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ABSTRACT 

TARGETING METABOLIC VULNERABILITIES IN BREAST CANCER SUBTYPES  

By 

Martin Peter Ogrodzinski 

 Breast cancer is a highly prevalent and deadly disease. Globally, it is the most 

diagnosed cancer in women and is responsible for the most cancer-related deaths among 

women. Breast cancer is also a remarkably heterogeneous disease, with clear variability 

in clinical parameters including histological presentation, receptor status, and gene 

expression patterns that differ between patients. A significant amount of effort has been 

spent characterizing breast cancer into subtypes, with the main goal of improving patient 

outcomes by: 1) designing targeted therapies, and 2) improving our ability to determine 

patient prognosis. While scientists have made significant strides in meeting these goals, 

we still lack targeted therapies for some subtypes of breast cancer, and current therapies 

often fail to provide a lasting cure. Thus, additional research is needed to improve patient 

care. One promising area in breast cancer research is cancer metabolism. Using 

metabolism as a therapeutic target is rapidly gaining traction, as it is now widely 

appreciated that cancer cells exhibit significant differences in metabolism compared to 

normal cells. The primary goal of this dissertation is to study the metabolism of distinct 

subtypes of breast cancer and identify metabolic vulnerabilities that can be used to 

effectively treat each subtype. 

This thesis will begin with a review of current classification strategies for breast 

cancer subtypes and knowledge regarding subtype-specific metabolism. It will also 



 
 

consider modern techniques for targeting breast cancer metabolism for therapeutic 

benefit. Breast cancer heterogeneity and metabolism are investigated using cell lines and 

tumors derived from the MMTV-Myc mouse model, which mimics the complexity 

observed in human disease. Cell lines derived from two histologically defined subtypes, 

epithelial-mesenchymal transition (EMT) and papillary, are used to establish clear 

metabolic profiles for each subtype. Metabolic vulnerabilities are identified in glutathione 

biosynthesis and the tricarboxylic acid cycle in the EMT subtype and nucleotide 

biosynthesis is determined to be a metabolic weakness in the papillary subtype. It is 

further shown that pharmacologically targeting each of these metabolic pathways has the 

greatest effect on reducing proliferation when used against the vulnerable subtype. These 

in vitro findings are then expanded upon by integrating genomic and metabolomic data 

acquired from in vivo tumors. In vivo experiments reveal that the EMT and papillary 

tumors prefer parallel pathways to generate nucleotides, with the EMT subtype preferring 

to salvage nucleotides while the papillary subtype prefers to produce nucleotides de novo. 

CRISPR/Cas9 gene editing is used to functionally characterize the metabolic effects of 

targeting nucleotide salvage and de novo biosynthesis in the EMT and papillary subtypes, 

and determine that targeting the preferred pathway of each subtype is most effective at 

slowing tumor growth. 

Overall, this work demonstrates the power of using metabolism as a therapeutic 

target of breast cancer, and further shows that metabolic vulnerabilities specific to 

individual subtypes can be used effectively to guide personalized medicine. 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is dedicated to: 
My best friend and greatest supporter: Allie Ogrodzinski 

  



v 
 

ACKNOWLEDGMENTS 

 

The work shown within this dissertation would not have been possible without an 

extended network of people who have helped shape me as a person and guided me along 

the path of growing as a scientist. There are too many individuals to name everyone, but 

I am nonetheless grateful to each of you for your role in making me the person I am today. 

I do want to specifically thank my incredibly patient and supportive wife, Allie. I could not 

have made it this far without your love and support. Thank you for sharing this journey 

with me. 

Thank you to my family, especially my parents Martin and April, who have 

supported me every step of the way. Thank you to my grandparents, aunts, uncles, 

cousins, nieces, nephews, and in-laws –there are too many to name, but thank you all for 

showing me the many faces of success and happiness. Also, thank you to my siblings – 

Amanda, Emily, Allison, Ana, Elizabeth, Erica, Alexis, Yvonne, Tim, Sam, Joey, and 

Louis. You have all been so helpful and supportive, I am grateful to each of you. To my 

brother Sam, having you around these past few years has helped me in countless ways. 

I look forward to witnessing the rest of your journey as a fellow Spartan. 

At Michigan State University I have had the opportunity to learn from a wide range 

of faculty and students, all of whom have left their marks on my life and research. Most 

notably I would like to recognize my mentor Dr. Sophia Lunt. Thank you for all your time, 

patience, and support over the years. From the very beginning you helped me define my 

passion for research and I am extremely grateful for the opportunities you have given me 

throughout the start of my scientific career. I am confident that the skills and knowledge I 



vi 
 

have gained working with you will help me succeed as a future physician scientist. I also 

want to thank all the past and present members of the Lunt lab for their support over the 

years – especially Deanna Broadwater, Elliot Ensink, Dr. Hyllana Medeiros, Dr. Shao 

Thing Teoh, and Dr. Lei Yu. I could not have asked to be part of a better team. I particularly 

want to acknowledge Shao, who is always willing to spend time talking about science and 

has seemingly endless patience when it comes to troubleshooting code or explaining his 

analytical techniques. I would also like to thank two former members of the Andrechek 

lab, Dr. Jon Rennhack and Dr. Dan Hollern, for encouraging me to pursue research and 

providing support over the years. 

I am also grateful to have had the opportunity to collaborate on many projects with 

several labs at Michigan State and other institutions. I am thankful to all the collaborators 

I have worked with over the years. In particular, I would like to thank Dr. Eran Andrechek, 

Dr. Paul-Joseph Aspuria, and Dr. Sriram Venneti for the opportunity to contribute to work 

in their labs. Working with so many different people has been very rewarding, and I am 

grateful to have been a part of so many different stories. 

I also want to give a special thanks to Lauren Aitch and the Aitch foundation for 

funding my research. I am so honored to have had the opportunity to work with you and 

your foundation. I would also like to thank the core facilities at Michigan State, without 

whom much of my work would not have been possible. This includes everyone at campus 

animal resources, the investigative histopathology laboratory, and the mass spectrometry 

and metabolomics core.  

To the members of my committee: Dr. Eran Andrechek, Dr. Dan Jones, Dr. Karl 

Olson, and Dr. Hua Xiao – thank you for your valuable feedback and for all the time spent 



vii 
 

listening to me talk about my work. I would also like to thank the Physiology program, the 

College of Human Medicine, and Spectrum Health for their support, funding, and for 

providing me with the opportunity to earn my degree at Michigan State University.  



viii 
 

TABLE OF CONTENTS 

 

LIST OF TABLES .......................................................................................................... xi 

LIST OF FIGURES ........................................................................................................ xiii 

KEY TO ABBREVIATIONS ......................................................................................... .xvi 

CHAPTER 1. DECIPHERING METABOLIC REWIRING IN BREAST CANCER 
SUBTYPES ................................................................................................................... 1 
1.1 PREFACE........................................................................................................... 2 
1.2 Abstract .............................................................................................................. 3 
1.3 Introduction ......................................................................................................... 3 
1.4 Merging traditional breast cancer subtypes with metabolic profiles .................... 6 
1.5 Triple-negative breast cancer ............................................................................. 8 
1.6 ER+ breast cancer .............................................................................................. 14 
1.7 HER2+ breast cancer ......................................................................................... 17 
1.8 Inflammatory breast cancer ................................................................................ 19 
1.9 Hypoxia, a common feature in breast cancer subtypes ...................................... 20 
1.10 Comorbidities and predisposing factors: obesity and diabetes ........................... 22 
1.11 Targeting metabolism in breast cancer ............................................................... 26 
1.12 Conclusions and future directions ....................................................................... 28 
1.13 Acknowledgments .............................................................................................. 30 
1.14 Dissertation goals ............................................................................................... 31 
1.15 APPENDIX ......................................................................................................... 33 
1.16 REFERENCES ................................................................................................... 41 

 
CHAPTER 2. METFORMIN INDUCES DISTINCT BIOENERGETIC AND METABOLIC 
PROFILES IN SENSITIVE VERSUS RESISTANT HIGH GRADE SEROUS OVARIAN 
CANCER AND NORMAL FALLOPIAN TUBE SECRETORY EPITHELIAL CELLS ...... 71 
2.1 PREFACE........................................................................................................... 72 
2.2 Abstract .............................................................................................................. 73 
2.3 Introduction ......................................................................................................... 74 
2.4 Results ............................................................................................................... 76 

2.4.1 Biguanides inhibit HGSC cell proliferation ............................................... 76 
2.4.2 Phenformin, but not metformin, has an inhibitory effect on phospho-S6K 

levels via the upregulation of REDD1. ..................................................... 77 
2.4.3 HGSC cell lines have altered bioenergetic profiles compared to normal 

FTSECs. .................................................................................................. 79 
2.4.4 Biguanides significantly inhibit oxygen consumption while increasing 

glycolysis in both normal FTSECs and HGSC cells that can be exploited in 
low glucose conditions. ............................................................................ 81 

2.4.5 Metabolomic analysis of metformin and phenformin treatment reveals 
cancer cell specific metabolite fluctuations. ............................................. 82 



ix 
 

2.4.6 Aspartate and pyruvate supplementation rescue the anti-proliferative 
effects of metformin on cell growth. ......................................................... 84 

2.5 Discussion .......................................................................................................... 85 
2.6 Methods .............................................................................................................. 88 

2.6.1 Cell lines and reagents ............................................................................ 88 
2.6.2 Mitochondrial function and glycolysis ....................................................... 88 
2.6.3 Cell proliferation assay............................................................................. 89 
2.6.4 Spheroid formation assay ........................................................................ 89 
2.6.5 Western blot analysis ............................................................................... 89 
2.6.6 qRT-PCR analysis ................................................................................... 90 
2.6.7 Metabolite extraction and analysis ........................................................... 90 

2.7 Acknowledgments .............................................................................................. 91 
2.8 Author Contributions ........................................................................................... 92 
2.9 APPENDIX ......................................................................................................... 93 
2.10 REFERENCES ................................................................................................. 120 
 
CHAPTER 3. METABOLOMIC PROFILING OF MOUSE MAMMARY TUMOR-
DERIVED CELL LINES REVEALS TARGETED THERAPY OPTIONS FOR CANCER 
SUBTYPES ................................................................................................................. 126 
3.1 PREFACE ........................................................................................................ 127 
3.2 Abstract ............................................................................................................ 128 
3.3 Introduction ....................................................................................................... 128 
3.4 Results ............................................................................................................. 131 

3.4.1 Relative metabolite levels between histologically distinct subtypes of 
MMTV-Myc mouse mammary tumors define metabolic pathways of 
interest. .................................................................................................. 131 

3.4.2 Isotope labeling through the TCA cycle is increased in the EMT     
subtype. ................................................................................................. 132 

3.4.3 Isotope labeling into nucleotide biosynthesis is elevated in the papillary 
subtype. ................................................................................................. 133 

3.4.4 Relative metabolic pathway activity correlates with drug response. ...... 134 
3.5 Discussion ........................................................................................................ 137 
3.6 Methods ............................................................................................................ 139 

3.6.1 Primary mouse tumors ........................................................................... 139 
3.6.2 Cell lines and culture conditions ............................................................ 140 
3.6.3 Metabolic profiling .................................................................................. 140 
3.6.4 Isotope labeling studies ......................................................................... 141 
3.6.5 Cell proliferation and drug response studies .......................................... 141 
3.6.6 qRT-PCR studies ................................................................................... 142 
3.6.7 Statistical analyses ................................................................................ 142 

3.7 Acknowledgments ............................................................................................ 142 
3.8 Author Contributions ......................................................................................... 143 
3.9 APPENDIX ....................................................................................................... 144 
3.10 REFERENCES ................................................................................................. 160 

 



x 
 

CHAPTER 4. TARGETING SUBTYPE-SPECIFIC METABOLIC PREFERENCES IN 
NUCLEOTIDE BIOSYNTHESIS INHIBITS MOUSE MAMMARY TUMOR GROWTH 168 
4.1 PREFACE ........................................................................................................ 169 
4.2 Abstract ............................................................................................................ 170 
4.3 Introduction ....................................................................................................... 170 
4.4 Results ............................................................................................................. 173 

4.4.1 Metabolite pool sizes and gene expression patterns of MMTV-Myc 
mammary tumors implicate differences in nucleotide metabolic pathway 
activity between subtypes. ..................................................................... 173 

4.4.2 Expression of nucleotide salvage genes are increased in the EMT 
subtype. ................................................................................................. 175 

4.4.3 Expression of key de novo and salvage genes are correlated with worse 
patient outcomes. .................................................................................. 176 

4.4.4 Knocking out de novo and salvage genes disrupts cell metabolism in a 
subtype-specific manner. ....................................................................... 177 

4.4.5 Targeting nucleotide de novo biosynthesis and salvage genes impact 
tumor growth in a subtype-specific manner. .......................................... 180 

4.5 Discussion ........................................................................................................ 182 
4.6 Methods ............................................................................................................ 187 

4.6.1 Primary mouse tumors ........................................................................... 187 
4.6.2 Metabolic profiling .................................................................................. 187 
4.6.3 Gene expression analysis ...................................................................... 188 
4.6.4 Survival analysis .................................................................................... 189 
4.6.5 Cell lines and culture conditions ............................................................ 189 
4.6.6 CRISPR/Cas9 ........................................................................................ 190 
4.6.7 Western blot analysis ............................................................................. 191 
4.6.8 Isotope labeling studies ......................................................................... 192 
4.6.9 In vivo tumor studies .............................................................................. 192 

4.6.10 Histological analyses ............................................................................. 193 
4.6.11 Statistical analyses ................................................................................ 194 

4.7 Acknowledgments ............................................................................................ 195 
4.8 APPENDIX ....................................................................................................... 196 
4.9 REFERENCES ................................................................................................. 235 
 
CHAPTER 5. SUMMARY AND FUTURE DIRECTIONS ............................................. 244 
5.1 SUMMARY ....................................................................................................... 245 
5.2 FUTURE DIRECTIONS .................................................................................... 246 

5.2.1 EVALUATION WITH ADDITIONAL METABOLOMICS TECHNIQUES . 246 
5.2.2 IN VIVO DRUG TREATMENT STUDIES  .............................................. 248 
5.2.3 TRANSLATION TO HUMAN DISEASE ................................................. 249 
  



xi 
 

LIST OF TABLES 

 

Table 1.1 Summary of clinical and metabolic features of breast cancer subtypes. ..... 35 
 
Table S1.1 Full list of analyzed metabolites. ............................................................... 36 
 
Table S2.1 Statistical analysis of metabolic profiles shown in Figures 2.7, S2.2, and 
S2.3. ............................................................................................................................ 118 
 
Table S3.1 Metabolite abundance with statistical significance. ................................... 155 
 
Table S3.2 13C-Isotope percent labeling from glucose with statistical significance. .... 157 
 
Table S3.3 13C-Isotope percent labeling from glutamine with statistical significance. . 158 
 
Table S3.4 qRT-PCR primer sequences. .................................................................... 159 
 
Table S4.1 Metabolite abundance with statistical significance for Figure 4.1B. .......... 215 
 
Table S4.2 Gene expression with statistical significance for Figure 4.2A.................... 217 
 
Table S4.3 13C-Isotope percent labeling form glucose statistical significance for figure 
4.4 – EMT subtype. ..................................................................................................... 221 
 
Table S4.4 13C-Isotope percent labeling form glucose statistical significance for figure 
4.4 – papillary subtype. ............................................................................................... 222 
 
Table S4.5 Metabolite abundance with statistical significance for figures 4.5 and S4.5 – 
EMT subtype. .............................................................................................................. 223 
 
Table S4.6 Metabolite abundance with statistical significance for figures 4.5 and S4.5 – 
papillary subtype. ........................................................................................................ 225 
 
Table S4.7 Tumor size statistical significance for figures 4.6A and S4.8A – EMT 
subtype. ....................................................................................................................... 227 
 
Table S4.8 Tumor size statistical significance for figures 4.6B and S4.8B – papillary 
subtype. ....................................................................................................................... 228 
 
Table S4.9 IHC analysis statistical significance for figure 4.7A – EMT subtype. ......... 229 
 
Table S4.10 IHC analysis statistical significance for figure 4.7B – papillary subtype. . 230 
 
Table S4.11 IHC analysis statistical significance for figure 4.7C – EMT subtype. ....... 231 



xii 
 

 
Table S4.12 IHC analysis statistical significance for figure 4.7D – papillary subtype. . 232 
 
Table S4.13 13C-Isotope percent labeling from glucose statistical significance for figure 
S4.9 – EMT subtype. ................................................................................................... 233 
 
Table S4.14 13C-Isotope percent labeling from glucose statistical significance for figure 
S4.9 – papillary subtype. ............................................................................................. 234 

 
 
 

  



xiii 
 

LIST OF FIGURES 

 

Figure 1.1 Schematic illustration of altered metabolic pathways in breast cancer 
subtypes. ..................................................................................................................... 34 
 
Figure 2.1 The effects of biguanides on 2-D cell proliferation of HGSC and normal 
FTSEC cell lines. ......................................................................................................... 94 
 
Figure 2.2 The effects of biguanides on 3-D cell proliferation of HGSC and normal 
FTSEC cell lines. ......................................................................................................... 96 
 
Figure 2.3 The effects of biguanides on mTOR signaling in HGSC and normal FTSEC 
cell lines. ..................................................................................................................... 98 

 
Figure 2.4 Bioenergetic analysis of HGSC and normal FTSEC cell lines. ................... 99 
 
Figure 2.5 The effects of biguanides on the bioenergetics profiles of HGSC and normal 
FTSEC cell lines. ......................................................................................................... 101 
 
Figure 2.6 Glucose deprivation sensitizes metformin resistant cell lines FUOV1 and 
OVCAR4 to metformin treatment.  .............................................................................. 103 
 
Figure 2.7 The cancer-specific effects of biguanides on mitochondrial shuttle 
metabolites. ................................................................................................................. 104 

 
Figure 2.8 Mitochondrial shuttles. ............................................................................... 106 
 
Figure 2.9 Aspartate and pyruvate supplementation inhibits the effects of metformin on 
cell proliferation. .......................................................................................................... 108 
 
Figure S2.1 Expression levels of phospho-AMPK, AMPK, LKB1, and OCT1. ............. 110 
 
Figure S2.2 The effects of biguanides on REDD1 transcription in HGSC and normal 
FTSEC cell lines. ......................................................................................................... 111 
 
Figure S2.3 Profiles of intracellular metabolites in HGSC and normal FTSEC cell lines 
treated with metformin (10 mM), phenformin (1 mM), or vehicle control for 24 hours. 112 
 
Figure S2.4 Quantification of metabolite changes induced by metformin treatment. ... 117 
 
Figure 3.1 Metabolite pool sizes are different between EMT and papillary tumor derived 
cell lines. ..................................................................................................................... 145 
 



xiv 
 

Figure 3.2 13C-Isotope labeling from glucose into the TCA cycle is significantly higher in 
the EMT subtype. ........................................................................................................ 146 
 
Figure 3.3 13C-Isotope incorporation from glucose and glutamine into nucleotide 
biosynthesis is higher in the papillary subtype. ........................................................... 147 
 
Figure 3.4 Metabolism targeting drugs have subtype-specific effects on cell  
proliferation. ................................................................................................................ 148 
 
Figure S3.1 Heatmap indicating relative metabolite differences between EMT and 
papillary tumor derived cell lines. ................................................................................ 149 
 
Figure S3.2 13C-Isotope labeling from glutamine into the TCA cycle is similar between 
subtypes. ..................................................................................................................... 150 
 
Figure S3.3 13C-Isotope labeling from glucose into ribose 5-phospahte, serine, and 
glycine and from glutamine into aspartate is similar between subtypes. ..................... 151 
 
Figure S3.4 Schematic overview of metabolism targeting drugs and affected    
pathways. .................................................................................................................... 152 
 
Figure S3.5 Dose response curves for metabolism targeting drugs. ........................... 153 
 
Figure S3.6 qRT-PCR measurement of gene expression in targeted pathways. ........ 154 
 
Figure 4.1 Metabolic profiles and gene expression patterns indicate differences in 
nucleotide metabolism between subtypes of MMTV-Myc EMT and papillary tumors. . 197 
 
Figure 4.2 Expression of nucleotide salvage genes is higher in the EMT subtype and 
expression of de novo biosynthesis genes is higher in the papillary subtype. ............. 199 
 
Figure 4.3 Expression of de novo nucleotide biosynthesis gene PPAT and nucleotide 
salvage gene APRT are strongly associated with relapse-free survival across breast 
cancer subtypes. ......................................................................................................... 200 
 
Figure 4.4 13C-Isotope incorporation from glucose into ATP biosynthesis is altered after 
targeting de novo and salvage genes.......................................................................... 201 
 
Figure 4.5 Metabolite levels are most affected by targeting the preferred nucleotide 
biosynthetic pathway for each subtype. ....................................................................... 202 
 
Figure 4.6 Tumor growth for each subtype is decreased after knocking out the preferred 
nucleotide metabolism pathway. ................................................................................. 203 
 
Figure 4.7 IHC analysis reveals decreased proliferation in slower growing tumors. .... 204 
 



xv 
 

Figure S4.1 Gene set enrichment analysis for nucleotide salvage genes. .................. 205 
 
Figure S4.2 Gene editing verification of PPAT gene. .................................................. 206 
 
Figure S4.3 Gene editing verification of APRT gene. .................................................. 207 
 
Figure S4.4 Protein level verification of KO cell lines. ................................................. 208 
 
Figure S4.5 Full metabolic profiles of control and KO cell lines. .................................. 209 
 
Figure S4.6 Representative Ki67 staining for EMT and papillary tumors. ................... 210 
 
Figure S4.7 Representative TUNEL assay for EMT and papillary tumors. .................. 211 
 
Figure S4.8 Tumor growth of additional clones. .......................................................... 212 
 
Figure S4.9 13C-Isotope incorporation from glucose into ATP biosynthesis in additional 
PPAT KO clones. ........................................................................................................ 213 
 
Figure S4.10 Protein level verification of additional KO cell lines. ............................... 214 
  



xvi 
 

KEY TO ABBREVIATIONS 

 

5FU – 5-Fluorouracil 

ACL– ATP citrate lyase 

ADP – Adenosine diphosphate 

AKGDH – Alpha-ketoglutarate dehydrogenase 

AKT – Protein kinase B 

AMPK – AMP-activated protein kinase 

APRT – Adenine phosphoribosyltransferase 

ASCT2 – Alanine serine cysteine-preferring transporter 2 

ASS – Argininosuccinate synthetase 

ATP – Adenosine triphosphate 

BMI – Body mass index 

BSO – Buthionine sulfoximine 

CAF – Cancer associated fibroblasts 

CBZ - Carboxybenzyl 

cGPD – Cytosolic Glycerol-3-phosphate dehydrogenase 1 

CoA – Coenzyme A 

CPT1 – Carnitine palmitoyltransferase-1 

CTP – Cytidine triphosphate 

DAB – Diaminobenzidine 

dADP – Deoxyadenosine diphosphate 

dAMP – Deoxyadenosine monophosphate 



xvii 
 

dATP – Deoxyadenosine triphosphate 

dCDP – Deoxycytidine diphosphate 

dCMP – Deoxycytidine monophosphate 

dCTP – Deoxycytidine triphosphate 

dGDP – Deoxyguanosine diphosphate 

dGMP – Deoxyguanosine monophosphate 

dGTP – Deoxyguanosine triphosphate 

dUTP – Deoxyuridine triphosphate 

DHAP – Dihydroxyacetone phosphate 

DMEM – Dulbecco's modified Eagle's Medium 

DMSO – Dimethyl sulfoxide 

dTDP – Deoxythymidine diphosphate 

dTMP – Deoxythymidine monophosphate 

dTTP – Deoxythymidine triphosphate 

E – Eosin 

ECAR – Extracellular acidification rate 

EGFR – Epidermal growth factor receptor 

EMT – Epithelial-mesenchymal transition 

ENT – Equilibrative nucleoside transporter 

ER – Estrogen receptor 

ESI – Electrospray ionization 

ETC – Electron transport chain 

FAD – Flavin adenine dinucleotide 



xviii 
 

FASN – Fatty acid synthase 

FBP – Fructose bisphosphate 

FDR – False discovery rate 

FTSEC – Fallopian tube secretory epithelial cells 

G3P – Glycerol-3-phosphate 

GCL – Glutamate-cysteine ligase 

GCLC – GCL catalytic subunit 

GCLM – GCL modifier subunit 

GEO – Gene expression omnibus 

GMP – Guanosine monophosphate 

GPC – Glycerophosphocholine 

GS – Glutamine synthetase 

GSEA – Gene set enrichment analysis 

GSR – Glutathione reductase 

GSS – Glutathione synthetase 

GTP – Guanosine triphosphate 

H – Hematoxylin 

HER2 – Human epidermal growth factor receptor 2 

HFD – High fat diet 

HGSC – High grade serous ovarian cancer 

HIF – Hypoxia-inducible factor 

IBC – Inflammatory breast cancer 

IDP – Inosine diphosphate 



xix 
 

IGF-1 – Insulin-like growth factor-1 

IHC – Immunohistochemical 

IMP – Inosine monophosphate 

KM – Kaplan-Meier 

KO – Knock out 

LC-MS/MS – Liquid chromatography-tandem mass spectrometry 

LDH – Lactate dehydrogenase 

MCT – Monocarboxylate transporter 

mGPD – Mitochondrial G3P dehydrogenase 2 

ml - Milliliter 

mM – Millimolar 

MRM – Multiple reaction monitoring 

MTHFD1L – Methylenetetrahydrofolate dehydrogenase 1-like 

MTHFD2 – Methylenetetrahydrofolate dehydrogenase 2 

mTOR – Mammalian target of rapamycin 

MTX – Methotrexate 

N – Sample-size 

NAD – Nicotinamide adenine dinucleotide oxidized 

NADH – Nicotinamide adenine dinucleotide reduced 

NADP – Nicotinamide adenine dinucleotide phosphate oxidized 

NADPH – Nicotinamide adenine dinucleotide phosphate reduced 

nM – Nanomolar 

NMR – Nuclear magnetic resonance 



xx 
 

NTP – Nucleoside triphosphate 

OCR – Oxygen consumption rate 

OTC – Ornithine transcarbamylase 

PAM50 – Prediction analysis of microarray 50 

pAMPK – Phosphorylated AMPK 

Pcho – Phosphocholine 

PCR – Polymerase chain reaction 

PDH – Pyruvate dehydrogenase 

PDX – Patient derived xenograft 

PHGDH – Phosphoglycerate dehydrogenase 

PI3K – Phosphatidylinositol 3-kinase 

PKM1 – Pyruvate kinase M1 

PKM2 – Pyruvate kinase M2 

PPAT – Phosphoribosyl pyrophosphate amidotransferase 

PPP – Pentose phosphate pathway 

PR – Progesterone receptor 

PRPP – Phosphoribosyl pyrophosphate 

pS6K – S6 kinase 

PSAT1 – Phosphoserine aminotransferase 1 

PSC – Puromycin-resistant scramble control 

PSPH – Phosphoserine phosphatase 

PtdCho – Phosphatidylcholine 

PVDF – Polyvinylidene fluoride 



xxi 
 

qRT-PCR – Quantitative reverse transcription polymerase chain reaction 

RFS – Relapse free survival 

ROS – Reactive oxygen species 

RPMI – Roswell Park Memorial Institute medium 

RRM2 – Ribonucleotide reductase M2 

S – Supplementary 

S6K – S6 kinase 

SAM – S-adenosylmethionine 

SHMT1 – Serine hydroxymethyltransferase 1 

SHMT2 – Serine hydroxymethyltransferase 2 

TAC – Transcriptome analysis console 

TCA – Tricarboxylic acid 

TIDE – Tracking of indels by decomposition 

TNBC – Triple negative breast cancer 

TUNEL – Terminal deoxynucleotidyl transferase dUTP nick end labeling 

TYMS – Thymidylate synthase 

UDP – Uridine diphosphate 

µl – Microliter 

µM - Micromolar 

UMP – Uridine monophosphate 

UTP – Uridine triphosphate 

XMP – Xanthosine monophosphat



1 
 

CHAPTER 1. 

DECIPHERING METABOLIC REWIRING IN BREAST CANCER SUBTYPES 
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1.1 PREFACE 

This chapter is a modified version of a previously published article: 

Ogrodzinski, M. P., Bernard, J. J., & Lunt, S. Y. (2017). Deciphering metabolic 

rewiring in breast cancer subtypes. Translational Research, 189, 105-122. 
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1.2 Abstract 

Metabolic reprogramming, an emerging hallmark of cancer, is observed in breast cancer. 

Breast cancer cells rewire their cellular metabolism to meet the demands of survival, 

proliferation, and invasion. However, breast cancer is a heterogeneous disease, and 

metabolic rewiring is not uniform. Each subtype of breast cancer displays distinct 

metabolic alterations. Here, we focus on unique metabolic reprogramming associated 

with subtypes of breast cancer, as well as common features. Therapeutic opportunities 

based on subtype-specific metabolic alterations are also discussed. Through this 

discussion, we aim to provide insight into subtype-specific metabolic rewiring and 

vulnerabilities that have the potential to better guide therapy and improve outcomes for 

patients. 

1.3 Introduction 

Breast cancer remains the leading cause of cancer deaths for women worldwide, 

and incidence rates are increasing [1]. The heterogeneity of breast cancers makes 

treatment challenging, as therapies must be tailored to the context of each patient’s 

disease. Effective personalized therapy can only be achieved by considering the clinical 

manifestations as well as the underlying biology. Current therapeutic strategies largely do 

not leverage the metabolic reprogramming of breast cancers. Treatment guidelines for 

women with localized disease in stages I-III focus on surgical removal (breast conserving 

surgery or mastectomy) and post-surgical radiation, when not contraindicated. Most 

patients diagnosed with advanced stage III or IV breast cancers undergo treatment 

regimens including chemotherapy and/or radiation therapy [2,3]. In general, patients with 

estrogen receptor positive (ER+) breast cancer receive adjuvant endocrine therapy in 
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addition to chemotherapy in advanced cases; patients with human epidermal growth 

factor receptor 2 positive (HER2+) breast cancer often receive anti-HER2 therapy 

combined with chemotherapy; and patients with triple negative breast cancer (TNBC) 

receive chemotherapy [3]. Many chemotherapy regimens are used in the treatment of 

breast cancer, and commonly include combinations of cyclophosphamide, methotrexate, 

5-fluorouracil, taxanes, and/or anthracyclines [4]. While these compounds have helped 

many patients, recurrence rates are still high [5], and tumors often develop therapeutic 

resistance [6]. Therefore, targeting breast cancer-specific metabolic vulnerabilities may 

be a valuable addition to the clinicians’ toolbox for treating patients with breast cancer as 

an adjuvant therapy, a targeted first-line therapy for triple negative breast cancers, or a 

second-line therapy in tumors that develop resistance. 

Cancer cells rewire their metabolism to support survival, proliferation, and invasion 

[7-9]. Metabolic rewiring varies significantly between cancers based on genetics and 

environment [10-12], and may manifest through upregulation of metabolic pathways or 

through downstream effects of oncogenes [13,14]. A well-known example of metabolic 

rewiring in cancer is the Warburg effect: while normal differentiated cells increase 

glycolysis in response to certain environmental cues such as hypoxia, many cancer cells 

upregulate glycolysis and lactate fermentation regardless of oxygen availability [15]. 

Cancer cells can also upregulate the tricarboxylic acid (TCA) cycle in the mitochondria to 

support both energy generation and macromolecule synthesis. The TCA cycle is 

replenished through upregulated anaplerosis using various carbon sources including 

glutamine, pyruvate, and branched chain amino acids [16]. Despite the metabolic 

heterogeneity within and between cancers, most alterations in metabolism support 
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pathways involving bioenergetics, biosynthesis, and redox balance [10]. These metabolic 

changes are induced both by alterations in signaling pathways and the tumor 

microenvironment. Signaling pathways that impact cancer metabolism include 

phosphatidylinositol 3-kinase (PI3K), Protein Kinase B (Akt), mammalian target of 

rapamycin (mTOR), hypoxia-inducible factor-1 (HIF-1), sterol regulatory element binding 

protein, c-Myc, Kras, and p53 [8]. Interestingly, several of these signaling pathways are 

in turn regulated by metabolic feedback from metabolites including amino acids, fatty 

acids, α-ketoglutarate, and ATP [17]. Altered metabolite levels in cancer also influence 

epigenetic modifications. Metabolites such as acetyl-CoA, succinate, fumarate, α-

ketoglutarate, and S-adenosylmethionine (SAM) have been shown to participate in 

epigenetic reprogramming and regulate gene expression [18]. Cellular metabolism plays 

an integral role in numerous biological processes, and investigation into cancer 

metabolism can greatly enhance our understanding of cancer biology.  

Metabolomics has improved our current understanding of cancer metabolism [19-

21]. Metabolomics is the analysis of metabolite levels in biological systems, usually by 

mass spectrometry or nuclear magnetic resonance (NMR), and is primarily used to 

investigate three main areas. First, metabolomics has the potential to identify biomarkers 

for diagnosis and/or monitoring of disease progression [22,23]. While significant validation 

will be required before clinical application, metabolomic analysis of patient plasma 

samples may enable the diagnosis of breast cancer and even subtype differentiation 

without performing a biopsy [24-26]. Second, metabolomics enables the discovery of 

oncometabolites, which are metabolites that accumulate significantly in tumors due to a 

specific mutation. Oncometabolites can serve as biomarkers, but also contribute to the 
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development of malignancy, providing a mechanistic understanding of tumor biology [27]. 

Oncometabolites include D-2-hydroxyglutarate, which accumulates in tumors with mutant 

isocitrate dehydrogenase 1 or 2 [28], as well as fumarate and succinate, which 

accumulate in tumors with mutations in fumarate hydratase and/or succinate 

dehydrogenase [29]. Third, metabolomics enables the identification of metabolic 

pathways uniquely upregulated in cancers. One way to accomplish this is through flux 

studies that measure the incorporation of stable isotope tracers, such as 13C-glucose, into 

metabolic pathways [30,31]. Upregulated metabolic pathways could represent metabolic 

vulnerabilities and serve as novel therapeutic targets, or explain mechanisms of drug 

sensitivity or resistance in cancer [22,32]. Metabolomics will continue to advance our 

understanding of various metabolic phenotypes in cancers, enabling novel diagnostic and 

therapeutic approaches. 

In this review, we focus on the metabolic variations between breast cancer 

subtypes. We begin with an overview of the methods for breast cancer classification. 

Next, we focus on known metabolic differences in each breast cancer subtype. We further 

discuss the metabolic impacts of hypoxia, a common feature among breast cancer 

subtypes. We also consider the influence of obesity and diabetes as co-morbidities 

influencing breast cancer development and progression. Finally, we discuss approaches 

for targeting metabolism in breast cancer. 

1.4 Merging traditional breast cancer subtypes with metabolic profiles 

The heterogeneity in breast cancer has led to the development of several 

classification systems. Breast cancer is commonly classified into subtypes by the 

following: 1) morphological criteria (e.g., ductal, lobular, invasive, or in situ); 2) expression 
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of receptors (e.g., ER+, HER2, or triple negative); and 3) intrinsic subtype (e.g., luminal, 

basal-like, claudin-low) [33,34]. Clinically, breast cancers are commonly categorized by 

expression of three receptors: the estrogen receptor (ER), progesterone receptor (PR), 

and human epidermal growth factor receptor 2 (HER2 .[35]. This classification system 

can help direct targeted treatment regimens, such as endocrine therapy for ER+ breast 

cancer. Gene expression profiling has enabled further sub-classification of breast cancer 

into five intrinsic subtypes: luminal A, luminal B, HER2 over-expressing, basal-like, and 

normal-like [34]. Several methods have been proposed by different groups for 

characterizing intrinsic subtypes [36,37], culminating in the development of the Prediction 

Analysis of Microarray 50 (PAM50) [38], a set of 50 genes that is weighted together with 

clinical variables in a FDA-approved test to categorize patients into intrinsic subtypes, 

assess a patient’s risk of distant recurrence, and direct therapy [39]. While no 

classification system perfectly captures the full heterogeneity of breast cancers, they 

provide valuable insights into the underlying biology of breast cancers to help guide 

treatment and predict the chance of metastasis. Taking subtype-specific metabolic 

vulnerabilities into account may further improve patient outcomes. 

Breast cancer subtypes possess distinct metabolic features that may be exploited 

for the development of subtype-specific drugs with fewer side effects (summarized in 

Table 1). To begin deciphering the metabolic heterogeneity in breast cancer, we focus 

on the three major subtypes of breast cancer by receptor status: ER+ breast cancer, 

HER2+ breast cancer, and triple negative breast cancer. We also include a discussion of 

inflammatory breast cancer, a rare yet deadly subtype of breast cancer. We first discuss 

TNBC, the least common yet often the most aggressive form of breast cancer occurring 
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frequently in younger women. Understanding how cancer subtypes differ metabolically 

may enable the development of new treatment approaches, improve our understanding 

of the mechanisms by which drug resistance occurs, and provide new methods for early 

diagnosis and monitoring of breast cancer [23,32]. 

1.5 Triple-negative breast cancer 

Triple-negative breast cancers (TNBCs) account for ~12% of all breast cancers 

[40]. The majority of TNBCs can be classified into the basal-like intrinsic subtype, which 

generally lacks ER and HER2 and express genes observed in basal epithelial cells of the 

normal breast [34,36-38]. Both triple-negative and basal-like breast cancers occur 

proportionally more often in younger patients and have worse clinical outcomes [41]. 

Targeted therapies are currently unavailable due to the lack of ER, PR, and HER2 

expression. Thus, developing new therapeutic targets based on metabolic vulnerabilities 

is especially promising for improving TNBC patient outcomes. 

