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ABSTRACT 

SMART CONTENT CACHING FOR DEVICE-TO-DEVICE DATA DISSEMINATION 

By 

Rui Wang 

Wide popularity of wireless devices and their data-enabled applications have created an 

evolving marketplace for digital content ecosystems. A common operation in those ecosystems is 

to disseminate content in a cost-optimal manner. With the conventional download model, a user 

downloads content directly from a Content Provider’s (CP) server via a Communication Service 

Provider’s (CSP) network. Downloading content through CSP’s network involves a cost, which 

must be paid either by End Consumers (EC) or the CP. The main objective of the thesis is to provide 

caching mechanisms that minimizes the overall provisioning cost in different network topologies. 

This is implemented by caching right objects in data-enabled mobile devices such as smartphones, 

smart pads, vehicles and novel edge devices. In this thesis, several number of existing caching 

strategies are studied. Then, an incentive based cooperative content caching framework is 

developed for both fully-connected Social Wireless Networks (SWNETs) and mobile wireless 

networks in which content demands are hierarchically heterogeneous. Furthermore, a D2D 

cooperative caching framework is proposed for streaming video with heterogeneous quality 

demands in SWNETs. This caching framework contains two main components: a value-based 

caching strategy in which the value of caching a streaming video segment is defined for given 

pricing and video sharing models, and an Adaptive Quality (AQ) provisioning algorithm that 

minimizes the overall video content provisioning cost within an SWNET. Additionally, a vehicular 

content caching mechanism is developed for disseminating navigational maps while minimizing 

cellular network bandwidth usage. The key concept is to collaboratively cache the dynamic 



  
 
 

 
 

components of navigational maps in roadside units (RSUs) and vehicles such that the majority of 

dissemination can be accomplished using V2V and V2I communication links. Moreover, a novel 

caching mechanism is proposed which is based on Connectionless Edge Cache Servers in vehicular 

networks. The goal is to intelligently cache content within the vehicles and the edge servers so that 

majority of the vehicle-requested content can be obtained from those caches, thus minimizing the 

amount of cellular network usage needed for fetching content from a central server. A notable 

feature of the cache servers in this work is that they do not have backhaul connectivity. This makes 

the connectionless servers to be relatively less expensive compared to the usual Roadside Service 

Units (RSUs), and potentially moveable in response to specific events that are expected to generate 

content in large volumes. Finally, a list of future work on this topic is compiled that includes: 1) 

developing machine learning models for predicting content demand and spatiotemporal localities 

of node movements, 2) developing mechanisms for edge cache server placement for performance 

optimization, and 3) analyzing the impacts of selfishness on the performance of caching.
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Chapter 1 : Introduction 

Wide popularity of wireless devices such as Android, iPhone, Windows Phone, and their 

data-enabled applications such as Kindle book reader, Netflix, and various content stores have 

created many digital content ecosystems. As shown in Figure 1-1, users with mobile devices (e.g. 

smart phones and smart pads, etc.) can obtain content such as e-books, music and movies through 

cellular networks (e.g. 5G, etc.) from these ecosystems. In addition to user-carried mobile devices, 

such ecosystems can also cater to various smart devices installed on machines. A prominent 

example of the latter is in-vehicle wireless interfaces. With more and more vehicles being wirelessly 

connected through Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) [1], and cellular 

links, many data-driven applications are emerging for in-vehicle usage. Such applications typically 

also involve digital content including music, books, and streaming audios and videos.  

 

Figure 1-1: Network architecture of digital content access 

   A common requirement in those ecosystems is to be able to disseminate content (e.g., books, 

magazines, music, etc.) in a manner that reduces the cost of cellular link usage. Traditionally, an 

End Consumer (EC) downloads content directly from a Content Provider’s (CP) server in the core 

Internet

Content Provider Cellular Base Station
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network via a Communication Service Provider (CSP) such as AT&T, Verizon and Sprint, etc.. 

This approach involves a cost which must be paid either by ECs or by the CP. For example, in the 

business model of Amazon Kindle electronic book delivery [2, 3], the CP (Amazon) pays to the 

CSP (Sprint) for the cost of network usage due to content downloaded by users.  

 
1.1 Caching for Cellular Bandwidth Cost Reduction 

One possible solution for reducing such cost is to cache the most popular content in local 

infrastructures or mobile devices with storage. In this way, the ECs can often find their requested 

content within those caches, and avoid the communication cost of always downloading them from 

the CP’s server via the CSP’s network. 

1.1.1 Traditional Infrastructure-based Caching 

Traditional infrastructure-based models of caching have been proposed for communication 

cost reduction by pushing popular content to local infrastructures near the targeted EC population. 

One typical implementation of such models is edge servers in Content Delivery Networks (CDN) 

[4]. These edge servers are usually deployed proximal to the ECs. For example, the Wi-Fi Access 

Points (APs) [5] installed in a building can be directly accessed by the ECs in the building. The APs 

also connect to the CP’s servers through the Internet without going through the CSP’s cellular 

networks. The popular content can be cached in such local edge servers so that the ECs can fetch 

the content directly from these infrastructures. Another kind of edge device is roadside units (RSUs) 

[6] deployed beside the roads. These devices connect to the Internet through fiber links, thus they 

can cache and relay the popular content to the nearby vehicles via Dedicated Short-Range 

Communications (DSRC) [7] links. 

 Such infrastructure-based caching avoids downloading content repeatedly from the CP’s 

(e.g., Amazon’s) server via the CSP’s network, thus it reduces the cellular network usage. However, 
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for each single local infrastructure, its coverage (i.e. transmission range) is limited. For example, a 

typical transmission range of 802.11 (e.g., Wi-Fi) is only between 100 and 300 meters [8]. Thus, 

the ECs out of the range from a Wi-Fi AP are not able to access any content cached in the 

infrastructure. Additionally, it may be expensive to deploy too many caching infrastructures (i.e., 

edge servers) for improving the coverage. 

1.1.2 Device-to-Device Cooperative Caching 

An alternative model would be to cache content in the ECs’ devices following the localities 

in human interactions and content interests. One typical example is when users physically gather in 

settings such as university campuses, malls, airports, and other public places, Social Wireless 

Networks (SWNETs) [9] can be formed over ad hoc wireless connections among their mobile 

devices [10]. Examples of SWNETs would include students in a university campus, a group of 

colleagues in a workplace, and people in a shopping district. In this model, each device in a SWNET 

is able to cache content following some policy that leverages the above localities. For downloading 

content such as a Netflix movie, a user device can first search within its SWNET for the requested 

content before downloading it from the CP’s server. The expected CSP’s communication cost in 

this approach can be lower since the download cost paid to the CSP would be avoided when the 

content is found within the local SWNET of the requesting user. This is termed as cooperative 

caching. Figure 1-2 (a) shows an example of an SWNET formed by several users with mobile 

devices. Under this setting, the ECs, carrying mobile devices, can obtain an object either: 1) directly 

from the CP’s server through the CSP’s cellular network, or 2) locally, from other devices they 

interact with through high-speed wireless links (e.g. Bluetooth Low Energy, Wi-Fi, etc.). 
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Figure 1-2: Content access methods for D2D networks 

Similarly, in the vehicular context shown in Figure 1-2 (b), cellular bandwidth usage cost 

reduction is accomplished by letting a vehicle first search content in nearby Connected Vehicle 

Fabric (CVF) via DSRC or Bluetooth, etc.. A download from a CP’s server via 5G link is triggered 

only if the local CVF search fails. 

Compared with traditional infrastructure-based caching models (e.g., at the edge servers, 

etc.), there are at least two notable advantages of the proposed D2D cooperative caching. First, with 

D2D caching, there is no need to add any new hardware infrastructure. Second, unlike the 

infrastructure-based models, the coverage and shared storage capacity of a D2D network can be 

organically extended. This happens as more ECs join the network and contribute to the growth of 

overall cache storage in the network. Another example is when some ECs fetch content from one 

D2D network, and are able to disseminate them in another network as they move across networks. 

1.1.3 Connectionless Edge Cache Servers 

To address the issues of traditional edge cache servers in Section 1.1.1, the concept of 

Connectionless Edge Cache Servers (CECSs) is introduced in this thesis. The idea is to use such 

servers without incurring the cost of backhaul connectivity, while gaining the ability to make the 

cache server mobile. Such mobility can provide a great deal of flexibility in temporarily placing 

Internet
CP’s Server

CSP’s Cellular 
Infrastructure

Local Connection 
over Wi-Fi, BT, etc.

CSP’s Cellular 
Infrastructure

Local CVF Fetch
Over DSRC, BT, etc.

CP’s Server
(a) Content access methods for users within an SWNET (b) Content sharing in a connected vehicle fabric

Internet
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them in areas with low vehicle and RSU densities and high content demands. Putting the CECS on 

vehicles and placing them on-demand can cater to events such as games, accidents, weather 

conditions, etc. As shown in Figure 1-3, Without backhaul connectivity to a CP, the CECSs can 

cache content collected via DSRC links form the current-passing vehicles and provide them to 

future-passing vehicles over DSRC, and reduce the cellular bandwidth usage of the vehicles in that 

process. 

Compared with caching at vehicles or traditional infrastructures (e.g., RSUs, etc.), the 

advantages of caching at a CECS are as follows: 1) a CECS can be used as an intermediate device 

for data dissemination among vehicles, especially in the scenarios where the V2V connectivity is 

sparse so that it is difficult for vehicles to disseminate the date directly through V2V links, and 2) 

the cost for deploying a CECS is less than a traditional cache server because there is no the 

requirement of backhaul connectivity for a CECS. 

 

Figure 1-3: Example of content dissemination through a CECS 

1.2 Content Search 

Upon originating a request, a node (i.e. an EC) first performs a local search for the requested 

content in its own cache. If that fails, the node performs a remote search in its local network. If the 

node cannot obtain the content from the network within a pre-defined Tolerable Access Delay 

(TAD), it sends a request to the CP’s server. TAD, which is part of a request, represents the duration 

that a user application is willing to wait before a successful content request is served. The remote 

(a) Vehicle-A downloads data from the
CP’s server through cellular link

Data

CP’s Server

CECS

Cellular link
Vehicle-A

Data
CECSCP’s Server

Local DSRC link

Vehicle-A

(b) Vehicle-A uploads the data to the CECS
through DSRC link, then the CECS caches
the data

Data

CECSCP’s Server

Local DSRC link

Vehicle-B

(c) Vehicle-B downloads the data from the
CECS through DSRC link
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search can take place using devices’ Wi-Fi, Bluetooth, and other short-range RF interfaces (e.g. 

DSRC, etc.). The content from the CP’s server is downloaded using a CSP’s cellular network. 

The content search and retrieval within the local networks can be performed using traditional 

IP routing protocols or the emerging Information-Centric Networking (ICN) based protocols such 

as Named Data Networking (NDN) [11,12,13]. In other words, this content retrieval can work 

seamlessly with ICN/NDN mechanisms that may be already in place within the local networks. 

1.3 Cache Replacement 

Due to limited storage, mobile devices are not expected to store all downloaded content for 

long. This means after downloading and using a purchased electronic content, a device may remove 

it from the storage following a replacement policy for keeping the most popular content in the 

storage. Possible cache replacement policies include Least Frequently Used (LFU) [14], Least 

Recently Used (LRU) [15], Random replacement [16] and popularity-driven policy [17], etc.. 

1.4 Incentives, Security Issues and User Selfishness in D2D Caching 

In order to encourage an EC to cache previously downloaded content and to share it with 

other ECs, a micro-rebate mechanism such as the ones proposed in [18, 19, 20] can be used. These 

micro-rebates that an EC can redeem with the content provider at a later time can serve as an 

incentive and compensation for the resource used during D2D caching. Such resources include both 

device storage and battery drainage due to caching and D2D content transfer. 

A key requirement for implementing D2D cooperative caching would be to implement a 

digitally signed rebate framework in which the rebate recipients can electronically validate and 

redeem rebates with the CP. Also, a digital usage right mechanism [21] is needed so that an EC 

who is caching a content should not necessarily be able to use it unless she had explicitly purchased 
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the content from the CP. Such digital usage right mechanisms are already available in the literature 

[22], and are relied on for the proposed caching architecture. 

The potential for earning peer-to-peer rebate may promote selfish behavior [23]. A selfish 

user is one that deviates from the network-wide optimal caching policy in order to earn more 

rebates. Any deviation from the optimal policy is expected to incur higher network-wide 

provisioning cost. In this thesis, it is assumed that the users are not selfish in that they fully comply 

with the network-wide optimal policy.  

1.5 Dissertation Objectives 

The objective is to design optimal mechanisms for caching at mobile devices such that under 

different network topologies the network-wide provisioning cost is minimized. A key question for 

content caching is: how to store content in mobile nodes so that the overall content provisioning 

cost in the network is minimized. This question needs to be addressed under heterogeneous user 

demands. All results presented in our previous work [24] were for homogeneous request conditions 

in which it was assumed that all consumers’ requests follow a common global Zipf [25] distribution 

for content popularity. While providing a reasonable model for a baseline cooperative caching 

architecture, a common global popularity for content does not represent real scenarios in which 

content preferences usually vary significantly across different ECs or local areas [26]. For example, 

a globally popular e-book may not be preferred in some specific areas. Another example is that each 

user may request different qualities for the same video resulted by the limit of device or network 

resource, or personal situation (e.g. membership of Amazon Prime, etc.). Thus, the heterogeneity 

of quality demands for the same video content needs to be involved for designing a cooperative 

caching mechanism. 
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In this thesis, we attempt to develop caching structures that cater to such content preference 

heterogeneity. In [27] a Distributed Benefit based heuristics was used for optimal caching in the 

presence of request heterogeneity. The primary limitation of this approach is in its assumption that 

a centralized content server requires to store the request preference of each consumer, thus 

rendering it non-scalable. Especially so, when there are potentially millions of consumers in the 

system. The main goal of this thesis is to present scalable yet optimal approaches to implement 

content caching with a fully heterogeneous request model. 

 
1.6 Scope of Thesis 

The main objective of the thesis is to provide content caching mechanisms that minimizes the 

overall provisioning cost in different network topologies. This is implemented by caching right 

objects in data-enabled mobile devices such as smartphones, smart pads, vehicles and novel edge 

devices. When people with smart devices physically gather in a place such as university or 

downtown area, they may be interested in the same content that is statistically popular in this place. 

The summary of investigated topics in the thesis is shown in Figure 1-4. 

 

Figure 1-4: Summary of investigated topics in the thesis 

Smart Content Caching

Caching in Social 
Wireless Networks 

Caching in Vehicular 
Networks 

Caching for Non-streaming 
Content 

Caching for Streaming 
Content (Chapter-5) 

Fully-connected 
Networks (Chapter-3) 

Mobile Networks 
(Chapter-4) 

Caching at Vehicles 
(Chapter-6)

Caching at CECSs 
(Chapter-7)
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Chapter-2 is a survey about existing caching strategies. First, content caching mechanisms in 

traditional stationary wired networks are reviewed, even though most of the ideas cannot be directly 

used in wireless networks. Then some most recent caching strategies, including infrastructure-based 

and D2D cooperative caching policies, are introduced. Furthermore, the differences and advantages 

of the proposed caching mechanisms in this thesis are highlighted and compared to these existing 

caching strategies. 

In Chapter-3, an incentive based cooperative content caching framework is developed for 

Social Wireless Networks (SWNETs) in which content demands are hierarchically heterogeneous. 

The heterogeneous request model incorporates user preference for different categories/genres and 

contents under each category. The experiment results show that the proposed mechanism is able to 

reduce content provisioning cost compared to traditional caching mechanisms a in fully-connected 

SWNET. 

In Chapter-4, the caching mechanism proposed in Chapter-3 is applied on the scenario of 

mobile wireless networks. Unlike Chapter-3, in this scenario the connection between each pair of 

nodes is not stable anymore because a node may dynamically join or leave a network. However, 

the experiments show that the proposed mechanism is still able to reduce bandwidth usage and the 

resulting content provisioning cost compared to traditional caching mechanisms in both monolithic 

and community-based mobility scenarios. 

In Chapter-5, a D2D cooperative caching framework is proposed for streaming video with 

heterogeneous quality demands in SWNETs. This caching framework is formed of two 

components: a value-based caching strategy in which the value of caching a streaming video 

segment is defined for given pricing and video sharing models, and an Adaptive Quality (AQ) 

provisioning algorithm that minimizes the overall video content provisioning cost within an 
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SWNET. The simulation results indicate that the proposed mechanism is able to appreciably reduce 

the overall video provisioning cost in the presence of end-user mobility. 

In Chapter-6, a vehicular content caching mechanism is presented for disseminating 

navigational maps while minimizing cellular network bandwidth usage. The key concept is to 

collaboratively cache the dynamic components of navigational maps in roadside units (RSUs) and 

vehicles such that the majority of dissemination can be accomplished using V2V and V2I 

communication links. The simulation results indicate that compared to infrastructure-only caching 

strategies, the proposed vehicle-involved collaborative caching mechanism is able to reduce the 

bandwidth usage of cellular networks and the delivery delay for obtaining dynamic map data. 

Chapter-7 presents a caching mechanism based on a novel edge infrastructure CECS for 

Software Update Package (SUP) dissemination in the context of vehicular networks. The research 

goal is to intelligently cache content at CECSs and vehicles such that the cellular bandwidth usage 

is reduced. Using the DTN simulator ONE, we run detailed simulations in context of vehicular 

networks in the East Lansing area and a synthetic scenario. The results indicate that the proposed 

caching mechanism is able to reduce the cellular bandwidth usage and SUP fetching delay 

compared to some other caching strategies.  

Finally, in Chapter-8 this thesis is summarized, and a list of future work is compiled. 
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Chapter 2 : Related Work 

2.1 Caching in Stationary Networks 

The nodes and topologies in a stationary wired network may not often change. Moreover, the 

connection between each pair of different networks is also relatively stable. These characteristics 

result that each node can always access the other nodes in the networks. 

 Approaches of web caching have been widely used in stationary wired networks [28, 29]. 

However, the emerging information centric networking (ICN) [30, 31, 32], which is also known as 

content centric networking (CCN), involves caching mechanisms to improve the performance of 

content retrieval including e-books, music and videos, etc.. For example, a Dynamic Adaptive 

Streaming over HTTP (DASH) strategy is adopted in [33] for Dynamic Adaptive Streaming over 

Content centric networking (DASC). With DASH, a content centric networking (CCN) node is used 

instead of HTTP for caching popular video content. Still based on CCN, a new caching strategy, 

namely, Most Popular Content (MPC) is presented in [34]. By caching only popular content, this 

method is able to cache less content while still achieving a higher cache hit.  

Even without CCN, a two-tier caching strategy is presented in [35] for streaming video over 

the IPTV. In this thesis, the video server connects with many local area networks, each of which 

maintains a separate cache server that serves all clients within its network. In [36] a content caching 

scheme, WAVE, is presented in which the number of chunks to be cached is adjusted based on the 

popularity of the content. This caching mechanism is for lowering the hop count of content delivery 

while increasing the cache hit ratio. Finally, in [37] an architectural framework named CachePortal 

system is proposed for enabling dynamic content caching for database-driven e-commerce sites that 

most of the traditional caching strategies cannot handle. 
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However, in a wireless mobile network the nodes may dynamically join or leave the network 

over time. This means a node is not always reachable, and results that most of the caching 

mechanisms in stationary wired networks are not available in wireless mobile networks. 

2.2 Caching in Mobile Networks 

 Wireless communication is a fast-growing part in communication area. Compared with 

stationary wired networks, the topology of a wireless mobile network is more dynamic. Thus, the 

content caching mechanisms in wireless mobile networks [38, 39] should be different from those 

in wired networks.  

2.2.1 Traditional Infrastructure-based Caching 

Traditional infrastructure-based models of caching have been proposed for communication 

cost reduction by pushing popular content through the core networks to local infrastructures near 

the targeted user population. A caching approach based on Small Base Stations (SBSs) is presented 

in [40]. In this solution, the base station serves only few influential nodes, and lets them help in 

disseminating the content to other nodes. That simplifies the content dissemination process, and 

increases offloading gains in mobile wireless networks. In [26], a method called Reactive User 

Preference Profile (R-UPP) is introduced for caching streaming videos in base-stations of Radio 

Access Networks as a way to reduce the need for downloading requested videos from Content 

Distribution Networks. R-UPP is based only on the popularity of objects without considering the 

underlying quality preference distributions. Similarly, the caching strategy proposed in [41] is based 

on the base-stations. In this case, the cache server is deployed in Mobile Switching Centers (MSC), 

which can be connected to multiple base stations. Another example of infrastructure-based 

streaming video caching was proposed in [42, 43]. The authors propose a proactive caching 

approach named “smart scheduler” for railway systems. Popular content is proactively cached in 
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each railway station before the next train arrives. The objective is to improve the content distribution 

throughput in transportation network system. Using a Markov process-based modeling of content 

dynamics, the authors in [44] propose a proactive caching mechanism for reducing retrieval delay 

of video content in the presence of disconnections in 5G cellular networks. 

In the context of vehicular networks, the authors in [45] present a novel vehicular network 

architecture in which the RSUs are allocated with large storage capacity and the needed V2I and 

backhaul links for effective content caching. The main objective here is to minimize the average 

delay for obtaining content by caching the popular content in the RSUs. An integer linear 

programming (ILP) based optimal content prefetching algorithm within Access Points (Aps) is 

presented in [46] for vehicular networks. The proposed method is for maximizing the probability 

of access of requested content that is cached in the APs. Another caching method in [47] attempts 

to improve the accessibility of requested content by caching popular contents in cache stores (CS) 

in information-centric networks (ICNs). While being able to provide effective cache performance, 

all these mechanisms extensively rely on infrastructure such as RSUs, cache stores, and other 

dedicated caching objects. This limits the effectiveness of such mechanisms in vehicular networks 

with insufficient infrastructure availability. The following papers report research on in-vehicle 

caching. 

