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ABSTRACT 

MODELING DECISION PROCESSES IN THE USE OF LETHAL FORCE: 

THE ROLE OF RACIAL BIAS IN JUDGING FACES 

By 

Jenna Anne Harder 

To empirically address the question of whether and why police officers are more likely to 

shoot Black than White suspects, psychologists have developed the First-Person Shooting Task 

(FPST): a laboratory task in which participants must make shooting decisions based on rapid 

assessments of whether a Black or White target is holding a gun versus a harmless object. 

Typically, studies employing the FPST have found that participants’ errors and reaction times 

show a bias toward shooting Black targets over White targets. Evidence for the mechanisms 

behind this bias is mixed, but several studies point to stereotypic associations between the 

category “Black” and some indication of threat (e.g. weapon possession). Collectively, this past 

work is suggestive that racial bias on the FPST is influenced by racial bias in threat perception. I 

investigated this hypothesis across three studies. Participants rated Black and White faces with 

regard to how “threatening” the faces appeared, then completed the FPST 3-15 days later. 

Behavioral and process-level (Drift Diffusion Model) methods were used to determine whether 

racial bias in a participant’s threat ratings explained racial bias in the FPST. Across two stimulus 

sets, results indicated that although participants displayed process-level racial bias, this was not 

explained by biased threat perceptions. I consider implications such as the possibility that biased 

shooting decisions are produced by information-processing mechanisms rather than affective 

mechanisms.
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INTRODUCTION 

Police shootings of unarmed, innocent Black Americans have drawn widespread attention 

over the years and incited considerable public controversy. Many people have expressed outrage 

over what is seen as a pattern evincing widespread racial bias among police, while others argue 

that protesters are seizing upon isolated incidents in an effort to vilify police officers. 

To empirically address the question of whether (and why) police officers are more likely 

to shoot Black than White citizens, psychologists have developed the First-Person Shooting Task 

(FPST). This laboratory task requires participants to make rapid judgments to shoot or not shoot 

Black and White male targets, using the criterion of whether a given target is holding a gun or a 

harmless object. Typically, studies employing the FPST have found that participants shoot armed 

Black targets faster than armed White targets and shoot unarmed Black targets more often than 

unarmed White targets (Correll, Park, Judd, & Wittenbrink, 2002; for a meta-analysis, see 

Mekawi & Bresin, 2015). This effect, often referred to as “shooter bias,” generalizes across 

methodological variations. For example, while the classic task shows the entire body of a target 

holding an object in his hand, Plant, Goplen, and Kunstman (2011) replicated this bias in a task 

in which pictures of objects simply appear next to Black and White faces. Shooter bias in 

computerized tasks has been observed in both civilian and police samples (although the findings 

in police samples are somewhat less consistent, particularly when smaller samples are used; 

Correll, Park, Judd, Wittenbrink, Sadler, & Keesee, 2007; Sadler, Correll, Park, Judd, 2012; Sim, 

Correll, & Sadler, 2013).  

 Evidence for the mechanisms behind shooter bias is indirect and mixed, but several 

studies point to the role of stereotypes about Black and White Americans. That is, participants 

may be more likely to shoot Black targets because they associate the category Blacks with 
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threatening behavior. Racial bias on the FPST can be amplified by increasing the proportion of 

stereotype-congruent targets presented in the task, or by arranging for participants to read a 

“news article” prior to the task about a violent crime supposedly committed by a Black (vs. 

White) individual (Correll, Park, Judd, & Wittenbrink, 2007; Sim et al., 2013). Moreover, while 

experience with shooting decisions is usually related to fewer errors and therefore lower bias, an 

exception to this pattern occurs if officers’ or participants’ experience reinforces stereotypes 

connecting Blacks with violence or criminality, in which case greater experience is not related to 

lower bias (Sim et al., 2013). For example, Sim et al. (2013) found that patrol officers, who 

would have received training in making shooting decisions, showed no bias on the FPST. 

However, a sample of special unit officers from gang and street crime units showed a greater 

bias than non-police participants; these individuals, too, would have received training in shooting 

decisions, but also had experiences interacting with gang members of color that may have 

reinforced stereotypes. Sim and colleagues further found greater bias among civilians who had 

previously practiced a version of the FPST in which Black targets were more likely than White 

targets to be armed. Finally, individual differences in shooter bias are related to individual 

differences in cultural stereotypes: that is, the extent to which an individual believes that “there is 

a negative stereotype of African Americans as dangerous and aggressive” (Correll et al., 2002). 

In other words, regardless of whether they claim to personally endorse this stereotype, 

participants who believe that the stereotype is widespread in society display a stronger bias 

toward shooting Black targets. This finding, it should be noted, was limited by a small sample 

and small effect size and was one among many moderators tested, with no correction for multiple 

comparisons. However, Correll, Urland, and Ito (2006) replicated the finding and found that it 

was mediated by an event-related potential (ERP) related to perceptions of threat. 
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 The common thread throughout these studies is the association of the category Black 

with some indication of threat:  participants exhibited greater shooter bias if they associated 

Blacks with violent crime, with the likelihood of having a weapon, or with the characteristics 

“dangerous” and “aggressive.” Collectively, therefore, these findings are suggestive that racial 

bias on the FPST is influenced by racial bias in threat perception. This interpretation is further 

supported by evidence that presenting alternative, more direct cues to threat in the FPST stimuli 

(i.e., depicting targets in neighborhoods that appear “dangerous”) eliminates racial bias in 

participants’ responses (Correll, Wittenbrink, Park, Judd, & Goyle, 2011). 

Threat Perception 

 Fully understanding how threat perception can influence racial bias in the FPST 

requires some understanding of the functions and origin of the human threat perception 

infrastructure. Researchers have argued that humans have evolved to have cognitive adaptations 

for threat perception, which include efficiently identifying and rapidly responding to cues of 

threat. There is an obvious evolutionary advantage to quickly identifying organisms that may 

attack, as well as to quickly learning what is dangerous without needing large numbers of 

potentially deadly trials. Animals and humans learn both species-typical defensive reactions 

(Bolles, 1970) and fear of certain dangers such as snakes and spiders (Öhman & Mineka, 2001) 

faster than would be expected from typical operant or classical conditioning, indicating the 

existence of evolved modules that specifically manage ancestrally-recurrent threats.  

 For humans, one recurrent source of threat has been other humans. That is, throughout 

evolution, humans have needed to be vigilant against threats from other humans. As such, one 

should expect humans to be vigilant to signals of impending threat from others, i.e., signals 

which indicate the intention to harm. The expression of anger is one such signal, as anger may 
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indicate forthcoming interpersonal violence. Accordingly, there is evidence that humans have an 

evolved module for efficiently detecting signs of anger, which may indicate that evasive or 

defensive action is necessary in case the angry person behaves violently. A number of studies 

have found that people can locate a single angry expression in a crowd of faces faster than any 

other uniquely represented expression (Fox, Lester, Russo, Bowles, Pichler, & Dutton, 2000; 

Hansen & Hansen, 1988; Horstman & Bauland, 2006; Öhman, Lundqvist, & Esteves, 2001; but 

see Becker, Anderson, Mortensen, Neufeld, & Neel, 2011, who report a search advantage for 

happy faces instead). When simultaneously presented with both a neutral and an angry face, 

people also orient to the angry face first (Cooper & Langton, 2006).  

Ingroup/Outgroup Categorization and Ingroup Favoritism 

 In addition to the tendency to preferentially attend to anger cues, humans have also 

responded to selective pressures to identify threatening people by evolving a tendency to 

categorize others as “ingroup” or “outgroup” members. Sorting others into these categories has 

implications for threat perception. 

 Humans readily pick up on cues to group membership (Kurzban, Tooby, & Cosmides, 

2001), and use these membership judgments to guide their behavior toward other individuals. 

For example, people evaluate their ingroups more positively than outgroups (Doise, Csepeli, 

Dann, Gouge, Larsen, & Ostell, 1972), and show favoritism toward their own groups when 

allocating resources (Tajfel, Billig, Bundy, & Flament, 1971). Ingroup favoritism in resource 

allocation is even observed in minimal groups—that is, arbitrarily assigned groups with no 

history or expectation of meaningful interaction (Tajfel et al., 1971). Research in the minimal 

group paradigm has shed some light into the mechanisms behind ingroup favoritism, finding that 

this behavior is related not to outgroup hostility so much as ingroup beneficence (Brewer, 1979), 
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and is mediated by participants’ expectation that other ingroup members will favor them in 

fulfillment of a norm of generalized ingroup reciprocity (Yamagishi & Kyonari, 2000). 

Ingroup/Outgroup Bias and Race 

 The adaptive importance of group membership has also led to the evolution of 

mechanisms that track whether a person is an ingroup or outgroup member, and these 

mechanisms have implications for race relations. Researchers have hypothesized that humans 

have evolved to efficiently detect cues to group membership and categorize others accordingly. 

Since there are a variety of ways in which people might be marked as members of a given social 

group—including relatively voluntary cues, like attire, or inborn cues, like family resemblance—

these cues may take a variety of forms. Because cues to group membership can also change over 

time and across cultures, an adaptation to detect such cues would need the capacity to quickly 

learn whatever cues are relevant in the individual’s current social environment, regardless of 

whether they were relevant when the adaptation first evolved.  

In present-day society, individuals’ social networks are often disproportionately 

composed of same-race individuals. That is, controlling for population proportions of different 

races, two individuals are more likely to be friends, neighbors, or even spouses if they are of the 

same race. For this reason, Kurzban et al. (2001) argue that the cognitive mechanisms that track 

cues to group membership pick up on this tendency toward within-race affiliation and quickly 

learn to treat race as a cue to coalition—which, they posit, may explain much about interracial 

relations in modern society. 

Kurzban et al.’s (2001) evidence for this claim builds on previous work using an 

experimental paradigm known as the “Who Said What?” task, which has been used to support 

the claim that people “automatically” categorize others by race. In this task participants are 
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instructed to form impressions of a group of targets as those targets have a conversation. After 

watching the conversation, participants are given a surprise recall task in which they are shown 

the statements from the conversation and must indicate which target said each statement. 

Importantly, half the targets are Black and half are White. Studies using this task (Pietraszewski 

& Schwartz, 2014; Taylor, Fiske, Etcoff, & Ruderman, 1978) have demonstrated that the race of 

targets influences the kinds of errors participants make in the recall task. A participant who does 

not remember which target said a given statement has an above-chance likelihood of attributing 

that statement to a target of the same race as the true speaker. In other words, “within-race 

errors” are more likely than “between-race errors.” This is taken to indicate that even without 

conscious intention to do so, participants have encoded the races of the speakers. 

 Kurzban et al. (2001) used the Who Said What? task to test their hypothesis that people 

encode race not for its own sake, but in order to make inferences about group membership. If this 

hypothesis was true, they reasoned, race would be encoded less strongly in a situation where it 

was clearly irrelevant to group membership. They therefore modified the task so that the 

observed conversation clearly indicated that targets were divided between two opposing 

coalitions, with each coalition composed of 50% Black men and 50% White men. This enabled 

them to assess both categorization by race (comparing within-race errors to between-race errors) 

and categorization by coalition (comparing within-coalition errors to between-coalition errors). 

Not only did participants engage in extensive categorization by coalition, but categorization by 

race was greatly reduced compared to the classic version of the task. That is, coalitional cues led 

coalitional categorization to largely replace racial categorization. These results indicate that 

“automatic” race categorization is in fact the outcome of a tendency to categorize others by 

coalition membership and to use race as a coalitional cue. This has the implication that 
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individuals are likely to treat people of other races as outgroup members absent any other 

information. 

 Understanding the coalitional connotations of racial categorization is helpful for 

understanding racial prejudice and discrimination. In the ancestral environment, when most 

people lived in relatively small, clearly-defined groups, an interaction with another person was 

more likely to involve a physical altercation if the other person was an outgroup member 

(controlling for frequency of contact; Ember, 1978). Wariness of outgroup members therefore 

conferred a survival advantage. Since race is used as a cue to group membership in modern 

times, any fear or animosity directed toward other racial groups today may be partially a product 

of a general bias toward treating outgroup members as potentially dangerous.  

This may account for at least part of the substantial body of evidence that racial outgroup 

members (i.e., individuals of a different race than the perceiver) are perceived as more 

threatening. Much of this research has focused on face perception. It is well-established that 

people regularly form judgments of threat from others’ faces. Higher facial width-to-height ratio 

is associated with greater perceived aggression (Carré, Morrissey, Mondloch, & McCormick, 

2010); and these perceptions are, in fact, relatively accurate, perhaps due to associations with 

testosterone levels (Carré & McCormick, 2008; Carré, McCormick, & Mondloch, 2009). People 

can also predict, with some accuracy, whether a convicted sex offender was guilty of violent 

behavior; they make these judgments by using facial cues including heavy brow and overall 

facial masculinity (Stillman, Maner, & Baumeister, 2010). Shasteen, Sasson, and Pinkham 

(2015) also report that when searching a set of neutral-expression faces for particular facial 

features, participants show a search advantage for structural craniofacial features perceived as 

threatening.  
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 Given the role of humans’ ingroup/outgroup mentality in race perception, and their 

readiness to use others’ facial features to make threat judgments, it is perhaps not surprising that 

a target’s race influences how threatening the target is perceived to appear. The faces of young 

Black men capture White participants’ attention just like evolved threats such as snakes and 

spiders (Trawalter, Todd, Baird, & Richeson, 2008), unless the faces are depicted with an 

averted eye-gaze. Similarly, the P200 ERP, which responds to cues to the threat of attack such as 

angry faces, was also observed to respond to Black (relative to White) faces in a sample of non-

Black participants (Ito & Urland, 2003), and this racial bias in ERPs predicts shooter bias in the 

FPST (Correll et al., 2006). 

 Similar to this relationship between race and perceived threat, or perhaps because of it, 

is a relationship between race and perceived anger. Evidence suggests that angry expressions are 

processed differently on Black faces than on White faces. For example, Hugenberg and 

Bodenhausen (2003) asked participants to watch faces change from a hostile to a happy 

expression, or from a happy to a hostile expression, and indicate at which point the hostile 

expression had ended or started. White participants high in implicit prejudice perceived Black 

faces as having sooner onset and later offset of the hostile expression relative to White faces. 

Moreover, under conditions of cognitive load, White participants have better facial recognition 

for angry Black faces than for angry White faces, despite exhibiting an opposite bias (i.e., better 

recognition for racial ingroup faces) for neutral faces (Ackerman et al., 2006). White participants 

high in implicit racial prejudice are also more likely to judge a racially ambiguous target as 

Black if the face is angry (Hugenberg & Bodenhausen, 2004). Interestingly, Dunham (2011) 

provides evidence from a minimal-groups experiment that the latter finding may not be specific 

to racial bias, but instead may reflect a pattern by which angry faces are more likely to be 
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categorized as outgroup members in general, further supporting the idea that racial biases in 

threat perception may stem from ingroup/outgroup bias. 

 There is some variation in the robustness of these studies which must be acknowledged. 

In particular, the studies on attentional bias toward Black faces (Trawalter et al., 2008) and 

judgments of Black faces as angry (Hugenberg & Bodenhausen, 2003) and of angry faces as 

Black (Hugenberg & Bodenhausen, 2004) were all characterized by small samples and barely-

significant p-values, so the results from these studies should be treated with some caution. 

However, results from the ERP studies (Correll et al., 2006; Ito & Urland, 2003) and the memory 

bias study (Ackerman et al., 2006) were better-powered and much more robustly significant (ps 

less than 0.005).  

 Overall, therefore, this work suggests that categorizing someone as a racial outgroup 

member has implications for judgments about that person’s level of anger and the amount of 

threat the person poses. These perceptual biases may in turn underlie racial bias in behaviors 

related to threat responses. For this reason, I hypothesize that racial bias in perceived facial cues 

to threat—hereafter abbreviated as “threat bias”—explains significant variance in racial “shooter 

bias” exhibited in the FPST. 

Analysis of Shooter Data  

 The question of how to model the relationship between threat perceptions and shooting 

behavior is complicated by the fact that past researchers using the FPST have employed a variety 

of analytic techniques. Participants’ error rates are often used as the dependent variable, 

averaged across trials and compared across target type (Black/White, armed/unarmed). This 

comparison is often performed using either ANOVAs (Correll et al., 2002; Correll et al., 2011; 

Miller, Zielaskowski, & Plant, 2012; Plant et al., 2011) or signal detection theory (SDT; Correll 
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et al., 2002; Correll et al., 2011; Kenworthy, Barden, Diamond, & del Carmen, 2011; Plant et al., 

2011). Response latencies for correct trials are also often analyzed, typically using regression or 

ANOVA (Correll et al., 2002; Correll et al., 2011).  

 These analytic approaches can be divided into approaches that focus on behavioral data 

(errors and response times) and approaches that focus on cognitive processes. It is important to 

assess data on shooting behaviors themselves, especially error rates, given that this reflects the 

life-or-death outcome that the FPST is intended to simulate and study. Nevertheless, it is also 

important to understand the processes behind shooting decisions.  

The most common analytic approach used to examine shooting decision processes is 

Signal Detection Theory (SDT). SDT (Stanislaw & Todorov, 1999) is used to analyze tasks in 

which a participant discriminates between two possible stimulus types: one in which some 

“signal” is present (in this case, trials in which the target holds a gun), and one in which no 

signal is present (trials in which the target holds some other object). In a given trial, the 

participant decides whether a stimulus represents a signal or not based on the degree of some 

internal response, representing the perception that a shoot decision is or is not appropriate. The 

intensity of this internal response may vary: participants may be more or less certain that a shoot 

decision is appropriate. However, they must make the binary decision of whether this internal 

response is sufficiently intense to warrant a shoot decision or not. Therefore, if the intensity of 

the internal response is above a point referred to as the “criterion,” the participant identifies the 

stimulus as signal and shoots the target; if not, the participant identifies the stimulus as not a 

signal and does not shoot the target. The intensity of the participant’s internal response will vary 

even when no signal is present. This is because various factors can create “noise,” increasing the 

perception of a signal. Noise can be created by stimulus features, such as the particular angle at 
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which a non-gun is held, or by the participant’s internal state, such as subjective sense of threat. 

However, the intensity of the participant’s internal response will also vary when a signal is 

present. For example, the internal response may be more intense when a black gun appears 

against a lighter-colored background than when the gun appears against a dimmer background. 

