vulnerabilities in

components to be viable attack vectors for ransomware developers in the context of automo-

tive security. These attack vectors are detailed in Section 7.4.3.

7.4.2.2 Attack focus

In the vehicular domain, ransomware needs to rethink the strategy of primarily implementing

a denial-of-data attack on the host by means of encrypting user files. This is because while

in the case of a computer the user has irreplaceable files on the system, the replaceability of

user data on an IVI may be high. Hence, in order to gain leverage over victims, automobile

ransomware will seek to implement the following types of unavailability attacks on hosts.

Denial-of-data As discussed above, the data that is resident on an infotainment system

may or may not provide enough leverage for the ransomware to successfully trigger a ransom

payment from the car owner. Typical ransom demand in the case of traditional ransomware

has been approximately $300 [138]. In the absence of irreplaceable personal data on the IVI,

a ransom demand of $300 or more seems unlikely. Perpetrators will need to either locate

critical data on IVI or target services (functionality) and privacy instead.

Denial-of-service This attack corresponds to making the system resources – such as pro-

cessing power, memory, disk space, and system functionality – unavailable to the user. There-

fore, this attack could also be referred to as a denial-of-device. Resource exhaustion could be

accomplished by, for example, a fork bomb [139] implemented on the system. An instance of

this fork bomb as executed on the vehicular IVI system is shown in Listing 7.2. A resource

exhaustion attack, such as the fork bomb, renders the IVI system unusable. The system

150

could be rebooted but a ransomware can run such fork bombs after every reboot until the

ransom demand is met. In another form of denial of service, a ransomware can push an

obstructive ransom screen on the IVI display such that the user is unable to access the IVI

functionality.

Denial-of-privacy The private information discovered on the infotainment system can be

used towards extortion [140]. If the system lacks enough private information at the time of

infection, the ransomware can lie dormant until private data can be collected. For example,

cell phones connected to the IVI systems can transfer private data such as call records,

contacts, text messages, etc. to the IVI system [141]. In addition, Global Positioning System

(GPS) location data can be held for ransom.

#! / bin / sh

ransom () {

ransom | ransom &

} ; ransom

Listing 7.2: A fork bomb for IVI.

7.4.3 Experimental results

In this section, we describe our approach to exploring and demonstrating vulnerabilities

of interest to ransomware that target the automobile platform. First, we map the likely

attack vectors for an automobile ransomware. Then we demonstrate the potential impact

of simulated ransomware attacks on an IVI system. These simulated attacks enable us to

observe and collect a set of constraints on ransomware in the automotive domain, as well as

illuminate other useful insights for developing attack prevention strategies.

Experimental setup We used the test IVI bench as shown in Figure 7.5. The IVI bench

shown in Figure 7.5 runs on the QNX [142] [143] Real-Time Operating System (RTOS).

151

QNX is a popular soft RTOS powering the IVI systems in a variety of modern cars. For

redundancy, experiments were also performed on the VMWare image of QNX available on the

QNX official website [144]. Furthermore, a Kali Linux host was used to perform blackbox

penetration tests on the QNX-based IVI. Our goal of this setup was to map the threat

surface on a QNX-based IVI system and identify the attack vectors that will appeal to our

adversaries. Once an attack vector is successfully exploited to gain code execution privileges,

we identified the constraints under which ransomware developers will operate their malware.

Although this methodology is demonstrated for the QNX RTOS, it can be applied to other

Operating Systems (OS) powering IVI systems.

Figure 7.5: Experimental setup for evaluating the risk of ransomware in automobiles

The following is a list of the key experiments performed on QNX target box to simulate

a ransomware attack:

• Vulnerability analysis of the QNX Neutrino RTOS to discover potential attack vectors.

• Encryption and decryption of data files under the most resilient hybrid cryptosystem

observed in modern ransomware that deploys a combination of symmetric and asym-

metric encryption [85].

152

• Simulation of a fork bomb to exhaust system resources.

7.4.3.1 Discovering attack vectors

Our methodology for discovering viable attack vectors on the QNX target box consisted of

a blackbox security assessment [145] of the QNX surface. The following steps were observed

during this assessment:

• We used a network mapping utility (nmap) to scan for the IP address of the target box

on the subnet. QNX was discovered to be listening on a static IP: 192.168.1.26.

• nmap is used once again to map the available open ports on the target QNX box. A

number of services were discovered to be listening for connections on the box (Figure

7.6).

Figure 7.6: Ports open on the QNX box.

• All login attempts to ports 22 and 23 using a list of default credentials failed. However,

depending on the configuration of SSH and Telnet, an attacker might to able to suc-

cessfully capitalize on this attack vector similar to RDP being exploited by ransomware

in the traditional computing environments.

• Next, port 8000 was investigated and netcat identified a QCONN service listening on

port 8000. QCONN was discovered to be a service that allows connecting the Momentics

IDE development platform on a host to the target execution system running QNX

Neutrino OS. The QNX official documents identify QNX as “inherently insecure and is

meant for development systems only”. Furthermore, there are plans to provide QCONN

a security model with some form of authentication in the future [144]. However, in its

153

current state, QCONN makes a system vulnerable to arbitrary code execution as shown

below. Note that QNX is a true micro-kernel and all services, including security, are

add-ons. Hence, it is the responsibility of the automobile manufacturer to configure

QNX securely.

• The debugging tool gdb is available for download from the QNX website [144] and

allows running unauthenticated applications on the target QNX environment (Fig-

ure 7.7).

Figure 7.7: GDB allows remote code execution via QCONN.

We have since noticed that this vulnerability has been independently discovered before

[146] and that QCONN should be disabled in the production environment. However,

configuration errors could cause this service to be exposed in production systems.

• We are now able to connect to the QCONN service using netcat and executing uname

-a identifies QNX Neutrino version 6.5.0 running on the IVI system.

