SUITABILITYOFTHERSP2PROSOFTWARE-DEFINEDRADIOFORPRECOMPLIANCE RADIATEDEMISSIONSTESTING By WilliamSteversII ATHESIS Submittedto MichiganStateUniversity inpartialful˝llmentoftherequirements forthedegreeof ElectricalEngineeringMasterofScience 2020 ABSTRACT SUITABILITYOFTHERSP2PROSOFTWARE-DEFINEDRADIOFORPRECOMPLIANCE RADIATEDEMISSIONSTESTING By WilliamSteversII Thisthesisdemonstratestheabilitytouseanexistingsoftware-de˝nedradioforaccurateRF measurementsrelatedtotheprecompliancetestingofradiatedemissions.Thesoftware-de˝ned radiochosenforthisworkistheSDRplayRadioSpectrumProcessor2Pro(RSP2pro).TheRSP2pro waschosenbecauseofitsabilitytoprovideabsolutereceivedpowermeasurementcapabilitiesata pricemuchlowerthanatraditionalspectrumanalyzer. TheabsolutepowerlevelandfrequencyperformanceoftheRSP2prohasbeencharacterized bydirectcomparisonwithanelectromagneticcompatibilityanalyzerandtheresultsareshown.A methodforautomatingmeasurementstakenwiththeRSP2procompanionsoftwareisdescribed. TheRSP2proisalsousedtoperformprecomplianceradiatedemissionstestswithanelectromag- neticcompatibilityantennaandtheresultsarediscussed.Throughoutthisworkasampleofthree RSP2prounitsiscomparedandvariationsinmeasurementsacrossthethreeunitsisexamined. Acommonvery-highfrequency"rabbittelevisionantennaandanultra-highfrequency "bowtie"televisionantennaareusedwiththeRSP2protocreateacompleteradiatedemissions precompliancetestsetup.Aprocedureforcharacterizingtheseantennasanddeterminingtheir suitabilityforradiatedemissionsprecompliancetestingisalsodescribed.TheRSP2protestsetup formeasuringradiatedemissionsiscomparedtoatraditionalprecompliancetestsetupconsistingof anelectromagneticcompatibilityspectrumanalyzerandanelectromagneticcompatibilityantenna. Thiscomparisonincludesadiscussionoftherelativecost,measurementaccuracy,andoverall convenienceofusingeachtestsetup. Copyrightby WILLIAMSTEVERSII 2020 ForUncleMike iv ACKNOWLEDGMENTS Thisthesisistheresultofseveralyearsofresearchandwouldnothavebeenpossiblewithoutthe supportofsomanyofmycolleaguesandfriends.IamsorrythatIcouldnotmentioneveryone here,butIhavetokeepthisbrief! First,IwouldliketothankScottSpryandthewonderfulteachersattheUticaCenterforScience andIndustry.CSIiswhereIwas˝rstintroducedtoelectricalengineeringandIhavebeenfascinated witheveryaspectofthis˝eldeversince.TheinstructionandguidanceIreceivedatCSIduring thattimeinmylifelaidthefoundationfortheengineerIamtoday. IwouldalsoliketothankBrettLarimoreandtherestoftheC2000teamformakingmy experiencesatTImemorable.Brettwasagreatmentor,andIwastaskedwithinterestingprojects thattaughtmehowtobeanelectricalengineer.IshouldalsomentionthatIreallymisstheweather downintheHoustonarea(eventhoughIonlyeverexperienceditintheSummer). SpecialthankstoAnton,Michael,andalloftheotherstudentsfromtheElectromagnetics ResearchGrouphereatMSU.Youallmademefeelwelcomemy˝rstsemesterandsupportedme throughmylastsemester,andIamsoverythankfulforthat. Thankyoutomyparentsfortheirsupportandforenablingmetopursuemyinterestsfroma youngage.Also,aquickshoutouttomysisterOlivia,forkeepingmesaneoverthelastfewmonths, andtomybestfriendMatt,whoinspiredmetoseethisthingthroughtotheend.Thankyouboth somuch. IwouldliketothankmycommitteeandtheotherprofessorsintheMSUECEdepartment fortheircollectiveinstructionthroughoutmytimeatMSU.Mostofall,IwouldliketothankDr. Rothwellforhisfriendship,guidance,andpatienceoverthelastseveralyears.Thisresearchstarted withhisassertionthatanyonecouldwriteathesisiftheywantedto.AlthoughIdoubtedhimatthe time,thisdocumentisproofthathewasright! v TABLEOFCONTENTS LISTOFTABLES ....................................... vii LISTOFFIGURES ....................................... viii KEYTOSYMBOLSANDABBREVIATIONS ........................ xvi CHAPTER1INTRODUCTION ............................... 1 CHAPTER2BACKGROUND ................................ 2 2.1ElectromagneticCompatibilityandRadiatedEmissions...............2 2.2EMCRegulationsandPrecomplianceTesting....................11 2.3Software-de˝nedRadio(SDR)............................21 2.4TheRadioSpectrumProcessor2Pro(RSP2pro)...................27 CHAPTER3PERFORMANCEOFTHERSP2PRO .................... 33 3.1EquipmentInformation................................33 3.1.1AgilentE7401AEMCAnalyzer.......................34 3.1.2EMCAntennas................................36 3.1.3HP8657ASignalGenerator.........................42 3.2CharacterizationProcedureandMeasurementAutomation.............50 3.3SignalLevelMeasurementPerformance.......................60 3.4FrequencyMeasurementPerformance........................89 CHAPTER4USINGTHERSP2PROFORRADIATEDEMISSIONSTESTING ..... 98 4.1RadiatedEmissionsMeasurementProcedure.....................98 4.1.1NarrowbandSource:WhipAntenna.....................105 4.1.2BroadbandSource:CustomEquipmentUnderTest(EUT).........109 4.2NarrowbandResults..................................122 4.3BroadbandResults..................................125 CHAPTER5ACOMPLETEPRECOMPLIANCETESTSETUP ............. 131 5.1AntennaSelection,Modi˝cations,andProcedure..................131 5.2VHF"RabbitEar"AntennaPerformance.......................138 5.3UHF"BowTie"AntennaPerformance........................145 5.4ComparisontoaMoreTraditionalTestSetup....................150 CHAPTER6CONCLUSIONS ................................ 159 APPENDICES ......................................... 160 APPENDIXAEUTCIRCUITDIAGRAMSANDBILLOFMATERIALS ..... 161 APPENDIXBDIGITALAPPENDIXCONTENTSLIST .............. 163 BIBLIOGRAPHY ........................................ 165 vi LISTOFTABLES Table2.1:TheadvantagesoffourSDRdigitalsignalprocessingarchitectureswithexamples.23 Table2.2:TheRSP2prohardwarespeci˝cationsthatarerelevanttothisthesis.All informationtakenfrom[42]and[41]........................30 Table3.1:ParametersoftheEMCanalyzerstate˝lesthatwereusedtocontrolthesettings oftheEMCanalyzer.................................35 Table3.2:DescriptionoftheninedatasetsthatwereusedtocharacterizetheEMC analyzerandtheRSP2pro..............................51 Table3.3:SummaryoftheSDRunosettingsusedforalloftheRSP2promeasurements presentedinthisthesis................................56 Table4.1:InputdatapointsusedbytheCWradiatedemissionssourceshowninFigure4.6.105 Table4.2:DetailsforthefrequenciesthatwerecreatedbythecustomEUTtotestradiated emissionsacrosstheCISPR-22ClassBfrequencyband..............112 Table4.3:Theconversionofthevoltagesmeasuredbythecurrentprobeintothepredicted maximumradiatedemissions, j ˆ 2 <0G j ,usingEquations4.1and4.2with distancesof10mand1m..............................121 Table4.4:MeasuredradiatedemissionsfromthecustomEUTat10mcomparedtothe predictedradiatedemissions.............................130 Table4.5:MeasuredradiatedemissionsfromthecustomEUTat1mcomparedtothe predictedradiatedemissions.............................130 Table5.1:ComparisonoftheradiatedemissionsmeasuredfromtheEUTshowninFigure 5.18withseveraldi˙erenttestsetups........................156 