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ABSTRACT 
 

ANTIBIOTIC RESISTANCE AND BACTERIAL MICROBIOME IN LETTUCE-SOIL 
SYSTEMS 

 
By 

 
Yike Shen 

 
Food safety challenges from emerging contaminants such as antibiotics and antibiotic 

resistance genes (ARGs) have received increasing attention due to rapid increases in their 

abundance in agroecosystems. This is particularly true in soil-vegetable systems as microbiomes 

and antibiotic resistomes of vegetables are important to their quality and safety and could be 

influenced by crop production with contaminated soil and water. Additionally, the food safety of 

vegetables may also drive consumers’ preference and demand for certain food products 

(especially for labeled products such as USDA Organic, Raised Without Antibiotics, etc.). Using 

a soil-lettuce (Lactuca sativa) model system, the first study in this dissertation assessed how 

irrigation with antibiotics-contaminated water via overhead or soil-surface irrigation could 

influence bacterial communities and ARG profiles in lettuce shoots, roots, and soil, using 16S 

rRNA amplicon sequencing and high throughput qPCR techniques, respectively. The overall 

abundance and diversity of ARGs and bacteria associated with soil-surface irrigated lettuce 

shoots were lower than those under overhead irrigation, indicating soil-surface irrigation may 

have lower risks of producing food crops with high abundance of ARGs. ARG profiles and 

bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of 

changes were observed. The second study examined the fate and transport of selected antibiotics 

through bulk soil, rhizosphere soil, and lettuce roots and shoots under soil-surface irrigation. 

Root concentration factors based on the antibiotic concentrations in bulk soil (RCFbs) were 

significantly higher than those based on antibiotic concentrations in rhizosphere soil (RCFrs) for 



 
 

ciprofloxacin, lincomycin, oxytetracycline, sulfamethoxazole, and tetracycline, similar for 

trimethoprim and tylosin, and lower for monensin. The third study investigated bacterial 

community assembly and ARG profiles in lettuce shoots, roots, rhizosphere soil, and bulk soil 

upon exposure to antibiotics. Bacterial communities were driven by stochastic processes upon 

exposure to low level antibiotics, and were more resilient in roots and rhizosphere soil than in 

bulk soil and shoots. The fourth study explored the importance of demographics, food-relevant 

habits, and foodborne disease perception to consumers’ buy and pay preferences to labeled 

products by using conventional statistical and novel machine learning methods to analyze survey 

data. Consumers’ willingness to buy or to pay more for certain labeled food products is 

dependent on certain demographic traits (e.g., urban living) and food-relevant habits (e.g., 

cooking fresh produce). Machine learning methods achieved sufficient prediction accuracy 

scores for estimating consumers’ willingness to buy or to pay for labeled products, and thus 

could be useful tools for evaluating survey data and facilitating the development of strategies 

promoting healthy food production and consumption.  
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Introduction 

New food safety challenges in vegetable production are being brought about by emerging 

contaminants such as antibiotics, and antibiotic resistance genes (ARGs), as a result of their rapid 

proliferation in agroecosystems. The imprudent use of antibiotics in human healthcare and 

animal production has led to trace level of antibiotics in the environment including reclaimed 

water 1-3. For example, sulfamethoxazole and trimethoprim were detected at levels up to 22 and 

3.1 µg/L in wastewater effluents 4-6. Vegetables and soils can be exposed to low levels of 

pharmaceuticals when irrigated with reclaimed waters. Pharmaceuticals (especially antibiotics) 

may be considered deterministic factors in shaping the microbiome of vegetable production 

systems as many pharmaceuticals are bioactive to microorganisms. Several studies have shown 

that exposure to pharmaceuticals and heavy metals from animal manures, wastewaters, or 

biosolids could change ARG profiles and bacterial communities in soil and water environments 

7-12. Antibiotics and ARGs may also interact with typical microbial pathogens (e.g., Salmonella) 

to collectively impact the safety of vegetables. Since food consumption can result in direct 

exposure to antibiotics, ARGs, and foodborne pathogens, it is important to understand the 

changes in bacterial communities and ARG profiles due to their potential influence on food 

safety and ultimately human health. 

Crop irrigation with reclaimed water is increasingly practiced worldwide to meet water 

demand 13. However, it was reported that there was higher incidence Escherichia coli in lettuce 

irrigated with overhead sprinklers than with soil-surface irrigation 14. Thus, it is important to 

investigate how irrigation methods may influence the microbiome and ARGs in vegetables. 

Additionally, in soil-plant systems bulk soil, rhizosphere soil, plant roots and shoots may play a 

critical role in regulating the uptake and accumulation of antibiotics as well as changes in 
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bacterial microbiome and ARG profiles upon exposure to anthropogenic antibiotics. Thus, it is 

essential to study the plant uptake of antibiotics, bacterial microbiome, and ARGs in the 

continuum of bulk soil, rhizosphere soil, roots, and shoots.  

The perceived safety of vegetables can drive consumer preferences and demand. Studies 

have been performed on consumers’ willingness to buy and pay more for organic labeled 

products and other branded products based on demographics and other relevant survey questions 

15, 16. However, few studies have examined the purchasing preferences of consumers to various 

product labels (e.g., Raised Without Antibiotics, No Medically Important Antibiotics, No Growth 

Promoting Hormones, Cage Free, USDA Organic, Locally Raised, Generic Brand, and Major 

Brand ), as related to food-relevant habits and foodborne disease perceptions of the consumers. 

Therefore, it is critical that consumers’ preferences to labeled products are assessed so that 

consumer-oriented strategies for mitigating antibiotic resistance can be developed.  

The successful launch and progress of the Human Microbiome Project and the Earth 

Microbiome Project have sparked researchers’ enthusiasm to understanding microbial ecology in 

humans, environment, animals, and plants 17, 18. Along with the progress in understanding 

microbiomes, next-generation sequencing technologies have advanced tremendously with 

increases in speed, read length, efficiency, and a rapid decrease in per-base cost 19. As a result, 

the sizes and dimensions of sequencing raw data output have increased exponentially. Data 

analyses need to be highly efficient and reproducible to meet cutting-edge analytical techniques. 

The work in this dissertation used high throughput qPCR and 16S rRNA amplicon sequencing in 

addition to liquid chromatograph mass spectrometry in tandem (LC-MS/MS) and culture-

dependent isolation, in combination with computational tools and methods (i.e., R, Python, and 

machine learning).  
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Objectives 

This dissertation has four main objectives:  

1. Characterize bacterial communities and ARGs in a soil-lettuce system upon exposure to 

antibiotics via overhead and soil-surface irrigations.  

2. Investigate the uptake and accumulation of antibiotics in lettuce through the continuum of 

bulk soil, rhizosphere soil, roots and shoots.  

3. Assess the changes in bacterial communities and ARGs profiles in distinct niches of soil-

plant systems including bulk soil, rhizosphere soil, roots, and shoots. 

4. Determine the consumers’ purchasing preferences for various labeled food products as 

influenced by demographics, food-relevant habits, and foodborne disease perceptions. 

The following chapters address the four objectives of my research. Objective 1 is addressed 

in Chapter II, Objective 2 in Chapter III, Objective 3 in Chapter IV, and Objective 4 in Chapter 

V. This dissertation ends with Chapter VI that summarizes the findings and identifies future 

research directions. 
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CHAPTER II  

Pharmaceutical Exposure Changed Antibiotic Resistance Genes and Bacterial 
Communities in Soil-Surface- and Overhead-Irrigated Greenhouse Lettuce 
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Abstract 

New classes of emerging contaminants such as pharmaceuticals, antibiotic resistant 

bacteria (ARB), and antibiotic resistance genes (ARGs) have received increasing attention due to 

rapid increases of their abundance in agroecosystems. As food consumption is a direct exposure 

pathway of pharmaceuticals, ARB, and ARGs to humans, it is important to understand changes 

of bacterial communities and ARG profiles in food crops produced with contaminated soils and 

waters. This study examined the level and type of ARGs and bacterial community composition 

in soil, and lettuce shoots and roots under soil-surface or overhead irrigation with 

pharmaceuticals-contaminated water, using high throughput qPCR and 16S rRNA amplicon 

sequencing techniques, respectively. In total 52 ARG subtypes were detected in the soil, lettuce 

shoot and root samples, with mobile genetic elements (MGEs), and macrolide-lincosamide-

streptogramin B (MLSB) and multidrug resistance (MDR) genes as dominant types. The overall 

abundance and diversity of ARGs and bacteria associated with lettuce shoots under soil-surface 

irrigation were lower than those under overhead irrigation, indicating soil-surface irrigation may 

have lower risks of producing food crops with high abundance of ARGs. ARG profiles and 

bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of 

changes were observed. MGE intl1 was consistently more abundant with pharmaceutical 

exposure than in the absence of pharmaceuticals. Pharmaceutical exposure enriched 

Proteobacteria (specifically Methylophilaceae) and decreased bacterial alpha diversity. Finally, 

there were significant interplays among bacteria community, antibiotic concentrations, and ARG 

abundance possibly involving hotspots including Sphingomonadaceae, Pirellulaceae, and 

Chitinophagaceae, MGEs (intl1 and tnpA_1) and MDR genes (mexF and oprJ).  
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Keywords: Pharmaceuticals; Antibiotic resistance genes; Bacterial Community; intl1; irrigation; 

Lettuce 

Introduction  

Consumption of fresh produce (fruits and vegetables) is important to human health, and 

national and international dietary guidelines call for more dietary intake of fresh produce 20, 21. 

For example, World Health Organization (WHO) recommends daily consumption of > 400 

grams of fresh produce to decrease risk of certain noncommunicable diseases and to improve 

overall health 21. As a result, global average vegetable supply increased from 66 kg per capita in 

1979 to 102 kg per capita in 2000 with substantial regional variations 22. Actual vegetable 

consumption also varies significantly with region, age and gender groups of human populations, 

and in fact vegetable intake in the US has declined from 136 kg per person in 2003 to 123 kg per 

person in 2013 22-24. To improve the dietary vegetable intake for human health benefits, it is 

critical to ensure microbial safety of vegetables as microbial contamination of vegetables often 

resulted in disease outbreaks and costly product recalls 25. Recently attention is being given to 

diverse microbiomes in vegetables (specifically opportunistic pathogens) rather than only to 

obligate pathogens 26-31, as it is believed that plant microbiomes could impact human gut 

microbiome and thus human health 26, 32. 

It is important to assess the changes of vegetable microbiomes in extensively managed 

agricultural production settings and/or in stressed conditions due to water shortage and/or 

environmental contamination. Crop irrigation with reclaimed water (e.g., treated wastewater 

effluents and agricultural wastewater) has become increasingly popular for alleviating water 

shortage in many regions in the world 13. In fact, globally about 359,000 km2 of croplands are 

irrigated with urban wastewater 33. Reclaimed water often contains trace level of pharmaceuticals 
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(including antibiotics) 4, 6, due to the extensive and imprudent use of pharmaceuticals in animal 

production and human healthcare 2, 3. For example, the concentrations of sulfamethoxazole, 

caffeine, acetaminophen, carbamazepine, and trimethoprim were up to 22.0, 15.2, 11.7, 3.1, and 

2.5 µg/L in wastewater effluents, respectively 4-6. Thus, vegetables can be exposed to low levels 

of pharmaceuticals when irrigated with reclaimed water. As many pharmaceuticals are bioactive 

to microorganisms, it is important to examine possible changes in microbiomes and antibiotic 

resistance genes (ARGs) of vegetables resulted from pharmaceutical exposure via crop irrigation. 

Alarmingly, antibiotic resistant bacteria (ARB), including antibiotic resistant pathogens, have 

recently been isolated from vegetables produced in greenhouses, open fields, and household 

farms, even when no animal production was in their proximity 29, 34, 35. Two studies confirmed 

that antibiotic resistant E. coli isolates were more prevalent in vegetables (e.g., lettuce [Lactuca 

sativa]) than in soils and waters used for vegetable production 34, 35. If pathogens are resistant to 

antibiotics, or could acquire ARGs via horizontal gene transfer under selection pressure of 

antibiotics accumulated in vegetables, any associated food safety risks could be substantially 

greater. 

Indeed, a number of studies have shown that exposure to pharmaceuticals and heavy 

metals in animal manures, wastewaters and biosolids could change ARGs and bacterial 

communities in soil and water environments 7-12. In soils irrigated with reclaimed water the 

abundance of ARGs and mobile genetic elements (MGEs) could be increased by 99–8655 folds 

10, 36, and are influenced by levels of salinity, pharmaceutical residues, nutrients, and heavy 

metals, as well as varying wastewater treatment and soil characteristics 12, 37, 38. Interestingly, it 

was reported that overhead sprinkler irrigation caused more persistent E. Coli in harvested 

lettuce than soil-surface irrigation after washing with chlorine solution 14. Thus, irrigation 
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method may have profound impact on the microbiome and ARGs in lettuce, which has been 

rarely investigated. 

Therefore, this study aimed to assess the impact of overhead and soil-surface irrigation on 

the diversity and abundance of microbiomes and ARGs in lettuce through a well-controlled 

greenhouse experiment, using 16S rRNA amplicon sequencing and high throughput qPCR, 

respectively. Lettuce was selected as a model vegetable crop because it is the most popular fresh 

vegetable consumed with minimal processing 39. This stud y may help better utilize reclaimed 

water while minimizing food safety risks associated with microbial pathogens and ARGs.  

Materials and Methods 

Lettuce growth experiment and sample collection 

Lettuce growth experiment was previously described in detail 40. Briefly, Burpee® Black 

Seeded Simpson Lettuce (Burpee, Warminster, PA) were grown for 5 weeks in nursery pots 

(14.6-cm top diameter and 10.8-cm high) each packed with a loamy sand soil to a depth of 9 cm. 

The loamy sand soil had pH of 7.4, organic matter of 2.5%, 81.3% sand, 10.5% silt, 8.2% clay, 

71 mg/kg Bray P1 extractable phosphorus, and 7.0 cmol(+)/kg cation exchange capacity. The 

soil did not contain any pharmaceutical tested in this study tested by control samples. The lettuce 

plants were irrigated daily with fertilizer solution (20-20-20 general purpose fertilizer, 125 mg/L 

total nitrogen) in the absence or presence of 8 antibiotics (carbadox, lincomycin, monensin 

sodium, oxytetracycline, sulfadiazine, sulfamethoxazole, trimethoprim, and tylosin) and 3 other 

pharmaceuticals (acetaminophen, caffeine, and carbamazepine) at 30 µg/L each. The selected 11 

pharmaceuticals are widely used in human medicine and/or animal production, and vary in 

physiochemical properties such as molecular weight, acid dissociation costant (pKa), water 

solubility, and hydrophobicity, which were described in detail by Bhalsod et al. 40. Three non-
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antibiotic drugs were selected because pharmaceuticals were often present as mixture in waters. 

As explained by Bhalsod et al. 40, the concentration of each pharmaceutical (30 µg/L) was at the 

high end of typical pharmaceutical concentrations in reclaimed water 4, 6, and was selected 

because it allowed for the detection of pharmaceutical residues in lettuce.  

Irrigation water was applied via either overhead irrigation or soil-surface irrigation. 

Samples of lettuce shoots, roots, and soils were collected weekly, as detailed in Bhalsod et al. 40. 

Lettuce shoot and root samples were washed with deionized (DI) water to remove 

pharmaceuticals and bacteria loosely associated with lettuce shoots and roots, and to remove soil 

particles from lettuce roots. The concentrations of each pharmaceutical were measured in lettuce 

shoot, root and soil samples, which were already published in Bhalsod et al. 40. Therefore, this 

study focused on the analyses of microbiomes and ARGs for the lettuce shoot, root and soil 

samples collected on the final week 5, which represented cumulative impact of pharmaceutical 

exposure over 5 weeks. It is noted that the sample collection procedure could not separate 

bacteria on the shoot and root surfaces from those within the shoots and roots (i.e., endophytes). 

Thus, it should be understood that the microbiomes and ARGs measured in this study were 

shoot- and root-associated, including those on the shoot and root surfaces and inside the shoots 

and roots. 

Prior to DNA extraction, all lettuce shoots and root samples were stored in a −20 °C 

freezer (Northland, Greenville, MI), and soil samples were air-dried and stored at room 

temperature. Each pharmaceutical exposure treatment had triplicate samples named as 1, 2, and 3 

following the abbreviation of sample names (Appendix Table A1). No replication was included 

for the pharmaceuticals-free control treatment. SO, SS, SOC, and SSC refer to lettuce shoot 

samples under overhead irrigation with pharmaceuticals (SO), soil-surface irrigation with 
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pharmaceuticals (SS), overhead irrigation without pharmaceuticals (i.e., control, SOC), and soil-

surface irrigation without pharmaceuticals (i.e., control, SSC), respectively. RO, RS, and ROC 

denote lettuce root samples under overhead irrigation with pharmaceuticals (RO), soil-surface 

irrigation with pharmaceuticals (RS), overhead irrigation without pharmaceuticals (i.e., control, 

ROC), respectively. The root sample under the control treatment of soil-surface irrigation was 

exhausted in the earlier work (Bhalsod et al., )40 and thus not available in this study. Soil samples 

under soil-surface irrigation were similarly named as STS, SMS, SBS, STSC, SMSC, and SBSC, 

referring the top (0–3 cm), middle (3–6 cm), and bottom (6–9 cm) layers with and without 

pharmaceuticals, respectively (Appendix Table A1). The majority of irrigation water under 

overhead irrigation eventually drained to soils. No differences in pharmaceutical concentrations 

in lettuce roots and soils were found between overhead and soil-surface irrigations 40. Thus, the 

soil samples under overhead irrigation was not selected because no major difference in 

pharmaceutical concentration was expected from that of surface-irrigated soil samples.  

DNA extraction and analyses 

Lettuce shoot and root samples were thawed and placed in the tared PowerBead tubes, 

weighed, and extracted for DNA following the manufacturer's instruction using PowerSoil DNA 

Isolation Kit (Mo Bio Laboratories, Carlsbad, CA). Absolute DNA concentration was measured 

using Qubit® dsDNA BR Assay Kit (Life Technologies, Eugene, OR). All DNA samples were 

stored in −20 °C freezer before high throughput quantitative polymerase chain reaction (qPCR) 

analysis and 16S rRNA amplicon sequencing. WaferGen SmartChip Real-time PCR System 

(WaferGen Bio-systems, Fremont, CA) was used to quantify ARGs and MGEs in the lettuce and 

soil samples. The system has 5184 individual SmartChips nanowells that provide high 

throughput reactors for multiple primers. We first tested SS, RS, STS, and STSC with 384 
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primers targeting 382 ARGs and MGEs and two 16S rRNA genes. This preliminary test detected 

genes targeted by 178 primer sets. For the same genes targeted by multiple primer sets, the 

primer sets producing the lower cycle number (CT) were selected. As a result, 144 primer sets 

were chosen for further analyses, including 2 primer sets for 16S rRNA and142 primer sets for 

ARGs and MGEs (Appendix Table A2). The initial enzyme was activated at 95°C for 10 

minutes. The DNA samples were then amplified by 30 s denaturation at 95 °C and 30 s 

annealing at 60 °C for 40 cycles. All qPCR runs were conducted in triplicates in the WaferGen 

system.  

The amplicon sequencing of 16S rRNA were conducted for all DNA samples from the 27 

lettuce and soil samples (Appendix Table A1). DNA samples were first amplified with cycling 

conditions as follows: 95 °C for 2 min, 95 °C for 20 s (30 cycles), 55 °C for 15 s, 72 °C for 1 

min, and 72 °C for 10 min. PCR products were then purified, followed by normalization with the 

SequalPrep Normalization Plate Kit (Invitrogen, Carlsbad, CA). Sample library was prepared by 

pooling 5 µL of each sample. Illumina dual-indexed compatible primers 515f/806r were used to 

amplify the V4 hypervariable region of 16S rRNA gene to minimize cost of long customized 

primers and produce more high quality sequences 41. Batch normalization of amplicon libraries 

were performed using Invitrogen SequalPrep DNA Normalization Plates. Products eluted from 

the plates were then pooled, followed by quality control and quantification using Qubit dsDNA 

HS, Caliper LabChipGX HS DNA, and Kapa Illumina Library Quantification qPCR assays. The 

amplicon pool was then loaded onto an Illumina MiSeq v2 standard flow cell and sequenced in a 

2×250bp paired-end format using a v2 500 cycle MiSeq reagent cartridge. Primers 

complementary to the 515f/806r sequences were added to appropriate wells of the reagent 

cartridge to serve as sequencing and index primers 41. Base calling was performed by Illumina 
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Real Time Analysis (RTA) v1.18.54 and RTA output was demultiplexed and converted to the 

format of FastQ with Illumina Bcl2fastq v2.19.0.  

Data Analyses 

Cycle numbers (CT) measured by the WaferGen qPCR were used to calculate copy 

number of genes via Copy Number = 10(30−CT)/(10/3) 42, using the cutoff threshold of CT < 30. 

Relative abundance of detected genes was computed by dividing the estimated gene copy 

number with the gene copy number of 16S rRNA. Then patterns and characteristics in profiles of 

ARGs and MGEs of all the samples were analyzed by heatmap, chord diagram, and ordination 

analysis using R packages. Bacteria community analysis was first preprocessed using the 

MacQIIME pipelines v. 1.9. following online tutorial for operational taxonomic unit (OTU) 

picking based on a 97% similarity threshold with default uclust to cluster to Greengenes 

reference database 43, 44. Bacteria belonging to mitochondria and chloroplast were removed 

because they are from contamination by small subunit ribosomal RNA genes of plant organelles 

(mitochondria and chloroplast). Top 10 phyla and families were selected to plot the composition 

of bacterial communities, and top 10 phyla were selected for principal coordinates analysis 

(PCoA). Alpha diversity was calculated by the Chao1 estimator 45, 46. Finally, network analysis 

among antibiotics concentrations, ARGs/MGEs relative abundance, and percentages of family-

level bacterial communities were conducted based on correlation tests (correlation coefficient 

greater than 0.6 or less than –0.6 and p-value < 0.05) and plotted using Gephi v0.9.1 software. 

Detailed data analysis procedures are provided in Appendix A.  
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Results and Discussion 

Profiles of ARGs 

In total 53 subtypes of ARGs and MGEs were detected with the greatest detection in the 

pharmaceutical-free top soil (STSC) and the lowest detection in the surface-irrgated lettuce 

shoots (SS), as shown in Appendix Figure A1. Overhead-irrigated lettuce shoots had a greater 

number of ARGs and MGEs than the soil-surface-irrigated shoots in the presence and absence of 

pharmaceuticals. Interestingly, the number of ARGs and MGEs was greater in the 

pharmaceuticals-free lettuce and soil samples than in the samples exposed to pharmaceuticals 

except for the bottom soil (Appendix Figure A1). Close examination of Figure S1 and Figure 2.1 

revealed that only four MGEs were found in all soil samples (6 samples in total) (tnpA_1, intl1, 

ISSps, and repA), and only one ARG (mexF) and one MGE (ISPps) were found in all lettuce 

shoot samples (4 samples in total), likely suggesting different ARG/MGE profiles in various soil 

and shoot samples. However, the greater number of shared ARGs and MGEs between root 

samples (rarD, tnpA_1, mexF, oleC, merA, intl1, ISPps, and ISSm2) might be due to root defense 

mechanisms to external changes 47, 48. Four ARGs/MGEs were found in all soil, lettuce shoot and 

root samples (tnpA_1, merA, intl1, and ISPps). Lettuce roots and shoots shared multidrug 

resistance (MDR) gene (mexF), whereas lettuce root and soil samples shared oleC and ISSm2 

gene (Figure 2.1).  

To have a clearer picture about frequently detected ARGs and MGEs, we removed the 

genes detected in less than half of our samples to produce a condensed heatmap (Appendix 

Figure A2). The genes in Figure S2 included 5 MGEs (ISPps, ISSm2, intl1, repA, and tnpA1), 3 

MDR genes (oprJ, mexE, and mexF), 2 beta-lactam resistance genes (blaPDC and blaFOX), 1 

macrolide-lincosamide-streptogramin B (MLSB) resistance gene (oleC), and 1 mercury 
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resistance gene (merA), suggesting the high prevalence of these genes in these settings. MLSB, 

beta lactam, amphenicol, and aminoglycoside are widely used in veterinary or human medicine, 

which corroborated their prevalence in this study. Specifically, as beta-lactam rings are often 

found in many antibiotics, this resistance mechanism can be troublesome when developing 

alternative drugs to replace ineffective ones 49. The high prevalence of MGEs and MDR genes 

are also alarming. Class 1 integron (intl1) gene was detected in all samples (except for SSC) 

(Figure 2.1). Its abundance was increased in the bottom soil, top soil, lettuce root and overhead-

irrigated lettuce shoot with pharmaceutical exposure. Class 1 integrons are one of the five classes 

of mobile integrons (part of MGEs) that facilitate resistance to multiple antibiotics and are 

significantly correlated with anthropogenic activities 11, 12, 50-52. Its high prevalence may result 

from its genetic function that integrate exogenous gene sequences into functional genes using 

integron gene (intl), recombination site (attI), and an outward-orientated promotor 52. Our 

observation supported the proposed strategy to use intl1 as an indicator gene for the ARG 

surveillance 33, 50, 53. 