The main disadvantage of traditional infrastructure-based caching is that the coverage of each 

single local infrastructure is limited. Thus, the users out of the range from a infrastructure are not 

able to access any content cached in the infrastructure. Additionally, it may be expensive to deploy 

too many such caching infrastructures with backhaul connectivity for improving the coverage. 
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2.2.2 Device-to-Device Cooperative Caching 

Unlike infrastructure-based caching, in D2D cooperative caching the content is cached on the 

mobile devices of each user in the networks. A distributed heuristic solution for effective replica 

placement in Wireless Mesh Networks (WMNs) is presented in [48]. The local popularity of an 

object, which is defined as the relative demand for it within a network partition compared to that in 

the whole network, is used for improving the hit rate of cache. The Give-and-Take (GT) criterion 

is proposed in [49] for addressing the issue of free riders in network caching. Free riders are selfish 

peers who only obtain objects and leave the network without uploading anything in return. The 

mechanism in [50] proposes a distributed mobile caching system to cache data temporarily in a 

designated local area. The caching system is realized using collaborative consumer devices. The 

mechanism in [51] proposes a cooperative caching solution for vehicular network that formulates 

and solves an optimization problem to maximize content dissemination among vehicles within a 

predetermined deadline. The proposed approach minimizes the cost associated with communicating 

over the cellular connection. In another work, [52] presents a cooperative caching strategy in which 

the proposed protocol uses a class of reputation-based data forwarding and caching heuristics where 

the forwarding and caching decisions maximize the performance of the global system. It also 

proposes a Heterogeneous Community-based Random Way Point (HC-RWP) mobility model, 

which captures the properties of real human mobility. In [53], a cooperative caching solution for 

sensor networks is proposed in which some of the chosen sensor nodes are selected to maintain 

special roles in taking the caching and request forwarding decisions. The scheme in [54] presents a 

scheme that selects appropriate nodes as Network Central Locations (NCLs) to coordinate multiple 

caching nodes to optimize the tradeoff between data accessibility and caching overhead. In [55] a 

strategy based on a P2P network, named Small World Network (SWN), was proposed. In SWN, 
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the correlation of demands across different video segments are used to guide nodes to form a 

cooperative caching overlay so that each node maintains neighborhood relationship with related 

video segments. In [56], a quality of experience (QoE) centric distributed caching approach was 

proposed to improve the cache hit ratio for requests with specific quality. The work in [57] proposed 

a new QoS-aware hierarchical web caching (QHWC) scheme for Internet-based vehicular ad hoc 

networks (IVANET). This scheme leverages any locality in vehicle dis-connectivity and mobility 

in order to increase the cache hit ratio and to reduce query delays. In [58], a caching strategy named 

Chunk Select method Adaptive to Neighbor Reception (CSANR) was proposed for avoiding nodes 

to download the same segments of streaming videos in order to save the cache space. A video 

dissemination solution based on hybrid P2P/Multi-server Quality-Adaptive Live-Streaming is 

proposed in [59]. This approach combines P2P caching and multiple edge servers in order to reduce 

the traffic load of the Internet as well as improving users’ QoE. 

In vehicular networks, the authors [60] presents an in-vehicle caching method which is termed 

as Collaborative Caching Based on Socialized Relations (CCBSR). The objective is to mitigate the 

impacts of mobility-triggered V2I dis-connectivity towards minimizing content access delay. It also 

attempts to minimize the number of vehicles in which the content needs to be cached. The P2P 

Cooperative Caching (P2PCC) in [61] also attempts to mitigate the impacts of dis-connectivity 

using a Markov model-based caching approach. It does so by in-vehicle caching and sharing content 

across the V2V network. The researchers in [62] proposes a V2V caching strategy based on 

Evolutionary Game. The objective of the method is to avoid the free riders, which only obtain 

content from other nodes without contributing to caching. An innovative V2V caching mechanism 

in [63] attempts to mitigate the impacts of signal quality and connectivity impairments due to large 

buildings in urban settings. The paper proposes a Leave Copy Everywhere (LCE) strategy to 
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improve content accessibility in urban environments. A Community Similarity and Population-

based Cache Policy (CSPC) is proposed in [64] for ICN vehicle-to vehicle (V2V) scenario. This 

method evaluates the community similarity and privacy rating of vehicles, and selects the caching 

vehicle based on content popularity to reduce the cache redundancy. Finally, [65] presents a 

cooperative content caching framework, and proposes a hierarchical mobility-aware edge caching 

scheme that harnesses the synergies between mobile edge computing (MEC), multi-BS caching, 

and vehicular caching. 

2.3 Summary 

Almost all the mentioned approaches focus on maximizing the cache hit rate and reducing 

the access latency, without considering its effects on the overall cost which depends heavily on the 

content service and pricing models. Specifically, for caching of streaming content most of the 

mentioned approaches do not consider caching videos with heterogeneous qualities in users’ 

devices. In this thesis, various Device-to-Device cooperative caching strategies are proposed to 

address these gaps. These caching strategies are inspired by the notations of: 1) minimizing the 

overall content provisioning cost, and 2) heterogeneous user preferences. 

Moreover, in the context of vehicular networks most of the existing vehicular caching work 

attempts to improve content accessibility and reduce the access latency, without considering 

minimizing the bandwidth usage of cellular networks. In this thesis, the primary objective is to 

minimize the access cost by the way of reducing the usage of in-vehicle cellular links. While 

accomplishing that, the accessibility and access delay are also improved.  

Finally, the caching mechanisms proposed in the above literatures are based on the traditional 

edge infrastructures (i.e. RSU, etc.) with backhaul connectivity, or in-vehicle caching. However, 

the deployment cost of such infrastructure is expensive. On the other hand, the in-vehicle caching 
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does not work when the vehicle density is low. To deal with these challenges, this thesis proposes 

a novel edge infrastructure CECS introduced in Section 1.1.3 in Chapter 1 that has no backhaul 

connectivity.  
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Chapter 3 : Cooperative Caching in Social Wireless Networks 

3.1 Introduction 

Wide popularity of wireless devices and their data-enabled applications have created an 

evolving marketplace for digital content ecosystems. A common operation in those ecosystems is 

to disseminate content (e.g., books, magazines, music, etc.) in a cost-optimal manner. With the 

conventional download model, a user downloads content directly from a Content Provider’s (CP) 

server via a Communication Service Provider’s (CSP) network. Downloading content through 

CSP’s network involves a cost, which must be paid either by End Consumers (EC) or the CP.  

In this chapter, an incentive based cooperative content caching framework is developed for 

fully-connected Social Wireless Networks (SWNETs) in which content demands are hierarchically 

heterogeneous. The heterogeneous request model incorporates user preference for different 

categories/genres, and contents under each category, both following power law distributions at local 

as well as global levels. Based upon such request generation model, an optimal incentive based 

Heterogeneous Split Caching algorithm is proposed which can minimize electronic content 

provisioning cost using cooperative caching policies. 

3.2 Hierarchically Heterogeneous Requests  

Each object (i.e. content) is assumed to be tagged with its global-popularity by a centralized 

content server such as Amazon or iTunes. The global popularity rank order is determined based on 

the network-wide request rates for all the content stored in the server. The larger the global 

popularity of an object is, the more likely it is to be requested across the entire network.  

    Each object is labeled with a category or genre at its creation time. One practical example 

is the list of categories for Amazon audio books, or the list of categories for songs provided by 

Spotify. Typically, a user has her/his own preference of such categories, which is maintained in 
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terms of a rank ordered list of categories. This user-specific list is referred to as content local 

popularity for that user. The content request model considers both local and global popularity 

models which are assumed to follow Zipf distributions. For global popularity, Zipf is applied at the 

per-content level, and for local popularity, it is applied at per-category level. 

3.2.1 Global Popularity of Object 

Global popularity of an object-i (i.e.,  𝑂!)	can be expressed as the probability that any random 

request from the network is for  𝑂! . According to the Zipf law, it is expressed as follows: 

                        𝑝"(𝑂! 	) =
(!")

#

∑ (!$)
#%

$&!
                                (3-1) 

The parameter L represents the total number of objects in the network. The Zipf parameter, 

𝛼, determines the steepness of the distribution curve. The higher the Zipf parameter 𝛼, the larger 

the difference of global popularity value for two objects with consecutive ranks. 

3.2.2 Local Popularity of Category 

A user’s local object preference is determined by the local popularity of the object categories. 

In this chapter, it is assumed that the global popularity of these categories follow uniform 

distribution. However, for each node, the local popularity of the categories can be different.  A 

user’s local object preference is represented as a rank-ordered list of M object categories. That is 

one of 𝑀!	possible lists. The rank of a specific category for a user-n can be different from the rank 

of the same category for another node in the network. The local popularity of a category-j at node-

n can be expressed as the probability that category-j has a popularity rank of k out of all M 

categories. According to the Zipf law, it is expressed as follows: 

                        𝑝&1𝐶'
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The 𝛼 in Zipf can be different for the global and local popularity distributions. While global 

popularities are defined for each object, the local popularities are for each category. 

3.2.3 Local Popularity of Object 

An object-i that belongs to category-j is represented as 𝑂!
)'
*

,	 and its global popularity 

𝑝" 4𝑂!
)'
*

5 is determined based on Eqn. 3-1. The quantity 𝑝" 4𝑂!
)'
*

5 indicates the global popularity 

rank of the object across all other objects. The rank of 𝑂!
)'
*

	among all other objects belonging to 𝐶'
( 

can be computed as:  
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                                                 (3-3) 

|𝐶'
(| indicates the total number of objects in category-j, and 𝑟 4𝑂!

)'
*

5 represents how popular 

object 𝑂!
)'
*

 is among the members of category-j. We then define the local popularity of 𝑂!
)'
*

 at node 

n, in which category-j has a local popularity rank of k out of all M categories, for node n. This local 

popularity of object 𝑂!
)'
*

 at node 𝑛 is computed as: 

            𝑝& 4𝑂!
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*

	5 = 𝑟 4𝑂!
)'
*

5 × 𝑝&1𝐶'
(3                                      (3-4) 

The quantity 𝑝&1𝐶'
(3 is the local popularity of category-j as defined in Eqn. 3-2. Note that 

this local popularity of a category at a node is different from the local popularity of an object at a 

node, as newly computed by Eqn. 3-4. 
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3.2.4 Request Generation Process 

Using the above hierarchical model, requests are generated from a consumer using the 

following process. First, a category is selected from the available M categories using the Zipf based 

local popularity distribution for the specific consumer. After a category is selected, one object is 

chosen from that category based on the global popularity Zipf distribution. Objects within a 

category with higher global popularity are more likely to be chosen. Since the local popularity of 

categories for each user is different, the ranking order of popularity of categories in the Zipf 

distribution is different for each user. Therefore, different users in the SWNET generate different 

request rates for same content, thus reflecting heterogeneity. 

3.3 Network Model and Problem Formulation 

3.3.1 Content Search Model 

Upon originating a request, a node first locally searches in its own cache. If that fails, the 

node performs a remote search in its SWNET partition. Note that in this chapter it is assumed that 

all the nodes in an SWNET partition are fully connected. If the node cannot obtain the object from 

the SWNET, a request is originated to the CP’s server to obtain the content. The local search can 

take place using devices’ Wi-Fi, Bluetooth, and other near-field RF interfaces. 

3.3.2 Pricing Model 

The pricing model in this chapter is similar to Amazon Kindle’s business model described in 

Chapter-1. Figure 3-1 depicts the adopted content and cost flow model. When the content is 

downloaded from CP (e.g. Amazon), a cost 𝐶/ must be paid to the CSP by the CP for using its 

services, which accommodates for the service given from the CSP to CP and the service given to 

nodes from the cellular infrastructure. In order to encourage the nodes to cooperate in caching by 
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sharing their resources (e.g. energy, storage, etc.), CP pays a rebate 𝐶0 to the participant nodes (e.g. 

𝐸𝐶1) when a cached object is transferred from the node to a requester (e.g., 𝐸𝐶2) in the SWNET. 

The ).
)/

 ratio, namely, 𝛽 should be in range [0,1], so that the total cost can be reduced by caching 

the most popular content remotely in the SWNET. Since 𝐶/ and 𝐶0 are set by a CP according to CP 

and CSP’s marketing and revenue models, the ECs do not have any control on the parameter 𝛽. 

Generally, it would not entice the ECs to participate in the cooperative caching when 𝛽 is too low. 

On the other hand, a too high 𝛽 does not provide significant cost savings. 

 

Figure 3-1: Content and cost flow 

Note that the cost items 𝐶/ and 𝐶0 are independent from the price of content (e.g., an e-book) 

that the EC pays to the content provider, preferably using a secure payment system. 

3.3.3 Cost under Heterogeneous Request Model: 

When a content is found locally within the requesting node, no cost is incurred for the content 

provider. Otherwise, the costs are 𝐶0 or 𝐶/ 	depending on if the content is downloaded from another 

node within the SWNET or from the CP’s server. The expected cost for a node 𝑛 is computed as: 
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Where L is the set of contents stored locally at a node; R is the set of contents stored in cache 

of other nodes in the SWNET (𝐿 ∩ 𝑅 = ∅). The network-wide total cost of provisioning in a 

network with size 𝑁 can then be computed as follows: 

																						𝑐𝑜𝑠𝑡9:9;< = ∑ 𝑐𝑜𝑠𝑡&=
&>?                                                  (3-6) 

3.3.4 Problem Definition 

For a given combination of 𝐶0 , 𝐶/, and a heterogeneous request model as presented in Section 

3.2, in a network of size N, the objective is to design a cooperative caching mechanism which 

minimizes the total cost of provisioning as stated by 𝑐𝑜𝑠𝑡9:9;<.  

3.4 Heterogeneous Split Caching Algorithm 

The proposed Heterogeneous Split Caching (HSC) algorithm is designed for minimizing the 

provisioning cost under the proposed heterogeneous request model. Each node’s cache is divided 

into two parts shown as Figure 3-2: 1) local segment, which is 𝜆	(0 ≤ 𝜆 ≤ 1) fraction of the 

available storage, and 2) global segment, which is the rest of the storage. In the local segment, nodes 

store objects that are locally most popular for the node, while in the global segment nodes cache 

objects that are globally most popular. 

 

Figure 3-2: Cache Partitioning in HSC 

Local segment Global segment

! ∗ # (1 − !) ∗ #
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Information Availability: CP maintains information regarding number of requests made for any 

object, with which it can compute the global popularity (𝑝" 4𝑂!
)'
*

5)  using Eqn. 3-1, and the 

popularity of the object among all the members of its category (𝑟 4𝑂!
)'
*

5) using Eqn. 3-3. Each node 

only needs to maintain its personal preference for categories. Once an object labeled with 𝑝" 4𝑂!
)'
*

5 

and	𝑟 4𝑂!
)'
*

5 is downloaded, the node-specific local popularity of the object is computed based on 

Eqn. 3-4 locally by the node. In the global segment, globally popular unique objects are stored. An 

object’s global popularity (𝑝" 4𝑂!
)'
*

5) follows the assigned Zipf distribution from Eqn. 3-1, and is 

known by nodes when the object is downloaded. 

Uniqueness of objects stored in the global segment is required to guarantee maximum content 

diversity, and to avoid network-wide duplications of globally popular objects. It means that the 

objects in the local segment can be network-wide duplicated. If 𝑆 is the per-node cache/storage size, 

local segment occupies	𝜆 ∗ 𝑆 portion of the cache, which leaves (1 − 𝜆) ∗ 𝑆 for the global segment. 

The objective of the HSC algorithm is to find the optimal 𝜆 such that the total provisioning cost as 

defined in Eqn. 3-6 is minimized. 

 Upon receiving a content (𝑂&@A)	either remotely from its Social Wireless Network (SWN) 

or from the CP, the requester node-i stores it in its local segment of its cache. If the local segment 

is full, it follows a replacement policy as follows.  

   The node first compares the local popularity of the obtained object 𝑂&@A with the popularity 

of the least locally popular content 𝑂<_C!&	in its local segment. If 𝑝!(𝑂&@A) > 𝑝!1𝑂<_C!&3, 𝑂<_C!&	is 

replaced with 𝑂&@A. Otherwise, following happens.  
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 1) If 𝑂&@A is obtained from the SWNET, the content is dropped. This is since the object is 

less popular locally compared to other objects existing in the local segment, it is not going to be 

requested as frequently. Therefore, it is reasonable to obtain it remotely from the SWNET, anytime 

it is requested again. 

2) If 𝑂&@A is downloaded from the CP, the node stores it in the global segment. If that segment 

is full, the node compares the global popularity of 𝑂&@A with that of the least globally popular object 

𝑂D_C!& in its global segment. If 𝑝"(𝑂&@A) > 𝑝"1𝑂D_C!&3, 𝑂D_C!& is replaced by 𝑂&@A . Otherwise, 

the object is dropped. Storing a downloaded content in the global segment improves the network-

wide content diversity. By storing the content in at most one node, the object becomes accessible 

to other SWNET nodes, thus eliminating cost of future downloads.  

   The full logic of caching and replacement is summarized in Algorithm 3-1. The optimal 

solution which results in the minimum provisioning cost can be achieved when lambda is set at the 

optimal lambda, which is found experimentally. 

   Since the values of 𝑝" 4𝑂!
)'
*

5 and 𝑟 4𝑂!
)'
*

5 are independently computed by the CP, and 

delivered as a part of the host object 𝑂!
)'
*

, a node can compute its specific local popularity for an 

object within the time complexity of O(1). The main computation cost of the algorithm is for 

running the replacement policy, which could be O(n) in the worst situation, where n is the local 

cache size. 

1:      Input: New Coming Content 𝑂&@A 
2:      if(i.𝑐𝑎𝑐ℎ𝑒<:E;< is not full) then 
3:             store 𝑂&@A in 𝑐𝑎𝑐ℎ𝑒<:E;< 
4:      else 
5:            𝑂<_C!& = least locally popular content in 𝑐𝑎𝑐ℎ𝑒<:E;< 
6:            if(𝑝!(𝑂&@A) > 𝑝!(𝑂<_C!&)) then 
7:                  replace(𝑂&@A,	𝑂<_C!&) 
8:            else 
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9:                  if(𝑂&@A is obtained from other nodes) then 
10:                      drop(𝑂&@A) 
11:                else 
12:                      if(i.𝑐𝑎𝑐ℎ𝑒D<:F;< is not full) then 
13:                            store 𝑂&@A in 𝑐𝑎𝑐ℎ𝑒D<:F;<  
14:                      else 
15:                            𝑂D_C!& = least globally popular content in 𝑐𝑎𝑐ℎ𝑒D<:F;< 
16:                            if(𝑝"(𝑂&@A) > 𝑝"1𝑂D_C!&3) then 
17:                                  replace(𝑂&@A,	𝑂D_C!&) 
18:                            else 
19:                                  drop(𝑂&@A) 
20:                            end 
21:                      end 
22:                end 
23:          end 
24:    end 

Algorithm 3-1: Caching algorithm and replacement policy in HSC 

3.5 Performance Evaluation 

Using a Java based simulator ONE [66], performance of the following two caching algorithms 

is evaluated in a static fully-connected network of 1000 nodes requesting similar-size objects. The 

optimal 𝜆 that minimizes the provisioning cost is chosen experimentally in various scenarios since 

there is no closed-form expression of it. 

Baseline HSC: Each node in this case starts with an empty cache and then the cache replacement 

process follows the algorithm presented in Section 3.4.  

HSC with Cache pre-filling: This represents a network-wide steady state of cache distribution, when 

the baseline HSC is applied for an infinite number of requests. Such steady state is emulated by 

prefilling each node’s cache space (by the content server) with 𝜆 ∗ 𝑆 number of locally popular 

objects for the node. Node’s global cache segment is filled with (1 − 𝜆) ∗ 𝑆 unique and globally 

popular objects. Note that the objects stored in local segments are duplicated across multiple nodes. 

However, objects in a node’s global segment needs to be network wide unique. No replacement is 

executed since pre-filling represents a desirable network wide steady state.  
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Pre-filling is not scalable and realistic. It, however, provides the benchmark results, that is, 

the best-case performance corresponding to when the baseline HSC is executed over long duration. 

Parameter Default Value 
Number of Nodes 1000 
Number of Categories 5 
Zipf Parameter 𝛼 0.8 
Object Population 100000 
Total Simulation Duration 500000 Requests 
Download Cost 10 
Ratio of Rebate to Download Cost 𝛽 0.6 
Node’s Cache Size 50 Objects 

Table 3-1: Simulation’s baseline parameter 

   Unless stated otherwise, all parameters are set to baseline values as shown in Table 3-1. 

The default 𝛼 is set as 0.8 [25], and number of objects is set to 100 thousand which is sufficiently 

larger than the total number of objects which can be stored throughout the network (i.e. 50000). 

Simulation is stopped when 500 thousand requests are generated. Since the popularity (i.e., 

probability of being requested) of the lowest popular object is 2 × 10GH, such number of requests 

ensures that every object be highly likely requested at least once in the network. Each node’s cache 

size is set such that it can accommodate 50 objects.  