In other words, noise also exists in signal trials. Thus, internal responses on signal trials vary, 

forming a “signal-plus-noise distribution,” and internal responses on no-signal trials also vary, 

forming a “noise distribution.” It is possible for these distributions to overlap: some non-gun 

images may produce a more intense internal response than some gun images. The degree of 

overlap between these distributions represents the first of SDT’s two parameters, the 

“discrimination” parameter, which is related to participants’ rate of success at identifying when a 

signal is present. The second of SDT’s parameters is the “criterion” participants set, i.e., the 

minimum internal response the participant requires to decide that a signal is present. A higher 

criterion means that the participant is making more conservative decisions, requiring a more 

intense internal response before deciding that a signal is present. Different participants may set 

different criteria, and a participant may set different criteria for some trials than for others based 

on factors such as certain stimulus characteristics—for example, target race. Researchers 

applying SDT to shooting decisions have found racial biases in the criterion parameter and 

concluded that participants are setting laxer criteria for making the decision to shoot when targets 

are Black (e.g. Correll Park, Judd, & Wittenbrink, 2007; Correll, Park, Judd, Wittenbrink, et al., 

2007; Kenworthy et al., 2011). 

Despite its widespread use, though, SDT is not the best option for modeling the cognitive 

processes behind shooting decisions. As Pleskac, Cesario, and Johnson (2018) show, SDT does 

not appropriately characterize the nature of the shoot/don’t shoot decision. In addition, SDT 
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cannot answer a number of questions regarding response time data in the FPST. SDT uses only 

error data and cannot detect or explain cases in which race bias appears in reaction time data but 

not in error data, as is the case when long response windows are used, or in some police samples 

(Correll, Park, Judd, Wittenbrink, et al., 2007; Sim et al., 2013). 

 FPST data can be more fully modeled by the Drift Diffusion Model (DDM; Ratcliff & 

Rouder, 1998), a model of two-choice decision making which uses error and reaction time data 

to break the participant’s decision into its component processes. The DDM can identify whether 

or not a manipulation changes each of three parameters of interest, which can all alter responding 

at the behavioral level in various ways but reflect different cognitive processes involved in the 

decision and occur at different stages in the decision process. The DDM, therefore, can offer 

much more detailed information about the role that a given variable (such as target race) plays in 

the shooting decision. Applications of the DDM to FPST data (e.g. Correll et al., 2015; Pleskac 

et al., 2018) have yielded consistent conclusions about how race influences the decision process, 

and posterior predictive checks have indicated that these models show good fit to the data. That 

is, the models developed in these DDM analyses can be used to simulate new data that closely 

matches the original data (Pleskac et al., 2018). The DDM describes the decision process with 

four parameters, which delineate a process in which the participant has a starting inclination 

toward one or the other choice and accumulates evidence for the choices until the accumulated 

evidence reaches a threshold corresponding to one of the choices (see Figure 1), at which point 

that choice is made.  

 The first parameter is beta, the starting point:  the location between the two decision 

thresholds from which the participant begins to accumulate evidence. If the starting point is 

closer to the shoot threshold than to the don’t shoot threshold, then the participant is initially 
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inclined toward a shoot decision even before evidence accumulation begins. Starting point may 

represent perceived pay-offs or costs for each decision. In the shooting task, starting points are 

usually closer to the shoot threshold (e.g. Pleskac et al., 2018), presumably because participants 

are awarded and penalized with points for different kinds of correct and incorrect responses, with 

a payoff matrix that favors shooting. Likewise, starting points could show racial bias, indicating 

that the participant or officer was making decisions as though the possibility of incorrectly 

shooting an unarmed person was more aversive for one target race than the other. 

 The second parameter is delta, the drift rate—that is, the rate or slope at which the 

accumulated evidence approaches a decision threshold. If the drift rate for one condition is 

steeper (i.e., farther from zero in either the positive or negative direction), then participants are 

accumulating evidence toward a given decision threshold more quickly (relative to conditions 

with shallower drift rates). This could mean (1) that the stimulus is perceived to contain a greater 

amount of evidence for that decision, (2) that the stimulus is perceived to contain less evidence 

for the alternative decision (i.e., the stimulus is less ambiguous), or (3) that the stimulus is easy 

to process; i.e., that decision-relevant evidence is easily extracted from the visual information. 

Past shooter studies employing the DDM have found that racial bias affects the drift rate (Correll 

et al., 2015; Pleskac et al., 2018). Specifically, these studies have found that the drift rate is 

higher for Black than for White targets, indicating “stronger” evidence for a shoot decision. In 

other words, the drift rate for armed Black targets ascends more steeply toward the shoot 

threshold than does the drift rate for armed White targets, and the drift rate for unarmed White 

targets descends more steeply toward the don’t shoot threshold than does the drift rate for 

unarmed Black targets. This effect might be best understood as indicating that the target’s race is 

treated as evidence in the decision about the target’s object. Since past work has found that racial 
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bias in the FPST is related to drift rate, it was hypothesized in the present work that threat bias 

would influence shooter bias by affecting participants’ drift rates. 

 The third DDM parameter is alpha, the distance between the two decision thresholds. If 

the threshold distance is larger, the participant is exhibiting more caution, requiring more 

evidence before making a decision. Larger threshold distances are associated with more accurate 

responses and slower response times, so threshold distance reflects the participant’s priorities in 

managing the trade-off between speed and accuracy. A larger threshold distance for Black targets 

might indicate that participants are concerned about making racially biased decisions and are 

particularly motivated to make accurate decisions for Black targets. 

The final parameter, nondecision time, is not used to assess the influence of manipulated 

or measured variables, as it typically remains approximately constant across conditions. This 

parameter is the total amount of time spent on non-decision tasks, such as initial sensation of the 

stimulus and performance of the motor response. In shooter research, the nondecision time is 

typically around 300 ms (Correll et al., 2015; Pleskac et al., 2018).  

 Changes in DDM parameters correspond to certain patterns of behavior-level 

responding in the FPST. All else equal, steeper drift rates correspond to faster response times and 

fewer errors. Higher starting points correspond to faster and more accurate responding for gun 

trials but slower, less accurate responding for non-gun trials; lower starting points correspond to 

the opposite pattern. Wider threshold distances, on the other hand, correspond to fewer errors 

and slower reaction times overall, regardless of object type.  

These parameters work together to explain behavioral-level patterns of responding, with 

changes in any one parameter potentially affecting the influence of the other parameters. For 

example, if a manipulation widens the threshold by x units, then participants in the experimental 
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condition will respond more slowly and accurately because more evidence is needed to reach a 

threshold from the starting point. However, if the same manipulation also raises starting point by 

x/2 units, then the distance between the starting point and the shoot threshold will be unchanged, 

whereas the distance between the starting point and the don’t shoot threshold will be greater by x 

units. In this case, then, the manipulation will seem to affect only don’t shoot responses at the 

behavioral level. Conversely, if behavior-level responses in one condition are slower and more 

accurate relative to the comparison condition for only gun or non-gun trials, then this must 

indicate a change in threshold offset by a change in starting point. (The same pattern could not be 

explained by a change in drift rate for trials with that object, because a shallower drift rate would 

lead to slower but less accurate responding.) On the other hand, if a manipulation made 

responses slower and more accurate in both gun and non-gun trials, but to a greater extent for 

one object type, this would indicate that both threshold and starting point had been changed, but 

that the starting point had not changed enough to offset the threshold change for one object type. 

The DDM can therefore use behavioral data to understand what happens at the process level, 

identifying the combination of parameter values that best predict the observed data.  

The Present Research  

 The broad goals of the present research are: (1) to assess the extent to which racial bias 

in the judgments of the threat level conveyed by a target’s face are related to racial bias in 

shooting decisions in the FPST, and (2) to understand the cognitive processes behind how these 

threat judgments explain variance in shooting decisions. The most basic question to be addressed 

is the question of whether bias toward perceiving Black faces as more threatening is predictive of 

a bias toward shooting Black targets. Secondary questions of interest include whether targets 
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whose faces tend to be perceived as more threatening are more likely to be shot, and whether the 

threat level of targets’ faces moderates racial bias in shooting decisions. 

Testing the hypothesis that bias in participants’ threat perceptions affects drift rates in the 

DDM may also have useful theoretical implications. If DDM analyses indicate that participants’ 

degree of threat bias is related to the drift rate parameter in the FPST, then it is likely that facial 

judgments of threat are involved in perceptions of the strength of the evidence for a shoot 

decision. Since the nature of the shooting task means that the drift rate can be conceived of as 

measuring the perceived evidential strength for identifying the object as a gun or harmless 

object, this would suggest that efforts to diminish shooting bias might benefit from specifically 

focusing on object identification processes and the ways in which they might be influenced by 

threat bias.  

The proposed research will: (1) begin by piloting materials relevant to the subsequent 

studies, (2) address the two questions of interest (i.e., whether and how biased threat perceptions 

influence shooting), and finally (3) test whether the results obtained in these studies generalize to 

a different stimulus set to test the generalizability of results to new targets. 
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STUDY 1 

Research Questions 

Study 1 served as a pilot study and was used to clarify procedures for the subsequent 

studies. Study 1 asked participants to rate how “threatening” the faces of FPST targets appeared 

in order to obtain information about the distribution of threat ratings and whether they are 

affected by racial bias: that is, whether participants rate Black targets as having more threatening 

faces than White targets. These data were used to inform four methodological decisions relevant 

to the subsequent studies, both of which asked participants to make similar threat ratings before 

completing an FPST.   

First, Study 1 assessed the level of variation in threat ratings. The question to be tested by 

the subsequent studies was whether shooter bias is related to threat ratings, but it would be 

impossible to answer this question if there were no systematic variation in threat ratings. One 

possible source of variation in threat ratings is the identity of the target. Study 1 tested whether 

targets showed consistency in threat ratings (as measured by the intraclass correlation) across 

participants. If ratings showed some consistency within target, then they could be treated as a 

property of the target. If not, anger ratings were to be investigated as an alternative dependent 

variable. 

Second, Study 1 investigated the degree to which threat ratings varied across multiple 

pictures of the same target. The stimulus set for the FPST used in the present study includes each 

target twice:  once holding a gun, and once holding a harmless object. If differences in a target’s 

pose or facial expression between these two pictures have a strong influence on his perceived 

level of threat, then perceived threat must be analyzed at the level of the individual stimulus 
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image; if not, it can be analyzed at the level of the target individual, which would simplify the 

procedure and analyses for the subsequent studies. Study 1 addressed this question. 

Third, Study 1 investigated the extent to which individual participants showed varying 

degrees of threat bias. If threat bias varied significantly across participants, subsequent studies 

would be able to treat threat bias as an individual difference variable, making it possible to test 

whether individuals’ levels of shooter bias can be predicted from their levels of threat bias.  

Finally, Study 1 compared two different survey procedures for measuring perceived 

threat: one in which participants simply rated how “threatening” each shooter target looks, and 

one in which these items were intermingled with a variety of distractor questions. If the 

relationship between Black and White ratings was comparable across the two procedures, the 

simpler version was to be used in the subsequent studies. If not, the version with the distractor 

items was to be used. 

Method 

Participants. A sample of N = 259 students from the Michigan State University 

participant pool participated in return for credit in their psychology courses. Thirty-one of these 

were excluded for failing one of the questionnaire’s three probe items (see “Materials”), leading 

to a final sample of 228. This sample is adequate (see Appendix C) to detect with more than 

96.4% power whether the task version alters the relationship between Black threat ratings and 

White threat ratings by at least a 0.03 change in standardized slope. 

Of the participants in Study 1, 157 identified as White, 29 as Black, 23 as Asian, four as 

multiracial, and 12 as some other race. Three participants declined to specify race. Thirty-five 

identified as men, 191 as women, and two as some other gender. Participants ranged in age from 

18 to 35, with a mean of 19.13 (SD = 1.56). 
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Materials. In both conditions of Study 1, participants rated a set of 80 pictures. This set 

of pictures features 20 Black men and 20 White men previously photographed in our lab (see 

Figure 2). The men wear identical outfits (gray t-shirt and blue jeans) and are each pictured 

twice:  once holding a gun and once holding a harmless rectangular object, such as a calculator 

or wallet. Each target holds one of four poses (counterbalanced across race and object type) and 

appears to stand in one of a variety of neighborhood scenes. When photographed, targets were 

instructed to adopt a neutral expression. Overall, targets were relatively successful at this, though 

there is nevertheless some variation in their expressions. For the purposes of Study 1, each of 

these 80 images were cropped to show only the head and upper shoulders of the target. 

Participants rated these cropped images one at a time in a survey administered online. 

Additionally, in Condition 2 of Study 1, this set of images was expanded to also include 

head-and-shoulder images of a variety of additional people, including: 5 White men, 10 Latino 

men, and 5 Asian men. In this condition, it was expected that the variety of races and the uneven 

numbers of targets per race would disguise the purpose of the survey. 

Procedure. In Condition 1, participants completed two blocks of ratings, in 

counterbalanced order. In one block, participants viewed in random order each of the 80 images, 

and answered the question, “How threatening does this person look?” In the other block 

participants viewed the same 80 images, again in random order, and answered the question, 

“How angry does this person look?”  Questions were answered using a sliding scale, with 

endpoints labeled (for example) “Not threatening at all” and “Very threatening.” 

In Condition 2, participants rated targets not only on how “angry” and “threatening” they 

look, but also on the attributes “happy,” “healthy,” and “embarrassed.” In this condition, 
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different attributes of interest were not presented in different blocks; instead, the 300 

attribute/target combinations were simply presented in random order. 

At the end of the survey, participants answered three true-or-false probe items: (1) “I 

understood all the questions I answered.” (2) “I answered some or all of the questions randomly 

or dishonestly, without trying to give an accurate answer.” (3) “I read all the instructions in this 

survey.” The second of these probe items, in addition to the response options “True” and “False,” 

had the third option “I don’t understand this question.” The third probe item had the third 

response option “I read everything except the consent form at the beginning” in addition to the 

“True” and “False” options. To be included in the study, participants had to answer “True” to all 

three questions (with “I read everything except the consent form” considered as practically 

equivalent to “True”). 

Results 

 Descriptive statistics for Study 1 can be found in Table 1. 

 Note regarding missing data. It was discovered after the study that the incorrect 

stimulus—specifically, a repeat of another stimulus—had been uploaded for one of the threat-

rating items, such that participants rated one stimulus twice and did not rate another stimulus at 

all. Therefore, ratings are missing for one armed Black target. The additional ratings for the 

repeated stimulus were deleted. Unfortunately, some of the Study 1 materials were repeated for 

Study 2, and the error was not discovered until after that study; as a consequence, this error also 

affects Study 2. 

 Confirmatory analyses. The first question to be addressed by this study was whether 

threat ratings would show within-target consistency. A within-subjects ANOVA was conducted 

with no fixed effects and with random intercepts by target, and the intraclass correlation was 
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calculated to determine whether target was a significant source of variance in threat ratings. 

There was a significant intraclass correlation among threat scores assigned to the same target 

(ICC = 0.08, p < .001). The intraclass correlation is equal to the proportion of variance in threat 

ratings attributable to the random effect of target and can be conceptualized as the average 

correlation of threat ratings among all possible pairs of participants. This finding indicates that 

when multiple participants rated the same stimulus, they tended to assign more similar ratings 

than would be expected from chance. It was therefore concluded that analyses in the following 

studies should control for variance in threat scores due to the target. 

The second question of interest was whether a given target’s threat ratings were typically 

consistent across the two pictures of that target. That is, because each target provided two images 

(once armed, and once unarmed), and the face was cropped from both of these images to be rated 

in Study 1, it was of interest whether two pictures of the same target would be given similar 

threat ratings. To assess this, for each participant a difference score was calculated for each pair 

of images, and a multilevel model was developed predicting these difference scores from target 

(as a categorical factor) controlling for the sum of the image pairs’ threat ratings, with intercepts 

varying randomly by participant. Target was a significant predictor of the difference between 

two pictures’ threat ratings (Table 2, F(38, 8320.13) = 7.67, p < .001), indicating that some 

targets had higher threat ratings in one picture than the other, and that this happened to varying 

extents across targets. Therefore, it was concluded that subsequent studies should include both 

pictures of each target and that analyses would need to be conducted at the stimulus level rather 

than the target level—in other words, threat ratings could not be collapsed across the two stimuli 

in which a given target appeared. 



 

22 

The third question was whether threat bias could be treated as an individual difference 

variable. To test this, a multilevel model was developed predicting threat rating from target race 

and target object, allowing intercepts to vary randomly by stimulus and by participant, and 

allowing slopes for the race of the target individual to vary randomly by participant. Results can 

be observed in Table 3. The key effect was the variance of slopes for target race at the participant 

level. These had a variance of 52.75 (p < .001), indicating that there was significant variation in 

the effect of target race across participants. Thus, although participants did not show racial bias 

in threat perception on average (b = .03, t(180.27) = .032, p = .975), threat bias could be treated 

as an individual difference variable.  

Finally, a linear regression was calculated to test whether participants’ threat ratings for 

Black targets predicted their threat ratings for White targets in the same way across the two 

versions of the survey (one with distractor questions, and one without). The model predicted 

participants’ mean White target ratings from their mean Black target ratings, survey condition, 

and the interaction of these two predictors. Results can be observed in Table 4. The effect of 

Black ratings did not significantly interact with condition (b = .001, β = .001, t(224) = 0.031, p = 

.975), indicating that this relationship was consistent across survey versions and that the shorter 

survey version could be used in Studies 2 and 3. 

Exploratory analyses. In addition to these analyses, a number of exploratory analyses 

were conducted. The relationship between threat and object was examined to determine whether 

faces cropped from targets holding guns differed systematically in apparent threat from faces 

cropped from targets holding harmless objects. This could have happened if the individuals 

photographed to create these stimuli had assumed different facial expressions depending on the 

objects they held. To test this, a multilevel model was estimated predicting threat from object, 
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race, and their interaction. Random effects included random intercepts by participant and target, 

slopes for race varying randomly by participant, slopes for object varying randomly by target, 

and all covariances. Neither object, race, nor their interaction significantly predicted threat (ps > 

.113; see Table 5). 