As shown in Figure 2.1, the ARGs/MGEs in the soils and lettuce roots were more 

abundant than in the lettuce shoots. Pharmaceutical exposure altered the profiles of ARGs and 

MGEs in the soil, lettuce root and shoot samples (Figure 2.1 and Appendix Figure A3). With 

pharmaceutical exposure, the relative abundance of some genes increased, whereas other genes 

decreased (Figure 2.1). Among the most detected genes (Supplemental Figure S2) no consistent 

patterns of changes in ARGs and MGEs with pharmaceutical exposure were found. For example, 

in soils receiving pharmaceuticals ISSm2 and oleC decreased, merA increased, and no consistent 

trend was found for other genes. This observation deviated from previous field studies reporting 

increased relative abundance of ARGs and MGEs in environmental samples under the influence 
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of antibiotics residues 10-12. Thus, it appears that pharmaceutical exposure did not always 

increase the abundance of any given ARG/MGE subtype in this short-term (35 days) study in the 

greenhouse. Instead, the applied antibiotics may inhibit the growth of some susceptible bacteria 

harboring non-targeted or non-functional ARGs and MGEs, thus decreasing their abundance. On 

average, MGEs (intl1 and ISPps) were more abundant in samples with pharmaceutical exposure. 

Lettuce shoots with pharmaceutical-free overhead irrigation (SOC) had several highly enriched 

genes (i.e., bacA, blaL1, ttgB, and mepA) that may originate from bacteria in dusts. Since these 

genes were not detected in the surface-irrigated lettuce shoots (SSC and SS), they may come 

from bacteria non-native to lettuce shoots. In addition, pharmaceutical exposure resulted in 

greater abundance of ARGs (blaPDC, mexA, mexB, mexE, mexF, tnpA_1, ttgA, oprJ, tolC_1, and 

tolC-2) and MGEs (intl1, ISPps) associated with lettuce shoots under overhead irrigation than 

under soil-surface irrigation, likely due to greater availability of pharmaceuticals, water and 

nutrients for bacteria associated with overhead irrigated shoots. We did not expect the difference 

in the root uptake and translocation of pharmaceuticals and resultant effect on ARGs and 

bacterial communities between overhead and soil-surface irrigations, as the pharmaceutical 

concentrations in soils and roots were similar under these two irrigation practices 40. For the 

same reason, the difference of ARGs between overhead-irrigated and soil-surface irrigated 

lettuce shoots was unlikely caused by the changes of ARGs and bacteria occurring in soils and 

roots. The abundance and diversity of ARGs and MGEs visually appeared to decrease with 

increasing soil depth (Figure 2.1), which may be due to greater nutrient concentrations and thus 

bacterial growth and activity in the top soils 11, 54.  
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Figure 2.1. Relative abundance (gene copy number/16s rRNA gene copy number) of 

antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Data were Log 2 

transformed. Blank cells represent genes that were either not detected or below detection limit. 

Color bar on the right means relative abundance from low (blue) to high (red) levels.  

 

As shown in Figure 2.2, MGEs, and MLSB, and MDR genes were dominant resistance 

types. However, there was no consistent patterns of changes in each of the resistance 

mechanisms in response to pharmaceutical exposure, suggesting again that pharmaceutical 

exposure did not lead to a cross-board increase in the abundance of ARGs and MGEs among all 

the lettuce and soil samples. It is worth to note that the lettuce shoots had less overall abundance 

of ARGs and MGEs than the lettuce root and soil samples. Most of the soil and lettuce root 
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samples appeared to have greater total abundance of MGEs, and MLSB-resistant, beta-lactam-

resistant and MDR genes than the lettuce shoot samples. Similar to the diversity of AGRs/MGEs, 

the overhead-irrigated lettuce shoot (SOC and SO) had much more abundance of MDR and beta-

lactam resistant genes than the soil-surface-irrigated lettuce shoots (SSC and SS). Thus, soil-

surface irrigation with reclaimed water may help decrease the diversity and abundance of ARGs 

in lettuce. 

 

Figure 2.2. Total relative abundance (gene copy number /16s rRNA gene copy number) of 

antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) among various 

categories. Top four categories include MLSB, Beta Lactam, MGEs, and Multidrug Resistance. 

The width of the circular bar represents the total abundance of ARGs and MGEs in each sample.  
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Soil and Lettuce Microbiomes  

On both bacterial phylum and family levels pharmaceutical exposure changed bacterial 

community structures (Figure 2.3). Soil samples had the highest bacterial community diversity, 

followed by the lettuce root and shoot samples. Proteobacteria was the most abundant bacterial 

phyla in all samples, followed by Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes 

(Figure 2.3A). Proteobacteria were slightly increased in proportion with pharmaceutical exposure 

(Figure 2.3A). This is interesting as some strains in Proteobacteria can actually grow on various 

antibiotics and confer various resistance mechanisms 55. Moreover, Proteobacteria carry many 

mobile integrons and integron genes even in very ancient times 1, 52, 56. As a result, Proteobacteria 

were also found to be the most mobile phylum associated with the transfer of ARGs and MGEs, 

followed by Firmicutes, Bacteroidetes, and Actinobacteria 57. Actinobacteria are known for 

harboring ARGs through their ability to synthesize various secondary metabolites 58. They are 

ubiquitous in soil and plant environments and are often associated with root symbiosis. 

Bacteroidetes were also abundant and present in all samples (except for SS), but Firmicutes had a 

very small fraction in the lettuce roots. It is interesting to observe that with pharmaceutical 

exposure Proteobacteria increased but Bacteroidetes decreased in proportions. This observation 

was in agreement with studies on human gut microbiome where antibiotic treatment increased 

the percentage of Proteobacteria from < 1% to 71%, but decreased the percentage of 

Bacteroidetes 59, 60. It is worth to mention that Bacteroidetes, Firmicutes, and Beta Proteobacteria 

were found to be highly correlated with some antibiotic resistance strains such as ciprofloxacin 

resistance heterotrophs, ciprofloxacin resistance enterococci, and sulfamethoxazole resistance 

enterobacteria 61.  
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On the family level, Methylophilaceae was not observed in the pharmaceuticals-free 

samples, but became abundant with pharmaceutical exposure (Figure 2.3B). Methylophilaceae is 

a family in the order of Methylophilales in Proteobacteria and may contribute to the increase of 

Proteobacteria with pharmaceutical exposure shown in Figure 2.3A. Species of 

Methylophilaceae have been isolated or sequenced from various ecological niches including 

aquaculture, wastewater, activated sludge, soil, rhizosphere, and phyllosphere 27, 62-65. However, 

no Methylophilaceae bacteria were found to cause opportunistic infections in humans and 

animals 63. It is unknown why Methylophilaceae was increased as a result of pharmaceutical 

exposure, which should be further investigated. One possible explanation may be related to 

biodegradation properties of bacteria in the order of Methylophilales 66. Conversely, with 

pharmaceutical exposure Chitinophagaceae (part of Bacteroidetes) was slightly decreased in the 

soil and lettuce root samples, but was sharply decreased in the overhead-irrigated lettuce shoots. 

There was also a slight decrease in Pirellulaceae (part of Planctomycetes) in the middle and 

bottom soil layers. In fact, six of the top ten bacteria families belong to Proteobacteria (i.e., 

Bradyrhizobiaceae, Comamonadaceae, Hyphomicrobiaceae, Oxalobacteraceae, 

Sphingomonadaceae, and Methylophilaceae). The richness of Proteobacteria may explain some 

of the interplays in the ARGs and MGEs, because MGEs are transferrable between bacteria in 

the same phyla and cross-phyla transfer are often difficult 57.  
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 Figure 2.3. Bacterial community composition at the phylum (A) and family (B) levels. Total 

percentages of the total 10 phyla or families were 100%. Each bar represents the fraction of each 

bacteria phylum and family.  

 

The bacterial beta diversity analysis showed the ordination position of top ten phyla 

(Figure 2.4A). Compared with the other methods (Figure 2.4A and Appendix Figure A4), the 

PCoA analysis is a simpler ordination method that can separate groups with less underlying 
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assumptions 67. The top left panel is the sample panel showing each sample’s position of 

ordination, with the soil samples densely clustered on the left, the lettuce root samples in the 

middle, and the lettuce shoot samples at the right. The following ten panels showed the leading 

bacteria phylum that caused the ordination difference (Figure 2.4A). All top 10 phyla were 

present in soil samples, whereas Crenarchaeota, Gemmatimonadetes, and Firmicutes were not 

present in the lettuce roots. In the lettuce shoots, Crenarchaeota, Gemmatimonadetes and 

Planctomycetes were not present. As the dominant bacteria of Verrucomicrobia were discovered 

in soils, fresh water, and marine water, no contact of lettuce shoots with irrigation water in the 

soil-surface irrigation treatment may have resulted in the absence of Verrucomicrobia 68. Finally, 

pharmaceutical exposure decreased bacterial alpha diversity with each sample measured by the 

Chao 1 diversity index (Figure 2.4B). The Chao1 diversity index is useful when the dataset is 

more skewed toward the low-abundance species, especially species only captured once 

(singleton) or twice (doubleton) 45, 46. Pharmaceutical exposure may suppress some low-

abundance susceptible bacteria in the community to an undetectable level, resulting in decreases 

in overall species richness and evenness. This decreased bacterial diversity may have a negative 

impact on the ability of native microbiomes to defend against the invasion of non-native 

pathogens and thus extend the survival of pathogens in soils and lettuce 39, 69, 70. It is interesting 

to note that bacterial alpha diversity of lettuce shoots was much greater for overhead irrigation 

than for soil-surface irrigation (Figure 2.4C), again likely due to greater bacterial growth and 

activity resulted from greater water and nutrient availability in overhead-irrigated lettuce shoots.  
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Figure 2.4. Bacterial community alpha diversity based on species level and beta diversity 

based on phylum level. A. Beta diversity biplot based on principal coordinates analysis (PCoA). 

Sample panel shows the ordination position of sample type, and the remaining ten panels showed 

the ordination position of each bacterial phylum. B. Alpha diversity plot based on Chao1 

estimator. Error bars represent the 95% confidence interval. C. Bacterial alpha diversity of 

lettuce shoots based on Chao1 estimator. Error bars represent the 95% confidence interval. 
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Interplays among antibiotics concentrations, ARGs/MGEs relative abundance, and bacterial 

families  

The network analysis (Figure 2.5) was performed based on correlation tests as described 

in Appendix A and the correlation results are summarized in Appendix Table A4. The MGEs 

(intI1, ISSm2, ISPps, repA, and tnpA_1) were clustered together and linked with tylosin, 

sulfadiazine, sulfamethoxazole, and total antibiotic concentrations. It was suggested that 

increased concentrations of mixed antibiotics, even at the sub-inhibitory level, caused an increase 

in ARGs and MGEs in waters and soils 11, 71. Interestingly, the insertion sequence genes (ISPps) 

were positively correlated with tylosin, sulfadiazine, sulfamethoxazole, and total antibiotics. 

Insertion sequences are class of MGEs that are incorporated into transmissible plasmids and 

promote horizontal gene transfer. Clearly, pharmaceutical exposure promoted the abundance of 

MGEs. More interestingly, MGEs (intI1, repA, or tnpA_1) were positively correlated with MDR 

genes (mexF, oprJ, or mexE) (Figure 2.5), indicating that MGEs may facilitate the proliferation 

of MDR genes. Future study is needed to reveal molecular mechanisms on the connection of 

MGEs and MDR genes. OprJ was positively correlated with certain antibiotics (sulfadiazine and 

sulfamethoxazole), bacterial families (Sphingomonadaceae, Pirellulaceae, and 

Chitinophagaceae), and MGEs (tnpA_1 and repA). This observation is a clear example of close 

interactions among MDR genes, bacteria, antibiotic stress, and MGEs.  

Indeed, Pirellulaceae, Chitinophagaceae, and mexF may be hotspots for bacteria 

community interactions and ARG exchanges. Pirellulaceae in Planctomycetes had been found in 

soils, plant roots, and lake sediments 72-74. One species (Rhodopirellula baltica SH1) in 

Planctomycetes was found to harbor integrons 52. However, previous studies have not 

emphasized the importance of Pirellulaceae in ARGs and MGEs exchanges, and its possible 
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relationship with MDR genes. Chitinophagaceae were found to be positively correlated with 

three MDR genes and one MGE gene (Figure 2.5). Recently Liu et al. (2018) also found a 

positive correlation between Chitinophagaceae and MDR genes. Mechanistic studies on 

Chitinophagace association with MDR genes are needed in the future.  

The network analysis revealed that the positive impact of antibiotics are mainly acted on 

the gene level instead of the bacterial family level, which was expected as genes may be more 

sensitive to external stress than the whole bacterial populations. Oxytetracycline and 

trimethoprim were primarily negatively correlated with ARGs (mexF, oleC, and oprJ), MGEs 

(tnpA_1) and bacterial families (Figure 2.5). These two antibiotics classes are commonly used in 

veterinary medicine and have been detected in wastewater effluents 75-77. Methylophilaceae was 

positively related to tylosin, and total antibiotics concentration. The abundance of this family 

may increase MGEs (ISPps). Also, it was found that tylosin consistently increased the abundance 

of ARGs in manured soils 78. Although Methylophilaceae family is not well known for their 

pathogenicity and antimicrobial resistance in current clinical and environmental samples, future 

studies are needed to investigate why Methylophilaceae are sensitive to antibiotics, and the 

potential risks associated with the increased abundance of MGEs (ISPps).  

Finally, the results of this study have several important implications to food safety of 

vegetables and human health. MDR genes (OprJ, mexE, mexF) detected in the soil and lettuce 

samples are found in Pseudomonas aeruginosa through NCBI whole genome sequencing 

database (NCBI Blast). Pseudomonas aeruginosa is an opportunistic pathogen that belongs to 

Proteobacteria. Indeed, the family of Pseudomonadaceae ranked in top 20 detected bacterial 

families, and Pseudomonas was the most detected genus (Supplemental Table S3). Although the 

genus was not specified through the match with Greengenes database, Proteobacteria did have a 
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greater chance of horizontal gene transfer and more potential risks for the spread of antibiotic 

resistance 57. MLSB-resistant gene OleC was reported to be isolated from Streptomyces 

antibioticus and confers resistance to Oleandomycin because Streptomyces antibioticus prodcues 

natural antibiotics 79. We found that all genus of Streptomycetaceae is Streptomyces that is often 

found in plant roots even after disinfection, suggesting the internalization of bacteria into roots 

80-82. OleC was especially abundant in lettuce roots (Figure 2.1), which may be linked to the 

abundance of the rhizosphere Streptomyces (Figure 2.5), supported by the high fraction of 

Streptomycetaceae in the root samples (Figure 2.3B). This observation is interesting not only 

from the human heath perspective, but also for the plant protection 26, as Streptomyces have been 

proposed as effective biological control agents against pathogen infection of plant roots 83, 84. In 

fact, understanding true implications of ARGs and microbiomes to food safety and human health 

is very challenging as the framework for food safety and human health risk assessment of ARGs 

and microbiomes has not been well established. Large-scale public health and epidemiological 

studies are needed to advance this important research direction. 
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Figure 2.5. Network analysis diagram of the correlations between ARGs, antibiotic 

concentrations and bacterial families for the lettuce shoot, root and soil samples with 

pharmaceutical exposure. Green nodes represent the concentrations of antibiotics, blue nodes 

represent bacterial families, and pink nodes represent ARGs and MGEs. Red lines indicate 

positive correlations (Correlation coefficient > 0.6, p < 0.05). Blue lines indicate negative 

correlations (Correlation coefficient < −0.6, p < 0.05).  

 

Conclusion 

This study addressed the shifts in lettuce ARGs and microbiomes influenced by 

pharmaceuticals-containing irrigation water via overhead or soil-surface irrigation. Overhead 
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irrigation resulted in a greater abundance and diversity of ARGs/MGEs and bacteria in lettuce 

shoots than soil-surface irrigation, regardless pharmaceutical exposure, suggesting that soil-

surface irrigation has lower risks of producing food crops enriched with ARB and ARGs and 

thus could be adopted for crop irrigation with reclaimed water. MGEs (ISPps, ISSm2, intl1, repA, 

and tnpA_1) and MDR genes (oprJ, mexE, and mexF) were most frequently detected genes with 

high abundance. Pharmaceutical exposure to soils and lettuce did not result in consistent patterns 

of change with regard to the abundance of ARGs/MGEs. Class1 integrons (intl1) gene mostly 

increased with pharmaceutical exposure, demonstrating that anthropogenic activities can enrich 

the abundance of this classic mobile integron. Proteobacteria was the most abundant bacterial 

phyla and its abundance increased with pharmaceutical exposure. A clear increase in the 

abundance of Methylophilaceae (a family of Proteobacteria) was observed with pharmaceutical 

exposure (specifically the exposure to tylosin), suggesting that more studies are needed to 

explore if Methylophilaceae could be used to monitor the impact of pharmaceutical exposures to 

soil and plant microbiomes. Finally, network analysis revealed that MGEs (mexF, intl1, and 

tnpA_1) and MDR gene oprJ are possible hotspots for bacteria community interactions and 

ARGs exchanges. This study was intentionally performed in a well-controlled greenhous 

condition, thus limiting sample size and environmental variables (e.g., soil type, plant species, 

field practices and climatic factors). However, its results may provide useful information for 

designing and implementing future large-scale field stuides by focusing on indicator 

ARGs/MGEs and bacterial phyla or families that are hotspots for bacterial interactions and ARG 

movements.   
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CHAPTER III  

Rhizosphere Soil is Key to the Uptake of Antibiotics by Lettuce (Lactuca Sativa) 
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Abstract 

Plant uptake of antibiotics raises serious food safety concerns. Measurements and 

predictions of antibiotic uptake by plants are often based on root concentration factor (RCF) 

calculated using antibiotic concentrations in bulk soil (RCFbs) rather than in rhizosphere soil 

(RCFrs) where root uptake actually occurs. This study investigated the fate and transport of nine 

antibiotics in the continuum of bulk soil, rhizosphere soil, roots and shoots of lettuce (Lactuca 

sativa) under soil-surface irrigation. Antibiotic concentrations in the lettuce shoots remained 

unchanged during 25–35 days after seedling transplantation. Compared with the RCFrs values, 

the RCFbs values were significantly greater for ciprofloxacin, lincomycin, oxytetracycline, 

sulfamethoxazole, and tetracycline (p < 0.05), similar for trimethoprim and tylosin, but 

significantly lower for monensin (p < 0.05). Ciprofloxacin, trimethoprim, and tylosin had the 

lowest translocation factor (TF) values ranging between 0.03–0.05, suggesting limited upward 

transport to the lettuce shoots. Oxytetracycline, monensin, and sulfamethoxazole had 

intermediate TF values of 0.36–0.64, whereas lincomycin had the highest TF value of 1.46. This 

study showed significant differences between the RCFbs and RCFrs values, suggesting the need to 

reassess the utility of RCFbs in predicting the antibiotic root uptake in diverse soil-plant systems. 

Introduction 

Food crops can take up trace-level antibiotics from agricultural soils contaminated with 

antibiotics via applications of animal manure, sewage biosolids, or reclaimed waters 85-89. 

Consumption of food crops tainted with low-level antibiotic residues may cause unnecessary 

human exposure to some clinically important antibiotics 85, 89, 90. Studies have found that low 

levels of antibiotics can induce dissemination of antibiotic resistance genes (ARGs) and change 

bacterial community assembly in soil, plants, and sediments 12, 91. Increased environmental 
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abundance of ARGs may increase the likelihood of horizontal ARG transfer to pathogenic 

bacteria, resulting in human health risks 1, 52. Thus, the fate and transport of antibiotics in soil-

plant systems could have an important impact on food safety and human health and are thus a 

topic of intensive research.  

Many researchers have examined the uptake and accumulation of antibiotics in vegetable 

crops 40, 85, 87, 89, 90, 92-94. Most of these studies have investigated the transport of antibiotics from 

bulk soil or hydroponic solution to plant roots and then to shoots 40, 91-96. Root concentration 

factors (RCF) based on antibiotic concentrations in bulk soil are typically calculated 88, 97, 98 and 

used in plant uptake modeling 93, 99. However, these studies have overlooked an important fact 

that antibiotics need to pass through rhizosphere soil before entering plant roots, followed by 

translocation to phyllosphere 40, 88, 93, 94, 100. Several studies reported that rhizosphere soil and root 

exudates may play an essential role in the transport of antibiotics and their bioavailability in soil-

vegetable systems 88, 95. Thus, RCF values based on antibiotic concentrations in rhizosphere soil 

are needed. Additionally, rhizosphere soil is a hotspot for plant-microbe interaction and plant 

health, probably modulated by root exudates 101. Thus, it is important to investigate the 

distribution and fate of antibiotics in rhizosphere soil and bulk soil in addition to plant roots and 

shoots. 

This study aimed to: i) quantify the transport and distribution of antibiotics in a model 

soil-plant system; and ii) determine the roles of rhizosphere soil and bulk soil in plant uptake of 

antibiotics. Lettuce was used as a model vegetable crop because of its popularity and raw 

consumption. This study could provide further insights into the fate and transport of antibiotics 

in vegetable production systems.   
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Materials and Methods 

Chemicals and Materials 

Nine commonly used antibiotics with varying molecular weight, charge speciation (pKa), 

water solubility and hydrophobicity were selected (Table 3.1), including sulfamethoxazole, 

trimethoprim, lincomycin, oxytetracycline, monensin sodium, tylosin, ciprofloxacin, cefalexin, 

and tetracycline. They were purchased from Sigma-Aldrich (St. Louis, MO, USA), and 

individually dissolved in HPLC-grade methanol to prepare stock solutions of 500 mg/L, except 

for ciprofloxacin stock solution at 50 mg/L. Analytical-grade acetonitrile and anhydrous sodium 

sulfate (Na2SO4) were purchased from EMD Chemicals (Gibbstown, NJ, USA), sodium chloride 

(NaCl), disodium ethylenediaminetetraacetate (Na2EDTA), and formic acid from J.T. Baker 

(Phillipsburg, NJ, USA), and ceramic homogenizer, octadecylsilane (C18), and primary 

secondary amine (PSA) from Agilent Technologies (Santa Clara, CA, USA). Oasis hydrophilic-

lipophilic balance (HLB) extraction cartridges (6 cm2) were purchased from Waters Corporation 

(Milford, MA, USA).  

Table 3.1: Physiochemical properties of antibiotics used in this study. a From TOXNET 

database: http://toxnet.nlm.nih.gov/index.html, b Reference 102, c From Guidechem database: 

http://www.guidechem.com/reference/dic-20635.html, and d From ChemSpider database: 

http://www.chemspider.com/Chemical-Structure.10606106.html 

Antibiotics 

Molecular 

Weight (g/mol)a 

Water Solubility 

(mg/L)a pKaa logKowa 

Sulfamethoxazole 253.28 610 1.60,5.70 0.89 

Trimethoprim 290.32 400 7.12 0.91 

http://www.guidechem.com/reference/dic-20635.html
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Table 3.1 (cont’d) 

Lincomycin 406.54 927 7.60 0.20 

Oxytetracycline 460.43 313 3.57,7.49,9.44c -0.9 

Monensin Sodium 692.87 slightly solubleb 4.30c 5.43c 

Tylosin 916.1 5 7.73 3.27d 

Ciprofloxacin 331.34 30000 6.09,8.74 0.28 

Cefalexin 347.39 slightly soluble 5.20,7.30 0.65 

Tetracycline 444.43 4 3.30,7.68,9.69  -1.37 

 

Sandy loam soil was collected from a field site of Michigan State University Farms and 

sieved before the experiment. The field site was planted with poplar trees from 1980s to 2017 

and had no previous exposure to pesticides or animal manure. The sandy loam soil had 69.6% of 

sand, 19.6% of silt, 10.8% of clay, a pH of 6.2, organic matter of 1.7%, 27.5 mg/kg of Bray P1 

extractable phosphorus, and 75 mg/kg of ammonium acetate extractable potassium (K), and 79 

mg/kg of ammonium acetate extractable magnesium (Mg). The soil had cation exchange 

capacity of 5.2 cmol(+)/kg with exchangeable bases at 4.9% of K, 16.7% of Mg, and 78.5% of 

Ca, respectively.  

