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ABSTRACT

AN ACCURATE, EFFICIENT, AND ROBUST FINGERPRINT PRESENTATION
ATTACK DETECTOR

By

Tarang Chugh

The individuality and persistence of fingerprints is being leveraged for a plethora of day-to-

day automated person recognition applications, ranging from social benefits disbursements and

unlocking smartphones to law enforcement and border security. While the primary purpose of

a fingerprint recognition system is to ensure reliable and accurate user recognition, the security

of the system itself can be jeopardized by the use of fingerprint presentation attacks (PAs). A

fingerprint PA is defined1 as a presentsation, of a spoof (fake), altered, or cadaver finger, to the data

capture system (fingerprint reader) intended to interfere with the recording of the true fingerprint

sample/identity, and thereby preventing correct user recognition.

In this thesis, we present an automated, accurate, and reliable software-only fingerprint pre-

sentation attack detector (PAD), called Fingerprint Spoof Buster. Specifically, we propose a deep

convolutional neural network (CNN) based approach utilizing local patches centered and aligned

using fingerprint minutiae. The proposed PAD achieves state-of-the-art performance on publicly

available liveness detection databases (LivDet) and large-scale government controlled tests as part

of the IARPA ODIN program2. Additionally, we present a graphical user interface that highlights

local regions of the fingerprint image as bonafide3 or PA for visual examination. This offers sig-

nificant advantage over existing PAD solutions that rely on a single spoof score for the entire

fingerprint image.

Deep learning-based solutions are infamously resource intensive (both memory and processing)

and require special hardware such as graphical processing units (GPUs). With the goal of real-time

inference in low-resource environments, such as smartphones and embedded devices, we propose

1ISO standard IEC 30107-1:2016, https://www.iso.org/standard/53227.html
2ODIN, “IARPA-BAA-16-04 (Thor)”, https://www.iarpa.gov/index.php/research-programs/odin/odin-baa, 2016.
3In the literature, the term live fingerprint has been primarily used to refer a bonafide fingerprint juxtaposed to spoof

fingerprints. However, in the context of all forms of presentation attacks, bonafide fingerprint is a more appropriate
term as some PAs such as altered fingerprints also exhibit characteristics of liveness [107].

https://www.iso.org/standard/53227.html


a series of optimizations including simplifying the network architecture and quantizing model

weights (for byte computations instead of floating point arithmetic). These optimizations enabled

us to develop a light-weight version of the PAD, called Fingerprint Spoof Buster Lite, as an Android

application, which can execute on a commodity smartphone (Samsung Galaxy S8) with a minimal

drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) in under 100ms.

Typically, deep learning-based solutions are considered as “black-box” systems due to the lack

of interpretability of their decisions. One of the major limitations of the existing PAD solutions is

their poor generalization against PA materials not seen during training. While it is observed that

some materials are easier to detect (e.g. EcoFlex) compared to others (e.g. Silgum) when left out

from training, the underlying reasons are unknown. We present a framework to understand and

interpret the generalization (cross-material) performance of the proposed PAD by investigating the

material properties and visualizing the bonafide and PA samples in the multidimensional feature

space learned by deep networks. Furthermore, we present two different approaches to improve the

generalization performance: (i) a style transfer-based wrapper, called Universal Material Gener-

ator (UMG), and (ii) a dynamic approach utilizing temporal analysis of a sequence of fingerprint

image frames. The two proposed approaches are shown to significantly improve the generalization

performance evaluated on large databases of bonafide and PA samples.

Lastly, fingerprint readers based on conventional imaging technologies, such as optical, capaci-

tive, and thermal, only image the 2D surface fingerprint making them an easy target for presentation

attacks. In contrast, Optical Coherent Tomography (OCT) imaging technology provides rich depth

information, including the internal fingerprint, eccrine (sweat) glands, as well as PA instruments

(spoofs) placed over finger skin. As a final contribution, we present an automated PAD approach

utilizing cross-sectional OCT depth profile scans which is shown to achieve a TDR of 99.73% @

FDR of 0.2% on a database of 3, 413 bonafide and 357 PA OCT scans, fabricated using 8 different

PA materials. We also identify the crucial regions in the OCT scans necessary for PA detection.
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Chapter 1

Introduction

Over 125 years ago, the pioneering work done by Sir Francis Galton brought together and strength-

ened the evidence essential to the validation of fingerprints as means of personal identification:

permanence of the fingerprint characteristics, uniqueness of ridge details, variability and identi-

fiability of friction ridge patterns. In his 1892 book titled “Finger Prints” [52], he judiciously

commented on the potential of friction ridges:

“Let no one despise the ridges on account of their smallness, for they are in some

respects the most important of all anthropological data. We shall see that they form

patterns, considerable in size and of a curious variety of shape, whose boundaries can

be firmly outlined, and which are little worlds in themselves. They have the unique

merit of retaining all their peculiarities unchanged throughout life, and afford in con-

sequence an incomparably surer criterion of identity than any other bodily feature.”

Fingerprints have a long history of use as a means of reliably identifying individuals. The

earliest recorded use of fingerprints dates back to 1955− 1913 BC, when clay tablets with finger-

prints were used to seal business contracts in ancient Babylon. In China, fingerprints were used

to sign legal documents by persons without writing skills in 600 − 700 AD [63, 104]. Such his-

torical records indicate an inquisitiveness and perhaps purposeful focus on fingerprints. However,
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Mobile Payment International Border CrossingPublic Distribution System Access Control

Figure 1.1 Fingerprint recognition based authentication systems used in day-to-day applications.
(a) India’s Aadhar Program [159], (b) Apple Pay [3], (c) International Border Crossing, US Visit
(OBIM) [34], and (d) Access Control [149]. Image Source: Google Images.

the scientific study of fingerprints as a tool of human identification emerged only in the late 19th

century [47, 51, 68].

With the advances in science and technology over the last few decades, fingerprint recognition

systems have become ubiquitous with its footprint in a plethora of different applications such as

mobile payments [3], access control [149], international border crossing [34] and national ID [159]

(see Figure 1.1). Although the fingerprint research community has made significant advances over

the last few decades, there remains certain challenging avenues in fingerprint recognition where

further advances are required.

In this chapter, we first describe the morphology and development process of the friction ridge

skin. We then present the fundamental tenets of fingerprints, highlighting two of them which val-

idate its use for personal identification: uniqueness and permanence. We then discuss the ma-

jor milestones in the history of fingerprint recognition. Next, we describe the architecture of

modern-day automated fingerprint identification systems (AFIS) and discuss the vulnerabilities

and research avenues in fingerprint recognition. Finally, we conclude the chapter by presenting the

contributions of this dissertation.
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Papillary Junction

Stratum Corneum

Figure 1.2 Illustration of the morphological structure of the friction ridge skin. Image reproduced
from [120].

1.1 Morphology and Development of Friction Ridges

The friction ridge skin is a layered tissue with the outermost layer known as epidermis and the

external-facing sublayer of epidermis, where the surface fingerprint exists, is known as stratum

corneum [96]. The layer below epidermis is known as dermis, and the junction between epidermis

and dermis layers is known as papillary junction. There are helically shaped ducts in the epidermis

layer connecting the eccrine (sweat) glands in the dermis to the sweat pores on the surface. See

Figure 1.2.

Biological evidence suggests that the development of friction ridge begins in late embryological

and early fetal development periods and are physiologically present at birth [163]. At 7− 8 weeks

of estimated gestational age (EGA), swollen mesenchyme tissue1 under the epidermis layer on the

palmar surface of hands and soles of the feet, called Volar Pads, are formed. See Figure 1.3 (a).

Subsequently, basal cells2 of the epidermis layer begin to divide rapidly forming primary ridge

1Mesenchyme tissue is a part of the embryo which develops into connective tissue, cartilage, bone, etc. [163]
2Basal cells are a type of cell within the skin that produces new skin cells as old ones die off [7].
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units which will later become the centers of sweat gland development (Figure 1.3 (b) - (d)) [7].

During 10−11 weeks of EGA, these ridge units grow and merge into one another along the lines of

relief, perpendicular to the compression forces, while forming definitive ridge characteristics, such

as ridge bifurcations and endings (Figure 1.3 (e) - (g)). The precise location and orientation of any

particular ridge characteristic within the developing ridge field is governed by a random series of

infinitely interdependent forces applied across that particular area of skin at that critical moment.

These characteristics are believed to be unique because slight differences in the physiological en-

vironment, mechanical stress, or variation in the timing of development could significantly affect

their location and orientation [163].

During weeks 14− 15 of gestation, the primary friction ridges experience proliferation in two

directions: the upward push of new cell growth and the downward penetration of the sweat glands.

Typically, the whole volar surface is ridged by 14 weeks of EGA (Figure 1.3 (h)). Between weeks

15 − 17 of EGA, sweat pores begin forming and secondary ridges appear between the primary

ridges and the underside of the epidermis (Figure 1.3 (i) - (j)). During weeks 17 − 24 secondary

ridges become completely mature. The secondary ridges (or surface friction ridge pattern) scanned

by traditional (optical and capacitive) fingerprint readers are merely an instance or a projection of

the primary ridges, a master print existing on the intersection of epidermis and dermis layers (i.e.,

papillary junction).

During the development of primary friction ridge, the central nervous and cardiovascular sys-

tems also undergo a crucial period of development. Disposition of capillary-nerve pairs beneath the

dermis layer produces an identical vascular fingerprint with the same individual architecture [141].

These observations suggest the permanence of fingerprints; minor cuts and bruises on the fingers

do not change fingerprint patterns because new skin cells are generated beneath the epidermis and

facilitate the reformulation of fingerprint patterns on the epidermis.
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(b) (c) (d)

(e) (f) (g)(a)

(h) (i) (j)

Figure 1.3 Illustration of the fingerprint formation process. (a) Volar pads begin forming during
weeks 6− 7 of gestation, (b)-(c) localized ridge units appear, and (d)-(g) ridge units merge to form
ridges with unique characteristics during weeks 10 − 11, (h) whole volar surface is ridged by 14
weeks, (i) sweat glands and pores begin forming during weeks 14 − 15, and (j) secondary ridges
begin to form in weeks 15−17 and are fully matured by 24 weeks of gestation. Images reproduced
from [77].
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Year: 1881
Age: 7 years

Year: 1890
Age: 17 years

Year: 1913
Age: 40 years

Figure 1.4 Fingerprints of William J. Herschel’s son (A. E. H. Herschel) at ages (a) 7, (b) 17, and
(c) 40 years. Images reproduced from [69].

1.1.1 Fundamental Tenets of Fingerprint Recognition

In principle, any physiological, behavioral, or anatomical characteristic of an individual can be

used as a biometric trait for personal identification. However, there are two fundamental tenets of

fingerprints that underlie their wide use for recognizing individuals:

(i) Uniqueness: Due to the random forces in play during the formation of friction ridge details,

no two fingers, even for the same individual, are identical. Individuals sharing the same DNA,

such as monozygatic twins, also have unique fingerprints [84]. Several studies have attempted to

assess the individuality of fingerprints [127], however, these studies are either based on relatively

simple statistical models of fingerprint characteristics or rely on empirical evaluation involving a

small number of subjects.

(ii) Permanence: Friction ridge patterns are believed to be persistent during the lifetime of

an individual. William Herschel, a German-born British astronomer, was the first to demonstrate

the permanence of fingerprints in his 1916 book titled The Origin of Finger-Printing [69]. He

collected longitudinal inked impressions of his son’s finger at the ages of 7, 17, and 40 years old

and concluded that fingerprints remained constant over time (see Figure 1.4). In 2015, Yoon and

Jain [171] conducted the largest formal study till date involving longitudinal fingerprint records
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34 years 40 years 42 years 43 years 44 years 45 years

Figure 1.5 Fingerprints of a subject at ages 34, 40, 42, 43, 44, and 45 years old from the longitudinal
database used in [171].

of 15, 597 subjects to assess the permanence of fingerprints (see Figure 1.5). They utilized multi-

level statistical models and a state-of-the-art AFIS and concluded that the fingerprint recognition

accuracy of the AFIS did not degrade with time (over 12 years for which data is available). This

observation asserted that fingerprint recognition accuracy does not change over the lifetime of an

individual, despite minor changes in the fingerprint ridge structure due to cuts and bruises.

In addition to uniqueness and permanence, the success of fingerprints as a biometric trait is also

attributed to how well it satisfies several key principles: (i) universality, (ii) performance, (iii) user

acceptance, (iv) collectability, (v) throughput, (vi) template size, (vii) ease of system integration,

and (viii) resistance to spoof and template attacks [86].

1.2 Fingerprint Recognition Milestones

1.2.1 Early Developments

The book Achaeology in the Holy Land by Kenyon reports the discovery of thumbprints found in

Neolithic bricks from the ancient city of Jericho, State of Palestine, ca. 7000 BC [89]. Similar

ancient artifacts with carvings of friction ridge patterns have been found in many places around

the world. However, the earliest recorded authentication application of fingerprints dates back to

1955−1913 BC, when clay tablets with fingerprints were used to seal business contracts in ancient

Babylon. In 600− 700 AD China, fingerprints were used to sign contracts and legal documents in

the Tang period [63].
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1.2.2 Seminal Scientific Studies

While many remnants of fingerprint have been found in history, the scientific study of fingerprints

as a tool of human identification emerged only in the 19th century. In 1858, Sir William Herschel

as the British chief administrative officer in Bengal, India, mandated use of handprints for civil

contracts for payroll distribution to laborers. In 1869 Britain, the Habitual Criminals Act was

passed to develop a means to classify the records of habitual criminals (or repeat offenders), such

as body measurement, marks, or photograph, to readily re-identify them with certainty [129]. In

1880, Dr. Henry Faulds published a seminal article in Nature suggesting the use of fingerprints for

criminal investigations [47]. In 1882, Alphonse Bertillon, a clerk in the Paris Police Identification

Bureau, devised a system of recording body measurements (known as Bertillonage), which was

later adopted throughout France. The first identification using his system was made in February

1883. His anthropometry cards were supplemented with fingerprints on the back side, which led

to more identifications compared to any other body measurements [63].

It was the studies by Sir Francis Galton, cousin of Charles Darwin, that brought together and

strengthened the evidence essential to the validation of fingerprints as means of personal identifi-

cation. In 1892, in his seminal book Finger Prints [52], he pointed out ridge characteristics which

purportedly make each fingerprint unique, such as ridge endings and bifurcations and made the

statement that fingerprints remain unchanged throughout the lifetime. In honor of his contribu-

tions, the ridge characteristics (now widely known as minutiae points) are also called “Galton”

details.

In 1900, Sir Edward Henry introduced a scientific fingerprint classification system [67], which

was later popularly known as Henry System of Classification. In 1901, it was officially introduced

at New Scotland Yard for criminal identification [63]. In 1963, Mitchell Trauring proposed the

first algorithmic approach for comparing friction ridge patterns based on minutiae details [157].

The first Automated Fingerprint Identification Systems (AFIS) became a reality in 1974, avoiding

tedious and time consuming manual approach to comparing fingerprints3.

3https://www.secureidnews.com/news-item/a-history-of-afis/
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Figure 1.6 Timeline illustrating some of the major milestones in the history of fingerprint recogni-
tion.
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1.2.3 Landmarks in Law Enforcement Applications

In 1880, Dr. Henry Faulds suggested the use of fingerprints not only for identification, but also for

criminal investigations [47]. Thirteen years later in 1893, fingerprints were used for the first time

to solve a murder case of two children in Argentina [63]. In 1897 in Bengal, India, another murder

case was solved using two brown smudges of fingerprints found on an almanac. Sir Edward Henry,

Herschel’s successor in India, found the prints to match with an ex-convict Kangali Charan, whose

thumbprint was already in the records due to a prior theft conviction [63].

In 1901, use of fingerprints was officially introduced at New Scotland Yard by Sir Edward

Henry for criminal identification, replacing the relatively inaccurate Bertillon system. The first

fingerprint-based large-scale systematic method of identification was adopted in United States of

America in 1902. Dr. Henry Forest installed the new system to inhibit applicants from cheating the

New York Civil Service Commission [63]. In the following years, fingerprint-based authentication

was adopted in the New York State Prison (1903) and the U.S. Army (1906). Subsequently, a

young woman named Mary Holland, studying the Henry system, went throughout the United States

teaching the classification system to various law enforcement agencies.

A major development happened in the year 1924, when the United States Congress mandated

the collection of fingerprints of criminals. Consequently, a new identification division was insti-

tuted at the Federal Bureau of Investigation (FBI). In 1933, a unit specializing in technical analysis

of latent fingerprints, i.e., noisy finger marks unintentionally left at a crime scene, was also estab-

lished at the FBI [120]. With the increasing load to maintain a large repository and perform manual

classification of fingerprints, there was a need to automate the process.

A report compiled by the RAND Corporation [62] highlighted the opportunities for much more

effective use of physical evidence such as fingerprints, to improve crime solving performance.

Recognizing the potential of emerging technology together with electronics revolution happening

in 1970s, agencies including the FBI, the UK Home Office, and the Japanese and French police

departments undertook research initiatives that led to development of Automated Fingerprint Iden-

tification Systems (AFIS) [92]. Law enforcement agencies at the state and local level also began
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installing such systems known as State AFIS (SAFIS). Specifically, in 1984, a state AFIS supplied

to the authorities in San Fransisco, with a completely new “crime scene to courtroom” philosophy,

proved its worth in the real world4.

In 1999, the FBI launched an Integrated AFIS (IAFIS) which allowed electronic record submis-

sion from state and local authorities to the national database and supported capabilities to perform

direct large-scale searches in the national repository [92]. It also supported automated tenprint

and latent fingerprint searches, electronic exchanges of fingerprints and responses, and text-based

searches based on descriptive information. In 2011, IAFIS was upgraded to the Next Generation

Identification (NGI) system, with the largest collection of criminal records and enhanced finger-

print recognition capabilities improving fingerprint matching accuracy from 92% to 99.6% with

faster response times5. It is maintained by the FBI Criminal Justice Information Service (CJIS) and

contains fingerprints of more than 145.7 million criminal and civil individuals as of June 20196.

1.2.4 Notable Use in Civil and Commercial Applications

In addition to long standing fingerprint applications in law enforcement and forensics, a number

of civilian applications are utilizing the individualization property of fingerprints. This has been

possible due to the availability of low-cost fingerprint acquisition devices, efficient and robust

fingerprint recognition algorithms, and increase in processing power and memory capacity at low

prices. For example, a solid state fingerprint reader with fingerprint matching algorithm in a mobile

phone costs under US $2 per device.

• National ID: In 2009, the Unique Identification Authority of India (UIDAI) launched a na-

tional ID system known as Aadhaar7 for the residents of India. Any individual, irrespective

of age and gender, can submit their demographic and biometric information (ten fingerprints,

two iris, and face photograph) to enroll in the system and obtain a 12-digit unique ID. It is

4https://www.gemalto.com/govt/biometrics/afis-history
5https://www.fbi.gov/services/cjis/fingerprints-and-other-biometrics/ngi
6https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet
7https://uidai.gov.in/what-is-aadhaar.html
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e-KYC

Provident FundIncome Tax

Government Subsidy

(a) (b)

Figure 1.7 India’s Aadhaar is the largest biometrics based identification system in the world, with
more than 1.25 billion enrollments [159] (March, 2020). (a) A sample Aadhaar ID card containing
a 12-digit unique number which is linked to an individual’s demographic and biometric informa-
tion. (b) Some of the applications which utilize Aadhaar ID includes electronic-Know Your Client
(e-KYC) service, distribution of government subsidies, processing income tax and employee prov-
ident funds.

designed as a strategic policy tool for social and financial inclusion, corruption-free delivery

of public sector reforms, managing fiscal budgets, increasing convenience and promoting

hassle-free people-centric governance (see Figure 1.7). Biometric information allows the

authorities to perform de-duplication at enrollment and online authentication in the field to

prevent any misuse. It is by far the largest biometrics based identification system in the

world, with more than 1.25 billion enrollments [159] (March, 2020).

• Infant Fingerprinting: As of December 2019, there are over 677 million children world-

wide in the age group of 0 − 4 years old8 and over 370, 000 are born every day9. Given

that a majority of these childbirths occur in developing countries, where the infant10 mortal-

8UN Data Project: https://bit.ly/2MF9FNs
9https://www.indexmundi.com/world/birth rate.html

10The term “infant” is typically applied to young children under one year of age.
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(a) (b) (c)

Figure 1.8 Fingerprint-based authentication is used in many commercial applications, including
executing financial transactions, unlocking devices, access control, etc. (a) A user enrolling their
fingerprint in Samsung Galaxy S10 with an in-display ultrasound-based fingerprint sensor, (b)
user authentication in ATM transactions, and (c) biometric-enabled payment cards with embedded
fingerprint sensor and on-card storage for fingerprint template.

ity rate can be as high as 180 deaths per 1000 live births11, fingerprint based identification

can provide a form of identity for health care applications such as tracking vaccination and

improving nourishment [78]. A low-cost fingerprint reader specifically designed to capture

infant fingerprints in the field is shown to achieve an identification accuracy of TAR = 90%

@ FAR = 0.1% [45].

• Commercial Applications: Due to the rising concerns about data security and financial

fraud, coupled with the advent of compact and inexpensive sensors, many commercial orga-

nizations have initiated their own deployment of fingerprint-based consumer authentication,

especially for access control and secure financial transactions. Many consumer devices, such

as laptops and smartphones, utilize solid-state fingerprint readers for device unlocking and

making online purchases12. In 2018, the global penetration of smartphones with fingerprint

sensors reached 67% compared to only 19% in 201413. Mastercard14 and Visa15 are conduct-

ing pilot programs of utilizing biometric payment cards with embedded fingerprint sensors,

11https://www.infoplease.com/world/health-and-social-statistics/infant-mortality-rates-countries
12https://support.apple.com/en-us/HT207054
13https://www.statista.com/statistics/522058/global-smartphone-fingerprint-penetration/
14https://www.mastercard.us/en-us/merchants/safety-security/biometric-card.html
15https://usa.visa.com/visa-everywhere/security/biometric-payment-card.html
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developed by Fingerprint Cards16 and Gemalto17, to replace PIN/signature based user au-

thentication and provide user convenience. The enrolled fingerprint template is stored on the

card in a secure environment for additional security. See Figure 1.8.

1.3 Design of Automated Fingerprint Recognition Systems

In the early days of fingerprint use, primarily in law enforcement agencies, impressions were

collected using off-line methods, i.e., printer ink applied to subject’s finger and then obtaining

the impressions on ten-print cards (see Figure 1.10) which were then manually compared to a

query fingerprint. These cards contain both plain and rolled impressions of all ten fingers18. While

ten-print cards are still in use by some law enforcement agencies, most have moved to digital

fingerprint acquisition via slap scanners.19,20.

With the advancements in both fingerprint sensing technology and automated matching algo-

rithms, ten-print fingerprint recognition has become extremely accurate and efficient. A typical

recognition system contains the following two stages: enrollment and recognition (see Figure 1.9).

1. Enrollment: During this stage, an individual’s fingerprint acquired using a fingerprint reader

is processed to extract salient features and generate a fingerprint template. The template is

then tagged with a unique user identifier for retrieval and is stored with associated metadata

in a database, known as reference, background, gallery, or enrollment database.

2. Recognition: Depending on the application context, the recognition of an individual can be

done to either validate the claimed identity (verification) or to establish the identity of an

unknown individual (identification). In both cases, a fingerprint is acquired and processed to

generate a template, known as query or probe template.
16https://www.fingerprints.com/solutions/payments/
17https://www.gemalto.com/financial/cards/emv-biometric-card
18A plain (or slap) fingerprint refers to an impression made by pressing a finger flat on a surface, and a rolled

fingerprint is an impression made by rolling a finger from nail-to-nail in order to capture all of friction ridge details
including sides.

19https://www.edo.cjis.gov/artifacts/standard-fingerprint-form-fd-258-1.pdf
20https://www.fbi.gov/services/cjis/fingerprints-and-other-biometrics/recording-legible-fingerprints
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Figure 1.9 The two major stages of a fingerprint recognition system (a) enrollment and (b) recogni-
tion (verification or identification) are presented. These stages use the following modules: capture,
feature extraction, template creation, matching, and template database. Image adapted from [104].
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• Verification: In the verification scenario, the query template is accompanied by a user

identifier (claim of identity) which is used to retrieve the enrolled template from the

reference database. The system either accepts or rejects the submitted claim of identity

by performing a one-to-one comparison between the query template and the retrieved

reference template. Popular examples of this scenario include fingerprint-based ac-

cess control and large-scale civil ID system (e.g. Aadhaar), where the user provides a

unique ID (e.g. employee RFID card or Aadhaar 12-digit unique ID) and a fingerprint

impression for authentication.

• Identification: In the identification scenario, no claim of identity is made. The goal

of the system is to establish an identity of a subject by searching the entire reference

database for a match. Therefore, a biometric system operating in the identification

mode performs one-to-many comparisons to establish if the user is already enrolled in

the database, and if so, returns the user identifier that matched. The system may also

determine that the subject is not enrolled in the reference database. A common use-case

of this scenario is a criminal investigation, where a fingerprint left at the crime scene is

used to identify if the perpetrator is already enrolled in the database.

The enrollment, verification, and identification processes involved in fingerprint recognition

make use of the following modules: (i) Fingerprint Acquisition, (ii) Feature Extraction, (iii) Tem-

plate Database, and (iv) Matching.

1.3.1 Fingerprint Acquisition

The process of capturing the friction ridge details as a fingerprint impression for enrollment or

recognition is known as fingerprint acquisition. It can be carried out in either a controlled or an

uncontrolled manner. There are two controlled acquisition methods: (i) off-line methods such as

applying ink on the fingertip and creating an inked impression by pressing (i.e., plain/slap fin-

gerprints) or rolling the fingertip (i.e., rolled fingerprints) on paper, and (ii) live-scan methods
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Figure 1.10 Tenprint card used by the FBI to collect fingerprint impressions of all ten fingers. The
top two rows present the rolled impressions of all ten fingers, and the bottom row presents the
plain/slap impressions in 4-4-2 pattern. Image reproduced from [83].

which utilize electronic fingerprint sensors21 to acquire digital friction ridge impressions (see Fig-

ure 1.11). In both of these methods, the capture conditions are favorable with a cooperative subject,

resulting in noise-free impressions on a clear background. Such impressions are known as exem-

plar fingerprints.

On the other hand, in the case of uncontrolled (or non-attended) fingerprint acquisition, there

is no guarantee of the quality of acquired image. This is especially true for latent fingerprints

at crime scenes which are routinely used by forensics agencies to find the culprit. Extremely

important in forensic applications, latent fingerprints (also known as finger marks) are the friction

ridge impressions unintentionally left on a surface touched by the fingertips. The oil secreted from

the sebaceous glands in the skin gets deposited on a surface, such as glass, currency note, etc.,

touched by the finger. Depending on the characteristics of the surface, latents are enhanced and

21A fingerprint reader is a “black box” device, sold “as-is” by a commercial vendor, which typically contains
an imaging sensor that acquires digital fingerprint images. However, in literature, the term fingerprint sensor is
interchangeably used to imply a fingerprint reader.
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(a) (b)

Figure 1.11 Two types of cooperative fingerprint acquisition methods: (i) off-line method using
ink-on-paper technique, and (ii) live-scan method using an electronic fingerprint reader to capture
a digital friction ridge impression.

“lifted” (acquired) using physical (e.g. dust with powder), chemical (e.g. ninhydrin treatment),

and/or photographical (e.g. ultraviolet imaging) methods. Figure 1.12 presents the different types

of fingerprint impressions, namely plain, slap, rolled, and latent fingerprints.

The most widely used form of fingerprint acquisition is using live-scan devices to acquire a

digital fingerprint. The main parameters characterizing a digital fingerprint image are: resolution,

area, number of pixels, geometric accuracy, contrast, and geometric distortion [104]. To ensure

good quality of the acquired fingerprint impression and interoperability between various AFIS, the

US Criminal Justice Information Services (CJIS) released a set of specifications22 that regulate

the quality and the format of both fingerprint images and FBI-compliant off-line/live-scan scan-

ners, called Appendix F. Another less-stringent standard designed to support one-to-one fingerprint

verification for single-finger capture devices in civilian applications, specifically for the Personal

Identity Verification program, is PIV-071006.

1.3.1.1 Sensing Technologies

The ubiquitous use of fingerprint recognition in many consumer and government applications has

led to the development of compact, high-resolution, and low-cost fingerprint sensing technologies.

There are a number of live-scan sensing mechanisms (e.g., optical, solid-state, ultrasound, opti-

22https://www.fbibiospecs.cjis.gov/Certifications/FAQ

18

https://www.fbibiospecs.cjis.gov/Certifications/FAQ


(a) (b)

(c) (d)

Figure 1.12 Different types of fingerprint impressions: (a) Plain/Flat, (b) Rolled, (c) Slap, and (d)
Latent fingerprint.

cal coherence tomography, etc.) that can be used to detect the ridges and valleys present on the

fingertip:

Optical: Fingerprint readers utilizing optical imaging are one of the most widely used readers

in the commercial sector. Most optical readers operate on either the principle of Frustrated Total

Internal Reflection (FTIR) or in a direct-view setup, where the camera/sensor directly captures the

image of the finger. In the case of FTIR, the reader is typically an assembly of a glass prism,

visible or infrared spectrum LEDs, and a CMOS or CCD sensor. The acquisition of a fingerprint

involves the following steps: (i) the finger is placed on a glass prism, (ii) the finger surface is

illuminated with LEDs, (iii) the incident light on the ridges is absorbed and that on the valleys un-

dergo frustrated total internal reflection between the faces of glass prism to reach the sensor where

the fingerprint is imaged [104]. In the case of direct-view imaging, the finger is placed on a glass

platen, illuminated with LEDs, and the image is captured using a sensor placed below the platen.
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(a) (b) (c)

Figure 1.13 Setup of optical fingerprint readers utilizing (a) a glass prism for Frustrated Total
Internal Reflection (FTIR) of the incident light imaged using CCD or CMOS sensor, (b) direct-
view multi-spectral setup employing polarized illumination of different wavelengths, and (c) an
in-display optical sensing system for smartphones [65, 104, 138].

The image is processed to enhance the ridge-valley contrast. Some optical readers capture multi-

ple images of the same finger, using different wavelengths (visible and near infrared) and different

polarized conditions, which are fused together to produce a multi-spectral composite image. These

images are robust to sub-optimal skin and ambient conditions [138]. However, one of the major

limitations of optical readers is their bigger form factor, unlike solid-state capacitive readers, which

has inhibited their use in small electronic devices such as smartphones. However, recent advance-

ments have led to development of an in-display optical reader that is placed under the smartphone

touchscreen [65] (see Figure 1.13). Figure 1.14 presents the different optical fingerprints sensors

utilized in this thesis.

