A SPATIO-TEMPORAL MODEL FOR WHITE MATTER
TRACTOGRAPHY IN DIFFUSION TENSOR IMAGING

By

Juna Goo

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Statistics — Doctor of Philosophy

2020



ABSTRACT

A SPATIO-TEMPORAL MODEL FOR WHITE MATTER TRACTOGRAPHY IN
DIFFUSION TENSOR IMAGING

By
Juna Goo

This dissertation focuses on the theoretical and applied aspects of a spatio-temporal
modeling for the reconstruction of in-vivo fiber tracts in white matter when a single brain is
scanned with magnetic resonance imaging (MRI) on several occasions. The objective of this
research is twofold: one is how to estimate the spatial trajectory of a nerve fiber bundle at a
given time point in the presence of measurement noise and the other is how to incorporate
a progressive deterioration of brain connectivity into a hypothesis test.

This dissertation leverages the spatio-temporal behavior of water diffusion in a region
of the brain where the estimation of fiber trajectories is made from smoothing the time-
varying diffusion tensor field via the Nadaraya-Watson type kernel regression estimator to
its eigenvector field. The estimated fiber pathway takes the form of confidence ellipsoids
given the estimates of mean and covariance functions.

Furthermore, this dissertation proposes a hypothesis test in which the null hypothesis
states that true fiber trajectories remain the same over a certain time interval. This null
hypothesis indicates no substantial pathological changes of fiber pathways in that region of
the brain during the observed time period. The proposed test statistic is shown to follow
the limiting chi-square distribution under the null hypothesis. The power of the test is
illustrated via Monte Carlo simulations. Lastly, this dissertation demonstrates the test can
also be applied to a real longitudinal DTT study of a single brain repeatedly measured across

time.
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Chapter 1

Introduction

In the mid 1980s and early 1990s, diffusion tensor imaging (DTI) emerged from conventional
magnetic resonance imaging (MRI) with the concept of microscopic Gaussian diffusion of
water molecules within brain tissue. DTT focuses on the movement of water molecules within
brain tissue (in particular, white matter containing mainly nerve fibers) that diffuses with
different rates depending on the angle between orientation of fiber tracts and magnetic field
gradient directions (spatial variation in a magnetic field gradient). Since DTI generates
a collection of images obtained along at least six magnetic field gradient directions, DTI
characterizes the diffusion of water molecules within each voxel as a 3 X 3 symmetric positive

definite diffusion tensor D in the x,y, and z directions such as

Dyy l)my Dy

D= 1Dy Dy, Dy

Dy l)zy l)zz_

In the presence of a single fiber bundle (uniformly oriented) within a voxel, DTT identifies
the shape of the diffusion tensor D as an ellipsoid where the three orthogonal eigenvectors of
the diffusion tensor are used as principal axes of the ellipsoid where lengths are scaled by the
corresponding three positive eigenvalues as diffusivities in the direction of each eigenvector

as illustrated in Figure 1.1. For an isotropic diffusion such as Brownian motion (the random



motion of water molecules without any obstacles), the diffusion tensor is visualized as a
sphere since diffusion is the same in all directions, resulting in a single diffusion coefficient.
For details see the pioneering papers by Le Bihan et al. (1986) and Basser et al. (1994).
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Figure 1.1: A geometric representation of the 3 x 3 diffusion tensor D in DTI with positive
eigenvalues A1, Ao and A3 in descending order

As a means of quantifying microscopic anisotropy of the diffusion tensor, there are scalar
DTI measures such as the fractional anisotropy (FA; the normalized standard deviation of
three eigenvalues), the mean diffusivity (MD; the average of three eigenvalues), the axial
diffusivity (AD; the largest eigenvalue), and the radial diffusivity (RD; the average of two
smaller eigenvalues perpendicular to the dominant eigenvector) as proposed by Basser (1995)
and Pierpaoli and Basser (1996). These scalar measures are often used for comparisons in a
region of interest (ROI) and also for visualization of the degree of anisotropic diffusivities in
brain images.

Furthermore, DTI is used to reconstruct in-vivo fiber tracts in white matter, which is
referred to as white matter fiber tractography. Over the past 20 years, many studies using
DTI have been conducted to develop the virtual map of fiber pathways in white matter. Such
DTI-based fiber tractography has been a popular technique for clinicians and researchers to

access the structure and connectivity of the brain. See relevant papers for white matter fiber



tractography by Mori and van Zijl (2002), Wakana et al. (2004), Assaf and Basser (2005),
and Behrens et al. (2007).

However, DTI has also been criticized for its low spatial resolution associated with its
inherent high noise level and its inability to distinguish complex fiber configurations such as
crossing, branching or kissing fibers. Since DTT is based on the assumption of a unimodal
anisotropic Gaussian distribution, DT is not a proper technique when multiple fiber bundles
are present within a voxel. In the late 1990s and early 2000s, an advanced MRI technique
called high angular resolution diffusion imaging (HARDI) was introduced to overcome the
limitations of DTI. Compared to six non-collinear gradient directions used in DTI, HARDI
imposes diffusion-sensitizing gradients in a large number of gradient directions. HARDI
enables us to model multimodal diffusion, which reflects heterogenous fiber orientations in
white matter, with high image resolution using a high-order tensor (DTI uses a second-order
tensor). However, HARDI has longer acquisition time and higher computational complexity
compared to DTI. Detailed surveys can be found in Assemlal et al. (2011) and Jones et al.
(2013).

In this dissertation, we focus on an early application of statistical perspective in DTI
by Koltchinskii et al. (2007). Koltchinskii et al. (2007) identified the problem of tracing
fiber trajectories that were measured with random errors. They sought a solution to the
Cauchy problem for the first-order ordinary differential equation (ODE) with an initial value

xg=2x(0) € X
dx(s)
ds

=v(z(s)), s >0,

where v was defined as a vector field in a bounded open set X C R? and was observed with

additive random noise. Their methodology used the Nadaraya-Watson kernel regression



estimate of the vector field and then plugged the value into the ODE to estimate true fiber
trajectory. Later Carmichael and Sakhanenko (2015, 2016) extended the scope of their
methodology to include a tensor field in DTI and HARDI, respectively.

This dissertation further extends the statistical theory of white matter fiber tractography
to the realm of a time-dependent tensor field when a brain is scanned repeatedly over the
years. We aim to establish statistical reasoning with theoretical proofs in DTI-based tractog-
raphy using both spatial and temporal information, and to apply theoretical results where
brain tissue is progressively degenerative and connectivity shrinks over time. To be specific,
we address an estimation of the fiber spatial trajectory at a given time point in the presence
of noisy measurements arising from biological processes within living tissue and measurement
errors during image acquisitions. We also propose a statistical framework to incorporate a
patient’s progressive loss of brain connectivity, such as that caused by Alzheimer’s disease,
into the model.

In Chapter 2, we propose an estimation procedure which is extended to a time-dependent
tensor field model in DTI. Our estimators are for the true fiber spatial trajectory at a fixed
time point and the rate of change in true fiber trajectory with respect to time. We investigate
the asymptotic behavior of these estimators via weak convergence of stochastic processes.
Based on the asymptotic properties of the estimators, we provide a hypothesis test involving
the null hypothesis that the true fiber pathways remain the same over time, assuming a single
oriented fiber bundle exists within a voxel. In Chapter 3, we provide pseudo algorithms for
main theorems. In Chapter 4, Monte Carlo simulations and a real longitudinal DTI study
with a single healthy brain are presented. In Chapter 5, the limitations of this dissertation
and the directions for future research are addressed. In Chapter 6, detailed proofs of main

theorems are provided.



Chapter 2

Estimation and Hypothesis Test

2.1 True parameters

Let u = [z] 29 ... xg4 t]T, where = [x1 9 ... xd]T € X, X is a d dimensional compact

hyperrectangle in R? and ¢ € [0,7], T > 0. Let G = X x [0,T] for simplicity. At a fixed

u € G, suppose D(u) is a d X d symmetric and positive definite tensor. Due to symmetry, the

upper triangular elements of D(u),u € G can be written as a d(d; 1) x 1 vector as follows:

.
D(u) = |Dy1(u) Dig(u) ... Dig(u) Daa(u) Dag(u) ... Dog(u) ... Dgg(u)

In the application of DTI, u is a value on the hypothetical d + 1 dimensional grid given the
parameter time ¢ and D(u) is a second-order diffusion tensor at the value u. In practice,
d = 3. We assume that D € CQ(Q,Rd(‘Hl)/ 2), which is twice continuously differentiable
on G. Note that its continuous differentiability implies locally Lipschitz continuity, and it
implies uniformly Lipschitz continuity on any compact set. D(u) is further assumed to have
a simple maximal eigenvalue at each u € G since multiple eigenvalues, in general, are non-
differentiable. Therefore, the maximal eigenvalue and the corresponding eigenvector are also
of the class 02(9 , Rd), and hence they belong to Lipschitz functions of x € X uniformly in
t € [0,7T]. For each u € G, we denote A(D(u)) as the largest eigenvalue of D(u) and v(D(u))

is the corresponding eigenvector which is normalized to unit length.



Then, there exists a unique solution to the first-order ordinary differential equation

(ODE) with the parameter time t € [0, 7] and the initial value such that

%x(s,t) =v(D(z(s,t),t)), s €[0,5], z(0,t) = xq, (2.1)

starting at a time-invariant fixed location zg € X. Equivalently, the integral equation form

of this solution is

2(5,8) = 20 + /Osv(p(x<g,t),t>)dg, s€0,8],t€0,T],

and its partial derivative with respect to time t, i.e., %x(s, t), exists. References on ODEs
can be found in Coddington and Levinson (1955).

For s € [0, 5],t € [0,T],

z(s,t + At) — z(s, )

—a(s,t) = lim

ot At—0 At
. Su(D(x(&,t 4+ At), t + At)) — v(D(z(&, 1), t))d{f
At—0 Jg At

by the dominated convergence theorem

:/s - U(D(gg(g,wAt),HAt))—v(D(aﬁ(&t),t))d5
0 At—0 At
S d
- | Goptate .o
= [ {5 Dl 0.0) 2 Dlae. ), 1) i)
o LoD " O o Y



More precisely, the true fiber trajectory is defined as a tangent to the dominant eigenvec-
tor of the diffusion tensor at each point s at the given parameter time t. The rest of Chapter
2 consists of the following parts: (i) we estimate both the true fiber trajectory z(s,t) and
its rate of change with respect to time ¢ holding s constant, i.e., %m(s, t) in Section 2.2. (ii)
we investigate the asymptotic behavior of the corresponding estimators in Section 2.3 and
Section 2.4. In Section 2.5, (iii) we construct a statistical test for the null hypothesis: the
true fiber trajectories remain the same over time, that is, %x(s, t) = 04. Furthermore, (iv)
we study possible alternatives that specify the rate of change in the true fiber trajectories

across time.

2.2 Nadaraya-Watson type kernel estimator

At u € G, we first define the component of a N x M response tensor Y (u) where N is the
number of magnetic field gradient directions and M is the number of repetitions at each visit
for a MRI scan. For i =1,2,..., N and j = 1,2,..., M, the component in the ith row and
jth column of the response tensor Y (u),u € G is defined as follows:

¥i;(u) = log ( B

where b; ; is the ith spatial direction at the jth repetition, A(u, b;;) is the signal intensity (echo
amplitude) measured at b;; and A(u,0) is the signal intensity measured without magnetic
field gradient directions. Details can be found in Basser and Pierpaoli (1998).

Then we suggest the following fixed linear model to estimate the unknown diffusion tensor

D(u),u € G:



Y (u) = BD(u)1), + 52 (u)E, (2.2)
N ~ -

ﬁ;(:ed noise
, d(d+1) : .
where B is a known full rank N x —==— tensor determined from the set of N magnetic
. . . o i . d(d+1)
field gradient directions {b1,b2,...,by} applied during image acquisition, D is a =—— x 1

vector representing the true diffusion tensor, 1;; is a M x 1 vector with all elements being
1, ¥ is a N x N symmetric positive definite tensor and = is a N x M random noise tensor
which does not depend on u € G. We assume = has zero mean tensor and finite moments.
Additionally, for all j =1,...,M,1 < k,l < N, E[E},5;;] = 1 for k =, and 0 otherwise.

We denote U;,i = 1,2, ...,n as observations on the non-random grid of discrete locations
Xj’s and time points T}’s for j = 1,2,...,ng,k = 1,2,...,n¢, and n = ngny. However,
for a sufficiently large number of n, U;’s are assumed to be i.i.d. uniformly distributed in
G. We further assume the independence of X j’s and 7}.’s. Our rationale for the uniformly
distributed 7} ’s is based on the inverse transform method that can convert time points 7}.’s,
which are recorded as the calendar dates, into uniformly distributed random numbers in
0, 1] if their cumulative distribution function (CDF) is known.

Given U; for i = 1,2, ..., n, the response tensor Y is known, however, the diffusion tensor
D is not directly observable in DT acquisitions. Since the well-known Stejskal and Tanner
equation (1965), ordinary linear least squares (OLS), weighted linear least squares (WLS),
and nonlinear least squares (NLS) have been used as common approaches to estimate the
underlying diffusion tensor. In this dissertation, we focus on the OLS estimates of D(U;),
1=1,2,...,n and we denote them by E(Ui),i =1,2,...,n. Then E(Ui),i =1,2,...,n can

be divided into the diffusion tensor and the random noise tensor at U;,i = 1,2,... n.



D(U;) = —(B'B)'BTY(U)1y

(B"B)"'BT(BD(U)1}; + =V 2(U)E) 13

o |- E|-

(Ui) + (),

where I'(U;) = %(BTB)_lBTZlm(Ui)EZ‘lM,i =1,2,...,n are i.i.d. d(—d}l) x 1 random
noise tensors being uncorrelated to D(U;). Note that E[I'(U;)] = 0,7 = 1,2,...,n due to
EE]=0,i=1,2,...,n.

It is of significance to link discrete estimates with continuous realization of fiber trajec-
tory by imposing smoothness. Thus, we adopt the Nadaraya-Watson type kernel estimator

(NWE) as a locally weighted average of the OLS estimates from n observations for any u € G

such that

Dn(u) = nh%ﬂ 2; DK (* ;nUz> (2.3)

where K is a measurable kernel function on R+ satisfying common conditions (K1)-(K3)
as well as one of (K4) or (K5) bandwidth condition for a particular purpose of interest:

(K1) Standard assumptions including

/ K(u)du = 1,/ uK(u)du =0, sup |K(u)|l< oo,/ lu T u| K (v)du < co.
RA+1 RA+1 weRd+1 RA+1

(K2) K is non-negative and its partial derivatives are continuous on its bounded support.
(K3) For the class of the functions K = {K((u—)/hn) : hy > 0,u € R} we assume the
uniform entropy condition on K as follows: for some C' > 0 and v > 0, N(¢,K) < Ce™",0 <

e < 1, where N(g, K, Lo(Q)) for a probability measure @ is the smallest number of balls of



radius € in L9(Q) needed to cover K. An example of such kernel function that satisfies from
(K1) to (K3) is a d + 1 dimensional Gaussian kernel with the zero mean function and the

identity covariance function, i.e.,
K(u) = (27r)*(d+1)/2 exp (—0.5u " u),u € R4TL,

Throughout this dissertation, we consider the above standard Gaussian kernel as a main
example of the kernel K. The following specific bandwidth condition either (K4) or (K5) is
satisfied depending on the purpose of its use.

(K4) For the fiber estimation and the test on the null hypothesis that %x(s,t) = 0g4, the

bandwidth h,, satisfies the following regularity conditions:

hd—l—l log h
i — 00, and—‘Og 1l
[log I | loglogn

— OO as n — oQ.
nhg—l-ll

— (1 > 0 as n — 0o, where (3] is a known fixed number.

(K5) For the estimation of fiber’s first partial derivatives, the bandwidth h,, satisfies the

following regularity conditions:

d+3 log h
hn—>0,nhn—>oo,nn %m,andM%ooasn%oo.
[log hy| loglogn

nhg+6 — P2 > 0 as n — oo, where 9 is a known fixed number.

From estimated diffusion tensor ﬁn(u), u € G, we compute its largest eigenvalue )\(ZA)n(u))
and its corresponding normalized eigenvector v(ﬁn(u)) Finally, the true trajectory given

the parameter time ¢ € [0,7] in (2.1) is estimated by a plug-in estimator Xy, (s, ) such that

10



~

5o n(s,1) = v(Dp(Xn(s,1),1)), s €[0,5], Xn(0,t) = o, (2.4)

where zg € X. This is equivalent to

~

Xn(s,t) = 20 + /OSU(Bn()?n(g,tm)dg, s€[0,5],t € [0, 7).

Consecutively, this procedure can be carried further to estimate the partial derivative of

~

Xn(s,t) with respect to ¢ at a fixed s € [0, S] by plugging in as follows:

Furthermore, when we assume a regular grid for X; and spatial local continuity for X (u)
inx € X, X(u) for any u € G can be estimated in two steps. First, we use a local spatial

averaging procedure. For ¢ =1,2,....,nand 7 =1,2,... ng,,

S (U;) = . > (V) - BDWy)) (Y(Uy) - BD(Uy)) ',

where N(z) is the set of all neighbors of a point x € X. In case of d = 3, the cardinality of

the set N(x) is 26. Second, we use the NWE such that

~

1 LS u—U;
En(u) = I > Er,n(Ui)K< I Z)- (2.5)
noi=1

11



2.3 Uniform consistency of the estimators

In the following four lemmas, we show the strong consistency of the estimators. These
lemmas are used to prove major theorems in Section 2.4 and Section 2.5. Without loss of
generality, we consider G5 = [—J,1 + (5]d+1 for some 0 > 0 assuming U;,i = 1,2,...,n are
i.i.d. uniformly distributed in [0, 1]d+1, ie, X =0, 1}d and T' = 1. Throughout this paper,
¢, c1,09,... represent constants. We refer to Giné and Guillou (2002), Einmahl and Mason
(2005) and Blondin (2007) for conditions on the bandwidth in uniform consistency.

nhd+1

n Ilog hn‘
[log hn|

loglogn

Lemma 2.3.1. Suppose hy, — 0,nh, — oo, — 00, and — 00 as n — Q.

