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ABSTRACT

ASSESSING DEVELOPMENT OUTCOMES WHEN
WEATHER, LAND, AND PEOPLE DIFFER

By

Jarrad Godwin Farris

Agricultural development and policy design rely on careful analysis of the factors that
influence the welfare and decision making of agricultural households. This dissertation lever-
ages diverse data types, cross-disciplinary knowledge, and applied econometrics to assess the
underlying factors that influence child welfare and agricultural production decisions. In doing
so0, it reveals the role of observed and unobserved differences in shaping our understanding
of decision making in agricultural production systems.

The first chapter evaluates the impacts of in wutero rainfall on child growth in rural
Rwanda and assesses whether estimates based on aggregate in utero rainfall are attenuated
by intra-seasonal in utero rainfall effects. The in utero period of a child’s life is critical
for his or her development. For families relying on rain-fed agricultural production, such
development can be severely impacted by the timing of rainfall shocks. Yet, evidence of
in utero rainfall effects has been mixed. My results suggest that this mixed evidence may
be driven by a focus on aggregate rainfall measures, which ignore cropping period specific
heterogeneity in rainfall effects on human health.

The second chapter assesses the separability hypothesis which posits that agricultural
households make their production decisions separately from their consumption decisions.
This theory relates closely to the completeness of markets and provides an important av-
enue for understanding how agricultural households are likely to respond to new policies and
programs. The current standard identification strategy for testing whether this separabil-
ity hypothesis holds is to estimate reduced form regressions of household labor demand on

household demographic characteristics, using household fixed effects to address unobserved



heterogeneity. Using plot panel data from Rwanda, I apply an alternative test that controls
for unobserved heterogeneity in land quality. Using simulations, I then show that the stan-
dard approach based on household fixed effects is prone to omitted variable bias from the
endogeneity of household demographic characteristics with unobserved land characteristics.
Simulations indicate that this bias is exacerbated as the land market becomes more active.

The third chapter examines the role of farmer personality in the effectiveness of a
community-based extension program for promoting improved bean varieties in Tanzania. I
develop a conceptual framework which shows that the information gained from community-
based extension activities may be heterogeneous by farmer personality. I then examine this
potential heterogeneity empirically using a unique dataset of the Big Six personality traits
measured using the Midlife Development Inventory (MIDI). My findings suggest that per-
sonality characteristics influenced which farmers benefited from the extension program. In
particular, more extraverted farmers appear to have benefited more from residing in villages
that received trial packs of improved bean seed relative to less extraverted farmers. This is
consistent with their increased sociability and has implications for the types of farmers likely

to gain from community-based extension programs.
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Chapter 1

Growing Pains: Cropping Period-Specific In Utero Rainfall Shocks Impact
Child Growth in Rural Rwanda



I. Introduction

Throughout the developing world, households reliant on rain-fed agricultural production face
increasing risk of food insecurity due to increased variability and uncertainty in rainfall (e.g.
Funk et al., 2019). Climate change has increased both the risk of prolonged drought, as well
as heavy rainfall (Lehmann et al., 2018). The increasing prevalence of such weather shocks
is likely to have very dire long-term consequences for those who are exposed to such shocks
in the most critical early stages of human development.

The in utero period of a child’s life is critical for his or her development, with long-term
implications for human capital accumulation (Almond et al., 2017; Barker, 1998). Exposure
to poor environmental conditions during this period has been linked to a wide array of
negative consequences. For example, negative rainfall shocks in the year before birth result
in lower birth weights and increased infant mortality (Rocha & Soares, 2015). The negative
consequences of in utero shocks need not be limited to infancy, nor do they require extreme
events. In their recent meta-analysis, Almond et al. (2017) emphasize that even moderate
early life shocks can have long-term negative consequences.

This article contributes to previous research studying the effects of in utero rainfall shocks
by differentiating between cropping-period rainfall shocks that are specific to planting, mid-
season, and harvest seasons. My identification strategy captures potential differences in the
marginal effects of rainfall depending on the crop development stage in which the rainfall
shocks occur. Such differences would be subsumed in aggregate measures of rainfall (e.g.
deviations from annual averages) that have been used in many previous studies.

I argue that the direction of the effect of rainfall shocks on child growth differs according
to the cropping period at the time of the rainfall shock, which implies that aggregating
rainfall outcomes into a single measure will attenuate the estimated effects on child growth.
By not taking such seasonal differences into account, rainfall measures that are homogeneous

across different cropping periods in a given year may not be capturing important differences



in cropping period-specific shocks to child growth. Such seasonal differences are particularly
important in countries where agricultural production is primarily rain-fed, where irrigation
is largely infeasible, and where there are multiple production seasons, implying relatively
brief windows for planting, growing and harvesting seasons.

Such agricultural production is exemplified in Rwanda, the focus of this study. In rural
Rwanda, as in many rural developing country contexts, agriculture is the principal source
of livelihood. As rural Rwandan households rely primarily on rainfed agriculture, rainfall
outcomes are a key source of exogenous variability in household incomes and hence nutrition
availability.

The literature measuring rainfall impacts on health has led to contradictory conclusions.
For example, two meta-analyses combining DHS data on African countries find both positive
and negative effects of rainfall on mortality (Comfort, 2016; Kim, 2010). In Mexico, rainfall
that was one standard deviation below average during the wet season reduced height-for-age
z-scores (HAZ) for a subsample of children in the north region, but increased HAZ for a
subsample of children in the center and south regions (Skoufias et al., 2011). Alongside
these mixed findings, other studies that have measured the effects of either annual rainfall
shocks (e.g. Abiona, 2017; Burgess et al., 2017; Comfort, 2016; Kim, 2010; Maccini & Yang,
2009; Rocha & Soares, 2015) or rainfall shocks during the growing season (e.g. Kudamatsu
et al., 2012; Shively, 2017; Skoufias et al., 2011) have found a positive relationship between
rainfall and health outcomes.

One response to the mixed findings on the rainfall-health relationship is a strand of the
literature that seeks to assess this relationship using non-rainfall measures. Early work in
Rwanda analyzed a crop failure in 1988-1989 that occurred for a particular cohort of children
in one region of the country (Akresh et al., 2011). Girls born in the region during the famine
had reduced growth rates compared to girls born in the same region at a different time, or

girls born at the same time but in a different region. No effect was found for boys. Similarly,



in a panel analysis of children in Zimbabwe, children who were 12-24 months old during
a 1994-1995 food shortage were 1.5 to 2 cm shorter on average than children who reached
that age in a non-food shortage year (Hoddinott & Kinsey, 2001). Among communities
in Ethiopia who were asked to directly report the months when food was relatively scarce,
children exposed to more food-scarce months in utero had significantly lower heights at age
eight (Miller, 2017).

Rainfall-based measures have several advantages over non-rainfall-based indicators. Rain-
fall data can assess the impact of small deviations without extreme events or self-reporting
of food scarcity. The rainfall data used in this study is at the 0.05 degree resolution, allow-
ing daily rainfall to be estimated at the household level. As rainfall data and rainfall-based
measures improve, rainfall-based measures become increasingly useful in teasing out complex
relationships between nutrition availability and health.

This study contributes in several ways to an emerging literature exploring the rainfall-
health relationship using intra-season rainfall measures. First, I allow for cropping period-
specific rainfall shocks to differ in whether they improve or harm children’s health. Prior
studies which have incorporated intra-season heterogeneity have forced all positive or all
negative deviations to have the same-signed effect, regardless of the cropping period during
which the rainfall occurred (Cornwell & Inder, 2015; Tiwari et al., 2017). Grouping all devi-
ations in the same direction into a single category ignores potentially important differences
in the timing of rainfall. Second, I examine rainfall effects on health from three different
major cropping periods, as opposed to examining effects from rainfall in only one cropping
period (Aguilar & Vicarelli, 2011).

