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ABSTRACT

NOVEL SIMULATION AND DATA PROCESSING ALGORITHMS FOR EDDY CURRENT
INSPECTION

By

Anton Efremov

EddyCurrent Testing (ECT) is a widely used technique in the area of Nondestructive Evaluation.

It offers a cheap, fast, non-contact way for finding surface and subsurface defects in a conductive

material. Due to development of new designs of eddy current probe coils and advance of model

based solutions to inverse problems in ECT, there is an emerging need for fast and accurate

numerical methods for efficient modeling and processing of the data. This work contributes to the

two directions of computational ECT: eddy current inspection simulation ("forward problem") and

analysis of the measured data for automated defect detection ("inverse problem").

A new approach to simulate low-frequency electromagnetics in 3D is presented, based on a

combination of a frequency-domain reduced vector potential formulation with a boundary condition

based on Dirichlet-to-Neumann operator. The equations are solved via a Finite Element Method

(FEM), and a novel technique for the fast solution of the related linear system is proposed. The

performance of the method is analyzed for a few representative ECT problems. The obtained

numerical results are validated against analytic solutions, other simulation codes, and experimental

data.

The inverse problem of interpreting measured ECT data is also a significant challenge in many

practical applications. Very often, the defect indication in a measurement is very subtle due to the

large contribution from the geometry of the test sample, making defect detection very difficult. This

thesis presents a novel approach to address this problem. The developed algorithm is applied to

real problems of detecting defects under steel fasteners in aircraft geometry using 2D data obtained

from a raster scan of a multilayer structure with a low frequency eddy current excitation and GMR

(Giant Magnetoresistive) sensors. The algorithm is also applied to the data obtained from EC

inspection of heat exchange tubes in nuclear power plant.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the modern world Nondestructive Testing (NDT) plays an important role in science and

engineering. The main objective of NDT is to assess the structural integrity of critical parts

via detection and characterization of flaws, without destroying the usability of the part. NDT is

widely used in design, production and maintenance stages in several industries, such as aerospace,

nuclear, automotive, etc. Some of the most frequently used methods in NDT include ultrasound,

radiographic, elecromagnetic, liquid penetrant testing, etc, and details of these methods can be

found in [1].

This thesis is focused on different aspects of electromagnetic NDT methods. The underlying

physics of electromagnetic NDT methods is governed by the set of Maxwell’s equations and

contains several classes of methods based on different approximations. These methods range from

DC (magnetic flux leakage) and magnetoquasistatic limit (eddy currents) to midrange (microwave

testing) and high frequency (terahertz imaging, visual inspection). A detailed overview is found in

the fundamental work [2].

Eddy Current Testing (ECT) is one of the well-established and widely used electromagnetic

NDT techniques. It is used to inspect objects that are made of conductive materials. The physical

foundation of the method is the following: an alternating current source generates a time-varying

magnetic field, which induces eddy currents in a conducting object. Any imperfections in the test

specimen, like cracks or material property variations, will affect the eddy current distribution, and

cause the associated induced magnetic flux density to change, This change is detected by external

measurements. For example, the inducedmagnetic flux density variations could be detected directly

using GMR sensors [3] or by measuring the impedance of the reception coils [4].

Eddy current testing method is non-contact, which leads to lower inspection time and offers
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reasonable sensitivity to detect surface and near surface defects. In addition, it does not require

complicated equipment compared to other techniques and hence offers a low cost solution. The

simplest setup could be build using just an impedance analyzer and a coil excited by an alternating

current source.

However, eddy currents are limited by the skin effect, whereby the magnitude of the induced

current density and magnetic field decreases exponentially with the depth into the conductive

media [5]. Further, the decay rate increases as the frequency goes up. It is important to note that

in general, the contribution to the eddy current signal due to a defect may be orders of magnitude

smaller relative to the background signal in a defect free sample. In addition, it is important to

understand the influence of other factors that impact the field distribution, such as geometry and

material properties of the inspected specimen, excitation frequency, probe lift-off variations and

wobble, and so on.

In view of these considerations, it is extremely valuable to have a computational model that

can simulate the impact of these factors on the ECT probe measurements. Indeed, such simulation

models can help to understand almost all aspects of the testing process, including optimization

of sensors and system designs, analysis of dependencies between experimental parameters and

resulting signals, generation of defect signatures, visualization, postprocessing and so on. It is

impossible to build an analytical model that can take into account all these considerations.

Numerical modeling is extremely important in all stages of the nondestructive inspection, from

research and development and up to processing and analysis of acquired inspection data. Nowadays

computational power is rapidly growing, which allows us to model the inspection of more complex

geometries with sophisticated probe designs, conduct the Probability Of Detection (POD) studies,

and so on. Consequently, there is always a strong demand for fast and accurate computational

models in order to address the challenges imposed by the real-world problems.

The present research focuses on two computational aspects where ECT simulations play a key

role: the "forward problem" which predicts the signal measured by an ECT probe when it scans

over a given specimen, and the "inverse problem" which entails distinguishing between the healthy
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and damaged regions of the test sample based on information contained in EC NDTmeasurements.

The primary goals of this work could be formulated in the following way:

1. To develop an accurate and computationally efficient numerical method to be used in low-

frequency electromagnetics simulations for eddy current testing problems.

2. To develop a signal processing algorithm for automatic defect detection in one- and two-

dimensional scan data obtained from the ECT inspection.

1.2 Literature review

1.2.1 Numerical methods for eddy current simulations

In classical electrodynamics the behavior of electromagnetic fields is governed by Maxwell’s

equations. However, analytic solutions to these equations could be derived in closed form only for a

small set of canonical problems. Numerical solutions to Maxwell’s equations gained considerable

interest in computational electromagnetics with the growth of computer industry in the middle

of 20th century and since then evolved into a broad scientific discipline with numerous practical

applications.

In certain casesMaxwell’s equations could be simplified while retaining high accuracy. Broadly

speaking, the different classes of models that have been developed are based on the nature of the

excitation field, electrical size of the investigated object and material properties. Low frequency

approximations investigate objects that are small compared to the wavelength. These models are

characterized by assuming a quasistatic form of the equations, where time derivative of electric or

magnetic fields are neglected, resulting in a set of equations for electric and magnetic fields that

are decoupled. In the quasistatic models all aspects of wave propagation are neglected.

Eddy current testing is generally applied to detect surface and subsurface defects in a conductive

specimen [6]. Due to the skin effect, the frequency range suitable for inspection corresponds to

a wavelength which is orders of magnitude larger than the size of the object. For example, an

inspection of the conducting alloy tubes with outer diameter of 25mm and a wall thickness of 1mm
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is typically carried out with excitation frequency in the range of 105Hz, which corresponds to a

skin depth of 10−3m and wavelength of 103m. It follows that the inspection process could be

effectively modeled by the means of a suitable low frequency model [7]: the magneto-quasistatic

approximation [8].

Maxwell’s equations can be formulated in time or frequency domains, which are related by

Fourier transform. Time domain formulations allow simulation of an arbitrary excitation pulse,

but have to incorporate a time discretization scheme into the numerical model, whereas frequency

domain formulations assume a sinusoidal time dependency and does not require a time discretization

scheme. Both approaches are widely utilized in eddy current NDT modeling: for example, time

domain methods are used to simulate pulsed eddy currents where the source is a step function,

whereas frequency domain methods are applied for modeling eddy current inspections where the

inspection is done at multiple frequencies.

In order to solveMaxwell’s equations numerically, an equivalent "more computational-friendly"

formulation of the problemmust first be derived. There are three types of formulations applicable to

low-frequency case, namely, integral formulations, differential formulations and mixed approaches.

1.2.1.1 Methods based on integral formulations

When the investigated partial differential equation (PDE) has a known Green’s function, its

exact solution could be written in an integral form [9]. This mathematical concept is the foundation

of a family of integral equation methods, (for example, Method of Moments [10]) and it is widely

used in computational electromagnetics. Generally, in integral formulation all material regions in

the problem are considered as artificial sources. The unknowns are then associated with artificial

source current densities (either electric or magnetic) that satisfy proper integral equations which

compute the electric and magnetic fields in desired regions.

A distinctive feature of integralmethods is that the artificial source currents reside in thematerial

regions which are usually bounded domains (except a few cases where infinite canonical shapes

like halfspace, slab, cylinder, etc. are applicable). Sometimes it is possible to derive formulations
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which contain only surface integrals (surface integral equation formulations, SIE), whereas a

volume distribution of currents results in volume integral equation formulations (VIE) [11].

Due to their high accuracy, integral equation formulations are frequently utilized to simulate

eddy current problems. Various methods have been proposed based on different field and

potential formulations. A detailed review of the different methods can be found in literature

as follows: general formulations [12, 13], formulations involving source coil [14, 15], and other

recent publications [16–20].

There are several challenges related to numerical implementation of integral formulations. For

instance, the related integral operators have singular kernels and need to be carefully implemented

in order to retain accuracy. Linear systems obtained from VIE might be ill-conditioned [11], and

special preconditioning might be required (see [21] for eddy current example).

Further, the derived system of linear equations is dense, which imposes a limit on the number of

unknowns and leads to increased computation time. However, in some cases an explicit evaluation

of the full matrix is avoided. Several fast methods allow to reduce numerical complexity of these

problems based on physical or mathematical approximations, such as AIM [22], FMM [23], ACA,

and their applications to low-frequency case [24–27].

Compared to differential formulations, it is more difficult to adopt integral methods to model

practical eddy current problems which involve nonlinear magnetic materials, though some research

on this subject has been conducted in [28–31], and an efficient computational model presented in

more recent publications [32–34].

1.2.1.2 Methods based on differential formulations

In this case the problem is formulated as a set of differential equations. The natural way of

solving them would be to directly discretize the equations with a numerical scheme, which leads

to methods like Finite Difference Method and Finite Volume Method [11]. The more generic

and significantly more popular approach is to look for an approximate solution in a certain finite-

dimensional subspace of the (infinite-dimensional) solution space – the Finite ElementMethod [35].
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The finite dimensional subspaces provide an approximation of the physical nature of the

fields. Typical requirements in low-frequency cases include continuity and discontinuity of field

components, curl or div conformance and so on. The set of appropriate subspaces is given and

investigated in [36–38] .

The first applications of FEM to eddy current problems were reported by Palanisamy and

Lord [39–41]. A review of the typical low-frequency formulations in terms of potentials can be

found in [42, 43] and its references. One of the widely used formulations is a reduced vector

potential formulation [44–46], which allows the decoupling the source field from the "reaction"

field, that is the field due to a specimen. This decoupling is advantageous in terms of accuracy,

especially when the source field is rather large compared to the reaction field.

The solution domain for differential formulations in unbounded domains is usually the entire

space. However, to implement such a formulation in terms of a computer program, FEM must

operate in a finite domain, where an artificial truncation boundary has to be set and an appropriate

boundary condition has to be imposed. Some of the commonly used approaches include Dirichlet

or Neumann conditions, Absorbing Boundary Conditions [47] or Infinite Elements [48]. More

sophisticated methods are reported in [49] or [50].

Sometimes the system of linear equations arising from FEM is singular, as in the case of

first order edge shape functions which curls are not linearly independent. This may or may not

be a problem, depending on the particular solver and the gauging techniques applied to enforce

uniqueness [51–53]. If multiply connected domains are considered, special treatment is required

[54, 55].

The related systemof linear equations in differential formulations is sparse, which is advantageous

from the computational point of view. Further, real-world problems often include complex

geometries and materials that require very dense volumetric discretization in order to get the

desired accuracy, resulting in large dimensional matrices to be inverted. This issue could be treated

by using higher order elements [47] or optimal hp-FEM approcach reported in [56–58]. Another

possible option is to utilize domain decomposition methods in order to reduce a large problem into
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a set of smaller ones [59, 60].

It should be noted that the classic FEMapproaches (enforcement of tangential/normal continuity)

in some practical scenarios could lead to numerical complications: for example, when interfacing

two volumes discretized with elements of different shapes, or when using non-conforming meshes

typically arising from adaptive mesh refinement techniques. Also, it is somewhat difficult to find

a consistent combination of formulations or approximation spaces in different subdomains. One

way of dealing with these problems would be to utilize discontinuous finite element subspaces:

such approaches are called Discontinuous Galerkin methods [61, 62]. Another solution is offered

by so-called meshless or mesh-free methods. A general overview of meshless methods can be

found in [63], and some applications to electromagnetics and eddy current testing are presented

in [64–68].

1.2.1.3 Hybrid approaches

Hybrid approaches combine different methods in one model in such a way so as to address

individual drawbacks of each approach. A good overview of hybrid approaches is found in [11]

and [69]. Hybrid techniques in eddy current modeling typically involve the classical FEM inside a

domain with a boundary condition based on integral equation [70–72], allowing us to combine the

versatility of FEM in modeling complex structures and materials with accuracy of integral methods

in unbounded domains.

1.2.1.4 Dirichlet-To-Neumann operator

Inmathematics, Poincare-Steklov operator establishes a relationship between different boundary

data of the solution of a PDE. A rigorous discussion of details and definitions of the approach are

presented in [73]. One of its variants, the Dirichlet-to-Neumann operator, maps the Dirichlet data

onto the Neumann data, on the boundary of the problem. Most typical applications of this operator

in computational electromagnetics involve domain decomposition and utilize the map to build a

consistent condition on the interface between domains.
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There are multiple ways of utilizing the solution to the exterior problem to build a boundary

condition. One example is a boundary element method, as in Bossavit and Verite in [74] and

further works [75, 76]. In [74], where the H − q formulation is used, the unknowns are magnetic

field intensity H inside the conductor (without boundary) and magnetic scalar potential q outside

(including boundary). The domain is truncated and the boundary condition is written in terms of

normal derivative mq
m=

, which is approximated from q using boundary element method.

The term "Dirichlet-to-Neumannoperator"with respect to the boundary conditionswas originally

introduced by Givoli in [77]. In this work the general form of the DtN operator expressed through

a Green’s function is derived for a scalar Laplace equation and then applied to obtain the analytic

expression for the operator on a circle and a sphere. Also, the integration with FEM is analyzed.

The technique for computing discrete versions of the DtN operator when analytic form of the

operator is not known (for example, on domains with an arbitrary shape) was proposed in [78] and

extended in [79].