During the course of experimentation, we noticed how automotive ransomware will differ

from traditional ransomware and identified a set of constraints on the vehicular ransomware.

We also highlight the most likely attack vectors that will be exploited by malware developers

to infect IVI systems.

7.4.3.2 Traditional ransomware versus vehicular ransomware

It was observed that ransomware on vehicles will differ from standard ransomware in the

following ways:

154

• Automobiles typically have limited computing resources thus making them more vul-

nerable to denial of service attacks.

• Users have a more immediate need of “service” from vehicular systems than traditional

computers since Personal Computer (PC)s can be substituted with another until the

ransomware threat is neutralized. In the traditional computing scenario, generally

it’s the data that is the most crucial to the user and hence held for ransom, not the

computing device itself. However, in the case of vehicular infotainment system, the

device and its services become a prominent attack target among other items such as

the data.

• In the absence of irreplaceable data on a vehicle’s infotainment system, ransomware

will seek other means of extortion. This includes threatening to release discovered

private information or exhausting infotainment system’s resources such that it no longer

responds.

• Unavailability of an infotainment system can be achieved by simply flashing a screen

on the entire display such that it cannot be closed or circumvented by a user.

• Attacks on the infotainment system demand a more immediate response since the

driver cannot afford even momentary distractions. This real-time constraint imposes

a sense of urgency not as easily achieved in traditional computing environments.

• Perpetrators will need to adjust the ransom business model such that the ransom

amount is lowered to make it easier for a car owner to pay the ransom amount (e.g.

$20) than take the vehicle to a dealership to get ransomware removed and get the

system reinstated. This does not deter ransomware operators since even a small ransom

amount can be multiplied into N number of vehicles which ensures a hefty ransom.

For instance, upon infecting the Ford F-series, the multiplier, N , will be of the order

of 300, 000 even if the attack only impacts a single year’s models.

• Ransomware can reasonably assume no protections such as antiviruses or firewalls on

an infotainment system as opposed to traditional computing equipment which is much

155

better protected. This implies IVI systems are more vulnerable if an attack vector is

successfully exploited and the infection infiltrates the defenses. Due to the absence of

an antivirus, ransomware execution will not be hindered.

• Unlike traditional computers, infotainment systems on vehicles will be running on

different operating systems such as QNX, Windows Embedded Automotive 7, GENIVI,

Android, etc [147] [148] [149]. This means a ransomware developer will only be able

to write a ransomware that targets a specific subset at a time. In contrast, traditional

ransomware have targeted mostly PC systems. Attack vectors will vary depending on

the vulnerabilities discovered on these varied IVI operating systems.

7.4.3.3 Observed attack vectors

An attack vector is defined as the path an attacker takes to circumvent system controls and

compromise a host [150]. The following attack vectors emerged after a blackbox assessment

[145] was done during the experimentation.

Exploitation of configuration errors Existing vulnerabilities or configuration errors in

the operating system can lead to the compromise of the IVI system.

Brute forcing remote login services Ransomware are known to exploit poorly secured

RDP sessions in order to infiltrate hosts. This can be extended to other remote login services

such as SSH and Telnet as discussed previously.

Known vulnerabilities on exposed components After-market OBD devices promise

additional functionality, but can also severely increase the threat surface. For instance, a

dongle that connects to the Internet when plugged into the OBD2 port can be exploited

remotely by exposing vulnerabilities that exist in the firmware or configuration. Moreover,

vulnerabilities in the RTOS that power the IVI can also permit remote attacks.

156

7.4.3.4 Denial of data

Similar to traditional ransomware, vehicular ransomware can achieve a denial of data attack

by encrypting the data with a secret key and then purging the original copy. The most potent

Category 6 ransomware [85] have been observed to implement this attack by deploying

a hybrid cryptosystem that utilizes both symmetric and asymmetric encryption for their

respective advantages as discussed in Section 7.4.2.

The availability of openssl, a suite of cryptographic tools [151], on the QNX RTOS

facilitated the implementation of the hybrid cryptosystem. On other IVI systems, attackers

may deploy another cryptographic library to achieve data encryption. The following series

of steps were performed to implement a hybrid cryptosystem in the ransomware:

• Attacker begins by generating a set of asymmetric RSA-2048 keys. The public key is

embedded in the ransomware binary and ships with the ransomware infection.

• Next, the ransomware binary on the infected host is able to generate a new AES key

that will be used as an encryption key for the purpose of encrypting files.

• The generated AES symmetric key can now be deployed for bulk data encryption. The

data file is successfully encrypted.

• The attacker’s embedded RSA public key is used to encrypt the encryption key. Note

that the RSA private key never left the attacker.

• The original data file is now purged from the system, along with the unencrypted AES

key. A ransom note is displayed to the user.

• After successful ransom payment, the process is reversed. The attacker decrypts the

encrypted AES key using their RSA private key.

• The decrypted AES key is returned to the user which can now be used to decrypt data.

The summarized sequence of encryption and decryption commands is shown in Listing 7.

157

openssl genrsa -des3 -out private.pem 2048
openssl enc -aes-256-cbc -K aes.key -P -md sha1
openssl enc -nosalt -aes-256-cbc -in data.dat -out data.payme
openssl rsautl -encrypt -inkey public.pem -pubin -in aes.key -out aeskey.enc

-base64 -K <key> -iv <iv>↪→

openssl rsautl -decrypt -inkey attacker.pem -in aeskey.enc -out aes.key
openssl enc -nosalt -aes-256-cbc -d -in aeskey.enc -base64 -K <key> -iv <iv>

Listing 7: OpenSSL-based ransomware in automobiles.