I show that aggregate measures of rainfall shocks conceal acute differences in the rela-
tionship between rainfall and child growth. As the intra-year relationship between rainfall
and agricultural productivity need not be constant, the relationship between rainfall expe-

rienced in utero and child growth may also vary according to the cropping period. I find



that during planting and in mid-season, increases in rainfall have a positive relationship with
child growth. Maize yields can be particularly sensitive to water deficits during the mid-
season flowering and grain-filling stages. Less rainfall during the harvest period, however,
can improve yields, as this reduces grain water content (Barron et al., 2003). Indeed, I find
that increases in rainfall during harvest reduce child growth.

The remainder of the paper proceeds as follows. Section two discusses the crop yield
response to rainfall as it relates to rural Rwanda and describes the cropping period specific
rainfall measures. The third and fourth sections describe the data sources and the empirical
strategy respectively. The fifth section outlines the empirical results and the final section

concludes.

II. Crop Yield Response to Rainfall

Two seasons with the same total rainfall can have very different yield outcomes depending
on how rainfall was distributed within the season (Brown, 2008; HarvestChoice, 2010). The
crop-yield response to rainfall varies over the course of the growing season (Brown, 2008;
Doorenbos & Kassam, 1979; Steduto et al., 2012). For most crops, yield response to water
requirements is relatively low in early and late growth periods and relatively high during
periods of flowering and crop formation. For example, for one of Rwanda’s most important
food crops — beans — the yield response to water deficit is four to five times larger during
flowering and pod filling phases compared to during its vegetative and ripening periods
(Doorenbos & Kassam, 1979).

The relationship between rainfall and yield is not always positive. Extreme rainfall can
lead to waterlogging and aeration stress. As in crop stress from insufficient rainfall, aeration
stress from excess rainfall can lead to crop yield reductions (Steduto et al., 2012). For
example, maize — a major staple in Rwanda — is relatively sensitive to water stress during

the flowering period (Doorenbos & Kassam, 1979).



Even in the absence of extreme rainfall events, there may be periods when less rainfall
is beneficial. A period of little rainfall at harvest can improve maize yield by reducing grain
water content (Barron et al., 2003). Similarly, a period of no rain for 20 to 25 days before
dry bean harvest is ideal (Doorenbos & Kassam, 1979).

To capture key differences in crop yield response, I distinguish between three distinct
periods for each agricultural season. The land preparation and planting period is the period
when most crops are beginning their growth. The mid-season period is the period when
most crops are in their critical growth stages and are relatively sensitive to water stress.
Finally, the harvest period is the period when most crops are mature and may benefit from
a tapering of rainfall.

As shown in Figure 1.1, Rwanda’s first major agricultural season, which extends from
February to July, is split into: land preparation and planting (February and March), mid-
season (April and May), and harvest (June and July). Similarly, Rwanda’s other major
agricultural season, which extends from August to January, is split into land preparation
and planting (August and September), mid-season (October and November), and harvest
(December and January).!

For each of these individual cropping periods, I estimate a distinct marginal effect of in
utero rainfall shocks on child height-for-age z-scores, holding all other potential determinants
constant (i.e. parental characteristics, and other environmental factors).? T define the in
utero period of a child’s life as the entire year before birth.® I denote rainfall shocks (specific
to child 4 in household h) in the land preparation and planting, mid-season, and harvest
periods while in utero (t = 0) by the following: R}, , R%,, and R3,,. These rainfall shocks

determine the height (i.e., length) at birth of child ¢ in household h (H;zg), which in turn

T also estimate robustness specifications incorporating alternative season and cropping period definitions.

2As height is a long-term measure of health, there are natural dynamics in the production process for
child height. Strauss and Thomas (1998) and Maccini and Yang (2009) provide useful simple reduced forms
for dynamic health production functions.

3The additional three months preceding pregnancy are included as a child’s health endowment can be
influenced by the mother’s health pre-conception (Rocha & Soares, 2015).



affects subsequent height-for-age z-scores in year ¢ (HAZ;;).

III. Data

III.1 Household Survey and Anthropometrics Data

This study uses household survey data collected in 2014 and 2017 from households who had

4 This survey was a two round panel survey of housecholds

children under the age of five.
from eight districts across three provinces in Rwanda: Northern, Southern, and Eastern.
In the enumeration areas, there are significant concerns regarding food security and child
malnutrition.

In 2014, the survey used a three-stage cluster sampling method where the primary, sec-
ondary, and tertiary sampling units were the sector, village, and household respectively. A
census was first conducted in each of the 252 selected villages to collect basic information
of all households. A random sample of households with either a pregnant woman or child
under the age of five were then selected (Peters et al., 2015). The survey then followed up
with these same households in 2017 for the second round of the survey.

The survey instrument was comprehensive, covering a wide array of household and indi-
vidual characteristics. It collected detailed child-specific information on nutrition and health,
as well as weight, height, age, and gender.

This study uses the anthropometric information collected for all children less than the
age of five. If a child was under the age of five and was measured in both survey rounds, the
most recent measurement from the second round of surveying is used.

The rate of stunting in the sample is 39%, well above the expected rate of 2.3% in a
healthy population (World Health Organization [WHO], 1997). This is not surprising given

the rural, developing country context. The mean and median HAZ in the sample are -1.57

4The survey was conducted as part of an impact evaluation of the International Potato Center’s Scaling
Up Sweet Potato Through Agriculture and Nutrition (CIP-SUSTAIN) project.



and -1.64 respectively, indicating that most of the children are below average height for age
(see Table 1.1). These averages also highlight the relevance of this research for the study

area.

I11.2 Rainfall Data and In Utero Rainfall Shocks

The most reliable source of rainfall data is considered to be the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS), according to the Famine Early Warning
Systems Network (Famine Early Warning Systems Network [FEWS NET], 2018). This
publicly available dataset combines 0.05 degree satellite data with in-station data to provide
daily rainfall estimates from January 1st 1981 to near present day (Funk et al., 2015).

I estimate average rainfall within five kilometers of each household, with GPS coordinates
for each day from January 1st, 1981 to December 31st, 2017. A five-kilometer radius captures
the majority of household plots, as more than 85% of all plots were within an hour’s walk
from households’ dwellings. For households missing GPS coordinates, I estimate the average
rainfall among all other households in the same village.

Rainfall shocks are commonly measured as the deviation of the log of rainfall in a given
year from the log of historical annual average rainfall (Maccini & Yang, 2009; Rocha & Soares,
2015). However, a focus on annual rainfall shock measures may mask cropping period-specific
heterogeneity in the effects of in utero rainfall shocks. I address this limitation by applying
the same log-deviation, in utero shock measure as used by Rocha and Soares (2015), but
take a cropping period approach. I estimate in utero rainfall shocks (RE . ) as the deviation
of the log of total rainfall in cropping period k£ that child 7 born in month m in household
h experienced while in utero, from the log of the historical average for that period. The

equation for RE . is:

m—1
Rl o =In ( Z 2t * Tht) —In(Tw) YEk=1,2,3 (1.1)



where m is the birth month of child 4 in household h;® 2, is an indicator variable equal to
one if month ¢ is included in cropping period k and zero otherwise; 7y, is the monthly rainfall
(measured in millimeters) that occurred within a 5 kilometer radius of household A in month
t; and 755 is household A’s long-run yearly average rainfall for cropping period k& over the
1981-2017 time period.

[ illustrate RY,,, with a particular example of a child born in October 2014. The harvest
period rainfall would be the sum of the rainfall experienced by the child’s household in the
months of December 2013 and January, June, and July 2014. This summation represents
the total rainfall the child experienced while in utero during this cropping period. The in
utero shock measure is then the natural log of the average harvest period rainfall for the
child’s household in all years from 1981-2017, subtracted from the natural log of the in
utero summation. This same process is repeated for the land preparation and planting and
mid-season periods.

