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ABSTRACT

GRAPHICAL PROCESSING UNIT ACCELERATION AND DEVELOPMENT OF
MULTIREFERENCE QUANTUM CHEMICAL METHODS

By

Bryan Scott Fales

Understanding the electronic structure and excited-state dynamics of photochemical systems

is a challenging problem in computational chemistry. Features of the adiabatic potential

energy surfaces such as avoided crossings and conical intersections play important roles

in events such as non-radiative recombination of excited fluorophores and photovoltaic cells.

Nuclear geometries corresponding to points of (near) degeneracy of adiabatic potential energy

surfaces represent regions where the Born-Oppenheimer approximation breaks down. A

consequence of an erosion of the ability to separate the nuclear and electronic degrees of

freedom in the wavefunction is the need for multireference electronic structure methods.

The state-averaged complete active space self-consistent field (SA-CASSCF) and the

complete active space configuration interaction (CASCI) methods are standard tools for

generating multireference wavefunctions. A common component of each of these methods

is a configuration interaction (CI) calculation step. The CI method is computationally de-

manding, however, and imposes hard limits on the dimension of the correlated region. In

this work we describe our direct, graphical processing unit (GPU) vectorized full CI imple-

mentation, allowing us to calculate CI wavefunctions and energies for systems having O(103)

basis functions and O(108) determinants on timescales of minutes. We apply our direct CI

method to a series of molecular benchmark systems and demonstrate that our atomic orbital

to molecular orbital basis integral transformation scales approximately quadratically with

respect to basis set size. Analysis of the scaling behavior of the rate-limiting component of

the CI iterations, the matrix-vector product σ= Hc, where H is the electronic Hamiltonian

and c is the CI vector, reveals that our algorithm scales approximately linearly with respect

to the number of determinants.



We have developed a GPU-based implementation of the 1- and 2-particle reduced density

matrices (1- and 2-RDMs), both of which are necessary for fast evaluation of analytical

nuclear energy gradients and nonadiabatic coupling vectors. Calculation of certain properties

such as the dipole moment and the transition dipole moment also require the 1-RDM, and

SA-CASSCF energy and gradient calculations require the 1-RDM and 2-RDMs, respectively.

Formulation and implementation of several spin-purification schemes that are useful in

the context of open-shell determinantal CI are described next. These approaches counter-

act the numerical instabilities associated with high-accuracy open-shell CI calculations. A

GPU accelerated direct S2c algorithm, where S is the spin matrix, enables robust spin pu-

rification of trial vectors entering the (Krylov) subspace for purification approaches relying

on projection or, conversely, modification of the σ vector to correspond to a spin-penalized

Hamiltonian for penalty-based approaches. To demonstrate the utility of spin-purification

methods we include a study of the multireference and multi-excitation character of plasmonic

open-shell silver clusters.

The rank-reduced CI (rrCI) method is described for extremely large configuration spaces.

The rrCI method allows ground state singlet and triplet calculations having configuration

spaces on the order of O(1016) determinants while achieving mH accuracy relative to full

CI (FCI). Single point energies of acenes having 2 − 5 aromatic rings are reported using

HF-CAS-rrCI and compared with density matrix renormalization group (DMRG) calculated

energies as an additional verification of the accuracy of rrCI.

All methods described in this work have been implemented in the TeraChem GPU accel-

erated electronic structure software package. We conclude with a description of large-scale

CI calculations that have been performed using methods described in this manuscript.



For Reagan.

iv



ACKNOWLEDGEMENTS

BSF would like to thank the following individuals:

• Professor Benjamin Levine, my Ph.D. adviser, for providing me the opportunity to be

a part of his science team.

• Professor Mary T. Rodgers, my undergraduate adviser, who introduced me to both

scientific research and to computational chemistry.

• Professor C. David Sherrill, for developing and freely sharing his lecture notes on

configuration interaction theory.

• Professor Alan Munn, for development and maintenance of the “msu-thesis” LATEX

package used for typesetting the present manuscript.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Single Particle Basis Sets, Slater Determinants, and Hartree-Fock Theory . . 2
1.2 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 CASSCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 CASCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 2 NANOSCALE MULTIREFERENCE QUANTUM CHEMISTRY: FULL
CONFIGURATION INTERACTION ON GRAPHICAL PROCESS-
ING UNITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Integral Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 KH Direct FCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 ERI Transformation Performance . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Direct CI Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER 3 GPU ACCELERATED REDUCED DENSITY MATRIX FORMATION 41
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 1-RDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 2-RDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Benchmark Calculations Details . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 2-RDM Benchmark Calculations . . . . . . . . . . . . . . . . . . . . . 46
3.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4 ROBUST AND EFFICIENT SPIN PURIFICATION FOR DETER-
MINANTAL CONFIGURATION INTERACTION . . . . . . . . . . 49

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Spin Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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CHAPTER 1

INTRODUCTION

Photochemical processes involve absorption of one or more photons by a chemical system

coupled with electronic excitation, often followed by nuclear and/or electronic rearrangement,

before subsequent return to the electronic ground state through photon emission or nuclear

vibration. The excited state potential energy landscape is highly dimensional, presenting a

challenging problem in quantum chemistry. Modeling photochemical processes by exploring

potential energy surfaces (PESs) using time-dependent simulations is an efficient way of

sampling this high-dimensional space.

Chemical modeling is used to facilitate understanding of physical processes. Examples

include simple 2- and 3-dimensional physical models used for pedagogical purposes, molecular

mechanics, and fully quantum mechanical ab initio theories. The type of model used for a

particular system is chosen based on several factors:

• The nature of the system’s constituents (i.e. how big are the particles? Is the behavior

quantum or classical? Are relativistic effects important?)

• The physical size (expanse) of the system

• The desired accuracy

• The available computational resources

• Is electron correlation important?

• Are electronic excited states desired?

Many photochemical problems require modeling strategies that push the limits of currently

available methods. Nanoparticles, including those composed of low-cost, non-toxic, and

abundant atoms such as silicon, have been used in solar energy conversion applications with
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increasing frequency in recent years due to their reasonable efficiency and tunability. These

nanoparticles may be large, sometimes on the order of tens of nanometers, and it is important

to provide a high accuracy ab initio correlated treatment of both the ground and excited

electronic states. Electron correlation is the explicit interaction between individual electrons.

Since electron correlation, and the related correlation energy, are often defined in terms of

Hartree-Fock and full configuration interaction (FCI) theory, we provide a brief description

of each in the following sections.

1.1 Single Particle Basis Sets, Slater Determinants, and Hartree-
Fock Theory

The spin-free Hamiltonian is

Ĥ =

−1

2

∑
i

∇2
i −

∑
i,A

ZA
riA
− 1

2

∑
A

∇2
A +

∑
A<B

ZAZB
rAB

+
∑
i<j

1

rij

 (1.1)

where i, j index electrons, A,B index nuclei, Z are nuclear charges, ∇2 is the kinetic energy

operator, and r is the inter-particle radius. The third and fourth terms (the nuclear kinetic

energy operator and nuclear-nuclear repulsion, respectively) are independent of the electronic

motion and correspond to a rigid shift of the eigenvalues in the Schrödinger equation, allowing

us to define the electronic Hamiltonian as

Ĥe =

−1

2

∑
i

∇2
i −

∑
i,A

ZA
riA

+
∑
i<j

1

rij

 (1.2)

For the remainder of this work we will treat only the electronic components of the Hamil-

tonian, Ĥ ≡ Ĥe. We consider the nuclei to be fixed point charges in accordance with the

Born-Oppenheimer representation, and the electronic Schrödinger equation is

ĤΨ = EΨ (1.3)
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where E are the eigenvalues and Ψ is the molecular wavefunction.

Solutions to the wave equations may be given in terms of products of one-particle spin-

orbitals, χ, having both space and spin coordinates. The resulting wavefunction ansatz,

known as the Hartree product, fails to satisfy the antisymmetry principle for fermions, how-

ever. Slater remedied this in 1929 by suggesting the use of an antisymmetrized Hartree

product. The so-called Slater determinant for an N−electron system is defined as

Ψ(x1, x2, ..., xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN (x1)

χ1(x2) χ2(x2) . . . χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.4)

where Ψ is the single determinantal wavefunction and x are the electron coordinates. Ap-

plying the variational principle to the Schrödinger equation we optimize the spin-orbital

coefficients χ to minimize the energy ε

ε =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(1.5)

The Hartree-Fock equations provide a simplification of the molecular electronic Hamil-

tonian described above by approximating the Coulombic electron repulsion terms. Rather

than allow each electron to interact with each other electron individually, instead the electron

interacts with the average position of the N − 1 remaining electrons. While this mean-field

approach reduces the computational complexity significantly, it also results in the neglect of

correlation between each individual electron pair. The Hartree-Fock equations are written

as

f(x1)χi(x1) = εiχi(x1) (1.6)
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where the Fock operator f is

f(x1) = h(x1) +
∑
j

Jj(x1)−Kj(x1) (1.7)

with h the one-electron operator and J and K the Coulomb and exchange operators, respec-

tively. Both the Fock operator and the Slater determinant are dependent on the underlying

orbitals, resulting in a partial differential equation that must be solved self-consistently. The

Hartree-Fock equations become the Hartree-Fock-Roothaan equations upon introduction of

a basis set, with atomic basis functions χ̃, giving the form of the spin-orbitals as

χi =
∑
µ

Cµiχ̃µ (1.8)

where Cµi are the self-consistent field (SCF) coefficients. The Hartree-Fock-Roothan matrix

equations then take the form of a generalized eigenvalue problem

FC = SCε (1.9)

where the elements of each matrix are defined as

Fµν =

∫
dx1χ̃

?
µ(x1)f(x1)χ̃ν(x1) (1.10)

Sµν =

∫
dx1χ̃

?
µ(x1)χ̃ν(x1) (1.11)

Diagonalization of F gives a new set of orbitals C, which are then used to define a new Fock

matrix F. This process is repeated until the orbitals and Fock matrix are self-consistently

converged. The Fock matrix can be defined in terms of three matrices,

F = h + J + K (1.12)
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where h is a matrix comprised of the one-electron integrals and J and K are the Coulomb and

exchange matrices, respectively. The Coulomb matrix has a classical interpretation, where

each electron “sees” the remaining N − 1 electron charge distribution in an average sense.

The exchange matrix does not have a classical analog, arising instead as a consequence of the

“exchange” of electrons between spin-orbitals i and j due to the Pauli exclusion principle.

As previously mentioned, the mean-field nature of the Hartree-Fock approximation results

in the absence of electron correlation. Hartree-Fock is successfully used for generation of

zeroth-order wavefunctions, and provides a reference for definion of the full configuration

interaction method to explicitly correlate all electrons in the space of the atomic orbital

basis functions.

1.2 Configuration Interaction

Beginning with the canonical Hartree-Fock optimized wavefunction, Ψ0, we define a

determinantal basis such that all possible configurations are included in a linear expansion,

vide infra

ΨCI = c0Ψ0 +
a∑
i

caiΨa
i +

ab∑
ij

cabij Ψab
ij +

abc∑
ijk

cabcijkΨabc
ijk + . . . (1.13)

i, j, k index occupied orbitals, a, b, c index virtual orbitals, and c is the vector of CI coeffi-

cients (each corresponding to a subscript→ superscript excitation) optimized by solving the

eigenvalue problem

ĤΨCI = EΨCI (1.14)

Full configuration interaction (FCI) provides the exact electronic wavefunction for both

ground and excited states in the given atomic orbital basis. Unfortunately, FCI scales

according to
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Ndet =

(
No!

Nα!(No −Nα)!

)(
No!

Nβ !(No −Nβ)!

)
(1.15)

where Ndet is the number of configurations (determinants) in the CI space, No is the number

of basis functions (orbitals) and Nα and Nβ are the number of α and β electrons, respectively.

The largest FCI calculations performed to date are on the order of O(1010) configurations

[48], with calculations on the order ofO(108) more typical of those being performed routinely.

The severe scaling of FCI places strict constraints on the size of the system, limiting its use

to that of primarily serving as a benchmarking tool for lower-scaling approximations to FCI.

Solution of the CI eigenvalue problem näıvely requires formation and diagonalization of

the FCI Hamiltonian matrix. The N2
det storage and N3

det operations explicit matrix diago-

nalization requires makes the CI problem intractable for all but the smallest systems. To

alleviate these issues, Roos developed a direct approach to solving the CI problem without

constructing the molecular electronic Hamiltonian[141]. Instead, the matrix-vector product

of the Hamiltonian matrix H with a trial vector c is directly formed and used to itera-

tively solve the CI equations. While first presented for the case of closed-shell restricted

CI truncated to single and double excitations (CISD) using a configuration state function

(CSF) expansion, the approach was soon generalized to include open-shell and unrestricted

CISD[142] and multireference CISD (MRCISD)[146, 145]. Siegbahn later extended direct CI

approaches to allow for large CI expansions in small orbital spaces by employing resolution

of the identity to eliminate the need for evaluation and storage of the two-particle coupling

coefficients[164]. This method is especially well-suited for FCI calculations in a complete

active space (CAS). Shortly after this, Handy recognized that using a determinantal basis

permits efficient factorization of the CI vector into α and β spin components[53]. Further,

the one-particle coupling coefficients between determinants are trivially the integers −1, 0, 1.

A subsequent collaboration between Knowles and Handy resulted in a FCI algorithm tai-

lored for vector machines[73]. The Knowles and Handy algorithm serves as the foundation
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for many of the CI algorithms developed in the present work. Other noteworthy direct CI

approaches are described by Olsen[128] and by Harrison and Zarrabian[203].

Figure 1.1: Examples of systems which require multiple Slater determinants for a qualita-
tively correct description. Silicon clusters with oxygen defects at their MECI geometries.
From left to right, molecular formulae are Si44H44O (with Si=O bond), Si50H50O (with
Si—O—Si epoxide), and Si44H44O (with Si—O—Si epoxide)
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Figure 1.2: Examples of systems having multireference character. Small molecules at their
MECI geometries.

The difference in energy between the Hartree-Fock and FCI energy is defined as the cor-

relation energy. This energy may be categorized as arising from either static or dynamic

electronic correlation. Dynamic correlation is the instantaneous interaction between individ-

ual electrons in motion. Static, or non-dynamical correlation, arises when the wavefunction

is dominated by contributions from two or more Slater determinants having qualitatively

different character.

While it is convenient to distinguish between dynamical and non-dynamical correlation,

the distinction between the two becomes blurred at the limit of the exact (FCI) correlation

energy. Still, electronic structure methods may tend to describe one form of correlation better

than the other. For example, both coupled-cluster and perturbation theory tend to provide

good descriptions of dynamic electron correlation, but fail to provide a qualitatively correct
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picture of static electron correlation. Shortcomings in such methods arise due their single

reference nature, i.e. the wavefunction is composed of a single electronic configuration and

corrections to it. Static correlation must be accounted for explicitly in these theories, giv-

ing rise to methods such as multireference coupled cluster theory (MR-CC) and many-body

perturbation theory (MR-PT). Approaches which give qualitatively correct descriptions of

systems which are strongly statically correlated have been designed explicitly to treat these

systems by using a multireference approach. Multireference methods are those whose zeroth

order wavefunctions are composed of two (or more) electronic configurations. Examples of

such systems include those which are far from equilibrium, including bond stretching and

those near the intersection of multiple adiabatic potential energy surfaces. Several examples

of molecular systems that require multireference methods are given in Figures 1.1 and 1.2.

Regions of the potential energy surface (PES) where the energies of different electronic states

are (nearly) degenerate include both avoided crossings and conical intersections. Conical in-

tersections are N − 2 dimensional seams of degeneracy between adiabatic electronic states,

where there are N nuclear degrees of freedom. These seams may be required by symme-

try, where the states are uncoupled but the presence of non-Abelian point group symmetry

ensures energy degeneracy. This type of intersection is also known as a Jahn-Teller inter-

section. Alternatively, these seams may be allowed regardless of the point group symmetry.

These types of intersections are referred to as accidental intersections. The lowest energy

point on the seam is known as a minimum energy conical intersection, or MECI. The PES in

the region of the twisted/pyramidalized MECI of ethylene is depicted in Figure 1.3. These

PES features become critical when describing the time-dependent behavior of photochemical

systems, for example, where non-radiative transitions between electronic states may occur

with high probability and at high rates in regions where strong nonadiabatic coupling is

present, such as near an MECI. The prototypical method for describing such systems with

qualitative accuracy is the complete active space self-consistent field (CASSCF) method,

which we introduce in the following section.
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Figure 1.3: Twisted-pyramidalized minimum energy conical intersection (MECI) PES of
ethylene at SA-2-CAS-(2,2)-SCF/6-31G??. Energies in eV relative to the Franck-Condon
geometry S0 energy.

1.3 CASSCF

The CASSCF method was developed to solve the problem of describing multireference

systems[144]. The fully optimized reaction space(FORS)[148] method of Ruedenberg is

closely related to CASSCF, and each is a specific case of the more general multiconfigu-

rational self-consistent field (MCSCF) approach, where the reference space may be chosen

to include any number of (user selected) configurations, which simplifies the selection of the

reference space by instead specifying the electrons and orbitals to be included in the config-

uration expansion rather than explicitly selecting individual configurations. State-averaging
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in the CASSCF method is important for treating each electronic state on an equal foot-

ing and for alleviating the root-flipping problem associated with excited state optimization

problems[37, 198, 88, 90, 49]. The SA-CASSCF calculation proceeds by calculating both

the SCF orbital and CI vector coefficients self-consistently by variationally optimizing the

SA-CASSCF energy

ESA−CASSCF =
∑
pq

γSApq (p|ĥ|q) +
∑
pqrs

ΓSApqrs(pq|rs) (1.16)

where γSA and ΓSA are the state-averaged 1- and 2-particle reduced density matrices

(RDMs) and (p|ĥ|q) and (pq|rs) are the 1- and 2-electron integrals indexed by orbitals

p, q, r, s. The state-averaged RDMs are given in terms of the state-specific RDMs according

to

γSApq =
∑
Θ

ωΘγ
Θ
pq (1.17)

ΓSApqrs =
∑
Θ

ωΘΓΘ
pqrs (1.18)

where Θ indexes states included in the average and ω are the state weights.

SA-CASSCF may be performed using a two-step “super CI” approach[144], where the

orbital and CI vector coefficients are optimized separately in succession, or using a Newton-

Raphson[163] scheme where both sets of coefficients are optimized simultaneously. In either

case, convergence difficulties may be encountered due to the highly non-linear nature of the

coupled equations, and optimization of both the orbital and CI coefficients may be non-trivial

even when convergence is straightforward. While advances in hardware technology have pro-

vided opportunities for the development of improved algorithms by our group[40, 166] and by

others[60, 167] for more efficient calculation of SA-CASSCF energies and analytical gradients,

the pursuit of lower cost SA-CASSCF alternatives having improved convergence characteris-

tics remains worthwhile. One particular SA-CASSCF alternative is the complete active space
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configuration interaction (CASCI) family of methods, closely related to CASSCF, where the

orbital and CI vector coefficient optimization is uncoupled.

1.4 CASCI

CASCI methods aim to provide approximations to, or improve upon, the CASSCF

method for describing statically correlated systems. Since no orbital re-optimization is per-

formed, the quality of the final solution eigenvectors depends on the orbitals generated for

the CI calculation. The CI step provides a description of static correlation and dynamic elec-

tron correlation within the CAS space, but fails to allow orbital relaxation in the same way

as CASSCF. A variety of orbital generation schemes have been developed to compensate for

this, including the use of unrestricted natural orbitals (UNO-CASCI)[22], improved virtual

orbitals (IVO-CASCI)[136], natural orbitals derived from correlated wavefunctions includ-

ing Möller-Plesset second-order perturbation theory (MP2), configuration interaction with

single and double replacements (CISD), and coupled-cluster singles and doubles (CCSD)[1],

floating occupied molecular orbitals (FOMO-CASCI)[165], high-multiplicity natural orbitals

(HMNO-CASCI) in the context of multireference CI (MRCI)[96], and configuration interac-

tion singles natural orbitals (CISNO-CASCI)[160]. Each of these methods provide an orbital

basis suitable for describing statically correlated systems at a reduced computational cost

relative to CASSCF.

1.5 Problem Statement

The previous sections serve to provide general background information and to motivate

the work presented here. This dissertation discusses the following open challenges in com-

putational chemistry:

• Many efficient means of describing multireference character rely on use of CI meth-

ods. Algorithms for FCI and active space CI, including CAS, restricted active space

(RAS)[128], and generalized active space (GAS)[101], calculations are developed with
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current hardware capabilities in mind. Previously, CPU based hardware limited the

size of CI calculations to O(108) configurations for dynamics simulations or optimiza-

tions, and O(1010) configurations for benchmark type calculations. Chapter 2 deals

with the problem of leveraging novel graphical processing unit (GPU) based hardware

technologies to enable CI-based calculation of systems having larger atomic orbital

basis sets and larger configuration spaces.

• Computational chemists benefit from the availability of analytical nuclear energy gra-

dients and nonadiabatic and derivative coupling vectors. Reduced density matrices

(RDMs) provide a convenient means of storing wavefunction information that may be

used by subsequent gradient calculations. Chapter 3 describes the efficient GPU ac-

celerated formation of 1- and 2-particle RDMs that enable SA-CASSCF and CASCI

gradients and nonadiabatic and derivative coupling vectors.

• CI is often performed using a determinantal basis, rather than a configuration state

function (CSF) basis, because of the convenient integer form of the 1-particle coupling

coefficients. Aside from the additional computational cost associated with the use of

determinants (2 − 3×), determinants are not necessarily eigenfunctions of the total

spin operator Ŝ2. This can, in certain situations, lead to catastrophic spin contamina-

tion of the eigenvectors. In Chapter 4 we demonstrate schemes to address numerical

instabilities such as these encountered when solving the CI eigenvalue problem.

• While the ever expanding capabilities of new computer hardware allows us to tackle

larger problems, the exponential scaling of the CI methods make brute force solutions

generally unsuitable. Instead, in Chapter 5 we explore approximate methods for solving

extremely large CI problems.

We conclude with a brief discussion of the work presented herein in Chapter 6 and by

describing examples of studies made possible by the methods presented here.
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CHAPTER 2

NANOSCALE MULTIREFERENCE QUANTUM CHEMISTRY: FULL
CONFIGURATION INTERACTION ON GRAPHICAL PROCESSING

UNITS

Reproduced with permission from “Nanoscale Multireference Quantum Chemistry: Full Con-

figuration Interaction on Graphical Processing Units”, B. S. Fales and B. G. Levine, J. Chem.

Theory Comput., 11, 4708-4718, 2015. Copyright 2015 American Chemical Society.

2.1 Abstract

Methods based on a full configuration interaction (FCI) expansion in an active space of

orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply-

excited states, and conical intersections in small-to-medium-sized molecules, but these phe-

nomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have

developed an implementation of FCI in which electron repulsion integral transformation and

several of the more expensive steps in σ vector formation are performed on graphical pro-

cessing unit (GPU) hardware. When applied to a 1.7 x 1.4 x 1.4 nm silicon nanoparticle

(Si72H64) described with the polarized, all-electron 6-31G?? basis set, our implementation

can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian

(more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.

2.2 Introduction

Computational science has recently seen a resurgence in the vector processing paradigm

due to the availability of low-cost video acceleration co-processors tailored for the gam-

ing market known as graphical processing units (GPUs). With a large number of floating

point units operating in parallel and a fast hierarchical memory subsystem, GPUs provide

computational power comparable to that of a small cluster of CPU-based machines at a

cost of only a few hundreds or thousands of dollars. Electronic structure calculations are
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particularly amenable to GPU acceleration because many of the relevant algorithms are

formulated in terms of matrix operations which can be efficiently vectorized. Applications

of GPUs to electron repulsion integral evaluation and the self-consistent field procedure

have proven fruitful [179, 180, 181, 9, 98, 193, 105, 195, 5, 11, 113, 122, 200, 114], and

correlated, linear-scaling, and excited state methods have also been accelerated by GPUs

[183, 126, 35, 65, 102, 10, 103, 36, 83, 109, 81, 201]. Production calculations which take ad-

vantage of GPUs for the study of complex nanoscale or biological systems or for automated

discovery of new chemistries are now regularly reported [110, 186, 185, 199, 162].

To date most GPU-accelerated development efforts in ab initio quantum chemistry have

focused on single-reference methods, though exceptions include recent implementations of

the complete active space self-consistent field (CASSCF) method[60] and multireference cou-

pled cluster theory[20]. Many chemical phenomena, such as bond breaking, multiply-excited

electronic states, and non-radiative decay via conical intersections, benefit from treatment

at a multireference level of theory [152, 171], as evidenced by the popularity of CASSCF,

which is the standard tool used for calculating zeroth-order wave functions of such strongly

correlated systems[147]. Inspired by the success of CASSCF, a class of efficient and ac-

curate alternatives has been introduced: the two-step complete active space configuration

interaction (CASCI) methods, in which the optimization of the orbitals is decoupled from

that of the configuration interaction (CI) coefficients. The various two-step methods are

differentiated by the procedure used to determine the orbitals on which the CI expansion

is based. Orbital determination schemes suitable for describing bond breaking include the

unrestricted natural orbital (UNO) method [22] and methods based on the natural orbitals of

correlated single-reference methods [2]. Two-step methods have been gaining popularity for

the description of excited states as well, and various schemes exist: improved virtual orbitals

(IVO)[136, 30], floating occupation molecular orbitals (FOMO)[50, 165], high-multiplicity

natural orbitals (HMNO)[95, 97], variationally optimal orbitals from restricted active space

calculations (singly excited active space; SEAS)[161], and configuration interaction singles
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natural orbitals (CISNO)[160]. In addition to computational efficiency, two-step methods

often exhibit other desirable behaviors, such as a reduced propensity for spatial symmetry

breaking [161], size intensivity [160], and simplification of the choice of active space[160, 69].

CASCI is simply full CI (FCI) in a user-defined active space of orbitals, and the last

several decades have seen the development of many efficient FCI algorithms[158]. These

direct algorithms achieve efficiency by circumventing the formation of the full Hamiltonian

matrix. Though spin-adapted formulations significantly reduce the dimensionality of the

FCI problem [130, 157], determinantal CI algorithms became popular in the 1980s due to

the ease with which the coupling coefficients can be evaluated [53]. Though several FCI

algorithms with reduced operation counts have been developed [128, 203, 18], the seminal

algorithm introduced by Knowles and Handy (KH) [73] is an excellent starting point for

a GPU implementation of FCI because of its amenability to vectorization and the regular

memory access pattern it allows. Specifically, the performance limiting step of the KH

algorithm is a large matrix multiplication, for which extremely efficient GPU algorithms

exist.

Further acceleration of FCI or FCI-like calculations can be achieved in various ways. It is

possible to improve performance by taking advantage of the sparsity of the data structures

involved [72, 115, 140]. The density matrix renormalization group approach allows chemists

to solve problems with larger active spaces than previously possible [192, 117, 28, 86, 118]. In

systems with larger one-electron bases, performance may be determined not by the cost of the

diagonalization itself, but by the preceding two-electron integral transformation. The formal

scaling of this step has been reduced by employing approximations to the integrals [108, 175,

8, 34], and reduced effective scaling has also been observed when efficient prescreening is

employed in the absence of any additional approximation[155, 60].

Herein we report the implementation of a vectorized direct determinantal FCI algorithm

on GPU hardware. Section 2.3 describes our adaptations of two potentially performance-

limiting steps to GPU hardware: the two-electron integral transformation and the KH al-
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gorithm for formation of the σ vector. In Section 2.4 we report the performance of our

algorithm for systems as large as a 1.7 x 1.4 x 1.4 nm silicon nanoparticle. In Section 2.5 we

draw conclusions and discuss future prospects.

2.3 Methods

A typical CASCI calculation requires a) determination of a suitable set of orbitals, b)

transformation of integrals from the atomic orbital (AO) to the molecular orbital (MO)

basis, and c) solving for the lowest eigenvalues and eigenstates of the CASCI Hamiltonian.

Each of these steps, respectively, contain a potential bottleneck: a) solution of the Hartree-

Fock (HF) wave function (or perhaps configuration interaction singles (CIS), in the case of

CISNO), b) two-electron integral transformation, and c) formation of the σ vector. GPU

algorithms for HF and CIS have been well documented [179, 180, 181, 65]. Below we report

the details of our GPU implementations of each of the latter two potential bottlenecks. Note

that double precision floating point math was used for all calculations presented in this work,

even though GPUs perform floating point math faster in single precision.

2.3.1 Integral Transformation

The transformation of the electron repulsion integrals (ERIs) is the performance-limiting

step for a FCI calculation using a large single-electron basis and modest active space, so we

focus on the GPU implementation of this step here. When fast integral evaluation is possible

(as on the GPU), integral-direct calculation of the transformed integrals can provide good

scaling without the need for storage of large matrices of intermediate sums[55, 45, 155]. In

our implementation we take advantage of the existence of efficient GPU-accelerated code for

computing generalized Coulomb matrices, Jij, to achieve these goals [180]. ([Jij ]µν = (µν|ij);

two-electron integrals are expressed in chemists’ notation, µ and ν index the AO basis, and

i and j index the transformed (MO) basis.)

Our transformation proceeds as follows: The matrix Jij is computed for a particular pair,
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ij, from a density matrix created by taking the outer product of molecular orbital i with

orbital j. From Jij, a two-index transformation is performed to build the fully transformed

integrals

(ij|kl) =
∑
µν

CµkCνl[Jij ]µν (2.1)

where k and l (like i and j) index the MO basis and Cµk is the coefficient of basis function

µ in MO k. Then, Jij is discarded before computing Jij for the next pair ij. Note that

to perform a CASCI calculation i, j, k, and l need only span the space of active orbitals.

Formally, the operation count of this calculation scales as O(N4m2), where N and m are the

number of AOs and active MOs, respectively, and thus m << N in most cases. Only enough

storage for (ij|kl) (m4) and a single instance of Jij (N2) is required. Further reduction

of the formal scaling of the operation count to O(N4m) would be possible by taking an

alternative approach: performing four successive one-index transforms rather than two two-

index transforms as above. However, the observed scaling of the two-index algorithm, which

will be analyzed in detail below, is considerably less than O(N4m2) because we prescreen

the two-electron integrals in the process of forming Jij, as described by Ufimtsev, et al.[180]

2.3.2 KH Direct FCI

Direct CI methods require access only to the transformed integrals, the one-electron coupling

coefficients, γ, and a matrix listing the orbital labels corresponding to the non-zero elements

of γ, l. As noted above, we work in a determinantal basis to simplify evaluation of γ.

