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ABSTRACT

TARGETING METABOLIC VULNERABILITIES IN BREAST CANCER SUBTYPES

By

Martin Peter Ogrodzinski

Breast cancer is a highly prevalent and deadly disease. Globally, it is the most
diagnosed cancer in women and is responsible for the most cancer-related deaths among
women. Breast cancer is also a remarkably heterogeneous disease, with clear variability
in clinical parameters including histological presentation, receptor status, and gene
expression patterns that differ between patients. A significant amount of effort has been
spent characterizing breast cancer into subtypes, with the main goal of improving patient
outcomes by: 1) designing targeted therapies, and 2) improving our ability to determine
patient prognosis. While scientists have made significant strides in meeting these goals,
we still lack targeted therapies for some subtypes of breast cancer, and current therapies
often fail to provide a lasting cure. Thus, additional research is needed to improve patient
care. One promising area in breast cancer research is cancer metabolism. Using
metabolism as a therapeutic target is rapidly gaining traction, as it is now widely
appreciated that cancer cells exhibit significant differences in metabolism compared to
normal cells. The primary goal of this dissertation is to study the metabolism of distinct
subtypes of breast cancer and identify metabolic vulnerabilities that can be used to

effectively treat each subtype.

This thesis will begin with a review of current classification strategies for breast

cancer subtypes and knowledge regarding subtype-specific metabolism. It will also



consider modern techniques for targeting breast cancer metabolism for therapeutic
benefit. Breast cancer heterogeneity and metabolism are investigated using cell lines and
tumors derived from the MMTV-Myc mouse model, which mimics the complexity
observed in human disease. Cell lines derived from two histologically defined subtypes,
epithelial-mesenchymal transition (EMT) and papillary, are used to establish clear
metabolic profiles for each subtype. Metabolic vulnerabilities are identified in glutathione
biosynthesis and the tricarboxylic acid cycle in the EMT subtype and nucleotide
biosynthesis is determined to be a metabolic weakness in the papillary subtype. It is
further shown that pharmacologically targeting each of these metabolic pathways has the
greatest effect on reducing proliferation when used against the vulnerable subtype. These
in vitro findings are then expanded upon by integrating genomic and metabolomic data
acquired from in vivo tumors. In vivo experiments reveal that the EMT and papillary
tumors prefer parallel pathways to generate nucleotides, with the EMT subtype preferring
to salvage nucleotides while the papillary subtype prefers to produce nucleotides de novo.
CRISPR/Cas9 gene editing is used to functionally characterize the metabolic effects of
targeting nucleotide salvage and de novo biosynthesis in the EMT and papillary subtypes,
and determine that targeting the preferred pathway of each subtype is most effective at

slowing tumor growth.

Overall, this work demonstrates the power of using metabolism as a therapeutic
target of breast cancer, and further shows that metabolic vulnerabilities specific to

individual subtypes can be used effectively to guide personalized medicine.
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CHAPTER 1.

DECIPHERING METABOLIC REWIRING IN BREAST CANCER SUBTYPES



1.1 PREFACE
This chapter is a modified version of a previously published article:
Ogrodzinski, M. P., Bernard, J. J., & Lunt, S. Y. (2017). Deciphering metabolic

rewiring in breast cancer subtypes. Translational Research, 189, 105-122.



1.2 Abstract

Metabolic reprogramming, an emerging hallmark of cancer, is observed in breast cancer.
Breast cancer cells rewire their cellular metabolism to meet the demands of survival,
proliferation, and invasion. However, breast cancer is a heterogeneous disease, and
metabolic rewiring is not uniform. Each subtype of breast cancer displays distinct
metabolic alterations. Here, we focus on unique metabolic reprogramming associated
with subtypes of breast cancer, as well as common features. Therapeutic opportunities
based on subtype-specific metabolic alterations are also discussed. Through this
discussion, we aim to provide insight into subtype-specific metabolic rewiring and
vulnerabilities that have the potential to better guide therapy and improve outcomes for

patients.

1.3 Introduction

Breast cancer remains the leading cause of cancer deaths for women worldwide,
and incidence rates are increasing [1]. The heterogeneity of breast cancers makes
treatment challenging, as therapies must be tailored to the context of each patient’s
disease. Effective personalized therapy can only be achieved by considering the clinical
manifestations as well as the underlying biology. Current therapeutic strategies largely do
not leverage the metabolic reprogramming of breast cancers. Treatment guidelines for
women with localized disease in stages I-Ill focus on surgical removal (breast conserving
surgery or mastectomy) and post-surgical radiation, when not contraindicated. Most
patients diagnosed with advanced stage Il or IV breast cancers undergo treatment
regimens including chemotherapy and/or radiation therapy [2,3]. In general, patients with
estrogen receptor positive (ER+) breast cancer receive adjuvant endocrine therapy in
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addition to chemotherapy in advanced cases; patients with human epidermal growth
factor receptor 2 positive (HER2+) breast cancer often receive anti-HER2 therapy
combined with chemotherapy; and patients with triple negative breast cancer (TNBC)
receive chemotherapy [3]. Many chemotherapy regimens are used in the treatment of
breast cancer, and commonly include combinations of cyclophosphamide, methotrexate,
5-fluorouracil, taxanes, and/or anthracyclines [4]. While these compounds have helped
many patients, recurrence rates are still high [5], and tumors often develop therapeutic
resistance [6]. Therefore, targeting breast cancer-specific metabolic vulnerabilities may
be a valuable addition to the clinicians’ toolbox for treating patients with breast cancer as
an adjuvant therapy, a targeted first-line therapy for triple negative breast cancers, or a

second-line therapy in tumors that develop resistance.

Cancer cells rewire their metabolism to support survival, proliferation, and invasion
[7-9]. Metabolic rewiring varies significantly between cancers based on genetics and
environment [10-12], and may manifest through upregulation of metabolic pathways or
through downstream effects of oncogenes [13,14]. A well-known example of metabolic
rewiring in cancer is the Warburg effect: while normal differentiated cells increase
glycolysis in response to certain environmental cues such as hypoxia, many cancer cells
upregulate glycolysis and lactate fermentation regardless of oxygen availability [15].
Cancer cells can also upregulate the tricarboxylic acid (TCA) cycle in the mitochondria to
support both energy generation and macromolecule synthesis. The TCA cycle is
replenished through upregulated anaplerosis using various carbon sources including
glutamine, pyruvate, and branched chain amino acids [16]. Despite the metabolic

heterogeneity within and between cancers, most alterations in metabolism support



pathways involving bioenergetics, biosynthesis, and redox balance [10]. These metabolic
changes are induced both by alterations in signaling pathways and the tumor
microenvironment. Signaling pathways that impact cancer metabolism include
phosphatidylinositol 3-kinase (PI3K), Protein Kinase B (Akt), mammalian target of
rapamycin (mTOR), hypoxia-inducible factor-1 (HIF-1), sterol regulatory element binding
protein, c-Myc, Kras, and p53 [8]. Interestingly, several of these signaling pathways are
in turn regulated by metabolic feedback from metabolites including amino acids, fatty
acids, a-ketoglutarate, and ATP [17]. Altered metabolite levels in cancer also influence
epigenetic modifications. Metabolites such as acetyl-CoA, succinate, fumarate, a-
ketoglutarate, and S-adenosylmethionine (SAM) have been shown to participate in
epigenetic reprogramming and regulate gene expression [18]. Cellular metabolism plays
an integral role in numerous biological processes, and investigation into cancer

metabolism can greatly enhance our understanding of cancer biology.

Metabolomics has improved our current understanding of cancer metabolism [19-
21]. Metabolomics is the analysis of metabolite levels in biological systems, usually by
mass spectrometry or nuclear magnetic resonance (NMR), and is primarily used to
investigate three main areas. First, metabolomics has the potential to identify biomarkers
for diagnosis and/or monitoring of disease progression [22,23]. While significant validation
will be required before clinical application, metabolomic analysis of patient plasma
samples may enable the diagnosis of breast cancer and even subtype differentiation
without performing a biopsy [24-26]. Second, metabolomics enables the discovery of
oncometabolites, which are metabolites that accumulate significantly in tumors due to a

specific mutation. Oncometabolites can serve as biomarkers, but also contribute to the



development of malignancy, providing a mechanistic understanding of tumor biology [27].
Oncometabolites include D-2-hydroxyglutarate, which accumulates in tumors with mutant
isocitrate dehydrogenase 1 or 2 [28], as well as fumarate and succinate, which
accumulate in tumors with mutations in fumarate hydratase and/or succinate
dehydrogenase [29]. Third, metabolomics enables the identification of metabolic
pathways uniquely upregulated in cancers. One way to accomplish this is through flux
studies that measure the incorporation of stable isotope tracers, such as **C-glucose, into
metabolic pathways [30,31]. Upregulated metabolic pathways could represent metabolic
vulnerabilities and serve as novel therapeutic targets, or explain mechanisms of drug
sensitivity or resistance in cancer [22,32]. Metabolomics will continue to advance our
understanding of various metabolic phenotypes in cancers, enabling novel diagnostic and

therapeutic approaches.

In this review, we focus on the metabolic variations between breast cancer
subtypes. We begin with an overview of the methods for breast cancer classification.
Next, we focus on known metabolic differences in each breast cancer subtype. We further
discuss the metabolic impacts of hypoxia, a common feature among breast cancer
subtypes. We also consider the influence of obesity and diabetes as co-morbidities
influencing breast cancer development and progression. Finally, we discuss approaches

for targeting metabolism in breast cancer.
1.4 Merging traditional breast cancer subtypes with metabolic profiles

The heterogeneity in breast cancer has led to the development of several
classification systems. Breast cancer is commonly classified into subtypes by the
following: 1) morphological criteria (e.g., ductal, lobular, invasive, or in situ); 2) expression
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of receptors (e.g., ER+, HERZ2, or triple negative); and 3) intrinsic subtype (e.g., luminal,
basal-like, claudin-low) [33,34]. Clinically, breast cancers are commonly categorized by
expression of three receptors: the estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HERZ2 .[35]. This classification system
can help direct targeted treatment regimens, such as endocrine therapy for ER+ breast
cancer. Gene expression profiling has enabled further sub-classification of breast cancer
into five intrinsic subtypes: luminal A, luminal B, HER2 over-expressing, basal-like, and
normal-like [34]. Several methods have been proposed by different groups for
characterizing intrinsic subtypes [36,37], culminating in the development of the Prediction
Analysis of Microarray 50 (PAM50) [38], a set of 50 genes that is weighted together with
clinical variables in a FDA-approved test to categorize patients into intrinsic subtypes,
assess a patient’s risk of distant recurrence, and direct therapy [39]. While no
classification system perfectly captures the full heterogeneity of breast cancers, they
provide valuable insights into the underlying biology of breast cancers to help guide
treatment and predict the chance of metastasis. Taking subtype-specific metabolic

vulnerabilities into account may further improve patient outcomes.

Breast cancer subtypes possess distinct metabolic features that may be exploited
for the development of subtype-specific drugs with fewer side effects (summarized in
Table 1). To begin deciphering the metabolic heterogeneity in breast cancer, we focus
on the three major subtypes of breast cancer by receptor status: ER+ breast cancer,
HER2+ breast cancer, and triple negative breast cancer. We also include a discussion of
inflammatory breast cancer, a rare yet deadly subtype of breast cancer. We first discuss

TNBC, the least common yet often the most aggressive form of breast cancer occurring



frequently in younger women. Understanding how cancer subtypes differ metabolically
may enable the development of new treatment approaches, improve our understanding
of the mechanisms by which drug resistance occurs, and provide new methods for early

diagnosis and monitoring of breast cancer [23,32].

1.5 Triple-negative breast cancer

Triple-negative breast cancers (TNBCs) account for ~12% of all breast cancers
[40]. The majority of TNBCs can be classified into the basal-like intrinsic subtype, which
generally lacks ER and HER2 and express genes observed in basal epithelial cells of the
normal breast [34,36-38]. Both triple-negative and basal-like breast cancers occur
proportionally more often in younger patients and have worse clinical outcomes [41].
Targeted therapies are currently unavailable due to the lack of ER, PR, and HER2
expression. Thus, developing new therapeutic targets based on metabolic vulnerabilities

is especially promising for improving TNBC patient outcomes.

TNBCs generally display the Warburg effect [42], having elevated glucose uptake
[43,44] and increased lactate secretion along with upregulated expression of glycolytic
genes relative to other breast cancer subtypes [45]. The Warburg effect may support
proliferation by increasing the availability of glycolytic intermediates for biosynthetic
pathways, and lactate production is required to balance the NAD/NADH ratio to sustain
glycolysis [15]. Consistent with the Warburg effect, TNBCs exhibit increased glucose and
lactate transporters [46,47] and lactate dehydrogenase (LDH) [48], which generates
lactate from the glycolytic end-product pyruvate. The glycolytic rates of TNBCs correlate
with proliferation rates and tumor aggressiveness [12]. Upregulated glucose metabolism
in TNBCs is due in part to amplification and/or overexpression of the transcription factor
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c-Myc (hereafter referred to as Myc), which is overexpressed in basal-like subtypes with
lower expression in luminal and HER2+ subtypes [49]. Myc directly activates the glucose
transporter GLUT1, as well as genes involved in glycolysis [50] and the lactate
dehydrogenase-A gene [51]. Myc has also been shown to upregulate glycolysis by
repressing expression of thioredoxin-interacting protein, a potent inhibitor of glucose
metabolism.[52] Epidermal growth factor receptor (EGFR) overexpression, frequently
observed in TNBC patients and linked with poor clinical outcome [53,54], has also been

linked with upregulated aerobic glycolysis in TNBC [55].

Deregulation of Myc also upregulates glutamine metabolism [56], which is
increased in TNBCs. Glutamine is a non-essential amino acid that contributes to several
metabolic pathways including protein synthesis, nucleotide biosynthesis, and the TCA
cycle. Myc upregulates glutamine transporters and the expression of mitochondrial
glutaminase, which converts glutamine to glutamate for use in ATP generation and
glutathione synthesis [57,58]. Glutaminase expression has been associated with poor

prognosis in triple negative breast cancer [59].

Many cancer cells, including TNBCs, display reliance on glutamine, termed
glutamine addiction [60,61]. The importance of glutamine in cancer is likely due to its
ability to participate in a wide variety of metabolic processes, including protein and lipid
biosynthesis, nitrogen donation, glutathione generation, and energy production.
Increased glutaminolysis, the process of catabolizing glutamine to fuel metabolic
pathways such as the TCA cycle, is also often observed in cancers [62,63]. Breast cancer
subtypes express variable levels of enzymes involved in glutaminolysis [64]. Compared

to other subtypes, TNBCs display glutamine addiction and increased glutaminolysis, and



are therefore sensitive to glutamine depletion [65]. The glutamine dependence of some
TNBCs may be due to the lack of glutamine synthetase (GS), the enzyme that synthesizes
glutamine; co-culture with luminal cells that express GS increases the viability of
glutamine-dependent basal-like breast cancer cells in glutamine-free media [65]. Most
basal-like and claudin-low TNBC cell lines consume more glutamine than luminal breast
cancer cell lines and proliferating nontumorigenic cells, but only a subset of the TNBC
cell lines are glutamine auxotrophs [66]. Glutamine starvation decreases the abundance
of reduced glutathione and NADPH while increasing oxidized glutathione and glucose
uptake in glutamine addicted cell lines; these changes are not observed in the ER+ MCF7
breast cancer cell line, where glutamine starvation decreases reduced glutathione levels
without affecting NADPH, oxidized glutathione, or glucose uptake [67]. These results
suggest that TNBC cell lines display altered glutamine metabolism compared to ER+
breast cancer cell lines. However, caution should be exercised before translating these
results to the in vivo setting, as the glutamine metabolism of cancer cells in vitro may not
align with in vivo tumor metabolism: lung cancer cell lines derived from primary lung
tumors in mice display significant glutamine metabolism in culture and are sensitive to
glutaminase inhibition; however, the primary lung tumors in vivo do not significantly utilize
glutamine and are unaffected by glutaminase inhibition [68]. There is also some
controversy surrounding the subtype specificity of altered glutamine metabolism in breast
cancer. A study investigating metabolic profiles of tumors from non-treated breast cancer
patients found altered glutaminase expression and glutamine levels between metabolic
clusters of breast cancer, but these clusters were not distinguishable by receptor status

[69]. However, other in vivo studies support subtype specific differences in glutamine
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metabolism. Increased glutaminase expression has been observed in primary TNBC
tumors as compared to other breast cancer subtypes and normal breast tissue, and TNBC
cell lines and xenografts display sensitivity to glutaminase inhibitors [70]. Additionally, in
a study comparing 75 breast tumors from patients without known distant metastases,
TNBC tumors contained a lower level of glutamine than ER/PR/HER2+ tumors [71]. This
may be due to the increased glutaminolysis in TNBCs. Knockdown of alanine, serine,
cysteine-preferring transporter 2 (ASCT2; SLC1A5), a transporter that mediates uptake
of neutral amino acids including glutamine, caused cell death in vitro and decreased
growth of xenografted cells in vivo in triple-negative basal-like breast cancer cells, with
minimal impact on luminal breast cancer cells [72]. TNBCs’ reliance on glutamine
represents one metabolic vulnerability that can be targeted therapeutically, and is further

discussed in a later section.

In contrast to the increased uptake of glutamine, TNBCs activate the serine
biosynthesis pathway [12]. TNBCs often amplify or overexpress phosphoglycerate
dehydrogenase (PHGDH), the rate-limiting enzyme in the serine biosynthesis pathway
[73,74]. Microarray analysis of formalin-fixed, paraffin-embedded tissues from TNBC
patients revealed that increased PHGDH expression in the tumor and decreased serine
hydroxymethyltransferase 1 (SHMT1) expression in the stroma are correlated with poor
clinical prognosis [75]. Upregulation of all three genes in the serine biosynthesis pathway,
PHGDH, phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase
(PSPH) has been found in TNBC cells highly metastatic to the bone [76]. Myc activity may
also at least partially explain this observation, as Myc has been shown to upregulate

expression of serine biosynthesis genes [77]. Although it is not clear how upregulation of
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the serine biosynthesis pathway benefits cancer cells, upregulated serine metabolism is
commonly observed in many cancers, and serine is a precursor to several downstream
metabolites that support cancer growth [78,79]. These serine-derived metabolites include
folates, sphingolipids, phospholipids, glycine, and cysteine. Glycine and cysteine also
contribute to glutathione biosynthesis. Many pathways involving these metabolites are
also upregulated in TNBC: higher expression of mitochondrial glycine synthesis enzymes
serine hydroxymethyltransferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 2 (MTHFD2), and methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 1-like (MTHFDL1L) in breast cancer patients has been associated
with greater mortality [80]. Cysteine, a serine-derived amino acid, has also been linked
with TNBC. A screen removing individual amino acids across a panel of breast cancer
cells revealed that basal-like TNBC cells undergo rapid programmed necrosis following
cystine deprivation, while luminal type breast cancer cells are resistant to cystine

deprivation [81].

Another amino acid implicated in TNBC is arginine. TNBC cell lines with low
expression of enzymes in the arginine biosynthesis pathway, argininosuccinate
synthetase (ASS) and ornithine transcarbamylase (OTC), are sensitive to arginine
depletion by treatment with recombinant human arginase [82]. This may be due to a
reliance on extracellular arginine for synthesis of proteins, polyamines, and nitric oxide.
Nitric oxide, which can be produced from arginine by nitric oxide synthase, has been
implicated in a number of biological processes involved in cancer progression including
angiogenesis, immune system evasion, and metastasis. In breast cancer patients, nitric

oxide production has been correlated with advanced disease and poor clinical outcomes
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[83]. However, there are inconsistencies in the effect of nitric oxide between TNBC cell
lines; TNBC cell line MDA-MB-468, but not TNBC cell line MDA-MB-231, is sensitive to
nitric oxide-induced cell death [84]. Nitric oxide actually increases proliferation in MDA-
MB-231 cells by upregulating translation of cyclin D1 and ornithine decarboxylase [85].
One study links these distinct metabolic characteristics of TNBC cell lines to ethnic
background [84], but it is not clear whether the predominant underlying causes are
genetic or environmental. Additionally, not all TNBC cell lines are sensitive to arginine
deprivation; several TNBC cell lines express ASS and are also generally resistant to
arginine deprivation [86]. Sensitivity to arginine depletion has been reported in several
other cancers including acute lymphoblastic T cell leukemia [87], non-Hodgkin's
lymphoma [88], acute myeloid leukemia [89], melanoma [90], hepatocellular carcinoma

[91], and pancreatic cancer deficient in argininosuccinate synthetase [92].

In addition to altered amino acid metabolism, TNBCs have been shown to increase
lipid uptake. Compared to ER+ MCF7 cells, TNBC cell lines MDA-MD-231 and MDA-MB-
436 have increased cholesterol uptake and storage along with decreased cholesterol
synthesis [93]. Lipids serve as an important energy source, as metastatic TNBC cell lines
and transmitochondrial cybrids (rho-zero cells lacking mtDNA fused with enucleated
mitochondrial donor cells) [94] with TNBC mitochondria show dependence on fatty acid
oxidation for energy production [95]. In Myc-driven TNBC transgenic and patient-derived
xenograft models, targeting fatty acid oxidation using etomoxir, an irreversible inhibitor of
carnitine palmitoyltransferase-1 (CPT1), significantly decreased in vivo tumor growth [96].
CPT1 is required for catabolism of long-chain fatty acids through fatty acid oxidation [97].

Levels of choline, a vitamin involved in phospholipid biosynthesis, have been found to be
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higher in tumors from patients with TNBCs compared to patients with ER+/PR+/HER2+
cancers [71]. Distinct alterations in lipid metabolism have also been observed in HER2+
breast cancer, and will be further discussed. Taken together, TNBCs have altered

metabolic pathways involving glucose, amino acids, and lipids (Figure 1A).

1.6 ER+ breast cancer

ER+ breast cancer is the most common subtype, accounting for ~70% of breast
cancers [40]. ER+ breast tumors express genes associated with normal breast luminal
cells, and the term “luminal breast cancer” is often used interchangeably with ER+ breast
cancer [34]. The luminal/lER+ sub-group can be divided into additional intrinsic groups
based on gene expression (e.g., luminal A and luminal B) [33]. Luminal A tumors are
generally ER+/HER2-, while luminal B tumors tend to be ER+ and HER2+/- [35]. ER+
breast cancer is associated with a more favorable prognosis than HER2+ and TNBC [98],

partially due to the availability of drugs that disrupt estrogen signaling or biosynthesis [99].

Some evidence indicates that unlike TNBCs, ER+ breast cancers may display the
reverse Warburg effect [100], in which breast cancer cells rely on glycolytic end products
such as lactate and pyruvate supplied by neighboring cancer associated fibroblasts
(CAFs). Cancer cells promote metabolic rewiring of surrounding stromal cells, such as
fibroblasts, into CAFs by promoting a hypoxic environment through hydrogen peroxide
secretion [101]. Hydrogen peroxide activates caveolin 1 and hypoxia-inducible factor 1-
alpha (HIF-1a), which in turn upregulates aerobic glycolysis to produce lactate [102,103].
To promote secretion of lactate from CAFs, breast cancer cells induce expression of a
lactate transporter, monocarboxylate transporter (MCT) 4 in CAFs [104]. Conversely,
breast cancer cells have been observed to express MCTL1 [104], a transporter for lactate
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uptake, to import lactate produced by CAFs [105,106]. Imported lactate can be converted
by LDH to pyruvate, which can be utilized as fuel for the TCA cycle. ER+ cancers also
exhibit high LDH expression [47]. While the reverse Warburg effect is an interesting
concept, experimental evidence is limited. Additional analysis including metabolic

profiling and in vivo flux analysis would be valuable in confirming these findings.

In addition to the reverse Warburg effect, differences in other metabolic pathways
have been observed. A study comparing the metabolism of ER+ to ER- primary breast
tumors found glutamate, B-alanine, and 2-hydroxyglutarate to be less abundant in ER+
breast tumors, while glutamine and 3-phosphoglycerate were more abundant [107]. The
increased glutamine and decreased glutamate levels can potentially be explained through
the differences in glutaminase expression between ER+ and ER- tumors. Glutaminase is
overexpressed in TNBCs, as described in the TNBC section [65,59], while ER+ cell lines
and tumors have higher expression of glutamine synthetase [65,70]. Thus, ER+ tumors
with lower glutaminase and higher glutamine synthetase expression would maintain
higher levels of glutamine. Elevated 3-phosphoglycerate may indicate differences in the
relative activity of metabolic pathways that produce or utilize this metabolite, such as

glycolysis and the serine biosynthesis pathway.

While the efficacy of endocrine therapy supports estrogen’s role in stimulating
proliferation of ER+ breast cancer cells [108,109], estrogen also has a role in cellular
metabolism. Interestingly, estrogen’s impact on ER+ breast cancer cell line metabolism
depends on available glucose levels. In high glucose conditions (25 mM), estrogen
stimulates glycolysis and suppresses the TCA cycle. However, under physiological

glucose concentrations (5.5 mM), estrogen instead suppresses glycolysis and stimulates
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the TCA cycle through AMP kinase-mediated upregulation of pyruvate dehydrogenase
[110]. Under low glucose conditions (2.8 mM), ER+ cell lines are resistant to apoptosis
secondary to endoplasmic reticulum stress through regulation of several pathways,
including increased autophagy [111]. Estrogen treatment of ER+ breast cancer cell lines
has also been shown to alter choline metabolism by decreasing phosphocholine (PCho)
and increasing phosphatidylcholine (PtdCho) levels, and inducing the expression of
several genes involved in choline metabolism [112]. In human tissues, ER+ samples
display a higher PCho/glycerophosphocholine (GPC) ratio versus ER- samples [113].
However, this relationship has not held universally among ER+ cell lines. In another study,
stimulation with estrogen increased the PCho/GPC ratio in MCF7 cells, but reduced the
PCho/GPC ratio in T47D cells [112]. Estrogen-related receptors, orphan receptors
structurally related to estrogen receptors, also impact breast cancer metabolism by
modulating expression of genes involved in metabolic pathways such as glycolysis,

glutaminolysis, and oxidative phosphorylation [114].

Anti-estrogen therapy using tamoxifen is an effective way to treat some ER+ breast
tumors, but tamoxifen treatment fails in 66% of ER+/PR-, 55% of ER-/PR+, and 25% of
ER+/PR+ breast cancer patients [105,106]. In addition to other resistance mechanisms
[115,116], metabolism may play a role in tamoxifen resistance. For example, tamoxifen
resistance has been linked with cholesterol metabolism [117,118]. Increased expression
of cholesterol and fatty acid metabolism genes induced by overexpression of the mucin
1 transmembrane glycoprotein predict tamoxifen treatment failure and recurrence in ER+
breast cancer patients treated with tamoxifen [119]. Nucleotide metabolism has also been

connected to tamoxifen resistance: elevated expression of ribonucleotide reductase M2
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(RRM2), which catalyzes the production of deoxynucleotides, is found in tamoxifen-
resistant ER+ patient tumors [120]. Additionally, increased RRM2 expression has been
associated with decreased survival in tamoxifen-resistant luminal breast cancer patients
[120]. RRM2 was identified as a key contributor to Akt-induced tamoxifen resistance, and
genetic or pharmacological inhibition of RRM2 significantly reduces growth of tamoxifen-
resistant breast cancer cells in vitro and in vivo [121]. Compared to other breast cancer
subtypes, ER+ breast cancers exhibit distinct metabolic characteristics, including the
reverse Warburg effect and decreased glutamine catabolism. These metabolic alterations
are summarized in Figure 1B. Additionally, estrogen signaling in ER+ breast cancers
likely plays an important role in cellular metabolism, and should be considered for future

work involving endocrine resistant breast cancers.

1.7 HER2+ breast cancer

Approximately 15% of breast cancers present with amplification and/or
overexpression of HER2 [40,122,123]. Two-thirds of HER2+ breast tumors are also ER+.
Patients with HER2+ breast cancer have worse outcomes than those with ER+/HER2-
breast cancer, and similar or worse outcomes as patients with TNBC [124,125].
Additionally, there is evidence that treatment of ER+ breast cancer with endocrine therapy
can increase HER2 expression [126,127]. Drugs that target HER2, such as trastuzumab,
are clinically available for treating HER2+ breast cancers [128]. However, trastuzumab is

only effective for ~30% of HER2+ patients, and resistance remains a problem [129].

HER?2 is a receptor tyrosine kinase which impacts several signaling pathways that
mediate metabolism. HER2-affected signaling pathways include the PI3K/Akt/mTOR
[130] and MAPK [131] pathways, which regulate metabolic pathways that support cancer
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growth, including glycolysis, amino acid metabolism, and lipid biosynthesis. Akt and
MTOR activity increase the rate of glycolysis and amino acid uptake through upregulation
of glucose and amino acid transporters and metabolic enzymes [132]. HER2+ breast
cancers express relatively increased GLUT1 compared with ER+ breast cancers, but
lower GLUT1 than TNBCs [47]. HER2+ breast cancers also exhibit high MCT1 and LDH
expression [47]. HER2+ breast cancer cell lines display increased glycolytic metabolism
both in vitro and in mouse xenografts [133]; inhibiting the glycolytic enzyme 6-
phosphofructo-2-kinase, which is upregulated in HER2+ breast cancer cell lines,
decreases glucose uptake and proliferation of HER2+ breast cancer cells both in vitro
and in vivo [134]. The increased glucose uptake in HER2+ breast cancer cell lines
supports lipid biosynthesis, which is important for energy storage as well as the
production and maintenance of cell membrane components. The glucose to lipid
conversion rate is elevated in HER2+ breast cancer cell lines compared to TNBC cell
lines [135]. Glucose fuels de novo lipid biosynthesis through mTOR complex-2 mediated
upregulation of ATP citrate lyase (ACL) [135], which converts citrate to acetyl CoA to
support lipid biosynthesis. HER2 can directly activate a second enzyme in the fatty acid
biosynthesis pathway, fatty acid synthase (FASN) [136]. Inhibition of FASN activity has
been shown to reduce HER2 expression in breast cancer cells [137]. Thus, HER2+ breast

cancers increase de novo production of lipids, while TNBCs increase uptake of lipids.

Similar to TNBCs, HER2+ breast cancers display altered glutamine metabolism
[64]. The receptor tyrosine kinase EPHA2, which is overexpressed in HER2+ breast
cancers, increases glutamine metabolism and promotes lipid accumulation through RhoA

GTPase mediated regulation of glutaminase activity in HER2+ breast cancer cell lines
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[138]. High glycine and alanine levels have also been reported in HER2+ breast tumors
from patients [71]. These results illustrate metabolic alterations that are specific to HER2+
breast cancer (Figure 1C), such as increased lipid biosynthesis, as well as characteristics
observed in both HER2+ and TNBCs, such as increased glycolysis and glutamine

metabolism.

1.8 Inflammatory Breast Cancer

Inflammatory breast cancer (IBC) is a rare subtype of breast cancer that is not
represented by a specific histological subtype [139]. IBC is considered locally advanced
at diagnosis and presents with redness and swelling of the breast, often without a
noticeable lump [140]. While IBC makes up only ~2% of breast cancer cases, it accounts
for a disproportionate ~7% of breast cancer mortality, and IBC incidence appears to be
increasing over time [141]. Unlike other breast cancers, IBC presents more frequently as
HER2+ or TNBC, with proportionally fewer ER+ cases [142,143]. ER expression does not
correlate with significantly better prognosis for IBC, but patients with triple negative IBC
generally have worse outcomes [143,144]. IBC is an understudied form of breast cancer,
and unfortunately insufficient information is available to gain a comprehensive
understanding of its metabolic characteristics. One study examining the metabolism of
the triple negative IBC-derived SUM149 cell line found that relative to MCF7 (ER+) and
MCF-10A (immortalized non-transformed mammary epithelial) cells, SUM149 cells are
more glycolytic, converting more glucose to lactate. To fuel their TCA cycle, SUM149 cells
predominantly utilize glutamine, and their glutamine metabolism and N-acetylaspartate
production is regulated by RhoC GTPase [145]. This study also showed that SUM149

cells have the highest activity of the M2 isoform of pyruvate kinase (PKM2) relative to
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MCF7 and MCF-10A cells. Pyruvate kinase catalyzes the final step in glycolysis,
converting ADP and phosphoenolpyruvate to ATP and pyruvate. While normal non-
proliferating cells express the M1 isoform of pyruvate kinase (PKM1), proliferating cells
and all cancer cells studied to date express PKM2 [146-149]. These metabolic
characteristics are summarized in Figure 1D. This study investigated the IBC SUM149
cell line, which can be additionally sub-classified as basal-like and therefore does not
enable discrimination of metabolic features between IBCs and TNBCs. However, it
provides the foundation for future work that may enable the development of new treatment

options for patients with this rare and deadly subtype of breast cancer.

1.9 Hypoxia, a Common Feature in Breast Cancer Subtypes

In addition to metabolic reprogramming, another hallmark of cancer is the
formation of new vasculature to facilitate the transport of nutrients and waste [150]. Many
factors contribute to the formation of new vasculature in tumors [151-153], including
hypoxia-inducible factors (HIFs) [154]. As the tumor grows, it becomes increasingly
dependent on its blood supply to deliver oxygen and macronutrients and to clear waste
products. Regions of hypoxia within the tumor promote angiogenesis to enable continued

tumor growth and development [153,154].

In breast cancer patients, hypoxia has been associated with poor prognostic
factors including lower overall survival, lower disease free survival, and higher risk of
developing metastatic disease [155,156]. As many as 40% of invasive breast cancer
samples display hypoxic markers [157], and overexpression of HIFs has been found to
be generally similar between molecular subtypes of breast cancer [158,159]. However,
subtype-specific interactions with hypoxia have been described. Under hypoxia, ER+
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MCF7 and T47D breast cancer cell lines decrease expression of the two principal
estrogen receptors, ER-a and ER-B [160]. Signaling through ER-a and HIF-1a co-
regulates metabolic genes in glycolysis including glyceraldehyde-3-phosphate
dehydrogenase, glucose-6-phopsphate isomerase, hexokinase 2, lactate dehydrogenase
A, PKM2, and phosphofructokinase [161]. Supplementing hypoxic MCF7 cells with
estrogen further increases HIF-1a expression, while treatment with ER-antagonist
fulvestrant reduces HIF-1a expression [161]. In ER+ cell lines, fulvestrant treatment also
downregulates expression of the glucose transporter GLUT1, which is normally induced
in hypoxia [161]. In TNBC cell line MDA-MB-231, fulvestrant treatment has no effect on

HIF-1a expression [161].

