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ABSTRACT 

COMPARISON OF METHODS FOR DETECTING VIOLATIONS  
OF MEASUREMENT INVARIANCE WITH CONTINUOUS CONSTRUCT 

INDICATORS USING LATENT VARIABLE MODELING  

By 

Mingcai Zhang 

Measurement invariance (MI) refers to the fact that the measurement instrument 

measures the same concept in the same way in two or more groups. However, in 

educational and psychological testing practice, the assumption of MI is often violated due 

to the contamination by possible noninvariance in the measurement models. In the 

framework of Latent Variable Modeling (LVM), methodologists have developed different 

statistical methods to identify the noninvariant components. Among these methods, the 

free baseline method (FR) is popularly employed, but this method is limited due to the 

necessity of choosing a truly invariant reference indicator (RI). Two other methods, 

namely, the Benjamini-Hochberg method (B-H) and the alignment method (AM) are 

exempt from the RI setting. The B-H method applies the false discovery rate (FDR) 

procedure. The AM method aims to optimize the model estimates under the assumption 

of approximate invariance.  

The purpose of the present study is to address the problem of RI setting by 

comparing the B-H method and the AM method with the traditional free baseline method 

through both a simulation study and an empirical data analysis. More specifically, the 

simulation study is designed to investigate the performances of the three methods through 

varying the sample sizes and the characteristics of noninvariance embedded in the 

measurement models. The characteristics of noninvariance are distinguished as the 



 
 

 

 

location of noninvariant parameters, the degree of noninvariant parameters, and the 

magnitude of model noninvariance. The performances of these three methods are also 

compared on an empirical dataset (Openness for Problem Solving Scale in PISA 2012) 

that is obtained from three countries (Shanghai-China, Australia, and the United States). 

The simulation study finds that the wrong RI choice heavily impacts the FR method, 

which produces high type I error rates and low statistical power rates. Both the B-H 

method and the AM method perform better than the FR method in this setting. 

Comparatively speaking, the benefit of the B-H method is that it performs the best by 

achieving high powers for detecting noninvariance. The power rate increases with 

lowering the magnitude of model noninvariance, and with increasing sample size and 

degree of noninvariance. The AM method performs the best with respect to type I errors. 

The type I error rates estimated by the AM method are low under all simulation 

conditions. In the empirical study, both the B-H method and the AM method perform 

similarly in estimating the invariance/noninvariance patterns among the three country 

pairs. However, the FR method, for which the RI is the first item by default, recovers a 

different invariance/noninvariance pattern.  

The results can help the methodologists gain a better understanding of the potential 

advantages of the B-H method and the AM method over the traditional FR method. The 

study results also highlight the importance of correctly specifying the model 

noninvariance at the indicator level. Based on the characteristics of the noninvariant 

components, practitioners may consider deleting/modifying the noninvariant indicators or 

free the noninvariant components while building partial invariant models in order to 

improve the quality of cross-group comparisons.   
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INTRODUCTION 

 

In the field of educational and psychological measurement, the cross-group 

comparison of latent constructs is inevitably applied in many situations, for instance, in a 

comparative study of students’ mathematics scores across different classes in the same 

city, state, country, or across different nations worldwide. Latent variable modeling (LVM) 

is one of the basic techniques to accomplish this goal under the assumption of 

measurement invariance (MI) (Millsap, 2011; Meredith, 1993; Dimitrov, 2010; Widaman 

& Reise, 1997; Steenkamp & Baumgartner, 1998; Schmitt & Kuljanin, 2008; Vandenberg 

& Lance, 2000). The basic idea of MI is that the measurement instrument measures the 

same concept in the same way in two or more groups to warrant subsequently the 

possibility of a meaningful group comparison (Meredith 1993; Steenkamp & 

Baumgartner 1998; Vandenberg & Lance 2000; Millsap, 2011). In other words, once MI 

fulfills, the respondents from different groups that have the same position on a latent trait 

of interest should provide a similar response (Mellenbergh, 1989; Barendse et al., 2010; 

Meredith, 1993; Millsap & Yun-Tein, 2004).  

However, in educational practice, the violation of MI may occur in cross-group 

comparisons. The technique of multi-group confirmatory factor analysis (MGCFA) has 

been widely used to study the violation of MI across groups (Jöreskog, 1971; Byrne et al., 

1989; Little, 1997; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). One 

representative approach in MGCFA to identify the noninvariant components in a 

measurement model is the free baseline method, which was first named by IRT 

methodologists to detect differential item functioning (DIF) during the analysis of 

categorical data (Flowers, et al., 2002; Meade and Lautenschlager 2004; Stark e t al., 



 
 

2 

 

2006). With this traditional method, all indicator parameters are free to vary across 

groups except for one reference indicator (RI) whose loading is fixed to one (Flowers et 

al., 2002; Meade and Lautenschlager 2004; Stark et al., 2006; Jung & Yoon, 2016; 

Cheung & Rensvold, 2002). Once the RI is selected, other model parameters can be 

estimated in reference to the metric underlying it (Bollen, 1989; Mead & Wright, 2012; 

Cheung & Rensvold, 2002). The free baseline method has been widely adopted by 

researchers as a means of studying measurement parameter noninvariance (Meade and 

Lautenschlager 2004; Stark et al., 2006; Jung & Yoon, 2016; Vandenberg & Lance, 

2000).  

However, multiple problems have been pointed out by methodologists over the years 

in relation to this traditional testing method, which are mainly concerned with the use of 

RI (Raykov et al., 2012, 2019; Johnson et al., 2009; Lopez Rivas et al., 2009; Cheung & 

Rensvold, 1999; Yoon & Millsap, 2007; Little et al., 2006). In educational practice, the 

choice of RIs within the free baseline method can pose serious problems. To make the 

noninvariance testing feasible, the RIs have to be assumed group invariant. However, this 

apriori assumption is often problematic if the choice of RIs is not sufficiently supported 

by past studies, theory or substantive knowledge. The selection of an inappropriate RI 

may cause severe type I/type II errors associated with the tests of measurement 

parameters (Johnson et al., 2009; Cheung & Rensvold, 1999; Yoon & Millsap, 2007; 

Lopez Rivas et al., 2009; Raykov et al., 2012, 2019).  

Researchers developed other statistical methods to circumvent these possible 

problems caused by RI selection in MGCFA (Raykov et al., 2013; Yoon & Millsap, 2007; 

Cheung & Rensvold, 1998; Cheung & Lau, 2012; Finch & French, 2008a, 2008b; 
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Asparouhov & Muthén, 2014; Oberski, 2014). Two of the methods, namely, the 

Benjamini-Hochberg (B-H) method (Benjamini & Hochberg, 1995; Raykov et al., 2013) 

and the alignment (AM) method (Asparouhov & Muthén, 2014), were found to perform 

well in exploring noninvariance without having to fix an RI.  

The B-H method is conducted starting with a fully-constrained baseline model and 

by controlling the false discovery rate (FDR; Benjamini & Hochberg, 1995; Raykov et al., 

2013, 2018; Williams et al., 1999; Steinberg, 2001). That is, the application of the B-H 

method commences with the full invariance assumption with respect to all threshold and 

loading parameters associated with all indicators in a given modeling setting. The next 

step is to determine the noninvariant indicators by releasing one constrained parameter at 

a time. As this full parameter invariance assumption for the fully-constrained baseline 

model may be violated due to the contaminated noninvariant indicators (Yoon & Millsap, 

2007；Kim & Yoon, 2011; Whittaker, 2012), a B-H rejection threshold is adopted to 

reduce the occurrence of falsely rejecting tested individual hypotheses while maintaining 

a high level of power (Benjamini & Hochberg, 1995; Raykov et al., 2013).  

 Unlike the free baseline method and the B-H method, the alignment method does 

not depend on any equality imposition/relaxation of model parameters (Asparouhov & 

Muthén, 2014; Flake & McCoach, 2018; Jang et al., 2017). In other words, no RI choice 

is needed and no nested model comparison is conducted for noninvariance testing by 

using this method. Instead, the largest extent of approximation of MI (if not fully 

accomplished thereby) is achieved through the optimization of parameter estimates using 

a component loss function (Jennrich, 2006). Whether one indicator parameter is 

noninvariant or not is determined by a postestimation procedure after the optimization 
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process is completed (Asparouhov & Muthén, 2014; Flake & McCoach, 2018; Jang et al., 

2017; Lomazzi, 2018; Munck et al., 2018; Byrne & Vijver, 2017).  

The effectiveness of the B-H method and the alignment method have been evaluated 

by researchers using either simulation designs or empirical data (Raykov et al., 2013; 

Williams et al., 1999; Steinberg, 2001; Asparouhov & Muthén, 2014; Flake & McCoach, 

2018; Jang et al., 2017; Lomazzi, 2018; Munck et al., 2018; Byrne & Vijver, 2017). For 

example, in the Williams et al.’s (1999) simulation study, the B-H method demonstrated 

higher powers than both simple and sequential Bonferroni adjustment in multiple 

comparisons. Steinberg (2001) applied the B-H method to evaluate differential item 

functioning (DIF) in the so-called Anger Experience and Expression Scale. The results 

showed that this method was effective in identifying DIF items. To avoid the necessity of 

choosing an RI for testing parameter invariance, Raykov et al. (2013) outlined the B-H 

testing procedure and applied it to correctly identify the noninvariant model parameters 

using a simulation design. However, no comprehensive simulation studies have been 

conducted using this method to detect measurement noninvariance.  

To evaluate the performance of the alignment method, Flake & McCoach (2018) 

conducted a simulation study for MI testing of polytomous items under conditions of 

partial MI. They found that the alignment method adequately recovered parameter 

estimates under small and moderate amounts of noninvariance and worked better for the 

thresholds than for the loadings. Using an empirical dataset from the Satisfaction With 

Life Scale (SWLS), Jang et al., (2017) compared the alignment optimization procedure 

with MGCFA and multilevel confirmatory factor analysis (MLCFA) to investigate the 

source of SWLS noninvariance. Results indicated that all three methods consistently 
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reported the same set of noninvariant intercepts. Likewise, other recent empirical s tudies 

(Lomazzi, 2018; Munck et al. 2018; Byrne & Vijver, 2017) also confirmed that the 

alignment method, as an alternative to MGCFA, is a valuable tool for evaluating 

measure/survey quality and comparability, discovering indicator noninvariance, and 

substantiating the trustworthiness of the latent construct comparison across groups.  

Although the above mentioned B-H method and the alignment method have 

demonstrated their capability in detecting the violations of MI at indicator level, their 

performances were not compared either in simulation or empirical cross-group studies, 

especially how well they would perform as compared with the free baseline method. It is 

commonly acknowledged that the specification of noninvariance could be impacted by 

the sample size, the number of indicators, and characteristics of noninvariance, such as 

the location of noninvariant parameters, degree of noninvariance, and proportion of 

noninvariant indicators. However, we are unaware of the performances of these three 

methods under various noninvariance conditions that may occur in practical situations.  

The purpose of the present study is to address this concern by comparing the B-H 

method and the alignment method with the free baseline method using both a simulation 

study and an empirical data analysis. The study results will help educational practitioners 

to carry out a more informed choice of an indicator noninvariance detection method and 

improve the validity of multiple-group comparisons conducted in the empirical 

behavioral and social disciplines.   
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CHAPTER 1: LITERATURE REVIEW 

 

This chapter first presents an overview for the concept of measurement invariance in 

Latent Variable Modeling. It then proceeds with background information for the different 

levels of measurement invariance. Next, the violations of measurement invariance are 

discussed, and the last section elaborates on the three methods of noninvariance testing in 

previous studies. 

1.1 The Concept of Measurement Invariance in Latent Variable Modeling 

The topic of MI has been highlighted in many cross-group comparison studies in 

LVM (Vandenberg & Lance, 2000). It was treated as a necessary condition for making 

valid inferences on similarities and differences of latent constructs in distinct populations 

(Millsap & Meredith, 2007; Raykov, et al., 2012). As the latent constructs are manifested 

by multiple observed indicators in LVM, the measurement parameters of these proxy 

variables have to be assumed as group invariant to guarantee the comparability of the 

underlying constructs.   

Mathematically, the assumption of MI for latent constructs requires the independence 

of conditional probability distributions of the observed scores. According to Mellenbergh 

(1989), the condition of MI is realized when 

 

                                            (1) 

 

where X is a vector of observed variables (which are assumed to be multivariate normally 

distributed), W is a vector of latent variables underlying X, and V is an indicator for group 



 
 

7 

 

membership.  

Hence, for the MI assumption to be realized, observed scores X have to be 

conditionally independent given the underlying latent variable W, regardless of any 

grouping variable V. Specifically, MI requires that conditional on the latent factor scores, 

the expectation of observed scores, the covariances between the observed variables, and 

the unexplained variance unrelated with the latent factors should be all equal across 

groups. Hence, the MI requirement is a rather stringent condition and the conditional 

independence of observed scores can be easily violated.  

Within the LVM framework, the commonly-used statistical method for checking MI 

is the multiple-group confirmatory factor analysis (MGCFA; Jöreskog, 1971; Vandenberg 

& Lance, 2000). In an MGCFA model, the latent variable is indirectly measured through 

one set of observed variables in each group. Each observed value is virtually decomposed 

as: 

 

                                              (2) 

 

where i = 1, …, Ng is the i
th

 observation in group g; k = 1, …, K is the k
th

 observed 

indicator; g = 1, …, G is the g
th

 group. The distribution assumptions for the latent factor 

ηig and the unique factor εikg are ηig ~ N(κg,  g) and εikg ~ N(0, θkg).  

In its vector format, the observed scores and its corresponding latent factors in group 

g are linearly related as: 

 

                                          (3) 

                                      (4) 
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                                        (5) 

                                        (6) 

where Yg represents a vector of observed scores on k measured variables, ηg represents a 

vector of q latent scores on q latent variables, Λg represents k x q matrix of factor 

loadings, νg represents a k x 1 vector of intercepts, and εg represents a k x 1 vector of 

measurement residuals that have zero means and are uncorrelated with the latent factors. 

κg represents a vector of q x 1 latent factor means in the g
th

 group; Φg represents a q x q 

covariance matrix among the latent variables; and Θg is the k x k covariance matrix 

among the measurement residuals in the g
th

 group. 

 Under the assumption of multivariate normal distribution represented by Yg, the 

expected values for the observed variables are:  

 

                                            (7) 

 

where μg represents a vector of k x 1 expected means of the observed variables in the g
th

 

group.  

The covariances of the observed variables are: 

 

                 
                             (8) 

 

where Σg represents a k x k covariance matrix of the observed variables.  

To meet the requirement of fully-realized MI, the measurement parameters (Λg, νg, Θg) 

in the MGCFA models have to be invariant across groups. Otherwise, the full MI cannot 
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be realized. In this case, the invariance assumptions for the noninvariant parameters in Λg, 

νg, and Θg have to be released to pursue some compromised forms of MI (i.e., partial MI). 

Depending on the characteristics of the measurement noninvariance pattern, the equality 

constraints for those noninvariant parameters can be relaxed at either the scale level or 

the indicator level.  

1.2 Levels of Measurement Invariance  

When the equality assumptions of the whole set of model parameters (Λg, νg, and Θg) 

in MGCFA are relaxed at the scale level, four distinct and hierarchically ordered levels of 

MI are available：configural invariance (Horn et al., 1983), metric invariance (Meredith, 

1993; Horn & McArdle, 1992), scalar invariance (Meredith, 1993; Steenkamp & 

Baumgartner, 1998), and strict invariance (Mullen, 1995; Singh, 1995). 

1.2.1 Configural Invariance 

The lowest level of MI is the configural invariance, which does not require any 

constraints for the three types of measurement parameters (i.e., Λg, νg, and Θg). The 

configural invariance only concerns with the invariance of model configuration across 

groups (Horn & McArdle, 1992; Buss & Royce, 1975; Suzuki & Rancer, 1994; Byrne et 

al., 1989; Meredith, 1993; Vandenberg & Lance, 2000). In other words, the central 

requirement of configural invariance is that the same pattern of zero and non-zero 

loadings in Λg matrix holds for all groups. In the meantime, the parameters estimated in 

Λg matrix are allowed to vary freely across groups. A tenable configural model implies 

that groups share one identical pattern of insignificant (zero) and significant (non-zero) 

factor loadings between observed variables and latent variables.  

The utility of configural invariance model is limited as it does not involve the strict 
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measurement scale consistency of the latent factors across groups. Its utility then mainly 

stems from the role as a baseline model, against which higher levels of MI with more 

restricted invariance requirements are evaluated.  

1.2.2 Metric Invariance 

In the MGCFA model, if we assume Λg = Λ (the subscript g is dropped so that all 

factor loadings are group invariant), the resulting condition is denoted as metric 

invariance (Horn & McArdle, 1992), or weak measurement invariance (Meredith, 1993). 

Metric invariance requires only the plausibility of equal factor loadings across groups. It 

is a necessary condition for interpreting group differences in variances or covariances 

among latent variables.  

1.2.3 Scalar Invariance 

When both the measurement intercepts and factor loadings are assumed to be 

invariant (Λg = Λ, and νg = ν for all k indicators), the resulting condition is denoted as 

scalar invariance (Steenkamp & Baumgartner, 1998), or strong measurement invariance 

(Meredith, 1993). Scalar invariance implies that group differences in the means of the 

observed variables are due to differences in the means of the underlying construct(s). 

When the imposed constraints in Λ and ν matrices are statistically plausible, the retrieved 

scalar model provides substantively meaningful interpretations of cross-group differences 

in latent factor means and variances.  

1.2.4 Strict Invariance 

Beyond the requirement of equal factor loadings and equal intercepts in the scalar 

invariance model, the strict invariance requests an extra assumption of equal 

measurement residual variances contained in Θg matrix (that is, Θg = Θ). The cross-group 
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invariance requirement for all the measurement parameters (Λg = Λ, νg = ν, and Θg= Θ) 

makes this model the most parsimonious one. When strict invariance holds, the observed 

variables in each group are measured with the same precision. All group differences from 

the observed variables are captured by and attributable to group differences on the 

common latent factors (Widaman & Reise, 1997).   

1.3 Violations of Measurement Invariance 

The MI tests described thus far are omnibus tests of whether the scale level 

invariance is fully satisfied or not. This is the common practice in empirical studies for 

the evaluation of measurement equivalence under the confirmatory factor analysis (CFA) 

framework (c.f., Vandenberg & Lance, 2000; Schimitt & Kuljanin, 2008; Steenkamp & 

Baumgartner, 1998; Putnick & Bornstein, 2016). As reviewed by Schimitt & Kuljanin 

(2008) and Putnick & Bornstein (2016), the majority of published empirical studies tested 

the metric invariance or scalar invariance. These articles covered a wide variety of areas 

in social and behavioral sciences (such as intelligence tests, life/job satisfaction, 

academic motivations). In these studies, the scale level invariance was demonstrated to 

support the applicability of the instruments across demographically diverse subgroups 

(such as gender, race, culture).  

The popularity of scale level tests reflected a practical view toward the primary 

purpose of CFA-based MI testing. People hoped to verify the invariance at the scale level 

to warrant the subsequent cross-group comparisons (Davidov et al., 2014). However, in 

empirical situations, it is quite common that the measurement instruments are 

contaminated by noninvariant indicators. In such cases, the full invariance is not realized, 

particularly for those stringent forms beyond the configural invariance. The failure to 
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establish MI poses great threat to the validity of cross-group comparison results (Davidov 

et al., 2014). For instance, if metric invariance is violated, the validity of cross-group 

comparison in terms of the latent factor variance would be in doubt. If scalar invariance 

does not hold, the validity of cross-group comparison in terms of latent means would be 

in question.  