As a result, computational performance depends strongly on how efficiently the integrals

and coupling coefficients are accessed in memory. A lexical configuration ordering scheme

allows for contiguous memory access, an important consideration for many high performance

computing platforms, but especially important for GPUs. By writing configurations as

strings of α and β occupied orbitals and by taking advantage of their symmetry, γ and

l can be accessed contiguously in all cases. The graphical method described by Duch[38]
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was used to map the addresses for the α and β strings and is functionally identical to the

method described by KH[73]. Below we review the KH algorithm and then detail our GPU

adaptation, with particular attention to memory access.

Our code uses the iterative Davidson solver[33] for diagonalization of the Hamiltonian

matrix. The most computationally expensive step in this procedure is generally the formation

of the σ vector

σI =
∑
J

HIJcJ (2.2)

where cJ is an element of the CI coefficient vector, HIJ is a Hamiltonian matrix element,

and I and J index determinants. For problems involving a large active space and small single

electron basis, it is this step rather than the integral transformation that is performance-

limiting. The Hamiltonian matrix elements can be represented as[164]

HIJ =
n∑
ij

[
γIJij (i|ĥ|j)−

∑
k

γIJik (ik|kj)

]
+

1

2

n∑
ijkl

∑
K

γIKij γKJkl (ij|kl) (2.3)

where K (like I and J) indexes determinants and ĥ is the one-electron Hamiltonian. The

one-electron coupling coefficients are defined

γIJij = 〈ΨI

∣∣∣Êij∣∣∣ΨJ 〉 (2.4)

where Êij is the excitation operator that promotes an electron from orbital j to orbital i

and ΨI is a determinant. In terms of α and β strings (|ΨI〉 = |Ψαβ〉 and |ΨJ 〉 = |Ψα′β′〉),

we could equivalently represent the coupling coefficients as

γ
αβα′β′
ij = 〈Ψαβ

∣∣∣Êij∣∣∣Ψα′β′〉 (2.5)

Of course Eij is a one-electron operator, and therefore γ
αβα′β′
ij can only be non-zero

when either α = α′ or β = β′. If β = β′, for example, γ
αβα′β
ij is the same for all β, and thus

the dimensionality of γ can be reduced, with all non-zero elements described by
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γαα
′

ij = 〈Ψαβ

∣∣∣Êij∣∣∣Ψα′β〉 (2.6)

for all β and

γ
ββ′
ij = 〈Ψαβ

∣∣∣Êij∣∣∣Ψαβ′〉 (2.7)

for all α. Further, for a given pair of strings, α 6= α′, γαα
′

ij is non-zero for at most a single

pair of orbitals, ij. Thus, storage is saved by storing each non-zero element, γαα
′

ij , in a pair of

array elements: l[α, α′], which stores the value of ij for which γαα
′

ij is non-zero, and γ[α, α′]

which stores the value of γαα
′

ij itself.

The two-electron term on the far right of Equation 2.3 forms the bulk of the effort. In

the KH algorithm, the contributions to σ from this term are calculated in a series of three

steps [73]

DK
ij =

∑
J

γJKij cJ (2.8a)

EKkl =
∑
ij

1

2
(ij|kl)DK

ij (2.8b)

σI =
∑
K

n∑
kl

γKIkl E
K
kl (2.8c)

Applying the definition of γ in Equations 2.6 and 2.7 to Equations 2.8a - 2.8c, we arrive

at the serial form of the FCI algorithm originally described by KH (Algorithm 1)[73]. This

algorithm has five steps: calculation of the α and β contributions to the D matrix, forma-

tion of the E matrix (the central matrix-matrix multiply), and calculation of the α and β

contributions to the σ vector. Equation 2.8b is simply a matrix-matrix multiplication, and

it is this step that dominates the operation count of the KH algorithm. This operation is

trivially ported to the GPU by a call to the CUBLAS library [124], which contains a highly
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Algorithm 1 Serial Knowles and Handy algorithm
for strings α do

for strings α′ differing from α by zero or one occupations do
for strings β do

ij ← l[α, α′]
D[ij, α, β] += γ[α, α′]C[α′, β]

end for
end for

end for
for strings β do

for strings β′ differing from β by zero or one occupations do
for strings α do

ij ← l[β, β′]
D[ij, α, β]+ = γ[β, β′]C[α, β′]

end for
end for

end for
matrix multiply: E[kl, α, β] = (ij|kl)D[ij, α, β]
for strings α do

for strings α′ differing from α by zero or one occupations do
for strings β do

ij ← l[α, α′]
σ[α′, β]+ = γ[α, α′]E[ij, α, β]

end for
end for

end for
for strings β do

for strings β′ differing from β by zero or one occupations do
for strings α do

ij ← l[β, β′]
σ[α, β′]+ = γ[β, β′]E[ij, α, β]

end for
end for

end for

optimized matrix-matrix multiplication routine. We treat this as a dense matrix operation

in the present implementation. The D matrix can be quite sparse in the first several itera-

tions of the CI procedure, however[164], and accounting for this sparsity to further reduce

the computational effort is an area of active development. Naive implementation of the

lower-scaling operations in Equations 2.8a and 2.8c results in performance that is limited by

these steps. Thus, efficient implementation of these lower-scaling steps is essential for high

performance, and it is the GPU implementation of these that will be presented below.

The nested loop structures that form D and σ are similar. Each comprises three nested

loops over strings, with the string corresponding to the innermost loop differing in spin from
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Algorithm 2 GPU vectorized calculation of the α terms in D
GPU vectorize over strings α, β

for all orbitals i occupied in α do
D[ii, α, β]+ = C[α, β]

end for
end GPU vectorize
GPU vectorize over strings α, α′, β, where α and α′ differ by exactly one occupation

ij ← l[α, α′]
D[ij, α, β]+ = γ[α, α′]C[α′, β]

end GPU vectorize

those of the outer two loops. In what follows, we consider in detail the GPU implementation

of the first set of nested loops in Algorithm 1: the calculation of the α contributions to

D. The GPU algorithm for this step is presented in Algorithm 2. Though we do not

explicitly present the GPU algorithms for the calculations of the β contributions to D and

both components of σ, their implementation is analogous to that of the α contributions to

D. Key differences will be noted below.

The expressions for the diagonal (α = α′) and off-diagonal (α 6= α′) contributions to the

matrix elements for D and σ differ, and as such we split the calculation of these two sets

of terms into two different GPU kernels. In the computation of the diagonal terms (first

block in Algorithm 2), the calculation is vectorized across α and β. Because α = α′, no

loop over α′ is required, and this term is low enough scaling so as to never be performance

limiting. We therefore focus our attention on the efficient calculation of the off-diagonal

terms (second block in Algorithm 2). Here α 6= α′ so we vectorize over a third string, α′, in

addition to α and β. However, while we must compute terms for all possible values of α and

β, we take advantage of the sparse nature of γ by including only those α′ for which there

is some non-zero γ[α, α′]. Each thread loads a coupling coefficient, γ[α, α′] (along with its

corresponding l[α, α′]), and CI coefficient, C[α′, β], multiplies them, and adds the product to

element D[ij, α, β]. For optimal performance, it would be desirable to access memory in one

of two ways: such that contiguous memory is simultaneously accessed by neighboring threads

(coalesced memory access, in GPU parlance) or such that blocks of threads all access exactly

the same element of memory. An optimal memory access pattern is achieved through careful
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ordering of array and thread indices. Figure 2.1 depicts the arrangement of data structures

whose efficient access is critical to algorithm performance. Note that the D and E matrices

are ordered using the same convention, as are the C and σ data structures. Access to

D[ij, α, β] and C[α′, β] are coalesced, and each thread block requires access to only a single

value of l and γ.
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Figure 2.1: Memory layout for relevant data structures. The contiguous memory direction is
defined here as being row-major, as indicated by the arrow, keeping with the C programming
language convention. We depict the number of l=ij pairs here as being 2, while in practice
the number of ij pairs is m2.

The off-diagonal β contributions to D are calculated in a similar fashion to the α con-

tributions. The thread indices are reorganized such that C[α, β′], l[β, β′], and γ[β, β′] are

accessed in a coalesced fashion. Access to D[ij, α, β] itself is not coalesced, however. In an
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attempt to eliminate this non-coalesced memory access, we have implemented a second algo-

rithm in which D is transposed between the calculation of the α and β terms. It was found

that the prior approach provides better performance than the latter because the transpose of

D requires an inefficient memory access pattern similar to that required by the non-coalesced

algorithm. Therefore, it is the non-coalesced algorithm that was used for calculation of the

β terms of D, though utilization of a more optimized transpose algorithm may be worth

further investigation [99].

The α and β contributions to the σ vector are computed using identical indexing patterns

and vectorization schemes to their D counterparts, but there is one significant difference.

Formation of σ requires several threads to sum into the same location of memory which,

implemented naively, results in a race condition. The solution is to employ an atomic add

operation to ensure inclusion of all contributions to the final σ vector. While hardware

support for double precision floating point atomic addition is not currently available on

NVidia GPU hardware, we were able to achieve the same functionality using a custom

kernel that invokes the atomic compare-and-swap library function to ensure synchronized

memory access across thread blocks[125]. A similar approach has previously been used

in the implementation of radial distribution function histograms on GPU hardware [91].

Finally, we have implemented the one-electron contributions to the σ vector using a GPU

vectorized approach very similar to that which was taken for the two-electron contributions.

2.3.3 Computational Details

The above-described direct FCI algorithm was implemented for NVidia GPU hardware in

a development version of the TeraChem software package[181] using the Compute Unified

Device Architecture (CUDA) API[125]. All benchmark calculations were performed on a

system composed of an Intel Xeon E5-2680 2.80 GHz processor and a single NVidia K40 GPU.

The accuracy of our code was established by comparison to identical calculations performed

using the Molpro software package[190, 73, 189, 76, 74, 155]. Except where noted, all CASCI
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Table 2.1: CASCI/6-31G?? times-to-solution using (6,6), (12,12), and (16,16) active spaces.
The numbers of CI iterations required for convergence are shown in parentheses. Times-to-
solution for the HF step, which is required for orbital determination but is not included in
the CASCI times reported here, are shown in the final column for comparison.

System Time-to-Solution (s)
(6,6) (12,12) (16,16) HF

Pyrazine 0.51 (5) 3.75 (7) 1834.74 (11) 1.14
Dimelamine 2.81 (5) 11.17 (6) 689.23 (6) 8.48
Dimelem 7.19 (4) 22.75 (6) 1047.50 (7) 31.36
C60 63.69 (3) 163.42 (5) 807.82 (6) 258.01
Si72H64 458.42 (1) 1200.40 (2) 2343.93 (2) 1595.36

calculations in this work were performed in the basis of canonical Hartree-Fock orbitals for

simplicity, but note that the orbital determination steps for CISNO, IVO, and FOMO have all

been implemented either by our group or by Hohenstein, et al.[160, 60], and will be available

in a future release of TeraChem. Throughout this work active spaces are abbreviated (n,m)

where n is the number of active electrons and m is the number of active orbitals. Except

where noted, all calculations use the 6-31G?? basis and thus describe all electrons explicitly

and include polarization functions on all atoms. Reported times-to-solution include the

integral transformation and direct diagonalization, but exclude any orbital determination

step. HF times-to-solution, which are comparable to orbital determination times-to-solution

in many cases, have been reported separately for the reader’s convenience.

2.4 Results and Discussion

The test set of molecules used in our benchmark calculations is shown in Figure 2.2.

It includes one of the classic systems in molecular photodynamics (pyrazine), two models

of graphitic carbon nitride photocatalyst (dimelamine and dimelem), and two nanoscale

systems (C60 and Si72H64). Note that Si72H64 is a silicon nanoparticle measuring 1.7 x 1.4

x 1.4 nm.
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Figure 2.2: Test set molecules. Carbon, nitrogen, silicon, and hydrogen atoms are shown in
teal, blue, yellow, and white, respectively. The numbers of basis functions correspond to the
6-31G?? basis.
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Figure 2.3: CASCI/6-31G?? times-to-solution (a) and percent of total time spent performing
the ERI transformation (b) for our test set molecules plotted as a function of the number of
single-electron basis functions (N). Results for the (6,6), (12,12), and (16,16) active spaces
are shown in orange, green, and red, respectively.
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2.4.1 Overall Performance

The total times-to-solution for CASCI/6-31G?? calculations of the test set molecules (ex-

cluding any orbital determination step) are reported in Figure 2.3a and Table 2.1 with active

spaces ranging from (6,6) to (16,16). The times range from subsecond (0.51 s for pyrazine

with a (6,6) active space) to just over half an hour (2343.93 s = 39 min for Si72H64 with a

(16,16) active space). Note that for the (6,6) active space the CASCI calculation is always

faster than the HF calculation required to determine the orbitals. Even for the (12,12) active

space, solving the HF equations requires more time than the subsequent CI calculation for

the larger systems (dimelem, C60, and Si72H64).

There is a very noticeable difference in scaling behavior for the different active spaces.

This is more easily understood if we consider the percentages of the total times-to-solution

required to perform the ERI transformations, which are reported in Figure 2.3b and in paren-

theses in Table 2.2. As expected, the ERI cost dominates when large molecules are treated

with small active spaces, and the CI (which consumes the remainder of the time) dominates

when small molecules are treated with large active spaces. The ERI transformation requires

more than 90% of the total time-to-solution for all systems when they are computed with

the small (6,6) active space, and consumes more than half of the time for all but the smallest

system (pyrazine) when the (12,12) space is used. The ERI transformation requires 87% of

the time-to-solution for the largest reported calculation (Si72H64, (16,16)). For these systems

where the performance is dominated by the ERI transformation the total time-to-solution

appears to scale strongly with system size. Only when smaller molecules are treated with

the (16,16) active space does the CI diagonalization dominate. In these cases there is no

apparent dependence of performance on the size of the basis set, which is consistent with

the fact that the CI diagonalization dominates the cost of the calculation. Instead, it is

observed that the number of CI iterations (reported in parenthesis in Table 2.1) determines

the relative time-to-solution.
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Table 2.2: Comparison of the times required to perform ERI transformations with different
sized active spaces and single-electron basis sets. The percentage of the total CASCI time-to-
solution attributable to the ERI transformation is reported in parentheses. All calculations
used the 6-31G?? basis and were performed on a single NVidia K40 GPU.

System Basis Functions ERI Transformation Time (s)
(6,6) (12,12) (16,16)

Pyrazine 110 0.47 (92%) 1.73 (46%) 3.24 (0.2%)
Dimelamine 300 2.78 (98.9%) 9.34 (84%) 17.77 (2.6%)
Dimelem 510 7.06 (98.2%) 20.77 (91%) 42.22 (4.0%)
C60 900 63.18 (99.2%) 161.12 (98.6%) 277.35 (34%)
Si72H64 1688 455.66 (99.4%) 1196.02 (99.6%) 2043.81 (87%)

2.4.2 ERI Transformation Performance

The times required to compute the transformed two-electron integrals for our test set molecules

using three different size active spaces ((6,6), (12,12), and (16,16)) are presented in Figure

2.4 and Table 2.2. These times range from sub-second (0.47 s for pyrazine, m = 6) to

roughly half an hour (2043.81 s = 34 min for Si72H64, m = 16). Though the direct ERI

transformation procedure described above formally scales as O(N4m2), it is worthwhile to

investigate the scaling observed in practice, as the observed scaling may be significantly more

favorable than the theoretical scaling when the integrals are prescreened[155, 60]. Upon

attempting to fit the data in Figure 2.4 to extract the effective scaling exponent we noted

that a linear function fit the data very poorly. We hypothesized that this is because the

planar graphitic carbon nitride systems exhibit different scaling behavior than denser, three-

dimensional structures, like the silicon nanoparticle. We thus investigate the scaling of the

integral transformation by performing benchmark calculations on two series of molecules

with basis sets of consistent sparsity: basis-function-dense, three-dimensional silicon clusters

and models of planar graphitic carbon nitride for which we expect the ERIs to be sparser.

The silicon systems computed are Si15H25, Si25H30, Si44H44, Si50H50, and Si72H64, while

the carbon nitride systems are C4N2H4, C6N11H9, C12N19H9, C18N27H9, and C36N52H12.

Both sets of clusters are treated with the 6-31G?? basis. Additionally, the series of sili-
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Figure 2.4: Times required to perform the ERI transformations as a function of the num-
ber of single-electron basis functions (N) for different numbers of active orbitals (m). All
calculations used the 6-31G?? basis and were performed on a single NVidia K40 GPU.

con clusters was computed using the much smaller LANL2DZ effective core potential basis

set [184] to investigate the effect of atomic basis set size on scaling. All three series were

computed with three different size active spaces (m = 6, m = 12, and m = 16).

The results of these scaling studies are presented in Figures 2.5 and 2.6. Geometries and

tables of the timing data, including total times-to-solution and ERI transformation times,

are presented in Supporting Information. In all cases, we have performed linear regression

analysis of the log(ERI transform time) as a function of log(N) to determine the effective

scaling exponents. For all three series the effective scaling exponent is considerably lower
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Figure 2.5: Times required to perform the ERI transformations for a series of silicon clusters
as a function of the number of single-electron basis functions (N) for different numbers of
active orbitals (m). Calculations using the LANL2DZ(6-31G??) basis are depicted using
open(filled) circles and were performed on a single NVidia K40 GPU. Linear fits used to
determine scaling exponents are shown as dashed(solid) lines.
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Figure 2.6: Times required to perform the ERI transformations for a series of models of
graphitic carbon nitride as a function of the number of single-electron basis functions (N)
for different numbers of active orbitals (m). All calculations used the 6-31G?? basis and were
performed on a single NVidia K40 GPU. Linear fits used to determine scaling exponents are
shown as solid lines.
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than the theoretical value of 4.0. When the silicon cluster series is computed with the

LANL2DZ basis set (Figure 2.5) scaling exponents in the range 2.2-2.4 are observed for the

various active spaces. The same series computed with the larger 6-31G?? basis set (Figure

2.5) yields nearly identical scaling exponents: 2.3-2.5. Thus, the size of the atomic basis

set and number of active orbitals do not affect the scaling with respect to N . On the other

hand, the two-dimensional carbon nitride series (Figure 2.6) scales more favorably, with an

exponent ranging from 1.8-1.9 observed, indicating that the geometry of a series of molecules

does affect the scaling.

2.4.3 Direct CI Performance

When small molecules are treated with large active spaces, the direct CI step, the cost of

which scales factorially with the number of active orbitals, limits performance. We have

performed benchmark calculations for active spaces ranging from 105 − 108 configurations.

The times to complete a single σ formation are reported in Figure 2.7 and Table 2.3. Note

that we report two different times in Table 2.3: the σ formation time and the total time

per σ formation. The former is the time spent computing the σ vector itself, while the

latter is the total time needed to perform the direct CI calculation divided by the total

number of σ formations performed. Thus, the total time per σ formation includes overhead

which is excluded from the σ formation time. All calculations were performed on ethylene

(C2H4), but note that CI performance is independent of the total number of basis functions

and electrons. It depends only on the number of active electrons and active orbitals, and

therefore equivalent CI performance is observed for systems of any size.

The largest active space included in this study, (16,16), requires less than one minute

per σ formation. Note that the computational cost scales approximately linearly with the

size of the configuration space; fitting log10(time) to log10(number of configurations) yields

a scaling exponent of 1.1. The present implementation uses only a single GPU device, and

the maximum configuration space is limited by the available device memory (12 GB on the
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Figure 2.7: Time per σ formation as a function of the number of determinants for active
spaces ranging from (16,12) to (16,16). All calculations were performed on a single NVidia
K40 GPU.

Table 2.3: Time per σ formation and average iteration time for active spaces ranging from
(16,12) to (16,16). All calculations were performed on a single NVidia K40 GPU.

Active Space # of Configurations σ Formation (s) Total Time
Per σ Formation (s)

(16,12) 245025 0.04 0.08
(16,13) 1656369 0.48 0.74
(16,14) 9018009 2.09 3.55
(16,15) 41409225 11.77 18.25
(16,16) 165636900 46.89 70.82
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Table 2.4: Times to perform different steps in σ vector formation for a (16,16) active space.

Step Time (s)

One-electron Contributions to σ 6.43
α Diagonal D 0.12
β Diagonal D 0.19
α Off-Diagonal D 1.50
β Off-Diagonal D 5.30
E Formation (Matrix Multiply) 21.06
α Diagonal σ 0.08
β Diagonal σ 0.13
α Off-Diagonal σ 1.74
β Off-Diagonal σ 5.21

Total Time (GPU Time) 41.76
Total Time (CPU + GPU Time) 46.89

NVIDIA K40) rather than the time required for the calculation. We expect to be able to

expand to (18,18) and possibly (20,20) active spaces by extending our implementation to take

advantage of the direct inter-GPU communication and distributed GPU memory addressing

features available on the most recent devices.

Note that the total time per σ vector formation for the (16,16) active space is 70.82

seconds, and only 46.89 seconds is attributable to the formation of σ itself. The remaining

time (approximately 34% of the average iteration time) corresponds to overhead associated

with other low-scaling steps in the Davidson algorithm, memory allocation and access, CPU-

GPU communication, and other housekeeping tasks such as stack frame setup and context

changes between the CPU and GPU. This again underlines the fact that for all but the

simplest algorithms achieving optimal GPU performance requires optimization of several

steps, and these steps often include operations that would not be performance-limiting in a

serial implementation. The performance is often limited not by the step with the highest

operation count, but by the step with the highest operation count that is not (or cannot be)

effectively implemented on the GPU.

In Table 2.4 we present timings for each individual step of a single σ vector formation

for a (16,16) active space. The central matrix-matrix multiplication operation consumes
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Table 2.5: Absolute ground state energies of several systems computed at the HF-CASCI/6-
31G?? level of theory with various active spaces.

System Active Space TeraChem Energy Molpro Energy ∆
(Eh) (Eh) (Eh)

Ethylene (16,10) -78.063304843314 -78.063304824538 1.9 x 10−8

(16,11) -78.066690699464 -78.066690639571 6.0 x 10−8

(16,12) -78.074505748149 -78.074505683619 6.5 x 10−8

(16,13) -78.083428418532 -78.083428366856 5.2 x 10−8

(16,14) -78.091109138010 -78.091109107138 3.1 x 10−8

(16,15) -78.100302547285 -78.100302524072 2.3 x 10−8

Pyrazine (6,6) -262.726271748762 -262.726271553812 1.9 x 10−7

(12,12) -262.731145249735 -262.731145075701 1.7 x 10−7

Dimelamine (6,6) -831.559377872566 -831.559377131972 7.4 x 10−7

(12,12) -831.571307352380 -831.571306630668 7.2 x 10−7

Dimelem (6,6) -1494.410755484148 -1494.410754288612 1.1 x 10−6

(12,12) -1494.425909386718 -1494.425908295103 1.1 x 10−6

approximately 45% of the overall computational effort for a single σ vector formation. The

calculations of the off-diagonal terms in D, σ, and the one-electron part requires most of

the remainder of the time, while the cost of the diagonal contributions is almost negligible.

Within the off-diagonal elements, note that the β contributions, which require costly non-

coalesced memory accesses, require more effort than the α contributions by a factor of 3.2.

This underscores the necessity of careful management of the memory access pattern.

2.4.4 Accuracy

As noted above, the CASCI procedure is performed in double precision in this work. Addi-

tionally, no approximations are made to the Hamiltonian matrix to improve scaling. Here we

demonstrate the accuracy of our implementation by comparison to a code of known quality.

Single point energies for a survey of several systems and active spaces calculated on the CPU

using Molpro and on the GPU using TeraChem are shown in Table 2.5. Calculated energies

are in agreement to within a maximum error of 1.1 × 10−6Eh. Note that for the largest

system (dimelem) the GPU and CPU results agree to 9 decimal places, more than would be
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available if the calculations were performed entirely in single precision.

2.5 Conclusions

We have presented an implementation of FCI/CASCI on GPU hardware. Even when a

1.7 x 1.4 x 1.4 nm silicon nanoparticle is calculated with a large (16,16) active space and a

polarized, all-electron basis set, the cost of a CASCI calculation is only 39 minutes on a single

GPU processor. This capability opens up many interesting scientific possibilities—e.g. the

study of the photochemistry of large biological chromophores in complex environments or

photocatalytic reactions on the surfaces of semiconducting nanoparticles, treating the entire

system via a multireference level of theory capable of describing bond breaking, multiply-

excited states, and conical intersections. This algorithm performs well in the limits of both

large active space and large single-electron basis, but memory constrains our present imple-

mentation to configuration spaces on the order of 108 determinants, which corresponds to a

(16,16) active space.

It is reasonable to ask whether a (16,16) or smaller active space is capable of describing

chemistry at the nanoscale. Of course the answer to this question depends on the prob-

lem of interest, but there is reason for optimism in many cases. For many problems where

a multireference description would be beneficial, including those described in the previous

paragraph, the region where a multireference description is necessary is no larger than a typ-

ical molecule. Thus, an active space comparable to those employed in the study of molecular

chemistry would likely be sufficient. Even when an electronic excitation is delocalized over

more than a nanometer, it is not necessarily true that more active orbitals are required for

an adequate description of the electronic structure. For example, when the low-lying elec-

tronic excitations of semiconductor nanoparticles and conjugated polymers are computed via

a single reference level of theory such as time-dependent density functional theory, the lowest

excited state can often be described in terms of a single natural transition orbital pair, indi-

cating that a very small active space (possibly even (2,2)) would be sufficient [107, 12, 121].
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Processes which require a larger active space than this could be approached by pairing meth-

ods which restrict the configuration space[128, 119, 66, 101, 106, 131] with carefully defined

orbital determination schemes to reduce the factorial scaling of the problem.

The present FCI implementation can trivially be merged with the recently reported

CASSCF orbital optimization algorithm of Hohenstein, et al. [60], which makes use of

the sparsity of the AO basis in order to decrease the scaling of the full CASSCF procedure.

Because the orbital gradients are computed directly from integrals in the AO basis, CASSCF

does not require transformed integrals beyond those required by CASCI to be computed and

stored. This combined CASSCF algorithm will allow calculations of nanoscale systems with

large (16,16) active spaces to be performed in minutes or hours on a single GPU. Further

acceleration would be possible by employing lower-scaling approximations to the electron

repulsion integrals such as density fitting.

Our GPU FCI code also demonstrates two key points regarding the development of

scientific code on GPUs. First, it is not sufficient to simply accelerate the highest scaling step

or steps in a given algorithm and implement the remaining code in serial. GPU acceleration

can reduce the cost of a high-scaling portion of an algorithm by two orders of magnitude,

leaving lower-scaling steps as performance limiting. In our case it was necessary to accelerate

all five steps in Algorithm 1 in order to achieve high performance. Second, many brilliant

computational algorithms were developed for the vector processors of the 1980s, and it is

fruitful to revisit them when designing quantum chemical algorithms for the GPU.

Tables of benchmark timings for series of silicon and graphitic carbon nitride clusters

and geometries for all structures in Cartesian coordinates are included in the Supporting

Information.
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CHAPTER 3

GPU ACCELERATED REDUCED DENSITY MATRIX FORMATION

Reproduced in part with permission from “Complete Active Space Configuration Interac-

tion from State-Averaged Configuration Interaction Singles Natural Orbitals: Analytic First

Derivatives and Derivative Coupling Vectors”, B.S. Fales, Y. Shu, B.G. Levine, and E.G.

Hohenstein, J. Chem. Phys., submitted, 2017. Copyright 2017 AIP.

3.1 Abstract

Analytic nuclear energy gradients, nonadiabatic coupling vectors, and various one-electron

properties for configuration interaction (CI) based methods rely on availability of the 1- and

2-particle reduced density matrices (1- and 2-RDM, respectively). Improved direct CI algo-

rithms taking advantage of graphical processing unit (GPU) hardware acceleration[40] have

increased the size of routinely performed CI calculations. To match the high performance

of our direct CI algorithms we have developed and implemented GPU accelerated 1- and

2-RDM algorithms, the latter exhibiting similar scaling as our direct CI σ formation algo-

rithm. We present details of our implementation as well as timing and scaling information

for both 1- and 2-RDM formation.

3.2 Introduction

Computational chemists routinely leverage analytical nuclear energy gradients and nona-

diabatic coupling vectors to great effect, allowing for efficient exploration of highly-dimensional

chemical spaces in the form of geometry optimizations and transition state searches[151], ab

initio molecular dynamics (AIMD) simulations[4, 138], minimum energy conical intersection

(MECI) geometry optimizations[14], and ab initio multiple spawning (AIMS) simulations[16,

89, 32]. Derivation and implementation of analytical nuclear energy gradients and nona-

diabatic coupling vectors for electronic structure methods where the Hellman—Feynman
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theorem does not apply is simplified using Lagrangian based formalisms. In this context,

generalized reduced density matrices are of fundamental importance.

Reduced density matrices provide a concise means of storing wavefunction information

in terms of electron density. The CI energy for state n can be represented according to

E
(n)
CI =

∑
pq

(p|ĥ|q)γ(n)
pq +

∑
pqrs

(pq|rs)Γ(n)
pqrs (3.1)

where p, q, r, s index molecular orbitals, γ is the one-particle reduced density matrix (1-

RDM), and Γ is the two-particle reduced density matrix (2-RDM). The 1- and 2-RDMs are

defined according to

γ
(n)
pq =

∑
IJ

c
(n)
I c

(n)
J 〈ΦI |Êpq|ΦJ 〉 (3.2)

Γ
(n)
pqrs =

1

2

∑
IJ

c
(n)
I c

(n)
J 〈ΦI |ÊpqÊrs − δqrÊps|ΦJ 〉, (3.3)

where I and J index determinants, c is the CI vector, and Êpq is an excitation generator

corresponding to orbitals p and q. RDMs as shown are single-state RDMs, and generalization

to transition RDMs is trivial.

The 1-RDM is required for the calculation of various one-electron properties, such as the

dipole moment and the transition dipole moment. Methods where the orbital and CI vector

coefficient optimizations are coupled, such as the state averaged complete active space self-

consistent field (SA-CASSCF) method, use the 1-RDM when calculating the orbital gradient

during the orbital optimization step. Lagrangian based implementations of analytical nuclear

energy gradients and nonadiabatic coupling vectors rely on solution of the coupled perturbed

Hartree-Fock (CPHF) and coupled perturbed configuration interaction (CPCI) equations,

respectively, each of which uses generalized single-state and transition 1- and 2-RDMs.