Since then, in computational electromagnetics community the DtN operators have been applied

almost exclusively to 2D scattering problems with a circular truncation boundary for which an

analytic form of the operator is available [80]. The introduction of the DtN operator for a 3D vector

EM problems with spherical boundary is reported in [81].

From a general perspective, DtN entails combining the benefits from two major classes of

numerical formulations: differential formulations and integral formulations. The strength of

differential formulations is that they give rise to sparse system of equations, whereas strength

of integral formulations is that they require discretization of the material regions only. Hence

the DtN method results in reduction of the size of the computational domain. Indeed, the DtN

boundary condition is exact and, therefore, the boundary of the computational domain can be

placed in close proximity of the materials. On the other hand the numerical model is based on a

differential formulation, thus yielding an almost sparse system where only the submatrix related to

the discretization of the DtN operator is fully populated. This matrix is relatively small because

it is related to the unknowns on the boundary of the computational domain only, and it is fully
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populated because the DtN boundary condition is non-local.

The low frequency applications of the DtN operator have not yet been fully investigated, and

the present work aims to fill this gap.

1.2.2 Automatic defect detection algorithms

A second critical aspect of eddy current NDT is the solution to inverse problem that entails

using the information is the probe signal to detect and characterize defects in the test specimen. This

problem varies based on a specific application and needs of the industry. Two specific applications

addressed in this thesis are described in this section.

1.2.2.1 NDE of multi-layer aircraft structures

Fatigue cracks that develop and grow from fastener holes in multi-layer airframe structures

pose a serious problem to the structural integrity of aircrafts [82–84]. There is a growing need for

robust and rapid NDE techniques capable of detecting defects in bottom layers with the fasteners in

place [85]. Traditional methods for locating cracks around fasteners and hidden corrosion include:

• ultrasonic testing (UT) [86–88]

• X-ray [89]

• optical imaging [90]

• lock-in thermography [91]

• eddy current testing (ECT) [92–94]

Low frequency ECT is an indispensable NDE tool for the aviation industry as it provides

necessary penetration depth and sensitivity for detection of flaws deep under the surface without

using couplants. In conventional ECT, magnetic field around fastener site is sensed by absolute

or differential coils, and 2D raster scanning is performed for diagnostic imaging [95]. Recently,
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giant magnetoresistive (GMR) and tunnel magnetoresistive (TMR) sensors have shown promise to

replace field pick-up coils due to their high sensitivity, small size and wide frequency range [96–98].

In order to speed-up the inspection and increase coverage, total magnetic field due to excitation

source and sample is measured by an array of GMR or TMR sensors [99, 100]. For instance,

eddy current probe for the MAUS NDE system developed by Boeing consists of a planar coil that

induces surface current in the test sample [101]. Resulting magnetic field around the fastener site

is measured using the GMR array with 16 elements on a line of symmetry of the coil. Such probe

is mostly sensitive to subsurface cracks perpendicular to induced current.

In this thesis we consider a newly developed probe with rotating eddy current excitation and

differential GMR sensor array field pick up (EC-GMR) [102–106]. The sensor array has the

capability for scanning along two rows of fasteners simultaneously. Inducing rotating surface

current helps to achieve nearly uniform sensitivity to flaws in all directions [104].

1.2.2.2 Data analysis for defect detection

Despite recent advances in eddy current NDT, reliable detection of subsurface defects around

fasteners is not trivial. Defect detection from measured magnetic fields is challenging particularly

when

• scanning over steel fastener sites, or

• the probe signal is corrupted by contributions from vertical edges in top or bottom aluminum

layers.

A simplified finite element model for EC inspection was used to study the challenges in defect

detection from data obtained in the inspection of complicated for multilayer riveted geometries.

Details of the modeling process, multilayered geometry, excitation coil configuration, experimental

implementation and typical signal formation are discussed in the work by Ye from our research

group [105]. The data for developing the novel signal processing algorithms was derived from the

work [107].
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Figure 1.1: FE model showing �I at: (a) defect-free aluminum fastener; (b) aluminum fastener site
with subsurface notch; (c) defect-free steel fastener; (d) steel fastener site with subsurface notch.
Geometries of fastener and defect are marked white. Black contours correspond to 30% of max(�I)
for aluminum fasteners, and pink contours correspond to 10% of max(�I) for steel fastener.

Figure 1.1a shows a typical image for the aluminum fastener. Field pattern �I is circular in

defect-free case, and its circularity breaks down with the presence of subsurface flaw (see Figure

1.1b). Hence, contour deformation coefficient was introduced for damage quantification in earlier

works of the authors [104]. However, subsequent studies revealed that such damage detection

criterion was difficult to apply in case of ferrous fasteners. This is illustrated in Figure 1.1c and

Figure 1.1d, when the fastener in the same model presented earlier is made of low carbon steel

with relative permeability `A = 100. Steel fastener acts as a flux concentrator producing strong �I

component, but disturbance of the measured field due to defect is small, which means that deep

and short cracks may be missed.

It should be noted that this problem is not unique to testing the multilayer structures with steel
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rivets. For instance, similar issues arise in inspection of heat exchanger tubes in nuclear power

plants, where coil arrays detect stress-corrosion cracks in a non-magnetic tube that is held by carbon

steel support structures [108].

EC-GMR probe used in this work has a relatively large coverage that enables scanning over

two rows of fasteners simultaneously. Distortions in the signal are observed even in the absence of

defects: when fasteners are too close to each other or the fastener is close to a vertical edge of the

structure.

Due to the discussed factors, the visual inspection of the acquired data is not sufficient for the

defect detection, which requires the development of automated processing algorithms for enhancing

defect signals. Multiple signal processing techniques have been designed to solve this problem,

including

• principal component analysis (PCA) and independent component analysis (ICA) [109,110]

• Hilbert-Huang transform (HHT) and support vector machines (SVM) [111]

• wavelet analysis and artificial neural networks (ANN) [112]

• model-based image processing [113,114]

• and frequency fusion [115–117]

Dual-frequency fusion reported in [118], provided the most promising and robust results, as it

was able to successfully suppress steel fastener field along with amplification of residual field due

to defect. One of the objectives of this work is to develop robust signal processing algorithms for

detection of subsurface defects, which would extend and generalize the method presented in [118].

1.3 Contributions of this work

There are two main contributions presented in this work.

The first contribution is a full analytical derivation of the hybrid DtN-FEM method designed

for modeling electromagnetics in the low frequency limit. The physics is governed by Magneto-
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Quasistatic approximation and is expressed in terms of a Reduced Vector Potential formulation.

Equations are derived in a weak form using Galerkin procedure with appropriate test functions for

electric scalar and magnetic vector potentials. The Dirichlet-to-Neumann operator is then utilized

to build an exact boundary condition on the truncation boundary. The resulting equations are solved

by the Finite Element Method.

The stiffness matrix in this approach has a dense submatrix related to the DtN operator, which is

a nonlocal one. An important contribution of this work is a derivation of an analytical factorization

of this submatrix in case of a spherical boundary. This makes the computational overhead due to

replacement of a local boundary condition (Dirichlet, Neumann, Robin) with an exact one (DtN)

almost negligible, while retaining the gain in term of computational accuracy and, consequently,

efficiency.

The proposed formulation has been applied to investigate three typical ECT model problems.

The first problem is the simulation of a conducting sphere placed in a uniform magnetic field.

This problem exhibits an analytical solution and thus it is well-suited to validate and analyze the

performance of the method. The second problem simulates the scan of an eddy current probe over

a conducting plate with a subsurface volumetric defect. The predicted probe signal is compared to

the signal generated by a validated benchmark code. In the third problem, an eddy current probe

moves coaxially inside a tube with a volumetric defect in the tube wall, and the results are compared

to experimental data.

The second contribution is a method for defect detection from multi-frequency EC image data.

This work introduces a generalization of the frequency fusion algorithm in two directions:

1. The search for fusion coefficients is formulated as a minimization problem that allows the

use of an unlimited number of fusion parameters and significantly improves the overall

performance of the algorithm.

2. A nonlinear "power" and "threshold" operations are introduced to add an ability to fuse the

signal with the processed versions of itself, effectively extending the method to process data
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acquired at a single frequency.

These improvements lead to higher sensitivity to smaller defects in the noisy inspection data.

The proposed algorithm is applied to 1D multi-frequency EC inspection of steam generator tubes

with bobbin coils and 2D EC-GMR inspection of riveted plates.

1.4 The structure of the dissertation

The dissertation contains two parts and is organized into six chapters. The first Chapter is an

introduction, containing the motivation for the work and the literature review.

Part I is related to the forward modeling problem and consists of two chapters. Chapter 2

begins with the necessary theoretical background for low frequency electromagnetic modeling

and continues with the description and full derivation of the proposed numerical method for eddy

current computations. Chapter 3 investigates the applications of the method to a few typical model

problems, its performance analysis and validation against experimental data.

Part II is devoted to the signal processing methods for defect detection. Chapter 4 introduces the

improved algorithm for automatic defect detection applicable to single- and multifrequency ECT

data. The applications of this algorithm to 1D and 2D experimental data are presented in Chapter

5.

The general overview of the accomplished work, conclusions and the directions for the future

work are discussed in Chapter 6.
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CHAPTER 2

THE REDUCED VECTOR POTENTIAL FORMULATIONWITH A
DIRICHLET-TO-NEUMANN BOUNDARY CONDITION

This chapter contains the overall derivation of the reduced vector potential formulation with the

boundary conditions imposed by the means of the Dirichlet-to-Neumann operator defined onto a

spherical domain. First, we summarize Maxwell’s equations in the magneto-quasistatic limit and

a reduced vector potential formulation in both strong and weak forms. Then, the analytic form of

the Dirichlet-to-Neumann operator is derived for a spherical boundary. This latter, when combined

with a reduced vector potential formulation in weak form, is used to enforce an exact boundary

condition on the spherical boundary, and thus we have a complete boundary-value problem inside

the sphere. Eventually, using finite element method to solve this problem in a finite-dimensional

subspace, we obtain the system of linear equations whose structure and properties are investigated.

Specifically, it was realized that the small but dense submatrix related to the discrete counterpart

of the DtN operator affects the efficiency in a non negligible way. Therefore, by taking advantage

of the analytical form of the DtN operator, an original sparsification technique was introduced

to reduce the matrix-by-vector product for the DtN related submatrix, thus making the overall

efficiency extremely competitive.

2.1 Maxwell’s equations

In this work, the computational region is Ω = Ω= ∪ Ω2 ∪ Ω< , where Ω2 and Ω< are the

conducting and magnetic regions, respectively, and Ω= is the free space, see Figure 2.1. Domain

Ω has a smooth boundary mΩ = Γ> with an outward-directed normal n̂>.

Throughout this work, the symbols D,B,E,H ,J ,A, q stand for electric and magnetic flux

densities, electric and magnetic fields, current density, magnetic vector potential and electric scalar

potential. Tensors `, a, f represent magnetic permeability, magnetic reluctivity and electrical

conductivity, respectively [51]. Subscript "s" stands for "source", 92 = −1. Equations are written
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Figure 2.1: Schematic of the problem geometry

in frequency domain, where the 4 zlC time dependency with angular frequency l > 0 is assumed.

The problemof interest in the overall domain is represented by a diffusion equation in conducting

regions Ω2 and a magnetostatic one in the complementary domain. Further, the displacement

current is neglected (magneto-quasistatic limit), i.e. zlD ≈ 0. Under this assumption, Maxwell’s

equations take the following form:

∇ ×E = − zlB in Ω (2.1)

∇ ·B = 0 in Ω (2.2)

∇ ×H = J in Ω (2.3)

The constitutive relationships are

H = aB in Ω (2.4)

J =


fE in Ω2

0 elsewhere
(2.5)
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and the continuity equation takes the form

∇ · J = 0 in Ω2 (2.6)

J · n̂2 = 0 on mΩ2 (2.7)

Proper continuity conditions have to be enforced on the boundaries of all material regions, where

tensors ` and f are discontinuous (like the interface Γ2 between conducting and non-conducting

regions):

H × n̂2 andB · n̂2 are continuous on all material boundaries. (2.8)

The source current JB resides in a source region ΩB, which is assumed to be topologically

separated from Ω2. The magnetic field HB and vector potential AB are produced by the source

current JB in free space. They are given by the Biot-Savart law:

HB(r) =
1

4c

∫
ΩB

JB(r′) × ∇
1

|r′ − r | dr
′ (2.9)

AB(r) =
`0
4c

∫
ΩB

JB(r′)
|r′ − r | dr

′ (2.10)

2.2 Reduced Vector Potential formulation

In general, the magnetic vector potentialA and (modified) electric scalar potential q are defined

as

B = ∇ ×A (2.11)

E = − zlA − zl∇q (2.12)

In the reduced vector potential formulation, the total magnetic vector potential is decomposed

as the sum of the known source termAB and the "reaction" termAA :

A = AA +AB (2.13)
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Substituting (2.13) in (2.1), we obtain

∇ × a∇ × (AB +AA ) = f(− zlAB − zlAA − zl∇q) + JB (2.14)

Here we have also decomposed the current density J appearing on the right hand side into a

source current density and an induced current density (which is valid since ΩB ∩Ω2 = ∅):

J = fE + JB (2.15)

The second equation is obtained from (2.6):

∇ · f(− zlAB − zlAA − zl∇q) = 0 (2.16)

After simplification, we get the following system (reduced vector potential formulation in strong

form):

∇ × a∇ ×AA + zlfAA + zlf∇q = −∇ × (aA − 1)HB − zlfAB (2.17)

∇ · ( zlfAA + zlf∇q) = −∇ · ( zlfAB) (2.18)

The equations (2.17) and (2.18) are valid in the entire domain Ω and in the conductive domain

Ω2, respectively. The reduced magnetic potentialAA should satisfy the continuity condition on the

material boundaries, similar to (2.8):

AA × n̂2 is continuous on all material boundaries. (2.19)

In order to derive a weak form of these equations, let’s define the inner product as

(f , g) =
∫
Ω

f · g 3+ (2.20)

Despite the fact that investigated vector functions are complex-valued, the usual complex

conjugate operation is not used in this definition. Indeed, the unknown fields are approximated by

a linear combinations of real-valued functions with complex coefficients.
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The weak form is derived through a Galerkin procedure by using the test functionsN ′ and φ′

The appropriate subspaces for these functions are defined in Section 2.5. In this case, the equations

(2.17, 2.18) can be rewritten as∫
Ω

N ′ · [∇ × a∇ ×AA + zlfAA + zlf∇q] 3+ =
∫
Ω

N ′ · [ − ∇ × (aA − 1)HB − zlfAB] 3+

(2.21)∫
Ω

φ′ · [∇ · ( zlfAA + zlf∇q)] 3+ =
∫
Ω

φ′ · [ − ∇ · ( zlfAB)] 3+ (2.22)

After applying the divergence theorem and vector identities (A.1)-(A.5) (see Appendix A) and

simplifying, equations (2.21) and (2.22) will form the following system (reduced vector potential

formulation in weak form [43], [46]):∫
Ω

∇ ×N ′ · (a∇ ×AA ) d+ + zl

∫
Ω

N ′ · fAA d++

+ zl
∫
Ω

N ′ · f∇q d+ +
∫
Γ>

N ′ · (n̂> × a∇ ×AA ) d( =

= −
∫
Ω

(∇ ×N ′) · (aA − 1)HB d+ − zl
∫
Ω

N ′ · fAB d+ (2.23)

− zl
∫
Ω

∇φ′ · fAA d+ − zl
∫
Ω

∇φ′ · f∇q d+ = zl

∫
Ω

∇φ′ · fAB d+ (2.24)

This formulation is valid in the entire space, with the material properties determined by tensors

`, a, f. In numerical FEM implementation these tensors are assumed constant within each element.