HIF-1a expression has also been associated with drug resistance in several
cancers [162] and may mediate drug resistance in breast cancer. When treated with
chemotherapeutics such as paclitaxel, TNBC, ER+/PR+, and HER2+ breast cancer cell
lines all increase HIF expression even in normoxic conditions [163]. The relative
proportion of breast cancer stem cells increased in the TNBC and ER+/PR+ cell lines, but
not in the HER2+ cell line [163]. HIF-1a expression also increases resistance to tamoxifen

treatment in ER+ breast cancer cell lines [161].

HIF-1a has been shown to upregulate antioxidant production in response to
chemotherapy by inducing glutathione synthesis in TNBC cell lines [164]. This may be
mediated through upregulation of metabolic enzymes PHGDH, SHMT2, and MTHFD2,
which help promote redox balance in hypoxic conditions by generating mitochondrial
NADPH, which is necessary to convert oxidized glutathione to reduced glutathione. In

support of this, hypoxia increases PHGDH expression in breast cancer cells [165].
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Knockdown of the serine biosynthesis pathway enzyme PHGDH increases mitochondrial
reactive oxygen species (ROS) and decreases NADPH levels, inhibiting regeneration of
reduced glutathione [165]. Thus, PHGDH knockdown sensitizes breast cancer cell lines
to chemotherapy [165]. This is particularly interesting in the context of TNBC, given the
previously discussed upregulation of the serine biosynthesis pathway and the importance

of glutamine metabolism in glutathione production.

Unlike TNBC cell lines, HER2+ breast cancer cell lines display increased HIF-1a
expression even in normoxic conditions, and expression of HIF-1a is essential for HER2+
cancer cell growth in vivo and in vitro [166]. HER2+ breast cancer cell lines also display
better adaptability to growth in hypoxic conditions as compared to TNBC and ER+/PR+
breast cancer cell lines, which may be mediated by the anti-apoptotic protein Mcl-1;
knockdown of Mcl-1 resulted in downregulation of both HER2 and HIF-1a in HER2+
breast cancer cell lines [167]. Mcl-1 expression increases in ER+ breast cancer cell lines
when treated with estrogen. This effect was blocked through co-treatment with ER
antagonists, but no increase in Mcl-1 expression was seen in TNBC cell lines treated with
estrogen [168]. These results illustrate the complexity associated with regulation of
hypoxia and highlight subtype specific regulatory pathways as promising areas of future

investigation.

1.10 Comorbidities and Predisposing Factors: Obesity and Diabetes

Obesity and type 2 diabetes are growing public health problems that impact
cancer. In the United States, ~40% of adult women are obese, and the prevalence of
obesity in women is increasing [169]. Obesity is defined as having a body mass index
(BMI) of 30 or higher and is a risk factor for the development of post-menopausal breast
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cancer [170-173]. Both obesity and adult weight gain have been primarily associated with
ER+ tumors [174], and BMI is positively associated with tumor diameter in ER+ tumors
[175,174], whereas HER2+ tumor diameter is inversely related to BMI [176]. Adipose
tissue, once thought to be a passive reservoir for energy storage, is an active endocrine
organ secreting growth factors, pro-angiogenic factors, inflammatory cytokines, lipids and
hormones, including estrogen [177]. Several epidemiological and clinical studies
demonstrate an association between obesity and increased breast tumor size, greater
distant metastasis development, and elevated mortality [178-180]. Obese women have
130% higher concentrations of estrogen compared with non-obese women [181].
Elevated estrogen levels are thought to contribute to the link between obesity and breast
cancer risk, progression, and mortality [182-184]. Hormone-responsive tumors are more

sensitive to the impacts of obesity [185].

Mechanistic studies evaluating the role of cellular metabolism in obesity-
associated post-menopausal breast cancers are lacking. It is attractive to speculate that
the elevated estrogen levels observed in obesity influence cellular metabolism in breast
cancer cells. One study implicates adipocyte-derived lipids in metabolic rewiring. Co-
culturing mature 3T3-L1 adipocytes with TNBC MDA-MD-231 or ER+ MCF7 breast
cancer cells stimulates lipolysis in neighboring adipocytes, leading to an accumulation of
adipocyte-derived fatty acids that are taken up by breast cancer cells to support their
proliferation and migration [186]. Adipocytes in the in vivo tumor microenvironment have
also been shown to release fatty acids that are used by ovarian cancer cells for energy
production [187]. Further work is needed to determine how obesity impacts cellular

metabolism in post-menopausal breast cancers.
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One of the primary complications of obesity is the increased risk of type 2 diabetes.
Type 2 diabetes is a disease in which the body’s ability to respond to insulin is impaired
and results in abnormal systemic metabolism of carbohydrates and glucose. However,
there are also abnormalities in cellular metabolism due to the characteristic
hyperinsulinemia and hyperglycemia in diabetic patients. Hyperinsulinemia promotes
glucose uptake in tumors that are insulin-dependent [188,189]. Insulin and insulin-like
growth factor 1 (IGF-1) stimulate macromolecular synthesis and promote the proliferation
of MCF7 breast cancer cells in vitro [190]. Both insulin and IGF-1 affect estrogen signaling
in breast cancer cell lines by activating ER-[] transcriptional activity [191], establishing
another molecular link between obesity, diabetes and breast cancer. In addition to its
direct metabolic role, the hyperglycemia associated with diabetes can increase production
of ROS from mitochondrial respiration. ROS can lead to DNA damage that can increase
cell motility and invasiveness in models of breast cancer [192]. Glucose and insulin can
both activate mTOR, which promotes many of the complications observed in type 2
diabetes, including cancer [193]. The PI3K/Akt/mTOR pathway is frequently activated in
cancers and, in breast cancer cells, contributes to increased cell proliferation, growth

factor independence and endocrine resistance [194].

While the complex interactions between obesity, diabetes, cellular metabolism,
and cancer are still unclear, several types of breast cancer mouse models have been
utilized to decipher the link between obesity, diabetes and tumor progression/metastasis.
Historically, many of these studies have focused on either genetic or diet-induced obesity
models, and the conclusions drawn from these models vary. In the AY genetic model of

obesity, in which ubiquitous expression of the agouti protein stimulates appetite [195],
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mice have a shortened latency to mammary tumor development and an increased tumor
incidence [196,197]. In contrast, Lep°Lep°® mice, which have a defect in the appetite
suppressing hormone leptin, have reduced spontaneous mammary tumor development
compared to lean mice [198]. It is hypothesized that these Lep°bLep°P mice, although
obese, do not have an increase in mammary tumor development because leptin promotes
breast cancer cell proliferation [199]. In diet-induced obesity models, obesity is induced
in transgenic mice prone to mammary tumorigenesis by diets where 30% - 60% of the
total caloric intake is from fat. In Balb/c mice with a deficit in p53, a high-fat diet (HFD,
60% kcal from fat) fails to stimulate weight gain but promotes puberty-specific mammary
tumor formation [200]. While HFD fed mouse models show different levels of obesity and
metabolic syndrome due to genetic background, weight gain is generally implicated in the
development of hormonally responsive breast cancers, but the effect on hormone
receptor negative tumors is inconsistent [201-204]. Recently, there has been
considerable interest in examining the effects of local adipocytes and immune cells in
subcutaneous adipose tissue on triple negative breast cancer [205,206]. These types of
tumor microenvironment studies will be advantageous for investigating effects of adipose
tissue on cellular metabolism as discussed above. While some studies have been
performed, many are hypothesis-generating and do not show direct mechanistic
causation. Current evidence suggests that estrogen, insulin, and IGF-1 signaling all
impact metabolic rewiring. The contribution of these mechanisms in vivo, where more
complex interactions between breast cancer cells and proximal adipocytes likely occurs,

remains to be elucidated.
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1.11 Targeting metabolism in breast cancer

Altered metabolic pathways in cancer offer a wide range of drug targets that can
be exploited for therapy [207,208]. Anti-metabolite drugs such as methotrexate and 5-
flurouracil, which target nucleotide metabolism, have long been used in the treatment of
cancers [209], including breast cancer [4]. These drugs cause cell death in all rapidly
proliferating cells — including normal cells — by inhibiting RNA and DNA production [210],
and therefore cause severe side effects such as neurotoxicity and anemia [211,212].
Targeting metabolic pathways specifically upregulated in cancer cells but not normal cells
may allow the development of therapies with fewer adverse side effects compared to
current chemotherapy options. Breast cancer therapy can be personalized by targeting
upregulated metabolic pathways in a subtype-specific manner, including glycolysis,
glutaminolysis, the TCA cycle, one-carbon metabolism, and lipid metabolism. Given the
prevalence of glutamine addiction in many cancers, glutaminase inhibitors are being
developed and may prove efficacious for treatment of TNBCs. As expected, treatment
with glutaminase inhibitors causes an increase in intracellular glutamine levels in TNBC
xenografts, but not in ER+ xenografts that do not express high levels of glutaminase [213].
Glutaminase inhibition reduces proliferation in TNBC cells and xenografts by selectively
limiting TNBCs’ ability to utilize glutamine; treatment with a glutaminase inhibitor
decreased glutathione levels in TNBC cells but not in ER+ breast cancer cells [70].
Sensitivity to glutaminase inhibitors can be decreased in vitro by supplementing the
growth media with pyruvate [214]. Sensitivity to glutaminase inhibitors may be associated
with Myc-induced upregulation of glutamine metabolism, as these inhibitors have shown

promise in several other Myc-driven cancers including lymphoma [215], hepatocellular
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carcinoma [216], and renal cell carcinoma [217]. Targeting the serine biosynthesis
pathway may also be effective for TNBC treatment, as knockdown of this pathway has
been shown to sensitize TNBC cell lines to chemotherapy [165]. These results highlight
the potential utility of drugs that inhibit cancer-specific metabolic vulnerabilities, especially

in the treatment of TNBCs, which lack targeted therapies.

As previously discussed, HER2 signaling affects several metabolic pathways.
Therefore, drugs targeting the HER2 signaling axis are likely to have metabolic effects.
Treatment of HER2+ cell lines with trastuzumab decreases glucose uptake and lactate
excretion [218]. Treatment with lapatinib, a receptor tyrosine kinase inhibitor that disrupts
HER2 and EGFR signaling, decreases expression of the glucose transporter GLUT4 and
to a lesser extent GLUT1 in HER2+ cells [219]. Inhibitors of FASN have also been
explored for HER2+ breast cancers due to increased de novo lipid biosynthesis observed
in this subtype [220]. Treating HER2+ cell lines with FASN inhibitors in combination with
trastuzumab synergistically reduces cell viability and enhances cell death [137].
Interestingly, FASN inhibitors sensitize resistant HER2+ cell lines and patient derived
xenografts to anti-HER2 compounds [221]. Targeting metabolic pathways specifically
upregulated in breast cancer subtypes provide new avenues of therapy while also making

existing treatments more effective.

Drugs that are FDA-approved for other diseases could be repurposed to target
metabolic vulnerabilities in cancer. One example of this is metformin, a widely-prescribed
drug for type 2 diabetes, which has been associated with decreased risk of developing
cancer [222]. In addition to stabilizing blood glucose levels in diabetic patients, metformin

affects cellular metabolism and may therefore have utility as an anti-cancer agent [223].
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Metformin is a weak inhibitor of complex 1 in the mitochondrial electron transport chain,
allowing it to disrupt mitochondrial metabolism to inhibit proliferation in cancer cells
[224,225]. Treatment of several breast cancer cell lines with metformin decreases
phospholipid biosynthesis, which is essential for lipid bilayer formation and proliferation
[226]. Metformin has also been shown to disrupt cancer cell energetics in ER+ MCF7
cells, where treatment results in increased glucose consumption, increased lactate
production, decreased oxygen consumption, and reduced mitochondrial membrane
potential [227]. Taken together, metformin leads to a metabolic shift away from oxidative
phosphorylation and the TCA cycle, thereby inhibiting energy production and downstream
biosynthetic pathways. Subtype-specific metabolic characteristics and potential anti-
metabolites are summarized in Table 1. As our understanding of metabolic vulnerabilities
in cancer continues to develop, it will be possible to develop more effective, personalized

therapies for all breast cancer subtypes.

1.12 Conclusions and Future Directions

Breast cancer subtypes display diverse metabolic phenotypes that contribute to
tumor growth, invasiveness, treatment efficacy, and drug resistance. Metabolic studies
have revealed alterations in glucose, glutamine, amino acid, and lipid pathways in breast
cancer subtypes. TNBCs upregulate aerobic glycolysis, upregulate serine metabolism,
and generally display glutamine addiction; ER+ breast cancers rely less on glucose and
glutamine uptake, preferring to consume lactate produced by neighboring CAFs; HER2+
breast cancers upregulate fatty acid synthesis while displaying increased glucose and
glutamine uptake. The full extent of metabolic reprogramming in all breast cancer

subtypes has yet to be elucidated.
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While we have made progress in understanding breast cancer metabolism, our
understanding of human breast cancer metabolism in vivo remains incomplete. Much of
the work discussed here has been performed in cancer cell lines, which inadequately
model the complex tumor microenvironment in terms of nutrient conditions, cell population
(e.g. CAFs, adipocytes, immune cells), or the patient’'s hormone levels. Similar cell lines
occasionally yield inconsistent results, which makes generalization and clinical translation
challenging. Genetically engineered mouse models better represent tumor
microenvironments, but mouse mammary development and biology is different from that
of humans, and most drugs efficacious in mice fail in human clinical trials. Patient-derived
xenograft (PDX) models enable studies using human tumors, but require immunodeficient
mice that lack key immune components, or humanized mice that may inaccurately
recapitulate human physiology. Nevertheless, these model systems remain valuable tools
and allow experiments not feasible in humans. Metabolomics in human patients is limited
by cost and variables that are difficult to control, such as diet, age, environment, genetic
variations, disease progression, and prior treatment. Studies using model systems can
establish proof of concept, identify new therapeutic targets, and inform study design for
future work involving human patients. Extensive work involving both model systems and
patients is required to realize the full potential of targeted therapies based on metabolic

vulnerabilities of breast cancer subtypes.

In addition to our incomplete understanding of breast cancer metabolism, our
knowledge of normal breast metabolism is limited. Considerable metabolic changes must
occur in normal breast tissue during prenatal development, puberty, pregnancy, lactation,

involution, and menopause. However, little is known about metabolism during these
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processes. Future work is required to characterize metabolism in normal breast tissue
during developmental stages and the menstrual cycle. Additional studies are also needed
to understand metabolic profiles of localized versus advanced breast cancer and primary

versus metastasized disease, as well as metabolic interactions with the immune system.

Metabolomics, in conjunction with genetic engineering and imaging technologies,
will allow us to address many of these challenges to further decipher metabolic
differences between breast cancer subtypes. We can leverage these tools to determine
which metabolic alterations are most relevant in cancer biology to guide drug
development and personalized therapy. Targeting metabolic vulnerabilities in breast
cancer subtypes has great potential to provide advanced treatment options with fewer

side effects, ultimately improving outcomes for breast cancer patients.
1.13 Acknowledgments

We thank Eran Andrechek, Deanna Broadwater, Susan Conrad, Elliot Ensink,
Sarah-Maria Fendt, John LaPres, Jonathan Rennhack, Shao Thing Teoh, and Hua Xiao
for helpful discussions and critical reading of this manuscript. We also thank breast cancer
research patient advocates Valerie Fraser (Inflammatory Breast Cancer International
Consortium) and Suzanne Gauvreau. Funding: This work was supported by the AACR-
Incyte Corporation NextGen Grant for Transformative Cancer Research, Grant Number
16-20-46-LUNT, and the Office of the Assistant Secretary of Defense for Health Affairs,

through the Breast Cancer Research Program, under Award No. W81XWH-15-1-0453.

30



1.14 Dissertation Goals

Breast cancer heterogeneity provides clear clinical problems, | believe that in order
to improve patient outcomes we must continue to improve our understanding of the basic
biological processes in cancer, including how cancer cells rewire their metabolism to
support proliferation. In recent years targeting cancer-specific metabolism has gained
significant attention, and | believe that this idea can be further applied to develop targeted

therapies for breast cancer subtypes.

To study this, | have used two histologic subtypes of mammary tumors derived
from the MMTV-Myc mouse model, EMT and papillary. Tumors from the MMTV-Myc
model are not only extremely heterogenous, they also share common features with
human breast cancer and are therefore an ideal model system to study breast cancer
heterogeneity. Additionally, while there is significant literature characterizing MMTV-Myc
tumors based on gene expression, little work has been performed specifically
characterizing the metabolism of tumor subtypes in the MMTV-Myc model. | have
therefore sought to fill this gap in knowledge by investigating breast cancer heterogeneity
and metabolism using this model system. The central hypothesis of my thesis is: the EMT
and papillary subtypes display distinct metabolic profiles, which can be targeted to
selectively disrupt subtype-specific metabolic demands. Therefore, the primary goals of
this dissertation are: 1) identify metabolic profiles specific to the EMT and papillary
subtypes and 2) target relevant metabolic pathways in each subtype to demonstrate

subtype-specificity.

| first extracted metabolites from cell lines derived from EMT and papillary tumors
and performed isotope labeling studies to identify metabolic differences in each subtype.
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A full list of the metabolites examined in this work is in Table S1. These analyses revealed
the EMT subtype performs more glutathione biosynthesis and has increased TCA cycle
metabolism than the papillary subtype, while the papillary subtype has increased
nucleotide biosynthesis compared to the EMT subtype. Using this data, metabolism-
targeting drugs were selected that inhibit glutathione biosynthesis, the TCA cycle, and
nucleotide biosynthesis. When these drugs were used in vitro to treat each subtype, it
was clear that each subtype was most sensitive to pharmacological inhibition of its

preferred metabolic pathway (chapter 3).

| then built upon these findings by integrating metabolomics and genomics
analyses of EMT and papillary tumors to identify metabolic preferences for specific
pathways of nucleotide biosynthesis, with the papillary subtype preferring de novo
biosynthesis and the EMT subtype preferring nucleotide salvage. Using gene editing
techniques, | targeted both nucleotide biosynthetic pathways in each subtype and
demonstrate in vivo effects on tumor growth when the preferred metabolic pathway of

each subtype is targeted (chapter 4).

My work highlights the exciting potential for using metabolism to develop treatment
strategies for subtypes of breast cancer. This work has translational potential, and could

inspire additional studies to investigate metabolism as a therapeutic target of cancer.
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Figure 1.1 Schematic illustration of altered metabolic pathways in breast cancer
subtypes. (A) Triple negative breast cancer (TNBC); (B) Estrogen receptor positive (ER+)
breast cancer; (C) Human epidermal growth factor receptor 2 positive (HER2+) breast cancer;
(D) Inflammatory breast cancer (IBC).
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Breast Cancer Subtype

ER+ HER2+ TNBC
Prevalence® ~70% ~15% ~12%
Targeted Therapy Endocrine Anti-HER2 None
Clinical features o 35 . ) )
Intrinsic Subtype Luminal A Luminal B HER2+ Basal-like*
(ER+ PR+ HER2-) (ER+ PR+ HER2+/-)| (ER- PR- HER2+) | (ER- PR- HER2-)
Breast Cancer-Specific Survival*! 84% 87% 52% 75%
Glycolytic Flux Context Dependent Increased Increased
Glutamine Catabolism Decreased Increased Increased
o . Increased Cholesterol Increase.d Increased
. . Lipid Metabolism . . Fatty Acid Cholesterol
Metabolic Alterations Biosynthesis . .
Biosynthesis Uptake
Fatty Acid .
. . . o Glutaminase
Potential Anti-metabolites Complex 1Inhibitors Synthase .
o Inhibitors
Inhibitors

*The majority of TNBCs are classified as basal-like.
Table 1.1 Summary of clinical and metabolic features of breast cancer subtypes.
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L . Parent | Product Cone | Collision
lonization mode Metabolite Voltage | Energy Note
(m/z) | (m/z)
(V) (V)
ESI negative 2-3 phosphoglycerate M-0 185.0 97.0 22 16
ESI negative 2-3 phosphoglycerate M-1 186.0 97.0 22 16
ESI negative 2-3 phosphoglycerate M-2 187.0 | 97.0 22 16
ESI negative 2-3 phosphoglycerate M-3 188.0 | 97.0 22 16
ESI negative Acetoacetyl-CoA_ 850.2 | 766.1 40 30
ESI negative Acetyl-CoA 808.0 | 408.0 40 37
ESI negative Aconitate 173.1 84.8 16 13
ESI negative Adenine 134.0 | 106.8 40 21
ESI negative ADP 426.1 | 158.6 34 21
ESI negative ADP-glucose 588.0 | 346.0 34 22
ESI negative ADP-ribose 558.1 | 345.8 50 21
ESI negative Alanine 2219 | 113.7 28 10 CBZ-Derivatized
ESI negative | Allantoate_and_Carbamoyl_aspartate | 175.0 | 132.0 28 12
ESI negative AMP 346.0 79 40 29
ESI negative Arginine 306.9 | 198.8 22 10 CBZ-Derivatized
ESI negative Asparagine 264.9 | 112.75 28 10 CBZ-Derivatized
ESI negative Aspartate M-0 (unlabeled) 265.9 | 157.7 40 10 CBZ-Derivatized
ESI negative Aspartate M-1 266.9 | 158.7 40 10 CBZ-Derivatized
ESI negative Aspartate M-2 267.9 | 159.7 40 10 CBZ-Derivatized
ESI negative Aspartate M-3 268.9 | 160.7 40 10 CBZ-Derivatized
ESI negative Aspartate M-4 269.9 | 161.7 40 10 CBZ-Derivatized
ESI negative ATP M-0 (unlabeled) 506.0 | 159.0 16 28
ESI negative ATP M-1 507.0 | 159.0 16 28
ESI negative ATP M-2 508.0 | 159.0 16 28
ESI negative ATP M-3 509.0 | 159.0 16 28
ESI negative ATP M-4 510.0 | 159.0 16 28
ESI negative ATP M-5 511.0 | 159.0 16 28
ESI negative ATP M-6 512.0 | 159.0 16 28
ESI negative ATP M-7 513.0 | 159.0 16 28
ESI negative ATP M-8 514.0 | 159.0 16 28
ESI negative ATP M-9 515.0 | 159.0 16 28
ESI negative ATP M-10 516.0 | 159.0 16 28
ESI negative Bisphosphoglycerate 265.0 | 166.7 16 13
ESI negative camphorsulfonate 231.0 79.8 40 25 Internal Standard
ESI negative CDP 402.0 | 159.0 28 22
ESI negative Citrate+lsocitrate 191.0 | 110.6 22 13
ESI negative CMP 322.1 78.7 34 29
ESI negative CMP-N-acetyl-neuraminate 613.0 | 322.0 40 20
ESI negative CoA 766.0 | 408.0 40 40

Table S1.1 Full list of analyzed metabolites.
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Table S1.1 (cont'd)

ESI negative CTP 481.8 | 158.7 10 22
ESI negative Cysteine 253.8 | 145.6 50 10 CBZ-Derivatized
ESI negative dADP 409.9 | 158.6 40 28
ESI negative dAMP 330.1 | 194.6 28 21
ESI negative dATP 489.9 | 158.6 46 28
ESI negative dCMP 305.9 78.6 50 22
ESI negative dCTP 465.8 | 158.6 10 34
ESI negative Deoxyinosine 251.0 | 135.0 28 19
ESI negative Deoxyribose-phosphate 213.0 79.0 28 33
ESI negative Deoxyuridine 227.0 | 184.0 28 12
ESI negative dGDP 426.1 | 158.6 34 21
ESI negative dGMP 346.0 79 40 29
ESI negative dGTP 505.9 | 158.6 16 28
ESI negative dTDP 400.9 | 158.7 46 22
ESI negative dTMP 321.0 | 194.5 28 21
ESI negative dTTP 480.9 | 158.7 40 34
ESI negative dUMP 307.0 | 194.5 28 13
ESI negative FAD 784.2 | 436.9 50 29
ESI negative FBP M-0 (unlabeled) 339.0 | 97.0 28 28
ESI negative FBP M-1 340 97.0 28 28
ESI negative FBP M-2 341.0 | 97.0 28 28
ESI negative FBP M-3 3420 | 97.0 28 28
ESI negative FBP M-4 343.0 97.0 28 28
ESI negative FBP M-5 344.0 | 97.0 28 28
ESI negative FBP M-6 345.0 | 97.0 28 28
ESI negative Flavin_mononucleotide 455.0 | 213.0 22 19
ESI negative Fumarate M-0 (unlabeled) 115.0 71.0 22 5
ESI negative Fumarate M-1-0 116.0 71.0 22 5
ESI negative Fumarate M-1-1 116.1 72.0 22 5
ESI negative Fumarate M-2-1 117.0 72.0 22 5
ESI negative Fumarate M-2-2 117.0 73.0 22 5
ESI negative Fumarate M-3-2 118.0 73.0 22 5
ESI negative Fumarate M-3-3 118.0 74.0 22 5
ESI negative Fumarate M-4-3 119.0 74.0 22 5
ESI negative GAP+DHAP 169.1 97.0 16 13
ESI negative GDP 441.8 | 343.8 28 16
ESI negative Glucono-lactone 177.0 | 129.0 22 11
ESI negative Glucosamine-6-phosphate 258.0 | 96.6 28 21
ESI negative Glutamate M-0 (unlabeled) 279.9 | 127.7 28 16 CBZ-Derivatized
ESI negative Glutamate M-1 280.9 | 128.7 28 16 CBZ-Derivatized
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Table S1.1 (cont'd)

ESI negative Glutamate M-2 281.9 | 129.7 28 16 CBZ-Derivatized
ESI negative Glutamate M-3 282.9 | 130.7 28 16 CBZ-Derivatized
ESI negative Glutamate M-4 283.9 | 131.7 28 16 CBZ-Derivatized
ESI negative Glutamate M-5 284.9 | 132.7 28 16 CBZ-Derivatized
ESI negative Glutamine M-0 (unlabeled) 279.0 | 127.0 28 16 CBZ-Derivatized
ESI negative Glutamine M-1 280.0 | 128.0 28 16 CBZ-Derivatized
ESI negative Glutamine M-2 281.0 | 129.0 28 16 CBZ-Derivatized
ESI negative Glutamine M-3 282.0 | 130.0 28 16 CBZ-Derivatized
ESI negative Glutamine M-4 283.0 | 131.0 28 16 CBZ-Derivatized
ESI negative Glutamine M-5 284.0 | 132.0 28 16 CBZ-Derivatized
ESI negative Glutathione_disulfide_oxidized 611.0 | 306.0 46 21
ESI negative Glutathione_reduced 305.9 | 142.7 40 16
ESI negative glycerate 105.0 74.8 22 13
ESI negative Glycerol_3-phosphate 170.8 78.7 46 16
ESI negative Glycine M-0 (unlabeled) 207.8 | 99.7 22 10 CBZ-Derivatized
ESI negative Glycine M-1 208.8 | 100.7 22 10 CBZ-Derivatized
ESI negative Glycine M-2 209.8 | 101.7 22 10 CBZ-Derivatized
ESI negative GMP 362.1 78.7 34 21
ESI negative GTP 521.8 | 158.7 40 28
ESI negative Hexose-phosphate 258.8 96.6 10 16
ESI negative histidine 287.9 | 179.8 22 10 CBZ-Derivatized
ESI negative Hydroxybutyryl-CoA+Malonyl-CoA 852.2 | 408.0 40 41
ESI negative hypoxanthine 134.8 91.7 34 16
ESI negative IDP 427.0 | 159.0 22 25
ESI negative IMP M-0 (unlabeled) 347.2 78.7 34 21
ESI negative IMP M-1 348.2 78.7 34 21
ESI negative IMP M-2 349.2 78.7 34 21
ESI negative IMP M-3 350.2 78.7 34 21
ESI negative IMP M-4 351.2 78.7 34 21
ESI negative IMP M-5 352.2 78.7 34 21
ESI negative IMP M-6 353.2 78.7 34 21
ESI negative IMP M-7 354.2 78.7 34 21
ESI negative IMP M-8 355.2 78.7 34 21
ESI negative IMP M-9 356.2 78.7 34 21
ESI negative IMP M-10 357.2 78.7 34 21
ESI negative Inosine 267.0 | 135.0 28 25
ESI negative Isoleucine/Leucine 263.9 | 155.8 10 10 CBZ-Derivatized
ESI negative Ketoglutarate M-0-0 (unlabeled) 145.0 | 101.0 22 5
ESI negative Ketoglutarate M-1-0 146.0 | 101.0 22 5
ESI negative Ketoglutarate M-1-1 146.0 | 102.0 22 5




Table S1.1 (cont'd)

ESI negative Ketoglutarate M-2-1 147.0 | 102.0 22 5
ESI negative Ketoglutarate M-2-2 147.0 | 103.0 22 5
ESI negative Ketoglutarate M-3-2 148.0 | 103.0 22 5
ESI negative Ketoglutarate M-3-3 148.0 | 104.0 22 5
ESI negative Ketoglutarate M-4-3 149.0 | 104.0 22 5
ESI negative Ketoglutarate M-4-4 149.0 | 105.0 22 5
ESI negative Ketoglutarate M-5-4 150.0 | 105.0 22 5
ESI negative Lactate 88.8 42.7 46 10
ESI negative Lysine 413.0 | 196.8 50 16 CBZ-Derivatized
ESI negative Malate M-0 (unlabeled) 133.0 | 115.0 16 16
ESI negative Malate M-1 134.0 | 116.0 16 16
ESI negative Malate M-2 135.0 | 117.0 16 16
ESI negative Malate M-3 136.0 | 118.0 16 16
ESI negative Malate M-4 137.1 | 119.0 16 16
ESI negative Methionine 281.8 | 173.7 22 10 CBZ-Derivatized
ESI negative n-acetyl-glucosamine 220.1 | 118.4 16 5
ESI negative N-acetyl-glucosamine-1-phosphate 300.0 79.0 22 22
ESI negative N-acetyl-neuraminate/sialic acid 308.0 87.0 40 15
ESI negative NAD 662.1 | 540.1 22 22
ESI negative NADH 664.2 | 407.8 46 28
ESI negative NADP 742.0 | 619.6 22 13
ESI negative NADPH 744.1 | 407.8 34 34
ESI negative Ornithine 399.0 | 182.7 40 16 CBZ-Derivatized
ESI negative Phenylalanine 298.0 | 147.0 28 27 CBZ-Derivatized
ESI negative Phosphoenolpyruvate 167.0 | 78.8 16 13
ESI negative Phosphogluconic_acid 274.8 96.7 22 16
ESI negative Phosphoserine 183.8 96.7 40 10
ESI negative PIPES 301.0 | 192.8 40 25 Internal Standard
ESI negative Proline 247.9 | 139.7 34 10 CBZ-Derivatized
ESI negative PRPP M-0 (unlabeled) 389.0 | 291.0 40 18
ESI negative PRPP M-1 390.0 | 292.0 40 18
ESI negative PRPP M-2 391.0 | 293.0 40 18
ESI negative PRPP M-3 392.0 | 294.0 40 18
ESI negative PRPP M-4 393.0 | 295.0 40 18
ESI negative PRPP M-5 394.0 | 296.0 40 18
ESI negative Ribose 5-phosphate M-0 (unlabeled) | 229.0 | 96.6 28 21
ESI negative Ribose 5-phosphate M-1 230.0 96.6 28 21
ESI negative Ribose 5-phosphate M-2 231.0 | 96.6 28 21
ESI negative Ribose 5-phosphate M-3 232.0 | 96.6 28 21
ESI negative Ribose 5-phosphate M-4 233.0 96.6 28 21
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Table S1.1 (cont'd)

ESI negative Ribose 5-phosphate M-5 234.0 96.6 28 21
ESI negative Ribulose-5-phosphate 229.0 96.6 28 21
ESI negative Sedoheptulose-phosphate 289.0 97.0 28 25
ESI negative Serine M-0 237.8 | 129.7 16 10 CBZ-Derivatized
ESI negative Serine M-1 238.8 | 130.7 16 10 CBZ-Derivatized
ESI negative Serine M-2 239.8 | 131.7 16 10 CBZ-Derivatized
ESI negative Serine M-3 240.8 | 132.7 16 10 CBZ-Derivatized
ESI negative Succinate M-0 (unlabeled) 117.0 73.0 28 10
ESI negative Succinate M-1-0 118 73.0 28 10
ESI negative Succinate M-1-1 118 74.0 28 10
ESI negative Succinate M-2-1 119 74.0 28 10
ESI negative Succinate M-2-2 119 75.0 28 10
ESI negative Succinate M-3-2 120 75.0 28 10
ESI negative Succinate M-3-3 120 76.0 28 10
ESI negative Succinate M-4-3 121.0 76.0 28 10
ESI negative Threonine 251.9 | 143.7 22 10 CBZ-Derivatized
ESI negative Tryptophan 336.7 | 228.7 34 10 CBZ-Derivatized
ESI negative Tyrosine 313.9 | 205.8 22 10 CBZ-Derivatized
ESI negative UDP 402.8 | 158.4 10 22
ESI negative UDP-D-glucose 565.0 | 323.0 22 22
ESI negative UDP-D-glucuronate 579.0 | 403.0 22 22
ESI negative UDP-N-acetyl-glucosamine 606.0 | 385.0 22 22
ESI negative UMP 322.9 78.6 46 28
ESI negative Uridine 243.0 | 199.8 28 13
ESI negative UTP M-0 (unlabeled) 483.0 | 159.0 28 34
ESI negative UTP M-1 484.0 | 159.0 28 34
ESI negative UTP M-2 485.0 | 159.0 28 34
ESI negative UTP M-3 486.0 | 159.0 28 34
ESI negative UTP M-4 487.0 | 159.0 28 34
ESI negative UTP M-5 488.0 | 159.0 28 34
ESI negative UTP M-6 489.0 | 159.0 28 34
ESI negative UTP M-7 490.0 | 159.0 28 34
ESI negative UTP M-8 491.0 | 159.0 28 34
ESI negative UTP M-9 492.0 | 159.0 28 34
ESI negative Valine 2499 | 141.8 28 12 CBZ-Derivatized
ESI negative xanthine 151.0 | 108.0 22 21
ESI negative Xanthosine 283.0 | 151.0 28 22
ESI negative XMP 363.0 | 210.5 34 21
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CHAPTER 2.
METFORMIN INDUCES DISTINCT BIOENERGETIC AND METABOLIC PROFILES IN
SENSITIVE VERSUS RESISTANT HIGH GRADE SEROUS OVARIAN CANCER AND

NORMAL FALLOPIAN TUBE SECRETORY EPITHELIAL CELLS
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2.1 PREFACE
Though this chapter does not directly relate to the work in this thesis it was included as
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2.2 Abstract

Metformin is a widely used agent for the treatment of diabetes and infertility, however, it
has been found to have anti-cancer effects in a variety of malignancies including high
grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which
metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular
metabolism of both HGSC cells and their precursor, normal fallopian tube secretory
epithelial cells (FTSECSs), is lacking. We addressed the effects of metformin and the more
potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell
proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively
resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic
analyses were used to metabolically differentiate the metformin-sensitive and metformin-
resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in
mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a
greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic
analysis revealed that metformin and phenformin generally induce similar changes in
metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs
and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of
mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically
in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were
also found in metformin sensitive cells relative to metformin resistant cells. These data
identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin

sensitivity and novel metabolic avenues for possible therapeutic intervention.
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2.3 Introduction

Ovarian cancer remains the leading cause of gynecologic cancer-related death in
women despite widespread efforts to improve surgical procedures and therapeutic targets
[1]. In 2015, 21,290 new ovarian cancer diagnoses were made in the United States, and
>66% (14,180) of these women died of the disease [2]. High grade serous carcinoma
(HGSC) accounts for over half of ovarian cancers and carries the worst overall prognosis
[1]. Standard treatment for ovarian cancer involves surgical debulking with the goal of no
gross residual disease, followed by combination platinum and taxane chemotherapy.
Despite advances there have been only modest improvements in the overall 5- and 10-
year relative survival rates which remain 46% and 35%, respectively [1]. Repurposing
low-toxicity drugs may help improve the progression free and overall survival rates [1].
Also, understanding the mechanism of how low toxicity drugs affect cancer cells may

reveal additional therapeutic targets.