TNBCs generally display the Warburg effect [42], having elevated glucose uptake 

[43,44] and increased lactate secretion along with upregulated expression of glycolytic 

genes relative to other breast cancer subtypes [45]. The Warburg effect may support 

proliferation by increasing the availability of glycolytic intermediates for biosynthetic 

pathways, and lactate production is required to balance the NAD/NADH ratio to sustain 

glycolysis [15]. Consistent with the Warburg effect, TNBCs exhibit increased glucose and 

lactate transporters [46,47] and lactate dehydrogenase (LDH) [48], which generates 

lactate from the glycolytic end-product pyruvate. The glycolytic rates of TNBCs correlate 

with proliferation rates and tumor aggressiveness [12]. Upregulated glucose metabolism 

in TNBCs is due in part to amplification and/or overexpression of the transcription factor 
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c-Myc (hereafter referred to as Myc), which is overexpressed in basal-like subtypes with 

lower expression in luminal and HER2+ subtypes [49]. Myc directly activates the glucose 

transporter GLUT1, as well as genes involved in glycolysis [50] and the lactate 

dehydrogenase-A gene [51]. Myc has also been shown to upregulate glycolysis by 

repressing expression of thioredoxin-interacting protein, a potent inhibitor of glucose 

metabolism.[52] Epidermal growth factor receptor (EGFR) overexpression, frequently 

observed in TNBC patients and linked with poor clinical outcome [53,54], has also been 

linked with upregulated aerobic glycolysis in TNBC [55]. 

Deregulation of Myc also upregulates glutamine metabolism [56], which is 

increased in TNBCs. Glutamine is a non-essential amino acid that contributes to several 

metabolic pathways including protein synthesis, nucleotide biosynthesis, and the TCA 

cycle. Myc upregulates glutamine transporters and the expression of mitochondrial 

glutaminase, which converts glutamine to glutamate for use in ATP generation and 

glutathione synthesis [57,58]. Glutaminase expression has been associated with poor 

prognosis in triple negative breast cancer [59]. 

Many cancer cells, including TNBCs, display reliance on glutamine, termed 

glutamine addiction [60,61]. The importance of glutamine in cancer is likely due to its 

ability to participate in a wide variety of metabolic processes, including protein and lipid 

biosynthesis, nitrogen donation, glutathione generation, and energy production. 

Increased glutaminolysis, the process of catabolizing glutamine to fuel metabolic 

pathways such as the TCA cycle, is also often observed in cancers [62,63]. Breast cancer 

subtypes express variable levels of enzymes involved in glutaminolysis [64]. Compared 

to other subtypes, TNBCs display glutamine addiction and increased glutaminolysis, and 



10 
 

are therefore sensitive to glutamine depletion [65]. The glutamine dependence of some 

TNBCs may be due to the lack of glutamine synthetase (GS), the enzyme that synthesizes 

glutamine; co-culture with luminal cells that express GS increases the viability of 

glutamine-dependent basal-like breast cancer cells in glutamine-free media [65]. Most 

basal-like and claudin-low TNBC cell lines consume more glutamine than luminal breast 

cancer cell lines and proliferating nontumorigenic cells, but only a subset of the TNBC 

cell lines are glutamine auxotrophs [66]. Glutamine starvation decreases the abundance 

of reduced glutathione and NADPH while increasing oxidized glutathione and glucose 

uptake in glutamine addicted cell lines; these changes are not observed in the ER+ MCF7 

breast cancer cell line, where glutamine starvation decreases reduced glutathione levels 

without affecting NADPH, oxidized glutathione, or glucose uptake [67]. These results 

suggest that TNBC cell lines display altered glutamine metabolism compared to ER+ 

breast cancer cell lines. However, caution should be exercised before translating these 

results to the in vivo setting, as the glutamine metabolism of cancer cells in vitro may not 

align with in vivo tumor metabolism: lung cancer cell lines derived from primary lung 

tumors in mice display significant glutamine metabolism in culture and are sensitive to 

glutaminase inhibition; however, the primary lung tumors in vivo do not significantly utilize 

glutamine and are unaffected by glutaminase inhibition [68]. There is also some 

controversy surrounding the subtype specificity of altered glutamine metabolism in breast 

cancer. A study investigating metabolic profiles of tumors from non-treated breast cancer 

patients found altered glutaminase expression and glutamine levels between metabolic 

clusters of breast cancer, but these clusters were not distinguishable by receptor status 

[69]. However, other in vivo studies support subtype specific differences in glutamine 
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metabolism. Increased glutaminase expression has been observed in primary TNBC 

tumors as compared to other breast cancer subtypes and normal breast tissue, and TNBC 

cell lines and xenografts display sensitivity to glutaminase inhibitors [70]. Additionally, in 

a study comparing 75 breast tumors from patients without known distant metastases, 

TNBC tumors contained a lower level of glutamine than ER/PR/HER2+ tumors [71]. This 

may be due to the increased glutaminolysis in TNBCs. Knockdown of alanine, serine, 

cysteine-preferring transporter 2 (ASCT2; SLC1A5), a transporter that mediates uptake 

of neutral amino acids including glutamine, caused cell death in vitro and decreased 

growth of xenografted cells in vivo in triple-negative basal-like breast cancer cells, with 

minimal impact on luminal breast cancer cells [72]. TNBCs’ reliance on glutamine 

represents one metabolic vulnerability that can be targeted therapeutically, and is further 

discussed in a later section. 

In contrast to the increased uptake of glutamine, TNBCs activate the serine 

biosynthesis pathway [12]. TNBCs often amplify or overexpress phosphoglycerate 

dehydrogenase (PHGDH), the rate-limiting enzyme in the serine biosynthesis pathway 

[73,74]. Microarray analysis of formalin-fixed, paraffin-embedded tissues from TNBC 

patients revealed that increased PHGDH expression in the tumor and decreased serine 

hydroxymethyltransferase 1 (SHMT1) expression in the stroma are correlated with poor 

clinical prognosis [75]. Upregulation of all three genes in the serine biosynthesis pathway, 

PHGDH, phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase 

(PSPH) has been found in TNBC cells highly metastatic to the bone [76]. Myc activity may 

also at least partially explain this observation, as Myc has been shown to upregulate 

expression of serine biosynthesis genes [77]. Although it is not clear how upregulation of 
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the serine biosynthesis pathway benefits cancer cells, upregulated serine metabolism is 

commonly observed in many cancers, and serine is a precursor to several downstream 

metabolites that support cancer growth [78,79]. These serine-derived metabolites include 

folates, sphingolipids, phospholipids, glycine, and cysteine. Glycine and cysteine also 

contribute to glutathione biosynthesis. Many pathways involving these metabolites are 

also upregulated in TNBC: higher expression of mitochondrial glycine synthesis enzymes 

serine hydroxymethyltransferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase 

(NADP+ dependent) 2 (MTHFD2), and methylenetetrahydrofolate dehydrogenase 

(NADP+ dependent) 1-like (MTHFD1L) in breast cancer patients has been associated 

with greater mortality [80]. Cysteine, a serine-derived amino acid, has also been linked 

with TNBC. A screen removing individual amino acids across a panel of breast cancer 

cells revealed that basal-like TNBC cells undergo rapid programmed necrosis following 

cystine deprivation, while luminal type breast cancer cells are resistant to cystine 

deprivation [81]. 

Another amino acid implicated in TNBC is arginine. TNBC cell lines with low 

expression of enzymes in the arginine biosynthesis pathway, argininosuccinate 

synthetase (ASS) and ornithine transcarbamylase (OTC), are sensitive to arginine 

depletion by treatment with recombinant human arginase [82]. This may be due to a 

reliance on extracellular arginine for synthesis of proteins, polyamines, and nitric oxide. 

Nitric oxide, which can be produced from arginine by nitric oxide synthase, has been 

implicated in a number of biological processes involved in cancer progression including 

angiogenesis, immune system evasion, and metastasis. In breast cancer patients, nitric 

oxide production has been correlated with advanced disease and poor clinical outcomes 
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[83]. However, there are inconsistencies in the effect of nitric oxide between TNBC cell 

lines; TNBC cell line MDA-MB-468, but not TNBC cell line MDA-MB-231, is sensitive to 

nitric oxide-induced cell death [84]. Nitric oxide actually increases proliferation in MDA-

MB-231 cells by upregulating translation of cyclin D1 and ornithine decarboxylase [85]. 

One study links these distinct metabolic characteristics of TNBC cell lines to ethnic 

background [84], but it is not clear whether the predominant underlying causes are 

genetic or environmental. Additionally, not all TNBC cell lines are sensitive to arginine 

deprivation; several TNBC cell lines express ASS and are also generally resistant to 

arginine deprivation [86]. Sensitivity to arginine depletion has been reported in several 

other cancers including acute lymphoblastic T cell leukemia [87], non-Hodgkin’s 

lymphoma [88], acute myeloid leukemia [89], melanoma [90], hepatocellular carcinoma 

[91], and pancreatic cancer deficient in argininosuccinate synthetase [92].  

In addition to altered amino acid metabolism, TNBCs have been shown to increase 

lipid uptake. Compared to ER+ MCF7 cells, TNBC cell lines MDA-MD-231 and MDA-MB-

436 have increased cholesterol uptake and storage along with decreased cholesterol 

synthesis [93]. Lipids serve as an important energy source, as metastatic TNBC cell lines 

and transmitochondrial cybrids (rho-zero cells lacking mtDNA fused with enucleated 

mitochondrial donor cells) [94] with TNBC mitochondria show dependence on fatty acid 

oxidation for energy production [95]. In Myc-driven TNBC transgenic and patient-derived 

xenograft models, targeting fatty acid oxidation using etomoxir, an irreversible inhibitor of 

carnitine palmitoyltransferase-1 (CPT1), significantly decreased in vivo tumor growth [96]. 

CPT1 is required for catabolism of long-chain fatty acids through fatty acid oxidation [97]. 

Levels of choline, a vitamin involved in phospholipid biosynthesis, have been found to be 
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higher in tumors from patients with TNBCs compared to patients with ER+/PR+/HER2+ 

cancers [71]. Distinct alterations in lipid metabolism have also been observed in HER2+ 

breast cancer, and will be further discussed. Taken together, TNBCs have altered 

metabolic pathways involving glucose, amino acids, and lipids (Figure 1A). 

1.6 ER+ breast cancer 

ER+ breast cancer is the most common subtype, accounting for ~70% of breast 

cancers [40]. ER+ breast tumors express genes associated with normal breast luminal 

cells, and the term “luminal breast cancer” is often used interchangeably with ER+ breast 

cancer [34]. The luminal/ER+ sub-group can be divided into additional intrinsic groups 

based on gene expression (e.g., luminal A and luminal B) [33]. Luminal A tumors are 

generally ER+/HER2-, while luminal B tumors tend to be ER+ and HER2+/- [35]. ER+ 

breast cancer is associated with a more favorable prognosis than HER2+ and TNBC [98], 

partially due to the availability of drugs that disrupt estrogen signaling or biosynthesis [99].  

Some evidence indicates that unlike TNBCs, ER+ breast cancers may display the 

reverse Warburg effect [100], in which breast cancer cells rely on glycolytic end products 

such as lactate and pyruvate supplied by neighboring cancer associated fibroblasts 

(CAFs). Cancer cells promote metabolic rewiring of surrounding stromal cells, such as 

fibroblasts, into CAFs by promoting a hypoxic environment through hydrogen peroxide 

secretion [101]. Hydrogen peroxide activates caveolin 1 and hypoxia-inducible factor 1-

alpha (HIF-1α), which in turn upregulates aerobic glycolysis to produce lactate [102,103]. 

To promote secretion of lactate from CAFs, breast cancer cells induce expression of a 

lactate transporter, monocarboxylate transporter (MCT) 4 in CAFs [104]. Conversely, 

breast cancer cells have been observed to express MCT1 [104], a transporter for lactate 
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uptake, to import lactate produced by CAFs [105,106]. Imported lactate can be converted 

by LDH to pyruvate, which can be utilized as fuel for the TCA cycle. ER+ cancers also 

exhibit high LDH expression [47]. While the reverse Warburg effect is an interesting 

concept, experimental evidence is limited. Additional analysis including metabolic 

profiling and in vivo flux analysis would be valuable in confirming these findings. 

In addition to the reverse Warburg effect, differences in other metabolic pathways 

have been observed. A study comparing the metabolism of ER+ to ER- primary breast 

tumors found glutamate, β-alanine, and 2-hydroxyglutarate to be less abundant in ER+ 

breast tumors, while glutamine and 3-phosphoglycerate were more abundant [107]. The 

increased glutamine and decreased glutamate levels can potentially be explained through 

the differences in glutaminase expression between ER+ and ER- tumors. Glutaminase is 

overexpressed in TNBCs, as described in the TNBC section [65,59], while ER+ cell lines 

and tumors have higher expression of glutamine synthetase [65,70]. Thus, ER+ tumors 

with lower glutaminase and higher glutamine synthetase expression would maintain 

higher levels of glutamine. Elevated 3-phosphoglycerate may indicate differences in the 

relative activity of metabolic pathways that produce or utilize this metabolite, such as 

glycolysis and the serine biosynthesis pathway. 

While the efficacy of endocrine therapy supports estrogen’s role in stimulating 

proliferation of ER+ breast cancer cells [108,109], estrogen also has a role in cellular 

metabolism. Interestingly, estrogen’s impact on ER+ breast cancer cell line metabolism 

depends on available glucose levels. In high glucose conditions (25 mM), estrogen 

stimulates glycolysis and suppresses the TCA cycle. However, under physiological 

glucose concentrations (5.5 mM), estrogen instead suppresses glycolysis and stimulates 
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the TCA cycle through AMP kinase-mediated upregulation of pyruvate dehydrogenase 

[110]. Under low glucose conditions (2.8 mM), ER+ cell lines are resistant to apoptosis 

secondary to endoplasmic reticulum stress through regulation of several pathways, 

including increased autophagy [111]. Estrogen treatment of ER+ breast cancer cell lines 

has also been shown to alter choline metabolism by decreasing phosphocholine (PCho) 

and increasing phosphatidylcholine (PtdCho) levels, and inducing the expression of 

several genes involved in choline metabolism [112]. In human tissues, ER+ samples 

display a higher PCho/glycerophosphocholine (GPC) ratio versus ER- samples [113]. 

However, this relationship has not held universally among ER+ cell lines. In another study, 

stimulation with estrogen increased the PCho/GPC ratio in MCF7 cells, but reduced the 

PCho/GPC ratio in T47D cells [112]. Estrogen-related receptors, orphan receptors 

structurally related to estrogen receptors, also impact breast cancer metabolism by 

modulating expression of genes involved in metabolic pathways such as glycolysis, 

glutaminolysis, and oxidative phosphorylation [114]. 

Anti-estrogen therapy using tamoxifen is an effective way to treat some ER+ breast 

tumors, but tamoxifen treatment fails in 66% of ER+/PR−, 55% of ER−/PR+, and 25% of 

ER+/PR+ breast cancer patients [105,106]. In addition to other resistance mechanisms 

[115,116], metabolism may play a role in tamoxifen resistance. For example, tamoxifen 

resistance has been linked with cholesterol metabolism [117,118]. Increased expression 

of cholesterol and fatty acid metabolism genes induced by overexpression of the mucin 

1 transmembrane glycoprotein predict tamoxifen treatment failure and recurrence in ER+ 

breast cancer patients treated with tamoxifen [119]. Nucleotide metabolism has also been 

connected to tamoxifen resistance: elevated expression of ribonucleotide reductase M2 
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(RRM2), which catalyzes the production of deoxynucleotides, is found in tamoxifen-

resistant ER+ patient tumors [120]. Additionally, increased RRM2 expression has been 

associated with decreased survival in tamoxifen-resistant luminal breast cancer patients 

[120]. RRM2 was identified as a key contributor to Akt-induced tamoxifen resistance, and 

genetic or pharmacological inhibition of RRM2 significantly reduces growth of tamoxifen-

resistant breast cancer cells in vitro and in vivo [121]. Compared to other breast cancer 

subtypes, ER+ breast cancers exhibit distinct metabolic characteristics, including the 

reverse Warburg effect and decreased glutamine catabolism. These metabolic alterations 

are summarized in Figure 1B. Additionally, estrogen signaling in ER+ breast cancers 

likely plays an important role in cellular metabolism, and should be considered for future 

work involving endocrine resistant breast cancers. 

1.7 HER2+ breast cancer 

Approximately 15% of breast cancers present with amplification and/or 

overexpression of HER2 [40,122,123]. Two-thirds of HER2+ breast tumors are also ER+. 

Patients with HER2+ breast cancer have worse outcomes than those with ER+/HER2- 

breast cancer, and similar or worse outcomes as patients with TNBC [124,125]. 

Additionally, there is evidence that treatment of ER+ breast cancer with endocrine therapy 

can increase HER2 expression [126,127]. Drugs that target HER2, such as trastuzumab, 

are clinically available for treating HER2+ breast cancers [128]. However, trastuzumab is 

only effective for ~30% of HER2+ patients, and resistance remains a problem [129].  

HER2 is a receptor tyrosine kinase which impacts several signaling pathways that 

mediate metabolism. HER2-affected signaling pathways include the PI3K/Akt/mTOR 

[130] and MAPK [131] pathways, which regulate metabolic pathways that support cancer 
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growth, including glycolysis, amino acid metabolism, and lipid biosynthesis. Akt and 

mTOR activity increase the rate of glycolysis and amino acid uptake through upregulation 

of glucose and amino acid transporters and metabolic enzymes [132]. HER2+ breast 

cancers express relatively increased GLUT1 compared with ER+ breast cancers, but 

lower GLUT1 than TNBCs [47]. HER2+ breast cancers also exhibit high MCT1 and LDH 

expression [47]. HER2+ breast cancer cell lines display increased glycolytic metabolism 

both in vitro and in mouse xenografts [133]; inhibiting the glycolytic enzyme 6-

phosphofructo-2-kinase, which is upregulated in HER2+ breast cancer cell lines, 

decreases glucose uptake and proliferation of HER2+ breast cancer cells both in vitro 

and in vivo [134]. The increased glucose uptake in HER2+ breast cancer cell lines 

supports lipid biosynthesis, which is important for energy storage as well as the 

production and maintenance of cell membrane components. The glucose to lipid 

conversion rate is elevated in HER2+ breast cancer cell lines compared to TNBC cell 

lines [135]. Glucose fuels de novo lipid biosynthesis through mTOR complex-2 mediated 

upregulation of ATP citrate lyase (ACL) [135], which converts citrate to acetyl CoA to 

support lipid biosynthesis. HER2 can directly activate a second enzyme in the fatty acid 

biosynthesis pathway, fatty acid synthase (FASN) [136]. Inhibition of FASN activity has 

been shown to reduce HER2 expression in breast cancer cells [137]. Thus, HER2+ breast 

cancers increase de novo production of lipids, while TNBCs increase uptake of lipids.  

Similar to TNBCs, HER2+ breast cancers display altered glutamine metabolism 

[64]. The receptor tyrosine kinase EPHA2, which is overexpressed in HER2+ breast 

cancers, increases glutamine metabolism and promotes lipid accumulation through RhoA 

GTPase mediated regulation of glutaminase activity in HER2+ breast cancer cell lines 
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[138]. High glycine and alanine levels have also been reported in HER2+ breast tumors 

from patients [71]. These results illustrate metabolic alterations that are specific to HER2+ 

breast cancer (Figure 1C), such as increased lipid biosynthesis, as well as characteristics 

observed in both HER2+ and TNBCs, such as increased glycolysis and glutamine 

metabolism.  

1.8 Inflammatory Breast Cancer 

 Inflammatory breast cancer (IBC) is a rare subtype of breast cancer that is not 

represented by a specific histological subtype [139]. IBC is considered locally advanced 

at diagnosis and presents with redness and swelling of the breast, often without a 

noticeable lump [140]. While IBC makes up only ~2% of breast cancer cases, it accounts 

for a disproportionate ~7% of breast cancer mortality, and IBC incidence appears to be 

increasing over time [141]. Unlike other breast cancers, IBC presents more frequently as 

HER2+ or TNBC, with proportionally fewer ER+ cases [142,143]. ER expression does not 

correlate with significantly better prognosis for IBC, but patients with triple negative IBC 

generally have worse outcomes [143,144]. IBC is an understudied form of breast cancer, 

and unfortunately insufficient information is available to gain a comprehensive 

understanding of its metabolic characteristics. One study examining the metabolism of 

the triple negative IBC-derived SUM149 cell line found that relative to MCF7 (ER+) and 

MCF-10A (immortalized non-transformed mammary epithelial) cells, SUM149 cells are 

more glycolytic, converting more glucose to lactate. To fuel their TCA cycle, SUM149 cells 

predominantly utilize glutamine, and their glutamine metabolism and N-acetylaspartate 

production is regulated by RhoC GTPase [145]. This study also showed that SUM149 

cells have the highest activity of the M2 isoform of pyruvate kinase (PKM2) relative to 
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MCF7 and MCF-10A cells. Pyruvate kinase catalyzes the final step in glycolysis, 

converting ADP and phosphoenolpyruvate to ATP and pyruvate. While normal non-

proliferating cells express the M1 isoform of pyruvate kinase (PKM1), proliferating cells 

and all cancer cells studied to date express PKM2 [146-149]. These metabolic 

characteristics are summarized in Figure 1D. This study investigated the IBC SUM149 

cell line, which can be additionally sub-classified as basal-like and therefore does not 

enable discrimination of metabolic features between IBCs and TNBCs. However, it 

provides the foundation for future work that may enable the development of new treatment 

options for patients with this rare and deadly subtype of breast cancer.  

1.9 Hypoxia, a Common Feature in Breast Cancer Subtypes 

In addition to metabolic reprogramming, another hallmark of cancer is the 

formation of new vasculature to facilitate the transport of nutrients and waste [150]. Many 

factors contribute to the formation of new vasculature in tumors [151-153], including 

hypoxia-inducible factors (HIFs) [154]. As the tumor grows, it becomes increasingly 

dependent on its blood supply to deliver oxygen and macronutrients and to clear waste 

products. Regions of hypoxia within the tumor promote angiogenesis to enable continued 

tumor growth and development [153,154].  

In breast cancer patients, hypoxia has been associated with poor prognostic 

factors including lower overall survival, lower disease free survival, and higher risk of 

developing metastatic disease [155,156]. As many as 40% of invasive breast cancer 

samples display hypoxic markers [157], and overexpression of HIFs has been found to 

be generally similar between molecular subtypes of breast cancer [158,159]. However, 

subtype-specific interactions with hypoxia have been described. Under hypoxia, ER+ 
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MCF7 and T47D breast cancer cell lines decrease expression of the two principal 

estrogen receptors, ER-α and ER-β [160]. Signaling through ER-α and HIF-1α co-

regulates metabolic genes in glycolysis including glyceraldehyde-3-phosphate 

dehydrogenase, glucose-6-phopsphate isomerase, hexokinase 2, lactate dehydrogenase 

A, PKM2, and phosphofructokinase [161]. Supplementing hypoxic MCF7 cells with 

estrogen further increases HIF-1α expression, while treatment with ER-antagonist 

fulvestrant reduces HIF-1α expression [161]. In ER+ cell lines, fulvestrant treatment also 

downregulates expression of the glucose transporter GLUT1, which is normally induced 

in hypoxia [161]. In TNBC cell line MDA-MB-231, fulvestrant treatment has no effect on 

HIF-1α expression [161].  

HIF-1α expression has also been associated with drug resistance in several 

cancers [162] and may mediate drug resistance in breast cancer. When treated with 

chemotherapeutics such as paclitaxel, TNBC, ER+/PR+, and HER2+ breast cancer cell 

lines all increase HIF expression even in normoxic conditions [163]. The relative 

proportion of breast cancer stem cells increased in the TNBC and ER+/PR+ cell lines, but 

not in the HER2+ cell line [163]. HIF-1α expression also increases resistance to tamoxifen 

treatment in ER+ breast cancer cell lines [161]. 

HIF-1α has been shown to upregulate antioxidant production in response to 

chemotherapy by inducing glutathione synthesis in TNBC cell lines [164]. This may be 

mediated through upregulation of metabolic enzymes PHGDH, SHMT2, and MTHFD2, 

which help promote redox balance in hypoxic conditions by generating mitochondrial 

NADPH, which is necessary to convert oxidized glutathione to reduced glutathione. In 

support of this, hypoxia increases PHGDH expression in breast cancer cells [165]. 
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Knockdown of the serine biosynthesis pathway enzyme PHGDH increases mitochondrial 

reactive oxygen species (ROS) and decreases NADPH levels, inhibiting regeneration of 

reduced glutathione [165]. Thus, PHGDH knockdown sensitizes breast cancer cell lines 

to chemotherapy [165]. This is particularly interesting in the context of TNBC, given the 

previously discussed upregulation of the serine biosynthesis pathway and the importance 

of glutamine metabolism in glutathione production. 

Unlike TNBC cell lines, HER2+ breast cancer cell lines display increased HIF-1α 

expression even in normoxic conditions, and expression of HIF-1α is essential for HER2+ 

cancer cell growth in vivo and in vitro [166]. HER2+ breast cancer cell lines also display 

better adaptability to growth in hypoxic conditions as compared to TNBC and ER+/PR+ 

breast cancer cell lines, which may be mediated by the anti-apoptotic protein Mcl-1; 

knockdown of Mcl-1 resulted in downregulation of both HER2 and HIF-1α in HER2+ 

breast cancer cell lines [167]. Mcl-1 expression increases in ER+ breast cancer cell lines 

when treated with estrogen. This effect was blocked through co-treatment with ER 

antagonists, but no increase in Mcl-1 expression was seen in TNBC cell lines treated with 

estrogen [168]. These results illustrate the complexity associated with regulation of 

hypoxia and highlight subtype specific regulatory pathways as promising areas of future 

investigation. 

1.10 Comorbidities and Predisposing Factors: Obesity and Diabetes 

Obesity and type 2 diabetes are growing public health problems that impact 

cancer. In the United States, ~40% of adult women are obese, and the prevalence of 

obesity in women is increasing [169]. Obesity is defined as having a body mass index 

(BMI) of 30 or higher and is a risk factor for the development of post-menopausal breast 
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cancer [170-173]. Both obesity and adult weight gain have been primarily associated with 

ER+ tumors [174], and BMI is positively associated with tumor diameter in ER+ tumors 

[175,174], whereas HER2+ tumor diameter is inversely related to BMI [176]. Adipose 

tissue, once thought to be a passive reservoir for energy storage, is an active endocrine 

organ secreting growth factors, pro-angiogenic factors, inflammatory cytokines, lipids and 

hormones, including estrogen [177]. Several epidemiological and clinical studies 

demonstrate an association between obesity and increased breast tumor size, greater 

distant metastasis development, and elevated mortality [178-180]. Obese women have 

130% higher concentrations of estrogen compared with non-obese women [181]. 

Elevated estrogen levels are thought to contribute to the link between obesity and breast 

cancer risk, progression, and mortality [182-184]. Hormone-responsive tumors are more 

sensitive to the impacts of obesity [185].  

Mechanistic studies evaluating the role of cellular metabolism in obesity-

associated post-menopausal breast cancers are lacking. It is attractive to speculate that 

the elevated estrogen levels observed in obesity influence cellular metabolism in breast 

cancer cells. One study implicates adipocyte-derived lipids in metabolic rewiring. Co-

culturing mature 3T3-L1 adipocytes with TNBC MDA-MD-231 or ER+ MCF7 breast 

cancer cells stimulates lipolysis in neighboring adipocytes, leading to an accumulation of 

adipocyte-derived fatty acids that are taken up by breast cancer cells to support their 

proliferation and migration [186]. Adipocytes in the in vivo tumor microenvironment have 

also been shown to release fatty acids that are used by ovarian cancer cells for energy 

production [187]. Further work is needed to determine how obesity impacts cellular 

metabolism in post-menopausal breast cancers. 
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One of the primary complications of obesity is the increased risk of type 2 diabetes. 

Type 2 diabetes is a disease in which the body’s ability to respond to insulin is impaired 

and results in abnormal systemic metabolism of carbohydrates and glucose. However, 

there are also abnormalities in cellular metabolism due to the characteristic 

hyperinsulinemia and hyperglycemia in diabetic patients. Hyperinsulinemia promotes 

glucose uptake in tumors that are insulin-dependent [188,189]. Insulin and insulin-like 

growth factor 1 (IGF-1) stimulate macromolecular synthesis and promote the proliferation 

of MCF7 breast cancer cells in vitro [190]. Both insulin and IGF-1 affect estrogen signaling 

in breast cancer cell lines by activating ER-  transcriptional activity [191], establishing 

another molecular link between obesity, diabetes and breast cancer. In addition to its 

direct metabolic role, the hyperglycemia associated with diabetes can increase production 

of ROS from mitochondrial respiration. ROS can lead to DNA damage that can increase 

cell motility and invasiveness in models of breast cancer [192]. Glucose and insulin can 

both activate mTOR, which promotes many of the complications observed in type 2 

diabetes, including cancer [193]. The PI3K/Akt/mTOR pathway is frequently activated in 

cancers and, in breast cancer cells, contributes to increased cell proliferation, growth 

factor independence and endocrine resistance [194].  

While the complex interactions between obesity, diabetes, cellular metabolism, 

and cancer are still unclear, several types of breast cancer mouse models have been 

utilized to decipher the link between obesity, diabetes and tumor progression/metastasis. 

Historically, many of these studies have focused on either genetic or diet-induced obesity 

models, and the conclusions drawn from these models vary. In the Avy genetic model of 

obesity, in which ubiquitous expression of the agouti protein stimulates appetite [195], 
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mice have a shortened latency to mammary tumor development and an increased tumor 

incidence [196,197]. In contrast, LepobLepob mice, which have a defect in the appetite 

suppressing hormone leptin, have reduced spontaneous mammary tumor development 

compared to lean mice [198]. It is hypothesized that these LepobLepob mice, although 

obese, do not have an increase in mammary tumor development because leptin promotes 

breast cancer cell proliferation [199]. In diet-induced obesity models, obesity is induced 

in transgenic mice prone to mammary tumorigenesis by diets where 30% - 60% of the 

total caloric intake is from fat. In Balb/c mice with a deficit in p53, a high-fat diet (HFD, 

60% kcal from fat) fails to stimulate weight gain but promotes puberty-specific mammary 

tumor formation [200]. While HFD fed mouse models show different levels of obesity and 

metabolic syndrome due to genetic background, weight gain is generally implicated in the 

development of hormonally responsive breast cancers, but the effect on hormone 

receptor negative tumors is inconsistent [201-204]. Recently, there has been 

considerable interest in examining the effects of local adipocytes and immune cells in 

subcutaneous adipose tissue on triple negative breast cancer [205,206]. These types of 

tumor microenvironment studies will be advantageous for investigating effects of adipose 

tissue on cellular metabolism as discussed above. While some studies have been 

performed, many are hypothesis-generating and do not show direct mechanistic 

causation. Current evidence suggests that estrogen, insulin, and IGF-1 signaling all 

impact metabolic rewiring. The contribution of these mechanisms in vivo, where more 

complex interactions between breast cancer cells and proximal adipocytes likely occurs, 

remains to be elucidated. 
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1.11 Targeting metabolism in breast cancer 

Altered metabolic pathways in cancer offer a wide range of drug targets that can 

be exploited for therapy [207,208]. Anti-metabolite drugs such as methotrexate and 5-

flurouracil, which target nucleotide metabolism, have long been used in the treatment of 

cancers [209], including breast cancer [4]. These drugs cause cell death in all rapidly 

proliferating cells – including normal cells – by inhibiting RNA and DNA production [210], 

and therefore cause severe side effects such as neurotoxicity and anemia [211,212]. 

Targeting metabolic pathways specifically upregulated in cancer cells but not normal cells 

may allow the development of therapies with fewer adverse side effects compared to 

current chemotherapy options. Breast cancer therapy can be personalized by targeting 

upregulated metabolic pathways in a subtype-specific manner, including glycolysis, 

glutaminolysis, the TCA cycle, one-carbon metabolism, and lipid metabolism. Given the 

prevalence of glutamine addiction in many cancers, glutaminase inhibitors are being 

developed and may prove efficacious for treatment of TNBCs. As expected, treatment 

with glutaminase inhibitors causes an increase in intracellular glutamine levels in TNBC 

xenografts, but not in ER+ xenografts that do not express high levels of glutaminase [213]. 

Glutaminase inhibition reduces proliferation in TNBC cells and xenografts by selectively 

limiting TNBCs’ ability to utilize glutamine; treatment with a glutaminase inhibitor 

decreased glutathione levels in TNBC cells but not in ER+ breast cancer cells [70]. 

Sensitivity to glutaminase inhibitors can be decreased in vitro by supplementing the 

growth media with pyruvate [214]. Sensitivity to glutaminase inhibitors may be associated 

with Myc-induced upregulation of glutamine metabolism, as these inhibitors have shown 

promise in several other Myc-driven cancers including lymphoma [215], hepatocellular 
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carcinoma [216], and renal cell carcinoma [217]. Targeting the serine biosynthesis 

pathway may also be effective for TNBC treatment, as knockdown of this pathway has 

been shown to sensitize TNBC cell lines to chemotherapy [165]. These results highlight 

the potential utility of drugs that inhibit cancer-specific metabolic vulnerabilities, especially 

in the treatment of TNBCs, which lack targeted therapies. 

As previously discussed, HER2 signaling affects several metabolic pathways. 

Therefore, drugs targeting the HER2 signaling axis are likely to have metabolic effects. 

Treatment of HER2+ cell lines with trastuzumab decreases glucose uptake and lactate 

excretion [218]. Treatment with lapatinib, a receptor tyrosine kinase inhibitor that disrupts 

HER2 and EGFR signaling, decreases expression of the glucose transporter GLUT4 and 

to a lesser extent GLUT1 in HER2+ cells [219]. Inhibitors of FASN have also been 

explored for HER2+ breast cancers due to increased de novo lipid biosynthesis observed 

in this subtype [220]. Treating HER2+ cell lines with FASN inhibitors in combination with 

trastuzumab synergistically reduces cell viability and enhances cell death [137]. 

Interestingly, FASN inhibitors sensitize resistant HER2+ cell lines and patient derived 

xenografts to anti-HER2 compounds [221]. Targeting metabolic pathways specifically 

upregulated in breast cancer subtypes provide new avenues of therapy while also making 

existing treatments more effective. 

Drugs that are FDA-approved for other diseases could be repurposed to target 

metabolic vulnerabilities in cancer. One example of this is metformin, a widely-prescribed 

drug for type 2 diabetes, which has been associated with decreased risk of developing 

cancer [222]. In addition to stabilizing blood glucose levels in diabetic patients, metformin 

affects cellular metabolism and may therefore have utility as an anti-cancer agent [223]. 
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Metformin is a weak inhibitor of complex 1 in the mitochondrial electron transport chain, 

allowing it to disrupt mitochondrial metabolism to inhibit proliferation in cancer cells 

[224,225]. Treatment of several breast cancer cell lines with metformin decreases 

phospholipid biosynthesis, which is essential for lipid bilayer formation and proliferation 

[226]. Metformin has also been shown to disrupt cancer cell energetics in ER+ MCF7 

cells, where treatment results in increased glucose consumption, increased lactate 

production, decreased oxygen consumption, and reduced mitochondrial membrane 

potential [227]. Taken together, metformin leads to a metabolic shift away from oxidative 

phosphorylation and the TCA cycle, thereby inhibiting energy production and downstream 

biosynthetic pathways. Subtype-specific metabolic characteristics and potential anti-

metabolites are summarized in Table 1. As our understanding of metabolic vulnerabilities 

in cancer continues to develop, it will be possible to develop more effective, personalized 

therapies for all breast cancer subtypes. 

1.12 Conclusions and Future Directions 

Breast cancer subtypes display diverse metabolic phenotypes that contribute to 

tumor growth, invasiveness, treatment efficacy, and drug resistance. Metabolic studies 

have revealed alterations in glucose, glutamine, amino acid, and lipid pathways in breast 

cancer subtypes. TNBCs upregulate aerobic glycolysis, upregulate serine metabolism, 

and generally display glutamine addiction; ER+ breast cancers rely less on glucose and 

glutamine uptake, preferring to consume lactate produced by neighboring CAFs; HER2+ 

breast cancers upregulate fatty acid synthesis while displaying increased glucose and 

glutamine uptake. The full extent of metabolic reprogramming in all breast cancer 

subtypes has yet to be elucidated. 
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While we have made progress in understanding breast cancer metabolism, our 

understanding of human breast cancer metabolism in vivo remains incomplete. Much of 

the work discussed here has been performed in cancer cell lines, which inadequately 

model the complex tumor microenvironment in terms of nutrient conditions, cell population 

(e.g. CAFs, adipocytes, immune cells), or the patient’s hormone levels. Similar cell lines 

occasionally yield inconsistent results, which makes generalization and clinical translation 

challenging. Genetically engineered mouse models better represent tumor 

microenvironments, but mouse mammary development and biology is different from that 

of humans, and most drugs efficacious in mice fail in human clinical trials. Patient-derived 

xenograft (PDX) models enable studies using human tumors, but require immunodeficient 

mice that lack key immune components, or humanized mice that may inaccurately 

recapitulate human physiology. Nevertheless, these model systems remain valuable tools 

and allow experiments not feasible in humans. Metabolomics in human patients is limited 

by cost and variables that are difficult to control, such as diet, age, environment, genetic 

variations, disease progression, and prior treatment. Studies using model systems can 

establish proof of concept, identify new therapeutic targets, and inform study design for 

future work involving human patients. Extensive work involving both model systems and 

patients is required to realize the full potential of targeted therapies based on metabolic 

vulnerabilities of breast cancer subtypes. 

In addition to our incomplete understanding of breast cancer metabolism, our 

knowledge of normal breast metabolism is limited. Considerable metabolic changes must 

occur in normal breast tissue during prenatal development, puberty, pregnancy, lactation, 

involution, and menopause. However, little is known about metabolism during these 
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processes. Future work is required to characterize metabolism in normal breast tissue 

during developmental stages and the menstrual cycle. Additional studies are also needed 

to understand metabolic profiles of localized versus advanced breast cancer and primary 

versus metastasized disease, as well as metabolic interactions with the immune system.  