42



3.3 Computational Details

Graphical processing unit (GPU) accelerated 1-RDM and 2-RDM algorithms have been

implemented in the TeraChem software package. Our SA-CASSCF energy implementation[60],

as well as analytic energy gradients and nonadiabatic coupling vectors for both the SA-

CASSCF[167, 166] and CASCI methods (including the configuration interaction singles nat-

ural orbitals [160, 41], or CISNO, and the floating occupation molecular orbitals [50, 165, 58,

57], or FOMO, methods) requires fast calculation of both the 1-RDM and 2-RDM. When

writing high-performance GPU-accelerated code, low-scaling tasks often become bottlenecks

if not implemented efficiently. This is true for 1-RDM formation in the present case, partic-

ularly when large configuration spaces are used in the context of SA-CASSCF. As such, we

describe the efficient computation of both the 1- and 2-RDMs on GPU hardware.

3.3.1 1-RDM

Defining an intermediate matrix, D, the 1-RDM (defined in Equation 3.2) can be computed:

DJ
pq =

∑
I

γIJpq c
(n)
I (3.4a)

γ
(n)
pq =

∑
J

c
(n)
J DJ

pq (3.4b)

where γ
(n)
pq are the elements of the 1-RDM and γIJpq are the one-electron coupling coef-

ficients. Note that the D matrix is identical to that used in the direct full CI algorithm

of Knowles and Handy[73]. Our implementation takes advantage of the GPU-accelerated

implementation of D matrix formation described in Chapter 2 [40]. The 1-RDM is then

formed according to Equation 3.4b using the highly optimized matrix-vector multiplication

library function provided by NVidia’s basic linear algebra subroutine library, CUBLAS[124].
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3.3.2 2-RDM

The calculation of the 2-RDM is the computational bottleneck of the gradient calculation

when large configuration spaces are used. In the same spirit as for the 1-RDM, the 2-

RDM (defined in Equation 3.3) can be computed from the intermediate quantity D and its

transpose E (defined such that DI
rs = EIsr).[164]

Γ
(n)
pqrs =

1

2

∑
I

EIqpD
I
rs −

1

2
δqr
∑
J

c
(n)
J DJ

ps (3.5)

Formally, D and E contain the same information, but algorithmically, both are required

in order to form the final 2-RDM using the standard CUBLAS matrix-matrix multiplication

routine, so we differentiate them here. Algorithm 3 presents the vectorized approach we

used to build the 2-RDM. Note that here α and β index the α and β strings representing

the occupations of a given determinant. Each element of the l matrix contains the orbital

address defining the nonzero excitation operator matrix element between a particular bra-ket

pair in determinant space; i.e. if γIJpq is nonzero then lIJ = pq. To improve the efficiency of

our implementation we have introduced an analog to the l matrix, l′, which differs only in

that the orbital indices are transposed (l′IJ = qp when γIJpq is nonzero).

Algorithm 3 shares common elements with the σ vector formation algorithm used in our

direct CI program[40]. It is important to highlight differences between the two procedures:

• σ vector formation requires use of atomic operations in the scatter operation (write to

the σ vector), while 2-RDM matrix formation requires no blocking operations.

• The size of the matrix-matrix multiplication in σ vector formation is smaller than that

required for building the 2-RDM.

• An additional operation, a matrix-vector multiplication, is needed when constructing

the 2-RDM.
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Algorithm 3 Vectorized 2-RDM algorithm
GPU vectorize over strings α, β

for all orbitals r occupied in α do

D[rr, α, β] += c(n)[α, β]
end for

end GPU vectorize
GPU vectorize over strings α, α′, β, where α and α′ differ by exactly one occupation

rs← l[α, α′]
D[rs, α, β] += γ[α, α′]c(n)[α′, β]

end GPU vectorize
GPU vectorize over strings α, β

for all orbitals r occupied in β do

D[rr, α, β] += c(n)[α, β]
end for

end GPU vectorize
GPU vectorize over strings β, β′, α, where β and β′ differ by exactly one occupation

rs← l[β, β′]
D[rs, α, β] += γ[β, β′]c(n)[α, β′]

end GPU vectorize
GPU vectorize over strings α, β

for all orbitals p occupied in α do

E[pp, α, β] += c(n)[α, β]
end for

end GPU vectorize
GPU vectorize over strings α, α′, β, where α and α′ differ by exactly one occupation

qp← l′[α, α′]
E[qp, α, β] += γ[α, α′]c(n)[α′, β]

end GPU vectorize
GPU vectorize over strings α, β

for all orbitals p occupied in β do

E[pp, α, β] += c(n)[α, β]
end for

end GPU vectorize
GPU vectorize over strings β, β′, α, where β and β′ differ by exactly one occupation

qp← l′[β, β′]
E[qp, α, β] += γ[β, β′]c(n)[α, β′]

end GPU vectorize
matrix-matrix multiply: Γ[pq, rs]← 1

2E[qp, α, β]D[rs, α, β]

matrix-vector multiply: γ(n)[pq]← D[pq, α, β]c(n)[α, β]
GPU vectorize over orbitals p, q, s

Γ[pq, qs] += −1
2γ

(n)[ps]
end GPU vectorize
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• Our implementation is structured in such a way as to require construction of the α

and β string lists for each 2-RDM formation, while σ vector formation has access to

pre-built lists in memory.

3.3.3 Benchmark Calculations Details

The 1- and 2-RDM calculations described above were implemented for NVidia GPU hardware

in a development version of the TeraChem software package using the Compute Unified

Device Architecture (CUDA) API[125]. Herein we report benchmark calculations for 2-

RDM formation for various active spaces. These calculations were performed on a single

NVidia K40 GPU. Those portions of the code that run on the CPU were performed on a

single core of an Intel E5603 1.60 GHz processor. All calculations are performed in double

precision. For comparison, the time needed for a single formation of the σ vector for each

active space using GPU-accelerated code[40] is provided as a reference. Formation of the

σ = Hc vector is the rate limiting step in solution for the CI energy, and has the same

formal computational scaling as 2-RDM formation.

3.3.4 2-RDM Benchmark Calculations

Figure 3.1 presents the performance of the 2-RDM algorithm for several active spaces, each

containing 12 electrons and a number of orbitals varying from 12 to 15. The scaling of the

computational cost with the number of configurations is essentially linear, with a scaling

exponent of 1.054. Table 3.1 reports the time for various steps in 2-RDM formation for the

(12,15) active space. In addition to the 2-RDM data, we also provide σ vector formation

timings for the same active space for comparison.

As seen in Table 3.1, the floating point operations (D/E matrix formation, matrix-matrix

multiplication, and matrix-vector multiplication) dominate the cost of 2-RDM formation.

In the case of the (12,15) active space they require 75% of the total time. At the same

time, we note that the system overhead (one-electron coupling coefficient formation, memory
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Figure 3.1: Time for 2-RDM formation as a function of the number of determinants for
active spaces ranging from (12,12) to (12,15). All calculations were performed using a single
NVidia K40 GPU.

allocation, and data transfer) times are non-negligible, suggesting that our algorithm takes

advantage of both the high data transfer rates and the massively parallel processing power

of the GPU hardware in a balanced fashion.

3.3.5 Conclusions

We have implemented fast GPU accelerated 1- and 2-RDM formation algorithms for use in

conjunction with the SA-CASSCF and several CASCI programs in the TeraChem software

package. Near-linear scaling with respect to configuration space size is achieved for 2-RDM

formation, similar to that observed for σ formation in our direct CI program. Future plans

include continued application of recursion relations in directly computing higher-order RDMs

to be used with internally contracted multireference CI.
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Table 3.1: Times to perform different steps in 2-RDM formation for a (12,15) active space.
For comparison we also show σ vector formation time. All calculations were performed using
a single NVidia K40 GPU.

Step Time (s)
1-electron coupling coefficient formation 1.54
memory allocation/transfer 2.13
D/E matrix formation 1.93
ED multiplication 7.99
Dc multiplication 0.94

summations of −1
2γ <0.01

Total 2-RDM formation 14.53
σ vector formation 8.08
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CHAPTER 4

ROBUST AND EFFICIENT SPIN PURIFICATION FOR
DETERMINANTAL CONFIGURATION INTERACTION

4.1 Abstract

The limited precision of floating point arithmetic can lead to the qualitative and even

catastrophic failure of quantum chemical algorithms, especially when high accuracy solu-

tions are sought. For example, numerical errors accumulated while solving for determinantal

configuration interaction wavefunctions via Davidson diagonalization may lead to spin con-

tamination in the trial subspace. This spin contamination may cause the procedure to

converge to roots with undesired 〈Ŝ2〉 eigenvalues, wasting computer time in the best case

and leading to incorrect conclusions in the worst. To remedy this, we present four purifica-

tion schemes for ensuring that the eigenvectors have the desired 〈Ŝ2〉. These schemes are

based on projection, penalty, and iterative approaches. All of these schemes rely on a direct,

graphics processing unit (GPU-) accelerated algorithm for calculating the S2c matrix-vector

product. We assess the computational cost and convergence behavior of these methods by

application to several benchmark systems. Finally, to demonstrate the utility of these ap-

proaches we have computed the lowest several excited states of an open-shell silver cluster

(Ag19) using the state-averaged complete active space self-consistent field (SA-CASSCF)

method where spin purification was required to ensure spin stability of the CI vector coef-

ficients. Several low-lying states with significant multiply-excited character are predicted,

suggesting the value of a multireference approach for modeling plasmonic nanomaterials.

4.2 Introduction

Configuration interaction (CI) is a conceptually straightforward method used for describ-

ing electronic correlation in molecules. Common variants of CI include full CI, truncated
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CI (e.g. CI singles and doubles, CISD), and active space CI (e.g. restricted, complete, or

generalized active space[101], or RAS-CI, CASCI, and GAS-CI). The desired eigenvalue-

eigenvector pairs are usually obtained using iterative methods such as the Davidson-Liu

approach[33, 93] to avoid the O(N3) scaling of complete Hamiltonian diagonalization, where

N is the number of basis functions in the configuration space. Modern CI implementa-

tions often use a determinantal basis due to the convenient integer form of the 1-particle

coupling coefficients. [53, 73, 128, 203, 158] However, the use of determinants comes at a

two-fold cost: first, the number of determinants is larger than the number of configura-

tion state functions (CSFs), and second, determinants are not necessarily eigenfunctions of

the Ŝ2 operator. The latter difficulty is ameliorated through use of guess vectors that are

eigenfunctions of Ŝ2. Still, spin contamination can occur during diagonalization, resulting

in erroneous convergence to roots with undesired 〈Ŝ2〉. This contamination may arise by

two mechanisms. In the first case, failure to use a spin-averaged preconditioner can result

in severe spin contamination. This problem is effectively resolved through use of precondi-

tioners based on averaged[87] or maximum[73] exchange integrals within a spin-coupling set

or orbital energy differences[39]. A second issue can arise, however, when the wave func-

tion must be converged to a tight tolerance, e.g. when the orbital gradient or analytical

energy gradient are desired. In this situation, numerical instability can result in unphysical

mixing between states having different spin symmetries, ultimately causing convergence to

eigenvectors having the incorrect spin. Recent work has investigated numerical instability

in several quantum chemistry algorithms using a statistical approach, demonstrating defi-

ciencies in several commonly used methods[71]. It is well known that the associative law of

addition does not hold for floating point algebra, (a + b) + c 6= a + (b + c), and variations

in rounding can lead to numerical instability. This instability is compounded in parallel

implementations, as the floating point operations may occur in different orders from run to

run, potentially giving non-deterministic solutions as higher accuracy is sought. Even widely

used multi-threaded mathematical libraries cannot guarantee determinism. We wish to em-
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phasize that the spin stability we discuss in this work is numerical in nature, and is distinct

from spin instability of the Hartree-Fock wave function that arises in cases of form (near-

)degeneracy.[176, 100, 79, 182, 46, 129, 197, 156, 112, 27, 70, 17, 68, 172, 202, 123, 56, 196].

(See Supporting Information for an illustrative example of how spin contamination arises in

a real system.)

Algorithm 4 Davidson-Liu iterative method for the lowest few eigenvectors and eigen-
values of real, symmetric matrices

1: Select a set of L orthonormal guess vectors, denote as {ci}
2: while not converged do
3: Form a sigma vector: σj =

∑
iHijci

4: Solve the L× L eigenvalue problem Gαk = ρkαk where Gij = 〈ci,σj〉

5: Form the residual vector rk for the kth root according to: rk =
∑L
i=1α

k
i

(
σi − ρkci

)
6: Test ||rk|| < convTol

7: Form the correction vector δk by: δkI = −
(

HII − ρ
k
)−1

rkI

8: Normalize δk

9: Orthogonalize and append the correction vectors δk to the set of trial vectors {ci}
10: end while

To facilitate a clear discussion we present the Davidson-Liu method (Algorithm 4) using

notation partially derived from Leininger et al.[87], neglecting details related to subspace

collapse for conciseness. If we begin with a guess vector that is an eigenfunction of Ŝ2 (line

1 of Algorithm 4) and utilize a spin-averaged preconditioner (line 7 of Algorithm 4), spin

contamination can only be introduced to the subspace through the addition of trial vectors

that are not spin eigenfunctions (line 9 of Algorithm 4). This is largely the result of numerical

errors accumulated in lines 3 through 5.

Currently, these issues can be at least partially solved in a number of ways. For systems

with equal numbers of α and β electrons, it is possible to take advantage of the symmetric or

antisymmetric nature of the CI vector to eliminate one type of spin contamination, namely

that which occurs between singlets and triplets, through explicit (anti)symmetrization of the

trial vectors as they are added to the space. Unfortunately, higher angular momentum spin

contamination can still occur, such as quintet contamination of a singlet state, when employ-

ing such a simple scheme. Furthermore, odd-electron systems lack this type of symmetry
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altogether, and a more sophisticated means of ensuring spin purity of the wave function

becomes necessary.

Another approach that solves these issues was suggested by Knowles and Werner [189].

Instead of solving the full dimensional eigenvalue problem, they partition the CI space into

primary and secondary spaces based on the diagonal Hamiltonian matrix elements. The

primary space problem is solved exactly, and the secondary space is solved perturbatively.

Since the primary space problem is solved through explicit diagonalization of a Hamiltonian,

the subspace eigenvectors will be spin eigenfunctions, and any contamination arising in the

secondary space is easily removed using spin projection methods (such as the approach

described by Löwdin [94]) after convergence is reached. An unfortunate side effect of the

separation of the CI space is that it can result in certain roots not being located by the

eigensolver, especially when several (> 10) roots are sought in large configuration spaces.

In this work we will describe four related approaches for eliminating spin contamination

during the iterative diagonalization process. In Section 4.3 we describe these methods as

well as a graphics processing unit (GPU-) accelerated direct algorithm for computing the

S2c matrix-vector product that makes each of the methods tractable. This is followed by an

analysis of convergence behavior of and benchmark calculations for each of the purification

schemes in Section 4.4. Finally, we demonstrate the utility of our approach in Section 4.5 by

computing the excited states of a Ag19 cluster, an open-shell system where spin purification

is required to efficiently obtain wave functions having the desired spin.

4.3 Methods

In this section we will present the proposed spin purification schemes. Assuming atomic

units, the total spin operator is defined as

Ŝ2 = Ŝz(Ŝz − 1) + Ŝ+Ŝ− (4.1)

where Ŝz is the spin projection, and Ŝ+ and Ŝ− are the raising and lowering operators,
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defined as

Ŝ+ =
∑
p

a
†
pαapβ (4.2a)

Ŝ− =
∑
p

a
†
pβapα (4.2b)

where a
†
pθ and apθ are the creation and annihilation operators for an electron of spin θ in

spatial orbital p. The matrix elements of the total spin matrix, S2, in a determinantal basis

are

S2
IJ =

 〈I|
1
4

[
(nα − nβ)2 + 2(nα + nβ)

]
|J〉, I = J

〈I|sgnŜ+Ŝ−|J〉, I 6= J

 (4.3)

where I and J index determinants, nα and nβ are the numbers of unpaired α and β electrons,

and sgn is -1 raised to the power of the number of permutations needed to bring the singly

occupied orbitals in configurations I and J into maximum coincidence.

4.3.1 Spin Penalty

The first approach we describe for purifying the eigenvector is inspired by the folded spectrum

method[104], which has been applied to quantum chemical problems to facilitate solving for

roots far from the extrema[187, 188]. Here we modify the Hamiltonian matrix by addition

of a “folded” S2 matrix that energetically penalizes those eigenvectors which do not have

the desired (reference) spin, 〈Ŝ2〉target

H′ = H + α(S2 − I〈Ŝ2〉target)2 (4.4)

The variable α is a user-chosen positive scalar multiplier that defines the magnitude of the

penalty. Because H and S2 commute, the eigenvectors of the Hamiltonian remain intact, but

the energies of states whose spins are not equal to 〈Ŝ2〉target are penalized. By energetically
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separating the states with undesired spin from those with desired spin, spin contamination

can be avoided.

Since a total of two S2c matrix-vector products must be formed for every σ′ vector

formation (σ′ = H′c), and a typical calculation requires tens to hundreds of σ formations

(σ = Hc), to make this approach viable we require an S2c implementation that is fast

relative to σ vector formation. Furthermore, for large configuration spaces storage of the

S2 matrix becomes prohibitive. A direct, GPU-accelerated algorithm for addressing these

difficulties will be presented in subsection 4.3.5.

One might consider modifying the preconditioner to be consistent with the penalized

Hamiltonian. We tested such a modification and found that, in practice, it slowed conver-

gence. Results and discussion on this topic are presented in Supporting Information. Below

we use the unmodified preconditioners with the penalized Hamiltonian.

4.3.2 Löwdin Projection

Perhaps the most obvious approach to annihilating spin contamination during determinantal

CI calculations is to use the Löwdin spin projection operator[94]. Löwdin’s operator is defined

2l+1O =

k 6=l∏
k

Ŝ2 − k(k + 1)

l(l + 1)− k(k + 1)
(4.5)

where l = n, n − 1, n − 2, ..., 0 or 1
2 (depending on whether 2n is even or odd) and k is

bounded by the minimal and maximal values of the resulting spin (k is the spin of all states

in the manifold not equal to the target, l is the spin of the target state).

Here, we monitor the value of 〈Ŝ2〉 for each root at each iteration of the iterative diago-

nalization. Should a root deviate from the target spin value by a user defined threshold, the

Löwdin operator is applied. In our tests we have determined that a deviation threshold of

1.0× 10−10 from the target 〈Ŝ2〉 value produces reasonable results in most cases, given the

wavefunction convergence criteria used in this work. Though formally a single application to
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a given vector should be sufficient to annihilate all spin contamination, in practice we find

that some spin contamination often remains. Thus, we retest for spin contamination after

application of the projector to a given vector. If the deviation of 〈Ŝ2〉 remains above the

threshold, we reapply as necessary. There are several possible places in the Davidson-Liu

algorithm in which the projection can be applied; we opt to apply it after the residual is

computed.

The rationale for choice of the Löwdin projection is that it can be efficiently implemented

using the fast, direct S2c code described in subsection 4.3.5. An alternative spin projector

developed by Pratt[137] was shown to be equivalent to Löwdin’s by Berencz[19]. An inter-

esting alternative is the novel spin projection operator developed by Jiménez-Hoyos, et al.

for use in spin-projected Hartree-Fock. Closely related to the methods described by Percus

and Rotenberg[135] and by Lefebvre and Prat[84, 85], an advantage of these projectors is the

formal reduction in scaling from that of a 2-particle operator to that of a 1-particle operator.

However, in the present context this form of spin projection operator has two potential disad-

vantages. 1) It requires numerical integration, which adds an additional level of complexity

to the spin projection process, and 2) it requires consideration of spin-flip excitations and

spin operators that are not standard data structures constructed when performing direct CI.

Further exploration of the use of this spin operator would be very interesting, but is outside

the scope of the present work.

4.3.3 First-Order Spin Projection

A clear disadvantage of Löwdin projection is that the projector is a high-order polynomial of

S2, and thus is computationally expensive in many cases. Here we define a first-order projec-

tion scheme which may be capable of annihilating spin contamination at a lower cost. In this

method, we define a vector, χ, that projects only onto the spin-contaminated components

of the trial vector
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χ = (S2 − I〈Ŝ2〉target)c (4.6)

and then orthogonalize the trial vector, c, to χ

c′ = c−
(

c · χ
χ · χ

)
χ (4.7)

where c′ is the projected trial vector. In contrast to the penalty method, this projection

approach need not be applied every iteration; it is only applied when spin contamination is

detected in the wave function.

The algorithm for applying the first-order projection procedure is the same as for the

Löwdin projection described in the previous subsection. It comprises two steps: 1) 〈Ŝ2〉 is

determined at each iteration for each root, and 2) the projection scheme is applied if the

observed 〈Ŝ2〉 differs from the target value by some threshold (typically 1.0× 10−10, as dis-

cussed above and in Supporting Information). We have elected to purify following formation

of the residual vector. In many cases a single application of the first-order projection scheme

does not produce vectors having spin purity within the defined threshold, and in these cases

we iteratively apply the projection process until a spin-pure vector is obtained. (Note that

for a given χ our projection scheme is formally idempotent, but χ changes at every appli-

cation, allowing our approach to be applied repeatedly to systematically improve the spin

purity of the trial vector.) In practice, spin purity is often accomplished after 3 − 5 appli-

cations of the projector on each trial vector (though cases have been observed where many

more applications are required). The overall computational cost of first-order projection is

(Nσ +Np) total S2c formations, where Nσ is the number of σ vector formations and Np is

the total number of purifications required.

One could imagine higher-order projection schemes (intermediate between first-order and

Löwdin). We attempted a second-order scheme with poor results. These are discussed in

Supporting Information.
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4.3.4 Inverse Iteration

The final spin purification method is based on inverse iteration. When spin contamination

is detected, the trial vector is modified according to

c′ = (S2 − I〈Ŝ2〉target)−1c (4.8)

In practice, the diagonal of S2 is shifted not by the exact 〈Ŝ2〉target, but instead by (〈Ŝ2〉target−

0.01) to avoid numerical issues when solving the linear system. Like the projection meth-

ods, inverse iteration can be used to systematically improve 〈Ŝ2〉 of the trial vector. In this

case the additional stability comes at increased computational cost, however, as solution

of the linear system must be performed at each iteration. For small configuration spaces

(fewer than ∼ 105 configurations), the linear system can be trivially solved after the matrix

is explicitly formed. For large configuration spaces an iterative linear system solver must

be employed (e.g. preconditioned conjugate gradient), the first iteration of which requires

two S2c formations per purification (one each for formation of the residual and the search

direction vectors), while subsequent linear system solver iterations require an additional S2c

formation each. The resulting computational effort is
(
2(Np) + (Ni −Np)

)
S2c formations,

where Ni is the total overall number of iterations required to solve the linear system. The

total computational cost of inverse iteration is then Nσ +
(
2(Np) + (Ni −Np)

)
S2c forma-

tions. Even in the limit where the linear system solver converges in the first iteration (i.e.

Ni = Np), inverse iteration requires an additional Np S2c formations relative to first-order

projection purification.

4.3.5 Direct S2c Formation

Naive implementation of the S2c product requires formation and storage of the N×N S2

matrix. For long CI expansions this is untenable, motivating us to implement a direct

approach for the calculation of S2c. Other desirable attributes include vectorizability and
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a reduction in algorithmic scaling by taking advantage of sparsity in the S2 matrix. While

Ŝ2 is formally a 2-electron operator, in practice it involves the product of two 1-electron

operators. We leverage this property to reduce the effective scaling without introducing any

approximations. To better understand the scaling we consider the expression for off-diagonal

elements, S2
IJ , in Equation 4.3. These elements can be obtained without the explicit use of

the spin operators Ŝ+ and Ŝ− according to

S2
IJ = 〈I| − γαpqγ

β
qp|J〉, I 6= J (4.9)

where γij are the 1-particle coupling coefficients. Defining the matrix elements in terms of

the already available 1-particle coupling coefficients thus avoids the complicated calculation

of the matrix elements of the raising and lowering operators. The S2c product can be written

as

S2c[α, β] =
∑
α′,β′

S2[α, β][α′, β′]c[α′, β′] (4.10)

where α, α′, β, and β′ are α and β strings, respectively. As written above, the formal scaling

of this calculation is O(N2). We improve the scaling significantly by taking advantage of

the fact that S2 is only nonzero when α′ and β′ are singly excited with respect to α and β,

respectively. Taking advantage of this sparsity reduces the number of α′ and β′ terms from(O
E

)
to E(O − E), where O is the number of orbitals and E is the number of electrons of a

given spin in the configuration space.

Scaling is further reduced by defining a new data structure that eliminates the need to

iterate over β′. A consequence of the Ŝ2 operator being a product of two 1-electron operators

is that the compound orbital index pq corresponding to the α → α′ excitation is the same

as the qp index of the corresponding β → β′ excitation. This allows us to form a matrix,

B, with the first dimension corresponding to the β index, the second dimension to the qp

58



pair, and matrix elements to the index, β′. As our configuration indexing scheme is positive

semi-definite, we initialize the B array with an out-of-bounds value (−1) to indicate that

the configurations are not coupled. Since the product of the raising and lowering operators

results in unique determinant pairs, precalculation of the B matrix reduces the scaling of the

problem from that of a product of two one-electron operators to that of a single one-electron

operator.

Due to their low computational scaling and low storage requirements, the diagonal ele-

ments of S2 are evaluated once and stored in main memory for the duration of the calcu-

lation. The computation of the off-diagonal elements comprises the majority of the effort.

We present the details of our GPU-accelerated algorithm for the off-diagonal contribution to

S2c in Algorithm 5. In this algorithm, l provides the p→ q orbital excitation index relating

configurations α and α′. The 1-particle coupling coefficient matrices γα and γβ are equiva-

lent in cases where the numbers of α and β electrons are equal and unique otherwise. Recall

that we initialized B with a negative value, giving the desired result of no contribution to

the S2c vector in the case where pqα 6= qpβ .

Algorithm 5 GPU-vectorized algorithm for computing off-diagonal contribution to S2c
GPU vectorize over strings α, β

for strings α′ differing from α by zero or one occupations do
pq ← l[α, α′]
β′ ← B[β, pq]
if β′ ≥ 0 then

S2c[α, β] −= γα[α, α′]γβ [β, β′]c[α′, β′]
end if

end for
end GPU vectorize

4.3.6 Guess Vector Formation

It is well known that spin-pure guess vectors are essential if one hopes to target specific

spin states in determinantal CI calculations. Throughout this work the initial guess vectors

are obtained using the straightforward procedure outlined in Algorithm 6, which guarantees

that these vectors are spin eigenstates. A subspace Hamiltonian, H00 (line 2, Algorithm
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6) is constructed by considering the lowest energy n determinants (reasonable defaults are

between 400 − 1000 determinants). When one determinant is included in the subspace, all

members of its spin-coupling set are also included. The S2 matrix corresponding to the

subspace is constructed and explicitly diagonalized. The block of diagonalized S2 eigenvec-

tors corresponding to the target spin multiplicity are then used to transform the subspace

Hamiltonian to a basis of configuration state functions (CSFs, line 5 Algorithm 6). The CSF

basis Hamiltonian is then diagonalized (producing D00, Algorithm 6 line 6) and transformed

back to the determinant basis (Algorithm 6 line 7). Finally, the subspace guess vector is

projected onto the full CI space using the appropriate addressing scheme (Algorithm 6 line

8).

Algorithm 6 Procedure for forming spin-adapted guess vectors. btar are the S2 solution
eigenvectors of the target spin, dtar,00 are the solution eigenvectors to the subspace
Hamiltonian in the CSF basis comprising the matrix Dtar,00, e are the CSF subspace
eigenvalues, csubspace as a matrix comprised of the subspace guess vectors, P projects
from the subspace to the full CI space, and c is a matrix formed by the final guess
vectors.

1: Calculate and order all Hii. Select lowest 400-1000 spin-coupled determinants.

2: Form H00 and S2.

3: Solve S2b = sb
4: Select set btar =

∑
i bi according to target Ms

5: Calculate Htar,00 = btar
†H00btar

6: Solve Htar,00 dtar,00 = edtar,00

7: Calculate csubspace = Dtar,00 b
†
tar

8: c = Pcsubspace

4.3.7 Computational Details

The above algorithms were implemented for NVidia graphical processing unit (GPU) hard-

ware in a development version of the TeraChem[179, 180, 181, 98, 177, 40, 60, 132] software

package using the Compute Unified Device Architecture (CUDA) API[125] and the NVidia

CUDA basic linear algebra subprograms (cuBLAS) library[124]. All benchmark calculations

were performed on a single core of an Intel E5603 1.60 GHz processor and a single NVidia
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Figure 4.1: Ethylene, Ag11, and Ag19 molecules used in the present work are shown at
the top, bottom left, and bottom right, respectively. Carbon, hydrogen, and silver atoms
are shown in blue, white, and yellow, respectively. Cartesian coordinates are given in the
Supporting Information.

K40 GPU. A standard Davidson-Liu eigensolver was used where the maximum subspace

dimension was chosen to avoid subspace collapse whenever possible, subject to memory limi-

tations, and the initial search space was chosen to have two guess vectors for each desired root.

Purified trial vectors were normalized prior to preconditioning and addition to the search

space. The initial guess space for all calculations included 400 determinants. Throughout

this work we abbreviate configuration spaces according to the convention (p, q), where p

is the number of active electrons and q is the number of active orbitals. In the numerical

tests that follow, both Hartree-Fock and state-averaged complete active space self-consistent

field (SA-CASSCF) orbitals are used in the construction of CASCI wave functions. When

Hartree-Fock orbitals are used, the resulting wave function will be denoted HF-CASCI.
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4.4 Results

4.4.1 Direct S2c Performance

Formation of the σ vector is the performance-limiting step in direct CI calculations, and

using modern algorithms, this step scales approximately linearly with respect to the number

of configurations. For efficient spin purification, calculation of the S2c matrix-vector product

must be fast relative to σ formation. Since the costs of both σ and S2c formation depend

solely on the size of the configuration space, and not on the size of the single-electron basis

set, we illustrate the performance of our algorithms using a small test system: the neutral

C2H4 molecule shown in the top panel of Figure 4.1. Figure 4.2 presents a comparison

of the times to perform σ and S2c formation for active spaces ranging from 12 electrons

in 12 orbitals ((12,12), or 853,776 determinants) to 12 electrons in 15 orbitals ((12,15), or

25,050,025 determinants).

