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ABSTRACT

ANALYTICAL AND COMPUTATIONAL STUDY OF ELECTRON BUNCH
DYNAMICS

By

Xukun Xiang

This dissertation is centered on the analytical and numerical study of ellipsoidal elec-

tron bunch dynamics. We are particularly interested in the focusing process of the probing

electron bunches in the ultrafast electron diffraction/microscopy system, so that we can

improve the temporal and spectral resolution of the ultrafast experiments.

More specifically, to understand the collective space charge effects throughout the

bunch evolution, we employed several analytic models to describe the bunch dynamics.

We start with an extension of the mean-field model using ordinary differential equations.

Analysis of this mean-field model leads to the identification of a longitudinal critical chirp,

which separates two regimes for particle trajectories for the longitudinal focusing of the

bunches: (1) bounce-back, where the particles reverse their direction at the waist of the

focusing process, and (2) cross-over, where the bunch experiences a singularity where the

bunch width reduces to zero. We show that time can be scaled by the initial plasma

frequency, and that the critical chirp becoming dimensionless and depends solely on the

initial bunch aspect ratio.

In order to study the emittance effect on the bunch dynamics, we introduce the self-

similar analytical (SSA) model, a statistical method describing the second order moments

dynamics to model the evolution of an ellipsoidal electron bunch. We also discussed

its linear chirp assumption, explaining how it is the key assumption that leads to the

emittance conservation according to the SSA model. We discuss the statistical nature of



bunch emittance noting that the space charge effect of the uniform density profile and

of the Gaussian profile are close to each other in the SSA model. The impact from a

changing emittance is captured by an additional term in the modified SSA model, which

is then equivalent to the Kapchinsky-Vladimirsky (K-V) envelope equation in accelerator

physics. We point out that the application of the statistical methods can extend beyond

the uniform ellipsoidal bunch, while the accuracy of the SSA prediction is mainly related

to the discrepancy between the actual density profile and the uniform density profile.

We present the Molecular Dynamics (MD) simulation results for the longitudinal fo-

cusing process of uniform spheroidal electron bunches. The comparison of the longitudinal

width evolution between the MD simulations and the SSA predictions shows the impact of

a varying emittance on bunch evolution. We propose two competing mechanisms for the

change of emittance throughout the compression process. The disorder-induced heating

(DIH) increases the emittance in both degrees of freedom while the difference in the SSA

temperature generates emittance transfer between degrees of freedom. In addition, the

non-uniform density profile at the focal point introduces significant emittance growth in

both the longitudinal and transverse directions.
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Chapter 1

Introduction

The time scale of fascinating phenomena in the physics world ranges from millions of years

in cosmology to infinitesimally small fractions of seconds in ultrafast phase-transitions

and nuclear reactions. [1, 2] To truly understand the fundamental physics behind these

intriguing phenomena, we need the ability to record the evolution of these systems of

interest at high enough resolution in both the time and space domains. In particular,

resolving the atomic motions throughout phase-transitions leads to the understanding

of critical phenomena in condensed matter physics [3–5]. To fully describe the phase-

transitions with a sub-picosecond time-scale, we need to have the ability to resolve the

temporal resolution at tens of femtoseconds.

1.1 The Ultrafast Electron Microscopy

In practice, many ultrafast phase-transitions are explored experimentally using ultrafast

microscopies with the so-called “pump-probe” scheme [6–11]. As the name suggests,

these experiments consist of two kinds of pulses interacting with the system of interest,

the pump pulse and the probe pulse. A pump pulse comes first as the perturbation to the

system of interest. With the excitation from the pump pulse, the system goes through

the phase-transition that we would like to explore. A probe pulse then interacts with
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the system at a later time (known delay from the pump pulse) to produce a snapshot of

the system at that specific delay time. This pump and probe process is then repeated

numerous times with various delay times to obtain the time evolution of the system

throughout the phase-transition. In order to resolve these ultrafast phenomena, both the

pump and probe pulses need to be sufficiently short in time comparing to the time-scale

of the phase-transition process. In addition, for regular ultrafast microscopies, the energy

deposition of the pump and probe pulses are limited so that the system is capable of

going through the same phase-transition and recovering numerous times at a reasonable

repetition rate to allow unfolding the temporal response of the sample.

We are working with the ultrafast research group at Michigan State University, using a

femtosecond laser as the pump pulse to excite the system and the electron bunches as the

probe pulse to measure the system response throughout the phase-transition [12–17]. For

ultrafast electron microscopy (UEM), enough electrons are needed to generate a pattern

with good signal-noise ratio, which translates to roughly 105 to 107 electrons in one single

probe pulse for diffraction and 107 to 109 electrons for imaging. [1]

Compressing a bunch with such a high number of electrons introduces technological

hurdles as the space charge effects1 within the probing electron bunch are significant at

specific locations within the microscopy column due to the bunch’s high electron density

at those locations [13–19]. Magnetic lenses are used to mitigate the space-charge effect

induced expansion in transverse direction, while the longitudinal focusing of the electron

bunch is achieved using radio frequency (RF) cavities to mitigate longitudinal space-

charge effects. The schematic design of the beamline is illustrated in Fig. 1.1(a) and

1Here the space charge effect is referring to the strong Coulomb interaction between electrons within
the bunch.
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Figure 1.1: Ultrafast electron beam column with optics for controlling electron bunch
phase space evolution. (a) Schematic drawing of a prototype UEM beamline. (b)–(d) The
phase space evolution in the injector portion of the beamline (enclosed in dashed line). (e)
The conceptual outline of the atomic grating approach to characterize the energy spread
of the electron bunches. Adapted from “Active control of bright electron beams with RF
optics for femtosecond microscopy” by Williams, J. et. al., 2017, Structural Dynamics,
4(4), 044035.
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further details can be found in the publications from the Ruan Group [3,15,18,20].

1.2 Importance of our analytical modeling

As the title of this dissertation suggests, we are interested in the analytical modeling

for the evolution of the probing electron bunch, which is critical to the design of next

generation technologies. Simple analytic models are particularly helpful for improving

instrument design.

We focus our analytical study on the uniform ellipsoidal electron bunch, which is

an ideal theoretical object in systems governed by gravitational or Coulomb interactions

[21]. The importance of the uniform ellipsoidal bunch comes from its well-behaved linear

self-field, which leads to the maintenance of the uniform charge density profile as the

bunch evolves [22]. In accelerator physics, such a uniform distribution is a prerequisite in

employing techniques such as emittance compensation [23] as well as providing the basis

of other theoretical analyses [17]. It has long been proposed that such a uniform ellipsoid

may be generated through proper control of the transverse profile of a short charged-

particle bunch emitted from a source into vacuum [21, 24–26], and experimental results

have shown that an electron cloud emitted from a photocathode and rapidly accelerated

into the highly-relativistic regime can develop into a final ellipsoidal profile characteristic

of a uniform charge distribution [27].

Although we have numerical simulations to illustrate the detailed phase-space distribu-

tion of the electron bunch throughout the evolution, analytical study such as the methods

in this dissertation provides valuable insights about the underlying physics behind the in-

teresting behavior of the bunches. In addition, the new concepts from the analytical
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modeling are helpful to better understanding emittance evolution and the broadening of

the energy spread for the probing electron bunches, which is often referred as the ener-

getic Boersch effect [18, 28–30], which is crucial to improve the performance of ultrafast

experiments.

1.3 The Existing analytical models

Currently, the second-order statistics and the corresponding derivative statistics (namely,

the rms emittance) are the key measurements for improving the performance of the prob-

ing electron bunch. The spatial variance in the longitudinal direction is related to the

pulse duration of the electron probe, which is essential to the temporal resolution of the

probe measurement. The variance of longitudinal momentum is another key second-order

statistics, determining the spectral resolution of the probing electron bunch. Therefore,

the existing analytical methods are oriented to present their predictions for the bunch

evolution using the trajectories of those second order statistics.

The difference in calculation perspective divides the existing models into two cate-

gories: the mean-field theory (MFT) and the statistical methods. The MFT here assumes

a uniform density profile with zero emittance and calculates the time derivatives of the

bunch statistics based on that assumption, i.e. the uniform density profile is the cor-

nerstone of the bunch evolution in the MFT. On the contrary, the statistical methods

propagate the electron bunch evolution from the time-derivatives of those second-order

bunch statistics. The force related terms in the time-derivatives of the bunch statistics

are calculated based on the assumption/estimation of the transient density profile, which

is not restricted to one specific type of function. For example, the density profile can be a
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uniform bunch for the Kapchinsky-Vladimirsky (K-V) envelope equations or a Gaussian

bunch for the Analytic Gaussian (AG) model. Furthermore, the density profile is not

required to retain the same type during the evolution as the expression of the force is one

of the components to calculate the time derivatives. The driving factor in the statistical

methods is the time derivatives of the bunch statistics, not the specific density profile.

Here is the brief overview of the three existing models that we will discuss in detail later.

The mean-field theory has been utilized in the astrophysics and Coulomb explosion lit-

erature where the mean-field effects of a uniform ellipsoidal electron bunch yield ordinary

differential equations for the bunch statistics. Specifically, Lin et al. developed a model

for gravitational collapse of a spheroidal ellipsoid that could be written as a system of

differential equations for the longitudinal and transverse width of the bunch [31]. Similar

techniques regarding the repulsive electrostatic force between the electrons were developed

to model Coulomb explosion from rest [22,32], which is similar to a time reversed version

of the gravitational collapse. Both techniques require a uniform ellipsoid throughout their

evolution [33].

Michalik and Sipe introduced the Analytic Gaussian (AG) model that predicts not

only the spatial width evolution but also the full phase space evolution [34–36], with the

assumption that the bunch retains its Gaussian density profile throughout the evolution.

As we will discuss in detail later in Sec. 3.3.2, the AG model can be considered as an

intermediate approach between the MFT and the statistical methods. Since AG’s Gaus-

sian density profile uses the three second-order statistics as parameters, the formulation

of the AG model appears to focus on the dynamics of the three bunch statistics while the

original derivation of the AG model is more similar to that of the MFT.
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As an example of the statistical methods, the well-established Kapchinsky-Vladimirsky

(K-V) envelope equations were initially developed to describe the evolution of uniform

continuous beams [37] in the accelerator physics community. Sacherer provided a sim-

ple perspective which showed that the K-V envelope equations could be derived from

basic statistical considerations with applications of the mean-field force from a uniform

distribution [38]. The mathematical form of both the MFT and the AG model can also

be derived from the K-V envelope equations with similar considerations of uniform or

Gaussian density profile, respectively [33].

1.4 Overview

The central focus of this dissertation is to gain more insight into the evolution of the

probing electron bunch from studying the analytical models and numerical simulations.

Here is the detailed structure of this dissertation.

In Chapter 2, we overview the mean-field theory (MFT) for studying the compression

process of uniform ellipsoidal electron bunches. MFT provides the expression for electro-

static potential inside uniform and Gaussian ellipsoidal bunches, as well as the evolution

prediction for zero-emittance uniform bunches. C.C. Lin [31] and Grech et. al., [22]

first proposed the MFT formalism for uniform bunch evolution from rest. We extend this

model by adding a linear chirp. As a result of this modification, we propose a method that

enables researchers to study the crossover phenomena of bunch focusing and its effects on

the evolution of ellipsoidal electron bunches.

In Chapter 3, we use statistical methods to model the evolution of an electron bunch,

particularly a self-similar analytical model. Statistical methods predict the evolution
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of ellipsoidal bunches through the time derivatives of bunch statistics, which overcomes

the limitation of MFT and the AG model assumptions of the bunch density distribution

profile. We propose the self-similar analytical model, which builds on the MFT and the

Analytic Gaussian model. This new model and its expanded model contributes to the

field, as it includes the effect of varying emittance on the evolution of electron bunches. We

also discussed the relationship between the SSA model and the K-V envelope equations.

In Chapter 4, we compare the predictions of the SSA model to numerical simulations

for ellipsoidal bunch compression. In particular, we discuss the impact of varying emit-

tance on bunch evolution. Moreover, we developed a simulation code, using it in the

electron bunch compression process.

Chapter 5 presents the conclusions and discussion. In particular, we discuss the direc-

tions for future research, such as developing analytic models for emittance growth, given

the importance of these two concepts on bunch evolution.
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Chapter 2

Mean-field theory for dynamics of

ellipsoidal electron bunches

In this chapter, we propose a mean-field theory (MFT) to describe evolution of an el-

lipsoidal probing electron bunch in ultrafast experiments. We first review the mean-field

theory for uniform ellipsoidal bunches and then we discuss the evolution of a Gaussian

bunch. We conclude this chapter by discussing the underlying assumptions of the MFT

such as the linearity assumption and self-similar evolution.

We designated the name “MFT” here specifically to the formalism that studies uni-

formly charged ellipsoids with perfect momentum-position correlation (zero emittance).

This formalism takes advantage of the linear field calculated using mean-field theory and

the linearity of the uniform spheroidal bunch.

2.1 Mean-field Theory for a uniform spheroidal bunch

For modeling electron bunch evolution, the majority of existing UEM literature discusses

uniform distributions, which stems from general potential theories regarding both gravi-

tational [31] and Coulomb interactions [21, 22]. The advantage of working with uniform

bunch dynamics is that they evolve self-similarly. In other words, the uniform bunch
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stays uniform throughout the evolution. This self-similar evolution greatly simplifies the

modeling process and the bunch evolution can be captured by tracking the bunch size

parameter in each direction. The self-similar evolution comes from the linear self field

inside the uniform bunch. As Lin et. al, pointed out in their paper for gravitational

collapse [31], the essence is that the potential within a uniform spheroid is quadratic in

Cartesian coordinates, i.e., the self field linearly depends on the spatial position. For

Coulomb interactions, in electron bunches, a similar idea was applied to study Coulomb

explosion from rest with zero emittance and achieved good agreement with numerical

simulations [22,32].

To provide necessary context for understanding the MFT, we first review the non-

relativistic MFT for a uniform spheroidal bunch, and demonstrate how linear initial

chirps, i.e. the linear correlation between momentum and position, can be added into

the model to describe the bunch focusing process. Here, the bunch focusing is referring

to the temporal compression of the probing electron bunch by an radio-frequency (RF)

cavity, or a transverse compression by a magnetic focusing lens along the beamline. Also,

details about the initial conditions are examined, and the discussion naturally leads to

the identification of a critical chirp that demarcates two qualitatively different regimes of

bunch behavior according to MFT: “bounce-back” where electrons reverse their motion

and never cross the bunch center and “cross-over” where electrons cross the bunch center.

2.1.1 Mean-field theory for a uniform ellipsoidal bunch

The mean-field theory we are referring to here, treats the electron bunch as an ideal

homogeneous continuum object. This simplification can be considered as taking the con-
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tinuum limit of the actual bunch consisting of a finite number of discrete electrons in the

experiments and simulations, i.e. MFT is essentially modeling a bunch with N identical

particles where N →∞ and each particle carries charge amount Q/N , with Q being the

total charge of the entire bunch. Thanks to this simplification, all the nice features of

mean-field theory are applicable to the uniform electron bunch, while the limitation of this

simplification will be discussed later. The following derivation of the Coulomb potential

and field for uniform ellipsoids are generally based on Chapter 2 in MacMillan’s book [39]

for the gravitational interaction.