Without loss of generality, it can be assumed that the magnetic properties of the materials are

vanishing in some neighborhood of the outer boundary Γ>. The resulting quantities will be

piecewise-smooth everywhere and discontinuous only on the subdomain boundaries.

2.3 Dirichlet-to-Neumann operator on the sphere

In the proposed approach, the Dirichlet-to-Neumann operator Λ acts on the reduced vector

potential AA . Specifically, it maps the tangential component of AA on Γ> onto the tangential
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component of its curl on Γ>, but for the exterior problem:

Λ : (AA )C → (∇ ×AA )C on Γ>, (2.25)

where the subscript t selects the tangential component of its argument. When the boundary Γ> has

a canonical shape, an explicit form of Λ is available. In this work we use a sphere of radius '0 as

truncation boundary Γ>. Using vector spherical harmonics (defined in Appendix C), the following

multipole expansion forAA in free space can be derived:

AA = −
+∞∑
;=1

;∑
<=−;

Mq

;<
[AA ]

1
';+2

0
Y;<+

+
+∞∑
;=1

;∑
<=−;

Mq

;<
[AA ]

1
';+2

0
U;<+

+
+∞∑
;=1

;∑
<=−;

Mk

;<
[AA ]

1
';+1

0
V;< (2.26)

Here Y;< is a radial harmonic, U;< and V;< are directed in the tangential space onto the

surface of the sphere [51]. The expansion coefficientsMq

;<
[AA ] andMk

;<
[AA ] are computed as:

Mq

;<
[AA ] =

〈AA ,U;<〉
〈U;< ,U;<〉

';+2
0 (2.27)

Mk

;<
[AA ] =

〈AA ,V;<〉
〈V;< ,V;<〉

';+1
0 (2.28)

Here 〈f , g〉 =
∫
Γ>

f · g∗ d(. Using the definition of the curl in spherical coordinates, relevant

vector identities and a definition of vector spherical harmonics (see Appendices B, C) , the following

analytic expression for the curl ofAA is obtained as:

∇ ×AA =
+∞∑
;=1

;∑
<=−;

Mk

;<
[AA ]

;(; + 1)
';+2

0
Y;<−

−
+∞∑
;=1

;∑
<=−;

Mk

;<
[AA ]

;

';+2
0
U;<+

+
+∞∑
;=1

;∑
<=−;

Mq

;<
[AA ]

;

';+3
0
V;< (2.29)

From equations (2.26) and (2.29) operator Λ can be constructed explicitly. It is important to

note that in this case the tangential component of the curl depends only on the tangential component

of the original field, in accordance with the uniqueness conditions.
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2.4 Application of the DtN operator to the boundary term

Next, operator Λ is used to generate an exact boundary condition. Consider the following term

in (2.23): ∫
Γ>

N ′ · (n̂> × a∇ ×AA ) d( (2.30)

Substituting equation (2.29) into (2.30) gives us the following:∫
Γ>

N ′ · (n̂> × a∇ ×AA ) d( = −
+∞∑
;=1

;∑
<=−;

Mk

;<
[AA ]

;

';+2
0

∫
Γ>

N ′ · (n̂> × aU;<) d(+

+
+∞∑
;=1

;∑
<=−;

Mq

;<
[AA ]

;

';+3
0

∫
Γ>

N ′ · (n̂> × aV;<) d( (2.31)

The equation (2.31) is valid if a is a scalar in a neighborhood of Γ>. In our case, Γ> is

topologically separated from other domains, and a = 1
`0

. If Γ> is a sphere, n̂> = r̂. By the means

of (2.27), (2.28) and formulas (C.6)-(C.11) (see Appendix C), after simplification the equation

(2.31) takes the form ∫
Γ>

N ′ · (n̂> × a∇ ×AA ) d( =
[
Λk′ + Λq′

]
, (2.32)

where

Λq′ =
+∞∑
;=1

;∑
<=−;

Mq

;<
[AA ]\

q

;<
Mq

;<
[N ′] (2.33)

Λk′ =
+∞∑
;=1

;∑
<=−;

Mk

;<
[AA ]\

k

;<
Mk

;<
[N ′] (2.34)

\
k

;<
= − 1

`0

;

'2;+4
0
〈V;< ,V;<〉 (2.35)

\
q

;<
=

1
`0

;

'2;+3
0
〈U;< ,U;<〉 (2.36)

OperatorsMq

;<
[ ] andMk

;<
[ ] are defined in equations (2.27) and (2.28) correspondingly.
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2.5 Finite Element Method

The differential formulation defined in (2.17) and (2.18) with an appropriate boundary condition

can be written in operator form as

Lu = f in Ω (2.37)

The corresponding weak problem is given by∫
Ω

w · (Lu − f) 3+ = 0 for ∀w ∈ ( (2.38)

Here w is a test function that belongs to the subspace (. Under certain conditions and appropriate

choice of ( (Lax-Milgram theorem, [38]), the solution of the weak problem also delivers the

solution to the strong one. To translate (2.38) into a computer code, we need to introduce discrete

spaces, approximation and discretization.

The Galerkin Finite Element Method looks for an approximate solution to the weak problem.

It involves the following steps:

1. Select a finite dimensional space: (# = B?0= < w1, . . . ,w# > ⊂ �(38E,Ω)

2. Approximate the solution as ũ =
#∑
:=1

U:w:

3. Build the system of linear equations
∫
Ω

w: · (Lũ − f) 3+ = 0, : = 1, . . . , #

4. Solve the system with respect to unknown coefficients U:

In practical problems it is hard to build functions w: that are defined in the entire domain Ω.

Typically, the computational domain is discretized into subdomains ("elements"), and (# is built

using functions that are local, i.e. nonzero only in a few subdomains.

22



From certain physical considerations [38] it follows that magnetic vector potential AA and

electric scalar potential q belong to the following functional spaces:

AA ∈ �(2DA;,Ω) (2.39)

q ∈ �(6A03,Ω) (2.40)

�(2DA;,Ω) = {A ∈ !2(Ω) | ∇ ×A ∈ !2(Ω)} (2.41)

�(6A03,Ω) = {q ∈ !2(Ω) | ∇q ∈ !2(Ω)} (2.42)

The elementary shape functions have to be elements of the above functional spaces. It can be

shown that if we have a polyhedral discretization of Ω, it is possible to build a discrete subspace

conformal to the corresponding continuous space by using the Whitney complex (see fundamental

book [38]). Specifically, we have to approximate �(6A03,Ω) with nodal functions and �(2DA;,Ω)

with edge functions. So now, using appropriate basis functionsN: andφ: , our unknown quantities

are expressed as

AA =
#�∑
:=1

U:N: (2.43)

q =
#q∑
:=1

V:φ: , (2.44)

where #� and #q represent the number of corresponding basis functions, U: and V: are unknown

coefficients. If the test functions are chosen to be the same as basis functions (N ′ = N: and

φ′ = φ: ) , a square system of linear equations is obtained.

The system of equations will be complete when an appropriate boundary condition is imposed

on Γ>, as will be discussed in the next section.
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2.6 Application of the boundary condition to the FEM system

After substituting (2.43) and (2.44) into (2.27), (2.28) we obtain

Mk

;<
[AA ] =

#�∑
:=1

U:M
k

;<
[N: ] (2.45)

Mq

;<
[AA ] =

#�∑
:=1

U:M
q

;<
[N: ] (2.46)

Substitution of (2.45), (2.46) into (2.33) and (2.34) leads to the the following final representation

of the boundary condition:∫
Γ>

N= · (n̂> × a∇ ×AA ) d( =
#�∑
:=1

U:

[
Λ
k

=:
+ Λ

q

=:

]
, (2.47)

where

Λ
q

=:
=

+∞∑
;=1

;∑
<=−;

Mq

;<
[N: ]\q

;<
Mq

;<
[N=] (2.48)

Λ
k

=:
=

+∞∑
;=1

;∑
<=−;

Mk

;<
[N: ]\k

;<
Mk

;<
[N=] (2.49)

\
k

;<
= − 1

`0

;

'2;+4
0
〈V;< ,V;<〉 (2.50)

\
q

;<
=

1
`0

;

'2;+3
0
〈U;< ,U;<〉 (2.51)

2.7 Stiffness matrix

Next, equations (2.23), (2.24) are combined with (2.47) in order to obtain the complete system

of linear equations. In matrix notation it will take the following form:
� + Λ + �00 �0E

�E0 �EE



0

E

 =


90

9E

 (2.52)

Submatrices �=: , �00=: , �
0E
=:

, �E0
=:

, �EE
=:

, 90= , 9E= are defined in Appendix D. Vectors 0 and

E consists of unknown expansion coefficients U: and V: . The elements of the DtN matrix Λ are

24



given by this formula:

Λ=: = Λ
k

=:
+ Λ

q

=:
(2.53)

The linear system of equations has the following properties:

1. The equations are valid for linear anisotropic materials.

2. Matrix Λ is symmetric.

3. If a is a symmetric tensor, matrix � is symmetric.

4. If f is a symmetric tensor, matrices �00 , �EE are symmetric, and �E0 = (�0E)) .

5. Matrices �, �00 , �0E , �E0 , �EE are sparse.

6. Matrix Λ is square and dense.

7. The system is positive semidefinite. If a gauge is imposed, the system becomes positive

definite.

8. Total number of unknowns is #� + #q

When the first order edge and nodal elements are used and no gauge is imposed, the number of

unknowns is equal to the number of edges in the mesh plus the number of nodes in a conducting

region. The size of matrix Λ equals to the number of edges on the spherical domain boundary.

2.8 Sparsification of the DTN operator

For practical applications, the infinite series in (2.48) and (2.49) have to be truncated. If all

vector spherical harmonics are renumerated with a single index that goes from 1 to ! (total number

of harmonics used), matrix Λ in (2.53) may be rewritten as

Λ = Λk + Λq, (2.54)
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where

Λ
k

=:
=

!∑
9=1
Mk

9
[N=]\k

9
Mk

9
[N: ] (2.55)

Λ
q

=:
=

!∑
9=1
Mq

9
[N=]\q

9
Mq

9
[N: ] (2.56)

If we denote the number of unknowns on the domain boundary as #�, equation (2.55) takes

the form

Λk = "(") (2.57)

" =

©«

Mk

1 [N1] Mk

2 [N1] . . . Mk

!
[N1]

Mk

1 [N2] Mk

2 [N2] . . . Mk

!
[N2]

. . .

Mk

1 [N#�
] Mk

2 [N#�
] . . . Mk

!
[N#�

]

ª®®®®®®®®¬
(2.58)

( =

©«

\
k

1 0 0 . . . 0

0 \
k

2 0 . . . 0

. . .

0 0 0 . . . \
k

!

ª®®®®®®®®¬
(2.59)

Similar expression for matrix Λq can be derived as well. Here matrix " has #� rows and !

columns, matrix ( is a diagonal matrix of order !.

In the proposed approach, the system of equations (2.52) is sparse, so the preferred solution

method is an iterative scheme. Thus, the performance of the approach is determined by the matrix-

vector product operation. If a matrix Λ is explicitly stored as a dense square matrix, the cost

of computing the matrix-vector product H = ΛG is $(#2
�

). However, if we use the analytical

factorization given by (2.57), we could write

ΛkG = "(((")G)), (2.60)

so the total number of operations required to compute H = ΛG in this case would be $(#�!), and

furthermore the assembly and storage of the full matrix Λ is avoided.
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Tomake a qualitative comparison between the computational costswithout andwith sparsification,

it is worth noting that

1. we are interested in high accuracy inside Γ>, and

2. the solution is rather smooth on Γ> (its smoothness increases with '0)

The accuracy of the FEM approximation is directly related to the order of shape functions used,

as well as the size of the element. When the order of shape functions is fixed, the higher accuracy

is achieved through the use of smaller elements, and as a consequence, the increased number of

unknowns. The second observation is based on the fact that in the low-frequency limit the discrete

approximations of the DtN operator given by (2.55) and (2.56) converge rapidly with !, and the

desired accuracy could be reached with relatively small values of ! (see Section 3.2 for a numerical

example).

From these two observations we can conclude that in the practical cases of interest the relation

! << #� holds, thus the impact of the factorization is relevant and reduces the computational

costs from $(#2
�

) to $(#�). In addition, as follows from (2.60), it is sufficent to keep in memory

only the matrix " instead of full matrix Λ, which leads to similar reduction from$(#2
�

) to$(#�)

in the memory requirements.

2.9 Concluding remarks

In this chapter the reduced vector potential formulation with a boundary condition based on a

Dirichlet-to-Neumann operator was derived for domains with spherical boudaries. The formulation

was coupled with the FEM to build a complete numerical method suitable for modeling low-

frequency electromagnetics. A sparsification technique for efficient implementation of the method

was introduced. Several applications of the proposed method for the typical eddy current inspection

problems will be presented in the next chapter.

27



CHAPTER 3

VALIDATION AND APPLICATIONS

This chapter contains an application of the proposed reduced vector potential formulation with

a boundary condition based on a Dirichlet-to-Neumann operator to typical problems arising in the

field of ECT.