Then we have

sup ﬁn(u) — D(u)| — 0, in probability as n — oo.
u€Gs

Proof. Note that

sup [ Du(w) = D(w)| < sup [E[Dy(w)] - D(u)
u6g5

E[Dy(u)] = /R LD(M)K(“;nw)dw

hn

N /Rd-f'l D(u — hpp) K (¢)dip, by letting ¢ =

= [ 2 {P@) + Dl =) = D)} ()

by Taylor’s theorem in a sufficiently small neighborhood of D(u)

2
=+ [ L+ BT P s o) b,

12



where {%D(u)

is a Jacobian matrix of D evaluated at u = wuy, i.e.
u=u }d(d+1) x (d+1 0 ’

0D1q 0D11  0Dqq
Jry ~° Odxg ot
{500} -
ou " u=u d‘(d;—l)x(d—i—l)
| Oz1 7 dz g ot | u=u

52 . . . . .
and {—D U } is the corresponding 3-dimensional hypermatrix
a2 P u=ug S (a+1)x XL s (411 ponEns P

(i.e., a third-order tensor) such that

(0?py;  9’pyy 9°Dy |
) 0x dx10z,; Ox 0t
0
{_QD(U) } d(d+1) =
ou u=uqt (d+1)x —==—=x(d+1)
92Dy; 92Dy; 92Dy
(°Dgy  9*Dgq 9°Dyy]
8:8% 8x18xd 8x18t
*Dyg  9*Dyg 9Dy
_315(9%1 E)tamd 92¢ 1 lu=ug

Thus, we have

8—2D(u)Hg /Rd+l‘¢w‘f((¢)d¢(1 +op(1)>.
1)

~ ‘ h%
Ou?

sup |E[Dy (w)] - D(w)| < 3
u€g<§

2
Provided that Hé%zp(u)n% and [g41¢ " ¥|K (1)d are bounded,

sup |E[Dy (u)] — D(u)( — O(h2) as n — oo.
u€Gs

13



For the almost sure uniform convergence rate for the Nadaraya-Watson kernel estimator,

see references such as Einmahl and Mason (2005):

sup| Dy (u) — E[ﬁn(u)]‘ = O( [log fn| ) as n — oo.
ueg

Thus we have

~ log h
sup Dn(u)—D(u)’ :O<h721—|— M) as n — 0.
ueg n

Then the proof is complete under the stated assumptions.

Lemma 2.3.2. § hp — 0,nhy, — nh?d‘—Jr?) — d [log hun | N N
.3.2. Suppose hy, ,nhy 00, Tog 7] 00, and 1500 00 as n 00.
Then we have
9 = d d ~ d
—D ——D —0 d —D ——D =0

i probability as n — oo.

Proof. The proof is given only for the strong consistency of the partial derivative with respect
to t since the proof for the partial derivative with respect to x can be obtained in the same

manner. As we prove Lemma 2.3.1., we begin with

< sup \E[%nw)} =9 b

+ sup
u€Gs

1 u—Uj;
o0 = ey S DK (7))

14



B 1 (1) [u—w

by letting ¢ = %=

n

1

D(u— hat) KD () do)

by Taylor’s theorem again

1 %) 0 T 82

= [ s {D = hag D = g Dl + BT Dy
0 h2 2

+ B2 Dty + = <u>w3+o<h%>}f<§”<w>d¢,

where 1) = (10, ). By choosing kernel L, (/) = —p, K\ (1)),

0 ~ 0

Bu(u)) - 5 D(w)

sup |E[=

= O(hy) as n — 0.
u€Gs ot ( n)

By Theorem 2.2 as in Blondin (2007), we have the following rate of strong uniform consistency

for the partial derivatives of the Nadaraya-Watson kernel estimator:

0 ~ 0 ~

57 Dn(w) — Bl Du(w)]

su
P15

u€Q5

|10ghn| )
:O< as n — 0o.
nhg+3

Thereafter we have

0 llog Ay
=D ——D Ol h — 00
usélé)(; ot (o) ot ( )‘ ( ! nhd+3 o
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nhdt! [log hn |
Lemma 2.3.3. Suppose hp, — 0,nh, — oo,m — 00, and loglognn — 00 as n — Q.
Then we have
sup )?n(s, t) —x(s,t)| = 0, in probability as n — oc.

s€]0,5],t€[0,T)

Proof. Note that

Then

Xn(s,t) — x(s,t)‘ < sL, sup Dn(u) — D(u)’ Y Lyp /08 Xn(6,1) — (€, 0)|de,
ucys

where Ly, > 0, L,p > 0 are Lipschitz constants. By Gronwall-Bellman inequality,

< sLy sup ﬁn(u) - D(u)’ exp (sLyp)
u€Gs

and hence

sup )?n(s,t) —a(s,t)| < SLy sup ﬁn(u) - D(u)’ exp (SLyp)
s€10,5],t€[0,T u€Gs

Due to the bounded exponent and Lemma 2.3.1., the proof is complete.
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Lemma 2.3.4. Suppose that the assumptions for Lemma 2.3.1., Lemma 2.53.2., and Lemma

2.8.83. hold. Then we have

~

0
sup —Xn(s,t) — ==z

(s,t)| — 0, in probability as n — oo.
se[0,5],tc[0,171 9 ot

Proof. In this proof, we use the first derivatives of the normalized eigenvector associated with

(d+1) x 1 diffusion tensor in a

the largest eigenvalue with respect to the component of the d
neighborhood of Dy as in (Carmichael and Sakhanenko, 2016, p. 313). In a neighborhood of
Dy, M(Dy) denotes the largest eigenvalue of Dy and the corresponding normalized eigenvector

is denoted as v(Dy). Let d; be 1 if k£ =1 and 0 elsewhere. We also simply define Z(Dy) :=

M Do)y — Dy. For 1 <k, l,p <d,

OX(D) B
Dy |pp, (2 = dg1)vi(Do)vy (Do)
3?1))(]5) p-py (1= 641/2)[ 2 (Do)prva(Do) + 2 (Do)prve(Do)]

where A7 is the Moore-Penrose inverse of A. See Theorem 8.9 in (Magnus, 2019, p. 180).

Applying these DEs enables us to decompose the following terms:

o = 0 _ 9v(Dn(u)) _ (ODy(u)  OD(u)
g0 Pnlw)) = gro(Duw)) = =55 3= { a ot }
{8v(ﬁn(u)) - 8U(D(u))} . 9D(u)
0D(u) 0D (u) ot

dD(u)

Provided that || =; H% and Hav(Dn(u

Wu)))”g(; are bounded, we have

sup | Lo(Bo(u)) — 9v<D<u>>\ < et swp

Qﬁn(w — 2D(u)

Y + ¢y sup | Dp(u) — D(u)

uEg(g

17



and likewise, provided that || 8153(311) g 5 is bounded,

J =~ 0 0 ~ 0 ~
sup a—v(Dn(u)) - a—v(D(u)) < ¢ sup a—Dn(u) — a—D(u) + ¢ sup [Dp(u) — D(u)|.
ueGgl 0% - ueGgl 0% - u€Gs
Then Lemma 2.3.1. and 2.3.2. complete the following properties:
sup |=—v(Dp(u)) — 2U(D(u)) =o0p(1), and su 2U(IA? (u)) — 2U(D(u)) = 0p(1)
wedy| 0z " oz A wegylot " ot -

Returning now to the main theorem, we have

(o) = gra(s,t) = [ {GoDu(Rate.0).0) = GolDGl. 0, e

ot ot dt di
_ /0 ’ {%U@n(mg,o,t» ~ - o(D(Ral€,0),0) }
x {2 Rl 1) — ol ) e

s [* oD 0,00 {5 Rl 0) - gaeon) e

o oz
# [ D60 1) — S-u(DGale. 1), 0) } e

n /Os {(%v(ﬁn()?n(g,t),t)) - %U(D()?n(&t),t))}%x(&zﬁ)clf
# [ {GreDa(Rale.).0) = SuDEa(E,).0) e

+ /O {%U(D(Xn(f,t), £) - %vw(x(g, 0).0) b

Therefore, we have

— Xn(s,t) — Qx(s,t)

ot ot = { Sub

u€Gs

X/
O

S 0

dg

18



s
+ {CQvaD + LvtD} /O

Kn(&,t) = (6, 1)|dg

~ 0
+ sc3 ;ggé‘a—mv(l)n(u)) - %U(D(u))‘
0 =~ 0

where Ly, p > 0and Ly, p > 0 are Lipschitz constants provided with bounded || a%v(D(u)) llg 5
and SUD4c(0,5],t€[0,7] | %x(s, t)|. By applying Gronwall-Bellman inequality together with pre-

vious lemmas and proven properties, the proof is complete.

2.4 Weak convergence of the sequence of stochastic

processes

In this section, we show the weak convergence of the sequence of stochastic processes via
the functional central limit theorem. This leads to our main results as in Theorem 2.4.1.,
Theorem 2.4.2., and Theorem 2.4.3. with the pointwise rate of convergence accordingly. In
Theorem 2.4.1., we address the asymptotic behavior of the deviation processes between the
estimated fiber trajectory and the true fiber trajectory. In Theorem 2.4.2., we also consider
the deviation processes between the partial derivative of estimated fiber trajectory with
respect to time and the one of true fiber trajectory. Furthermore, Theorem 2.4.3. delivers the
limiting behavior of difference between deviation processes resulting from Theorem 2.4.1. at
different time points. Throughout these theorems, DTI data corrupted by noise is taken into
account by the covariance function of the limiting Gaussian process. That is, we quantify
that the higher noise level in signal is associated with the larger variance of confidence

ellipsoids for the true fiber trajectory at the fixed time point. Detailed proofs of Theorem
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2.4.1., Theorem 2.4.2., and Theorem 2.4.3. are given in Chapter 6.
We define the second derivatives of the normalized eigenvector associated with the largest

x 1 diffusion tensor based on

eigenvalue with respect to each component of the d(ﬁd}l)

(Magnus, 2019, p. 218). Recall that §;; = 1 if & = [ and 05 = 0 if k& # [, and
Z(Dg) = MDg)l; — Dg. Then for 1 < k,I,p,r,w < d, we have the following second

derivative of the maximal eigenvalue with respect to each component of D:

(2 = 0p)[ZF (Do) yrvr(Do)v (Do) + Z*(Dy)yyvr (Do )vg (Do),

32)\(D) when r = w.
ODrwdDy | p, =\ (2= 05)[Z1 (Do) grvw(Do)vi(Do) + Z;5vr(Do)vy(Do)

+Z7 (Do) vw(Do)vg(Do) + ZT (Do) pyvr (Do)vg (Do),

\when r # w.

For the second derivatives of the corresponding normalized eigenvector with respect to

each component of D,

0*vy(D) 8Z1 (Do) p,
— P = Py (Do) 4+ ZT(Dy) 2T (D D
ODrr0Dk | p, oD, v (Do) (Do)pkZ " (Do) krvr (Do)

9*up(D) 0Z " (Do) N N
ODyyODyy, Dy 9Dy (Do) + 2 (Do)pk‘Z (Do) jrvw(Do)

+ Z5(Do)pi Z " (Do) jewvr (Do)
62vp(D) 82+(D0)pk n N N
@DrwaDkl Dy B 0Dy UZ(DO) +t2 (D0>pk[Z (DO)lTUw(DO) +Z (DO)lwvr<DO)]

aZ—i_(D(ﬁpl

9D (Do) + Z (Do)l ZF (Do) grvw (Do) + Z7 (Do) juyvr (Do)

20



Note that

02" (Do) S~ xn v 9Z(Dy)y, .
D - Z D7 Dol 2 (D0am(Z(D0) 2 (Do)
rw m=1 : : rw
9Z(Do)y,
ODry 1= (2- 5rw)vr(D0)Uw(D0)5kq - 57;(1,

where 5;’;(] =1 if either k =r and ¢ = w or k = w and ¢ = r, while 5Zq = 0 otherwise.

In the following theorems, we denote G as a d x d tensor-valued Green’s function satisfying

0 0 0
S-Gs.6,1) = 55 u(D(a(s,), 1)) 5 Dlals, ), )G 5,6, 1),

X

G(f?&at> = I[da 56 [078]78 € [075]7

given the parameter time ¢ € [0, 7T]. Equivalently,

G(s,&t) =1+ /; a%U(D(.I(T, t),t))%D(l’(T, t),t)G(1,&, t)dr, £ €0,s],s € [0,5].

For a fixed parameter time ¢ € [0, 7], G is continuous in (s, §) satisfying a Lipschitz condition
with respect to s € [0, S]. Green’s function is used to provide the unique solution to the first-
order nonhomogeneous differential equation with the boundary value given the parameter
time ¢ € [0,7]. See Coddington and Levinson (1955) for the use of Green’s function in
Chapter 6.

nhd+1

n llog hup |

Theorem 2.4.1. Suppose that hy, — 0,nh, — oo, log log 11

— 00, and — 00 as

hd+4

n — o0o. Suppose also that nhy, ™™ — 1 > 0 as n — oo, where B1 is a known fived number.

Then the sequence of stochastic processes
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M()?n(s,t) ~2(s.1)), s€[0.5),1€ [0,7]

converges weakly in the space of R%-valued continuous functions on [0,S] to the Gaussian

process GP1(s,t),s € [0,5],t € [0, T] with the mean function
s ) 82
(o) = 0 [ 6060 50Dl .0) [ 0T o Dlate. ), 00K ()b

and the covariance function for all pairs of spatial points (s,s*) € [0,S] at the given time

point t € [0, T

SASs™ o
C1((s, 1), (s%,1)) =/0 V(u(D(x(€,1),1)))G(s, €, 1) g5 0(D((€, 1), 1))
D(a(&,1),t)D " (x(&,t),8) + T(w(&, ), T ' (x(&,8), 1)

LoDl ).1) 0T (s 1)

X

L—

X

VS

where V(v) = fIRi fRd+1 KW)K(¢Y + (1v,0))dpdr.  The pointwise rate of convergence is

O(n_4/(d+4)) given the parameter time t € [0,T].

Remark 2.4.1. For the standard Gaussian kernel with d = 3, V(v) = 87rf

Proof. Let d = 3. For simplicity, we use the notation (7v,0) := 7w, where w = [v] vg v3 O]T

U(v) —/ R4K K+ Tw)dypdr

- [mow (- 25) [ Sow (- (04 5 (04 5 Javr

since the integral of the Gaussian distribution N ( — 0.57w, 0.5[4) is 1,
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1 / VwTw < T2wTw)d
= eXp| — T
sryTVwlw JR 27 4
since the integral of the Gaussian distribution N (0, %) is 1,
ww
1
© 8my/T

since eigenvectors are normalized, i.e, VwTw = 1.

Corollary 2.4.1. The Gaussian process GP(s,t),s € [0,S],t € [0,T] in Theorem 2.4.1.

satisfies the following stochastic differential equation (SDE) with GIP1(0,t) = 04:

Gy (5,1) = g, (5,) + /O T A(s, 1), (€, £)dW(E, D),

where

A((5,1),(€,1)) o= W2 ((DLa(&, 1), 1) Cs, €, )3 S (D((E,1),0)

< [Dlale. 00D ({6 0).8) + Tale. .00 w(e0.0)]

and W (s, t) is the Wiener process indexed by s € [0, 5] given the parameter time t € [0,T].

and+3

Theorem 2.4.2. Suppose that h, — 0,nh, — %0; Thog fim] — 00, and [log fin|

loglogn

— 00 as
n — o0o. Suppose also that nhf,l["6 — B9 > 0 as n — 0o, where B9 is a known fized number.

Then the sequence of stochastic processes

d < 0
d+2 (% _
Vb2 (5 Rn(s,t) = sea(s.1)),s €0, ]t € [0,7]

converges weakly in the space of R -valued continuous functions on [0,S] to the Gaussian

process GPa(s,t),s € [0,5],t € [0, T] with the mean function
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s 2
ss(o:0) = 222 [ Gt €00 Zutete .0 [ 0T 2 Da(e ). e )i

« 2 Dla(e.t), tyde

ot
+ @ /0 8G<s,£,t>aa—;v<D(x<§,t>,t>> /R i wTaa—;D@(&,t),t)zzzK(w)dw
X S D(a(6,1)1) el e
Y [ G0, o (Dl(e.0.0) D 0.0 2 De(e 0.0 [ 616Gt
X S S(D(e(C,1),) /]R . wTaa—;Dm(c,t>,t>wK<w>dwd<d£

VB [* ) 02 ¢
+ 57 i G(s,fs,t)a—DwD(rc(f,t),t)>%D<x(£,t>,t)/0 G(&,¢t)
T 0

< D0, [ 0TS Dl DK (v

< 2
# Y2 [ Glss6,8) 5o DL€, ).0) - D(al6. )6 D(ale. ).

ox x

2

£
< [ G g50DEE.0) [ 0TGPl UK )i Sl e

2

# Y2 [ (s, 6.0) e (D6, 0,0 5 Dl 1.0
82

3 ) 0
< [T COg5 D) [ 0T 5Dl UK )i Sl e

ou?

and the covariance function for all pairs of spatial points (s,s*) € [0,S] at the given time

point t € (0,7
*

SN\S o
Cal(.0). (5" 1) = [ (D€, 0)G (6. €0 oDl 1), 1)

0

x [D((€,0),)DT (2(€,1),8) + Tw(€, ), O (2(&, ), )]

SA\Ss 0
+ /0 o (0(D(w(€, 1), )G s, €, )5 50(D((E,1),)

X |D(@(€ ), )DT (2(&,6),1) + Dw(&, 0, )T (2(,1),1)|
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sAs™ 0
[ WDl ).0)6 (.60 55Dl 0.1)

where

Uy (v) == /R /Rd+1 Klgl)(w)Kt(l)(w + (7v,0))dydr
Ty(v) = /R /]R o K@) e ) (sate ) (KD (r0,0)) dpar

va)i= [ [ K@) (Gaen) (K@ r0) duar

The pointwise rate of convergence is O(n_4/(d+6)) given the parameter time t € [0,T).