 In addition, the relationship between anger ratings and threat ratings was explored. Anger 

and threat ratings were correlated at r = 0.499. To further investigate anger ratings, a multilevel 

linear regression (Table 6) was estimated predicting anger ratings from threat ratings, object, 

race, and the interaction of threat and race. Random effects included random intercepts and threat 

slopes by both participant and target, as well as random race slopes by participant, random object 

slopes by target, and all covariances. Anger was predicted by threat overall (b = .30, p < .001) as 

well as by the interaction of threat and race (b = .04, p < .001). Follow-up analyses indicated that 

the relationship between threat ratings and anger was stronger (b = .33, p < .001) for Black 

targets than for White targets (b = .26, p < .001), perhaps indicating that perceived anger is 

interpreted as more threatening on a Black face than on a White face. 
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STUDY 2 

Method 

Question. Study 2 assessed whether participants’ levels of threat bias predict racial bias 

in their shooting behavior. It also tested whether threat bias influenced drift rates for shooting 

decisions, and whether threat bias moderated the effect of race on drift rates. The study was 

conducted in two parts: an online survey in which participants viewed images of targets and 

provided threat ratings followed by a laboratory session in which participants completed an 

FPST featuring the same targets. 

Participants. A sample of 732 students from the Michigan State University participant 

pool participated in Part 1 of the study, and a sample of 310 students participated in Part 2. Of 

the Part 1 participants, 89 were excluded for failing at least one of the three probe items (e.g. “I 

read the instructions”—see Study 1 Materials) and four were excluded for indicating that they 

recognized the face of one of the actors. Of the Part 2 participants, five were excluded for 

indicating that they had not completed Part 1 as well as three who left the lab early without 

finishing the shooter task. Data from the two parts were matched by means of a series of survey 

questions (e.g. what is the second letter in your last name?) that, while containing too little 

information to be identifying, were likely in combination to produce unique identifiers when 

pasted together. In a number of cases, however, matches were difficult to make due to 

participants entering different information each time. If one of the resulting identifiers had no 

exact match but was only one number or letter away from an unmatched identifier for the other 

part, the two identifiers were treated as matching pair. Using this method, it was possible to 

match data across the two parts for a final sample size of N = 221. 
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Participants received credit for their psychology courses for each portion of the study. Of 

the 221 participants, 153 identified as women, 62 as men, and 2 as a different gender, while 4 did 

not report gender. Seven did not report race; of the remaining participants, 139 identified as 

White, 26 as Black, 35 as Asian, 4 as multiracial, and 10 as a different race. Participants ranged 

in age from 18 to 24, with a mean age of 19.11 (SD = 1.18). 

The sample size was selected based on results from simulations (see Appendix C for 

commented simulation R code) indicating that a sample size of 200 would provide 98.4% power 

and 96.8% power, respectively, to detect a standardized slope of 0.008 for the three-way (threat 

bias x race x object) interaction terms in the two behavioral analyses of interest described below. 

The target sample size was therefore 200. Participants were recruited based on rough estimates 

of the expected attrition rates and of the percentage of Part 2 data that would be usable, e.g. 

based on matchability to Part 1 data (this estimate was informed by examining the rate of usable 

data partway through data collection). This resulted in a total of 221 participants. This sample 

size is also comparable to those of previous studies that have employed DDM analyses of similar 

complexity (e.g. Correll et al., 2015; Pleskac et al., 2018).  

Materials and procedure. Study 2 consisted of two tasks. The first task in Study 2 was 

the same threat-rating questionnaire used in Study 1, but this time, the task was limited to 

judgments of threat for each of 80 FPST stimuli. This survey was administered online. 

Participants completed the second task in the laboratory, 3-15 days after completing the 

first task. This task consisted of a shooter task, run in PsychoPy (Peirce et al., 2019) and using 

the 80 stimulus images rated in Study 1. Participants were instructed that if a target had a gun, 

that person was dangerous and the correct response was to press the shoot key, whereas if a 

target was holding a harmless object, that person was not dangerous and the correct response was 
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the don’t shoot key. Participants gained and lost points depending on accuracy. Images 

disappeared at the end of the response window, and participants who failed to respond before the 

image disappeared would incur the greatest possible loss of points. Each image appeared once in 

each of two blocks, for a total of 160 trials; in addition to this, participants completed 8 practice 

trials at the beginning of the task. The response window for this task was 650 ms. 

Many of the actors in the stimulus images were undergraduates who had been 

photographed in our lab. Partway through data collection, it came to my attention that one of 

these individuals had passed away, after a participant who knew him contacted me. To minimize 

potential distress to participants who might recognize him, the images of that individual were 

replaced with new images of a different individual for the remainder of the study. Eighty-seven 

participants completed the study with the first version of the stimuli (with the deceased 

individual) and 134 completed the study with the second version of the stimuli (with a 

replacement for the deceased individual).  

Analyses 

Data cleaning. Certain adjustments were made to the data prior to analyses. First, as in 

Study 1, the incorrect picture had been uploaded for one of the threat-rating items in Part 1, such 

that participants rated one stimulus twice and did not rate another stimulus at all. Threat 

perceptions for the unrated target were therefore unknown. Again, the repeated ratings were 

deleted.  

Second, a disadvantage of the survey software used (Qualtrics) was that if a respondent 

does not move a slider scale from its default start position, the software records this as a 

nonresponse (“NA”). Threat was rated in Part 1 using a slider scale with values from 0 to 100, 

with a default starting point of 50. If participants did not move the slider scale for a picture, it 
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was therefore unclear if they intended to respond “50” or not at all. Due to the randomized nature 

of the survey, “NA” values could also indicate questions that appeared at the end and remained 

unseen because the participant quit partway through. Visually salient instructions were provided 

briefly explaining this to participants and asking them to click on the slider scale if they wished 

to respond with the scale’s midpoint. However, it cannot be guaranteed that all participants read, 

understood, and recalled all instructions. Therefore, “NA” values for ratings were replaced with 

“50” only for participants who completed the full survey up to and including the last few pages 

(demographics, probe etc.). As a result, 210 “NA” values (1.18% of ratings) were replaced with 

“50.” 

For each target, I computed the average of all participants’ threat ratings. For each 

participant, I computed the difference between (a) the participant’s average threat ratings for all 

Black targets and (b) her average threat ratings for all White targets, as well as the sum of these 

averages (a + b).  

Behavioral analyses. Descriptive statistics for the threat-rating portion of Study 2 can be 

viewed in Table 1, and descriptive statistics for the shooting task portion of Study 2 can be 

viewed in Table 7. Behavioral analyses involving reaction time were estimated using only trials 

with correct responses, excluding trials on which the participant responded faster than 300 ms or 

slower than 650 ms (the response window). Response latencies more than 2.5 times the 

participant’s own standard deviation of response speeds above that participant’s mean were 

replaced with the value of the participant’s mean plus 2.5 times their standard deviation.  

Behavioral analyses, answering the question of whether perceived threat influences 

participants’ shooting behavior, were comprised of four multilevel regression models. The first 

pair of regressions modeled reaction times and errors, respectively, to assess whether individual 
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participants’ levels of threat bias affected the magnitude of shooter bias. The second pair of 

regressions, which again modeled reaction times and errors, assessed whether the effect of target 

race on shooting decisions depended on how threatening the target was generally perceived to be 

(averaged across participants). In each model, random effects (detailed below) were determined 

based on the most complicated random effects structure that the data would allow without 

specification errors in a model with no fixed-effect predictors. 

The first pair of models treated perceived threat as a property of the participant. These 

two models were identical in their predictors; however, one was a multilevel linear regression 

predicting response times, and the other was a multilevel logistic regression predicting errors. 

Fixed effects in these models consisted of (1) the target’s race, (2) the target’s object, (3) the 

difference score for the participant’s average Black target ratings minus her average White target 

ratings, (4) the sum of the participant’s average Black target ratings plus her average White 

target ratings, and (5-11) all interactions that are possible without including both difference 

scores and sum scores in the same interaction. Intercepts were allowed to vary randomly by 

participant and by stimulus, and slopes for object were allowed to vary randomly by participant. 

In the reaction time analysis, slopes for race were also allowed to vary randomly by participant. 

All covariances were included in both models. The effect of interest in these analyses was the 

three-way (fixed effect) interaction between the target’s race, the target’s object, and the 

participant’s Black-White difference in threat ratings—i.e., threat bias. This term would indicate 

whether a participant’s degree of threat bias influenced the impact of race on responses to the 

targets’ objects.  

The second pair of models treated perceived threat as a property of the stimulus. These 

were again a multilevel linear regression of response times and a multilevel logistic regression of 
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errors, again with identical sets of predictors. Fixed effects in these models consisted of (1) the 

target’s race, (2) the target’s object, (3) the target’s average threat rating across participants, and 

(4-7) all two- and three-way interactions. Intercepts were allowed to vary randomly by 

participant and by target, and slopes for object were allowed to vary randomly by participant. In 

the model of reaction time, slopes for race were also allowed to vary randomly by participant. 

All covariances were included in both models. The effect of interest in these analyses was the 

three-way (fixed effect) interaction between threat rating, race, and object. This term would 

indicate whether “threatening” features (e.g., high facial width-to-height ratio) influence the 

impact of race on responses to the targets’ objects. For example, race may be less influential in 

determining shooting responses among “baby-faced” individuals, because these individuals may 

be perceived as nonthreatening regardless of race.  

Given the length of the response window, it was expected that bias would emerge in the 

error analyses but not the reaction time analyses, as this window was likely to limit variation in 

response time. The error models, therefore, were the analyses of interest. However, reaction time 

data were also modeled for the sake of consistency with past work. 

Some notes on the interpretation of behavioral results. Because only reaction times for 

correct responses are included in reaction time analyses, the test of the main effect of object is 

equivalent to a test of whether correct shoot responses are faster than correct don’t shoot 

responses. Thus, if—for example—threat bias interacted with object, this would mean that 

participants who perceived Black faces as more threatening differed from participants lower in 

threat bias in their speed discrepancy between correct shoot responses and correct don’t shoot 

responses.  
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A “shooter bias” effect emerges when race (Black / White) and object (gun / non-gun) 

interact to predict either errors or reaction times, such that the effect of a gun (vs. a non-gun) is 

different for Black than for White targets. If race and object interact to predict reaction times, 

this indicates that the discrepancy in speed between correct shoot responses and correct don’t 

shoot responses differs between Black and White targets. If race and object interact to predict the 

odds of an error, the interpretation is affected by the fact that the odds of error when the object is 

a gun represent the odds of shooting unarmed targets, whereas the odds of error when the object 

is a non-gun represent the odds of failing to shoot armed targets. Therefore, shooter bias for error 

data indicates that the odds of shooting unarmed targets and/or the odds of failing to shoot armed 

targets are different for Black than for White targets. For either reaction time or error data, if this 

race-by-object interaction is itself qualified by another variable, such as threat bias—in other 

words, if there is a three-way interaction between race, object, and threat bias—then this 

indicates that the level of shooter bias depends on the level of threat bias. 

Drift Diffusion Model analyses. DDM analyses, answering the question of how 

perceived threat influences participants’ shooting behavior, were specified in a manner consistent 

with previous use of DDM analyses in shooter research (Correll et al., 2015; Pleskac et al., 

2018), using a Bayesian hierarchical specification of the DDM. This model was estimated using 

a Markov Chain Monte Carlo simulation in JAGS (Plummer, 2003) with the Wiener module 

(Wabersich & Vandekerckhove, 2014). The analysis collected 300,000 samples using an 

adaptive phase of 1,500 and a burn-in of 500. Drift rate was predicted by target race, target 

object, participants’ difference scores for Black and White threat ratings, and scores for the sums 

of participants’ Black and White threat ratings, as well as all interactions that were possible 

without interacting difference scores with sum scores. Because Bayesian methods of inference 
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were used, I report the most credible value for each parameter as well as the Highest Density 

Interval (HDI, reported in brackets), which indicates the spread of the posterior distribution for 

the parameter. 

Posterior predictive checks were conducted for each condition (Black/White by 

Gun/Non-gun) for the probabilities of each decision (shoot/don’t shoot) and the response latency 

means and distributions. This procedure uses the model to simulate data and compares the 

simulated data to the original data to indicate whether the model gives a good account of the data 

in each condition. Results indicated that the simulated data closely tracked observed shooting 

rates. Simulated response times were also distributed similarly to observed response times, 

although the model somewhat overestimated response latencies relative to the observed data 

(with the exception of correct don’t shoot responses, which the model reproduced more closely) 

and somewhat underestimated variability in response times for correct responses. Overall, 

however, the model showed a reasonably good fit to the data. 

Results 

Behavioral analyses. Recall that one pair of models treated perceived threat as a 

property of the participant, and a second pair of models treated perceived threat as a property of 

the stimulus. I discuss each of these separately. 

Perceived threat as a property of the participant. Results of the model predicting error 

(see Table 8) indicated that threat bias did not qualify the race-by-object interaction, and that 

there was no race bias overall. Interestingly, however, threat bias did qualify the main effects of 

both race and object. Threat bias interacted with object (eb =  .995, p = .008) such that on non-

gun trials, higher threat bias was associated with greater odds of shooting unarmed targets (eb = 

1.007, p = .068), and on gun trials, higher threat bias was associated with lower odds of missing 
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armed targets (eb =.996, p = .219); in short, participants higher in threat bias tended to shoot 

more often. Threat bias interacted with race (eb = 1.002, p = .045) such that for Black targets, 

higher threat bias was associated with a somewhat greater odds of error (eb = 1.004, p = .227), 

whereas for White targets, higher threat bias was unrelated to the odds of error (eb = 1.000, p = 

.902). To explore the plausibility that this could arise from participants making more errors for 

targets whom they found more threatening, a fixed-effects logistic regression model was 

specified predicting error from race, object, and threat, with threat defined as the specific threat 

rating assigned to the current trial’s target by the responding participant. In this model, higher 

threat ratings were associated with more errors (eb = 1.002, p < .001). 

In the model predicting reaction time (see Table 9), threat bias did not qualify the race 

bias effect, and there was no race bias effect overall. However, the sum of a participant’s threat 

ratings did qualify race bias (b = .031, p = .026). Follow-up analyses indicated that participants 

one standard deviation above the mean in summed threat ratings—i.e., people who tended to 

assign higher threat ratings overall—showed a race effect for gun trials such that correct shoot 

responses were slower for Black targets (b = .84, p = .803), and a race effect for non-gun trials 

such that correct don’t shoot responses were faster for Black targets (b = -3.23, p = .340). 

Participants one standard deviation below the mean in summed threat ratings showed weak 

tendencies toward selecting don’t shoot faster for Black targets on non-gun trials (b = -.79, p = 

.815) and selecting shoot faster for Black targets on gun trials (b = -.56, p = .866). Overall, the 

interaction seemed to be driven by the emergence of a tendency to select don’t shoot quickly for 

unarmed Black targets among participants high in summed threat ratings.  

Moreover, threat bias did qualify the effect of object (b = -.190, p = .003), such that on 

non-gun trials, higher threat bias was associated with slower responses (b = .13, p = .446), and 
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on gun trials, higher threat bias was associated with faster responses (b = -.25, p = .108). Overall, 

responses were faster to guns than to non-guns (b = -15.873, p < .001). 

 Perceived threat as a property of the stimulus. In the model predicting error (Table 10, 

stimulus threat level was not related to the odds of making an error. However, stimulus threat 

level did interact with object. Overall, object was related to the odds of error (eb = .869, p = .034) 

such that participants had a greater odds of error on non-gun trials: that is, participants were 

biased toward shooting the targets. This interacted with stimulus threat level (eb = 1.023, p = 

.017) such that for armed targets, higher stimulus threat level was associated with a greater odds 

of missing (eb = 1.025, p = .078), whereas for unarmed targets, higher stimulus threat level was 

associated with a lower odds of shooting (b = .978, p = .102). In other words, surprisingly, higher 

stimulus threat level was associated with a greater odds of not shooting on both gun and non-gun 

trials.  

 The model predicting reaction time results—again using reaction times from correct 

responses only, with trials excluded as described above—followed a similar pattern (Table 11). 

Object was related to reaction time (b = -15.87, p < .001) such that participants’ correct shoot 

responses were faster than their correct don’t shoot responses. This effect was qualified by an 

interaction with stimulus threat level (b = .77, p = .036) such that for non-gun trials, higher 

stimulus threat level was associated with faster don’t shoot responses (b = -.74, p = .143), and for 

gun trials, higher stimulus threat level was associated with slower shoot responses (b = .80, p = 

.127). 

 Drift Diffusion Model analyses. DDM results can be seen in Table 12. Overall, 

participants were biased toward shooting in both drift rate and starting point: Participants had a 

positive modal drift rate (M = 0.142 [.084, .196]) and a modal starting point above the neutral 
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value of 0.5 (M = 0.512 [0.503, 0.522]). Participants’ typical nonresponse time was estimated to 

be about 95% of the individual’s minimum reaction time (M = 0.949 [.947, .950]). The modal 

threshold distance was M = 1.067 (HDI: [1.048, 1.088]). 

There was a main effect of race on drift rate such that overall, drift rates were more 

positive—i.e., biased toward the shoot decision—for Black targets (M = .185 [.123, .244]) than 

for White targets (M = 0.097 [.037, .157]). There was a main effect of object on drift rate such 

that overall, drift rates for gun trials (M = 1. 073 [1.015, 1.134]) were steeper than drift rates for 

non-gun trials (M = -.802 [-.859, -.743]). Race and object also interacted to predict drift rate such 

that for armed targets, drift rates were steeper for Black targets (M = 1.158 [1.090, 1.224]) than 

for White targets (M = 0.990 [.921, 1.056]), whereas drift rates for unarmed targets did not differ 

across race. The racial bias in drift rate was expected in the present work, as it is consistent with 

past work applying the DDM to shooting decisions. 

Threat bias had a main effect on drift rate such that participants who were biased toward 

perceiving Black faces as more threatening were also prone to interpret evidence as stronger for 

a shoot decision, b = .020 [.005, .034] (See Table 12 note for comment on units of DDM slopes). 

However, the sum of a participant’s threat ratings was not related to drift rate, and neither of 

these individual difference variables interacted with any of the other variables. Thus, the 

hypothesis that threat bias would interact with racial bias (i.e., the race-by-object interaction) was 

not supported. 

Summary. In sum, higher threat bias was associated with a tendency to shoot more often 

and with a tendency to make more errors for Black targets in error analyses. Reaction time 

analyses indicated that participants who were high in perceived threat overall were particularly 

quick to select don’t shoot for Black targets. Threat bias did not qualify racial bias overall for 
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either error or reaction time analyses, neither of which found evidence that participants were 

showing a racial bias. DDM results, however, showed a racial bias in drift rates, although they 

did not indicate that threat bias affected the degree of this racial bias. 
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STUDY 3 

Method  

 Question. Study 3 replicated Study 2 with a different stimulus set, to test the 

generalizability of the previous studies’ findings across stimuli. 