3.5.1 Impacts of Zipf parameter (𝜶) and Rebate cost ratio (𝜷) 

The U-shape trend for the cost in both graphs of Figure 3-3 indicates that there is an optimal 

cache split factor 𝜆  that minimizes the provisioning cost. The figure shows the total cost of 

provisioning for two prefilling and baseline scenarios as well as the theoretical cost of provisioning 

all objects for all nodes computed based on Eqn. 3-5 and 3-6. When 𝜆 is zero, the entire cache in a 

node contains globally popular objects. 𝜆=1 corresponds to when every node’s cache contains only 

locally popular objects for that node. The cost in pre-filling case is very similar to the cost computed 

based on Eqn. 3-5 and 3-6, since the pre-filling scenario represents the network-wide steady state 
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of caching, and also the best performance under each set of parameters. On the other hand, the cost 

of pre-filling case is always less than the baseline HSC except for when 𝜆=1. The reason for this 

exception is as follows. Before convergence, caches still hold objects, which are globally popular. 

When 𝜆=1, the whole cache is supposed to maintain locally popular objects. The existence of 

globally popular objects in the cache results in an increase of remote hit rate, which causes a lower 

cost for HSC compared to pre-filling case. 

 

Figure 3-3: Impact of 𝛼 on cost 

Compared with 𝛼 = 0.8, the costs for both caching methods decrease when 𝛼 = 0.9	.	This is 

because with increase in 𝛼, the difference of popularity for every pair of objects with consecutive 

ranks increases in Zipf for the global popularities. That is, the popularity gap between the few top 

objects and the lower rank objects increases. That results in more frequent requests be targeted at 

top popular objects. Thus, with larger 𝛼, caching such objects is more beneficial and it reduces cost.  

 The local and remote hit rates for the baseline HSC is shown in Figure 3-4 for various 𝛼. 

With a fixed 𝛼, a larger 𝜆 results in higher local and lower remote hit rates. That is because with 

large 𝜆, the local segment’s size increases, leaving less space for globally popular objects, which 

would have contributed to higher remote hit rates.  
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Figure 3-4: Hit rates for baseline HSC  

With large 𝛼, local hit rate increases more drastically, since the generated requests are more 

targeted at top globally popular objects. The optimal strategy is then to increase the size of the local 

segment (i.e. larger 𝜆) to store such objects locally. 

Figure 3-5 depicts the impacts of 𝛽 on the provisioning cost and the optimal	𝜆. Higher 𝛽 

represents higher cost of getting content from in-SWNET nodes. This explains why higher 𝛽 

increases the overall cost. On the other hand, it can be seen that the optimal 𝜆 is 0 when 𝛽 = 0	 

(rebate cost 𝐶0 = 0). That is because the best caching strategy is to cache objects as diverse as 

possible throughout the network when the cost for remote hit is same as the cost for a local hit. The 

provisioning cost is minimized by caching the locally popular objects (i.e. the optimal 𝜆 = 1) when 

𝛽 = 1. That is because it is not beneficial for nodes to store globally popular objects when the rebate 

𝐶0  is same as the download cost 𝐶/ . For 0< 𝛽 < 1, larger 𝛽 results in larger optimal 𝜆, which 

means caching globally popular objects is less beneficial when 𝐶0 increases. 
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Figure 3-5: Impact of 𝛽 on cost 

3.5.2 Comparison with Traditional Caching Strategies 

Provisioning costs corresponding to traditional caching algorithms, including Least 

Frequently Used (LFU), Least Recently Used (LRU), and Random replacement are evaluated.  

   As observed in Figure 3-6, both versions of HSC incur the lowest cost, while the Random 

method holds the highest cost, and the costs of LFU and LRU are very similar. As expected, with 

increasing 𝛽, the provisioning cost for all the protocols increase. Also, the cost difference between 

the HSC algorithms and the traditional ones increase. This is because with larger rebates, it is more 

beneficial to cache locally popular objects for which HSC is more efficient than the traditional 

algorithms. 
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Figure 3-6: Comparison of minimum cost 

3.5.3 Object Density 

Object density is defined as the number of copies of an object maintained within the network. 

Figure 3-7 shows the density of the top 50 globally popular objects. The ID of each object represents 

its global rank (i.e., popularity). For both pre-filling and baseline versions of HSC, for 𝜆 = 0, the 

object density for all objects is 1. That is because for all nodes, the whole cache is assigned to the 

global segment. Since the global segment of the cache in a node stores only unique objects, only 

one copy of such an object can be stored in the entire SWNET. When 𝜆 > 0, with pre-filling (Figure 

3-7 (a)), the density of most popular objects equals the total number of nodes, which is 1000. That 

means, there is a copy of each object in each node’s local cache segment. Note that the local 

popularity of an object is a function of its global popularity and the local popularity of the category 

to which that object belongs to. When an object’s global popularity is very large, irrespective of the 

local popularity of its category for a node, its local popularity for the node is also generally high.  
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Figure 3-7: Object density of various algorithms 

However, for some nodes, the local popularities of some objects with low global popularity 

is high because of the heterogeneity, which is also the reason for the fluctuation happening when 

the density starts to reduce. Since 𝜆 = 1 assigns the whole cache to the local segment, it can store 

more globally popular contents across nodes in the network, compared to for example when 𝜆 =

0.5 . The decreasing trend of density shows that generally objects with higher rank (global 

popularity) are requested more often, thus, stored in the SWNET.  

   Density curves for the baseline non-prefilling HSC have similar trend. The differences in 

density, especially for top globally popular objects, are caused by fewer requests in the baseline 

HSC compared to the infinite request steady state for the pre-filling HSC case.  
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For traditional caching algorithms, the density trend looks more long-tailed and similar to the 

Zipf distribution for the global popularity. That means, each object is cached according to its global 

popularity. Since there is no distinction between the global and the local segments, the density 

3.5.4 Convergence of Baseline HSC to Prefilling HSC 

To demonstrate how baseline HSC results convergence to that for the prefilling version for 

infinite number of requests, simulations with different number of requests over various 𝜆 values are 

run. Figure 3-8 shows the cost for the two protocols. As mentioned, baseline HSC achieves a similar 

cost to pre-filling HSC as the number of requests is large enough (e.g., larger than 4 million). Note 

that, for each number of request scenario, the dip in the curves indicate the optimal 𝜆 at which the 

cost is minimized.  

 

Figure 3-8: Convergence of cost for HSC baseline to the pre-filling scenario 

3.6 Summary 

A heterogeneous request generation model is proposed which is inspired by hierarchical user 

preferences for electronic content. The model is heterogeneous in that each user’s preferences for 

genre/category and contents under those preferred categories are different. Based on this request 
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generation model, a Heterogeneous Split Caching (HSC) which incentivizes cooperative users in 

caching and aims at minimizing the network-wide provisioning cost is proposed. Simulation results 

indicate that the proposed mechanism is able to reduce content provisioning cost compared to 

traditional caching mechanisms. It also shows that after large number of content requests when the 

network caches reach a steady state, the mechanism can achieve cost minimization bounds at the 

same level offered by a benchmark strategy. 
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Chapter 4 : Distributed Caching in Mobile Wireless Networks 

4.1 Introduction 

In this chapter, the caching mechanism proposed in Chapter-3 is applied on the scenario of 

mobility wireless networks. A typical example of such scenario is the vehicular networks formed 

by moving vehicles that connect to each other through V2V links. Unlike fully-connected networks 

in Chapter-3, in a mobility network the frequent disconnections caused by nodes’ (e.g. vehicles, 

etc.) mobility influence the level of nodes’ cooperation in caching. However, the experiments show 

that the proposed mechanism is still able to reduce bandwidth usage and the resulting content 

provisioning cost compared to traditional caching mechanisms in both monolithic and community-

based mobility scenarios. 

4.2 Content Search with Tolerable Access Delay (TAD) 

Even though the network and pricing models applied in this chapter are the same as in 

Chapter-3, the content search model is extended for mobile networks. Upon originating a request, 

a node first performs a local search for the requested content in its own cache. If that fails, the node 

performs a remote search in the mobile network (e.g., a connected vehicle fabric). If the node cannot 

obtain the content from the network within a pre-defined Tolerable Access Delay (TAD), it sends 

a request to the CP’s server. TAD, which is part of a request, represents the duration that a user 

application is willing to wait before a successful content request is served. The remote search can 

take place using devices’ Wi-Fi, Bluetooth, and other short-range RF interfaces (e.g. DSRC, etc.). 

The content from the CP’s server is downloaded using a CSP’s cellular network. 

4.3 Heterogeneous Split Caching (HSC) for Mobile Networks  

In this section, the HSC proposed in Chapter-3 is specifically extended to be used in a mobile 

network. Frequent disconnections caused by nodes’ mobility influence the level of nodes’ 
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cooperation in caching. The objective of the HSC algorithm is to find the optimal caching strategy 

for mobile networks with various connection density. 

In a fully-connected network described in Chapter-3, ideally, the global segment in HSC of 

the nodes should contain objects as diverse as possible. This is to prevent network-wide duplications 

of globally popular objects. Though, this approach is neither optimal nor feasible in a mobile 

network due to frequent disconnections, where a node has limited number of encounters during 

TAD. Under such conditions, replicating globally popular objects into different caches may be a 

more efficient solution. Also, downloading an object from CP’s server does not necessarily indicate 

that no other node in the network holds the object in its global segment. It implies that the requester 

has not succeeded in meeting the specific node with the object during the TAD. Therefore, in a 

mobile network, it is not guaranteed that objects in global segments of nodes are unique. However, 

it is guaranteed that at each point of time, an object is downloaded and stored in global segment of 

a requester, only if, its neighbor nodes do not carry it. Objects in the local segment can be network-

wide duplicated. If 𝑆 is the per-node cache/storage size, local segment occupies	𝜆 ∗ 𝑆 portion of the 

cache, which leaves (1 − 𝜆) ∗ 𝑆 for the global segment. The objective of the HSC algorithm is to 

find the optimal 𝜆 such that the total provisioning cost as defined in Eqn. 3-6 in Chapter-3 is 

minimized. 

4.4 Performance evaluation 

Using the simulator ONE, performance of the following two caching algorithms is evaluated 

in a 100-node mobile network under scenarios with or without community-based movement, and 

also a scenario of Static Fully-Connected Network (SFN) for comparison. 

Baseline HSC: Each node in this case starts with an empty cache and then the cache replacement 

process follows the algorithm presented in Section 3.4 in Chapter-3. 
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HSC with Cache pre-filling: This represents an ideal cache structure when it is assumed that the 

network is so sparse that the nodes’ remote hit rate is near zero. With pre-filling, each node’s local 

cache segment is filled with 𝜆 ∗ 𝑆  locally popular objects. The global segment is filled with 

duplicated (1 − 𝜆) ∗ 𝑆  top globally popular objects. The logic behind this is that in a sparse 

network, without server’s involvement, it cannot be ensured that unique objects are stored in global 

cache segments. Due to disconnections, multiple nodes may download an object from the CP’s 

server without knowing that another node in the network carries it. No replacement is executed 

since pre-filling represents the ideal cache state. Pre-filling is not scalable, though it is supposed to 

show the best-case performance, corresponding to the extreme situation in which the baseline HSC 

is executed over long time, in presence of frequent disconnections. 

   Unless stated otherwise, all parameters are set to baseline values as shown in Table 4-1. 

The default 𝛼 is set to 0.8, and number of objects is set to 10 thousand which is sufficiently larger 

than the total number of objects which can be stored throughout the network (i.e. 5000). Simulation 

is stopped when 50 thousand requests are generated. Since the global popularity (i.e., probability of 

being requested) of the lowest popular object is 2 × 10GI, such number of requests ensures that 

every object be highly likely requested at least once throughout the network. 5 number of categories 

is chosen for the network size of 100 nodes. Parameters TAD, 𝛽 and terrain size vary. 

 

Parameter Default value 
Number of Nodes 100 
Number of Object Categories 5 
Zipf Parameter 𝛼 0.8 
Object Population 10000 
Simulation Duration 50000 Requests 
Download Cost 10 
Ratio of rebate to download cost 𝛽 0.8 
Cache Size in Each Node 50 Objects 
Transmission Range (e.g., Bluetooth) 10m  
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Terrain Size (e.g., University Campus) 800m×800m 
Tolerable Access Delay (TAD) 300s 

Table 4-1: Simulation’s baseline parameter 

4.4.1 Monolithic Mobility 

In this simulation, 100 nodes move randomly among 10 waypoints (points of interest). Figure 

4-1 depicts how 𝜆 affects total provisioning cost under different terrain sizes (TS) for baseline HSC. 

The HSC algorithm is also run in a Static Fully Connected Network (SFN) to show protocol’s 

performance in absence of any disconnections. This is to investigate if and how mobility and 

resulting disconnections affect HSC’s behavior.  

 

Figure 4-1: Cost V.S. λ for baseline HSC and SFN 

 
The U-shape trend for the cost in both graphs of SFN and HSC (TS=50m×50m) indicates 

that there is an optimal 𝜆 that minimizes the provisioning cost. When 𝜆 is zero, the entire cache for 

a node contains globally popular objects. 𝜆 = 1 corresponds to when every node’s cache contains 

only locally popular objects for that node. When terrain size is as large as 800m× 800m, 

disconnections happen more frequently. Therefore, a requester node visits fewer nodes during the 

tolerable access delay (TAD) compared to when network is denser (for scenario TS=50m×50m). 

Under such conditions, the best cost-reducing strategy is to store as many locally popular objects 
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as possible, which happens when 𝜆  approaches 1. SFN maintains the lowest cost since it 

corresponds to a fully-connected network where the remote hit rate is supposed to be much higher 

compared to a mobile network with disconnections. For a similar reason (fewer disconnections and 

higher remote hit rate), the cost of small terrain size (i.e.  50m×50m) is lower than that for the larger 

size network (i.e. 800m×800m), except when 𝜆=0. Corresponding average local and remote hit 

rates over all nodes are shown in Figure 4-2. As mentioned, remote hit rate for SFC and the smaller 

terrain size (50m×50m) is lower than the remote hit rate for larger size networks (Figure 4-2 (b)).  

 

Figure 4-2: Hit rates for baseline HSC and SFN 

The reason for a higher cost of provisioning in the TS=50m×50m case, compared to the larger 

size scenario, when	𝜆=0, is as follows. In a smaller size network, nodes have higher chance of 

obtaining objects remotely. With a rebate to download cost ratio 0.8, the involved rebate cost 

becomes so large, it results in a higher provisioning cost in general.  

   Lower local and higher remote hit rates can be observed for SFN and TS=50m×50m 

scenarios in Figure 4-2 (a) and Figure 4-2 (b) respectively. That is, for these scenarios, the optimal 

𝜆 is smaller compared to optimal 𝜆=1 for TS=800m×800m case. This represents a cache space, 

which can accommodate more globally popular objects, leading to a higher remote hit rate. Impact 

of 𝜆 on remote hit rate is not as clear when the terrain size is very large (i.e. 800m×800m). That is 

because the network is so sparse that nodes can rarely meet each other during the TAD for any 
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values of 𝜆. For TS= 800m×800m scenario, the local hit rate does not change significantly either. 

The reason is that nodes’ global segments end up containing many duplicate objects, since each 

node individually downloads the content. Eventually, with any 𝜆, each node carries most locally 

popular objects (in local segment), as well as most globally popular objects. This leads to a high 

local hit rate at most 𝜆 values.  

 

Figure 4-3: Minimum cost V.S. terrain size for baseline HSC and SFN 

Figure 4-3 shows the impact of TAD on minimum provisioning cost for various terrain sizes. 

With an increase in terrain size, the minimum cost with different TAD increases, since the remote 

hit rate decreases in sparser networks. With longer TAD, the minimum cost decreases because 

nodes obtain objects remotely rather than through downloading. In the smallest terrain size (i.e. 

10m×10m) the minimum cost using baseline HSC is very close to SFN’s cost when TAD is larger 

than 1s. This is because high node density in a small terrain size provides near full connectivity, as 

in the SFN case. 
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Figure 4-4: Cost V.S. λ for baseline HSC with various 𝛽 and terrain sizes 

Figure 4-4 depicts the effects of both 𝛽 and terrain size on the optimal	𝜆. For both large and 

small terrain sizes, the provisioning cost increases with an increase in 𝛽. This is because the cost of 

rebate grows larger with 𝛽. It can also be observed that generally smaller terrain sizes result in lower 

provisioning cost. Only for 𝛽 = 1, the provisioning cost in TS=50m×50m scenario is larger than 

that for TS=800m×800m, especially for smaller 𝜆′𝑠. The reason is the larger gap between the 

corresponding remote hit rates, as shown in Figure 4-2 (b). For an expensive rebate cost (𝛽=1), 

higher level of nodes’ cooperation in the smaller terrain size (TS=50m×50m) results in large rebate 

and subsequently higher provisioning cost. In a smaller terrain size, (TS=50m×50m), optimal 𝜆 is 

clearly affected by 𝛽. For example, the optimal 𝜆 equals 0 when 𝛽 = 0, because the cost of rebate 

is 0, which makes remote hit rate more beneficial. On the contrary, when 𝛽 = 1, optimal 𝜆 is 1 

because providing rebate is as expensive as downloading content directly from the CP’s server. It 

should be noted that 𝛽 does not significantly affect the optimal 𝜆 when terrain size is larger (i.e. 

800m×800m). With low remote hit rate, the best strategy for minimizing the cost is to store as many 

locally popular objects as possible, irrespective of the rebate cost.  
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Figure 4-5: Cost V.S. λ for HSC-baseline and prefilling 

Figure 4-5 shows the provisioning costs for both baseline HSC and prefilling for different 

network size. Cost for HSC-prefilling does not change significantly across terrain size. The global 

segment of all caches contains similar (and most globally popular) objects. Therefore, even for 

smaller terrain size, when nodes can contribute to cooperative caching, they cannot provide objects 

newer than what their peers already maintain. 

The provisioning cost of prefilling scenarios is minimized around 𝜆 = 1. This is because the 

global section of cache in all nodes contains duplicate objects. Therefore, the remote hit rate is 0 

and the most efficient strategy is to store as many locally popular objects as possible. For a small 

terrain size (i.e. 50m×50m), the provisioning cost for HSC-baseline and HSC-prefilling are 

different only for smaller 𝜆′𝑠. Consider the 𝜆 = 0 case with entire cache consisting of only the 

global segments. For the prefilling scenario, remote hit rate is 0, since all nodes contain similar top 

globally popular objects. Though, for the HSC-baseline, because of high node density and 

distribution of globally popular objects across nodes, the remote hit rate, and its subsequent rebate 

cost leads to a higher provisioning cost. For larger 𝜆′𝑠, for which part of the cache consists of locally 

popular objects, the HSC-prefilling and baseline have similar cost because the local hit rate 

increases in both, and that reduces the effect of high rebate cost. This is the reason behind the larger 
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gap for smaller 𝜆′𝑠. When terrain size is large (i.e. 800m×800m), the provisioning cost of baseline 

is significantly larger than that for prefilling for all 𝜆 values, because with sparser connectivity, 

prefilling provides a more efficient solution.  

 

Figure 4-6: Comparison with traditional algorithms in monolithic scenario 

Provisioning cost corresponding to traditional caching algorithms, including Least Frequently 

Used (LFU), Least Recently Used (LRU), and Random replacement are evaluated, and compared 

with optimal HSC. As observed in Figure 4-6, with larger terrain size, provisioning cost for all the 

protocols increase. HSC incurs the lowest cost for all terrain sizes. 

4.4.2 Community-based Mobility  

Here it is investigated if and how community-based movements along with community-based 

request model affects the cost results for the proposed caching algorithm. The population of 100 

nodes are divided into 4 communities. Members of each community are similar in terms of the local 

popularity for object categories; thus, for the request generation model. They also follow a similar 

movement pattern as described below. Communities are formed based on nodes’ local popularities 

for categories. Each node maintains a category preference vector, which defines the popularity and 

rank of each of the 5 categories for that node. For example, a node-i maintains a category preference 
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vector such as <𝑝!(𝐶?;),	𝑝!1𝐶JF3,	𝑝!(𝐶KE),	𝑝!1𝐶L/3,	𝑝!(𝐶I@)>. As an example, this vector indicates that 

category-a is the top most popular category for node-i with popularity 𝑝!(𝐶?;). Based on the concept 

above, the preference similarity of each pair of nodes can be measured by Euclidian distance 

between their category preference vectors. Then the 100 nodes are divided into 4 groups of 25 nodes 

such that in each group the pairwise Euclidian distance between the category preference vectors are 

minimized. That is, nodes from one community are more similar in terms of category preference 

compared to nodes from two different communities. On the other hand, members of each 

community are imposed to have similar transition probabilities to few specific waypoints across 10 

waypoints in a synthetic map. Therefore, intra-community contact frequency for each pair of nodes 

from the same community is higher than the contact frequency of each of the nodes with members 

of other communities.  

Figure 4-7 depicts the provisioning cost of HSC-baseline under both community-based and 

monolithic mobility scenarios with different 𝜆. Generally, the algorithm incurs smaller cost of 

provisioning in a community-based scenario. This is because, nodes from the same community have 

similar preferences and can lessen the total cost by participating in caching and providing content 

to members of the same community.  
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Figure 4-7: Cost V.S. λ for HSC baseline 

The optimal 𝜆 for the community-based model is around 1 (similar to that for the monolithic 

mobility scenario in Section 4.4.1). This is because, it is more beneficial if nodes store locally 

popular objects which is likely to be requested by other nodes in the same community. 

 

Figure 4-8: Comparison with traditional algorithms in community-based scenario 

The provisioning costs for traditional caching algorithms under the community-based 

scenario are shown in Figure 4-8. With increasing 𝛽, costs for all protocols increase because of 

higher rebate. However, HSC incurs the lowest cost for all 𝛽. The cost differences between the HSC 

and traditional algorithms increase with an increase in 𝛽. This is because with larger rebates, it is 
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more beneficial to cache locally popular objects and perform cooperating caching, which is what 

HSC accomplishes. 

