

SMART CONTENT CACHING FOR DEVICE-TO-DEVICE DATA DISSEMINATION

By

Rui Wang

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering-Doctor of Philosophy

2020

ABSTRACT

SMART CONTENT CACHING FOR DEVICE-TO-DEVICE DATA DISSEMINATION

By

Rui Wang

Wide popularity of wireless devices and their data-enabled applications have created an

evolving marketplace for digital content ecosystems. A common operation in those ecosystems is

to disseminate content in a cost-optimal manner. With the conventional download model, a user

downloads content directly from a Content Provider’s (CP) server via a Communication Service

Provider’s (CSP) network. Downloading content through CSP’s network involves a cost, which

must be paid either by End Consumers (EC) or the CP. The main objective of the thesis is to provide

caching mechanisms that minimizes the overall provisioning cost in different network topologies.

This is implemented by caching right objects in data-enabled mobile devices such as smartphones,

smart pads, vehicles and novel edge devices. In this thesis, several number of existing caching

strategies are studied. Then, an incentive based cooperative content caching framework is

developed for both fully-connected Social Wireless Networks (SWNETs) and mobile wireless

networks in which content demands are hierarchically heterogeneous. Furthermore, a D2D

cooperative caching framework is proposed for streaming video with heterogeneous quality

demands in SWNETs. This caching framework contains two main components: a value-based

caching strategy in which the value of caching a streaming video segment is defined for given

pricing and video sharing models, and an Adaptive Quality (AQ) provisioning algorithm that

minimizes the overall video content provisioning cost within an SWNET. Additionally, a vehicular

content caching mechanism is developed for disseminating navigational maps while minimizing

cellular network bandwidth usage. The key concept is to collaboratively cache the dynamic

components of navigational maps in roadside units (RSUs) and vehicles such that the majority of

dissemination can be accomplished using V2V and V2I communication links. Moreover, a novel

caching mechanism is proposed which is based on Connectionless Edge Cache Servers in vehicular

networks. The goal is to intelligently cache content within the vehicles and the edge servers so that

majority of the vehicle-requested content can be obtained from those caches, thus minimizing the

amount of cellular network usage needed for fetching content from a central server. A notable

feature of the cache servers in this work is that they do not have backhaul connectivity. This makes

the connectionless servers to be relatively less expensive compared to the usual Roadside Service

Units (RSUs), and potentially moveable in response to specific events that are expected to generate

content in large volumes. Finally, a list of future work on this topic is compiled that includes: 1)

developing machine learning models for predicting content demand and spatiotemporal localities

of node movements, 2) developing mechanisms for edge cache server placement for performance

optimization, and 3) analyzing the impacts of selfishness on the performance of caching.

 iv

ACKNOWLEDGEMENTS

My sincere gratitude to my advisor, Dr. Subir Biswas, for his extraordinary support,

encouragement and guidance during my work. It was through his mentorship that I learned how to

start and own a research problem, think independently, and find hope in failure.

I would also like to thank my committee Dr. Richard Enbody, Dr. Nihar Mahapatra and Dr.

Jian Ren for their time and support.

Thanks must be given to my lab mates Faezeh Hajiaghajani, Saptarshi Das, Bo Dong,

Brandon Harrington, Henry Griffith, Dezhi Feng and Yan Shi for all of the brainstorming and

implementation discussions. I would like to thank my son as his presence in my life has been a

motivation for me. Finally, I would like to give thanks to my beloved wife and my parents for their

unconditional love and support and encouragement throughout my life. It would not have been

possible to stand where I am now without them.

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ALGORITHMS ... xii

Chapter 1: Introduction ... 1
1.1 Caching for Cellular Bandwidth Cost Reduction ... 2

1.1.1 Traditional Infrastructure-based Caching ... 2
1.1.2 Device-to-Device Cooperative Caching ... 3
1.1.3 Connectionless Edge Cache Servers ... 4

1.2 Content Search .. 5
1.3 Cache Replacement ... 6
1.4 Incentives, Security Issues and User Selfishness in D2D Caching 6
1.5 Dissertation Objectives ... 7
1.6 Scope of Thesis ... 8

Chapter 2: Related Work .. 11
2.1 Caching in Stationary Networks ... 11
2.2 Caching in Mobile Networks .. 12

2.2.1 Traditional Infrastructure-based Caching ... 12
2.2.2 Device-to-Device Cooperative Caching ... 14

2.3 Summary ... 16

Chapter 3: Cooperative Caching in Social Wireless Networks .. 18
3.1 Introduction ... 18
3.2 Hierarchically Heterogeneous Requests ... 18

3.2.1 Global Popularity of Object .. 19
3.2.2 Local Popularity of Category .. 19
3.2.3 Local Popularity of Object .. 20
3.2.4 Request Generation Process .. 21

3.3 Network Model and Problem Formulation ... 21
3.3.1 Content Search Model ... 21
3.3.2 Pricing Model .. 21
3.3.3 Cost under Heterogeneous Request Model: .. 22
3.3.4 Problem Definition .. 23

3.4 Heterogeneous Split Caching Algorithm .. 23
3.5 Performance Evaluation .. 26

3.5.1 Impacts of Zipf parameter (α) and Rebate cost ratio (β) .. 27
3.5.2 Comparison with Traditional Caching Strategies ... 30
3.5.3 Object Density .. 31
3.5.4 Convergence of Baseline HSC to Prefilling HSC ... 33

vi

3.6 Summary ... 33

Chapter 4: Distributed Caching in Mobile Wireless Networks .. 35
4.1 Introduction ... 35
4.2 Content Search with Tolerable Access Delay (TAD) ... 35
4.3 Heterogeneous Split Caching (HSC) for Mobile Networks ... 35
4.4 Performance evaluation .. 36

4.4.1 Monolithic Mobility .. 38
4.4.2 Community-based Mobility .. 43
4.4.3 Helsinki-map Mobility .. 46

4.5 Summary ... 46

Chapter 5: Caching for Streaming Video in Social Wireless Networks 48
5.1 Introduction ... 48
5.2 Content Search and Pricing Model ... 48
5.3 Streaming Video Play Model .. 48

5.3.1 Play Buffering and Caching .. 48
5.3.2 Video Play Model ... 49

5.4 Value-based D2D Caching ... 52
5.4.1 Value of Caching a Video Segment .. 52
5.4.2 Value-based D2D Caching Algorithm at the ECs Devices .. 54

5.5 Adaptive-Quality Content Provisioning by Content Provider .. 56
5.6 Performance Evaluation .. 60

5.6.1 Experimental Settings ... 60
5.6.2 Impacts of Cache Availability and Terrain Size on Cost Saving 62
5.6.3 Evolution of Provisioning Cost and Hit Rates over Time .. 66
5.6.4 Content Quality Density of the Cached Objects ... 67
5.6.5 Content Delivery Latency ... 68
5.6.6 Impacts of Video Play Sequence .. 69

5.7 Comparison with Reactive User Preference Profile Algorithm .. 70
5.7.1 Impacts of Cache Size ... 71
5.7.2 Impacts of Rebate-to-Download-Cost Ratio ... 72
5.7.3 Impacts of Different Quality Preference Distributions ... 73

5.8 Summary ... 74

Chapter 6: Caching for Dynamic Map Dissemination in Vehicular Networks 76
6.1 Introduction ... 76
6.2 System Architecture .. 77

6.2.1 Network Model ... 77
6.2.2 Dynamic Map Data ... 78

6.3 Dissemination and Caching Mechanisms ... 79
6.3.1 Dynamic Map Data Push .. 79
6.3.2 Dynamic Map Data Pull and Caching .. 80

6.3.2.1 Demand Model .. 81
6.3.2.2 Data Search Model .. 81
6.3.2.3 Cache Replacement Policy ... 82

vii

6.4 Performance Evaluation .. 84
6.4.1 Mobility Characteristics .. 85
6.4.2 Impacts of In-vehicle Caching on Bandwidth Usage (BU) .. 86
6.4.3 Caching Dynamics .. 87
6.4.4 Impact of in-RSU Caching .. 89
6.4.5 Larger RSU Coverage ... 90
6.4.6 Map Fetch Latency ... 92

6.5 Summary ... 93

Chapter 7: Content Dissemination Through Mobile Edge Cache Servers in Vehicular
Networks……. .. 94

 Introduction ... 94
 Content Search and CECS Operation ... 96
 Caching Mechanism .. 97

 Content Segment Distribution ... 97
 Cache Metadata Tables (CMTs) ... 102
 Cache Replacement Policy ... 106

 Performance Evaluation .. 107
 Impacts of Cache Space in the CECSs (α) ... 110
 Impacts of Available In-vehicle Cache Storage Space (β) ... 113
 Impacts of Tolerable Access Delay (TAD) .. 117
 Comparison with Sparse-CECSs Network ... 118
 Caching Performance in a Synthetic Network .. 120

 Summary ... 122

Chapter 8: Future Work .. 123
8.1 Introduction ... 123
8.2 Machine Learning Models for Content Caching and Dissemination 123
8.3 Placement of Edge Cache Servers .. 124
8.4 Handling Selfishness ... 124

BIBLIOGRAPHY ... 125

viii

LIST OF TABLES

Table 3-1: Simulation’s baseline parameter ... 27

Table 4-1: Simulation’s baseline parameter ... 38

Table 5-1: List of all notations used in the caching algorithm ... 56

Table 5-2: Baseline parameters used in the simulation experiments .. 61

Table 5-3: Average no. of neighbor ECs encountered per node for different terrain sizes (number
of nodes is set to 40) ... 63

Table 6-1: Baseline parameters used in the simulations ... 85

Table 7-1: Baseline parameters used in the experiments .. 109

ix

LIST OF FIGURES

Figure 1-1: Network architecture of digital content access .. 1

Figure 1-2: Content access methods for D2D networks ... 4

Figure 1-3: Example of content dissemination through a CECS .. 5

Figure 1-4: Summary of investigated topics in the thesis ... 8

Figure 3-1: Content and cost flow .. 22

Figure 3-2: Cache Partitioning in HSC ... 23

Figure 3-3: Impact of 𝛼 on cost .. 28

Figure 3-4: Hit rates for baseline HSC ... 29

Figure 3-5: Impact of 𝛽 on cost .. 30

Figure 3-6: Comparison of minimum cost .. 31

Figure 3-7: Object density of various algorithms ... 32

Figure 3-8: Convergence of cost for HSC baseline to the pre-filling scenario 33

Figure 4-1: Cost V.S. λ for baseline HSC and SFN .. 38

Figure 4-2: Hit rates for baseline HSC and SFN .. 39

Figure 4-3: Minimum cost V.S. terrain size for baseline HSC and SFN 40

Figure 4-4: Cost V.S. λ for baseline HSC with various 𝛽 and terrain sizes 41

Figure 4-5: Cost V.S. λ for HSC-baseline and prefilling .. 42

Figure 4-6: Comparison with traditional algorithms in monolithic scenario 43

Figure 4-7: Cost V.S. λ for HSC baseline ... 45

Figure 4-8: Comparison with traditional algorithms in community-based scenario 45

Figure 4-9: Comparison with traditional algorithms in Helsinki .. 46

Figure 5-1: Timeline of video play model .. 49

Figure 5-2: State machine of streaming video play model ... 51

x

Figure 5-3: Example of how providing higher-than-requested quality content can serve future
high-quality user demands .. 57

Figure 5-4: Default video quality preference distribution .. 62

Figure 5-5: Provisioning cost with different terrain sizes and per-node cache availability 63

Figure 5-6: Local and remote hit rates for different network terrain sizes 64

Figure 5-7: Total value of cached objects in the entire network ... 65

Figure 5-8: Bandwidth overhead for different network terrain sizes .. 66

Figure 5-9: Provisioning cost, and local and remote hit rates over time 67

Figure 5-10: Cached video quality density for AQ and RQ ... 68

Figure 5-11: Content Delivery Latency (CDL) for the AQ and RQ policies 69

Figure 5-12: Impacts of different video play sequences on provisioning cost 70

Figure 5-13: Provisioning cost and hit rates of R-UPP, RQ, and AQ .. 72

Figure 5-14: Provisioning costs for varying rebate-to-download-cost ratio 73

Figure 5-15: Provisioning cost with different distributions of video quality preferences 74

Figure 6-1: Layered abstraction of dynamic maps ... 76

Figure 6-2: Generalized model with different networking components 78

Figure 6-3:Push mechanism of dynamic data dissemination .. 80

Figure 6-4: Mean vehicle encounter rates for the vehicles and RSUs .. 86

Figure 6-5: Bandwidth usages with different in-vehicle cache sizes .. 86

Figure 6-6: Temporal bandwidth usages of V2V and cellular links ... 88

Figure 6-7: Impacts of allocated cache sizes in the RSUs .. 90

Figure 6-8: Mean vehicle encounter rate of RSUs .. 90

Figure 6-9: Impacts of allocated cache sizes in the RSUs with long-range V2I 91

Figure 6-10: Bandwidth usage with varying number of G-RSUs with long-range V2I 92

Figure 6-11: Map fetch latency with various in-vehicle cache sizes .. 92

xi

Figure 7-1: Content dissemination and caching using edge infrastructures 96

Figure 7-2: Example of the accessible CECSs to a vehicle during the TAD 99

Figure 7-3: Example updates of the CMTs within CECSs ... 101

Figure 7-4: Example of CMT exchange between a vehicle and a CECS 103

Figure 7-5: Map of the simulation scenario in the East Lansing area .. 107

Figure 7-6: Cellular retrieval rate and hit rate at CECSs with various 𝛼 111

Figure 7-7: Impacts of CECS cache space 𝛼 on Completeness Index 𝜇𝑟 111

Figure 7-8: Content Delivery Latency for different caching mechanisms 112

Figure 7-9: CMT exchange overhead with varying storage in the CECSs 113

Figure 7-10: Impacts of varying in-vehicle cache storage space 𝛽 .. 114

Figure 7-11: Impacts of in-vehicle cache storage space on average CI (𝜇𝑟) 115

Figure 7-12: CDL with different in-vehicle cache storage space 𝛽 .. 115

Figure 7-13: CMT exchange overhead with varying vehicle cache space 116

Figure 7-14: Evolution of cellular retrieval rate and the completeness index 𝜇𝑟 117

Figure 7-15: Impact of TAD on cellular retrieval rate and hit rate at CECSs 117

Figure 7-16: East Lansing scenario with reduced number of CECSs ... 118

Figure 7-17: Cellular usage with various 𝛼 with different CECS-counts 119

Figure 7-18: Cellular usage with 𝛽 with different CECS-counts ... 120

Figure 7-19: CECS placement in a synthetic network scenario ... 121

Figure 7-20: Impacts of CECS cache space in the synthetic scenario .. 121

Figure 7-21: Impacts of vehicle cache space in the synthetic scenario 122

xii

LIST OF ALGORITHMS

Algorithm 3-1: Caching algorithm and replacement policy in HSC .. 26

Algorithm 5-1: Value-based caching and replacement policy .. 56

Algorithm 6-1: In-vehicle and in-G-RSU caching/replacement policy .. 83

Algorithm 7-1: CMT exchange algorithm between a vehicle and a CECS 105

1

Chapter 1 : Introduction

Wide popularity of wireless devices such as Android, iPhone, Windows Phone, and their

data-enabled applications such as Kindle book reader, Netflix, and various content stores have

created many digital content ecosystems. As shown in Figure 1-1, users with mobile devices (e.g.

smart phones and smart pads, etc.) can obtain content such as e-books, music and movies through

cellular networks (e.g. 5G, etc.) from these ecosystems. In addition to user-carried mobile devices,

such ecosystems can also cater to various smart devices installed on machines. A prominent

example of the latter is in-vehicle wireless interfaces. With more and more vehicles being wirelessly

connected through Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) [1], and cellular

links, many data-driven applications are emerging for in-vehicle usage. Such applications typically

also involve digital content including music, books, and streaming audios and videos.

Figure 1-1: Network architecture of digital content access

 A common requirement in those ecosystems is to be able to disseminate content (e.g., books,

magazines, music, etc.) in a manner that reduces the cost of cellular link usage. Traditionally, an

End Consumer (EC) downloads content directly from a Content Provider’s (CP) server in the core

Internet

Content Provider Cellular Base Station

2

network via a Communication Service Provider (CSP) such as AT&T, Verizon and Sprint, etc..

This approach involves a cost which must be paid either by ECs or by the CP. For example, in the

business model of Amazon Kindle electronic book delivery [2, 3], the CP (Amazon) pays to the

CSP (Sprint) for the cost of network usage due to content downloaded by users.

1.1 Caching for Cellular Bandwidth Cost Reduction

One possible solution for reducing such cost is to cache the most popular content in local

infrastructures or mobile devices with storage. In this way, the ECs can often find their requested

content within those caches, and avoid the communication cost of always downloading them from

the CP’s server via the CSP’s network.

1.1.1 Traditional Infrastructure-based Caching

Traditional infrastructure-based models of caching have been proposed for communication

cost reduction by pushing popular content to local infrastructures near the targeted EC population.

One typical implementation of such models is edge servers in Content Delivery Networks (CDN)

[4]. These edge servers are usually deployed proximal to the ECs. For example, the Wi-Fi Access

Points (APs) [5] installed in a building can be directly accessed by the ECs in the building. The APs

also connect to the CP’s servers through the Internet without going through the CSP’s cellular

networks. The popular content can be cached in such local edge servers so that the ECs can fetch

the content directly from these infrastructures. Another kind of edge device is roadside units (RSUs)

[6] deployed beside the roads. These devices connect to the Internet through fiber links, thus they

can cache and relay the popular content to the nearby vehicles via Dedicated Short-Range

Communications (DSRC) [7] links.

 Such infrastructure-based caching avoids downloading content repeatedly from the CP’s

(e.g., Amazon’s) server via the CSP’s network, thus it reduces the cellular network usage. However,

3

for each single local infrastructure, its coverage (i.e. transmission range) is limited. For example, a

typical transmission range of 802.11 (e.g., Wi-Fi) is only between 100 and 300 meters [8]. Thus,

the ECs out of the range from a Wi-Fi AP are not able to access any content cached in the

infrastructure. Additionally, it may be expensive to deploy too many caching infrastructures (i.e.,

edge servers) for improving the coverage.

1.1.2 Device-to-Device Cooperative Caching

An alternative model would be to cache content in the ECs’ devices following the localities

in human interactions and content interests. One typical example is when users physically gather in

settings such as university campuses, malls, airports, and other public places, Social Wireless

Networks (SWNETs) [9] can be formed over ad hoc wireless connections among their mobile

devices [10]. Examples of SWNETs would include students in a university campus, a group of

colleagues in a workplace, and people in a shopping district. In this model, each device in a SWNET

is able to cache content following some policy that leverages the above localities. For downloading

content such as a Netflix movie, a user device can first search within its SWNET for the requested

content before downloading it from the CP’s server. The expected CSP’s communication cost in

this approach can be lower since the download cost paid to the CSP would be avoided when the

content is found within the local SWNET of the requesting user. This is termed as cooperative

caching. Figure 1-2 (a) shows an example of an SWNET formed by several users with mobile

devices. Under this setting, the ECs, carrying mobile devices, can obtain an object either: 1) directly

from the CP’s server through the CSP’s cellular network, or 2) locally, from other devices they

interact with through high-speed wireless links (e.g. Bluetooth Low Energy, Wi-Fi, etc.).

4

Figure 1-2: Content access methods for D2D networks

Similarly, in the vehicular context shown in Figure 1-2 (b), cellular bandwidth usage cost

reduction is accomplished by letting a vehicle first search content in nearby Connected Vehicle

Fabric (CVF) via DSRC or Bluetooth, etc.. A download from a CP’s server via 5G link is triggered

only if the local CVF search fails.

Compared with traditional infrastructure-based caching models (e.g., at the edge servers,

etc.), there are at least two notable advantages of the proposed D2D cooperative caching. First, with

D2D caching, there is no need to add any new hardware infrastructure. Second, unlike the

infrastructure-based models, the coverage and shared storage capacity of a D2D network can be

organically extended. This happens as more ECs join the network and contribute to the growth of

overall cache storage in the network. Another example is when some ECs fetch content from one

D2D network, and are able to disseminate them in another network as they move across networks.

1.1.3 Connectionless Edge Cache Servers

To address the issues of traditional edge cache servers in Section 1.1.1, the concept of

Connectionless Edge Cache Servers (CECSs) is introduced in this thesis. The idea is to use such

servers without incurring the cost of backhaul connectivity, while gaining the ability to make the

cache server mobile. Such mobility can provide a great deal of flexibility in temporarily placing

Internet
CP’s Server

CSP’s Cellular
Infrastructure

Local Connection
over Wi-Fi, BT, etc.

CSP’s Cellular
Infrastructure

Local CVF Fetch
Over DSRC, BT, etc.

CP’s Server
(a) Content access methods for users within an SWNET (b) Content sharing in a connected vehicle fabric

Internet

5

them in areas with low vehicle and RSU densities and high content demands. Putting the CECS on

vehicles and placing them on-demand can cater to events such as games, accidents, weather

conditions, etc. As shown in Figure 1-3, Without backhaul connectivity to a CP, the CECSs can

cache content collected via DSRC links form the current-passing vehicles and provide them to

future-passing vehicles over DSRC, and reduce the cellular bandwidth usage of the vehicles in that

process.

Compared with caching at vehicles or traditional infrastructures (e.g., RSUs, etc.), the

advantages of caching at a CECS are as follows: 1) a CECS can be used as an intermediate device

for data dissemination among vehicles, especially in the scenarios where the V2V connectivity is

sparse so that it is difficult for vehicles to disseminate the date directly through V2V links, and 2)

the cost for deploying a CECS is less than a traditional cache server because there is no the

requirement of backhaul connectivity for a CECS.

Figure 1-3: Example of content dissemination through a CECS

1.2 Content Search

Upon originating a request, a node (i.e. an EC) first performs a local search for the requested

content in its own cache. If that fails, the node performs a remote search in its local network. If the

node cannot obtain the content from the network within a pre-defined Tolerable Access Delay

(TAD), it sends a request to the CP’s server. TAD, which is part of a request, represents the duration

that a user application is willing to wait before a successful content request is served. The remote

(a) Vehicle-A downloads data from the
CP’s server through cellular link

Data

CP’s Server

CECS

Cellular link
Vehicle-A

Data
CECSCP’s Server

Local DSRC link

Vehicle-A

(b) Vehicle-A uploads the data to the CECS
through DSRC link, then the CECS caches
the data

Data

CECSCP’s Server

Local DSRC link

Vehicle-B

(c) Vehicle-B downloads the data from the
CECS through DSRC link

6

search can take place using devices’ Wi-Fi, Bluetooth, and other short-range RF interfaces (e.g.

DSRC, etc.). The content from the CP’s server is downloaded using a CSP’s cellular network.

The content search and retrieval within the local networks can be performed using traditional

IP routing protocols or the emerging Information-Centric Networking (ICN) based protocols such

as Named Data Networking (NDN) [11,12,13]. In other words, this content retrieval can work

seamlessly with ICN/NDN mechanisms that may be already in place within the local networks.

1.3 Cache Replacement

Due to limited storage, mobile devices are not expected to store all downloaded content for

long. This means after downloading and using a purchased electronic content, a device may remove

it from the storage following a replacement policy for keeping the most popular content in the

storage. Possible cache replacement policies include Least Frequently Used (LFU) [14], Least

Recently Used (LRU) [15], Random replacement [16] and popularity-driven policy [17], etc..

1.4 Incentives, Security Issues and User Selfishness in D2D Caching

In order to encourage an EC to cache previously downloaded content and to share it with

other ECs, a micro-rebate mechanism such as the ones proposed in [18, 19, 20] can be used. These

micro-rebates that an EC can redeem with the content provider at a later time can serve as an

incentive and compensation for the resource used during D2D caching. Such resources include both

device storage and battery drainage due to caching and D2D content transfer.

A key requirement for implementing D2D cooperative caching would be to implement a

digitally signed rebate framework in which the rebate recipients can electronically validate and

redeem rebates with the CP. Also, a digital usage right mechanism [21] is needed so that an EC

who is caching a content should not necessarily be able to use it unless she had explicitly purchased

7

the content from the CP. Such digital usage right mechanisms are already available in the literature

[22], and are relied on for the proposed caching architecture.

The potential for earning peer-to-peer rebate may promote selfish behavior [23]. A selfish

user is one that deviates from the network-wide optimal caching policy in order to earn more

rebates. Any deviation from the optimal policy is expected to incur higher network-wide

provisioning cost. In this thesis, it is assumed that the users are not selfish in that they fully comply

with the network-wide optimal policy.

1.5 Dissertation Objectives

The objective is to design optimal mechanisms for caching at mobile devices such that under

different network topologies the network-wide provisioning cost is minimized. A key question for

content caching is: how to store content in mobile nodes so that the overall content provisioning

cost in the network is minimized. This question needs to be addressed under heterogeneous user

demands. All results presented in our previous work [24] were for homogeneous request conditions

in which it was assumed that all consumers’ requests follow a common global Zipf [25] distribution

for content popularity. While providing a reasonable model for a baseline cooperative caching

architecture, a common global popularity for content does not represent real scenarios in which

content preferences usually vary significantly across different ECs or local areas [26]. For example,

a globally popular e-book may not be preferred in some specific areas. Another example is that each

user may request different qualities for the same video resulted by the limit of device or network

resource, or personal situation (e.g. membership of Amazon Prime, etc.). Thus, the heterogeneity

of quality demands for the same video content needs to be involved for designing a cooperative

caching mechanism.

8

In this thesis, we attempt to develop caching structures that cater to such content preference

heterogeneity. In [27] a Distributed Benefit based heuristics was used for optimal caching in the

presence of request heterogeneity. The primary limitation of this approach is in its assumption that

a centralized content server requires to store the request preference of each consumer, thus

rendering it non-scalable. Especially so, when there are potentially millions of consumers in the

system. The main goal of this thesis is to present scalable yet optimal approaches to implement

content caching with a fully heterogeneous request model.

1.6 Scope of Thesis

The main objective of the thesis is to provide content caching mechanisms that minimizes the

overall provisioning cost in different network topologies. This is implemented by caching right

objects in data-enabled mobile devices such as smartphones, smart pads, vehicles and novel edge

devices. When people with smart devices physically gather in a place such as university or

downtown area, they may be interested in the same content that is statistically popular in this place.

The summary of investigated topics in the thesis is shown in Figure 1-4.

Figure 1-4: Summary of investigated topics in the thesis

Smart Content Caching

Caching in Social
Wireless Networks

Caching in Vehicular
Networks

Caching for Non-streaming
Content

Caching for Streaming
Content (Chapter-5)

Fully-connected
Networks (Chapter-3)

Mobile Networks
(Chapter-4)

Caching at Vehicles
(Chapter-6)

Caching at CECSs
(Chapter-7)

9

Chapter-2 is a survey about existing caching strategies. First, content caching mechanisms in

traditional stationary wired networks are reviewed, even though most of the ideas cannot be directly

used in wireless networks. Then some most recent caching strategies, including infrastructure-based

and D2D cooperative caching policies, are introduced. Furthermore, the differences and advantages

of the proposed caching mechanisms in this thesis are highlighted and compared to these existing

caching strategies.

