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ABSTRACT

AN AUTOMATED 3D POSE ESTIMATION SYSTEM FOR SOW HEALTH MONITORING

By

Steven Yik

Pork ranks as one of the most consumed meats globally, presenting both a challenge and an

opportunity to both improve the care of swineherds and to increase efficiency of production. Con-

ditions such as lameness and poor body composition impair productivity and animal welfare, while

current assessment methods are subjective and labor-intensive, resulting in slower production and

ambiguous quality classifications. Precision Livestock Farming (PLF) proposes using technology to

monitor animals, assess health, and apply data-driven interventions to increase welfare and produce

higher quality products. For sows, body shape and motion characteristics provide important health

indicators that could be assessed automatically through appropriate PLF sensors and techniques.

This thesis developed a sow PLF health assessment device using artificial intelligence, including

both a hardware system and a novel training algorithm. First, a data collection device, the SIMKit,

was built using modern dense depth sensors, which can reveal detailed shape characteristics of

a sow. Second, a new annotation method called, Transfer Labeling was developed, enabling the

semi-automated annotation of a large dataset of sow depth images. This dataset was used to train

a convolutional neural network (CNN) to detect and track pig poses. Results show that Transfer

Labeling produces annotations with sub-centimeter accuracy with much-reduced human effort. It

is anticipated that this will lead to much-improved sow health monitoring.
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Motivation

Pork, produced from the muscles of pigs, is the most consumed meat in the world, and the demand

will continually grow with the population. To meet this need from both export and domestic market

standpoints, the U.S. has expanded pork production capabilities from 63 to 77 million pigs since

2013. Consequently, the number of breeding female pigs giving birth (farrowing) has increased

from 5.67 million to 6.38 million [41]. The massive influx of pork demand has caused challenges

for farmers trying to find and maintain labor and ways to increase pork production.

Raising breeding stock is human labor-intense, requiring a trained workforce standard of one stock-

person for 300 sows. Yet, farmers are facing challenges in securing a labor force due to the physical

demands when working with livestock and high employee turnover, limited access to labor in rural

areas, and diminishing numbers of foreign-born workers. Also, to maintain assurance standards for

safe, quality pork products, farmers must show verification of employee training in all areas of pig

production that they participate in [8].

Another difficulty in increasing sow production is how to increase the amount of pork produced.

The breeding female pig (sows and gilts) is the limiting factor in production. The number of times

a sow will give birth to piglets is defined as sow longevity. On average, sows are replaced after

bearing 3–4 litters [13], but this varies greatly, depending on reproductive history, sow health,

and the availability of replacement animals. Studies have shown that retaining sows in the herd

longer (longevity) has economic benefits such as the amount of pork produced and increased farm

revenue [14]. Longevity is determined by the sows ability to maintain productivity over the po-

tential productivity of her replacement. A replacement breeding animal (gilt) fills the production

space vacated by lost sows either due to mortality (death) or from culling (removal from the herd).
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Thereby, an indicator of herd sow longevity, turnover rate, is the sum of mortality and culling.

Two common reasons cited for sow mortality and premature culling of sows are lameness and poor

body condition [13], with a combined contribution of 30% total loss, Table 1.1 shows removal

percentages by category. Research in cattle suggests evidence to target the management of body

condition to minimize the risk of lameness [32]. Unfortunately, stockperson assessment of these

health and welfare indicators is currently subjective [30, 2, 3] and often too late to remedy the

outcomes [1].

Table 1.1: Reasons for sow removal by total percentage [36].

Reason for removal Proportion of total (%)
Reproduction 26.95
Locomotion 15.49
Low production 12.77
Disease 12.99
Misc 7.70

Subsequently, the swine industry requires a tool to easily train stockpersons and a device to quan-

titative assess sow health and welfare conditions. Precision livestock farming (PLF) is the use

of technology to monitor attributes of individual livestock for animal welfare. PLF methods use

technology to take quantitative measurements from sensors to monitor animals. This type of device

provides a tool for stockpersons and can promote more efficient farming practices through early

detection of factors related to sow longevity.

1.2 Approach

The PLF system developed in this thesis performs individualized health monitoring of sows using:

1) visual data recording system and 2) a neural network to specifically observe sow functional

morphology. Functional morphology is the study of an animal’s structure to determine its function.

Observing the functional morphology reveals the development or loss of fat and muscle throughout

her production cycle [9] and locomotion patterns [9, 34]. By training a neural network system to
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perform these evaluations, it provides an approach to assess animal health quantitatively.

Neural networks are a type of artificial intelligence that learns the inverse relationship between

the desired output and input. For input data depth, images are collected from sensors to observe

animal motion and shape. The network observes functional morphological features, and it extracts

information and outputs the pose of a sow, used to analyze the body structure. For a biological

organism, the skeletal structure is the structural foundation. The software equivalent is estimating

pose, a process used to track and locate and object within an image or video. A neural network can

learn a function to relate sensor information that encodes the animal’s structure to produce pose

estimates used for health analysis. For this network to learn this task, a large dataset of known

inputs and outputs is required. Therefore, the acquisition or creation of a large dataset is required

to train such a network.

Currently, there are very few datasets publicly available to develop complex models that incorporate

various modes of sow health. Since one suited for sow pose estimation is not publicly accessible,

the creation of a sow dataset is necessary. Therefore, we have created our own dataset with infrared

and depth images of sows using a custom designed data collection system. Furthermore, the dataset

includes various key indicators of sow health, such as any medical conditions or breeding patterns,

which is useful for development of prediction models.

The network’s goal is to generate pose estimates based on depth image data. Pose provides a struc-

ture to observe kinematic motion and establishes reference points for body condition assessments.

Utilizing a pose estimation network establishes a basis for health monitoring, and will be used to

predict future reproductive performance and risk of culling.
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1.3 Research Contributions

The first objective of this research is to develop the hardware necessary to collect data of sows in

a noninvasive manner. The second is to develop a model to assess the pose from sow functional

morphology. These two objectives are divided into the following tasks:

1. Developed a robust data collection hardware system, utilizing dense depth and infrared

sensors for image creation.

2. Created a neural network semi-automatic labeling method for efficient annotation for large

sets of images.

3. Performed evaluation of the new labeling method vs. human labeling.

4. Developed of a neural network-based pose estimation on depth images for sow health moni-

toring.

5. Performed evaluations of the depth-based pose-estimation neural network for detection ac-

curacy.

1.4 Thesis Organization

Chapter 2 offers a review of the literature addressing sow health and welfare challenges, and

methods and technologies researchers have developed within sow health evaluation. Chapter 3

provides an in-depth look at the development of a robust data collection process. It includes

hardware and software details of the collection device as well as various factors regarding revisions

of the design. Chapter 4 presents a new method to create a large dataset utilizing various computer

vision techniques to create large amounts of annotations efficiently. An in-depth discussion of

each step within the labeling pipeline, key-point extraction model, optical flow label transfer, and

fusion algorithm is provided. Finally, Chapter 5 highlights the development processes of the

pose estimation network with full details on network architecture, I/O formats, loss function, and

4



performance metrics. A discussion of suggested modification and future extensions are provided

to improve sow pose estimation.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides a review of the literature related to this work as well as an introduction to the

methods used to address sow health. First, current sow welfare challenges are discussed, with an

emphasis on body condition, lameness, and sow movement behavior. Next included is summary of

Precision Livestock Farming (PLF) sensor devices, and methodology used to improve sow welfare

and farm efficiency. Finally, to underline this research, an overview of computer vision techniques

and fundamentals of artificial neural network development.

2.1 Sow Welfare Challenges

Observing sow welfare can help narrow down factors that affect sow reproductive performance.

Often, harmful mental or physiological effects prevent a sow from breeding to their full potential

and slowing down injury or disease recovery, leading to early culling of the sow. When detected

early in development, taking precautionary measures can prevent loss of sows within the herd. This

section will focus on a general description of lameness, body condition, and sow group interaction

to provide insight towards poor reproductive health.

2.1.1 Lameness

Lameness is defined byMerriam-Webster7 as "having a body part and especially a limb so disabled

as to impair freedom of movement" or as ’impaired movement or deviation from normal gait"

[23]. Lameness is a painful condition that negatively affects sow herds by contributing to lower

reproductive efficiency and returns to investments. It is a multifactorial problem due to genetic,

mechanical, chemical, and biological processes. Lame pigs are also at a severe disadvantage when

it comes to accessing food and water, particularly if they have to compete with pen mates, suffering

from both pain as well as hunger and thirst. Not only is lameness a welfare concern, but the cur-
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rent incidence in breeding animals results in significant economic losses due to low reproductive

capability and early culling or euthanasia of sows. Gruhot [14] notes that sows identified as lame

have 1.4 fewer litters per animal and results in 15% [28] of herd culling. As there is a paucity of

licensed analgesics for food animals, producers in the United States have few alternatives and often

choose to cull affected sows, especially as severity and duration increase [8].

Pain-related behavior can be used as a tool for on-farm grading of lameness, typically by humans,

observing selected attributes of lame animals. In dairy cattle, an on-farm five-point lameness or

locomotion scoring system emphasizes attributes of lame cows through posture and gait [37] as

the cows transition from the field or barn into the milking parlor. This scoring system in cattle has

reasonable reliability in terms of intra- and inter-observer agreement [24].

A lameness scoring system for sows would ideally categorize the degree of lameness demonstrated

from locomotion. A four-point scale [sound (0), mildly lame (1), moderately lame (2), and severely

lame (3)] developed by Zinpro [12] has been used in sows to quantify and evaluate herd lameness

prevalence. However, the accuracy of these qualitativemethods are highly variable among observers

[25]. Therefore there is a need for more objective and quantitative methods to assess lameness in

sows.