Recently, researchers started to notice that only performing scale level MI testing was 

not enough. This is because the scale level testing may miss sizable MI violations 

embedded in measurement models (e.g., Raykov et al, 2019). First, the plausibility of one 

scale level invariance does not mean that all the measurement parameters are truly 

invariant. It is possible that the noninvariance against one group could cancel out the 

noninvariance against another group within one model (Nye et al., 2019). Second, the 

criteria to judge whether one level of MI holds or not are commonly based on the 

significance of χ
2
 change (Δχ

2
) (Byrne et al., 1989; Marsh & Hocevar, 1985; Reise et al., 

1993). However, it is well known that the Δχ
2
 test is sample sensitive. The analysis at 

scale level may not have enough power to justify the critical deviations in case of small 

samples.  

The indicator level nonequivalence testing has been frequently recommended to 

diagnose the source of any nonequivalence (Vandenberg & Lance, 2000). Research has 

shown that testing the parameters for a single indicator at a time provides a more accurate 

indication of noninvariance (Stark et al, 2006; Jung & Yoon, 2016; Raykov et al., 2013, 

2019).  

The accurate configuration of noninvariance pattern embedded in the dataset can 

benefit empirical data analysis in many ways. For example, those contaminated indicators 
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whose parameters are largely different across groups can be simply ignored during the 

analysis. However, this option is usually not recommended because it is atheoretical and 

detrimental to the validity argument (Cheung & Rensvold, 1999). Another commonly 

used strategy is to use partial measurement invariance (PMI; e.g., partial scalar/metric 

invariance; Byrne et al., 1989). In these PMI models, the equality assumptions of these 

noninvariant components in Λ and ν are released. Some researchers believed that two 

indicators with equal loadings and/or intercepts were sufficient for PMI (Byrne, et al., 

1989; Steenkamp & Baumgartner, 1998). In more recent studies, researchers started to 

view the characteristics of noninvariance as a useful source of information to investigate 

why the cross-group invariance is absent (Davidov et al., 2012).  

No matter which solution is adopted, researchers have to precisely identify those 

noninvariant indicators at first. Under the framework of LVM, three approaches show the 

promises for this purpose (Stark et al., 2006; Raykov et al., 2013; Asparouhov & Muthén, 

2014): (1) the traditional free baseline method; (2) the Benjamini-Hochberg (B-H) 

method, and (3) the alignment method. 

1.4 Methods of Detecting Measurement Noninvariance  

1.4.1 The Free Baseline Method 

The free baseline method is a relatively straightforward strategy to test the 

equivalence of loadings and intercepts across groups (Stark et al., 2006). One salient 

feature of this method is that the baseline model allows all indicator parameters free to 

vary except for one indicator which is chosen as RI for setting the common latent scale 

across groups. The invariance of individual indicator parameter is tested by comparing 

the baseline model with a nested model in which the tested parameter is constrained 
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(Flowers, et al., 2002; Meade and Lautenschlager 2004; Stark et al., 2006; Jung & Yoon, 

2016).  

The CFA-based free baseline method was first adopted by IRT methodologists to 

compare its ability to detect DIF with the IRT-based methods (Flowers, et al., 2002; 

Meade and Lautenschlager 2004; Stark et al., 2006). They noticed that the performance 

of the free baseline method was comparable or better than other methods in some 

situations.  

Flowers et al. (2002) proposed two MGCFA-based free baseline procedures, which 

were named as (i) slope procedure, and (ii) slope and intercept procedure, and compared 

these two procedures with non-linear IRT-based DIF method (NC-DIF procedure). The 

performances of these three procedures in detecting DIF were evaluated through a 

simulated test having 20 polytomous items. The results showed that the slope procedure 

successfully identified items that had differences in item discrimination parameters, but 

did not identify items different in threshold parameters. The slope and intercept procedure, 

and the NC-DIF procedure achieved contrary results as opposed to that by the slope 

procedure.  

Stark et al. (2006) unified the CFA- and IRT-based methods and proposed a common 

DIF detection strategy, which was named as the free baseline method with Bonferroni 

correction. They compared the performance of this method with the constrained baseline 

method and the IRT-based method in a simulation study. They found that the three 

procedures performed similarly well in the majority of simulation conditions. The 

constrained baseline approach worked well only when no DIF items were present, and it 

exhibited a high Type I error rate when DIF was simulated on item thresholds. The free 
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baseline method was found to perform well in all conditions.  

In these previous studies, the simulated data were created to have a non-linear IRT 

measurement scale in order to allow for the comparison of the CFA- and IRT-based free 

baseline methods. The application of free baseline method was limited to the analysis of 

categorical data.  

Jung & Yoon (2016) conducted a study, in which the simulated data were created 

based on partial invariance of continuous observed variables. In their study, the free 

baseline method was modified by using confidence interval (CI) to judge the invariance 

of parameters and named as forward CI method. They compared the performance of this 

method with two other commonly used methods, namely backward MI method 

(sequential use of the modification index) and the factor-ratio test under various 

simulated PMI conditions. They found that the forward CI method with 99% CIs has the 

highest perfect recovery rates and the lowest Type I error rates. The backward MI method 

performed similarly well with the more conservative criterion (MI = 6.635). Among all, 

factor-ratio test delivered the poorest performance, regardless of the chosen CI.  

Nonetheless, the justification of the free baseline method in detecting indicator 

noninvariance has been questioned by many researchers (Jung & Yoon, 2016; Raykov et 

al., 2012, 2019; Cheung & Rensvold, 1999; Yoon & Millsap, 2007; Johnson, et al., 2009; 

Lopez Rivas et al., 2009). The major concern with this method was that the RIs may not 

be truly invariant as they are supposed to be. The good performance of the free baseline 

method in the previous studies relied on the fact that one truly invariant indicator was 

selected as the RI. As admitted in the study by Yoon & Millsap (2007), the invariant 

indicator was known as a priori during simulation and was intentionally chosen for RI on 
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purpose. However, invariant indicators are unknown in real data. To determine which 

indicators is truly invariant and can serve as the RI, it is not sufficient to only rely on the 

statistical evidence (Raykov et al., 2012).  

To investigate the role of RIs in MI tests, Johnson et al. (2009) conducted a 

simulation study which examined the effects of RI selection at both scale- and indicator 

level. The magnitude of RI difference was manipulated from .0 to .40 in .05 increments. 

The results indicated that an inappropriate RI selection had little effect on metric 

invariance, but poor RI choice produced very misleading results for indicator level tests. 

Consequently, group comparisons for measurement invariance were highly susceptible 

due to the poor RI choice. 

1.4.2 The Benjamini-Hochberg Method 

The original Benjamini-Hochberg (B-H) method was proposed by Benjamini and 

Hochberg (1995) to address the low power rate of multiple hypothesis tests  through an 

FDR controlling procedure. This procedure is instrumentally concerned with controlling 

the FDR, and thereby offers a way of increasing statistical power while maintaining an 

acceptable Type I error rate (Benjamini & Yakutieli, 2001).  

After proposing their FDR controlling procedure, Benjamini & Hochberg (1995) 

conducted a simulation study to compare the power of this new method with two 

Bonferroni-type family wise error rate (FWER) controlling procedures (Bonferroni and 

Hochberg's procedure). They found that the benefits of using FDR controlling procedure 

are: (1) the power is uniformly higher than FWER controlling methods; (2) the power 

increases with the increase of the number of incorrect null hypothesis (i.e., the existence 

of true parameter difference in multiple testing); (3) the power increases with the increase 
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of the total number of tested hypotheses. 

Using empirical data from the NAEP Trial State Assessment (NAEP TSA), Williams 

et al. (1999) conducted a similar study to compare the performances of B-H FDR 

controlling procedure, Bonferroni procedure, and Hochberg's procedure in detecting 

measurement noninvariance. The results demonstrated that the B-H FDR controlling 

procedure obtained more reliable results than the other two procedures. This result was 

confirmed by the outcome of their following simulation studies. The B-H FDR 

controlling procedure was advantageous over the other two procedures especially when 

many comparisons were involved because its power remained stable as the number of 

comparisons increased.  

In Steinberg’s (2001) study, the potential DIF problems in developing the Anger 

Experience and Expression Scale were investigated. The IRT Likelihood Ratio Test (LRT) 

method was used to detect DIF and the significance level was adjusted using the B-H 

method. In her study, ten anger experience items and two anger expression items were 

found to be significantly different due to the context effect. This study showed the 

usefulness of B-H FDR controlling procedure to investigate DIF when a large number of 

hypotheses were tested.  

In order to address the potential problems caused by the RI choice, Raykov et al. 

(2013) applied the B-H method for detecting indicator parameter noninvariance. The B-H 

method in MI testing was outlined there as a multi-step procedure based on the B-H FDR 

controlling procedure and multiple individual restriction tests. Unlike the free baseline 

method, this method starts with a fully-constrained invariance model where all indicator 

parameters are constrained to be equal across groups. This fully-constrained baseline 
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model is identified by defining the factor variance to one and the factor mean to zero in 

one selected group. The performance of this method was investigated in a simulation 

study in which one sizable noninvariant intercept was embedded in the simulated model. 

The results showed that the B-H method detected this noninvariant parameter with higher 

power than the conventional multiple testing procedures (Raykov et al., 2013). The 

application of B-H method limits the number of incorrect rejections of individual 

parameter constraints, and is preferred as a powerful tool to detect model noninvariance.     

1.4.3 The Alignment Method  

The alignment method (AM) was initially developed with the goal to deal with MI 

testing when there are a large number of groups (Asparouhov & Muthén, 2014). It 

represents an alternative to the MGCFA technique for indicator level invariance testing 

(Muthén & Asparouhov, 2018; Flake & McCoach, 2018; Jang et al., 2017). Unlike the 

free baseline method and the B-H method, the AM method does not depend on any 

specified equality restrictions for both the loadings and indicator intercepts across groups 

(Asparouhov & Muthén, 2014; Flake & McCoach, 2018; Byrne & Vijver, 2017). 

Specifically, there is no need to choose a baseline model and sequentially add or release a 

particular constraint for invariance testing as in the MGCFA procedures. Instead, the 

alignment method starts with a common configural model and then optimizes the 

estimates of the loadings and intercepts across groups to establish the most optimal MI 

pattern (Asparouhov & Muthén, 2014; Byrne & Vijver, 2017). The optimization process 

is realized by incorporating a loss function similar to the rotation criteria used in 

exploratory factor analysis (EFA; Asparouhov & Muthén, 2014).  

After proposing the alignment method, Asparouhov and Muthén (2014) conducted a 
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series of simulation studies to evaluate the quality of this method. It was evaluated 

through analyzing a multiple-group data of 26 countries from the European Social Survey. 

These studies showed that this new method was a valuable alternative to the currently 

used MGCFA methods for studying MI. As the alignment method was able to provide a 

detailed account of parameter invariance/noninvariance for every model parameter across 

groups, Asparouhov and Muthén (2014) argued that their proposed alignment method can 

be used to test invariance of individual parameters.  

Using a simulation design, Flake and McCoach (2018) extended the alignment 

method to test MI in case of polytomous items. The various simulation conditions include 

the number of groups, proportion of noninvariant item parameters, magnitude of 

noninvariance, and type of noninvariance. They found that overall the method performed 

excellently in recovering the true parameters, and produced estimates with little bias, 

especially when the levels of noninvariance are small and medium. It also worked better 

for the thresholds than for the loadings.  

To identify the noninvariant indicators for the Satisfaction With Life Scale (SWLS), 

Jang et al., (2017) analyzed an empirical data from 26 counties using three MI testing 

techniques: the alignment method, MGCFA, and MLCFA (multilevel confirmatory factor 

analysis). The results indicated that all three methods consistently detected three 

noninvariant intercepts. The alignment method has the advantage of providing indicator 

level and group-level measurement invariance information beyond general model 

information.  

Byrne and Vijver (2017) compared the MGCFA and alignment method in testing MI 

across 27 counties using an empirical dataset from the Family Values Scale designed to 



 
 

20 

 

measure family functioning. They found that a large number of misspecified parameters 

(108 items) were identified when using the MGCFA method. However, the alignment 

method revealed that only a small percentage of factor loadings (1.85%) and intercepts 

(17.2%) were noninvariant. Similarly, Lomazzi (2018) compared the alignment method 

with MGCFA to assess the MI of gender role attitude scale in the World Values Survey. 

The results indicated that these two procedures converged in detecting the same item as 

the least invariant, and therefore, the alignment procedure is a valuable tool to assess MI 

as well as to detect noninvariant items. 

Munck et al. (2018) applied the alignment method to assess the MI for a pooled 

dataset from 46 countries. They found that the alignment method is a valuable technique 

for identifying item noninvariance in surveys, and refining the administered instruments 

for the ultimate group comparisons.  

Previous studies have found that the alignment method can be applied to test 

invariance/noninvariance of parameters in factor analysis models (e.g., Byrne and Vijver 

2017; Jang et al., 2017). It should be noted that the fundamental assumption of the 

alignment method is that there is a pattern of approximate MI in the data (Asparouhov 

and Muthén, 2014). More specifically, when the number of noninvariant parameters, as 

well as the extent of measurement noninvariance across groups is controlled at a 

minimum, the optimization of the alignment method achieves the best effect. However, if 

this assumption is violated, the simplest and most invariant model achieved by the 

alignment method might not be the true model. Muthén and Asparouhov (2014) 

recommended a rough rule of thumb for the application of this method: a limit of 25% 

noninvariance is safe for trustworthy alignment results. However, to what extent the 
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performance of the alignment method will be impacted by the violation of its 

fundamental assumption is not clearly demonstrated. 

1.5 Statement of the Problem  

Based on the review of the previous literature, we can observe that the three above 

mentioned methods use different strategies to investigate the pattern of measurement 

noninvariance. The free baseline method applies the bottom-up strategy, in which the 

least number of equality restrictions is required in the baseline model. However, this 

method is limited by the potential danger of a wrong RI choice. In contrast, both the B-H 

method and the alignment method avoid the problem of RI choice and address the 

concern of noninvariance detection through either controlling the false discovery rate 

(FDR) or minimizing a component loss function.  

The study of measurement noninvariance is a complex problem which may be 

impacted by various factors. Among these factors, the sample size, the number of 

indicators, and the features of noninvariance embedded in the dataset are crucial ones 

studied in the literature.  

Researchers noted that the commonly-used χ
2 

difference (Δχ
2
) test is very sensitive to 

sample size (Brannick, 1995; Kelloway, 1995). As the sample size increases, Δχ
2
 will 

increase in power to reject the null hypothesis. The effectiveness of the free baseline 

method and the alignment method in detecting measurement noninvariance is believed to 

be impacted by sample size (Stark et al., 2006; Jung & Yoon, 2016; Asparouhov & 

Muthén, 2014). The effect of sample size on the detection power of the B-H method is 

still not clearly known. In addition, the performance of the χ
2
 statistics also varies by the 

number of indicators used to measure the latent traits (Herzog et al., 2007; Moshagen, 
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2012; Shi et al., 2018). According to the results of Shi et al., (2018), as the number of 

indicators increases, the empirical Type I error rates of the χ
2 

statistics are inflated 

dramatically. Currently it is unclear to what extent the performance of the three above 

mentioned methods will be impacted by varying the number of indicators.  

Research has also found that the features of noninvariance embedded in the data 

under investigation may impact the performance of different detection methods. The 

salient features of noninvariance include but are not limited to: 1) the location of 

noninvariant parameters (i.e., intercept, loading), 2) the noninvariance degree of 

noninvariant intercepts or loadings, and 3) the magnitude of model noninvariance. In this 

research, the magnitude of model noninvariance represents the percentage of 

noninvariant parameters within one measurement model. For example, if the percentage 

of noninvariant parameters is large, the probability of mistakenly choosing a wrong RI by 

the free baseline method may increase (Yoon & Millsap, 2007). For the B-H method, if 

numerous measurement parameters are noninvariant, the fully-constrained baseline 

models during the multiple individual restriction tests are more likely to be misspecified 

and the false discovery rates may arise (Stark et al., 2006; Kim & Yoon, 2011; Whittaker, 

2012). For the alignment method, when the level of noninvariance contamination is high, 

the alignment results may not be trustworthy enough (Asparouhov & Muthén, 2014).        

To date, no study has been conducted to compare the pros and cons of the three 

aforementioned methods for detecting measurement noninvariant components. Therefore, 

we are unaware about the performances of these three methods under various 

noninvariance conditions. Thus the purpose of the present study is to address this concern 

by comparing the B-H method, the alignment method with the traditional free baseline 
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method through both a simulation study and an empirical data analysis. More specifically, 

the study is designed to investigate the performances of the three methods through 

varying the sample sizes and the characteristics of noninvariance embedded in the 

measurement models. The characteristics of noninvariance are distinguished as the 

location of noninvariant parameters, the degree of noninvariant parameters, and the 

magnitude of noninvariance. The performances of these three methods are also compared 

through analyzing an empirical dataset (the index of Openness to Problem Solving) that 

is obtained from three countries (Shanghai-China, Australia, and the United States) in 

PISA 2012. 

The present thesis has both theoretical and practical implications. First, this study is 

to our knowledge the first to systematically compare two new measurement 

noninvariance detection methods with the traditional free baseline method. The results 

will help the methodologists gain a better understanding of the potential problems caused 

by mistakenly selected RI while applying the traditional method and the potential 

advantages of the B-H method and the alignment method in this regard. Second, the study 

stresses the importance of correctly identifying the patterns of MI violations. This 

provides the practitioners with useful information on the characteristics of the 

noninvariant components in practical data structures. Based on these characteristics, they 

could consider delete/modify the noninvariant indicators or free these noninvariant 

components to pursue partial measurement invariance, and improve the validity of 

multiple-group comparisons.  
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CHAPTER 2: SIMULATION STUDY 

 

This chapter first introduces the simulation design of the study. A Monte Carlo 

simulation study is designed to investigate the performances of the free baseline method 

(the FR method), the Benjamini-Hochberg method (the B-H method) and the alignment 

method (the AM method) in detecting measurement models with the violation of MI. 

Then the models for generating the data are described, followed by the interpretation of 

the data analysis procedures and evaluation criteria. Finally, the results of simulation 

study are reported.  

2.1 Simulation Design 

The simulation design includes both fixed conditions and manipulated conditions. 

For the fixed conditions, as shown in Table 2.1, two groups of respondents are assumed 

to be measured by continuous indicators, which are loaded on a single latent trait. One 

group is chosen as the reference group and the other as the focal group. These two groups 

are assumed to have an equal number of observations and the effect of unbalanced 

sample size is not considered.  

Table 2.1 Fixed conditions in the simulation design 

Number of groups  2 

Number of latent factors   1   

Loading parameter (λ)  .5   

Intercept parameter (ν)  0   

Distribution of residual (ε)  N(0, .75) 

Distribution of latent factor in the reference group (ηref)  N(0,1) 

Distribution of latent factor in the focal group (ηfoc)  N(.5,1) 
 

In this simulation design, the loadings and intercepts of all indicators in both groups 

are initially set to be identical respectively. The loading parameters are standardized for 
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the purpose to choose a representative value based on previous empirical studies. As 

reviewed by DiStefano (2002), the standardized loading parameters vary between .3 

and .7 in majority of previous empirical CFA studies. Hence, the initial loadings are fixed 

at λ = .5 to represent an average standardized value. Meanwhile, the intercepts are fixed 

at ν = 0. The residual variances are generated to create indicators with unit variance so 

that the residual variances are fixed at .75. 

The residuals of all indicators are created to be normally distributed and uncorrelated 

with each other and the latent construct. The latent construct in the reference group is 

assumed to be distributed as standard normal (i.e., zero mean and unit variance). In the 

focal group, the latent construct is also assumed to be normally distributed with unit 

variance, but the latent mean is fixed at .5. The latent constructs in both groups are 

manifested by the same number of indicators.  

In this simulation design, four conditions are manipulated, as summarized in Table 

2.2. The manipulated factors include 1) sample size, 2) the location of noninvariant 

parameters, 3) the degree of parameter noninvariance, and 4) the magnitude of model 

noninvariance.  