4.4.3 Helsinki-map Mobility 

Finally, we evaluate HSC and the traditional algorithms when nodes follow a random 

waypoint mobility model within the map of Helsinki as embedded in the DTN simulator ONE. This 

mobility scenario is different than the monolithic mobility presented in Section 4.4.1 that it 

simulates mobility of nodes in a larger city-scale terrain size (4500m×3400m) with transmission 

range set to 200m. This complies with the transmission range in conventional Wi-Fi networks. 

Other parameters follow the baseline values shown in Table 4-1.   

Figure 4-9 shows that similar to the other mobility scenarios, HSC incurs lower provisioning 

cost compared to traditional caching algorithms. In summary, HSC-prefilling provides lower cost 

than HSC-baseline for large terrain sizes, though, it is not as scalable since every node requires to 

pull content from CP’s server upon joining the network.  

 

Figure 4-9: Comparison with traditional algorithms in Helsinki 

4.5 Summary 

The Heterogeneous Split Caching (HSC) mechanism proposed in Chapter-3 that aims at 

minimizing the network-wide provisioning cost is applied on the scenario of mobility networks. 
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Simulation results indicate that the proposed mechanism is able to reduce content provisioning cost 

compared to traditional caching mechanisms in both monolithic and community-based mobility 

scenarios. 
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Chapter 5 : Caching for Streaming Video in Social Wireless 

Networks 

5.1 Introduction 

In this chapter, a Device-to-Device cooperative caching framework is proposed for streaming 

video consumption by mobile users. For downloading video with cooperative caching, a mobile 

device first searches within its neighboring Bluetooth-connected peers for whole or parts of the 

requested video before downloading them from a Content Provider’s (CP’s) server. A specific 

cooperative caching framework, namely, value-based caching is proposed in which the value of 

caching a hierarchically coded streaming video segment is defined for given pricing and video 

sharing models. Within this framework, we develop an Adaptive Quality (AQ) provisioning 

algorithm that minimizes the overall video content provisioning cost incurred due to the bandwidth 

usage of a cellular network.  

5.2 Content Search and Pricing Model 

The similar content search and pricing models in Chapter-3 and Chapter-4 are still adopted 

in this chapter. However, for streaming video, the 𝐶/ and 𝐶0 in the pricing model are defined as the 

cost and rebate of unit data size such as per MB. Thus, the larger a video is, the larger the rebate 

will be for obtaining the video. 

5.3 Streaming Video Play Model 

5.3.1 Play Buffering and Caching 

A generalized video play model similar to [67] is adopted in which a streaming video consists 

of multiple fixed duration segments. When an EC’s device starts playing a video, it attempts to pre-

fetch several segments to its play buffer from its local cache, or nearby ECs devices, or the CP 
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server via the CSP’s network – in that order. When the play buffer gets full, the old buffered 

segments are replaced with new segments using a First-In-First-Out (FIFO) policy.  

   The play buffers are different from the cache. While the play buffer is used to smoothly 

play a currently available video by pre-fetching some of its segments, the cache is used to reduce 

the overall provisioning cost of that video by proactively storing its segments. Upon fetching a 

video-segment, a device puts it in its play buffer based on a FIFO policy, but it may or may not 

cache the segment depending on a separate caching policy as detailed in Section 5.4. 

5.3.2 Video Play Model 

When an EC’s device starts playing a video, it first attempts to pre-fetch several of the video 

segments from the local cache to the play buffer. If any of those segments is not currently in the 

local cache, the device broadcasts a request for the absent segments to all other devices that it 

encounters during a Tolerable Access Delay (TAD). As defined in Chapter 4, TAD represents the 

duration a user is willing to wait for a successful segment retrieval from the network of peer user 

devices. If the segment is not found within the TAD period, the segment is downloaded from the 

centralized CP’s server. The TAD for each video segment should be dimensioned based on the 

number and length (i.e. play duration) of its previous segments. 

 

Figure 5-1: Timeline of video play model 

Request segments 

…

Request segment after 
has been played 

Timeline
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Figure 5-1 depicts an example of a video play scenario from [67] in which a device first 

requests segments 𝑠M through 𝑠*G? simultaneously to pre-fetch the next p segments. The TAD for 

each segment 𝑠! can be computed as follows: 

𝑇𝐴𝐷N" = 𝑙N(𝑖 − 𝑐)																																																											(5-1) 

where 𝑙N is the length of each segment, and c is the sequence number of the segment that is currently 

being played. After segment-0 is played out, segment-p is requested. This process continues until 

the video is fully sequentially played out, even when the user temporarily pauses the play. This is 

to ensure that the user should experience a smooth play when she/he chooses to resume from the 

pause. Following this strategy, the average TAD through all the pre-fetched segments in the buffer 

is computed as follows: 

𝑇𝐴𝐷;O@ =
∑ P1Q0"
12(
"&1

C8?
= C<0

J
                                            (5-2) 

A node can pre-fetch and store maximally m+1 next segments in the buffer. A larger m results 

in a higher 𝑇𝐴𝐷;O@. 

In addition to sequential playing, a node can fast-forward or rewind a video on user requests. 

These actions are modeled with probabilities 𝑝RR  and 𝑝0@A  for fast-forwarding and rewinding 

respectively. A node may also watch a video partially and switch to another one with probability 

𝑝NA!. 
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Figure 5-2: State machine of streaming video play model 

The state machine [68] corresponding to these user actions is shown in Figure 5-2, in which 

the segment 𝑠E in video 𝑉E is the segment that is currently being played. After segment 𝑠E is finished 

playing, the user may continue to view the video 𝑉E (i.e., play segment 𝑠E8?) with probability 𝑝N@S, 

or fast-forward to a later segment 𝑠E8!  (𝑐 + 𝑖 < 𝑆𝑒𝑔(𝑉E) , where 𝑆𝑒𝑔(𝑉E)  represents the total 

number of segments in the video 𝑉E ), or rewind to a previous segment 𝑠EG( (𝑐 ≥ 𝑗). If the user 

switches to another video 𝑉&, she starts the new video from its first segment 𝑠M. After completing 

each of these actions, the user starts playing the new segment (i.e. segment 𝑠E8?, 𝑠E8! or 𝑠EG( in the 
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playing, the requests for pre-fetching and their TADs are re-generated and re-computed. Note that 

by definition, 𝑝RR + 𝑝0@A + 𝑝NA! + 𝑝N@S = 1. This video play model is used for the subsequent 

analysis.  

5.4 Value-based D2D Caching  

Building on the above video search, pricing, and play models, we propose a D2D cooperative 

streaming video caching mechanism in this section. 

5.4.1 Value of Caching a Video Segment 

Caching is performed at the level of video segments, which are also referred to as objects. 

The value of caching an object is defined as the provisioning cost that can be saved for future 

requests by caching the object. For example, if a node requests an object that has been stored in its 

local cache, the provisioning cost is zero. The value in this case would be the total savings due to 

caching, which is the cost of fetching the object from the CP using the CSP’s network.  

Value of Caching an Object Received from the CP’s Server: According to the content search model, 

a requested object is downloaded from the CP’s server only when it is not found in: a) the local 

cache of the requester node, or b) any other peer nodes the requester encounters within a pre-

computed TAD duration. The latter means, either there is no copy of the requested video segment 

found in the encountered nodes’ caches, or the available copies of the segment in the encountered 

nodes are encoded at a quality that is less than the requested quality. Let 𝑄 = {𝑞M, 𝑞?, 𝑞J, …… , 𝑞'} 

be the set of possible video qualities that are provided by the CP, in which quality 𝑞! is higher than 

𝑞( for any 𝑖 > 𝑗. Hierarchical video coding [69] allows a video segment to be encoded at quality 𝑞! 

to satisfy a request for the same segment at quality 𝑞(, but not vice versa.  

    Let us consider the scenario in which node n downloads the object 𝑜! with requested quality 

𝑟& (	𝑟& ∈ 𝑄) from the CP’s server, and stores the object in its local cache. Also consider that this is 
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only one such copy among the nodes that node n has encountered so far (otherwise, instead of 

downloading it from the CP’s server, the object can be fetched from a peer of node n which has 

such copy). Node n can receive the same object with no cost in the future since the object will be 

cached in its local cache. Therefore, the saved provisioning cost for node n because of caching 

object 𝑜! with quality 𝑟& in its cache is: 

𝑠𝑎𝑣𝑒𝑑&)T = 𝑝:"𝐶/𝑆1𝑟&, 𝑙:"3																																																					(5-3) 

where 𝑝:" is the popularity of object 𝑜!. The streaming videos’ popularities are assumed to follow 

a power law Zipf distribution, and each segment of a video has the same popularity as the parent 

video it belongs to. The higher the popularity, the more likely it is for it to be requested. 

Additionally, 𝑆1𝑟&, 𝑙:"3 is the size of the object with quality 𝑟& and duration 𝑙:". The size of a video 

segment is a function of its quality and length. It should be noted that hierarchical video coding [69] 

allows object 𝑜! with quality 𝑟& to satisfy video requests for the same content 𝑜! with any quality 

that is lower than or equal to 𝑟&. As a result, when 𝑜! with quality 𝑟& is cached in node n, any request 

with quality 𝑟& or lower from the peers of node n can obtain the object from node n without having 

to download it from the CP’s server. Therefore, the provisioning cost in this case is only the rebate 

𝐶0 to be paid to node n. This is instead of the downloading cost 𝐶/, thus the saved provisioning cost 

for the peer nodes is: 

𝑠𝑎𝑣𝑒𝑑*@@0N)T = 𝑝:"(𝐶/ − 𝐶0)𝑁∑ 𝑆1𝑞( , 𝑙:"3𝑃1𝑞(3
03
S*>S4 − 𝑝:"(𝐶/ − 𝐶0)𝑆1𝑟&, 𝑙:"3          (5-4) 

where N is the expected number of peers that node n encounters, and 𝑃1𝑞(3 is the probability that 

such peers’ preference quality for object 𝑜! is 𝑞(. Such quality preference can be resulted by the 

limit of device resource, or the purchase price of the quality (e.g. the purchase price of the same 

video in HD may be lower than 4K), etc. Note that 𝑞( ≤ 𝑟& for all the 𝑞( in Eqn. 5-4, and N, which 

is the total number of encountered peers, could be different over time since peers may join or leave 
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the network. The first term in Eqn. 5-4, namely, 𝑝:"(𝐶/ − 𝐶0)𝑁∑ 𝑆1𝑞( , 𝑙:"3𝑃1𝑞(3
03
S*>S4  represents 

the saved provisioning cost when the nodes obtain the object 𝑜!, encoded in quality no-higher than 

𝑟&, from the local network instead of from the CP’s server. The second term 𝑝:"(𝐶/ − 𝐶0)𝑆1𝑟&, 𝑙:"3 

is the saved cost generated by node n itself, which was already included in Eqn. 5-3. Therefore, the 

total value of caching object 𝑜! with quality 𝑟& downloaded from CP at node n is the sum of results 

from Eqns. 5-3 and 5-4: 

𝑣𝑎𝑙𝑢𝑒)T(𝑜! , 𝑟&) = 𝑠𝑎𝑣𝑒𝑑&)T + 𝑠𝑎𝑣𝑒𝑑*@@0N)T 	                                 (5-5) 

Value of Caching an Object Received from a Peer EC: Consider a situation in which a node n 

requests an object 𝑜! with quality 𝑟& and a specified Tolerable Access Delay (TAD).  If there is at 

least one copy of the object cached in the peer nodes encountered by node n during the TAD, and 

the quality of the copy is no less than 𝑟&, then the object 𝑜! can be obtained from that peer node. 

Any subsequent request for the same object by node n would result in a local hit if node n caches 

the object. The resulting cost saving is the rebate 𝐶0 that needs to be paid to a peer node in case of 

no local caching in node n. This saving can be expressed as: 

𝑠𝑎𝑣𝑒𝑑&
*@@0 = 𝑝:"𝐶0𝑆1𝑟&, 𝑙:"3                                            (5-6) 

 Note that this local caching in node n does not affect the provisioning cost for the same object 

at other nodes since they still have to fetch it from a peer. Therefore, the saved provisioning cost 

for the other nodes except node n is 0. As a result, the overall cost saving or value is as follows, 

which remains the same as expressed in Eqn. 5-6:  

𝑣𝑎𝑙𝑢𝑒*@@0(𝑜! , 𝑟&) = 𝑠𝑎𝑣𝑒𝑑&
*@@0 + 0 = 𝑝:"𝐶0𝑆1𝑟&, 𝑙:"3						                 (5-7) 

5.4.2 Value-based D2D Caching Algorithm at the ECs Devices 

The value of an object 𝑜&@A, which is requested by a node n for the first time, is initially 

computed by the CP’s server (i.e., following Eqn. 5-5), and sent to the requester node along with 
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the content. This requires the CP to track and maintain popularity and quality preference 

distributions for all video content across its subscribers based on their request patterns. 

When a node receives the object from the CP’s server, it keeps its value unchanged. However, 

when a node receives an object from a peer, it re-computes the value of the received object using 

Eqn. 5-7. In other words, the initial value of 𝑜&@A computed by the CP’s server may change after 

the object is cached and shared by the EC’s devices. A requester node n caches 𝑜&@A if there is 

enough empty cache space. Otherwise, it runs the following replacement heuristic. 

The node n first finds s lowest valued objects in its cache such that the total size of these 

objects is equal to or higher than the size of a new object 𝑜&@A. Let us call this set as 𝑆<@;N9_O;<U@. 

Second, the sum of the values of all objects in 𝑆<@;N9_O;<U@ is compared with the value of 𝑜&@A. If 

the value of 𝑜&@A is larger, then all the objects in 𝑆<@;N9_O;<U@ are replaced with 𝑜&@A. Otherwise, 

𝑜&@A is dropped. The full logic of caching and replacement is summarized in Algorithm 5-1. All 

used symbolic notations are summarized in Table 5-1. 

 

1: Input: Requested Object 𝑜&@A Received by node n 
2: if (𝑜&@A is not downloaded from CP) then 
3:     𝑜&@A . 𝑣𝑎𝑙𝑢𝑒	=		𝑣𝑎𝑙𝑢𝑒*@@0(𝑜&@A , 𝑟&); 
4: end 
5 // Initialize the set for objects with the least values 
6: Initialize (𝑆<@;N9_O;<U@);  
7: while (n.rest_cache is not sufficient for 𝑜&@A) 
8:     𝑜C!& = object with the least value in n.cache; 
9:     𝑆<@;N9_O;<U@.add(𝑜C!&); 
10:     n.cache.remove(𝑜C!&); 
11: end 
12: // Compare the value of 𝑜&@A with the total value of objects in  
13: // the set of 𝑆<@;N9_O;<U@ 
14: if (𝑜&@A . 𝑣𝑎𝑙𝑢𝑒 > 𝑆<@;N9_O;<U@.totalValue) then 
15:     store 𝑜&@A in n.cache; 
16: else 
17:     drop 𝑜&@A from n.cache; 
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18:     put objects in 𝑆<@;N9_O;<U@back to n.cache; 
19: end 

Algorithm 5-1: Value-based caching and replacement policy 

 
Notation Description 

𝑄 Set of possible video qualities  
𝑞! ith ranking quality in  𝑄 

𝑃(𝑞!) Popularity of quality 𝑞! 
N Expected number of peers that a node encounters 
𝑟& Requested quality by node n 
𝑝:" Popularity of object 𝑜! 
𝑙:" Play duration of object 𝑜! 

𝑆1𝑞! , 𝑙:"3 Size of object 𝑜! with play duration 𝑙:" and quality 𝑞! 
𝐶/ Fixed cost for downloading per unit data size of an object (e.g. 

per MB) from CP’s server 
𝐶0 Fixed rebate given to nodes in exchange of sharing per unit 

data size of an object (e.g. per MB) 
𝑠𝑎𝑣𝑒𝑑&)T Cost saved by a requester node n with caching the object 

downloaded from CP 
𝑠𝑎𝑣𝑒𝑑*@@0N)T  Cost saved by peers of the requester node with caching the 

object downloaded from CP 
𝑣𝑎𝑙𝑢𝑒)T(𝑜! , 𝑟&) Value of caching object oV with quality rW downloaded from 

CP at node n 
𝑠𝑎𝑣𝑒𝑑&

*@@0 Saved cost by the requester node n with caching the object 
obtained from a peer 

𝑣𝑎𝑙𝑢𝑒*@@0(𝑜! , 𝑟&) Value of object 𝑜! obtained from a peer by node n 
𝑆O The summed value of cached objects in the entire network 

Table 5-1: List of all notations used in the caching algorithm 

5.5 Adaptive-Quality Content Provisioning by Content Provider 

This section details an end-to-end video provisioning method that leverages the notion of 

value and caching mechanism presented in the previous section. When a node n asks for a video 

segment (i.e., an object) 𝑜! of quality 𝑟&, the CP’s server may provide the segment at a quality level 

that is 𝑟& or higher. An example is shown in Figure 5-3 in which the CP’s server may provide the 

requested objects with another quality (i.e. 4K) that is higher than the actually requested quality 

(i.e. HD) to the requester node. Even though downloading and caching a higher quality segment 
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would be more expensive (e.g. more cache space and downloading cost as shown in Figure 5-3.), a 

requester node n can potentially serve future demands from its peer nodes for the same object, but 

at a quality higher than that of 𝑟&. In other words, with a higher upfront cost, future potential savings 

can be accomplished by caching a segment of higher quality than what was initially requested. This 

trade-off creates the opportunity of provisioning video segments of optimal quality against each 

individual request and for given network and demand situations. 

Adaptive Quality (AQ) Algorithm: We propose the AQ algorithm which works with the value-

based caching mechanism presented in Section 5-4. Formally stated, when the CP receives a request 

from node n for object 𝑜!  with quality 𝑟& , it may provide 𝑜!  with a different quality 𝑞&	to the 

requester node n, such that 𝑞& ≥ 𝑟&. The overall provisioning cost can be minimized by maximizing 

the total value of the objects cached in the ECs’ devices.  

 

Figure 5-3: Example of how providing higher-than-requested quality content can serve future 
high-quality user demands 
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   It should be noted that the AQ algorithm runs at the CP’s server when it receives an object 

request. The value-based caching algorithm from Section 5-4, on the other hand, runs at an EC’s 

device after it receives an object from the CP’s server or from a peer node. Additionally, the quality 

that a node plays an object with may be different from the quality that the node actually receives 

and caches the object with. For example, even though the requester node n receives object 𝑜!with 

quality 𝑞& which may be higher than its requested quality 𝑟&, the node n still plays 𝑜! with quality 

𝑟&, instead of 𝑞&. However, the node n may cache 𝑜! with quality 𝑞& for potentially serving more 

future demands in the local network. 

   With AQ provisioning, in steady state, the CP is required to maintain the demand profile 

for each video segment. Such profile includes the popularity and quality preference distribution for 

each segment, which is the same as those for its parent video. When the CP’s server gets a request 

directly from an EC, it updates the profile information for the requested segment. Over time, the 

global demand profiles are tracked and tagged with the content in question by the CP’s server. As 

a result, the popularity and quality preference of an object are known when a node receives the 

object from the server or from a peer. When a video segment is fetched from a peer node, the 

recipient is required to send information about the segment retrieval to the CP’s server so that the 

latter can update the demand profile for that segment.  

   When a node sends request for an object to the CPs server, it includes information about: 

1) the requested object quality, 2) size of the free cache space, and 3) local network information in 

the form of the number of its neighboring peers. For the goal of maximizing the total value of the 

objects cached in the network, the CP must provide the optimal quality of requested objects. For 

that, the CP must know the current distribution of the objects cached in the network. However, this 

introduces scalability issues. In this chapter, a heuristic-based algorithm is proposed for estimating 
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the sub-optimal quality of objects. This sub-optimal algorithm is based on the following 

assumptions. First, the total value of the objects cached in the network can be maximized by 

maximizing the value of objects cached in each node. Second, each node will download and cache 

the most popular videos with the quality provided by the CP. Based on the assumptions above, the 

information included in the request to the CP is sufficient for estimating the sub-optimal quality. 

The CP executes the AQ algorithm as follows: 

    When the CP receives the request from node n, it computes the total number of videos 𝑉𝑁& 

that node n is able to cache in its free space 𝐸& using the equation: 

𝑉𝑁& =
X3

Y(S3,<567)
                                                          (5-8) 

where	𝑆(𝑞&, 𝑙;O@) is the average size needed to store videos with average duration of 𝑙;O@  with 

quality 𝑞& provided by the CP. The quality 𝑞& is inversely proportional to 𝑉𝑁&. In other words, 

with fixed 𝐸& and 𝑙;O@, a larger 𝑞& makes 𝑆(𝑞&, 𝑙;O@) larger, thus resulting in a smaller 𝑉𝑁&, which 

indicates that lower number of objects can be cached in node n. Moreover, based on Eqn. 5-5, the 

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒&  for caching the most popular objects (i.e., segments in the most popular videos 

{𝑣?..𝑣\=3}) downloaded from the CP in node n can be computed as 

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& = ∑ ∑ 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&)
Y@D(O()
'>?

