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ABSTRACT 

 

A NOVEL POSTBUCKLING-BASED MECHANICAL ENERGY TRANSDUCER AND ITS 

APPLICATIONS FOR STRUCTURAL HEALTH MONITORING 

 

By 

 

Pengcheng Jiao 

 

In recent years, significant research efforts have been dedicated to developing self-powered 

wireless sensors without the limit of battery lifetime, such that they can be used to continuously 

monitor critical limit states and detect structural potential failures for structural health monitoring 

(SHM). As one of the most promising techniques, vibration-based energy harvester using 

piezoelectric transducer has been extensively used, given the advantages in size limitation and 

flexibility of embedding beneath construction surfaces. However, the low frequency of civil 

infrastructures’ fundamental vibration modes (< 5 Hz) severely impedes the application of the 

energy harvester, since piezoelectric transducer only exhibits optimal outputs under a narrow 

range of natural frequency inputs (50-300 Hz). 

Recently, a mechanism has been developed to harvest energy at very low frequencies 

(< 1 Hz) using mechanical energy concentrators and triggers. This technique is based on the 

snap-through between different buckling mode transitions of a bilaterally constrained beam 

subjected to quasi-static axial loads. Attaching piezoelectric transducer to the buckled beam, 

electrical power can be generated by converting the quasi-static excitations into localized 

dynamic motions. The proposed mechanism can be implemented as an indicator for critical limit 

states, given the electrical power indicates the corresponding strain/deformation that a structure 

undergoes. However, the efficiency of the mechanism significantly depends on the post-buckling 

behavior of the deflected beam element. Inadequate controlling over the system’s mechanical 

response critically impedes the application of the mechanism. Therefore, it is of research and 



 

practice interests to effectively control the mechanical response such that to maximize the 

electrical power and control the electrical signal.  

This study presents a technique for energy harvesting and damage sensing under quasi-static 

excitations. In order to optimize the harvesting efficiency and sensing accuracy of the proposed 

technique, which cannot be achieved by using uniform cross-section beams, non-prismatic 

beams are theoretically and experimentally studied. The mechanical response of the structural 

instability-induced systems are efficiently predicted and controlled. In particular, a theoretical 

model is developed using small deformation assumptions. Non-uniform beams are investigated 

with respect to the effects of beam shape configuration and geometry property. Piezoelectric 

scavengers with different natural frequencies are then used to convert the high-rate motions of 

the deflected beams at buckling transitions into electrical power. In addition, a large deformation 

model is developed to capture the buckling snap-through of the bilaterally constrained systems 

under large deformation assumptions. The model investigates the static and dynamic instabilities 

of bilaterally constrained beams subjected to gradually increasing loads. The model takes into 

account the impact of constraints gap under different constraint scenarios.  
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CHAPTER 1 

 INTRODUCTION 

 

1.1. Motivation and Vision 

In recent years, significant research efforts have been dedicated to developing and 

applying smart mechanisms and techniques to monitor critical limit states and detect structural 

potential failures. Different types of wireless sensors have been developed to particularly 

monitor the critical events that structures in civil infrastructures might be subjected, e.g., 

displacement, pressure, temperature, vibration, etc. In order to effectively detect structural health 

status, different types of monitoring systems have been particularly conducted to monitor the 

changes of structure response. However, those monitoring systems require a reliable, continuous 

source of power to charge the wireless sensors, rather than using traditional batteries due to their 

limited lifetimes. Since huge amounts of wireless sensors that monitoring systems are typically 

implemented, it is of great research and practice interests to develop a type of self-powered 

wireless sensor without the power limit.  

To develop self-powered wireless sensors, many energy harvesting mechanisms have 

been proposed based on different potential sources of energies, e.g., radio frequency, solar, 

strain, thermal gradient, vibration energy, etc. Vibration-based energy harvesters using 

piezoelectric transducers are one of the most promising techniques, given the advantages in size 

limitation and the possibility of embedding beneath construction surfaces. Even though 

vibration-based harvesters using piezoelectric materials have been extensively implemented due 

to the relatively high energy conversion efficiency and mechanical-to-electrical coupling 
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properties, the technique only exhibits optimal outputs under a narrow range of natural frequency 

inputs. A vibration-based scavenger, for example, with an overall volume limited to < 5 cm
3
 will 

exhibit a resonant frequency in the range 50-300 Hz (Najafi et al. 2011). In the contrast, civil 

structures typically have fundamental vibration modes at frequencies < 5 Hz, e.g., the daily 

temperature- or pressure variation-induced stress/strain response (< 1 mHz). Therefore, it is of 

significance to effectively increase, or convert, the quasi-static motions to high frequency 

vibrations, such that piezoelectric-based energy harvesters can be triggered. Many techniques 

have been proposed to harvest energy from extreme low frequency response, e.g., improvement 

of piezoelectric materials, optimal design of electrode patterns and system configuration, utility 

of matching networks, controlling of resonant frequency, etc. However, energy harvesting based 

on the inputs, e.g., load, deformation or motion, within quasi-static frequency range is still 

elusive, since the up-to-date energy harvesters are still inefficient and not suitable for low 

frequency vibration sources (Green et al. 2013).  

Recently, a technique has been developed to harvest energy at very low frequencies 

(< 1 Hz) using mechanical energy concentrators and triggers (Borchani et al., 2015). This 

mechanical system is based on the snap-through between different buckling mode transitions of a 

bilaterally constrained beam subjected to axial loads. As the axial loads are increased, the strain 

energy stored in the buckled element is released as kinetic energy mode transitions. Relying on 

the high-rate motions generated from the post-buckling response, the system is effectively 

activated under quasi-static strain/deformation. The snap-through behavior of bilaterally 

constrained beams is used to transform low-frequency and low-rate excitations into high-rate 

motions. Using a piezoelectric transducer, these motions are converted into electrical power. 

Post-buckling response of elastic beams has been widely used in many systems to develop 
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efficient energy harvesting and damage sensing mechanisms under quasi-static excitations 

(Lajnef et al. 2014; Borchani, et al. 2015; 2016; 2017).  

However, the efficiency of the energy harvester significantly depends on the post-

buckling behavior of the deflected beam element. Inadequate controlling over the beam’s 

mechanical response critically impedes the application of the mechanism and, hence, it is of 

research and practice interests to effectively control the post-buckling response, i.e., buckling 

mode transitions, such that to improve the energy conversion efficiency and maximize the 

generated electrical power. In this study, the challenging prospect is to design a mechanism such 

that wireless sensors can be self-powered by directly harvesting energy from the quasi-static 

response of civil infrastructures.  

1.2. Literature Review 

One of the most severe challenges of deploying Structural Health Monitoring (SHM) systems 

in civil infrastructures is the limited lifespan of batteries that are typically used to power the 

monitoring sensors. This issue is particularly significant due to the enormous number of sensors 

that are required in SHM (Lynch and Loh, 2008). In order to overcome the power limitation, a 

new self-powered sensor, whose concept is presented in Figure 1-1, has been developed (Lajnef 

et al., 2012; 2014). This sensor has accomplished competitive performance in different 

applications of SHM and damage detection (Alavi et al., 2015; 2016; 2017). The sensor is 

composed of two parts, namely, power harvesting unit and sensing unit. The energy harvesting 

unit is of great importance as it provides the required electric power to the wireless sensor 

without the limitation of battery lifetime or wiring harness (Lajenf et al., 2015; Rafiee et al., 

2015; Erturk and Inman, 2008). In addition, the electric signal from the harvester can be 

controlled to correspond to a specific strain/deformation. Therefore, the primary objectives of the 
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energy harvesting device in this study are: 1) transforming strain energy into electric energy to 

power wireless sensors; and 2) presenting a potential solution to sense damage based on the 

electric signals generated by the device. This work aims to control the strain that triggers the 

energy harvesting cell’s electric signal to accurately sense damage and optimize the output 

energy to efficiently power wireless sensors. Thanks to its mechanical-to-electrical energy 

conversion capability and its possibility to be embedded within construction materials, 

piezoelectric materials can be used as the energy-harvester oscillator in the energy harvesting 

cell presented in the figure (Blarigan et al., 2015; Cook-Chennault et al., 2008; Green et al., 

2013; Harne and Wang, 2013). Yet vibration-based piezoelectric harvesters deliver optimal 

performance only when excited near their resonance frequency. In order to widen the input 

requirement and extend the application range, many research efforts have been conducted to 

enlarge the operating bandwidth of vibration-based piezoelectric generators (Dong et al., 2015; 

Hajati and Kim, 2011; Marinkovic and Koser, 2009; Tang et al., 2010; Najafi et al., 2011; Quinn 

et al., 2011; Yang et al., 2016). However, these approaches are still inefficient for low frequency 

applications, particularly within the quasi-static domain (< 1 Hz).  

On the other hand, buckling and post-buckling elastic instabilities have been extensively 

studied with multiple functional purposes (Chen et al., 2013; Chen et al., 2011; Jiao et al., 2012; 

Safa and Hocker, 2015; Hu and Burgueno, 2015). In a number of applications, including 

actuation, sensing, and energy harvesting, buckled elements have shown great efficiency in 

developing monostable, bistable and multi-stable mechanisms (Lajnef et al., 2014; Lajnef et al., 

2015; Aladwani et al., 2015; Park et al., 2008; Zhao et al., 2008). Recently, the post-buckling 

instabilities of axially-loaded bilaterally-constrained beams have been exploited to develop 

mechanical triggering mechanisms (Lajnef et al., 2012; 2014). These mechanisms release the 
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strain energy stored in the loaded beams through snap-through buckling-mode-transitions. The 

slender beam in the energy harvesting cell buckles into different buckling modes depending on 

the levels of excitations, as shown in Figure 1-1.The transitions between the buckling 

configurations are accompanied by a sudden release of a part of the strain energy stored in the 

deformed beam (Lajnef et al., 2014). The snap-through buckling transitions of the beam 

transform the global low frequency excitations into localized high acceleration motions that are 

captured by the piezoelectric transducer. Hence the kinetic energy is converted into electric 

power. The energy conversion mechanism has been integrated with Piezo-Floating-Gate sensors 

to allow for self-powered sensing and logging of quasi-static events (Lajenf et al., 2015). When 

the capacitor voltage meets a preset threshold, the converted electric power is transferred to the 

objective wireless sensors. Through the process, part of the converted energy is used to bias the 

electronic circuit. Electric power generation occurs by exciting the power harvesters during snap-

through transitions. To maximize the levels of the harvested energy, the snap-through locations 

(i.e. points along the beam travelling the largest distance during transitions) have to coincide 

with the base of the harvester. Also the snap-through events and the spacing between them have 

to be controlled such that they can be related to specific axial strains or deformations. When the 

system is subjected to such displacement or strain, the snap-through of the beam is triggered 

generating, then, an electric signal that can be used to sense the change in the structural response 

due to potential damage. 
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Figure 1-1. Concept of the post-buckling-based energy harvesting device for powering wireless 

sensor. 

1.3. Research Hypotheses and Objectives 

1.3.1. Hypotheses 

The hypotheses in this study are given as  

Electrical power can be generated under quasi-static excitations based on the post-

buckling response of bilaterally constrained beams between different equilibrium 

positions.  
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According to this hypothesis, the instabilities of the post-buckled elements can be exploited 

to transform low-amplitude and low-rate motions and ambient deformations into amplified, 

dynamic inputs, such that the attached piezoelectric transducers can be activated to generate 

electrical energy.  

The generated electrical power can be maximized by accurately controlling the 

post-buckling response of the bilaterally confined beam systems.  

According to this hypothesis, the post-buckling response can be controlled by tuning the 

geometry properties of the bilaterally constrained systems, such that the electrical output can be 

optimized.  

1.3.2. Objectives 

The main research objectives of this study are  

1) Developing a postbuckling-based technique for energy harvesting and damage sensing 

under quasi-static excitations; and  

2) Optimizing the harvesting efficiency and sensing accuracy of the technique by 

controlling the mechanical response of the structural instability-induced system. 

In order to achieve the objectives, theoretical models are developed in this work to predict 

the post-buckling response of bilaterally constrained beams based on small and large 

deformation theories. In particular, a model is developed to theoretically predict and control the 

post-buckling response of bilaterally confined, non-uniform beams under small deformation 

assumptions. As uniform prismatic beams do not allow for such control, non-prismatic cross-

section beams are herein investigated regarding the effects of different shapes and geometries on 
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the post-buckling response. Satisfactory agreements are obtained between the theoretical 

prediction and experimental validation. Piezoelectric scavengers with different natural 

frequencies are then used to convert the high-rate motions of the deflected beams at buckling 

transitions into electrical power. Moreover, a large deformation model is developed capture the 

buckling snap-through of the bilaterally constrained systems under large deformation 

assumptions. The developed model investigates the static and dynamic instabilities of bilaterally 

constrained beams subjected to gradually increasing loading using large deformation theory. The 

model takes into account the impact of constraints gap under different constraint scenarios. In 

particular, if the gap is relatively small comparing to beam length, the system buckles and snaps 

into higher modes under compression.  

1.4. Outline 

This work is deployed as following, 

 Chapter 2 summarizes a background review of buckling and post-buckling analysis in 

multiscale, i.e., micro/nanoscale and macroscale buckling analyses.  

 Chapter 3 presents an energy harvesting and damage detecting mechanism based on non-

prismatic beams. A small deformation model is developed to investigate the post-buckling 

response of the non-uniform system. The model is then used to optimize the geometry 

properties of the proposed mechanism, such that to control the generated electrical 

power/signal for efficient energy conversion and accurate damage detection. The theoretical 

results are validated with experimental predictions.  

 Chapter 4 proposes a theoretical model based on large deformation assumptions. The large 

deformation model is developed with respect to clamped-clamped and simply supported 
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boundary conditions. Experimental validation is carried out to demonstrate the accuracy of 

the proposed model.  

 Chapter 5 investigates the effect of the shape configuration of bilateral constraints on the 

post-buckling response of the beam systems. Linear and sinusoidal shapes are particularly 

studied. In addition, parametric studies are conducted to examine the similarity and 

difference between the small and large deformation models.  

 Chapter 6 summarized the main findings of this study, as well as the recommendations for 

future study.   
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CHAPTER 2  

RESEARCH BACKGROUND 

 

2.1. Overview 

Buckling has been expensively considered as a critical failure limit state and, therefore, 

many research efforts have been dedicating to characterizing its instable response and preventing 

it from happening (Pircher and Birdge, 2001; Xia et al., 2010; Jiao et al., 2012; Chen et al., 

2013). In recent years, research interests have shifted to the potential of exploiting these elastic 

instabilities into “smart applications” (Hu and Burgueno, 2015; Safa and Hocker, 2015; Lajnef et 

al., 2015). Buckled elements have been implemented to develop monostable, bistable and multi-

stable mechanisms that displayed great efficiency in a number of applications, including 

actuation, sensing, and energy harvesting (Erturk et al., 2010; Liu et al., 2008; Soliman et al., 

2008; Kim et al., 2011). For example, buckling-based energy harvesting mechanisms are 

developed to transform ambient energies, i.e., strain, vibration, into electrical energy such that 

remote wireless sensors can be powered without the limitations of battery lifetime or wiring 

harness (Lajnef et al., 2014; Lajnef et al., 2012). Thanks to the energy harvesters, the wireless 

sensors have been deployed in civil infrastructures for the utilities of health monitoring and 

damage sensing (Park et al., 2008; Salehi and Burgueno, 2016; Salehi et al., 2015; Alavi et al., 

2017; Hasni et al., 2017 Alavi et al., 2016; Alavi et al., 2015). In order to investigate the 

buckling and post-buckling response of slender/thin elements such that the performance of these 

mechanisms can be sufficiently improve, many analyses have been conducted in micro/nanoscale 

and macroscale with respect to different types of applications (Xu et al., 2015; Xu et al., 2012). 
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Eltaher et al. (2016) have reviewed nonlocal elastic models with respect to the applications of 

nanoscale beams in bending, buckling, vibration and wave propagation. However, a topical 

review regarding buckling and post-buckling analysis in different scales have not been 

conducted.  

2.2. Multiscale Buckling and Post-Buckling Analysis  

In micro/nanoscale buckling analysis, a variety of theories have been developed (Yang et al., 

2002; Lam et al., 2003; Wang, 2005; Reddy, 2007; Park and Gao, 2006). Classical continuum 

theory has been conducted to examine the behavior of microbeams (Mehner et al., 2000; Abdel-

Rahman et al., 2002). Since a significant size dependency is observed in small length scale, 

however, it is of necessity to take into account size dependent factors in theoretical studies. 

Conventional theories of mechanics are insufficient in determining the size dependence of 

deformed materials in microscale and, hence, different theories have also been developed to 

study the size effect of the slender beams in microscales such as nonlocal elasticity theory, non-

classical couple stress elasticity theory, and strain gradient elasticity theory.  

       The nonlocal elasticity theory has been firstly presented by Erigen using global balance laws 

and the second law of thermodynamics to investigate the deformation behavior of materials in 

microscale by measuring the size dependence (Erigen and Edelen, 1972; Eringen, 1983). 

Different higher-order elasticity theories have been used to develop microstructure beam models. 

Peddieson et al. (2003) and Wang
 
(2005) have presented a nonlocal continuum model to study 

the wave propagation in carbon nanotubes using both Euler-Bernoulli and Timoshenko beam 

theories. Based on the constitutive equations developed by Erigen (1972), many studies have 

been proposed
 
(Lei et al., 2013; Thai, 2012; Thai and Vo, 2012; Wang et al., 2006; Aydogdu, 
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2009; Simsek and Yurtcu, 2013). Reddy (2007) has developed nonlocal theories for bending, 

buckling and vibration of Bernoulli-Euler, Timoshenko, Reddy and Levinson beams using 

Hamilton’s principle. According to the stress-strain relationship of a composite beam, governing 

equations of anisotropic beams have been obtained using an energy method in this study. Xia et 

al. (2010) have investigated the static bending, post-buckling and free vibration of nonlinear non-

classical microscale beams. Both studies investigated the size effect by introducing the material 

length scale factor in the context of non-classical continuum mechanics. Nonlinear equations of 

motion have been derived in a variational formulation by using a combination of the modified 

couple stress theory and Hamilton’s principle. Ghannadpour et al. (2013) examined the buckling 

behavior of nonlocal Euler-Bernoulli beams using Ritz method. Based on the nonlocal 

beam/plate theory, Pradhan and Murmu (2009; 2010), Murmu and Pradhan (2009; 2009), and 

Malekzadeh and Shojaee (2013) have investigated the buckling performance of composite 

laminated micro/nanobeams using differential quadrature method (DQM). 

        The classical couple stress elasticity theory was developed by Koiter (1969). Later on, the 

non-classical couple stress theory was developed. Couple stress theories have been developed 

and extensively studied to narrow the research gap and identify the size dependence. Yang et al. 

(2002) has developed a modified/non-classical couple stress theory that has simplified the size 

effect into an internal material length scale factor in the governing equations. Park and Gao 

(2006) have developed a modified couple stress theory to investigate the bending of microscale 

Euler-Bernoulli beams. In their study, the authors captured the size effect by taking into account 

the internal material length scale parameter. Anthoine (2000)
 
expended the theory to the case of 

pure bending of circular cylinder. Thai et al. (2015) have examined static bending, buckling and 

free vibration responses of size-dependent functionally graded sandwich microbeams using 
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modified couple stress theory and Timoshenko beam theory. Using the modified couple stress 

theory, the size dependent behavior of functionally graded sandwich microbeams and the three-

dimensional motion characteristics of temperature-dependent Timoshenko microbeams have 

been studied (Farokhi and Ghayesh, 2015). Kahrobaiyan et al. (2011) studied the nonlinear 

forced vibrational behaviors of Euler-Bernoulli beams based on the modified couple stress 

theory. This non-classical couple stress theory has been later extended in many studies. Abadi 

and Daneshmehr (2014) have extended the nonlocal couple stress theory to composite laminated 

materials for both Euler-Bernoulli and Timoshenko beams. Al-Basyouni et al. (2015) used a 

modified couple stress theory to investigate the bending and dynamic behaviors of functionally 

graded microbeams. Simsek and Reddy (2013)
 
and Simsek et al. (2013) used a higher order 

beam theory to study buckled functionally graded microbeams. 

       The strain gradient elasticity theory was carried out to study the bending and stability of 

elastic Euler-Bernoulli beams and investigate the size dependence of microbeams (Fleck et al., 

1994; Lam et al., 2003; Papargyri-Beskou et al., 2003; Giannakopoulos and Stamoulis, 2007; 

Kong et al., 2009; Wang, 2010; Akgoz and Civalek, 2012; 2013; Gao and Park, 2007). Using the 

theory, higher-order Bernoulli-Euler beam models were developed by Lam et al. (2003) and 

Papargyri-Beskou et al. (2003). Lam et al. (2003) used higher-order metrics in a gradient 

elasticity-based model to capture the strain gradient response of cantilevered beams. Following 

this work, Giannakopoulos and Stamoulis
 
(2007) have theoretically studied the bending and 

cracked bar tension of a cantilever beam within the gradient elasticity framework. Kong et al. 

(2009) have studied the static and dynamic responses of Euler-Bernoulli microbeams using the 

gradient elasticity theory. Wang (2010)
 
developed a theoretical model to examine the wave 

propagation of fluid-conveying single-walled carbon nanotubes by taking into account both 
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inertia and strain gradients. Akgoz and Civalek (2012; 2013)
 
have presented a higher-order shear 

deformation beam model based on the modified strain gradient theory. Gao and Park (2007) 

proposed a variational formulation based on simplified strain elasticity theory. In macroscale 

buckling analysis, many studies have been conducted on buckling performance of beams and 

plates without lateral constraints in the longitudinal direction. According to deformation of the 

buckled elements, small and large deformation theories are developed, especially with respect to 

slenderness ratio or the ratio of deflection and element length R. In particular, if the ratio is 

small, i.e., 𝑅 ≪ 1, the end-shortening/longitudinal displacement of the system is negligible and 

the small deformation theory is applicable. However, if the element is critical deformed while the 

ratio is relatively large, namely 𝑅~1, large deformation theory needs to take into account. In 

order to effectively capture and predict the post-buckling response of deflected systems, a variety 

of theoretical models are developed.  

        Based on small deformation assumptions, many studies have been conducted. Zenkour
 

(2005) has studied the buckling response of functionally graded sandwich. Zhao et al. (2008) 

have developed a theoretical model to determine the response of a polynomial curved beam 

under gradually increased external forces. A theoretical model is developed by Jiao et al. (2012; 

2012) and Chen et al. (2013) to measure the local buckling behavior of composite I-beams with 

sinusoidal web geometry. Lajnef et al. (2014) and Borchani et al. (2015) developed a theoretical 

model to measure a slender beam under both fixed, bilateral constraints under small deformation 

assumptions. The model has accurately predicted the post-buckling response of uniform cross-

section beams subjected to a gradually increasing axial force. The model has been used to 

examine the effect of geometry properties on the post-buckling response of elastic beams. Jiao et 

al. (2016; 2017) expended the theoretical model to non-uniform beam configurations such that 
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the post-buckling response can be effectively controlled and tuned. Due to the orthogonality of 

the general solution, the superposition method is used to achieve a mode function that linearly 

combines different buckling modes. In order to investigate the buckling response of different 

types of functionally graded materials (FGMs), many studies have been developed based on first- 

or higher-order shear deformation theory (Thai and Vo, 2013; Meiche et al., 2011; Najafizadeh 

and Heydari, 2008; Librescu et al., 1989; Shariat and Eslami, 2007; Bodaghi and Saidi, 2010; 

Zhao et al., 2009; Wu et al., 2007; Ma and Wang, 2004; Neves et al., 2013; Saidi and Baferani, 

2010; Najafizadeh and Heydari, 2004; Matsunaga, 2009; Najafizadeh and Eslami, 2002; Shariat 

et al., 2005; Hosseini-Hashemi et al., 2011; Ma and Wang, 2003; Li et al., 2007; Naderi and 

Saidi, 2010; Dung and Hoa, 2013; Giannakopoulos, and Stamoulis, 2007). Post-buckling 

analysis has been used in many applications to investigate structural instability. The 

delamination of composite elements due to buckling and post-buckling has been studied by 

(Nilsson et al., 2001; Davidson, 1991; Sciuva, 1986; Nilsson et al., 1993; Thai and Kim, 2011; 

Gaudezi et al., 2001). Subsea pipeline buckling is studied by Croll (1997), Karampour et al. 

(2013), Taylor and Tran (1996), Wang et al. (2011), Shi et al. (2013). Thin-membrane buckling 

behavior is examined by Sahhaee-Pour (2009), Jiang et al. (2008), Jiang et al. (2008), Amirbayat 

and Hearle (1986).
 
In order to efficiently control the post-buckling response of bilaterally 

constrained slender beams, many studies have been conducted on varying the geometry 

properties of the system (Li et al., 1994; Li, 2001; Huang and Li, 2010). Elishakoff and Candan 

(2001) have presented a theoretical solution for freely vibrating functionally graded beams. More 

recently, Malekzadeh and Shojaee (2013)
 
have examined the surface and nonlocal effects of 

freely vibrating non-uniform cross-section beams in nanoscale. Jiao et al. (2016; 2017) have 
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developed an energy method-based model to investigate the post-buckling response of a beam 

with non-uniform cross-sections. 

        In order to theoretically identify the post-buckling response of largely deformed beams, 

many theories have been developed (Howell and Midha, 1995; Chen et al., 2011; Byklum and 

Amdahl, 2002; Wang et al., 2008; Song et al., 2008; Santos and Gao, 2012; Banerjee et al., 2008; 

Shen, 1999; Shvartsman, 2007; Lee, 2002; Chai, 1991 and 1998; Srivastava and Hui, 2013 A&B; 

Chen et al., 1996; Solano-Carrillo, 2009; Sofiyev, 2014; Bigoni, 2012; Bosi et al., 2015; Wang, 

2009; Katz and Givli, 2015; Chang and Sawamiphakdi, 1982; Doraiswamy et al., 2012; Ram, 

2016). Howell and Midha (1995) numerically solved the buckling instability of a tip loaded 

cantilever beam under large deformation assumptions. Shvartsman
 
(2007) and Lee (2002)

 

presented theoretical models to study the large deflection behavior of non-uniform cantilever 

beam under tip load. A finite-deformation theory was developed by Song et al. (2008) to 

investigate the behavior of thin buckled films on compliant substrates. Solano-Carrillo (2009) 

theoretically solved the large-deformed buckling response of cantilever beams under both tip and 

uniformly distributed loads. Santos and Gao (2012) presented a canonical dual mixed numerical 

method for post-buckling analysis of elastic beams under large deformation assumptions. 

Sofiyev (2014) studied the large deformation performance of truncated conical shells under time 

dependent axial loads using superposition principle and Galerkin procedure. Bigoni (2012) and 

Bosi et al. (2015) theoretically and numerically examined the injection of an elastic rod with 

gradually increased length. Buckling analysis is carried out based on the total potential energy of 

the system. Geometric equilibrium equations are used to solve for the critical buckling load. Chai 

(1998) presented a theoretical model to study large rotations that occur to a bilaterally 

constrained beam subjected to an axial force. Geometric equilibrium is applied to the model to 
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achieve large end-shortening that caused by buckling deformation. The model accurately predicts 

different buckling statuses, i.e. point touching that deformed beam touches the lateral constraints, 

and flattening that the touching point increases to a flattening line contact. Under the assumption 

that the gap between the bilateral constraints is not smaller than a certain value, however, the 

large deformation model is limited to only the first buckling mode, which does not take into 

account buckling mode transition. A variety of constraints along beam length are added to 

achieve higher buckling modes beyond the bistable configurations. Due to the control in the 

transverse direction, the slender beam buckles to the first mode until it touches the constraints. 