The surface of a given ellipsoid with semi-axes (a, b, c) is defined by equation:

ξ2

a2
+
η2

b2
+
ζ2

c2
= 1 (2.1)

Let the interior point for which the potential is to be computed be P (x, y, z). On taking

P as the origin of a spherical coordinates system (ρ, ϕ, θ) with the transformation:

ξ = x+ ρ cosϕ cos θ (2.2a)

η = y + ρ cosϕ sin θ (2.2b)

ζ = z + ρ sinϕ (2.2c)

and the corresponding charge element

dq = ρcρ
2 cosϕdϕdθdρ (2.3)

with the volume charge density ρc = n · e (typically n is the electron number density).
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Then, the electrostatic potential at point P (with respect to the potential zero point at

infinity) is expressed as:

V (x, y, z) =
ρc

4πε0

∫
E

dq

ρ
= κ

∫ +π
2

−π2

∫ 2π

0

∫ ρ1(θ,ϕ)

0
ρ cosϕdϕdθdρ (2.4)

We substitute κ = ρc
4πε0

to simplify the derivation.

The upper limit ρ1(θ, ϕ) of the integration with respect to ρ is a function of θ and ϕ,

since the integration is from P to a point on the surface of the ellipsoid. So, we can insert

Eq. 2.2a into Eq. 2.1 for ρ1 as:

Aρ2
1 + 2Bρ1 + C = 0 (2.5)

where

A =
cos2 ϕ cos2 θ

a2
+

cos2 ϕ sin2 θ

b2
+

sin2 ϕ

c2
(2.6a)

B =
x cosϕ cos θ

a2
+
y cosϕ sin θ

b2
+
z sinϕ

c2
(2.6b)

C =
x2

a2
+
y2

b2
+
z2

c2
− 1 (2.6c)

After a lengthy derivation,1 we can have

V = κ

∫ +π
2

−π2

∫ 2π

0

(
cos2 ϕ cos2 θ

a2
· x

2

a2
+

cos2 ϕ sin2 θ

b2
· y

2

b2
+

sin2 ϕ

c2
· z

2

c2

)
cosϕdϕdθ

A2

− κ

2
C

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A

(2.7)

1The detailed derivation can be found in the Appendix
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To simplify the above expression, one may use the following:

W =
κ

2

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A
(2.8)

The simplified form of the potential of an interior point then reduces to:

V =
1

a

∂W

∂a
x2 +

1

b

∂W

∂b
y2 +

1

c

∂W

∂c
z2 − CW

=

(
1

a

∂W

∂a
− W

a2

)
x2 +

(
1

b

∂W

∂b
− W

b2

)
y2 +

(
1

c

∂W

∂c
− W

c2

)
z2 +W

(2.9)

Since W is a function of the semi-axes (a, b, c), then so are all of its derivatives. Therefore,

the coefficients of the quadratic term x2, y2 and z2 are functions of a, b, and c only. Also,

W is the potential at the center of the ellipsoid if taking P (x, y, z) = (0, 0, 0). W can be

further reduced to the following form,2

W = πκabc

∫ ∞
0

ds√
(a2 + s)(b2 + s)(c2 + s)

. (2.10)

Thus the term related to the derivative of W with respect to a reads:

1

a

∂W

∂a
− W

a2
=
πκabc

a2

∫ ∞
0

∂a(a2 + s)−
1
2

∂a
− 1√

a2 + s

 ds√
(b2 + s)(c2 + s)

= −πκabc
∫ ∞

0

1

a2 + s

ds√
(a2 + s)(b2 + s)(c2 + s)

(2.11)

Therefore, the potential inside of a uniform ellipsoidal electron bunch may be expressed

2The detailed derivation can be found in the Appendix
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as:

V (x, y, z) =
ρc
4ε0

abc

∫ ∞
0

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds√

(a2 + s)(b2 + s)(c2 + s)

(2.12)

with the zero point of potential at infinity.

The corresponding electrostatic field at the interior point P (x, y, z) is,

~E(x, y, z) = Exx̂+ Eyŷ + Ez ẑ (2.13)

with x̂, ŷ, and ẑ representing the unit vectors, respectively. The components of the field

can be represented by the following equations:

Ex(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

ds

(a2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(2.14a)

Ey(x, y, z) = y · ρcabc
2ε0

∫ ∞
0

ds

(b2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(2.14b)

Ez(x, y, z) = z · ρcabc
2ε0

∫ ∞
0

ds

(c2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(2.14c)

Specifically for spheroids, we introduce the radial coordinate, r, to take advantage of

the rotational symmetry of spheroids. The radial coordinate r is expressed as:

r =

√
x2 + y2 (2.15)

Although the detailed calculations below are for prolate spheroids (a = b < c), similar

results are valid for general, uniformly charged ellipsoidal bunches with arbitrary semi-

axes (a, b, c). We can then rewrite the electrostatic field (Eq. 2.14) as a linear function of
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the cylindrical coordinates, as follows:

~E(r, z) = Er(r)r̂ + Ez(z)ẑ (2.16)

with r̂ and ẑ representing the radial and longitudinal unit vectors, respectively, and

Er(r) =
ρc
2ε0

ξr(α) · r (2.17a)

Ez(z) =
ρc
2ε0

ξz(α) · z (2.17b)

where the spheroid aspect ratio α is defined as:

α =
a

c
(2.18)

and where the corresponding geometry coefficients are

ξr(α) = α2
∫ ∞

0

ds

(α2 + s)2(1 + s)1/2
(2.19a)

ξz(α) = α2
∫ ∞

0

ds

(α2 + s)(1 + s)3/2
(2.19b)

Based on Eq. 2.17 to Eq. 2.19, we can get the equations of motion through the aspect

ratio of the bunch, and the entire bunch evolution history can be obtained with proper

initial conditions.
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2.1.2 Self-Similar Evolution and Equations of Motion

Before we discuss the equations of motion for the bunch evolution, we need to discuss the

self-similar assumption that enables this simple MFT formalism. The linear dependence of

the electrostatic field on spatial position results in the preservation of bunch uniformity

provided that the initial momentum-position profile does not start out non-linear. In

other words, the charge density must be homogeneous across the bunch, while the bunch

size and aspect ratio evolves. This self-similar evolution greatly simplifies our analysis as

the formulation presented in preceding sections always applies to the bunch throughout

the process, and the evolution is reduced to the determination of two degrees of freedom.

Specifically, the temporal evolution of the entire bunch can be represented by the evolution

of two unit-less scaling functions, R(t) and Z(t). Since these formulas hold, the trajectory

of any particle with initial positions (r0, z0) inside the uniform spheroid at a later time t

can be expressed as by (r0R(t), z0Z(t)), where R and Z are independent of the arbitrary

initial position (r0, z0). Thus, the parameters for describing the bunch change according

to:

• the semi-axes of the spheroids as (a, c) = (a0R, c0Z),

• the transient aspect ratio as α(t) = α0 · RZ ,

• the charge density from conservation of charge3 as ρc(t) =
ρc0
R2Z

=
n0e

R2Z
,

• the longitudinal width as σ2
z(t) = σ2

z0 · Z
2, with σ2

z = c2

5 .

In the non-relativistic limit, each individual electron [j] with initial position (r0, z0)

3Ntotal = ρc0 · (4π/3)a2
0c0 = ρc(t) · (4π/3)a2c
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follows the Newton’s second law as:

d2

dt2
(r0R) =

eEr(α)

me
=

n0e
2

2ε0me

ξr(α)

R2Z
· (r0R) (2.20a)

d2

dt2
(z0Z) =

eEz(α)

me
=

n0e
2

2ε0me

ξz(α)

R2Z
· (z0Z) (2.20b)

Similarly, the bunch evolution then follows the equations of motion (EOM) in such an

electric field, which can be reduced to the following two dimensionless ordinary differential

equations (ODEs):

d2R

dτ2
=
ξr(α)

RZ
(2.21a)

d2Z

dτ2
=
ξz(α)

R2
(2.21b)

with unit-less reduced time τ ,

τ = t ·

√
e2n0

2ε0me
= t · Ω0 (2.22)

initial electron number density n0, and electron mass me. Notice that first, the time

scaling factor Ω0 =
ωp0√

2
, where ωp0(n0) =

√
e2n0
ε0me

is the initial plasma frequency. Second,

bear in mind that the geometry coefficients ξr and ξz are solely dependent on the transient

aspect ratio α rather than specific values of a and c.

This formula shows that starting with the same initial conditions for the ODE, bunches

with the same initial aspect ratio α0 but with different initial densities n0, will have

behaviors which only differ by the time scaling factor Ω0 determined by the initial density

n0. The ones with higher density evolve faster, but the evolution trajectory reduces to
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the one with lower density after the evolution time is scaled according to the initial Ω0.

2.1.3 Initial condition and Coulomb Explosion

We present the initial condition for solving uniform electron bunch evolution with the

ODE described above. In order to achieve this, we rely on one particular example from

Grech et al., [22], which begins with the initial conditions corresponding to a uniform

spheroidal electron bunch expanding under the Coulomb force from rest, a phenomenon

often referred to as Coulomb explosion.

According to the definition of the two scaling functions, for the Coulomb explosion,

we have:

R(τ = 0) = 1 (2.23a)

Z(τ = 0) = 1 (2.23b)

dR

dτ

∣∣∣∣
τ=0

= 0 (2.23c)

dZ

dτ

∣∣∣∣
τ=0

= 0 (2.23d)

Specifically, Eq. 2.23a and Eq. 2.23b represent the initial scaling of the spheroid and are

by definition equal to 1. Meanwhile, Eq. 2.23c and Eq. 2.23d represent the initial change

rate of the scaling function R and Z, or the initial velocity of the expansion. As the bunch

starts from rest in this Coulomb explosion calculation, these rates equal to zero.

Using these initial conditions, the predictions derived from the ODEs (Eq. 2.21) are

found [22, 32] to be in good agreement with molecular dynamics (MD) simulations for

time-dependent energy distribution and particle-in-cell (PIC) simulations for temporal
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spheroid radii evolution.

2.1.4 Critical Chirp ω∗c , Crossover and Bounce-back

In addition to setting the initial velocity of the scaling faction (Eq. 2.23c and Eq. 2.23d)

to zero for bunches starting from rest, we can also assign non-zero initial velocities,4 for

bunches start with initial linear chirp. For example, we can have initial velocities as:

dR

dτ

∣∣∣∣
τ=0

= 0 (2.24a)

dZ

dτ

∣∣∣∣
τ=0

= ω∗ (2.24b)

where ω∗ is proportional to a longitudinal linear chirp. By linear chirp, we mean a

linear correlation between momentum and position. Specifically, the linear chirp in MFT

means that we are assuming for each individual particle, the longitudinal momentum pz

is proportional to its longitudinal position z.

The addition of this longitudinal linear chirp enables MFT to model bunches with

a linear chirp in the longitudinal direction, such as the probing electron bunch after a

longitudinal focusing lens, e.g. an RF cavity. As such, the initial momentum in the

longitudinal direction of any electron [j] with its longitudinal position z[j] is expressed

as:

pz[j] = Cz · z[j] = me · (ω∗Ω0 · z[j]) (2.25)

where Cz is the actual linear chirp in simulations and experiments. We refer to ω∗ as

reduced linear chirp because it serves as a linear chirp in the dimensionless EOM and

4Instead of being any function of r or z
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scales from the actual chirp in experiments only by Ω0 as a result of the difference in

the reduced time τ . If the initial reduced chirp is negative, Z will initially decrease, i.e.

the bunch will be compressed in the longitudinal direction in the initial evolution. As

ω∗ is proportional to the actual chirp via a parameter entirely dependent on density, we

drop the “reduced” from ω∗ when we refer to only the reduced chirp, but we keep the

“reduced” when we are comparing the reduced chirp in the model with the actual chirp

from the experiments and simulations.

The initial bunch density determines the time scale of the evolution via Ω0. Therefore,

the categorization of the focusing process of a uniformly charged spheroid is entirely

determined by the initial reduced chirp and the initial aspect ratio. The effect of aspect

ratio on bunch evolution has been well studied [22]. Therefore, we examine the impact

of the reduced chirp on the bunch focusing process at a pre-specified initial aspect ratio,

α0 = 10
75 , which is typical for .

We define the critical time, τc, as the time when the bunch reaches its minimum width,

min(σ2
z) during the focusing process. As Eq. 2.21b is only dependent on 1

R2 , which is

finite throughout our investigation, Z can become zero at some point in the compression

process if the initial chirp provides sufficient focusing power to overcome the repulsive

Coulomb force, for zero emittance bunch. We call the smallest magnitude of the initial

reduced chirp that is able to compress Z to zero (i.e. min(σ2
z) = 0) the critical reduced

chirp, ω∗c . This critical reduced chirp is also unitless, just as all the other quantities in

the EOM and the initial condition. That means uniform spheroidal bunches with the

same aspect ratio share the same reduced critical chirp as we will discuss later in this

section. The focusing process then falls into two categories characterized by whether
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min(σ2
z) reaches zero. As shown in Fig. 2.1, for ω∗ < ω∗c , the longitudinal width of the
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Figure 2.1: Longitudinal width evolution Z(τ) of prolate spheroids with (α0 = 10/75)
driven by different initial chirps in numeric solutions of MFT ranging from below the
critical chirp (−0.35ω∗c ) to well above (−2.0ω∗c ). The sub-graph shows the dependence of
minimum width on initial reduced chirp. For this particular α0, the critical value ω∗c (red
dot), divides the focusing into bounce-back and crossover regimes.

bunch is never zero. However, there is a time at τc, at which the bunch size reaches a

minimum during the compression process. When τc = 0 then ω∗ = 0, and it increases

with ω∗ increasing. This trend continues until the critical reduced chirp is reached where

the minimum width reaches zero and the corresponding critical time τc goes to infinity

(τc → ∞). When compressed by a chirp that is larger than the critical chirp, the bunch

will overcome the Coulomb repulsion and be compressed through a longitudinal crossover,
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as electrons starting from one side of the bunch cross the center of mass and then begin

to continue moving on the other side without changing direction of motion. We refer

to this type of process as the “cross-over” regime. In this regime, further increasing the

chirp will decrease the critical time for the bunch to reach its minimum width, but the

minimum width of the bunch during such compression will always be zero. In contrast,

we call the regime below critical chirp the “bounce-back” regime as the particles follow

trajectories that start out towards the center of mass and reverse their direction after the

bunch reaches the minimum width, without any particle crossing.

The linearity of MFT (linear initial condition and linear self-field) indicates that for

a bunch in the cross-over regime, all crossover incidents happen simultaneously across

the entire bunch at the critical time (τc), creating a singularity in the EOM where the

longitudinal width goes to zero. To work through this singularity while numerically solving

the EOM, we use a small time step to propagate the EOM until Z falls below zero. Then,

we stop the calculation and flip the value of both the longitudinal position scaling, Z, and

the longitudinal momentum, pz to positive. The same EOM are then used to integrate

the parameters for the expansion after crossover. In effect, this two-step process skips

the singularity by infinitesimal step size in time. This two-step process is equivalent to

assuming that the change of the bunch in the transverse direction is negligible during

the infinitesimal time step around τc, which is validated by the fact that the transverse

change rate or velocity is not divergent throughout the crossover. In addition, this two-

step process also implies that in the cases where Z passes through zero, momentum does

not change sign.

Analogous to the linear chirp we added in longitudinal direction, a radial chirp can also
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be introduced by altering the radial initial velocity in Eq. 2.23c to a non-zero value. The

linear chirp in the radial direction may be combined with the longitudinal chirp to model

bunches compressed in both degrees of freedom simultaneously. However, in contrast to

the longitudinal direction, MFT predicts that there is no such critical chirp in the radial

direction. This occurs because the change in radial velocity is proportional to the inverse

of R from Eq. 2.21, which diverges as the bunch is compressed radially, preventing R

from reaching zero. Compressing the bunch radially is equivalent to compressing the

x̂ and ŷ simultaneously, and in this case there is only the bounce-back regime in the

radial direction. Here, we focus on the longitudinal focusing where both bounce-back and

cross-over regimes are accessible in MFT.