 Participants. A sample of 451 students at Michigan State University participated in 

Part 1 of the study, and a sample of 321 students participated in Part 2. Of the Part 1 participants, 

50 were excluded for failing at least one of the three probe items (e.g. answered False to “I read 

the instructions”—see Study 1 Materials). Of the Part 2 participants, four were excluded for 

indicating that they had not completed Part 1. Data from the two parts were matched using the 

same process used in Study 2. With this method, it was possible to match data across the two 

parts for a final sample size of N = 233. 

Participants received credit for their psychology courses for each portion of the study. Of 

the 233 participants, 160 identified as women, 72 as men, and 1 as a different gender. Three did 

not report race; of the remaining participants, 156 identified as White, 25 as Black, 31 as Asian, 

5 as multiracial, and 13 as a different race. Participants ranged in age from 18 to 24, with a mean 

age of 18.98 (SD = 1.18). 

The process of determining the target sample size (200) was the same as Study 1. 

According to results from the simulations used to make this determination (see Appendix C for 

commented simulation R code), a sample size of 200 would provide 98.4% power and 96.8% 

power, respectively, to detect a standardized slope of 0.008 for the three-way (threat bias x race x 

object) interaction terms in the two behavioral analyses of interest described below. 

Materials and procedure. The methods for Study 3 replicated those of Studies 1 and 2, 

but the stimulus set used in this study was a set of pictures developed by Joshua Correll (Correll 
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et al., 2002). Correll’s stimuli include 10 Black and 10 White men, each appearing twice with a 

gun and twice with a harmless object, for a total of 80 stimuli. This stimulus set is similar to the 

one used in Studies 1 and 2 in that targets appear in varying poses and with neutral expressions; 

however, unlike the stimuli used in the studies above, these targets were pictured in their own 

clothes, and outfit is therefore not controlled across race. 

Analyses. Study 3 repeated the analyses conducted in Study 2. It also repeated the 

analyses of stimulus ratings conducted in Study 1 to test whether this stimulus set has a similar 

variance structure to the one used in Studies 1 and 2. Additional analytic details are provided in 

the Results section, particularly when analyses diverge in some way from Studies 1 and 2. 

Results 

Descriptive statistics for the threat-rating portion of Study 3 can be found in Table 1, and 

descriptive statistics for the shooting task portion of Study 3 can be found in Table 7. 

Variance structure. The first question to be repeated from Study 1 regarding variance 

structure was whether threat ratings would show within-target consistency. A within-subjects 

ANOVA was conducted and the intraclass correlation was calculated to determine whether target 

was a significant source of variance in threat ratings. There was a significant average correlation 

among threat scores assigned to the same target (ICC = 0.11, p < .001). As in Study 1, therefore, 

it was concluded that analyses in the following studies should control for variance in threat 

scores due to the target. 

The second question was whether a given target’s threat ratings were typically consistent 

across different pictures of the target. In this stimulus set, there were four pictures of each 

person: two armed, and two unarmed. To assess consistency across object, for each 

participant/target combination a difference score was calculated representing the difference 
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between the sum of the two armed pictures and the sum of the two unarmed pictures. A 

multilevel model was developed predicting these difference scores from target (as a categorical 

factor) controlling for the sum of the four images’ threat ratings, with intercepts varying 

randomly by participant. Target was a significant predictor of the difference between armed and 

unarmed pictures’ threat ratings (Table 13, F(19, 9065.57) = 31.95, p < .001), indicating that 

some targets had higher threat ratings in armed vs unarmed pictures, and that this happened to 

varying extents across targets. To assess consistency within object, for each 

participant/target/object combination, a score was calculated representing the absolute value of 

the difference between the two pictures. A multilevel model was developed predicting these 

scores from target (as a categorical factor) controlling for object and the sum of the image pairs’ 

threat ratings, with intercepts varying randomly by participant. Target was a significant predictor 

of the difference between the image pairs’ threat ratings (Table 14, F(19, 9079.15) = 6.20, p < 

.001), indicating that targets varied in the consistency of these image pairs’ threat ratings. 

Therefore, as in Study 1, it was concluded that subsequent studies should include all pictures of 

each target and that analyses would need to be conducted at the stimulus level rather than the 

target level. 

The third question was whether threat bias can be treated as an individual difference 

variable. To test this, a multilevel model was developed predicting threat rating from target race 

and target object, allowing intercepts to vary randomly by stimulus and by participant, and 

allowing slopes for the race of the target individual to vary randomly by participant. Results can 

be observed in Table 15. The key effect was the variance of slopes for target race at the 

participant level. These had a variance of 39.75 (p < .001), indicating that there was significant 

variation in the effect of target race across participants. Thus, although participants did not show 
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racial bias in threat perception on average (b = -1.37, t(109.09) = -1.349, p = .180), threat bias 

could be treated as an individual difference variable. This analysis again replicated the findings 

of Study 1. 

Finally, the exploratory analysis was repeated examining the relationship between threat 

and object. This analysis was intended to determine whether faces cropped from targets holding 

guns differed systematically in apparent threat from faces cropped from targets holding harmless 

objects. In a model identical to that used in Study 1 (see above), neither object, race, nor their 

interaction significantly predicted threat (ps > .291; see Table 16), replicating Study 1. 

Behavioral analyses. 

Perceived threat as a property of the participant. The first pair of models were identical 

in their predictors; however, one was a multilevel linear regression predicting response times, 

and the other was a multilevel logistic regression predicting errors. Fixed effects in these models 

were identical to those used in Study 2. In both models, intercepts were allowed to vary 

randomly by participant and by stimulus, and slopes for object were allowed to vary randomly by 

participant. In the reaction time analysis, slopes for threat bias were also allowed to vary 

randomly by stimulus. All covariances were included in both models.  

Results of the model predicting error (see Table 17) indicated that threat bias did not 

qualify the race-by-object interaction; in fact, none of the model terms significantly predicted 

error. To be consistent with Study 2, a fixed-effects logistic regression model was also specified 

predicting error from race, object, and threat, with threat defined as the specific threat rating 

assigned to the current trial’s target by the responding participant; in this model, however, threat 

did not predict error. In the model predicting reaction time (see Table 18), threat bias did not 



 

40 

qualify the race bias effect, and there was no race bias effect overall. However, responses were 

faster to guns than to non-guns (b = -17.67, p < .001). 

 Perceived threat as a property of the stimulus. The second pair of models were again 

identical in their fixed effects to the models employed in Study 2. In both models, intercepts 

were allowed to vary randomly by participant and by target, and slopes for object were allowed 

to vary randomly by participant. All covariances were included in both models.  

In the model predicting error (Table 19), stimulus threat level was related to the degree of 

race bias (i.e., it interacted with the race-by-object interaction; eb = 1.015, p = .041). Specifically, 

among White targets, higher stimulus threat level was associated with lower odds of choosing 

don’t shoot for armed targets (eb =.985, p = .185) and was unrelated to errors for unarmed targets 

(eb = 1.007, p = .570). Among Black targets, higher stimulus threat level was associated with a 

lower odds of shooting unarmed targets (eb = .973, p = .144) and was unrelated to errors for 

armed targets (eb = 1.009, p = .486). This effect ran counter to hypotheses. Thus, to explore it 

further, a fixed-effects logistic regression model was specified testing whether the (non-

aggregated) threat rating assigned to a given target by a given participant predicted that 

participant’s shooting behavior for that particular target (in other words, the model had the same 

fixed-effects structure as the stimulus threat error model, except that “threat” was the specific 

threat rating for the present participant and targets). This model found the same pattern for White 

targets; i.e., if a participant found an armed White target more threatening, the participant was 

more likely to shoot that target. However, the model did not find any object-by-threat interaction 

for Black targets. 
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In the model predicting reaction time (Table 20), object was related to reaction time (b = 

-17.19, p < .001) such that participants’ shoot responses were faster than their don’t shoot 

responses. No other terms were significant in this model. 

 Drift Diffusion Model analyses. Diffusion model analyses were specified in the same 

way for Study 3 as for Study 2. Analyses collected 201,000 samples with an adaptive phase of 

3,000 and a burn-in of 500. Results can be seen in Table 21. 

Overall, participants were biased toward shooting in both drift rates and starting point: 

The modal drift rate was positive (M = 0.090 [.030, .145]), indicating that shoot drift rates were 

steeper than don’t shoot drift rates. Moreover, the modal starting point was above the neutral 

value of 0.5 (M = 0.518 [0.508, 0.527]). Participants’ typical nonresponse time was estimated to 

be about 95% of the individual’s minimum reaction time (M = 0.948 [.947, .950]). The modal 

threshold distance was M = 1.072 (HDI: [1.054, 1.092]). 

There was a main effect of race on drift rate such that overall, drift rates were more 

positive—i.e., biased toward the shoot decision—for Black targets (M = .156 [.093, .215]) than 

for White targets (M = .021 [-.041, .081]). There was a main effect of object on drift rate such 

that overall, drift rates for gun trials (M = 1.155 [1.097, 1.217]) were steeper than drift rates for 

non-gun trials (M = -.988 [-1.046, -.929]). However, race and object did not interact. 

Neither threat bias nor the sum of a participant’s threat ratings was related to drift rate. 

For the most part, neither of these individual difference variables interacted with any of the other 

variables, and the hypothesis that threat bias would interact with racial bias was not supported. 

However, threat bias did interact with object, such that threat bias was associated with steeper 

drift rates for unarmed targets (b = -.014 [-.029, .001]), but was unrelated to drift rate for armed 

targets (M = -.001 [-.017, .014]), b = .007 [.001, .012]. 
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Posterior predictive checks were again conducted for each condition. Results were very 

similar to the posterior predictive checks conducted for the Study 2 model. The simulated data 

closely tracked observed shooting rates and reflected observed response times reasonably well. 

Exceptions to this were that the model somewhat overestimated response latencies relative to the 

observed data (with the exception of correct don’t shoot responses) and somewhat 

underestimated variability in response times (with the exception of incorrect don’t shoot 

responses). Overall, however, the model showed a reasonably good fit to the data. 
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DISCUSSION  

Primary Findings 

The primary goal of the present studies was to address whether threat bias is associated 

with racial bias in the FPST—that is, whether participants’ tendency to perceive Black faces as 

more threatening than White faces was predictive of a tendency to shoot Black targets more than 

White targets. Across Studies 2 and 3, racial bias did not emerge in behavioral analyses, and this 

was not qualified by threat bias—defined as an individual’s tendency to perceive neutral Black 

faces as more threatening than neutral White faces. Process-level analyses using the Drift 

Diffusion Model did find racial bias in drift rates in both Studies 2 and 3, such that drift rates 

were more positive—i.e., biased toward the shoot decision—for Black than for White targets. In 

Study 2, this was driven by a race difference for armed targets, whereas in Study 3, the race 

effect in drift rate emerged for armed and unarmed targets equally. However, again, this racial 

bias did not depend on individual differences in threat bias.  

This suggests that racial bias in drift rates is explained by some factor other than 

perceptions of the target individuals as threatening. Consideration of the structure of the task 

may be illuminating here. In the FPST, participants’ instructions are to press one key if a target is 

holding a gun and another key if the target is holding any other object. Instructions also indicate 

that targets holding guns “pose a threat to you” and should therefore be “shot” by pressing the 

appropriate key. However, the correctness of the decision, for which points are awarded and lost, 

is based on the actual object held by the target, not the participant’s subjective judgment of 

threat. The hypothesis that racial bias in drift rates would be influenced by threat perceptions is 

premised on the two assumptions that (1) this decision about whether an object is a gun or not is 

influenced by some assessment of threat from the targets and that (2) this threat assessment is 
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influenced by the target’s race. However, it may be that participants experience the task as a 

visual search and object identification task without a strong threat-assessment component to the 

decision-making process. If so, racial bias might be better explained by stereotypic associations 

between the category “Black” and the object “gun,” which could speed the object-identification 

process. 

Work with the Weapons Identification Task (Payne, 2001) provides evidence for such a 

stereotype. In this task, participants must rapidly identify whether or not an object is a gun after 

being primed with a Black or White face. Participants identify guns faster and more accurately 

after being primed with a Black face (Payne, 2001; Payne, Lambert, & Jacoby, 2002), suggesting 

a stereotypic association between Black individuals and guns. On the other hand, work with this 

task has found that racial bias appears in starting point rather than drift rate (Todd, Johnson, 

Lassetter, Neel, Simpson, & Cesario, under review)—but this may be an artefact of the structure 

of the task, in which the face appears before the object (as opposed to the FPST, in which the 

person and object appear concurrently). Thus, it may be that weapon stereotypes, rather than 

perceived threat itself, underlie biased shooting decisions in the FPST. 

Another possible explanation for the lack of a moderating effect of threat is that the 

response window in the FPST was too short to allow participants to make judgments about 

threat. Judgments in the initial threat-rating task were made under no time pressure, but shooting 

decisions had to be made within a 630 ms window. There are limited data on the precise speed at 

which different emotions are recognized, and perhaps no data on the speed at which facial cues 

to threat itself are assessed. However, De Sonneville et al. (2002) present data suggesting that 

adult response latencies in anger-identification tasks may fall in the range of 600 ms to 950 ms. 

The present response window, though within that range, is at the low end. In Study Two, threat 
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ratings were somewhat predictive of shooting decisions, as individuals who were higher in threat 

bias made shoot decisions faster and more accurately, and had drift rates biased toward the shoot 

decision overall. Participants who were higher in overall threat ratings also showed some 

reaction time bias toward selecting don’t shoot for unarmed Black targets. However, these 

effects reflect individual differences and may be related to shooting decisions through some 

process other than threat perception. That is, individuals who are prone to perceiving threat may 

also share some other characteristic that produces these shooting effects. Stimulus-level threat 

ratings might more strongly reflect the effect of immediate perceptions of threat on shooting 

behavior—but in analyses examining stimulus-level threat ratings, these ratings were typically 

nonpredictive of error and reaction time and did not often interact with other variables. These 

null findings are consistent with the possibility that participants were unable to form assessments 

of threat based on targets’ faces before making shooting decisions in the FPST. 

Another finding which may be relevant is that race bias consistently emerged in drift rate, 

but not in behavioral results. There are two possible explanations for this discrepancy. One is 

that drift rate differences were too small to create detectable behavioral differences. Among the 

behavioral analyses, race bias was directionally (though nonsignificantly) present in three of the 

four error analyses and two of the four reaction time analyses. Thus, to some extent the drift rate 

differences were directionally associated with corresponding behavioral trends—although this 

was not a perfect association. The other possibility is that some other psychological process(es) 

not reflected in the present DDM parameter specification may have counteracted the drift rate 

effect, preventing a behavioral effect. For example, if participants set lower starting points or 

wider thresholds for Black targets, this might have resulted in equivalent errors and reaction 

times across Black versus White targets despite the drift rate differences. Since race differences 
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in starting point and threshold were not modeled here due to computational limitations, the 

present analyses cannot assess this possibility.  

Stimulus-Level Threat 

A second and more exploratory question was whether the average threat level assigned to 

a stimulus across participants—that is, a stimulus-level measure of threat—would be associated 

with racial bias in these decisions, or with the decisions themselves. In Study 2, there was no 

such relationship; however, in Study 3, higher stimulus threat level among Black targets was 

associated with fewer shoot responses for unarmed targets, and higher stimulus threat level 

among White targets was associated with more shoot responses for armed targets. In Study 2, 

higher stimulus threat level was associated with a tendency toward the don’t shoot decision in 

both errors and response times. This was an unexpected pattern of effects. I would have 

predicted that higher perceived threat level of a stimulus would be associated with an increased 

tendency toward shoot decisions for both races, with perhaps a stronger association for Black 

targets. Instead, higher threat level was associated with don’t shoot decisions for all targets in 

one study and for Black targets in the other. One potential explanation, discussed in more detail 

above, is the response window during which participants had to respond. If threat judgments are 

formed too slowly to influence responses faster than 650 ms, then the observed effects of 

stimulus threat level and participant threat bias may not truly represent what those variables were 

intended to measure. Another possible factor is that stimulus threat level was calculated as a 

stimulus-level variable based on threat ratings aggregated across participants, but there was some 

missing data in threat ratings. That is, not all participants rated all targets (because sometimes 

participants did not finish the survey). It is possible that some pattern of missing data in Study 

Three was responsible for this counterintuitive effect. For example, some targets may have been 
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rated as more threatening by responding participants, while a subset of participants who thought 

they were less threatening did not respond to the threat questions for those targets yet still 

contributed don’t shoot responses toward those targets in the FPST. This is a somewhat 

speculative explanation, but is supported by the fact that in follow-up analyses, the 

counterintuitive effects of stimulus threat level for Black targets did not emerge when stimulus 

threat level was not aggregated across participants.  

Additional Findings 

Some interesting lower-order effects also emerged. In Study 2, participants who were 

higher in threat bias made more errors for Black than for White targets. A straightforward 

explanation is that participants who perceived Black targets as particularly threatening may have 

responded to the sight of a Black target with some negative emotional state that impeded 

processing. In other words, people may make more errors for targets they perceive as more 

threatening. Follow-up analyses indicated that the present data supported this claim; i.e., de-

aggregated threat ratings for a target predicted the raters’ odds of error for that target in Study 2. 

Interestingly, however, in Study 3, individuals’ threat ratings for particular targets did not predict 

their odds of error on trials presenting those targets—and neither did threat bias predict 

differences in the odds of error across target race. The main methodological difference between 

the studies was that they used different stimulus sets; Study 2 employed stimuli that I had 

previously created at Michigan State University, whereas Study 3 employed stimuli created by 

researchers at the University of Chicago and the University of Colorado at Boulder (Correll et 

al., 2002). 

This could indicate some difference between the stimulus sets evaluated in the two 

studies. The reader may wonder whether the Study 3 stimuli were easy to make shooting 
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decisions about, or hard to make threat judgments about, leading to restriction of range in either 

errors or threat ratings and hiding an association in Study 3. However, examination of the data 

reveals that the error rate in Study 2 (29.0%) was similar to that in Study 3 (26.4%) and that the 

standard deviations of threat ratings were also similar between Study 2 (23.4) and Study 3 (24.2). 

Another possibility, if perceived threat is not truly related to the odds of error, is that the stimuli 

in Study 2 may have contained a subset of images with some quality that increased the odds of 

error while also increasing perceived threat (for example, perhaps blurry images might have this 

effect). On the other hand, if perceptions of threat do increase odds of error, it may be that Study 

3 has a subset of stimuli that counter this pattern: e.g., that have some quality that makes them 

more error-prone but less threatening (for example, images in which targets appear small relative 

to the background scenes). There is little research in the published literature that can shed light 

on whether the threat effect in Study Two is valid or spurious, so it is unclear at this point what 

to make of the differences between the stimulus sets. However, it does raise interesting questions 

for further research regarding the effects of perceived threat on decision-making processes. 