In Chapter-3, an incentive based cooperative content caching framework is developed for

Social Wireless Networks (SWNETs) in which content demands are hierarchically heterogeneous.

The heterogeneous request model incorporates user preference for different categories/genres and

contents under each category. The experiment results show that the proposed mechanism is able to

reduce content provisioning cost compared to traditional caching mechanisms a in fully-connected

SWNET.

In Chapter-4, the caching mechanism proposed in Chapter-3 is applied on the scenario of

mobile wireless networks. Unlike Chapter-3, in this scenario the connection between each pair of

nodes is not stable anymore because a node may dynamically join or leave a network. However,

the experiments show that the proposed mechanism is still able to reduce bandwidth usage and the

resulting content provisioning cost compared to traditional caching mechanisms in both monolithic

and community-based mobility scenarios.

In Chapter-5, a D2D cooperative caching framework is proposed for streaming video with

heterogeneous quality demands in SWNETs. This caching framework is formed of two

components: a value-based caching strategy in which the value of caching a streaming video

segment is defined for given pricing and video sharing models, and an Adaptive Quality (AQ)

provisioning algorithm that minimizes the overall video content provisioning cost within an

10

SWNET. The simulation results indicate that the proposed mechanism is able to appreciably reduce

the overall video provisioning cost in the presence of end-user mobility.

In Chapter-6, a vehicular content caching mechanism is presented for disseminating

navigational maps while minimizing cellular network bandwidth usage. The key concept is to

collaboratively cache the dynamic components of navigational maps in roadside units (RSUs) and

vehicles such that the majority of dissemination can be accomplished using V2V and V2I

communication links. The simulation results indicate that compared to infrastructure-only caching

strategies, the proposed vehicle-involved collaborative caching mechanism is able to reduce the

bandwidth usage of cellular networks and the delivery delay for obtaining dynamic map data.

Chapter-7 presents a caching mechanism based on a novel edge infrastructure CECS for

Software Update Package (SUP) dissemination in the context of vehicular networks. The research

goal is to intelligently cache content at CECSs and vehicles such that the cellular bandwidth usage

is reduced. Using the DTN simulator ONE, we run detailed simulations in context of vehicular

networks in the East Lansing area and a synthetic scenario. The results indicate that the proposed

caching mechanism is able to reduce the cellular bandwidth usage and SUP fetching delay

compared to some other caching strategies.

Finally, in Chapter-8 this thesis is summarized, and a list of future work is compiled.

11

Chapter 2 : Related Work

2.1 Caching in Stationary Networks

The nodes and topologies in a stationary wired network may not often change. Moreover, the

connection between each pair of different networks is also relatively stable. These characteristics

result that each node can always access the other nodes in the networks.

 Approaches of web caching have been widely used in stationary wired networks [28, 29].

However, the emerging information centric networking (ICN) [30, 31, 32], which is also known as

content centric networking (CCN), involves caching mechanisms to improve the performance of

content retrieval including e-books, music and videos, etc.. For example, a Dynamic Adaptive

Streaming over HTTP (DASH) strategy is adopted in [33] for Dynamic Adaptive Streaming over

Content centric networking (DASC). With DASH, a content centric networking (CCN) node is used

instead of HTTP for caching popular video content. Still based on CCN, a new caching strategy,

namely, Most Popular Content (MPC) is presented in [34]. By caching only popular content, this

method is able to cache less content while still achieving a higher cache hit.

Even without CCN, a two-tier caching strategy is presented in [35] for streaming video over

the IPTV. In this thesis, the video server connects with many local area networks, each of which

maintains a separate cache server that serves all clients within its network. In [36] a content caching

scheme, WAVE, is presented in which the number of chunks to be cached is adjusted based on the

popularity of the content. This caching mechanism is for lowering the hop count of content delivery

while increasing the cache hit ratio. Finally, in [37] an architectural framework named CachePortal

system is proposed for enabling dynamic content caching for database-driven e-commerce sites that

most of the traditional caching strategies cannot handle.

12

However, in a wireless mobile network the nodes may dynamically join or leave the network

over time. This means a node is not always reachable, and results that most of the caching

mechanisms in stationary wired networks are not available in wireless mobile networks.

2.2 Caching in Mobile Networks

 Wireless communication is a fast-growing part in communication area. Compared with

stationary wired networks, the topology of a wireless mobile network is more dynamic. Thus, the

content caching mechanisms in wireless mobile networks [38, 39] should be different from those

in wired networks.

2.2.1 Traditional Infrastructure-based Caching

Traditional infrastructure-based models of caching have been proposed for communication

cost reduction by pushing popular content through the core networks to local infrastructures near

the targeted user population. A caching approach based on Small Base Stations (SBSs) is presented

in [40]. In this solution, the base station serves only few influential nodes, and lets them help in

disseminating the content to other nodes. That simplifies the content dissemination process, and

increases offloading gains in mobile wireless networks. In [26], a method called Reactive User

Preference Profile (R-UPP) is introduced for caching streaming videos in base-stations of Radio

Access Networks as a way to reduce the need for downloading requested videos from Content

Distribution Networks. R-UPP is based only on the popularity of objects without considering the

underlying quality preference distributions. Similarly, the caching strategy proposed in [41] is based

on the base-stations. In this case, the cache server is deployed in Mobile Switching Centers (MSC),

which can be connected to multiple base stations. Another example of infrastructure-based

streaming video caching was proposed in [42, 43]. The authors propose a proactive caching

approach named “smart scheduler” for railway systems. Popular content is proactively cached in

13

each railway station before the next train arrives. The objective is to improve the content distribution

throughput in transportation network system. Using a Markov process-based modeling of content

dynamics, the authors in [44] propose a proactive caching mechanism for reducing retrieval delay

of video content in the presence of disconnections in 5G cellular networks.

In the context of vehicular networks, the authors in [45] present a novel vehicular network

architecture in which the RSUs are allocated with large storage capacity and the needed V2I and

backhaul links for effective content caching. The main objective here is to minimize the average

delay for obtaining content by caching the popular content in the RSUs. An integer linear

programming (ILP) based optimal content prefetching algorithm within Access Points (Aps) is

presented in [46] for vehicular networks. The proposed method is for maximizing the probability

of access of requested content that is cached in the APs. Another caching method in [47] attempts

to improve the accessibility of requested content by caching popular contents in cache stores (CS)

in information-centric networks (ICNs). While being able to provide effective cache performance,

all these mechanisms extensively rely on infrastructure such as RSUs, cache stores, and other

dedicated caching objects. This limits the effectiveness of such mechanisms in vehicular networks

with insufficient infrastructure availability. The following papers report research on in-vehicle

caching.

The main disadvantage of traditional infrastructure-based caching is that the coverage of each

single local infrastructure is limited. Thus, the users out of the range from a infrastructure are not

able to access any content cached in the infrastructure. Additionally, it may be expensive to deploy

too many such caching infrastructures with backhaul connectivity for improving the coverage.

14

2.2.2 Device-to-Device Cooperative Caching

Unlike infrastructure-based caching, in D2D cooperative caching the content is cached on the

mobile devices of each user in the networks. A distributed heuristic solution for effective replica

placement in Wireless Mesh Networks (WMNs) is presented in [48]. The local popularity of an

object, which is defined as the relative demand for it within a network partition compared to that in

the whole network, is used for improving the hit rate of cache. The Give-and-Take (GT) criterion

is proposed in [49] for addressing the issue of free riders in network caching. Free riders are selfish

peers who only obtain objects and leave the network without uploading anything in return. The

mechanism in [50] proposes a distributed mobile caching system to cache data temporarily in a

designated local area. The caching system is realized using collaborative consumer devices. The

mechanism in [51] proposes a cooperative caching solution for vehicular network that formulates

and solves an optimization problem to maximize content dissemination among vehicles within a

predetermined deadline. The proposed approach minimizes the cost associated with communicating

over the cellular connection. In another work, [52] presents a cooperative caching strategy in which

the proposed protocol uses a class of reputation-based data forwarding and caching heuristics where

the forwarding and caching decisions maximize the performance of the global system. It also

proposes a Heterogeneous Community-based Random Way Point (HC-RWP) mobility model,

which captures the properties of real human mobility. In [53], a cooperative caching solution for

sensor networks is proposed in which some of the chosen sensor nodes are selected to maintain

special roles in taking the caching and request forwarding decisions. The scheme in [54] presents a

scheme that selects appropriate nodes as Network Central Locations (NCLs) to coordinate multiple

caching nodes to optimize the tradeoff between data accessibility and caching overhead. In [55] a

strategy based on a P2P network, named Small World Network (SWN), was proposed. In SWN,

15

the correlation of demands across different video segments are used to guide nodes to form a

cooperative caching overlay so that each node maintains neighborhood relationship with related

video segments. In [56], a quality of experience (QoE) centric distributed caching approach was

proposed to improve the cache hit ratio for requests with specific quality. The work in [57] proposed

a new QoS-aware hierarchical web caching (QHWC) scheme for Internet-based vehicular ad hoc

networks (IVANET). This scheme leverages any locality in vehicle dis-connectivity and mobility

in order to increase the cache hit ratio and to reduce query delays. In [58], a caching strategy named

Chunk Select method Adaptive to Neighbor Reception (CSANR) was proposed for avoiding nodes

to download the same segments of streaming videos in order to save the cache space. A video

dissemination solution based on hybrid P2P/Multi-server Quality-Adaptive Live-Streaming is

proposed in [59]. This approach combines P2P caching and multiple edge servers in order to reduce

the traffic load of the Internet as well as improving users’ QoE.

In vehicular networks, the authors [60] presents an in-vehicle caching method which is termed

as Collaborative Caching Based on Socialized Relations (CCBSR). The objective is to mitigate the

impacts of mobility-triggered V2I dis-connectivity towards minimizing content access delay. It also

attempts to minimize the number of vehicles in which the content needs to be cached. The P2P

Cooperative Caching (P2PCC) in [61] also attempts to mitigate the impacts of dis-connectivity

using a Markov model-based caching approach. It does so by in-vehicle caching and sharing content

across the V2V network. The researchers in [62] proposes a V2V caching strategy based on

Evolutionary Game. The objective of the method is to avoid the free riders, which only obtain

content from other nodes without contributing to caching. An innovative V2V caching mechanism

in [63] attempts to mitigate the impacts of signal quality and connectivity impairments due to large

buildings in urban settings. The paper proposes a Leave Copy Everywhere (LCE) strategy to

16

improve content accessibility in urban environments. A Community Similarity and Population-

based Cache Policy (CSPC) is proposed in [64] for ICN vehicle-to vehicle (V2V) scenario. This

method evaluates the community similarity and privacy rating of vehicles, and selects the caching

vehicle based on content popularity to reduce the cache redundancy. Finally, [65] presents a

cooperative content caching framework, and proposes a hierarchical mobility-aware edge caching

scheme that harnesses the synergies between mobile edge computing (MEC), multi-BS caching,

and vehicular caching.

2.3 Summary

Almost all the mentioned approaches focus on maximizing the cache hit rate and reducing

the access latency, without considering its effects on the overall cost which depends heavily on the

content service and pricing models. Specifically, for caching of streaming content most of the

mentioned approaches do not consider caching videos with heterogeneous qualities in users’

devices. In this thesis, various Device-to-Device cooperative caching strategies are proposed to

address these gaps. These caching strategies are inspired by the notations of: 1) minimizing the

overall content provisioning cost, and 2) heterogeneous user preferences.

Moreover, in the context of vehicular networks most of the existing vehicular caching work

attempts to improve content accessibility and reduce the access latency, without considering

minimizing the bandwidth usage of cellular networks. In this thesis, the primary objective is to

minimize the access cost by the way of reducing the usage of in-vehicle cellular links. While

accomplishing that, the accessibility and access delay are also improved.

Finally, the caching mechanisms proposed in the above literatures are based on the traditional

edge infrastructures (i.e. RSU, etc.) with backhaul connectivity, or in-vehicle caching. However,

the deployment cost of such infrastructure is expensive. On the other hand, the in-vehicle caching

17

does not work when the vehicle density is low. To deal with these challenges, this thesis proposes

a novel edge infrastructure CECS introduced in Section 1.1.3 in Chapter 1 that has no backhaul

connectivity.

18

Chapter 3 : Cooperative Caching in Social Wireless Networks

3.1 Introduction

Wide popularity of wireless devices and their data-enabled applications have created an

evolving marketplace for digital content ecosystems. A common operation in those ecosystems is

to disseminate content (e.g., books, magazines, music, etc.) in a cost-optimal manner. With the

conventional download model, a user downloads content directly from a Content Provider’s (CP)

server via a Communication Service Provider’s (CSP) network. Downloading content through

CSP’s network involves a cost, which must be paid either by End Consumers (EC) or the CP.

In this chapter, an incentive based cooperative content caching framework is developed for

fully-connected Social Wireless Networks (SWNETs) in which content demands are hierarchically

heterogeneous. The heterogeneous request model incorporates user preference for different

categories/genres, and contents under each category, both following power law distributions at local

as well as global levels. Based upon such request generation model, an optimal incentive based

Heterogeneous Split Caching algorithm is proposed which can minimize electronic content

provisioning cost using cooperative caching policies.

3.2 Hierarchically Heterogeneous Requests

Each object (i.e. content) is assumed to be tagged with its global-popularity by a centralized

content server such as Amazon or iTunes. The global popularity rank order is determined based on

the network-wide request rates for all the content stored in the server. The larger the global

popularity of an object is, the more likely it is to be requested across the entire network.

 Each object is labeled with a category or genre at its creation time. One practical example

is the list of categories for Amazon audio books, or the list of categories for songs provided by

Spotify. Typically, a user has her/his own preference of such categories, which is maintained in

19

terms of a rank ordered list of categories. This user-specific list is referred to as content local

popularity for that user. The content request model considers both local and global popularity

models which are assumed to follow Zipf distributions. For global popularity, Zipf is applied at the

per-content level, and for local popularity, it is applied at per-category level.

3.2.1 Global Popularity of Object

Global popularity of an object-i (i.e., 𝑂!)	can be expressed as the probability that any random

request from the network is for 𝑂! . According to the Zipf law, it is expressed as follows:

 𝑝"(𝑂!) =
(!")

#

∑ (!$)
#%

$&!
 (3-1)

The parameter L represents the total number of objects in the network. The Zipf parameter,

𝛼, determines the steepness of the distribution curve. The higher the Zipf parameter 𝛼, the larger

the difference of global popularity value for two objects with consecutive ranks.

3.2.2 Local Popularity of Category

A user’s local object preference is determined by the local popularity of the object categories.

In this chapter, it is assumed that the global popularity of these categories follow uniform

distribution. However, for each node, the local popularity of the categories can be different. A

user’s local object preference is represented as a rank-ordered list of M object categories. That is

one of 𝑀!	possible lists. The rank of a specific category for a user-n can be different from the rank

of the same category for another node in the network. The local popularity of a category-j at node-

n can be expressed as the probability that category-j has a popularity rank of k out of all M

categories. According to the Zipf law, it is expressed as follows:

 𝑝&1𝐶'
(3 =

(!')
#

∑ (!()
#)

(&!
 (3-2)

20

The 𝛼 in Zipf can be different for the global and local popularity distributions. While global

popularities are defined for each object, the local popularities are for each category.

3.2.3 Local Popularity of Object

An object-i that belongs to category-j is represented as 𝑂!
)'
*

,	 and its global popularity

𝑝" 4𝑂!
)'
*

5 is determined based on Eqn. 3-1. The quantity 𝑝" 4𝑂!
)'
*

5 indicates the global popularity

rank of the object across all other objects. The rank of 𝑂!
)'
*

	among all other objects belonging to 𝐶'
(

can be computed as:

 𝑟 4𝑂!
)'
*

5 =
*++,"

,'
*
	.

∑ *++,(
,'
*
	.

|,'
* |

(&!

 (3-3)

|𝐶'
(| indicates the total number of objects in category-j, and 𝑟 4𝑂!

)'
*

5 represents how popular

object 𝑂!
)'
*

 is among the members of category-j. We then define the local popularity of 𝑂!
)'
*

 at node

n, in which category-j has a local popularity rank of k out of all M categories, for node n. This local

popularity of object 𝑂!
)'
*

 at node 𝑛 is computed as:

 𝑝& 4𝑂!
)'
*

	5 = 𝑟 4𝑂!
)'
*

5 × 𝑝&1𝐶'
(3 (3-4)

The quantity 𝑝&1𝐶'
(3 is the local popularity of category-j as defined in Eqn. 3-2. Note that

this local popularity of a category at a node is different from the local popularity of an object at a

node, as newly computed by Eqn. 3-4.

21

3.2.4 Request Generation Process

Using the above hierarchical model, requests are generated from a consumer using the

following process. First, a category is selected from the available M categories using the Zipf based

local popularity distribution for the specific consumer. After a category is selected, one object is

chosen from that category based on the global popularity Zipf distribution. Objects within a

category with higher global popularity are more likely to be chosen. Since the local popularity of

categories for each user is different, the ranking order of popularity of categories in the Zipf

distribution is different for each user. Therefore, different users in the SWNET generate different

request rates for same content, thus reflecting heterogeneity.

3.3 Network Model and Problem Formulation

3.3.1 Content Search Model

Upon originating a request, a node first locally searches in its own cache. If that fails, the

node performs a remote search in its SWNET partition. Note that in this chapter it is assumed that

all the nodes in an SWNET partition are fully connected. If the node cannot obtain the object from

the SWNET, a request is originated to the CP’s server to obtain the content. The local search can

take place using devices’ Wi-Fi, Bluetooth, and other near-field RF interfaces.

3.3.2 Pricing Model

The pricing model in this chapter is similar to Amazon Kindle’s business model described in

Chapter-1. Figure 3-1 depicts the adopted content and cost flow model. When the content is

downloaded from CP (e.g. Amazon), a cost 𝐶/ must be paid to the CSP by the CP for using its

services, which accommodates for the service given from the CSP to CP and the service given to

nodes from the cellular infrastructure. In order to encourage the nodes to cooperate in caching by

22

sharing their resources (e.g. energy, storage, etc.), CP pays a rebate 𝐶0 to the participant nodes (e.g.

𝐸𝐶1) when a cached object is transferred from the node to a requester (e.g., 𝐸𝐶2) in the SWNET.

The).
)/

 ratio, namely, 𝛽 should be in range [0,1], so that the total cost can be reduced by caching

the most popular content remotely in the SWNET. Since 𝐶/ and 𝐶0 are set by a CP according to CP

and CSP’s marketing and revenue models, the ECs do not have any control on the parameter 𝛽.

Generally, it would not entice the ECs to participate in the cooperative caching when 𝛽 is too low.

On the other hand, a too high 𝛽 does not provide significant cost savings.

Figure 3-1: Content and cost flow

Note that the cost items 𝐶/ and 𝐶0 are independent from the price of content (e.g., an e-book)

that the EC pays to the content provider, preferably using a secure payment system.

3.3.3 Cost under Heterogeneous Request Model:

When a content is found locally within the requesting node, no cost is incurred for the content

provider. Otherwise, the costs are 𝐶0 or 𝐶/ 	depending on if the content is downloaded from another

node within the SWNET or from the CP’s server. The expected cost for a node 𝑛 is computed as:

𝑐𝑜𝑠𝑡& = 0 × ∑ 𝑝& 4𝑂!
)'
*

	5 + 𝛽 × 𝐶/ ∗ ∑ 𝑝& 4𝑂!
)'
*

	5 + 𝐶/ ×
,"
,'
*
34,"

,'
*
∈6

CSP

CP’s Server

CP pays to CSP

Content

CP pays to
for providing
content to

Content

Content Flow Payment Flow

23

 ∑ 𝑝& 4𝑂!
)'
*

	5
,"
,'
*
3¬(684)

 (3-5)

Where L is the set of contents stored locally at a node; R is the set of contents stored in cache

of other nodes in the SWNET (𝐿 ∩ 𝑅 = ∅). The network-wide total cost of provisioning in a

network with size 𝑁 can then be computed as follows:

																						𝑐𝑜𝑠𝑡9:9;< = ∑ 𝑐𝑜𝑠𝑡&=
&>? (3-6)

3.3.4 Problem Definition

For a given combination of 𝐶0 , 𝐶/, and a heterogeneous request model as presented in Section

3.2, in a network of size N, the objective is to design a cooperative caching mechanism which

minimizes the total cost of provisioning as stated by 𝑐𝑜𝑠𝑡9:9;<.

3.4 Heterogeneous Split Caching Algorithm

The proposed Heterogeneous Split Caching (HSC) algorithm is designed for minimizing the

provisioning cost under the proposed heterogeneous request model. Each node’s cache is divided

into two parts shown as Figure 3-2: 1) local segment, which is 𝜆	(0 ≤ 𝜆 ≤ 1) fraction of the

available storage, and 2) global segment, which is the rest of the storage. In the local segment, nodes

store objects that are locally most popular for the node, while in the global segment nodes cache

objects that are globally most popular.

Figure 3-2: Cache Partitioning in HSC

Local segment Global segment

! ∗ # (1 − !) ∗ #

Cache space (S) in a node

24

Information Availability: CP maintains information regarding number of requests made for any

object, with which it can compute the global popularity (𝑝" 4𝑂!
)'
*

5) using Eqn. 3-1, and the

popularity of the object among all the members of its category (𝑟 4𝑂!
)'
*

5) using Eqn. 3-3. Each node

only needs to maintain its personal preference for categories. Once an object labeled with 𝑝" 4𝑂!
)'
*

5

and	𝑟 4𝑂!
)'
*

5 is downloaded, the node-specific local popularity of the object is computed based on

Eqn. 3-4 locally by the node. In the global segment, globally popular unique objects are stored. An

object’s global popularity (𝑝" 4𝑂!
)'
*

5) follows the assigned Zipf distribution from Eqn. 3-1, and is

known by nodes when the object is downloaded.

Uniqueness of objects stored in the global segment is required to guarantee maximum content

diversity, and to avoid network-wide duplications of globally popular objects. It means that the

objects in the local segment can be network-wide duplicated. If 𝑆 is the per-node cache/storage size,

local segment occupies	𝜆 ∗ 𝑆 portion of the cache, which leaves (1 − 𝜆) ∗ 𝑆 for the global segment.

The objective of the HSC algorithm is to find the optimal 𝜆 such that the total provisioning cost as

defined in Eqn. 3-6 is minimized.

 Upon receiving a content (𝑂&@A)	either remotely from its Social Wireless Network (SWN)

or from the CP, the requester node-i stores it in its local segment of its cache. If the local segment

is full, it follows a replacement policy as follows.

 The node first compares the local popularity of the obtained object 𝑂&@A with the popularity

of the least locally popular content 𝑂<_C!&	in its local segment. If 𝑝!(𝑂&@A) > 𝑝!1𝑂<_C!&3, 𝑂<_C!&	is

replaced with 𝑂&@A. Otherwise, following happens.

25

 1) If 𝑂&@A is obtained from the SWNET, the content is dropped. This is since the object is

less popular locally compared to other objects existing in the local segment, it is not going to be

requested as frequently. Therefore, it is reasonable to obtain it remotely from the SWNET, anytime

it is requested again.

2) If 𝑂&@A is downloaded from the CP, the node stores it in the global segment. If that segment

is full, the node compares the global popularity of 𝑂&@A with that of the least globally popular object

𝑂D_C!& in its global segment. If 𝑝"(𝑂&@A) > 𝑝"1𝑂D_C!&3, 𝑂D_C!& is replaced by 𝑂&@A . Otherwise,

the object is dropped. Storing a downloaded content in the global segment improves the network-

wide content diversity. By storing the content in at most one node, the object becomes accessible

to other SWNET nodes, thus eliminating cost of future downloads.

 The full logic of caching and replacement is summarized in Algorithm 3-1. The optimal

solution which results in the minimum provisioning cost can be achieved when lambda is set at the

optimal lambda, which is found experimentally.

 Since the values of 𝑝" 4𝑂!
)'
*

5 and 𝑟 4𝑂!
)'
*

5 are independently computed by the CP, and

delivered as a part of the host object 𝑂!
)'
*

, a node can compute its specific local popularity for an

object within the time complexity of O(1). The main computation cost of the algorithm is for

running the replacement policy, which could be O(n) in the worst situation, where n is the local

cache size.

1: Input: New Coming Content 𝑂&@A
2: if(i.𝑐𝑎𝑐ℎ𝑒<:E;< is not full) then
3: store 𝑂&@A in 𝑐𝑎𝑐ℎ𝑒<:E;<
4: else
5: 𝑂<_C!& = least locally popular content in 𝑐𝑎𝑐ℎ𝑒<:E;<
6: if(𝑝!(𝑂&@A) > 𝑝!(𝑂<_C!&)) then
7: replace(𝑂&@A,	𝑂<_C!&)
8: else

26

9: if(𝑂&@A is obtained from other nodes) then
10: drop(𝑂&@A)
11: else
12: if(i.𝑐𝑎𝑐ℎ𝑒D<:F;< is not full) then
13: store 𝑂&@A in 𝑐𝑎𝑐ℎ𝑒D<:F;<
14: else
15: 𝑂D_C!& = least globally popular content in 𝑐𝑎𝑐ℎ𝑒D<:F;<
16: if(𝑝"(𝑂&@A) > 𝑝"1𝑂D_C!&3) then
17: replace(𝑂&@A,	𝑂D_C!&)
18: else
19: drop(𝑂&@A)
20: end
21: end
22: end
23: end
24: end

Algorithm 3-1: Caching algorithm and replacement policy in HSC

3.5 Performance Evaluation

Using a Java based simulator ONE [66], performance of the following two caching algorithms

is evaluated in a static fully-connected network of 1000 nodes requesting similar-size objects. The

optimal 𝜆 that minimizes the provisioning cost is chosen experimentally in various scenarios since

there is no closed-form expression of it.

Baseline HSC: Each node in this case starts with an empty cache and then the cache replacement

process follows the algorithm presented in Section 3.4.

HSC with Cache pre-filling: This represents a network-wide steady state of cache distribution, when

the baseline HSC is applied for an infinite number of requests. Such steady state is emulated by

prefilling each node’s cache space (by the content server) with 𝜆 ∗ 𝑆 number of locally popular

objects for the node. Node’s global cache segment is filled with (1 − 𝜆) ∗ 𝑆 unique and globally

popular objects. Note that the objects stored in local segments are duplicated across multiple nodes.

However, objects in a node’s global segment needs to be network wide unique. No replacement is

executed since pre-filling represents a desirable network wide steady state.

27

Pre-filling is not scalable and realistic. It, however, provides the benchmark results, that is,

the best-case performance corresponding to when the baseline HSC is executed over long duration.