Table 2.2 Manipulated conditions in the simulation design 

Sample size (N) 200, 500, 1000 

Location of noninvariant parameters loading, intercept 

Degree of parameter noninvariance (D)  

   Loading (λ
D
) .05 to .45 in .1 increments 

   Intercept (ν
D
) .10 to .90 in .2 increments 

Magnitude of model noninvariance   

Proportion of noninvariant indicators 1/5, 2/5 

Variation of noninvariance at the same indicator partially, fully 

Variation of indicator numbers (P) 3, 5, 7, 10 
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Sample size: Three sample sizes are selected (N = 200, 500, 1000 per group), 

representing small, medium and large sample size respectively. These sample sizes are 

selected by referring to previous research in studying sample size effect on measurement 

noninvariance detection (e.g., Stark et al., 2006; Mead & Lautenschlager 2004; Muthén 

& Asparouhov, 2012).  

Location of noninvariant parameters: Two types of measurement parameters are 

studied. Within one measurement model, the source of noninvariance is located at either 

loadings or intercepts.  

Degree of parameter noninvariance: The degree of parameter noninvariance 

represents to what extent one noninvariant loading or intercept deviates from the MI 

requirement. In this study, the noninvariance degrees are built into the loadings or the 

intercepts separately. The values of modified intercepts/loadings in the focal group are 

modified to be higher than those fixed values in the reference group. The choice of 

simulated noninvariance degrees is based on the findings reported by Nye et. al (2019). 

As they reviewed in literature, the majority of standardized loading differences are 

below .10 and few are greater than .50; the majority of intercept differences are below .20, 

and few are above 1. Hence, to represent from minor to severe violations of MI, five 

noninvariance degrees are selected to modify the parameter noninvariance. The 

noninvariance degrees in loadings are selected from .05 to .45 in .1 increments (i.e., λ
D
 

=.05, .15, .25, .35 or .45). The noninvariance degrees in intercepts are selected from .10 

to .90 in .2 increments (i.e., ν
D
 =.10, .30, .50, .70 or .90). The smallest values (λ

D
 = .05 

and ν
D
 = .10) represents negligible loading and intercept differences reported in nearly 60% 

of the previous studies (cf., Nye et. al, 2019).  
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Magnitude of model noninvariance: The magnitude of noninvariance in this study 

is defined as the percentage of noninvariant parameters within one measurement model. 

In general, the magnitude of noninvariance can be simulated in three different ways.  

The first and also the most popular approach is to manipulate the proportions of 

noninvariant indicators (e.g., French & Finch, 2008; Meade &Wright, 2012). That is, to 

vary the number of noninvariant indicators with the total indicator number being fixed. 

To realize this simulation condition in this study, the total indicator number is fixed at 

five, which is the commonly applied scale length designed for Likert Scale questionnaires. 

Two proportions are then simulated: the low proportion (LP) and the high proportion 

(HP). In the LP condition, the first indicator (i.e., y1) is modified to be noninvariant so 

that LP = 1/5. In the HP condition, the first two indicators (i.e., y1 and y2) are 

noninvariant so that HP = 2/5. Hence, the LP and HP conditions represent that 20% and 

40% of the indicators are truly noninvariant within one model. This range of proportions 

is generally observed in empirical studies (e.g., Reise et al., 1993; Cheung & Rensvold, 

1998). The noninvariance over 50% is rarely reported in empirical studies. This is 

because researchers usually believe that if the majority of indicators are noninvariant, the 

measured constructs in all groups will be hardly identical and comparable (Steenkamp & 

Baumgartner, 1998; Vandenberg & Lance, 2000).  

Second, the magnitude of model noninvariance is represented by the number of 

noninvariant parameters located at the same indicator. To simulate this condition, only 

one of the five indicators (e.g., the indicator y1) is modified to be noninvariant. In less 

contaminated models, this indicator is noninvariant at either the intercept or loading, 

which is addressed as a partially noninvariant indicator. In more contaminated models, 
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this indicator is noninvariant at both the intercept and loading, which is addressed as a 

fully noninvariant indicator. 

Third, the magnitude of model noninvariance can also vary with the change of 

indicator numbers loaded on the latent construct. To simulate this condition, the latent 

construct is measured by four different numbers of indicators (P = 3, 5, 7, or 10). This 

range of indicator numbers covers the commonly designed scale length to measure one 

construct in psychological and educational surveys (e.g., Moshagen, 2012; Yuan et al., 

2015). When fixing one indicator (e.g., the indicator y1) to be noninvariant, the models 

with few indicators are highly contaminated in the magnitude. In contrast, the models 

with a large number of indicators are less contaminated.    

In sum, the present study’s simulation conditions are composed of three sample sizes, 

two types of noninvariant parameter locations, five degrees of parameter noninvariance, 

and three ways to manipulate the magnitude of model noninvariance. Beyond the 

simulation conditions with embedded noninvariance in the models, one baseline 

condition in which all measurement parameters (i.e., all the intercepts and loadings) are 

set to be equal across groups is treated as the baseline data check. 

2.2 Data Generation 

The raw data for the two groups of subjects are generated using Mplus software 

(Mplus 7.4). In the reference group, the data for each indicator is generated based on the 

following model:   

                            
                        (9) 

In this model, ref represents the reference group; i represents the i
th
 observation;   

represents the k
th
 indicator. yi,k,ref represents the observed value of the i

th
 observation on 
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the k
th

 indicator in the reference group; ηi,ref represents the latent value of the i
th
 

observation in the referenced group and ηi,ref ~ N(0,1); εi,k,ref represents the residual for the 

i
th

 observation on the k
th

 indicator in the referenced group and εi,k,ref ~ N(0, .75) Every 

εi,k,ref is generated to be independently distributed across the indicators and also 

uncorrelated with ηi,ref. The intercept of the simulated indicator is zero. The standardized 

loading of the simulated indicator is .5. Since the latent variance is one and the residual 

invariance is .75, the indicator is generated to have a communality of .25 (c.f., Yoon & 

Millsap, 2007).  

In the focal group, some indicators are generated to be invariant between two groups 

and the others are noninvariant. The response data for the between-group invariant 

indicators are generated following the model below.  

 

                                                    (10) 

 

where foc represents the focal group, ηi,foc ~ N(.5,1), and εi,k,foc ~ N(0, .75). Other terms 

have been defined previously. Every εi,k,foc is generated to be independently distributed 

and uncorrelated with ηi,foc. Every indicator is generated to have a communality of .25. 

In the focal group, the data for the manipulated noninvariant indicators are generated 

based on models different from equation (10). Because the noninvariance can occur at 

either loadings, intercepts or both parameters, three different models are applied though 

adjusting the corresponding parameter values in equation (10).  

To generate data for those indicators with noninvariant loadings, equation (10) is 

changed as: 
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                                                      (11) 

 

where λ
D
 represents the noninvariance degree of the loading parameter (the subscript k 

for this term is dropped because within one model all the modified loadings are 

noninvariant at the same degree). Difference from equation (10), the variance of εi,k,foc is 

adjusted to allow the indicator to have unit variance. Hence, the adjusted variance of 

εi,k,foc is            . Correspondingly, every indicator is generated to have a 

communality of          . 

In the focal group, for those indicators with noninvariant intercepts, equation (10) is 

changed as: 

 

                                                    (12) 

 

where ν
D
 represents the noninvariance degree of the intercept (the subscript k for this 

term is dropped because within one model all the modified intercepts are noninvariant at 

the same degree). Other terms have been defined before.  

In the focal group, if one indicator is modified on both its loading and intercept, 

equation (10) is changed as: 

 

                                                   (13) 

 

Similarly to the equation (11), the variance of εi,k,foc is adjusted to allow the indicator 
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to have unit variance. Then, the adjusted variance of εi,k,foc is            . The 

communality of every yj,k,foc is          . 

Each simulation condition is replicated 200 times to generate r = 200 different 

datasets for the following data analysis. 

2.3 Data Analysis Procedure 

 Three methods are used to analyze each simulated dataset, including the free baseline 

method as stated in Stark et al. (2006), the B-H method as outlined in Raykov et al. 

(2013), and the alignment method as proposed by Asparouhov & Muthén (2014). The 

software Mplus is used in the study for data analysis.  

2.3.1 The Free Baseline Method  

When applying the free baseline method, the baseline model is identified by 

choosing the first indicator as RI, for which the loading is set to 1 and the intercept is 

constrained to be equal between two groups. The latent factor mean in the reference 

group is set at zero and all other model parameters are free to vary. With the baseline 

model as a benchmark, each of the freely estimated indicator parameters is constrained in 

turn to form a series of nested models. Every nested model represents the hypothesis of 

between-group invariance of one parameter over the baseline model. This hypothesis is 

tested by referring to the χ
2 

difference statistic. The overall α level is set at .05. 

Bonferroni’s correction is used to adjust the α level for significance. If one hypothesis 

testing is significant at the adjusted α level, this indicator parameter is labeled as 

noninvariant. After completing all nested model comparisons, a list of indicators whose 

parameters are noninvariant become available. 
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2.3.2 The Benjamini-Hochberg Method  

When using the B-H method, all the indicator parameters (i.e., loadings and 

intercepts) are constrained to be equal in the baseline model. The latent scale is identified 

with zero factor mean and unit variance for the reference group. The factor mean and 

factor variance in the focal group are freely estimated. Based on this fully constrained 

baseline model, a series of augmented models are created by releasing the parameter 

constraints one at a time. To decide whether the null hypothesis is rejected or not, each of 

the less constrained models is compared to the fully constrained baseline model. The 

difference of χ
2 

values is obtained for each hypothesis testing. The p value associated 

with each testing is obtained through the inversion of χ
2 

distribution with df = 1 (c.f., 

Bollen, 1989). Then, the B-H rejection threshold (T) is found to determine which 

hypothesis should be rejected. If T = 0, none of the null hypotheses is rejected. Otherwise, 

all the null hypotheses with p values that do not exceed T are rejected. The list of 

between-group noninvariant parameters is built according to those hypotheses with p 

values that did not exceed T.  

2.3.3 The Alignment Method  

When using the alignment method, a two-group configural model is established first 

by setting zero mean and unit variance for the single latent construct in both groups. Next, 

this configural model undergoes an optimization process. The FREE type of alignment 

optimization with ML estimator is used. Then the hypothesis testing for every particular 

parameter is conducted by pair-wise comparison after retrieving all the parameter 

estimates. Three sources are referred to determine whether one parameter is noninvariant 

or not. The invariance hypothesis of each parameter is rejected when the p value was 
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higher than .01, as recommended by Asparouhov and Muthén (2014). At the same time, 

the fit function contribution value (i.e., contribution of each parameter to the optimized 

simplicity function) and the effect size measure R
2
 are also referred to make the final 

judgment. 

2.4 Evaluation Criteria 

The performance of each method is evaluated for the recovery of both the truly 

invariant and truly noninvariant indicator parameters embedded in each measurement 

model. The numbers of truly invariant and truly noninvariant parameters under different 

simulation conditions are displayed in Table 2.3. Three evaluation criteria are considered: 

1) perfect recovery rate; 2) type I error rate; and 3) power rate.  

 

Table 2.3 Number of truly invariant and truly noninvariant parameters under different 

simulation conditions 
Indicator 

number 
(P) 

Modified 
indicator 

Modified 
parameter(s) 

Number of parameters Percentage of 

noninvariant 
parameters 

Invariant Noninvariant 

P = 3 y1 Loading/Intercept 5 1 17% 

 y1 Loading/Intercept 9 1 10% 

P = 5 y1 Loading & Intercept 8 2 20% 

 y1, y2 Loading/Intercept 8 2 20% 

P = 7 y1 Loading/Intercept 13 1 7% 

P = 10 y1 Loading/Intercept 19 1 5% 

The perfect recovery refers to the situation that all the noninvariant parameters are 

correctly identified as noninvariant, and all the invariant parameters are not falsely 

rejected. In this study, the perfect recovery rate is calculated as the ratio of the total 

number of counted perfect recovery over 200 replications in each simulated condition. A 

perfectly recovered model has neither false positives nor false negatives. Therefore, the 

perfect recovery rate can be used to evaluate how well each method perfectly recovers the 

true invariance/noninvariance state of a population model. The perfect recovery rate can 
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be regarded as the most rigorous form of power.  

The type I error rate is only applicable to evaluate the testing outcome of truly 

invariant parameters. It is computed as the average ratio between the number of falsely 

rejected invariant parameters and the number of truly invariant parameters in the 

population model. The power rate only applies to evaluate the testing outcome of truly 

noninvariant parameters. It is computed as the average ratio between the number of 

detected noninvariant parameters and the number of truly noninvariant parameters in the 

population model. The type I error rate and the power rate are reported for the loading 

parameters and for the intercept parameters separately. 

The analysis of variance (ANOVA) is conducted to determine the effects of the 

methods and the simulated factors (i.e., sample size, noninvariance degree, magnitude of 

noninvariance) on the type I error rate and power rate. Because the sample size for the 

ANOVA analysis is very large, the effect size (η2) is reported for each main factor and 

each interaction term. The effect size (η2) represents the proportion of variance 

interpreted by each factor. 

2.5 Results of the Simulation Study 

For the simulation study, the testing results obtained from the three above mentioned 

methods (i.e., the FR method, the B-H method, and the AM method) are summarized 

based on the simulation design. First, in section 2.5.1, the base Type I error rates are 

reported for the baseline simulation conditions without any type of measurement 

noninvariance. Then, for the simulation conditions with embedded noninvariance, the 

results are organized into three sections according to the three different ways of 

manipulating the magnitude of model noninvariance. In section 2.5.2, the magnitude of 



 
 

35 

 

noninvariance is manipulated through changing the proportion of noninvariant indicators 

(i.e., either one or two of the five indicators are noninvariant). In section 2.5.3, only one 

of these five indicators is noninvariant. The magnitude of noninvariance is manipulated 

through changing this indicator from being partially noninvariant at intercept/loading to 

fully noninvariant at both parameters. In section 2.5.4, the magnitude of noninvariance 

varies through changing the number of indicators loaded on the latent construct.  

2.5.1 Baseline Data Check  

In the baseline simulation condition, only the type I error rate is examined because 

all the intercepts and loadings are equal between two groups. As shown in table 2.4, all 

three methods show satisfactory type I error rates on the base level, regardless of the 

sample size, indicator number and the tested parameter (i.e., the intercepts or loadings).  

According to the analytical procedures discussed in section 2.3, the level of 

significance for each method is defined differently. For the FR method, the overall α level 

is set at .05 and the level for significance is adjusted with Bonferroni’s correction. Hence, 

under the baseline simulation condition, the nominal levels for models with different 

indicator numbers (i.e., P = 3, 5, 7, and 10) are .013, .006, .004, and .003, respectively. 

The base type I error rates given by the FR method are within or close to these nominal 

levels. For the B-H method, the nominal level of significance is not explicitly defined. 

Instead, the false discovery rate (FDR) controlling procedure is employed to control the 

type I errors. The results show that the FDR controlling procedure is able to control the 

base type I error rates well. For the AM method, the nominal level is preset at .01, 

following the recommendation by Asparouhov and Muthén (2014). The results show that 

the base type I error rates are well confined within this nominal level. 
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Table 2.4 Type I error rates in the baseline conditions 

Tested 

parameter 
P 

 FR 

 

B-H   AM  

 N = 200 N = 500 N = 1000 N = 200 N = 500 N = 1000 
 

N = 200 N = 500 
N = 
1000 

 P = 3  .013 .015 .015  .005 .000 .007  .000 .000 .002 

 P = 5  .006 .006 .006  .003 .002 .000  .002 .000 .000 

Intercept P = 7  .004 .003 .008  .004 .000 .001  .001 .000 .002 

 P = 10  .001 .006 .004  .001 .001 .000  .001 .002 .002 

 P = 3  .020 .018 .008  .012 .005 .005  .003 .002 .000 

 P = 5  .003 .008 .003  .001 .002 .002  .001 .005 .001 

Loading P = 7  .009 .005 .004  .003 .001 .001  .008 .005 .004 

 P = 10  .018 .005 .003  .002 .000 .000  .005 .006 .003 
Note: N = sample size; P = indicator number; FR = the Free Baseline Method; B-H = the Benjamini-Hochberg Method; AM = the Alignment Method. 
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2.5.2 Magnitude of Noninvariance by Proportion of Noninvariant Indicators  

2.5.2.1 Perfect Recovery Rate  

For the perfect recovery rates, only the estimates given by the B-H method and the 

AM method are reported. No perfect recovery rates are reported for the FR method. This 

is because the first indicator y1 is pre-fixed as the RI so that the measurement parameters 

located at this indicator are exempt from MI testing.  

The B-H Method 

As shown in Table 2.5, when using the B-H method, the perfect recovery rates are 

largely impacted by the proportion of noninvariant indicators.  

Table 2.5 Perfect recovery rates with the B-H method when varying the proportion of 
noninvariant indicators  

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

 Dinte=.10  .020 .050 .170 Dload=.05 .000 .000 .015 

 Dinte=.30  .340 .620 .395 Dload=.15 .025 .070 .205 

LP Dinte=.50  .515 .070 .000 Dload=.25 .090 .280 .615 

 Dinte=.70  .170 .000 .000 Dload=.35 .190 .570 .635 

 Dinte=.90  .005 .000 .000 Dload=.45 .325 .585 .310 

 Dinte=.10  .000 .000 .000 Dload=.05 .000 .000 .000 

 Dinte=.30  .005 .005 .000 Dload=.15 .000 .000 .000 

HP Dinte=.50  .000 .000 .000 Dload=.25 .000 .000 .005 

 Dinte=.70  .000 .000 .000 Dload=.35 .000 .005 .000 

 Dinte=.90  .000 .000 .000 Dload=.45 .000 .005 .000 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.   

Under the high proportion condition, the perfect recovery rates are either zeroes or 

very close to zeroes. Under the low proportion condition, the level of perfect recovery 

rates varies depending on the noninvariance degree and the sample size. It is found that 

the maximum value of perfect recovery rates tends to appear at the medium 

noninvariance degrees. For example, for models embedded with noninvariant intercept, 

the maximum value is at Dinte = .50 when N = 200, at Dinte = .30 when N = 500 or 1000. 
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For models embedded with noninvariant loading, the maximum value is at Dload = .35 

when N = 1000. Generally speaking, the maximum perfect recovery rate tends to move 

toward a low noninvariance degree as the sample size is large. 

The AM Method 

When using the AM method (as shown in Table 2.6), the perfect recovery rates are 

impacted by the proportion of noninvariant indicators, the sample size, and the 

noninvariance degree. These factors exhibit consistently either a negative effect or a 

positive effect on the perfect recovery rate. Specifically, the proportion of noninvariant 

indicators shows a negative effect: a higher proportion of noninvariant indicators reduce 

the perfect recovery rate. On the contrary, both the sample size and the noninvariance 

degree show positive effects: the larger the values of these two factors, the higher the 

prefect recovery rates. Additionally, conditional on the same sample size and same level 

of noninvariance degree, the models embedded with noninvariant intercepts are more 

likely to be recovered perfectly than the models embedded with noninvariant loadings.   

Table 2.6 Perfect recovery rates with the AM method when varying the proportion of 
noninvariant indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

 Dinte=.10  .005 .020 .070 Dload=.05 .000 .000 .005 

 Dinte=.30  .180 .500 .630 Dload=.15 .005 .035 .190 

LP Dinte=.50  .525 .780 .810 Dload=.25 .030 .180 .625 

 Dinte=.70  .735 .870 .880 Dload=.35 .075 .490 .910 

 Dinte=.90  .810 .875 .925 Dload=.45 .135 .725 .975 

 Dinte=.10  .000 .005 .000 Dload=.05 .000 .000 .000 

 Dinte=.30  .015 .130 .265 Dload=.15 .000 .000 .020 

HP Dinte=.50  .115 .320 .385 Dload=.25 .000 .025 .255 

 Dinte=.70  .255 .400 .450 Dload=.35 .010 .170 .655 

 Dinte=.90  .320 .460 .510 Dload=.45 .070 .440 .850 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.   
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Comparison of Perfect Recovery Rates between the B-H Method and the AM Method 

In Figure 2.1 and Figure 2.2, the perfect recovery rates estimated by the B-H method 

and the AM method are compared. Figure 2.1 described the situation when the 

noninvariance is located at the intercepts. Figure 2.2 described the situation when the 

noninvariance is located at the loadings.  