Lettuce growth experiment  

A growth chamber experiment was conducted at an average temperature of 24 °C, 

relative humidity of 37% ± 13%, and 16 hours lighting per day at an artificial light intensity of 

565 µmol/m2-s. Nursery pots (10.0 cm in height and 12.7 cm in diameter) were packed with 

~1.28 kg of the sandy soil at a bulk density of 1.1 g/cm3 to a height of ~9.5 cm. The soil had a 

field capacity of 0.18 as measured by the gravimetric method. A total of 30 lettuce plants (15 
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plants each in the control and antibiotics treatment chambers) were first seeded in compost 

mixture, then transplanted and grown in the nursery pots (1 plant per pot). Nursery pots in each 

chamber were shifted daily to ensure the similar illumination from the Roleadro grow light 

(1000W) (Roleadro, Shenzhen, China). All plants were irrigated at the soil surface to avoid 

direct contact with the lettuce shoots. The control plants received antibiotics-free water, whereas 

the treated plants were irrigated with antibiotics-containing water. In the antibiotics treatment, 

antibiotics-spiked irrigation water (4 L) was made every week at the concentration of 30 µg/L for 

each antibiotic, and was used for the first five days in any given week. Two liters of antibiotics-

spiked fertilizer water containing 125 mg/L total nitrogen (20-20-20 general purpose fertilizer) 

was prepared and applied to each lettuce plant for the remaining two days of the week. Control 

plants received deionized (DI) water for the first five days in any given week, followed by the 

two days of antibiotics-free fertilizer solution. This irrigation sequence of five-day irrigation 

without fertilizer followed by two-day irrigation with fertilizer was repeated for five weeks. 

Lettuce growth pots were weighed every day, and replenished with irrigation water to maintain 

80% of field capacity.  

Sample collection 

A sequential sampling scheme was used to collect the lettuce root, shoot, rhizosphere 

soil, and bulk soil samples. Lettuce plants grown with or without antibiotics exposure were 

harvested in triplicate at Day 25, 27, 30, 35, respectively. Three additional plants from both the 

control and antibiotics treatment chambers were harvested at Day 35, and only the extra control 

samples were later used for testing extraction efficiencies of all antibiotics. On the day of 

harvest, the fresh lettuce shoots were separated from lettuce roots and then weighed. The bulk 

roots were carefully taken out from the soil, with the remaining fine roots separated from the soil 
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by crushing small aggregates and passing through a 2-mm sieve. Lettuce roots were then placed 

in a 50-mL centrifuge tube containing 30-mL of DI water and shaken for 1 hour. Afterward, the 

lettuce roots were carefully removed from the centrifuge tube, washed with DI water to remove 

any visible soil particles, dried with Kimwipes, weighed, and placed in a −20 °C freezer. These 

loosely attached soil particles that detached from the roots during shaking were considered to 

comprise the rhizosphere soil 103, 104, in contrast to all the soil particles in a rhizobag that may 

include both soil particles loosely associated with the roots and those further away from the roots 

105, 106. This sampling method allows us to better assess the effect of plant roots on the 

bioavailability and root uptake of antibiotics in the rhizosphere soil. Wash water was kept in the 

centrifuge tube to prevent any loss of antibiotics in the wash water. The 50-mL centrifuge tube 

containing the rhizosphere soil and the wash water were placed in a −20 °C freezer. Bulk soil 

samples were thoroughly mixed by passing through the sieve, collected in sterilized bags, and 

vigorously shaken for 2 minutes to homogenize the soil samples. All lettuce shoot, root, 

rhizosphere soil, and bulk soil samples were stored at −20 °C in a freezer and subsequently 

freeze-dried, ground, and mixed for antibiotic analyses. Water samples were collected once or 

twice for every batch of antibiotic solution with and without fertilizer.  

Extraction and measurements of antibiotics 

Briefly, 0.25 g of the lettuce shoot and root samples and 2.5 g of the rhizosphere soil and 

bulk soil samples were individually placed in 50 mL centrifuge tubes. Afterward, 2 mL of 150 

mg/L Na2EDTA was added and vortexed for 1 minute. After revortexing with an added ceramic 

homogenizer for an additional minute, 1.75 mL of methanol and 3.25 mL of acetonitrile were 

added to the centrifuge tube, followed by vortexing for 2 minutes. Next, 0.5 g NaCl and 2.0 g 

Na2SO4 were added to the centrifuge tube and vortexed for 1.5 minutes to absorb excess water. 
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The centrifuge tube was centrifuged at 6500 rpm for 10 minutes. Then 1.3 mL supernatant was 

transferred to a prefilled d-SPE tube for sample cleanup (including 0.0125 g C18, 0.0125 g PSA, 

and 0.2250 g Na2SO4), and further vortexed for 1 minute. The d-SPE tubes were centrifuged for 

5 minutes at 10,000 rpm, and then 900 µL of the supernatant was transferred to a sampling vial 

containing 100 µL of methanol. Standard curves were constructed on the same day with the 

matrix match extraction solutions from the lettuce shoot, root, rhizosphere soil, and bulk soil 

samples. Extraction efficiency was measured by spiking 200 µL of a mixed antibiotic standard 

solution (500 µg/L for each antibiotic) to 0.25 g of the lettuce shoot and root samples or 2.5 g of 

the soil samples (Appendix Table B2). These spiked samples were then evaporated for 10 

minutes in a fume hood and extracted using the same modified QuEChERS method. The water 

samples were passed through Oasis hydrophilic-lipophilic balance (HLB) solid-phase extraction 

(SPE) columns and then eluted with analytical grade methanol following the manufacturer’s 

instructions (Waters, USA). The methanol solutions containing eluted antibiotics were stored at 

4 °C for future analyses. All the samples were analyzed by Shimadzu Prominence high 

performance liquid chromatograph (Colombia, MD,USA) coupled with an Applied Biosystems 

Sciex QTrap 4500 triple quadrapole mass spectrometer (Foster City, CA, USA) (LC-MS/MS) on 

the same day of extraction (except for the water samples) using an Agilent Eclipse Plus C18 

column (2.1 mm × 50 mm, particle size of 5µm). Sample injection volume was 10 µL with 

mobile phase A (0.3% formic acid in DI water) and phase B (acetonitrile/methanol (1/1) with 

0.3% formic acid) at the flow rate of 0.35 mL/min. Appendix Table B1 provided the LC-MS/MS 

parameters for the nine antibiotics. Antibiotic concentrations in the lettuce root, shoot, 

rhizosphere soil and bulk soil samples were then calculated on dry weight basis using the 

LC/MS-MS measurements. As shown in Appendix Table B2, for the lettuce shoot samples, the 
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extraction efficiencies were low for sulfamethoxazole (4.3%) and tetracycline (42.9%), and 

ranged from 52.7% to 89.1% for other antibiotics. For the lettuce root samples, the extraction 

efficiencies of sulfamethoxazole (18.8%), oxytetracycline (28.7%), and tetracycline (29.0%) 

were relatively low, whereas the other antibiotics had extraction efficiencies between 53.5%–

73.9%. For the soil samples, the extraction efficiency was low for oxytetracycline (0.8%), 

ciprofloxacin (6.9%), and tetracycline (2.7%), and was between 57.2%–99.2% for other 

antibiotics. The method detection limits of most antibiotics for the lettuce samples were reported 

by Chuang et al. 96, ranging between 0.7–4.7 µg/kg. 

Data analyses 

The roots concentration factor (RCF) for rhizosphere soil (RCFrs) and bulk soil (RCFbs) 

were calculated as follows: 

RCFrs =
Crt
Crs

 

RCFbs =
Crt
Cbs

 

The root-to-shoot translocation factor (TF) was calculated as: 

TF =
Cst
Crt

 

where Crt, Cst, Crs, and Cbs (µg/kg) are the concentrations of antibiotics by dry weight in the 

lettuce root, shoot, rhizosphere soil, and bulk soil, respectively. Because there were no 

significant differences between the RCF values at different harvest days (Day 27, 30, 35), the 

RCF values were averaged for each antibiotic in the rhizosphere soil and bulk soil, respectively. 

The differences between the RCFrs and RCFbs values were compared using the student’s T-test. 
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We removed the RCF and TF values for Day 25 since they were significant outliers compared to 

the remaining data. Kruskal-Wallis non-parametric multivariable statistical tests were used to 

calculate statistical significance in all other comparisons. 

The cumulative input mass of each antibiotic at Day 25, 27, 30 and 35 was calculated by 

multiplying the average antibiotics concentration by the volumes of non-fertilized or fertilized 

irrigation water during each irrigation sequence, followed by the sum of antibiotics mass for all 

sequences until the day of sampling. For each sampling day, the concentrations of each 

antibiotics in the lettuce shoot, root, bulk soil and rhizosphere soil samples were multiplied by 

their individual dry mass to obtain the recovered mass, followed by division with the cumulative 

input mass to determine the recovered mass percentage in each sample type. All calculations and 

statistical tests were coded and performed using a custom written Python workflow, and all 

figures were plotted in R version 3.6.1. Python and R scripts are available at Yike Shen’s Github 

page (https://github.com/YikeShen). 

Results and Discussion 

Antibiotics residues in the lettuce and soil samples 

The concentrations of antibiotics ranged from non-detection for cephalexin to 7.02 ± 3.22 

µg/kg for trimethoprim in the lettuce shoots (Figure 3.1), which were very low and close to their 

method detection limits 96. No significant changes in the concentrations of each antibiotic were 

observed during the four harvest days, indicating the concentrations of antibiotics in the lettuce 

shoots had become constant from Day 25 until Day 35 after the seedling transplantation. It is 

plausible that the uptake of the tested antibiotics to the lettuce shoots were balanced off by in-

plant metabolism and degradation at the late growth stage. For example, in one study a 

https://github.com/YikeShen
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substantial percentages of tylosin (22%), monensin (24%), lincomycin (26%), trimethoprim 

(41%), oxytetracycline (48%) and sulfamethoxazole (97%) were lost in radishes after 7 days of 

exposure 107. The shoot concentrations were comparable to those of tylosin, monensin and 

trimethoprim (0.5–9.1 µg/kg) with low translocation to the shoots in our previous greenhouse 

study 40, but much lower than those of lincomycin and oxytetracycline with intermediate 

translocation (21–48 µg/kg). This discrepancy was probably due to differences in transpiration 

and growing conditions between this study and the greenhouse study. Specifically, tylosin is a 

relatively large molecule with a molecular weight of 916 g/mol, which showed limited uptake 

into lettuce shoots, in agreement with previous studies 40, 94, 108. The stable concentrations of 

lincomycin (6.46 ± 1.86 µg/kg) in lettuce shoots could be due to its relative high stability and 

continuous uptake 40, 107. The relatively low sulfamethoxazole concentrations at the end of the 

experiment were probably due to its high degradation in the soil-plant system 40, and low 

extraction efficiency (Appendix Table B2). In addition, sulfamethoxazole was previously 

reported to reach the maximum concentration in cabbage within 10 days of uptake109, with this 

antibiotic experiencing more pronounced dissipation in the late growth stage. Compared to other 

antibiotics, ciprofloxacin concentrations were relatively low in the shoots. Its uptake into plant 

shoots depends on both the spiked concentration and growth duration of plant 110, with low 

concentrations of ciprofloxacin in manured soils not taken up by plant shoots 111. The 

ciprofloxacin residues found in the lettuce shoots may have important health implications, as 

many bacteria have been found resistant to ciprofloxacin (an important antibiotic drug in 

fluoroquinolones), especially Salmonella species 112, 113. Thus, despite low ciprofloxacin 

concentrations detected in the lettuce shoots (< 2.5 µg/kg), exposure of plant-associated bacteria 

to ciprofloxacin may promote the selection of antibiotic resistance, resulting in greater health 
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risks. Finally, cephalexin was not detected in any lettuce shoot, root, rhizosphere soil, or bulk 

soil samples.   

 

Figure 3.1: Antibiotic concentrations in the lettuce shoots by dry weight. Antibiotic 

concentrations in lettuce shoots by dry weight. Kruskal-Wallis statistics were performed for 

the samples at all four harvest days. No symbol for a data point indicates no detection of 

antibiotics. Boxplots without quantiles indicate that the concentration of triplicates were not 

detected. 
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Antibiotic concentrations in the lettuce roots varied substantially (Figure 3.2), reflecting 

varying root uptake potential for the tested antibiotics. The concentrations of ciprofloxacin and 

trimethoprim were in the higher range (125–230 µg/kg), and appeared to increase during Day 25 

to 35, suggesting strong root uptake. The root concentrations of tylosin and monensin were lower 

than those of other antibiotics, likely due to their larger molecular weights resulting in limited 

entry through root membrane 40, 94. The concentrations of oxytetracycline and tetracycline were 

intermediate, similar to those observed by Bhalsod et al., whereas the lower concentration of 

sulfamethoxazole likely resulted from its higher degradation 40, 107, and low extraction efficiency 

(Appendix Table B2). The low concentrations of lincomcyin in the lettuce roots were unexpected 

and cannot at this point be explained.  

 

Figure 3.2: Antibiotic concentrations in the lettuce roots by dry weight. Kruskal-Wallis 

statistics were performed for the samples at all four harvest days. No symbol for a data point 
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Figure 3.2 (cont’d) indicates no detection of antibiotics. Boxplots without quantiles indicate that 

the concentration of triplicates were not detected.  

 

As shown in Figure 3.3, the very low concentration of oxytetracycline and tetracycline in 

the bulk soil were likely due to their strong sorption to soil resulting in lower extractability 

(Appendix Table B2) 114 and their fast degradation 120. Tylosin and trimethoprim had the higher 

concentrations in the bulk soil than other compounds, likely due to their relatively high stability 

(Figure 3.3, Appendix Figure B1) 115, 116. The remaining antibiotics were present at low 

concentrations in the bulk soil. In the rhizosphere soil, the concentrations of ciprofloxacin and 

sulfamethoxazole increased with time (p < 0.05), whereas the other antibiotics were not 

statistically different across various sampling days (Figure 3.4). Antibiotic concentrations in 

rhizosphere soil collectively depend on the transport of antibiotics from the bulk soil to the 

rhizosphere, their sorption and degradation in soil, and their uptake by plant roots. Thus, 

ciprofloxacin and sulfamethoxazole could over-supply for the root uptake, and the other 

antibiotics had reached equilibrium. Next we will discuss the difference between the RCFbs and 

RCFrs values.  



44 

 

Figure 3.3: Antibiotic concentrations in the bulk soils by dry weight. Kruskal-Wallis 

statistics were performed for the samples at all four harvest days. No symbol for a data point 

indicates no detection of antibiotics. Boxplots without quantiles indicate that the concentration of 

triplicates were not detected.  
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Figure 3.4: Antibiotic concentrations in the lettuce rhizosphere soil by dry weight. Kruskal-

Wallis statistics were performed for the samples at all four harvest days. No symbol for a 

data point indicates no detection of antibiotics. Boxplots without quantiles indicate that the 

concentration of triplicates were not detected.  

 

Root concentration factors and translocation factors 

Compared with the RCFrs values, the RCFbs values were significantly greater (p < 0.05) 

for ciprofloxacin (126 ± 85), lincomycin (2 ± 1), oxytetracycline (115 ± 43), sulfamethoxazole (7 

± 2.5), and tetracycline (300 ± 258), similar for tylosin and trimethoprim, and significantly lower 

for monensin sodium (p < 0.05) (Figure 3.5, Appendix Table B3). Comparing with Bhalsod et 

al.40, the dry-weight based RCFbs values were comparable for monensin and tylosin, substantially 
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greater for oxytetracycline, and lower for lincomycin, sulfamethoxazole and trimethoprim. 

Additionally, Eggen et al. reported a RCFbs value of 0.3 for ciprofloxacin in barley, which is 400 

times lower than the measured RCFbs in lettuce 97. This suggests that RCFbs measurements could 

be subject to very large variations, probably due to crop species, growing condition, and more 

importantly uneven sampling of the bulk soil. This large discrepancy also could be partly due to 

the varying sorption, transport, and degradation of antibiotics in different soils under different 

setting. Therefore, the RCFbs values are determined by not only root uptake, but also sorption 

and transport of antibiotics in the bulk soil, whereas the RCFrs are not affected by interactions of 

antibiotics with the bulk soil. Assuming that plant roots can better control the bioavailability of 

antibiotics in the rhizosphere via root exudates, the RCFrs values may be more agreeable and 

applicable in different soil settings. Furthermore, the RCF values based on pharmaceutical 

concentrations in soil pore water have been proposed to better represent the root uptake of 

bioavailable pharmaceuticals in soils and can correlate with RCFbs well if sorption of 

pharmaceuticals to soils is known 93. This approach is better than merely relying on the RCFbs, 

but still cannot account for the effect of plant root exudates in the rhizosphere. Thus, the RCFrs 

values may be of value due to inclusion of the plant root effect. 
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Figure 3.5: Root concentration factors (RCF) based on antibiotic concentrations in either 

rhizosphere soil or bulk soil. Solid red circles represent the bulk soil-based RCFbs, and solid 

green circles represent the rhizosphere soil-based RCFrs. Error bars are standard deviation. *** 

indicates the significant differences in means tested by the student T-test (p < 0.05). 

 

  Ciprofloxacin, trimethoprim, and tylosin had average TF values of 0.03, 0.04, and 0.05, 

respectively, indicating relatively strong affinity to the lettuce roots (Figure 3.6). Lincomycin 

had a TF value of 1.46 ± 0.89, and oxytetracycline, monensin, and sulfamethoxazole had TF 

values between 0.36–0.64 (Appendix Table B3). These TF values were in agreement with those 

of Bhalsod et al. 40. The better agreements in the TF values than in the RCFbs values between this 

study and Bhalsod et al. 40  were expected as translocation from roots to shoots was less impacted 

by distinct soil conditions in different experimental settings. In fact, trimethoprim was previously 

shown to have a strong affinity to lettuce roots 94, leading to its minimal translocation to the 

lettuce shoots. Additionally, cell membranes may exclude large-sized monensin and tylosin, 
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resulting in their accumulation in the lettuce roots 94. When present in biosolids at 

environmentally-relevant concentrations, ciprofloxacin had minimal uptake potential in crops 

(including lettuce), with a leaf concentration factor < 0.01 117. Also, ciprofloxacin had a 

relatively low TF of 0.2–0.3 for vetiver grass grown hydroponically 118. Based on its TF value, 

greater accumulation of lincomycin would be expected in the shoots, which may 

disproportionally influence the shoot endophiles. In contrast, other drugs would influence the 

bacteria in the roots more. Sulfamethoxazole, oxytetracycline, and tetracycline were 

intermediate-sized molecules, which had a higher potential to be taken up by the lettuce plants. 

However, the large variation might be the result of fluctuating low-level concentrations in the 

lettuce shoots, due to in-plant dissipation and low extraction efficiencies (Appendix Table B2).  

 

Figure 3.6: Translocation factor in lettuce shoots. Errors bar indicates standard deviation.  
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The majority of the recovered antibiotics were distributed in the bulk soil, partly due to 

the large mass of the bulk soil (Figure B1). Trimethoprim had the highest total mass recovery of 

approximately 75%, whereas tylosin ranked second at about 60% (Figure B1). Low recovery for 

some antibiotics (e.g., oxytetracycline and tetracycline) may due to their quick dissipation and 

strong sorption to soil matrices, which may lower their extractability 119, 120. In addition, 

degradation, transformation and metabolisms in soils and lettuce plants could also contribute to 

the lower recovery of most antibiotics (i.e., ciprofloxacin, lincomycin, monensin, and 

sulfamethoxazole 121-123. 

Conclusion 

This study investigated the fate and transport of antibiotics in the soil-lettuce system. 

Compared with the RCFrs values, the RCFbs values were significantly greater for ciprofloxacin, 

lincomycin, oxytetracycline, sulfamethoxazole, and tetracycline, similar for trimethoprim and 

tylosin, and significantly lower for monensin. The large discrepancy between the RCFbs and 

RCFrs values suggests the need of reassessing the accuracy using the RCFbs values in predicting 

antibiotic root uptake in diverse soil-plant systems. Our study highlights the importance of 

measuring the concentrations of antibiotics in rhizosphere soil to improve our knowledge 

regarding the fate and transport of antibiotics in soil-plant systems. This study was limited to 

only one crop type, one soil type, and 9 antibiotics, and its applicability to diverse soil types, 

crop species, and antibiotics should be examined in future studies. It will be important to further 

assess if there is greater variations among the RCFbs values than the RCFrs values, and confirm if 

the RCFrs values will be more suitable for predicting plant uptake of antibiotics from soils. 
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CHAPTER IV  

Bacterial Community Assembly and Antibiotic Resistance Genes in the Lettuce-Soil System 
upon Exposure to Anthropogenic Antibiotics 
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Abstract 

Vegetables are important to a healthy and nutritious human diet. Microbiomes and 

antibiotic resistomes in vegetables may influence the human gut microbiome and ultimately 

human health. However, little is known about how vegetable microbiomes and antibiotic 

resistomes respond to anthropogenic antibiotics in crop irrigation water containing trace-level 

antibiotics. This study investigated bacterial community assembly and profiles of antibiotic 

resistance genes (ARGs) in lettuce (Lactuca sativa) shoots and roots, rhizosphere soil, and bulk 

soil irrigated with antibiotic-containing water, using 16S rRNA amplicon sequencing and high 

throughput real time qPCR, respectively. Using normalized stochastic ratio (NST) calculations, 

bacterial communities were more of stochastic assembly in the rhizosphere soil (83%–86%) and 

bulk soil (81%–84%), and less of stochastic assembly in the lettuce roots (45%–48%), 

suggesting a stronger deterministic control of plant roots in bacterial community assembly. 

Antibiotic exposure did not substantially change the stochasticity of the bacterial communities, 

despite the NST values were significantly increased by ~3% (p < 0.05) for the rhizosphere soil 

and lettuce roots and significantly decreased by ~3% (p < 0.05) for the bulk soil, when exposed 

to antibiotics. Alpha diversity values for the rhizosphere soil and lettuce roots exposed to 

antibiotics remained unchanged, but were significantly decreased for the bulk soil and lettuce 

shoots (p < 0.05). The levels of Methylophilaceae and Beijerinckiaceae were significantly 

different between the antibiotic and antibiotics-free control treatments. Finally, the rhizosphere 

soil is a hotspot for interactions between ARGs, mobile genetic elements, bacterial communities, 

and antibiotic residues.  
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Introduction 

Vegetables are important to a healthy and nutritious human diet 124, 125. In addition to 

nutrients in vegetables such as vitamins, calcium, iron, and antioxidants, recent studies 

highlighted the importance of the vegetable microbiomes on the human gut microbiome and 

ultimately human health 26, 27, 34, 39. In water-stressed regions, crop irrigation with reclaimed 

water (e.g., treated wastewater effluents) or other water sources contaminated with trace 

contaminants is increasingly necessary 126. For example, in California 37% of reclaimed water 

has been used in agricultural irrigation 127.  

Due to their extensive use in human medicine and livestock production, antibiotics have 

become one group of trace contaminants widely present in irrigation water sources. 

Concentrations of tetracycline, sulfamethoxazole, ciprofloxacin, and trimethoprim ranged from 

2.5 to 23.6 µg/L in some wastewater effluents 5, 128. Plant contact with or absorption of irrigation 

water containing trace levels of antibiotics may change both commensal and pathogenic bacterial 

populations in vegetables 91, 129. However, most bacteria naturally carry background antibiotic 

resistance genes (ARGs) and are capable of acquiring ARGs via horizontal gene transfer 1, 52, 55, 

130, with antibiotic resistant bacteria (ARB) having been isolated from vegetables produced in 

home gardens, commercial fields, and greenhouses 131, 132. In fact, the frequency of horizontal 

gene transfer is thought to increase upon exposure to low dose of antibiotics 12, 33. Thus, ARB in 

the vegetable microbiome can be an important food safety issue, considering that antibiotic 

resistant pathogens cause about 35,000 deaths each year in the US 133. In particular, some 

Salmonella phenotypes have shown increased multidrug-resistance and decreased susceptibility 

to antibiotics 131, and may contaminate vegetables through contact with animal manure, wild life 

or soil particles during growth, harvesting, or postharvest processing. Drug-resistant non-
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typhoidal Salmonella may result in 212,500 infections and 70 deaths each year in the US 133. 

Therefore, it is important to assess the drivers of change in bacterial communities (including 

invading pathogens such as Salmonella) and ARG profiles associated with vegetables upon 

exposure to trace-level antibiotics via irrigation. 

In principle microbial community assembly is driven by deterministic and stochastic 

processes 134, 135. The deterministic processes are non-random, niche-based, and may include 

interspecies interactions (e.g., competition, mutualism, and predation), and environmental factors 

(e.g., pH, temperature, salts, etc.) 135. The stochastic processes include ecological drift, dispersal, 

and diversification 135. Microbial community assembly is highly dependent on niches 135. 