2.1.2 Body Condition

Body condition scoring (BCS) is an on-farm scoring measure [thin (1), good (2), and overweight

(3)] of the physical assessment of the body composition. BCS are commonly used to evaluate

quality and quantity requirements for a sow’s diet [10]. Figure 2.1 shows a visual comparison

of three sows with different body compositions. Studies to evaluate BCS to reasons for culling

sows with BCS = 1, associated with lameness, reduced farrowing rate and are less likely to exhibit

estrus. Whereas overweight sows (BCS=3) were culled due farrowing problems, reduced colostrum

production and increased mortality of piglets [20, 21, 18].
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Figure 2.1: Visual body condition scoring with the following rankings: Thin=1; Good=3; Fat=5

The caliper device, seen in Figure 2.2, was developed in 2012 and is currently being used to

evaluate body composition by measuring around the last rib of the sow. The technology quantifies

the angularity from the spinous process to the transverse process of a sow’s back. The sow caliper

is based on the premise that as a sow loses weight, fat and muscle her back becomes more angular

[19]. A lower number represents a “thinner” sow and a greater number represents an “overweight”

sow. Obtaining accurate caliper evaluations requires that the sow is standing and for many sows,

that they are restrained in a stall. In addition, utilizing this information requires that the stockperson

can both reach the last rib and transcribe the reading.

Figure 2.2: Caliper measurement of angularity along the last rib for body condition assessment.
Colored regions on the caliper indicate the body condition score from Figure 2.1, [19]
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2.1.3 Sow Group Behavior

Sows are herd animals and isolation from others, especially while entering an unfamiliar space, is

stressful. In these situation sows will maintain both visual and body contact by moving side by

side or retaining loose bunches. Pigs have excellent hearing and an acute sense of smell. Thereby,

sows will use their hearing to track people or novelties they can’t see, and are likely, to stop and

investigate sights and smells [7]. To conduct locomotion patterns of illness such as lameness,

we should also recognize that to reduce the risk of predation, sows might adapt movement in the

presence of human observers. [43].

2.2 Precision Livestock Farming

Precision livestock farming (PLF) runs on the ideology that "[A]n animal enjoying good health and

welfare might provide the best guarantee of product quality in the long term" [6]. PLF promotes the

use of increasing implementation of technological advances originally developed for video gaming

(PlayStation, Xbox) to progress livestock production so that it is both more efficient and more

focused on the welfare of the animals. Such advances are necessary to ensure that innovations can

emerge from applications using cameras, microphones and sensors to enhance the farmers’ eyes,

ears and nose in everyday farming. This technology for remote monitoring of livestock, termed

precision livestock farming, is the ability to automatically track individual livestock in real time [5].

PLF technology employing computer vision, implies automated remote detection and monitoring

of identified individuals for animal health and welfare using real-time image analysis for livestock

tracking, weight and body condition estimation, and functional metrics such as locomotion [6, 26,

11]. The data derived from these analyses is useful in developing a model that can offer a range

of real-time management tools to improve health, welfare, production yields, and environmental

impact.
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2.3 Computer Vision For Sow Health Evaluation

Computer vision is the interdisciplinary field of how computers gain a high level of understanding

using images or videos. This focus is primarily utilized for tasks like tracking, motion and pose

estimation, and object detection. How computer vision is useful in sow health evaluation is by

providing a method of analysis for different aspects of the discussed welfare challenges covered in

section 2.1. This section covers various techniques, either being in research or being used in the

swine industry to improve sow welfare.

2.3.1 Lameness Detection

To identify lameness and observe various characteristics that cause it, the assessment of kinematic

motion, such as walking and running patterns, are studied. Research has validated the use of depth

imaging for motion analysis by comparing the motion capabilities to traditional high-resolution

infrared marker motion capture systems [38]. Also, analysis has been conducted on pairwise

series of depth images to evaluate motion variation using principal component analysis to classify

or score animals according to patterns that would indicate lameness [22]. These studies have

advanced technology towards more concrete classifications of lameness, but it still requires more

development to construct a robust system for tracking and motion variations.

2.3.2 Body Condition Analysis

Methods for analyzing body condition revolve around 3D imaging as it best encapsulates shape

information of a physical object. Weight assessment on sows have been primarily done with scales.

However, research work using the Microsoft Kinect™ cameras, a 3D reconstruction of the sow’s

body is used to volumetrically estimate weight using a non-linear regression model [29]. This

operation can perform as a non-contact alternative as sows can be non-cooperative when trying

to be placed on a scale. Other methods of analysis consists of target key-points along the sow’s

body using a pair of depth cameras to observe posture [42]. This method constructs a pointcloud
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representation and extracts limb positions through planar fitting and clustering in order to obtain

body measurements. The current research focuses on specific body measuring techniques, but a

holistic assessment has yet to be conducted for classification or scoring.

2.3.3 Observing Sow Group Behavior

Other tasks such as sow segmentation is useful to isolate an individual sow. Research using YOLO

[33], a specific type of fully-convolutional neural network (CNN), generates bounding boxes to

find regions where there are pigs within an image. In cases where pigs are touching each other

or overlapping, the network can have some difficulties. By using some correction algorithms, re-

searchers have been able to distinguish individual animals in a cluster [17]. Furthermore, research

on individual posture detection has been successful using CNNs [31]. These networks are useful

for identifying behavioral states along with tracking for monitoring activities sow activity: length

of time standing or lying down. The use of more advanced computer vision techniques, like artifi-

cial neural networks, have become more popular as they have shown to be capable of performing

high-level monitoring tasks.

2.4 Artificial Neural Networks

Artificial neural networks are a highly interconnected network of many simple functions called

neurons. These neurons are parallelized and grouped, called a layer, to perform a specific oper-

ation. Within the network, many layers are interconnected together in a specific way to form an

overall architecture.

These networks try to model a high-level task by learning a relationship between the input-output

mapping through an iterative process of training and validation. Training is performed by computing

gradients across the predicted and the ground-truth, or known output, and adjusting the neuron

weights that help converge the network using a loss function as an optimization method.
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The next sections will discuss neural network fundamentals and the necessary layers utilized in the

project. There is a large variety of network architectures, but this paper will primarily focus on

convolutional neural networks (CNN), as these network architectures are designed for image and

video input.

2.4.1 Neuron Structure and Network Architecture

The neuron performs the primary computational operation based on the input of one layer and

outputs the value to the next layer. Figure 2.3 shows a basic outline of the neuron architecture:

Figure 2.3: Neuron architecture

The inputs, x1–xn, are the outputs of a previous layer with n neurons. The weights, Wk1–Wkn,

is a tensor that multiplies the input with its respective weight before performing a predetermined

propagation function [15]. The value of this weight determines the amount of effect that the previous

neuron has on the current. Generally, positive values are excitatory connections, and negative values

are inhibitory connections when referred to the biological neuron [35]. The propagation function,

denoted by Σ, is a fixed function used to perform a specific operation; specific functions used in

this research will be discussed. The activation function, φ, generally a non-linear function that

determines the overall output of the neuron. The activation is important as all subsequent parts of
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the neuron are linear operations; this function enables the network to learn non-linear properties

between the source and desired output. The output of the activation function is passed along to all

neurons in subsequent layers. Equations 2.1 and 2.2 show the mathematical operations:

propout =
n∑

i=1
(Wki xi) (2.1)

ok = φ(propout) (2.2)

where the propagation function, Σ, is the simple summation and φ is an arbitrary activation function.

The combination of multiple neurons in parallel is called a layer. The combination of sequential

layers form an overall neural network architecture. Figure 2.4 shows a detailed view of how layers

are interconnected and the propagation flow between input and output. Each circle represents a

single neuron with the outputs of multiple neurons, becoming the inputs of subsequent neurons in

the next layer.

Along with the network architecture, a loss function and optimizer are requirements to dictate

how the network learns to perform a particular operation. The loss function helps determine

what the network should observe to produce the same result as the given output effectively. This

function is unique to the type of application of the designed network. The optimizer is a pipeline

of functions that alter network weights in order to converge the network output towards the ground

truth. Generally, optimizers are a variant of gradient descent, which computes the gradient value

of the output and propagates backward towards the input to target which weights contribute to the

desired output. Enhancements such as momentum and modified learning rates further decrease the

learning time and increase the accuracy of the output.
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Figure 2.4: A simple neural network architecture.

2.4.2 2D Convolution Layers

Convolutions are the essential layers when it comes to image-based neural networks. A subclass

of neural networks called convolutional neural networks (CNN’s) are based on the convolution

layers to find patterns and characteristics of an image. The convolution operation, from a top-down

perspective, is a filter (kernel) performed on an image. Equation 2.3 is the mathematical operation

performed in a linear algebra representation:

convout = (I ~ K)x,y =
+∞∑

i=−∞

+∞∑
j=−∞

(Ii,jKx−i,y− j) (2.3)

where I is the image represented as a matrix and K is the kernel of operation. Effectively the

convolution operation outputs how the shape of the kernel matrix modifies the image. For better

understanding, Figure 2.5 shows a top-down overview of how the convolution operates over an

image. The kernel, represented in blue, is slid across the image performing element-wise multi-

plications to produce a filtered image. The kernel values, represented as the neuron weights, are

shared across the image. The number of channels that compose the image determines the number
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of kernels. Thereby creating a set of filters used to extract specific patterns and features within the

image. During network training, these kernel values are altered to produce specially designed set

filters to generate the given output.

Figure 2.5: Top-down view of a convolution operation. The kernel is represented as the blue
square and the convolution operation performs a region-wise dot product across the image with

the neural network able to produce a set of filters to match an output.

2.4.3 Pooling Layers and Receptive Field

The pooling operation acts like the convolution operator, which has its kernel. This kernel notes

how the output is calculated based on the type of pooling: min, max, average, etc. For max-pooling,

the maximum value is chosen within the kernel, and the out is assigned that value. Figure 2.6 shows

how the max-pool operation is performed on a 4x4 matrix. The purpose of this layer is to reduce the

number of dimensions of a given input. In the case of images, the number of dimensions is given by

the resolution size and channels, thereby having an exponential growth in dimensions as resolution

size increases. Pooling used to reduce the computational complexity, effectively ’down-sampling’

the image relative to the kernel size.

The combination of convolutions and pooling layers help construct a structure where a filter can

observe larger regions of an image without the need to increase the kernel size. The main idea is
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Figure 2.6: Max-pooling operation with a kernel size of 2. Max-pool denotes that the maximum
value in in the region is the output. Each color denotes the region from the input matrix used to

compute the output.

that increasing the kernel size will result in more memory usage to perform larger dot-products.