According to these two figures, the B-H method and the AM method are impacted 

differently by the three simulation factors (i.e., the proportion of noninvariant indicators, 

the sample size and the noninvariance degree).  

First, the B-H method is more affected by increasing the proportion of noninvariant 

indicators than the AM method. Under the high proportion condition, the perfect recovery 

rates estimated by the B-H method are reduced to zeroes in most simulation cases. The 

AM method, however, performs well under some restricted conditions (e.g., the perfect 

recovery rates are high if the noninvariance degree and the sample size are large). Second, 

the sample size effect is different. For the B-H method, as the sample size becomes large, 

the maximum recovery rate moves toward small noninvariance degrees. If the AM 

method is employed, the perfect recovery rate is consistently enhanced by larger sample 

sizes. Third, two methods perform differently with regard to the relationship between the 

perfect recovery rate and the noninvariance degree. For the B-H method, the perfect 

recovery rate is not uniformly increased by large noninvariance degrees. For the AM 

method, the perfect recovery rate is consistently increased by large noninvariance degrees 

under all simulation conditions. 
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Figure 2.1 Perfect recovery rates for models with noninvariance in the intercepts when 
varying the proportion of noninvariant indicators 
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Figure 2.2 Perfect recovery rates for models with noninvariance in the loadings when 
varying the proportion of noninvariant indicators 
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2.5.2.2 Type I Error Rate 

The type I error rate represents the average value of false positive (i.e., incorrect 

findings of truly invariant parameters as noninvariant) across replicates. In this study, the 

type I error rates for testing the truly invariant intercepts and the truly invariant loadings 

are reported separately.  

The FR Method 

The type I error rates estimated by the FR method are presented in Table 2.7.  

Table 2.7 Type I error rates with the FR method when varying the proportion of 
noninvariant indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

Testing truly invariant intercepts 

 Dinte=.10  .029 .064 .133 Dload=.05 .008 .006 .006 

 Dinte=.30  .228 .601 .929 Dload=.15 .009 .005 .006 

LP Dinte=.50  .540 .949 1.000 Dload=.25 .010 .004 .005 

 Dinte=.70  .784 .998 1.000 Dload=.35 .009 .005 .005 

 Dinte=.90  .893 1.000 1.000 Dload=.45 .008 .005 .006 

 Dinte=.10  .030 .067 .132 Dload=.05 .008 .006 .006 

 Dinte=.30  .237 .595 .930 Dload=.15 .011 .006 .006 

HP Dinte=.50  .553 .955 1.000 Dload=.25 .010 .005 .005 

 Dinte=.70  .780 1.000 1.000 Dload=.35 .009 .005 .005 

 Dinte=.90  .895 1.000 1.000 Dload=.45 .008 .005 .004 

Testing truly invariant loadings 

 Dinte=.10  .003 .008 .003 Dload=.05 .005 .011 .015 

 Dinte=.30  .003 .008 .003 Dload=.15 .024 .073 .170 

LP Dinte=.50  .003 .008 .003 Dload=.25 .074 .214 .514 

 Dinte=.70  .003 .008 .003 Dload=.35 .143 .461 .841 

 Dinte=.90  .003 .008 .003 Dload=.45 .239 .698 .969 

 Dinte=.10  .003 .008 .003 Dload=.05 .005 .010 .013 

 Dinte=.30  .003 .008 .003 Dload=.15 .030 .073 .183 

HP Dinte=.50  .003 .008 .003 Dload=.25 .082 .235 .555 

 Dinte=.70  .003 .008 .003 Dload=.35 .158 .502 .863 

 Dinte=.90  .003 .008 .003 Dload=.45 .263 .758 .978 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.   
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It shows that the existence of noninvariant intercepts/loadings does not largely affect 

the type I errors on testing the other type of parameters. To be more specific, the testing 

of truly invariant loadings is not largely affected by the noninvariant intercepts, and the 

testing of truly invariant intercepts is not largely affected by the noninvariant loadings. 

On the contrary, the existence of noninvariant intercepts/loadings does impact the testing 

outcomes for the same type of truly invariant parameters. In such cases, the type I error 

rate increases with the increase of sample size, the noninvariance degree, and the 

proportion of noninvariant indicators. Namely, the larger value of these three simulated 

factors, the more likely the truly invariant intercepts/loadings will be wrongly rejected. 

The B-H Method 

As indicated in Table 2.8, the existence of noninvariant intercepts/loadings impacts 

the type I error rates for both types of parameters. To be more specific, the existence of 

noninvariant intercepts not only leads to more type I errors for testing the intercepts, but 

also leads to more type I errors for testing the loadings. Similarly, the existence of 

noninvariant loadings also causes more type I errors when testing both the loadings and 

intercepts. In addition, all three simulation factors (i.e., sample size, noninvariance degree, 

and proportion of noninvariant indicators) are positively related to the type I error rate. 

That is, larger values of these three factors correspond to more severe type I error rates. 

Moreover, it is observed that the type I error rates are always higher for models 

contaminated by noninvariant intercepts than those contaminated by noninvariant  

loadings, conditional on the same level of other simulation factors.  
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Table 2.8 Type I error rates with the B-H method when varying the proportion of 
noninvariant indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

Testing truly invariant intercepts 

 Dinte=.10  .004 .006 .133 Dload=.05 .004 .002 .000 

 Dinte=.30  .021 .055 .929 Dload=.15 .003 .005 .001 

LP Dinte=.50  .090 .353 1.000 Dload=.25 .005 .010 .011 

 Dinte=.70  .283 .793 1.000 Dload=.35 .009 .017 .027 

 Dinte=.90  .555 .970 1.000 Dload=.45 .009 .028 .055 

 Dinte=.10  .005 .012 .132 Dload=.05 .003 .002 .001 

 Dinte=.30  .083 .350 .930 Dload=.15 .004 .005 .004 

HP Dinte=.50  .417 .912 1.000 Dload=.25 .002 .008 .018 

 Dinte=.70  .785 .998 1.000 Dload=.35 .003 .015 .025 

 Dinte=.90  .933 1.000 1.000 Dload=.45 .005 .019 .030 

Testing truly invariant loadings 

 Dinte=.10  .001 .006 .004 Dload=.05 .001 .004 .001 

 Dinte=.30  .012 .039 .079 Dload=.15 .001 .008 .006 

LP Dinte=.50  .070 .200 .293 Dload=.25 .008 .016 .034 

 Dinte=.70  .175 .357 .567 Dload=.35 .014 .041 .081 

 Dinte=.90  .302 .594 .878 Dload=.45 .024 .073 .210 

 Dinte=.10  .001 .004 .007 Dload=.05 .002 .005 .002 

 Dinte=.30  .015 .061 .179 Dload=.15 .008 .015 .035 

HP Dinte=.50  .105 .369 .707 Dload=.25 .015 .070 .232 

 Dinte=.70  .271 .741 .966 Dload=.35 .033 .210 .582 

 Dinte=.90  .464 .908 .999 Dload=.45 .075 .432 .850 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.  

  

The AM Method 

The AM method performs well in controlling the type I error rates. As shown in 

Table 2.9, no matter whether the truly invariant intercepts or loadings are tested, the type 

I error rates are zeroes or close to zeroes in most simulation conditions. The type I errors 

are relatively high only at some extreme simulation conditions (e.g., testing the truly 

invariant loadings under the HP condition and Dload ≥ .15). 
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Table 2.9 Type I error rates with the AM method when varying the proportion of 
noninvariant indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

Testing truly invariant intercepts 

 Dinte=.10  .001 .000 .000 Dload=.05 .001 .000 .000 

 Dinte=.30  .000 .000 .000 Dload=.15 .003 .000 .000 

LP Dinte=.50  .000 .000 .000 Dload=.25 .003 .000 .001 

 Dinte=.70  .000 .000 .000 Dload=.35 .002 .001 .002 

 Dinte=.90  .000 .000 .000 Dload=.45 .003 .001 .002 

 Dinte=.10  .002 .000 .000 Dload=.05 .001 .001 .000 

 Dinte=.30  .002 .003 .000 Dload=.15 .001 .001 .000 

HP Dinte=.50  .000 .003 .002 Dload=.25 .002 .001 .000 

 Dinte=.70  .000 .003 .000 Dload=.35 .002 .001 .001 

 Dinte=.90  .002 .003 .000 Dload=.45 .003 .002 .001 

Testing truly invariant loadings 

 Dinte=.10  .001 .005 .001 Dload=.05 .001 .005 .001 

 Dinte=.30  .001 .005 .001 Dload=.15 .001 .006 .004 

LP Dinte=.50  .001 .005 .001 Dload=.25 .004 .006 .004 

 Dinte=.70  .001 .005 .001 Dload=.35 .003 .005 .003 

 Dinte=.90  .001 .005 .001 Dload=.45 .001 .005 .003 

 Dinte=.10  .001 .005 .001 Dload=.05 .002 .005 .002 

 Dinte=.30  .001 .005 .001 Dload=.15 .007 .015 .020 

HP Dinte=.50  .001 .005 .001 Dload=.25 .010 .020 .018 

 Dinte=.70  .001 .005 .001 Dload=.35 .013 .018 .012 

 Dinte=.90  .001 .005 .001 Dload=.45 .015 .020 .015 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.   

 
Comparison of Type I Error Rates among the Three Methods 

First, three methods are compared for the type I error rates of testing the truly 

invariant intercepts. Figure 2.3 and Figure 2.4 compare three methods when the 

noninvariance is located at the intercepts or loadings respectively.  

As shown in Figure 2.3, with noninvariant intercepts, the AM method performs much 

better than the other two methods. The AM method has zero or close to zero type I error 

rates under all simulation conditions. In contrast, both the FR method and the B-H 

method are affected by the sample size, the noninvariance degree, and the proportion of 
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noninvariant indicators. Comparatively speaking, the B-H method performs better than 

the FR method under the majority of simulation conditions. The B-H method is better at 

controlling type I errors than the FR method under the conditions of small sample size, 

medium noninvariance degree, and low proportion of noninvariant indicators.  

 

Figure 2.3 Type I error rates of testing intercepts for models with noninvariance in the 

intercepts when varying the proportion of noninvariant indicators 
 

As shown in Figure 2.4, when the noninvariance is located at the loadings, all three 

methods report low type I error rates. Particularly for the FR method and the AM method, 
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the type I error rates are close to zeroes under all simulation conditions. For the B-H 

method, the type I error rates increase slightly under the conditions of larger sample size 

and noninvariance degrees (e.g., N = 1000 and Dload ≥ .35).  

 

 

Figure 2.4 Type I error rates of testing intercepts for models with noninvariance in the 
loadings when varying the proportion of noninvariant indicators 

 

Second, three methods are also compared for the type I error rates of testing the truly 

invariant loadings (see Figure 2.5 and Figure 2.6). As shown in Figure 2.5, when 

noninvariant intercepts exist in the models, both the FR method and the AM method 
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perform well. The type I errors generated by these two methods are always low. The B-H 

method, however, does not perform quite well, particularly when the sample size and the 

noninvariance degree are large.  

 

 

Figure 2.5 Type I error rates of testing loadings for models with noninvariance in the 

intercepts when varying the proportion of noninvariant indicators 
 

As shown in Figure 2.6, when the noninvariance is located at the loadings, the AM 

method still performs quite well and is the best method. The FR method, however, 
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becomes the worst method. It always reports larger type I errors than the other two 

methods. The B-H method is better than the FR method, but worse than the AM method. 

Unlike the AM method, which is not affected by any simulation conditions, the 

performances of the other two methods are compromised by large sample size, large 

noninvariance degree, and high proportion of noninvariant indicators.  

 

 

Figure 2.6 Type I error rates of testing loadings for models with noninvariance in the 
loadings when varying the proportion of noninvariant indicators 
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2.5.2.3 Power Rate 

The power rate represents the average value of true negative (i.e., the correct 

justification of truly noninvariant parameters as noninvariant) across replicates. The 

testing results of truly noninvariant intercepts and truly noninvariant loadings are 

reported separately.  

The FR Method 

When choosing the FR method, no power rates are reported for the low proportion 

condition. Under the high proportion condition, the power rates are calculated for 

detecting the parameters located at the indicator y2. As shown in Table 2.10, the FR 

method has no enough power to correctly identify the truly noninvariant 

intercepts/loadings in the models. The general loss of power suggests that the fixation of 

noninvariant y1 as an RI has large negative effect on detecting measurement 

noninvariance in the models.  

Table 2.10 Power rates with the FR method when varying the proportion of noninvariant 
indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

 Dinte=.10  .000 .010 .005 Dload=.05 .000 .010 .000 

 Dinte=.30  .010 .005 .005 Dload=.15 .000 .010 .005 

HP Dinte=.50  .015 .010 .005 Dload=.25 .000 .005 .010 

 Dinte=.70  .015 .005 .005 Dload=.35 .000 .005 .010 

 Dinte=.90  .015 .005 .010 Dload=.45 .000 .005 .010 
Note: Prop = Proportion; HP = high proportion; Dinte = degree of noninvariant intercept; Dinte = degree of 

noninvariant loading; N = sample size.   

 

The B-H Method 

Unlike the FR method, all the truly noninvariant parameters are tested when 

choosing the B-H method. As shown in Table 2.11, no matter whether the truly 
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noninvariant intercepts or loadings are tested, the power rates increase with the increase 

of sample size and noninvariance degree. On the contrary, a high proportion of 

noninvariant indicators reduce the power rates.  

In addition, the B-H method is more powerful in detecting the truly noninvariant 

intercepts than detecting the truly noninvariant loadings. For example, conditional on the 

largest sample size (i.e., N = 1000) and low proportion of noninvariant indicators, the 

power rate during testing the truly noninvariant intercept reaches one at Dinte ≥ .30. In 

contrast, when testing the truly noninvariant loading, the power rate reaches one only at 

the highest degree of noninvariance (i.e., Dload = .45).    

 

Table 2.11 Power rates with the B-H method when varying the proportion of noninvariant 
indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

 Dinte=.10  .020 .080 .185 Dload=.05 .000 .000 .015 

 Dinte=.30  .445 .940 1.000 Dload=.15 .025 .085 .225 

LP Dinte=.50  .965 1.000 1.000 Dload=.25 .105 .370 .775 

 Dinte=.70  1.000 1.000 1.000 Dload=.35 .240 .775 .990 

 Dinte=.90  1.000 1.000 1.000 Dload=.45 .450 .910 1.000 

 Dinte=.10  .003 .025 .060 Dload=.05 .000 .000 .005 

 Dinte=.30  .185 .568 .948 Dload=.15 .010 .015 .078 

HP Dinte=.50  .543 .965 1.000 Dload=.25 .025 .123 .403 

 Dinte=.70  .750 .998 1.000 Dload=.35 .083 .325 .768 

 Dinte=.90  .830 1.000 1.000 Dload=.45 .140 .568 .915 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.   

 

The AM Method 

For the AM method, all the noninvariant parameters in the models are available for 

testing as well. As shown in Table 2.12, no matter whether the truly noninvariant 

intercepts or loadings are tested, the power rates increase with the increase of sample size 
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and noninvariance degree. On the contrary, the proportion of noninvariant indicators 

exhibit negative effects: a high proportion of noninvariant indicators leads to lower power 

rates. 

Additionally, the AM method is more sensitive in detecting the noninvariant 

intercepts than detecting the noninvariant loadings under the majority of simulation 

conditions. Only at some extreme conditions (e.g., N = 1000, Dload ≥ .35), the power rates 

for detecting the noninvariant loadings are higher.  

Table 2.12 Power rates with the AM method when varying the proportion of noninvariant 
indicators 

Prop Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

 Dinte=.10  .005 .020 .070 Dload=.05 .000 .000 .005 

 Dinte=.30  .185 .510 .630 Dload=.15 .005 .035 .190 

LP Dinte=.50  .530 .790 .810 Dload=.25 .030 .180 .625 

 Dinte=.70  .740 .885 .880 Dload=.35 .075 .495 .930 

 Dinte=.90  .815 .890 .930 Dload=.45 .135 .740 .995 

 Dinte=.10  .000 .008 .010 Dload=.05 .000 .003 .000 

 Dinte=.30  .053 .195 .338 Dload=.15 .000 .020 .073 

HP Dinte=.50  .175 .368 .423 Dload=.25 .010 .090 .378 

 Dinte=.70  .300 .428 .475 Dload=.35 .043 .293 .735 

 Dinte=.90  .345 .488 .540 Dload=.45 .110 .558 .925 
Note: Prop = Proportion; LP = low proportion; HP = high proportion; Dinte = degree of noninvariant 

intercept; Dinte = degree of noninvariant loading; N = sample size.   

Comparison of Power Rates among the Three Methods 

First, the power rates of identifying the noninvariant intercepts are compared among 

the three methods (as shown in Figure 2.7). Under the low proportion condition, only the 

results from the B-H method and the AM method are available for comparison. The FR 

method is not available because the indicator y1 is initially set as an RI. Under the high 

proportion condition, all three methods are available for comparison.  

In both the low and high proportion conditions, the B-H method performs better than 
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the AM method. As to the FR method, unlike the previous two methods, it always 

performs the worst and does not have powers to detect noninvariant intercepts under all 

conditions.   

 

 

Figure 2.7 Power rates of testing intercepts when varying the proportion of noninvariant 
indicators 

 

Second, the power rates of identifying the noninvariant loadings by the three 

methods are compared, as shown in Figure 2.8.  
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Figure 2.8 Power rates of testing loadings when varying the proportion of noninvariant 
indicators 

 

It is observed that under the low proportion condition, the B-H method always 

performs better than the AM method, regardless of the sample size and noninvariance 

degree. The existence of high proportion of noninvariant loadings negatively impacts 

both the B-H method and the AM method. The B-H method is still slightly better than the 

AM method under most simulation conditions. The FR method performs the worst 
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among the three methods. This method is unable to correctly identify the noninvariant 

loadings and the power rates are always zeroes or close to zeroes. 

2.5.2.4 Design Effects  

An analysis of variance test is conducted to evaluate whether the three different 

methods and the simulation factors (i.e., sample size, noninvariance degree, and 

proportion of noninvariant indicators) have any effect on the type I error rates and power 

rates. Table 2.13 presents the effect sizes (η
2
) of all the main factors and interaction terms. 

The results show that the two main factors (i.e., the method and noninvariance degree) 

interpret more variation of both the type I error rate and power rate than the other factors.    

 

Table 2.13 Effect size (η
2
) of design factors when varying the proportion of noninvariant 

indicators 
Design Factor Type I Error Rate  Power Rate 

Intercept Loading  Intercept Loading 

Method  .150 .098  .378 .129 
N .016 .053  .017 .096 
D  .088 .136  .163 .175 
Proportion .002 .009  .021 .012 
Method*N .008 .027  .009 .047 
Method*D .048 .075  .093 .089 
N*D .006 .030  .009 .053 
Method* Proportion .005 .014  .018 .009 
N* Proportion .000 .003  .001 .001 
D* Proportion .001 .005  .003 .005 

Method*N*D .005 .016  .007 .028 

Method*N*Proportion .000 .005  .002 .001 

Method*D*Proportion .002 .009  .007 .003 

N*D* Proportion .001 .002  .002 .003 

Method*N*D* Proportion .003 .003  .002 .002 
Note: N = sample size; D = degree of noninvariant parameter. 

 

2.5.3 Magnitude of Noninvariance at the Same Indicator  

In this section, rather than increasing the proportion of noninvariant indicators as 
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described in the previous section, the magnitude of model noninvariance varies at the 

same indicator which is either partially or fully noninvariant.  

2.5.3.1 Perfect Recovery Rate  

Table 2.14 reports the perfect recovery rates when both the intercept and loading at 

the same indicator are noninvariant. No perfect recovery rate is reported for the FR 

method due to the RI setting. For the B-H method, the maximum value of perfect 

recovery rate appears at the medium noninvariance degree. For the AM method, the 

maximum value appears at the largest noninvariance degree.    