7.4.3.5 Denial of service

A denial of resources was achieved in the experimental setup in the following manner. The

QNX target was infected with a fork bomb shown in Listing 7.2. The results of this infection

were a complete exhaustion of QNX system resources, namely CPU and memory. Compar-

ison of the system state before and after the execution of the fork bomb is shown in Figure

7.8. The number of processes and threads peaked at maximum load capacity immediately

after execution of the fork bomb such that CPU idle percentage was observed drop from

99% to 0% and the memory available dropped from 182 MB to 40 MB. This is because the

form bomb caused a dramatic increase in redundant processes such that the process count

rose from 40 to 194 until complete resource exhaustion.

7.5 Summary

This paper explores ransomware attacks in the context of the automotive domain. We

identified the ways in which a ransomware threat on a vehicular surface will differ from

that seen in the traditional computing environment. To the best of our knowledge, the

threat of ransomware on a vehicular IVI has not been previously systematically analyzed.

By experimenting with the simulation of a ransomware attack on an IVI, we were able to

clarify the automobile ransomware kill chain and the corresponding impact on the automobile

systems. Although we have demonstrated resource exhaustion and data encryption attacks

for the QNX platform, these are applicable to other IVI operating systems due to the lack

158

of inherent protections against malicious activity in most RTOS.

159

[Before]

CPU - 99%
Memory - 182 MB
Processes - 40

[After]

CPU - 0%
Memory - 40 MB
Processes - 194

Figure 7.8: Denial of service realized with a fork bomb.

160

CHAPTER 8

CONCLUSION

Ransomware is a persistent threat that necessitates defense-in-depth solutions. Conse-

quently, we have introduced pickpocket as a significant addition to the response and recov-

ery phase of the NIST Cybersecurity Framework. When intrusion prevention and backups

have failed, pickpocket offers feasible file recovery as the only alternative to ransom pay-

ment. The critical insight underlying pickpocket is that ransomware performs encryption

in a cryptographic white box that leaves keys vulnerable in memory to side-channel at-

tacks. During our testing against real-world ransomware, pickpocket successfully recovered

keys from all ransomware. Our examination of key management strategies in modern ran-

somware provides confidence that we have tested against the most virulent, Category 6 [85],

ransomware. While pickpocket allowed complete file recovery for most ransomware, we

recognize that in an environment carrying smaller files, a ransomware may encrypt these

small files faster than the first key could be recovered, yielding only 92% of files. In addi-

tion, a false detection, arising from the trigger condition miss-identifying a benign process

as malware, can be tolerated since pickpocket will only transparently store keys in secure

vault. In conclusion, pickpocket fills a critical void by facilitating file recovery in the late

stages of an infection when all preventative and recovery strategies have failed.

We are aware that memory forensics to discover ephemeral keys is a convoluted response

to ransomware when compared with other approaches. Therefore, this approach is not meant

to substitute preventative measures against ransomware since prevention is always better

than cure. These memory forensics strategies are presented as defense-in-depth against

ransomware’s key management after the ransomware infection is already on host and is

executing. If all else has failed (including backups), what recovery options exist to regain

files without paying the ransom? Antivirus solutions take the same defense-in-depth stance.

Taking advantage of the fact that the adversary is performing the encryption on a host under

161

our control allows us to implement an attack on the ransomware’s key management.

Conventional implementations of encryption routines are highly insecure when a hostile

entity controls the execution environment. Cryptography is meant to protect the confiden-

tiality of data after encryption. It is assumed that data will be encrypted on a trusted host

and hence key exposure during the encryption process is not considered a weakness. For

ransomware, however, this assumption becomes a vulnerability since key(s) are exposed on

the victim’s machine, and this machine is a whitebox to its victim. There are ways to obfus-

cate keys in memory during the process of encryption using whitebox cryptography [152].

Moreover, using techniques such as TRESOR [153], it is possible to beat this methodology

by storing keys in CPU registers instead of RAM. However, implementations of whitebox

cryptography are complex and beyond the skillset of most ransomware developers [38] [85].

There are several advantages of using memory-based key extraction against ransomware.

This approach is ransomware-language-independent, that is, it does not depend on the lan-

guage that was used to write the ransomware. Moreover, it is platform-independent and can

be easily scaled to be applied to other operating systems such as MacOS or Linux. Further,

it works even against ransomware that do not use the host’s CryptoAPI to generate the

encryption keys since all APIs will expose keys in memory.

In conclusion, this work demonstrated viable memory attacks against modern ransomware

that can be used for file recovery following a ransomware infection, thus eliminating the need

to pay the ransom.

162

CHAPTER 9

FUTURE WORK

In our future work, we plan to expand this work to reflect the overall effectiveness of a

ransomware variant so that the general public can use it as a reference to comprehend the

potency of a ransomware variant. This will facilitate informed decision making. One could

imagine an online ransomware observatory that anybody could query. By acquiring the cat-

egory of a ransomware, one could comprehend immediately if an easy fix is available or not.

In our future work, we also wish to perform an extended analysis on variants to observe

if most variants stay in the same category as the original ransomware or if they tend to

introduce new vulnerabilities that weakens their category. Table 3.3 and Figure 3.9 indi-

cate that many ransomware developers seem to have little comprehension of cryptographic

implementations: we observed that poor cryptographic models appear as recently as 2018.

Although with time, it is inevitable that RaaS will evolve to the point where more Category

6 ransomware with worm-like propagation capabilities will haunt the Internet. At that time,

unauthorized file encryption prevention techniques [16] and detection measures will be the

best defense. Scrounging to discover cryptographic flaws in ransomware implementations

will be less rewarding.

Furthermore, we will provide a detailed analysis of the percentage of modern ransomware

that are using the multi-key approach (Class A). This study will juxtapose the number of

modern ransomware variants that are using a single symmetric key to encrypt all files versus

those ransomware that use a multi-key approach. Furthermore, we will extend this study

(Table 6.1) to include a larger subset of ransomware such that we can highlight trends in

key-generation strategies observed in most ransomware. Additionally, we wish to extend

the timeline of key generation strategies in ransomware as shown in Figure 3.7 to include

more ransomware variants. This timeline will provide insights on the shift of key generation

strategies observed in ransomware over time.