Remark 2.4.2. Under the Gaussian kernel smoothing to a tensor field, however, both
stochastic processes in Theorem 2.4.1. and Theorem 2.4.2. fail to converge in the space
of R -vyalued continuous functions on [0, 5] x [0, T] and the corresponding candidate limiting

processes behave as white noise in time t.

In Theorem 2.4.3., we study the integration of the sequence of stochastic processes
%)?n(s,t) — %x(s,t),s € [0,5],t € [0,7] with a time-dependent weight function on any
fixed time interval in [0, T']. In particular, we consider a positive Lebesgue measurable weight
function. The simplest choice of the weight function is to assign equal weights to each ele-
ment of the sequence of stochastic processes %)?n(s, t)— %x(s, t),s €10,5],t €[0,T]. Since
such an integral no longer depends on the parameter time ¢, we can eliminate the problem

where the limiting processes of interest behave like white noise in time t.
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Theorem 2.4.3. Suppose that the assumptions for Theorem 2.4.1. hold. Let w be a positive

vector-valued weight function. For 0 < a < b <T, we define

W/ < R(s,t) — %x(s,t})dt,se[O,S].

Then we establish the weak convergence of the stochastic process in the space of R-valued
continuous functions on [0,S] to the Gaussian process GP3(s),s € [0,S] with the mean

function

82 82
oy (s W/ 0 Glos& 0 D(E ) [ ¥ D€ D oK )

D(x(&,t), t)dEdt

a
+@/abwT(t)/os G(s,6 )57 e (D(x(ﬁ,t),t))/R wT(,fj D(z(&,t), )Y K () dy
)

op?"

0
9, 9,

b s 2
Y 10T [ 6. 60) 2550 (Dla(e.0). 0) 5 DOl 0.0) 5 Dol )0
2

<[ a%vw(x(c,t),t)) Ly 075 DG 00 K (w)dvcasae

VB T [ 606,60 2o Diete 0,0) 50 Dt 1.
x / G(E.C 1) v (D(a(c,1),1) / R
I [T [ o 6Dl 0.1 >>§ D(€1),1) 5 DUl 1),

T 0

x /0 GG t) e DG, 00) [ 0T Sy Dl 008K () (€, e

D(x(C, 1), )y K (¢)dydCdEdt

ou?
2

b s
Y [TuT) [ 6,605 (Dla(e.0).0) 25 DOl 01,0

T 0

¢ 0 0
< [ GeCogpuUDaCn.0) [ | 0T 5D 00Kt D
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and the covariance function for all pairs of points (s,s*) € [0, 5]

= [ eptate 0.0 0606 1) DG, 1,1
< [D((€. . 0DT (2(6,0), 1) + T(a(e, 1), OT T (26,6,

< (a5e(Dale 0,0)) 6T Dl
—yéééwﬁﬁ&@ﬂ%ﬂ&wJDMFQKXa&wé%MD@@JL0)
< [Dle(e ). 0DT (x(6, 1), 1) + T(ae, 1), OTT (26,6,

< (apr (D 0,0) 6T ("6 Nultdede

o /Om*ifm<v<D<x<s,t>,t>>> TG (s, € )55 (D((E, 1), )
< [DG(e. ). 9DT (2(6, 1), 1) + T(a(e, 1), O (26,6,

< (oDl 0,0) 6T (" € e,

where

Ty () :—///RdHKt(l)wK( w+(m+78 (&, 1), 7)) ddrdy

o= [ ] g

< (Do) (k1 (¢+(Tv+78 v(6.1), >))Td¢d7dv
Uy (0 ///Rd+1 ( ét)> ( (1/1+(Tv—i-’ya 2(€,1), )))wade'y.

The pointwise rate of convergence is O(n~4/(d+4)y,

Remark 2.4.3. An example of choosing a and b is a =ty and b = ty,.
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2.5 Hypothesis test

Based on Theorem 2.4.3., we further establish Theorem 2.5.1. to test the null hypothesis
regarding the zero rate of change in true fiber trajectory with respect to time. On the
contrary, Theorem 2.5.2. investigates possible alternatives to the null hypothesis in order to

address time-varying fiber trajectories.

Theorem 2.5.1. Suppose that the assumptions for Theorem 2.4.3. hold. Consider the

testing problem for 0 < a < b < T,
0 0
Hy: ax(s,t) = 0g4 versus Hy : ax(s,t} #0g, s €[0,5],t € [a,b].

Under the null hypothesis, Theorem 2.4.5. gives the weak convergence in C([0,S],R) of the

function of stochastic processes

W/ Rnls, t)dt, s € [0, 9],

to the Gaussian process GP3(s),s € [0, 5] with the zero mean function and the covariance

function for all pairs of points (s,s*) € [0, 5]

Cooters) = [ [ Taalo(Dlate 1.0 (06056 )5 Dlet, 1)1
x [D<x<s,t>,t>DT<x<s,t>,t> +D((€,8), 1T (2(&,1), 1)
X <a%v(D(x(§,t),t)))TGT(s*,f,t)w(t)dfdt,

where Wy o(v fR f]R fRd+1 K( )(Q/J)Kt(l)(@D + (Tv,7))ddrdy.
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That is, for any finite index set of elements s1,s9,...,sm € [0, 5],

Wi.o(s1) 0 C30(s1,81) -+ C30(s1,5m)

Wi.o(s2) 0 C30(s2,51) .. C30(s2,5m)
= N ,

_/Wn,()(sm)_ 0] |@30(sm,s1) - C30(5m;5m)

as n — 0o. This is simplified as

—

Wn,O(') = Wo(+), asn — oo,

_l_
—~ —~ —

where W\mo(-) = Who(s1) Wao(s2) ... Wyo(sm)| tsamxl random vector obtained
by stacking the sequence of stochastic processes in ascending order and Wy(-) is a m x 1
random vector from the multivariate normal distribution given its zero mean vector and the
covariance matriz C3 (-, -).

Provided that the covariance matriz C3 (-, -) is invertible, the Wald test of level o rejects

Hy if and only if, for0 <a <b < T,

-1~

Who() > Xg[’df:mv

—~

W o) Cs0(--)]

where ng df=m 15 the upper-tail critical value of the limiting chi-square distribution with m

degrees of freedom.

Proof. Recall that

gros:8) = [ {5HoDlete.0.0) 5 Dlate. )0 ol )



+ o o(D(a(E, 1), 1)) 5 Dlale, 1), 1) e, s € 0,8).1 € 0.7]

Since 6Dv( (@(£:1),1)) # 0 gx0.5d(a+1) for all £ € [0,.5] given ¢ € [0, 77, the null hypothesis
1mphes D(x(&,1),t) =0 g 54(d+1)x1 for all £ € [0, 5] given ¢ € [0, T]. Thereafter, we have
the zero mean function. Provided that the covariance function satisfies C3 o = S0 |, where
Y0 is a m X m nonsingular matrix, we have /Wn,() = Y04, where Z is a m x 1 standard

normal random vector. Then the limiting distribution of the test statistic /VVHT 0C3. 6/1/[7”70 is
(B02) " (2080 ") 802 = 2T (S '80) (B0 '20)Z = 2T Z ~ X,

Remark 2.5.1. For the standard Gaussian kernel with d = 3, \T/t,o(v) = 2117

Proof. 1t is a special case of Remark 2.5.2. when c3 = 03.

Theorem 2.5.2. Suppose that the assumptions for Theorem 2.4.5. hold. Let c; be a nonzero

constant vector € X. Consider the following alternative hypothesis for 0 < a < b < T,
0
Hy : ax(s,t) =cq, s €10,5],t € [a,b].

Under Hy, Theorem 2.4.3. gives the weak convergence in C([0,S],R) of the function of

stochastic processes

W/ ( Rls,t) — )dt,se[O,S],

to the Gaussian process GP3 4(s),s € [0, S] with the zero mean function and the following

covariance function
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[ a0 0T 06 ) DL 1)
X [D(@(€ ), DT (2(&,6),1) + Dlw(&, ), OT T (2(€,1),1)|
x(8<<@w>0 G (5", €. yult)dedt

[ a0 0T 061,60 S DE .0
x[m@mw @@mw+wﬁ@wﬂu@mﬂ
x(a<<@w>0 GT(s", & Dt dsdt

[ B aDe 0,00 06 6,60 D€ ,0)
xp@@meu@mw+mmﬁﬁﬂ@@mﬂ

< (55eD(e 0.0) 6T ("€ uloyded

where

Ty 4 (v ///Rd+1 W) KD (4 + (rv+ cg7,7)) dibdrdry

/ / /}Rd+1 ¥)eacq K:El (¢ + (T + e, 7)))wad7d7
Fioaly / / /Rd+1 e (K8 0+ (o + e, 7))> ddrdy.

Proof. Suppose %m(s,t) = ¢q, s € [0,5],t € [0,T] given the non-zero constant vector

cg € X. Since %$(82,t) = ¢4 and %x(sl,t) =cgfor0<sy <sg<Sandtel0T],

0 0
0= al‘(sg t) — ax(sl t)

:/O w6, 0). 1 d&/ )de

0

B 59 . . 0 ; 0
—ngD<<@>>% D&, 1), 0y + 5s(DG(E 0, 0)

 D(w(€,).1) pds.
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This implies for £ € [0, S]

Do (D((€1),1)) - D((E, 1), e = ASo(D((E, 1), 1)) o D((€, 1) 1)

Provided that %U(D(x(f ,1),t)) has linearly independent columns,

- <_U(D(;c<g t) t)))+iv(D<x(£ t) t))ﬁD(w(i t),t)e
oD ” oD T o S

since AT is the Moore-Penrose inverse of A, we have

_gp@@mw%z—Dmamw

Followed by %x(f,t} = ¢4 and —(%D(x(f,t),t)cd = %D(m(g,t),t) for £ € [0,5] and t €

[0, T, we have the zero mean function.

Remark 2.5.2. For the standard Gaussian kernel with d = 3,

~ 1 1
() By a(v) = (14— )
) T
87r\/1 +cdeg— (vTey)? L+ecgeg—(vles)?
- 1 T (v e3)2(1 — 0;03) + (0;03)2
(H) \IJCC,A(’U) = €3 C3 + 1 T T 9 )
87T\/1 +cdeg— (vTey)? +tezey—(vies)

T T..\2

L ¢33 — (v c3)

(i) Wz 4(v) = — :
8m(1+ c;)—c3 - (UT03)2)\/1 + cg—c3 — (vTe3)?

T T

Proof. Since v'v=1and v'e3 = c3 v = constant, we note that

(rv+e37) T (To 4+ 37) = (T + 70" e3)% + 72 e5 — Y2 (v T e3)2.
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\I/t A / / ” Kt t(l) (1[) + (v + e37, 7))d¢d7’d7

- J Lo (-
XGXP<_’YZ(1+CSC3_(U c3)? / exp(—(¢t+%>2>

exp ( — (% n M) (wx + M))d%dwmdv

X
/RB T 2 2

since the integral of the Gaussian distribution N( — 0.5(Tv + ¢37), 0.5]3) is 1,

(T + v e)? 7’ T T 2
- | T6n2 exp(— f) exp(— I<1+0303_ (v'c3) ))

« /R \Ti—fj_r exp ( _ (wt + %)2> dipydrdry

2
since E[y7] = 2—+47—,

1 / (T + v e3)?
= exp —)dr
167\ /1+ cf e — (v c3)2 TR 2VT )
(2+ 72)\/1 +cdeg—(vTey)? 2 - S
<[ S e (= L+ ey — 0T eg)D))

2
1+C;C3—(UTC3)2’

since E[y%] =

o e o)
T T )2
87r\/1 + 03T03 — (vTe3)? L+egcg—(v'ey)
1 (1+ ’)/’UTC3)2>
——)d
% /R o /7 P ( 1 T
T e o)
T T )2
87r\/1 + c;)—c3 — (vTe3)? 1+cgeg—(vies)

since the integral of the Gaussian distribution N ( — v les, 2) is 1.
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w / / R4K Veses ( KV (9 + (ro+ es, 7))>wad7d7

//Rl&r o p (T+VZ S )eXp<_l<1+C303—(v c3) ))

4
Uy c3c3 Yy (Tv+ c3y TV + ¢37)
R - o ) (o 5

X /]R % exp ( — <77/Jt + %)2) dipedrdry

since the integral of the Gaussian distribution N(—0.5v,0.5) is 1,

2

//me eXp (TJWZ o )eXp<_l<1+C3C3—(vT03) ))

4
1% Yz €363 Vo Qﬁx (To+c3y)\ T TV + €37)
xR p(— (d}:mLT) (@DerT))dwxdefy

Note that 1), is a normal random vector such that N(—0.5(7v + ¢37),0.513). Then

740" ) +27y0 ! CaCa Cq + Y7 (Ca C
E[w;c;;c;?wx] 20.50;03—1— ( 3) 43 33 (3 3) .
Plugging it to the previous step,
a3 T 2
CqC 1
(i) = 5% Ix exp (- TS o
87r\/1+c;c — (vTeg)2 /R N3

/\/1+c3c3 (vTe3)? 42

exp ( - Z(l + chcg - (vTc;;)z))dfy

/ TQ(UT63)2 + ZTWUT%C;C?) exp ( B M»ﬁ_
167T\/l+030 —( 63)2 R Qﬁ 4
\/1 -+ C C 03)2 2
/ : 3 P ( - 71(1 gy - (UTC3)2)>d7
+ (C?T 63)2 / L e (- M)m
16my/1+ ] ¢y — (vTeg)2 JR2VT 1
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/ \/1—l—c303 (vTeq)? 2

exp (= L-(1+cf g — (v eg)?) ) dy

since B[72] = 24+ ~2(v"¢3)?, E[r] = —yv ' ¢3 and E[y] = 0 and E[?] = 2 5
1—4—(33 cg—(v'c3)

B 1 (vTe3)2(1 = cg cg) + (cq c5)?
- = 33+ ) T )2 ’
87T\/1 + g5 — (vTe3)? +egez—(viey)

(i) Wy a (v / / R4 el (K( V(@ + (rv + 037,7))>wadrd’y

= [ fomen (- e (- T - Ta)
o exp( (v P550) ot 57 Y

/ exp ( U + > )d@bthd’y

since E[t);] = —0.5(tv + ¢377) and E[y] = —0.57,

1 / v g + 720;03 exp ( (T + ’va03)2>
X _——_—
167r\/1 +cdeg— (vTeg)? /R 2y/m 4

/ \/1 +oeq 03 vleg)? 2

exp ( — Z(l + c;c3 - (UTC?,)Z))CZ’)/

2
1+c3 cg—(v 03)2’

since E[r] = —yv ' ¢3 and E[y?] =

B 0;03 — (UTC3)2

8m(1+ 0;03 - (vT03)2)\/1 + c;)—c3 — (vTeq)?
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Chapter 3

Pseudo Algorithms

3.1 Theorem 2.4.1.

The main contribution of Chapter 3 is to provide pseudo algorithms which can be easily
converted into any computer programming language. Pseudocodes are simply written to
deliver what programming codes might look like. Resulting from Theorem 2.4.1.; Algorithm
3.1 is a pseudocode to implement the plug-in estimator X, (s, ¢) as in (2.4). All ODEs are

approximated via Euler’s method.

Input:

Fix t € [0,7] and z¢ € X.

Fix 81 > 0 such that nhﬁlf% — (1 as n — oc.

Let sy = 0. Let 0 > 0 be a size of each step such that s;, 1 = s, +0,k=0,1,...
Initialize X, (sg,t) = zg at ¢ € [0,T].

while s; 1 < S do

A~

Xn(Skert) ~ Xn(skvt) + 5U(ﬁn()?n(5ka t)7t))

end

Algorithm 3.1: Fiber Trajectory Estimation
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Input:
Let hy 1 — O,nhf;f — 00, hy 2 — 0, and nhfﬁ;’ — 00 as n — 0.

while s, < .S do

0 ~ ~ n
5o Dn(Xn (s £),1) = —(2m)~ (d+1)/2 nhd+2 Zl Xn(spt) — X;)
1 ()?n(skat)at>_Ul (Xn(3k7 )7t)
Xexp(_§( hp 1 ) ( hnl ))
%En()?n@k,t),) —(2m) D2 (pdi2) 121) )(t —T;)
=1
1 (Xn(spt)t) = U\ T ()?n(Sk7t),t)—Ui
co (R (Fl0R)
0% ~

T Bal(Rnlsg1),) = (2m) D2 3) 120 ( (s, t) Xi)i—l)

y eXp(_ %(u?n(s/g,t),t) — Ui) ((Xn@k, t),t) —Ui)) 1.4

hn,Q hn,2

D (Xn(sp, 1), 1) = (2m) " (D2 (npd13) =1 iﬁwi) ((t ~T;)% - 1)

X exp ( _ %(o?n(sk];??;t) - Ui)T (o?nfsk;igw - U))

Let Z(ﬁn) = )\(lA)n)]Id — Dp. Define 8, = 1 if 7 = w and 0 otherwise. Then for

82
o2

1<p,rw<d,

a%”p(ﬁn()?n(skat%t)) =(1—=0rw/2) [Z+(ﬁn()?n(3kat>’t))prvw(ﬁn()?n(3kat)’t))

4 z*(ﬁno?n(szc,t>,t>>pwvr<ﬁn<??n<8k=t>at>ﬂ

82

@ETL(‘)??%(Ska t): t)

02
TI”H(Xn Sk, T 2_2 5k7t)7t) +
=1 975

end

Algorithm 3.2: Pre-step Functions
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Algorithm 3.3 is intended to implement the mean function of the limiting Gaussian

process given any fixed time point as in Theorem 2.4.1., i.e., 1p, (s,t),s €10,5],t €10,T].