Another interesting finding that emerged in Study 2 was that participants who were 

higher in threat bias also made the decision to shoot faster and more often and had more positive 

drift rates (indicating a bias toward shooting). These findings did not replicate in Study 3, so it is 

possible that these represent spurious effects. However, if they do accurately reflect reality, they 

may be a sign that some personality trait underlies both a tendency to perceive Black individuals 

as more threatening than White individuals as well as a tendency toward making aggressive 

choices or perceiving objects as weapons.  

In Study 2, participants who were higher in overall threat ratings also showed some 

reaction time bias toward selecting don’t shoot for unarmed Black targets. Again, this effect was 
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not replicated in Study 3, nor was it reflected in any process-level (DDM) effects. Taken at face 

value, the finding seems to suggest that there is some individual difference associated both with 

perceiving threat and with correctly failing to shoot Black targets. It is possible that people who 

are prone to perceiving threat easily may have been particularly on their guard against shooting 

unarmed Black targets in an effort not to appear racially biased. There is some literature 

suggesting that participants who show an indirectly measured motivation to respond in a non-

prejudiced way may be able to exert some control over their responses in this task (Glaser & 

Knowles, 2008; Park & Glaser, 2011). However, whether this motivation is related to the 

tendency to perceive others as threatening is unknown. Thus, again, it is unclear whether this 

finding represents a true effect. 

A final effect worth mentioning is that in the exploratory analyses from Study 1, ratings 

of anger showed a moderate-to-strong correlation with ratings of threat. This may suggest that 

the two measures tap into overlapping constructs—implying that past research on racial bias in 

perceptions of anger could instead be understood as bias in perceived facial cues to threat. There 

is some evidence that perceptions of anger are related to perceptions of threat:  Shasteen et al. 

(2015), in their study demonstrating that people have a search advantage for facial features 

perceived as threatening, found that this advantage was exaggerated in people who also 

perceived faces with these features to look angrier. This could occur because perceived anger 

directly increases perceived threat, or because attributing anger to faces that are perceived as 

threatening for other reasons facilitates the processing effects of perceived threat. Participants 

may also be conflating perceptions of anger with perceptions of threat because they know that 

anger can be associated with violent or threatening behavior. Moreover, some facial features may 

contribute to assessments of both anger and threat; for example, lowered eyebrows are 
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considered characteristic of angry expressions (Kohler et al., 2004) and are also perceived as 

threatening (Lundqvist, Esteves, & Ohman, 1999).  

However, it is more difficult to explain why this relationship between anger and threat 

was stronger for Black than for White targets. This could indicate that anger is perceived as 

particularly threatening on Black faces, and/or that less angry expressions are perceived as 

particularly harmless on Black faces. It could also indicate that threatening facial features (e.g. 

high width-to-height ratio) on a Black face lead the face to be perceived as angrier, relative to 

White faces with the same features. It is even possible that facial expression was genuinely 

correlated with some threatening facial features in our stimulus set, even though actors were 

instructed to maintain neutral expressions, and that this relationship was stronger for Black faces. 

A systematic investigation of the stimuli would be necessary to test that hypothesis. The race 

difference observed here is intriguing, but more research will be needed to understand it. That 

said, however, it should be noted that the relationship described here was observed based on 20 

Black and 20 White faces—a relatively small sample—and is therefore of uncertain reliability. 

Since perceived anger was not measured in Study 3, it is unknown whether this effect would 

replicate with that study’s stimuli. 

Validity Considerations 

 Several possible concerns could be raised surrounding topics discussed in the present 

work. These include the robustness of the past findings on which the present studies are based, 

the validity of the task used here to measure perceived threat, and the interpretation of the drift 

rate parameter in the DDM. I consider each of these in turn. 

Robustness of shooter bias literature. Recent years have seen growing concern with the 

replicability of social psychological studies (e.g. OSC, 2015). Given these concerns, it seems 
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advisable to carefully examine indicators of empirical soundness when citing past literature. I 

therefore take some time here to consider the robustness of certain shooter literature effects 

relevant to this dissertation. 

There is fairly widespread support for the finding that civilian participants display shooter 

bias in the traditional FPST. The claim has been backed up by a meta-analysis (Mekawi & 

Bresin, 2015), and while there is great variation in sample sizes within the shooter literature, a 

number of studies have drawn conclusions from reasonably large samples (e.g., N > 100; Correll, 

Park, Judd, & Wittenbrink, 2007; Hunsinger, 2011; Mekawi, Bresin, & Hunter, 2016; Musolino, 

2012; Park & Kim, 2015; Pleskac et al., 2018; Sadler, Correll, Park, & Judd, 2012; Sim, Correll, 

& Sadler, 2013; Snowden, 2017). However, the robustness of this finding to different analyses is 

somewhat questionable. Johnson, Cesario, and Pleskac (2018) report that analyses still revealed a 

shooter bias effect when employing a rigorous random effects structure in a multilevel modeling 

framework. In contrast, though, Harder (in press) subjected data from 19 shooter studies to 

various random effects structures in a multiverse analysis and found that studies varied in their 

robustness to more conservative analysis techniques. Harder concluded that most shooter studies 

were underpowered for the most rigorous analytic options as a consequence of using too few 

unique target individuals. Thus, while shooter bias effects are frequently detected, some 

inappropriate methods may be common in this literature. 

The moderators and mediators of shooter bias, unfortunately, are also somewhat 

uncertain, because many studies addressing these questions remain unreplicated. A few such 

studies have been subject to replication attempts; for example, two studies (Correll, Park, Judd, 

& Wittenbrink, 2007; Sim et al., 2013) have found that shooter bias is greater after reading a 

news article that reinforces stereotypic associations between Blacks and violent crime. One of 
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these studies (Correll, Park, Judd, & Wittenbrink, 2007) found this effect to be highly significant 

with a moderately large sample; the other (Sim et al., 2013) replicated it in a smaller sample with 

more modestly significant results (p = .032) and found that it appeared in undergraduates with no 

prior experience with the task, but not in police participants or in experienced undergraduates. 

However, this is one of the few manipulations that have been repeated across publications in the 

shooter literature to test explanations for shooter bias. A number of other studies have also 

examined a role for stereotypes or have tested other explanations, but these use a variety of 

measures and manipulations (e.g. Correll et al., 2006; Kenworthy et al., 2011; Ma & Correll, 

2011; Ma, Correll, Wittenbrink, Bar-Anan, Sriram, & Nosek, 2013; Taylor, 2011). 

Although the basic shooter bias effect has emerged in many studies of undergraduates or 

other civilians, it is more difficult to discern whether the effect exists for police officers, as only 

a handful of studies have examined police populations. Of studies that tested for both reaction 

time effects and error effects, at least one study has found an effect in reaction times but not in 

errors (Correll, Park, Judd, Wittenbrink, et al., 2007, Study 1) and at least one other has found an 

effect in errors but not reaction times (Taylor, 2011, Study 1). Others have found neither error 

effects nor reaction time effects (Correll, Park, Judd Wittenbrink, et al., 2007, Study 2; Sim et al., 

2013, Study 1; Taylor, 2011, Study 2), or both error effects and reaction time effects (Ma et al., 

2013). Sadler et al. (2012) only report testing for bias in reaction times, but do find a bias toward 

responding more quickly to armed Black targets and responding more slowly to unarmed Black 

targets. Sim et al. (2013, Study 2b) only report testing for bias in errors in their sample of 22 

Special Unit officers, but do find an error bias toward shooting Black targets. In short, evidence 

for shooter bias among police is quite inconsistent. 
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The question of how police compare to civilians in shooter bias is of particular interest. A 

few studies have directly compared a police sample to a civilian sample. However, results from 

these comparisons are again mixed. Correll and colleagues (Correll, Park, Judd, Wittenbrink, et 

al., 2007) found in one study that their civilian sample showed bias in both errors and reaction 

times while officers showed it only in reaction times, and in another study that the civilian 

sample showed bias in errors while the police sample did not show bias. Taylor (2011) found in 

one study that police and civilians alike showed bias in errors but not in reaction times, and in 

another study that neither police nor civilians showed bias in either errors or reaction times. 

Unfortunately, the relatively few studies comparing police to civilian samples makes it difficult 

to draw firm conclusions about any difference between these populations. 

Another broad issue with answering this question is that sample sizes vary widely in 

studies of police and are often smaller than samples in studies of civilians, potentially limiting 

the reliability of conclusions about this population. Particular attention should therefore be given 

to the most highly powered studies of police. Two of the most highly powered studies report 

effects specific to reaction time data (Correll, Park, Judd, Wittenbrink, et al., 2007, Study 1; 

Sadler et al., 2012). However, these studies also used relatively long response windows, which 

tend to be associated with reaction time effects rather than error effects (Harder, in press). 

Another large-sampled study (Ma et al., 2013) used a more moderate response window and 

found both error and reaction time effects, although this study recruited new police recruits 

rather than experienced officers. Thus, while there is a certain amount of evidence that highly 

powered studies of police do reveal shooter bias, it is unclear whether police are more likely to 

show this bias in errors or reaction times. Overall, studies on shooter bias in police samples are 

again too few, and their findings too mixed, to suggest any clear conclusions. 
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A final question is whether the findings reported with the basic task extend to similar 

tasks. A few studies have shown “shooter bias” effects for one similar task (Plant et al., 2011; 

Plant, Peruche, & Butz, 2005) that eliminates the neighborhood scenes employed in the FPST 

and, instead of portraying targets’ full bodies holding objects, displays Black and White faces 

with objects (guns or non-guns) next to them. These studies typically report reasonably large 

sample sizes and highly significant results, but shooter bias in some of these studies was limited 

to the first half of trials, suggesting that its magnitude is diminished with continued practice with 

the task. Nonetheless, one study employing the same task even found that these effects 

generalized to police (Plant & Peruche, 2005). However, this study recruited a rather small 

sample (N = 48), and while effects were highly significant for the first 80 trials of a 160-trial 

task, they again did not emerge in the second half of trials. Thus, this study may represent weak 

evidence for the robustness of the effect in police samples. The task may therefore most reliably 

elicit shooter bias among civilians. 

However, James and colleagues (James, Klinger, & Vila, 2014; James, Vila, & Daratha, 

2013) tested the shooter bias effect with a more naturalistic task and did not replicate the original 

shooter bias effect. These studies employed small samples and may have been relatively 

underpowered. Moreover, the data were originally collected to address questions unrelated to 

race, and uneven proportions of different races (Black, White, and Hispanic) appeared across 

their shooting simulation scenarios: further lowering power, as each participant would have 

responded to relatively smaller numbers of Black targets. Nevertheless, they report results for 

most of their experiments indicating a bias toward shooting White targets more than Black 

targets—that is, in the opposite direction of the typical effect. These results were highly 

significant in two of the three experiments in their first paper (James et al., 2013) and were at the 
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p < .05 level in the one study of their replication paper (James et al., 2014). One caveat regarding 

this work is that there is no indication that scenario or object were counterbalanced across race. 

In a more traditional shooter task, each target appears both holding a gun and holding a harmless 

object across multiple trials, to minimize the influence of individual targets on results. 

Particularly given the small number of trials (participants completed between 10 and 27 trials 

depending on the study), the fact that the relationships between race and scenario or between 

race and object were not controlled is a concern for interpreting these findings.  

In conclusion, basic shooter bias effect, with the traditional task and with civilian 

samples, seems to be the most clearly reliable finding in this literature. Evidence is suggestive 

that the effect may also extend to police samples. However, it is unclear whether shooter bias 

appears in tasks that differ substantially from the original FPST paradigm. 

Measuring threat perception. A possible limitation of the present work is that threat 

perception may not have been measured in a valid way. The present measure of threat, though 

high in face validity, has not been validated in any past work. Past studies assessing racial bias in 

threat perception have used a variety of tasks, and have often focused on perceived anger instead 

of measuring perceived threat directly. For example, one study asked participants to identify the 

new emotion in a facial expression changing slowly from happy to hostile, or from hostile to 

happy, and measured how long participants considered the expression to be “hostile” for Black 

and White faces (Hugenberg & Bodenhausen, 2003). Another study asked participants to identify 

the race of a racially ambiguous face displaying an angry or neutral expression (Hugenberg & 

Bodenhausen, 2004). Other studies have used psychophysiological measures to detect threat 

responses to neutral Black and White faces (Correll et al., 2006; Ito & Urland, 2003). The 

present task, however, simply asked participants to rate how “threatening” each face appeared 
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for many neutral Black and White faces. If perceived threat was not truly measured by the 

present threat-rating task, this provides an alternative explanation for why variables derived from 

these ratings did not predict shooting behavior.  

There are a few reasons to believe that the threat-rating task in the present studies may 

have been a valid measure. Threat ratings correlated with ratings of perceived anger in Study 

One. Moreover, although the task did not resemble any tasks used in past studies of racial bias, it 

was similar to the method used in Carré et al.’s (2010) study of the correlates of threat 

perception. Carré et al. had participants rate neutral faces in response to the question “How 

aggressive would this person be if provoked?” They did find that participants’ aggression ratings 

correlated with targets’ facial width-to-height ratios and a behavioral measure of targets’ actual 

aggression, which is suggestive that the task may be a valid measure. However, their task did 

differ from the present studies’ task in that participants made ratings about “aggression if 

provoked” rather than “threat,” which may be a less concrete judgment. Moreover, participants 

did not, on average, perceive the Black targets’ faces as more threatening than the White targets’ 

faces, inconsistent with past work demonstrating racial bias in perceived threat. 

To have a clear idea of whether the present task truly measured threat perception, an 

attempt should be made to validate the specific task used in these studies. A reasonable strategy 

for doing so would be to evaluate whether individual differences in threat bias on this task 

correlate with measures of racial bias in perceived threat (or anger) used in past studies, such as 

the task used in Hugenberg and Bodenhausen’s (2004) study on the racial categorization of angry 

faces. It might be particularly useful to test whether ratings on this task were predictive of 

neurological responses, such as the event-related potentials studied by Ito and Urland (2003)—

and whether racial bias in threat ratings was predictive of racial bias in those neurological 
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responses. If future research applies such methods to validate the present threat-rating task, the 

present results can be interpreted with greater confidence. 

Interpretation of drift rate effects. Another question that may affect the validity of the 

interpretations presented here is how, exactly, the drift rate parameter of the DDM should be 

understood. Traditionally, the drift rate is considered to indicate the perceived strength of the 

evidence for a given decision, based on the tenet that the parameter represents the rate of 

accumulating evidence for a given decision over time. However, a general limitation of “process 

models,” including the DDM, is that numerical parameters are interpreted as representing 

specific psychological processes that cannot be directly observed or measured, with the 

consequence that these interpretations are not directly testable. It is therefore worthwhile to 

consider what evidence exists to support this interpretation. 

Some work has been done to address this question. Ratcliff and McKoon (2008) present 

several experiments testing predictions about which DDM parameters would respond to certain 

manipulations. One experiment varied the strength of the visual evidence for each decision and 

found that, consistent with the conventional interpretation of drift rate, this manipulation caused 

a change in participants’ drift rates such that drift rates were steeper for stronger evidence, but 

did not affect any other parameters. Other manipulations that bore no implications for evidential 

strength largely did not affect drift rate, with the exception that increasing base rates (75%/25%) 

of a particular stimulus type led to slightly higher drift rates for that type (in addition to a more 

substantive impact on starting point). Analogous conclusions were drawn by Voss and 

colleagues (Voss, Rothermund, & Voss, 2004), who had participants judge which color was 

more common in a two-color array and varied the percentage of the more common color as a 

manipulation of evidentiary strength. Participants’ drift rates were steeper when the difference 
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between the two colors’ frequencies was greater, but no other parameters were affected by this 

manipulation. Other parameters tested in these studies did not affect drift rate, with the exception 

of a manipulation inhibiting the speed with which participants could physically respond, which 

affected drift rates for blue (but not orange) stimuli, among other parameters. Similarly, Ratcliff 

and Rouder (1998) demonstrated across three studies that drift rates were directly related to the 

probabilities that a stimulus belonged to one or the other category, consistent with a strength-of-

evidence interpretation (they do not report whether other parameters were affected by this 

manipulation). Overall, these studies provide reasonably consistent evidence that drift rate 

corresponds to some perception of the strength of the evidence for a decision. 

However, each of these studies asked participants to differentiate between two types of 

stimuli that varied in some perceptual quality, but not in psychological significance—for 

example, dots moving toward either the left or the right of the screen (Ratcliff & McKoon, 

2008). The shooter task, on the other hand, asks participants to differentiate between guns and 

non-guns, which may be experienced differently given that guns may be more salient or 

affectively significant than harmless objects. Pleskac and colleagues (2018) varied the 

discriminability of objects in a shooter task and found more mixed evidence for the classic 

interpretation of the drift rate. Specifically, this study presented some shooter task objects as 

blurry—i.e., directly manipulating the strength of the visual evidence for the shoot decision. As 

in other studies, results indicated that the evidential strength manipulation (in this case, 

blurriness) affected the drift rate parameter, but did not alter any of the other parameters. The 

finer details of this pattern, however, are inconsistently supportive of the strength-of-evidence 

interpretation: Blurriness was associated with shallower drift rates for gun trials but with steeper 

drift rates for non-gun trials. The traditional interpretation of the drift rate is consistent with the 
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former effect, i.e., lower drift rates (indicating less evidence for a shoot decision) for blurry guns. 

The latter effect, however, is harder to interpret according to this understanding of the drift rate, 

as this interpretation would mean that blurriness increased the evidence that an object was a non-

gun. 

The mixed effects observed by Pleskac et al. (2018) suggest that some nuances of the 

current understanding of the drift rate may be inaccurate. When the drift rate is applied to 

shooting decisions, the standard definition of the drift rate implies that participants are 

accumulating both any evidence that the object is a gun and any evidence that the object is some 

other object. These two sets of evidence are continually pitted against one another as information 

is gathered until the net evidence for one option reaches the threshold for that option. By this 

understanding, blurriness should not increase the evidence that the target is holding some non-

gun object. Instead, Pleskac et al.’s (2018) findings may be more consistent with a decision 

process in which participants are making yes/no decisions about whether the object is a gun: i.e., 

instead of accumulating positive evidence that the object is some specific non-gun item, they 

may accumulate evidence that the object is a gun and pit this against the absence of such 

evidence—e.g., if a particular gun-like shape is sought and not found, this may be treated as 

evidence for the don’t shoot decision. Such a process would be consistent with the pattern of 

results reported by Pleskac and colleagues (2018), as a participant seeking a clear gun-like shape 

might reject a blurry non-gun faster than a clear non-gun. 