163

Additionally, we wish to test the effectiveness of the proposed methodology against a

larger set of ransomware strains, thus evaluating the presence of any residual edge cases where

the proposed methodology fails to deliver the required decryption keys. Additionally, we wish

to perform more focused experiments with improving the accuracy of the trigger condition

(e.g. heuristics-based ransomware detection techniques) such that the false positives are

minimized and hence only a limited number of memory dumps or scans are required. While

there can be frequent memory scans or dumps due to false positives, these scans and dumps

happen transparently and thus do not cause user annoyance. However, it is best to minimize

false positives to control any unnecessary strain on system resources such as disk space and

CPU load.

We also wish to examine ways to map extracted keys to files for the ransomware that

use a different key for encrypting different files. Currently, we are using a “bruteforce”

methodology to attempt decryption of a file with every extracted key in the database until a

match is found. This approach does not scale well for environments with millions of files and

can be made more efficient if we stored mappings of keys to files based on Windows-1252

sequential file enumeration that most ransomware deploy. We also wish to test memory-

based attacks against a larger subset of real-world ransomware than shown in Table 6.1,

especially those that deploy different symmetric keys to encrypt files on host. Moreover, we

wish to test key extraction against other encryption algorithms, besides AES and RSA key

extraction shown in this paper.

Finally, our future work will explore a number of follow-on investigations concerning the

threat of ransomware on automobiles including tests on other operating systems such as

INTEGRITY and ThreadX. Moreover, we will extend these experiments to include real-

world settings using our ongoing collaborations with both automotive OEM and suppliers.

While IVI make use of external networks, we will explore other vulnerable automotive attack

surfaces that have been identified as vulnerable to remote and local attacks from malicious

sources [154] [155].

164

APPENDICES

165

APPENDIX A

ALGORITHM OF CLASS A RANSOMWARE

Algorithm A.1: Category 6, Class A ransomware
Result: Files encrypted!
hProv = CryptAcquireContext();
pubKey, priKey = genRSAKeyPair();
while nextFile do

if fileType in F then
symKey = CryptGenKey();
cryptFile(hProv, symKey);
encryptedsymKey = encryptKey(symKey,pubKey);
DeleteFile();
CryptDestroyKey(symKey);

end
end
malwarepubKey = CryptImportKey();
encryptedpriKey = encryptKey(priKey, malwarepubKey);
ransomNote();
LocalFree(priKey);

166

APPENDIX B

ALGORITHM OF CLASS B RANSOMWARE

Algorithm B.1: Category 6, Class B ransomware
Result: Files encrypted with the same key!
hProv = CryptAcquireContext();
symKey = CryptGenKey();
pubKey = CryptImportKey();
encryptedsymKey = encryptKey(symKey,pubKey);
while nextFile do

if fileType in F then
cryptFile(hProv, symKey);
DeleteFile();

end
end
CryptDestroyKey(symKey);
ransomNote();

167

APPENDIX C

PSEUDO CODE OF HYBRID ENCRYPTION IN THE CONTEXT OF
WINDOWS CRYPTOAPI

void thread_encrypt() { // main calling function
...
HCRYPTKEY symKey; // handle to key
HCRYPTPROV hProv = [...]; // handle to CSP
symKey = generateKey(hProv); // invoke key generation routine
encryptData(hProv, symKey); // call to file encryption procedure
cleanup(symKey); // clean up procedure
CryptDestroyKey(symKey); // destroy key in memory
CryptReleaseContext(hProv, 0); // release handle to CSP
}

HCRYPTKEY generateKey(hProv) {
HCRYPTKEY symmKey; // handle to key
CryptGenKey(hProv, CALG_AES_128, 1u, &symmKey); // generate key
DWORD mode = CRYPT_MODE_CBC; // use CBC cipher mode
CryptSetKeyParam(symmKey, KP_MODE, &mode, 0);
DWORD padData = PKCS5_PADDING; // PKCS 5 padding method
CryptSetKeyParam(symmKey, KP_PADDING, &padData, 0); // set padding mode
return symmKey; // return generated key
}

void encryptData(hProv, symKey) {
for each file type F: // search for specific file types
cryptFile(hProv, symKey); // locate and encrypt files
}

void cleanup(hProv, symKey) {
HCRYPTKEY asymPubKey = getasymPubKey(hProv): //acquire RSA public key
void* symKeyEncryptb64 = exportKey(symKey, asymPubKey);

//encrypt and encode AES key
//...write ransomnote.txt...
//...write base64 encoded encrypted AES key...
//...
LocalFree(symKeyEncryptb64); //free allocated memory
}

Listing 8: Hybrid encryption in ransomware.

168

BIBLIOGRAPHY

169

BIBLIOGRAPHY

[1] M. Paquet-Clouston, B. Haslhofer, and B. Dupont, “Ransomware payments in the
bitcoin ecosystem,” Journal of Cybersecurity, vol. 5, no. 1, p. tyz003, 2019.

[2] V. Yosifova, R. Trifonov, A. Tasheva, and O. Nakov, “Trends review of the contempo-
rary security problems in the cyberspace,” in Proceedings of the 9th Balkan Conference
on Informatics, 2019, pp. 1–4.

[3] P. Bajpai and R. J. Enbody, “Dissecting .net ransomware: Key generation, encryption,
and operation,” Network Security, vol. 2020, no. 2, pp. 8–15, 2020.

[4] R. Gaspar, “Shadow copies for restoring files,” Tech. Rep., 2005.

[5] J. Yuill, M. Zappe, D. Denning, and F. Feer, “Honeyfiles: deceptive files for intrusion
detection,” in Proceedings from the Fifth Annual IEEE SMC Information Assurance
Workshop, 2004., June 2004, pp. 116–122.