Input:
Initialize fig, (s0,t) = 0g at ¢ € [0, 7.

while s; 1 < S do

_ _ o - o~ o .
Hpq (8k+17 t) ~ By (Sk:7t) + 5_U(Dn<Xn(8kv t)?ﬂ)%Dn(Xn(sk? t)?ﬂ:uﬁl (Sk’7t)

oD
WBL O = o %
- %a—pvwn(xn(sk, 1), ) TrH(Xn sy, £),1)

end

Algorithm 3.3: Mean Function

For the covariance function of the limiting Gaussian process in Theorem 2.4.1., we first

define Algorithm 3.4 as follows:

while s, < S do
Sra(Us)

! T
- X Y (U;) — B(U;) D(U;)) (Y (U;) — B(U;) D(U;
#N(Xn@k,t))XjeN(%W»( (U) = BU)DWY) (Y (U) = B D(UY)

~

Sn(Xn(sg, 0),) = 2m) " D2 mpdth 1N 50 (0;)
=1

X exp ( _ %(o?(k;) t) - Ui)T (mk;) t) - U))

end

Algorithm 3.4: Noise Function
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Ci((s,t),(s*,1)),s,s* €[0,5],t € [0,T], the covariance function of the limiting Gaussian

process in Theorem 2.4.1.; can be employed via Algorithm 3.5.

Input:
Initialize C1((s0,t), (s0,t)) = Ogxg at t € [0, 7.

while 53,1 < .S do

~

C1((sx11:1), (sp11,1)) = C1 (55, 1), (55, 1))
d
+ =0 (Dn(Rnlsp, £),8))
+0U(0(Dp(Xn sy, 1), 1)) 50 (DX (s, 1), 1))
X | Du(Za(sis 1), 0Dy (K30, 6) + S K, ), )|

< (LoDl 0).1))

end

For Gaussian kernel with d = 3, ¥(v(+)) =

1
8/’

Algorithm 3.5: Covariance Function

By calling previously defined Algorithms, Algorithm 3.6 provides the numerical approxi-
mation of the 100(1 — a))% confidence ellipsoid for the true fiber trajectory given the param-

eter time ¢ € [0, 7.
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while s, < S do
Let

(s 1) =\ (R(sp. 1) — (s 1)

Then the 100(1 — a)% Confidence Ellipsoid of (s, t) given ¢t € [0,T] is as

follows:

~

P({(C1((s5: 1), (51, )) ™2 (1 (53, ) — Tigy (53, 1))| < Ra) 1=,

where P(|Z| < Ry) = 1 — « for a standard normal vector Z in R%.

end

Algorithm 3.6: Fiber Trajectory with Confidence Ellipsoids

3.2 Theorem 2.5.1.

In this section, let us first introduce Simpson’s rule to approximate the definite integral of
the covariance function in Theorem 2.5.1. under the null hypothesis. Simpson’s rule provides
an accurate (almost exact) numerical approximation of the definite integral with few data
points. For instance, suppose that we have five time points, i.e., ny = 5. Then Simpson’s

rule approximates the definite integral of f over the interval [t1,t5] as follows:

t —
" S0 DL ) + Af () + 27 (0) + 4 (1) + (55) )
ty

For the sample size of ny > 9, the extended Simpson’s rule based on Press and Vetterling

(1989) is as follows:

40



nt—4

tnt N tnt - tl
[ pode gt (17 01) + 595 02) + 4523) + 495 01) + 48 > 1t

49 (tny—3) + 43 (tny—2) + 59F (tn,—1) + 17f (tny) }.

Returning back to the covariance function in Theorem 2.5.1. under Hg, when d = 3,

a=ty,b=tp,, and w(t) = 1;, we have

1 tny

C30(s,8%) = El;/t Co.0((s,1), (s*,1))dt13,
1

where

sAs™
Cagl(s.0.(0) = [ Gls.&0550(Dla(€..0)
X |D(@(€ ), HDT (2(&,6),8) + Dw(&, 0, )T (2(.1),1)|
X (a%v(D(x(f,t),t)))TGT(s*,f,t)df.

t
Then we use Simpson’s rule to approximate ftlnt Co0((s,t), (s%,1))dt.
We shall provide the numerical implementation for Cyo((s,?),(s*,t)) as well. For the

variance function,

%02,0((37 t)v (37 t)) - a—D’U(D(QZ(S, lf), t))%D(;E(S, t)v t)CQ,O((Sa t)> <S7 t))
+Co0l(5,0), 5,0 (- Dla(s 1), (s0(Dlats 1).1))

B
+ a—Dv(D(x(s,t),t))
X [D(x(s,t),t)DT(x(s,t),t) + F(a:(s,t),t)FT(x(s,t),t)]

X <a%v(D(x(s,t),t))>T.
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For the covariance function, suppose s* = s + As, where As > 0. Then

0o 0((5.), (5 ,1)) = 5 S o(D(a(5,8),8)) - Dla(s, 1), 0)Ca((5,), (5 + As, 1)

0s - O_DU

+ Cao((s,1), (s + As, 1)) (%D(;@(s + As, 1), t))T
X (a%v(p(x(s+As,t>,t)))T
d
+ S50(D(a(s,).1))
x [D(x(s,t),t)DT(x(s,t),t) - F(x(s,t),t)FT(x(s,t),t)]

X (%v(D(m(s,t),t}))TGT(s—i—As,s,t),

where Green’s function is

s+As
G(s+ As,s,t) = G(s,s,t) + / a—G(u, s, t)du
s u

s+As
=1;+ /S %U(D(x(u, t), t))%D(x(u, t),t)G(u, s, t)du

0
%Hd—l—AS

550D (s.8),1) = D(a(s, 1), 1)

In general, for the covariance function between s and s + [As, [ > 1, we have

%0270((5, t), (s +1As,t)) = a%v(D(x(s, t), t))(%D(:v(s, t),t)Co,0((s,1), (s +1As, 1))

+ Cag((s.8), (s + 1As, 1) (%D(w(s +1As, 1), t))T

X (%v(D(m(s—FlAs,t),t)))T
)
+ a—DU(D(x(s,t),t))
X [D(x(s,t),t)DT(x(s,t),t) + F(q;(s,t),t)FT(x(s,t),t)]

X (%v(D(x(s,t),t)))TGT(s—HAs,s,t),
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where Green’s function can be obtained by

l

G(s+1As,s,t) ~ H []Id—kAs 0

. 0 .
II Su(D(a(s + (= 1As, 1), )5 Dla(s + (7~ DAs,1),)].

ox

The following set of Algorithms are used to test the null hypothesis regarding the zero
rate of change in time of the true fiber trajectory. We make full use of Algorithms stated in

Section 3.1.

Input:

Fix a and b such that a = ¢; and b = ¢p,.

Fix f1 > 0 such that nh%+4 — (1 as n — 0.

Let sg = 0. Let 6 > 0 be a size of step such that sy, = s, +9,k=0,1,....
Choose w(t) = 1}, i.e, the constant weight function.

while 55,1 < .S do

~

Xn(Spi1:tng) = Xn (st tn,) + 00(Dp(Xn(sp tny ) tny )

~

Xn(spp1,t1) = Xn (g, t1) + 00(Dp(Xn (s, t1), 1))

Who(sky1) =/ nhd1 <Xn(5k+1,tnt) — Xn(5k+1at1)>

end

Algorithm 3.7: Statistic
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Input:

Initialize Co.0((s0,), (50,t)) = Ogxq and Ca,0((50,%), (5041, t)) = Ogsear L = 1,2, ...
€ [0,7].

while s, 1 =5 orsp 14, =S5 do

62,0((8k+17 t), (Sk‘—i—l’ t)) ~ 62,0((816? t), (Sk’ t))

480 (DB, 1)) Do (Kol 0). 2055 1). (5.)

~

+80,0(54: ) (5:8)) (3 Dn(Fn(s5:.0) (550 Dn(Fn(sot), )

—0—58%U(Dn(Xn(3ka t),1))

x [f)no?n(sk, D, )D, (X (sps 1) t) + Snn(Xn (55 1), t)]
o -~
X (8_DU(Dn(

G(Sk+l7 Sk t)

(s10.1)

S Dn(Falsi+ G = 1)5,0),0)

- &

[Hd+5
1

.
I

~Dn(Xn(sp + (7~ 1)5.8).1)

Co0((sh41:1), (140, 1)) = Coo((5p, 1), (Sp4151))

0

+58%U(DH<XH(5]€> )7 ))%ﬁn()?n(sk,t),t)alo((sk,t),(Sk+l,t))
9 9

+ (Sa%v(Dn(Xn(Ska t),t))

X [ﬁn()?n(ska t), t)ﬁg ()?n(ska t),t) + in()?n(ska t), t)]

< (oDl 0).1))) | ET (511,501

end

. SN T SN
+0C2.0((5,1), (8415 1)) <%Dn(Xn(5k+l> t), t)) <8_DU(Dn(Xn(3k+l7 t),

at

) |

Algorithm 3.8: Nested Variance Function and Nested Covariance Function
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For example, ny > 9,

while s;, =S or s, =S do

tnp

G (s 51) = 1] /t T4 0(0 (Do (B (0. £), 1)) Co0 (510 ). (51, 1)t 1
1

tny tny — 11

CQ,O((Sk‘7 t)? (Sk‘7 t))dt ) {1702,0((5k7 tl)v (Sk‘7 tl))

H T A8(ny — 1

+59C2,0((sg: t2), (s, t2)) + 4302 0((sk, t3), (k- t3))
ng—4

+49C5 0((sg,ta), (s ta)) +48 Y Coo((sg. 1), (k1))
=5

+ 490270((‘9]{’ tnt—?))a (Sk> t’nt—3)) + 4302,0((Sk7 tnt—Q)a (Ska tnt_2))

+59C5 0 (ks tng—1)s (Sks tng—1)) + 17C2,0((sk tny), (Sks tnt))}

tng

C3.0(5k: $141) = 1}/15 Uy 0(0(Dn (X (55, ), £)))C2,0((85 1), (83, 1))t Ly
1

tnt tnt - tl
/t1 C2,0((5k» 1), (g1, 1)) dt = m{1702,0((5ka t1), (Sk41,t1))

+59C2 0((sk, t2), (841, t2)) +43C2 0((8:13), (Sk+1,13))
”t_4
+49C,0( (g, ta), (spis t4)) +48 Y Coo((sk 1), (kg0 1)

1=5

+ 4902,0((S/€7 tnt—?))u (Sk—i-l? tnt—S)) + 4302,0((S/€> tnt—Q)a (Sk—‘rl? tnt—Q))

+ 5902,0((S/€7 tnt—l)a (Sk—H? tnt—l)) + 1702,0<<Sk7 tnt)a (Sk—‘rl? tnt))}

end

For Gaussian kernel with d = 3, \Tlt’o(v(-)) = 11?

Algorithm 3.9: Covariance Function

Then Algorithm 3.10 returns Theorem 2.5.1. as follows:
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Let m when s;, reaches S. Consider

Wi.o(s1) Cso(s1.51) ... Capols1,sm)
- Wi.o(s2) . Cso(s2:51) ... Czpls2,5m)
Wio(-) == and C3q(-,-) ==

_Wn,O(Sm)_ _63,0(5m, s1) ... C30(sm, sm) |

Then the Wald test of level a rejects Hy as in Theorem 2.5.1. if and only if

—1/\

Who(:) > ng,df:m’

—~

Wo() [53,0(" ')]

where Xa df=m is the upper-tail critical value of the limiting chi-square distribution

with m degrees of freedom.

Algorithm 3.10: Hypothesis Test
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Chapter 4

Simulation and Application to Real

Data

4.1 Artificial data: semicircular trajectory over time

In this section, we attempt to replicate an artificial diffusion tensor where the true fiber
trajectory in 2D projection onto the xy-plane is semicircular at a fixed time point. A similar
example without considering time points can be found in Koltchinskii et al. (2007) and
Carmichael and Sakhanenko (2016). We consider a longitudinal DTT study for the case of
d = 3. The corresponding diffusion tensor D is a 6 x 1 vector due to its symmetry. D is
defined at u € G = [0,1]%, where X = [0,1]3 and T = 1. The initial value condition for
the ODE is g = [0.5cos(0.3) 0.5sin(0.3) 0.5]T € X. For the estimation procedure, we use
Xj,J = 1,2,...,ny which is a value on a 3D grid and T}, = k/ng, k = 1,2,...,ny which
belongs to a set of equally spaced values in [0,1]. The number of magnetic field gradient
directions is 48, i.e., N = 48. The number of scans at each visit is 1, i.e, M = 1. A
48 x 6 tensor B is used corresponding to the uniformly distributed 48 gradient directions
on a unit sphere. A 48 x 1 additive noise tensor is normally distributed with mean 0

and standard deviation of 0.2236, i.e., 0.25 x 10/(SNR'5), where the signal-to-noise ratio

(SNR) is 5. Then a 48 x 1 response tensor Y is generated as in (2.2). Thereafter, the
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standard 3D Gaussian kernel for the Nadaraya-Watson kernel estimator is applied on the
OLS estimates. The bandwidth hy, = (n/B1)” 7 is chosen based on different sample sizes n
and 81 = 10~%. The bandwidths for the first and second derivatives are hp1 = (n/ 61)_1/ 9
and hy, o = (n/ 51)*1/ 10 respectively. Without loss of generality, we simulate equally spaced
time points t. = k/ng, k = 1,2,...,n;. The constant weight function between a = ¢; and
b = tp, is used. The size of each step 4 is 0.015 and the number of steps m is 30. The null
hypothesis Hy) is specified, followed by the alternative hypothesis such as H Aq H Ay OF H Ag-

Monte Carlo Simulations with a size of 100 were performed with different sample sizes.
The power of the test was computed as the proportion of the time we rejected the null
hypothesis Hy when the alternative hypothesis was indeed true. We used the empirical 5%
critical value driven from the null 100 simulations to ensure a 5% of type I error and the
theoretical 5% critical value from the limiting chi-square distribution with 30 degrees of
freedom, i.e., X%.05,30 = 43.7730. All analyses were performed using MATLAB R2019b with

C-subroutines.

Null Hypothesis 4.1.1. For the null hypothesis Hy, 2D semicircular trajectories remain
the same over the time from ti to tp,. At any fized time point, a spatial point x € [0, 1]3
satisfies | :1:% —|—x% — 0.5] < 0.05 and |x3 — 0.5 < 0.05. Then the corresponding diffusion
tensor is defined as D = UAU ", where the columns of U are orthonormal eigenvectors and

A is the diagonal matrix associated with the eigenvalue, i.e,

22 2L 10 0 0
x%er% x%qt:c%
U=|-—= 2 __ o). A=]0 2 0
\/x%er% \/w%th%
0 0 1 0 0 1
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In the following Figure 4.1, we used the 1st null Monte Carlo simulation with the sample

size of ny = 803 and ny = 5.

(a) 3D (b) (a) is projected onto the xy-plane
Figure 4.1: A solid blue line indicates the estimated trajectory given the 5th time point

under H(), whereas blue dotted lines represent the pointwise 95% confidence ellipsoids along
the estimated trajectory.

At each time point our estimated trajectory was nearly the same as the true semicircular
pathway in its 2D projection onto the xy-plane, although the estimated trajectory slightly
varied along the z-axis. In the following alternative hypotheses H Ay and H Ay, W fixed

ny = 5, but used either n, = 403 or n, = 803.

Alternative Hypothesis 4.1.1. For the alternative hypothesis HAl’ we change the 5th
curve into a semi-ellipse while we keep the four semicircular curves with the radius of 0.5.
At the 5th time point, a spatial point x € [0,1]3 satisfies | :E% - (%)2:10% — 0.5] < 0.05
and |x3 — 0.5] < 0.05, where the value of ¢ is associated with the y-coordinate such as
0.55,0.525,0.475, and 0.45. Depending on the number c, the last curve is either stretched or

squeezed into the semi-ellipse along the y direction.
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Figure 4.2 is the plot of the 1st Monte Carlo simulation under H Ay with the sample size

of ny = 803 and ny = 5.

0571

04r

037

02r

01

0.1 0.2 0.3 0.4 0.5

(a) ¢ =0.55

0571

04r

03r1

02r

01

0.1 0.2 0.3 0.4 0.5

(c) ¢ =0.475

0571

04r

037

02r

0.1 . ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5

(b) ¢ =0.525

0.1 . ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5

(d) ¢ = 0.45

Figure 4.2: At each ¢ value the 5th estimated trajectory and its 95% confidence ellipsoids
under H Aq both colored in red, are overlaid with those of the reference value (¢ = 0.5)
under Hy, colored in blue. All 3D figures are projected onto the xy-plane.
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the power of the test

Ng Nyt n c=055 ¢=0.520 ¢=0475 c¢=0.45
403 5 320,000 1.00 0.80 0.62 1.00
803 5 2,560,000  1.00 1.00 1.00 1.00

(a) The upper 5th percentile of the simulated distribution under H is used as a

critical value.

the power of the test

Ny Nt n c=055 ¢=0.525 ¢=0475 c¢=0.45
408 5 320,000 0.64 0.07 0.01 0.53
803 5 2,560,000 1.00 0.90 0.90 1.00

(b) The upper 5th percentile of the limiting chi-square distribution with 30 de-

grees of freedom is used as a critical value.