Thereby exponentially increasing the number of element-wise multiplications. So instead of mak-

ing the kernel larger, making the image smaller leads to a decreased number of multiplication

operations and maintains the memory usage. So if the image is changing, how large of an area that

the kernel operating on? To answer this question, let us observe the number of connections between

each neuron. For example, if we observe a single neuron that as previously had a 2x2 max-pool

operation performed, it has four connections; since there were four neurons in a 2x2 kernel. This

concept can extend to multiple layers and various operations.

The receptive field is a hyperparameter in which denotes the number of connections. It is useful

because it also is equivalent to the size of the kernel operating region. Therefore, a kernel with

a receptive field similar to the input resolution is effectively operating on the whole image. This

relation is critical when it comes to images as different features are useful in different receptive

fields. For example, at lower fields, the kernel is observing detailed texture while at large receptive

fields, it observes object shape and positional relationships.
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2.4.4 Skip Connections and Residual Blocks

When dealing with images, the use of convolutions as a filter method is excellent for extracting

features. However, when concatenating multiple filters together, fine details can be lost due to the

previous layers of filters. The utilization of skip connections between layers can mend this issue.

The primary purpose of the skip connection is to retain the original information before filtering

and reincorporate it back after filtering. In a mathematical sense, this is a simple addition after a

function operation. Applications of skip connections are critical in maintaining previously known

information and allowing for shortcuts between layers to enhance network learning.

Residual blocks are a set of network layers designed around skip connections—Figure 2.7 shows

the architecture for a residual block. From the figure, F(x) is a sequence of arbitrarily defined

layers. Residual blocks operate by having the network find the difference between the input and the

output of the block. The result is the content in between, referred to as the residual. It helps the

network to skip learning on intermediate layers in which do not contribute to the desired output.

Residual blocks are a fundamental building block for larger CNN architectures such as ResNet [39].

Figure 2.7: Residual block architecture

2.5 Summary

This chapter provided a review of sow welfare challenges along with precision livestock farming

technologies aiding to solve these issues, namely: lameness, body condition assessment, and group
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interactions between sows. An overview of artificial neural networks was presented and discussed.

In-depth structures that make up neural networks were explained with mathematical operations

and top-down perspectives to demonstrate the overall impact these structures have. Specifics for

convolutional neural networks were explained as these are critical concepts used in the research

project and will be utilized in upcoming sections discussing network architecture construction.
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CHAPTER 3

SOW DATA COLLECTION

3.1 Introduction

A dataset is required to train a network to perform individualized health monitoring. This dataset

is preferred to contain information sources about characteristics of the sow’s health along with a

health record of each sow with indications of lameness or other measures of reproductive health.

These metrics can be used to develop sow health detection and prediction devices.

Currently, we are not aware of any open-source datasets that can be used to estimate sow pose.

Finding an automated way to collect sow data allows for the creation of a dataset used to train

a network to perform health monitoring. Therefore, I have created a custom hardware collection

device to obtain data, known as the SIMKit. The device was constructed such that it can withstand

the harsh farm environment. With many factors that need to be accounted for, the farm environ-

ment poses significant challenges when creating robust technological hardware. The next section

discusses several types of environmental hazards.

3.2 Farm Environmental Hazards

Many environmental hazards around the farm can inhibit the proper operation of hardware. Farms

are prone to the buildup of particulate (dust, dirt, skin cells and other animal by-products) in the

air and on surfaces. Without regular cleaning maintenance, a build up of these particulates on

non-porous material surfaces can lead to device failure; sources include obstruction of camera lens

or clogged cooling fans leading to device overheating. Surfaces can have a build up of grime on

non-porous materials, causing sensor camera lenses to be obstructed and cooling fans to be clogged.

Additionally, depending on the location and exposure of the device, it can be susceptible to physical

damage or obscured by the animal’s position. Devices close to the ground would require substantial
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protection from moving forces of animals, people and equipment as well as a higher cleaning and

maintenance routine. Aerially mounted devices would have less physical disruption, but need to be

able to operate at extensive ranges as well as incorporate a method to remove pests such as spiders,

flies, and rodents from landing, obstructing or destroying sensors.

Chemical hazards are also a significant concern for cathodic corrosion. Production of swine results

in corrosive biproducts such as feces and urine. A corrosive gas compound produced in pig urine

is ammonia (NH3). Copper used in wiring within circuit boards, is highly reactive in the presence

of ammonia, causing deterioration of connections. For example, electrical shorts occur when the

buildup of hexamine-copper(II) [Cu(NH3)6]
2+ ions form, along with impurities, on the surface of

circuit board leads. Also, sows are provided ad libitum access to water and routine cleaning in

the barns makes the environment have a high moisture content. Moisture accelerates a corrosion

process and will shorten the lifespan of materials if not properly protected.

Thermal fluctuations contribute to device operations since barns are not insulated from outdoor

temperature variations. This leads to extreme ranges in temperatures, possibly causing hardware

malfunction if it exceeds rated operating conditions for sensors and processors. Mitigation tech-

niques involve the usage of cooling fans, heat sinks, or sealed enclosures. These help regulate the

device to minimize the large spikes in temperature change.

3.2.1 Biosecurity and Connectivity

A considerable focus to maintain food animal health includes biosecurity standards which minimize

the introduction of disease via people and fomites (inanimate objects) from outside the farm. As a

result, all hardware that enters a farm environment must be disinfected and then remain on-site to

meet compliance of the farm’s biosecurity plan and protocol. These biosecurity protocols, while

good for animal health, present problems as the prototypes cannot be brought back to the lab for

adjustments. The prototypes must be near completion, from a hardware perspective, before on-farm

testing can occur. Biosecurity measures also imply that any transfer of data using hardware such
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as external drives, must be kept at a minimum as the transportation of storage devices for collected

can also be a carrier for disease spread.

Due to these restrictions placed on prototype and material entry into farms, some consideration

of utilizing the internet for data transfer were discussed, but the availability of strong connections

may be limited. The primary reason is that many farms are sited in remote locations with minimal

access to common networks such as cellular and satellite connectivity, as well as internet access.

Locations with these amenities, the type of data collected is a concern as devices, like cameras, can

generate upwards of several gigabytes of information per second. Therefore, large storage devices

like hard drives and flash drives are a reasonable medium for data transfer. Another key factor

that should be accounted for is cyber-security. Having proper encryption methods and hardware

protection measures are both vital to protect private information and in maintaining good business

practices between the device developer and farm operators.

3.3 SIMkit Collection Device

The SIMkit (Sows In Motion kit) collection device is the custom hardware platform used to operate,

process, and store data from the selected sensors. The first section outlines each component’s

requirement specifications, design choices and technical construction for various parts. Second, is

an overview of the logistics of data transfer between the farm site and research lab. And finally, the

details of the data preprocessing procedure used to format the data for the dataset.

3.3.1 Design Requirements

The design requirements for the SIMKit were determined by the hazards initially identified in

Section 3.2. The creation of a preliminary hazard analysis (PHA), seen on Table 3.1, establishes a

baseline for what the device needs to incorporate. The hardware components were selected using

the PHA as a guideline. Sensors and processing units were determined based on the form factor
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and capabilities used to record the data.

Table 3.1: SIMKit preliminary hazard analysis

Device Hazard Detection Corrective Action /
Mitigation

particulate N/A PLA/PETG enclosure
corrosion N/A PLA/PETG enclosure
moisture N/A PLA/PETG enclosure

Processor and
Interfaces

overheating onboard temp-sensor heatsink + cooling fans
particulate observation / sensor blockage routine maintenance
corrosion N/A onboard conformal coating
moisture N/A cooling fans
overheating onboard temp-sensor heatsink case + cooling fans

Sensors

pests N/A cooling fans
particulate N/A PVC encasement
corrosion N/A PVC encasement
moisture N/A PVC encasementWiring

pests observation PVC encasement

3.3.2 Concept Design

The conceptual design of the SIMkit was envisioned to non-invasively measure sows in motion

without disturbing normal farm operations. Specifically, to record data as sows moved between

facilities (farrowing barn to breeding barn) during normal production transition. The objective is to

identify functional morphological features associated with lameness, and observe body condition

from a dorsal (top-down) view. Therefore, depth imaging cameras were selected since it provides

a 3D map of the sow within the environment and operates at high enough frequencies to record

motion data. Figure 3.1 provides a visual concept. Depth imaging cameras were placed such that

sows would travel through the hallway, without inhibiting normal sow movement, and the camera’s

field of view during barn loading/unloading sessions.
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Figure 3.1: A simplified view of how the SIMkit device operated in the farm setting.

3.3.3 Prototype Designs

With the design specifications and concept planned, several prototype design iterations were de-

veloped using easily available materials. After many designs, the SIMkit hardware design became

a balance between operational feasibility and manufacturing complexity.

For the first prototype, the Raspberry Pi 3b+ was the only available lightweight computer with easy

development capabilities. However, many of the Raspberry Pi based prototype devices, as seen in

Figure 3.2, ended up being re-designed due to bulk and lack of convenient functionality once tested

within the commercial farms.

Figure 3.2: SIMKit prototype using a Raspberry Pi as the base processor along with an Intel
Realsense camera.

23



Another challenge to these devices was setup times, often taking upwards of an hour and causing

delays to normal farm operations.

The next iterations, using the Nvidia Jetson board, were modeled in CAD (computer-aided design),

and simulations were ran to test durability and actuation. Figure 3.3 shows the final design imple-

mentation. This design features: adjustable 2-axis rotation camera mounts for calibration (Figure

3.4), 3.5 inch LCD with tactile buttons for an interactive user interface, and fully enclosed system

with considerations of the hazards listed in Table 3.1. Individual CAD drawings are included in

Appendix A.1 and full build instructions in Appendix A.2.

Figure 3.3: CAD rendering of the final Simkit design. Features include: tactile buttons for
interfacing with the monitor, 2-axis rotation on camera mounts for re-positioning, and easy

mounting with compliant conduit PVC piping.