Solid-state: Solid-state sensing technology utilizes an array of mini-sensors to measure one

of the following properties: (i) capacitance difference between ridges and valleys, (ii) pressure

variations as finger interacts with sensor, or (iii) current generated on a pyro-electric sensor bed

because of temperature differentials. Solid-state readers, because of their low cost and small size,

are easily embeddable in hand-held devices such as laptops, tablets, and smartphones [104].

Ultrasound: The ultrasound sensing technology is based on sending acoustic signals towards

the fingertip and sensing the echo response. The sensed echo response is processed to generate a

depth profile of the fingertip, thereby providing the friction ridge structure. Ultrasound technology
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CrossMatch Guardian 200
Slap Sensor

Sensing: FTIR
Resolution: 500 DPI

Lumidigm V302
Single Finger Sensor
Sensing: Direct View
Resolution: 500 DPI

SilkID SLK20R
Single Finger Sensor

Sensing: FTIR
Resolution: 1,000 DPI

Figure 1.14 Optical fingerprint sensors utilized in our experiments, namely CrossMatch Guardian
200, SilkID SLK20R, and Lumidigm V302.

is robust to oil, dirt, moisture, and other factors which may degrade the fingerprint image quality.

Until recently, fingerprint readers utilizing ultrasound were expensive and large which inhibited

their use in commercial applications. However, Qualcomm Inc. introduced an in-display ultra-

sound fingerprint sensor [37] which is now widely deployed in the Samsung smartphone series

(Galaxy S10 onwards).

Optical coherence tomography (OCT): OCT [72] technology allows non-invasive, high-

resolution, cross-sectional imaging of internal tissue microstructures by measuring their optical

reflections. An optical analogue to Ultrasound [164], it utilizes low-coherence interferometry of

near-infrared light (900nm − 1325nm). In an OCT scanner, a beam of light is split into a sample

arm, i.e., a unit containing the object of interest, and a reference arm, i.e., a unit containing a mir-

ror to reflect back light without any alteration. If the reflected light from the two arms are within

coherence distance, it gives rise to an interference pattern representing the depth profile at a single

point, also known as A-scan. Laterally combining a series of A-scans along a line can provide a

cross-sectional scan, also known as B-scan. Stacking multiple B-scans together can provide a 3D
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volumetric representation of the scanned object, or the object of our interest, i.e., internal structure

of a finger (see Figure 1.15).

(b) 2-D Finger OCT Depth Profile

A
B
C
D

(a) ThorLabs Telesto series OCT Scanner (c) 3-D Finger OCT Volume

A
B
C
D

Stratum Corneum
(Surface Fingerprint)

Epidermis

Papillary Junction
(Internal Fingerprint)

Dermis

A
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C

D

Eccrine Sweat 
Glands

Figure 1.15 (a) Optical coherence tomography (OCT) scanner can be used to image the internal
finger structure as (b) 2D and (c) 3D depth profile. Images reproduced from (a) [154], (b) IARPA
ODIN Program (GCT-II) [123] and (c) [33].

1.3.2 Feature Extraction

The most evident characteristic of a fingerprint is its assemblage of interleaved ridges and valleys,

where, typically, ridges are dark and valleys are bright. The fingerprint features (see Figure 1.16)

are usually classified in a hierarchical order:

• Level-1: These global features, include fingerprint pattern type (arch, loop, whorl), singular

points (cores, deltas), ridge orientation, and ridge spacing. These features are commonly

used for indexing and fingerprint alignment, however, they cannot identify a fingerprint

uniquely [104]. These features can be extracted by employing image processing techniques,

detection of ridges with maximum curvature, or deep learning approaches [118, 134].

• Level-2: These local features refer to the salient points where ridges exhibit some discon-

tinuity such as ridge endings and bifurcations, also known as minutiae points. In a rolled

fingerprint, there can be over 100 minutiae, however, the spatial and angular coincidence of

a small number of minutiae (12−15) can be used to successfully match two fingerprints with

high confidence [85]. The minimum recommended fingerprint image resolution to success-

fully extract minutiae points is 500 ppi. These features can be extracted using Gabor filters,

dictionary-based methods, or CNN-based approaches [15, 22, 118].
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• Level-3: These features include fingerprint characteristics at a very fine level of granularity

such as sweat pores, incipient ridges, scars, creases, dots between the ridges, etc. These

features provide additional uniqueness to a fingerprint, but require a minimum scanning

resolution of 1000 ppi for successful extraction [79]. Primarily used by latent fingerprint

examiners for manual comparison, these features are not commonly used in AFIS due to

lack of robustness and high time requirements. However, recent developments in low-cost

high resolution readers have led to the development of algorithms that utilize level-3 features

for matching [17].

Prior to any fingerprint feature extraction, all fingerprint images typically undergo a prepro-

cessing step (foreground extraction, enhancement, and/or alignment). In the case of latent finger-

prints, where image quality is poor, preprocessing is a crucial step. State-of-the-art fingerprint

commercial-off-the-shelf matchers (COTS) may utilize CNN-based methods for feature extraction

similar to DeepPrint [44], and additional textural features at different scales [15].

1.3.3 Template Database

A fingerprint template is a set of features extracted from the fingerprint image of a user [96], such

as variable-length minutiae-based features [] and fixed-length representation [44], . It is typically

much smaller in size compared to the actual fingerprint image, providing faster processing time.

International Standards Organization (ISO) defines standard template formats such as minutiae-

based template standards ISO/IEC 19794-2 (2005) [22] for high interoperability, however, some

commercial vendors may utilize a proprietary template format for high performance. The templates

are associated with a unique user ID for retrieval and are stored in a database, referred to as template

database.

23



(a) Level-1 Features

(b) Level-2 Features

(c) Level-3 Features

Pores Incipient Ridges Creases

Left Loop Right Loop Whorl Arch Tented Arch Singular Points

Figure 1.16 Fingerprint features are classified into three levels: (i) Level-1 features based on global
fingerprint ridge pattern, (ii) Level-2 features based on local ridge characteristics, such as ridge
endings, bifurcations, etc, and (iii) Level-3 features including finer details like sweat pores, incipi-
ent ridges and creases. Images reproduced from [104]

.

1.3.4 Fingerprint Matching

A fingerprint matching algorithm compares two given fingerprint templates and, typically, returns

either a similarity score, say a value between 0 and 1 where a value close to 0 implies no simi-

larity and close to 1 means very high similarity. Any match score above a specified threshold (t)

is deemed as a successful match. A strict threshold (close to 1) provides high security (low false

accepts) but results in poor user experience (due to high false rejects). Due to the large variability

between different impressions of the same finger (intra-class variability), fingerprint matching is a

difficult problem. Some of the main factors resulting in intra-class variations between fingerprints
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include rotation, non-linear distortion, noise, displacement, partial overlap, pressure and skin con-

ditions [104]. There are essentially three broad categories of fingerprint matching approaches:

• Correlation-based matching: This technique involves superimposing two fingerprint images

and computing the correlation between the corresponding pixels for different alignments, ro-

tations, and displacements. Due to the resource-intensive matching process, these techniques

are not widely used.

• Minutiae-based matching: It is the most popular and widely deployed technique for finger-

print matching by both automated algorithms as well as fingerprint examiners. It involves

finding the alignment between the reference minutiae set and the input query minutiae set

that result in the maximum number of paired minutiae.

• Non-minutiae feature based matching: In the case of low-quality images, such as latent fin-

gerprints, minutiae extraction is extremely difficult. This family of matching approaches

may utilize either ridge pattern characteristics (e.g. local ridge frequency and orientation)

or texture information using hand-crafted or deep learning methods [15, 17]. A fusion of

minutiae-based and texture-based features can successfully improve the matching perfor-

mance of latent fingerprints, including state-of-the-art deep-learning based methods with

fixed length representation [44].

1.4 Challenges in Fingerprint Recognition

Fingerprint recognition is one of the most widely used methods for person recognition achieving a

high level of matching accuracy and throughput in large-scale operational applications [161]. De-

spite tremendous improvements in the state-of-the-art [83,104], fingerprint recognition encounters

many remaining challenges and vulnerabilities.
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1.4.1 Automatic Latent Fingerprint Recognition

Inadvertently left at crime scenes, latent fingerprints are one of the most crucial forms of evidence

to identify or exclude a suspect in criminal investigations. In the current practice of matching

latents, fingerprint examiners are expected to follow the Analysis, Comparison, Evaluation, and

Verification (ACE-V) methodology [6]. In the “analysis” phase, latent prints are manually exam-

ined to perform a triage by assigning one of the following three values to a query latent: Value for

Individualization (VID), Value for Exclusion Only (VEO) or No Value (NV). In the case of latents

deemed to be “of value” (VID and VEO), the features in the latent are marked to search for their

mates using an AFIS. In the “comparison” phase, the latent is manually compared side-by-side

with the candidate mates retrieved from the exemplar database. In the “evaluation” phase, one of

the following decisions is made about the latent in question: individualization, exclusion, or incon-

clusive23. Finally, in the “verification” phase, the decision made by the first examiner is confirmed

by having a second examiner analyze the results independently.

Although the ACE-V methodology is widely accepted in the forensic community, the human

subjectivity in the ACE-V process has raised concerns about its reliability and reproducibility. A

notable case is the false accusation of Brandon Mayfield in the 2004 Madrid train bombing incident

based on the incorrect match between Mayfield’s exemplar fingerprint and the latent fingerprint

lifted from the bomb site [124]. Along with the efforts to understand the human factors in latent

fingerprint examination [25], standards and guidelines for latent examiners’ practices have also

been set up. As an example, Science Working Group on Friction Ridge Analysis, Study and

Technology (SWGFAST) published standards to alleviate subjectivity involved in feature markups

and decision makings among examiners [143]. Furthermore, with the growing caseload faced by

23Individualization refers to the decision on a pair consisting of a latent and an exemplar print indicating that the
pair originates from the same finger based on a sufficient agreement between the two ridge patterns. Exclusion, on
the other hand, is based on a sufficient disagreement between the two ridge patterns concluding that the pair did not
originate from the same finger. An inconclusive decision is made when an examiner cannot make a decision of either
individualization or exclusion due to insufficient ridge details or small corresponding area between latent and exemplar
print [143].
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forensic agencies, there is a need to develop methods for automatic and objective value assignment

and matching for latents [17, 25].

1.4.2 Interoperability of Fingerprint Readers

Consider a fingerprint matching system that acquires fingerprint images using an optical reader

during enrollment and a solid-state capacitive sensor during verification. Due to the variations in

imaging technology, image resolution, sensor area, position of the sensor with respect to the user,

and so on, the raw fingerprint images obtained from the two sensors will be different. This directly

impacts the feature set extracted from the acquired images, and consequently, the match scores

generated by the system.

Especially in the deployment of large-scale biometric projects, such as Aadhaar, one can not

operate under the assumption that the fingerprint images to be compared will be obtained using

the same sensor as it will restrict our ability to match fingerprint images originating from different

sensors. Although progress has been made in the development of common data exchange formats

and image quality standards24 to facilitate the exchange of feature sets between vendors, very little

effort has been invested in the actual development of algorithms and techniques to match these

feature sets [137].

1.4.3 Vulnerabilities of an AFIS

While fingerprint recognition systems are deployed to protect an application from unauthorized

access, the security of the system itself can be jeopardized implying no guarantee that the system

will be completely secure. The fingerprint recognition system, like any other security system, is

susceptible to a number of security threats as shown in Fig. 1.17. These system vulnerabilities may

have adverse consequences such as intrusion by unauthorized users, denial-of-service to legitimate

users, erosion of user privacy, or even identity theft. It must be emphasized that biometric system

24The ISO/IEC 19794-4 (2005) describes the manner in which a fingerprint image must be acquired and stored to
maximize interoperability.
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Figure 1.17 Different components in a fingerprint recognition system are vulnerable to various
types of attacks shown in red. This thesis contributes towards addressing some of the challenges
pertaining to presentation attack detection.

security and user privacy concerns are important public perception issues, which can potentially

derail the success of a biometric system deployment unless they are addressed comprehensively.

While some of the typical security threats, such as replay and man-in-the-middle attacks, can

be addressed by employing counter-measures taken from secure password-based authentication

paradigms, the two main challenges specific to the domain of fingerprint recognition systems are

(i) presentation attack detection (or liveness detection), and (ii) template protection.

1.4.3.1 Presentation Attack Detection

The ISO standard IEC 30107-1:2016(E) [74] defines presentation attacks as the “presentation to

the biometric data capture subsystem with the goal of interfering with the operation of the bio-

metric system”. These attacks can be realized through a number of methods including, but not

limited to, use of (i) gummy fingers [108], i.e., fabricated finger-like objects with accurate imita-

tion of another individual’s fingerprint ridge-valley structures, (ii) 2D or 3D printed fingerprint

targets [4, 5, 14], (iii) altered fingerprints [170], i.e., intentionally tampered or damaged real fin-

gerprint patterns to avoid identification, and (iv) cadaver fingers [105] (see Figure 1.18). Among

these, fingerprint spoof attacks (i.e., gummy fingers and printed targets) are the most common form
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(a)	Gummy	Fingers

(c)	Altered	Fingers (d)	Cadaver	Finger

2-D	Printed	Spoof

Transplanted	skin	from	sole

3-D	Printed	SpoofSpoof	made	with	Silicone Spoof	made	with	Gelatin

(b)	Printed	Fingerprint	Targets

Altered	Fingerprint

Figure 1.18 Fingerprint presentation attacks can be realized using (a) gummy fingers [57,108], (b)
2D or 3D printed fingerprint targets [4,5,14], (c) altered fingers [170], or (d) cadaver fingers [105].

of presentation attacks, with a multitude of fabrication processes ranging from basic molding and

casting to utilizing sophisticated 2D and 3D printing techniques [4, 5, 14, 42, 108]. Figure 1.19

illustrates a simple molding and casting procedure to create a presentation attack instrument using

gelatin.

Unlike gummy fingers, altered or obfuscated fingerprints are real fingers whose ridge structure

has been severely altered by abrading, burning, cutting, or performing surgery on fingertips (see

Figure 1.20). The purpose of fingerprint obfuscation is to conceal one’s identity in order to evade

AFIS, especially for criminal re-identification and international border crossing [117, 170]. To be

useful in practice, presentation attack detection schemes must recognize such attempts in real-time

and with high accuracy without causing too much inconvenience to legitimate users.
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Figure 1.19 Example procedure to create an artificial fingerprint directly from a live finger. Plastic
is used to create the mold and gelatin is used as the casting material. Image reproduced from [105].

1.4.3.2 Template Protection

The other major challenge is the system security and user privacy issues arising from the leakage

of fingerprint template information due to attacks on the template database. It has been shown that

a fingerprint image can be reconstructed given the minutiae template [13]. Additionally, with the

growing number of hacking attempts on large-scale central repositories containing biometric tem-

plates such as law enforcement and national ID databases25, there is an urgent need to prevent leak-

age of personal user information. With more than 1.24 billion enrollments in India’s national ID

program, Aadhaar, the central repository houses more than 12.4 billion fingerprint templates [159].

Keeping the biometric templates in a centralized repository makes it prone to Distributed Denial-

of-Service (DDOS) attacks affecting the availability during valid authentic attempts. In January

2018, it was reported that for Rs. 500 (under $10) one can illegally obtain access to any person

enrolled in the Aadhaar database within 10 minutes26.
25https://www.thenewsminute.com/article/aadhaar-data-stolen-i-t-grids-proves-uidais-main-database-can-be-

breached-experts-100215
26https://www.tribuneindia.com/news/nation/rs-500-10-minutes-and-you-have-access-to-billion-aadhaar-

details/523361.html
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(a) (b)

Figure 1.20 Example images of altered fingerprints. (a) Transplanted friction ridge skin from sole,
and (b) fingers that have been bitten. Image source: [170]

In an operational scenario, typically, fingerprint templates are secured by using standard en-

cryption techniques, e.g., AES, where the security of the template lies in knowledge of the decryp-

tion key. During authentication, templates are decrypted leaving them vulnerable to attacks. To

overcome this, the templates are either stored and matched on device in a secure environment27,

or matched in the encrypted domain by employing homomorphic encryption [9, 44]. In literature,

many template protection approaches have been proposed that aim to ensure non-invertibility, revo-

cability, and non-linkability of templates while affording high recognition performance [82, 104].

However, there is still a need to bridge the gap between the theoretical proofs and the practical

application of these approaches [44, 115].

1.5 Dissertation Contributions

The main contributions of this dissertation are as follows:

1. An accurate and robust deep learning-based fingerprint presentation attack detector (PAD),

called Fingerprint Spoof Buster, utilizing local patches centered and aligned along finger-

print minutiae. Experimental results on publicly available datasets (LivDet 2011 - 2017), in-

cluding intra-sensor, cross-material, cross-sensor, and cross-dataset scenarios, show that the

proposed approach outperforms the state-of-the-art results published on these three datasets.

27https://support.apple.com/en-sg/HT204587
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For example, in LivDet 2015 (2017), our algorithm achieves 99.03% (95.91%) average ac-

curacy over all sensors compared to 95.51% (95.25%) achieved by the LivDet 2015 (2017)

winner [113, 172].

2. A graphical user interface which highlights the local regions of the fingerprint image as

bonafide (live) or PA (spoof) for visual inspection. This is more informative than a single

spoof score output by the traditional approaches for the entire fingerprint image.

3. An algorithm for detection and localization of fingerprint alterations (fingerprint obfusca-

tion). The proposed approach achieves a state-of-the-art True Detection Rate (TDR) of

99.24% @ False Detection Rate (FDR) of 2% on an operational altered fingerprint database

from a law enforcement agency.

4. A light-weight version of the PAD, called Fingerprint Spoof Buster Lite, as an Android appli-

cation that can run on a commodity smartphone (Samsung Galaxy S8) without a significant

drop in performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) in under 100ms.

5. An interpretation of cross-material (generalization) performance of the proposed PAD by

(i) evaluating Fingerprint Spoof Buster against unknown PAs by adopting a leave-one-out

protocol; one material is left out from training set and is then utilized for testing, (ii) utiliz-

ing 3D t-SNE visualizations of the bonafide and PA samples in the deep feature space, (iii)

investigating the PA material characteristics (two optical and two physical properties) and

correlating them with their cross-material performances, to identify a representative set of

PA materials that should be included during training to ensure a high generalization perfor-

mance.

6. A style transfer-based wrapper, called Universal Material Generator (UMG), to improve

the generalization performance of any PA detector against novel PA fabrication materials

that are unknown to the system during training. The proposed wrapper is shown to improve

the average generalization performance of Fingerprint Spoof Buster from TDR of 75.24% to
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91.78% @ FDR = 0.2% when evaluated on a large-scale dataset of 5, 743 live and 4, 912 PA

images fabricated using 12 materials. It is also shown to improve the average cross-sensor

performance from 67.60% to 80.63% when tested on LivDet 2017 dataset, alleviating the

time and resources required to generate large-scale PA datasets for new sensors.

7. A dynamic PAD solution utilizing a sequence of local patches centered at detected minutiae

from ten color frames captured in quick succession (8 fps) as the finger is presented on the

sensor. We posit that the dynamics involved in the presentation of a finger, such as skin

blanching, distortion, and perspiration, provide discriminating cues to distinguish live from

spoofs. The proposed approach improves the spoof detection performance from TDR of

99.11% to 99.25% @ FDR = 0.2% in known-material scenarios, and from TDR of 81.65%

to 86.20% @ FDR = 0.2% in cross-material scenarios.

8. A PAD solution utilizing the ridge-valley depth-information of finger skin, including internal

fingerprint (papillary junction) and sweat (eccrine) glands, sensed by the optical coherent to-

mography (OCT) fingerprint technology. Our proposed solution achieves a TDR of 99.73%

@ FDR of 0.2% on a database of 3, 413 bonafide and 357 PA OCT scans captured using

THORLabs Telesto series spectral-domain fingerprint reader. We also identify the regions in

the OCT scan patches that are crucial for fingerprint PAD detection.
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Chapter 2

Fingerprint Presentation Attack Detection

This chapter addresses the problem of developing an accurate, robust, and efficient solution for de-

tecting fingerprint presentation attacks. Specifically, we propose a deep learning-based approach,

called Fingerprint Spoof Buster, utilizing local patches centered and aligned using fingerprint

minutiae to train deep convolutional neural networks (CNNs). Experimental results on publicly-

available LivDet datasets, an operational altered fingerprint database, three large-scale govern-

ment controlled evaluations as part of the IARPA ODIN project, and two in-house collected PA

datasets containing more than 20, 000 images (12 PA materials) show that the proposed approach

achieves state-of-the-art performance in fingerprint presentation attack detection for intra-sensor,

cross-material, cross-sensor, and cross-dataset testing scenarios.

In order to understand the decision made by CNN, we have developed a graphical user interface

that allows the operator to visually examine the local regions of the fingerprint image highlighted

as bonafide (live) or PA (spoof/altered), instead of relying on a single spoof score as output by

competing PAD approaches. We also present a light-weight version of the proposed PAD, called

Fingerprint Spoof Buster lite, as an Android app that can run on a commodity smartphone (Sam-

sung Galaxy S8) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @

FDR = 0.2%) in under 100ms.
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2.1 Introduction

With the proliferation of automated fingerprint recognition systems in many applications, includ-

ing mobile payments, international border security, and national ID, the vulnerability of the system

security to presentation attacks is of growing concern [30,107,123]. These attacks can be realized

through a number of methods including, but not limited to, (i) gummy fingers [108], i.e., fabri-

cated finger-like objects with an accurate imitation of one’s fingerprint to steal their identity, (ii)

2D or 3D printed fingerprint targets [5, 14, 42], (iii) altered fingerprints [152, 170], i.e., inten-

tionally tampered or damaged real fingerprint patterns to avoid identification, and (iv) cadaver

fingers [105]. Among these, fingerprint spoof attacks (i.e., gummy fingers and printed targets) are

the most common and easiest to launch form of presentation attacks, with a multitude of fabrication

processes ranging from basic molding and casting to utilizing sophisticated 2D and 3D printing

techniques [4, 5, 14, 42, 108].

It has been reported that commonly available and inexpensive materials, such as gelatin, sil-

icone, play-doh, etc., have been utilized to fabricate high fidelity fingerprint spoofs which are

capable of bypassing a fingerprint recognition system. See Figs. 2.1 and 2.2. In March 2013, a

Brazilian doctor was arrested for using spoof fingers made of silicone to fool the biometric atten-

dance system at a hospital in Sao Paulo1. In another incident, in Sept. 2013, shortly after Apple

released iPhone 5s with inbuilt TouchID fingerprint technology, Germany’s Chaos Computer Club2

hacked its capacitive sensor by utilizing a high resolution photograph of the enrolled user’s finger-

print to fabricate a spoof fingerprint with wood glue. In July 2016, researchers at Michigan State

University unlocked a fingerprint secure-smartphone using a 2D printed fingerprint spoof to help

police with a homicide case3 [14]. In March 2018, a gang in Rajasthan, India, was arrested for

spoofing the biometric attendance system, using glue casted in wax molds, to provide proxies for

1http://www.bbc.com/news/world-latin-america-21756709
2http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
3http://statenews.com/article/2016/08/how-msu-researchers-unlocked-a-fingerprint-secure-smartphone-to-help-

police-with-homicide-case
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Figure 2.1 Fingerprint spoof attacks can be realized using various readily available fabrication
materials, such as PlayDoh, WoodGlue, Gelatin, etc. For each of the image pairs, the left im-
age presents the actual spoof specimen while the right image presents the grayscale fingerprint
impression captured of that spoof on a CrossMatch Guardian 200 fingerprint reader.

a police entrance exam4. As recently as April 2019, a Galaxy S10 owner with the assistance of a

3D printer and a photo of his own fingerprint was able to spoof the ultrasonic in-display fingerprint

sensor on his smartphone5. Other similar successful spoof attacks have been reported showing the

vulnerabilities of fingerprint biometric systems deployed in various applications6,7. It is likely that

a large number of these attacks are never detected and hence not reported.

Another form of presentation attacks include intentional fingerprint alteration, known as al-

tered fingerprints (see Figs. 1.20 and 2.10), in an attempt to obfuscate the true identity to evade

law enforcement AFIS [36]. Cases of tampering with fingerprints to evade detection in criminal

cases were reported as early as 1935. Cummins [31] reported 3 cases of fingerprint alterations and

4https://www.medianama.com/2018/03/223-cloned-thumb-prints-used-to-spoof-biometrics-and-allow-proxies-
to-answer-online-rajasthan-police-exam/

5https://www.reddit.com/r/galaxys10/comments/b97ur8/i attempted to fool the new samsung galaxy s10s/
6http://fortune.com/2016/04/07/guy-unlocked-iphone-play-doh/
7https://srlabs.de/bites/spoofing-fingerprints/
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(a)	Live	fingerprint (b)	Spoof	fingerprints

Ecoflex Gelatin Latex Silgum Wood	Glue

Figure 2.2 Visual comparison between (a) a live fingerprint, and (b) the corresponding spoofs
(of the same finger) made with different materials. Images are taken from LivDet-2011 dataset
(Biometrika sensor) [167]. Our method can successfully distinguish between live and spoof fin-
gerprints. The spoofness score for live fingerprint is 0.00, and for spoof fingerprints the scores are
0.95, 0.97, 0.99, 0.99, and 0.95 for Ecoflex, Gelatin, Latex, Silgum, and Wood Glue, respectively.

presented images of before and after alterations. In recent years, border crossing applications have

been targeted by altered fingerprint attacks. In 2009, ABC news reported that Japanese officials ar-

rested a Chinese woman who took “a particularly extreme measure” to evade detection [117]. The

Chinese woman had paid a plastic surgeon to swap fingerprints between her right and left hands.

Patches of skin from her thumbs and index fingers were reportedly removed and then grafted onto

the ends of fingers on the opposite hand. As a result, her identity was not detected when she

re-entered Japan illegally. In 2014, the FBI identified 412 records in its IAFIS which indicated

deliberate fingerprint alterations [121]. In 2018, Business Insider reported that Eduardo Ravelo,

who was added to the FBI’s 10 Most Wanted list in October 2009, was believed to have had plastic

surgery to alter his fingerprints to evade authorities [122]. Therefore, presentation attack detection

(PAD) is of utmost importance, especially in an unsupervised scenario (e.g., authentication on a

smartphone, secure facility access, self check-in kiosks at airports) where the fingerprint presenta-

tion by a user is typically not monitored.
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Table 2.1 Performance comparison (Average Classification Error [%]) of software-based spoof
detection studies on LivDet 2011, 2013, 2015, and 2017 competition datasets. Since different
competition databases utilize different fingerprint readers (optical / thermal / capacitive), spoof
materials, and modes of data collection (cooperative/uncooperative), a direct performance com-
parison between different databases will not be a fair comparison.

Study Approach LivDet
2011

LivDet
2013*

LivDet
2015

LivDet
2017

Approaches utilizing hand-engineered features
Ghiani et al., 2012 [56] Local Phase Quantization (LPQ) 11.1 3.0 N/A N/A
Gragniello et al., 2013 [60] Weber Local Descriptor (WLD) 7.9 N/A N/A N/A
Ghiani et al., 2013 [55] Binarized Statistical Image Features (BSIF) 7.2 2.1 N/A N/A
Gragniello et al., 2015 [61] Local Contrast-Phase Descriptor (LCPD) 5.7 1.3 N/A N/A

Deep learning-based approaches
Nogueira et al., 2016 [119] Transfer Learning + CNN-VGG + Whole Image 4.5 1.1 4.5 N/A
Pala et al., 2017 [126] Custom CNN with triplet loss + Randomly

selected local patches
3.33 0.58 N/A N/A

Zhang et al., 2019 [172] CNN with residual blocks + Center of
gravity-based local patches

N/A 1.74 3.18 4.75

Proposed Approach CNN-MobileNet-v1 + Minutiae-based local
patches

1.67 0.25 0.97 4.56

*LivDet 2013 includes results for Biometrika and Italdata sensors.

2.2 Related Work

2.2.1 Studies on Fingerprint Spoof Detection

The various spoof detection approaches proposed in the biometrics literature can be broadly classi-

fied into (i) hardware-based and (ii) software-based solutions [107]. In the case of hardware-based

approaches, the fingerprint readers are augmented with sensor(s) which detect characteristics of

vitality, such as blood flow, thermal output, heartbeat, odor, and skin distortion [2, 8, 94]. Ad-

ditionally, special types of fingerprint sensing technologies have been developed for imaging the

sub-dermal friction ridge surface based on multi-spectral [136,138], short-wave infrared [156] and

optical coherent tomography (OCT) [29,111]. A low-cost “Build-It-Yourself” open-source finger-

print reader, called RaspiReader, uses two cameras to provide complementary streams (direct-view

and FTIR) of images for spoof detection [43]. Ultrasound-based in-display fingerprint readers de-

veloped for smartphones by Qualcomm Inc. [1] utilize acoustic response characteristics for spoof

detection.
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Table 2.2 Related work on altered fingerprint detection. There is no public-domain altered finger-
print database available in the literature.

Source Method Dataset Performance
Feng, Jain and
Ross [48]

orientation field 1,976 simulated altered finger-
prints

92% detection rate at false
positive rate of 7%

Tiribuzi et al. [155] minutiae density maps and
orientation entropies

1000 genuine and synthetic altered
fingerprints

90.4% classification accu-
racy

Yoon et al. [170] orientation field and minu-
tiae distribution

4, 433 operational altered finger-
prints from 270 subjects

70.2% detection rate at
false positive rate of 2.1%

Ellingsgaard and
Busch [40, 41]

orientation field and minutia
orientation

116 altered and 180 unaltered from
various sources

92.0% detection rate at
false positive rate of 2.3%

Proposed Approach input image and minutiae-
based patches; CNN models

4,815 altered and 4,815 bonafide
fingerprints from 270 subjects

99.24% detection rate at
false positive rate of 2%

In contrast, software-based solutions extract salient features from the captured fingerprint im-

age (or a sequence of frames) for separating live and spoof images. The software-based ap-

proaches in the literature are typically based on (i) anatomical features (e.g. pore locations and

their distribution [142]), (ii) physiological features (e.g. perspiration [106]), and (iii) texture-based

features (e.g. Weber Local Binary Descriptor (WLBD) [165], SIFT [59]. Most state-of-the-art

approaches are learning-based, where the features are learned by training convolutional neural

networks (CNN) [23, 24, 26, 87, 119, 126, 156, 172]. See Table 2.1.