Table 4.1: Monte Carlo simulation-based power analysis when H Ay is true

Table 4.1 summarizes the power of the test using either the empirical or theoretical 5%
critical value. We observed that the empirical 5% critical value was lower than the theoretical
5% critical value, i.e., X%.05,30 — 43.7730, in either case ny = 403 and ny = 5 or ny = 803
and ny = 5, resulting in higher power. We noticed two findings about the power of the test
regardless of whether we used either of the two critical values. First, the power of the test
increased as the value of ¢ deviated from the reference value (¢ = 0.5). Second, the power
was also improved by increasing the size of n,. In other words, we expect a higher power for

the test using DTI images based on a matrix size of 256 x 256 with 48 slices than one using

a matrix size of 128 x 128 with 48 slices.
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Alternative Hypothesis 4.1.2. For the alternative hypothesis HA2, we change the radius
of the 5th curve while the four semicircular curves have the same radius of 0.5. At the 5th
time point, a spatial point x € [0,1]3 satisfies |\/2? + 23 — 7| < 0.05 and |z3 — r| < 0.05

where 1 is the radius in the set of {0.55,0.525,0.475,0.45}.

While H Aq studied a gradual change of the true trajectory from the beginning to the
end, H Ao addressed its radical change throughout the whole pathway. The entire change
of the true trajectory was linked with the drastic increase or decrease in /Wmo in Theorem
2.5.1., which extremely contributed to the magnitude of the test statistic compared to the
incremental change of the true pathway. Table 4.2 shows that the highest power of the test
regardless of the type of critical value since Wmo is sensitive to the entire change of fiber

pathway compared to its incremental change.

the power of the test?®

Ny Nt n r=055 r=0.52 r=0475 r=0.45
403 5 320,000 1.00 1.00 1.00 1.00
803 5 2,560, 000 1.00 1.00 1.00 100

@ the power of the test was the same in either case using the empirical or

theoretical 5% critical value.

Table 4.2: Monte Carlo simulation-based power analysis when H Ay is true

The following Figure 4.3 is a plot obtained from the 1st Monte Carlo simulation under

H 4., with the sample size of n; = 803 and ny = 5.

2
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(a) r =0.55 (b) r =0.525
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(c) r = 0.475 (d) r = 0.45
Figure 4.3: At each r value the 5th estimated trajectory and its 95% confidence ellipsoids

under H 4., both colored in red, are overlaid with those of the reference value (r = 0.5)
under Hy), colored in blue. All 3D figures are projected onto the xy-plane.

In the following alternative hypothesis H Ag» We focused on the incremental change of the
true fiber trajectory. In H Ag» We used a reasonably larger sample size for time points in DTT

such as ny = 10 and ny = 20.
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Alternative Hypothesis 4.1.3. The alternative hypothesis HA3 18 akin to HAl’ however,
we divide the simulated curves by half so that one group of curves occurs at ti,ta, ... >tnt/2
and the other group of curves occurs at tnt/2+1’tnt/2+2’ .y tny,. We change the latter half
of curves into semi-ellipses while the former half of curves remains as semicircles with the
radius of 0.5. Depending on the number c, the latter half of curves is stretched or squeezed

into the semi-ellipses along the y direction.

The power of the test

Ng Nt n c=0>55 ¢=0.525 ¢=0475 c¢=045
5 10 640,000 1.00 0.56 0.42 0.98
40
20 1,280,000 1.00 0.81 0.62 1.00
5 10 5,120,000 1.00 1.00 1.00 1.00
80
20 10,240,000 1.00 1.00 1.00 1.00

(a) The upper 5th percentile of the simulated distribution under Hy) is used as a

critical value.

The power of the test

Nng Nt n c=0.55 ¢=0.525 ¢=0475 c¢=0.45
5 10 640,000 0.63 0.05 0.01 0.56
40
20 1,280,000 0.92 0.17 0.15 0.86
5 10 5,120,000 1.00 0.83 0.91 1.00
80
20 10,240,000 1.00 0.97 0.96 1.00

(b) The upper 5th percentile of the limiting chi-square distribution with 30 degrees

of freedom is used as a critical value.

Table 4.3: Monte Carlo simulation-based power analysis when H A is true

o4



Table 4.3 shows the power of test based on the value of ¢ at the given size of n, and ny.
By increasing the size of n; given the fixed size of n,, we found the discrepancy between
the empirical and theoretical critical values can be reduced to almost zero. Furthermore,
the power of the test shows that the probability to detect small effects gets higher as ny
increases, which implies that for MRI scans with a fixed number of spatial points such as
128 x 128 x 48, increasing time points (i.e., the number of visits over the study period) is
critical to achieve a sufficient statistical power in order to detect small pathological changes

of fiber pathways over time.

4.2 Real longitudinal DTI data

Diffusion weighted imaging (DWI) scans were obtained on a healthy male brain 19 times
over a 4-year period from 2014 to 2018. A GE 3T Signa HDx MR scanner (GE Healthcare,
Waukesha, WI) with an 8-channel head coil was used to collect longitudinal DTI images of
the brain. DWI scans were acquired with a spin-echo echo-planar imaging (EPT) sequence for
12 minutes and 6 seconds by using the following imaging parameters: 48 contiguous 2.4mm
axial slices in an interleaved order, the field of view (FOV) = 22 x 22¢m?, the number of
pixels (matrix size) = 128 x 128, the number of excitations (NEX) = 2, the echo time (TE) =
76.3ms, the repetition time (TR) = 13.7s, 25 diffusion-weighted volumes (one per gradient
direction) with b = 1000s/mm?, 1 volume with b = 0 and parallel imaging acceleration
factor = 2.

At each time point, the number of spatial locations was the same as n, = 128 x 128 x48 =
786,432. The number of time points was n; = 19, and hence the total sample size was

n = 14,942 ,208. For time points, we used an index of the events rescaled by the total
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number of time points as follows: ¢, = k/19,k = 1,2,...,19, regardless of the elapsed time
between calendar dates.

In this study, ROIs were the anterior and posterior regions of the corpus callosum (CC).
The CC is often of interest in white matter tractography since it is the largest bundle of
white matter nerve fibers connecting the hemispheres of the brain. The initial point zg was
chosen as a balancing point in each ROI between right and left hemispheres of the brain.
The estimation procedure of the posterior portion of the CC was found to be more robust
to the initial point selected than that of the anterior part of the CC. This difference can be
explained by the patient’s supine position with the head resting on a pillow during the MRI
scan. In fact, it is reasonable to assume that a resting head experiences more shifting at the
front.

In both ROIs, we fixed 8; = 1078 to avoid over- or under-smoothing caused by too
wide or too narrow bandwidth choice. The standard 3D Gaussian kernel was used with the
corresponding bandwidth h, = 0.0068. The step size was § = 0.003 and the number of
steps m was determined before the estimate of the covariance function grew too large. As a
result of larger confidence ellipsoids in early steps, m = 30 was used in the anterior part of
the CC as opposed to m = 70 in the posterior part of the CC. In Figure 4.4, the estimated
trajectory onto the xy-plane can be depicted as a slightly divergent U-shaped tube each
time, albeit shifting due to the head motion. Figure 4.6 shows that the estimated pathway
onto the xy-plane at each time point is seen as an omega-shaped tube which is widely and
deeply divergent from the initial point, although at some time points the estimated pathway
became inverted due to the limitations of DTT on branching fibers. The following Table 4.4
shows the test statistics computed from xg through the left side of the curve and from xg

through the right side of the curve at given ROIs. Since the test statistic was considerably
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smaller than the corresponding critical value, we failed to reject the null hypothesis at the
significance level of 5%, and hence we reached a conclusion that there was no sufficient
statistical evidence to detect the pathological change of the true fiber pathway in either of

two ROIs over the observed period of time.

anterior part of the CC posterior part of the CC
X2 05,30 = 43.7730 X2 05,70 = 90.5312

left of zg® right of g  left of zgP  right of zg

0.1464 0.0020 3.5882 7.5200

a 2 = [0.5078 0.6563 0.5417] |
b 20 = [0.5156 0.4063 0.5208] "

Table 4.4: Result of test statistics in both ROIs
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Figure 4.4: The estimated trajectory colored in red is projected onto the xy-plane over the
observed period from July 2014 to December 2018 in ascending order in the anterior part of

the CC.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) The estimated trajectory colored in red (b) The estimated trajectory colored in red
is projected onto the xy-plane. along with the 95% confidence ellipsoids colored
in cyan are projected onto the xy-plane at every

5th step.

0.8 0.8

1
0 0 0.5 0 0 0.5

(c) 3D of (a) (d) 3D of (b)

Figure 4.5: Anterior part of the CC scanned in December 2014
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(1-7 ) (1-8) (1.9)

Figure 4.6: The estimated trajectory colored in red is projected onto the xy-plane over the
observed period from July 2014 to December 2018 in ascending order in the posterior part

of the CC.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) The estimated trajectory colored in red (b) The estimated trajectory colored in red
is projected onto the xy-plane. along with the 95% confidence ellipsoids colored

in cyan are projected onto the xy-plane at every

10th step.

0.8 0.8

0 05 1 0y 0.5 1
(c) 3D of (a) (d) 3D of (b)

Figure 4.7: Posterior part of the CC scanned in December 2018
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(a) The estimated trajectory colored in red
along with the 95% confidence ellipsoids col-
ored in cyan are projected onto the yz-plane

at every 10th step.

Figure 4.8: Left isthmus of the cingulate cortex scanned in July 2014

In addition to the CC, we performed tracing the fiber pathway in left isthmus of the
cingulate cortex. We kept (31 and the step size § the same as we specified for the analysis of
the anterior and posterior portions of the CC. The number of steps m = 60 was used. The
initial point zg = [0.5391 0.3672 0.5833] T was fixed. The computed test statistic was 7.8719
which was considerably smaller than the corresponding critical value X%.05,60 = 79.0819. As
a result, we also failed to detect the pathological change of the true fiber pathway in this

ROI over the observed period of time at the significance level of 5%.
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Chapter 5

Conclusion and Discussion

This dissertation provides the comprehensive estimation procedure of the spatio-temporal
fiber pathway model, and further proposes the straightforward hypothesis test associated
with the rate of change in true fiber trajectory with respect to time. While many neu-
roimaging publications rely on existing statistical comparisons of the scalar measures such
as FA, MD, AD and RD in ROI between time points, this dissertation attempts to offer a
new statistical perspective on the degree of pathological change of fiber pathways over the
period of time. The proposed approach is computationally efficient and the power of the
test is much improved with increasing time points given fixed spatial points.

One limitation of this dissertation can be found as a boundary effect near an endpoint
of the support (in particular, the set of points in [0, 7]) which is inherent in kernel density
estimation. We shall caution that insufficient number of time points can lead to substantial
increases in bias and variance at boundary time points. Another limitation is that the
simulation study was performed with a constant weight function w(t) during the entire
period of time. An additional research on the weight function is needed to study its impacts
on our testing procedure in terms of numerical implementation and power performance.

Future studies can move further in several directions. First, the proposed method can
be extended and developed in HARDI. Such extension of the spatio-temporal fiber pathway

model to HARDI can overcome the limitations of DTT for complex fiber configurations such
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as crossing, branching or kissing fibers.

Second, measurement errors during MRI image acquisitions can be divided into sys-
tematic error which has a consistent effect on measurement in the same direction and/or
magnitude and random error which does not. While B was specified as the known constant
tensor obtained by the MRI image acquisition in the model (2.2), B can be viewed as a

matrix distorted by such measurement errors. That is,
B = BO + eS + 67‘7

where By is the true b-matrix of DTI, eg is the systematic error and e, is the random error.
For instance, suppose that a patient’s head is tilted in one particular direction repeatedly
over the study period, then this systemic error can cause distortion in the B matrix. As
two types of measurement errors are induced into the model, we can further validate the
robustness to violations of the model assumptions.

Third, we can further study the rate of change in noise level over time. We hypothesize
that the level of noise is fairly stable for a healthy normal brain. Based on the model of

(2.2), the hypothesis testing problem can be stated as follows:

0 0 .
Hy : aaij(u) = 0 versus Hy : &Jij(u) >0, Vi,je{l,2,...,Nhueg,
where 0;; is the element in the ith row and jth column of the matrix ¥ in (2.2). Such
future study can investigate the degree of elevation in the noise level as the stage of disease
progression develops.

Lastly, our methodology should be further developed in order to analyze a set of longitu-
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dinal DTT data sets collected from a group of patients. Defining a white matter tractography
model with the marginal or “population-average” perspective can be a challenging problem,
however, it should be addressed to understand brain connectivity in both individual and

group level.
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Chapter 6

Proofs of Theorem 2.4.1., Theorem

2.4.2., and Theorem 2.4.3.

Proofs of Theorem 2.4.1., Theorem 2.4.2. and Theorem 2.4.3. are provided as in Koltchin-
skii et al. (2007). In Section 6.1, we decompose the sequence of stochastic processes into the
sequence of stochastic processes which converges in distribution to the Gaussian process and
the sequence of remaining processes which converges to zero in probability. Mean and covari-
ance functions are presented in Section 6.2 and Section 6.3, respectively. The corresponding
weak convergence is proved in terms of the convergence of finite-dimensional distributions
in Section 6.4 and the asymptotic equicontinuity is established in Section 6.5. The proofs of
propostions can be found in Section 6.6. We refer to classical books of Vaart and Wellner

(1996) and Billingsley (1999) for the weak convergence topic.

6.1 Asymptotic representation

(i) Theorem 2.4.1.

Define y;(s, t) := Xp(s,t) — (s, t). Then

y1(37t> = X\vn(S?t) - J](S,t)

_ /0 {o(Da(Xa(€,1),1)) = v(D(a(€, 1), 1)) pdg
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_ /08 %U(D(x(f,t),t)){ﬁn(x(f7t)at> - D(f’f(&t)vf)}df

. /0 " u(Da(E.1), ) oD (€, 1), D (€, e + (s, 1),

and the remainder (s, t) is defined as

ri(st) = /0 {o(Da(Xa€,0),0) = v(Da(a(&, 1), 1)) pdg
_ 08 UD€ 1), 1)) 5 DUa(E,1), (€ 1)

+/08 {v(f)n(:v(f,t),t)) —v(D(x(S,t),t))}df
0

[ 2uD(ale.).0){ Dalale.).1) ~ Date.1). 1) e

By the decomposition of yi(s,t) := z1(s,t) + d1(s,t), z1(s,t) and §1(s,t) are as follows:

08 a%U(D(l’(&t)7t)){ﬁn(x(§,t),t) — D(m(&jt%t}}dé‘

+ /OS a%U(D(aj(f, t), t))%D(-T(fa t)? t)zl (5, t>d€7

Zl(S, t) =

S

D(w(€.1).8)) 2= D(a(E, 1), )51 (€, 1)de + r1(s.1).

1(s,t) = ; 3p o

For z1(s,t), we consider the first-order differential equation indexed by s € [0, S] with

initial-value condition z1(0,t) = 0 given the parameter time ¢ € [0, 7], which is equivalent to

1(60) = [ Gl 6005 50Dl )] Dula(6.0).0) - Dla(e, )0}

$ _
= [ ai(s.6.0{Bulalé 0).0) - Dt 0).0) .
0

where ¢1(s,&,t) == I{Oggés}G(s,f,t)a%v(D(:v(f,t),t)) with a d x d matrix-valued Green’s
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function G. Furthermore, gi(s,&,t) € L,s € [0,S5], is almost everywhere continuous and
bounded on R, where L is a linear space with the support of g in [0, S].
(ii) Theorem 2.4.2.

Similarly, let us define yo(s,t) such that ya(s,t) = %)?n(s, t)— %x(s, t) := z9(s,t)+da(s, ).

Ya(s,t) =

D(r(E, 1) 1) o Dlr(E, 1), D (€, 1) (6, 1)

s 2
. fimDQQJ)D;Bt((iﬂ)m@iﬂﬁ

s 2
[ Dl ), 1) 55D

_D<I(£7 t)? t)y2(£7 t)df + T2(S7 t),

(x(&,1), 1)y (&, t) (8, t)dg

where the remainder ry(s,t) is defined as

ra(ovt) = [ {0 Dala(€).0) = SHo(D(e,0).0)} 5 Dulae. 1)t

s 92
" Do) ) {Bale(e. 1.0~ D)0} 2 Dl .01
+/OS{%U(Dn(Xn(é,t),t))aDn(Xn(f,t),t) ~ o5 u(Dala(€,0),)



Daa(&, 1), >} €

* ot
/03 ;;v )58 D(x(&,1),t )8 D(x(&, 1), t)y1(&, t)dE
- [ a5 aa; Dl 1), Dy (€, )de
+/OS a% D ,t))—a%v( (:E(g,t),t))}%f)n(x(g’t),t)%x(&t)d§
Os £2 ){ n(z(€,1), 1) — (x(f,t),t)}%p(x(g,t%t)%x(§7t)d§

+/0 {a%v<Dn<xn<g 0).10) 5 DK€, 1),1) — (Dl 1), 1)

oD (
0 ~ 0
% == Da(a(& 1) 1)} o
s 82 D N 0 ; 0 ¢ " "
— [ D€ 0) 5 Dla(€ 1.5 DGl 0.0 €0 (€,
59 2

- [ 5D ).0) 5 5 Dl 0. (. ) gt e

X (€, t)ds

+ [ {550 Pulalé )5 Dulil€,1.0) = S5 o(Dla(€,).0) 5Dl 01,0)}

X y2(§7 t)df

The unique solution zo(s,t) with z5(0,¢) = 0 can be written as follows:

(a(6.0),6) — £ D{a(€.1),1) e

=)

S
ZQ(S,t) = /() gl(svat)

s
91(s,€,1)

Flo ¥l
)

al6,1),6) = £-D(a(€,0),0)} 2ra(E, g

(o(6,1), 1) — D{a(€. 1), 1)} o D((E, ), 1)

g2<s,§t>{Dn< (€.),1) = D(a(e, 1), 1)} - D (e, 1), 1) o, 1)

+

»

_I_
—
=)

_.I_
c\%ﬁc\c\
)

92(5,€,1)

9
wn

+

g3(s 91(6 ¢ { Du(w(¢,1).8) = D(w(C,1),1) fdcdg

S
ga(s, &, t)

_l’_
nn

1€ 6O Pl (C,0).0) = DG, 0,6 b€, e
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where

0
g1(s,&,t) = ]{OSESS}G(S,{',t)a—Dv(D(m(g,t),t))
82
92(S7§7t) = ]{Ogggs}G(S7gat)WU<D(x(§a t>7t))
2

5(5,€.1) = Tpeges) G, & D] 230 D(€ 1),1)) 5-D{w(€. 1), 1) 5 Dw(6. 1) 1)

0 02
+ 550 (D(a(E 1), 1) 7= D((6,0),8) |

2
94(5,€.1) = Tpeges) G, & D] S50 D(€ 1),1)) o D{a(6. 1), 1) 5-D{(6. 1)1

0 o
+ o5 (D)) 5 (w(é,t),w}-

Furthermore, the sequence of remaining processes da(s,t) is represented by

s 2
By (s, 1) = / %wx ) t))%mx(f,mw%mﬂc(at>,t>5l<£,t>df

/ 8D2 t))@a D(x(¢,1),t )a D(x(&, 1), 1)d1 (¢, t) 2 (&, t)d¢

2
i/ aD v(D(x(&, 1), ¢ D;at (2(&,1), )01 (&, t)dg
5 2
" ai)( (2(&, 1)1 >>§2 (2(&, 1), )01 (&, t) (€ e

0

; OS a%vw(x(s,t»t»%mx(m),t)@(&t)dg+m(s,t).