Table5.2:ComparisonoftheradiatedemissionsmeasuredfromtheEUTshowninFigure 5.18withseveraldi˙erenttestsetups........................156 vii LISTOFFIGURES Figure2.1:ThefourmainEMCissuesthatcane˙ectanelectronicproduct..........3 Figure2.2:AnexampleofacurrentloopcreatedbyasignalonaPCB............4 Figure2.3:Theelectric˝eldscreatedbythedi˙erential-modecurrentalongparallel conductors......................................6 Figure2.4:Theelectric˝eldscreatedbythecommon-modecurrentalongparallelconductors.7 Figure2.5:AnexampleofaLEDsignthatcreatesEMI....................8 Figure2.6:(a)RadiatedemissionscreatedbytheLEDsignfromFigure2.5and(b)a controlsamplemeasured1kmawayfromtheLEDsign..............9 Figure2.7:Radiatedemissionlimitsmeasuredatadistanceof10metersfortheEuropean Union(solid)andtheUnitedStates(dashed)....................12 Figure2.8:Theantennafactorcanbeusedtoeasilyconvertameasuredvoltageback intotheelectric˝eldstrength,whichcanthenbedirectlycomparedtothe regulatorylimits..................................13 Figure2.9:Thedi˙erencebetweenthedisplayedoutputtraceofregularpeakdetection andquasi-peak(QP)detectionwhenmeasuringaspurioussignalwithalow annoyancefactor[17]................................15 Figure2.10:Atraditionalprecomplianceradiatedemissionsmeasurementtestsetupusing anEMCanalyzerandashieldedRFchamber...................17 Figure2.11:Alow-costprecompliancetestsetupformeasuringradiatedemissionsinan uncontrolledRFenvironmentsuchasahallwayoro˚cespace[25].......18 Figure2.12:Blockdiagramofatypicalsuperheterodynespectrumanalyzerasdescribed in[26]........................................19 Figure2.13:Generalizedblockdiagramforadigitallow-IFSDRreceiverasdescribedin[32].22 Figure2.14:Therelationshipsbetweendevelopmente˙ort,cost,powerconsumption,and datathroughputforthemostcommonSDRdigitalsignalprocessingarchi- tectures(adaptedfrom[29])............................23 viii Figure2.15:TheB200minifromEttusResearch Š isacompactFPGA-basedSDRfron- tendwithtransmitandreceivecapabilitiesoverawidefrequencyrange.....25 Figure2.16:Severalsoftware-centricSDRsthatwereconsideredforthisthesis.The hardwarecharacteristicsshownwereretrievedfromthemanufacturerwebsites ([35][36][37][38]).................................26 Figure2.17:TheRSP2profromSDRplayisasoftware-centricSDRreceiverwithmany uniqueRFsignalconditioningcapabilities.....................27 Figure2.18:Asimpli˝edblockdiagramshowingthemaincomponentsoftheRSP2pro SDR(adaptedfrom[39]and[40]).........................28 Figure2.19:InternalviewoftheRSP2pro;the10bandselectableRF˝lternetworkcan beseenonthelower-centerofthePCB,whiletheRFtunerICcanbeseenon thelower-right....................................28 Figure2.20:TheSDRunouserinterface............................31 Figure3.1:TheAgilentE7104AEMCanalyzerthatwasusedforallmeasurementcom- parisonswiththeRSP2pro.............................34 Figure3.2:(a)TheAgilent11955Aand(b)11956AEMCantennasand(c)theirantenna factors[44].....................................37 Figure3.3:TheBicoLOG30100XEMCantenna.......................39 Figure3.4:(a)TheBicoLOG30100Xantennafactorand(b)thegainofitspreampli˝er. Theantennafactorshownin(a)isnegativebecauseofthelargegainofthe preampli˝ershownin(b)[47]...........................40 Figure3.5:TheHP8657Asignalgenerator...........................42 Figure3.6:FlowchartforthePythonscriptthatwasusedto˝ndthefrequencyo˙setsof theuncalibratedHP8657Asignalgenerator....................43 Figure3.7:Plotofthe 5 > associatedwitheachvalueof 5 8= fromEquation3.1........45 Figure3.8:FlowchartforthePythonscriptthatwasusedtocharacterizethefrequency driftofthesignalgeneratorovera24-hourperiod.................46 Figure3.9:Measuredsignalgeneratorfrequencydriftfor C = 0 to C = 12 hours........47 Figure3.10:Measuredsignalgeneratorfrequencydriftfor C = 13 to C = 24 hours.......48 ix Figure3.11:Theoutputofthesignalgeneratorwithafrequencysettingof500MHzand asignallevelof50dB ` V..............................49 Figure3.12:DetailedviewofthesignalinFigure3.11showinghownarrowbandthesignal generatoroutputis.................................49 Figure3.13:ThecharacterizationtestsetupconsistingoftheEMCanalyzer,signalgener- ator,RSP2pro,andlaptop.Herethesignalgeneratorisshownconnectedto theRSP2pro.....................................52 Figure3.14:DiagramshowingtheRFsignalchainsusedforthecharacterizationtestsetup..52 Figure3.15:Flowchartforthesemi-automatedprocedurethatwasusedtocollecttheEMC analyzercharacterizationdata...........................54 Figure3.16:Flowchartforthesemi-automatedprocedurethatwasusedtocharacterizethe RSP2prounits....................................57 Figure3.17:TheRFgainoptimizerthatispartoftheAutoItscriptoutlinedinFigure3.16. AnoutlineoftheAutoItcodeisshownontheleftandtheSDRunowindow withtheRFgaincontrolandADCoverloadindicatorisshownontheright...59 Figure3.18:(a)TheVSWRand(b)theinsertionlossoftheSMAcablethatwasusedfor allofthemeasurementspresentedinthisthesis..................65 Figure3.19:AverageEMCanalyzervoltagemeasurementfor:(a)DataSets1,2,and3,(b) DataSets4,5,and6,and(c)DataSets7,8and9.Eachdatapointrepresents theaverageof50measurements..........................66 Figure3.20:RSP2proandEMCanalyzervoltagemeasurementstandarddeviationfor:(a) DataSet1,(b)DataSet2,and(c)DataSet3.Eachdatapointrepresentsthe standarddeviationfor50measurements......................68 Figure3.21:RSP2proandEMCanalyzervoltagemeasurementstandarddeviationfor:(a) DataSet4,(b)DataSet5,and(c)DataSet6.Eachdatapointrepresentsthe standarddeviationfor50measurements......................69 Figure3.22:RSP2proandEMCanalyzervoltagemeasurementstandarddeviationfor:(a) DataSet7,(b)DataSet8,and(c)DataSet9.Eachdatapointrepresentsthe standarddeviationfor50measurements......................70 Figure3.23:AverageRSP2provoltagemeasuremento˙setfor:(a)DataSet1,(b)DataSet 2,and(c)DataSet3.Eachdatapointrepresentstheaverageof50measurements.73 x Figure3.24:AverageRSP2provoltagemeasuremento˙setfor:(a)DataSet4,(b)DataSet 5,and(c)DataSet6.Eachdatapointrepresentstheaverageof50measurements.74 Figure3.25:AverageRSP2provoltagemeasuremento˙setfor:(a)DataSet7,(b)DataSet 8,and(c)DataSet9.Eachdatapointrepresentstheaverageof50measurements.75 Figure3.26:RSP2proSNRmeasurementstandarddeviationfor:(a)DataSet1,(b)Data Set2,and(c)DataSet3.Eachdatapointrepresentsthestandarddeviation for50measurements................................79 Figure3.27:RSP2proSNRmeasurementstandarddeviationfor:(a)DataSet4,(b)Data Set5,and(c)DataSet6.Eachdatapointrepresentsthestandarddeviation for50measurements................................80 Figure3.28:RSP2proSNRmeasurementstandarddeviationfor:(a)DataSet7,(b)Data Set8,and(c)DataSet9.Eachdatapointrepresentsthestandarddeviation for50measurements................................81 Figure3.29:ThevalueofEquation3.15using(a)DataSet1and2,(b)DataSet4and5, and(c)DataSet7and8..............................83 