The measures of in utero rainfall shocks vary considerably across cropping periods (see
Table 1.1). During land preparation and planting, rainfall shocks are about 6% above his-
torical averages. But there is less overall variability during the mid-season period, as average
in utero rainfall shocks are about 1.6% below historical averages. During the harvest period,

in utero rainfall shocks are 2.7% below historical averages.

IV. Empirical Strategy

My identification strategy is to differentiate any in utero rainfall effects from other spatial
and temporal child growth determinants that may be correlated with rainfall outcomes. By
including a broad set of controls in the econometric specification, I isolate the effects of in

utero rainfall deviations on child growth from the average conditions of children in similar

SEach month in the rainfall dataset is assigned a running integer value (e.g. January 1981 = 1, February
1981 = 2, etc.).



circumstances and localities. The main empirical specification is given by the following:

HAZ;hvia = Rimno0 + age;y + age; * Rimnod + Xi8 + w; + 0y + ¢y + Tat + Wimnoa  (1.2)

The outcome variable is H AZ;p04, the height-for-age z-score (HAZ) for child ¢ born in month
m in household A in village v and district d. The main coefficients of interest, 8, are the
coefficients on Rijmne - the log-deviations of in utero rainfall for the three cropping periods
(based on each child’s birthday and household GPS location). I interact Rimno with child age
in months, to account for the fact that rainfall shocks during the in utero period may impact
more recently born children differently than older children. All regressions also include: two
child-specific controls, gender and age squared (X;); and a survey round indicator (w;).

Birth month may influence a child’s development path and would be correlated with
season-specific in utero rainfall. For instance, children born during lean months are likely
to have different child growth outcomes compared to children born in post-harvest months.
To control for such differences, I include birth month fixed effects, o,,. The distribution of
birth months is relatively even throughout the year, with slight jumps in January, May, and
December (see Figure 1.3 for a histogram of children’s birth months).

Village location and other time constant village-level unobservables may influence child
growth and be correlated with rainfall deviations. For example, certain villages may be
located in more mountainous terrain with little access to healthcare. To address this potential
issue, I include village fixed effects, c,.

The economies of Rwanda’s districts develop at different rates, and the average growth
path of children will vary according to local economic development (Maccini and Yang 2009).
To control for differences in economic development paths across districts, I include a time
trend ¢ which is allowed to vary by the district-specific coefficient, 7.

To take account of village-level spatial correlation in the idiosyncratic error term, w;mnvd,

10



I cluster standard errors at the village level.

A remaining concern with my identification strategy is due to potential serial correlation
in log deviations in rainfall. If rainfall outcomes are serially correlated, then the estimated
marginal effects could be driven by the effect of rainfall outcomes in other periods (Maccini
& Yang, 2009; Rocha & Soares, 2015). I rule out this possibility, as the estimates of in utero
period effects are robust to including rainfall shocks prior to a child’s in utero period.

Finally, I obtain similar estimates when I control for unobserved household-level hetero-
geneity in child growth outcomes, such as family heritage and the household environment.
To do so, I estimate a robustness regression with household fixed effects. As this specification
is restricted to the subsample of households with anthropometric measurements for at least

two children under age five, the sample size is too small to obtain precise estimates.

V. Empirical Results

V.1 Main Findings

In Table 1.2, T present results from estimating equation 1.2, where I use only one annual
rainfall measure. These estimates are based on the assumptions that the in utero rainfall
effect on HAZ is homogenous throughout the year. In column (1), I control for demographic
characteristics only. In column (2), I add birth month fixed effects to control for general
temporal differences in child growth outcomes that may be correlated with rainfall. In column
(3), T add village fixed effects to control for spatial differences in birth outcomes that could
be correlated with rainfall. In column (4), I add further controls for unobserved district-
specific time trends that could influence children’s development paths and be correlated with
in utero rainfall outcomes.

As estimates are not statistically significantly different from zero, I cannot reject the null
hypothesis that the impact is in fact zero. The point estimates suggest that increases in in

utero rainfall may raise HAZ. Estimates are consistent across these four specifications, all

11



with wide confidence intervals.

The wide confidence interval in estimates could be due to one of two reasons. First, the
relatively high fluctuation in annual rainfall may lead to high standard errors. Second, this
aggregate, annual measure of rainfall may be suppressing intra-year, seasonal heterogeneity
in how rainfall impacts yield at various times of the year, and therefore also children’s growth
outcomes.

Estimates of equation 1.2, using cropping-period specific rainfall deviations rather than
a single annual deviation, suggest that the annual measure attenuates impact estimates due
to seasonal differences in impacts. Increases in in utero rainfall in the land preparation and
planting or mid-season periods significantly raise HAZ. In contrast, increases in in utero
rainfall during the harvest period significantly lowers HAZ. These results are summarized
in Table 1.3, where covariates in each specification mirror those in Table 1.2. Estimates
are consistent and statistically significant across all specifications. Results in column (4) of
Table 1.3 imply that a one standard deviation increase in in utero rainfall during the land
preparation and planting or mid-season periods raises the HAZ of a one year old child by 0.28
or 0.26 standard deviations, respectively.® These effects represent 18% and 16% increases at
the sample mean HAZ of -1.57. In the harvest period, a one standard deviation increase in
in utero rainfall reduces a one year old child’s expected HAZ by 0.24 standard deviations, a
decrease of 15% from the sample mean.

The findings also suggest that households may be able to compensate for some of the
growth effects of in utero rainfall. In utero rainfall effects are largest for infants, declining

as children age. These differences are statistically significant. This declining impact over

5The calculation, using land preparation and planting as an example, is as follows:
0.143 * (2.560 — 0.049 * 12) =~ 0.28

where 0.143 is a one standard deviation or 14.3% increase in in utero land preparation and planting period
rainfall, 2.560 is the coefficient on the log deviation in in utero land preparation and planting rainfall, -0.049
is the coefficient on the interaction between the rainfall term and child age in months, and 12 is the age in
months of a one year old child.
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ages is distinct from the general decline in HAZ with age that is typical of the developing
country context (Akresh et al., 2011; Groppo & Kraehnert, 2016).

I find further heterogeneity in rainfall impacts on HAZ, with estimated effects being
concentrated among girls. As the sample is evenly split between boys and girls, I estimate
separate regressions for each of them (see columns (1) and (2) in Table 1.4). There are several
potential drivers for this concentration of in utero rainfall effects among girls. For instance,
this difference could be a result of weaker girls being more likely to survive pregnancy and
early infancy than boys. Boys have a lower in utero survival rate than girls (Bruckner and
Catalano 2018). Boy infants also have the highest death rate of any age-sex group; only
the strongest boys survive and I do not observe the boys who die in utero. Alternatively,
the observed difference could be due to parents’ behaviors in response to rainfall shocks.
Gender-preferences in parenting could result in the sampled boys being less susceptible to
long-term growth effects from in utero rainfall shocks.

Another potential source of heterogeneity in the rainfall impacts on HAZ is households’
degrees of exposure to rainfall shocks. Some households are likely to be better positioned
to react to changes in rainfall than others. As the dataset was collected after each child’s
in utero period, I cannot directly address this potential heterogeneity in this study and it
remains a promising area for future work. I do, however, have data on household wellbeing
at the time of the anthropometric measurements which can serve as an imperfect proxy of
household wellbeing while the child was in utero. I rank the likelihood of each sampled house-
hold being below Rwanda’s national poverty line at the time of the child’s anthropometric
measurements using a Rwanda-specific poverty index developed in Schreiner (2010). This
poverty index uses household characteristics and assets to predict the likelihood of a given
household falling below Rwanda’s national poverty line. Column (3) of Table 1.4 summarizes
estimates of equation 1.2 for children in relatively poor households (bottom 50th percentile

of poverty index). In Column (4), I present the same estimates for relatively wealthy house-
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holds (top 50th percentile). Overall, this subsample analysis by current household poverty
status suggests that even the relatively wealthy households in the rural sample of agricul-
tural households are unable to substantially mitigate the effects of rainfall shocks on their

children’s growth outcomes.