(iii) Theorem 2.4.3.

Let 0 < a < b<T.Suppose w is a positive vector-valued Lebesgue measurable function.

b ~
y3(s) ::/a wT(t)<%Xn(S,t)—%x(s,t))dt
b
- / w” (E)yas, )t
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b

b
:/ wT(t)ZQ(s,t)dt—i—/ w' (t)d(s, t)dt = z3(s) + 63(s),

a

where 23(s f w' (t)z9(s, t)dt and d3(s f w ' (t)d9(s, t)dt, respectively.

y3(s) = /ab w'(t) <§Xn(8,t) — %I(s,t))dt

b s PR
= [T [ {GoPu(Eale.0.0) = (DGt 0).0) faat

b s
- / wT0) [ LoDl 1), 0){ 2 Dale(e,1).0) — = Dlale 1), 1) bt

0
b s
T / wT (1) /0 D o(D(E ), ) - Daale.1).1) — - D(ae,),0)} (e e

b rs 2 ~
[ ] 3pee PGl 00 {Bala(e.t).) - Dla(e.0).0) ) 5 Dlale.0). 01
b
T

0

s 92 .
+ [T [ D n.0){ Dutete.).0) - Dlate.).0} 5 Dlate. ).

x %x(g,t)dgdt

b s 92 0 0
= [T0T 0 [ S5uD( 0.0) 5 D(E 0.0) 5 D€ O €.
0 0

b - s 52 0
# [ 0T [ 3 Eae Dl 0,5 Dl )65 Dla(€, ) O €. 8) (s )

b s 9 o2
+/ w' (1) . D" v(D(z(§, 1), >)6’ By D(z(&,t),t)y1 (&, t)dEdt
2
/ /8_DU 6;62 (x<§>t)at)m(f,t)%x({,t)dfdt

+ / WT(0) [ 5o D(E 0.0 5 Dla(€ ) (€, el + (),

where the remainder d3(s) is defined as

b s
5a(6) = [ wT(0) [ { G50 Dutat 0) = 550Dl 0.0} 5 Dulae. ). et

g s D D D 0 t)ded
—/a w (1) ; W”( (ﬂf(&t),t)){ n(x(€,1),t) — D(x(§, 1), >}8t (z(§,1),t)dgdt
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b S
= [CuT ) [ {5500n(Ra(e).0) 5 Du(Rale 1) = 5 50(Pula(s.0).0)

O ~
x = Du(a(E.1),) fdedt

b s 92
- [T0T ) [ 5 pao(DGa( 0,5 Dol 0.0 5Dl ). O 6 )

b T s 9 92
- [[0T 0 [ FEuDa(En.0)55 Dl . ol D

b s R .
+ [T0T 0 [ {G50Putele.0.0) = 5elDlae. 0 0)} 5 Dala(e ).t

x %x(g,t)dfdt

b s 92 R
- [TwT 0 [ D n.0){ Dutete.).6) - Dlae. .0} 5 Dlate. ),
0
x (€, tdedt
b s L N
+ [[0T 0 [ {G50Pu(Ral€ 005 Da(Ral€.18) = 550(Dula(€,).0)

0 ~ 0
x == Dn(w(§,),) K&, t)déelt

b 5 92
[T [ <D<x<§,t>,t>>§ D€ 1), 0)5- Dla(€, 0, (€.0) 5 0(€, Ol
82 t t 0 t)dedt
[ / S SUD((E 0),0)) 5 D((€, 0,1 (6 1) 5l )de
" / wT0) [ u(Du(a(e. 1)) o Du(a(e, 1) Dale, et
a 0 z

b s
- [TwT ) [ 55D 0.0) 5 D). Dum(e s

6.2 Mean function
(i) Theorem 2.4.1.

S T —w
Bfa(s.0) = ey [ ans.6o0) [ 0t (S0 dudg

s
_/O g1(s, &, ) D(w(&, 1), £)dE
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by letting ¢ = L&H:H—w

n

S
- [ ot [, {PGie0+ D600 = 1) = D00}

S
x K () dipdg — /O g1 (5, € ) D(x(E,1), t)de

by Taylor’s Theorem in a sufficiently small neighborhood of D(z(&,t),1t),

h2 S 32
=3 ; 91(8,5,75)/Rd+1 wTWD(:L’(f,t),t)¢K(¢)d¢d£<1—|—0p(1)>.

Then mean function yug, (s,t) := limp 00 nhdE[z1(s,t)] is defined as

S 92
w0 =2 [0 [ 0T o DGl 000K e

where (31 is a known fixed number such that nh%+4 — B1 > 0asn— oo.

(ii) Theorem 2.4.2.

n

S e —w
E[z(s,1)] = #/0 g1(s, €, 1) /RdHD(w)K,S”(( (f’tz’t) >dwd§

S 0
- [ il 5 Dlae g
0

1[5 (@), ) —wy , 9
+W>/O gl(s>€7t) /]Rd—i—l D(U})Ké )( Iy )danl’(f,t)dg

- /S (5,600 D(a(e. 1).0) L (e, t)de
les’7 ox m”@tx’

S T —w
+#/O ga(s.€.1) /RdHD(w)K(( (5’2’;) )dw%D(w(ﬁ,t),t)d&

5 d
0

S T —w
b [0 [ @R(CERI S aw L pate. .0 5 ole s
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_/ S (5,6 )D(a(6.1). 1) 0 D(a(E.1).1) 2 (€, 1)dg
0925a’ x7’at$”8tw’

L0 s (2(¢,1),1) —w
+W/o gg(s,é,t)/o 91(&, ¢ 1) /M+1 D(w)K( - )dwdgdg

S S
_ / 0305, 6,1) / g1(6.C.H)D((C. 1), )dCde
0 0

n

1 S S o 9
v [ o en [Coccn [ e (CERE Y auac St nag

S S o
- [ aits.60) [ 6 C DG 0T alE

by letting ¢ = &AW

hn
S

i [Caten [ Dien.0 = haw @

s 0
- [ a5 Dlaté. 000

0

I 0
s [t [ DUeE0.0 = i) KD @) Sale.

s 0 ]
- / gl(S,g,t)%D(J?(g,t),t)aI(ﬁ,t)df

+
n

. 600) [ D& D)~ hat) K (0)do 5 Dla(€, ), )¢

n

25,6, 0)D((6,1),1) 5 D (€, ), 1)

+
%!

R(.60) [ | D60, ~ ) K005 DO(6,0,1) (e, )

0205, D6, ),8) 5 DU (€, 6, 6) 2 (€, e

n

S
. 60) [ (€60 [ DU(Et).) = hut) K () dvdcde

+

|
%lmo\ho\»ﬁo\ho\o

n

S
g3(5,6,1) /0 g1(6.C.0)D((C. 1), )dCde
S S
g4(£7£7t>/0 gl(&vat)/R

(&, t)d¢

+

D((x(&,1),1) — hnt)) K (¢)dupd(

d+1

X
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S S o
- [ autset) [ arl e 0D 0.0 gae e
0 0

The rest of the proof is similar to (i) in Section 6.2. By Taylor’s Theorem in a suffi-
ciently small neighborhood of D(u) together with kernel L,(¢) = —1/1th(1)(¢) and L, () =
—¢xK9(51>(@Z)), we have the mean function pg, (s,t) := limp o0 nhg+2E[22(s, t)] as follows:

S 0 0
(i) = 2 [ .60 [ 0T o Dlale, 000K ()0 52 DL 0, 1)
T 02 0 0
T [ .60 [ 07 DU, 0O 0 D6 0.0 (6 )
2
T [ sisen [ oecn [ oL picn v

2
P2 st [ e [ o7 2 pte 0, e date. 0,

d+1 ou?

where 9 is a known fixed number such that nh,ﬁif% — P9 > 0asn — 0.
(iii) Theorem 2.4.3.

It is analogous to (ii) in Section 6.2.

2
sy (9) = Y1 / / &0) [ 9T D€ . 00K () 5Dl ), s
2
+ Y0 / 0 [ w60 /R o s DUl 1), UK (W) Dla(€, 1), 1)
o (e, tydeat
S 2
/ 0 [ et [ n6cn [ T pwicn ner e
S 2
T[T [msen [ aecn [ o7 pwicn e

x —x(f t)dédt,

where 31 is a known fixed number such that nh%+4 — f1 > 0asn— oo.
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6.3 Covariance function

(i) Theorem 2.4.1.

Covlz1(s, ), 21(s*,t7)]

S rS z —w
b [ oo (8,01

X (K( 'r;,t* ) ))TDT(w)gT( * m, ) dwdndé

nh%(ld+1 / / /Rd—H K((x(f,t})L:) _ w>

X <K<(x<n’t*2l’ t) = w>>TFT(w)ng(S*, n, t*)dwdndé + o(1/n)

n

by change of variable n = & 4 7hy,

(5=8)/hn N .
h2d+1/ /ﬁ/hn /Rd+1 91(8,£,t)D(w)K(( (5,2,;) >

X (K<( (5+Th"’ )t )_w))TDT(w)ng(s*,g+7hn,t*)dwd7d§

S §)/hn N .
nh2d+1/ /f/hn /Rdﬂ gl(s7§7t)r(w>K<( (f,t})l,nt) )

X <K<< (“Th”I;n )t )_“’))TrT(w)gI(s*,g+Thn,t*)dwd7dg+o(1/n)

by letting 1 = (:z:(ﬁzﬁ

n

(5=&)/hn
nhd/ / é/n /Rdﬂ 91(5: & )D((@(€, 1), 1) = b)) K (1)

X (K@ L (a(€ +Thn,t*)};i*) - (x(f,t),w))T

x DT ((x(&,),t) — hpth)gq (s, € + Thp, t*)dipdrde
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1 S r(S=&)/hn
i /0 / /]R 1y (5 EOT((E 0),8) = b K ()

nh% —¢/hn

(2(€ + Thp, t¥), 1) — (:L’(ﬁ,t),t)))T

x (5 (v + Im

X T ((2(€,1),8) — hat)g] (8%, + Thn, *)dpdrde + o(1/n).

If t # t*, the covariance function is close to infinity as n — oo under any density kernel

function. For the example of the Gaussian kernel function,

K (v + (2 + Thmt*)f;i*) — (2(&,1), t)) ~ oxp ( B %wd})
o <_ %(Wf : Thmt*)’l:*) - (x(&t*)’t*))T <<x(§ + Thn,t*)’i*) - ($(§,t*),t*)>>
NG )

Note that ¢ and t* are fixed scalars in [0, T]. Since hy, — 0 as n — o0,

exp ( ! (Wf”f*%t*) - <x<£,t>,t>)T ((az(s,t*),t*) — (a(&.1),1)

_ -

9 )>—>OO as n — o0.

hn

Due to the limit behavior of this kernel term, the covariance function becomes infinitely
larger when ¢ # t*.
However, If t = t*, then we have

('I(£ + Thn7t>7t) — ('I(£7 t)?ﬂ
hn

— (tv(D(&,t),t),0) asn — oo.

and hence under the Gaussian kernel function,

7



K(w L (elet Thmt)},lz) - (w<€,t),t)> x exp < B %@DW)

 exp ( B %(W + Thn,w};fb) - <x<s,t>,t>)T ((x(é + Thn,wf;i) - <x<§,t>,t>))

To sum up, the covariance function for all pairs of spatial points (s, s*) € [0, 5] given the

time point ¢ € [0, 7] is defined as follows:

S
Cr((s.1), (s, 1)) = /0 (o(D((£,£),1)))g1(s,£. )
« [D((6.). DT (2(6.1).£) + D(a(E. .00 (o€ 0).1)] o (57, €. 1)de.

where W(u(D(r(&,6). 1) 1= i fpar KK+ (0(D(a(6.1),1)),0))dr
(i) Theorem 2.4.2.
(a) = Cov| /0 Sg(s,g,w{%ﬁnmg,t), 1)~ 2 D(a(e.1),0) e,
[ om0 Pt .89~ 2 D(sto, ) Y]
)= Con[ [ g05.60{ 2Dt 0.0) - §D<x<5,t>, )} 55 (€ )i,
/jg<s*,n,m{%ﬁmm,m——D )69}, )]

(¢) = Cov| /Osg<s,f,t>{§ﬁn<x<é,t> ~ 2 D(a(E ).t }dg,

/Osg< ) Du(aln, 19, 1) - 1) o

H—

92|Q>

For ¢t # t*, these covariance functions under any density kernel function diverge to infinity
as n — oo. Also, the remaining terms of nh%+2COV[22(S, 1), zo(s*,t*)] are close to zero as

n — oo when ¢t = t*. In what follows, smaller order terms are omitted.
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///Rd+1 (5.6.0)D (<<at]>m> ©)

X(K§>(( (”’t*” “’)) D (w)g] (s*,n.t*)dwdnde

/ / /]Rd+1 w)K. 1)(@(5’27;) —w>

X (Kt( )(( (n,t*])l,n )= w)) I (w)gy (s*,n,t*)dwdndg

by change of variable n = & + Thy,

(S=€)/hn
nh2d+3/ //hn /Rd—H 1(s,§, 1) D(w) K (( (&, t})Ln) >

% <Kt (( (S"‘Thn;t*) t*) _w>>TDT(U))gI(S*7£+Thn,t*)dwd7'd§

(56
h2d+3/ /5/hn /Rd+1 1 & DTt (6 tf)m) “)

x <Kt <( (§+Thn};z ), t*) _w>>TFT(w)ng(8*,§+Thn,t*)dwd¢d§

by letting ¢ = E&HH—w

hn

(5=&)/hn
hd+2/ /g/h /Rdﬂgl(s,fyt)D((x(g,t),t)_hnqp)[(t(l)w)

« (Kt <w+( (E—l-rhn,t*)};i*)—(x(f,t),t)»T

x DT ((2(&,1),t) — hpt) gy (5%, + Tha, t*)dipdrdE

(8=&)/hn
nhd+2/ /f/h /RdJr1 91(5,5,t)1“((:c(5,t),t)_hnw)Kt(l)w)

y (Kt(l) (¢+ ( (§+Thn,t*)};i*) - (x({,t),t)>)T

) DT ((z(&,1),t) — hph)gq (5%, + Thp, t*)ddrde.
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In a similar manner to (a), we have

(5=&)/hn 9
nhd+2/ /g/hn /RdJrl91(37§7t)D((w(§at)7t)_hnd])K.%l)(w)Ex(g?t)

(Bt i) () (ps ST = DO

X DT(( (&,1),1) — hph)g] (5%, € + Thy, t*)dpdrde

(5=¢)/hn P
(1)
b [ / g G DT, 0 ) ) e 0

¢ (Bt riant) (RS9 (y CERT0) — 0.0 )T

X DT ((z(&,1),t) — hph)gq (5%, € + Thp, t*)ddrde,

and

(S=&)/hn
) nhd+2/ / e/ /Rdﬂ 9105, &) D((w(€, 1), 1) — hat) KV ()

X (%x(g + Thy, t*)>T (Kg(g) (w L (@€ Thy, t*)};z*) — (x(&,1), t>)>T

x DT<< (£.1),1) — hyth) gy (5%, € + Thi, t*)dipdrde

nhm / / j/hf . Ly 5. €07l ).0) = ) K )
x <%x(§ + Thn, t*))T (9 (4 (@€ + 7hn, t*)};z*) — (#(&,1), t)>>T

< T ((2(&,1),1) — ) gy (5%, € + Thy, t*)dibdrde.

Premultiplying by nh%*2 the results of (a)-(c), we have the following limiting covariance

function for all pairs of spatial points (s, s*) € [0, S] given the time point ¢ € [0, 7] as n — oo:
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Cal(s.0.(+".0) = [ WD, D)ar (5.6,
x [ D((e,0), DT (a(E0).1) + D€ ). O (a6 1).0) | (. €, 1)
-/ (D0, )an (56,1
< [ D(a(€. ). DT (@(6,6),6) + T((¢, ), 0T (2(6.1).8) | 9] (57, &, 1)dg
+ [ b DE 0,001 5,80

% | D€ D), )DT (2(,8),8) + (€ ). O T (@€ 0.0 |gf (57, € e,

(iii) Theorem 2.4.3.