The (longitudinal) critical reduced chirp is an interesting concept that is important

but new to the community. It is important because the bunch evolution is sensitive

to emittance, especially when compressed by the critical chirp as we will show in next

chapter. One important feature of the critical reduced chirp ω∗c , is its exclusive dependence

on initial aspect ratio α0, which stems from the governing EOM solely depending on the

aspect ratio. In Fig. 2.2, we present the reduced critical chirp ω∗c as a function of the

initial aspect ratio α0. Specifically, note that for large α0, we will always have α � 1,

where the geometry coefficients ξr and ξz in the EOM can be approximated in closed

forms as [22]:

ξr(α→∞) ' π

2α
→ 0 (2.26a)

ξz(α→∞) ' 2− πα2

(α2 − 1)3/2
→ 2 (2.26b)
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Figure 2.2: Dependence of critical reduced chirp ω∗c on initial aspect ratio α0, with a
horizontal asymptote of ω∗c (α0 →∞) = 2.

The EOM reduces to the following:

R ' 1 (2.27a)

d2Z

dτ2
= 2 (2.27b)

In other words, the trajectory of Z reduces to a constant acceleration. Therefore, the

corresponding critical reduced chirp for large initial aspect ratio is simply:

Z(t) = Z0 − ω∗c t+
1

2
ξz(∞)t2 ⇒ ω∗c = 2 (2.28)
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as we can see from Fig. 2.2.

2.2 Coulomb Potential inside a Gaussian Bunch

In addition to uniform bunches, researchers have been studying Gaussian density profiles

of electron bunches [21] for various reasons. Gaussian bunches are appealing because the

laser pulses generating the electrons from photo-cathodes generally have Gaussian pro-

files. In addition, the rich techniques available for Gaussian integrals provide a promising

path toward a closed-form analytical model, which is also appealing to the theoretical

community.

For the Gaussian bunch we are interested in, we assume that the charge density at

point (x, y, z) depends on its scaling variable λ [40]:

λ(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
(2.29)

where the semi-axes (a, b, c) equal the standard deviation of the entire bunch in each

direction (σx, σy, σz). Then, the charge density profile can be expressed as a function of

λ:

ρ(λ) = ρ(
x2

a2
+
y2

b2
+
z2

c2
) =

∫
dλ · f(λ) · δ(λ− x2

a2
− y2

b2
− z2

c2
) (2.30)

Accordingly, a Gaussian bunch can be modeled with:

fG(λ) =
Q

π3/2abc
e−λ (2.31)

where Q is the total charge of the bunch. In other words, this bunch is constructed by a
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series of so-called homogeneous “scaled” shells, where the shells are bounded by ellipsoids

with varying λ and the local volume charge density is the same within each shell with the

value fG(λ).

We start with the contribution to the Coulomb potential from one single shell. We

then integrate the contributions of each shell over the entire bunch yielding the Coulomb

potential and field at any interior point of a Gaussian bunch. To conclude, we discuss the

numerical strategy to model the Gaussian bunch evolution.

2.2.1 Potential Contribution from one single shell

We already have the potential for interior points P (x, y, z) of a uniform ellipsoid of semi-

axes (a, b, c) with density ρc from Eq. 2.12. Now, consider a similar ellipsoid of the

same volume charge density ρc with scaled semi-axes (
√
λa,
√
λb,
√
λc). Accordingly, the

surface of this scaled ellipsoid is defined by:

x2

a2
+
y2

b2
+
z2

c2
= λ

We refer to this kind of arrangement as “similar and similarly placed” ellipsoids. Then,

if Ex2 is the x-component of the self field at P (x, y, z) then,

Ex2(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

λ3/2ds

(λa2 + s)
√

(λa2 + s)(λb2 + s)(λc2 + s)
. (2.32)
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In this case, the integration variable can be substituted with τ = s/λ, yielding the same

electrostatic field as in Eq. 2.17:

Ex2(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

dτ

(a2 + τ)
√

(a2 + τ)(b2 + τ)(c2 + τ)
= Ex(x, y, z) (2.33)

and similarly, for Ey2 and Ez2. Therefore, the field at any point of the vacuum space inside

such homogeneous shell, which is bounded by two scaled and similarly placed ellipsoids,

is zero. Meanwhile, if λ > 1, the potential in the hollow space has the constant value

V = (λ− 1)W , where W is defined in Eq. 2.8.

If λ is very close but just slightly larger than 1, then the shell can be considered as a

thin shell. Although the charge volume density is homogeneous within this thin shell, the

surface charge density is not uniform, because the thickness is not a constant across the

thin shell. The thickness of any point of the shell is proportional to the distance h from

the center to the tangent plane at that point [41], which can be expressed as:

h(x, y, z) =

x2

a2 + y2

b2
+ z2

c2√
x2

a4 + y2

b4
+ z2

c4

=
1√

x2

a4 + y2

b4
+ z2

c4

(2.34)

Therefore, the surface charge density on the shell reads:

σ(x, y, z) = lim
λ→1

ρc ·
[
(λ1/2 − 1) · h(x, y, z)

]
= lim
dλ→0

1
2 · ρc · dλ√
x2

a4 + y2

b4
+ z2

c4

(2.35)

Meanwhile, the surface charge density for a charged ellipsoidal conductor with the same
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semi-axes (a, b, c) shares the same form as:

σ =
Q

4πabc

(
x2

a4
+
y2

b4
+
z2

c4

)−1
2

(2.36)

with Q being the total charge on the conductor [41, 42]. The similarity in the surface

charge distribution suggests that5 we can use the existing potential and field expressions

of a charged ellipsoidal conductor for our homogeneously charged thin shell. With a total

charge Qλ on the homogeneous thin shell λ in our Gaussian bunch6 reads:

Qλ = lim
dλ→0

ρ(λ)dV = 2πabc · lim
dλ→0

ρ(λ)λ1/2dλ (2.37)

Therefore, the contribution from any thin shell λ to the Coulomb potential at a point

of interest Pe(xe, ye, ze) can be modeled as:

φλ(xe, ye, ze) =


1

4πε0

Qλ
2

∫∞
ξ

dξ
Rλ(ξ)

λe ≥ λ

1
4πε0

Qλ
2

∫∞
0

dξ
Rλ(ξ)

λe < λ

(2.38)

with the corresponding Rλ(ξ)

Rλ(ξ) =
√

(λa2 + ξ)(λb2 + ξ)(λc2 + ξ) = λ3/2R(
ξ

λ
) (2.39)

and the lower limit of integration in ξ for exterior point cases comes from the largest root

5In fact, the surface charge density on the ellipsoidal conductor is proportional to the fourth root of
the total curvature of the surface. A detailed discussion can be found in [41]

6We are using the scaling variable λ of the inner surface of the shell from Eq. 2.29 to designate each
thin shell across our Gaussian bunch
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of the following equation:

x2
e

λa2 + ξ
+

y2
e

λb2 + ξ
+

z2
e

λc2 + ξ
= 1 (2.40)

In other words, when the scaling variable λe of Pe:

λe = λ(xe, ye, ze) =
x2
e

a2
+
y2
e

b2
+
z2
e

c2
(2.41)

is larger than λ, the scaling factor of the thin shell, Pe is an exterior point and the lower

limit of integration is the corresponding ξ from Eq. 2.40. While if λe is smaller than λ,

then Pe is an interior point and the lower limit of integration is zero.

2.2.2 Potential at an interior point of a Gaussian bunch

The potential at Pe due to the entire Gaussian bunch can be obtained by integrating the

corresponding contribution over all the thin shells, as:

φ(xe, ye, ze) =
∑

φλ<λe +
∑

φλ>λe

=
abc

4ε0

∫ λe

0
ρ(λ)λ1/2dλ

∫ ∞
ξ(λ)

dξ

Rλ(ξ)
+
abc

4ε0

∫ ∞
λe

ρ(λ)λ1/2dλ

∫ ∞
0

dξ

Rλ(ξ)

=
abc

4ε0

∫ ∞
0

ρ(λ)λ1/2dλ

∫ ∞
ξ(λ)

dξ

λ3/2R(ξ/λ)

=
abc

4ε0

∫ ∞
0

ρ(λ)dλ

∫ ∞
t(λ)=ξ(λ)/λ

dt

R(t)

(2.42)
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Here the relationship between t and λ for point Pe can be expressed as:

λ(xe, ye, ze; t) =
x2
e

a2 + t
+

y2
e

b2 + t
+

z2
e

c2 + t
(2.43)

derived from Eq. 2.40. The corresponding region of integration is shown as the colored

area in Fig. 2.3.

e

t=
(

)/

t( )

Figure 2.3: t(λ) and integration region in blue. Notice that for λ > λe, we have t = 0 as
Pe is an interior point of those shells

In order to take the advantage of our knowledge about the charge distribution function

ρ(λ), we interchange the order of integration:

φ(xe, ye, ze) =
abc

4ε0

∫ ∞
0

ρ(λ)dλ

∫ ∞
ξ(λ)/λ

dt

R(t)
=
abc

4ε0

∫ ∞
0

dt

R(t)

∫ ∞
λ(t)

ρ(λ)dλ (2.44)

assuming the potential is zero at infinity. If the potential is normalized such that the zero
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point of the potential is at the center of the ellipsoid, then the potential can be written

as:

φ(xe, ye, ze) = −abc
4ε0

∫ ∞
0

dt

R(t)

∫ λ(t)

0
ρ(λ)dλ (2.45)

For our Gaussian bunch, we insert the charge density profile as Eq. 2.31:

ρ(λ) =
Q

π3/2abc
e−λ (2.46)

into Eq. 2.44. Therefore, the potential expression for an interior point of a Gaussian

bunch reads:

φ(xe, ye, ze) =
abc

4ε0

Q

π3/2abc

∫ ∞
0

dt

R(t)

∫ ∞
λ(t)

e−λdλ

=
Q

4π3/2ε0

∫ ∞
0

exp

[
− x2

e

a2 + t
− y2

e

b2 + t
− z2

e

c2 + t

]
dt

R(t)

(2.47)

This expression is consistent with the existing literature [40]. In addition, the potential

on an interior point of a uniform bunch in Eq. 2.12 can be reproduced as we take ρ(λ) to

a constant ρc in Eq. 2.45, with a trivial difference in the zero point of Coulomb potential.

Since the only assumption involved is the ellipsoidal symmetry of the density profile (Eq.

2.30) with no restriction on the specific form of the density profile, this potential expression

(Eq. 2.44) is valid for bunches with same or higher symmetry like spherical (a = b = c)

and spheroidal (a = b 6= c) symmetry.

Since the resulting electrostatic field from the Gaussian bunch is non-linear, it is

not reasonable to apply the MFT formalism presented in the previous section for the

evolution of a Gaussian bunch. A detailed discussion about this linearity assumption

will be presented in the next section. Nevertheless, this potential and field formula from
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MFT will be useful for our study when we apply statistical methods for the evolution of

Gaussian bunches in the following chapter.

2.3 Discussion about the linearity assumption of MFT

The key assumption of the MFT formalism (Eq. 2.21 as EOM with linear initial condition)

is the linearity of the uniform bunch. This fundamental assumption stems from the linear

self-field of uniform ellipsoidal bunches. The linearity of the entire system is maintained as

long as the initial condition is also linear. Therefore, for MFT, the linearity assumption is

equivalent to the self-similar evolution assumption, which greatly simplifies the expression

of the uniform bunch evolution.

This linearity assumption is also one of the major limitations to MFT. Because of

this, MFT cannot be applied to non-linear systems, such as the Gaussian bunch. Even

if we divide the Gaussian bunch into scaled thin shells and treat them individually, the

Gaussian bunch still drastically violates the linearity/self-similar evolution assumption of

MFT, because its self-field is non-linear. Further complicating the situation, the non-

linear field leads to different aspect ratios for shells across the bunch, which then breaks

our scaled thin shell set-up for potential calculation in MFT.

In addition, the MFT also assumes zero-emittance of the bunch, which leads to the

singularity at the cross-over point for cases in the cross-over regime. This singularity

predicted by the MFT will disappear with the presence of a non-zero emittance. Specifi-

cally, the non-zero local momentum fluctuation, which cannot be completely eliminated,

leads to a non-zero minimum width at the cross-over point (tc) for the cross-over cases,

comparing to the zero minimum width predicted by the MFT. Since emittance is one of
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the key factors for bunch performance, we need to study the emittance effect on bunch

evolution carefully with the help of other methods.

Despite these limitations, MFT can be still be used to predict bunch evolution even

when its assumptions are not strictly satisfied. When the assumptions are not fully met,

the predictions will deviate from the actual evolution. The extent of this discrepancy

depends on how far the bunch initial condition is from a uniform bunch with a perfect

linear chirp used in MFT. A detailed discussion about the impact of different kinds of

assumptions will be presented in the next chapter.

To reduce the limitations associated with linearity and zero-emittance, we turn to

statistical methods, which focus on the evolution of bunch statistics rather than the exact

form of the density profile.

33



Chapter 3

Statistical Methods

In this chapter, we present statistical methods to model the evolution of electron bunches.

We begin with an overview of the self-similar analytical (SSA) model for uniform el-

lipsoidal bunches. We then discuss the concept of emittance and its impact on bunch

evolution by comparing SSA to MFT. To follow, we discuss a semi-statistical model for

Gaussian bunches — the Analytic Gaussian (AG) model — to further illustrate the un-

derlying assumptions of these statistical methods. We conclude this chapter by discussing

the advantages and limitations of AG, SSA, and the equivalent Kapchinsky-Vladimirsky

(KV) envelope equations.

3.1 The Self-similar Analytical Model

The SSA model, and other statistical methods, extract the bunch evolution trajectory

directly from the time-derivatives of corresponding bunch statistics. We refer to these

types of models as statistical methods. In contrast, the uniform bunch evolution in

the MFT is found by integrating the uniform density profile with corresponding time-

dependent parameters.

To properly introduce SSA and other statistical methods, we first discuss the dynamics

of bunch statistics for a uniform ellipsoidal bunch. In each degree of freedom (i = T, z,
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where T and z represents the transverse and longitudinal direction, respectively), there

are three second order statistics in the position-momentum phase space:1 1) the variance

of the position σ2
i , 2) the variance of the momentum σ2

pi
, and 3) the correlation between

position and momentum σi,pi . Specifically, in the center of mass frame, we can have these

three statistics:

σ2
i = 〈i2〉 (3.1a)

σ2
pi

= 〈p2
i 〉 (3.1b)

σi,pi = 〈ipi〉 (3.1c)

where i = x, y,or z and the 〈〉 operator yields the mean, e.g. 〈zpz〉 =
∫ ∫

zpzf(r, p)drdp

for a continuous distribution in analytical models.

The non-relativistic evolution of the position and momentum can be written as:

i(t+ dt) = i(t) +
pi(t)

m
dt+O(dt2) (3.2a)

pi(t+ dt) = pi(t) + Fi(t)dt+O(dt2) (3.2b)

with the force distribution function Fi(t) based on the position information at time t.

1We are interested in second order statistics because of the definition of emittance. A detailed discus-
sion will be presented in the Sec. 3.2
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Therefore, the dynamics of these three statistics can be expressed as:

dσ2
i

dt
' 2

m
〈ipi〉 =

2

m
σi,pi (3.3a)

dσ2
pi

dt
' 2〈piFi〉 = 2σpi,Fi (3.3b)

dσi,pi
dt
' 〈iFi +

1

m
p2
i 〉 = σi,Fi +

1

m
σ2
pi

(3.3c)

We also have another set of three statistics specifically for SSA, which is equivalent to

Eq. 3.1, as follows:

σ2
i = σ2

i (3.4a)

γi = σi,pi (3.4b)

ηi = σ2
pi
−
σ2
i,pi

σ2
i

(3.4c)

where ηi is the variance of local momentum fluctuations, the variance of the momentum

after subtracting out the portion that is linearly correlated with position as shown below.