Previous studies have most often determined the changes in alpha diversity for within-sample 

species diversity and beta diversity for inter-sample species diversity, as well as shifts in ARG 

profiles, under environmental stresses such as antibiotics, heavy metals, and other contaminants 

7, 11, 12, 91. These studies showed that environmental stresses altered bacterial community and 

ARG profiles. However, the relative contributions to bacterial community changes by stochastic 

or deterministic processes were not assessed. Elucidating the deterministic or stochastic control 

of bacterial communities is important to developing effective mitigation strategies.  

When soil-plant systems (e.g., roots, shoots, rhizosphere soil or bulk soil) are exposed to 

anthropogenic antibiotics, bacterial community may first experience an initial shock and then 

either stabilize via three stabilization scenarios (dying of less competitive strains; co-existence of 

all strains by occupying different metabolic niches; or separation of strains into different spatial 

niches) or develop an unstable continued aggression 136. Thus, it is important to first determine 

the bacterial taxonomic differences with or without antibiotic exposure, which can be performed 

using the linear discriminant analysis (LDA) effect size (LEfSe) method 137. The contribution of 
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stochastic and deterministic processes on bacterial community assembly can then be assessed by 

determining normalized stochastic ratio (NST) recently proposed in 2019 134. The NST method 

has been used to assess microbial community assembly in various ecosystems such as 

groundwater, river, and rhizosphere 134, 138, 139. Stochastic processes were found to drive the 

community assembly of desert soils from four continents and were responsible for the spatial and 

temporal patterns of river microbial communities during the wet and dry seasons 138, 140. In one 

study, injecting organic carbon in groundwater shifted the groundwater community from 

deterministic to more stochastic assembly, with a later reversion back to the deterministic 

assembly 134. Thus, the use of the NST method may provide insights into bacterial community 

assembly in soil-lettuce systems after antibiotics exposure.  

Therefore, this study aimed to: i) assess bacterial community assembly with or without 

antibiotic exposure, using bacterial diversity indexes, taxonomic profiles, and NST values; and 

ii) quantify ARGs in a soil-lettuce system using high throughput real-time qPCR. Specifically, 

we evaluated the bacterial communities and ARGs in lettuce shoots, roots, rhizosphere soil and 

bulk soil after antibiotic exposure. Lettuce was used as a model vegetable crop since it is both 

highly popular and consumed raw. 

Materials and Methods 

Growth of lettuce 

A growth chamber experiment was performed at an average temperature of 24 °C, 

artificial light intensity of 565 µmol/m2-s, 16 hours of lighting per day, and a relative humidity of 

37%±13% in a Biosafety Level 2 Lab. Sandy loam was collected from a field site planted with 

poplar trees from 1980s to 2017 and had no previous exposure to pesticides or animal manure. 
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Characteristics of the soil after sieving were measured as follows: 69.6% sand, 19.6% silt,10.8% 

clay, pH of 6.2, 1.7% organic matter, 27.5 mg/kg Bray P1 extractable phosphorus, and 

ammonium acetate extractable potassium (K) and magnesium (Mg) of 75 and 79 mg/kg, 

respectively. The soil had a cation exchange capacity of 5.2 cmol(+)/kg with the exchangeable 

bases of 4.9% K, 16.7% Mg, and 78.5% Ca, respectively. Nursery pots (10.0 cm in height and 

12.7 cm in diameter) were packed with ~1.28 kg of the sandy soil at a bulk density of 1.1 g/cm3 

to a height of ~9.5 cm. 

Nine commonly used antibiotics, including sulfamethoxazole, trimethoprim, lincomycin, 

oxytetracycline, monensin sodium, tylosin, ciprofloxacin, cefalexin, and tetracycline , were 

selected based on varying molecular weight, acid dissociation constant (pKa), hydrophobicity, 

and water solubility (Appendix Table C1). A total of 30 lettuce plants, including 15 plants in the 

control chamber and 15 plants in the antibiotics treatment chamber, were first seeded in a 

compost mixture, and then transplanted and grown in nursery pots. Nursery pots were shifted 

daily to ensure similar light coverage within the growth chambers. The control plants were 

irrigated with antibiotics-free water at the soil surface, whereas the plants in the antibiotics 

treatment received antibiotics-containing water. The detailed experimental procedure and 

irrigation schedule were described in CHAPTER III. 

To mimic co-occurrence of commensal and pathogenic bacteria, the leaves of the lettuce 

plants were inoculated with two nonpathogenic Salmonella strains (Salmonella enterica serovar 

Typhimurium LT2 and MHM (ATCC2828)). The strains were first grown in tryptic soy broth-

yeast (TSB-YE) at 35°C for 48 h and then combined in equal volumes to obtain a 2-strain 

cocktail. The leaves of each lettuce plant were inoculated by gently smearing 1 mL of the 
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Salmonella cocktail at Day 25 and then irrigated as described above. The lettuce plants were 

grown for 35 days after seedling transplantation. 

Sample collection 

A sequential sampling scheme was used to collect lettuce root, shoot, rhizosphere soil, 

and bulk soil samples. Three triplicates lettuce plants grown with or without antibiotic exposure 

were harvested on Days 25, 27, 30, and 35. Lettuce shoot samples were cut at the stem base 

using a 70% ethanol-sterilized scissor and then separated into two subsamples. One subsample 

was immediately assessed for the numbers of Salmonella and the other weighed and placed in a 

−20 °C freezer. The frozen samples were later freeze-dried, ground, and mixed for analyses of 

bacterial microbiome, ARGs, and antibiotic concentrations. To enumerate the Salmonella 

concentration in the lettuce shoot samples, the lettuce shoot subsample from each plant was 

placed in a sterile disposable whirl-pak bag, diluted in phosphate-buffered saline (PBS) at the 

ratio of 1:18, and homogenized in a Stomacher®400 circulator (Fermion X Ltd, UK) at 300 rpm 

for 1 minute. The homogenate was appropriately diluted in PBS and surface-plated on XLT4 

agar (Neogen, USA), with the plates examined for Salmonella colonies after 24 h of incubation 

at 35 °C. The Salmonella concentration was calculated follows:  

Ps = CFU ave

(1 × 2+0.1 × n) × D ×  WL
 WL + WPBS 

× 10
  

where Ps is the Salmonella concentration on fresh lettuce shoot (CFU/g), CFUave is the average 

CFU for two serial dilutions, D is the highest dilution, WL is the lettuce fresh weight, WPBS is the 

PBS weight, and n is the number of agar plates with detected CFUs at the lower dilution. This 

result was then multiplied by 10 to account for the initial serial dilution in PBS. The Salmonella 

concentrations were then logarithmically transformed.  
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Immediately after harvest and sample collection as described in CHAPTER III, the 

lettuce shoot, root, rhizosphere soil, and bulk soil samples were stored in a −20 °C freezer. 

DNA extraction for microbiome and ARGs 

Triplicate samples of lettuce shoot, root, rhizosphere soil, and bulk soil samples collected 

with or without antibiotic exposure on Day 25, 27, 30, and 35 were individually placed in 

PowerBead tubes, weighed, and extracted for DNA using the DNeasy Powersoil kit (Qiagen, 

USA) as per the manufacturer's instruction (Qiagen, USA). Total DNA concentration was 

determined by the Qubit® dsDNA BR Assay Kit (Life Technologies, Eugene, OR). All DNA 

samples were either concentrated or diluted to 15 ng/µL. There were 96 samples in this study 

including triplicates for the lettuce shoot, root, rhizosphere soil, and bulk soil samples at the four 

harvest days with or without antibiotic exposure. The bacterial microbiome was measured using 

the 16S rRNA amplicon sequencing technique. All DNA samples were amplified with the 

cycling conditions (95 °C for 2 min, 95 °C for 20 s for 30 cycles, 55 °C for 15 s, 72 °C for 1 min, 

and 72 °C for 10 min). The PCR products were purified and normalized with a SequalPrep 

Normalization Plate Kit (Invitrogen, Carlsbad, CA). A sample library was prepared by 

combining 5 μL of each sample. The V4 hypervariable region of the 16S rRNA gene was 

amplified with Illumina dual-indexed compatible primers 515f/806r to minimize the cost of long 

customized primers and produce more high-quality sequences 41. Batch normalization of the 

amplicon libraries was conducted with Invitrogen SequalPrep DNA Normalization Plates. 

Products eluted from the plates were then combined and subject to quality control. After 

quantification with the Qubit dsDNA HS, Caliper LabChipGX HS DNA, and Kapa Illumina 

Library Quantification qPCR assay, the amplicon pool was loaded into an Illumina MiSeq v2 

standard flow cell and sequenced in a 2×250 bp paired-end format with a v2 500 cycle MiSeq 
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reagent cartridge. Primers complementary to the sequences of 515f/806r primers were added to 

appropriate wells in the reagent cartridge to serve as sequencing and index primers 41. Raw data 

were output as fastq files. 

The WaferGen SmartChip Real-time qPCR System (WaferGen Bio-systems, Fremont, 

CA) was used to quantify ARGs and mobile genetic elements (MGEs) in the lettuce shoot, root, 

rhizosphere soil, and bulk soil samples. The system has 5184 individual SmartChip nanowells 

that provide high throughput reactors for multiple primers. The 54 primer sets of ARGs and 

MGEs were selected from 384 primer sets based on their detected concentrations in our previous 

study 91. A total of 72 samples from three harvest days (Day 25, 30, 35) were measured for 

ARGs and MGEs.  

Data analyses 

Bacterial microbiome 

The raw 16s rRNA fastq.gz data were preprocessed using Trimmomatic to cut adaptors 

141. The trimmed data were analyzed through the QIIME 2 pipeline 142. Briefly, the dataset was 

demultiplexed, and ran through DADA2 to denoise and remove chimeric sequences. The feature 

table was calculated and mapped to match the feature ID to sequences in order to obtain the 

representative sequence. The representative sequence was then trained using an unsupervised 

machine learning to cluster through the Silva reference database 143 for OTU picking with a 99% 

similarity threshold determination to obtain the taxonomy composition. Afterwards, chloroplast 

and mitochondria contamination were removed using the Qiime2 filter table function. The 

dataset was then computed for all alpha and beta diversity statistics in the Qiime2 pipeline. 

Finally, the OTU table, alpha and beta diversity data, and related statistics were output for 
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downstream analyses and graphics. The entire process was written in a batch file and analyzed in 

the High Performance Computing Center (HPCC) at Michigan State University. To obtain 

adequate average sequencing depth and minimize the loss of low read samples, the lettuce shoot, 

root, rhizosphere soil, and bulk soil samples were separated and ran using the aforementioned 

batch script to obtain the alpha and beta diversity statistics. An average sequencing depth of 

30,000 reads was selected for the rhizosphere soil and bulk soil samples because of greater 

bacterial community diversity. Meanwhile, an average sequencing depth of 10,000 was selected 

for the lettuce root samples. Since the lettuce shoots samples had low reads after removing 

choloroplast and mitochondria, an average sequencing depth of 500 was selected.  The Shannon 

diversity matrix was selected to measure alpha diversity incorporating the Kruskal-Wallis 

nonparametric statistical testing. The pairwise permanova test with 999 permutation based on 

weighted unifraq distance was selected to calculate the statistical significance of beta diversity.  

Bacterial taxonomies for the top 10 phyla and families were computed using the phyloseq 

package in R 144. The linear discriminant analysis (LDA) effect size (LEfSe) method was used to 

determine the taxon that can most likely explain the differences between the control and 

antibiotics treatment groups 137. An LDA score was first calculated using the online user 

interface 137 by setting the alpha value for the factorial Kruskal-Wallis and Wilcoxon tests 

between subclasses to 0.005 and the LDA cutoff score to 3.0. The LDA score table was output as 

a lefse.lefse_internal_res file and later using Unix to remove non-significant taxa. The LDA 

score table was then cleaned up and plotted in R using a further LDA cutoff score 3.5.  

The NST values were calculated to estimate average stochasticity within a group of 

samples for bacterial community assembly 134 using the NST R package. Briefly, the OTU table 

and eight treatment groups (4 sampling compartments with or without antibiotics) were used as 
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community and group input files. Next, the tNST function calculated the stochasticity (the NST 

values) based on the Bray-Curtis distance matrix subsample for 1000 iterations. Then, tNST data 

were boot-strapped by subsample 1000 iterations and analyzed using the Wilcoxon test. Finally, 

the median, quantile, and statistical significance were input into R for graphics representation. 

Antibiotic resistance genes 

Cycle numbers (CT) measured by the WaferGen qPCR were used to calculate the gene 

copy number via Copy Number = 10(30−CT)/(10/3) 42, using a cutoff threshold of CT < 30. If the 

targeted gene were absent in two of three replicates, the ARGs detected in only one replicate 

were removed. The CT values for the triplicate samples were averaged before downstream 

analysis. The relative abundance of detected ARGs was computed by dividing the estimated 

ARG copy number by the copy number of 16S rRNA. The patterns and characteristic profiles of 

ARGs and MGEs were then plotted as a heatmap. Finally, network analysis of four sample 

compartments among the percentages of family-level bacterial communities, antibiotic 

concentrations, and ARGs/MGEs relative abundance were conducted based on correlation tests 

(correlation coefficient > 0.6 or < −0.6 and p-value < 0.05) and plotted using Gephi v0.9.2 

software. The script for ARGs analysis was performed using a custom written workflow in R. 

All python, R, and batch scripts are available at Yike Shen’s Github page 

(https://github.com/YikeShen). 

Results and Discussion 

Antibiotic exposure on bacterial community assembly 

Antibiotic exposure shifted the bacterial community composition in bulk soil, rhizosphere 

soil, lettuce roots, and lettuce shoots samples. Bacterial alpha diversity (Shannon diversity index) 

https://github.com/YikeShen
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was significantly higher for the bulk soil and lettuce shoot samples in the control treatment than 

in the antibiotic treatments, as shown by the Wilcoxon test (p < 0.005, Figure 4.1). Interestingly, 

antibiotic exposure did not significantly affect alpha diversity of the rhizosphere soil and lettuce 

root samples (Figure 4.1). Additionally, based on the Kruskal-Wallis test, the day of harvest did 

not significantly affect alpha diversity (Appendix Figure C2). The different trends of alpha 

diversity between the rhizosphere soil and root samples, relative to those of the bulk soil and 

shoot samples, were intriguing. When exposed to sub-inhibitory levels of antibiotics in the 

environment, bacterial communities may experience continued aggression or counteracting 

competition 136. Thus, the bulk soil and lettuce shoots may have experienced more continued 

aggression, resulting in decreased alpha diversity. Additionally, antibiotic exposure may also 

inhibit some less abundant susceptible bacteria to undetectable levels, thus decreasing species 

richness 26, 69. The counteracting competition maybe one reason why alpha diversity of the 

rhizosphere soil and lettuce root samples remained unchanged regardless of antibiotic exposure 

136. When species compete with one another during exposure to a stressor (antibiotic exposure), 

other community members in the rhizosphere may be able to neutralize the added antibiotics to 

stabilize the bacterial community 136. Indeed, soil microbiome in the rhizosphere remains crucial 

for plant health in terms of nutrient uptake, pathogen colonization prevention, modulation of host 

immunity 101, and microbiome density and diversity and can therefore be considered as the 

“second genome” of a plant 101. Additionally, the rhizosphere microbiome can be shaped by plant 

mucilage and root exudates 145. Schlatter and Kinkel 146 found that Streptomyces associated with 

plant roots were highly antibiotic resistant, suggesting that plant have more deterministic control 

than soils in shaping bacterial microbiome. Another study found that actinobacterial 

communities in the rhizosphere of strawberry plants grown in different soils remained similar 
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regardless of different soil properties 147. Soil bacterial communities can also reportedly tolerate 

increased levels of antibiotics when amended with root exudates 148. Therefore, it is not 

surprising that bacterial communities of the rhizosphere soil and lettuce roots were not affected 

by antibiotic exposure in this study. However, whether changes in bacterial community diversity 

lead to any functional changes remains unanswered 149.  

 

Figure 4.1: Alpha diversity statistics based on antibiotic exposure. ASD meant average 

sequencing depth (the number of reads).  

 

It is important to understand which community members may contribute to bacterial 

community changes. Proteobacteria was the most abundant phylum in every compartment 

(Appendix Figure C1). The LDA score can be interpreted as the degree of consistent difference 
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in relative abundance between features in two classes of analyzed microbial communities 137. 

The LDA score for Methylophilaceae was greater than 4 for the bulk soil, rhizosphere soil, and 

lettuce root samples. As a member of proteobacteria, Methylophilaceae was the significantly 

different taxa that was increased by antibiotic exposure (Figure 4.2). Our previous study also 

found that Methylophilaceae increased with exposure to a mixture of antibiotics and other 

common drugs in the soil-lettuce system, likely due to its potential to degrade exogenous 

chemicals 91. Beijerinckiaceace, a member of phylum Proteobacteria and order Rhizobiales, was 

also the significant taxa with antibiotic exposure in the bulk soil, rhizosphere soil, and lettuce 

root samples (Figure 4.1). Burkholderiaceae, a member of phylum proteobacteria, was the 

significant taxa in both the bulk soil and rhizosphere soil samples from the control treatment 

(Figure 4.1). Although the changes were not statistically significant in the lettuce shoot and root 

samples, Burkholderiaceae had high abundance and ranked as the top 10 families in every 

compartment (Appendix Figure C1). Micrococcaceae, a member of Actinobacteria, was 

significantly different in the bulk soil with antibiotic exposure, whereas they were significantly 

different in the lettuce root samples from the control treatment. It is of interest to pinpoint 

bacteria that are either benefited from or inhibited by exposure to anthropogenic antibiotics in 

different niches. Our taxonomic profiles and the LDA score on significant taxa provided some 

insights. One well-known function of methylotrophs Methylophilaceae and Beijerinckiaceae is 

their ability to fix nitrogen, which is irrelevant to our study 150. The significance of both taxa 

with antibiotic exposure requires further investigation. Interestingly, in taxon – Burkholderiaceae 

– that is significant in our control treatment, the same LDA pattern was also present for both bulk 

soil and rhizosphere soil. Burkholderiaceae was commonly found in diverse ecological niches, 

including soil, water, plants, animals, and fungi 151. The significant pattern in the control 
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treatment might be because they are native to soil niches. One study found that sulfonamide and 

fluoroquinolone significantly decreased the relative abundance of Micrococcaceae in swine 

manure 152. Micrococcaceae was also detected in the phyllosphere 153. However, the reason for 

the opposite findings in the bulk soil and lettuce roots remain unknown. Also significant 

difference patterns may be still unable to reveal the competition mechanisms in community 

assembly - continued aggression or counteracting competition. Therefore, we further investigated 

the correlation patterns between significantly different taxa and antibiotic concentrations (Figure 

4.5). The family Methylophilaceae likely benefited from total antibiotics and sulfamethoxazole, 

showing a significant positive correlation in the bulk soil. Interestingly, in the lettuce roots where 

we observed an increase and significant differences in Methylophilaceae (Figure 4.2, Appendix 

Figure C1) with antibiotic exposure, a significant negative correlation was seen for tylosin and 

trimethoprim. Beijerinckiaceae, a member of the methylotrophs, had a significant positive 

correlation with trimethoprim (Figure 4.3). Although both taxa had significant differences 

(Figure 4.3) with the overall relative abundance of both taxa increasing with antibiotic exposure 

(Appendix Figure C1), ongoing competition in the roots may undermine the small microbial 

community changes from antibiotic exposure, resulting in non-significant changes in alpha 

diversity. In addition, no significant correlation was observed between Methylophilaceae and any 

of the antibiotics in the rhizosphere soil (Figure 4.3). Thus, Methylophilaceae may have 

benefited from the inhibition of other bacteria by added antibiotics, and thus outcompeted to 

achieve increased relative abundance. The taxa Beijerinckiaceae may directly benefit from 

ciprofloxacin and trimethoprim in the rhizosphere soil and roots, resulting in significantly 

increased relative abundance with antibiotic exposure (Figure 4.2, Figure 4.3, and Appendix 
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Figure C1). Correlation results based on the Spearman coefficient values and p values can be 

found in Appendix Table C4. 

 

Figure 4.2: LDA analysis of the bacterial community. X-axis showed log10 transformed LDA 

score. Cutoff LDA>3.5 was used.  
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Figure 4.3: Network of the Spearman’s correlations between ARGs, antibiotic 

concentrations and bacterial families for the lettuce shoot, root and soil samples exposed to 

antibiotics. Red nodes are the antibiotic concentrations, purple nodes are bacterial families, and 

green nodes are ARGs and MGEs. Red lines indicate positive correlations (Correlation 

coefficient > 0.6, p < 0.05), and blue lines indicate negative correlations (Correlation coefficient 

< −0.6, p < 0.05).  
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The beta diversity was statistically significant with or without antibiotic exposure in each 

compartment (Figure 4.4). The weighted unifrac distance matrix considered both structure and 

membership of the community, while PCoA ordination gave the simplest and best separation 

between groups. The pairwise permanova test with 999 permutation increased the confidence of 

the ordination results. Beta diversity was used to measure ecological distances 154. Exposure to 

antibiotics significantly increased the distance of beta diversity in each compartment. 

Meanwhile, there were no statistical differences in beta diversity for the samples collected on 

four harvest days (Appendix Figure C3). The lettuce and soil bacterial communities were stable 

within the span of 10 days. Another study found that beta diversity was stable over a period of 

seven months, regardless of the field seasonal patterns in Michigan 155. However, it is unknown 

if antibiotics were the deterministic factor. The mechanisms of community assembly need to 

further studied to comprehend community changes.  

 

Figure 4.4: Beta diversity ordination and statistics for the bulk soil, rhizosphere soil, lettuce 

roots, and lettuce shoots with or without antibiotic exposure. 
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The NST values are used to determine if community assembly changes were more 

stochastic or deterministic 134. Arbitrarily a NST value above 50% indicate a more stochastic 

assembly, whereas a NST value below 50% suggests a more deterministic assembly 134. 

Moreover, it is often more revealing to examine the changes of NST values among treatments 

(e.g., antibiotic exposure). In this study we hypothesize that antibiotic exposure can be 

considered as a deterministic factor, and other deterministic and stochastic factors remained the 

same for both antibiotic exposure and control treatments. The soil samples with or without 

antibiotic exposure had the NST value above 50% (i.e., 83%–86% in the rhizosphere soil and 

81%–84% in the bulk soil) (Figure 4.5), favoring the stochastic processes. Adding antibiotics 

slightly increased the NST value for the rhizosphere soil and decreased the value for bulk soil 

(Figure 4.5). Root samples had a NST values below 50% (i.e., 45%–48%), favoring a 

deterministic assembly. Antibiotics were not the deterministic force in lettuce roots since the 

NST value increased slightly with antibiotic exposure. Lettuce shoots had too few reads to 

compute the NST values. Furthermore, samples from different harvest days showed no apparent 

trend in NST changes (Appendix Figure C4), likely due to the short sampling period. Generally, 

the changes of the NST values were small with antibiotic exposure (Figure 4.5). When exposed 

to antibiotics, the NST values were significantly increased by ~3% (p < 0.05) for the rhizosphere 

soil and lettuce roots and significantly decreased by ~3% (p < 0.05) for the bulk soil. Thus, 

antibiotic exposure did not solely control the bacterial community assembly. In fact, bacterial 

community in each niche always had interspecies interaction – competition – as the deterministic 

force. It is interesting to observe the consistent trend of changes for the rhizosphere soil and 

lettuce roots with increased stochasticity and constant alpha diversity. Lettuce roots had a major 

impact on the stochasticity of both roots and the rhizosphere. In one study the microbial 
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communities of the plant roots exhibited complex interactions that influenced bacterial 

assemblage 156. Liu et al. 139 found that rhizosphere bacterial assembly was more of a 

deterministic process when nitrogen was added. The rhizosphere and plant root microbiome are 

incredibly resistant to stresses. One study found that the core membership of the microbiome in 

the bean rhizosphere was persistent across different continents 157. In fact, the bacterial 

communities in the rhizosphere soil and lettuce roots may have master species that govern the 

community assembly, increase the selectivity, and diminish the effect of environmental stressors. 

The absolute value of stochasticity also depends on different environmental niches. Previous 

study found that bacterial community in soil niches were much more diverse than those in plant 

root and shoot niches 91. The diversity of soil microbiome was also demonstrated by the higher 

sequencing reads than the lettuce root microbiome. When the community was more diverse, 

stochastic processes may be more common. For example, when the community had a higher 

number of species, the effect of ecological drift, and random death and birth could be more 

pronounced. More species may also enable horizontal gene transfer between different bacteria 

species, enabling diversification (a key stochastic process). The major stochastic processes in soil 

niches are more dominant than added trace-level antibiotics, resulting in the overall more 

stochastic assembly. The quantification of the NST values with antibiotic exposure, for the first 

time, provides new insights into how antibiotic stress drove the community assembly in the 

rhizosphere soils and roots. The results helped us better understand the dynamics of bacterial 

community assembly.  
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Figure 4.5: Normalized stochastic ratio based on antibiotics exposure. 