 Metabolomics, in conjunction with genetic engineering and imaging technologies, 

will allow us to address many of these challenges to further decipher metabolic 

differences between breast cancer subtypes. We can leverage these tools to determine 

which metabolic alterations are most relevant in cancer biology to guide drug 

development and personalized therapy. Targeting metabolic vulnerabilities in breast 

cancer subtypes has great potential to provide advanced treatment options with fewer 

side effects, ultimately improving outcomes for breast cancer patients.  
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1.14 Dissertation Goals 

Breast cancer heterogeneity provides clear clinical problems, I believe that in order 

to improve patient outcomes we must continue to improve our understanding of the basic 

biological processes in cancer, including how cancer cells rewire their metabolism to 

support proliferation. In recent years targeting cancer-specific metabolism has gained 

significant attention, and I believe that this idea can be further applied to develop targeted 

therapies for breast cancer subtypes. 

 To study this, I have used two histologic subtypes of mammary tumors derived 

from the MMTV-Myc mouse model, EMT and papillary. Tumors from the MMTV-Myc 

model are not only extremely heterogenous, they also share common features with 

human breast cancer and are therefore an ideal model system to study breast cancer 

heterogeneity. Additionally, while there is significant literature characterizing MMTV-Myc 

tumors based on gene expression, little work has been performed specifically 

characterizing the metabolism of tumor subtypes in the MMTV-Myc model. I have 

therefore sought to fill this gap in knowledge by investigating breast cancer heterogeneity 

and metabolism using this model system. The central hypothesis of my thesis is: the EMT 

and papillary subtypes display distinct metabolic profiles, which can be targeted to 

selectively disrupt subtype-specific metabolic demands. Therefore, the primary goals of 

this dissertation are: 1) identify metabolic profiles specific to the EMT and papillary 

subtypes and 2) target relevant metabolic pathways in each subtype to demonstrate 

subtype-specificity.  

I first extracted metabolites from cell lines derived from EMT and papillary tumors 

and performed isotope labeling studies to identify metabolic differences in each subtype. 



32 
 

A full list of the metabolites examined in this work is in Table S1. These analyses revealed 

the EMT subtype performs more glutathione biosynthesis and has increased TCA cycle 

metabolism than the papillary subtype, while the papillary subtype has increased 

nucleotide biosynthesis compared to the EMT subtype. Using this data, metabolism-

targeting drugs were selected that inhibit glutathione biosynthesis, the TCA cycle, and 

nucleotide biosynthesis. When these drugs were used in vitro to treat each subtype, it 

was clear that each subtype was most sensitive to pharmacological inhibition of its 

preferred metabolic pathway (chapter 3). 

I then built upon these findings by integrating metabolomics and genomics 

analyses of EMT and papillary tumors to identify metabolic preferences for specific 

pathways of nucleotide biosynthesis, with the papillary subtype preferring de novo 

biosynthesis and the EMT subtype preferring nucleotide salvage. Using gene editing 

techniques, I targeted both nucleotide biosynthetic pathways in each subtype and 

demonstrate in vivo effects on tumor growth when the preferred metabolic pathway of 

each subtype is targeted (chapter 4). 

My work highlights the exciting potential for using metabolism to develop treatment 

strategies for subtypes of breast cancer. This work has translational potential, and could 

inspire additional studies to investigate metabolism as a therapeutic target of cancer.   
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Figure 1.1 Schematic illustration of altered metabolic pathways in breast cancer 
subtypes. (A) Triple negative breast cancer (TNBC); (B) Estrogen receptor positive (ER+) 
breast cancer; (C) Human epidermal growth factor receptor 2 positive (HER2+) breast cancer; 
(D) Inflammatory breast cancer (IBC). 
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Table 1.1 Summary of clinical and metabolic features of breast cancer subtypes. 

  

HER2+ TNBC

Prevalence40 ~15% ~12%

Targeted Therapy Anti-HER2 None

Intrinsic Subtype35 Luminal A     

(ER+ PR+ HER2-)

Luminal B        

(ER+ PR+ HER2+/-)

HER2+                    

(ER- PR- HER2+)

Basal-like*     

(ER- PR- HER2-)

Breast Cancer-Specific Survival41 84% 87% 52% 75%

Glycolytic Flux Increased Increased

Glutamine Catabolism Increased Increased

Lipid Metabolism

Increased      

Fatty Acid 

Biosynthesis

Increased 

Cholesterol 

Uptake

Potential Anti-metabolites

Fatty Acid 

Synthase 

Inhibitors

Glutaminase 

Inhibitors

*The majority of TNBCs are classified as basal-like.

Increased Cholesterol 

Biosynthesis

Context Dependent

Decreased

Metabolic Alterations

Complex 1 Inhibitors

Clinical features

Breast Cancer Subtype

Endocrine

ER+

~70%
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Table S1.1 Full list of analyzed metabolites. 

 

Ionization mode Metabolite
Parent 

(m/z)

Product 

(m/z)

Cone 

Voltage 

(V)

Collision 

Energy 

(V)

Note

ESI negative 2-3 phosphoglycerate M-0 185.0 97.0 22 16

ESI negative 2-3 phosphoglycerate M-1 186.0 97.0 22 16

ESI negative 2-3 phosphoglycerate M-2 187.0 97.0 22 16

ESI negative 2-3 phosphoglycerate M-3 188.0 97.0 22 16

ESI negative Acetoacetyl-CoA_ 850.2 766.1 40 30

ESI negative Acetyl-CoA 808.0 408.0 40 37

ESI negative Aconitate 173.1 84.8 16 13

ESI negative Adenine 134.0 106.8 40 21

ESI negative ADP 426.1 158.6 34 21

ESI negative ADP-glucose 588.0 346.0 34 22

ESI negative ADP-ribose 558.1 345.8 50 21

ESI negative Alanine 221.9 113.7 28 10 CBZ-Derivatized

ESI negative Allantoate_and_Carbamoyl_aspartate 175.0 132.0 28 12

ESI negative AMP 346.0 79 40 29

ESI negative Arginine 306.9 198.8 22 10 CBZ-Derivatized

ESI negative Asparagine 264.9 112.75 28 10 CBZ-Derivatized

ESI negative Aspartate M-0 (unlabeled) 265.9 157.7 40 10 CBZ-Derivatized

ESI negative Aspartate M-1 266.9 158.7 40 10 CBZ-Derivatized

ESI negative Aspartate M-2 267.9 159.7 40 10 CBZ-Derivatized

ESI negative Aspartate M-3 268.9 160.7 40 10 CBZ-Derivatized

ESI negative Aspartate M-4 269.9 161.7 40 10 CBZ-Derivatized

ESI negative ATP M-0 (unlabeled) 506.0 159.0 16 28

ESI negative ATP M-1 507.0 159.0 16 28

ESI negative ATP M-2 508.0 159.0 16 28

ESI negative ATP M-3 509.0 159.0 16 28

ESI negative ATP M-4 510.0 159.0 16 28

ESI negative ATP M-5 511.0 159.0 16 28

ESI negative ATP M-6 512.0 159.0 16 28

ESI negative ATP M-7 513.0 159.0 16 28

ESI negative ATP M-8 514.0 159.0 16 28

ESI negative ATP M-9 515.0 159.0 16 28

ESI negative ATP M-10 516.0 159.0 16 28

ESI negative Bisphosphoglycerate 265.0 166.7 16 13

ESI negative camphorsulfonate 231.0 79.8 40 25 Internal Standard

ESI negative CDP 402.0 159.0 28 22

ESI negative Citrate+Isocitrate 191.0 110.6 22 13

ESI negative CMP 322.1 78.7 34 29

ESI negative CMP-N-acetyl-neuraminate 613.0 322.0 40 20

ESI negative CoA 766.0 408.0 40 40
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Table S1.1 (cont’d) 

 

 

 

 

ESI negative CTP 481.8 158.7 10 22

ESI negative Cysteine 253.8 145.6 50 10 CBZ-Derivatized

ESI negative dADP 409.9 158.6 40 28

ESI negative dAMP 330.1 194.6 28 21

ESI negative dATP 489.9 158.6 46 28

ESI negative dCMP 305.9 78.6 50 22

ESI negative dCTP 465.8 158.6 10 34

ESI negative Deoxyinosine 251.0 135.0 28 19

ESI negative Deoxyribose-phosphate 213.0 79.0 28 33

ESI negative Deoxyuridine 227.0 184.0 28 12

ESI negative dGDP 426.1 158.6 34 21

ESI negative dGMP 346.0 79 40 29

ESI negative dGTP 505.9 158.6 16 28

ESI negative dTDP 400.9 158.7 46 22

ESI negative dTMP 321.0 194.5 28 21

ESI negative dTTP 480.9 158.7 40 34

ESI negative dUMP 307.0 194.5 28 13

ESI negative FAD 784.2 436.9 50 29

ESI negative FBP M-0 (unlabeled) 339.0 97.0 28 28

ESI negative FBP M-1 340 97.0 28 28

ESI negative FBP M-2 341.0 97.0 28 28

ESI negative FBP M-3 342.0 97.0 28 28

ESI negative FBP M-4 343.0 97.0 28 28

ESI negative FBP M-5 344.0 97.0 28 28

ESI negative FBP M-6 345.0 97.0 28 28

ESI negative Flavin_mononucleotide 455.0 213.0 22 19

ESI negative Fumarate M-0 (unlabeled) 115.0 71.0 22 5

ESI negative Fumarate M-1-0 116.0 71.0 22 5

ESI negative Fumarate M-1-1 116.1 72.0 22 5

ESI negative Fumarate M-2-1 117.0 72.0 22 5

ESI negative Fumarate M-2-2 117.0 73.0 22 5

ESI negative Fumarate M-3-2 118.0 73.0 22 5

ESI negative Fumarate M-3-3 118.0 74.0 22 5

ESI negative Fumarate M-4-3 119.0 74.0 22 5

ESI negative GAP+DHAP 169.1 97.0 16 13

ESI negative GDP 441.8 343.8 28 16

ESI negative Glucono-lactone 177.0 129.0 22 11

ESI negative Glucosamine-6-phosphate 258.0 96.6 28 21

ESI negative Glutamate M-0 (unlabeled) 279.9 127.7 28 16 CBZ-Derivatized

ESI negative Glutamate M-1 280.9 128.7 28 16 CBZ-Derivatized
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Table S1.1 (cont’d) 

 

 

 

 

ESI negative Glutamate M-2 281.9 129.7 28 16 CBZ-Derivatized

ESI negative Glutamate M-3 282.9 130.7 28 16 CBZ-Derivatized

ESI negative Glutamate M-4 283.9 131.7 28 16 CBZ-Derivatized

ESI negative Glutamate M-5 284.9 132.7 28 16 CBZ-Derivatized

ESI negative Glutamine M-0 (unlabeled) 279.0 127.0 28 16 CBZ-Derivatized

ESI negative Glutamine M-1 280.0 128.0 28 16 CBZ-Derivatized

ESI negative Glutamine M-2 281.0 129.0 28 16 CBZ-Derivatized

ESI negative Glutamine M-3 282.0 130.0 28 16 CBZ-Derivatized

ESI negative Glutamine M-4 283.0 131.0 28 16 CBZ-Derivatized

ESI negative Glutamine M-5 284.0 132.0 28 16 CBZ-Derivatized

ESI negative Glutathione_disulfide_oxidized 611.0 306.0 46 21

ESI negative Glutathione_reduced 305.9 142.7 40 16

ESI negative glycerate 105.0 74.8 22 13

ESI negative Glycerol_3-phosphate 170.8 78.7 46 16

ESI negative Glycine M-0 (unlabeled) 207.8 99.7 22 10 CBZ-Derivatized

ESI negative Glycine M-1 208.8 100.7 22 10 CBZ-Derivatized

ESI negative Glycine M-2 209.8 101.7 22 10 CBZ-Derivatized

ESI negative GMP 362.1 78.7 34 21

ESI negative GTP 521.8 158.7 40 28

ESI negative Hexose-phosphate 258.8 96.6 10 16

ESI negative histidine 287.9 179.8 22 10 CBZ-Derivatized

ESI negative Hydroxybutyryl-CoA+Malonyl-CoA 852.2 408.0 40 41

ESI negative hypoxanthine 134.8 91.7 34 16

ESI negative IDP 427.0 159.0 22 25

ESI negative IMP M-0 (unlabeled) 347.2 78.7 34 21

ESI negative IMP M-1 348.2 78.7 34 21

ESI negative IMP M-2 349.2 78.7 34 21

ESI negative IMP M-3 350.2 78.7 34 21

ESI negative IMP M-4 351.2 78.7 34 21

ESI negative IMP M-5 352.2 78.7 34 21

ESI negative IMP M-6 353.2 78.7 34 21

ESI negative IMP M-7 354.2 78.7 34 21

ESI negative IMP M-8 355.2 78.7 34 21

ESI negative IMP M-9 356.2 78.7 34 21

ESI negative IMP M-10 357.2 78.7 34 21

ESI negative Inosine 267.0 135.0 28 25

ESI negative Isoleucine/Leucine 263.9 155.8 10 10 CBZ-Derivatized

ESI negative Ketoglutarate M-0-0 (unlabeled) 145.0 101.0 22 5

ESI negative Ketoglutarate M-1-0 146.0 101.0 22 5

ESI negative Ketoglutarate M-1-1 146.0 102.0 22 5
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Table S1.1 (cont’d) 

 

 

 

ESI negative Ketoglutarate M-2-1 147.0 102.0 22 5

ESI negative Ketoglutarate M-2-2 147.0 103.0 22 5

ESI negative Ketoglutarate M-3-2 148.0 103.0 22 5

ESI negative Ketoglutarate M-3-3 148.0 104.0 22 5

ESI negative Ketoglutarate M-4-3 149.0 104.0 22 5

ESI negative Ketoglutarate M-4-4 149.0 105.0 22 5

ESI negative Ketoglutarate M-5-4 150.0 105.0 22 5

ESI negative Lactate 88.8 42.7 46 10

ESI negative Lysine 413.0 196.8 50 16 CBZ-Derivatized

ESI negative Malate M-0 (unlabeled) 133.0 115.0 16 16

ESI negative Malate M-1 134.0 116.0 16 16

ESI negative Malate M-2 135.0 117.0 16 16

ESI negative Malate M-3 136.0 118.0 16 16

ESI negative Malate M-4 137.1 119.0 16 16

ESI negative Methionine 281.8 173.7 22 10 CBZ-Derivatized

ESI negative n-acetyl-glucosamine 220.1 118.4 16 5

ESI negative N-acetyl-glucosamine-1-phosphate 300.0 79.0 22 22

ESI negative N-acetyl-neuraminate/sialic acid 308.0 87.0 40 15

ESI negative NAD 662.1 540.1 22 22

ESI negative NADH 664.2 407.8 46 28

ESI negative NADP 742.0 619.6 22 13

ESI negative NADPH 744.1 407.8 34 34

ESI negative Ornithine 399.0 182.7 40 16 CBZ-Derivatized

ESI negative Phenylalanine 298.0 147.0 28 27 CBZ-Derivatized

ESI negative Phosphoenolpyruvate 167.0 78.8 16 13

ESI negative Phosphogluconic_acid 274.8 96.7 22 16

ESI negative Phosphoserine 183.8 96.7 40 10

ESI negative PIPES 301.0 192.8 40 25 Internal Standard

ESI negative Proline 247.9 139.7 34 10 CBZ-Derivatized

ESI negative PRPP M-0 (unlabeled) 389.0 291.0 40 18

ESI negative PRPP M-1 390.0 292.0 40 18

ESI negative PRPP M-2 391.0 293.0 40 18

ESI negative PRPP M-3 392.0 294.0 40 18

ESI negative PRPP M-4 393.0 295.0 40 18

ESI negative PRPP M-5 394.0 296.0 40 18

ESI negative Ribose 5-phosphate M-0 (unlabeled) 229.0 96.6 28 21

ESI negative Ribose 5-phosphate M-1 230.0 96.6 28 21

ESI negative Ribose 5-phosphate M-2 231.0 96.6 28 21

ESI negative Ribose 5-phosphate M-3 232.0 96.6 28 21

ESI negative Ribose 5-phosphate M-4 233.0 96.6 28 21
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Table S1.1 (cont’d) 

 

  

ESI negative Ribose 5-phosphate M-5 234.0 96.6 28 21

ESI negative Ribulose-5-phosphate 229.0 96.6 28 21

ESI negative Sedoheptulose-phosphate 289.0 97.0 28 25

ESI negative Serine M-0 237.8 129.7 16 10 CBZ-Derivatized

ESI negative Serine M-1 238.8 130.7 16 10 CBZ-Derivatized

ESI negative Serine M-2 239.8 131.7 16 10 CBZ-Derivatized

ESI negative Serine M-3 240.8 132.7 16 10 CBZ-Derivatized

ESI negative Succinate M-0 (unlabeled) 117.0 73.0 28 10

ESI negative Succinate M-1-0 118 73.0 28 10

ESI negative Succinate M-1-1 118 74.0 28 10

ESI negative Succinate M-2-1 119 74.0 28 10

ESI negative Succinate M-2-2 119 75.0 28 10

ESI negative Succinate M-3-2 120 75.0 28 10

ESI negative Succinate M-3-3 120 76.0 28 10

ESI negative Succinate M-4-3 121.0 76.0 28 10

ESI negative Threonine 251.9 143.7 22 10 CBZ-Derivatized

ESI negative Tryptophan 336.7 228.7 34 10 CBZ-Derivatized

ESI negative Tyrosine 313.9 205.8 22 10 CBZ-Derivatized

ESI negative UDP 402.8 158.4 10 22

ESI negative UDP-D-glucose 565.0 323.0 22 22

ESI negative UDP-D-glucuronate 579.0 403.0 22 22

ESI negative UDP-N-acetyl-glucosamine 606.0 385.0 22 22

ESI negative UMP 322.9 78.6 46 28

ESI negative Uridine 243.0 199.8 28 13

ESI negative UTP M-0 (unlabeled) 483.0 159.0 28 34

ESI negative UTP M-1 484.0 159.0 28 34

ESI negative UTP M-2 485.0 159.0 28 34

ESI negative UTP M-3 486.0 159.0 28 34

ESI negative UTP M-4 487.0 159.0 28 34

ESI negative UTP M-5 488.0 159.0 28 34

ESI negative UTP M-6 489.0 159.0 28 34

ESI negative UTP M-7 490.0 159.0 28 34

ESI negative UTP M-8 491.0 159.0 28 34

ESI negative UTP M-9 492.0 159.0 28 34

ESI negative Valine 249.9 141.8 28 12 CBZ-Derivatized

ESI negative xanthine 151.0 108.0 22 21

ESI negative Xanthosine 283.0 151.0 28 22

ESI negative XMP 363.0 210.5 34 21
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CHAPTER 2. 

METFORMIN INDUCES DISTINCT BIOENERGETIC AND METABOLIC PROFILES IN 

SENSITIVE VERSUS RESISTANT HIGH GRADE SEROUS OVARIAN CANCER AND 

NORMAL FALLOPIAN TUBE SECRETORY EPITHELIAL CELLS 
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2.1 PREFACE 

Though this chapter does not directly relate to the work in this thesis it was included as 

a case study illustrating cancer-specific effects of metabolism-targeting drugs, and the 

application of metabolomics to investigate potential mechanisms of cancer-specific 

therapeutic response. 

This chapter has been previously published as: 

Hodeib, M.*, Ogrodzinski, M. P.*, Vergnes, L., Reue, K., Karlan, B. Y., Lunt, S. 

Y., & Aspuria, P. J. P. (2018). Metformin induces distinct bioenergetic and 

metabolic profiles in sensitive versus resistant high grade serous ovarian cancer 

and normal fallopian tube secretory epithelial cells. Oncotarget, 9(3), 4044. 

*Co-first authors  
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2.2 Abstract 

Metformin is a widely used agent for the treatment of diabetes and infertility, however, it 

has been found to have anti-cancer effects in a variety of malignancies including high 

grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which 

metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular 

metabolism of both HGSC cells and their precursor, normal fallopian tube secretory 

epithelial cells (FTSECs), is lacking. We addressed the effects of metformin and the more 

potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell 

proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively 

resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic 

analyses were used to metabolically differentiate the metformin-sensitive and metformin-

resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in 

mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a 

greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic 

analysis revealed that metformin and phenformin generally induce similar changes in 

metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs 

and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of 

mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically 

in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were 

also found in metformin sensitive cells relative to metformin resistant cells. These data 

identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin 

sensitivity and novel metabolic avenues for possible therapeutic intervention.  
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2.3 Introduction 

Ovarian cancer remains the leading cause of gynecologic cancer-related death in 

women despite widespread efforts to improve surgical procedures and therapeutic targets 

[1]. In 2015, 21,290 new ovarian cancer diagnoses were made in the United States, and 

>66% (14,180) of these women died of the disease [2]. High grade serous carcinoma 

(HGSC) accounts for over half of ovarian cancers and carries the worst overall prognosis 

[1]. Standard treatment for ovarian cancer involves surgical debulking with the goal of no 

gross residual disease, followed by combination platinum and taxane chemotherapy. 

Despite advances there have been only modest improvements in the overall 5- and 10-

year relative survival rates which remain 46% and 35%, respectively [1]. Repurposing 

low-toxicity drugs may help improve the progression free and overall survival rates [1]. 

Also, understanding the mechanism of how low toxicity drugs affect cancer cells may 

reveal additional therapeutic targets.  

Metformin, a biguanide drug with a low toxicity profile, has been widely used to 

treat diabetes and fertility [3,4]. In 2005, Evans et al reported a reduced incidence of 

cancer in diabetic patients receiving metformin, which led to recognition of the drug in 

cancer-related research [4]. Another large prospective study found that diabetic women 

treated with metformin have a lower risk of dying of most invasive cancers compared to 

non-metformin users [5]. Metformin and phenformin, two biguanide drugs traditionally 

used to treat diabetes, have now been associated with improved survival rates in many 

different cancer types including non-small cell lung, breast and ovarian cancers [6-8]. Due 

to safety concerns, phenformin has been removed from the pharmaceutical market for 

use in humans [9]. However, recent studies have shown that phenformin treatment may 



75 
 

have some utility in treating cancer with a shorter treatment schedule that reduces the 

risk of severe side effects [6].  

As anti-diabetic medications, biguanides primarily act as insulin sensitizers, 

decrease blood glucose levels, and reduce gluconeogenesis in the liver [10]. Both 

increased levels of insulin and glucose have been associated with tumor growth and poor 

overall prognosis in different cancer types [10]. Therefore, the ability of biguanides to 

lower both glucose and insulin levels may indirectly contribute to its anti-tumor effects. In 

addition to these indirect effects, biguanides are also posited to directly affect cancer cell 

proliferation via inhibition of Complex I within the electron transport chain [11]. Indeed, it 

was recently found that metformin accumulates in tumors and induces metabolic changes 

similar to that seen in vitro [12]. The bioenergetic stress induced by metformin inhibits 

proliferation and was largely thought to be mTOR dependent [13,14]. However, metformin 

inhibition of mTOR has been shown to vary between different studies and cell types, with 

no correlation to its anti-proliferative effects [12,15].  

Preclinical studies focusing on the effect of metformin on HGSC have identified its 

anti-proliferative effects [12,16,8]. These data and epidemiological evidence have led to 

clinical trials assessing the use of metformin in both neoadjuvant and post-surgical 

settings for HGSC [12,17]. However, a molecular characterization of cell lines widely used 

to study HGSC revealed that they are, in fact, not likely to represent the disease [18]. 

Also, growing evidence has pointed to the fallopian tube secretory epithelial cells 

(FTSEC) as the origin of HGSC [19]. FTSECs have not been metabolically characterized, 

and their response to biguanides are unknown. Extensive metabolic characterization of 

HGSC cells has also not been reported. Therefore, to assess the metabolic and potential 



76 
 

anti-proliferative effect of biguanides in HGSC, we performed bioenergetic and 

metabolomic analysis on a panel of clinically relevant HGSC lines and normal cell of origin 

controls. We find that a subset of HGSC cell lines as well as normal FTSECs are relatively 

resistant to the anti-proliferative effects of metformin. Also, these effects do not correlate 

with the ability of metformin to inhibit AMPK/mTOR signaling. Bioenergetic analysis 

revealed that metformin sensitivity largely correlated with a greater inhibition of oxygen 

consumption rate. Also, metabolomic analysis identified specific alterations in HGSC cells 

versus normal FTSECs that also correlate with metformin sensitivity.  

2.4 Results 

2.4.1 Biguanides inhibit HGSC cell proliferation. 

We examined the effect of metformin and phenformin on normal FTSEC and 

HGSC proliferation in 2-D growth conditions. We analyzed a panel of HGSC cell lines 

(CAOV3, FUOV1, OV90, OVCAR4, OVCAR433, and TYKNU), which were previously 

characterized as suitable HGSC models given their genetic makeup (i.e. TP53 mutation, 

copy-number profile, and low frequency of non-synonymous mutations in protein-coding 

genes) [19]. Normal TERT-immortalized fallopian tube non-ciliated epithelium cell lines, 

FNE1 and FNE2, were used as normal controls [20]. Normal FTSECs and HGSCs were 

treated with either metformin, phenformin, or vehicle control (Figure 1). In FTSECs, 

metformin treatment led to a modest growth inhibition (~30-40%), while phenformin 

completely inhibited cell proliferation (Figure 1A & 1D). In HGSCs, phenformin also 

significantly inhibited cell proliferation (Figures 1B & 1C). However, metformin treatment 

of HGSC cell lines revealed two subgroups; Metformin-sensitive (TYKNU, OV90, and 

OVCAR433) and metformin-resistant (OVCAR4 and FUOV1) (Figure 2B-D). Metformin 
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completely inhibited the cell proliferation of metformin-sensitive cells (Figure 1B & 1D), 

while metformin-resistant cells responded similarly to normal FTSECs, with OVCAR4 

being slightly more sensitive (Figure 1C & 1D).  

We also assessed the effect of metformin and phenformin on anchorage 

independent 3D growth. Cells were grown in ultra-low attachment plates for 24 hours to 

form cellular aggregates and then treated with metformin, phenformin, or vehicle. As 

expected, FNE1 and FNE2 were unable to survive anchorage-independent conditions 

(Figure 2A). However, all HGSC cell lines formed stable cell aggregates and continued 

to survive after 6 days (Figure 2B & 2C). Cells were less proliferative in 3D conditions 

compared to 2D conditions (Figures 1 & 2). Generally, cell lines that were highly 

proliferative in 2D (TYKNU, OV90, and OV433) were also more proliferative than other 

cells in 3D (Figure 1 & 2). The effects of metformin in 3D were similar to those observed 

in 2D; the growth of TYKNU, OV90, and OVCAR433 was significantly inhibited by 

metformin, whereby OVCAR4 and FUOV1 were not (Figure 2B-D). We noticed that the 

3D growth of metformin resistant cells was significantly slower than that of the metformin 

sensitive cells (Figure 2E). Indeed, there was a statistically significant (p-value = .0037) 

inverse relationship between metformin resistance and 3D cell proliferation rate (Figure 

2F). These data indicate that normal FTSECs and a subset of HGSC cell lines are 

relatively metformin resistant.  

2.4.2 Phenformin, but not metformin, has an inhibitory effect on phospho-S6K 

levels via the upregulation of REDD1. 

The effect of biguanide treatment on proliferation in other cell types has been 

primarily described through inhibition of mTOR activation via the upregulation of AMPK 
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activity or REDD1, both well-established mTOR inhibitors [6,14,13]. To identify possible 

differences between metformin-resistant and metformin-sensitive cells, we examined the 

effects of biguanides on the mTOR signaling pathway in FTSEC and HGSC cells. Both 

biguanides induced AMPK Thr172 phosphorylation (pAMPK) only in the metformin-

resistant lines (OVCAR4 and FUOV1) (Figure 3). Phenformin, but not metformin, also 

induced pAMPK in FNE1 (Figure 3). We further performed time course experiments 

addressing the effect of metformin and a potent inducer of AMPK, AICAR, in the 

metformin-sensitive, OV90, and metformin-resistant, FUOV1, cell lines. Metformin 

induced a subtle increase in pAMPK in OV90 after 6 hours which decreased significantly 

by 48 h (Figure S1A). This is juxtaposed to the dramatic and sustained increase of 

pAMPK in FUOV1 cells (Figure S1A). AICAR was able to induce phospho-AMPK levels 

in both cell lines, however to a much lesser extent in OV90 (Figure S1A). Metformin 

sensitivity also did not correlate with the expression of the upstream modulator of AMPK 

activity, LKB1, nor the expression of the metformin transporter, OCT1 (Figure S1B&C). 

Western blot analysis of REDD1 found that both biguanides induced REDD1 protein 

levels in all HGSC cells, while only phenformin treatment led to elevated levels of REDD1 

in normal FTSEC cells (Figure 3). We determined whether REDD1 was also 

transcriptionally upregulated by performing qRT-PCR analysis. Indeed, both biguanides 

induced similar levels of REDD1 mRNA in HGSC cells but not in normal FTSECs (Figure 

S2). We then assessed mTOR activity via the phosphorylation status of the mTOR 

downstream target, S6 kinase (S6K), by western blot. Phenformin significantly decreased 

phospho-S6 kinase (pS6K) levels in all cell lines, indicating mTOR inhibition (Figure 3). 

In contrast, metformin decreased pS6K levels in only two cell lines, TYKNU (metformin-
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sensitive) and FUOV1 (metformin-resistant) (Figure 3). Therefore, these data suggest 

that phenformin is a more potent inhibitor of mTOR activity than metformin, even at doses 

where metformin has anti-proliferative effects. Together, these data are in line with other 

studies that suggest upregulation of pAMPK, REDD1, and inhibition of mTOR activity 

does not correlate with metformin sensitivity in cancer cell lines [15,12]. It also indicates 

that the anti-proliferative effects of metformin may be at least partially attributable to 

mechanisms other than mTOR inhibition.  

2.4.3 HGSC cell lines have altered bioenergetic profiles compared to normal 

FTSECs. 

Since the effects of metformin could not be fully explained by mTOR inhibition, we 

sought to characterize the metabolic and bioenergetic effects of biguanide treatment. We 

initially profiled the baseline bioenergetic activities of FTSECs and HGSC cell lines 

utilizing the Seahorse bioanalyzer to assess oxygen consumption rate (OCR), a key 

indicator of mitochondrial activity and cellular respiration, as well as the extracellular 

acidification rate (ECAR), an indicator of glycolysis. Analysis of the baseline OCR 

revealed that HGSC cell lines display a significantly increased OCR relative to normal 

cells (Figure 4A). In addition, most HGSC cell lines, except OVCAR4 and OV90, have 

an increased baseline ECAR relative to normal cells (Figure 4B). These data imply that 

HGSC cells have elevated cellular respiration and increased glycolysis as compared to 

their cell of origin counterparts. 

Since HGSC cells displayed significantly elevated OCR and ECAR, we determined 

whether these cells were functioning at their maximal respiratory and glycolytic capacities. 

FCCP, a mitochondrial uncoupler, induces maximal respiration by transporting protons 
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across the mitochondrial membrane leading to depolarization of the membrane potential 

and rapid consumption of O2. This maximal OCR is used in conjunction with basal OCR 

to calculate spare respiratory capacity. FNE1 and FNE2 mitochondria were functioning at 

80% and 67% capacity with 20% and 37% spare respiratory capacity, respectively 

(Figure 4C). While a few HGSC cell lines (FUOV1, OVCAR433, and TYKNU) were 

functioning at near maximal capacity (>90% capacity, <10% spare respiratory capacity), 

other HGSC cell lines (OV90, OVCAR4) were functioning at significantly lower (<70% 

capacity, >30% spare respiratory capacity), or similar capacities relative to normal 

(Figure 1C). Therefore, no general trend in spare respiratory capacity could be identified 

between metformin-resistant cells, metformin-sensitive cells, and normal controls. To 

calculate maximal glycolytic capacity, oligomycin, an ATP synthase inhibitor, was used to 

induce a bioenergetic shift towards glycolysis (maximal ECAR). Similar to spare 

respiratory capacity, there were no significant differences between HGSC and control 

cells in spare glycolytic capacities (Figure 1D).  

We further assessed other facets of mitochondrial function including the 

percentage of respiration devoted to ATP production (ATP-coupled), proton leak (ATP-

uncoupled), and non-mitochondrial respiration. OCR measurements during sequential 

treatment of cell lines with oligomycin (ATP synthase inhibitor) and rotenone/myxothiazol 

(Complex I and III inhibitors, respectively) allow for these parameters to be defined. 

Normal cell lines, FNE1 and FNE2, have greater than 60% of their total respiration 

dedicated to ATP synthesis (Figure 1E). However, all HGSC cell lines tested demonstrate 

significantly less ATP-coupled OCR than controls with the majority of their respiration 

being allocated towards uncoupled and non-mitochondrial respiration (Figure 1E). This 
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phenomenon of elevated non-ATP-coupled respiration in cancer versus normal cells has 

also been observed in breast cancer [21]. Altogether these data suggest that HGSC cells 

are more bioenergetic, while contributing a smaller fraction of their total respiration 

towards ATP-synthesis compared to normal cells. 

2.4.4 Biguanides significantly inhibit oxygen consumption while increasing 

glycolysis in both normal FTSECs and HGSC cells that can be exploited in low 

glucose conditions. 

To assess the effects of metformin and phenformin on mitochondrial function, cell 

lines were incubated for 24 hours with either metformin, phenformin, or vehicle control 

prior to Seahorse bioanalysis. Treatment with metformin or phenformin significantly 

decreased respiration (>70% of control OCR) in both HGSC and normal cells at similar 

levels. However, the metformin-resistant cells (OVCAR4 and FUOV1), still had a 

significantly higher OCR (>10%) than the metformin-sensitive cells (<10%) (Figure 5A). 

This implies that oxidative phosphorylation is less inhibited in metformin-resistant cells as 

compared to metformin-sensitive cells. Therefore, metformin and phenformin decrease 

overall oxygen consumption and utilization for ATP-synthesis. Biguanides are also more 

potent in affecting these processes in metformin-sensitive cells versus metformin-

resistant cells. 

Previous studies have shown that metformin inhibition of oxygen consumption 

leads to a subsequent compensatory increase in aerobic glycolysis to compensate for the 

energy deficit in some cell lines [22,23]. Therefore, we examined the effect of metformin 

and phenformin on the ECAR of HGSC and normal cells. Both FNE1 and FNE2 had 

significant ECAR increases upon treatment of metformin or phenformin relative to control 
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(Figure 5B). Most HGSC cell lines also had elevated ECAR upon metformin treatment 

except FUOV1 (Figure 5B). Similarly, phenformin treatment increased ECAR in most 

HGSC cell lines except TYKNU and FUOV1 (Figure 5B). These data confirm previous 

reports that metformin and phenformin generally inhibit oxygen consumption, but the 

induction of aerobic glycolysis is governed by other factors [23,22]. Also, under these 

conditions, these bioenergetic effects do not discriminate between metformin-sensitive 

and metformin-resistant cells.  

A previous study in ovarian cancer indicated that metformin resistance can be 

overcome by reducing glucose concentration, thereby demonstrating the inhibitory effect 

of hyperglycemia on the actions of metformin [16]. To address whether glucose served 

as a protective molecule in metformin resistant cells, we cultured FUOV1 and OVCAR4 

cells in media with standard (10 mM) or low (0.1 mM) glucose concentrations and treated 

cells with metformin, phenformin, or control. There was no significant difference in cell 

proliferation between untreated glucose and low glucose media after 6 days (Figure 6A 

& 6B). However, metformin and phenformin treatment significantly inhibited proliferation 

in both cell lines under low glucose conditions compared to standard media (Figure 6A 

& 6B). These data further support the previous study that adequate levels of glucose are 

required for biguanide resistant cells to survive.  

2.4.5 Metabolomic analysis of metformin and phenformin treatment reveals cancer 

cell specific metabolite fluctuations. 

Due to the significant effect of biguanides on mitochondrial function, we were 

interested in examining the effect of biguanides on central carbon metabolism. We 

performed metabolomic analysis on both normal FTSECs and all HGSC cell lines (Figure 
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7, Figure S3, Table S1) Similar to a previous study, metformin and phenformin generally 

induce similar metabolic changes in all cell lines tested (Figure 7A, Figure S3, Table S1) 

[7]. Treatment with either molecule induced significantly elevated levels of NADH relative 

to controls in both HGSC and normal FTSEC cells, consistent with Complex I inhibition 

by biguanides (Figure 7A, Figure S3, Table S1). In general, biguanide treatment of most 

cell lines including FNE2 cells also resulted in the depletion of tricarboxylic acid (TCA) 

cycle intermediates citrate and α-ketoglutarate (Figure S3 and Table S1). Treatment with 

biguanides also caused variable depletion of nucleotide triphosphates between cell lines 

depending on the specific treatment. Treatment with phenformin caused relative depletion 

of adenosine triphosphate (ATP), cytidine triphosphate (CTP), and uridine triphosphate 

(UTP) in OVCAR433 and TYKNU, but not of other NTPs in FUOV1 or OV90. Treatment 

with metformin caused depletion of CTP specifically in FNE2 and FUOV1, as well as 

depletion of UTP in OV90, OVCAR44, and TYKNU. Neither treatment caused a significant 

depletion of guanosine triphosphate (GTP) in any of the cell lines studied (Figure S3 and 

Table S1). The only metabolite specifically and significantly altered in metformin-sensitive 

cells versus metformin-resistant cells was the nucleoside deoxyuridine (Figure S4). 

Interestingly, we identified biguanide-induced alterations that were particular to all HGSC 

cells tested and not normal FTSECs. Specifically, in HGSC cells, metformin and 

phenformin treatment caused a significant elevation in glycerol-3-phosphate (G3P) and a 

decrease in aspartate levels relative to controls (Figure 7A&B). Interestingly, the 

metformin-sensitive cell lines generally displayed greater effects on either G3P 

accumulation or aspartate depletion than the metformin-resistant cell lines, especially 

OVCAR433 (Figure 7A&B). G3P is primarily involved in the glycerol-phosphate shuttle, 
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which in addition to the malate-aspartate shuttle, allows the movement of electrons from 

cytosolic NADH to the mitochondria for entry into the electron transport chain (Figure 

8A&B) [24]. The metabolite data suggests that the glycerol-phosphate and malate-

aspartate shuttle are perturbed by biguanides thereby leading to an accumulation of G3P 

and depletion of aspartate. Given that this effect does not occur in the normal FTSECs 

and is more pronounced in metformin-sensitive cells, it appears that biguanide treatment 

may specifically affect these mitochondrial shuttles in HGSC cells. 