Parameter Default Value
Number of Nodes 1000
Number of Categories 5
Zipf Parameter 𝛼 0.8
Object Population 100000
Total Simulation Duration 500000 Requests
Download Cost 10
Ratio of Rebate to Download Cost 𝛽 0.6
Node’s Cache Size 50 Objects

Table 3-1: Simulation’s baseline parameter

 Unless stated otherwise, all parameters are set to baseline values as shown in Table 3-1.

The default 𝛼 is set as 0.8 [25], and number of objects is set to 100 thousand which is sufficiently

larger than the total number of objects which can be stored throughout the network (i.e. 50000).

Simulation is stopped when 500 thousand requests are generated. Since the popularity (i.e.,

probability of being requested) of the lowest popular object is 2 × 10GH, such number of requests

ensures that every object be highly likely requested at least once in the network. Each node’s cache

size is set such that it can accommodate 50 objects.

3.5.1 Impacts of Zipf parameter (𝜶) and Rebate cost ratio (𝜷)

The U-shape trend for the cost in both graphs of Figure 3-3 indicates that there is an optimal

cache split factor 𝜆 that minimizes the provisioning cost. The figure shows the total cost of

provisioning for two prefilling and baseline scenarios as well as the theoretical cost of provisioning

all objects for all nodes computed based on Eqn. 3-5 and 3-6. When 𝜆 is zero, the entire cache in a

node contains globally popular objects. 𝜆=1 corresponds to when every node’s cache contains only

locally popular objects for that node. The cost in pre-filling case is very similar to the cost computed

based on Eqn. 3-5 and 3-6, since the pre-filling scenario represents the network-wide steady state

28

of caching, and also the best performance under each set of parameters. On the other hand, the cost

of pre-filling case is always less than the baseline HSC except for when 𝜆=1. The reason for this

exception is as follows. Before convergence, caches still hold objects, which are globally popular.

When 𝜆=1, the whole cache is supposed to maintain locally popular objects. The existence of

globally popular objects in the cache results in an increase of remote hit rate, which causes a lower

cost for HSC compared to pre-filling case.

Figure 3-3: Impact of 𝛼 on cost

Compared with 𝛼 = 0.8, the costs for both caching methods decrease when 𝛼 = 0.9	.	This is

because with increase in 𝛼, the difference of popularity for every pair of objects with consecutive

ranks increases in Zipf for the global popularities. That is, the popularity gap between the few top

objects and the lower rank objects increases. That results in more frequent requests be targeted at

top popular objects. Thus, with larger 𝛼, caching such objects is more beneficial and it reduces cost.

 The local and remote hit rates for the baseline HSC is shown in Figure 3-4 for various 𝛼.

With a fixed 𝛼, a larger 𝜆 results in higher local and lower remote hit rates. That is because with

large 𝜆, the local segment’s size increases, leaving less space for globally popular objects, which

would have contributed to higher remote hit rates.

60%

65%

70%

75%

80%

85%

0 0.5 1

C
os

t

𝜆

(a) 𝛼=0.8Prefilling HSC
Baseline HSC
Equation

52%

57%

62%

67%

72%

0 0.5 1

C
os

t

𝜆

(b) 𝛼=0.9Prefilling HSC
Baseline HSC
Equation

29

Figure 3-4: Hit rates for baseline HSC

With large 𝛼, local hit rate increases more drastically, since the generated requests are more

targeted at top globally popular objects. The optimal strategy is then to increase the size of the local

segment (i.e. larger 𝜆) to store such objects locally.

Figure 3-5 depicts the impacts of 𝛽 on the provisioning cost and the optimal	𝜆. Higher 𝛽

represents higher cost of getting content from in-SWNET nodes. This explains why higher 𝛽

increases the overall cost. On the other hand, it can be seen that the optimal 𝜆 is 0 when 𝛽 = 0	

(rebate cost 𝐶0 = 0). That is because the best caching strategy is to cache objects as diverse as

possible throughout the network when the cost for remote hit is same as the cost for a local hit. The

provisioning cost is minimized by caching the locally popular objects (i.e. the optimal 𝜆 = 1) when

𝛽 = 1. That is because it is not beneficial for nodes to store globally popular objects when the rebate

𝐶0 is same as the download cost 𝐶/ . For 0< 𝛽 < 1, larger 𝛽 results in larger optimal 𝜆, which

means caching globally popular objects is less beneficial when 𝐶0 increases.

0%
5%

10%
15%
20%
25%
30%
35%

0 0.5 1

Lo
ca

l H
it

Ra
te

𝜆

(a)
=1

=0.9

=0.8=0.7

20%
30%
40%
50%
60%
70%
80%

0 0.5 1

Re
m

ot
e

H
it

Ra
te

𝜆

𝛼=1

𝛼=0.8

(b)
=0.9

=0.7

30

Figure 3-5: Impact of 𝛽 on cost

3.5.2 Comparison with Traditional Caching Strategies

Provisioning costs corresponding to traditional caching algorithms, including Least

Frequently Used (LFU), Least Recently Used (LRU), and Random replacement are evaluated.

 As observed in Figure 3-6, both versions of HSC incur the lowest cost, while the Random

method holds the highest cost, and the costs of LFU and LRU are very similar. As expected, with

increasing 𝛽, the provisioning cost for all the protocols increase. Also, the cost difference between

the HSC algorithms and the traditional ones increase. This is because with larger rebates, it is more

beneficial to cache locally popular objects for which HSC is more efficient than the traditional

algorithms.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0 0.5 1

C
os

t

𝜆

Prefilling HSC
Baseline HSC

75%

77%

79%

81%

83%

85%

87%

0 0.5 1

C
os

t

𝜆

Prefilling HSC
Baseline HSC

75%

80%

85%

90%

95%

100%

0 0.5 1
C

os
t

𝜆

Prefilling HSC
Baseline HSC

(a)

(c) (d)

45%
50%
55%
60%
65%
70%
75%
80%
85%

0 0.5 1

C
os

t

𝜆

Prefilling HSC

Baseline HSC
(b)

31

Figure 3-6: Comparison of minimum cost

3.5.3 Object Density

Object density is defined as the number of copies of an object maintained within the network.

Figure 3-7 shows the density of the top 50 globally popular objects. The ID of each object represents

its global rank (i.e., popularity). For both pre-filling and baseline versions of HSC, for 𝜆 = 0, the

object density for all objects is 1. That is because for all nodes, the whole cache is assigned to the

global segment. Since the global segment of the cache in a node stores only unique objects, only

one copy of such an object can be stored in the entire SWNET. When 𝜆 > 0, with pre-filling (Figure

3-7 (a)), the density of most popular objects equals the total number of nodes, which is 1000. That

means, there is a copy of each object in each node’s local cache segment. Note that the local

popularity of an object is a function of its global popularity and the local popularity of the category

to which that object belongs to. When an object’s global popularity is very large, irrespective of the

local popularity of its category for a node, its local popularity for the node is also generally high.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

C
os

t

β

Prefilling HSC

Random

LRU

LFU

Baseline HSC

32

Figure 3-7: Object density of various algorithms

However, for some nodes, the local popularities of some objects with low global popularity

is high because of the heterogeneity, which is also the reason for the fluctuation happening when

the density starts to reduce. Since 𝜆 = 1 assigns the whole cache to the local segment, it can store

more globally popular contents across nodes in the network, compared to for example when 𝜆 =

0.5 . The decreasing trend of density shows that generally objects with higher rank (global

popularity) are requested more often, thus, stored in the SWNET.

 Density curves for the baseline non-prefilling HSC have similar trend. The differences in

density, especially for top globally popular objects, are caused by fewer requests in the baseline

HSC compared to the infinite request steady state for the pre-filling HSC case.

0

200

400

600

800

1000

1200

0 20 40

D
en

si
ty

Object ID

λ=0
λ=0.5
λ=1

0

200

400

600

800

1000

1200

0 20 40

D
en

si
ty

Object ID

λ=0
λ=0.5
λ=1

0

200

400

600

800

1000

1200

0 20 40

D
en

si
ty

Object ID

LFU
LRU
Random

(a) Prefilling HSC (b) Baseline HSC

(c) Traditional algorithms

33

For traditional caching algorithms, the density trend looks more long-tailed and similar to the

Zipf distribution for the global popularity. That means, each object is cached according to its global

popularity. Since there is no distinction between the global and the local segments, the density

3.5.4 Convergence of Baseline HSC to Prefilling HSC

To demonstrate how baseline HSC results convergence to that for the prefilling version for

infinite number of requests, simulations with different number of requests over various 𝜆 values are

run. Figure 3-8 shows the cost for the two protocols. As mentioned, baseline HSC achieves a similar

cost to pre-filling HSC as the number of requests is large enough (e.g., larger than 4 million). Note

that, for each number of request scenario, the dip in the curves indicate the optimal 𝜆 at which the

cost is minimized.

Figure 3-8: Convergence of cost for HSC baseline to the pre-filling scenario

3.6 Summary

A heterogeneous request generation model is proposed which is inspired by hierarchical user

preferences for electronic content. The model is heterogeneous in that each user’s preferences for

genre/category and contents under those preferred categories are different. Based on this request

34

generation model, a Heterogeneous Split Caching (HSC) which incentivizes cooperative users in

caching and aims at minimizing the network-wide provisioning cost is proposed. Simulation results

indicate that the proposed mechanism is able to reduce content provisioning cost compared to

traditional caching mechanisms. It also shows that after large number of content requests when the

network caches reach a steady state, the mechanism can achieve cost minimization bounds at the

same level offered by a benchmark strategy.

35

Chapter 4 : Distributed Caching in Mobile Wireless Networks

4.1 Introduction

In this chapter, the caching mechanism proposed in Chapter-3 is applied on the scenario of

mobility wireless networks. A typical example of such scenario is the vehicular networks formed

by moving vehicles that connect to each other through V2V links. Unlike fully-connected networks

in Chapter-3, in a mobility network the frequent disconnections caused by nodes’ (e.g. vehicles,

etc.) mobility influence the level of nodes’ cooperation in caching. However, the experiments show

that the proposed mechanism is still able to reduce bandwidth usage and the resulting content

provisioning cost compared to traditional caching mechanisms in both monolithic and community-

based mobility scenarios.

4.2 Content Search with Tolerable Access Delay (TAD)

Even though the network and pricing models applied in this chapter are the same as in

Chapter-3, the content search model is extended for mobile networks. Upon originating a request,

a node first performs a local search for the requested content in its own cache. If that fails, the node

performs a remote search in the mobile network (e.g., a connected vehicle fabric). If the node cannot

obtain the content from the network within a pre-defined Tolerable Access Delay (TAD), it sends

a request to the CP’s server. TAD, which is part of a request, represents the duration that a user

application is willing to wait before a successful content request is served. The remote search can

take place using devices’ Wi-Fi, Bluetooth, and other short-range RF interfaces (e.g. DSRC, etc.).

The content from the CP’s server is downloaded using a CSP’s cellular network.

4.3 Heterogeneous Split Caching (HSC) for Mobile Networks

In this section, the HSC proposed in Chapter-3 is specifically extended to be used in a mobile

network. Frequent disconnections caused by nodes’ mobility influence the level of nodes’

36

cooperation in caching. The objective of the HSC algorithm is to find the optimal caching strategy

for mobile networks with various connection density.

In a fully-connected network described in Chapter-3, ideally, the global segment in HSC of

the nodes should contain objects as diverse as possible. This is to prevent network-wide duplications

of globally popular objects. Though, this approach is neither optimal nor feasible in a mobile

network due to frequent disconnections, where a node has limited number of encounters during

TAD. Under such conditions, replicating globally popular objects into different caches may be a

more efficient solution. Also, downloading an object from CP’s server does not necessarily indicate

that no other node in the network holds the object in its global segment. It implies that the requester

has not succeeded in meeting the specific node with the object during the TAD. Therefore, in a

mobile network, it is not guaranteed that objects in global segments of nodes are unique. However,

it is guaranteed that at each point of time, an object is downloaded and stored in global segment of

a requester, only if, its neighbor nodes do not carry it. Objects in the local segment can be network-

wide duplicated. If 𝑆 is the per-node cache/storage size, local segment occupies	𝜆 ∗ 𝑆 portion of the

cache, which leaves (1 − 𝜆) ∗ 𝑆 for the global segment. The objective of the HSC algorithm is to

find the optimal 𝜆 such that the total provisioning cost as defined in Eqn. 3-6 in Chapter-3 is

minimized.

4.4 Performance evaluation

Using the simulator ONE, performance of the following two caching algorithms is evaluated

in a 100-node mobile network under scenarios with or without community-based movement, and

also a scenario of Static Fully-Connected Network (SFN) for comparison.

Baseline HSC: Each node in this case starts with an empty cache and then the cache replacement

process follows the algorithm presented in Section 3.4 in Chapter-3.

37

HSC with Cache pre-filling: This represents an ideal cache structure when it is assumed that the

network is so sparse that the nodes’ remote hit rate is near zero. With pre-filling, each node’s local

cache segment is filled with 𝜆 ∗ 𝑆 locally popular objects. The global segment is filled with

duplicated (1 − 𝜆) ∗ 𝑆 top globally popular objects. The logic behind this is that in a sparse

network, without server’s involvement, it cannot be ensured that unique objects are stored in global

cache segments. Due to disconnections, multiple nodes may download an object from the CP’s

server without knowing that another node in the network carries it. No replacement is executed

since pre-filling represents the ideal cache state. Pre-filling is not scalable, though it is supposed to

show the best-case performance, corresponding to the extreme situation in which the baseline HSC

is executed over long time, in presence of frequent disconnections.

 Unless stated otherwise, all parameters are set to baseline values as shown in Table 4-1.

The default 𝛼 is set to 0.8, and number of objects is set to 10 thousand which is sufficiently larger

than the total number of objects which can be stored throughout the network (i.e. 5000). Simulation

is stopped when 50 thousand requests are generated. Since the global popularity (i.e., probability of

being requested) of the lowest popular object is 2 × 10GI, such number of requests ensures that

every object be highly likely requested at least once throughout the network. 5 number of categories

is chosen for the network size of 100 nodes. Parameters TAD, 𝛽 and terrain size vary.

Parameter Default value
Number of Nodes 100
Number of Object Categories 5
Zipf Parameter 𝛼 0.8
Object Population 10000
Simulation Duration 50000 Requests
Download Cost 10
Ratio of rebate to download cost 𝛽 0.8
Cache Size in Each Node 50 Objects
Transmission Range (e.g., Bluetooth) 10m

38

Terrain Size (e.g., University Campus) 800m×800m
Tolerable Access Delay (TAD) 300s

Table 4-1: Simulation’s baseline parameter

4.4.1 Monolithic Mobility

In this simulation, 100 nodes move randomly among 10 waypoints (points of interest). Figure

4-1 depicts how 𝜆 affects total provisioning cost under different terrain sizes (TS) for baseline HSC.

The HSC algorithm is also run in a Static Fully Connected Network (SFN) to show protocol’s

performance in absence of any disconnections. This is to investigate if and how mobility and

resulting disconnections affect HSC’s behavior.

Figure 4-1: Cost V.S. λ for baseline HSC and SFN

The U-shape trend for the cost in both graphs of SFN and HSC (TS=50m×50m) indicates

that there is an optimal 𝜆 that minimizes the provisioning cost. When 𝜆 is zero, the entire cache for

a node contains globally popular objects. 𝜆 = 1 corresponds to when every node’s cache contains

only locally popular objects for that node. When terrain size is as large as 800m× 800m,

disconnections happen more frequently. Therefore, a requester node visits fewer nodes during the

tolerable access delay (TAD) compared to when network is denser (for scenario TS=50m×50m).

Under such conditions, the best cost-reducing strategy is to store as many locally popular objects

72%
74%
76%
78%
80%
82%
84%
86%

0 0.2 0.4 0.6 0.8 1

C
os
t

λ

TS=50m×50m

SFN

TS=800m×800m

39

as possible, which happens when 𝜆 approaches 1. SFN maintains the lowest cost since it

corresponds to a fully-connected network where the remote hit rate is supposed to be much higher

compared to a mobile network with disconnections. For a similar reason (fewer disconnections and

higher remote hit rate), the cost of small terrain size (i.e. 50m×50m) is lower than that for the larger

size network (i.e. 800m×800m), except when 𝜆=0. Corresponding average local and remote hit

rates over all nodes are shown in Figure 4-2. As mentioned, remote hit rate for SFC and the smaller

terrain size (50m×50m) is lower than the remote hit rate for larger size networks (Figure 4-2 (b)).

Figure 4-2: Hit rates for baseline HSC and SFN

The reason for a higher cost of provisioning in the TS=50m×50m case, compared to the larger

size scenario, when	𝜆=0, is as follows. In a smaller size network, nodes have higher chance of

obtaining objects remotely. With a rebate to download cost ratio 0.8, the involved rebate cost

becomes so large, it results in a higher provisioning cost in general.

 Lower local and higher remote hit rates can be observed for SFN and TS=50m×50m

scenarios in Figure 4-2 (a) and Figure 4-2 (b) respectively. That is, for these scenarios, the optimal

𝜆 is smaller compared to optimal 𝜆=1 for TS=800m×800m case. This represents a cache space,

which can accommodate more globally popular objects, leading to a higher remote hit rate. Impact

of 𝜆 on remote hit rate is not as clear when the terrain size is very large (i.e. 800m×800m). That is

because the network is so sparse that nodes can rarely meet each other during the TAD for any

0%

5%

10%

15%

20%

0 0.5 1

Lo
ca

l H
it

Ra
te

λ

TS=800m×800m
TS=50m×50m
SFN

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0 0.5 1

Re
m

ot
e

H
it

Ra
te

λ

TS=800m×800m
TS=50m×50m
SFN

(a) (b)

40

values of 𝜆. For TS= 800m×800m scenario, the local hit rate does not change significantly either.

The reason is that nodes’ global segments end up containing many duplicate objects, since each

node individually downloads the content. Eventually, with any 𝜆, each node carries most locally

popular objects (in local segment), as well as most globally popular objects. This leads to a high

local hit rate at most 𝜆 values.

Figure 4-3: Minimum cost V.S. terrain size for baseline HSC and SFN

Figure 4-3 shows the impact of TAD on minimum provisioning cost for various terrain sizes.

With an increase in terrain size, the minimum cost with different TAD increases, since the remote

hit rate decreases in sparser networks. With longer TAD, the minimum cost decreases because

nodes obtain objects remotely rather than through downloading. In the smallest terrain size (i.e.

10m×10m) the minimum cost using baseline HSC is very close to SFN’s cost when TAD is larger

than 1s. This is because high node density in a small terrain size provides near full connectivity, as

in the SFN case.

72%

74%

76%

78%

80%

82%

0 500 1000

M
in

im
um

 C
os

t

Terrain Size

SFN
TAD=1s
TAD=5s
TAD=600s

41

Figure 4-4: Cost V.S. λ for baseline HSC with various 𝛽 and terrain sizes

Figure 4-4 depicts the effects of both 𝛽 and terrain size on the optimal	𝜆. For both large and

small terrain sizes, the provisioning cost increases with an increase in 𝛽. This is because the cost of

rebate grows larger with 𝛽. It can also be observed that generally smaller terrain sizes result in lower

provisioning cost. Only for 𝛽 = 1, the provisioning cost in TS=50m×50m scenario is larger than

that for TS=800m×800m, especially for smaller 𝜆′𝑠. The reason is the larger gap between the

corresponding remote hit rates, as shown in Figure 4-2 (b). For an expensive rebate cost (𝛽=1),

higher level of nodes’ cooperation in the smaller terrain size (TS=50m×50m) results in large rebate

and subsequently higher provisioning cost. In a smaller terrain size, (TS=50m×50m), optimal 𝜆 is

clearly affected by 𝛽. For example, the optimal 𝜆 equals 0 when 𝛽 = 0, because the cost of rebate

is 0, which makes remote hit rate more beneficial. On the contrary, when 𝛽 = 1, optimal 𝜆 is 1

because providing rebate is as expensive as downloading content directly from the CP’s server. It

should be noted that 𝛽 does not significantly affect the optimal 𝜆 when terrain size is larger (i.e.

800m×800m). With low remote hit rate, the best strategy for minimizing the cost is to store as many

locally popular objects as possible, irrespective of the rebate cost.

39%

49%

59%

69%

79%

89%

99%

0 0.5 1

C
os

t

λ

TS=800m×800m𝛽=0
𝛽=0.6 =1

TS=50m×50m, =0.6

TS=50m×50m, =0

TS=50m×50m, =1

42

Figure 4-5: Cost V.S. λ for HSC-baseline and prefilling

Figure 4-5 shows the provisioning costs for both baseline HSC and prefilling for different

network size. Cost for HSC-prefilling does not change significantly across terrain size. The global

segment of all caches contains similar (and most globally popular) objects. Therefore, even for

smaller terrain size, when nodes can contribute to cooperative caching, they cannot provide objects

newer than what their peers already maintain.

The provisioning cost of prefilling scenarios is minimized around 𝜆 = 1. This is because the

global section of cache in all nodes contains duplicate objects. Therefore, the remote hit rate is 0

and the most efficient strategy is to store as many locally popular objects as possible. For a small

terrain size (i.e. 50m×50m), the provisioning cost for HSC-baseline and HSC-prefilling are

different only for smaller 𝜆′𝑠. Consider the 𝜆 = 0 case with entire cache consisting of only the

global segments. For the prefilling scenario, remote hit rate is 0, since all nodes contain similar top

globally popular objects. Though, for the HSC-baseline, because of high node density and

distribution of globally popular objects across nodes, the remote hit rate, and its subsequent rebate

cost leads to a higher provisioning cost. For larger 𝜆′𝑠, for which part of the cache consists of locally

popular objects, the HSC-prefilling and baseline have similar cost because the local hit rate

increases in both, and that reduces the effect of high rebate cost. This is the reason behind the larger

74%

76%

78%

80%

82%

84%

86%

0 0.5 1

C
os

t

λ

HSC-baseline, TS=800m×800m

HSC-prefilling, TS=800m×800m
HSC-prefilling, TS=50m×50m

HSC-baseline, TS=50m×50m

43

gap for smaller 𝜆′𝑠. When terrain size is large (i.e. 800m×800m), the provisioning cost of baseline

is significantly larger than that for prefilling for all 𝜆 values, because with sparser connectivity,

prefilling provides a more efficient solution.

Figure 4-6: Comparison with traditional algorithms in monolithic scenario

Provisioning cost corresponding to traditional caching algorithms, including Least Frequently

Used (LFU), Least Recently Used (LRU), and Random replacement are evaluated, and compared

with optimal HSC. As observed in Figure 4-6, with larger terrain size, provisioning cost for all the

protocols increase. HSC incurs the lowest cost for all terrain sizes.

4.4.2 Community-based Mobility

Here it is investigated if and how community-based movements along with community-based

request model affects the cost results for the proposed caching algorithm. The population of 100

nodes are divided into 4 communities. Members of each community are similar in terms of the local

popularity for object categories; thus, for the request generation model. They also follow a similar

movement pattern as described below. Communities are formed based on nodes’ local popularities

for categories. Each node maintains a category preference vector, which defines the popularity and

rank of each of the 5 categories for that node. For example, a node-i maintains a category preference

73%
75%
77%
79%
81%
83%
85%
87%
89%

0 500 1000

C
os

t

Terrain Size

HSC-Baseline

LFU

RandomLRU

44

vector such as <𝑝!(𝐶?;),	𝑝!1𝐶JF3,	𝑝!(𝐶KE),	𝑝!1𝐶L/3,	𝑝!(𝐶I@)>. As an example, this vector indicates that

category-a is the top most popular category for node-i with popularity 𝑝!(𝐶?;). Based on the concept

above, the preference similarity of each pair of nodes can be measured by Euclidian distance

between their category preference vectors. Then the 100 nodes are divided into 4 groups of 25 nodes

such that in each group the pairwise Euclidian distance between the category preference vectors are

minimized. That is, nodes from one community are more similar in terms of category preference

compared to nodes from two different communities. On the other hand, members of each

community are imposed to have similar transition probabilities to few specific waypoints across 10

waypoints in a synthetic map. Therefore, intra-community contact frequency for each pair of nodes

from the same community is higher than the contact frequency of each of the nodes with members

of other communities.

Figure 4-7 depicts the provisioning cost of HSC-baseline under both community-based and

monolithic mobility scenarios with different 𝜆. Generally, the algorithm incurs smaller cost of

provisioning in a community-based scenario. This is because, nodes from the same community have

similar preferences and can lessen the total cost by participating in caching and providing content

to members of the same community.

45

Figure 4-7: Cost V.S. λ for HSC baseline

The optimal 𝜆 for the community-based model is around 1 (similar to that for the monolithic

mobility scenario in Section 4.4.1). This is because, it is more beneficial if nodes store locally

popular objects which is likely to be requested by other nodes in the same community.

Figure 4-8: Comparison with traditional algorithms in community-based scenario

The provisioning costs for traditional caching algorithms under the community-based

scenario are shown in Figure 4-8. With increasing 𝛽, costs for all protocols increase because of

higher rebate. However, HSC incurs the lowest cost for all 𝛽. The cost differences between the HSC

and traditional algorithms increase with an increase in 𝛽. This is because with larger rebates, it is

68%
70%
72%
74%
76%
78%
80%
82%
84%

0 0.5 1

C
os
t

λ

Community-based

Monolithic

60%
65%
70%
75%
80%
85%
90%
95%

0 0.5 1

C
os
t

𝛽

HSC-Baseline
LFU

Random

LRU

46

more beneficial to cache locally popular objects and perform cooperating caching, which is what

HSC accomplishes.

4.4.3 Helsinki-map Mobility

Finally, we evaluate HSC and the traditional algorithms when nodes follow a random

waypoint mobility model within the map of Helsinki as embedded in the DTN simulator ONE. This

mobility scenario is different than the monolithic mobility presented in Section 4.4.1 that it

simulates mobility of nodes in a larger city-scale terrain size (4500m×3400m) with transmission

range set to 200m. This complies with the transmission range in conventional Wi-Fi networks.

Other parameters follow the baseline values shown in Table 4-1.

Figure 4-9 shows that similar to the other mobility scenarios, HSC incurs lower provisioning

cost compared to traditional caching algorithms. In summary, HSC-prefilling provides lower cost

than HSC-baseline for large terrain sizes, though, it is not as scalable since every node requires to

pull content from CP’s server upon joining the network.

Figure 4-9: Comparison with traditional algorithms in Helsinki

4.5 Summary

The Heterogeneous Split Caching (HSC) mechanism proposed in Chapter-3 that aims at

minimizing the network-wide provisioning cost is applied on the scenario of mobility networks.

70%

75%

80%

85%

90%

95%

0 0.2 0.4 0.6 0.8 1

C
os
t

𝛽

Random
LRU

LFU

HSC-Baseline

47

Simulation results indicate that the proposed mechanism is able to reduce content provisioning cost

compared to traditional caching mechanisms in both monolithic and community-based mobility

scenarios.