V.2 Robustness Checks

The overall findings are robust to a number of different specifications. First, results are
nearly identical when I add birth order and sibling controls, as shown in column (5) of Table
1.4. In column (6) of Table 1.4, I estimate a robustness regression with household fixed effects
in lieu of village fixed effects. This specification is restricted to the subsample of households
with anthropometric measurements for at least two children under age five. For comparison,
in column (7) I also estimate the village fixed effects specification from Table 1.3 column
(4) on this subsample of multiple child households. Unlike village fixed effects, household
fixed effects controls for unobserved household-level heterogeneity in child growth outcomes,
such as family heritage and the household environment. The results are qualitatively similar,
with increases in early and mid-season rainfall associated with increases in expected HAZ
and increases in harvest period rainfall associated with decrease in expected HAZ.

The main findings are robust to accounting for Rwanda’s minor agricultural season,
which I have ignored thus far. Figure 1.1 shows that a minor agricultural season occurs
simultaneously with that of the two major seasons. The minor harvest occurs just before the
onset of the lean season in October and November. Approximately 70% of the households
in the sample farm in this season. To test whether the findings may be sensitive to the
incorporation of this minor season, I first estimate regressions for the subsample of households
who farmed in the minor season. The results, presented in column (2) of Table 1.5, show
nearly identical results to those found with the broad sample. I further assess the sensitivity

of the results to the season and cropping period specifications via two alternative season
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definitions. First, I incorporate the minor season by assigning the minor season months of
July, August, and September to multiple cropping periods (see Figure 1.1). For example,
in utero September rainfall is included simultaneously in both the harvest period (to reflect
minor season activity), and the land preparation and planting period (to reflect second major
season activity). Alternatively, as shown in Figure 1.2, I restrict the first major season harvest
and second major season land preparation and planting to June and September respectively.
The results of these alternative definitions are presented in columns (4) and (5) of Table 1.5.
The findings are robust across all definitions of cropping periods.

Finally, results are not driven by the possibility of serial correlation in rainfall outcomes.
I test for this possible serial correlation by controlling for the rainfall measures and their
interactions for the 13-24 month period before a child’s birth. As shown in column (6) of
Table 1.5, when controlling for the same rainfall shocks in another year, all season-specific
rainfall effects remain very similar to original estimates. In addition, coefficient estimates
are not statistically significant or meaningful in magnitude for the season-specific rainfall

shocks during the 13-24 month period prior to birth, or their interactions with child age.

VI. Conclusion

In this article, I have shown that aggregate rainfall measures often ignore intra-seasonal
heterogeneity in rainfall effects and attenuate estimated impacts of in utero rainfall shocks
on children’s health. My analysis contributes to prior studies analyzing the relationship
between rainfall and child health, which have primarily used annual or growing season rainfall
measures. | identify intra-seasonal heterogeneity in rainfall effects by using high resolution
rainfall data and a unique dataset of at-risk children in rural Rwanda. I have shown that
intra-year or intra-season rainfall effects differ in sign.

The results are consistent with agronomic research finding that low yield can be due to

both insufficient rainfall in the mid-season flowering and yield formation periods, as well as
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excess rainfall during the harvest period (Barron et al., 2003; Doorenbos & Kassam, 1979).
I find that increases in in utero rainfall in the land preparation and planting or mid-season
periods increases expected child height-for-age z-scores. But during the harvest period,
increases in in wutero rainfall decreases expected child HAZ. I have shown these effects to
be robust to alternative definitions of the cropping periods, as well as to estimates where
I have controlled for potential serial correlation in rainfall. The findings also suggest that
households may be compensating for some of the growth effects of in utero rainfall.

These estimates provide a lower bound, because of potential attenuation bias due to
classical measurement error (Wooldridge, 2010). The measurement of in utero rainfall ap-
proximates the actual rainfall experienced by a child when in utero. In addition, to ensure
that cropping period effects are not endogenous to household’s planting decisions, I have
assumed cropping periods to be constant across space and time. In fact, they vary with
household cropping decisions and with the onset of rains.

The relationship between weather shocks and individual health is an issue that is be-
coming increasingly salient as extreme weather events - particularly drought and flooding
- become more frequent over time. Understanding the complexity of this weather-health
relationship can help inform policies and programs which aim to identify and distribute re-
sources towards at risk pregnant women and their children. I have shown that identifying or
predicting the timing of rainfall such events in the context of local agricultural production

seasons is important in anticipating negative consequences for children’s long-term health.
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Table 1.1: Summary Statistics

Variables Mean Std. Dev. Min Max Median
Height-for-Age Z-Score (HAZ) -1.572  1.598  -5.980 5.610 -1.640
Stunted (1=yes) 0.390  0.488 0 1

In utero annual rainfall 0.017  0.106  -0.277 0.374 0.004
[ utero land preparation and 0.060  0.143 -0.346 0.435 0.047
planting period rainfall

In utero mid-season rainfall -0.016  0.171  -0.395 0.531 -0.025
In utero harvest period rainfall -0.027  0.237  -0.738 0.473 0.010
Child’s age in months 33.692  15.550 0 59 36
Child is female (1=yes) 0.499  0.500 0 1

First born (1=yes) 0.248  0.432 0 1

Second born (1=yes) 0.277  0.448 0 1

Number of siblings 2.022 1.646 0 9 2
Poverty likelihood 47.6 19.6 0 100 51.8

Survey round indicator (1=data from 2017) 0.551  0.497 0 1

Note: 3,093 child observations. Stunting is defined as a HAZ below -2. Rainfall variables are the
natural log deviations of rainfall for a given cropping period in the 12 months before birth from the
historical average for that period. Cropping period definitions are defined as in Figure la. Birth
order and number of siblings are based on siblings currently living in the household; data on these
two variables are missing for 47 children. Poverty likelihood is the approximate percent chance that
a child’s household is below the Rwanda national poverty line based on the Rwanda poverty index
defined in Schreiner (2010).
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Table 1.2: Annual In Utero Rainfall Effects on Child Growth (Height-for-Age Z-Score)
Variables (1) (2) (3) (4)

In utero annual rainfall 1.220 0.997 1.038 1.546
(1.004)  (1.034)  (1.098)  (1.168)
In utero annual rainfall X child age in months —0.010 —0.003  —0.006  —0.016
(0.026)  (0.026)  (0.028)  (0.029)

Child is female (1=yes) 0.185*  0.185"*  0.181™*  0.180***
(0.056)  (0.056)  (0.058)  (0.058)
Child’s age in months —0.083*** —0.083*** —0.088*** —0.136™**
(0.009)  (0.009)  (0.010)  (0.041)
Child’s age in months squared 0.001**  0.001** 0.001**  0.001***
(0.000)  (0.000)  (0.000)  (0.000)
Birth month fixed effects? No Yes Yes Yes
Village fixed effects? No No Yes Yes
District-specific time trends? No No No Yes
Observations 3,093 3,093 3,093 3,093
R-squared 0.070 0.077 0.081 0.086
Number of villages 251 251 251 251

Note: Robust standard errors clustered at the village level in parentheses. The dependent variable is HAZ.
Rainfall variables are the natural log deviations of rainfall 12 months before birth from the historical
annual average. All specifications include a survey round indicator and an overall constant. *** p < 0.01.
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Table 1.3: Cropping Period-Specific In Utero Rainfall Effects
on Child Growth (Height-for-Age Z-Score)