The first section contains a description of a numerical implementation of the formulation

explained in Chapter 2. The second section shows the convergence behavior of the overall model

coupled to the DtN operator for the benchmark problem consisting of a current ring in free space. In

particular, the effect of the number of harmonics used to truncate the series expansion representing

the DtN operator on a sphere is studied.

The first benchmark problem simulates a conducting sphere placed in a uniform magnetic

field. This problem can be solved analytically and thus is used to investigate the convergence of

the method, as well as to demonstrate the analytic matrix factorization provided in Section 2.8.

The quantity of interest is the induced current density J inside the conductor. Along with the

analytical solution, the method is compared to a conventional approach based onto the Reduced

Vector Potential formulation coupled with Dirichlet boundary condition.

The second problem deals with simulation of an eddy current coil probe scanning a conducting

plate with a subsurface volumetric defect. In this case, the analytical solution does not exist. The

quantity of interest is the voltage induced in the probe coil in every scan position. The numerical

results are compared to those obtained with a benchmark code CARIDDI [12, 20, 24, 25].

The third problem simulates an eddy current probe moving coaxially inside a conducting tube

with several volumetric defects within the tubewall, such as those encountered during the inspection

of a steam generator tube [119]. The quantity of interest is again the voltage induced in the probe

coil. The numerical results are compared to the experimental data.
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3.1 Implementation details

This section describes the details of software and codes used in the implementation of the

numerical method. The main code was written in Python 3, whereas the computation intensive

parts were implemented in C in compliance with C99 standard. Such an approach allowed us

to combine the extensive capabilities and code simplicity of Python with the high speed of C to

achieve a near optimal computational performance. The code was organized in a modular way, so

it could be easily upgraded or adapted to fit different applications.

The numerical implementation uses the unstructured tetrahedral meshes generated by Gmsh

software [120]. Gmsh has a convenient built-in scripting language that allows to define the geometry

and set the desired mesh properties through a semi-automatically generated script and thus integrate

a mesh creation step for a given problem into a non-interactive process. The mesh processing and

necessary data structures builder was implemented in Python using meshio library.

For the numerical tests, first order edge and scalar functions were used. The corresponding

finite element module along with the matrix assembler were implemented in C. The computation

of spherical harmonics utilizes the GSL (GNU Scientific Library, [121]), and the quadratures for

integration were taken from Python quadpy module.

The obtained system of linear equations was solved using iterative solvers from PETSc library

[122–125]. In order to utilize the analytic factorization technique (see section 2.8), the custom

matrix-vector multiplication routine was implemented and integrated into the iterative solver.

The unknowns of the linear system are the expansion coefficients of magnetic vector potential

A and modified electric scalar potential q. The post-processing module that computes the

derived physical fields, induced voltages, etc, was written in C. Other post-processing steps were

implemented in Python with a use of numpy and scipy libraries. All visualizations were performed

with a use of the matplotlib library.
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3.2 The convergence of the numerical DtN operator on the sphere boundary

In this section the following problem is investigated: analytic computation of the DtN operator

on the sphere boundary for the field produced by a current carrying loop. The loop is set in G − H

plane that is centered at the origin and carries a current of 1A. The analytic formulas for the source

potential AA4 5 and magnetic flux BA4 5 can be found in [126] (see Appendix E for details). The

loop has a radius A and the truncation boundary is a sphere with radius '.

We first investigate the error that is introduced by a numerical implementation of (2.29) – the

discrete version of Dirichlet-to-Neumann operator on the sphere boundary. The reconstruction

error is calculated with respect to the number of terms in harmonics expansion and the quadrature

order used for inner product computation, for different values of truncation boundary radius '. The

following algorithm was utilized:

1. Calculate the expansion coefficients Mq

;<
[AA4 5 ] and Mk

;<
[AA4 5 ] on the sphere from

equations (2.27) and (2.28) correspondingly. For this calculation, the integral over the

sphere is computed through a global Lebedev quadrature of a variable order.

2. Reconstruct the tangential component of the fieldB asB=D< = ∇ ×A=D< via (2.29).

3. Calculate relative error by the following formula (here ‖.‖2 is an ;2 norm on the sphere):

X =
‖BA4 5 −B=D< ‖2
‖BA4 5 ‖2

∗ 100% (3.1)

The numerical results for a current carrying loop of radius A = 0.2mm are presented in Figures

3.1 and 3.2. It is seen that the DtN reconstruction of the fieldB=D< is converging to the analytical

formula for BA4 5 , as expected: for the given source and truncation boundary, we could make the

reconstruction error in (3.1) arbitrarily small by selecting an appropriate quadrature and the number

of terms in the harmonics expansion.

Based on these results, we can make two conclusions. The first conclusion: the reconstruction

error rapidly decays with the number of harmonics in the series, even if the truncation boundary is

close to the source. This is a key feature because analytical solutions expressed in terms of a series
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Figure 3.1: The relative error inDtN reconstruction forB field, truncation sphere radius ' = 0.3mm
vs number of terms in harmonic expansion, for different global quadrature orders.

expansion are attractive when rapidly converging. The second conclusion: the quadrature order

needs to be matched with the maximum order of harmonics in the expansion.

We also investigate a study of the error due to the FEM discretization on the boundary. For

calculation of this error, the following algorithm is used:

1. Create a triangulation on the sphere with #4 edges and define a vector shape function N:

on every edge 4:

2. Project the vector potentialAA4 5 to the subspace defined by edge shape functions:

A=D< =
#4∑
:=1

U:N: (3.2)

U: =
∫
4:

AA4 5 · d; (3.3)
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Figure 3.2: The relative error inDtN reconstruction forB field, truncation sphere radius ' = 0.5mm
vs number of terms in harmonic expansion, for different global quadrature orders.

3. Reconstruct the tangential part of the magnetic fluxB using the FEM basis:

B=D< =
#4∑
:=1

U:∇ ×N: (3.4)

4. Calculate the relative error in reconstruction using the formula (3.1)

Using the first order edge shape functions, the numerical results are shown in Figure 3.3 for

two configurations of the source loop and the truncation sphere. The numerical error that comes

from FEM discretization decays linearly with the number of edges on the boundary, as predicted

by theory. It is important to note that the error introduced by DtN operator reconstruction could

be made an order of magnitude smaller than the FEM error with a small order of harmonics, even

when the truncation boundary is very close to the current loop.

The two studies above allow us to find the optimal numerical parameters of the DtN operator

for the given problem. They have to be calculated in the following order:
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Figure 3.3: The error in reconstruction ofB=D< caused by FEM discretization, sphere ' = 1

1. Set the truncation boundary and create a finite element mesh

2. Determine the FEM discretization error

3. Determine the sufficient number of terms in the harmonic expansion

4. Choose an optimal quadrature order for numerical integration

With this procedure we can estimate the optimal parameters of the numerical DtN operator and

we are ready to simulate the model problems.
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3.3 Conducting sphere in a uniformmagnetic field: performances evaluation

The performances of the proposed methods were first investigated on the canonical problem of a

conducting sphere in an uniformmagnetic field. This problem allows computation of a closed-form

analytical solution [51].

Parameter Value Unit
Sphere ' 3 mm
Truncation sphere ' 4 mm
f 3.774 × 107 S/m
`A 1
5 1 kHz
‖�‖ 1 mT

Table 3.1: Simulation parameters for problem 3.3

The simulation parameters are summarized in Table 3.1. The sphere is made of aluminum

(f = 3.774×107 S/m, `A = 1) and has a radius of 3mm. The sphere is placed in a uniformmagnetic

field of magnitude 1mT directed along the z axis wih an excitation frequency of 5 = 1kHz. The

skin depth in this case is 2.6mm which is comparable to the radius of the sphere. The mesh for the

problem was generated with Gmsh software [120] and is shown in Figure 3.4. It is an unstructured

tetrahedral mesh of a uniform density in the entire computational domain. Truncation radius of the

computational domain is ' = 4mm.

The results from the proposed approach are comparedwith those obtained from analytic formula

as well as two other numerical methods:

• Conventional model that uses the same formulation and uniform mesh with a Dirichlet

boundary condition and computed in a larger domain (sphere with radius of 10mm)

• CARIDDI code (see [12, 20, 24, 25]) which is based on an integral formulation and uses

second order elements. Non-sparsified version of the code was used.

The quantity of interest is the induced current density J inside the conductor, evaluated on

a uniform grid inside the sphere, which is illustrated in the Figure 3.5. The error X for all three
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Figure 3.4: Sample mesh of the problem 3.3. Darker region is a conducting sphere, brighter -
simulated surrounding air.

numerical methods was computed as the relative ;2 error on the grid:

X =
‖�=D<4A82 − �0=0;HC82‖2

‖�0=0;HC82‖2
∗ 100% (3.5)

The error plots obtained using several meshes with different resolutions are given in Figure 3.6.

It demonstrates that the proposed method significantly outperforms the approach with Dirichlet

boundary condition. Moreover, the difference increases when the higher accuracy in terms of

smaller X from 3.5 is required.

Figure 3.6a represents the error versus number of degrees of freedom in the system (stiffness

matrix order). Figure 3.6b shows the error versus number of operations required to perform the

matrix-vector product with the stiffness matrix of the system. The number of operations is directly

related to the number of nonzero entries in the sparse stiffness matrix, and, in case of the DtN

approach, to the number of unknowns on the boundary. This number is directly related to the

computational time when an iterative solver is used, as it is the usual case for sparse matrices. In

this case (iterative solver), the matrix-by-vector product is the dominating operation. It is worth

mentioning that the relative ;∞ error in a solution at each evaluation point for the given mesh does

not exceed 3%.
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(a)

(b)

Figure 3.5: Imaginary component (dominating part) of the induced current density J in -.

cross-section at I = 0 on a sample mesh: (a) DtN solution, (b) Error vs analytic formula.
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(a)

(b)

Figure 3.6: (a) Error vs number of degrees of freedom, (b) Error vs number of operations required
to compute matrix-vector product.
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(a)

(b)

Figure 3.7: Effect of the sparsification: (a) Number of operations required to compute matrix-
vector product versus number of degrees of freedom, (b) Ratio of operations required to compute
the DtN-related part to the total number of operations
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The effect of sparsification is demonstrated in Figure 3.7. Two methods (DtN with and without

sparsification) are compared on identical meshes, and thus provide exactly the same error in

solution. Figure 3.7a is in good match with predicted numerical complexity reduction (from

$(#2
�

) to $(#�)). Figure 3.7b shows what part of the operations required to compute matrix-

vector product are taken by computation of the DtN operation.

It is seen that with sparsification the time taken by DtN computations approaches zero with

increasing mesh density (and, therefore, higher accuracy). Whereas, when sparsification is not

applied, the corresponding time quickly reaches 99% of the total computational time. In other

words, Figure 3.7 illustrates one of the key features of the investigated approach: with the proposed

sparsification, we get an exact non-local boundary condition for the price of a minor increase in

computational time.

3.4 Conducting plate with a coil: numerical validation

This section describes the application of the proposedmethod to an application in nondestructive

evaluation, namely, an inspection of the conducting plate using an eddy current coil probe [4, 6].

This example is not designed to evaluate the performance of the code, but rather to validate the

approach by simulating a realistic structure, so the target quantity would be an impedance of the

coil as it scans over the plate with defect. In this case, the solution cannot be written in a closed

form.

The simulation parameters are summarized in Table 3.2. The plate is made of aluminum

(f = 3.774 × 107 S/m, `A = 1) and has a thickness of 4mm. Excitation frequency is 5 = 1kHz.

The skin depth in this case equals to 2.6mm, which is comparable to the thickness of the plate. The

plate has a subsurface volumetric defect, described by a square cross-sectional area of a size 4mm

and depth of 2mm which is located at the bottom of the plate. The coil carries a total current of 1A

and has an outer diameter of 20mm and thickness of 5mm placed at a liftoff distance of 0.5mm.

The mesh for the geometry is shown in the Figure 3.8.
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Parameter Value Unit
Plate length 70 mm
Plate width 70 mm
Plate thickness 4 mm
Plate f 3.774 × 107 S/m
Plate `A 1
Defect length 4 mm
Defect width 4 mm
Defect depth 2 mm
Coil inner radius 5 mm
Coil outer radius 10 mm
Coil height 5 mm
Coil liftoff 0.5 mm
Total coil current 1 A
Frequency 5 1000 Hz
Total scan positions 31

Table 3.2: Simulation parameters for problem 3.4

Figure 3.8: Sample mesh of the problem 3.4
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(a)

(b)

(c)

Figure 3.9: Impedance of the coil during the linear scan: (a) Real part, (b) Imaginary part, (c)
Lissajous plot

41



The probe scans across the defect, and its complex impedance is computed at each scan position.

The simulation results are presented in Figure 3.9. Figures 3.9a and 3.9b present the changes in

real and imaginary parts of the coil impedance as the probe scans across the defect. The complex

impedance trajectory is plotted in Figure 3.9c. For this problem, the reference results were obtained

by CARIDDI code [20]. It is seen that there is a good match in the solution between the two

approaches: the maximum relative difference in the real part of the signal (dominating component)

is within 5%, and within 10% for the imaginary part.

3.5 Coil inside a tube: experimental validation

In this problemwe consider a coil moving coaxially inside the conductive tube with a volumetric

defect inside the wall. This problem does not admit the closed form solution. The purpose of this

example is to validate the proposed approach against experimental data, thus the quantity of interest

is the impedance of the coil as it scans along the tube.

Parameter Value Unit
Tube outer diameter 19.0 mm
Tube wall thickness 1.1 mm
Tube f 8.71 × 105 S/m
Tube `A 1
Defect diameters 4.8, 4.8, 2.8, 1.3 mm
Defect depths 20, 40, 60, 100 % wall thickness
Coil outer diameter 15.2 mm
Coil inner diameter 12.2 mm
Coil thickness 1.3 mm
Coil liftoff 0.8 mm
Total coil current 1 A
Frequency 5 35, 140, 280, 550 kHz

Table 3.3: Simulation parameters for problem 3.5

The simulation parameters are summarized in Table 3.3. The tube is oriented along the z axis.

The 3D test geometry of the problem is shown in Figure 3.10a and the x-z cross-section of the

tube is displayed in Figure 3.11. The tube has an outer diameter of 19.0mm, the wall thickness

of 1.1mm and is made of non-magnetic material with `A = 1 characterized by its conductivity of
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(a) (b)

Figure 3.10: (a) The geometry of the tube with a defect (b) Sample mesh of the defect, G − H plane

f = 8.71 × 105 S/m (equivalent resistivity value d = 114.8 `Ω-cm).