A detailed definition2 of these three statistics is illustrated in Fig. 3.1. In the longitudinal

direction, σ2
z is the bunch spatial variance; γz is the correlation between the longitudi-

nal position and momentum, and ηz is the variance of local momentum fluctuations in

the longitudinal direction. Specifically, for each individual electron [j], its longitudinal

momentum pz[j] can be expressed as a linear function (with slope Cz) of its longitudinal

2More underlying significance of these three statistics can be found in Sec. 3.3.1.
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Figure 3.1: Schematic representation for the three bunch parameters in SSA

position z[j] plus a random variable δz[j] as follows:

pz[j] = Cz · z[j] + δz[j] =
γz
σ2
z
z[j] + δz[j] (3.5)

Here δz serves as the error term, with variance ηz = σ2
δz. In addition, δz is assumed to

be uncorrelated with the longitudinal position, i.e. σδz,z = 0. With this set of notation,

SSA essentially divides the variance of momentum into two parts: one part comes from

the momentum which is linearly dependent on position of each particle and the other part

is associated with the momentum that deviates from the linear part. The corresponding
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dynamics for SSA statistics can be derived from Eq. 3.3 as follows:

dσ2
i

dt
=

2

m
γi (3.6a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+ σi,Fi (3.6b)

dηi
dt

= −2γiηi
mσ2

i

+
2

σ2
i

(
σ2
i σpi,Fi − σi,piσi,Fi

)
(3.6c)

The necessary initial conditions can be obtained by gathering the second-order statistics

of the bunch density distribution at the beginning of the evolution, namely the three

bunch statistics σ2
i , γi, and ηi can be derived from the three direct second-order statistics

of σ2
i , σi,pi , and σ2

pi
.

Coupled with proper force term, the SSA prediction of bunch evolution can be obtained

by numerically propagating the SSA dynamics from the initial conditions. Therefore,

the key of SSA — that the bunch should evolve self-similarly — comes from the force

distribution Fi. In other words, SSA assumes that the uniform ellipsoidal bunch will stay

uniform while the density profile of a Gaussian bunch will stay as a Gaussian function.

The self-similar evolution assumption simplifies the analysis by setting the force expression

term Fi as the same form of function throughout the evolution with one (or more) time-

dependent parameters in the charge density distribution.

For a uniform spheroidal bunch, as shown in Eq. 2.17, the electrostatic field is linearly

dependent on the spatial position. In other words, the force term can be written as:

Fi =
ρce

2ε0
· ξi(α) · i = KFi(α) · i (3.7)
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where i = T, z for the transverse3 and longitudinal directions and α is the transient aspect

ratio of the spheroid at time t. The corresponding second-order statistics related to Fi

can then be simplified as:

σi,Fi = KFi(α) · σ2
i (3.8a)

σpi,Fi = KFi(α) · σi,pi (3.8b)

which also leads to the vanishing of the second term in Eq. 3.6c as:

σ2
i σpi,Fi − σi,piσi,Fi = 0 (3.9)

Therefore, the resulting SSA prediction of the self-similar evolution of a uniform spheroidal

bunch yields:

dσ2
i

dt
=

2

m
γi (3.10a)

dγi
dt

=
1

m

(
γ2
i

σ2
i

+ ηi

)
+KFi(α) · σ2

i (3.10b)

dηi
dt

= −2γiηi
mσ2

i

(3.10c)

One advantage of SSA is that the two-step process for dealing with the singularity at

longitudinal crossover in MFT is not necessary here in the SSA model as the statistics

themselves are second-order moments so that there is no need to flip the sign of spatial

position and momentum in the cross-over regime.

3As we take advantage of the rotational symmetry of spheroidal ellipsoids, the subscript T represents
the two transverse directions, which includes both x̂ and ŷ.
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Although the above derivations have been performed for Coulomb interactions, we

would like to stress that the same conclusions can be drawn for any interaction that leads

to linear dependence between force and position, such as gravitation [31]. Additionally, the

generalization to any general ellipsoid is achieved by simply using three degrees of freedom

with i = X, Y, Z and corresponding geometry coefficients (ξx, ξy, ξz) with functions of the

ratio between three axes (σx : σy : σz).

3.2 Bunch evolution with conserved emittance

One of the major advantages of the SSA model (Eq. 3.10) is its inclusion of a conserved

emittance, while MFT always assumes a zero-emittance bunch. In this analysis, we define

the “root-mean-square” (rms) emittance εi in each direction as:

ε2
i = σ2

i σ
2
pi
− σ2

i,pi
= σ2

i ηi (3.11)

This suggests that the value of emittance in each direction is proportional to the area of

the contouring ellipse of the bunch in the 2D phase space regarding that direction. In

other words, the rms emittance is not equal to the exact value of the occupied phase-

space volume, but rather a statistical estimate of bunch phase-space volume based on the

second-order statistics of the bunch. Although some literature conflates rms emittance

with phase-space volume, these two concepts, while related, are not equal to each other.

According to [43], rms emittance can grow while the actual phase-space volume stays

constant as explained by Liouville’s theorem.

To facilitate the analysis, we base our derivation using the square of emittance ε2
i
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which is the product of σ2
i and ηi. Thus, the evolution of squared emittance is:

d

dt
ε2
i = ηi

d

dt
σ2
i + σ2

i
d

dt
ηi (3.12)

Although, we use the squared emittance ε2
i for analytical derivations and discussions, we

present results in emittance εi to ease the comparisons between model prediction and

actual experiments.

As we look at the emittance evolution for uniform bunches, it is conserved within

each degree of freedom according to Eq. 3.10, which seems to be the immediate result

of the linear field/force assumption of Eq. 3.7. However, as we elaborate later in the

next section, it is the linear chirp (self-similar evolution) assumption that ensures the

conservation of emittance of the bunch.

Additionally, if we take η = 0, (i.e. zero emittance), then the SSA model will reproduce

the MFT, as shown in Fig. 3.2. The linearity/self-similar evolution assumption is the

reason why SSA, as a statistical method, can reproduce the result of MFT. The self-

similar evolution assumption ensures the linearity across the bunch for SSA, as the linear

momentum-position relationship in Eq. 3.5.

The emittance effect on the SSA dynamics can be explained by studying the evolution

of the linear chirp Ci as we have:

d

dt
Ci =

d

dt

(
γi
σ2
i

)
= KFi(α) +

ε2
i

m ·
(
σ2
i

)2 (3.13)

During the focusing process, the emittance term (last term in Eq. 3.13), will drive the

negative chirp to approach zero faster. Therefore, the waist of the focusing process ap-
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Figure 3.2: Longitudinal width evolution of prolate spheroids with (α0 = 10/75) focused
by different initial chirps: (a) 0.7ω∗c , (b)1.0ω∗c , (c) 1.5ω∗c . In each figure, red solid line
represents the prediction from MFT, dotted lines represent SSA with different emittance
ranging from 0 to 0.01µm or mm ·mrads. The SSA with zero emittance and the MFT
are in perfect agreement. Notice that (1) emittance move the waist larger and earlier
comparing SSA and MFT, (2) comparing different chirps in SSA, the bunch evolution
driven by critical chirp(b) shows higher sensitivity for emittance.
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pears earlier than that predicted by MFT, resulting in a larger minimum width as well.

Moreover, bigger emittance will lead to larger differences between predictions from SSA

and MFT. These two emittance effects are also shown in Fig. 3.2.

3.3 Linear chirp assumption conserves emittance

To further illustrate the fact that the linear chirp assumption conserves emittance in the

SSA model, we provide the following derivation.

Although the electron bunches can have various density profiles, such as uniform or

parabolic distributions, we start with an electron bunch with Gaussian density profile as

an example. We rely on this example because the expression of the Gaussian density

profile can have three explicit bunch statistics, the same set as in SSA, which makes

it more advantageous for our analysis. The expression for the Gaussian density profile

follows this general form:

f(r, p; t) = C(t) exp [Σi (Gi(i) +Hi(pi, i))] (3.14)

where i = x, y, z. Gi is the function for the spatial distribution in each direction, which

can be written as:

Gi(i) =
a0 + a2i

2 + a4i
4 + ...+ a2n−2i

2n−2 − a2ni
2n

2σ2
i

(3.15)
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Meanwhile, Hi is the function for the momentum distribution, which can be written as:

Hi(pi, i) = −
[
pi −

(
γi/σ

2
i

)
i
]2

2ηi
(3.16)

where (σ2
i , γi, ηi) are the time-dependent statistical descriptions of the bunch in each

direction we previously defined in SSA. The linear chirp of the bunch can still be described

as Eq. 3.5, which leads to the self-similar evolution. The corresponding time derivative

of squared emittance reads:

d

dt
ε2
z = ηz

dσ2
z

dt
+ σ2

z
dηz
dt

= 2
(
σ2
zσpz,Fz − σz,pzσz,Fz

)
(3.17)

3.3.1 The Linear chirp assumption in detail

In the proceeding section, I concluded that uniform ellipsoidal bunches conserve emittance

after inserting the corresponding linear force from its self-field into the SSA model. Here

I show that the linear chirp assumption also leads to conserved emittance, which is not

restricted to the uniform bunch density profile as a linear force assumption. The linear

chirp assumption focuses on the statistical relationship between the spatial position and

momentum for all the electrons of the bunch. Specifically, the linear chirp assumption

assumes that the momentum of each individual electron j can be divided into two parts:

the local average momentum based on the spatial position of electron j and the fluctuation

part for electron j, just as we described in Eq. 3.5:

pz[j] = Cz · z[j] + δz[j] =
γz
σ2
z
z[j] + δz[j]

44



In the linear chirp assumption, the local average momentum is proportional to its spatial

coordinates. That is, for longitudinal direction, the slope of this linear dependence (be-

tween local average momentum and spatial coordinate) Cz is decided by the two bunch

statistics as γz
σ2
z

. Then, δz[j] is denoted as the difference between electron j’s momentum

and the projected local average momentum that is linearly based on its spatial coordinate,

as shown in Eq. 3.5. We refer to δz as the local momentum fluctuation in the longitudinal

direction with respect to the corresponding linear local average momentum. The variance

of this local momentum fluctuation is then equal to ηz as we have:

σ2
pz = σ2

γz
σ2
z
i+δz

=
γ2
z

σ4
z
σ2
z + 2

γz
σ2
z
σz,δz + σ2

δz

=
γ2
z

σ2
z

+ ηz

(3.18)

with the assumption that δz and z are uncorrelated, i.e. σz,δz = 0.

This assumption about δz and z being uncorrelated is the center piece for the linear

chirp assumption. Because the linear local average momentum can always be projected

to the bunch density profile from the corresponding bunch statistics, the linear chirp

assumption is essentially assuming the local momentum fluctuation with respect to that

linear average momentum is uncorrelated with the spatial position. In other words, the

momentum of electrons in bunches that do not satisfy that linear chirp assumption can

still be expressed in Eq. 3.5, but the corresponding local momentum fluctuation (δi) will

then be correlated with the spatial position. Therefore, the linear chirp assumption is

actually focusing on the local momentum fluctuation (with respect to that linear chirp)

being uncorrelated with the spatial position.

45



One possible expression of H in a Gaussian density profile that satisfies the linear

chirp assumption as Eq. 3.16:

Hz(pz, z) = − 1

2ηz

[
pz −

γz
σ2
z
z

]2

which assumes that for any point inside the ellipsoidal bunch, the density distribution

in momentum space with respect to the corresponding local average momentum has a

Gaussian profile. The two bunch statistics involving pz become:

σpz,Fz = σ γz
σ2
z
z+δz,Fz

=
γz
σ2
z
σz,Fz + σδz,Fz (3.19a)

σz,pz = σ
z,
γz
σz z+δz

=
γz
σz
σ2
z + σz,δz (3.19b)

Accordingly, we can rewrite the evolution of emittance as:

dε2
z

dt
= 2

[
σ2
z

(
γz
σz
σz,Fz + σδz,Fz

)
−
(
γz
σz
σ2
z + σz,δz

)
σz,Fz

]
= 2

(
σ2
zσδz,Fz − σz,δzσz,Fz

) (3.20)

The second term equals to zero as σz,δz = 0 from the linear chirp assumption. The first

term also vanishes if the bunch density profile is symmetric with respect to the spatial

position and fluctuation of momentum. Specifically, we can have:

f̃(z, δz) = f̃(z,−δz) = f̃(−z, δz) (3.21)
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with f̃ being the shifted density distribution of the original one as:

f̃(z, δz) = f(z,
γz
σ2
z
z + δz) = f (z, pz(z, δz)) (3.22)

for a symmetric bunch density profile. The immediate consequence of a symmetric density

distribution is that the magnitude of force due to the self-field can be expressed as an odd

function of the spatial coordinates, i.e.

Fz(x, y, z) = −Fz(x, y,−z) (3.23)

Then, the following covariance term related to the force distribution vanishes as:

σδz,Fz =

∫ ∫
δzFz(z)f̃(z, δz; t)drdp (3.24a)

Specifically, this covariance term vanishes when we pair terms like δzFz(z)f̃(z, δz; t) and

δzFz(−z)f̃(−z, δz; t) together, as these cancel each other out. As both terms in Eq. 3.20

equal to zero for a symmetric density profile, the emittance is conserved throughout the

evolution, as:

dε2
z

dt
= 0 (3.25)

In addition, any symmetric density profile that satisfies Eq. 3.21 can lead to conserved

emittance, not limited to the general Gaussian density profile mentioned at the beginning

of this section.

As demonstrated throughout these derivations, it becomes clear that the exact form

of the electron bunches’ density profiles do not affect emittance conservation [38]. As
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long as Eq. 3.21 is satisfied, the emittance is conserved. In other words, if the fluctuation

of momentum δi of each individual electron is uncorrelated with its spatial position, the

ellipsoidal symmetric bunch conserves emittance throughout its evolution.

3.3.2 A Comparison Between the SSA model and the Analytic

Gaussian model

To further validate the argument that emittance conservation does not depend on the

exact form of the spatial portion of the bunch’s density profile, we overview the Analytic

Gaussian (AG) model — a semi-statistical mean-field approach for bunch evolution with

Gaussian density profiles.

Michalik and Sipe [34] introduced the AG model to study the evolution of bunch

statistics with Gaussian profiles in both spatial and momentum space. Their key assump-

tion is that bunches retain their Gaussian density profiles with the three time-dependent

parameters in each direction. We generally base the following derivation on the original

AG paper, however, we substitute in the SSA notation for consistency throughout this

analysis.