Metformin, a biguanide drug with a low toxicity profile, has been widely used to
treat diabetes and fertility [3,4]. In 2005, Evans et al reported a reduced incidence of
cancer in diabetic patients receiving metformin, which led to recognition of the drug in
cancer-related research [4]. Another large prospective study found that diabetic women
treated with metformin have a lower risk of dying of most invasive cancers compared to
non-metformin users [5]. Metformin and phenformin, two biguanide drugs traditionally
used to treat diabetes, have now been associated with improved survival rates in many
different cancer types including non-small cell lung, breast and ovarian cancers [6-8]. Due
to safety concerns, phenformin has been removed from the pharmaceutical market for

use in humans [9]. However, recent studies have shown that phenformin treatment may
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have some utility in treating cancer with a shorter treatment schedule that reduces the

risk of severe side effects [6].

As anti-diabetic medications, biguanides primarily act as insulin sensitizers,
decrease blood glucose levels, and reduce gluconeogenesis in the liver [10]. Both
increased levels of insulin and glucose have been associated with tumor growth and poor
overall prognosis in different cancer types [10]. Therefore, the ability of biguanides to
lower both glucose and insulin levels may indirectly contribute to its anti-tumor effects. In
addition to these indirect effects, biguanides are also posited to directly affect cancer cell
proliferation via inhibition of Complex | within the electron transport chain [11]. Indeed, it
was recently found that metformin accumulates in tumors and induces metabolic changes
similar to that seen in vitro [12]. The bioenergetic stress induced by metformin inhibits
proliferation and was largely thought to be mTOR dependent [13,14]. However, metformin
inhibition of MTOR has been shown to vary between different studies and cell types, with

no correlation to its anti-proliferative effects [12,15].

Preclinical studies focusing on the effect of metformin on HGSC have identified its
anti-proliferative effects [12,16,8]. These data and epidemiological evidence have led to
clinical trials assessing the use of metformin in both neoadjuvant and post-surgical
settings for HGSC [12,17]. However, a molecular characterization of cell lines widely used
to study HGSC revealed that they are, in fact, not likely to represent the disease [18].
Also, growing evidence has pointed to the fallopian tube secretory epithelial cells
(FTSEC) as the origin of HGSC [19]. FTSECs have not been metabolically characterized,
and their response to biguanides are unknown. Extensive metabolic characterization of

HGSC cells has also not been reported. Therefore, to assess the metabolic and potential
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anti-proliferative effect of biguanides in HGSC, we performed bioenergetic and
metabolomic analysis on a panel of clinically relevant HGSC lines and normal cell of origin
controls. We find that a subset of HGSC cell lines as well as normal FTSECs are relatively
resistant to the anti-proliferative effects of metformin. Also, these effects do not correlate
with the ability of metformin to inhibit AMPK/mTOR signaling. Bioenergetic analysis
revealed that metformin sensitivity largely correlated with a greater inhibition of oxygen
consumption rate. Also, metabolomic analysis identified specific alterations in HGSC cells

versus normal FTSECs that also correlate with metformin sensitivity.

2.4 Results

2.4.1 Biguanides inhibit HGSC cell proliferation.

We examined the effect of metformin and phenformin on normal FTSEC and
HGSC proliferation in 2-D growth conditions. We analyzed a panel of HGSC cell lines
(CAOV3, FUOV1, OV90, OVCAR4, OVCARA433, and TYKNU), which were previously
characterized as suitable HGSC models given their genetic makeup (i.e. TP53 mutation,
copy-number profile, and low frequency of non-synonymous mutations in protein-coding
genes) [19]. Normal TERT-immortalized fallopian tube non-ciliated epithelium cell lines,
FNE1 and FNE2, were used as normal controls [20]. Normal FTSECs and HGSCs were
treated with either metformin, phenformin, or vehicle control (Figure 1). In FTSECs,
metformin treatment led to a modest growth inhibition (~30-40%), while phenformin
completely inhibited cell proliferation (Figure 1A & 1D). In HGSCs, phenformin also
significantly inhibited cell proliferation (Figures 1B & 1C). However, metformin treatment
of HGSC cell lines revealed two subgroups; Metformin-sensitive (TYKNU, OV90, and
OVCARA433) and metformin-resistant (OVCAR4 and FUOV1) (Figure 2B-D). Metformin
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completely inhibited the cell proliferation of metformin-sensitive cells (Figure 1B & 1D),
while metformin-resistant cells responded similarly to normal FTSECs, with OVCAR4

being slightly more sensitive (Figure 1C & 1D).

We also assessed the effect of metformin and phenformin on anchorage
independent 3D growth. Cells were grown in ultra-low attachment plates for 24 hours to
form cellular aggregates and then treated with metformin, phenformin, or vehicle. As
expected, FNE1 and FNE2 were unable to survive anchorage-independent conditions
(Figure 2A). However, all HGSC cell lines formed stable cell aggregates and continued
to survive after 6 days (Figure 2B & 2C). Cells were less proliferative in 3D conditions
compared to 2D conditions (Figures 1 & 2). Generally, cell lines that were highly
proliferative in 2D (TYKNU, OV90, and OV433) were also more proliferative than other
cells in 3D (Figure 1 & 2). The effects of metformin in 3D were similar to those observed
in 2D; the growth of TYKNU, OV90, and OVCAR433 was significantly inhibited by
metformin, whereby OVCAR4 and FUOV1 were not (Figure 2B-D). We noticed that the
3D growth of metformin resistant cells was significantly slower than that of the metformin
sensitive cells (Figure 2E). Indeed, there was a statistically significant (p-value = .0037)
inverse relationship between metformin resistance and 3D cell proliferation rate (Figure
2F). These data indicate that normal FTSECs and a subset of HGSC cell lines are

relatively metformin resistant.

2.4.2 Phenformin, but not metformin, has an inhibitory effect on phospho-S6K

levels via the upregulation of REDD1.

The effect of biguanide treatment on proliferation in other cell types has been
primarily described through inhibition of mTOR activation via the upregulation of AMPK
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activity or REDD1, both well-established mTOR inhibitors [6,14,13]. To identify possible
differences between metformin-resistant and metformin-sensitive cells, we examined the
effects of biguanides on the mTOR signaling pathway in FTSEC and HGSC cells. Both
biguanides induced AMPK Thrl172 phosphorylation (pAMPK) only in the metformin-
resistant lines (OVCAR4 and FUOV1) (Figure 3). Phenformin, but not metformin, also
induced pAMPK in FNE1 (Figure 3). We further performed time course experiments
addressing the effect of metformin and a potent inducer of AMPK, AICAR, in the
metformin-sensitive, OV90, and metformin-resistant, FUOV1, cell lines. Metformin
induced a subtle increase in pAMPK in OV90 after 6 hours which decreased significantly
by 48 h (Figure S1A). This is juxtaposed to the dramatic and sustained increase of
pAMPK in FUOV1 cells (Figure S1A). AICAR was able to induce phospho-AMPK levels
in both cell lines, however to a much lesser extent in OV90 (Figure S1A). Metformin
sensitivity also did not correlate with the expression of the upstream modulator of AMPK
activity, LKB1, nor the expression of the metformin transporter, OCT1 (Figure S1B&C).
Western blot analysis of REDD1 found that both biguanides induced REDD1 protein
levels in all HGSC cells, while only phenformin treatment led to elevated levels of REDD1
in normal FTSEC cells (Figure 3). We determined whether REDD1 was also
transcriptionally upregulated by performing gRT-PCR analysis. Indeed, both biguanides
induced similar levels of REDD1 mRNA in HGSC cells but not in normal FTSECs (Figure
S2). We then assessed mTOR activity via the phosphorylation status of the mTOR
downstream target, S6 kinase (S6K), by western blot. Phenformin significantly decreased
phospho-S6 kinase (pS6K) levels in all cell lines, indicating mTOR inhibition (Figure 3).

In contrast, metformin decreased pS6K levels in only two cell lines, TYKNU (metformin-
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sensitive) and FUOV1 (metformin-resistant) (Figure 3). Therefore, these data suggest
that phenformin is a more potent inhibitor of mTOR activity than metformin, even at doses
where metformin has anti-proliferative effects. Together, these data are in line with other
studies that suggest upregulation of pAMPK, REDD1, and inhibition of mTOR activity
does not correlate with metformin sensitivity in cancer cell lines [15,12]. It also indicates
that the anti-proliferative effects of metformin may be at least partially attributable to

mechanisms other than mTOR inhibition.

2.4.3 HGSC cell lines have altered bioenergetic profiles compared to normal

FTSECs.

Since the effects of metformin could not be fully explained by mTOR inhibition, we
sought to characterize the metabolic and bioenergetic effects of biguanide treatment. We
initially profiled the baseline bioenergetic activities of FTSECs and HGSC cell lines
utilizing the Seahorse bioanalyzer to assess oxygen consumption rate (OCR), a key
indicator of mitochondrial activity and cellular respiration, as well as the extracellular
acidification rate (ECAR), an indicator of glycolysis. Analysis of the baseline OCR
revealed that HGSC cell lines display a significantly increased OCR relative to normal
cells (Figure 4A). In addition, most HGSC cell lines, except OVCAR4 and OV90, have
an increased baseline ECAR relative to normal cells (Figure 4B). These data imply that
HGSC cells have elevated cellular respiration and increased glycolysis as compared to

their cell of origin counterparts.

Since HGSC cells displayed significantly elevated OCR and ECAR, we determined
whether these cells were functioning at their maximal respiratory and glycolytic capacities.
FCCP, a mitochondrial uncoupler, induces maximal respiration by transporting protons
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across the mitochondrial membrane leading to depolarization of the membrane potential
and rapid consumption of O2. This maximal OCR is used in conjunction with basal OCR
to calculate spare respiratory capacity. FNE1 and FNE2 mitochondria were functioning at
80% and 67% capacity with 20% and 37% spare respiratory capacity, respectively
(Figure 4C). While a few HGSC cell lines (FUOV1, OVCAR433, and TYKNU) were
functioning at near maximal capacity (>90% capacity, <10% spare respiratory capacity),
other HGSC cell lines (OV90, OVCAR4) were functioning at significantly lower (<70%
capacity, >30% spare respiratory capacity), or similar capacities relative to normal
(Figure 1C). Therefore, no general trend in spare respiratory capacity could be identified
between metformin-resistant cells, metformin-sensitive cells, and normal controls. To
calculate maximal glycolytic capacity, oligomycin, an ATP synthase inhibitor, was used to
induce a bioenergetic shift towards glycolysis (maximal ECAR). Similar to spare
respiratory capacity, there were no significant differences between HGSC and control

cells in spare glycolytic capacities (Figure 1D).

We further assessed other facets of mitochondrial function including the
percentage of respiration devoted to ATP production (ATP-coupled), proton leak (ATP-
uncoupled), and non-mitochondrial respiration. OCR measurements during sequential
treatment of cell lines with oligomycin (ATP synthase inhibitor) and rotenone/myxothiazol
(Complex I and 1l inhibitors, respectively) allow for these parameters to be defined.
Normal cell lines, FNE1 and FNE2, have greater than 60% of their total respiration
dedicated to ATP synthesis (Figure 1E). However, all HGSC cell lines tested demonstrate
significantly less ATP-coupled OCR than controls with the majority of their respiration

being allocated towards uncoupled and non-mitochondrial respiration (Figure 1E). This
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phenomenon of elevated non-ATP-coupled respiration in cancer versus normal cells has
also been observed in breast cancer [21]. Altogether these data suggest that HGSC cells
are more bioenergetic, while contributing a smaller fraction of their total respiration

towards ATP-synthesis compared to normal cells.

2.4.4 Biguanides significantly inhibit oxygen consumption while increasing
glycolysis in both normal FTSECs and HGSC cells that can be exploited in low

glucose conditions.

To assess the effects of metformin and phenformin on mitochondrial function, cell
lines were incubated for 24 hours with either metformin, phenformin, or vehicle control
prior to Seahorse bioanalysis. Treatment with metformin or phenformin significantly
decreased respiration (>70% of control OCR) in both HGSC and normal cells at similar
levels. However, the metformin-resistant cells (OVCAR4 and FUOV1), still had a
significantly higher OCR (>10%) than the metformin-sensitive cells (<10%) (Figure 5A).
This implies that oxidative phosphorylation is less inhibited in metformin-resistant cells as
compared to metformin-sensitive cells. Therefore, metformin and phenformin decrease
overall oxygen consumption and utilization for ATP-synthesis. Biguanides are also more
potent in affecting these processes in metformin-sensitive cells versus metformin-

resistant cells.

Previous studies have shown that metformin inhibition of oxygen consumption
leads to a subsequent compensatory increase in aerobic glycolysis to compensate for the
energy deficit in some cell lines [22,23]. Therefore, we examined the effect of metformin
and phenformin on the ECAR of HGSC and normal cells. Both FNE1 and FNE2 had
significant ECAR increases upon treatment of metformin or phenformin relative to control
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(Figure 5B). Most HGSC cell lines also had elevated ECAR upon metformin treatment
except FUOV1 (Figure 5B). Similarly, phenformin treatment increased ECAR in most
HGSC cell lines except TYKNU and FUOV1 (Figure 5B). These data confirm previous
reports that metformin and phenformin generally inhibit oxygen consumption, but the
induction of aerobic glycolysis is governed by other factors [23,22]. Also, under these
conditions, these bioenergetic effects do not discriminate between metformin-sensitive

and metformin-resistant cells.

A previous study in ovarian cancer indicated that metformin resistance can be
overcome by reducing glucose concentration, thereby demonstrating the inhibitory effect
of hyperglycemia on the actions of metformin [16]. To address whether glucose served
as a protective molecule in metformin resistant cells, we cultured FUOV1 and OVCAR4
cells in media with standard (10 mM) or low (0.1 mM) glucose concentrations and treated
cells with metformin, phenformin, or control. There was no significant difference in cell
proliferation between untreated glucose and low glucose media after 6 days (Figure 6A
& 6B). However, metformin and phenformin treatment significantly inhibited proliferation
in both cell lines under low glucose conditions compared to standard media (Figure 6A
& 6B). These data further support the previous study that adequate levels of glucose are

required for biguanide resistant cells to survive.

2.4.5 Metabolomic analysis of metformin and phenformin treatment reveals cancer

cell specific metabolite fluctuations.

Due to the significant effect of biguanides on mitochondrial function, we were
interested in examining the effect of biguanides on central carbon metabolism. We
performed metabolomic analysis on both normal FTSECs and all HGSC cell lines (Figure
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7, Figure S3, Table S1) Similar to a previous study, metformin and phenformin generally
induce similar metabolic changes in all cell lines tested (Figure 7A, Figure S3, Table S1)
[7]. Treatment with either molecule induced significantly elevated levels of NADH relative
to controls in both HGSC and normal FTSEC cells, consistent with Complex | inhibition
by biguanides (Figure 7A, Figure S3, Table S1). In general, biguanide treatment of most
cell lines including FNE2 cells also resulted in the depletion of tricarboxylic acid (TCA)
cycle intermediates citrate and a-ketoglutarate (Figure S3 and Table S1). Treatment with
biguanides also caused variable depletion of nucleotide triphosphates between cell lines
depending on the specific treatment. Treatment with phenformin caused relative depletion
of adenosine triphosphate (ATP), cytidine triphosphate (CTP), and uridine triphosphate
(UTP) in OVCARA433 and TYKNU, but not of other NTPs in FUOV1 or OV90. Treatment
with metformin caused depletion of CTP specifically in FNE2 and FUOV1, as well as
depletion of UTP in OV90, OVCARA44, and TYKNU. Neither treatment caused a significant
depletion of guanosine triphosphate (GTP) in any of the cell lines studied (Figure S3 and
Table S1). The only metabolite specifically and significantly altered in metformin-sensitive
cells versus metformin-resistant cells was the nucleoside deoxyuridine (Figure S4).
Interestingly, we identified biguanide-induced alterations that were particular to all HGSC
cells tested and not normal FTSECs. Specifically, in HGSC cells, metformin and
phenformin treatment caused a significant elevation in glycerol-3-phosphate (G3P) and a
decrease in aspartate levels relative to controls (Figure 7A&B). Interestingly, the
metformin-sensitive cell lines generally displayed greater effects on either G3P
accumulation or aspartate depletion than the metformin-resistant cell lines, especially

OVCARA433 (Figure 7A&B). G3P is primarily involved in the glycerol-phosphate shuittle,
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which in addition to the malate-aspartate shuttle, allows the movement of electrons from
cytosolic NADH to the mitochondria for entry into the electron transport chain (Figure
8A&B) [24]. The metabolite data suggests that the glycerol-phosphate and malate-
aspartate shuttle are perturbed by biguanides thereby leading to an accumulation of G3P
and depletion of aspartate. Given that this effect does not occur in the normal FTSECs
and is more pronounced in metformin-sensitive cells, it appears that biguanide treatment

may specifically affect these mitochondrial shuttles in HGSC cells.

2.4.6 Aspartate and pyruvate supplementation rescue the anti-proliferative effects

of metformin on cell growth.

Given that metformin treatment results in a significant decrease in aspartate levels,
we tested whether supplementation of cells with aspartate would rescue the anti-
proliferative effects. We treated cells simultaneously with either control, aspartate (100
uM), metformin (10 mM), or both aspartate and metformin for 72 h and assessed cell
proliferation (Figure 9A). Treatment with aspartate alone had significant effects on the
growth of all HGSC cell lines tested (Figure 9A). Aspartate had a minimal and non-
significant effect on the growth of normal FTSEC cell lines (Figure 9A). Combinatorial
treatment of all cell lines tested with aspartate and metformin resulted in a diminished
effect of metformin, bringing cell viability close to control levels (Figure 9A). Therefore,

aspartate supplementation diminishes the metformin effect as previously reported [15].

Previous studies have also shown that providing an alternative carbon source such
as pyruvate can overcome the effects of metformin in cancer cell lines [15]. We also
treated cells with either control, pyruvate (1 mM), metformin (10 mM), or both pyruvate
and metformin for 72 h and assessed cell proliferation. Strikingly, pyruvate treatment had

84



a significantly positive effect on the growth of all normal FTSEC and HGSC cell lines
(Figure 9B). Also, pyruvate significantly diminished the effect of metformin on all cell
lines, greater than the effect of aspartate (Figure 9B). This is in line with the report from
Gui et al that pyruvate is a more powerful suppressant of metformin’s ability to inhibit cell

growth.

2.5 Discussion

Multiple studies in different cancers have demonstrated that metformin and
phenformin have a wide-ranging impact on cancer metabolism [7,21,22]. In a Src-
inducible model of breast cancer, both biguanides were found to deplete TCA cycle
intermediates as expected from Complex | inhibition [7]. Similar results were found using
isolated mitochondria from breast cancer cell lines illustrating that biguanides indeed
directly affect mitochondrial function [21]. Biguanide inhibition of TCA cycle activity was
also found in NSCLC and colon cancer cell lines [22]. Interestingly, analysis of the effects
of biguanides on breast cancer stem cells yielded a different metabolic profile; levels of
all ribonucleotide and nucleotide triphosphates (NTPs) were significantly decreased, but
no effects were seen on the TCA cycle [7]. In line with these results, we found that
biguanides elicited similar effects on metabolites in the TCA cycle and/or NTPs in the
HGSC cell lines tested (Figure S3). In addition, this is the first study that characterizes
the bioenergetics and metabolism of immortalized FTSECs, the purported cell of origin of
HGSC [19]. Given that previous biguanide studies on ovarian cancer have not included
FTSECs, we were able to identify metabolic effects induced by biguanides that were seen
only in transformed HGSC cells. The most significant of these effects was the perturbation

of metabolites involved with mitochondrial shuttles, the G3P and malate-aspartate shuttle
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(Figure 7A). Since NADH is unable to cross the mitochondrial membrane, shuttles exist
to transfer electrons from cytosolic NADH to the electron transport chain (ETC) via the
reduction of other molecules that can cross into the mitochondria. Mechanistically, the
G3P shuttle functions in the following manner: Cytosolic G3P dehydrogenase 1 (cGPD)
converts dihydroxyacetone phosphate (DHAP) to G3P by oxidizing NADH to NAD+. G3P
is then converted back to DHAP by mitochondrial G3P dehydrogenase 2 (mGPD) to
produce FADH2 that donates its electrons to the ETC (Figure 8A). The malate-aspartate
shuttle utilizes malate and aspartate as electron carriers that are shuttled between the
cytosol and mitochondria via exchange transporters (Figure 8B). These systems appear
to be perturbed by biguanides in transformed HGSC cells as evidenced by elevated levels
of G3P and depletion of aspartate. Interestingly, mGPD was found to be a direct target of
biguanide inhibition in rats [25]. Whether biguanides inhibit the G3P and malate-aspartate

shuttles directly in human cells has not been determined.

Recent evidence has shown that metformin accumulates within ovarian tumors
and induces aspartate depletion [12]. This and other studies have posited that metformin
prevents the mitochondria from adaptive nutrient utilization since metformin treatment can
be rescued by providing alternative fuel sources such as pyruvate or increased amounts
of glucose [12,16,15]. We have also confirmed the protective effect supplementation of
glucose, aspartate, and pyruvate has against metformin (Figure 6 and 9). One caveat of
our study is that cells were grown in RPMI media containing supraphysiologic levels of
glucose (10 mM vs ~1-5mM) and higher levels of metformin (10 mM) than cells in vivo
would be exposed to. However, the metabolomic changes upon metformin treatment

seen in our in vitro data overlap significantly with the changes seen in other in vivo studies,
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thereby suggesting translatability of our results [12,16,15]. Since biguanide treatment of
most HGSC cell lines resulted in depleted nucleotides, increases in glycolysis (as shown
by lactate and ECAR), and significant inhibition of ATP-linked OCR, it follows that there
is an increased need for glucose to provide the carbons required to replenish nucleotides
and ATP via the pentose-phosphate shunt and glycolysis, respectively. Therefore, the
ability of metformin to lower blood glucose levels and directly inhibit adaptive nutrient
utilization in cancer cells imply a multi-faceted mechanism explaining the efficacy of this

anti-tumor agent.

In summary, our study characterizes the metabolic and anti-proliferative effects of
biguanides on HGSC cells and its cell of origin, FTSECs. Biguanides significantly inhibit
the ETC and accumulate NADH in all cell lines implying that biguanides are also able to
enter normal FTSEC cells and act on its direct target, Complex |. However, the anti-
proliferative effects of metformin, but not phenformin, are HGSC cell specific and do not
correlate with inhibition of mMTOR activity. Metabolomic analysis revealed HGSC specific
alterations in the levels of mitochondrial shuttle metabolites, aspartate and G3P, thereby
illustrating that these processes are of particular importance, and possibly overactive in
cancer cells. Alterations in these metabolites also correlate well with the anti-proliferative
efficacy of metformin. The activity of these shuttles in HGSC cells versus normal FTSECs
have not been described and are worth investigating. Further detailed analysis of the
metabolic pathways perturbed in biguanide sensitive cells (i.e. deoxyuridine metabolism)
as well as resistance mechanisms in metformin resistant cells may reveal additional
metabolic therapeutic targets. Additionally, since this study identifies that metformin

induces deleterious effects specifically in HGSC cells not seen in normal FTSECs and its
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low toxicity profile, its use as a preventative measure for HGSC should be taken into

consideration.
2.6 Methods
2.6.1 Cell lines and reagents

FUOV1, OVCAR4, OV90, OVCAR433, and TYKNU were obtained as previously
described [26]. FNE1 and FNE2 (TERT-immortalized normal FTSECs) were a kind gift
from Dr. Tan Ince (University of Miami) [20]. Metformin, phenformin, and ultra-low
attachment plates were obtained from Sigma-Aldrich. HGSC cells were grown in RPMI
1640 + 10% FBS + 1% penicillin/streptomycin. FNE1 and FNE2 were grown in FOMI
media [20] then switched to RPMI 1640 + 10% FBS + 1% penicillin/streptomycin 72 hours

prior to assays.
2.6.2 Mitochondrial function and glycolysis

2x10* cells were plated into 24 well XF plates (Seahorse bioscience). Oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using
an XF24 Extracellular Flux Analyzer (Seahorse Bioscience) in unbuffered DMEM assay
medium supplemented with 1 mM pyruvate, 2 mM glutamine and 11 mM glucose. OCR
and ECAR were measured before and after the sequential addition of 0.5 uM oligomycin,
0.5 uM FCCP and 1 uM of rotenone/myxothiazol. Values were normalized to protein
concentration using a Bradford assay (Bio-Rad). Mitochondrial respiration was calculated
as the difference between total and rotenone/myxothiazol rates. Maximal respiration was

the response to FCCP. ATP-linked respiration was the oligomycin-sensitive respiration
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while uncoupled respiration was the difference between oligomycin and

rotenone/myxothiazol rates.
2.6.3 Cell proliferation assay

1x10° HGSC cells/well were seeded in triplicate on a 96-well plate and treated with
metformin (1 mM or 10 mM), phenformin (100uM or 1 mM), aspartate (100 uM), pyruvate
(2 mM) or vehicle control (RPMI). To assess cellular viability, cells were subjected to the

CelltiterGlo assay (Promega). Luminescence was read on a GloMax luminometer.
2.6.4 Spheroid formation assay

1x10% HGSC cells/well were seeded in triplicate in an ultra-low attachment 96-well plate
and incubated overnight. Next day cells were treated with indicated doses of metformin,

phenformin, or control for 72 hours. Viability was assessed by CelltiterGlo 3D assay.
2.6.5 Western blot analysis

Western blot was performed as previously described [27]. Briefly, cell lysates were
collected in RIPA buffer supplemented with protease inhibitor cocktail and phosSTOP
(Roche) and phosphatase inhibitor cocktail (Roche). 30 pg of pre-cleared cell lysate and
4x laemmli buffer were boiled for 10 minutes. Boiled lysates were run on a 4-20% gradient
gel (BioRad) and transferred to a PVDF membrane. After blocking in 5% milk/TBS-T,
blots were incubated overnight with primary antibody towards AMPK (Cell Signaling),
phospho-AMPK (Cell Signaling), REDD1 (Protein Tech), S6K (Cell Signaling), phospho-
S6K (Cell Signaling), LKB1 (Santa Cruz) and B-actin (Sigma Aldrich). Blots were washed
with TBS-T and incubated with secondary antibodies. Blots were scanned using the
LICOR Odyssey system.
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2.6.6 qRT-PCR analysis

RNA extraction was performed using the RNeasy Mini Kit (Qiagen). RNA was
reverse transcribed to cDNA using the Quantitect Reverse Transcription Kit (Qiagen). For
gRT-PCR, 50 ng of cDNA was mixed with primers towards REDD1 (Forward 5'-
ACAGTTCTAGATGGAAGACC-3’, Reverse 5-ACAGTTCTAGATGGAAGACC-3’ or
RPL32 (Forward 5-GTGCAACAAATCTTAC-TGTG, Reverse 5-

CTGCCTACTCATTTTCTTCAC).