Four volumetric defects were simulated: flat bottom holes (FBH) with depths of 20%, 40%,

60% and 100% of the tube wall. The defect diameters were 4.8mm, 4.8mm, 2.8mm, 1.3mm

respectively. The defects were positioned on the outer side of the tube.

The source field was generated by two geometrically identical coils that were carrying the total

current of 1A each and a phase difference of 180◦. This represents the differential measurement [2]:

in the section of the tube away from the defect the induced voltages in the coils have equal magnitude

(so that the resulting impedance of the two coil system is zero), whereas in proximity of the defect

the induced voltages in the two coils are different, which results in a non-zero signal that could

be used to detect the presence of the defect. The simulated coil parameters were the following:

outer diameter of 15.2mm and cross-section of 1.5mm by 1.3mm. The spacing between the coils

is 1.5mm. The coil lift-off in this case equals to 0.8mm. The simulation of the model result in a

one-dimensional array of complex voltages evaluated in every scan position.

The length of the simulated tube segment was 76mm. The computational domain was a sphere
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Figure 3.11: Geometry of the problem in G − I plane: 40%TW defect

of radius 40mm. It was discretized into unstructured non-uniform tetrahedral mesh generated by

Gmsh software [120]. Mesh density was set to be approximately 12 elements per wall in the defect

area and 6 elements per wall thickness everywhere else. A sample mesh is shown in Figure 3.10b.

In practice, it is impossible to measure the induced voltage in the coil directly: the inspection

instrument outputs a response produced by a circuit containing the probe, often with additional

hardware signal processing applied. Consequently, in order to correctly compare the simulation

results to experimental data, both results need to be calibrated. In thiswork, the following calibration

procedure was applied: the peakmagnitude and phase of the signal generated by 100% through-wall

defect at each frequency was set to 20V and 140◦ respectively. This was achieved by multiplying

the signal by a constant complex-valued scaling factor, which was further applied to other three

signals obtained at the same frequency. Thus, the relative magnitude and phase differences between

all defects were preserved. The calibrated signals for two frequencies are presented on Figure 3.12.

Two metrics were utilized to compare the signals after calibration: the magnitude and phase of

the point with the peak magnitude. The results are summarized in the Table 3.4.
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(a)

(b)

Figure 3.12: Calibrated differential voltage measurement, real versus imaginary part, (a) 140kHz,
(b) 280kHz
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Frequency, kHz Defect Type Phase difference, deg Peak voltage error, %
35 20% FBH 4 11.00
35 40% FBH 2 10.00
35 60% FBH -1 3.00
35 100% FBH 0 0.00
140 20% FBH -4 8.00
140 40% FBH -3 7.00
140 60% FBH 5 14.00
140 100% FBH 0 0.00
280 20% FBH -16 14.00
280 40% FBH -9 3.00
280 60% FBH -6 3.00
280 100% FBH 0 0.00
550 20% FBH -5 3.00
550 40% FBH -11 9.00
550 60% FBH -9 20.00
550 100% FBH 0 0.00

Table 3.4: Error in the simulated voltage and phase versus experimental data

3.6 Concluding remarks

In this chapter, the proposed reduced vector potential formulation with a boundary condition

based on a Dirichlet-to-Neumann operator was applied to the typical model problems in the ECT

field. The numerical implementation details were discussed. The performance of the method

was investigated using two problems that admit analytical solution, and overall performance of the

implementation matches the theoretical prediction given in Section 2.8. The method was validated

against other simulation software and experimental data. As a conclusion, the proposed formulation

could be readily applied for simulation of the low-frequency electromagnetic problems.
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CHAPTER 4

GENERALIZED MULTIFREQUENCY FUSION ALGORITHM

Eddy current inspection consists of three general steps: input data acquisition, data processing

and defect characterization. Typical data volume is large, and it is sometimes difficult to distinguish

the healthy regions and regions with defects without the use of special methods. In this chapter

the generalized multifrequency fusion algorithm for automatic defect detection is introduced. The

algorithm takes the acquired data and manually defined "healthy" regions as an input, and finds the

potential regions with flaws.

The first section of this chapter contains a high-level overview of themethod. Then, all necessary

mathematical operations for fusing data from different frequencies are defined, and the method is

formulated in terms of a minimization problem. Applications of the proposed method are given in

Chapter 5.

4.1 Description of the approach

The acquisition of test data is discussed in detail in Section 5.2. For the purposes of this chapter

it is sufficient to assume the input data in the form of one or more arrays of complex numbers. We

also assume the source to have a 4 zlC time dependency, and thus each array represents the input

data acquired with a single excitation frequency. The arrays could be one- or two-dimensional. An

example of the 2D input data is shown on Figure 5.14.

Figure 4.1: Flowchart of the multifrequency fusion algorithm.
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The overall schematics of the proposed approach that uses signals acquired with an arbitrary

number of frequencies is shown in Figure 4.1. The first row on the diagram represents the input

data acquisition and the applied preprocessing steps – backround removal and automatic image

segmentation – which are discussed in Section 5.2.3. The second row shows the steps of the fusion

algorithm that are discussed in Section 4.2.

The algorithm first segments the data into individual fastener images and returns a processed

image of the test sample with field residues due to defects. After that, using a simple threshold

criterion, the algorithm classifies each fastener site as “defect-free” or “with defect”. The proposed

method has the following key features:

• generalized linear and nonlinear operations to suppress responses from defect- free regions

• robust numerical method for determining optimal fusion coefficients via minimization of an

appropriate cost function.

4.2 Fusion algorithm

4.2.1 Secondary image generation

In general, the input data is considered as a set of one- or two-dimensional arrays of complex

data. Let �1 . . . � be the data measured at frequencies 51 . . . 5 , complex matrices with ' rows

and ! columns. For convenience, these matrices are converted into real matrices with 2 rows and

'! columns, where the first (second) row is the real (imaginary) part of the corresponding complex

matrix stored in row-major order.

The data in a matrix form is an input to the fusion algorithm. The generalized transformW is

applied to calculate linear combinations of real and imaginary parts of the input data. It could be

represented as a product of the input matrix � with a 2 × 2 real matrix, :

W[�] = ,� =


,11�1 +,12�2

,21�1 +,22�2

 (4.1)

48



Here �1 and �2 are the first and second rows of matrix �, i.e. real and imaginary parts of the

original image. In the general form, operator W has four degrees of freedom: the real values of

,11,,12,,21,,22. Applications of a reduced form of this operator with a smaller number of

degrees freedom (one and three) have been studied before in [118]. and form a foundation for the

presented method. The variant with one degree of freedom is obtained when, is a rotation matrix

defined by a single parameter, rotation angle. The variant with three degrees of freedom adds two

real scaling factors _1, _2 and is used as a reference algorithm in this work. It is represented by

the following formula:

W[�] =
©«
_1 0

0 _2

ª®®¬
©«

cos q sin q

− sin q cos q

ª®®¬

�1

�2

 (4.2)

The data fusion defined by the linear operator (4.1) and (4.2) is enhanced using a nonlinear

operation. In this work we investigate an effect of one possible nonlinear operation: raising the

input data to a power. The power operator acting on matrix � is defined by the following formula:

(P?,C[�])A; = B86=(�A; − C)|�A; − C |? (4.3)

where the power ? and threshold C are two parameters to be estimated. The power value

is assumed to be positive: ? > 0. Applying an operator P effectively enhances or compresses

the amplitudes of real and imaginary components of � in a nonlinear fashion. Such a nonlinear

operation is intended to address the effect of field diffusion at low and high inspection frequencies.

If ? > 1, strong signals are amplified, and weak ones are suppressed. Conversely, 0 < ? < 1

reduces the differences between high- and low-amplitude regions of the EC-GMR scan.

The threshold parameter C allows to adjust the power operation with respect to the input data

magnitude. Similar effect could be achieved by the input data normalization. However, if we use

(4.3), parameter C could be used as an extra degree of freedom in the optimization method described

below, whereas normalization is a preprocessing technique and is applied before the optimization

method.
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Using the operatorsW and P defined above, the input data � is transformed into a "secondary

image" ( in the following way:

( =W[P[�]] (4.4)

Among the input data �1 . . . �# we could select one image and call it a reference �0. The

image �0 is selected to represent the data acquired at one of the low inspection frequencies, for

which the skin depth is large enough to detect all bottom layer defects.

We can now define a fused image " as a linear combination of the reference image �0 (without

any operations applied) and several transformed versions of input images �: , potentially including

the transformed version of �0 itself:

" = �0 +
#:∑
9=1

( 9 = �0 +
#:∑
9=1
W 9 [P 9 [�: 9 ]] (4.5)

Here #: denotes the number of secondary images fused to the reference image, and ( 9 are obtained

from (4.4) by transforming an input image �: 9 , 1 ≤ : 9 ≤ # . Note that for different values of 9

operatorsW 9 and P 9 do not have to be the same, and we could apply them to different input images

�: 9
. The matrix " is a 2 × '! real matrix.

The fused image " is further segmented into subregions "(ℎ)
;

and "(3)
:

, which correspond

to reference defect-free "healthy" sites and remaining test sites of interest potentially with defects,

respectively, and ; = 1 . . . #A4 5 , : = 1 . . . #C>C − #A4 5 . Here #C>C is the total number of regions

of interest within the input data, and #A4 5 is the number of "healty" regions, which is typically 1

or 2.

4.2.2 Optimization algorithm

At first, the number of secondary images #: is defined, and the input images �: 9 are selected

in the fusion formula (4.5). The unknown parameters of operatorsW 9 and P 9 for equation (4.5) are

calculated through minimizing a cost function Θ defined as a sum of the ;2 norms of the healthy
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regions "(ℎ)
8

:

Θ[F:;, 9 , ? 9 , C 9 ] =
#A∑
8=1
‖"(ℎ)

8
‖2 (4.6)

Using equations (4.5) and (4.6), the optimization problem is formulated as:

min
F:;, 9 ,? 9 ,C 9

Θ[F:;, 9 , ? 9 , C 9 ]

s.t. ? 9 > 0
(4.7)

An optimal solution to problem (4.7) returns unknown parameters of operatorsW 9 and P 9 that

effectively suppress the signals in the healthy regions "(ℎ). Once these coefficients are estimated

(using only the data from defect-free fastener sites "(ℎ)), they are applied to build the fused

subimages "(3) corresponding to subdomains of interest in the test sample, and an entire fused

image " from equation (4.5). In a final step, the defect detection criteria are computed in both

subdomains "(ℎ) and "(3) (see Section 4.2.3), and the defects are found.

In this work three variants of the optimization method are investigated:

1. Reference: here power and threshold are not applied (? = 1, C = 0), and matrix, is limited

to scaling and rotation. In this case optimization space has the dimension of 3( − 1), where

 is the number of input frequencies. This version is not applicable if the input data was

collected using a single frequency.

2. Locked powers: here the power value ? is not an optimization parameter, but rather belongs

to a set of predefined powers % = ?1 . . . ?" . The threshold is not applied. Optimization

space has the dimension of 4(" − 1), where " is the number of powers used,  is the

number of input frequencies. This version could be applied to a single-frequency input data,

as long as more than one power value is used.

3. Unlocked powers: this is the most generic version of the algorithm, where both power ?

and threshold C are included in the optimization. Optimization space has the dimension of

6(" − 1), where " is the number of powers used,  is the number of input frequencies.

This version is also applicable to a single-frequency input data.
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From the equation (4.4) it follows that the residual image" has a continuous dependency on the

unknown coefficients: linear operation is continuous, and power operation is essentialy B86=(C)|C |? ,

which is continuous upon C and ? for ? > 0. Therefore, if the search domain is a compact set,

i.e. closed and bounded, the cost function will have a global minimum in this domain. Thus, the

optimization problem in (4.7) should be extended with additional constrains upon input parameters.

Also, additional care should be taken in order to prohibit the occurence of the trival": for example,

if one of �: 9 in (4.5) is the reference image �0, we restrict the corresponding power value ? 9 to

be different from 1.

In this work, the Sequential Least-Square Quadratic Programming (SLSQP, [127]) method was

used to solveminimization problem (4.7). SLSQP belongs to a family of well-established numerical

methods for multi-dimensional problems with constraints. The SLSQP performs a sequence of

quadratic approximations of the cost function (4.6) with imposed constraints. At each step, the

quasi-Newton method is applied to find an iterative solution. Numerical experiments show that

when the algorithm is applied to the same set of secondary images with an arbitrary starting point,

the iterative process always converges to the same solution.

4.2.3 Defect detection criteria

In this work, two quantitative criteria were used for classifying regions as “with defect” or

“without defect”:

'(1) = <40=(‖"′‖2) (4.8)

'(2) = <40=(‖'4("′)‖2) + <40=(‖�<("′)‖2) (4.9)

Here "′ denotes a reference subregion "(ℎ) or a subregion of interest "(3), and ‖.‖2 stands

for a ;2 norm of the fused image. The rationale is that both criteria '(1) and '(2) should be

significantly higher in the regions corresponding to fastener sites with defects, and should be close

to zero in the healthy regions.

52



4.2.4 Details of numerical implementation

The numerical implementation of the proposedmethodwas completed inPython 3 andC99. The

automatic fastener segmentation subroutinewas implemented in %HCℎ>= using theHough transform

and the OpenCV library [128, 129]. The fusion algorithm was implemented as a library in C for

optimized numerical computations, linear operations were done via OpenBLAS library [130], and

the multicore C implementation of the SLSQP solver was utilized for the minimization problem.

As a test example, we considered one of the most computationally intensive case: the EC-

GMR multifrequency scan data discussed in Section 5.2. The algorithm was applied to the images

that were 32 × 250 pixels in size. For the fusion case with the largest optimization space, the

average processing time was approximately 0.1s on an 8 core AMD Ryzen 1600 CPU, which is a

significantly smaller amount of time than used for the corresponding data acquisition. This example

demonstrates that the proposed implementation allows for nearly real-time processing of EC-GMR

inspection results.

4.3 Concluding remarks

In this chapter a generalized multifrequency fusion algorithm for automatic defect detection was

introduced. Input data preprocessing techniques were discussed. The present work significantly

extends the previously published algorithm, that could be formulated as as a limiting case of a

proposed method.