 

We further investigated the survival of an opportunistic pathogen (Salmonella) on lettuce 

shoots to assess if changes in the lettuce microbiome reduced Salmonella invasion. Overall,  

Salmonella was unaffected by antibiotics exposure (Figure 4.6). Since the antibiotics were taken 

up into the lettuce shoots, direct contact between the antibiotics and Salmonella on the shoot 

surface was likely minimal. Given the non-ideal growth conditions on lettuce shoots, low 

nutrient levels and humidity on the lettuce shoots may play a more prominent role in the 

Salmonella survival. Additionally, the spiked Salmonella concentrations might be too high to 

detect small changes in their survival, if any.  
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Figure 4.6: Salmonella concentrations in lettuce shoots over time. Compared by the student 

T-test. No significant changes with or without antibiotic exposure.  

 

Antibiotic resistance genes 

A total of 18 ARGs and MGEs were detected out of the 52 ARGs targeted and their 

primer sets are listed in Appendix Table C2. The sum of log 2 transferred relative abundance of 

ARGs or MGEs to 16S rRNA refers to each resistance classes which is summarized in Appendix 

Table C3. Figure 4.7 shows the relative abundance profiles of ARGs and MGEs. The rhizosphere 

soil samples in the control treatment yielded the highest number of ARGs and MGEs. With 

antibiotic exposure, multidrug resistant genes (MDR) (tnpA and mepA) decreased to undetectable 

levels. However, a consistent increase in MGEs was observed with antibiotic exposure 
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(incP_oriT, intl1F165_clinical, ISPps1-pseud, ISSm2-Xanthob, and intl3). Horizontal transfer of 

ARGs is often associated with MGEs such as integrons when suitable recipient bacteria are 

present 52, 55, 130. Increased dissemination of MGEs may increase the risk of horizontal gene 

transfer of ARGs. Interestingly, no consistent pattern of change in ARGs and MGEs were 

observed in the bulk soil exposed to antibiotics. The intl3 and clinical integrase 

(intl1F165_clinical) gene both increased in the bulk soil by the last day of harvest. Lettuce roots 

exhibited an increase in MGEs (incP_oriT, ISSm2-Xanthob, intl3) similar to the rhizosphere soil. 

It visually appeared that except for MGEs the remaining ARGs resistance classes did not have a 

consistent pattern of change with antibiotic exposure. Overall, ARGs or MGEs detected in the 

lettuce shoots were minimal compared with those in the lettuce root, rhizosphere soil, and bulk 

soil samples. Antibiotic exposure did increase the relative abundance of MDR (emrD and mepA) 

in the lettuce shoots, or the beta-lactam resistant gene (blaTEM) in the lettuce shoots and roots.  

 

Figure 4.7: Relative abundance (gene copy number/16S rRNA gene copy number) of 

antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Data were Log 2 

transformed. Blank cells indicate that genes were either not detected or below the detection limit. 

Colored bar on the right indicates relative abundance from low (blue) to high (red). 
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 The rhizosphere soil and lettuce roots had higher bacteria community interactions and 

ARGs exchanges than the bulk soil and lettuce shoots (Figure 4.3). Interestingly, the only MGEs 

(intl3, intl1F165-clinical, and ISPps1-pseud) having significant correlation with bacterial 

community and antibiotic concentrations were found in the rhizosphere soil (Figure 4.3). The 

MGEs could be horizontally transfer from one bacteria to another bacteria host, increase the 

chance of bacteria resistance to antibiotics 1. The rhizosphere soil and lettuce roots as hotspots 

for bacterial interactions and gene exchanges further supported the resilience of the bacterial 

community in the rhizosphere soil and lettuce roots to antibiotic stress.  

Conclusion 

This study provides several new insights into better understanding bacterial community 

assembly and ARG profiles when soil-plant systems are exposed to anthropogenic antibiotics. 

With antibiotic exposure, alpha diversity of bacterial community did not change in the 

rhizosphere soil and lettuce roots, but decreased in the bulk soil and lettuce shoots. The 

differences may because of the resilience of root and rhizosphere microbiome to external 

stressors. Significant taxa may either benefited from antibiotic exposure, showing significant 

positive correlations, or inhibited by antibiotic exposure, showing significant negative 

correlations. The ongoing competition between antibiotics and bacterial community may offset 

small community changes in the rhizosphere soil and lettuce roots, resulting in non-significant 

changes in alpha diversity. Beta diversity was statistically significant with antibiotic treatments. 

Using the NST calculations, bacterial communities were more of stochastic assembly in the 

rhizosphere soil (83%–86%) and bulk soil (81%–84%), and less of stochastic assembly in the 

lettuce roots (45%–48%), suggesting a strong deterministic control of plant roots in bacterial 

community assembly. Additionally, antibiotic exposure did not substantially change the 
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stochasticity of the bacterial communities, despite the NST values were significantly increased 

by ~3% (p < 0.05) for the rhizosphere soil and lettuce roots (3%) and significantly decreased by 

~3% (p < 0.05) for the bulk soil, when exposed to antibiotics. The MGEs in the rhizosphere soil 

generally increased with antibiotic exposure, whereas the lettuce root, shoot and bulk soil had 

non-uniform changes. Furthermore, the hotspots of ARGs, bacterial community, and antibiotic 

interactions were found in the rhizosphere soil and lettuce roots. This study provides knowledge 

of bacterial community assembly in the model vegetable production system using antibiotics as 

the only environmental stressor.   
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CHAPTER V  

Predicting Customers’ Buy and Pay Preferences for Labeled Products with Machine 
Learning
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Abstract 

Food labeling is being promoted as an effective approach for encouraging safe and 

healthy practices of food production and consumption. It is important to understand how 

consumers’ buy and pay preferences for labeled products vary as related to their demographics, 

food-relevant habits, and foodborne disease perceptions. This study used both conventional 

statistical and novel machine learning models on survey data to predict consumers’ buy and pay 

preferences regarding eight labels related to food production and consumption. Results showed 

that increases in the frequency of cooking fresh produce corresponded with significant increases 

in the probability of participants’ willingness to buy andwillingness to pay more for USDA 

Organic products. Living in urban areas significantly increased the probability of participants’ 

willingness to buy and willingness to pay more for products labeled with Raised without 

Antibiotics and Does Not Contain Medically Important Antibiotics. Our machine learning models 

provided a new means for evaluating food safety and labeling survey data and produced adequate 

average prediction accuracy scores for all eight labels. The label, Raised Without Antibiotics, had 

a high average prediction accuracy for both participants’ willingness to buy and willingness to 

pay more. Thus, the machine learning models may be used to analyze food survey data and help 

develop strategies for promoting healthy food consumption.  

Introduction 

Food labeling is being promoted as an effective approach for encouraging safe and 

healthy practices of food production and consumption 159-161, and the number of food items with 

healthy labels (e.g., organic, antibiotics-free, and cagefree) is increasing in the market 161-163. 

Consumers’ purchasing preferences are thought to relate to information directly available on the 

food package 160, 162, including brand, ingredients, product origin, and production method. Each 
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food label in the market has different price premiums compared with other products with no 

specific labels 162. In fact, food producers are increasingly responding to consumers’ preference 

for “green” or “healthy” products by certifying their food products with sustainable and/or 

healthy labels. One common example in the US is USDA Organic certified foods, which are 

produced without the use of certain synthetic chemicals such as antibiotics, growth hormones, 

synthetic pesticides, and chemical fertilizers 164. Food producers follow a set of protocols to 

produce organic-certified foods: (i) before harvest, the land must be free of prohibited chemicals 

for 3 years; (ii) animals must be raised on 100% organic feed or on 80% organic feed for 9 

months followed by 100% organic feed 164. Organic foods are generally perceived as beneficial 

to both human and environmental health. However, some USDA Organic certification criteria are 

difficult to achieve. Therefore, some producers seek for alternative practices to meet consumers’ 

buy and pay preferences 165. There is growing consumer interest in decreasing the use of 

antibiotics in livestock production to reduce the risk of proliferating antimicrobial resistance 165, 

166. As a result, an increasing number of food products with labels such as Raised Without 

Antibiotics, No Medically Important Antibiotics, and Cage Free are now on the market. Previous 

studies showed that consumers prefer to buy and pay more for a familiar brand 167, 168, thus 

consolidating most market shares into major brands. However, local and community-supported 

farms are rapidly gaining popularity along with the label Locally Raised 169.  

Various factors can shape consumers’ perception of labeled food products, including 

demographics (e.g., gender, age, ethnicity, household size, education, employment, marital 

status, and residence type), food-relevant habits (e.g., fresh produce washing and cooking 

frequencies, and grocery shopping destinations), and foodborne disease perception (pathogen 

risk perceptions) 170-173. Thus, it is important to understand how consumers’ demographics, food-
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relevant habits, and foodborne disease perception are linked to their behaviors in buying and 

paying more for specially labeled products.  

Traditional approaches to understanding consumer preferences utilize conventional 

statistical methods to find the fewest critical independent variables that contribute to changes in 

dependent variables 174-178. Statistical regression methods usually combine similar categorical 

independent variables to one or two categories, transform ranked categorical independent 

variables to numerical variables, and identify numerical variables to achieve the best fit. One 

challenge for this approach to analyzing survey data is to incorporate all variables from multiple 

questions to determining the conditional probability of participants’ buy and pay preferences. 

This challenge can be overcome by novel machine learning methods. Machine learning methods 

can integrate specific questions and all survey responses into models without transforming or 

combining survey data. They can also provide a prediction accuracy score to evaluate the 

accuracy of individual customers’ buy and pay preferences using their survey answers. Thus, 

machine learning methods enable computers to learn and predict patterns of behaviors through 

established statistical models. Nonetheless, the interpretation of machine learning models is a 

long-standing issue 179-181.   

Previous work suggests that consumers’ willingness to buy and pay more for some food 

labels are significantly predicted by demographics and other relevant questions 162, 166, 172, 182. For 

example, woman, elderly, and higher income household are willing to pay price premiums for 

products with All–Natural labels 162. One study found eco-label placed in the middle of 

conventional and organic labelled apples for consumers’ preferences 172. Additionally, 

convenient behaviors were found to increase the preferences of consumers buying organic 

products 182. However, these previous studies are limited in two critical ways. First, few studies 
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have been conducted to assess multiple questions and multiple labeled products. Additionally, no 

studies have incorporated both machine learning and statistical methods to understand food-

related survey data. Thus, this study fills this gap by synthesizing and interpreting survey 

responses to a group of questions for informing consumers’ preferences to labeled products, 

using both statistical and machine learning methods. We hypothesize that demographics, food-

relevant habits, and foodborne disease perceptions will shape the customers’ willingness to buy 

and pay more for labeled products.  

Materials and Methods 

Survey Instrument 

The annual survey of the Assessment of Sustainability Knowledge and the Sustainability 

Attitudes Scale by the Environmental Science and Policy Program at Michigan State University 

was implemented through the Qualtrics platform. Each iteration of this survey included special 

topics related to humans and the environment. This study used the de-identified secondary 

survey data from an 11-question module designed specifically on food safety and food labels. 

Survey recruitment began on February 21, 2019 and ended on March 13, 2019. A total of 1080 

participants started the survey, but 340 participants were screened out by Qualtrics for failing to 

complete the survey or providing low quality data. The remaining 740 participants were used in 

the current study. Figure 5.1 provides a spatial distribution map of survey participants based on 

their ZIP Codes using the ggmap package in R.  
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Figure 5.1: Spatial Distribution of Survey Participants by ZIP Codes. 

 

The food safety and food label survey module was comprised of three part, with a total of 

11 questions. Part one assessed participants’ food relevant habits and their daily behavior 

regarding food safety. Briefly those questions included: (i) the frequency of participants eating 

meat or leafy greens, (ii) places where participants shop for groceries and have meals, (iii) their 

eating and food preparation habits regarding fresh produce (wash and cook frequencies), and (iv) 

the reasons for their preparation of fresh produce. Part two measured participants’ foodborne 

disease perceptions, specifically focusing on their knowledge regarding the severity of common 

foodborne bacterial/viral infections including nontyphoidal Salmonella, Escherichia coli O157 

H7, Listeria monocytogenes, Staphylococcus aureus, and Norovirus. They were asked to report 

their perception on the severity of the above pathogens on a 5-point scale ranging from the low 

(1) to high (5) severity. They were also given the option indicating “do not know” (0) in this 
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question. Participants’ past experiences with foodborne disease and their awareness of 

Salmonella in raw chicken were also asked. Part three gathered information about participants’ 

willingness to buy and willingness to pay more for labeled products. Eight labels were 

specifically included (Without Antibiotics, No Medically Important Antibiotics, No Growth 

Promoting Hormones, Cage Free, USDA Organic, Locally Raised, Generic Brand, and Major 

Brand) and participants provided binary (yes/no) responses to whether they would buy a product 

with this label and whether they would be willing to pay more for it, respectively. Participants 

were also given the option to state that “they do not care”, which were classified as “no” because 

we assume that participants who did not care would not buy or pay more for the product. The 

percentage of “they do not care” for any label was below 31%. Thus, this treatment would skew 

our analysis toward to the unwillingness to buy and pay more for labeled products. Appendix 

Table D1 and D2 list all of the questions and response options.  

Data analyses 

Raw data were downloaded from Qualtrics as an SPSS (.sav) file. The file was uploaded 

into R version 3.5.2 and R studio for data tidying and preprocessing to select demographics and 

food safety and food label block questions and the 740 participants pool. Descriptive statistics 

for each question were summarized using the frequency function in R. All codes are available at 

github page: https://github.com/YikeShen 

Conventional statistical model 

A probit regression model was used to find significant independent variables shaping the 

probability of participants’ buy and pay preferences to labeled products. The independent 

variables were the answers for the questions on demographics, food-relevant habits, and 

https://github.com/YikeShen
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foodborne disease perception. For all independent variables, categorical variables were 

transformed and summarized into dummy variables based on each question. Representative 

groups for each categorical question was inputted as reference groups. Below is a summary of 

how categorical questions with more than two answers were transformed. For ethnicity, groups 

were classified as White and non-White, using White as the reference group. Residence type 

included “own” or “rent”, using “own” as the reference group. The marital status of “never 

married”, “divorced”, “widowed”, and “separated” were combined to a non-married group with 

the married group used as the reference group. Grocery store choices were classified as 

conventional (e.g. Meijer, Walgreens, Walmart) or non-conventional (organic grocery chains, 

local grocery stores, etc.), using the conventional group as the reference group. The reasons 

people cook their fresh produce were transformed into “taste better”, “food safety”, and other 

reasons, using “taste better” as the reference group. For the remaining binary questions, reference 

groups were “male” (gender), “rural” (residence type), “yes” (had the foodborne disease), and 

“yes” (aware raw chicken contains Salmonella). Questions with ranked answers were 

transformed into numeric values. Education was coded from 1 to 5, starting from “did not finish 

high school” (1) to “graduate degree” (5). Employment was coded from 1 to 3, i.e., “not 

employed” (1), “half-time” (2), and “full-time” (3). The number of males, females, children, and 

infants was summed to obtain the household size. Household sizes greater than 4 were counted 

as four to prevent excessive outliers in constructing the probit regression model. The frequencies 

of people eating meat, leafy greens, washing fresh produce, and cooking fresh produce were 

transformed into numeric values, increasing with frequencies from low (1) to high (3). Eating 

locations were ranked 1–5 starting with people who always eat meals from restaurants (1) to 

always eat home-prepared meals (5), respectively. The answers to foodborne disease perception 
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for non-typhoidal Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, 

Staphylococcus aureus, and Norovirus were ranked from 0 to 5 according to the degree of 

severity, from “I don’t know” (0), not at all severe (1) to extremely severe (5).  

Our dependent variables included two questions for each of eight food labels, asking 

whether consumers are willing to buy or willing to pay more for those labels. Participants were 

able to respond “yes”, “no”, and “I do not care”. In our analysis we combined “no” and “I do not 

care” as explained before in Survey instrument section. Therefore, there were 16 individual 

dependent binary variables.  

Each dependent variable was regressed to the independent variables using R packages 

“MASS”, “stats”, “fastDummies”, and “sandwich”. A probit regression model was used since 

binary dependent variables were included, and using the probability to buy or pay more is more 

iterative than the logit model. Multicollinearity diagnosis screening was performed in R using 

“performance” package. The multicollinearity diagnoses showed low multicollinearity with 

variance inflation factor (VIF) less than 2.5. Statistical results tables were summarized using R 

“stargazer” package.  

Machine learning 

Machine learning workflow was separately performed from the statistical model, and the 

machine learning analyses started from raw input datasheet. Raw independent variables from 

demographics, food-relevant habits, and foodborne disease perceptions were transformed to 

numbered (e.g., 0, 1, 2, 3, 4, 5) categories in R and subsequently transformed into one hot 

encoded feature matrix (binary vectors) in Python. Continuous variable age was transferred into 

six categorical groups, > 18, 19–24, 25–34, 35–49, 40–64, and > 65, respectively. Predictors 
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were used as machine learning independent variables hereafter. Predictors served as the input 

feature matrix Xj for machine learning models. There were 96 categories (Xj = 96) combined 

from all predictors in the machine learning feature matrix. Raw dependent variables, 

participants’ willingness to buy or pay more for labeled products, were transferred into binary 

answers (Yes/No). The results collected from the survey were considered ground truth. The same 

sample pool of 740 participants was used in the machine learning method. 

Four machine learning predictive models were used in this study to train, validate, and 

test the predicted willingness of participants’ to buy or pay more for labeled products, including 

logistic regression, support vector machine, random forest, and neural network. All four models 

were supervised learning designed specifically for categorical values. Except for tuned 

parameters in hyperparameter tuning, default parameters in Python scikit learn package version 

0.20.1 were used to run those models 183. The four methods corresponded with four classifiers, 

i.e., logistic regression classifier, support vector classifier, random forest classifier, and neural 

network classifier, respectively. All four machine learning models followed ylabel (i)~feature 

matrix (Xj) where i = 1–8 representing participants’ willingness to buy the labeled product and i 

= 9–16 representing participants’ willingness to pay more for labeled products. Prediction 

accuracy was calculated as the number of correct prediction from machine learning models 

divided by the yes or no response results collected from the survey (i.e., the ground truth).  

Ten-fold cross-validation was used for the machine method. The dataset was divided into 

three parts, 80% of it for training, 10% of it for validation, and 10% of it for test. First, the 

dataset was divided into 10 subsections. The first 8 sections were used for training, the 9th 

section was used for validation, and the 10th section was used for the test. Next, the dataset 

assigned the 2nd to 9th sections to training, the 10th section to validation, and the 1st section for 
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test. The dataset was looped and run ten times to cover each section in training, validation, and 

test. Hyperparameter tuning was performed during the training and validation process. The best 

parameters were calculated and selected according to a prediction accuracy score to be used in 

the test dataset to get the best prediction performance. Tuned parameters were selected from the 

description from the scikit learn package 183. Only a few parameters listed in Appendix Table D3 

needed to be tuned, and most of the parameters performed well under default conditions 183. The 

parameters were initially pooled and tested to see the best performance on prediction accuracy 

results. For the logistic regression model, the parameter C, representing the inverse of 

regularization strength, was tuned. For the supporting vector machine model, the parameter C for 

misclassifying data points and gamma for rbf kernel coefficient (the decision region) were tuned. 

For the neural network model, the hidden layer sizes representing the number of neurons in each 

layer and the number of layers were tuned. In addition, the solver for weight optimization was 

tuned. For the random forest model, n_estimator representing the number of trees in the forest 

and max_depth representing the maximum depth of the tree were tuned. A detailed number of 

selections for parameters and models were listed in Appendix Table D3. The prediction accuracy 

results for the 10-fold cross-validation were averaged to obtain the average prediction accuracy. 

Standard deviations were also calculated. The flowchart for the machine learning method is 

represented in Figure 5.2.  
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Figure 5.2: Flow of the machine learning models. Xj represented the input feature matrix. 

 

Results and Discussions 

Statistical model 

Three food labels were significantly affected by one of two independent variables for 

both willingness to buy and willingness to pay more (p < 0.05) (Figure 5.3). The detailed 

statistical table can be found in Appendix Table D4 and D5. For USDA Organic labeled 

products, increasing cooking frequencies of fresh produce significantly increased both the 

probability of participants’ willingness to buy and pay more. The cooking frequency of fresh 

produce was the significant factor for both the participants’ willingness to buy and to pay more 

for USDA Organic products (Figure 5.3). The statistical model showed non-white participants, 

increasing the fresh produce washing frequencies, and increasing the risk perception of 

Salmonella significantly increased the probability of participants’ willingness to buy. Higher 

education levels and more knowledge of Norovirus may play a role in increasing the probability 

of participants' willingness to pay more. Norovirus is the most common transmissible and self-

limiting foodborne disease 184, 185. It counted for 58% of the community gastroenteritis cases 
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reported in 2011 186. Increased participants’ risk perception may shape their attitudes to high-

quality organic produce. However, increases in household size, age, and fresh produce 

consumption frequencies decreased the probability of participants’ willingness to pay more for 

USDA Organic products. Thus, it appears that the consumers’ willingness to buy may be 

associated with their knowledge towards specific issues, whereas their willingness to pay more 

may be more associated with demographics. Indeed, consumers with higher education levels, 

which may relate to higher social affluence, may have greater purchasing power for organic 

products. Dimitri and Dettmann 16 found that well-educated and relatively high-income 

populations have a higher tendency to buy organic vegetables. People who live in a larger 

household may have a larger demand for foods, decreasing their probability of paying more for 

organic products. Seniors may have less incentive to pay the price premium compared to what 

they usually pay. People who eat fresh produce less often may care less about organic products. 

Generally, people who had a healthier lifestyle balance their diets with more fresh produce. 

People who have a healthy lifestyle may pay more attention to food quality, thus willing to pay 

the price premium for organic products. Similarly, Zhang et al. 15 pointed out that well-educated 

urban households were willing to buy more organic produce. 

In our results, living in urban areas significantly increased the probability of “buy” and 

“pay” preferences to products labeled with Raised without Antibiotics and Does not Contain 

Medically Important Antibiotics. Generally, people living in urban areas are exposed to more 

products with new labels as a result of a wider selection of grocery stores. Indeed, Hjelmar 182 

found that people who have visually been exposed to organic labels have a higher chance of 

buying them. Urban areas may also have more high-end jobs available, creating a higher demand 

for foods produced with higher standards. However, the demographic distribution in this survey 
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may bias our results since approximately 80% of participants were from urban settings. 

Interestingly, to the best of our knowledge, there was no survey attempted to find relationships 

between these two labels and residential location. Indeed, having non-conventional grocery 

stores significantly increased participants' willingness to buy Raised without Antibiotics products 

(Figure 5.3). Although increased frequency of washing fresh produce cannot eliminate the risk of 

antibiotic resistance, it still significantly increased the probability of participants’ buy and pay 

more for these two labeled products. Age negatively correlated with their buy and pay 

preferences to restricted antibiotics use labels. The perceptions on foodborne pathogen and 

antibiotic resistance were not significantly related to the consumers’ “buy” and “pay more” 

preferences for labels related to antibiotics. This might result from a disconnect between 

antibiotic resistant pathogens and the use of antibiotics in production for consumers.  

 

Figure 5.3: Important independent variables found by the probit regression model. Refer 

Appendix Table D4 and D5 for detailed statistical results. Full name of independent variables in 
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Figure 5.3 (cont’d) the venn graph. Ethnicity – non-white; washing – how often do you wash 

your fresh produce, low to high; knowledge Salmonella - how severe do you believe the 

following food-borne diseases are, low to high; Household size – how many people live in your 

household, low to high; age – young to old; fresh produce – how many times per day do you eat 

leafy greens (lettuce, spinach etc), low to high; education level – low to high; knowledge 

Norovirus – how severe do you believe the following food-borne diseases are, low to high; 

gender – female; dining – do you eat more home-prepared meals or meals from restaurants, low 

to high from more home prepared to more restaurants; grocery choices – non-conventional 

grocery stores; residence location – urban; cooking - how often do you cook your fresh produce 

(vegetables), low to high.  