2.6.7 Metabolite extraction and analysis

Cells were cultured in 6-well plates with or without metformin (10 pM) or
phenformin (1 uM) treatment for 24 hours, and extracted at 80% confluency. Medium was
aspirated, and each well was washed with 2 ml saline (pH 7.5). Saline was aspirated, and
cells were quenched with 500 pl of -75°C HPLC-grade methanol in each well. After adding
200 ul of HPLC-grade water to each well, cells were scraped with a cell lifter. All contents
of each well were collected in a 1.7-ml microcentrifuge tube. Chloroform (500 ul at —20°C)
was added to each tube and vortexed for 10 min at 4°C. Extracts were centrifuged at
17,000 x g for 15 min at 4°C. The upper aqueous phase containing polar metabolites was
collected in a separate microcentrifuge tube and evaporated under a stream of nitrogen.
Metabolites were resuspended in 100 pl of HPLC-grade water immediately before
analysis by mass spectrometry. The metabolites were analyzed using a Waters Xevo TQ-
S mass spectrometer coupled to an H-Class UPLC system. Metabolites were separated
by polarity using a Supelco Ascentis Express C18 column (2.7 uym particle size, 5 cm x
2.1 mm). LC parameters are as follows: autosampler temperature, 5 °C; injection volume,
5 ul; column temperature, 50 °C; flow rate over 11 min: t =0, 0.4 mI min-1;t=2, 0.3 ml
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min—-1;t=3,0.25mImin-1;t=5,0.15mImin-1;t=9, 0.4 mImin—-1;t=11, 0.4 ml min-1.
The LC solvents were solvent A: 10 mM tributylamine and 15 mM acetic acid in 97:3
water:methanol (pH 4.95); and solvent B: methanol. Elution from the column was
performed over 11 min with the following gradient: t =0, 0% B; t=1, 0% B; t = 2, 20% B;
t=3,20% B;t=5,55%B;t=8,95% B; t=8.5,95% B, t=9, 0% B; t =11, 0% B. Mass
spectra were acquired using negative-mode electrospray ionization operating in multiple
reaction monitoring (MRM) mode. The capillary voltage was 3,000 V, and cone voltage
was 50 V. Nitrogen was used as cone gas and desolvation gas, with flow rates of 150 |
h-1 and 600 | h—1, respectively. The source temperature was 150 °C, and desolvation
temperature was 500 °C. Argon was used as collision gas at a manifold pressure of 4.3
x 10-3 mbar. Collision energies and source cone potentials were optimized for each MRM
transition using Waters QuanOptimize software. Data analysis was performed using

MAVEN [28,29]. Metabolite measurements were normalized by cell counts.
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Figure 2.1 The effects of biguanides on 2-D cell proliferation of HGSC and normal FTSEC
cell lines. (A) Normal FTSECs, (B) metformin sensitive and (C) metformin resistant cells grown
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Figure 2.1 (cont’d)

in 2-D were treated with the indicated doses of metformin, phenformin, or vehicle control at 24 h
for 5 days. Cell proliferation was assessed at indicated time points by Celltiter Glo. Proliferation
is displayed relative to vehicle control at 24h. (D) Metformin efficacy calculated based on
metformin treatment relative to control after 5 days of treatment. *denotes significant inhibition
relative to control treatment (p-value <.01).
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Figure 2.2 The effects of biguanides on 3-D cell proliferation of HGSC and normal FTSEC
cell lines. (A) Normal FTSECs, (B) metformin sensitive and (C) relatively metformin resistant
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Figure 2.2 (cont’d)

cells grown in ultra-low attachment 3D conditions. Cell proliferation was assessed at indicated
time points by Celltiter Glo 3D. Proliferation is displayed relative to vehicle control at 24h. (D)
Metformin efficacy calculated based on metformin treatment divided by control treatment at 5
days of treatment. (E) Proliferation at 6 days relative to 24 h. (F) Plot of metformin efficacy versus
cell proliferation rates. Dotted red line is best-fit trend line of all data points and statistically
significant to be non-zero (p-value <0.01). *denotes significant inhibition relative to control
treatment (p-value <0.01).
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Figure 2.3 The effects of biguanides on mTOR signaling in HGSC and normal FTSEC cell
lines. Cell lines were treated with metformin (10 mM), phenformin (1 mM), or vehicle control for
24 hours. Western blot analysis of phospho-AMPK (T172), AMPK, phospho-S6K (T389), S6K,
REDD1, and B-actin as a loading control.
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Figure 2.4 Bioenergetic analysis of HGSC and normal FTSEC cell lines. (A-E) Oxygen
Consumption Rate (OCR) (A, C, E) and Extracellular Acidification Rate (ECAR) (B & D)
measurements were obtained using an extracellular flux analyzer (Seahorse Bioscience).
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Figure 2.4 (cont’d)

Basal OCR (A) and ECAR (B) rates were obtained prior to addition of Oligomycin A to derive
Spare Glycolytic Capacity (D) and ATP-coupled OCR (E), and FCCP to uncouple mitochondria
for maximal OCR. (C) Spare respiratory capacity was calculated by taking the difference between
the maximal OCR and basal OCR. Percentages are relative to maximal respiration. (D) Spare
Glycolytic Capacity was derived by taking the difference between maximal ECAR and basal
ECAR. Percentages are relative to maximal ECAR. (E) Non-mitochondrial respiration was
calculated as the residual OCR after treatment with Rotenone/myxothiazol that inhibits Complex
I. Uncoupled mitochondrial respiration was calculated as the difference between OCR following
Oligomycin A treatment and OCR following Rotenone/myxothiazol treatment. All three values are
shown as percentages relative to baseline OCR.
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Figure 2.5 The effects of biguanides on the bioenergetics profiles of HGSC and normal
FTSEC cell lines. (A-B) Cells were treated with Metformin (10 mM), Phenformin (1 mM), or
control vehicle for 24 hours prior to analysis by the extracellular flux analyzer. (A) Basal OCR
relative to control treated cells. * denotes p-value < 0.05 as determined by Tukey’s multiple
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Figure 2.5 (cont’d)

comparison test. (B) Basal ECAR relative to control treated cells. Dotted line indicates the level
of a statistically significant change in ECAR (p-value < 0.01).
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Figure 2.6 Glucose deprivation sensitizes metformin resistant cell lines FUOV1 and
OVCAR4 to metformin treatment. Cells were grown in standard glucose or limited glucose
conditions were treated with vehicle or metformin (10 mM). Cell proliferation was assessed at 24
h, 72h, and 144 h. Proliferation is depicted relative to 24 h for each treatment. * denotes p-value
< 0.01 relative to control. ** denotes p-value <0.01 relative to metformin in standard glucose
media.
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Figure 2.7 The cancer-specific effects of biguanides on mitochondrial shuttle metabolites.
(A) Metabolite analysis. Cells were treated with metformin (10 mM), phenformin (1 mM), or vehicle
control for 24 hours and subjected to targeted mass spectrometry analysis. Metformin and
phenformin treatments shown relative to untreated control. Yellow and blue boxes indicate
increased or decreased levels relative to control, respectively. Data normalized by cell number.
Complete metabolite changes located in Figure S2.2. (B) Quantification of G3P and aspartate
fold changes induced by metformin treatment. Values listed as log2 fold change in metabolite
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Figure 2.7 (cont’d)

abundance for metformin treated versus control normal FTSECs (blue), metformin-sensitive (red),
and metformin-resistant (orange) cells. For G3P: *p-value < 0.05 vs normal cell lines by Games-
Howell test, *p-value < 0.05 vs TYKNU, FUOV1, and OVCAR4 by Games-Howell test, *p-value <
0.05 vs OVCAR4 by Games-Howell test. For aspartate: *p-value < 0.05 vs normal cell liens by
Games-Howell test, *p-value < 0.05 vs FNE2 by Games-Howell test, *p-value < 0.05 vs OVCAR4
by Games-Howell test, p-value < 0.05 vs OV90, FUOV1, and OVCAR4 by Games-Howell test,
and *p-value < 0.05 vs OV90, OVCAR433, FUOV1, and OVCAR4 by Games-Howell test.
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Figure 2.8 Mitochondrial shuttles. (A) The glycerol-3-phosphate shuttle. cGPD = cytosolic
glycerol-3-phosphate  dehydrogenase, mGPD - mitochondrial glycerol-3-phosphate

dehydrogenase. (B) The malate-aspartate shuttle. Numbers indicate the following enzymes and
transporters: (1) Cytosolic aspartate aminotransferase (2) Malate dehydrogenase 1 (3) Malate-
alpha-ketoglutarate antiporter (4) Malate dehydrogenase 2 (5) Mitochondrial aspartate
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Figure 2.8 (cont’d)

aminotransferase (6) Glutamate-aspartate antiporter. Black and red dashed lines indicate the flow
of a-ketoglutarate and glutamate between the cytosol and mitochondrial space.
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Figure 2.9 Aspartate and pyruvate supplementation inhibits the effects of metformin on
cell proliferation. Cells were seeded and after 24 h were treated with either control, metformin
(20 mM) with or without (A) aspartate (100 uM) or (B) pyruvate (1 mM). Cell proliferation was
assessed after an additional 72 h by Celltiter Glo. Proliferation is displayed relative to vehicle
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Figure 2.9 (cont’d)

control. * denotes p-value < 0.01 relative to control. # denotes p-value < 0.01 relative to metformin
treatment.
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Figure S2.1 Expression levels of phospho-AMPK, AMPK, LKB1, and OCTL1. (A) Time course
of metformin (10 mM) and AICAR (100 uM) treatment on OV90 and FUOV1. Cells were seeded
and 24 hours later treated with either control, metformin, or AICAR and harvested at indicated
time points. Western blot analysis for pAMPK and AMPK was performed. (B) Western blot
analysis of LKB1 in untreated cell lines. pB-actin was used as a loading control. (C) gRT-PCR
analysis of OCT1. RPL32 transcript was used for normalization between samples.
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Figure S2.2 The effects of biguanides on REDDL1 transcription in HGSC and normal FTSEC
cell lines. gRT-PCR analysis of REDD1. Fold change of each treatment shown relative to vehicle
control. Dotted line indicates statistically significant upregulation (>2-fold change of a student t-
test p-value < 0.01). RPL32 transcript was used for normalization between samples.
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Figure S2.3 Profiles of intracellular metabolites in HGSC and normal FTSEC cell lines
treated with metformin (10 mM), phenformin (1 mM), or vehicle control for 24 hours. Relative
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Figure S2.3 (cont’d)

levels are expressed as the log ratio of the normalized signal intensity in drug treated cells to the
normalized signal intensity in the vehicle control for each cell line. Yellow and blue boxes indicate
increased or decreased levels relative to control, respectively. Signal intensity was also
normalized by cell number.
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Figure S2.3 (cont'd)
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Figure S2.3 (cont’d)
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Figure S2.3 (cont’d)
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Figure S2.4 Quantification of metabolite changes induced by metformin treatment. Values
listed as log2 fold change in metabolite abundance for metformin treated versus control normal
FTSECs (blue), metformin-sensitive (red), and metformin-resistant (orange) cells. For statistical
analysis, Tukey’s or Games-Howell test were used as indicated.
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P <0.05 FNE1
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
4.4902 0.0061 4.2490 0.0075
-0.6813 0.0185 -0.8820 0.0092|
0.3924 0.0266 0.2343 0.0486)
0.2420 0.2825) 0.0047 0.9079|
-0.5302 0.1708| -0.6692 0.0842]
FNE2
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
4.494289061 0.0000 3.6370 0.0001
-0.101470172 0.1558] -0.9366 0.0005]
0.382418975 0.2179 -0.5175 0.0725]
1.057864281 0.0000 -0.3026 0.5113
0.561138602 0.0003 -0.3300 0.0502]
FUOV1
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
3.395786607 0.0000 3.0850 0.0001
0.334880408 0.1038| -0.3422 0.0169|
1.566685751 0.0010 1.3479 0.0022]
0.651628165 0.2183] 0.5430 0.1789
-1.462037971 0.0009 -2.1237 0.0003
0V90
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
3.757570572 0.0000 3.1531 0.0000
0.307160273 0.0026 -0.0304 0.7715
3.410913476 0.0001] 2.6432 0.0004]
0.516719894 0.2069 0.8732 0.0423
-1.337253238 0.0007 -1.1686 0.0002|
OVCAR433
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
3.178679596 0.0000 2.5394 0.0001
0.069937314 0.2330 -0.7969 0.0048]
3.023537598 0.0000 1.8847 0.0034]
0.252118946 0.1661] -0.1458 0.4038|
-1.935654182 0.0001 -2.2291 0.0005
TYKNU
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
5.308543537 0.0199 4.5557 0.0270
0.113864922 0.5758] -0.3706 0.0282|
1.705783431 0.0007 1.1858 0.0066|
0.656276305 0.0202 0.4576 0.6225|
-2.515199139 0.0000| -2.0590 0.0003
TYKNU
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
5.167365698 0.0088 4.4671 0.0121
0.005032679 0.4857| -0.7342 0.0086|
1.496715468 0.0001] 0.9878 0.0020
-0.312588339 0.5175] 0.3273 0.0468]
-2.544860804 0.0000 -2.1172 0.0002|
OVCAR4
Metformin vs Untreated Phenformin vs Untreated
Metabolite Log2 Fold Change P value Log2 Fold Change P value
3.1787 0.0000239 2.5394 0.0000782|
0.0699 0.2329909 -0.7969 0.0048083
3.0235 0.0000142 1.8847 0.0034068
0.2521 0.1661287 -0.1458 0.4038247
-1.9357 0.0000972 -2.2291 0.000474]

Table S2.1 Statistical analysis of metabolic profiles shown in Figures 2.7, S2.2, and S2.3.
Student’s t-test was used to determine significance. If assumption of homoscedasticity was not
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Table S2.1 (cont'd)

met, Welch’s t-test was used instead (indicated in italics). Statistically significant differences (p <
0.05) are highlighted in green and underlined.
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CHAPTER 3.
METABOLOMIC PROFILING OF MOUSE MAMMARY TUMOR-DERIVED CELL LINES

REVEALS TARGETED THERAPY OPTIONS FOR CANCER SUBTYPES
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3.1 PREFACE
This chapter is a modified version of a primary research manuscript currently under

revision at Cellular Oncology.
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3.2 Abstract
Purpose: Breast cancer is a heterogeneous disease with several subtypes that currently
do not have targeted therapy options. Metabolomics has the potential to uncover novel
targeted treatment strategies by identifying metabolic pathways required for cancer cells
to survive and proliferate.
Methods: The metabolic profiles of two histologically distinct breast cancer subtypes from
the MMTV-Myc mouse model, epithelial-mesenchymal-transition (EMT) and papillary,
were investigated using mass spectrometry-based metabolomics methods. Based on
metabolic profiles, drugs most likely to be effective against each subtype were selected
and tested.
Results: The EMT and papillary subtypes display different metabolic preferences.
Compared to the papillary subtype, the EMT subtype demonstrated increased glutathione
and TCA cycle metabolism, while the papillary subtype had increased nucleotide
biosynthesis compared to the EMT subtype. Targeting these distinct metabolic pathways
effectively inhibited cancer cell proliferation in a subtype-specific manner.
Conclusions: These results demonstrate the feasibility of metabolic profiling to develop
novel personalized therapy strategies for different subtypes of breast cancer.
3.3 Introduction

Breast cancer is a heterogeneous disease with subtypes that vary by morphology,
receptor status, and gene expression profiles [1,2]. This diversity impacts treatment, as
one therapeutic strategy will not work for all patients. Targeted therapies include
endocrine therapy for patients with estrogen receptor positive (ER+) breast cancer, as

well as monoclonal antibodies/inhibitors against human epidermal growth factor receptor
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2 (HERZ2) for HER2+ breast cancer [3]. Unfortunately, targeted therapies are not available
for every breast cancer subtype, and drug resistance and relapse remain problematic
[4,5]. Therefore, it is critical to identify additional therapeutic targets for all subtypes of
breast cancer, and investigating cancer metabolism has the potential to meet this need
[6].

Cancer cells exhibit metabolic differences compared to normal cells, and
dysregulated metabolism is considered to be a hallmark of cancer [7]. Central carbon
metabolism, which includes pathways such as glycolysis, the tricarboxylic acid (TCA)
cycle, the pentose phosphate pathway (PPP), and amino acid metabolism, is
dysregulated in cancer cells and fuels survival and proliferation [8]. Previous work has
shown that metabolic dysregulation can be specific to different subtypes of breast cancer.
For example, HER2+ and triple negative breast cancer (TNBC) have been shown to
upregulate glutaminolysis compared to ER+ breast cancer [9,10], and TNBC cell lines
and xenograft models are sensitive to glutaminase inhibition [11,12]. Differential utilization
of metabolic pathways between subtypes of cancer therefore represent potential targets
that can be leveraged to develop novel treatment strategies.

The diversity observed in human breast cancer can be modeled by the MMTV-Myc
mouse model [13]. MMTV-Myc mice develop mammary tumors that display heterogeneity
in both histology and gene expression [14]. Histological subtypes of the MMTV-Myc
model have previously been correlated with human subtypes based on global gene
expression [15,16]. For example, MMTV-Myc epithelial-mesenchymal-transition (EMT)
tumors correspond to the claudin-low subtype of human breast cancer, a subtype which

currently has no targeted therapy options and is generally associated with a poor
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prognosis [17]. Compared to MMTV-Myc EMT tumors, MMTV-Myc papillary tumors do
not correlate strongly with one particular subtype of human breast cancer based on gene
expression signatures; instead, the MMTV-Myc papillary tumors correlate moderately
with several breast cancer subtypes including luminal and basal breast cancer [15,16].
However, the MMTV-Myc papillary tumors display increased Myc signaling pathway
activity [14], which is also amplified in 15.7% of human breast cancers and is more
common in high grade tumors and the basal-like subtype [18]. While the MMTV-Myc EMT
tumors are initially induced by Myc, they lose Myc pathway activation due to the epithelial
tissue-specificity of the MMTV promoter [14]. Thus, the papillary tumors provide a better
model for studying human breast cancer with Myc amplification. As a transcription factor,
Myc affects numerous biological processes including metabolism [19,20]. Notably, Myc
expression regulates several genes in glucose, amino acid, and nucleotide metabolism
[21-23]. Therefore, investigating metabolism of the MMTV-Myc model system may reveal
metabolic features common to human cancer and could present new targeted therapeutic
options.

Here, we present a study investigating the metabolic profiles of two histologically
distinct breast cancer subtypes, EMT and papillary, from the MMTV-Myc mouse model.
Cell lines were derived from primary EMT and papillary tumors, and polar metabolites
were extracted and analyzed using an optimized liquid chromatography tandem mass
spectrometry (LC-MS/MS) method to measure a wide range of metabolites [24]. Based
on metabolic profiles, drugs most likely to be effective against each subtype were selected
and tested. We found that, compared to the papillary subtype, the EMT subtype

demonstrated increased glutathione and TCA cycle metabolism, while the papillary
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subtype had increased nucleotide biosynthesis compared to the EMT subtype. Targeting
each of these distinct metabolic pathways effectively inhibited cancer cell proliferation in
a subtype-specific manner. These results demonstrate the potential utility for metabolic
profiling to identify drug targets that can be used to develop novel personalized

therapeutic strategies for different subtypes of breast cancer.

3.4 Results
3.4.1 Relative metabolite levels between histologically distinct subtypes of MMTV-

Myc mouse mammary tumors define metabolic pathways of interest.

To determine metabolic profiles of histologically distinct mouse mammary tumor
subtypes, polar metabolites were extracted from tumor-derived cell lines and quantitated
using LC-MS/MS. We found metabolites involved in several central carbon metabolic
pathways to be differentially abundant between EMT and papillary tumor-derived cell lines

(Figure 1; Figure S1; and Table S1).

In the EMT subtype, both oxidized and reduced forms of glutathione, a key
metabolite in redox homeostasis, are elevated (Figure 1B). Increased levels of both
reduced and oxidized glutathione imply that the EMT subtype has elevated glutathione
biosynthetic activity. This could reflect a greater dependency on glutathione biosynthesis
in the EMT cells and targeting glutathione biosynthesis would therefore be more effective
against the EMT subtype. Metabolites increased in the papillary subtype include fructose
bisphosphate (FBP; glycolysis); acetyl-CoA (TCA cycle); ribulose-5-phopsphate and
ribose-5-phosphate (PPP); and adenosine diphosphate (ADP) and adenosine

triphosphate (ATP; nucleotide metabolism; Figure 1B). Additional analysis using isotope
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labeling is required to determine whether metabolites are present at higher levels due to

higher production or lower consumption.
3.4.2 Isotope labeling through the TCA cycle is increased in the EMT subtype.

Elevated acetyl-CoA and FBP levels in the papillary subtype (Figure 1B) could be
explained by either increased glycolytic activity or decreased TCA cycle activity, since
these pathways contribute to the production or consumption of these metabolites,
respectively. To further investigate these relative metabolic pathway activities, we
performed stable isotope labeling using *C-glucose and 3C-glutamine. Isotope labeling
studies show the rate at which these metabolites are incorporated into different metabolic
pathways, enabling comparison of relative metabolic pathway activities between
samples. Isotope labeling patterns complement metabolic pool size measurements to
reveal more complete metabolic profiles.[25] We find the papillary subtype has
proportionally lower abundance of *3C-labeled glycolysis and TCA cycle intermediates
from 13C-glucose compared to the EMT subtype (Figure 2; Table S2). Therefore, the
increased abundance of FBP and acetyl-CoA in the papillary cells are likely due to
decreased TCA cycle activity in this subtype compared to the EMT cells. Notably, the
labeled fraction of 2/3 phosphoglycerate (66% in EMT vs. 56% in papillary), alpha-
ketoglutarate (40% in EMT vs. 28% in papillary), succinate (73% in EMT vs. 42% in
papillary), fumarate (54% in EMT vs. 33% in papillary), and malate (44% in EMT vs. 32%
in papillary) are each higher in the EMT cells when 3C-glucose is used as the labeled
carbon source (Table S2). When 3C-glutamine is used as the labeled carbon source,
most TCA cycle metabolites do not demonstrate a significant difference in labeling

between the EMT and papillary cells (Figure S2; Table S3). These results indicate that
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EMT cells increase glucose flux through the TCA cycle to a greater degree than papillary
cells. Thus, targeting the TCA cycle is likely to be more effective in the EMT subtype

compared to the papillary subtype.

3.4.3 Isotope labeling into nucleotide biosynthesis is elevated in the papillary

subtype.

Compared to the EMT cells, the papillary cells exhibit increased levels of
nucleotides ADP and ATP, as well as ribulose-5-phosphate and ribose-5-phosphate, two
intermediates in the PPP (Figure 1B). To determine whether these measurements reflect
increased nucleotide production or decreased nucleotide consumption, we applied the
same isotope labeling techniques described above. Nucleotides can be generated
through de novo biosynthesis or salvage pathways. Several carbon sources contribute to
the formation of purine and pyrimidine rings during de novo biosynthesis. Purine carbons
are derived from glycine (2 carbons), formate (2 carbons), and bicarbonate (1 carbon).
Pyrimidine carbons are derived from aspartate (3 carbons, predominately from glutamine
metabolism) and bicarbonate (1 carbon) [23]. Salvage pathways recycle intermediates
scavenged from the environment or produced from RNA and DNA degradation to
generate nucleotides, and these pathways require less energy per produced nucleotide
compared to de novo biosynthesis. The carbon sources for purine and pyrimidine

nucleotides are highlighted in Figure 3A,B.

Isotope labeling studies show that the papillary cells have higher de novo
nucleotide biosynthesis compared to the EMT cells (Figure 3C,D; Tables S2-3). When
cells are fed **C-glucose, the M-5 isotopologue of inosine monophosphate (IMP) and ATP
can be derived from either de novo or salvage pathways, while all other isotopologues of
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IMP and ATP (M-1 to M-4 and M-6 to M-10, referred to as M-Other in Figure 3C) can
only be derived through de novo biosynthetic pathways (Figure 3A). As shown in Figure
3C and Table S2, M-Other is higher in the papillary cells for both IMP (23% in papillary
vs. 19% in EMT) and ATP (19% in papillary vs. 15% in EMT). Further, **C-glutamine
labeling shows increased levels of the M3 isotopologue of uridine triphosphate (UTP) in
the papillary cells (23% in papillary vs. 17% in EMT; Figure 3D; Table S3) — this
isotopologue can also only be derived from de novo biosynthesis (Figure 3B). Therefore,
the papillary cells demonstrate increased de novo biosynthesis of both purine and
pyrimidine nucleotides compared to the EMT cells. Notably, we find no difference
between EMT and papillary cells in 13C-glucose labeling into ribose-5-phosphate, serine,
and glycine as well as 3C-glutamine labeling into aspartate (Figure S3), which indicates
that increased nucleotide biosynthesis in the papillary cells is not simply due to greater
abundance of labeled precursors for these pathways. Increased de novo nucleotide
biosynthesis could reflect a preference to utilize this metabolic pathway to generate
nucleotides in the papillary subtype. This would indicate targeting de novo nucleotide

biosynthesis is likely to be more effective in the papillary subtype.
3.4.4 Relative metabolic pathway activity correlates with drug response.

To test whether metabolism-targeting drugs impact cell proliferation in a subtype-
specific manner, cell proliferation was determined in the presence of metabolism-
targeting compounds. Compounds were chosen based on our initial findings that the EMT
subtype increased glutathione biosynthesis and TCA cycle metabolism, while the
papillary subtype increased de novo nucleotide biosynthesis. The three selected

compounds were: 1) Buthionine sulfoximine (BSO), an inhibitor of glutamate-cysteine
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ligase (GCL) in glutathione biosynthesis [26]; 2) CPI-613, which targets pyruvate
dehydrogenase (PDH) and alpha-ketoglutarate dehydrogenase (AKGDH) in the TCA
cycle [27,28]; and 3) 5-Fluorouracil (5FU) which is an inhibitor of thymidylate synthase

(TYMS) in de novo nucleotide biosynthesis (Figure S4) [29,30].

We found that targeting each distinct metabolic feature inhibits breast cancer cell
proliferation in a subtype-specific manner. Since the EMT cells display increased levels
of both oxidized and reduced glutathione compared to papillary cells (Figure 1B), we
reasoned they should be more sensitive to glutathione biosynthesis inhibition. As
expected, targeting glutathione biosynthesis with BSO was more effective at inhibiting
proliferation of the EMT cells vs. the papillary cells (Figure 4A-B). Consistently, the ICso
for this compound was significantly lower for the EMT cells (34 uM) vs. the papillary cells
(49 uM; p value <0.0001; Figure S5A, D). We also evaluated the relative expression of
these targets using qRT-PCR (Figure S6). For glutathione metabolism, we measured the
expression of two subunits of GCL, GCL catalytic subunit (GCLC) and GCL modifier
subunit (GCLM), as well as glutathione synthetase (GSS) and glutathione reductase
(GSR). We found lower expression of GCLC and GSS in the EMT subtype vs. the
papillary subtype (Figure S6). Lower expression of the catalytic subunit GCLC in EMT
cells may explain the increased sensitivity of these cells to inhibition by BSO. On the other
hand, expression of the modifier subunit GCLM was higher in EMT cells (trending towards
significance with p value 0.0573; Figure S6). Since the GCLM subunit increases catalytic
activity of the GCL complex [31,32], higher GCLM expression may explain the increased

glutathione biosynthesis observed in EMT cells (Figure 1).
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The EMT cells also have higher TCA cycle activity compared to the papillary cells
(Figure 2) and should therefore be more sensitive to TCA cycle inhibition. Indeed,
targeting TCA cycle metabolism with CPI-613 was more effective in the EMT vs. papillary
cells (Figure 4C-D); the ICso for this compound was also significantly lower for the EMT
(123 uM) vs. the papillary cells (153 pM; p value <0.0001; Figure S5B, D). Separate
mechanisms have been described for the inhibitory effect of CPI-613 on PDH [27] and
AKGDH [28]. We found that the EMT subtype has higher expression of the E1 subunit of
PDH compared to the papillary subtype, while the papillary subtype has higher expression
of each subunit of the AKGDH complex (Figure S6). Higher PDH expression in EMT cells
is consistent with the observation that these cells display higher rates of TCA cycle
intermediates labeling from 3C-glucose (Figure 2) but not from *3C-glutamine (Figure
S2). Thus, the higher sensitivity of EMT cells to CPI1-613 is likely due to an increased

dependence on PDH activity.

Finally, the papillary subtype demonstrates increased de novo nucleotide
biosynthesis (Figure 3) and should therefore be most sensitive to compounds which
target nucleotide biosynthesis. Indeed, we find that targeting nucleotide metabolism with
5FU was most effective at inhibiting proliferation of the papillary cells vs. the EMT cells
(Figure 4E-F); the I1Cso for this compound was significantly lower for the papillary cells
(397 nM) vs. the EMT cells (1359 nM; p value <0.0001; Figure S5C-D). TYMS expression
was similar between the EMT and papillary cells (Figure S6), indicating that the
differences in nucleotide metabolism in these cells are not regulated at the gene
expression level. These results illustrate how metabolic profiles can be used to identify

therapeutic targets for subtypes of breast cancer and highlight the potential to predict
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whether a specific cancer subtype will most respond to a given treatment strategy based

on metabolic profiles.

3.5 Discussion

In this study, we demonstrate the utility of targeting subtype-specific metabolic
profiles to inhibit cancer cell proliferation. Using a combination of unlabeled and isotope-
labeled mass-spectrometry-based metabolomics techniques, we developed
comprehensive metabolic profiles of two histologically distinct breast cancer subtypes
derived from the MMTV-Myc mouse model. We further leveraged these metabolic profiles
to identify therapeutic targets for each subtype, and demonstrate that inhibiting cancer
cell metabolism is most effective when tailored to the underlying metabolic profile of the
cancer in question. This approach, when translated to human disease, has the potential
to improve patient outcomes, as it will lead to development of novel metabolic drugs for
cancer subtypes that currently lack targeted therapies. This may be particularly relevant
for the EMT subtype, as it has been correlated with the claudin-low subtype of breast
cancer in humans [15], a subtype which generally carries a poor prognosis and currently

lacks targeted therapeutic options [17].

In recent years, there has been growing interest in taking advantage of altered
metabolism in cancer for treatment [33-35]. Our findings demonstrate that vulnerabilities
identified through metabolic profiling are effective therapeutic targets. Each compound
we tested demonstrates a significantly lower ICso value in either the EMT or papillary
subtype, clearly corresponding with the metabolic profile of each subtype. Of the three
compounds evaluated in this study, 5FU is currently approved as a chemotherapeutic
agent, and is used to treat a variety of malignancies [30]. BSO has demonstrated utility
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as a sensitizing agent in pre-clinical models of anti-endocrine therapy resistant ER+
breast cancer [36], and in multiple myeloma treated concurrently with the
chemotherapeutic melphalan [37]. More recently, BSO has shown promise in early clinical
trials as a chemosensitizing agent in combination with melphalan for treatment of pediatric
neuroblastoma [38,39]. Finally, CPI-613 is being investigated as a component in
combination therapies for several malignancies including colorectal cancer [40], small cell
lung cancer [41], and pancreatic cancer [42]. Our findings support investigating these
compounds to treat specific subtypes of breast cancer, as each tested compound
demonstrates some degree of inhibition regardless of subtype. Moreover, our findings
provide an additional rationale for subtype-specific drug selection based on the underlying
metabolism of the cancer cells in question, as the drug sensitivity for the EMT and

papillary cells directly correlates with the metabolic profile of each subtype.

Our results may also in part explain why some cancer patients do not respond to
a given metabolism-targeting therapy. For example, 5FU as a monotherapy to treat
metastatic colorectal cancer demonstrates a response rate of only 10-20% [43], indicating
a significant proportion of patients fail to respond to 5FU therapy. Response rates are
better when 5FU is used in combination therapies to treat metastatic breast cancer, with
response rates of 40-80% depending on the specific combination therapy [43]. In such
cases, it is possible the metabolic profile of the poor responder's cancer differs
significantly from the metabolic profile of a cancer that responds well to treatment. Our
study demonstrates that 5FU will be most effective in cancer subtypes that upregulate de
novo nucleotide biosynthesis. This may be particularly relevant for cancers with elevated

Myc activity, since Myc regulates the expression of numerous genes in nucleotide
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biosynthesis including TYMS [23], the primary target of 5FU. Increased Myc expression
has been observed in TNBC compared to hormone receptor positive breast cancer [44],
and patients with TNBC have better response rates to neoadjuvant chemotherapy
regimens that contain 5FU [45]. Further, Myc overexpression in hepatocellular carcinoma
has recently been shown to decrease both oxidized and reduced glutathione levels in
tumor tissue by downregulating glutathione biosynthesis genes [46]. Our findings support
this in breast cancer, as the papillary cells, which have relatively higher Myc activity,
demonstrate decreased glutathione levels compared to EMT cells [14]. This is consistent
with papillary cells being less sensitive to BSO treatment. Thus, breast cancers with
increased Myc expression may be less likely to respond to therapies that target
glutathione biosynthesis, and breast cancers that lack Myc overexpression may respond
favorably to glutathione biosynthesis inhibitors. Other metabolic features associated with
increased Myc signaling, such as increased glutaminolysis [47,11] and fatty acid
metabolism [48], are also under investigation as potential therapeutic targets. Therefore,
metabolomic analysis of patient samples could provide clinicians with additional
prognostic information to guide treatment plans, ultimately improving patient outcomes

while decreasing unnecessary side effects by avoiding ineffective treatment regimens.

3.6 Methods

3.6.1 Primary mouse tumors

All animal use was performed in accordance with institutional and federal
guidelines. Primary MMTV-Myc EMT and MMTV-Myc papillary tumors were acquired as
a gift from Dr. Eran Andrechek and have been previously described [14]. Tumors were
sectioned, formalin-fixed, and paraffin embedded for histological examination with
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hematoxylin and eosin staining. Tumor derived cell lines were established by mechanical
dissociation of primary tumors using scissors, followed by culturing tumor pieces in cell

culture media [49].

3.6.2 Cell lines and culture conditions

EMT and papillary tumor derived cell lines were cultured in Dulbecco’s Modified
Eagle Medium (DMEM Corning, Corning, New York 10-017-CM) with 25 mM glucose
without sodium pyruvate supplemented with 2 mM glutamine (Corning, 25-005-CIl) 10%
heat-inactivated fetal bovine serum (MilliporeSigma, Burlington Massachusetts, 12306C),
and 1% penicillin and streptomycin (Corning, 30-002-Cl). Cells were maintained at 37°C

with 5% COa2.

3.6.3 Metabolic profiling

Unlabeled, targeted metabolomics was performed as previously described [24].
Briefly, cells were seeded in 6-well tissue culture plates at 50,000 cells/well and cultured
for 48 hours. Cells were washed with saline (VWR, Radnor, Pennsylvania, 16005-092)
and metabolism was quenched with addition of cold methanol. The final metabolite
extraction solvent ratios were methanol:water:chloroform (5:2:5). The polar phase was
collected and dried under a stream of nitrogen gas. The dried metabolites were then
resuspended in HPLC-grade water for analysis. LC-MS analysis was performed with ion-
pairing reverse phase chromatography using an Ascentis Express column (C18, 5 cm x
2.1 mm, 2.7 um, MilliporeSigma, 53822-U) and a Waters Xevo TQ-S triple quadrupole
mass spectrometer. Mass spectra were acquired using negative mode electrospray

ionization operating in multiple reaction monitoring (MRM) mode. Peak processing was
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performed using MAVEN [50] and data for each sample was normalized to the mean
signal intensity for all metabolites in the analysis. Metabolites were grouped by
relationship to metabolic pathways. Heatmaps were generated using Cluster 3.0 [51] and

exported using Java Treeview [52].
3.6.4 Isotope labeling studies

For isotope labeling experiments, DMEM without glucose or glutamine was
prepared from powder (MilliporeSigma, D5030) and supplemented with either 3Ce-
glucose (Cambridge Isotope Laboratories, Tewksbury, Massachusetts, CLM-1396) and
unlabeled glutamine (MilliporeSigma, G8540) or unlabeled glucose (Fisher Scientific,
Hampton, New Hampshire, D16) and '3Cs-glutamine (Cambridge Isotope Laboratories,
CLM-1822). Cells were then seeded and cultured as described above. Prior to metabolite
extraction, media was switched to isotope containing media and samples were collected
at T = 0 (unlabeled) and 240 minutes. Metabolite extraction and analysis were performed

as above. Labeling data was corrected for natural isotope abundance using IsoCor [53].
3.6.5 Cell proliferation and drug response studies

Cells were seeded at a density of 20,000 cells/well in 12-well tissue culture plates
and treated with either vehicle (DMSO, MilliporeSigma, D4540) or the indicated drugs.
CPI-613 (Cayman Chemical, Ann Arbor, Michigan, 16981), buthionine sulfoximine
(Cayman Chemical, 14484), and 5-fluorouracil (TCI, Tokyo, Japan, F0151). Cells were
counted daily for 3 days using a Nexcelom Cellometer Auto T4 cell counter and viable

cells were determined using trypan blue exclusion (VWR, 45000-717). Proliferation
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inhibition was determined using the ratio of the drug treated cell count at day 3 to the

vehicle treated cell count at day 3.

3.6.6 qRT-PCR studies

Cells were seeded in 6-well tissue culture plates at 50,000 cells/well and cultured
for 48 hours. Total RNA was extracted from the cells using the RNeasy Mini Kit (Qiagen,
74104), and on-column DNase digestion performed using DNase | (Qiagen, 79254).
cDNA was prepared using LunaScript™ RT SuperMix Kit (New England Biolabs,
E3010S). Real-time PCR was performed using Luna® Universal g°PCR Master Mix (New
England Biolabs, M3003S) on an Applied Biosystems StepOnePlus™ Real-Time PCR
system with the following conditions: 10 min at 55 °C, 1 min at 95 °C followed by 40 cycles
at 95 °C for 10 s and 60 °C for 1 min. Gene expression values were normalized to control
gene Thp and verified against an additional control gene Actb. The primer sequences

used for real-time PCR are listed in Table S4.