2.2.2 Studies on Altered Fingerprint Detection

Detection of altered fingerprints is of high value to law enforcement and homeland security agen-

cies to prevent known criminals (in the government watchlist) from evading the AFIS at border

crossings and illegally entering the country. Existing approaches for detecting fingerprint alter-

ation have primarily explored hand crafted features to distinguish between altered and bonafide

fingerprints. Feng et al. [48] trained an SVM to detect irregularities in ridge orientation field and

reported a 92% detection rate at a false positive rate of 7% on a database of 1, 976 simulated al-

tered fingerprints. Tiribuzi et al. [155] combined the minutiae density maps and the orientation

entropies of the ridge-flow to identify the altered fingerprints. They reported a 90.4% classification

accuracy on a dataset of 1, 000 genuine and synthetic altered fingerprints. Yoon et al. [170] uti-

lized the orientation field and minutiae distribution to detect altered fingerprints. Their method was
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tested on a database of 4, 433 altered fingerprints from 270 subjects, providing for 70.2% correctly

identified altered fingerprints at a false positive rate of 2.1%. Ellingsgaard and Busch in [40, 41]

discuss methods for automatically detecting altered fingerprints based on analysis of two different

local characteristics of a fingerprint image: identifying irregularities in the pixel-wise orientations,

and examining minutia orientations in local patches. They further suggest that alteration detection

should be included into standard quality measures of fingerprints. Beyond detection of altered fin-

gerprints, Yoon et al. [170] investigated feasibility of an AFIS to link altered fingerprints to their

pre-altered mates. Table 2.2 summarizes previous work in altered fingerprint detection. All the

existing methods are based on examining irregularities in orientation flow or minutia maps based

on hand-engineered features.

The proposed approach (Section 2.4) uses a deep learning technique to learn and evaluate

salient features in the altered fingerprints, and classify input fingerprint images into two classes:

bonafide or altered fingerprints. In the case of altered fingerprint, the proposed approach localizes

the regions of a fingerprint that are altered. This can be utilized to assess the fingerprintness of an

input image [170], such that bonafide fingerprints (or bonafide regions) produce a high score and

altered fingerprints (or altered regions) produce a low score.

2.3 Fingerprint Spoof Buster

A series of fingerprint Liveness Detection (LivDet) competitions have been held since 2009 to

advance state-of-the-art and benchmark the proposed anti-spoofing solutions [57]. The best per-

former in the LivDet 2015 [113], Nogueira et al. [119], utilized transfer learning, where deep CNNs

originally designed for object recognition and pre-trained on ImageNet database [140], were fine-

tuned on fingerprint images to differentiate between live and spoof fingerprints. In their approach,

the networks were trained on whole fingerprint images resized to 227× 227 pixels for VGG [147]

and 224×224 pixels for AlexNet [93] as required by these networks. However, there are three dis-

advantages of using this approach: (i) fingerprint images from some of the sensors used in LivDet
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800 x 750

227 x 227

(a) (b) (c)

227 x 227 227 x 227

Figure 2.3 A live fingerprint image (from LivDet 2015 dataset) captured using CrossMatch L
Scan Guardian in its (a) original dimensions (800 × 750), and (b) resized to 227 × 227. A direct
downsizing of the fingerprint image may result in the friction ridge area occupying less than 10%
of the original image size, leading to significant loss of discriminatory information. Instead, local
patches (96 × 96 upscaled to 227 × 227), as shown in (c), provide salient cues to differentiate a
spoof fingerprint from live fingerprint.

datasets, such as Crossmatch L Scan Guardian (800 × 750), have a large blank area (≥ 50%) sur-

rounding the friction ridge region. Directly resizing these images, from 800 × 750 to 227 × 227,

eventually results in the friction ridge area occupying less than 10% of the original image size (see

Figure 2.3); (ii) resizing a rectangular image of size, say w×h, to a square image, say p× p, leads

to different amounts of information retained in the two spatial image dimensions; (iii) downsizing

an image, in general, leads to a significant loss of discriminatory information.

It is important to consider various sources of noise involved in the spoof fabrication process

itself that can introduce some artifacts, such as missing friction ridge regions, cracks, air bubbles,

etc., in the spoofs. The primary consequence of such artifacts is the creation of spurious minutiae

in the fingerprint images sensed from spoofs. The local regions around these spurious minutiae

can, therefore, provide salient cues to differentiate a spoof fingerprint from live fingerprints (see

Fig. 2.4). We utilize this observation to train a two-class CNN using local patches around the ex-
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Figure 2.4 (a) Example of a live fingerprint and the corresponding spoof fingerprint with the arti-
facts introduced in the spoofs highlighted in red. (b) Local regions highlighted as green (live) and
red (spoof) by evaluating all minutiae-centered local patches (96 × 96). (c) A subset of minutiae-
based local patches along with their individual spoofness scores. The images are taken from MSU
Fingerprint Presentation Attack Dataset (MSU-FPAD) - CrossMatch Sensor and the spoof material
used is Silicone (Ecoflex). The spoofness scores output by the proposed approach for the live and
spoof fingerprints are 0.06 and 0.99, respectively. (Best viewed in color)

tracted minutiae, as opposed to the whole fingerprint images or randomly selected local patches, to

design a fingerprint spoof detector. In this section, we will show that the proposed approach, called

Fingerprint Spoof Buster, is more robust to novel fabrication materials than earlier approaches that

utilize the whole image [119] or randomly selected local patches [126].

The proposed approach for spoof detection, utilizing local patches of size p × p, (p = 96),

centered at minutiae, (i) circumvents the previously mentioned drawbacks of downsizing whole

fingerprint images to train the CNNs, (ii) provides large amount of data (an average of 48

patches/fingerprint image) to train the deep CNN architectures without overfitting, (iii) learns

salient textural information from local regions, robust to differentiate between spoof and live fin-

42



gerprints, and (iv) provides a fine-grained analysis of the fingerprint images by localizing and high-

lighting spoof regions. The output of the CNN is a confidence score in the range [0, 1], defined as

Spoofness Score; the higher the spoofness score, the more likely the image patch is extracted from

a spoof fingerprint. For a given image, the spoofness scores corresponding to the minutiae-based

local patches are averaged to generate the global spoofness score for the input image. A fusion

of CNN models trained on multi-scale patches (ranging in size from from 64 × 64 to 128 × 128),

centered and aligned using minutiae, is shown to further boost the spoof detection performance.

We also optimize Fingerprint Spoof Buster to reduce memory and computation requirements

by (i) K-means clustering of minutiae points followed by weighted fusion to reduce the required

number of local patches to be evaluated, and (ii) modifying the MobileNet-v1 network architecture

and quantization of model weights to reduce the required computations and perform byte computa-

tions instead floating point arithmetic. Consequently, a light-weight version of the PAD (3.2 MB),

called Fingerprint Spoof Buster Lite, is developed as an Android application that can run on a

commodity smartphone without a significant drop in PAD performance in under 100ms. The main

contributions of this chapter are enumerated below:

• Utilized fingerprint domain-knowledge to design a robust fingerprint spoof detector, called

Fingerprint Spoof Buster, where local patches centered and aligned using fingerprint minu-

tiae are utilized for training a CNN model. This differs from other existing approaches which

have generally used the whole input fingerprint image for spoof detection.

• Experimental results on publicly available datasets (LivDet 2011, 2013, 2015, and 2017), in-

cluding intra-sensor, cross-material, cross-sensor, and cross-dataset scenarios, show that the

proposed approach outperforms the state-of-the-art results published on these three datasets.

For example, for LivDet 2015 (2017) dataset, our algorithm achieves 99.03% (95.91%) av-

erage accuracy over all fingerprint readers compared to 95.51% (95.25%) achieved by the

LivDet 2015 (2017) winner [113, 172].
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Figure 2.5 An overview of the proposed Fingerprint Spoof Buster [24], a state-of-the-art fingerprint
PAD, utilizing CNNs trained on local patches centered and aligned using minutiae location and
orientation, respectively. A total number of 30 minutiae are detected in the input fingerprint image.

• Collected two new fingerprint presentation attack datasets containing more than 20, 000 fin-

gerprint (live and spoof) images, using two different fingerprint readers and over 12 different

spoof fabrication materials. Experimental results on these two new datasets and three large-

scale government test datasets as part of IARPA ODIN project are also presented. IARPA

consider these results to be state-of-the-art8.

• Developed a graphical user interface (GUI) for real-time fingerprint spoof detection which

allows a visual examination of the local regions of the fingerprint highlighted as bonafide

(live) or PA (spoof/altered).

• Optimized Fingerprint Spoof Buster by K-means (K = 10) clustering of minutiae followed

by weighted fusion to reduce the required number of inferences (typically a 70%− 80% re-

duction.). Further, network architecture optimizations and quantization of model weights en-

abled development of a light-weight version of the proposed PAD, called Fingerprint Spoof

Buster Lite9, as an Android application which accepts a live-scan fingerprint and makes a

bonafide vs. PA decision in 100ms on a commodity smartphone (Samsung Galaxy S8).

8Based on verbal communication
9We use the term lite to indicate a light version of the PAD as we utilize TensorFlow Lite framework for the

proposed model optimizations. https://www.tensorflow.org/lite
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Figure 2.6 Local patches extracted around the fingerprint minutiae for (a) real fingerprint, and (b)
spoof fingerprint (gelatin), and (c) aligned using minutiae orientation. The spoofness score for
each patch is in the range [0− 1]; higher the score, more likely the patch is extracted from a spoof
fingerprint. For a given input test image, the spoofness scores corresponding to the local patches
are averaged to give a global spoofness score. The final decision is made based on a classification
threshold learned from the training dataset; an image with a global spoofness score below the
threshold is classified as live, otherwise as spoof. Only a subset of detected fingerprint minutiae
are shown for illustrative purposes.

Fingerprint Spoof Buster consists of two stages, an offline training stage and an online test-

ing stage. The offline training stage involves (i) detecting minutiae in the sensed fingerprint im-

age, (ii) extracting local patches centered and aligned using minutiae location and orientation,

respectively, and (iii) training MobileNet models on the aligned local patches. During the testing

stage, the spoof detection decision is made based on the average of spoofness scores for individual

patches output from the MobileNet model. An overview of the proposed approach is presented in

Fig. 2.5.

2.3.1 Minutiae Extraction

The fingerprint minutiae are extracted using the algorithm from [16]. The four LivDet datasets

(LivDet 2011, 2013, 2015, and 2017) comprise of fingerprint images captured at varying resolu-

tions, ranging from 500 dpi to 1000 dpi. Since the minutiae detector in [16] was designed for 500

dpi images, all fingerprint images are resized to ensure a standard resolution of 500 dpi. A standard
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resolution for all the fingerprint images is also crucial to ensure similar amount of friction ridge

area in each local patch, irrespective of the fingerprint reader used. An average of 46 minutiae

(std. dev. = 6.2) and 50 minutiae (std. dev. = 6.9) are detected per live image and spoof image,

respectively, for these LivDet datasets.

2.3.2 Local Patch Extraction

For a given fingerprint image I with k detected minutiae points M = {m1,m2, . . . ,mk}, where

mi = {xi, yi, θi}, i.e., the minutiae mi is defined in terms of spatial coordinates (xi, yi) and orien-

tation (θi), a corresponding set of k local patches L = {l1, l2, . . . , lk}, each of size [q × q] where

(q =
√
2p), are extracted. Each local patch li, centered at the corresponding minutia location

(xi, yi), is aligned10 based on the minutiae orientation (θi). After alignment, the central region of

size [p × p] (p = 96) is cropped from the rotated patch and used for training the CNN model.

The size of larger patch is fixed to [
√
2p ×

√
2p] to prevent any loss of information during patch

alignment. Fig. 2.6 presents examples of real and spoof fingerprint images and the corresponding

local patches centered and aligned using minutiae location and orientation, respectively.

For evaluating the impact of local patch size on the spoof detection performance, we also

explore use of multi-resolution patches of size p ∈ {64, 96, 128} for training independent CNN

models and their fusion. All the local patches are resized11 to 224 × 224 as required by the

Mobilenet-v1 model.

2.3.3 MobileNet CNN

Since the success of AlexNet [93] for object detection in ILSVRC-2012 [140], different CNN ar-

chitectures have been proposed in literature, such as VGG, GoogleNet (Inception v1-v4), ResNets,

MobileNet, etc. Nogueira et al. [119], winner of LivDet 2015, utilized a pre-trained VGG ar-

10MATLAB’s imrotate function with bilinear interpolation is used to rotate the local patch for alignment.
11TensorFlow’s resize utility with bilinear interpolation was used; available at https://www.tensorflow.org/api docs/python/

tf/image/resize images
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chitecture [147] to achieve the best performance in LivDet 2015 [113]. In this study, we utilize

the MobileNet-v1 architecture [71] because it offers the following advantages over other network

architectures (such as VGG and Inception-v3): (i) MobileNet-v1 is designed using depth-wise

separable convolutions, originally introduced in [21], providing drastic decrease in model size

and training/evaluation times while providing better spoof detection performance; (ii) it is a low-

latency network requiring only 6ms to classify an input fingerprint patch as live or spoof compared

to 50ms required by Inception-v3 network [23] using a Nvidia 1080Ti GPU; and (iii) the number

of model parameters to be trained in MobileNet-v1 (4.24M) is significantly smaller than the num-

ber of model parameters in Inception-v3 (23.2M) and VGG (138M), requiring significantly lower

efforts in terms of regularization and data augmentation to prevent overfitting [71].

We utilized the TF-Slim library12 implementation of the MobileNet-v1 architecture. The last

layer of the architecture, a 1000-unit softmax layer (originally designed to predict the 1, 000 classes

of ImageNet dataset), was replaced with a 2-unit softmax layer for the two-class problem, i.e., live

vs. spoof. The optimizer used to train the network was RMSProp with asynchronous gradient

descent and a batch size of 100. Data augmentation techniques, such as brightness adjustment,

random cropping, and vertical flipping, are employed to ensure the trained model is robust to the

possible variations in fingerprint images. For the multi-resolution local patches, a separate network

is trained for each patch size with the same parameters as mentioned above.

2.3.4 Fine-grained Fingerprint Image Representation

Partial spoofs and fingerprint alterations are meant to avoid re-identification13, by masking the

true identity from a fingerprint biometric system [23, 170]. Spoof detectors trained on the whole

fingerprint images are ineffective against localizing partial spoof fingerprints, that conceal only a

limited region of the live finger. Moreover, in many smartphones and other embedded systems that

only sense a partial region (friction ridge area) of the fingerprint due to small sensor area (typically

12https://github.com/tensorflow/models/tree/master/research/slim
13http://abcnews.go.com/Technology/GadgetGuide/surgically-altered-fingerprints-woman-evade-immigration/

story?id=9302505
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Figure 2.7 The proposed approach provides a fine-grained representation for spoof detection by
using minutiae-based local patches. A fingerprint spoof fabricated using silicone which conceals
only a partial region of the live finger is shown in (a) and the imaged fingerprint in (b) (enclosed
in red). The proposed approach extracts and evaluates the minutiae-based local patches, and high-
lights the local regions as live (in green) or spoof (in red) as shown in (c) and (d). It can also
highlight the regions of fingerprint alterations as shown for a “Z” cut altered fingerprint in (e), (f)
and (g). The proposed approach detected (b) and (e) as spoofs with the spoofness scores of 0.78
and 0.65, respectively. (Best viewed in color)

150 × 150), it is very crucial to have a detailed representation of the sensed fingerprint region.

One of the key advantages of employing a patch-based approach is the fine-grained representation

of input fingerprint image for spoof detection. Fig. 2.7 (a) presents an example of a fingerprint

spoof fabricated using silicone, concealing only a partial region of the live finger and Fig. 2.7 (b)

presents the imaged partial spoof fingerprint using a CrossMatch Guardian 200 fingerprint reader.

The proposed approach, utilizing minutiae-based local patches, highlights the local regions as live

or spoof (shown in Figs. 2.7 (c) and (d) in green and red, respectively), providing a fine-grained

representation of the fingerprint image. Fingerprint alterations, such as cuts, mutilations, stitches,
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etc., performed using surgical and chemical procedures (see Fig. 2.7 (e)), create spurious minutiae

as shown in Figs. 2.7 (f) and (g). The proposed approach is able to highlight the regions of fin-

gerprint alterations despite not being trained specifically on altered fingerprint database, indicating

the generalizability of the proposed approach. The proposed approach detected both fingerprint

images in Figs. 2.7 (b) and (e) as spoofs with the spoofness scores of 0.78 and 0.65, respectively.

2.3.5 Spoofness Score

The output from the softmax layer of the trained MobileNet-v1 model is a spoof probability score,

called as the Spoofness Score, in the range [0, 1]. The larger the spoofness score (close to 1),

the higher the support that the input local patch belongs to the spoof class (see Fig. 2.6). For an

input test image I , the spoofness scores sIi∈{1,2,...,k} corresponding to the k minutiae-based local

patches of size p × p, extracted from the input image, are averaged to give a global spoofness

score SI . In case of multi-resolution local patches, the global spoofness scores (SIpi) based on

each local patch size, pi ∈ {64, 96, 128}, are averaged to produce a final spoofness score. The

threshold that minimizes the average classification error on training dataset is learned and utilized

as the classification threshold. An image with a spoofness score below the threshold is classified

as live, otherwise as spoof. The learned threshold performed slightly better in spoof detection than

selecting a pre-defined threshold of 0.5.

2.3.6 On Robustness of Patch-based Representation

While the proposed approach is based on the premise that it is capable of capturing discriminatory

information from local patches (presence of artifacts), such as valley noise, broken ridges, air bub-

bles, etc., from spoof fingerprints, we also examine the robustness of patch-based representation

by evaluating it in the absence of such artifacts. Figs. 2.8 (a) and (b) present minutiae-based local

patches from a live fingerprint and the corresponding spoof fingerprint (fabricated using EcoFlex),

respectively, for the same minutia point, and Figs. 2.8 (d) and (e) present their feature represen-

tations, respectively, obtained from the bottleneck layer of the MobileNet-v1 architecture. The
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(c) Modified Spoof Patch 
(after noise removal)

(a) Live Fingerprint Patch (b) Spoof Fingerprint Patch

(d) Spoofness Score = 0.00 (e) Spoofness Score = 0.99 (f) Spoofness Score = 0.94 

Minutiae-based Local Patches

Feature Representations of Local Patch

0

1

Figure 2.8 Illustrating the embeddings of minutiae-based local patches (96×96), for (a) live patch,
(b) spoof patch, and (c) modified spoof patch (retouched to remove visible artifacts), in 1024-
dimensional feature space from MobileNet-v1 bottleneck layer, transformed to 32× 32 heat maps,
(d), (e), and (f), respectively, for visualization. A high spoofness score for the modified spoof patch
is achieved, despite removal of artifacts, indicating the robustness of the proposed approach. (Best
viewed in color)

1024-dimensional feature representation is transformed to 32× 32 heatmap for visualization. The

spoofness scores for the two patches, live and spoof, are 0.00 (Fig. 2.8 (b)) and 0.99 (Fig. 2.8

(d)), respectively. The spoof patch (Fig. 2.8 (b)) is modified, by the authors, using an open-source

photo-editing utility, called GIMP14, to remove the visible artifacts and produce the modified spoof

fingerprint patch as shown in Fig. 2.8 (c). The feature representation for the modified patch is

shown in Fig. 2.8 (f). A high spoofness score for the modified spoof patch (0.94) despite removal

of artifacts indicates the robustness of the proposed approach.

14https://www.gimp.org/
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MSUFPAD_MobiNet

CrossMatch Reader

Figure 2.9 Interface of the proposed Fingerprint Spoof Buster. It allows selection of the fingerprint
reader and CNN model. (Best viewed in color)

2.3.7 Graphical User Interface (GUI)

A graphical user interface for Fingerprint Spoof Buster allows the operator to select a specific

fingerprint reader and a trained MobileNet-v1 model for evaluation. The operator can perform the

evaluation in either online or batch mode. In the online mode, a fingerprint is imaged using the

selected reader and displayed on the interface (see Fig. 2.9). The extracted fingerprint minutiae and

the corresponding local patches are presented and color-coded based on their respective spoofness

scores (green for live and red for spoof). The global spoofness score and the final decision for the

input image is also presented on the interface. In the batch mode, all fingerprint images within a

specified directory are evaluated, and global spoofness scores for each fingerprint file are output

together in a score file. The graphical user interface allows the operator to visually examine the

local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score

as output by the traditional approaches.
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Figure 2.10 Types of fingerprint alterations: (i) Obliteration, such as scars, or mutilations, (ii) Dis-
tortion, i.e., friction ridge transplantation to distort friction ridge area, and (iii) Imitation, i.e.,
transplantation or removal of friction ridge skin while still preserving fingerprint like pattern.

2.4 Altered Fingerprints: Detection and Localization

2.4.1 Altered Fingerprint Detection

The goal of detecting altered fingerprint images can be formulated as a binary classification prob-

lem with two classes; altered and bonafide. While some cuts and cruises could be due to unin-

tentional accidents, our interest here is to detect any fingerprint where the bonafide ridge structure

is significantly modified. As shown in Figure 2.10, different types of alteration procedures would

result in different fingerprint degradation. Different types of alteration procedures and their ef-

fect on friction ridge patterns are discussed in [40, 170]. Based on the changes made to friction

ridge patterns, they categorized altered fingerprints into three types: obliteration, distortion, and

imitation.
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(a) (b)

Figure 2.11 Examples of altered fingerprints and corresponding manually marked regions of in-
terest (ROI) circumscribing the areas of fingerprint alterations. Local patches overlapping with
manually marked ROI are labeled as altered patches, while the rest are labelled as bonafide. The
test phase is fully automatic and does not require any manual markup.

Obliteration consists of abrading, cutting, burning, applying strong chemicals, or transplanting

friction ridge skin. Skin disease or side effects of drugs can also obliterate fingertips. Distortion

comprises of cases of using plastic surgery to convert a normal friction ridge pattern into an unusual

ridge pattern. Some portions of skin are removed from the finger and grafted back onto a different

position causing an unusual pattern. Imitation is when a surgical procedure is performed in such

a way that the altered fingerprints appear as natural fingerprints, for example, by grafting skin

from the other hand or a toe such that fingerprint ridge pattern is still preserved. Despite Yoon

and Jain’s [170] suggestion to develop different models for different alteration types, we propose

to utilize a single model for the following two reasons: a) insufficient data for each alteration

type for training deep networks, and b) manual labeling of the alteration type would be subjective

because an image can suffer from more than one alteration type. We trained a Convolutional Neural

Network (CNN) to classify an input fingerprint image into one of the two classes of bonafide or

altered. Data augmentation techniques, such as mirroring, random cropping, and rotation have

been employed to increase the size of the training data.

2.4.2 Localization of Altered Regions

To localize and highlight the altered regions of fingerprints, we augment our whole image based

altered fingerprint detection with a patch-based approach. Our approach is as follows: First, re-
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(a) (b)

Figure 2.12 Examples of altered fingerprint localization by our proposed method. Local regions
highlighted in red represent the altered portion of the fingerprint, whereas regions highlighted in
green reflect the bonafide friction ridge area. (Best viewed in color)

Figure 2.13 An overview of the proposed approach for detection and localization of altered finger-
prints. We trained two convolutional neural networks (Inception-v3 and Mobilenet-v1) using full
fingerprint images and local patches of images where patches are centered on minutiae locations.

gion of interest (ROI) is manually marked for 1, 182 randomly selected altered fingerprints from

our database of 4, 815 altered fingerprints. See Figure 2.11. Next, local patches of size 96 × 96

centered around each extracted minutia are cropped. Local patches with more than 50% overlap

with the manually marked ROI are labeled as altered patches, and the remaining patches are la-

beled as bonafide. Because a majority of fingerprint alterations generate discontinuities and noisy

regions in the friction ridge pattern, a much higher number of spurious minutiae are generated in

altered fingerprints compared to bonafide fingerprints of the same size [170]. As discussed earlier,

local patches centered around minutiae provide superior performance in fingerprint spoof detection

compared to patches extracted in a raster scan or random manner. A total of 81, 969 bonafide and

89, 979 altered patches are extracted and utilized for training two different networks: Inception-

v3 [150] and MobileNet-v1 [71]. Fig. 2.12 presents examples of altered fingerprint localization
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Table 2.3 Network hyper-parameters utilized in training CNN models for altered fingerprint detec-
tion and localization.

Hyper-paramters Inception-v3 MobileNet-v1
Batch Size 32 100
Optimizer RMSProp RMSProp
Learning Rate [0.01 - 0.0001];

exp. decay 0.94
[0.01 - 0.0001];
exp. decay 0.94

Momentum 0.9 0.9
Iterations 75,000 25,000

output by the proposed approach. An overview of the proposed approach to detect and localize

altered fingerprints is presented in Figure 2.13.

2.4.3 Alteration Score

We train MobileNet-v1 [71] and Inception-v3 [150] networks, using TF-Slim library [145], as

binary classifiers (altered vs. bonafide fingerprints). The input is a full fingerprint image and the

output is a probability (or score) of belonging to Altered or Valid class, referred to as alteration

score. A bonafide fingerprint image should result in an alteration score of close to 0, whereas an

altered fingerprint image should result in an alteration score of close to 1. The network hyper-

parameters used to train the CNN models are presented in Table 2.3.

2.5 End-to-End Presentation Attack Detection

The proposed modules for altered fingerprint detection and spoof detection can be implemented in

a cascaded manner as shown in Figure 2.14. First, a whole fingerprint image is fed to the altered

fingerprint detector. If the input image is classified as an altered fingerprint, we output the alteration

score and evaluate minutiae-based local patches to localize the altered regions. Otherwise, if the

image is classified as valid, it is then fed to the Fingerprint Spoof Buster for spoof detection,

which evaluates the whole image and minutiae-based local patches and performs average score

fusion to generate a global spoofness score. It also outputs a heat map overlaid on the input image
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Input Fingerprints

Altered 
Fingerprint 
Detection

Alteration Score ∈ [0,1]
(Valid = 0; Altered = 1)

Threshold: 0.15 

Altered

Fingerprint 
Spoof 
Buster

Valid

Altered 
Fingerprint 
Localization

Live

Spoof

Alteration Score: 0.57

Spoofness Score: 0.91

Localized Altered Regions

Spoofness Score: 0.02

Spoofness Score ∈ [0,1]
(Live = 0; Spoof = 1)

Threshold: 0.50 Bonafide Spoof Altered

Figure 2.14 An overview of the proposed end-to-end presentation attack detection. (Best viewed
in color)

highlighting the spoof and bonafide regions. The score thresholds for altered fingerprint detection

and spoof detection are set to 0.15 and 0.50, respectively.

2.6 Experimental Results

2.6.1 Performance Evaluation Metrics

The performance of the proposed approach is evaluated following the metrics used in LivDet [57].

• F errlive: Percentage of misclassified live fingerprints.

• F errfake15: Percentage of misclassified spoof fingerprints.

15When all the spoof fabrication materials are known during the training, this metric is referred to as
Ferrfake known, and in case all the spoof fabrication materials to be encountered during testing are not known
during training, this metric is referred to as Ferrfake unknown.
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Table 2.4 Summary of the Liveness Detection (LivDet) datasets (LivDet 2011 and LivDet 2013)
utilized in this study.

Dataset LivDet 2011 [167] LivDet 2013 [58]
Fingerprint
Reader

Biometrika ItalData Digital
Persona

Sagem Biometrika ItalData

Model FX2000 ET10 4000B MSO300 FX2000 ET10
Image Size 315× 372 640× 480 355× 391 352× 384 315× 372 640× 480
Resolution (dpi) 500 500 500 500 569 500
#Live Images

1000/1000 1000/1000 1000/1000 1000/1000 1000/1000 1000/1000Train / Test
#Spoof Images

1000/1000 1000/1000 1000/1000 1000/1000 1000/1000 1000/1000Train / Test
Cooperative
Subject

Yes Yes Yes Yes No No

Spoof Materials Ecoflex, Gelatine, Latex,
Silgum, Wood Glue

Gelatine, Latex, Play Doh,
Silicone, Wood Glue

Ecoflex, Gelatine, Latex,
Modasil, Wood Glue

The average classification error (ACE) is defined as:

ACE =
Ferrlive + Ferrfake

2
(2.6.1)

Additionally, we also report the F errfake @ F errlive = 1.0% for each of the experiments

as reported in [57]. This value represents the percentage of spoofs able to breach the biometric

system security when the reject rate of legitimate users ≤ 1.0%.

2.6.2 Presentation Attack Datasets

The following datasets have been utilized to evaluate the proposed approach:

2.6.2.1 LivDet Datasets

In order to evaluate performance of the proposed approach, we utilized LivDet 2011 [167], LivDet

2013 [58], LivDet 2015 [113] and LivDet 2017 [114] datasets. Each of these datasets contains

over 16, 000 fingerprint images, acquired from three or more different fingerprint readers, with

comparable numbers of live and spoof fingerprints. However, the CrossMatch and Swipe readers

from LivDet 2013 dataset were not utilized for evaluation purposes because the (a) LivDet compe-
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Table 2.5 Summary of the Liveness Detection (LivDet) datasets (LivDet 2015 and LivDet 2017)
utilized in this study.

Dataset LivDet 2015 [113] LivDet 2017 [114]
Fingerprint
Reader

GreenBit Biometrika Digital
Persona

CrossMatch GreenBit Orcanthus Digital
Persona

Model Dacty
Scan26

HiScan-
PRO

U.are.U
5160

L Scan
Guardian

Dacty
Scan 84C

Certis2
Image

U.are.U
5160

Image Size 500× 500 1000×1000 252× 324 800× 750 500× 500 300× n 252× 324
Resolution (dpi) 500 1000 500 500 569 500 500
#Live Images

1000/1000 1000/1000 1000/1000 1510/1500 1000/1700 1000/1700 999/1692Train / Test
#Spoof Images

1000/1500 1000/1500 1000/1500 1473/1448 1200/2040 1200/2018 1199/2028Train / Test
Cooperative
Subject

Yes Yes Yes Yes Yes Yes Yes

Spoof Materials Ecoflex, Gelatine, Latex, Wood
Glue, Liquid Ecoflex, RTV

Body Double,
Ecoflex, Play

Doh, OOMOO,
Gelatin

Wood Glue, Ecoflex, Body Double,
Gelatine, Latex, Liquid Ecoflex

tition organizers found anomalies in the fingerprint data from CrossMatch reader and discouraged

its use for comparative evaluations [57], and (b) the resolution of fingerprint images output from

Swipe reader is very low, i.e., 96 dpi. Unlike other LivDet datasets, spoof fingerprint images

from Biometrika and Italdata readers in LivDet 2013 dataset [58] are fabricated using the non-

cooperative method, i.e., without user cooperation. It should be noted that in LivDet 2015 and

LivDet 2017, the testing set included spoofs fabricated using new materials, that were not known

in the training set. In the case of LivDet 2015, these new materials included liquid ecoflex and RTV

for Biometrika, Digital Persona, and Green Bit readers, and OOMOO and gelatin for Crossmatch

reader. In the case of LivDet 2017, the testing set contained materials, namely Gelatine, Latex,

and Liquid Ecoflex, completely different from training which contained Wood Glue, Ecoflex, and

Body Double materials. Tables 2.4 and 2.5 presents a summary of the LivDet datasets used in this

study.