2.4.6 Aspartate and pyruvate supplementation rescue the anti-proliferative effects 

of metformin on cell growth. 

Given that metformin treatment results in a significant decrease in aspartate levels, 

we tested whether supplementation of cells with aspartate would rescue the anti-

proliferative effects. We treated cells simultaneously with either control, aspartate (100 

uM), metformin (10 mM), or both aspartate and metformin for 72 h and assessed cell 

proliferation (Figure 9A). Treatment with aspartate alone had significant effects on the 

growth of all HGSC cell lines tested (Figure 9A). Aspartate had a minimal and non-

significant effect on the growth of normal FTSEC cell lines (Figure 9A). Combinatorial 

treatment of all cell lines tested with aspartate and metformin resulted in a diminished 

effect of metformin, bringing cell viability close to control levels (Figure 9A). Therefore, 

aspartate supplementation diminishes the metformin effect as previously reported [15].  

Previous studies have also shown that providing an alternative carbon source such 

as pyruvate can overcome the effects of metformin in cancer cell lines [15]. We also 

treated cells with either control, pyruvate (1 mM), metformin (10 mM), or both pyruvate 

and metformin for 72 h and assessed cell proliferation. Strikingly, pyruvate treatment had 
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a significantly positive effect on the growth of all normal FTSEC and HGSC cell lines 

(Figure 9B). Also, pyruvate significantly diminished the effect of metformin on all cell 

lines, greater than the effect of aspartate (Figure 9B). This is in line with the report from 

Gui et al that pyruvate is a more powerful suppressant of metformin’s ability to inhibit cell 

growth.  

2.5 Discussion 

Multiple studies in different cancers have demonstrated that metformin and 

phenformin have a wide-ranging impact on cancer metabolism [7,21,22]. In a Src-

inducible model of breast cancer, both biguanides were found to deplete TCA cycle 

intermediates as expected from Complex I inhibition [7]. Similar results were found using 

isolated mitochondria from breast cancer cell lines illustrating that biguanides indeed 

directly affect mitochondrial function [21]. Biguanide inhibition of TCA cycle activity was 

also found in NSCLC and colon cancer cell lines [22]. Interestingly, analysis of the effects 

of biguanides on breast cancer stem cells yielded a different metabolic profile; levels of 

all ribonucleotide and nucleotide triphosphates (NTPs) were significantly decreased, but 

no effects were seen on the TCA cycle [7]. In line with these results, we found that 

biguanides elicited similar effects on metabolites in the TCA cycle and/or NTPs in the 

HGSC cell lines tested (Figure S3). In addition, this is the first study that characterizes 

the bioenergetics and metabolism of immortalized FTSECs, the purported cell of origin of 

HGSC [19]. Given that previous biguanide studies on ovarian cancer have not included 

FTSECs, we were able to identify metabolic effects induced by biguanides that were seen 

only in transformed HGSC cells. The most significant of these effects was the perturbation 

of metabolites involved with mitochondrial shuttles, the G3P and malate-aspartate shuttle 
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(Figure 7A). Since NADH is unable to cross the mitochondrial membrane, shuttles exist 

to transfer electrons from cytosolic NADH to the electron transport chain (ETC) via the 

reduction of other molecules that can cross into the mitochondria. Mechanistically, the 

G3P shuttle functions in the following manner: Cytosolic G3P dehydrogenase 1 (cGPD) 

converts dihydroxyacetone phosphate (DHAP) to G3P by oxidizing NADH to NAD+. G3P 

is then converted back to DHAP by mitochondrial G3P dehydrogenase 2 (mGPD) to 

produce FADH2 that donates its electrons to the ETC (Figure 8A). The malate-aspartate 

shuttle utilizes malate and aspartate as electron carriers that are shuttled between the 

cytosol and mitochondria via exchange transporters (Figure 8B). These systems appear 

to be perturbed by biguanides in transformed HGSC cells as evidenced by elevated levels 

of G3P and depletion of aspartate. Interestingly, mGPD was found to be a direct target of 

biguanide inhibition in rats [25]. Whether biguanides inhibit the G3P and malate-aspartate 

shuttles directly in human cells has not been determined.  

Recent evidence has shown that metformin accumulates within ovarian tumors 

and induces aspartate depletion [12]. This and other studies have posited that metformin 

prevents the mitochondria from adaptive nutrient utilization since metformin treatment can 

be rescued by providing alternative fuel sources such as pyruvate or increased amounts 

of glucose [12,16,15]. We have also confirmed the protective effect supplementation of 

glucose, aspartate, and pyruvate has against metformin (Figure 6 and 9). One caveat of 

our study is that cells were grown in RPMI media containing supraphysiologic levels of 

glucose (10 mM vs ~1-5mM) and higher levels of metformin (10 mM) than cells in vivo 

would be exposed to. However, the metabolomic changes upon metformin treatment 

seen in our in vitro data overlap significantly with the changes seen in other in vivo studies, 
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thereby suggesting translatability of our results [12,16,15]. Since biguanide treatment of 

most HGSC cell lines resulted in depleted nucleotides, increases in glycolysis (as shown 

by lactate and ECAR), and significant inhibition of ATP-linked OCR, it follows that there 

is an increased need for glucose to provide the carbons required to replenish nucleotides 

and ATP via the pentose-phosphate shunt and glycolysis, respectively. Therefore, the 

ability of metformin to lower blood glucose levels and directly inhibit adaptive nutrient 

utilization in cancer cells imply a multi-faceted mechanism explaining the efficacy of this 

anti-tumor agent.  

In summary, our study characterizes the metabolic and anti-proliferative effects of 

biguanides on HGSC cells and its cell of origin, FTSECs. Biguanides significantly inhibit 

the ETC and accumulate NADH in all cell lines implying that biguanides are also able to 

enter normal FTSEC cells and act on its direct target, Complex I. However, the anti-

proliferative effects of metformin, but not phenformin, are HGSC cell specific and do not 

correlate with inhibition of mTOR activity. Metabolomic analysis revealed HGSC specific 

alterations in the levels of mitochondrial shuttle metabolites, aspartate and G3P, thereby 

illustrating that these processes are of particular importance, and possibly overactive in 

cancer cells. Alterations in these metabolites also correlate well with the anti-proliferative 

efficacy of metformin. The activity of these shuttles in HGSC cells versus normal FTSECs 

have not been described and are worth investigating. Further detailed analysis of the 

metabolic pathways perturbed in biguanide sensitive cells (i.e. deoxyuridine metabolism) 

as well as resistance mechanisms in metformin resistant cells may reveal additional 

metabolic therapeutic targets. Additionally, since this study identifies that metformin 

induces deleterious effects specifically in HGSC cells not seen in normal FTSECs and its 
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low toxicity profile, its use as a preventative measure for HGSC should be taken into 

consideration.  

2.6 Methods 

2.6.1 Cell lines and reagents  

FUOV1, OVCAR4, OV90, OVCAR433, and TYKNU were obtained as previously 

described [26]. FNE1 and FNE2 (TERT-immortalized normal FTSECs) were a kind gift 

from Dr. Tan Ince (University of Miami) [20]. Metformin, phenformin, and ultra-low 

attachment plates were obtained from Sigma-Aldrich. HGSC cells were grown in RPMI 

1640 + 10% FBS + 1% penicillin/streptomycin. FNE1 and FNE2 were grown in FOMI 

media [20] then switched to RPMI 1640 + 10% FBS + 1% penicillin/streptomycin 72 hours 

prior to assays.  

2.6.2 Mitochondrial function and glycolysis 

2x104 cells were plated into 24 well XF plates (Seahorse bioscience). Oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using 

an XF24 Extracellular Flux Analyzer (Seahorse Bioscience) in unbuffered DMEM assay 

medium supplemented with 1 mM pyruvate, 2 mM glutamine and 11 mM glucose. OCR 

and ECAR were measured before and after the sequential addition of 0.5 µM oligomycin, 

0.5 µM FCCP and 1 µM of rotenone/myxothiazol. Values were normalized to protein 

concentration using a Bradford assay (Bio-Rad). Mitochondrial respiration was calculated 

as the difference between total and rotenone/myxothiazol rates. Maximal respiration was 

the response to FCCP. ATP-linked respiration was the oligomycin-sensitive respiration 
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while uncoupled respiration was the difference between oligomycin and 

rotenone/myxothiazol rates. 

2.6.3 Cell proliferation assay 

1x103 HGSC cells/well were seeded in triplicate on a 96-well plate and treated with 

metformin (1 mM or 10 mM), phenformin (100µM or 1 mM), aspartate (100 uM), pyruvate 

(1 mM) or vehicle control (RPMI). To assess cellular viability, cells were subjected to the 

CelltiterGlo assay (Promega). Luminescence was read on a GloMax luminometer.  

2.6.4 Spheroid formation assay  

1x103 HGSC cells/well were seeded in triplicate in an ultra-low attachment 96-well plate 

and incubated overnight. Next day cells were treated with indicated doses of metformin, 

phenformin, or control for 72 hours. Viability was assessed by CelltiterGlo 3D assay.  

2.6.5 Western blot analysis 

Western blot was performed as previously described [27]. Briefly, cell lysates were 

collected in RIPA buffer supplemented with protease inhibitor cocktail and phosSTOP 

(Roche) and phosphatase inhibitor cocktail (Roche). 30 µg of pre-cleared cell lysate and 

4x laemmli buffer were boiled for 10 minutes. Boiled lysates were run on a 4-20% gradient 

gel (BioRad) and transferred to a PVDF membrane. After blocking in 5% milk/TBS-T, 

blots were incubated overnight with primary antibody towards AMPK (Cell Signaling), 

phospho-AMPK (Cell Signaling), REDD1 (Protein Tech), S6K (Cell Signaling), phospho-

S6K (Cell Signaling), LKB1 (Santa Cruz) and -actin (Sigma Aldrich). Blots were washed 

with TBS-T and incubated with secondary antibodies. Blots were scanned using the 

LiCOR Odyssey system. 
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2.6.6 qRT-PCR analysis 

 RNA extraction was performed using the RNeasy Mini Kit (Qiagen). RNA was 

reverse transcribed to cDNA using the Quantitect Reverse Transcription Kit (Qiagen). For 

qRT-PCR, 50 ng of cDNA was mixed with primers towards REDD1 (Forward 5’-

ACAGTTCTAGATGGAAGACC-3’, Reverse 5’-ACAGTTCTAGATGGAAGACC-3’ or 

RPL32 (Forward 5’-GTGCAACAAATCTTAC-TGTG, Reverse 5’- 

CTGCCTACTCATTTTCTTCAC).  

2.6.7 Metabolite extraction and analysis 

 Cells were cultured in 6-well plates with or without metformin (10 μM) or 

phenformin (1 μM) treatment for 24 hours, and extracted at 80% confluency. Medium was 

aspirated, and each well was washed with 2 ml saline (pH 7.5). Saline was aspirated, and 

cells were quenched with 500 μl of -75°C HPLC-grade methanol in each well. After adding 

200 μl of HPLC-grade water to each well, cells were scraped with a cell lifter. All contents 

of each well were collected in a 1.7-ml microcentrifuge tube. Chloroform (500 μl at −20°C) 

was added to each tube and vortexed for 10 min at 4°C. Extracts were centrifuged at 

17,000 × g for 15 min at 4°C. The upper aqueous phase containing polar metabolites was 

collected in a separate microcentrifuge tube and evaporated under a stream of nitrogen. 

Metabolites were resuspended in 100 μl of HPLC-grade water immediately before 

analysis by mass spectrometry. The metabolites were analyzed using a Waters Xevo TQ-

S mass spectrometer coupled to an H-Class UPLC system. Metabolites were separated 

by polarity using a Supelco Ascentis Express C18 column (2.7 μm particle size, 5 cm × 

2.1 mm). LC parameters are as follows: autosampler temperature, 5 °C; injection volume, 

5 μl; column temperature, 50 °C; flow rate over 11 min: t = 0, 0.4 ml min−1; t = 2, 0.3 ml 
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min−1; t = 3, 0.25 ml min−1; t = 5, 0.15 ml min−1; t = 9, 0.4 ml min−1; t = 11, 0.4 ml min−1. 

The LC solvents were solvent A: 10 mM tributylamine and 15 mM acetic acid in 97:3 

water:methanol (pH 4.95); and solvent B: methanol. Elution from the column was 

performed over 11 min with the following gradient: t = 0, 0% B; t = 1, 0% B; t = 2, 20% B; 

t = 3, 20% B; t = 5, 55% B; t = 8, 95% B; t = 8.5, 95% B, t = 9, 0% B; t = 11, 0% B. Mass 

spectra were acquired using negative-mode electrospray ionization operating in multiple 

reaction monitoring (MRM) mode. The capillary voltage was 3,000 V, and cone voltage 

was 50 V. Nitrogen was used as cone gas and desolvation gas, with flow rates of 150 l 

h−1 and 600 l h−1, respectively. The source temperature was 150 °C, and desolvation 

temperature was 500 °C. Argon was used as collision gas at a manifold pressure of 4.3 

× 10-3 mbar. Collision energies and source cone potentials were optimized for each MRM 

transition using Waters QuanOptimize software. Data analysis was performed using 

MAVEN [28,29]. Metabolite measurements were normalized by cell counts. 

2.7 Acknowledgments 

We thank members of the Women’s Cancer Program at Cedars-Sinai Medical 

Center for their thoughtful input and insight in completion of this manuscript. We would 

also like to thank Dr. Tan Ince (U. of Miami) for providing the normal immortalized FTSEC 

cell lines, FNE1 and FNE2. The work of P.J.P.A. is supported by the Ovarian Cancer 

Research Fund Alliance Program Project Grant. The work of K.R. is supported by the 

National Center for Research Resources Grant S10RR026744. The work of S.Y.L. and 

M.O. is supported by Office of the Assistant Secretary of Defense for Health Affairs, 

through the Breast Cancer Research Program, under Award No. W81XWH-15-1-0453. 



92 
 

S.Y.L. is also supported by 2016 AACR-Incyte Corporation NextGen Grant for 

Transformative Cancer Research, Grant Number 16-20-46-LUNT. 

2.8 Author Contributions 

P.J.P.A. initiated and oversaw the entire study design and execution. M.H. and 

P.J.P.A performed the proliferation assays and helped with the bioenergetic and 

metabolomics experiments. L.V. and K.R. performed and helped interpret the 

bioenergetic experiments. B.Y.K helped with data analysis and interpretation. M.P.O. and 

S.Y.L. performed and helped interpret the metabolomics data. All authors helped with 

manuscript preparation.   



93 
 

 

 

 

 

 

 

 

 

 

2.9 APPENDIX 

  



94 
 

 

Figure 2.1 The effects of biguanides on 2-D cell proliferation of HGSC and normal FTSEC 

cell lines. (A) Normal FTSECs, (B) metformin sensitive and (C) metformin resistant cells grown  
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Figure 2.1 (cont’d) 

in 2-D were treated with the indicated doses of metformin, phenformin, or vehicle control at 24 h 

for 5 days. Cell proliferation was assessed at indicated time points by Celltiter Glo. Proliferation 

is displayed relative to vehicle control at 24h. (D) Metformin efficacy calculated based on 

metformin treatment relative to control after 5 days of treatment. *denotes significant inhibition 

relative to control treatment (p-value <.01).  
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Figure 2.2 The effects of biguanides on 3-D cell proliferation of HGSC and normal FTSEC 

cell lines. (A) Normal FTSECs, (B) metformin sensitive and (C) relatively metformin resistant  
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Figure 2.2 (cont’d) 

cells grown in ultra-low attachment 3D conditions. Cell proliferation was assessed at indicated 

time points by Celltiter Glo 3D. Proliferation is displayed relative to vehicle control at 24h. (D) 

Metformin efficacy calculated based on metformin treatment divided by control treatment at 5 

days of treatment. (E) Proliferation at 6 days relative to 24 h. (F) Plot of metformin efficacy versus 

cell proliferation rates. Dotted red line is best-fit trend line of all data points and statistically 

significant to be non-zero (p-value <0.01). *denotes significant inhibition relative to control 

treatment (p-value <0.01). 
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Figure 2.3 The effects of biguanides on mTOR signaling in HGSC and normal FTSEC cell 

lines. Cell lines were treated with metformin (10 mM), phenformin (1 mM), or vehicle control for 

24 hours. Western blot analysis of phospho-AMPK (T172), AMPK, phospho-S6K (T389), S6K, 

REDD1, and -actin as a loading control.  
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Figure 2.4 Bioenergetic analysis of HGSC and normal FTSEC cell lines. (A-E) Oxygen 

Consumption Rate (OCR) (A, C, E) and Extracellular Acidification Rate (ECAR) (B & D) 

measurements were obtained using an extracellular flux analyzer (Seahorse Bioscience). 
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Figure 2.4 (cont’d) 

Basal OCR (A) and ECAR (B) rates were obtained prior to addition of Oligomycin A to derive 

Spare Glycolytic Capacity (D) and ATP-coupled OCR (E), and FCCP to uncouple mitochondria 

for maximal OCR. (C) Spare respiratory capacity was calculated by taking the difference between 

the maximal OCR and basal OCR. Percentages are relative to maximal respiration. (D) Spare 

Glycolytic Capacity was derived by taking the difference between maximal ECAR and basal 

ECAR. Percentages are relative to maximal ECAR. (E) Non-mitochondrial respiration was 

calculated as the residual OCR after treatment with Rotenone/myxothiazol that inhibits Complex 

I. Uncoupled mitochondrial respiration was calculated as the difference between OCR following 

Oligomycin A treatment and OCR following Rotenone/myxothiazol treatment. All three values are 

shown as percentages relative to baseline OCR. 
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Figure 2.5 The effects of biguanides on the bioenergetics profiles of HGSC and normal 

FTSEC cell lines. (A-B) Cells were treated with Metformin (10 mM), Phenformin (1 mM), or 

control vehicle for 24 hours prior to analysis by the extracellular flux analyzer. (A) Basal OCR 

relative to control treated cells. * denotes p-value < 0.05 as determined by Tukey’s multiple  
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Figure 2.5 (cont’d) 

comparison test. (B) Basal ECAR relative to control treated cells. Dotted line indicates the level 

of a statistically significant change in ECAR (p-value < 0.01).  
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Figure 2.6 Glucose deprivation sensitizes metformin resistant cell lines FUOV1 and 

OVCAR4 to metformin treatment. Cells were grown in standard glucose or limited glucose 

conditions were treated with vehicle or metformin (10 mM). Cell proliferation was assessed at 24 

h, 72h, and 144 h. Proliferation is depicted relative to 24 h for each treatment. * denotes p-value 

< 0.01 relative to control. ** denotes p-value <0.01 relative to metformin in standard glucose 

media.  
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Figure 2.7 The cancer-specific effects of biguanides on mitochondrial shuttle metabolites. 

(A) Metabolite analysis. Cells were treated with metformin (10 mM), phenformin (1 mM), or vehicle 

control for 24 hours and subjected to targeted mass spectrometry analysis. Metformin and 

phenformin treatments shown relative to untreated control. Yellow and blue boxes indicate 

increased or decreased levels relative to control, respectively. Data normalized by cell number. 

Complete metabolite changes located in Figure S2.2. (B) Quantification of G3P and aspartate 

fold changes induced by metformin treatment. Values listed as log2 fold change in metabolite  
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Figure 2.7 (cont’d) 

abundance for metformin treated versus control normal FTSECs (blue), metformin-sensitive (red), 

and metformin-resistant (orange) cells. For G3P: *p-value < 0.05 vs normal cell lines by Games-

Howell test, #p-value < 0.05 vs TYKNU, FUOV1, and OVCAR4 by Games-Howell test, +p-value < 

0.05 vs OVCAR4 by Games-Howell test. For aspartate: *p-value < 0.05 vs normal cell liens by 

Games-Howell test, #p-value < 0.05 vs FNE2 by Games-Howell test, +p-value < 0.05 vs OVCAR4 

by Games-Howell test, &p-value < 0.05 vs OV90, FUOV1, and OVCAR4 by Games-Howell test, 

and %p-value < 0.05 vs OV90, OVCAR433, FUOV1, and OVCAR4 by Games-Howell test. 
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Figure 2.8 Mitochondrial shuttles. (A) The glycerol-3-phosphate shuttle. cGPD = cytosolic 

glycerol-3-phosphate dehydrogenase, mGPD – mitochondrial glycerol-3-phosphate 

dehydrogenase. (B) The malate-aspartate shuttle. Numbers indicate the following enzymes and 

transporters: (1) Cytosolic aspartate aminotransferase (2) Malate dehydrogenase 1 (3) Malate-

alpha-ketoglutarate antiporter (4) Malate dehydrogenase 2 (5) Mitochondrial aspartate  



107 
 

Figure 2.8 (cont’d) 

aminotransferase (6) Glutamate-aspartate antiporter. Black and red dashed lines indicate the flow 

of -ketoglutarate and glutamate between the cytosol and mitochondrial space. 
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Figure 2.9 Aspartate and pyruvate supplementation inhibits the effects of metformin on 

cell proliferation. Cells were seeded and after 24 h were treated with either control, metformin 

(10 mM) with or without (A) aspartate (100 uM) or (B) pyruvate (1 mM). Cell proliferation was 

assessed after an additional 72 h by Celltiter Glo. Proliferation is displayed relative to vehicle  
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Figure 2.9 (cont’d) 

control. * denotes p-value < 0.01 relative to control. # denotes p-value < 0.01 relative to metformin 

treatment.  
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Figure S2.1 Expression levels of phospho-AMPK, AMPK, LKB1, and OCT1. (A) Time course 

of metformin (10 mM) and AICAR (100 uM) treatment on OV90 and FUOV1. Cells were seeded 

and 24 hours later treated with either control, metformin, or AICAR and harvested at indicated 

time points. Western blot analysis for pAMPK and AMPK was performed. (B) Western blot 

analysis of LKB1 in untreated cell lines. -actin was used as a loading control. (C) qRT-PCR 

analysis of OCT1. RPL32 transcript was used for normalization between samples. 
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Figure S2.2 The effects of biguanides on REDD1 transcription in HGSC and normal FTSEC 

cell lines. qRT-PCR analysis of REDD1. Fold change of each treatment shown relative to vehicle 

control. Dotted line indicates statistically significant upregulation (>2-fold change of a student t-

test p-value < 0.01). RPL32 transcript was used for normalization between samples. 
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Figure S2.3 Profiles of intracellular metabolites in HGSC and normal FTSEC cell lines 

treated with metformin (10 mM), phenformin (1 mM), or vehicle control for 24 hours. Relative  



113 
 

Figure S2.3 (cont’d) 

levels are expressed as the log ratio of the normalized signal intensity in drug treated cells to the 

normalized signal intensity in the vehicle control for each cell line. Yellow and blue boxes indicate 

increased or decreased levels relative to control, respectively. Signal intensity was also 

normalized by cell number. 
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Figure S2.3 (cont’d) 
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Figure S2.3 (cont’d) 
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Figure S2.3 (cont’d) 
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Figure S2.4 Quantification of metabolite changes induced by metformin treatment. Values 

listed as log2 fold change in metabolite abundance for metformin treated versus control normal 

FTSECs (blue), metformin-sensitive (red), and metformin-resistant (orange) cells. For statistical 

analysis, Tukey’s or Games-Howell test were used as indicated. 
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Table S2.1 Statistical analysis of metabolic profiles shown in Figures 2.7, S2.2, and S2.3. 

Student’s t-test was used to determine significance. If assumption of homoscedasticity was not  

P <0.05

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 4.4902 0.0061 4.2490 0.0075

NAD -0.6813 0.0185 -0.8820 0.0092

Glycerol 3-phosphate 0.3924 0.0266 0.2343 0.0486

Malate 0.2420 0.2825 0.0047 0.9079

Aspartate -0.5302 0.1708 -0.6692 0.0842

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 4.494289061 0.0000 3.6370 0.0001

NAD -0.101470172 0.1558 -0.9366 0.0005

Glycerol 3-phosphate 0.382418975 0.2179 -0.5175 0.0725

Malate 1.057864281 0.0000 -0.3026 0.5113

Aspartate 0.561138602 0.0003 -0.3300 0.0502

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 3.395786607 0.0000 3.0850 0.0001

NAD 0.334880408 0.1038 -0.3422 0.0169

Glycerol 3-phosphate 1.566685751 0.0010 1.3479 0.0022

Malate 0.651628165 0.2183 0.5430 0.1789

Aspartate -1.462037971 0.0009 -2.1237 0.0003

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 3.757570572 0.0000 3.1531 0.0000

NAD 0.307160273 0.0026 -0.0304 0.7715

Glycerol 3-phosphate 3.410913476 0.0001 2.6432 0.0004

Malate 0.516719894 0.2069 0.8732 0.0423

Aspartate -1.337253238 0.0007 -1.1686 0.0002

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 3.178679596 0.0000 2.5394 0.0001

NAD 0.069937314 0.2330 -0.7969 0.0048

Glycerol 3-phosphate 3.023537598 0.0000 1.8847 0.0034

Malate 0.252118946 0.1661 -0.1458 0.4038

Aspartate -1.935654182 0.0001 -2.2291 0.0005

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 5.308543537 0.0199 4.5557 0.0270

NAD 0.113864922 0.5758 -0.3706 0.0282

Glycerol 3-phosphate 1.705783431 0.0007 1.1858 0.0066

Malate 0.656276305 0.0202 0.4576 0.6225

Aspartate -2.515199139 0.0000 -2.0590 0.0003

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 5.167365698 0.0088 4.4671 0.0121

NAD 0.005032679 0.4857 -0.7342 0.0086

Glycerol 3-phosphate 1.496715468 0.0001 0.9878 0.0020

Malate -0.312588339 0.5175 0.3273 0.0468

Aspartate -2.544860804 0.0000 -2.1172 0.0002

Metabolite Log2 Fold Change P value Log2 Fold Change P value

NADH 3.1787 0.0000239 2.5394 0.0000782

NAD 0.0699 0.2329909 -0.7969 0.0048083

Glycerol 3-phosphate 3.0235 0.0000142 1.8847 0.0034068

Malate 0.2521 0.1661287 -0.1458 0.4038247

Aspartate -1.9357 0.0000972 -2.2291 0.000474

TYKNU

Metformin vs Untreated Phenformin vs Untreated

OVCAR4

Metformin vs Untreated Phenformin vs Untreated

FNE1

FNE2

FUOV1

OV90

OVCAR433

Metformin vs Untreated Phenformin vs Untreated

Metformin vs Untreated Phenformin vs Untreated

Metformin vs Untreated

Metformin vs Untreated Phenformin vs Untreated

Phenformin vs Untreated

Metformin vs Untreated Phenformin vs Untreated

Metformin vs Untreated Phenformin vs Untreated

TYKNU
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Table S2.1 (cont’d) 

met, Welch’s t-test was used instead (indicated in italics). Statistically significant differences (p < 

0.05) are highlighted in green and underlined. 
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CHAPTER 3. 

METABOLOMIC PROFILING OF MOUSE MAMMARY TUMOR-DERIVED CELL LINES 

REVEALS TARGETED THERAPY OPTIONS FOR CANCER SUBTYPES 
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3.1 PREFACE 

This chapter is a modified version of a primary research manuscript currently under 

revision at Cellular Oncology. 
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3.2 Abstract 

Purpose: Breast cancer is a heterogeneous disease with several subtypes that currently 

do not have targeted therapy options. Metabolomics has the potential to uncover novel 

targeted treatment strategies by identifying metabolic pathways required for cancer cells 

to survive and proliferate. 

Methods: The metabolic profiles of two histologically distinct breast cancer subtypes from 

the MMTV-Myc mouse model, epithelial-mesenchymal-transition (EMT) and papillary, 

were investigated using mass spectrometry-based metabolomics methods. Based on 

metabolic profiles, drugs most likely to be effective against each subtype were selected 

and tested. 

Results: The EMT and papillary subtypes display different metabolic preferences. 

Compared to the papillary subtype, the EMT subtype demonstrated increased glutathione 

and TCA cycle metabolism, while the papillary subtype had increased nucleotide 

biosynthesis compared to the EMT subtype. Targeting these distinct metabolic pathways 

effectively inhibited cancer cell proliferation in a subtype-specific manner.  

Conclusions: These results demonstrate the feasibility of metabolic profiling to develop 

novel personalized therapy strategies for different subtypes of breast cancer. 

3.3 Introduction 

Breast cancer is a heterogeneous disease with subtypes that vary by morphology, 

receptor status, and gene expression profiles [1,2]. This diversity impacts treatment, as 

one therapeutic strategy will not work for all patients. Targeted therapies include 

endocrine therapy for patients with estrogen receptor positive (ER+) breast cancer, as 

well as monoclonal antibodies/inhibitors against human epidermal growth factor receptor 
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2 (HER2) for HER2+ breast cancer [3]. Unfortunately, targeted therapies are not available 

for every breast cancer subtype, and drug resistance and relapse remain problematic 

[4,5]. Therefore, it is critical to identify additional therapeutic targets for all subtypes of 

breast cancer, and investigating cancer metabolism has the potential to meet this need 

[6].  

Cancer cells exhibit metabolic differences compared to normal cells, and 

dysregulated metabolism is considered to be a hallmark of cancer [7]. Central carbon 

metabolism, which includes pathways such as glycolysis, the tricarboxylic acid (TCA) 

cycle, the pentose phosphate pathway (PPP), and amino acid metabolism, is 

dysregulated in cancer cells and fuels survival and proliferation [8]. Previous work has 

shown that metabolic dysregulation can be specific to different subtypes of breast cancer. 

For example, HER2+ and triple negative breast cancer (TNBC) have been shown to 

upregulate glutaminolysis compared to ER+ breast cancer [9,10], and TNBC cell lines 

and xenograft models are sensitive to glutaminase inhibition [11,12]. Differential utilization 

of metabolic pathways between subtypes of cancer therefore represent potential targets 

that can be leveraged to develop novel treatment strategies.  

The diversity observed in human breast cancer can be modeled by the MMTV-Myc 

mouse model [13]. MMTV-Myc mice develop mammary tumors that display heterogeneity 

in both histology and gene expression [14]. Histological subtypes of the MMTV-Myc 

model have previously been correlated with human subtypes based on global gene 

expression [15,16]. For example, MMTV-Myc epithelial-mesenchymal-transition (EMT) 

tumors correspond to the claudin-low subtype of human breast cancer, a subtype which 

currently has no targeted therapy options and is generally associated with a poor 
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prognosis [17]. Compared to MMTV-Myc EMT tumors, MMTV-Myc papillary tumors do 

not correlate strongly with one particular subtype of human breast cancer based on gene 

expression signatures; instead, the MMTV-Myc papillary tumors correlate moderately 

with several breast cancer subtypes including luminal and basal breast cancer [15,16]. 

However, the MMTV-Myc papillary tumors display increased Myc signaling pathway 

activity [14], which is also amplified in 15.7% of human breast cancers and is more 

common in high grade tumors and the basal-like subtype [18]. While the MMTV-Myc EMT 

tumors are initially induced by Myc, they lose Myc pathway activation due to the epithelial 

tissue-specificity of the MMTV promoter [14]. Thus, the papillary tumors provide a better 

model for studying human breast cancer with Myc amplification. As a transcription factor, 

Myc affects numerous biological processes including metabolism [19,20]. Notably, Myc 

expression regulates several genes in glucose, amino acid, and nucleotide metabolism 

[21-23]. Therefore, investigating metabolism of the MMTV-Myc model system may reveal 

metabolic features common to human cancer and could present new targeted therapeutic 

options. 

Here, we present a study investigating the metabolic profiles of two histologically 

distinct breast cancer subtypes, EMT and papillary, from the MMTV-Myc mouse model. 

Cell lines were derived from primary EMT and papillary tumors, and polar metabolites 

were extracted and analyzed using an optimized liquid chromatography tandem mass 

spectrometry (LC-MS/MS) method to measure a wide range of metabolites [24]. Based 

on metabolic profiles, drugs most likely to be effective against each subtype were selected 

and tested. We found that, compared to the papillary subtype, the EMT subtype 

demonstrated increased glutathione and TCA cycle metabolism, while the papillary 
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subtype had increased nucleotide biosynthesis compared to the EMT subtype. Targeting 

each of these distinct metabolic pathways effectively inhibited cancer cell proliferation in 

a subtype-specific manner. These results demonstrate the potential utility for metabolic 

profiling to identify drug targets that can be used to develop novel personalized 

therapeutic strategies for different subtypes of breast cancer. 

3.4 Results 

3.4.1 Relative metabolite levels between histologically distinct subtypes of MMTV-

Myc mouse mammary tumors define metabolic pathways of interest. 

To determine metabolic profiles of histologically distinct mouse mammary tumor 

subtypes, polar metabolites were extracted from tumor-derived cell lines and quantitated 

using LC-MS/MS. We found metabolites involved in several central carbon metabolic 

pathways to be differentially abundant between EMT and papillary tumor-derived cell lines 

(Figure 1; Figure S1; and Table S1).  

In the EMT subtype, both oxidized and reduced forms of glutathione, a key 

metabolite in redox homeostasis, are elevated (Figure 1B). Increased levels of both 

reduced and oxidized glutathione imply that the EMT subtype has elevated glutathione 

biosynthetic activity. This could reflect a greater dependency on glutathione biosynthesis 

in the EMT cells and targeting glutathione biosynthesis would therefore be more effective 

against the EMT subtype. Metabolites increased in the papillary subtype include fructose 

bisphosphate (FBP; glycolysis); acetyl-CoA (TCA cycle); ribulose-5-phopsphate and 

ribose-5-phosphate (PPP); and adenosine diphosphate (ADP) and adenosine 

triphosphate (ATP; nucleotide metabolism; Figure 1B). Additional analysis using isotope 
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labeling is required to determine whether metabolites are present at higher levels due to 

higher production or lower consumption. 

3.4.2 Isotope labeling through the TCA cycle is increased in the EMT subtype. 

Elevated acetyl-CoA and FBP levels in the papillary subtype (Figure 1B) could be 

explained by either increased glycolytic activity or decreased TCA cycle activity, since 

these pathways contribute to the production or consumption of these metabolites, 

respectively. To further investigate these relative metabolic pathway activities, we 

performed stable isotope labeling using 13C-glucose and 13C-glutamine. Isotope labeling 

studies show the rate at which these metabolites are incorporated into different metabolic 

pathways, enabling comparison of relative metabolic pathway activities between 

samples. Isotope labeling patterns complement metabolic pool size measurements to 

reveal more complete metabolic profiles.[25] We find the papillary subtype has 

proportionally lower abundance of 13C-labeled glycolysis and TCA cycle intermediates 

from 13C-glucose compared to the EMT subtype (Figure 2; Table S2). Therefore, the 

increased abundance of FBP and acetyl-CoA in the papillary cells are likely due to 

decreased TCA cycle activity in this subtype compared to the EMT cells. Notably, the 

labeled fraction of 2/3 phosphoglycerate (66% in EMT vs. 56% in papillary), alpha-

ketoglutarate (40% in EMT vs. 28% in papillary), succinate (73% in EMT vs. 42% in 

papillary), fumarate (54% in EMT vs. 33% in papillary), and malate (44% in EMT vs. 32% 

in papillary) are each higher in the EMT cells when 13C-glucose is used as the labeled 

carbon source (Table S2). When 13C-glutamine is used as the labeled carbon source, 

most TCA cycle metabolites do not demonstrate a significant difference in labeling 

between the EMT and papillary cells (Figure S2; Table S3). These results indicate that 
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EMT cells increase glucose flux through the TCA cycle to a greater degree than papillary 

cells. Thus, targeting the TCA cycle is likely to be more effective in the EMT subtype 

compared to the papillary subtype. 

3.4.3 Isotope labeling into nucleotide biosynthesis is elevated in the papillary 

subtype. 

Compared to the EMT cells, the papillary cells exhibit increased levels of 

nucleotides ADP and ATP, as well as ribulose-5-phosphate and ribose-5-phosphate, two 

intermediates in the PPP (Figure 1B). To determine whether these measurements reflect 

increased nucleotide production or decreased nucleotide consumption, we applied the 

same isotope labeling techniques described above. Nucleotides can be generated 

through de novo biosynthesis or salvage pathways. Several carbon sources contribute to 

the formation of purine and pyrimidine rings during de novo biosynthesis. Purine carbons 

are derived from glycine (2 carbons), formate (2 carbons), and bicarbonate (1 carbon). 

Pyrimidine carbons are derived from aspartate (3 carbons, predominately from glutamine 

metabolism) and bicarbonate (1 carbon) [23]. Salvage pathways recycle intermediates 

scavenged from the environment or produced from RNA and DNA degradation to 

generate nucleotides, and these pathways require less energy per produced nucleotide 

compared to de novo biosynthesis. The carbon sources for purine and pyrimidine 

nucleotides are highlighted in Figure 3A,B. 

Isotope labeling studies show that the papillary cells have higher de novo 

nucleotide biosynthesis compared to the EMT cells (Figure 3C,D; Tables S2-3). When 

cells are fed 13C-glucose, the M-5 isotopologue of inosine monophosphate (IMP) and ATP 

can be derived from either de novo or salvage pathways, while all other isotopologues of 
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IMP and ATP (M-1 to M-4 and M-6 to M-10, referred to as M-Other in Figure 3C) can 

only be derived through de novo biosynthetic pathways (Figure 3A). As shown in Figure 

3C and Table S2, M-Other is higher in the papillary cells for both IMP (23% in papillary 

vs. 19% in EMT) and ATP (19% in papillary vs. 15% in EMT). Further, 13C-glutamine 

labeling shows increased levels of the M3 isotopologue of uridine triphosphate (UTP) in 

the papillary cells (23% in papillary vs. 17% in EMT; Figure 3D; Table S3) – this 

isotopologue can also only be derived from de novo biosynthesis (Figure 3B). Therefore, 

the papillary cells demonstrate increased de novo biosynthesis of both purine and 

pyrimidine nucleotides compared to the EMT cells. Notably, we find no difference 

between EMT and papillary cells in 13C-glucose labeling into ribose-5-phosphate, serine, 

and glycine as well as 13C-glutamine labeling into aspartate (Figure S3), which indicates 

that increased nucleotide biosynthesis in the papillary cells is not simply due to greater 

abundance of labeled precursors for these pathways. Increased de novo nucleotide 

biosynthesis could reflect a preference to utilize this metabolic pathway to generate 

nucleotides in the papillary subtype. This would indicate targeting de novo nucleotide 

biosynthesis is likely to be more effective in the papillary subtype. 