3.6.7 Statistical analyses

Statistical analyses were performed using unpaired Student’s t-test except where
otherwise noted. p values were adjusted in R using the p.adjust() function to account for
multiple testing using the Benjamini-Hochberg procedure. All error bars presented are
standard deviation. ICsp values and statistical analysis of drug response were calculated

using nonlinear regression performed by GraphPad Prism.
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X, where X represents the total number of carbons in the metabolite) for each metabolite. Data
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Figure 3.3 2C-Isotope incorporation from glucose and glutamine into nucleotide
biosynthesis is higher in the papillary subtype. Molecular diagrams of (A) purine nucleotide
AMP and (B) pyrimidine nucleotide UMP with carbon sources highlighted as colored circles. The
5 carbon ribose sugar of both (A,B left circle) is derived from glucose metabolism. Isotopologues
of this mass (M-5) reflect both salvaged nucleotides and nucleotides produced by de novo
biosynthetic pathways when *C-glucose is administered. The 5 carbons comprising the purine
ring of AMP (A, right circle) are derived from glycine, formate, and bicarbonate, all three of which
can also be derived from glucose metabolism. Therefore, when 3C-glucose is administered
isotopologues of other masses (M-1 to M-4 and M-6 to M-10, referred to as M-Other) reflect only
purine production by de novo biosynthesis. The 4 carbon comprising the pyrimidine ring of UMP
(B, right circle) are derived from bicarbonate and aspartate. Aspartate is predominantly derived
from glutamine metabolism and provides 3 carbons to UMP; therefore, when *C-glutamine is
administered, M-3 isotopologues reflect de novo UMP biosynthesis. (C) **C-Glucose labeling into
PRPP, IMP, and ATP. (D) *C-Glutamine labeling into UTP. Grey boxes represent the unlabeled
proportion for each metabolite. Colored boxes represent isotopologues for each metabolite and
are sorted based on carbon source. Data are displayed as means + S.D., N = 3 (*p value < 0.05)
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Figure 3.4 Metabolism targeting drugs have subtype-specific effects on cell proliferation.
Targeting glutathione biosynthesis has a greater effect on (A) EMT compared to (B) papillary
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cells. Targeting nucleotide metabolism has less effect on (E) EMT compared to (F) papillary cells.
Bolded values indicate the subtype most affected by each compound. Data are displayed as
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Figure S3.4 Schematic overview of metabolism targeting drugs and affected pathways.
Compounds were chosen based on the metabolic differences identified in the EMT and papillary
subtypes. Buthionine sulfoximine targets glutamate-cysteine ligase in glutathione biosynthesis,
CPI-613 targets pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase in the TCA
cycle, and 5-fluorouracil targets thymidylate synthase in nucleotide biosynthesis
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Figure S3.5 Dose response curves for metabolism targeting drugs. (A) Buthionine
sulfoximine (BSO) and (B) CPI-613 demonstrate greater effects on the EMT subtype. (C) 5-
fluorouracil (5-FU) demonstrates a greater effect on the papillary subtype. (D) Data are means *

S.D. (n=

3)
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Figure S3.6 qRT-PCR measurement of gene expression in targeted pathways. Gene
expression values were normalized to control gene Tbp and expressed relative to papillary
subtype cells (Pap). Quantitation values shown are averages of 6 replicates (3 cell culture
replicates x 2 PCR plate replicates). Error bars represent standard error of the mean. P values
were calculated from ACy values using Welch'’s t-test. *: p < 0.05, **: p < 0.01; ***: p < 0.001. AC+:
real-time PCR cycle threshold difference between gene of interest and control gene.
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Metabolite EMT Average | EMT STDEV | Pap Average |Pap STDEV| P-value |Adjusted p-value
2+3-phosphoglycerate -0.2 0.4 0.4 0.4 5.61E-01 7.40E-01
Acetyl-CoA -1.3 0.6 0.6 0.5 2.60E-03 2.72E-02
Aconitate -0.2 0.5 0.4 0.3 5.38E-01 7.40E-01
Adenine 0.8 0.3 0.3 0.3 7.19E-04 2.50E-02
ADP -0.2 0.1 0.1 0.1 6.14E-03 3.46E-02
ADP-ribose 0.2 0.7 1.6 1.5 4.50E-01 7.15E-01
Allantoate_and_Carbamoyl_aspartate 0.0 0.7 0.6 0.6 8.63E-01 9.22E-01
AMP -0.2 0.3 0.5 0.4 5.32E-01 7.40E-01
ATP -0.2 0.1 0.1 0.1 4.11E-03 2.72E-02
Bisphosphoglycerate 0.3 0.5 0.4 0.4 3.03E-01 5.53E-01
Citrate+lsocitrate 0.3 0.2 0.3 0.3 7.17€-02 2.02E-01
CMP -0.7 0.5 0.4 0.4 2.06E-02 8.51E-02
CoA 0.4 0.3 0.2 0.3 4.38E-02 1.36E-01
CTP -0.2 0.4 0.3 0.3 4.73E-01 7.34E-01
dADP 0.3 0.6 0.6 0.6 2.95E-01 5.53E-01
dAMP -0.3 0.9 0.6 0.5 5.88E-01 7.59E-01
dATP -0.1 0.2 0.3 0.3 5.17E-01 7.40E-01
dCMP -0.4 0.3 0.4 0.4 8.53E-02 2.20E-01
dCTP 0.0 0.6 0.3 0.2 9.98E-01 9.98E-01
Deoxyinosine -0.2 0.4 0.7 0.8 9.79E-01 9.98E-01
Deoxyribose-phosphate -0.5 1.0 0.6 0.4 2.62E-01 5.07E-01
Deoxyuridine -1.5 0.8 0.6 0.5 3.93E-03 2.72E-02
dGDP -0.2 0.1 0.1 0.1 2.34E-02 9.06E-02
dGMP -0.4 0.3 0.3 0.3 9.86E-02 2.26E-01
dTTP -0.1 0.4 0.2 0.2 7.26E-01 8.55E-01
FAD 0.0 0.2 0.2 0.2 9.90E-01 9.98E-01
FBP -0.7 0.0 0.2 0.3 1.31E-03 2.70E-02
Fumarate 0.0 1.0 1.0 0.9 7.14E-01 8.55E-01
GAP+DHAP -0.6 0.1 0.3 0.4 1.83E-02 8.10E-02
GDP -0.4 0.2 0.3 0.2 1.51E-02 7.19E-02
Glucono-lactone 0.6 1.0 0.7 0.6 1.49E-01 3.29E-01
Glutathione_disulfide_oxidized 0.6 0.3 0.3 0.3 4.38E-03 2.72E-02
Glutathione_reduced 1.2 0.5 0.4 0.4 8.05E-04 2.50E-02
Glycerol_3-phosphate -0.1 0.5 0.3 0.3 6.38E-01 8.07E-01
GMP -0.1 0.2 0.3 0.3 7.51E-01 8.62E-01
GTP -0.5 0.4 0.4 0.3 5.40E-02 1.60E-01
Hexose-phosphate 0.0 0.6 0.3 0.2 8.90E-01 9.35E-01
IDP -0.1 0.1 0.1 0.2 2.16E-01 4.45E-01
IMP -0.6 0.2 0.4 0.5 2.94E-02 1.01E-01
Inosine -0.6 0.2 0.3 0.3 3.39E-03 2.72E-02
Ketoglutarate -0.1 0.5 0.5 0.5 8.02E-01 9.01E-01
Lactate -0.7 0.8 0.5 0.3 9.71E-02 2.26E-01
Malate 0.1 0.4 0.4 0.4 6.96E-01 8.55E-01
Nacetylneuraminate -0.1 0.2 0.3 0.3 5.04E-01 7.40E-01
NAD -0.1 0.2 0.3 0.3 5.39E-01 7.40E-01
NADH -1.0 0.7 0.6 0.6 3.37E-02 1.10E-01
NADP -0.2 0.2 0.2 0.2 2.23E-01 4.46E-01
NADPH -0.1 0.2 0.2 0.2 4.40E-01 7.15E-01
Phosphoenolpyruvate -0.4 1.0 0.6 0.6 5.49E-01 7.40E-01
Phosphogluconic_acid -0.4 0.4 0.4 0.3 9.83E-02 2.26E-01
Phosphoserine -0.5 0.4 0.2 0.3 2.78E-02 1.01E-01
PRPP -0.3 0.6 0.5 0.4 4.02E-01 7.12E-01
Ribose-5-phosphate -1.0 0.5 0.4 0.3 2.32E-03 2.72E-02
Ribulose-5-phosphate -1.1 0.7 0.4 0.3 4.21E-03 2.72E-02
Sedoheptulose-phosphate -0.5 0.9 0.4 0.2 2.08E-01 4.44E-01
Succinate -0.4 0.8 1.1 1.1 8.29E-01 9.01E-01
UDP -0.5 0.1 0.4 0.4 1.25E-02 6.48E-02
UDPNacetylglucosamine 0.1 0.2 0.2 0.1 4.31E-01 7.15E-01
UmMP 0.1 0.2 0.2 0.4 4.29E-01 7.15E-01
Uridine -0.1 0.5 0.8 0.8 7.30E-01 8.55E-01
UTP -0.3 0.4 0.2 0.2 8.33E-02 2.20E-01
Xanthosine -0.1 0.4 0.4 0.3 8.21E-01 9.01E-01

Table S3.1 Metabolite abundance with statistical significance. Data presented relative to the
average of the papillary subtype as depicted in Figure 1A. Data represent means and S.D. of 3
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Table S3.1 (cont'd)

replicates. Bold values indicate Welch’s t-test was used. Highlighted values are statistically
significant with adjusted p value < 0.05
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Metabolite EMT Average (%) | EMT STDEV | Papillary Average (%) | Papillary STDEV P-value Adjusted p-value
2-3 phosphoglycerate M-0 33.9 4.2 43.5 1.7 2.21E-02 4.06E-02
2-3 phosphoglycerate M-1-3 66.1 4.2 56.5 1.7 2.21E-02 4.06E-02
Aspartate M-0 59.6 1.8 75.9 3.2 1.57E-03 6.48E-03
Aspartate M-1-4 40.4 1.8 24.1 3.2 1.57E-03 6.48E-03
ATP M-0 50.9 2.0 51.3 2.0 7.94E-01 8.18E-01
ATP M-5 34.1 1.4 29.9 14 2.11E-02 4.06E-02
ATP M-Other 15.0 0.7 18.8 0.6 2.04E-03 7.49E-03
FBP M-0 1.1 0.2 14 0.2 6.58E-02 1.03E-01
FBP M-1-6 98.9 0.2 98.6 0.2 6.59E-02 1.03E-01
Fumarate M-0 45.8 2.1 66.9 2.4 3.31E-04 1.82E-03
Fumarate M-1-4 54.2 2.1 33.1 2.4 3.31E-04 1.82E-03
Glutamate M-0 58.9 8.9 79.8 2.5 1.74E-02 3.82E-02
Glutamate M-1-5 41.1 8.9 20.2 2.5 1.74E-02 3.82E-02
Glycine M-0 77.8 9.0 81.3 5.4 5.92E-01 6.30E-01
Glycine M-1-2 22.2 9.0 18.7 5.4 5.92E-01 6.30E-01
IMP M-0 43.4 33 43.8 2.6 8.80E-01 8.80E-01
IMP M-5 38.0 3.3 32.9 2.1 8.42E-02 1.26E-01
IMP M-Other 18.6 0.0 23.4 0.6 4.79E-03 1.44E-02
Ketoglutarate M-0 59.8 3.9 71.9 0.8 6.14E-03 1.56E-02
Ketoglutarate M-1-5 40.2 3.9 28.1 0.8 6.14E-03 1.56E-02
Malate M-0 56.3 0.6 67.9 1.5 2.19E-04 1.81E-03
Malate M-1-4 43.7 0.6 32.1 1.5 2.19E-04 1.81E-03
PRPP M-0 14.4 4.8 8.4 2.2 1.18E-01 1.62E-01
PRPP M-1-5 85.6 4.8 91.6 2.2 1.18E-01 1.62E-01
Ribose 5-phosphate M-0 6.8 1.9 11.3 5.7 2.57E-01 3.03E-01
Ribose 5-phosphate M-1-5 93.2 1.9 88.7 5.7 2.57E-01 3.03E-01
Serine M-0 69.7 0.5 67.2 2.4 1.53E-01 1.94E-01
Serine M-1-3 30.3 0.5 32.8 2.4 1.53E-01 1.94E-01
Succinate M-0 26.7 3.1 57.6 2.3 1.53E-04 1.81E-03
Succinate M-1-4 73.3 3.1 42.4 2.3 1.53E-04 1.81E-03
UTP M-0 54.8 2.7 53.0 2.2 4.15E-01 4.72E-01
UTP M-5 29.2 3.2 35.1 1.6 4.50E-02 7.81E-02
UTP M-Other 16.0 0.9 11.9 0.6 2.77E-03 9.13E-03

Table S3.2 3C-Isotope percent labeling from glucose with statistical significance. Data
represent means and S.D. of 3 replicates. Bold values indicate Welch’s t-test was used.
Highlighted values are statistically significant with adjusted p value < 0.05
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Metabolite EMT Average | EMT STDEV| Papillary Average | Papillary STDEV P-value Adjusted p-value
Aspartate M-0 32.9 2.5 28.1 4.9 2.10E-01 2.97E-01
Aspartate M-1-4 67.1 2.5 71.9 4.9 2.10E-01 2.97E-01
Fumarate M-0 35.8 3.4 29.9 2.8 8.14E-02 1.38E-01
Fumarate M-1-4 64.2 3.4 70.1 2.8 8.14E-02 1.38E-01
Glutamate M-0 27.2 6.5 25.9 1.7 7.59E-01 7.71E-01
Glutamate M-1-5 72.8 6.5 74.1 1.7 7.59E-01 7.71E-01
Glutamine M-0 0.6 0.5 1.8 0.3 1.55E-02 5.28E-02
Glutamine M-1-5 99.4 0.5 98.2 0.3 1.55E-02 5.28E-02
Ketoglutarate M-0 35.4 3.8 26.8 4.5 6.37E-02 1.35E-01
Ketoglutarate M-1-5 64.6 3.8 73.2 4.5 6.36E-02 1.35E-01
Malate M-0 26.0 0.8 22.0 1.0 5.91E-03 3.36E-02
Malate M-1-4 74.0 0.8 78.0 1.0 5.92E-03 3.36E-02
Succinate M-0 11.0 14 8.8 6.2 5.84E-01 7.09E-01
Succinate M-1-4 89.0 14 91.2 6.2 5.84E-01 7.09E-01
UTP M-0 75.6 2.5 69.5 14 2.08E-02 5.88E-02
UTP M-3 16.7 1.6 22.6 0.5 3.31E-03 3.36E-02
UTP M-Other 7.7 1.0 8.0 0.9 7.71E-01 7.71E-01

Table S3.3 3C-Isotope percent labeling from glutamine with statistical significance. Data
represent means and S.D. of 3 replicates. Highlighted values are statistically significant with
adjusted p value < 0.05
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Primer

Sequence

Dlat FWD

5-AGGCAAAATCATGTGGTTGACGTC

Dlat REV

5-TCCACCCTGGAACTCATGAGGC

DId FWD

5-TGCTGACACAGATGGCATGGTG

Dld REV

5-GATAAGGTCGGATGCGCATGGC

Dist FWD

5-AGCTCGGCACAAGGATGCTTTC

DIst REV

5-TCACTGCATTTACAACAGGCTGC

Gclec FWD

5-ACATGAAAGTGGCCCAGAAGCG

Gclc REV

5-TCCAGGAAATACCCCTTCCTTCCC

Gclm FWD

5-GCAGCTGTATCAGTGGGCACAG

Gclm REV

5-GCCTCAGAGAGCAGTTCTTTCGG

Gsr FWD

5-GGGCTCACTGAAGACGAAGCTG

Gsr REV

5-TGTGAATGCCAACCACCTTTTCC

Gss FWD

5-AGGAATTGCTTGCTACGGCCTG

Gss REV

5-TCACCAGTGTTGTTCCCTGTCTG

Ogdh FWD

5-TGTCTGGTATGCTGGCCGAGAC

Ogdh REV

5-TGAATGCGTCCAGGTCAAAGGC

Pdhal FWD

5-ACCCTGGAGTAAGCTACCGCAC

Pdhal REV

5-CTCAGGATCAGCCGTGGCAAAC

Pdha2 FWD

5-GGCTCATGGCTTCTGCTACACG

Pdha2 REV

5-TACAGGCAAAAGCCACACCAGC

Pdhb FWD

5-TCTGCGCACCATCAGACCAATG

Pdhb REV

5-GCAGGGCCTTCCATAATTCTGGC

Pdhx FWD

5-AATCCAGACCAGCCTCAGCTCC

Pdhx REV

5-ATGTACCCGCTGCATTCGGTTG

Tyms FWD

5-TTGCCAGCTATGCTCTGCTCAC

Tyms REV

5-GGTCTTGGTTCTCGCTGTAGCTG

Actb FWD

5-TTCCAGCCTTCCTTCTTGGGTATGG

Actb REV

5-ATGGTGCTAGGAGCCAGAGCAG

Tbp FWD

5-CAGGGCGCCATGACTCCTGGAATT

Tbp REV

5-GCTACTGCCTGCTGTTGTTGCT

Table S3.4 qRT-PCR primer sequences.
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CHAPTER 4.
TARGETING SUBTYPE-SPECIFIC METABOLIC PREFERENCES IN NUCLEOTIDE

BIOSYNTHESIS INHIBITS MOUSE MAMMARY TUMOR GROWTH
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4.1 PREFACE
This chapter is a modified version of a primary research manuscript currently submitted

for publication.
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4.2 Abstract

Investigating metabolic rewiring in cancer can lead to the discovery of new
treatment strategies for breast cancer subtypes that currently lack targeted therapies.
Using MMTV-Myc driven tumors to model breast cancer heterogeneity, we investigated
metabolic differences between two histological subtypes, the epithelial-mesenchymal
transition (EMT) and the papillary subtypes, using a combination of genomic and
metabolomic techniques. We identified differences in nucleotide metabolism between
EMT and papillary subtypes: EMT tumors preferentially use the nucleotide salvage
pathway, while papillary tumors prefer de novo nucleotide biosynthesis. Using
CRISPR/Cas9 gene editing and mass spectrometry-based methods, we determined that
targeting the preferred pathway in each subtype resulted in greater metabolic impact than
targeting the non-preferred pathway. We further show that knocking out the preferred
nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth. In
contrast, knocking out the non-preferred pathway has a lesser effect or results in
increased tumor growth.
4.3 Introduction

Breast cancer remains the leading cause of cancer-related mortality among
women worldwide despite recent trends in decreasing mortality in high income countries
[1], which can be attributed to advances in early detection and treatment [2]. Current
treatment strategies for advanced breast cancer often include general chemotherapy and
radiation, with the use of targeted therapies, such as endocrine therapy, for specific breast
cancer subtypes [3]. These subtypes are often defined based on expression of specific

receptors including the estrogen receptor (ER), progesterone receptor (PR), and human
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epidermal growth factor receptor 2 (HER2), with an additional triple negative breast
cancer (TNBC) subtype characterized by the absence of these markers. Breast cancer
subtypes can also be classified according to gene expression patterns [4, 5] which often
overlap with definitions based on receptor status and other clinical findings [3, 5] and are
further able to provide valuable prognostic information [6]. However, targeted therapies
are not available for all subtypes of breast cancer, and current rates of recurrence and
development of resistance remain problematic [7, 8]. It is becoming increasingly clear that
breast cancer subtypes have differences in metabolism, and targeting these metabolic
pathways could provide new targeted therapy options [9, 10].

Metabolic rewiring is a hallmark of cancer [11], and significant efforts have been
made to identify metabolic vulnerabilities in cancer and leverage these findings to develop
novel treatment strategies. Early work defining this concept was performed in the 1920s
by Otto Warburg, who observed that tumor cells generally upregulate glycolysis even in
aerobic conditions [12] — a phenomenon now known as the Warburg effect. One of the
modern consequences of the Warburg effect is that targeting aerobic glycolysis, by
pharmacological inhibition of glycolytic enzymes and by limiting glucose availability
through dietary restriction [13-15], is under investigation as a therapeutic strategy for
many types of cancer. However, one of the challenges in using metabolic rewiring to treat
cancer arises from the fact that cancer is a remarkably heterogenous disease, and few
metabolic vulnerabilities are common to all cancers. This variability is clearly illustrated
by breast cancer, which demonstrates heterogeneity on histologic, genetic, and metabolic

levels [4, 9, 16, 17].
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In addition to glycolysis, another metabolic pathway commonly targeted in cancer
therapy is nucleotide biosynthesis. Nucleotides enable cellular proliferation by facilitating
RNA and DNA production [18, 19], and is also required to balance basal rates of RNA
turnover in all cells [20]. Nucleotide biosynthesis occurs through two parallel metabolic
pathways: 1) de novo nucleotide biosynthesis, which generates new nucleotides from
precursors derived predominately from glucose and glutamine metabolism and is an
energetically costly process, and 2) nucleotide salvage, which allows free bases derived
from catabolic processes to be recycled back into nucleotides and is significantly more
energetically efficient [20].

In our current work, we investigate subtype-specific differences in nucleotide
metabolism using two histological mouse mammary tumor subtypes derived from the
MMTV-Myc mouse tumor model: 1) MMTV-Myc epithelial-mesenchymal-transition
(EMT); and 2) MMTV-Myc papillary. This model system mimics the heterogeneity of
human breast cancer [21], and subtypes of the MMTV-Myc model can be correlated with
human cancer subtypes based on gene expression patterns: the EMT subtype strongly
correlates with the claudin-low subtype, and the papillary subtype correlates more
moderately with several human subtypes including basal and luminal breast cancer [22,
23]. Since the claudin-low and basal subtypes both have poor prognosis [24, 25], we
decided to focus on the corresponding MMTV-Myc EMT and papillary subtypes in this
study.

We have previously used cell lines derived from this model system to identify
metabolic differences between subtypes [26]. Here, we build on this work by integrating

genomic and metabolomic techniques to refine our understanding of the metabolic
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differences between the EMT and papillary subtypes. We find striking differences in
nucleotide metabolism between the two subtypes: the EMT subtype prefers nucleotide
salvage pathways, while the papillary subtype prefers de novo nucleotide biosynthesis.
We further investigate the clinical significance of expressing genes related to de novo
purine biosynthesis and salvage pathways, and evaluate the consequences of targeting
these genes in each subtype using CRISPR/Cas9 gene editing techniques [27, 28]. We
find that targeting the preferred metabolic pathway of each subtype generally caused the
most substantial disruption on nucleotide metabolism and had subtype-specific effects on
in vivo tumor growth. Notably, targeting the preferred pathway significantly reduced tumor
growth while targeting the non-preferred pathway either had no effect on tumor growth,
or in some cases significantly increased tumor growth. These results highlight the
metabolic heterogeneity of breast cancer subtypes and demonstrate the potential efficacy
of tailoring therapies to inhibit subtype-specific metabolism.

4.4 Results

4.4.1 Metabolite pool sizes and gene expression patterns of MMTV-Myc mouse
mammary tumors implicate differences in nucleotide metabolic pathway activity
between subtypes.

To identify differences in metabolic pathway activities between EMT and papillary
mouse mammary tumor subtypes, we integrated a metabolomics analysis with publicly
available gene expression data [29]. Metabolites were extracted from flash frozen tumor
sections of known histological subtype (Figure 1A) and quantitated using liquid
chromatography tandem mass spectrometry (LC-MS/MS). We found metabolites

involved in the pentose phosphate pathway (PPP) and metabolites related to nucleotide
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metabolism to be significantly different between EMT and papillary tumors (Figure 1B;
Table S1). Notably, PPP intermediates including gluconolactone, ribose 5-phosphate,
ribulose 5-phosphate, and sedoheptulose phosphate are uniformly elevated in the EMT
subtype compared to papillary. The PPP serves several important functions including: 1)
production of ribose 5-phosphate which can be used for nucleotide biosynthesis or
converted to glycolytic intermediates; 2) production of reducing equivalents in the form of
NADPH; and 3) generation of erythrose 4-phosphate which can also be converted to
glycolytic intermediates [30]. Several metabolites related to nucleotide metabolism are
also different between the EMT and papillary tumors (Figure 1B; Table S1). For example,
EMT tumors have higher levels of inosine monophosphate (IMP), adenine, and inosine
compared to papillary tumors. Adenine and inosine are both intermediates in breakdown
and salvage pathways of nucleotide metabolism, and IMP is an intermediate for purine
biosynthesis. To investigate how these metabolite levels reflect differences in gene
expression, we downloaded gene expression data for the EMT and papillary tumors from
Gene Expression Omnibus (GEO) [31] and applied gene set enrichment analysis (GSEA)
[32] using metabolism-related gene sets from the Reactome database [33]. This analysis
revealed that genes involved in the PPP (Figure 1C) and nucleobase biosynthesis
(Figure 1C) are both significantly enriched for lower expression in the EMT subtype
compared to the papillary subtype. Therefore, the higher levels of PPP metabolites and
IMP observed in EMT tumors (Figure 1B) likely reflect accumulation due to decreased
flux through the PPP and nucleobase biosynthesis pathways. Together, this data agrees
with our previous in vitro findings, where we observed lower nucleotide biosynthesis in

EMT cells compared to papillary cells [26]. When considered with our previous results,
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these findings further demonstrate that EMT and papillary tumors exhibit significant
differences in nucleotide metabolism in vivo.
4.4.2 Expression of nucleotide salvage genes are increased in the EMT subtype.
To further characterize gene expression differences in nucleotide metabolism
between the EMT and papillary tumors, we used the transcriptome analysis console
(TAC) software. We filtered the gene list to include nucleotide metabolism and the PPP
genes as denoted within the Reactome database. Based on our GSEA results (Figure
1C-D), we expected genes involved in de novo nucleotide biosynthesis and PPP to have
higher expression in the papillary subtype. For the EMT subtype, we find that the gene
with highest relative expression is UPP1, with 18-fold higher expression the EMT subtype
vs. the papillary subtype (Table S2). UPP1 encodes uridine phosphorylase 1, an enzyme
involved in pyrimidine salvage. Together with the observation of higher nucleotide salvage
pathway intermediates adenine and inosine in EMT (Figure 1B), this suggests the EMT
subtype has higher activity of the nucleotide salvage pathway. Therefore, we decided to
focus our analysis on genes involved in de novo nucleotide biosynthesis and nucleotide
salvage pathways. Hierarchical clustering revealed two major groupings of genes as
illustrated by the dendrogram in Figure 2A. The first, smaller group included many
nucleotide salvage genes with significantly higher expression in EMT tumors and the
second, larger group predominately contained de novo biosynthesis genes with
significantly lower expression in EMT compared to papillary tumors. Therefore, EMT
tumors show a relative preference for nucleotide salvage, while papillary tumors prefer
de novo biosynthesis. We also considered GSEA results for the nucleotide salvage

pathway; however, this gene set as a whole was not significantly enriched for the EMT
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subtype despite several genes within this pathway having significantly higher expression
in the EMT subtype (Figure S1; Table S2). A simplified pathway overview summarizing
our results highlights the potential metabolic preferences for nucleotide biosynthesis that
are specific to each subtype, with the papillary subtype preferring de novo biosynthesis
and the EMT subtype preferring nucleotide salvage (Figure 2B).

4.4.3 Expression of key de novo and salvage genes are correlated with worse
patient outcomes.

Our results thus far illustrate the possibility for distinct histological subtypes to
utilize different pathways to meet the same metabolic demand for nucleotides. We next
sought to determine the potential clinical relevance associated with expression of these
genes in human breast cancer. We focused on genes phosphoribosyl pyrophosphate
amidotransferase (PPAT) and adenine phosphoribosyltransferase (APRT) because they
encode the rate limiting step for de novo purine biosynthesis and salvage of the purine
base adenine, respectively, and our findings show that PPAT expression is significantly
higher in the papillary subtype and APRT expression is significantly higher in the EMT
subtype (Figure 2B; Table S2). We used KM plotter, which generates Kaplan-Meier
curves using patient data mined from GEO datasets [34], to generate survival curves with
patients stratified by relative gene expression of PPAT and APRT. We find that in general,
patients with high expression of both PPAT and APRT have worse relapse-free survival
(RFS) than patients with low expression of these genes (Figure 3A). This trend is also
observed when patients are further divided according to intrinsic subtype. High
expression of both PPAT and APRT is similarly significant for patients with luminal A

(Figure 3B) and luminal B (Figure 3C) breast cancer. However, for patients with HER2+
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(Figure 3D) and basal (Figure 3E) breast cancer, high expression of PPAT is no longer
associated with decreased RFS, while high expression of APRT remains significant.
These results highlight the potential importance of nucleotide metabolism in breast cancer
and further suggest that de novo purine biosynthesis may be most important for luminal
breast cancer, whereas salvage may be relevant for all breast cancer subtypes.

4.4.4 Knocking out de novo and salvage genes disrupts cell metabolism in a
subtype-specific manner.

To further investigate the importance of nucleotide biosynthesis genes PPAT and
APRT in our model, we targeted each gene using CRISPR/Cas9 gene editing [27, 28] in
EMT and papillary tumor derived cell lines. We concurrently generated puromycin-
resistant control cell lines for each subtype with a non-targeting scramble guide RNA.
Clonal lines for each subtype, knockout (KO), and puromycin-resistant scramble control
(PSC) were isolated by serial dilution, and successful gene editing was confirmed by
Tracking of Indels by Decomposition (TIDE) analysis [35] (Figures S2-S3). Western blots
were also performed to determine successful KO by protein expression (Figure S4).
While the APRT antibody worked well, the PPAT bands were inconclusive, with multiple
faint bands near the predicted molecular weight of PPAT. We therefore also performed
isotope labeling studies to functionally assess how 3Cs-glucose is incorporated into
purine biosynthesis in these cell lines. We reasoned that the M-5 isotopologue of ATP
represents production from either pathway, since the M-5 isotopologue of ATP is
predominately derived from a fully-labeled PRPP molecule with a fully-unlabeled adenine
nucleobase, and both de novo and salvage pathways utilize PRPP as a substrate. In

contrast, the M1-4 and M6-10 isotopologues require labeling of the adenine base, which
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is only attained through de novo biosynthesis. Hence, we distinguish ATP isotopologues
as unlabeled (M-0), ATP that may be derived from either de novo or salvage pathways
(M-5), and ATP that could only be derived from de novo biosynthesis (M1-4 and M6-10).
Using this approach, we find that, compared to controls, knocking out the salvage gene
APRT resulted in increased labeling of isotopologues of ATP that can only be derived
from de novo biosynthesis in both subtypes (Figure 4; Tables S3-S4), which is expected
because a larger proportion of ATP is now derived from de novo biosynthesis instead of
salvage. Additionally, targeting the de novo biosynthesis gene PPAT caused significantly
decreased labeling of ATP isotopologues derived from de novo biosynthesis (Figure 4;
Tables S3-S4). These results provide strong evidence that the metabolic activity of
nucleotide salvage and de novo biosynthesis have been significantly decreased in the
APRT and PPAT KO cell lines, respectively.

We also analyzed the abundance of a wide range of metabolites in CRISPR edited
cell lines relative to the control line of each respective subtype using the targeted LC-
MS/MS method described above. We found significant differences between cell lines
across several metabolic pathways (Figure S5; Tables S5-S6). As expected, the most
consistently altered metabolites include PPP related metabolites (Figure 5A), nucleoside
triphosphates (NTPs; Figure 5B), and deoxynucleoside triphosphates (ANTPs; Figure
5C). Notably, the relative abundance of these metabolites is generally most different when
the preferred metabolic pathway for each subtype has been targeted. For example, ATP
(Figure 5B) and dATP (Figure 5C) levels are significantly decreased in the papillary
PPAT KO cell line compared to the papillary control and APRT KO lines, while the EMT

PPAT KO is similar to EMT control for these metabolites. Additionally, the papillary PPAT
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KO cells have lower levels of most PPP intermediates, but significantly higher levels of
phosphoribosyl pyrophosphate (PRPP; Figure 5A) which is used by both de novo
biosynthesis and salvage pathways and is produced from the PPP intermediate ribose-
5-phosphate. Most NTPs and dNTPs are also decreased in the papillary PPAT KO line
compared to the control or APRT KO line (Figure 5B-C). The exception to this is the
pyrimidine uridine triphosphate (UTP), which is significantly increased in the papillary
PPAT KO compared to control and APRT KO lines (Figure 5B). Together, these results
show that targeting PPAT in the papillary cells creates a metabolic bottleneck by blocking
de novo purine biosynthesis, causing: 1) decreased levels of intermediates in the PPP,
the feeder pathway into nucleotide biosynthesis; and 2) increased levels of PRPP which
would normally function to increase de novo purine and pyrimidine biosynthesis through
feedforward mechanisms [20]. This PRPP-driven feedforward mechanism would also
increase de novo pyrimidine biosynthesis in the papillary PPAT KO cells and explain the
increased UTP levels observed in papillary PPAT KO cells (Figure 5B).

Decreased PPP intermediates, increased PRPP, and alterations in NTP and dNTP
levels are not observed in the EMT PPAT KO cells, likely due to the metabolic preference
of the EMT subtype to salvage nucleotides. Indeed, targeting the salvage pathway caused
significant metabolic alterations in the EMT APRT KO cells compared to the control:
higher levels of most nucleotides (Figure 5B-C) suggest that EMT APRT KO cells are
forced to switch to de novo biosynthesis when their preferred means of obtaining
nucleotides via salvage is inhibited. In the papillary APRT KO line, nucleotide levels are
not significantly changed from control levels (Figure 5B-C). Taken together, the above

results indicate that the greatest impact on nucleotide metabolism is achieved when the
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preferred nucleotide biosynthesis pathway of each subtype is inhibited, while inhibiting
the non-preferred pathway has minimal effects.