Increasing the external force, the system jumps through a suddenly unstable status to reach the 

steady third buckling mode, and thereby regaining stiffness for greater loading. Many geometric 

assumptions have taken into account in the previous theoretical studies to measure such post-

buckling response. Srivastava and Hui (2013 A&B) theoretically studied both the adhesionless 

and adhesive contacts of a pressurized neo-Hookean plane-strain membrane against a rigid 

substrate under large deformation assumptions. Katz and Givil (2015) theoretically studied the 

post-buckling response of a beam subjected to bilateral constraints, i.e. one fixed wall and one 

springy wall that moves laterally against a spring. Geometric compatibility is used to solve the 

governing equations under both small and large deformation assumptions. Chang and 

Sawamiphakdi (1982) have presented a numerical model to measure the post-buckling response 

of shell structures. Doraiswamy et al. (2012) have developed an approach to find the minimum 

energy of a largely deformed system using Viterbi algorithm. Ram (2016) studied the large 

deformation of flexible rods and double pendulum systems using Rayleigh-Ritz-based finite 

difference approach. Figure 2-1 presents the distributions of the research efforts on buckling and 

post-buckling in recent years with respect to the nonlocal, couple stress, and strain gradient  
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Figure 2-1. Number of publications on buckling and post-buckling analysis in multiscale. 

theories in micro/nanoscale, and the small and large deformation theories in macroscale, 

respectively.  

2.3. Micro/Nanoscale Buckling Analysis  

2.3.1. Nonlocal Elasticity Theory 

Using the nonlocal differential constitutive relations by Eringen (1972; 1983), Reddy (2007) 

has reformulated different beam theories, i.e., Euler-Bernoulli, Timoshenko, Reddy, and 

Levinson. The nonlocal constitutive relations for those beam theories are given as,  

{
 

 𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥
𝜕𝑥2

= 𝐸𝜀𝑥𝑧

𝜎𝑥𝑧 − 𝜇
𝜕2𝜎𝑥𝑧
𝜕𝑥2

= 2𝐺𝜀𝑥𝑧

 (2-1) 
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where E, G and μ are Young’s modulus, shear modulus, and nonlocal parameter given as 

𝜇 = 𝑒0
2𝑙2, respectively. 𝑒0 is a material constant and l refers to internal microscale length factor 

of the material. Note that a force-strain relationship held in all the beam theories is given as, 

Table 2-1. Constitutive relations and Euler-Lagrange equations for Euler-Bernoulli, Timoshenko, 

Reddy, and Levinson beam theories. 

 Euler-Bernoulli Timoshenko 

Euler-Lagrange 

Equations 
{
 

 
𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) −

𝜕2𝑀

𝜕𝑥2
= 𝑞

𝜕𝑁

𝜕𝑥
+ 𝑓 = 0

 {

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) −

𝜕𝑄

𝜕𝑥
= 𝑞

𝜕𝑀

𝜕𝑥
− 𝑄 = 0

 

Constitutive 

Relations 
𝑀− 𝜇

𝜕2𝑀

𝜕𝑥2
= 𝐸𝐼𝜅 

{
 

 𝑀 − 𝜇
𝜕2𝑀

𝜕𝑥2
= 𝐸𝐼𝜅

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
= 𝐺𝐴𝐾𝑠𝛾

 

 Reddy Levinson 

Euler-Lagrange 

Equations 
{
 

 
𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) −

𝜕�̂�

𝜕𝑥
− 𝑐1

𝜕2𝑃

𝜕𝑥2
= 𝑞

𝜕�̂�

𝜕𝑥
− �̂� = 0

 {

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) −

𝜕𝑄

𝜕𝑥
= 𝑞

𝜕𝑀

𝜕𝑥
− 𝑄 = 0

 

Constitutive 

Relations 

{
 
 
 
 

 
 
 
 𝑀 − 𝜇

𝜕2𝑀

𝜕𝑥2
= 𝐸𝐼𝜅 + 𝐸𝐽𝜌

𝑃 − 𝜇
𝜕2𝑃

𝜕𝑥2
= 𝐸𝐽𝜅 + 𝐸𝐾𝜌

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
= 𝐺𝐴𝛾 + 𝐺𝐼𝛽

𝑅 − 𝜇
𝜕2𝑅

𝜕𝑥2
= 𝐺𝐼𝛾 + 𝐺𝐽𝛽

 

{
 

 𝑀 − 𝜇
𝜕2𝑀

𝜕𝑥2
= 𝐸𝐼𝜅 + 𝐸𝐽𝜌

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
= 𝐺𝐴𝛾 + 𝐺𝐼𝛽
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𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2
= 𝐸𝐴𝜀𝑥𝑥

0  (2-2) 

where 𝐾𝑠, f, q and N are the shear correction factor, axial force, and transverse force in the axial 

and transverse directions, respectively. h is the beam height, P and R are the stress resultants 

exist only in the higher-order theories. (𝐴, 𝐼, 𝐽, 𝐾) = ∫ (1, 𝑧2, 𝑧4, 𝑧6)𝑑𝐴
𝐴

,  �̂� = 𝑀 −
4

3ℎ2
𝑃 and 

�̂� = 𝑄 −
4

ℎ2
𝑅. The constitutive relations and time-independent Euler-Lagrange equations for 

different beam theories are summarized in Table 2-1. 

Substituting the Euler-Lagrange equations into the constitutive relations in Table 2-1, the 

governing equations based on the (a) Euler-Bernoulli, (b)Timoshenko, (c) Reddy, and (d) 

Levinson beam theories are obtained, respectively, as, 

𝜕2

𝜕𝑥2
(−𝐸𝐼

𝜕2𝑤

𝜕𝑥2
) + 𝜇

𝜕2

𝜕𝑥2
[
𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) − 𝑞] + 𝑞 −

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) = 0 (2-3a) 

{
 

 
𝜕

𝜕𝑥
[−𝐺𝐴𝐾𝑠 (𝜙 +

𝜕𝑤

𝜕𝑥
)] + 𝑞 −

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) − 𝜇

𝜕2

𝜕𝑥2
[𝑞 −

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
)] = 0

𝜕

𝜕𝑥
(𝐸𝐼

𝜕𝜙

𝜕𝑥
) − 𝐺𝐴𝐾𝑠 (𝜙 +

𝜕𝑤

𝜕𝑥
) = 0                                                                    

 (2-3b) 

{
 
 
 

 
 
 𝐺�̃� (

𝜕𝜙

𝜕𝑥
+
𝜕2𝑤

𝜕𝑥2
) −

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) + 𝑞 + 𝜇

𝜕2

𝜕𝑥2
[
𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) − 𝑞] +

4

3ℎ2
[𝐸𝐽

𝜕3𝜙

𝜕𝑥3
−

4

3ℎ2
𝐸𝐾 (

𝜕3𝜙

𝜕𝑥3
+
𝜕4𝑤

𝜕𝑥4
)] = 0

𝐸𝐼
𝜕2𝜙

𝜕𝑥2
−

4

3ℎ2
𝐸𝐽 (

𝜕2𝜙

𝜕𝑥2
+
𝜕3𝑤

𝜕𝑥3
) − 𝐺�̃� (𝜙 +

𝜕𝑤

𝜕𝑥
) = 0              

     

 (2-3c) 
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{
 
 

 
 𝜕

𝜕𝑥
𝐺𝐴 (𝜙 +

𝜕𝑤

𝜕𝑥
) + 𝑞 −

𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) + 𝜇

𝜕2

𝜕𝑥2
[
𝜕

𝜕𝑥
(𝑁
𝜕𝑤

𝜕𝑥
) − 𝑞] = 0

𝜕

𝜕𝑥
(𝐸𝐼

𝜕𝜙

𝜕𝑥
) −

4

3ℎ2
𝐸𝐽 (

𝜕2𝜙

𝜕𝑥2
+
𝜕3𝑤

𝜕𝑥3
) − 𝐺𝐴 (𝜙 +

𝜕𝑤

𝜕𝑥
) = 0                

 (2-3d) 

where the variables are defined as, 

𝐼 = 𝐼 −
4

3ℎ2
𝐽, 𝑗̂ = 𝐽 −

4

3ℎ2
𝐾, 𝐴 = 𝐴 −

4

ℎ2
𝐼, 𝐼 = 𝐼 −

4

ℎ2
𝐽,

and �̃� =  𝐴 −
4

ℎ2
 𝐼  

(2-4) 

The influence of nonlocal parameter, 𝜇 = 𝑒0
2𝑎2, on deflection and critical buckling load 

capacity are presented with respect to Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam 

theories, when the ratio of beam length and thickness is 
𝐿

ℎ
= 10, as shown in Figure 2-2 (Reddy, 

2007). In addition, Euler-Bernoulli theory is used to investigate the effect of 
𝐿

ℎ
 ratio. It can be 

seen that with the increasing of nonlocal parameter, the transverse deflections of the microbeams 

are enlarged, while the buckling loads and natural frequencies are reduced. In particular, Figure 

2-2(b) presents that nonlocal parameter affects natural frequencies more significantly than 

buckling loads. 
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(a)  

 

(b) 

Figure 2-2. Influence of nonlocal parameter, μ, on (a) beam deflection, (b) buckling load and 

natural frequency (Reddy, 2007). 
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2.3.2. Non-Classical Couple Stress Elasticity Theory 

       In order to determine the microscale model, it is of desire to simplify the formulation to one 

material length scale factor in the couple stress elasticity theory (Park and Gao, 2006).
 

Considering the deformed beam segment in Figure 2-3, the strain energy density consists of 

strain and curvature.  Therefore, the work done by external forces can be written as, 

 

(a)                          

 

                                      (b) 

Figure 2-3. (a) Beam configuration and (b) diagram of a deflected segment (Park and Gao, 2006) 
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{
  
 

  
 
𝑊 =∭(𝑓 · 𝑢 + 𝑐 · 𝜃)𝑑𝑣

Ω

+∬(𝑡 · 𝑢 + 𝑠 · 𝜃)𝑑𝑎

𝜕Ω

𝑈 =
1

2
∭(𝜎: 𝜀 + 𝑚: 𝜒)𝑑𝑣

Ω

                                         

 (2-5) 

where f, c, t, s, and Ω refer to the body force, body couple, traction, surface couple, and a region 

in the deformed linear elastic beam, respectively. σ, ε, m, χ indicate the stress tensor, strain 

tensor, deviatoric part of the couple stress tensor, symmetric curvature tensor, respectively. 

        Based on the Euler-Bernoulli beam theory, the total potential energy, Π, of the deflected 

beam is given as, 

𝛱 = 𝑈 −𝑊 = −
1

2
∫ (𝑀𝑥 + 𝑌𝑥𝑦)

𝑑2𝑤

𝑑𝑥2
𝑑𝑥

𝐿

0

−∫ 𝑞(𝑥)𝑤(𝑥)𝑑𝑥
𝐿

0

 (2-6) 

where q(x), w(x), Mx, and Yxy indicate the external force, displacement in the transverse direction, 

resultant moment, and couple moment, respectively. The principle of minimum potential energy 

is applied to obtain the governing equation as 𝛿𝛱 = 𝛿𝑈 − 𝛿𝑊 = 0. 

      Leading through the principle of minimum total potential energy, i.e., 𝛿𝛱 = 0, for the stable 

equilibrium, a governing equation of isotropic Euler-Bernoulli beam is obtained as, 

𝑑2𝑀𝑥
𝑑𝑥2

+
𝑑2𝑌𝑥𝑦

𝑑𝑥2
+ 𝑞(𝑥) = 0 (2-7) 

The resultant, Mx, and couple moments, Yxy, are given as, 
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{
  
 

  
 
𝑀𝑥 = ∫ 𝜎𝑥𝑥𝑧 𝑑𝐴

𝐴

= −𝐸𝐼
𝑑2𝑤(𝑥)

𝑑𝑥2

𝑌𝑥𝑦 = ∫ 𝑚𝑥𝑦 𝑑𝐴

𝐴

= −𝜇𝐿𝐴𝑙
2
𝑑2𝑤(𝑥)

𝑑𝑥2

 (2-8) 

Substituting Eq. (2-8) into Eq. (2-7), the governing equation yields,  

−(𝐸𝐼 + 𝜇𝐿𝐴𝑙
2)
𝑑4𝑤(𝑥)

𝑑𝑥4
= 𝑞(𝑥) (2-9) 

 

Figure 2-4. Comparison of beam deflection vs. length/thickness between classical and non-

classical couple stress theories (Park and Gao, 2006) 
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where the bending rigidity of the beam, 𝐸𝐼 + 𝜇𝐿𝐴𝑙
2, is defined with respect to the microscale 

length factor l. 𝜇𝐿 is Lame’s constant of the material. Note that the consideration of 

microstructure in the model can be eliminated by 𝑙 = 0, which leads to the classical Euler-

Bernoulli beam model. Figure 2-4 presents the deflection of a cantilevered beam with respect to 

length/thickness 
𝑥

ℎ
 (Park and Gao, 2006). The length factor is given as 𝑙 = 17.6 𝜇m. It can be 

seen that the deflection predicted by classical theories is overall larger. A severe overestimation 

is observed when beam thickness is ℎ = 20 𝜇m, while the difference become negligible when 

beam thickness is approximately ℎ = 100 𝜇m. Therefore, it indicates that size effect is only of 

significance in microscale.  

      The modified couple stress theory was later expended to composite laminated materials by 

Abadi and Daneshmehr (2014). In particular, the curvature tensor, 𝜒, defined in Eq. (2-5) was 

modified to capture anisotropic materials. According to the stress-strain relationship of the 

composite beam, the principle of minimum potential energy in Eq. (2-6) is expended as, 

∫ 𝑏 [∑∫ 𝜎𝑘: 𝛿𝜀𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

] 𝑑𝑥 −
1

2

𝐿

0

∫ 𝑃𝛿 (
𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥
𝐿

0⏟                                
𝛿𝑈

−∫ [𝑓𝑢𝛿𝑢 + 𝑓𝑤𝛿𝑤 + 𝑓𝑐𝛿𝜃𝑦]𝑑𝑥
𝐿

0

+ [𝑁𝛿𝑢 + 𝑉𝛿𝑤 +𝑀𝛿𝜙 + 𝑌𝛿 (
𝜕𝑤

𝜕𝑥
)]|

𝑥=0

𝑥=𝐿

⏟                                            
𝛿𝑊

= 0 

(2-10) 

where fu, fw, fc, 𝑁, 𝑉, 𝑀, and 𝑌 are x component of the body force, z component of the body 

force, resultant of the y component of the body force, axial force, transverse shear force, bending 
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moment due to normal stress, and bending moment due to couple stress tensor, respectively. P 

refer to the external force.  

         Based on the stable equilibrium, the governing equations of anisotropic Euler-Bernoulli 

beams are obtained as, 

{
 

 �̅�11
𝜕2𝑢

𝜕𝑥2
− 𝐽1̅1

𝜕3𝑤

𝜕𝑥3
+ 𝑓𝑢 = 0                                             

𝐽1̅1
𝜕3𝑢

𝜕𝑥3
− (𝐼1̅1 + �̿�44)

𝜕4𝑤

𝜕𝑥4
− 𝑃

𝜕2𝑤

𝜕𝑥2
+ 𝑓𝑤 +

𝜕𝑓𝑐
𝜕𝑥

= 0

 (2-11) 

and the governing equations of anisotropic Timoshenko beam are obtained as,  

{
  
 

  
 �̅�11

𝜕2𝑢

𝜕𝑥2
− 𝐽1̅1

𝜕3𝑤

𝜕𝑥3
+ 𝑓𝑢 = 0                                                                                      

−𝐽1̅1
𝜕2𝑢

𝜕𝑥2
− 𝐼1̅1

𝜕2𝛷

𝜕𝑥2
+ 𝑘𝑠�̅�44 (−𝛷 +

𝜕𝑤

𝜕𝑥
) +

1

4
�̅�44 (

𝜕2𝛷

𝜕𝑥2
+
𝜕3𝑤

𝜕𝑥3
) −

1

2
𝑓𝑐 = 0

𝑘𝑠�̅�44 (
𝜕2𝑤

𝜕𝑥2
−
𝜕𝛷

𝜕𝑥
) −

1

4
�̅�44 (

𝜕3𝛷

𝜕𝑥3
+
𝜕4𝑤

𝜕𝑥4
) − 𝑃

𝜕2𝑤

𝜕𝑥2
+ 𝑓𝑤 +

1

2

𝜕𝑓𝑐
𝜕𝑥

= 0       

 (2-12) 

where �̅�11, 𝐽1̅1, 𝐼1̅1, �̅�44, and �̿�44 are material properties of the laminated beam. In this theory, 

conventional equilibrium relation of force and its corresponding moment is used to formulate a 

governing equation. In addition, an equilibrium equation is developed to govern the response of 

the couple force-moment.  

2.3.3. Strain Gradient Elasticity Theory 

Papargyri-Beskou et al. (2003) have conducted a bending and stability analysis of Euler-

Bernoulli beams by using a linear theory of gradient elasticity with surface energy. According to 

the constitutive relations, the Cauchy, double, and total stresses are given as,  
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{
 
 

 
 𝜏𝑥 = 𝐸𝑒𝑥 + 𝑙𝐸𝑒𝑥

′                                                                     

𝜇𝑥 = 𝑙𝐸𝑒𝑥 + 𝑔
2𝐸𝑒𝑥

′                                                                

𝜎𝑥 = 𝜏𝑥 −
𝑑𝜇𝑥
𝑑𝑥

= 𝐸 (𝑒𝑥 − 𝑔
2
𝑑2𝑒𝑥
𝑑𝑥2

) = 𝐸(𝑒𝑥 − 𝑔
2𝑒𝑥
′′) 

 (2-13) 

where 𝑒𝑥, l and 𝑔2 represent the axial strain of the beam in bending, material length factors of 

the surface and volumetric elastic strain energies, respectively. According to the variational 

principle, it is obtained, 

𝛿(𝑈 −𝑊) = ∫ [𝐸𝐼(𝑤′′′′ − 𝑔2𝑤(6)) + 𝑃𝑤′′]𝛿𝑤𝑑𝑥
𝐿

0

+ [(𝑉 − (𝑃𝑤′ + 𝐸𝐼(𝑤′′′ − 𝑔2𝑤(5)))) 𝛿𝑤]
0

𝐿

− [(𝑀 − 𝐸𝐼(𝑤′′ − 𝑔2𝑤′′′′))𝛿𝜓′]
0

𝐿

− [(𝑚 − 𝐸𝐼(𝑙𝑤′′ + 𝑔2𝑤′′′))𝛿𝑤′′]
0

𝐿
= 0 

(2-14) 

where P, V, M and m represents the external force, boundary shear force, and boundary classical 

and non-classical moments, respectively. Therefore, the governing equation of the deflected 

beam in bending can be expressed as, 

𝐸𝐼(𝑤′′′′ + 𝑔2𝑤(6)) + 𝑃𝑤′′ = 0 (2-15) 

Figure 2-5 shows the influence of gradient coefficient product, 𝑐 ∙ 𝑑 =
𝑔

𝐷
∙
𝐷

𝐿
, on the deflection of 

cantilevered microbeams (Papargyri-Beskou et al., 2003). D represents characteristic diameter of 

microbeams. Note that the model can be reducted to classical elastic when 𝑐 ∙ 𝑑 = 0. Figure 2-
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5(a) displays that the deflection of gradient microbeams is reduced when increase the gradient 

coefficient product. Figure 2-5(b) and (c) indicates that influence of surface energy parameter, 

𝜆 =
𝑙

𝑔
, on beam deflection, with respect to 𝑐 ∙ 𝑑 = 0.05 and 𝑐 ∙ 𝑑 = 0.1, respectively. It can be 

seen that the effect surface energy parameter λ on beam deflection can be neglible when 𝑐 ∙ 𝑑 ≤

0.05. However, the deflection is increased as enlarges λ when 𝑐 ∙ 𝑑 > 0.05. 

                     

(a)                                 (b)                     

 

      (c) 

Figure 2-5. Influence of (a) gradient coefficient product 𝒄 ∙ 𝒅, (b) surface energy parameter 

(𝒄 ∙ 𝒅 = 𝟎. 𝟎𝟓), and (c) surface energy parameter (𝒄 ∙ 𝒅 = 𝟎. 𝟏) on beam deflection (Papargyri-

Beskou et al., 2003). 
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2.4. Macroscale Buckling and Post-Buckling Analysis 

2.4.1. Small Deformation Theory 

2.4.1.1. Buckling Analysis  

Many studies have been conducted based on small deformation assumptions. Since the 

deflection of a slender element is adequately small in small deformation theory, i.e., 𝑤(𝑥) ≪ 𝐿 

and 𝜃 =
𝑑𝑤

𝑑𝑥
, the displacement in the longitudinal direction is negligible, as shown in Figure 2-6. 

It can be seen that an initial point in the initially straight beam φ is vertically deflected to φ’, and, 

therefore, only the transverse deflection, 𝑤(𝑥), is taken into account in the small deformation- 

based model. The buckling problem of clamped-clamped beams subjected to axial load in 

macroscale was studied by Nayfeh and Emam (2008). The governing equation is given by, 

 

Figure 2-6. Schematic diagram of a deformed beam segment in the small deformation theory. 
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𝑤′′′′ + 𝜆2𝑤′′ = 0 (2-16) 

where 𝜆2 = 𝑃 − 1/2∫ 𝑤′
2
𝑑𝑥

1

0
 is a constant that represents the critical buckling load.  

The general solution for Eq. (2-16) is given as, 

𝑤(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3 cos(𝜆𝑥) + 𝑐4 sin(𝜆𝑥) (2-17) 

where the ci are constants. Applying the fixed-fixed boundary conditions of the system, four 

algebraic equations can be obtained and, hence, an eigenvalue problem for λ is gained. 

Computing the determinant of the coefficient matrix and equating it to zero, the characteristic 

equation for 𝜆 is given by, 

2 − 2cos(𝜆) − 𝜆 sin(𝜆) = 0 (2-18) 

Solving the characteristic equation in Eq. (2-18) results in two kinds of buckling modes: 

symmetric and antisymmetric. The shape function of the buckled beam is the summation of the 

two buckling mode types, i.e., 𝑤(𝑥) = 𝑤𝑠(𝑥) + 𝑤𝑎(𝑥), as, 

𝑤(𝑥) =∑𝛽𝑠(1 − cos(𝜆𝑠𝑥))

𝑛

𝑠=1⏟              
Symmetric

+∑𝛽𝑎 (1 − 2𝑥 − cos(𝜆𝑎𝑥) +
2

𝜆𝑎
sin(𝜆𝑎𝑥))

𝑛+1

𝑎=2⏟                            
Antisymmetric

 
(2-19) 

where 𝜆𝑠 = 2𝑚𝜋, 𝑚 = 1,2, … and 𝜆𝑎 = 2.86𝜋, 4.92𝜋, 6.94𝜋, 8.95𝜋,…, and 𝛽 are the weight 

coefficients that determine the contribution of each buckling mode to the general shape function.   
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2.4.1.2. Post-Buckling Analysis Based on Equilibrium and Geometric Compatibility 

In order to investigate post-buckling performance, different types of lateral constraints have 

been placed on the system (Chai, 1998; Katz and Givli, 2015; Liu and Burgueno, 2016). The 

post-buckling response of a straight prismatic bilaterally constrained beam has been theoretically 

studied by Chai (1998) using small deformation assumptions. The beam is placed between two 

flat rigid walls separated by a distance h0 such that it lies along the surface of one of the walls. 

Both of its ends are clamped. The net gap between the strip and the lateral constraints is denoted 

as ℎ = ℎ0 − 𝑡. Under axial end shortening Δ, the beam buckles. The fourth-order linearized 

differential equation for an Euler beam under axial compression is the same as Eq. (2-16).  

Figure 2-7 shows a beam subjected to a gradually compressive force P is adjacently placed 

between the bilaterally rigid constraints. Figure 2-7(a) demonstrates a schematic diagram of the 

deformed beam. Figure 2-7(b) indicates different buckling phases that the beam undergoes. The 

initially straight beam (stage (a)) will be buckled to the first mode (stage (b)) under compression. 

Point contact will be obtained when the deflected beam touches the constraints (stage (c)). The 

point contact between the deformed beam and walls grows to a line contact (stage (d)). 

Increasing the external force, the line contact reaches the critical condition and then snaps into 

the third buckling mode (stage (e)). Table 2-2 summarizes the shape functions and corresponding 

boundary conditions the beam undergoes in different buckling phases. 
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(a)                                                   

 

                                        (b)                                                         

Figure 2-7. (a) Schematic diagram of a bilaterally constrained beam in the small deformation 

theory, and (b) different buckling phases of the beam (Chai, 1998). 
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Table 2-2. Shape functions and corresponding boundary conditions in different buckling phases. 

Buckling 

Phase 

Shape Function 

Boundary 

Conditions 

Stage (b): 

Pre-Contact 

𝑤 =
𝐴

2
(1 − cos (

2𝜋𝑥

𝐿0
) ) 

𝑤(0)

𝑤′(0)

𝑤(𝐿0)

𝑤′(𝐿0)}
 

 
= 0 

Stage (c): 

Point Contact 

𝑤 = ℎ
sin (

𝜋𝜁�̅�
𝑛 ) −

𝜋𝜁�̅�
𝑛 + (1 − cos (

𝜋𝜁�̅�
𝑛 )) tan (

𝜋𝜁
2𝑛)

2 (tan (
𝜋𝜁
2𝑛) −

𝜋𝜁
2𝑛)

 

𝑤(0)

𝑤′(0)

𝑤′ (
𝐿0
2
)

} = 0 

𝑤 (
𝐿0
2
) = ℎ 

Stage (d): 

Line Contact 

𝑤 = ℎ
2𝜋�̅� − sin (2𝜋�̅�)

2𝜋
 0 ≤ �̅� ≤ 1 

𝑤(0)

𝑤′(0)

𝑤′′(0)

𝑤′(𝐻)

} = 0 

𝑤(𝐻) = ℎ 

Stage (e): 

Mode 

Transition {
 
 

 
 
𝑘𝑐

2𝜋
 = 𝜁 − 2      

𝑘𝑐

2𝜋
 =
𝜁 − 2

3
    

𝑘𝑐

2𝜋
 =
𝜁 − 2

2
   

  

Lower 

Higher  

Symmetry 2𝑎 = 2𝑏 = 𝑐 

𝑎 + 𝑏 + 𝑐

+ 2𝐻 = 𝐿0 

where 𝑘2 =
𝑃

𝐸𝐼
, 𝐻 =

𝐿0

2
, �̅� =

𝑥

𝐻
 , 𝜁 =

𝑘 𝐿0

2𝜋
, and n represents buckling mode of the deformed beam. 
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2.4.1.3. Post-Buckling Analysis Based on Energy Method 

Since the lateral constraints in Figure 2-8 allow the beam to buckle into higher modes rather 

than only deforms in the first mode, many studies have been conducted to determine the 

deformed beam shape configurations using energy method (Borchani et al., 2015; Jiao et al., 

2016; Doraiswamy et al., 2012). The constraints are modeled as limits to the transverse 

deflection and, thus, the beam deformation is always bounded by the distance between the walls. 