We start with the Gaussian density profile used in the AG model:

f(r,p; t) = C(t) exp[−Γ(r,p; t)] (3.26)
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with

Γ(r,p; t) =
x2 + y2

2σ2
T

+
[px − (γT /σ

2
T )x]2 + [py − (γT /σ

2
T )y]2

2ηT

+
z2

2σ2
z

+
[pz − (γz/σ

2
z)z]2

2ηz

(3.27)

This expression has three main assumptions. First, this expression assumes rotational

symmetry in x̂ and ŷ direction. The subscript T then represents the two transverse

directions, which includes both x̂ and ŷ. The longitudinal direction is denoted with

subscript ẑ. Second, the three bunch parameters in the AG model,4 (σ2
z , γz, ηz) are the

same as those used in the SSA model. This expression means the bunch has linear chirps

in each direction and the momentum follows a relationship similar to Eq. 3.5, which is

illustrated in Fig. 3.1 for the longitudinal direction. In other words, the Gaussian bunch

in the AG model has linear chirp in each direction, with the corresponding momentum

spread is uncorrelated with the spatial position. Therefore, the AG model is essentially

modeling the longitudinal focusing of a spheroidal Gaussian bunch by calculating the self-

similar evolution of a Gaussian bunch with the same initial bunch statistics. Third, the

time-dependent normalization factor C(t) comes from the conservation of total charge,

which can be expressed as:

∫
f(r,p; t)drdp = N ⇒ C(t) =

N

(2π)3

(
1

σ2
T η

2
Tσzηz

)1/2

(3.28)

That is, this density profile is a function of the three parameters in each direction (T and

z). Therefore, the evolution of Gaussian bunches in the AG model can be generated from

4We are illustrating the parameters for longitudinal direction. Similar notations apply to transverse
direction as well.
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the trajectories of the three parameters of the bunch in each direction.

By assuming the Gaussian bunch follows a self-similar evolution, the AG model allows

researchers to model bunch evolution with Coulomb interactions in two main ways. First,

the impact of the Coulomb interactions can be modeled by evaluating the corresponding

Gaussian integrals. Specifically, the bunch evolution in each direction can be expressed

by the trajectories of the three parameters in Eq. 3.27. The resulting force terms in

the time-derivatives of the bunch parameters are expressed as functions of the transient

aspect ratio (α(t) = σT /σz). Second, because the bunch retains a Gaussian profile, the

AG model captures the Coulomb effect throughout the evolution of the electron bunch.

Specifically, this can be expressed using the same force term with the time-dependent

aspect ratio. These two advantages of the AG model make the theoretical expression of

the bunch evolution with Coulomb interaction feasible assuming a self-similar Gaussian

bunch.

The pathway to the force term is a two-step process. First, we calculate the three

parameters of the Gaussian density profile f(r,p; t) to calculate the Coulomb effect on

the bunch emittance evolution. Second, we integrate over the “flow” term and “force”

term from the time derivative of f to eventually solve for the time derivative of these

three parameters.
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Specifically, for the longitudinal direction,5 we have:

σ2
z =

1

N

∫
z2f(r,p; t)drdp = X55 (3.29a)

γz =
1

N

∫
zpzf(r,p; t)drdp = X56 (3.29b)

ηz +
γ2
z

σ2
z

=
1

N

∫
p2
zf(r,p; t)drdp = X66 (3.29c)

Here we use Xij to represent the corresponding second moment of the Gaussian profile

f(r,p; t) for simplicity. That is:

Xij =
1

N

∫
uiujf(r,p; t)drdp (3.30)

with (u1, u2, u3, u4, u5, u6) = (x, px, y, py, z, pz). Conveniently, we can have the time

derivative of Xij as:

∂

∂t
Xij =

1

N

∫
uiuj

∂f(r,p; t)

∂t
drdp (3.31)

Therefore, the time derivatives of the three parameters can be written as:

∂

∂t
σ2
z =

1

N

∫
z2∂f(r,p; t)

∂t
drdp =

∂

∂t
X55 (3.32a)

∂

∂t
γz =

1

N

∫
zpz

∂f(r,p; t)

∂t
drdp =

∂

∂t
X56 (3.32b)

∂

∂t
ηz = −2γz

σ2
z

∂

∂t
γz +

γ2
z(

σ2
z

)2 ∂∂tσ2
z +

1

N

∫
p2
z
∂f(r,p; t)

∂t
drdp

=

(
γz
σ2
z

)2 ∂

∂t
X55 − 2

γz
σ2
z

∂

∂t
X56 +

∂

∂t
X66 (3.32c)

5Similar results can be applied to the transverse direction for both x̂ and ŷ.
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According to the Vlasov equation, we can rewrite ∂f/∂t as:

∂f(r,p; t)

∂t
= −∂f(r,p; t)

∂r

∂r

∂t
− ∂f(r,p; t)

∂p

∂p

∂t

=
(
− p

m

) ∂f(r,p; t)

∂r
− ∂f(r,p; t)

∂p
F (r)

(3.33)

The integral of the first term is called the “flow” term, K
flow
ij , as it comes from funda-

mental kinematics. The integral of the second term is called the “force” term, K
force
ij .

The force term represents the effect of the Coulomb interaction on the bunch evolution.

Accordingly, we rewrite Eq. 3.31 as:

∂

∂t
Xij =

1

N

∫
uiuj

∂f(r,p; t)

∂t
drdp

=
1

N

∫
uiuj

(
− p
m

) ∂f(r,p; t)

∂r
drdp+

1

N

∫
uiuj

(
−∂f(r,p; t)

∂p

)
F (r)drdp

= K
flow
ij +K

force
ij

(3.34)

We start with the flow term. The spatial derivative of the Gaussian density profile f

is:
∂f(r,p; t)

∂z
=

[
1

σ2
z
z − γz

σ2
zηz

(
pz −

γz
σ2
z
z

)]
f(r,p; t)

=

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r,p; t)

(3.35)
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Therefore, the corresponding flow terms are:

K
flow
55 =

1

Nm

∫ ∫
z2pz

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r,p; t)drdp =

2

m
γz (3.36a)

K
flow
56 =

1

Nm

∫ ∫
zp2
z

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r,p; t)drdp =

1

m

(
ηz +

γ2
z

σ2
z

)
(3.36b)

K
flow
66 =

1

Nm

∫ ∫
p3
z

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r,p; t)drdp = 0 (3.36c)

If we assume F (r) = 0, then the time derivatives of the three parameters (Eq. 3.32), with

the effect of the flow term alone, models the evolution of a non-interacting bunch with a

Gaussian density profile as Eq. 3.27. That is, the non-interacting bunch evolution could

be described by inserting Eq. 3.36 in the Eq. 3.32 as:

dσ2
z

dt
=

2

m
γz (3.37a)

dγz
dt

=
1

m

(
ηz +

γ2
z

σ2
z

)
(3.37b)

dηz
dt

= −2γzηz
mσ2

z
(3.37c)

Since the three bunch statistics are only functions of time, we replace the partial deriva-

tives with the total derivatives here to obtain the ordinary differential equation for the

bunch statistics evolution. Unsurprisingly, the non-interacting bunch conserves emittance

throughout the evolution when we insert Eq. 3.37 into Eq. 3.12.

For the purpose of measuring the Coulomb interaction effect on bunch evolution,

especially on emittance conservation, we insert the corresponding force expression F (r)

derived from the expression of Coulomb potential, which we derived earlier (Eq. 2.47).
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Consequently, the time derivative of the three parameters (Eq. 3.32) yields the collective

effect of a Gaussian bunch through K
force
ij .

Specifically, the field distribution can be derived from Eq. 2.47 as:

Ez(x, y, z) =
Q

4π3/2ε0

∫ ∞
0

2z

c2 + l
·

exp

[
− x2

a2+l
− y2

b2+l
− z2

c2+l

]
√

(a2 + l)(b2 + l)(c2 + l)
dl (3.38)

Employing the following substitutions:

K =
Qe

2π3/2ε0
(3.39a)

R(l) =
√

(a2 + l)(b2 + l)(c2 + l) (3.39b)

λ(x, y, z; l) =
x2

a2 + l
+

y2

b2 + l
+

z2

c2 + l
(3.39c)

Ic(x, y, z) =

∫ ∞
0

exp [−λ(x, y, z; l)]

(c2 + l)R(l)
dl (3.39d)

we can derive a concise expression for the Coulomb force as:

Fz(x, y, z) = z · K · Ic(x, y, z) (3.40)

Then, knowing that the derivative of f with respect to pz is

∂

∂pz
f(r, p; t) =

1

ηz

(
pz −

γz
σz
z

)
f(r, p; t) (3.41)
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the force term in the longitudinal direction can be expressed as:

K
force
55 = − 1

Nηz

∫ ∫
z3
(
pz −

γz
σ2
z
z

)
· Ic(x, y, z) · f(r,p; t)drdp (3.42a)

K
force
56 = − 1

Nηz

∫ ∫
z2pz

(
pz −

γz
σ2
z
z

)
· Ic(x, y, z) · f(r,p; t)drdp (3.42b)

K
force
66 = − 1

Nηz

∫ ∫
zp2
z

(
pz −

γz
σ2
z
z

)
· Ic(x, y, z) · f(r,p; t)drdp (3.42c)

For the emittance evolution, we can insert Eq. 3.32 into Eq. 3.12 as:

dε2
z

dt
= ηz

dσ2
z

dt
+ σ2

z
dηz
dt

=

(
ηz +

γ2
z

σ2
z

)
K
force
55 + σ2

z

(
K
force
66 − 2γz

σ2
z
K
force
56

) (3.43)

Thus the emittance evolution with Eq. 3.42:

dε2
z

dt
= − 1

N

∫ ∫ [
z3
(
pz −

γz
σ2
z
z

)
+
σ2
z

ηz
z

(
pz −

γz
σ2
z
z

)3
]
· Ic(x, y, z) · f(r,p; t)drdp

(3.44)

We can simplify this expression by a substitution of variable as:

δz = pz −
γz
σ2
z
z (3.45)

with the corresponding Jacobian:

J = det

 1 0

− γz
σ2
z

1

 = 1 (3.46)

Accordingly, the phase-space area of z − pz are the same as that of the corresponding
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z − δz phase-space. The density distribution function f(r,p; t) shifts to f̃ as shown in

Eq. 3.22. We can rewrite the time derivative of ε2
z as:

dε2
z

dt
= − 1

N

∫ ∫ [
z3δz +

σ2
z

ηz
zδ3
z

]
· Ic(x, y, z) · f̃(r, δr; t)drdδr (3.47)

Since Ic(x, y, z) and f̃ are both even functions, this integral equals zero as we properly

pair the elements as expressed below:

(z, δz) and (−z, δz) (3.48)

Therefore, emittance is conserved during the evolution of a Gaussian bunch according to

the AG model, even with a non-linear self-field/force. This is consistent with what we

argued in the proceeding section, that the linear chirp is the key assumption for conserved

emittance, not the linear force.

We continue the derivation for the Coulomb effect on bunch evolution in the AG

model. To further simplify the expression, we introduce the “bar” notation (Mz,Mz as a

place-holder for the corresponding quantities, which will be evaluated for the longitudinal

direction) as:

Mz = − 1

Nηz

∫ ∫
Mz · Ic(x, y, z) · f̃(r, δr; t)drdδr (3.49)
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Thus, we can rewrite the force term in Eq. 3.42 as

K
force
55 = z3δz = 0 (3.50a)

K
force
56 = z2δz

(
δz +

γz
σ2
z
z

)
= z2δ2

z +
γz
σ2
z
z3δz = z2δ2

z (3.50b)

K
force
66 = zδz

(
δz +

γz
σ2
z
z

)2

= zδ3
z + 2

γz
σ2
z
z2δ2

z +

(
γz
σ2
z

)2

z3δz = 2
γz
σ2
z
z2δ2

z =
2γz
σ2
z
K
force
56

(3.50c)

where the integrals of z3δz and zδ3
z vanish due to the symmetry of Ic(x, y, z) and f̃(r, δr; t)

(i.e. f(r,p; t)). As we can have a closed form z2δ2
z and similarly for x2δ2

x and y2δ2
y :

K
force
56 =

1

4πε0

Ne2

6
√
π

1

σz
Lz

(
1

α

)
(3.51a)

K
force
12 = K

force
34 =

1

4πε0

Ne2

6
√
π

1

σT
LT

(
1

α

)
(3.51b)

where Li(p) is:

Lz(p) =
3p2

p2 − 1
[pL(p)− 1] (3.52a)

LT (p) =
3

2

[
L(p) +

p2L(p)− p
1− p2

]
(3.52b)

and L(p) as:

L(p) =
1

2

∫ π

0

dθ

1 + p sin θ
=


arcsin

√
1−p2√

1−p2
, 0 ≤ p ≤ 1 (oblate)

ln(p+

√
p2−1)√

p2−1
, 1 ≤ p (prolate)

(3.53)
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Once the flow term and force term are known, we can write the dynamics expression

for the self-similar evolution of a Gaussian bunch with the three parameters:

dσ2
i

dt
=

2

m
γi (3.54a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+

1

4πε0

Ne2

6
√
π

1

σi
Li

(
1

α

)
(3.54b)

dηi
dt

= −2γiηi
mσ2

i

(3.54c)

3.3.3 Discussion about AG

The essence of the AG model is the evolution of a self-similar Gaussian bunch, where

the chirp is linear and the local momentum fluctuation is uncorrelated with the electron’s

spatial position. It uses the initial bunch statistics as the initial values of the three

time-dependent parameters of the Gaussian profile. Therefore, the credibility of AG’s

prediction comes down to the similarity between the actual charge density profile and the

Gaussian profile that shares the same bunch statistics. This is the reason behind the good

performance for the AG model, despite the fact that a Gaussian charge distribution does

not evolve self-similarly [17, 36] due to the non-linear force.

To this extent, the AG model can be considered as an intermediate approach, which

shifts the focus from the exact density profile towards bunch statistics. In other words,

the advantage of the AG model is that it starts to focus more on the evolution of bunch

statistics. However, the AG model is limited in that is assumes that bunches have and

retain a Gaussian form.
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3.4 Discussion

We presented the SSA model, a statistical method describing the second order moments to

model the evolution of an ellipsoidal electron bunch and explained how it can reproduce

the MFT by taking a zero momentum spread (i.e. zero emittance). We also discussed

the linear chirp assumption, explaining how it is the key assumption to yield emittance

conservation during the bunch evolution. In addition, we also shed light on the statistical

nature of emittance, noting how the force impacts from the uniform density profile and

Gaussian profile are similar to each other. In the following subsections, we expand our

discussion upon all of these points.

3.4.1 linear chirp and self-similar evolution assumptions

The derivation outlined in the preceding section of this chapter showed that the key

assumption for conserving emittance is the linear chirp assumption. In particular, the

linear local average momentum can always be projected on the bunch distribution function

by inserting the corresponding statistics into Eq. 3.5. The fluctuation of momentum (δi)

is then the crucial quantity that differentiates bunches from conserving emittance or not.

Just as we mentioned in the discussion about the MFT, if δi is not symmetric, or not

uncorrelated with the spatial position, we can still use the SSA model or the AG model

to estimate the evolution. However, these model estimations will deviate from the true

evolution. In the next chapter, we explore the magnitude of this discrepancy.

We refer to the SSA model as the self-similar analytic model to differentiate it from

the AG model. Specifically, through this naming, we emphasize the self-similar evolution

assumption rather than the Gaussian density profile. In this analysis, the self-similar
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bunch evolution is also considered satisfying the linear chirp assumption throughout the

evolution as this ensures that the bunch with a linear chirp will evolve self-similarly.6 In

reality, the Gaussian bunch generally does not evolve self-similarly, as pointed out by the

literature [17,36] as is also demonstrated in the simulation in the following Sec. 4. Indeed,

only uniform bunches with zero emittance evolve truly self-similarly.