The scaling exponents for σ and S2c formation are observed to be 1.09 and 1.12, respec-

tively. Due to a smaller prefactor, the formation of S2c requires a roughly 15-fold shorter

time than σ. It is worth mentioning that our σ formation algorithm does not yet take

advantage of spin symmetry to reduce the computational cost, but the systems most likely

to suffer spin contamination have an odd number of electrons and the performance of S2c

formation would not benefit from inclusion of such symmetry in these cases.

4.4.2 Wave Function Convergence

To evaluate the degree to which the purification schemes described above aid convergence,

we have performed calculations of singlet and doublet wave functions of neutral and anionic

ethylene, respectively. First we consider HF-CAS-(8,8)-CI/6-31G?? calculations of singlet

ethylene. We have varied the numbers of roots from 5 to 15 and investigated convergence

both with and without spin purification. The number of iterations required for convergence

and the number of converged roots of undesired spin symmetry are tabulated in Table 4.1.
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Figure 4.2: Times for S2c and σ formation for neutral C2H4 at the HF-CASCI/6-31G??

level with active spaces ranging from (12,12) to (12,15). Calculations were performed using
a single NVidia K40 GPU.

Note that we have encouraged spin contamination in this case by tightening convergence to

a residual threshold of ||r|| = 1.0 × 10−7. (Convergence to ||r|| = 1.0 × 10−6 is generally

considered suitable for calculation of analytic energy or orbital gradients.) Penalty purifi-

cation was performed with α = 0.10. The preconditioners suggested by Davidson (exact

diagonal energies) [33] and Evangelisti (reference determinant energy modified by orbital

energy differences)[39] were both tested in this context. Remember that preconditioning

with the exact diagonal energies is known to lead to spin contamination, while Evangelisti

should not.

First consider computations with the Evangelisti preconditioner. For cases where only

5-8 states are requested all schemes (including diagonalization without purification) result
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Table 4.1: The number of iterations required for convergence of varying numbers of singlet
states of ethylene at the HF-CAS-(8,8)-CI/6-31G?? level, with ||r|| = 1.0 × 10−7. Results
for the uncorrected Davidson-Liu method, the penalty method (α = 0.10), the first-order
and Löwdin projection methods, and inverse iteration are all reported. When some roots
converge to the states of undesired spin, the number of such roots is reported in parentheses.

States No Purif. Penalty Löwdin Proj. 1st-Ord. Proj. Inv. Iter.

Orbital Energy Preconditioner (Evangelisti)
5 12 14 12 12 12
6 12 13 12 12 12
7 12 15 12 12 12
8 13 15 13 13 13
9 52 (5) 16 13 13 13
10 50 (5) 20 14 14 14
11 44 (6) 22 15 15 15
12 40 (6) 21 16 16 16
13 35 (6) 18 14 14 14
14 41 (7) 18 14 14 14
15 35 (7) 19 15 15 15

Exact Diagonal Energy Preconditioner (Davidson)
5 13 47 13 13 13
6 35 (3) 43 13 13 13
7 13 41 13 13 13
8 35 (4) 36 13 13 13
9 35 (5) 36 13 13 13
10 33 (5) 67 16 16 16
11 36 (6) 47 14 14 14
12 32 (6) 94 (1) 22 21 22
13 33 (6) 69 (1) 17 16 17
14 36 (7) 70 (1) 16 15 15
15 34 (7) 79 (1) 18 18 18
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in successful convergence to singlet states, with the penalty approach requiring more iter-

ations (13-15) than the other schemes (12-13). When 9 states are requested, unpurified

Davidson-Liu diagonalization with Evangelisti preconditioning requires more iterations (52)

than above, and ultimately converges to several (5) unwanted triplet states. Each of the

penalty, Löwdin projection, first-order projection, and inverse iteration purification methods

continue to perform well, showing modest increases in iteration count relative to the cases

with fewer states, while achieving the desired spin in all states. The two projection methods

and inverse iteration require 13 iterations, while the penalty algorithm requires 16. This

general pattern holds as the number of states in increased from 9 to 15; unpurified calcula-

tions converge to many roots with incorrect spin, while all four spin purification schemes are

effective. The convergence behaviors of the two projection methods and inverse iteration are

comparable to one another and superior to that of the penalty method in all of these cases.

Exact diagonal energy preconditioning presents a greater challenge because this precon-

ditioner introduces spin contamination into the wave function. When no purification method

is used, spin contamination is first observed when only 6 states are requested. Interestingly,

using the exact diagonal preconditioner often provides faster convergence in the absence of

purification than Evangelisti does, albeit to eigenvectors having the incorrect spin symmetry.

Both projection methods and inverse iteration continue to provide robust convergence and

display similar convergence characteristics, converging to the desired spin state in 13-22 it-

erations in all cases. Penalty purification performs more poorly, exhibiting slow convergence

for calculations of 5-11 states (requiring 67 iterations in the worst case), and a failure to

completely purify all roots in calculations of 12-15 states. By increasing the penalty pa-

rameter to α = 0.15 we are able to converge to the desired singlet states at the cost of

an increase in iteration count for each calculation. The dependence of convergence on the

penalty parameter (α) is discussed in more detail below.

Next we consider a more difficult case—the doublet states of the ethylene anion—

examining the convergence behavior of each spin purification method. The lowest 20 doublet
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Table 4.2: Performance of various spin purification methods for C2H−4 calculated at the

HF-CAS-(7,8)-CI/6-31G?? level with ||r|| = 1.0 × 10−6. Spin penalty calculations were
performed with α = 0.10.

Method States Incorrect Iterations σ Formations

Orbital Energy Preconditioner (Evangelisti)
No Purification 7 46 359
Spin Penalty 0 41 331
Löwdin Projection 0 27 252
1st-Order Projection 0 27 252
Inverse Iteration 0 27 252

Exact Diagonal Energy Preconditioner (Davidson)
No Purification 7 26 270
Spin Penalty 0 51 508
Löwdin Projection 0 40 233
1st-Order Projection 0 40 233
Inverse Iteration 0 40 233

states of the ethylene anion were calculated at the HF-CAS-(7,8)-CI/6-31G?? level using

||r|| = 1.0 × 10−6, with the unpurified Davidson-Liu and the penalty, Löwdin projection,

first-order projection, and inverse iteration spin purification methods. We, again, ran tests

for both Evangelisti and Davidson preconditioning to investigate whether spin purification

can compensate for contamination induced by exact diagonal element preconditioning. The

numbers of iterations and σ formations required for convergence as well as the number of

roots that converged to the incorrect spin are reported in Table 4.2.

Standard Davidson-Liu without spin purification requires 46 iterations for convergence

with the Evangelisti preconditioner, corresponding to 359 σ formations, and 7 of the 20

roots converge to states having the incorrect quartet spin symmetry. Applying the penalty

method (α = 0.10) improves the results significantly, reducing the number of iterations to

41 while, most importantly, all 20 converged roots now have the desired spin symmetry. A

smaller penalty parameter of α = 0.01 results in a spin contaminated wave function. The

Löwdin projection, first-order projection, and inverse iteration methods fare even better,

converging to the correct solution in 27 iterations. If Davidson preconditioning is used the
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trends observed are similar, with the two projection methods and inverse iteration purifica-

tion requiring 51% fewer σ formations than penalty purification. Again, our spin purification

methods are robust even when faced with a preconditioner known to introduce spin contam-

ination into the wave function.

The ability to use a wider variety of preconditioners is of practical value. Two of the

most useful applications of our spin purification approaches are in geometry optimization

and ab initio molecular dynamics methods (e.g. ab initio multiple spawning[89, 16] and

its recent enhancements[42, 32, 111]), where reliable wave function convergence minimizes

the human-time-intensive task of troubleshooting finicky simulations. In this context con-

vergence failures may be observed when using the orbital energy preconditioner fails due

to numerical instability following preconditioning. Reverting to the exact diagonal precon-

ditioner allows for convergence of these wave functions, and while spin contamination is

systematically introduced using this preconditioner, our purification methods serve to effi-

ciently remove all traces of contamination when detected. This additional flexibility can be

used to ensure consistent solution of the CI equations.

Counting σ formations alone is a poor measure of computational cost, as it neglects 〈Ŝ2〉

testing and purification. Calculation of S2c is inexpensive compared to σ, but not negligibly

so, therefore it is important to compare the actual times-to-solution for the CI calculations

using different purification methods. Here we report such timings for both penalty and

projection purification. We do not include inverse iteration in these tests because it exhibits

similar convergence to Löwdin and first-order projection but requires significantly more S2c

formations, which is the performance-limiting operation in all purification methods. The

penalty purification parameter, α, is varied from 0.00 (unpurified Davidson-Liu) to 0.20. We

calculate the lowest 12 singlet states of neutral ethylene at the HF-CAS-(12,12)-CI/6-31G??

level with ||r|| = 1.0 × 10−7, with the number of iterations, number of σ formations, and

times-to-solution reported in Table 4.3. Evangelisti preconditioning was used for the results

to follow.
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Table 4.3: Number of iterations required and times-to-solution for convergence of 12 singlet
states of neutral ethylene at the HF-CAS-(12,12)-CI/6-31G?? level. Results are shown for
the spin penalty method as a function of the spin penalty parameter, α, and for the first-
order and Löwdin spin projection methods, with ||r|| = 1.0×10−7 in each case. The number
of states converging to the incorrect spin symmetry are given in parentheses.

α Iterations σ Formations CI Time-to-Solution (s)

Spin Penalty
0.00 54 (6) 337 657.77
0.01 66 (5) 343 707.18
0.02 90 (4) 377 819.53
0.05 67 (1) 319 694.53
0.10 72 416 737.42
0.15 85 522 1071.96
0.20 102 604 1262.56

First-Order Projection
— 26 219 485.80

Löwdin Projection
— 26 219 562.23

Table 4.4: Number of iterations required and times-to-solution for convergence of 12 doublet
states of anionic ethylene at the HF-CAS-(13,12)-CI/6-31G?? level. Results are shown for
the spin penalty method as a function of the spin penalty parameter, α, and for the first-
order and Löwdin spin projection methods, with ||r|| = 1.0×10−6 in each case. The number
of states converging to the incorrect spin symmetry are given in parentheses.

α Iterations σ Formations CI Time-to-Solution (s)

Spin Penalty
0.00 68 (3) 282 620.64
0.01 43 225 380.44
0.02 53 242 465.57
0.05 73 294 709.74
0.10 132 424 777.69
0.15 137 495 1017.60
0.20 159 565 1375.84

First-Order Projection
— 37 218 372.17

Löwdin Projection
— 37 218 379.09
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Standard Davidson-Liu results in 6 erroneous roots (triplet states) after 54 iterations.

Increasing the α parameter has the effect of reducing the number of triplet states found,

until at a value of α = 0.10 all 12 of the lowest-lying singlets are located in this particular

case. Continuing to increase the value of α results in slower convergence, though the spin

purity of the wave function is retained. This trend suggests that the smallest α value that

provides spin-pure solutions is the optimal choice. Both Löwdin and first-order projection

provide superior performance to the penalty method, however, regardless of the value of α.

First-order and Löwdin projection require 485.80 s and 562.23 s, respectively, compared to

737.42 s for the spin penalty method with α = 0.10.

We performed a similar set of tests for the lowest 12 doublet states of the ethylene an-

ion, computed at the HF-CAS-(13,12)-CI/6-31G?? level. Here a less stringent (and more

typical) convergence requirement is used (||r|| = 1.0× 10−6). Results are reported in Table

4.4. Here first-order projection, Löwdin projection, and spin penalty purification yield very

similar performance with times-to-solution of 372.17 s, 379.09 s, and 380.44 s, respectively.

For this system a more modest penalty value of α = 0.01 eliminates spin contamination

without significantly increasing the number of iterations required for convergence. The dou-

blet calculations show a similar trend to the singlet calculations in that the smallest penalty

parameter, α, that produces spin-pure eigenvectors results in the fastest convergence, and

further increasing the penalty parameter slows convergence. Though optimal performance

of the spin penalty method is comparable to the projection methods in this case, we note

that there is no way to predict a priori what value of α will give optimal results. Choosing

a safer value of α = 0.10 results in a more than two-fold increase in time-to-solution. In this

sense, the two projection schemes are preferable.

A similar series of calculations on a small silver cluster (doublet Ag11, pictured in the

bottom left panel of Figure 4.1) yield similar results, with first-order projection performing

marginally better than Löwdin projection (335.98 s compared to 375.26 s). In this case,

however, the fastest spin penalty calculations outperformed first-order projection (217.45
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s compared to 335.98 s). Still, a similarly dramatic dependence of performance on α is

observed, making it difficult to achieve optimal performance without prior knowledge of the

optimal α. Thus the two projection schemes remain preferable. Detailed results are reported

in Supporting Information.

Above we have only considered states with maximal ms (e.g. doublets with ms = 1/2),

but our spin purification schemes also allow us to target states with lower ms. Though

computing such interior spin states is not a common practice, we have investigated the

effectiveness of our methods on such states. In two cases (ms = 1/2 quartet states of

ethylene anion and Ag11) we find spin penalty to be a robust method for solving such states.

The projection methods, on the other hand, show very slow or even failed convergence in

these cases. Detailed results are reported in Supporting Information.

4.5 Application to Silver Clusters

Nobel metal nanoclusters, including silver nanoclusters (AgNCs), have unique and tun-

able optical properties. Many of these properties arise from the existence of localized surface

plasmon resonances (LSPRs)[54, 194, 67, 170]. LSPRs are collective oscillations of con-

duction electrons in nanoscale systems that have strong absorption and scattering cross

sections and can lead to greatly enhanced local electric fields at a material’s surface. Quan-

tum chemical calculations at the linear response time-dependent density functional theory

(LR-TDDFT) level suggest that LSPRs are well represented as linear combinations of con-

figurations which are singly-excited with respect to the ground state [3, 13, 51]. However,

intuitively, the collective excitation of multiple electrons may involve multiply-excited deter-

minants that are absent from LR-TDDFT. Multiply excited states may also be involved in

nonlinear optical processes in AgNCs. In fact, doubly-excited states have previously been

reported in small silver clusters computed at the equation-of-motion coupled cluster level[23].

Here we apply our spin purification scheme in combination with recent algorithmic and

hardware advances[60, 167, 166] to investigate the role that multiply-excited determinants
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may play in the low-lying excitations of a small silver cluster. Specifically, we compute the

12 lowest doublet states and 1-electron properties of the Ag19 icosahedral cluster whose

geometry was determined by the global minimization study of Fournier [43] (bottom right

panel of Figure 4.1). These calculations are carried out at the state-averaged complete active

space self-consistent field (SA-CASSCF) level of theory using an active space of 11 electrons

in 11 orbitals and averaging over 12 states.

The degree of single excitation character of a given transition can be quantified using

ideas inspired by natural transition orbital (NTO) analysis[107]. The NTOs of an open shell

system are obtained, in part, by solving the eigenvalue equation

(
γα (γα)† + γβ

(
γβ
)†)

ui = λiui (4.11)

with ui defining the orbitals, λi the eigenvalues (occupation numbers), and γα and γβ

the α- and β-spin components of the transition one-particle reduced density matrix (1-

RDM) between the states of interest. In a standard TDDFT or configuration interaction

singles calculation, the sum of the eigenvalues, λi, (or equivalently the trace of the matrix) is

exactly one. This reflects the fact that all amplitudes in these single reference wave functions

can be described by single excitations between NTO pairs. In higher-order CI calculations,

however, the trace varies between zero and one and indicates the degree of multiple excitation

character between states; a value near one indicates strongly singly-excited character while

significant deviation indicates a transition with multiply-excited character. We present the

single excitation character of the interstate transitions from the ground doublet state D0 for

Ag19 in Table 4.5 along with the magnitudes of the transition dipole moments and energies of

these transitions. (The largest CI vector coefficients for each state are reported in Supporting

Information.)

As can be seen, many of the lower energy transitions are predominantly singly-excited,

but several of the higher energy transitions exhibit significant multiply-excited character,

most notably D0 →D9, D0 →D10, and D0 →D11, which all have singly-excited characters
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Table 4.5: Absolute transition dipole moments (|µ|), single excitation characters, and
transition energies of D0−DX transitions of Ag19 calculated at the SA-12-CAS-(11,11)-
SCF/LANL2DZ level. Spin purification was performed using the penalty method with
α = 0.01.

Transition |µ| (Debye) Single Excitation Character Transition Energy (eV)

D0 →D1 0.0150 0.9506 0.7510
D0 →D2 0.5953 0.9161 1.2038
D0 →D3 0.0102 0.9151 1.2837
D0 →D4 0.4906 0.8956 1.3858
D0 →D5 0.1342 0.8934 1.4411
D0 →D6 0.5737 0.8476 1.5107
D0 →D7 0.6911 0.9393 1.5953
D0 →D8 0.5643 0.8155 1.6624
D0 →D9 0.1728 0.6400 1.8344
D0 →D10 0.1304 0.4619 1.8949
D0 →D11 0.6626 0.4180 1.9065

Table 4.6: Transition dipole moments and energies between excited states of Ag19 calculated
at the SA-12-CAS-(11,11)-SCF/LANL2DZ level. Spin purification was performed using the
penalty method with α = 0.01. Only transitions with absolute transition dipole moments
≥ 0.25 Debye are reported.

Transition |µ| (Debye) Transition Energies (eV)

D1 →D7 0.8309 0.8443
D1 →D8 0.6718 0.9114
D1 →D9 0.3988 1.0833
D1 →D10 0.4001 1.1439
D2 →D3 0.5610 0.0799
D2 →D4 0.6235 0.1820
D2 →D5 0.5706 0.2373
D2 →D6 0.6731 0.3069
D2 →D11 0.5091 0.7027
D3 →D4 0.5033 0.1021
D3 →D5 0.4451 0.1574
D4 →D6 0.5897 0.1249
D6 →D10 0.3485 0.3842
D6 →D11 0.2930 0.3958
D8 →D9 0.6423 0.1720
D8 →D10 0.6113 0.2325
D10 →D11 0.6265 0.0116
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below 0.7. In some cases the excitation remains quite bright despite the significant multiply-

excited character. For example, the D0 →D11 transition has an absolute transition dipole

of 0.66 Debye despite a single excitation character of 0.42. Other transitions with low single

excitation character (D0 →D9 and D0 →D10) are darker.

Interestingly, even those darker excitations may be accessible via multi-photon processes.

Table 4.6 reports the transition dipoles and energies for all excitations originating from

states above D0 with absolute transition dipole moments greater than 0.25 Debye. The

dark multiply-excited D10 state, for example, has a large transition dipole moment from the

bright D6 and D8 states.

These results suggest that multiply-excited electronic states may play a roll in the non-

linear optical processes of plasmonic materials. This suggests that in order to understand

such processes quantum chemical methods capable of describing such multiply-excited states

are required. We plan to further investigate this intriguing, albeit preliminary result in the

future.

4.6 Conclusions

In this work we presented several approaches for systematically avoiding or removing

numerical spin contamination from CI wave functions during Davidson diagonalization. In

order to make these approaches viable we developed a direct, GPU-accelerated algorithm

for computing the S2c matrix-vector product, which we demonstrated to scale linearly with

respect to the number of electronic configurations. The performance of each of the purifica-

tion schemes was compared for a variety of cases, and we found that first-order projection

offers the best balance of low computational cost and accurate wave function convergence.

Löwdin projection showed equally robust convergence, but marginally slower performance in

our test cases. Penalty purification was robust and efficient so long as the optimal penalty

parameter, α, was chosen, but the optimal choice for this parameter was found to be system

specific, and an a priori scheme for choosing it is not obvious. Spin contamination or poor
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convergence may result from a sub-optimal choice. Spin penalty was, however, the only one

of the four approaches that allowed us to reliably optimize states with ms less than the max-

imum allowed value for a given multiplicity (e.g. an ms = 1/2 quartet). The final approach,

based on inverse iteration, provided robust results but was far less computationally efficient

than the two projection approaches, and thus is not recommended. We have incorporated all

of our purification methods into a development version of the TeraChem software package,

where they will be made available in a future release.

To demonstrate the utility of these schemes, we performed a brief study of the icosahedral

Ag19 silver cluster using the SA-CASSCF method. Our results provide evidence of low-

lying states with multiply-excited character in this system, suggesting that multireference

electronic structure approaches may be valuable in the study of plasmonic nanomaterials. A

future study will elaborate on this preliminary result.

While the work described here focused on FCI-based methods, the purification schemes

presented are applicable to any determinant-based method having a spin-free Hamiltonian.

Looking towards the future, we are exploring ways to reduce the storage and computational

requirements of CI through use of single precision floating point data structures, making use

of a Lagrangian based approach in conjunction with purification based on our efficient S2c

formation algorithm.
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CHAPTER 5

LARGE SCALE ELECTRONIC CORRELATION CALCULATIONS:
RANK-REDUCED FULL CONFIGURATION INTERACTION

5.1 Abstract

We have developed a variational methodology suitable for the calculation of extremely

large configuration interaction (CI) wavefunctions. In this report we demonstrate the ability

to obtain closed shell ground state singlet and triplet energies within mH accuracy of the full

CI (FCI) answer with
√
Ndet scaling, where Ndet is the number of configurations in the CI

space. Fast graphical processing unit (GPU) accelerated projected σ = Hc matrix-vector

product formation enables calculations using configuration spaces as large as 30 electrons in

30 orbitals, corresponding to an FCI calculation with over 2.4× 1016 configurations.

5.2 Introduction

Improving methods for accurate and efficient description of electron correlation in com-

plex systems is an ongoing effort in theoretical and computational chemistry. Full config-

uration interaction (FCI), a linear expansion of configurations in the vector space defined

by single particle basis functions, represents the exact solution to the electronic structure

problem in the limit of the defined basis set. Due to the extremely high scaling of FCI (pro-

portional to the product of the binomial coefficients of α and β electrons and the number

of basis functions (orbitals) in the configuration space), much effort has been spent devel-

oping approximations that offer a compromise between computational effort and accuracy.

Besides being formally exact, FCI is also conceptually simple relative to other high accu-

racy methods. Despite its advantages, FCI most often serves as a benchmarking tool for

quantifying the relative accuracy of lower cost approximate methods because of its extreme

computational cost. In addition to serving as an evaluation tool for lower-cost methods, FCI
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provides the mechanism for electron correlation in a specific orbital space, often the valence

space, which when combined with iterative orbital reoptimization defines the complete active

space self-consistent field (CASSCF) [144, 163, 143] or fully optimized reaction space (FORS)

[148] methods. These approaches were specifically designed to describe static electron cor-

relation, where the electronic structure is not well described by a single Slater determinant,

instead requiring contributions from two or more dominant configurations. This situation

often arises in polyradicaloid systems which are found in many photochemical processes, in

transition metal systems, and in non-equilibrium systems such as those which experience

bond stretching. A related approach to CASSCF is the complete active space configuration

interaction (CASCI) method, where the salient difference is that CASCI omits the orbital

reoptimization procedure.

FCI may be considered a mature electronic structure method. Numerical approaches

have been developed specifically to enhance the relatively slow convergence of CI through

improved diagonalization [33], and algorithmic aspects of the method have been dramati-

cally improved, perhaps most notably including the development of direct CI methods [141].

Slater determinants are often used in lieu of configuration state functions due to the con-

venient factorization of the determinantal CI vector into α and β strings and because the

1-particle coupling coefficients are trivially integers [53]. Additional progress by Siegbahn

[164] resulted in approaches even more suitable for modern computing by leveraging fast ma-

trix operations, and additional refinement in the context of vector processing machines was

performed by Knowles and Handy [73] and more recently by our group [40]. Even through

use of cutting edge hardware and highly efficient algorithms, however, configuration spaces

for high-throughput calculations are still limited to approximately 109 determinants. Thus,

the problem of high computational scaling with respect to the configuration space size places

hard limits on the dimension of problems that can be reasonably studied, both due to time

and hardware (memory) constraints.

Efforts to improve scaling can be focused on either (or both) of the configuration space
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dimension or the orbital space dimension. An upper bound to the formal scaling of direct CI

is NdetN
4
o , where Ndet is the number of configurations (determinants in our case) and No is

the number of basis functions in the configuration space (algorithms having smaller operation

counts have been described, for example by Olsen [128], but are less efficiently implemented

for vector machines). Approaches that target the N4
o , or orbital space, scaling include

pseudospectral methods [44, 108], density fitting and Cholesky decomposition [15, 139, 78,

7, 6, 191], and tensor hypercontraction density fitting [61, 133, 59, 134, 168, 169, 154]. These

approaches all work to reduce the dimension of the MO basis electron repulsion integrals,

a rank 4 tensor, saving both the expense of the integral transformation as well as some

potential computational cost in the σ = Hc vector formation itself during the direct CI

iterations. Unfortunately, unless the orbital basis is constrained by locality [31, 80] (which

simultaneously limits the dimension of the configuration space), the savings realized during

the CI step is modest, since modern direct CI algorithms exhibit approximately linear scaling

with respect to the number of configurations, the cost associated with the N4
o scaling being

amortized through a combination of sparsity leveraging as well as asynchronous memory

operations to hide some of this cost. Furthermore, the size of the configuration space increases

combinatorially with the number of orbitals, growing much faster than the quartic scaling

of the N4
o component, motivating the development of methods which reduce the scaling of

the configuration space dimension.

Direct CI algorithms based on Krylov subspace diagonalization rely on iteratively ex-

panding the subspace size with search directions determined by preconditioning the residual

vector from the previous iteration. This concept leads naturally to that of selected CI, where

the search directions for the addition of trial vectors to the subspace are determined through

alternative approaches including those based on perturbation theory[63, 25, 178, 153] and

stochastics[62]. Selected CI methods are being actively developed as promising lower cost

FCI alternatives.

Stochastic approaches to solving the FCI problem such as quantum Monte Carlo (QMC-)
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FCI[24, 174] have been demonstrated to be powerful ways of describing correlated fermionic

systems. Unfortunately, uncontrolled errors resulting from the constraint imposed by the

antisymmetry principle (known as the Fermion sign problem) remain open challenges in

QMC-FCI. Alternatively, variational methods based on tensor networks, such as density

matrix renormalization group (DMRG)[192, 29], provide high-accuracy deterministic solu-

tions for both 1-dimensional and branched/tree-like systems using matrix product states and

tree tensor network states[120], respectively. Systems possessing higher orders of quantum

entanglement, however, are somewhat poorly described by DMRG.

Another reasonable approach for reducing the configuration space scaling relies on taking

advantage of sparsity in the CI vector. Examples include methods by Knowles [72, 75],

Mitrushenkov [115, 116], and Rolik [140]. These approaches adaptively expand the linear

search space during the addition of correction vectors to the CI subspace, resulting in a

shorter CI vector, especially during early iterations, and a reduction in operation count.

Olsen et al. developed the low-rank CI (LR CI) method using spectral resolution of the

CI coefficient matrix [127] to compress wavefunction information. A second-order Newton-

Raphson scheme was used to solve the CI with single and double replacements (CISD). The

LR CISD approach was applied to test systems including neon, nitrogen, and water, and

systematic improvement of the energy relative to full CISD was observed as higher-rank

wavefunctions were employed. Lindh et al. followed this work by implementing a low-rank

multi-configuration self-consistent field (LR SCF) method [92] and showed an example where

polarizabilities were better described using LR SCF than with LR CI, though wavefunction

convergence was hindered by strong coupling between orbital rotations and single excitations.

Inspired by this work, Koch and Dalgaard [77] formulated a variational matrix decomposition

using non-linear optimization methods to solve the FCI problem. Koch modified a FCI code

to assess the performance of the decomposition on a series of small benchmark systems.

Preliminary results were promising, showing rapid convergence to the FCI energies with mH

accuracy.
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Both the LR CI and variational matrix decomposition rely on the assumption that much

of the information represented by the CI coefficients is redundant. An equivalent statement

is that the matrix form of the CI vector has low rank. Recently, Taylor [173] reported a study

where the single value decomposition (SVD) was used to quantify the effect of solving the

linear CI equations using low rank approximations to the current trial vector at each iteration

with various accuracy thresholds. Several representative FCI cases were examined, including

both “stout” (typical of a CASSCF or a CASCI calculation, where the number of electrons

is similar to the number of orbitals) and “slim” (more characteristic of a benchmark type

calculation, where the number of orbitals is much larger than the number of electrons), and

in each case Taylor demonstrated that while use of a lower-rank trial vector at each iteration

slowed convergence, the LR-SVD calculation ultimately converged to the same eigenvector

as standard FCI (to within a given residual threshold). A significant impact of Taylor’s work

is demonstration of the low-rank of the CI vector, though high computational cost of the

SVD operation (similar to that of a σ build in standard direct CI) and absence of a reduction

in trial vector length are non-trivial challenges in adapting LR-SVD for use in large scale

production calculations.

As described above, writing the CI vector coefficients, C, in matrix form where the rows

correspond to α strings and columns to β strings permits a reduction in scaling by using a

matrix decomposition. In the present work, we extend the ideas of Koch and Dalgaard [77],

where the product space vectors are determined variationally through solution of a non-linear

multi-scale eigenvalue problem (a type of super-CI approach, similar to those used in two-

step CASSCF implementations), in developing a rank-reduced FCI (rrFCI) formulation. The

structure of the paper is as follows: in Section 5.3 we introduce the augmented eigenvalue

problem for the product space vectors (Section 5.3.1), including details related to program

design, 1-particle coupling coefficient formation (Section 5.3.3.1), metric formation (Section

5.3.3.3), and projected σ formation (Section 5.3.2). Next we demonstrate computational

performance of the rrFCI method in Section 5.4.2, before applying rrFCI to acenes having
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between 2−5 polycyclic aromatic rings (Section 5.4.3) and to molecular nitrogen dissociation

(Section 5.4.5). We conclude with a brief overview of the current method before discussing

future directions of work.

5.3 Methods

The second-quantization electronic Hamiltonian is

Ĥ =
m∑
kl

hklÊkl +
1

2

m∑
ijkl

(ij|kl)
(
ÊijÊkl − δjkÊil

)
(5.1)

where i, j, k, l index molecular orbitals, hij and (ij|kl) are the one- and two-electron integrals,

and Ê is a single-particle excitation generator.