We only provide main terms of covariance function, whereas smaller order terms are omitted:

@ =Cov| w70 [ 006.0{ 2 Datate. )~ 2Dl 0),0) et

[0 [ s 0 Dt — 2Dl 0,0 ]
=cos [[wT0 [ i, &0 { ZDutel00) ~ 206 0.0} ot v,
[0 [ s n 0 2t .0 — 2Dl e N,

@ =conl [0 [ 5.6 0{ 2 Pute 1.0) ~ 2Gete.0). 0},

[ [ s 0 Bt 0. 3) — D00} o i

b S b S - Cw
WZWA/O /a/O /RdHwT(t)91(5,£,t)D(w)Kt(1)<( (g’t]i’;) )

X <K§1)<(x(n,A})L, A) — w>>TDT(w)ng(S*,77,)\)w()\)dwdnd)\dgdt

b g’ b rS ) »
—i—W/@/O /Q/O /RdJrlwT(t)gl(&g’t)F(w)Kt(l)(( (f,tf)L,nt) )
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% (Kz(\l) ((50(777 A w) ) TFT(w)ng(S*, 1, Nw(N)dwdnd\dédt

n

by letting ¢ = EENH—w

hn

b S b pS
=g [ L 0D 0.0~ bV )

() (o AL DT (6, 0)) — )

X g1 (5%, n, Nw(N)dwdnd\dédt

g L LT One g orete 0.0 -t

y (K§1)(w+( z(n, \), )hn( (&, 1), ))) P (@(E,).8) — hot)

x g1 (5%, m, Nw(\)dwdnd\dédt

by change of variables n = & + Thy, and A =t + vhy,

(b—=t)/hn (S=E)/hn
”hd/a / /a )/h /f/h /Rd+1 wT ()g1(,€ ) D(((€,0),1) = hat) K1 (0)

(1) (4 T 2R L2 0) 2 OIS D 0N) T 5T (e, ),0) = )

X g1 (8%, + Thp, t + vhp)w(t + vhy)dwdrdydédt

(b—=t)/hn  (5=8)/hn
nhd / / / t /h /f/h /Rd+1 wT<t)gl(57€at)r((ff(f,t),t> — hn¢)K£1)<¢>

< (8 (0 & (§+Thn’tﬂh")}}iﬂh”)_(x(é’t)’t)))TrT«x(g,t),t}—hnw

X g1 (8%, €+ Tha, t + vhp)w(t + vhy)dwdrdydEdt.
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Likewise,

(b—=t)/hn  (S=E)/hn
nhd/“ / /a t)/h / ¢/h /Rdﬂ wT (g1 (5,6 ) D(((€, 1), 1) — hnt) K1 ()

X %x(f t)<5 z(& + Thn7t+'7hn)>T
y (Kg(gl) (”éb n (x(§ + Thp,t+ th>};z+7hn) - (I(gat)7t)>>TDT((x<§,t),t> — hpt)

% g1 (s*, &+ Th, t + yha)w(t + yhy)dibdrdydEdt

(b—=t)/hn  p(S=&)/hn
”hd/ / / (a—t)/h / £/ /RdﬂwT<f>91<s7é,t>F<<x<£,t>,t>—hmm&”(w

0

T
X agc(g ) (a7 2(€ + Thp,t + vhn)>

x g (s*, € + Thn, t +vhn)w(t + vhy )ddrdydédt,

and

(b—t)/hn  (S—€)/hn
nhd /a / /a /h /f/h /I‘Qd—kl ( )gl(S,E,t)D((x(f,t),t) — hnw)Klgl)(w)

) ( < §+Thnat+th)hi+7hn)—(x(ﬁ,t),t))>T

0
X (ax E4 Thy,t +vhy

< DT(((&,),1) — hph)g T (5, € + Thu, t + Yhn)w(t + vhy)didrdydédt

nhd / / /ab tt/;hn /:/hﬁ /hn /Rd+1 ( )g1(s, &) ((x(€,1),t) — hw)Kt(”(w)
)

( ( §+Thn,t+’7hn)hi+ Yhi) — (x(f,t),t))>T

0
X (ax E4 Thp,t 4+ vhy

X TT((@(&,1),) = hu)g | (5%,€ + Thi, t + Yhp )w(t + yhn)ddrdydedt.
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Note that

(@(§+ Thp, t +vhn), t +vhp) — (2(§,1),1)

hn
_ (@4 Thn, t+9hn),t + vhn) = (2(§, T +vhn), t +vhn)
hn
4 (@&t + vhn)s t +vhn) — (2(8:1), 1)
hn

— (To(D(x(€, 1)) + v%x(g, £),7) asn — oo.

From (a) to (c), covariance function for all pairs of points (s, s*) € [0, S] is shown as the one

in Theorem 2.4.3. as n — oo.

6.4 Convergence of finite-dimensional distributions

(i) Theorem 2.4.1.

The multivariate central limit theorem using Lyapunov’s condition requires to check that
finite-dimensional distributions of the sequence of stochastic processes {1/nhlzi(s,t),s €
[0,5],t € [0, T]} converge to finite-dimensional distributions of the sequence of the limiting
Gaussian process {GP1(s, t), s € [0,5],¢ € [0,T]} with mean function pg, (s,t) and covari-
ance function C1((s,t), (s*,1)).

Let us consider

s - U
mii= [ o coow)+ ok (CERD =0 i s e os)ee o)

N1, M5 s are i.i.d. d X 1 random vectors in RY satisfying
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Note that

S
E[jm 4] < chd+4 / 15, €, 0)[Ade / / / A (71, 72, 73)drydrodrs,
0 RJRJR

where the limiting distribution of Ay, (71,70, 73) is defined as

Jim Anr )i [ K@K+ (mo(Da(é 0),1),0)
x K (¢ + (r20(D((&, 1), 1)), 0) K (¢ + (r30(D(x(&, 1), 1)), 0))d.
Thus, given the parameter time ¢ € [0, 7], we have

1 & 4 C
——5arg) 2 Bllmi = Elni]l"] < —=(1+0p(1) ) = 0 .
22D Zizl (Imi = Elnil ]_nh%( +op(1)) =0 asn = o0

(ii) Theorem 2.4.2.

Let us define

s . 1
72 ::/0 91(8,5715)(17((]2')+F(Uz‘))Kt(1)<( (f’ti;;) Ul>d§

S
+ [T s o + sl (HEDZE) Dae ag, se pus)ee 0.7

Then 79, 19;’s are i.i.d. random vectors in R4 satisfying

412 14 op &
\/ nhy (Zz(s,f) — E[22(s,1)] ) Z n2i — Eln2i])
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Note that

s
E[|ﬁ2l4lﬁchg+4/0 |91(8,€>t)|4d§/R/R/R|An,x,t(71,72773)|d71d72d73,

where the limiting distribution of Ay, 4 ¢(71, 72, 73) is defined as

lim A T, T, T
dim n,a,t(T1,72,73)

= [y KO OED 0+ (0Dt 0.6),0)

KV @ + (rao(D(a(€,1),£)), ) KV (0 + (r3o(D(a(€, ), 1)), 0))ds
i [ KR @+ (DGl 0,0),0)
K0+ (oDl 0. 0) KL 0+ (DLl 0,1)).0) (e, s
6 [ KO @R @+ (oDl ,),0)

< K (0 4 (ra(D{a(€,1),1), 00) 5 (e, 1

(L) (KW + (re(Dlate, ), 0),0)
[ EP@ED W+ (DGl 0,8).0) (e
x (%x@,w)T(K (6 + (DL€ 0,1)),0) |
< Tale KD (W 4 (my0(D(a(€, 1),1)), 0
+ [ KW g6 05 0) (KW + (oDt ,0).0))
< KD+ (ru(Dla(e,1),1),0)) (6, )
< (Saten) (KWW + (oDl ),1),0))  dy.
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Then given the parameter time ¢ € [0, T|, we have

1+Op zn:E|7]2 n2|]<£<1—|—0(1)>—>0 as n — Q.
d+2 — ! ill'l < nhd p
Since Lyapunov’s condition is satisfied, we state that finite-dimensional distributions
of the stochastic process {\/nh&229(s,t),s € [0,5],t € [0,T]} converge in the space of
C([0, S],RY) to finite-dimensional distributions of the limiting Gaussian process {GPa(s, 1),
€ [0,5],¢ € 0, T]} with mean function ju,(s,t) and covariance function Ca((s, ?), (s, 1)).
(iii) Theorem 2.4.3.

Let us define for 0 <a<b<T and s € [0, 5]

o= (0T 0 [ .6 00w + 1w (HERD =) g

n

) ((@(&,1),1) —
hn

+ / W /0 Y (s, £.0(DW) + D) K (2 ) Do, tydear

Then 73, 73; are d x 1 random vectors in R% such that

Note that

b rS
E[lnslY] < chd+S / /O g5, &, )] dedt
a

X//////’An,az,t(ﬁ,71,72,72,73,73)|d71d’71d72d72d73d73,
RJRJRJRJR IR

where the limiting distribution of Ay, 4 ¢(71,71, 72,72, 73,73) is defined as
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i Ay g (71,71, 72,72, 73,73)
= [t KR (44 (ol DG, 0,0) + 1 (e, 0.m)
< KV (14 (rpo(D(a(e,1), 1) + 12y a(6.1),72))
x KD (64 (myo(D((E, 1), 0) + 35 (6,6, 79) )
[ K@ED (04 (DGl 0,0) + 1 (6. 0.0)
< KD (64 (o (D€, 1), 1)) + 1250 a(€, 1),72))
x K (44 (ru(Da(,1),0) + m%x(s,tmg))%x@,tw
0 [ KGR (64 (oDl 0.0) + 1 el 0.m)

< KD (0 -+ (rau(Dlale. 1), >>+w§x<§ ).12)) (6.1

ot
< (geen) ( D (0 + (DAl 0.0) + 20 50(6,0,7)) )
+4/Rd+1 t )(1/”r (D >>+%%w<£,tm>)

< D ae)(Daten) (K (1/J+(T2U(D($(§,t),t))+722x(€,t)772)>>T

< i (¢+<Tgv< (0(6,1),1)) + 13 056, 1),23)) (€, )
# [ KW gt

( €0) (K87 (0 + (aoD(e,0,0) + 3 ot ) )|
(wwzv( (26,1, 1) + 72 (6. 1),72) ) (€. 1)
( (€0) (K (4+ (oDt 0.0) + 15 0(E00). 7)) ) ds

Then given the parameter time ¢ € [0, T, we have

1+ op(1 " C
2h (d+4) X;E n3; — E[n3il] ] > W<1 + Op(1)> — 0 as n — oo.
n 1=
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6.5 Asymptotic equicontinuity

(i) Theorem 2.4.1.

For all pairs of points ((s,t), (s*,t*)) € [0, 5] x [0,T], we define 71, as follows:

S . U
= [ (s &0 + T (TR g
S T *\ g%\ 7T
= [C st o) + rp (HE = ge
0 n

Note that 71, 171;’s are i.i.d. random vectors in RY.

4

)

EH\/”TL%{ (21(s,t) = E[z1(s,1)]) = (21(s", ") — E[Zl(s*at*)])}
|

= ) {200 (i — el )+ Ll — Efm )

If t = t*, then we can readily derive

S
E[lin]2] < chi+? /0 915 6,1) — g1 (5", &, 1) 2de /]R An(r)dr.

where the limiting distribution of A, (7) is defined as limy—yo0 Ap(7) := fRd+1 K@W)K (v +

(ro(D(x(&,1),1)),0) " )dip, and

S
Efji]4] < Cth/O l91(s,&,1) —91(8*,£,t)!4d£/R/\n(T1,T2,Ts)dT,

where the limiting distribution of Ay, (71,72, 73) is as in (i) of Section 6.4. When ¢ # ¢* under
, SN A2 05 (2] — : dHdmis. (4 _
any density kernel function, limy, o0 h%4T*E[|71]°] = 0o and limy,—o0 AETE[|71]*] = 0.

Therefore, when ¢ = t*, due to continuity of g1 function, we have, for any € > 0,
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limsupP su%s ‘\/nh {(z1(s,t) = E[z1(s,1)]) — (21(s", %) —E[zl(s*,t)])}' > 5) — 0,
\s s*|<6

as 0 — 0. It shows the asymptotic equicontinuity condition of the stochastic process
{M(zl(s,t) —E[z1(s,t)]),s € [0, 5], € [0,T]} is met in the space of C([0, 5], R%). In the
space of C(]0,S] x [0,T],RY), this condition is no longer satisfied.

(ii) Theorem 2.4.2.

For all pairs of points ((s,t), (s*,t*)) € [0,.S] x [0,T7], let us define 7o;:

s - U
o= [ an(s.&00@) + 1) (DD =0

S ) (&, 1), 1) —
+/0 91(5,€ 1) (D(U;) + T(U;) K {! ( hin )

i T AT A g
= [t s + i () U%

S T *\ 4%\ _ TT.
- [ st ooy + v (LELRD 20 2

Note that 19, 179;’s are i.i.d. random vectors in RY.

4

B |Vt 2{ a5, 0~ Bl 0)]) = (aals”.0) = Bfats” )

- Z O(Zfﬁ) {n(n - <E[|772 - E[ﬁ2]|2]>2 + 1| — EW]W}'

]

2

Then the rest of the proof is analogous to the one in (i) in Section 6.5. If ¢ = t*,

S
- 2
E[jiil?] < chd+? /0 0105, €. 1) — g1 (™, €. 8)|2de /]R gt (1) dr,

where the limiting distribution of Aj, ; ¢(7) is defined as
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and

S
E[|ips]4] < chi+ /O 01(,6,1) — g1(s*, &, )| e /]R /R /R Aot (71, 72, 73) | dri 73,

where the limiting distribution of Ay, ; +(71, 72, 73) is as in (ii) of Section 6.4. Under any den-
sity kernel function, for ¢ # t*, we have limy, 00 K9 2E[|72]?] = 0o and limy, 00 hEHE[|72]*] =
0.

Therefore, when t = t*, due to continuity of g1 function, we have, for any € > 0,

limsupP sup '\/ nhd+2{ (29(s,t) — E[2a(s,t)]) — (22(s™,t) — ]E[zz(s*,t)])}‘ > 5) — 0,
n—00 s,5%7€(0,5]

|s s*|<5
as & — 0. For the stochastic process {\/nh&T2(29(s, t)—E[za(s, t)]), s € [0, 5], t € [0, T]}, the
asymptotic equicontinuity is satisfied in the space of C([0, S], ]Rd). However, this condition
is no longer satisfied in the space of C([0, 5] x [0, T], R%).

(iii) Theorem 2.4.3.

For all pairs of points (s, s*) € [0, 5], let us define 73;:

b S
= [0t [ s eoown +rwnr (TR0 dear

n

b s . U
Lot [ o eomw + rwn s (MERDZI Dage faga
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b s . U
- [T [ e nme + v (S0 e

b S - U
- [CuTo [ e enmw + rr (FERDZE Lo dear

Note that 73, 73;’s are i.i.d. random vectors in R

4

|yt { o) ~ Bl - (o) ~ Bl }

B ;;%(EZSB) {2020 (wliy — Es)2)” -+ il — Bl ]}

Here

b rS
E[liigl?] < chd+4 / /0 0105, €.8) — g1 (57, €, 1) Pdedt /]R /]R o7, 9)| drd,
a

where the limiting distribution of Ay, 4 ¢+(7,7) is defined as

0
i Anre(ri)i= [ K@K (65 (gga(ent) + ro(DGa(e,0.0).7)) o

n—00
0

i /Rd+1 K3 () K (1/’ + (Tv(D(z(&,1),1) + V%x(é, t), 7)) 526 Oy
0t
< (grten) (1) (v + (u(D(En).0) + 1ate.0.)) v

and

b S
]E[|ﬁ3|4] < Chgb—’—S/ /O |gl(3a§7t) - gl(S*afat)|4d§dt

X//////|/\n,x,t(71,71772,72,T3,73)\d71d71d72d72d73d73,
RJRJRJRJRJR
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where the limiting distribution of Ap, z (71,71, 72,72, 73,73) is as in (iii) of Section 6.4. Due

to continuity of g function, we have, for any ¢ > 0,

4
liﬁso%pP su% 5 ‘\/nh {(=3(s 3(s)]) — (23(s") — E[z3(s")]) }| > 5) — 0,
|s s*|<6

as 0 — 0. The stochastic process {1/nhd(z3(s)—E[z3(s)]), s € [0, 5]} satisfies the asymptotic

equicontinuity in the space of C([0, S], R%).

6.6 Propositions

To complete the proof of Theorem 2.4.1, we need the following proposition:

Proposition 6.6.1. The sequence of remaining processes {01(s,t),s € [0,S],t € [0,T]} in

the proof of Theorem 2.4.1 satisfies

Proof of Proposition 6.6.1.

S

u(svt) = [ 550Dl 0, 0) 5 Dlate, ) 061 (60 + 71 (5,1,

By the Gronwall-Bellman inequality, we have

S
sl < s (st sup exp[ /
0,7] 0

0 9]
S50(D((E.0).0) 5Dl 0.0

s€[0,5],t€[0,T] s€[0,5],t€[0,
<c sup |r1(s,t)|, since the exponent is bounded.
s€[0,5],t€[0,T]
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- [ SpeDGate.0.0) 5 Dla(e. ). Ome. 0
+ [ {oDutate.00.0) - o(Dlate.0).0)
- [ gpeDtate.0. ) {Dutalé.0.0) = Dl 0.0) e
z=Xn(¢,
= [ oBue0y| ;tdg | 350 ta(e.).0) 5 Dl 0, 06 1

/ / L oADn(a (€ 1) 1) + (1~ N)D((e, ), >>—a%”< (a(€.1).8)) }dA

< {D ((ft)) D(a(€, 1), 1) }dg

/ [ (o rBulARale ) + (1= (600 2 PaATal6 1) + (1~ N0,
RLIT <<§ D). >>a D(a(€.1).1) b (€, 1)

[ / LoD (€, 0).1) + (1= ND((E, 1), 1)~ Aso(D((E, 1), 1) f
x { Dula(s, 1)) - D(sc(g,w,t)}df

. 2
= O( sup  |yi(s,t)| + sup |Dn(u) _D(u)‘ )
s€[0,5],t[0,T] uegs

From Lemma 2.3.1. and Lemma 2.3.3., we simply have

s sl =op( s Ju(s 1)),
s€[0,5],t€[0,1] s€[0,5],t€[0,T

This implies that

s s =op( sup s, t)]).
s€[0,5],t€[0,1] s€[0,5],t€[0,T]

Due to the equation yq(s,t) = z1(s,t) + d1(s,t), the proof is complete.
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The following proposition is required for Theorem 2.4.2:

Proposition 6.6.2. The sequence of remaining processes {do(s,t),s € [0,S],t € [0,T]} in

the proof of Theorem 2.4.2 satisfies

sup |09(s,1)] :0p< ! >

s€[0,5],t€[0,T] . /nhgﬁ?