3.4.2 Kinetic energy transfer between degrees of freedom

The kinetic energy statistics of the bunch in each degree of freedom is related to the three

statistics through:

KEi =
N

2m
σ2
pi

=
N

2m

(
ηi +

γ2
i

σ2
i

)
(3.55)

The corresponding result of a crossover case is shown in Fig. 3.3 The kinetic energy

evolution of a focusing ellipsoidal electron bunch can be written as:

d

dt
KEi =

N

m
γiKFi(α) (3.56)

This evolution is consistent with the fundamental idea that focusing an electron bunch

against Coulomb repulsion transfers kinetic energy in the focusing degree of freedom

into potential energy while expansion works in the other directions. For example, when

the electron bunch is focused in the longitudinal direction, the kinetic energy associated

with the longitudinal direction will transfer to the potential energy. Therefore, if one

degree of freedom is focusing while the other one is expanding, it would appear to be

6There will be edge effect due to the fluctuation of momentum that create density tails on the bunch
edges, which means the bunch evolution is not strictly self-similar. We present a detailed discussion in
the following section.
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Figure 3.3: Kinetic energy evolution for cross-over case ( −1.5ω∗c in the longitudinal
direction, corresponding to panel (c) in Fig. 3.2), with solid lines for MFT and dotted
lines for SSA with different value of emittance (circle for KEz and triangle for KEr).
The sudden change of direction for MFT in longitudinal kinetic energy comes from the
sign flip of the chirp as discussed in Sec. 2.

kinetic energy transfers between two directions. This energy transfer is mediated by the

potential energy as the kinetic energy in the focusing direction goes into the potential

energy and the potential energy converts to the kinetic energy in the expanding direction.

Therefore, we can control this energy transfer process by tuning the focusing procedure.

3.4.3 Statistical discussion and the K-V envelope equations

In this subsection, we want to discuss the statistical essense of the SSA model, namely that

the SSA model describes the evolution of second-order moments of the bunch distribution.

We compare the force term for both a uniform bunch (Eq. 3.10) and a Gaussian bunch
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(Eq. 3.54), as the force term for a uniform spheroidal electron bunch can also be evaluated

analytically.

Let us take the longitudinal direction of a uniform oblate (a = b > c) spheroidal bunch

as an example. For a uniform spheroidal bunch, we can have the following translations

between parameters and bunch statistics:

a =
√

5σT (3.57a)

c =
√

5σz (3.57b)

n =
3N

4πa2c
(3.57c)

The linear coefficient KFz(α) in the force terms in the longitudinal direction from Eq.

3.10 can be rewritten as:7

KFz(α) =
ne2

2ε0
a2c

∫ ∞
0

dl

(c2 + l)3/2(a2 + l)

=
1

4πε0

Ne2

c3
3

2

∫ ∞
0

d(l/c2)

(1 + l/c2)3/2(a2/c2 + l/c2)

=
1

4πε0

Ne2

5
√

5σ3
z

3

2

∫ ∞
0

dν

(1 + ν)3/2(a2/c2 + ν)

=
1

4πε0

Ne2

5
√

5σ3
z

3

2

 2c2

c2 − a2

 c√
a2 − c2

arcsin

√
1− c2

a2
− 1


=

1

4πε0

Ne2

5
√

5σ3
z

Lz

(
1

α

)

(3.58)

Similar results apply to the transverse direction and both directions for prolate spheroids

as well. We can then rewrite the SSA evolution equations for a uniform spheroidal bunch

7Credits to Brandon Zerbe for the evaluation of the corresponding integrals.
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as:

dσ2
i

dt
=

2

m
γi (3.59a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+

1

4πε0

Ne2

5
√

5

1

σi
Li

(
1

α

)
(3.59b)

dηi
dt

= −2γiηi
mσ2

i

(3.59c)

with i = T, z for transverse and longitudinal direction, respectively. The impact of the

collective Coulomb interaction from a uniform density profile on bunch evolution is strik-

ingly similar to that from a Gaussian bunch (Eq. 3.54). The difference between the two

density profiles can be expressed by the ratio of the two force terms as:

KGaussian

KUniform
=

5
√

5

6
√
π
≈ 1.0513 (3.60)

Therefore, the difference between the two density profiles is only a little over 5%. In other

words, according to the SSA model, the evolution of bunch statistics for a uniform bunch

with N electrons is identical to that of a Gaussian bunch with the same initial bunch

statistics and total number of electrons equals to 0.95N .

This similarity comes from two key factors: (1) σi,Fi describes the linear part of the

self-field with respect to the corresponding spatial position, which is the only presence

of the Coulomb interaction for bunch evolution in the SSA model with the linear chirp

assumption (2) the mean-field calculation of the linear part of the self-field (σi,Fi) shares

the similar expression as the second-order moments of spatial coordinates of the bunch

distribution [34, 44]. That is the linear approximation of the force distribution depends
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largely on the second-order moments of the distribution, which is consistent with the

argument by Sacherer [38].

The Kapchinsky-Vladimirsky (K-V) envelope equations are well-established in the ac-

celerator community for describing both continuous and bunched beams. It was initially

proposed to model beams with uniform density profile and later extended to continu-

ous beams with elliptical symmetry as well as bunched beams with ellipsoidal symme-

try. [38] The SSA model is mathematically equivalent to the K-V envelope equations as

the SSA uses similar rms (root-mean-square) bunch statistics for uniform bunch evolu-

tion as Sacherer mentioned in his paper. The only difference is that the K-V envelope

equation combines the time-derivatives of bunch statistics in each direction into one or-

dinary differential equation. Specifically from the following two of the bunch statistics

dynamics [44]:

dσ2
i

dt
=

2

m
γi (3.61a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+ σi,Fi (3.61b)

Since we also have

dσi
dt

=
1

2σi

dσ2
i

dt
=

1

m

γi
σi

(3.62)
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we can rewrite Eq. 3.61a as:

d2σi
dt2

=
1

m

(
1

σi

dγi
dt
− γi
σ2
i

dσi
dt

)

=
1

m

[
1

mσi

(
ηi +

γ2
i

σ2
i

)
+
σi,Fi
σi
− γi
σ2
i

1

m

γi
σi

]

=
ηi

m2σi
+
σi,Fi
mσi

=
ε2
i

m2σ3
i

+
σi,Fi
mσi

(3.63)

The K-V envelope equations can be reproduced by the SSA model as:

d2σi
dt2
−

ε2
i

m2σ3
i

−
σi,Fi/m

σi
= 0 (3.64)

The SSA model counterpart related to the varying emittance in K-V envelope equations

will be discussed next.

3.4.4 SSA with emittance evolution

The SSA model is capable of estimating the bunch evolution with varying emittance. We

can rewrite the SSA model (Eq. 3.6c) as:

dηi
dt

=
d

dt

(
ε2
i

σ2
i

)
= −2γiηi

mσ2
i

+
1

σ2
i

dε2
i

dt
(3.65)

The first term on the right-hand side (RHS) can be considered as the energy transfer from

the linear local average motion to the local momentum fluctuation. The second term on

the RHS represents the energy transfer from the potential energy, describing the impact
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of a varying emittance on local momentum fluctuation. The detailed form of these two

terms can be found in Eq. 3.6. Currently, in our research, the emittance evolution can be

obtained numerically from simulation data. We discuss our preliminary thoughts about

the emittance evolution process in the next chapter. A more thorough study discussing

the corresponding analytical models will be presented in future research.

Furthermore, the uniform density profile evolution is not perfectly self-similar due to

the presence of a non-zero emittance. Specifically, the edge of the uniform distribution

will develop a non-uniform tail because of the local momentum spread close to the edge.

Therefore, even for the uniform distribution, we might expect non-conserved emittance

evolution.

As we present all the models, we test their performance and limitation by comparing

them with N -particle simulations, especially the longitudinal focusing of the electron

bunches in the next chapter.
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Chapter 4

Numerical Simulations

In this chapter, we present the molecular dyamics (MD) simulation results for the evo-

lution of uniform ellipsoidal electron bunches focused by linear longitudinal chirps. We

discuss the comparison between the SSA model predictions and the MD simulation results

for further understanding of the electron bunch evolution (especially around crossover)

and the limitations of the SSA model.

4.1 Simulation method

Although there are many simulation methods that run faster than MD in studying the

electron bunch evolution with Coulomb effects, such as the Particle-In-Cell (PIC) method,

we rely on the MD simulation due to the fact that it fully preserves the discrete aspect

of the Coulomb interaction information between electrons. Our simulation starts from a

uniform ellipsoidal bunch with a non-zero initial emittance, which we refer to as a “warm”

initial condition. Then, we solve non-relativistic equations of motion for every electron

using the velocity-Verlet integration. The Coulomb interaction is solved using the Fast

Multipole Method (FMM) from the fmmlib3d library [45] to calculate the field at the

spatial position of each electron.

We present a simple overview about our MD simulation before we discuss the warm
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initial conditions and the simulation results. The simulation is carried out in a rest frame

to simulate the evolution of an electron bunch in its center of mass (COM) frame. Each

particle represents one individual electron. Therefore, each particle/electron j has six

coordinates in the COM frame to describe the phase space position at time t during

the simulation: (rj = xj , yj , zj) for its spatial position in the COM frame and (vj =

vxj , vyj , vzj) for its relative velocity with respect to the COM.

Second, the Coulomb interaction on particle j from all other electrons is calculated by

the Fast Multipole Method (FMM), a numerical technique that speeds up the calculation

of long-range forces such as Coulomb interaction [45]. It achieves O(N) time complexity

(whereN is the total number of particle/electron) by expanding the corresponding Green’s

function using a multipole expansion, which equivalently groups sources that lie close

together and treats them as if they are a single source for long-range interaction.1 This

is used to calculate the field to a specified accuracy without the use of a spatial mesh.

Third, we use the velocity-Verlet integration scheme as our non-relativistic pusher

to propagate the bunch evolution forward in time. Velocity-Verlet integration, similar

to the leapfrog integration, is a second-order integration method, that updates positions

and velocities at interleaved time points, staggered in such a way that they “leapfrog”

over each other to enhance accuracy into second-order using only one additional field

solve calculation. With the force information Fj(t) from the FMM calculation based on

the position of particles at time t, the corresponding non-relativistic equation of motion

1An overview of the algorithm and implementation of FMM can be in this lecture notes by Beatson
and Greengard [46].

68



(EOM) for each individual particle (j) is then:

rj(t+ ∆t) = rj(t) +

(
vj(t) +

Fj(t)

me

∆t

2

)
·∆t (4.1a)

vj(t+ ∆t) = vj(t) +
Fj(t) + Fj(t+ ∆t)

me
· ∆t

2
(4.1b)

The detailed implementation scheme for this integration is then:

1. propagate the velocity to the middle-point: vj(t + 1
2∆t) = vj(t) +

Fj(t)

me
∆t
2 using

the force calculation from the prior step

2. propagate the position to the next time-point: rj(t+ ∆t) = rj(t) + vj(t+ ∆t
2 )∆t

3. Calculate the force Fj(t+ ∆t) based on the new charge distribution r(t+ ∆t)

4. propagate the velocity to the next time-point: vj(t+∆t) = vj(t+
∆t
2 )+

Fj(t+∆t)

me
∆t
2

Essentially, the velocity-Verlet takes advantage of staggering the calculation time point

for position and velocity to apply mid-point estimation for both the position and the

velocity evolution at once.

To assure the validity of the simulation, we check the conservation of energy by calcu-

lating the kinetic energy and potential energy of the bunch regularly during the simulation.

In this chapter, we present the MD simulation data by one line for the mean value of the

90 sample runs and one same-colored area shows the size of standard deviation about the

mean across the samples. A detailed discussion about the 90 samples will be present in

the next section.

The simulations were conducted using in-house code with the field calculation done

by the fmmlib3d library. This code has been validated through comparison to another in-
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house code implementing the brute-force MD code accelerated by GPGPU parallelization

using CUDA [47].

4.2 Warm initial condition

In this section, we present the “warm” initial condition for the equation of motion (Eq.

4.1) in our MD simulations. In the SSA model and MD simulation, we assume the

longitudinal compression process for the probing electron bunch takes place during the

free-drifting region between the RF cavity and the specimen as showed in Fig. 1.1. The

warm initial condition is a thermalized bunch of particles that represents an electron bunch

with a non-zero emittance as our attempt to mimic the bunch phase-space distribution

right after the RF cavity. The warm initial condition helps us to prepare a phase-space

distribution of an electron bunch with non-zero emittance.

We first place about 19100 electrons inside a simulation box with periodic boundary

condition (PBC) at the target density, which is 10, 000 electrons for a prolate spheroid

with the semi-axes of (10µm, 10µm, 75µm). The starting position of each electron is

randomly drawn from a uniform distribution and the starting momentum is zero.

Then the electrons interact with each other until the bunch reaches equilibrium. We

set the thermalization time to be over 10 plasma oscillation periods because (1) we find

that this time period is long enough for bunches to reach equilibrium, and (2) the proper

travel time from the photo-cathode to the RF cavity is close to the duration of the

thermalization process. We refer to this process as the sample thermalization. Since we

employ the periodic boundary conditions during the sample thermalization, the Particle-

Particle-Particle-Mesh (PPPM) method is the preferred standard method as the Particle-

70



Mesh part of PPPM takes advantage of the highly efficient Fast Fourier Transform (FFT)

method [48] to speed up the evaluation of the long-range interaction from the PBC, while

the normal FMM is not as efficient for this particular situation as PPPM. Therefore, the

thermalization process of the initial conditions are prepared with the high-performance

PPPM feature in LAMMPS [49].

Figure 4.1: The z − pz phase-space distribution of a warm initial condition. The initial
local momentum fluctuation has a Gaussian profile and the corresponding linear chirp is
added based on the spatial coordinates of each electron.

At the end of the thermalization process, we select the electrons which are inside the

desired prolate spheroidal region to construct one sample of the warm initial condition.

One sample of the warm initial conditions is shown in Fig. 4.1. As the initial position is

random, the resulting samples will have slight differences in the total number of particles.
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To mitigate the randomness of starting position, we prepare 90 such samples to obtain

reasonable statistical analysis for simulation results. To apply different initial linear chirp

into the warm initial conditions, the momentum of each particle is adjusted based on its

spatial coordinates as presented in Eq. 3.5.

4.3 Width evolution

In this section, we present the comparison between the MD simulation results and the SSA

model predictions for the bunch evolution, specifically, the longitudinal focusing process.

Several simulations were performed for initial linear chirps: −0.7ω∗c , −1.0ω∗c and −1.5ω∗c ,

where ω∗c is obtained from the MFT calculation in Sec. 2.1.4. As shown in Fig. 4.2, the

SSA model predictions deviate from the MD simulation results in three familiar aspects:

(1) a slightly larger minimum width, (2) the critical time to reach the minimum width is

smaller and (3) the discrepancy between SSA and MD is most significant when the bunch

is compressed at the critical chirp, where the bunch evolution is most sensitive to different

emittance as we discussed in the last section. We previously saw similar trends in the

minimum width and the time to reach the minimum width as we discussed in Fig. 3.2.

As the input for the SSA model prediction in Fig. 4.2 already includes the mean value of

the initial emittance across the 90 simulation samples, this suggests that the longitudinal

emittance may be decreasing during the MD simulations. The rms emittance evolution

in panel (b) of Fig. 4.4 confirms the decrease of longitudinal emittance, with several

interesting features we are going to discuss later.

As discussed previously, the mathematical mechanism behind the conservation of emit-

tance in the SSA is the vanishing of the following term associated with emittance evolution
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Figure 4.2: Comparison of longitudinal width evolution with different initial chirps from
SSA and MD simulations. For each initial chirp, the connected-dots correspond to the
average of the 90 MD simulations, the thick solid line is the SSA model prediction with
the average emittance of the warm initial conditions. The thick dotted line is the modified
SSA considering the emittance evolution in Fig. 4.4. The discrepancy between SSA and
MD simulations is driven by the longitudinal emittance decrease, seen in the simulations,
which is confirmed by the good agreement between the modified SSA and simulations.

in Eq. 3.6:

σ2
i σpi,Fi − σi,piσi,Fi = 0

Currently we are working on the analytical theory to predict the evolution of these terms

in either a continuum approximation of the SSA model or the discrete particle settings

like the MD simulations.