4.4.5 Targeting nucleotide de novo biosynthesis and salvage genes impact tumor
growth in a subtype-specific manner.

To determine the in vivo effects of targeting the preferred nucleotide biosynthesis
pathway for each subtype, we monitored tumor growth of KO and control cell lines injected
in mice. Control or KO cells were first injected into the mammary fat pad of syngeneic
mice to generate tumors, then the resulting tumors were resected, and fragments of these
tumors were orthotopically implanted into new cohorts of mice to monitor tumor growth
over time. This was performed because implantation of tumor fragments, rather than
direct injection of tumor cells, resulted in less variability in the lag time of tumor growth.
As expected, the EMT tumors grew slowest when the preferred nucleotide salvage
pathway gene APRT is targeted: EMT APRT KO tumors were significantly smaller (762.8
+ 108.4 mm? n = 5) at 24 days post implantation as compared to the PPAT KO tumors
(982.7 £ 116.1 mm? n = 5). The EMT PPAT KO tumors also grew slower than the PSC
tumors (1344.6 + 141.7 mm? n = 6), which were the largest at 24 days post implantation
(Figure 6A; Table S7). Consistent with the reliance of the papillary subtype on de novo
nucleotide biosynthesis, targeting PPAT prevented papillary cells from growing tumors in
vivo (Figure 6B; Table S8). Surprisingly, targeting the non-preferred nucleotide salvage
gene APRT caused papillary tumors to grow larger (1161.8 + 155.8 mm? n = 5) than the
PSC tumors (514.0 + 114.0 mm? n = 5) at 24 days post implantation. Taken together,

these results indicate that de novo nucleotide biosynthesis is a critical metabolic pathway
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for papillary tumors, and further demonstrate targeting a non-preferred metabolic pathway
could have the unintended side effect of increasing tumor growth.

To determine whether differences in tumor sizes are attributable to changes in
proliferation or cell death, immunohistochemical (IHC) analysis was performed. Ki67
staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
assays were performed to measure proliferation and necrosis within the tumors,
respectively. As expected, Ki67 staining is directly proportional to tumor growth in each
subtype. The EMT PSC tumors have significantly more Ki67* nuclei than both KOs, and
the EMT APRT KO tumors have significantly fewer compared to PPAT KOs (Figure 7A;
Table S9). This indicates that the APRT KO EMT tumors grow slower due to decreased
proliferation. In papillary tumors, the APRT KOs have significantly more Ki67* nuclei than
the PSC tumors (Figure 7B; Table S10), showing these tumors grow more quickly due
to increased proliferation. TUNEL assays show that in the EMT subtype, both KOs were
significantly more necrotic than the control tumors (Figure 7C; Table S11) In the papillary
subtype, no difference in staining was observed between control and APRT KO tumors
(Figure 7D; Table S12) indicating that the observed differences in tumor growth are not
due to differences in tumor necrosis. Representative Ki67 staining and TUNEL assay
images are in Figures S6 and S7, respectively.

To validate the monoclonal tumor growth findings, the tumor growth of additional
clones for each subtype were measured (Figure S8; Tables S7-S8). Four additional
papillary PPAT KO clones were tested with ATP labeling comparable to Figure 4, as well
as one additional EMT PPAT KO clone (Figure S9; Tables S13-S14). Two additional

confirmed APRT KO clones for each subtype were also injected into mice for in vivo
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testing (Figure S10). To validate the controls, the tumor growth of an additional PSC
clone and wild-type tumors of each subtype were measured. The clonal PSC tumors for
the EMT subtype grew similarly and are larger than the EMT wild-type tumors at 24 days
post implantation, indicating the clonal selection process may select for more aggressive
clones of this subtype. Additionally, the two EMT PPAT KOs grew comparably and were
also similar in size to the wild-type EMT tumors. However, the additional two EMT APRT
KO clonal cell lines failed to generate tumors (Figure S8A; Table S7). For the papillary
subtype, one APRT KO clone again grew more quickly than the control tumors, while the
remaining clone grew similarly to the PSC and wild-type papillary tumors (Figure S8B;
Table S8). Consistent with the results shown in Figure 6, the four additional papillary
PPAT KO clonal cell lines also failed to generate tumors. Taken together, our findings
demonstrate the importance of targeting subtype-specific metabolic vulnerabilities to
effectively control tumor growth. In addition, inhibiting a non-preferred metabolic pathway
not only fails to reduce tumor growth, but can have the detrimental effect of increasing
tumor growth.
4.5 Discussion

In this study, we used a combination of genomic and metabolomic techniques to
identify subtype-specific metabolic preferences in nucleotide metabolism in the EMT and
papillary tumor subtypes derived from the MMTV-Myc mouse model. We discovered that
the EMT subtype prefers nucleotide salvage whereas the papillary subtype relies on de
novo nucleotide biosynthesis. We also investigated patient outcomes and identified that
high expression of the nucleotide salvage gene APRT is correlated with worse RFS

across breast cancer subtypes, while high expression of the de novo biosynthesis gene
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PPAT is associated with worse outcomes in patients with luminal breast cancer. We
further characterized the metabolic effects of targeting both the preferred and non-
preferred pathway in the EMT and papillary subtypes and demonstrate the effect of
knocking out these pathways on the in vivo tumor growth of each subtype.

Our results demonstrate that targeting the preferred metabolic pathway for
nucleotide biosynthesis reduces tumor growth in both EMT and papillary tumors.
Sustained proliferation is a hallmark of cancer [11], and to achieve this cancer cells have
a high requirement for nucleotide biosynthesis. Indeed, targeting nucleotide metabolism
has long been used as a staple of cancer therapy with early examples including the folate
analog methotrexate (MTX) and the pyrimidine analog 5-fluorouracil (5FU). MTX inhibits
dihydrofolate reductase and blocks one-carbon metabolism that is essential for several
de novo biosynthetic reactions [36], and 5FU inhibits thymidylate synthase, which
catalyzes the de novo production of thymidine monophosphate [37]. Other compounds
targeting de novo nucleotide biosynthesis including 6-mercaptopurine [38], leflunomide
[39] and brequinar [40] are also currently approved or under investigation as cancer
therapeutics. Notably for our model, an active metabolite of 6-mercaptopurine inhibits
PPAT [38] and could prove effective at inhibiting growth of the papillary subtype.
However, 6-mercaptopurine and several other de novo nucleotide metabolism-targeting
compounds including 5FU and gemcitabine are activated by the nucleotide salvage
pathway, and downregulation of this pathway could provide a potential resistance
mechanism to these compounds [41, 42].

In our model, the papillary subtype has increased MYC signaling compared to the

EMT subtype [29], and its metabolic preference for de novo nucleotide biosynthesis
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highlights the role of MYC as a master regulator of nucleotide biosynthesis [43, 44]. MYC
amplification is a common feature of many human cancers [45] and occurs in 15.7% of
breast cancers [46]. In TNBC specifically, it has been shown that chemotherapy with
doxorubicin adaptively upregulates de novo pyrimidine biosynthesis and co-treatment of
TNBC xenografts with doxorubicin and the de novo pyrimidine biosynthesis inhibitor
leflunomide is more effective at treating TNBC tumors than doxorubicin alone [47].
Upregulated de novo purine biosynthesis, directed by MYC signaling, has also been
implicated as a key metabolic pathway in glioblastoma and targeting de novo purine
biosynthesis genes improved survival and reduced tumor burden in an in vivo model of
glioblastoma [48]. These studies and ours strongly suggest that further development of
compounds targeting de novo nucleotide biosynthesis will be useful to treat many types
of cancer.

Our results show that targeting nucleotide salvage also attenuates tumor growth
in a subset of cancers that prefer this pathway, such as the EMT subtype MMTV-Myc
tumors (Figure 6A). The EMT subtype has previously been correlated with the claudin-
low subtype of human breast cancer based on gene expression patterns [22, 23], and
additional studies should be performed to determine whether nucleotide salvage is also
a metabolic vulnerability in claudin-low breast cancer. Nucleotides and related
metabolites are abundant in the extracellular space and serve important biological
functions: purines play a significant role as signaling molecules [49], and pyrimidine
release by tumor-associated macrophages has been shown to mediate gemcitabine
resistance in animal models of pancreatic cancer [50]. Therefore, the uptake and

utilization of these metabolites should be further investigated as therapeutic targets.
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Unfortunately, there are currently very few available drugs that target nucleotide salvage.
Two indirect examples of salvage inhibitors are dilazep and dipyridamole. These
compounds act through inhibition of equilibrative nucleoside transporters (ENTs) and
function as vasodilators, prevent platelet aggregation, and are currently approved to treat
cardiovascular disease [51]. ENT inhibition indirectly blocks nucleotide salvage pathways
by preventing uptake of nucleosides and nucleobases. ENTs also mediate the uptake of
nucleoside analogs like gemcitabine [52], which means ENT inhibition as a means to
block nucleotide salvage would not be compatible for combination therapy with these
drugs. Our findings support the development of therapeutic compounds to specifically
target nucleotide salvage pathways. This could prove particularly beneficial for patients
diagnosed with claudin-low breast cancer, which carries a poor prognosis and does not
have targeted therapies [24].

Our results further reveal the concerning possibility that targeting a non-preferred
pathway can cause an increase in tumor growth. Specifically, when APRT was targeted
in the papillary subtype, two of three clones grew tumors surprisingly fast, while the
remaining clone grew comparably to control tumors (Figure 6B and Figure S8B). In our
current study, we used tumors and cell lines from histologically pure samples; however,
this is not always the case in spontaneous tumors. Specifically regarding the MMTV-Myc
mouse model, spontaneous tumors develop with a wide variety of histologies, including
mixed tumors composed of multiple subtypes in one region [29]. If we consider a possible
mixed tumor that is predominately EMT with a minor papillary component, our results
indicate that treating it by inhibiting nucleotide salvage alone would likely be ineffective

for the papillary component and could even have the unintended side effect of increasing
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the growth of the papillary portion of the tumor. One implication of this finding is that, for
a mixed tumor exhibiting both EMT and papillary histologies, it may be safer to target de
novo biosynthesis rather than the salvage pathway, because while EMT subtype cells
prefer salvage, blocking de novo biosynthesis still has a small inhibitory effect on tumor
growth (Figure 6A); on the other hand, blocking the salvage pathway in papillary subtype
cells can have the opposite and undesirable effect of increasing tumor growth (Figure
6B).

In human breast cancer, intratumor heterogeneity can manifest in many ways,
including on morphologic and genomic levels [53]. The importance of this heterogeneity
is particularly notable when considering biomarker expression; for example, current
recommendations report a positive finding if at least 1% of tumors cells are positive for
the estrogen receptor (ER) [54]. Since the degree of ER positivity is also directly
correlated with patient outcomes following anti-endocrine treatment [55], it is clear that
the intratumor heterogeneity of this biomarker has important clinical implications. Based
on our present findings, metabolic vulnerabilities can be used to design new treatments
for breast cancer subtypes. However, the possibility of inadvertently stimulating tumor
growth by improperly targeting metabolism should also be considered further, especially
in recognition of the significant heterogeneity of breast cancer. Further work should be
directed at determining whether subtypes of human breast cancer, which are known to
exhibit different metabolic features [9], have differences in metabolic vulnerabilities, and
whether targeting non-preferred pathways is detrimental.

In conclusion, our findings demonstrate that distinct histologic subtypes of breast

cancer exhibit different metabolic vulnerabilities in terms of their preferred nucleotide
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biosynthesis pathways, and that inhibiting the preferred pathway greatly impacts
metabolism as well as in vivo tumor growth. Crucially, we also show that targeting the
non-preferred pathway is not only less effective in controlling tumor growth but may have
the opposite effect of increasing tumor growth. Our results underscore a critical need to
elucidate the distinct metabolic preferences of different breast cancer subtypes in order
to design effective targeted therapies for each subtype.
4.6 Methods
4.6.1 Primary mouse tumors

All animal use was performed in accordance with institutional and federal
guidelines. Primary MMTV-Myc EMT and MMTV-Myc papillary tumors were acquired as
a gift from Dr. Eran Andrechek and have been previously described [29]. Tumors were
sectioned, formalin-fixed, and paraffin embedded for histological examination with
hematoxylin and eosin staining. Wild-type EMT and papillary tumors were cryopreserved
in a mixture of 90% FBS and 10% DMSO. Tumor derived cell lines were established by
mechanical dissociation of primary tumors using scissors, followed by culturing tumor

pieces in cell culture media [56].

4.6.2 Metabolic profiling

Unlabeled, targeted metabolomics was performed as previously described [57].
Briefly, cells were seeded in 6-well tissue culture plates at 50,000 cells/well and cultured
for 48 hours. Cells were washed with saline (VWR, Radnor, Pennsylvania, 16005-092)
and metabolism was quenched by addition of cold methanol. Flash frozen tumor tissue
was pulverized using a liquid nitrogen cooled mortar and pestle and cold methanol and

water was added to the tissue sample. The tissue samples were further processed using
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a Precellys Evolution homogenizer (Bertin Instruments) operating a single 10s cycle at
10000 rpm. Extracts were then transferred to 1.5 ml Eppendorf tubes and cold chloroform
was added to each tube and vortexed for 10 minutes at 4°C. The final metabolite
extraction solvent ratios were methanol:water:chloroform (5:2:5). The polar phase was
collected and dried under a stream of nitrogen gas. The dried metabolites were then
resuspended in HPLC-grade water for analysis. LC-MS/MS analysis was performed with
ion-pairing reverse phase chromatography using an Ascentis Express column (C18,5 cm
x 2.1 mm, 2.7 um, MilliporeSigma, 53822-U) and a Waters Xevo TQ-S triple quadrupole
mass spectrometer. Mass spectra were acquired using negative mode electrospray
ionization operating in multiple reaction monitoring (MRM) mode. Peak processing was
performed using MAVEN [58] and data for each sample was normalized to the mean
signal intensity for all metabolites in the analysis. Metabolites were grouped by
relationship to metabolic pathways. Heatmaps were generated using Cluster 3.0 [59] and

exported using Java Treeview [60].

4.6.3 Gene expression analysis

Gene expression data for MMTV-Myc EMT and papillary data was downloaded
from GEO using accession number GSE15904. The following EMT CHP datasets were
downloaded: GSM399180, GSM399202, GSM399204, GSM399217, GSM399226,
GSM399235, GSM399238, GSM399252, and GSM399259. The following papillary CHP
datasets were downloaded: GSM399183, GSM399184, GSM399196, GSM399197,
GSM399200, GSM399216, GSM399222, GSM399234, GSM399241, and GSM399245.
Gene set enrichment analysis [32] was performed by converting gene expression data to

the required file formats and using the GSEA software available to download from
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www.gsea-msigdb.org/gsea/index.jsp. Reactome [33] metabolism gene sets were
identified as all participant and sub-participant gene sets under the Reactome Metabolism
pathway (stable identifier R-HSA-1430728) and were downloaded from the MSigDB
canonical pathways collection [61]. Differential gene expression was determined using
Transcriptome Analysis Console (TAC) 4.0 software. Sample signals and statistical
measurements were exported from TAC 4.0 software. Genes measured by multiple
probes were individually numbered. Clustering was performed in Cluster 3.0 using log
transformed data and genes were clustered using the uncentered correlation similarity
metric and average linkage settings [59]. Heatmaps were generated using JavaTreeview

[60].

4.6.4 Survival Analysis

Survival curves were generated using KM Plotter for Breast Cancer [34] using
probe 209434 s AT for PPAT and 213892 S AT for APRT. Patients were separated by
upper and lower tercile of expression using the trichotomization option. Redundant
samples were removed and biased arrays were excluded as per the default quality control

settings.

4.6.5 Cell lines and culture conditions

EMT and papillary tumor derived cell lines were cultured in Dulbecco’s Modified
Eagle Medium (DMEM Corning, Corning, New York 10-017-CM) with 25 mM glucose
without sodium pyruvate supplemented with 2 mM glutamine (Corning, 25-005-CIl) 10%

heat-inactivated fetal bovine serum (MilliporeSigma, Burlington Massachusetts, 12306C),
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and 1% penicillin and streptomycin (Corning, 30-002-Cl). Cells were maintained at 37°C

with 5% COa2.

4.6.6 CRISPR/Cas9

Lentivirus mediated CRISPR/Cas9 genome editing was used to achieve gene
knockout. Guide RNAs targeting APRT or PPAT were designed using the CRISPR-DO
web application [62]. Plasmids containing dual guide RNA, puromycin resistance, and
Cas9 co-expression were acquired from VectorBuilder. Plasmids containing scramble
guide RNA, puromycin resistance, and Cas9 co-expression were also acquired from
VectorBuilder. APRT KO dual guide RNA sequences are guide A) 5'-
GTCGATCTTGCCGCTGTGCG-3’ and guide B) 5-GTGTGCTCATCCGGAAACAG-3'.
PPAT KO dual guide RNA sequences are guide A) 5’-CATACGAGGTACGCCACCAC-3
and guide B) 5-TACGCGGTGCGAGATCCATA-3’ The non-targeting puromycin-resistant
scramble guide RNA sequence is 5-GCACTACCAGAGCTAACTCA-3'. Lentiviral
envelope and packaging plasmids were acquired from addgene. The VSVG plasmid was
a gift from Bob Weinberg (Addgene plasmid # 8454; http://n2t.net/addgene:8454;
RRID:Addgene 8454). The psPAX2 plasmid was a gift from Didier Trono (Addgene
plasmid # 12260; http://n2t.net/addgene:12260; RRID:Addgene 12260). To produce
lentivirus, HEK293T cells seeded in 10-cm plates were transfected using lipofectamine
3000 (ThermoFisher Scientific, L3000015) with 10.0 ug lentivirus plasmids, 0.5 ug VSVG,
and 5.0 ug psPAX2 plasmids. The following morning, fresh DMEM with 15% FBS and 1%
P/S was added, and cells were grown for another 48 h to generate virus. For transduction
with lentivirus, the recipient EMT and papillary cells were seeded in 10-cm plates and the

supernatant of transfected HEK293T was collected and passed through 0.45 um PVDF
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syringe filter. 5 ml of the viral supernatant and 5 ml of fresh media were added to recipient
cell plates with polybrene (Fisher Scientific, TR1003G) at a final concentration of 4 ug/ml.
The cells were cultured for 24h followed by addition of fresh DMEM medium
supplemented with 10% FBS and treatment for 10 days with 2 yg/ml puromycin for
selection. After transduction, cell culture media was supplemented with 50 uM
nucleosides (adenosine, cytidine, guanosine, inosine, thymidine, and uridine) in DMSO
across all conditions to provide extracellular nucleotides for cells with deficient de novo
biosynthesis. The puromycin selected cells were then resuspended to a concentration of
5 cells/ml and seeded 1 cell/well on 96-well plates. Surviving clones were expanded and
analyzed for successful gene knockout. Genomic DNA was extracted using DNeasy
Blood and Tissue Kit (Qiagen) to check for successful gene editing. The following primer
pairs were used for PCR expansion and sequencing (marked with *) of APRT guide A: 5’-
GGGTCACTCTCCTGTCCTTG-3 and 5-AGGACAGAGCAGAGTTCGTC-3*, APRT
guide B: 5-GAGCTGTTCAGAAGGCAGGT-3* and 5-AGCGTTTCTGGGTGGTGTAA-
3, PPAT guide A 5-CTCAGGACGGTCAAGGCTAC-3™* and 5-
AAGATGCCTTTTGTCGGAGA-3, and PPAT guide B: 5-
GCATACACCCCTCCTCAAGA-3™ and 5-CATCAGAGACTGGCATAAGACG-3'.
Tracking of Indels by Decomposition (TIDE) was used to evaluate successful gene editing

[35].

4.6.7 Western blot analysis

Cell lysis and Western blot analysis were carried out according to standard
protocols. The following dilutions of primary commercial antibodies were used as probes:

1:250 dilution of anti-APRT (Thermo Scientific, PA576741), 1:500 dilution of anti-PPAT
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(Proteintech 15401-1-AP), 1:1000 dilution of anti-vinculin (Cell Signaling Technology,
E1E9V). Anti-APRT and anti-vinculin antibodies were diluted in 5% bovine serum albumin
and incubated overnight at 4 °C. The anti-PPAT antibody was diluted in 5% milk and
incubated for 60 minutes at room temperature per manufacturer recommendations.
Secondary anti-rabbit antibodies (Cell Signaling Technology, 7074S) were diluted in 5%
non-fat milk at a dilution of 1:1000 and incubated at room temperature for 1 h. Blots were
imaged by chemiluminescence after incubation with Clarity Western ECL substrate (Bio-

Rad, 1705061) using a ChemiDoc Imaging system (Bio-Rad).
4.6.8 Isotope labeling studies

For isotope labeling experiments, DMEM without glucose or glutamine was
prepared from powder (MilliporeSigma, D5030) and supplemented with 13Cs-glucose
(Cambridge Isotope Laboratories, Tewksbury, Massachusetts, CLM-1396) and unlabeled
glutamine (MilliporeSigma, G8540). Labeled media was prepared with 10% dialyzed FBS
(Sigma-Aldrich, F0392). Cells were then seeded and cultured as described above. Fresh
cell culture media without nucleoside supplementation was added to cells for 1 hour prior
to switching to isotope containing media. Prior to metabolite extraction, media was
switched to isotope containing media and samples were collected at T = 240 minutes.
Metabolite extraction and analysis were performed as above. Labeling data was corrected

for natural isotope abundance using IsoCor [63].
4.6.9 In vivo tumor studies

To generate tumors, monoclonal KO cell lines were injected in 50 pl of a 1:1

mixture of DMEM:Matrigel (Corning, 354262) at 500,000 cells/50 pl into the fourth
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mammary fat pad of syngeneic 6 to 8 week old FVB mice. The resulting tumors grew to
a size of 15 mm as measured by external calipers along the longest axis, at which time
the tumors were harvested and fragmented into 3 mm pieces that were cryopreserved in
a mixture of 90% FBS and 10% DMSO. Cryopreserved tumors were then thawed, washed
in saline, and cut into 1-2mm fragments for implantation into the fourth mammary fat pad
of recipient mice. These re-implanted tumors were then measured by external caliper 3
times weekly starting at 7 days post implantation until the experimental endpoint at 24
days post implantation. Tumor size was calculated as cross-sectional area using
measurements from the longest and shortest axes. Mice were monitored for humane
endpoints throughout the experiment according to institutional guidelines. At 24 days the
tumors were collected, and a cross section of each tumor was formalin fixed for

histological preparation.

4.6.10 Histological analyses

All histological preparation and immunohistochemical staining was performed by
the Investigative HistoPathology Laboratory at Michigan State University. Ki67 staining
was measured using multiple images taken from distinct, non-necrotic regions of each
tumor and evaluated as follows. For each tumor, at least 4 color images from distinct
regions were acquired using an Olympus BX41 microscope operated at 10x magnification
and saved as TIFF image files. Image processing was performed in ImageJ 1.52p (Fiji
distribution). The color images were first deconvoluted into H (hematoxylin) and DAB
(diaminobenzidine) color channels using Color Deconvolution (‘H DAB’ deconvolution
matrix). Deconvoluted H and DAB images were saved as new TIFF images. For each

image, smoothing was applied 5 times, then Auto Local Threshold was performed using
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Bernsen’s algorithm (window size 15, contrast threshold 15) to detect stained nuclei.
Stained nuclei were counted using Analyze Particles (minimum size 150, minimum
circularity 0.3). The above steps were looped over all images. To check that threshold
parameters were appropriate, several output images were manually inspected to confirm
that visually identifiable nuclei were properly counted. The percent Ki67 + nuclei was
calculated as the ratio of DAB-stained nuclei counts (representing proliferating cells) to
H-stained nuclei counts (representing all cells) for each image, and averaged across all
images for each experimental group. TUNEL assays were evaluated using a single image
of the full tumor cross section to determine the proportion of necrotic area to non-necrotic
area of each tumor. Images were acquired using a Leica M165FC stereo microscope
operated at 1x magnification and saved as TIFF image files. TUNEL assay images were
also processed using ImageJ. Images were duplicated and color thresholding was used
to select either the TUNEL + area (image 1) or the entire tumor area (image 2). The
percent TUNEL + area was calculated as the ratio of image 1 area to image 2 area for
each tumor and averaged across all tumors within each experimental group.
4.6.11 Statistical analyses

Statistical analyses were performed using unpaired Student’s t-test except where
otherwise noted. p values were adjusted in R using the p.adjust() function to account for
multiple hypothesis testing using the Benjamini-Hochberg procedure (metabolites) or
Hommel procedure (tumor measurements). All error bars presented are standard
deviation. All figures except survival curves and heatmaps were generated using

GraphPad Prism.
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Figure 4.1 Metabolic profiles and gene expression patterns indicate differences
nucleotide metabolism between subtypes of MMTV-Myc EMT and papillary tumors.
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Figure 4.1 (cont'd)

(A) Representative histology images of the EMT and papillary tumor subtypes. (B) Heatmap
indicating relative metabolite differences between EMT and papillary tumors. Yellow and blue
boxes indicate increased or decreased metabolite levels relative to the average of the papillary
subtype, respectively. Metabolites with statistically significant differences (p-value < 0.05) are
bolded and marked with asterisks (*) Statistical comparisons are listed in Table S1. (C) Gene set
enrichment analysis for pentose phosphate pathway genes are significantly enriched (p-value =
0.014, FDR g-value = 0.16) for low expression in EMT tumors vs. papillary tumors. (D) Gene set
enrichment analysis for genes involved in nucleobase biosynthesis are significantly enriched (p-
value = 0.039, FDR g-value = 0.18) for low expression in EMT tumors vs. papillary tumors.
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Figure 4.2 Expression of nucleotide salvage genes is higher in the EMT subtype and
expression of de novo biosynthesis genes is higher in the papillary subtype. (A) Heatmap
depicting expression of genes related to nucleotide metabolism. Genes are sorted by hierarchical
clustering and color-coded by relationship to nucleotide metabolism pathways. Genes with
statistically significant differences (FDR p-value < 0.05) are marked with asterisks (*) Statistical
comparisons are listed in Table S2. (B) Summary of nucleotide biosynthesis pathway. Metabolic
intermediates and genes are marked according to subtype-specific relationships.
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Figure 4.3 Expression of de novo nucleotide biosynthesis gene PPAT and nucleotide
salvage gene APRT are strongly associated with relapse-free survival across breast cancer
subtypes. Kaplan-Meier survival curves for (A) all breast cancer patients, and (B-E) specific
breast cancer subtypes. Statistically significant relationships (p-value < 0.05) are bolded and
marked with asterisks (*).
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Figure 4.4 *C-Isotope incorporation from glucose into ATP biosynthesis is altered after
targeting de novo and salvage genes. Grey boxes represent the unlabeled (M-0 isotopologue)
proportion of ATP. Light blue boxes represent the M-5 isotopologue, which can be derived from
either de novo or salvage pathways. Dark blue boxes represent the sum of all other isotopologues
of ATP (M1-4 and M6-10), which are derived from de novo ATP biosynthesis. Data are displayed
as means = S.D., N = 3 (*p-value < 0.05). Statistical comparisons are listed in Tables S3-S4.
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Figure 4.5 Metabolite levels are most affected by targeting the preferred nucleotide
biosynthetic pathway for each subtype. The abundance of (A) metabolites related to the
pentose phosphate pathway and (B-C) nucleotides are most altered within each subtype when
APRT is knocked out in EMT (left half of each graph) and when PPAT is knocked out in papillary
(right half of each graph). Data are displayed relative to the control for each subtype and represent
means + S.D., N = 3 (*p-value < 0.05). Statistical comparisons are listed in Tables S5-S6.
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Figure 4.6 Tumor growth for each subtype is decreased after knocking out the preferred
nucleotide metabolism pathway. In vivo growth curves for (A) EMT and (B) papillary tumors.
Data are displayed as means * S.D. (*p-value < 0.05). Statistical comparisons are listed in Tables
S7-S8.
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Figure 4.7 IHC analysis reveals decreased proliferation in slower growing tumors. IHC
analysis for Ki67 staining in (A) EMT and (B) papillary tumors as well as TUNEL assay for (C)
EMT and (D) papillary tumors. Data are displayed as means + S.D. (*p-value < 0.05). Statistical
comparisons are listed in Tables S9-S12.
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Figure S4.1 Gene set enrichment analysis for nucleotide salvage genes. GSEA for
nucleotide salvage genes are not significantly enriched in the EMT subtype.
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Figure S4.2 Gene editing verification of PPAT gene. Sequencing of PPAT KO cell lines was
validated using TIDE analysis. Pink bars denote insertion/deletion events with high confidence (p
<0.001) for EMT PPAT KO clone F1 in (A) guide A and (B) guide B and for papillary PPAT KO
clone A7 in (C) guide A and (D) guide B.
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Figure S4.3 Gene editing verification of APRT gene. Sequencing of APRT KO cell lines was
validated using TIDE analysis. Pink bars denote insertion/deletion events with high confidence (p
<0.001) for EMT APRT KO clone B3 in (A) guide A and (B) guide B and for papillary APRT KO
clone E6 in (C) guide A and (B) guide B.
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Figure S4.4 Protein level verification of KO cell lines. Western blotting was used to verify
protein levels of clonal EMT lines APRT KO B3, PPAT KO F1, PSC D3, and the wild-type line.
Protein levels of clonal papillary line APRT KO E6, PPAT KO A7, PSC G6, and the wild-type line

were also verified.

208



EMT

B

PSC  APRT KO PPAT KO
D3 g B3 g Fl g
<L

HF'AF.F-E phosphate

H

IMP

GDF

ATP

UMF
ADP-nboge

GTF

Xanthasing
ADP-glucose
Macetylneuraminate
ChiPMacatylneuraminate
Slut [l

1DF

AMP

LIDPNacatyiglucosamine

Slutathicne_reduced
II ii II -

PRPP

GMP

ADP
Allamoate_and_Carbamoy|_aspartale

Papillary

F'SC APRT KO PPAT KO

6 @

6 3 A7 2

<L

TP
urdP

Glycolysis and
Related Metabolites

3-phasphale

Slycerl

Pentose Phosphate

Pathway
PRFP
IMP
1P
GMP
GDF
GTP ﬁg:
ANP
QDP NU U\dnga
Alantoate_and_Carbamayl_aspartate o 25,
0.125x

Nucleotides and
Related Metabolites

Xanthosine
ADP-glucoge
ADP-rbose
MNacetylneuraminate
CMPNacstyinauraminats
UDPNacetylglucosaming

Redox Metabolites

Amino Acids

Figure S4.5 Full metabolic profiles of control and KO cell lines. Heatmap indicating relative
metabolite differences between control and KO cell lines in the (A) EMT and (B) papillary
subtypes. Boxes indicate metabolite levels relative to the average of the PSC control for each

subtype. Statistical comparisons are listed in Tables S5-S6.
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Figure S4.6 Representative Ki67 staining for EMT and papillary tumors. (A) Color
deconvoluted image showing H staining and (B) color threshold image showing all nuclei as black
dots. (C) Color deconvoluted image showing DAB staining and (D) color threshold image showing
all Ki67 + nuclei as black dots were used to calculate the percent Ki67 + nuclei shown in Figure

4.7 A-B.
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Figure S4.7 Representative TUNEL assay for EMT and papillary tumors. (A) Initial cross
sectional image of EMT and papillary control and knock out tumors after TUNEL assay. Images

with (B) TUNEL + area highlighted, and (C) full tumor area were used to calculate the percent
area of TUNEL staining shown in Figure 4.7 C-D.
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Figure S4.8 Tumor growth of additional clones. In vivo growth curves for (A) EMT and (B)
papillary tumors. Data are displayed as means * S.D. (*p-value < 0.05). Statistical comparisons
are listed in Tables S7-S8.
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Figure S4.9 3C-Isotope incorporation from glucose into ATP biosynthesis in additional
PPAT KO clones. Grey boxes represent the unlabeled (M-0 isotopologue) proportion of ATP.
Light blue boxes represent the M-5 isotopologue, which can be derived from either de novo or
salvage pathways. Dark blue boxes represent the sum of all other isotopologues of ATP (M1-4
and M6-10), which are derived from de novo ATP biosynthesis. Statistical comparisons are listed
in Tables S13-S14.
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Figure S4.10 Protein level verification of additional KO cell lines. Western blotting was used
to verify protein levels of clonal EMT lines APRT KO A5, APRT KO F2, PPAT KO F2, and PSC
C4. Protein levels of clonal papillary line APRT KO G5, APRT KO H5, PPAT KO C2, and PSC F1
were also verified.
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. Papillary Wild-
EMT Wild-Type ) : - ;
Metabolite Average EMT Wild-Type [ Type Average | Papillary Wild- | Raw P |Adjusted
STDEV (Log2 Fold Type STDEV values | Pvalues
(Log2 Fold Change)
Change)
2+3-phosphoglycerate -0.3 0.4 0.0 0.3 2.56E-01| 3.35E-01
Acetoacetyl-CoA_ 0.0 0.1 0.0 0.2 9.65E-01| 9.77E-01
Acetyl-CoA -1.0 0.8 -0.4 1.4 4.83E-01| 5.35E-01
Aconitate 0.9 0.1 0.0 0.3 6.81E-04| 3.92E-03
Adenine 2.3 0.5 -0.1 0.6 7.65E-04| 3.92E-03
ADP 0.1 0.0 0.0 0.0 3.03E-04| 2.26E-03
ADP-glucose 0.6 0.1 0.0 0.1 1.74E-04| 1.43E-03
ADP-ribose -0.4 0.4 0.0 0.2 1.47E-01| 2.19E-01
Alanine 0.7 0.4 0.0 0.1 2.57E-02| 5.54E-02
Allantoate_and_Carbamoyl_aspartate 0.6 0.1 0.0 0.3 1.12E-02| 3.07E-02
AMP 0.2 0.1 0.0 0.1 2.71E-03| 1.06E-02
Arginine -1.6 0.3 0.0 0.1 9.43E-05| 1.07E-03
Asparagine 0.4 0.2 0.0 0.2 1.30E-02| 3.44E-02
Aspartate -0.5 0.4 0.0 0.1 4.55E-02( 8.74E-02
ATP 0.1 0.1 0.0 0.1 4.23E-01 4.95E-01
Bisphosphoglycerate -0.1 0.2 -0.1 0.6 9.94E-01| 9.94E-01
CDP 0.5 0.3 0.0 0.1 1.04E-02| 2.94E-02
Citrate+lsocitrate 0.4 0.0 0.0 0.1 9.72E-04| 4.69E-03
CMP -0.3 0.1 0.0 0.1 2.12E-02| 4.97E-02
CMPNacetylneuraminate -0.4 0.1 0.0 0.2 9.27E-03| 2.87E-02
CoA -0.6 0.3 0.0 0.2 2.12E-02| 4.97E-02
CTP 0.5 0.2 0.0 0.3 1.88E-02| 4.73E-02
dADP -1.0 0.4 0.0 0.3 9.46E-03| 2.87E-02
dAMP -0.5 0.2 0.0 0.3 3.26E-02| 6.86E-02
dATP -1.0 0.1 0.0 0.1 5.37E-05| 1.07E-03
dCMP -1.0 0.2 0.0 0.2 1.04E-03| 4.72E-03
dCTP 0.1 0.1 0.0 0.2 4.60E-01| 5.24E-01
dGDP 0.4 0.2 0.0 0.1 1.04E-02| 2.94E-02
dTDP -0.5 0.2 0.0 0.1 8.27E-03| 2.71E-02
dTMP -0.7 0.1 0.0 0.3 2.36E-02| 5.23E-02
dTTP -0.4 0.3 0.0 0.3 1.77E-01| 2.53E-01
dUMP -0.5 0.4 0.0 0.1 6.53E-02| 1.16E-01
FAD -0.7 0.1 0.0 0.1 9.43E-05| 1.07E-03
FBP 0.3 0.3 0.0 0.2 1.88E-01| 2.61E-01
Flavin_mononucleotide -0.4 0.6 0.0 0.3 2.80E-01| 3.59E-01
Fumarate -0.4 0.3 0.0 0.3 1.79E-01| 2.53E-01
GAP+DHAP 0.0 0.4 0.0 0.4 8.73E-01| 8.95E-01
GDP 0.2 0.2 0.0 0.1 1.93E-01| 2.64E-01
Glucono-lactone 3.2 0.1 0.0 0.4 6.40E-06| 2.62E-04
Glutamate 0.0 0.2 0.0 0.0 7.80E-01| 8.20E-01
Glutamine -0.5 0.4 0.0 0.2 6.77E-02| 1.18E-01