It is worth mentioning that the proposed algorithm could be used with minor changes even if

the defect-free regions are unknown or not specified. In this case the fusion is applied to the entire

input images instead of just the healthy regions, and the minimization problem in (4.7) is solved to

minimize the global norm of the fused image " . After the fusion coefficients are found, the fused

image " is computed and the regions with flaws are expected to be found near the local peaks in

the residual image.

Two applications of the proposed fusion algorithm to 1D and 2D problems will be discussed in

the next Chapter.
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CHAPTER 5

MULTIFREQUENCY FUSION APPLICATIONS

This chapter presents applications of the proposedmultifrequency fusion algorithm to the defect

detection in the ECT data obtained from two applications, namely, aerospace and nuclear industries.

The first problem investigates the performance of the algorithm on simulated 1D data from

a bobbin coil that moves coaxially inside a conductive non-magnetic tube. The tube wall has a

circumferential notch with a conductive and magnetic support structure on the outside of the tube.

A cross-sectional view of this geometry is shown on Figure 5.1a. The simulation was carried out in

COMSOL Multiphysics 5.2 [131] using 2D-axisymmetric geometry and the AC/DC module. Two

versions of the fusion algorithm – the "unlocked power" and "reference" versions defined in Chapter

4 – were coputed and compared using the simulated data with artificially added white noise.

The second problem investigates the capabilities of the proposed approach for defect detection

in a 2D raster scan of a multilayer riveted structure with subsurface defects. The test sample is a lap

joint of two conducting panels with several manufactured EDM notches in the bottom layer. The

data was collected with an EC-GMR probe at five frequencies. The "reference" and "locked power"

versions of the fusion algorithm were applied to the probe measurements in order to investigate the

performance of the method for different configurations of algorithm parameters and evaluate the

robustness of the approach with respect to the input parameters.

5.1 Bobbin coil scan of a conducting tube near tube support

5.1.1 Problem formulation

Steam generator is a heat exchanger in a pressurized-water reactor in the nuclear power plant. It

consists of several thousand thin tubes with diameters up to 25mm and lengths of the order of 25m,

which are held in place by carbon steel support structures. Due to the harsh operating conditions,

they are prone to stress corrosion cracks in the tube wall. Hence, the structural health monitoring
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of steam generators is crucial for the safe operation of the plant. Eddy current testing with a variety

of probe coils is extensively used by the nuclear industry.

Differential bobbin probe is one of the widely used ECT probes for the steam generator tube

inspection. It consists of two bobbin coils that are positioned coaxially in the tube and carry

the opposing currents of equal magnitude. Thus, in the regions without imperfections the induced

voltages in the coils cancel each other, but in presence of the defects the differential signal increases,

which is used to detect and characterize these defects. The data is collected with several values of

excitation frequency. More information about the differential bobbin probe and the sample acquired

data is presented in Section 3.5.

However, the defects is not the only source that impacts the differential bobbin signal. For

example, the tube support structures (TSP) generate a high amplitude signal even when there is no

defect in the tubewall. The typical tubematerial is a corrosion-resistant nonmagnetic alloy, whereas

the support structures are made out of a highly conductive and magnetic carbon steel. When the

tube scans near the support structure, it generates a signal that is much larger in magnitude than

the signal produced by the small defects (see Figures 5.3, 5.4 for an illustration). In this case,

it is extremely difficult to separate the defect signal from the support signal without the use of

specialized signal processing algorithms.

The model problem described in this Section was selected to illustrate the application of the

generalized multifrequency fusion algorithm described in Chapter 4 to the representative case of

detection of the small defects in the tube near the tube support region, when the input data is

corrupted by the tube support signal and noise.

5.1.2 Simulation parametrs

The simplified model was designed to simulate an eddy current inspection of the tube with a

crack near the tube support. The axisymmetric model geometry consists of four parts: the tube

region, the tube support region, the coil and the defect, and is illustrated in the cross-sectional view

in Figure 5.1a. The model parameters are summarized in Table 5.1.
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(a)

(b)

Figure 5.1: (a) The simulated geometry for the 20%TW notch, (b) corresponding mesh.

The tube has an outer diameter of 19mm and the wall thickness of 1.1mm and is made out

of non-magnetic alloy with the conductivity value of 9.5 × 105S/m. The simulated tube length is

100mm. The tube support is separated from the tube by an air gap of 2.5mm, has the length of

12.7mm and thickness of 5mm and is made out of carbon steel characterized by the conductivity

value of 6×106S/m and relative permeability of 100. Along with a reference signal with no defects,

four defect signals were simulated: three 360◦ circumferential notches with the width of 0.1mm

and depths of 5, 10, 20% of the tube wall thickness (TW), and one 360◦ groove with the width of

0.8mm and a depth of 5%TW.

The z coordinate of the defect position was aligned with the top of the tube support. Thus, every
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Parameter Value Unit
Tube inner diameter 19 mm
Tube wall thickness 1.1 mm
Tube length 100 mm
Support inner diameter 19.6 mm
Support thickness 5.1 mm
Support length 12.7 mm
Tube conductivity f 9.5 × 105 S/m
Tube relative permeability `A 1
Support conductivity f 6 × 106 S/m
Support relative permeability `A 100
Coil inner diameter 12.4 mm
Coil outer diameter 15.0 mm
Coil height 1.5 mm
Coil separation 1.5 mm
Coil liftoff 0.9 mm
Total coil current 1 A
Frequencies 5 35, 140, 280, 550, 750 kHz
Scan region [-18, 18] mm
Number of scan positions 100

Table 5.1: Simulation parameters for problem 5.1.

Defect number Type Width, mm Depth, %TW Position
#1 360◦ circumferential notch 0.1 5 Outer
#2 360◦ circumferential notch 0.1 10 Outer
#3 360◦ circumferential notch 0.1 15 Outer
#4 360◦ groove 0.8 5 Outer

Defect site z coordinate 6.3mm
Healthy site z coordinate −6.3mm

Table 5.2: Simulated defects for problem 5.1.

simulated signal will contain the contribution from two potential defect sites: the first site is the

tube support edge with a defect in the tube wall that needs to be detected (located at I = 6.3mm),

and the second side is the edge without defects in the tube (located at I = −6.3mm) that will be

used as a "control group" of healthy sites. Defect properties are listed in the Table 5.2.

The differential bobbin probe coil has an outer diameter of 15.0mm, an inner diameter of

12.4mm and height of 1.5mm, which gives a liftoff value of 0.9mm. The coils are separated

by 1.5mm and carry the opposing currents of 1A each and are excited at five frequencies:
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35, 140, 280, 550, 750kHz. The coil scan was emulated by computing the induced voltage on

the coils at 100 scan points uniformly distributed in the interval [−18, 18]mm. With the specified

parameters, the skin depth inside the tube region varies from 0.6mm at 750kHz to 2.7mm at 35kHz,

and the skin depth inside the tube support region varies from 0.02mm at 750kHz to 0.11mm at

35kHz.

The simulations were carried out usingCOMSOLMultiphysics 5.2 software package, with a use

of AC/DC Magnetic Fields (mf)module. Since the problem geometry obeys a rotational symmetry

about the axis of the tube, the 2D axisymmetric model was selected. The electrical permittivity n is

neglected in all domains, so the imposed equations from themf module correspond to the magneto-

quasistatic approximation, which is solved in terms of a generalized magnetic vector potential as

an unknown.

The computational domain was discretized into an unstructured triangular mesh with the

boundary layers near the inner boundary of the tube support domain (see Figure 5.1b). Second

order elements were utilized. The scans for all frequencies were simulated with the same mesh,

so an appropriate element size distribution was chosen to accomodate the skin depth values for

a largest frequency of 750kHz. The obtained systems of linear equations were solved with an

iterative solver BiCGStab with a relative tolerance of 10−3. The induced coil voltages for both

coils were computed with a built-in interface and then exported into the �(+ files to be processed

by the multifrequency fusion code. A dataset of 25 signals were obtained at 5 frequencies for the

5 selected sample and defect geometries.

The simulated signals at five frequencies for the defect-free domain with no additional noise

are displayed on the Figure 5.2. The signals from five simulated geometries (defect-free and four

defects) simulated at 140kHz are shown in Figure 5.3. These figures demonstrate that the defect

contribution to the total induced voltage is significantly smaller than the signal due to the tube

support. A defect contribution could be approximated as a difference between the signal obtained

from a geometry with a defect and a signal obtained from a corresponding defect-free geometry.

This contribution for defect #2 is illustrated on the Figure 5.4. Unfortunately, in the real world the
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Figure 5.2: Lissajous plot of the signal at five simulated frequencies, defect-free geometry

pure signal from the corresponding defect-free geometry is not available, hence the objective of the

fusion algorithm is to provide similar level of "base signal removal" as shown in Figure 5.4.

Lastly, every data acquisition system introduces a certain level of the input noise due to the

various sources such as the inspection instrument electronics, the off-center coil position inside

the tube, probe tilting or probe wobble during motion, etc. In order to analyze the robustness of

the proposed method with respect to the input noise levels, the artificial uniform (white) noise was

introduced. In addition to the simulation without noise, two values of the noise magnitude were

chosen to approximately match the 10% and 20% of the expected defect signal magnitude for a

differential measurement, which translates into a Signal to Noise Ratio (SNR) values of 20 and

17dB, correspondignly.

5.1.3 Fusion algorithm setup

For this study, the portions of the tube with different defects were simulated independently, so

the fusion algorithm was applied to the entire signal. We consider the simulated signal from the
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Figure 5.3: Lissajous plot of the signal for five simulated geometries at 140 kHz. Black signal
shows the dominant contribution due to support plate.

defect-free geometry as "healthy" reference sites for computation of the cost function (4.6). Two

versions of the fusion algorithm were used: the "reference" version (4.2) and the "unlocked power"

version (4.3). The computations were implemented in the following order:

1. First, we select one of the 3 input noise levels and apply it to the defect-free data

2. Then, as explained in Section 4.2, we calculate the fusion coefficients from the noisy defect-

free data by solving a minimization problem in (4.7).

3. The calculated coefficients are substituted into (4.5) to obtain the "base" image "(0)– the

fused image for a case without the defect.

4. After that, the same coefficients are applied to calculate the remaining 4 fused images "(;),

for each defect case.

For this study, the reference image �0 in equation (4.5) was chosen to represent the data acquired

with the highest frequency of 750kHz, which could be explained as follows. The investigated
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(a)

(b)

Figure 5.4: The signal magnitude of the contribution from the smaller defects with 20dB added
noise: (a) defect #1, (b) defect #2.
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geometry has a defect outside the tube wall, in a close proximity of the tube support. Moreover,

the contribution from the tube support is a dominant part of the signal regardless of the frequency,

but due to the skin effect the ratio between the defect and TSP contributions will be larger for the

higher-frequency data. Consequently, we are interested in filtering out the TSP signal from the data

representing the highest frequency available.

In (4.5) we set #: = 4, and the images �1, �2, �3, �4 represent the data acquired at 35, 140,

280, 550 kHz, respectively. The resulting dataset for two algorithm variations, three noise levels

and five investigated sites contains a total of 30 fused images with dimensions of 2 × 100.

In case of the "reference" algorithm, the optimization space has a dimension of 12, and the

parameters are searched inside the box _( 9)
1 , _

( 9)
2 ∈ [−10, 10], q( 9) ∈ [0, 2c], 9 = 1, 2, 3, 4. In

case of the "unlocked powers" algorithm, the optimization space has a dimension of 24, and

the parameters are searched inside the box ,( 9)
11 ,,

( 9)
12 ,,

( 9)
21 ,,

( 9)
22 , ∈ [−10, 10], ?( 9) ∈ [0.1, 10],

C( 9) ∈ [−max |� 9 |,max |� 9 |], 9 = 1, 2, 3, 4.

The elements of the "base" fused image "(0) are expected to have the close to zero magnitudes

in the entire domain, with respect to the simulation tolerance and an introduced artificial noise

level. We denote the maximum magnitude of "(0) as ) = max
:
|"(0)
:
|. Thus, we detect the defects

in the fused images "(;) by finding regions with magnitudes larger than ) . It is convenient to use

the truncated set of images "′(;), ; = 1, 2, 3, 4, that will contain only the data from the potential

regions of interest:

"
′(;)
:

=


|"(;)
:
| if |"(;)

:
|>= )

) otherwise
(5.1)

Now the defect detection criteria is computed for the set "′(;) in the following way:

'; =
100∑
:=1
|"′(;)
:
− ) | (5.2)

The defect is successfully detected if |'; |>= ) . The regions of interest for the fused image

"(;) are determined as the coordinates : of the points where the magnitude of the fused signal is
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larger than the maximum of the "base" image ) :

|"′(;)
:
|> ) (5.3)

5.1.4 Numerical results

The fused images "(0) and "(2) for the case with noise level of 20dB are shown in Figure 5.5

for the "reference" algorithm and in Figure 5.6 for the "unlocked powers" version. The filled area

marks the region that is used for the residual computation. As expected, the "base" images "(0)

are uniformely low in the entire domain for both algorithms, and the fused images "(2) correctly

indicate the site with a defect (which is at I = 0.25in) and suppress the signal at the healthy site

(I = −0.25in).

The comparison between the four truncated fused images "′(;), ; = 1, 2, 3, 4, and the "base"

image "(0) for the applied noise level of 20dB is demonstrated in Figures 5.7 and 5.8 for the

"reference" and "unlocked powers" methods, correspondingly. In this case, the "reference" method

detected 3 defects and missed the smallest one (defect #1), whereas the "unlocked power" method

successfully detected all four defects.

The criteria ' computed by (5.2) and the corresponding detection threshold level ) from (5.3)

for the three noise levels are plotted in Figure 5.9. Without additive noise, both methods detect all

four defects. With a noise level of 20dB the "unlocked powers" version detects all defects and the

"reference" version misses the smallest one. With the noise level of 17db the "unlocked powers"

algorithm detects three defects, and the "reference" version detects only the two largest defects. In

all cases, the criteria values ' for the defect-free sites is exactly zero, as expected.

The fusion algorithm is expected to show the best results in the noise-free case, and the detection

threshold level goes up with the noise level, which is also depicted in Figure 5.9. The "unlocked

powers" algorithm shows a better performance compared to the "reference" version: it suppresses

the defect-free sites better than "reference" when the noise is present, and the detection threshold

grows slower.
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Figure 5.5: The fused images "(0) and "(2) generated with the "reference" algorithm applied to
the noisy input with SNR of 20dB, defect #2.