However, we can extract the evolution of emittance from the simulation data to better
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capture the accuracy of the model predictions. Specifically, as we discussed in Sec. 3.4.4,

we replace Eq. 3.6c by Eq. 3.65:

dηi
dt

=
d

dt

(
ε2
i

σ2
i

)
= −2γiηi

mσ2
i

+
1

σ2
i

dε2
i

dt

in the SSA model with the time derivative of emittance square (dε2
i /dt). The first term

on the right-hand side (RHS) can be considered as the coupling between the linear local

average momentum and the local momentum fluctuation. This term comes from the non-

interacting kinematics as expansion reduces ηi and compression increases ηi. The second

term represents the energy transfer between the potential energy to ηi, which can be

obtained from the simulation data.

The evolution of the longitudinal width and the kinetic energy associated with the

electron motion in the longtudinal direction using this modification can be seen as the

dotted lines in Fig. 4.2 and Fig. 4.3, respectively. Excellent agreement between these

modified SSA model predictions and the MD simulation results suggets that varying

emittance is the main factor causing the discrepancy between the longitudinal spatial

variance and longitudinal kinetic energy evolution of the (constant-emittance) SSA model

and the MD simulations. Therefore, if the evolution of the covariance term σpi,Fi and

σi,Fi can be understood and modeled, we should be able to obtain the SSA model that

captures the expected behavior of electron bunches to a high degree of accuracy.
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Figure 4.3: Comparison of kinetic energy associated with the longitudinal motion of the
electrons relative to the bunch center of mass with different initial chirps from SSA and
MD simulations. For each initial chirp, we have the connected-dots are the corresponding
90 MD simulations, the thick solid line for SSA prediction with the average emittance of
those warm initial conditions and the thick dotted line for the modified SSA considering
the emittance evolution in Fig. 4.4.

4.4 Emittance evolution

In this section, we discuss our preliminary thoughts about the emittance evolution process,

specifically the electron bunch focusing process. More thorough studies and corresponding

analytical models will be presented in future studies.
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For now, the emittance evolution is obtained numerically from the simulation data

as shown in Fig. 4.4. The emittance evolution in Fig. 4.4, especially the simultaneous
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Figure 4.4: (rms) Emittance evolution in (a) transverse εx and (b) longitudinal εz direc-
tion for three different initial chirps.

increase for both the longitudinal and transverse emittance, cannot be explained by a

heat transfer mechanism employed in the literature [50]. On one hand, as can be seen in

panel(b) of Fig. 4.4, the longitudinal emittance increases slightly at the beginning of the

simmulation followed by a gradual decrease. In addition, there is another rapid increase

in the longitudinal emittance close to tc for the simulations in the crossover regime. On

the other hand, in panel (a) of Fig. 4.4, the transverse emittance also has a slight increase

at the beginning of the simulation followed by a gradual increase. Notice that again for
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the simulations in the crossover regime, there is a rapid increase around t = tc as well.

We would like to emphasize that the rapid increase in the emittance of both directions are

almost coincidental — an observation that is not predicted in the literature and cannot

be explained by the heat transfer mechanism.

We propose two mechanisms, Disorder-Induced Heating (DIH) and emittance transfer,

for driving the emittance evolution in the MD simulations [33] as discussed in the following

two subsections.

4.4.1 Disorder-induced heating (DIH)

DIH in the plasma community describes the heating process during the transition of

a bunch from a disordered state to an ordered state which is structured by Coulomb

forces [51–55]. We argue that there are two phases during the MD simulations where

significant emittance growth is generated by this mechanism: (1) the sudden removal of

the thermalization confinement at the beginning of the simulation and (2) around the

critical time tc, especially for the simulations in the crossover regime.

First, we attribute the emittance increase at the beginning of the simulation to DIH.

With the sudden removal of surrounding electrons and the periodic boundary condition,

the already thermalized electron bunch is suddenly not at equilibrium in the new cir-

cumstance. The bunch can be considered as a disordered state and it starts to evolve

towards its new equilibrium with the influence of Coulomb interaction. The heat transfer

from potential energy to the local momentum fluctuation during this initial phase of the

simulation can then be explained by DIH.

The second situation for DIH induced emittance growth happens around the critical
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time (tc) or focal point where a bunch reaches its minimum. In Fig. 4.5, we present the

bunch density distribution in MD simulations throughout the crossover evolution, and

its comparison with the density profile of a uniform ellipsoid with the same longitudinal

spread. Since the difference is most significant at tc, DIH suggests a significant amount of

heat is injected into the kinetic energy associated with the local momentum fluctuations.

In other words, the focusing process of the uniform bunch (especially for the cases in

crossover regime) pushes the bunch further away from its equilibrium state, resulting

in a highly non-equilibrium state at tc. The relaxation of this highly non-equilibrium

state is another demonstration of disorder induced heating [33]. As such DIH coming

from the potential energy is isotropic, we see a sudden increase in the emittance in both

the longitudinal and transverse direction almost simultaneously. A detailed discussion

about this DIH can be found in the following sections. Moreover, Eq. 3.65 also indicates

this emittance increase is further amplified at crossover where σ2
z reaches its minimum.

Therefore, a significant longitudinal emittance boost is observed around tc in the crossover

case in panel (b) of Fig. 4.4.

4.4.2 Emittance transfer between degrees of freedom

In our MD simulations for the longitudinal focusing of the electron bunch, the longitudinal

emittance decreases due to the heat transfer to the transverse direction. Here the expres-

sion 1
2me

ηi is considered to be the SSA temperature of each degree of freedom because (1)

1
2me

ηi can be considered as the kinetic energy or temperature associated with the local

momentum fluctuation, and (2) ηi is the variance of the local momentum fluctuations

with respect to the linear local average momentum.
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Figure 4.5: Longitudinal density profile evolution of crossover case (−1.5ω∗c ) with the
longitudinal width scaled by its standard deviation. In each panel, solid line represents
the average of simulation samples and dotted line is the density profile for an equivalent
uniform spheroid of the same longitudinal width as the simulation data. The deviation
from uniformity is most prominent at crossover. However, tails of the distribution are
present in simulations for all initial chirps.
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Figure 4.6: The variance of the local momentum fluctuations for the case in bounce-back
regime (0.7ωc) on a Log-Log scale.

Although the equilibrium requirement for a strict definition of temperature is not

appropriate for the highly non-equilibrium electron bunches in this analysis, we want to

borrow the temperature concept to facilitate our discussion about the heat/emittance

transfer. At the begining of the simulation, the initial value of the SSA temperature in

both longitudinal and transverse directions are similar to each other. Eq. 3.6c and Eq.

3.65 suggest that the longitudinal SSA temperature (ηz) increases as the electron bunch

focuses in the longitudinal direction, while the transverse SSA temperature decreases due

to the expanding transverse direction. Therefore, this SSA temperature difference between

the two direction increases as the bunch evolves towards the focal point. We would expect
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a heat transfer from the hotter longitudinal direction to the cooler transverse direction

in such circumstances. This heat transfer is achieved through the exchange between

potential energy and the variance of local momentum fluctuation ηi of each direction.

The immediate result of this heat transfer can be seen in Fig. 4.6 where ηz from the MD

simulations is smaller than that from the SSA model while ηx in the simulation is larger

than the model prediction.

This heat transfer is further illustrated in Fig. 4.7 as we plot the term associated with

the impact of a non-conserved emittance in Eq. 3.65 for the dynamics of ηi. After the

initial DIH effect at the beginning, the increasing SSA temperature difference generates

stronger heat transfer from longitudinal direction to transverse direction. Prior to tc,

Figure 4.7: The heat transfer from potential to ηi (a) and (b) for bounce-back case
(0.7ωc); (c) and (d) for cross-over case (1.5ωc). The red dotted lines are the time when
the transfer in longitudinal direction switches sign.

the consistent and accelerating heat transfer from the longitudinal direction into the

transverse direction is evidence of the emittance transfer between the two degrees of
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freedom.

Around tc, a heat influx from the potential energy is observed in both the longitudinal

and transverse directions as the electron bunch relaxes from the highly non-equilibrium

state around tc. Notice that the heat influx for the bounce-back cases are smaller than

the cross-over cases, and the non-equilibrium effect is more drastic for the cross-over cases

as the density profiles are further away from unifrom than the bounce-back case. The

discussion about the density profile at tc can be found in next section. Furthermore, the

non-equilibrium state at tc for cross-over case is so drastic that the heat continues to

transfer from the potential energy to the local momentum fluctuation well beyond tc, as

can be seen in panel (c) and (d) in Fig. 4.7.

4.4.3 Phenomenological description of the emittance evolution

Due to the similarity in the longitudinal width evolution of the MD simulation results and

the (constant-emittance) SSA predictions in Fig. 4.2, the emittance evolution is largely

driven by the change in ηi.

The two competing mechanisms result in the following three phases for the emittance

evolution for bunches that are compressed longitudinally: (1) Initial phase dominated by

DIH: at the beginning of simulation, the DIH due to the removal of the thermalization

confinement is the driving factor that increases the emittance in both longitudinal and

transverse direction; (2) Emittance transfer phase: the SSA temperature difference in-

creases as the bunch evolves, the emittance transfer mechanism overwhelms the initial

DIH, resulting in the decrease in longitudinal emittance and increase in transverse emit-

tance; (3) DIH around tc: for the cases in the cross-over regime, the bunch reaches a
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highly non-equilibrium state when it approaches its minimum width around tc, creating

another circumstance for a significant DIH effect. The relaxation of this DIH leads to the

sudden emittance growth in both the longitudinal and transverse direction in Fig. 4.4.

4.5 Density profile at tc

In this section, we further study the highly non-equilibrium state and the corresponding

DIH effect around tc. We present the spatial density profile of one MD simulation sample

in the cross-over regime and the corresponding SSA estimation and uniform density profile

in Fig. 4.8.

We generate the histogram and the corresponding kernel density estimation (KDE)

from the z coordinates of the electrons in the bunch at tc. By comparing the simula-

tion result with the uniform density profile of the same longitudinal variance, it is clear

that the density profile in the longitudinal direction of the MD simulation at tc deviates

significantly from the uniform profile.

4.5.1 Density profile prediction from SSA and its linear chirp

assumption

We discuss the density profile at tc determined from the SSA model prediction, followed

by a discussion of its linear-chirp assumption.

The density profile at any given time t > 0 can be obtained by progressing the phase-

space distribution from the known initial distribution of (z̃, p̃z) before adding the chirp
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Figure 4.8: Longitudinal density profile at tc of one crossover case (−1.5ω∗c ). The grey
histogram represents the electron distribution along the longitudinal direction of the sim-
ulation sample at tc. The green solid line is the corresponding kernel density estimation
(KDE) of the density distribution. The blue solid line is the corresponding density pro-
file from the SSA calculation of that sample. The orange dotted line is representing the
density distribution of a uniform spheroid with the same longitudinal spread.

to (z(0), pz(0)):

dQ = S(z̃)dz̃G(p̃z)dp̃z (4.2)

with S(z̃) representing a uniform distribution with the spheroidal shape and G(p̃z) repre-

senting an independent Gaussian profile of initial momentum spread without a chirp, as
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shown in Fig. 4.1:

S(z̃) = πa2

[
1−

(
z̃

c

)2
]

(4.3a)

G(p̃z) = exp

[
− p̃z

2

2η

]
(4.3b)

from the initial bunch size (a(0), c(0)). Adding the linear chirp γ/σ2 simply means one

extra transformation:  z(0)

pz(0)

 =

 1 0

γ/σ2 1

 ·
 z0

pz0

 (4.4)

The transfer matrix T (t) for the trajectory of every particle according to the linear force

in SSA is then:

 z(t)

pz(t)

 = lim
∆t→0

t/∆t∏
i=0

 1 1
me

∆t

KFz[α(i∆t)] ·∆t 1

 ·
 z(0)

pz(0)

 = T (t) ·

 z(0)

pz(0)

 (4.5)

where T (t) and its inverse T−1(t)can then be obtained through numerical solutions for

the dynamics of the SSA model:

 z(0)

pz(0)

 = T−1(t) ·

 z(t)

pz(t)

 =

T−1
11 z(t) + T−1

12 pz(t)

T−1
21 z(t) + T−1

22 pz(t)

 (4.6)

and  z̃
p̃z

 =

 1 0

−γ/σ2 1

 ·
 z(0)

pz(0)

 =

 1 0

−γ/σ2 1

 · T−1(t) ·

 z(t)

pz(t)

 (4.7)
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So then the longitudinal density distribution function of the SSA model reads:

ρ(z; t)dz =

∫
S(z̃z(t),pz(t))dz̃G(z̃z(t),pz(t), p̃zz(t),pz(t))dp̃z

= dz

∫
πa2

[
1−

(
z̃z(t),pz(t)

c

)2
]

exp

−
(
p̃zz(t),pz(t)

)2

2ηz

 dpz (4.8)

with the help of the Liouville’s theorem, i.e. dz̃dp̃z = dz(t)dpz(t). Therefore, we obtain

the projected density profile according to the SSA model as the blue solid line in Fig. 4.8,

which also deviates quite significantly from a uniform density profile as the SSA model

assumed.

This derivation has a caveat that the transformation leads to a bell-shaped density

profile while the driving T matrix is calculated following the uniform density profile as-

sumption in the SSA model. In other words, we model the bunch evolution using a

uniform density profile while the actual density distribution is not strictly uniform. How-

ever, from the accuracy prospective, if the deviation from the uniform density profile is

not too significant (for bounce-back case) and not lasting too long (for cross-over case),

the predictions of SSA are still in a good agreement with the simulation results as we

can see from Fig. 4.2. The cases driven by the critical chirp present the most significant

discrepancy between the simulation and the model.

This deviation from uniform density profile illustrated both the limitation and versa-

tility of the SSA model. The limitation lies as it relies on the linear chirp assumption to

conserve emittance while only the uniform bunch with zero emittance can maintain that

linear chirp assumption throughout the bunch evolution. The versatility of SSA is that

with the addition of the emittance change term, the modified SSA model is a complete
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statistical model that focuses on the evolution of bunch statistics.

4.6 Bunch phase space display for cylindrical bunch

The MD simulation provides the detailed phase-space structure for the bunch evolution.

It can be particularly helpful for the bunch profiles that are hard to model. For example,

the initial bunch shape might be closer to a cylinder after passing through an aperture,

which is helpful in reducing the emittance by removing the hot region on the out-skirts

of the bunch [17]. For modeling the focusing process of such bunches, we simulate a uni-

form bunch starting with cylinder shape with a linear chirp in the longitudinal direction.

Fig. 4.9 shows an interesting non-linear phase-space and real-space electron distribution.

Figure 4.9: The longitudinal phase-space (first row) and real-space (second row) distri-
bution evolution of a uniform bunch, which starts with a cylindrical shape, zero emittance
and a linear longitudinal chirp. Electrons are colored based on their initial longitudinal
position.

Specifically, by comparing the phase-space and real-space distribution, we realized that
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the non-linearity in the phase-space distribution (the hook on the both ends) comes from

the center of the front and back end in the longitudinal direction, as the net effect of

Coulomb repulsion from the “extra” electrons that are initially outside of the ellipsoidal

region is most significant in those two regions. Furthermore, the Coulomb repulsion from

those extra electrons prevents the electrons in those two regions from crossing the bunch

center, resulting in a partial-crossover situation.