3.4.4 Relative metabolic pathway activity correlates with drug response. 

To test whether metabolism-targeting drugs impact cell proliferation in a subtype-

specific manner, cell proliferation was determined in the presence of metabolism-

targeting compounds. Compounds were chosen based on our initial findings that the EMT 

subtype increased glutathione biosynthesis and TCA cycle metabolism, while the 

papillary subtype increased de novo nucleotide biosynthesis. The three selected 

compounds were: 1) Buthionine sulfoximine (BSO), an inhibitor of glutamate-cysteine 
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ligase (GCL) in glutathione biosynthesis [26]; 2) CPI-613, which targets pyruvate 

dehydrogenase (PDH) and alpha-ketoglutarate dehydrogenase (AKGDH) in the TCA 

cycle [27,28]; and 3) 5-Fluorouracil (5FU) which is an inhibitor of thymidylate synthase 

(TYMS) in de novo nucleotide biosynthesis (Figure S4) [29,30].  

We found that targeting each distinct metabolic feature inhibits breast cancer cell 

proliferation in a subtype-specific manner. Since the EMT cells display increased levels 

of both oxidized and reduced glutathione compared to papillary cells (Figure 1B), we 

reasoned they should be more sensitive to glutathione biosynthesis inhibition. As 

expected, targeting glutathione biosynthesis with BSO was more effective at inhibiting 

proliferation of the EMT cells vs. the papillary cells (Figure 4A-B). Consistently, the IC50 

for this compound was significantly lower for the EMT cells (34 µM) vs. the papillary cells 

(49 µM; p value <0.0001; Figure S5A, D). We also evaluated the relative expression of 

these targets using qRT-PCR (Figure S6). For glutathione metabolism, we measured the 

expression of two subunits of GCL, GCL catalytic subunit (GCLC) and GCL modifier 

subunit (GCLM), as well as glutathione synthetase (GSS) and glutathione reductase 

(GSR). We found lower expression of GCLC and GSS in the EMT subtype vs. the 

papillary subtype (Figure S6). Lower expression of the catalytic subunit GCLC in EMT 

cells may explain the increased sensitivity of these cells to inhibition by BSO. On the other 

hand, expression of the modifier subunit GCLM was higher in EMT cells (trending towards 

significance with p value 0.0573; Figure S6). Since the GCLM subunit increases catalytic 

activity of the GCL complex [31,32], higher GCLM expression may explain the increased 

glutathione biosynthesis observed in EMT cells (Figure 1). 
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The EMT cells also have higher TCA cycle activity compared to the papillary cells 

(Figure 2) and should therefore be more sensitive to TCA cycle inhibition. Indeed, 

targeting TCA cycle metabolism with CPI-613 was more effective in the EMT vs. papillary 

cells (Figure 4C-D); the IC50 for this compound was also significantly lower for the EMT 

(123 µM) vs. the papillary cells (153 µM; p value <0.0001; Figure S5B, D). Separate 

mechanisms have been described for the inhibitory effect of CPI-613 on PDH [27] and 

AKGDH [28]. We found that the EMT subtype has higher expression of the E1 subunit of 

PDH compared to the papillary subtype, while the papillary subtype has higher expression 

of each subunit of the AKGDH complex (Figure S6). Higher PDH expression in EMT cells 

is consistent with the observation that these cells display higher rates of TCA cycle 

intermediates labeling from 13C-glucose (Figure 2) but not from 13C-glutamine (Figure 

S2). Thus, the higher sensitivity of EMT cells to CPI-613 is likely due to an increased 

dependence on PDH activity. 

Finally, the papillary subtype demonstrates increased de novo nucleotide 

biosynthesis (Figure 3) and should therefore be most sensitive to compounds which 

target nucleotide biosynthesis. Indeed, we find that targeting nucleotide metabolism with 

5FU was most effective at inhibiting proliferation of the papillary cells vs. the EMT cells 

(Figure 4E-F); the IC50 for this compound was significantly lower for the papillary cells 

(397 nM) vs. the EMT cells (1359 nM; p value <0.0001; Figure S5C-D). TYMS expression 

was similar between the EMT and papillary cells (Figure S6), indicating that the 

differences in nucleotide metabolism in these cells are not regulated at the gene 

expression level. These results illustrate how metabolic profiles can be used to identify 

therapeutic targets for subtypes of breast cancer and highlight the potential to predict 
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whether a specific cancer subtype will most respond to a given treatment strategy based 

on metabolic profiles. 

3.5 Discussion 

In this study, we demonstrate the utility of targeting subtype-specific metabolic 

profiles to inhibit cancer cell proliferation. Using a combination of unlabeled and isotope-

labeled mass-spectrometry-based metabolomics techniques, we developed 

comprehensive metabolic profiles of two histologically distinct breast cancer subtypes 

derived from the MMTV-Myc mouse model. We further leveraged these metabolic profiles 

to identify therapeutic targets for each subtype, and demonstrate that inhibiting cancer 

cell metabolism is most effective when tailored to the underlying metabolic profile of the 

cancer in question. This approach, when translated to human disease, has the potential 

to improve patient outcomes, as it will lead to development of novel metabolic drugs for 

cancer subtypes that currently lack targeted therapies. This may be particularly relevant 

for the EMT subtype, as it has been correlated with the claudin-low subtype of breast 

cancer in humans [15], a subtype which generally carries a poor prognosis and currently 

lacks targeted therapeutic options [17]. 

In recent years, there has been growing interest in taking advantage of altered 

metabolism in cancer for treatment [33-35]. Our findings demonstrate that vulnerabilities 

identified through metabolic profiling are effective therapeutic targets. Each compound 

we tested demonstrates a significantly lower IC50 value in either the EMT or papillary 

subtype, clearly corresponding with the metabolic profile of each subtype. Of the three 

compounds evaluated in this study, 5FU is currently approved as a chemotherapeutic 

agent, and is used to treat a variety of malignancies [30]. BSO has demonstrated utility 
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as a sensitizing agent in pre-clinical models of anti-endocrine therapy resistant ER+ 

breast cancer [36], and in multiple myeloma treated concurrently with the 

chemotherapeutic melphalan [37]. More recently, BSO has shown promise in early clinical 

trials as a chemosensitizing agent in combination with melphalan for treatment of pediatric 

neuroblastoma [38,39]. Finally, CPI-613 is being investigated as a component in 

combination therapies for several malignancies including colorectal cancer [40], small cell 

lung cancer [41], and pancreatic cancer [42]. Our findings support investigating these 

compounds to treat specific subtypes of breast cancer, as each tested compound 

demonstrates some degree of inhibition regardless of subtype. Moreover, our findings 

provide an additional rationale for subtype-specific drug selection based on the underlying 

metabolism of the cancer cells in question, as the drug sensitivity for the EMT and 

papillary cells directly correlates with the metabolic profile of each subtype. 

Our results may also in part explain why some cancer patients do not respond to 

a given metabolism-targeting therapy. For example, 5FU as a monotherapy to treat 

metastatic colorectal cancer demonstrates a response rate of only 10-20% [43], indicating 

a significant proportion of patients fail to respond to 5FU therapy. Response rates are 

better when 5FU is used in combination therapies to treat metastatic breast cancer, with 

response rates of 40-80% depending on the specific combination therapy [43]. In such 

cases, it is possible the metabolic profile of the poor responder’s cancer differs 

significantly from the metabolic profile of a cancer that responds well to treatment. Our 

study demonstrates that 5FU will be most effective in cancer subtypes that upregulate de 

novo nucleotide biosynthesis. This may be particularly relevant for cancers with elevated 

Myc activity, since Myc regulates the expression of numerous genes in nucleotide 
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biosynthesis including TYMS [23], the primary target of 5FU. Increased Myc expression 

has been observed in TNBC compared to hormone receptor positive breast cancer [44], 

and patients with TNBC have better response rates to neoadjuvant chemotherapy 

regimens that contain 5FU [45]. Further, Myc overexpression in hepatocellular carcinoma 

has recently been shown to decrease both oxidized and reduced glutathione levels in 

tumor tissue by downregulating glutathione biosynthesis genes [46]. Our findings support 

this in breast cancer, as the papillary cells, which have relatively higher Myc activity, 

demonstrate decreased glutathione levels compared to EMT cells [14]. This is consistent 

with papillary cells being less sensitive to BSO treatment. Thus, breast cancers with 

increased Myc expression may be less likely to respond to therapies that target 

glutathione biosynthesis, and breast cancers that lack Myc overexpression may respond 

favorably to glutathione biosynthesis inhibitors. Other metabolic features associated with 

increased Myc signaling, such as increased glutaminolysis [47,11] and fatty acid 

metabolism [48], are also under investigation as potential therapeutic targets. Therefore, 

metabolomic analysis of patient samples could provide clinicians with additional 

prognostic information to guide treatment plans, ultimately improving patient outcomes 

while decreasing unnecessary side effects by avoiding ineffective treatment regimens.  

3.6 Methods 

3.6.1 Primary mouse tumors 

All animal use was performed in accordance with institutional and federal 

guidelines. Primary MMTV-Myc EMT and MMTV-Myc papillary tumors were acquired as 

a gift from Dr. Eran Andrechek and have been previously described [14]. Tumors were 

sectioned, formalin-fixed, and paraffin embedded for histological examination with 
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hematoxylin and eosin staining. Tumor derived cell lines were established by mechanical 

dissociation of primary tumors using scissors, followed by culturing tumor pieces in cell 

culture media [49].  

3.6.2 Cell lines and culture conditions 

  EMT and papillary tumor derived cell lines were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM Corning, Corning, New York 10-017-CM) with 25 mM glucose 

without sodium pyruvate supplemented with 2 mM glutamine (Corning, 25-005-CI) 10% 

heat-inactivated fetal bovine serum (MilliporeSigma, Burlington Massachusetts, 12306C), 

and 1% penicillin and streptomycin (Corning, 30-002-CI). Cells were maintained at 37°C 

with 5% CO2. 

3.6.3 Metabolic profiling 

Unlabeled, targeted metabolomics was performed as previously described [24]. 

Briefly, cells were seeded in 6-well tissue culture plates at 50,000 cells/well and cultured 

for 48 hours. Cells were washed with saline (VWR, Radnor, Pennsylvania, 16005-092) 

and metabolism was quenched with addition of cold methanol. The final metabolite 

extraction solvent ratios were methanol:water:chloroform (5:2:5). The polar phase was 

collected and dried under a stream of nitrogen gas. The dried metabolites were then 

resuspended in HPLC-grade water for analysis. LC-MS analysis was performed with ion-

pairing reverse phase chromatography using an Ascentis Express column (C18, 5 cm x 

2.1 mm, 2.7 µm, MilliporeSigma, 53822-U) and a Waters Xevo TQ-S triple quadrupole 

mass spectrometer. Mass spectra were acquired using negative mode electrospray 

ionization operating in multiple reaction monitoring (MRM) mode. Peak processing was 
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performed using MAVEN [50] and data for each sample was normalized to the mean 

signal intensity for all metabolites in the analysis. Metabolites were grouped by 

relationship to metabolic pathways. Heatmaps were generated using Cluster 3.0 [51] and 

exported using Java Treeview [52]. 

3.6.4 Isotope labeling studies 

For isotope labeling experiments, DMEM without glucose or glutamine was 

prepared from powder (MilliporeSigma, D5030) and supplemented with either 13C6-

glucose (Cambridge Isotope Laboratories, Tewksbury, Massachusetts, CLM-1396) and 

unlabeled glutamine (MilliporeSigma, G8540) or unlabeled glucose (Fisher Scientific, 

Hampton, New Hampshire, D16) and 13C5-glutamine (Cambridge Isotope Laboratories, 

CLM-1822). Cells were then seeded and cultured as described above. Prior to metabolite 

extraction, media was switched to isotope containing media and samples were collected 

at T = 0 (unlabeled) and 240 minutes. Metabolite extraction and analysis were performed 

as above. Labeling data was corrected for natural isotope abundance using IsoCor [53]. 

3.6.5 Cell proliferation and drug response studies 

Cells were seeded at a density of 20,000 cells/well in 12-well tissue culture plates 

and treated with either vehicle (DMSO, MilliporeSigma, D4540) or the indicated drugs. 

CPI-613 (Cayman Chemical, Ann Arbor, Michigan, 16981), buthionine sulfoximine 

(Cayman Chemical, 14484), and 5-fluorouracil (TCI, Tokyo, Japan, F0151). Cells were 

counted daily for 3 days using a Nexcelom Cellometer Auto T4 cell counter and viable 

cells were determined using trypan blue exclusion (VWR, 45000-717). Proliferation 
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inhibition was determined using the ratio of the drug treated cell count at day 3 to the 

vehicle treated cell count at day 3. 

3.6.6 qRT-PCR studies 

Cells were seeded in 6-well tissue culture plates at 50,000 cells/well and cultured 

for 48 hours. Total RNA was extracted from the cells using the RNeasy Mini Kit (Qiagen, 

74104), and on-column DNase digestion performed using DNase I (Qiagen, 79254). 

cDNA was prepared using LunaScript™ RT SuperMix Kit (New England Biolabs, 

E3010S). Real-time PCR was performed using Luna® Universal qPCR Master Mix (New 

England Biolabs, M3003S) on an Applied Biosystems StepOnePlus™ Real-Time PCR 

system with the following conditions: 10 min at 55 °C, 1 min at 95 °C followed by 40 cycles 

at 95 °C for 10 s and 60 °C for 1 min. Gene expression values were normalized to control 

gene Tbp and verified against an additional control gene Actb. The primer sequences 

used for real-time PCR are listed in Table S4. 

3.6.7 Statistical analyses 

Statistical analyses were performed using unpaired Student’s t-test except where 

otherwise noted. p values were adjusted in R using the p.adjust() function to account for 

multiple testing using the Benjamini-Hochberg procedure. All error bars presented are 

standard deviation. IC50 values and statistical analysis of drug response were calculated 

using nonlinear regression performed by GraphPad Prism. 
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Figure 3.1 Metabolite pool sizes are different between EMT and papillary tumor derived cell 

lines. (A) Heatmap indicating relative metabolite differences between EMT and papillary tumor 

derived cell lines. Yellow and blue boxes indicate increased or decreased metabolite levels 

relative to the average of the papillary subtype, respectively. Metabolites with statistically 

significant differences (p value < 0.05) are bolded and marked with asterisks (*). (B) 

Representative bar graphs of metabolites of interest between EMT and papillary subtypes. Data 

are displayed as means ± S.D., N = 6 
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Figure 3.2 13C-Isotope labeling from glucose into the TCA cycle is significantly higher in 

the EMT subtype. Grey boxes represent the unlabeled (M-0 isotopologue) proportion for each 

metabolite. Blue boxes represent the sum of all potential labeled isotopologues (M-1 through M-

X, where X represents the total number of carbons in the metabolite) for each metabolite. Data 

are displayed as means ± S.D., N = 3 (*p value < 0.05) 
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Figure 3.3 13C-Isotope incorporation from glucose and glutamine into nucleotide 

biosynthesis is higher in the papillary subtype. Molecular diagrams of (A) purine nucleotide 

AMP and (B) pyrimidine nucleotide UMP with carbon sources highlighted as colored circles. The 

5 carbon ribose sugar of both (A,B left circle) is derived from glucose metabolism. Isotopologues 

of this mass (M-5) reflect both salvaged nucleotides and nucleotides produced by de novo 

biosynthetic pathways when 13C-glucose is administered. The 5 carbons comprising the purine 

ring of AMP (A, right circle) are derived from glycine, formate, and bicarbonate, all three of which 

can also be derived from glucose metabolism. Therefore, when 13C-glucose is administered 

isotopologues of other masses (M-1 to M-4 and M-6 to M-10, referred to as M-Other) reflect only 

purine production by de novo biosynthesis. The 4 carbon comprising the pyrimidine ring of UMP 

(B, right circle) are derived from bicarbonate and aspartate. Aspartate is predominantly derived 

from glutamine metabolism and provides 3 carbons to UMP; therefore, when 13C-glutamine is 

administered, M-3 isotopologues reflect de novo UMP biosynthesis. (C) 13C-Glucose labeling into 

PRPP, IMP, and ATP. (D) 13C-Glutamine labeling into UTP. Grey boxes represent the unlabeled 

proportion for each metabolite. Colored boxes represent isotopologues for each metabolite and 

are sorted based on carbon source. Data are displayed as means ± S.D., N = 3 (*p value < 0.05) 
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Figure 3.4 Metabolism targeting drugs have subtype-specific effects on cell proliferation. 

Targeting glutathione biosynthesis has a greater effect on (A) EMT compared to (B) papillary 

cells. Targeting the TCA cycle also has a greater effect on (C) EMT compared to (D) papillary 

cells. Targeting nucleotide metabolism has less effect on (E) EMT compared to (F) papillary cells. 

Bolded values indicate the subtype most affected by each compound. Data are displayed as 

means ± S.D., N = 3 (*p value < 0.01) 
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Figure S3.1 Heatmap indicating relative metabolite differences between EMT and papillary 

tumor derived cell lines. This data is identical to Figure 1A, except the data has been normalized 

to the EMT subtype. Therefore, yellow and blue boxes indicate increased or decreased metabolite 

levels relative to the average of the EMT subtype, respectively. Metabolites with statistically 

significant differences (p value < 0.05) are bolded and marked with asterisks (*). 
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Figure S3.2 13C-Isotope labeling from glutamine into the TCA cycle is similar between 

subtypes. Grey boxes represent the unlabeled proportion for each metabolite. Green boxes 

represent the sum of all potential isotopologues for each metabolite. Data are displayed as means 

± S.D., N = 3 (Statistically significant differences (p value < 0.05) are marked with asterisks (*) 
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Figure S3.3 13C-Isotope labeling from glucose into ribose 5-phospahte, serine, and glycine 

and from glutamine into aspartate is similar between subtypes. Grey boxes represent the 

unlabeled proportion for each metabolite. Colored boxes represent isotopologues for each 

metabolite and are sorted based on carbon source. Data are displayed as means ± S.D., N = 3 

(Statistically significant differences (p value < 0.05) are marked with asterisks (*) 
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Figure S3.4 Schematic overview of metabolism targeting drugs and affected pathways. 

Compounds were chosen based on the metabolic differences identified in the EMT and papillary 

subtypes. Buthionine sulfoximine targets glutamate-cysteine ligase in glutathione biosynthesis, 

CPI-613 targets pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase in the TCA 

cycle, and 5-fluorouracil targets thymidylate synthase in nucleotide biosynthesis 
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Figure S3.5 Dose response curves for metabolism targeting drugs. (A) Buthionine 

sulfoximine (BSO) and (B) CPI-613 demonstrate greater effects on the EMT subtype. (C) 5-

fluorouracil (5-FU) demonstrates a greater effect on the papillary subtype. (D) Data are means ± 

S.D. (n=3) 

  

IC50 (uM) 95% CI (uM) p-value IC50 (uM) 95% CI (uM) p-value IC50 (nM) 95% CI (nM) p-value

EMT 34.19 31.06 to 37.13 123.4 112.8 to 132.7 1359 981.1 to 2218

Papillary 48.66 44.56 to 53.89 152.9 146.4 to 159.9 397 362.9 to 431.5

5FU

<0.0001 <0.0001 <0.0001

BSO CPI-613

A B C

D
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Figure S3.6 qRT-PCR measurement of gene expression in targeted pathways. Gene 

expression values were normalized to control gene Tbp and expressed relative to papillary 

subtype cells (Pap). Quantitation values shown are averages of 6 replicates (3 cell culture 

replicates × 2 PCR plate replicates). Error bars represent standard error of the mean. P values 

were calculated from ΔCT values using Welch’s t-test. *: p < 0.05, **: p < 0.01; ***: p < 0.001. ΔCT: 

real-time PCR cycle threshold difference between gene of interest and control gene. 
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Table S3.1 Metabolite abundance with statistical significance. Data presented relative to the 

average of the papillary subtype as depicted in Figure 1A. Data represent means and S.D. of 3  

Metabolite EMT Average EMT STDEV Pap Average Pap STDEV P-value Adjusted p-value

2+3-phosphoglycerate -0.2 0.4 0.4 0.4 5.61E-01 7.40E-01

Acetyl-CoA -1.3 0.6 0.6 0.5 2.60E-03 2.72E-02

Aconitate -0.2 0.5 0.4 0.3 5.38E-01 7.40E-01

Adenine 0.8 0.3 0.3 0.3 7.19E-04 2.50E-02

ADP -0.2 0.1 0.1 0.1 6.14E-03 3.46E-02

ADP-ribose 0.2 0.7 1.6 1.5 4.50E-01 7.15E-01

Allantoate_and_Carbamoyl_aspartate 0.0 0.7 0.6 0.6 8.63E-01 9.22E-01

AMP -0.2 0.3 0.5 0.4 5.32E-01 7.40E-01

ATP -0.2 0.1 0.1 0.1 4.11E-03 2.72E-02

Bisphosphoglycerate 0.3 0.5 0.4 0.4 3.03E-01 5.53E-01

Citrate+Isocitrate 0.3 0.2 0.3 0.3 7.17E-02 2.02E-01

CMP -0.7 0.5 0.4 0.4 2.06E-02 8.51E-02

CoA 0.4 0.3 0.2 0.3 4.38E-02 1.36E-01

CTP -0.2 0.4 0.3 0.3 4.73E-01 7.34E-01

dADP 0.3 0.6 0.6 0.6 2.95E-01 5.53E-01

dAMP -0.3 0.9 0.6 0.5 5.88E-01 7.59E-01

dATP -0.1 0.2 0.3 0.3 5.17E-01 7.40E-01

dCMP -0.4 0.3 0.4 0.4 8.53E-02 2.20E-01

dCTP 0.0 0.6 0.3 0.2 9.98E-01 9.98E-01

Deoxyinosine -0.2 0.4 0.7 0.8 9.79E-01 9.98E-01

Deoxyribose-phosphate -0.5 1.0 0.6 0.4 2.62E-01 5.07E-01

Deoxyuridine -1.5 0.8 0.6 0.5 3.93E-03 2.72E-02

dGDP -0.2 0.1 0.1 0.1 2.34E-02 9.06E-02

dGMP -0.4 0.3 0.3 0.3 9.86E-02 2.26E-01

dTTP -0.1 0.4 0.2 0.2 7.26E-01 8.55E-01

FAD 0.0 0.2 0.2 0.2 9.90E-01 9.98E-01

FBP -0.7 0.0 0.2 0.3 1.31E-03 2.70E-02

Fumarate 0.0 1.0 1.0 0.9 7.14E-01 8.55E-01

GAP+DHAP -0.6 0.1 0.3 0.4 1.83E-02 8.10E-02

GDP -0.4 0.2 0.3 0.2 1.51E-02 7.19E-02

Glucono-lactone 0.6 1.0 0.7 0.6 1.49E-01 3.29E-01

Glutathione_disulfide_oxidized 0.6 0.3 0.3 0.3 4.38E-03 2.72E-02

Glutathione_reduced 1.2 0.5 0.4 0.4 8.05E-04 2.50E-02

Glycerol_3-phosphate -0.1 0.5 0.3 0.3 6.38E-01 8.07E-01

GMP -0.1 0.2 0.3 0.3 7.51E-01 8.62E-01

GTP -0.5 0.4 0.4 0.3 5.40E-02 1.60E-01

Hexose-phosphate 0.0 0.6 0.3 0.2 8.90E-01 9.35E-01

IDP -0.1 0.1 0.1 0.2 2.16E-01 4.45E-01

IMP -0.6 0.2 0.4 0.5 2.94E-02 1.01E-01

Inosine -0.6 0.2 0.3 0.3 3.39E-03 2.72E-02

Ketoglutarate -0.1 0.5 0.5 0.5 8.02E-01 9.01E-01

Lactate -0.7 0.8 0.5 0.3 9.71E-02 2.26E-01

Malate 0.1 0.4 0.4 0.4 6.96E-01 8.55E-01

Nacetylneuraminate -0.1 0.2 0.3 0.3 5.04E-01 7.40E-01

NAD -0.1 0.2 0.3 0.3 5.39E-01 7.40E-01

NADH -1.0 0.7 0.6 0.6 3.37E-02 1.10E-01

NADP -0.2 0.2 0.2 0.2 2.23E-01 4.46E-01

NADPH -0.1 0.2 0.2 0.2 4.40E-01 7.15E-01

Phosphoenolpyruvate -0.4 1.0 0.6 0.6 5.49E-01 7.40E-01

Phosphogluconic_acid -0.4 0.4 0.4 0.3 9.83E-02 2.26E-01

Phosphoserine -0.5 0.4 0.2 0.3 2.78E-02 1.01E-01

PRPP -0.3 0.6 0.5 0.4 4.02E-01 7.12E-01

Ribose-5-phosphate -1.0 0.5 0.4 0.3 2.32E-03 2.72E-02

Ribulose-5-phosphate -1.1 0.7 0.4 0.3 4.21E-03 2.72E-02

Sedoheptulose-phosphate -0.5 0.9 0.4 0.2 2.08E-01 4.44E-01

Succinate -0.4 0.8 1.1 1.1 8.29E-01 9.01E-01

UDP -0.5 0.1 0.4 0.4 1.25E-02 6.48E-02

UDPNacetylglucosamine 0.1 0.2 0.2 0.1 4.31E-01 7.15E-01

UMP 0.1 0.2 0.2 0.4 4.29E-01 7.15E-01

Uridine -0.1 0.5 0.8 0.8 7.30E-01 8.55E-01

UTP -0.3 0.4 0.2 0.2 8.33E-02 2.20E-01

Xanthosine -0.1 0.4 0.4 0.3 8.21E-01 9.01E-01
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Table S3.1 (cont’d) 

replicates. Bold values indicate Welch’s t-test was used. Highlighted values are statistically 

significant with adjusted p value < 0.05 
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Table S3.2 13C-Isotope percent labeling from glucose with statistical significance. Data 

represent means and S.D. of 3 replicates. Bold values indicate Welch’s t-test was used. 

Highlighted values are statistically significant with adjusted p value < 0.05 

  

Metabolite EMT Average (%) EMT STDEV Papillary Average (%) Papillary STDEV P-value Adjusted p-value

2-3 phosphoglycerate M-0 33.9 4.2 43.5 1.7 2.21E-02 4.06E-02

2-3 phosphoglycerate M-1-3 66.1 4.2 56.5 1.7 2.21E-02 4.06E-02

Aspartate M-0 59.6 1.8 75.9 3.2 1.57E-03 6.48E-03

Aspartate M-1-4 40.4 1.8 24.1 3.2 1.57E-03 6.48E-03

ATP M-0 50.9 2.0 51.3 2.0 7.94E-01 8.18E-01

ATP M-5 34.1 1.4 29.9 1.4 2.11E-02 4.06E-02

ATP M-Other 15.0 0.7 18.8 0.6 2.04E-03 7.49E-03

FBP M-0 1.1 0.2 1.4 0.2 6.58E-02 1.03E-01

FBP M-1-6 98.9 0.2 98.6 0.2 6.59E-02 1.03E-01

Fumarate M-0 45.8 2.1 66.9 2.4 3.31E-04 1.82E-03

Fumarate M-1-4 54.2 2.1 33.1 2.4 3.31E-04 1.82E-03

Glutamate M-0 58.9 8.9 79.8 2.5 1.74E-02 3.82E-02

Glutamate M-1-5 41.1 8.9 20.2 2.5 1.74E-02 3.82E-02

Glycine M-0 77.8 9.0 81.3 5.4 5.92E-01 6.30E-01

Glycine M-1-2 22.2 9.0 18.7 5.4 5.92E-01 6.30E-01

IMP M-0 43.4 3.3 43.8 2.6 8.80E-01 8.80E-01

IMP M-5 38.0 3.3 32.9 2.1 8.42E-02 1.26E-01

IMP M-Other 18.6 0.0 23.4 0.6 4.79E-03 1.44E-02

Ketoglutarate M-0 59.8 3.9 71.9 0.8 6.14E-03 1.56E-02

Ketoglutarate M-1-5 40.2 3.9 28.1 0.8 6.14E-03 1.56E-02

Malate M-0 56.3 0.6 67.9 1.5 2.19E-04 1.81E-03

Malate M-1-4 43.7 0.6 32.1 1.5 2.19E-04 1.81E-03

PRPP M-0 14.4 4.8 8.4 2.2 1.18E-01 1.62E-01

PRPP M-1-5 85.6 4.8 91.6 2.2 1.18E-01 1.62E-01

Ribose 5-phosphate M-0 6.8 1.9 11.3 5.7 2.57E-01 3.03E-01

Ribose 5-phosphate M-1-5 93.2 1.9 88.7 5.7 2.57E-01 3.03E-01

Serine M-0 69.7 0.5 67.2 2.4 1.53E-01 1.94E-01

Serine M-1-3 30.3 0.5 32.8 2.4 1.53E-01 1.94E-01

Succinate M-0 26.7 3.1 57.6 2.3 1.53E-04 1.81E-03

Succinate M-1-4 73.3 3.1 42.4 2.3 1.53E-04 1.81E-03

UTP M-0 54.8 2.7 53.0 2.2 4.15E-01 4.72E-01

UTP M-5 29.2 3.2 35.1 1.6 4.50E-02 7.81E-02

UTP M-Other 16.0 0.9 11.9 0.6 2.77E-03 9.13E-03
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Table S3.3 13C-Isotope percent labeling from glutamine with statistical significance. Data 

represent means and S.D. of 3 replicates. Highlighted values are statistically significant with 

adjusted p value < 0.05 

  

Metabolite EMT Average EMT STDEV Papillary Average Papillary STDEV P-value Adjusted p-value

Aspartate M-0 32.9 2.5 28.1 4.9 2.10E-01 2.97E-01

Aspartate M-1-4 67.1 2.5 71.9 4.9 2.10E-01 2.97E-01

Fumarate M-0 35.8 3.4 29.9 2.8 8.14E-02 1.38E-01

Fumarate M-1-4 64.2 3.4 70.1 2.8 8.14E-02 1.38E-01

Glutamate M-0 27.2 6.5 25.9 1.7 7.59E-01 7.71E-01

Glutamate M-1-5 72.8 6.5 74.1 1.7 7.59E-01 7.71E-01

Glutamine M-0 0.6 0.5 1.8 0.3 1.55E-02 5.28E-02

Glutamine M-1-5 99.4 0.5 98.2 0.3 1.55E-02 5.28E-02

Ketoglutarate M-0 35.4 3.8 26.8 4.5 6.37E-02 1.35E-01

Ketoglutarate M-1-5 64.6 3.8 73.2 4.5 6.36E-02 1.35E-01

Malate M-0 26.0 0.8 22.0 1.0 5.91E-03 3.36E-02

Malate M-1-4 74.0 0.8 78.0 1.0 5.92E-03 3.36E-02

Succinate M-0 11.0 1.4 8.8 6.2 5.84E-01 7.09E-01

Succinate M-1-4 89.0 1.4 91.2 6.2 5.84E-01 7.09E-01

UTP M-0 75.6 2.5 69.5 1.4 2.08E-02 5.88E-02

UTP M-3 16.7 1.6 22.6 0.5 3.31E-03 3.36E-02

UTP M-Other 7.7 1.0 8.0 0.9 7.71E-01 7.71E-01
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Table S3.4 qRT-PCR primer sequences. 

 

 

  

Primer Sequence

Dlat FWD 5'-AGGCAAAATCATGTGGTTGACGTC

Dlat REV 5'-TCCACCCTGGAACTCATGAGGC

Dld FWD 5'-TGCTGACACAGATGGCATGGTG

Dld REV 5'-GATAAGGTCGGATGCGCATGGC

Dlst FWD 5'-AGCTCGGCACAAGGATGCTTTC

Dlst REV 5'-TCACTGCATTTACAACAGGCTGC

Gclc FWD 5'-ACATGAAAGTGGCCCAGAAGCG

Gclc REV 5'-TCCAGGAAATACCCCTTCCTTCCC

Gclm FWD 5'-GCAGCTGTATCAGTGGGCACAG

Gclm REV 5'-GCCTCAGAGAGCAGTTCTTTCGG

Gsr FWD 5'-GGGCTCACTGAAGACGAAGCTG

Gsr REV 5'-TGTGAATGCCAACCACCTTTTCC

Gss FWD 5'-AGGAATTGCTTGCTACGGCCTG

Gss REV 5'-TCACCAGTGTTGTTCCCTGTCTG

Ogdh FWD 5'-TGTCTGGTATGCTGGCCGAGAC

Ogdh REV 5'-TGAATGCGTCCAGGTCAAAGGC

Pdha1 FWD 5'-ACCCTGGAGTAAGCTACCGCAC

Pdha1 REV 5'-CTCAGGATCAGCCGTGGCAAAC

Pdha2 FWD 5'-GGCTCATGGCTTCTGCTACACG

Pdha2 REV 5'-TACAGGCAAAAGCCACACCAGC

Pdhb FWD 5'-TCTGCGCACCATCAGACCAATG

Pdhb REV 5'-GCAGGGCCTTCCATAATTCTGGC

Pdhx FWD 5'-AATCCAGACCAGCCTCAGCTCC

Pdhx REV 5'-ATGTACCCGCTGCATTCGGTTG

Tyms FWD 5'-TTGCCAGCTATGCTCTGCTCAC

Tyms REV 5'-GGTCTTGGTTCTCGCTGTAGCTG

Actb FWD 5'-TTCCAGCCTTCCTTCTTGGGTATGG

Actb REV 5'-ATGGTGCTAGGAGCCAGAGCAG

Tbp FWD 5'-CAGGGCGCCATGACTCCTGGAATT

Tbp REV 5'-GCTACTGCCTGCTGTTGTTGCT
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CHAPTER 4. 

TARGETING SUBTYPE-SPECIFIC METABOLIC PREFERENCES IN NUCLEOTIDE 

BIOSYNTHESIS INHIBITS MOUSE MAMMARY TUMOR GROWTH 
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4.1 PREFACE 

This chapter is a modified version of a primary research manuscript currently submitted 

for publication. 
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4.2 Abstract 

Investigating metabolic rewiring in cancer can lead to the discovery of new 

treatment strategies for breast cancer subtypes that currently lack targeted therapies. 

Using MMTV-Myc driven tumors to model breast cancer heterogeneity, we investigated 

metabolic differences between two histological subtypes, the epithelial-mesenchymal 

transition (EMT) and the papillary subtypes, using a combination of genomic and 

metabolomic techniques. We identified differences in nucleotide metabolism between 

EMT and papillary subtypes: EMT tumors preferentially use the nucleotide salvage 

pathway, while papillary tumors prefer de novo nucleotide biosynthesis. Using 

CRISPR/Cas9 gene editing and mass spectrometry-based methods, we determined that 

targeting the preferred pathway in each subtype resulted in greater metabolic impact than 

targeting the non-preferred pathway. We further show that knocking out the preferred 

nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth. In 

contrast, knocking out the non-preferred pathway has a lesser effect or results in 

increased tumor growth. 

4.3 Introduction 

Breast cancer remains the leading cause of cancer-related mortality among 

women worldwide despite recent trends in decreasing mortality in high income countries 

[1], which can be attributed to advances in early detection and treatment [2]. Current 

treatment strategies for advanced breast cancer often include general chemotherapy and 

radiation, with the use of targeted therapies, such as endocrine therapy, for specific breast 

cancer subtypes [3]. These subtypes are often defined based on expression of specific 

receptors including the estrogen receptor (ER), progesterone receptor (PR), and human 
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epidermal growth factor receptor 2 (HER2), with an additional triple negative breast 

cancer (TNBC) subtype characterized by the absence of these markers. Breast cancer 

subtypes can also be classified according to gene expression patterns [4, 5] which often 

overlap with definitions based on receptor status and other clinical findings [3, 5] and are 

further able to provide valuable prognostic information [6]. However, targeted therapies 

are not available for all subtypes of breast cancer, and current rates of recurrence and 

development of resistance remain problematic [7, 8]. It is becoming increasingly clear that 

breast cancer subtypes have differences in metabolism, and targeting these metabolic 

pathways could provide new targeted therapy options [9, 10]. 

Metabolic rewiring is a hallmark of cancer [11], and significant efforts have been 

made to identify metabolic vulnerabilities in cancer and leverage these findings to develop 

novel treatment strategies. Early work defining this concept was performed in the 1920s 

by Otto Warburg, who observed that tumor cells generally upregulate glycolysis even in 

aerobic conditions [12] – a phenomenon now known as the Warburg effect. One of the 

modern consequences of the Warburg effect is that targeting aerobic glycolysis, by 

pharmacological inhibition of glycolytic enzymes and by limiting glucose availability 

through dietary restriction [13-15], is under investigation as a therapeutic strategy for 

many types of cancer. However, one of the challenges in using metabolic rewiring to treat 

cancer arises from the fact that cancer is a remarkably heterogenous disease, and few 

metabolic vulnerabilities are common to all cancers. This variability is clearly illustrated 

by breast cancer, which demonstrates heterogeneity on histologic, genetic, and metabolic 

levels [4, 9, 16, 17]. 
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In addition to glycolysis, another metabolic pathway commonly targeted in cancer 

therapy is nucleotide biosynthesis. Nucleotides enable cellular proliferation by facilitating 

RNA and DNA production [18, 19], and is also required to balance basal rates of RNA 

turnover in all cells [20]. Nucleotide biosynthesis occurs through two parallel metabolic 

pathways: 1) de novo nucleotide biosynthesis, which generates new nucleotides from 

precursors derived predominately from glucose and glutamine metabolism and is an 

energetically costly process, and 2) nucleotide salvage, which allows free bases derived 

from catabolic processes to be recycled back into nucleotides and is significantly more 

energetically efficient [20].  