The modeled parts were prepared and 3D printed using PLA and PETG plastics. The advantage to

these materials include a lightweight and durable structure to the enclosure while being resistant to

ammonia and moisture leakage. Extra materials, like PVC piping and fasteners, were used to join

the 3D parts together. Construction does involve some work with wiring up the interface buttons
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Figure 3.4: Detailed view of the camera holders. There are 2 pivot axes designed for roll and pitch
movement. There is a location for a fan and the design allows for enclosed wiring to the processor.

and fans, but the overall build is simple, with the need of just screwing down components to the

box and wire management to keep everything enclosed.

3.3.4 Sensor Selection and Placement

Multiple imaging sensors were tested and evaluated based on the following key criteria: ease of

development, scalability, and accuracy. In the initial and current project development, both the

Microsoft Kinect™ v1 and Intel® Realsense™ D series cameras were the popular depth imaging

cameras for research due to their ease of development integration and customer support.

Disadvantages of the Kinect™include the need for a main power connection and thereby subject

to normal ventilation and equipment drawn power surges. In addition, the generated depth map

was not as easily obtained through complications with Matlab® and storing raw image formats

with near real-time performance. Alternatively Intel® Realsense™ D435 series camera runs off of

USB2.0 or USB3.0 interfaces with a dedicated USB, bus at up to 90fps at distinct resolutions and
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is compatible with Python3+ and C++11+ API’s for software development

With a depth camera, sensor position placement relative to the sow is important as to decide how

to best capture motion and body composition. From previous works, observing the back and sides

provide the best views for obtaining context clues for muscle and fat deposits and limb movement

either through observing the leg motion directly or indirectly through back muscle displacement

[29, 38]. When looking for sources of motion abnormality, a good location is a top-down view

of the sow. This view would contain information about limb position via muscle movement along

the back. It will show the relative trajectory, Figure 3.7 shows a depth image that contains lots of

information on the sow’s back. Tracking the top-down motion will reveal lameness by observing

a predicted trajectory with a normal sow compared to a lame one. Also, lame sows demonstrate a

distinctive periodic lateral movement pattern as to avoid applying pressure to injuries. Therefore,

the depth cameras will be mounted on the ceiling of the barns. The cameras are placed within 2–3

meters from the ground, to minimize measurement error, as seen in Figure 3.5.

3.3.5 Computing Platform and Data Acquisition

For a computing platform, a full-sized computer is not viable due to biosecurity and complications

with setup and operation. As a data collection device, the processing needed should contain video

encoding and image processing hardware with relatively high clock speeds. Here are the minimum

requirements that were decided when choosing a computing unit:

• 1Ghz quad core processor

• 2GB of RAM

• Digital Signal Processing (DSP) chip for video or image processing

• USB 2.0 or 3.0 interfaces for camera compatibility
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Figure 3.5: Simkit installed on the ceiling within a farm hallway. Camera field of view is
indicated by the blue overlaid region in the image

• Small form factor so it can easily be mounted

• I/O pins for buttons / LED indicators for user interfaces

The Simkit prototypes has two different versions with different computers: the Raspberry Pi 3

Model B+ and later, the NVIDIA Jetson™ Nano Developer Kit. The Raspberry Pi 3b+ is a 1.4Ghz

quad-core single-board computer that was used along with the Intel® Movidus™ Neural Compute

Stick as a co-processor for neural network acceleration. The Simkit firmware was created on the

Linux kernel with integration with the Debian operating system with the user interface application

developed in Python3.6+.

The Raspberry Pi based prototype setup consisted of a 3.5-inch touch LCD for a user interface
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and a single depth camera powered by an external 5v/2.5A power transformer. Both infrared and

depth images at roughly 8fps with dimensions of roughly 15x20x5cm. The overall performance

was lackluster, and further analysis of the system reveals that the need for USB3.0 is a necessity as

the camera was being underpowered from the 5v USB power lines on the circuit board. There was

not enough bandwidth to support a high frame rate with multiple streams being saved.

The NVIDIA Jetson™ Nano System onModule (SOM) setup consisted of a dual Realsense™ cam-

era arrangement spaced at 1 meter apart and powered through the USB3.0 interfaces and an external

SSD for raw image storage. The same 3.5 inch LCD was used as an interface, but using a separate

circuit to have tactile buttons as farmers preferred this method over a touch screen. An uninterrupt-

ible power supply was used with a 5v/3.5A power transformer, as this board required more power

for more processing units. The overall performance is at 15-20fps for both infrared and depth

images for both cameras. There are some bandwidth issues with the USB3.0 bus being multiplexed

between 2 cameras, which may cause one not to operate occasionally, but a single camera has not

shown any issues. A single camera variation is the current setup being utilized for the Simkit, and

all data that is shown is from recorded data using this device.

3.3.6 Data Transportation Pipeline

As previously mentioned, farm environments will most likely not have a high-speed internet con-

nection sufficient for large file transfer. Keeping track of the data transfer from the sensor to storing

it in a remote database location is essential. Figure 3.6 outlines the information transfer pipeline.

The Simkit performs all of the hardware to software transduction processes, data encryption,

and stores the final files to the connected external solid-state drive. The farmers compiles the

sow production records, in paper format, such as sow identification, number of pigs weaned and

caliper scores for the days recorded and ships the hard drive and paper reports to the research

lab for validation and analysis. A replacement hard drive is sent back with specific hardware IDs
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Figure 3.6: A block diagram outlining how data is obtained, processed, and transferred to a
remote database.

and file structures for the Simkit to accept as functional. Drive replacement is a simple USB-C

connection performed when the device is turned off. The next section outlines the specific details

that encompass the data processing needed before storing the files in the database.

3.4 Data Preprocessing

Data preprocessing is a series of procedures to prepare the data for later usage. It is useful to process

and filter out unnecessary information during data collection, such images that do not contain sows

("no-sow"). This section discusses the various algorithms used to filter and refine the raw data

recorded at farms in preparation for neural network training. The raw data format consists of a folder

for each camera used in that specific recording with sub-folders indicating which sensor each image

is coming from. The images are stored in a .png format using the OpenCV library in Python3.6.

Infrared images are read using the "cv2.imread()" function utilizing the "IMREAD_GRAYSCALE"

flag. For the depth images, the same function is called, but using the "IMREAD_ANYDEPTH"

flag. A generated text file is created to indicate the scale factor applied to the depth image values

to obtain a real-world distance measurement in meters.

3.4.1 Motion Detection Filtering

A motion detection algorithm is used to filter the raw data of the image frame where there is no

sow within the frame. Motion is detected with the following algorithm (Alg 1):
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Algorithm 1 Coarse Motion Detection
Input: {I0, . . . ,Ii, . . . , In} as image sequence
threshold = minimum number of pixels to constitute an object
image_list = a sequence of image numbers
for every image Ii in the sequence do

background←find background pixels on Ii based on Ii−1 to Ii−200
foreground← Ii - background
if sum(foreground) > threshold then

append image number to image_list
end if

end for
Return: image_list

The background detection algorithm being used is the Mixture of Gaussians (MOG2). It operates

by creating a variable k number of gaussian distribution for every pixel to model the color value.

A history of n images (defaulted to be 200) is used with a weight distribution being proportional to

the amount of time a color has remained in that pixel. Meaning that the produced output image will

have high weights for anything classified as background and low weights for foreground [45, 46].

The threshold value for an object is tuned such that at least 4% of the total pixels are foreground. It

is equivalent to having enough visibility for a sow’s head to be within the frame. The final output of

the course motion detection algorithm is a list of all images that have contained any motion. This

list is saved off into a CSV file for a quick filter to find instances of pigs.

3.4.2 Depth Image Preprocessing

Depth images from the Intel®Realsense™ cameras are encoded as a 16bit value of depth and scaled

to minimize rounding errors. These images are packaged within the .png format, which allows for

easy extraction of 16bit values, but will not be visible using a standard photo viewer as they use

8bit encoding. The images are scaled to obtain real-world depth values, using the correction factor

extracted from the camera used to get a distance in meters away. Then, each pixel is clipped to a

max distance of 2.5 meters is the distance from the camera to the barn floor. This value mapped to

a normalized floating-point value from 0.0 to 1.0 for all images. This preparation is essential for
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neural networks as inputs should be consistent with a strict range of values. Figure 3.7 is a visual-

ization of the normalized depth image and displayed using a colormap to help differentiate distance.

Figure 3.7: Processed depth image with a color map and contour plot overlay.

3.4.3 Health Record Processing

The sow records of individual sows are collected in paper format and transferred to the farm office

for entry into an electronic sow performance database. The records track the sows history and

include health information such as vaccination records, number of births (parity) farrowing date;

number of piglets born alive, still, and mummified; piglets weaned; lactation length; wean to estrus

interval;mortality; and reasons for cull. This information is transcribed into a database format and

can be exported and interpreted as numbers for a neural network ground truth value.

3.5 Summary

The SIMKit data collection device is a specially designed piece of farm technology that is robust to

harsh farm environments. This technology is used to obtain a top-down infrared and depth image

view of sows walking to extract motion and topology metrics within a time-dependent structure.
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It operates as a stand-alone unit with data being safely and efficiently transferred to the research

center for analysis. The video data is then filtered and prepared for subsequent neural network

training and stored as a big data.
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CHAPTER 4

SEMI-AUTOMATED LABELING

4.1 Overview

This chapter proposes transfer labeling, a semi-automated procedure for annotating key points in

video data. This procedure detects features in one modality and transferring them, along with their

labels, to another modality. Our application uses marked locations of sow joints only detectable in

the infrared image to create labels for depth images. This design is divided into two parts: mark

detection and joint association. Sowmarkers are detected on an image with a simple CNN detector.

A human labeler then assigns a joint label to the detected marks on that image. Finally, optical flow

is then used to propagate the joint labels to the remaining images in the video sequence. Analysis of

this procedure is quantitatively evaluated and compared to the conventional human labelingmethod.

4.2 Introduction

Labeled datasets are an integral part of supervised learning, but creating one is a tedious and

laborious task. Often these datasets are large and contain annotations for every input. The conven-

tional method for annotations requires people to hand label each set of inputs with a corresponding

output. This labor-intensive process is very time consuming, which grows the larger dataset is.

Alternatives, such as motion capture devices, used to mark locations, affects the data collected due

to physical indicators that are attached to the subject. Therefore, the images collected have visual

indicators, which is not representative of the actual input.