Figure3.30:ThevalueofEquation3.15using(a)DataSet2and3,(b)DataSet5and6, and(c)DataSet8and9..............................84 Figure3.31:RSP2proSNRmeasurementfor:(a)DataSet1,(b)DataSet2,and(c)Data Set3.Eachdatapointrepresentstheaverageof50measurements........85 Figure3.32:RSP2proSNRmeasurementfor:(a)DataSet4,(b)DataSet5,and(c)Data Set6.Eachdatapointrepresentstheaverageof50measurements........86 Figure3.33:RSP2proSNRmeasurementfor:(a)DataSet7,(b)DataSet8,and(c)Data Set9.Eachdatapointrepresentstheaverageof50measurements........87 Figure3.34:RSP2proandEMCanalyzerfrequencymeasurementstandarddeviationfor: (a)DataSet1,(b)DataSet2,and(c)DataSet3.Eachdatapointrepresents thestandarddeviationfor50measurements....................90 Figure3.35:RSP2proandEMCanalyzerfrequencymeasurementstandarddeviationfor: (a)DataSet4,(b)DataSet5,and(c)DataSet6.Eachdatapointrepresents thestandarddeviationfor50measurements....................91 Figure3.36:RSP2proandEMCanalyzerfrequencymeasurementstandarddeviationfor: (a)DataSet7,(b)DataSet8,and(c)DataSet9.Eachdatapointrepresents thestandarddeviationfor50measurements....................92 xi Figure3.37:AverageRSP2profrequencymeasuremento˙setfor:(a)DataSet1,(b)Data Set2,and(c)DataSet3.Eachdatapointrepresentstheaverageof50 measurements....................................94 Figure3.38:AverageRSP2profrequencymeasuremento˙setfor:(a)DataSet4,(b)Data Set5,and(c)DataSet6.Eachdatapointrepresentstheaverageof50 measurements....................................95 Figure3.39:AverageRSP2profrequencymeasuremento˙setfor:(a)DataSet7,(b)Data Set8,and(c)DataSet9.Eachdatapointrepresentstheaverageof50 measurements....................................96 Figure4.1:(a)Theoutdoorareathatwasconsideredforradiatedemissiontestingand(b) theambientRFsignalsmeasuredattheoutdoorareafrom30MHzto1000 MHz(averageof3trials)..............................100 Figure4.2:(a)Theundergroundtunnelthatwasconsideredforradiatedemissiontesting and(b)theambientRFsignalsmeasuredintheundergroundtunnelfrom30 MHzto1000MHz(averageof3trials)......................101 Figure4.3:(a)Theindoorhallwaythatwasultimatelychosenforradiatedemissiontesting and(b)theambientRFsignalsmeasuredinthehallwayfrom30MHzto1000 MHz(averageof3trials)..............................103 Figure4.4:TheradiatedemissionstestsetupconsistingoftheEMCanalyzer,BicoLOG 30100XEMCantenna,RSP2pro,andradiatedemissionssourceat(a)10m and(b)1m.....................................104 Figure4.5:DiagramshowingtheRFsignalchainsusedfortheradiatedemissionstestsetup.104 Figure4.6:DetailedviewofthewhipantennaarrangementusedtosimulateCWnarrow- bandradiatedemissionsfromanEUT.......................106 Figure4.7:(a)ThewhipantennausedtocreateCWnarrowbandradiatedemissions attachedtoametalsurfaceand(b)itsmeasuredVSWRfrom30MHzto1000 MHz(averageof5measurements).........................107 Figure4.8:(a)ThewhipantennausedtocreateCWnarrowbandradiatedemissionsona non-metallicsurfaceand(b)itsmeasuredVSWRfrom30MHzto1000MHz (averageof5measurements)............................108 Figure4.9:Simpli˝edblockdiagramofthecustomEUTconstructedtocreatewideband radiatedemissionsatmultiplefrequencies.RefertoAppendixAforthe customEUTcircuitdiagrams............................111 xii Figure4.10:DetailedviewofthesourcesideshowninFigure4.9...............111 Figure4.11:(a)Thetestsetupusedtomeasurethetime-domaincharacteristicsofthe customEUTand(b)thetestsetupwiththecurrentprobethatwasusedto measurethefrequency-domaincharacteristicsofthecustomEUT.........113 Figure4.12:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 40 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x" andtheirvaluesareshown.............................115 Figure4.13:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 50 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x" andtheirvaluesareshown.............................116 Figure4.14:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 120 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x" andtheirvaluesareshown.............................117 Figure4.15:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 160 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x" andtheirvaluesareshown.............................118 Figure4.16:DetailedviewofhowthecustomEUTwasarrangedduringbroadbandradi- atedemissiontests.................................121 Figure4.17:AverageRSP2provoltagemeasuremento˙setfromEquation3.13forthe inputdatapointsshowninTable4.1measuredatadistanceof10m.Each datapointrepresentstheaverageofthreemeasurements..............123 Figure4.18:AverageRSP2provoltagemeasuremento˙setfromEquation3.13forthe inputdatapointsshowninTable4.1measuredatadistanceof1m.Eachdata pointrepresentstheaverageofthreemeasurements................124 Figure4.19:AverageRSP2provoltagemeasuremento˙setfromEquation3.13forthe customEUTradiatedemissionfrequenciesshowninTable4.3measuredata distanceof10m.Eachdatapointrepresentstheaverageofthreemeasurements.127 Figure4.20:AverageRSP2provoltagemeasuremento˙setfromEquation3.13forthe customEUTradiatedemissionfrequenciesshowninTable4.3measuredata distanceof1m.Eachdatapointrepresentstheaverageofthreemeasurements..128 Figure5.1:(a)TheVHF"rabbitear"televisionantennaand(b)theUHF"bowtie"tele- visionantenna....................................132 Figure5.2:CADmodelsfortheantennaholdersthatareshowninFigure5.1........133 xiii Figure5.3:(a)Theantennaholder'sdualattachmentpointsand(b)theantennaholder withbothcameratripodadaptersattached.....................133 Figure5.4:CADmodeloftheantennaclipthatwasusedto˝xtheangularpositionof rabbitearantennaelementsto180 ° .........................134 Figure5.5:(a)Two4:1televisonbaluns(theoneontheleftwasused),(b)internal componentsofthebalun,(c)balunwiththescrew-terminalsremoved,(d)the ˝nalmodi˝ed4:1balun,and(e)theconnectionbetweenthemodi˝edbowtie antennaandthemodi˝edbalun...........................136 Figure5.6:(a)Removalofthemountingpost,(b)theexposedantennaelementconnec- tors,and(c)the˝nalmodi˝edrabbitearantenna.................137 Figure5.7:DiagramshowingtheRFsignalchainsusedduringthetelevisionantenna comparisontestsetup................................138 Figure5.8:MeasuredVSWRoftheVHFrabbitearantennawith(a) ˆ! =0.375m,(b) ˆ! =0.667m,and(c) ˆ! =0.991m.Eachtraceistheaverageof˝vetrials...139 Figure5.9:TheamountofpotentialmismatcherrorwiththeEMCanalyzer "ˆ ˆ forall threeoftherabbirearantennaelementlengths ˆ! thatweretested........140 Figure5.10:RadiatedemissionsfromthecustomEUTsetto40MHzmeasuredbyusing (a)theBicoLOG30100XEMCantennaandbyusingtherabbitearantenna with(b) ˆ! =0.375m,(c) ˆ! =0.667m,and(d) ˆ! =0.991m.........142 Figure5.11:RadiatedemissionsfromthecustomEUTsetto50MHzmeasuredbyusing (a)theBicoLOG30100XEMCantennaandbyusingtherabbitearantenna with(b) ˆ! =0.375m,(c) ˆ! =0.667m,and(d) ˆ! =0.991m.........143 Figure5.12:RadiatedemissionsfromthecustomEUTsetto120MHzmeasuredbyusing (a)theBicoLOG30100XEMCantennaandbyusingtherabbitearantenna with(b) ˆ! =0.375m,(c) ˆ! =0.667m,and(d) ˆ! =0.991m.........144 