Variables (1) (2) (3) (4)
In utero land preparation and 1.234* 1.405** 1.473* 2.560**
planting period rainfall (0.655) (0.671) (0.696) (0.818)
In utero mid-season rainfall 1.597 1.478* 1.611* 2.033"*
(0.603) (0.616) (0.660) (0.690)
In utero harvest period rainfall —-1.099* —1.191"* —1.322"* —1.556"**
(0.444) (0.445) (0.481) (0.500)
In utero land prep. and planting —0.021 —0.024 —0.026 —0.049**
pd. rainfall X child age in months  (0.017) (0.017) (0.017) (0.020)
In utero mid-season rainfall X —0.035** —0.031"" —0.036™ —0.044***
child age in months (0.015) (0.015) (0.017) (0.017)
In utero harvest period rainfall X 0.035"** 0.037** 0.040*** 0.047**
child age in months (0.012) (0.012) (0.013) (0.013)
Child is female (1=yes) 0.185*** 0.186** 0.185%* 0.185***
(0.055) (0.056) (0.057) (0.058)
Child’s age in months —0.072***  —0.072**  —0.075"* —0.128***
(0.010) (0.010) (0.011) (0.041)
Child’s age in months squared 0.001** 0.001** 0.001*** 0.001**
(0.000) (0.000) (0.000) (0.000)
Birth month fixed effects? No Yes Yes Yes
Village fixed effects? No No Yes Yes
District-specific time trends? No No No Yes
Observations 3,093 3,093 3,093 3,093
R-squared 0.076 0.083 0.088 0.096
Number of villages 251 251 251 251

Note: Robust standard errors clustered at the village level in parentheses. The dependent variable
is HAZ. Rainfall variables are the natural log deviations of rainfall for a given cropping period in
the 12 months before birth from the historical average for that period. All specifications include a
survey round indicator and an overall constant. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table 1.4: In Utero Rainfall Effects on Child Growth (Height-for-Age Z-Score)
by Demographic and Household Characteristics

Multiple Child Subsample

Relatively Relatively Sibling  Household Village
Female Male Poor Wealthy Controls Fixed Effects Fixed Effects

Variables (1) (2) (3) (4) (5) (6) (7)
In utero land preparation and planting 3.194*** 1.751 3.067** 2.080* 2.490*** 1.505 2.092**
period rainfall (1.080)  (1.219)  (1.093) (1.162) (0.811) (1.151) (0.997)
In utero mid-season rainfall 1.848* 2.307** 0.901 2.680™*  2.264™** 0.477 1.405
(0.977)  (1.046)  (1.007) (0.884) (0.690) (1.053) (0.933)
In utero harvest period rainfall —2.070"* —0.984 —1.403* —1.605"* —1.493*** —1.792** —1.676***
(0.658)  (0.760)  (0.655) (0.647) (0.500) (0.630) (0.586)
In utero land preparation and planting —0.056** —0.038 —0.050* —0.047* —0.049** —0.020 —0.028
period rainfall X child age in months ~ (0.026)  (0.029)  (0.026)  (0.028)  (0.019) (0.027) (0.024)
In utero mid-season rainfall —0.038 —0.056" —0.012 —0.064"* —0.051*** —0.005 —0.031
X child age in months (0.025)  (0.026)  (0.024) (0.022) (0.017) (0.027) (0.023)
In utero harvest period rainfall 0.056**  0.032  0.048"*  0.047*  0.045*** 0.052*** 0.057**
X child age in months (0.018)  (0.020)  (0.017) (0.018) (0.013) (0.018) (0.016)
Observations 1,539 1,546 1,570 1,503 3,046 1,943 1,943
R-squared 0.119 0.084 0.132 0.105 0.100 0.162 0.137
Number of villages 245 246 243 237 251 242 242

Note: Robust standard errors clustered at the village level in parentheses. Dependent variable is HAZ. Rainfall variables are the natural log
deviations of rainfall for a given cropping period in the 12 months before birth from the historical average for that period. Cols. (1) and (2)
split the sample by the child’s sex. Cols. (3) and (4) split the sample by households in the bottom and top 50th percentile, respectively, using
the Rwanda poverty index defined in Schreiner (2010). Col. (5) includes controls for first born, second born, and number of siblings. Cols. (6)
and (7) are restricted to the subsample of 883 households with two or more child observations. All specifications include age in months, age in
months squared, birth month fixed effects, district specific time trends, a survey round indicator, and an overall constant. All cols. except (1)
and (2) include a female indicator. All cols. except (6) include village fixed effects. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table 1.5: In Utero Rainfall Effects on Height-for-Age Z-Score:
Incorporating Minor Season and Rainfall in Other Periods

Season Definitions  Controlling
Minor Include Minor with: for Rainfall
Season Prod. Overlap Limited 12-24 Months
Main Subsample Overlap Before Birth

Variables (1) (2) (3) (4) (5)
In utero land preparation and planting period rainfall 2.560*** 2.794* 3.056**  2.433*** 1.808*
(0.818) (1.020) (0.960)  (0.935) (0.963)
In utero mid-season rainfall 2.033* 1.901* 2.376* 2507 1.900*
(0.690) (0.839) (0.685)  (0.715) (0.744)
In utero harvest period rainfall —1.556™*  —1.931™* —2.329** —2.107*** —1.1227
(0.500) (0.577) (0.772)  (0.740) (0.586)
In utero land preparation and planting period rainfall —0.049**  —0.050**  —0.062*** —0.053** —0.031
X child age in months (0.020) (0.023) (0.022)  (0.021) (0.023)
In utero mid-season rainfall X child age in months —0.044**  —0.041"  —0.052"** —0.056***  —0.041**

(0.017) (0.020) (0.017)  (0.018) (0.018)
In utero harvest period rainfall X child age in months 0.047*** 0.057** 0.069*  0.064*** 0.035**

(0.013)  (0.015)  (0.018)  (0.018) (0.015)

Observations 3,093 2,150 3,093 3,093 3,093
R-squared 0.096 0.105 0.099 0.097 0.098
Number of villages 251 249 251 251 251

Note: Robust standard errors clustered at the village level in parentheses. Dependent variable is HAZ. Rainfall variables are the natural
log deviations of rainfall for a given cropping period in the 12 months before birth from the historical average for that period. Col. (1)
repeats the preferred specification from Table 3 Col. (4). Col. (2) restricts the sample to children in households that farmed in the
minor season. Col. (3) assigns in utero rainfall in the minor season months of July, August, and September to multiple cropping periods
as shown in Figure la. Col. (4) assigns in utero rainfall in September to multiple cropping periods as shown in Figure 1b. Col. (5)
controls for the cropping period rainfall variables for the period 13-24 months before birth (none of which are significant). All
specifications include a female indicator, age in months, age in months squared, birth month fixed effects, village fixed effects, district
specific time trends, a survey round indicator, and an overall constant. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Figure 1.1: Rwanda’s Cropping Period Calendar Around Two Rainy Seasons —
Includes Minor Season

Long Rainy Season Short Rainy Season
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Legend: j Land Prep. and Planting : Mid-Season . Harvest

Note: Figure adapted from Famine Early Warning Systems Network (2017).
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Figure 1.2: Rwanda’s Cropping Period Calendar —
Includes Minor Season and Restricts Major Seasons

Long Rainy Season Short Rainy Season
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Note: Figure adapted from Famine Early Warning Systems Network (2017).

24



Frequency

300
|

200
1

100
|

Jan

Figure 1.3: Histogram of Child Birth Months

Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Birth Month

25

Dec



REFERENCES

26



REFERENCES

Abiona, O. (2017). Adverse Effects of Early Life Extreme Precipitation Shocks on Short-term
Health and Adulthood Welfare Outcomes. Review of Development Economics, 21(4),
1229-1254.