\=3
C>? 								                (5-9) 

where 𝑆𝑒𝑔(𝑣C) is the number of segments in video 𝑣C. The overall provisioning cost is minimized 

by maximizing the 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒&	for each node n in the network as follows: 

𝑚𝑎𝑥:	𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& 
	𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜:	𝑞& ≥	𝑟&, 𝑞& ∈ 𝑄																					                              (5-10) 

    Note that the quality 𝑞& is directly proportional to 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&) (i.e., a larger 𝑞& leads 

to larger 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&)), and is inversely proportional to 𝑉𝑁&. As a result, in this optimization 

problem, the convexity of 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& depends on both 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&) and 𝑉𝑁&. Specifically, 

the convexity of 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& depends on the function 𝑆(𝑞&, 𝑙;O@) and 𝑉𝑁& shown in Eqn. 5-8, 
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and the quality preference distribution involved in 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&) in Eqn. 5-5. However, since the 

number of available qualities that can be provided by the CP is usually not large [70], we use the 

following brute-force approach to solve the equation: 1) the value of 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& is computed for 

each possible quality 𝑞&  (𝑞& ≥	𝑟&, 𝑞& ∈ 𝑄), and then 2)  𝑞&  is selected such that the value of 

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& is maximized. As a result, this 𝑞& is the sub-optimal quality 𝑞&
NUF_:*. After the sub-

optimal quality 𝑞&
NUF_:*is computed, the CP sends the requested object 𝑜! with the quality 𝑞&

NUF_:* 

to the requester node n.  

Note that upon receiving a request from a node, the CP computes the quantity 𝑞&
NUF_:* 

dynamically based on the requesting node’s current state including its free cache space and number 

of neighbors. As a result, 𝑞&
NUF_:* does vary over time. 

However, when an object is found and fetched from a peer node, the provider node always 

sends the object with the requested quality. A higher quality object is not sent in this case because 

there has already been a higher quality copy cached in somewhere in the network (i.e., at the 

provider node itself). It is not beneficial to maintain another higher quality replica in the network. 

5.6 Performance Evaluation 

5.6.1 Experimental Settings 

Using the DTN simulator ONE, we evaluate performance of the proposed caching strategies 

in a 40-node Social Wireless Network with 10 physical waypoints around which the node mobility 

is simulated. Wireless connections are established between each pair of nodes when they are in the 

transmission range (i.e. 100m, model after BT and Wi-Fi Direct) of each other. The simulations 

were carried out under different network topologies and terrain sizes, which determines the spatial 
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node density for a given number of nodes (i.e., 40). The following caching mechanisms are 

evaluated. 

Parameter Default Value 
Number of Nodes 40 
Zipf Parameter 𝛼 0.8 
Video Population 1000 
Average Number of Segments for Each Video 120 
Simulation Duration 200000 Requests 
Download Cost 10 per MB 
Ratio of rebate to download cost 𝛽 0.1 
Cache Size in Each Node 256 GB 
Transmission Range (e.g., Wi-Fi) 100m 
Terrain Size (e.g., University Campus) 400m×400m 
Length of Each Segment 10s 
Maximum Number of Pre-fetching Segments 60 

Table 5-2: Baseline parameters used in the simulation experiments 

Adaptive Quality (AQ): Each node runs the value-based caching algorithm, and the CP runs the 

AQ algorithm to provide nodes with a sub-optimal quality for minimizing the overall provisioning 

cost as presented in Section 5-5. 

Requested Quality (RQ): Each node runs the value-based caching algorithm, and the CP provides 

segments with the same quality as what has been requested by each node. This is a naïve approach 

that AQ is be compared with. 

Traditional Caching: Algorithms including Least Frequently Used (LFU), Least Recently Used 

(LRU), and Random Replacement are implemented and compared with AQ and RQ 

    Unless stated otherwise, all parameters are set to the baseline values as shown in Table 5-

2, and videos are assumed to be sequentially played (i.e., 𝑝N@S = 1 in Figure 5-2). The default video 

quality distribution in the user requests is shown in Figure 5-4. This distribution is modeled after 

[71], which shows most of the users prefer high quality videos including HD, Full HD (FHD) and 

4K.  
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Figure 5-4: Default video quality preference distribution 

The popularity of videos is assumed to follow a Zipf distribution with default 𝛼 = 0.8, which 

indicates the skewness of the distribution. Number of videos is set to 1000, and each video is divided 

into 120 segments on average. The length of each segment for each video is set to 10 seconds [72]. 

The number of pre-fetching segments is set to 60, which is assumed to be able to fit in the available 

amount of buffer in each EC’s device or node. The simulation is terminated after 200,000 segment 

requests, after which all performance numbers were observed to have converged in the reported 

experiments. 

5.6.2 Impacts of Cache Availability and Terrain Size on Cost Saving 

As shown in Figure 5-5, provisioning costs corresponding to all the algorithms expectedly 

decrease with an increase in available cache size. Also, provisioning costs of all the algorithms are 

similar when the available cache size is extremely small or extremely large. For a very small cache 

size, only a few objects can be cached in the network. Thus, the benefits of caching are low across 
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the board. In case of a very large cache, most of the popular objects can be cached in the network 

irrespective of the applied caching algorithm. 

 

Figure 5-5: Provisioning cost with different terrain sizes and per-node cache availability 

Moreover, for a given node-count (i.e., 40) different terrain sizes (TSs) make different 

Device-to-Device connection densities which are represented by the average number of neighbors 

encountered per node as shown in Table 5-3. A smaller terrain size makes higher connection density 

and produces generally lower provisioning costs. This is because the nodes in this case are able to 

visit more peer ECs during the TAD for obtaining requested objects from those peers. 

Terrain Size Average No. of Neighbors Encountered Per Node 
100𝑚 × 100𝑚 38.9 
400𝑚 × 400𝑚 14.8 
1000𝑚 × 1000𝑚 4.1 

Table 5-3: Average no. of neighbor ECs encountered per node for different terrain sizes (number 
of nodes is set to 40) 

Another observation in Figure 5-5 is that the provisioning cost of the Adaptive Quality (AQ) 

algorithm is the lowest across all available cache and terrain sizes that have been experimented 

with. This is because, with AQ, nodes may cache objects with higher quality than they actually 

request. Such objects can satisfy requests coming from other nodes, which may need the object with 

a quality equal or lower than that of the available one. Provisioning cost for the Requested Quality 

(RQ) policy is generally between AQ and the traditional caching algorithms. Since the value-based 

caching’s criteria in RQ involves both object popularity and quality demand profiles, compared 
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with traditional caching algorithms, RQ can better indicate which objects should be cached to 

maintain a lower provisioning cost. However, RQ fails to reduce the provisioning cost further 

because it only allows caching video segments with quality equal to the requested quality. This 

explains why its performance is lower than that of AQ. 

Figure 5-6 depicts the local and remote hit rates for the algorithms in different network terrain 

sizes. For a fixed terrain size, a larger cache size results in higher local and remote hit rates. A 

smaller terrain size causes a higher remote hit rate because of higher node density. The impacts of 

terrain size on local hit rates is not that significant. Observe that the remote hit rate of the AQ policy 

is the highest among all the caching algorithms among various cache and terrain sizes. That is 

because, with AQ, a node can share more objects with other nodes by caching higher quality video 

segments than what is needed for itself. Similarly, the remote hit rate of RQ is higher than that for 

the traditional caching algorithms because the value-based caching applied in RQ is more effective 

for indicating the real user demands. 

 

Figure 5-6: Local and remote hit rates for different network terrain sizes 

Figure 5-7 shows the total value of cached objects 𝑆O in the entire network. It is defined as: 
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𝑆O = ∑ ∑ 𝑣𝑎𝑙𝑢𝑒)T(𝑜! , 𝑄(𝑜!)):"∈𝕆3&∈ℕ                                    (5-11) 

while ℕ is the set of all the nodes in the network, and 𝕆& is the set of all the objects cached at node 

n. Additionally, 𝑄(𝑜!) indicates the quality of object 𝑜!. Note that 𝑆O is computed when the network 

reaches a steady state. As expected, the 𝑆O of each caching mechanism increases with an increase 

in available cache size for all different terrain sizes. This is because each node is able to cache a 

greater number of objects with a larger cache size. Moreover, the 𝑆O of AQ is the largest across all 

the mechanisms because the value of objects cached at each node in AQ is maximized by Eqn. 5-

10. As a result, the total value of cached objects at all the nodes (i.e. 𝑆O) is also the largest across 

all the algorithms. On the other hand, the 𝑆O of RQ is larger than all the other caching algorithms 

except AQ. Since the value-based cache replacement policy (see Algorithm 5-1) is applied in RQ, 

the object with a larger value is never replaced. Another observation is that 𝑆O of each mechanism 

decreases with a larger terrain size. This is because the N in Eqn. 5-4, which represents the expected 

number of peers a node encounters, decreases when the terrain size is larger (see Table 5-3), thus 

𝑆O is smaller according to Eqn. 5-4, 5-5 and 5-11. 

 

Figure 5-7: Total value of cached objects in the entire network 

The bandwidth overhead of caching is defined as the bandwidth usage of CSP’s cellular links.  

Such overheads of various caching algorithms in different terrain sizes are shown in Figure 5-8. It 

can be observed that a larger terrain size generally makes a higher bandwidth overhead across all 
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the algorithms. This is because, in a larger terrain size, each node has a lower remote hit rate (see 

Figure 5-6). As a result, a node has to download more video segments using the CSP’s network. 

However, the bandwidth overhead of AQ is always the lowest for all the terrain sizes, because in 

AQ the nodes enjoy the highest remote hit rate by caching video segments with higher quality than 

their actual demands. On the other hand, the bandwidth overhead of RQ is lower than all the 

traditional caching algorithms. This is also because nodes with RQ have higher remote hit rates 

than with the traditional algorithms. 

 

Figure 5-8: Bandwidth overhead for different network terrain sizes 

5.6.3 Evolution of Provisioning Cost and Hit Rates over Time 

Figure 5-9 explains how the provisioning cost and hit rates builds up in the network over a 

period of 60 hours. For both AQ and RQ policies, the provisioning costs are 100% at the beginning. 

However, as shown in Figure 5-9 (a), the costs significantly reduce over time as more and more 

video segments are cached in the D2D network of the ECs. This is also reflected in Figure 5-9 (b) 

and (c), where the local and remote hit rates for both policies increase over time. Over time, the 

cost of AQ reduces faster than RQ, while the remote hit rate of AQ increases more than that of RQ. 

This is because with AQ, the nodes cache video segments with higher quality, which results in a 
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higher remote hit rate and resultingly lower cost. However, there is no significant difference 

between the local hit rates of AQ and RQ as shown in Figure 5-9 (b). 

 

Figure 5-9: Provisioning cost, and local and remote hit rates over time 

5.6.4 Content Quality Density of the Cached Objects 

Quality density is defined as the probability density function of video segments with specific 

qualities that are cached within the network. Figure 5-10 depicts the density of video segments of 

all seven available qualities (see Figure 5-4) for the policies AQ and RQ. Such density is a function 

of quality preference distribution in user demands and the corresponding sizes of objects for each 

quality. For example, density of SVGA (i.e. the lowest quality in our experiments) in both RQ and 

AQ is the highest. This is because an object’s size with this quality is extremely small. As a result, 

the nodes are able to cache many such segments. Specifically, in RQ, the densities of HD, FHD and 

4K video segments are the second highest since they are the most popular qualities, following the 

default preference distribution as shown in Figure 5-4. Densities of these popular qualities in AQ, 

however, are extremely low except for the 4K. That is because the video source encoded in 4K is 

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60

Co
st

Time (Hours)

0%
5%

10%
15%
20%
25%
30%

0 20 40 60

Lo
ca

l H
it 

Ra
te

Time (Hours)

0%

20%

40%

60%

80%

0 20 40 60

Re
m

ot
e 

H
it 

Ra
te

Time (Hours)

AQ

RQ

AQ
RQ

RQ

AQ

(a) Temporal Cost (b) Temporal Local Hit Rate

(c) Temporal Remote Hit Rate



  
 

68 
 

 

able to satisfy the requests for HD and FHD. That reduces the provisioning cost with AQ by 

increasing the ratio of content sharing (i.e., the remote hit rate) in the D2D network of ECs. 

 

Figure 5-10: Cached video quality density for AQ and RQ 

5.6.5 Content Delivery Latency 

Content Delivery Latency (CDL) is the duration between when a node generates a request for 

a specific segment and when it actually obtains the segment. In Section 5.3.2, it was stated that 

during the Tolerable Access Delay (TAD), which is computed using Eqn. 5-1, a node first searches 

a requested segment in its local cache and then in its neighboring peers. It follows that the CDL for 

a video segment is acceptable only if it is less than the TAD for that segment. For example, when a 

user starts to play a video, if the length of each segment is 10s, then according to Eqn. 5-1, the TAD 

of the 30th segment is 290s. In this case, if the CDL of the 30th segment is less than 290s, the user 

can experience a smooth play.  

    Figure 5-11 depicts the average CDL of AQ and RQ over various cache sizes. The CDLs 

of both AQ and RQ decrease when the cache size increases. This is because, with a larger cache 

size, more requested segments can be found in the local caches. For such cached segments, the CDL 

for obtaining them is zero. Also, it should be observed that the CDL for AQ is lower than that of 
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RQ. This is because the remote hit rate of AQ is larger than that for RQ (see Figure 5-6), which 

means more requests in AQ can be served by the neighboring peer nodes before the TAD expires. 

 

Figure 5-11: Content Delivery Latency (CDL) for the AQ and RQ policies 

5.6.6 Impacts of Video Play Sequence 

As shown in the video play model in Figure 5-2, besides sequentially playing a video, a user 

may fast-forward to a later segment or rewind to a previous segment of the current video. Moreover, 

the user can stop playing the current video and switch to a different one. Figure 5-12 depicts how 

the probabilities of these actions affect the provisioning costs of the proposed AQ and RQ caching 

mechanisms.  

Generally, higher 𝑝RR and 𝑝NA! (i.e., frequent fast forward and switching to a different video) 

cause fewer segments from the currently-playing video to be requested. For example, if a user wants 

to fast-forward to segment 𝑠?I  after he/she finishes the first segment 𝑠M , then requests for pre-

fetching the following segments after 𝑠M (i.e., 𝑠? to 𝑠?L) are deleted. Similar effects can be observed 

in case of switching to a different video. With frequent switching, fewer segments of each video 

need to be cached. In other words, with higher 𝑝RR and 𝑝NA!, segments from more diverse videos 
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can be cached. This increases the local and remote hit rates while reducing the overall provisioning 

costs.  

Frequent rewinds (i.e., high 𝑝0@A), on the other hand, can result in a high local hit rate due to 

repeated requests of locally cached video segments. This explains why the provisioning cost reduces 

with increasing occurrences of the rewinds. The provisioning cost of the AQ policy is consistently 

lower than RQ with various 𝑝RR  and 𝑝NA!  values in Figure 5-12 (a) and (b) respectively. The 

situation is reverse for rewinding in Figure 5-12 (c). This is because higher 𝑝0@A causes more local 

caching. Since AQ tends to cache segments with higher qualities than RQ, fewer video segments 

can be cached for a given local cache size. As a result, in this rare case, RQ performs slightly better 

than AQ when the probability of rewinding is high. However, the local hit rate is not significantly 

higher in RQ compared to AQ when the probability 𝑝0@A  is low; that is the reason why the 

provisioning cost of AQ is initially lower than RQ with low 𝑝0@A. 

 

Figure 5-12: Impacts of different video play sequences on provisioning cost 

5.7 Comparison with Reactive User Preference Profile Algorithm 

Reactive User Preference Profile (R-UPP) [26] is a reactive caching algorithm that serves 

similar applications as done by the proposed mechanisms in this work. R-UPP, in its original form, 

is an infrastructure-based caching policy that caches popular content in infrastructures such as the 

edge servers. However, the mechanism can be adapted to a D2D mode in which caching is done 

within the ECs’ devices as opposed to in any infrastructure. In R-UPP, the replacement policy is 
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based only on the popularity of objects without considering any quality preference distributions, as 

done in AQ and RQ. We implement a D2D version of R-UPP in the simulator ONE and compare 

its performance with AQ and RQ in a mobility scenario extracted from the traces of taxis in San 

Francisco [73].  

   This mobility model contains traces of 40 taxis over 70 hours in the city of San Francisco. 

The taxis communicate with each other using Dedicated Short-Range Communication (DSRC) [7] 

links with transmission range set to 1km, and the average number of neighbors per node (i.e. taxi) 

is around 20.7. The other parameters follow the baseline as shown in Table 5-2.  

5.7.1 Impacts of Cache Size 

In Figure 5-13 (a), provisioning costs corresponding to all three algorithms expectedly 

decrease with the increase in available cache size. The provisioning cost for the AQ strategy is the 

lowest and R-UPP is the highest across all cache sizes. This is because the cache replacement policy 

of R-UPP relies only on the popularity of objects without considering the quality preference, which 

is considered by both AQ and RQ. For example, in R-UPP, an object with low popularity but high 

preferred quality may be replaced with another object, whose popularity is slightly higher but its 

quality preference is much lower. An object with a more frequently-preferred quality may satisfy 

more number of future demands for the same content in a way that the total obtained value would 

be higher. 

The local and remote hit rates for the three caching algorithms are depicted in Figure 5-13 (b) 

and (c). It can be seen that the local hit rates of all three policies are similar across all the cache 

sizes. The remote hit rate of R-UPP is the lowest, since with R-UPP a node may keep an object with 

high popularity and low preferred quality. This significantly reduces the probability that other nodes 

can obtain the requested content with such high quality from their peer ECs’ devices. 
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Figure 5-13: Provisioning cost and hit rates of R-UPP, RQ, and AQ 

5.7.2 Impacts of Rebate-to-Download-Cost Ratio 

Figure 5-14 (a) depicts the provisioning cost of R-UPP in comparison with AQ and RQ for 

different values of Rebate-to-Download-Cost Ratio 𝛽 (see the pricing model in Section 5.2). For 

all three algorithms, the costs increase with higher 𝛽. This is because a higher 𝛽 indicates a larger 

rebate 𝐶0 , which is the cost of obtaining a video segment from a peer device. Additionally, 

provisioning cost of the AQ is the lowest across all the 𝛽 values, while R-UPP is the highest. This 

is because the cache replacement policy of R-UPP relies only on the popularity of objects and not 

the preference distribution of quality. According to the results in Figure 5-14 (b), the impacts of 𝛽 

on local hit rates are insignificant for all three mechanisms.  

However, as shown in Figure 5-14 (c), the remote hit rates of AQ and RQ decrease with 

increasing 𝛽. This is because with higher 𝛽, 𝐶0  gets closer to the cost 𝐶/  which is incurred by 

downloading objects directly from the CP’s server. According to Eqn. 5-5 and 5-7, if 𝐶0 is closer 

to 𝐶/, the value of caching an object received from a peer device becomes similar to the value of 

caching an object received from the CP. Therefore, when the cache in a node is full, a segment that 

was originally obtained from a peer may not be replaced by segments downloaded from the CP’s 

server. As a result, most of the objects cached in the network are from the peers in the network. In 

other words, all the nodes in the network finally cache the same objects, which reduces the remote 
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hit rates. On the contrary, the remote hit rate of R-UPP is not notably affected by 𝛽  since its 

replacement policy does not involve any rebates. 

 

Figure 5-14: Provisioning costs for varying rebate-to-download-cost ratio 

5.7.3 Impacts of Different Quality Preference Distributions 

All presented results so far use the default video quality preference distribution as shown in 
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notably popular. That is, the most popular quality is SXGA in GL, and the low qualities are more 

popular in DI. Thus, caching higher quality than the user’s preference is not advantageous. 

However, as expected, the provisioning cost of AQ is generally the lowest, while the provisioning 

cost of R-UPP is the highest under all three quality preference distributions. 

 

Figure 5-15: Provisioning cost with different distributions of video quality preferences 

5.8 Summary 

A value-based D2D collaborative caching strategy for hierarchically coded streaming video 

segments is proposed in this chapter. Based on video popularity and heterogeneous user demands, 

an adaptive quality provisioning algorithm, which works with a value-based caching, is developed 

for minimizing the overall video provisioning cost for a provider. The key idea is to decide the 

optimal quality of video segments to be cached in users’ devices so that the predicted future 

demands from users and their peers are satisfied, thus minimizing content provisioning costs. 

Simulation experiments were carried out in mobile wireless network scenarios, and the results 

indicate that the proposed mechanism is able to reduce the overall provisioning cost compared with 

traditional caching algorithms and a comparable caching algorithm, namely, R-UPP. The cost-
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saving of the proposed mechanism is particularly visible when the connection density of nodes is 

high, and when the popularity of higher quality video content is high. 
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Chapter 6 : Caching for Dynamic Map Dissemination in Vehicular 

Networks 

6.1 Introduction 

With increasing vehicle connectivity through Vehicle-to-Vehicle (V2V), Vehicle-to-

Infrastructure (V2I), and cellular networks, many data-driven in-vehicle applications are emerging 

in recent years. Many such applications involve space- and time-varying information such as 

dynamic electronic maps used in vehicle navigation. Example scenarios that can create dynamic 

map include work zone related traffic diversion lasting for hours to days, temporary traffic lights 

during an event such as football game, and accident related traffic diversions. A map with such 

dynamic information is termed as a dynamic map [74]. 

 

Figure 6-1: Layered abstraction of dynamic maps 

Figure 6-1 depicts an example dynamic map, which includes two layers. The bottom one is 

static with relatively permanent components such as roads, building, open areas etc. The top layer 

includes dynamic data such as constructions, traffic congestions, crashes, events etc. In most cases, 

the vehicles are pre-loaded with the static component. The time-varying dynamic component is 

downloaded to the vehicles on an as-needed basis over the V2V, V2I, and cellular connections. 
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The current best practice is to push the dynamic map data from a cloud-based map application 

server (e.g., Google Map server) to the vehicles via cellular networks. However, this approach 

involves cellular bandwidth usage cost that has to be paid by the users to their mobile network 

operators (e.g. AT&T, Verizon, etc.). The objective of this chapter is to reduce cellular bandwidth 

usage for disseminating dynamic map data.  