2.6.2.2 MSU Fingerprint Presentation Attack Dataset

In addition to utilizing LivDet Datasets, we collected a large dataset, called the MSU Fingerprint

Presentation Attack Dataset (MSU-FPAD), using two different fingerprint readers, namely, Cross-

Match Guardian 200 and Lumidigm Venus 302. There are a total of 9, 000 live images and 10, 500
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Table 2.6 Summary of the MSU Fingerprint Presentation Attack Dataset (MSU-FPAD) and Precise
Biometrics Spoof-Kit Dataset (PBSKD).

Dataset MSU-FPAD Precise Biometrics Spoof-Kit
Fingerprint
Reader

CrossMatch Lumidigm CrossMatch Lumidigm

Model Guardian 200 Venus 302 Guardian 200 Venus 302
Image Size 750× 800 400× 272 750× 800 400× 272
Resolution (dpi) 500 500 500 500
#Live Images

2, 250 / 2, 250 2, 250 / 2, 250 250 / 250† 250 / 250†Train / Test
#Spoof Images

3, 000 / 3, 000 2, 250 / 2, 250 250 / 250 200 / 200‡Train / Test
Cooperative* Yes Yes Yes Yes
Spoof Materials Ecoflex, PlayDoh, 2D Print (Matte

Paper), 2D Print (Transparency)
Ecoflex, Gelatin, Latex body paint, Ecoflex with silver
colloidal ink coating, Ecoflex with BarePaint coating,
Ecoflex with Nanotips coating, Crayola Model Magic,

Wood glue, Monster Liquid Latex, and 2D printed
fingerprint on office paper

†1000 randomly sampled live fingerprint images from MSU-FPAD are selected for Precise Biometrics Spoof-Kit
Dataset.
‡ Lumidigm fingerprint reader does not image Silicone (EcoFlex) spoofs with NanoTips and BarePaint coatings.

Live	Fingerprint Silicone	(Ecoflex) 2D	Printed	

(Matte	Paper)

2D	Printed	

(Transparency	Film)

(a)	Imaged	using	CrossMatch	Guardian	200	fingerprint	reader (b)	Imaged	using	Lumidigm	Venus	302	fingerprint	reader

PlayDoh

(Orange)

Live	Fingerprint Silicone	(Ecoflex) 2D	Printed	

(Matte	Paper)

2D	Printed	

(Transparency	Film)

Unable	to	Image

PlayDoh

(Orange)

Figure 2.15 Example images from MSU Fingerprint Presentation Attack Dataset (MSU-FPAD)
acquired using (a) CrossMatch Guardian 200, and (b) Lumidigm Venus 302 fingerprint readers.
Note that Lumidigm reader does not image PlayDoh (orange) spoofs.

spoof images captured using these two readers and 4 different spoof fabrication materials, namely,

ecoflex, PlayDoh, 2D printed on matte paper, and 2D printed on transparency film. The selection of

the fingerprint readers and the spoof materials is based on the requirements of IARPA ODIN pro-

gram [123] evaluation. Fig. 2.15 presents some example fingerprint images, and Table 2.6 presents

a summary of the MSU Fingerprint Presentation Attack Dataset.
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(a)	Imaged	using	CrossMatch	Guardian	200	fingerprint	reader

(b)	Imaged	using	Lumidigm	Venus	302	fingerprint	reader

Crayola	Model	

Magic

Silicone	(EcoFlex) Gelatin 2D	Printed	

(Office	Paper)
Wood	GlueSilicone	(EcoFlex)	

with	Silver	Colloidal

Silicone	(EcoFlex) Crayola	Model	

Magic

Monster	Liquid	

Latex

Wood	Glue 2D	Printed	

(Office	Paper)

Gelatin Latex	Body	Paint

Latex	Body	Paint Monster	Liquid	

Latex

Silicone	(EcoFlex)	

with	Silver	Colloidal

Silicone	(EcoFlex)	

with	NanoTips

Silicone	(EcoFlex)	

with	BarePaint

Unable	to	Image Unable	to	Image

Silicone	(EcoFlex)	

with	NanoTips

Silicone	(EcoFlex)	

with	BarePaint

Figure 2.16 Example images from Precise Biometrics Spoof-Kit Dataset (PBSKD) acquired using
(a) CrossMatch Guardian 200, and (b) Lumidigm Venus 302 fingerprint readers. Note that Lu-
midigm reader does not image Silicone (EcoFlex) spoofs with NanoTips and BarePaint coatings.

2.6.2.3 Precise Biometrics Spoof-Kit Dataset

We also collected another dataset containing 900 high quality spoof fingerprint images fabricated

using 10 different types of spoof materials, namely, (i) Ecoflex, (ii) Gelatin, (iii) Latex body paint,

(iv) Ecoflex with silver colloidal ink coating, (v) Ecoflex with BarePaint coating, (vi) Ecoflex with

Nanotips coating, (vii) Crayola Model Magic, (viii) Wood glue, (ix) Monster Liquid Latex, and

(x) 2D printed fingerprint on office paper. The spoof specimens used for this dataset are taken

from Precise Biometrics16 Spoof-Kit containing 10 specimens per spoof type, for a total of 100

spoof specimens. Each spoof specimen is imaged 5 times using two fingerprint readers, namely,

CrossMatch Guardian 200 and Lumidigm Venus 302. Note that Lumidigm reader does not image

Silicone (EcoFlex) spoofs with NanoTips and BarePaint coatings. An additional 900 randomly

sampled live fingerprints from MSU-FPAD are selected for a total of 1, 800 fingerprint images in

Precise Biometrics Spoof-Kit Dataset. Fig. 2.16 presents some example fingerprint images, and

Table 2.6 presents a summary of the Precise Biometrics Spoof-Kit Dataset.

16https://precisebiometrics.com/

60

https://precisebiometrics.com/


Figure 2.17 Illustration of the timeline of IARPA ODIN Program [123]. The Phase-III will be
completed in March 2021.

2.6.2.4 Government Evaluation Datasets (GCT - I, II, and III)

During May 14 - May 25, 2018, the first Government Controlled Test- I (GCT-I), as part of the

IARPA ODIN program [123], was organized. A total of 13, 062 fingerprint images were collected

using two optical readers, CrossMatch Guardian 200 and Lumidigm V302, from 340 subjects in

a span of 2 weeks at Johns Hopkins University Applied Physics Lab (JHU APL), Laurel, MD.

Subjects presented either bonafide fingerprints or presentation attacks for a total of 20 impressions

per sensor per subject. Four different PA types were used, namely, Transparency, Dragon Skin,

Yellow Pigmented Silicone, and VeroBlack plus.

In the following year, during May 8 - May 17, 2019, Government Controlled Test - II (GCT-II)

was conducted at JHU facility in Columbia, Maryland. A total of 8, 598 fingerprint images from

around 400 subjects were collected on CrossMatch Guardian 200, including 7, 852 bonafide and

746 PA images fabricated with more than 8 PA types. Eight PA types were known (i.e., seen by

Spoof Buster during training), namely, Ballistic Gelatin, Clear Ecoflex, Tan Ecoflex, Yellow Pig-

mented Silicone, Flesh Pigmented Ecoflex, Nusil R-2631 Conductive Silicone, Flesh Pigmented
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Table 2.7 Summary of the datasets collected during Government Controlled Test (GCT) I, II, and
III as part of the IARPA ODIN program [123].

GCT-I GCT-II GCT-III
CrossMatch Lumidigm CrossMatch CrossMatch

# Subjects 340 340 400 685
# PA Types 4 4 8+ 12

# Bonafide Samples 6,781 5,842 7,852 13,241
# PA Samples 232 207 746 1,049

Total 7,013 6,049 8,598 14,290

PDMS, and Elmer’s Glue. A few fingerprint presentations obfuscated with bandaids were also

labeled as PA.

More recently, during Oct. 28 - Nov. 15, 2019, Government Controlled Test - III (GCT-III)

was conducted at JHU facility in Columbia, Maryland. A total of 14, 290 fingerprint images from

685 subjects were collected on CrossMatch Guardian 200, including 13, 241 bonafide and 1, 049

PA images fabricated with more than 12 PA types. Figure 2.17 presents the timeline of the IARPA

ODIN Program. Table 2.7 summarizes the number of bonafide and PA samples collected in the

three government evaluation datasets.

2.6.2.5 Altered Fingerprint Dataset

An operational dataset of 4, 815 altered fingerprints, from 635 tenprint cards of 270 subjects [170],

acquired from law enforcement agencies is utilized to evaluate the proposed approach. The number

of tenprint cards per subject varies from 1 to 16 due to multiple encounters. However, not all 10

fingerprint images in a tenprint card may be altered. The number of altered fingerprint instances per

subject varies from 1 to 137. Another operational dataset of 4, 815 rolled fingerprint images is used

for bonafide fingerprints [15]. Fingerprint images in both sets of altered and bonafide are images

collected as part of law enforcement operations. All images are 8-bits gray scale. Figure 2.18

shows distribution of NFIQ 2.0 [75, 151] scores for the altered and bonafide fingerprint images

used in this study17. A five-fold cross-validation is employed where in each of the five folds, the

training set contains 3, 852 altered and 3, 852 bonafide fingerprints. The testing set in each fold
17NFIQ 2.0 software reads a fingerprint image, computes a set of quality features from the image, and uses these

features to predict the utility of the image as an integer score between 0 and 100.
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Figure 2.18 Histogram of NFIQ 2.0 quality scores for bonafide/valid (green) and altered (red)
fingerprint images. Approximately, 75% of altered fingerprint images have a NFIQ 2.0 score of
40 or lower, and only 10% of altered dataset has a NFIQ 2.0 score of larger than 50. The median
NFIQ 2.0 score for altered fingerprint images is 23, while median NFIQ 2.0 score for bonafide
fingerprint images is 48. This suggests NFIQ 2.0’s suitability for detecting altered fingerprints,
particularly for cases of fingerprint obliteration. (Best viewed in color)

contains the remaining 963 altered and 963 bonafide fingerprints, such that the train and test sets

are disjoint. Figure 2.19 shows sample altered and bonafide images used for training and testing in

one of the five folds.

2.6.3 Spoof Detection Results

The proposed approach is evaluated under the following four scenarios of fingerprint spoof detec-

tion, which reflect an algorithm’s robustness against new spoof materials, use of different sensors

and/or different environments.
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Figure 2.19 Example of altered and bonafide fingerprint images used for training and testing in one
of the five folds. The altered region is highlighted in red. The NFIQ 2.0 quality scores are also
presented for each image; the larger NFIQ 2.0 score, the higher fingerprint quality. The NFIQ 2.0
quality scores ranges between [0, 100].

2.6.3.1 Intra-Sensor, Known Spoof Materials

In this setting, all the training and testing images are captured using the same sensor, and all spoof

fabrication materials utilized in the test set are known a priori. Our experimental results show that

training the MobileNet-v1 model from scratch, using minutiae-based local patches, performs better

than fine-tuning a pre-trained network, as reported in [119]. The large amount of available data,

in the form of local fingerprint patches, is sufficient to train the deep architecture of MobileNet-v1

model without over-fitting.

It was reported in [57] that most of the algorithms submitted to LivDet 2015 did not perform

well on Digital Persona sensor due to the small image size. Our approach based on local patches

does not suffer from this limitation. Tables 2.8 and 2.9 present the performance comparison be-

tween the proposed approach and the state-of-the-art results for the LivDet datasets utilized in
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Table 2.8 Performance comparison between the proposed approach (bottom) and state-of-the-art
(top) reported on LivDet 2015 dataset [113]. Separate networks are trained on the training images
captured by each of the four fingerprint readers. Ferrfake known and Ferrfake unknown correspond
to Known Spoof Materials and Cross-Material scenarios, respectively.

St
at

e-
of

-t
he

-A
rt

[1
13

] LivDet 2015 Ferrlive
(%)

Ferrfake†
(%)

Ferrfake
known (%)

Ferrfake
unknown* (%)

ACE
(%)

Ferrfake (%) @
Ferrlive= 1% [57]

GreenBit 3.50 5.33 4.30 7.40 4.60 17.90
Biometrika 8.50 3.73 2.70 5.80 5.64 15.20
Digital Persona 8.10 5.07 4.60 6.00 6.28 19.10
Crossmatch 0.93 2.90 2.12 4.02 1.90 2.66
Average 4.78 4.27 3.48 5.72 4.49 13.24

Pr
op

os
ed

A
pp

ro
ac

h LivDet 2015 Ferrlive
(%)

Ferrfake†
(%)

Ferrfake
known (%)

Ferrfake
unknown* (%)

ACE
(%)

Ferrfake (%) @
Ferrlive = 1%

GreenBit 0.50 0.80 0.30 1.80 0.68 0.53
Biometrika 0.90 1.27 0.60 2.60 1.12 1.20
Digital Persona 1.97 1.17 0.85 1.80 1.48 1.96
Crossmatch 0.80 0.48 0.82 0.00 0.64 0.28
Average 1.02 0.93 0.64 1.48 0.97 0.96

† Ferrfake includes spoofs fabricated using both known and previously unseen materials. It is an average of
Ferrfake-known and Ferrfake-unknown, weighted by the number of samples in each category.
*The unknown spoof materials in LivDet 2015 test dataset include Liquid Ecoflex and RTV for Green Bit,
Biometrika, and Digital Persona sensors, and OOMOO and Gelatin for Crossmatch sensor.

this study. Table 2.10 presents the performance of the proposed approach on MSU Fingerprint

Presentation Attack Dataset (MSU-FPAD) and Precise Biometrics Spoof-Kit Dataset (PBSKD).

Independent MobileNet-v1 networks are trained for each evaluation. Note that in LivDet 2015

(Table 2.8), this scenario is represented by the Ferrfake known. For LivDet 2011 and 2013, MSU-

FPAD, and PBSKD datasets (Table 2.9), all spoof materials in the test set were known during

training. Fig. 2.20 presents example fingerprint images for Biometrika sensor from LivDet 2015

dataset that were correctly and incorrectly classified by the proposed approach.

We also evaluate the impact of local patch size on the performance of the proposed approach,

by comparing the performance of three CNN models trained on minutiae-centered local patches of

size [p×p] where p = {64, 96, 128}, extracted from the fingerprint images captured by Biometrika

sensor for LivDet 2011 dataset. Among these three models, the one trained on local patches of size

[96×96] performed the best. However, a score-level fusion, using average-rule, of the three models

reduced the average classification error (ACE) from 1.24% to 0.88%, and Ferrfake from 1.41% to
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Table 2.9 Performance comparison between the proposed approach and state-of-the-art results re-
ported on LivDet 2011 and LivDet 2013 datasets for intra-sensor experiments in terms of Average
Classification Error (ACE) and Ferrfake @ Ferrlive = 1%.

Dataset State-of-the-Art Proposed Approach
LivDet 2011 ACE (%) ACE (%) Ferrfake @ Ferrlive = 1%
Biometrika 4.90 [61] 1.24 1.41
Digital Persona 1.85 [126] 1.61 3.25
ItalData 5.10 [126] 2.45 7.21
Sagem 1.23 [126] 1.39 4.33
Average 3.27 1.67 4.05
LivDet 2013
Biometrika 0.65 [126] 0.20 0.00
ItalData 0.40 [119] 0.30 0.10
Average 0.53 0.25 0.05

Table 2.10 Average Classification Error (ACE), Ferrfake @ Ferrlive = 0.1% and Ferrlive = 1% on
the MSU Fingerprint Presentation Attack Dataset (MSU-FPAD) and Precise Biometrics Spoof-Kit
Dataset (PBSKD) for intra-sensor experiments.

Dataset Proposed Approach
MSU-FPAD ACE (%) Ferrfake @ Ferrlive = 0.1% Ferrfake @ Ferrlive = 1%
CrossMatch Guardian 200 0.08 0.11 0.00
Lumidigm Venus 302 3.94 10.03 1.30
Average 2.01 5.07 0.65
PBSKD
CrossMatch Guardian 200 2.02 5.32 0.65
Lumidigm Venus 302 1.93 3.84 0.33
Average 1.98 4.66 0.51

0.58% @ Ferrlive = 1%. Similar performance gains were observed for other sensors, but there is a

trade off between the performance gain and the computational requirements for the spoof detector.

In order to evaluate the significance of utilizing minutiae locations for extracting local patches,

we trained independent MobileNet-v1 models on a similar number of local patches, extracted ran-

domly from LivDet 2015 datasets. It was observed that the models trained on minutiae-centered

local patches achieved a significantly higher reduction (78%) in average classification error, com-

pared to the reduction (33%) achieved by the models trained on randomly sampled local patches.

Fig. 2.21 illustrates that (i) features extracted from local patches provide better spoof detection

accuracy than the whole image, (ii) patches selected around minutiae perform better than random

patches of the same size, (iii) 96 × 96 patch performs the best among the three patch sizes con-
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(a)	Correctly	classified	live	fingerprint

Spoofness	Score	=	0.14

(b)	Correctly	classified	spoof	fingerprint

Spoofness	Score	=	0.98

(c)	Incorrectly	classified	live	fingerprint

Spoofness	Score	=	0.88

(d)	Incorrectly	classified	spoof	fingerprint

Spoofness	Score	=	0.49

Figure 2.20 Example live and spoof fingerprints for Biometrika sensor from LivDet 2015 dataset,
correctly and incorrectly classified by our proposed approach. (Best viewed in color)

sidered, and (iv) score-level fusion of multi-resolution local patches boosts the spoof detection

performance.

2.6.3.2 Intra-Sensor, Cross-Material

In this setting, the same sensor is used to capture all training and testing images, but the spoof im-

ages in the testing set are fabricated using new materials that were not seen during training. For the

first set of cross-material experiments, we utilize (i) the LivDet 2017 dataset which contains three

completely different spoof materials in the testing for each sensor, i.e., Gelatine, Latex, and Liquid

Ecoflex, and (ii) the LivDet 2015 dataset which contains two new spoof materials in the testing

set for each sensor, i.e., Liquid Ecoflex and RTV for Green Bit, Biometrika, and Digital Persona

sensors, and OOMOO and Gelatin for Crossmatch sensor. The performance of the proposed ap-
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Figure 2.21 ROC curves for live v. spoof classification of fingerprint images from LivDet 2011
Dataset (Biometrika sensor) utilizing (i) whole image, (ii) randomly selected patches [96 × 96],
(iii) minutiae-based patches of size [p × p], p ∈ {64, 96, 128}, (iv) score-level fusion of multi-
resolution patches. (Best viewed in color)

proach on cross-material experiments for LivDet 2017 and LivDet 2015 datasets are presented in

Table 2.11 and Table 2.8 (column F errfake unknown), respectively, and is compared with the state-

of-the-art performance reported in [113, 114]. A significant reduction in the error rate is achieved

by the proposed method. For better generalizability, a second set of cross-material experiments

are performed on LivDet 2011 and LivDet 2013 datasets, following the protocol adopted by the

winner of LivDet 2015 [119]. Table 2.12 presents the achieved error rates on these experiments,

along with the spoof fabrication materials used in training and testing sets.

2.6.3.3 Cross-Sensor Evaluation

In this evaluation, the training and the testing images are obtained from two different sensors but

from the same dataset. This setting reflects the algorithm’s strength in learning the common char-

acteristics used to distinguish live and spoof fingerprints across fingerprint acquisition devices. For
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Table 2.11 Performance comparison between the proposed approach and state-of-the-art re-
sults [114] reported on LivDet 2017 dataset for cross-material experiments in terms of Average
Classification Error (ACE) and Ferrfake @ Ferrlive = 1%.

LivDet 2017 Dataset [114] State-of-the-Art Proposed Approach
ACE (%) ACE(%) Ferrfake @ Ferrlive = 1%

GreenBit 2.94 2.33 6.57
Orcanthus 5.84 7.04 26.05
Digital Persona 4.41 2.90 20.32
Average (LivDet 2017 Winner) 4.40 (4.75) 4.09 17.65

Table 2.12 Performance comparison between the proposed approach and state-of-the-art results
reported on LivDet 2011 and LivDet 2013 datasets for cross-material experiments, in terms of
Average Classification Error (ACE) and Ferrfake @ Ferrlive = 1%.

Dataset Spoof Materials State-of-
the-Art

Proposed Approach

Materials - Training Materials - Testing ACE (%) ACE (%) Ferrfake @
Ferrlive = 1%

Biometrika 2011 EcoFlex, Gelatine, Latex Silgum, WoodGlue 10.10 [119] 4.60 8.15
Biometrika 2013 Modasil, WoodGlue EcoFlex, Gelatine, Latex 2.10 [126] 1.30 0.34
ItalData 2011 EcoFlex, Gelatine, Latex Silgum, WoodGlue, Other 7.00 [126] 5.20 7.80
ItalData 2013 Modasil, WoodGlue EcoFlex, Gelatine, Latex 1.25 [126] 0.60 0.68
Average 5.11 2.93 4.24

instance, using the LivDet 2011 dataset, images from the Biometrika sensor are used for training,

and the images from ItalData sensor are used for testing. We follow the protocol for selection of

training and testing sets for cross-sensor and cross-dataset experiments as adopted by Nogueira et

al. [119]. Table 3.7 compares the average classification error and Ferrfake @ Ferrlive = 1% for

the proposed approach with the state-of-the-art results obtained by [119] and [126] on cross-sensor

experiments.

2.6.3.4 Cross-Dataset Evaluation

In this scenario, the training and the testing images are obtained using the same sensor, but from

two different datasets, (i.e., only the capture environments are different). For instance, training

images are acquired using the Biometrika sensor from LivDet 2011 dataset and the testing images

are acquired using the Biometrika sensor from LivDet 2013. This set of experiments captures

the algorithm’s invariance to the changes in environment for data collection. Table 2.14 presents

the average classification error and Ferrfake @ Ferrlive = 1%. Results in Table 2.14 show that the
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Table 2.13 Performance comparison between the proposed approach and state-of-the-art re-
sults [119] reported on LivDet 2011 and LivDet 2013 datasets for cross-sensor experiments, in
terms of Average Classification Error (ACE), and Ferrfake @ Ferrlive = 1%.

Training Dataset (Testing Dataset) State-of-the-Art Proposed Approach
ACE (%) ACE (%) Ferrfake (%) @

Ferrlive = 1%
Biometrika 2011 (ItalData 2011) 29.35 [126] 25.35 50.81
ItalData 2011 (Biometrika 2011) 27.65 [126] 25.21 76.20
Biometrika 2013 (ItalData 2013) 1.50 [126] 4.30 12.73
ItalData 2013 (Biometrika 2013) 2.30 [119] 3.50 70.35
Average 15.20 14.59 52.52

Table 2.14 Performance comparison between the proposed approach and state-of-the-art re-
sults [126] reported on LivDet 2011 and LivDet 2013 datasets for cross-dataset experiments, in
terms of Average Classification Error (ACE) and Ferrfake @ Ferrlive = 1%.

Training Dataset (Testing Dataset) State-of-the-Art Proposed Approach
ACE (%) ACE (%) Ferrfake (%) @

Ferrlive = 1%
Biometrika 2011 (Biometrika 2013) 14.00 [126] 7.60 89.60
Biometrika 2013 (Biometrika 2011) 34.05 [126] 31.16 78.84
ItalData 2011 (ItalData 2013) 8.30 [126] 6.70 16.70
ItalData 2013 (ItalData 2011) 44.65 [126] 26.16 75.09
Average 25.25 17.91 65.06

proposed local patch based approach achieves a reduction of 29% in the average classification error

from 25.25% in [126] to 17.91% in our approach. However, the average Ferrfake @ Ferrlive = 1%

that we report is 52.52% and 65.06% for cross-sensor and cross-dataset scenarios respectively,

indicating the challenges, especially in applications where a high level of spoof detection accuracy

is needed.

2.6.3.5 Government Controlled Tests

The evaluation scenario of GCT-I, GCT-II, and GCT-III is similar to a cross-dataset evaluation,

as we utilize the same fingerprint reader for collecting training and testing data, but in different

environments. The training data is collected in a lab environment at MSU whereas testing dataset

are collected in a simulated operational setting at JHU facilities in Maryland. Table 2.15 presents

the achieved PA True Detection Rate (%) @ False Detection Rate = 0.2%. The selection of this
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Table 2.15 True Detection Rate (%) @ False Detection Rate = 0.2% on the GCT-I, GCT-II, and
GCT-III evaluation datasets.

Dataset Proposed Approach
GCT-I TDR (%) @ FDR = 0.2%
CrossMatch Guardian 200 99.60
Lumidigm Venus 302 97.44
GCT-II
CrossMatch Guardian 200 99.20
GCT-III
CrossMatch Guardian 200 99.81

metric is based on the requirements of IARPA ODIN program [123] and represents the percentage

of PAs able to breach the biometric system security when the reject rate of legitimate users≤ 0.2%.
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Figure 2.22 Performance curves for the proposed altered fingerprint detection approach utilizing
Inception-v3 and MobileNet-v1 CNN models. Yoon et al. [170] (baseline) achieved a TDR of 70%
@ FDR = 2% on 4,433 altered fingerprints, while the proposed approach achieves a TDR (over five
folds) of 99.24% ± 0.58% @ FDR = 2% on 4,815 altered fingerprints. (Best viewed in color)
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Figure 2.23 Alteration score histograms for bonafide and altered fingerprints obtained by the pro-
posed approach using the best performing Inception-v3 model. The small overlap between the
bonafide and altered score distributions is an indication of high discrimination power of the model.
Note that the Y-axis is presented in log scale. (Best viewed in color)

2.6.4 Altered Fingerprint Detection and Localization

Figure 2.22 shows the Receiver Operating Characteristic (ROC) curves for the proposed al-

tered fingerprint detection approach (Inception-v3 and MobileNet-v1) compared with state-of-the-

art [170]. The red curve shows the accuracy of the Inception-v3 implementation and the blue curve

shows the accuracy of the MobileNet-v1 implementation. Inception-v3 outperforms MobileNet-v1

architecture (∼ 99% to ∼ 92%), while the computational requirement18 for MobileNet-v1 (6 ms)

is almost 10 times lower compared to time required by the Inception-v3 architecture (50 ms). The

superior performance of Inception-v3 over Mobilenet-v1 network can be attributed to (i) the deeper

convolutional network providing higher discrimination power and (ii) the larger input image size,

299× 299 for Inception-v3 compared to 224× 224 for Mobilenet-v1. Both network models show

better detection performance than Yoon and Jain [170] which had a true detection rate of only

70.2% at a false positive rate of 2%.

18We utilized NVIDIA GTX 1080 Ti GPU to run our implementation of Inception-v3 and MobileNet-V1 based
altered fingerprint detection.
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Figure 2.24 Example detections and their alteration scores output by the proposed approach. (a)
and (d) present correctly classified images, while (b) and (c) present incorrect classifications. (b)
a bonafide fingerprint that receives a high alteration score primarily due to the noisy region on the
right. (c) contains a small region of alteration which is similar to the noise present in bonafide
fingerprints.
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Figure 2.25 Example images with possible ground truth labeling error. (a) Incorrectly labeled as
altered, and (b) incorrectly labeled as bonafide. The Inception-v3 model outputs an alteration score
of 0.20 and 0.97 for (a) and (b), respectively, indicating (a) as bonafide and (b) as altered.

Figure 2.23 shows the histograms of scores produced by our Inception-v3 model for bonafide

and altered fingerprint images. The very small overlap of the two distributions is an indication of

the high accuracy of our model. We further investigated the images that were incorrectly labeled by

our model according to the ground truth labels given at the time of training. Our visual inspection

of these images suggests that some of images labeled as bonafide, look like altered fingerprints.

This could be due to intentional alteration or cases of poor quality where fingerprint characteristics

are degraded because of age or occupation (bricklayers, for example, are known to have poor

quality fingerprints because their skin is severely damaged). On the other hand, some of the images

labeled as altered, have a relatively small portion of the image as altered and most parts of the image

look bonafide. In other words, most of the failure cases are due to the subjectivity of the labeling

process. Example images of correct and incorrect classifications by the Inception-v3 model are

shown in Figure 2.24 along with the scores generated by our model. Examples of incorrect ground

truth labels are shown in Figure 2.25.
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Figure 2.26 A confusion matrix of correct and incorrect classifications of bonafide and PA patches.
The crucial regions that are responsible for the prediction made by the CNN architecture (CNN-
Fixations) and the corresponding density heatmaps are illustrated on each local patch.

To evaluate the localization of fingerprint alterations, a two-fold cross validation is performed.

Two Inception-v3 networks are trained using 81, 969 bonafide and 89, 979 altered patches, achiev-

ing an average EER of 8.5%.

2.7 Visualizing CNN Learnings

The use of convolutional neural networks (CNNs) has revolutionized computer vision and ma-

chine learning research achieving unprecedented performance in many tasks. But such solutions

are usually considered as “black boxes” shedding little light on how they achieve high performance.

One way to gain insights into what CNNs learn is through visual exploration, i.e., to identify the

image regions that are responsible for the final predictions. Towards this goal, visualization tech-

niques [112, 144, 146] have been proposed to supplement the class labels predicted by CNN, in

our case bonafide or PA, with the discriminated image regions (or saliency maps) exhibiting class-

specific patterns learned by CNN architectures. The visualization technique proposed in [112]

exploits the learned feature dependencies between consecutive layers of a CNN to identify the dis-
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Figure 2.27 Examples of misclassified bonafide and PA fingerprint images along with the spoof-
ness score (SS) output by the CNN architecture. Density heatmaps of the CNN-fixations are also
presented.

criminative pixels, called CNN-Fixations, in the input image that are responsible for the predicted

label. We utilize this visualization technique to understand the representation learning of our CNN

models and identify the crucial regions in fingerprint patches responsible for final predictions.

Figure 2.26 presents a confusion matrix of correct and incorrect classifications of bonafide and

PA patches illustrating CNN-Fixations and the corresponding density heatmaps. We observe that

there is a high density of fixations along friction ridge lines and at pore locations, suggesting that

these are definitely crucial regions in distinguishing bonafide vs PA patches. Figure 2.27 presents

additional examples of misclassified bonafide and PA fingerprint images along with a couple of

local patches. In the case of bonafide whole image misclassified as PA, we observe a high density

of points on the right edge of the image where the friction ridge lines are collapsed due to high

moisture resulting in narrow valleys. In the case of misclassified PA image, the CNN-fixations

exhibit a multi-modal distribution where the right region is dominating resulting in the average

spoofness score of 0.39.

A deep convolutional neural network (CNN) is shown to be universal, implying that it can be

used to approximate any continuous function to an arbitrary accuracy given the depth of the neural

network is large enough [173]. “Instead of using a general filter bank, a neural network is trained
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Figure 2.28 Illustration of the filter outputs, for a live and a spoof fingerprint patch, after the first
and third convolution layers in the CNN architecture (Inception-v3). Different filters focus on
different features such as location of sweat pores, noise artifacts, friction ridge, valley noise, etc.
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to find a minimal set of specific filters, so that both the feature extraction and classification tasks

are performed by the same unified network” [81]. After training the Fingerprint Spoof Buster, we

use the same live and spoof fingerprint patches used in Figure 2.8 to visualize the filter outputs

after the first and third convolution layers in the CNN architecture, shown in Figure 2.28. We

observe that different filters focus on different features such as location of sweat pores, noise

artifacts, friction ridge, valley noise, etc., marked in red. The CNN-architecture learns the non-

linear complex relationship between the different features extracted at various scales from the

input fingerprint image to achieve the high performance. It is however still an on-going research

problem to understand and visualize the features learned by the CNN architectures.