Table 2.14 Perfect recovery rates with both noninvariant parameters at the same indicator  

Method Dinte & Dload  N = 200 N = 500 N = 1000 

 Dinte=.10 & Dload=.05  .000 .000 .035 

 Dinte=.30 & Dload=.15  .130 .320 .170 

B-H Dinte=.50 & Dload=.25  .215 .020 .000 

 Dinte=.70 & Dload=.35  .110 .000 .000 

 Dinte=.90 & Dload=.45  .060 .000 .000 

 Dinte=.10 & Dload=.05  .000 .000 .000 

 Dinte=.30 & Dload=.15  .000 .000 .000 

AM Dinte=.50 & Dload=.25  .000 .010 .010 

 Dinte=.70 & Dload=.35  .000 .010 .060 

 Dinte=.90 & Dload=.45  .010 .030 .085 
Note: Dinte = degree of noninvariant intercept; Dload = degree of noninvariant loading; N = sample size. 

 

To evaluate the effect after modifying a partially noninvariant indicator to be fully 

noninvariant, the change of perfect recovery rate is compared. In Figure 2.9, two partially 

noninvariant conditions (i.e., models with a single noninvariant intercept/loading) are 

compared with the fully noninvariant condition (i.e., models with both noninvariant 

intercept and loading). 
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Figure 2.9
1
 Perfect recovery rates with the variation of noninvariance at the same indicator  

 

First, in contrast to the models contaminated by a single noninvariant intercept, the 

perfect recovery rates obtained from both the B-H method and the AM method are 

reduced under the fully noninvariant condition.  

Second, compared to the models contaminated by a single noninvariant loading, the 

AM method is consistently compromised under the fully noninvariant condition. The 

                                                   
1
 In this figure, D1-D5 represent the noninvariance condition for the intercept or/and loading from the 

smallest to the largest degree, e.g., D1 denotes the condition of Dinte = .10 or/and Dload = .05. 
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perfect recovery rates are reduced as the sample size and the noninvariance degree 

increased. Yet, for the B-H method, the perfect recovery rates tend to be negatively 

impacted at large noninvariance degrees, but positively impacted at low noninvariance 

degrees.  

2.5.3.2 Type I Error Rate  

Table 2.15 and Table 2.16 report the type I error rates of testing the intercepts and 

loadings when both parameters at the same indicator are noninvariant. As shown in these 

two tables, no matter whether the intercepts/loadings are tested, the AM method is not 

impacted by any simulation condition. The type I error rates are zeroes or near to zeros. 

Yet, for the FR method and the B-H method, the type I error rates increase as the sample 

size and the noninvariance degree increase.  

Table 2.15 Type I error rates of testing intercepts with both noninvariant parameters at the 
same indicator 

Method Dinte & Dload  N = 200 N = 500 N = 1000 

 Dinte=.10 & Dload=.05  .026 .061 .118 

 Dinte=.30 & Dload=.15  .171 .463 .810 

FR Dinte=.50 & Dload=.25  .346 .809 .988 

 Dinte=.70 & Dload=.35  .529 .944 1.000 

 Dinte=.90 & Dload=.45  .650 .983 1.000 

 Dinte=.10 & Dload=.05  .004 .009 .005 

 Dinte=.30 & Dload=.15  .034 .119 .271 

B-H Dinte=.50 & Dload=.25  .161 .546 .910 

 Dinte=.70 & Dload=.35  .370 .869 .999 

 Dinte=.90 & Dload=.45  .499 .936 1.000 

 Dinte=.10 & Dload=.05  .001 .000 .000 

 Dinte=.30 & Dload=.15  .000 .000 .001 

AM Dinte=.50 & Dload=.25  .000 .000 .001 

 Dinte=.70 & Dload=.35  .001 .000 .003 

 Dinte=.90 & Dload=.45  .003 .000 .004 
Note: Dinte = degree of noninvariant intercept; Dload = degree of noninvariant loading; N = sample size. 
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Table 2.16 Type I error rates of testing loadings with both noninvariant parameters at the 
same indicator 

Method Dinte & Dload  N = 200 N = 500 N = 1000 

 Dinte=.10 & Dload=.05  .005 .011 .015 

 Dinte=.30 & Dload=.15  .024 .073 .170 

FR Dinte=.50 & Dload=.25  .074 .214 .514 

 Dinte=.70 & Dload=.35  .143 .461 .841 

 Dinte=.90 & Dload=.45  .239 .698 .969 

 Dinte=.10 & Dload=.05  .001 .006 .004 

 Dinte=.30 & Dload=.15  .015 .050 .099 

B-H Dinte=.50 & Dload=.25  .051 .223 .535 

 Dinte=.70 & Dload=.35  .123 .513 .855 

 Dinte=.90 & Dload=.45  .153 .581 .885 

 Dinte=.10 & Dload=.05  .001 .005 .001 

 Dinte=.30 & Dload=.15  .001 .006 .004 

AM Dinte=.50 & Dload=.25  .004 .006 .004 

 Dinte=.70 & Dload=.35  .003 .005 .003 

 Dinte=.90 & Dload=.45  .001 .005 .003 
Note: Dinte = degree of noninvariant intercept; Dload = degree of noninvariant loading; N= sample size. 

 

 

The change of type I error rates when varying the noninvariance at the same 

indicator (i.e., two partially noninvariant conditions vs. one fully noninvariant condition) 

is compared. Figure 2.10 and Figure 2.11 compare the outcomes of testing intercepts and 

loadings respectively. 

As shown in Figure 2.10, when testing the intercepts, the type I error rates estimated 

by the AM method are not changed. However, the performances of the other two methods 

(i.e., the FR method and the B-H method) are impacted. Specifically, the type I error rates 

estimated by the FR method are slightly reduced when compared to the partial 

noninvariant condition with a single noninvariant intercept. Yet, the type I error rates are 

greatly increased when compared to the condition with a single noninvariant loading. For 

the B-H method, the fully noninvariant condition leads to the increase of the type I error 

rates.   
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Figure 2.10 Type I error rates of testing intercepts with the variation of noninvariance at the same indicator 
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Figure 2.11 Type I error rates of testing loadings with the variation of noninvariance at the same indicator 
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As shown in Figure 2.11, when testing the loadings, both the B-H method and the 

AM method behave similarly as the previous condition of testing the intercepts. After the 

indicator is modified to be fully noninvariant, the AM method is not affected at all, but 

the type I errors estimated by the B-H method increase under most simulation conditions. 

For the FR method, the type I error of testing loadings is not affected by the addition of 

noninvariant intercept onto the same indicator.  

2.5.3.3 Power Rate 

Table 2.17 and Table 2.18 report the power rates of testing the intercept when both 

measurement parameters (e.g., intercept and loading) at the first indicator are 

noninvariant.   

Using the B-H method, no matter which parameter (i.e., the intercept or loading) is 

tested, the power rates increase as the sample size and noninvariance degree increase. 

With the AM method, the power rates of detecting the loading increase as the sample size 

and noninvariance degree increase, but the power rates of detecting the intercept only 

increase at the medium noninvariance degrees. 

Table 2.17 Power rates of testing intercepts with both noninvariant parameters at the 
same indicator  

Method Dinte & Dload  N = 200 N = 500 N = 1000 

 Dinte=.10 & Dload=.05  .025 .090 .240 

 Dinte=.30 & Dload=.15  .540 .965 1.000 

B-H Dinte=.50 & Dload=.25  .970 1.000 1.000 

 Dinte=.70 & Dload=.35  1.000 1.000 1.000 

 Dinte=.90 & Dload=.45  1.000 1.000 1.000 

 Dinte=.10 & Dload=.05  .010 .025 .070 

 Dinte=.30 & Dload=.15  .140 .295 .260 

AM Dinte=.50 & Dload=.25  .290 .285 .165 

 Dinte=.70 & Dload=.35  .335 .210 .120 

 Dinte=.90 & Dload=.45  .280 .170 .100 
Note: Dinte = degree of noninvariant intercept; Dload = degree of noninvariant loading; N= sample size. 
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Table 2.18 Power rates of testing loadings with both noninvariant parameters at the same 
indicator 

Method Dinte & Dload  N = 200 N = 500 N = 1000 

 Dinte=.10 & Dload=.05  .000 .025 .070 

 Dinte=.30 & Dload=.15  .260 .725 .970 

B-H Dinte=.50 & Dload=.25  .735 .995 1.000 

 Dinte=.70 & Dload=.35  .970 1.000 1.000 

 Dinte=.90 & Dload=.45  1.000 1.000 1.000 

 Dinte=.10 & Dload=.05  .000 .000 .005 

 Dinte=.30 & Dload=.15  .005 .035 .190 

AM Dinte=.50 & Dload=.25  .030 .180 .625 

 Dinte=.70 & Dload=.35  .075 .495 .930 

 Dinte=.90 & Dload=.45  .135 .740 .995 
Note: Dinte = degree of noninvariant intercept; Dload = degree of noninvariant loading; N= sample size. 

 

Figure 2.12 compares the power rates of detecting the intercept when varying the 

noninvariance at the same indicator. It is discovered that the B-H method is almost not 

affected when the indicator becomes fully noninvariant at both parameters. On the 

contrary, the power rates estimated by the AM method are reduced.  

Figure 2.13 compares the power rates of detecting the loading when varying the 

noninvariance at the same indicator. Under the fully noninvariant condition, the power 

rates estimated by the B-H method are increased. In contrast, the power rates estimated 

by the AM method are not changed.  
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Figure 2.12 Power rates of testing intercepts with the variation of noninvariance at the 
same indicator 
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Figure 2.13 Power rates of testing loadings with the variation of noninvariance at the 
same indicator 

 

2.5.3.4 Design Effects  

Table 2.19 presents the effect size (η
2
) of design factors when varying the 

noninvariance at the same indicator. The results show that the testing method and the 

noninvariance degree have higher η
2
 than the other factors and all the interaction terms. It 

suggests that these two main factors interpret more variance of the testing outcomes (i.e., 

the type I error rate and power rate) than other factors.    
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Table 2.19 Effect size (η
2
) of design factors with the variation of noninvariance at the 

same indicator  

Design Factor Type I Error Rate  Power Rate 

Intercept Loading  Intercept Loading 

Method  .378 .143  .430 .098 
N .064 .070  .004 .053 
D  .169 .081  .128 .136 
Partially/Fully .000 .035  .012 .009 
Method*N .032 .041  .003 .027 
Method*D .092 .065  .086 .075 
N*D .014 .021  .002 .030 
Method* Partially/Fully .004 .049  .029 .014 
N* Partially/Fully .001 .017  .002 .003 
D* Partially/Fully .038 .054  .011 .005 

Method*N*D .014 .014  .002 .016 

Method*N* Partially/Fully .001 .013  .002 .005 

Method*D* Partially/Fully .027 .057  .013 .009 

N*D* Partially/Fully .003 .013  .004 .002 

Method*N*D* Partially/Fully .008 .011  .003 .003 
Note: N = sample size; D = degree of noninvariant parameter; Partially/Fully = the condition for which 

one indicator was partially or fully noninvariant. 

 

2.5.4 Magnitude of Noninvariance by the Indicator Number 

In this section, the effect exerted by varying the indicator number is investigated. The 

indicator number varies from P = 3 to P = 10. As the indicator number increase, the 

models become less contaminated. In the study, the percentage of noninvariant 

parameters decreases from 17% (when P = 3) to 5% (when P = 10). 

2.5.4.1 Perfect Recovery Rate  

Table 2.20 reports the perfect recovery rates estimated by the B-H method when the 

magnitude of model noninvariance is simulated by varying the indicator number. It is 

observed that the perfect recovery rates are not consistently increased or decreased. The 

effect imposed by varying the indicator number is different depending on the type of 

noninvariant parameters. With the existence of noninvariant intercept, the increase of 

indicator number enhances the perfect recovery rates at the medium noninvariance degree 
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(e.g., Dinte = .50 when N = 200; Dinte = .30 when N = 500 or 1000), but is not so when the 

noninvariance degree is larger or smaller. With the existence of noninvariant loading, the 

increase of indicator number enhances the perfect recovery rates at large noninvariance 

degrees (e.g., Dload ≥ .25 when N = 200; Dload ≥ .15 when N = 500 or 1000).  

Table 2.20 Perfect recovery rates with the B-H method when varying the indicator 
number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .000 .055 .060 

Dload=.05 

.010 .000 .025 

P=5  .020 .050 .170 .000 .000 .015 

P=7  .005 .015 .140 .005 .005 .020 

P=10  .005 .045 .160 .015 .000 .010 

P=3 

Dinte=.30 

 .150 .235 .110 

Dload=.15 

.010 .035 .085 

P=5  .340 .620 .395 .025 .070 .205 

P=7  .350 .750 .530 .000 .100 .330 

P=10  .340 .855 .780 .050 .140 .415 

P=3 

Dinte=.50 

 .270 .130 .005 

Dload=.25 

.040 .065 .210 

P=5  .515 .070 .000 .090 .280 .615 

P=7  .680 .305 .030 .090 .520 .765 

P=10  .810 .565 .185 .175 .565 .855 

P=3 

Dinte=.70 

 .265 .055 .000 

Dload=.35 

.050 .130 .320 

P=5  .170 .000 .000 .190 .570 .635 

P=7  .355 .020 .000 .260 .805 .650 

P=10  .580 .130 .000 .430 .850 .770 

P=3 

Dinte=.90 

 .265 .030 .000 

Dload=.45 

.080 .225 .465 

P=5  .005 .000 .000 .325 .585 .310 

P=7  .080 .000 .000 .505 .765 .390 

P=10  .265 .000 .000 .665 .785 .560 
Note: P= number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size. 

   
Table 2.21 reports the perfect recovery rates estimated by the AM method when 

varying the indicator number. As shown in this table, the perfect recovery rate increases 

with the increase of the indicator number at large noninvariance degrees (e.g., Dinte ≥ .30 

or Dload ≥ .15). This tendency remains the same no matter whether the noninvariance is 

located at the intercept or loading. 
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Table 2.21 Perfect recovery rates with the AM method when varying the indicator 
number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .010 .005 .010 

Dload=.05 

.005 .000 .005 

P=5  .005 .020 .070 .000 .000 .005 

P=7  .005 .030 .100 .005 .010 .025 

P=10  .005 .045 .165 .005 .010 .025 

P=3 

Dinte=.30 

 .110 .210 .290 

Dload=.15 

.000 .000 .025 

P=5  .180 .500 .630 .005 .035 .190 

P=7  .295 .685 .790 .005 .080 .340 

P=10  .345 .760 .890 .035 .170 .555 

P=3 

Dinte=.50 

 .225 .385 .400 

Dload=.25 

.000 .010 .110 

P=5  .525 .780 .810 .030 .180 .625 

P=7  .695 .875 .905 .050 .475 .890 

P=10  .760 .900 .955 .130 .590 .930 

P=3 

Dinte=.70 

 .360 .420 .455 

Dload=.35 

.005 .050 .250 

P=5  .735 .870 .880 .075 .490 .910 

P=7  .830 .925 .925 .155 .795 .965 

P=10  .895 .920 .965 .340 .895 .945 

P=3 

Dinte=.90 

 .380 .490 .525 

Dload=.45 

.005 .115 .430 

P=5  .810 .875 .925 .135 .725 .975 

P=7  .875 .950 .935 .335 .930 .960 

P=10  .920 .925 .970 .580 .930 .940 
Note: P= number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.  

  
The effect of indicator number on perfect recovery rate is compared between the B-H 

method and the AM method. As shown in Figure 2.14, with the existence of noninvariant 

intercept, the AM method performs better than the B-H method at large noninvariance 

degrees. The AM method retrieves higher perfect recovery rates at Dinte ≥ .70 when N = 

200, and at Dinte ≥ .50 when N = 500 or 1000.  

As shown in Figure 2.15, with the existence of noninvariant loading, both the B-H 

method and the AM method perform similarly under the majority of simulation 

conditions. Only under some extreme conditions (e.g, Dload ≥ .35, P ≥ 5 and N = 1000), 

the AM method performs greatly better than the B-H method.  
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Figure 2.14 Perfect recovery rates for models with noninvariance in the intercept when varying the indicator number 
 

 
 

 



 
 

70 

 

 

 

  

Figure 2.15 Perfect recovery rates for models with noninvariance in the loadings when varying the indicator number 
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2.5.4.2 Type I Error Rate  

In Table 2.22 and Table 2.23, the type I error rates of testing invariant intercepts and 

loading by the FR method are summarized respectively. In general, the increase of 

indicator number leads to the increase of the type I errors under the following two 

conditions: 1) the testing of intercepts when models are contaminated by noninvariant 

intercept; 2) the testing of loadings when models are contaminated by noninvariant 

loading. This effect of indicator number on the type I error rate is clearly manifested 

when the noninvariance degree is large (e.g., Dinte ≥ .50 when testing intercepts and Dload 

≥ .25 when testing loadings).  

Table 2.22 Type I error rates of testing intercepts by the FR method when varying the 
indicator number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .028 .093 .133 

Dload=.05 

.013 .013 .015 

P=5  .029 .064 .133 .008 .006 .006 

P=7  .010 .036 .104 .003 .003 .004 

P=10  .012 .031 .080 .001 .002 .002 

P=3 

Dinte=.30 

 .193 .520 .838 

Dload=.15 

.015 .013 .013 

P=5  .228 .601 .929 .009 .005 .006 

P=7  .190 .586 .938 .003 .003 .004 

P=10  .153 .598 .926 .001 .003 .003 

P=3 

Dinte=.50 

 .415 .843 1.000 

Dload=.25 

.015 .013 .010 

P=5  .540 .949 1.000 .010 .004 .005 

P=7  .523 .959 1.000 .003 .003 .003 

P=10  .522 .968 1.000 .002 .003 .002 

P=3 

Dinte=.70 

 .545 .953 1.000 

Dload=.35 

.015 .010 .015 

P=5  .784 .998 1.000 .009 .005 .005 

P=7  .773 .997 1.000 .004 .003 .003 

P=10  .807 .999 1.000 .002 .003 .002 

P=3 

Dinte=.90 

 .625 .985 1.000 

Dload=.45 

.015 .005 .018 

P=5  .893 1.000 1.000 .008 .005 .006 

P=7  .890 1.000 1.000 .003 .003 .002 

P=10  .918 1.000 1.000 .002 .003 .002 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
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However, under the other two conditions (i.e., testing invariant intercepts while 

noninvariance is located at the loading; testing invariant loading while the noninvariance 

is located at the intercept), the type I error rate is slightly reduced as the indicator number 

increases.  

Table 2.23 Type I error rates of testing loadings by the FR method when varying the 
indicator number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .020 .018 .008 

Dload=.05 

.028 .015 .018 

P=5  .003 .008 .003 .005 .011 .015 

P=7  .006 .003 .003 .007 .014 .018 

P=10  .008 .002 .001 .012 .005 .011 

P=3 

Dinte=.30 

 .020 .018 .008 

Dload=.15 

.043 .055 .123 

P=5  .003 .008 .003 .024 .073 .170 

P=7  .006 .003 .003 .021 .077 .220 

P=10  .008 .002 .001 .041 .074 .192 

P=3 

Dinte=.50 

 .020 .018 .008 

Dload=.25 

.075 .135 .315 

P=5  .003 .008 .003 .074 .214 .514 

P=7  .006 .003 .003 .070 .273 .605 

P=10  .008 .002 .001 .089 .282 .659 

P=3 

Dinte=.70 

 .020 .018 .008 

Dload=.35 

.118 .248 .558 

P=5  .003 .008 .003 .143 .461 .841 

P=7  .006 .003 .003 .164 .568 .913 

P=10  .008 .002 .001 .171 .567 .938 

P=3 

Dinte=.90 

 .020 .018 .008 

Dload=.45 

.155 .388 .768 

P=5  .003 .008 .003 .239 .698 .969 

P=7  .006 .003 .003 .277 .795 .984 

P=10  .008 .002 .001 .294 .819 .996 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
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Table 2.24 and Table 2.25 report the type I error rates estimated by the B-H method 

in testing invariant intercepts and loadings respectively. Generally speaking, no matter 

which type of parameter is tested, large indicator number is able to mitigate the type I 

errors. Only at large noninvariance degrees (e.g., Dinte ≥ .70, or Dload ≥ .35), can the type I 

error rates be increased when the indicator number changes from P = 3 to P = 5.  