This interpretation, however, is speculative, and it should be noted that a replication of 

Pleskac et al.’s (2018) finding would be an important first step in assessing this possibility. It is 

an interesting issue worthy of further study—however, at least for purposes of interpreting the 

present results, even this implication of Pleskac et al.’s (2018) findings still supports the broad 



 

60 

conclusion that drift rate represents some aspect of assessing the evidence for a decision. I would 

therefore conclude that the preponderance of evidence supports the interpretations of drift rate 

results presented here, but would caution readers that some nuances of these interpretations may 

still be unknown. 

Conclusion, Summary, and Future Directions 

Many researchers (e.g., Correll et al., 2015; Johnson et al., 2018; Pleskac et al., 2018) 

have made claims about the role of threat in shooting decisions; however, this was the first 

research to provide a direct test of that relationship. The literature reviewed above suggested that 

shooting bias was related to holding stereotypic associations between Blacks and weapons, 

violent crimes, or labels such as “aggressive” and “dangerous.” This produced the present 

hypothesis that perceptions of Black individuals as threatening would explain shooter bias. On 

the whole, it appears from the present results that racially biased threat perceptions do not qualify 

racial bias in shooting decisions; that is, the hypothesis was not supported. 

Thus, the question remains open as to what cognitive process underlies the relationship 

between these stereotypes and shooting behavior. As discussed above, it may be that the 

relationship is cognitive rather than affective, and is based not on perceived threat so much as on 

associations between Blacks and weapons. Future research might fruitfully explore this by 

pitting threat perception against weapons stereotypes as explanations for shooting bias.  

The possibility should also be acknowledged that the FPST is too artificial a task to 

capture the process by which racially biased shooting decisions might play out in the real world. 

An officer encountering a Black suspect in the course of police work may experience a state of 

threat that influences subsequent behavior, but this does not guarantee that the same officer 

encountering a Black target in the FPST will experience this state of threat. This question, of the 
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validity of the FPST itself, is an important one for researchers to consider, though finding a 

satisfactory answer will be difficult given that real-world shooting decision scenarios are rare 

and occur under widely varying circumstances. Moreover, future research should examine the 

timeline across which threat perception unfolds. Too-short response windows could have 

prevented the detection of a relationship between threat bias and shooter bias, leading FPST 

results to inaccurately represent shooting decisions in real-world scenarios that unfold over 

multiple seconds. A better understanding of the time it takes to process threat will shed light on 

this. 

Some of the secondary findings from the present studies suggest additional avenues for 

future research, as some of the relationships that appeared in the present studies could be better 

understood with further research on certain topics. First, it may be helpful to clarify the 

relationship between perceptions of threat and accuracy in decision-making processes such as 

those involved in the FPST. Better understanding this relationship will shed light on why 

participants who were prone to perceiving Black targets as more threatening in Study 2 were also 

prone to making more errors for Black targets. Second, further replication attempts with these 

and other stimulus sets will assist in determining the reliability and boundary conditions of 

effects that appeared in only one study. Third, systematically measuring qualities of the stimuli, 

such as blurriness or the size of targets relative to the frame, would allow for testing whether any 

of these qualities are associated with particular patterns of responding. This could also prove 

fruitful for understanding why different results appear with different stimulus sets. 

In conclusion, the present research suggests that—despite claims to the contrary in the 

literature—racially biased perceptions of threat are not a valid explanation for individual 

differences in shooting behavior on the FPST. The three studies also identified a number of 
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unanticipated secondary findings worthy of replication attempts and further study. Most 

importantly, however, this research has indicated that shooting decision researchers should 

reconsider the assumption that decisions on the FPST are a reflection of threat perception. It is 

time to explore other processes that may underlie shooting bias. 
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APPENDIX A:  TABLES 

Table 1 

Descriptive Statistics from Threat-Rating Data for Studies 1, 2, and 3 

 Threat Stimulus Threat Threat Bias Threat Sum 

Study 1     

Overall 36.19 (27.21) 36.21 (8.02) .05 (15.15) 72.63 (35.14) 

Black 36.13 (26.76) 36.15 (7.30)   

White 36.25 (27.63) 36.27 (8.76)   

Study 2     

Overall 38.30 (23.36) 38.08 (6.83) -.71 (12.25) 76.67 (31.14) 

Black 37.94 (22.58) 37.95 (5.94)   

White 38.65 (24.09) 38.20 (7.64)   

Study 3     

Overall 42.84 (24.29) 42.84 (8.28) -2.73 (13.16) 85.69 (28.69) 

Black 41.48 (23.20) 41.48 (7.25)   

White 44.21 (25.27) 44.21 (9.09)   

Note. Values indicate means, with standard deviations presented in parentheses. Threat: raw 

threat rating. Stimulus Threat: Mean threat rating assigned to a given stimulus. Threat Bias: 

Difference between a participant’s mean threat rating for Black targets and mean threat rating for 

White targets (positive numbers indicate bias toward perceiving Black targets as more 

threatening. Threat Sum: Sum of a participant’s mean threat rating for Black targets and mean 

threat rating for White targets. 

 

Table 2 

Multilevel Linear Regression Model Predicting Differences in Participants’ Threat Ratings 

between the Two Pictures of Each Target in Study 1 

 Fixed Effects 

  F df 1 df 2          p 

Intercept .81 1 476.73 .370 

Target ID 7.67 38 8320.13 <.001 

Sum of Threat Ratings .01 1 777.85 .927 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   374.90 5.815 64.47 <.001 

Participant  Intercept .28 .966 .28 .776 

Note. Nsample = 228. Ntarget = 39. Nobservations =   8574.  
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Table 3 

Multilevel Linear Regression Predicting Stimulus-Level Threat Rating in Study 1 

 Fixed Effects 

  b β SE t df p 

Intercept -.05 -.002 1.47 -.03 275.50 .974 

Race .03 .001 .96 .03 180.27 .975 

Object -.22 -.008 .91 -.25 76.31 .806 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   317.52 3.44 92.37 <.001 

Participant  Intercept 307.18 29.24 10.51 <.001 

  Covariance 11.51 8.86 1.30 .194 

  Race 52.75 5.35 9.86 <.001 

Stimulus  Intercept 63.71 10.55 6.04 <.001 

Note. Nsample = 228. Nstimuli = 79. Nobservations = 17,530. Race refers to race of the target. Threat 

was mean-centered. Race and Object were effects-coded (1 = Black, -1 = White; 1 = Gun, -1 = 

Non-gun). 

 

Table 4 

Linear Regression Predicting Participants’ Threat Ratings for White Targets from their Threat 

Ratings for Black Targets and Survey Version in Study 1 

  b β SE t df p 

Intercept -.04  .90 -.05 224 .963 

Black ratings .64 .687 .05 14.18 224 <.001 

Condition -.97 -.052 .90 -1.08 224 .281 

Black*Condition <.01 .001 .05 .03 224 .975 

Note. N = 228.  F(3,224) = 67.78. Condition: Survey version, effects coded (Short version = 1; 

Long version = -1). Mean White and Black ratings were mean-centered. 
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Table 5 

Multilevel Linear Regression Model Predicting Stimulus Threat Ratings in Study 1 

 Fixed Effects 

  b β SE t df p 

Intercept 36.41 .008 1.70 21.36 115.84 <.001 

Object -.17 -.006 .29 -.58 37.31 .564 

Race -.08 .003 1.34 -.06 49.89 .953 

Object*Race .46 .017 .29 1.62 37.31 .113 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   319.40 3.46 92.37 <.001 

Participant  Intercept 304.25 28.95 10.51 <.001 

  Covariance  11.74 8.83 1.33 .183 

  Race 52.74 5.35 9.85 <.001 

Target 
  

Intercept 62.01 14.40 4.31 <.001 

  Covariance  -2.03 2.33 -.87 .383 

  Object 2.47 .74 3.34 <.001 

Note. Nsample = 228. Nstimuli = 79. Nobservations = 17,530. Race and Object referred to the target’s 

race and object and were effects-coded (1 = Black, -1 = White; 1 = Gun, -1 = Non-gun). 
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Table 6 

Multilevel Linear Regression Predicting Stimulus Anger Ratings from Stimulus Threat Ratings, 

Target Race, and Target Object in Study 1 

 Fixed Effects 

  b β SE t df p 

Intercept 41.31 .010 1.65 25.08 25.10 <.001 

Threat .29 .294 .01 125.04 19.43 <.001 

Object -.68 -.026 .43 38.89 -1.58 .123 

Race -.86 -.032 1.48 39.07 -.58 .563 

Threat*Race .03 .028 .01 55.31 2.65 .011 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   341.198 3.795 89.91 <.001 

Participant  Intercept 120.575 12.502 9.65 <.001 

 
 Covariance 

(Intercept/Race) -.571 2.749 -.21 .836 

  Race 7.473 1.191 6.27 <.001 

 
 Covariance 

(Intercept/Threat) -.184 .142 -1.30 .195 

 
 Covariance 

(Race/Threat) .007 .039 .18 .857 

  Threat .016 .003 5.46 <.001 

Target 
  

Intercept 85.241 19.7798 4.31 <.001 

 
 Covariance 

(Intercept/Object) -1.049 4.253 -.25 .805 

  Object 6.718 1.710 3.93 <.001 

 
 Covariance 

(Intercept/Threat) .168 .102 1.65 .100 

 
 Covariance 

(Race/Threat) -.064 .031 -2.07 .039 

  Threat .003 .001 2.99 .003 

Note. Nsample = 228. Nstimuli = 79. Nobservations = 17,530. Race and Object were effects-coded (1 = 

Black, -1 = White; 1 = Gun, -1 = Non-gun). Threat ratings were mean-centered. 
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Table 7 

Descriptive Statistics from Shooter Task for Studies 2 and 3. 

 
Proportion Errors  Mean Reaction Time 

 Study 2 Study 3  Study 2 Study 3 

Overall .29 (.45) .26 (.44)  516.80 (71.51) 512.50 (70.16) 

Race      

Black .28 (.45) .27 (.44)  516.73 (71.85) 511.80 (69.88) 

White .30 (.46) .26 (.44)  516.87 (71.16) 513.19 (70.42) 

Object      

Gun .26 (.44) .25 (.43)  502.65 (68.89) 495.44 (67.56) 

Non-gun .32 (.47) .28 (.45)  534.73 (70.76) 532.96 (67.70) 

Race by Object      

Unarmed Black .32 (.47) .30 (.46)  533.58 (72.53) 532.79 (67.89) 

Unarmed White .31 (.46) .26 (.44)  535.90 (68.87) 533.12 (67.53) 

Armed Black .24 (.43) .24 (.43)  503.56 (68.49) 495.26 (66.93) 

Armed White .28 (.45) .26 (.44)  501.69 (69.29) 495.63 (68.20) 

Note. Standard deviations are presented in parentheses. Reaction time data represent data from 

correct trials only.  
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Table 8 

Multilevel Logistic Regression Predicting Odds of Error in Study 2, with Perceived Threat 

Treated as a Property of the Participant 

Fixed Effects 

  b eb F df p 

Intercept -1.005 .366    

Threat Bias .002 1.002 .337 211 .562 

Race -.044 .957 .480 78 .491 

Object -.131 .878 3.784 96 .055 

Threat Sum .002 1.002 2.036 211 .155 

Threat Sum x Race -.000 1.000 .875 35,386 .350 

Threat Sum x Object -.001 .999 3.039 215 .083 

Race x Threat Bias .002 1.002 4.020 35,386 .045 

Race x Object -.055 .947 .744 78 .391 

Object x Threat Bias -.005 .995 7.280 215 .008 

Race x Object x Threat Bias .000 1.000 .126 35,386 .722 

Threat Sum x Race x Object -.000 1.000 1.007 35,386 .316 

Random Effects 

Subject Parameter Variance SE Wald z p 

Participant Intercept .234 .026 8.921 <.001 

 Object .100 .013 7.674 <.001 

 Covariance -.047 .014 -3.442 .001 

Stimulus Intercept .318 .053 5.993 <.001 

Note. Nsample = 221. Nstimuli = 79. Nobservations = 35,398. ꭓ2(11) = 146.70, p < .001. Estimates 

labeled “-.000” were between -.001 and 0, and estimates labeled “.000” were between 0 and 

.001. Threat Bias: Participant’s mean White threat rating subtracted from participant’s mean 

Black threat rating. Threat Sum: Sum of a participant’s mean Black threat rating and mean White 

threat rating. Threat Bias and Threat Sum were mean-centered. Race and Object were effects-

coded (1 = Black, -1 = White; 1 = Gun, -1 = Non-gun). 
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Table 9 

Multilevel Linear Regression Model Predicting Reaction Time in Study 2, with Perceived 

Threat Treated as a Property of the Participant 

Fixed Effects 
      95% CI for β 

  b SE β t p LB UB 

Intercept 522.06 2.94 522.06 173.83 <.001 516.26 527.86 

Threat Bias  -.06 .15 -.70 213.22 .708 -4.40 2.99 

Race -.94 2.33 -.94 79.00 .689 -5.58 3.70 

Object -15.87 2.41 -15.87 90.14 <.001 -20.67 -11.08 

Threat Sum -.08 .06 -2.51 215.05 .176 -6.15 1.14 

Race x Threat Sum -.01 .01 -.26 247.81 .571 -1.17 .64 

Object x Threat Sum .03 .02 .91 206.77 .237 -.61 2.43 

Race x Threat Bias .03 .04 .36 204.64 .430 -.53 1.24 

Race x Object 1.07 2.33 1.07 78.28 .646 -3.56 5.70 

Object x Threat Bias -.19 .06 -2.35 197.47 .003 -3.87 -.82 

Race x Object x TB -.03 .03 -.36 20740.82 .393 -1.18 .46 

Race x Object x TS .03 .01 .96 20776.30 .026 .12 1.80 

Random Effects 

Subject Parameter Variance SE Wald z p 

 Residual 3764.54 37.16 101.319 <.001 

Stimulus Intercept 427.10 70.86 6.027 <.001 

Participant Intercept 709.50 72.56 9.778 <.001 

 Object 88.25 12.78 6.907 <.001 

 Cov. (Int/Obj) -53.06 22.06 -2.406 .016 

 Race 5.68 4.06 1.399 .162 

 Cov. (Int/Race) 39.46 13.43 2.939 .003 

 Cov. (Obj/Race) 1.45 5.29 .274 .784 

Note. Nsample = 221. Nstimuli = 79. Nobservations = 21,251.  ꭓ2(11) = 27.91, p = .003. Only correct 

responses were included. Threat Bias (TB): Participant’s mean White threat rating subtracted 

from participant’s mean Black threat rating. Threat Sum (TS): Sum of a participant’s mean Black 

threat rating and mean White threat rating. Threat Bias and Threat Sum were mean-centered. 

Race and Object were effects-coded (1 = Black, -1 = White; 1 = Gun, -1 = Non-gun). 
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Table 10 

Multilevel Logistic Regression Predicting Odds of Error in Study 2, with Perceived Threat 

Treated as a Property of the Stimulus 

Fixed Effects 

  b eb F df p 

Intercept -1.009 .365 2.164 75 .047 

Race -.058 .944 .870 73 .354 

Object -.141 .869 4.611 91 .034 

Threat .001 1.001 .022 73 .881 

Race x Object -.062 .940 1.005 73 .319 

Object x Threat .023 1.023 5.942 73 .017 

Race x Threat .015 1.015 2.394 73 .126 

Threat x Race x Object -.002 .998 .043 73 .836 

Random Effects 

Subject Parameter Variance SE Wald z p 

Participant Intercept .239 .027 8.958 <.001 

 Object .104 .013 7.777 <.001 

 Covariance -.049 .014 -3.558 <.001 

Stimulus Intercept .295 .051 5.778 <.001 

Note. Nsample = 221. Nstimuli = 79. Nobservations = 35,398. ꭓ2(7) = 1831.83, p < .001. Threat: Threat 

ratings for a given stimulus, summed across participants. Threat was mean-centered. Race and 

Object were effects-coded (1 = Black, -1 = White; 1= Gun, -1 = Non-gun). 
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Table 11 

Multilevel Linear Regression Model Predicting Reaction Time in Study 2, with Perceived 

Threat Treated as a Property of the Stimulus 

Fixed Effects 
      95% CI for β 

  b SE β t p LB UB 

Intercept 522.11 2.95 522.11 177.14 <.001 516.29 527.93 

Race -1.15 2.34 -1.15 -.49 .626 -5.81 3.52 

Object -15.87 2.43 -15.87 -6.53 <.001 -20.70 -11.04 

Threat .03 .36 .21 .09 .930 -4.58 5.01 

Race x Object 1.19 2.34 1.19 .51 .612 -3.47 5.85 

Object x Threat .77 .36 5.14 2.14 .036 .35 9.94 

Race x Threat .35 .36 2.31 .96 .341 -2.49 7.10 

Threat x Race x Object .07 .36 .47 .20 .845 -4.32 5.27 

Random Effects 

Subject Parameter Variance SE Wald z p 

 Residual 3770.70 37.44 100.703 <.001 

Stimulus Intercept 424.09 72.73 5.831 <.001 

Participant Intercept 708.28 72.19 9.812 <.001 

 Object 93.76 13.25 7.077 <.001 

 Cov. (Int/Obj) -54.98 22.43 -2.452 .014 

 Race 4.18 3.97 3.973 .293 

 Cov. (Int/Race) 38.05 13.25 2.873 .004 

 Cov. (Obj/Race) .58 5.32 .110 .912 

Note. Nsample = 221. Nstimuli = 79. Nobservations = 21,251. ꭓ2(7) = 51.33, p < .001. Only correct 

responses were included. Threat: Threat ratings for a given stimulus, summed across 

participants. Threat was mean-centered. Race and Object were effects-coded (1 = Black, -1 = 

White; 1= Gun, -1 = Non-gun). 
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Table 12 

Results from a Drift Diffusion Analysis Modeling Error and Reaction Time Data from Study 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Nobservations = 35,398. Threat Bias: Difference between a participant’s mean threat ratings 

for Black targets and for White targets. Threat Sum: Sum of these two means. Both Threat Bias 

and Threat Sum were scaled and mean-centered to have a mean of zero and a standard deviation 

equal to 1. Race and Object were effects-coded (1 = Black, -1 = White; 1= Gun, -1 = Non-gun).  