Table S4.1 Metabolite abundance with statistical significance for Figure 4.1B. Data
presented relative to the average of the papillary subtype as depicted in Figure 4.1B. Data
represent means and S.D. of 4 replicates. Bold values indicate Welch’s t-test was used.
Highlighted values are statistically significant with adjusted p value < 0.05
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Table S4.1 (cont'd)

Glutathione_disulfide_oxidized 0.3 0.1 0.0 0.2 5.95E-02| 1.08E-01
Glutathione_reduced 0.1 0.1 0.0 0.1 1.24E-01| 1.91E-01
Glycerol_3-phosphate -0.7 0.1 0.0 0.2 7.50E-04| 3.92E-03
Glycine 0.8 0.5 0.0 0.2 1.90E-02| 4.73E-02
GMP -0.4 0.3 0.0 0.0 8.21E-02( 1.35E-01
GTP 0.3 0.1 0.0 0.1 4.84E-03( 1.80E-02
Hexose-phosphate 0.8 0.6 0.0 0.3 5.05E-02| 9.41E-02
Hydroxybutyryl-CoA+Malonyl-CoA -1.1 0.3 0.0 0.3 5.16E-03| 1.84E-02
IDP 0.1 0.1 0.0 0.2 2.96E-01| 3.67E-01
IMP 3.2 0.5 -0.5 1.3 2.20E-03| 9.47E-03
Inosine 3.2 0.3 -0.1 0.5 3.60E-05| 9.84E-04
Isoleucine/Leucine 0.1 0.2 0.0 0.1 2.95E-01| 3.67E-01
Ketoglutarate -0.3 0.3 0.0 0.4 3.83E-01| 4.64E-01
Lysine -0.5 0.1 0.0 0.1 1.05E-04| 1.07E-03
Malate -0.3 0.2 0.0 0.2 1.26E-01| 1.91E-01
Methionine 0.3 0.2 0.0 0.2 8.09E-02| 1.35E-01
Nacetylneuraminate 0.7 0.1 0.0 0.2 5.21E-04| 3.56E-03
NAD -0.2 0.2 0.0 0.1 1.00E-01| 1.62E-01
NADH -0.9 1.1 0.0 0.1 1.99E-01| 2.67E-01
NADP -0.8 0.4 0.0 0.4 3.54E-02| 7.26E-02
NADPH 0.0 0.7 -0.1 0.6 8.19E-01| 8.50E-01
Ornithine -0.3 0.2 0.0 0.1 2.31E-02| 5.23E-02
Phenylalanine -0.2 0.1 0.0 0.1 4.58E-02( 8.74E-02
Phosphoenolpyruvate -0.7 0.4 0.0 0.4 7.93E-02| 1.35E-01
Phosphoserine -0.2 0.3 0.0 0.4 4.29E-01| 4.96E-01
Proline 0.7 0.3 0.0 0.1 2.62E-03| 1.06E-02
PRPP 0.2 0.3 0.0 0.3 3.85E-01| 4.64E-01
Ribose-5-phosphate 2.2 0.5 -0.1 0.5 5.87E-04| 3.70E-03
Ribulose-5-phosphate 2.4 0.5 0.0 0.3 1.55E-04| 1.41E-03
Sedoheptulose-phosphate 1.8 0.1 0.0 0.1 2.10E-06| 1.72E-04
Serine 0.6 0.1 0.0 0.1 8.49E-05| 1.07E-03
Succinate -0.3 0.5 -0.1 0.5 5.81E-01| 6.27E-01
Threonine -0.8 0.3 0.0 0.2 5.68E-03| 1.94E-02
Tryptophan -0.1 0.1 0.0 0.2 7.08E-01| 7.54E-01
Tyrosine 0.1 0.2 0.0 0.1 5.08E-01| 5.55E-01
uDP -0.1 0.2 0.0 0.1 2.58E-01| 3.35E-01
UMP -0.2 0.1 0.0 0.1 3.99e-02| 7.97E-02
UTpP 0.1 0.3 0.0 0.2 4.08E-01| 4.85E-01
Valine -0.1 0.2 0.0 0.1 4.69E-01| 5.27E-01
Xanthosine 0.4 0.4 0.0 0.2 1.03E-01| 1.63E-01
XMP -1.6 1.8 0.0 0.2 1.71E-01| 2.50E-01
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Summary Data from Transcriptome Analysis Console

ProbelD Gene Symbol EMT Avg (log2) | Papillary Avg (log2) |Fold Change| P-val |FDR P-val
1448562_at Uppl 10.04 5.86 18.1 5.17E-08| 3.68E-06
1422974 _at Nt5e 8.43 5.18 9.51 9.49E-06| 1.00E-04
1422184 a_at Ak1-2 10.78 8.06 6.59 1.38E-11| 3.89E-08
1436291 _a_at Dpys-3 4.31 2.47 3.58 3.43E-02| 8.57E-02
1449383_at Adssl1 8.96 7.35 3.06 3.10E-03| 1.24E-02
1450939 _at Entpdi-1 7.01 5.44 2.97 3.00E-04| 1.90E-03
1421204 a_at Nudt16 7.14 5.62 2.86 5.22E-07| 1.71E-05
1422573 _at Ampd3 8.48 7.13 2.55 1.80E-03| 7.80E-03
1426339 _at Ak5 6.75 5.42 2.53 1.70E-03| 7.60E-03
1422868 _s_at Gda 7.38 6.13 2.38 5.21E-05| 5.00E-04
1423326_at Entpd1-2 8.69 7.49 2.3 1.00E-04| 9.00E-04
1432068 _a_at Entpd7-1 2.91 1.9 2.02 9.28E-02 1.88E-01
1453299 a_at Pnp/Pnp2 9.72 8.71 2.02 2.05E-06 | 4.44E-05
1428164 _at Nudt9 10.11 9.29 1.76 2.70E-03| 1.09E-02
1416530 _a_at Pnp 11.07 10.26 1.75 2.31E-06| 4.83E-05
1423988 _at Akl-1 4.8 4 1.74 1.10E-03| 5.20E-03
1416593_at Glrx-2 9.61 8.83 1.73 1.34E-01| 2.48E-01
1420272 _at Samhd1-2 6.47 5.71 1.69 2.32E-01| 3.75E-01
1416592_at Glrx-1 9.91 9.18 1.65 2.26E-01| 3.68E-01
1427357 _at Cda 5.93 5.26 1.59 3.17E-02| 8.06E-02
1427810_at Tyms-1 4.61 3.98 1.55 9.15E-02( 1.86E-01
1424646 _at Uckl1 8.85 8.24 1.53 1.00E-03| 4.90E-03
1425689 _at Dpys-2 3.87 3.3 1.48 9.39E-01| 9.64E-01
1435625_at Entpd7-2 6.17 5.66 1.42 3.25E-02| 8.21E-02
1451703 _s_at Aprt-1 11.66 11.18 1.4 8.20E-03| 2.70E-02
1435759 _at Ctps2-1 4.45 4.02 1.35 3.76E-02| 9.20E-02
1425228 a_at Dguok 8.85 8.43 1.33 8.00E-03| 2.67E-02
1426909 _at Uck2-2 9.29 8.89 1.33 2.99E-02| 7.67E-02
1423801 _a_at Aprt-2 11.59 11.19 1.31 5.71E-02| 1.28E-01
1416356 _at Gmpr2 9.34 8.94 1.31 1.70E-03| 7.70E-03
1427715 _a_at Nt5clb 2.19 1.81 1.31 4.73E-01| 6.23E-01
1417252 _at Nt5c 9.72 9.37 1.27 3.11E-02| 7.92E-02
1421831 _at Ak4-4 2.51 2.18 1.26 8.20E-01| 8.88E-01
1450987 _a_at Adprm 8.34 8.02 1.25 1.00E-03| 4.80E-03
1448444 at Rpe-3 4.2 3.9 1.24 8.81E-01| 9.28E-01
1426100 _a_at Tk2 8.11 7.79 1.24 1.13E-02| 3.51E-02
1448604 _at Uck2-3 9.31 9.02 1.22 5.63E-02( 1.27E-01
1448614 at Nt5c2-3 5.48 5.21 1.21 1.98E-01| 3.33E-01
1427811 _at Tyms-2 2.6 2.33 1.21 6.86E-01| 7.97E-01

Table S4.2 Gene expression with statistical significance for Figure 4.2A. Relative expression
and statistical significance of all nucleotide metabolism genes from Reactome database exported
using TAC. Genes are sorted by fold change. Highlighted values indicate statistical significance
with FDR p value < 0.05
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Table S4.2 (cont'd)

1451149 _at Pgm2 9.59 9.37 1.17 4.63E-01| 6.13E-01
1424609_a_at Cwc22/Xdh-2 11.09 10.91 1.14 5.23E-01( 6.67E-01
1453767 _a_at Nt5m 8.75 8.56 1.14 3.42E-01( 4.98E-01
1438250_s_at | Ak6/LOC105247169/Taf9-2 10.86 10.69 1.13 3.42E-01( 4.98E-01

1427945 _at Dpyd-1 3.15 2.98 1.13 9.78E-01( 9.88E-01
1424607 _a_at Cwc22/Xdh-1 10.98 10.82 1.11 4.37E-01| 5.90E-01

1417137 _at Uck2-1 5.7 5.59 1.08 8.90E-01( 9.34E-01
1439012 _a_at Dck-2 9.62 9.55 1.04 5.74E-01| 7.09E-01

1460671_at Gpx1 12.66 12.64 1.02 9.39E-01( 9.64E-01

1433773 _at Rrm2b 8.24 8.23 1.01 6.34E-01| 7.57E-01

1451548 _at Upp2-2 0 0 1 8.27E-01( 8.92E-01

1448111 at Ctps2-2 9.62 9.64 -1.02 6.69E-01| 7.84E-01
1438941 x_at Ampd2-2 10.29 10.33 -1.03 4.22E-01| 5.77E-01

1422778 at | Ak6/LOC105247169/Taf9-1 11.11 11.19 -1.05 7.47E-01( 8.39E-01

1417384 at Entpd5-4 7.36 7.45 -1.06 7.16E-01( 8.18E-01

1421817 _at Gsr-2 9.04 9.14 -1.07 5.88E-01( 7.20E-01

1418131 _at Samhd1-1 9.21 9.3 -1.07 3.85E-01( 5.41E-01

1424399_at Uck1 8.58 8.68 -1.07 2.75E-01| 4.25E-01
1448736_a_at Hprt 10.9 10.99 -1.07 7.75E-01( 8.57E-01
1449176_a_at Dck-3 7.36 7.48 -1.08 4.05E-01| 5.60E-01

1434438 _at Samhd1-4 8.62 8.78 -1.12 7.23E-01( 8.22E-01
1421529 a_at Txnrd1-2 10.52 10.71 -1.14 7.21E-02 1.54E-01
1424486 _a_at Txnrd1-3 7.36 7.55 -1.14 4.66E-02| 1.10E-01

1426757 _at Ampd2-1 8.03 8.23 -1.15 5.35E-01( 6.77E-01
1422126 _a_at Nudt13-1 6.7 6.9 -1.15 2.76E-01| 4.26E-01

1421767 _at Adk-3 4.85 5.08 -1.17 1.48E-01] 2.67E-01

1420638 _at Prps2-2 7.32 7.55 -1.18 1.91E-01] 3.24E-01
1424841 s_at Rbks-2 6.31 6.57 -1.19 4.27E-01| 5.81E-01

1416705_at Rpe-1 8.73 8.98 -1.19 5.68E-02( 1.28E-01
1423706_a_at Pgd-1 10.46 10.72 -1.2 4.06E-02| 9.81E-02
1436298 x_at Paics-3 9.98 10.26 -1.21 5.72E-01( 7.08E-01
1438627 x_at Pgd-4 11.02 11.29 -1.21 4.60E-02| 1.08E-01
1420273 x_at Samhd1-3 7.41 7.68 -1.21 7.05E-01( 8.11E-01

1438690_at Tyms-3 6.27 6.55 -1.21 5.99E-02| 1.33E-01

1433903 _at Prps1i3-2 9.48 9.76 -1.21 1.83E-01] 3.14E-01

1449641 _at Adk-4 4.51 4.81 -1.23 1.78E-01] 3.07E-01

1417201 _at Nt5c2-1 7.69 8 -1.24 7.40E-03 | 2.50E-02

1423073 _at Cmpk1l 11.41 11.72 -1.25 1.10E-01] 2.14E-01
1424487 x_at Txnrd1-1 5.53 5.88 -1.27 1.33E-02| 4.00E-02
1428838 a_at Dck-1 6.53 6.9 -1.29 1.46E-01| 2.65E-01

1416448 _at Itpa 8.92 9.29 -1.3 1.20E-01| 2.28E-01
1448808 a_at Nme2 13.52 13.89 -1.3 1.90E-03| 8.40E-03

1428943 _at Nudt13-2 6.6 6.99 -1.31 3.88E-01( 5.44E-01
1436771 _x_at Pgd-2 11.72 12.12 -1.31 3.40E-03 1.34E-02

1417383 _at Entpd5-3 6.26 6.65 -1.32 8.32E-02( 1.72E-01

1451509_at Ak6/Taf9 9.99 10.4 -1.33 3.67E-02 9.03E-02
1423564 a_at Paics-2 11.97 12.39 -1.34 3.44E-02 8.59E-02
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Table S4.2 (cont'd)

1416052_at Prpsl 9.09 9.54 -1.36 2.93E-02| 7.54E-02
1460713_at Dnphl 7.39 7.84 -1.37 1.91E-02| 5.36E-02
1448192 s_at Prps1/Prpsli3 9.31 9.76 -1.37 5.73E-02 1.29E-01
1416258_at Tkl 9.42 9.88 -1.37 3.48E-02 | 8.66E-02
1417722_at Pgls 10.51 10.98 -1.39 2.30E-03| 9.60E-03
1455832 a_at Umps-1 8.29 8.77 -1.39 2.80E-03| 1.14E-02
1437380 _x_at Pgd-3 11.43 11.92 -1.4 1.50E-03| 6.80E-03
1416706_at Rpe-2 9.3 9.79 -1.4 7.60E-03 | 2.54E-02
1452829 at Cad-1 9 9.49 -1.41 1.56E-02| 4.58E-02
1438292 x_at Adk-1 10.69 11.19 -1.42 7.00E-04| 3.90E-03
1451006_at Xdh 9.86 10.4 -1.45 9.85E-02 1.97E-01
1425688 a_at Dpys-1 2.18 2.72 -1.46 6.98E-01| 8.06E-01
1423239 at Impdh1l 8.7 9.24 -1.46 5.10E-03| 1.83E-02
1423565_at Paics-1 11.62 12.16 -1.46 1.18E-02| 3.63E-02
1434437 x_at Rrm2-1 10.58 11.13 -1.46 1.42E-02| 4.21E-02
1416798 a_at Nme4 7.19 7.74 -1.47 5.80E-03 | 2.05E-02
1424435 a_at Gart-1 8.43 8.99 -1.48 7.30E-03| 2.47E-02
1451445 _at Umps-3 4.94 5.51 -1.48 3.96E-02 | 9.60E-02
1421816_at Gsr-1 8.26 8.84 -1.49 2.80E-02| 7.27E-02
1448226 _at Rrm2-3 9.53 10.1 -1.49 4.99E-02| 1.15E-01
1449116 _a_at Dtymk-1 9.4 9.98 -1.5 2.50E-03| 1.02E-02
1419270 a_at Dut-2 9.83 10.41 -1.5 1.99E-02| 5.55E-02
1460726_at Adss 10.4 11 -1.51 2.32E-02| 6.26E-02
1438177 x_at Entpd4/Gm21685-2 8.18 8.79 -1.53 3.70E-03( 1.41E-02
1424969_s_at Upp2-1 2.08 2.71 -1.54 7.11E-01( 8.15E-01
1451765 a_at Entpd5-1 6.9 7.54 -1.56 1.45E-02| 4.30E-02
1448530_at Gmpr 7.46 8.11 -1.57 2.64E-02| 6.95E-02
1428543 _at Ppat-1 7.01 7.68 -1.58 6.30E-03| 2.19E-02
1434859 at Umps-2 8.41 9.09 -1.6 6.00E-04 | 3.40E-03
1449190 a_at Entpd4/Gm21685-1 7.9 8.59 -1.61 5.60E-03 | 1.99E-02
1418259 a_at Entpd2 6.42 7.12 -1.62 1.87E-01| 3.20E-01
1452830 _s_at Cad-2 8.6 9.33 -1.66 1.05E-02| 3.31E-02
1424991 s_at Tyms/Tyms-ps 8.77 9.49 -1.66 1.22E-02| 3.73E-02
1418372_at Adsl 8.93 9.67 -1.67 1.70E-03| 7.60E-03
1429126 _at Nudt5-1 7.49 8.24 -1.67 9.60E-03| 3.10E-02
1416395_at Guk1 8.63 9.38 -1.68 2.00E-03| 8.60E-03
1454814 s_at Prps1i3-1 9.1 9.87 -1.7 6.89E-05| 6.00E-04
1425933 a_at Nt5c2-2 8.31 9.08 -1.71 4.64E-05| 4.00E-04
1424840 at Rbks-1 5.25 6.04 -1.73 9.60E-03 | 3.10E-02
1419269_at Dut-1 5.96 6.8 -1.78 1.53E-01| 2.75E-01




Table S4.2 (cont'd)
1420637_at Prps2-1 7.82 8.65 -1.78 2.00E-04| 1.60E-03
1416319 at Adk-2 8.97 9.83 -1.81 7.79E-05( 7.00E-04
1449349 at Nudtl 8.43 9.29 -1.82 2.56E-05| 3.00E-04
1416120 at Rrm2-2 9.24 10.11 -1.83 2.30E-03| 9.50E-03
1415878 at Rrm1-2 10.22 11.1 -1.84 5.00E-04| 3.00E-03
1421830 _at Ak4-1 7.75 8.64 -1.85 1.58E-02| 4.62E-02
1415851 a_at Gm15210/Impdh2-2 11.42 12.31 -1.85 3.08E-07| 1.18E-05
1415852 at Gm15210/Impdh2-1 11.39 12.28 -1.85 2.00E-04| 1.50E-03
1452681_at Dtymk-2 9.34 10.23 -1.86 1.10E-03| 5.20E-03
1448127 at Rrm1-1 9.71 10.61 -1.87 3.70E-03 | 1.43E-02
1438096_a_at Dtymk-3 10.06 10.97 -1.88 2.00E-04| 1.60E-03
1448450 at Ak2-1 10.03 10.99 -1.94 1.20E-03| 5.70E-03
1421829 at Ak4-3 5.44 6.4 -1.94 4.94E-01| 6.42E-01
1450387_s_at Ak4-2 8.4 9.42 -2.02 1.55E-02| 4.56E-02
1427946 s_at Dpyd-2 3.16 4.19 -2.04  |1.17E-01| 2.24E-01
1460433 _at Entpd6 7.77 8.81 -2.06 4,03E-05| 4.00E-04
1424110 _a_at Nmel-2 10.98 12.03 -2.06 1.00E-04| 1.00E-03
1439443 x_at Tkt-1 13.37 14.43 -2.08 7.25E-07| 2.17E-05
1424047 _at Dera 8.98 10.05 -2.09 3.16E-06| 6.10E-05
1416283 _at Gart-2 9.07 10.13 -2.09 2.54E-06| 5.17E-05
1417581 at Dhodh-1 6.76 7.87 -2.15 2.00E-04| 1.20E-03
1417582_s_at Dhodh-2 7.55 8.7 -2.2 5.54E-05( 5.00E-04
1418337 _at Rpia 8.78 9.92 -2.21 1.00E-03| 4.90E-03
1452831 s_at Ppat-2 7.49 8.68 -2.28  |9.19E-05| 7.00E-04
1424436_at Gart-3 7.95 9.15 -2.3 2.15E-08| 2.14E-06
1452889 at Lhpp 6.35 7.56 -2.31  |1.00E-04| 8.00E-04
1448651 _at Nudt5-2 8.7 9.94 -2.35 3.30E-05( 3.00E-04
1448451 at Ak2-2 9.14 10.39 -2.37 4.83E-05| 4.00E-04
1417382_at Entpd5-2 7.04 8.28 -2.37 5.00E-04| 2.70E-03
1448905_at Mrps34/Nme3 8 9.33 -2.5 2.17E-05| 2.00E-04
1425129 a_at Taldol 11.09 12.49 -2.63 1.23E-08| 1.66E-06
1417976 _at Ada 7.93 9.38 -2.73 2.00E-04| 1.50E-03
1451015 at Tkt-2 10.93 12.58 -3.12 2.95E-08| 2.58E-06
1416439 _at Dctppl 9.32 11.02 -3.23  [2.35E-07| 9.81E-06
1435277 _x_at Nmel-1 11.31 13.1 -3.48 4.00E-03| 1.50E-02
1460244 at Upbl 4.99 6.96 -3.93 2.28E-02| 6.18E-02
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Raw P values Adjusted P values
EMT PSC EMT PSC EMT EMT EMT EMT PSC PSC APRT KO PSC PSC APRT KO
. D3 APRT B3 PPATF1
Metabolite D3 APRT B3 PPATF1 Vs Vs Vs Vs Vs Vs
Average Average Average
STDEV STDEV STDEV | APRT KO | PPAT KO | PPAT KO | APRT KO | PPAT KO | PPAT KO
(%) (%) (%)
ATP M-0 56.4 2.2 50.8 0.3 66.8 3.0 6.66E-02| 1.68E-02| 1.67E-02| 9.98E-02| 3.50E-02| 2.17E-02
ATP M-5 28.6 0.9 29.2 0.4 24.4 1.6 4.33E-01| 3.27E-02| 1.48E-02| 4.33E-01| 3.50E-02| 2.17E-02
ATP M-OTHER 15.0 1.4 20.0 0.4 8.7 2.5 7.54E-03| 3.50E-02| 2.17E-02| 2.26E-02| 3.50E-02| 2.17E-02

Table S4.3 13C-Isotope percent labeling from glucose statistical significance for figure 4.4
— EMT subtype. Data represent means and S.D. of 3 replicates. Bold values indicate Welch'’s t-
test was used. Highlighted values are statistically significant with adjusted p value < 0.05
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Raw P values Adjusted P values
Papill Papill Papill
APV papillary | 222 L papitiary | 2P 2 | papillary | PSC PSC |APRTKO| PsC PSC | APRTKO
. PSC G6 APRT E6 PPAT A7
Metabolite PSC G6 APRT E6 PPATA7 Vs Vs Vs Vs Vs Vs
Average Average Average
STDEV STDEV STDEV | APRTKO [ PPAT KO | PPAT KO | APRT KO | PPAT KO [ PPAT KO
(%) (%) (%)
ATP M-0 42.4 1.3 45.8 0.5 80.1 7.1 2.47E-02| 1.78E-03| 2.03E-02 2.47E-02| 2.67E-03| 3.04E-02
ATP M-5 37.4 0.7 29.4 0.5 10.7 7.6 2.14E-04| 3.69E-02| 7.23E-02 4.05E-04| 3.69E-02| 7.23E-02
ATP M-OTHER 20.2 0.5 24.8 0.1 9.2 0.5 2.70E-04| 3.23E-05| 2.20E-06| 4.05E-04| 9.69E-05| 6.60E-06

Table S4.4 3C-Isotope percent labeling from glucose statistical significance for figure 4.4
—papillary subtype. Data represent means and S.D. of 3 replicates. Bold values indicate Welch’s
t-test was used. Highlighted values are statistically significant with adjusted p value < 0.05
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Raw P values Adjusted P values
EMTPSC D3 EMT PSC EMT APRT B3 EMT APRT EMT PPAT F1 EMT PSC PSC APRT KO PSC PSC APRT KO
Metabolite Average D3 Average B3 Average PPAT F1 Vs Vs Vs Vs Vs Vs

(tog2 Fold | = ey, | (Log2Fold | e, | (LoB2FOId | orppy | ApRT KO | PPAT KO | PPAT KO |APRT KO | PPAT KO | PPAT KO

Change) Change) Change)
2+3-phosphoglycerate 0.0 0.2 -0.7 0.2 -0.2 0.5 1.52E-02|4.57E-01|2.12E-01{4.31E-02|7.23E-01|3.14E-01
Acetoacetyl-CoA_ 0.0 0.3 0.1 0.2 -0.5 0.4 4.85E-01]|1.36E-01|5.30E-02|5.41E-01|3.04E-01|9.78E-02
Acetyl-CoA 0.0 0.2 0.5 0.3 -0.5 0.4 5.22E-02|1.32E-01|2.66E-02|9.85E-02|3.04E-01|6.75E-02
ADP -0.1 0.6 -1.1 0.1 -0.6 0.1 1.05E-01|2.66E-01|4.29E-04|1.48E-01|5.14E-01|5.70E-03
ADP-glucose 0.0 0.4 -1.1 0.2 0.7 0.4 2.07E-02|8.42E-02|1.92E-03|5.42E-02|2.49E-01| 1.18E-02
ADP-ribose -0.1 0.6 -1.1 0.2 -0.2 0.1 4.91E-02|7.74E-01|2.45E-03|9.61E-02|8.96E-01| 1.19E-02
Alanine -0.1 0.5 0.6 0.3 0.1 0.1 1.31E-01|6.71E-01|5.21E-02(1.72E-01| 8.30E-01|9.78E-02
Allantoate_and_Carbamoyl|_aspartate 0.0 0.1 0.7 0.2 0.4 0.2 3.98E-03|2.52E-02(9.70E-02| 1.59E-02 | 1.32E-01| 1.65E-01
AMP 0.0 0.4 -0.6 0.1 -0.2 0.2 9.58E-02|5.86E-01|2.21E-02|1.39E-01|7.81E-01| 6.54E-02
Arginine 0.0 0.1 -0.6 0.1 -0.4 0.3 1.22E-03|7.68E-02|3.93E-01{9.19E-03| 2.49E-01|5.14E-01
Asparagine 0.0 0.1 0.2 0.1 -0.5 0.1 6.29E-02|2.27E-03|6.04E-04| 1.02E-01|3.08E-02| 5.87E-03
Aspartate 0.0 0.2 -0.1 0.0 -1.0 0.1 2.51E-01{7.41E-04|8.93E-05|3.05E-01{2.52E-02| 3.04E-03
ATP 0.0 0.4 1.8 0.2 0.5 0.3 2.45E-03|1.50E-01|3.86E-03|1.19E-02|3.19E-01| 1.54E-02
Bisphosphoglycerate 0.0 0.3 0.5 0.3 -0.2 0.2 1.11E-01|4.06E-01|3.12E-02|1.53E-01|6.73E-01|6.75E-02
Citrate+lsocitrate 0.0 0.2 0.1 0.5 -0.5 0.2 7.52E-01|3.55E-02|1.17E-01|7.87E-01|1.61E-01| 1.90E-01
CMPNacetylneuraminate 0.0 0.3 -0.4 0.1 -0.4 0.1 6.24E-02|6.15E-02|9.62E-01|1.02E-01{2.20E-01|9.62E-01
CoA -0.1 0.7 0.8 0.8 0.0 0.6 2.27E-01|7.91E-01|2.82E-01|2.81E-01|8.96E-01|3.99E-01
CTP 0.0 0.2 0.5 0.1 0.0 0.0 1.41E-02|8.58E-01|4.52E-03({4.31E-02|9.11E-01|1.71E-02
Cysteine 0.0 0.4 -0.1 0.2 -0.3 0.4 7.89E-01|4.40E-01|5.05E-01|8.13E-01|7.13E-01|6.02E-01
dATP -0.1 0.8 1.7 0.2 0.6 0.9 1.52E-02|3.69E-01|1.03E-01{4.31E-02|6.44E-01|1.71E-01
dCTP -0.1 0.6 1.4 0.2 0.0 0.3 1.77E-02|8.17E-01|2.65E-03[4.80E-02| 8.96E-01| 1.20E-02
dGDP -0.3 1.1 -0.6 1.8 -0.5 1.4 8.05E-01{9.03E-01|8.92E-01|8.17E-01{9.30E-01|9.19E-01
dTTP 0.0 0.4 1.5 0.2 0.9 0.3 3.28E-03|3.18E-02|2.91E-02| 1.40E-02| 1.54E-01|6.75E-02
FAD 0.0 0.1 -0.3 0.1 0.2 0.1 4.22E-02|5.65E-02(2.11E-03|8.97E-02|2.18E-01| 1.19E-02
FBP 0.0 0.0 -0.3 0.2 0.4 0.2 9.05E-02|7.30E-02| 1.02E-02| 1.34E-01| 2.48E-01| 3.66E-02
Fumarate 0.0 0.1 -0.3 0.1 -0.2 0.4 4.47E-02|3.86E-01|7.70E-01|9.21E-02|6.56E-01 | 8.44E-01
GAP+DHAP 0.0 0.1 -0.1 0.2 0.2 0.2 4.04E-01)|2.09E-01|1.46E-01|4.61E-01|4.30E-01|2.30E-01
GDP 0.0 0.4 -0.9 0.1 -0.6 0.1 2.82E-02|1.11E-01|2.80E-02|6.61E-02|2.79E-01|6.75E-02
Glutamate 0.0 0.2 0.2 0.0 0.2 0.1 5.55E-02|9.82E-02|7.11E-01|1.01E-01|2.77E-01| 7.98E-01
Glutamine 0.0 0.1 0.1 0.0 0.0 0.1 1.26E-01|6.09E-01|7.08E-01{1.67E-01)|7.81E-01|7.98E-01
Glutathione_disulfide_oxidized 0.0 0.4 2.3 0.1 0.3 0.3 7.01E-04|3.33E-01|3.73E-04|7.61E-03|5.96E-01|5.70E-03
Glutathione_reduced 0.0 0.0 -0.1 0.1 0.5 0.1 4.95E-02|1.72E-03|7.97E-04|9.61E-02|2.93E-02|6.78E-03
Glycerol_3-phosphate 0.0 0.3 1.2 0.1 1.5 0.1 2.12E-03|1.26E-03|2.63E-02|1.19E-02 | 2.85E-02| 6.75E-02
Glycine 0.0 0.1 0.4 0.1 -0.1 0.2 5.51E-03[4.86E-01|2.90E-02|1.97E-02|7.44E-01|6.75E-02
GMP 0.0 0.3 -0.6 0.0 -0.3 0.2 6.01E-02|2.63E-01|8.42E-02|1.02E-01|5.14E-01| 1.47E-01
GTP 0.0 0.2 1.4 0.3 0.3 0.7 2.34E-03|5.38E-01|5.32E-02|1.19E-02| 7.61E-01|9.78E-02
Hexose-phosphate 0.0 0.0 0.6 0.1 0.2 0.1 1.61E-03|1.38E-01|1.66E-02(9.92E-03|3.04E-01|5.37E-02
IDP -0.1 0.8 -1.1 0.3 -0.5 0.1 1.12E-01|4.93E-01|3.24E-02|1.53E-01| 7.44E-01|6.75E-02
IMP -0.1 0.5 0.6 0.2 0.0 0.3 9.04E-02|8.88E-01|3.73E-02| 1.34E-01{9.29E-01| 7.46E-02
Isoleucine/Leucine 0.0 0.1 -0.2 0.1 0.0 0.2 1.39E-01|9.29E-01|2.12E-01{1.78E-01|9.42E-01|3.14E-01
Ketoglutarate 0.0 0.1 0.9 0.2 -0.7 0.2 7.83E-04|3.83E-03|3.44E-04|7.61E-03|3.72E-02| 5.70E-03
Lysine 0.0 0.1 -0.6 0.1 -0.4 0.3 1.47E-03|5.76E-02|4.16E-01{9.92E-03| 2.18E-01|5.34E-01
Malate 0.0 0.0 -0.3 0.2 -0.2 0.1 3.02E-02|1.66E-02|2.04E-01|6.84E-02|1.02E-01|3.14E-01
Methionine 0.0 0.2 0.9 0.0 -0.1 0.3 9.22E-04|5.59E-01|3.27E-02| 7.83E-03| 7.61E-01| 6.75E-02
Nacetylneuraminate -0.1 0.5 -0.4 0.1 -0.3 0.1 3.91E-01|5.14E-01|2.18E-01|4.59E-01|7.44E-01|3.16E-01
NAD 0.0 0.0 -0.4 0.0 0.1 0.0 3.64E-05[7.13E-03|3.10E-05|1.24E-03|5.39E-02| 2.11E-03
NADH -0.2 1.0 -1.0 0.6 1.6 0.4 2.82E-01|3.83E-02|2.28E-03|3.37E-01|1.63E-01| 1.19E-02
NADP 0.0 0.1 -0.5 0.1 0.0 0.0 3.16E-03[6.39E-01|9.37E-04| 1.40E-02 | 8.05E-01| 7.08E-03
NADPH -0.1 0.5 0.9 0.1 -0.4 0.2 4.05E-02|3.30E-01|5.03E-04| 8.88E-02|5.96E-01|5.70E-03
Ornithine 0.0 0.2 -1.0 0.1 -0.5 0.2 6.55E-04[2.01E-02|1.76E-02|7.61E-03| 1.14E-01| 5.44E-02
Phenylalanine 0.0 0.1 -0.2 0.0 -0.4 0.3 2.18E-02|8.31E-02|3.19E-01|5.48E-02 | 2.49E-01|4.34E-01
Phosphogluconic_acid 0.0 0.3 -1.0 0.5 -0.9 0.7 5.66E-02|1.05E-01|9.10E-01|1.01E-01{2.77E-01)9.24E-01
Proline -0.1 0.7 -0.2 0.0 0.0 0.7 8.25E-01|8.35E-01|6.36E-01|8.25E-01|9.01E-01|7.46E-01
PRPP 0.0 0.3 -2.1 0.5 -1.8 0.3 4.73E-03]|2.96E-03[4.63E-01|1.79E-02|3.35E-02| 5.62E-01
Ribose-5-phosphate -0.1 0.8 1.0 0.1 0.7 0.1 6.89E-02|1.34E-01|6.97E-02| 1.09E-01|3.04E-01| 1.25E-01
Ribulose-5-phosphate 0.0 0.2 0.6 0.3 0.6 0.1 2.34E-02|6.36E-03|7.16E-01|5.69E-02|5.39E-02| 7.98E-01
Sedoheptulose-phosphate 0.0 0.1 1.2 0.2 0.0 0.3 7.07E-04|8.08E-01|3.00E-03|7.61E-03|8.96E-01|1.27E-02
Serine 0.0 0.1 -0.2 0.2 -0.1 0.1 1.64E-01|2.72E-01|4.29E-01{2.07E-01|5.14E-01|5.39E-01
Succinate 0.0 0.1 -0.5 0.1 -0.7 0.2 3.69E-04[9.10E-03|4.36E-01|7.61E-03|6.19E-02| 5.39E-01
Threonine 0.0 0.1 -0.2 0.1 0.1 0.1 7.10E-02|5.59E-01|3.00E-02|1.10E-01|7.61E-01|6.75E-02
Tryptophan 0.0 0.2 0.1 0.1 0.1 0.5 6.63E-01|7.29E-01|8.90E-01|7.16E-01|8.85E-01|9.19E-01
Tyrosine 0.0 0.0 -0.1 0.1 0.0 0.6 4.07E-01)|9.86E-01|8.82E-01|4.61E-01|9.86E-01|9.19E-01
UDP -0.1 0.7 -1.7 0.1 -1.0 0.2 5.91E-02|1.06E-01|1.56E-03|1.02E-01|2.77E-01| 1.06E-02
UDPNacetylglucosamine 0.0 0.0 -0.6 0.0 -0.7 0.0 6.30E-06|2.90E-06|3.66E-01|4.28E-04|1.97E-04|4.88E-01
UMP 0.0 0.3 0.1 0.2 0.1 0.2 6.93E-01|6.02E-01|8.38E-01|7.36E-01|7.81E-01|9.04E-01
UTP 0.0 0.3 1.0 0.2 0.1 0.4 1.07E-02|7.69E-01|3.01E-02|3.45E-02| 8.96E-01|6.75E-02
Valine 0.0 0.1 -0.3 0.0 0.0 0.1 8.69E-03|8.06E-01|1.21E-02|2.95E-02|8.96E-01|4.12E-02
Xanthosine -0.3 1.3 0.2 0.2 -1.3 1.9 5.64E-01|5.08E-01|3.14E-01|6.19E-01|7.44E-01)|4.34E-01