Figure5.13:MeasuredVSWRoftheUHFbowtieantennain(a)thehorizontalorientation and(b)theverticalorientation.Eachtraceistheaverageof˝vetrials......146 Figure5.14:TheamountofpotentialmismatcherrorwiththeEMCanalyzer "ˆ ˆ forthe horizontalandverticalorientationsofthebowtieantenna.............147 Figure5.15:RadiatedemissionsfromthecustomEUTsetto120MHzmeasuredbyusing (a)theBicoLOG30100XEMCantennaand(b)thebowtieantennainthe horizontalorientation................................148 xiv Figure5.16:RadiatedemissionsfromthecustomEUTsetto160MHzmeasuredbyusing (a)theBicoLOG30100XEMCantennaand(b)thebowtieantennainthe horizontalorientation................................149 Figure5.17:(a)Thetraditionalprecompliancetestsetupand(b)thelow-costtestsetup....150 Figure5.18:DetailedviewoftheEUTshowingthegold5 resistiveload..........151 Figure5.19:DiagramshowingtheRFsignalchainsof(a)thetraditionaltestsetupand(b) thelow-costtestsetup................................151 Figure5.20:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiated emissionsfromtheEUTnear41MHz.......................152 Figure5.21:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiated emissionsfromtheEUTnear41MHz.......................153 Figure5.22:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiated emissionsfromtheEUTnear50MHz.......................154 Figure5.23:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiated emissionsfromtheEUTnear50MHz.......................155 FigureA.1:ElectricalcircuitforthesourcesideofthecustomEUTfromSection4.1.2....161 FigureA.2:ElectricalcircuitfortheloadsideofthecustomEUTfromSection4.1.2.....162 xv KEYTOSYMBOLSANDABBREVIATIONS ADC GPIB CW SNR TCXO ASIC FPGA DSP GPP IQ A/D RBW IF OATS QP CISPR EU FCC dBFS LED EMI EUT EMC SDR RSP2pro analog-to-digitalconverter general-purposeinterfacebus continuouswave signal-to-noiseratio temperature-compensatedoscillator application-speci˝cintegratedcircuit ˝eld-programmablegatearray digitalsignalprocessor generalpurposeprocessor in-phaseandquadrature analog-to-digital resolutionbandwidth intermediatefrequency openareatestsite quasi-peak ComitéInternationalSpécialdesPerturbationsRadio EuropeanUnion FederalCommunicationsCommission dBfull-scale light-emittingdiode electromagneticinterference equipmentundertest electromagneticcompatibility software-de˝nedradio RadioSpectrumProcessor2Pro xvi CHAPTER1 INTRODUCTION ThisthesisinvestigatesusingtheSDRplayRadioSpectrumProcessor2Pro(RSP2pro)software- de˝nedradio(SDR)toperformaccurateRFmeasurementsrelatedtotheprecompliancetestingof radiatedemissions. Chapter2givesanoverviewofelectromagneticcompatibility(EMC)withafocusonradiated emissionsmeasurements,regulations,andprecompliancetechniques.ThebasicsofSDRimple- mentationandtypicalSDRimplementationsarealsodescribed.Themethodologyforselectingthe RSP2proforthisresearchisexplained.AdescriptionoftheRSP2proanditscompanionsoftware, SDRuno,isprovided. Chapter3assessesthesuitabilityoftheRSP2proforprecomplianceradiatedemissionstestingby directlycomparingitsmeasurementcapabilitiestoanEMCanalyzer.Theprocessforcharacterizing boththeabsolutepowerandfrequencyperformanceoftheRSP2proisexplainedandtheresults areexamined.AmethodforautomatingmeasurementswithSDRunoisalsodescribed. TheRSP2proisusedforprecomplianceradiatedemissionstestsinChapter4.Adetailed descriptionofthecustomcircuitservingastheequipmentundertest(EUT)isgiven.Radiated emissionsmeasurementsusingtheRSP2proandanEMCantennaarecomparedwithmeasurements usinganEMCanalyzerandthesameEMCantenna. Chapter5describestheuseoftwocommontelevisionantennasforradiatedemissionsmea- surementsintheRFrangeof30MHzto1000MHz.Adetaileddescriptionofeachantennais givenandtheresultsobtainedusingtheseantennasarecomparedtoresultsobtainedwithanEMC antenna.TheutilityoftheRSP2protestsetupformeasuringradiatedemissionsisthencompared toatraditionalprecompliancetestsetupconsistingofanEMCanalyzerandanEMCantenna. Chapter6istheconclusionofthisthesisandincludesbothasummaryoftheresultsanda proposalforfutureworkrelatedtotheuseoftheRSP2proformoreaccurateradiatedemissions measurements. 1 CHAPTER2 BACKGROUND Anelectronicproductisanyelectronicsystemthatisintendedforusebyanend-userinadomestic orindustrialenvironment.Section2.1summarizestheimportanceofEMCandoneofitsmain areas,electromagneticinterference(EMI)intheformoftheradiatedemissionscreatedbyan electronicproduct.Governmentalregulationsrelatedtoradiatedemissionsandthedi˙erences betweeno˚cialEMCtestingproceduresandprecompliancetestingproceduresareexplainedin Section2.2.Thisincludesadiscussionaboutexisting"low-cost"precompliancetechniques.An introductiontoSDRtechnologyisgiveninSection2.3.Finally,adescriptionoftheRSP2proand itscompanionsoftware,SDRuno,isgivenSection2.4. 2.1ElectromagneticCompatibilityandRadiatedEmissions Anelectronicproductmeetselectromagneticcompatibility(EMC)requirementswhenitdoes notinterferewithitssurroundingRFenvironmentwhilealsobeingabletoacceptelectronic interferencewithoutlosingproperfunctionality[1].TheformerdescribesminimizingtheEMI createdbytheproductitselfwhilethelatterdescribesensuringthattheproductisimmunetoEMI. AccordingtoPaul[1],alloftheEMCproblemsrelatedtoanelectronicproductcanbesummarized intothefourgeneralizedcasesshowninFigure2.1.Conductedemissionsandsusceptibility describeEMIthatisgenerated(emissions)orreceived(susceptibility/immunity)bytheproduct throughitspowercord,whileradiatedemissionsandsusceptibilitydescribeEMIthatisgenerated orreceivedbytheproductintheformofRFradiation.Designingforimmunityisgenerallybuilt intothedevelopmentofanelectronicproductbecauseitisapparenttothedesigners(andthe end-user)whenaproductisnotoperatingcorrectly[2].Thissame"self-regulation"doesnotapply totheEMIcreatedbytheproduct,astheproductmaynotinterferewithitselfandwilloperate normally.EmissionsfromaproductarethereforemorelikelytogounnoticeduntilanEMCissue isdiscoveredmuchlaterinthedesignprocess.Theinsidiousnatureofradiatedandconducted 2 emissions,combinedwiththeneedforanenvironmentasfreefromEMIaspossible,iswhymany agenciesaroundtheworldsetcompliancestandardsfortheacceptableamountofEMIcreatedby anelectronicproduct.Thesecompliancestandardsmustbemetbeforeaproductcanbeplaced onthemarket.Whileconductedemissionsareanimportantpartofthecomplianceprocess,the techniquesandproceduresinthisthesiswillbefocusedsolelyonradiatedemissions.Thisis becauseradiatedemissionsarebothpoorlyunderstoodbymostelectronicproductdesignersand arethemostdi˚cultpartofpassingano˚cialcompliancetest[3]. Figure2.1:ThefourmainEMCissuesthatcane˙ectanelectronicproduct. Radiatedemissionshaveaveryspeci˝cde˝nitionwithinEMCandarenottobeconfused withintentionalRFsignalssuchasthosefromaradiostationorwirelessinternetrouter.While intentionalradiatorscancauseEMIissues,radiatedemissionsinanEMCcontextmostcommonly referstotheunintentionalRFsignalsthatoriginatefromthedigitalcircuitswithinanelectronic