Transfer learning overcomes this problem by capturing motion with marks that are visible in one

modality while being invisible in a second modality. Since marks are detectable in the first modal-

ity, we use infrared, this setup enables automated labeling. These labels can be transferred to the
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second modality, in our case of depth, while maintaining the integrity of the data. We seek to use

the unmodified depth images with annotations to train a network.

4.3 Annotation Framework

Annotations are represented in many formats; for pose estimation, a list of coordinates encodes a

sow’s joint locations. A coordinate is assigned to be the central location of a joint with an accom-

panying label to determine the classification: head, neck, left-shoulder, right-shoulder, last-rib,

left-hip, right-hip, and tail. These values are stored within a dictionary entry that contains: the

reference input image number, date of recording and list of joint locations. These values are the

essential information required for the neural network to begin training. Transfer labeling is used to

obtain joint locations efficiently by automating portions of the labeling process.

4.4 Transfer Labeling

Precise manual labeling of keypoints in-depth images is challenging due to a lack of local texture

cues. Instead of labeling depth images directly, labels can be generated in a different modality and

then applied. Depth images are calculated based on two infrared cameras with known intrinsics

and extrinsics to calculate depth. By placing label markings only detectable in infrared images,

these markings are extracted as labels for depth images. This method provides a way to determine

accurate label locations without modifying depth image data so they can be used as training data.

Transfer labeling can apply for depth and infrared image pairs since they represent two distinct

types of information: distance, and infrared reflectivity. This configuration provides an added

convenience of pixel-wise alignment. This benefit is due to how depth images are generated from

image disparity from stereo infrared imaging cameras. This relationship makes transferring labels

directly from one image type to another simple and accurate.
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The distinction of different marks on sows to their joint labels is a challenging task for computers.

Humans can perform this task with ease with very little training. Therefore, a human labeler assigns

these label IDs to the sow markings for a single image within a sequence. The label IDs for the

remaining images is accomplished through mark tracking. Given an initial set of labels, they can be

tracked forward and backward in time. The tracking of pixels between sequential frames is called

optical flow, and this technique is used to associate a set of joint labels throughout a whole sequence

of frames. The time required to annotate a sequence goes from a whole sequence (roughly 200

images) to one image, thus drastically decreasing the amount of time and effort required to generate

annotations.

4.5 Preliminary Preparation

Before data collection recording, each sow was palpated and marked on 8 locations: top of the

scull (head), articulation between thoracic and cervical spine (neck), top of the scapula (left-

shoulder/right-shoulder), spinal position of the last-rib (last rib), hook bones (left-hip/right-hip),

and tail head (tail). These locations were selected because they provide consistent body landmarks

for the pose. The head mark is placed between the ears. By palpating the sow’s spine, the neck

mark is located on the first thoracic vertebrae. The shoulder marks indicate the top of each shoulder

blade. The last rib location is determined by palpation of the sides of the sow and traced up to the

back spinal location. Hip mark locations are placed at the top of the hook bone. Lastly, the tail

mark is placed at the tail head.

A circle using a dark-colored solid paint crayon stick is used to place the marks on sows. These

crayons, commonly referred to as livestock markers, are used in the farm environment and are

food safe. The application of paint makes a distinctly identifiable mark on the sow’s skin as it has

different infrared material properties. Figure 4.1 shows the placement of the joint markers on an
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infrared image.

Figure 4.1: These marks are paint crayon markings on the sows back, used to obtain image labels.

4.6 Mark Detection Neural Network

The joint markers on pigs need to be extracted from the infrared images to obtain annotation label

locations. The marks need to be discriminated from the background and separated from extraneous

markings on the sow from farm operations. A simple convolutional neural network (CNN) can

easily extract well-defined features with very high accuracy. Therefore, a CNN was constructed

to detect these joint markers. The CNN extracts the mark features and constructs a confidence

map denoting the central location of a drawn mark on the sow. This section discusses the CNN

construction and evaluation using the neural network concepts described in section 2.4.

4.6.1 Mark Labeling

A hand-labeled dataset is used to train the mark detection network. Hand labeling is performed

through a custom-built interactive program I created. It displays images in a window, and the

human labeler can click on the joint pixels that should be detected. These pixel locations constitute

36



the ground truth values for training and evaluating the neural network. The human labeler can also

indicate ignore regions, not to include markings on sows originally placed by stockpersons during

farm operations. The ignore regions are used during training to neither learns to detect nor ignores

extraneous markings not related to the joints. The hand-labeled dataset consists of roughly 157

images with sows in various locations and some with multiple sows within the frame. These images

were selected with the following criteria: one image per video sequence of pigs, all joint markings

in the image are given an annotation, and locations of pigs are chosen to be varied to avoid learning

relative occurrence within the image.

4.6.2 Network Architecture and Implementation

The neural network is constructed within an environment container to maintain environment

run-time consistency and avoid version differencing issues. The program of choice is Nvidia

Docker™ which is an extension of Docker™. Docker is a container management system that allows

for the construction of a virtualized software package that includes all dependencies for applications

to run.

I have created this docker image that runs on Ubuntu 18.04LTS as the base operating system

with CUDA acceleration. The neural network framework is constructed using Python 3.6 within

Tensorflow 2.1 with OpenCV 4.2, Matplotlib, and Scikit-image as support packages. The training

server contains an Nvidia GTX 1080Ti graphics card, 64Gbs of RAM, and an Intel core I5 processor

with an image of the docker container for training and development.

4.6.2.1 Input and Ground Truth Layers

With the annotations and images, the data needs preprocessing during the training session since

loading all of the images can cause RAM overflow issues. To avoid this, I have constructed a data

generator that formats the input and ground truth data from the dataset for the network.
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The input layer of the CNN is constructed by taking the input image filename from the annotations

and decoding the image and normalizing the values from [0.0-1.0] and storing it into RAM. This

image is then rescaled to 256x512px resolution to match the network input. A uniformly random-

ized set of image operations: scaling by 0.8–1.1 times larger, rotation of [-20,20] degrees, and a

vertical mirroring across the vertical centerline of the image are performed with background pixels

having a value of 0.0. These specific values are stored and again utilized for the ground truth. This

type of augmentation allows for more variation in images during training so that the network is

discouraged and we hope generalizes better to sows it has not previously observed.

The ground truth is generated by taking the set of pixel locations from the annotations and construct-

ing a confidence map of size 256x512px resolution. It is constructed using a Gaussian distribution

with a mean of 0px and a variance of 36px for each joint. A weight map is also generated, which

is used for ignoring regions in the image and equally distributing learning between joints and

background pixels. It is created by copying the joint confidence map assigning a value 1.0 where

there are joints and a value of 0.0 for regions to ignore. For the rest of the pixels, a value of the

number of remaining pixels / the total image resolution is assigned, denoting it as the background.

This construction provides an equal amount of weighting between the background pixels and the

joints to effectively train the network with sparse ground truth such as this one. Both the joint

confidence and weight map are then augmented using the same values as the accompanying input

image to get a matching ground truth, then storing it into RAM. The neural network then utilizes

these images for training/validation and then deleted to free up resources on the computer for the

next set of images.

4.6.2.2 Architecture

The mark detection CNN must extract joint marking features to determine their locations. The

marks on the sows within the infrared image are distinct ellipsoids with high contrast on the sow’s

skin. The network has to identify characteristics of each mark to learn their locations. Therefore,
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the receptive field of the network must be large enough to ’observe’ the whole sow in a filter to

learn the relative placements on the body. The first half of the CNN, as seen in Figure 4.2, has

an hourglass-like structure. This construction of convolutions followed by pooling increases the

receptive field of the network, thereby filtering at different image resolutions.

Now that the network can observe fine and coarse details from the image, the output must be shaped

such that it produces a confidence map of the detected joints. The simplest option would be to up-

sample the second to last layer to match the size of the final output, but that would cause inaccurate

results as the detection regions would be large or ambiguous. Using the inverted pyramid structure

to incrementally build-up to the correct output shape creates a more refined output. All of the

sequential convolution layers use of skip connections to mitigate the loss of details, such as sharp

edges. These connections re-introduce back the original inputs and recover details lost in previous

filters. Each ’tier’ of each pyramid is linked together with a skip connection since they already have

the same layer shape; thus, easily added together. The overall network shape is referred to as an

’hourglass’ structure.

4.6.2.3 Implementation Details

The network utilizes a custom loss function for training. It is a variation on the standard cross-

entropy loss but includes a weight map to alter the learning rates for specific regions of the image.

The weighted cross-entropy loss is specified as:

LCE (zi, yi) =
N∑

i=1
wi[−yi ∗ zi + log(1 + exp(zi))] (4.1)

where wi is the pixel weight, zi is the output of the network, and yi is the probability that the given

pixel is the mark center, the ground truth. This loss is minimized when the sigmoid of zi is equal

to yi. Here the pixel weight is chosen to balance the contribution to the loss of the small num-
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Figure 4.2: A high level diagram of the mark detection neural network architecture. Each orange
box denotes a sequence of 3: convolution>batch_norm>relu layers followed by either a max_pool
(shrinking in size) or upsampling layer (growing in size) with all layers having 64 channels each.

ber of pixels on marks with the far greater number on the background as specified in section 4.6.2.1.

The training session consisted of 75 epochs with a batch size of 8 images per batch using RMSprop

optimizer with a learning rate of 1e− 4. The training session took roughly an hour on the specified

hardware in section 4.6.2. Figure 4.3 shows the value of the loss function output for the training

and validation at the end of each epoch. The graph shows that the training and validation loss

converged well, and the network learned something from the data.

4.6.3 Predictive Performance

A testing dataset was used to evaluate the network performance, and the error is defined to be the

euclidian distance between the human-labeled joint center locations, and the network predicted

centers. First, the output of the network is fed into a sigmoid function to generate a confidence

map. To determine the centers of the joint in the confidence map, a peak local maximum filter is
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Figure 4.3: A graph showing the network loss during training for 75 epochs (Blue: training, Red:
validation).

applied. This algorithm operates by dilating the input and using it to mask over the original image

and comparing the locations of the maximums, returning a list of pixels. Comparisons between

the annotations list and network output list is made by taking the L2 norm of the difference to

determine the error. Figure 4.4 shows a histogram representing the error distance vs. the rate of

occurrence.