Figure 5.6: The fused images "(0) and "(2) generated with the "unlocked power" algorithm
applied to the noisy input with SNR of 20dB, defect #2.
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Figure 5.7: The comparison between truncated fused "′(;) images and the base fused signal "(0),
SNR=20dB, "reference" algorithm.

Figure 5.8: The comparison between truncated fused images "′(;) and the base fused signal "(0),
SNR=20dB, "unlocked power" algorithm.
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(a)

(b)

(c)

Figure 5.9: Calculated criteria values '; for the varying noise levels: (a) no added noise, (b) SNR
20dB, (c) SNR 17dB.
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5.2 EC-GMR scan of a riveted structure

5.2.1 EC-GMR probe operating principle

A brief description of the EC-GMR probe used in this work is provided here to make the reader

familiar with its design and operating principle [104]. The EC-GMR probe has two unidirectional

coils oriented in orthogonal directions and carrying currents with 90 degree phase shift (see Figure

5.10). The rotating current produced by this coil configuration is represented as:

JA>C = ĤJ0 + 9 ĜJ0, (5.4)

where J0 is current amplitude in both coils, and 9 =
√
−1. The two orthogonal coils are positioned

5mm above the surface of the test sample, they are 130mm long and share the same geometric

center. The induced eddy currents rotate in x-y plane.

Figure 5.10: Designs of excitation coils: (a) top coil (coil 1); (b) bottom coil (coil 2); (c) coil
assembly with arrays of GMR sensors. Directions of currents are shown with arrows.

EC-GMR probe has two 32-element GMR arrays that are positioned symmetrically 4mm above

and below the excitation coils (see Figure 5.11). EC-GMR probe uses GF708 sensors from Sensitec

GmbH. The sensor pitch is 1.6mm, and the total length of the array is 51.2mm. Line scans are

performed perpendicular to the sensor array along the x direction.

67



Figure 5.11: Differential GMR array probe with rotating current excitation placed on test sample
with a fastener and a defect.

The output from the single channel of the differential probe can be expressed using the following

equation:

+>DC = +2 −+1 = :[BI(A2) −BI(A1)], (5.5)

where+2 and+1 are phasor outputs of sensor from GMR array 2 and GMR array 1, respectively; A2

and A1 are the corresponding observation point vectors; BI is the normal component of magnetic

flux density, and : is the sensor gain constant.

Using the superposition property, the magnetic field can be decomposed into three contributions

at every point: the field vectors B(1) generated by the H directed Coil 1 in free space, the field

vectorsB(2) generated by G directed Coil 2, and fieldB(B) related to the induced eddy currents in

the sample:

B = B(1) +B(2) +B(B) (5.6)

GMR sensor arrays are placed on the line of symmetry of Coil 1 and are perpendicular to the line

of symmetry of Coil 2. Hence, in the ideal case when the probe is strictly parallel to the specimen,

the specimen is homogeneous, and there is no edge signal, we can state that there is no background

field B(1)
I due to Coil 1 at all sensor locations – equation (5.7), and there is a strong background

fieldB(2)
I due to Coil 2 at sensors away from the line of symmetry. TheB(2)

I contribution is offset
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Figure 5.12: Typical “baseline” field measured using the EC-GMR probe on aluminum plate.
The reader is referred to [104] for detailed descriptions of probe configuration, operation and data
acquisition.

by the differential measurement – equation (5.8).

B
(1)
I (A2) = B(1)

I (A1) = 0 (5.7)

B
(2)
I (A2) −B(2)

I (A1) = 0 (5.8)

B
(B)
I (A2) −B(B)

I (A1) 6= 0 (5.9)

Equations (5.7), (5.8), (5.9) show that the output of the probe is proportional to the field B(B)
I

due to the eddy currents in the aluminum plate. Distribution of B(B)
I is non-uniform along the

y-axis and is referred to as a “baseline” signal (see Figure 5.12). The baseline needs to be subtracted

from measured data.

5.2.2 Experimental setup for GMR inspection

The experimental setup for acquiring EC-GMRmeasurements is shown in Figure 5.13. The test

sample was a two-layer aluminum panel made of high strength alloy Al-7075 with conductivity of

33.4% IACS. The top and bottom layers are fastened with fourteen fasteners HI-LOK HL-525-100

manufactured as per Mil-S-5000 from low alloy steel 4340 with conductivity of 6.95% IACS. Prior

to the inspection, the fasteners were demagnetized by placing them inside of a demagnetizing coil.

Eight of the fourteen fastener sites had second layer notches of different lengths machined

through the thickness of the bottom layer. The notches were realized by using the electric discharge
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Figure 5.13: Scanning of the sample with the EC-GMR differential array probe.

machine (EDM) and have a width of 0.15mm. Locations and sizes of all defects are shown in

Figure 5.16.

The sample with 14 fasteners was placed in a high-precision XYZ gantry, and inspection data

were acquired at excitation frequencies of 100Hz, 200Hz, 400Hz, 700Hz and 1000Hz. These

excitation frequencies 51 = 100Hz to 55 = 1000Hz correspond to a range of skin depths of

X1 = 11.51mm to X5 = 3.64mm, respectively. Hence, the high frequency field largely characterized

the fastener head, while the low frequency data contained information regarding the bottom layer

with defects. In all experiments, step size along x-direction was 1mm.

EC-GMR data acquired at frequencies 100Hz, 700Hz and 1000Hz are shown in Figures 5.14a,

5.14b, 5.14c, respectively. Figure 5.14d illustrates fastener numbering and schematics of the bottom

layer of the test sample. Note that fastener sites 10, 13 and 14 with flaws can be identified by visual

inspection (see Figure 5.14a). For instance, fastener 10 is highlighted in the 100 Hz EC-GMR

scan very well, because the eddy current flow between the hole and nearby bottom edge is blocked

completely. Another important observation is that defects at fastener sites 11 and 12 are barely

visible in Figure 5.14a, even though they are larger than the notch at fastener site 10. These artifacts

can be contributed to the fact that the defect signal is dominated by the strong signal from the steel

rivet, making defect detection very challenging.
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Figure 5.14: EC-GMR scan data after background removal: (a) 100Hz; (b) 700Hz; (c) 1000Hz;
(d) schematic of the bottom layer (fastener holes with EDM notches are filled with red color).
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Figure 5.15: Drawing of the top layer of the sample.

Figure 5.16: Drawing of the bottom layer of the sample with 8 EDM notches.
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5.2.3 Pre-processing stage

In this application, the pre-processing consists of two steps: background removal and automatic

image segmentation to indicate the fastener sites.

In this section, we define background as the low spatial frequency trends in the EC-GMR

data due to (i) baseline signal from the EC-GMR probe as explained in Section 5.2.1, and (ii)

signals from vertical edges in the top or bottom layers of the test sample. If vertical edges are

parallel to the scan direction, their contributions can be removed by subtracting the edge signal

from a calibration sample without fasteners. This simple approach was applied in the present work.

More sophisticated methods that exploit differences in spatial frequencies between fastener and

edge fields (e.g. polynomial fitting or robust sparse coding [114]), can be applied for background

removal on more complicated samples.

Automated image segmentation is critical for accurate computation of localized field residuals

when classifying fastener sites as “defect-free” or “with defect”. At higher inspection frequencies,

the magnetic fields are more focused around the fastener thereby preserving the circular shape of

the fastener image. Further, since the skin depth is also small at high frequency, the image data

is not affected by defects in the bottom layer. Hence, the Hough transform is applied to the high

frequency signal for circle detection. This step is followed by Canny edge detection to get the

outline of the circle. Once the circles are detected and their centers are identified, an appropriate

square region of interest (ROI) is assigned to each fastener.

5.2.4 Configuration of the fusion algorithm

Automatic image segmentation algorithmwas applied to the 1000Hz EC-GMR data, and typical

results are presented in Figure 5.17. All fastener sites were successfully identified as highlighted

by the green circles. The centers of fasteners were detected with 1.5mm accuracy owing to slight

field distortions.

Figure 5.18 shows circular ROIs for computing field residues in the optimization problem. Three

sizes of ROIs, namely, small ('1 = 5.4mm), medium ('2 = 7.4mm) and large ('3 = 11.4mm)
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Figure 5.17: Automatic detection of fastener centers (orange dots), and image segmentation using
Hough Transform. The blue box corresponds to a segment of image with a defect-free (reference)
fastener site.

Figure 5.18: Typical sizes of ROIs for computing field residues: small radius ('1 = 5.4mm,
yellow); medium radius ('2 = 7.4mm, blue); and large radius ('3 = 11.4mm, green).

were investigated to understand which regions of measured magnetic field had more information

about bottom layer defects. As illustrated in Figure 5.18, the smallest ROIs fields measured strictly

on top of fastener heads, and larger ROIs had more measurement points outside the fastener heads.

The maximum radius was selected so as to avoid effects of field coupling between the neighboring

fasteners.
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For this study, the "locked powers" version of the fusion algorithm was used (see Section 4.2.2

for details). Powers defined in (4.3) were assigned fixed values in order to reduce dimensionality of

the optimization space. An exhaustive search was applied to determine the best set of powers that

would maximize detectability of all defects. The domain P with powers used in exhaustive search

is specified in Table 5.3. It was observed that raising the image data to powers very close in value

produced nearly identical secondary images. In order to avoid this effect, the powers used in the

fusion algorithm were separated by at least 0.5.

The defect-free fastener sites 1-6 were used as references for estimating the optimal weights in

(4.5), which were then used to compute the residues at each segmented fastener image. As shown

in Table 5.3, the total of 14 combinations of defect-free fasteners were used as reference regions in

the fusion algorithm: six single fasteners - numbers [1, 2, 3, 4, 5, 6], and eight pairs of fasteners -

[(1,5), (1,6), (2,5), (2,6), (3,5), (3,6), (4,5), (4,6)].

The results of the exhaustive search were grouped in five test cases that are summarized in

Table 5.3. In each test case, exhaustive evaluation of results was performed by generating the fused

images corresponding to all possible inputs – see Table 5.4. Total number of combinations that

were obtained during exhaustive search for all five test cases was 236040.

Test case I shows the fusion of single frequency data with its secondary images. The purpose

of this case is to investigate the applicability of the algorithm to practical cases where the

multifrequency data is not available or is hard to acquire. The fusion algorithm was applied

to two secondary images obtained by raising 100Hz data in two power values (see Table 5.3).

Test cases II and IV demonstrate the performance of the method when the power operation is

disabled: no secondary images are generated, and the two or three frequency inputs are fused. The

frequency combinations for these test cases were selected in such way that 100Hz or 200Hz data

was always used as a reference image. It is worth noting that the test case II is a more generic

version of the mixing algorithm presented in the previous work [118], which was used as a baseline

for evaluating all other test cases.

Test cases III and V represent the most generic algorithm with a power operation. For example,
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List of frequency combinations for test case I (100)
List of frequency combinations for test case II (100, 400), (100, 700), (100, 1000), (200, 400),

(200, 700), (200,1000)
List of frequency combinations for test case III (100, 200), (100, 400), (100, 700), (100, 1000),

(200, 400), (200,700), (200, 1000)
List of frequency combinations for test case IV (100, 400, 700), (100, 400, 1000), (100, 700,

1000), (200, 400, 700), (200, 400, 1000), (200,
700, 1000 )

List of frequency combinations for test case V (100, 200, 400), (100, 200, 700), (100, 200,
1000), (100, 400,700), (100, 400, 1000), (100,
700, 1000), (200, 400, 700), (200,400, 1000),
(200, 700, 1000 )

List of powers (P) for test case I 0.05, 0.07, 0.1, 0.12, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.8, 2.0,
3.0

List of powers (P) for test cases III and V 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.12, 0.15, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3,
1.4, 1.5, 1.8, 2.0, 3.0

List of reference fastener sets 1, 2, 3, 4, 5, 6, (1,5), (1,6), (2,5), (2,6), (3,5),
(3,6), (4,5), (4,6)

List of ROI radii, mm 5.4, 7.4, 11.4

Table 5.3: Parameters used in the five investigated test cases

Test case Number
of input
frequency
combinations

Number
of power
combinations

Number of
ROI radii

Number of
reference
fastener
combinations

Total number
of input
parameter
combinations

I 1 264 3 14 11088
II 6 – 3 14 252
III 7 334 3 14 98196
IV 6 – 3 14 252
V 9 334 3 14 126252

Total: 236040

Table 5.4: Properties of the investigated test cases
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in test case III we first select two input images, then select two frequencies from the list P, then

generate four secondary images by raising two input images in two selected powers, and then fuse

them together, using one of the combinations for reference fasteners and ROI size. In test case V,

three inputs and two powers are selected, and six secondary images are fused.

5.2.5 Numerical results

Fusion of multi-frequency data was performed for all test cases as per Table 5.3, and the results

were quantified using the criterion established in Section 4.2.3. A typical output of the fusion

algorithm is presented in Figure 5.19. It corresponds to the test case IV, in which EC-GMR data

acquired at 100Hz, 700Hz and 1000Hz were fused together without applying power operations.

Figure 5.19: The best fusion result from test case IV.

Figure 5.20 shows comparisons of field residuals for all five mixing cases. The bar plots for

each case were normalized by the maximum residual among six defect-free fastener sites. The first

six groups of bar plots labeled H on the x-axis corresponded to defect-free (healthy) fastener sites

1-6 shown in Figure 5.14d. The remaining eight groups of bar plots were sorted by the defect sizes

from smallest to largest.

Bar plots in Figure 5.20 also represented the best results for each mixing case. The criterion for

these selections was the following ratio, that denotes the relative separation between the residuals

computed within healthy domains and domains with defects (which could be computed since we
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Figure 5.20: Comparisons of normalized field residuals for test cases I-V. The numbers above the
bar plots denote fastener site labels. The labels H along the x-axis correspond to defect-free fastener
sites. Shown results correspond to ROI with radius '2 = 7.4mm.

know the exact locations of the defects):

� =
[min '(@)

:

max '(A)
;

− 1
]
× 100%, (5.10)

where '(@) is the set of residuals corresponding to all fastener sites 7-14 with defects, and

'(A) – the residuals corresponding to all defect-free fastener sites 1-6. For instance, in test case II,

252 sets of residuals are obtained based on the combinations of input parameters from Table 5.3.