product[1].Whenmeasuringradiatedemissionsforcomparisontoregulatorylimits,thestrength oftheelectric˝eldatagivendistancefromtheelectronicproductismeasured.Theunitsofthis measurementareindB ` V/m(decibelsrelativetoonemicrovolt,permeter).Beforereviewingthe 3 compliancestandardsandmeasurementpracticesrelatedtoradiatedemissions,itisimportantto ˝rstunderstandwherethesetypesofemissionscomefrom. Anymetalliccomponentthatiscapableofcarryingelectriccurrenthasthepotentialtobecome aradiatingstructurethatwillcreateEMI[1].CommonexamplesofsuchcomponentsincludePCB traces,ribboncables,andtheproductenclosure.Whenthesecomponentsbecomelargeenough relativetothewavelengthofthecurrenttheyarecarrying,thecomponentscanproduceradiated emissions[4].Mostofthecurrentinaconductortravelsinaclosedloopliketheoneshownin Figure2.2.Herethetotalcurrentthatoriginatesfromtheintegratedcircuitpincircledinmagenta Figure2.2:AnexampleofacurrentloopcreatedbyasignalonaPCB. createsaloopconsistingofthepinkpaththatgoestotheyellowLEDandtheorangereturnpath throughthegroundcopper˝llregionshowninlightorange.Thiscurrentloopexistsbecausea predominantportionofthecurrentcontinuesalongthepathofleastimpedancewithintheground regiontothepointfromwhichitoriginated[5].Thistypeofcurrentiscalledadi˙erential-mode currentbecauseitisreturningtoitssource,creatingaclosedloop.TheloopshowninFigure2.2is ratherlargebecausetheelectronicproductshownusesatwo-layerPCB.Thisloopcouldbemade 4 considerablysmalleriftherewasaseparategroundlayer,butthisaddsmanufacturingcostand increasesthecomplexityofthedesign.Notethattheloophereisonlybeingusedasanexampleof howthecurrenttravelsinthecircuit;theactualswitchingcurrentonthepathshowniswellbelow 50kHzandisnotaconcernforcreatingradiatedemissions[5].Thisiswhytwosignallayersare su˚cientforthisPCB. APCBtraceaboveagroundplaneandtheindividualwiresinaribboncablearebothexamplesof parallelconductorsthatarecommonlyfoundinelectronicproducts.Therearetwotypesofelectric currentthatexistalongparallelconductorsthatcontributetoradiatedemissions:di˙erential-mode currentandcommon-modecurrent[6].Di˙erential-modecurrentsareeasilydescribedwithcircuit theoryandexistinequalbutoppositedirectionsalongparallelconductors(recallthecurrentloop showninFigure2.2).Thesecurrentsaretheidealsignalsbeingcarriedbytheconductorsina circuit[7]. Common-modecurrentsaremoredi˚culttopredictbecausetheyexistinthesamedirection alongparallelconductorsandarecreatedbytheparasiticimpedanceswithintheconductorsin thecircuit[2].Whenacableisconnectedtoadigitalcircuit,acommon-modecurrentcanexist alongthecableandwillcauseittobehavelikeanantennathate˙ectivelyradiateselectric˝elds. Common-modecurrentsdonotonlyexistinthecablesconnectedtoanelectronicproduct.For example,common-modecurrentsareamajorsourceofnoiseinmicrocomputercircuitsthatdonot useexternalmemory[5].Specialattentionisgiventothecablingofelectronicproductsbecause theycaneasilycausethecommon-modecurrentsfromwithintheproducttoescapeintotheRF environment.Thisisespeciallytrueifthecableconnectorsareeitherpoorlybondedtotheproduct's metallicenclosureoriftheproductusesanonmetallicenclosure[8]. Thetotalcurrentinaconductorcanberepresentedasthesumofthedi˙erentialandcommon- modeparts.Therelationshipbetweenthecurrents ˚ 1 and ˚ 2 carriedbytwoparallelconductorsand thecommon-modeanddi˙erential-modecurrent, ˚ ˘ and ˚ ˇ ,respectively,is ˚ 1 = ˚ ˘ ¸ ˚ ˇ ,(2.1) ˚ 2 = ˚ ˘ ˚ ˇ .(2.2) 5 Bysubtracting(2.2)from(2.1),anequationforthedi˙erential-modecurrent ˚ ˇ alongtwoparallel conductorscanbeexpressedas ˚ ˇ = ˚ 1 ˚ 2 2 .(2.3) Thetotalcurrents ˚ 1 and ˚ 2 subtractin(2.3)andthusmostoftheradiatedemissionscreatedby thedi˙erential-modecurrentcanceloutwhen ˚ 1 and ˚ 2 aresimilarinbothphaseandmagnitude. Theradiatedemissionsarenotexactlyzeroevenwhen ˚ 1 isidenticalto ˚ 2 becausetheparallel conductorsareseparatedbysomedistance.ThisisillustratedinFigure2.3,wherethedi˙erential currentisshowninmagentaandtheparallelconductorsareseparatedbyasmalldistance 3_ where _ isthewavelengthofthesignalcreatingthecurrent. Figure2.3:Theelectric˝eldscreatedbythedi˙erential-modecurrentalongparallelconductors. Forsimplicity,onlytheelectric˝eldcreatedparalleltotheribboncablehasbeenconsidered. Thesecondconductorisclosertotheobservationpoint A byadistanceof 3 ,sothemagnitude oftheelectric˝eldcreatedbythesecondconductor, j ˆ 2 j ,isslightlylargerthanthemagnitude oftheelectric˝eldcreatedatthispointbythe˝rstconductor, j ˆ 1 j .Thevalueofthenet˝eld 6 ˆ C>C0; = ˆ 2 ˆ 1 createdbythedi˙erential-currentat A issmall,butnonzero.Di˙erential-mode currentsalsocreateanelectricpotentialwhentheytravelthroughtheparasiticimpedanceswithin theconductorsofacircuit[2].This"common-modepotential"thencreatesthetroublesome common-modecurrentsthatradiateelectric˝eldsmuchmoree˙ectively. Toshowthatcommon-modecurrentscreatemuchlargerradiatedemissions,weaddandsubtract (2.2)and(2.1)toobtainanequationforthecommon-modecurrent ˚ ˘ alongtwoparallelconductors. Thisequationcanbeexpressedas ˚ ˘ = ˚ 1 ¸ ˚ 2 2 .(2.4) Unlikebeforewiththedi˙erential-modecurrent,the˝eldsproducedbythecurrents ˚ 1 and ˚ 2 now addtogether.Thee˙ectofthisadditionisshowninFigure2.4.Here,thecommon-modecurrent Figure2.4:Theelectric˝eldscreatedbythecommon-modecurrentalongparallelconductors. isshownincyanandtheparallelconductorsareagainseparatedbyasmalldistance 3_ where _ isthewavelengthofthesignalcreatingthecurrent.Justlikebefore,onlytheelectric˝eldcreated paralleltotheribboncableisconsidered.Thesecondconductorisclosertotheobservationpoint 7 A byadistanceof 3 ,sothemagnitudeoftheelectric˝eldcreatedbythesecondconductor, j ˆ 2 j , isslightlylargerthanthemagnitudeoftheelectric˝eldcreatedatthispointbythe˝rstconductor, j ˆ 1 j .However,nowthevalueofthenet˝eldis ˆ C>C0; = ˆ 2 ¸ ˆ 1 ,whichislargerthanthe˝elds createdbytheindividualportionsofthecommon-modecurrent(aslongas 3_ ).Thisis signi˝cantbecauseitshowsthatevensmallcommon-modecurrentscancreateelectric˝elds.The electric˝eldsshowninFigure2.3andFigure2.4areprovidedonlyforillustrativepurposesand representaverysimplisticwayofmodelingtheelectric˝eldscreatedbydi˙erential-modeand common-modecurrents.Moredetailedmethodsforpredictingtheelectric˝eldscreatedbythese currentscanbefoundin[1],[2],and[7].InSection4.1ofthisthesis,onesuchmethodisusedto predicttheradiatedemissionscreatedbythecommon-modecurrentsinthecablingofthecustom equipmentundertest(EUT)thatwasdesignedtoexceedregulatorylimits. RadiatedemissionscancauseavarietyofissuesinthelocalRFenvironmentwhenleft unchecked.Light-emittingdiode(LED)deviceslikethesignshowninFigure2.5havecome underscrutinyinrecentyearsbecausetheycancreatesporadic,broadbandradiatedemissionsthat interferewithotherelectronicproducts[9],[10],[11],[12]. TheLEDsignshowninFigure2.5generatesconsistentbroadbandemissionscenteredata frequencyofapproximately107.1MHz[13].Theseemissionsarepowerfulenoughtointerfere Figure2.5:AnexampleofaLEDsignthatcreatesEMI. 