The average error throughout the testing set is evaluated to be 2 pixels. A conversion ratio to

centimeters is calculated by dividing by the focal length of the camera given by the intrinsic,

determined to be 0.235cm/pixels with an average accuracy of 0.5cm.

To evaluate the model holistically, plotting the confidence map over the infrared image provides

intuition on how the network performs. Figure 4.5 is representation with the confidence map having

an alpha channel of 0.7 to view the input infrared image.

The network performance does very well at detecting the marked locations as well as extraneous

marks on the pig. But extraneous marks are not a significant concern as these marks are filtered
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Figure 4.4: A histogram of the total error between the detected and human labeled joint center
locations in pixels. The average error is 2 pixels or 0.5 cm accuracy.

Figure 4.5: The output of the mark detection network as a heatmap overlaid over the input infrared
image. Marks in red denote high detection probability while blue indicates low detections.

during the joint association step of the transfer labeling method.

4.7 Optical Flow Joint Association

With the challenge of the detection of joints completed, the task of joint identification, the assign-

ment of joint names to marked locations, needs to be completed. It is challenging to design a filter
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to identify these joints automatically. It is due to variations in how sows orient their bodies and

how to account for visual occlusion due to perspective changes. For example, when a sow moves

their head, this causes the markers to be occluded and possibly not be detected. What is the best

way to account for missed and false detections and how to correct for these possible occurrences?

Given that automated identification of joints involves a complex process of filtering and error cor-

rection, a human can perform this task with minimal effort if given a set of joint locations. So, if

we can obtain an initial set of identified joints, ID propagation can be done throughout a sequence

by tracking differences in movements. Optical flow algorithms can detect pixel-wise movements

between images and estimate motion represented by a vector. These motion vectors can provide a

heuristic to where a specific joint has traveled.

The following subsections describe the outline, development, and implementation of joint identifi-

cation and association. Each topic discusses high-level reasoning’s for each design choice and how

to mitigate the flaws that accompany them.

4.7.1 Outline

To establish a clear path in how joint identification and association occur, the following procedures

outline how this algorithm operates:

This method minimizes the amount of human labeling necessary for obtaining annotations by

exploiting key similarities between frames of a sequence of images. An initial set of joint IDs are

human-labeled for an image. These IDs and coordinates are sequentially generated for adjacent

frames using optical flow as a tracker. The mark detection network evaluates the true location by

searching around the estimated coordinate from the tracker. This operation is performed on all

frames in the sequence while correcting for poor motion estimates and missed detections. This

process accounts for human labeling error, since the mark detection network corrects for poorly

marked initial labels.
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Algorithm 2 Joint ID Labeling and Association
Input: {I0, . . . ,Ii, . . . , In} as image sequence
for every image Ii in the sequence do

if Ii == I0 then
human assigns IDs to marks on Ii

else
M ← do mark detection on Ii
F ← do optical flow between Ii−1 and Ii
for number of joints do

joint f low ← F( joint)
search for local max on M around joint f low
assign max as new joint

end for
end if

end for
Return: joints

4.7.2 Development

The optical flow algorithm is a crucial component of association performance. It tracks the move-

ment of detected joints, providing estimate locations for sequential frames. The movements are

calculated by taking the gradient of the image light intensity through the x and y axes. As a result,

motion vectors can be calculated based on the gradient values [4, 16].

There are two different classes of optical flow algorithms: sparse and dense flow. Sparse flow

produces vectors for ’interesting’ features such as corners or edges of objects. Dense flow produces

a vector for every pixel in the image with higher accuracy but at the cost of computational time.

This type of flow is chosen because computation time is not a concern, and the higher accuracy

helps obtain better joint location estimates.

Modern dense optical flow algorithms are neural network-based. Generally, this approach takes

two video images as inputs and outputs a flow image, which can be expressed as:

(u, v) = F (It−1, It) (4.2)

where u is the motion in the x direction, v is the motion in the y direction and F is the network
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with inputs It−1 and It being consecutive images.

The implementation chosen was the OpenCV version of the DeepFlow [44] algorithm. This net-

work blends a deep matching algorithm with an energy optimization framework to match repetitive

textures between the two images. Since the flow is calculated based on a strictly a pair-wise

image set, there is no delineation between forward and backward motion. It allows for parallel

computation of forward and backward movement starting from the initially labeled image. Fig-

ure 4.6 shows the motion vectors just for the joint location as the remaining pixels are not necessary.

Figure 4.6: Visual representation of the joint flow vectors. The middle image is the initialized set
of joint labels from the labeler. The top image indicates predicted joint locations on the i + 1

frame for forward motion overlaid on the infrared image. Likewise, the bottom image is the same
but for the i − 1 frame which is backwards motion.
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4.7.3 Implementation and Labeling Procedure

Figure 4.7: The full joint detection and association process for generating annotations. Each
image corresponds to separate step in the process and are described in section 4.7.3.

The labeling procedure is performed in a series of five steps. First, an infrared image is selected

where all marks are visible on the sow, Fig 4.7(a). Next, the mark detection network extracts the

mark coordinates from the image, Fig 4.7(b). A human labeler determines joint IDs using the

custom labeling interface, Fig 4.7(c). After the initialization of the joint IDs, DeepFlow generates

flow vectors for the identified joints. These vectors are added to the current joint coordinates

to obtain an estimate for the next frame, Fig 4.7(d). Afterward, a new mark detection image is

generated using the next frame. At each joint estimate, a search space of ±6px is used to find the

true joint coordinates on the mark detection image. Joint IDs are given to the new coordinates and

stored as annotations.

This approach is used to filter out false detections in the confidence map and is a secondary check

if the detector does not find anything in that location. In cases where no joints are detected, the

predicted optical flow location is trusted, and the human labeler is notified to check the validity of

the joints. The labeler can either modify the predicted joint locations or proceed with the predicted
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locations. This loop of joint propagation occurs throughout the whole image sequence. Finally,

the generated annotations are used for the depth images, Fig 4.7(e), as the infrared and depth are

pixel-wise aligned.

4.8 Evaluation and Performance

Evaluation of transfer labeling is done by comparing the joint locations between in hand and semi-

automated images. The mark detection network determines the final joint coordinates, as described

in the labeling procedure. Therefore, the mark network determines transfer labeling accuracy,

which has a 2px error, as seen in Figure 4.4.

Time saved by using transfer labeling is represented in Table 4.1. It measures the number of human

interactions required to produce the final labeled dataset. Overall, there is a 98.7% success rate,

meaning that the human labeler would, on average, need to hand annotate 0.013∗dataset_length+

num_image_sequences, number of images.

Table 4.1: Association results for landmarks in IR images. After human assignment of IDs, only
1.3% of images need human attention.

Number of Pig Traversal Sequences 158
Average number of Images per Sequence 126
Average number of Interventions per Sequence
(excluding initial labeling) 1.5

Success Rate for Automated Association 98.7%

4.9 Summary on Semi-Automated Labeling

The proposed method of transfer labeling is a way to more efficiently create annotations for depth

image sequences designed for pose-estimation. It uses a multi-modal system to determine key

points for a single modality by observing markers only detectable in another. This method is

applied to obtain sow pose annotations for a large dataset.
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The implementation of transfer labeling is divided into two sections: detection and association.

The detector is used to find markings on the sow’s back to denote joints in which a pose-estimation

network is supposed to predict. A custom hourglass CNN architecture network was designed to

perform this task, which has an accuracy of 2 pixels or 0.5 cm. A human labeler then identifies the

joint label for 8 detected marks in an image. Association is used to propagate these initial labels

throughout the rest of the images in the sequence using the DeepFlow optical flow algorithm to

obtain new estimates for joints. Estimates serve as initial search locations for joints on the next

image. Newly detected marks are found from the network, and joint IDs are passed to the true joint

coordinates. These IDs and associated coordinates are stored as annotations. The cycle of mark

detection, joint prediction, and ID propagation is repeated for all images in the video sequence. The

stored annotations are transferred to depth images since the infrared images are pixel-wise aligned.

The evaluation of transfer labeling is determined to have a 2px error with a 0.25%miss rate between

generated and human annotation locations. It also reduces the number of human assignments

required to generate the dataset by 98.7%.
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CHAPTER 5

POSE ESTIMATION NETWORK

5.1 General

Pose is the detection of objects in images and videos. A collection of key points, or joints, are found

and used to represent detections. Sow pose estimation uses a convolutional neural network that

determines joint coordinates from sows depth images. These joints represent a skeleton structure,

useful in observing sow functional morphology. This network is an intermediate step towards a

quantitative method to evaluate sow body condition and lameness factors based on motion and

body structure.

This chapter is divided into five different sections: network architecture, dataset processing, im-

plementation, predictive performance, and a summary. The network architecture section describes

the architecture of choice and how each module in the design is beneficial for evaluating pose.

The dataset processing section covers preparatory procedures within the data loader. The network

implementation describes the training hyperparameters and loss function used. The predictive per-

formance evaluates how the network compares to the generated training and human labels—also

a brief discussion on possible failure cases and possible improvements to the network. Lastly, the

summary outlines a high-level overview of the network.

5.2 Pose Network Architecture

The network architecture is an implementation of Stacked Hourglass Network [27] modified for

sows. This network structure is similar to the mark detection network, section 4.6.2.2, with

its successive pooling and up-sampling layers to find different features at various resolutions.

Differences include the use of two hourglass blocks and have more network parameters. It also
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features intermediate supervised learning for better accuracy and reduced training time.

5.2.1 Hourglass Module

As previously mentioned in section 4.6.2.2, the hourglass module [27] contains successive convo-

lution layers paired with either a pooling or up-sampling layer dependent on the layer of operation.

Figure 5.1 shows the whole hourglass architecture design for the pose estimation task.

Figure 5.1: The architecture of a single hourglass module within the Stacked Hourglass Network.

The difference between this design and the mark detection network design is that the skip con-

nections now include a set of convolutional operations, and there is a range of channels for each

convolution. The skip connection setup is referred to as a residual module, covered in section 2.4.4,

with a specific set of convolution pairings, seen in Figure 5.2.