Instead of building and diagonalizing the full Hamiltonian to determine the eigenvalues

and their corresponding eigenvectors, direct methods allow the iterative solution for a few of

the lowest-lying eigenvalues and eigenvectors. In the present work we describe calculation of

the lowest eigenvalue/eigenvector pair (ground state) - the calculation of higher-lying states

(excited states) is an effort currently underway in our lab and will be presented in a future

work. The rate-limiting step in the direct CI procedure is formation of the matrix-vector

product σ defined as

σI =
∑
J

HIJcJ (5.2)

Formally, σ formation requires O(N2) operations, but modern algorithms can achieve

scaling approaching O(N). We present here a reduction in the formal scaling to O(N) which

implies an effective scaling of O(
√
N) for the rate-limiting operation.

5.3.1 Eigenvalue Problem

We define the CI vector coefficient matrix decomposition as
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C =
∑
i

ci (Pi ⊗Qi) (5.3)

where i is less than or equal to the full (exact) rank of C, ci are product term coefficients, and

P and Q are product state vectors of length Nstring. To balance the product space vectors

with respect to one another we have adopted the convention of normalizing the converged

P and Q vectors, giving the state vector Ψi

|Ψi〉 = |Pi ⊗Qi〉 (5.4)

〈Ψi|Ψi〉 = |Pi|2|Qi|2 = 1 (5.5)

Applying the variational principle to the full wavefunction we obtain

δ
(
〈Ψ|Ĥ|Ψ〉 − E〈Ψ|Ψ〉

)
= 0 (5.6)

giving the coupled equations for the first set of product terms

(
〈µ⊗Q|Ĥ − E|µ⊗Q〉

)
P = 0 (5.7)(

〈P⊗ ν|Ĥ − E|P⊗ ν〉
)

Q = 0 (5.8)

and the coupled augmented eigenvalue problems

 〈Ψ|Ĥ − E|Ψ〉 〈Ψ|Ĥ − E|µ⊗Q〉

〈µ⊗Q|Ĥ − E|Ψ〉 〈µ⊗Q|Ĥ − E|µ⊗Q〉


a0

P

 = 0 (5.9)

for the P optimization and

 〈Ψ|Ĥ − E|Ψ〉 〈Ψ|Ĥ − E|P⊗ ν〉

〈P⊗ ν|Ĥ − E|Ψ〉 〈P⊗ ν|Ĥ − E|P⊗ ν〉


a0

Q

 = 0 (5.10)
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for the Q optimization, where µ and ν are unit vectors. As previously described, this

approach provides fast convergence to within mH accuracy of the FCI energy. Unfortunately,

this formulation is prone to spin contamination[77], and only singlet states may be described.

By modifying our ansatz to be a linear combination of products of P and Q vectors we can

avoid singlet-triplet spin contamination while simultaneously allowing calculation of triplet

states.

|Ψi〉 = |Pi ⊗Qi ±Qi ⊗Pi〉 (5.11)

where the singlet corresponds to the symmetric case (+) and the triplet to the antisymmetric

case (−). While wavefunction symmetry/antisymmetry alone does not guarantee that the

final eigenvector is an eigenfunction of Ŝ2 (quintet states can in principle contaminate the

singlet states, for example), we find that in practice this is not a serious issue and we have

observed no cases in our tests where spin contamination of this type occurred. The coupled

equations for the initial set of product space vectors then become

(
〈µ⊗Q±Q⊗ µ|Ĥ − E|µ⊗Q±Q⊗ µ〉

)
P = 0 (5.12)(

〈P⊗ ν ± ν ⊗P|Ĥ − E|P⊗ ν ± ν ⊗P〉
)

Q = 0 (5.13)

giving the eigenvalue problem

 〈Ψ|Ĥ − E|Ψ〉 〈Ψ|Ĥ − E|µ⊗Q±Q⊗ µ〉

〈µ⊗Q±Q⊗ µ|Ĥ − E|Ψ〉 〈µ⊗Q±Q⊗ µ|Ĥ − E|µ⊗Q±Q⊗ µ〉


a0

P

 = 0

(5.14)

for the P optimization and

 〈Ψ|Ĥ − E|Ψ〉 〈Ψ|Ĥ − E|P⊗ ν ± ν ⊗P〉

〈P⊗ ν ± ν ⊗P|Ĥ − E|Ψ〉 〈P⊗ ν ± ν ⊗P|Ĥ − E|P⊗ ν ± ν ⊗P〉


a0

Q

 = 0 (5.15)
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for the Q optimization. In addition to the P and Q vectors themselves, the coefficient a0

couples the two eigenvalue equations. The full wavefunction for the system can then be

defined as

|Ψ〉 =
∑
i

ci (Pi ⊗Qi ±Qi ⊗Pi) (5.16)

where the cj coefficients scale each P,Q pair that comprise the wavefunction.

5.3.2 Projected σ Formation

Since our factorization scheme relies on separation of the α and β components of the CI

vector, a reasonable starting point for σ formation is Olsen’s CI equations[128], where σ is

factorized into three terms

σ = σ1 + σ2 + σ3 (5.17)

with

σ1[α, β] =
∑
α′

m∑
kl

γαklh
′
klC[α′, β] +

1

2

∑
α′

m∑
ijkl

γαijγ
α
kl(ij|kl)C[α′, β] (5.18)

σ2[α, β] =
∑
β′

m∑
kl

γ
β
klh
′
klC[α, β′] +

1

2

∑
β′

m∑
ijkl

γ
β
ijγ

β
kl(ij|kl)C[α, β′] (5.19)

σ3[α, β] =
∑
α′β′

m∑
ijkl

γ
β
ijγ

α
kl(ij|kl)C[α′, β′] (5.20)

where α, α′, β, β′ index occupation strings and γ are the 1-particle coupling coefficients. Note

that we have combined the one-electron part of the two-electron integrals (ij|kl) with the

one-electron integrals hkl for computational efficiency

h′kl = hkl −
∑
j

(kj|jl) (5.21)
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Linear transformation of σ holding either P or Q constant produces terms according to

σP
α′ =

∑
αββ′

QT
β′
(
Ĥ|QβPT

α〉
)

(5.22)

σ
Q
β′ =

∑
αα′β

PT
α′
(
Ĥ|PαQT

β 〉
)

(5.23)

Note that we only present the projection for the asymmetric wavefunction. Obtaining the

(anti)symmetric projected σ is straightforward by interchanging P and Q. Factorizing the

projected σ results in 3 terms

σP
1 =

∑
αββ′

QT
β′

∑
kl

γαklh
′
kl +

1

2

∑
ijkl

γαijγ
α
kl(ij|kl)

QβPT
α

=

∑
β

QT
βQβ

∑
α

∑
kl

γαklh
′
klP

T
α +

1

2

∑
ijkl

γαijγ
α
kl(ij|kl)P

T
α

(5.24)

σP
2 =

∑
αββ′

QT
β′

∑
kl

γ
β
klh
′
kl +

1

2

∑
ijkl

γ
β
ijγ

β
kl(ij|kl)

QβPT
α

=
∑
ββ′

QT
β′

∑
kl

γ
β
klh
′
kl +

1

2

∑
ijkl

γ
β
ijγ

β
kl(ij|kl)

Qβ

∑
α

PT
α

(5.25)

σP
3 =

∑
αββ′

QT
β′
∑
ijkl

γ
β
ijγ

α
kl(ij|kl)QβPT

α

=
∑
ijkl

∑
ββ′

QT
β′γ

β
ijQβ

(∑
α

γαklP
T
α

)
(ij|kl)

(5.26)

for the P factorization and
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σ
Q
1 =

∑
αα′β

PT
α′
∑
kl

γαklh
′
kl +

1

2

∑
ijkl

γαijγ
α
kl(ij|kl)PαQT

β

=

∑
αα′

PT
α

∑
kl

γαklh
′
kl +

1

2

∑
ijkl

γαijγ
α
kl(ij|kl)Pα

∑
β

QT
β

(5.27)

σ
Q
2 =

∑
αα′β

PT
α′
∑
kl

γ
β
klh
′
kl +

1

2

∑
ijkl

γ
β
ijγ

β
kl(ij|kl)PαQT

β

=

(∑
α

PT
αPα

)∑
β

∑
kl

γ
β
klh
′
kl +

1

2

∑
ijkl

γ
β
ijγ

β
kl(ij|kl)Q

T
β

(5.28)

σ
Q
3 =

∑
αα′β

PT
α′
∑
ijkl

γ
β
ijγ

α
kl(ij|kl)PαQT

β

=
∑
ijkl

∑
αα′

PT
α′γ

α
ijPα

∑
β

γαklQ
T
β

 (ij|kl)
(5.29)

for the Q terms. We forgo the distinction between α and β labels for the coupling coefficients

γij for the remainder of this work. For each projected σ formation three state vectors are

required in addition to the current trial vector. For the P optimization, for example, the

current Q vector is needed in addition to each of the previously converged P and Q vectors.

5.3.3 Computational Methods

5.3.3.1 Coupling Coefficient Formation

Data structures required for evaluation of σ include the one-particle coupling coefficients γ,

the orbital labels l, and the configuration labels IJ. Our program constructs these lists at

the beginning of the calculation rather than computing elements on the fly as needed. While

forming these lists for configuration spaces typical of direct CI calculations does not require

exceptional computational effort, we discovered that extremely large rrFCI spaces require

exceptionally large lists resulting in unreasonable computation times. We have developed an

efficient GPU accelerated algorithm for construction of the 1-particle coupling coefficients

and related data structures in a dense format.
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Algorithm 7 GPU accelerated coupling coefficient γ, orbital label l, and configuration
label IJ formation. bin rep is a precomputed input array of integers defining the orbital
occupations. stradr() is a function that determines the string address using lexical ordering
as defined by Knowles and Handy[73] (Equations 11,12), and get parity() is a function
that determines the number of particle swaps required to bring the configurations I and
J into maximum coincidence. occ and vac are compressed lists of occupied and vacant
orbitals for a given string.

GPU vectorize over strings I
for m < No do

Decompose bin rep[I] into arrays occ[] and vac[]
end for
counter = 0
for m < Ne do

work = bin rep[I]

work −= 2occ[m]

for n < No −Ne do

work += 2vac[n] . Add a particle to orbital n
IJ[I][counter]← stradr() . Get string address

work −= 2vac[n] . Remove a particle from orbital n
l[I][counter] = occ[m] ∗No + vac[n]
γ[I][counter]← get parity() . Get the parity of the excitation
counter += 1

end for
end for

end GPU vectorize

The outer GPU vectorized loop of Algorithm 7 can be tiled over to allow for large configu-

ration spaces and hierarchical vectorization over multiple GPUs and/or compute nodes. The

stradr() function is an implementation of Equations 11 and 12 from Knowles and Handy

[73], where the binomial coefficients are retrieved from a precomputed list (i.e. Pascal’s

triangle) rather than calculated on the fly for efficiency purposes. The get parity function

is an abstraction that can be implemented trivially in several ways (we compute the value

inline). This algorithm produces dense data structures in the minimum number of opera-

tions, (Ns ∗Ne(No −Ne)), where Ne and No are the number of α electrons and orbitals in

the configuration space, respectively. Even so, larger configuration spaces require storage on

the order of hundreds of GB. For the reader’s convenience, Table 5.1 provides configuration

space and array sizes for some of the CAS spaces used in this study.
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Table 5.1: Configuration space sizes and memory requirements for supporting data structures
(in GB). Note that storage for P,Q, σ, and Davidson trial vectors have been omitted.

CAS Size Strings Memory Usage (GB)

(18,18) 48,620 < 0.1
(20,20) 184,756 0.2
(22,22) 705,432 1.1
(24,24) 2,704,156 4.8
(26,26) 10,400,600 21.6
(28,28) 40,116,600 94.7
(30,30) 155,117,520 428.1

5.3.3.2 Eigenvalue Problem

Our program solves a nonlinear eigenvalue problem using a two-step Davidson solver, where

iterations occur between P and Q vector optimization until they are self-consistently con-

verged. The inner (micro) iterations were performed using a generalized Davidson algorithm

to solve the non-orthonormal subspace eigenvalue problem. The outer (macro) iterations are

considered converged when the micro-iterations for each of the P and Q vectors converge in

a single step. We “balance” the eigenvalue problem by scaling the projected metric matrix

as recommended by Parrish et al.[132] and by Furche et al.[47]. A residual norm convergence

criteria of ||r|| = 1.0× 10−6 was used for the micro-iterations.

To begin the iterative procedure for the P and Q vector optimizations we must supply

a guess vector for each. In the first macro-iteration, the guess for each of P0 and Q0 is

the vector corresponding to the Hartree-Fock determinant, i.e. 〈0, 1, 0, 0, 0, ...〉, where the

first vector element corresponds to the coefficient a0 that couples the P and Q eigenvalue

problems. In the second and subsequent macro-iterations the guess for the P vector becomes

〈1, 0, 0, 0, 0, ...〉, which states that the previously converged P,Q pairs are used as the P

guess, and the Q guess is a unit vector in the direction of the configuration corresponding

to the current macro-iteration, i.e. if we are adding the third P,Q pair, the Q guess is

〈0, 0, 0, 1, 0, ...〉. This permits efficient sampling of the configuration space while avoiding

linear dependence of the added trial vectors. Previous work[77] suggested using a uniform
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Q guess, i.e. 〈0, 1/
√
Ns, 1/

√
Ns, 1/

√
Ns, 1/

√
Ns, ...〉. Additionally, Q vector guesses derived

from projected residual vector formation were investigated in the present work. Interestingly,

the unit guess sampling the configuration space results in the best convergence, with the other

approaches producing linearly dependent trial vectors after mH accuracy was obtained.

Preconditioning of the Davidson routine was performed using the reference determinant

energy modified by orbital energy differences as described originally by Evangelisti[18]. An

advantage of orbital energy difference preconditioning is that no spin contamination is intro-

duced into the trial vectors, and convergence of the micro-iterations generally requires 10−30

iterations. We have reconstructed the final wavefunction Ψ for a variety of manageable con-

figuration spaces (i.e. (16,16) and smaller) by taking the linear combination of P,Q outer

products according to Equation 5.16 to evaluate the extent of which spin contamination oc-

curs in both our ansatz as well as in the original form given by Koch and Dalgaard[77]. The

spin purity was determined for both Ψ and for each contributing P,Q pair through direct

calculation of 〈Ŝ2〉. In this way we were able to quantify the spin contamination present

in the ansatz described in Equation 5.5 while simultaneously verifying the integrity of the

(anti)symmetric form.

5.3.3.3 Metric Formation

Since we are solving a generalized eigenvalue problem it is necessary to build the subspace

metric matrix. We form the projected metric according to

B =

 〈Ψ|Ψ〉 〈Ψ|µ⊗Q±Q⊗ µ〉

〈µ⊗Q±Q⊗ µ|Ψ〉 〈µ⊗Q±Q⊗ µ|µ⊗Q±Q⊗ µ〉


a0

P

 (5.30)

for the P vector optimization and

B =

 〈Ψ|Ψ〉 〈Ψ|P⊗ ν ± ν ⊗P〉

〈P⊗ ν ± ν ⊗P|Ψ〉 〈P⊗ ν ± ν ⊗P|P⊗ ν ± ν ⊗P〉


a0

Q

 (5.31)
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for the Q vector optimization. The algorithm for computing the metric is low enough scaling

that we have implemented it on the host (CPU). Details are given in Algorithm 8.

Algorithm 8 Metric formation for P vector optimization. Nt is the number of converged
product terms. B is the projected metric vector (output) of dimension Ns + 1, c are the
coefficients of the previously converged P and Q (input), and C is the trial vector for the
augmented eigenvalue problem (input).

for i, j < Nt do

B[0] += 2.0 ∗ ci ∗ cj ∗
(
Pi ·Pj

)(
Qi ·Qj

)
. Upper left block of metric

B[0] ±= 2.0 ∗ ci ∗ cj ∗
(
Pi ·Qj

)(
Qi ·Pj

)
end for
Allocate work[Ns]
for i < Nt do

for j < Ns do
work[j] += 2.0 ∗ ci ∗

(
Qt ·Qi

)
∗Pi[j]

work[j] ±= 2.0 ∗ ci ∗
(
Qt ·Pi

)
∗Qi[j]

end for
end for
B[0] += (work ·C) . Upper right block of metric
for i < Ns do

B[i+ 1] += a0 ∗work[i] . Bottom left block of metric
end for
for i < Ns do

B[i+ 1] += 2.0 ∗ (Qt ·Qt) ∗C[i] . Bottom right block of metric
B[i+ 1] ±= 2.0 ∗ (Qt ·C) ∗Qt[i]

end for

Projected metric formation requires double precision dot product (DDOT) and y = Ax + y

(DAXPY) operations, both of which are performed using highly optimized library routines[64].

5.3.3.4 Projected Sigma Formation

We have developed projected σ formation algorithms based on a hybrid of the Olsen factorization[128]

and the Knowles and Handy vector machine FCI algorithm[73]. Algorithms 9 − 11 describe

P vector optimization projected σ formation using an orbital label driven method, directly

analogous to the original FCI approach described by Olsen.
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Algorithm 9 Factorized σ1 formation algorithm.
Q = ±(Ql ·Qr)
for k, l < No do

F← 0.0 . Work array of size Ns
for I < Ns do

α← ij to I[k, l, I]
α′ ← ij to J[k, l, I]
F[α]← γ[k][l] ∗Pr[α′]

end for
σ += Q ∗ h′kl[k][l] ∗ F . (DAXPY)
for i, j < No do

for I < Ns do
α← ij to I[k, l, I]
α′ ← ij to J[k, l, I]
σ[α′] += 0.5 ∗Q ∗ γ[i][j] ∗ (ij|kl) ∗ F[α]

end for
end for

end for

Algorithm 10 Factorized σ2 formation algorithm.
for k, l < No do

F← 0.0 . Work array of size Ns
for I < Ns do

α← ij to I[k, l, I]
α′ ← ij to J[k, l, I]
F[α]← γ[k][l] ∗Qr[α′]

end for
s += h′kl[k][l] ∗ F . (DAXPY)
for i, j < No do

for I < Ns do
α← ij to I[k, l, I]
α′ ← ij to J[k, l, I]
s[α′] += 0.5 ∗ γ[i][j] ∗ (ij|kl) ∗ F[α]

end for
end for

end for
PQ = ±(Pr · s)
σ += PQ ∗Ql . (DAXPY)
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Algorithm 11 Factorized σ3 formation algorithm.
for k, l < No do

F← 0.0 . Work array of size Ns
for I < Ns do

α← ij to I[k, l, I]
α′ ← ij to J[k, l, I]
F[α]← γ[k][l] ∗Qr[α′]

end for
PQ = ±(Pr · F)
for i, j < No do

for I < Ns do
α← ij to I[k, l, I]
α′ ← ij to J[k, l, I]
σ[α] += 0.5 ∗ PQ ∗ γ[i][j] ∗ (ij|kl) ∗Ql[α

′]
end for

end for
end for

The Ql, Qr, and Pr correspond to the left Q vector, the right Q vector, and the P vector

in Equation 5.22. Each of the P ⊗Q and the Q ⊗ P term projected σ can be formed (for

both P and Q vector optimizations) using these algorithms and interchanging the ordering

and identities of the input vectors. In the above algorithms the γ are indexed by the orbital

labels i, j, and the ij to I and ij to J matrices contain as elements the configuration string

labels α and α′.

Vectorized algorithms require contiguous access of data structures to avoid taking costly

performance hits. For example, in Algorithm 9, elements of the γ matrix are accessed con-

tiguously, and even though both the Pr and σ vectors are accessed randomly, gathering of the

Pr elements into the F matrix allows the higher scaling contraction with the two-electron

integrals (ij|kl) to be performed using coalesced memory access patterns. Gather-scatter

techniques are also used in Algorithm 10 to reduce memory pressure. The highest scaling

operation in σ3 formation does not benefit from contiguous memory access, however, where

the (ij|kl) are contracted directly with the Ql vector (Algorithm 11). Efforts to improve ac-

cess patterns here do not translate well to GPU hardware, where repeated manipulation of

arrays must be performed to avoid strided memory access. Instead, we present a configura-

tion label driven scheme for formation of the projected σ vector for the P vector optimization
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in in Algorithms 12 − 14.

Algorithm 12 GPU vectorized projected σ1 algorithm
Q = ±(Ql ·Qr)

GPU vectorize over strings α, α′ differing from α by zero or one occupations
ij ← l[α][α′]
D[ij, α] += γ[α][α′]Pr[α′]

end GPU vectorize
GPU vectorize over strings α

ij ← l[α][α]
D[ij, α] += Pr[α]

end GPU vectorize
σ += Q ∗D ∗ h′kl . (DGEMV)

E← 0.5 ∗Q ∗ (ij|kl) ∗D . (DGEMM)
GPU vectorize over strings α, α′ differing from α by zero or one occupations

ij ← l[α][α′]
σ[α′] += γ[α][α′]E[ij, α]

end GPU vectorize
GPU vectorize over strings α

ij ← l[α][α]
σ[α] += E[ij, α]

end GPU vectorize

Algorithm 13 GPU vectorized projected σ2 algorithm

GPU vectorize over strings α, α′ differing from α by zero or one occupations
ij ← l[α][α′]
D[ij, α] += γ[α][α′]Qr[α′]

end GPU vectorize
GPU vectorize over strings α

ij ← l[α][α]
D[ij, α] += Qr[α]

end GPU vectorize
s += D ∗ h′kl . (DGEMV)

E← 0.5 ∗ (ij|kl) ∗D . (DGEMM)
GPU vectorize over strings α, α′ differing from α by zero or one occupations

ij ← l[α][α′]
s[α′] += γ[α][α′]E[ij, α]

end GPU vectorize
GPU vectorize over strings α

ij ← l[α][α]
s[α′] += E[ij, α]

end GPU vectorize
PQ = ±(Pr · s)
σ += PQ ∗Ql . (DAXPY)
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Algorithm 14 GPU vectorized projected σ3 algorithm.

GPU vectorize over strings α, α′ differing from α by zero or one occupations
ij ← l[α][α′]
D[ij, α] += γ[α][α′]Qr[α′]

end GPU vectorize
GPU vectorize over strings α

ij ← l[α][α]
D[ij, α] += Qr[α]

end GPU vectorize
f += D ∗Pr . (DGEMV)
D← 0.0
GPU vectorize over strings α, α′ differing from α by zero or one occupations

ij ← l[α][α′]
D[ij, α] += γ[α][α′]Ql[α

′]
end GPU vectorize
GPU vectorize over strings α

ij ← l[α][α]
D[ij, α] += Ql[α]

end GPU vectorize
E← (ij|kl) ∗D . (DGEMM)
σ += E ∗ f . (DGEMV)

The one-particle coupling coefficient matrix γ and orbital labels l are indexed by config-

urations in Algorithms 12 − 14. In contrast to the orbital driven formulation, rate-limiting

two-electron integral contractions are performed using matrix-matrix multiplication to max-

imize data locality. Improved memory access comes at the cost of an increase in scaling,

but this is more than offset by the overall savings achieved by taking advantage of high-

performance vectorized matrix multiplication.

The GPU kernels in the above algorithms bear striking resemblance to those described

in our previous work on direct CI[40]. By forming the projected σ vector directly we benefit

from a significant reduction in scaling: in rrFCI we are able to eliminate the loop over β

strings entirely. Further, direct CI kernels that contribute to the σ array must use atomic op-

erations to avoid data collisions, the effect of which is harmful to computational performance.

The rrFCI projected σ algorithm described above is able to restrict atomic operations to

the σ1 term, using DAXPY and DGEMV operations for the σ2 and σ3 terms. We neglect

description of our tiling scheme, which allows configuration spaces of arbitrary size (sub-

ject to memory constraints) for clarity. Due to the high cost associated with CPU host to
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GPU device memory transfers we select the largest tile size possible (limited by GPU device

memory) to minimize incurring memory transfer penalties.

5.4 Results and Discussion

5.4.1 Computational Details

The rrFCI method was implemented in the TeraChem GPU accelerated electronic structure

package using the Compute Unified Device Architecture (CUDA) API[125] and the NVidia

CUDA Basic Linear Algebra Subroutines library (cuBLAS)[124]. Benchmark calculations

were performed using a single core of an Intel Xeon E5-2699 @2.2GHz and a single NVidia

K40c GPU. Configuration spaces are defined according to the notation (X,Y ), where X

corresponds to the number of electrons and Y corresponds to the number of orbitals in the

configuration space. Geometries for all molecules used in this work are reported in Cartesian

coordinates in the Supporting Information.

5.4.2 Algorithm Performance

Computational performance of σ vector formation depends solely on the number of active

electrons and orbitals. Benchmark calculations were performed on an ethylene dimer system

at HF-CAS-rrCI/cc-pVDZ using symmetric configuration spaces ranging from 18 through

30 orbitals. Results are presented in Figure 5.1 and in Table 5.2.
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Figure 5.1: Sigma vector formation times in seconds for ethylene dimer benchmark system
using HF-CAS-rrCI/cc-pVDZ and active spaces ranging from (18,18) through (30,30). Linear
regression was performed to determine the scaling exponent and is shown as a solid line. The
(30,30) active space data point was not included in the fit as described in the text.

Configuration spaces having fewer than 24 orbitals correspond to Ns < Stile, where Stile

is the tile size, and no CPU—GPU memory transfer operations were necessary. Configura-

tion spaces having between 24 and 28 orbitals exhibit similar scaling with a larger prefactor

as evidenced by the rigidly shifted points relative to the fit line in Figure 5.1. The largest

configuration space, (30,30) [Nstring = 155, 117, 520], required a special, smaller tile size to

accommodate the extremely large (> 1 GB) P,Q, and σ vector size. As a result, we did

not include this data point in the fit as it is not representative of the algorithmic perfor-

mance, instead it demonstrates the relatively high cost of CPU—GPU memory transfer. The

linear fit to configuration spaces ranging from (18,18) [Nstring = 48, 620] through (28,28)

[Nstring = 40, 116, 600] gives a scaling factor of 1.148, similar to scalings reported for direct

CI σ vector[40], two-particle reduced density matrix[41] and SA-CASSCF direct Hessian
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matrix[166] formation scaling factors previously reported.

Table 5.2: Algorithm timings in seconds for configuration spaces ranging from (18,18)
through (30,30). σ timings correspond to a combined total of 6 function calls, 2 each of
σ1, σ2, σ3. Coupling coefficient and string label lists require formation only once per calcu-
lation, while metric and σ formation are required once per micro-iteration. Only functions
that take non-negligible time are reported in the σ breakdown. Differences between the full
σ time and the sum of the individual function calls correspond to CPU memory allocation
and other low-scaling operations.

Function Active Space
(18,18) (20,20) (22,22) (24,24) (26,26) (28,28) (30,30)

lists 0.026 0.111 0.501 2.350 10.338 46.038 2086.945
metric <0.001 <0.001 0.004 0.025 0.119 0.454 1.759
σ 0.110 0.525 2.694 19.180 86.087 406.627 2418.517

σ components
GPU memcpy() <0.001 0.002 0.006 5.011 19.690 87.048 710.873
GPU memset() <0.001 0.021 0.095 0.503 1.970 8.793 42.400

Dij 0.027 0.113 0.566 2.292 11.248 45.153 169.265
Dii <0.001 0.003 0.013 0.052 0.231 0.900 12.370
σij 0.011 0.047 0.237 0.972 4.753 19.239 82.188
σii <0.001 0.001 0.005 0.020 0.090 0.358 5.509

DGEMM 0.058 0.296 1.596 9.185 43.410 225.407 1207.285
DGEMV 0.007 0.036 0.154 0.802 3.341 14.183 80.479
DDOT <0.001 <0.001 <0.001 0.001 0.004 0.014 0.057

DAXPY <0.001 <0.001 <0.001 <0.001 0.003 0.010 0.039
ij lookup <0.001 0.003 0.014 0.308 1.207 4.983 23.934

Table 5.2 provides timings for several rrFCI calculation components with configuration

spaces ranging from (18,18) through (30,30). Coupling coefficient and other list formation

requires less computational effort than σ formation in every case. To reduce the storage

requirements for the largest lists we considered forming elements of these lists as needed

during σ formation, but even neglecting CPU—GPU memory transfer overhead it is advan-

tageous to precalculate and store these lists when possible. If larger configuration spaces

than system memory allows for are desired these lists may be formed directly during the σ

formation at a computational cost proportional to a standard σ formation.

Projected metric formation incurs only marginal computational expense for even the
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largest configuration spaces. Instead, as expected, the rate-limiting step is σ formation.

Timings for each function comprising σ formation show that for every configuration space

the matrix-matrix multiply is the most expensive step, demonstrating that our algorithm

is implemented efficiently. Memory transfer between the host (CPU) and device (GPU)

becomes increasingly important with larger configuration spaces. Active spaces smaller than

(24,24) show negligible contribution due to CPU—GPU memory transfer, as their data

structures reside entirely in GPU memory and have dimension smaller than the tile size,

but at configuration spaces of (24,24) and larger the high cost of CPU—GPU memory

transfer becomes relevant, comprising nearly 30% of the overall cost of the projected σ

formation for the largest active space. The GPU kernels corresponding to off-diagonal D

and σ formation are the next most costly operations, followed by the remaining linear algebra

operations (DGEMV, DDOT, DAXPY). Finally, as noted above, the largest configuration

space required an extremely small tile size (1024), and this is reflected in both the list and

the σ formation times accordingly.

5.4.3 Acene Absolute Energy Convergence

Linear polycyclic aromatic hydrocarbons, or acenes, possess interesting electronic properties

making them suitable for incorporation into organic semiconductor materials[]. Correlation

of the π valence electrons provides a reasonably accurate description of the electronic struc-

ture, making complete active space methods such as CASSCF or CASCI well-suited for

these systems. We have calculated the ground singlet and triplet states for napthalene and

anthracene using both HF-CASCI/cc-pVDZ and HF-CAS-rrCI/cc-pVDZ with full-π valence

active spaces ((10,10) and (14,14) for naphthalene and anthracene, respectively) and report

the energy differences between the rank-reduced and exact CI approaches in Figures 5.2 and

5.3. In addition to their interesting electronic characteristics, the calculations described in

this section are examples of configuration spaces commonly referred to as “stout” CI, where

the number of orbitals is similar to the number of electrons. UB3LYP/6-31G(d) singlet and
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triplet optimized geometries from [52] were used in the present work and are available in the

Supporting Information.