Machine learning models 

Overall, the four machine learning models had the average performance higher than 

random guess (0.5 prediction accuracy) (Appendix Table D6), meaning that the survey 

questionnaire was useful in predicting consumers’ willingness to buy and pay more for labeled 

products. The highest average prediction accuracy across four machine learning models was 

selected for each label for both willingness to buy and willingness to pay more (Figure 5.3). The 

Raised Without Antibiotics label had a high average prediction accuracy for both participants' 

willingness to buy and pay more using logistic regression and support vector machine models, 

respectively. USDA Organic label products yielded an average prediction accuracy for 

willingness to buy of 0.619, and a relatively high willingness to pay more of 0.657. The neural 

network model for willingness to pay more for the generic brand label had the highest average 

prediction accuracy of 0.691. Previous studies found that household attributes such as house 

ownership, the number of residents in the house, places of dinning, food preparation practices, 
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grocery shopping destinations, and the consumption of meat and fresh produce played an 

important role in buying organics 162. With the machine learning method, we cannot specify 

which independent variables significantly change the prediction accuracy. Instead, the average 

prediction accuracy provided an overall idea if a customer will buy or pay more for specific 

products. The machine learning models could have a large input feature matrix containing the 

original answers to all questions, while statistical methods can only fit important independent 

variables. By using the machine learning models, some underrepresented questions can be 

considered in the analysis, which would have been ignored in the statistical regression models. 

For example, ethnicity was defined as White or non-white in our statistical model. In the 

machine learning models, White, Black, Hispanic, Asian, and other races were all predictors and 

input into our model. Similarly, conventional grocery chains, local grocery stores, organic 

grocery chains, and other stores were inputted as four predictors. In contrast, only conventional 

and non-conventional grocery stores were used in our statistical regression. Therefore, having 

machine learning results can help tailor the prediction to individual customers, including as many 

features as possible. To the best of our knowledge, no previous studies have been conducted 

using machine learning to predict participants’ willingness to buy and pay more for the specific 

eight labels. Our results suggest that machine learning models can be used to analyze food 

survey data.  
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Figure 5.4: Prediction accuracy results of consumers’ willingness to buy (WTB) or 

williningnss to pay more (WTP) for the machine learning models. Figure name 

abbreviations: Logistic regression, LR; supporting vector machine, SVM; neural network, NN; 

random forest, RF. USDA Organic, USDA; Raised Without Antibiotics, NoAnti; No Medically 

Important Antibiotics, NoMedAnti; No Growth Promoting Hormones, NoHormone; Locally 

Raised, Local; Cage Free, FreeRange; Major Brand, Brand; Generic Brand, NoBrand. Refer to 

Appendix Table D6 for detailed machine learning results.  
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Conclusion 

This study shed unique insights into the importance of demographics, food relevant 

habits, and foodborne disease perception to consumers’ buy and pay preferences for labeled 

products using both conventional statistical and novel machine learning methods. It was also the 

first study to use machine learning models to analyze food survey data. We found that increased 

fresh produce cooking frequencies significantly increased the probability of participants’ 

willingness to buy and pay more for USDA Organic labeled products. It was also found that 

urban residents are more likely to buy and pay more for products labeled Raised without 

Antibiotics and Does not Contain Medically Important Antibiotics. Elderly customers are less 

likely to buy or pay more for products produced with a restrained antibiotic use. The Raised 

without Antibiotics label had a high average prediction accuracy for both willingness to buy and 

willingness to pay more with the machine learning methods. Finally, our machine learning 

models achieved an adequate average prediction accuracy score for eight labels, thus providing a 

new tool for evaluating food safety and food labeling survey data.   
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CHAPTER VI 

Conclusions and Future Recommendations 
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Conclusions 

The results of this dissertation improved our understandings on potential contamination 

of vegetables by antibiotics in recycled resources (reclaimed water) and the consequent changes 

in bacterial community and ARGs profiles. The use of reclaimed water is beneficial to farmers, 

especially in water-stressed regions. This work provided insights into potential risks of 

antibiotics, ARGs and bacterial pathogens in vegetables and offered suggestions on how to safely 

use reclaimed water in vegetable production. This work also connected scientific research to 

social science through a survey study on food safety and living habits related questions to 

determine consumers’ purchasing preferences to different food labels. The information is 

critically needed to evaluate the quality and safety of agricultural food products and 

understanding consumers’ preferences to food products. Major conclusions were summarized as 

follows:  

I: The overall abundance and diversity of ARGs and bacteria associated with lettuce 

shoots under soil-surface irrigation were lower than those under overhead irrigation, indicating 

soil-surface irrigation may have lower risks of producing food crops with high abundance of 

ARGs. ARG profiles and bacterial communities were sensitive to pharmaceutical exposure, but 

no consistent patterns of changes were observed. 

 II: Root concentration factors based on antibiotic concentrations in bulk soil (RCFbs) 

were significantly greater than those based on antibiotic concentrations in rhizosphere soil 

(RCFrs) for ciprofloxacin, lincomycin, oxytetracycline, sulfamethoxazole, and tetracycline, 

similar for trimethoprim and tylosin, and lower for monensin. The difference between the RCFbs 

and RCFrs values indicates that the RCFbs values may not accurately predict the root uptake of 

antibiotics in diverse soil-plant systems.  
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 III. Bacterial communities are driven by stochastic processes upon exposure to low level 

of anthropogenic antibiotics, and were more resilient in the roots and rhizosphere soil than in the 

bulk soil and shoots.  

IV. Consumers’ willingness to buy or to pay for certain labeled food products is 

dependent on certain demographic traits (e.g., age or urban living) and food-relevant habits. 

Machine learning methods achieved sufficient prediction accuracy scores for estimating 

consumers’ willingness to buy or to pay, and thus could be useful tools for evaluating food safety 

and food labeling survey data.  

Future Work 

Building upon this work, future research will be directed to understanding the 

mechanisms of ARGs and microbiome changes using multi-omics technologies. The 16S rRNA 

sequencing could not assess functional changes; neither can it determine the metabolic pathways 

of bacterial communities. Shotgun metagenomics and metabolomics can help address these 

challenges. At the gene level, WaferGen real-time qPCR can only quantify the abundance of 

genes based on their copy number, and the analyses must rely on relative abundance to 16S 

rRNA gene, which may have multiple copies in some bacteria. The transcriptomics technology 

and long-read sequencing can be used to identify more detailed functions of specific genes.  

In the One Health framework connecting animal health, environmental health, and human 

health, this dissertation work mainly focused on agricultural and environmental sciences. It is 

critically needed to connect environmental health to human health to understand human health 

implications of changing environmental microbiomes and antibiotic resistomes. 
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Appendix A: CHAPTER II Supplementary Materials 

Pharmaceutical Exposure Changed Antibiotic Resistance Genes and Bacterial Communities in 

Soil-Surface- and Overhead-Irrigated Greenhouse Lettuce 

 

Supplementary Methods 

Raw results of ARGs and MGEs were extracted from the WaferGen qPCR software 

(Version 2.8.1.23). Raw data spreadsheet with cycle numbers (Ct) were imported into R Studio 

(version 1.1.383) interface in R (Version 3.4.2). Genes were removed if they were only detected 

once in technical triplicate measurements of a sample. The cutoff threshold of CT < 30 was 

selected and genes that had no detection or a CT > 30 were then removed. Next, the CT values 

from at least two measurements of each sample were averaged. Afterwards if a gene was only 

detected once in the triplicate pharmaceutical treated samples of the same treatment, the gene 

was then removed from further analyses. Average CT values for the genes detected in at least two 

treatment replicates were computed, which could eliminate potential false positive gene 

detection. Copy number of genes was calculated via Gene Copy Number = 10(30−CT)/(10/3) 42. 

Relative abundance of detected genes was computed by dividing the estimated gene copy 

number with the gene copy number of 16S rRNA. R packages ‘tidyr’, ’tidyverse’, ’dplyr’ and a 

R workflow were used to perform the above data preprocessing. Relative abundance heatmap of 

genes was plotted using “pheatmap” and “RColorBrewer” packages. Relative abundance 

heatmap can visualize the abundance and distribution of genes in samples, including ARGs and 

MGEs. Chord diagram was plotted using “circlize” package and can be used to visualize the 

most abundant ARGs and MGEs in each sample. UpSet plot of gene intersections of shoots, 

roots, and soils samples was plotted using “UpSetR” package, which shows the sharing of ARGs 
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and MGEs among all samples. Ordination of ARGs and MGEs was plotted using “Vegan” 

package based on Bray-Curties distance, indicating the degree of similarity in ARGs and MGEs 

between different samples.  

Bacteria community analysis was first preprocessed using the MacQIIME pipelines v. 

1.9. following online tutorial for operational taxonomic unit (OTU) picking 43. A total of 14,884 

bacteria genus were picked up using close reference OTU picking based on a 97% similarity 

threshold with default uclust to cluster to Greengenes reference database 43, 44. Bacteria detected 

at least twice in the triplicates measurements with OTU greater than 0 for total 27 samples in the 

Illumina MiSeq among triplicates were averaged. Next, bacteria belonging to mitochondria and 

chloroplast were removed because small subunit ribosomal RNA genes of plant organelles 

(mitochondria and chloroplast) are easily amplified by PCR and thus contaminate bacterial gene 

pool. This is because those genes are originated from endosymbiotic bacteria 187, 188. A total 6519 

taxa were picked for downstream analysis. The OTU table, taxa table, sample composition table, 

and tree table were placed into a “phyloseq” dataframe, followed by the downstream analysis 

using “phyloseq”, “vegan”, “ggplot2”, and “ape” packages (Paradis et al., 2004; Paul and Susan, 

2013). Top 10 phyla and families were selected to plot the composition of bacterial communities. 

Top ten phyla were selected for ordination analysis with singleton (OTU = 1) and doubleton 

(OTU = 2) removed based on Bray-Curtis distance. We first use multiple constrained and 

unconstrained ordination methods to analyze the beta diversity of our samples, including 

detrended correspondence analysis, canonical correspondence analysis, redundancy analysis, 

detrended principle coordinates analysis, non-metric multidimensional scaling, multidimensional 

scaling, and principal coordinates analysis (PCoA) (Supplementary Figure S5). PCoA was then 

selected because it revealed the best position among our samples and made less assumptions in 
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calculating distance. Alpha diversity was calculated by the Chao1 estimator 45, 46 and plotted 

using “phyloseq” package 144.  

 Network analysis among antibiotics concentrations, ARGs/MGEs relative abundance, 

and percentages of family-level bacterial communities were conducted based on correlation test. 

First, correlations between antibiotics concentrations and the relative abundance of ARGs/MGEs 

or bacterial families were performed for the lettuce and soil samples with pharmaceutical 

exposure (7 averaged measurements respectively). Then, correlations between the relative 

abundance of ARGs/MGEs and bacterial communities were performed for all samples (13 

averaged measurements respectively). We selected ARGs and MGEs detected in more than half 

samples in the correlation tests to eliminate false positive correlations. Correlation coefficient 

greater than 0.6 and less than −0.6 with p-value < 0.05 were selected (Supplementary Table S4). 

The network was plotted using Gephi v0.9.1 software. The 8 antibiotics were included in the 

network analysis. As acetaminophen and caffeine only inhibited certain bacteria at non-

environmentally relevant high concentrations of 756–1516 mg/L and 300–10,000 mg/L, 

respectively 189-191, they were not considered to be related to microbiomes and ARGs. It was 

recently reported that at an environmentally relevant concentration (50 µg/L) carbamazepine 

enhanced horizontal transfer of several plasmid-borne ARGs 192. However, our preliminary test 

found minimal interactions of carbamazepine with ARGs in this study (i.e., negative correlation 

with only one mexF gene). To simplify the network analysis, we only included 8 antibiotics. 
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Figure A1. Intersections of antibiotic resistance genes (ARGs) and mobile genetic elements 
(MGEs) in soil, lettuce root and lettuce shoot samples. Left blue bar charts represent the total 
count of ARGs in each sample. The right black bar charts represent gene intersection (1-11 
genes). The dark black dot highlights the samples of soils, lettuce shoots, and lettuce roots that 
share certain genes. For example, the three black dots connected in the second column in Figure 
S1A indicate that there were four commonly shared genes among STS, STSC, and SMS (See 
Table S1 for sample naming convention).  
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Figure A2. Principal coordinates analysis of antibiotic resistance genes (ARGs) and mobile 
genetic elements MGEs in the soil, lettuce root and shoot samples based on Bray-Curtis 
distance. 

 

 

Figure A3. Relative abundance (gene copy number/16s rRNA gene copy number) of 
antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in the soil, lettuce 
root and shoot samples. Sample naming convention is provided in Table S1. Data were Log 2 
transformed. Blank cells represent genes that were either not detected or below detection limit. 
Color bar on the right means relative abundance from low (blue) to high (red) levels. Top 12 
genes were selected based on more than half detection in all samples (> 7/13). 
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Figure A4. Multivariate analysis of bacterial community based on Bray-Curties distance. 
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Table A1: Experimental treatment and sample name abbreviation 

Sample 
name 

Sample 
Triplicates Experimental treatment 

STSC No replicate Top soil layer for soil-surface irrigation without 
pharmaceuticals (control treatment) 

SMSC No replicate Middle soil layer for soil-surface irrigation without 
pharmaceuticals (control treatment) 

SBSC No replicate Bottom soil layer for soil-surface irrigation without 
pharmaceuticals (control treatment) 

STS 

STS1 

Top soil layer for soil-surface irrigation with pharmaceuticals STS2 

STS3 

SMS 

SMS1 
Middle soil layer for soil-surface irrigation with 
pharmaceuticals SMS2 

SMS3 

SBS 

SBS1 
Bottom soil layer for soil-surface irrigation with 
pharmaceuticals SBS2 

SBS3 

ROC No replicate Lettuce root receiving overhead irrigation without 
pharmaceuticals (control treatment) 

RO 

RO1 

Lettuce root receiving overhead irrigation with pharmaceuticals RO2 

RO3 

RS 

RS1 
Lettuce shoot receiving soil-surface irrigation with 
pharmaceuticals RS2 

RS3 

SOC No replicate Lettuce shoot receiving overhead irrigation without 
pharmaceuticals (control treatment) 

SSC No replicate Lettuce shoot receiving soil-surface irrigation without 
pharmaceuticals (control treatment) 
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Table A1 (cont’d) 

SO 

SO1 
Lettuce shoot receiving overhead irrigation with 
pharmaceuticals SO2 

SO3 

SS 

SS1 
Lettuce shoot receiving soil-surface irrigation with 
pharmaceuticals SS2 

SS3 
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Table A2. Primer set for 16S rRNA, antibiotic resistance genes (ARGs) and mobile genetic 
elements (MGEs). 

Assay Name Forward Primer Reverse Primer Target 

1 16S rRNA GGGTTGCGCTCGTTGC ATGGYTGTCGTCAGCTCGTG 16S rRNA 

33 ampC TCCGGTGACGCGACAGA CAGCACGCCGGTGAAAGT Beta Lactam 

36 blaPDC CGCCGTACAACCGGTGAT GAAGTAATGCGGTTCTCCTTTCA Beta Lactam 

39 bla1 GCAAGTTGAAGCGAAAGAAAA
GA 

TACCAGTATCAATCGCATATAC
ACCTAA 

Beta Lactam 

46 cphA GCGAGCTGCACAAGCTGAT CGGCCCAGTCGCTCTTC Beta Lactam 

48 blaL1 CACCGGGTTACCAGCTGAAG GCGAAGCTGCGCTTGTAGTC Beta Lactam 

56 floR ATTGTCTTCACGGTGTCCGTTA CCGCGATGTCGTCGAACT Amphenicol 

64 emrD CTCAGCAGTATGGTGGTAAGC
ATT 

ACCAGGCGCCGAAGAAC MDRa 

72 vanC AAATCAATACTATGCCGGGCTT
T 

CCGACCGCTGCCATCA Vancomycin 

89 mexA AGGACAACGCTATGCAACGAA CCGGAAAGGGCCGAAAT MDRa 

93 aac3-VI CGTCACTTATTCGATGCCCTTA
C 

GTCGGGCGCGGCATA Aminoglycoside 

111 blaCMY GCGAGCAGCCTGAAGCA CGGATGGGCTTGTCCTCTT Beta Lactam 

113 blaFOX GGTTTGCCGCTGCAGTTC GCGGCCAGGTGACCAA Beta Lactam 

121 blaSFO CCGCCGCCATCCAGTA GGGCCGCCAAGATGCT Beta Lactam 

125 qacH CATCGTGCTTGTGGCAGCTA TGAACGCCCAGAAGTCTAGTTT
T 

MDRa 

132 rarD TGACGCATCGCGTGATCT AAATTTTCTGTGGCGTCTGAATC Amphenicol 

140 mphA CTGACGCGCTCCGTGTT GGTGGTGCATGGCGATCT MLSB 

156 emrB/qacA CTTTTCTCTAACCGTACATTAT
CTACGATAAA 

AGAACGTAGCGACTGATAAAAT
GCT 

MDRa 

157 bacA CGGCTTCGTGACCTCGTT ACAATGCGATACCAGGCAAAT other 

177 strB GCTCGGTCGTGAGAACAATCT CAATTTCGGTCGCCTGGTAGT Aminoglycoside 

202 tnpA_1 CCGATCACGGAAAGCTCAAG GGCTCGCATGACTTCGAATC Transposase 

203 tnpA_2 GGGCGGGTCGATTGAAA GTGGGCGGGATCTGCTT Transposase 

210 vanA AAAAGGCTCTGAAAACGCAGT
TAT 

CGGCCGTTATCTTGTAAAAACA
T 

Vancomycin 

215 vanHB GAGGTTTCCGAGGCGACAA CTCTCGGCGGCAGTCGTAT Vancomycin 

217 vanRA_2 CCACTCCGGCCTTGTCATT GCTAACCACATTCCCCTTGTTTT Vancomycin 

229 pncA GCAATCGAGGCGGTGTTC TTGCCGCAGCCAATTCA MLSB 
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Table A2 (cont’d) 

234 oprD ATGAAGTGGAGCGCCATTG GGCCACGGCGAACTGA MDRa 

235 oprJ ACGAGAGTGGCGTCGACAA AAGGCGATCTCGTTGAGGAA MDRa 

243 ttgA ACGCCAATGCCAAACGATT GTCACGGCGCAGCTTGA MDRa 

244 ttgB TCGCCCTGGATGTACACCTT ACCATTGCCGACATCAACAAC MDRa 

245 mepA ATCGGTCGCTCTTCGTTCAC ATAAATAGGATCGAGCTGCTGG
AT 

MDRa 

246 mexE GGTCAGCACCGACAAGGTCTA
C 

AGCTCGACGTACTTGAGGAACA
C 

MDRa 

247 mexF CCGCGAGAAGGCCAAGA TTGAGTTCGGCGGTGATGA MDRa 

256 acrA_1 TACTTTGCGCGCCATCTTC CGTGCGCGAACGAACAT MDRa 

257 acrA_2 CGTGCGCGAACGAACA ACTTTGCGCGCCATCTTC MDRa 

276 msrA AACGAAATCAAGCGCAACAA CAACCGTGCCTTTTTCTTTTG MLSB 

285 oleC CCCGGAGTCGATGTTCGA GCCGAAGACGTACACGAACAG MLSB 

290 pikR2 TCGTGGGCCAGGTGAAGA TTCCCCTTGCCGGTGAA MLSB 

292 tetPB ACACCTGGACACGCTGATTTT ACCGTCTAGAACGCGGAATG Tetracycline 

299 tolC_1 CAGGCAGAGAACCTGATGCA CGCAATTCCGGGTTGCT MDRa 

300 tolC_2 GCCAGGCAGAGAACCTGATG CGCAATTCCGGGTTGCT MDRa 

310 vanSB GCGCGGCAAATGACAAC TTTGCCATTTTATTCGCACTGT Vancomycin 

331 merA GTGCCGTCCAAGATCATG GGTGGAAGTCCAGTAGGGTGA Murcury 

332 sul2 TCCGATGGAGGCCGGTATCTGG CGGGAATGCCATCTGCCTTGAG Sulfonamide 

342 IncP_oriT CAGCCTCGCAGAGCAGGAT CAGCCGGGCAGGATAGGTGAAG
T 

plasmid 
incompatibility 

350 acrR TGCAACACGCGCTTTCTC ACGATTGCGGGCAGGTT MDR 

359 intI1 CGAACGAGTGGCGGAGGGTG TACCCGAGAGCTTGGCACCCA Integrase 

366 orf39-IS26 GCGCGTCGAGCATCAATAG CAGTTGTGCTGCTGGTGGTC Insertional 
sequence 

369 ISPps CACACTGCAAAAACGCATCCT TGTCTTTGGCGTCACAGTTCTC Insertional 
sequence 

370 ISSm2 TGGATCGACCGGTTCCAT GCTGACCGAGCTGTCCATGT Insertional 
sequence 

374 mexB CTGGAGATCGACGACGAGAAG GAAATCGTTGACGTAGCTGGAA MDRa 

378 repA CCCCCAGGACTTGCGAGCG GAGGCATGCACGCCGACCA plasmid replication 

380 pAKD1 GGTAAGATTACCGATAAACT GTTCGTGAAGAAGATGTA plasmid replication 

a MDR is multidrug resistance. 
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Table A3: Bacterial community composition for top 20 families. Number represents 
percentage (%) of each bacteria in each sample.  

  SBSC SBS SMSC SMS STSC STS ROC RO RS SOC SO SSC SS 

Methylophilaceae 0.1 6.6 0.2 23.5 0.4 28.1 0.5 17.5 12.5 0.3 16.5 0.0 0.0 

Chthoniobacteraceae 3.6 3.8 4.8 5.6 4.4 7.1 0.7 0.5 0.3 0.2 0.0 0.0 0.0 

Chitinophagaceae 10.0 7.2 9.9 6.7 8.7 6.3 7.4 5.2 3.2 2.4 0.3 0.0 0.0 

Sphingomonadaceae 13.9 18.9 11.6 11.4 15.4 9.9 6.3 5.0 5.8 1.3 0.6 0.0 15.3 

Pirellulaceae 5.3 6.1 9.0 4.5 5.8 3.1 2.1 0.6 0.5 0.0 0.0 0.0 0.0 

Xanthomonadaceae 3.0 2.9 2.0 1.3 3.0 1.6 2.9 3.4 2.1 15.6 14.2 33.3 0.0 

Pseudomonadaceae 0.3 0.2 0.0 0.2 0.1 0.1 0.9 0.3 0.3 50.6 37.9 8.3 6.1 

Ellin6075 1.5 2.2 3.0 3.4 4.9 9.1 0.3 0.8 0.7 0.0 0.0 0.0 0.0 

Bradyrhizobiaceae 5.4 3.3 4.7 4.5 4.2 4.3 2.2 5.3 4.5 0.3 0.7 0.0 0.0 

Micromonosporaceae 2.8 3.5 5.4 2.8 4.2 1.4 6.2 3.8 5.2 0.0 0.0 8.3 0.0 

Bacillaceae 4.5 3.8 5.7 2.6 6.3 0.9 0.5 0.5 0.4 0.0 0.0 0.0 0.0 

Micrococcaceae 3.8 2.2 4.2 2.4 5.6 1.5 0.5 0.4 0.5 8.8 1.8 16.7 0.0 

Nocardioidaceae 4.4 4.2 4.6 3.2 5.1 1.9 2.2 2.6 4.0 0.9 0.0 8.3 0.0 

Methylobacteriaceae 0.4 1.3 0.4 4.3 0.5 7.5 0.1 7.6 7.0 0.1 14.6 0.0 78.6 

Cytophagaceae 11.7 7.0 8.9 5.9 5.9 3.3 7.5 4.3 4.6 0.3 0.2 0.0 0.0 

Comamonadaceae 4.7 3.3 4.8 5.4 5.1 5.3 27.4 7.1 8.0 12.9 8.0 16.7 0.0 

Hyphomicrobiaceae 10.1 8.3 8.9 7.1 6.1 6.1 5.9 7.2 7.1 1.3 0.0 0.0 0.0 

Sphingobacteriaceae 5.0 8.9 3.7 1.4 3.3 0.6 2.5 1.8 1.4 2.6 4.9 0.0 0.0 

Streptomycetaceae 2.4 2.0 2.8 1.0 2.7 0.6 14.7 18.6 18.1 0.0 0.0 8.3 0.0 

Oxalobacteraceae 7.4 4.3 5.5 3.2 8.5 1.7 9.0 7.7 14.1 2.5 0.3 0.0 0.0 
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Table A4: Correlation tests in the network analysis. 