5.2.2 Complete Architecture Design

With the hourglass module established, the high-level design of the architecture is a combination

of the previously mentioned modules. Figure 5.3 shows the overall architecture for a 2-stacked

hourglass configuration used for this network.
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Figure 5.2: The residual module specific to the Stacked Hourglass Network design. Numbers
below the convolution blocks are the number of channels in that layer.

Figure 5.3: An high level overview of the Stacked Hourglass Network architecture. Blue blocks
denote convolution layers used to match channel sizes between each module. Red blocks are an
hourglass module described in section 5.2.1. The circle shows the locations in the network where

supervised loss is evaluated.

The input is defined to be a 256x256px resolution image with an output resolution of 64x64px. An

initial convolution layer is used to shape the input to have 256 channels to match the channel size

of the hourglass module. After the hourglass portion, there is an intermediate set of layers used to

extract the joint information used for loss evaluation. A detailed view can be seen in Figure 5.4.

The output of the hourglass is forked into two different paths: one for passing information to the

next hourglass and the other for producing a set of confidence maps, used for training evaluation.

This intermediate evaluation is to make the training of the large network more efficient and to

increase overall network accuracy.
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Figure 5.4: Network structure in between the hourglass modules within the Stacked Hourglass
Network design. The red symbol denotes an hourglass module. Numbers below the convolution

blocks are the number of channels in that layer.

Figure 5.5: Sample transformed depth image, joint image at the last rib, and weight map.

5.3 Dataset Preprocessing

This network uses the joint annotations generated from transfer labeling as well as the associated

depth images. This dataset contains information from 3 recording sessions of 158 sows with over

20k images. A data loader was created to convert the dataset annotations into joint location predic-

tion images with an associated weight map for network training.

Joint location images are made by generating a Gaussian distribution with zero mean and six-pixel

variance at each joint. These images represent the probability of the existence of a joint at each

pixel, or a joint confidence map. Weight maps are used to balance the training between joint and

background pixels equally. These maps are made by assigning foreground pixels a value of 1.0 to
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a circular region that is 0.15% the image resolution about all joint locations. The size of the region

is determined to encompass the whole sow. Background pixels have a value of
n f
nb

, where n f is

the number of foreground pixels and nb is the number of background pixels. This value provides

an evenly distributed weight between background and foreground pixels. All images and maps are

then rescaled to meet the pose network input resolution. Finally, image augmentation is done by:

scaling, rotation, and vertical mirroring to increase input variability. Figure 5.5 shows the input

depth image along with the joint image and weight map at the last rib location.

5.4 Network Implementation

5.4.1 Input and Output Layers

The input layer uses a normalized depth image at 256x256 pixel resolution. The dataset images

normalized from [0,1] and are rescaled to meet this requirement. The output layer takes the form

of a list of stacked confidence and weight maps, since the network architecture uses intermediate

supervision between hourglass modules. Therefore, a set of two confidence and weight map pairs

are stacked to guide the training of the individual hourglass modules. Each pair has a 64x64

resolution image with 16 channels, with the first eight channels being a set of confidence maps at

every joint, and the last eight channels are the accompanying weight maps.

5.4.2 Loss Function

A weighted cross-entropy loss is used for optimization, defined in Algorithm 4.1. Cross-entropy

lossminimizes the distance between the predicted and ground truth distribution, making the network

learn the joint confidence maps. A weight factor is applied to increase the rate of learning of joint

locations by reducing the importance of background pixels. These pixels, like walls and the floor,

have a minimal change compared to locations where there is a sow. The network is encouraged to

learn parameters related to joint locations, resulting in faster convergence and lowering training time.
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5.5 Predictive Performance

The network was trained with all network weights were saved after each epoch. The 51st epoch

weights was selected for evaluation because it has the lowest validation lost. RMSprop optimizer

[40] with a learning rate of 8e − 5 was used. Figures 5.6 are the total loss of the network.

(a) First hourglass module loss graph (b) Second hourglass module loss graph

Figure 5.6: Hourglass module loss graphs (loss/epoch). Red line denotes the validation loss and
blue denotes the training loss.

Figure 5.7: The loss graph of the training and validation from the complete stacked hourglass
network per epoch. Red denotes the validation and blue being training.
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Figure 5.8: Error graph between the infrared mark extracted joint locations and the depth pose
estimation network. The average error is 8.7 pixels (2.1cm) with a 2.4% miss rate.

Figure 5.9: Error graph between the human annotated joint locations and the depth pose
estimation network. The average error is 11.2 pixels (2.6cm) with a 2.6% miss rate.
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Figure 5.10: A sample output of the pose detection network. A heatmap of joint existence is
generated for all 8 joints with red denoting the highest probability and blue being the lowest. The

size of the sow is roughly 1.2m in length.
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5.5.1 Heatmap Joint Extraction

Images of predicted joint locations are overlaid on the input image was used to observe the network

output. Figure 5.10 is this representation for a sample input. Local maximums of the network

produced confidence maps were determined at each predicted joint location. This process uses the

peak local max algorithm from scikit-image to extract the joint locations for accuracy evaluation.

5.5.2 Accuracy Evaluation

Network error is defined to be the norm between the network and annotation joint locations. Two

evaluations were performed, one between the generated joint marking locations (Figure 5.8) and the

other from the human-annotated set of joints (Figure 5.9). The generated joint to network location

comparison shows how well the network can determine joint locations from depth images. The

human to network evaluation shows the total error using transfer labeling and depth images.

Table 5.1: Average error and miss detection rate between depth-based pose-estimation network
and annotations

Annotations set Error in pixels Error in cm Miss detection rate
Infrared based joint marker extracted annotations 8.7 2.1 2.4%
Human annotated joint locations 11.2 2.6 2.6%

Table 5.1 shows the average error between these evaluation sets along with the miss detection rate

where no joint was detected. The results show that there is an 8.7px error with a 2.4% chance of a

missed detection. The performance between the human and generated labels is slightly worse with

11.2px error and 2.7% missed detection rate; due to the error using transfer labeling for dataset

generation.

Figure 5.11 shows the 99.7% confidence region represented as an ellipse of each joint. Evaluation

is made by aligning the sow horizontally using a the angle from last rib to tail as a reference. Then,

a vector is made between the ground truth and the predicted joint coordinates and stored. These

values are used to calculate the covariance matrix for each joint and deviation is found from the
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(a) Reference sow infrared image with joint marks and the ground truth joint locations (red).

(b) Sow depth image with the ground truth joint locations (red), predicted joint locations (yellow) and the
covariance ellipses (blue) at 3 standard deviations.

Figure 5.11: Evaluation of the 99.7% confidence region for predicted joint locations indicated by
the blue ellipses.
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Figure 5.12: Network sample outputs for multiple sow poses. Left is the ground truth infrared
image with the labeled joints indicated in red. Right is the compiled network output on the depth

image with detected joint locations represented by the heatmap.
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square root of the diagonal entries. Results show that there is little variation on the head joint and

the most at the last rib location. This is due to a lot of contextual information around the head

region and little for the last rib position. Table 5.2 show the deviation values along each axis.

Table 5.2: Predicted joint deviation along the axial and lateral axis of the sow for a 99.7%
confidence interval.

Axial Deviation (σ = 3) Lateral Deviation (σ = 3)
Joint Name px cm px cm
Head 6.7 1.6 14.6 3.4
Neck 13.2 3.1 18.4 4.3
L shoulder 8.5 2.0 22.4 5.3
R shoulder 11.6 2.7 19.6 4.6
Last rib 19.7 4.6 21.9 5.2
L hip 13.9 3.3 14.9 3.5
R hip 13.5 3.2 19.5 4.6
Tail 15.6 3.7 10.7 2.5

5.6 Summary

The network trained by transfer labeling estimates the sow’s joint locations from a depth image.

This network is based off of the Stacked Hourglass Network by Alejandro Newell [27] with modi-

fications to the input layers and loss function.

The network uses three images for its input: a scaled and normalized depth image, a set of joint

location images, and a weight map. The joint location image is created by using a Gaussian

distribution centered at the joint location. The weight map is used to define foreground, regions

where the sow is located, and background pixels. Foreground pixels are assigned a value of 1.0

and background pixels a ratio between the number of foreground to background pixels.

The loss function used a weighted cross-entropy loss. The weight factor applied is from the weight

map provided. This factor makes the network focus on parameters related to the foreground pixels

during training. Thereby converging the network faster and reducing training time.
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The results of the network produces joint location prediction images for every joint. The analysis

shows that there is an 8.73 pixel (2.05cm) error with a 2.4% miss rate between the joints from the

infrared annotations, and 11.24 pixel (2.64cm) error with a 2.6% miss rate between the human-

annotated joints.

5.7 Alternative Approaches and Future Work

Possible modification to the pose network involves adjusting the architecture to match the original

input resolution (848x480px). It might reduce the detection variance in the joint confidence maps

since there are more network parameters and higher image resolution, reducing joint location error.

Other possibilities for improvement include using a different loss function like KL divergence or

mean squared error. These functions optimize the network differently and may produce better

results.

Figure 5.13: Compiled image of all joints detected overlaid over the input infrared image with a
drawn skeleton to represent the full body pose.

The pose network can serve as a foundational platform for sow health detection devices. It can be
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seen by compiling the prediction set of images; the joint estimates generate a pose represented by

a skeletal structure like in Figure 5.13. This skeletal structure serves as a model to perform vari-

ous health assessments like kinematic analysis for lameness detection and holistic body condition

scoring.

Further research work can be extended outside the swine industry. With the non-invasive aspect of

the SIMKit, adapting this device and network for a variety of animals such as cows, goats, chickens,

and horses can be possibilities in the future. This device can also be used for verification testing

of animal pharmaceuticals. By taking evaluations before and post-drug administration can serve

as a verification method of drug effectiveness. The utilization of such technology can improve the

quality of care animals and provide a way to reduce the number of animals removed from the herd.
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CHAPTER 6

CONCLUSIONS

Through quantitative evaluation to reduce the incidence of lameness and poor body condition

in sows, precision livestock farming can provide solutions to reduce mortality and pre-mature

culling. Using this technology, early detection and accurate evaluations of functional morphology

can provide an overall health assessment and indicate animals requiring stockperson attention and

treatment and perhaps, preventing unnecessary removal of animals from the herd.