2.8 Computing Times

The MobileNet-v1 CNN model takes around 6-8 hours to converge using a single Nvidia GTX

1080 Ti GPU with approximately 96, 000 local patches from 2, 000 fingerprint images (2, 000

images × 48 patches/fingerprint image) in the training set. The average spoof detection time for

an input image, including minutiae detection, local patch extraction and alignment, inference of

spoofness scores for local patches, and producing the final spoof detection decision, is 100 ms

using a Nvidia 1080Ti GPU and 1, 500 ms on a commodity smartphone.

2.9 Fingerprint Spoof Buster Lite

Fingerprint Spoof Buster evaluates all local patches corresponding to the detected minutiae. The

individual scores output by the CNN model for each of the local patches is averaged to produce a

global spoofness score. The time required to evaluate a single patch utilizing MobileNet-v1 CNN

model on a commodity smartphone, such as Samsung Galaxy S819 (Qualcomm Snapdragon 835

64-bit Octa Core 2.35GHz Processor and 4GB RAM), is around 48ms. This results in an average

execution time of 1.5 seconds per image (with an average no. of 35 minutiae/image). Moreover, a

19https://www.gsmarena.com/samsung galaxy s8-8161.php

78

https://www.gsmarena.com/samsung_galaxy_s8-8161.php


(a) (b) (c) (d)

Figure 2.29 Minutiae clustering. (a) fingerprint image; (b) extracted minutiae overlaid on (a); (c)
96 × 96 patches centered at each minutiae; (d) minutiae clustering using k-means (k is set to 10
here). The clusters, highlighted as yellow circles of same size, are shown only for illustrative
purposes. In practice, the cluster sizes may vary based on the minutiae distribution.

MobileNet-v1 trained model in ProtoBuf (.pb) format takes around 13MB. These computation and

memory requirements are too large to yield an acceptable “real-time” spoof detection of a fraction

of a second.

2.9.1 Proposed Optimizations

In order to reduce the memory and computation requirements for real-time operation on a com-

modity smartphone, we propose the following two optimizations:

Model Quantization: Tensorflow-lite20 is used to convert the MobileNet-v1 (.pb) model to

tflite format, resulting in a light-weight and low-latency model with weights quantized to perform

byte computations instead of floating point arithmetic. The resultant model takes only 3.2MB of

memory and can execute PAD for a single patch on s Samsung Galaxy S8 smartphone in around

10ms, approximately 80% reduction in computation and memory requirements.

Reduce the required number of inferences: It has been observed that minutiae points in a finger-

print image are distributed in a non-uniform manner [127]. This obviates the need for evaluating all

minutiae-centered patches. We cluster the minutiae using K-means clustering [80] (see Figure 2.29

20https://www.tensorflow.org/lite/
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Table 2.16 Detection time and PAD performance (TDR @ FDR = 0.2%) of Fingerprint Spoof
Buster Lite.

# Minutiae Clusters Time Required (in ms) (Avg.
± s.d.)

TDR (%) @ FDR = 0.2%

5 53± 10 93.9± 1.1
10 98± 8 95.3± 0.5
15 151± 11 95.3± 0.5
20 202± 10 95.3± 0.6
25 247± 24 95.7± 0.5
30 301± 25 95.7± 0.4

All Minutiae (avg. = 35) 510± 26 95.7± 0.1
Note: Samsung Galaxy S8 smartphone (Qualcomm Snapdragon 835 64-bit Octa Core 2.35GHz Processor and 4GB
RAM) costs $349.

(d)), extract a single patch (96 × 96) centered at the centroid of each cluster, and assign a weight

to each cluster based on the number of members (minutiae points) that belong to that cluster. A

cluster with large number of (minutiae) members is given a higher weight. The final spoofness

score is computed as a weighted average of spoofness scores of centroid-based local patches. The

weighted score-fusion is utilized to achieve a similar global spoofness score as obtained in the case

when no clustering is performed.

Apart from the above two optimizations, we modify the MobileNet-v1 network such that the

input image size is 96× 96, the same size as the minutiae patch. Correspondingly, the kernel size

used in the last average pool layer is reduced from 7 × 7 to 3 × 3. This reduces the time required

to train the network on a dataset with around 100, 000 patches from 6-8 hours to 2-2.5 hours using

a single NVIDIA GTX 1080Ti GPU, without any drop in PAD performance. We utilized the

tensorflow-slim library21 for our experiments.

Table 2.16 presents the accuracy of Fingerprint Spoof Buster Lite (TDR (%) @ FDR = 0.2%)

and the average time required to evaluate minutiae-based patches on Galaxy S8. Since the out-

put clusters from K-means clustering depend on the cluster initialization, we use 5-fold cross-

validation and report average± std. for both the evaluation time and PAD performance. Table 2.16

shows that a total of 10 minutiae clusters are suitable to maintain PAD performance (TDR = 95.3%

21https://github.com/tensorflow/models/tree/master/research/slim
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Figure 2.30 User interface of the Android application, Fingerprint Spoof Buster Lite shown in (a).
It allows selection of an inference model as shown in (b). The user can load a fingerprint image
from phone storage or capture a live scan from a fingerprint reader as shown in (c). The app
executes PAD and displays the final decision along with highlighted local patches on the screen
shown in (d) and (e).

compared to 95.7% @ FDR = 0.2%), while reducing the computational requirement by almost

80%.

2.9.2 Android Application

Given the reduction in resource requirements, an Android-based application (app) for Fingerprint

Spoof Buster, called Fingerpint Spoof Buster Lite, was developed. The app provides an option to

select an inference model trained on images from different fingerprint readers such as CrossMatch,

SilkID22, etc., as shown in Figure 2.30 (b). The app can evaluate a fingerprint image input by a fin-

gerprint reader connected to the mobile phone via an OTG (on-the-go) cable. It also allows loading

and evaluating an image from the phone storage/gallery (see Figure 2.30 (c)). The app displays

the captured image with extracted fingerprint minutiae overlaid on the fingerprint image. Local

patches centered around the centroid of minutiae clusters are evaluated and highlighted based on

the spoofness score. After evaluation, the app presents the final decision (Live / Spoof), spoofness

score, and PA detection time (see Figures 2.30 (d) and (e)).

22http://www.silkid.com/products/
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2.10 Summary

A robust and accurate method for fingerprint presentation attack detection is critical to ensure

the reliability and security of fingerprint authentication systems. In this chapter, we have utilized

fingerprint domain knowledge by extracting local patches centered and aligned using minutiae in

the input fingerprint image for fingerprint presentation attack detection. The local patch based

approach, called Fingerprint Spoof Buster, provides salient cues to differentiate PA fingerprints

from bonafide fingerprints. Spoof buster is able to achieve a significant reduction in the error rates

for intra-sensor (63%), cross-material (43%), cross-sensor (4%), and cross-dataset scenarios (29%)

compared to state-of-the-art on public domain datasets. A GUI is developed to allow an operator

or system designer to analyze the input fingerprint images for bonafide and PA regions. We also

trained a CNN model using operational datasets of 4, 815 altered and 4, 815 bonafide fingerprint

images for altered fingerprint detection and localization. Our altered fingerprint detection model

achieves a True Detection Rate (TDR) of 99.24% @ False Detection Rate (FDR) of 2%, compared

to the previous state-of-the-art result of TDR = 70% at FDR = 2% which used a smaller operational

dataset. Finally, we presented a light-weight version of the proposed PAD as an Android app that

can run on a commodity smartphone (Samsung Galaxy S8) without significant drop in performance

and make a PA detection in real-time (under 100ms).
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Chapter 3

Fingerprint PAD Generalization

In the previous chapter, we tackled fingerprint presentation attack detection (PAD) by utilizing lo-

cal patches (96 × 96) centered and aligned using fingerprint minutiae to train MobileNet-v1 and

Inception-v3 models. This fusion of fingerprint domain knowledge (minutiae) and deep-learning

based approaches provided state-of-the-art performance for fingerprint PAD. In this chapter, we

address one of the major challenges of deep-learning based PAD approaches, namely, fingerprint

PAD generalization. Our main focus is to improve cross-material and cross-sensor PAD general-

ization performance, while maintaining high performance in the known-material and known-sensor

scenarios.

3.1 Introduction

New approaches to fingerprint PAD have proposed convolutional neural network (CNN) based so-

lutions which have been shown to outperform hand-crafted features on publicly available LivDet

databases [23, 24, 87, 110, 119, 126, 156]. However, one of the major limitations of existing PAD

approaches is their poor generalization performance across “unknown” PA materials, that were

not used during training. To generalize an algorithm’s effectiveness across PA fabrication mate-

rials, called cross-material performance, PA detection has been referred to as an open-set prob-
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Table 3.1 Summary of the studies primarily focused on fingerprint spoof generalization. The per-
formance metrics utilized in different studies include ACE = Average Classification Error; EER =
Equal Error Rate; and TDR = True Detection Rate (spoofs) @ a fixed FDR = False Detection Rate
(spoofs).

Study Approach Database Performance
Rattani et al. [135] Weibull-calibrated SVM LivDet 2011 EER = 19.70%

Ding & Ross [35] Ensemble of multiple one-class
SVMs

LivDet 2011 EER = 17.60%

Chugh & Jain [24] MobileNet trained on
minutiae-centered local patches

LivDet 2011-2015 ACE = 1.48% (LivDet 2015),
2.93% (LivDet 2011, 2013)

Chugh & Jain [26] Identify a representative set of
spoof materials to cover the deep

feature space

MSU-FPAD v2.0, 12
spoof materials

TDR = 75.24% @ FDR = 0.2%

Engelsma & Jain [46] Ensemble of generative
adversarial networks (GANs)

Custom database with
live and 12 spoof

materials

TDR = 49.80% @ FDR = 0.2%

Gonzlez-Soler et al. [59] Feature encoding of dense-SIFT
features

LivDet 2011-2015 TDR = 7.03% @ FDR = 1%
(LivDet 2015), ACE = 1.01%

(LivDet 2011, 2013)

Tolosana et al. [156] Fusion of two CNN architectures
trained on SWIR images

Custom database with
live and 8 spoof

materials

EER = 1.35%

Gajawada et al. [50] Style transfer from spoof to live
images to improve generalization;

requires few samples of target
material

LivDet 2015,
CrossMatch sensor

TDR = 78.04% @ FDR = 0.1%

Zhang et al. [172] Slim-ResCNN + Center of
Gravity patches

LivDet 2017 Avg. Accuracy = 95.25%

Proposed Approach Style transfer between known
spoof materials to improve

generalizability against
completely unknown materials

MSU-FPAD v2.0, 12
spoof materials &

LivDet 2017

TDR = 91.78% @ FDR =
0.2% (MSU-FPAD v2.0); Avg.
Accuracy = 95.88% (LivDet

2017)

lem1 [135]. Table 3.1 presents a summary of the studies primarily focused on cross-material PAD

generalization. Engelsma and Jain [46] proposed using an ensemble of generative adversarial net-

works (GANs) on live fingerprint images with the hypotheses that features learned by a discrimi-

nator to distinguish between real live and synthesized live fingerprints can be used to separate live

fingerprints from PA fingerprints as well. One limitation of this approach is that the discriminator

in the GAN architecture may learn many features related to structural noise added by the generative

process. Such features are likely not present in the PAs fabricated with unknown materials.

1Open-set problems address the possibility of new classes during testing, that were not seen during training.
Closed-set problems, on the other hand, evaluate only those classes that the system was trained on.
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Although, it has been shown that some PA materials2 are easier to detect (e.g. EcoFlex, Gelatin,

Latex) than others (e.g. Wood Glue, Silgum) when left out from training [24], the underlying rea-

sons are unknown. To understand and interpret the generalization performance against unknown

PAs, we investigate material characteristics (two optical and two physical properties) correlated

with cross-material performance and 3D t-SNE3 feature embeddings [103] to identify a represen-

tative set of materials that should be included to train a robust PAD. We also propose two different

approaches to improve the generalization performance. The main contributions of this chapter are:

1. Evaluated the generalization performance of Fingerprint Spoof Buster, a state-of-the-art

CNN-based PAD approach, by employing leave-one-out approach on a large dataset of 5, 743

bonafide and 4, 912 PA images using 12 different PA materials.

2. Investigated the 3D t-SNE visualization and material characteristics (two physical and two

optical) to identify a “representative set” of materials (Silicone, 2D paper, Play Doh, Gelatin,

Latex Body Paint, and Monster Liquid Latex) that could almost cover the entire PA feature

space.

3. Designed a style transfer-based wrapper, called Universal Material Generator (UMG), to im-

prove the generalization performance of any fingerprint spoof detector against spoofs made

from materials not seen during training. It attempts to synthesize impressions with style

(texture) characteristics potentially similar to unknown spoof materials by interpolating the

styles from known spoof materials.

4. Improved the cross-sensor spoof detection performance by synthesizing large-scale live and

spoof datasets using only 100 live images from a new target sensor. Our approach for

improving cross-material performance also improves the cross-sensor performance of two

state-of-the-art spoof detectors.

2Fig. 2.1 illustrates the twelve different PA materials used in this study.
3The approach T-distributed Stochastic Neighbor Embedding (t-SNE) models each high-dimensional object by a

two or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects
are modeled by distant points with high probability [103].
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5. Fabricated physical spoof artifacts using a mixture of known spoof materials to show that the

synthetically generated images using fingerprint images of the same set of spoof materials

correspond to an unknown material with similar style (texture) characteristics.

6. A dynamic PAD solution utilizing sequences of minutiae-based local patches to train a CNN-

LSTM architecture with the goal of learning discriminative spatio-temporal features for fin-

gerprint PA detection. The proposed approach improves the spoof detection performance

from TDR of 81.65% to 86.20% @ FDR = 0.2% in cross-material scenario using a dataset

of 26, 650 live captures from 685 subjects (1333 unique fingers) and 32, 930 PA frames from

7 PA materials (with 14 variants).

3.2 Databases used to investigate Fingerprint Generalization

The following datasets have been utilized in this study:

• MSU Fingerprint Presentation Attack Database (FPAD) v2.0

A database of 5, 743 live and 4, 912 spoof images captured on CrossMatch Guardian 2004,

one of the most popular slap readers. The database is constructed by combining the publicly

available MSU Fingerprint Presentation Attack Dataset v1.0 (MSU-FPAD v1.0) [24] and

Precise Biometrics Spoof-Kit Dataset (PBSKD). Tables 3.2 and 3.4 presents the details of

this database including the sensors used, 12 spoof materials, total number of fingerprint

impressions, and the number of minutiae-based local patches for each material type. Fig. 2.1

presents sample fingerprint spoof images fabricated using the 12 materials.

• LivDet 2017

LivDet 2017 [114] dataset is the most recent5 publicly-available LivDet dataset, containing

over 17, 500 fingerprint images. These images are acquired using three different fingerprint

readers, namely, Green Bit, Orcanthus, and Digital Persona. Unlike other LivDet datasets,

4https://www.crossmatch.com/wp-content/uploads/2017/05/20160726-DS-En-Guardian-200.pdf
5The testing set of LivDet 2019 database has not yet been made public.
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spoof fingerprint images included in the test set are fabricated using new materials (Wood

Glue, Ecoflex, and Body Double), that are not used in the training set (Wood Glue, Ecoflex,

and Body Double). Table 3.2 presents a summary of the LivDet 2017 dataset.

• SilkID Fast Frame Rate Dataset A large-scale fingerprint database of 26, 650 live frames

from 685 subjects, and 32, 930 PA frames of 7 materials (14 variants) collected on SilkID

SLK20R fingerprint reader is utilized in the evaluation of the proposed dynamic approach.

This database is constructed by combining fingerprint images collected from two sources.

First, as part of the IARPA ODIN program [123], a large-scale Government Controlled Test

(GCT-3) was conducted at Johns Hopkins University Applied Physics Laboratory (JHUAPL)

facility in Nov. 2019, where a total of 685 subjects with diverse demographics (in terms

of age, profession, gender, and race) were recruited to present their real (live) as well as

PA biometric data (fingerprint, face, and iris). The PA fingerprints were fabricated using

5 different materials (11 variants) and a variety of fabrication techniques, including use of

dental and 3D printed molds. For a balanced live and PA data distribution, we utilize only

right thumb and right index fingerprint images for the live data. Second, we collected PA

data in a lab setting using dental molds casted with three different materials, namely, Ecoflex

(with flesh tone pigment), Crayola Model Magic (red and white colors), and Dragon Skin

(with flesh tone pigment). The details of the combined database are summarized in Table 3.3.

3.3 Understanding PAD Generalization

We adopt the leave-one-out protocol to simulate the scenario of encountering unknown materials

with the goal of evaluating the generalization performance of Fingerprint Spoof Buster. One PA

material out of the 12 types is left out from the training set which is then utilized during testing.

This requires training a total of 12 different MobileNet-v1 models each time leaving out one of the

12 different PA types. The 5, 743 bonafide images are partitioned into training and testing such
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Table 3.2 Summary of the MSU-FPAD-v2 and LivDet 2017 datasets. Spoof fingerprint images
included in the test set of LivDet 2017 are fabricated using new materials that are not used in the
training set.

Dataset MSU-FPAD v2 [26] LivDet 2017 [114]

Fingerprint Reader CrossMatch Guardian 200
GreenBit Orcanthus Digital Persona

Dacty Scan 84C Certis2 Image U.are.U 5160

Image Size (px.) (w×h) 800× 750 500× 500 300× n† 252× 324

Resolution (dpi) 500 569 500 500

#Live (Train / Test) 4, 743 / 1, 000 1, 000 / 1, 700 1, 000 / 1, 700 999 / 1, 692

#Spoof (Train / Test) 4, 912 (leave-one-out) 1, 200 / 2, 040 1, 180∗ / 2, 018 1, 199 / 2, 028

Known Spoof Materi-
als (Training)

Leave-one-out: 2D Printed Paper, 3D Universal Tar-
gets, Conductive Ink on Paper, Dragon Skin, Gelatin,
Gold Fingers, Latex Body Paint, Monster Liquid Latex,
Play Doh, Silicone, Transparency, Wood Glue

Wood Glue, Ecoflex, Body Double

Unknown Spoof Mate-
rials (Testing)

Gelatine, Latex, Liquid Ecoflex

† Fingerprint images captured using Orcanthus reader have a variable height (350− 450px) depending on
the friction ridge content.
*A set of 20 Latex spoof fingerprints found in the training set of Orcanthus fingerprint reader were
excluded in our experiments. Only Wood Glue, Ecoflex, and Body Double are expected to be in the
training dataset.

that there are 1, 000 randomly selected bonafide images in the testing set and the remaining 4, 743

images are utilized in the training set.

3.3.1 Performance against Unknown Materials

Table 3.4 presents the performance of Fingerprint Spoof Buster against unknown presentation at-

tacks in terms of TDR @ FDR = 0.2%. The weighted average generalization performance achieved

by the PAD with the leave-one-out method is TDR = 75.24%, compared to TDR = 97.20% @ FDR

= 0.2% when all PA material types are known during training. The PA materials Dragon Skin,

Monster Liquid Latex, Transparency, 3D Universal Targets, and Conductive Ink on Paper are eas-

ily detected with a TDR ≥ 90% @ FDR = 0.2% even when these materials are not seen by the

models during training. On the other hand, PA materials such as PlayDoh, Gelatin, 2D Printed Pa-

per, and Silicone are the most affected when not seen during training achieving a TDR ≤ 70% @

FDR = 0.2%. To understand the reasons for this difference in performance for different materials,

we study the material characteristics in the next section.
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Table 3.3 Summary of the SilkID Fast Frame Rate fingerprint database collected at GCT-III as part
of IARPA ODIN Program [123].

PA Material Mold Type # Presentations # Frames
Ecoflex silicone

Ecoflex 00-35, flesh tone pigment Dental 757 7, 570
Ecoflex 00-50, flesh tone pigment 3D Printed 138 1, 380
Ecoflex 00-50, tan pigment 3D Printed 130 1, 300

Gelatin
Ballistic gelatin, flesh tone dye 3D Printed 50 500
Knox gelatin, clear 3D Printed 84 840

Third degree silicone
Light flesh tone pigment Dental 131 1, 310
Tan pigment Dental 98 980
Beige suede powder Dental 43 430
Medium flesh tone pigment Dental 36 360

Crayola Model Magic
White color Dental 910 9, 100
Red color Dental 308 3, 080

Pigmented Dragon Skin (flesh tone) Dental 452 4, 520

Conductive Silicone 3D Printed 87 870

Unknown PA (JHU-APL) 3D Printed 67 670

Total PAs 3,291 32,910

Total Lives (685 subjects) 2,665 26,650

3.3.2 PA Material Characteristics

Table 3.4 shows that some of the PA materials are easier to detect than others, even when left out

from training. To understand the reason for this, it is crucial to identify the relationship between

different PA types in terms of their material characteristics. If we can group the PA materials based

on shared characteristics, it can potentially be used to identify a set of representative materials to

train a robust and generalizable model. For the given dataset of fingerprint images from 12 different

spoof materials, we measured the following characteristics: (i) optical properties: Ultra Violet

- Visible (UV-Vis) spectroscopy response and Fourier Transform Infrared (FT/IR) Spectroscopy

response, and (ii) mechanical properties: material elasticity and moisture content. These material

characteristics were selected based on our discussions with material science experts6.

6Material resistivity would be an important characteristic when performing a similar analysis for capacitive finger-
print readers.
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Table 3.4 Summary of the dataset and generalization performance (TDR (%) @ FDR = 0.2%)
with leave-one-out method. A total of twelve models are trained where the material left-out from
training is taken as the new material for evaluating the model.

Fingerprint Presentation Attack
Material

#Images #Local Patches Generalization Performance
(TDR (%) @ FDR = 0.2%)

Silicone 1, 160 38, 145 67.62
Monster Liquid Latex 882 27, 458 94.77

Play Doh 715 17, 602 58.42
2D Printed Paper 481 7, 381 55.44

Wood Glue 397 12, 681 86.38
Gold Fingers 295 9, 402 88.22

Gelatin 294 10, 508 54.95
Dragon Skin 285 7, 700 97.48

Latex Body Paint 176 6, 366 76.35
Transparency 137 3, 846 95.83

Conductive Ink on Paper 50 2, 205 90.00
3D Universal Targets 40 1, 085 95.00

Total PAs 4,912 144,379 Weighted*
Total Bonafide 5,743 228,143 Average: 75.24

* The performance is weighted by the number of images for each material (similar to as performed for publicly- available LivDet Datasets).

3.3.2.1 Optical Properties

Ultra Violet - Visible (UV-Vis) spectroscopy: The UV-Vis response represents the absorption of

monochromatic radiations by the material at different wavelengths (ultraviolet (200-400 nm) to

visible spectrum (400-750 nm)). A peak in the UV-Vis response indicates that the material has high

absorbance of the light at that given wavelength [130]. A Perkin Elmar Lambda 900 UV/Vis/NIR

spectrometer7 was used to measure the light absorbance property of materials shown in Figure 3.1.

Fourier Transform Infrared (FT/IR) Spectroscopy: The FT/IR response of a given material is

a signature of its molecular structure. The molecules absorb frequencies that are characteristic of

their structure, called resonant frequencies, i.e., the frequency of the absorbed radiation matches

with the vibrational frequency [148]. An FT/IR signature is a graph of infrared light absorbance

(or transmittance) on the Y-axis vs. frequency on the X-axis (measured in reciprocal centimeters,

i.e., cm−1 or wave numbers). Figure 3.2 presents the FT/IR response of 12 different PA materials

measured by Jasco FT/IR-4600 spectrometer8. The FT/IR spectrometer provided material response

7http://www.perkinelmer.com/category/uv-vis-spectroscopy-uv
8https://jascoinc.com/products/spectroscopy/ftir-spectrometers/models/ftir-4000-series/
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Figure 3.1 Light absorbance property of twelve PA materials in 200nm - 800nm wavelength spec-
trum computed using a Perkin Elmar Lambda 900 UV/Vis/NIR spectrometer [130].

Figure 3.2 Fourier Transform Infrared Spectroscopy [148] of twelve PA materials in the 260 - 375
wavenumber range.

in the range 250−6, 000 wave numbers, but all the materials exhibited non-zero transmittance only

in the range 250− 375 wave numbers.

3.3.2.2 Mechanical Properties

Material Elasticity: A fingerprint spoof fabricated using an elastic material undergoes higher defor-

mation, resulting in large friction ridge distortion when the spoof is pressed against the fingerprint

reader’s glass platen, compared to less elastic materials. We classify the 12 different PA materials

into three classes based on their observed elasticity: (i) High elasticity: Silicone, Monster Liquid

Latex, Dragon Skin, Wood Glue, Gelatin, (ii) Medium elasticity: Play Doh, Latex Body Paint, 3D
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Figure 3.3 Representation of bonafide fingerprints and presentation attack instruments fabricated
with different materials in the 3D t-SNE feature space. The original representation is 1024-
dimensional obtained form the trained CNN model. (Best viewed in color). Available in 3D at
https://plot.ly/∼icbsubmission/0/livepa-feature-space/.

Universal Targets, and (iii) Low elasticity: 2D Paper, Gold Fingers, Transparency, and Conductive

Ink on Paper.

Moisture Content: Another crucial material property is the amount of moisture content, which

leads to varying degrees of contrast in the corresponding fingerprint image. PA materials with high

moisture content (e.g. Silicone) produce high contrast images compared to materials with low

moisture content (e.g. 2D Paper) on CrossMatch reader. We classify the 12 different PA materials

into three classes of moisture content level based on the observed image contrast: (i) High Moisture

Level: Silicone, Play Doh, Dragon Skin, (ii) Medium Moisture Level: Monster Liquid latex, Wood

Glue, Gold Fingers, Gelatin, 3D Universal Targets, and (iii) Low Moisture Level: 2D Paper, Latex

Body Paint, Transparency, Conductive Ink on Paper.
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Figure 3.4 Representation of bonafide and different subsets of PA materials in 3D t-SNE feature
space from different angles selected to provide the best view. The bonafide (dark green) and
silicone (navy blue) are included in all graphs for perspective. (Best viewed in color)

3.3.3 3D t-SNE Visualization of Bonafide and PAs

To explore the relationship between bonafide and different PA materials, we train a single multi-

class MobileNet-v1 model to distinguish between 13 classes, i.e., bonafide and 12 PA materials.

The training split includes a set of 100 randomly selected images or half the number of total images

(whichever is lower) from each of the bonafide and PA materials for a total of 1, 102 images. In

a similar manner, a test split is constructed from the remaining set of images for a total of 1, 101

images. This protocol is adopted to reduce the bias due to unbalanced nature of the training dataset.

We extract the 1024-dimensional feature vector from the bottleneck layer of the MobileNet-v1

network [71] and project it to 3 dimensions using the t-SNE approach [103] (see Figure 3.3).

Figures 3.4 (a)-(f) present the representation of bonafide and different subsets of PA materials in the

3D t-SNE feature space from different angles selected to provide a complete view. The Bonafide

(dark green) and Silicone (navy blue) are included in all graphs for perspective. The 3D graph is

generated using plotly library and is accessible at the link: https://plot.ly/∼icbsubmission/0/livepa-

feature-space/.
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Figure 3.5 Average Pearson correlation values between 12 PA materials based on the material
characteristics (two optical and two physical).

3.3.4 Representative Set of PA Materials

We utilize material characteristics and 3D t-SNE visualization to identify a set of representative

materials to train a robust and generalizable model. From the four material characteristics, two

continuous (i.e., optical characteristics) and two categorical (i.e., mechanical characteristics), we

compute four 12 × 12 correlation matrices. For the two continuous variables, we compute the

Pearson correlation9 between all pairs of materials to generate two correlation matrices Cuvvis and

Cftir. For the two categorical variables, if two PA materialsmi andmj belong to the same category,

we assign Ci,j = 1, else Ci,j = 0, to generate Celastic and Cmoisture. The four correlation matrices

corresponding to each of the four individual material characteristics, are averaged to generate the fi-

nal correlation matrixCmaterial, such thatCmaterial
i,j = (Cuvvis

i,j +Cftir
i,j +Celastic

i,j +Cmoisture
i,j )/4, (see

9MATLAB’s corr function is used to compute the Pearson correlation. https://www.mathworks.com/help/stats/
corr.html
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Figure 3.6 A complete-link dendrogram representing the hierarchical (agglomerative) clustering of
PAs based on the shared material characteristics.

Figure 3.5) which is utilized to perform complete-link hierarchical (agglomerative) clustering10 of

the 12 PA materials. Figure 3.6 shows a complete-link dendrogram representing the hierarchical

grouping of the 12 PA materials based on Cmaterial. Based on the 3D t-SNE visualization and the

hierarchical clustering of the 12 PA materials, we observe that:

• PA materials Silicone, Play Doh, Gelatin, and 2D Printed Paper are closest to Live finger-

prints in the 3D t-SNE feature space compared to other materials. This explains why exclud-

ing any one of these materials in the training set resulted in poor generalization performance

when tested against them. These PA materials appear in different clusters in the dendrogram

(see Figures 3.4 (a) and 3.6).

• PA material Dragon Skin is easily detected when Silicone is included in training set as sili-

cone is located between bonafide and Dragon Skin in the 3D t-SNE feature space (see Fig-

10We utilize MATLAB’s linkage and dendrogram functions with parameters method=‘complete’ and met-
ric=‘correlation’.
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ures 3.4 (b) and (d)). These materials, Dragon Skin and Silicone, also lie in the same cluster

indicating shared material characteristics.

• PA material Transparency is easily distinguishable when 2D Printed Paper is included in

training. In the t-SNE visualization, we observe that 2D Printed Paper appears in two dif-

ferent clusters, where one of the clusters is co-located with transparency (see Figures 3.4 (a)

and (e)).

• PA materials Wood Glue and Gelatin are close to each other in 3D t-SNE feature space,

potentially assisting each other if included in training (see Figure 3.4 (c)); whereas Gelatin

is closer to Bonafide, which explains its worse performance compared to Wood Glue. These

materials also form a second level cluster in the dendrogram.

• PA material Latex Body Paint is located between Bonafide and Conductive Ink on Paper,

and PA material Monster Liquid Latex lies between Bonafide and 3D Universal Targets in

3D t-SNE visualization, which could explain the high detection for Conductive Ink on Paper

and 3D Universal Targets (see Figure 3.4 (f)). However, these materials do not form a cluster

until the last agglomeration step, indicating possibility of other material characteristics that

could be further explored.