In our current work, we investigate subtype-specific differences in nucleotide 

metabolism using two histological mouse mammary tumor subtypes derived from the 

MMTV-Myc mouse tumor model: 1) MMTV-Myc epithelial-mesenchymal-transition 

(EMT); and 2) MMTV-Myc papillary. This model system mimics the heterogeneity of 

human breast cancer [21], and subtypes of the MMTV-Myc model can be correlated with 

human cancer subtypes based on gene expression patterns: the EMT subtype strongly 

correlates with the claudin-low subtype, and the papillary subtype correlates more 

moderately with several human subtypes including basal and luminal breast cancer [22, 

23]. Since the claudin-low and basal subtypes both have poor prognosis [24, 25], we 

decided to focus on the corresponding MMTV-Myc EMT and papillary subtypes in this 

study. 

We have previously used cell lines derived from this model system to identify 

metabolic differences between subtypes [26]. Here, we build on this work by integrating 

genomic and metabolomic techniques to refine our understanding of the metabolic 
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differences between the EMT and papillary subtypes. We find striking differences in 

nucleotide metabolism between the two subtypes: the EMT subtype prefers nucleotide 

salvage pathways, while the papillary subtype prefers de novo nucleotide biosynthesis. 

We further investigate the clinical significance of expressing genes related to de novo 

purine biosynthesis and salvage pathways, and evaluate the consequences of targeting 

these genes in each subtype using CRISPR/Cas9 gene editing techniques [27, 28]. We 

find that targeting the preferred metabolic pathway of each subtype generally caused the 

most substantial disruption on nucleotide metabolism and had subtype-specific effects on 

in vivo tumor growth. Notably, targeting the preferred pathway significantly reduced tumor 

growth while targeting the non-preferred pathway either had no effect on tumor growth, 

or in some cases significantly increased tumor growth. These results highlight the 

metabolic heterogeneity of breast cancer subtypes and demonstrate the potential efficacy 

of tailoring therapies to inhibit subtype-specific metabolism.  

4.4 Results 

4.4.1 Metabolite pool sizes and gene expression patterns of MMTV-Myc mouse 

mammary tumors implicate differences in nucleotide metabolic pathway activity 

between subtypes. 

 To identify differences in metabolic pathway activities between EMT and papillary 

mouse mammary tumor subtypes, we integrated a metabolomics analysis with publicly 

available gene expression data [29]. Metabolites were extracted from flash frozen tumor 

sections of known histological subtype (Figure 1A) and quantitated using liquid 

chromatography tandem mass spectrometry (LC-MS/MS). We found metabolites 

involved in the pentose phosphate pathway (PPP) and metabolites related to nucleotide 
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metabolism to be significantly different between EMT and papillary tumors (Figure 1B; 

Table S1). Notably, PPP intermediates including gluconolactone, ribose 5-phosphate, 

ribulose 5-phosphate, and sedoheptulose phosphate are uniformly elevated in the EMT 

subtype compared to papillary. The PPP serves several important functions including: 1) 

production of ribose 5-phosphate which can be used for nucleotide biosynthesis or 

converted to glycolytic intermediates; 2) production of reducing equivalents in the form of 

NADPH; and 3) generation of erythrose 4-phosphate which can also be converted to 

glycolytic intermediates [30]. Several metabolites related to nucleotide metabolism are 

also different between the EMT and papillary tumors (Figure 1B; Table S1). For example, 

EMT tumors have higher levels of inosine monophosphate (IMP), adenine, and inosine 

compared to papillary tumors. Adenine and inosine are both intermediates in breakdown 

and salvage pathways of nucleotide metabolism, and IMP is an intermediate for purine 

biosynthesis. To investigate how these metabolite levels reflect differences in gene 

expression, we downloaded gene expression data for the EMT and papillary tumors from 

Gene Expression Omnibus (GEO) [31] and applied gene set enrichment analysis (GSEA) 

[32] using metabolism-related gene sets from the Reactome database [33]. This analysis 

revealed that genes involved in the PPP (Figure 1C) and nucleobase biosynthesis 

(Figure 1C) are both significantly enriched for lower expression in the EMT subtype 

compared to the papillary subtype. Therefore, the higher levels of PPP metabolites and 

IMP observed in EMT tumors (Figure 1B) likely reflect accumulation due to decreased 

flux through the PPP and nucleobase biosynthesis pathways. Together, this data agrees 

with our previous in vitro findings, where we observed lower nucleotide biosynthesis in 

EMT cells compared to papillary cells [26]. When considered with our previous results, 
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these findings further demonstrate that EMT and papillary tumors exhibit significant 

differences in nucleotide metabolism in vivo. 

4.4.2 Expression of nucleotide salvage genes are increased in the EMT subtype. 

 To further characterize gene expression differences in nucleotide metabolism 

between the EMT and papillary tumors, we used the transcriptome analysis console 

(TAC) software. We filtered the gene list to include nucleotide metabolism and the PPP 

genes as denoted within the Reactome database. Based on our GSEA results (Figure 

1C-D), we expected genes involved in de novo nucleotide biosynthesis and PPP to have 

higher expression in the papillary subtype. For the EMT subtype, we find that the gene 

with highest relative expression is UPP1, with 18-fold higher expression the EMT subtype 

vs. the papillary subtype (Table S2). UPP1 encodes uridine phosphorylase 1, an enzyme 

involved in pyrimidine salvage. Together with the observation of higher nucleotide salvage 

pathway intermediates adenine and inosine in EMT (Figure 1B), this suggests the EMT 

subtype has higher activity of the nucleotide salvage pathway. Therefore, we decided to 

focus our analysis on genes involved in de novo nucleotide biosynthesis and nucleotide 

salvage pathways. Hierarchical clustering revealed two major groupings of genes as 

illustrated by the dendrogram in Figure 2A. The first, smaller group included many 

nucleotide salvage genes with significantly higher expression in EMT tumors and the 

second, larger group predominately contained de novo biosynthesis genes with 

significantly lower expression in EMT compared to papillary tumors. Therefore, EMT 

tumors show a relative preference for nucleotide salvage, while papillary tumors prefer 

de novo biosynthesis. We also considered GSEA results for the nucleotide salvage 

pathway; however, this gene set as a whole was not significantly enriched for the EMT 
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subtype despite several genes within this pathway having significantly higher expression 

in the EMT subtype (Figure S1; Table S2). A simplified pathway overview summarizing 

our results highlights the potential metabolic preferences for nucleotide biosynthesis that 

are specific to each subtype, with the papillary subtype preferring de novo biosynthesis 

and the EMT subtype preferring nucleotide salvage (Figure 2B). 

4.4.3 Expression of key de novo and salvage genes are correlated with worse 

patient outcomes. 

Our results thus far illustrate the possibility for distinct histological subtypes to 

utilize different pathways to meet the same metabolic demand for nucleotides. We next 

sought to determine the potential clinical relevance associated with expression of these 

genes in human breast cancer. We focused on genes phosphoribosyl pyrophosphate 

amidotransferase (PPAT) and adenine phosphoribosyltransferase (APRT) because they 

encode the rate limiting step for de novo purine biosynthesis and salvage of the purine 

base adenine, respectively, and our findings show that PPAT expression is significantly 

higher in the papillary subtype and APRT expression is significantly higher in the EMT 

subtype (Figure 2B; Table S2). We used KM plotter, which generates Kaplan-Meier 

curves using patient data mined from GEO datasets [34], to generate survival curves with 

patients stratified by relative gene expression of PPAT and APRT. We find that in general, 

patients with high expression of both PPAT and APRT have worse relapse-free survival 

(RFS) than patients with low expression of these genes (Figure 3A). This trend is also 

observed when patients are further divided according to intrinsic subtype. High 

expression of both PPAT and APRT is similarly significant for patients with luminal A 

(Figure 3B) and luminal B (Figure 3C) breast cancer. However, for patients with HER2+ 
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(Figure 3D) and basal (Figure 3E) breast cancer, high expression of PPAT is no longer 

associated with decreased RFS, while high expression of APRT remains significant. 

These results highlight the potential importance of nucleotide metabolism in breast cancer 

and further suggest that de novo purine biosynthesis may be most important for luminal 

breast cancer, whereas salvage may be relevant for all breast cancer subtypes. 

4.4.4 Knocking out de novo and salvage genes disrupts cell metabolism in a 

subtype-specific manner. 

 To further investigate the importance of nucleotide biosynthesis genes PPAT and 

APRT in our model, we targeted each gene using CRISPR/Cas9 gene editing [27, 28] in 

EMT and papillary tumor derived cell lines. We concurrently generated puromycin-

resistant control cell lines for each subtype with a non-targeting scramble guide RNA. 

Clonal lines for each subtype, knockout (KO), and puromycin-resistant scramble control 

(PSC) were isolated by serial dilution, and successful gene editing was confirmed by 

Tracking of Indels by Decomposition (TIDE) analysis [35] (Figures S2-S3). Western blots 

were also performed to determine successful KO by protein expression (Figure S4). 

While the APRT antibody worked well, the PPAT bands were inconclusive, with multiple 

faint bands near the predicted molecular weight of PPAT. We therefore also performed 

isotope labeling studies to functionally assess how 13C6-glucose is incorporated into 

purine biosynthesis in these cell lines. We reasoned that the M-5 isotopologue of ATP 

represents production from either pathway, since the M-5 isotopologue of ATP is 

predominately derived from a fully-labeled PRPP molecule with a fully-unlabeled adenine 

nucleobase, and both de novo and salvage pathways utilize PRPP as a substrate. In 

contrast, the M1-4 and M6-10 isotopologues require labeling of the adenine base, which 
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is only attained through de novo biosynthesis. Hence, we distinguish ATP isotopologues 

as unlabeled (M-0), ATP that may be derived from either de novo or salvage pathways 

(M-5), and ATP that could only be derived from de novo biosynthesis (M1-4 and M6-10). 

Using this approach, we find that, compared to controls, knocking out the salvage gene 

APRT resulted in increased labeling of isotopologues of ATP that can only be derived 

from de novo biosynthesis in both subtypes (Figure 4; Tables S3-S4), which is expected 

because a larger proportion of ATP is now derived from de novo biosynthesis instead of 

salvage. Additionally, targeting the de novo biosynthesis gene PPAT caused significantly 

decreased labeling of ATP isotopologues derived from de novo biosynthesis (Figure 4; 

Tables S3-S4). These results provide strong evidence that the metabolic activity of 

nucleotide salvage and de novo biosynthesis have been significantly decreased in the 

APRT and PPAT KO cell lines, respectively.  

 We also analyzed the abundance of a wide range of metabolites in CRISPR edited 

cell lines relative to the control line of each respective subtype using the targeted LC-

MS/MS method described above. We found significant differences between cell lines 

across several metabolic pathways (Figure S5; Tables S5-S6). As expected, the most 

consistently altered metabolites include PPP related metabolites (Figure 5A), nucleoside 

triphosphates (NTPs; Figure 5B), and deoxynucleoside triphosphates (dNTPs; Figure 

5C). Notably, the relative abundance of these metabolites is generally most different when 

the preferred metabolic pathway for each subtype has been targeted. For example, ATP 

(Figure 5B) and dATP (Figure 5C) levels are significantly decreased in the papillary 

PPAT KO cell line compared to the papillary control and APRT KO lines, while the EMT 

PPAT KO is similar to EMT control for these metabolites. Additionally, the papillary PPAT 
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KO cells have lower levels of most PPP intermediates, but significantly higher levels of 

phosphoribosyl pyrophosphate (PRPP; Figure 5A) which is used by both de novo 

biosynthesis and salvage pathways and is produced from the PPP intermediate ribose-

5-phosphate. Most NTPs and dNTPs are also decreased in the papillary PPAT KO line 

compared to the control or APRT KO line (Figure 5B-C). The exception to this is the 

pyrimidine uridine triphosphate (UTP), which is significantly increased in the papillary 

PPAT KO compared to control and APRT KO lines (Figure 5B). Together, these results 

show that targeting PPAT in the papillary cells creates a metabolic bottleneck by blocking 

de novo purine biosynthesis, causing: 1) decreased levels of intermediates in the PPP, 

the feeder pathway into nucleotide biosynthesis; and 2) increased levels of PRPP which 

would normally function to increase de novo purine and pyrimidine biosynthesis through 

feedforward mechanisms [20]. This PRPP-driven feedforward mechanism would also 

increase de novo pyrimidine biosynthesis in the papillary PPAT KO cells and explain the 

increased UTP levels observed in papillary PPAT KO cells (Figure 5B). 

Decreased PPP intermediates, increased PRPP, and alterations in NTP and dNTP 

levels are not observed in the EMT PPAT KO cells, likely due to the metabolic preference 

of the EMT subtype to salvage nucleotides. Indeed, targeting the salvage pathway caused 

significant metabolic alterations in the EMT APRT KO cells compared to the control: 

higher levels of most nucleotides (Figure 5B-C) suggest that EMT APRT KO cells are 

forced to switch to de novo biosynthesis when their preferred means of obtaining 

nucleotides via salvage is inhibited. In the papillary APRT KO line, nucleotide levels are 

not significantly changed from control levels (Figure 5B-C). Taken together, the above 

results indicate that the greatest impact on nucleotide metabolism is achieved when the 
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preferred nucleotide biosynthesis pathway of each subtype is inhibited, while inhibiting 

the non-preferred pathway has minimal effects. 

4.4.5 Targeting nucleotide de novo biosynthesis and salvage genes impact tumor 

growth in a subtype-specific manner. 

 To determine the in vivo effects of targeting the preferred nucleotide biosynthesis 

pathway for each subtype, we monitored tumor growth of KO and control cell lines injected 

in mice. Control or KO cells were first injected into the mammary fat pad of syngeneic 

mice to generate tumors, then the resulting tumors were resected, and fragments of these 

tumors were orthotopically implanted into new cohorts of mice to monitor tumor growth 

over time. This was performed because implantation of tumor fragments, rather than 

direct injection of tumor cells, resulted in less variability in the lag time of tumor growth. 

As expected, the EMT tumors grew slowest when the preferred nucleotide salvage 

pathway gene APRT is targeted: EMT APRT KO tumors were significantly smaller (762.8 

± 108.4 mm2
, n = 5) at 24 days post implantation as compared to the PPAT KO tumors 

(982.7 ± 116.1 mm2
, n = 5). The EMT PPAT KO tumors also grew slower than the PSC 

tumors (1344.6 ± 141.7 mm2
, n = 6), which were the largest at 24 days post implantation 

(Figure 6A; Table S7). Consistent with the reliance of the papillary subtype on de novo 

nucleotide biosynthesis, targeting PPAT prevented papillary cells from growing tumors in 

vivo (Figure 6B; Table S8). Surprisingly, targeting the non-preferred nucleotide salvage 

gene APRT caused papillary tumors to grow larger (1161.8 ± 155.8 mm2
, n = 5) than the 

PSC tumors (514.0 ± 114.0 mm2
, n = 5) at 24 days post implantation. Taken together, 

these results indicate that de novo nucleotide biosynthesis is a critical metabolic pathway 



181 
 

for papillary tumors, and further demonstrate targeting a non-preferred metabolic pathway 

could have the unintended side effect of increasing tumor growth. 

To determine whether differences in tumor sizes are attributable to changes in 

proliferation or cell death, immunohistochemical (IHC) analysis was performed. Ki67 

staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assays were performed to measure proliferation and necrosis within the tumors, 

respectively. As expected, Ki67 staining is directly proportional to tumor growth in each 

subtype. The EMT PSC tumors have significantly more Ki67+ nuclei than both KOs, and 

the EMT APRT KO tumors have significantly fewer compared to PPAT KOs (Figure 7A; 

Table S9). This indicates that the APRT KO EMT tumors grow slower due to decreased 

proliferation. In papillary tumors, the APRT KOs have significantly more Ki67+ nuclei than 

the PSC tumors (Figure 7B; Table S10), showing these tumors grow more quickly due 

to increased proliferation. TUNEL assays show that in the EMT subtype, both KOs were 

significantly more necrotic than the control tumors (Figure 7C; Table S11) In the papillary 

subtype, no difference in staining was observed between control and APRT KO tumors 

(Figure 7D; Table S12) indicating that the observed differences in tumor growth are not 

due to differences in tumor necrosis. Representative Ki67 staining and TUNEL assay 

images are in Figures S6 and S7, respectively. 

To validate the monoclonal tumor growth findings, the tumor growth of additional 

clones for each subtype were measured (Figure S8; Tables S7-S8). Four additional 

papillary PPAT KO clones were tested with ATP labeling comparable to Figure 4, as well 

as one additional EMT PPAT KO clone (Figure S9; Tables S13-S14). Two additional 

confirmed APRT KO clones for each subtype were also injected into mice for in vivo 
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testing (Figure S10). To validate the controls, the tumor growth of an additional PSC 

clone and wild-type tumors of each subtype were measured. The clonal PSC tumors for 

the EMT subtype grew similarly and are larger than the EMT wild-type tumors at 24 days 

post implantation, indicating the clonal selection process may select for more aggressive 

clones of this subtype. Additionally, the two EMT PPAT KOs grew comparably and were 

also similar in size to the wild-type EMT tumors. However, the additional two EMT APRT 

KO clonal cell lines failed to generate tumors (Figure S8A; Table S7). For the papillary 

subtype, one APRT KO clone again grew more quickly than the control tumors, while the 

remaining clone grew similarly to the PSC and wild-type papillary tumors (Figure S8B; 

Table S8). Consistent with the results shown in Figure 6, the four additional papillary 

PPAT KO clonal cell lines also failed to generate tumors. Taken together, our findings 

demonstrate the importance of targeting subtype-specific metabolic vulnerabilities to 

effectively control tumor growth. In addition, inhibiting a non-preferred metabolic pathway 

not only fails to reduce tumor growth, but can have the detrimental effect of increasing 

tumor growth. 

4.5 Discussion 

 In this study, we used a combination of genomic and metabolomic techniques to 

identify subtype-specific metabolic preferences in nucleotide metabolism in the EMT and 

papillary tumor subtypes derived from the MMTV-Myc mouse model. We discovered that 

the EMT subtype prefers nucleotide salvage whereas the papillary subtype relies on de 

novo nucleotide biosynthesis. We also investigated patient outcomes and identified that 

high expression of the nucleotide salvage gene APRT is correlated with worse RFS 

across breast cancer subtypes, while high expression of the de novo biosynthesis gene 
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PPAT is associated with worse outcomes in patients with luminal breast cancer. We 

further characterized the metabolic effects of targeting both the preferred and non-

preferred pathway in the EMT and papillary subtypes and demonstrate the effect of 

knocking out these pathways on the in vivo tumor growth of each subtype. 

Our results demonstrate that targeting the preferred metabolic pathway for 

nucleotide biosynthesis reduces tumor growth in both EMT and papillary tumors. 

Sustained proliferation is a hallmark of cancer [11], and to achieve this cancer cells have 

a high requirement for nucleotide biosynthesis. Indeed, targeting nucleotide metabolism 

has long been used as a staple of cancer therapy with early examples including the folate 

analog methotrexate (MTX) and the pyrimidine analog 5-fluorouracil (5FU). MTX inhibits 

dihydrofolate reductase and blocks one-carbon metabolism that is essential for several 

de novo biosynthetic reactions [36], and 5FU inhibits thymidylate synthase, which 

catalyzes the de novo production of thymidine monophosphate [37]. Other compounds 

targeting de novo nucleotide biosynthesis including 6-mercaptopurine [38], leflunomide 

[39] and brequinar [40] are also currently approved or under investigation as cancer 

therapeutics. Notably for our model, an active metabolite of 6-mercaptopurine inhibits 

PPAT [38] and could prove effective at inhibiting growth of the papillary subtype. 

However, 6-mercaptopurine and several other de novo nucleotide metabolism-targeting 

compounds including 5FU and gemcitabine are activated by the nucleotide salvage 

pathway, and downregulation of this pathway could provide a potential resistance 

mechanism to these compounds [41, 42]. 

In our model, the papillary subtype has increased MYC signaling compared to the 

EMT subtype [29], and its metabolic preference for de novo nucleotide biosynthesis 
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highlights the role of MYC as a master regulator of nucleotide biosynthesis [43, 44]. MYC 

amplification is a common feature of many human cancers [45] and occurs in 15.7% of 

breast cancers [46]. In TNBC specifically, it has been shown that chemotherapy with 

doxorubicin adaptively upregulates de novo pyrimidine biosynthesis and co-treatment of 

TNBC xenografts with doxorubicin and the de novo pyrimidine biosynthesis inhibitor 

leflunomide is more effective at treating TNBC tumors than doxorubicin alone [47]. 

Upregulated de novo purine biosynthesis, directed by MYC signaling, has also been 

implicated as a key metabolic pathway in glioblastoma and targeting de novo purine 

biosynthesis genes improved survival and reduced tumor burden in an in vivo model of 

glioblastoma [48]. These studies and ours strongly suggest that further development of 

compounds targeting de novo nucleotide biosynthesis will be useful to treat many types 

of cancer. 

Our results show that targeting nucleotide salvage also attenuates tumor growth 

in a subset of cancers that prefer this pathway, such as the EMT subtype MMTV-Myc 

tumors (Figure 6A). The EMT subtype has previously been correlated with the claudin-

low subtype of human breast cancer based on gene expression patterns [22, 23], and 

additional studies should be performed to determine whether nucleotide salvage is also 

a metabolic vulnerability in claudin-low breast cancer. Nucleotides and related 

metabolites are abundant in the extracellular space and serve important biological 

functions: purines play a significant role as signaling molecules [49], and pyrimidine 

release by tumor-associated macrophages has been shown to mediate gemcitabine 

resistance in animal models of pancreatic cancer [50]. Therefore, the uptake and 

utilization of these metabolites should be further investigated as therapeutic targets. 
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Unfortunately, there are currently very few available drugs that target nucleotide salvage. 

Two indirect examples of salvage inhibitors are dilazep and dipyridamole. These 

compounds act through inhibition of equilibrative nucleoside transporters (ENTs) and 

function as vasodilators, prevent platelet aggregation, and are currently approved to treat 

cardiovascular disease [51]. ENT inhibition indirectly blocks nucleotide salvage pathways 

by preventing uptake of nucleosides and nucleobases. ENTs also mediate the uptake of 

nucleoside analogs like gemcitabine [52], which means ENT inhibition as a means to 

block nucleotide salvage would not be compatible for combination therapy with these 

drugs. Our findings support the development of therapeutic compounds to specifically 

target nucleotide salvage pathways. This could prove particularly beneficial for patients 

diagnosed with claudin-low breast cancer, which carries a poor prognosis and does not 

have targeted therapies [24]. 

Our results further reveal the concerning possibility that targeting a non-preferred 

pathway can cause an increase in tumor growth. Specifically, when APRT was targeted 

in the papillary subtype, two of three clones grew tumors surprisingly fast, while the 

remaining clone grew comparably to control tumors (Figure 6B and Figure S8B). In our 

current study, we used tumors and cell lines from histologically pure samples; however, 

this is not always the case in spontaneous tumors. Specifically regarding the MMTV-Myc 

mouse model, spontaneous tumors develop with a wide variety of histologies, including 

mixed tumors composed of multiple subtypes in one region [29]. If we consider a possible 

mixed tumor that is predominately EMT with a minor papillary component, our results 

indicate that treating it by inhibiting nucleotide salvage alone would likely be ineffective 

for the papillary component and could even have the unintended side effect of increasing 
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the growth of the papillary portion of the tumor. One implication of this finding is that, for 

a mixed tumor exhibiting both EMT and papillary histologies, it may be safer to target de 

novo biosynthesis rather than the salvage pathway, because while EMT subtype cells 

prefer salvage, blocking de novo biosynthesis still has a small inhibitory effect on tumor 

growth (Figure 6A); on the other hand, blocking the salvage pathway in papillary subtype 

cells can have the opposite and undesirable effect of increasing tumor growth (Figure 

6B). 

In human breast cancer, intratumor heterogeneity can manifest in many ways, 

including on morphologic and genomic levels [53]. The importance of this heterogeneity 

is particularly notable when considering biomarker expression; for example, current 

recommendations report a positive finding if at least 1% of tumors cells are positive for 

the estrogen receptor (ER) [54]. Since the degree of ER positivity is also directly 

correlated with patient outcomes following anti-endocrine treatment [55], it is clear that 

the intratumor heterogeneity of this biomarker has important clinical implications. Based 

on our present findings, metabolic vulnerabilities can be used to design new treatments 

for breast cancer subtypes. However, the possibility of inadvertently stimulating tumor 

growth by improperly targeting metabolism should also be considered further, especially 

in recognition of the significant heterogeneity of breast cancer. Further work should be 

directed at determining whether subtypes of human breast cancer, which are known to 

exhibit different metabolic features [9], have differences in metabolic vulnerabilities, and 

whether targeting non-preferred pathways is detrimental. 

In conclusion, our findings demonstrate that distinct histologic subtypes of breast 

cancer exhibit different metabolic vulnerabilities in terms of their preferred nucleotide 
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biosynthesis pathways, and that inhibiting the preferred pathway greatly impacts 

metabolism as well as in vivo tumor growth. Crucially, we also show that targeting the 

non-preferred pathway is not only less effective in controlling tumor growth but may have 

the opposite effect of increasing tumor growth. Our results underscore a critical need to 

elucidate the distinct metabolic preferences of different breast cancer subtypes in order 

to design effective targeted therapies for each subtype. 

4.6 Methods 

4.6.1 Primary mouse tumors 

All animal use was performed in accordance with institutional and federal 

guidelines. Primary MMTV-Myc EMT and MMTV-Myc papillary tumors were acquired as 

a gift from Dr. Eran Andrechek and have been previously described [29]. Tumors were 

sectioned, formalin-fixed, and paraffin embedded for histological examination with 

hematoxylin and eosin staining. Wild-type EMT and papillary tumors were cryopreserved 

in a mixture of 90% FBS and 10% DMSO. Tumor derived cell lines were established by 

mechanical dissociation of primary tumors using scissors, followed by culturing tumor 

pieces in cell culture media [56].  

4.6.2 Metabolic profiling 

Unlabeled, targeted metabolomics was performed as previously described [57]. 

Briefly, cells were seeded in 6-well tissue culture plates at 50,000 cells/well and cultured 

for 48 hours. Cells were washed with saline (VWR, Radnor, Pennsylvania, 16005-092) 

and metabolism was quenched by addition of cold methanol. Flash frozen tumor tissue 

was pulverized using a liquid nitrogen cooled mortar and pestle and cold methanol and 

water was added to the tissue sample. The tissue samples were further processed using 
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a Precellys Evolution homogenizer (Bertin Instruments) operating a single 10s cycle at 

10000 rpm. Extracts were then transferred to 1.5 ml Eppendorf tubes and cold chloroform 

was added to each tube and vortexed for 10 minutes at 4°C. The final metabolite 

extraction solvent ratios were methanol:water:chloroform (5:2:5). The polar phase was 

collected and dried under a stream of nitrogen gas. The dried metabolites were then 

resuspended in HPLC-grade water for analysis. LC-MS/MS analysis was performed with 

ion-pairing reverse phase chromatography using an Ascentis Express column (C18, 5 cm 

x 2.1 mm, 2.7 µm, MilliporeSigma, 53822-U) and a Waters Xevo TQ-S triple quadrupole 

mass spectrometer. Mass spectra were acquired using negative mode electrospray 

ionization operating in multiple reaction monitoring (MRM) mode. Peak processing was 

performed using MAVEN [58] and data for each sample was normalized to the mean 

signal intensity for all metabolites in the analysis. Metabolites were grouped by 

relationship to metabolic pathways. Heatmaps were generated using Cluster 3.0 [59] and 

exported using Java Treeview [60]. 

4.6.3 Gene expression analysis 

Gene expression data for MMTV-Myc EMT and papillary data was downloaded 

from GEO using accession number GSE15904. The following EMT CHP datasets were 

downloaded: GSM399180, GSM399202, GSM399204, GSM399217, GSM399226, 

GSM399235, GSM399238, GSM399252, and GSM399259. The following papillary CHP 

datasets were downloaded: GSM399183, GSM399184, GSM399196, GSM399197, 

GSM399200, GSM399216, GSM399222, GSM399234, GSM399241, and GSM399245. 

Gene set enrichment analysis [32] was performed by converting gene expression data to 

the required file formats and using the GSEA software available to download from 
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www.gsea-msigdb.org/gsea/index.jsp. Reactome [33] metabolism gene sets were 

identified as all participant and sub-participant gene sets under the Reactome Metabolism 

pathway (stable identifier R-HSA-1430728) and were downloaded from the MSigDB 

canonical pathways collection [61]. Differential gene expression was determined using 

Transcriptome Analysis Console (TAC) 4.0 software. Sample signals and statistical 

measurements were exported from TAC 4.0 software. Genes measured by multiple 

probes were individually numbered. Clustering was performed in Cluster 3.0 using log 

transformed data and genes were clustered using the uncentered correlation similarity 

metric and average linkage settings [59]. Heatmaps were generated using JavaTreeview 

[60]. 

4.6.4 Survival Analysis 

Survival curves were generated using KM Plotter for Breast Cancer [34] using 

probe 209434_s_AT for PPAT and 213892_S_AT for APRT. Patients were separated by 

upper and lower tercile of expression using the trichotomization option. Redundant 

samples were removed and biased arrays were excluded as per the default quality control 

settings. 

4.6.5 Cell lines and culture conditions 

EMT and papillary tumor derived cell lines were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM Corning, Corning, New York 10-017-CM) with 25 mM glucose 

without sodium pyruvate supplemented with 2 mM glutamine (Corning, 25-005-CI) 10% 

heat-inactivated fetal bovine serum (MilliporeSigma, Burlington Massachusetts, 12306C), 



190 
 

and 1% penicillin and streptomycin (Corning, 30-002-CI). Cells were maintained at 37°C 

with 5% CO2. 

4.6.6 CRISPR/Cas9 

Lentivirus mediated CRISPR/Cas9 genome editing was used to achieve gene 

knockout. Guide RNAs targeting APRT or PPAT were designed using the CRISPR-DO 

web application [62]. Plasmids containing dual guide RNA, puromycin resistance, and 

Cas9 co-expression were acquired from VectorBuilder. Plasmids containing scramble 

guide RNA, puromycin resistance, and Cas9 co-expression were also acquired from 

VectorBuilder. APRT KO dual guide RNA sequences are guide A) 5’-

GTCGATCTTGCCGCTGTGCG-3’ and guide B) 5’-GTGTGCTCATCCGGAAACAG-3’. 

PPAT KO dual guide RNA sequences are guide A) 5’-CATACGAGGTACGCCACCAC-3’ 

and guide B) 5’-TACGCGGTGCGAGATCCATA-3’ The non-targeting puromycin-resistant 

scramble guide RNA sequence is 5’-GCACTACCAGAGCTAACTCA-3’. Lentiviral 

envelope and packaging plasmids were acquired from addgene. The VSVG plasmid was 

a gift from Bob Weinberg (Addgene plasmid # 8454; http://n2t.net/addgene:8454; 

RRID:Addgene 8454). The psPAX2 plasmid was a gift from Didier Trono (Addgene 

plasmid # 12260; http://n2t.net/addgene:12260; RRID:Addgene 12260). To produce 

lentivirus, HEK293T cells seeded in 10-cm plates were transfected using lipofectamine 

3000 (ThermoFisher Scientific, L3000015) with 10.0 μg lentivirus plasmids, 0.5 μg VSVG, 

and 5.0 μg psPAX2 plasmids. The following morning, fresh DMEM with 15% FBS and 1% 

P/S was added, and cells were grown for another 48 h to generate virus. For transduction 

with lentivirus, the recipient EMT and papillary cells were seeded in 10-cm plates and the 

supernatant of transfected HEK293T was collected and passed through 0.45 um PVDF 
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syringe filter. 5 ml of the viral supernatant and 5 ml of fresh media were added to recipient 

cell plates with polybrene (Fisher Scientific, TR1003G) at a final concentration of 4 μg/ml. 

The cells were cultured for 24 h followed by addition of fresh DMEM medium 

supplemented with 10% FBS and treatment for 10 days with 2 μg/ml puromycin for 

selection. After transduction, cell culture media was supplemented with 50 uM 

nucleosides (adenosine, cytidine, guanosine, inosine, thymidine, and uridine) in DMSO 

across all conditions to provide extracellular nucleotides for cells with deficient de novo 

biosynthesis. The puromycin selected cells were then resuspended to a concentration of 

5 cells/ml and seeded 1 cell/well on 96-well plates. Surviving clones were expanded and 

analyzed for successful gene knockout. Genomic DNA was extracted using DNeasy 

Blood and Tissue Kit (Qiagen) to check for successful gene editing. The following primer 

pairs were used for PCR expansion and sequencing (marked with *) of APRT guide A: 5’-

GGGTCACTCTCCTGTCCTTG-3’ and 5’-AGGACAGAGCAGAGTTCGTC-3’*, APRT 

guide B: 5’-GAGCTGTTCAGAAGGCAGGT-3’* and 5’-AGCGTTTCTGGGTGGTGTAA-

3’, PPAT guide A: 5’-CTCAGGACGGTCAAGGCTAC-3’* and 5’-

AAGATGCCTTTTGTCGGAGA-3’, and PPAT guide B: 5’-

GCATACACCCCTCCTCAAGA-3’* and 5’-CATCAGAGACTGGCATAAGACG-3’. 

Tracking of Indels by Decomposition (TIDE) was used to evaluate successful gene editing 

[35]. 

4.6.7 Western blot analysis 

Cell lysis and Western blot analysis were carried out according to standard 

protocols. The following dilutions of primary commercial antibodies were used as probes: 

1:250 dilution of anti-APRT (Thermo Scientific, PA576741), 1:500 dilution of anti-PPAT 



192 
 

(Proteintech 15401-1-AP), 1:1000 dilution of anti-vinculin (Cell Signaling Technology, 

E1E9V). Anti-APRT and anti-vinculin antibodies were diluted in 5% bovine serum albumin 

and incubated overnight at 4 °C. The anti-PPAT antibody was diluted in 5% milk and 

incubated for 60 minutes at room temperature per manufacturer recommendations. 

Secondary anti-rabbit antibodies (Cell Signaling Technology, 7074S) were diluted in 5% 

non-fat milk at a dilution of 1:1000 and incubated at room temperature for 1 h. Blots were 

imaged by chemiluminescence after incubation with Clarity Western ECL substrate (Bio-

Rad, 1705061) using a ChemiDoc Imaging system (Bio-Rad). 

4.6.8 Isotope labeling studies 

For isotope labeling experiments, DMEM without glucose or glutamine was 

prepared from powder (MilliporeSigma, D5030) and supplemented with 13C6-glucose 

(Cambridge Isotope Laboratories, Tewksbury, Massachusetts, CLM-1396) and unlabeled 

glutamine (MilliporeSigma, G8540). Labeled media was prepared with 10% dialyzed FBS 

(Sigma-Aldrich, F0392). Cells were then seeded and cultured as described above. Fresh 

cell culture media without nucleoside supplementation was added to cells for 1 hour prior 

to switching to isotope containing media. Prior to metabolite extraction, media was 

switched to isotope containing media and samples were collected at T = 240 minutes. 

Metabolite extraction and analysis were performed as above. Labeling data was corrected 

for natural isotope abundance using IsoCor [63]. 

4.6.9 In vivo tumor studies 

To generate tumors, monoclonal KO cell lines were injected in 50 µl of a 1:1 

mixture of DMEM:Matrigel (Corning, 354262) at 500,000 cells/50 µl into the fourth 
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mammary fat pad of syngeneic 6 to 8 week old FVB mice. The resulting tumors grew to 

a size of 15 mm as measured by external calipers along the longest axis, at which time 

the tumors were harvested and fragmented into 3 mm pieces that were cryopreserved in 

a mixture of 90% FBS and 10% DMSO. Cryopreserved tumors were then thawed, washed 

in saline, and cut into 1-2mm fragments for implantation into the fourth mammary fat pad 

of recipient mice. These re-implanted tumors were then measured by external caliper 3 

times weekly starting at 7 days post implantation until the experimental endpoint at 24 

days post implantation. Tumor size was calculated as cross-sectional area using 

measurements from the longest and shortest axes. Mice were monitored for humane 

endpoints throughout the experiment according to institutional guidelines. At 24 days the 

tumors were collected, and a cross section of each tumor was formalin fixed for 

histological preparation. 

4.6.10 Histological analyses 

All histological preparation and immunohistochemical staining was performed by 

the Investigative HistoPathology Laboratory at Michigan State University. Ki67 staining 

was measured using multiple images taken from distinct, non-necrotic regions of each 

tumor and evaluated as follows. For each tumor, at least 4 color images from distinct 

regions were acquired using an Olympus BX41 microscope operated at 10x magnification 

and saved as TIFF image files. Image processing was performed in ImageJ 1.52p (Fiji 

distribution). The color images were first deconvoluted into H (hematoxylin) and DAB 

(diaminobenzidine) color channels using Color Deconvolution (‘H DAB’ deconvolution 

matrix). Deconvoluted H and DAB images were saved as new TIFF images. For each 

image, smoothing was applied 5 times, then Auto Local Threshold was performed using 
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Bernsen’s algorithm (window size 15, contrast threshold 15) to detect stained nuclei. 

Stained nuclei were counted using Analyze Particles (minimum size 150, minimum 

circularity 0.3). The above steps were looped over all images. To check that threshold 

parameters were appropriate, several output images were manually inspected to confirm 

that visually identifiable nuclei were properly counted. The percent Ki67 + nuclei was 

calculated as the ratio of DAB-stained nuclei counts (representing proliferating cells) to 

H-stained nuclei counts (representing all cells) for each image, and averaged across all 

images for each experimental group. TUNEL assays were evaluated using a single image 

of the full tumor cross section to determine the proportion of necrotic area to non-necrotic 

area of each tumor. Images were acquired using a Leica M165FC stereo microscope 

operated at 1x magnification and saved as TIFF image files. TUNEL assay images were 

also processed using ImageJ. Images were duplicated and color thresholding was used 

to select either the TUNEL + area (image 1) or the entire tumor area (image 2). The 

percent TUNEL + area was calculated as the ratio of image 1 area to image 2 area for 

each tumor and averaged across all tumors within each experimental group. 