The development of the SIMKit device enabled the collection of sow information for training ar-

tificial intelligence. The SIMKit was specifically designed to withstand harsh farm environments

while accounting for limited connectivity in rural areas. It is a standalone system that records,

encrypts, and saves infrared and depth image data. With this collected information, the creation of

a sow pose dataset was created.

The construction of the sow pose dataset was completed through the development of a semi-

automated labeling technique called Transfer Labeling. This method utilizes pose-annotation

markings on sows, only visible in the infrared images, to generate precise labels for depth image

sequences. Through the creation of a mark detection network, the marks on the sows are extracted.

The use of optical flow propagates user-defined ids to all images in a sequence with two-pixel

accuracy. Thereby, generating over 20k image annotated dataset efficiently for a depth-based pose-

estimation network.

A sow pose-estimation network was created by adapting the Stacked Hourglass Network, designed

for humans, to work with sow depth images. This modifiedmodel features a weighted cross-entropy

loss function using a custom weight map for the refined learning of joint confidence maps. The

trained model was evaluated based on the error between the annotations (human and generated)
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and the network assessed locations. The results show it has a 8.7px (2.1cm) error with 2.4% miss

detection rate for generated labels and 11.2px (2.6cm) error with 2.6% miss detection rate for

human labels. This model produces promising results for sow pose estimates, and with further

refinements, can serve as a platform for lameness detection and body condition scoring networks.

Overall, the SIMKit device and the depth-based pose-estimation network provide a new pathway

into precision livestock farming. The developed hardware serves as a model in how to design

environmentally robust farm technology and the network provides an approach to sow functional

morphological evaluation. Further research can use these results to investigate automated prediction

of lameness factors and body condition scoring. This thesis demonstrates the development of tools

using artificial intelligence within the agricultural industry and recommends continued research for

health analysis models to improve productivity and animal welfare.
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APPENDIX A

SIMKIT - HARDWARE

A.1 CAD Drawings
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SIMKit Construction Manual

Steven Yik
Michigan State University

College of Electrical and Computer Engineering
Masters: 2018-2020

yiksteve@egr.msu.edu
Feb. 9, 2020

Manual — Version 1

Description:

This document contains build instructions for the SIMKit Data Collec-
tion Device intended use for academic research for Michigan State Uni-
versity and given licences for individuals. Operational instructions are
contained in a different document.
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A Electrical Hardware Schematic for Buttons and Display 9

2 SIMKit Manual v1.0

73



1 Introduction

1.1 Intended Use, Fabrication, Operator

This sections an overview for how the SIMKit is used and constructed
for different classes of operation.

This device is intended for use and operation for academic settings andIntended Use:
private licensing for top-down topological data collection using infrared
and depth imaging.

Unintended use is not subjected to liable hardware of software consisten-
cies and are not designed to stay withing contraints of this manual.

The construction of this unit is done with multiple fabrication techniquesFabrication:
and are required to know or obtain necessary skills for successful creation.

These qualifications are outlined in the Construction Prerequisites section
of this document.

The operators of this device should be trained by the fabricator on soft-Operator:
ware and hardware use and maintenance before using.

2 Hardware

2.1 Parts and Tools Required

Parts List:

• 1x - Nvidia Jetson Nano Developer Kit

• 2x - Intel Realsense Depth Camera D435

• 1x - 32GB Micro SD card

• 1x - 3.5in LCD HDMI Monitor

• 1x - USB3.0 Portable SSD (250GB - 1TB)

• 2x - 3ft USB-C to USB3.0 Cables

• 5x - Push Buttons w/ Assortment of resistors and wire

• 1x - Perf-board (2x3in)

• 2x - 40mm 5v DC Fan

• 1x - 5V/4A AC-DC Power Supply w/ 5.5x2.1 Barrel Plug

• 2x - 3/4in 90 Deg Schedule 40 PVC w/ Belled End

• 1x - 3/4in 10ft Schedule 40 PVC

• 1x - 1Kg roll of PLA (used for 3D printing)

• 2x - 1/4in x 1/2in Bolts

• 4x - 1/4-20 Bolts

• 8x - M2 Screws

• 12x - M2 Nuts

Parts list may vary due to construction methods and are subjected to! →
change. For best results, follow the guide carefully and adapt to the
situation if problems do occur.

SIMKit Manual v1.0 3
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Recommended Tools:

• Saw

• Dremel

• Drill w/ Bit Set

• Soldering Iron

• Measuring Tape

• 3D Printer (7x8in print bed minimum)

• An Assortment of Screwdrivers and Allen Wrenches

• Hot Glue Gun

• Pliers

2.2 Software Setup:

This section is software preparation for the Nvidia Jetson Nano Develop-
ment Kit.

For access to the list of software procedures for post operating system! →
setup, please send an email to yiksteve@egr.msu.edu for permission to
the Git project.

Board Initialization:

1. Follow the initialization and flashing process on Nvidia’s website:
Get-Started-Jetson-nano-devkit

2. Proceed to install the programs in the Software Instructions file in
sequential order.

2.3 Construction Instructions:

Construction assumes that you have obtained or have access to the tools
and materials listed above.

For access to the 3D print files and software setup scripts, please send! →
an email to yiksteve@egr.msu.edu for permission to the Git project if you
did not do so previously.

Follow the instructions below in the order that they are presented. All
critical instructions and comments will be denoted with the ! symbol so
read carefully before proceeding.

Software Box : 1. 3D print the following parts with quantities:

• 1x - Box Base.STL

• 1x - Box Top.STL

• 4x - Button Arrow.STL

• 1x - Button Mid.STL

2. Place items off to the side as these items are used as reference
for other parts in the construction process.

- - - - - - - - - -

Camera Holders : 1. 3D print the following parts with quantities:

4 SIMKit Manual v1.0
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• 2x - Camera Holder.STL

• 2x - Clamp.STL

2. Feed the 10ft Schedule 40 pipe through the circular openings
in the Software box.

3. Fit one end of the pipe with the 90 Deg Schedule 40 PVC piece
and measure out 5ft from the end of the pipe horizontally.

4. Place the second 90 Deg PVC against the 5ft distance and! →
mark out where the belled portion starts and meets with 10ft
PVC pipe. DO NOT mark at the end of the belled portion
or the length of the pipe will be incorrect.

5. Cut down the 10ft PVC pipe at the mark.

6. Locate the center of the pipe and create a notch roughly 3.5in! →
in length and 1/4in deep. This notch is to provide an access
way for cables to be travel to the cameras without being ex-
posed.

7. Press fit the Camera Holders at the ends of the 90 Deg PVC
pieces.

8. String through the 3ft USB-C to USB-3.0 from the notch to
the camera holders such that the USB-C end is located in the
camera holder.

9. Repeat the previous step on the other side of the device.

10. Proceed to do the same process with 2 strands of 18 AWG! →
wire on each end for power lines to the fan shrouds. Leave at
least 6in of slack in the software box for easier wiring.

11. Plug in and secure the Intel Realsense Cameras in the camera
holder and screw in the 1/4in x 1/2in bolt on the side.

12. Screw down the 40mm fans in the fan shrouds located at the
ends of the camera holders.

13. Cut and solder the power lines for the fans to the 18 AWG
wire previously strung through.

- - - - - - - - - -

Software Box Electronics: : 1. Orient the software box in front of you with the pipe along the
top edge.

2. Place the Nvidia Jetson Nano board in lower left corner with
the ports facing towards the right of the box. Mark the mount-
ing holes and drill out using a 1.6mm drill bit.

3. Screw down 4 M2 bolts from the bottom side of the box and
secure using nuts.

4. Plug in the cameras on the two lower USB 3.0 ports of on the
Jetson board.

5. Plug in the portable SSD in one of the remaining USB 3.0
ports.

6. Create a board with the simple schematic based on the design
in Appendix A of this document.

SIMKit Manual v1.0 5
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7. Plug in the HDMI cable into the 3.3in Display and the Jetson
board.

8. Enclose everything and screw down the lid to of the box with
4x 1/4-20 bolts.

2.4 Reference Images

Here are some reference images of the completed device:

Figure 1: Software Box

- - - - - - - - - - - - - - - - - -

Figure 2: Camera Holder

- - - - - - - - - - - - - - - - - -

6 SIMKit Manual v1.0
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Figure 3: Ceiling Mounted Device

3 Installation

To install and operate the device, look for a location with the following:

• Well isolated area that is not exposed to the elements

• Location where lighting is consistent during operation

• Ceiling with exposed conduit or easily mountable surfaces

• Mounting height is between 2.5-3.5 meters (8-12ft) from the ground

• Easily accessible outlet location

For setting up:

1. Clip the device along the ceiling conduit using the provided C-
clamps on the device.

2. Run an extension cord from a nearby outlet to the device and plug
it in

3. The device should turn on and automatically boot to the data-
collection interface.

4 Troubleshooting

4.1 Hardware

Within a farm setting, any exposed hardware devices are susceptible to
corrosion or dust buildup. In the event where this occurs, use anticeptic
wipes to clean off the device and re-connect any exposed connections,
i.e. cameras. The contained software box should not have any issues
regarding withering as it is isolated.

This device is not waterproof. Any direct contact with water will poten-
tially cause issues or complete failure of the device.

SIMKit Manual v1.0 7
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4.2 Software

The software is run using the system startup scripts ” /.config/autostart/”.
If the device does not auto-boot into the user interface, check these scripts
and verify its operation.

Hardware malfunctions may prevent the software from working correctly.
If the interface is not intractable, i.e through the buttons, it is most-likely
a hardware issue.

The terminal on the device will display any software related issues and
is easily diagnosed by the diagnostic messages displayed.

5 Known Issues

5.1 Hardware

The USB 3.0 ports have a bandwidth limitation which may cause inter-
ruptions of power or data through initialization. System may work with
2 cameras in operation, but will always work with one plugged in.

5.2 Software

There may be issues with folder creation on the external SSDs. Make
sure the external device is mounted and named correctly within the linux
fstab table.

8 SIMKit Manual v1.0
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