One plausible approach for such cost reduction would be to always download and cache 

dynamic map data from map application servers (MASs) to edge devices such as roadside units 

(RSUs) through fiber links, and relay that to the nearby vehicles via Dedicated Short-Range 

Communications (DSRC) links. In scenarios with very high RSU densities, this approach will work. 

In reality, however, the RSU deployments are expensive, and therefore, the RSU coverage is 

expected to be somewhat sparse in many settings. An alternative is to use the vehicles themselves 

as a distributed storage system in which dynamic maps can be intelligently cached based on the 

spatial and temporal localities of their needs. This chapter presents such a collaborative caching 

solution towards the goal of minimizing cellular bandwidth usage by leveraging inter-vehicle map 

sharing. 

6.2 System Architecture 

6.2.1 Network Model 

All network and system components are shown in Figure 6-2. Each vehicle in the 

transportation network is able to access the MAS through paid cellular links (e.g. 4G or 5G, etc.). 

Vehicles can also connect to each other or to the RSUs via DSRC-based V2V and V2I links. These 

links are considered spatially limited and free of cost. Finally, the edge devices such as the RSUs 

are able to connect to the map server via high-speed fiber links such as Gigabit Ethernets. 
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Figure 6-2: Generalized model with different networking components 

6.2.2 Dynamic Map Data 

Dynamic map data is always generated by the edge devices such as the RSUs. Generation of 

such data can be triggered by events such as accidents, traffic congestion, and road work. Such 

information can be input manually at the RSU or through the cloud. The edge unit might also be 

equipped with sensors that continually survey and identify events that need to be distributed. A 

dynamic map data module would contain two key information components, namely, its expiry time 

and the geographical scope of dissemination. The geographical scope indicates the region in which 

the data needs to be disseminated. The expiry time indicates till what point in time the dynamic 

map data needs to be disseminated among the vehicles within the specified geographical scope. In 

practice, the expiry time of a dynamic map can be determined based on the expected end-time of 

the corresponding event such as road work or a football game. Since the end time of an event may 

change (e.g., a crash is cleared earlier than expected or a road work is extended by few additional 

hours), the generation model accommodates a way to update the expiry time of a content. 
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The process of dynamic map generation and updates from an RSU is as follows. Distinct 

dynamic maps from an RSU are generated with a rate of 𝜆D maps per unit time. Once generated, 

updates for that map are generated with a rate of 𝜆U updates per unit time. An update can change 

the geographical scope and/or the time of expiry of the corresponding dynamic map item. Both map 

generation and update generation processes can be modeled with an appropriate probability 

distribution. Considering memory-less properties, for all our analysis in the following sections, 

exponential distribution is used for the process of dynamic map generation. However, to simplify 

the problem, in this chapter the update rate 𝜆U is set to 0.  

6.3 Dissemination and Caching Mechanisms 

Dynamic map dissemination constitutes three key mechanisms, namely, push, pull, and 

caching.   

6.3.1 Dynamic Map Data Push 

As shown in Figure 6-3, when an RSU generates a dynamic map data, it is referred to as the 

Originating RSU (O-RSU) with respect to that dynamic map data. Upon generated, the O-RSU 

pushes the data to the nearby vehicles (i.e., vehicles within the V2I transmission range of the O-

RSU), and also uploads it to the MAS via terrestrial wired links.  

Depending on the geographical scope of a specific dynamic map data module, the MAS can 

push it to distant vehicles through the RSUs that are local to those vehicles. These RSUs are referred 

to as the Gateway RSUs or G-RSUs with respect to that dynamic map data. Upon receiving the 

dynamic data from the MAS, the G-RSUs push it to the vehicles around them via V2I links.  
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Figure 6-3:Push mechanism of dynamic data dissemination 

 It should be noted that any RSU can serve the role of either an O-RSU or a G-RSU depending 

on where a dynamic map data has originated. With respect to the data that was originated locally, 

the RSU is an O-RSU, and with respect to the data that was originated remotely, the RSU is a G-

RSU. 

6.3.2 Dynamic Map Data Pull and Caching  

The push mechanism described above can deliver dynamic map data to all the vehicles that 

are within the V2I transmission ranges of the O-RSU and all the G-RSUs corresponding to the data 

item. For all other vehicles, a pull mechanism is needed. Consider an example scenario in which a 

vehicle is driving towards a geographical area and it requires any dynamic map data available for 

that area before it reaches the area so that an efficient route can be computed. Also, the vehicle is 

out of range of the O-RSU and G-RSUs that are corresponding to the destination area of interest. 

In such a situation, the vehicle would have to make an active request for that piece of dynamic data. 

In order to make such pull operations effective, the data item of interest needs to be cached within 

the vehicular network so that a vehicle can possibly retrieve it from another vehicle which may have 

cached it upon an earlier request. 
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The key architectural concept is to develop such an in-vehicle and in-RSU content caching 

mechanism that can be leveraged to reduce the usage cost of the on-vehicle cellular link.  

6.3.2.1 Demand Model  

Let 𝑝 u𝑉! , 𝐷4*v be the probability that a vehicle 𝑉! may request the dynamic data 𝐷4* that is 

of a specific geographic area and generated by its O-RSU 𝑅(  in that area. It is assumed that 

𝑝 u𝑉! , 𝐷4*v is inversely proportional to the current distance between the vehicle 𝑉! and the RSU 𝑅( 

as follows: 

𝑝 u𝑉! , 𝐷4*v =
)

/!N9;&E@_\",4*`
																									                      (6-1) 

where 𝐶 is a constant. The rationale behind such inverse relationship is that if the vehicle 𝑉!  is 

currently far away from the RSU 𝑅(, then 𝑉! is commensurately less likely to request the dynamic 

map data item 𝐷4*. It should be noted that the geographical location information is extracted from 

the static layer of the integrated map information as shown in Figure 6-1. The static layer of the 

map is assumed to be pre-loaded in the vehicle as a part of the navigational map system such as 

google map etc. 

6.3.2.2 Data Search Model 

Upon originating a request, a vehicle first performs a local search for the requested dynamic 

data in its own cache. If that fails, the vehicle performs a remote search among the nearby vehicles 

and RSUs via V2V and V2I links. If the data component is not found after those searches within a 

pre-defined Tolerable Access Delay (TAD), the vehicle sends a request to the MAS and pulls the 

requested data through the cellular link. TAD represents the duration that a vehicle is willing to 

wait before the request is successfully served. TAD for a dynamic map data item is set at the 

application level when the request for it is originated at the application such as a vehicle’s 
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navigation software App. It is assumed that the TAD for a request u𝑉! , 𝐷4*v would depend on the 

distance between the requested vehicle 𝑉! 	and the O-RSU of the data item 𝐷4*. Formally stated: 

𝑇𝐴𝐷 u𝑉! , 𝐷4*v = 𝑟 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1𝑉! , 𝑅(3																	                      (6-2) 

where 𝑟 is a constant. The physical meaning is that the TAD for a request will be larger if the 

requesting vehicle is far away from the geographical origin of the dynamic map data component. 

In other words, if the vehicle is away from the geographical area, it can possibly wait for some time 

(i.e., TAD) before the dynamic map component is fetched from other vehicles and RSUs. As a 

result, the chances of having to fetch the data from the map server using cellular link and its 

corresponding expenditure can be reduced.  

6.3.2.3 Cache Replacement Policy 
A key architectural component that determines the effectiveness of caching is how a dynamic 

map data is replaced from a vehicle’s cache after its usage is over. When a vehicle 𝑉! obtains a new 

dynamic map data 𝐷4*, it may cache the data locally if there is sufficient empty cache space. If 

space is not available, the following policy is executed to replace an existing map item by this newly 

acquired one.  

We introduce a notion of caching value for each dynamic data, which is defined as how much 

cellular bandwidth usage can be avoided by caching the data item within in-vehicle cache. The 

caching value of data item 𝐷4* within vehicle 𝑉! is defined as follows: 

				𝑣𝑎𝑙𝑢𝑒 u𝑉! , 𝐷4*v = 𝑝 u𝑉! , 𝐷4*v 𝑙𝑖𝑓𝑒 u𝐷4*v 𝑠𝑖𝑧𝑒 u𝐷4*v									                (6-3) 

where 𝑙𝑖𝑓𝑒 u𝐷4*v is the remaining life of	𝐷4* defined as the duration between current time and its 

expiry time. The quantity 𝑠𝑖𝑧𝑒 u𝐷4*v represents the size of 𝐷4*. The expected savings of cellular 

bandwidth usage cost (i.e., the cache value) associated with map item 𝐷4* in vehicle 𝑉!′s cache is 
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higher for 𝐷4* with: larger size, longer expiry time, and higher request probability from 𝑉!. The 

notion of value is used as follows. 

1: Input: received dynamic data 𝐷4* by vehicle 𝑉! 
2: if (𝑉!.remaining_cache_size ≥ size(𝐷4*)) then 
3:      𝑉!.cache(𝐷4*); 
4: else 
5:      for each data 𝐷4' cached in 𝑉! 
6:              𝐷4'.value=	𝑣𝑎𝑙𝑢𝑒1𝑉! , 𝐷4'3; 
7:      end 
8:      initialize(𝑆<@;N9_O;<U@); 
9:      while(𝑉!.remaining_cache_size < size(𝐷4*)) 
10:                𝐷C!& = data with the least value in 𝑉!; 
11:                𝑆<@;N9_O;<U@.add(𝐷C!&); 
12:                𝑉!.remove(𝐷C!&); 
13:       end 
14:       if(𝐷4* . 𝑣𝑎𝑙𝑢𝑒 > 𝑆<@;N9_O;<U@.totalValue) then 
15:                𝑉!.cache(𝐷4*); 
16:       else 
17:                drop(𝐷4*); 
18:               put data in 𝑆<@;N9_O;<U@ back to cache of 𝑉!; 
19:       end 
20: end 

Algorithm 6-1: In-vehicle and in-G-RSU caching/replacement policy 

When a vehicle 𝑉! fetches a new dynamic map data 𝐷4*, it first computes the value of caching 

for all the existing items in its cache. It then identifies the s lowest valued items in the cache such 

that the total size of those items is equal to or higher than the size of the new data 𝐷4*. The set 

containing those cached items is referred to as 𝑆<@;N9_O;<U@. At this stage, the sum of the values of 

all the data items in 𝑆<@;N9_O;<U@ is compared with the value of 𝐷4*. If the value of 𝐷4* is larger, then 

all the data in 𝑆<@;N9_O;<U@ are replaced with 𝐷4*. The rationale behind this action is as follows. Since 

the value of the new data is larger, by caching it, the expected savings in the cellular link usage cost 

from the vehicle will be also larger. By the same token, when the value of  𝐷4* is comparatively 
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lower, the existing cache items have higher potential to save cellular link usage cost than the new 

dynamic map item 𝐷4* . Therefore, instead of replacing any existing cache items, it should be 

dropped. The full logic of the caching and replacement is summarized in Algorithm 6-1. 

Dynamic map data items can also be cached in the G-RSUs. When a G-RSU receives an item 

from the MAS, it may opt to cache the item following a very similar caching and replacement logic. 

The difference here is the way the demand (i.e., Eqn. 6-1) is computed. For computing the value of 

dynamic map data 𝐷4* cached on a G-RSU 𝑅!, the probability part 𝑝 u𝑉! , 𝐷4*v in Eqn. 6-1 needs to 

be changed to 𝑝 u𝑅! , 𝐷4*v, which represents the probability that 𝐷4* is requested by the vehicles in 

the vicinity of RSU 𝑅!. 

6.4 Performance Evaluation 

We evaluated the performance of the proposed caching mechanism using the Delay-Tolerant 

Networking (DTN) simulator ONE. A 50-vehicle network with mobility traces from taxis in San 

Francisco has been used. As for the RSUs, they are uniformly randomly placed within the 

geographical scope of the city. The overall architecture of the network is the same as what is 

presented in Section 6.2.1. Unless stated otherwise, all the parameters are set to the baseline values 

as shown in Table 6-1.  

Parameter Default Value 
No. of RSUs in the network 10 
No. of G-RSUs for each dynamic data 9 
No. of vehicles 50 
𝜆Dfor dynamic data generation 3e-4/s 
𝜆Ufor dynamic data update 0 updates/s 
Life of dynamic data 6 hours 
Average size of dynamic data 10MB 
Cache size on RSU 80MB 
Cache size on vehicle 80MB 
Transmission range of V2V and V2I (e.g. DSRC) 1000 meters 
Data transfer rate of V2V and V2I 15Mbps 
Data transfer rate of cellular (e.g. LTE) 50Mbps 
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Data transfer rate of fiber links (e.g. Ethernet) 1Gbps 
Ratio 𝑟 for TADs 0.005s/m 
Simulation duration 100 hours 

Table 6-1: Baseline parameters used in the simulations 

Each RSU generates dynamic data components once in every 1 hour (i.e. 	𝜆D = 3 × 10GL/𝑠 

) with no updates by default (i.e., an update rate of 0 updates/s). The RSU pushes the generated data 

to all the other G-RSUs (i.e. 9 G-RSUs by default) using the push mechanism described in Section 

6.3.1. Upon generation, the life span of each dynamic data is set to 6 hours. The size of dynamic 

data is chosen randomly between 0.5MB to 19.5MB, thus the average size is 10MB. In the 

simulation, it is assumed that the V2V and V2I links are DSRC, and the cellular network is LTE. 

Moreover, the fiber links between the MAS and RSUs are Ethernet. The constant 𝑟 for computing 

TADs in Eqn. 6-2 is 0.005s/m. All the presented results correspond to a simulation duration of 100 

hours. 

6.4.1 Mobility Characteristics 

Before we delve into performance characterization of the proposed caching architecture, it is 

useful to understand the nature of vehicle mobility in our experimental setting.  Figure 6-4 (a) shows 

the number of vehicles encountered per hour averaged across all vehicles. Figure 6-4 (b) depicts 

the same metric as perceived by the RSUs. First notable observation is that on an average, a vehicle 

always encounters many more other vehicles compared to the RSUs. Low encounter density of the 

RSUs are explained by the fact that the RSUs are stationary while the vehicles are moving. Also, 

the number of RSUs is smaller than the number of vehicles in the system. The higher encounter 

rates for the vehicles in Figure 6-4 indicate that in-vehicle caching is expected to be much more 

effective for finding map components in the caches compared to in-RSU caching. 
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Figure 6-4: Mean vehicle encounter rates for the vehicles and RSUs 

6.4.2 Impacts of In-vehicle Caching on Bandwidth Usage (BU) 

This section investigates how the proposed caching technique affects the bandwidth usages 

of various links. For all reported results, bandwidth usage of a link 𝑙 is shown in percentage which 

is defined as 𝑃𝐵(𝑙) in the following equation: 

𝑃𝐵(𝑙) = 12(<)
∑ 12(N)0∈9

× 100%																											                       (6-4)  
where 𝐴𝐵(𝑙) is the absolute bandwidth usage (in MB) of the link 𝑙through the whole simulation, 

and 𝑆 = {𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟, 𝐿𝑜𝑐𝑎𝑙, 𝑉2𝑉, 𝐹𝑖𝑏𝑒𝑟	𝐿𝑖𝑛𝑘𝑠, 𝑉2𝐼} which is the set of all the available links in the 

simulation. Additionally, the available cache size is reported as a multiple of the average size of the 

dynamic map components.  

 

Figure 6-5: Bandwidth usages with different in-vehicle cache sizes 
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As shown in Figure 6-5 (a), with increasing allocated cache size in the vehicles, the bandwidth 

usage of cellular links reduces. This is due to the fact that the caching mechanism becomes more 

effective with larger available caches. As a result, vehicles often find requested map contents from 

within the cache of its own, other vehicles, and RSUs without having to reach the Map Application 

Server (see Figure 6-2) via in-vehicle cellular links. Part of this is confirmed by the local-hit 

statistics in Figure 6-5 (a). The graph for local hit volume indicates that with larger available cache 

size, more and more dynamic map data can be stored in the in-vehicle local cache. The other reasons 

for reducing cellular bandwidth usage can be explained using the graphs in Figure 6-5 (b). As for 

the V2V bandwidth usage, first it increases with increasing cache size since larger cache size sparks 

more inter-vehicular caching related traffic. However, when the allocated cache size is very large 

(i.e., larger than 30MB), the vehicles are able to cache a lot of content within their own local cache, 

resulting in lower inter-vehicle caching dependency and the related traffic volume. The V2I 

bandwidth usage represents the traffic between the RSUs and the vehicles. With increasing 

allocated cache size, more dynamic map data requests are satisfied by items cached within the 

vehicles. As a result, the dependency on the RSUs reduces. This explains the downward trend of 

the V2I bandwidth usage graph in Figure 6-5 (b). Finally, the allocated cache size has very little 

impact on the bandwidth usage of the fiber links between the RSUs and the MAS. Those links are 

used mainly when an O-RSU uploads a dynamic map data to the MAS, and when the MAS pushes 

that data to a set of appropriate G-RSUs. Vehicle caching does not impact the usage of those links.  

6.4.3 Caching Dynamics 

The graphs in Figure 6-6 demonstrates the impacts of cache build-up in the network over 

time. The temporal bandwidth usage of a link 𝑙 at time ℎ in Figure 6-6 is also shown in percentage 

that is defined as 𝑃𝑇𝐵(𝑙, ℎ) computed by the following equation: 
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𝑃𝑇𝐵(𝑙, ℎ) = 1P2(<,a)
∑ 1P2(<,!)!44
"&4

× 100%																								                    (6-5) 

while 𝐴𝑇𝐵(𝑙, ℎ) is the absolute temporal bandwidth usage (in MB) of the link 𝑙 at time ℎ. 

 

Figure 6-6: Temporal bandwidth usages of V2V and cellular links 

Figure 6-6 (a) depicts the cellular and V2V bandwidth usage over time for a specific scenario 

in which each dynamic map data item expires after a duration of six hours. Upon each expiry of an 

item, the network has to clear out the corresponding entry from existing caches and needs to rebuild 

it. Observe that during such cache rebuilding instances, there is an initial surge of cellular bandwidth 

usage indicating direct download from the MAS over the cellular link. Such surges are immediately 

followed by high V2V bandwidth usage spurts, indicating in-vehicle caching transactions. Note that 

the cellular and V2V bandwidth usage could be on a relatively low level but non-zero between each 

pair of continuous rebuilding instances, this is because the vehicles still keep requesting and 

fetching the dynamic map data via cellular and V2V links during this time, since they are not able 
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to cache all the data in their in-vehicle caches. Figures 6-6 (b) and 6-6 (c) demonstrates similar 

effects when the expiry time of the content is extended to 10 hours and 100 hours respectively. 

Specifically, there is only one rebuilding instance shown in Figure 6-6 (c), because the next instance 

will be after 100 hours that is out of the range of x-axis (i.e., 20 hours) shown here. It can be 

observed in Figure 6-6 that the peak values of both the cellular and the V2V link bandwidths are 

more for higher content expiry times. The reason for that trend is as follows. In Figure 6-6 (c) there 

is only one rebuilding instance through the whole simulation (i.e. 100 hours), while there are 

multiple such instances in Figure 6-6 (a) and (b). According to Eqn. 6-5, the more the number of 

rebuilding is, the lower the height of each surge is. As an extreme example, in Figure 6-6 (c) the 

only surge of cellular link contributes almost 100% bandwidth usage to the total ∑ 𝐴𝑇𝐵(𝑙, 𝑖)?MM
!>M  in 

Eqn. 6-5. 

6.4.4 Impact of in-RSU Caching  

Figure 6-7 shows how the bandwidth usage of different links are affected by various allocated 

cache sizes in the RSUs. There were 10 RSUs deployed in the network for this result. Unlike 

caching in the vehicles, allocated cache size variation in RSUs do not significantly affect the 

bandwidth usages of any of the network links. This is because the coverage of the RSUs is limited 

as indicated by their low vehicle encounter rates shown in Figure 6-4.  Such infrequent encounters 

provide very few opportunities to the vehicles for accessing dynamic map data cached within the 

RSUs. 
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Figure 6-7: Impacts of allocated cache sizes in the RSUs 

6.4.5 Larger RSU Coverage  

One way of leveraging in-RSU caching for cellular bandwidth cost reduction would be to 

increase the RSU’s V2I coverage range. Figure 6-8 shows the average vehicle encounter rate of an 

RSU when its range is extended to 5000 meters compared with when the range was only 1000 

meters. It can be observed that the vehicle encounter rate has increased here by more than 10 times 

by increasing the coverage to 5000 meters.    

 

Figure 6-8: Mean vehicle encounter rate of RSUs 

With such higher frequency encounters, the vehicles are able to leverage in-RSU caching 

more effectively. This is evident from the results in Figure 6-9 in which various network bandwidth 
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usages are affected in a way that is similar to the way bandwidth usages are affected by in-vehicle 

caching in Figure 6-5. Most notably, it is possible to reduce the cellular bandwidth usage cost by 

allocating sufficient amount of cache space in the RSUs. This improves in-RSU cache performance 

and increases the V2I bandwidth usage for the RSU-to-Vehicle downloads of dynamic map data 

cached in the RSUs. However, the trends of the local-hit and V2V bandwidth do not remarkably 

affected by in-RSU caching, since they mainly depend on in-vehicles caching. Additionally, in-

RSU caching does not affect bandwidth usage of RSU-MAS fiber links, which is similar to Figure 

6-7. 