48

Chapter 5 : Caching for Streaming Video in Social Wireless

Networks

5.1 Introduction

In this chapter, a Device-to-Device cooperative caching framework is proposed for streaming

video consumption by mobile users. For downloading video with cooperative caching, a mobile

device first searches within its neighboring Bluetooth-connected peers for whole or parts of the

requested video before downloading them from a Content Provider’s (CP’s) server. A specific

cooperative caching framework, namely, value-based caching is proposed in which the value of

caching a hierarchically coded streaming video segment is defined for given pricing and video

sharing models. Within this framework, we develop an Adaptive Quality (AQ) provisioning

algorithm that minimizes the overall video content provisioning cost incurred due to the bandwidth

usage of a cellular network.

5.2 Content Search and Pricing Model

The similar content search and pricing models in Chapter-3 and Chapter-4 are still adopted

in this chapter. However, for streaming video, the 𝐶/ and 𝐶0 in the pricing model are defined as the

cost and rebate of unit data size such as per MB. Thus, the larger a video is, the larger the rebate

will be for obtaining the video.

5.3 Streaming Video Play Model

5.3.1 Play Buffering and Caching

A generalized video play model similar to [67] is adopted in which a streaming video consists

of multiple fixed duration segments. When an EC’s device starts playing a video, it attempts to pre-

fetch several segments to its play buffer from its local cache, or nearby ECs devices, or the CP

49

server via the CSP’s network – in that order. When the play buffer gets full, the old buffered

segments are replaced with new segments using a First-In-First-Out (FIFO) policy.

 The play buffers are different from the cache. While the play buffer is used to smoothly

play a currently available video by pre-fetching some of its segments, the cache is used to reduce

the overall provisioning cost of that video by proactively storing its segments. Upon fetching a

video-segment, a device puts it in its play buffer based on a FIFO policy, but it may or may not

cache the segment depending on a separate caching policy as detailed in Section 5.4.

5.3.2 Video Play Model

When an EC’s device starts playing a video, it first attempts to pre-fetch several of the video

segments from the local cache to the play buffer. If any of those segments is not currently in the

local cache, the device broadcasts a request for the absent segments to all other devices that it

encounters during a Tolerable Access Delay (TAD). As defined in Chapter 4, TAD represents the

duration a user is willing to wait for a successful segment retrieval from the network of peer user

devices. If the segment is not found within the TAD period, the segment is downloaded from the

centralized CP’s server. The TAD for each video segment should be dimensioned based on the

number and length (i.e. play duration) of its previous segments.

Figure 5-1: Timeline of video play model

Request segments

…

Request segment after
has been played

Timeline
…

50

Figure 5-1 depicts an example of a video play scenario from [67] in which a device first

requests segments 𝑠M through 𝑠*G? simultaneously to pre-fetch the next p segments. The TAD for

each segment 𝑠! can be computed as follows:

𝑇𝐴𝐷N" = 𝑙N(𝑖 − 𝑐)																																																											(5-1)

where 𝑙N is the length of each segment, and c is the sequence number of the segment that is currently

being played. After segment-0 is played out, segment-p is requested. This process continues until

the video is fully sequentially played out, even when the user temporarily pauses the play. This is

to ensure that the user should experience a smooth play when she/he chooses to resume from the

pause. Following this strategy, the average TAD through all the pre-fetched segments in the buffer

is computed as follows:

𝑇𝐴𝐷;O@ =
∑ P1Q0"
12(
"&1

C8?
= C<0

J
 (5-2)

A node can pre-fetch and store maximally m+1 next segments in the buffer. A larger m results

in a higher 𝑇𝐴𝐷;O@.

In addition to sequential playing, a node can fast-forward or rewind a video on user requests.

These actions are modeled with probabilities 𝑝RR and 𝑝0@A for fast-forwarding and rewinding

respectively. A node may also watch a video partially and switch to another one with probability

𝑝NA!.

51

Figure 5-2: State machine of streaming video play model

The state machine [68] corresponding to these user actions is shown in Figure 5-2, in which

the segment 𝑠E in video 𝑉E is the segment that is currently being played. After segment 𝑠E is finished

playing, the user may continue to view the video 𝑉E (i.e., play segment 𝑠E8?) with probability 𝑝N@S,

or fast-forward to a later segment 𝑠E8! (𝑐 + 𝑖 < 𝑆𝑒𝑔(𝑉E) , where 𝑆𝑒𝑔(𝑉E) represents the total

number of segments in the video 𝑉E), or rewind to a previous segment 𝑠EG((𝑐 ≥ 𝑗). If the user

switches to another video 𝑉&, she starts the new video from its first segment 𝑠M. After completing

each of these actions, the user starts playing the new segment (i.e. segment 𝑠E8?, 𝑠E8! or 𝑠EG(in the

current video 𝑉E , or segment 𝑠M in another video 𝑉&). In any of these cases except in sequential

Play current
segment !"
in current
video #"

Move to next
segment !"$%
in current
video #"

Switch to
first segment
!& in new
video #'

Forward to
segment !"$(
in current
video #"

Rewind to
previous segment
!")* in video #"

+ = -./0

+ = -1/2

+ = -33

+ = -.2(

Fast-Forward

Switch

Sequential Play

Rewind

+ = 1
#" ←	#'
!" ←	!&

+ = 1
!" ←	!"$(

+ = 1
!" ←	!"$%

+ = 1
!" ←	!")*

52

playing, the requests for pre-fetching and their TADs are re-generated and re-computed. Note that

by definition, 𝑝RR + 𝑝0@A + 𝑝NA! + 𝑝N@S = 1. This video play model is used for the subsequent

analysis.

5.4 Value-based D2D Caching

Building on the above video search, pricing, and play models, we propose a D2D cooperative

streaming video caching mechanism in this section.

5.4.1 Value of Caching a Video Segment

Caching is performed at the level of video segments, which are also referred to as objects.

The value of caching an object is defined as the provisioning cost that can be saved for future

requests by caching the object. For example, if a node requests an object that has been stored in its

local cache, the provisioning cost is zero. The value in this case would be the total savings due to

caching, which is the cost of fetching the object from the CP using the CSP’s network.

Value of Caching an Object Received from the CP’s Server: According to the content search model,

a requested object is downloaded from the CP’s server only when it is not found in: a) the local

cache of the requester node, or b) any other peer nodes the requester encounters within a pre-

computed TAD duration. The latter means, either there is no copy of the requested video segment

found in the encountered nodes’ caches, or the available copies of the segment in the encountered

nodes are encoded at a quality that is less than the requested quality. Let 𝑄 = {𝑞M, 𝑞?, 𝑞J, …… , 𝑞'}

be the set of possible video qualities that are provided by the CP, in which quality 𝑞! is higher than

𝑞(for any 𝑖 > 𝑗. Hierarchical video coding [69] allows a video segment to be encoded at quality 𝑞!

to satisfy a request for the same segment at quality 𝑞(, but not vice versa.

 Let us consider the scenario in which node n downloads the object 𝑜! with requested quality

𝑟& (𝑟& ∈ 𝑄) from the CP’s server, and stores the object in its local cache. Also consider that this is

53

only one such copy among the nodes that node n has encountered so far (otherwise, instead of

downloading it from the CP’s server, the object can be fetched from a peer of node n which has

such copy). Node n can receive the same object with no cost in the future since the object will be

cached in its local cache. Therefore, the saved provisioning cost for node n because of caching

object 𝑜! with quality 𝑟& in its cache is:

𝑠𝑎𝑣𝑒𝑑&)T = 𝑝:"𝐶/𝑆1𝑟&, 𝑙:"3																																																					(5-3)

where 𝑝:" is the popularity of object 𝑜!. The streaming videos’ popularities are assumed to follow

a power law Zipf distribution, and each segment of a video has the same popularity as the parent

video it belongs to. The higher the popularity, the more likely it is for it to be requested.

Additionally, 𝑆1𝑟&, 𝑙:"3 is the size of the object with quality 𝑟& and duration 𝑙:". The size of a video

segment is a function of its quality and length. It should be noted that hierarchical video coding [69]

allows object 𝑜! with quality 𝑟& to satisfy video requests for the same content 𝑜! with any quality

that is lower than or equal to 𝑟&. As a result, when 𝑜! with quality 𝑟& is cached in node n, any request

with quality 𝑟& or lower from the peers of node n can obtain the object from node n without having

to download it from the CP’s server. Therefore, the provisioning cost in this case is only the rebate

𝐶0 to be paid to node n. This is instead of the downloading cost 𝐶/, thus the saved provisioning cost

for the peer nodes is:

𝑠𝑎𝑣𝑒𝑑*@@0N)T = 𝑝:"(𝐶/ − 𝐶0)𝑁∑ 𝑆1𝑞(, 𝑙:"3𝑃1𝑞(3
03
S*>S4 − 𝑝:"(𝐶/ − 𝐶0)𝑆1𝑟&, 𝑙:"3 (5-4)

where N is the expected number of peers that node n encounters, and 𝑃1𝑞(3 is the probability that

such peers’ preference quality for object 𝑜! is 𝑞(. Such quality preference can be resulted by the

limit of device resource, or the purchase price of the quality (e.g. the purchase price of the same

video in HD may be lower than 4K), etc. Note that 𝑞(≤ 𝑟& for all the 𝑞(in Eqn. 5-4, and N, which

is the total number of encountered peers, could be different over time since peers may join or leave

54

the network. The first term in Eqn. 5-4, namely, 𝑝:"(𝐶/ − 𝐶0)𝑁∑ 𝑆1𝑞(, 𝑙:"3𝑃1𝑞(3
03
S*>S4 represents

the saved provisioning cost when the nodes obtain the object 𝑜!, encoded in quality no-higher than

𝑟&, from the local network instead of from the CP’s server. The second term 𝑝:"(𝐶/ − 𝐶0)𝑆1𝑟&, 𝑙:"3

is the saved cost generated by node n itself, which was already included in Eqn. 5-3. Therefore, the

total value of caching object 𝑜! with quality 𝑟& downloaded from CP at node n is the sum of results

from Eqns. 5-3 and 5-4:

𝑣𝑎𝑙𝑢𝑒)T(𝑜! , 𝑟&) = 𝑠𝑎𝑣𝑒𝑑&)T + 𝑠𝑎𝑣𝑒𝑑*@@0N)T 	 (5-5)

Value of Caching an Object Received from a Peer EC: Consider a situation in which a node n

requests an object 𝑜! with quality 𝑟& and a specified Tolerable Access Delay (TAD). If there is at

least one copy of the object cached in the peer nodes encountered by node n during the TAD, and

the quality of the copy is no less than 𝑟&, then the object 𝑜! can be obtained from that peer node.

Any subsequent request for the same object by node n would result in a local hit if node n caches

the object. The resulting cost saving is the rebate 𝐶0 that needs to be paid to a peer node in case of

no local caching in node n. This saving can be expressed as:

𝑠𝑎𝑣𝑒𝑑&
*@@0 = 𝑝:"𝐶0𝑆1𝑟&, 𝑙:"3 (5-6)

 Note that this local caching in node n does not affect the provisioning cost for the same object

at other nodes since they still have to fetch it from a peer. Therefore, the saved provisioning cost

for the other nodes except node n is 0. As a result, the overall cost saving or value is as follows,

which remains the same as expressed in Eqn. 5-6:

𝑣𝑎𝑙𝑢𝑒*@@0(𝑜! , 𝑟&) = 𝑠𝑎𝑣𝑒𝑑&
*@@0 + 0 = 𝑝:"𝐶0𝑆1𝑟&, 𝑙:"3						 (5-7)

5.4.2 Value-based D2D Caching Algorithm at the ECs Devices

The value of an object 𝑜&@A, which is requested by a node n for the first time, is initially

computed by the CP’s server (i.e., following Eqn. 5-5), and sent to the requester node along with

55

the content. This requires the CP to track and maintain popularity and quality preference

distributions for all video content across its subscribers based on their request patterns.

When a node receives the object from the CP’s server, it keeps its value unchanged. However,

when a node receives an object from a peer, it re-computes the value of the received object using

Eqn. 5-7. In other words, the initial value of 𝑜&@A computed by the CP’s server may change after

the object is cached and shared by the EC’s devices. A requester node n caches 𝑜&@A if there is

enough empty cache space. Otherwise, it runs the following replacement heuristic.

The node n first finds s lowest valued objects in its cache such that the total size of these

objects is equal to or higher than the size of a new object 𝑜&@A. Let us call this set as 𝑆<@;N9_O;<U@.

Second, the sum of the values of all objects in 𝑆<@;N9_O;<U@ is compared with the value of 𝑜&@A. If

the value of 𝑜&@A is larger, then all the objects in 𝑆<@;N9_O;<U@ are replaced with 𝑜&@A. Otherwise,

𝑜&@A is dropped. The full logic of caching and replacement is summarized in Algorithm 5-1. All

used symbolic notations are summarized in Table 5-1.

1: Input: Requested Object 𝑜&@A Received by node n
2: if (𝑜&@A is not downloaded from CP) then
3: 𝑜&@A . 𝑣𝑎𝑙𝑢𝑒	=		𝑣𝑎𝑙𝑢𝑒*@@0(𝑜&@A , 𝑟&);
4: end
5 // Initialize the set for objects with the least values
6: Initialize (𝑆<@;N9_O;<U@);
7: while (n.rest_cache is not sufficient for 𝑜&@A)
8: 𝑜C!& = object with the least value in n.cache;
9: 𝑆<@;N9_O;<U@.add(𝑜C!&);
10: n.cache.remove(𝑜C!&);
11: end
12: // Compare the value of 𝑜&@A with the total value of objects in
13: // the set of 𝑆<@;N9_O;<U@
14: if (𝑜&@A . 𝑣𝑎𝑙𝑢𝑒 > 𝑆<@;N9_O;<U@.totalValue) then
15: store 𝑜&@A in n.cache;
16: else
17: drop 𝑜&@A from n.cache;

56

18: put objects in 𝑆<@;N9_O;<U@back to n.cache;
19: end

Algorithm 5-1: Value-based caching and replacement policy

Notation Description

𝑄 Set of possible video qualities
𝑞! ith ranking quality in 𝑄

𝑃(𝑞!) Popularity of quality 𝑞!
N Expected number of peers that a node encounters
𝑟& Requested quality by node n
𝑝:" Popularity of object 𝑜!
𝑙:" Play duration of object 𝑜!

𝑆1𝑞! , 𝑙:"3 Size of object 𝑜! with play duration 𝑙:" and quality 𝑞!
𝐶/ Fixed cost for downloading per unit data size of an object (e.g.

per MB) from CP’s server
𝐶0 Fixed rebate given to nodes in exchange of sharing per unit

data size of an object (e.g. per MB)
𝑠𝑎𝑣𝑒𝑑&)T Cost saved by a requester node n with caching the object

downloaded from CP
𝑠𝑎𝑣𝑒𝑑*@@0N)T Cost saved by peers of the requester node with caching the

object downloaded from CP
𝑣𝑎𝑙𝑢𝑒)T(𝑜! , 𝑟&) Value of caching object oV with quality rW downloaded from

CP at node n
𝑠𝑎𝑣𝑒𝑑&

*@@0 Saved cost by the requester node n with caching the object
obtained from a peer

𝑣𝑎𝑙𝑢𝑒*@@0(𝑜! , 𝑟&) Value of object 𝑜! obtained from a peer by node n
𝑆O The summed value of cached objects in the entire network

Table 5-1: List of all notations used in the caching algorithm

5.5 Adaptive-Quality Content Provisioning by Content Provider

This section details an end-to-end video provisioning method that leverages the notion of

value and caching mechanism presented in the previous section. When a node n asks for a video

segment (i.e., an object) 𝑜! of quality 𝑟&, the CP’s server may provide the segment at a quality level

that is 𝑟& or higher. An example is shown in Figure 5-3 in which the CP’s server may provide the

requested objects with another quality (i.e. 4K) that is higher than the actually requested quality

(i.e. HD) to the requester node. Even though downloading and caching a higher quality segment

57

would be more expensive (e.g. more cache space and downloading cost as shown in Figure 5-3.), a

requester node n can potentially serve future demands from its peer nodes for the same object, but

at a quality higher than that of 𝑟&. In other words, with a higher upfront cost, future potential savings

can be accomplished by caching a segment of higher quality than what was initially requested. This

trade-off creates the opportunity of provisioning video segments of optimal quality against each

individual request and for given network and demand situations.

Adaptive Quality (AQ) Algorithm: We propose the AQ algorithm which works with the value-

based caching mechanism presented in Section 5-4. Formally stated, when the CP receives a request

from node n for object 𝑜! with quality 𝑟& , it may provide 𝑜! with a different quality 𝑞&	to the

requester node n, such that 𝑞& ≥ 𝑟&. The overall provisioning cost can be minimized by maximizing

the total value of the objects cached in the ECs’ devices.

Figure 5-3: Example of how providing higher-than-requested quality content can serve future
high-quality user demands

Cache

Cache

The peers’ requests for 4K

cannot be satisfied by objects

encoded in HD

All the peers’ requests can be

satisfied by objects encoded

in 4K

Node preferring HD Node preferring 4K

HD

HD HD HD

4K

4K 4K

(a) The cache space in the requester node is sufficient for caching 3 objects

encoded in HD, but these objects can satisfy only 1 peer of the node

(b) The cache space in the requester node is sufficient for caching only 2

objects encoded in 4K, additionally downloading an object encoded in 4K

takes more cost. However, these objects can satisfy all the peers of the node

Requester

Requester

The peer’s request for HD

can be satisfied

58

 It should be noted that the AQ algorithm runs at the CP’s server when it receives an object

request. The value-based caching algorithm from Section 5-4, on the other hand, runs at an EC’s

device after it receives an object from the CP’s server or from a peer node. Additionally, the quality

that a node plays an object with may be different from the quality that the node actually receives

and caches the object with. For example, even though the requester node n receives object 𝑜!with

quality 𝑞& which may be higher than its requested quality 𝑟&, the node n still plays 𝑜! with quality

𝑟&, instead of 𝑞&. However, the node n may cache 𝑜! with quality 𝑞& for potentially serving more

future demands in the local network.

 With AQ provisioning, in steady state, the CP is required to maintain the demand profile

for each video segment. Such profile includes the popularity and quality preference distribution for

each segment, which is the same as those for its parent video. When the CP’s server gets a request

directly from an EC, it updates the profile information for the requested segment. Over time, the

global demand profiles are tracked and tagged with the content in question by the CP’s server. As

a result, the popularity and quality preference of an object are known when a node receives the

object from the server or from a peer. When a video segment is fetched from a peer node, the

recipient is required to send information about the segment retrieval to the CP’s server so that the

latter can update the demand profile for that segment.

 When a node sends request for an object to the CPs server, it includes information about:

1) the requested object quality, 2) size of the free cache space, and 3) local network information in

the form of the number of its neighboring peers. For the goal of maximizing the total value of the

objects cached in the network, the CP must provide the optimal quality of requested objects. For

that, the CP must know the current distribution of the objects cached in the network. However, this

introduces scalability issues. In this chapter, a heuristic-based algorithm is proposed for estimating

59

the sub-optimal quality of objects. This sub-optimal algorithm is based on the following

assumptions. First, the total value of the objects cached in the network can be maximized by

maximizing the value of objects cached in each node. Second, each node will download and cache

the most popular videos with the quality provided by the CP. Based on the assumptions above, the

information included in the request to the CP is sufficient for estimating the sub-optimal quality.

The CP executes the AQ algorithm as follows:

 When the CP receives the request from node n, it computes the total number of videos 𝑉𝑁&

that node n is able to cache in its free space 𝐸& using the equation:

𝑉𝑁& =
X3

Y(S3,<567)
 (5-8)

where	𝑆(𝑞&, 𝑙;O@) is the average size needed to store videos with average duration of 𝑙;O@ with

quality 𝑞& provided by the CP. The quality 𝑞& is inversely proportional to 𝑉𝑁&. In other words,

with fixed 𝐸& and 𝑙;O@, a larger 𝑞& makes 𝑆(𝑞&, 𝑙;O@) larger, thus resulting in a smaller 𝑉𝑁&, which

indicates that lower number of objects can be cached in node n. Moreover, based on Eqn. 5-5, the

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& for caching the most popular objects (i.e., segments in the most popular videos

{𝑣?..𝑣\=3}) downloaded from the CP in node n can be computed as

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& = ∑ ∑ 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&)
Y@D(O()
'>?

\=3
C>? 								 (5-9)

where 𝑆𝑒𝑔(𝑣C) is the number of segments in video 𝑣C. The overall provisioning cost is minimized

by maximizing the 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒&	for each node n in the network as follows:

𝑚𝑎𝑥:	𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒&
	𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜:	𝑞& ≥	𝑟&, 𝑞& ∈ 𝑄																					 (5-10)

 Note that the quality 𝑞& is directly proportional to 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&) (i.e., a larger 𝑞& leads

to larger 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&)), and is inversely proportional to 𝑉𝑁&. As a result, in this optimization

problem, the convexity of 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& depends on both 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&) and 𝑉𝑁&. Specifically,

the convexity of 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& depends on the function 𝑆(𝑞&, 𝑙;O@) and 𝑉𝑁& shown in Eqn. 5-8,

60

and the quality preference distribution involved in 𝑣𝑎𝑙𝑢𝑒)T(𝑜' , 𝑞&) in Eqn. 5-5. However, since the

number of available qualities that can be provided by the CP is usually not large [70], we use the

following brute-force approach to solve the equation: 1) the value of 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& is computed for

each possible quality 𝑞& (𝑞& ≥	𝑟&, 𝑞& ∈ 𝑄), and then 2) 𝑞& is selected such that the value of

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒& is maximized. As a result, this 𝑞& is the sub-optimal quality 𝑞&
NUF_:*. After the sub-

optimal quality 𝑞&
NUF_:*is computed, the CP sends the requested object 𝑜! with the quality 𝑞&

NUF_:*

to the requester node n.

Note that upon receiving a request from a node, the CP computes the quantity 𝑞&
NUF_:*

dynamically based on the requesting node’s current state including its free cache space and number

of neighbors. As a result, 𝑞&
NUF_:* does vary over time.

However, when an object is found and fetched from a peer node, the provider node always

sends the object with the requested quality. A higher quality object is not sent in this case because

there has already been a higher quality copy cached in somewhere in the network (i.e., at the

provider node itself). It is not beneficial to maintain another higher quality replica in the network.

5.6 Performance Evaluation

5.6.1 Experimental Settings

Using the DTN simulator ONE, we evaluate performance of the proposed caching strategies

in a 40-node Social Wireless Network with 10 physical waypoints around which the node mobility

is simulated. Wireless connections are established between each pair of nodes when they are in the

transmission range (i.e. 100m, model after BT and Wi-Fi Direct) of each other. The simulations

were carried out under different network topologies and terrain sizes, which determines the spatial

61

node density for a given number of nodes (i.e., 40). The following caching mechanisms are

evaluated.

Parameter Default Value
Number of Nodes 40
Zipf Parameter 𝛼 0.8
Video Population 1000
Average Number of Segments for Each Video 120
Simulation Duration 200000 Requests
Download Cost 10 per MB
Ratio of rebate to download cost 𝛽 0.1
Cache Size in Each Node 256 GB
Transmission Range (e.g., Wi-Fi) 100m
Terrain Size (e.g., University Campus) 400m×400m
Length of Each Segment 10s
Maximum Number of Pre-fetching Segments 60

Table 5-2: Baseline parameters used in the simulation experiments

Adaptive Quality (AQ): Each node runs the value-based caching algorithm, and the CP runs the

AQ algorithm to provide nodes with a sub-optimal quality for minimizing the overall provisioning

cost as presented in Section 5-5.

Requested Quality (RQ): Each node runs the value-based caching algorithm, and the CP provides

segments with the same quality as what has been requested by each node. This is a naïve approach

that AQ is be compared with.

Traditional Caching: Algorithms including Least Frequently Used (LFU), Least Recently Used

(LRU), and Random Replacement are implemented and compared with AQ and RQ

 Unless stated otherwise, all parameters are set to the baseline values as shown in Table 5-

2, and videos are assumed to be sequentially played (i.e., 𝑝N@S = 1 in Figure 5-2). The default video

quality distribution in the user requests is shown in Figure 5-4. This distribution is modeled after

[71], which shows most of the users prefer high quality videos including HD, Full HD (FHD) and

4K.

62

Figure 5-4: Default video quality preference distribution

The popularity of videos is assumed to follow a Zipf distribution with default 𝛼 = 0.8, which

indicates the skewness of the distribution. Number of videos is set to 1000, and each video is divided

into 120 segments on average. The length of each segment for each video is set to 10 seconds [72].

The number of pre-fetching segments is set to 60, which is assumed to be able to fit in the available

amount of buffer in each EC’s device or node. The simulation is terminated after 200,000 segment

requests, after which all performance numbers were observed to have converged in the reported

experiments.

5.6.2 Impacts of Cache Availability and Terrain Size on Cost Saving

As shown in Figure 5-5, provisioning costs corresponding to all the algorithms expectedly

decrease with an increase in available cache size. Also, provisioning costs of all the algorithms are

similar when the available cache size is extremely small or extremely large. For a very small cache

size, only a few objects can be cached in the network. Thus, the benefits of caching are low across

0%

5%

10%

15%

20%

25%

30%

35%

40%

SVGA XGA WXGA SXGA HD FHD 4K

PD
F

Video Quality

63

the board. In case of a very large cache, most of the popular objects can be cached in the network

irrespective of the applied caching algorithm.

Figure 5-5: Provisioning cost with different terrain sizes and per-node cache availability

Moreover, for a given node-count (i.e., 40) different terrain sizes (TSs) make different

Device-to-Device connection densities which are represented by the average number of neighbors

encountered per node as shown in Table 5-3. A smaller terrain size makes higher connection density

and produces generally lower provisioning costs. This is because the nodes in this case are able to

visit more peer ECs during the TAD for obtaining requested objects from those peers.

Terrain Size Average No. of Neighbors Encountered Per Node
100𝑚 × 100𝑚 38.9
400𝑚 × 400𝑚 14.8
1000𝑚 × 1000𝑚 4.1

Table 5-3: Average no. of neighbor ECs encountered per node for different terrain sizes (number
of nodes is set to 40)

Another observation in Figure 5-5 is that the provisioning cost of the Adaptive Quality (AQ)

algorithm is the lowest across all available cache and terrain sizes that have been experimented

with. This is because, with AQ, nodes may cache objects with higher quality than they actually

request. Such objects can satisfy requests coming from other nodes, which may need the object with

a quality equal or lower than that of the available one. Provisioning cost for the Requested Quality

(RQ) policy is generally between AQ and the traditional caching algorithms. Since the value-based

caching’s criteria in RQ involves both object popularity and quality demand profiles, compared

25%
35%
45%
55%
65%
75%
85%

0 500 1000

Co
st

Cache Size (GB)

(a) TS=100#×100#

LRU
Random

LFU

RQ
AQ

40%

50%

60%

70%

80%

90%

0 500 1000
Co

st
Cache Size (GB)

(b) TS=400#×400#

Random

LRU

LFU
RQ

AQ
55%
60%
65%
70%
75%
80%
85%
90%

0 500 1000

Co
st

Cache Size (GB)

(c) TS=1000#×1000#

Random

LFU
LRU

RQ
AQ

64

with traditional caching algorithms, RQ can better indicate which objects should be cached to

maintain a lower provisioning cost. However, RQ fails to reduce the provisioning cost further

because it only allows caching video segments with quality equal to the requested quality. This

explains why its performance is lower than that of AQ.