Based on these observations, we infer that a set of 6 PA materials (Silicone, 2D Paper, Play

Doh, Gelatin, Latex Body Paint, and Monster Liquid Latex) almost covers the entire feature

space around Bonafide (see Figure 3.4). A model trained using bonafide and these 6 PA mate-

rials achieved an average TDR = 89.76% ± 6.97% @ FDR = 0.2% when tested on each of the

remaining 6 materials. This performance is comparable to the average TDR = 90.97%± 7.27% @

FDR = 0.2% when 11 PA materials and bonafides are used for training, indicating no significant

contribution provided by including all the 11 PA materials in training. We posit that the PAD per-

formance against a new material can be estimated by analyzing its material characteristics instead

of collecting large datasets for each of the new materials.
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3.4 Improving PAD Generalization

It has been shown that the selection of PA materials used in training (known PAs) directly im-

pacts the performance against unknown PAs. In the previous section, we analyzed the material

characteristics of 12 different spoof materials to identify a representative set of six materials that

cover most of the PA feature space. Although, this approach can be used to identify if including

a new PA material in training dataset would be beneficial, it does not improve the generalization

performance against materials that are unknown during training. Moreover, with the increasing

popularity of fingerprint authentication systems, hackers are constantly devising new fabrication

techniques and novel materials to attack them. Also, it is prohibitively expensive to include all PA

fabrication materials in training a PA detector.

Additionally, fingerprint images captured using different fingerprint sensors typically have

unique characteristics due to different sensing technologies, sensor noise, and varying resolution.

As a result, fingerprint PA detectors are known to suffer from poor generalization performance in

the cross-sensor scenario, where the PAD is trained on images captured using one sensor and tested

on images from another. Improving cross-sensor PA detection performance is important in order to

alleviate the time and resources involved in collecting large-scale datasets with the introduction of

new sensors. Next, we present two different approaches to improve the generalization performance

of existing PAD solutions.

3.4.1 Universal Material Generator

In this section, we propose a style-transfer based wrapper, called Universal Material Generator

(UMG), to improve the cross-material and cross-sensor generalization performance of fingerprint

PA detectors against PAs made from materials not seen during training [28]. In particular, for the

cross-material scenario, we hypothesize that the texture (style) information from the known PA

types can be transferred from one type to another type to synthesize images potentially similar to

novel PAs fabricated from materials, not seen in the training set. We posit that the synthesized PA

97



Real Live Real Spoofs (Known) Unknown Spoof (gelatin)

Synthetic Live Synthetic Spoofs

(a) (b)

Figure 3.7 3D t-SNE visualization of feature embeddings learned by Fingerprint Spoof Buster [24]
of (a) live (dark green) and eleven known PA materials (red) (2D printed paper, 3D universal tar-
gets, conductive ink on paper, dragon skin, gold fingers, latex body paint, monster liquid latex,
play doh, silicone, transparency, and wood glue) used in training, and unknown PA, gelatin (yel-
low). A large overlap between unknown PA (gelatin) and live feature embeddings indicate poor
generalization performance of state of the art PA detectors. (b) Synthetic live (bright green) and
synthetic PA (orange) images generated by the proposed Universal Material Generator (UMG)
wrapper improve the separation between real live and real PA. 3D t-SNE visualizations are avail-
able at http://tarangchugh.me/posts/umg/index.html (Best viewed in color)

images may occupy the space between the images from known PA materials in the deep feature

space. Synthetic live fingerprint images are also added to the training dataset to force the CNN to

learn generative-noise invariant features which discriminate between lives and PAs. In the cross-

sensor scenario, we utilize a small set of only 100 bonafide fingerprint images from the target

sensor, say Green Bit, and transfer its sensor-specific style characteristics to large-scale live and

PA datasets available from a source sensor, say Digital Persona. Reusing large-scale PA datasets

from existing sensors will reduce the steep cost associated with collecting large-scale bonafide and

spoof databases for every new sensor.

The proposed UMG framework is used to augment CNN-based PA detectors, significantly

improving their performance against novel materials, while retaining their performance on known

materials. See Figure 3.10 for examples of some of the style transferred images.
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3.4.1.1 Related Work

Realistic image synthesis is a challenging problem. Early non-parametric methods faced difficulty

in generating images with textures that are not known during training [18]. Machine learning has

been very effective in this regard, both in terms of realism and generality. Gatys et al. [53] perform

artistic style transfer, combining the content of an image with the style of any other by minimizing

the feature reconstruction loss and a style reconstruction loss which are based on features extracted

from a pre-trained CNN. While this approach generates realistic looking images, it is computation-

ally expensive since each step of the optimization requires a forward and backward pass through

the pre-trained network. Other studies [88,95,160] have explored training a feed-forward network

to approximate solutions to this optimization problem. There are other methods based on feature

statistics to perform style transfer [73,158]. Elgammal et al. [39] applied GANs to generate artistic

images. Isola et al. [76] used conditional adversarial networks to learn the loss for image-to-image

translation. Xian et al. [166] learned to synthesize objects consistent with texture suggestions. The

proposed Universal Material Generator builds on [73] and is capable of producing realistic fin-

gerprint images containing style (texture) information from images of two different PA materials.

Existing style transfer methods condition the source image with target material style. However,

in the context of fingerprint synthesis, this results in a loss in fingerprint ridge-valley information

(i.e., content). In order to preserve both style and content, we use adversarial supervision to ensure

that the synthesized images appear similar to the real fingerprint images.

3.4.1.2 Proposed Approach

This approach includes three stages: (i) training the Universal Material Generator (UMG) wrapper

using the PA images of known materials (with one material left-out from training), (ii) generating

synthetic PA images using randomly selected image pairs of different but known materials, and

(iii) training a PA detector on the augmented dataset to evaluate its performance on the “unknown”

material left out from training. In all our experiments, we utilize local image patches (96×96) cen-

tered and aligned using minutiae location and orientation, respectively [24]. During the evaluation
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Figure 3.8 Proposed approach for (a) synthesizing PA and live fingerprint patches, and (b) design
of the proposed Universal Material Generator (UMG) wrapper. An AdaIN module is used for
performing the style transfer in the encoded feature space. The same VGG-19 [147] encoder is
used for computing content loss and style loss. A discriminator similar to the one used in DC-
GAN [133] is used for computing the adversarial loss. The synthesized patches can be used to
train any fingerprint PA detector. Hence, our approach is referred to as a wrapper which can be
used in conjunction with any PA detector.
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Style A α =	0.2 α =	0.4 α =	0.6 α =	0.8 α =	1.0
Real Spoof Synthetic Spoofs

Latex Body Paint

Latex Body Paint

Silicone

Silicone

Style B

Real Spoof
α =	0.0

Figure 3.9 Style transfer between real PA patches fabricated with latex body paint and silicone to
generate synthetic PA patches using the proposed Universal Material Generator (UMG) wrapper.
The extent of style transfer can be controlled by the parameter α ∈ [0, 1].

stage, the PA detection decision is made based on the average of spoofness scores for individ-

ual patches output from the CNN model. An overview of the proposed approach is presented in

Fig. 3.8.

The primary goal of the UMG wrapper is to generate synthetic PA images corresponding to un-

known PA materials, by transferring the style (texture) characteristics between fingerprint images

of known PA materials. Gatys et al. [54] were the first to show that deep neural networks (DNNs)

could encode not only content but also the style information. They proposed an optimization-based

style-transfer approach, although prohibitively slow, for arbitrary images. In [158], Ulyanov et al.

proposed use of an InstanceNorm layer to normalize feature statistics across spatial dimensions.

An InstanceNorm layer is designed to perform the following operation:

IN(x) = γ
(x− µ(x)

σ(x)

)
+ β (3.4.1)

where, x is the input feature space, µ(x) and σ(x) are the mean and standard deviation param-

eters, respectively, computed across spatial dimensions independently for each channel and each

sample. It was observed that changing the affine parameters γ and β (while keeping convolutional

parameters fixed) leads to variations in the style of the image, and the affine parameters could be

learned for each particular style. This motivated an approach for artistic style transfer [38], which

101



learns γ and β values for each feature space and style pair. However, this required retraining of the

network for each new style.

Huang and Belongie [73] replaced the InstanceNorm layer with an Adaptive Instance Norm

(AdaIN) layer, which can directly compute affine parameters from the style image, instead of

learning them – effectively transferring style by imparting second-order statistics from the target

style image to the source content image, through the affine parameters. We follow the same ap-

proach as described in [73] in UMG wrapper for fusing feature statistics of one known (source)

PA material image (c) providing friction ridge (content) information and source style, with another

known, but different (target style) PA material (s) in the feature space. As described in AdaIN, we

apply instance normalization on the input source image feature space, however, not with learnable

affine parameters. The channel-wise mean and variance of the source image’s feature space is

aligned to match those of the target image’s feature space. This is done by computing the affine

parameters from the target material PA feature space in the following manner:

AdaIN(x, y) = σ(y)
(x− µ(x)

σ(x)

)
+ µ(y) (3.4.2)

where the source (c) feature space is x and the target (s) feature space is y. In this manner,

x is normalized with σ(y) and shifted by µ(y). Our synthetic PA generator G is composed of an

encoder f(·) and a decoder g(·). For the encoder, f(·), we use the first few layers of a pre-trained

VGG-19 network similar to [88]. The weights of this network are frozen throughout all stages of

the setup. For source image (c) and the target image (s), x is f(c) and y is f(s). The desired

feature space is obtained as:

t = AdaIN(f(c), f(s)) (3.4.3)

We use the decoder, g(·), to take t as input to produce T (c, s) = g(t) which is the final synthe-

sized image conditioned on the style from the target image. In order to ensure that our synthesized

PA patches (i.e., g(t)) do match the style statistics of the target material PA, we apply a style loss
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Ls similar to [88, 98] given as:

Ls =
∑L

i=1 ‖µ (φi(g(t)))− µ (φi(s))‖2+∑L
i=1 ‖σ (φi(g(t)))− σ (φi(s))‖2

(3.4.4)

where each φi denotes a layer in the encoder network (VGG-19). We pass g(t) and s through

f(·) and extract the outputs of relu1 1, relu2 1, relu3 1 and relu4 1 layers for computing Ls.

The extent of style transfer can be controlled by interpolating between feature maps using:

T (c, s, α) = g((1− α) · f(c) + α · t) (3.4.5)

where setting α = 0 will reconstruct the original content image and α = 1 will construct the most

stylized image. To combine the two known styles, we preserve the style of source PA material

while conditioning it with target PA material by setting the value of α to 0.5.

To ensure that the synthesized images retain friction ridge (fingerprint) content from the real

image, we use a content loss, Lc, which is computed as the euclidean distance between the features

of the synthesized image, i.e., f(g(t)) and the target features (t) from the real image.

Lc = ‖f(g(t))− t‖2 (3.4.6)

Doing the style transfer, simply using a content loss (Lc) to ensure that content is retained is

not enough to ensure that the synthesized images look like real fingerprint images. Fingerprints

have many details in terms of structure due to the presence of certain landmarks, e.g., minutiae,

ridges, and pores. With the aim of synthesizing fingerprints that look indistinguishable from the

real fingerprints, we use adversarial supervision. A typical generative adversarial network (GAN)

setup consists of a generator G and a discriminator D playing a minimax game, where D tries

to distinguish between synthesized and real images, and G tries to fool D by generating realistic

looking images. The adversarial objective functions for the generator (LGadv) and discriminator
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Figure 3.10 Synthesized PA patches (96× 96) by the proposed Universal Material Generator using
patches of a known (source) material (first column) conditioned on style (α = 0.5) of another
(target) known material (first row).
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(LDadv) are given as11:

LGadv = Et[log(1−D(G(t)))] (3.4.7)

LDadv = Ex[logD(x)] + Et[log(1−D(G(t)))] (3.4.8)

In our approach, we use a discriminator as used in [133] and the generator is the decoder

function g(·). We optimize the UMG wrapper in an end-to-end manner with the following objective

functions:

min
G
LG = λc · Lc + λs · Ls + LGadv (3.4.9)

max
D
LD = LDadv (3.4.10)

where λc and λs are the weight parameters for content loss (Lc) and style loss (Ls), respec-

tively. Algorithm 1 summarizes the steps involved in training a UMG wrapper.

3.4.1.3 UMG-Wrapper for PAD Generalization

Given a PA dataset of real images, Smreal, fabricated using a set of m PA materials, we adopt a

leave-one-out protocol to split the dataset such that PA images fabricated using m − 1 materials

are considered as “known” and used for training. And the images fabricated using the left-out mth

material are considered as “unknown” and used for computing the generalization performance. The

fingerprint images of known materials (k = m−1) are used to train the UMG wrapper (UMGspoof )

described in section 3.4.1.2.

After we train the UMGspoof , we utilize a total of Nsynth randomly selected pairs of images

{I ima
, I imb

} s.t. i ∈ {1, ..., Nsynth} from known but different materials ma,mb ∈ {m1, ...mk},

a 6= b, to generate a dataset of synthesized PA images Sksynth. For each synthesized image, the

friction ridge (content) information and the source material (style) characteristics are provided by

the first image, Ima , and the target material (style) characteristics are provided by the second image,

11Here x is an image sampled from the distribution of real fingerprints, and t is the feature output by the AdaIN
module.
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Algorithm 1 Training UMG wrapper
1: procedure
2: input
3: x: source image providing friction ridge content and known style A
4: y: target image providing known style B
5: f(·): encoder network; first 4 layers of VGG-19 network pre-trained on ImageNet with

weights frozen during training
6: g(·): decoder network; mirrors f(·) with pooling layers replaced with nearest up-sampling

layers
7: D(·): discriminator function similar to [133]
8: A(x, y): AdaIN operation; transfer style from x to y (using Eq. 3.4.2)
9: α = 0.5

10: λc = 0.001, λs = 0.002
11: output
12: UMG(·): UMG wrapper trained on known materials
13: begin:
14: Encoding: fx = f(x) and fy = f(y)
15: Style transfer: t = A(fx, fy)
16: Stylized image: T (c, s, α) = g((1− α) · fc + α · t)
17: Style Loss: Ls using Eq. 3.4.4
18: Content Loss: Lc using Eq. 3.4.6
19: Adversarial Loss (generator): LGadv using Eq. 3.4.7
20: Adversarial Loss (discriminator): LDadv using Eq. 3.4.8
21: Objective functions for training UMG wrapper
22: minG LG = λc · Lc + λs · Ls + LGadv
23: maxD LD = LDadv
24: end

Imb
. See Figures 3.9 and 3.10. The real PA dataset is augmented with the synthesized PA data to

create a dataset that is used for training the fingerprint PA detector. Additionally, we augment

the real live dataset with a total of Nsynth synthesized live images using another UMG wrapper

(UMGlive) trained on only live images. Adding synthesized live data balances the data distribution

and forces the PA detector to learn generative-noise invariant features to distinguish between lives

and PAs. Figure 3.11 presents examples of the synthesized live images.

The proposed Universal Material Generator approach acts like a wrapper on top of any existing

PA detector to make it more robust to PAs not seen during training. In this study, we utilize two

state-of-the-art spoof detectors, namely, Fingerprint Spoof Buster [24] and Slim-ResCNN [172].

Fingerprint Spoof Buster utilizes local patches (96 × 96) centered and aligned around fingerprint
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(a) Source Style
(Real)

(c) Target Style
(Real)

(b) Output
(Synthetic)

Figure 3.11 Synthetic live images generated by the proposed Universal Material Generator. (a)
Source style images, (c) target style images, and (b) synthesized live images.

minutiae to train MobileNet-v1 [71] architecture and achieved state-of-the-art performance on pub-

licly available LivDet databases [168] and exceeded the IARPA Odin Project [123] requirement of

True Detection Rate (TDR) of 97.0% @ False Detection Rate (FDR) = 0.2%. Slim-ResCNN uti-

lizes center of gravity-based local patches to train a custom CNN architecture containing residual

blocks inspired from ResNet architecture [64], and achieved the best performance in the LivDet

2017 competition [114].

3.4.1.4 Experiments and Results

Minutiae Detection and Patch Extraction

The proposed UMG wrapper is trained on local patches of size 96 × 96 centered and aligned

using minutiae points. We extract fingerprint minutiae using the algorithm proposed in [17]. For a

given fingerprint image I with k detected minutiae points, M = {m1,m2, . . . ,mk}, where mi =
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{xi, yi, θi}, i.e., the minutiae mi is defined in terms of spatial coordinates (xi, yi) and orientation

(θi), a corresponding set of k local patches L = {l1, l2, . . . , lk}, each of size [96 × 96], centered

and aligned using minutiae location (xi, yi) and orientation (θi), are extracted as proposed in [24].

Implementation Details

The encoder of the UMG wrapper is the first four convolutional layers (conv1 1, conv2 1, conv3 1,

and conv4 1) of a VGG-19 network [147] as discussed in section 3.4.1.2. We use encoder weights

pre-trained on ImageNet [140] database which are frozen during training of the UMG wrapper.

The decoder mirrors the encoder with pooling layers replaced with nearest up-sampling layers,

and without use of any normalization layers as suggested in [73]. Both encoder and decoder utilize

reflection padding to avoid border artifacts. The discriminator for computing the adversarial loss

is similar to the one used in [133]. The weights for style loss and content loss are set to λs = 0.002

and λc = 0.001. We use the Adam optimizer [90] with a batch size of 8 and a learning rate of

1e− 4 for both generator (decoder) and discriminator objective functions. The input local patches

are resized from 96 × 96 to 256 × 256 as required by the pre-trained encoder based on VGG-19

network. All experiments are performed in the TensorFlow framework.

The proposed approach is shown to improve the generalization performance of two state-of-the-

art spoof detectors, namely, Fingerprint Spoof Buster and Slim-ResCNN. We train a MobileNet-

V1 [71] classifier from scratch using the augmented dataset for Fingerprint Spoof Buster [24].

In the case of Slim-ResCNN, a custom architecture, consisting a series of optimized residual

blocks [64] is implemented12 as described in [172].

Experimental Protocol

The fingerprint PA generalization performance against unknown materials is evaluated by adopting

a leave-one-out protocol [26]. In the case of MSU FPAD v2.0 dataset, one out of the twelve known

PA materials is left-out and the remaining eleven materials are used to train the proposed UMG

12We were unable to obtain the source code for the Slim-ResCNN approach from the authors.
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Green Bit OrcanthusDigital Persona

Figure 3.12 Example fingerprint images from LivDet 2017 database captured using three different
fingerprint readers, namely Digital Persona, Green Bit, and Orcanthus. The unique characteristics
of fingerprints from Orcanthus reader explain the performance drop in cross-sensor scenario when
Orcanthus is used as either the source or the target sensor.

wrapper. The real PA data (of eleven known materials) is augmented with the synthesized PA

data generated using the trained UMG wrapper, which is then used to train the fingerprint PA

detector, i.e., Fingerprint Spoof Buster [24]. This requires training a total of twelve different UMG

wrappers and PA detection models each time leaving out one of the twelve different PA materials.

The 5, 743 live images in MSUFPAD v2.0 are partitioned into training and testing such that there

are 1, 000 randomly selected live images in testing set and the remaining 4, 743 images in training

such that there is no subject overlap between training and testing data splits. The real live data is

also augmented with synthesized live data generated using another UMG wrapper trained on real

live data.

In the case of LivDet 2017 dataset, the PA materials available in the test set (Gelatin, Latex, and

Liquid Ecoflex) are deemed as “unknown” materials because these are different from the materials

included in the training set (Wood Glue, Ecoflex, and Body Double). To evaluate the generalization

performance, we evaluate the performance of Fingerprint Spoof Buster with and without using the

UMG wrapper and compare with the state-of-the-art published results. As the LivDet 2017 dataset

contains fingerprint images from three different readers, we train two UMG wrappers per sensor,

one for each of the live and the PA training datasets.
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Table 3.5 Generalization performance (TDR (%) @ FDR = 0.2%) of state-of-the-art spoof detec-
tors, i.e., Slim-ResCNN [172] and Fingerprint Spoof Buster (FSB) [24], with leave-one-out method
on MSU-FPAD v2 dataset. A total of twelve experiments are performed where the material left-out
from training is taken as the “unknown” material for evaluation.

Unknown Spoof Material # Images # Local Patches
Generalization Performance (TDR (%) @ FDR = 0.2%)

Base CNN Base CNN + UMG wrapper
Slim-

ResCNN [172]
Fingerprint Spoof
Buster (FSB) [26]

Slim-ResCNN
+ UMG

FSB +
UMG

Silicone 1, 160 38, 145 64.74 67.59 96.55 98.62

Monster Liquid Latex 882 27, 458 90.25 94.78 95.35 96.26

Play Doh 715 17, 602 58.18 58.46 71.05 72.31

2D Printed Paper 481 7, 381 53.22 55.30 79.42 80.25

Wood Glue 397 12, 681 84.89 86.40 97.98 98.99

Gold Fingers 295 9, 402 85.08 88.14 88.14 88.81

Gelatin 294 10, 508 55.78 55.10 98.30 97.96

Dragon Skin 285 7, 700 96.14 97.54 99.30 100.00

Latex Body Paint 176 6, 366 78.98 76.70 90.34 89.20

Transparency 137 3, 846 91.24 95.62 97.08 100.00

Conductive Ink on Paper 50 2, 205 88.00 90.00 96.00 100.00

3D Universal Targets 40 1, 085 92.50 95.00 100.00 100.00
Total Spoofs 4,912 144,379 Weighted mean* (± weighted s.d.)

Total Lives 5,743 228,143 73.09 ± 15.66 75.24 ± 16.60 90.63 ± 10.19 91.78 ± 10.29

*The generalization performance for each spoof material is weighted by the number of images to
produce the weighted mean and standard deviation.

Cross-Material Fingerprint PA Generalization

Table 3.5 presents the generalization performance of the proposed approach on the MSU FPAD

v2.0 dataset. The mean generalization performance of the spoof detector against unknown spoof

materials improves from TDR of 75.24% (73.09%) to TDR of 91.78% (90.63%) @ FDR = 0.2%

for Fingerprint Spoof Buster (Slim-ResCNN), resulting in approximately 67% decrease in the error

rate, when the spoof detector is trained in conjunction with the proposed UMG wrapper. Table 3.6

presents a performance comparison of the proposed approach and the state-of-the-art approach

when tested on the publicly available LivDet 2017 dataset. The proposed UMG wrapper im-

proves the state-of-the-art average cross-material spoof detection performance from TDR = 73.32%

(72.62%) to 80.74% (78.27%) @ FDR = 1.0% for Fingerprint Spoof Buster (Slim-ResCNN), re-

spectively.
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Table 3.6 Performance comparison between the proposed approach and state-of-the-art CNN-only
results [24, 172] on LivDet 2017 dataset for cross-material experiments in terms of Average Clas-
sification Accuracy (ACA) and TDR @ FDR = 1.0%.

LivDet 2017 Base CNN Base CNN + UMG wrapper
Slim-ResCNN* [172] FSB [26] Slim-ResCNN + UMG FSB + UMG

Avg. Accuracy (TDR @ FDR = 1.0%) Avg. Accuracy (TDR @ FDR = 1.0%)
Green Bit 95.20 (90.22) 96.68 (91.07) 96.90 (91.95) 97.42 (92.29)

Orcanthus 93.93 (65.82) 94.51 (66.59) 94.45 (71.91) 95.01 (74.45)

Digital Persona 92.89 (61.81) 95.12 (62.29) 94.75 (70.96) 95.20 (75.47)

Mean ± s.d. 94.01± 1.16
(72.62± 15.38)

95.44± 1.12
(73.32± 15.52)

95.37± 1.34
(78.27± 11.85)

95.88± 1.34
(80.74± 10.02)

*We were unable to obtain the source code for the Slim-ResCNN approach from the authors. Best efforts were made to implement the approach
based on the details provided in their manuscript [172]. Based on LivDet 2017 [114], Slim-ResCNN achieved average classification accuracy of
95.25% compared to 94.01% achieved by our implementation.

Table 3.7 Cross-sensor fingerprint spoof generalization performance on LivDet 2017 dataset in
terms of Average Classification Accuracy and TDR @ FDR = 1.0%.

LivDet 2017 Slim-ResCNN [172] FSB [26] Slim-ResCNN + UMG FSB + UMG

Training (Testing) Sensors Avg. Accuracy (TDR @ FDR = 1.0%) Avg. Accuracy (TDR @ FDR = 1.0%)
Green Bit (Orcanthus) 43.98 (0.00) 49.43 (0.00) 65.40 (20.60) 66.05 (21.52)

Green Bit (Digital Persona) 80.39 (48.28) 89.37 (57.48) 92.07 (69.55) 94.81 (72.91)

Orcanthus (GreenBit) 68.82 (8.02) 69.93 (8.02) 74.38 (29.90) 81.75 (30.91)

Orcanthus (Digital Persona) 62.30 (6.70) 57.99 (4.97) 72.33 (25.24) 76.36 (28.46)

Digital Persona (GreenBit) 87.90 (54.24) 89.54 (57.06) 95.28 (84.38) 96.35 (85.21)

Digital Persona (Orcanthus) 44.30 (0.00) 49.32 (0.00) 66.10 (18.25) 68.44 (20.38)

Mean ± s.d. 64.62± 18.18
(19.54± 24.86)

67.60± 18.53
(21.26± 28.06)

77.59± 12.97
(41.32± 28.29)

80.63± 12.88
(43.23± 28.31)

Cross-Sensor Fingerprint PA Generalization

To improve the cross-sensor performance, we employ the proposed UMG wrapper to syntheti-

cally generate large-scale live and PA datasets to train a PA detector for the target sensor. Given a

real fingerprint database, DA
real, collected on a source fingerprint sensor, FA, containing real live,

LAreal, and real PA, SAreal datasets, s.t. DA
real = {LAreal∪SAreal}, the proposed UMG wrapper is used to

generate 50, 000 synthetic live patches, LBsynth, and 50, 000 synthetic PA patches, SBsynth, for a tar-

get sensor, FB. The UMG wrapper is trained only on the live images collected on SB, and used for

style transfer on LAreal and SAreal to generate LBsynth, and SBsynth, respectively. We evaluate the cross-

sensor generalization performance using LivDet 2017 dataset where the UMG wrapper trained on

a source sensor, say Green Bit, is used to generate synthetic data for a target sensor, say Orcanthus,
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(a) Real Live Patch
Digital Persona

(b) Real Live Patch
Orcanthus

(c) Synthesized Live Patch
UMG Wrapper

Figure 3.13 UMG wrapper used to transfer style from (b) a real live patch from Orcanthus reader,
to (a) a real live patch from Digital Persona, to generate (c) a synthesized patch.

using only a small set of 100 live fingerprint images from the target sensor13. The PA detector is

trained from scratch only on the synthetic dataset created for the target sensor using UMG wrapper

and tested on the real test set of the target sensor. Table 3.7 presents the cross-sensor fingerprint PA

generalization performance of the PA detector in terms of average classification accuracy and TDR

(%) @ FDR = 1%. We note that the proposed UMG wrapper improves the average cross-sensor PA

detection performance from 67.60% to 80.63%. Figure 3.12 presents example fingerprint images

captured using the three sensors in LivDet 2017. The unique characteristics of fingerprints from

Orcanthus reader explain the performance drop in cross-sensor scenario when it is used as either

the source or the target sensor.

3.4.1.5 Computational Requirements

Offline Training stage: The proposed approach includes an offline stage of training the UMG

wrapper and synthesis of style-transferred fingerprint patches. It takes around 2 hours to train,

and around 1 hour to generate 100, 000 fingerprint patches on a Nvidia GTX 1080Ti GPU. The

synthesized fingerprint patches are used to augment the training data used to train the underlying

spoof detector.

Online Testing stage: There is no increase in the spoof detection time of the underlying spoof

detector with the addition of the UMG wrapper. The spoof detection time remains around 100ms

for both Fingerprint Spoof Buster and Slim-ResCNN.

13An average of ∼ 3100 local patches are extracted from 100 live fingerprint images in LivDet 2017 experiments.
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(a) Real spoof A
(Silicone)

(d) Synthesized spoof
(spoof A + spoof B)

(b) Real spoof B
(Latex Body Paint)

(c) Real spoof mixture
(spoof A + spoof B)

Figure 3.14 Fingerprint patches fabricated with real PAs (a) silicone, (b) latex body paint, (c) their
mixture (in 1:1 ratio), and (d) synthesized using UMG wrapper with style transfer between silicone
and latex body paint.

3.4.1.6 Fabricating Unknown PAs

To explore the role of cross-material style transfer in improving generalization performance, we

fabricate physical PA specimens using two PA materials, namely silicone and latex body paint, and

their mixture in a 1:1 ratio by volume14. We fabricate a total of 24 physical specimens, including

8 specimens for each of the two materials, and 8 specimens using their mixture. A total of 72 PA

fingerprints, 3 impressions/specimen, are captured using a CrossMatch Guardian 200 fingerprint

reader. Fingerprint Spoof Buster, trained on twelve known PA materials including silicone and

latex body paint, achieves TDR of 100% @ FDR = 0.2% on the two known PA materials, and

TDR of 83.33% @ FDR = 0.2% against the mixture. We utilize the testing dataset of 1, 000 live

fingerprint images from MSU FPAD v2.0 for these experiments.

We utilize the proposed UMG wrapper to generate a dataset of 5, 000 synthesized PA patches15

using cross-material style transfer between PA fingerprints of silicone and latex body paint. Fin-

gerprint Spoof Buster, fine-tuned using the synthesized dataset, improves the TDR from 83.33%

to 95.83% @ FDR = 0.2% when tested on the silicone and latex body paint mixture, highlighting

the role of the style-transferred synthesized data in improving generalization performance. Fig-

14Not all PA materials can be physically combined and may result in mixtures with poor physical properties for
them to be used to fabricate any good quality PA artefacts.

15Around 1,100 minutiae-based local patches are extracted from 24 fingerprint images corresponding to each mate-
rial.
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Real Live

Latex Body Paint (real spoof)

Silicone (real spoof)

Real Spoof Mixture (silicone + latex body paint)

Synthetically Generated Spoof 
(style transfer b/w silicone and latex body paint)

Figure 3.15 3D t-SNE visualization of feature embeddings of real live fingerprints, PA finger-
prints fabricated using silicone, latex body paint, and their mixture (1:1 ratio), and synthesized PA
fingerprints using style-transfer between silicone and latex body paint PA fingerprints. The 3D
embeddings are available at http://tarangchugh.me/posts/umg/index.html (Best viewed in color)

ure 3.14 presents sample fingerprint patches of the two PA materials, silicone and latex body paint,

their physical mixture, and synthesized using style-transfer. Figure 3.15 presents the 3D t-SNE

visualization of feature embeddings of live fingerprints (green), two materials, silicone (blue) and

latex body paint (brown), their mixture (purple), and synthetically generated images (orange). Al-

though the mixture embeddings are not located in between the embeddings for the two known

materials, possibly due to the low-dimensional t-SNE representation, they are close to the embed-

dings of the synthetically generated PA images. This explains the improvement in performance
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Figure 3.16 A sequence of ten color frames are captured by a SilkID SLK20R fingerprint reader
in quick succession (8 fps). The first, fifth, and tenth frames from a live (a) - (c), and PA (tan
pigmented third degree) (d) - (f) finger are shown here. Unlike PAs, in the case of live fingers,
appearance of sweat near pores (highlighted in yellow boxes) and changes in skin color (pinkish
red to pale yellow) along the frames can be observed.

against the PA mixtures when synthesized PAs are used in training. Therefore, the proposed UMG

wrapper is able to generate PA images that are potentially similar to the unknown PAs.