Snap-through buckling from one mode into a higher mode configuration is induced when the 

total energy transits through an unstable path to a lower value represented by a different stable 

geometric configuration. Borchani et al. (2015) have investigated the post-buckling response of 

bilaterally constrained beams by mathematically modeling the system as a constrained 

minimization problem of the total energy, 

{
Min[𝛱(𝛽)]

0 ≤ 𝑤(𝑥) ≤ Gap
 (2-20) 

where the weight coefficients 𝛽 are defined in Eq. (2-19). 

The total energy of the system consists of two components, e.g., total potential energy and 

kinetic energy. The potential energy is the summation of the bending and axial compression 

strain energies stored in the deformed elastic element and the potential energy due to external 

force. The potential energies 𝑢𝑏, 𝑢𝑐 and 𝑢𝑝due to bending, compression and external applied 

force, respectively, are given by, 
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𝑃

𝐸
∫

1

𝑏𝑡
𝑑𝑥

𝐿
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∫ (
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𝑑𝑥2
)
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𝑑𝑥
𝐿

0

⏞            

)                      

Length shortening due to rotaiton

⏟                              
Total length shortening

 (2-21) 

Since the axial loading is quasi-static, the kinetic energy in the axial direction can be neglected. 

Therefore the kinetic energy 𝑢𝑘 can be expressed by, 

𝑢𝑘 =
1

2
∫ 𝑚(𝑥) (

𝑑𝑤(𝑥, 𝑡)

𝑑𝑡
)

2𝐿

0

𝑑𝑥 (2-22) 

where m(x) represents mass per unit length. The expression 𝑤(𝑥, 𝑡) in the time and space 

coordinates can be separated using the Galerkin discretization method as, 

�̂�(𝑥, 𝑡) =∑𝐶𝑟(𝑡) 𝑤𝑟(𝑥)

∞

𝑟=1

 (2-23) 

where 𝐶𝑟(𝑡) are the generalized temporal coordinate. The energy of the system can be expressed 

as, 

Π = 𝑢𝑏 + 𝑢𝑐 + 𝑢𝑘 − 𝑢𝑝 

    =
1

2
𝐸𝐼 ∫ (

𝑑2𝑤(𝑥)

𝑑𝑥2
)

2

𝑑𝑥
𝐿

0

+
1

2
∫ 𝑚(𝑥) (

∑ 𝐶𝑟(𝑡) 𝑤𝑟(𝑥)
∞
𝑟=1

𝑑𝑡
)

2𝐿

0

𝑑𝑥 − 

(2-24) 
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1

4
𝑃∫ (

𝑑𝑤(𝑥)

𝑑𝑥
)

2

𝑑𝑥
𝐿

0

 

Taking Eqs. (2-19) and (2-24) into Eq. (2-20), the weight coefficients 𝛽 can be determined and, 

therefore, the shape function 𝑤(𝑥) of the deflected beam can be obtained. 

2.4.1.4. Buckling Analysis under Different Conditions 

Soong and Choi (1986)
 
presented a theoretical formulation of the friction force generated by 

the dry contact between the buckled beam and the lateral rigid walls. The beam is modeled using 

Euler-Bernoulli beam theory and Coulomb model is used for the friction. Later on, Liu and Chen 

(2013) has investigated the effect of Coulomb friction on the contact behaviors between slender 

beams and straight channel with clearance.  

    

Figure 2-8. Equilibrium of a beam segment subjected to lateral pressure with friction (Redrawn 

based on Soong and Choi (1986)). 
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Figure 2-8 displays the force equilibrium of a buckled beam element subjected to normal 

pressure and tangential friction force where �̂� is the bending moment, �̂� is the axial 

compressive force, �̂� is the transverse shear force, �̂�𝑛 is the normal pressure force, 𝜇 is the 

coefficient of friction, 𝑑𝑠 is the arc length of the element, and 𝑅 is the local radius of curvature 

for the deformed beam. The tangential and normal forces at the contact zone are expressed as 

follow, 

{
 

 �̂�𝑘 = �̂�
𝑑2𝑤

𝑑𝑠2
+ 𝐸𝐼

𝑑4𝑤

𝑑𝑠4

𝜇�̂�𝑘 = 𝐸𝐼
𝑑3𝑤

𝑑𝑠3
 
𝑑2𝑤

𝑑𝑠2
−
𝑑�̂�

𝑑𝑠

 (2-25) 

where 𝜇𝑓 refers to the friction coefficient between the beam and constraints. The variation of the 

axial compression force is governed by the following ordinary differential equation, 

𝑑�̂�

𝑑𝑠
+ 𝜇𝑓𝑁

𝑑2𝑤

𝑑𝑠2
= 𝐸𝐼 (

𝑑3𝑤

𝑑𝑠3
 
𝑑2𝑤

𝑑𝑠2
− 𝜇𝑓

𝑑4𝑤

𝑑𝑠4
) (2-26) 

The solution �̂� to Eq. (2-26) is given as, 

�̂� = 𝑒
−∫ 𝑓(𝜏) 𝑑𝜏

𝑠
𝑠0

 
(�̂�𝑠=𝑠0 +∫ 𝑔(𝜉) 𝑒

∫ 𝑓(𝜏) 𝑑𝜏
𝜉
𝜉0

 
𝑑𝜉 

𝑠

𝑠0

) (2-27) 

where  

{
 
 

 
 𝑓(𝑠) = 𝜇𝑓

𝑑2𝑤

𝑑𝑠2

𝑔(𝑠) = 𝐸𝐼 (
𝑑3𝑤

𝑑𝑠3
 
𝑑2𝑤

𝑑𝑠2
− 𝜇𝑓

𝑑4𝑤

𝑑𝑠4
)

 (2-28) 
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Substituting Eq. (2-27) into Eq. (2-25), the tangential friction force is expressed as, 

𝜇𝑓�̂�𝑛 = 𝜇𝑓 [𝑒
−∫ 𝑓(𝜏) 𝑑𝜏

𝑠
𝑠0

 
(�̂�𝑠=𝑠0 +∫ 𝑔(𝜉) 𝑒

∫ 𝑓(𝜏) 𝑑𝜏
𝜉
𝜉0

 
𝑑𝜉 

𝑠

𝑠0

)
𝑑2𝑤

𝑑𝑠2
+ 𝐸𝐼

𝑑4𝑤

𝑑𝑠4
] (2-29) 

Due to the discontinuity of thickness and/or width, the potential energy is computed in each 

segment, and then the total potential energy is the sum of the partial energies. The bending and 

compression strain energies 𝑢𝑗
𝑏 and 𝑢𝑗

𝑐, respectively, and the work of the external work, 𝑢𝑗
𝑝
, in 

the j
th

 segment, can be written, by changing Eq. (2-21), as (Jiao et al., 2016), 

{
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 (2-30) 

Therefore, the potential energy of the system that contains a total of n segments is expressed as, 

𝛱 =∑(𝑢𝑗
𝑏 + 𝑢𝑗

𝑐 + 𝑢𝑗
𝑘 − 𝑢𝑗

𝑝)

𝑛

𝑗=1

 

    = ∑(
1

2
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𝑑𝑤(𝑥)

𝑑𝑥
)

2

𝑑𝑥
𝐿𝑗

𝐿𝑗−1

) 

(2-31) 
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Figure 2-9. Schematic diagram of a deformed beam segment in the large deformation theory 

(Jiao et al. (2016)). 

Figure 2-9 shows the variation of spacing ratio, 𝑅 =
Φ7−Φ5

Φ5−Φ3
, with respect to different 

configurations of non-uniform beams (Jiao et al., 2016). Φ is defined as buckling mode transition 

in terms of axial force. It can be seen that buckling snap-through events can be sufficiently tuned 

by varying cross-section geometry of a beam.  

2.4.2. Large Deformation Theory 

       Many theoretical models have been developed to examined the post-buckling response of 

largely deformed beams (Howell and Midha, 1995; Chen et al., 2011; Byklum and Amdahl, 2002; 

Wang et al., 2008; Song et al., 2008; Santos and Gao, 2012; Banerjee et al., 2008; Shen,  
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Figure 2-10. Schematic diagram of a deformed beam segment in the large deformation theory. 

1999; Shvartsman, 2007; Lee, 2002; Chai, 1991; Chai, 1998; Srivastava and Hui, 2013 A&B; 

Chen et al., 1996; Solano-Carrillo, 2009; Sofiyev, 2014; Bigoni, 2012; Bosi et al., 2015; Wang, 

2009; Katz and Givli, 2015; Chang and Sawamiphakdi, 1982; Doraiswamy et al., 2012; Ram, 

2016). Different from the small deformation, the displacement in the longitudinal direction has to 

be taken into account due to the severe deflection of the beam in the transverse direction. Figure 

2-10 displays the diagram of a deformed beam segment for the large deformation model. It can 

be seen that the location of a random point, φ, on the initially straight beam is changed to φ’ 

under the gradually increased axial force.  

In order to investigate the deformation, the segment is considered in a locally curvilinear 

coordinate ζ – η. Since the deformed beam is assumed to be uniform, continuous and 

inextensible, the segment in the local coordinate can be applied to the entire beam length, 

namely 𝛥𝑠 ∈ [0 − 𝐿]. Considering the deflected shape configuration of the system, it is found 

that the maximum deformed rotation angle, α, happens at 𝑠 =
𝐿

4
,
3𝐿

4
. Due to the symmetry of the 
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deflected beam configuration, only 𝜗(𝑠)|
𝑠 = 

𝐿

4

 has been taken into account. Bosi et al. (2015) has 

presented the normalized governing equations of the system as, 

𝑑2𝜃(𝑆)

𝑑𝑆2
+ 𝑁2 sin[𝜃(𝑆)] = 0 (2-32a) 

{
 
 

 
 𝑌(0) = 𝑌(1) = 0

𝜃(𝑆)|𝑆=0 = 0
𝑑𝜃(𝑆)

𝑑𝑆
|
𝑆=
1
4

= 0
 (2-32b) 

where 𝑁 = √
𝑝

𝐸𝐼
 represents the normalized axial force placed to the deflected beam. 

The non-dimensional factors are given as 𝑆 =
𝑠

𝐿
, 𝜃(𝑆) = 𝜗(𝑆𝐿), 𝑋(𝑆) =

𝑥(𝑆𝐿)

𝐿
, and 𝑌(𝑆) =

𝑦(𝑆𝐿)

ℎ
. Introducing the Jacobi amplitude function, 𝛷(𝑆), a relationship is assumed as, 

sin [
𝜃(𝑆)

2
] = 𝑘 sin[𝛷(𝑆)] (2-33) 

According to Eq. (2-33), the rotation angle, 𝜃(𝑆), may be written as 

𝜃(𝑆) = 2arcsin[𝑘 sin[𝛷(𝑆)]] (2-34) 

where k is defined based on the maximum deformation angle, α. Multiplying Eq. (2-32a) by 
𝑑𝜃(𝑆)

𝑑𝑆
 

and substituting into Eq. (2-34), the rotation angel can be rewritten as 

𝜃(𝑆) = 2arcsin[𝑘 𝐬𝐧[4𝑚𝑆𝐊, 𝑘]] (2-35) 
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where 𝐬𝐧 denotes the Jacobi sine amplitude function, 𝑚 = 1,2,3, … refers to the buckling mode 

of the system, and 𝐊(𝑘) represents the complete elliptic integral function of the first kind at 

𝛷 =
𝜋

2
.  

The displacements in the longitudinal and transverse directions can be expressed as  

{
 
 

 
 𝑋(𝑆) = ∫ cos[𝜃(𝑆)]

𝑆

0

𝑑𝑆

𝑌(𝑆) = ∫ sin[𝜃(𝑆)] 𝑑𝑆
𝑆

0

 (2-36) 

where 𝑠 ∈ [0 − 1].  

Taking Eq. (2-35) into Eq. (2-36), 𝑋(𝑆) and 𝑌(𝑆) can be written as  

{
𝑋(𝑆) = 𝑆 −

1

2𝑚 𝐊
 𝐄[𝐚𝐦[4𝑚𝑆𝐊, 𝑘], 𝑘]

𝑌(𝑆) = −
𝐿𝑘

2𝑚ℎ 𝐊
[1 − 𝐜𝐧[4𝑚𝑆𝐊, 𝑘]]  

 (2-37) 

2.5. Evaluation of the Existing Buckling and Post-buckling Analysis: Past Trends and 

Future Directions 

Buckling and post-buckling may be generally defined as the instabilities of structures. 

Different types of buckling analyses are developed based on the characteristics of the structures. 

In recent years, the theoretical studies of buckling and post-buckling are compared and validated 

with numerical simulations and experiments. In addition, different types of buckling studies are 

found at multiscale, i.e., plastic, composite materials, dynamic, buckling of cylindrical shells 

subjected to axial loading, etc. 
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2.5.1. Trends and Future Directions for Micro/Nanoscale Beams 

Micro/nanoscale slender beams are theoretically studied based on the size effect of the 

materials using material length factor. Many theories are presented to investigate the material 

length parameter, e.g., Eringen’s nonlocal integral elasticity theory. According to the existing 

studies, material length factor plays a significant role in the static and dynamic response of 

micro/nanoscale beams. While approaching micro/nanoscale, the nonlocal effect becomes 

critical. In contrast, the nonlocal effect tends to reduce the critical buckling loads as well as free 

vibration frequencies, while increasing the static bending and post-buckling deflection.  

Since nonlocal elasticity has been developed in recent years, it is generally extensive to apply 

nonlocal elasticity in the theoretical studies of micro/nanoscale materials. As one of potential 

research direction, the analysis of tapered nanowires might attract more attention in the future 

since few studies have proposed to address the problem in this aspect. Note that torsional 

analysis of nanotubes in the static and dynamic sense might also be a potential research direction 

in which nonlocal elasticity is a powerful tool. Since carbon nanotubes consists of structural 

waviness and curvature in fabrication, nonlocal elasticity provides a new horizon to cover the 

research field. In order to investigate the problem of nanowire buckling, it is of necessity to carry 

out the static and dynamic analysis of CNTs for better understand the performance of structures 

at micro/nanoscale. It is also noticed that, comparing with quite a few of theoretical studies, only 

few experiment has been reported and, therefore, research directions may also be related to 

experimental investigation of the characteristics of the micro/nanostructures. 
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2.5.2. Trends and Future Directions for Macroscale Beams 

During the last century, the energy method, e.g., Hamilton’s principle, has been successfully 

applied in the analysis of static and dynamic buckling response and stability/instability analysis 

of slender members, namely beams, shells and plates. In particular, different types of loading and 

boundary conditions have been investigated. For example, crack, foundation, in-plane force, non-

homogeneity, point-support, restrained edges, stepped thickness, viscoelasticity, etc.  Different 

types of such energy method have been developed for different applications over years, e.g., the 

Rayleigh-Ritz method including DQM-Ritz, Ritz-DQM and Chebyshev Ritz methods. In 

particular, different shape functions, e.g., a mix of polynomials, orthogonal polynomials, simple 

polynomials, trigonometric functions, etc., have been used as trial functions in the energy 

method. Simple polynomials have been extensively applied in most of the studies. It is also 

found that many studies based on simple polynomials have carried out analysis of numerical 

instability, i.e., situation that result in diverging instead of converging with the increase in the 

number of terms in displacement function. The problem of instability is reported to have been 

overcome by using. Note that the orthogonal polynomials are typically generated by using either 

a three-term recurrence relation or the Gram-Schmidt process. In addition, the implementation of 

simple polynomials consists of a generalized eigenvalue problem, whereas that of orthogonal 

polynomials produces a standard eigenvalue problem. Conducting simple polynomials in the 

numerical simulations of buckling analysis, the computational cost is recorded relatively low 

comparing with orthogonal polynomials. In addition, the computation cost is reported to decrease 

from the boundary conditions of clamped-clamped to free edge. However, limitations and 

drawbacks are found in the method of polynomials in buckling analysis, especially when the 

boundary conditions of structures are discontinuous or cracks exist in the structures.  
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2.6. Summary 

      Buckling has been considered as critical instability that led to different types of structural 

failures and, therefore, many studies have been conducted to enhance load-carrying capacity. 

Recently, research efforts have been switched to exploit the utility of buckling and post-

buckling. However, sufficiently harnessing buckling performance of slender members is an in 

progressing field that has yet been fully explored. In order to effectively identify buckling and 

post-buckling response, different mechanisms have been developed in micro/nanoscale and 

macroscale. This topical review summarized the development of theoretical models on 

multiscale buckling and post-buckling analysis. The following findings can be drawn from the 

presented review:  

 A severe size dependency has been captured in micro/nanoscale buckling analysis. Many 

theories have been carried out to take into account size effects on buckling response, i.e., 

nonlocal elasticity theory, non-classical couple stress elasticity theory, and strain gradient 

elasticity theory. In order to obtain post-buckling response, mechanisms are of necessity to 

investigate the systems that contain different types of elements rather than only 

beam/plate, namely shell or pre-deformed elements, or certain lateral constraints along 

element surface. However, lack of studies have been conducted regarding post-buckling 

identification in micro/nanoscale.  

 In macroscale buckling and post-buckling analysis, studies are carried out using small 

deformation or large deformation theory with respect to the deformation of buckled 

elements. Many factors are developed to indicate the applicability of the theories, e.g., 

slenderness ratio or the ratio of deflection and element length. Based on small deformation 

theory, many theoretical studies have taken into account deflections in the phases of 
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buckling and post-buckling by deploying constraints, but inadequate efforts are found in 

large deformation theory.  
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CHAPTER 3 

POST-BUCKLING RESPONSE OF NON-UNIFORM BEAMS USING SMALL 

DEFORMATION THEORY 

 

3.1. Overview 

Using small deformation assumptions, an energy-based theoretical model has been 

developed (Borchani et al., 2014; Borchani et al., 2015). The model accurately predicts the post-

buckling response of bilaterally constrained uniform cross-section beams subjected to gradually 

increasing axial forces. However, uniform beams do not permit to adequately control the post-

buckling behavior and, hence, optimize the energy conversion efficiency of the system. A recent 

study has showed that the controlling of the spacing between the snap-through transitions is 

possible using non-uniform cross section beams (Jiao et al., 2016). This chapter aims to 

maximize the harvested electric power using non-prismatic beams. In Chapter III, a theoretical 

model is presented to capture and control the static and dynamic post-buckling events of non-

uniform cross-section beams. The model presented in this chapter allows for accurate prediction 

of the deflected shapes and post-buckling mode transitions of non-uniform beams under quasi-

static axial forces. The theoretical results are then experimentally validated. The main outcome is 

to design non-prismatic beams that allow the control of both spacing between transition events 

and location of the snap-through point. A comparison between the generated output powers 

shows that non-prismatic beams present a great advantage over prismatic beams. 
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3.1.1. Operational Principle 

Mechanical energy concentrators and triggers have been introduced as a solution to harvest 

energy and sense quasi-static events (Lajnef et al., 2014; Lajnef et al., 2012; Lajnef et al., 2015). 

These mechanisms consist of a slender beam that is bilaterally constrained by two rigid walls and 

subjected to an axial loading. The proposed concept is shown in Figure 1-1 packaged into a 

device for embedment or attachment to structural components. Under quasi-static structural 

deformations (e.g., due to service deformations, temperature fluctuations, or slow degradation in 

material properties), the device capsule is compressed (or tensioned), inducing variations in axial 

deformations to the enclosed beam elements. Due to the presence of bilateral constraints, the 

variation of the axial forces induces multiple sudden and high-rate buckling snap-through 

transitions. The compressed element stores accumulated strain energy, then suddenly releases it 

as kinetic energy when the axial compressive force reaches a critical buckling load threshold. 

Using a piezoelectric energy scavenger, attached to the buckled element in a cantilevered 

configuration, these high-rate motions are converted into electric energy that can be stored or 

used to power wireless sensors. 

A typical force-displacement response of a bilaterally constrained beam is displayed in 

Figure 3-1. The presented beam’s behavior has been experimentally determined under 

displacement-controlled axial loadings (Lajnef et al., 2012). The post-buckling snap-through 

transitions can be seen by the load drops in the force–deformation response. The figure labels 

(Φ3; Φ5, etc.) indicate the buckling mode shape to which the column transitions after the snap-

through event. Each of the mode transitions represents the switch between a stable equilibrium 

branch and another that reduces the total potential energy in the system.  The beam was loaded 

past its seventh buckled mode (Φ7) and then unloaded. Successive transitions to lower buckling 
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modes were also observed during the unloading phase. However, the forces, and consequently 

displacements, at which step-down transitions occur, are much lower than those of inverse 

transitions during the loading phase. Furthermore, the beam returns to lower buckling modes 

through a different equilibrium path during unloading. The hysteretic nature of the response is 

due to the friction between the strip and the walls and the existence of multiple equilibrium 

configurations. 

The snap-through transitions between equilibrium positions induces a high-rate input 

acceleration to the attached energy harvesting oscillator. Figure 3-2 displays the energy 

harvester’s response under a full loading cycle past the beam’s seventh buckling mode. The first 

voltage oscillation is caused by the first contact between the strip and the rigid constraints, 

corresponding to the first buckling mode. The other successive voltage output events are 

generated by the beam’s snap-through transitions between buckling modes.  

As mentioned above, the device capsule can either be compressed or tensioned depending on 

the response of the structure. In order to harvest energy from both cases, the device can be pre-

compressed into one of its buckled configurations and then embedded within the structure. 

Therefore, the buckled slender beam transitions into a higher or a lower buckling configuration 

depending on the direction of its axial load. Figure 3-3 displays the piezoelectric voltage output 

under an alternating axial load. The constrained beam was preloaded past its fifth buckling mode 

(Φ5). Loading cycles were then applied between a maximum load past the seventh mode (Φ7) 

equilibrium position and a minimum load below the third stable configuration (Φ3).  In the 

figure, the labels Φ3 to Φ7 indicate the positions of mode transitions.  This figure clearly shows 

that the system can be initially centered (positioned) so as to harvest energy from compressive as 
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well as from tensile input global loading deformations. The levels of the applied forces can be 

controlled by tuning the geometry and material properties of the beam. 

 

Figure 3-1. Experimental force-displacement response of a bilaterally constrained beam. 

Φ3 

Φ1 

Φ5 

Φ7 

Φ5 

Φ3 
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Figure 3-2. Piezoelectric output voltage response under a full load cycle. 

 

Figure 3-3. Piezoelectric output voltage response under a full load cycle. 
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3.1.2. Design Optimality 

Figure 3-4 presents a flowchart that details the design optimality criteria. The energy 

harvesting cell shown in Figure 3-4(a) consists of a clamped-clamped homogeneous non-

prismatic beam that is bilaterally constrained by fixed rigid walls. A piezoelectric vibrator is 

attached to the beam in a cantilever configuration. Under external quasi-statically-increasing 

axial forces, the beam deflects in the first buckling mode until it touches one of the lateral 

constraints. As the axial force increases, the lateral boundary exerts lateral forces on the beam 

forcing it to jump into higher buckling modes, i.e. Φ3, as shown in Figure 3-4(a). The snap-

through transition of the beam transforms the quasi-static global axial deformation into a 

localized high acceleration motion. The attached piezoelectric harvester converts the local kinetic 

energy into electric power.  
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Figure 3-4. Schematic of the optimal design. 
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In order to maximize the piezoelectric output energy and reduce the electronic power leakage 

due to circuit biasing, two important parameters have to be controlled. These parameters are the 

spacing between the snap-through transitions and the location of the snapping point. An optimal 

spacing between the snap-through events is defined such that a transition occurs as soon as the 

voltage generated by the previous transition drops below a certain threshold (as shown in Figure 

3-4(d)). This threshold corresponds to the voltage required to bias the electronic circuits. While, 

the snap-throughs have to occur at the same location that corresponds to the base of the 

piezoelectric harvester. Therefore the energy converter harvests the maximum kinetic energy 

released during transitions. This study aims to control the location and spacing between snap-

through transitions, as shown in Figure 3-4(b) and (c). The spacing is represented by the ratio 

between the forces at which transitions occur. The spacing ratio is expressed as, 

𝑅 =
FΦ7 − FΦ5
FΦ5 − FΦ3

 (3-1) 

The snap-through location refers to the point that travels the largest distance during buckling 

mode transitions. A parameter D that represents the difference between the transition locations is 

introduced as, 

𝐷 = |𝐿Φ7−𝐿Φ5| + |𝐿Φ5 − 𝐿Φ3| + |𝐿Φ3−𝐿Φ7| (3-2) 

where LΦi (i = 3, 5 and 7) denote the location of the snapping point during the transition to mode 

i. By eliminating D, all the locations of the snap-through transitions are guaranteed to coincide. 

The objective is to coincide these points at all transitions. Therefore, installing the piezoelectric 

harvester at that location would maximize the harvested output energy. Based on the proposed 
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design, Figure 3-4(d) conceptually displays the optimal output voltage, and average power with 

respect to the applied axial force. By optimizing the device, the snap-through events can be 

induced at specific axial forces, while the output voltage and the average output power are 

maximized. Different geometry configurations and dimensions are investigated. For each 

geometry, the response of the beam is determined by numerically minimizing the potential 

energy of the system. The solutions to the minimization problem are the coefficients Ai (i=1..∞) 

that determine the transverse and axial deflections of the beam under an axial load. The 

transitions are witnessed by a jump or discontinuity in the force-displacement response. The 

location of the snap-through is determined by comparing between the deflected shapes before 

and after each transition. The spacing ratio between snap-through transitions is computed using 

Eq. (3-1). The geometry configuration of the beam is changed until achieving the desired spacing 

ratio. Then the dimensions are tuned to coincide snap-through locations. 

3.2. Theoretical Analysis of Non-Uniform Cross-Section Beams 

3.2.1. Theoretical Model Based on an Summation Algorithm  

3.2.1.1. Post-Buckling Analysis  

The problem under consideration consists of a slender non-prismatic beam that is placed 

between two frictionless bilateral constraints and subjected to an axial loading. As shown in 

Figure 3-5, the beam’s thickness t(x), width b(x), cross section area 𝐴(𝑥)and moment of inertia 

𝐼(𝑥) are considered non-constant and vary with respect to the longitudinal abscissa x. The 

Young’s modulus E, beam’s length L and gap separating the bilateral constraints h0 are assumed 

constants. The net gap between the beam and the lateral constraint is defined as ℎ(𝑥) = ℎ0 −

𝑡(𝑥). The transverse deflection of the beam and the applied axial force are denoted by �̂�(𝑥) and  
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  (a)                                 (b) 

Figure 3-5. (a) Schematic of a beam with random geometry properties, and (b) examples of its 

buckled configurations in the first and third modes. 