Aguilar, A.; & Vicarelli, M. (2011). El Nino and Mezican Children: Medium-Term Effects of
Early-Life Weather Shocks on Cognitive and Health Outcomes (Working Paper).

Akresh, R., Verwimp, P., & Bundervoet, T. (2011). Civil War, Crop Failure, and Child
Stunting in Rwanda. Economic Development and Cultural Change, 59(4), 777-810.

Almond, D., Currie, J., & Duque, V. (2017, January). Childhood Circumstances and Adult
Outcomes: Act I (NBER Working Paper No. 23017). National Bureau of Economic
Research. Cambridge, MA.

Barker, D. J. P. (1998). In Utero Programming of Chronic Disease. Clinical Science, 95(2),
115-128.

Barron, J., Rockstrom, J., Gichuki, F., & Hatibu, N. (2003). Dry Spell Analysis and Maize
Yields for Two Semi-Arid Locations in East Africa. Agricultural and Forest Meteo-
rology, 117(1-2), 23-37.

Brown, M. E. (2008). Famine Early Warning Systems and Remote Sensing Data. Berlin,
Springer.

Burgess, R., Deschenes, O., Donaldson, D., & Greenstone, M. (2017, April 20). Weather,
Climate Change, and Death in India.

Comfort, A. B. (2016). Long-Term Effect of In Utero Conditions on Maternal Survival Later
in Life: Evidence from Sub-Saharan Africa. Journal of Population Economics, 29(2),

493-527.

Cornwell, K., & Inder, B. (2015). Child Health and Rainfall in Early Life. The Journal of
Development Studies, 51(7), 865-880.

Doorenbos, J., & Kassam, A. (1979). Yield Response to Water (Agriculture Organization of
the United Nations (FAO) Irrigation and Drainage Paper No. 33). Rome, Italy.

Famine Early Warning Systems Network. (2018). Building Rainfall Assumptions for Scenario
Development: Guidance Document Number 2. Washington, D.C.

27



Funk, C., Hoell, A., Nicholson, S., Korecha, D., Galu, G., Artan, G., Teshome, F., Hailer-
mariam, K., Segele, Z., Harrison, L., Tadege, A., Atheru, Z., Pomposi, C., & Pedreros,
D. (2019). Examining the Potential Contributions of Extreme “Western V” Sea Sur-
face Temperatures to the March-June East African Drought. Bulletin of the American
Meteorological Society, 100(1), S55-S60.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Row-
land, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The Climate Hazards In-
frared Precipitation with Stations—A New Environmental Record for Monitoring
Extremes. Scientific Data, 2, 150066.

Groppo, V., & Kraehnert, K. (2016). Extreme Weather Events and Child Height: Evidence
from Mongolia. World Development, 86, 59-78.

HarvestChoice. (2010). Rainfall Variability and Crop Yield Potential. International Food
Policy Research Institute. Washington, D.C. and University of Minnesota, St. Paul,
MN. Retrieved January 16, 2019, from http://harvestchoice.org/node/2240

Hoddinott, J., & Kinsey, B. (2001). Child Growth in the Time of Drought. Oxzford Bulletin
of Economics and Statistics, 63(4), 409-436.

Kim, Y. S. (2010). The Impact of Rainfall on Early Child Health (Working Paper).

Kudamatsu, M., Persson, T., & Stromberg, D. (2012). Weather and Infant Mortality in
Africa (Working Paper).

Lehmann, J., Mempel, F., & Coumou, D. (2018). Increased Occurrence of Record-Wet and
Record-Dry Months Reflect Changes in Mean Rainfall. Geophysical Research Letters,
45(24), 13, 468-13, 476.

Maccini, S., & Yang, D. (2009). Under the Weather: Health, Schooling, and Economic Con-
sequences of Early-Life Rainfall. American Economic Review, 99(3), 1006—1026.

Miller, R. (2017). Childhood Health and Prenatal Exposure to Seasonal Food Scarcity in
Ethiopia. World Development, 99, 350-376.

Peters, C., Farris, J., Porter, M., Maredia, M. K., & Jin, S. (2015). Impact FEvaluation of
Scaling up Sweet Potato Through Agriculture and Nutrition (SUSTAIN) Project in
Rwanda: Baseline Report (Unpublished research report to SUSTAIN project, Inter-
national Potato Center, Nairobi, Kenya).

Rocha, R., & Soares, R. R. (2015). Water scarcity and birth outcomes in the Brazilian
semiarid. Journal of Development Economics, 112, 72-91.

28



Schreiner, M. (2010). Simple Poverty Scorecard Poverty-Assessment Tool Rwanda, 118. http:
/ /www .simplepovertyscorecard.com/RWA _2005_ENG.pdf

Shively, G. E. (2017). Infrastructure mitigates the sensitivity of child growth to local agri-
culture and rainfall in Nepal and Uganda. Proceedings of the National Academy of
Sciences, 114(5), 903-908.

Skoufias, E., Vinha, K., & Conroy, H. V. (2011, February). The impacts of climate variability
on welfare in rural Mezico (World Bank Working Paper No. 5555). The World Bank.

Steduto, P., Hsiao, T., Fereres, E., & Raes, D. (Eds.). (2012). Crop Yield Response to Water.
Rome, Italy, Food and Agriculture Organization of the United Nations.

Strauss, J., & Thomas, D. (1998). Health, Nutrition, and Economic Development. Journal
of Economic Literature, 36(2), 766-817.

Tiwari, S., Jacoby, H. G., & Skoufias, E. (2017). Monsoon Babies: Rainfall Shocks and Child
Nutrition in Nepal. Economic Development and Cultural Change, 65(2), 167-188.
https://doi.org/10.1086,/689308

Wooldridge, J. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.).
Cambridge, MA, MIT Press.

World Health Organization. (1997). WHO Global Database on Child Growth and Malnutri-
tion [Database]. World Health Organization. Geneva, Switzerland.

29



Chapter 2

Does Unobserved Land Quality Bias Separability Tests?
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I. Introduction

Modeling agricultural household decision making is integral to the design and evaluation of
development programs and policies. A key breakpoint in such models is whether agricultural
households make their production decisions separately from their consumption characteristics
and preferences. The existence of separability affects households’ production responses to
new opportunities and shocks and provides an indication of the completeness of markets
(Benjamin, 1992; Singh et al., 1986).

Numerous studies implicitly or explicitly assume separability of agricultural production
decisions (e.g. Conley & Udry, 2010; Foster & Rosenzweig, 1995; Sheahan et al., 2013; Suri,
2011). When production decisions are non-separable from consumption decisions, ignoring
this non-separability may vastly misrepresent household production decisions and the impli-
cations of policies (LaFave & Thomas, 2016; Singh et al., 1986). For instance, a separable
model cannot predict the preferential adoption of a new agricultural technology by larger
households with greater availability of family labor. Similarly, such models cannot account
for autarkic decision making based on member consumption preferences. The sensitivity
of models of agricultural household behavior to this hypothesis begets the importance of
accurate separability tests.

This paper addresses a major identification challenge for tests of this separability hypothesis—
the potential endogeneity of household demographic characteristics with unobserved land
quality.! Using a unique plot-panel dataset, I test the separability of rural Rwandan agri-
cultural households’ production decisions while controlling for the endogeneity of household
demographic characteristics with land quality. I then use simulations to assess the suscepti-
bility of standard tests based on household fixed effects to ignoring unobserved heterogeneity

in land quality.

IThis study defines land quality in the broadest sense to include all land characteristics which affect
agricultural productivity (e.g. soil type, nutrients, organic matter content, slope, etc.).
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The difficulty of controlling for land quality and its likely correlation with household
demographic characteristics has long been a key identification challenge in the separability
literature (Benjamin, 1992; Udry, 1999). Early, seminal work based on cross-sectional data
relies on observable proxies for land quality and tends to fail to reject separability (Benjamin,
1992; Pitt & Rosenzweig, 1986). More recent work relies on household or farm fixed effects
and tends to come to the opposite conclusion (e.g. Dillon et al., 2019; Kopper, 2018; LaFave
& Thomas, 2016).