3.4.2 Temporal Analysis for PAD Generalization

In this section, we present a dynamic approach to improve the PAD generalization [27]. We pro-

pose to utilize the dynamics involved in the imaging of a fingerprint on a touch-based fingerprint

reader, such as perspiration, changes in skin color (blanching), and skin distortion, to differentiate

bonafide fingers from PA fingers. Specifically, we utilize a deep learning-based architecture (CNN-

LSTM) trained end-to-end using sequences of minutiae-centered local patches extracted from ten

color frames captured on a COTS fingerprint reader (SilkID Fast Frame Rate sensor).

Compared to the static approaches that were discussed earlier, in the case of dynamic ap-

proaches, published studies utilize temporal analysis to capture the physiological features, such
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Table 3.8 Studies primarily focused on fingerprint presentation attack detection using temporal
analysis.

Study Approach Database Performance
Parthasaradhi et
al. [128]

Temporal analysis of perspiration
pattern along friction ridges

1, 840 live from 33 subjects
and 1800 PA from 2

materials, and 700 cadaver
from 14 fingers

Avg. Classification Accuracy =
90%

Kolberg et al. [91] Blood flow detection using a
sequence of 40 Laser Speckle

Contrast Images

1, 635 live from 163 subjects
and 675 PA images of 8 PA

materials (32 variants)

TDR = 90.99% @ FDR =
0.05%

Plesh et al. [131] Fusion of static (LBP and CNN) and
dynamic (changes in color ratio)

features using a sequence of 2 color
frames

14, 892 live and 21, 700 PA
images of 10 materials

TDR = 96.45%
(known-material) @ FDR =

0.2%

Proposed Approach Temporal analysis of minutiae-based
local patch sequences from 10 color
frames using CNN + LSTM model

26, 650 live from 685
subjects and 32, 910 PA

images of 7 materials (14
variants)

TDR = 99.15%
(known-material) and TDR =
86.20% (cross-material) @

FDR = 0.2%

as perspiration [106, 128], blood flow [91, 169], skin distortion [2], and color change [131, 169].

Table 4.1 summarizes the dynamic approaches for fingerprint PA detection reported in the litera-

ture. Some of the limitations of these studies include long capture time (2-5 seconds), expensive

hardware, and/or small number of frames in the sequence. Moreover, it is likely that some live fin-

gers may not exhibit any of these dynamic phenomenons to separate them from PAs. For instance,

some dry fingers may not exhibit signs of perspiration during the finger presentation or a PA may

produce similar distortion characteristics as that of some live fingers.

We posit that automatic learning, as opposed to hand-engineering, of the dynamic features

involved in the presentation of a finger can provide more robust and highly discriminating cues to

distinguish live fingerprints from PAs. In this section, we propose to use a CNN-LSTM architecture

to learn the spatio-temporal features across different frames in a sequence. We utilize a sequence of

minutiae-centered local patches extracted from ten colored frames captured by a COTS fingerprint

reader, SilkID SLK20R16, at 8 fps to train the network in an end-to-end manner. The use of

minutiae-based local patches has been shown to achieve state-of-the-art PA detection performance

compared to randomly selected local patches in static images. Additionally, using minutiae-based

16https://www.zkteco.com/en/product detail/SLK20R.html
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local patches provides a large amount of training data, 71, 530 minutiae-based patch sequences,

compared to 5, 956 whole-frame sequences.

3.4.2.1 Proposed Approach

The proposed approach consists of: (a) detecting minutiae from each of the frames and select-

ing the frame with the highest number of minutiae as the reference frame, (b) preprocessing the

sequence of frames to convert them from Bayer pattern grayscale images to RGB images, (c)

extracting local patches17 from all ten frames based on the location of detected minutiae in the

reference frame, and (c) end-to-end training of a CNN-LSTM architecture using the sequences of

minutiae-centered patches extracted from the ten frames. While a time-distributed CNN network

(MobileNet-v1) with shared weights extracts deep features from the local patches, a bidirectional

LSTM layer is utilized to learn the temporal relationship between the features extracted from the

sequence. An overview of the proposed approach is presented in Figure 3.19.

Minutia Detection

When a bonafide finger (or PA) is presented to the SilkID SLK20R fingerprint reader, it captures a

sequence of ten color frames, F = {f1, f2, ..., f10}, at 8 frames per second18 (fps) and a resolution

of 1000 ppi. While the complete sensing region (h×w) in a SilkID fingerprint reader is 800× 600

pixels, each of the ten colored frames are captured from a smaller central region of 630 × 390

pixels to ensure the fast frame rate of 8 fps. The starting and ending frames in the sequence may

have little or no friction ridge details if the finger is not yet completely placed or quickly removed

from the reader. Therefore, we extract minutiae information from all of the ten frames using the

algorithm proposed by Cao et al. [17]. Since the minutiae detector proposed in [17] is optimized

for 500 ppi fingerprint images, all frames are resized before extracting the minutiae. The frame

17Earlier, we reported that for 500 ppi fingerprint images, the minutiae-based patches of size 96× 96 pixels achieve
the best performance compared to other patch sizes. Since SilkID fingerprint images have a resolution of 1000 ppi, we
select a patch size of 192× 192 pixels to ensure a similar amount of friction ridge area in each patch, as contained in
a 96× 96 pixels patch size for 500 ppi fingerprint images.

18It takes an average of 1.25 seconds to capture a sequence of ten frames.
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Figure 3.17 Examples of (i) live and (ii) PA fingerprint images. (a) Grayscale 1000 ppi image, and
(c)-(g) the first five (colored) frames captured by SilkID SLK20R Fast Frame Rate reader. Live
frames exhibit the phenomenon of blanching of the skin, i.e., displacement of blood when a live
finger is pressed on the glass platen changing the finger color from red/pink to pale white. (Best
viewed in color)
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Bayer Pattern Image RGB Image

Partial Red Color Plane

Partial Green Color Plane

Partial Blue Color Plane

Bilinear Interpolation

Interpolated Red Color Plane

Interpolated Green Color Plane

Interpolated Blue Color Plane

Figure 3.18 A Bayer color filter array consists of alternating rows of red-green and green-blue
filters. Bilinear interpolation of each channel is utilized to construct the RGB image.

with the maximum number of detected minutiae is selected as the reference frame (f ref ) and the

corresponding minutiae set as the reference minutiae set (M ref ).

Pre-processing

A digital sensor, containing a large array of photo-sensitive sites (pixels), is typically used in con-

junction with a color filter array to permit only particular colors of light at each pixel. The SilkID

fingerprint reader employs one of the most common filter arrays, known as Bayer filter array, con-

sisting of alternating rows of red-green (RG) and green-blue (GB) filters. Bayer demosaicing [97]

(debayering) is the process of converting a bayer pattern image to an image with complete RGB

color information at each pixel. It utilizes bilinear interpolation [153] to estimate the missing pixels

in the three color planes as shown in Figure 3.18. The original sequence of grayscale Bayer pattern

frames (10 × 630 × 390) is converted to the RGB colorspace using an OpenCV [11] function,

cv2.cvtColor(), with the parameter flag = cv2.COLOR BAYER BG2RGB. After debayering, the

frames have high pixel intensity values in the green channel (see Figure 3.19) as SilkID readers are

calibrated with strong gains on green pixels for generating high quality FTIR images. We utilize

these raw images for our experiments. For visualization purposes, we reduce the green channel
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Figure 3.19 An overview of the proposed approach utilizing a CNN-LSTM model trained end-to-
end on sequences of minutiae-centered local patches for fingerprint PA detection.

intensity values by a factor of 0.58 and perform histogram equalization on intensity values in the

HSV colorspace19 (see Figures 3.16 and 3.17).

Local Patch Extraction

For each of the detected minutiae from the reference frame, mi ∈ M ref , we extract a sequence of

ten local patches, Pi = {pf1i , p
f2
i , ..., p

f10
i }, of size 192 × 192, from the ten frames (F ), centered

19Reducing gain in green channel and histogram equalization achieved similar or lower performance compared to
using raw color images. Therefore, raw images were used for all experiments.
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at the minutiae location20, i.e., mi = {xi, yi}. This results in a total of k patch sequences, where

k is equal to the number of detected minutiae in the reference frame. Earlier, we reported that

for 500 ppi fingerprint images, the minutiae-based patches of size 96 × 96 pixels achieve the best

performance compared to patch sizes of 64× 64 pixels and 128× 128 pixels. Therefore, for 1000

ppi images in our case, we selected the patch size of 192×192 pixels to ensure a similar amount of

friction ridge area in each patch, as contained in a 96× 96 pixels patch size for 500 ppi fingerprint

images. Each local patch from the reference frame is centered around the minutiae. However,

this might not hold true for non-reference frames where the minutiae may shift due to non-linear

distortion of human skin and non-rigid PA materials. We hypothesize that the proposed approach

can utilize the differences in the non-linear shift along the sequences of local patches as a salient

cue to distinguish between live and PAs.

3.4.2.2 Network Architecture

Several deep Convolutional Neural Network (CNN) architectures, such as VGG [147], Inception-

v3 [150], MobileNet-v1 [71] etc., have been shown to achieve state-of-the-art performance for

many vision-based tasks, including fingerprint PA detection [23, 119]. Unlike traditional ap-

proaches where spatial filters are hand-engineered, CNNs can automatically learn salient features

from the given image databases. However, as CNNs are feed-forward networks, they are not well-

suited to capture the temporal dynamics involved in a sequence of images. On the other hand, a

Recurrent Neural Network (RNN) architecture with feedback connections can process a sequence

of data to learn the temporal features.

With the goal of learning highly discriminative and generalizable spatio-temporal features for

fingerprint PA detection, we utilize a joint CNN-RNN architecture that can extract deep spatial fea-

tures from each frame, and learn the temporal relationship across the sequence. One of the most

popular RNN architectures is Long Short-Term Memory [70] that can learn long range depen-

dencies from the input sequences. The proposed network architecture utilizes a time-distributed

20Minutiae coordinates extracted from the resized 500 ppi frames are doubled to correspond to minutiae coordinates
in the original 1000 ppi frames.
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MobileNet-v1 CNN architecture followed by a Bi-directional LSTM layer21 and a 2-unit softmax

layer for the binary classification problem, i.e., live vs. PA. See Figure 3.19.

MobileNet-v1 is a low-latency network with only 4.24M trainable parameters compared to

other networks, such as Inception-v3 (23.2M) and VGG (138M), which achieve comparable per-

formance in large-scale vision tasks [140]. In low resource requirements such as smartphones

and embedded devices, MobileNet-v1 is well-suited for real-time PA detection. Most importantly,

it has been shown to achieve state-of-the-art performance for fingerprint PA detection [24] on

publicly available datasets [57]. It takes an input image of size 224 × 224 × 3, and outputs a

1024-dimensional feature vector (bottleneck layer). We resize the local patches from 192× 192 to

224 × 224 as required by the MobileNet-v1 input. For the purposes of processing a sequence of

images, we utilize a Keras’ TimeDistributed wrapper to utilize the MobileNet-v1 architecture as a

feature extractor with shared parameters across different frames (time-steps) in the sequence.

3.4.2.3 Implementation Details

The network architecture is designed in the Keras framework22 and trained from scratch on a

Nvidia GTX 1080Ti GPU. We utilize the MobileNet-v1 architecture without its last layer wrapped

in a Time-Distributed layer. The Bi-directional LSTM layer contains 256 units and has a dropout

rate of 0.25. We utilize the Adam [90] optimizer with a learning rate of 0.001 and a binary cross

entropy loss function. The network is trained end-to-end with a batch size of 4. The network is

trained for 80 epochs with early-stopping23.
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Table 3.9 Performance comparison (TDR (%) @ FDR = 0.2% and 1.0%) between the proposed
approach and two state-of-the-art methods [24, 172] for known-material scenario, where the spoof
materials used in testing are also known during training.

Study Approach Architecture TDR (± s.d.) (%)
@ FDR = 0.2%

TDR (± s.d.) (%)
@ FDR = 1.0%

Baseline Static (Whole Image) CNN (MobileNet-v1) 96.90± 0.78 97.64± 0.55
Zhang et al. [172] Static (Center of Gravity Patches) CNN (Slim-ResCNN) 98.05± 0.38 98.44± 0.30
Chugh et al. [24] Static (Minutiae Patches) CNN (MobileNet-v1) 99.11± 0.24 99.15± 0.24

Proposed
Dynamic (Whole Frames) CNN-LSTM (MobileNet-v1) 98.94± 0.44 99.04± 0.43
Dynamic (Center of Gravity Patches) CNN-LSTM (Slim-ResCNN) 99.04± 0.26 99.30± 0.28
Dynamic (Minutiae Patches) CNN-LSTM (MobileNet-v1) 99.25 ± 0.22 99.45 ± 0.16

Table 3.10 Performance comparison (TDR (%) @ FDR = 0.2% and 1.0%) between the proposed
approach and two state-of-the-art methods [24, 172] for three cross-material scenarios, where the
spoof materials used in testing are unknown during training.

Baseline Static Approaches (CNN) Proposed Dynamic Approaches (CNN-LSTM)

Unknown
Material

Whole Image
(Grayscale)

Slim-
ResCNN [172]

Fingerprint Spoof
Buster [24]

Sequence of
Whole Images

Sequence of
CoG Patches

Sequence of
Minutiae-based Patches

TDR @ FDR = 0.2%

Third Degree 43.83 75.32 79.20 80.44 83.22 84.50
Gelatin 50.74 76.84 76.52 73.88 83.10 82.81
Ecoflex 77.37 87.39 89.23 87.55 90.94 91.28

Mean ± s.d. 57.31 ± 17.71 79.85± 6.57 81.65± 6.70 80.62± 6.84 85.75± 4.49 86.20 ± 4.48
TDR @ FDR = 1.0%

Third Degree 60.25 86.15 89.11 88.10 94.22 96.20
Gelatin 66.40 90.10 89.00 89.50 96.38 96.08
Ecoflex 85.31 93.27 94.90 93.27 98.00 98.20

Mean ± s.d. 70.65± 13.06 89.84± 3.57 91.00± 3.37 90.29± 2.67 96.20± 1.90 96.83 ± 1.19

3.4.2.4 Experimental Results

To demonstrate the robustness of our proposed approach, we evaluate it using the SilkID Fast

Frame Rate dataset (Table 3.3) under two different settings: Known-Material and Cross-Material

scenarios.

Known-Material Scenario

In this scenario, the same set of PA materials are included in the train and test sets. To evaluate

this, we utilize five-fold cross validation splitting the live and PA datasets for training and testing

21Experiments with uni-directional LSTM layer achieved lower or similar performance compared to when using
bi-directional layer.

22https://keras.io/
23The patience parameter is set to 20, which means that if the validation accuracy does not improve for more than

20 epochs the network training is automatically stopped.
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with no subject overlap. In each of the five folds, there are 21, 320 live and 26, 400 PA frames

in training and the rest are in testing. Table 3.9 presents the results achieved by the proposed

approach on known-materials compared to a state-of-the-art approach [24] that utilizes minutiae-

based local patches from static grayscale images. The proposed approach improves the spoof

detection performance from TDR of 99.11% (99.15%) to 99.25% (99.45%) @ FDR = 0.2% (1.0%).

Cross-Material Scenario

In this scenario, the PA materials used in the test set were not included in the training set. We

simulate this scenario by adopting a leave-one-out protocol, where one material (including all its

variants) is removed from training, and is then used for evaluating the trained model. It is a more

challenging and practical setting as it evaluates the cross-material generalizability of a PA detector

against PA materials that are never seen during training. For instance, in one of the cross-material

experiments, we exclude Third Degree silicone PA material, including its all variants (pigmented,

tan, beige powder, and medium) from training, and use them for testing. The live data is randomly

divided in a 80/20 split, with no subject overlap, for training and testing, respectively.

Table 3.10 presents the performance achieved by the proposed approach, on three cross-

material experiments, compared to two state-of-the-art24 methods [24, 172]. We observe that uti-

lizing sequence of whole images significantly improves the performance achieved by static whole

images (from TDR = 57.31% (70.65%) to TDR = 80.62% (90.29%) @ FDR = 0.2% (1.0%)). How-

ever, it is slightly lower that the performance achieved by the static patch-based approaches, i.e.,

TDR = 81.65% (91.00) @ FDR = 0.2% (1.0%). This could be due to the drawbacks of utilizing

whole images compared to local patches [24] for training a deep neural network, namely, (i) whole

images may have some blank area surrounding the friction ridge area; directly resizing these im-

ages, from 630×390 to 224×224, results in the friction ridge area occupying less than 20% of the

original image size, (ii) resizing a rectangular image to a square image leads to different amounts of

information retained in the two spatial dimensions, and (iii) downsizing an image typically leads to

significant loss of discriminatory information. However, these drawbacks are addressed by using
24The algorithm by Zhang et al. [172], Slim-ResCNN, was the winner of the LivDet 2017 competition [114].
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a sequence of local patches in the proposed approach, which is shown to achieve a superior cross-

material PA detection performance of TDR s= 86.20% (96.83%) @ FDR = 0.2% (1.0%). Figure ??

presents three challenging cases in the case of cross-material experiment where the Third Degree

silicone PA material is left out from training, and is used in testing.

3.4.2.5 Processing Times

The proposed network architecture takes around 4 − 6 hours to converge when trained with se-

quences of whole frames, and 24−30 hours with sequences of minutiae-based local patches, using

a Nvidia GTX 1080Ti GPU. An average number of 11 and 13 sequences of minutiae-based local

patches are extracted from the live and PA frames, respectively. The average classification time for

a single presentation, including: preprocessing, minutiae-detection, patch extraction, and sequence

generation and inference, on a Nvidia GTX 1080 Ti GPU, is 58ms for full frame-based sequences,

and 393ms for minutiae-based patch sequences.

3.5 Summary

Introduction of new PA materials and fabrication techniques poses a continuous threat to the secu-

rity of fingerprint recognition systems and requires design of robust and generalizable PA detectors.

It is observed that the selection of PA materials used in training (known PAs) directly impacts the

performance against unknown PAs, however the underlying reasons for this phenomena are un-

known. In this study, we investigate the PA material characteristics and correlate them with the

3D t-SNE embeddings of PA materials and their cross-material performances. This enables us

to identify a subset of PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body

Paint, and Monster Liquid Latex essential for training a robust PAD. We posit that this approach

can be utilized to estimate the PAD performance against new materials by analyzing its material

characteristics and t-SNE visualization of only few samples instead of collecting large datasets for

each of the new material.
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Next, we propose a style-transfer based wrapper, Universal Material Generator (UMG), to im-

prove the generalization performance of any PA detector against novel PA fabrication materials

that are unknown to the system during training. The proposed approach is shown to improve

the average generalization performance of two state-of-the-art PA detectors, namely Fingerprint

Spoof Buster (and Slim-ResCNN), from TDR of 75.24% (73.09%) to 91.78% (90.63%) @ FDR

= 0.2%, respectively, when evaluated on a large-scale dataset of 5, 743 live and 4, 912 PA images

fabricated using 12 materials. Our approach also improves the average cross-sensor performance

from 67.60% (64.62%) to 80.63% (77.59%) for Fingerprint Spoof Buster (Slim-ResCNN) when

tested on LivDet 2017 dataset, alleviating the time and resources required to generate large-scale

PA datasets for every new sensor and PA material. We have also fabricated physical PA speci-

mens using a mixture of known PA materials to explore the role of cross-material style-transfer in

improving generalization performance.

Finally, we utilize the dynamics involved in the presentation of a finger, such as skin blanching,

distortion, and perspiration, to learn a robust PAD. This approach uses a sequence of local patches

centered at detected minutiae from ten color frames captured at 8 fps as the finger is presented on

the sensor. The proposed approach improves the PA detection performance from TDR of 81.65%

to 86.20% @ FDR = 0.2% in cross-material scenarios, while retaining high performance in the

known material scenario.

126



Chapter 4

Presentation Attack Detection for OCT

Fingerprint Images

In the previous chapters, we addressed the problem of presentation attack detection and its gener-

alization using conventional fingerprint readers, e.g., optical and capacitive readers, that image the

2D surface fingerprint. In this chapter, we explore the use of optical coherent tomography (OCT)

fingerprint technology which provides rich depth information, including internal fingerprint (pap-

illary junction) and sweat (eccrine) glands, in addition to imaging any fake layers (presentation

attacks) placed over finger skin. Unlike 2D surface fingerprint scans, additional depth information

provided by the cross-sectional OCT depth profile scans are purported to thwart fingerprint pre-

sentation attacks. We develop and evaluate a presentation attack detector (PAD) based on a deep

convolutional neural network (CNN). The input data to our CNN is local patches extracted from

the cross-sectional OCT depth profile scans captured using THORLabs Telesto series spectral-

domain fingerprint reader. The proposed approach achieves a TDR of 99.73% @ FDR of 0.2% on

a database of 3, 413 bonafide and 357 PA OCT scans, fabricated using 8 different PA materials. By

employing a visualization technique, known as CNN-Fixations, we are able to identify the regions

in the OCT scan patches that are crucial for fingerprint PAD detection.
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(a) 2-D Finger OCT Depth Profile

A
B
C
D

(b) 3-D Finger OCT Volume
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D

Stratum Corneum
(Surface Fingerprint)

Epidermis

Papillary Junction
(Internal Fingerprint)

Dermis
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B
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D

Eccrine Sweat 
Glands

Figure 4.1 Different layers of a finger (stratum corneum, epidermis, papillary junction, and dermis)
are distinctly visible in a OCT finger scan, along with helical shaped eccrine sweat glands in (a)
3-D finger OCT volume and (b) 2-D finger OCT depth profile. Note that (a) and (b) are OCT
scans of different fingers. Image (a) is captured using THORLabs Telesto series (TEL1325LV2)
SD-OCT scanner [154] and (b) is reproduced from [33].

4.1 Introduction

Most of the fingerprint recognition systems based on traditional readers (e.g., FTIR and capacitive

technology) rely upon the friction ridge information on the finger surface (i.e., stratum corneum).

This makes them highly vulnerable to be fooled by presentation attacks. On the other hand, op-

tical coherence tomography (OCT) [72] technology allows non-invasive, high-resolution, cross-

sectional imaging of internal tissue microstructures by measuring their optical reflections. An op-

tical analogue to Ultrasound [164], it utilizes low-coherence interferometry of near-infrared light

(900nm− 1325nm) and is widely used in biomedical applications, such as ophthalmology [132],

oncology [66], dermatology [162] as well as applications in art conservation [99] and fingerprint

presentation attack detection [111]. In an OCT scanner, a beam of light is split into a sample arm,

i.e., a unit containing the object of interest, and a reference arm, i.e., a unit containing a mirror

to reflect back light without any alteration (see Fig. 4.2). If the reflected light from the two arms

are within coherence distance, it gives rise to an interference pattern representing the depth profile

at a single point, also known as A-scan. Laterally combining a series of A-scans along a line can

provide a cross-sectional scan, also known as B-scan (see Figs. 4.1 (b) and 4.3). Stacking multiple
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Figure 4.2 A schematic diagram of a spectral-domain optical coherent tomography (SD-OCT)
scanner. The source light is emitted by a super luminescent diode (SLD) which is split into a sample
arm and a reference arm. A high-resolution tomography image of the internal microstructure of
the biological tissue is performed by measuring the interference signal of the sample backscattered
light. Image reproduced from [100].

B-scans together can provide a 3D volumetric representation of the scanned object, or the object

of our interest i.e., internal structure of a finger (see Figure 4.1 (a)).

The human skin is a layered tissue with the outermost layer known as epidermis and the

external-facing sublayer of epidermis, where the friction ridge structure exists, is known as stra-

tum corneum. The layer below epidermis is known as dermis, and the junction between epidermis

and dermis layers is known as papillary junction. The development of friction ridge patterns on

papillary junction, which starts as early as in weeks 10-12 of gestation, results into the formation

of a surface fingerprint on stratum corneum [7]. The surface friction ridge pattern, scanned by

traditional (optical and capacitive) fingerprint readers, is merely an instance or a projection of the,

so to say, a master print existing on the papillary junction. There also exist helically shaped ducts

in epidermis layer connecting the eccrine (sweat) glands in dermis to the sweat pores on surface.

See Figure 4.1.
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Table 4.1 Existing studies on Optical Coherent Tomography (OCT) based fingerprint presentation
attack detection.

Study Approach OCT Technology Database Comments

Cheng
et al.,
2006 [19]

Averaged B-scan slices to generate 1D depth
profile; performed auto-correlation analysis;

B-scan is 2.2mm in depth and 2.4mm laterally

Imalux Corp.
Time-domain OCT;

capture time: 3s

8 bonafide (8 fingers
of one subject) and
10-20 impressions

per PA, four PA
materials

Manual inspection
of auto-correlation

response

Cheng
et al.,
2007 [20]

Extended [19] by combining 100 B-Scans to
create 3D representation; anisotropic resolution

(4762 dpi, 254 dpi)

Imalux Corp.
Time-domain OCT;
capture time: 300s

for 100 scans

One bonafide finger,
one PA

Visual analysis of
3D representation

Bosen
et al.,
2010 [10]

Used fingerprint COTS for matching 3D OCT
scans; scanned volume: 14mm x 14mm x

3mm; discussed detection of eccrine glands for
PAD

THORLabs
Swept-source OCT

(OCS1300SS);
capture time: 20s

for 3D volume

153 impressions
from 51 fingers for

identification
experiment; one PA

material.

Visual analysis for
PAD; identification
performance: FRR

= 5% @ FAR =
0.01%

Liu et al.,
2010 [102]

Mapped subsurface eccrine glands with sweat
pores on finger surface; exhibited repeatable

matching of fingerprints based on sweat pores;
discussed absence of sweat pores for

fingerprint PAD

Custom
Spectral-domain

OCT; capture time:
4min for 3D volume

Nine bonafide
impressions from
three fingers, two

PA materials

Visual analysis of
eccrine glands for

PAD

Nasiri-
Avanaki
et al.,
2011 [116]

Used a dynamic focus en-Face OCT to detect
any layer placed over finger skin; discussed

Doppler OCT to detect blood flow and sweat
production for liveness detection

Custom en-Face
OCT; capture time

is not reported

One bonafide finger,
one PA

Visual analysis of
one bonafide finger
and one sellotape

PA

Liu et al.,
2013 [101]

Auto-correlation analysis between adjacent
B-Scans to determine blood flow in

micro-vascular pattern

Swept-source OCT;
capture time: 20s

One bonafide with
and w/o inhibited

blood flow

Exhibited repeatable
signs of vitality

Meissner
et al.,
2013 [109]

Detected number of helical eccrine gland ducts
to distinguish bonafide vs PA, scanned volume:

4.5mm x 4mm x 2mm

Swept-source OCT;
capture time is not

reported

Bonafide: 7, 458
images, cadavers:
330 images, PA:
2, 970 images

Manual PAD: 100%;
automated PAD:

bonafide: 93% and
PA: 74% success

rate

Darlow
et al.,
2016 [33]

Detected double bright peaks in depth profile
for thin PAs and autocorrelation analysis for
thick PAs; 2 different resolutions; scanned

volume: 13mm x 13mm x 3mm (500dpi) and
15mm x 15mm x 3mm (867 dpi)

THORLabs
Swept-source OCT

(OCS1300SS);
capture time: 20s

for 3D volume

Bonafide: 540 scans
from 15 subjects,
PA: 28 scans; one

PA material +
sellotape

PAD accuracy:
100%

Darlow
et al.,
2016 [32]

Measured ridge frequency consistency of the
internal fingerprint in non-overlapping blocks;

THORLabs
Swept-source OCT

(OCS1300SS)

Bonafide: 20 scans,
PA 20 scans; one PA

material

PAD accuracy:
100%

Liu et al.,
2019 [100]

Analyzed order and magnitude of bright peaks
in 1-D depth signals to detect PAs with

different thickness; scanned volume: 15mm x
15mm x 1.8mm

Custom
Spectral-domain

OCT

Bonafide: 30 scans
from 15 subjects,
PA: 60 scans; four

PA materials

Contact-based (glass
platen) OCT
scanner; PAD

accuracy: 100%

Proposed
Approach

Trained a deep CNN model using overlapping
patches extracted from detected finger depth
profile in B-Scans; B-scan is 1.8mm in depth

and 14mm laterally

THORLabs
Spectral-domain

OCT
(TEL1325LV2);

capture time: < 1s

Bonafide: 3,413
scans from 415

subjects, PA: 357
scans, eight PA

materials

Five-fold
cross-validation;

TDR = 99.73% @
FDR = 0.2%
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Figure 4.3 Direct view images with red arrows presenting the scanned line and the corresponding
cross-sectional B-scan for a (a) bonafide and a (b) pigmented ecoflex presentation attack.

4.1.1 Related Work

Since OCT enables imaging the 3D volumetric morphology of the skin tissue, including the subsur-

face fingerprint and other internal structures, it has great potential in detecting fingerprint presen-

tation attacks. Existing fingerprint PAD studies in the literature have explored various OCT tech-

nologies such as time-domain, fourier-domain, and spectral domain, and developed hand crafted

features to detect blood flow, eccrine glands, and correlation between the surface and internal fin-

gerprint.

In 2006, Cheng et al. [19] utilized a time-domain OCT scanner to capture B-scan slices which

were averaged to generate 1D depth profile signals. They used auto-correlation of 1D signals to

manually distinguish bonafide from PA. Stacking 100 B-scan slices allowed them to create a 3D

representation of the internal finger structure for better visualization to distinguish between live
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and PA [20]. In 2010, Bosen et al. [10] utilized a swept-source OCT to collect 153 impressions

from 51 fingers, and a COTS matcher to evaluate the identification performance. They discussed

the idea of detecting eccrine glands for PAD. Liu et al. [102] mapped subsurface eccrine glands

with sweat pores on finger surface captured using a spectral-domain OCT and discussed the idea

of using absence of sweat pores for PAD. In 2011, Nasiri-Avanaki et al. [116] utilized a custom

dynamic focus en-Face OCT capable to capture any layer placed over finger skin and also discussed

a method to utilize Doppler OCT for detecting blood flow and sweat production for PAD.