Table 2.24 Type I error rates of testing intercepts by the B-H method when varying the 
indicator numbers 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .010 .013 .048 

Dload=.05 

.005 .000 .007 

P=5  .004 .006 .004 .004 .002 .000 

P=7  .006 .001 .003 .004 .000 .001 

P=10  .000 .002 .001 .000 .001 .000 

P=3 

Dinte=.30 

 .055 .228 .558 

Dload=.15 

.008 .002 .015 

P=5  .021 .055 .143 .003 .005 .001 

P=7  .011 .018 .046 .004 .001 .004 

P=10  .002 .006 .010 .000 .002 .002 

P=3 

Dinte=.50 

 .150 .493 .853 

Dload=.25 

.008 .007 .027 

P=5  .090 .353 .730 .005 .010 .011 

P=7  .023 .088 .256 .006 .001 .009 

P=10  .005 .016 .048 .001 .004 .005 

P=3 

Dinte=.70 

 .205 .518 .843 

Dload=.35 

.008 .015 .043 

P=5  .283 .793 .994 .009 .017 .027 

P=7  .058 .289 .718 .007 .003 .024 

P=10  .013 .057 .184 .001 .007 .014 

P=3 

Dinte=.90 

 .170 .425 .775 

Dload=.45 

.010 .020 .052 

P=5  .555 .970 1.000 .009 .028 .055 

P=7  .191 .643 .951 .010 .011 .047 

P=10  .031 .131 .440 .001 .014 .028 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
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Table 2.25 Type I error rates of testing loadings by the B-H method when varying the 
indicator numbers 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .015 .010 .022 

Dload=.05 

.013 .010 .003 

P=5  .001 .006 .004 .001 .004 .001 

P=7  .003 .002 .003 .003 .003 .000 

P=10  .002 .001 .001 .001 .001 .000 

P=3 

Dinte=.30 

 .043 .118 .317 

Dload=.15 

.018 .008 .018 

P=5  .012 .039 .079 .001 .008 .006 

P=7  .006 .016 .049 .005 .003 .004 

P=10  .004 .008 .016 .001 .001 .002 

P=3 

Dinte=.50 

 .132 .337 .552 

Dload=.25 

.020 .020 .060 

P=5  .070 .200 .293 .008 .016 .034 

P=7  .037 .088 .151 .007 .007 .019 

P=10  .014 .038 .077 .001 .003 .005 

P=3 

Dinte=.70 

 .208 .402 .550 

Dload=.35 

.020 .043 .105 

P=5  .175 .357 .567 .014 .041 .081 

P=7  .086 .161 .224 .015 .015 .051 

P=10  .038 .086 .109 .003 .008 .012 

P=3 

Dinte=.90 

 .242 .395 .503 

Dload=.45 

.025 .058 .143 

P=5  .302 .594 .878 .024 .073 .210 

P=7  .141 .224 .354 .018 .038 .124 

P=10  .069 .110 .127 .006 .014 .031 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
 

In Table 2.26 and Table 2.27, the type I error rates of testing invariant 

intercepts/loading by the AM method are reported respectively. As shown in these two 

tables, when choosing the AM method, the change of indicator numbers does not affect 

the results. The type I errors are zeroes or close to zeroes under all simulation conditions.  
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Table 2.26 Type I error rates of testing intercepts by the AM method when varying the 
indicator number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .000 .000 .000 

Dload=.05 

.000 .000 .002 

P=5  .001 .000 .000 .001 .000 .000 

P=7  .000 .000 .001 .001 .000 .003 

P=10  .000 .001 .002 .001 .002 .002 

P=3 

Dinte=.30 

 .000 .000 .003 

Dload=.15 

.000 .000 .002 

P=5  .000 .000 .000 .003 .000 .000 

P=7  .000 .000 .001 .001 .001 .002 

P=10  .000 .001 .002 .001 .002 .003 

P=3 

Dinte=.50 

 .000 .000 .003 

Dload=.25 

.000 .000 .003 

P=5  .000 .000 .000 .003 .000 .001 

P=7  .000 .000 .001 .001 .001 .001 

P=10  .000 .001 .002 .001 .002 .004 

P=3 

Dinte=.70 

 .000 .000 .000 

Dload=.35 

.002 .000 .003 

P=5  .000 .000 .000 .002 .001 .002 

P=7  .001 .000 .002 .001 .001 .002 

P=10  .000 .001 .002 .001 .003 .004 

P=3 

Dinte=.90 

 .000 .000 .000 

Dload=.45 

.002 .000 .005 

P=5  .000 .000 .000 .003 .001 .002 

P=7  .001 .000 .002 .001 .001 .002 

P=10  .000 .001 .001 .001 .003 .005 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
 

The effect of indicator number on the type I error rate is compared among the three 

methods. Figure 2.16 and Figure 2.17 compare the outcomes of testing invariant 

intercepts when the noninvariance is located at intercept/loading respectively. With 

noninvariant intercept in the models (see Figure 2.16), both the FR method and the AM 

method are not largely affected by the change of indicator number. Yet, for the B-H 

method, the type I error rates is reduced as the indicator number increased. With 

noninvariant loading in the models (see Figure 2.17), all the three methods are not largely 

impacted by the change of indicator number.   
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Table 2.27 Type I error rates of testing loadings by the AM method when varying the 
indicator number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .003 .002 .000 

Dload=.05 

.003 .003 .000 

P=5  .001 .005 .001 .001 .005 .001 

P=7  .008 .005 .004 .008 .004 .004 

P=10  .005 .006 .003 .004 .005 .003 

P=3 

Dinte=.30 

 .003 .002 .000 

Dload=.15 

.003 .005 .003 

P=5  .001 .005 .001 .001 .006 .004 

P=7  .008 .005 .004 .008 .004 .006 

P=10  .005 .006 .003 .004 .006 .003 

P=3 

Dinte=.50 

 .003 .002 .000 

Dload=.25 

.005 .008 .003 

P=5  .001 .005 .001 .004 .006 .004 

P=7  .008 .005 .004 .008 .005 .005 

P=10  .005 .006 .003 .004 .004 .003 

P=3 

Dinte=.70 

 .003 .002 .000 

Dload=.35 

.005 .015 .008 

P=5  .001 .005 .001 .003 .005 .003 

P=7  .008 .005 .004 .008 .004 .003 

P=10  .005 .006 .003 .004 .004 .002 

P=3 

Dinte=.90 

 .003 .002 .000 

Dload=.45 

.005 .010 .015 

P=5  .001 .005 .001 .001 .005 .003 

P=7  .008 .005 .004 .009 .003 .004 

P=10  .005 .006 .003 .004 .004 .003 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
 

 

Figure 2.18 and Figure 2.19 compare the outcomes of testing invariant loadings 

when the noninvariance is located at intercept/loading respectively. With the existence of 

noninvariant intercept (see Figure 2.18), both the FR and the AM methods are not 

affected. The type I error rate is kept at low levels under all simulation conditions. 

However, for the B-H method, the type I error rates is reduced as the indicator number 

increases. With noninvariant loading in the models (see Figure 2.19), both the B-H and 

the AM methods are not largely affected. Yet, the type I errors given by the FR method 

become severe as the indicator number increases.   
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Figure 2.16 Type I error rates of testing intercepts for models with noninvariance in the intercept when varying the indicator number 
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Figure 2.17 Type I error rates of testing intercepts for models with noninvariance in the loading when varying the indicator number 
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Figure 2.18 Type I error rates of testing loadings for models with noninvariance in the intercept when varying the indicator number 
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Figure 2.19 Type I error rates of testing loadings for models with noninvariance in the loading when varying the indicator number 
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2.5.4.3 Power Rate  

Table 2.28 and Table 2.29 report the power rates estimated by the B-H method and 

the AM method respectively when varying the indicator number. Using both methods, the 

increase of indicator number leads to the increase of the power rates if the noninvariance 

degree is large enough. Specifically, for the noninvariant intercept at Dinte ≥ .30, with the 

increase of the indicator number, the positive effect on power rates is observed for both 

methods. For the noninvariant loading, the positive effect is observed when Dload ≥ .15 for 

both methods.  

Table 2.28 Power rates with the B-H method when varying the indicator number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .010 .080 .165 

Dload=.05 

.020 .005 .025 

P=5  .020 .080 .185 .000 .000 .015 

P=7  .005 .020 .165 .005 .005 .020 

P=10  .005 .045 .165 .015 .000 .010 

P=3 

Dinte=.30 

 .295 .700 .980 

Dload=.15 

.025 .050 .125 

P=5  .445 .940 1.000 .025 .085 .225 

P=7  .410 .935 1.000 .005 .115 .360 

P=10  .385 .960 1.000 .050 .150 .435 

P=3 

Dinte=.50 

 .655 .985 1.000 

Dload=.25 

.060 .105 .335 

P=5  .965 1.000 1.000 .105 .370 .775 

P=7  .975 1.000 1.000 .125 .560 .920 

P=10  .975 1.000 1.000 .180 .610 .945 

P=3 

Dinte=.70 

 .820 1.000 1.000 

Dload=.35 

.075 .220 .555 

P=5  1.000 1.000 1.000 .240 .775 .990 

P=7  1.000 1.000 1.000 .345 .890 1.000 

P=10  1.000 1.000 1.000 .450 .975 1.000 

P=3 

Dinte=.90 

 .900 1.000 1.000 

Dload=.45 

.115 .345 .800 

P=5  1.000 1.000 1.000 .450 .910 1.000 

P=7  1.000 1.000 1.000 .640 .995 1.000 

P=10  1.000 1.000 1.000 .715 1.000 1.000 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
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Table 2.29 Power rates with the AM method when varying the indicator number 

P Dinte 
 Noninvariant intercepts 

Dload 
Noninvariant loadings 

 N=200 N=500 N=1000 N=200 N=500 N=1000 

P=3 

Dinte=.10 

 .010 .005 .010 

Dload=.05 

.005 .000 .005 

P=5  .005 .020 .070 .000 .000 .005 

P=7  .005 .035 .100 .005 .010 .025 

P=10  .005 .050 .170 .010 .010 .025 

P=3 

Dinte=.30 

 .110 .210 .290 

Dload=.15 

.000 .000 .025 

P=5  .185 .510 .630 .005 .035 .190 

P=7  .300 .720 .815 .005 .085 .350 

P=10  .360 .820 .925 .040 .175 .570 

P=3 

Dinte=.50 

 .225 .390 .400 

Dload=.25 

.000 .010 .110 

P=5  .530 .790 .810 .030 .180 .625 

P=7  .740 .910 .930 .050 .495 .930 

P=10  .790 .960 .990 .145 .620 .990 

P=3 

Dinte=.70 

 .365 .425 .455 

Dload=.35 

.005 .050 .260 

P=5  .740 .885 .880 .075 .495 .930 

P=7  .885 .960 .960 .160 .815 1.000 

P=10  .925 .980 1.000 .360 .945 1.000 

P=3 

Dinte=.90 

 .385 .495 .525 

Dload=.45 

.005 .120 .450 

P=5  .815 .890 .930 .135 .740 .995 

P=7  .935 .985 .970 .345 .955 1.000 

P=10  .955 .985 1.000 .610 .995 1.000 
Note: P = number of indicators; Dinte = degree of noninvariant intercept; Dinte = degree of noninvariant 

loading; N = sample size.   
 

In Figure 2.20, the B-H method and the AM method are compared on the recovery of 

truly noninvariant intercept when varying the indicator number. At the smallest 

noninvariance degree (i.e., Dinte = .10), both methods are almost not impacted by the 

change of indicator number. However, when the noninvariance degree is large (i.e., 

Dinte > .10), the increase of indicator numbers leads to the increased power rates for both 

methods. The AM method is affected more seriously by the increase of the indicator 

number than the B-H method.  

In Figure 2.21, the B-H method and the AM method are compared on the detection of 

truly noninvariant loading when varying the indicator numbers. It is discovered that both 
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methods are not largely affected if the noninvariant degree of the loading parameter is 

small (e.g., Dload ≤ .15 when N = 200 or 500, and Dload = .05 when N = 1000). When the 

noninvariance degree becomes large, the power rates estimated by both methods increase. 

2.5.4.4 Design Effects  

Table 2.30 presents the effect sizes (η
2
) of the main factors and interaction terms 

when varying the indicator number. It shows that the testing method and the 

noninvariance degree interpret more variation of type I error rate than the other factors. 

However, when detecting truly noninvariant parameters (i.e, intercept or loading), the 

testing method becomes less critical. Instead, the noninvariance degree, sample size and 

indicator number interpret more variance of power rates.  

Table 2.30 Effect size (η
2
) of design factors when varying the indicator number 

Design Factor Type I Error Rate  Power Rate 

Intercept Loading  Intercept Loading 

Method  .148 .074  .038 .005 
N .020 .032  .028 .123 
D  .065 .079  .451 .281 
P .007 .003  .044 .087 
Method*N .011 .021  .000 .000 
Method*D .041 .044  .007 .003 
N*D .004 .016  .025 .047 
Method*P .028 .030  .024 .002 
N*P .001 .001  .000 .010 
D*P .005 .006  .010 .037 

Method*N*D .010 .011  .003 .001 

Method*N*P .003 .008  .002 .002 

Method*D*P .012 .017  .005 .001 

N*D*P .001 .002  .003 .017 

Method*N*D*P .003 .004  .001 .002 
Note: N = sample size; D = degree of noninvariant parameter; P = number of indicators. 
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Figure 2.20 Power rates of testing intercepts when varying the indicator number 
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Figure 2.21 Power rates of testing loadings when varying the indicator number 
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CHAPTER 3: EMPIRICAL STUDY 

 

3.1 Empirical Dataset 

The empirical dataset is obtained from the Openness for Problem Solving Scale 

(OPENPS, coded as ST94) in PISA 2012. The OPENPS is measured by five items (as 

shown in Table 3.1) in the Student Questionnaire. Each item is on a 5-point Likert scale 

with five response categories: “Very much like me”, “Mostly like me”, “Somewhat like 

me”, “Not much like me” and “Not at all like me”.  

Table 3.1 Items of the Openness for Problem Solving Scale 

Items 
How well does each of the following statements 
below describe you? 

ST94Q05  I can handle a lot of information. 

ST94Q06  I am quick to understand things. 

ST94Q09  I seek explanations of things. 

ST94Q10  I can easily link facts together. 

ST94Q14  I like to solve complex problems. 
  

In this study, three nationally representative datasets are used: Shanghai-China (QCN, 

3429 students), Australia (AUG, 9364 students), and the United States of America (USA, 

3145 students). These datasets are selected because of the potential language and cultural 

differences among these three countries. For example, China is usually considered as a 

representative country in Eastern culture and America is believed as the representative 

country in Western culture. Australia belongs to western culture, which shares similarities 

with America in both cultural and language aspects. Therefore, it is possible that there 

exists a contrastive difference in the characteristics of noninvariance between Chinese 

and American/Australian samples. Since Australia and America share similar language 

and cultural backgrounds, the characteristics of noninvariance between these two country 
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samples might be similar.   

3.2 Data Analysis Procedure 

The free baseline method, the B-H method and the alignment method are used for the 

data calibration among the samples of America, Australia, and China in PISA 2012. The 

analyses are carried to compare two out of three country samples respectively (i.e., QCN 

vs. USA, AUS vs. USA, and QCN vs. AUS). The analysis procedures follow those 

discussed in the section of 2.3. The performances of the three methods are evaluated 

according to the invariance/noninvariance patterns identified from each of the three pairs.   

3.3 The Choice of an RI for the Free Baseline method 

 An RI has to be selected before conducting the FR analysis. Because the 

invariance/noninvariance status of the administered five items is unknown, two 

approaches are applied to select the RI (which was named as FR1 and FR2). In the first 

approach, the first item (ST94Q05) is chosen as the RI, which is also the default setting 

of the Mplus software. In the second approach, the statistic Minχ
2
 developed by Woods 

(2009) is applied to select the RI. The magnitude of Minχ
2
 reflects the degree of 

difference in item functioning. The smaller the LR statistic, the smaller the item 

differences between the compared groups. Some researchers approve that this Minχ
2
 

strategy works well in identifying the invariant indicators (Woods, 2009; Thompson, 

2018).  

The RI selection based on the Minχ
2
 is conducted in the following way. First, a fully 

constrained baseline model is built after all parameters are constrained to be equal 

between two country samples. Then, each measurement parameter is freed to construct a 

series of nested models. The LR test is used to compare each nested model with the fully 
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constrained baseline model. The measurement parameter producing the smallest LR 

statistic is selected to define the latent scale. 

 As shown in Table 3.2, the intercept located at ST94Q14 produces the smallest LR 

statistics when comparing AUS vs. QCN and QCN vs. USA. The intercept located at 

ST94Q09 produces the smallest LR statistic when comparing AUS vs. USA. The loading 

located at ST94Q06 produces the smallest LR statistics for all the three between-group 

comparisons. Therefore, the intercept located at ST94Q14 and the loading located at 

ST94Q06 are used to define the latent scale when comparing AUS vs. QCN and QCN vs. 

USA. The intercept located at ST94Q09 and the loading located at ST94Q06 are used to 

define the latent scale when comparing AUS vs. USA. Based on the results in Table 3.2, 

the intercept and loading located at the first item (ST94Q05) correspond to large LR 

statistics, which implies that the first item is more likely to be noninvariant.     

Table 3.2 LR statistics of all measurement parameters 

Items AUS vs. QCN AUS vs. USA QCN vs. USA 

Intercept    

ST94Q05  159.906 9.464 173.743 
ST94Q06  12.738 4.939 2.048 
ST94Q09  6.088 1.203 15.971 
ST94Q10  135.621 2.225 112.322 
ST94Q14  4.064 4.232 .088 

Loading    

ST94Q05  24.022 2.997 1.902 
ST94Q06  .744 .07 .322 

ST94Q09  117.031 5.953 44.431 
ST94Q10  2.535 1.031 2.376 
ST94Q14  1.354 3.26 5.527 
Notes: USA = the United States of America; AUS = Australia; QCN = Shanghai-China. 

3.4 Results of the Empirical Study 

 The results of identified invariance/noninvariance patterns are presented in Figure 

3.1. In this Figure, the blue square denotes that the tested parameter is statistically 
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noninvariant between the paired groups. The light-gray square denotes that the invariant 

hypothesis of the tested parameter is not rejected. The dark-gray square denotes the 

corresponding parameter is prefixed as the RI.    

When choosing the first item (ST94Q05) as the RI, the invariance/noninvariance 

patterns estimated by the FR1 method are largely different from those estimated by the 

B-H method and the AM method. In case of AUS vs. USA, three intercepts (ST94Q06, 

ST94Q09, and ST94Q10) and one loading (ST94Q09) estimated by the FR1 approach are 

noninvariant. In contrast, no noninvariant parameter is identified by the B-H method and 

only one noninvariant loading (ST94Q05) is identified by the AM method. In cases of 

AUS vs. QCN and QCN vs. USA, the invariance/noninvariance patterns estimated by the 

B-H method and the AM method are similar, but different with the pattern estimated by 

the FR1 method. The difference between the FR1 approach and the other two methods 

indicates that the former approach is problematic in justifying the noninvariance because 

the pre-fixed intercept of RI (ST94Q05) might be noninvariant in reality.  

If the FR2 approach is chosen instead, all the three methods (FR2, B-H, and AM) 

produce similar results. In case of AUS vs. USA, the majority of measurement parameters 

are invariant. Only one intercept (ST94Q05) estimated by the FR2 method and one 

loading (ST94Q05) estimated by the AM method are noninvariant. In case of AUS vs. 