�̂�, respectively. Nonlinear Euler-Bernoulli beam theory is used under small deformation 

assumptions to model the beam. The governing equation of the beam’s buckling can be written 

as, 

𝐸𝐼(𝑥)
𝑑4�̂�(𝑥)

𝑑𝑥4
+ [�̂� −

1

2𝐿
∫ 𝐸𝐴(𝑥) (

𝑑�̂�(𝑥)

𝑑𝑥
)

2

 𝑑𝑥
𝐿

0

]
𝑑2�̂�(𝑥)

𝑑𝑥2
= 0 (3-3) 

The boundary conditions of Eq. (3-3) are given by 
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Eqs. (3-3) and (3-4) can be expressed in non-dimensional forms as, 

𝑑4𝑊(𝑋)

𝑑𝑋4
+ 𝑁2

𝑑2𝑊(𝑋)

𝑑𝑋2
= 0 (3-5) 

𝑊(0) = 𝑊(1) = 0     𝑎𝑛𝑑    
𝑑𝑊(𝑋)

𝑑𝑋
|
𝑋=0

=
𝑑𝑊(𝑋)

𝑑𝑋
|
𝑋=1

= 0 (3-6) 

where the non-dimensional variables are defined as, 

𝑋 =
𝑥

𝐿
, 𝑊(𝑋) =

�̂�(𝑋 𝐿)

ℎ(𝑋𝐿)
     and     𝑁2 =

�̂�𝐿2

𝐸𝐼(𝑋𝐿)
−
ℎ(𝑋𝐿)2𝐴(𝑋𝐿)

2 𝐼(𝑋𝐿)
∫ (

𝑑𝑊

𝑑𝑋
)
2

𝑑𝑋
1

0

 (3-7) 

The symmetric and antisymmetric mode shapes of the general solution to Eq. (3-5) and Eq. (3-6) 

can be expressed, respectively, as, 

𝑊𝑠(𝑋) = 1 − 𝑐𝑜𝑠(𝑁𝑖𝑋)

𝑁𝑖 = (𝑖 + 1)𝜋
,                                            (𝑖 =  1, 3, … ) (3-8) 

and 

𝑊𝑎(𝑋) = 1 − 2𝑋 − 𝑐𝑜𝑠(𝑁𝑗𝑋) +
2𝑠𝑖𝑛(𝑁𝑗𝑋)

𝑁𝑗
𝑁𝑗 = 2.86𝜋, 4.92𝜋, 6.94𝜋, 8.95𝜋,…

, (𝑗 =  2, 4, … ) (3-9) 

�̂�(0) = �̂�(𝐿) = 0

𝑑�̂�(𝑥)

𝑑𝑥
|
𝑥=0

=
𝑑�̂�(𝑥)

𝑑𝑥
|
𝑥=𝐿

= 0
 (3-4) 
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𝑁𝑖 and 𝑁𝑗 in Eqs. (3-8) and (3-9) refer to the eigenvalues of the symmetric and antisymmetric 

modes, which are determined by solving the equations  𝑠𝑖𝑛(𝑁𝑖 2⁄ ) = 0 and 𝑡𝑎𝑛(𝑁𝑗 2⁄ ) = 𝑁𝑗 2⁄ , 

respectively.  

Since the buckling modes, described in Eqs. (3-8) and (3-9), generate an orthogonal basis, a 

superposition method can be used to express the deflection of the beam as a linear combination 

of the buckling modes as, 

𝑊(𝑋) = ∑ 𝐶𝑖 𝑊𝑖
𝑠(𝑋)

∞

𝑖=1,3,5,…

+ ∑ 𝐶𝑗 𝑊𝑗
𝑎(𝑋)

∞

𝑗=2,4,6,…

 (3-10) 

where 𝐶𝑖(𝑖 = 1. .∞) are weight coefficients that determine the contribution of each buckling 

mode to the transverse deflection of the beam. 

3.2.1.2. Energy Analysis  

       In this study, an energy method is applied to analyze the post-buckling response of a beam 

with random geometry properties under axial loadings. Since the bilateral constraints are 

assumed frictionless, the total energy (Ω) of the dynamic system at any equilibrium state consists 

of two components, i.e., the total potential energy (𝚷) and kinetic energy (𝐊). The total potential 

energy of the deflected beam consists of three components: bending energy ub, compressive 

strain energy uc and work of external force up . These energies can be written, in terms of the 

axial force �̂�, as, 

𝑢𝑏 =
1

2
𝐸∫ 𝐼(𝑥) [

𝑑2�̂�(𝑥)

𝑑𝑥2
]

2

𝑑𝑥
𝐿

0

 (3-11a) 
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𝑢𝑐 =
1

2
𝑆𝛥𝑐 (3-11b) 

𝑢𝑝 =
1

2
�̂�𝛥 (3-11c) 

where 𝑆, 𝛥𝑐 and 𝛥 refer to the axial compressive force, axial compressive deformation and 

overall variation of the beam’s length, respectively. They can be related to the applied force �̂� 

and beam’s deflection �̂�(𝑥) by, 

𝑆 = �̂� (3-12a) 

𝛥𝑐 =
�̂�

𝐸
∫

1

𝑏(𝑥)𝑡(𝑥)
𝑑𝑥

𝐿

0

 (3-12b) 

𝛥 = 𝛥𝑐 +
1

2
∫ [

𝑑�̂�(𝑥)

𝑑𝑥
]

2

𝑑𝑥
𝐿

0

 (3-12c) 

Substituting Eq. (3-12) into Eq. (3-11), the total potential energy can be calculated as, 

𝚷 = 𝑢𝑏 + 𝑢𝑐 − 𝑢𝑝 

=
1

2
𝐸∫ 𝐼(𝑥) [

𝑑2�̂�(𝑥)

𝑑𝑥2
]

2

𝑑𝑥
𝐿

0

−
1

4
�̂�∫ [

𝑑�̂�(𝑥)

𝑑𝑥
]

2

𝑑𝑥
𝐿

0

 

(3-13) 

Substituting Eq. (3-7) into Eq. (3-13) yields, 
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𝚷 =
𝐸𝐿

24
∫ ℎ(𝑋)2𝑏(𝑋)𝑡(𝑋)3 [

𝑑2𝑊(𝑋)

𝑑𝑋2
]

2

𝑑𝑋
1

0

−
�̂�

4𝐿
∫ ℎ(𝑋)2 [

𝑑𝑊(𝑋)

𝑑𝑋
]

2

𝑑𝑋
1

0

 (3-14) 

Taking Eq. (3-10) into Eq. (3-14), the total potential energy of the system is obtained as, 

𝚷 =
𝐸𝐿

24
∫ ℎ2𝑏 𝑡3 [ ∑ (𝐶𝑖 

𝑑2𝑊𝑖
𝑠

𝑑𝑋2
)

∞

𝑖=1,3,5,…

+ ∑ (𝐶𝑗 
𝑑2𝑊𝑗

𝑎

𝑑𝑋2
)

∞

𝑗=2,4,6,…

]

2

𝑑𝑋
1

0

− 
�̂�

4𝐿
∫ ℎ2 [ ∑ (𝐶𝑖 

𝑑𝑊𝑖
𝑠

𝑑𝑋
)

∞

𝑖=1,3,5,…

+ ∑ (𝐶𝑗 
𝑑𝑊𝑗

𝑎

𝑑𝑋
)

∞

𝑗=2,4,6,…

]

2

𝑑𝑋
1

0

 

(3-15) 

The kinetic energy of the beam can be expressed as (Asghari et al., 2012),  

𝐊 =
1

2
∫ ∫ 𝜌 [(

𝜕�̂�

𝜕𝑡
− 𝑧

𝜕2�̂�

𝜕𝑡𝜕𝑥
)

2

+ (
𝜕�̂�

𝜕𝑡
)
2

] 𝑑𝐴 𝑑𝑥
𝐴

𝐿

0

 (3-16) 

which can be rewritten as, 

𝐊 =
𝜌

2
∫

[
 
 
 
 

𝐴(𝑥) (
𝜕�̂�

𝜕𝑡
)
2

⏟      
Axial kinetic energy

+∫ [𝑧2 (
𝜕2�̂�

𝜕𝑡𝜕𝑥
)

2

− 2𝑧
𝜕�̂�𝜕2�̂�

𝜕𝑡2𝜕𝑥
]𝑑𝐴 

𝐴⏟                      
Rotational kinetic energy

𝐿

0

+ 𝐴(𝑥) (
𝜕�̂�

𝜕𝑡
)
2

⏟        
Transverse kinetic energy]

 
 
 
 

𝑑𝑥 

(3-17) 
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where 𝜌 refers to the constant mass density of the homogeneous beam. Eq. (3-17) consists of 

three components, including the kinetic energies due to axial, rotational and transverse inertias. 

Since the axial force is quasi-static and small deformations and rotations are assumed, both axial 

and rotational kinetic energies are neglected. Therefore, using the normalization factors defined 

in Eq. (3-7), the kinetic energy is simplified as, 

𝐊 =
𝜌𝐿3

2
∫ 𝐴(𝑋)ℎ(𝑋)2 (

∂𝑊(𝑋, 𝑡)

∂𝑡
)

2

𝑑𝑋
1

0

 (3-18) 

Using the Galerkin discretization method to separate time and space coordinates, the 

transverse displacement can be written as a linear combination of the admissible functions 

multiplied by unknown temporal coordinate,  

𝑊(𝑋, 𝑡) = ∑𝛼𝑘(𝑡) 𝑊𝑘(𝑋)

∞

𝑘=1

 (3-19) 

where 𝛼𝑘(𝑡) is defined as the generalized temporal coordinate and 𝑊𝑘(𝑋) are the buckling 

modes. Taking Eqs. (3-10) and (3-19) into (3-18), the kinetic energy is expressed as,  

𝐊 =
𝜌𝐿3

2
∫ 𝐴(𝑥)ℎ(𝑋)2 [∑

𝑑𝛼𝑘(𝑡) 

𝑑𝑡
( ∑ 𝐶𝑖 𝑊𝑖

𝑠(𝑋)

∞

𝑖=1,3,5,…

+ ∑ 𝐶𝑗 𝑊𝑗
𝑎(𝑋)

∞

𝑗=2,4,6,…

)

∞

𝑘=1

]

2
1

0

𝑑𝑋 (3-20) 

According to Eqs. (3-15) and (3-20), the total energy of the system is given by, 
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𝛀 = 𝚷 + 𝐊 =
𝐸𝐿

24
∫ ℎ2𝑏 𝑡3 [ ∑ (𝐶𝑖 

𝑑2𝑊𝑖
𝑠

𝑑𝑋2
)

∞

𝑖=1,3,5,…

+ ∑ (𝐶𝑗 
𝑑2𝑊𝑗

𝑎

𝑑𝑋2
)

∞

𝑗=2,4,6,…

]

2

𝑑𝑋
1

0

− 
�̂�

4𝐿
∫ ℎ2 [ ∑ (𝐶𝑖 

𝑑𝑊𝑖
𝑠

𝑑𝑋
)

∞

𝑖=1,3,5,…

+ ∑ (𝐶𝑗 
𝑑𝑊𝑗

𝑎

𝑑𝑋
)

∞

𝑗=2,4,6,…

]

2

𝑑𝑋
1

0

+
𝜌𝐿3

2
∫ 𝐴ℎ2 [∑

𝑑𝛼𝑘(𝑡) 

𝑑𝑡
( ∑ 𝐶𝑖 𝑊𝑖

𝑠(𝑋)

∞

𝑖=1,3,5,…

∞

𝑘=1

1

0

+ ∑ 𝐶𝑗 𝑊𝑗
𝑎(𝑋)

∞

𝑗=2,4,6,…

)]

2

𝑑𝑋 

(3-21) 

The unknown coefficients 𝐶𝑖 in Eq. (3-21) can be determined by solving the following 

constrained minimization problem, 

{
Min 𝛀(𝐶𝑖 )

0 ≤ 𝑊(𝑋) ≤ 1
 (3-22) 

In Eq. (3-22), the unknown coefficients are determined by minimizing the total potential 

energy of the system within the bilateral constraints. Due to the nonlinearity of the objective 

function, Eq. (3-22) is numerically solved using Nelder–Mead algorithm (Jiao et al., 2016). Even 

though Nelder–Mead is not a true global optimization, it works reasonably well in our case as the 

system does not contain many local energy minima. The model is used to investigate the 

dynamic post-buckling response of a notched beam under a cyclic load. The loading protocol 

follows the following function,  
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�̂� = {
�̂�𝑚𝑎𝑥  

2𝑡

𝑇
                             𝑡 = [0,

𝑇

2
]  

�̂�𝑚𝑎𝑥  (2 −
2𝑡

𝑇
)               𝑡 = [

𝑇

2
, 𝑇]

 (3-23) 

where  �̂�𝑚𝑎𝑥and T constitutes the loading amplitude and period, respectively. The geometry of 

the beam and loading parameters are detailed in Table 3-1. Figure 3-6 displays the theoretically 

simulated dynamic response of the beam. As can be seen, the dynamic model is able to detect the 

coexistence of multiple equilibrium configurations and difference between loading and 

unloading equilibrium paths. However, due to non-consideration of friction the hysteretic 

behavior is missed and the transition forces during unloading are overestimated. Friction will be 

considered in future studies to improve the modeling of the unloading branch. However, the 

loading phase can be accurately described using the current static model. The static model can be 

obtained by dropping the kinetic energy term and minimizing the potential energy instead of the 

total energy. The location of the snap-through transitions depends only on the geometry of the 

beam. Therefore, maximization of the levels of the harvested energy under monotonic axial load 

applies to dynamic loadings as well. 
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Table 3-1. Geometry properties of the notched specimen. 

 Top Notch Bottom 

Length (mm) 112.5 25 112.5 

Width (mm) 30 14 30 

Thickness (mm) 2.34 2.34 2.34 

Loading Period (s) 10 

Maximum Load (N) 3000 

 

 

Figure 3-6. Dynamic force-displacement response under a cyclic load. 
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3.2.2. A Close-Form Theoretical Model  

3.2.2.1. Post-Buckling Analysis  

According to the studies presented in (Li et al., 1994; 2001), the static equation that governs 

the governing equation presented in Eq. (3-3) is reduced to,  

𝑑2𝑀(𝑋)

𝑑𝑋2
+

𝑃

𝐸𝐼(𝑋)
 𝑀(𝑋) = 0 (3-24) 

where 𝑃 = �̂�𝐿2 is constant. The general solution of Eq. (3-24) may be expressed as,  

𝑀(𝑋) = 𝐶1Ω1(𝑋) + 𝐶2Ω2(𝑋) (3-25) 

where Ω𝑖(𝑋) and 𝐶𝑖, (𝑖 = 1,2) are linearly independent special solutions and integral constants 

of Eq. (3-24), respectively. The solutions Ω𝑖(𝑋) depend on the distribution of the flexural 

stiffness function 𝐸𝐼(𝑥). Therefore, the general solution for different beam shape configurations 

can be obtained by integrating Eq. (3-25) as, 

𝑑𝑊(𝑋)

𝑑𝑋
= 𝐶1∫Ω1(𝑋) 𝑑𝑋 + 𝐶2∫Ω2(𝑋) 𝑑𝑋 + 𝐶3 (3-26a) 

𝑊(𝑋) = 𝐶1∫∫Ω1(𝑋) 𝑑𝑋  𝑑𝑋 + 𝐶2∫∫Ω2(𝑋) 𝑑𝑋  𝑑𝑋 + 𝐶3𝑋 + 𝐶4 (3-26b) 

Since different beam shape configurations lead to different independent special solutions, the 

cases presented in Figure 3-7 are categorized into four investigated groups, namely, piecewise 

constant, linear width, linear thickness, and radical width. 
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(a)                                                      (b) 

                     

(c)                                                     (d) 

Figure 3-7. Studied beam shape configurations: (a) piecewise constant width, (b) linear width, 

(c) linear thickness, and (d) radical width. 
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This section focuses on the T-beam shape configuration that consists of two uniform 

segments, presented in Figure 3-7(a). Note that for multiple uniform segments, same procedure 

can be followed to obtain shape functions. The independent solutions, presented in Eq. (3-25), of 

the k
th

 segment (𝑘 = 1, 2) can be expressed as in Li et al. (1994) as, 

{
 
 

 
 
Ω𝑘1(𝑋) = sin(𝑛𝑘𝑋)

Ω𝑘2(𝑋) = cos(𝑛𝑘𝑋)

𝑛𝑘 = √
𝑃

𝐸𝐼𝑘

 (3-27) 

Substituting Eq. (3-27) into Eq. (3-26), the rotation and deflection functions of each segment are 

obtained as, 

𝑑𝑊𝑘
𝑃𝑊𝐶(𝑋)

𝑑𝑋
= −𝐶𝑘1

cos(𝑛𝑘𝑋)

𝑛𝑘
+ 𝐶𝑘2

sin (𝑛𝑘𝑋)

𝑛𝑘
+ 𝐶3 (3-28a) 

𝑊𝑘
𝑃𝑊𝐶(𝑋) = −𝐶𝑘1

sin(𝑛𝑘𝑋)

𝑛𝑘2
− 𝐶𝑘2

cos(𝑛𝑘𝑋)

𝑛𝑘2
+ 𝐶3𝑋 + 𝐶4 (3-28b) 

where 𝐶𝑘𝑖 (𝑘 = 1, 2 & 𝑖 = 1, 2), 𝐶3, and 𝐶4 are the integration constants that can be determined 

using boundary conditions. Substituting Eq. (3-28) into Eq. (3-6) and taking into account the 

continuity of the beam’s rotation and deflection at the joint between the two segments (𝑋 = 𝐿1/

𝐿), a total of six algebraic equations are obtained as,  

−𝐶12
1

𝑛12
+ 𝐶4 = 0 (3-29a) 
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−𝐶11
1

𝑛1
+ 𝐶3 = 0 (3-29b) 

−𝐶21
sin(𝑛2)

𝑛22
− 𝐶22

cos(𝑛2)

𝑛22
+ 𝐶3 + 𝐶4 = 0 (3-29c) 

−𝐶21
cos(𝑛2)

𝑛2
+ 𝐶22

sin(𝑛2)

𝑛2
+ 𝐶3 = 0 (3-29d) 

𝐶11
𝑛12

sin (
𝑛1𝐿1
𝐿
) +

𝐶12
𝑛12

cos (
𝑛1𝐿1
𝐿
)

−
𝐶21
𝑛22

sin (
𝑛2𝐿1
𝐿
) −

𝐶22
𝑛22

cos (
𝑛2𝐿1
𝐿
) = 0 

(3-29e) 

−
𝐶11
𝑛1
cos (

𝑛1𝐿1
𝐿
) +

𝐶12
𝑛1
sin (

𝑛1𝐿1
𝐿
)

+
𝐶21
𝑛2
cos (

𝑛2𝐿1
𝐿
) −

𝐶22
𝑛2
sin (

𝑛2𝐿1
𝐿
) = 0 

(3-29f) 

Using Eq. (3-29), the integration constants can be expressed in terms of 𝐶4, and then substituted 

into Eq. (3-28b) to obtain the corresponding shape function, 𝜓𝑖(𝑋) (𝑖 = 1, 2). Eq. (3-29) 

represents an eigenvalue problem for 𝑛𝑖 (𝑖 = 1, 2) . The characteristic equation for ni can be 

written as,  
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1

𝑛14𝑛24
(2𝑛1𝑛2 + sin(𝑛2) sin(𝛤) [(𝑛1

2 + 𝑛2
2)

× cos(𝛬) − 𝑛1
2𝑛2 sin(𝛬)] − cos(𝑛2) sin(𝛤)

× [𝑛1
2𝑛2 cos(𝛬) + (𝑛1

2 + 𝑛2
2) sin(𝛬)]

− 𝑛1𝑛2 cos(𝛤) [2 cos(𝑛2 − 𝛬)

+ 𝑛2 sin(𝑛2 − 𝛬)]) = 0 

(3-30) 

where 𝛤 = 𝑛1𝐿1/𝐿 and 𝛬 = 𝑛2𝐿1/𝐿. Taking into account the geometry of the piecewise constant 

beam, two geometry parameters can be introduced: 𝜇 =
𝑏𝑡𝑜𝑝

𝑏𝑏𝑜𝑡
 (0 < 𝜇 ≤ 1) and 𝑣 =

𝐿1

𝐿
 (0 < 𝑣 ≤

1). Based on Eq. (3-27), the eigenvalues 𝑛1 and 𝑛2 can be related by 𝑛2
2 =

𝑛1
2

𝜇
. Therefore, the 

eigenvalues 𝑛1 can be computed by numerically solving Eq. (3-30) and then used to 

determine 𝑛2. For instance, if 𝜇 =
1

2
 and 𝑣 =

1

2
, then 𝑛2 = √2𝑛1 and the first four eigenvalues of 

n1 are solved as 5.08, 7.587, 10.285, and 12.865. The general form of the buckling shape 

function is then obtained as,  

𝜓𝑖(𝑋)
𝑃𝑊𝐶 = {

𝜓𝑖
I(𝑋)𝑃𝑊𝐶     𝑖𝑓  0 ≤  𝑋 ≤  

1

2

𝜓𝑖
II(𝑋)𝑃𝑊𝐶      𝑖𝑓  

1

2
≤  𝑋 ≤  1 

 (3-31) 

where 
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𝜓𝑖
I(𝑋)𝑃𝑊𝐶 = 1 − cos(𝑛𝑖𝑋)

+

𝑛𝑖 sin (
1
2 𝑛𝑖) + √2𝑛𝑖 cos (

√2
2 𝑛𝑖)

cos (
√2
2 𝑛𝑖) + √2𝑛𝑖 sin (

√2
2 𝑛𝑖) − cos (

𝑛𝑖
2 )

[
sin(𝑛𝑖𝑋)

𝑛𝑖
− 𝑋] 

(3-32a) 

𝜓𝑖
II(𝑋)𝑃𝑊𝐶

= 1

+
1

cos (
√2
2 𝑛𝑖) + √2𝑛𝑖 sin (

√2
2 𝑛𝑖) − cos (

𝑛𝑖
2 )

[cos (
𝑛𝑖
2
) cos[√2𝑛𝑖(1 − 𝑋)]

− cos [√2𝑛𝑖 (𝑋 −
1

2
)] −

√2

2
sin (

𝑛𝑖
2
) sin[√2𝑛𝑖(1 − 𝑋)] − √2𝑛𝑖 sin (

√2

2
𝑛𝑖)𝑋

+ 𝑛𝑖 sin (
𝑛𝑖
2
) [cos[√2𝑛𝑖(1 − 𝑋)] − 𝑋]] 

(3-32b) 

The linear function of the beam width in Figure 3-7(b) is given by, 

𝑏(𝑋) = 𝑏𝑡𝑜𝑝 + (𝑏𝑏𝑜𝑡 − 𝑏𝑡𝑜𝑝)𝑋 (3-33) 

The flexural stiffness function 𝐸𝐼(𝑋) can be written in the form,  

𝐸𝐼(𝑋) = 𝛼(1 + 𝛽𝑋)𝜉 (3-34) 
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where the quantities 𝛼, 𝛽 and 𝜉 are defined as, 

𝛼 =
𝐸𝑏𝑏𝑜𝑡𝑡

3

12
, 𝛽 =

𝑏𝑏𝑜𝑡
𝑏𝑡𝑜𝑝

− 1,    and    𝜉 = 1  (3-35) 

The linearly independent special solutions that constitute the general solution 𝑀(𝑋)𝐿𝑛𝑟𝑊 

presented in Eq. (3-25) are as in Li et al. (1994) (𝑘𝑖 =
1

2
 and 𝜈𝑖 = 1) as, 

{
 
 
 

 
 
 Ω1(𝑋) = √1 + 𝛽𝑋   𝐉1[𝛷

𝐿𝑛𝑟𝑊]

Ω2(𝑋) = √1 + 𝛽𝑋  𝐘1[𝛷
𝐿𝑛𝑟𝑊]

𝛷𝐿𝑛𝑟𝑊 = 2𝑛(1 + 𝛽𝑋)
1
2

𝑛 = √
𝑃

𝛼𝛽2

 (3-36) 

where J and Y refer to the Bessel function of the first and second kinds. Substituting Eq. (3-36) 

into Eq. (3-26), the general deflection functions of the linear width beam can be obtained as, 

𝑑𝑊(𝑋)𝐿𝑛𝑟𝑊

𝑑𝑋
= 𝐶1

2𝐾
3
2  𝐩𝐅𝐪 [

3
2 ; (2,

5
2) ;−𝐾]

3𝛽𝑛
5
2√𝜋

+ 𝐶2𝐆𝐩 𝐪
𝐦 𝐧 [0;−1; (−

1

2
,
1

2
) ; (−1,−1); √𝐾;

1

2
]

∙
𝐾

𝛽𝑛
5
2√𝜋

+ 𝐶3 

(3-37a) 
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𝑊(𝑋)𝐿𝑛𝑟𝑊 = 𝐶1
4𝐾

5
2  𝐩𝐅𝐪 [

3
2 ; (2,

7
2) ;−𝐾]

15𝛽2𝑛
5
2√𝜋

+ 𝐶2𝐆𝐩 𝐪
𝐦 𝐧 [0;−1; (−

1

2
,
1

2
) ; (−2,−1); √𝐾;

1

2
] ∙

𝐾

𝛽2𝑛
9
2√𝜋

 + 𝐶3𝑋

+ 𝐶4 

(3-37b) 

where 𝐾 = 𝑛2(1 + 𝛽𝑋).  𝐩𝐅𝐪 and 𝐆𝐩 𝐪
𝐦 𝐧 represent the generalized hypergeometric and Meijer G 

functions, respectively. Using the boundary conditions in Eq. (3-6) and following the same 

procedure as piecewise constant sections, eigenvalues and buckling mode shapes are determined 

by numerically solving by the resulting characteristic equation.  

The linear function of the beam thickness in Figure 3-7(c) is defined as, 

𝑡(𝑋) = 𝑡𝑡𝑜𝑝 + (𝑡𝑏𝑜𝑡 − 𝑡𝑡𝑜𝑝)𝑋 (3-38) 

Substituting Eq. (3-38) into the flexural stiffness function defined in Eq. (3-34), the quantities 

can be written as, 

𝛼 =
𝐸𝑏𝑡𝑏𝑜𝑡

3

12
, 𝛽 =

𝑡𝑏𝑜𝑡
𝑡𝑡𝑜𝑝

− 1  𝑎𝑛𝑑 𝜉 = 3 (3-39) 

The linearly independent special solutions that constitute the general solution, following the form 

in Eq. (3-25), can be obtained, for 𝑘𝑖 = −
1

2
 and 𝜈𝑖 = −1, as, 
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{
 
 
 

 
 
 Ω1(𝑋) = √1 + 𝛽𝑋  𝐉−1[𝛷

𝐿𝑛𝑟𝑇]

Ω2(𝑋) = √1 + 𝛽𝑋  𝐘−1[𝛷
𝐿𝑛𝑟𝑇]

𝛷𝐿𝑛𝑟𝑇 = −2𝑛(1 + 𝛽𝑋)−
1
2

𝑛 = √
𝑃

𝛼𝛽2 

 (3-40) 

Substituting Eq. (3-40) into Eq. (3-26), the deflected shape of the linear thickness case can be 

written with four unknown integration coefficients 𝐶𝑖  (𝑖 = 1, . . ,4). Using the boundary 

conditions in Eq. (3-6), the eigenvalues and the buckling mode shapes for linear thickness are 

obtained. 