   Variable 1 Variable 2 ρ p value 

1  Antibiotics_Con ISPps 0.79 0.04 

2  Antibiotics_Con Lincomycin 0.82 0.02 

3  blaFOX Oxytetracycline -0.90 0.04 

4  mexF Oxytetracycline -0.90 0.04 

5  oprJ Sulfadiazine 1.00 0.00 

6  intI1 Sulfadiazine 0.82 0.02 

7  ISPps Sulfadiazine 0.89 0.01 

8  Antibiotics_Con Sulfamethoxazole 0.79 0.04 

9  oprJ Sulfamethoxazole 1.00 0.00 

10  ISPps Sulfamethoxazole 0.86 0.01 

11  Carbadox Sulfamethoxazole 0.86 0.01 

12  Sulfadiazine Sulfamethoxazole 0.96 0.00 

13  tnpA_1 Trimethoprim -0.81 0.05 

14  Antibiotics_Con Tylosin 0.79 0.04 

15  blaPDC Tylosin 1.00 0.00 

16  ISPps Tylosin 0.86 0.01 

17  ISSm2 Tylosin 1.00 0.00 

18  Antibiotics_Con  Methylophilaceae 0.82 0.02 

19  Tylosin  Methylophilaceae 0.86 0.01 

20  Oxytetracycline  Chitinophagaceae -0.93 0.00 

21  Trimethoprim  Sphingomonadaceae -0.88 0.01 

22  Oxytetracycline  Pirellulaceae -0.90 0.01 

23  Sulfadiazine  Bradyrhizobiaceae 0.89 0.01 

24  Sulfamethoxazole  Bradyrhizobiaceae 0.82 0.02 

25  Trimethoprim  Comamonadaceae 0.85 0.02 

26  Oxytetracycline  Hyphomicrobiaceae -0.76 0.05 

27  ARGscon  Chitinophagaceae 0.75 0.00 

28   Chitinophagaceae  Pirellulaceae 0.80 0.00 

29   Sphingomonadaceae  Pirellulaceae 0.62 0.03 

30   Chitinophagaceae  Bradyrhizobiaceae 0.69 0.01 
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Table A4 (cont’d) 

31   Pirellulaceae  Bradyrhizobiaceae 0.78 0.00 

32   Chitinophagaceae  Cytophagaceae 0.82 0.00 

33   Pirellulaceae  Cytophagaceae 0.90 0.00 

34   Bradyrhizobiaceae  Cytophagaceae 0.77 0.00 

35   Sphingomonadaceae  Comamonadaceae -0.90 0.00 

36   Chitinophagaceae  Hyphomicrobiaceae 0.82 0.00 

37   Pirellulaceae  Hyphomicrobiaceae 0.91 0.00 

38   Bradyrhizobiaceae  Hyphomicrobiaceae 0.86 0.00 

39   Cytophagaceae  Hyphomicrobiaceae 0.94 0.00 

40   Chitinophagaceae blaPDC 0.93 0.00 

41   Sphingomonadaceae blaFOX 0.70 0.04 

42   Pirellulaceae blaFOX 0.68 0.04 

43   Comamonadaceae blaFOX -0.85 0.00 

44  ARGscon tnpA_1 0.66 0.02 

45   Chitinophagaceae tnpA_1 0.71 0.01 

46   Sphingomonadaceae tnpA_1 0.60 0.04 

47  blaPDC tnpA_1 0.79 0.04 

48   Chitinophagaceae oprJ 0.83 0.01 

49   Sphingomonadaceae oprJ 0.83 0.01 

50   Pirellulaceae oprJ 0.76 0.03 

51   Comamonadaceae oprJ -0.79 0.02 

52  tnpA_1 oprJ 0.90 0.00 

53  ARGscon mexE 0.79 0.04 

54  blaPDC mexE 1.00 0.00 

55  tnpA_1 mexE 0.96 0.00 

56  ARGscon mexF 0.72 0.02 

57   Chitinophagaceae mexF 0.80 0.01 

58   Pirellulaceae mexF 0.92 0.00 

59   Bradyrhizobiaceae mexF 0.89 0.00 

60   Cytophagaceae mexF 0.86 0.00 

61   Hyphomicrobiaceae mexF 0.93 0.00 

62  blaFOX mexF 0.94 0.00 
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Table A4 (cont’d) 

63  tnpA_1 mexF 0.68 0.04 

64  oprJ mexF 0.83 0.04 

65   Sphingomonadaceae oleC -0.86 0.01 

66   Cytophagaceae oleC -0.86 0.01 

67   Comamonadaceae oleC 0.89 0.01 

68   Hyphomicrobiaceae oleC -0.79 0.04 

69   Streptomycetaceae oleC 0.96 0.00 

70  blaFOX oleC -0.90 0.04 

71   Pirellulaceae intI1 0.66 0.02 

72   Bradyrhizobiaceae intI1 0.73 0.01 

73  blaFOX intI1 0.75 0.02 

74  mexF intI1 0.80 0.01 

75   Methylophilaceae ISPps 0.86 0.00 

76  intI1 ISSm2 0.77 0.02 

77  tnpA_1 repA 0.93 0.00 

78  oprJ repA 1.00 0.00 

79  ISSm2 repA 0.89 0.02 
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Appendix B: CHAPTER III Supplementary Materials 

Rhizosphere Soil is Key to the Uptake of Antibiotics by Lettuce (Lactuca sativa)  

 

Table B1: LC-MS/MS properties for nine antibiotics. 

Antibiotics 
Precursor 
ion (m/z) 

Product 
ion 
(m/z) 

Declustering 
potential 
(volts) 

Collision 
energy 
(volts) 

Collision cell 
exit potential 
(volts) 

Sulfamethoxazole 254 156 60 20 8 
Trimethoprim 291 261 80 30 12 
Lincomycin 407 126 60 30 8 
Oxytetracycline 461 426 60 30 8 
Monensin Sodium 694 676 120 50 8 
Tylosin 916 173 100 40 10 
Ciprofloxacin 332 231 76 45 14 
Cefalexin 332 231 76 45 14 
Tetracycline 445 410 80 30 6 

 

Table B2: Extraction efficiencies (%) of antibiotics from the spiked lettuce shoots, lettuce 
roots, and soil samples.  

 Shoots (%) Roots (%) Soil (%)a 

Sulfamethoxazole 4.3 ± 0.7) 18.8 ± 2.9 85.0 ± 7.1 
Trimethoprim 85.2 ± 0.9 73.9 ± 0.8 88.6 ± 5.3 
Lincomycin 83.2 ± 4.3 71.6 ± 7.8 88.6 ± 4.8 

Oxytetracycline 52.7 ± 5.5 28.7 ± 3.6 0.8 ± 0.2 
Monensin Sodium 87.6 ± 2.0 65.2 ± 3.0 99.2 ± 31.1 

Tylosin 89.1 ± 1.5 68.7 ± 6.7 79.9 ± 5.3 
Ciprofloxacin 58.0 ± 4.6 53.5 ± 5.4 6.9 ± 0.8 
Tetracycline 42.9 ± 4.8 29.0 ± 3.3 2.7 ± 1.2 
Cephalexin 82.0 ± 2.6 62.9 ± 3.2 57.2 ± 3.3 

a The soil samples include both the rhizosphere and bulk soil samples.  
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Figure B1: Measured mass recoveries of antibiotics in this study. CEF – cefalexin, CIP – 
ciprofloxacin, LIN – lincomycin, MON – monensin sodium, OXY – oxytetracycline, SUL – 
sulfamethoxazole, TET – tetracycline, TRI – trimethoprim, and TYL – tylosin.  

 

Table B3: Root concentration factors based on antibiotic concentrations in the bulk soil 
(RCFbs) and rhizosphere soil (RCFrs), and root-to-shoot translocation factors (TF). N.A. 
means nonavailable due to non-detectable cephalexin concentration.  

Antibiotics  RCFrs RCFbs TF 
p value  

(Comparison between 
RCFrs and RCFbs) 

Ciprofloxacin 10.5 ± 2.6 126.0 ± 85.1 0.03 ± 0.02 1.46E-03 
Lincomycin 1.0 ± 0.5 2.1 ± 1.1 1.46 ± 0.89 1.24E-02 
Monensin 
Sodium 17.7 ± 10.3 7.3 ± 3.2 0.63 ± 0.51 1.60E-02 

Oxytetracycline 10.7 ± 7.0 114.6 ± 42.7 0.36 ± 0.3 4.31E-05 
Sulfamethoxazole 2.3 ± 1.0 7.0 ± 2.5 0.64 ± 0.4 1.19E-04 
Tetracycline 30.9 ± 46.1 300.4 ± 257.6 0.29 ± 0.09 1.51E-02 
Trimethoprim 11.8 ± 2.9 10.5 ± 2.4 0.04±0.01 3.23E-01 
Tylosin 4.0 ± 1.4 3.1 ± 0.7 0.05±0.04 1.32E-01 
Cephalexin N.A. N.A. N.A. N.A. 
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Appendix C: CHAPTER IV Supplementary Materials 

Bacterial Communities and Antibiotic Resistance Genes in the Lettuce-Soil System upon 

Exposure to Anthropogenic Antibiotics  

 

Table C1: Physiochemical properties of antibiotics used in this study. 

Antibiotics 
Molecular 
Weight (g/mol)a 

Water Solubility 
(mg/L)a pKaa logKowa 

Sulfamethoxazole 253.28 610 1.6,5.7 0.89 
Trimethoprim 290.32 400 7.12 0.91 
Lincomycin 406.54 927 7.6 0.2 
Oxytetracycline 460.43 313 3.57,7.49,9.44c -0.9 
Monensin Sodium 692.87 slightly solubleb 4.3c 5.43c 
Tylosin 916.1 5 7.73 3.27d 
Ciprofloxacin 331.34 30000 6.09,8.74 0.28 
Cefalexin 347.39 slightly soluble 5.2,7.3 0.65 
Tetracycline 444.43 4 3.3,7.68,9.69  -1.37 

a From TOXNET database: http://toxnet.nlm.nih.gov/index.html, b Reference 102, c From 
Guidechem database: http://www.guidechem.com/reference/dic-20635.html, and d From 
ChemSpider database: http://www.chemspider.com/Chemical-Structure.10606106.html 

  

http://www.guidechem.com/reference/dic-20635.html
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Figure C1: Bacterial community composition at the phylum and family levels. The sum of 
the percentages of the top 10 phyla or families were 100%. Each bar represents the fraction of 
each bacteria phylum and family. 
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Figure C2: Bacterial alpha diversity of samples collected on four sampling days.  
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Figure C3: Bacterial beta diversity matrix of the samples collected on four sampling days.  

  



 

117 
 

 
Figure C4: Normalized stochastic ratio of samples collected on four sampling days.  
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Table C2: Primer set for 16S rRNA, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Selected from 158 

Gene target 
Primer 
number Function Class Forward primer Reverse Primer 

aac3-Via 1510 deactivate Aminoglycoside GTGTCCGTCGCCAAGGA GGTGACGGCCTTGTCGA 

bla1 39 deactivate Beta Lactam GCAAGTTGAAGCGAAAGAAAAGA TACCAGTATCAATCGCATATACACCTAA 

cphA 46 deactivate Beta Lactam GCGAGCTGCACAAGCTGAT CGGCCCAGTCGCTCTTC 

blaSFO 121 deactivate Beta Lactam CCGCCGCCATCCAGTA GGGCCGCCAAGATGCT 

blaTEM 1512 deactivate Beta Lactam CGCCGCATACACTATTCTCAG GCTTCATTCAGCTCCGGTTC 

qepA_1_2 1201 qepA_1_2 Fluoroquinolone GGGCATCGCGCTGTTC GCGCATCGGTGAAGCC 

emrD 64 efflux MDR CTCAGCAGTATGGTGGTAAGCATT ACCAGGCGCCGAAGAAC 

mepA 245 efflux MDR ATCGGTCGCTCTTCGTTCAC ATAAATAGGATCGAGCTGCTGGAT 

tolC 298 efflux MDR GGCCGAGAACCTGATGCA AGACTTACGCAATTCCGGGTTA 

tnpA 202 MGE Transposase CCGATCACGGAAAGCTCAAG GGCTCGCATGACTTCGAATC 

IncP_oriT 342 MGE Plasmid-inc  CAGCCTCGCAGAGCAGGAT CAGCCGGGCAGGATAGGTGAAGT 

intI1F165_clinical 359 MGE Integrase CGAACGAGTGGCGGAGGGTG TACCCGAGAGCTTGGCACCCA 

ISPps1-pseud 369 MGE Insertional  CACACTGCAAAAACGCATCCT TGTCTTTGGCGTCACAGTTCTC 

ISSm2-Xanthob 370 MGE Insertional  TGGATCGACCGGTTCCAT GCTGACCGAGCTGTCCATGT 

intl3 1522 MGE Integrase CAGGTGCTGGGCATGGA CCTGGGCAGCATCACCA 

oleC 285 efflux MLSB CCCGGAGTCGATGTTCGA GCCGAAGACGTACACGAACAG 

strB 177 protection Sulfonamide GCTCGGTCGTGAGAACAATCT CAATTTCGGTCGCCTGGTAGT 

tetPB 502 efflux tetracycline TGGCAAGACGAGTTTGACTGA GATCGCTCCACTTCAGCGATAA 
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Table C3: Sum of relative abundance in each ARGs class (log2 transferred).  

  
Aminoglycosi
de 

Beta 
Lactam 

Fluoroqui
nolone MDR MGE 

MLS
B 

Sulfonami
de 

Tetracycli
ne 

D25-Shoot-CK NA NA NA -10 NA NA NA NA 
D30-Shoot-CK NA NA NA -7.4 -16.2 NA NA NA 
D35-Shoot-CK NA NA NA -6.9 -14.4 NA NA NA 
D25-Shoot-
Anti NA NA NA -7.6 NA NA NA NA 
D30-Shoot-
Anti NA -15.8 NA -6.8 NA NA NA NA 
D35-Shoot-
Anti NA -15.3 NA -6.7 -16 NA NA NA 
D25-Root-CK -10.5 -12.9 -13.3 -6 -14.1 -11.6 NA NA 
D30-Root-CK -9.9 -12.4 -12.3 NA -14.2 -10.4 NA NA 
D35-Root-CK -10.9 -13 -12.7 -12 -12.2 -9.7 NA NA 
D25-Root-Anti -10.1 -12.7 -12.5 -13 -11.2 -10 NA NA 
D30-Root-Anti -9.4 -12.6 -11.7 NA -11.1 -9.7 NA NA 
D35-Root-Anti -9.9 -13.5 -11.8 NA -11.4 -9.9 NA NA 
D25-Soil-CK -8.4 -13.2 -11.1 -11 -12.7 -9.2 NA -12.8 
D30-Soil-CK -9.3 NA -12.1 -12 -13.2 -10.3 NA -15.2 
D35-Soil-CK -8.4 NA -11.9 NA -12.3 -10.6 NA -14.3 
D25-Soil-Anti -8.9 -15.7 -12.7 -15 -12.1 -9.9 NA -15.1 
D30-Soil-Anti -10 -15 -13.1 -13 -12.8 -11.1 NA NA 
D35-Soil-Anti -5.7 NA -8.7 NA -10.2 -7.9 NA -11.7 
D25-Rhizo-CK -8.7 -13.4 -11.2 -13 -11.8 -10.5 NA -14.1 
D30-Rhizo-CK -9.3 -14 -13.2 -13 -12.2 -9.5 -13.7 NA 
D35-Rhizo-CK -9.8 -12.3 -12.7 -15 -12.4 -10.4 -14.2 NA 
D25-Rhizo-
Anti -9.1 -14 -11.7 -13 -11.6 -9.7 NA NA 
D30-Rhizo-
Anti -8.4 -12.5 -11.1 -13 -11.3 -9.9 NA NA 
D35-Rhizo-
Anti -9.2 -14.2 -11.9 NA -11.3 -10.2 NA NA 

 

Table C4: Correlation tests between top 10 families, antibiotic concentrations, and 
ARGs/MGEs for different niches (bulk soil, rhizosphere soil, lettuce roots, and lettuce 
shoots). 

Variable 1 Varaiable 2 ρ p value 
Bulk Soil 

Xanthobacteraceae Methylophilaceae -0.98 3.31E-05 
Burkholderiaceae Methylophilaceae -0.90 2.01E-03 
Bacillaceae Methylophilaceae -0.88 3.85E-03 
Sulfamethoxazole Sphingomonadaceae -0.81 1.49E-02 
Trimethoprim Xanthobacteraceae -0.76 2.80E-02 
Sulfamethoxazole Burkholderiaceae -0.76 2.80E-02 
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Table C4 (cont’d) 
Sphingomonadaceae Methylophilaceae -0.76 2.80E-02 
Trimethoprim Burkholderiaceae -0.74 3.66E-02 
Antibiotics total Burkholderiaceae -0.74 3.66E-02 
Antibiotics total Xanthobacteraceae -0.71 4.65E-02 
Bacillaceae Sphingomonadaceae 0.71 4.65E-02 
Bacillaceae Burkholderiaceae 0.71 4.65E-02 
Tylosin Chthoniobacteraceae 0.71 4.65E-02 
Sphingomonadaceae Burkholderiaceae 0.74 3.66E-02 
Sulfamethoxazole Methylophilaceae 0.74 3.66E-02 
Antibiotics total Methylophilaceae 0.74 3.66E-02 
Sulfamethoxazole Trimethoprim 0.76 2.80E-02 
Tylosin Antibiotics total 0.79 2.08E-02 
Xanthobacteraceae Sphingomonadaceae 0.79 2.08E-02 
Trimethoprim Methylophilaceae 0.79 2.08E-02 
Trimethoprim qepA_1_2 0.83 4.16E-02 
Sulfamethoxazole Antibiotics total 0.86 6.53E-03 
Xanthobacteraceae Burkholderiaceae 0.88 3.85E-03 
Lincomycin qepA_1_2 0.89 1.88E-02 
Bacillaceae Xanthobacteraceae 0.90 2.01E-03 
Trimethoprim Antibiotics total 0.93 8.63E-04 
Ciprofloxacin qepA_1_2 0.94 4.80E-03 
qepA_1_2 aac3-Via 0.94 4.80E-03 
qepA_1_2 intl3 0.94 4.80E-03 
aac3-Via intl3 1.00 0.00E+00 

Rhizosphere soil 
Sulfamethoxazole cphA -1.00 0.00E+00 
Lincomycin cphA -0.90 3.74E-02 
Ciprofloxacin Xanthobacteraceae -0.90 9.43E-04 
Antibiotics total Xanthobacteraceae -0.87 2.50E-03 
Lincomycin MonensinSodium -0.81 1.49E-02 
MonensinSodium Sphingomonadaceae -0.79 2.08E-02 
Tylosin Chitinophagaceae -0.77 1.59E-02 
Sulfamethoxazole MonensinSodium -0.76 2.80E-02 
Trimethoprim MonensinSodium -0.76 2.80E-02 
Sulfamethoxazole aac3-Via -0.75 1.99E-02 
Beijerinckiaceae Enterobacteriaceae -0.74 3.66E-02 
Lincomycin Xanthobacteraceae -0.72 2.98E-02 
Bacillaceae Beijerinckiaceae -0.70 3.58E-02 
Beijerinckiaceae Chthoniobacteraceae -0.68 4.24E-02 
Trimethoprim Gemmatimonadaceae -0.67 4.99E-02 
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Table C4 (cont’d) 
Beijerinckiaceae Xanthobacteraceae -0.67 4.99E-02 
Antibiotics total Chthoniobacteraceae -0.67 4.99E-02 
Sulfamethoxazole Beijerinckiaceae 0.67 4.99E-02 
Gemmatimonadaceae Chthoniobacteraceae 0.67 4.99E-02 
Ciprofloxacin Beijerinckiaceae 0.70 3.58E-02 
Bacillaceae Enterobacteriaceae 0.71 4.65E-02 
aac3-Via Bacillaceae 0.72 2.98E-02 
Trimethoprim Tylosin 0.73 2.46E-02 
Lincomycin Tylosin 0.73 2.46E-02 
Antibiotics total Sphingomonadaceae 0.73 2.46E-02 
Enterobacteriaceae Chthoniobacteraceae 0.74 3.66E-02 
Sulfamethoxazole Antibiotics total 0.77 1.59E-02 
Gemmatimonadaceae Xanthobacteraceae 0.78 1.25E-02 
oleC qepA_1_2 0.79 3.62E-02 
oleC aac3-Via 0.79 2.08E-02 
Sulfamethoxazole Ciprofloxacin 0.80 9.63E-03 
Lincomycin Sphingomonadaceae 0.80 9.63E-03 
Xanthobacteraceae Chthoniobacteraceae 0.85 3.70E-03 
Lincomycin Ciprofloxacin 0.87 2.50E-03 
Lincomycin Antibiotics total 0.87 2.50E-03 
Tylosin Antibiotics total 0.87 2.50E-03 
Ciprofloxacin Antibiotics total 0.90 9.43E-04 
cphA aac3-Via 0.90 3.74E-02 
ISPps1-pseud Gemmatimonadaceae 0.90 3.74E-02 
Sulfamethoxazole Sphingomonadaceae 0.90 9.43E-04 
Sulfamethoxazole Lincomycin 0.93 2.36E-04 
MonensinSodium bla1 1.00 0.00E+00 
intI1F165_clinical ISPps1-pseud 1.00 0.00E+00 
cphA qepA_1_2 1.00 0.00E+00 
intI1F165_clinical aac3-Via 1.00 0.00E+00 
cphA intl3 1.00 0.00E+00 

Lettuce roots 
Sulfamethoxazole Tylosin -0.92 5.07E-04 
Xanthobacteraceae Methylophilaceae -0.88 1.59E-03 
Oxytetracycline Methylophilaceae -0.87 2.50E-03 
Ciprofloxacin Methylophilaceae -0.87 2.50E-03 
Beijerinckiaceae Chitinophagaceae -0.87 2.50E-03 
Antibiotics total Methylophilaceae -0.83 5.27E-03 
MonensinSodium qepA_1_2 -0.82 2.34E-02 
Bacillaceae Burkholderiaceae -0.82 7.22E-03 
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Table C4 (cont’d) 
Sulfamethoxazole Oxytetracycline -0.78 1.25E-02 
Sulfamethoxazole Ciprofloxacin -0.78 1.25E-02 
Beijerinckiaceae Methylophilaceae -0.78 1.25E-02 
Lincomycin Bacillaceae -0.77 1.59E-02 
Sulfamethoxazole Xanthobacteraceae -0.77 1.59E-02 
Tetracycline Bacillaceae -0.75 1.99E-02 
Tylosin Methylophilaceae -0.73 2.46E-02 
Sulfamethoxazole Antibiotics total -0.72 2.98E-02 
Trimethoprim Methylophilaceae -0.72 2.98E-02 
Xanthobacteraceae Chitinophagaceae -0.70 3.58E-02 
Sulfamethoxazole Trimethoprim -0.68 4.24E-02 
Tylosin Burkholderiaceae -0.68 4.24E-02 
Chthoniobacteraceae Chitinophagaceae -0.68 4.24E-02 
Burkholderiaceae Methylophilaceae 0.67 4.99E-02 
Trimethoprim Beijerinckiaceae 0.68 4.24E-02 
aac3-Via Chthoniobacteraceae 0.68 4.24E-02 
Lincomycin Tetracycline 0.70 3.58E-02 
oleC aac3-Via 0.70 3.58E-02 
Antibiotics total Beijerinckiaceae 0.70 3.58E-02 
Trimethoprim Xanthobacteraceae 0.72 2.98E-02 
Beijerinckiaceae Chthoniobacteraceae 0.72 2.98E-02 
Tylosin Antibiotics total 0.73 2.46E-02 
qepA_1_2 aac3-Via 0.73 2.46E-02 
Gemmatimonadaceae Chthoniobacteraceae 0.75 1.99E-02 
Trimethoprim Tylosin 0.80 9.63E-03 
Oxytetracycline Antibiotics total 0.80 9.63E-03 
Beijerinckiaceae Xanthobacteraceae 0.80 9.63E-03 
Ciprofloxacin Antibiotics total 0.83 5.27E-03 
Sulfamethoxazole Burkholderiaceae 0.83 5.27E-03 
Sulfamethoxazole Methylophilaceae 0.83 5.27E-03 
Antibiotics total Xanthobacteraceae 0.85 3.70E-03 
Ciprofloxacin Xanthobacteraceae 0.88 1.59E-03 
Oxytetracycline Xanthobacteraceae 0.90 9.43E-04 
Trimethoprim Antibiotics total 0.92 5.07E-04 
Oxytetracycline Ciprofloxacin 0.93 2.36E-04 

Lettuce shoots 
MonensinSodium Tylosin 1.00 0.00E+00 
MonensinSodium Ciprofloxacin 1.00 0.00E+00 
Ciprofloxacin emrD 0.94 4.80E-03 
Tylosin Methylophilaceae 1.00 0.00E+00 
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Table C4 (cont’d) 
Sphingomonadaceae Enterobacteriaceae 0.90 3.74E-02 
Burkholderiaceae Enterobacteriaceae -1.00 0.00E+00 
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Appendix D: CHAPTER V Supplementary Materials 

Predicting Customers’ Buy and Pay Preferences for Labeled Products with Machine Learning 

 

Descriptive statistics 

The demographics mostly matched the U.S. population based on the 2010 census data, 

because we set quotas for 630 matching samples. There were slight differences with the 110 

additional completed participants. Briefly, the survey participants reported an average age of 45 

years old, with 88% completed high school. Twenty-four percent of the participants reported 

having a college or other advanced degree. Forty-eight percent of participants were male, and 

fifty-two percent were female. Survey participants self-reported as White or Caucasian (65%). 