Figure 5-6 depicts the local and remote hit rates for the algorithms in different network terrain

sizes. For a fixed terrain size, a larger cache size results in higher local and remote hit rates. A

smaller terrain size causes a higher remote hit rate because of higher node density. The impacts of

terrain size on local hit rates is not that significant. Observe that the remote hit rate of the AQ policy

is the highest among all the caching algorithms among various cache and terrain sizes. That is

because, with AQ, a node can share more objects with other nodes by caching higher quality video

segments than what is needed for itself. Similarly, the remote hit rate of RQ is higher than that for

the traditional caching algorithms because the value-based caching applied in RQ is more effective

for indicating the real user demands.

Figure 5-6: Local and remote hit rates for different network terrain sizes

Figure 5-7 shows the total value of cached objects 𝑆O in the entire network. It is defined as:

4%
6%
8%

10%
12%
14%
16%
18%

0 200 400 600 800 1000

Lo
ca

l H
it

Ra
te

Cache Size (GB)

Random LRU

LFU

RQ AQ

20%

30%

40%

50%

60%

70%

80%

0 200 400 600 800 1000

Re
m

ot
e

H
it

Ra
te

Cache Size (GB)

Random

LRU
LFU

RQ AQ

(a) TS=100#×100#

4%
6%
8%

10%
12%
14%
16%
18%

0 200 400 600 800 1000

Lo
ca

l H
it

Ra
te

Cache Size (GB)

Random

LRU AQ

LFU

RQ

20%

30%

40%

50%

60%

70%

0 200 400 600 800 1000

Re
m

ot
e

H
it

Ra
te

Cache Size (GB)

AQ
RQ

LRU
Random

LFU

(b) TS=400#×400#

4%
6%
8%

10%
12%
14%
16%
18%

0 500 1000

Lo
ca

l H
it

Ra
te

Cache Size (GB)

RandomLRU

LFU

RQ

AQ

10%

20%

30%

40%

50%

0 500 1000

Re
m

ot
e

H
it

Ra
te

Cache Size (GB)

Random
LRU

LFU

RQ

AQ

(c) TS=1000#×1000#

65

𝑆O = ∑ ∑ 𝑣𝑎𝑙𝑢𝑒)T(𝑜! , 𝑄(𝑜!)):"∈𝕆3&∈ℕ (5-11)

while ℕ is the set of all the nodes in the network, and 𝕆& is the set of all the objects cached at node

n. Additionally, 𝑄(𝑜!) indicates the quality of object 𝑜!. Note that 𝑆O is computed when the network

reaches a steady state. As expected, the 𝑆O of each caching mechanism increases with an increase

in available cache size for all different terrain sizes. This is because each node is able to cache a

greater number of objects with a larger cache size. Moreover, the 𝑆O of AQ is the largest across all

the mechanisms because the value of objects cached at each node in AQ is maximized by Eqn. 5-

10. As a result, the total value of cached objects at all the nodes (i.e. 𝑆O) is also the largest across

all the algorithms. On the other hand, the 𝑆O of RQ is larger than all the other caching algorithms

except AQ. Since the value-based cache replacement policy (see Algorithm 5-1) is applied in RQ,

the object with a larger value is never replaced. Another observation is that 𝑆O of each mechanism

decreases with a larger terrain size. This is because the N in Eqn. 5-4, which represents the expected

number of peers a node encounters, decreases when the terrain size is larger (see Table 5-3), thus

𝑆O is smaller according to Eqn. 5-4, 5-5 and 5-11.

Figure 5-7: Total value of cached objects in the entire network

The bandwidth overhead of caching is defined as the bandwidth usage of CSP’s cellular links.

Such overheads of various caching algorithms in different terrain sizes are shown in Figure 5-8. It

can be observed that a larger terrain size generally makes a higher bandwidth overhead across all

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

0 200 400 600 800 1000

Su
m

m
ed

 V
al

ue
 o

f C
ac

he
d

O
bj

ec
ts

Cache Size (GB)

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

0 500 1000

Su
m

m
ed

 V
al

ue
 o

f C
ac

he
d

O
bj

ec
ts

Cache Size (GB)

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

0 500 1000

Su
m

m
ed

 V
al

ue
 o

f C
ac

he
d

O
bj

ec
ts

Cache Size (GB)

(a) TS=100#×100# (b) TS=400#×400# (c) TS=1000#×1000#

LRU

Random

LFU

RQ

AQ
AQ

RQ

LFU

Random LRU

AQ
RQ

LFU

Random

LRU

66

the algorithms. This is because, in a larger terrain size, each node has a lower remote hit rate (see

Figure 5-6). As a result, a node has to download more video segments using the CSP’s network.

However, the bandwidth overhead of AQ is always the lowest for all the terrain sizes, because in

AQ the nodes enjoy the highest remote hit rate by caching video segments with higher quality than

their actual demands. On the other hand, the bandwidth overhead of RQ is lower than all the

traditional caching algorithms. This is also because nodes with RQ have higher remote hit rates

than with the traditional algorithms.

Figure 5-8: Bandwidth overhead for different network terrain sizes

5.6.3 Evolution of Provisioning Cost and Hit Rates over Time

Figure 5-9 explains how the provisioning cost and hit rates builds up in the network over a

period of 60 hours. For both AQ and RQ policies, the provisioning costs are 100% at the beginning.

However, as shown in Figure 5-9 (a), the costs significantly reduce over time as more and more

video segments are cached in the D2D network of the ECs. This is also reflected in Figure 5-9 (b)

and (c), where the local and remote hit rates for both policies increase over time. Over time, the

cost of AQ reduces faster than RQ, while the remote hit rate of AQ increases more than that of RQ.

This is because with AQ, the nodes cache video segments with higher quality, which results in a

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

100m*100m 400m*400m 1000m*1000m

B
an

dw
id

th
 O

ve
rh

ea
d

Terrain Size

RQ
AQ
LFU
LRU
Random

67

higher remote hit rate and resultingly lower cost. However, there is no significant difference

between the local hit rates of AQ and RQ as shown in Figure 5-9 (b).

Figure 5-9: Provisioning cost, and local and remote hit rates over time

5.6.4 Content Quality Density of the Cached Objects

Quality density is defined as the probability density function of video segments with specific

qualities that are cached within the network. Figure 5-10 depicts the density of video segments of

all seven available qualities (see Figure 5-4) for the policies AQ and RQ. Such density is a function

of quality preference distribution in user demands and the corresponding sizes of objects for each

quality. For example, density of SVGA (i.e. the lowest quality in our experiments) in both RQ and

AQ is the highest. This is because an object’s size with this quality is extremely small. As a result,

the nodes are able to cache many such segments. Specifically, in RQ, the densities of HD, FHD and

4K video segments are the second highest since they are the most popular qualities, following the

default preference distribution as shown in Figure 5-4. Densities of these popular qualities in AQ,

however, are extremely low except for the 4K. That is because the video source encoded in 4K is

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60

Co
st

Time (Hours)

0%
5%

10%
15%
20%
25%
30%

0 20 40 60

Lo
ca

l H
it

Ra
te

Time (Hours)

0%

20%

40%

60%

80%

0 20 40 60

Re
m

ot
e

H
it

Ra
te

Time (Hours)

AQ

RQ

AQ
RQ

RQ

AQ

(a) Temporal Cost (b) Temporal Local Hit Rate

(c) Temporal Remote Hit Rate

68

able to satisfy the requests for HD and FHD. That reduces the provisioning cost with AQ by

increasing the ratio of content sharing (i.e., the remote hit rate) in the D2D network of ECs.

Figure 5-10: Cached video quality density for AQ and RQ

5.6.5 Content Delivery Latency

Content Delivery Latency (CDL) is the duration between when a node generates a request for

a specific segment and when it actually obtains the segment. In Section 5.3.2, it was stated that

during the Tolerable Access Delay (TAD), which is computed using Eqn. 5-1, a node first searches

a requested segment in its local cache and then in its neighboring peers. It follows that the CDL for

a video segment is acceptable only if it is less than the TAD for that segment. For example, when a

user starts to play a video, if the length of each segment is 10s, then according to Eqn. 5-1, the TAD

of the 30th segment is 290s. In this case, if the CDL of the 30th segment is less than 290s, the user

can experience a smooth play.

 Figure 5-11 depicts the average CDL of AQ and RQ over various cache sizes. The CDLs

of both AQ and RQ decrease when the cache size increases. This is because, with a larger cache

size, more requested segments can be found in the local caches. For such cached segments, the CDL

for obtaining them is zero. Also, it should be observed that the CDL for AQ is lower than that of

0%

10%

20%

30%

40%

50%

60%

70%

80%

SVGA XGA WXGA SXGA HD FHD 4K

D
en

sit
y

PD
F

Video Quality

RQ
AQ

69

RQ. This is because the remote hit rate of AQ is larger than that for RQ (see Figure 5-6), which

means more requests in AQ can be served by the neighboring peer nodes before the TAD expires.

Figure 5-11: Content Delivery Latency (CDL) for the AQ and RQ policies

5.6.6 Impacts of Video Play Sequence

As shown in the video play model in Figure 5-2, besides sequentially playing a video, a user

may fast-forward to a later segment or rewind to a previous segment of the current video. Moreover,

the user can stop playing the current video and switch to a different one. Figure 5-12 depicts how

the probabilities of these actions affect the provisioning costs of the proposed AQ and RQ caching

mechanisms.

Generally, higher 𝑝RR and 𝑝NA! (i.e., frequent fast forward and switching to a different video)

cause fewer segments from the currently-playing video to be requested. For example, if a user wants

to fast-forward to segment 𝑠?I after he/she finishes the first segment 𝑠M , then requests for pre-

fetching the following segments after 𝑠M (i.e., 𝑠? to 𝑠?L) are deleted. Similar effects can be observed

in case of switching to a different video. With frequent switching, fewer segments of each video

need to be cached. In other words, with higher 𝑝RR and 𝑝NA!, segments from more diverse videos

50

70

90

110

130

150

170

0 200 400 600 800 1000

A
ve

ra
ge

 L
at

en
cy

 (S
ec

)

Cache Size (GB)

RQ

AQ

70

can be cached. This increases the local and remote hit rates while reducing the overall provisioning

costs.

Frequent rewinds (i.e., high 𝑝0@A), on the other hand, can result in a high local hit rate due to

repeated requests of locally cached video segments. This explains why the provisioning cost reduces

with increasing occurrences of the rewinds. The provisioning cost of the AQ policy is consistently

lower than RQ with various 𝑝RR and 𝑝NA! values in Figure 5-12 (a) and (b) respectively. The

situation is reverse for rewinding in Figure 5-12 (c). This is because higher 𝑝0@A causes more local

caching. Since AQ tends to cache segments with higher qualities than RQ, fewer video segments

can be cached for a given local cache size. As a result, in this rare case, RQ performs slightly better

than AQ when the probability of rewinding is high. However, the local hit rate is not significantly

higher in RQ compared to AQ when the probability 𝑝0@A is low; that is the reason why the

provisioning cost of AQ is initially lower than RQ with low 𝑝0@A.

Figure 5-12: Impacts of different video play sequences on provisioning cost

5.7 Comparison with Reactive User Preference Profile Algorithm

Reactive User Preference Profile (R-UPP) [26] is a reactive caching algorithm that serves

similar applications as done by the proposed mechanisms in this work. R-UPP, in its original form,

is an infrastructure-based caching policy that caches popular content in infrastructures such as the

edge servers. However, the mechanism can be adapted to a D2D mode in which caching is done

within the ECs’ devices as opposed to in any infrastructure. In R-UPP, the replacement policy is

20%
25%
30%
35%
40%
45%
50%
55%

0 0.5 1

Co
st

pswi

(a) Switching

AQ

RQ

25%
30%
35%
40%
45%
50%
55%

0 0.5 1

Co
st

pff

(b) Fast Forwarding

AQ

RQ

0%
10%
20%
30%
40%
50%

0 0.5 1

Co
st

prew

(c) Rewinding

AQ
RQ

71

based only on the popularity of objects without considering any quality preference distributions, as

done in AQ and RQ. We implement a D2D version of R-UPP in the simulator ONE and compare

its performance with AQ and RQ in a mobility scenario extracted from the traces of taxis in San

Francisco [73].

 This mobility model contains traces of 40 taxis over 70 hours in the city of San Francisco.

The taxis communicate with each other using Dedicated Short-Range Communication (DSRC) [7]

links with transmission range set to 1km, and the average number of neighbors per node (i.e. taxi)

is around 20.7. The other parameters follow the baseline as shown in Table 5-2.

5.7.1 Impacts of Cache Size

In Figure 5-13 (a), provisioning costs corresponding to all three algorithms expectedly

decrease with the increase in available cache size. The provisioning cost for the AQ strategy is the

lowest and R-UPP is the highest across all cache sizes. This is because the cache replacement policy

of R-UPP relies only on the popularity of objects without considering the quality preference, which

is considered by both AQ and RQ. For example, in R-UPP, an object with low popularity but high

preferred quality may be replaced with another object, whose popularity is slightly higher but its

quality preference is much lower. An object with a more frequently-preferred quality may satisfy

more number of future demands for the same content in a way that the total obtained value would

be higher.

The local and remote hit rates for the three caching algorithms are depicted in Figure 5-13 (b)

and (c). It can be seen that the local hit rates of all three policies are similar across all the cache

sizes. The remote hit rate of R-UPP is the lowest, since with R-UPP a node may keep an object with

high popularity and low preferred quality. This significantly reduces the probability that other nodes

can obtain the requested content with such high quality from their peer ECs’ devices.

72

Figure 5-13: Provisioning cost and hit rates of R-UPP, RQ, and AQ

5.7.2 Impacts of Rebate-to-Download-Cost Ratio

Figure 5-14 (a) depicts the provisioning cost of R-UPP in comparison with AQ and RQ for

different values of Rebate-to-Download-Cost Ratio 𝛽 (see the pricing model in Section 5.2). For

all three algorithms, the costs increase with higher 𝛽. This is because a higher 𝛽 indicates a larger

rebate 𝐶0 , which is the cost of obtaining a video segment from a peer device. Additionally,

provisioning cost of the AQ is the lowest across all the 𝛽 values, while R-UPP is the highest. This

is because the cache replacement policy of R-UPP relies only on the popularity of objects and not

the preference distribution of quality. According to the results in Figure 5-14 (b), the impacts of 𝛽

on local hit rates are insignificant for all three mechanisms.

However, as shown in Figure 5-14 (c), the remote hit rates of AQ and RQ decrease with

increasing 𝛽. This is because with higher 𝛽, 𝐶0 gets closer to the cost 𝐶/ which is incurred by

downloading objects directly from the CP’s server. According to Eqn. 5-5 and 5-7, if 𝐶0 is closer

to 𝐶/, the value of caching an object received from a peer device becomes similar to the value of

caching an object received from the CP. Therefore, when the cache in a node is full, a segment that

was originally obtained from a peer may not be replaced by segments downloaded from the CP’s

server. As a result, most of the objects cached in the network are from the peers in the network. In

other words, all the nodes in the network finally cache the same objects, which reduces the remote

45%

55%

65%

75%

85%

95%

0 500 1000

Co
st

Cache Size (GB)

(a)

R-UPP

RQ

AQ

4%
6%
8%

10%
12%
14%
16%
18%

0 500 1000

Lo
ca

l H
it

Ra
te

Cache Size (GB)

(b)

R-UPP

AQ

RQ

0%
10%
20%
30%
40%
50%
60%
70%

0 500 1000

Re
m

ot
e

H
it

Ra
te

Cache Size (GB)

(c)

AQ
RQ

R-UPP

73

hit rates. On the contrary, the remote hit rate of R-UPP is not notably affected by 𝛽 since its

replacement policy does not involve any rebates.

Figure 5-14: Provisioning costs for varying rebate-to-download-cost ratio

5.7.3 Impacts of Different Quality Preference Distributions

All presented results so far use the default video quality preference distribution as shown in

Figure 5-4. In this section, we analyze the impacts of other possible quality preference distributions.

Figure 5-15 depicts the provisioning costs for: 1) uniform (Figure 5-15 (a)), Gaussian-Like (GL)

(Figure 5-15 (b)), and Default-Inverse (DI) (Figure 5-15 (c)) distributions. DI is the inverse of the

default preference distribution (Figure 5-4) in which the low qualities are more popular. Compared

to the performance with GL and DI, provisioning costs of all three algorithms are slightly higher

for the uniform preference case. This is because the probability of requesting each video segment

quality is equal in the uniform distribution, thus there is less benefit of caching objects with any

specific qualities. The provisioning costs for all three algorithms are more similar for GL and DI

cases compared to the uniform case. This is because, in GL and DI, the high-quality videos are not

35%

40%

45%

50%

55%

60%

65%

70%

75%

0 0.05 0.1 0.15 0.2 0.25

C
os

t

β

13%

14%

15%

16%

0 0.05 0.1 0.15 0.2 0.25

Lo
ca

l H
it

R
at

e

β

40%
45%
50%
55%
60%
65%
70%

0 0.05 0.1 0.15 0.2 0.25

R
em

ot
e

H
it

R
at

e

β

R-UPP

RQ

AQ

R-UPP

RQ

AQ

AQ

RQ

R-UPP

(a) (b)

(c)

74

notably popular. That is, the most popular quality is SXGA in GL, and the low qualities are more

popular in DI. Thus, caching higher quality than the user’s preference is not advantageous.

However, as expected, the provisioning cost of AQ is generally the lowest, while the provisioning

cost of R-UPP is the highest under all three quality preference distributions.

Figure 5-15: Provisioning cost with different distributions of video quality preferences

5.8 Summary

A value-based D2D collaborative caching strategy for hierarchically coded streaming video

segments is proposed in this chapter. Based on video popularity and heterogeneous user demands,

an adaptive quality provisioning algorithm, which works with a value-based caching, is developed

for minimizing the overall video provisioning cost for a provider. The key idea is to decide the

optimal quality of video segments to be cached in users’ devices so that the predicted future

demands from users and their peers are satisfied, thus minimizing content provisioning costs.

Simulation experiments were carried out in mobile wireless network scenarios, and the results

indicate that the proposed mechanism is able to reduce the overall provisioning cost compared with

traditional caching algorithms and a comparable caching algorithm, namely, R-UPP. The cost-

0%
2%
4%
6%
8%

10%
12%
14%
16%

SVGA XGA WXGA SXGA HD FHD 4K

PD
F

Video Quality

(a) Performance with Uniform Preference

55%

60%

65%

70%

75%

80%

85%

90%

95%

0 200 400 600 800 1000

C
os

t

Cache Size (GB)

R-UPP

RQ

AQ

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

SVGA XGA WXGA SXGA HD FHD 4K

PD
F

Video Quality

(b) Performance with Gaussian-Like
Preference

55%

60%

65%

70%

75%

80%

85%

90%

95%

0 500 1000

C
os

t

Cache Size (GB)

R-UPP

RQ

AQ

0%
5%

10%
15%
20%
25%
30%
35%
40%

SVGA XGA WXGA SXGA HD FHD 4K

PD
F

Video Quality

(c) Performance with Default-Inverse
Preference

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

0 500 1000

C
os

t

Cache Size (GB)

R-UPP

RQ

AQ

75

saving of the proposed mechanism is particularly visible when the connection density of nodes is

high, and when the popularity of higher quality video content is high.

76

Chapter 6 : Caching for Dynamic Map Dissemination in Vehicular

Networks

6.1 Introduction

With increasing vehicle connectivity through Vehicle-to-Vehicle (V2V), Vehicle-to-

Infrastructure (V2I), and cellular networks, many data-driven in-vehicle applications are emerging

in recent years. Many such applications involve space- and time-varying information such as

dynamic electronic maps used in vehicle navigation. Example scenarios that can create dynamic

map include work zone related traffic diversion lasting for hours to days, temporary traffic lights

during an event such as football game, and accident related traffic diversions. A map with such

dynamic information is termed as a dynamic map [74].

Figure 6-1: Layered abstraction of dynamic maps

Figure 6-1 depicts an example dynamic map, which includes two layers. The bottom one is

static with relatively permanent components such as roads, building, open areas etc. The top layer

includes dynamic data such as constructions, traffic congestions, crashes, events etc. In most cases,

the vehicles are pre-loaded with the static component. The time-varying dynamic component is

downloaded to the vehicles on an as-needed basis over the V2V, V2I, and cellular connections.

Traffic Congestions

Work Areas

Flood

Crashes

Static Layer

Dynamic Layer

77

The current best practice is to push the dynamic map data from a cloud-based map application

server (e.g., Google Map server) to the vehicles via cellular networks. However, this approach

involves cellular bandwidth usage cost that has to be paid by the users to their mobile network

operators (e.g. AT&T, Verizon, etc.). The objective of this chapter is to reduce cellular bandwidth

usage for disseminating dynamic map data.

One plausible approach for such cost reduction would be to always download and cache

dynamic map data from map application servers (MASs) to edge devices such as roadside units

(RSUs) through fiber links, and relay that to the nearby vehicles via Dedicated Short-Range

Communications (DSRC) links. In scenarios with very high RSU densities, this approach will work.

In reality, however, the RSU deployments are expensive, and therefore, the RSU coverage is

expected to be somewhat sparse in many settings. An alternative is to use the vehicles themselves

as a distributed storage system in which dynamic maps can be intelligently cached based on the

spatial and temporal localities of their needs. This chapter presents such a collaborative caching

solution towards the goal of minimizing cellular bandwidth usage by leveraging inter-vehicle map

sharing.

6.2 System Architecture

6.2.1 Network Model

All network and system components are shown in Figure 6-2. Each vehicle in the

transportation network is able to access the MAS through paid cellular links (e.g. 4G or 5G, etc.).

Vehicles can also connect to each other or to the RSUs via DSRC-based V2V and V2I links. These

links are considered spatially limited and free of cost. Finally, the edge devices such as the RSUs

are able to connect to the map server via high-speed fiber links such as Gigabit Ethernets.

78

Figure 6-2: Generalized model with different networking components

6.2.2 Dynamic Map Data

Dynamic map data is always generated by the edge devices such as the RSUs. Generation of

such data can be triggered by events such as accidents, traffic congestion, and road work. Such

information can be input manually at the RSU or through the cloud. The edge unit might also be

equipped with sensors that continually survey and identify events that need to be distributed. A

dynamic map data module would contain two key information components, namely, its expiry time

and the geographical scope of dissemination. The geographical scope indicates the region in which

the data needs to be disseminated. The expiry time indicates till what point in time the dynamic

map data needs to be disseminated among the vehicles within the specified geographical scope. In

practice, the expiry time of a dynamic map can be determined based on the expected end-time of

the corresponding event such as road work or a football game. Since the end time of an event may

change (e.g., a crash is cleared earlier than expected or a road work is extended by few additional

hours), the generation model accommodates a way to update the expiry time of a content.

Internet

RSU-1

RSU-2

RSU-3

Fiber Links
e.g. Ethernet: 1 Gbps

V2I Links
e.g. DSRC: 15 Mbps

V2V Links
e.g. DSRC: 15Mbps

Cellular Links
e.g. LTE: 50 Mbps

Map Application Server (MAS)

RSU-4

79

The process of dynamic map generation and updates from an RSU is as follows. Distinct

dynamic maps from an RSU are generated with a rate of 𝜆D maps per unit time. Once generated,

updates for that map are generated with a rate of 𝜆U updates per unit time. An update can change

the geographical scope and/or the time of expiry of the corresponding dynamic map item. Both map

generation and update generation processes can be modeled with an appropriate probability

distribution. Considering memory-less properties, for all our analysis in the following sections,

exponential distribution is used for the process of dynamic map generation. However, to simplify

the problem, in this chapter the update rate 𝜆U is set to 0.

6.3 Dissemination and Caching Mechanisms

Dynamic map dissemination constitutes three key mechanisms, namely, push, pull, and

caching.

6.3.1 Dynamic Map Data Push

As shown in Figure 6-3, when an RSU generates a dynamic map data, it is referred to as the

Originating RSU (O-RSU) with respect to that dynamic map data. Upon generated, the O-RSU

pushes the data to the nearby vehicles (i.e., vehicles within the V2I transmission range of the O-

RSU), and also uploads it to the MAS via terrestrial wired links.

Depending on the geographical scope of a specific dynamic map data module, the MAS can

push it to distant vehicles through the RSUs that are local to those vehicles. These RSUs are referred

to as the Gateway RSUs or G-RSUs with respect to that dynamic map data. Upon receiving the

dynamic data from the MAS, the G-RSUs push it to the vehicles around them via V2I links.

80

Figure 6-3:Push mechanism of dynamic data dissemination

 It should be noted that any RSU can serve the role of either an O-RSU or a G-RSU depending

on where a dynamic map data has originated. With respect to the data that was originated locally,

the RSU is an O-RSU, and with respect to the data that was originated remotely, the RSU is a G-

RSU.

6.3.2 Dynamic Map Data Pull and Caching

The push mechanism described above can deliver dynamic map data to all the vehicles that

are within the V2I transmission ranges of the O-RSU and all the G-RSUs corresponding to the data

item. For all other vehicles, a pull mechanism is needed. Consider an example scenario in which a

vehicle is driving towards a geographical area and it requires any dynamic map data available for

that area before it reaches the area so that an efficient route can be computed. Also, the vehicle is

out of range of the O-RSU and G-RSUs that are corresponding to the destination area of interest.

In such a situation, the vehicle would have to make an active request for that piece of dynamic data.

In order to make such pull operations effective, the data item of interest needs to be cached within

the vehicular network so that a vehicle can possibly retrieve it from another vehicle which may have

cached it upon an earlier request.

O-RSU
Dynamic Data

MAS

G-RSU G-RSU

81

The key architectural concept is to develop such an in-vehicle and in-RSU content caching

mechanism that can be leveraged to reduce the usage cost of the on-vehicle cellular link.

6.3.2.1 Demand Model

Let 𝑝 u𝑉! , 𝐷4*v be the probability that a vehicle 𝑉! may request the dynamic data 𝐷4* that is

of a specific geographic area and generated by its O-RSU 𝑅(in that area. It is assumed that

𝑝 u𝑉! , 𝐷4*v is inversely proportional to the current distance between the vehicle 𝑉! and the RSU 𝑅(

as follows:

𝑝 u𝑉! , 𝐷4*v =
)

/!N9;&E@_\",4*`
																									 (6-1)

where 𝐶 is a constant. The rationale behind such inverse relationship is that if the vehicle 𝑉! is

currently far away from the RSU 𝑅(, then 𝑉! is commensurately less likely to request the dynamic

map data item 𝐷4*. It should be noted that the geographical location information is extracted from

the static layer of the integrated map information as shown in Figure 6-1. The static layer of the

map is assumed to be pre-loaded in the vehicle as a part of the navigational map system such as

google map etc.