Proof of Proposition 6.6.2.

sa0) = [ D6 1.0) 2 DL €)1 DI 1,016,

+ —v(D(x(ﬁ,t>,t>>§D<x<s,t>,t>%D<x<s,t> D81(E. 1) (e )
D((E,1),1)51 (6. 1)
D, 1), 11516, 1) (€, e

S
[ G5 <x<s,t>,t>>%D<x<5,t>,t>62<s,t>dg+m(s,t»
Gronwall-Bellman inequality with bounded exponent yields

|02(s,t)] < 1 sup |r2(s,t)] + c2 sup |01(s,t)].
s€[0,5],t€[0,T] s€[0,5],t€[0,T]
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s 92
8—v<D<x<g,t>,t>>§ D€, 1),) s DLr(€, 1), O 6, )
D&, (€ 1)

S So(Dafal6, 1) >>—a%v< (+(6,0),1) } - Dl (€,6), )26, )

5 92
- | S5 (Pa(€ 0.0 { Pula(6.0).0) = Dla(€.).)} 57 Dla(e. ). ) gl e
+ [ {0 (Ba(Ral€:).0) 2 Do(Ra(6:0) 6 = (Dol 0.0)
X £ Du(o(€,1),1) | e 1)
5 92 0 0
— [ D). 0) 5 Dla(€, 1,5 DGl 0.0 €0 (6,
s 2
— [ e DGl6.0.0) 5 Dla(E.t). O (6. 0) (e, e

v {a%v(Dn(:z:(f,t) D) Du(e(E,0),1) ~ A so(D((E, 1), 1)) o Dla(€, 1),1) )

@ = [ {550 Palalect).0) - 55o(Dla(e.),0)} 5 Dulate. 1)t
(D€, 1)) Dala(€, 0).0) Dl 1),0)} 2 Dl 1), e
= [ [ e ata(e). 0+ (1~ D 1.0)N Dule 1.0~ DLt 0.0}
5D Drlee 1)~ 2 Dla(e 1), 1) }de
A / O OBR(a(€.0).0)+ (1 = ND(a(€.0).1) ~ o u(Dla(e.1).0) Jax
< {Buale,),8) ~ D(a(E,),8) } o DIl 1) )
0 ~ 0

5%17n<u>'_ Eﬁl)( )

~

= O( sup | Dy (u) — D(u)‘ X sup n(u) — D(u)f),

u€Gs u€Gs

) +of

u€g5
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(b) = /05 {%U(Dn(xn(f,t),t))%ﬁn()?n(ﬁ ),8) = 550(Dn((€.1), 1)) 5 Dnla(€. 1), ) b

s 2

= [ S Dae. ) 0) 5 Dla(€.).0) 5 Dl ) €, e
s P

-/ UD€ 1), 1)) Dl 1), O (€ 1)
s 9 o ~ J::Xn(g,t)

=/ a—Dv(Dn(x,t))&Dn(x,t) et d§
S 2

- [ S5 (Da(€ 0.0 5Dl 0.6 5Dl 0. €. e
59 32

- [ S5 D)0 5 Dlae ). O e )
= [ [ BaRa) + (1= Vo600 2 DAl 1) + (1~ A1),
x T DaAK(E1) + (1= Na(e,).1)

2
O oDa(€ 1), 1)) D, 1), 1) 0D (e, 1), 1) bl €, 1)

2 ~
/ [ (s pBulARal ) + (1= 6,00 PaA (6.0 + (1~ N 1.0
2

T (Dla(e 1), 1) 5 D((E, 1), 1) pdn (€, 1)

= O( sup ﬁn(u) — D(U)‘ X sup ’yl(&t)‘)

u€Gy 5€[0,5],t€[0,T]
0 ~ 0
+0( sup | = D) = = D) x  sup yi(s.1)]).
uegs| Ot t s€[0,5],t€[0,T]

{ 8%( (€ 0),0)) — ASo(D((E, 1), 1))} - D&, 1), 15 (€, 1)de
>{ (e61),6) = D(r(€,0).0) - D(E,1), 0 (6. 1)

Dulle)- aa D(r(€,0).1)} (6. 1)

82
0D?

@=[
[ o
-y
{50
)

o 2V
/ 50 ADa(e(€1),0) + (1= N D(e (& 1), )N Dala(€,1),8) = Dla(e, 1), 1)}

VADn(a(€ 1), 1) + (1= ND((E 1), 1) = 5 50(D(a(E 1), 1)) pax

8D2
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u€Gs
(@) = [ {550 Pu(Rale.).0) - Du(Ral€.0,0) = 5 5o(Dulate.0).)
0 -~ 15)
X %Dn(CE(f,t), )}atXn(€ t) 5
s 32 0 0
- [ S5 (D€ 0.0) 5Dl 0.6 5Dl 0. & 1), e
s 2
-/ a—Dv<D<x<f,t)x)@ﬂx(at),t>y1<§,t>§x<f,t>d5
S a ﬁ ﬁ $=)A(n(§»t) p
-/ a_DU( n(x,t)a—x n(2,t) e y2(&, 1)d§
s 9 N R x:)?n(ﬁt)a
+ i a—Dv(Dn(x t)%Dn(x t) (el Ex(f t)dg
S 82 0 0
- [ S5 (D€ 0.0) 5 Dlale. .6 5-Dlalé. 0. € 1) e
5 9 2

), et )~y D(E, 1), D (6, 1) (6, 1)

/ / o DaAXn(6.1) + (1= A)r(€, ), 1)) o DaAXa(6, 1) + (1 = V(€. ), )
xa—Dnan(g )+ (1= Nl 0), )l (€ )l )
b e PaOXa(e 0+ (- Nl 0), 1) 2 DaAXE 1) + (1= (1), 1)
0

x a_ﬁn(AXn(g, )+ (1= Nx(&, 1), 1)

2

D&, 1), 1) 5= DO (E, 1), 1) DG (€, 1), 1) g (€, 1) (6, 1)
2

/ [ etbaaten + A)x@,t),t»%muxn(é,w

(1= W&, ), 1 (€, D6, 1)

2/\
/ [ o Bual€) + (0= Nl 0] 25 PaAXa6 1)+ (1~ N0
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2

~

— 2 Bu(ele, ).} € )

s rl R 2
[T S5 DaOXa(60) + (1= Vel 0). 00N 2 el 0.0
0 JO

§,t)dg

9D Oz
0
= 3 D0 fy1(§, ) 5(€, )dS

s rl 9 R 0
+ [ [ {550 Pt ) + (1= Na(€0.0) = 550Dl 0).0)

0
o2 D(:L‘(&, t)v t)d)‘yl (ga t)ax(é’, t)df

s (s Dl x s (s 1))
s€[0,5],t€[0,T] s€[0,5],t€[0,1]

+0

Do) = D) x  swp yn(s,1)])
s€[0,S5],t€[0,T]

sup
uGg(g

0 ~ 0
Eigl)n(u)'—'zi;l)(u)

sup
u€Gs

N

x s s 1))
s€[0,5],t€[0,T]

(e) = /03 {a%v(pn(x(g t),t))—mf)n(x(f,t),t) — a%v(D(x@,t),t))—zD(w(&t),t)}
x yo(&,t)d¢
= [ omeBua(e, 0.0 {5-alile ) = £-D(a(6.0).0) (e,
_OaDn” O NS ox U py2tss

S0 - 0 0
+ [ {550 Bala(€ 0.) = 550Dl )} 5EDll6.0). el )

~

s rl 82
+/O / —v(ADn(x(f,t),t)Jr(l—)\)D(:zz(f,t),t))d)\{Dn(x(f,t),t)—D(:v(g,t),t)}

X - Dl ), (€, 1)

Da(uw) = D()| x  sup (s, 1)]).
s€[0,5],t€[0,T]
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From Lemma 2.3.1. to Lemma 2.3.4., we can easily derive

s ra(s, Ol =op( s (s, 0)]).
5€[0,5],t€[0,T] 5€[0,5],t€[0,T]

Along with Proposition 6.6.1., this also implies

swp (s, ) =op( sup (s, t)]).
s€[0,5],t€[0,T] s€[0,5],t€[0,T]

The proof is complete using the fact that ya(s,t) = zo(s,t) + do(s, t).

Lastly, Proposition 6.6.3. completes the proof of Theorem 2.4.3..

Proposition 6.6.3. The remainder {63(s),s € [0,S]} in the proof of Theorem 2.4.3 satisfies

sup_ [83(5)] = op(—2=).

56[075] \/ nh%

Proof of Proposition 6.6.35.

b s R ~
sa(6) = [ 0T(0) [ {550(Buta(e.).0) = GrolDlate.0).0) } 5 Dalals.0). e

b s 92 R
= [(0T ) [ S e e 0.0){Bue(€0.0) - D€, 0.0} Dla(€. ) )
a 0

i [T [ LLBuRale 0.0) 2 DRl 8) — - o(Bula(ent),t)
a 0 (9D

< £ Da(e(e,6).0) bt
th g D t). aD ttaD 1)t t)dédt

_/a w () 0 W'U( ($(€7 )a ))% (3:(67 )7 )& (w<£7 )7 )y1<57 ) 5
b S 2

— [0 [ S5eDla(e0,0) 50 DGl 0, O e
a 0 €T

b s =N N
+ [0 [ {G5ePutel.0.0) 5ol 0,0)} 5 Bula(e )0
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X %x(&,t)d{dt

b s 92 R
- [C0T 0 [5Gt 0 0{Bua(e. .0 - Dl(e.0.0} 5 Dl 0.1
0
x soo(€.t)dedt
b s o~ o~ ~
= [TuT ) [ {5 500n(Ea(e..0) 5 Du(Rale 1) = 5 50(Pala(s.0).0)

0 ~ 0
x 5= Du(a(&1), 1) } = Kn (€, t)dSdl

b 5 92
= [T0T0) [ 5 Eao(DGal 0, 5 Dl 0.6 5 Dla(€, ). O (€.8) (s )

b s 2
- [TwT ) [ 55eDGle.0.0) L5 DGl . € el it

b s .
+ [TwT 0 [ o Daalé. 0,55 Dafalé. 0, hnté, i

b s
- / o' [ L o(D(E.1), 1)) - D, 1), Dyl )

= (a)+ (b) + (¢) + (d) + (e), where

b s R
@= [T [ {550Pu(.0) ~ G5o(Da(E0.0) )5 Daa(é, ) s

b s 92 .
— [T [ oDl 0. 0){ Bule(e.t).0) D€, ).} 5Dl 0), e
a 0
b s rl 92 R
= [T [ [ 55ze0Dutete. 0.0+ (1= VDt )0
< { Dl 1),1) - et 0. >}{§t (el6,1),8) — DG (E. 1), 1) e

82
t w0 [ 0B 0.) + (1 VD€ 0,0) S 0(Da(e 0.0}

« d\ Da(€.1).) — D(w(E.1), t)}%D(x(@ 1), t)dedr,

0 ~ 0

o Pnlw) = 5

T 5. D(u)

= O( sup ﬁn(u) - D(u)‘ X sup
ucGs u€Gs

101



b s
) = [[wT O [ {5500nEa(e.).0) 5 Du(Rale .0 = 550(Dula(e.t).0)

O ~
x = Du(a(€,1).1) pdgdt
0

b s 92
- [T0T ) [ 5 par(DGal 0,5 Dl 0.0 5Dl ). O 6. )i

b T s 9 92 d
- [0 [ G5 n.0)5 5Dl .m0

b 59~ 9 ~ r=Xn(&t)
_ T
_ / w (1) /0 _0(Bu(, 1)) = Da(a, ) s

W70 [ D€ 0.0) 2 DL€, )1 2 Dla(e. 0,0 (€ e
2
- / oy ;j) Pete)) o DG(€.0) O €. 0
[ [ / AU DaAT(€ 6)+ (1= Vo€, 0),1)) 5= DaA T (6,
-

+ (1= Az(E, 1) )5 Dn(/\Xn(é t)+ (1= Nx(&,1),1)

2
a(jﬂ (Plats,B),2 ))aa D(x(&.1).1 >6 D&, 1), )}d)\yl(fat)dfdt
2

2
(= Nl >—a—Dv<D<x<£ .0) ai atD(x(f,t>,t>}dAy1<£,t>d5dt

= O( sup En(u) — D(u)‘ X sup ’y1<57t)‘>
UGQ(S 36[075]»t6[0’T]

+0( swp |2 D) ~ Lp(w)

s (s, 1)),
u€Gs

s€[0,5],t€[0,T]

b s ~
©= [ w0 [ {550Batete.).0) = J5o(Dla(e.0.0)} 5 Dala(e, ). )5, e

b 5 92
- [T [ 5 pre Dl 0. 0){Dutelé.0.0) - Dla(e.).0} 5 Dl 0.0

x %x(g, t)dedt
B b T s rl 2 R
= [wTw [ [ G5 Bata(en). + (1= MD(a(e.0.0)
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< {Bule(e.0),0)~ D ). O - Dala(€,0),8) = 5= D(a(E,8),0)} 5 (e, )

2
w00 [ OBalelen.) + (1 NDE 0, — A 0lDlte 0,00}
x M\ Du(w(€,1),8) = D(a(&, ).t )}83 0

(@(&,1),1) 5, 2(E, t)dedt
= O(usggp(S Dp(u) — D(u)f),

b s o~ ~
@)= [T [ {550Pu(Ra(e.).0)5-PulFule.).0) = 550(Dulelé.0).)

0 ~ 0
% 5= Du(a(&1), 1) } = Xn(€, t)dédt

b 5 92
= [TwT O [ 5Dl ).0) 5Dl 0,8) 5 Dla(e.t). O (€:) (€, e

[T [ e, 0Dt .0 0 2t ndcas
. o 9D ) e 1 PG Hg TS
z=Xn(E,t)

_ / "7 ) [ LBt )2 Bt (€. 1)dedt
= ; 0 oD n\T, n\L, Y2(s,

i

r=x(&,t)
b s N N a=Xn (&)

—l—/ wT(t) iU(Dn(az:,t)gDn(x,75)
a 0o 9D

Xz

x(&, t)dEdt

—aten) O
b s 92

[T [ %vw(x@,w,t»%mm .0) D

2

b s
= [T0T ) [ 55Dl 0.0) 5 Dlate. ) e ) gl et

/ //aDQ (Dn(AXn(&,t) + (1 — Nz(&, ), 1))

< D(AXn(€0) + (1= Na(€, 1), )5 Du(AXn(€,1) + (1 = M€, ), ) (€. 1)

X yo(&,t)dEdt

/ // aDz Bn (AXn (&, 1) + (1 = Nz(&,t),1))
95 9 ~

Xa—an(AXn(éat)Jr( Az (&, 1), ) 5 Dn(AXn(é t)+ (1= Nx(&,1),1)

2
D&, 1), 1) 5 Dl 1) ¢ >a D(r(E. 1) 1) (€.1) S (€, e

(o€, 1), i (6. 1) (€, 1)t
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b s rl . 2
n / W™ (1) /0 /0 L UDaOXa(E 1)+ (1 = V&, 1), )+ PaAXn (6, )

+ Nz (€,t), )dy (&, t)y2 (&, t)dEdt

(1-
/ / / aD" (Dn(AXn(E.t) + (1 A):c(é,t),t)){aa2 Dp(AX (€, 1)

(1= Nl 0),8) - a Da(e(e.1),0) b (€. 1) Dol )

/ / / —v (Dn(AXn (&, 1) + (1 = Nx(€,1),1))dA {% n(2(&,1), 1)
52

- D(a(e.b), )}w(é 1) a(e, )
/ / / D o(DaAXn (1) + (1~ Nl 1),1)) — ~o(Dla(€, 1).1))}
32

0

—o( s (s x sup |ys(s)])
s€[0,5],t€[0,T] s€[0,9]

+0( swp [Da(w) = D) x  swp_[y(s,1)])
u€Gs s€10,5],t€[0,T]
0 ~ 0
+0( sup |~ Dufw) = D) x sup |y(s.)]).
ueGg| 0% xr $€[0,5],t€[0,T]
and

b s - ~
©= [ w0 [ 55eDua(e .00 Dalate. o). nlé. et

b s

— [T [ D€ 0.0) Dl 0. D€, Nl
b s =R

= [0 ) [ 55 Dulate0.0){ 5 Bula(€. 0.0) ~ 5-Dla(e,).0) e et
b s R

= [CuT o [ {G50Putete.0.0) = 550(DGl.0.0)} 5Dl ol it

0 0

b s R

= [0 [ 55eDaate ) {5 Dala(e,t).0) — 5-Dlale.t10) pnle. e
b s rl 92

+/a wT(t)/ %v(ADn(x(f,t),t)+(1—)\)D(:z:(§,t),t))d)\
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< {D(r(€.1),1) = D€, 0).1) } - DG (e, 1), e, e

ox
= O( sup | Du(u) = D(w)| x sup_|ys(s)]).
u€Gs 5€[0,9]

Then from Lemma 2.3.1. to Lemma 2.3.4. along with Proposition 6.6.1., we have

sup [93(s)| = op( sup_|ys(s)l).
s€]0,9] s€10,5]
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