Figure 5.2: Naphthalene ErrFCI−EFCI for singlet and triplet states at HF-CAS-(10,10)-
CI/cc-pVDZ. The singlet optimized structure is depicted with carbon and hydrogen atoms
shown in teal and white, respectively.

The rrFCI energy rapidly converges to within mH accuracy of the FCI energy after 30

product terms, representing inclusion of rank structure of the CI vector having the largest

influence on the final energy. Once an accuracy of 1.0×10−4 H is obtained, convergence slows

considerably and displays asymptotic behavior. Inclusion of 252 product states corresponds

to the full rank of the CI vector, and we obtain a final accuracy approaching 1.0× 10−5 H.

Since we solve a nonorthogonal eigenvalue problem, product terms comprised of P and Q

vectors may contain redundant information, resulting in a failure to converge to the exact

FCI solution when the number of product terms added equals the FCI vector rank.
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Figure 5.3: Anthracene ErrFCI−EFCI for singlet and triplet states at HF-CAS-(14,14)-
CI/cc-pVDZ. The singlet optimized structure is depicted with carbon and hydrogen atoms
shown in teal and white, respectively.

The (14,14) CAS space of anthracene approaches the upper size limit of routinely per-

formed CI calculations, providing an opportunity to showcase the convergence behavior of

the rrFCI method for a non-trivial problem. Similar to the naphthalene calculation, mH

accuracy is achieved relatively quickly, requiring fewer than 100 product terms (representing

< 3% of the full rank of the CI vector, 3432 in this case). Following addition of ∼ 150 prod-

uct terms, convergence behavior decays before asymptotically approaching an accuracy of

1.0× 10−4 H. Steps in the convergence at ∼ 350 and ∼ 800 product terms occur as artifacts

of our guess vector procedure.
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5.4.4 Relative Property Convergence: Acene Singlet-Triplet Gaps

Figure 5.4: Singlet optimized tetracene (above) and pentacene (below) geometries. Carbon
and hydrogen atoms depicted in teal and white, respectively.

In addition to absolute energy convergence of the shortest acenes compared with FCI, we

have also investigated the singlet—triplet energy gap for the acene series having 2− 5 rings.

Structures for napthalene and anthracene are depicted in Figures 5.2 and 5.3, respectively,

while tetracene and pentacene are shown in Figure 5.4. Singlet—triplet energy gaps for each

system are depicted in Figure 5.5.
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Figure 5.5: Singlet-triplet energy gap (in units of Hartree) for the acene series naphthalene
through pentacene at HF-CAS-rrCI/cc-pVDZ where the CAS for each system is comprised
of the full π valence.

While absolute energy convergence to within mH accuracy requires ∼ 60 product terms

for naphthalene and ∼ 150 product terms for anthracene, convergence of a relative property,

in this case the singlet—triplet gap, requires fewer product terms to achieve similar con-

vergence. The S0−T0 gap for naphthalene is converged after only 12 product terms. Only

slightly worse convergence is observed for the longer acenes, with anthracene, tetracene, and

pentacene requiring 15, 20, and 24 product terms to stabilize, respectively.

Comparison of our HF-CAS-rrCI energies with the local DMRG results of Hachmann is

given in Table 5.3, along with estimates to the experimental S0−T0 gaps for each system.

Given the disparity in CAS spaces between the rrCI and DMRG results reported above,

the agreement between the two methods is excellent. In each case, rrCI lies within ∼ 4
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Table 5.3: S0−T0 gap energies given in kcal/mol calculated at HF-CAS-rrCI using full π
valence CASs compared with local density matrix renormalization group (DMRG) results as
described by [52]. DMRG results were obtained using a “double” π valence space (i.e. naph-
thalene, anthracene, tetracene, and pentacene used (10,20), (14,28), (18,36), and (22,44) con-
figuration spaces) and a cc-pVDZ basis set. Experimental energy gaps for naphthalene[21],
anthracene[150], tetracene[149], and pentacene[26] are estimates. Number of product terms
for rrCI results is reported in parentheses.

CAS-rrCI DMRG Expt.

Naphthalene 65.1 (12) 61.0 61.0
Anthracene 47.2 (15) 44.0 43.1
Tetracene 33.4 (20) 31.9 29.3
Pentacene 23.3 (24) 23.4 19.8

kcal/mol of both the DMRG and the estimated experimental energies. Even more impressive

is how few product terms as a function of full CI space rank are required to obtain this level of

agreement: naphthalene requires 4.7% of the full rank, anthracene 0.4%, tetracene 0.04% and

pentacene only 0.003%. While we must take care not to make broad generalizations based

on a single series of calculations, the results presented here are encouraging and motivate us

to pursue refinement and continued development of the rrFCI approach.

5.4.5 Nitrogen Bond Dissociation

FCI is often used as a benchmarking tool for evaluating lower-cost approximations. One

commonly assessed task is calculation of the molecular energy as a bond is stretched towards

the dissociation limit, a particularly difficult case as both static and dynamic electronic

correlation regimes are encountered. We have applied the rrFCI method to the molecular

nitrogen system, varying the bond length between 0.8 and 1.8 Å , and compare our rrFCI/cc-

pVDZ results with the FCI/cc-pVDZ ground state energies in Figure 5.6. All 10 valence

electrons are correlated in each series of calculations, corresponding to a (10,28) configuration

space.
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Figure 5.6: Molecular N2 dissociation curve calculated at rrFCI/cc-pVDZ and FCI/cc-
pVDZ[82]. rrFCI calculations include 100 product terms each.

While the configuration space corresponds to 9.6 billion determinants (without symme-

try), excellent convergence is achieved by rrFCI compared with the exact FCI method in only

100 product terms. Figure 5.7 depicts the energy difference (∆E = ErrFCI−EFCI) between

the two methods in units of Hartree. It is interesting to note that rrFCI calculations at or

near the equilibrium geometry converge more rapidly than the stretched geometries, as can

be seen by the higher energies relative to exact FCI when the nitrogen—nitrogen distance

is greater than 1.2 Å. Increasing the number of product terms for the stretched geometry

calculations continues to reduce the errors observed relative to the FCI energy. The low

cost-to-accuracy ratio of rrFCI makes it an ideal tool for use in performing benchmark type

calculations for evaluation of lower-cost alternatives.
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Figure 5.7: Molecular N2 dissociation curve (rrFCI-FCI) energy differences (given in units
of Hartree) calculated using cc-pVDZ. rrFCI calculations include 100 product terms each.

5.5 Conclusions

We have presented a low-cost FCI alternative for both singlet and triplet ground states

that scales according to
√
Ndet, allowing routine calculation of unprecedented configuration

space sizes for general systems. GPU acceleration of rate-limiting components of the algo-

rithm, including projected σ and 1-particle coupling coefficient formation, expand the size of

accessible configuration spaces to O(1016) determinants while achieving sub-mH accuracy.

We have applied our methods to the full π valence space CI calculations of acenes having

2 − 5 polycyclic aromatic rings, demonstrating excellent agreement both with absolute en-

ergy convergence relative to FCI and to relative property convergence of S0−T0 energy gaps

using both experimental estimates as well as with previous DMRG studies. Finally, we in-
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vestigated dissociation of molecular nitrogen, and found that our results compare favorably

against benchmark FCI studies. Given the success of rrFCI in describing the ground state

singlet and triplet wavefunctions, we are currently working to extend our approach to allow

for excited state calculations and the evaluation of molecular properties.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In the preceding chapters we have described the development of tools suitable for use in

the characterization of molecular systems poorly described by a single Slater determinant

such as those involved in photochemical processes. When possible, we have taken advantage

of the parallel processing power offered by graphical processing units (GPUs) to acceler-

ate electronic structure calculations and molecular dynamics simulations. Recognizing that

configuration interaction based methods such as SA-CASSCF and those based on CASCI

perform especially well on statically correlated systems, in Chapter 2 we describe our im-

plementation of a GPU accelerated direct CI algorithm based on the vectorized algorithm

of Knowles and Handy[73]. We have demonstrated the near-linear scaling of σ vector for-

mation with respect to number of configurations, which, combined with the fast electron

repulsion integral (ERI) transformation code that leverages sparsity in the atomic orbital

basis to achieve quasi-quadratic scaling with respect to basis set size, permits CI calculations

on systems having more than 103 basis functions with configuration spaces on the order of

108 determinants on time-scales of minutes to tens of minutes. The determinantal direct CI

code described in Chapter 2 has been coupled with a variety of CASCI methods, including

Hartree-Fock (HF-), improved virtual orbital (IVO-), configuration interaction singles natu-

ral orbital (CISNO-), and unrestricted natural orbital (UNO-) CASCI, as well as serving as

a standalone FCI implementation and as the CI component of large active space CASSCF

and SA-CASSCF.

In addition to calculation of ground and excited state energies, it is generally desirable to

calculate the analytical nuclear energy gradient and nonadiabatic coupling vectors for use in

the context of stationary point and minimum energy conical intersection (MECI) optimiza-

tions as well as for use in molecular dynamics simulations. Further, molecular properties

such as the dipole moment and transition dipole moment are often useful for comparison
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against spectroscopic data. In each case, the generalized 1- and 2-particle reduced density

matrix (RDM) is needed to be formed efficiently. Methods requiring rotations of the molec-

ular orbitals, such as CASSCF, also require formation of the 1-RDM for calculation of the

orbital gradient. In Chapter 3 we described our GPU accelerated algorithms for formation

of the generalized 1- and 2-RDMs, demonstrating that the performance of RDM formation

is comparable to that achieved with our direct CI implementation.

Generalization of our direct CI code to allow the calculation of open-shell systems was

straightforward, requiring only the generation of guess vectors having both the desired spin

symmetry and a large overlap with the target eigenvectors. In Chapter 4 we briefly de-

scribed our guess vector procedure. Preconditioned iterative diagonalization methods for

determinant basis eigenvalue problems are prone to numerical instability, however, and we

have presented several approaches in Chapter 4 for ensuring the spin purity and the correct

target 〈Ŝ2〉 of the converged CI vectors. These approaches allow the calculation of energies

and properties, including a measure of the single excitation character, for several electronic

states of both open- and closed-shell systems. To demonstrate this capability we described

the lowest several excited states of an open-shell silver cluster at the SA-CASSCF level of

theory. Our work suggests that multireference electronic structure methods are necessary for

providing a qualitatively accurate description of systems exhibiting localized surface plasmon

resonance character such as noble metal clusters.

Configuration interaction methods scale very poorly with respect to the number of active

electrons and orbitals. To extend CI to generalized systems having larger configuration

spaces we have developed the rank-reduced CI (rrCI) approach. Chapter 5 describes our

formulation and GPU implementation of rrCI, an approximation to FCI suitable for systems

having configuration spaces on the order of 1016 determinants. rrFCI makes no assumptions

about the dimensionality or topology of the system, in contrast to methods based on tensor

networks such as the density matrix renormalization group (DMRG), and is therefore capable

of being applied to arbitrary systems. We have verified the accuracy of rrCI by comparing
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against systems where the FCI energies are obtainable, including short (2 and 3 ring) linear

polyaromatic hydrocarbons (acenes) and the nitrogen dimer dissociation, and by comparing

against DMRG results for acenes having 4 and 5 rings.

The availability of GPU accelerated direct CI has enabled the routine calculation of

multireference wavefunctions for systems approaching the nanoscale. Among other things,

this allows for the location and characterization of minimum energy conical intersections

(MECIs), using fully ab initio approaches, of small nanoparticles (< 2 nm). One example of

recent work that achieves this is the characterization of low-lying oxide-defect-induced MECIs

in silicon nanoparticles[159]. In this work, MECIs for each of 9 oxide defect systems were

located using the CIOpt MECI optimization program[89] in conjunction with the CISNOr-

CASCI method as implemented in the TeraChem electronic structure package. Three types

of defects were investigated, an epoxide having three adjacent silicon atoms and one hydrogen

atom bonded to the epoxide silicon atoms (type 1), an epoxide having two adjacent silicon

atoms and two adjacent hydrogen atoms bonded to the epoxide silicon atoms (type 2), and

a silicon—oxygen double bond defect. For each of the three types of defect, each of a small,

medium, and large cluster was examined. For the type 1 epoxide and silicon—oxygen double

bond system the clusters contained 14, 29, and 44 silicon atoms, while the type 2 epoxide

clusters contained 15, 25, and 50 silicon atoms. Figure 6.1 depicts the MECI geometry of the

largest cluster for each defect type (including the total number of basis functions) and Figure

6.2 provides more detailed information for each of the MECI geometries including definition

of the connectivity for each defect type and images of the highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO).
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Figure 6.1: Silicon clusters with oxygen defects at their MECI geometries. From left to right,
molecular formulae are Si44H44O (with Si=O bond), Si50H50O (with Si—O—Si epoxide),
and Si44H44O (with Si—O—Si epoxide)

Calculations were performed using CISNOr-CASCI/LANL2DZ for each molecular clus-

ter. Active spaces for the epoxide double bond systems were chosen to be (2,4) and (4,3),

respectively. The 44 silicon atom cluster contained 449 basis functions and the 50 silicon

atom cluster 509 basis functions. Optimizations were performed using numerical energy gra-

dients as the analytical energy gradient formulation for the relaxed density matrix variant for

CISNO-CASCI is not yet available. Our high-performance direct CI implementation allowed

the optimization of these large clusters, where each single point electronic energy calculation

was completed within minutes.
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Figure 6.2: Geometric and orbital information for each of the largest type 1 epoxide, Si=O
double bond, and type 2 epoxide defect silicon clusters. The first column depicts the defect
connectivity, the second column shows the optimized MECI geometry, and the third column
provides different views of the HOMO and LUMO for each system. Image courtesy of
“Defect-Induced Conical Intersections Promote Nonradiative Recombination”, Y. Shu, B.
S. Fales, and B. G. Levine, Nano Lett., 15, 6247-6253, 2015. Copyright 2015 American
Chemical Society.

The availability of fast CASCI energies enabled by our GPU accelerated direct CI im-

plementation combined with our robust spin purification procedures allows investigation of

the dynamics and electronic structure of classes of materials that were previously difficult

or impossible to study. One such molecular system is the boron-doped silicon nanoparticle
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Si37BH42 measuring 1.3 × 0.96 × 0.82 nm, where an interface silicon atom is replaced by a

boron atom. Using a combination of ab initio molecular dynamics (AIMD) and the CIOpt

program we have located a low-lying MECI between the ground and first excited doublet

states using the floating occupation molecular orbital (FOMO-) CAS-(5,3)-CI/LANL2DZ

level of theory. The MECI geometry energy relative to the D0 minimum energy is 0.68 eV.

The Franck-Condon and MECI geometries are depicted in Figures 6.3 and 6.4.

Figure 6.3: Boron defect silicon cluster Si37BH42 D0 minimum geometry calculated at
FOMO-CAS-(5,3)-CI/LANL2DZ. Silicon atoms are depicted in yellow, hydrogen atoms in
white, and boron atoms in pink.
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Figure 6.4: Boron defect silicon cluster Si37BH42 D0−D1 MECI geometry calculated at
FOMO-CAS-(5,3)-CI/LANL2DZ. Silicon atoms are depicted in yellow, hydrogen atoms in
white, and boron atoms in pink.

The MECI geometry differs from the D0 minimum geometry by a flattening of the boron

atom against the surface of the remainder of the cluster. Detailed geometric parameters are

given in Table 6.1.

Table 6.1: Si37BH42 D0 minimum and MECI geometry parameters. Angles given in units
of degrees and bond lengths given in Å.

D0 Minimum D0−D1 MECI

Si—B—Si angle 107.537 104.156
107.537 111.959
111.334 112.025

B—Si distance (Å) 2.27416 2.13878
2.27417 2.13361
2.38139 2.21514

Figure 6.5 depicts the molecular orbitals corresponding to the singly occupied molecular

orbital (SOMO) for the D0 minimum and the SOMO and LUMO for the D0−D1 MECI

geometries. The SOMO and LUMO are strongly localized at the position of the boron atom

in each case. This localization of electron density at the defect site was also observed in the

oxide defect-induced MECIs described above. While the results for the boron-defect silicon

clusters are preliminary, we have demonstrated here the existence of low-lying defect-induced

MECIs through incorporation of the electron-deficient boron atom into a silicon nanocluster.

112



Further work to include molecular dynamics and a study based on the size dependence of the

MECI energy of boron defect-induced silicon cluster MECIs will be forthcoming in future

work.

Figure 6.5: Singly occupied molecular orbital (SOMO) and lowest unoccupied molecular
orbital (LUMO) for the D0 minimum and MECI geometries. Silicon atoms depicted in grey,
hydrogen atoms in white, and boron atoms in blue/green.

While the computational scaling of CI based methods is daunting, recent developments

in vector hardware technology have provided motivation to develop new algorithms to take

advantage of their massively parallel processing power. This is especially good news for the

computational chemistry community interested in studying the photodynamics of molecular

systems, as CASSCF and CASCI perform particularly well in describing these systems. The

methods described in this work will allow the investigation of larger molecular systems at

higher levels of accuracy (both due to methodological developments and to expanding the

size of the correlated region, or the configuration space) in the coming years. The work pre-

sented here is a good first step, but much remains to be done still. Specifically, two areas that

require immediate attention are 1) the CI scaling problem and 2) the dynamic/static elec-

tron correlation problem. While rrCI provides a strong foundation for future development

of both reduced rank and FCI approximation approaches to solve the first problem, rrCI

suffers from sub-optimal convergence to the FCI energy. A trial vector generation scheme

based on projected preconditioned residual vectors will likely improve this situation, though

our early attempts have proven unsuccessful. Inclusion of ideas from tensor networks (i.e.
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DMRG) and from stochastics (i.e. “Heat-Bath” selected CI[62] or QMC-FCI[24, 174]) may

allow us to further develop our approach to both improve accuracy and reduce computational

scaling. The second point, that related to improving our description of electronic correla-

tion, is currently in the development stage in the form of multireference CI truncated to

single excitations (MR-CIS). Completion of this work will immediately allow multireference

description of high-lying single excitations for molecular systems approaching the nanoscale.

Our work with RDMs can naturally be extended to allow direct vectorized calculation of the

higher-order 3- and 4-RDMs required for internally contracted MR-CISD.
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APPENDIX A

SUPPORTING INFORMATION FOR: NANOSCALE MULTIREFERENCE
QUANTUM CHEMISTRY: FULL CONFIGURATION INTERACTION ON

GRAPHICAL PROCESSING UNITS

A.1 Supporting Tables

Table A.1: CASCI/LANL2DZ times-to-solution using (6,6), (12,12), and (16,16) active
spaces. Times-to-solution for the HF step, which is required for orbital determination but is
not included in the CASCI times reported here, are shown in the final column for comparison.

System Time-to-Solution (s)
(6,6) (12,12) (16,16) HF

Si15H25 0.66 3.76 1093.50 1.98
Si25H30 1.87 8.29 949.80 4.71
Si44H44 6.45 23.98 1096.28 17.57
Si50H50 8.57 30.34 1007.76 20.96
Si72H64 23.59 77.00 827.96 57.50

Table A.2: CASCI/6-31G?? times-to-solution using (6,6), (12,12), and (16,16) active spaces.
Times-to-solution for the HF step, which is required for orbital determination but is not
included in the CASCI times reported here, are shown in the final column for comparison.

System Time-to-Solution (s)
(6,6) (12,12) (16,16) HF

Si15H25 11.05 35.02 534.41 25.94
Si25H30 35.64 105.62 596.27 93.06
Si44H44 130.08 360.56 1030.23 442.82
Si50H50 167.67 469.92 1217.45 557.67
Si72H64 468.98 1190.91 2370.34 1610.08

116



Table A.3: CASCI/6-31G?? times-to-solution using (6,6), (12,12), and (16,16) active spaces.
Times-to-solution for the HF step, which is required for orbital determination but is not
included in the CASCI times reported here, are shown in the final column for comparison.

System Time-to-Solution (s)
(6,6) (12,12) (16,16) HF

Pyrazine 0.69 3.69 1865.11 1.67
Dimelamine 2.84 11.11 693.82 8.55
Dimelem 7.26 22.58 1056.78 31.61
Trimelem 18.31 54.18 638.72 73.27
Hexamelem 70.33 191.49 789.57 267.18

Table A.4: Comparison of the times required to perform ERI transformations with different
size active spaces and basis set. All calculations used the LANL2DZ basis and were performed
on a single NVidia K40 GPU.

System No. of Basis Functions ERI Transformation Time (s)
(6,6) (12,12) (16,16)

Si15H25 160 0.63 2.40 4.74
Si25H30 260 1.84 6.89 13.55
Si44H44 440 6.32 22.48 43.23
Si50H50 500 8.37 28.93 55.46
Si72H64 704 23.10 75.43 139.49

Table A.5: Comparison of the times required to perform ERI transformations with different
size active spaces and single-electron basis. All calculations used the 6-31G?? basis and were
performed on a single NVidia K40 GPU.

System No. of Basis Functions ERI Transformation Time (s)
(6,6) (12,12) (16,16)

Si15H25 385 10.93 33.53 59.70
Si25H30 625 35.22 103.78 182.85
Si44H44 1056 128.38 357.19 616.45
Si50H50 1200 165.27 465.97 798.16
Si72H64 1688 462.46 1182.64 2064.69
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Table A.6: Comparison of the times required to perform ERI transformations with different
size active spaces and single-electron basis. All calculations used the 6-31G?? basis and were
performed on a single NVidia K40 GPU.

System No. of Basis Functions ERI Transformation Time (s)
(6,6) (12,12) (16,16)

Pyrazine 110 0.48 1.72 3.26
Dimelamine 300 2.79 9.28 17.80
Dimelem 510 7.06 20.56 42.29
Trimelem 720 17.83 52.05 98.31
Hexamelem 1380 67.31 186.80 376.04

A.2 Supporting Geometries

We provide Cartesian coordinates for all structures given in Figure 1 and in Tables A.1

to A.6 in units of Angstrom (Å).

Pyrazine (C4N2H4)
X Y Z

C 0.043212 -0.111863 0.030960
C 1.178081 -0.158657 1.998825
C 2.321112 -0.600233 1.329035
C 1.186051 -0.553557 -0.638847
N 0.021661 0.092331 1.359971
N 2.342440 -0.804539 0.000080
H 1.187513 -0.001787 3.071560
H -0.877047 0.083135 -0.508064
H 1.176552 -0.710913 -1.711343
H 3.241428 -0.795320 1.867838
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Dimelamine (C6N11H9)
X Y Z

N 2.2076378511 0.3366740014 -0.2491142011
N 1.4616722720 -0.3240918931 -2.4081095971
N 3.7860252231 0.0800842421 -2.0162794288
N 0.0037423528 -0.0286033035 -0.5866094819
N -2.2139297041 -0.1725213723 -0.1787275342
N -3.7314268265 -0.9223597888 -1.8565940014
N -1.3908222715 -0.7773072106 -2.3259824586
N -2.8839705982 -1.4653100833 -3.9162227545
N -4.4596967444 -0.3545005494 0.2426816480
N 3.0125811747 -0.5863427228 -4.0687906108
N 4.4390186762 0.7464633228 0.0785422526
C 1.2675651705 -0.0168310297 -1.1356836912
C 2.7486447034 -0.2597166795 -2.7848564862
C 3.4438384137 0.3700107000 -0.7558860162
C -1.2415678086 -0.3464460210 -1.0837040264
C -3.4336666542 -0.4825783421 -0.6287101083
C -2.6656873940 -1.0443493699 -2.6513251768
H -0.0134136335 0.2559822597 0.3823963955
H -4.2853555857 0.0963855978 1.1239490687
H 4.2322927053 0.8406383088 1.0576757283
H -5.3975398235 -0.4477801314 -0.1066915186
H 5.3886793411 0.6486319306 -0.2359130750
H -3.7982575594 -1.8040714731 -4.1602344709
H 3.9370321363 -0.4214874449 -4.4270853047
H -2.0850867819 -1.6840331924 -4.4859063128
H 2.2350673656 -0.7204407554 -4.6917548375
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Dimelem (C12N19H9)
X Y Z

N -0.5849539468 -0.0409195008 11.3471237143
C -1.6105221883 -0.0532634031 10.5127966265
N -1.3695566937 -0.0476416601 9.1271349637
C -0.0524361611 -0.0320515460 8.6418075902
N 0.9522440023 -0.0207343559 9.4931088259
C 0.6369179026 -0.0265955625 10.7989923930
C -2.4478845576 -0.0610798782 8.2289667416
N -2.1999244207 -0.0582770517 6.9288189691
C -0.9122105798 -0.0419526545 6.5575712936
N 0.1613358259 -0.0291724594 7.3294986307
N -2.8557211443 -0.0759050914 10.9537870723
C -3.8240747929 -0.0811017475 10.0265577559
N -3.6838159592 -0.0714778805 8.6923447553
N -0.7837959925 -0.0380440876 5.1881709343
C 0.2970595209 -0.0219893576 4.3378263568
N -0.0890650351 -0.0247302549 3.0542729311
C 0.8688554981 -0.0101919131 2.1412791996
N 2.2079983906 0.0066920201 2.5604091685
C 2.5143669915 0.0081280233 3.9302246045
N 1.5275934262 -0.0064503129 4.8212793682
C 3.2415596365 0.0218783659 1.6065896778
N 2.9367881395 0.0202836204 0.3209757649
C 1.6327981527 0.0039435184 0.0100103966
N 0.5880423006 -0.0113548042 0.8513250829
N 3.7743937666 0.0239498760 4.3129185332
C 4.7005863620 0.0378335092 3.3399359398
N 4.4985057494 0.0375911349 2.0158800850
N 1.3366925432 0.0026601949 -1.2970943034
N 5.9769193111 0.0537775565 3.7466137054
N -5.0829085413 -0.0907467044 10.4864930786
N 1.6706623948 -0.0170910843 11.6511070138
H 2.6065507082 -0.0057053812 11.2829191994
H 1.4908743411 -0.0183469600 12.6405484032
H 6.7108015184 0.0645465365 3.0591443591
H 6.1752108986 0.0546056401 4.7326776418
H 0.3718161481 -0.0089518418 -1.5802581481
H 2.0848585310 0.0137574194 -1.9689308551
H -1.6721857195 -0.0491248881 4.7040980350
H -5.8439022769 -0.1176444012 9.8296001571
H -5.2406600503 -0.1121316329 11.4794653377
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Buckyball (C60)
X Y Z

C -1.1241617717 -5.2742619223 0.5527495948
C -1.4857298279 -4.2262077848 1.5235253960
C -2.9515997271 -4.2312085234 1.6740267898
C -2.5014368213 -6.3284282971 -1.2209644950
C -1.4017970718 -6.1011107388 -2.1752113628
C -0.2295193322 -5.4852415479 -1.7511815223
C -0.0866038169 -5.0598337376 -0.3475811111
C -0.7892682398 -3.0228632184 1.5391949124
C 0.3104695308 -2.7955704465 0.5849592400
C 0.6515590414 -3.7845011662 -0.3310282651
C -3.6383604742 -3.0326069958 1.8316836466
C -2.9003235762 -1.7572625818 1.8482468091
C -3.7737179086 -6.1093536544 -1.9315282743
C -5.4243318047 -3.8052402103 0.2930188874
C -4.9106053294 -2.8134855710 1.1210989726
C -1.9944955885 -5.7415558695 -3.4755453234
C -3.4604302222 -5.7466400929 -3.3250337570
C 0.9648405221 -3.4217144160 -1.7245166468
C 0.4202879964 -4.4728447558 -2.6021701676
C -6.0171481919 -3.4456397480 -1.0072873947
C -5.6556646019 -4.4937418445 -1.9780465377
C -3.7164610060 -0.7498890991 1.1478412994
C -4.9588742849 -1.4026243189 0.6984630780
C -0.1389946272 -4.1335009193 -3.8290801506
C -1.3814038391 -4.7862353281 -4.2784820952
C -5.3601028166 -4.1514833912 -3.2928957434
C -4.2305518980 -4.7961341912 -3.9859511352
C -5.5181700709 -1.0632899264 -0.5284684512
C -6.0627012597 -2.1144273161 -1.4060969210
C -1.6374522232 0.2104876728 0.1943910010
C -3.1033751613 0.2054069617 0.3449033518
C 0.5578067520 -1.0423764314 -1.1525850415
C 0.9192961791 -2.0904877938 -2.1233442291
C -2.1975676294 -3.7788799180 -4.9788791861
C -3.5807066278 -3.7836358863 -4.8369101783
C -0.2584469991 -0.0350332637 -1.8530045403
C -1.3241574952 0.5732118936 -1.1991083344
C -3.6960562172 0.5649807376 -0.9554377832
C -4.8683449123 -0.0508694511 -1.3794373414
C -5.7494195704 -1.7516195268 -2.7995886472
C -5.4083083378 -2.7405683768 -3.7156057618
C -5.0112824330 -0.4763071785 -2.7830596997
C -2.5964467407 0.7922859453 -1.9096950594
C -4.8394114983 -5.5011002111 -1.2776190834
C -4.6964815146 -5.0755686026 0.1259109952
C -3.4960357827 -5.2823051627 0.7963578392
C -2.3666111336 -5.9269395271 0.1033805367
C -1.5171478602 -1.7525066545 1.7062734550
C -0.8673100176 -0.7399940142 0.8552948619
C 0.2622308883 -1.3846521603 0.1622912243
C -4.3085992948 -2.5132713619 -4.6698204917
C -3.9736822675 -0.2618760364 -3.6834186856
C -3.6121618596 -1.3099182087 -4.6541506917
C -1.4595000257 -2.5035243215 -4.9623075909
C -0.1872752763 -2.7226581858 -4.2517234068
C -2.1462519647 -1.3049217280 -4.8046595477
C 0.3264623031 -1.7308812785 -3.4236431228
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C -0.4013811715 -0.4605738889 -3.2565517532
C -2.7312510739 0.3908260260 -3.2339928786
C -1.6018340157 -0.2538324547 -3.9269994820
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Silicon Nanoparticle (Si72H64)
X Y Z