[6] C. Stoll, The cuckoo’s egg: tracking a spy through the maze of computer espionage.
Simon and Schuster, 2005.

[7] J. Gómez-Hernández, L. Álvarez González, and P. Garćıa-Teodoro, “R-locker:
Thwarting ransomware action through a honeyfile-based approach,” Com-
puters and Security, vol. 73, pp. 389 – 398, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404817302560

[8] C. Moore, “Detecting ransomware with honeypot techniques,” in 2016 Cybersecurity
and Cyberforensics Conference (CCC), Aug 2016, pp. 77–81.

[9] G. Sison, “Cerber starts evading machine learning - trendlabs security intelligence
blog,” 2018. [Online]. Available: https://blog.trendmicro.com/trendlabs-security-
intelligence/cerber-starts-evading-machine-learning/

[10] P. Kumaraguru, J. Cranshaw, A. Acquisti, L. Cranor, J. Hong, M. A. Blair, and
T. Pham, “School of phish: A real-world evaluation of anti-phishing training,”
in Proceedings of the 5th Symposium on Usable Privacy and Security, ser.
SOUPS ’09. New York, NY, USA: ACM, 2009, pp. 3:1–3:12. [Online]. Available:
http://doi.acm.org/10.1145/1572532.1572536

[11] D. X. L. Ph.D., MBA, MSIS, and D. Q. L. PhD, “Awareness education as the key to
ransomware prevention,” Information Systems Security, vol. 16, no. 4, pp. 195–202,
2007. [Online]. Available: https://doi.org/10.1080/10658980701576412

[12] A. McNeil, “How did the wannacry ransomworm spread?” MalwareBytes Labs, 2017.

[13] No More Ransom. [Online]. Available: nomoreransom.org

170

[14] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: defense against
cryptographic ransomware,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 599–611.

[15] A. Young and M. Yung, “Cryptovirology: Extortion-based security threats and coun-
termeasures,” in Proceedings 1996 IEEE Symposium on Security and Privacy. IEEE,
1996, pp. 129–140.

[16] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting the gordian
knot: A look under the hood of ransomware attacks,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2015,
pp. 3–24.

[17] K. Cabaj, P. Gawkowski, K. Grochowski, and D. Osojca, “Network activity analysis
of cryptowall ransomware,” Przeglad Elektrotechniczny, vol. 91, no. 11, pp. 201–204,
2015.

[18] A. Palisse, H. Le Bouder, J.-L. Lanet, C. Le Guernic, and A. Legay, “Ransomware and
the legacy crypto api,” in International Conference on Risks and Security of Internet
and Systems. Springer, 2016, pp. 11–28.

[19] C. Puodzius, “How encryption molded crypto-ransomware,”
welivesecurity Blog, September, 2016. [Online]. Avail-
able: https://www.welivesecurity.com/2016/09/13/how-encryption-molded-crypto-
ransomware/

[20] A. L. Young, “Cryptoviral extortion using microsoft’s crypto api,” International Jour-
nal of Information Security, vol. 5, no. 2, pp. 67–76, 2006.

[21] A. Gazet, “Comparative analysis of various ransomware virii,” Journal in
Computer Virology, vol. 6, no. 1, pp. 77–90, Feb 2010. [Online]. Available:
https://doi.org/10.1007/s11416-008-0092-2

[22] A. L. Young and M. M. Yung, “An implementation of cryptoviral extortion using
microsoft’s crypto api,” 2005.

[23] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and drop it): stopping
ransomware attacks on user data,” in 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2016, pp. 303–312.

[24] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi, S. Zanero, and
F. Maggi, “Shieldfs: a self-healing, ransomware-aware filesystem,” in Proceedings of
the 32nd Annual Conference on Computer Security Applications. ACM, 2016, pp.
336–347.

[25] A. Kharraz and E. Kirda, “Redemption: Real-time protection against ransomware
at end-hosts,” in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 98–119.

171

[26] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “{UNVEIL}: A
large-scale, automated approach to detecting ransomware,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 757–772.

[27] 2017. [Online]. Available: https://security.stackexchange.com/questions/148511/can-
you-recognize-this-virus

[28] 2019. [Online]. Available: https://docs.microsoft.com/en-us/windows/security/threat-
protection/microsoft-defender-atp/controlled-folders

[29] A. Srivastava and J. Giffin, “Automatic discovery of parasitic malware,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer, 2010, pp.
97–117.

[30] A. Sedgewick, “Framework for improving critical infrastructure cybersecurity, version
1.0,” Tech. Rep., 2014.

[31] J. Gómez-Hernández, L. Álvarez-González, and P. Garćıa-Teodoro, “R-locker: Thwart-
ing ransomware action through a honeyfile-based approach,” Computers & Security,
vol. 73, pp. 389–398, 2018.

[32] K. Savage, P. Coogan, and H. Lau, “The evolution of ransomware,” Symantec, Moun-
tain View, 2015.

[33] K. Zetter, “4 ways to protect against the very real threat of ransomware,” 2016.
[Online]. Available: https://www.wired.com/2016/05/4-ways-protect-ransomware-
youre-target/

[34] G. O’Gorman and G. McDonald, Ransomware: A growing menace. Symantec Cor-
poration, 2012.

[35] N. F. Pub, “197: Advanced encryption standard (aes),” Federal information processing
standards publication, vol. 197, no. 441, p. 0311, 2001.

[36] V. Kotov and M. Rajpal, “Understanding crypto-ransomware,” Bromium whitepaper,
2014.

[37] P. Aiyyappan, “Jigsaw ransomware demystified,” Vinransomware Blog, November,
2016. [Online]. Available: http://www.vinransomware.com/blog/jigsaw-ransomware-
demystified

[38] B. Herzog and Y. Balmas, “Great crypto failures,” Virus Bulletin, 2016.