6.3.2.2 Data Search Model

Upon originating a request, a vehicle first performs a local search for the requested dynamic

data in its own cache. If that fails, the vehicle performs a remote search among the nearby vehicles

and RSUs via V2V and V2I links. If the data component is not found after those searches within a

pre-defined Tolerable Access Delay (TAD), the vehicle sends a request to the MAS and pulls the

requested data through the cellular link. TAD represents the duration that a vehicle is willing to

wait before the request is successfully served. TAD for a dynamic map data item is set at the

application level when the request for it is originated at the application such as a vehicle’s

82

navigation software App. It is assumed that the TAD for a request u𝑉! , 𝐷4*v would depend on the

distance between the requested vehicle 𝑉! 	and the O-RSU of the data item 𝐷4*. Formally stated:

𝑇𝐴𝐷 u𝑉! , 𝐷4*v = 𝑟 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1𝑉! , 𝑅(3																	 (6-2)

where 𝑟 is a constant. The physical meaning is that the TAD for a request will be larger if the

requesting vehicle is far away from the geographical origin of the dynamic map data component.

In other words, if the vehicle is away from the geographical area, it can possibly wait for some time

(i.e., TAD) before the dynamic map component is fetched from other vehicles and RSUs. As a

result, the chances of having to fetch the data from the map server using cellular link and its

corresponding expenditure can be reduced.

6.3.2.3 Cache Replacement Policy
A key architectural component that determines the effectiveness of caching is how a dynamic

map data is replaced from a vehicle’s cache after its usage is over. When a vehicle 𝑉! obtains a new

dynamic map data 𝐷4*, it may cache the data locally if there is sufficient empty cache space. If

space is not available, the following policy is executed to replace an existing map item by this newly

acquired one.

We introduce a notion of caching value for each dynamic data, which is defined as how much

cellular bandwidth usage can be avoided by caching the data item within in-vehicle cache. The

caching value of data item 𝐷4* within vehicle 𝑉! is defined as follows:

				𝑣𝑎𝑙𝑢𝑒 u𝑉! , 𝐷4*v = 𝑝 u𝑉! , 𝐷4*v 𝑙𝑖𝑓𝑒 u𝐷4*v 𝑠𝑖𝑧𝑒 u𝐷4*v									 (6-3)

where 𝑙𝑖𝑓𝑒 u𝐷4*v is the remaining life of	𝐷4* defined as the duration between current time and its

expiry time. The quantity 𝑠𝑖𝑧𝑒 u𝐷4*v represents the size of 𝐷4*. The expected savings of cellular

bandwidth usage cost (i.e., the cache value) associated with map item 𝐷4* in vehicle 𝑉!′s cache is

83

higher for 𝐷4* with: larger size, longer expiry time, and higher request probability from 𝑉!. The

notion of value is used as follows.

1: Input: received dynamic data 𝐷4* by vehicle 𝑉!
2: if (𝑉!.remaining_cache_size ≥ size(𝐷4*)) then
3: 𝑉!.cache(𝐷4*);
4: else
5: for each data 𝐷4' cached in 𝑉!
6: 𝐷4'.value=	𝑣𝑎𝑙𝑢𝑒1𝑉! , 𝐷4'3;
7: end
8: initialize(𝑆<@;N9_O;<U@);
9: while(𝑉!.remaining_cache_size < size(𝐷4*))
10: 𝐷C!& = data with the least value in 𝑉!;
11: 𝑆<@;N9_O;<U@.add(𝐷C!&);
12: 𝑉!.remove(𝐷C!&);
13: end
14: if(𝐷4* . 𝑣𝑎𝑙𝑢𝑒 > 𝑆<@;N9_O;<U@.totalValue) then
15: 𝑉!.cache(𝐷4*);
16: else
17: drop(𝐷4*);
18: put data in 𝑆<@;N9_O;<U@ back to cache of 𝑉!;
19: end
20: end

Algorithm 6-1: In-vehicle and in-G-RSU caching/replacement policy

When a vehicle 𝑉! fetches a new dynamic map data 𝐷4*, it first computes the value of caching

for all the existing items in its cache. It then identifies the s lowest valued items in the cache such

that the total size of those items is equal to or higher than the size of the new data 𝐷4*. The set

containing those cached items is referred to as 𝑆<@;N9_O;<U@. At this stage, the sum of the values of

all the data items in 𝑆<@;N9_O;<U@ is compared with the value of 𝐷4*. If the value of 𝐷4* is larger, then

all the data in 𝑆<@;N9_O;<U@ are replaced with 𝐷4*. The rationale behind this action is as follows. Since

the value of the new data is larger, by caching it, the expected savings in the cellular link usage cost

from the vehicle will be also larger. By the same token, when the value of 𝐷4* is comparatively

84

lower, the existing cache items have higher potential to save cellular link usage cost than the new

dynamic map item 𝐷4* . Therefore, instead of replacing any existing cache items, it should be

dropped. The full logic of the caching and replacement is summarized in Algorithm 6-1.

Dynamic map data items can also be cached in the G-RSUs. When a G-RSU receives an item

from the MAS, it may opt to cache the item following a very similar caching and replacement logic.

The difference here is the way the demand (i.e., Eqn. 6-1) is computed. For computing the value of

dynamic map data 𝐷4* cached on a G-RSU 𝑅!, the probability part 𝑝 u𝑉! , 𝐷4*v in Eqn. 6-1 needs to

be changed to 𝑝 u𝑅! , 𝐷4*v, which represents the probability that 𝐷4* is requested by the vehicles in

the vicinity of RSU 𝑅!.

6.4 Performance Evaluation

We evaluated the performance of the proposed caching mechanism using the Delay-Tolerant

Networking (DTN) simulator ONE. A 50-vehicle network with mobility traces from taxis in San

Francisco has been used. As for the RSUs, they are uniformly randomly placed within the

geographical scope of the city. The overall architecture of the network is the same as what is

presented in Section 6.2.1. Unless stated otherwise, all the parameters are set to the baseline values

as shown in Table 6-1.

Parameter Default Value
No. of RSUs in the network 10
No. of G-RSUs for each dynamic data 9
No. of vehicles 50
𝜆Dfor dynamic data generation 3e-4/s
𝜆Ufor dynamic data update 0 updates/s
Life of dynamic data 6 hours
Average size of dynamic data 10MB
Cache size on RSU 80MB
Cache size on vehicle 80MB
Transmission range of V2V and V2I (e.g. DSRC) 1000 meters
Data transfer rate of V2V and V2I 15Mbps
Data transfer rate of cellular (e.g. LTE) 50Mbps

85

Data transfer rate of fiber links (e.g. Ethernet) 1Gbps
Ratio 𝑟 for TADs 0.005s/m
Simulation duration 100 hours

Table 6-1: Baseline parameters used in the simulations

Each RSU generates dynamic data components once in every 1 hour (i.e. 	𝜆D = 3 × 10GL/𝑠

) with no updates by default (i.e., an update rate of 0 updates/s). The RSU pushes the generated data

to all the other G-RSUs (i.e. 9 G-RSUs by default) using the push mechanism described in Section

6.3.1. Upon generation, the life span of each dynamic data is set to 6 hours. The size of dynamic

data is chosen randomly between 0.5MB to 19.5MB, thus the average size is 10MB. In the

simulation, it is assumed that the V2V and V2I links are DSRC, and the cellular network is LTE.

Moreover, the fiber links between the MAS and RSUs are Ethernet. The constant 𝑟 for computing

TADs in Eqn. 6-2 is 0.005s/m. All the presented results correspond to a simulation duration of 100

hours.

6.4.1 Mobility Characteristics

Before we delve into performance characterization of the proposed caching architecture, it is

useful to understand the nature of vehicle mobility in our experimental setting. Figure 6-4 (a) shows

the number of vehicles encountered per hour averaged across all vehicles. Figure 6-4 (b) depicts

the same metric as perceived by the RSUs. First notable observation is that on an average, a vehicle

always encounters many more other vehicles compared to the RSUs. Low encounter density of the

RSUs are explained by the fact that the RSUs are stationary while the vehicles are moving. Also,

the number of RSUs is smaller than the number of vehicles in the system. The higher encounter

rates for the vehicles in Figure 6-4 indicate that in-vehicle caching is expected to be much more

effective for finding map components in the caches compared to in-RSU caching.

86

Figure 6-4: Mean vehicle encounter rates for the vehicles and RSUs

6.4.2 Impacts of In-vehicle Caching on Bandwidth Usage (BU)

This section investigates how the proposed caching technique affects the bandwidth usages

of various links. For all reported results, bandwidth usage of a link 𝑙 is shown in percentage which

is defined as 𝑃𝐵(𝑙) in the following equation:

𝑃𝐵(𝑙) = 12(<)
∑ 12(N)0∈9

× 100%																											 (6-4)
where 𝐴𝐵(𝑙) is the absolute bandwidth usage (in MB) of the link 𝑙through the whole simulation,

and 𝑆 = {𝐶𝑒𝑙𝑙𝑢𝑙𝑎𝑟, 𝐿𝑜𝑐𝑎𝑙, 𝑉2𝑉, 𝐹𝑖𝑏𝑒𝑟	𝐿𝑖𝑛𝑘𝑠, 𝑉2𝐼} which is the set of all the available links in the

simulation. Additionally, the available cache size is reported as a multiple of the average size of the

dynamic map components.

Figure 6-5: Bandwidth usages with different in-vehicle cache sizes

0
2
4

6
8

10
12

0 50 100

Ve
hi

cl
e

Co
nt

ac
ts

pe
r H

ou
r

Time (h)

0

0.05

0.1

0.15

0.2

0.25

0 50 100

Ve
hi

cl
e

Co
nt

ac
ts

pe
r H

ou
r

Time (h)

(a) Average Vehicle Contacts of Vehicles (b) Average Vehicle Contacts of RSUs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60 80 100

Lo
ca

l H
it

Vo
lu

m
e

B
U

 o
f C

el
lu

la
r

Cache Size on Vehicle (MB)

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%
1.0%

0%

2%

4%

6%

8%

10%

12%

14%

0 20 40 60 80 100

B
U

 o
f F

ib
er

 &
 V

2I

B
U

 o
f V

2V

Cache Size on Vehicle (MB)

Cellular Local
V2V

Fiber Links

V2I

(a) (b)

87

As shown in Figure 6-5 (a), with increasing allocated cache size in the vehicles, the bandwidth

usage of cellular links reduces. This is due to the fact that the caching mechanism becomes more

effective with larger available caches. As a result, vehicles often find requested map contents from

within the cache of its own, other vehicles, and RSUs without having to reach the Map Application

Server (see Figure 6-2) via in-vehicle cellular links. Part of this is confirmed by the local-hit

statistics in Figure 6-5 (a). The graph for local hit volume indicates that with larger available cache

size, more and more dynamic map data can be stored in the in-vehicle local cache. The other reasons

for reducing cellular bandwidth usage can be explained using the graphs in Figure 6-5 (b). As for

the V2V bandwidth usage, first it increases with increasing cache size since larger cache size sparks

more inter-vehicular caching related traffic. However, when the allocated cache size is very large

(i.e., larger than 30MB), the vehicles are able to cache a lot of content within their own local cache,

resulting in lower inter-vehicle caching dependency and the related traffic volume. The V2I

bandwidth usage represents the traffic between the RSUs and the vehicles. With increasing

allocated cache size, more dynamic map data requests are satisfied by items cached within the

vehicles. As a result, the dependency on the RSUs reduces. This explains the downward trend of

the V2I bandwidth usage graph in Figure 6-5 (b). Finally, the allocated cache size has very little

impact on the bandwidth usage of the fiber links between the RSUs and the MAS. Those links are

used mainly when an O-RSU uploads a dynamic map data to the MAS, and when the MAS pushes

that data to a set of appropriate G-RSUs. Vehicle caching does not impact the usage of those links.

6.4.3 Caching Dynamics

The graphs in Figure 6-6 demonstrates the impacts of cache build-up in the network over

time. The temporal bandwidth usage of a link 𝑙 at time ℎ in Figure 6-6 is also shown in percentage

that is defined as 𝑃𝑇𝐵(𝑙, ℎ) computed by the following equation:

88

𝑃𝑇𝐵(𝑙, ℎ) = 1P2(<,a)
∑ 1P2(<,!)!44
"&4

× 100%																								 (6-5)

while 𝐴𝑇𝐵(𝑙, ℎ) is the absolute temporal bandwidth usage (in MB) of the link 𝑙 at time ℎ.

Figure 6-6: Temporal bandwidth usages of V2V and cellular links

Figure 6-6 (a) depicts the cellular and V2V bandwidth usage over time for a specific scenario

in which each dynamic map data item expires after a duration of six hours. Upon each expiry of an

item, the network has to clear out the corresponding entry from existing caches and needs to rebuild

it. Observe that during such cache rebuilding instances, there is an initial surge of cellular bandwidth

usage indicating direct download from the MAS over the cellular link. Such surges are immediately

followed by high V2V bandwidth usage spurts, indicating in-vehicle caching transactions. Note that

the cellular and V2V bandwidth usage could be on a relatively low level but non-zero between each

pair of continuous rebuilding instances, this is because the vehicles still keep requesting and

fetching the dynamic map data via cellular and V2V links during this time, since they are not able

0%

1%

2%

3%

0 2 4 6 8 10 12 14 16 18 20

Te
m

po
ra

l B
an

dw
id

th
 U

sa
ge

Time (h)

Cellular

V2V
Data expires

(a) Life of Data is 6h

0%

1%

2%

3%

4%

0 5 10 15 20

Te
m

po
ra

l B
an

dw
id

th
 U

sa
ge

Time (h)

Cellular
V2V

Data expires

(b) Life of Data is 10h

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20

Te
m

po
ra

l B
an

dw
id

th
 U

sa
ge

Time (h)

Cellular
V2V

(c) Life of Data is 100h

89

to cache all the data in their in-vehicle caches. Figures 6-6 (b) and 6-6 (c) demonstrates similar

effects when the expiry time of the content is extended to 10 hours and 100 hours respectively.

Specifically, there is only one rebuilding instance shown in Figure 6-6 (c), because the next instance

will be after 100 hours that is out of the range of x-axis (i.e., 20 hours) shown here. It can be

observed in Figure 6-6 that the peak values of both the cellular and the V2V link bandwidths are

more for higher content expiry times. The reason for that trend is as follows. In Figure 6-6 (c) there

is only one rebuilding instance through the whole simulation (i.e. 100 hours), while there are

multiple such instances in Figure 6-6 (a) and (b). According to Eqn. 6-5, the more the number of

rebuilding is, the lower the height of each surge is. As an extreme example, in Figure 6-6 (c) the

only surge of cellular link contributes almost 100% bandwidth usage to the total ∑ 𝐴𝑇𝐵(𝑙, 𝑖)?MM
!>M in

Eqn. 6-5.

6.4.4 Impact of in-RSU Caching

Figure 6-7 shows how the bandwidth usage of different links are affected by various allocated

cache sizes in the RSUs. There were 10 RSUs deployed in the network for this result. Unlike

caching in the vehicles, allocated cache size variation in RSUs do not significantly affect the

bandwidth usages of any of the network links. This is because the coverage of the RSUs is limited

as indicated by their low vehicle encounter rates shown in Figure 6-4. Such infrequent encounters

provide very few opportunities to the vehicles for accessing dynamic map data cached within the

RSUs.

90

Figure 6-7: Impacts of allocated cache sizes in the RSUs

6.4.5 Larger RSU Coverage

One way of leveraging in-RSU caching for cellular bandwidth cost reduction would be to

increase the RSU’s V2I coverage range. Figure 6-8 shows the average vehicle encounter rate of an

RSU when its range is extended to 5000 meters compared with when the range was only 1000

meters. It can be observed that the vehicle encounter rate has increased here by more than 10 times

by increasing the coverage to 5000 meters.

Figure 6-8: Mean vehicle encounter rate of RSUs

With such higher frequency encounters, the vehicles are able to leverage in-RSU caching

more effectively. This is evident from the results in Figure 6-9 in which various network bandwidth

80%
81%
82%
83%
84%
85%
86%
87%
88%
89%
90%

0%

2%

4%

6%

8%

10%

12%

0 20 40 60 80 100

Lo
ca

l H
it

Vo
lu

m
e

B
U

 o
f C

el
lu

la
r

Cache Size on RSU (MB)

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%
1.0%

4%

5%

5%

6%

6%

7%

7%

0 20 40 60 80 100

B
U

 o
f F

ib
er

 &
 V

2I

B
U

 o
f V

2V

Cache Size on RSU (MB)

V2V

Fiber Links

V2I

(a) (b)

Cellular

Local

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

5

0 20 40 60 80 100

V
eh

ic
le

 C
on

ta
ct

s p
er

 H
ou

r

(T
ra

ns
m

iss
io

n
Ra

ng
e=

10
00

m
)

V
eh

ic
le

 C
on

ta
ct

s p
er

 H
ou

r

(T
ra

ns
m

iss
io

n
Ra

ng
e=

50
00

m
)

Time (h)

Transmission Range=5000m

Transmission Range=1000m

91

usages are affected in a way that is similar to the way bandwidth usages are affected by in-vehicle

caching in Figure 6-5. Most notably, it is possible to reduce the cellular bandwidth usage cost by

allocating sufficient amount of cache space in the RSUs. This improves in-RSU cache performance

and increases the V2I bandwidth usage for the RSU-to-Vehicle downloads of dynamic map data

cached in the RSUs. However, the trends of the local-hit and V2V bandwidth do not remarkably

affected by in-RSU caching, since they mainly depend on in-vehicles caching. Additionally, in-

RSU caching does not affect bandwidth usage of RSU-MAS fiber links, which is similar to Figure

6-7.

Figure 6-9: Impacts of allocated cache sizes in the RSUs with long-range V2I

The impacts of more G-RSUs for disseminating each dynamic map data in this increased V2I

range scenario is shown in Figure 6-10. As expected, the cellular bandwidth usage here does go

down with more G-RSUs participating in dissemination of dynamic map. The reason is efficiency

of more G-RSUs with long-range V2I links. The V2I bandwidth increases due to higher frequency

downloads of dynamic map data cached in the G-RSUs. Similar to Figure 6-9, more G-RSUs causes

higher usage of the fiber links but does not notably impact local-hit and V2V bandwidth.

78%
79%
79%
80%
80%
81%
81%
82%
82%
83%

5%

6%

7%

8%

9%

10%

0 20 40 60 80 100

Lo
ca

l H
it

Vo
lu

m
e

B
U

 o
f C

el
lu

la
r

Cache Size on RSU (MB)

0%

1%

2%

3%

4%

6%

7%

8%

9%

10%

11%

12%

0 20 40 60 80 100

B
U

 o
f F

ib
er

 &
 V

2I

B
U

 o
f V

2V

Cache Size on RSU (MB)

Local

Cellular

V2V

Fiber Links

V2I

(a) (b)

92

Figure 6-10: Bandwidth usage with varying number of G-RSUs with long-range V2I

6.4.6 Map Fetch Latency

The fetch latency is defined as the duration between when a vehicle generates a request for a

specific dynamic data, and when it actually receives it. In Section 6.3.2, it was stated that during

the Tolerable Access Delay (TAD), which is computed using Eqn. 6-2, a vehicle first searches the

requested data in its local cache and then in other vehicles and the RSUs nearby before downloading

it from the MAS though the on-vehicle cellular link. It follows that the fetch latency for a data is

acceptable only if it is less than the TAD defined for that dynamic map data item.

Figure 6-11: Map fetch latency with various in-vehicle cache sizes

Figure 6-11 shows the impacts of allocated in-vehicle cache size on the map fetch latency.

The latency reduces monotonically as more and more cache space is added. The reason for this is

as follows. Larger allocated in-vehicle cache space enables more effective caching, thus improving

76%

77%

78%

79%

80%

81%

82%

83%

4%

5%

6%

7%

8%

9%

10%

11%

12%

0 3 6 9

Lo
ca

l H
it

Vo
lu

m
e

B
U

 o
f C

el
lu

la
r

No. of G-RSUs

0%

1%

2%

3%

4%

0%

2%

4%

6%

8%

10%

12%

14%

0 3 6 9

B
U

 o
f F

ib
er

 &
 V

2I

B
U

 o
f V

2V

No. of G-RSUs

Cellular

Local

V2V

Fiber Links

V2I

(a) (b)

10

20

30

40

50

60

0 20 40 60 80 100

M
ap

 F
et

ch
 L

at
en

cy
 (s

)

Cache Size on Vehicle

Average TAD

93

the odds of finding the requested map components locally within the requesting vehicle or the

nearby vehicles. Finding the data locally provides lower fetch latency compared to downloading it

from the MAS over cellular links.

6.5 Summary

The chapter presented a mechanism for collaborating vehicular content caching in the context

of navigational map dissemination. The research goal is to intelligently cache content in RSUs and

vehicles such that the cellular bandwidth usage is minimized. We have developed a model for

dynamic map data generation and used that model for designing caching algorithms for both the

RSUs and the vehicles. We run detailed simulations using the DTN simulator ONE, based on a

generalized network architecture. The results indicate that the proposed collaborative caching

mechanism is able to reduce the cellular bandwidth usage and map fetching delay compared to

infrastructure-based caching strategies.

94

Chapter 7 : Content Dissemination Through Mobile Edge Cache

Servers in Vehicular Networks

 Introduction

Besides the dynamic map described in Chapter-6, another typical application in vehicular

networks is air software update for in-vehicle modules including infotainment, navigation,

autonomous driving and many others. While some of the updates are non-time-critical and can wait

till a vehicle is at home or at work, some are time-critical and need to be performed while on the

road. This is more so now when the software for many new vehicle functions and emerging and

require frequent bug-fixes and functionality upgrades. For example, a critical bug-fix for the

braking system software may not be delayed till the vehicle reaches home or work. It may have to

be done by temporarily pulling over, or even while it is on the move. Other example of needed on-

the-road software updates includes firmware update of autonomous driving system, etc.

The current best practice is to push Software Update Packages (SUPs) from a cloud-based

Manufacturer Software Provider’s (MSP’s) server (e.g., Ford’s software update/App server) to

target vehicles via cellular networks. This approach, however, involves cellular bandwidth usage

cost that has to be paid to their mobile network operators (e.g. AT&T, Verizon, etc.) either by the

vehicle owners or by the vehicle manufacturer depending on any service arrangements. The

objective of this chapter is to explore a specific type of content caching using connection-less

caching servers in order to alleviate cellular network usage costs for software updates and other

vehicular contents that may require on-road downloads.

 Caching of such content can usually be performed in vehicles themselves and/or roadside

cache servers that are co-located with Roadside Service Units or RSUs. The vehicular caching

approach relies on in-vehicle caching and vehicle-to-vehicle content sharing, which may or may

95

not be possible due to users’ privacy concerns. More importantly, in order for such caching to be

effective, V2V connections need to be sufficiently dense which may not be the case for rural

transportation scenarios. Connectivity can also be sparse depending on the time of the day (e.g.,

nights), weather conditions, and other factors.

 In the in-RSU caching approach, cellular usage cost reduction would require the roadside

cache servers to anticipate demand and download content from the MSP’s server through backhaul

links including fibers and broadband wireless when applicable. Downloaded contents such as SUPs

can then be delivered to appropriate vehicles using Dedicated Short-Range Communication

(DSRC) links. While avoiding the sparse vehicle issue of V2V caching, this approach relies on

sufficient number of permanently installed roadside cache servers which may not always be

feasible. It is more so when the high cost of such cache servers with backhaul connectivity is

considered. Even for the RSUs it is not yet clear as to which of the stakeholders, namely,

township/municipalities, network service providers, or the vehicle manufacturers will eventually

bear the capital investment and operating costs of the RSUs. If anything, installing permanent

roadside cache servers in addition to the issues can aggravate and complicate this issue.

To address this issue, the concept of a Connectionless Edge Cache Servers (CECSs) is

introduced in this chapter. The idea is to use such servers without incurring the cost of backhaul

connectivity, while gaining the ability to make the cache servers mobile. Such mobility can provide

a great deal of flexibility in temporarily placing them in areas with low vehicle and RSU densities

and high content demands. Putting the CECS on vehicles and placing them on-demand can cater to

events such as games, accidents, weather conditions, etc. Without backhaul connectivity to an MSP,

the CECSs can cache content collected via DSRC links form the current-passing vehicles and

provide them to future-passing vehicles over DSRC, and reduce the cellular bandwidth usage of the

96

vehicles in that process. As shown in Figure 7-1, the CECSs can coexist with RSUs (i.e., cache

servers with backhaul connectivity) as when such infrastructures are available.

Figure 7-1: Content dissemination and caching using edge infrastructures

 Content Search and CECS Operation

In the rest of the chapter, we will use vehicle software updates as introduced in the Section

7.1 as the target content type, and will describe the operation of CECS in that context. The model

can be mostly extended for disseminating other content types such as navigational events, news and

weather events, etc.

Once an MSP releases a new SUP for a vehicle model and year, it pushes an update

notification to all the relevant vehicles over the cellular network. This notification is of small size

and acts as a metadata containing ID and version number, etc., for the full SUP. Upon receiving the

notification, a vehicle can start the SUP search process by generating a request for the SUP with

the appropriate information received in the metadata. This is the typical software update model used

by the manufacturers of most wirelessly connected devices such as phones, tablets, and the likes.

Internet

Backhaul Links
e.g. Ethernet: 1 Gbps

V2V Links
e.g. DSRC: 15Mbps

Cellular Links
e.g. LTE: 50 Mbps

I2V Links
e.g. DSRC: 15 Mbps

RSU

Manufacturer Software Provider’s (MSP’s) Server

RSU

Cellular Base Station

CECS CECS CECS

97

 As the first step of the SUP search process, a vehicle sends enquirers to its nearby (i.e.,

within the DSRC range) vehicles and all CECSs via V2V and V2I links. If that search fails after a

pre-defined Tolerable Access Delay (TAD), the vehicle sends a request to the MSP’s server and

pulls the requested SUP through the cellular link. TAD represents the duration that a vehicle is

willing to wait before the request is successfully served. TAD for a SUP item is set by the MSP

based on its time criticality, and it is mentioned in the metadata notification. Since the second phase

of the search is expensive in terms of cellular bandwidth cost, the goal of a caching architecture will

be to place the SUP within the appropriate CECSs so that cellular usage can be avoided or

minimized.

 Figure 1-3 in Chapter-1 summarizes the operational sequence of the CECS units. Vehicles

follow a policy (i.e., to be defined later) for selectively uploading SUPs to the CECSs that they

encounter on their ways. The CECSs cache such SUPs based on a set of caching protocols to be

presented in Section 7.3. Finally, a vehicle can download a requested SUP from an encountered

CECS whose cache contains the SUP.