In 2013, Liu et al. [101] used a swept-source OCT to capture B-scans and used auto-correlation

between adjacent scans to determine blood-flow in micro-vascular patterns. They utilized one

bonafide finger with and without inhibited blood flow to show the significant changes in auto-

correlation values. Meissner et al. [109] presented the first large-scale OCT-based PAD evaluation

with 7, 458 bonafide images, 330 cadaver images, and 2, 970 PA images captured using a swept-

source OCT scanner. They utilized detection of helically shaped eccrine gland ducts and achieved

100% PAD performance on manual analysis. However, the detection rates dropped to 93% and

74% for bonafide and PA, respectively, using an automated algorithm. In 2016, Darlow et al. [33]

utilized swept-source OCT 1D scans and detected double bright peaks for thin PAs and analyzed

auto-correlation for thick PAs. A perfect PAD accuracy was achieved with 28 PA scans and 540

bonafide scans from 15 subjects. However, they only utilized 1 PA material for thick PA and

sellotape for thin PA. In [32], Darlow et al. measured ridge frequency consistency of internal

fingerprints in non-overlapping blocks. They used 20 bonafide and 20 PA scans fabricated using

1 PA material and achieved 100% accuracy. Recently, in 2019, Liu et al. [100] utilized a custom

spectral-domain OCT scanner and analyzed order and magnitude of bright peaks in 1D depth

profile signals to detect PAs. These studies are summarized in Table 4.1.

In the proposed approach, we utilize local patches (150 × 150) extracted from the automati-

cally segmented finger depth profile from input B-scan images to train a deep convolutional neural

network. The main contributions of this chapter are:
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Figure 4.4 An overview of the proposed fingerprint presentation attack detection approach utilizing
local patches extracted from the segmented depth profiles from OCT B-scans.

1. Proposed a deep convolutional neural network based PAD approach trained on local patches

containing finger depth profile from cross-sectional B-Scans.

2. Evaluated the proposed approach on a database of 3,413 bonafide and 357 PA OCT B-scans

fabricated using 8 different PA materials and achieved a TDR of 99.73% @ FDR of 0.2%

for PAD.

3. Identified the regions in the OCT scan patches that are crucial for fingerprint PAD detection

by employing a visualization technique, known as CNN-Fixations.

4.2 Proposed Approach

The proposed PAD approach includes two stages, an offline training stage and an online testing

stage. The offline training stage involves (i) preprocessing the OCT images (noise removal and

image enhancement), (ii) detecting region-of-interest (i.e., finger depth profile), (iii) extracting

local patches from the region-of-interest (ROI), and (iv) training CNN models on the extracted

local patches. During the online testing stage, the final spoof detection decision is made based on

the average of spoofness scores output from the CNN model for each of the extracted patches. An

overview of the proposed approach is presented in Figure 4.4.
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Bonafide Finger 2D OCT Depth Profile Presentation Attack 2D OCT Depth Profile

Figure 4.5 Depth profile of a bonafide finger manifests a layered tissue anatomy quite distinguish-
able from the depth profile of a presentation attack without any specific structure.

4.2.1 Preprocessing

Optical Coherent Tomography (OCT) 2D scans are grayscale images with height = 1024 pixels

and width = 1900 pixels (see Figs. 4.5 and 4.6). These images contain gaussian noise which

makes the extraction of region-of-interest (finger depth profile) by simple thresholding prone to

errors. We employ Non-Local Means denoising [12] that removes noise by replacing the intensity

of a pixel with an average intensity of the similar pixels that may not be present close to each other

(non-local) in the image. An optimized opencv python implementation1 of Non-Local Means

denoising, cv2.fastNlMeansDenoising(), is used with filterStrength = 20, templateWindowSize = 7,

and searchWindowSize = 21. After de-noising, a morphological operation of image dilation [49],

with the kernel size of 5× 5, is applied to enhance the image.

1https://opencv-python-tutroals.readthedocs.io/en/latest/py tutorials/py photo/py non local means/py non local
means.html
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Bonafide Samples

PA Samples

(a) Ballistic Gelatin (b) Elmer’s Glue (c) Conductive Silicone

Figure 4.6 Examples of bonafide and presentation attack samples from the OCT fingerprint
database utilized in this study.

4.2.2 Otsu’s Binarization

The characteristic differences between a bonafide and a presentation attack OCT image are pri-

marily discernible in the finger depth profile region as shown in Figure 4.5. The pixel intensity

histograms for the grayscale 2D OCT images are bimodal, with the first peak (high intensity val-

ues) referring to the finger depth profile region, while the second peak (low intensity values) refers

to the background region. In order to segment out the finger depth profile, we apply Otsu’s thresh-

olding [125] which finds an adaptive threshold, in the middle of the two peaks, to successfully

binarize the input OCT images as shown in Figure 4.4.

4.2.3 Local Patch Extraction

The binarized image generated after Otsu’s binarization is raster scanned, with a stride of 30 pixels

(in both x and y-axis), to identify the possible candidates for patch extraction. At each scanned

pixel, a window of size 9× 9 is evaluated and if more than 25% of the pixels (20 out of 81 pixels)

in the window have non-zero values, the pixel is marked as a candidate for extracting a local patch.
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Table 4.2 Summary of the Optical Coherent Tomography (OCT) database collected at GCT-II as
part of IARPA ODIN Program [123].

Fingerprint Presentation Attack Material #Images
Ballistic Gelatin 34

Clear Ecoflex 7

Tan Ecoflex 49

Yellow Pigmented Silicone 57

Flesh Pigmented Ecoflex 36

Nusil R-2631 Conductive Silicone 128

Flesh Pigmented PDMS 42

Elmer’s Glue 1

Bandaid 3

Total PAs 357

Total Bonafide 3,413

This rule is applied to guarantee sufficient depth information in the extracted patches. After the

patch candidates are selected, a maximum of 60 local patches of size 150× 150 are extracted from

the original image around the patch candidates. If there are more than 60 candidates, the topmost

candidates from each column (i.e., the points closest to the surface fingerprint) are selected first,

before moving to the next row. With the image width of 1900 pixels and a stride of 30 pixels, a

maximum of 60 patches are sufficient to provide at least one pass of stratum corneum. The patches

are extracted such that the candidate is located at (50, 75) in the 150× 150 patch. This ensures that

the extracted patches cover stratum corneum, epidermis, and papillary junction regions as shown

in Figure 4.4.

4.2.4 Convolution Neural Networks

With the success of AlexNet [93] in ILSVRC-2012 [140], different deep CNN architectures have

been proposed in literature, such as VGG, GoogleNet (Inception), Inception v2-v4, MobileNet,

and ResNet. In this study, we utilize the Inception-v3 [150] architecture which has exhibited
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state-of-the-art performance in patch-based fingerprint presentation attack detection [23, 24]. Our

experimental results show that training the models from scratch, using local patches, performs

better than fine-tuning a pre-trained network on image patches from other domains (e.g. FTIR

fingerprint images).

We utilized the TF-Slim library2 implementation of the Inception-v3 architecture. The last

layer of the architectures, a 1000-unit softmax layer (originally designed to classify a query image

into one of the the 1, 000 classes of ImageNet dataset) was replaced with a 2-unit softmax layer

for the two-class problem, i.e., Bonafide vs. PA. The output from the softmax layer is in the range

[0, 1], defined as Spoofness Score. The larger the spoofness score, the higher the likelihood that

the input patch belongs to the PA class. For an input test image, the spoofness scores correspond-

ing to each of the local patches, extracted from the input image, are averaged to give a Global

Spoofness Score. The optimizer used to train the network was RMSProp, with a batch size of 32,

and an adaptive learning rate with exponential decay, starting at 0.01 and ending at 0.0001. Data

augmentation techniques, such as random cropping, brightness adjustment, horizontal and vertical

flipping, are employed to ensure the trained model is robust to the possible variations in fingerprint

images. The proposed approach is presented in Algorithm 2.

4.3 Experimental Results

4.3.1 OCT Presentation Attack Database

A database of 3, 413 bonafide and 357 presentation attack (PA) 2D OCT scans is utilized in this

study. These scans are captured using THORLabs Telesto series (TEL1325LV2) Spectral-domain

OCT scanner [154] (see Figure 4.7). Table 4.2 lists the eight PA materials and the corresponding

number of scans for each material type. Figure 4.6 presents few samples of bonafide and PA scans

2https://github.com/tensorflow/models/tree/master/research/slim
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Algorithm 2 Presentation Attack Detection for OCT Fingerprint Images
1: procedure
2: input
3: I: 2D OCT Fingerprint Image
4: output
5: SI : Predicted Spoofness Score for I
6: functions and parameters
7: f(.): OpenCV non-local means denoising function cv2.fastNlMeansDenoising()
8: θf : filterStrength = 20, templateWindowSize = 7, and searchWindowSize = 21
9: g(.): image dilation function

10: θg: kernelSize = 5
11: h(.): Otsu’s Binarization Function
12: p(.): Raster-scan local patch extractor with maximum number of patches = 60
13: θp: h = w = 150, Stridex = 30, Stridey = 30, PatchCenter = (50, 75)
14: c(.): Inception-v3 CNN Model trained on Bonafide and PA OCT patch images, returns

spoofness scores for input patches
15: begin:
16: Preprocessing: Ip = g(f(I, θf ), θg)
17: Binarized Image: Ib = h(Ip)
18: Local Patch Extraction: φ = p(I, Ib, θp)
19: CNN Evaluation of Local Patches: Sφ = c(φ)
20: Spoofness Score: SI = average(Sφ)
21: end

from this database. This dataset is collected at John Hopkins University Applied Physics Lab3 as

part of a large-scale evaluation under IARPA ODIN Project [123] on presentation attack detection.

4.3.2 Results

The proposed approach is evaluated using five-fold cross-validation. Table 4.3 presents the training

and testing set details for each fold4, along with the achieved PA True Detection Rate (%) @ False

Detection Rate = 0.2%. The selection of this metric is based on the requirements of IARPA ODIN

program [123] and represents the percentage of PAs able to breach the biometric system security

when the reject rate of legitimate users ≤ 0.2%. Note that the proposed approach achieves an

avg. TDR = 99.73% (s.d. = 0.55) @ FDR = 0.2% for the five folds. Figure 4.8 presents the ROC

3https://www.jhuapl.edu/
4Note that all PA types are uniformly distributed among the five folds without repetition, therefore Elmer’s Glue

and Bandaid which have less than five samples are missing from some folds.
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Figure 4.7 Setup of a THORLabs Telesto series Spectral-domain OCT scanner (TEL1325LV2).
Image taken from [154].

Table 4.3 Summary of the five-fold cross-validation and the performance achieved using Inception-
v3 model.

Fold # Images (Bonafide / PA) TDR (%) @ FDR = 0.2%Training Testing
I (2,730 / 281) (683 / 76) 100.00

II (2,730 / 283) (683 / 74) 98.63

III (2730 / 288) (683 / 71) 100.00

IV (2731 / 289) (682 / 70) 100.00

V (2731 / 288) (682 / 71) 100.00

Average 99.73 (s.d. = 0.55)

curves for each of the five folds. In fold-II, only one bonafide scan was misclassified as PA due to

incorrect segmentation.

4.3.3 Visualizing CNN Learnings

CNNs have revolutionized computer vision and machine learning research achieving unprece-

dented performance in many tasks. But these are usually treated as “black boxes” shedding lit-

tle light on their internal workings and without answering how they achieve high performance.

One way to gain insights into what CNNs learn is through visual exploration, i.e., to identify the
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Figure 4.8 ROC curves for the five-fold cross-validation experiments. The red curve represents
the average performance with grayed region reflecting the confidence interval of one standard
deviation.

image regions that are responsible for the final predictions. Towards this goal, visualization tech-

niques [112, 144, 146] have been proposed to supplement the class labels predicted by CNN, in

our case bonafide or PA, with the discriminated image regions (or saliency maps) exhibiting class-

specific patterns learned by CNN architectures. The visualization technique proposed in [112]

exploits the learned feature dependencies between consecutive layers of a CNN to identify the dis-

criminative pixels, called CNN-Fixations, in the input image that are responsible for the predicted

label. We utilize this visualization technique to understand the representation learning of our CNN

models and identify the crucial regions in OCT images responsible for final predictions. Figs. 4.9

presents CNN-Fixations and the corresponding density heatmaps for two bonafide and two PA im-

age patches that are correctly classified. We observe that there is a high density of fixations along

stratum corneum and at papillary junction, suggesting that these are definitely crucial regions in

distinguishing bonafide vs PA OCT patches. Note that the only misclassified sample in Fold-II was
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Input CNN-Fixations Heat Map Input CNN-Fixations Heat Map

Bonafide Samples PA Samples

High density of fixations at Papillary Junction

High density of fixations on Stratum Corneum (surface fingerprint)

Figure 4.9 Patches (150 × 150) from bonafide and PA OCT B-scans input to the model are pre-
sented. The detected CNN-Fixations and a heat map presenting the density of CNN-Fixations are
also shown. A high density of fixations are observed along the stratum corneum (surface finger-
print) and at papillary junction in both bonafide and PA patches. (Best viewed in color)

due to incorrect segmentation, otherwise it would be useful to observe the CNN-Fixations that led

to an incorrect prediction.

4.4 Summary

The penetrative power of optical coherent tomography (OCT) to image the internal tissue struc-

ture of human skin in a non-invasive manner presents a great potential to investigate robustness

against fingerprint presentation attacks. We propose and demonstrate a learning-based approach

to differentiate between bonafide (live) and eight different types of presentation attacks (spoofs).

The proposed approach utilizes local patches automatically extracted from the finger depth profile

in 2D OCT B-scans to train an Inception-v3 network model. Our experimental results achieve a

TDR of 99.73% @ FDR of 0.2% on a database of 3, 413 bonafide and 357 PA scans. The crucial

regions in the input images for PAD learned by the CNN models, namely stratum corneum and
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papillary junction, are identified using a visualization technique. In future, we will evaluate the

generalization ability of the proposed approach against novel materials that are not seen by the

model during training.
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Chapter 5

Summary

In this thesis, we address the challenges of presentation attack detection by developing an accu-

rate, efficient, interpretable, and generalizable solution to detect fake/gummy fingers (spoofs) and

altered fingerprints. The proposed solution achieves state-of-the-art accuracy on publicly available

liveness detection (LivDet) databases, large-scale government (IARPA ODIN program) evalua-

tion databases, two new in-house self-collected databases, and an operational altered fingerprint

database from a law enforcement agency. Fingerprints used in these datasets are captured us-

ing both traditional fingerprint readers, e.g., CrossMatch Guardian 200, Lumidigm V302, SilkID

Fast Frame Rate, etc., as well as novel fingerprint readers based on optical coherent tomography

(OCT). The proposed solution is optimized, in terms of both memory and computational resources,

for real-time inference and is ported as an efficient Android app that can make a PAD decision in

under 100ms on a commodity smartphone (Samsung Galaxy S8). Furthermore, we investigate

the optical and physical characteristics of different spoof materials to understand and interpret

the cross-material (generalization) performance achieved by the proposed approach. We also im-

prove the PAD generalization performance by proposing two difference approaches: (i) a style

transfer-based wrapper to generate spoof images of unknown styles and (ii) a temporal analysis of

a sequence of fingerprint image frames.
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5.1 Contributions

The main contributions of this thesis are summarized below:

1. An accurate deep learning-based fingerprint presentation attack detector (PAD), called Fin-

gerprint Spoof Buster, utilizing local patches centered and aligned along fingerprint minu-

tiae. The proposed approach utilizing only grayscale fingerprint images can be integrated as

a software-only solution, without incurring any additional hardware cost, to a wide range of

already deployed fingerprint matching systems. Our algorithm can be generalized to images

captured by any sensor with minimal retraining.

2. A graphical user interface for the Fingerprint Spoof Buster which highlights the local regions

of the fingerprint image as bonafide (live) or PA (spoof) for visual inspection. This is more

informative than a single spoof score output by the traditional approaches. We utilize visu-

alization techniques to interpret the features learned by CNN models in order to understand

the strengths and limitations of the proposed approach. In the same spirit, we also propose

a method for detection and localization of fingerprint alterations utilizing whole images and

minutia-centered patches to train CNN models, achieving state-of-the-art accuracy.

3. We tackle the high memory and computational requirements of Fingerprint Spoof Buster by

(i) minutiae clustering, followed by weighted fusion to reduce the required number of lo-

cal patch inferences, and (ii) optimizing the network architecture and quantization of model

weight parameters to perform byte computations instead of floating point arithmetic. The

proposed optimizations result in an approximately 80% reduction in computation and mem-

ory requirements. This has enabled us to develop a light-weight version of the PAD, called

Fingerprint Spoof Buster Lite, as an Android application that can run on a commodity smart-

phone (Samsung Galaxy S8) without a significant drop in PAD performance (from TDR =

95.7% to 95.3% @ FDR = 0.2%) capable of detecting spoofs in under 100ms.
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4. An interpretation of cross-material (generalization) performance of the proposed PAD by

(i) evaluating Fingerprint Spoof Buster against unknown PAs by adopting a leave-one-out

protocol where one material is left out from training set and set aside for testing, (ii) uti-

lizing 3D t-SNE visualizations of the bonafide and PA samples in the deep feature space,

and (iii) investigating the PA material characteristics (two optical and two physical proper-

ties) and correlating them with their cross-material performances to identify a representative

set of PA materials that should be included during training to ensure a high generalization

performance.

5. A style transfer-based wrapper, Universal Material Generator (UMG), to improve the gen-

eralization performance of any PA detector against novel PA fabrication materials that are

unknown to the system during training. The proposed wrapper is shown to improve the aver-

age generalization performance of Fingerprint Spoof Buster from TDR of 75.24% to 91.78%

@ FDR = 0.2% when evaluated on a large-scale dataset of 5, 743 live and 4, 912 PA images

fabricated using 12 materials. It is also shown to improve the average cross-sensor perfor-

mance from 67.60% to 80.63% when tested on LivDet 2017 dataset, alleviating the time and

resources required to generate large-scale PA datasets for new sensors.

6. A dynamic PAD solution utilizing a sequence of local patches centered at detected minutiae

from ten color frames captured in quick succession (8 fps) as the finger is presented on the

sensor. We posit that the dynamics involved in the presentation of a finger, such as skin

blanching, distortion, and perspiration, provide discriminating cues to distinguish live from

spoofs. The proposed approach improves the spoof detection performance from TDR of

99.11% to 99.25% @ FDR = 0.2% in known-material scenarios, and from TDR of 81.65%

to 86.20% @ FDR = 0.2% in cross-material scenarios.

7. A PAD solution utilizing the ridge-valley depth-information of finger skin, including internal

fingerprint (papillary junction) and sweat (eccrine) glands, sensed by the optical coherent to-

mography (OCT) fingerprint technology. Our proposed solution achieves a TDR of 99.73%
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@ FDR of 0.2% on a database of 3, 413 bonafide and 357 PA OCT scans captured using

THORLabs Telesto series spectral-domain fingerprint reader. We also identify the regions in

the OCT scan patches that are crucial for fingerprint PAD detection.

5.2 Suggestions for Future Work

The following are some of the possible future directions within the scope of fingerprint presentation

attack detection:

• PAD Generalization: Explore adversarial representation learning (ARL) based ap-

proach [139] to learn material and sensor agnostic feature representations for generalized

fingerprint PAD.

• Multi-Task Learning: In addition to detecting bonafide vs. PA, a PAD could be trained to

predict the PA material type as an open-set problem. With one of the classes as “unknown”

material, the system could be trained in a continuous (online) manner when the network is

not able to predict the material type with high confidence.

• Dynamic PAD Approaches: Learning a “mixture of PAD experts” where each expert mod-

ule specializes in some sensor and/or some PA materials. The selection of the best module

can be learned as an auxiliary task and this decision can be made dynamically at test time. s

• Altered Fingerprints: Explore GAN-based generative models and 3D printing of altered

fingerprint targets to increase the availability of altered fingerprint databases in the literature

for conducting a large-scale study.

146



BIBLIOGRAPHY

147



BIBLIOGRAPHY

[1] Meir Agassy, Boaz Castro, Arye Lerner, Gal Rotem, Liran Galili, and Nathan Altman. Live-
ness and Spoof Detection for Ultrasonic Fingerprint Sensors, April 16 2019. US Patent
10,262,188.

[2] Athos Antonelli, Raffaele Cappelli, Dario Maio, and Davide Maltoni. Fake Finger Detection
by Skin Distortion Analysis. IEEE Transactions on Information Forensics and Security,
1(3):360–373, 2006.

[3] Apple. Apple Pay: Payment authorization using Touch ID. https://www.apple.com/
business/site/docs/iOS Security Guide.pdf, May 2019.

[4] Sunpreet S. Arora, Kai Cao, Anil K. Jain, and Nicholas G. Paulter. Design and Fabrica-
tion of 3D Fingerprint Targets. IEEE Transactions on Information Forensics and Security,
11(10):2284–2297, 2016.

[5] Sunpreet S. Arora, Anil K. Jain, and Nicholas G. Paulter. Gold Fingers: 3D Targets for
Evaluating Capacitive Readers. IEEE Transactions on Information Forensics and Security,
12(9):2067–2077, 2017.

[6] David R. Ashbaugh. Quantitative-Qualitative Friction Ridge Analysis: An Introduction to
Basic and Advanced Ridgeology. CRC press, 1999.

[7] William J. Babler. Embryologic Development of Epidermal Ridges and their Configura-
tions. Birth Defects Original Article Series, 27(2):95–112, 1991.

[8] Denis Baldisserra, Annalisa Franco, Dario Maio, and Davide Maltoni. Fake Fingerprint
Detection by Odor Analysis. In Proc. International Conference on Biometrics (ICB), pages
265–272. Springer, 2006.

[9] Mauro Barni et al. A Privacy-compliant Fingerprint Recognition System based on Ho-
momorphic Encryption and Fingercode Templates. In IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS), pages 1–7, 2010.

[10] Anke Bossen, Roland Lehmann, and Christoph Meier. Internal Fingerprint Identification
with Optical Coherence Tomography. IEEE Photonics Technology Letters, 22(7):507–509,
2010.

[11] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Media, Inc., 2008.

[12] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. Non-local Means Denoising. Image
Processing On Line, 1:208–212, 2011.

[13] Kai Cao and Anil K. Jain. Learning Fingerprint Reconstruction: From Minutiae to Image.
IEEE Transactions on Information Forensics and Security, 10(1):104–117, 2014.

148

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf


[14] Kai Cao and Anil K. Jain. Hacking mobile phones using 2D Printed Fingerprints, MSU
Tech. report, MSU-CSE-16-2. https://www.youtube.com/watch?v=fZJI BrMZXU, 2016.

[15] Kai Cao and Anil K. Jain. Automated Latent Fingerprint Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(4):788–800, 2018.

[16] Kai Cao, Eryun Liu, Liaojun Pang, Jimin Liang, and Jie Tian. Fingerprint Matching by
Incorporating Minutiae Discriminability. In IEEE International Joint Conference on Bio-
metrics (IJCB), pages 1–6, 2011.

[17] Kai Cao, Dinh-Luan Nguyen, Cori Tymoszek, and Anil K. Jain. End-to-End Latent Fin-
gerprint Search. IEEE Transactions on Information Forensics and Security, 15:880–894,
2019.

[18] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu. Sketch2photo:
Internet Image Montage. ACM Transactions on Graphics (TOG), 28(5):124, 2009.

[19] Yezeng Cheng and Kirill V. Larin. Artificial Fingerprint Recognition by using Optical Co-
herence Tomography with Autocorrelation Analysis. Applied Optics, 45(36):9238–9245,
2006.

[20] Yezeng Cheng and Kirill V. Larin. In Vivo Two-and Three-dimensional Imaging of Artificial
and Real Fingerprints With Optical Coherence Tomography. IEEE Photonics Technology
Letters, 19(20):1634–1636, 2007.

[21] François Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv
preprint arXiv:1610.02357, 2016.

[22] Tarang Chugh, Sunpreet S. Arora, Anil K. Jain, and Nicholas G. Paulter. Benchmarking Fin-
gerprint Minutiae Extractors. In IEEE International Conference of the Biometrics Special
Interest Group (BIOSIG), pages 1–8, 2017.

[23] Tarang Chugh, Kai Cao, and Anil K. Jain. Fingerprint Spoof Detection using Minutiae-
based Local Patches. In Proc. IEEE International Joint Conference on Biometrics (IJCB),
pages 581–589, 2017.

[24] Tarang Chugh, Kai Cao, and Anil K. Jain. Fingerprint Spoof Buster: Use of Minutiae-
centered Patches. IEEE Transactions on Information Forensics and Security, 13(9):2190–
2202, 2018.

[25] Tarang Chugh, Kai Cao, Jiayu Zhou, Elham Tabassi, and Anil K. Jain. Latent Fingerprint
Value Prediction: Crowd-based Learning. IEEE Transactions on Information Forensics and
Security, 13(1):20–34, 2017.

[26] Tarang Chugh and Anil K. Jain. Fingerprint Presentation Attack Detection: Generalization
and Efficiency. In IEEE International Conference on Biometrics (ICB), pages 1–8, 2019.

[27] Tarang Chugh and Anil K. Jain. Fingerprint Spoof Detection: Temporal Analysis of Image
Sequence. arXiv preprint arXiv:1912.08240, 2019.

149

https://www.youtube.com/watch?v=fZJI_BrMZXU


[28] Tarang Chugh and Anil K. Jain. Fingerprint Spoof Generalization. arXiv preprint
arXiv:1912.02710, 2019.

[29] Tarang Chugh and Anil K. Jain. OCT Fingerprints: Resilience to Presentation Attacks.
arXiv preprint arXiv:1908.00102, 2019.

[30] European Commision. Trusted Biometrics under Spoofing Attacks (TABULA RASA). http:
//www.tabularasa-euproject.org/, 2013.

[31] Harold Cummins. Attempts to Alter and Obliterate Finger-Prints. Journal of Criminal Law
and Criminology, 25(12), 1935.

[32] Luke N. Darlow, Ann Singh, Moolla, et al. Damage Invariant and High Security Acquisition
of the Internal Fingerprint using Optical Coherence Tomography. In World Congress on
Internet Security, 2016.

[33] Luke N. Darlow, Leandra Webb, and Natasha Botha. Automated Spoof-detection for Fin-
gerprints using Optical Coherence Tomography. Applied Optics, 55(13):3387–3396, 2016.

[34] Dept. of Homeland Security. Office of Biometric Identity Management Identification Ser-
vices. https://www.dhs.gov/obim-biometric-identification-services, 2016.

[35] Yaohui Ding and Arun Ross. An Ensemble of One-class SVMs for Fingerprint Spoof Detec-
tion across Different Fabrication Materials. In IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6, 2016.

[36] FBI Criminal Justice Information Services Division. Altered Fingerprints: A Chal-
lenge to Law Enforcement Identification Efforts. www.crime-scene-investigator.net/altered-
fingerprints.html, 2015.

[37] Kostadin D. Djordjev, Leonard E. Fennell, Nicholas I. Buchan, David W. Burns, Samir K.
Gupta, and Sanghoon Bae. Display with Peripherally Configured Ultrasonic Biometric Sen-
sor. US Patent 9,323,393, 2016.

[38] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A Learned Representation for
Artistic Style. arXiv preprint arXiv:1610.07629, 2016.

[39] Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. CAN: Cre-
ative Adversarial Networks, Generating ”art” by Learning about Styles and Deviating from
Style Norms. arXiv preprint arXiv:1706.07068, 2017.

[40] John Ellingsgaard and Christoph Busch. Altered Fingerprint Detection. Handbook of Bio-
metrics for Forensic Science, Springer, pages 85–123, 2017.

[41] John Ellingsgaard, Ctirad Sousedik, and Christoph Busch. Detecting Fingerprint Alterations
by Orientation Field and Minutiae Orientation Analysis. In 2nd International Workshop on
Biometrics and Forensics, pages 1–6, 2014.

150

http://www.tabularasa-euproject.org/
http://www.tabularasa-euproject.org/
https://www.dhs.gov/obim-biometric-identification-services
www.crime-scene-investigator.net/altered-fingerprints.html
www.crime-scene-investigator.net/altered-fingerprints.html


[42] Joshua J. Engelsma, Sunpreet S. Arora, Anil K. Jain, and Nicholas G. Paulter. Universal 3D
Wearable Fingerprint Targets: Advancing Fingerprint Reader Evaluations. IEEE Transac-
tions on Information Forensics and Security, 13(6):1564–1578, 2018.

[43] Joshua J. Engelsma, Kai Cao, and Anil K. Jain. RaspiReader: Open Source Fingerprint
Reader. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(10):2511–
2524, 2018.

[44] Joshua J. Engelsma, Kai Cao, and Anil K. Jain. Learning a Fixed-Length Fingerprint Repre-
sentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (early access),
2019.

[45] Joshua J. Engelsma, Debayan Deb, Anil K. Jain, Anjoo Bhatnagar, and Prem S. Sudhish.
Infant-Prints: Fingerprints for Reducing Infant Mortality. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 67–74, 2019.

[46] Joshua J. Engelsma and Anil K. Jain. Generalizing Fingerprint Spoof Detector: Learning a
One-Class Classifier. IEEE International Conference on Biometrics (ICB), 2019.

[47] Henry Faulds. On the Skin-furrows of the Hand. Nature, 22(574):605, 1880.

[48] Jianjiang Feng, Anil K. Jain, and Arun Ross. Detecting Altered Fingerprints. In IEEE
International Conference on Pattern Recognition (ICPR), pages 1622–1625, 2010.

[49] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice Hall,
2002.

[50] Rohit Gajawada, Additya Popli, Tarang Chugh, Anoop Namboodiri, and Anil K. Jain. Uni-
versal Material Translator: Towards Spoof Fingerprint Generalization. In IEEE Interna-
tional Conference on Biometrics (ICB), 2019.

[51] Francis Galton. Personal Identification and Description. Journal of Anthropological Institute
of Great Britain and Ireland, pages 177–191, 1889.

[52] Francis Galton. Finger Prints. Macmillan and Company, 1892.

[53] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A Neural Algorithm of Artistic
Style. arXiv preprint arXiv:1508.06576, 2015.

[54] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer using Con-
volutional Neural Networks. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2414–2423, 2016.

[55] Luca Ghiani, Abdenour Hadid, Gian Luca Marcialis, and Fabio Roli. Fingerprint Liveness
Detection using Binarized Statistical Image Features. In IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS), pages 1–6, 2013.

[56] Luca Ghiani, Gian Luca Marcialis, and Fabio Roli. Fingerprint Liveness Detection by Local
Phase Quantization. In IEEE International Conference on Pattern Recognition (ICPR),
pages 537–540, 2012.

151



[57] Luca Ghiani, David Yambay, Valerio Mura, Gian Luca Marcialis, Fabio Roli, and Stephanie
Schuckers. Review of the Fingerprint Liveness Detection (LivDet) Competition Series:
2009 to 2015. Image and Vision Computing, 58:110–128, 2017.

[58] Luca Ghiani, David Yambay, Valerio Mura, Simona Tocco, Gian Luca Marcialis, Fabio
Roli, and Stephanie Schuckcrs. LivDet 2013 Fingerprint Liveness Detection Competition
2013. In Proc. IAPR International Conference on Biometrics (ICB), pages 1–6, 2013.
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