Si 0.0094082690 -0.0217856785 -0.0041189783
Si 0.0287568817 -0.0369390760 2.2907826028
Si 2.1828977668 0.0005978371 -0.7665567945
Si 2.1507663857 0.0212629496 -3.0697874537
Si -1.0958575986 -1.8993161290 -0.7520833573
Si -1.0828216766 1.8573975826 -0.7710306531
Si -1.1131674195 -1.8695131003 -3.0553195693
Si -1.0995050593 1.8692869896 -3.0757804295
Si 0.0126518547 -3.7741937631 -0.0262698815
Si 3.2631139344 -1.8890587256 -0.0379951239
Si 0.1870276216 -3.8321467245 2.2368921855
Si 3.2431181747 -2.0471232602 2.2271422961
Si 1.1183405612 -1.9133059624 3.0067345789
Si 2.1349236483 -3.6935387643 -0.8405631427
Si -2.2086391565 -0.0003455136 -3.8373992795
Si 1.0692944837 1.8984844326 -3.8523185205
Si 1.0565563165 -1.8581475439 -3.8331032957
Si -2.1855986323 3.7396933953 -3.8425784865
Si -2.1779287793 3.7116921623 -6.1269822388
Si -3.1612061219 1.8569349622 -6.9833554402
Si -0.0864892538 3.6340571784 -6.9989576248
Si -2.1940259643 -0.0134287585 -6.1329213045
Si 1.0577232211 1.8672759855 -6.1479131262
Si -0.0264597641 -0.0154280946 -6.8212365321
Si 2.1484914297 -3.7360475197 -3.1134503251
Si 1.0610191916 -1.8851736526 -6.1217088919
Si 4.2872185561 -3.7009594537 -3.9081231764
Si 1.0458190756 -5.5742921794 -3.8944903734
Si -0.0187016739 -3.7608206237 -6.8435852534
Si 3.2213993234 -1.8880004554 -6.8554084207
Si 1.0919392775 -5.6140721759 -6.1599294162
Si 4.2820493794 -3.7709036002 -6.1730988554
Si -2.1303750385 0.0052494383 3.0329543603
Si 1.0703935816 1.8603901871 3.0200264528
Si -3.2305751075 1.8830486061 0.0203009401
Si -0.0319211369 3.7363233936 0.0058233210
Si -4.3147837052 3.7306173986 -3.0167515778
Si -1.1144070621 5.5848599669 -3.0283734080
Si -1.1455161136 5.5749307867 -0.7573328079
Si -0.0444318533 3.6989650227 2.2872261750
Si -3.1797265140 1.8825902756 2.3009515756
Si -4.2792480980 3.7592247904 -0.7456307775
Si -2.1737228941 3.7658880553 3.0612349979
Si -3.2574905178 5.6123459019 0.0636787554
Si -3.2463744781 5.6189222791 2.3270003390
Si -3.1308784467 -1.8914433321 -6.9953369129
Si -4.3581026854 0.0126721429 -3.0327837951
Si -2.2078789639 -3.7386605103 -3.8123456332
Si -2.1633319391 -3.7307837243 -6.0953857771
Si -0.8742211250 -5.7008831298 -0.8329919680
Si -1.0769805996 -5.5842294145 -3.0856384286
Si -3.2557353099 -1.8710293982 0.0257196589
Si -4.2592702956 0.0125083102 -0.7605294398
Si -5.5043442320 -1.8552939911 -3.6243452654
Si -4.4424024314 -3.6420188694 -0.7571275158
Si -4.3509658303 -3.7111707658 -3.0213820649
Si 3.2228227657 -5.6250477753 -6.9229403066
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Si 3.2352355342 1.8919599867 -0.0026604041
Si 2.1336678602 3.7738736556 -3.0641372866
Si 2.0974573105 3.6962840471 -0.7905690346
Si 5.3546231784 -1.8608056360 -3.1123075177
Si 4.2685417290 -0.0095293579 -6.1231339691
Si 4.3123000422 0.0363176939 -3.8398384936
Si 5.3552533313 2.0514357597 -0.7986448021
Si 4.3130810780 3.8193347404 -3.7001445165
Si 5.3586379192 1.9121733965 -3.0610301479
Si 3.1926157724 2.0724466896 2.2585741588
Si -3.3618749813 -1.7436801891 2.2884868090
Si -5.5024968376 1.8901245978 -3.5903215893
Si 1.0683831792 5.6977124362 -3.6221991321
Si 5.3705201082 -2.0732064723 -0.8574710175
Si 3.1379568270 1.7238884028 -7.0433902178
H 3.2448539483 -5.6741717608 -8.3704539532
H 3.9101168929 -6.8158891002 -6.4672541648
H 0.3915044508 -6.7945164948 -6.6298969072
H 5.6495756255 -3.7494096467 -6.6569973611
H 4.9736893797 -4.8708655269 -3.3916786088
H 3.2012103674 -1.8456299534 -8.3061422544
H 1.7217190303 -6.7519585882 -3.3818172801
H -0.0534241655 -3.7258578282 -8.2941857024
H 5.6339428907 -0.0080563645 -6.6153337237
H 6.7227318497 -1.8565790626 -3.5973161248
H -1.7584159953 -6.7711041562 -3.5689892514
H -2.8500091691 -4.9152832746 -6.5773317197
H -2.1180089968 -6.0474821747 -0.1811400955
H 0.0397769131 -6.7796411942 -0.5174357696
H 2.8250936236 -4.8790575296 -0.3648349741
H 5.8672708362 -3.3935335210 -0.5276631326
H 6.2883937157 -1.1459976561 -0.2334033060
H 6.7279669394 1.9275356853 -3.5410534032
H 3.8647409577 2.9708893237 -6.9459348409
H 2.9957846470 1.4787568248 -8.4644320048
H -0.0319578801 -0.0136263766 -8.2733196808
H -4.5665680402 -1.9014824061 -6.8224810303
H -2.9155509700 -1.9011461079 -8.4281353452
H -5.0503097886 -4.8899927990 -3.4977032935
H -4.5997512040 5.6589628234 2.8416623128
H -2.5884907749 6.8107734152 2.8216619848
H -3.9404476488 6.7916216022 -0.4339157188
H -2.1545524042 3.7442558333 4.5116704300
H 0.6718242568 4.8716825346 2.7548130347
H -0.4344134504 6.7537394450 -0.2972956210
H -5.6535275538 3.7225543137 -0.2799442311
H -4.5496540940 1.8418230583 2.7788703467
H -5.0059707492 4.9143249323 -3.4940799035
H -1.8010257619 6.7716926799 -3.5045644476
H 1.0794495145 1.8599211965 4.4713799916
H -2.1263496779 0.0022573788 4.4844031297
H -5.6277457941 0.0112404928 -0.2751913807
H 1.1337834617 -1.9339190855 4.4575256823
H 2.7827028096 4.8819179921 -0.3079673479
H -2.8626320550 4.8925912884 -6.6191939765
H -6.7392560036 1.8980229565 -2.8355313030
H -5.9009761274 1.9003412589 -4.9808038215
H -2.9652490372 -2.9891705662 2.9063731329
H -4.7421907937 -1.5425695897 2.6812703383
H 3.6825141373 3.3880181232 2.6165510700
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H 4.0988484923 1.1358797480 2.8850135281
H 1.2362329669 6.0435306398 -5.0169197180
H 1.6857971672 6.7820303130 -2.8853878421
H -6.7563880267 -1.8574679002 -2.8957950163
H -5.8719413221 -1.8458520565 -5.0230103338
H -5.8262851408 -3.4843601297 -0.3582284170
H -4.0091890841 -4.8820453202 -0.1528229992
H -1.0794444776 -4.1352044513 2.8657879289
H 1.0609450907 -4.9299193367 2.5975097240
H 4.1216875044 -1.0695115617 2.8295171304
H 3.7839250738 -3.3374271147 2.6025077466
H 5.8870110711 3.3451093057 -0.4216190537
H 6.2317284984 1.0794082569 -0.1839094804
H 4.4459501943 4.0538958290 -5.1203835319
H 4.9673577754 4.9414173749 -3.0584173283
H -0.1999838496 3.4635847756 -8.4331271709
H -4.5934099006 1.8476849874 -6.7839076612
H 0.6387453033 4.8715038054 -6.8145560557
H -2.9744127212 1.8613643255 -8.4200346775
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Silicon Particle (Si15H20)
X Y Z

Si -1.8326498103 0.1884666153 -4.4209603450
Si -4.0411889911 0.7292359818 -4.8982925586
Si -5.4565015957 -0.7764675086 -3.7871797578
Si -5.6899583912 -0.3005518780 -1.4970147295
Si -3.7847741353 -0.5142240433 -0.1456414114
Si -2.1454216737 1.1190537610 -0.5374012855
Si -2.9812790090 3.2833124807 -0.8852804720
Si -4.9559471685 3.3622632141 -2.1492578427
Si -6.5359613909 1.8771719256 -1.2497972162
Si -0.9126832442 0.3626028443 -2.3610034063
Si -4.7049362039 2.9340276342 -4.4453590603
H -4.9529024954 -2.1596380504 -3.9766292359
H -6.7075679053 -1.2481451872 -0.9634173791
H -4.2261570766 0.5227810044 -6.3618848130
H -4.2528203932 -0.3440465796 1.2559276577
H -1.2291535083 1.1763939269 0.6333888196
H -3.1744331654 -1.8569753464 -0.2778444459
H -6.6791291927 2.1691414862 0.2026899767
H -5.4823762362 4.7510891011 -2.0354092739
H -3.7198570168 3.8813687245 -5.0324871107
H -1.9250573117 4.1060756025 -1.5296553576
H -3.2789434708 3.8815537043 0.4417709435
H -0.9848201941 -0.1365209706 -5.5923549928
H 0.5413198319 0.1554043233 -2.1637954011
Si -8.6067285830 2.1187091760 -2.3221717467
Si -8.3278316855 1.6580581992 -4.6025803492
Si -6.7938639147 3.1951766898 -5.4939101382
Si -7.5528542251 -0.5468011857 -4.8257416492
H -9.5907868107 1.1770678096 -1.7294064431
H -9.1110491534 3.5032387187 -2.1338838748
H -9.6299712262 1.8026905163 -5.3063500737
H -7.2984829629 4.5764371099 -5.2824475209
H -6.6361162075 2.9765997682 -6.9548810832
H -8.5397421434 -1.4714538850 -4.2105310204
H -7.4227791241 -0.8944478593 -6.2644208895
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Silicon Particle (Si25H30)
X Y Z

Si -1.8288732924 0.0332496713 -4.6133953704
Si -4.0400382665 0.6645529746 -4.9002941633
Si -5.4465227349 -0.7798035968 -3.6983845833
Si -5.6875762357 -0.1908221631 -1.4576980408
Si -3.7456126096 -0.4394762897 -0.1649545662
Si -6.5286391333 2.0246375771 -1.2520538666
Si -0.8588579239 0.2238828082 -2.5917347150
Si -2.0605645239 1.0684838252 -0.7961589916
Si -2.9436793934 3.2741611520 -0.9516746629
Si -4.9164930919 3.5109220631 -2.1783975777
Si -4.6186309337 2.8982360498 -4.4674991990
H -4.9354481111 -2.1700265012 -3.7918524723
H -4.3484192043 0.4675443847 -6.3447674497
H -3.2338472941 -1.8278286401 -0.2806990800
H -3.6034201128 3.8031042216 -5.0721224065
H -1.9083973135 4.1819228263 -1.5170850431
H -1.0692714565 -0.3215439513 -5.8341887505
H 0.5924141379 0.0135910135 -2.3852388509
H -1.0960192519 1.1502529858 0.3373272537
H -6.7160269483 -1.0982639535 -0.8750923566
Si -4.2552752761 0.0583497997 2.0701721326
Si -4.8970175221 2.3091337984 2.2145357712
Si -6.8838077842 2.5709097487 0.9886875503
Si -8.5330892112 2.2487268623 -2.4547555688
Si -8.2268684083 1.6247412842 -4.6862015175
Si -7.5558101824 -0.6214342223 -4.7140376846
Si -3.2144459309 3.7023370514 1.3512492251
Si -6.6113384019 2.9803994909 -5.7135910492
Si -9.3488284875 4.4057823155 -2.2578882010
Si -7.7889725193 5.9862622156 -3.0283378069
Si -5.7525890102 5.7171221028 -1.9870697606
Si -7.7377847928 4.7444333682 1.1584650305
Si -9.7744627683 4.8607333245 0.0062622488
Si -6.2767427378 6.3449494920 0.2302224723
H -9.5529240831 1.3383667358 -1.8615137216
H -9.5216618699 1.7777980589 -5.4030576951
H -7.1382965606 4.3497886929 -5.9013566495
H -6.2792270938 2.4319675960 -7.0543836418
H -8.5492693926 -1.4371443193 -3.9698024492
H -7.4847082654 -1.1217105631 -6.1108334835
H -5.3698353046 -0.7984624132 2.5492673293
H -3.0638586559 -0.1939777799 2.9204876148
H -5.1458918500 2.6789347815 3.6340066812
H -1.9222589948 3.3535823126 1.9968442261
H -3.4992817596 5.1238301437 1.6499971395
H -7.8967273372 1.6276363643 1.5382320294
H -10.6067053903 4.5247470263 -3.0422501165
H -10.3416434718 6.2257908895 0.1552412402
H -10.7476105222 3.8817358301 0.5545868041
H -7.9383401258 5.0710726663 2.5959585041
H -4.7918525067 6.7061231838 -2.5483670712
H -5.0690415362 6.5424373335 1.0597897118
H -6.9958021535 7.6442246818 0.1524949984
H -8.2931131612 7.3316037646 -2.6460631435
H -7.6841349190 5.9492388852 -4.5048863785
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Silicon Particle (Si44H44)
X Y Z

Si 0.1079080836 0.5664593538 1.7288689966
Si 0.1989840814 -0.0598489464 3.9405322433
Si 3.2894533756 2.0736105752 0.8187907578
Si 2.0146996999 0.1241074122 0.7234754931
Si 3.1868132444 -1.8803310540 1.0035233118
H -1.0491195392 -0.0912725276 4.7571837979
H 2.4557702417 3.2614638839 0.4905439554
H -0.5690398652 1.8735912585 1.5570407385
Si 1.5271309677 -1.9333097645 4.4499516562
Si 1.9414309599 -1.8761730582 6.7691606510
Si 3.1608467239 -3.8015019101 7.3570750061
Si 5.2521323318 -3.7741073760 6.2637829560
Si 6.3527929616 -1.8053350904 6.9328377392
Si 5.1755345167 0.0881508941 6.1850626536
Si 4.8142028351 0.0726173309 3.8499939885
Si 6.8573378379 0.0671855176 2.6634030027
Si 8.1888259797 -1.8347536026 3.0234491376
Si 6.9104353354 -3.7775438867 2.6787841064
Si 6.4013273356 -3.7818775560 0.3720388732
Si 5.2046354258 -1.8397243211 -0.2240815201
Si 6.4516997756 0.0816906482 0.3438321973
Si 1.4764761609 1.9007694048 4.3977019373
Si 3.5326415212 1.9584403914 3.1978846962
Si 1.9073576827 -3.7734182327 0.4073503274
Si -0.1171130421 -3.8667064231 1.5919998148
Si 0.3318773978 -3.8819154215 3.8918552738
Si 1.6086276087 -5.7578683426 4.4910536872
Si 3.6550838679 -5.7193554010 3.3186660823
Si 3.1974479016 -5.6665198662 0.9989344037
Si 3.6159391870 -1.8928837525 3.3209185894
Si 4.8902884338 -3.7939168291 3.9223367022
Si 3.1127964552 0.0942301543 7.3182168748
H 0.6710478014 3.0918157925 4.0015376495
H 4.2832631602 3.1584112976 3.6750160817
H 7.7639772268 0.0008257547 -0.3589089527
H 7.6203893421 1.2950179538 3.0298007321
H 9.2538882997 -1.8293764062 1.9836655811
H 7.6991486018 -3.7785883314 -0.3637147762
H 0.8803785264 -6.9997485147 4.1026567311
H -0.9431819922 -3.8825049640 4.6657576140
H 3.3780223689 0.0973008018 8.7849593375
H 0.6342844980 -1.8825576430 7.4876154878
H 3.4197583841 -3.7784595205 8.8254777591
H 6.3916435736 -1.7752614038 8.4204859561
H 5.9344740104 1.3179072599 6.5516701554
H 2.3983336648 -6.8840042246 0.6733110927
H 7.7551735030 -1.8060793425 6.4471263101
H 8.8580768039 -1.8323364887 4.3484136247
Si 1.4919544678 -3.7772736742 -1.9064956802
Si 3.5086643386 -3.7849324941 -3.1051432522
Si 4.7493401836 -5.6934205350 -2.5350238572
Si 4.7348070423 -1.8689329803 -2.5293513989
Si 5.2050014125 -5.7223369892 -0.2287765017
H 0.6919298199 -4.9847101988 -2.2485224629
H 0.6906934148 -2.5770458109 -2.2585499182
H 3.2326039096 -3.7818577504 -4.5691296061
H 6.0158767288 -1.8309445455 -3.2856847465
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H 3.9638598039 -0.6500255914 -2.8969038266
H 3.9963584642 -6.9215452077 -2.9064715664
H 6.0320384079 -5.7049227855 -3.2895622362
H -0.8423400886 -5.1069003971 1.2046774814
H -0.9740349672 -2.7047002851 1.2417060360
Si 5.3553376968 2.0580922062 -0.2851294922
H 5.1540233451 2.1145087654 -1.7575795357
H 6.1858541909 3.2277202546 0.1090950055
Si 1.8934528524 2.0021285927 6.7068987016
H 2.6699471795 3.2234534163 7.0507324399
H 0.6031550471 2.0552737072 7.4455625100
Si 8.2263934553 -5.7014011129 2.9988708574
Si 6.9360043442 -7.6317813629 2.6472561083
Si 6.4095404491 -7.6560590711 0.3581160705
Si 4.9479871559 -7.6040305358 3.9052191697
H 9.2948968370 -5.6607597444 1.9635700545
H 8.8901938674 -5.7080505020 4.3270163029
H 7.6660534469 -7.7172813709 -0.4365669787
H 5.5992347176 -8.8571423582 0.0198479848
H 7.7304916858 -8.8433886732 2.9965857900
Si 1.9980459679 -5.7730313629 6.8073859794
Si 3.2412007903 -7.6886746555 7.3583576581
Si 6.4147464022 -5.6917267804 6.9745793539
Si 5.3040103755 -7.6261680339 6.2349601169
H 4.1742784561 -8.8314774547 3.5587188049
H 6.1069935801 -8.8295373032 6.5930502045
H 2.4742298588 -8.9028377950 6.9694420639
H 3.4740055044 -7.7469286362 8.8264301888
H 6.4446945863 -5.6932519864 8.4623859524
H 7.8193042154 -5.6578538397 6.4950497310
H 0.6914802718 -5.7896708050 7.5246131427
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Silicon Particle (Si50H50)
X Y Z

Si 1.2699619180 1.3357222701 4.4287132058
Si 0.5706104690 -0.2039438766 5.9105993710
Si 1.7286418225 -2.1926423255 6.2170343509
Si 3.9266119805 -1.9949227168 7.0246125372
Si 5.1905004358 0.7273432768 4.4381451618
Si 5.5220376807 -1.4291647303 5.3645125905
Si 5.4692926648 -3.0414011861 3.6259503031
Si 2.9907580674 -0.8193925467 1.6989458110
Si 3.2066111175 0.9729592501 3.1975489904
Si 3.3150626130 -2.9556690118 2.6522591283
Si 1.7069637721 -3.5279424296 4.2890527996
H 1.6500622876 -0.7814023688 1.0592788572
H 3.4327969532 2.1931701687 2.3727360394
H 0.9974647199 -2.9495390885 7.2720792640
H 0.3558721051 -3.5038008688 3.6710657729
H -0.5126992756 0.0803134282 6.8798041380
H 0.6839930228 2.6940566495 4.3648828893
Si 4.4102886742 -4.1521482305 7.8448033385
Si 4.2801459612 -5.7442934041 6.1077607128
Si 5.9091035528 -5.2110100196 4.4794805926
Si 8.0402818739 -5.2576962143 5.5014927009
Si 9.7736626004 -4.6574705750 4.0402207956
Si 9.2762034443 -2.6106750742 3.0084403598
Si 9.3099879484 -1.0003466278 4.7268063867
Si 9.0011454218 1.1534305436 3.8443722809
Si 6.8752891981 1.1446373533 2.8396272743
Si 5.3798759078 2.4386886144 6.0397293486
Si 7.4219559538 2.2577805214 7.1752860384
Si 9.1083088859 2.7042527469 5.6061780940
Si 7.6700746758 -1.4909770547 6.3555080763
Si 8.0755420749 -3.6503119257 7.2250705019
Si 6.5150034900 -4.1907945576 8.8945057360
Si 6.6618540245 -2.5803124310 10.6002304522
Si 6.1696574606 -0.4522225404 9.7440473242
Si 3.9963466908 -0.5452528574 8.8751844446
Si 7.1364880024 -2.5775966553 2.0014202096
Si 6.7651795669 -0.4290028254 1.0862554661
Si 4.6365338630 -0.3890423374 0.0728585468
Si 3.2299532390 -4.5587775880 0.9164645878
Si 4.8423840294 -4.0653843160 -0.7240117221
Si 4.4864785264 -1.9533405772 -1.6605985293
Si 2.1448198349 -5.6930070761 5.1065313474
Si 1.9921841758 -7.2660383913 3.3814748829
Si 3.6032317906 -6.7151439927 1.7792457037
Si 5.7555133837 -6.7812916549 2.7205951538
Si 7.7322474292 0.1123669523 8.0826961366
Si 10.9160777612 -2.1014638976 1.4014894274
Si 10.5441415435 0.0271460096 0.5000392403
Si 10.6365296166 1.6146939576 2.2211718201
Si 8.4283789094 0.0632473613 -0.5028500019
Si 7.2906977961 -6.3665151868 0.9993278810
Si 6.9745044750 -4.1658961151 0.2603028976
Si 4.7093972446 -7.8722192290 7.0121047124
Si 6.8265129636 -7.9185295361 8.0139787265
Si 6.9323758575 -6.3418867857 9.7424733770
Si 8.4434039011 -7.3913054349 6.4044774667
H 5.9979607910 -8.1382942942 3.2844082554
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H 4.7748390983 -5.1158382259 -1.7771581000
H 3.5612291756 -7.6858754666 0.6514545713
H 1.8743688662 -4.5106156882 0.3024164932
H 4.4019699548 0.9841535072 -0.4522175521
H 6.5930181345 2.4972803817 2.2815782974
H 9.4438447241 -3.6459490686 7.8161584651
H 1.1348933459 -5.9944591577 6.1582118899
H 3.3612742788 -4.4783732308 8.8516770062
H 10.6409731161 -1.0575015756 5.3952960568
H 12.2549100777 -2.1595396185 2.0434070763
H 10.8706159653 -3.1316583022 0.3314152684
H 11.5875645975 0.3322925207 -0.5160413038
H 8.1542099144 1.3985601615 -1.0931120689
H 8.3663966405 -0.9513642465 -1.5859356324
H 11.9802199887 1.6007514349 2.8556180616
H 10.3999477091 2.9761708208 1.6743732148
H 11.0015157401 -4.4596723608 4.8557062254
H 10.0512049758 -5.7203785868 3.0443251683
H 5.4996959367 -1.6862206401 -2.7132842261
H 3.1367317503 -1.8788441888 -2.2756160807
H 0.6329721502 -7.2186081256 2.7844442982
H 2.2302352827 -8.6392618873 3.8952548058
H 5.3581919155 3.7291267187 5.3004336068
H 4.2243670999 2.4335717642 6.9709037772
H 8.9420336786 4.0842848947 5.0797008934
H 10.4473389864 2.6145778968 6.2441660631
H 7.4724920254 3.2676067995 8.2675329228
H 9.0887761348 0.0731266117 8.6969195612
H 6.2284459729 0.5593706734 10.8340647545
H 8.0405608499 -2.6038456791 11.1534404419
H 5.7158263023 -2.9088833190 11.6981813538
H 3.0826128022 -1.1009011371 9.9089118121
H 3.4892812146 0.8003200022 8.5085289133
H 8.6837154779 -6.6005288639 1.4449117553
H 6.9982450032 -7.2847298814 -0.1325413732
H 7.9877228169 -3.8212602894 -0.7749305503
H 3.6583129045 -8.1919143259 8.0127144156
H 4.6472044364 -8.8943223126 5.9351574928
H 5.9254135613 -6.6545946128 10.7895339431
H 8.2777432285 -6.3706855158 10.3727812413
H 7.0898785969 -9.2780677306 8.5589184002
H 8.4188926116 -8.4032801972 5.3163387979
H 9.7972547320 -7.4047069158 7.0170470991
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Trimelem (C18N27H9)
X Y Z

N -3.3533847378 0.1907807841 10.5234496757
C -2.2097116774 0.0465354605 9.8810737520
N -2.2207653613 -0.1110901351 8.4863377096
C -3.4278347017 -0.0556651488 7.7718675467
N -4.5619264882 0.0883617685 8.4309393187
C -4.4671038171 0.1881854323 9.7690142496
C -1.0309661389 -0.4021322606 7.8133550614
N -1.0516137610 -0.5838266797 6.5050408153
C -2.1996343120 -0.3221751816 5.8905255061
N -3.3978398279 -0.1209818921 6.4413979464
N -1.0414621004 0.0761024550 10.5212618158
C 0.0435008596 -0.1326066001 9.7736221800
N 0.0984548030 -0.4843824250 8.4940790115
N -2.1651053483 -0.2914889126 4.5079928543
C -1.0314530781 -0.0423627589 3.7567592826
N -1.0352982362 -0.5219236822 2.5122807662
C 0.1076034673 -0.3991094260 1.8362600870
N 1.2340000266 0.1181003289 2.4941823521
C 1.0967177273 0.6789556214 3.7643473904
N -0.0829908501 0.6683575056 4.3553809956
C 2.4904355324 0.1246116932 1.8675434231
N 2.5823181101 -0.2693728242 0.6102938561
C 1.4402180585 -0.6738607236 0.0264402892
N 0.2174409896 -0.7845750208 0.5795530357
N 2.1551864810 1.1781473884 4.3790525984
C 3.3257550341 0.9426257594 3.8098190969
N 3.5586757216 0.4963751354 2.5683094113
N 1.5318542425 -1.0249914147 -1.2627945874
N 4.4715318308 1.1371858338 4.5663360855
C 4.5611198052 1.0521024055 5.9474594022
N 5.7697759876 0.6889519644 6.3966514220
C 5.8552250812 0.4145819661 7.6958630982
N 4.6834529692 0.4135594569 8.4694378550
C 3.4939328994 0.8876504526 7.9153502075
N 3.4733624928 1.2976185594 6.6589193419
C 4.7081306720 -0.0098134679 9.8072827916
N 3.5552108500 -0.1351097313 10.4657642897
C 2.4619869303 0.2537568678 9.8078780783
N 2.3911893081 0.8821609135 8.6403367817
N 5.8651270748 -0.3089335953 10.3658005532
C 6.9520523398 -0.2072457124 9.5773506901
N 7.0041923159 0.1099285545 8.2713877753
N 1.2544070110 -0.0033527263 10.4300500543
N 8.1266061243 -0.4705088553 10.1647461632
N -5.6246542543 0.3083239654 10.4317293319
H 2.4316401888 -0.9855320072 -1.7197193098
H 0.7073140749 -1.3620368209 -1.7386842801
H -3.0306655137 -0.4752359731 4.0136332439
H 5.3309932163 0.8952156152 4.0820117755
H 8.1385455573 -0.7408353330 11.1377363129
H 8.9710021400 -0.4325563079 9.6120724401
H -6.4884270014 0.3358429726 9.9091477694
H -5.6061706655 0.4131825663 11.4359956199
H 1.2551186739 -0.1177258244 11.4371456416
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Hexamelem (C36N52H12)
X Y Z

N -3.2672721284 -1.1468226535 10.7538463018
C -2.1664427271 -0.9309695605 10.0639891857
N -2.2623355942 -0.6873506921 8.6950861021
C -3.4935255521 -0.8378856263 8.0429033791
N -4.5927310457 -0.9015892141 8.7795379445
C -4.4097437317 -0.9515093168 10.1094551541
C -1.1289026310 -0.3096485158 7.9782621655
N -0.0216666681 0.0006217636 8.6501730280
C 0.0037019581 -0.3673628729 9.9158447711
N -0.9669053795 -0.9132919825 10.6320872667
N -3.4923397212 -0.9237500051 6.7153311901
C -2.3088479443 -0.7559030846 6.1219032993
N -1.1865616684 -0.2862833221 6.6649245160
N 1.2568715030 -0.2237854357 10.5960949062
C 2.3464071452 -0.9927818398 10.0760204119
N 2.6418601851 -0.7853540333 8.8070269623
C 3.4985540467 -1.6423028749 8.2595734337
N 4.2288639760 -2.4908814920 9.0897956565
C 3.9359163483 -2.5415685402 10.4544872968
N 2.8787939893 -1.8761491615 10.9059509561
N 3.6613625067 -1.7283329841 6.9567599827
C 4.4185437059 -2.7331219431 6.5254297384
N 5.2794414523 -3.4677418868 7.2344274131
C 5.2268961615 -3.3154121797 8.5539552342
N 4.7100179218 -3.2556940436 11.2439581830
C 5.8039375938 -3.7740872887 10.6909848525
N 6.0651916054 -3.9188632052 9.3866734884
N 4.3248953376 -3.0308358704 5.1829576030
C 3.2012119455 -2.8032553869 4.4071722687
N 2.0511713557 -2.6766019300 5.0565436428
C 1.0079657410 -2.2917330662 4.3457567476
N 1.1280190107 -2.1727385444 2.9589354560
C 2.3431558106 -2.5008945971 2.3349712644
N 3.4030120137 -2.7822480935 3.0917528095
N 2.4115972990 -2.4963159222 1.0196415402
C 1.2905571005 -2.1604541614 0.3581838071
N 0.1035655457 -1.8035311622 0.8787819732
C 0.0106338239 -1.8018936535 2.1925113891
N -0.1477270930 -2.0187698712 4.9219925703
C -1.0994301715 -1.5186919762 4.1439471484
N -1.1076480285 -1.4328134120 2.8159761426
N 1.3665747134 -2.1787051533 -0.9763691812
N -2.2449844815 -1.0767530028 4.7828220478
N 6.7584308847 -4.2636312647 11.5529105102
N -5.5530365646 -0.7518487822 10.8541177408
H 7.3999973546 -4.9587830211 11.1975759786
H 5.1007459821 -3.5115796328 4.7492078463
H -6.3877826322 -0.5838367483 10.3063881664
H 2.2393061079 -2.4207828637 -1.4146451327
H 0.5594985010 -1.9176459134 -1.5175059325
H -3.1055085179 -1.0807486391 4.2530827905
C 1.3045879825 0.2961840309 11.8807428641
N 0.1815076795 0.8162635383 12.3689364597
N 2.4891386406 0.2674129865 12.4850942199
C 2.4820200751 0.4350968547 13.7920603023
C 0.1464759565 1.0147210335 13.6745669146
N 1.2801781687 0.7289098191 14.4431325054
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N -0.9472676713 1.4349675911 14.2876553506
N 3.5789290118 0.2647266225 14.5131991812
C 1.2417293694 0.8330387663 15.8413827905
C 3.4176614477 0.1974230738 15.8209149265
C -0.9397160099 1.3913556497 15.6128792668
N 0.0934265165 1.1594862187 16.4272679785
N 2.3294328003 0.5272928544 16.5348839002
N -2.1511078492 1.6351580866 16.2384588586
N 4.4565154604 -0.3137984454 16.5826727782
C -3.3823431061 1.3704964527 15.6745708673
H -2.1297242170 1.9891717267 17.1843836095
N -4.4200620830 2.0412373635 16.1725652312
N -3.3969060430 0.4507272310 14.7164483527
C -4.4990898124 0.3614732078 14.0034990026
N -4.5437402950 -0.3861876417 12.9137436586
C -5.6093630583 -0.2477036283 12.1486356043
N -6.7578891255 0.3671226759 12.4470369947
C -6.7963937537 1.0128336503 13.6104372189
N -5.6231067735 1.0979014824 14.3785023106
C -5.5847807616 1.8759228566 15.5468737973
N -6.6931888820 2.4513901402 15.9679208970
N -7.8906549498 1.6023755452 14.0488562300
C -7.7909605924 2.2672008444 15.2134185479
N -8.9179168492 2.8240772958 15.6703958777
H -8.8926824788 3.3486289413 16.5285172843
H -9.7639540836 2.7299730063 15.1342114175
C 5.3998361064 -1.2353514381 16.1609808194
N 5.9159184074 -1.9813022751 17.1446102690
N 5.6634378759 -1.3173257968 14.8671008076
C 6.3038394431 -2.3983437275 14.4647619471
N 6.4325245360 -2.6722571649 13.1796820192
C 6.8902479856 -3.8785645884 12.8787673106
N 6.8155539200 -3.2913565339 15.4072017704
C 6.6824300878 -3.0022882994 16.7758329307
N 7.4834451411 -4.7543887034 13.6854107632
C 7.5015650823 -4.4395708359 14.9816829091
N 8.1064022399 -5.1934364838 15.8754514134
N 7.2954502868 -3.7733871334 17.6535347922
C 7.9947579776 -4.8086878779 17.1607769455
N 8.6485168639 -5.5582017504 18.0550449656
H 8.5838210930 -5.3247682515 19.0315276451
H 9.1708405427 -6.3570884441 17.7371559556
H 4.2608453511 -0.3525608660 17.5753065198
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APPENDIX B

SUPPORTING INFORMATION FOR: ROBUST AND EFFICIENT SPIN
PURIFICATION FOR DETERMINANTAL CONFIGURATION

INTERACTION

B.1 Demonstration that Spin Contamination Arises from Numer-
ical Error

To better understand the behavior of wave function convergence using a typical iterative

eigenvalue solver, we have calculated the 20 lowest doublet states of the ethylene anion

at the CASCI/6-31G?? level of theory using Hartree-Fock canonical orbitals (HF-CASCI)

with geometry as depicted in Figure B.1 and Cartesian coordinates reported below. A (7,8)

active space is employed. We have used a standard Davidson-Liu algorithm with guess

vectors as described in the main document and with a Hamiltonian subspace dimension of

400. Eigenvectors were converged using a residual norm threshold of ||r|| = 1.0 × 10−6,

a value generally considered suitable for calculation of analytic energy gradients or orbital

gradients (i.e. for the complete active space self-consistent field, CASSCF, method). The

Evangelisti preconditioner is used. The 〈Ŝ2〉 value was determined for each root at each

iteration and is given in Figure B.1.