8 withFMradiobroadcastsandshortrangetransmissionsfromvehiclekeyfobs[13].Asampleof theseradiatedemissionsareshowninFigure2.6.Inthis˝gure,thex-axisisthefrequencyofthe signalinMHzandthey-axisfortheblackspectrumdisplayistheRFsignalmagnitudeinrelative units,or"dBfull-scale"(dBFS).They-axisforthebluewaterfallplothasunitsofsecondsand hasunitsofsecondsandshowshowthemeasuredsignalvarieswithtime,withthemostrecent measurementbeingshownatthetop. (a) (b) Figure2.6:(a)RadiatedemissionscreatedbytheLEDsignfromFigure2.5and(b)acontrol samplemeasured1kmawayfromtheLEDsign. Figure2.6ashowsameasurementoftheRFspectrumneartheLEDsign.Theradiatedemissions fromthesignarecircledinred.Theothertwopeakstowardstheleftofthespectrumdisplayare thesignalsfromnearbyFMradiostations.NoticethattheradiatedemissionsfromtheLEDsign arestrongerthantheFMradiosignals.Thismeasurementwastakenfromamovingvehiclethat passedbythesignatadistanceofapproximately15meters.Theapproachofthevehicletowards 9 thesignisshownbythebluewaterfallplot.Theintensityoftheradiatedemissionsappearedand thengreatlyincreasedabouthalfwaythroughthemeasurementwhichindicatesthatthevehiclewas approachingthesourceoftheradiatedemissions(theLEDsign). Figure2.6bshowsacontrolmeasurementofthesamepartoftheRFspectrumapproximately onekilometerawayfromtheLEDsign.Theradiatedemissionsarecompletelyabsentinthecontrol samplewhiletheFMradiosignalsarestillpresent.Thisisbecausetheradiatedemissionsare beingcreatedbytheLEDsign.Sincetheradiatedemissionsarestrongenoughtocausenoticeable interferenceintheareaneartheLEDsign,theregulatorylimitsaremostlikelybeingviolatedand thesignshouldbereportedtotheappropriateauthorities. LargeLEDsignsarenottheonlyunusualsourceofthistypeofinterference.Therearecases wherevehiclekeyfobsandcellphoneshavebeena˙ectedbynon-compliantswitch-modepower suppliesfoundinothertypesofelectronicsigns[14].TherearealsocaseswhereEMIfromradiated emissionscanhavedangerousconsequences.InAugust2019,anopen-heartsurgerybloodpump wasthesubjectofamajorproductrecallafterforty-˝vereportsofinjuriesrelatedtothesystem malfunctioningwheninthepresenceofEMI[15].Caseslikethisillustratehowimportantitis forelectronicproductdesignerstofullyunderstandthee˙ectsofradiatedemissionsandwhyitis equallyimportantforregulatoryagenciestoenforcestrictemissionlimits. 10 2.2EMCRegulationsandPrecomplianceTesting Di˙erentorganizationsfromindividualcountriesdevelopandenforcestandardsforwhatcon- stitutesanacceptableamountofradiatedemissionsfromanelectronicproduct[6].IntheUnited States,theregulatoryorganizationistheFederalCommunicationsCommission(FCC).Asummary oftheregulatoryorganizationsintheAmericas,Europe,China,Taiwan,andJapancanbefound in[16].Thisreferencealsoincludesasummaryoftheregulatoryproceduresusedineachofthese regions. Whileeachcountrymayhaveitsownregulatoryproceduresrelatedtoradiatedemissions,many countriesareslowlymovingtowardsthestandardsthatwerecreatedbytheComitéInternational SpécialdesPerturbationsRadio(CISPR)in1985[2].Thesestandardswereformallyadoptedby theEuropeanUnion(EU)asEN55022,butaremorecommonlyreferredtoasCISPR-22[17]. Thesetypesofstandardsareoftenupdatedtoimproveharmonization.Forexample,in2017EN 55022wascombinedwithEUEMCdirectiveEN55032[18].Whilethischangedidimprove standardharmonization,italsoreclassi˝edmanyelectronicproductsthatwereoriginallyexempt fromtesting.Thisreclassi˝cationrequiredmanyproductdesignerstoretroactively˝xthedesigns ofexistingproductsbeforetheycouldcontinuetobemarketedintheEU.Situationslikethiswill continuetohappenasmorecountriesmovetowardsuni˝edEMCstandards,soitisimportantfor designerstoensurethattheirproductsmeetthemostubiquitousstandardsbeforetheendofthe designprocess.FocusingonCISPR-22andsimilarEUEMCstandardsisgoodpracticebecause theyareconsideredthe"mostlikelyvehicleforaccomplishing[international]harmonization"[2]. TheCISPR-22standardappliestoradiatedemissionsinthefrequencyrangefrom30MHz to1000MHzanddesignatestwobroadcategoriesforelectronicdevices:ClassAandClassB. TheClassAstandardsspecifymeasurements30mfromtheEUTandareappliedto"industrial" devices,whiletheClassBstandardsspecifymeasurements10mfromtheEUTandareappliedto "residential,commercial,andlight-industrial"devices[16].Thevaluesofthelimitsareidenticalfor bothcategories,butthedi˙erenceinmeasurementdistancemakestheClassBlimitsmorestringent. TheFCCusesidenticallynamedcategoriesthataremuchbroaderinscope:FCCClassAdevices 11 aredesignatedas"non-residential"andFCCClassBdevicesaredesignatedas"residential"[16]. JustliketheCISPR-22classi˝cations,theFCCClassBlimitsaremorestringent.Figure2.7shows theradiatedemissionlimitsforClassBdevicesinboththeEUandtheUnitedStates. Figure2.7:Radiatedemissionlimitsmeasuredatadistanceof10metersfortheEuropeanUnion (solid)andtheUnitedStates(dashed). TheFCCspeci˝esthattheradiatedemissionsfromClassBdevicesaretobemeasuredata distanceof3m,sothevaluesinFigure2.7havebeenadjustedto10mforabettercomparisonto theCISPR-22ClassBlimits.Fromthiscomparisononecanseethatthelimitsbetweenthetwo standardsareveryclose. ThelimitshaveunitsofdB ` V/mbecausethestandardsapplytothestrengthoftheelectric˝eld, notthevoltagemeasuredbythereceiver.Toconvertbetweenthemeasuredvoltageandtheelectric ˝eldstrengthofthereceivedsignal,EMCantennasareprovidedwithaspecialparameterknown astheantenna(ortransducer)factor.Thisparameterisde˝nedovertheentireusablefrequency 12 rangeoftheantenna.Theantennafactor ˙ hasunitsof1/mandisde˝nedastheratiobetween theelectric˝eldincidentontheantenna ˆ andthevoltageatitsterminals + [19]: ˙ = ˆ + (2.5) Adirectresultofthisde˝nitionisthatasmallerantennafactorindicatesthatanantennaismore sensitive(andantennasensitivityisespeciallyimportantformeasurementscloseto1m)[2].The manufacturerwilloftenprovidetheantennafactorindecibelunits.Thisisconvenientbecausethe receivedvoltage + canthenbemeasuredinunitsofdB ` Vandaddedtothedecibelantennafactor ˙ tocalculatethereceivedelectric˝eldstrength ˆ inunitsofdB ` V/m: ˆ 3`+ š < = + 3`+ ¸ ˙ 3 1 š < (2.6) Therelationshipbetweentheantennafactorandthemeasuredradiatedemissionstrengthissum- marizedinFigure2.8. BeforediscussingCISPR-22further,itisimportanttomentionthatreceiversmustmeetstrict hardwarerequirementsinordertobeusedforfullcompliancemeasurements.Thesehardware Figure2.8:Theantennafactorcanbeusedtoeasilyconvertameasuredvoltagebackintothe electric˝eldstrength,whichcanthenbedirectlycomparedtotheregulatorylimits. 