 

Figure 6-9: Impacts of allocated cache sizes in the RSUs with long-range V2I 

The impacts of more G-RSUs for disseminating each dynamic map data in this increased V2I 

range scenario is shown in Figure 6-10.  As expected, the cellular bandwidth usage here does go 

down with more G-RSUs participating in dissemination of dynamic map. The reason is efficiency 

of more G-RSUs with long-range V2I links. The V2I bandwidth increases due to higher frequency 

downloads of dynamic map data cached in the G-RSUs. Similar to Figure 6-9, more G-RSUs causes 

higher usage of the fiber links but does not notably impact local-hit and V2V bandwidth. 
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Figure 6-10: Bandwidth usage with varying number of G-RSUs with long-range V2I 

6.4.6 Map Fetch Latency 

The fetch latency is defined as the duration between when a vehicle generates a request for a 

specific dynamic data, and when it actually receives it. In Section 6.3.2, it was stated that during 

the Tolerable Access Delay (TAD), which is computed using Eqn. 6-2, a vehicle first searches the 

requested data in its local cache and then in other vehicles and the RSUs nearby before downloading 

it from the MAS though the on-vehicle cellular link. It follows that the fetch latency for a data is 

acceptable only if it is less than the TAD defined for that dynamic map data item. 

 

Figure 6-11: Map fetch latency with various in-vehicle cache sizes 

Figure 6-11 shows the impacts of allocated in-vehicle cache size on the map fetch latency. 

The latency reduces monotonically as more and more cache space is added. The reason for this is 

as follows. Larger allocated in-vehicle cache space enables more effective caching, thus improving 
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the odds of finding the requested map components locally within the requesting vehicle or the 

nearby vehicles. Finding the data locally provides lower fetch latency compared to downloading it 

from the MAS over cellular links. 

6.5 Summary 

The chapter presented a mechanism for collaborating vehicular content caching in the context 

of navigational map dissemination. The research goal is to intelligently cache content in RSUs and 

vehicles such that the cellular bandwidth usage is minimized. We have developed a model for 

dynamic map data generation and used that model for designing caching algorithms for both the 

RSUs and the vehicles. We run detailed simulations using the DTN simulator ONE, based on a 

generalized network architecture. The results indicate that the proposed collaborative caching 

mechanism is able to reduce the cellular bandwidth usage and map fetching delay compared to 

infrastructure-based caching strategies. 
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Chapter 7 : Content Dissemination Through Mobile Edge Cache 

Servers in Vehicular Networks 

 Introduction 

Besides the dynamic map described in Chapter-6, another typical application in vehicular 

networks is air software update for in-vehicle modules including infotainment, navigation, 

autonomous driving and many others. While some of the updates are non-time-critical and can wait 

till a vehicle is at home or at work, some are time-critical and need to be performed while on the 

road. This is more so now when the software for many new vehicle functions and emerging and 

require frequent bug-fixes and functionality upgrades. For example, a critical bug-fix for the 

braking system software may not be delayed till the vehicle reaches home or work. It may have to 

be done by temporarily pulling over, or even while it is on the move. Other example of needed on-

the-road software updates includes firmware update of autonomous driving system, etc.  

The current best practice is to push Software Update Packages (SUPs) from a cloud-based 

Manufacturer Software Provider’s (MSP’s) server (e.g., Ford’s software update/App server) to 

target vehicles via cellular networks. This approach, however, involves cellular bandwidth usage 

cost that has to be paid to their mobile network operators (e.g. AT&T, Verizon, etc.) either by the 

vehicle owners or by the vehicle manufacturer depending on any service arrangements. The 

objective of this chapter is to explore a specific type of content caching using connection-less 

caching servers in order to alleviate cellular network usage costs for software updates and other 

vehicular contents that may require on-road downloads.  

   Caching of such content can usually be performed in vehicles themselves and/or roadside 

cache servers that are co-located with Roadside Service Units or RSUs. The vehicular caching 

approach relies on in-vehicle caching and vehicle-to-vehicle content sharing, which may or may 
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not be possible due to users’ privacy concerns. More importantly, in order for such caching to be 

effective, V2V connections need to be sufficiently dense which may not be the case for rural 

transportation scenarios. Connectivity can also be sparse depending on the time of the day (e.g., 

nights), weather conditions, and other factors.  

   In the in-RSU caching approach, cellular usage cost reduction would require the roadside 

cache servers to anticipate demand and download content from the MSP’s server through backhaul 

links including fibers and broadband wireless when applicable. Downloaded contents such as SUPs 

can then be delivered to appropriate vehicles using Dedicated Short-Range Communication 

(DSRC) links. While avoiding the sparse vehicle issue of V2V caching, this approach relies on 

sufficient number of permanently installed roadside cache servers which may not always be 

feasible. It is more so when the high cost of such cache servers with backhaul connectivity is 

considered. Even for the RSUs it is not yet clear as to which of the stakeholders, namely, 

township/municipalities, network service providers, or the vehicle manufacturers will eventually 

bear the capital investment and operating costs of the RSUs. If anything, installing permanent 

roadside cache servers in addition to the issues can aggravate and complicate this issue. 

To address this issue, the concept of a Connectionless Edge Cache Servers (CECSs) is 

introduced in this chapter. The idea is to use such servers without incurring the cost of backhaul 

connectivity, while gaining the ability to make the cache servers mobile. Such mobility can provide 

a great deal of flexibility in temporarily placing them in areas with low vehicle and RSU densities 

and high content demands. Putting the CECS on vehicles and placing them on-demand can cater to 

events such as games, accidents, weather conditions, etc. Without backhaul connectivity to an MSP, 

the CECSs can cache content collected via DSRC links form the current-passing vehicles and 

provide them to future-passing vehicles over DSRC, and reduce the cellular bandwidth usage of the 
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vehicles in that process. As shown in Figure 7-1, the CECSs can coexist with RSUs (i.e., cache 

servers with backhaul connectivity) as when such infrastructures are available.  

 

Figure 7-1: Content dissemination and caching using edge infrastructures 

 Content Search and CECS Operation 

In the rest of the chapter, we will use vehicle software updates as introduced in the Section 

7.1 as the target content type, and will describe the operation of CECS in that context. The model 

can be mostly extended for disseminating other content types such as navigational events, news and 

weather events, etc. 

Once an MSP releases a new SUP for a vehicle model and year, it pushes an update 

notification to all the relevant vehicles over the cellular network. This notification is of small size 

and acts as a metadata containing ID and version number, etc., for the full SUP. Upon receiving the 

notification, a vehicle can start the SUP search process by generating a request for the SUP with 

the appropriate information received in the metadata. This is the typical software update model used 

by the manufacturers of most wirelessly connected devices such as phones, tablets, and the likes.  
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    As the first step of the SUP search process, a vehicle sends enquirers to its nearby (i.e., 

within the DSRC range) vehicles and all CECSs via V2V and V2I links. If that search fails after a 

pre-defined Tolerable Access Delay (TAD), the vehicle sends a request to the MSP’s server and 

pulls the requested SUP through the cellular link. TAD represents the duration that a vehicle is 

willing to wait before the request is successfully served. TAD for a SUP item is set by the MSP 

based on its time criticality, and it is mentioned in the metadata notification. Since the second phase 

of the search is expensive in terms of cellular bandwidth cost, the goal of a caching architecture will 

be to place the SUP within the appropriate CECSs so that cellular usage can be avoided or 

minimized.  

    Figure 1-3 in Chapter-1 summarizes the operational sequence of the CECS units. Vehicles 

follow a policy (i.e., to be defined later) for selectively uploading SUPs to the CECSs that they 

encounter on their ways. The CECSs cache such SUPs based on a set of caching protocols to be 

presented in Section 7.3. Finally, a vehicle can download a requested SUP from an encountered 

CECS whose cache contains the SUP.  

 Caching Mechanism 

 Content Segment Distribution 

For given vehicle speed and DSRC transmission range, a single V2I or V2V contact duration 

may not always be sufficient to transfer a full SUP. To address this, a SUP is divided into multiple 

segments with size that is likely to be able to be transferred during a single contact. Let a SUP 𝑆! 

be divided into 𝑛 segments {𝑠!,M, 𝑠!,?, 𝑠!,J, … , 𝑠!,&G?}. The segment size would be dimensioned such 

that in most sections it is possible to transfer one or more segments during a single V2I or V2V 

connection. Also, to get a complete SUP a vehicle does not need to get all its segments from a single 

vehicle or CECS, or even from the MSP over the cellular links. Instead, a vehicle can get different 
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segments via different methods and installs the SUP after constructing it from all the received 

segments.  

According to the search model described in Section 7.2, the cellular bandwidth usage by a 

vehicle can be minimized depending on how many segments of a SUP is obtained by the vehicle 

from other vehicles and the CECSs before the TAD specified for the SUP expiries. As outlined in 

Section 7.1, the CECS-based architecture is expected to be effective in sparse vehicle density 

scenarios in which the chances of getting SUP segments from other vehicles are quite low. As a 

result, being able to cache the correct SUPs in the correct CECSs is a key to cellular bandwidth 

usage cost reduction. In other words, the main algorithm problem is how to cache the SUP segments 

at the CECSs such that each vehicle can obtain the maximum number of SUP segments from the 

CECSs that it encounters within the specified TAD for that SUP.  

Completeness Index (CI): This is defined as a measure to evaluate the goodness of a specific 

distribution of SUP segments cached across installed CECSs. After generating a SUP request at a 

location-l, a vehicle can move a maximum distance r within time TAD computed as follows: 

 𝑟 = 𝑣 × 𝑇𝐴𝐷                                                             (7-1) 

, where v is the average vehicle velocity. Let 𝐸<,0 be the set of distinct CECSs geographically placed 

within the range of r from location-l. This represents the CECSs that the vehicle may be able to 

access during the TAD. Figure 7-2 depicts an example transportation network in which a vehicle’s 

location when requesting a SUP and its possible locations after the TAD are shown. The CECSs 

within the set 𝐸<,0 (i.e., CECSs in the red rectangle in Figure 7-2) in this scenario are also depicted. 

Note that the vehicle may not be able to contact every one of these CECSs in 𝐸<,0 during the TAD, 

since the 𝐸<,0 only represents the possible CECSs that the vehicle may contact during the TAD. 
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Figure 7-2: Example of the accessible CECSs to a vehicle during the TAD 

The Completeness Index (CI) is defined as: 

𝜇X$,. =
b;$,.
P
																																													                      (7-2) 

where the quantity 𝑈X$,. is the number of distinct segments cached in the CECSs within the set 𝐸<,0, 

and 𝑇 is the total number of segments from the SUPs that can be requested.  

Lemma 7-1. A higher 𝜇X$,. indicates that a vehicle can obtain more segments from CECSs within 

the range of r from location-l. 
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Proof. A higher 𝜇X$,. must be resulted by a higher ratio of 𝑈X$,. to T which means more unique 

segments out of total available segments are cached in the CECSs in the set 𝐸<,0 within the range of 

r from location-l. Thus, a higher 𝜇X$,0  indicates that the vehicle may obtain a greater ratio of 

requested segments from these CECSs within the TAD period.  

The average CI 𝜇0 of a geographical area can be computed as: 

𝜇0 =
∑ c;$,.;$,.⊆;

d
																																																											(7-3) 

, where 𝐸 is the set of all the CECSs placed in that area, and each 𝐸<,0 represents a distinct subset 

of E that is formed by several adjacent CECSs within the range of r from each location-l in the area. 

The quantity K is the total number of such distinct subsets 𝐸<,0. Similar to Lemma 7-1, a higher 𝜇0 

indicates that on an average, a vehicle can obtain more segments of requested SUPs from the CECSs 

within the TAD period.  

Lemma 7-2. For given T and K, 𝜇0  can be maximized by minimizing the number of duplicate 

segments cached in the CECSs in each 𝐸<,0. 

Proof. For the CECSs in each 𝐸<,0, the minimum number of duplicate segments cached represents 

the maximum value of 𝑈X$,. in Eqn. 7-2. Thus 𝜇X$,. in Eqn. 7-2 can be maximized by maximizing 

𝑈X$,. for a given T. Similarly, 𝜇0 in Eqn. 7-3 can be maximized by maximizing 𝜇X$,. for each 𝐸<,0. 
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Figure 7-3: Example updates of the CMTs within CECSs 

CMT Maintained by CECS-3

CECS ID Location Cache State Last Update Time

0 ("#, %#) SUP-0: ['#,#, '#,(, '#,), '#,*] 11/8/2019 10:00am

1 ("+, %+) SUP-0: ['#,+, '#,(, '#,,, '#,-, '#,.]
SUP-1: ['+,#, '+,/, '+,)]

10/30/2019 6:00pm

2 ("/, %/) SUP-2: ['/,#, '/,(, '/,), '/,*, '/,+#] 11/1/2019 8:00am

3 ("(, %() SUP-1: ['+,#, '+,/, '+,(, '+,,] 11/5/2019 3:00pm

CECS-3

SUP-0: ['#,#, '#,(]

CESS-3

CMT Maintained by CECS-3

CECS ID Location Cache State Last Update Time

0 ("#, %#) SUP-0: ['#,#, '#,(, '#,), '#,*] 11/8/2019 10:00am

1 ("+, %+) SUP-0: ['#,+, '#,(, '#,,, '#,-, '#,.]
SUP-1: ['+,#, '+,/, '+,)]

10/30/2019 6:00pm

2 ("/, %/) SUP-2: ['/,#, '/,(, '/,), '/,*, '/,+#] 11/1/2019 8:00am

3 ("(, %() SUP-0: ['#,#, '#,(]
SUP-1: ['+,#, '+,/, '+,(, '+,,]

11/8/2019 4:00pm

Current time: 11/8/2019 4:00pm

CECS-3

CMT Maintained by CECS-3

CECS ID Location Cache State Last Update Time

0 ("#, %#) SUP-0: ['#,#, '#,(, '#,), '#,*] 11/8/2019 10:00am

1 ("+, %+) SUP-0: ['#,+, '#,(, '#,,, '#,-, '#,.]
SUP-1: ['+,#, '+,/, '+,)]

10/30/2019 6:00pm

2 ("/, %/) SUP-2: ['/,#, '/,(, '/,), '/,*, '/,+#] 11/1/2019 8:00am

3 ("(, %() SUP-1: ['+,#, '+,/, '+,(, '+,,] 11/5/2019 3:00pm

(a) CMT maintained by CECS-3 before accepting new segments of  SUPs

(b) A vehicle uploads some segments of SUP-0 to CECS-3

(c) CECS-3 updates the entry about itself in the CMT after accepting 
and caching the new segments
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 Cache Metadata Tables (CMTs) 

According to Lemma 7-1 and 7-2, the chances of finding SUP segments in the CECSs can be 

maximized, and therefore the cellular bandwidth usage for downloading the segments can be 

minimized, by minimizing the number of duplicate segments cached at the CECSs in each 𝐸<,0. This 

requires that each CECS must know the cache information of other CECSs in the same 𝐸<,0. Based 

on such information, a CECS can minimize or even avoid duplications. In the absence of backhaul 

connectivity to these connectionless servers, the only way such information can be obtained and 

disseminated across the CECSs is by exploiting the vehicles as information carriers. 

    In order to realize SUP segment ferrying by the vehicles, a data structure, namely Cache 

Metadata Table (CMT), is maintained in the vehicles as well as in the CECSs. As shown in Figure 

7-3, each entry in a CMT corresponds to a specific CECS. It includes the corresponding CECS ID, 

its geographical location, the state of each cached SUP in terms of a list of the SUP’s cached 

segments, and a Last Update Time (LUT). The CMT in a vehicle is initialized to be empty, and the 

CMT in a CECS is initialized with an entry about its own cache status. Once a CECS receives and 

caches some segments uploaded from a vehicle, the CECS may update the entry about its own cache 

status in the CMT (see Figure 7-3). 



  
 

103 
 

 

 

Figure 7-4: Example of CMT exchange between a vehicle and a CECS 

Since a CECS is connectionless, the updates for the entries about other CECSs in its CMT 

happen as a result of information received from passing vehicles. Whenever a vehicle passes a 

CECS or another vehicle, the following information exchange happens. Figure 7-4 depicts an 

example of such exchange between vehicle-0 and CECS-3. The exchange is initiated by vehicle-0 

by sending a summary list (i.e., metadata) list-0 to CECS-3. The list includes the CECS IDs and 

LUTs of all the entries in vehicle-0’s CMT (see Figure 7-4 (a)). Once received, by comparing list-

0 with its own CMT, CECS-3 knows that vehicle-0 may need some entries that are either not 

available or out of date in vehicle-0’s CMT. Moreover, CECS-3 itself may need to update or add 

some entries in its own CMT by receiving information from vehicle-0. At this point, CECS-3 sends 

back two things to vehicle-0: 1) CMT-0 which includes the entries that vehicle-0 may need, and 2) 

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%] 11/8/2019 10:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time

0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*] 11/2/2019 1:00pm

CECS-3Vehicle-0

List-0
CECS ID Last Update Time

0 11/9/2019 8:00am
3 11/2/2019 1:00pm

CECS-3Vehicle-0

Request-0
CECS ID
0

CMT-0
CECS ID Location Cache State Last Update Time
1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]

SUP-1: [&&,!, &&,*, &&,$]
10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CECS-3
Vehicle-0

CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time

0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*] 11/2/2019 1:00pm

CMT-1
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time

0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%] 11/8/2019 10:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%] 11/8/2019 10:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CECS-3Vehicle-0CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

(a) Vehicle-0 sends list-0 extracted from its CMT to CECS-3

(b) By comparing list-0 with the CMT of CECS-3, CECS-3 finds that vehicle-0 may need to add or 
update some of its CMT entries, while CECS-3 also needs to update the CMT entry about CECS-0. 
Thus CECS-3 sends the CMT-0 and Request-0 to vehicle-0

(c) Vehicle-0 updates its CMT after receiving CMT-0 from CECS-3. Additionally, 
vehicle-0 sends CMT-1 to CECS-3 that includes the entry requested by CECS-3

(d) CECS-3 updates its CMT-1 after receiving CMT-1 from vehicle-0
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Request-0 which includes the CECS IDs of the entries that CECS-3 may need (see Figure 7-4 (b)). 

Then vehicle-0 can update its own CMT by receiving CMT-0 from CECS-3. It also sends back a 

CMT-1 which includes the entries requested by Request-0 from CECS-3 (see Figure 7-4 (c)). The 

exchange process is completed after CECS-3 receives CMT-1 from vehicle-0 and updates its CMT 

(see Figure 7-4 (d)). 

    The above CMT exchange mechanism is designed after the Delay Tolerant Network 

epidemic routing [75,76] which ensures that the cache information about the SUPs are selectively 

disseminated from moving vehicles to the roadside connectionless cache servers. A similar CMT 

exchange and update process take place when two vehicles encounter each other. The full logic of 

the exchange of CMT information is summarized in Algorithm 7-1.  

Algorithm (a): CMT exchange initiated by vehicle 𝑣! 
1: Input: contacting CECS 𝑒( 
2: initialize(list-0); 
3: for each entry in 𝐶𝑀𝑇O" at 𝑣! 
4:     list-0.add({entry.id, entry.LUT}); 
5: end 
6: send(list-0, 𝑒(); 

 

Algorithm (b): Sending CMT entries and request list from 𝑒( to 𝑣! 
1: Input: contacting vehicle 𝑣!, summary list list-0 from 𝑣! 
2: initialize(CMT-0); 
3: initialize(Request-0); 
4: //put entries to CMT-0 and request-0 
5: for each row in list-0 from 𝑣! 
6:     entry ¬ 𝐶𝑀𝑇@* . 𝑓𝑖𝑛𝑑𝐵𝑦𝐼𝑑(𝑟𝑜𝑤. 𝑖𝑑); 
7:     if entry.LUT < row.LUT 
8:         Request-0.add(entry.id); 
9:     else if entry.LUT > row.LUT 
10:         CMT-0.add(entry); 
11:     end 
12: end 
13: // entries that 𝑣! does not have are also added to CMT-0 
14: for each entry in 𝐶𝑀𝑇@* at 𝑒( 
15:     if entry.id not in list-0 
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16:         CMT-0.add(entry); 
17:     end 
18: end 
19: send(CMT-0,	𝑣!); 
20: send(Request-0,	𝑣!); 

 

Algorithm (c): updating CMT at 𝑣! and sending requested CMT 
entries to 𝑒( 	
1: Input: contacting CECS 𝑒(, CMT-0 and Request-0 from 𝑒( 
2: // update CMT at 𝑣! 
3: for each entry in CMT-0 
4:     if entry.id in 𝐶𝑀𝑇O" 
5:         𝐶𝑀𝑇O".update(entry.id, entry); 
6:     else 
7:         𝐶𝑀𝑇O".add(entry); 
8:     end 
9: end 
10: // put requested entries to CMT-1 and send it to 𝑒( 
11: initialize(CMT-1); 
12: for row in Request-0 
13:     entry ¬ 𝐶𝑀𝑇O" . 𝑓𝑖𝑛𝑑𝐵𝑦𝐼𝑑(𝑟𝑜𝑤. 𝑖𝑑); 
14:     CMT-1.add(entry); 
15: end 
16: send(CMT-1,	𝑒(); 

 

Algorithm (d): updating CMT at 𝑒( 	
1: Input: CMT-1 from 𝑣! 
2: // update CMT at 𝑒( 
3: for each entry in CMT-1 
4:     if entry.id in 𝐶𝑀𝑇@* 
5:         𝐶𝑀𝑇@*.update(entry.id, entry); 
6:     else 
7:         𝐶𝑀𝑇@*.add(entry); 
8:     end 
9: end 

Algorithm 7-1: CMT exchange algorithm between a vehicle and a CECS 
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 Cache Replacement Policy 

While the CMT exchange policy above outlines the distribution of SUP information in CECS 

caches, it does not specify the cache replacement policies in the presence of limited storage space. 

The objective of cache replacement policies should be to maximize the diversity of cached SUP 

segments (i.e., minimize shared cached items) within each CECS subset as defined in Lemma 7-2. 