Table S4.5 Metabolite abundance with statistical significance for figures 4.5 and S4.5 —
EMT subtype. Data presented relative to the PSC average of the EMT subtype as depicted in
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Table S4.5 (cont'd)
figures 4.5 and S4.5. Data represent means and S.D. of 3 replicates. Bold values indicate Welch’s
t-test was used. Highlighted values are statistically significant with adjusted p value < 0.05
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Raw P values Adjusted P values
Papillary PSC | Papillar | Papillary APRT ’ Papillary X
Papillary [ PPATA7 | Papillary PSC PSC APRT KO PSC PSC APRT KO
Metabolite G6 Average yPSC | E6 Average APRTE6 | Average |PPATA7 Vs Vs Vs Vs Vs Vs
(Log2 Fold G6 (Log2 Fold
Change) STDEV Change) STDEV | (Log2 Fold| STDEV | APRTKO | PPATKO | PPATKO | APRTKO | PPATKO | PPAT KO
Change)
2+3-phosphoglycerate -0.1 0.5 0.1 0.6 1.9 0.0 7.20E-01| 2.44E-02| 3.18E-02| 8.60E-01| 3.95E-02| 5.15E-02
Acetoacetyl-CoA_ 0.0 0.3 0.3 0.2 1.9 0.2 2.04E-01| 7.65E-04| 6.53E-04| 4.86E-01| 3.22E-03| 1.85E-03
Acetyl-CoA 0.0 0.4 0.6 1.3 1.7 0.3 4.24E-01| 3.97E-03| 2.48E-01| 7.01E-01| 9.65E-03| 2.97E-01
ADP 0.0 0.1 0.0 0.1 -0.9 0.1 6.80E-01| 3.55E-04| 1.36E-04| 8.57E-01| 1.86E-03| 5.46E-04
ADP-glucose -0.2 0.9 0.0 1.1 0.4 1.3 8.58E-01| 5.71E-01| 7.06E-01| 9.30E-01| 5.71E-01| 7.27E-01
ADP-ribose 0.0 0.2 -0.4 0.5 -1.8 0.4 2.45E-01| 1.99E-03| 2.00E-02| 5.27E-01| 6.78E-03| 3.67E-02
Alanine 0.0 0.4 0.1 0.1 -1.6 0.2 5.71E-01| 3.37E-03| 4.03E-04| 8.26E-01| 8.49E-03| 1.25E-03
Allantoate_and_Carbamoy|_asparta 0.0 0.1 -0.3 0.1 -2.2 0.1 4.06E-02| 3.59E-05| 4.54E-05| 2.19E-01| 4.07E-04| 3.26E-04
AMP 0.0 0.1 0.0 0.0 -0.6 0.2 5.94E-01| 1.09E-02| 3.38E-03| 8.42E-01| 2.05E-02| 7.40E-03
Arginine 0.0 0.1 -0.1 0.1 0.4 0.0 5.27E-01| 3.10E-03| 1.30E-03| 7.96E-01| 8.28E-03| 3.32E-03
Asparagine 0.0 0.1 -0.1 0.1 -1.0 0.2 1.50E-01| 8.05E-04| 9.25E-04| 4.57E-01| 3.22E-03| 2.52E-03
Aspartate 0.0 0.3 0.8 0.0 0.5 0.0 4.91E-02| 9.94E-02| 6.12E-05| 2.38E-01| 1.41E-01| 3.26E-04
ATP 0.0 0.4 0.3 0.0 -2.0 0.3 3.32E-01| 2.70E-03| 1.61E-04| 5.95E-01| 7.99E-03| 5.75E-04
Bisphosphoglycerate -0.1 0.7 0.6 0.2 -1.5 0.1 1.52E-01| 7.89E-02| 3.01E-05| 4.57E-01| 1.19E-01| 2.56E-04
Citrate+|socitrate 0.0 0.2 0.4 0.3 1.0 0.3 9.72E-02| 5.95E-03| 8.77E-02| 4.13E-01| 1.35E-02| 1.27E-01
CMPNacetylneuraminate 0.0 0.0 0.0 0.0 -0.9 0.0 3.48E-01| 3.30E-06| 4.90E-06| 6.07E-01| 1.12E-04| 1.94E-04
CoA 0.0 0.3 -0.2 0.5 -0.5 0.5 6.41E-01| 3.10E-01| 5.56E-01| 8.57E-01| 3.67E-01| 5.84E-01
cTP 0.0 0.3 0.3 0.1 -0.2 0.3 1.26E-01| 4.88E-01| 2.61E-02| 4.57E-01| 5.02E-01| 4.57E-02
Cysteine 0.0 0.1 0.2 0.2 -0.3 0.2 2.89E-01| 1.60E-01| 8.01E-02| 5.46E-01| 2.02E-01| 1.18E-01
dATP 0.0 0.2 0.2 0.1 -2.3 0.5 2.07E-01| 2.21E-03| 1.32E-03| 4.86E-01| 7.11E-03| 3.32E-03
dcTp 0.0 0.3 0.5 0.1 -0.9 0.1 5.95E-02| 1.30E-02| 1.00E-04| 2.70E-01| 2.38E-02| 4.88E-04
dGDP 0.0 0.2 -1.2 2.3 -3.3 0.5 4.70E-01| 5.52E-04| 1.98E-01| 7.27E-01| 2.50E-03| 2.55E-01
dTTP 0.0 0.4 0.1 0.2 -1.6 0.1 6.81E-01| 2.30E-03| 1.19E-04| 8.57E-01| 7.11E-03| 5.07E-04
FAD 0.0 0.1 0.0 0.1 0.2 0.2 7.76E-01| 1.47E-01| 1.88E-01| 8.79E-01| 1.89E-01| 2.46E-01
FBP 0.0 0.1 -0.6 0.1 -2.4 0.2 1.48E-03| 5.03E-05( 1.19E-04| 2.74E-02| 4.28E-04| 5.07E-04
Fumarate 0.0 0.2 -0.1 0.2 -1.5 0.4 7.11E-01| 2.95E-03| 2.86E-03| 8.60E-01| 8.28E-03| 6.53E-03
GAP+DHAP 0.0 0.2 -0.2 0.2 -0.9 0.4 3.16E-01| 1.89E-02| 4.01E-02| 5.82E-01| 3.24E-02| 6.19E-02
GDP 0.0 0.1 0.1 0.1 -0.3 0.1 2.04E-01| 4.66E-03| 7.41E-03| 4.86E-01| 1.09E-02| 1.53E-02
Glutamate 0.0 0.1 0.1 0.0 0.0 0.0 1.55E-01| 3.29E-01| 2.88E-03| 4.57E-01| 3.79E-01| 6.53E-03
Glutamine 0.0 0.1 -0.1 0.0 0.1 0.0 1.27E-01| 4.82E-02| 1.45E-03| 4.57E-01| 7.45E-02| 3.52E-03
Glutathione_disulfide_oxidized 0.0 0.1 -0.1 0.1 -0.6 0.2 2.74E-01| 6.27E-03| 2.74E-02| 5.46E-01| 1.38E-02| 4.57E-02
Glutathione_reduced 0.0 0.1 -0.5 0.1 0.9 0.1 6.95E-03| 1.74E-04| 4.85E-05| 9.45E-02| 1.31E-03| 3.26E-04
Glycerol_3-phosphate 0.0 0.4 -0.4 0.2 0.5 0.0 1.88E-01| 1.47E-01| 1.37E-02| 4.86E-01| 1.89E-01| 2.67E-02
Glycine 0.0 0.2 -0.5 0.4 -0.8 0.1 1.29E-01| 3.17E-03| 2.25E-01| 4.57E-01| 8.28E-03| 2.83E-01
GMP 0.0 0.2 0.9 1.6 1.0 1.5 4.33E-01| 3.61E-01| 9.27E-01| 7.01E-01| 4.02E-01| 9.27E-01
GTP 0.0 0.4 0.3 0.2 -0.8 0.5 2.30E-01| 8.76E-02| 1.74E-02| 5.21E-01| 1.27E-01| 3.28E-02
Hexose-phosphate 0.0 0.1 0.0 0.1 -0.8 0.0 7.08E-01| 3.56E-04| 6.24E-05| 8.60E-01| 1.86E-03| 3.26E-04
IDP 0.0 0.4 -0.2 0.1 -0.8 0.1 3.91E-01| 2.27E-02| 3.57E-03| 6.64E-01| 3.77E-02| 7.58E-03
IMP 0.0 0.1 -0.7 0.1 -1.6 0.0 1.61E-03| 1.83E-05| 2.15E-04| 2.74E-02| 3.50E-04| 6.97E-04
Isoleucine/Leucine 0.0 0.1 0.0 0.1 0.1 0.1 8.96E-01| 3.13E-01| 2.47E-01| 9.52E-01| 3.67E-01| 2.97E-01
Ketoglutarate 0.0 0.2 -0.1 0.1 -1.2 0.1 6.47E-01| 5.20E-04| 3.00E-05| 8.57E-01| 2.50E-03| 2.56E-04
Lysine 0.0 0.1 -0.1 0.0 0.4 0.1 1.71E-01| 8.46E-03| 1.44E-04| 4.83E-01| 1.74E-02| 5.46E-04
Malate 0.0 0.1 -0.1 0.1 -1.2 0.1 4.63E-01| 2.37E-04| 5.73E-05| 7.27E-01| 1.59E-03| 3.26E-04
Methionine 0.0 0.3 0.0 0.1 -0.2 0.2 8.61E-01| 3.87E-01| 2.56E-01| 9.30E-01| 4.21E-01| 3.00E-01
Nacetylneuraminate 0.0 0.0 0.4 0.0 -0.8 0.1 7.60E-06| 3.35E-05| 8.00E-06| 5.17E-04| 4.07E-04| 1.94E-04
NAD 0.0 0.2 0.0 0.1 0.3 0.0 6.66E-01| 1.20E-01| 2.71E-02| 8.57E-01| 1.63E-01| 4.57E-02
NADH 0.0 0.3 -1.6 0.7 -2.3 0.9 2.23E-02| 1.33E-02| 3.43E-01| 1.77E-01| 2.38E-02| 3.82E-01
NADP 0.0 0.0 0.3 0.1 0.4 0.2 3.93E-02| 1.05E-01| 4.94E-01| 2.19E-01| 1.46E-01| 5.33E-01
NADPH 0.0 0.1 0.2 0.1 -1.3 0.2 3.94E-02| 2.58E-04| 1.98E-04| 2.19E-01| 1.59E-03| 6.73E-04
Ornithine 0.0 0.1 -0.3 0.1 1.3 1.3 1.76E-02| 2.22E-01| 1.59E-01| 1.77E-01| 2.72E-01| 2.12E-01
Phenylalanine 0.0 0.3 -0.1 0.1 -0.3 0.5 7.62E-01| 5.05E-01| 5.59E-01| 8.79E-01| 5.13E-01| 5.84E-01
Phosphogluconic_acid 0.0 0.4 -0.7 0.8 -1.8 0.4 2.85E-01| 8.40E-03| 9.89E-02| 5.46E-01| 1.74E-02| 1.37E-01
Proline -0.1 0.6 -1.4 0.1 -2.0 0.4 2.35E-02| 9.92E-03| 5.15E-02| 1.77E-01| 1.93E-02| 7.78E-02
PRPP 0.0 0.4 0.3 0.3 5.2 0.1 2.76E-01| 2.06E-05| 1.19E-05| 5.46E-01| 3.50E-04| 1.94E-04
Ribose-5-phosphate 0.0 0.3 0.1 0.2 -1.5 0.1 5.41E-01| 1.31E-03| 5.27E-04| 8.00E-01| 4.95E-03| 1.56E-03
Ribulose-5-phosphate 0.0 0.2 0.0 0.1 -1.8 0.0 9.83E-01| 4.25E-05| 2.51E-05| 9.90E-01| 4.13E-04| 2.56E-04
Sedoheptulose-phosphate 0.0 0.2 0.2 0.0 -0.6 0.0 1.48E-01| 3.27E-02| 1.43E-05| 4.57E-01| 5.16E-02| 1.94E-04
Serine 0.0 0.0 0.0 0.0 -0.1 0.2 2.48E-01| 4.30E-01| 2.84E-01| 5.27E-01| 4.50E-01| 3.27E-01
Succinate 0.0 0.0 0.5 0.1 0.5 0.1 6.64E-04| 1.65E-03| 7.20E-01| 2.26E-02| 5.91E-03| 7.31E-01
Threonine 0.0 0.3 0.0 0.1 -0.3 0.1 7.63E-01| 2.24E-01| 3.76E-02| 8.79E-01| 2.72E-01| 5.95E-02
Tryptophan 0.0 0.3 0.0 0.1 0.2 0.1 9.33E-01| 3.90E-01| 9.66E-02| 9.76E-01| 4.21E-01| 1.37E-01
Tyrosine 0.0 0.2 0.0 0.1 0.1 0.2 8.18E-01| 4.18E-01| 2.49E-01| 9.12E-01| 4.44E-01| 2.97E-01
UDP 0.0 0.4 0.1 0.3 1.0 0.1 6.65E-01| 9.92E-03| 1.08E-02| 8.57E-01| 1.93E-02| 2.15E-02
UDPNacetylglucosamine 0.0 0.0 0.1 0.0 0.8 0.0 2.07E-02| 3.00E-06| 1.29E-05| 1.77E-01| 1.12E-04| 1.94E-04
UMP -0.1 0.6 -0.1 0.9 -0.6 0.1 9.90E-01| 3.37E-01| 4.71E-01| 9.90E-01| 3.82E-01| 5.17E-01
uTpP 0.0 0.3 0.2 0.1 0.9 0.3 1.94E-01| 1.91E-02| 2.76E-02| 4.86E-01| 3.24E-02| 4.57E-02
Valine 0.0 0.1 0.0 0.2 -0.2 0.1 9.64E-01| 1.34E-01| 3.42E-01| 9.90E-01| 1.78E-01| 3.82E-01
Xanthosine 0.0 0.1 -0.3 0.2 -2.5 1.3 4.19E-02| 8.14E-02| 1.02E-01| 2.19E-01| 1.20E-01| 1.39E-01

Table S4.6 Metabolite abundance with statistical significance for figures 4.5 and S4.5 —
papillary subtype. Data presented relative to the PSC average of the papillary subtype as
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Table S4.6 (cont'd)

depicted in figures 4.5 and S4.5. Data represent means and S.D. of 3 replicates. Bold values

indicate Welch’s t-test was used. Highlighted values are statistically significant with adjusted p
value < 0.05
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Tumor Size
Average Stdev N
(Day 24)
EMT PSC D3 1344.6 141.7 6
EMT Wild-Type 1103.1 119.2 7
EMT PSC C4 1330.1 115.8 8
EMT PPATF1 982.7 116.1 5
EMT PPAT F2 1012.2 271.8 5
EMT APRT B3 762.8 108.4 5
Raw P values Adjusted P values
PSCD3 PSCD3 PSCC4 | PPATF1 | PPATF1| PSCD3 PSCD3 PSCC4 | PPATF1 | PPATF1
'S Vs S S S Vs 'S S S S
WT PSCC4 PPATF2 | PPATF2 | APRTB3 WT PSCC4 | PPATF2 | PPATF2 | APRTB3
6.58E-03 8.36E-01| 1.29E-02| 8.29E-01| 1.48E-02| 2.63E-02| 8.36E-01| 3.87E-02| 8.36E-01| 4.43E-02

Table S4.7 Tumor size statistical significance for figures 4.6A and S4.8A — EMT subtype.
Data represent means and S.D. of EMT tumor size at 24 days post implantation. Highlighted

values are statistically significant with adjusted p value < 0.05
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Tumor Size
Average | Stdev N
(Day 24)
Pap PSC G6 514.0 114.0 5
Pap Wild-Type | 437.5 100.6 4
Pap PSC F1 375.2 85.0 7
Pap APRT E6 1161.8 155.8 5
Pap APRT G5 986.0 78.1 7
Pap APRT H5 350.1 105.7 7
Raw P values Adjusted P values
PSCG6 PSCG6 | PSCG6 | PSCG6 | PSCG6 | APRTE6 | PSCG6 | PSCG6 | PSCG6 | PSCG6 | PSCG6 | APRTE6
vs Vs vs vs vs Vs Vs vs vs vs Vs vs
WT PSCF1 | APRTE6 | APRTG5 | APRTH5 [ APRTG5 WT PSCF1 | APRTE6 |APRTG5| APRTH5 | APRTG5
3.84E-01| 5.20E-02| 1.51E-04| 1.51E-05| 4.13E-02| 4.11E-02| 3.84E-01| 1.04E-01| 7.55E-04]|9.06E-05| 8.27E-02| 8.22E-02

Table S4.8 Tumor size statistical significance for figures 4.6B and S4.8B — papillary

subtype. Data represent means and S.D. of EMT tumor size at 24 days post implantation.

Highlighted values are statistically significant with adjusted p value < 0.05
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EMT PPAT

Table S4.9 IHC analysis statistical significance for figure 4.7A — EMT subtype. Data
represent means and S.D. Bold values indicate Welch’s t-test was used. Highlighted values are

statistically significant with adjusted p value < 0.05

229

EMT PSC D3 EMT APRT B3
) EMT PSC D3 EMT APRT B3 F1 EMT PPATF1
IHC Analysis Average Average
STDEV STDEV Average STDEV
(%) (%)
(%)
Ki67+ Nuclei (%) 60.51 4.12 55.13 4.61 58.03 2.81
Raw P values Adjusted P values

PSC PSC APRT KO PSC PSC APRT KO

Vs '] S Vs S S
APRT KO PPAT KO PPAT KO APRT KO PPAT KO PPAT KO
2.01E-05 7.75E-03 9.44E-03 6.03E-05 9.44E-03 9.44E-03




Pap PSC G6 Pap APRT E6 PSC
Pap PSC G6 Pap APRT E6
Average Average Vs
STDEV STDEV
(%) (%) APRT KO
Ki67+ Nuclei (%) 53.18 7.06 59.05 5.78 1.85E-03

Table S4.10 IHC analysis statistical significance for figure 4.7B — papillary subtype. Data
represent means and S.D. Bold values indicate Welch’s t-test was used. Highlighted values are
statistically significant with adjusted p value < 0.05
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EMT PSC D3 EMT APRT B3 EMT PPAT F1
. EMT PSC D3 EMT APRT B3 EMT PPAT F1
IHC Analysis Average STDEV Average STDEV Average STDEV
(%) (%) (%)
Percent Area (TUNEL +) 7.69 4.04 23.07 10.23 27.66 10.36
Raw P values Adjusted P values
PSC PSC APRT KO PSC PSC APRT KO
Vs Vs Vs Vs Vs Vs
APRT KO PPAT KO PPAT KO APRT KO PPATKO PPAT KO
1.37E-02 3.48E-03 5.46E-01 2.73E-02 1.04E-02 5.46E-01

Table S4.11 IHC analysis statistical significance for figure 4.7C — EMT subtype. Data
represent means and S.D. Bold values indicate Welch'’s t-test was used. Highlighted values are
statistically significant with adjusted p value < 0.05
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Pap PSC G6 Pap APRT E6 PSCvs
. Pap PSC G6 Pap APRT E6
IHC Analysis Average Average APRT KO
STDEV STDEV
(%) (%) P Value
Percent Area (TUNEL +) 24.65 15.50 38.10 10.88 1.93E-01

Table S4.12 IHC analysis statistical significance for figure 4.7D — papillary subtype. Data
represent means and S.D. Bold values indicate Welch'’s t-test was used. Highlighted values are
statistically significant with adjusted p value < 0.05
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EMT PPATF1 EMT PPAT F2 .
. EMT PPATF1 EMT PPAT F2 Raw [Adjusted
Metabolite Average Average
STDEV STDEV P values| P values
(%) (%)

ATP M-0 66.8 3.0 62.9 1.2 1.68E-01| 2.52E-01
ATP M-5 24.4 1.6 26.5 0.6 1.67E-01| 2.52E-01
ATP M-OTHER 8.7 2.5 10.6 14 4.11E-01| 4.11E-01

Table S4.13 *C-Isotope percent labeling from glucose statistical significance for figure

S4.9 — EMT subtype. Data represent means and S.D. of 3 replicates. Highlighted values are
statistically significant with adjusted p value < 0.05
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R R ) e oo R [ee
Metabolite PPAT A7 PPAT B3 PPAT B7 PPAT B8 PPAT C1
Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV
(%) (%) (%) (%) (%)
ATP M-0 80.1 7.1 75.4 4.9 78.1 3.3 74.6 1.6 79.5 1.8
ATP M-5 10.7 7.6 14.7 2.1 13.7 1.9 15.4 0.8 12.9 0.9
ATP M-OTHER 9.2 0.5 9.9 2.9 8.1 1.6 10.0 1.8 7.5 1.3
Raw P values Adjusted P values

PPAT A7 | PPAT A7 | PPAT A7 | PPAT A7 | PPAT A7 | PPAT A7 | PPAT A7 | PPAT A7
Metabolite S S S S Vs S Vs S
PPAT B3| PPAT B7 | PPAT B8 | PPAT C1 | PPAT B3| PPAT B7 | PPAT B8 | PPAT C1

ATP M-0 4.82E-01| 7.33E-01| 3.45E-01| 9.09E-01| 7.59E-01| 7.33E-01| 5.76E-01| 9.09E-01
ATP M-5 5.09E-01| 6.10E-01| 4.74E-01| 7.15E-01 7.59E-01| 7.33E-01| 5.76E-01| 9.09E-01
ATP M-OTHER |7.59E-01| 4.36E-01| 5.76E-01| 1.66E-01| 7.59E-01| 7.33E-01| 5.76E-01| 4.99E-01
Table S4.14 3C-Isotope percent labeling from glucose statistical significance for figure
S4.9 - papillary subtype. Data represent means and S.D. of 3 replicates. Highlighted values are
statistically significant with adjusted p value < 0.05
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CHAPTER 5.

SUMMARY AND FUTURE DIRECTIONS
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5.1 SUMMARY

Breast cancer heterogeneity provides significant challenges for patient care. The
knowledge gained from academic research will provide clinicians with the necessary tools
to treat every patient. Through my thesis work, | have contributed to our understanding of
breast cancer heterogeneity by investigating metabolic vulnerabilities in histologic
subtypes derived from the MMTV-Myc model. | have identified key differences in several
central carbon metabolic pathways including glutathione metabolism, the TCA cycle, and
nucleotide metabolism. Additionally, by integrating powerful genomic and metabolomic
techniques, | was able to further identify subtype-specific preferences for parallel
pathways of nucleotide biosynthesis. | have demonstrated substantial efficacy through
rational targeting of vulnerable metabolic pathways specific to EMT and papillary
subtypes, thus demonstrating the potential utility of targeting metabolism to guide therapy
for different subtypes of breast cancer. My work has significant translational potential, as
the EMT subtype derived from the MMTV-Myc mouse model correlate to the claudin-low
subtype of human breast cancer, and the papillary subtype better models Myc
amplification, a common feature in human breast cancer as discussed in chapters 1, 3,
and 4. My work also raises several important questions including: 1) What other metabolic
pathways are important for these subtypes? 2) Will targeting the pathways | have
identified using approved therapeutics be sufficient to reduce tumor growth in vivo? And
3) How translatable are these findings to human breast cancer subtypes? Answering
these questions will take considerable effort but will also further improve our

understanding of how to target metabolic vulnerabilities in breast cancer subtypes.
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5.2 FUTURE DIRECTIONS

5.2.1 EVALUATION WITH ADDITIONAL METABOLOMICS TECHNIQUES

There are still many known and unknown metabolites that have yet to be
investigated in breast cancer subtypes. Throughout this dissertation we used a targeted
mass spectrometry method that is well suited to evaluate polar compounds including
nucleotides and central carbon metabolites as discussed in the preceding chapters.
However, this approach is somewhat limited in that we specifically measure metabolites
from a list of known compounds. Now that we have demonstrated the power of using
metabolomics to identify subtype-specific metabolic vulnerabilities, we can expand upon
our findings by using an untargeted metabolomics method to substantially increase the
range of compounds evaluated in each sample. These experiments would be
straightforward to perform, as we can easily generate additional samples from EMT and
papillary cell lines or tumors, our current extraction techniques are compatible with
untargeted methods, and we have access to several mass spectrometers with untargeted
capabilities in the mass spectrometry and metabolomics core facility. | expect this
untargeted analysis would not only validate our targeted findings but would further
uncover many new metabolites of interest between the EMT and papillary subtypes —
potentially revealing new metabolic pathways of interest. The main challenge of these
untargeted analyses would be in developing a workflow for identifying unknown
metabolites, and assigning these metabolites to specific pathways of interest. After
addressing this obstacle, the same genomic and pharmacologic approaches as detailed
in previous chapters could be used to test the importance of these new metabolites and

pathways in EMT and papillary tumors or cell lines.
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Metabolites analyzed in this work were collected from the polar phase, which
precludes a wide range of potentially interesting non-polar compounds including fatty
acids and lipids. As discussed in chapter 1, lipid metabolism is one area that has shown
promising subtype-specific trends such as, ER+ breast cancer increasing cholesterol
biosynthesis, HER2+ breast cancer increasing fatty acid biosynthesis, and TNBC
increasing cholesterol uptake. In order to develop a truly comprehensive understanding
of the metabolic differences between the EMT and papillary subtypes we should attempt
to expand upon our current knowledge using techniques to study a wider range of

metabolites.

Beyond expanding analytical technigques to measure more metabolites, we could
also further develop our current findings by extracting metabolites in a more refined
manner. Currently we extract metabolites from flash frozen tumor sections, which will
include a mixture of both intracellular metabolites and extracellular metabolites from the
tumor microenvironment. We could refine this to selectively study extracellular
metabolites by centrifuging freshly collected tumor pieces over a fine mesh filter to collect
an interstitial fluid filtrate, then process this filtrate using targeted and/or untargeted
methods to identify compounds that are consumed and produced by EMT and papillary
tumors. This could be achieved by measuring the abundance of each compound relative
to serum samples from both tumor bearing and non-tumor bearing mice to establish how
metabolite levels change in the tumor microenvironment and in the general circulation of
the tumor bearing mouse compared to normal levels. For example, we would likely find
decreased abundance of salvageable nucleosides and nucleobases in filtrates derived

from the EMT subtype, reflecting the metabolic preference for nucleotide salvage in the
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EMT subtype as described in chapter 4. It would also be interesting to use this approach
to identify subtype-specific biomarkers. Little is currently known about
metabolites/compounds that are released by EMT and papillary tumors specifically, but
identifying subtype-specific metabolic biomarkers has the potential to revolutionize both
cancer diagnostics and long term monitoring of patients following treatment. Studying

metabolic biomarkers using mouse models could help accomplish this.

5.2.2 IN VIVO DRUG TREATMENT STUDIES

The next important direction is to follow up both in vitro drug treatment studies and
in vivo gene knock-out studies with in vivo validation using metabolism-targeting drugs.
This would ideally be done using currently approved drugs, and the compounds described
in chapter 3 should serve as a starting point for future in vivo studies. It would also be
interesting to pharmacologically inhibit nucleotide salvage based on our findings
presented in chapter 4. Given the lack of drugs that target nucleotide salvage pathways,
we could screen compound libraries to identify inhibitors of nucleotide salvage enzymes
such as APRT and UPP1. This compound identification process may result in discovery

of new therapeutics to treat cancer.

Assuming that selective inhibitors of each metabolic pathway can be identified,
there are still several potential hurdles that could complicate these studies. First, it is
possible that metabolic vulnerabilities identified in the in vitro context do not always
translate in vivo. This is because cell culture conditions and conditions within a tumor are
very different from one another, especially in terms of nutrient availability. However, in
vitro findings are still valuable, as demonstrated by our findings regarding differences in
nucleotide biosynthesis detailed in chapters 3 and 4, which are consistent between in

248



vitro and in vivo settings. Second, the optimal dose for each compound would need to be
individually determined. The use of approved compounds would reduce this challenge by
providing dosing guidelines to use as a starting point, but optimization would still be
required to identify the most effective concentration for the EMT and papillary subtypes.
Third, targeting a single metabolic pathway may be insufficient to inhibit tumor growth.
This issue reflects the interconnected nature of metabolism, as cancer cells may
upregulate a parallel metabolic pathway in response to inhibition of a preferred metabolic
pathway. Addressing this concern leads to additional directions of research, as studying
the reactive metabolism of drug treated cells could facilitate the development of targeted

combination therapies.

5.2.3 TRANSLATION TO HUMAN DISEASE

Arguably the most important next step for this work is to investigate the
translatability of these findings into human disease. As discussed in chapters 3 and 4, the
greatest translational potential for these findings stems from the similarities between the
EMT subtype in the MMTV-Myc mouse model and the claudin-low subtype of human
breast cancer. Claudin-low breast cancer currently lacks targeted therapy options and
can therefore greatly benefit from identification of novel druggable metabolic targets.
Based on the findings presented in chapters 3 and 4, glutathione biosynthesis, TCA cycle
metabolism, and nucleotide salvage are strong candidates for further study focused on

treating claudin-low breast cancer.

The next step toward translating our findings to human disease should include
examination of gene expression data of claudin-low cell lines and tumors to determine
whether they exhibit expression differences in genes related to these pathways compared

249



to other breast cancer subtypes. Follow up experiments would examine metabolic profiles
of claudin-low samples in comparison to other breast cancer subtypes to validate gene
expression findings and identify any potential metabolic vulnerabilities that were not fully
captured by the genomic analysis. Further experiments will evaluate the significance of
these metabolic pathways in models of claudin-low breast cancer in vitro and in vivo using
metabolism-targeting drugs and/or genetic manipulations as described earlier for the EMT
subtype. Once fully investigated, this line of research could yield new therapeutic
strategies to treat breast cancer, which are currently needed to improve our ability to

provide care for patients with this deadly disease.

In conclusion, this work makes significant progress towards identification of
subtype-specific metabolic vulnerabilities and demonstrates the feasibility of targeting
metabolism to treat breast cancer. Subtype-specific metabolic vulnerabilities in breast
cancer are not currently used to guide therapy; the work presented here demonstrates
that metabolic weaknesses can be targeted to stop tumor growth and should be
incorporated into therapy. This work has the potential to improve outcomes for breast
cancer patients by providing a foundation for future translational research based on

targeting metabolic vulnerabilities in breast cancer subtypes.
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