 

Values labeled “Parameter Units” can be interpreted as values of the relevant parameter. Values 

labeled “Transformed Units” were used to calculate delta values via a transformation involving 

the distribution function D() for a normal distribution with mean 0 and standard deviation 1. The 

purpose of this transformation was to constrain parameter estimates for delta between -5 and 10 

(a generous range of possible values), thus preventing the model from producing impossible 

values for delta which could lead to estimation problems. Approximate values of delta for a 

given combination of variable values can therefore be calculated by inserting the values into the 

expression “-5 + 10*D(formula),” where the formula uses the “transformed units” delta intercept 

and slopes listed in the present table.  

 

E.g., the expected value of delta for armed Blacks when Threat Bias and Threat Sum are both 

one standard deviation above their means (i.e., when all variables = 1) would be approximately: 

-5 + 10*D(.036 + .020 + .010 + .011 + .237 + .011 - .0003 + .003 - .003 - .006 -.005 + .001)  

= 1.235 
 

  95% HDI 

 Variable Modal Estimate LB UB 

Intercepts (Parameter Units)  

Alpha 1.067 1.048 1.088 

Beta  .512 .503 .522 

Tau .949 .947 .950 

Delta .142 .084 .196 

Delta (Transformed Units) .036 .021 .049 

Slopes for Delta (Transformed Units)  

Threat Bias  .020 .005 .034 

Threat Sum .010 -.004 .024 

Race .011 .005 .016 

Object .237 .232 .243 

Race x Object .011 .005 .017 

Race x Threat Bias -.0003 -.006 .005 

Race x Threat Sum .003 -.002 .008 

Object x Threat Bias -.003 -.009 .002 

Object x Threat Sum -.006 -.011 <.001 

Race x Object x Threat Bias -.005 -.011 <.001 

Race x Object x Threat Sum .001 -.004 .007 
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Table 13 

Multilevel Linear Regression Model Predicting Differences in Participants’ Threat Ratings 

between the Armed and Unarmed Pictures of Each Target in Study 3 

 Fixed Effects 

  F df 1 df 2          p 

Intercept 2.736 1 452.193 .099 

Target ID 31.954 19 9065.573 <.001 

Sum of Threat Ratings .147 1 1550.854 .702 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   758.33 11.26 67.334 <.001 

Participant  Intercept 20.01 3.63 5.512 <.001 

Note. Nsample = 233. Ntarget = 20. Nobservations = 9320.  

 

Table 14 

Multilevel Linear Regression Model Predicting Differences in Participants’ Threat Ratings 

between the Two Pictures of Each Target/Object Combination in Study 3 

 Fixed Effects 

  F df 1 df 2          p 

Intercept 1499.290 1 231.610 <.001 

Target ID 6.195 19 9079.145 <.001 

Object 15.382 1 9066.185 <.001 

Sum of Threat Ratings 14.485 1 6708.260 <.001 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   200.84 2.98 67.327 <.001 

Participant  Intercept 28.87 3.15 9.164 <.001 

Note. Nsample = 233. Npairs = 40. Nobservations = 9320. Object was effects-coded (1 = Gun, -1 = Non-

gun). 
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Table 15 

Multilevel Linear Regression Predicting Stimulus-Level Threat Rating in Study 3 

 Fixed Effects 

  b SE t df p 

Intercept <.001 1.31 <.001 230.905 1.000 

Race -1.367 1.01 -1.349 109.087 .180 

Object .193 .92 .209 77.000 .835 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   282.72 2.97 95.121 <.001 

Participant  Intercept 202.21 19.10 10.585 <.001 

  Covariance 10.45 6.23 1.677 .094 

  Race 39.75 4.02 9.891 <.001 

Stimulus  Intercept 67.19 11.02 6.095 <.001 

Note. Nsample = 233. Nstimuli = 80. Nobservations = 18,640. Race refers to race of the target. Threat 

was mean-centered. Race and Object were effects-coded (1 = Black, -1 = White; 1 = Gun, -1 = 

Non-gun). 
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Table 16 

Multilevel Linear Regression Model Predicting Stimulus Threat Ratings in Study 3 

 Fixed Effects 

  b SE t df p 

Intercept 42.84 1.53 28.036 90.845 <.001 

Object .19 .51 .376 38.000 .709 

Race -1.37 1.28 -1.068 47.225 .291 

Object*Race .21 .51 .411 38.000 .683 

 Random Effects 

Subject  Parameter Variance SE Wald z p 

Residual   282.72 2.97 95.121 <.001 

Participant  Intercept 202.21 19.10 10.585 <.001 

  Covariance  10.45 6.23 1.677 .094 

  Race 39.75 4.02 9.891 <.001 

Target 
  

Intercept 58.10 13.47 4.314 <.001 

  Covariance  6.32 4.17 1.516 .129 

  Object 9.94 2.42 4.108 <.001 

Note. Nsample = 233. Nstimuli = 80. Nobservations = 18,640. Race and Object referred to the target’s 

race and object and were effects-coded (1 = Black, -1 = White; 1 = Gun, -1 = Non-gun). 
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Table 17 

Multilevel Logistic Regression Predicting Odds of Error in Study 3, with Perceived Threat 

Treated as a Property of the Participant 

Fixed Effects 

  b eb F df p 

Intercept -1.125 .324 .821 133 .000 

Threat Bias -.001 .999 .043 221 .836 

Race .036 1.037 .447 76 .506 

Object -.083 .920 2.122 92 .149 

Threat Sum .000 1.000 .002 278 .967 

Threat Sum x Race -.000 1.000 .723 37,395 .395 

Threat Sum x Object -.001 .999 1.401 252 .238 

Race x Threat Bias -.001 .999 .289 74 .593 

Race x Object .080 .923 2.130 76 .149 

Object x Threat Bias .001 1.001 .209 174 .648 

Race x Object x Threat Bias -.000 1.000 .100 74 .753 

Threat Sum x Race x Object -.001 .999 1.565 37,395 .211 

Random Effects 

Subject Parameter Variance SE Wald z p 

Participant Intercept .258 .028 9.235 <.001 

 Object -.023 .012 -1.923 .055 

 Covariance .070 .010 7.086 <.001 

Stimulus Intercept .226 .039 5.833 <.001 

 Threat Bias -.000 .001 -.386 .700 

 Covariance .000 .000 .775 .439 

Note. Nsample = 233. Nstimuli = 80. Nobservations = 37,407. ꭓ2(11) = 156.50, p < .001. Estimates 

labeled “-.000” were between -.001 and 0, and estimates labeled “.000” were between 0 and 

.001. Threat Bias: Participant’s mean White threat rating subtracted from participant’s mean 

Black threat rating. Threat Sum: Sum of a participant’s mean Black threat rating and mean White 

threat rating.  
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Table 18 

Multilevel Linear Regression Model Predicting Reaction Time in Study 3, with Perceived 

Threat Treated as a Property of the Participant 

Fixed Effects 
      95% CI for β 

  b SE β t p LB UB 

Intercept 516.202 2.72 516.202 190.047 <.001 510.840 521.564 

Threat Bias  -.074 .13 -.973 -.570 .569 -4.334 2.388 

Race -.009 2.15 -.009 -.004 .997 -4.292 4.275 

Object -17.665 2.21 -17.665 -7.981 <.001 -22.066 -13.264 

Threat Sum -.061 .05 -1.729 -1.159 .247 -4.661 1.203 

Race x Threat Sum -.019 .01 -.537 -1.339 .181 -1.322 .249 

Object x Threat Sum -.027 .02 -.776 -1.197 .232 -2.053 .501 

Race x Threat Bias .013 .03 .166 .382 .704 -.701 1.033 

Race x Object -.968 2.15 -.968 -.450 .654 -5.251 3.316 

Object x Threat Bias -.014 .05 -.178 -.261 .794 -1.527 1.170 

Race x Object x TB -.033 .03 -.435 -.999 .321 -1.303 .432 

Race x Object x TS -.001 .01 -.028 -.069 .945 -.813 .758 

Random Effects 

Subject Parameter Variance SE Wald z p 

 Residual 3646.28 33.97 107.32 <.001 

Participant Intercept 633.93 63.41 10.00 <.001 

 Object 61.67 9.45 6.52 <.001 

 Covariance -2.34 17.59 -.13 .894 

Stimulus Intercept 357.34 60.25 5.93 <.001 

 Threat Bias .01 .01 .55 .582 

 Covariance .46 .66 .69 .489 

Note. Nsample = 233. Nstimuli = 80. Nobservations = 23,668. ꭓ2(11) = 25.84, p = .007. Only correct 

responses were included. Threat Bias (TB): Participant’s mean White threat rating subtracted 

from participant’s mean Black threat rating. Threat Sum (TS): Sum of a participant’s mean Black 

threat rating and mean White threat rating. 
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Table 19 

Multilevel Logistic Regression Predicting Odds of Error in Study 3, with Perceived Threat 

Treated as a Property of the Stimulus 

Fixed Effects 

  b eb F df p 

Intercept -1.132 .322   <.001 

Race .024 1.025 .192 72 .662 

Object -.061 .941 1.119 86 .293 

Threat -.006 .994 .827 72 .366 

Race x Object -.073 .930 1.737 72 .192 

Object x Threat .003 1.003 .228 72 .634 

Race x Threat -.002 .998 .112 72 .739 

Threat x Race x Object .015 1.015 4.320 72 .041 

Random Effects 

Subject Parameter Variance SE Wald z p 

Participant Intercept .255 .028 9.261 <.001 

 Object .069 .010 7.103 .052 

 Covariance -.023 .012 -1.953 -.046 

Stimulus Intercept .223 .039 5.672 <.001 

Note. Nsample = 233. Nstimuli = 80. Nobservations = 37,407. ꭓ2(7) =81.63, p < .001. Threat: Threat 

ratings for a given stimulus, summed across participants. 
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Table 20 

Multilevel Linear Regression Model Predicting Reaction Time in Study 3, with Perceived 

Threat Treated as a Property of the Stimulus 

Fixed Effects 
      95% CI for β 

  b SE β t p LB UB 

Intercept 516.46 2.75 516.46 188.13 <.001 511.03 521.88 

Race -.24 2.19 -.24 -.11 .913 -4.61 4.13 

Object -17.19 2.25 -17.19 -7.63 <.001 -21.68 -12.71 

Threat -.08 .28 -.69 -.30 .768 -5.32 3.95 

Race x Object -.70 2.19 -.70 -.32 .749 -5.08 3.67 

Object x Threat .23 .28 1.86 .80 .425 -2.76 6.49 

Race x Threat .27 .28 2.18 .94 .350 -2.44 6.81 

Threat x Race x Object .38 .28 3.10 1.34 .186 -1.53 7.72 

Random Effects 

Subject Parameter Variance SE Wald z p 

 Residual 3643.83 34.08 106.93 <.001 

Stimulus Intercept 358.31 62.06 5.77 <.001 

Participant Intercept 627.78 62.53 10.04 <.001 

 Object 60.75 9.29 6.54 <.001 

 Cov. (Int/Obj) -2.91 17.34 -.17 .867 

 Threat .06 .56 1.05 .296 

 Cov. (Int/Threat) .89 1.36 .66 .511 

 Cov. (Obj/Threat) .06 .51 .12 .905 

Note. Nsample = 233. Nstimuli = 80. Nobservations = 23,668. ꭓ2(7) = 59.82, p < .001. Only correct 

responses were included. Threat: Threat ratings for a given stimulus, summed across 

participants. 
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Table 21 

Results from a Drift Diffusion Analysis Modeling Error and Reaction Time Data from Study 3 

Note. Nobservations = 37,407. Threat Bias: Difference between a participant’s mean threat rating for 

Black targets and their mean threat rating for White targets. Threat Sum: Sum of these two mean 

ratings. Threat Bias and Threat Sum were scaled and mean-centered so as to have a mean of zero 

and a standard deviation equal to 1. Race and Object were effects-coded (1 = Black, -1 = White; 

1= Gun, -1 = Non-gun).  

Values labeled “Parameter Units” can be interpreted as values of the relevant parameter. Values 

labeled “Transformed Units” were used to calculate delta values via a transformation involving 

the distribution function D() for a normal distribution with mean 0 and standard deviation 1. The 

purpose of this transformation was to constrain parameter estimates for delta between -5 and 10 

(a generous range of possible values), thus preventing the model from producing impossible 

values for delta which could lead to estimation problems. Approximate values of delta for a 

given combination of variable values can therefore be calculated by inserting the values into the 

expression “-5 + 10*D(formula),” where the formula uses the “transformed units” delta intercept 

and slopes listed in the present table.  

E.g., the expected value of delta for armed Blacks when Threat Bias and Threat Sum are both 

one standard deviation above their means (i.e., when all variables = 1) would be approximately: 

-5 + 10*D(.023 - .009 + .008 + .017 + .272 - .004 + .002 + .004 + .007 + .004 + .002 + .002) 

= 1.285  

  95% HDI 

 Variable Modal Estimate LB UB 

Intercepts (Parameter Units)    

Alpha 1.072 1.054 1.092 

Beta  .518 .508 .527 

Tau .948 .947 .950 

Delta .090 .030 .145 

Delta (Transformed Units) .023 .008 .036 

Slopes for Delta (Transformed Units)    

Threat Bias  -.009 -.022 .007 

Threat Sum .008 -.006 .022 

Race .017 .011 .022 

Object .272 .266 .278 

Race x Object -.004 -.009 .002 

Race x Threat Bias .002 -.003 .007 

Race x Threat Sum .004 -.002 .009 

Object x Threat Bias .007 .001 .012 

Object x Threat Sum .004 -.001 .010 

Race x Object x Threat Bias .002 -.004 .006 

Race x Object x Threat Sum .002 -.004 .007 
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APPENDIX B:  FIGURES 

 

  

 

Figure 2. Example targets for the First-Person Shooting Task.  

Stimuli in the task will not be labeled “Experimental Stimulus”; this is included here to comply 

with IRB stipulations about non-experimental uses of these individuals’ pictures.  

Figure 1. Evidence accumulation in the shooting decision process according to the Drift 

Diffusion Model. 
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APPENDIX C:  POWER SIMULATIONS 

Table C1 

Equation for White Threat Ratings 

Coefficient Term Explanation 

0.034 (intercept) Intercept from pilot study 

0.700 Black threat ratings Slope from pilot study 

0 Version of survey No hypothesized effect 

0.015 Black threat ratings X version Version of survey causes a difference in 

standardized slopes of 0.03 

N~(0, 0.76) Error Residual standard error from pilot was 

0.7576 
Note. Equation predicting White threat ratings used in power simulations for Study 1. 
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Table C2 

Equation for Reaction Times for Participant-Level Threat 

Coefficient Term Explanation 

6.22 Intercept Intercept from Study 1 of my master’s thesis 

-0.0237 Object Slope from Study 1 of master’s thesis 

0.001 Race Slope found in both master’s thesis and 

Correll et al. (2002) 

0 Threat Bias (difference B-W) No hypothesized effect 

-0.001 Threat Sum (B+W) Hypothesized small effect: greater perceived 

threat may be associated with faster 

responding. 

-0.015 Object X Race race:object interaction term from Correll et 

al. (2002), where this term was significant 

-0.001 Threat Bias X Race Hypothesized small effect: may respond 

slightly faster to Blacks if perceive Blacks as 

more threatening 

0 Threat Bias X Object No hypothesized effect  

0 Threat Sum X Race No hypothesized effect 

-0.001 Threat Sum X Object Hypothesized small effect: may respond 

faster to guns if greater overall threat 

perception 

-0.008 Object X Threat Bias X Race Hypothesized that 1 standard deviation 

increase in threat bias leads to increase in 

shooter bias; magnitude equivalent to the 

standard error of the Correll et al. (2002) 

race:object interaction term 

0 Object X Threat Sum X Race No hypothesized effect 

N~(0, .099) Participant-level random 

intercepts 

0.099 = Standard deviation of random 

intercepts for participants in first master’s 

study (when using target-level slopes for 

object) 
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Table C2 (cont’d) 

N~(0, .016) Target-level random 

intercepts 

0.016 = Standard deviation of random 

intercepts for targets in first master’s study 

(when using target-level slopes for object) 

N~(0, .02) Target-level random slopes 

for threat bias 

0.02 = Standard deviation of random object 

slopes for targets in first master’s study 

(when using target-level slopes for object) 

N~(0, .02) Target-level random slopes 

for threat bias 

0.02 = Standard deviation of random object 

slopes for targets in first master’s study 

(when using target-level slopes for object) 

N~(0, .23) Error 0.23 = Standard deviation of residual random 

effects from first master’s study. 
Note. Equation generating log-transformed reaction times used in power simulations for Study 2 analysis treating 

threat bias as a participant-level variable. 
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Table C3 

Equation for Reaction Times for Stimulus-Level Threat 

Coefficient Term Explanation 

6.220 Intercept Intercept from Study 1 of my master’s 

thesis 

-0.0237 Object Slope from Study 1 of master’s thesis 

0.001 Race Slope found in both master’s thesis and 

Correll et al. (2002) 

-0.001 Target threat rating Hypothesized small effect: targets 

perceived as more threatening may 

receive faster responses 

-0.015 Object X Race race:object interaction term from Correll 

et al. (2002), where this term was 

significant 

-0.001 Target threat rating X Race Hypothesized small effect: Black people 

who are perceived as more threatening 

may receive faster responses 

-0.015 Object X Target threat rating Shoot responses to targets perceived as 

threatening may be faster than shoot 

responses to targets perceived as non-

threatening.  

(This value copies the object:race 

coefficient. All variables are standardized 

to have mean = 1 and SD = 1) 

-0.008 Object X Target threat rating X 

Race 

Shooter bias may be more relevant to 

targets perceived as more threatening.  

Coefficient here equivalent to the standard 

error of the Correll et al., (2002) 

race:object interaction term 

N~(0, .1) Participant-level random 

intercepts 

0.1 = Standard deviation of random 

intercepts for participants in first master’s 

study (when using participant-level slopes 

for object rather than target-level slopes) 
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Table C3 (cont’d) 

N~(0, .036) Participant-level random slopes 

for target threat ratings 

0.036 = Standard deviation of random 

object slopes for participants in first 

master’s study (when using participant-

level slopes for object rather than target-

level slopes) 

N~(0, .017) Target-level random intercepts 0.017 = Standard deviation of random 

intercepts for targets in first master’s 

study (when using participant-level slopes 

for object rather than target-level slopes) 

N~(0, .23) Error 0.23 = Standard deviation of residual 

random effects from first master’s study. 
Note. Equation generating reaction times used in power simulations for Study 2 analysis treating threat as a target-

level variable. 
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R script for simulations. 