Such a policy can maximize the Completeness Index 𝜇X$,., and lead to minimum possible cellular 

bandwidth usage. 

Replacement Policy at a CECS: Once a CECS 𝑒! receives a segment 𝑠(  from a vehicle, it computes 

the priority 𝑃N*
@" of 𝑠( relative to 𝑒! as: 

𝑃N*
@" = ?

e0*
7"8?

                                                            (7-4) 

The quantity  𝜃N*
@" is the number of copies of 𝑠( cached at the CECSs in the set of  𝐸<(@"),0 in 

which 𝑙(𝑒!) indicates the location of 𝑒!. A larger 𝑃N*
@" indicates lower number of copies of 𝑠( cached 

at the CECSs within the range of r from 𝑒!, thus the number of shared segments cached at these 

CECSs can be reduced by caching segments with higher priority values. Note that the CECSs in 

the set 𝐸<(@"),0 can be figured out based on the location information in the CMT at 𝑒!. Particularly, 

𝑃N*
@" is 1 when there is no other copy of 𝑠( is cached at any CECS in the set 𝐸<(@"),0.  

    After receiving the segment 𝑠( , CECS 𝑒!  caches it if there is sufficient storage space 

available. If not, it uses the computed priority of 𝑠( to make a replacement decision as follows. If 

the priority of 𝑠( is larger than that of the smallest priority cached segment 𝑠', the CECS replaces 

𝑠' by the newly received segment 𝑠(.  Otherwise, segment 𝑠( is dropped. Note that in order to keep 

them up to date, the priorities of all the cached segments are updated after each CMT transfer as 

described in Section 7.3.2.  
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Replacement Policy at a Vehicle: A vehicle 𝑣! executes its cache replacement following the same 

priority-based scheme used by the CECSs. However, the priorities within a vehicle cannot be 

computed with respect to itself, since the priority as defined in Eqn. 7-4 is computed with respect 

to a CECS. To address this, the priority for each cached segment in vehicle 𝑣! is computed with 

respect to currently geographically nearest CECS 𝑒E as 𝑃N*
@1. For this logic, since the location of 

vehicle 𝑣!  is expected to change, before every cache replacement, the vehicle is required to 

recompute the priority values of all its cached segments. 

 Performance Evaluation 

We evaluate the performance of the proposed caching mechanism using the Delay-Tolerant 

Networking (DTN) simulator ONE. We have chosen low vehicle-density backroads in East 

Lansing, Michigan as one of the test scenarios with 100 vehicles on the road. As shown in the map 

in Figure 7-5, 48 CECSs are placed at most of the road intersections. A DSRC transmission range 

of 1000 meters have been used between vehicles, and between vehicles and the roadside CECSs.  

 

Figure 7-5: Map of the simulation scenario in the East Lansing area 
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The following caching mechanisms are implemented and evaluated.  

Naïve Caching: In this strategy, each vehicle attempts to upload all SUP segments in its local cache 

to each CECS that the vehicle comes to contact with. Also, each CECS attempts to cache every 

segment it receives from the passing vehicles. If the cache space in a CECS is full, the CECS always 

replaces the first segment in its cache with the newly received segment. The vehicle also run the 

same naïve cache replacement policy as done but the CECSs.  

Round-robin Upload and Demand-based (RD) Caching: In this policy, each vehicle attempts to 

upload SUP segments from its local cache to each CECS it encounters following a round-robin 

policy. For example, a vehicle uploads the 0th to 9th segments from its cache to the first CECS it 

encounters, and then it uploads the 10th to 19th segments to the second CECS it encounters, and so 

on. Each CECS attempts to cache every SUP segment it receives. Additionally, each CECS also 

counts the number of requests from vehicles for each segment. That number is used for estimating 

the demand of a segment. The segment with a lower demand is replaced with one higher demand 

when the cache space on a CECS is full. The vehicles under this policy runs the replacement policy 

used in Naïve Caching as stated above.  

CMT-based Caching: This is the proposed smart caching mechanism in this chapter. Under this 

policy, each vehicle attempts to upload all the segments in its local cache to each CECS that it 

encounters. Each CECS attempts to cache every segment it receives. However, if the cache space 

in a CECS or in a vehicle is full, then it runs the CMT-based cache replacement policies presented 

in Section 7.3.3.   

Pre-filled Cache at CECS: This policy renders theoretical best caching performance. Here, the cache 

of each CECS is manually pre-filled with SUP segments such that the Completeness Index 𝜇0 in 

Eqn. 7-3 is maximized before an experiment begins. Such segment placements are static in that no 
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cache replacement is done after the pre-filling, and the vehicles never upload any segment to the 

CECSs so that the optimal pre-filled cache configurations are never changed. The vehicles simply 

run the Naïve caching policy described earlier. Before a simulation experiment begins, the CECSs 

caches are pre-filled, while the vehicle caches are initialized empty. The latter gradually gets filled 

up using Naïve caching. 

Parameter Default Value 
No. of CECSs  48 
No. of vehicles  100 
No. of available SUPs 10 
No. of sub-segments in each SUP 100 
size of each sub-segment 1MB 
Ratio about cache size 𝛼 on each CECS 0.5 
Ratio about cache size 𝛽 on each vehicle 0.2 
Transmission range of V2V and V2I (e.g. DSRC) 1000 meters 
Data transfer rate of V2V and V2I 16Mbps 
Data transfer rate of cellular (e.g. LTE) 50Mbps 
Speed of each vehicle 64km/h (40 mph) 
TAD for each request 600s 
Simulation duration 30 hours 

Table 7-1: Baseline parameters used in the experiments 

Unless stated otherwise, all parameters are set to the baseline values as shown in Table 7-1. 

The mobility traces of the vehicles are generated based on the East Lansing road map shown in 

Figure 7-5. Each vehicle enters into the area approximately every 16 minutes, and then moves along 

the roads using a random walk model until it leaves the area network. The vehicle entry interval is 

deliberately kept high so that the resulting vehicle density is as low as it is observed in rural 

backroads such as the East Lansing area. The experiment is run for a total of ten different Software 

Update Packages (SUPs) that the vehicles may require/request for all its internal electronics and 

processing modules. Each SUP is divided into 100 segments of size 1MB [77]. Each vehicle may 

request all the SUPs when it enters the network area as shown in Figure 7-5. For different 
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experiments, the vehicles and the CECSs are made to run different caching mechanisms as 

described above. 

The cache space on each CECS is represented by the parameter 𝛼 which indicate the ratio of 

the available space (i.e., in terms of number of segments) to the total number of segments in the 

system, which is 1000. For example, when 𝛼 is 1, each CECS can cache all the available segments 

in the network. Similarly, the cache size on each vehicle is represented by the parameter 𝛽 defined 

in the same manner.  

 Impacts of Cache Space in the CECSs (𝜶) 

For all the protocols, Figure 7-6 (a) depicts the impacts of available CECS cache storage size 

(i.e., 𝛼 ) on the content retrieval rate via the cellular network, which the proposed caching 

mechanism attempts to reduce. As expected, the figure shows the decrease of cellular network usage 

with increasing cache space in the CECSs. As shown in Figure 7-6 (b), this reduction in cellular 

usage is caused due to larger local hit rates at the CECSs. Meaning, with larger 𝛼	values, each CECS 

can cache a greater number of sub-segments that can be retrieved by the vehicles. The practical 

implications of these results are that fewer requested SUP segments are downloaded from the 

MSP’s server through the cellular networks, leading to cellular usage reduction. 

It can be observed that the proposed mechanism CMT performs better than all other strategies 

except the manually pre-filled one, which represents the performance upper bound. Better 

performance of CMT is due to its priority computation strategy, which helps reducing the overall 

cached segment duplications in the CECSs, thus improving the completeness index, as defined in 

Section 7.3. The cellular retrieval rate in the round robin approach (i.e., RD) is lower than Naïve, 

because the number of shared/duplicated segments cached at the CECSs in RD is reduced by its 

round-robin upload mechanism and demand-based replacement policy. Such mechanisms in RD, 
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however, does not perform as good as the priority-based approach in CMT, which achieves a better 

complete less index by distributing SUP segments across the CECSs more evenly. 

 

Figure 7-6: Cellular retrieval rate and hit rate at CECSs with various 𝛼 

The average completeness indices (CIs), as computed in Eqn. 7-3, for all the protocols for 

different in-CECS cache size are shown in Figure 7-7. It can be seen that the CI values and their 

trends with varying in-CECS cache sizes for different protocols are consistent with the cellular 

usage results presented in Figure 7-6.  

 

Figure 7-7: Impacts of CECS cache space 𝛼 on Completeness Index 𝜇0 

Content Delivery Latency (CDL) for all the protocols are shown in Figure 7-8. CDL is defined 

as the interval between when a vehicle first puts out the request for a SUP segment and when it 
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acquires the segment. As presented in Section 7.2, the vehicle avoids fetching the content over 

cellular link for the Tolerable Access Delay (TAD) specified in the metadata for the corresponding 

SUP. In the event that the vehicle cannot fetch using non-cellular V2V and V2I links during TAD, 

it gets the SUP from the MSP over the cellular link. It follows that the CDL for a segment is bounded 

by the TAD plus a short latency (i.e., negligible in comparison to TAD) to get the content from the 

MSP. For the results in Figure 7-8, the TAD was set to 600 seconds or 10 minutes. It should be 

noted that the CDL above is defined on a per-segment basis as opposed to on a per-SUP basis. The 

latter defines the delay between when the request for the first segment of a SUP is produced and 

when the last segment of the SUP is obtained 

 

Figure 7-8: Content Delivery Latency for different caching mechanisms 

As expected, CDLs for all the algorithms in Figure 7-8 are bounded by the TAD of 600 

seconds, and they improve with higher available cache size in the CECSs. This is mainly due to 

higher hit rates as depicted in Figure 7-6. Also to be observed that the proposed CMT scheme offers 

the best latency numbers, which is also due to its higher hit rates as can be seen in Figure 7-6. 

Higher hit rates allow more frequent SUP segment accessing from the CECSs, rather than waiting 

for the TAD and fetching from the MSP via cellular networks.  
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A notable overhead of the proposed CMT based mechanism is the bandwidth used for 

exchanging he Cache Metadata Tables (i.e., CMTs) themselves. Figure 7-9 shows the usage of 

CMT-exchange bandwidth as a percentage of the bandwidth used for downloading the user data, 

which is the SUPs. As expected, the overhead does increase with increased cache storage space in 

the CECSs due to more CMT transfers between the vehicles and the CECSs. The absolute overhead, 

however, is limited to less than a percent even when the available caches storage space in the CECSs 

is very high. 

 

Figure 7-9: CMT exchange overhead with varying storage in the CECSs 

 Impacts of Available In-vehicle Cache Storage Space (𝜷) 

Available cache storage space in the vehicles is indicated by the factor 𝛽 , as defined in 

Section 7.4. As shown in Figure 7-10, with larger 𝛽, the cellular retrieval rate for all the caching 

mechanisms are lower due to higher hit rates at the CECSs. This is because with larger available 

cache storage space, each vehicle can cache more SUP segments, thus being able to upload more 

of them to the CECSs that it encounters. Subsequently, more segments can be fetched from the 

CECSs by other vehicles.  
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Figure 7-10: Impacts of varying in-vehicle cache storage space 𝛽 

Also to be noted that the cellular retrieval rate of CMT-based caching is lower than RD and 

Naïve, while its hit rates at CECSs are higher. This further indicates the benefits of CMT’s priority 

based replacement policy as observed in the results in Figure 7-10. For the pre-filled caching 

strategy, however, since no vehicle-CECS content transfer takes place, its performance in terms of 

cellular retrieval rate does not depend on the factor 𝛽.  

   The final observation in Figure 7-10 is that the usage of cellular network saturates and 

becomes almost the same for all the caching mechanisms when 𝛽 becomes larger than about 0.4. 

This is because with large available in-vehicle storage space, a vehicle is able to cache most of the 

available segments and upload them to the encountered CECSs. In this case, the benefit of CMT-

based caching mechanism is no longer significant. 

Better caching performance of the proposed CMT-based approach can be further validated 

by its superior Complete Index larger 𝜇0, as shown in Figure 7-11. Completeness Index indicates 

how the SUP segments are uniformly distributed across the CECSs with minimum duplication. By 

using the priority-driven cache replacements, the CMT mechanism can place segments more 

uniformly, and in that process is able to reduce the cellular link usage compared to the other 

mechanisms.  
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Figure 7-11: Impacts of in-vehicle cache storage space on average CI (𝜇0) 

   The impacts of available in-vehicle cache storage space on Content Delivery Latency (CDL) 

are shown in Figure 7-12. The Tolerable Access Delay (TAD) is set to 600 seconds. As expected, 

larger cache storage allows more SUP segments to be retrieved before the TAD expires, thus leading 

to smaller CDL. Also, the CDL for CMT-based caching is lower than the others except the Pre-

filled cache for reasons explained in Figure 7-10.  

 

Figure 7-12: CDL with different in-vehicle cache storage space 𝛽 

    Figure 7-13 depicts that the overhead of CMT table exchange generally reduces with larger 

in-vehicle cache storage. This is because with smaller storage space, each vehicle caches a small 
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number of SUP segments and uploads them to the encountered CECSs. In such scenarios, most of 

the vehicles caches non-duplicated SUP segments, whose information needs to be exchanged during 

the CMT exchange process. This increases the CMT exchange overheads. With larger cache storage 

space, there exist more duplicate segments among the vehicles and CECSs, leading to less amount 

of CMT exchange, thus leading to reduced overheads. It should be observed that even when the 

CMT exchange is the maximum, it is still very small, only less then approximately 0.04% of the 

actual data volume of the downloaded content.  

 

Figure 7-13: CMT exchange overhead with varying vehicle cache space 

The plots in Figure 7-14 demonstrate the dynamics of cache build-up in the network over 

time. It can be observed that the cellular retrieval rate and 𝜇0 of all the caching mechanisms except 

Pre-filled cache start to converge after around 800 minutes in the experiment. The performance of 

all the protocols maintain the same relative trend as observed in earlier graphs.  
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Figure 7-14: Evolution of cellular retrieval rate and the completeness index 𝜇0 

 Impacts of Tolerable Access Delay (TAD) 

Figure 7-15 depicts how TAD, which is the duration before which a vehicle downloads a SUP 

segment from the Manufacturer Software Provider’s (MSP’s) server, affects caching performance. 

Initially, a larger TAD allows vehicles more time to fetch segments from other vehicles and the 

CECSs, thus leading to higher cache hit rates and lower cellular usage. Consistent with the prior 

results, for all TAD values, the CMT-based strategy does better compared to RD and Naïve caching 

due to its better priority based replacement policy.  

 

Figure 7-15: Impact of TAD on cellular retrieval rate and hit rate at CECSs 

When the TAD becomes too large, however, the trend reverses. For example, with TADs 

larger than 600s for RD, and 1200s for CMT, the cellular retrieval rates increase with TAD. The 

only exception is the pre-filled case. This trend reversal happens due to reason explained below.  
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While larger TADs allow more time to fetch content via non-cellular mechanisms, it also 

reduces the rate of cache growth in the vehicles and CECSs. For smaller TAD values, cellular usage 

reduces because the first effect of larger TAD dominates. As TADs become large enough to 

compare with the vehicles’ sojourn time in the network, the second effect of large TAD dominates. 

This results in partially empty vehicle caches (i.e. the vehicles leave the network before their caches 

get a chance to be filled up). Subsequently, the CECS caches also remain partially empty. These 

cause overall reduction of cache effectiveness, thus leading to higher cellular usage with increasing 

TADs. Since pre-filling is done manually, it is immune from these effects.  

 Comparison with Sparse-CECSs Network 

Results in this section report caching performance with smaller number of cache edge servers 

(i.e., 24 in Figure 7-16) compared to what has been used for the results presented so far (i.e., 48 in 

Figure 7-5). 

 

Figure 7-16: East Lansing scenario with reduced number of CECSs 



  
 

119 
 

 

Figure 7-17 depicts caching performance for both high- and low-CECS-count scenarios with 

varying amount of available cache storage space in the CECSs. While the cellular usage rates follow 

very similar trends with varying cache storage space, the overall cellular usage is lower for higher 

CECS-count scenario. This is intuitive since with more edge cache servers in the network, the 

caching efficiency is higher, thus leading to lower cellular usage. It should also be observed that the 

benefits of the proposed CMT-based mechanism compared to the other caching schemes also 

shrinks due to insufficient room for caching due to fewer available cache edge servers. 

 

Figure 7-17: Cellular usage with various 𝛼 with different CECS-counts 

Very similar performance trends can also be observed in Figure 7-18, which shows the 

impacts of varying in-vehicle caching storage space. The only exception here is that the proposed 

CMT-based mechanism can retain its cellular usage advantages even for the low CECS-count 

scenario. 
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Figure 7-18: Cellular usage with 𝛽 with different CECS-counts 

 Caching Performance in a Synthetic Network  

In order to demonstrate repeatability of the prior results, caching experiments are done in a 

synthetic network scenario as follows. As shown in Figure 7-19, 36 CECSs are uniformly placed at 

every intersection (i.e., separated by 2km) of a transportation network. Vehicle mobility is generated 

following the same model as in East Lansing scenario. All the other settings are kept the same as in 

Table 7-1.  
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Figure 7-19: CECS placement in a synthetic network scenario 

Figure 7-20 and Figure 7-21 depict how the available cache space in the CECSs and the 

vehicles (i.e., 𝛼 and 𝛽 respectively) affect caching performance in this scenario. These results show 

trends similar to those in Figures 7-6 and 7-10 for the East Lansing scenario. One notable 

observation is that the proposed CMT-based caching outperforms all the non-pre-filled schemes 

due to its novel priority mechanism. 

 

Figure 7-20: Impacts of CECS cache space in the synthetic scenario 
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Figure 7-21: Impacts of vehicle cache space in the synthetic scenario 

 
 

 Summary 

    This chapter presents a novel caching mechanism based on connectionless roadside edge 

cache servers in vehicular networks. The goal is to intelligently cache content within the vehicles 

and the edge servers so that majority of the vehicle-requested content can be obtained from those 

caches, thus minimizing the amount of cellular network usage. The mechanism is specifically 

designed and investigated in the context of vehicle software update packages (SUPs) that can be 

divided into multiple segments, and the segments are considered to be the basic unit of caching. A 

novel caching mechanism is developed in which the cache space in the edge server is filled up by 

uploading SUP segments from the vehicles. In the absence of backhaul connectivity in the edge 

servers, the vehicles ferry content across the edge servers to build their optimal distribution so that 

the cellular usage from the vehicles is minimized. We have implemented the scheme using ONE 

simulator and compared it with various other caching mechanisms including a manually pre-filled 

technique that provides a performance upper bound. It was shown that the proposed mechanism 

outperforms the other schemes in two different network scenarios. 
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Chapter 8 : Future Work 

8.1 Introduction 

The objective of the thesis is to design optimal caching mechanisms such that under different 

network topologies and node mobilities the network-wide content provisioning cost is minimized. 

A key question for content caching is how to store content in nodes so that the overall content 

provisioning cost in the network is minimized.  

In Chapter-3, an incentive based cooperative content caching framework is developed for 

Social Wireless Networks (SWNETs) in which content demands are hierarchically heterogeneous. 

In Chapter-4, the caching mechanism proposed in Chapter-3 is applied on the scenario of mobility 

wireless networks. Unlike Chapter-3, in this scenario the connection between each pair of nodes is 

not stable anymore because a node may dynamically join or leave a network. In Chapter-5, a D2D 

cooperative caching framework is proposed for streaming video with heterogeneous quality 

demands in SWNETs. In Chapter-6, a vehicular content caching mechanism is presented for 

disseminating navigational maps while minimizing cellular network bandwidth usage. Finally, in 

Chapter-7 a content caching method based on the connectionless edge cache servers is proposed for 

reducing the cellular usage for dissemination of software update packages. 

The research in this thesis can be extended along the following directions. 

8.2 Machine Learning Models for Content Caching and Dissemination 

The content demand models in Chapter-3, Chapter-4 and Chapter-5 are all based on Zipf 

distributions, while the demand model in Chapter-6 is based on a simple inverse proportion. 

Additionally, in Chapter-7 it is assumed that the content popularity is equal for every content. While 

providing reasonable models for caching architectures, these demand models do not represent the 

real scenarios in which content preferences may follow various distributions. On the other hand, a 
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popularity distribution of a set of content may dynamically change over time. Additionally, none of 

the developed caching mechanisms in the thesis involves the mobility pattern of nodes. To improve 

the performance of caching, a future work direction on this topic is to develop machine learning 

models that can be involved in caching strategies for predicting: 1) content demand in the networks, 

and 2) spatiotemporal localities of node movements 

8.3 Placement of Edge Cache Servers 

In Chapter-7, a novel edge cache server is proposed for reducing the cellular usage for 

dissemination of software update packages. Although the study in Chapter-7 is under given 

placements of such edge cache servers, it is useful to know how a placement of edge cache servers 

affects the performance of a caching mechanism. Therefore, a future work direction is to investigate 

the impacts of edge cache server placement on caching performance, and develop mechanisms for 

edge cache server placement for performance optimization. 

 
8.4 Handling Selfishness 

The potential for earning peer-to-peer rebate may promote selfish behavior. A selfish user is 

one that deviates from the network-wide optimal caching policy in order to earn more rebates. Any 

deviation from the optimal policy is expected to incur higher network-wide provisioning cost. A 

future work direction is to investigate the impacts of selfishness on the performance of caching 

mechanisms. This can be accomplished by defining the number of selfish nodes, and the level of 

selfishness of such nodes. Based on these settings, a solution for detecting and combating the 

selfishness should be developed. 
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