 Caching Mechanism

 Content Segment Distribution

For given vehicle speed and DSRC transmission range, a single V2I or V2V contact duration

may not always be sufficient to transfer a full SUP. To address this, a SUP is divided into multiple

segments with size that is likely to be able to be transferred during a single contact. Let a SUP 𝑆!

be divided into 𝑛 segments {𝑠!,M, 𝑠!,?, 𝑠!,J, … , 𝑠!,&G?}. The segment size would be dimensioned such

that in most sections it is possible to transfer one or more segments during a single V2I or V2V

connection. Also, to get a complete SUP a vehicle does not need to get all its segments from a single

vehicle or CECS, or even from the MSP over the cellular links. Instead, a vehicle can get different

98

segments via different methods and installs the SUP after constructing it from all the received

segments.

According to the search model described in Section 7.2, the cellular bandwidth usage by a

vehicle can be minimized depending on how many segments of a SUP is obtained by the vehicle

from other vehicles and the CECSs before the TAD specified for the SUP expiries. As outlined in

Section 7.1, the CECS-based architecture is expected to be effective in sparse vehicle density

scenarios in which the chances of getting SUP segments from other vehicles are quite low. As a

result, being able to cache the correct SUPs in the correct CECSs is a key to cellular bandwidth

usage cost reduction. In other words, the main algorithm problem is how to cache the SUP segments

at the CECSs such that each vehicle can obtain the maximum number of SUP segments from the

CECSs that it encounters within the specified TAD for that SUP.

Completeness Index (CI): This is defined as a measure to evaluate the goodness of a specific

distribution of SUP segments cached across installed CECSs. After generating a SUP request at a

location-l, a vehicle can move a maximum distance r within time TAD computed as follows:

 𝑟 = 𝑣 × 𝑇𝐴𝐷 (7-1)

, where v is the average vehicle velocity. Let 𝐸<,0 be the set of distinct CECSs geographically placed

within the range of r from location-l. This represents the CECSs that the vehicle may be able to

access during the TAD. Figure 7-2 depicts an example transportation network in which a vehicle’s

location when requesting a SUP and its possible locations after the TAD are shown. The CECSs

within the set 𝐸<,0 (i.e., CECSs in the red rectangle in Figure 7-2) in this scenario are also depicted.

Note that the vehicle may not be able to contact every one of these CECSs in 𝐸<,0 during the TAD,

since the 𝐸<,0 only represents the possible CECSs that the vehicle may contact during the TAD.

99

Figure 7-2: Example of the accessible CECSs to a vehicle during the TAD

The Completeness Index (CI) is defined as:

𝜇X$,. =
b;$,.
P
																																													 (7-2)

where the quantity 𝑈X$,. is the number of distinct segments cached in the CECSs within the set 𝐸<,0,

and 𝑇 is the total number of segments from the SUPs that can be requested.

Lemma 7-1. A higher 𝜇X$,. indicates that a vehicle can obtain more segments from CECSs within

the range of r from location-l.

100

Proof. A higher 𝜇X$,. must be resulted by a higher ratio of 𝑈X$,. to T which means more unique

segments out of total available segments are cached in the CECSs in the set 𝐸<,0 within the range of

r from location-l. Thus, a higher 𝜇X$,0 indicates that the vehicle may obtain a greater ratio of

requested segments from these CECSs within the TAD period.

The average CI 𝜇0 of a geographical area can be computed as:

𝜇0 =
∑ c;$,.;$,.⊆;

d
																																																											(7-3)

, where 𝐸 is the set of all the CECSs placed in that area, and each 𝐸<,0 represents a distinct subset

of E that is formed by several adjacent CECSs within the range of r from each location-l in the area.

The quantity K is the total number of such distinct subsets 𝐸<,0. Similar to Lemma 7-1, a higher 𝜇0

indicates that on an average, a vehicle can obtain more segments of requested SUPs from the CECSs

within the TAD period.

Lemma 7-2. For given T and K, 𝜇0 can be maximized by minimizing the number of duplicate

segments cached in the CECSs in each 𝐸<,0.

Proof. For the CECSs in each 𝐸<,0, the minimum number of duplicate segments cached represents

the maximum value of 𝑈X$,. in Eqn. 7-2. Thus 𝜇X$,. in Eqn. 7-2 can be maximized by maximizing

𝑈X$,. for a given T. Similarly, 𝜇0 in Eqn. 7-3 can be maximized by maximizing 𝜇X$,. for each 𝐸<,0.

101

Figure 7-3: Example updates of the CMTs within CECSs

CMT Maintained by CECS-3

CECS ID Location Cache State Last Update Time

0 ("#, %#) SUP-0: ['#,#, '#,(, '#,), '#,*] 11/8/2019 10:00am

1 ("+, %+) SUP-0: ['#,+, '#,(, '#,,, '#,-, '#,.]
SUP-1: ['+,#, '+,/, '+,)]

10/30/2019 6:00pm

2 ("/, %/) SUP-2: ['/,#, '/,(, '/,), '/,*, '/,+#] 11/1/2019 8:00am

3 ("(, %() SUP-1: ['+,#, '+,/, '+,(, '+,,] 11/5/2019 3:00pm

CECS-3

SUP-0: ['#,#, '#,(]

CESS-3

CMT Maintained by CECS-3

CECS ID Location Cache State Last Update Time

0 ("#, %#) SUP-0: ['#,#, '#,(, '#,), '#,*] 11/8/2019 10:00am

1 ("+, %+) SUP-0: ['#,+, '#,(, '#,,, '#,-, '#,.]
SUP-1: ['+,#, '+,/, '+,)]

10/30/2019 6:00pm

2 ("/, %/) SUP-2: ['/,#, '/,(, '/,), '/,*, '/,+#] 11/1/2019 8:00am

3 ("(, %() SUP-0: ['#,#, '#,(]
SUP-1: ['+,#, '+,/, '+,(, '+,,]

11/8/2019 4:00pm

Current time: 11/8/2019 4:00pm

CECS-3

CMT Maintained by CECS-3

CECS ID Location Cache State Last Update Time

0 ("#, %#) SUP-0: ['#,#, '#,(, '#,), '#,*] 11/8/2019 10:00am

1 ("+, %+) SUP-0: ['#,+, '#,(, '#,,, '#,-, '#,.]
SUP-1: ['+,#, '+,/, '+,)]

10/30/2019 6:00pm

2 ("/, %/) SUP-2: ['/,#, '/,(, '/,), '/,*, '/,+#] 11/1/2019 8:00am

3 ("(, %() SUP-1: ['+,#, '+,/, '+,(, '+,,] 11/5/2019 3:00pm

(a) CMT maintained by CECS-3 before accepting new segments of SUPs

(b) A vehicle uploads some segments of SUP-0 to CECS-3

(c) CECS-3 updates the entry about itself in the CMT after accepting
and caching the new segments

102

 Cache Metadata Tables (CMTs)

According to Lemma 7-1 and 7-2, the chances of finding SUP segments in the CECSs can be

maximized, and therefore the cellular bandwidth usage for downloading the segments can be

minimized, by minimizing the number of duplicate segments cached at the CECSs in each 𝐸<,0. This

requires that each CECS must know the cache information of other CECSs in the same 𝐸<,0. Based

on such information, a CECS can minimize or even avoid duplications. In the absence of backhaul

connectivity to these connectionless servers, the only way such information can be obtained and

disseminated across the CECSs is by exploiting the vehicles as information carriers.

 In order to realize SUP segment ferrying by the vehicles, a data structure, namely Cache

Metadata Table (CMT), is maintained in the vehicles as well as in the CECSs. As shown in Figure

7-3, each entry in a CMT corresponds to a specific CECS. It includes the corresponding CECS ID,

its geographical location, the state of each cached SUP in terms of a list of the SUP’s cached

segments, and a Last Update Time (LUT). The CMT in a vehicle is initialized to be empty, and the

CMT in a CECS is initialized with an entry about its own cache status. Once a CECS receives and

caches some segments uploaded from a vehicle, the CECS may update the entry about its own cache

status in the CMT (see Figure 7-3).

103

Figure 7-4: Example of CMT exchange between a vehicle and a CECS

Since a CECS is connectionless, the updates for the entries about other CECSs in its CMT

happen as a result of information received from passing vehicles. Whenever a vehicle passes a

CECS or another vehicle, the following information exchange happens. Figure 7-4 depicts an

example of such exchange between vehicle-0 and CECS-3. The exchange is initiated by vehicle-0

by sending a summary list (i.e., metadata) list-0 to CECS-3. The list includes the CECS IDs and

LUTs of all the entries in vehicle-0’s CMT (see Figure 7-4 (a)). Once received, by comparing list-

0 with its own CMT, CECS-3 knows that vehicle-0 may need some entries that are either not

available or out of date in vehicle-0’s CMT. Moreover, CECS-3 itself may need to update or add

some entries in its own CMT by receiving information from vehicle-0. At this point, CECS-3 sends

back two things to vehicle-0: 1) CMT-0 which includes the entries that vehicle-0 may need, and 2)

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%] 11/8/2019 10:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time

0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*] 11/2/2019 1:00pm

CECS-3Vehicle-0

List-0
CECS ID Last Update Time

0 11/9/2019 8:00am
3 11/2/2019 1:00pm

CECS-3Vehicle-0

Request-0
CECS ID
0

CMT-0
CECS ID Location Cache State Last Update Time
1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]

SUP-1: [&&,!, &&,*, &&,$]
10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CECS-3
Vehicle-0

CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time

0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*] 11/2/2019 1:00pm

CMT-1
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time

0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%] 11/8/2019 10:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%] 11/8/2019 10:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CECS-3Vehicle-0CMT Maintained by Vehicle-0
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

CMT Maintained by CECS-3
CECS ID Location Cache State Last Update Time
0 ("!, $!) SUP-0: [&!,!, &!,#, &!,$, &!,%, &!,&!] 11/9/2019 8:00am

1 ("&, $&) SUP-0: [&!,&, &!,#, &!,', &!,(, &!,)]
SUP-1: [&&,!, &&,*, &&,$]

10/30/2019 6:00pm

2 ("*, $*) SUP-2: [&*,!, &*,#, &*,$, &*,%, &*,&!] 11/1/2019 8:00am

3 ("#, $#) SUP-1: [&&,!, &&,*, &&,#, &&,'] 11/5/2019 3:00pm

(a) Vehicle-0 sends list-0 extracted from its CMT to CECS-3

(b) By comparing list-0 with the CMT of CECS-3, CECS-3 finds that vehicle-0 may need to add or
update some of its CMT entries, while CECS-3 also needs to update the CMT entry about CECS-0.
Thus CECS-3 sends the CMT-0 and Request-0 to vehicle-0

(c) Vehicle-0 updates its CMT after receiving CMT-0 from CECS-3. Additionally,
vehicle-0 sends CMT-1 to CECS-3 that includes the entry requested by CECS-3

(d) CECS-3 updates its CMT-1 after receiving CMT-1 from vehicle-0

104

Request-0 which includes the CECS IDs of the entries that CECS-3 may need (see Figure 7-4 (b)).

Then vehicle-0 can update its own CMT by receiving CMT-0 from CECS-3. It also sends back a

CMT-1 which includes the entries requested by Request-0 from CECS-3 (see Figure 7-4 (c)). The

exchange process is completed after CECS-3 receives CMT-1 from vehicle-0 and updates its CMT

(see Figure 7-4 (d)).

 The above CMT exchange mechanism is designed after the Delay Tolerant Network

epidemic routing [75,76] which ensures that the cache information about the SUPs are selectively

disseminated from moving vehicles to the roadside connectionless cache servers. A similar CMT

exchange and update process take place when two vehicles encounter each other. The full logic of

the exchange of CMT information is summarized in Algorithm 7-1.

Algorithm (a): CMT exchange initiated by vehicle 𝑣!
1: Input: contacting CECS 𝑒(
2: initialize(list-0);
3: for each entry in 𝐶𝑀𝑇O" at 𝑣!
4: list-0.add({entry.id, entry.LUT});
5: end
6: send(list-0, 𝑒();

Algorithm (b): Sending CMT entries and request list from 𝑒(to 𝑣!
1: Input: contacting vehicle 𝑣!, summary list list-0 from 𝑣!
2: initialize(CMT-0);
3: initialize(Request-0);
4: //put entries to CMT-0 and request-0
5: for each row in list-0 from 𝑣!
6: entry ¬ 𝐶𝑀𝑇@* . 𝑓𝑖𝑛𝑑𝐵𝑦𝐼𝑑(𝑟𝑜𝑤. 𝑖𝑑);
7: if entry.LUT < row.LUT
8: Request-0.add(entry.id);
9: else if entry.LUT > row.LUT
10: CMT-0.add(entry);
11: end
12: end
13: // entries that 𝑣! does not have are also added to CMT-0
14: for each entry in 𝐶𝑀𝑇@* at 𝑒(
15: if entry.id not in list-0

105

16: CMT-0.add(entry);
17: end
18: end
19: send(CMT-0,	𝑣!);
20: send(Request-0,	𝑣!);

Algorithm (c): updating CMT at 𝑣! and sending requested CMT
entries to 𝑒(
1: Input: contacting CECS 𝑒(, CMT-0 and Request-0 from 𝑒(
2: // update CMT at 𝑣!
3: for each entry in CMT-0
4: if entry.id in 𝐶𝑀𝑇O"
5: 𝐶𝑀𝑇O".update(entry.id, entry);
6: else
7: 𝐶𝑀𝑇O".add(entry);
8: end
9: end
10: // put requested entries to CMT-1 and send it to 𝑒(
11: initialize(CMT-1);
12: for row in Request-0
13: entry ¬ 𝐶𝑀𝑇O" . 𝑓𝑖𝑛𝑑𝐵𝑦𝐼𝑑(𝑟𝑜𝑤. 𝑖𝑑);
14: CMT-1.add(entry);
15: end
16: send(CMT-1,	𝑒();

Algorithm (d): updating CMT at 𝑒(
1: Input: CMT-1 from 𝑣!
2: // update CMT at 𝑒(
3: for each entry in CMT-1
4: if entry.id in 𝐶𝑀𝑇@*
5: 𝐶𝑀𝑇@*.update(entry.id, entry);
6: else
7: 𝐶𝑀𝑇@*.add(entry);
8: end
9: end

Algorithm 7-1: CMT exchange algorithm between a vehicle and a CECS

106

 Cache Replacement Policy

While the CMT exchange policy above outlines the distribution of SUP information in CECS

caches, it does not specify the cache replacement policies in the presence of limited storage space.

The objective of cache replacement policies should be to maximize the diversity of cached SUP

segments (i.e., minimize shared cached items) within each CECS subset as defined in Lemma 7-2.

Such a policy can maximize the Completeness Index 𝜇X$,., and lead to minimum possible cellular

bandwidth usage.

Replacement Policy at a CECS: Once a CECS 𝑒! receives a segment 𝑠(from a vehicle, it computes

the priority 𝑃N*
@" of 𝑠(relative to 𝑒! as:

𝑃N*
@" = ?

e0*
7"8?

 (7-4)

The quantity 𝜃N*
@" is the number of copies of 𝑠(cached at the CECSs in the set of 𝐸<(@"),0 in

which 𝑙(𝑒!) indicates the location of 𝑒!. A larger 𝑃N*
@" indicates lower number of copies of 𝑠(cached

at the CECSs within the range of r from 𝑒!, thus the number of shared segments cached at these

CECSs can be reduced by caching segments with higher priority values. Note that the CECSs in

the set 𝐸<(@"),0 can be figured out based on the location information in the CMT at 𝑒!. Particularly,

𝑃N*
@" is 1 when there is no other copy of 𝑠(is cached at any CECS in the set 𝐸<(@"),0.

 After receiving the segment 𝑠(, CECS 𝑒! caches it if there is sufficient storage space

available. If not, it uses the computed priority of 𝑠(to make a replacement decision as follows. If

the priority of 𝑠(is larger than that of the smallest priority cached segment 𝑠', the CECS replaces

𝑠' by the newly received segment 𝑠(. Otherwise, segment 𝑠(is dropped. Note that in order to keep

them up to date, the priorities of all the cached segments are updated after each CMT transfer as

described in Section 7.3.2.

107

Replacement Policy at a Vehicle: A vehicle 𝑣! executes its cache replacement following the same

priority-based scheme used by the CECSs. However, the priorities within a vehicle cannot be

computed with respect to itself, since the priority as defined in Eqn. 7-4 is computed with respect

to a CECS. To address this, the priority for each cached segment in vehicle 𝑣! is computed with

respect to currently geographically nearest CECS 𝑒E as 𝑃N*
@1. For this logic, since the location of

vehicle 𝑣! is expected to change, before every cache replacement, the vehicle is required to

recompute the priority values of all its cached segments.

 Performance Evaluation

We evaluate the performance of the proposed caching mechanism using the Delay-Tolerant

Networking (DTN) simulator ONE. We have chosen low vehicle-density backroads in East

Lansing, Michigan as one of the test scenarios with 100 vehicles on the road. As shown in the map

in Figure 7-5, 48 CECSs are placed at most of the road intersections. A DSRC transmission range

of 1000 meters have been used between vehicles, and between vehicles and the roadside CECSs.

Figure 7-5: Map of the simulation scenario in the East Lansing area

108

The following caching mechanisms are implemented and evaluated.

Naïve Caching: In this strategy, each vehicle attempts to upload all SUP segments in its local cache

to each CECS that the vehicle comes to contact with. Also, each CECS attempts to cache every

segment it receives from the passing vehicles. If the cache space in a CECS is full, the CECS always

replaces the first segment in its cache with the newly received segment. The vehicle also run the

same naïve cache replacement policy as done but the CECSs.

Round-robin Upload and Demand-based (RD) Caching: In this policy, each vehicle attempts to

upload SUP segments from its local cache to each CECS it encounters following a round-robin

policy. For example, a vehicle uploads the 0th to 9th segments from its cache to the first CECS it

encounters, and then it uploads the 10th to 19th segments to the second CECS it encounters, and so

on. Each CECS attempts to cache every SUP segment it receives. Additionally, each CECS also

counts the number of requests from vehicles for each segment. That number is used for estimating

the demand of a segment. The segment with a lower demand is replaced with one higher demand

when the cache space on a CECS is full. The vehicles under this policy runs the replacement policy

used in Naïve Caching as stated above.

CMT-based Caching: This is the proposed smart caching mechanism in this chapter. Under this

policy, each vehicle attempts to upload all the segments in its local cache to each CECS that it

encounters. Each CECS attempts to cache every segment it receives. However, if the cache space

in a CECS or in a vehicle is full, then it runs the CMT-based cache replacement policies presented

in Section 7.3.3.

Pre-filled Cache at CECS: This policy renders theoretical best caching performance. Here, the cache

of each CECS is manually pre-filled with SUP segments such that the Completeness Index 𝜇0 in

Eqn. 7-3 is maximized before an experiment begins. Such segment placements are static in that no

109

cache replacement is done after the pre-filling, and the vehicles never upload any segment to the

CECSs so that the optimal pre-filled cache configurations are never changed. The vehicles simply

run the Naïve caching policy described earlier. Before a simulation experiment begins, the CECSs

caches are pre-filled, while the vehicle caches are initialized empty. The latter gradually gets filled

up using Naïve caching.

Parameter Default Value
No. of CECSs 48
No. of vehicles 100
No. of available SUPs 10
No. of sub-segments in each SUP 100
size of each sub-segment 1MB
Ratio about cache size 𝛼 on each CECS 0.5
Ratio about cache size 𝛽 on each vehicle 0.2
Transmission range of V2V and V2I (e.g. DSRC) 1000 meters
Data transfer rate of V2V and V2I 16Mbps
Data transfer rate of cellular (e.g. LTE) 50Mbps
Speed of each vehicle 64km/h (40 mph)
TAD for each request 600s
Simulation duration 30 hours

Table 7-1: Baseline parameters used in the experiments

Unless stated otherwise, all parameters are set to the baseline values as shown in Table 7-1.

The mobility traces of the vehicles are generated based on the East Lansing road map shown in

Figure 7-5. Each vehicle enters into the area approximately every 16 minutes, and then moves along

the roads using a random walk model until it leaves the area network. The vehicle entry interval is

deliberately kept high so that the resulting vehicle density is as low as it is observed in rural

backroads such as the East Lansing area. The experiment is run for a total of ten different Software

Update Packages (SUPs) that the vehicles may require/request for all its internal electronics and

processing modules. Each SUP is divided into 100 segments of size 1MB [77]. Each vehicle may

request all the SUPs when it enters the network area as shown in Figure 7-5. For different

110

experiments, the vehicles and the CECSs are made to run different caching mechanisms as

described above.

The cache space on each CECS is represented by the parameter 𝛼 which indicate the ratio of

the available space (i.e., in terms of number of segments) to the total number of segments in the

system, which is 1000. For example, when 𝛼 is 1, each CECS can cache all the available segments

in the network. Similarly, the cache size on each vehicle is represented by the parameter 𝛽 defined

in the same manner.

 Impacts of Cache Space in the CECSs (𝜶)

For all the protocols, Figure 7-6 (a) depicts the impacts of available CECS cache storage size

(i.e., 𝛼) on the content retrieval rate via the cellular network, which the proposed caching

mechanism attempts to reduce. As expected, the figure shows the decrease of cellular network usage

with increasing cache space in the CECSs. As shown in Figure 7-6 (b), this reduction in cellular

usage is caused due to larger local hit rates at the CECSs. Meaning, with larger 𝛼	values, each CECS

can cache a greater number of sub-segments that can be retrieved by the vehicles. The practical

implications of these results are that fewer requested SUP segments are downloaded from the

MSP’s server through the cellular networks, leading to cellular usage reduction.

It can be observed that the proposed mechanism CMT performs better than all other strategies

except the manually pre-filled one, which represents the performance upper bound. Better

performance of CMT is due to its priority computation strategy, which helps reducing the overall

cached segment duplications in the CECSs, thus improving the completeness index, as defined in

Section 7.3. The cellular retrieval rate in the round robin approach (i.e., RD) is lower than Naïve,

because the number of shared/duplicated segments cached at the CECSs in RD is reduced by its

round-robin upload mechanism and demand-based replacement policy. Such mechanisms in RD,

111

however, does not perform as good as the priority-based approach in CMT, which achieves a better

complete less index by distributing SUP segments across the CECSs more evenly.

Figure 7-6: Cellular retrieval rate and hit rate at CECSs with various 𝛼

The average completeness indices (CIs), as computed in Eqn. 7-3, for all the protocols for

different in-CECS cache size are shown in Figure 7-7. It can be seen that the CI values and their

trends with varying in-CECS cache sizes for different protocols are consistent with the cellular

usage results presented in Figure 7-6.

Figure 7-7: Impacts of CECS cache space 𝛼 on Completeness Index 𝜇0

Content Delivery Latency (CDL) for all the protocols are shown in Figure 7-8. CDL is defined

as the interval between when a vehicle first puts out the request for a SUP segment and when it

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

α

Naïve

RD

CMT-based

Pre-filled cache

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

H
it

Ra
te

at
CE

CS
s

α

Naïve

RD

CMT-based

Pre-filled cache

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

μ r

α

Naïve

RD

CMT-based

Pre-filled cache

112

acquires the segment. As presented in Section 7.2, the vehicle avoids fetching the content over

cellular link for the Tolerable Access Delay (TAD) specified in the metadata for the corresponding

SUP. In the event that the vehicle cannot fetch using non-cellular V2V and V2I links during TAD,

it gets the SUP from the MSP over the cellular link. It follows that the CDL for a segment is bounded

by the TAD plus a short latency (i.e., negligible in comparison to TAD) to get the content from the

MSP. For the results in Figure 7-8, the TAD was set to 600 seconds or 10 minutes. It should be

noted that the CDL above is defined on a per-segment basis as opposed to on a per-SUP basis. The

latter defines the delay between when the request for the first segment of a SUP is produced and

when the last segment of the SUP is obtained

Figure 7-8: Content Delivery Latency for different caching mechanisms

As expected, CDLs for all the algorithms in Figure 7-8 are bounded by the TAD of 600

seconds, and they improve with higher available cache size in the CECSs. This is mainly due to

higher hit rates as depicted in Figure 7-6. Also to be observed that the proposed CMT scheme offers

the best latency numbers, which is also due to its higher hit rates as can be seen in Figure 7-6.

Higher hit rates allow more frequent SUP segment accessing from the CECSs, rather than waiting

for the TAD and fetching from the MSP via cellular networks.

300

350

400

450

500

550

600

0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
)

α

Naïve

RD

CMT-based

Pre-filled cache

113

A notable overhead of the proposed CMT based mechanism is the bandwidth used for

exchanging he Cache Metadata Tables (i.e., CMTs) themselves. Figure 7-9 shows the usage of

CMT-exchange bandwidth as a percentage of the bandwidth used for downloading the user data,

which is the SUPs. As expected, the overhead does increase with increased cache storage space in

the CECSs due to more CMT transfers between the vehicles and the CECSs. The absolute overhead,

however, is limited to less than a percent even when the available caches storage space in the CECSs

is very high.

Figure 7-9: CMT exchange overhead with varying storage in the CECSs

 Impacts of Available In-vehicle Cache Storage Space (𝜷)

Available cache storage space in the vehicles is indicated by the factor 𝛽 , as defined in

Section 7.4. As shown in Figure 7-10, with larger 𝛽, the cellular retrieval rate for all the caching

mechanisms are lower due to higher hit rates at the CECSs. This is because with larger available

cache storage space, each vehicle can cache more SUP segments, thus being able to upload more

of them to the CECSs that it encounters. Subsequently, more segments can be fetched from the

CECSs by other vehicles.

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
of

 C
M

T
Ex

ch
an

ge
s

α

114

Figure 7-10: Impacts of varying in-vehicle cache storage space 𝛽

Also to be noted that the cellular retrieval rate of CMT-based caching is lower than RD and

Naïve, while its hit rates at CECSs are higher. This further indicates the benefits of CMT’s priority

based replacement policy as observed in the results in Figure 7-10. For the pre-filled caching

strategy, however, since no vehicle-CECS content transfer takes place, its performance in terms of

cellular retrieval rate does not depend on the factor 𝛽.

 The final observation in Figure 7-10 is that the usage of cellular network saturates and

becomes almost the same for all the caching mechanisms when 𝛽 becomes larger than about 0.4.

This is because with large available in-vehicle storage space, a vehicle is able to cache most of the

available segments and upload them to the encountered CECSs. In this case, the benefit of CMT-

based caching mechanism is no longer significant.

Better caching performance of the proposed CMT-based approach can be further validated

by its superior Complete Index larger 𝜇0, as shown in Figure 7-11. Completeness Index indicates

how the SUP segments are uniformly distributed across the CECSs with minimum duplication. By

using the priority-driven cache replacements, the CMT mechanism can place segments more

uniformly, and in that process is able to reduce the cellular link usage compared to the other

mechanisms.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

H
it

Ra
te

 a
t C

EC
Ss

β

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

β

Naïve

RD

CMT-based

Pre-filled cache

Pre-filled cache

Naïve
RD

CMT-based

(a) (b)

115

Figure 7-11: Impacts of in-vehicle cache storage space on average CI (𝜇0)

 The impacts of available in-vehicle cache storage space on Content Delivery Latency (CDL)

are shown in Figure 7-12. The Tolerable Access Delay (TAD) is set to 600 seconds. As expected,

larger cache storage allows more SUP segments to be retrieved before the TAD expires, thus leading

to smaller CDL. Also, the CDL for CMT-based caching is lower than the others except the Pre-

filled cache for reasons explained in Figure 7-10.