13 requirementsarespeci˝edbyCISPR-16-1[17].Forthepurposesofthisthesis,onlytheCISPR- 16-1requirementsonreceiverdetectorswillbediscussed.Inordertousetheradiatedemission limitsshowninFigure2.7,theemissionshavetobemeasuredwithaquasi-peak(QP)detector.The QPdetectoraccountsfortherepetitionrate,orannoyancefactor,ofareceivedsignal[20].This meansthatintermittentsignalsareweightedlessthancontinuoussignalsandthatthedisplayed voltagelevelofanintermittentsignalcanbesigni˝cantlylowerthanthepeaksignallevel.The QPdetectorisimplementedwithashortchargingtimeconstantfollowedbyaslowdischarging timeconstant[20].Thesetimeconstantsarespeci˝edinCISPR-16-1[17].Thechargingand dischargingbehavioroftheQPdetectorisillustratedbythedottedbluelineinFigure2.9. Anormalreceiverusespeakdetectionandwilldisplayintermittentsignalsattheirpeakvalues. Thee˙ectofeachofthesedetectorsonthetracedisplayedbythereceiverisillustratedinFigure 2.9.Arangeisshownforthepeakdetectorbecausepowerfulintermittentsignalscanover-saturate thereceiverinputandleadtoaninaccuratemeasurement[17].Noticethatbecauseofthelow repetitionrateofthesignalshowninFigure2.9,theQPtraceissigni˝cantlylowerthanthepeak valuesofthesignal.AnotherimportantaspectoftheQPdetectoristhatitrespondstosignals inalinearfashion;largeamplitude,low-repetitionsignalswillproducethesameoutputaslow amplitude,high-repetitionsignals[21].Forsignalswithaconstantamplitude,theQPdetector outputisthesameasthepeakdetector'soutput.QPdetectionrequiresverylongsweeptimes,soit isofteneasierto˝rstidentifyradiatedemissionswithpeakdetectionandtothenverifyindividual emissionsforcompliancewithQPdetection. ItisacceptablefordesignersintheUStofocusontheCISPR-22ClassBlimits(despitetheslight di˙erencebetweentheFCCandCISPR-22limitsshowninFigure2.7)becausetheUnitedStates andtheEUhaveamultilateralagreementthatcoversEMCandseveralothermarketsectors[16]. ThismeansthatinmostcasestheFCCandCISPR-22standardsareinterchangeableformanyof theelectronicproductsthataremarketedinbothregions.Wheremajordi˙erencesoccurareinthe legalenforcementofthestandards.UnliketheUnitedStates,whichexemptscertainmarketsectors fromcompliancetesting,theEUhasstrictlyenforceditsEMCstandardsfornearlyallelectronic 14 Figure2.9:Thedi˙erencebetweenthedisplayedoutputtraceofregularpeakdetectionandquasi- peak(QP)detectionwhenmeasuringaspurioussignalwithalowannoyancefactor[17]. devicessincethemid-1990s[22].Thismeansthatthereisusuallyanapplication-speci˝cradiated emissionslimitforanelectronicproductthatisenforcedbytheEU.Nevertheless,CISPR-22is broadenoughtocoveralargemajorityofconsumerelectronicproducts.Thisbroadcoverage (combinedwiththeEU'sstrictenforcementpolicyandthetendencyforglobalharmonization towardstheEUEMCstandards)iswhytheCISPR-22ClassBlimitsareusedinChapters3,4,and 5ofthisthesis. CISPR-22includesdetailedspeci˝cationsforradiatedemissionsmeasurementtechniques[17]. Themostimportspeci˝cationitmentionsistheacceptableleveloftestsiteattenuationwherethe radiatedemissionsmeasurementisperformed.ThepreferredRFtestenvironmentdescribedby CISPR-22istheopenareatestsite(OATS)thatconsistsofaverticallyscanning,tuneddipole antenna,anellipticalareasurroundingthetestsitefreeofmetallicobjects,andametallicground planeonwhichtheantennaandEUTareplaced[23].Asthenameimplies,thetestsiteisalso requiredtobelocatedoutdoors.Largesemianechoicchamberscanbecalibratedtomeetthe normalizedsiteattenuationspeci˝edbyCISPR-22andareanacceptablealternativetoanOATS forfullcompliancetesting[17]. 15 Replicatingtheexactradiatedemissionsmeasurementtechniquesspeci˝edinCISPR-22isonly necessarywhenperformingafullcompliancetest.Thiskindoftestingisnottypicallyperformed bytheproductdesigners,butbyanindependentthirdpartythatislicensedtodoso.Failuretomeet EMCstandardsatthispointinthedesignprocessisextremelycostlyforthreereasons:(1)paying forathirdpartycompanytotestaproductisexpensiveandoftenrequiresschedulingweeksin advance,(2)ifaproductfailsthetestitmustberedesigned,and(3)ifaproductfailsthetestitmust beretesteduntilitmeetsthenecessaryEMCstandards.Thisthirdpointisespeciallyimportant becausesolelyrelyingonexpensivethirdpartytestingcangreatlyincreasethecostittakestobring aproducttomarket.ItisbesttoperiodicallytestaproductforEMCcompliancethroughoutthe designprocesssothatasuccessfulfullcompliancetestcanbeguaranteed[3].Thisformofiterative testingisreferredtoasprecompliancetesting. Productdesignersatlargecompanieswilloftenuseaprecompliancetestsetupliketheone depictedinFigure2.10[6].TheEUTisplaceduponanon-metallicsupport10mawayfrom theEMCantenna.AspecializedspectrumanalyzerwithQPdetection(referredtoasanEMC analyzer)isthenusedtomeasuretheradiatedemissions.Thesemianechoicchamberislinedwith RFabsorbersthatcreateacontrolledRFenvironmentfreefromexternalinterference.Thebest chambersarelargeenoughtoallowforverticallyscanningtheEMCantenna,butsmalleranechoic chamberswherethisisnotpossiblecanalsobeused.Measurementsmayalsobeperformedwith aregularspectrumanalyzerthatisonlycapableofpeakdetection.Compromisessuchastheseare commonwhenperformingprecompliancemeasurements. Itisimportanttounderstandthatthegoalofprecompliancetestingisnottorecreatefull compliancetesting.Rather,thegoalofprecompliancetestingistoaideproductdesignersin identifyingEMCissuesbeforeaproductissentoutforafullcompliancetest[24].Withthisgoal inmind,theconceptofignoringtheCISPR-22measurementstandardscanbeextendedtocreate low-costprecompliancetechniquesthatarestilluseful. Manyproductdesignersdonothaveon-siteaccesstotheequipmentshowninFigure2.10.In thesesituations,performingradiatedemissionmeasurementsinanuncontrolledRFenvironment 16 Figure2.10:AtraditionalprecomplianceradiatedemissionsmeasurementtestsetupusinganEMC analyzerandashieldedRFchamber. canstillhelptoidentifyproblemsignalswhenthemeasurementiscomparedtoabackground measurementofthesameRFenvironment.OnecanuseaspectrumanalyzerandcommonVHF andUHFtelevisionantennastomeasuresignalsinthe30MHzto1000MHzrange[25].Figure 2.11showsanexampleofasimpleon-sitetestsetupformeasuringradiatedemissionsfroman EUT.Thissetupiseasytoconstructandonlyrequiresasingleoperator,whichmeansthatmany measurementscanbeperformedthroughoutthedesignprocess. AmajorissuewiththesetupshowninFigure2.11isthatthedistancebetweentheantennaand theEUTismuchshorterthan10m.Thismeansthatthemeasurementisbeingtakeninthenear ˝eldoftheantennawherecouplinge˙ectswilldrasticallye˙ectthemeasuredemissionstrength [2].WhilethisproblemcanbesolvedbyincreasingthedistancebetweentheantennaandtheEUT, theuncontrolledRFenvironmentandthelackofametallicgroundplanecanintroduceothererrors asthedistancebetweentheantennaandtheEUTisincreased.Forexample,adistanceof10m allowsforfrequency-dependenterrorssuchassignalre˛ectionswithobjectsintheuncontrolled 17 Figure2.11:Alow-costprecompliancetestsetupformeasuringradiatedemissionsinanuncon- trolledRFenvironmentsuchasahallwayoro˚cespace[25]. environment.Theseerrorscanbeverylarge,sometimesrangingfrom+6dBto-25dBforeach re˛ection[23].Theselargeinaccuraciesaredi˚culttopredictbecausetheyvarygreatlydepending uponthetypeofuncontrolledRFenvironmentthatisusedfortesting.However,performingmany radiatedemissionmeasurementsinthesameRFenvironmentallowsforarelativecomparison betweentheresultsofeachtest.Whencombinedwithiterativechangestotheelectronicproduct, reducingaparticularemissionbyatleast2or3dBcanbeconsideredasigni˝cantimprovement [25].Thisisanexampleofhowtheprimarygoalforlow-costprecompliancetestingshouldbe measurementrepetitionwithgradualdesignimprovement. ManyofthecompromisesmadebythetestsetupshowninFigure2.11signi˝cantlyreducethe costofprecompliancemeasurements.However,thistestsetupstillrequiresareceiver.Inmost