This paper makes two main contributions to this literature. First, using a recent dataset
from Rwanda, I control for potentially confounding unobserved land characteristics by lever-
aging intra-plot variability in agricultural input demand. Common tests of separability using
household panel data control for factors fixed at the household or farm level, such as the
quality of household decision making. These tests, however, are threatened by the likely
correlation of household characteristics with land quality and other unobserved land char-
acteristics when farmland is not static across survey waves. I find that the non-separability
result in Rwanda is robust to controlling for land quality and other unobserved time invari-
ant plot characteristics. This emphasizes the need to integrate consumption characteristics
into models of production decision making and support programs and policies designed to
alleviate market failures in agricultural settings.

Second, I use simulations to examine a future with well-functioning markets where the
separability hypothesis holds, but consumption traits are correlated with unobserved plot
characteristics. Using these simulated datasets, I show that separability tests based on
household fixed effects are prone to bias, and that ignoring unobserved land quality can lead
to false rejections of separability. Furthermore, this bias is exacerbated as the land market
becomes more active.

This relationship to land market activity is particularly important given the close link be-

tween the separability of agricultural household behavior and the existence of well-functioning
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markets (Benjamin, 1992; Singh et al., 1986). Separability tests are more useful in contexts
with an active land market as this increases the likelihood that a separable agricultural
household model (AHM) may accurately describe household production responses; the sim-
ulation results, however, suggest that standard tests based on household panel data are likely
to perform worse in these contexts.

These findings highlight the need for future research to incorporate more robust means
of controlling for unobserved land quality, such as plot panel data which enables the use
of plot fixed effects. In areas with functioning land markets where some households change
operated land area between survey waves, inadequate control of land quality in reduced form
separability tests based on household fixed effects could drive biased inference on agricultural
household decision making.

The remainder of the paper is structured as follows. In the first and second sections, I
describe the theoretical framework underlying the AHM and empirical strategy underpin-
ning reduced-form separability tests, with a focus on plot-level characteristics. In the third
and fourth sections, I describe the rural Rwandan plot-panel dataset used in the empirical
application and present the Rwanda results. In the fifth section, I simulate data to illustrate
the potential bias from unobserved plot-characteristics and how it is exacerbated by shifts
in cultivated land between periods. I conclude in the final section with a summary of the

key findings and implications.

II. Theoretical Model

In this section, I illustrate the intuition behind reduced form separability tests and highlight
the role of unobserved land quality. I do so by incorporating unobserved land quality a la
Udry (1999) into the LaFave and Thomas (2016) and Dillon et al. (2019) dynamic extensions
of the static AHM in Singh et al. (1986).
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A household’s objective is to maximize expected discounted utility as follows:

o0

max E Z/Bt_lU(thXataxlt; Dy, j1t) (2.1)

t=1

where household utility in time period ¢ is captured by a time separable, concave, strictly
increasing utility function, U(+), over a vector of market goods, Xum¢, a vector of agricultural
goods, Xa¢, and leisure, x;;. The utility derived from these goods differs according to house-
hold consumption preferences observed by the analyst (e.g. demographic characteristics),
D¢, and a composite of characteristics unobserved by the analyst, u,. Utility derived in
future time periods is discounted at the rate 5t

The household’s budget constraint in period t is:

Pmt - Xmt + Pat - Xat + Wiy + Wi = w by + m + W (2.2)

]-+Tt

where the prices of the market goods, agricultural goods, and leisure are pmyg, Pat, and wy
respectively, W, is wealth in the next period, which is negative if the household is in debt
and positive otherwise, 7; is the interest rate for borrowing or lending, Fj is the household’s
total time endowment, and m; is total farm profit.

Total farm profit, m;, is determined by the household’s agricultural input choices and is

the sum of profit across all the household’s plots as follows:

Ny
Ty = qutf([’ia A, ZitQ Ut) - thi - TtAi — Pzt - Zi (2-3)

=1

where N, is the number of plots the household farms in the given period. The farm-
production technology, f(-), determines agricultural output on plot i and is a function of
labor input, L!, quality-adjusted plot size, gi, a vector of other inputs, Zi, and an exogenous,

community-specific shock, v;. The agricultural output price, wage rate, land rental rate, and

34



other input prices are given by p,, wy, 14, and py respectively.?

Quality-adjusted plot size, Zi, reflects that plots have varying qualities which influence
their productivities. Two plots of the same size may produce different outputs depending
on the quality of each plot, ceteris paribus. In determining the productivity of land input,

the size of each plot is adjusted to account for quality differences as follows:

A'=0"A" Yie{l,2, ... ,N;} (2.4)

where 6" and A’ are the quality and size of plot i respectively.
The key characteristic of this AHM problem is that farm input decisions are indepen-
dent of household consumption preferences. For instance, the first order condition for labor

demand on a given plot is:
Of (Li, A', Z; vy)
Pat oL

= wy (2.5)

This optimality condition is independent of household demographic characteristics (and other
characteristics which only affect consumption decisions). Thus, in the separable AHM, pro-
duction decisions are based solely on profit maximization. Optimal household labor demand,
as well as other input demands, are invariant to changes in household preferences or demo-
graphic characteristics. Reduced form tests of the separability hypothesis rely on this result
to assess whether production decisions are consistent with the separable AHM.

The optimality condition in equation 2.5 does, however, depend on plot characteristics.
For example, the analyst may observe plot size, A%, but not plot quality, #¢. This could be
problematic for the reduced form separability test if household demographic characteristics,
Dy, are correlated with these unobserved plot quality characteristics (e.g. if larger households
tend to have better quality land). In the next section, I assess the implications of this problem

for empirical reduced form separability tests.

2For ease of exposition, this model focuses on a single, land-based agricultural output. The separability
result extends to multiple outputs (Singh et al., 1986).
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III. Empirical Strategy

Popularized in LaFave and Thomas (2016), the current standard reduced form test of the
separability hypothesis applies the household fixed effects estimator to total farm labor
demand as follows:

InLent = K 4 0Deng + BXeht + Net + Mh + €cne (2.6)

where L.y is the total person-days of labor used during an agricultural season in year ¢ by
household A in community ¢, k is the overall intercept, Dy is a vector of household demo-
graphic characteristics, Xept is a vector of other observed characteristics which affect labor
demand and are potentially correlated with Depe, and e is the idiosyncratic error.® The
null hypothesis of interest is 6 = 0 as this implies that household demographic characteris-
tics do not influence labor input demand and the separability hypothesis cannot be rejected
(Benjamin, 1992; LaFave & Thomas, 2016).

The community-time fixed effects, 7., exploit variation within a community in a given
year to control for any time varying community-level characteristics which may be correlated
with household demographic characteristics. For example, community-wide shocks and prices
(LaFave & Thomas, 2016).

The household fixed effects, n,, exploit within-household variability in labor demand
to allow household demographics to be arbitrarily correlated with time invariant household
characteristics (both observed and unobserved). This is an important improvement over early
studies of separability which relied on observed variables to control for farm characteristics
and other correlates to household demographic characteristics (Benjamin, 1992; LaFave &
Thomas, 2016).

The specification in equation 2.6, however, does not control for plot-level unobservables

which may be correlated with household demographics within a particular community. For

3X cnt controls for time varying farm size and characteristics that reflect differences in farmer experience,
such as household head characteristics.
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example, soil quality, an important factor in input demand, is typically unobserved and
likely correlated with household size and other demographic characteristics (Kopper, 2018;
Udry, 1999). Failure to adequately control for such plot-level characteristics could result in
spurious correlation of D¢y and €., biasing the test of separability.