[39] L. Zeltser, “Blocklists of suspected malicious ips and urls,” 2017. [Online]. Available:
https://zeltser.com/malicious-ip-blocklists/

[40] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2014.

[41] J. R. Vacca, Computer and information security handbook. Newnes, 2012.

172

[42] P. Bajpai and R. Enbody, “An empirical study of key generation in cryptographic
ransomware,” in 2020 International Conference on Cyber Security and Protection of
Digital Services (Cyber Security). IEEE, 2020, pp. 1–8.

[43] P. Bajpai, A. K. Sood, and R. Enbody, “A key-management-based taxonomy for ran-
somware,” in 2018 APWG Symposium on Electronic Crime Research (eCrime), May
2018, pp. 1–12.

[44] P. Patil, P. Narayankar, D. Narayan, and S. M. Meena, “A comprehensive evaluation
of cryptographic algorithms: Des, 3des, aes, rsa and blowfish,” Procedia Computer
Science, vol. 78, pp. 617–624, 2016.

[45] D. Emm, “Cracking the code: The history of gpcode,” Computer Fraud & Security,
vol. 2008, no. 9, pp. 15–17, 2008.

[46] 2019. [Online]. Available: https://docs.microsoft.com/en-
us/windows/win32/seccrypto/alg-id

[47] B. Kaliski, “Pkcs# 5: Password-based cryptography specification version 2.0,” 2000.

[48] M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recommendation for password-based
key derivation,” NIST special publication, vol. 800, p. 132, 2010.

[49] 2019. [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/api/system.random?view=netframework-4.8

[50] 2019. [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/api/system.random.-ctor?view=netframework-4.8

[51] L. Zeltser, “Remnux: A linux toolkit for reverse-engineering and analyzing malware,”
2018.

[52] 2019. [Online]. Available: https://www.hybrid-analysis.com/

[53] 2019. [Online]. Available: https://www.virustotal.com

[54] 2019. [Online]. Available: https://virusshare.com/

[55] 2019. [Online]. Available: https://beta.virusbay.io/

[56] W. Yan, Z. Zhang, and N. Ansari, “Revealing packed malware,” ieee seCurity & Pri-
vaCy, vol. 6, no. 5, pp. 65–69, 2008.

[57] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and packed mal-
ware,” IEEE Security & Privacy, vol. 5, no. 2, pp. 40–45, 2007.

[58] R. Coleridge, “The cryptography api, or how to keep a secret,” 1996. [Online].
Available: https://msdn.microsoft.com/en-us/library/ms867086.aspx

[59] 2018. [Online]. Available: https://minotr.net/

173

[60] 2018. [Online]. Available: http://vxvault.net/

[61] 2018. [Online]. Available: http://thezoo.morirt.com/

[62] 2018. [Online]. Available: https://cuckoosandbox.org/

[63] L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege, “Analysis meth-
ods for (alleged) rc4,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 1998, pp. 327–341.

[64] L. Abrams, “Decryptor for the apocalypse ransomware released by emsisoft,” 2016.
[Online]. Available: https://www.bleepingcomputer.com/news/security/decryptor-
for-the-apocalypse-ransomware-released-by-emsisoft/

[65] L. H. Newman, “How an accidental ’kill switch’slowed friday’s massive ransomware
attack’,” Wired, vol. 13, 2017.

[66] M. Ward, “Cryptolocker victims to get files back for free,” BBC News, August, vol. 6,
2014.

[67] P. Zimmermann et al., “An introduction to cryptography,” Network Associates, 1999.

[68] R. Verdult, The (in) security of proprietary cryptography. Sl: sn, 2015.

[69] A. Guinet, “Wannacry in-memory key recovery,” 2018. [Online]. Available:
https://github.com/aguinet/wannakey

[70] L. Dorrendorf, Z. Gutterman, and B. Pinkas, “Cryptanalysis of the random number
generator of the windows operating system,” ACM Transactions on Information and
System Security (TISSEC), vol. 13, no. 1, p. 10, 2009.

[71] A. L. Young and M. Yung, “Cryptovirology: The birth, neglect, and explosion of
ransomware,” Communications of the ACM, vol. 60, no. 7, pp. 24–26, 2017.

[72] M. Léveillé, “Torrentlocker: Ransomware in a country near you (2014).”

[73] L. Abrams, “desucrypt ransomware in the wild with deuscrypt and decryptable
insane variants,” Bleeping Computer Blog, January, 2018. [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/desucrypt-ransomware-in-
the-wild-with-deuscrypt-and-decryptable-insane-variants/

[74] J. Wyke, S. E. T. Team, and A. Ajjan, “The current state of ransomware,” SophosLabs
technical paper, 2015.

[75] R. Richardson and M. North, “Ransomware: Evolution, mitigation and prevention,”
International Management Review, vol. 13, no. 1, p. 10, 2017.

[76] C. Xiao and J. Chen, “New os x ransomware keranger infected trans-
mission bittorrent client installer,” Palo Alto Networks Blog, March, 2016.
[Online]. Available: https://researchcenter.paloaltonetworks.com/2016/03/new-os-x-
ransomware-keranger-infected-transmission-bittorrent-client-installer/

174

[77] “zcrypt ransomware: under the hood,” Malwarebytes Labs Blog, June, 2016.
[Online]. Available: https://blog.malwarebytes.com/threat-analysis/2016/6/zcrypt-
ransomware/

[78] L. Abrams, “Emsisoft releases a decrypter for hy-
dracrypt and umbrecrypt ransomware,” 2016. [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/emsisoft-releases-a-
decrypter-for-hydracrypt-and-umbrecrypt-ransomware/

[79] S. Mansfield-Devine, “Ransomware: taking businesses hostage,” Network Security, vol.
2016, no. 10, pp. 8–17, 2016.

[80] J. Cannell, “Cryptolocker ransomware: What you need to know,” Malwarebytes Labs,
2013.