4.6.11 Statistical analyses 

Statistical analyses were performed using unpaired Student’s t-test except where 

otherwise noted. p values were adjusted in R using the p.adjust() function to account for 

multiple hypothesis testing using the Benjamini-Hochberg procedure (metabolites) or 

Hommel procedure (tumor measurements). All error bars presented are standard 

deviation. All figures except survival curves and heatmaps were generated using 

GraphPad Prism. 
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Figure 4.1 Metabolic profiles and gene expression patterns indicate differences in 
nucleotide metabolism between subtypes of MMTV-Myc EMT and papillary tumors. 
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Figure 4.1 (cont’d) 
(A) Representative histology images of the EMT and papillary tumor subtypes. (B) Heatmap 
indicating relative metabolite differences between EMT and papillary tumors. Yellow and blue 
boxes indicate increased or decreased metabolite levels relative to the average of the papillary 
subtype, respectively. Metabolites with statistically significant differences (p-value < 0.05) are 
bolded and marked with asterisks (*) Statistical comparisons are listed in Table S1. (C) Gene set 
enrichment analysis for pentose phosphate pathway genes are significantly enriched (p-value = 
0.014, FDR q-value = 0.16) for low expression in EMT tumors vs. papillary tumors. (D) Gene set 
enrichment analysis for genes involved in nucleobase biosynthesis are significantly enriched (p-
value = 0.039, FDR q-value = 0.18) for low expression in EMT tumors vs. papillary tumors.  
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Figure 4.2 Expression of nucleotide salvage genes is higher in the EMT subtype and 
expression of de novo biosynthesis genes is higher in the papillary subtype. (A) Heatmap 
depicting expression of genes related to nucleotide metabolism. Genes are sorted by hierarchical 
clustering and color-coded by relationship to nucleotide metabolism pathways. Genes with 
statistically significant differences (FDR p-value < 0.05) are marked with asterisks (*) Statistical 
comparisons are listed in Table S2. (B) Summary of nucleotide biosynthesis pathway. Metabolic 
intermediates and genes are marked according to subtype-specific relationships. 
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Figure 4.3 Expression of de novo nucleotide biosynthesis gene PPAT and nucleotide 
salvage gene APRT are strongly associated with relapse-free survival across breast cancer 
subtypes. Kaplan-Meier survival curves for (A) all breast cancer patients, and (B-E) specific 
breast cancer subtypes. Statistically significant relationships (p-value < 0.05) are bolded and 
marked with asterisks (*). 
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Figure 4.4 13C-Isotope incorporation from glucose into ATP biosynthesis is altered after 
targeting de novo and salvage genes. Grey boxes represent the unlabeled (M-0 isotopologue) 
proportion of ATP. Light blue boxes represent the M-5 isotopologue, which can be derived from 
either de novo or salvage pathways. Dark blue boxes represent the sum of all other isotopologues 
of ATP (M1-4 and M6-10), which are derived from de novo ATP biosynthesis. Data are displayed 
as means ± S.D., N = 3 (*p-value < 0.05). Statistical comparisons are listed in Tables S3-S4. 
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Figure 4.5 Metabolite levels are most affected by targeting the preferred nucleotide 
biosynthetic pathway for each subtype. The abundance of (A) metabolites related to the 
pentose phosphate pathway and (B-C) nucleotides are most altered within each subtype when 
APRT is knocked out in EMT (left half of each graph) and when PPAT is knocked out in papillary 
(right half of each graph). Data are displayed relative to the control for each subtype and represent 
means ± S.D., N = 3 (*p-value < 0.05). Statistical comparisons are listed in Tables S5-S6. 
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Figure 4.6 Tumor growth for each subtype is decreased after knocking out the preferred 
nucleotide metabolism pathway. In vivo growth curves for (A) EMT and (B) papillary tumors. 
Data are displayed as means ± S.D. (*p-value < 0.05). Statistical comparisons are listed in Tables 
S7-S8. 
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Figure 4.7 IHC analysis reveals decreased proliferation in slower growing tumors. IHC 
analysis for Ki67 staining in (A) EMT and (B) papillary tumors as well as TUNEL assay for (C) 
EMT and (D) papillary tumors. Data are displayed as means ± S.D. (*p-value < 0.05). Statistical 
comparisons are listed in Tables S9-S12. 
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Figure S4.1 Gene set enrichment analysis for nucleotide salvage genes. GSEA for 
nucleotide salvage genes are not significantly enriched in the EMT subtype. 
  



206 
 

 

Figure S4.2 Gene editing verification of PPAT gene. Sequencing of PPAT KO cell lines was 
validated using TIDE analysis. Pink bars denote insertion/deletion events with high confidence (p 
<0.001) for EMT PPAT KO clone F1 in (A) guide A and (B) guide B and for papillary PPAT KO 
clone A7 in (C) guide A and (D) guide B.  
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Figure S4.3 Gene editing verification of APRT gene. Sequencing of APRT KO cell lines was 
validated using TIDE analysis. Pink bars denote insertion/deletion events with high confidence (p 
<0.001) for EMT APRT KO clone B3 in (A) guide A and (B) guide B and for papillary APRT KO 
clone E6 in (C) guide A and (B) guide B.  
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Figure S4.4 Protein level verification of KO cell lines. Western blotting was used to verify 
protein levels of clonal EMT lines APRT KO B3, PPAT KO F1, PSC D3, and the wild-type line. 
Protein levels of clonal papillary line APRT KO E6, PPAT KO A7, PSC G6, and the wild-type line 
were also verified. 
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Figure S4.5 Full metabolic profiles of control and KO cell lines. Heatmap indicating relative 
metabolite differences between control and KO cell lines in the (A) EMT and (B) papillary 
subtypes. Boxes indicate metabolite levels relative to the average of the PSC control for each 
subtype. Statistical comparisons are listed in Tables S5-S6. 
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Figure S4.6 Representative Ki67 staining for EMT and papillary tumors. (A) Color 
deconvoluted image showing H staining and (B) color threshold image showing all nuclei as black 
dots. (C) Color deconvoluted image showing DAB staining and (D) color threshold image showing 
all Ki67 + nuclei as black dots were used to calculate the percent Ki67 + nuclei shown in Figure 
4.7 A-B. 
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Figure S4.7 Representative TUNEL assay for EMT and papillary tumors. (A) Initial cross 
sectional image of EMT and papillary control and knock out tumors after TUNEL assay. Images 
with (B) TUNEL + area highlighted, and (C) full tumor area were used to calculate the percent 
area of TUNEL staining shown in Figure 4.7 C-D. 
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Figure S4.8 Tumor growth of additional clones. In vivo growth curves for (A) EMT and (B) 
papillary tumors. Data are displayed as means ± S.D. (*p-value < 0.05). Statistical comparisons 
are listed in Tables S7-S8. 
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Figure S4.9 13C-Isotope incorporation from glucose into ATP biosynthesis in additional 
PPAT KO clones. Grey boxes represent the unlabeled (M-0 isotopologue) proportion of ATP. 
Light blue boxes represent the M-5 isotopologue, which can be derived from either de novo or 
salvage pathways. Dark blue boxes represent the sum of all other isotopologues of ATP (M1-4 
and M6-10), which are derived from de novo ATP biosynthesis. Statistical comparisons are listed 
in Tables S13-S14. 
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Figure S4.10 Protein level verification of additional KO cell lines. Western blotting was used 
to verify protein levels of clonal EMT lines APRT KO A5, APRT KO F2, PPAT KO F2, and PSC 
C4. Protein levels of clonal papillary line APRT KO G5, APRT KO H5, PPAT KO C2, and PSC F1 
were also verified. 
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Table S4.1 Metabolite abundance with statistical significance for Figure 4.1B. Data 
presented relative to the average of the papillary subtype as depicted in Figure 4.1B. Data 
represent means and S.D. of 4 replicates. Bold values indicate Welch’s t-test was used. 
Highlighted values are statistically significant with adjusted p value < 0.05 
 
 
 
 

Metabolite

EMT Wild-Type 

Average 

(Log2 Fold Change)

EMT Wild-Type 

STDEV

Papillary Wild-

Type Average 

(Log2 Fold 

Change)

Papillary Wild-

Type STDEV

Raw P 

values

Adjusted 

P values

2+3-phosphoglycerate -0.3 0.4 0.0 0.3 2.56E-01 3.35E-01

Acetoacetyl-CoA_ 0.0 0.1 0.0 0.2 9.65E-01 9.77E-01

Acetyl-CoA -1.0 0.8 -0.4 1.4 4.83E-01 5.35E-01

Aconitate 0.9 0.1 0.0 0.3 6.81E-04 3.92E-03

Adenine 2.3 0.5 -0.1 0.6 7.65E-04 3.92E-03

ADP 0.1 0.0 0.0 0.0 3.03E-04 2.26E-03

ADP-glucose 0.6 0.1 0.0 0.1 1.74E-04 1.43E-03

ADP-ribose -0.4 0.4 0.0 0.2 1.47E-01 2.19E-01

Alanine 0.7 0.4 0.0 0.1 2.57E-02 5.54E-02

Allantoate_and_Carbamoyl_aspartate 0.6 0.1 0.0 0.3 1.12E-02 3.07E-02

AMP 0.2 0.1 0.0 0.1 2.71E-03 1.06E-02

Arginine -1.6 0.3 0.0 0.1 9.43E-05 1.07E-03

Asparagine 0.4 0.2 0.0 0.2 1.30E-02 3.44E-02

Aspartate -0.5 0.4 0.0 0.1 4.55E-02 8.74E-02

ATP 0.1 0.1 0.0 0.1 4.23E-01 4.95E-01

Bisphosphoglycerate -0.1 0.2 -0.1 0.6 9.94E-01 9.94E-01

CDP 0.5 0.3 0.0 0.1 1.04E-02 2.94E-02

Citrate+Isocitrate 0.4 0.0 0.0 0.1 9.72E-04 4.69E-03

CMP -0.3 0.1 0.0 0.1 2.12E-02 4.97E-02

CMPNacetylneuraminate -0.4 0.1 0.0 0.2 9.27E-03 2.87E-02

CoA -0.6 0.3 0.0 0.2 2.12E-02 4.97E-02

CTP 0.5 0.2 0.0 0.3 1.88E-02 4.73E-02

dADP -1.0 0.4 0.0 0.3 9.46E-03 2.87E-02

dAMP -0.5 0.2 0.0 0.3 3.26E-02 6.86E-02

dATP -1.0 0.1 0.0 0.1 5.37E-05 1.07E-03

dCMP -1.0 0.2 0.0 0.2 1.04E-03 4.72E-03

dCTP 0.1 0.1 0.0 0.2 4.60E-01 5.24E-01

dGDP 0.4 0.2 0.0 0.1 1.04E-02 2.94E-02

dTDP -0.5 0.2 0.0 0.1 8.27E-03 2.71E-02

dTMP -0.7 0.1 0.0 0.3 2.36E-02 5.23E-02

dTTP -0.4 0.3 0.0 0.3 1.77E-01 2.53E-01

dUMP -0.5 0.4 0.0 0.1 6.53E-02 1.16E-01

FAD -0.7 0.1 0.0 0.1 9.43E-05 1.07E-03

FBP 0.3 0.3 0.0 0.2 1.88E-01 2.61E-01

Flavin_mononucleotide -0.4 0.6 0.0 0.3 2.80E-01 3.59E-01

Fumarate -0.4 0.3 0.0 0.3 1.79E-01 2.53E-01

GAP+DHAP 0.0 0.4 0.0 0.4 8.73E-01 8.95E-01

GDP 0.2 0.2 0.0 0.1 1.93E-01 2.64E-01

Glucono-lactone 3.2 0.1 0.0 0.4 6.40E-06 2.62E-04

Glutamate 0.0 0.2 0.0 0.0 7.80E-01 8.20E-01

Glutamine -0.5 0.4 0.0 0.2 6.77E-02 1.18E-01
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Table S4.1 (cont’d) 

 
  

Glutathione_disulfide_oxidized 0.3 0.1 0.0 0.2 5.95E-02 1.08E-01

Glutathione_reduced 0.1 0.1 0.0 0.1 1.24E-01 1.91E-01

Glycerol_3-phosphate -0.7 0.1 0.0 0.2 7.50E-04 3.92E-03

Glycine 0.8 0.5 0.0 0.2 1.90E-02 4.73E-02

GMP -0.4 0.3 0.0 0.0 8.21E-02 1.35E-01

GTP 0.3 0.1 0.0 0.1 4.84E-03 1.80E-02

Hexose-phosphate 0.8 0.6 0.0 0.3 5.05E-02 9.41E-02

Hydroxybutyryl-CoA+Malonyl-CoA -1.1 0.3 0.0 0.3 5.16E-03 1.84E-02

IDP 0.1 0.1 0.0 0.2 2.96E-01 3.67E-01

IMP 3.2 0.5 -0.5 1.3 2.20E-03 9.47E-03

Inosine 3.2 0.3 -0.1 0.5 3.60E-05 9.84E-04

Isoleucine/Leucine 0.1 0.2 0.0 0.1 2.95E-01 3.67E-01

Ketoglutarate -0.3 0.3 0.0 0.4 3.83E-01 4.64E-01

Lysine -0.5 0.1 0.0 0.1 1.05E-04 1.07E-03

Malate -0.3 0.2 0.0 0.2 1.26E-01 1.91E-01

Methionine 0.3 0.2 0.0 0.2 8.09E-02 1.35E-01

Nacetylneuraminate 0.7 0.1 0.0 0.2 5.21E-04 3.56E-03

NAD -0.2 0.2 0.0 0.1 1.00E-01 1.62E-01

NADH -0.9 1.1 0.0 0.1 1.99E-01 2.67E-01

NADP -0.8 0.4 0.0 0.4 3.54E-02 7.26E-02

NADPH 0.0 0.7 -0.1 0.6 8.19E-01 8.50E-01

Ornithine -0.3 0.2 0.0 0.1 2.31E-02 5.23E-02

Phenylalanine -0.2 0.1 0.0 0.1 4.58E-02 8.74E-02

Phosphoenolpyruvate -0.7 0.4 0.0 0.4 7.93E-02 1.35E-01

Phosphoserine -0.2 0.3 0.0 0.4 4.29E-01 4.96E-01

Proline 0.7 0.3 0.0 0.1 2.62E-03 1.06E-02

PRPP 0.2 0.3 0.0 0.3 3.85E-01 4.64E-01

Ribose-5-phosphate 2.2 0.5 -0.1 0.5 5.87E-04 3.70E-03

Ribulose-5-phosphate 2.4 0.5 0.0 0.3 1.55E-04 1.41E-03

Sedoheptulose-phosphate 1.8 0.1 0.0 0.1 2.10E-06 1.72E-04

Serine 0.6 0.1 0.0 0.1 8.49E-05 1.07E-03

Succinate -0.3 0.5 -0.1 0.5 5.81E-01 6.27E-01

Threonine -0.8 0.3 0.0 0.2 5.68E-03 1.94E-02

Tryptophan -0.1 0.1 0.0 0.2 7.08E-01 7.54E-01

Tyrosine 0.1 0.2 0.0 0.1 5.08E-01 5.55E-01

UDP -0.1 0.2 0.0 0.1 2.58E-01 3.35E-01

UMP -0.2 0.1 0.0 0.1 3.99E-02 7.97E-02

UTP 0.1 0.3 0.0 0.2 4.08E-01 4.85E-01

Valine -0.1 0.2 0.0 0.1 4.69E-01 5.27E-01

Xanthosine 0.4 0.4 0.0 0.2 1.03E-01 1.63E-01

XMP -1.6 1.8 0.0 0.2 1.71E-01 2.50E-01
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Table S4.2 Gene expression with statistical significance for Figure 4.2A. Relative expression 
and statistical significance of all nucleotide metabolism genes from Reactome database exported 
using TAC. Genes are sorted by fold change. Highlighted values indicate statistical significance 
with FDR p value < 0.05 
 
 
 

ProbeID Gene Symbol EMT Avg (log2) Papillary Avg (log2) Fold Change P-val FDR P-val

1448562_at Upp1 10.04 5.86 18.1 5.17E-08 3.68E-06

1422974_at Nt5e 8.43 5.18 9.51 9.49E-06 1.00E-04

1422184_a_at Ak1-2 10.78 8.06 6.59 1.38E-11 3.89E-08

1436291_a_at Dpys-3 4.31 2.47 3.58 3.43E-02 8.57E-02

1449383_at Adssl1 8.96 7.35 3.06 3.10E-03 1.24E-02

1450939_at Entpd1-1 7.01 5.44 2.97 3.00E-04 1.90E-03

1421204_a_at Nudt16 7.14 5.62 2.86 5.22E-07 1.71E-05

1422573_at Ampd3 8.48 7.13 2.55 1.80E-03 7.80E-03

1426339_at Ak5 6.75 5.42 2.53 1.70E-03 7.60E-03

1422868_s_at Gda 7.38 6.13 2.38 5.21E-05 5.00E-04

1423326_at Entpd1-2 8.69 7.49 2.3 1.00E-04 9.00E-04

1432068_a_at Entpd7-1 2.91 1.9 2.02 9.28E-02 1.88E-01

1453299_a_at Pnp/Pnp2 9.72 8.71 2.02 2.05E-06 4.44E-05

1428164_at Nudt9 10.11 9.29 1.76 2.70E-03 1.09E-02

1416530_a_at Pnp 11.07 10.26 1.75 2.31E-06 4.83E-05

1423988_at Ak1-1 4.8 4 1.74 1.10E-03 5.20E-03

1416593_at Glrx-2 9.61 8.83 1.73 1.34E-01 2.48E-01

1420272_at Samhd1-2 6.47 5.71 1.69 2.32E-01 3.75E-01

1416592_at Glrx-1 9.91 9.18 1.65 2.26E-01 3.68E-01

1427357_at Cda 5.93 5.26 1.59 3.17E-02 8.06E-02

1427810_at Tyms-1 4.61 3.98 1.55 9.15E-02 1.86E-01

1424646_at Uckl1 8.85 8.24 1.53 1.00E-03 4.90E-03

1425689_at Dpys-2 3.87 3.3 1.48 9.39E-01 9.64E-01

1435625_at Entpd7-2 6.17 5.66 1.42 3.25E-02 8.21E-02

1451703_s_at Aprt-1 11.66 11.18 1.4 8.20E-03 2.70E-02

1435759_at Ctps2-1 4.45 4.02 1.35 3.76E-02 9.20E-02

1425228_a_at Dguok 8.85 8.43 1.33 8.00E-03 2.67E-02

1426909_at Uck2-2 9.29 8.89 1.33 2.99E-02 7.67E-02

1423801_a_at Aprt-2 11.59 11.19 1.31 5.71E-02 1.28E-01

1416356_at Gmpr2 9.34 8.94 1.31 1.70E-03 7.70E-03

1427715_a_at Nt5c1b 2.19 1.81 1.31 4.73E-01 6.23E-01

1417252_at Nt5c 9.72 9.37 1.27 3.11E-02 7.92E-02

1421831_at Ak4-4 2.51 2.18 1.26 8.20E-01 8.88E-01

1450987_a_at Adprm 8.34 8.02 1.25 1.00E-03 4.80E-03

1448444_at Rpe-3 4.2 3.9 1.24 8.81E-01 9.28E-01

1426100_a_at Tk2 8.11 7.79 1.24 1.13E-02 3.51E-02

1448604_at Uck2-3 9.31 9.02 1.22 5.63E-02 1.27E-01

1448614_at Nt5c2-3 5.48 5.21 1.21 1.98E-01 3.33E-01

1427811_at Tyms-2 2.6 2.33 1.21 6.86E-01 7.97E-01

Summary Data from Transcriptome Analysis Console
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Table S4.2 (cont’d) 

 

1451149_at Pgm2 9.59 9.37 1.17 4.63E-01 6.13E-01

1424609_a_at Cwc22/Xdh-2 11.09 10.91 1.14 5.23E-01 6.67E-01

1453767_a_at Nt5m 8.75 8.56 1.14 3.42E-01 4.98E-01

1438250_s_at Ak6/LOC105247169/Taf9-2 10.86 10.69 1.13 3.42E-01 4.98E-01

1427945_at Dpyd-1 3.15 2.98 1.13 9.78E-01 9.88E-01

1424607_a_at Cwc22/Xdh-1 10.98 10.82 1.11 4.37E-01 5.90E-01

1417137_at Uck2-1 5.7 5.59 1.08 8.90E-01 9.34E-01

1439012_a_at Dck-2 9.62 9.55 1.04 5.74E-01 7.09E-01

1460671_at Gpx1 12.66 12.64 1.02 9.39E-01 9.64E-01

1433773_at Rrm2b 8.24 8.23 1.01 6.34E-01 7.57E-01

1451548_at Upp2-2 0 0 1 8.27E-01 8.92E-01

1448111_at Ctps2-2 9.62 9.64 -1.02 6.69E-01 7.84E-01

1438941_x_at Ampd2-2 10.29 10.33 -1.03 4.22E-01 5.77E-01

1422778_at Ak6/LOC105247169/Taf9-1 11.11 11.19 -1.05 7.47E-01 8.39E-01

1417384_at Entpd5-4 7.36 7.45 -1.06 7.16E-01 8.18E-01

1421817_at Gsr-2 9.04 9.14 -1.07 5.88E-01 7.20E-01

1418131_at Samhd1-1 9.21 9.3 -1.07 3.85E-01 5.41E-01

1424399_at Uck1 8.58 8.68 -1.07 2.75E-01 4.25E-01

1448736_a_at Hprt 10.9 10.99 -1.07 7.75E-01 8.57E-01

1449176_a_at Dck-3 7.36 7.48 -1.08 4.05E-01 5.60E-01

1434438_at Samhd1-4 8.62 8.78 -1.12 7.23E-01 8.22E-01

1421529_a_at Txnrd1-2 10.52 10.71 -1.14 7.21E-02 1.54E-01

1424486_a_at Txnrd1-3 7.36 7.55 -1.14 4.66E-02 1.10E-01

1426757_at Ampd2-1 8.03 8.23 -1.15 5.35E-01 6.77E-01

1422126_a_at Nudt13-1 6.7 6.9 -1.15 2.76E-01 4.26E-01

1421767_at Adk-3 4.85 5.08 -1.17 1.48E-01 2.67E-01

1420638_at Prps2-2 7.32 7.55 -1.18 1.91E-01 3.24E-01

1424841_s_at Rbks-2 6.31 6.57 -1.19 4.27E-01 5.81E-01

1416705_at Rpe-1 8.73 8.98 -1.19 5.68E-02 1.28E-01

1423706_a_at Pgd-1 10.46 10.72 -1.2 4.06E-02 9.81E-02

1436298_x_at Paics-3 9.98 10.26 -1.21 5.72E-01 7.08E-01

1438627_x_at Pgd-4 11.02 11.29 -1.21 4.60E-02 1.08E-01

1420273_x_at Samhd1-3 7.41 7.68 -1.21 7.05E-01 8.11E-01

1438690_at Tyms-3 6.27 6.55 -1.21 5.99E-02 1.33E-01

1433903_at Prps1l3-2 9.48 9.76 -1.21 1.83E-01 3.14E-01

1449641_at Adk-4 4.51 4.81 -1.23 1.78E-01 3.07E-01

1417201_at Nt5c2-1 7.69 8 -1.24 7.40E-03 2.50E-02

1423073_at Cmpk1 11.41 11.72 -1.25 1.10E-01 2.14E-01

1424487_x_at Txnrd1-1 5.53 5.88 -1.27 1.33E-02 4.00E-02

1428838_a_at Dck-1 6.53 6.9 -1.29 1.46E-01 2.65E-01

1416448_at Itpa 8.92 9.29 -1.3 1.20E-01 2.28E-01

1448808_a_at Nme2 13.52 13.89 -1.3 1.90E-03 8.40E-03

1428943_at Nudt13-2 6.6 6.99 -1.31 3.88E-01 5.44E-01

1436771_x_at Pgd-2 11.72 12.12 -1.31 3.40E-03 1.34E-02

1417383_at Entpd5-3 6.26 6.65 -1.32 8.32E-02 1.72E-01

1451509_at Ak6/Taf9 9.99 10.4 -1.33 3.67E-02 9.03E-02

1423564_a_at Paics-2 11.97 12.39 -1.34 3.44E-02 8.59E-02
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Table S4.2 (cont’d)

  
 
 
 
 
 
 
 

1416052_at Prps1 9.09 9.54 -1.36 2.93E-02 7.54E-02

1460713_at Dnph1 7.39 7.84 -1.37 1.91E-02 5.36E-02

1448192_s_at Prps1/Prps1l3 9.31 9.76 -1.37 5.73E-02 1.29E-01

1416258_at Tk1 9.42 9.88 -1.37 3.48E-02 8.66E-02

1417722_at Pgls 10.51 10.98 -1.39 2.30E-03 9.60E-03

1455832_a_at Umps-1 8.29 8.77 -1.39 2.80E-03 1.14E-02

1437380_x_at Pgd-3 11.43 11.92 -1.4 1.50E-03 6.80E-03

1416706_at Rpe-2 9.3 9.79 -1.4 7.60E-03 2.54E-02

1452829_at Cad-1 9 9.49 -1.41 1.56E-02 4.58E-02

1438292_x_at Adk-1 10.69 11.19 -1.42 7.00E-04 3.90E-03

1451006_at Xdh 9.86 10.4 -1.45 9.85E-02 1.97E-01

1425688_a_at Dpys-1 2.18 2.72 -1.46 6.98E-01 8.06E-01

1423239_at Impdh1 8.7 9.24 -1.46 5.10E-03 1.83E-02

1423565_at Paics-1 11.62 12.16 -1.46 1.18E-02 3.63E-02

1434437_x_at Rrm2-1 10.58 11.13 -1.46 1.42E-02 4.21E-02

1416798_a_at Nme4 7.19 7.74 -1.47 5.80E-03 2.05E-02

1424435_a_at Gart-1 8.43 8.99 -1.48 7.30E-03 2.47E-02

1451445_at Umps-3 4.94 5.51 -1.48 3.96E-02 9.60E-02

1421816_at Gsr-1 8.26 8.84 -1.49 2.80E-02 7.27E-02

1448226_at Rrm2-3 9.53 10.1 -1.49 4.99E-02 1.15E-01

1449116_a_at Dtymk-1 9.4 9.98 -1.5 2.50E-03 1.02E-02

1419270_a_at Dut-2 9.83 10.41 -1.5 1.99E-02 5.55E-02

1460726_at Adss 10.4 11 -1.51 2.32E-02 6.26E-02

1438177_x_at Entpd4/Gm21685-2 8.18 8.79 -1.53 3.70E-03 1.41E-02

1424969_s_at Upp2-1 2.08 2.71 -1.54 7.11E-01 8.15E-01

1451765_a_at Entpd5-1 6.9 7.54 -1.56 1.45E-02 4.30E-02

1448530_at Gmpr 7.46 8.11 -1.57 2.64E-02 6.95E-02

1428543_at Ppat-1 7.01 7.68 -1.58 6.30E-03 2.19E-02

1434859_at Umps-2 8.41 9.09 -1.6 6.00E-04 3.40E-03

1449190_a_at Entpd4/Gm21685-1 7.9 8.59 -1.61 5.60E-03 1.99E-02

1418259_a_at Entpd2 6.42 7.12 -1.62 1.87E-01 3.20E-01

1452830_s_at Cad-2 8.6 9.33 -1.66 1.05E-02 3.31E-02

1424991_s_at Tyms/Tyms-ps 8.77 9.49 -1.66 1.22E-02 3.73E-02

1418372_at Adsl 8.93 9.67 -1.67 1.70E-03 7.60E-03

1429126_at Nudt5-1 7.49 8.24 -1.67 9.60E-03 3.10E-02

1416395_at Guk1 8.63 9.38 -1.68 2.00E-03 8.60E-03

1454814_s_at Prps1l3-1 9.1 9.87 -1.7 6.89E-05 6.00E-04

1425933_a_at Nt5c2-2 8.31 9.08 -1.71 4.64E-05 4.00E-04

1424840_at Rbks-1 5.25 6.04 -1.73 9.60E-03 3.10E-02

1419269_at Dut-1 5.96 6.8 -1.78 1.53E-01 2.75E-01
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Table S4.2 (cont’d) 

 
  

1420637_at Prps2-1 7.82 8.65 -1.78 2.00E-04 1.60E-03

1416319_at Adk-2 8.97 9.83 -1.81 7.79E-05 7.00E-04

1449349_at Nudt1 8.43 9.29 -1.82 2.56E-05 3.00E-04

1416120_at Rrm2-2 9.24 10.11 -1.83 2.30E-03 9.50E-03

1415878_at Rrm1-2 10.22 11.1 -1.84 5.00E-04 3.00E-03

1421830_at Ak4-1 7.75 8.64 -1.85 1.58E-02 4.62E-02

1415851_a_at Gm15210/Impdh2-2 11.42 12.31 -1.85 3.08E-07 1.18E-05

1415852_at Gm15210/Impdh2-1 11.39 12.28 -1.85 2.00E-04 1.50E-03

1452681_at Dtymk-2 9.34 10.23 -1.86 1.10E-03 5.20E-03

1448127_at Rrm1-1 9.71 10.61 -1.87 3.70E-03 1.43E-02

1438096_a_at Dtymk-3 10.06 10.97 -1.88 2.00E-04 1.60E-03

1448450_at Ak2-1 10.03 10.99 -1.94 1.20E-03 5.70E-03

1421829_at Ak4-3 5.44 6.4 -1.94 4.94E-01 6.42E-01

1450387_s_at Ak4-2 8.4 9.42 -2.02 1.55E-02 4.56E-02

1427946_s_at Dpyd-2 3.16 4.19 -2.04 1.17E-01 2.24E-01

1460433_at Entpd6 7.77 8.81 -2.06 4.03E-05 4.00E-04

1424110_a_at Nme1-2 10.98 12.03 -2.06 1.00E-04 1.00E-03

1439443_x_at Tkt-1 13.37 14.43 -2.08 7.25E-07 2.17E-05

1424047_at Dera 8.98 10.05 -2.09 3.16E-06 6.10E-05

1416283_at Gart-2 9.07 10.13 -2.09 2.54E-06 5.17E-05

1417581_at Dhodh-1 6.76 7.87 -2.15 2.00E-04 1.20E-03

1417582_s_at Dhodh-2 7.55 8.7 -2.2 5.54E-05 5.00E-04

1418337_at Rpia 8.78 9.92 -2.21 1.00E-03 4.90E-03

1452831_s_at Ppat-2 7.49 8.68 -2.28 9.19E-05 7.00E-04

1424436_at Gart-3 7.95 9.15 -2.3 2.15E-08 2.14E-06

1452889_at Lhpp 6.35 7.56 -2.31 1.00E-04 8.00E-04

1448651_at Nudt5-2 8.7 9.94 -2.35 3.30E-05 3.00E-04

1448451_at Ak2-2 9.14 10.39 -2.37 4.83E-05 4.00E-04

1417382_at Entpd5-2 7.04 8.28 -2.37 5.00E-04 2.70E-03

1448905_at Mrps34/Nme3 8 9.33 -2.5 2.17E-05 2.00E-04

1425129_a_at Taldo1 11.09 12.49 -2.63 1.23E-08 1.66E-06

1417976_at Ada 7.93 9.38 -2.73 2.00E-04 1.50E-03

1451015_at Tkt-2 10.93 12.58 -3.12 2.95E-08 2.58E-06

1416439_at Dctpp1 9.32 11.02 -3.23 2.35E-07 9.81E-06

1435277_x_at Nme1-1 11.31 13.1 -3.48 4.00E-03 1.50E-02

1460244_at Upb1 4.99 6.96 -3.93 2.28E-02 6.18E-02
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Table S4.3 13C-Isotope percent labeling from glucose statistical significance for figure 4.4 
– EMT subtype. Data represent means and S.D. of 3 replicates. Bold values indicate Welch’s t-
test was used. Highlighted values are statistically significant with adjusted p value < 0.05 
  

Metabolite

EMT PSC 

D3 

Average 

(%)

EMT PSC 

D3 

STDEV

EMT 

APRT B3 

Average 

(%)

EMT 

APRT B3 

STDEV

EMT 

PPAT F1 

Average 

(%)

EMT 

PPAT F1 

STDEV

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

ATP M-0 56.4 2.2 50.8 0.3 66.8 3.0 6.66E-02 1.68E-02 1.67E-02 9.98E-02 3.50E-02 2.17E-02

ATP M-5 28.6 0.9 29.2 0.4 24.4 1.6 4.33E-01 3.27E-02 1.48E-02 4.33E-01 3.50E-02 2.17E-02

ATP M-OTHER 15.0 1.4 20.0 0.4 8.7 2.5 7.54E-03 3.50E-02 2.17E-02 2.26E-02 3.50E-02 2.17E-02

Raw P values Adjusted P values
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Table S4.4 13C-Isotope percent labeling from glucose statistical significance for figure 4.4 
– papillary subtype. Data represent means and S.D. of 3 replicates. Bold values indicate Welch’s 
t-test was used. Highlighted values are statistically significant with adjusted p value < 0.05 
  

Metabolite

Papillary 

PSC G6 

Average 

(%)

Papillary 

PSC G6 

STDEV

Papillary 

APRT E6 

Average 

(%)

Papillary 

APRT E6 

STDEV

Papillary 

PPAT A7 

Average

 (%)

Papillary 

PPAT A7

 STDEV

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

ATP M-0 42.4 1.3 45.8 0.5 80.1 7.1 2.47E-02 1.78E-03 2.03E-02 2.47E-02 2.67E-03 3.04E-02

ATP M-5 37.4 0.7 29.4 0.5 10.7 7.6 2.14E-04 3.69E-02 7.23E-02 4.05E-04 3.69E-02 7.23E-02

ATP M-OTHER 20.2 0.5 24.8 0.1 9.2 0.5 2.70E-04 3.23E-05 2.20E-06 4.05E-04 9.69E-05 6.60E-06

Raw P values Adjusted P values
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Table S4.5 Metabolite abundance with statistical significance for figures 4.5 and S4.5 – 
EMT subtype. Data presented relative to the PSC average of the EMT subtype as depicted in  
 

Metabolite

EMT PSC D3 

Average 

(Log2 Fold 

Change)

EMT PSC 

D3 

STDEV

EMT APRT B3 

Average 

(Log2 Fold 

Change)

EMT APRT 

B3 

STDEV

EMT PPAT F1 

Average 

(Log2 Fold 

Change)

EMT 

PPAT F1 

STDEV

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

2+3-phosphoglycerate 0.0 0.2 -0.7 0.2 -0.2 0.5 1.52E-02 4.57E-01 2.12E-01 4.31E-02 7.23E-01 3.14E-01

Acetoacetyl-CoA_ 0.0 0.3 0.1 0.2 -0.5 0.4 4.85E-01 1.36E-01 5.30E-02 5.41E-01 3.04E-01 9.78E-02

Acetyl-CoA 0.0 0.2 0.5 0.3 -0.5 0.4 5.22E-02 1.32E-01 2.66E-02 9.85E-02 3.04E-01 6.75E-02

ADP -0.1 0.6 -1.1 0.1 -0.6 0.1 1.05E-01 2.66E-01 4.29E-04 1.48E-01 5.14E-01 5.70E-03

ADP-glucose 0.0 0.4 -1.1 0.2 0.7 0.4 2.07E-02 8.42E-02 1.92E-03 5.42E-02 2.49E-01 1.18E-02

ADP-ribose -0.1 0.6 -1.1 0.2 -0.2 0.1 4.91E-02 7.74E-01 2.45E-03 9.61E-02 8.96E-01 1.19E-02

Alanine -0.1 0.5 0.6 0.3 0.1 0.1 1.31E-01 6.71E-01 5.21E-02 1.72E-01 8.30E-01 9.78E-02

Allantoate_and_Carbamoyl_aspartate 0.0 0.1 0.7 0.2 0.4 0.2 3.98E-03 2.52E-02 9.70E-02 1.59E-02 1.32E-01 1.65E-01

AMP 0.0 0.4 -0.6 0.1 -0.2 0.2 9.58E-02 5.86E-01 2.21E-02 1.39E-01 7.81E-01 6.54E-02

Arginine 0.0 0.1 -0.6 0.1 -0.4 0.3 1.22E-03 7.68E-02 3.93E-01 9.19E-03 2.49E-01 5.14E-01

Asparagine 0.0 0.1 0.2 0.1 -0.5 0.1 6.29E-02 2.27E-03 6.04E-04 1.02E-01 3.08E-02 5.87E-03

Aspartate 0.0 0.2 -0.1 0.0 -1.0 0.1 2.51E-01 7.41E-04 8.93E-05 3.05E-01 2.52E-02 3.04E-03

ATP 0.0 0.4 1.8 0.2 0.5 0.3 2.45E-03 1.50E-01 3.86E-03 1.19E-02 3.19E-01 1.54E-02

Bisphosphoglycerate 0.0 0.3 0.5 0.3 -0.2 0.2 1.11E-01 4.06E-01 3.12E-02 1.53E-01 6.73E-01 6.75E-02

Citrate+Isocitrate 0.0 0.2 0.1 0.5 -0.5 0.2 7.52E-01 3.55E-02 1.17E-01 7.87E-01 1.61E-01 1.90E-01

CMPNacetylneuraminate 0.0 0.3 -0.4 0.1 -0.4 0.1 6.24E-02 6.15E-02 9.62E-01 1.02E-01 2.20E-01 9.62E-01

CoA -0.1 0.7 0.8 0.8 0.0 0.6 2.27E-01 7.91E-01 2.82E-01 2.81E-01 8.96E-01 3.99E-01

CTP 0.0 0.2 0.5 0.1 0.0 0.0 1.41E-02 8.58E-01 4.52E-03 4.31E-02 9.11E-01 1.71E-02

Cysteine 0.0 0.4 -0.1 0.2 -0.3 0.4 7.89E-01 4.40E-01 5.05E-01 8.13E-01 7.13E-01 6.02E-01

dATP -0.1 0.8 1.7 0.2 0.6 0.9 1.52E-02 3.69E-01 1.03E-01 4.31E-02 6.44E-01 1.71E-01

dCTP -0.1 0.6 1.4 0.2 0.0 0.3 1.77E-02 8.17E-01 2.65E-03 4.80E-02 8.96E-01 1.20E-02

dGDP -0.3 1.1 -0.6 1.8 -0.5 1.4 8.05E-01 9.03E-01 8.92E-01 8.17E-01 9.30E-01 9.19E-01

dTTP 0.0 0.4 1.5 0.2 0.9 0.3 3.28E-03 3.18E-02 2.91E-02 1.40E-02 1.54E-01 6.75E-02

FAD 0.0 0.1 -0.3 0.1 0.2 0.1 4.22E-02 5.65E-02 2.11E-03 8.97E-02 2.18E-01 1.19E-02

FBP 0.0 0.0 -0.3 0.2 0.4 0.2 9.05E-02 7.30E-02 1.02E-02 1.34E-01 2.48E-01 3.66E-02

Fumarate 0.0 0.1 -0.3 0.1 -0.2 0.4 4.47E-02 3.86E-01 7.70E-01 9.21E-02 6.56E-01 8.44E-01