Given these plot-specific characteristics and the aggregated household-level input demand

in equation 2.6, the idiosyncratic error can be approximated as follows:

N
€cht = Z i + Vent (2.7)
i=1

where 7; are time invariant plot-level unobservables, N; is the number of plots at time ¢,
and v, is the remaining composite idiosyncratic error. If a household does not change its
farmed plots between survey waves, then Zf\il 7; will be subsumed by n;,. Thus, if none of the
sampled households change the composition of their farmed land between survey waves, then
the separability test given in equation 2.6 will control for unobserved plot characteristics.

If some portion of the households in the sample alter their farmed landholdings between
survey waves, whether through newly rented in, rented out, bought, or sold plots, then the
aggregate sum of time invariant plot characteristics is no longer constant between survey
waves and will not be differenced out by household fixed effects. In this case, a correlation
between household demographic characteristics and time invariant plot characteristics may
cause a rejection of the null hypothesis of separability even if separability holds.

This threat to identification is addressed by plot fixed effects:*

InLepir = k& + 6Dent + FXent + et + 15 + €cnit (2.8)

4This identification strategy is contingent on collecting repeated labor use data for the same plot operated
by the same household. If the land market is extremely volatile in a particular context and nearly all
households change all of their farmed plots over the study time period, then the plot fixed effects approach
is infeasible.
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where ITChVit is the total person-days of labor used during an agricultural season of year ¢ on
plot i of household A in community ¢, n; are plot fixed effects, and €.;; is the idiosyncratic
error for plot 4.°

By using plot panel data with plot fixed effects, any unobserved time invariant plot
characteristics correlated with the household demographic characteristics are differenced
away. Similarly, as time invariant household and community characteristics are fixed over
time for a given plot, these characteristics are also subsumed by the plot fixed effects (Udry,
1999).

Importantly, whether a plot is observed in the plot panel or not can be arbitrarily cor-
related with Dent, Xent, e, and 7; without affecting the consistency of the test in equation
2.8; for instance, a household’s decision to farm (or not farm) a given plot in a particular
period can be correlated with their demographic characteristics in D¢y, a community-level
shock, or time invariant plot or household characteristics without affecting the consistent

estimation of § (Wooldridge, 2010, pg. 829).5

IV. Data

I assess separability in Rwanda using a two-round, panel survey conducted in Rwanda in
2014 and 2017. The initial survey wave used a three-stage cluster sampling method within
Rwanda’s Northern, Southern, and Eastern provinces where the sector, village, and house-
hold were the primary, secondary, and tertiary sampling units respectively. The survey is
not representative of Rwanda as a whole; rather, the sampling frame focused on promoting

food security and nutrition in rural areas and targeted households with a pregnant woman

5Separable labor demand on a given plot is a function of plot size which is controlled for via 7;; therefore,
Xcht omits total farm size in this specification.

6Let s; = [$i1, 8i2, - - -, SiT] where s;; is an indicator variable equal to one if a given plot i was observed
in period ¢t and T is the number of survey waves. Similarly, denote the elements in equation 2.8 as Zj =
[Dents Xent, Net] and Z; = [Zia, Zia, - - - , Zit|. Estimation of § is consistent if F(ecnit | i, Zi,7:) = 0V ¢ and
the outer product of the covariate matrix is nonsingular. This requires s; to be uncorrelated with €.+ after
controlling for [Z;, 7;], but does not restrict the relationship between s; and [Z;, n;]. Wooldridge (2010, pg.
829) provides a formal proof.
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or child under five. The survey collected detailed plot-level agricultural information as well
as household demographic information.

This analysis focuses on total plot-specific labor demand during the major February to
June agricultural season. Total labor demand is measured as the sum of the labor days of
family and hired labor for land preparation, planting, and field management after planting.
Harvest labor is excluded as harvest labor requirements are typically proportional to yield
rather than being a production choice variable. Child labor days, defined as labor provided
by household members under 15 years old, are scaled by 0.5 to reflect productivity differences
relative to adult labor (Dillon & Barrett, 2017).

During the 2017 survey round, plots were linked to the 2014 survey round by the main
household member responsible for agricultural decisions. After describing a given 2017 plot,
the respondent was read a list of the household’s unique plot descriptions and plot sizes
reported in the 2014 survey round. The respondent then either linked the given 2017 plot
to a unique plot description provided in the 2014 round, reported the 2017 plot to be a
new plot, or reported that they did not know and could not identify a match. Using this
method, approximately 51% of plots observed in 2017 were successfully linked back to 2014
plot observations.”

Table 2.1 provides household level characteristics for the 1,494 households with a least
one plot in the plot panel subsample relative to the full analytical sample of 1,800 house-
holds. Although observed characteristics are similar between groups and a vast majority of
households have at least one plot in the plot panel sample, I restrict the household level
separability analysis to the subsample of 1,494 households with at least one plot in the plot

panel sample. This reduces concerns that households without a plot in the plot panel may

"Respondent matched plots above the 95th percentile for the absolute value of plot size difference between
survey waves are trimmed from the plot panel subsample. The remaining 95% of matched plots have a mean
absolute plot size difference between survey waves of 0.098 hectares with a 0.998 correlation in plot size
between survey waves. The trimmed plots have an average absolute plot size difference between survey
waves of 16.407 hectares and a -0.057 correlation in plot size between survey waves, suggesting that these
plots were erroneously matched.
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follow a markedly different decision framework.

Not all plots farmed by these 1,494 households were observed in both survey waves.
Table 2.2 provides summary statistics for the 4,580 plot-wave observations in the plot panel
subsample relative to the full sample of 7,303 plot-wave observations. As the plot panel
plots are not a random subset of each household’s farmed plots, they are unlikely to be
representative of households’ total landholdings. For example, plots in the plot panel sample
are smaller on average. As discussed previously, consistent estimation of the separability
test based on the plot fixed effects estimator is not reliant on balanced plot characteristics

(Wooldridge, 2010, pg. 829).

V. Results

Separability tests based on the household fixed effects specification in equation 2.6 reject
the null hypothesis of separability in both the parsimonious regression of the natural log
of household size and the expanded regression with shares of household members by age
group (Table 2.3 columns 1 and 2). The validity of these findings is reliant on the exogeneity
of household demographic characteristics given controls for the natural log of farmed land
area, community-wide time varying shocks, and unobserved time invariant household or farm
specific heterogeneity. These household fixed effects results are robust to taking into account
potential productivity differences in child household members (Appendix Table 2.7 columns
1 and 2), controlling for a land quality proxy (Appendix Table 2.8 columns 3 and 4), and to
including the households without a plot in the plot panel sample (Appendix Table 2.9).
Separability tests based on the plot fixed effects specification in equation 2.8 suggest that
the non-separability result in this sample of Rwandan households is also robust to controlling
for unobserved land quality and other unobserved time invariant plot characteristics (Table
2.3 columns 3 and 4). While the parsimonious plot fixed effects specification fails to reject

the null of separability, separability is rejected once the specification is expanded to include
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shares of household members by age group. These plot fixed effects results are robust to
taking into account potential productivity differences in child household members (Appendix
Table 2.7 columns 3 and 4). The findings suggest that this sample of small-scale, agricultural
households integrate demographic characteristics into their production decisions.

Restricting the household fixed effects specification to only plots in the plot panel sample
provides another useful check on these results. Unlike the summation of labor demand over
all plots farmed by a household in a given year, summing household labor demand over only
plots in the plot panel subsample forces land quality and other unobserved time-invariant
land characteristics to remain fixed at the household level; this enables the household fixed
effects specification to control for unobserved land quality in a similar manner to the plot
fixed effect specification. The results, presented in Table 2.4, are consistent with those
based on plot fixed ef