[81] hasherezade, “Cerber ransomware: new, but mature,” 2016. [Online]. Avail-
able: https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-
new-but-mature/

[82] L. Abrams, “The new raa ransomware is created entirely using javascript,” 2016.
[Online]. Available: https://www.bleepingcomputer.com/news/security/the-new-raa-
ransomware-is-created-entirely-using-javascript/

[83] P. Bajpai and R. Enbody, “Attacking key management in ransomware,” IT Profes-
sional, vol. 22, no. 2, pp. 21–27, 2020.

[84] T. Yadav and A. M. Rao, “Technical aspects of cyber kill chain,” in International
Symposium on Security in Computing and Communication. Springer, 2015, pp. 438–
452.

[85] P. Bajpai, A. K. Sood, and R. Enbody, “A key-management-based taxonomy for ran-
somware,” in 2018 APWG Symposium on Electronic Crime Research (eCrime). IEEE,
2018, pp. 1–12.

[86] K. Auguste, “La cryptographie militaire,” Journal des sciences militaires, vol. 9, p.
538, 1883.

[87] A. Islam, N. Oppenheim, and W. Thomas, “Smb exploited: Wannacry use of eternal-
blue,” Retrieved December, vol. 11, p. 2017, 2017.

[88] V. C. Craciun, A. Mogage, and E. Simion, “Trends in design of ransomware viruses,”
in International Conference on Security for Information Technology and Communica-
tions. Springer, 2018, pp. 259–272.

[89] B. Bill, “Wannacry: the ransomware worm that didn’t arrive on a phishing hook,”
Naked Security. Sophos, 2017.

[90] Microsoft, “Microsoft security bulletin ms17-010: Critical.”

175

[91] S. SEC, “2: Recommended elliptic curve domain parameters,” Standards for Efficient
Cryptography Group, Certicom Corp, 2000.

[92] X. Luo and Q. Liao, “Awareness education as the key to ransomware prevention,”
Information Systems Security, vol. 16, no. 4, pp. 195–202, 2007.

[93] S. Furnell and D. Emm, “The abc of ransomware protection,” Computer Fraud &
Security, vol. 2017, no. 10, pp. 5–11, 2017.

[94] C. M. Frenz and C. Diaz, “Anti-ransomware guide,” Technical Report. https://www.
owasp. org/images/6/64/Anti-RansomwareGuidev1 . . . , Tech. Rep., 2018.

[95] P. Bajpai and R. Enbody, “Dissecting .net ransomware: key generation, encryption
and operation,” Network Security, vol. 2020, no. 2, pp. 8–14, 2020.

[96] D. Plohmann, M. Clauß, S. Enders, and E. Padilla, “Malpedia: a collaborative effort
to inventorize the malware landscape,” Proceedings of the Botconf, 2017.

[97] [Online]. Available: https://malshare.com/

[98] [Online]. Available: https://www.hybrid-analysis.com/

[99] A. K. Sood, P. Bajpai, and R. Enbody, “Evidential study of ransomware: Cryptoviral
infections and countermeasures,” ISACA, vol. 5.

[100] B. Kaplan et al., “Ram is key: Extracting disk encryption keys from volatile memory,”
2007.

[101] R. A. E. B. L. Knudsen, “Serpent: A proposal for the advanced encryption standard,”
in First Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

[102] V. Rijmen and J. Daemen, “Advanced encryption standard,” Proceedings of Federal
Information Processing Standards Publications, National Institute of Standards and
Technology, pp. 19–22, 2001.

[103] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember: cold-boot attacks
on encryption keys,” Communications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[104] T. Pettersson, “Cryptographic key recovery from linux memory dumps,” Chaos Com-
munication Camp, vol. 2007, 2007.

[105] T. Ptacek, “Recover a private key from process memory,” 2008.

[106] T. Klein, “All your private keys are belong to us,” Tech. Rep, Tech. Rep., 2006.

[107] P. Bajpai and R. Enbody, “Memory forensics against ransomware,” in 2020 Interna-
tional Conference On Cyber Incident Response, Coordination, Containment & Control
(Cyber Incident). IEEE, 2020, pp. 1–8.

[108] [Online]. Available: https://malpedia.caad.fkie.fraunhofer.de/

176

[109] [Online]. Available: https://virusshare.com/

[110] [Online]. Available: https://app.any.run/submissions/

[111] [Online]. Available: https://beta.virusbay.io/

[112] T. L. Johnson, M. C. Merten, and W.-M. W. Hwu, “Run-time spatial locality detec-
tion and optimization,” in Proceedings of 30th Annual International Symposium on
Microarchitecture. IEEE, 1997, pp. 57–64.

[113] M. Joye, “On white-box cryptography,” Security of Information and Networks, pp.
7–12, 2008.

[114] A. K. Sood and R. J. Enbody, “Targeted cyberattacks: a superset of advanced persis-
tent threats,” IEEE security & privacy, vol. 11, no. 1, pp. 54–61, 2012.

[115] C. Maartmann-Moe, S. E. Thorkildsen, and A. Årnes, “The persistence of memory:
Forensic identification and extraction of cryptographic keys,” digital investigation,
vol. 6, pp. S132–S140, 2009.

[116] S. Cobb, “Rot: Ransomware of things,” 2017.

[117] I. Yaqoob, E. Ahmed, M. H. ur Rehman, A. I. A. Ahmed, M. A. Al-garadi, M. Imran,
and M. Guizani, “The rise of ransomware and emerging security challenges in the
internet of things,” Computer Networks, vol. 129, pp. 444–458, 2017.

[118] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and other
botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[119] S. R. Zahra and M. A. Chishti, “Ransomware and internet of things: A new security
nightmare,” in 2019 9th International Conference on Cloud Computing, Data Science
& Engineering (Confluence). IEEE, 2019, pp. 551–555.