As is evident in Figure B.1, the 〈Ŝ2〉 values for many roots diverge from the desired 〈Ŝ2〉

value beginning at iteration 7. Of the twenty roots calculated, only thirteen converge to

doublet states (〈Ŝ2〉 = 0.75), while the remaining seven converge to quartet states (〈Ŝ2〉 =

3.75). Of course, the average value of Ŝ2 does not guarantee that the state is a pure spin

eigenfunction. Instead we must consider a sufficient condition for verifying the purity of the

states, the variance of Ŝ2, or σv = 〈Ŝ4〉 − 〈Ŝ2〉2. Each converged state was indeed found to

be a pure spin eigenfunction, having a variance less than 1× 10−10.

To obtain a clearer picture of the nature of this contamination, we focus on a representa-

tive root (root 7). The 〈Ŝ2〉 value was calculated at each of four points of the Davidson-Liu
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Figure B.1: 〈Ŝ2〉 for 20 roots of C2H−4 using HF-CAS-(7,8)-CI/6-31G??. A standard
Davidson-Liu algorithm was used with orbital energy difference preconditioning.

algorithm, after residual vector formation, preconditioning, trial vector orthogonalization,

and σ formation. These values are depicted in Figure B.2. The inset shows the region

surrounding iterations 5 − 10 in greater detail. In iteration 8, a small amount of spin con-

tamination (〈Ŝ2〉 = 0.75005224727341) in the residual vector is exacerbated by each of the

preconditioning, orthogonalization, and σ vector formation steps. Careful examination of

〈Ŝ2〉 at each of the four test locations in earlier iterations for each of the contaminated roots

reveals that a small amount of spin contamination (∼ 1× 10−12) occurs with approximately

equal probability at each of the test locations, suggesting that the contamination is random

and numerical in nature.
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Figure B.2: 〈Ŝ2〉 for root 7 of C2H−4 using HF-CAS-(7,8)-CI/6-31G??. A standard Davidson-
Liu algorithm was used with orbital energy difference preconditioning.

This phenomenon is reproducible across a wide range of active spaces where differing

numbers of roots are requested, with the trend being that contamination occurs with in-

creasing frequency as the number of requested roots and the size of the configuration space

is increased. Additionally, spin contamination can be observed in moderately sized configura-

tion spaces where fewer roots are requested by arbitrarily tightening the residual convergence

threshold. Each of these observations supports the hypothesis that numerical instability is

the dominant cause of the spin contamination in this case, motivating us to seek a technical

solution to the problem.
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B.2 Interior Spin States, Second-Order Projection, and Spin Pu-
rity Thresholds

In the paper we only considered states with maximal ms (singlets with ms = 0, doublets

with ms = 1/2, etc.), but in principle our spin purification schemes can target states with

lower ms. Though computing such interior spin states is not a common practice, we have

investigated the effectiveness of our methods on such states. We calculate the lowest 12

ms = 0.5 quartet states of the ethylene anion, using spin penalty, first-order projection, and

Löwdin projection purification, and present the results in Table B.1.

Table B.1: Number of iterations required and times-to-solution for convergence of 12 quartet
states of anionic ethylene at the HF-CAS-(13,12)-CI/6-31G?? level. Results are shown for the
spin penalty method as a function of the spin penalty parameter, α, and for the first-order
and Löwdin spin projection methods, with ||r|| = 1.0× 10−6 in both cases. The number of
states converging to the incorrect spin symmetry are given in parentheses.

α Iterations σ Formations CI Time-to-Solution (s)

Spin Penalty
0.00 52 (9) 361 550.65
0.01 62 (8) 356 586.29
0.02 88 (5) 343 624.77
0.05 64 (1) 336 581.99
0.10 79 431 723.83
0.15 96 538 1073.61
0.20 117 619 1145.88

First-Order Projection
— 30 234 2125.58

Löwdin Projection
— — — —

In contrast to results given for the singlet and doublet states, where projection purification

excels at facilitating convergence to the correct eigenvectors, penalty purification provides a

more efficient strategy than either of the projection methods (first-order projection has dif-

ficulty purifying the trial vectors, leading to a large time-to-solution, and Löwdin projection

calculation fails to converge) when ms = 1/2 quartet states are sought. The complexity of

the problem is reflected in the large α values required to allow penalty method purified CI

138



convergence. A penalty method time-to-solution of 723.83 seconds, with a value of α = 0.10,

is nearly 3× faster than the solution provided by the first-order projection method (2125.58

s).

It is conceivable that a higher-order projector could promote better performance of the

projection method. To test this idea we implemented a second-order projector according to

χ =
(
S2 − I〈Ŝ2〉target

)2
c (B.1)

A second test system, a small Ag11 icosahedral cluster with geometry given in Cartesian

coordinates below, was used to provide an additional example of behavior of each of the

spin penalty, first-order projection, and Löwdin projection methods while evaluating the

relative performance of the second-order projector. Calculation of the lowest 20 doublet

states of Ag11 at the HF-CAS-(11,11)-CI/LANL2DZ level of theory with various forms of

spin purification is described in Table B.2, and the analogous quartet calculation results are

presented in Table B.3.
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Table B.2: Number of iterations required and times-to-solution for convergence of 20 doublet
states of Ag11 at the HF-CAS-(11,11)-CI/LANL2DZ level. Results are shown for the spin
penalty method as a function of the spin penalty parameter, α, and for each of the first-order,
second-order, and Löwdin spin projection methods, with ||r|| = 1.0×10−6 in each case. The
number of states converging to the incorrect spin symmetry are given in parentheses.

α Iterations σ Formations CI Time-to-Solution (s)

Spin Penalty
0.00 30 (6) 343 128.51
0.01 33 515 217.45
0.02 50 736 317.81
0.05 90 1214 536.20
0.10 124 1821 831.92
0.15 174 2387 1134.63
0.20 212 2837 1315.25

First-Order Projection
— 17 292 335.98

Second-Order Projection
— 17 293 4832.94

Löwdin Projection
— 17 291 375.26

For the doublet states, the first-order projection method is slightly more efficient than

the Löwdin projector (335 vs 375 seconds), while the second-order projector performs very

poorly. Interestingly the penalty method gives the fastest solution (at a value α = 0.01) of

only 217.45 seconds. The mediocre performance of the second-order projector is surprising,

but can be understood by considering the effect of multiple applications of the projector

to a trial vector. A single application acts to remove the contaminating component having

the largest magnitude, and subsequent applications tend to remove contaminants having

decreasing magnitude. Unfortunately, each additional projection may reintroduce contam-

ination through numerical instability, resulting in overall worse purification behavior than

both first-order and Löwdin projection.
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Table B.3: Number of iterations required and times-to-solution for convergence of 20 quartet
states of Ag11 at the HF-CAS-(11,11)-CI/LANL2DZ level. Results are shown for the spin
penalty method as a function of the spin penalty parameter, α, and for the first-order and
Löwdin spin projection methods, with ||r|| = 1.0× 10−6 in each case. The number of states
converging to the incorrect spin symmetry are given in parentheses.

α Iterations σ Formations CI Time-to-Solution (s)

Spin Penalty
0.00 26 (14) 366 131.04
0.01 36 (1) 534 236.33
0.02 58 767 346.62
0.05 99 1258 574.43
0.10 138 1844 874.89
0.15 173 2375 1126.56
0.20 223 2853 1321.49

First-Order Projection
— — — —

Löwdin Projection
— 19 289 1631.02

The ms = 1/2 quartet state calculation of the Ag11 cluster behaves similarly as the

doublet state calculation, where penalty purification achieves superior results when compared

to the projection methods, requiring only 346 seconds (α = 0.02) vs 1631 seconds for Löwdin

projection. For this system, first-order projection fails to purify the trial vectors sufficiently,

resulting in convergence failure of the CI calculation. It is clear that the effectiveness of

the purification method depends strongly on the nature of the configuration space, with the

overall trend being that first-order projection purification provides the best performance in

cases where projection works, but in extreme cases penalty purification exhibits the most

robust behavior of all methods, albeit at the cost of determining the appropriate parameter

α.

Projection purification depends on the threshold for spin purity of the trial vector. Table

B.4 shows the effect of varying the value between 1.0 × 10−9 − 1.0 × 10−15 using first-

order purification applied to the ethylene anion at HF-CAS-(7,8)-CI/6-31G?? with ||r|| =

1.0 × 10−6. The results shown are applicable to all projection type methods, since the
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purification threshold is independent of how the trial vector is purified.

Table B.4: CI convergence of 20 doublet states of ethylene anion at HF-CAS-(7,8)-CI/6-
31G??, ||r|| = 1.0× 10−6, as a function of trial vector spin purity threshold using first-order
projection.

Threshold Iterations Number of Projections

1.0× 10−9 — —

1.0× 10−10 40 2053

1.0× 10−11 40 2260

1.0× 10−12 40 2482

1.0× 10−13 40 2700

1.0× 10−14 40 2915

1.0× 10−15 40 3156

A minimum threshold of 1.0×10−10 is required to ensure spin pure convergence of the CI

problem (the case with a threshold of 1.0×10−9 fails to converge), but further tightening the

threshold does not improve CI convergence, and only serves to incur additional computational

cost due to the increased number of projection operations. The threshold is expected to

change as the CI convergence criteria is changed (i.e. if we require ||r|| = 1.0 × 10−8, we

might expect a purity threshold of 1.0 × 10−14 to be more suitable), but since the residual

tolerance is fixed at ||r|| = 1.0 × 10−6 for CI calculations where orbital or analytic energy

gradients are desired, a threshold of 1.0 × 10−10 seems to be generally applicable to all

configuration spaces.

B.3 Preconditioning for Penalty Purification

Here we consider that, in the context of penalty purification, the preconditioner may

need to be altered to be consistent with the penalized Hamiltonian. Both the Davidson and

Evangelisti preconditioners were modified to account for the constant diagonal element shift

of α
(

S2
ii − 〈Ŝ

2〉target
)2

, and we have tested the modified preconditioners by calculating the

20 lowest doublet states of the ethylene anion in Figure B.1 using HF-CAS-(7,8)-CI/6-31G??,

||r|| = 1.0 × 10−6,and α = 0.10 as shown in Table B.5. Surprisingly, the unshifted precon-
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Table B.5: Number of iterations required for convergence of 20 states of anionic ethylene
using HF-CAS-(7,8)-CI/6-31G?? as a function of preconditioner choice used with the spin
penalty purification method, α = 0.10 and ||r|| = 1.0× 10−6.

Preconditioner Iterations

Davidson Unshifted 51
Davidson Shifted 57

Evangelisti Unshifted 40
Evangelisti Shifted 43

ditioner outperforms the shifted preconditioner using both Davidson and Evangelisti style

preconditioning. A more careful look at the nature of the Hamiltonian modification provides

some insight into this behavior. The contribution from the S2 matrix is non-diagonally dom-

inant. For example consider single excitations from a closed shell reference. Off-diagonal

elements between coupled determinants have values of ±1, while diagonal elements also have

value of one, for both of the occupation-equivalent α and β singly-excited determinants. An

alternative way of viewing the problem is that the open-shell singlet and triplet configura-

tions are indistinguishable in the preconditioner whether or not the spin penalty contribution

is included. By neglecting the penalty in the preconditioner neither state is penalized, and

including it penalizes both states, leading to diminished convergence.
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B.4 Ag19 SA-CASSCF CI Vector Coefficients and Orbital Occu-
pancies

Table B.6: Orbital occupancies and CI vector coefficients for the 12 lowest doublet states of
Ag19 calculated using SA-12-CAS-(11,11)-SCF/LANL2DZ. Table entries “X” denote doubly
occupied orbitals, “/” α electron occupied orbitals, and “\” β electron occupied orbitals.

State Coefficient Orbital
176 177 178 179 180 181 182 183 184 185 186

D0 0.931 X X X X X /

D1 0.931 X X X X / X

D2 0.907 X X X X X /
D2 -0.134 X X X X X /
D2 -0.121 X X X X X /

D3 0.925 X X X X X /
D3 -0.117 X X X X X /

D4 -0.907 X X X X X /
D4 0.116 X X X X X /
D4 -0.116 X X X X X /

D5 0.888 X X X X X /
D5 0.201 X X X X X /
D5 0.131 X X X X / \ /

D6 -0.805 X X X X X /
D6 0.270 X X X X / \ /
D6 0.230 X X X X / / \
D6 0.181 X X X X X /
D6 -0.141 X X X X X /
D6 0.136 X X X X X /

D7 -0.868 X X X / X X
D7 0.290 X X / X X X

D8 0.730 X X X X / / \
D8 -0.452 X X X X \ / /
D8 0.277 X X X X / \ /
D8 0.183 X X X X / / \
D8 0.132 X X X X / \ /

D9 -0.631 X X X X / / \
D9 -0.444 X X X X / \ /
D9 -0.368 X X X X \ / /
D9 -0.256 X X X X / \ /
D9 0.187 X X X X \ / /
D9 0.119 X X X X X /
D9 0.113 X X X X / / \

D10 0.630 X X X X / \ /
D10 0.466 X X X X \ / /
D10 -0.329 X X X X / / \
D10 0.199 X X X X / / \

Continued on next page
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Table B.6 (cont’d)

State Coefficient Orbital
176 177 178 179 180 181 182 183 184 185 186

D10 -0.178 X X X X / \ /
D10 0.164 X X X X / / \
D10 0.152 X X X X \ / /
D10 -0.101 X X X X \ / /

D11 -0.692 X X X X / \ /
D11 -0.420 X X X X / / \
D11 -0.338 X X X X X /
D11 -0.272 X X X X \ / /

B.5 Supporting Geometries

We provide Cartesian coordinates for the ethylene and silver structures used in this work

in units of Angstrom (Å).

Ethylene (C2H4)
X Y Z

C 0.35673483 -0.05087227 -0.47786734
C 1.61445821 -0.06684947 -0.02916681
H -0.14997206 0.87780529 -0.62680155
H -0.16786485 -0.95561368 -0.69426370
H 2.15270896 0.84221076 0.19314809
H 2.16553127 -0.97886933 0.15232587

Small Silver Cluster (Ag11)
X Y Z

Ag 0.958652 -0.279967 1.212703
Ag 0.005323 2.137448 0.018571
Ag 1.143187 -2.160336 -0.874374
Ag 3.518286 -0.894511 0.133855
Ag 1.683504 0.501181 -1.540101
Ag -0.956338 -0.279447 -1.208969
Ag -1.697899 0.495065 1.544716
Ag -2.785287 1.764762 -0.708986
Ag -3.520960 -0.880522 -0.147912
Ag 2.807778 1.753710 0.692652
Ag -1.156247 -2.157383 0.877846
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Large Silver Cluster (Ag19)
X Y Z

Ag -0.223357 -1.023232 2.404318
Ag -2.602282 0.562832 -2.463318
Ag -2.573188 -2.352427 -1.548365
Ag 2.203440 0.549933 -2.390372
Ag 3.773015 -0.174255 -0.004604
Ag -0.226951 -1.024053 -2.405452
Ag 2.128632 2.312016 0.001861
Ag -2.600437 0.560283 2.465417
Ag 2.212257 0.548246 2.386126
Ag -0.224276 1.789238 1.606984
Ag 2.214150 -2.236559 1.483518
Ag -1.727027 -0.242038 -0.000106
Ag -0.226709 -2.731956 0.002640
Ag -2.470578 2.409640 0.003766
Ag 1.051719 -0.221501 0.000342
Ag -0.118414 4.076477 -0.001229
Ag -2.572912 -2.352702 1.549742
Ag -0.225624 1.789461 -1.605864
Ag 2.208543 -2.239402 -1.485402
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APPENDIX C

SUPPORTING INFORMATION FOR: LARGE SCALE ELECTRONIC
CORRELATION CALCULATIONS: RANK-REDUCED FULL

CONFIGURATION INTERACTION

C.1 Supporting Geometries

We provide Cartesian coordinates for the ethylene dimer and acene structures used in this

work in units of Angstrom (Å).

Ethylene Dimer (C2H4)2
X Y Z

C 0.35673483 -0.05087227 -0.47786734
C 1.61445821 -0.06684947 -0.02916681
H -0.14997206 0.87780529 -0.62680155
H -0.16786485 -0.95561368 -0.69426370
H 2.15270896 0.84221076 0.19314809
H 2.16553127 -0.97886933 0.15232587
C 6.35673483 -0.05087227 -0.47786734
C 7.61445821 -0.06684947 -0.02916681
H 5.85000000 0.87780529 -0.62680155
H 5.84000000 -0.95561368 -0.69426370
H 8.15270896 0.84221076 0.19314809
H 8.16553127 -0.97886933 0.15232587
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Singlet Naphthalene (C10H8)
X Y Z

C -2.433661 0.708302 0.000000
C -2.433661 -0.708302 0.000000
H -3.378045 -1.245972 0.000000
H -3.378045 1.245972 0.000000
C -1.244629 1.402481 0.000000
C -1.244629 -1.402481 0.000000
C -0.000077 0.717168 0.000000
C -0.000077 -0.717168 0.000000
H -1.242734 2.490258 0.000000
H -1.242734 -2.490258 0.000000
C 1.244779 1.402533 0.000000
C 1.244779 -1.402533 0.000000
C 2.433606 0.708405 0.000000
C 2.433606 -0.708405 0.000000
H 1.242448 2.490302 0.000000
H 1.242448 -2.490302 0.000000
H 3.378224 1.245662 0.000000
H 3.378224 -1.245662 0.000000
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Triplet Naphthalene (C10H8)
X Y Z

C 2.488282 0.681831 0.000000
C 2.488282 -0.681831 0.000000
H 3.419575 -1.241120 0.000000
H 3.419575 1.241120 0.000000
C 1.238411 1.400670 0.000000
C 1.238411 -1.400670 0.000000
C -0.000001 0.725296 0.000000
C -0.000001 -0.725296 0.000000
H 1.247313 2.487396 0.000000
H 1.247313 -2.487396 0.000000
C -1.238411 1.400665 0.000000
C -1.238411 -1.400665 0.000000
C -2.488281 0.681833 0.000000
C -2.488281 -0.681833 0.000000
H -1.247325 2.487390 0.000000
H -1.247325 -2.487390 0.000000
H -3.419563 1.241141 0.000000
H -3.419563 -1.241141 0.000000
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Singlet Anthracene (C14H10)
X Y Z

C -3.660857 0.713070 0.000000
C -3.660857 -0.713070 0.000000
H -4.607652 -1.246404 0.000000
H -4.607652 1.246404 0.000000
C -2.479632 1.407088 0.000000
C -2.479632 -1.407088 0.000000
C -1.224085 0.722636 0.000000
C -1.224085 -0.722636 0.000000
H -2.477321 2.494657 0.000000
H -2.477321 -2.494657 0.000000
C 0.000029 1.403284 0.000000
C 0.000029 -1.403284 0.000000
C 1.224035 0.722646 0.000000
C 1.224035 -0.722646 0.000000
H -0.000033 2.491609 0.000000
H -0.000033 -2.491609 0.000000
C 2.479679 1.407102 0.000000
C 2.479679 -1.407102 0.000000
C 3.660841 0.713104 0.000000
C 3.660841 -0.713104 0.000000
H 2.477242 2.494663 0.000000
H 2.477242 -2.494663 0.000000
H 4.607703 1.246313 0.000000
H 4.607703 -1.246313 0.000000
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Triplet Anthracene (C14H10)
X Y Z

C 3.706046 0.691777 0.000000
C 3.706046 -0.691777 0.000000
H 4.641764 -1.243830 0.000000
H 4.641764 1.243830 0.000000
C 2.480846 1.395697 0.000000
C 2.480846 -1.395697 0.000000
C 1.255174 0.720576 0.000000
C 1.255174 -0.720576 0.000000
H 2.484966 2.483134 0.000000
H 2.484966 -2.483134 0.000000
C 0.000000 1.406192 0.000000
C 0.000000 -1.406192 0.000000
C -1.255173 0.720575 0.000000
C -1.255173 -0.720575 0.000000
H -0.000001 2.493700 0.000000
H -0.000001 -2.493700 0.000000
C -2.480846 1.395696 0.000000
C -2.480846 -1.395696 0.000000
C -3.706045 0.691777 0.000000
C -3.706045 -0.691777 0.000000
H -2.484968 2.483133 0.000000
H -2.484968 -2.483133 0.000000
H -4.641762 1.243835 0.000000
H -4.641762 -1.243835 0.000000
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Singlet Tetracene (C18H12)
X Y Z

C 4.889184 0.715267 0.000000
C 4.889184 -0.715267 0.000000
H 5.837094 -1.246479 0.000000
H 5.837094 1.246479 0.000000
C 3.711380 1.409387 0.000000
C 3.711380 -1.409387 0.000000
C 2.450840 0.725941 0.000000
C 2.450840 -0.725941 0.000000
H 3.709630 2.496931 0.000000
H 3.709630 -2.496931 0.000000
C 1.235427 1.406152 0.000000
C 1.235427 -1.406152 0.000000
C 0.000016 0.726124 0.000000
C 0.000016 -0.726124 0.000000
H 1.235305 2.494321 0.000000
H 1.235305 -2.494321 0.000000
C -1.235526 1.406147 0.000000
C -1.235526 -1.406147 0.000000
C -2.450799 0.725948 0.000000
C -2.450799 -0.725948 0.000000
H -1.235335 2.494309 0.000000
H -1.235335 -2.494309 0.000000
C -3.711407 1.409399 0.000000
C -3.711407 -1.409399 0.000000
C -4.889136 0.715307 0.000000
C -4.889136 -0.715307 0.000000
H -3.709510 2.496929 0.000000
H -3.709510 -2.496929 0.000000
H -5.837057 1.246476 0.000000
H -5.837057 -1.246476 0.000000
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Triplet Tetracene (C18H12)
X Y Z

C -4.926099 0.698684 0.000000
C -4.926099 -0.698684 0.000000
H -5.865246 -1.244975 0.000000
H -5.865246 1.244975 0.000000
C -3.716632 1.397315 0.000000
C -3.716632 -1.397315 0.000000
C -2.486849 0.717519 0.000000
C -2.486849 -0.717519 0.000000
H -3.717388 2.484893 0.000000
H -3.717388 -2.484893 0.000000
C -1.231329 1.404734 0.000000
C -1.231329 -1.404734 0.000000
C 0.000000 0.730940 0.000000
C 0.000000 -0.730940 0.000000
H -1.236114 2.492628 0.000000
H -1.236114 -2.492628 0.000000
C 1.231329 1.404734 0.000000
C 1.231329 -1.404734 0.000000
C 2.486848 0.717519 0.000000
C 2.486848 -0.717519 0.000000
H 1.236114 2.492628 0.000000
H 1.236114 -2.492628 0.000000
C 3.716633 1.397314 0.000000
C 3.716633 -1.397314 0.000000
C 4.926099 0.698684 0.000000
C 4.926099 -0.698684 0.000000
H 3.717391 2.484892 0.000000
H 3.717391 -2.484892 0.000000
H 5.865245 1.244978 0.000000
H 5.865245 -1.244978 0.000000
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Singlet Pentacene (C22H14)
X Y Z

C 6.117721 0.716456 0.000000
C 6.117721 -0.716456 0.000000
H 7.065952 -1.247064 0.000000
H 7.065952 1.247064 0.000000
C 4.941657 1.410527 0.000000
C 4.941657 -1.410527 0.000000
C 3.678746 0.727647 0.000000
C 3.678746 -0.727647 0.000000
H 4.939919 2.498020 0.000000
H 4.939919 -2.498020 0.000000
C 2.467582 1.407836 0.000000
C 2.467582 -1.407836 0.000000
C 1.226500 0.728534 0.000000
C 1.226500 -0.728534 0.000000
H 2.467624 2.495998 0.000000
H 2.467624 -2.495998 0.000000
C -0.000028 1.408524 0.000000
C -0.000028 -1.408524 0.000000
C -1.226469 0.728539 0.000000
C -1.226469 -0.728539 0.000000
H -0.000017 2.496573 0.000000
H -0.000017 -2.496573 0.000000
C -2.467625 1.407846 0.000000
C -2.467625 -1.407846 0.000000
C -3.678713 0.727655 0.000000
C -3.678713 -0.727655 0.000000
H -2.467643 2.496006 0.000000
H -2.467643 -2.496006 0.000000
C -4.941671 1.410535 0.000000
C -4.941671 -1.410535 0.000000
C -6.117708 0.716482 0.000000
C -6.117708 -0.716482 0.000000
H -4.939849 2.498024 0.000000
H -4.939849 -2.498024 0.000000
H -7.065930 1.247100 0.000000
H -7.065930 -1.247100 0.000000
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Triplet Pentacene (C22H14)
X Y Z

C -6.148662 0.703577 0.000000
C -6.148662 -0.703577 0.000000
H -7.090330 -1.245586 0.000000
H -7.090330 1.245586 0.000000
C -4.949456 1.399985 0.000000
C -4.949456 -1.399985 0.000000
C -3.712886 0.717632 0.000000
C -3.712886 -0.717632 0.000000
H -4.948444 2.487564 0.000000
H -4.948444 -2.487564 0.000000
C -2.464142 1.403071 0.000000
C -2.464142 -1.403071 0.000000
C -1.244230 0.729785 0.000000
C -1.244230 -0.729785 0.000000
H -2.468456 2.491214 0.000000
H -2.468456 -2.491214 0.000000
C 0.000000 1.408308 0.000000
C 0.000000 -1.408308 0.000000
C 1.244230 0.729785 0.000000
C 1.244230 -0.729785 0.000000
H 0.000000 2.496125 0.000000
H 0.000000 -2.496125 0.000000
C 2.464142 1.403071 0.000000
C 2.464142 -1.403071 0.000000
C 3.712886 0.717632 0.000000
C 3.712886 -0.717632 0.000000
H 2.468456 2.491214 0.000000
H 2.468456 -2.491214 0.000000
C 4.949456 1.399985 0.000000
C 4.949456 -1.399985 0.000000
C 6.148662 0.703577 0.000000
C 6.148662 -0.703577 0.000000
H 4.948445 2.487564 0.000000
H 4.948445 -2.487564 0.000000
H 7.090329 1.245586 0.000000
H 7.090329 -1.245586 0.000000
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