The radical function of the beam width displayed in Figure 3-7(d) can be written as, 

𝑏(𝑋) = √𝑏𝑏𝑜𝑡 − 2𝐵𝑋 (3-41) 

where B is a parameter that controls the width variation. Taking Eq. (3-41) into the flexural 

stiffness function in Eq. (3-34), the quantities to define the radical shape configuration can be 

written as, 

𝛼 =
𝐸√𝑏𝑏𝑜𝑡𝑡

3

12
, 𝛽 = −

2𝐴

𝑏𝑏𝑜𝑡
  𝑎𝑛𝑑  𝜉 =

1

2
 (3-42) 

Similarly, the linearly independent special solutions can be written as, 
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{
 
 
 
 

 
 
 
 Ω1(𝑋) = √1 + 𝛽𝑋  J2

3

[𝛷𝑅𝑎𝑑𝑊]

Ω2(𝑋) = √1 + 𝛽𝑋  J−2
3

[𝛷𝑅𝑎𝑑𝑊]

𝛷𝑅𝑎𝑑𝑊 =
4

3
𝑛(1 + 𝛽𝑋)

3
4

𝑛 = √
𝑃

𝛼𝛽2 

 (3-43) 

Based on the same procedures, the shape function for radical width, 𝑊(𝑋)𝑅𝑎𝑑𝑊, are obtained as 

well.  

In the same manner as Eq. (3-10), the buckling modes in the fore presented cases form an 

orthogonal basis. Therefore, the superposition method is used to express the deflection of the 

beams as a linear combination of the buckling modes as, 

𝑊(𝑋) =∑𝐶𝑖𝜓𝑖(𝑋)

∞

𝑖=1

 (3-44) 

where 𝐶𝑖  (𝑖 = 1,… ,∞) represent the weight coefficients that determine the contribution of each 

buckling mode to the transverse deflection. 

3.2.2.2. Energy Analysis  

       Similarly to Section 3.2.1.2, the energy method is used to calculate the post-buckling 

response of the non-prismatic beam. The total energy (Ω) of the system is analyzed as the 

summation of the total potential energy (𝚷) and kinetic energy (𝐊). Taking Eq. (3-44) into Eqs. 

(3-14) and (3-18), the total energy of the system can be obtained with respect to the unknown 

coefficients 𝐶𝑖 . Solving by the constrained minimization problem defined in Eq. (3-22), the 
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unknown coefficients are determined by numerically minimizing the total potential energy of the 

system within the bilateral constraints (Jiao et al., 2016). 

3.3. Model Validation 

3.3.1. Validation with Existing Study on Uniform Cross-Section Beams 

In order to verify the current analytical formulation, the model was first simplified into a 

uniform cross-section and compared with the previously published results (Lajnef et al., 2014). 

The beam consisted of a length of 250 mm, a thickness of 2.34 mm, a width of 30 mm, a 

Young’s modulus of 2.3 GPa, and a gap of 4 mm. The beam was partitioned into three segments 

with equal widths and thicknesses. The potential energy in each segment was computed. Then 

the total potential energy was minimized under the confinement constraints. Figure 3-8 presents 

the response of a uniform cross-section beam under a gradually increasing axial force, simulated 

by both formulations: current and previously published models. The labels Φ3, Φ5, and Φ7 refer 

to the dominant buckling modes to which the beam transitions after the snap-through events. 

Both responses coincide with a maximum difference of 7.69% at transition Φ5. We believe the 

slight difference is due to the numerical error from the minimization solver of the total potential 

energy in Eqs. (3-10) and (3-44). Since the current model addresses non-uniform beams, a more 

complicated total potential energy is minimized in this study than the previous work that 

addressed uniformed beams. 
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Figure 3-8. Comparison between the current and the previously published models for uniform 

cross-section beams. 

3.3.2. Validation with Experiment 

To validate the presented theoretical model, a notched polycarbonate beam, whose 

geometry shape is presented in Figure 3-9(a), was experimentally investigated. The experimental 

setup followed the setup and procedure presented in Lajnef at al. (2014). The beam had a 

Young’s modulus of 2.3 GPa, constant thickness of 2.34 mm and total length of 250 mm. The 

beam had fixed end supports and was confined between two rigid aluminum constraining walls 

as shown in Figure 3-9(b). The gap separating the lateral constraints was fixed at 4 mm. The 

loading protocol consisted in applying a gradually increasing compressive force to the top of the 

beam using a universal mechanical testing frame. In order to highlight the deflected shapes of the 

tested specimen, the front edge of the beam was painted in a fluorescent color. A black light was 

used to separate it from its ambience as shown in Figure 3-9(c). Figure 3-9(d) shows the 

deflected shapes of the beam in different buckling modes. 

Φ3 

Φ5 

Φ7 
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(a)                                                                        (b)                                              

                           

                      (c)                                                                             (d)           

Figure 3-9. (a) Tested sample with an installed piezoelectric harvester, (b) testing setup, (c) 

testing under the black light, and (d) highlighted deflected shapes of a notched beam. 

Φ3 Φ5 Φ7 
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Figure 3-10 presents a comparison between theoretical and experimental results. The labels 

Φi (i = 3, 5 and 7) denote the mode transition events during which the beam jumps to a higher 

buckling mode i. Figure 3-10(a) highlights the difference in the force-displacement response of 

the beam. While, Figure 3-10(b) compares the deflected shapes of the beam under different 

buckling configurations. Image processing tools were used to extract the highlighted shapes of 

the beams at transitions. The image of the deflected beam was converted into a binary image. 

Then, the Canny method was used to detect the edges and contour of the beam. Thanks to the 

fluorescence of the beam’s front edge and use of black light, the edges were sharp and easy to 

detect. The object was then separated from the image and normalized to match the size of the 

theoretical deflection shape. The number of pixels along the beam corresponds to the number of 

points used to discretize its length and the transverse deflection was computed by normalizing 

the highest bright pixel number to 1.  

Table 3-2 summarizes the theoretically computed and experimentally measured axial forces 

as well as the difference between the deflected shapes. The error between the shapes was 

numerically calculated using the Euclidien distance formula expressed as, 

𝐷𝑖𝑓𝑓 =
√∑ [�̂�𝑡ℎ𝑒𝑜(𝑥𝑖) − �̂�𝑒𝑥𝑝(𝑥𝑖)]2

𝑁
𝑖=1

√∑ [�̂�𝑒𝑥𝑝(𝑥𝑖)]2
𝑁
𝑖=1

× 100% (3-45) 

where N represents the total number of points used to discretise the beam’s length. 
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(a)  

 

                                (b) 

Figure 3-10. Comparisons between theoretical and experimental (a) force-displacement 

responses and (b) normalized deflected shape 
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Table 3-2. Comparison between theoretical and experimental results in terms of forces and 

deflected shapes at transitions. 

 

Spacing 

Shape Diff (%) 

F
theo 

(N)
 

F
exp

 (N) Error (%) 

Φ3 420 388.92 7.99 6.78 

Φ5 1140 1061.91 7.35 8.26 

Φ7 2000 1840.56 8.66 8.22 

 

3.4. Effect of Geometry Properties on Post-Buckling Response 

3.4.1. Spacing Analysis with Respect to Force-Displacement Relationship 

The main parameters that contribute to the cross-section variation are the thickness and 

width. Their variation can be either continuous along the beam (as shown is Figure 3-11(d)-(f)), 

therefore the total potential energy is computed over the whole beam, or piecewise continuous 

(Figure 3-11(a)-(c)) and hence, the total potential energy is the sum of partial potential energies 

in each segment. In the latter case, the length of each segment is considered an important 

parameter as well. The total length and the elastic modulus of the beam and the gap separating 

the lateral constraints were fixed at 250 mm, 2.3 GPa and 4 mm, respectively. The variation of 

the width, thickness and segments length is detailed in Table 3-3.  
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Table 3-3. Variable parameter in each of the studied cases. 

Case Group Variable Size (mm) 

(a) 

Piecewise 

constant 

btop 15; 20; 25; 30 

(b) Ltop 0; 50; 100 

(c) ttop 1.54; 1.74; 1.94; 2.34 

(d) 

Linear 

btop 15; 20; 25; 30 

(e) ttop 1.54; 1.74; 2.04; 2.34 

(f) Sinusoidal bmin 15; 20; 25 

 

3.4.1.1. Piecewise Constant Cross-Section 

The studied cases are divided into two groups. The first group consists of piecewise constant 

cross-sections where either the thickness or width varies between the segments. While, the 

second group consists of continuous linear or sinusoidal variation of either width or thickness. In 

all cases, the width and thickness at the bottom edge are constants as 30 mm and 2.3 mm, 

respectively. The first case presented in Figure 3-11(a) investigates the effect of the top width on 

the post-buckling response of the beam. The beam is divided into two equi-length segments. The 

top width is varied between 15 mm and 30 mm, as shown in Table 3-3. The second case, 

presented in Figure 3-11(b), studies the sensitivity of the response to the segments length. The 

top width is fixed at 15 mm (half of the bottom edge width) and the length of the top segment is 
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varied between 0 thickness is investigated in case (c). The beam is divided into two equi-length 

segments and the top thickness is varied between 1.54 mm and 2.34 mm, as detailed in Table 3-

3. The change in the response of the three cases is presented in Figure 3-12. The stiffness (slope 

within the same buckling modes) and the axial force at which the buckling transitions happened 

are drastically affected by the change of the studied parameters. More importantly, the spacing 

between the transition events, noted by Φ3, Φ5 and Φ7, is very sensitive to the geometry 

dimensions. Figure 3-12(a) shows that the smaller is the top width of the beam, the larger is the 

spacing between Φ3 and Φ5 but the lesser is the spacing between Φ5 and Φ7. The ratio between 

the two spacing is defined as 𝑅 = (𝐹7 − 𝐹5)/(𝐹5 − 𝐹3), where Fi denotes the axial force at which 

transition to buckling mode i occurs. Results in Figure 3-12(b) and (c) demonstrate similar effect 

of top length and thickness on the stiffness and spacing ratio between different buckling mode 

transitions. However, the ratio between the two spacing is found inversely proportional to both 

length and thickness of the top section.  
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    (a)                                     (b)                           (c) 

                                           

    (d)                                                (e)                                      (f) 

Figure 3-11. Studied cases (not to scale) comprising (a) piecewise constant width, (b) piecewise 

constant section with different segment lengths, (c) piecewise constant thickness (d) linear width, 

(e) linear thickness and (f) sinusoidal width. 
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(a)                                                                             (b) 

 

(c) 

Figure 3-12. Effect of (a) top width, (b) top segment length and (c) top thickness on the 

transition events of a piecewise constant cross-section beam. 
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3.4.1.2. Linear and Sinusoidal Cross-Sections 

The beam width and thickness can be defined as continuous linear or non-linear functions in 

terms of the longitudinal coordinate, x. The linear functions defining the beam width and 

thickness shown in Figure 3-11(d) and (e), respectively, are given by, 

𝑏(𝑥) = 𝑏𝑏𝑜𝑡 −
𝑏𝑏𝑜𝑡 − 𝑏𝑡𝑜𝑝

𝐿
𝑥 

and 

𝑡(𝑥) = 𝑡𝑏𝑜𝑡 −
𝑡𝑏𝑜𝑡 − 𝑡𝑡𝑜𝑝

𝐿
𝑥 

(3-46) 

 

(3-47) 

The sinusoidal function related to the width geometry presented in Figure 3-11(f) is expressed as, 

𝑏(𝑥) = 𝑏𝑏𝑜𝑡 + 2𝐴 𝑠𝑖𝑛 (2𝜋𝑚
𝑥

𝐿
) (3-48) 

where bbot and tbot are fixed at 30 mm and 2.34 mm, respectively, and the top thickness, ttop, top 

width, btop, sine amplitude, A, and number of waves, m, are variable. 

Figure 3-13(a) and (b) present the response of a beam with linear width and thickness, 

respectively. The width of the top edge varies between 10 mm and 30 mm and the thickness 

between 1.54 mm and 2.34 mm as detailed in Table 3-3. Results show that the effect of these two 

parameters on the beam’s response is similar to the piecewise constant scenarios presented 

above. The effect of the sine amplitude on the response of a beam with sinusoidal width variation 

is presented in Figure 3-13(c). The wave number, m, was fixed at 1.  
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Results show that an increase in the sine amplitude (i.e. reduction of the least section width) 

results in a larger spacing between Φ5 and Φ7 but a lesser spacing between Φ3 and Φ5. 

Therefore the sine amplitude has an opposite effect to the top width in piecewise constant 

sections. 

                

(a)                                                                              (b) 

 

 (c) 

Figure 3-13. Effect of (a) top width, (b) top thickness and (c) sine amplitude on the transition 

events of a linearly/sinusoidally varied cross-section beam. 
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3.4.2. Location Analysis with Respect to Deformed Beam Shape Configuration 

       In this section, the theoretical model is used to examine the impact of the geometry 

properties (i.e. shape, width and thickness) on the beam’s deformation. The same material 

properties as Section 3.4.1 are used. One parameter is varied in each case, while the other 

parameters are kept constant. Different shape configurations were considered, e.g., (a) notched 

width that has three uniform segments, (b) cross width that has three uniform segments, (c) linear 

width, (d) linear thickness, and (e) radical width. Table 3-4 summarizes the geometry variation 

that corresponds to each of the configurations. 

The distance traveled by the beam during a transition is defined as the difference between its 

deflected shapes just before and after that transition. It can be expressed by, 

Table 3-4. Beam geometry variation in different configurations. 

Case Configuration Variable Size (mm) 

(a) Notched width bnotch 15; 17; 20; 25 

(b) Cross width bmid 35; 37; 45 

(c) Linear width btop 15; 17; 20; 25 

(d) Linear thickness ttop 1.54; 1.74;1.94; 2.04 

(e) Radical width btop 15; 17; 20; 25 
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𝑊𝑡𝑑 = 𝑊𝑝𝑜𝑠𝑡−𝑊𝑝𝑟𝑒 (3-49) 

The location of the maximum traveled distance is the abscissa x that maximizes that 

difference, as shown in Figure 3-14. The results presented in Figure 3-14 correspond to case (a) 

in Table 3-4 where the top width btop is 15 mm. The maximum traveled distances are located at 

0.56, 0.33, and 0.54, for transitions Φ3, Φ5 and Φ7, respectively. Our objective is to design the 

beam such that all transitions occur at the same location which will be the most suitable site to 

attach the energy harvester.  

 

Figure 3-14. Locations of the maximum traveled distance during buckling mode transitions 

(Case (a) in Table 3-4, btop=15 mm). 
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3.4.2.1. Notched Width 

Figure 3-15(a) and 3-16(a) show the traveled distances and the migration of the snap-through 

locations with respect to the notch width that changes from 15 mm to 25 mm. The transitions Φ3 

and Φ5 are shown non-sensitive to the width ofthe notch and always occur at the same location 

which is the beam’s midspan. As bnotch increases, the location of Φ7 tends to approach the 

midspan as well. Note that only the width of the notch is considered in this section. Its length, 

thickness and location surely affect the snap-through behavior as well. 
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         Normalized Beam Length (
𝒙

𝑳
) 

Figure 3-15. Normalized distance traveled during buckling mode transitions for different beam 

configurations. 
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Figure 3-16. Migration of the snap-through locations with respect to the variables for different 

beam shape configuration

3.4.2.2. Cross Width 

Figure 3-15(b) and 3-16(b) present the traveled distances and the migration of the snap-

through locations, respectively, in terms of the cross width. The width varies between 35 mm and 

45 mm. Two of the transitions (i.e. Φ3 and Φ7) maintain their locations as the width changes. 

Therefore, this configuration is not suitable for our application. 

3.4.2.3. Linear Width 

The top width of the beam is varied between 15 mm and 25 mm. Figure 3-15(c) shows the 

normalized traveled distance at transitions, for different top width values. It can be seen that the 

snap-through locations are sensitive to the top width. The locations of transitions Φ3 and Φ5 
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approach the midspan of the beam as the top width increases. However, Φ7 remains invariant. 

Figure 3-16(c) displays the change in the transition locations due to top width variation. 

3.4.2.4. Linear Thickness 

In the linear variation of the beam’s thickness, Figure 3-15(d) displays the traveled distance 

with respect to the beam’s top thickness that varies from 1.54 mm to 2.04 mm. The location of 

the largest traveled distance is extremely sensitive to the top thickness. Figure 3-16(d) shows that 

for low values of top thickness, the snap-through tends to occur in the thicker half of the beam.  

3.4.2.5. Radical Width 

        The top width varies between 15 mm and 25 mm. Figure 3-15(e) displays the influence of 

such configuration on the distance traveled by the beam at transitions. This figure shows similar 

transition patterns as the linear width variation shown in Figure 3-15(a). However Figure 3-16(e) 

highlights that the locations of the transition Φ7 are not the same and, more importantly, the 

location of both transitions Φ5 and Φ7 are non-sensitive to the top width in this configuration.  

To sum up, the snap-through locations are more sensitive to the linear and notched width 

than the other studied configurations. Therefore, the next section focuses on designing beams in 

these categories such that they exhibit all buckling mode transitions at the same location. 

3.4.3. Spacing and Location Analysis  

In this section, the theoretical model is used to examine the impact of different geometry 

shapes on the spacing and location of the transitions. Four configurations of non-uniform cross-

section beams were considered: linear, notched, radical and sinusoidal. In each case, two 
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parameters are varied as shown in Figure 3-17. Through the entire study, the beam’s Young’s 

modulus E and gap between the two lateral constraints h0 are maintained invariant and equal to 

2.3 GPa and 4 mm, respectively. The width bbot and thickness tbot at the bottom of the non-

uniform beams are also fixed at 30 mm and 2.34 mm, respectively. The notched beam 

configuration is displayed in Figure 3-17(b). The notch width and length are both fixed at 15 

mm. The linear variation of the beam’s width and thickness, shown in Figure 3-17(a), are defined 

as linear functions of x as, 

𝑏(𝑥) = 𝑏𝑏𝑜𝑡 −
(𝑏𝑏𝑜𝑡 − 𝑏𝑡𝑜𝑝)

𝐿
𝑥 (3-50) 

𝑡(𝑥) = 𝑡𝑏𝑜𝑡 −
(𝑡𝑏𝑜𝑡 − 𝑡𝑡𝑜𝑝)

𝐿
𝑥 (3-51) 

In the same manner, the radical width variation in Figure 3-17(c) is given by, 
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(a)                                                      (b) 

              

(c)                                                      (d) 

Figure 3-17. Investigated (a) linear, (b) notched, (c) radical, and (d) sinusoidal beam 

configurations. 

𝑏(𝑥) = 𝑏 − 2𝛽√𝑥 (3-52) 

where β represents a parameter that defines the width change. The sinusoidal width of the beam 

shown in Figure 3-17(d) is defined by, 
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𝑏(𝑥) = 𝑏𝑏𝑜𝑡 + 2𝐵𝑠𝑖𝑛 (2𝜋𝑚
𝑥

𝐿
) (3-53) 

where B and m denote the amplitude of the sinusoidal function and number of waves, 

respectively. 

Figure 3-18 presents the effect of linear variations of thickness and width on the spacing 

between transitions. The different buckled configurations of the beam are shown in Figure 3-

18(a). The displayed beam corresponds to a 2.04 mm top thickness and a 15 mm top width. The 

corresponding force-displacement response is displayed in Figure 3-18(b). The forces at which 

transitions occur are highlighted in the figure. Figure 3-18(c) shows the influence of the top 

width and thickness on the spacing ratio. Note that the top width is changed from 15 to 30 mm, 

and the top thickness from1.54 to 2.34 mm, as detailed in Figure 3-17(a). The variation ranges of 

these two parameters induce a variation of the spacing ratio between 0.7 and 1.2. The nadir value 

is obtained when the top width and thickness are in the middle of the ranges, and the peak value 

is when the variables are at the edges. The impact on the locations of the snap-through transitions 

is presented in Figure 3-19. The deflected shapes of the beam before and after each transition are 

displayed in Figure 3-19(a). Figure 3-19(b) displays the distance traveled by the beam during 

snap-throughs. The locations of the maximum traveled distances are highlighted in the figure. 

Figure 3-19(c) presents the variations of the snap-through locations due to top width and 

thickness. It can be seen that they are most likely to coincide when the beam’s top width and top 

thickness reach the peak values. The normalized location difference D is determined as displayed 

in Figure 3-19(d). The design goal is to eliminate D, such that all transitions occur at the same 

place. This goal can be met by selecting the variable values within the region highlighted by a 

red circle. 
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(a)                                                                        (b) 

 

(c)  

Figure 3-18. (a) Buckled configurations, (b) force-displacement response, and (c) spacing ratio 

with respect to the top width and thickness of a linear beam. 
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(a)                                                                             (b) 

          

(c)                                                                             (d)                    

Figure 3-19. (a) Deflected shapes, (b) normalized traveled distance, (c) variation of snap-

through locations and (d) normalized location difference with respect to the top width and 

thickness of a linear beam. 
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Similarly, the notched beam configuration presented in Figure 3-17(b) is studied. The top 

length and notch thickness vary as detailed in the figure. Figure 3-20(a) shows the normalized 

deflected beam shapes. The displayed beam corresponds to a 70 mm top length and a 1.74 mm 

notch thickness. The effect of the two parameters on the spacing ratio and normalized location 

difference are shown in Figure 3-20 (b) and (c), respectively. It can be seen that the spacing ratio 

varies from 0.9 to 1.3. Lower values are achievable by increasing the top length and notch 

thickness. On the other hand, the mismatch between the snap-through locations can be 

eliminated by adopting a top length and notch thickness within the region highlighted in Figure 

3-20(c). 

Figure 3-21 investigates the effects of the top width and beam total length of the radical 

beam’s response. Figure 3-21(a) shows the deflected beam shapes. The displayed beam 

corresponds to a 15 mm top thickness and a 150 mm length. Figure 3-21(b) presents the variation 

of the spacing ratio due to the investigated parameters. Results show that the spacing is 

significantly affected by the beam length, but non-sensitive to the top width. For instance, if the 

length increases from 100 mm to 250 mm, the ratio changes approximately from 0.2 to 1.2. 

Figure 3-21(c) displays the effect on the snap-through location. Results show that the minimum 

location difference that can be achieved using this geometry configuration is around 0.15. 

Therefore, this configuration is not suitable for this study. 
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(a)                                                            (b) 

 

(c) 

Figure 3-20. Spacing and location studies of the notched beam with respect to the top length and 

notched thickness: (a) deflected beam shapes, (b) spacing ratio and (c) normalized location 

difference. 
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(a)                                                                    (b) 

 

(c) 

Figure 3-21. Spacing and location studies of the radical beam with respect to the top width and 

beam length: (a) deflected beam shapes, (b) spacing ratio and (c) normalized location difference. 

The sinusoidal beam configuration presented in Figure 3-17(d) is investigated with respect to 

its ordinary frequency and beam length. Figure 3-22(a) shows the buckled beam shape. The 

ordinary frequency and length of the displayed beam are 7 and 200 mm, respectively. Figure 3-

22(b) shows that the spacing ratio, R, is likely to be proportional to the ordinary frequency, but 
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inversely proportional to the beam length. The design goal of eliminating the location difference 

can be obtained when the beam length is close to 250 mm, as marked in Figure 3-22(c). Results 

show that the ordinary frequency does not affect the transition locations as critically as the beam 

length. 

         

(a)                                                        (b) 

 

(c) 

Figure 3-22. Spacing and location studies of the sinusoidal beam with respect to the ordinary 

frequency and beam length: (a) deflected beam shapes, (b) spacing ratio and (c) normalized 

location difference. 
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       According to the results presented in Figure 3-18 to 3-22, the spacing ratio can be varied 

approximately from 0.2 to 1.3 and a unique transition location can be achieved by adopting 

linear, notched or sinusoidal beam configurations. On the other hand, the radical beam does not 

exhibit the desired behavior and, therefore, will be excluded from the considered configurations. 

3.5. Optimal Design 

3.5.1. Spacing Design 

The main objective in this section is to attain elastic post-buckling responses with controlled 

spacing between buckling mode transitions. The primary parameters controlling the post-

buckling behavior of a beam are its width, thickness and length of its segments in the case of 

piecewise constant cross-sections. Therefore, it is crucial to investigate their effect on the 

spacing ratio, R. Figure 3-23 displays the spacing ratio variation with respect to the beam’s top 

width and thickness in both piecewise constant and linear scenarios (Figure 3-11(a), (c), (d) and 

(e)), top segment length in piecewise uniform cross-sections (Figure 3-11(b)) and minimum 

cross-section width in a sinusoidal width variation scenario (Figure 3-11(f)). Results in Figure 3-

23(a) and (b) show that piecewise constant width and/or thickness allows more control over the 

spacing between transitions than linear width or thickness variation as it covers a wider range of 

spacing ratio values. High values can be attained by reducing the top thickness and adopting 

either piecewise constant or linear cross-sections. On the other hand, low ratio values can be 

easily achieved either by increasing the length of the top segment (Figure 3-23(c)) or adopt a 

sinusoidal shape (Figure 3-23(d)). It should be mentioned that a unit spacing ratio is attainable by 

many geometry configurations such as sinusoidal or even uniform cross- section beams. 
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Results in Figure 3-23 prove that a large range of spacing ratio can be covered by varying 

the shape and/or geometry dimensions. Figure 3-24 presents examples of beam geometries with 

different spacing ratios that span between 0.25 and 1.5. Their force-displacement responses are 

presented in Figure 3-25. 

 

Figure 3-23. Variation of the spacing ratio with respect to (a) top width in piecewise constant 

and linear scenarios, (b) top thickness in piecewise constant and linear scenarios, (c) top segment 

length in a piecewise constant cross-section scenario and (d) minimum width in a sinusoidal 

scenario. 
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Figure 3-24. Beam configurations with specific spacing ratio (a) R=0.25, (b) R=0.5, (c) R=0.75, 

(d) R=1.0, (e) R=1.25 and (f) R=1.5. 

 

Figure 3-25. Force-displacement responses with transition spacing ratios (a) R=0.25, (b) R=0.5, 

(c) R=0.75, (d) R=1.0, (e) R=1.25 and (f) R=1.5. 

        (a)            (b)            (c)           (d)              (e)          (f) 
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     As shown in the Figure 3-25, the shape and dimension properties of the beam not only 

affect its stiffness but more importantly, the ratio between its transition events. It can be designed 

in a way to control the exact axial force values at which transitions occur. For instance, the beam 

shape presented in Figure 3-24(a) was designed to achieve a spacing ratio of 0.25 as shown in 

Figure 3-25(a). The top width is fixed at 15 mm and the length of the top segment was 

determined to be 200 mm. Similarly, the target spacing ratios of 0.5 and 1 are obtained by 

reducing the minimum width of the sinusoidal beam to 13 mm and 10 mm, as shown in Figure 3-

24(b) and (d), respectively. Likewise, a ratio of 1.25 was achieved by adjusting the top thickness 

to 1.45 mm and adopting a linear thickness variation (as shown in Figure 3-24(e)), while a ratio 

of 1.5 is attained by a piecewise constant thickness configuration with a top thickness of 1.7 mm. 