#To maximize readability of this script, it is recommended that the reader 

view it in RStudio. However, it is included in this manuscript in order to 

provide a comprehensive justification of the proposed research.  

 

library(truncnorm) 

library(car) 

library(lme4) 

library(paramtest) 

library(pwr) 

library(ggplot2) 

library(knitr) 

library(lavaan) 

library(dplyr) 

 

 

Study 1. 

#Test of Whether Survey Version Interacts with  Black Threat Ratings as 

Predictor of White Threat Ratings#### 

 

sim_mod_s1 <- function(simNum, N){ #function to simulate data 

   

  #randomly generate independent variables 

   

  pnum = 1:N #participant indicator variable 

   

  #participants' mean threat ratings 

  #for Black targets: 

  bthreat = truncnorm::rtruncnorm(N, mean = 43.35, a = 0, b = 100, sd = 

13.87) #values from pilot 

 

  #version of the survey which participants completed 

  version <- rep(c(-1,1), each = (N/2)) 

   

  #initiate dataset 

  fakedata <- as.data.frame(cbind(pnum, bthreat, version)) 

  

  #scale Black threat ratings to have mean = 0 and SD = 1 

  fakedata$bthreat <- scale(fakedata$bthreat)  

   

  #create DV: mean White target ratings 

  fakedata$wthreat <- NA 

  fakedata$wthreat <- 0.034 + #intercept from pilot study 

    0.70*bthreat +  #main effect of Black threat ratings similar to pilot 

effect 

    0*version + #no hypothesized main effect of version 

    .015*bthreat*version + #version of survey (condition) causes a difference 

in standardized slopes of 0.03 

    rnorm(N, mean = 0, sd = 0.76) #residual standard error from pilot was 

0.7576.  

 

  #scale White threat ratings to have mean = 0 and SD = 1 

  fakedata$wthreat <- scale(fakedata$wthreat)  
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  returnP <- tryCatch({ 

    mod1 <- lm(wthreat ~ bthreat*version, data = fakedata) 

    out <- summary(mod1) 

    p <- out$coefficients[4,4] 

    sig <- (p<.05) 

    return(c(p,sig)) #returns p-value and True/False indicator of whether it 

was significant 

  }, 

  error = function(e){ #if model throws an error, we'll get "NA" for that run 

instead of a p-value 

    return(c(p = NA, sig = NA)) 

  }) 

   

  return(returnP) 

   

} 

   

power_sim_mod_s1 <- grid_search(sim_mod_s1,  

                              params=list(N=c(200)), #list of sample sizes of 

interest 

                              n.iter=500, #run the simulation n.iter times 

per sample size listed above 

                              output='data.frame', parallel='snow',ncpus=4) 

 

#output is a chart indicating proportion of significant (non-NA) results for 

each sample size (=power), and number of NA results 

results(power_sim_mod_s1) %>% 

  group_by(N.test) %>% 

  summarize( 

    power=mean(X2, na.rm=T), 

    na=sum(is.na(X2)) 

  ) 

 

 

Study 2. 

#Explanation of references to studies: 

  #"masters s1" is shorthand for the first study in my master's thesis. I 

sometimes draw values from this study's output to inform my simulation. 

  #”Correll 2002” refers to a study by Correll et al. (2002) which had a 

significant race:object effect for reaction time data when random effects 

were controlled for. I sometimes draw values from this study as well. 

 

Treating threat bias as a property of the participant. 

#Reaction Time: Threat bias as a participant variable#### 

shooter_mod_rt_P <- function(simNum, N){  #function to simulate data 

   

  #randomly generate independent variables and grouping variables 

  pnum = rep(1:N, each = 160) #participant indicator variable 

   

  #participants' mean threat ratings 

    #for Black targets: 
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  pbthreat = truncnorm::rtruncnorm(N, mean = 43.35, a = 0, b = 100, sd = 

13.87) #values from pilot 

  pbthreatlong = rep(pbthreat, each = 160) 

    #for White targets: 

  pwthreat = truncnorm::rtruncnorm(N, mean = 41.32, a = 0, b = 100, sd = 

11.15 ) #values from pilot 

  pwthreatlong = rep(pwthreat, each = 160) 

   

  #target indicator variable 

  targetgp = rep(1:40, each = 4) 

  target = sample(targetgp, size = 160, replace = F) 

   

  #create data set called fakedata: 

  fakedata <- as.data.frame(cbind(pnum,pwthreatlong, pbthreatlong)) 

  fakedata$target <- NA 

  fakedata$race <- NA 

  fakedata$obj <- NA 

  for(i in(unique(pnum))){ 

    fakedata$target[which(fakedata$pnum==i)] <- sample(targetgp, size = 160, 

replace = F) 

  } 

  #generating some race and object values for each trial: 

  for(i in(1:nrow(fakedata))){ 

    fakedata$race[i] <- ifelse(fakedata$target[i]<11, -1, 1) #1 is Black; -1 

is White. Targets numbered 1-10 are White; targets numbered 11-20 are Black 

    #80 trials with each object for each participant: 

    objsofar <- fakedata$obj[which(fakedata$target==fakedata$target[i] & 

fakedata$pnum == fakedata$pnum[i])] 

    if(length(which(!(is.na(objsofar))))<2) { 

      fakedata$obj[i] <- -1 #-1 is nongun 

    } 

    else {fakedata$obj[i] <- 1} #1 is gun 

  } 

   

  #randomly designating some trials as Errors so we can exclude those as we 

would in a real reaction time analysis, limiting the number of included 

trials 

  gunvec <- c(1,1,1,1,1,1,1,-1,-1,-1) #in masters s1, participants shot on 

about 70% of gun trials 

  nongunvec<- c(1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1) #in 

masters s1, participants shot on about 35% of nongun trials 

  fakedata$shoot <- NA 

  fakedata$shoot[which(fakedata$obj==1)] <- sample(gunvec) #picks ~70% of gun 

trials where the participant chose "shoot" 

  fakedata$shoot[which(fakedata$obj==-1)] <- sample(nongunvec) #picks ~35% of 

nongun trials where the participant chose "shoot" 

  fakedata$Error <- ifelse(fakedata$shoot==1,  

                           ifelse(fakedata$obj==1,0,1), #if they chose 

"shoot," correct (0) for guns and incorrect (1) for nonguns  

                           ifelse(fakedata$obj==-1,0,1) ) #if they chose 

"don't shoot," correct (0) for nonguns and incorrect (1) for guns 

  

  #participant-level threat variables  

  fakedata$pbias <- fakedata$pbthreatlong-fakedata$pwthreatlong #difference 

score for participant-level mean threat ratings: Black minus White 

  fakedata$psum <- fakedata$pbthreatlong+fakedata$pwthreatlong #sum of 

participant-level mean threat ratings: Black plus White 
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  #these variables need to be factors 

  fakedata$target <- as.factor(fakedata$target) 

  fakedata$pnum <- as.factor(fakedata$pnum) 

 

  #generating random values for the random slopes and intercepts 

    #participant intercept: 

  pnum_int <- rep(rnorm(N, 0, 0.099), each = 160) #standard deviation of  

random intercepts for participants in masters s1 

    #target intercept: 

  t_int <- rep(rnorm(N, 0, .016), each = 160) #standard deviation of  random 

intercepts for targets in masters s1 

    #target slopes for threat bias (difference score): 

  t_slope_diff <- rep(rnorm(N, 0, .02), each = 160) # standard deviation of 

random object slopes for targets in masters s1 

    #target slopes for sum of participants' mean Black and White threat 

ratings: 

  t_slope_sum <- rep(rnorm(N, 0, .02), each = 160) # standard deviation of 

random object slopes for targets in masters s1 

   

  #scale the participant-level threat variables (mean-center and set SD to 1) 

  fakedata$pbias <- scale(fakedata$pbias) 

  fakedata$psum <- scale(fakedata$psum) 

   

  #generate DV from the data created above, plus some randomness 

  fakedata$logRT <- (6.22 + pnum_int + t_int) + #intercept from master s1 

    (-0.0237)*fakedata$obj + #object slope from master s1 

    0.001*fakedata$race + #race slope from master s1 AND correll 2002 

    (t_slope_diff)*fakedata$pbias + #no hypothesized effect 

    (-0.001 + t_slope_sum)*fakedata$psum + #hypothesized small effect: 

greater perceived threat may be assocd with faster responding. 

    (-0.015)*fakedata$obj*fakedata$race + #race:object interaction term from 

Correll et al., 2002, where this term was significant. Negative coefficient 

means bias toward shooting armed people faster if Black, and don't-shooting 

unarmed people faster if White 

    -0.001*fakedata$pbias*fakedata$race + #hypothesized small effect: may 

respond slightly faster to Blacks if perceive Blacks as more threatening  

    0*fakedata$obj*fakedata$pbias + #no hypothesized effect 

    0*fakedata$psum*fakedata$race + #no hypothesized effect 

    -0.001*fakedata$obj*fakedata$psum + #hypothesized small effect: may 

respond faster to guns if greater overall threat perception 

    (-0.008)*fakedata$obj*fakedata$pbias*fakedata$race + #hypothesized: 1 

standard dev increase in threat bias leads to increase in shooter bias; 

magnitude equivalent to the standard error of the correll 2002 race:obj 

interaction term 

    0*fakedata$obj*fakedata$psum*fakedata$race + #no hypothesized effect 

    rnorm(N*160, 0,0.23) #standard dev of residual random effects from master 

s1 

   

  #create models with and without the three-way interaction (threat bias 

interacting with shooter bias)  

  #then compare to get significance of that interaction 

  #(must do model comparison because this function doesn't report p-values) 

  returnP <- tryCatch({ 

    mod1 <- lme4::lmer(logRT ~ race*obj*pbias + race*obj*psum + (1|pnum) + 

(1+pbias+psum|target), data = fakedata[which(fakedata$Error==0),]) 
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    mod2 <- lme4::lmer(logRT ~ race*obj*pbias + race*obj*psum - 

race:obj:pbias + (1|pnum) + (1 + pbias + psum|target), data = 

fakedata[which(fakedata$Error==0),]) 

    out <- anova(mod2,mod1) 

    p <- out[8][2,1] 

    sig <- (p<.05) 

    return(c(p,sig)) #returns p-value and True/False indicator of whether it 

was significant 

  }, 

  error = function(e){ #if models throw an error (e.g. if they don't 

converge), we'll get "NA" for that run instead of a p-value 

    return(c(p = NA, sig = NA)) 

  }) 

   

  return(returnP) 

} 

 

 

#Now that the function above has been created, we run the simulation many 

times for each sample size of interest 

starttime <- proc.time() 

power_sim_rt_p <- grid_search(shooter_mod_rt_P,  

                              params=list(N=c(200)), #list of sample sizes of 

interest 

                              n.iter=500, #run the simulation n.iter times 

per sample size listed above 

                              output='data.frame', parallel='snow',ncpus=4) 

 

#output is a chart indicating proportion of significant (non-NA) results for 

each sample size (=power), and number of NA results 

results(power_sim_rt_p) %>% 

  group_by(N.test) %>% 

  summarize( 

    power=mean(X2, na.rm=T), 

    na=sum(is.na(X2)) 

  ) 

endtime<-proc.time() 

endtime-starttime #indicates how long the simulations took 

 

Treating threat as a property of the target. 

#Reaction Time:  Threat as a target variable#### 

shooter_mod <- function(simNum, N){  #function to simulate data 

   

  #randomly generate independent variables and grouping variables 

  pnum = rep(1:N, each = 160) #participant indicator variable 

   

  #target indicator variable 

  targetgp = rep(1:40, each = 4) 

  target = sample(targetgp, size = 160, replace = F) 

   

  #create data set called fakedata: 

  fakedata<-as.data.frame(pnum) 

  fakedata$target <- NA 
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  fakedata$race <- NA 

  fakedata$obj <- NA 

  for(i in(unique(pnum))){ 

    fakedata$target[which(fakedata$pnum==i)] <- sample(targetgp, size = 160, 

replace = F) 

  } 

  #generating some race and object values for each trial: 

  for(i in(1:nrow(fakedata))){ 

    fakedata$race[i] <- ifelse(fakedata$target[i]<11, -1, 1) #1 is Black; -1 

is White. Targets numbered 1-10 are White; targets numbered 11-20 are Black 

    objsofar <- fakedata$obj[which(fakedata$target==fakedata$target[i] & 

fakedata$pnum == fakedata$pnum[i])] 

    if(length(which(!(is.na(objsofar))))<2) { 

      fakedata$obj[i] <- -1 #-1 = nongun 

    } 

    else {fakedata$obj[i] <- 1} #1 = gun 

  } 

   

  #randomly designating some trials as Errors so we can exclude those as we 

would in a real reaction time analysis, limiting the number of included 

trials 

  gunvec <- c(1,1,1,1,1,1,1,-1,-1,-1) #in masters s1, participants shot on 

about 70% of gun trials 

  nongunvec<- c(1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1) #in 

masters s1, participants shot on about 35% of nongun trials 

  fakedata$shoot <- NA 

  fakedata$shoot[which(fakedata$obj==1)] <- sample(gunvec) #picks ~70% of gun 

trials where the participant chose "shoot" 

  fakedata$shoot[which(fakedata$obj==-1)] <- sample(nongunvec) #picks ~35% of 

nongun trials where the participant chose "shoot" 

  fakedata$Error <- ifelse(fakedata$shoot==1,  

                           ifelse(fakedata$obj==1,0,1), #if they chose 

"shoot," correct (0) for guns and incorrect (1) for nonguns  

                           ifelse(fakedata$obj==-1,0,1) ) #if they chose 

"don't shoot," correct (0) for nonguns and incorrect (1) for guns 

   

  #target threat values--generate random "mean threat rating" for each target 

based on distribution observed in pilot study 

  threat <- c( 

    truncnorm::rtruncnorm(20, a = 0, b=100, mean = 41.31, sd = 28.12), #white 

    truncnorm::rtruncnorm(20, a = 0, b=100, mean=42.59, sd = 25.84) #black 

  ) 

  fakedata$threat <- NA 

  for(i in(1:40)){ 

    fakedata$threat[which(fakedata$target==i)] <- threat[i] 

  } 

   

  #these grouping variables need to be factors 

  fakedata$target <- as.factor(fakedata$target) 

  fakedata$pnum <- as.factor(fakedata$pnum) 

 

  #generating random values for the random slopes and intercepts 

    #participant intercepts: 

  pnum_int <- rep(rnorm(N, 0, 0.100), each = 160) #standard deviation of  

random intercepts for participants in masters s1 (when using participant 

slopes rather than object slopes) 

    #participant slopes for target threat ratings 
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  p_slope <- rep(rnorm(N, 0, .036), each = 160) #standard deviation of random 

object slopes for participants in masters s1 (when using participant slopes 

rather than object slopes) 

    #target intercepts: 

  t_int <- rnorm(40, 0, .017)  #standard deviation of  random intercepts for 

targets in masters s1 (when using participant slopes rather than object 

slopes) 

  fakedata$t_int <- NA 

  for(i in(1:40)){ 

    fakedata$t_int[which(fakedata$target==i)] <- t_int[i] 

  }   

 

    #scale the target-level threat variable (mean-center and set SD to 1)   

  fakedata$threat <- scale(fakedata$threat) 

 

  #generate DV from the data created above, plus some randomness 

  fakedata$logRT <- (6.22 + pnum_int + fakedata$t_int) + #intercept from 

master s1 

    (-0.0237)*fakedata$obj + #object slope from master s1 

    0.001*fakedata$race + #race slope from master s1 AND correll 2002 

    (-0.001 + p_slope)*fakedata$threat + #hypothesized small effect: targets 

perceived as more threatening may receive faster responses 

    (-0.015)*fakedata$obj*fakedata$race + #race:object interaction term from 

Correll et al., 2002, where this term was significant. Negative coefficient 

means bias toward shooting armed people faster if Black, and don't-shooting 

unarmed people faster if White 

    -0.001*fakedata$threat*fakedata$race + #hypothesized small effect: Black 

people who are perceived as more threatening may receive faster responses 

    -0.015*fakedata$obj*fakedata$threat + #(this value copies the obj:race 

coefficient 2 lines above) Shoot responses to targets perceived as 

threatening may be faster than shoot responses to targets perceived as non-

threatening 

    -0.008*fakedata$obj*fakedata$threat*fakedata$race + #shooter bias may be 

more relevant to targets perceived as more threatening. Magnitude equivalent 

to the standard error of the correll 2002 race:obj interaction term 

    rnorm(N*160, 0,0.23) #standard dev of residual random effects from master 

s1 

   

  #create models with and without the three-way interaction (threat bias 

interacting with shooter bias)  

  #then compare to get significance of that interaction 

  #(must do model comparison because this function doesn't report p-values) 

  returnP <- tryCatch({ 

    mod1 <- lme4::lmer(logRT ~ race*obj*threat + (1+threat|pnum) + 

(1|target), data = fakedata[which(fakedata$Error==0),]) 

    mod2 <- lme4::lmer(logRT ~ 

race+obj+threat+race:obj+race:threat+obj:threat + (1+threat|pnum) + 

(1|target), data = fakedata[which(fakedata$Error==0),]) 

    out <- anova(mod2,mod1) 

    p <- out[8][2,1] 

    sig <- (p<.05) 

    return(c(p,sig)) #returns p-value and True/False indicator of whether it 

was significant 

  }, 

  error = function(e){ #if models throw an error (e.g. if they don't 

converge), we'll get "NA" for that run instead of a p-value 

    return(c(p = NA, sig = NA)) 
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  }) 

   

  return(returnP) 

} 

 

#Now that the function above has been created, we run the simulation many 

times for each sample size of interest 

starttime <- proc.time() 

power_sim <- grid_search(shooter_mod,  

                         params=list(N=c(200)), #list of sample sizes of 

interest 

                         n.iter=500, #run the simulation n.iter times per 

sample size listed above 

                         output='data.frame', parallel='snow',ncpus=4) 

 

#output is a chart indicating proportion of significant (non-NA) results for 

each sample size (=power), and number of NA results 

results(power_sim) %>% 

  group_by(N.test) %>% 

  summarize( 

    power=mean(X2, na.rm=T), 

    na=sum(is.na(X2)) 

  ) 

endtime<-proc.time() 

endtime-starttime #indicates how long the simulations took 
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