QCN, three intercepts (ST94Q05, ST94Q06, and ST94Q09) and one loading (ST94Q09) 

are discovered to be noninvariant by all the three methods. In case of QCN vs. USA, two 

intercepts (ST94Q05 and ST94Q10) and one loading (ST94Q09) are discovered to be 

noninvariant by all the three methods. The similar invariance/noninvariance patterns 

among the three methods indicate that: 1) The OPENPS measures are more likely 
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invariant between AUS and USA (which were culturally similar) than the other two pairs 

(which were more culturally distinct); and 2) the FR2 approach works better than the FR1 

approach. 

 

 

Figure 3.1 Invariance/noninvariance patterns identified for the Openness for Problem 
Solving Scale 
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CHAPTER 4: DISCUSSION 

 

4.1 Summary of Findings 

4.1.1 Simulation Study 

The results of the simulation study are summarized separately according to the three 

different ways used to manipulate the magnitude of model noninvariance.  

Magnitude of Model Noninvariance by varying the Proportion of Noninvariant 

Indicators 

In this section, the noninvariant intercepts/loadings embedded in the models are in 

different indicators. The model noninvariance is in either one indicator (i.e., low 

proportion) or two indicators (i.e., high proportion). The other two simulated factors are 

the sample size and the noninvariance degree. The effect of each simulated factor is 

interpreted in terms of perfect recovery rate, type I error rate, and power rate.   

No perfect recovery rates are reported for the FR method because the RI is prefixed 

before any MI testing. For the other two methods (i.e., the B-H method and the AM 

method), the perfect recovery rates are commonly affected by changing the proportion of 

noninvariant indicators. When the proportion is low, both methods are possible to achieve 

high perfect recovery rates. Yet, when the proportion is high, both methods do not 

perform quite well. Both methods are also impacted by the sample size and noninvariance 

degree. Comparatively speaking, the B-H method performs better at the medium 

noninvariance degrees, and the AM method performs better under the conditions of large 

sample size and large noninvariance degree.  

On the type I error rates, the AM method is the most robust approach among the 
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three methods to resist the type I errors. The type I errors are kept at the base level under 

all simulation conditions. The B-H method follows afterwards and its performance 

becomes worse as the proportion of noninvariant indicators in the models increases. The 

existence of noninvariant intercepts/loadings impacts the testing of the other type of 

parameters. In contrast, when employing the FR method, the noninvariant 

intercepts/loadings only affects the testing of the same type of parameters. Under such 

cases, the FR method always leads to more serious type I errors than the B-H method. In 

addition, both the FR method and the B-H method are negatively impacted as the sample 

size, the noninvariance degree and the proportion of noninvariant indicators increase.   

As to the power rates, the FR method is unable to detect any noninvariant parameters 

in the models. In contrast, the B-H method shows the advantages of having the best 

performance among the three methods. The AM method performs better than the FR 

method, but worse than the B-H method under most simulation conditions. 

Magnitude of Model Noninvariance by Varying the Noninvariance at the Same 

Indicator  

In this section, the high magnitude of model contamination is represented by one 

indicator which is fully noninvariant at both the intercept and loading. The perfect 

recovery rates given by the B-H method and the AM method are lowered by the fully 

noninvariant indicator. The AM method is more severely impacted than the B-H method 

in general.  

The type I errors given by the AM method are still kept at the base level. The FR 

method and the B-H method, however, are affected to a different degree. When choosing 

the FR method, the addition of noninvariant intercept or loading impacts the testing 
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outcome during testing the same type of parameters. On the other hand, the added 

noninvariant loading mitigates the type I errors for testing intercepts while the added 

noninvariant intercept has no effect on testing loadings. When choosing the B-H method, 

the negative impact imposed by adding the noninvariant loading is the largest when the 

noninvariance degree is medium. The negative impact imposed by adding the 

noninvariant intercept becomes more severe as the sample size and the noninvariance 

degree increase. 

The power rates given by the B-H method and the AM method are impacted 

differently according to the type of added noninvariant parameters. If the noninvariant 

loading is added, the B-H method is not affected while the AM method reports lower 

power rates. In contrast, if the noninvariant intercept is added, the AM method is not 

impacted while the B-H method reports higher power rates.  

Magnitude of Model Noninvariance by the Variation of the Indicator Numbers 

In this section, the magnitude of model noninvariance is manipulated by varying the 

indicator numbers in the models.  The larger the indicator number, the less magnitude 

the model noninvariance.  

When the AM method is applied, the perfect recovery rates increase with the 

increase of the indicator number. For the B-H method, the effect of indicator number is 

different according to the location of the noninvariant parameter. If the noninvariance is 

located at the loading, the perfect recovery rates increase when administrating a large 

number of indicators. But if the noninvariance is located at the intercept, the perfect 

recovery rates increase only at the medium noninvariance degree.  

For the effect of indicator number on the type I error rate, changing the indicator 
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number do not affect the AM method but affect the other two methods. When the B-H 

method is applied, the increase of indicator number reduces the occurrence of type I 

errors in general. However, when choosing the FR method, the increase of indicator 

number can enlarge the type I errors under some conditions.  

During testing the truly noninvariant parameters, the power rates estimated by the 

B-H method and the AM method become larger with the increase of indicator numbers. 

This effect is especially apparent when the noninvariance degree is high. 

4.1.2 Empirical Study 

 During the empirical data analysis, the FR method is conducted by using two 

strategies to select the RI (FR1 and FR2). FR1 chose the first item (ST94Q05) as the RI 

and FR2 choose the parameters of RI based on the statistic Minχ
2
. The 

invariance/noninvariance patterns identified by both FR approaches are compared with 

those identified by the B-H method and the AM method.  

The invariance/noninvariance patterns recovered by the FR1 method are largely 

different from the other two methods, no matter which pair of country samples is 

compared. In contrast, when the FR2 method is employed, the significance patterns 

recovered by these three methods are more consistent with each other. In case of AUS vs. 

USA, it is found that the majority of measurement parameters can be invariant. In cases 

of AUS vs. QCN and QCN vs. USA, the noninvariant parameters identified by these 

three methods are similar. These findings suggest that the FR1 approach is problematic 

because of incorrectly choosing the first item (ST94Q05) as the RI.  

4.2 Comments on the Performance of the Three Methods  

This study aims to investigate the differences among the three methods to correctly 
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identify the true measurement models which are contaminated by noninvariance. Overall, 

the FR method, for which the RI is prefixed as noninvariant, performs worse than the 

other two methods. The B-H method shows the advantages of having higher powers to 

detect noninvariant parameters. Comparatively, the AM method shows the advantages of 

controlling the type I errors.  

The popularity of the FR method in MI testing has many reasons. But two of them 

are fundamental. First, it is believed that the FR method can perform well to precisely 

identify the invariant and noninvariant model components if the RI is selected correctly. 

Second, the RI can be decided correctly based on statistical evidence. Hence, the 

performance of the FR method ultimately depends on to what extent the RI will meet 

these requirements. 

To check the first belief, besides the results reported in chapter 2 where the RI for the 

FR method is truly noninvariant, the FR method is also conducted by choosing one truly 

invariant indicator as the RI. The results confirm that the FR method performs well in 

controlling the type I errors. No matter whether the intercepts or loadings are tested, the 

type I error rates are as low as the base level. The FR method can retrieve high power 

rates in detecting noninvariance when the sample size and the noninvariance degree are 

large enough. These results are consistent with the findings in some previous studies (e.g., 

Meade & Lautenschlager, 2004; Jung & Yoon, 2016). The values of the FR method with 

correct RI setting come from the features of its free baseline model. Since all the tested 

parameters are freely estimated, the free baseline model avoids the incorrect equality 

constraints for those truly noninvariant parameters. 

On the second belief, many researchers attempt to find a robust statistical approach 
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to identify one appropriate RI. These statistical approaches are developed from different 

perspectives. For example, the RI is selected as the indicator that has the largest factor 

loading (MaxL; see Stark et al., 2006), the indicator that has the smallest LR statistic 

(Minχ
2
; see Woods, 2009), or the indicator that produces the smallest standardized 

parameter difference (Bayesian selection index; see shi et al., 2017). These statistics 

provide information on which indicator is more likely to be invariant than the other 

indicators, but they are unable to determine whether the selected RI is truly invariant or 

not. Hence, the reliance on statistical evidence for the choice of an RI is left with doubt if 

no additional empirical evidence is discovered to support it. The uncertainty of RI choice 

endangers the recovery of true measurement models.  

The research results on the FR method in the simulation study are consistent with the 

critiques from previous studies (e.g., Raykov et al., 2012; Yoon & Millsap, 2007; Johnson, 

et al., 2009; Lopez Rivas et al., 2009). The FR method performs worse in the following 

aspects if the RI is not truly invariant. First, no models can be perfectly recovered by this 

method for all measurement parameters. Second, the type I errors are always larger than 

those obtained from the B-H method and the AM method. The type I errors consistently 

increase as the sample size, the noninvariance degree, and the magnitude of 

noninvariance increase. Third, the power rates of detecting the noninvariance are reduced 

to very low values under all the simulation conditions.  

Unlike the FR method, as an alternative MGCFA approach without the requirement 

of RI setting, the B-H method circumvents the problems caused by the risk of an 

inappropriate RI (Raykov et al., 2013). The advantages of the B-H method come from its 

initial aim to increase the power rates. It is designed as a weak form of family wise error 
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rate controlling procedure (i.e., FDR controlling procedure; Benjamini & Hochberg 1995). 

By applying this FDR controlling procedure, the high power rates are warranted, and at 

the same time, the type I errors are controlled at a certain level.  

The results in the simulation study prove that the B-H method performs the best to 

obtain higher power rates than the other two methods. As mentioned before, the FR 

method shows no powers to correctly identify the model noninvariance. Although the AM 

method is also able to recover the model noninvariance to some extent, this method do 

not perform as well as the B-H method. In general, the B-H method has more powers 

than the AM method during the detection of model noninvariance. Moreover, compared 

to the AM method, the power rates estimated by the B-H method are more positively 

enhanced by increasing the sample size and noninvariance degree, and are less negatively 

compromised by enlarging the magnitude of model noninvariance.  

On the other hand, the baseline model applied in the B-H method needs to be fully 

constrained (Williams et al., 1999; Raykov et al., 2013). Forcing all the indicators to be 

group equivalent in the baseline model can be problematic for the accuracy of LR tests if 

some parameters in the models are actually noninvariant (Stark et al., 2006; Kim & Yoon, 

2011). In particular, if models are contaminated by noninvariance to a large extent, the 

type I errors can be impacted in the following two aspects.  

First, the type I errors can increase as the model contamination becomes severe and 

the sample size becomes large (e.g., Kim & Yoon, 2011). A larger extent of model 

contamination indicates that the assumption for the full invariance baseline model is more 

severely violated. A larger sample size implies that LR statistic will be more sensitive in 

MI testing. The findings in this study conform to these two arguments. When increasing 
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the noninvariance degree or the magnitude of model noninvariance embedded in the 

models, large type I errors emerge. Likewise, larger sample sizes always cause more 

severe type I errors.  

Second, the accuracy of detecting one type of invariant parameter may be 

compromised due to the existence of the other noninvariant parameter in the models. As 

found in this study, using the B-H method, the existence of noninvariant loadings causes 

more type I errors while testing the intercepts, and the existence of noninvariant 

intercepts causes more type I errors while testing the loadings. In contrast, when applying 

the FR method, which is based on the free baseline approach, the existence of 

noninvariant loadings only slightly compromises the detection of intercepts, and the 

existence of noninvariant intercepts do not impact the detection of loadings. 

Unlike previous two methods, the fundamental assumption of the AM method is that 

a pattern of approximate measurement invariance holds in the data. It implicates that if 

this fundamental assumption is not violated (i.e., the percentage of model noninvariance 

< 25%), the AM method is able to perform well at the model level. In other words, the 

true measurement model which is partially noninvariant will be recovered well and the 

perfect recovery rates will be high.  

This study finds that even though the generated datasets are below the recommended 

percentage of model noninvariance, the perfect recovery rates are not high under all 

simulation conditions. The perfect recovery rates are low while increasing the magnitude 

of model noninvariance, decreasing the sample size and the noninvariance degree. 

The reason for the low perfect recovery rates is mainly due to the low power rates 

during detecting the truly noninvariant parameters in the models. The type I errors 
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estimated by the AM method are always as low as the basis level, and therefore, have no 

large impact on the perfect recovery rate. However, the power rates are reduced by 

increasing the magnitude of model noninvariance (e.g., adding extra noninvariant 

parameters or reducing the indicator number). In addition, the power rate is small if the 

sample size and the noninvariance degree are not large enough.  

These results have two implications about the AM method. First, this method is able 

to control the type I errors if its fundamental assumption of approximate MI is not 

violated. Second, the conditions leading to low power rates are also the conditions 

compromising the recovery of true measurement models.     

4.3 Implications and Recommendations 

As stated by Kwok et al., (2018), “Measurement models are an important part of 

SEM, and the flexibility of SEM not only allows researchers to develop and validate new 

scales but also provides a simple and feasible platform for examining the potential 

differences between groups and populations through the test of measurement invariance 

(p. 2).” 

All three methods studied in this thesis fall within the framework of SEM, but 

address the MI testing problem from different perspectives. Which method is a better 

choice depends on the extent its basic assumption is satisfied and how effective it is in 

correctly recovering the true model parameters. 

The major concern for the FR method is the appropriateness of the selected RI. As 

discussed previously, the choice of an RI cannot completely rely on statistical evidence 

unless it can also be well supported by theoretical or empirical evidence. Different 

statistical approaches may give ambiguous suggestions for the RI choice during empirical 
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data analysis. The wrong choice of an RI endangers the interpretation of the outcome 

reported by the FR method, as demonstrated in this research. The FR method may not be 

safely applied unless the uncertainty related to the RI is well solved.  

The B-H method is conducted based on the fully constrained baseline model, which 

indicates that this method might be compromised if models are contaminated by a large 

magnitude of noninvariance. However, with the application of the FDR controlling 

procedure, the B-H method can still provide higher powers than the other two methods, 

even though the magnitude of noninvariance is large. Compared to the other two methods, 

the B-H method is more powerful to screen out the noninvariant components.  

The optimization of parameter estimates based on the plausibility of configural 

invariance makes the AM method a good exploratory procedure in MI testing. However, 

the application of optimization procedure also indicates that the parameters are only 

approximately estimated and the estimates may not conform to the true values precisely. 

To what extent the true measurement model is recovered depends on whether the 

optimization of the loss function works properly or not. If the models are not highly 

contaminated and the approximate MI is plausible in the dataset, the AM method could 

be applied to lower the risks of false positive findings. Hence, this method is more 

conservative than the other two methods in identifying the model noninvariance. Because 

it is usually unclear to what extent the real data will meet the assumption of approximate 

MI, the outcome for the invariance/noninvariance of measurement parameters should be 

interpreted with caution.   

4.4 Limitations 

The present research has important limitations that need to be mentioned. First, this 
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study assumed that the noninvariant parameters always take higher values in the focal 

group than the reference group, so that the direction of model noninvariance is uniform. 

The effect of noninvariance direction on the performance of the three methods was not 

studied. It is recommended that future studies incorporate different directions of 

noninvariance in the models, and examine the three methods’ performance under such 

conditions. Second, the indicators were assumed to be continuous and normally 

distributed. It is not uncommon that the measures in surveys or questionnaires may have 

fewer than 5-7 categories. In such circumstances, the assumption of approximate 

normality is severely violated. In future studies, indicators can be simulated as categorical 

ones. Third, the present study only considers the parameter noninvariance between two 

groups. The magnitude of noninvariance may also vary at the group level where either a 

few or a large number of groups are contaminated by noninvariant parameters. Future 

studies might consider simulating the variation of noninvariance in multiple groups. 

Finally, beyond the three methods studied in this research, there are also other stat istical 

methods (e.g., Exploratory Structural Equation Modeling, Asparouhov & Muthén, 2009; 

Bayesian Structural Equation Modeling, Muthén & Asparouhov, 2012) within the SEM 

framework that can be used to explore the invariant/noninvariant status of measurement 

parameters. Future studies may be conducted by including these methods to detect the 

violation of measurement invariance.  
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APPENDIX A  

 

Technical details for the Benjamini–Hochberg (B-H) method 

1. The concept of false discovery rate 

To interpret the concept of false discovery rate (FDR), suppose there is a multiple 

testing scenario where m null hypotheses are to be tested simultaneously. Part of these 

null hypotheses are true (denoted as m0), and the others are not true (denoted as m1). After 

the significance testing, these null hypotheses fall into four categories. The numbers of all 

possible testing outcomes can be organized in the following table.  

 

Table A.1 The number of discovery/nondiscovery after m null hypotheses 

 H0 retained H0 rejected Total 

H0 True True Nondiscovery (TN) False Discovery (FD) m0 

H0 False False Nondiscovery (FN) True Discovery (TD) m1 
Total Nondiscovery (N) Discovery (D) m 

 

When multiple null hypotheses are tested simultaneously, the type I error can be 

either uncorrected or family-wise adjusted. Based on the notation in Table I, the 

uncorrected error rate, also named per-comparison type I error rate (PCER), is controlled 

as:  

 

                         

 

where α is the preset Type I error rate (e.g., α = .05).  

When the number of tested null hypotheses is large, the Type I error for the whole set 

of testing is large. In other words, more numbers of true null hypotheses will be falsely 

rejected. Then, the family-wise error rate (FWER) is useful to control the overall Type I 

error. The controlled error rate is:  

 

          

 



 
 

104 

 

For example, if Bonferroni’s adjusting approach is adopted, the Type I error for the 

single null hypothesis is largely reduced. Per-comparison type I error rate will be 

controlled as: 

 

                            

 

However, in some cases, the FWER controlling methods are too conservative and not 

practically meaningful. For instance, with large number of null hypotheses to be tested, 

the power of True Discovery will be too low. To alleviate the low power of traditional 

FWER methods, FDR is perceived as a new way to control FWER for the purpose of 

achieving more power. Following the notation in Table I, FDR is controlled as:  

 

      
  

 
    

 

Hence, it can be seen that FDR is conceptualized as the ratio between the number of 

falsely rejected null hypothesis (FD) and the total number of rejected null hypothesis (D 

= FD + TD; including both correctly and falsely rejected null hypotheses). For the 

situation when there is no rejected null hypothesis (that is, D = 0), FDR is defined as 

zero.  

2. Steps of the B-H procedure in testing parameter noninvariance 

When there are k indicators, an overall series of 2k hypothesis testing are furnished 

for k loadings and k intercepts. With all p values obtained from 2k individual parameter 

testing, the B-H method is used to determine which tested parameters are noninvariant.  

Let P(i) (i = 1, …, 2k) be the p values of the 2k hypotheses under consideration. The 

steps for employing the B-H method are:  

(1) Rank P(i) sequentially from small to large values. That is, let P(1) < … < P(2k) 

denote the ordered p values; 

(2) Given a significance level α (e.g., α = .05), define a set of ratios for 2k null 

hypothesis testing as: 
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where              
    when p values are dependent (Benjamini & Yekutieli, 

2001).  

(3) Let T = P(R), T is the B-H rejection threshold;  

(4) Reject all null hypotheses when Pi ≤ T. 
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APPENDIX B 

 

Technical details for the Alignment (AM) method 

1. The rationale of the alignment method 

In Asparouhov & Muthén’s (2014) seminal article, the optimization process was 

mathematically illustrated. In the root configural model, suppose the loading and 

intercept parameter estimates for the k
th
 indicator in group g are denoted as νkg,root and λkg, 

root, respectively. Then, when freeing the fixed factor means and variances in the root 

configural model to establish a re-specified model, a new set of loading and intercept 

estimates can be obtained (denoted as νkg,1 and λkg,1, respectively). These two models will 

share the same likelihood but the model parameter estimates are different.  

   The two sets of indicator parameter estimates are related. Specifically, the new 

estimates in the respecified model can be transformed according to the known estimates 

from the root configural model and the factor means and variances in the new model, 

which are shown in the following equations.    