To validate the designs presented in Figure 3-24, the geometry configuration that corresponds to 

a spacing ratio of 0.75 (presented in Figure 3-24(c)) was experimentally tested. This 

configuration was chosen for its ease of construction. The experimental and theoretical post-

buckling responses of the beam are displayed in Figure 3-26. Results show a good agreement 

between the theoretical and experimental results. Table 3-5 summarizes the theoretical and 

experimental forces at which mode transitions occur and the spacing ratio between the 

transitions. It can be seen that the theoretical model accurately predicted the buckling events of 

the designed beam with a maximum error of 3.36% in terms of the axial force recorded at 

transition Φ7. 
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Figure 3-26. Theoretical and experimental post-buckling responses of the beam designed with a 

0.75 spacing ratio. 

Table 3-5. Comparison between theoretical and experimental results. 

 

Force at mode transitions 

R 

F3 (N) F5 (N) F7 (N) 

Theoretical 400 1400 2160 0.76 

Experimental 410.6 1362.4 2087.5 0.762 

Error (%) 0.49 1.74 3.36 0.26 
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3.5.2. Location Design 

The optimal design in this section is defined such that the snapping point is the same during 

all buckling mode transitions. In order to achieve such a goal, design parameters must be 

adjusted such that the snap-through location curves, presented in Figure 3-16, intersects at one 

point. It can be seen that notched and linear width configuration, presented in Figs. 3-16(a) and 

(c), provide adequately close intersection points, unlike the other configurations. Therefore, 

linear and notched width configurations are selected to design for a beam that snaps at the same 

location for all transitions. In Figure 3-16(c), the intersection between the curves representing Φ3 

and Φ5 occur at 𝑏𝑡𝑜𝑝 𝑏𝑏𝑜𝑡⁄ = 0.816, and Φ5 and Φ7 at 𝑏𝑡𝑜𝑝 𝑏𝑏𝑜𝑡⁄ = 0.824. Since the two ratios 

are close, a mean ratio of 0.82 (i.e. top width of 24.6 mm) is selected.  

Figure 3-27 displays deflected shapes of the designed linear width beam just before and after 

each transition as well as the location of the maximum traveled distance. Table 3-6 details the 

geometry properties of the beam as well as the snap-through locations and traveled distances 

during transitions.  
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Figure 3-27. Location of the snap-through in the designed linear width configuration 

(
𝑏𝑡𝑜𝑝

𝑏𝑏𝑜𝑡
= 0.824). 
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Table 3-6. Geometry properties of the optimally designed beams. 

 

As pointed out in the previous section the notched configuration is of great practical interest 

to install the piezoelectric transducer. Figure 3-16(a) only examined the effect of the notch width, 

while other parameters such as the notch length, notch thickness and notch location are fixed. 

The snap-through location can be further controlled by tuning these parameters. Table 3-6 

presents the geometry properties of a notched beam designed to snap at its midspan during all 

transitions. The notch is placed at the midspan such that the beam is symmetric. Therefore, the 

 Design Variable 

Length

(mm) 

Thickness

(mm) 

Width 

(mm) 

Mode 

Transition 

Traveled 

distance 

Location 

Linear 

Top 

Width 

24.6 250 2.34 30 

Φ3 0.9999 0.51 

Φ5 0.9759 0.51 

Φ7 0.9433 0.51 

Notch 

Notch 

length 

15 

105 

105 

2.04 30 

Φ3 1 0.5 

Notch 

width 

20 Φ5 1 0.5 

Thickness 1.94 Φ7 0.9973 0.5 
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deflected configuration is always symmetric and the snapping point at transitions is located at the 

beam’s midspan. The deflected shapes and transitions location are shown in Figure 3-28. The 

linear and notched beams designed in this section offer the advantage of increasing the efficiency 

of the energy harvester. The snap-through transitions always occur at the same location that 

constitutes the ideal site to place a piezoelectric energy scavenger. Therefore the scavenger’s 

base is always excited with the maximum acceleration that can be generated during transitions. 

 

Figure 3-28. Location of the snap-through in the designed notched beam configuration. 
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In order to validate the designs presented in Section 4, the designed notch configuration, 

whose deflected shapes were presented in Figure 3-28, was experimentally tested. The 

experimental setup and loading protocol are as described in Section 2.2. A PVDF piezoelectric 

energy harvester oscillator was mounted in a cantilevered configuration at the midspan of the 

polycarbonate strip in order to harvest the snap-through energy. Figure 3-29 shows the beam, 

PVDF film and tip mass. The material and geometry properties of the energy harvester are 

summarized in Table 3-7. The lumped mass was 0.27 g and the output voltage was measured 

across a 50 MΩ resistor. Note that PVDF piezoelectric elements were used for ease of handling 

and installation. However, flexible PZT/Aluminum harvesters can be used to generate higher 

levels of power. 

 

 Figure 3-29. Designed notch beam and PVDF vibrator. 
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Table 3-7. Designed beam configurations and geometry properties

 

Figure 3-30 displays the output piezoelectric voltages generated by the PVDF vibrators 

attached to both notched and uniform cross-section beams, as well as the applied axial forces. 

The successive voltage output events are generated by the snap-through of the strip at mode 

transitions, accompanied by a slight drop in the force levels. The figure shows that when using 

an optimized configuration, the output voltage is higher and the harvester is able to freely 

vibrate. On the other hand, the uniform cross section configuration does not display the same 

behavior. The reason could be that the snapping point does not coincide with the location of the 

piezoelectric harvester, and therefore the latter is subjected to some sort of twisting due to the 

section rotation. Table 3-8 presents the maximum output voltages and energies generated using 

the designed notched and uniform prismatic beams. Output voltage differences of 60% and 73% 

were recorded at transitions Φ3 and Φ5, respectively. More importantly, the difference of the 

output energy is 78.57%. These results demonstrate that the energy conversion efficiency of the 

Material Properties Geometry Properties 

Elastic Modulus (GPa) 2 Length (mm) 61 

Capacitance (nF) 2.8 Width (mm) 12 

Electrical Permittivity (F/m) 155×10
-12 

Thickness (μm) 28 
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energy harvesting mechanism can be significantly enhanced by adopting an optimized non-

prismatic beam configuration 

 

Figure 3-30. Piezoelectric output voltages generated using the notched and uniform cross section 

beams. 
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        Table 3-8. Piezoelectric output voltages and energies. 

 Notched 

Beam 

Uniform 

Beam 

Difference 

(%) 

Voltage (V) 

Φ3 3.13 -1.26 59.74 

Φ5 4.27 -1.14 73.3 

Φ7 3.08 2.89 6.17 

Energy (μJ) 0.0422 0.0098 78.57 

 

3.6. Summary 

The main objective of this work was to amplify the levels of the harvestable energy by 

controlling the snap-through transitions of the energy conversion mechanism. The mechanism 

consisted of a bilaterally constrained axially loaded beam with an attached piezoelectric energy 

harvester. Under a quasi-statically increasing axial load, the beam snapped between buckling 

mode configurations driving the harvester into free vibration. Since prismatic cross-section 

beams provided a limited control over the beam’s response, this chapter investigated the use of 

non-prismatic beams as a solution to control the spacing and location of the snap-through 

transitions.  
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Using an energy method, an experimentally validated theoretical model was developed to 

simulate the post-buckling response of non-uniform beam configurations. A buckling analysis 

was firstly carried out to determine the buckling mode shapes of non-prismatic beams. The use 

of these buckling mode shapes instead of the uniform mode shapes increases the accuracy of the 

model. The model was then used to study the effect of multiple non-uniform cross-section 

configurations and geometry dimensions on the snap-through location of the beam. In particular, 

optimal designs were presented with respect to the shape and dimensions of the beams for more 

efficient energy conversion. By optimizing the buckling element, the harvestable power were 

significantly increased than a uniform prismatic beam.  
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CHAPTER 4 

POST-BUCKLING RESPONSE OF BILATERALLY CONSTRINED BEAMS USING 

LARGE DEFORMATION THEORY 

 

4.1. Overview 

Post-buckling response has performed competitive applications in the fields of bistable and 

multistable systems, namely actuation, remote sensing, or energy harvesting. Among these 

applications, the mode transition of post-buckling response is particularly used in the 

mechanisms such that the stored strain energy can be released to kinetic energy. Through the 

process, the low-rate and low-frequency excitations are transformed into high-rate motions that 

generates electrical power on piezoelectric transducers. Therefore, it is of critical research 

interest to conduct a post-buckling analysis regarding buckling snap-through. This paper 

develops a large deformation model to investigate the post-buckling response of a bilaterally 

constrained beam subjected to a quasi-static axial force. The rotation-based equilibrium 

equations are formulated for the system based on the nonlinear Euler-Bernoulli beam theory. An 

energy method is used to solve the equations by minimizing the total potential energy under the 

constraints of bilateral boundaries. The presented large deformation model satisfactorily 

measures the post-buckling behavior of the bilaterally constrained beam in terms of both the 

shape deformation and force-displacement relationship. The theoretical model sufficiently 

captures the beam end shortening and deformation angle under different buckling modes, 

particularly higher modes such as Φ3 and Φ5. This is overlooked by previous models. The 

proposed model is validated with both an existing small deformation model and experimental 
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results with respected to beam shape deflection and force-displacement relationship. Good 

agreements are achieved. It is indicated that the presented large deformation model is effective in 

understanding and predicting the post-buckling response of a bilaterally constrained beam. 

4.2. Introduction 

The analysis of buckling and post-buckling response of a variety of structures have been 

extensively studied. Particularly, research interests have been emphasized on the “smart 

applications” of buckling response – the potential of using buckling behavior to deploy and 

activate structures in many applications, i.e. MEMS or energy harvesting device for self-powered 

devices (Lajnef et al., 2014; Alavi et al., 2017).  

In order to theoretically identify the post-buckling response of slender beams, many theories 

have been developed. Howell and Midha (1995) numerically solved the buckling instability of a 

tip loaded cantilever beam under large deformation assumptions. Beam tip rotation is presented 

with respect to critical buckling load. Lee (2002) and Shvartsman (2007) presented theoretical 

models to study the large deflection behavior of non-uniform cantilever beam under tip load. 

Zhao et al. (2008) have developed a theoretical model to determine the response of a polynomial 

curved beam under gradually increased external forces. A finite-deformation theory was 

developed by Song et al. (2008) to investigate the behavior of thin buckled films on compliant 

substrates. Solano-Carrillo (2009) theoretically solved the large-deformed buckling response of 

cantilever beams under both tip and uniformly distributed loads. Santos and Gao (2011) 

presented a canonical dual mixed numerical method for post-buckling analysis of elastic beams 

under large deformation assumptions. A theoretical model is developed by Jiao et al. (2012) and 

Chen et al. (2013) to measure the local buckling behavior of an I-beam with sinusoidal web 
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geometry. Sofiyev (2014) studied the large deformation performance of truncated conical shells 

under time dependent axial loads using superposition principle and Galerkin procedure. Bigoni 

(2012) and Bosi et al. (2015) theoretically and numerically examined the injection of an elastic 

rod with gradually increased length. Buckling analysis is carried out based on the total potential 

energy of the system. Geometric equilibrium equations are used to solve for the critical buckling 

load. However, those theoretical models and numerical solutions did not take into account the 

constraints along the beam length. Therefore, only the first buckling mode deflection is 

measured.  

A variety of constraints along beam length are added to achieve higher buckling modes 

beyond the bistable configurations. Due to the control in the transverse direction, the slender 

beam buckles to the first mode until it touches the constraints. Increasing the external force, the 

system jumps through a suddenly unstable status to reach the steady third buckling mode, and 

thereby regaining stiffness for greater loading. Many geometric assumptions have taken into 

account in the previous theoretical studies to measure such post-buckling response. Chai (1998) 

presented a theoretical model to study large rotations that occur to a bilaterally constrained beam 

subjected to an axial force. Geometric equilibrium is applied to the model to achieve large end-

shortening that caused by buckling deformation. The model accurately predicts different 

buckling statuses, i.e. point touching that deformed beam touches the lateral constraints, and 

flattening that the touching point increases to a flattening line contact. Under the assumption that 

the gap between the bilateral constraints is not smaller than a certain value, however, the large 

deformation model is limited to only the first buckling mode, which does not take into account 

buckling mode transition. Srivastava and Hui (2013; 2013) theoretically studied both the 

adhesionless and adhesive contacts of a pressurized neo-Hookean plane-strain membrane against 
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a rigid substrate under large deformation assumptions. Katz and Givil (2015) theoretically 

studied the post-buckling response of a beam subjected to bilateral constraints, i.e. one fixed wall 

and one springy wall that moves laterally against a spring. Geometric compatibility is used to 

solve the governing equations under both small and large deformation assumptions. However, 

the theoretical model sufficiently captures the system stiffness but the mode transition is 

increasingly overestimated that leads to progressively inaccuracy as the system snaps into higher 

buckling mode (Borchani et al. 2015). Lajnef et al. (2014) and Borchani et al. (2014; 2015) 

developed a theoretical model to measure a slender beam under both fixed, bilateral constraints 

under small deformation assumptions. Jiao et al. (2017) expended the theoretical model to non-

uniform beam configurations such that the post-buckling response can be effectively controlled 

and tuned. Due to the orthogonality of the general solution, the superposition method is used to 

achieve a mode function that linearly combines different buckling modes. An energy method is 

used to minimize the total potential energy of the system, such that to determine the coefficients 

that define the contribution of each buckling mode. This model sufficiently measures the 

deformed buckling shapes of the beam, particularly for higher buckling modes at different 

loading states, namely modes 5 and 7. Under the assumptions of small deformation, however, the 

model neglects the deformation in the longitudinal direction.  

This paper develops a theoretical model to predict the post-buckling behavior of a bilaterally 

constrained beam subjected to a gradually increased axial force under large deformation 

assumptions. The primary objective of this study is to present a model that accurately captures 

the buckling mode transitions, force-displacement response, and deflected configurations of the 

beam in different buckling modes. The presented model takes into account the impact of the gap 

between the bilateral constraints on the post-buckling response. If the gap is small comparing to 
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the beam length, the system buckles and snaps into higher modes under compressive load. The 

end-shortening of the deflected beam is negligible, and hence small deformation presented by 

Borchani et al. (2015) is sufficient to predict the behavior. Increasing the gap, however, the beam 

end-shortening is critically increased, which also significantly delays buckling mode transition. 

In particular, if the gap is adequately large, the beam only buckles to the first mode with severe 

end-shortening and deformation. In this case, the end-shortening of the deformed beam has to be 

considered. The presented large deformation model is able to accurately capture the post-

buckling behavior of a slender beam under different constraint scenarios. Based on the proposed 

model, the buckling mode transition is satisfactorily measured under a small constraint gap, 

especially for higher buckling mode. When the gap is large, the model also captures the 

deformation of the beam shape configuration in the first mode with acute end-shortening. The 

theoretical model developed in this study is based on the minimization of the total potential 

energy under the defined constraints, since the physical controls of the system can be 

mathematically calculated by finding the stable configuration with the minimum potential energy 

under such restrictions. Experiment is carried out to validate the presented model. Good 

agreements are obtained between the theoretical and testing results.  

4.3. Problem Statement 

The problem under consideration contains an initially straight slender beam subjected to a 

gradually increased axial force, �̂�, as shown in Figure 4-1. Figure 4-1(a) presents the bilaterally 

constrained beam under clamped-clamped boundary conditions, and Figure 4-1(b) shows the 

case under simply supported boundary conditions. The beams in the two cases have the same 

geometry and material properties as: a length, L, a uniform cross-section, A, a constant moment 

of inertia, I, and Young’s modulus, E. The slender beam is placed between two frictionless rigid 
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constraints with a constant gap, h. Increasing the axial force, the beam starts buckling to the first 

mode. Due to the bilateral constraints, the deformed beam tends to snap to higher buckling mode, 

rather than maintaining to the first mode only.    

 

(a) 

 

(b) 

Figure 4-1. Schematic of bilaterally constrained (a) fixed-fixed and (b) simply supported beams 

under an axial force. 
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Figure 4-2. Segment diagram of the deformed beam by using the large deformation model. 

4.4. Large Deformation Model of Clamped-Clamped Beams 

4.4.1. Post-Buckling Analysis 

Figure 4-2 displays the diagram of a deformed beam segment for the large deformation 

model. It can be seen that the location of a random point, C, on the initially straight beam is 

deformed to C’ under the gradually increased axial force, �̂�. In order to investigate the 

deformation, the segment is considered in a locally curvilinear coordinate ζ – η. The components 

of the deformation in ζ and η directions as well as the rotation angle of C’ are defined as 𝑥(𝛥𝑠), 

𝑦(𝛥𝑠), and 𝜗(𝛥𝑠), respectively. Since the deformed beam is assumed to be uniform, continuous 

and inextensible, the segment in the local coordinate can be applied to the entire beam length, 

namely 𝛥𝑠 ∈ [0 − 𝐿]. Considering the deflected shape configuration of the system, it is found 

that the maximum deformed rotation angle, α, happens at, 
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Figure 4-3. Maximum deformation angle of the deformed beam. 

Due to the symmetry of the deflected beam configuration, only 𝜗(𝑠)|
𝑠 = 

𝐿

4

 has been taken 

into account in this study, as shown in Figure 4-3. The fixed-fixed slender beam can be 

formulated as a non-linear eigenvalue problem, and thus the normalized governing equations of 

the system yield, 

𝑑2𝜃(𝑆)

𝑑𝑆2
+ 𝑁2 sin[𝜃(𝑆)] = 0 (4-2a) 

{
 
 

 
 𝑌(0) = 𝑌(1) = 0

𝜃(𝑆)|𝑆=0 = 0
𝑑𝜃(𝑆)

𝑑𝑆
|
𝑆=
1
4

= 0
 (4-2b) 

where 𝑁 = √
𝑝

𝐸𝐼
 represents the normalized axial force placed to the deflected beam. 

Max[𝜗(𝑠)] = 𝛼 = 𝜗(𝑠)|
𝑆 = 

𝐿
4
,   
3𝐿
4
  (4-1) 
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The non-dimensional factors are given as, 

{
  
 

  
 𝑆 =

𝑠

𝐿
𝜃(𝑆) = 𝜗(𝑆𝐿)

𝑋(𝑆) =
𝑥(𝑆𝐿)

𝐿

𝑌(𝑆) =
𝑦(𝑆𝐿)

ℎ

 (4-3) 

Note that a trivial solution, 𝜃(𝑆) = 0, always exists in Eq. (4-2). Therefore, the problem can 

be identified as solving for the non-trivial solution. Introducing the Jacobi amplitude 

function, 𝛷(𝑆), a relationship is assumed as, 

sin [
𝜃(𝑆)

2
] = 𝑘 sin[𝛷(𝑆)] (4-4) 

      In addition, the following identities are applied in this study, 

{

𝛷(0) = 𝐚𝐦[0, 𝑘] = 0

𝛷 (
1

4
) = 𝐚𝐦[

1

4
, 𝑘] =

𝜋

2
 𝑘 = sin(𝛼)

 (4-5) 

where k is defined based on the maximum deformation angle, α. 

According to Eq. (4-4), the rotation angle, 𝜃(𝑆), may be written as, 

𝜃(𝑆) = 2arcsin[𝑘 sin[𝛷(𝑆)]] (4-6) 
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Multiplying Eq. (4-2a) by 
𝑑𝜃(𝑆)

𝑑𝑆
 and substituting into Eq. (4-4), leading through trigonometric 

derivations, we obtained, 

𝑑[𝛷(𝑆)]

𝑑𝑆
= 𝑁√1 − 𝑘2 sin2[𝛷(𝑆)]) (4-7) 

Separating the variables and integrating Eq. (4-7) yields, 

𝑆𝑁 = ∫
1

√1 − 𝑘2 sin2[𝛷(𝑆)])

𝛷(𝑆)

2𝑚+1
2

𝜋

𝑑𝛷 (4-8) 

where 𝑚 = 0,±1,±2,… 

According to the discussion regarding Eq. (4-1), only 
1

4
 of the beam length has taken into 

account in this study, namely 𝑆 =
1

4
. Therefore, Eq. (4-8) can be rewritten as, 

𝑁

4
= ∫

1

√1 − 𝑘2 sin2[𝛷(𝑆)])

𝑎+1
2
𝜋

2𝑚+1
2

𝜋

𝑑𝛷 (4-9) 

 where 𝑎 = 0,±1, ±2,… Eq. (4-9) represents a function of m as, 

𝑁 = 4𝑚 𝐊(𝑘) (4-10) 

where K(k) is the complete elliptic integral function of the first kind at 𝛷 =
𝜋

2
 as,  

𝐊(𝑘) = ∫
1

√1 − 𝑘2 sin2[𝛷(𝑆)])

𝜋
2

0

𝑑𝛷 (4-11) 
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Note that the integration of Eq. (4-8) can be expressed as, 

𝑆𝑁 = 𝛤1 − 𝛤2 (4-12) 

where 

{
 
 

 
 𝛤1 = ∫

1

√1 − 𝑘2 sin2[𝛷(𝑆)])

𝛷(𝑆)

0

𝑑𝛷

𝛤2 = ∫
1

√1 − 𝑘2 sin2[𝛷(𝑆)])

2𝑚+1
2

𝜋

0

𝑑𝛷

 (4-13) 

Substituting Eqs. (4-12) and (4-13) into Eq. (4-9), we obtained,  

𝑆𝑁 + 𝛤2 = 𝛤1 (4-14) 

where yields 

𝑆𝑁 + (2𝑚 + 1)𝐊 = ∫
1

√1 − 𝑘2 sin2[𝛷(𝑆)])

𝛷(𝑆)

0

𝑑𝛷 (4-15) 

Eq. (4-15) refers to, 

𝛷(𝑆) = 𝐚𝐦[𝑆𝑁 + (2𝑚 + 1) 𝐊, 𝑘] (4-16) 

According to the property of the Jacobi amplitude function, Eq. (4-16) yields, 

𝛷(𝑆) = 𝐚𝐦[𝑆𝑁, 𝑘] + (2𝑚 + 1)𝜋 (4-17) 

Substituting Eq. (4-10) into Eq. (4-17), we simplified and obtained, 
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𝛷(𝑆) = 𝐚𝐦[4𝑚𝑆𝐊, 𝑘] (4-18) 

where  𝑚 = 1,2,3, … refers to the buckling mode of the system, 𝐊(𝑘) represents the complete 

elliptic integral function of the first kind at 𝛷 =
𝜋

2
.  

Taking Eq. (4-18) into Eq. (4-6), the rotation angel, 𝜃(𝑆), can be rewritten as, 

𝜃(𝑆) = 2arcsin[𝑘 𝐬𝐧[4𝑚𝑆𝐊, 𝑘]] (4-19) 

where 𝐬𝐧 denotes the Jacobi sine amplitude function. In order to predict the deformed shape of 

the slender beam, it is of interest to obtain the X and Y components of the displacement, namely 

X(S) and Y(S). It can be seen in Figure 4-2 that the differential equations define the changes of 

the components are given as,  

𝑑𝑋(𝑆)

𝑑𝑆
= cos[𝜃(𝑆)] (4-20a) 

𝑑𝑌(𝑆)

𝑑𝑆
= sin[𝜃(𝑆)] (4-20b) 

and, hence, the displacements in the longitudinal and transverse directions can be expressed as,  

𝑋(𝑆) = ∫ cos[𝜃(𝑆)]
𝑆

0

𝑑𝑆 (4-21a) 

𝑌(𝑆) = ∫ sin[𝜃(𝑆)] 𝑑𝑆
𝑆

0

 (4-21b) 
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 where 𝑠 ∈ [0 − 1].      

        Since the buckling modes calculated in Eq. (4-19) consist of an orthogonal basis, the 

superposition method is applied to the model. Taking Eq. (4-19) into Eq. (4-21), leading through 

trigonometric derivations, 𝑋(𝑆) and 𝑌(𝑆) can be written as,  

𝑋(𝑆)     = ∑ 𝐴𝑚 [𝑆 −
1

2𝑚 𝐊
 𝐄[𝐚𝐦[4𝑚𝑆𝐊, 𝑘], 𝑘]]

∞

𝑚=1

 (4-22a) 

𝑌(𝑆) = ∑ 𝐴𝑚 [−
𝐿𝑘

2𝑚ℎ 𝐊
[1 − 𝐜𝐧[4𝑚𝑆𝐊, 𝑘]]]

∞

𝑚=1

 (4-22b) 

where 𝐴𝑚 represents the weight coefficients that determine the contribution of each buckling 

mode to the beam deformation, 𝐜𝐧 stands for the Jacobi cosine amplitude function, and 𝐄 refers 

to the incomplete elliptic integral function of the second kind.  

In order to determine the deformed shape configuration of the slender beam described in Eq. 

(4-22), the only unknowns, 𝐴𝑚, need to be solved with respect to different buckling mode. 

Therefore, the total potential energy of the system needs to be minimized. 

4.4.2. Energy Analysis 

The normalized projection of the deformed beam in the longitudinal direction, d, can be 

calculated as, 

𝑑 = ∫ √1 − [
𝑑𝑌(𝑆)

𝑑𝑆
]
2

𝑑𝑆
1

0

= ∫ cos [𝜃(𝑆)]𝑑𝑆
1

0

 (4-23) 
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Therefore, the deformation in X direction yields, 

𝛥 = 1 − 𝑑 = 1 −∫ cos[𝜃(𝑆)] 𝑑𝑆
1

0

 (4-24) 

       The total potential energy in the system, Π, is defined as the summation of the deformed 

beam’s elastic energy and the work contributed by the external force, �̂�. The normalized total 

potential energy is,  

Πnorm =
1

2
∫ [

𝑑𝜃(𝑆)

𝑑𝑆
]
2

𝑑𝑆 
1

0⏟          
Elastic energy

−
1

2
𝑃𝛥
⏟

External work

 
(4-25) 

where the non-dimensional factors are, 

{
 

 Πnorm =
𝐿3

𝐸𝐼ℎ2
Π

𝑃 =
𝐿2

𝐸𝐼
�̂�

 (4-26) 

Substituting Eq. (4-19) into Eq. (4-25), the elastic energy and external work terms of the total 

potential energy become, 

cos[𝜃(𝑆)] = ∑ 𝐴𝑚
2[1 − 2𝑘2 𝐬𝐧[4𝑚𝑆𝐊, 𝑘]2]

∞

𝑚=1

 (4-27a) 

𝑑𝜃(𝑆)

𝑑𝑆
= 8𝑘𝐊 ∑ [

𝐴𝑚𝑚  𝐜𝐧[4𝑚𝑆𝐊, 𝑘]

√1 − 𝑘2 𝐬𝐧[4𝑚𝑆𝐊, 𝑘]2
 𝐝𝐧[4𝑚𝑆𝐊, 𝑘]]

∞

𝑚=1

 (4-27b) 
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where 𝐝𝐧 represents the Jacobi elliptic function. Substituting Eq. (4-27) into Eq. (4-25), the 

normalized total potential energy can eventually be written as, 

Πnorm = 32𝑘
2 𝐊2 ∑ 𝐴𝑚

2𝑚2∫
𝐜𝐧[4𝑚𝑆𝐊, 𝑘]2

1 − 𝑘2 𝐬𝐧[4𝑚𝑆𝐊, 𝑘]2
 𝐝𝐧[4𝑚𝑆𝐊, 𝑘]2 𝑑𝑆 

1

0

∞

𝑚=1

− 𝑃𝑘2 ∑ 𝐴𝑚
2

∞

𝑚=1

∫ 𝐬𝐧[4𝑚𝑆𝐊, 𝑘]2𝑑𝑆
1

0

 

(4-28) 

The total potential energy presented in Eq. (4-28) is then minimized with respect to 𝐴𝑚. 