Hispanic (16%), Black, or (14%) other minorities (5%). Half of the survey participants were 

unemployed (49%), while 37% had a full-time job, and 13% had a part-time job. The high 

unemployment rate might be because 12% of participants are in college years (19 – 24 years 

old), and 16% of participants are people older than 65 years old. Forty-two percent of 

participants were married, whereas 37% of participants had never married. Most of the 

participants lived in urban settings (79%). Around 56% percent of participants were 

homeowners, whereas 44% of participants rent a house or apartment. The average household 

size, including both adults and children, was three. Appendix Table D1 showed detailed 

descriptive statistics for demographics.  

 Food relevant habits section had eight questions. Most participants ate meat 1-2 times per 

day (69.5%), where only 43.5% of participants ate leafy greens at the same frequency. 

Approximately one-third of participants eat leafy greens less than one time per day. Over 70% of 
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participants always wash their fresh produce, whereas only 35.9% of them always cook fresh 

produce. More than half of participants (58.4%) cook their fresh produce sometimes. More than 

half of the participants cooked their fresh produce for better taste. Most participants liked to shop 

at conventional grocery stores (67.6%), and more than half of participants ate home-prepared 

meals (57.6%).  

 The foodborne disease perception section had two small questions and one big question 

on five pathogens. Most of our participants don’t have a foodborne disease in the past two years, 

counting 85.5%. The majority of participants (81.6%) were aware that Salmonella might be 

present in raw chicken, and needed to be fully cooked. For USDA zero-tolerance pathogen in 

ready to eat food, Salmonella, Escherichia coli O157:H7, and Listeria monocytogenens, more 

than half of our participants ranked them from very severe to extremely severe. Interestingly, 

Norovirus, which is a common virus causing diarrhea, 23% of participants did not know this 

virus. The severity of Norovirus in participants' minds was a little less than 50% from very 

severe to extremely severe. A large group of participants thought Staphylococcus aureus induced 

foodborne disease was extremely severe (36.2%).  

 The participants' willingness to buy and pay more for labeled products had one set of 

questions with eight food labels (Without Antibiotics, No Medically Important Antibiotics, No 

Growth Promoting Hormones, Cage Free, USDA Organic, Locally Raised, Generic Brand, and 

Major Brand). Each label had two questions asking participants’ willingness to buy or pay more 

for that specific label. Our results yes or no fluctuate around 50% for each label. Appendix Table 

D2 showed detailed descriptive statistics for food safety and food label block questions.  
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Table D1: Demographics of survey participants. Total N=740 

Demographic Characteristics of the Survey Population 
  Percentage (%)   Percentage (%) 
Gender   Education   

Male 48 Graduate Degree 11 
Female 52 Bachelor Degree 13 

    Associate degree 7 
Age   High School 57 

19-24 12 Less than High School 12 
25-34 20     
35-49 166 166Employment   
50-64 23 Full-time 37 

>65 16 Part-time 13 
    Unemployed 49 
Ethnicity       

White or 
Caucasian 65 Marital Status   

Black or African 
American 14 Married 42 
Hispanic  16 Never Married 37 

Asian 3 Divorced 12 
Others 2 Separated 4 

    Widowed 5 
Household Size       

1 22 Residence Type   
2 29 Own a single family home 52 

3 21 
Rent an apartment or 

condo 25 
4 14 Rent a single family home  19 

5 6 
Own an apartment or 

condo 4 
6 3     

More than 6 5 Residence Location   
    Urban 79 
    Rural 21 
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Table D2: Survey instrument and descriptive statistics answers. N=740 

  Questions and Answers Percentage (%) 
Food relevant habits  
Q1: How many times per day do you eat meat   
  I do not eat meat 5.7 
  1-2 times per day  69.5 
  2-3 times per day 19.3 
  More than 3 times per day 5.5 
Q2: How many times per day do you eat leafy greens (lettuce, spinach etc)?   
  Less than one time per day 34.6 
  1-2 times per day  43.5 
  2-3 times per day 16.1 
  More than 3 times per day 5.8 
Q3: Where do you shop for groceries most often? - Selected Choice   
  Conventional grocery store chains (e.g. Meijer, Walgreens, Walmart) 67.6 
  Local grocery stores (e.g. farmer's market, Horrrocks, Harmon's)  17.8 
  Organic grocery chains (e.g. Whole Foods) 10.5 
  Others 4.1 
Q4: How often do you wash your fresh produce?   
  Always 70.3 
  Sometimes 25.3 
  Never 4.5 
Q5: How often do you cook your fresh produce (vegetables)?   
  Always 35.9 
  Sometimes 58.4 
  Never 5.7 
Q6: If you cook your fresh produce, what is the primary reason -Selected 
Choice   
  Tastes Better 52.3 
  Food Safety 34.1 
  Other 13.6 
Q7: Do you eat more home-prepared meals or meals from restaurants?   
  I eat more home prepared meals than meals from restaurants 57.6 
  I always eat home-prepared meals 21.4 
  I eat as many home prepared meals as meals from restaurants 13.4 
  I eat more meals from restaurants than meals prepared at home 5.8 
  I always eat meals from restaurants  1.9 
Foodborne disease perceptions 
Q8: Have you had food-borne disease in the past 24 months?   
  Yes 14.5 
  No 85.5 
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Table D2 (cont’d) 
Q9: Are you aware that raw chicken in the market contains Salmonella and 
has to be fully cooked before eaten?   
  Yes 81.6 
  No 18.4 
Q10 - How severe do you believe the following food-borne diseases are? (Percentage %) 

  

Not at 
all 
severe 

Slightly 
Severe 

Somewhat 
Severe 

Very 
Severe 

Extremely 
Severe 

I do not 
know 

Salmonella (nontyphoidal) 3.4 7.6 22.7 23.4 38.0 5.0 
E. coli (Escherichia coli, 
O157 H7) 3.1 6.8 17.3 24.6 42.4 5.8 
Norovirus 4.5 6.5 16.2 21.2 28.6 23.0 
Staph infection 
(Staphylococcus aureus) 4.1 6.9 17.6 25.3 36.2 4.1 
Listeria monocytogenes 3.8 6.5 13.9 21.5 31.8 22.6 
Participants’ willing to buy and pay more for labelled products 
Q11: More likely to buy (Percentage %)       
  Yes No Do not care* 
USDA-Certified Organic 56.22 19.05 24.73 
Raised without antibiotics 62.7 14.46 22.84 
Does Not Contain Medically Important 
Antibiotics 57.03 17.57 25.41 
Does Not Contain Growth Promoting Antibiotics 61.89 15.81 22.3 
Raised Locally 60.41 12.16 27.43 
Free Range 60 12.57 27.43 
Major Brand Names (e.g., Kraft) 52.84 16.49 30.68 
Generic Brand Names 48.24 21.35 30.41 
Q11: Willing to pay more (Percentage %)       
  Yes No Do not care* 
USDA-Certified Organic 38.92 41.76 19.32 
Raised without antibiotics 42.97 38.11 18.92 
Does Not Contain Medically Important 
Antibiotics 37.43 41.49 21.08 
Does Not Contain Growth Promoting Antibiotics 40.95 40.41 18.65 
Raised Locally 42.03 38.24 19.73 
Free Range 40.27 38.38 21.35 
Major Brand Names (e.g., Kraft) 40.27 37.97 21.76 
Generic Brand Names 31.35 47.03 21.62 

*Added to “no” category in Machine Learning  
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Table D3: Tuned parameters for each machine learning model.  

 Tuned parameters Selection pool for each 
parameter 

Logistic 
Regression 

C: float, optional (default=1.0) c_pool = [1,0.01,0.1,10,100] 

Supporting 
Vector 
Machine 

C is a parameter of the SVC learner and is the 
penalty for misclassifying a data point. 
When C is small, the classifier is okay with 
misclassified data points (high bias, low 
variance). When C is large, the classifier is 
heavily penalized for misclassified data and 
therefore bends over backwards avoid any 
misclassified data points (low bias, high 
variance) 
gamma is a parameter of the RBF kernel and 
can be thought of as the ‘spread’ of the kernel 
and therefore the decision region. 
When gamma is low, the ‘curve’ of the 
decision boundary is very low and thus the 
decision region is very broad. When gamma is 
high, the ‘curve’ of the decision boundary is 
high, which creates islands of decision-
boundaries around data points. We will see this 
very clearly below. 
 

 c_pool = 
[0.01,0.1,1,10,100,1000] 
  
g_pool = [1e-5,1e-4,1e-
3,0.01,0.1,10] 

Neural 
Network 

hidden_layer_sizes. The ith element 
represents the number of neurons in the ith 
hidden layer. The number of layers. 
solver. The solver for weight optimization. 
 
 

nn_pool = 
[(100,),(64,32),(32,16), 

(128,64),(128,64,32)] 
 
solver_pool = ['adam', 
'lbfgs','sgd'] 

Random 
Forest 

n_estimators, The number of trees in the 
forest; max_depth, The maximum depth of the 
tree. 
 

n_pool = 
[10,20,50,100,200,300] 
  
d_pool = [None,1,2,3,4,5,6,7] 
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Table D4: Participants willingness to buy (WTB) labelled products using probit regression. 
Label abbreviation: USDA Organic, USDA; Raised Without Antibiotics, NoAnti; No Medically 
Important Antibiotics, NoMedAnti; No Growth Promoting Hormones, NoHormone; Locally 
Raised, Local; Cage Free, FreeRange; Major Brand, Brand; Generic Brand, NoBrand. Numbers 
in the table represent coefficient. In other words, change in z-score with one unit increase in 
independent variables. Positive constants in the table represented the increase in probability to 
dependent variables. Negative constants in the table represented the decrease in probability to 
dependent variables. Number in the brackets refers to standard error.  

Participants' WTB using Probit Regression 

Independent variables  Dependent variable: 

 USDA NoAnti NoMedAnti NoHormone Local FreeRange Brand NoBrand 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Gender 0.152 0.252** 0.226** 0.175* -0.051 0.273*** -0.039 0.148 

 (0.105) (0.106) (0.103) (0.105) (0.103) (0.105) (0.102) (0.103) 

Ethnicity 0.322*** -0.095 0.111 0.057 -0.252** -0.143 0.035 -0.241** 

 (0.111) (0.111) (0.108) (0.110) (0.108) (0.109) (0.107) (0.107) 

Residence Location 0.225* 0.310** 0.325*** 0.248** 0.096 0.322** 0.101 0.012 

 (0.127) (0.128) (0.124) (0.126) (0.125) (0.127) (0.124) (0.125) 

Household Size -0.002 0.015 0.009 0.100** 0.005 0.013 0.086* 0.081* 

 (0.047) (0.047) (0.046) (0.047) (0.046) (0.046) (0.045) (0.045) 

Employment 0.081 -0.068 -0.0003 0.055 -0.084 -0.021 -0.044 -0.039 

 (0.062) (0.062) (0.060) (0.061) (0.060) (0.061) (0.060) (0.060) 

Residence Type 0.047 -0.031 0.012 0.031 0.014 0.037 -0.005 0.116 

 (0.104) (0.104) (0.101) (0.103) (0.102) (0.103) (0.101) (0.101) 

Education 0.024 -0.002 -0.055 -0.089* -0.016 -0.016 0.018 -0.034 

 (0.048) (0.048) (0.046) (0.047) (0.047) (0.047) (0.046) (0.046) 

Age -0.003 -0.0002 0.002 0.009** -0.004 0.003 0.003 0.005 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

How many times per day do 
you eat meat -0.028 0.072 0.064 0.019 -0.035 -0.032 0.057 0.033 

 (0.081) (0.083) (0.080) (0.080) (0.080) (0.081) (0.079) (0.079) 
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Table D4 (cont’d) 

How many times per day do 
you eat leafy greens -0.078 0.013 -0.061 -0.081 -0.038 -0.040 0.015 -0.089* 

 (0.050) (0.050) (0.049) (0.050) (0.049) (0.050) (0.048) (0.049) 

Grocery store choices 0.128 0.347*** 0.031 0.145 0.176 0.165 -0.074 0.249** 

 (0.110) (0.112) (0.107) (0.109) (0.108) (0.109) (0.106) (0.106) 

How often do you wash your 
fresh produce 0.272*** 0.206** 0.205** 0.292*** 0.123 0.177* 0.060 -0.103 

 (0.095) (0.094) (0.092) (0.092) (0.092) (0.093) (0.092) (0.093) 

How often do you cook your 
fresh produce 0.256** 0.077 -0.026 0.064 0.116 0.209** 0.124 0.127 

 (0.102) (0.103) (0.100) (0.102) (0.101) (0.102) (0.099) (0.100) 

Reason Food safety 0.260** 0.346*** 0.214* 0.148 0.082 0.049 0.070 -0.068 

 (0.114) (0.116) (0.112) (0.114) (0.112) (0.113) (0.110) (0.110) 

Reason other 0.085 -0.148 -0.276* -0.049 -0.084 -0.078 -0.340** -0.460*** 

 (0.163) (0.162) (0.160) (0.163) (0.160) (0.162) (0.161) (0.163) 

Do you eat more home 
prepared meals or meals from 
restaurant 

0.090 0.149** 0.093 0.057 0.131** 0.189*** 0.042 0.094 

 (0.059) (0.059) (0.058) (0.058) (0.058) (0.059) (0.057) (0.058) 

Have you had foodborne 
disease in the past 24 months -0.221 -0.128 -0.086 -0.018 -0.064 -0.131 -0.263* -0.447*** 

 (0.150) (0.150) (0.144) (0.145) (0.144) (0.146) (0.143) (0.144) 

Are you aware that raw 
chicken in the market 
contain Salmonella  

-0.138 -0.002 -0.162 -0.157 -0.104 -0.200 -0.030 0.156 

 (0.135) (0.136) (0.132) (0.133) (0.131) (0.132) (0.131) (0.132) 

Nontyphoidal Salmonella  0.134** 0.032 0.039 -0.017 0.058 0.060 0.105* 0.016 

 (0.056) (0.056) (0.054) (0.055) (0.054) (0.055) (0.054) (0.055) 

Escherichia coli O157:H7 -0.072 0.074 0.024 0.099* 0.007 0.056 -0.060 0.018 

 (0.058) (0.057) (0.056) (0.057) (0.056) (0.056) (0.056) (0.056) 

Norovirus 0.019 0.055 0.008 -0.039 -0.002 0.017 0.017 -0.030 
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Table D4 (cont’d) 

 (0.036) (0.037) (0.036) (0.037) (0.036) (0.037) (0.035) (0.036) 

Staphylococcus aureus  0.034 0.057 0.036 0.045 0.056 0.032 0.104** 0.080* 

 (0.045) (0.045) (0.044) (0.045) (0.044) (0.045) (0.044) (0.045) 

Listeria monocytogenes  0.039 -0.048 0.004 0.043 0.029 -0.018 -0.059* 0.022 

 (0.036) (0.037) (0.036) (0.036) (0.036) (0.036) (0.035) (0.035) 

Constant -
2.249*** 

-
1.982*** -1.358** -2.093*** -0.856 -2.256*** -1.151** -0.766 

 (0.557) (0.560) (0.542) (0.552) (0.540) (0.551) (0.538) (0.539) 
 
Observations 740 740 740 740 740 740 740 740 

Log Likelihood -
453.119 

-
444.542 -476.630 -456.218 -

472.729 -459.750 -486.699 -481.637 

Akaike Inf. Crit. 954.238 937.085 1,001.259 960.437 993.457 967.499 1,021.399 1,011.274 
 

Note: *p < 0.1; **p < 0.05; ***p < 0.01 
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Table D5: Participants’ willingness to pay more (WTP) for labelled products using the 
probit regression. Label abbreviation: USDA Organic = USDA; Raised Without Antibiotics =  
NoAnti; No Medically Important Antibiotics = NoMedAnti; No Growth Promoting Hormones =  
NoHormone; Locally Raised = Local; Cage Free = FreeRange; Major Brand = Brand; Generic 
Brand = NoBrand. Numbers in the table represent coefficients. In other words, change in z-score 
with one unit increase in independent variables. Positive constants in the table represented the 
increase in probability to dependent variables. Negative constants in the table represented the 
decrease in probability to dependent variables. Number in the brackets refers to standard error.  

Participants' WTP using Probit Regression 

Independent variables Dependent variable: 

 USDA NoAnti NoMedAnti NoHormone Local FreeRange Brand NoBrand 

Gender 0.035 -0.064 0.061 0.021 0.047 0.171* 0.011 0.144 

 (0.106) (0.105) (0.106) (0.104) (0.103) (0.104) (0.104) (0.108) 

Ethnicity 0.176 -0.056 0.208* -0.035 -0.083 -0.151 0.105 0.011 

 (0.110) (0.109) (0.109) (0.108) (0.107) (0.109) (0.108) (0.112) 

Residence Location 0.070 0.312** 0.301** 0.244* 0.187 0.181 0.186 0.195 

 (0.130) (0.128) (0.132) (0.127) (0.126) (0.127) (0.127) (0.133) 

Household Size -0.123*** -0.019 -0.075 -0.069 -0.087* -0.115** -0.032 -0.070 

 (0.047) (0.046) (0.047) (0.046) (0.045) (0.046) (0.046) (0.048) 

Employment 0.042 0.084 0.029 0.074 0.049 0.050 0.023 -0.014 

 (0.062) (0.061) (0.062) (0.060) (0.060) (0.061) (0.060) (0.064) 

Residence Type -0.155 -0.078 -0.063 -0.113 -0.025 0.011 -0.028 0.030 

 (0.105) (0.103) (0.104) (0.102) (0.101) (0.103) (0.102) (0.107) 

Education 0.120** 0.022 -0.004 0.002 -0.013 0.040 0.060 0.017 

 (0.047) (0.047) (0.047) (0.046) (0.046) (0.047) (0.046) (0.049) 

Age -0.012*** -0.007** -0.008** -0.004 -0.005 -0.001 -0.005 -0.007* 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

How many times per day do 
you eat meat -0.062 0.070 0.062 0.048 0.023 0.142* 0.082 0.125 

 (0.081) (0.081) (0.080) (0.080) (0.079) (0.080) (0.079) (0.082) 
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Table D5 (cont’d) 

How many times per day do 
you eat leafy greens -0.127** -0.013 -0.129** -0.055 -0.076 -0.088* 0.003 -0.059 

 (0.051) (0.050) (0.050) (0.049) (0.049) (0.049) (0.049) (0.052) 

Grocery store choices 0.204* 0.136 0.194* 0.128 0.228** 0.237** 0.200* 0.337*** 

 (0.109) (0.108) (0.108) (0.107) (0.106) (0.107) (0.106) (0.109) 

How often do you wash your 
fresh produce 0.011 0.132 0.067 0.039 0.046 0.100 -0.124 -0.007 

 (0.097) (0.096) (0.098) (0.094) (0.093) (0.095) (0.094) (0.099) 

How often do you cook your 
fresh produce 0.153 0.179* 0.251** 0.222** 0.222** 0.170* 0.152 0.178* 

 (0.104) (0.102) (0.103) (0.100) (0.100) (0.101) (0.101) (0.105) 

Reason Food safety 0.183 0.148 0.121 0.284** 0.136 0.125 0.050 0.146 

 (0.113) (0.111) (0.113) (0.110) (0.110) (0.111) (0.111) (0.115) 

Reason other -0.073 -0.220 -0.131 -0.047 0.109 0.056 -0.320* -0.011 

 (0.171) (0.169) (0.172) (0.165) (0.161) (0.165) (0.169) (0.175) 

Do you eat more home 
prepared meals or meals 
from restaurant 

-0.049 0.098* 0.049 -0.023 0.040 0.104* 0.016 0.057 

 (0.059) (0.059) (0.059) (0.058) (0.057) (0.059) (0.058) (0.060) 

Have you had foodborne 
disease in the past 24 months -0.113 -0.284** 0.0003 -0.081 -0.117 -0.266* -0.282** -0.417*** 

 (0.145) (0.145) (0.145) (0.143) (0.142) (0.143) (0.142) (0.144) 

Are you aware that raw 
chicken in the market 
contain Salmonella  

-0.165 -0.071 -0.128 -0.162 0.053 0.003 -0.043 0.325** 

 (0.137) (0.136) (0.137) (0.134) (0.132) (0.134) (0.133) (0.136) 

Nontyphoidal Salmonella  0.097* 0.041 0.015 -0.046 0.037 0.028 0.095* 0.092 

 (0.057) (0.056) (0.057) (0.055) (0.055) (0.056) (0.055) (0.057) 

Escherichia coli O157:H7 -0.101* 0.067 0.049 0.048 0.035 0.094 -0.035 0.005 

 (0.059) (0.058) (0.059) (0.057) (0.056) (0.058) (0.057) (0.059) 
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Table D5 (cont’d) 

Norovirus 0.125*** 0.014 0.048 0.008 0.019 0.001 0.017 0.065* 

 (0.038) (0.036) (0.037) (0.036) (0.036) (0.036) (0.036) (0.038) 

Staphylococcus aureus  0.013 -0.002 -0.020 0.055 -0.046 -0.033 0.028 -0.034 

 (0.047) (0.046) (0.047) (0.045) (0.045) (0.045) (0.045) (0.048) 

Listeria monocytogenes  -0.005 0.056 0.043 0.026 0.067* 0.054 0.009 0.001 

 (0.037) (0.036) (0.036) (0.036) (0.036) (0.036) (0.035) (0.037) 

Constant -0.007 -
1.756*** -1.378** -0.898* -1.028* -1.796*** -0.700 -1.291** 

 (0.554) (0.551) (0.556) (0.542) (0.538) (0.549) (0.542) (0.567) 
 

Observations 740 740 740 740 740 740 740 740 

Log Likelihood -442.311 -
460.601 -448.630 -471.769 -479.687 -467.063 -

470.176 -421.393 

Akaike Inf. Crit. 932.622 969.203 945.259 991.538 1,007.373 982.126 988.352 890.786 
 

Note: *p < 0.1; **p < 0.05; ***p < 0.01 
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Table D6: Machine learning model results. WTB, participants’ willingness to buy; WTP, 
participants’ willingness to pay more 

Labels Logistic 
Regression 

Supporting 
Vector Machine 

Neural Network Random 
Forest 

USDA Organic WTB 0.612 ± 0.052 0.615 ± 0.046 0.612 ± 0.051 0.619 ± 0.036 

Raised Without Antibiotics 
WTB 

0.649 ± 0.087 0.643 ± 0.085 0.643 ± 0.078 0.647 ± 0.089 

No Medically Important 
Antibiotics WTB 

0.585 ± 0.073 0.554 ± 0.098 0.565 ± 0.058 0.573 ± 0.068 

No Growth promoting 
Hormones/Antibiotics WTB 

0.601 ± 0.079 0.619 ± 0.093 0.597 ± 0.093 0.622 ± 0.082 

Raised Locally WTB 0.608 ± 0.061 0.592 ± 0.055 0.581 ± 0.063 0.6 ± 0.055 

Free Range WTB 0.623 ± 0.052 0.619 ± 0.035 0.619 ± 0.039 0.612 ± 0.044 

Major Brand WTB 0.512 ± 0.056 0.554 ± 0.048 0.55 ± 0.062 0.511 ± 0.046 

Generic Brand WTB 0.557 ± 0.053 0.524 ± 0.08 0.555 ± 0.067 0.514 ± 0.052 

USDA Organic WTP 0.649 ± 0.034 0.657 ± 0.039 0.635 ± 0.037 0.643 ± 0.042 

Raised Without Antibiotics 
WTP 

0.607 ± 0.037 0.645 ± 0.052 0.595 ± 0.036 0.614 ± 0.055 

No Medically Important 
Antibiotics WTP 

0.619 ± 0.057 0.634 ± 0.061 0.607 ± 0.05 0.642 ± 0.052 

No Growth promoting 
Hormones/Antibiotics WTP 

0.562 ± 0.046 0.585 ± 0.037 0.536 ± 0.035 0.578 ± 0.045 

Raised Locally WTP 0.562 ± 0.063 0.57 ± 0.052 0.542 ± 0.071 0.57 ± 0.058 

Free Range WTP 0.599 ± 0.062 0.597 ± 0.043 0.576 ± 0.053 0.603 ± 0.043 

Major Brand WTP 0.619 ± 0.066 0.612 ± 0.069 0.607 ± 0.051 0.596 ± 0.043 

Generic Brand WTP 0.659 ± 0.083 0.668 ± 0.064 0.691 ± 0.074 0.68 ± 0.074 
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