However, the best result corresponds to a single combination of input parameters (see Table 5.5)

with the highest ratio � in (5.10), that provides the best visual separation between defective (7-14)

and defect-free fastener (1-6) sites. Numerical computations revealed that in all five test cases the

highest criterion values were obtained for the medium radius of circular ROIs ('2 = 7.4 mm, see

Figure 5.18 and Table 5.5). Hence, this radius was used to compute bar plots in Figure 5.20.

Results shown in Figure 5.20 demonstrate that field residuals were higher for fastener sites

with defects, which provides a numerical validation for the multi-frequency fusion approach. For
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mixing cases with two and three frequencies, the residuals grew monotonically with increased

defect sizes. However, the trend was non-linear, since notches at fastener sites 10, 13 and 14 were

easily detectable. This could be explained by significant distortions of eddy currents in the bottom

layer of the test sample. For instance, a long defect connecting fastener holes 13 and 14 would

completely blocks currents orthogonal to it.

Another useful observation is that all defects were also detected by mixing a low frequency

data with its secondary versions. This is particularly important when multi-frequency data is not

available or hard to acquire. However, in this case the difference between residuals at defective and

defect-free fastener sites is smaller compared to that obtained with multiple frequencies. Figure

5.21 shows the ratios � from (5.10) computed for all fusion test cases, and Table 5.5 presents the

corresponding input parameters. Quantitative results demonstrated that adding more frequencies

and powers helped better suppress signals from defect-free fastener sites as well as to enhance

defect indications.

Figure 5.21: Best residue ratios corresponding to fusion test cases I-V.

It is important to investigate the robustness of defect detection with respect to the choice of

input parameters (frequencies, powers, sizes of residue evaluation region and indices of reference

fasteners). For this purpose, the results of exhaustive search were utilized in the following way: for

every input parameter combination (total of 236040, see Table 5.4) two sets of residuals, namely

'ℎ = {'(A)
:
} (defect-free or “healthy” fastener sites 1-6) and '3 = {'(@)

;
} (fastener sites 7-14 with
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Test case Best residue
ratio C, %

List of
frequencies,
Hz

List of
powers

ROI, mm Reference
fastener
number

I 6.7 100 0.05, 1.1, 2 7.4 (4,5)
II 27.6 100, 400 1 7.4 1
III 35.8 100, 700 0.8, 1.5 7.4 4
IV 38.6 100, 400, 700 1 7.4 3
V 62.3 100, 400, 700 1, 3 7.4 4

Table 5.5: Combination of input parameters corresponding to the highest residue ratio C in each
test case.

defects), were computed using the formula in Section 4.2.3. Each residual '(@)
;
∈ '3 that was

smaller than the largest residual in 'ℎ was indicating a missed defect at the region with index ;,

otherwise it was counted as successfully detected defect:

'
(@)
;

> max 'ℎ: successfully detected defect (5.11)

'
(@)
;
≤ max 'ℎ: missed defect (5.12)

Figure 5.22: Fraction of input parameter combinations that results in successful defect detection.

The number ofmissed and successfully detected notcheswas computed for each input combination

of test cases I-V using (5.12). After this, the input combinations were grouped by the number of
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successfully detected defects, and obtained results are summarized in Figure 5.22. Since the

numbers of input parameter combinations were different for test cases I-V, the vertical axis of

Figure 5.22 was normalized by the corresponding values from the right column of Table 5.4. Note

that for each test case, almost any selection of input parameters leads to detection of at least 3

defects – these are the same defects that could be detected visually from unprocessed images. More

than 90% of the input combinations lead to successfull detection of 5 defects for all five test cases.

From this we can conclude that the algorithm provides the output as accurate as visual inspection

with almost any input parameters, and the that the algorithm delivers the acceptable results even if

the non-optimal input parameters are selected.

5.3 Concluding remarks

In this Chapter an application of the generalized multifrequency fusion algorithm for automatic

defect detecton in 1D and 2D ECT data was demonstrated.

The first model problem represents a detection of cracks within a 1D simulated data of the tube

scan with a small defect located by tube support region. The fusion method effectively suppressed

the tube support signal and was able to reveal the detect sites even for the smaller defects in presence

of the higher levels of input noise.

The second problem shows the application of the fusion method to the 2D experimental data,

which is a 2D raster image of EC-GMR probe scan over the riveted structure with the bottom-layer

defects. The performance of the several different configurations of the method were investigated,

and multiple combinations of the input parameters were studied. An ability to apply the method to a

single frequency data was shown, however with a lower sensitivity compared to the multifrequency

fusion.

In all investigated model cases the proposed algorithmwas able to successfully detect all defects

within the input data and demonstrated a significantly better performance compared to the classic

method.
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CHAPTER 6

CONCLUSIONS AND FUTUREWORK

The contribution of this dissertation to the field of eddy current testing is two-fold. The first

contribution is a novel low-frequency numerical formulation that solves the forward problems

with high accuracy and efficiency. The second contribution is an improved multifrequency fusion

algorithm that solves the inverse problem of defect detection and characterization from experimental

data.

The new numerical formulation combines a reduced vector potential formulation with an exact

boundary condition imposed by the means of a Dirichlet-to-Neumann operator. The equations are

derived in weak form and solved using a finite element method. The corresponding numerical

model is sparse, apart from a "small" square block corresponding to the discrete couterpart of

the Dirichlet-to-Neumann operator. This block is of the size of the number of unknowns on the

boundary of the computational domain where the boundary condition is imposed exactly by means

of the Dirichlet-to-Neumann operator, as aforementioned. This block is fully populated because

of the non-local nature of the Dirichlet-to-Neumann operator. Despite its "small" size, this fully

populated block affect the efficiency of the method, so a sparsification was developed to reduce the

cost of the matrix-by-vector product. Moreover, the sparsification was carried out analitically for

the Dirichlet-to-Neumann operator onto a sphere. This sparsification allows to embed the exact

boundary condition based onto the Dirichlet-to-Neumann operator with a negligible overhead, if

compared to simpler (local) boundary conditions.

The numerical performance of the method has been investigated for a model problem where

an analytical solution was available: a conducting sphere in a uniform magnetic field. Other than

this analytical benchmark case, the new numerical model was compared to other simulation codes

as well. Specifically, this latter comparison was carried out for a practical eddy current testing

problem consisting in simulating the C-scan of a coil over a conducting plate with a subsurface

volumetric defect. Another validation was carried out against experimental data acquired with a
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bobbin coil scanning a conducting tube.

The proposed formulation could be readily adopted to simulatemore complicatedECTproblems,

such as domains with nonlinear magnetic materials or eddy current probes with complex designs.

However, there are multiple directions of the future improvements of this method.

The spherical coordinates used in this work is a good starting point for two reasons: it is possible

to derive a simple expression for the analytic DTNmap on the boundary and it is easy to investigate

the performances of the method. On the other hand, most geometries of interest have either one

(tubular) or two (planar) dominating dimensions, where an ellipsoidal boundary might be more

computationally efficient. Helmholtz equation allows separation of variables in both oblate and

prolate spheroidal coordinates, so in principle the proposed approach is applicable in these cases. It

is an interesting subject to research, though the mathematical derivation could be a more complex.

In present work the boundary condition is based on the exterior DtN map, where the analytic

solution in (unbounded) region exterior to computational domain is mapped to the truncation

boundary, and the solution in interior region is computed numerically. Under certain conditions it

is possible to use a similar approach and build an interior DtN for bounded domains. It also could

be combined with domain decomposition FEM tecnhiques and further improve the performances

of the method.

With the current implementation, the obtained system of linear equations is solved by a classical

iterative solver with a custom matrix-vector multiplication routine, and is capable of utilizing

multiple cores on a single compute node. This could be improved by implementing a more

generic solver that is scalable to several compute nodes via MPI and utilizes GPUs through CUDA

or OpenCL. One of the possible applications would be an integration into the Steam Generator

Tube Inspection Simulation (SGTSIM) software [119], developed in the Nondestructive Evaluation

Laboratory at Michigan State University.

Another contribution of this work is an improved fusion algorithm for defect detection and

characterization. The method introduces a generic set of fusion coefficients for a single- and

multifrequency data, as well as a parametrized nonlinear operation. These coefficients are found
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by solving a constrained optimization problem and then applied to compute a fused image, which

allows to detect the sites with potential defects by computing an appropriate cost function in the

corresponding subdomains.

The method has been applied to 1D and 2D data and shows a better performance in comparison

to conventional multifrequency approaches. The practical importance of the method is the ability

to detect smaller defects in presence of noise, where a conventional method fails. Another benefit

is an ability to use it for the data acquired on a single frequency, and an efficient implementation

for an almost real-time operation in the data acquisition systems.

In certain practically important cases (highly magnetic materials, higher levels of noise) the

smallest defects could still be sometimes missed. Consequently, the further improvements of the

method must aim towards a better performance in these circumstances, potentially through defining

a different nonlinear operation or a more elaborated cost function.
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APPENDIX A

USEFUL IDENTITIES

∫
Ω

∇ · A 3+ =
∫
mΩ

A · =̂ 3( (A.1)

A · (B ×C) = B · (C ×A) (A.2)

∇ · (A ×B) = (∇ ×A) ·B −A · (∇ ×B) (A.3)

∇ · (q∇k) = q∇2k + ∇q · ∇k (A.4)

∇ · (qA) = q∇ ·A + ∇q ·A (A.5)
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APPENDIX B

SPHERICAL COORDINATE SYSTEM

The standard spherical coordiante system (A, \, q) is used:

A – the distance from origin (B.1)

\ ∈ [−c
2
,
c

2
] – zenith angle (B.2)

q ∈ [0, 2c) – polar angle (B.3)

The gradient and curl in spherical coordinates are:

∇ 5 = mA 5 r̂ +
1
A
m\ 5 θ̂ +

1
AB8=\

mq 5 φ̂ (B.4)

∇ ×A =
1

AB8=\
(m\(�qB8=\) − mq�\)r̂ +

1
A

(
1
B8=\

mq�A − mA (A�q))θ̂ +
1
A

(mA (A�\) − m\�A )φ̂

(B.5)
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APPENDIX C

VECTOR SPHERICAL HARMONICS

Let’s use the following definition of scalar spherical harmonics:

.
;<

(\, q) =

√
(; − |< |)!
(; + |< |)!%

|< |
;

(cos \)4 z<q , ; = 0, 1, . . . , < = −;, . . . , ; (C.1)∫
.;<.

∗
;′<′ 3Ω =

4c
2; + 1

X;;′X<<′ (C.2)

The vector spherical harmonics are defined as

Y;< = .
;<
r̂ (C.3)

U;< = A∇.
;<

(C.4)

V;< = A∇.
;<
× r̂ (C.5)

Using the curl representation, we obtain

∇ × Y;< =
1
A
V;< (C.6)

∇ ×U;< = −1
A
V;< (C.7)

∇ × V;< =
;(; + 1)
A

Y;< +
1
A
U;< (C.8)

If 5 represents a scalar function, these relations are valid:

∇ × ( 5Y;<) =
1
A
5V;< (C.9)

∇ × ( 5U;<) = −(
35

3A
+

1
A
5 )V;< (C.10)

∇ × ( 5V;<) =
;(; + 1)
A

5Y;< + (
35

3A
+

1
A
5 )U;< (C.11)
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APPENDIX D

FEM STIFFNESS MATRIX COEFFICIENTS

Submatrix elements:

�=: =
∫
Ω

(∇ ×N=) · (a∇ ×N: ) 3+ (D.1)

�00
=:

= zl

∫
Ω

N= · fN: 3+ (D.2)

�0E
=:

= zl

∫
Ω

N= · f∇φ: 3+ (D.3)

�E0
=:

= − zl
∫
Ω

∇φ= · fN: 3+ (D.4)

�EE
=:

= − zl
∫
Ω

∇φ= · f∇φ: 3+ (D.5)

Right hand side:

90= = −
∫
Ω

∇ ×N= · (aA − 1)HB d+ − zl
∫
Ω

N= · fAB d+ (D.6)

9E= = zl

∫
Ω

∇φ= · fAB d+ (D.7)
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APPENDIX E

FIELD GENERATED BY THE CURRENT RING

This section contains the solution to the model problem: computation of a magnetic vector

potential � and magnetic flux density � of a field generated by a current loop (see [126]). Source

is a circular current loop of radius 0, carrying current �, located in G − H plane at origin.

Analytic expressions of the field are given by

�q =
`0�
c

0√
02 + A2 + 20A sin \

(2 − :2) (:2) − 2�(:2)
:2 (E.1)

�A =
�02 cos \
U2V

�(:2) (E.2)

�\ =
�

2U2V sin \
[(A2 + 02 cos 2\)�(:2) − U2 (:2)] (E.3)

U2 = 02 + A2 − 20A sin \ (E.4)

V2 = 02 + A2 + 20A sin \ (E.5)

:2 =
40A sin \

02 + A2 + 20A sin \
= 1 − U

2

V2 (E.6)

� =
`0�
c

(E.7)

Here  (G) represent the elliptic integral of the first kind, �(G) represent the elliptic integral of

the second kind.
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APPENDIX F

CONDUCTING SPHERE IN A UNIFORM FIELD

This section contains an analytic solution to the model problem: conducting sphere in a uniform

magnetic field (see [132]). The sphere occupies domain Ω' = {|A |≤ '} and has constant f and

`. The source is a uniform � along I axis, excitation frequency l is assumed. In this case,

�B = q̂1
2A sin \. Coloumb gauge ∇ · � = 0 is enforced.

Constants:

? = f`l (F.1)

a = ( 9 ?)
1
2 ' (F.2)

�= = �=(a) (F.3)

� =
3`a'

3
2

(` − `0)a�−1
2

+ (`0(1 + a2) − `)�1
2

(F.4)

� =
(2` + `0)a�−1

2
− (`0(1 + a2) + 2`)�1

2
(` − `0)a�−1

2
+ (`0(1 + a2) − `)�1

2

(F.5)

Total magnetic vector potential inside and outside the sphere:

�8 = q̂
1
2
�A
−1

2 �3
2

(( 9 ?)
1
2 A) sin \ (F.6)

�> = q̂
1
2

(A + �A−2) sin \ (F.7)

Total magnetic flux density:

�>,\ = −(1 − �

2A3
) sin \ (F.8)

�>,A = (1 +
�

A3
) cos \ (F.9)

�8,\ = −1
2
� [A−

1
2 ( 9 ?)

1
2 �1

2
(( 9 ?)
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