Since the bilateral constraints allow the deflected beam to buckle into higher modes, the constant 

gap between the rigid walls, h, is considered as the normalized boundary condition for the 

transverse deflection of the beam, namely 𝑌(𝑆) ∈ [0 − 1]. The snap-through transitions of the 

beam shape from lower to higher buckling modes are then induced when the total potential 

energy, Πnorm, jumps through an unstable path to achieve the most “temporarily appropriate” 

stable shape configuration with the minimum value. Therefore, the constrained minimization 

problem of the total potential energy for the system can be written as,   

The coefficients, 𝐴𝑚, determined in Eq. (4-29) provide an accurate representation of the beam 

deflected configuration at each loading state. Taking the coefficients into Eq. (4-22), the beam 

deformation at each buckling mode can be predicted. 

 

{
𝑀𝑖𝑛 [Πnorm(𝐴𝑚 )]

0 ≤ 𝑌(𝑆) ≤ 1
 (4-29) 
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4.5. Large Deformation Model of Simply Supported Beams 

4.5.1. Post-Buckling Analysis 

Figure 4-4 displays the diagram of a deformed beam segment for the nonlinear large 

deformation model. The location of a random point, A, on the initially straight beam is deformed 

to A’. Similarly to the clamped-clamped beam in Figure 4-2, the segment is considered in a 

locally curvilinear coordinate 𝜁– 𝜂. The simply supported beam can, therefore, be described as a 

non-linear eigenvalue problem. Therefore, the normalized governing equations of the system 

yields, 

 

Figure 4-4. Segment diagram of the deformed beam by using the nonlinear large deformation 

model. 
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𝑑2𝜃(𝑆)

𝑑𝑆2
+ 𝑁2 sin[𝜃(𝑆)] = 0 (4-30a) 

{

𝑌(0) = 𝑌(1) = 0
𝑑𝜃(𝑆)

𝑑𝑆
|
𝑆=0

=
𝑑𝜃(𝑆)

𝑑𝑆
|
𝑆=1

= 0
 (4-30b) 

where 𝑁 = √�̂� 𝐸𝐼⁄ .  Note that the governing equation in Eq. (4-30a) is the same as Eq. (4-2a), 

however, the boundary conditions in Eq. (4-30b) are defined differently.  

Similarly to Eq. (4-6), the rotation angle, 𝜃(𝑆), of the deflected simply supported beam is 

given as, 

𝜃(𝑆) = 2arcsin[𝑘 𝐬𝐧[(2𝑚𝑆 + 1)𝐊, 𝑘]] (4-31) 

Taking Eq. (4-31) into Eq. (4-21), the X and Y components of the beam can be obtained. 

Therefore, the normalized displacements in the longitudinal and transverse directions, following 

the principles in an orthogonal basis as Eq. (4-22), are written as, 

𝑋(𝑆) = ∑ 𝐴𝑚 [−𝑆 +
1

𝑚 𝐊
[𝐄[𝐚𝐦[(2𝑚𝑆 + 1) 𝐊, 𝑘]] − 𝐄[𝐚𝐦[𝐊, 𝑘]]]]

∞

𝑚=1

 (4-32a) 

𝑌(𝑆) = ∑ 𝐴𝑚 [−
𝐿𝑘

𝑚ℎ 𝐊
 𝐜𝐧[(2𝑚𝑆 + 1) 𝐊, 𝑘]]

∞

𝑚=1

 (4-32b) 

where 𝐴𝑚 represent the weight coefficients that determine the contribution of each buckling 

mode, m, to the beam deformation. 
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4.5.2. Energy Analysis 

The total potential energy in the system, Π, is calculated as the summation of the elastic 

energy of the deformed beam and the work contributed by the external force, �̂�, as given in Eq. 

(4-25). Substituting Eq. (4-32) into Eq. (4-25), the normalized total potential energy can be 

written as, 

Πnorm = 8 𝐊
2𝑘2 ∑ 𝐴𝑚

2𝑚2

∞

𝑚=1

∫ 𝐜𝐧[(2𝑚𝑆 + 1) 𝐊, 𝑘]2𝑑𝑆
1

0

− 𝑃𝑘2 ∑ 𝐴𝑚
2

∞

𝑚=1

∫ 𝐬𝐧[(2𝑚𝑆 + 1) 𝐊, 𝑘]2𝑑𝑆
1

0

 

(4-33) 

Taking Eq. (4-33) into the constrained minimization problem defined in Eq. (4-29), the 

coefficients, 𝐴𝑚, can be determined. Taking the coefficients into Eq. (4-32), the beam 

deformation at each buckling mode can be predicted. 

4.6. Model Validation 

4.6.1. Validation of Clamped-Clamped, Large Deformation Model  

4.6.1.1. Validation with Small Deformation Model  

The theoretical model developed in Section 3.2 is reduced to uniform beams and compared 

with the presented large deformation model. The geometry and material properties of the system 

are summarized in Table 4-1.  
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Table 4-1. Geometry and material properties of the small deformation model. 

Beam Length (mm) 250 

Beam Thickness (mm) 2.34 

Beam Width (mm) 30 

Young’s Modulus (GPa) 2.3 

 

The axial force-displacement relationship by the presented model is validated with the small 

deformation model. Two gaps are investigated, namely 20 mm and 50 mm. Figure 4-5 displays 

the comparisons. It is shown in Figure 4-5(a) that the post-buckling response predicted by the 

two theoretical models have sufficient agreements. The slopes of the curvilinear relationship 

generated by the large deformation model, which represents the stiffness of the system, 

satisfactorily matches the results based on the existing small deformation model. Particularly, the 

maximum differences of 2.73% and 3.64%, in terms of axial forces, are measured at mode 

transitions Φ3 and Φ5, respectively. Figure 4-5(b) indicates that the maximum differences 

between the two models with the gap of 50 mm. Note that only Φ3 is achieved, with a difference 

of 2%, since 
ℎ

𝐿
= 0.2, the physical length of the beam does not meet the request for Φ5 between 

the gap.  



 

136 
 

 

(a) 

 

(b) 

Figure 4-5. Comparison of the axial force and displacement response between the presented 

large and small deformation models with gaps of (a) 20 mm and (b) 50 mm. 
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According to Figure 4-5, it is concluded that the force-displacement relationship obtained 

from the large deformation model satisfactorily agree with the results by the existing small 

deformation model. In addition, increasing the gap between the bilateral constraints, the large 

deformation model captures the impact of 
ℎ

𝐿
 on the buckling mode transition of the deformed 

beam. Figs. 4-6 and 4-7 show the normalized deflected beam shape configurations calculated by 

both the large and small deformation models. Two gaps are investigated, namely 20 mm and 100 

mm. With the gap of 20 mm, both the large and small deformation models predict that the beam 

snaps into higher buckling modes when the axial force is gradually increased, rather than staying 

only to the first mode, as shown in Figure 4-6.  

 

(a)                                               (b) 

Figure 4-6. Deflected shape configurations of a slender beam with a gap of 20 mm that 

determined by (a) the small deformation model and (b) the large deformation model. 
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Figure 4-6(a) displays the deformed shapes of the beam captured by the small deformation 

model. When the axial force, �̂�, is increased to 460 N, the beam flattens, and then snaps into the 

third mode with an force of �̂� = 480 N. Flattening regions are also found in the third mode when 

the axial force is �̂� = 1340 N, and then the shape snaps to the fifth mode (�̂� = 1360 N). Figure 

4-6(b) indicates the results based on the presented large deformation model. When the axial force 

is �̂� = 520 N, the beam reaches the flattening limit, and then snaps into the third mode with an 

axial force of �̂� = 540 N. The maximum deformation angles, 𝛼, are 34° and 36° before and after 

the buckling mode transitions, respectively. Flattening limit is also found in the third mode when 

the axial force is �̂� = 1420 N, with a deformation angle of 𝛼 = 53°. The beam jumps into the 

fifth mode when the axial force is p̂ = 1440 N and the deformation angle is α = 59°. The beam 

end-shortenings in x direction are also highlighted in Figure 4-6(b). Comparing the results 

presented in Figure 4-6, measured by the large and small deformation models, it can be seen that 

the buckling mode transition of the slender beam under certain axial force can be sufficiently 

predicted by both the large and small deformation models. The large deformation model also 

satisfactorily captures the beam end-shortening and deformation angle, which, however, are lack 

of consideration in the small deformation model due to its fundamental assumptions. According 

to the large deformation model, when the beam snaps into higher buckling modes, the end-

shortening is increased significantly, but the deformation angle does not perform critically 

extension. The beam shape configurations with a 100 mm gap are displayed in Figure 4-7. Since 

the gap is up to 40% of the beam length, the beam does not behave mode transitions, instead it 

stays in the first buckling mode. Figure 4-7(a) refers to the results from the small deformation 

model. It can be seen that when the axial force is 100 N, the beam buckles and touches the 

opposite constraints at a single point. The point contact is significantly increased when gradually 
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increase the axial force. The results based on the large deformation model, as shown in Figure 4-

7(b), indicate the same behavior. However, dramatically increasing of beam end-shortening and 

deformation angle are also achieved based on the presented model. In particular, the deformed 

beam behaves point contact when the axial force is 100 N and the deformation angle is 𝛼 = 47°. 

Increasing the axial force to 200 N, the touching point is widened to a flattening line contact, and 

the deformation angle is also enlarged to 𝛼 = 61°. The angle meets 90° when the axial force is 

increased to 250 N. Keep increasing the axial force to 310 N, the beam is crucially deflected with 

a deformation angle of 𝛼 = 141°.  

 

(a)                                                        (b) 

Figure 4-7. Deflected shape configurations of a slender beam with a gap of 100 mm that 

determined by (a) the small deformation model and (b) the large deformation model. 
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According to Figs. 4-6 and 4-7, we conclude that, 

 The presented large deformation model sufficiently captures the buckling mode transition 

of a slender beam under a gradually increased axial force; 

 The proposed model also accurately measures the end-shortening and deformation angle 

of the deflected beam, which are lack of consideration in the existing small deformation 

model; and  

 The post-buckling response of the bilaterally constrained beam primarily depends on the 

gap between the constraints. In particular, when 
ℎ

𝐿
 is small, the deflected beam snaps to 

higher buckling modes. However, the mode transition can be reduced to null when 
ℎ

𝐿
 is 

increased.  

4.6.1.2. Validation with Experiment 

Experiment was conducted for a polycarbonate beam to validate the proposed large 

deformation model. The experimental setup and procedures followed the work presented in 

Lajnef et al. (2014). The beam with fixed-fixed end supports was placed between two rigid 

aluminum constraining walls. In particular, the testing sample was placed next to one wall, as 

shown in Figure 4-8. The gap separating the lateral constraints was fixed at 20 mm. The loading 

protocol consisted in applying a gradually increasing compressive force to the top of the beam 

using a universal mechanical testing frame. In order to highlight the deflected shapes of the 

tested specimens, the front edge of the specimen was painted in a fluorescent color. A black light 

was used to separate the beam from the ambience. The beam thickness was selected as 1 mm, 

and the beam length, width and Young’s modulus were the same as the properties presented in 

Table 4-1.  
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Figure 4-8. Experimental setup. 

Figure 4-9 shows the deflected shapes of the beam that snapped from buckling mode Φ1 to 

Φ3 based on both the experimental and theoretical results. Different statuses of the deformed 

beam are experimentally investigated, as presented in Figure 4-9(a). Figure 4-9(b) displays the 

beam shape deformation obtained by the proposed theoretical model. It can be seen that the large 

deformation model accurately captures the deformed shapes of the slender beam at different 

buckling modes. 
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(a) 

 

(b) 

Figure 4-9. Deflected beam shape configurations from Φ1 to Φ3 based on (a) experimental and 

(b) theoretical results. 
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4.6.2. Validation of Simply Supported, Large Deformation Model  

4.6.2.1. Validation with Theoretical Models  

The presented large deformation model forms a nonlinear eigenvalue problem that takes into 

account the shape deflections with respect to both longitudinal and transverse displacements. 

Note that the theoretical model can be reduced and simplified to a linear eigenvalue problem by 

hypothesizing the longitudinal displacement, X(S), is null. The normalized governing equations 

described in Eq. (4-2) can be reduced to a so-called “Sturm-Liouville problem” as, 

𝑑2𝜃(𝑆)

𝑑𝑆2
+ 𝑁2 𝜃(𝑆) = 0 (4-34a) 

{

𝑌(0) = 𝑌(1) = 𝑋(0) = 𝑋(1) = 0
𝑑𝜃(𝑆)

𝑑𝑆
|
𝑆=0

=
𝑑𝜃(𝑆)

𝑑𝑆
|
𝑆=1

= 0
 (4-34b) 

Based on the orthogonal principle applied to Eq. (4-22), the general solutions of Eq. (4-34) 

can be written as, 

𝜃(𝑆) = ∑ 𝐴𝑚cos [𝑚𝜋𝑆]

∞

𝑚=1

 (4-35a) 

𝑌(𝑆) = ∑ 𝐴𝑚
𝐿

ℎ𝑚𝜋
sin [𝑚𝜋𝑆]

∞

𝑚=1

 (4-35b) 

Note that the total potential energy given by Eq. (4-25) is valid for all the deflected 

configurations that defined based on a normalized rotation angle𝜃(𝑆), 𝑆 ∈ [0 − 1]. Substituting 
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Eq. (4-35) into Eq. (4-25), the total potential energy can be calculated, with respect to the 

coefficients, Am, as, 

Πnorm =
𝜋2

4
∑ 𝐴𝑚

2

∞

𝑚=1

𝑚2 −
𝑃

8
∑ 𝐴𝑚

2

∞

𝑚=1

 (4-36) 

Substituting Eq. (4-36) into the constrained minimization defined by Eq. (4-29), the 

coefficients, Am, can be solved. Substituting the obtained coefficients into Eq. (4-35b), the 

deformed shape configurations of the beam can be determined. 

In order to validate the presented model, the small deformation model developed in Section 

3.2 is changed to simply supported boundary conditions as, 

𝑑2𝑊(𝑋)

𝑑𝑋2
+ 𝑁2𝑊(𝑋) = 0 (4-37a) 

{

𝑊(0) = 𝑊(1) = 0

𝑑2𝑊(𝑋)

𝑑𝑋2
|
𝑋=0

=
𝑑2𝑊(𝑋)

𝑑𝑋2
|
𝑋=1

= 0
  (4-37b) 

where 

{
  
 

  
 𝑋 =

𝑥

𝐿

𝑊(𝑋) =
𝑤(𝑋𝐿)

ℎ

𝑁 = √
�̂�

𝐸𝐼

 (4-38) 

      In the orthogonal basis, the general solution of Eq. (4-37) is, 
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𝑊(𝑋) = ∑ 𝐴𝑚sin [𝑁𝑚𝜋𝑋]

∞

𝑚=1

 (4-39) 

The normalized energies due to bending, compression, and external force, Vb, Vc, and Vp, 

respectively, are calculated as, 

𝑉𝑏 =
1

2
∑ 𝐴𝑚

2∫ [
𝑑2𝑊𝑚(𝑋)

𝑑𝑋2
]

2

𝑑𝑋
1

0

∞

𝑚=1

 (4-40a) 

𝑉𝑐 = −
𝑃2𝑡2

24ℎ2
−
𝑃

4
∑ 𝐴𝑚

2∫ [
𝑑𝑊𝑚(𝑋)

𝑑𝑋
]

2

𝑑𝑋
1

0

∞

𝑚=1

 (4-40b) 

𝑉𝑝 =
𝑃2𝑡2

24ℎ2
 (4-40c) 

 The total potential energy of the system is written as the summation of the bending and 

compression energies, as well as external work, which yields, 

Πnorm = 𝑉𝑏 + 𝑉𝑐 + 𝑉𝑝  (4-41) 

Taking Eq. (4-34) into the constrained minimization in Eq. (4-29), the coefficients, Am, can 

be calculated, which are substituted into Eq. (4-32) to determine the beam’s deflected beam 

shapes. 

Similar to Section 4.6.1.1, the linear large deformation and small deformation models are 

used to validate the force-displacement response of the presented nonlinear large deformation 

model. Same geometry properties are used as summarized in Table 4-1. 
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Figure 4-10. Comparison of the axial force and displacement relationship between the 

presented nonlinear large deformation model and existing models. 

Figure 4-10 displays that the post-buckling response that predicted by the three theoretical 

models have satisfactory agreements. The maximum differences of 3.08%%, 5.45%, and 8.08%, 

in terms of axial forces, are measured at mode transitions Φ3, Φ5, and Φ7, respectively. 

Therefore, the presented nonlinear large deformation model can be used to investigate the post-

buckling behavior of bilaterally constrained slender beams. 

Figure 4-11 shows the normalized deflected beam shape configurations calculated by the 

presented large deformation model. Two gaps are investigated, namely 20 mm and 100 mm. The 

geometry and material properties of the system is summarized in Table 4-1. It can be seen that 

when the axial force is increased, the beam with a 20 mm gap snaps into higher buckling modes, 

rather than stays to the first mode, as shown in Figure 4-11(a). In particular, when the axial force 

is �̂� = 320 N, the beam reaches the flattening limit, and then snaps into the third mode with an 
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axial force of �̂� = 340 N. The deformed angles, 𝛼, are 42° and 47° before and after the buckling 

mode transitions, respectively. Flattening limit is found in the third mode when the axial force is 

�̂� = 1060 N, with a deformed angle 𝛼 = 56°. The beam snaps to the fifth mode when �̂� = 1080 

N and 𝛼 = 61°. In addition, the beam end shortenings in x direction are highlighted. It can be 

seen that when the beam snaps into higher buckling modes, the end shortening increases 

significantly. However, the deformed angle, α, does not perform critically extension. The beam 

shape configurations with a 100 mm gap are displayed in Figure 4-11(b). Since the gap is 80% of 

the beam’s half-length, the beam does not behave mode transitions. Instead, it stays in the first 

buckling mode with dramatically increased deformed angles. In particular, when the axial force 

is 40 N, the beam buckles and touches the opposite constraints at a single point with a deformed 

angle of 𝛼 = 46°. Increasing the axial force to 100 N, the touching point is widened to a 

flattening line contact, and the deformed angle is also enlarged to 𝛼 = 65°. The angle meets 90° 

when the axial force is increased to 140 N, while the flattening zone is extended as well. Keep 

increasing the axial force to 160 N, the beam is crucially deflected with a deformed angle of 

𝛼 = 142°. Comparing Figure 4-11(a) and (b), it can be seen that when increases the gap of the 

bilateral constraint, the buckling mode transition tends to be attenuated, but the end shortening of 

the deformed beam becomes more significant. 
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(a)                                                                       (b) 

Figure 4-11. Deflected shapes of a slender beam determined by the linear eigenvalue model 

with a gap of 20 mm 

 

Figure 4-12. Deflected shapes of a slender beam determined by the linear eigenvalue model with 

a gap of 20 mm. 
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Figure 4-12 presents the deflected shapes of a slender beam determined by the linear 

eigenvalue model with a gap of 20 mm. It can be seen that when increases the axial force, �̂�, to 

260 N, the beam flattens and then snaps into the third mode with an force of �̂� = 280 N. 

Flattening regions are found in the third buckling mode when the axial force is �̂� = 980 N, and 

then the beam snaps into the fifth mode when the axial force is �̂� = 1000 N. Since the beam end 

shortening is negligible in this model, the change of the deformed angle, α, is not as obvious as it 

is in the nonlinear large deformation model. Figure 4-13 displays the deformed shape 

configurations of the beam based on the small deformation model. Increasing the axial force, �̂�, 

to 260 N, the beam flattens and then snaps into the third mode when the force is �̂� = 280 N. 

Keep increasing the axial force, the touching points transform to line contacts. Flattening limit is 

observed in the third buckling mode when the axial force is �̂� = 940 N, and then the beam snaps 

into the fifth mode with a force of �̂� = 940 N.  

 

Figure 4-13. Deflected shapes of the slender beam determined by the small deformation 

model with a gap of 20 mm. 
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Similarly to the results from the linear large deformation model, the beam end shortening in this 

small deformation model is overlooked, and therefore the change of the deformed angle is 

ignorable. 

Comparing the beam shape deformations obtained in Figs. 4-11(a), 4-12, and 4-13, it is 

demonstrated that the nonlinear large deformation model accurately measures the beam shape 

deformations with respect to different buckling mode transitions, i.e., point touching, flattening, 

or snap-through. More importantly, the presented model sufficiently takes into account the beam 

end shortening that is ignored in both the linear large deformation and small deformation models.  

4.6.2.2. Validation with Experiment  

       In order to experimentally validate the presented nonlinear theoretical model, a 

polycarbonate beam was investigated. The experimental setup is demonstrated in Figure 4-14. It 

can be seen the beam was placed between the aluminum frameworks, adjacent to one rigid wall. 

The testing procedures consisted of applying a gradually increasing compressive load through a 

loading block to the beam. The gap separating the lateral constraints was fixed at 20 mm. The 

beam had simply supported end supports. The geometry and material properties of the testing 

specimen is displayed in Table 4-2.  
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Figure 4-14. Experimental setup. 

Table 4-2. Geometry and material properties of the testing setup. 

Beam length (mm) 250 

Beam thickness (mm) 1.00 

Beam width (mm) 30 

Young’s modulus (GPa) 2.3 
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Figure 4-15 presents the experiment conducted in this section to validate the axial force-

displacement relationship of the nonlinear large deformation model. It can be seen that the 

theoretical and experimental results had sufficient agreement. However, a slight force reduction 

was measured in the experiment at mode transition Φ3. This phenomenon was due to the quasi-

static loading procedure that applied to the slender beam. Since the compressive load was 

gradually placed on the sample, the snap-through of the buckling mode from Φ1 to Φ3 behaved a 

particular process that consists of certain unstable temporary statuses.   

 

Figure 4-15. Comparison of the axial force and displacement relationship between the presented 

nonlinear large deformation model and experimental results. 
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Figure 4-16 shows the deflected shape configurations of the beam in terms of different 

buckling modes. Figure 4-16(a) displays the shape of the initial straight beam. Figs. 4-16(b) and 

(c) indicate the point touching and flattening of the beam deformed shapes in the first buckling 

mode, respectively. Figs. 4-16(d) and (e) demonstrate the shape deflections in the third mode at 

the point touching and flattening stages, respectively. Note that the red markers highlighted on 

the aluminum walls represented the end shortenings under different loading states. Since loading 

fixture was placed on top of the aluminum frameworks, end shortening was observed only on top 

of the specimen. 

 

(a)                  (b)                  (c)                   (d)                 (e) 

Figure 4-16. Beam configurations: (a) initial straight shape, (b) point touching (Φ1), (c) 

flattening (Φ1), (d) point touching (Φ3), and (e) flattening (Φ3). 
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4.7. Fatigue, Cyclic Loading and Recoverability  

The material investigated in the presented theoretical study is linear elastic and, therefore, the 

Young’s modulus is constant, i.e., 2.3 GPa. This is mainly because of the research objective in 

this study is to implement the buckling-based mechanism for applications in civil infrastructures, 

e.g., energy harvesting or damage sensing. It is of necessity to retain the linear elastic response of 

the beams such that the post-buckling behavior, especially buckling mode transitions, is 

repeatable.  In experiments, polycarbonate was used to manufacture the testing samples. 

Previous experimental studies carried out by our group have demonstrated the recoverability of 

the material under cyclic loading (Lajnef et al. 2012). In particular, the same post-buckling 

response is retained invariant under cyclic loading. Figure 4-17 displays the experimental post-

buckling response of bilaterally constrained beams subjected to cyclic loading at 0.16 Hz, 0.05 

Hz, 0.025 Hz, and 0.006 Hz (Lajnef et al. 2012).  

 

Figure 4-17. Experimental post-buckling response of bilaterally constrained beams subjected 

to cyclic loading (Lajnef et al. 2012).  
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4.8. Summary 

Simply supported and clamped-clamped, large deformation models were developed in this 

chapter to investigate the post-buckling response of slender beams under bilateral constraints. 

The equilibrium equations in the presented models were solved using an energy method that 

minimized the total energy of the system with respect to the weight coefficients of different 

buckling modes. The theoretical results, i.e., force-displacement relationship and deflected beam 

shape, were validated with a small deformation model presented in a previous study as well as 

experiments. Good agreements were achieved in both of the comparisons.  

The theoretical models presented in this study accurately measure the post-buckling response 

of bilaterally constrained beams, especially the beam end shortening and deformation angle 

under different buckling modes. It is indicated that the presented large deformation model is 

effective in understanding and predicting the post-buckling response of bilaterally confined 

beams.  
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CHAPTER 5 

 IRREGULARLY BILATERAL CONSTRAINTS AND COMPARISON BETWEEN THE 

SMALL AND LARGE DEFORMATION MODELS 

 

5.1. Overview 

In recent years, post-buckling has been implemented into extensive mechanisms. As one of 

the primary applications, the buckling response of slender beams under lateral confinements is of 

research emphasis as low-rate and low-frequency excitations can be transformed into high-rate 

motions. To achieve the conversion, efficient control over post-buckling response is of necessity 

in the process. However, inadequate studies have been carried out to examine the effect of 

geometry property on beams’ post-buckling performance. This chapter aims at investigating the 

buckling behavior of bilaterally constrained beams with respect to different shape configurations 

of bilateral constraints and geometry parameters. The studies of the proposed models indicate 

that the small deformation model sufficiently captures higher buckling mode transitions, but is 

insufficient for beam end-shortening since longitudinal displacement is negligible. The large 

deformation model effectively predicts severe deflection of the beams in terms of end-shortening 

and rotation. Parametric studies are conducted to examine the limitations of the small and large 

deformation models. In the end, a polynomial function is provided to define the relationship 

between the ratio of the net gap and beam length (η) and buckling mode (Φ). The presented 

models are effective in understanding and predicting the post-buckling responses of laterally 

confined beams under the small and large deformation theories.  
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5.2. Introduction 

Over centuries, buckling and post-buckling of slender members have caused various 

instability issues to structures, especially for the members made of the materials with low shear 

stiffness and high resilience. Recently, however, research focuses have been shifted from 

preventing buckling to employing it in different types of “smart applications”. The 

implementations of post-buckling response are extensively found in monostable, bistable and 

multi-stable mechanisms, e.g., actuation, sensing, and energy harvesting (Camescasse et al., 

2013; Harne & Wang 2013; Blarigan et al., 2015). Based on post-buckling of bilaterally confined 

beams, for example, an energy harvesting solution has lately been developed to transform 

ambient energies into electrical power (Lajnef et al., 2014). Sufficiently converting energies, this 

buckling-based energy harvester is used to power remote wireless sensor (Lajnef et al., 2015). 