 

       
        

   
 

, 

                 
  

        

   
 

, 

where κg* and  g* represent the latent factor mean and variance in group g.  

   With one set of arbitrary choice of κg* and  g*, one new set of indicator parameters 

(νkg,1, λkg,1) for the k
th

 indicator in group g can be determined. We hope to choose the 

values of κg* and  g* so that the amount of MI is maximized. To minimize the total 

amount of measurement noninvariance, a loss/simplicity function that accumulates the 

total noninvariance can be defined as: 

 

                                                                  

 

where                represents the weight, and f represents a component loss 
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function (CLF) (Jennrich, 2006), which is defined as: 

 

             

 

In the alignment optimization procedure, ε is a small number (ε=.01). A positive ε is 

used so that the CLF has a continuous first derivative, simplifying optimization of the 

total loss function, 

The CLF simplicity function helps the respecified model become identified. The total 

loss will be minimized at a solution where there are a few large noninvariant 

measurement parameters and many approximately invariant parameters (Asparouhov & 

Muthén, 2014).  

2. Used criteria in justifying parameter noninvariance 

The information to evaluate the degree of measurement parameter noninvariance can 

be obtained from three resources (Asparouhov & Muthén, 2014).  

First, the invariance hypothesis for one measurement parameter is conducted through 

a pairwise comparison test across groups. If the p value is bigger than a preselected α 

level (such as .01, recommended by Asparouhov & Muthén, 2014), the equality 

hypothesis is rejected. The tested parameter is labeled as noninvariant between the 

involved groups.  

Second, the degree of noninvariance can be evaluated based on the contribution of 

each parameter to the optimized simplicity function. The contribution reflects the level of 

noninvariance for the parameter. The smaller the contribution is, the more invariant the 

parameter will be.  

Third, the evaluation of noninvariance can refer to the effect size measure R
2
. The R

2
 

measure describes the variability explained in the measurement parameters across groups 

that is due to group mean and variance differences (Asparouhov & Muthén, 2014; Flake 

& McCoach, 2018). For intercepts and loadings, the formulas are: 

 

    
                       

     
                       



 
 

108 

 

 

where ν is the average aligned intercept and λ is the average aligned loading across 

groups. The R
2
 measure is a useful descriptive statistic for the degree of noninvariance 

which can be absorbed by group varying factor means and variances. A high R
2
 value 

indicates a high degree of parameter invariance and vise versa.  
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APPENDIX C  

 
MPlus syntax for data generation 

1. Data generation for measurement models with the noninvariance located at the 

intercept of the indicator y1 
 

TITLE: The models with noninvariant intercept at the indicator y1. 
 
MONTECARLO:   

NAMES = y1-y5;  ! Number of indicators = 5.    
    NGROUPS = 2;   
    NOBS = 2(<sample>);  !<sample> = 200, 500, or 1000. 

    NREPS = 200;   ! Number of replications = 200. 
    SEED = 4533; 
  REPSAVE = all; 
  SAVE = <name of exported data file>; 
 
MODEL POPULATION: 

    F BY y1-y5*.5; 
    y1-y5*.75; 
    [y1-y5*0]; 
    F*1; 
    [F@0]; 
 
MODEL POPULATION-G2: 

    F BY y1*0.5  
  y2-y5*0.5; 
    y1-y5*0.75; 
    [y1*<degree of noninvariant intercept>] !<degree of noninvariant intercept>  

!= .10, .30, .50, .70, or .90.   
[y2-y5*0]; 

    F*1;     ! Variance of latent factor in focal group is 1.  
    [F@0.5];    ! Mean of latent factor in focal group is 0.5. 
 
OUTPUT: TECH9; 
 

2. Data generation for measurement models with the noninvariance located at the 

loading of the indicator y1 

 

TITLE: The models with noninvariant loading at the indicator y1. 
 
MONTECARLO:   

NAMES = y1-y5;    
    NGROUPS = 2; 
    NOBS = 2(<sample>);  !<sample> = 200, 500, or 1000. 
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    NREPS = 200;   ! Number of replications = 200. 
    SEED = 4533; 
  REPSAVE = all; 
  SAVE = <name of exported data file>; 

 
MODEL POPULATION: 
    F BY y1-y5*.5; 
    y1-y5*.75; 
    [y1-y5*0]; 
    F*1; 

    [F@0]; 
 
MODEL POPULATION-G2: 

F BY y1*<degree of noninvariant loading> ! <degree of noninvariant loading>  
!= .55, .65, .75, .85, or .95.  

  y2-y5*.5; 

    y1-y5*.75; 
    [y1*0] 
  [y2-y5*0]; 
    F*1; 
    [F@.5]; 
 

OUTPUT: TECH9; 
 

3. Data generation for measurement models with the noninvariance located at both 

the intercept and loading of the indicator y1 

 
TITLE: The models with both noninvariant intercept and loading at the indicator y1. 
 
MONTECARLO:   

NAMES = y1-y5;    
    NGROUPS = 2; 
    NOBS = 2(<sample>);  !<sample> = 200, 500, or 1000. 
    NREPS = 200;   ! Number of replications = 200. 
    SEED = 4533; 
  REPSAVE = all; 

  SAVE = <name of exported data file>; 
 
MODEL POPULATION: 
    F BY y1-y5*.5; 
    y1-y5*.75; 
    [y1-y5*0]; 

    F*1; 
    [F@0]; 
 
MODEL POPULATION-G2: 

F BY y1*<degree of noninvariant loading> ! <degree of noninvariant loading>  
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!= .55, .65, .75, .85, or .95.  
y2-y5*0.5; 
y1-y5*0.75; 
[y1*<degree of noninvariant intercept>] !<degree of noninvariant intercept>  

!= .10, .30, .50, .70, or .90.  
[y2-y5*0]; 
F*1; 
[F@0.5]; 
 

OUTPUT: TECH9; 

 
 

Notes: In the presented codes, the data are generated for the models with five indicators 
and under the low proportion condition (i.e., one indicator was noninvariant). The 
indicator number and the proportion of noninvariant indicators can be modified in these 
example codes for different simulation conditions.    
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APPENDIX D  

 

MPlus syntax for data analysis based on the FR method 

1. The baseline models where all the measurement parameters are freely estimated 

except for the RI 

 

TITLE: The free baseline model for testing the subsequent individual parameter 
restriction using the FR method 

 
DATA:   FILE = <name of imported data file>; 
 

VARIABLE: NAMES = y1-y5 g; 
   GROUPING = g (1 = ref 2 = foc); ! 1=reference group and 2=focal group. 
 
ANALYSIS: STIMATOR = ML; 
 
MODEL: 

F BY y1@1 y2(LR2)     ! y1 loading is fixed as 1. 
     y3-y5(LR3-LR5); 
     [y2-y5](TR2-TR5);  
 
MODEL foc: 
     F BY y1@1 y2(LF2)     
     y3-y5(LF3-LF5);     

     [y2-y5](TF2-TF5); 
 
OUTPUT:  
 
 

2. The nested models where each of the intercepts is constrained to be equal between 

two groups 

 
TITLE:  Testing the individual restricted intercept using the FR method. 
 

DATA:   FILE = <name of imported data file>; 
 
VARIABLE: NAMES = y1-y5 g; 
   GROUPING = g (1 = ref 2 = foc);  
  
ANALYSIS: ESTIMATOR = ML; 

 
MODEL: 
     F BY y1@1 Y2(LR2)       
     y3-y5(LR3-LR5); 
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     [y2-y5](TR2-TR5);  
 
MODEL foc: 
     F BY y1@1 y2(LF2)      

     y3-y5(LF3-LF5);      
     [y2-y5](TF2-TF5);  
     
MODEL constraint: 
     TR# = TF#;   ! “#” = 2, 3, 4 or 5. 
 

OUTPUT:  
 

3. The nested models where each of the loadings is constrained to be equal between 

two groups 

   
TITLE:  Testing the individual restricted loading using the FR method. 
 
DATA:   FILE = <name of imported data file>; 

 
VARIABLE: NAMES = y1-y5 g; 
   GROUPING = g (1 = ref 2 = foc);  
  
ANALYSIS: ESTIMATOR = ML; 

 

MODEL: 
     F BY y1@1 Y2(LR2)       
     y3-y5(LR3-LR5); 
     [y2-y5](TR2-TR5);  
 
MODEL foc: 

     F BY y1@1 y2(LF2)      
     y3-y5(LF3-LF5);      
     [y2-y5](TF2-TF5);  
     
MODEL constraint: 
     LR# = LF#;   ! “#” = 2, 3, 4 or 5. 

 
OUTPUT:  
 
Note: (1) The LR test for each individual restricted parameter was conducted by 
comparing the chi-square difference between the free baseline model and each of its 
corresponding nested model with df = 1. (2) The presented codes were used for analyzing 

the data with five indicators. The indicator number can be modified in these example 
codes for different simulation conditions.    
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APPENDIX E 

 

MPlus syntax for data analysis based on the B-H method 

1. The baseline models where all the measurement parameters are constrained to be 

equal between two groups 

 
TITLE: The fully constrained baseline model for testing the subsequent individual 

parameter relaxation based on the B-H method. 

 
DATA:   FILE = <name of imported data file>;  
 
VARIABLE: NAMES = y1-y5 g; 
   GROUPING = g (1 = ref 2 = foc);  
 

ANALYSIS: ESTIMATOR = ML; 
 

MODEL: 
     F BY y1*  ! Y1 loading is freely estimated.       
     y2-y5; 
     [y1-y5]; 

   F@1; ! Variance of latent factor in reference group is fixed as 1. 
     ! Mean of latent factor in reference group is zero by default. 
MODEL foc: 
     F;   ! Loadings and intercepts are identical between groups by default. 
 
OUTPUT:  

  
 

2. The augmented models where each of the constrained intercepts is released 

 
TITLE:  Testing the individual released intercept based on the B-H method. 
 
DATA:   FILE = <name of imported data file>; 
 

VARIABLE: NAMES = y1-y5 g; 
   GROUPING = g (1 = ref 2 = foc);  
    
ANALYSIS: ESTIMATOR = ML; 
 
MODEL: 

     F BY y1*         
     y2-y5; 
     [y1-y5]; 
   F@1;      
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MODEL foc: 
     [y#];   ! “#” = 1, 2, 3, 4 or 5. 

    F;   
     

OUTPUT:  
   
 

3. The augmented models where each of the constrained loadings is released 

 
TITLE:  Testing the individual released loading based on the B-H method. 
 
DATA:   FILE = <name of imported data file>; 
 
VARIABLE: NAMES = y1-y5 g; 

   GROUPING = g (1 = ref 2 = foc);  
 
ANALYSIS: ESTIMATOR = ML; 

 
MODEL: 
     F BY y1*         

     y2-y5; 
     [y1-y5]; 
   F@1; 
     
MODEL foc: 
     F BY y#*; ! “#” = 1, 2, 3, 4 or 5.      

F;   

     
OUTPUT:  
 
Note: (1) The LR test for each released parameter was conducted by comparing the 
chi-square difference between the fully constrained baseline model and each of its 
corresponding augmented models with df = 1. (2) The presented codes were used for 

analyzing the data with five indicators. The indicator number can be modified in these 
example codes for different simulation conditions.    
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APPENDIX F 

 

MPlus syntax for data analysis based on the AM method 

TITLE:  Testing each individual parameter based on the AM method 
 
DATA:   FILE = <name of imported data file>;  
 
VARIABLE:   

NAMES = y1-y5 g; 
   classes = c(2); 
   knownclass = c(g=1, g=2);  
  
ANALYSIS: 
   TYPE = MIXTURE; 

   ESTIMATOR = ML; 
   alignment = free;  ! With the free option, all factor means are estimated. 
   ALGORITHM = INTEGRATION; 
   processors = 8; 
 
MODEL: 

         %OVERALL% 
         F by y1-y5;   ! Each loading or intercept is tested by default. 
 
OUTPUT: align; 
 
Note: (1) Each individual parameter was tested through the paired comparison of 

estimated parameter values in two groups as the default. (2) The presented codes were 
used for analyzing the data with five indicators. The indicator number can be modified in 
these example codes for different simulation conditions.    
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APPENDIX G 

 

R syntax for computing three evaluation criteria 

 

This is an example R code for computing the three evaluation criteria (i.e., the 
perfect recovery rate, the type I error rate, and the power rate) under the conditions of 
five indicators in the models. After the generated data were analyzed by each testing 
method, the outcome was compiled into one dataset which was named as “total”. Based 
on this dataset, three evaluation criteria were computed separately. The initial settings 
before the computation are as follows.   

 
rep=200        # 200 replicates 
NS=3        # 3 types of sample size 
ND=5        # 5 types of noninvariance degree 
NL=2        # 2 types of noninvariance location 
NI=5        # 5 indicators 
 

1. Computation of the perfect recovery rate 

 
# Compute the sum of false positive rate for every model contaminated by noninvariance 

#   
FalsePos  <- rowsum(total$FalsePos, total$TestModel) 
# Compute the sum of false negative rate for every model contaminated by noninvariance 
#   
FalseNeg <- rowsum(total$FalseNeg, total$TestModel) 
# Combine the false negative rate and the false positive rate into one dataset #   

tmp1 <- cbind(TestModel = rownames(FalsePos), FalsePos, FalseNeg) 
Out <- data.frame(matrix(unlist(tmp1), nrow=NS*ND*NL*rep, 3), stringsAsFactors=F) 
colnames(Out) <- c("TestModel", "FalsePos", "FalseNeg")  
# Create a variable “SampleSize” to represent three different sample sizes #   
Out$SampleSize <- str_extract(Out$TestModel, pattern="N[[:digit:]]+")  
# Create a variable “Degree” to represent five different noninvariance degrees #   

Out$Degree     <- str_extract(Out$TestModel, pattern="D[[:digit:]]+\\.*[[:digit:]]*") 
# Create a variable “Replicate” to represent the id number of each replicate #   
Out$Replicate   <- str_extract(Out$TestModel, pattern="R[[:digit:]]+") 
# Create a variable “ModiY” to represent the location of the modified parameter #   
Out$ModiY     <- substr(Out$TestModel, 8, 11) 
 

# Create a variable "PRR" to represent the Perfect recovery rate: 1=perfect, 0=imperfect #   
for (i in 1:(NS*ND*NL*rep))  { 
 if (Out$FalsePos[i]==0 & Out$FalseNeg[i]==0) { 
 Out$PRR[i] <- 1 

} else  { 
 Out$PRR[i] <- 0 
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}} 
 

# Split the perfect recovery rate according to the location of the modified parameter #   
tmp2   <- split(Out, Out$ModiY) 
OutInte <- tmp2$Inte; OutLoad <- tmp2$Load;  
# Compute the average of perfect recovery rate across replicates #   
PRRInte  <- xtabs(formula=PRR~OutInte$SampleSize + Degree, data=OutInte)/rep 

PRRLoad <- xtabs(formula=PRR~OutLoad$SampleSize + Degree, data=OutLoad)/rep 
# Combine the average of perfect recovery rate #   
PRR <- cbind(PRRInte,PRRLoad) 
PRR <- PRR[c("N200","N500","N1000"),] 
 

2. Computation of the type I error rate 

 
## R function for computing the type I error rate ## 
TypeIRate <- function(data,TestParaNum,NS,ND,rep) { 
tmp1  <- rowsum(data$FalsePos, data$TestModel) 

tmp2  <- cbind(TestModel = rownames(tmp1),tmp1) 
TypeI <- data.frame(matrix(unlist(tmp2), nrow=NS*ND*rep, 
2),stringsAsFactors=FALSE) 
colnames(TypeI) <- c("TestModel", "FalsePos") 
TypeI$SampleSize <- str_extract(TypeI$TestModel, pattern="N[[:digit:]]+") 
TypeI$Degree <- str_extract(TypeI$TestModel, pattern="D[[:digit:]]+\\.*[[:digit:]]*")  

TypeI$FalsePos <- as.numeric(TypeI$FalsePos)/TestParaNum 
TypeIRate <- xtabs(formula=FalsePos~TypeI$SampleSize + Degree, data=TypeI)/rep 
return (TypeIRate) 
} 
## End of the R function ## 
 

# Split the total testing outcome according to different simulation conditions # 
tmp10 <- split(total, total[,c('ExpeSig', 'ModiY', 'TestYtype')])  
 
# Test the INTERCEPTs when the noninvariance was located at the INTERCEPT #  

tmp11 <- tmp10$`0.InteY1.InteY`      
TypeIRateModiInteTestInte = TypeIRate(tmp11,NI-1,NS,ND,rep) 
 
# Test the LOADINGs when the noninvariance was located at the INTERCEPT #  
tmp12 <- tmp10$`0.InteY1.LoadY`        
TypeIRateModiInteTestLoad = TypeIRate(tmp12, NI,NS,ND,rep) 

 
# Test the INTERCEPTs when the noninvariance was located at the LOADING #  
tmp13 <- tmp10$`0.LoadY1.InteY` 
TypeIRateModiLoadTestInte = TypeIRate(tmp13, NI,NS,ND,rep) 
 
# Test the LOADINGs when the noninvariance was located at the LOADING #  

tmp14 <- tmp10$`0.LoadY1.LoadY` 
TypeIRateModiLoadTestLoad = TypeIRate(tmp14, NI-1,NS,ND,rep) 
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# Combine the type I error rate for testing intercepts #   
TypeIRateTestInte <- cbind(TypeIRateModiInteTestInte,TypeIRateModiLoadTestInte) 
TypeIRateTestInte <- TypeIRateTestInte [c("N200","N500","N1000"),] 
# Combine the type I error rate for testing loadings #   
TypeIRateTestLoad<- cbind(TypeIRateModiInteTestLoad,TypeIRateModiLoadTestLoad) 
TypeIRateTestLoad<- TypeIRateTestLoad [c("N200","N500","N1000"),] 

 
3. Computation of the type I error rate  

 

## R function for computing the power rate ## 
PowerRate <- function(data,TestParaNum,NS,ND,rep) { 
tmp1 <- rowsum(data$FalseNeg, data$TestModel) 

tmp2 <- cbind(TestModel = rownames(tmp1),tmp1) 
TypeII <- data.frame(matrix(unlist(tmp2), nrow=NS*ND*rep, 
2),stringsAsFactors=FALSE) 
colnames(TypeII) <- c("TestModel", "FalseNeg") 
TypeII$SampleSize <- str_extract(TypeII$TestModel, pattern="N[[:digit:]]+") 
TypeII$Degree <- str_extract(TypeII$TestModel, pattern="D[[:digit:]]+\\.*[[:digit:]]*")  

TypeII$FalseNeg <- as.numeric(TypeII$FalseNeg)/TestParaNum 
TypeIIRate <- xtabs(formula=FalseNeg~TypeII$SampleSize+Degree, data=TypeII)/rep 
PowerRate <- 1- TypeIIRate 
return (PowerRate) 
} 
## End of the R function ## 
 

# Split the total testing outcome according to the different simulation conditions # 
tmp10 <- split(total, total[,c('ExpeSig', 'ModiY', 'TestYtype')])  
 

# Compute the power rate when testing the INTERCEPT #  
tmp11 <- tmp10$`1.InteY1.InteY` 
PowerRateModiInteTestInte = PowerRate(tmp11,1,NS,ND,rep) 
 
# Compute the power rate when testing the LOADING #  
tmp12 <- tmp10$`1.LoadY1.LoadY` 

PowerRateModiLoadTestLoad = PowerRate(tmp12,1,NS,ND,rep) 
 
# Combine the type I error rate for testing intercepts #   
PowerRateTestInte <- cbind(PowerRateModiInteTestInte,PowerRateModiBothTestInte) 
PowerRateTestInte <- PowerRateTestInte[c("N200","N500","N1000"),] 
# Combine the type I error rate for testing loadings #   

PowerRateTestLoad <- 
cbind(PowerRateModiLoadTestLoad,PowerRateModiBothTestLoad) 
PowerRateTestLoad <- PowerRateTestLoad[c("N200","N500","N1000"),] 
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