GAP+DHAP 0.0 0.1 -0.1 0.2 0.2 0.2 4.04E-01 2.09E-01 1.46E-01 4.61E-01 4.30E-01 2.30E-01

GDP 0.0 0.4 -0.9 0.1 -0.6 0.1 2.82E-02 1.11E-01 2.80E-02 6.61E-02 2.79E-01 6.75E-02

Glutamate 0.0 0.2 0.2 0.0 0.2 0.1 5.55E-02 9.82E-02 7.11E-01 1.01E-01 2.77E-01 7.98E-01

Glutamine 0.0 0.1 0.1 0.0 0.0 0.1 1.26E-01 6.09E-01 7.08E-01 1.67E-01 7.81E-01 7.98E-01

Glutathione_disulfide_oxidized 0.0 0.4 2.3 0.1 0.3 0.3 7.01E-04 3.33E-01 3.73E-04 7.61E-03 5.96E-01 5.70E-03

Glutathione_reduced 0.0 0.0 -0.1 0.1 0.5 0.1 4.95E-02 1.72E-03 7.97E-04 9.61E-02 2.93E-02 6.78E-03

Glycerol_3-phosphate 0.0 0.3 1.2 0.1 1.5 0.1 2.12E-03 1.26E-03 2.63E-02 1.19E-02 2.85E-02 6.75E-02

Glycine 0.0 0.1 0.4 0.1 -0.1 0.2 5.51E-03 4.86E-01 2.90E-02 1.97E-02 7.44E-01 6.75E-02

GMP 0.0 0.3 -0.6 0.0 -0.3 0.2 6.01E-02 2.63E-01 8.42E-02 1.02E-01 5.14E-01 1.47E-01

GTP 0.0 0.2 1.4 0.3 0.3 0.7 2.34E-03 5.38E-01 5.32E-02 1.19E-02 7.61E-01 9.78E-02

Hexose-phosphate 0.0 0.0 0.6 0.1 0.2 0.1 1.61E-03 1.38E-01 1.66E-02 9.92E-03 3.04E-01 5.37E-02

IDP -0.1 0.8 -1.1 0.3 -0.5 0.1 1.12E-01 4.93E-01 3.24E-02 1.53E-01 7.44E-01 6.75E-02

IMP -0.1 0.5 0.6 0.2 0.0 0.3 9.04E-02 8.88E-01 3.73E-02 1.34E-01 9.29E-01 7.46E-02

Isoleucine/Leucine 0.0 0.1 -0.2 0.1 0.0 0.2 1.39E-01 9.29E-01 2.12E-01 1.78E-01 9.42E-01 3.14E-01

Ketoglutarate 0.0 0.1 0.9 0.2 -0.7 0.2 7.83E-04 3.83E-03 3.44E-04 7.61E-03 3.72E-02 5.70E-03

Lysine 0.0 0.1 -0.6 0.1 -0.4 0.3 1.47E-03 5.76E-02 4.16E-01 9.92E-03 2.18E-01 5.34E-01

Malate 0.0 0.0 -0.3 0.2 -0.2 0.1 3.02E-02 1.66E-02 2.04E-01 6.84E-02 1.02E-01 3.14E-01

Methionine 0.0 0.2 0.9 0.0 -0.1 0.3 9.22E-04 5.59E-01 3.27E-02 7.83E-03 7.61E-01 6.75E-02

Nacetylneuraminate -0.1 0.5 -0.4 0.1 -0.3 0.1 3.91E-01 5.14E-01 2.18E-01 4.59E-01 7.44E-01 3.16E-01

NAD 0.0 0.0 -0.4 0.0 0.1 0.0 3.64E-05 7.13E-03 3.10E-05 1.24E-03 5.39E-02 2.11E-03

NADH -0.2 1.0 -1.0 0.6 1.6 0.4 2.82E-01 3.83E-02 2.28E-03 3.37E-01 1.63E-01 1.19E-02

NADP 0.0 0.1 -0.5 0.1 0.0 0.0 3.16E-03 6.39E-01 9.37E-04 1.40E-02 8.05E-01 7.08E-03

NADPH -0.1 0.5 0.9 0.1 -0.4 0.2 4.05E-02 3.30E-01 5.03E-04 8.88E-02 5.96E-01 5.70E-03

Ornithine 0.0 0.2 -1.0 0.1 -0.5 0.2 6.55E-04 2.01E-02 1.76E-02 7.61E-03 1.14E-01 5.44E-02

Phenylalanine 0.0 0.1 -0.2 0.0 -0.4 0.3 2.18E-02 8.31E-02 3.19E-01 5.48E-02 2.49E-01 4.34E-01

Phosphogluconic_acid 0.0 0.3 -1.0 0.5 -0.9 0.7 5.66E-02 1.05E-01 9.10E-01 1.01E-01 2.77E-01 9.24E-01

Proline -0.1 0.7 -0.2 0.0 0.0 0.7 8.25E-01 8.35E-01 6.36E-01 8.25E-01 9.01E-01 7.46E-01

PRPP 0.0 0.3 -2.1 0.5 -1.8 0.3 4.73E-03 2.96E-03 4.63E-01 1.79E-02 3.35E-02 5.62E-01

Ribose-5-phosphate -0.1 0.8 1.0 0.1 0.7 0.1 6.89E-02 1.34E-01 6.97E-02 1.09E-01 3.04E-01 1.25E-01

Ribulose-5-phosphate 0.0 0.2 0.6 0.3 0.6 0.1 2.34E-02 6.36E-03 7.16E-01 5.69E-02 5.39E-02 7.98E-01

Sedoheptulose-phosphate 0.0 0.1 1.2 0.2 0.0 0.3 7.07E-04 8.08E-01 3.00E-03 7.61E-03 8.96E-01 1.27E-02

Serine 0.0 0.1 -0.2 0.2 -0.1 0.1 1.64E-01 2.72E-01 4.29E-01 2.07E-01 5.14E-01 5.39E-01

Succinate 0.0 0.1 -0.5 0.1 -0.7 0.2 3.69E-04 9.10E-03 4.36E-01 7.61E-03 6.19E-02 5.39E-01

Threonine 0.0 0.1 -0.2 0.1 0.1 0.1 7.10E-02 5.59E-01 3.00E-02 1.10E-01 7.61E-01 6.75E-02

Tryptophan 0.0 0.2 0.1 0.1 0.1 0.5 6.63E-01 7.29E-01 8.90E-01 7.16E-01 8.85E-01 9.19E-01

Tyrosine 0.0 0.0 -0.1 0.1 0.0 0.6 4.07E-01 9.86E-01 8.82E-01 4.61E-01 9.86E-01 9.19E-01

UDP -0.1 0.7 -1.7 0.1 -1.0 0.2 5.91E-02 1.06E-01 1.56E-03 1.02E-01 2.77E-01 1.06E-02

UDPNacetylglucosamine 0.0 0.0 -0.6 0.0 -0.7 0.0 6.30E-06 2.90E-06 3.66E-01 4.28E-04 1.97E-04 4.88E-01

UMP 0.0 0.3 0.1 0.2 0.1 0.2 6.93E-01 6.02E-01 8.38E-01 7.36E-01 7.81E-01 9.04E-01

UTP 0.0 0.3 1.0 0.2 0.1 0.4 1.07E-02 7.69E-01 3.01E-02 3.45E-02 8.96E-01 6.75E-02

Valine 0.0 0.1 -0.3 0.0 0.0 0.1 8.69E-03 8.06E-01 1.21E-02 2.95E-02 8.96E-01 4.12E-02

Xanthosine -0.3 1.3 0.2 0.2 -1.3 1.9 5.64E-01 5.08E-01 3.14E-01 6.19E-01 7.44E-01 4.34E-01

Raw P values Adjusted P values
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Table S4.5 (cont’d) 
figures 4.5 and S4.5. Data represent means and S.D. of 3 replicates. Bold values indicate Welch’s 
t-test was used. Highlighted values are statistically significant with adjusted p value < 0.05 
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Table S4.6 Metabolite abundance with statistical significance for figures 4.5 and S4.5 – 
papillary subtype. Data presented relative to the PSC average of the papillary subtype as  

Metabolite

Papillary PSC 

G6 Average 

(Log2 Fold 

Change)

Papillar

y PSC 

G6 

STDEV

Papillary APRT 

E6 Average 

(Log2 Fold 

Change)

Papillary 

APRT E6 

STDEV

Papillary 

PPAT A7 

Average

 (Log2 Fold 

Change)

Papillary 

PPAT A7

 STDEV

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

2+3-phosphoglycerate -0.1 0.5 0.1 0.6 1.9 0.0 7.20E-01 2.44E-02 3.18E-02 8.60E-01 3.95E-02 5.15E-02

Acetoacetyl-CoA_ 0.0 0.3 0.3 0.2 1.9 0.2 2.04E-01 7.65E-04 6.53E-04 4.86E-01 3.22E-03 1.85E-03

Acetyl-CoA 0.0 0.4 0.6 1.3 1.7 0.3 4.24E-01 3.97E-03 2.48E-01 7.01E-01 9.65E-03 2.97E-01

ADP 0.0 0.1 0.0 0.1 -0.9 0.1 6.80E-01 3.55E-04 1.36E-04 8.57E-01 1.86E-03 5.46E-04

ADP-glucose -0.2 0.9 0.0 1.1 0.4 1.3 8.58E-01 5.71E-01 7.06E-01 9.30E-01 5.71E-01 7.27E-01

ADP-ribose 0.0 0.2 -0.4 0.5 -1.8 0.4 2.45E-01 1.99E-03 2.00E-02 5.27E-01 6.78E-03 3.67E-02

Alanine 0.0 0.4 0.1 0.1 -1.6 0.2 5.71E-01 3.37E-03 4.03E-04 8.26E-01 8.49E-03 1.25E-03

Allantoate_and_Carbamoyl_aspartate 0.0 0.1 -0.3 0.1 -2.2 0.1 4.06E-02 3.59E-05 4.54E-05 2.19E-01 4.07E-04 3.26E-04

AMP 0.0 0.1 0.0 0.0 -0.6 0.2 5.94E-01 1.09E-02 3.38E-03 8.42E-01 2.05E-02 7.40E-03

Arginine 0.0 0.1 -0.1 0.1 0.4 0.0 5.27E-01 3.10E-03 1.30E-03 7.96E-01 8.28E-03 3.32E-03

Asparagine 0.0 0.1 -0.1 0.1 -1.0 0.2 1.50E-01 8.05E-04 9.25E-04 4.57E-01 3.22E-03 2.52E-03

Aspartate 0.0 0.3 0.8 0.0 0.5 0.0 4.91E-02 9.94E-02 6.12E-05 2.38E-01 1.41E-01 3.26E-04

ATP 0.0 0.4 0.3 0.0 -2.0 0.3 3.32E-01 2.70E-03 1.61E-04 5.95E-01 7.99E-03 5.75E-04

Bisphosphoglycerate -0.1 0.7 0.6 0.2 -1.5 0.1 1.52E-01 7.89E-02 3.01E-05 4.57E-01 1.19E-01 2.56E-04

Citrate+Isocitrate 0.0 0.2 0.4 0.3 1.0 0.3 9.72E-02 5.95E-03 8.77E-02 4.13E-01 1.35E-02 1.27E-01

CMPNacetylneuraminate 0.0 0.0 0.0 0.0 -0.9 0.0 3.48E-01 3.30E-06 4.90E-06 6.07E-01 1.12E-04 1.94E-04

CoA 0.0 0.3 -0.2 0.5 -0.5 0.5 6.41E-01 3.10E-01 5.56E-01 8.57E-01 3.67E-01 5.84E-01

CTP 0.0 0.3 0.3 0.1 -0.2 0.3 1.26E-01 4.88E-01 2.61E-02 4.57E-01 5.02E-01 4.57E-02

Cysteine 0.0 0.1 0.2 0.2 -0.3 0.2 2.89E-01 1.60E-01 8.01E-02 5.46E-01 2.02E-01 1.18E-01

dATP 0.0 0.2 0.2 0.1 -2.3 0.5 2.07E-01 2.21E-03 1.32E-03 4.86E-01 7.11E-03 3.32E-03

dCTP 0.0 0.3 0.5 0.1 -0.9 0.1 5.95E-02 1.30E-02 1.00E-04 2.70E-01 2.38E-02 4.88E-04

dGDP 0.0 0.2 -1.2 2.3 -3.3 0.5 4.70E-01 5.52E-04 1.98E-01 7.27E-01 2.50E-03 2.55E-01

dTTP 0.0 0.4 0.1 0.2 -1.6 0.1 6.81E-01 2.30E-03 1.19E-04 8.57E-01 7.11E-03 5.07E-04

FAD 0.0 0.1 0.0 0.1 0.2 0.2 7.76E-01 1.47E-01 1.88E-01 8.79E-01 1.89E-01 2.46E-01

FBP 0.0 0.1 -0.6 0.1 -2.4 0.2 1.48E-03 5.03E-05 1.19E-04 2.74E-02 4.28E-04 5.07E-04

Fumarate 0.0 0.2 -0.1 0.2 -1.5 0.4 7.11E-01 2.95E-03 2.86E-03 8.60E-01 8.28E-03 6.53E-03

GAP+DHAP 0.0 0.2 -0.2 0.2 -0.9 0.4 3.16E-01 1.89E-02 4.01E-02 5.82E-01 3.24E-02 6.19E-02

GDP 0.0 0.1 0.1 0.1 -0.3 0.1 2.04E-01 4.66E-03 7.41E-03 4.86E-01 1.09E-02 1.53E-02

Glutamate 0.0 0.1 0.1 0.0 0.0 0.0 1.55E-01 3.29E-01 2.88E-03 4.57E-01 3.79E-01 6.53E-03

Glutamine 0.0 0.1 -0.1 0.0 0.1 0.0 1.27E-01 4.82E-02 1.45E-03 4.57E-01 7.45E-02 3.52E-03

Glutathione_disulfide_oxidized 0.0 0.1 -0.1 0.1 -0.6 0.2 2.74E-01 6.27E-03 2.74E-02 5.46E-01 1.38E-02 4.57E-02

Glutathione_reduced 0.0 0.1 -0.5 0.1 0.9 0.1 6.95E-03 1.74E-04 4.85E-05 9.45E-02 1.31E-03 3.26E-04

Glycerol_3-phosphate 0.0 0.4 -0.4 0.2 0.5 0.0 1.88E-01 1.47E-01 1.37E-02 4.86E-01 1.89E-01 2.67E-02

Glycine 0.0 0.2 -0.5 0.4 -0.8 0.1 1.29E-01 3.17E-03 2.25E-01 4.57E-01 8.28E-03 2.83E-01

GMP 0.0 0.2 0.9 1.6 1.0 1.5 4.33E-01 3.61E-01 9.27E-01 7.01E-01 4.02E-01 9.27E-01

GTP 0.0 0.4 0.3 0.2 -0.8 0.5 2.30E-01 8.76E-02 1.74E-02 5.21E-01 1.27E-01 3.28E-02

Hexose-phosphate 0.0 0.1 0.0 0.1 -0.8 0.0 7.08E-01 3.56E-04 6.24E-05 8.60E-01 1.86E-03 3.26E-04

IDP 0.0 0.4 -0.2 0.1 -0.8 0.1 3.91E-01 2.27E-02 3.57E-03 6.64E-01 3.77E-02 7.58E-03

IMP 0.0 0.1 -0.7 0.1 -1.6 0.0 1.61E-03 1.83E-05 2.15E-04 2.74E-02 3.50E-04 6.97E-04

Isoleucine/Leucine 0.0 0.1 0.0 0.1 0.1 0.1 8.96E-01 3.13E-01 2.47E-01 9.52E-01 3.67E-01 2.97E-01

Ketoglutarate 0.0 0.2 -0.1 0.1 -1.2 0.1 6.47E-01 5.20E-04 3.00E-05 8.57E-01 2.50E-03 2.56E-04

Lysine 0.0 0.1 -0.1 0.0 0.4 0.1 1.71E-01 8.46E-03 1.44E-04 4.83E-01 1.74E-02 5.46E-04

Malate 0.0 0.1 -0.1 0.1 -1.2 0.1 4.63E-01 2.37E-04 5.73E-05 7.27E-01 1.59E-03 3.26E-04

Methionine 0.0 0.3 0.0 0.1 -0.2 0.2 8.61E-01 3.87E-01 2.56E-01 9.30E-01 4.21E-01 3.00E-01

Nacetylneuraminate 0.0 0.0 0.4 0.0 -0.8 0.1 7.60E-06 3.35E-05 8.00E-06 5.17E-04 4.07E-04 1.94E-04

NAD 0.0 0.2 0.0 0.1 0.3 0.0 6.66E-01 1.20E-01 2.71E-02 8.57E-01 1.63E-01 4.57E-02

NADH 0.0 0.3 -1.6 0.7 -2.3 0.9 2.23E-02 1.33E-02 3.43E-01 1.77E-01 2.38E-02 3.82E-01

NADP 0.0 0.0 0.3 0.1 0.4 0.2 3.93E-02 1.05E-01 4.94E-01 2.19E-01 1.46E-01 5.33E-01

NADPH 0.0 0.1 0.2 0.1 -1.3 0.2 3.94E-02 2.58E-04 1.98E-04 2.19E-01 1.59E-03 6.73E-04

Ornithine 0.0 0.1 -0.3 0.1 1.3 1.3 1.76E-02 2.22E-01 1.59E-01 1.77E-01 2.72E-01 2.12E-01

Phenylalanine 0.0 0.3 -0.1 0.1 -0.3 0.5 7.62E-01 5.05E-01 5.59E-01 8.79E-01 5.13E-01 5.84E-01

Phosphogluconic_acid 0.0 0.4 -0.7 0.8 -1.8 0.4 2.85E-01 8.40E-03 9.89E-02 5.46E-01 1.74E-02 1.37E-01

Proline -0.1 0.6 -1.4 0.1 -2.0 0.4 2.35E-02 9.92E-03 5.15E-02 1.77E-01 1.93E-02 7.78E-02

PRPP 0.0 0.4 0.3 0.3 5.2 0.1 2.76E-01 2.06E-05 1.19E-05 5.46E-01 3.50E-04 1.94E-04

Ribose-5-phosphate 0.0 0.3 0.1 0.2 -1.5 0.1 5.41E-01 1.31E-03 5.27E-04 8.00E-01 4.95E-03 1.56E-03

Ribulose-5-phosphate 0.0 0.2 0.0 0.1 -1.8 0.0 9.83E-01 4.25E-05 2.51E-05 9.90E-01 4.13E-04 2.56E-04

Sedoheptulose-phosphate 0.0 0.2 0.2 0.0 -0.6 0.0 1.48E-01 3.27E-02 1.43E-05 4.57E-01 5.16E-02 1.94E-04

Serine 0.0 0.0 0.0 0.0 -0.1 0.2 2.48E-01 4.30E-01 2.84E-01 5.27E-01 4.50E-01 3.27E-01

Succinate 0.0 0.0 0.5 0.1 0.5 0.1 6.64E-04 1.65E-03 7.20E-01 2.26E-02 5.91E-03 7.31E-01

Threonine 0.0 0.3 0.0 0.1 -0.3 0.1 7.63E-01 2.24E-01 3.76E-02 8.79E-01 2.72E-01 5.95E-02

Tryptophan 0.0 0.3 0.0 0.1 0.2 0.1 9.33E-01 3.90E-01 9.66E-02 9.76E-01 4.21E-01 1.37E-01

Tyrosine 0.0 0.2 0.0 0.1 0.1 0.2 8.18E-01 4.18E-01 2.49E-01 9.12E-01 4.44E-01 2.97E-01

UDP 0.0 0.4 0.1 0.3 1.0 0.1 6.65E-01 9.92E-03 1.08E-02 8.57E-01 1.93E-02 2.15E-02

UDPNacetylglucosamine 0.0 0.0 0.1 0.0 0.8 0.0 2.07E-02 3.00E-06 1.29E-05 1.77E-01 1.12E-04 1.94E-04

UMP -0.1 0.6 -0.1 0.9 -0.6 0.1 9.90E-01 3.37E-01 4.71E-01 9.90E-01 3.82E-01 5.17E-01

UTP 0.0 0.3 0.2 0.1 0.9 0.3 1.94E-01 1.91E-02 2.76E-02 4.86E-01 3.24E-02 4.57E-02

Valine 0.0 0.1 0.0 0.2 -0.2 0.1 9.64E-01 1.34E-01 3.42E-01 9.90E-01 1.78E-01 3.82E-01

Xanthosine 0.0 0.1 -0.3 0.2 -2.5 1.3 4.19E-02 8.14E-02 1.02E-01 2.19E-01 1.20E-01 1.39E-01

Raw P values Adjusted P values
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Table S4.6 (cont’d) 
depicted in figures 4.5 and S4.5. Data represent means and S.D. of 3 replicates. Bold values 
indicate Welch’s t-test was used. Highlighted values are statistically significant with adjusted p 
value < 0.05 
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Table S4.7 Tumor size statistical significance for figures 4.6A and S4.8A – EMT subtype. 
Data represent means and S.D. of EMT tumor size at 24 days post implantation. Highlighted 
values are statistically significant with adjusted p value < 0.05 
  

Tumor Size

(Day 24)
Average Stdev N

EMT PSC D3 1344.6 141.7 6

EMT Wild-Type 1103.1 119.2 7

EMT PSC C4 1330.1 115.8 8

EMT PPAT F1 982.7 116.1 5

EMT PPAT F2 1012.2 271.8 5

EMT APRT B3 762.8 108.4 5

PSCD3 

vs

WT

PSCD3

 vs

 PSCC4

PSCC4

 vs 

PPATF2

PPATF1

 vs 

PPATF2

PPATF1

 vs 

APRTB3

PSCD3 

vs

WT

PSCD3

 vs

 PSCC4

PSCC4

 vs 

PPATF2

PPATF1

 vs 

PPATF2

PPATF1

 vs 

APRTB3

6.58E-03 8.36E-01 1.29E-02 8.29E-01 1.48E-02 2.63E-02 8.36E-01 3.87E-02 8.36E-01 4.43E-02

Raw P values Adjusted P values
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Table S4.8 Tumor size statistical significance for figures 4.6B and S4.8B – papillary 

subtype. Data represent means and S.D. of EMT tumor size at 24 days post implantation. 

Highlighted values are statistically significant with adjusted p value < 0.05 

  

Tumor Size

(Day 24)
Average Stdev N

Pap PSC G6 514.0 114.0 5

Pap Wild-Type 437.5 100.6 4

Pap PSC F1 375.2 85.0 7

Pap APRT E6 1161.8 155.8 5

Pap APRT G5 986.0 78.1 7

Pap APRT H5 350.1 105.7 7

PSCG6 

vs

WT

PSCG6

 vs

 PSCF1

PSCG6

 vs 

APRTE6

PSCG6

 vs 

APRTG5

PSCG6

 vs 

APRTH5

APRTE6 

vs

 APRTG5

PSCG6 

vs

WT

PSCG6

 vs

 PSCF1

PSCG6

 vs 

APRTE6

PSCG6

 vs 

APRTG5

PSCG6

 vs 

APRTH5

APRTE6 

vs

 APRTG5

3.84E-01 5.20E-02 1.51E-04 1.51E-05 4.13E-02 4.11E-02 3.84E-01 1.04E-01 7.55E-04 9.06E-05 8.27E-02 8.22E-02

Raw P values Adjusted P values
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Table S4.9 IHC analysis statistical significance for figure 4.7A – EMT subtype. Data 
represent means and S.D. Bold values indicate Welch’s t-test was used. Highlighted values are 
statistically significant with adjusted p value < 0.05 
  

IHC Analysis

EMT PSC D3

 Average 

(%)

EMT PSC D3

 STDEV

EMT APRT B3 

Average 

(%)

EMT APRT B3 

STDEV

EMT PPAT 

F1 

Average

 (%)

EMT PPAT F1 

STDEV

Ki67+ Nuclei (%) 60.51 4.12 55.13 4.61 58.03 2.81

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

2.01E-05 7.75E-03 9.44E-03 6.03E-05 9.44E-03 9.44E-03

Raw P values Adjusted P values
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Table S4.10 IHC analysis statistical significance for figure 4.7B – papillary subtype. Data 
represent means and S.D. Bold values indicate Welch’s t-test was used. Highlighted values are 
statistically significant with adjusted p value < 0.05 
  

Pap PSC G6 

Average 

(%)

Pap PSC G6

 STDEV

Pap APRT E6

 Average

 (%)

Pap APRT E6 

STDEV

PSC

vs

APRT KO

Ki67+ Nuclei (%) 53.18 7.06 59.05 5.78 1.85E-03
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Table S4.11 IHC analysis statistical significance for figure 4.7C – EMT subtype. Data 
represent means and S.D. Bold values indicate Welch’s t-test was used. Highlighted values are 
statistically significant with adjusted p value < 0.05 
  

IHC Analysis

EMT PSC D3

 Average 

(%)

EMT PSC D3

 STDEV

EMT APRT B3 

Average 

(%)

EMT APRT B3 

STDEV

EMT PPAT F1 

Average

 (%)

EMT PPAT F1 

STDEV

Percent Area (TUNEL +) 7.69 4.04 23.07 10.23 27.66 10.36

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

PSC

vs

APRT KO

PSC

vs

PPAT KO

APRT KO

vs

PPAT KO

1.37E-02 3.48E-03 5.46E-01 2.73E-02 1.04E-02 5.46E-01

Raw P values Adjusted P values
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Table S4.12 IHC analysis statistical significance for figure 4.7D – papillary subtype. Data 
represent means and S.D. Bold values indicate Welch’s t-test was used. Highlighted values are 
statistically significant with adjusted p value < 0.05 
  

IHC Analysis

Pap PSC G6 

Average 

(%)

Pap PSC G6

 STDEV

Pap APRT E6

 Average

 (%)

Pap APRT E6 

STDEV

PSC vs 

APRT KO 

P Value

Percent Area (TUNEL +) 24.65 15.50 38.10 10.88 1.93E-01
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Table S4.13 13C-Isotope percent labeling from glucose statistical significance for figure 
S4.9 – EMT subtype. Data represent means and S.D. of 3 replicates. Highlighted values are 
statistically significant with adjusted p value < 0.05 
  

Metabolite

EMT PPAT F1 

Average 

(%)

EMT PPAT F1

STDEV

EMT PPAT F2 

Average 

(%)

EMT PPAT F2

STDEV

Raw

 P values

Adjusted 

P values

ATP M-0 66.8 3.0 62.9 1.2 1.68E-01 2.52E-01

ATP M-5 24.4 1.6 26.5 0.6 1.67E-01 2.52E-01

ATP M-OTHER 8.7 2.5 10.6 1.4 4.11E-01 4.11E-01
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Table S4.14 13C-Isotope percent labeling from glucose statistical significance for figure 
S4.9 – papillary subtype. Data represent means and S.D. of 3 replicates. Highlighted values are 
statistically significant with adjusted p value < 0.05 
  

Metabolite

Papillary 

PPAT A7 

Average

 (%)

Papillary 

PPAT A7

 STDEV

Papillary 

PPAT B3 

Average

 (%)

Papillary 

PPAT B3

 STDEV

Papillary 

PPAT B7 

Average

 (%)

Papillary 

PPAT B7

 STDEV

Papillary 

PPAT B8 

Average

 (%)

Papillary 

PPAT B8

 STDEV

Papillary 

PPAT C1 

Average

 (%)

Papillary 

PPAT C1

 STDEV

ATP M-0 80.1 7.1 75.4 4.9 78.1 3.3 74.6 1.6 79.5 1.8

ATP M-5 10.7 7.6 14.7 2.1 13.7 1.9 15.4 0.8 12.9 0.9

ATP M-OTHER 9.2 0.5 9.9 2.9 8.1 1.6 10.0 1.8 7.5 1.3

Metabolite

PPAT A7

 vs 

 PPAT B3

PPAT A7 

vs 

PPAT B7

PPAT A7 

vs  

PPAT B8

PPAT A7 

vs  

PPAT C1

PPAT A7

 vs 

 PPAT B3

PPAT A7 

vs 

PPAT B7

PPAT A7 

vs  

PPAT B8

PPAT A7 

vs  

PPAT C1

ATP M-0 4.82E-01 7.33E-01 3.45E-01 9.09E-01 7.59E-01 7.33E-01 5.76E-01 9.09E-01

ATP M-5 5.09E-01 6.10E-01 4.74E-01 7.15E-01 7.59E-01 7.33E-01 5.76E-01 9.09E-01

ATP M-OTHER 7.59E-01 4.36E-01 5.76E-01 1.66E-01 7.59E-01 7.33E-01 5.76E-01 4.99E-01

Raw P values Adjusted P values
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CHAPTER 5. 

SUMMARY AND FUTURE DIRECTIONS 
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5.1 SUMMARY 

 Breast cancer heterogeneity provides significant challenges for patient care. The 

knowledge gained from academic research will provide clinicians with the necessary tools 

to treat every patient. Through my thesis work, I have contributed to our understanding of 

breast cancer heterogeneity by investigating metabolic vulnerabilities in histologic 

subtypes derived from the MMTV-Myc model. I have identified key differences in several 

central carbon metabolic pathways including glutathione metabolism, the TCA cycle, and 

nucleotide metabolism. Additionally, by integrating powerful genomic and metabolomic 

techniques, I was able to further identify subtype-specific preferences for parallel 

pathways of nucleotide biosynthesis. I have demonstrated substantial efficacy through 

rational targeting of vulnerable metabolic pathways specific to EMT and papillary 

subtypes, thus demonstrating the potential utility of targeting metabolism to guide therapy 

for different subtypes of breast cancer. My work has significant translational potential, as 

the EMT subtype derived from the MMTV-Myc mouse model correlate to the claudin-low 

subtype of human breast cancer, and the papillary subtype better models Myc 

amplification, a common feature in human breast cancer as discussed in chapters 1, 3, 

and 4. My work also raises several important questions including: 1) What other metabolic 

pathways are important for these subtypes? 2) Will targeting the pathways I have 

identified using approved therapeutics be sufficient to reduce tumor growth in vivo? And 

3) How translatable are these findings to human breast cancer subtypes? Answering 

these questions will take considerable effort but will also further improve our 

understanding of how to target metabolic vulnerabilities in breast cancer subtypes.  
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5.2 FUTURE DIRECTIONS 

5.2.1 EVALUATION WITH ADDITIONAL METABOLOMICS TECHNIQUES 

 There are still many known and unknown metabolites that have yet to be 

investigated in breast cancer subtypes. Throughout this dissertation we used a targeted 

mass spectrometry method that is well suited to evaluate polar compounds including 

nucleotides and central carbon metabolites as discussed in the preceding chapters. 

However, this approach is somewhat limited in that we specifically measure metabolites 

from a list of known compounds. Now that we have demonstrated the power of using 

metabolomics to identify subtype-specific metabolic vulnerabilities, we can expand upon 

our findings by using an untargeted metabolomics method to substantially increase the 

range of compounds evaluated in each sample. These experiments would be 

straightforward to perform, as we can easily generate additional samples from EMT and 

papillary cell lines or tumors, our current extraction techniques are compatible with 

untargeted methods, and we have access to several mass spectrometers with untargeted 

capabilities in the mass spectrometry and metabolomics core facility. I expect this 

untargeted analysis would not only validate our targeted findings but would further 

uncover many new metabolites of interest between the EMT and papillary subtypes – 

potentially revealing new metabolic pathways of interest. The main challenge of these 

untargeted analyses would be in developing a workflow for identifying unknown 

metabolites, and assigning these metabolites to specific pathways of interest. After 

addressing this obstacle, the same genomic and pharmacologic approaches as detailed 

in previous chapters could be used to test the importance of these new metabolites and 

pathways in EMT and papillary tumors or cell lines.  
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Metabolites analyzed in this work were collected from the polar phase, which 

precludes a wide range of potentially interesting non-polar compounds including fatty 

acids and lipids. As discussed in chapter 1, lipid metabolism is one area that has shown 

promising subtype-specific trends such as, ER+ breast cancer increasing cholesterol 

biosynthesis, HER2+ breast cancer increasing fatty acid biosynthesis, and TNBC 

increasing cholesterol uptake. In order to develop a truly comprehensive understanding 

of the metabolic differences between the EMT and papillary subtypes we should attempt 

to expand upon our current knowledge using techniques to study a wider range of 

metabolites. 

 Beyond expanding analytical techniques to measure more metabolites, we could 

also further develop our current findings by extracting metabolites in a more refined 

manner. Currently we extract metabolites from flash frozen tumor sections, which will 

include a mixture of both intracellular metabolites and extracellular metabolites from the 

tumor microenvironment. We could refine this to selectively study extracellular 

metabolites by centrifuging freshly collected tumor pieces over a fine mesh filter to collect 

an interstitial fluid filtrate, then process this filtrate using targeted and/or untargeted 

methods to identify compounds that are consumed and produced by EMT and papillary 

tumors. This could be achieved by measuring the abundance of each compound relative 

to serum samples from both tumor bearing and non-tumor bearing mice to establish how 

metabolite levels change in the tumor microenvironment and in the general circulation of 

the tumor bearing mouse compared to normal levels. For example, we would likely find 

decreased abundance of salvageable nucleosides and nucleobases in filtrates derived 

from the EMT subtype, reflecting the metabolic preference for nucleotide salvage in the 
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EMT subtype as described in chapter 4. It would also be interesting to use this approach 

to identify subtype-specific biomarkers. Little is currently known about 

metabolites/compounds that are released by EMT and papillary tumors specifically, but 

identifying subtype-specific metabolic biomarkers has the potential to revolutionize both 

cancer diagnostics and long term monitoring of patients following treatment. Studying 

metabolic biomarkers using mouse models could help accomplish this. 

5.2.2 IN VIVO DRUG TREATMENT STUDIES 

 The next important direction is to follow up both in vitro drug treatment studies and 

in vivo gene knock-out studies with in vivo validation using metabolism-targeting drugs. 

This would ideally be done using currently approved drugs, and the compounds described 

in chapter 3 should serve as a starting point for future in vivo studies. It would also be 

interesting to pharmacologically inhibit nucleotide salvage based on our findings 

presented in chapter 4. Given the lack of drugs that target nucleotide salvage pathways, 

we could screen compound libraries to identify inhibitors of nucleotide salvage enzymes 

such as APRT and UPP1. This compound identification process may result in discovery 

of new therapeutics to treat cancer. 

Assuming that selective inhibitors of each metabolic pathway can be identified, 

there are still several potential hurdles that could complicate these studies. First, it is 

possible that metabolic vulnerabilities identified in the in vitro context do not always 

translate in vivo. This is because cell culture conditions and conditions within a tumor are 

very different from one another, especially in terms of nutrient availability. However, in 

vitro findings are still valuable, as demonstrated by our findings regarding differences in 

nucleotide biosynthesis detailed in chapters 3 and 4, which are consistent between in 
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vitro and in vivo settings. Second, the optimal dose for each compound would need to be 

individually determined. The use of approved compounds would reduce this challenge by 

providing dosing guidelines to use as a starting point, but optimization would still be 

required to identify the most effective concentration for the EMT and papillary subtypes. 

Third, targeting a single metabolic pathway may be insufficient to inhibit tumor growth. 

This issue reflects the interconnected nature of metabolism, as cancer cells may 

upregulate a parallel metabolic pathway in response to inhibition of a preferred metabolic 

pathway. Addressing this concern leads to additional directions of research, as studying 

the reactive metabolism of drug treated cells could facilitate the development of targeted 

combination therapies. 

5.2.3 TRANSLATION TO HUMAN DISEASE 

 Arguably the most important next step for this work is to investigate the 

translatability of these findings into human disease. As discussed in chapters 3 and 4, the 

greatest translational potential for these findings stems from the similarities between the 

EMT subtype in the MMTV-Myc mouse model and the claudin-low subtype of human 

breast cancer. Claudin-low breast cancer currently lacks targeted therapy options and 

can therefore greatly benefit from identification of novel druggable metabolic targets. 

Based on the findings presented in chapters 3 and 4, glutathione biosynthesis, TCA cycle 

metabolism, and nucleotide salvage are strong candidates for further study focused on 

treating claudin-low breast cancer.  

The next step toward translating our findings to human disease should include 

examination of gene expression data of claudin-low cell lines and tumors to determine 

whether they exhibit expression differences in genes related to these pathways compared 
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to other breast cancer subtypes. Follow up experiments would examine metabolic profiles 

of claudin-low samples in comparison to other breast cancer subtypes to validate gene 

expression findings and identify any potential metabolic vulnerabilities that were not fully 

captured by the genomic analysis. Further experiments will evaluate the significance of 

these metabolic pathways in models of claudin-low breast cancer in vitro and in vivo using 

metabolism-targeting drugs and/or genetic manipulations as described earlier for the EMT 

subtype. Once fully investigated, this line of research could yield new therapeutic 

strategies to treat breast cancer, which are currently needed to improve our ability to 

provide care for patients with this deadly disease.  

In conclusion, this work makes significant progress towards identification of 

subtype-specific metabolic vulnerabilities and demonstrates the feasibility of targeting 

metabolism to treat breast cancer. Subtype-specific metabolic vulnerabilities in breast 

cancer are not currently used to guide therapy; the work presented here demonstrates 

that metabolic weaknesses can be targeted to stop tumor growth and should be 

incorporated into therapy. This work has the potential to improve outcomes for breast 

cancer patients by providing a foundation for future translational research based on 

targeting metabolic vulnerabilities in breast cancer subtypes. 