The limitations of wiring harness and battery lifetime are solved by the energy harvesting 

mechanism and, therefore, the wireless sensor is able to generate monitoring data into many 

applications, i.e., structural health monitoring and damage detection (Guo et al., 2012; Salehi et 

al., 2015; Alavi et al., 2016; Alavi et al., 2017). In order to optimize the energy conversion of the 

harvester, it is of research interests to control the buckling response of the system. In particular, 

the buckling performance of the laterally constrained beams is significantly affected by the gap 

between the bilateral walls. If the constraints gap is adequately large, namely comparable to 

beam length, the system is under the large deformation assumptions. If the gap is small, on the 

other hand, the post-buckling response is governed by small deformation theory. However, lack 

of studies have been conducted to indicate the influence of walls gap on the buckling 

performance of constrained beams. Nor have adequate studies identified the applicability of the 

small and large deformation theories with respect to the prediction of post-buckling performance. 
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        Literature review demonstrates that research efforts have been devoted to the buckling 

analysis of slender elements without lateral constraints. In order to strengthen slender structures, 

an I-beam element with sinusoidal web geometry was theoretically and experimentally studied 

by Jiao et al. (2012) and Chen et al. (2013). The critical buckling capacity of the proposed 

element was improved. Using the first order shear deformation theory, Ovesy et al. (2015) have 

developed a layerwise approach to study the delamination of composite plates due to post-

buckling. Milazzo and Oliveri (2015) have studied the delamination of composite plates caused 

by post-buckling using the Rayleigh-Ritz method. Alijani et al. (2016) and Amabili et al. (2016) 

have theoretically and experimentally investigated the vibrations of thin rectangular and curved 

plates subjected to out-of-plane harmonic excitations. Based on the Donnell’s non-linear shell 

theory, the authors used a unified energy approach to obtain the discretized non-linear equations 

using the linear natural modes of vibration. On the other hand, many studies have been 

conducted based on the large deformation theory. Wang et al. (2008) theoretically solved the 

deflection of cantilevered beams under tip loads. The authors used a homotopy analysis to obtain 

the displacements of the beams in the horizontal and vertical directions. Sofiyev and Kuruoglu 

(2013) have studied the buckling response of orthotropic conical shells under compression using 

large deformation-based von Krman-Donnell kinematic nonlinearity. Santos and Gao (2012) 

have presented a canonical dual mixed finite element method to examine the post-buckling 

behavior of largely deformed planar beams. The total potential energy of the elements is used to 

determine the deflection of the beams. Zhang et al. (2016) have developed a wavelet method 

based on the large deformation assumptions to carry out a post-buckling analysis on nonlinearly 

elastic rods. A modified wavelet approximation of an interval bounded 𝐿2 –function is then used 

to capture the buckling response of the cantilevered rods. However, since lack of consideration 
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has been devoted to constraints long element length, only the critical load of the first buckling 

mode (Φ1) is obtained in these studies. 

       Motivated by identifying and exploiting post-buckling response, various types of lateral 

controls have been taken into account. Chai (1998) has developed a model to measure the 

buckling behavior of bilaterally constrained beams subjected to axial compressions. Liu and 

Chen (2013) have theoretically examined the post-buckling behavior of an elastica in straight 

channel with clearance. The Coulomb friction between the elastica and channel is effectively 

addressed. Ro et al. (2010) have proposed a method to capture largely deformed beams under 

lateral controls. By adjusting boundary conditions and location of the beam between the rigid 

walls, different types of buckling equilibrium configurations are obtained. Katz and Givil (2015) 

have carried out a buckling analysis on beams between springily supported rigid walls. The 

governing equations in those studies are solved based on equilibrium conditions and geometric 

compatibilities and, thus, the analyses are limited in lower buckling modes, e.g., Φ1 and Φ3. In 

order to address the challenge of determining higher buckling modes, an energy method has been 

developed. The lowest total energy of a buckling system is maintained at every equilibrium 

status and, therefore, beam shape configurations can be predicted by minimizing the total energy 

between bilateral constraints. Doraiswamy et al. (2012) have studied the Viterbi algorithm to 

determine the minimum energy-based configurations of constrained beams under axial forces. 

More recently, Borchani et al. (2015) have minimized the total potential energy of buckling 

systems based on the Nelder–Mead algorithm. Satisfactory agreements are achieved between the 

theoretical and experimental results, especially in higher buckling modes (Φ5 or Φ7). An optimal 

design has been carried out by Jiao et al. (2016) to effectively control the mode transitions of 

confined buckling elements by adjusting the cross-section geometry of slender beams. However, 
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more research is of necessity to indicate the applicability of the large and small deformation 

theories with respect to geometry property of buckling systems. In order to address the research 

gap, two theoretical models are developed in this study based on the small and large deformation 

assumptions, respectively. This chapter aims at theoretically investigating the impact of 

geometry property and boundary conditions on the post-buckling behavior of slender beams, and 

identifying the relationship between the small and large deformation models.  

5.3. Irregularly Bilateral Constraints 

5.3.1. Problem Statement 

The problem under consideration consists of a clamped-clamped prismatic homogeneous 

straight beam subjected to an axial load, �̂�. The beam has a length (L), thickness (t), width (b), 

cross-section area (A), moment of inertia (I) and modulus of elasticity (E). The slender beam is 

confined between two frictionless rigid walls spaced a distance ℎ0. The net gap between the 

lateral constraint and the beam is defined by ℎ = ℎ0 − 𝑡. In order to investigate the impact of 

bilateral walls on the post-buckling response of the beam, irregular constraints are taken into 

account in this study. It is worth noticing that the bilateral constraints are defined such that the 

beam can be deformed only within the gap between them. Therefore, the influence of the 

bilateral constraints can be measured with respect to the variation of the gap. Figure 5-1 presents 

the beam that is under randomly bilateral constraints. Figure 5-1(a) schemtically shows the 

deformation of the slender beam. It can be seen that the wall that is adjacent the beam is fixed as 

flat, while the one away from the beam is randomly changed. The net gap between the 

constraints can be expressed as ℎ(𝑥). In order to investigate the post-buckling response of the 

deformed beam under the influence of irrgularly regid walls, a discretization algorithm is 
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introduced in this study. Figure 5-1(b) indicates the constraints after discretization. It can be seen 

that the random constraint is discretized into n segments, i.e., 𝛥𝐿1, 𝛥𝐿2,…, 𝛥𝐿𝑛.  Each segment 

has a constant net gap that is normalized with respect to the gap of the first segment, namely 

𝛼𝑖 =
Gap𝛥𝐿𝑖

Gap𝛥𝐿1
 (𝑖 = 1,… , 𝑛). To represent the net gap veriation of the irregularly bilateral 

constraints, a normalized 1 × 𝑛 net gap vector is generated, accordingly, as, 

        

 (a) 

        

                                                                              (b) 

Figure 5-1. Illustration of a beam under irregularly bilateral constraints. (a) Schematic of the 

beam’s deformation in the first buckling mode, and (b) discretization of the irregularly bilateral 

constraints. 
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𝐺 = (1, 𝛼2, 𝛼3, … , 𝛼𝑛) (5-1) 

5.3.2. Results and Discussion 

The theoretical models, i.e., the small and large deformation models, presented in Chapters 

III and IV are used to investigate the effect of bilateral confinements on the post-buckling 

response of the system. According to the presented theoretical models, two types of bilateral 

constraints are specifically studied, namely, linear and sinusoidal constraints, as shown in Figure 

5-2. Figure 5-2(a) displays the linearly bilateral constraints that the normalized net gap is given 

as  

ℎ𝐿𝑛𝑟 = 1 +
1

2𝐿
𝑥 (5-2) 

Increasing the external force, �̂�, the deformed beam is longitudinally enforced into the region 

with smaller gap. Therefore, the flattening region will be leaned based on the shape of the 

constraints. Figure 5-2(b) presents the beam that is deformed under the sinuoidal walls. The 

normalized net gap is defined as,  

ℎ𝑆𝑖𝑛𝑒 = 1 +
1

2
sin (

2𝜋𝑥

𝐿
) (5-3) 
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(a)                                                                                       

 

                                                                       (b) 

Figure 5-2. Beam deformation in the first buckling mode under (a) linearly and (b) 

sinusoidally bilateral constraints. 
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Table 5-1. Loading conditions of the system. 

 Small Deformation 

Model 

Large Deformation Model 

Static Dynamic Static Dynamic 

Initial Net Gap ℎ𝑥𝑐 (mm) 4 4 20 20 

Loading Period T (s) -- 10 -- 10 

Max. Applied Load 

�̂�𝑚𝑎𝑥 (N) 

-- 2000
a 

-- 1200 

a 
From Borchani et al. (2015). 

Similarly, the deflection of the beam will be shaped due to the irregular constraints. Table 5-

1 summarizes the loading conditions that are used in the presented models. The maximum 

applied load of the small deformation model is selected based on a reference study, and the load 

for the large deformation model is decided by the experiments carried out in this study. In the 

dynamic, small and large deformation models, a  linearly increasing load, �̂�, is defined in terms 

of loading time, �̂�, as, 

�̂� = �̂�𝑚𝑎𝑥  
�̂�

𝑇
  (5-4) 

where �̂� = [0, 𝑇]. 
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5.3.2.1. Small Deformation Model 

Figure 5-3 shows the buckling mode transitions of the beam based on the static, small 

deformation model. The static model is obtained by neglecting the kinetic energy (K) and 

assuming the total energy is equal to the total potential energy (𝛀 = 𝚷). Both the linear and 

sinusoidal constraints are taken into account. The beam deformation is presented with respect to 

the normalized beam length, width, and net gap. Figure 5-3(a) displays the post-buckling 

response of the beam under linear constraints. It can be seen that the deformations of the beam 

follow the configuration of the linear walls. Due to the boundaries, the point and line contact 

regions in buckling modes Φ1, Φ3 and Φ5 are shaped linearly. Figure 5-3(b) presents the beam 

shapes under the sinusoidal constraints. The contacts between the deformed beam and 

boundaries coincide with the pattern of the constraints. Note that Φ1, Φ3 and Φ5 represent the 

final deformed shape configurations of the constrained beam under compression. In this chapter, 

only the first 20 mode shapes are considered mainly due to the following two reasons, 

           

(a)                                                                         (b) 

Figure 5-3. Beam shape deformations by the static, small deformation model under (a) linear and 

(b) sinusoidal constraints. 
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 Taking into account more buckling mode shapes, for example 𝑚 = 30, in the linearly 

combined shape functions would significantly increase the computational cost; and  

 More mode shapes also result in more severe numerical errors when numerically 

minimizing the total energy for the weight coefficients, 𝐶𝑚. Therefore, the accuracy of 

the final results would be impacted.  

Figure 5-4 displays the beam shape deformations corresponding to the same results presented 

in Figure 5-3. In Figure 5-4(a), the deflected beam is constrained by Eq. (5-2) such that the post-

buckling responses in modes Φ1, Φ3 and Φ5 are observed only within the linearly bilateral 

boundaries. Figure 5-4(b) indicates the influence of the sinusoidal constraints on the beam 

deformation. It can be seen that the beam is buckled within the net gap between the linear and 

sinusoidal boundaries.  

      

(a)                                        (b) 

Figure 5-4. Post-buckling response by the static, small deformation model under (a) linear and 

(b) sinusoidal constraints. 
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5.3.2.2. Large Deformation Model 

Figure 5-5 shows the post-buckling response of the deformed beam basded on the static, 

large deformation model. The linearly bilateral constraints are taken into account in Figure 5-5(a) 

and the sinusoidal constraints are used in Figure 5-5(b). The deformed configurations of the 

beam in the figure match the patterns of the constraints. More interestingly, the end-shortenings 

are achieved from all the buckling modes. The linearly and sinusoidally shaped deformations are 

satisfactorily predicted by the theoretical model. Consequently, the presented models are able to 

sufficiently capture the static post-buckling response of the linearly and sinusoidally constrained 

beams based on both small and large deformation assumptions.  

  

(a)                     (b) 

Figure 5-5. Post-buckling response by the static, large deformation model under (a) linear and 

(b) sinusoidal constraints. 
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5.3.2.3. Model Comparison  

Figure 5-6 presents the comparison between the static, small and large deformation models. The 

results are obtained under the sinusoidal constraints. It can be seen that the post-buckling 

responses predicted by the small and large deformation models are comparable in terms of 

different buckling modes (Φ1, Φ3 and Φ5). As summarized in Table 5-1, the only difference 

between the two systems is the net gap, i.e., 4 mm and 20 mm for the small and large 

deformation models, respectively. Therefore, similar post-buckling behaviors are achieved. 

However, the results based on the large deformation model are longitudinally “compacted”, due 

to the end-shortenings (𝛥Φ1, 𝛥Φ3, and 𝛥Φ5).  

 

Figure 5-6. Comparison between the static, small and large deformation models under the 

sinusoidally bilateral constraints 
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5.4. Comparison between Small and Large Deformation Models 

5.4.1. Problem Statement 

The problem under consideration consists of a clamped-clamped prismatic homogeneous 

straight beam subjected to an axial load, �̂�. The slender beam is placed between two frictionless 

rigid walls, next to one constraint and apart from the other. The beam has a length (L), thickness 

(t), width (b), cross-section area 𝐴, moment of inertia (I) and modulus of elasticity (E). The gap 

between the bilateral constraints is ℎ0 and the net gap between the lateral wall and beam is 

ℎ = ℎ0 − 𝑡, as shown in Figure 5-7(a). Figure 5-7(b) presents the beam deformation under the 

assumptions of small deformation. Since the net gap, h, is assumed to be much smaller than the  
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Figure 5-7. (a) Geometry of an initially straight beam and the deformation analysis of a segment 

under (b) the small and (c) the large deformation theories. 

beam length, L, i.e., 
ℎ

𝐿
≪ 1, the rotation of the deformed beam’s neutral axis, θ, is small. 

Therefore, the relationship 𝜃(Δ𝑥) = sin(𝜃(Δ𝑥)) =
𝑑�̂�(𝛥𝑥)

𝑑𝛥𝑥
 is held throughout the entire beam. It 

can be seen in the segment that the initial point in the initially straight beam A is vertically 

deflected to A’ where the horizontal displacement is neglected. Only the transverse deflection, 

�̂�(𝑥), is taken into account in this small deformation model. Figure 5-7(c) shows the deformed 
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beam based on the large deformation theory. The net gap, h, is assumed to be comparable to the 

beam length and, thus, the beam is significantly buckled under compression. The horizontal 

displacement of the beam, 𝜆(𝑠), will not be negligible, and the length projection of the deflected 

beam is no longer equal to the beam length, namely 𝑑 ≠ 𝐿. In addition, the relationship on the 

rotation angle found in the small deformation is invalid, e.g., 𝜃(Δ𝑥) ≠ sin(𝜃(Δ𝑥)). Hence, it is 

of necessity to take into account both the longitudinal and vertical deformations, 𝑥 and 𝑦. 

5.4.2. Findings and Discussion 

5.4.2.1. Small Deformation Model  

Since the post-buckling response is significantly impacted by the geometry properties of the 

system, this section aims at identifying the comparability and dissimilarity of the small and large 

deformation models with respect to the net gap (h) and beam length (L). The geometry and 

material properties in Table 5-2 are used. The net gaps are specifically selected as (a) 4 mm and 

(b) 10 mm. The buckling mode transitions are displayed in the 3D view with respect to the 

normalized beam length, width, and net gap. The corresponding 2D results are shown in terms of 

normalized length and net gap.  

Table 5-2. Geometry and material properties of the system. 

Length (mm) Width (mm) 

Thickness 

(mm) 

Young’s modulus 

(GPa) 

250 30 1 2.3 
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Figure 5-8 presents the buckled shape configurations of the beam based on the small 

deformation model. Figure 5-8(a) displays the post-buckling response of the beam in the net gap 

of 4 mm. Under the axial force, the initially straight beam begins to buckle. Due to the bilateral 

confinements, the first mode beam deformation is restricted within the constraints. After touches 

the lateral walls, the point contact between the deformed beam and walls grows to a line contact 

(Φ1). Increasing the force, the line contact reaches the critical condition and then snaps into the 

third buckling mode (Φ3). The beam buckles to Φ5 and Φ7 when the axial force meets the next 

critical conditions. Figure 5-8(b) presents the post-buckling behavior of the beam in the net gap 

of 10 mm. The contacts between the deformed beam and boundaries are captured coincide with 

the pattern of Figure 5-8(a), namely, line contact and buckling snap-through. Since the net gap is 

increased from 4 mm to 10 mm, “more material” is requested for the deflected beam to buckle 

into higher modes. Therefore, Figure 5-8(b) measures the fifth buckling mode (Φ5) while Figure 

5-8(a) reaches up to the seventh (Φ7). However, neither Figure 5-8(a) nor (b) has obtained end-

shortenings since the longitudinal displacement in the small deformation model is negligible. 

Increasing the net gap, the rotation angle of the deformed beam will be significantly increased 

and the displacement in the longitudinal direction will be dramatically enlarged. Therefore, the 

assumptions of small deformation are no longer applicable. In order to sufficiently predict the 

post-buckling response of the deflected beam with critical rotation and end-shortening, large 

deformation theory needs to be applied.  
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(a) 

 

(b) 

Figure 5-8. Small deformation-based beam shape deformations under the net gaps of (a) 4 mm 

and (b) 10 mm. 
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5.4.2.2. Large Deformation Model  

Figure 5-9 shows the deflected beam shapes based on the large deformation model. The 

geometry and materials summarized in Table 5-2 are used. The net gap are chose as (a) 20 mm 

and (b) 100 mm. Similar to Figure 5-8, the post-buckling response of the beam is presented with 

respect to the normalized beam length, width and net gap. In order to indicate the end-shortening 

and rotation angle (θ), corresponding 2D beam shape deformations are presented. It can be seen 

that the end-shortening and rotation angle are sufficiently measured by the large deformation 

model. 

Figure 5-9(a) displays the deflected beam shapes under the net gap of 20 mm. Comparable to 

the small deformation-based results, the buckling characteristics of the bilaterally constrained 

beam are observed as line contact (Φ1), and buckling snap-through (Φ3 and Φ5) as well. Since 

the net gap is relative insignificant comparing to the beam length, the rotation angle and end-

shortening are not critically changed between different buckling modes. Figure 5-9(b) indicates 

the buckling performance of the beam under the net gap of 100 mm. The net gap-to-beam length 

ratio is up to 0.4 and, thus, the buckling shape of the beam severely deforms in the first mode, 

rather than snaps into higher modes. With the increasing of the rotation angle, it can be seen that 

the beam is severely deflected, which led to the dramatic enlargement of the beam end-

shortening. The results are presented with respect to particular rotation angles, i.e., 𝜃1, 𝜃2 and 𝜃3 

are 60°, 90° and 120°, respectively. The rotation angle and normalized end-shortening with 

respect to the 20 mm and 100 mm net gaps are presented in Table 5-3.   
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(a) 

 

(b) 

Figure 5-9. Large deformation-based beam shape deformations in the net gap of (a) 20 mm and 

(b) 100 mm. 
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Table 5-3. Rotation angle and normalized end-shortening of the system. 

Net Gap (mm) 20 mm 100 mm 

Rotation angle 

(°) 

𝜃1 37.03 60 

𝜃2 41.26 90 

𝜃3 48.54 135 

Normalized 

end-shortening  

𝛥1 0.048 0.231 

𝛥2 0.107 0.408 

𝛥3 0.159 0.497 

 

5.4.2.3. Parametric Studies  

In order to identify the limitations and suitable applications of the small and large 

deformation models, it is necessary to conduct parametric studies on the geometry property of 

the post-buckling system. The influences of the beam length (L) and net gap (h) are first 

investigated. In this section, the beam width and thickness are fixed as 30 mm and 2.3 mm, 

respectively.  

Figure 5-10 presents the post-buckling response of the bilaterally constrained beam with 

respect to the beam length and net gap. It can be seen that when the ratio of net gap and beam 

length η is close to 0.1, the axial displacements determined by the small and large deformation 

models at different buckling mode transitions are coincided. The small deformation model is 

more accurate when η is smaller than 0.1, while the large deformation model predicts the 

buckling performance when η is larger than 0.1.  
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Figure 5-10. Post-buckling response of the bilaterally constrained element with respect to the 

beam length, net gap and axial displacement. 

 

Figure 5-11. Applicability of the small and large deformation models in terms of the ratio of the 

net gap and beam thickness (ζ), and the beam’s slenderness ratio. 
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Figure 5-11 displays the applicability of the small and large deformation models with respect 

to the ratio of the net gap and beam thickness (ζ) and slenderness ratio of the beam (λ). It can be 

seen that an overlapping zone with high comparability of the post-buckling response is captured 

between the two models.  

Figure 5-12 presents the post-buckling snap-through events in terms of the ratio η and 

buckling mode transition Φ. The small deformation model is more accurate when 𝜂 < 0.12, 

while the large model is suitable when 𝜂 > 0.08. The overlapping zone between the small and 

large models is caught between 𝜂 ∈ [0.08 − 0.12]. Meanwhile, it is observed that with the 

incline of η, the highest achievable buckling mode is decreased to Φ1. In particular, when 

𝜂 ≥ 0.5, the deformed beam cannot touch the bilateral walls and, therefore, the buckling system 

is reduced to the slender beam without lateral constraints. The method of least squares is used to 

generate a polynomial function in the regression analysis to define the relationship between the 

highest achievable buckling mode and ratio η. According to the edge of the buckling snap-

through events, a decline highest buckling mode is predicted with the increasing of η.  
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Figure 5-12. Post-buckling snap-through events in terms of the ratio of the net gap and beam 

length (η) and buckling mode transition. 

5.5. Summary 

The post-buckling response of bilaterally constrained beams was predicted with respect to 

different geometry properties and boundary conditions, using the theoretical models presented in 

Chapters 3 and 4.  

 Firstly, the post-buckling response of slender beams under irregularly bilateral constraints 

was theoretically investigated. An algorithm was introduced to sufficiently discretize the 

constraints into a gap vector that represented the variation of the gap between the regid 

walls. The total energy of the system was minimized within the gap vector in terms of the 

weight coefficient (Cm) of different buckling modes. Experiments were carried out to 

validate the theoretical results. Satisfactory agreements were obtained. The buckling mode 

transitions of the beams were particularly investigated under the linearly and sinusoidally 



 

180 
 

varied bilateral constraints. The deformed shapes of the beams accurately met the patterns 

of the constraints. The large deformation-based models were able to measure the end-

shortenings.  

 Secondly, parametric studies were conducted to determine the impacts of the net gap (h) 

and beam length (L) on the post-buckling response of the system. A pattern was gained 

with respect to the net gap-to-beam length ratio (η) and buckling mode transition (Φ). 

When 𝜂 < 0.12, the small deformation model satisfactorily predicted the buckling snap-

through events of the beam, and the large deformation model was sufficient when 

𝜂 > 0.08. In particular, an overlapping zone was observed when 0.08 < 𝜂 < 0.12 since 

the post-buckling behaviors obtained by the small and large deformation models 

overlapped in the region. A polynomial function was then obtained to effectively define 

the decline of the highest achievable buckling mode with respect to the increasing of η. 

According to the presented models, the small deformation model accurately captures the 

snap-through events in high buckling modes, i.e., Φ5 and Φ7, and the large deformation 

model sufficiently measures the end-shortening that resulted in severe rotation of the 

beams’ neutral axis.  

The presented theoretical models successfully predict the post-buckling behavior of the 

bilaterally constrained beams with respect to the confinements shape, net gap and beam length 

and, therefore, are effective in understanding and predicting the applicability of the small and 

large deformation models.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1. Research Contributions 

This study theoretically and experimentally investigated the post-buckling response of 

bilaterally constrained beam systems for energy harvesting and damage sensing. In order to 

achieve the objective, the main research contributions of the work can be deployed as follows, 

6.1.1. Post-Buckling Analysis of Non-Uniform Beams under Bilateral Constraints Using 

Small Deformation Assumptions 

A theoretical model based on uniform cross-section beams had been developed using small 

deformation assumptions in previous studies. To maximize the generated electrical power and 

detect potential damage, it is of necessity to accurately control the post-buckling behavior of the 

laterally confined systems. However, uniform beams do not permit to adequately control the 

mechanical response. Hence, neither the energy conversion efficiency nor damage detection 

accuracy of the system can be optimized. This study developed a theoretical model to measure 

the post-buckling response of non-prismatic beams. Based on the proposed model, the outputs of 

the mechanism, i.e., electrical power for energy harvesting and electrical signal for damage 

sensing, were sufficiently optimized.  
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6.1.2. Post-Buckling Analysis of Bilaterally Confined Beams Using Large Deformation 

Assumptions 

This study presented a theoretical model using large deformation assumptions to investigate 

the post-buckling response of a bilaterally constrained beam subjected to a quasi-static axial 

force. The rotation-based equilibrium equations were formulated based on the nonlinear Euler-

Bernoulli beam theory. An energy method was used to solve the equations by minimizing the 

total potential energy under the constraints of bilateral boundaries. The presented large 

deformation model satisfactorily measured the post-buckling behavior of the bilaterally 

constrained beam in terms of both shape deformation and force-displacement relationship. 

6.1.3. Irregularly Bilateral Constraints Analysis and Parametric Studies 

This study investigated the buckling behavior of bilaterally constrained beams with respect to 

different shape configurations of bilateral constraints, i.e., irregular constraints, and geometry 

parameters. It indicated that the small deformation model sufficiently captured higher buckling 

mode transitions, but was insufficient in determining beam end-shortening since longitudinal 

displacement is negligible. The large deformation model effectively predicted severe deflection 

of the beams in terms of end-shortening and rotation. Parametric studies were conducted to 

examine the limitations of the small and large deformation models. In addition, a polynomial 

function was provided to define the relationship between the ratio of the net gap and beam length 

(η) and buckling mode (Φ).  
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6.2. Future Work 

6.2.1. Optimization of Piezoelectric Energy Scavenger  

It has been proved and investigated that the levels of harvestable energy and energy 

conversion efficiency are relevant to input frequency. The electro-mechanical properties and 

natural frequency of scavenger, however, are also of significance. In particular, the piezoelectric 

transducer used in this study is made of polymer polyvinylidene fluoride (PVDF) due to its 

relatively low cost and high flexibility. However, PVDF materials have low mechanical-to-

electrical conversion coefficients. Other piezoelectric materials, e.g., Lead Zirconate Titanate 

(PZT), Microfiber Composites, etc., have also been extensively used for energy harvesting in 

different applications. In addition, the dimensions of piezoelectric energy scavenger and attached 

lumped mass should be optimized in order to maximize the energy harvested during snap-

through events. 

6.2.2. Optimization of the Parameters of the Mechanism for Different Strain Ranges 

The parametric study carried out in this work provides confidence that the mechanism can be 

scalable for embedment within structures. Strains present the input to the mechanical energy 

concentrators and triggers. Therefore, dimensions and material properties of the bilaterally 

constrained beam as well as the gap between the lateral rigid walls should be tuned such that 

transitions occur under the applied level of strain. A design manual or chart can be developed to 

determine the optimized values of the parameters for different strain ranges. It would be of 

interest if the mechanism is installed in a pre-compressed configuration such that it transitions 

between a higher and lower buckling mode as the global input strain alternates between 

compression and traction. 
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6.2.3. Optimization of the Algorithm to Include Friction Effect 

The theoretical results shown in this work do not include the effect of friction on the post-

buckling dynamic response of the bilaterally constrained beam. It would be of interest to 

investigate the effect of friction on the post-buckling behavior as well as the levels of the 

released energy and generated accelerations. A simplification or approximation of the dissipated 

energy would alleviate the minimization problem resolution. 
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