[120] J. Matherly, “Complete guide to shodan,” Shodan, LLC (2016-02-25), vol. 1, 2015.

[121] A. Cherepanov, “Win32/industroyer: a new threat for industrial control systems,”
White paper, ESET, 2017.

[122] D. A. Saraiva, V. R. Q. Leithardt, D. de Paula, A. Sales Mendes, G. V. González, and
P. Crocker, “Prisec: Comparison of symmetric key algorithms for iot devices,” Sensors,
vol. 19, no. 19, p. 4312, 2019.

[123] G. C. Pereira, R. C. Alves, F. L. d. Silva, R. M. Azevedo, B. C. Albertini, and C. B.
Margi, “Performance evaluation of cryptographic algorithms over iot platforms and
operating systems,” Security and Communication Networks, vol. 2017, 2017.

[124] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehicle,”
Black Hat USA, vol. 2015, p. 91, 2015.

[125] P. Bajpai, A. K. Sood, and R. J. Enbody, “The art of mapping iot devices in networks,”
Network Security, vol. 2018, no. 4, pp. 8–15, 2018.

177

[126] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid
to autonomous cars and vehicular clouds,” in 2014 IEEE world forum on internet of
things (WF-IoT). IEEE, 2014, pp. 241–246.

[127] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the mirai
botnet,” in 26th {USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
1093–1110.

[128] P. Bajpai, R. Enbody, and B. H. Cheng, “Ransomware targeting automobiles,” in
Proceedings of the Second ACM Workshop on Automotive and Aerial Vehicle Security,
2020, pp. 23–29.

[129] T. Zhang, H. Antunes, and S. Aggarwal, “Defending connected vehicles against mal-
ware: Challenges and a solution framework,” IEEE Internet of Things journal, vol. 1,
no. 1, pp. 10–21, 2014.

[130] M. H. Eiza and Q. Ni, “Driving with sharks: Rethinking connected vehicles with vehicle
cybersecurity,” IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 45–51, 2017.

[131] C. Schmittner, G. Griessnig, and Z. Ma, “Status of the development of iso/sae 21434,”
in European Conference on Software Process Improvement. Springer, 2018, pp. 504–
513.

[132] A. Calder and S. G. Watkins, Information security risk management for
ISO27001/ISO27002. It Governance Ltd, 2010.

[133] D. Inghels, W. Dullaert, B. Raa, and G. Walther, “Influence of composition, amount
and life span of passenger cars on end-of-life vehicles waste in belgium: A system
dynamics approach,” Transportation Research Part A: Policy and Practice, vol. 91,
pp. 80–104, 2016.

[134] C. Specification, “Version 2.0,” Robert Bosch GmbH, 1991.

[135] T. Cruz, J. Barrigas, J. Proença, A. Graziano, S. Panzieri, L. Lev, and P. Simões,
“Improving network security monitoring for industrial control systems,” in 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM).
IEEE, 2015, pp. 878–881.

[136] C. E. Landwehr, “The best available technologies for computer security,” Computer,
no. 7, pp. 86–100, 1983.

[137] I. Mann, Hacking the human: social engineering techniques and security countermea-
sures. Routledge, 2017.

[138] J. Hernandez-Castro, E. Cartwright, and A. Stepanova, “Economic analysis of ran-
somware,” Available at SSRN 2937641, 2017.

178

[139] D. A. Mundie and D. M. McIntire, “The mal: A malware analysis lexicon,”
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST, Tech. Rep., 2013.

[140] A. Gazet, “Comparative analysis of various ransomware virii,” Journal in computer
virology, vol. 6, no. 1, pp. 77–90, 2010.

[141] D. Jacobs, K.-K. R. Choo, M.-T. Kechadi, and N.-A. Le-Khac, “Volkswagen car en-
tertainment system forensics,” in 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE,
2017, pp. 699–705.

[142] D. Hildebrand, “An architectural overview of qnx.” in USENIX Workshop on Micro-
kernels and Other Kernel Architectures, 1992, pp. 113–126.

[143] R. Krten, Getting started with QNX Neutrino 2: a guide for realtime programmers.
PARSE Software Devices, 1999.

[144] 2019. [Online]. Available: http://www.qnx.com

[145] G. Podjarny and O. Segal, “Method and apparatus for security assessment of a com-
puting platform,” Feb. 11 2014, uS Patent 8,650,651.

[146] 2019. [Online]. Available: https://www.exploit-db.com/exploits/21520

[147] G. Alliance, The GENIVI Alliance. Online, 2013, vol. 28.

[148] G. Macario, M. Torchiano, and M. Violante, “An in-vehicle infotainment software
architecture based on google android,” in 2009 IEEE International Symposium on
Industrial Embedded Systems. IEEE, 2009, pp. 257–260.

[149] M. Ghangurde, “Ford sync and microsoft windows embedded automotive make digital
lifestyle a reality on the road,” SAE International Journal of Passenger Cars-Electronic
and Electrical Systems, vol. 3, no. 2010-01-2319, pp. 99–105, 2010.

[150] C. Roberts, “Biometric attack vectors and defences,” Computers & Security, vol. 26,
no. 1, pp. 14–25, 2007.

[151] I. Ristic, OpenSSL Cookbook: A Guide to the Most Frequently Used OpenSSL Features
and Commands. Feisty Duck, 2013.

[152] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box cryptography and
an aes implementation,” in International Workshop on Selected Areas in Cryptography.
Springer, 2002, pp. 250–270.

[153] T. Müller, F. C. Freiling, and A. Dewald, “Tresor runs encryption securely outside
ram.” in USENIX Security Symposium, vol. 17, 2011.

[154] A. Greenberg, “Hackers remotely kill a jeep on the highway—with me in it,” Wired,
vol. 7, p. 21, 2015.

179

[155] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham et al., “Experimental security analysis of a
modern automobile,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 447–462.

180