Figure 7-12: CDL with different in-vehicle cache storage space 𝛽

 Figure 7-13 depicts that the overhead of CMT table exchange generally reduces with larger

in-vehicle cache storage. This is because with smaller storage space, each vehicle caches a small

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

μ r

β

Pre-filled cache

Naïve

RD
CMT-based

300

350

400

450

500

550

600

0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
)

β

Pre-filled cache

NaïveRD

CMT-based

116

number of SUP segments and uploads them to the encountered CECSs. In such scenarios, most of

the vehicles caches non-duplicated SUP segments, whose information needs to be exchanged during

the CMT exchange process. This increases the CMT exchange overheads. With larger cache storage

space, there exist more duplicate segments among the vehicles and CECSs, leading to less amount

of CMT exchange, thus leading to reduced overheads. It should be observed that even when the

CMT exchange is the maximum, it is still very small, only less then approximately 0.04% of the

actual data volume of the downloaded content.

Figure 7-13: CMT exchange overhead with varying vehicle cache space

The plots in Figure 7-14 demonstrate the dynamics of cache build-up in the network over

time. It can be observed that the cellular retrieval rate and 𝜇0 of all the caching mechanisms except

Pre-filled cache start to converge after around 800 minutes in the experiment. The performance of

all the protocols maintain the same relative trend as observed in earlier graphs.

0.00%

0.01%

0.01%

0.02%

0.02%

0.03%

0.03%

0.04%

0.04%

0.05%

0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d

β

117

Figure 7-14: Evolution of cellular retrieval rate and the completeness index 𝜇0

 Impacts of Tolerable Access Delay (TAD)

Figure 7-15 depicts how TAD, which is the duration before which a vehicle downloads a SUP

segment from the Manufacturer Software Provider’s (MSP’s) server, affects caching performance.

Initially, a larger TAD allows vehicles more time to fetch segments from other vehicles and the

CECSs, thus leading to higher cache hit rates and lower cellular usage. Consistent with the prior

results, for all TAD values, the CMT-based strategy does better compared to RD and Naïve caching

due to its better priority based replacement policy.

Figure 7-15: Impact of TAD on cellular retrieval rate and hit rate at CECSs

When the TAD becomes too large, however, the trend reverses. For example, with TADs

larger than 600s for RD, and 1200s for CMT, the cellular retrieval rates increase with TAD. The

only exception is the pre-filled case. This trend reversal happens due to reason explained below.

(a)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0 200 400 600 800 1000 1200 1400 1600

Ce
llu

la
r R

et
rie

va
l R

at
e

Time (min)

Pre-filled cache

Naïve

RD

CMT-based

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600

μ r

Time (min)

Pre-filled cache

Naïve

RD

CMT-based

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 510 1010 1510 2010 2510

H
it

Ra
te

at
CE

CS
s

TAD (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 510 1010 1510 2010 2510

Ce
llu

la
rR

et
rie

va
lR

at
e

TAD (s)

(b)(a)

Pre-filled cache

Naïve

RD

CMT-based

Pre-filled cache

Naïve

RD

CMT-based

118

While larger TADs allow more time to fetch content via non-cellular mechanisms, it also

reduces the rate of cache growth in the vehicles and CECSs. For smaller TAD values, cellular usage

reduces because the first effect of larger TAD dominates. As TADs become large enough to

compare with the vehicles’ sojourn time in the network, the second effect of large TAD dominates.

This results in partially empty vehicle caches (i.e. the vehicles leave the network before their caches

get a chance to be filled up). Subsequently, the CECS caches also remain partially empty. These

cause overall reduction of cache effectiveness, thus leading to higher cellular usage with increasing

TADs. Since pre-filling is done manually, it is immune from these effects.

 Comparison with Sparse-CECSs Network

Results in this section report caching performance with smaller number of cache edge servers

(i.e., 24 in Figure 7-16) compared to what has been used for the results presented so far (i.e., 48 in

Figure 7-5).

Figure 7-16: East Lansing scenario with reduced number of CECSs

119

Figure 7-17 depicts caching performance for both high- and low-CECS-count scenarios with

varying amount of available cache storage space in the CECSs. While the cellular usage rates follow

very similar trends with varying cache storage space, the overall cellular usage is lower for higher

CECS-count scenario. This is intuitive since with more edge cache servers in the network, the

caching efficiency is higher, thus leading to lower cellular usage. It should also be observed that the

benefits of the proposed CMT-based mechanism compared to the other caching schemes also

shrinks due to insufficient room for caching due to fewer available cache edge servers.

Figure 7-17: Cellular usage with various 𝛼 with different CECS-counts

Very similar performance trends can also be observed in Figure 7-18, which shows the

impacts of varying in-vehicle caching storage space. The only exception here is that the proposed

CMT-based mechanism can retain its cellular usage advantages even for the low CECS-count

scenario.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

α

Pre-filled cache

Naïve

RD

CMT-based

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

α

Naïve

RD

CMT-based

Pre-filled cache

(a) 48 CECSs (b) 24 CECSs

120

Figure 7-18: Cellular usage with 𝛽 with different CECS-counts

 Caching Performance in a Synthetic Network

In order to demonstrate repeatability of the prior results, caching experiments are done in a

synthetic network scenario as follows. As shown in Figure 7-19, 36 CECSs are uniformly placed at

every intersection (i.e., separated by 2km) of a transportation network. Vehicle mobility is generated

following the same model as in East Lansing scenario. All the other settings are kept the same as in

Table 7-1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

β

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

β

Naïve

RD

CMT-based

Pre-filled cache

Pre-filled cache

CMT-based

RD

Naïve

(a) 48 CECSs (b) 24 CECSs

121

Figure 7-19: CECS placement in a synthetic network scenario

Figure 7-20 and Figure 7-21 depict how the available cache space in the CECSs and the

vehicles (i.e., 𝛼 and 𝛽 respectively) affect caching performance in this scenario. These results show

trends similar to those in Figures 7-6 and 7-10 for the East Lansing scenario. One notable

observation is that the proposed CMT-based caching outperforms all the non-pre-filled schemes

due to its novel priority mechanism.

Figure 7-20: Impacts of CECS cache space in the synthetic scenario

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

H
it

Ra
te

at
CE

CS
s

α

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

α

Naïve

RD

CMT-based

Pre-filled cacheNaïve

RD

CMT-based

Pre-filled cache

(b)(a)

122

Figure 7-21: Impacts of vehicle cache space in the synthetic scenario

 Summary

 This chapter presents a novel caching mechanism based on connectionless roadside edge

cache servers in vehicular networks. The goal is to intelligently cache content within the vehicles

and the edge servers so that majority of the vehicle-requested content can be obtained from those

caches, thus minimizing the amount of cellular network usage. The mechanism is specifically

designed and investigated in the context of vehicle software update packages (SUPs) that can be

divided into multiple segments, and the segments are considered to be the basic unit of caching. A

novel caching mechanism is developed in which the cache space in the edge server is filled up by

uploading SUP segments from the vehicles. In the absence of backhaul connectivity in the edge

servers, the vehicles ferry content across the edge servers to build their optimal distribution so that

the cellular usage from the vehicles is minimized. We have implemented the scheme using ONE

simulator and compared it with various other caching mechanisms including a manually pre-filled

technique that provides a performance upper bound. It was shown that the proposed mechanism

outperforms the other schemes in two different network scenarios.

Content Dissemination through Mobile Edge Cache Servers in Vehicular Networks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

Ce
llu

la
r R

et
rie

va
l R

at
e

β

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

H
it

Ra
te

at
CE

CS
s

β

Naïve
RD

CMT-based

Pre-filled cache

(a) (b)

Naïve

RD

CMT-based

Pre-filled cache

123

Chapter 8 : Future Work

8.1 Introduction

The objective of the thesis is to design optimal caching mechanisms such that under different

network topologies and node mobilities the network-wide content provisioning cost is minimized.

A key question for content caching is how to store content in nodes so that the overall content

provisioning cost in the network is minimized.

In Chapter-3, an incentive based cooperative content caching framework is developed for

Social Wireless Networks (SWNETs) in which content demands are hierarchically heterogeneous.

In Chapter-4, the caching mechanism proposed in Chapter-3 is applied on the scenario of mobility

wireless networks. Unlike Chapter-3, in this scenario the connection between each pair of nodes is

not stable anymore because a node may dynamically join or leave a network. In Chapter-5, a D2D

cooperative caching framework is proposed for streaming video with heterogeneous quality

demands in SWNETs. In Chapter-6, a vehicular content caching mechanism is presented for

disseminating navigational maps while minimizing cellular network bandwidth usage. Finally, in

Chapter-7 a content caching method based on the connectionless edge cache servers is proposed for

reducing the cellular usage for dissemination of software update packages.

The research in this thesis can be extended along the following directions.

8.2 Machine Learning Models for Content Caching and Dissemination

The content demand models in Chapter-3, Chapter-4 and Chapter-5 are all based on Zipf

distributions, while the demand model in Chapter-6 is based on a simple inverse proportion.

Additionally, in Chapter-7 it is assumed that the content popularity is equal for every content. While

providing reasonable models for caching architectures, these demand models do not represent the

real scenarios in which content preferences may follow various distributions. On the other hand, a

124

popularity distribution of a set of content may dynamically change over time. Additionally, none of

the developed caching mechanisms in the thesis involves the mobility pattern of nodes. To improve

the performance of caching, a future work direction on this topic is to develop machine learning

models that can be involved in caching strategies for predicting: 1) content demand in the networks,

and 2) spatiotemporal localities of node movements

8.3 Placement of Edge Cache Servers

In Chapter-7, a novel edge cache server is proposed for reducing the cellular usage for

dissemination of software update packages. Although the study in Chapter-7 is under given

placements of such edge cache servers, it is useful to know how a placement of edge cache servers

affects the performance of a caching mechanism. Therefore, a future work direction is to investigate

the impacts of edge cache server placement on caching performance, and develop mechanisms for

edge cache server placement for performance optimization.

8.4 Handling Selfishness

The potential for earning peer-to-peer rebate may promote selfish behavior. A selfish user is

one that deviates from the network-wide optimal caching policy in order to earn more rebates. Any

deviation from the optimal policy is expected to incur higher network-wide provisioning cost. A

future work direction is to investigate the impacts of selfishness on the performance of caching

mechanisms. This can be accomplished by defining the number of selfish nodes, and the level of

selfishness of such nodes. Based on these settings, a solution for detecting and combating the

selfishness should be developed.

125

BIBLIOGRAPHY

126

BIBLIOGRAPHY

[1]. F. A. Silva, et. al., "Vehicular Networks: A New Challenge for Content-Delivery-Based
Applications." CSUR 49, no. 1, 2016.

[2]. C. Loebbecke, A. Soehnel, S. Weniger, and T. Weiss. "Innovating for the mobile end-user
market: Amazon's Kindle 2 strategy as emerging business model." In Mobile Business and
2010 Ninth Global Mobility Roundtable (ICMB-GMR), 2010 Ninth International
Conference on, pp. 51-57. IEEE, 2010.

[3]. R. TB Ma, D. M. Chiu, J. CS Lui, V. Misra, and D. Rubenstein. "On cooperative settlement
between content, transit, and eyeball internet service providers." IEEE/ACM Transactions
on networking 19, no. 3 (2011): 802-815.

[4]. B. M. Maggs, and R. K. Sitaraman. "Algorithmic nuggets in content delivery." ACM
SIGCOMM Computer Communication Review 45, no. 3 (2015): 52-66.

[5]. Yoon, Jongwon, Peng Liu, and Suman Banerjee. "Low-cost video transcoding at the
wireless edge." In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pp. 129-141.
IEEE, 2016.

[6]. C. M. Silva, A. LL Aquino, and W. M. Jr. "Deployment of roadside units based on partial
mobility information." Computer Communications 60 (2015): 28-39.

[7]. J. Guo, and Nathan Balon. "Vehicular ad hoc networks and dedicated short-range
communication." University of Michigan (2006).

[8]. S. Goel, T. Imielinski, and K. Ozbay. "Ascertaining viability of WiFi based vehicle-to-
vehicle network for traffic information dissemination." In Proceedings. The 7th
International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.
04TH8749), pp. 1086-1091. IEEE, 2004.

[9]. Y. Zhang, E. Pan, L. Song, W.Saad, Z. Dawy, and Z. Han. "Social network aware device-
to-device communication in wireless networks." IEEE Transactions on Wireless
Communications 14, no. 1 (2015): 177-190.

[10]. Y. Zhang, L. Song, C. Jiang, N. H. Tran, Z. Dawy, and Z. Han. "A social-aware framework
for efficient information dissemination in wireless ad hoc networks." IEEE Communications
Magazine 55, no. 1 (2017): 174-179.

[11]. L. Wang, I. Moiseenko, and L. Zhang. "Ndnlive and ndntube: Live and prerecorded video
streaming over ndn." NDN, Technical Report NDN-0031 (2015).

[12]. Conklin, Gregory J., et al. "Video coding for streaming media delivery on the Internet."
Circuits and Systems for Video Technology, IEEE Transactions on 11.3 (2001): 269-281.

127

[13]. L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos, L. Wang,
and B. Zhang. "Named data networking." ACM SIGCOMM Computer Communication
Review 44, no. 3 (2014): 66-73.

[14]. K. Shah, A. Mitra, and D. Matani. "An O (1) algorithm for implementing the LFU cache
eviction scheme." no 1 (2010): 1-8.

[15]. A. I. Vakali, "LRU-based algorithms for Web cache replacement." In International
conference on electronic commerce and web technologies, pp. 409-418. Springer, Berlin,
Heidelberg, 2000.

[16]. K. Psounis, and B. Prabhakar. "A randomized web-cache replacement scheme." In
Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.
01CH37213), vol. 3, pp. 1407-1415. IEEE, 2001.

[17]. S. Li, J. Xu, M. V. D. Schaar, and W. Li. "Popularity-driven content caching." In IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications, pp. 1-9. IEEE, 2016.

[18]. M. Khouja. "A joint optimal pricing, rebate value, and lot sizing model." European Journal
of Operational Research 174, no. 2 (2006): 706-723.

[19]. H. L. Cadre, M. Bouhtou, and B. Tuffin. "A pricing model for a mobile network operator
sharing limited resource with a mobile virtual network operator." In International Workshop
on Internet Charging and QoS Technologies, pp. 24-35. Springer, Berlin, Heidelberg, 2009.

[20]. F. J. Arcelus, S. Kumar, and G. Srinivasan. "Pricing and rebate policies in the two-echelon
supply chain with asymmetric information under price-dependent, stochastic demand."
International Journal of Production Economics 113, no. 2 (2008): 598-618.

[21]. Q. Liu, R. Safavi-Naini, and N. P. Sheppard. "Digital rights management for content
distribution," In Proceedings of the Australasian information security workshop conference
on ACSW frontiers, 2003, pp. 49-58.

[22]. C. Y. Chuang, Y. C. Wang, and Y. B. Lin. "Digital right management and software
protection on Android phones." In Vehicular Technology Conference (VTC 2010-Spring),
2010 IEEE 71st, pp. 1-5. IEEE, 2010.

[23]. M. Taghizadeh, and S. Biswas. "Impacts of user-selfishness on cooperative content caching
in social wireless networks." Ad Hoc Networks 11, no. 8 (2013): 2423-2439.

[24]. M. Taghizadeh., K. Micinski, C. Ofria, E. Torng and S. Biswas, "Distributed cooperative
caching in social wireless networks," Mobile Computing, IEEE Transactions on 12.6, 2013,
pp. 1037-1053.

[25]. L. Breslau, P. Cao, L. Fan, G. Phillips, and Scott Shenker. "Web caching and Zipf-like
distributions: Evidence and implications," In INFOCOM, 1999, pp. 126-134.

128

[26]. H. Ahlehagh, and S. Dey. "Video caching in radio access network: impact on delay and
capacity." Wireless Communications and Networking Conference (WCNC), 2012 IEEE.
IEEE, 2012

[27]. M. Taghizadeh, and S. Biswas, "Minimizing content provisioning cost in heterogeneous
social wireless networks," Communication Systems and Networks (COMSNETS), 2011
Third International Conference on, IEEE, 2011, pp. 1-10.

[28]. J. Wang. "A survey of web caching schemes for the internet." ACM SIGCOMM Computer
Communication Review 29, no. 5 (1999): 36-46.

[29]. W. Ali, S. M. Shamsuddin, and A. S. Ismail. "A survey of web caching and prefetching."
Int. J. Advance. Soft Comput. Appl 3, no. 1 (2011): 18-44.

[30]. I. Abdullahi, S. Arif, and S. Hassan. "Survey on caching approaches in information centric
networking." Journal of Network and Computer Applications 56 (2015): 48-59.

[31]. G. Zhang, Y. Li, and T. Lin. "Caching in information centric networking: A survey."
Computer Networks 57, no. 16 (2013): 3128-3141.

[32]. M. Zhang, H. Luo, and H. Zhang. "A survey of caching mechanisms in information-centric
networking." IEEE Communications Surveys & Tutorials 17, no. 3 (2015): 1473-1499.

[33]. Y. Liu, et al. "Dynamic adaptive streaming over CCN: a caching and overhead analysis."
Communications (ICC), 2013 IEEE International Conference on. IEEE, 2013.

[34]. C. Bernardini, T. Silverston, and O. Festor. "MPC: Popularity-based caching strategy for
content centric networks." In 2013 IEEE international conference on communications (ICC),
pp. 3619-3623. IEEE, 2013.

[35]. K. Liang, and H. F. Yu. "Adjustable two-tier cache for IPTV based on segmented
streaming." International Journal of Digital Multimedia Broadcasting 2012 (2012).

[36]. K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack. "Wave: Popularity-based and
collaborative in-network caching for content-oriented networks." In 2012 Proceedings IEEE
INFOCOM Workshops, pp. 316-321. IEEE, 2012.

[37]. K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal. "Enabling dynamic content
caching for database-driven web sites." In ACM SIGMOD Record, vol. 30, no. 2, pp. 532-
543. ACM, 2001.

[38]. G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu. "Understanding performance of
edge content caching for mobile video streaming." IEEE Journal on Selected Areas in
Communications 35, no. 5 (2017): 1076-1089.

[39]. P. T. Joy, and K. P. Jacob. "A Comparative Study of Cache Replacement Policies in
Wireless Mobile Networks." Advances in Computing and Information Technology.
Springer Berlin Heidelberg, 2012. 609-619.

129

[40]. E. Bastug, et al. "Centrality-based caching for mobile wireless networks." In 1st KuVS
Workshop on Anticipatory Networks. 2014.

[41]. J. Dai, et al. "Collaborative caching in wireless video streaming through resource auctions."
Selected Areas in Communications, IEEE Journal on 30.2 (2012): 458-466.

[42]. K. Kanai, T. Muto, H. Kisara, J. Katto, T. Tsuda, W. Kameyama, Y. Park, and T. Sato.
"Proactive content caching utilizing transportation systems and its evaluation by field
experiment." In 2014 IEEE Global Communications Conference, pp. 1382-1387. IEEE,
2014.

[43]. K. Kanai, T. Muto, J. Katto, S. Yamamura, T. Furutono, T. Saito, H. Mikami et al.
"Proactive content caching for mobile video utilizing transportation systems and evaluation
through field experiments." IEEE Journal on Selected Areas in Communications 34, no. 8
(2016): 2102-2114.

[44]. J. Qiao, Y. He, and X. S. Shen. "Proactive Caching for Mobile Video Streaming in
Millimeter Wave 5G Networks." IEEE Trans. Wireless Communications 15, no. 10 (2016):
7187-7198.

[45]. R. Ding, T. Wang, L. Song, Z. Han, and J. Wu. "Roadside-unit caching in vehicular ad hoc
networks for efficient popular content delivery." In Wireless Communications and
Networking Conference (WCNC), 2015 IEEE, pp. 1207-1212. IEEE, 2015.

[46]. G. Mauri, M. Gerla, F. Bruno, M. Cesana, and G. Verticale. "Optimal Content Prefetching
in NDN Vehicle-to-Infrastructure Scenario." IEEE Transactions on Vehicular Technology
66, no. 3 (2017): 2513-2525.

[47]. M. Amadeo, C. Campolo, and A. Molinaro. "Information-centric networking for connected
vehicles: a survey and future perspectives." IEEE Communications Magazine 54, no. 2
(2016): 98-104.

[48]. Z. Al-Arnaout, Q. Fu, and M. Frean. "On the local popularity impact on object replica
placement over WMNs." WoWMoM,, 2014.

[49]. S. Aggarwal, J. Kuri, and C. Saha. "Give-and-take based peer-to-peer content distribution
networks." Sadhana 39.4 (2014): 843-858.

[50]. H. Narimatsu, H. Kasai, and R.i Shinkuma. "Area-based collaborative distributed cache
system using consumer electronics mobile device." Consumer Electronics, 57.2 (2011):
564-573.

[51]. J. Ahn, et al., "Optimizing content dissemination in vehicular networks with radio
heterogeneity." Mobile Computing, IEEE Transactions on 13, no. 6 (2014): 1312-1325.

[52]. L. Hu. "Mobile Peer-to-Peer Data Dissemination over Opportunistic Wireless Networks."
PhD diss., Technical University of Denmark, 2009.

130

[53]. N. Dimokas, D. Katsaros, L. Tassiulas, and Y. Manolopoulos. "High performance, low
complexity cooperative caching for wireless sensor networks." Wireless Networks 17, no.
3 (2011): 717-737.

[54]. W. Gao, G. Cao, and M. Srivatsa. "Cooperative caching for efficient data access in
disruption tolerant networks." Mobile Computing, IEEE Transactions on 13, no. 3 (2014):
611-625.

[55]. Z. Liu, et al. "Small World P2P overlay for video sharing service." Wireless
Communications and Networking Conference (WCNC), 2012 IEEE. IEEE, 2012.

[56]. F. Sun, B. Liu, F. Hou, H. Zhou, J. Chen, Y. Rui, and L. Gui. "A qoe centric distributed
caching approach for vehicular video streaming in cellular networks." Wireless
Communications and Mobile Computing 16, no. 12 (2016): 1612-1624.

[57]. N. Kumar, S. Zeadally, and J. J. Rodrigues. "QoS-aware hierarchical web caching scheme
for online video streaming applications in internet-based vehicular ad hoc networks." IEEE
Transactions on Industrial Electronics 62, no. 12 (2015): 7892-7900.

[58]. S. Hatakeyama, Y. Sakata, and H. Shigeno. "Cooperative Mobile Live Streaming
Considering Neighbor Reception." Advanced Information Networking and Applications
(AINA), 2014 IEEE 28th International Conference on. IEEE, 2014.

[59]. J. Bruneau-Queyreix, M. Lacaud, and D. Négru. "A Hybrid P2P/Multi-Server Quality-
Adaptive Live-Streaming Solution Enhancing End-User's QoE." In Proceedings of the 25th
ACM international conference on Multimedia, pp. 1261-1262. ACM, 2017.

[60]. L. Liu, D. Xie, S. Wang, and Z. Zhang. "CCN-based cooperative caching in VANET." In
Connected Vehicles and Expo (ICCVE), 2015 International Conference on, pp. 198-203.
IEEE, 2015.

[61]. N. Kumar, and J. Lee, 2014. "Peer-to-peer cooperative caching for data dissemination in
urban vehicular communications". IEEE Systems Journal, 2014, 8(4), pp.1136-1144.

[62]. Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li. "Game theoretic approaches for wireless
proactive caching." IEEE Communications Magazine 54, no. 8 (2016): 37-43.

[63]. H. Tian, M. Mohri, Y. Otsuka, Y. Shiraishi, and M. Morii. "Lce in-network caching on
vehicular networks for content distribution in urban environments." In Ubiquitous and
Future Networks (ICUFN), 2015 Seventh International Conference on, pp. 551-556. IEEE,
2015.

[64]. W. Zhao, Y. Qin, D. Gao, C. H. Foh, and H. Chao. "An efficient cache strategy in
information centric networking vehicle-to-vehicle scenario." IEEE Access 5 (2017): 12657-
12667.

[65]. K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang. "Cooperative Content Caching in 5G
Networks with Mobile Edge Computing." IEEE Wireless Communications 25, no. 3 (2018).

131

[66]. A. Keränen, O. Jörg, and T. Kärkkäinen. "The ONE simulator for DTN protocol evaluation."
In Proceedings of the 2nd international conference on simulation tools and techniques, p.
55. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009.

[67]. J. Summers, T. Brecht, D. Eager, T. Szepesi, B. Cassell, and B. Wong. "Automated control
of aggressive prefetching for HTTP streaming video servers." In Proceedings of
International Conference on Systems and Storage, pp. 1-11. ACM, 2014.

[68]. E. Delen, J. Liew, and V. Willson. "Effects of interactivity and instructional scaffolding on
learning: Self-regulation in online video-based environments." Computers & Education 78
(2014): 312-320.

[69]. I. Sodagar. "The mpeg-dash standard for multimedia streaming over the internet." IEEE
MultiMedia 4 (2011): 62-67.

[70]. S. Eetha, S. Agarwal, and S. Neelam. "Zynq FPGA Based System Design for Video
Surveillance with Sobel Edge Detection." In 2018 IEEE International Symposium on Smart
Electronic Systems (iSES)(Formerly iNiS), pp. 76-79. IEEE, 2018.

[71]. “Screen Resolution Statistics (January 2017),” [online]. Availible:
https://www.w3schools.com/browsers/browsers_display.asp

[72]. R. Pantos, and W. May. HTTP live streaming. No. RFC 8216. 2017.

[73]. “Trace set of mobility data of taxi cabs in San Francisco, USA.” [online]. Available:
https://crawdad.org/epfl/mobility/20090224/cab/

[74]. H. Shimada, A. Yamaguchi, H. Takada, and K. Sato. "Implementation and evaluation of
local dynamic map in safety driving systems." Journal of Transportation Technologies 5, no.
02 (2015): 102.

[75]. T. Abdelkader, K. Naik, A. Nayak, N. Goel, and V. Srivastava. "A performance comparison
of delay-tolerant network routing protocols." IEEE Network 30, no. 2 (2016): 46-53.

[76]. T. Choksatid, W. Narongkhachavana, and S. Prabhavat. "An efficient spreading epidemic
routing for delay-tolerant network." In 2016 13th IEEE Annual Consumer Communications
& Networking Conference (CCNC), pp. 473-476. IEEE, 2016.

[77]. D. Hales. "Distributed computer systems." In Simulating Social Complexity, pp. 563-580.
Springer, Berlin, Heidelberg, 2013.