4.7 Discussion

In this chapter, we present the MD simulation results for the longitudinal focusing pro-

cess of uniform spheroidal electron bunches. We equilibrate the electrons for the warm

initial condition to minimize the initial emittance growth due to DIH. The comparison

of the longitudinal width evolution between the MD simulations and the SSA predictions

shows the impact of a varying emittance on bunch evolution. We propose two compet-

ing mechanisms for the change of emittance throughout the compression process. The

DIH increases the emittance in both degrees of freedom while the difference in the SSA

temperature generates emittance transfer between degrees of freedom. In addition, the

non-uniform density profile at the focal point (t = tc) introduces significant DIH that in-

creases the emittance in both longitudinal and transverse directions. The MD simulations

also unveil other interesting phase-space structures during the bunch focusing process.

In this section, we extend our discussion about the MD simulation results and the

comparison between the MD simulation and the SSA model.
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4.7.1 More on the emittance evolution

In Sec. 4.4.2, we discussed the heat transfer due to the SSA temperature difference in the

longitudinal and transverse directions. In addition to the bounce-back example in Fig.

4.6, we present the evolution of ηi for a crossover case, with the comparison to the SSA

model prediciton in Fig. 4.10. The heat influx in the transverse direction is much more

Figure 4.10: The variance of the local momentum fluctuations for the cases in the cross-
over regime (1.5ωc) on a Log-Log scale.

significant than that in the bounce-back case. As the bunch evolves far beyond tc, we

would expect ηz and ηx to become closer due to the emittance transfer. However, that

is not obvious from Fig. 4.6 and Fig. 4.10. The possible explanation could be that the

exchange between ηi and the linear average motion within each direction, − 2γiηi
meσ2

i
, can

be significantly larger than the heat transfer between directions, as the γi increases along
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with the evolution.

While the two mechanisms for emittance dynamics, DIH and emittance transfer, is

qualitatively reasonable, it would be more convincing if we can provide more quantitative

estimation to differentiate the effect of these two mechanisms. Specifically, our future

work will focus on analytical models to quantify the DIH for the relaxation process from

the bell-shaped density profile to a uniform distribution as shown in Fig. 4.5. One of the

candidate is the Wrangler’s theorem [56–61], which estimates the emittance growth due

to the bunch density distribution evolving from a “less” uniform profile towards a “more”

uniform one. Nonetheless, using these two mechanisms, we reach a phenomenological

description about the emittance evolution during the longitudinal focusing process of

uniform ellipsoidal bunches.

4.7.2 Sampling error

As we presented in Fig. 4.4, the emittance of a uniform bunch evolves quite dramatically

in our MD simulations. Another perspective of understanding the origin of emittance evo-

lution might be the sampling error. Specifically, the SSA model (and all other analytical

models) treats the electron bunch as a continuum object, while the electron bunch in MD

simulations consists of discrete electrons randomly drawn from the uniform distribution.

Thus, the SSA model can be considered as a statistical description for the population and

each simulation is just one finite-sized sample drawn from the population. In this sense,

the simulation introduces sampling errors so that the measurement of the sample deviates

from the true value of the population. For example, we assume that some bunch statistics

like 〈z〉, σz,δz are zero in the model, which are most likely non-zero in the simulations.
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It is unclear if there is a recovery mechanism for this sampling error. The recovery

mechanism here is designated to the intrinsic feature of the statistics or kinematics or

Coulomb interaction that reduces the deviation between the sample and the population

towards zero as the sample/bunch evolves. From the model and existing simulation results,

there is no such effect or the magnitude is not significant enough, i.e. the deviation between

a single simulation and the SSA model does not decrease from the initial sampling error.

Further analytical study, such as the impact due to different size of sampling error, is

needed to help us understand the origin of this emittance change mechanism.

4.7.3 Comparing with the experiment values

To put our MD simulation setup into perspective, here are the typical values of some key

operating parameters in the actual UED experiments [18]:

• Number of electrons in a single electron bunch (Ne): 106 — 1.7× 107

• Beam velocity (ve): 164.35 µm/ps

• Relativistic Lorentz factor (γCOM ): 1.1957

• RF cavity to specimen distance(L): 0.425m

• Pre-RF width (σ0) for Ne = 106 bunches: 5.8ps

• Pre-RF chirp (az) for Ne = 106 bunches: 0.00041ps−1

In the UED experiments, the RF focusing power is tuned to minimize the longitudinal

spread of the bunch when it arrives the specimen location.
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For the bunch with Ne = 106, the number of electrons reduces to 104 passing an aper-

ture with diameter of 100µm after the RF cavity2. The corresponding bunch parameters

in the COM frame then reads:

• transverse radius: 50µm

• longitudinal variance in COM: σ2
z

∣∣
t=0 =

(
σ0·ve
γCOM

)2
= (797.2µm)2

• time from RF cavity to specimen in COM frame: τCOM =
L/ve
γCOM

= 2.1ns

Our simulations are studying a density about 250 times higher than this set of experi-

mental parameters and a slightly different initial aspect ratio. However, similar to our

argument in Sec. 2, the space-charge effect we observed in the MD simulations is similar

for different density, with the difference captured by a time-scaling factor Ω0. Therefore,

in order to compare with the experiments, we need to adjust the evolution of the simula-

tion by the corresponding Ω0. Judging from the comparison between the corresponding

SSA evolution estimation [44], the applied focusing chirp in the experiments ranges across

both the bounce-back and cross-over regimes.

2Discussion with Faran Zhou
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Chapter 5

Conclusion

As mentioned in the introduction, this dissertation is centered on the analytical and nu-

merical study of the ellipsoidal electron bunch dynamics. We have examined the crossover

of electron bunches with uniform ellipsoidal profiles focused by a linear chirp as is typical

of the propagation of a probing electron bunch in ultrafast electron diffraction/microscope

systems.

We employed several analytic models to study the space charge effects on the bunch

dynamics, the first of which is an extension of the mean-field model with ordinary dif-

ferential equations. Analysis of this mean-field model leads to the identification of a

longitudinal critical chirp. This critical chirp separates two regimes for particle trajecto-

ries in this model: bounce-back, where the particles reverse their direction at the waist of

the focusing process, and cross-over, where the bunch experiences a singularity where the

bunch width reduces to zero. We showed that time can be scaled by the initial plasma

frequency, and the critical chirp becoming dimensionless and solely depend on the initial

aspect ratio. The evolution of bunches with the same initial aspect ratio differ only by

the time scale determined by the bunch’s plasma frequency [33]. The major drawback

of this model is that it requires a zero-emittance bunch, which limits the applicability of

this model comparing to the statistical methods.

We also presented the SSA model, a statistical method describing the second order
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moments to model the evolution of an ellipsoidal electron bunch and explained how it

can reproduce the MFT by taking a zero emittance. We also discussed the linear chirp

assumption, explaining how it is the key assumption to the emittance conservation during

the bunch evolution according to the SSA model. In addition, we also shed light on the

statistical nature of emittance, noting that the force impact by the uniform density profile

and the Gaussian profile are close to each other. The expression for the force impact from

a changing emittance is captured by the additional term in the modified SSA model.

The modified SSA model is then equivalent to the K-V envelope equation. Through

the derivation of the SSA model, we pointed out that the application of the statistical

methods can extend beyond the uniform ellipsoidal bunch, while the accuracy of the SSA

prediction is mainly related to the discrepancy between the actual density profile and the

uniform density profile.

We then presented the MD simulation results for the longitudinal focusing process of

uniform spheroidal electron bunches. We equilibrate the electron bunches for the warm

initial conditions to minimize the initial emittance growth due to DIH. The comparison

of the longitudinal width evolution between the MD simulations and the SSA predictions

shows the impact of a varying emittance on bunch evolution. We propose two compet-

ing mechanisms for the change of emittance throughout the compression process. The

DIH increases the emittance in both degrees of freedom while the difference in the SSA

temperature generates emittance transfer between degrees of freedom. In addition, the

non-uniform density profile at the focal point (tc) introduces significant emittance growth

in both the longitudinal and transverse directions.

Moving forward, the next steps in the development of analytical modeling of the
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probing electron evolution will focus on the theoretical understanding of the emittance

evolution, especially the quantitative estimation of the DIH and emittance transfer effects

during the focusing process.
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Appendix

Detailed derivation for electrostatic

potential for uniform ellipsoid

In this appendix, we present the detailed derivation for Coulomb potential for uniformly

charged ellipsoids. The derivation is generally followed MacMillan’s book [39].

The surface of a given uniform ellipsoid with semi-axes (a, b, c) is defined by equation:

ξ2

a2
+
η2

b2
+
ζ2

c2
= 1 (.1)

Let the interior point for which the potential is to be computed be P (x, y, z). On taking

P as the origin of a spherical coordinates system ρ, ϕ, θ with the transformation:

ξ = x+ ρ cosϕ cos θ (.2a)

η = y + ρ cosϕ sin θ (.2b)

ζ = z + ρ sinϕ (.2c)

and the corresponding charge element

dq = ρcρ
2 cosϕdϕdθdρ (.3)
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with the volume charge density ρc = n · e (typically n is the electron number density).

Then, the electrostatic potential at point P (with respect to the potential zero point at

infinity) is expressed as:

V (x, y, z) =
ρc

4πε0

∫
E

dq

ρ
= κ

∫ +π
2

−π2

∫ 2π

0

∫ ρ1(θ,ϕ)

0
ρ cosϕdϕdθdρ (.4)

We substitute κ = ρc
4πε0

to simplify the derivation.

The upper limit ρ1(θ, ϕ) of the integration with respect to ρ is a function of θ and ϕ,

since the integration is from P to a point on the surface of the ellipsoid. So, we can insert

Eq. .2a into Eq. .1 for ρ1 as:

Aρ2
1 + 2Bρ1 + C = 0 (.5)

where

A =
cos2 ϕ cos2 θ

a2
+

cos2 ϕ sin2 θ

b2
+

sin2 ϕ

c2
(.6a)

B =
x cosϕ cos θ

a2
+
y cosϕ sin θ

b2
+
z sinϕ

c2
(.6b)

C =
x2

a2
+
y2

b2
+
z2

c2
− 1 (.6c)

With A being positive and C being negative for interior points, ρ1 is then the positive

root of Eq. .5 as:

ρ1 =
−B +

√
B2 − AC
A

(.7)
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To compute V , we can take the advantage of
∫ ρ1

0 ρdρ = 1
2ρ

2
1, so that Eq. .4 becomes

V =
κ

2

∫ +π
2

−π2

∫ 2π

0

2B2 − AC − 2B
√
B2 − AC

A2
cosϕdϕdθ (.8)

The second part of the integral vanishes as

R = κ

∫ +π
2

−π2

∫ 2π

0

B
√
B2 − AC
A2

cosϕdϕdθ = 0 (.9)

can be evaluated by taken in pairs the two elements canceling out each other, e.g. (θ0, ϕ0)

and (θ0 + π,−ϕ0). The integral reduces to

V =
κ

2

∫ +π
2

−π2

∫ 2π

0

2B2 − AC
A2

cosϕdϕdθ (.10)

Substituting the B value from Eq. .6 and we get

V = κ [

∫ +π
2

−π2

∫ 2π

0

{
cos2 ϕ cos2 θ

a2
· x

2

a2
+

cos2 ϕ sin2 θ

b2
· y

2

b2
+

sin2 ϕ

c2
· z

2

c2

}
cosϕdϕdθ

A2

+ 2

∫ +π
2

−π2

∫ 2π

0

{
xy cos2 ϕ cos θ sin θ

a2b2
+
yz cosϕ sinϕ sin θ

b2c2
+
zx cosϕ sinϕ cos θ

c2a2

}
cosϕdϕdθ

A2

− C

2

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A
]

(.11)
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By properly pairing the elements in the second integral vanishes, as

xy

∫ +π
2

−π2

∫ 2π

0

cos2 ϕ cos θ sin θ

a2b2
· cosϕdϕdθ

A2
with {(θ0, ϕ0), (2π − θ0, ϕ0)}

yz

∫ +π
2

−π2

∫ 2π

0

cosϕ sinϕ sin θ

b2c2
· cosϕdϕdθ

A2
with {(θ0, ϕ0), (2π − θ0, ϕ0)}

zx

∫ +π
2

−π2

∫ 2π

0

cosϕ sinϕ cos θ

a2b2
· cosϕdϕdθ

A2
with {(θ0, ϕ0), (π + θ0, ϕ0)}

we can have

V = κ

∫ +π
2

−π2

∫ 2π

0

(
cos2 ϕ cos2 θ

a2
· x

2

a2
+

cos2 ϕ sin2 θ

b2
· y

2

b2
+

sin2 ϕ

c2
· z

2

c2

)
cosϕdϕdθ

A2

− κ

2
C

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A

(.12)

To further simplify the above expression, one may use the following:

W =
κ

2

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A
(.13)

The simplified form of the potential then reduces to:

V =
1

a

∂W

∂a
x2 +

1

b

∂W

∂b
y2 +

1

c

∂W

∂c
z2 − CW

=

(
1

a

∂W

∂a
− W

a2

)
x2 +

(
1

b

∂W

∂b
− W

b2

)
y2 +

(
1

c

∂W

∂c
− W

c2

)
z2 +W

(.14)

Since W is a function of the semi-axes (a, b, c), then so are all of its derivatives. Therefore,

the coefficients of the quadratic term x2, y2 and z2 are functions of a, b, and c only. Also,

W is the potential at the center of the ellipsoid if taking P (x, y, z) = (0, 0, 0).
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We can simplify the expression of W with the help of the following substitution:

M =
cos2 ϕ

a2
+

sin2 ϕ

c2
(.15a)

N =
cos2 ϕ

b2
+

sin2 ϕ

c2
(.15b)

Eq. .13 then becomes

W =
κ

2

∫ +π
2

−π2
cosϕdϕ

∫ 2π

0

dθ

M cos2 θ +N sin2 θ

= 4κ

∫ π
2

0
cosϕdϕ

∫ π
2

0

sec2 θdθ

M +N tan2 θ

= 2πκ

∫ π
2

0

cosϕdϕ√
MN

= 2πκabc2
∫ π

2

0

cosϕdϕ√
(a2 sin2 ϕ+ c2 cos2 ϕ)(b2 sin2 ϕ+ c2 cos2 ϕ)

(.16)

To restore the symmetry within a, b, and c, we can introduce the following substitution:

sinϕ =
c√

c2 + s
⇒ d sinϕ

ds
= − c

2(c2 + s)3/2
(.17)

where s is the new variable of integration. Eventually, W can be written as:

W = πκabc

∫ ∞
0

ds√
(a2 + s)(b2 + s)(c2 + s)

(.18)

101



with the term related to the derivative of W with respect to a reads:

1

a

∂W

∂a
− W

a2
=
πκabc

a2

∫ ∞
0

∂a(a2 + s)−
1
2

∂a
− 1√

a2 + s

 ds√
(b2 + s)(c2 + s)

= −πκabc
∫ ∞

0

1

a2 + s

ds√
(a2 + s)(b2 + s)(c2 + s)

(.19)

Therefore, the potential inside of a uniform ellipsoidal electron bunch may be expressed

as:

V (x, y, z) =
ρc
4ε0

abc

∫ ∞
0

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds√

(a2 + s)(b2 + s)(c2 + s)

(.20)

with zero point of potential at infinity.

The corresponding electrostatic field at the interior point P (x, y, z) is,

~E(x, y, z) = Exx̂+ Eyŷ + Ez ẑ (.21)

with x̂, ŷ, and ẑ representing the unit vectors, respectively. The components of the field

can be represented by the following equations:

Ex(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

ds

(a2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(.22a)

Ey(x, y, z) = y · ρcabc
2ε0

∫ ∞
0

ds

(b2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(.22b)

Ez(x, y, z) = z · ρcabc
2ε0

∫ ∞
0

ds

(c2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(.22c)
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