casesthisisaspectrumanalyzerwithmeasurementcapabilitiesinthefrequencyrangeof30MHz to1000MHz.AspectrumanalyzerwillcostlessthenanEMIreceiverorEMCanalyzer,butitwill nothaveaQPdetector.Anotherissueisthatspectrumanalyzersarestillexpensiverelativetothe 18 restofthetestequipmentshowninFigure2.11.Usedspectrumanalyzerscanrangeinpricefrom $1000.00to$5000.00,whilenewspectrumanalyzerscancostwellover$10,000.00[25].More a˙ordableUSB-basedspectrumanalyzersexist,buttheystillgenerallycostwellover$300.00 [25].Itisthisauthor'sopinionthatsuchspectrumanalyzerstypicallyhaveminimalfunctionality andanon-intuitiveuserinterfacethatcangreatlyincreasethetimeittakestoperformevenbasic measurements.IfonecouldreplacethespectrumanalyzershowninFigure2.11withacomparable receiverthatcostssigni˝cantlyless,acompletelow-costprecompliancetestsetupcouldbecreated. AccordingtoKeysightTechnologies[26],aspectrumanalyzerisadevicethatperformsaFourier transformandthendisplaysthespectralcomponentsofthemeasuredRFsignalasavoltage.Figure 2.12showstheblockdiagramforagenericsuperheterodynespectrumanalyzerasdescribedin [26].Asweepgeneratorisusedtocreatethehorizontalmovementofthedisplayedvoltage.This generatorisalsousedtotunethelocaloscillator.Theorangeshadedareashowsallofthesignal conditioningthatisnecessarybeforethemeasuredRFsignalcanbedisplayed. Figure2.12:Blockdiagramofatypicalsuperheterodynespectrumanalyzerasdescribedin[26]. 19 TheinputRFsignalis˝rstsentthroughanattenuationstagetopreventthemixerinputfrom beingoverloaded.ThisattenuatedversionoftheRFsignalisthen˝ltereddependingonthe frequencyrangeofinterestsothatout-of-bandsignalsarenotdisplayedbythespectrumanalyzer. Themostimportantpartoftheprocessistheintermediatefrequency(IF)conversionstagewhich beginsatthemixer.ThedownconversiontoanIFallowsfortheprocessingoftheRFinputsignal atamuchlowerfrequency.TheIFconversionstageisalsowhatdeterminesthetunablefrequency rangeofthespectrumanalyzer. TheprocessingperformedontheIFsignalconsistsofanIFgainstage,anoptionalattenuation stage,anda˝lterstage.TheseareallshownjustafterthemixerinFigure2.12.TheIF˝lter iswheretheresolutionbandwidth(RBW)ofthespectrumanalyzercanbeadjusted.TheRBW de˝nesthesmallestdisplayedfrequencyseparationbetweentwoadjacentsignals[27].Anarrow resolutionbandwidthallowsfortheaccuratemeasurementofRFsignalsthatareveryclosetogether infrequencyatthecostofgreatlyincreasingthetracesweeptime. Thelaststageofthespectrumanalyzermodi˝estheoutputoftheIFstagesothattheproper signallevelisdisplayed.Thisinvolvesanenvelopedetectorthattrackstheenvelopeofthesignal whilesuppressinganyinstantaneousvariations[26].Theoutputoftheenvelopedetectorisavideo signalthatispassedthroughavideo˝lterwhichsmoothsoutthe˝naldisplayedsignaltrace.The outputoftheenvelopedetectorisalsowhereanEMCanalyzerwouldimplementaQPdetector. Closelyreplicatingthismeasurementprocesswithalow-cost,o˙-the-shelfsoftware-de˝nedradio (SDR)receivercangreatlyreducethecostofalow-costprecompliancetestsetup. 20 2.3Software-de˝nedRadio(SDR) Asoftware-de˝nedradio(SDR)isde˝nedbytheWirelessInnovationForum[28]asa"radio inwhichsomeorallofthephysicallayerfunctionsaresoftware-de˝ned."AccordingtoGrayver [29],theidealSDRreceiverwouldbeabletoreceive"anywaveformatanycarrierfrequencyand anybandwidth"whileconsistingofonlyanantenna,ananalog-to-digital(A/D)converter,anda digitalprocessor.Suchareceiverisphysicallyimpossibletoconstructwithcurrenttechnology,so apracticalSDRconsistsofananalogsignalprocessingstagecombinedwithadigitalprocessor asshowninFigure2.13[30].SDRreceivers(andtransmitters)arepredominantlyusedfor communicationssystems;in2011theywereutilizedby93%ofthemobileinfrastructuremarket [31].TheoutputoftheSDRreceivershowninFigure2.13hasbeenshownasafrequencyspectrum displayforcomparisontoatraditionalspectrumanalyzer. TheanalogstageoftheSDRreceiverissimilartotheRFinputconditioningstageofthespectrum analyzershowninFigure2.12.Thekeydi˙erenceisthattheSDR'sanalogstagemustdigitize thesignalwithanA/Dconverterbeforefurthersignalprocessingcanbeperformed.Thisismost commonlydoneby˝rstseparatingtheRFsignalintoin-phaseandquadrature(IQ)componentswith aquadraturemixerandthensamplingeachofthesecomponentswithadedicatedA/Dconverter [32].AftertheA/Dconversion,theIQsamplesarepassedthroughthedigitaldownconversionstage showninthegreenshadedareaofFigure2.13.Thistypeofdesignisreferredtoasadigitallow-IF architecture.Implementingthislastconversionstagedigitallyhasseveraladvantages,including immunityfromtheoperatingconditionsthatcancorruptmoresensitiveanalogcircuitry[32]. Adigitaldownconversionstagealsoreducessystemcostandincreasessystemintegrationwhen comparedwithatraditionalanalogdownconversionstage. TheIQsamplesfromtheA/DconversionstageinFigure2.13canalsobedirectlyconvertedto DCtoincreasesystemsimplicitybyavoidingadditionaldigitalmixingand˝ltercircuitry[32].This iscalledadirectconversion(orzero-IF)architectureandiscommonlyusedbySDRreceivers(as discussedattheendofthissection).Thezero-IFarchitecturehasseveralsigni˝cantdisadvantages whencomparedtothedigitallow-IFarchitectureshowninFigure2.13.Forexample,leakagefrom 21 Figure2.13:Generalizedblockdiagramforadigitallow-IFSDRreceiverasdescribedin[32]. thelocaloscillatorusedintheanalogstagecancreateaDCo˙setandintermodulationproducts thatwillappearassignalsonthespectrumdisplay[32].Thesefalsesignalscanmakeidentifying thesignalsofinterestmuchmoredi˚cultfortheoperator.AnSDRreceiverthatuseseithera traditionalanaloglow-IForthedigitallow-IFarchitectureshowninFigure2.13isabletoavoid theseissues. ThedigitalsignalprocessingstageshowninFigure2.13iswheretheSDRreceivertransforms theIQsamplesintoameaningfulresult.WhenusinganSDRreceivertomeasurethestrengthof RFsignals,thisstageiscomparabletotheenvelopedetectorandvideo˝lteringusedbyatraditional spectrumanalyzer.Thereareseveraldi˙erentdevicearchitecturesthatcanbeusedtoperformthe digitalsignalprocessinginanSDRreceiver.Decidingonanarchitectureislargelydependentupon theintendedapplication.ThefourmaintypesdescribedbyGrayver[29]arethegeneralpurpose processor(GPP),thedigitalsignalprocessor(DSP),the˝eld-programmablegatearray(FPGA), andtheapplication-speci˝cintegratedcircuit(ASIC).Table2.1showstheprimaryadvantagesof eachofthesearchitectures. GPPsarethemostcommontypeofdigitalsignalprocessorusedtoday,butforSDRapplications theyareunabletoprocesshigh-throughputsignalsontheirown[29].ForSDRapplicationsthat requirehighdatathroughput,theASICandtheFPGAarethebestchoice[29].However,both requireasigni˝cantamountofexpertisetodevelopwhencomparedtoaGPP.Themajordesign 22 trade-o˙sbetweenthesefourarchitecturesareshowninFigure2.14.Inthis˝gure,thedevelopment e˙ortshownalongthex-axisdoesnotaccountforthesavingsfrommass-productionbutinsteadis representativeofthedesignexpertiserequiredtocreateandprototypeanewdesignwithaparticular architecture. Table2.1:TheadvantagesoffourSDRdigitalsignalprocessingarchitectureswithexamples. Figure2.14:Therelationshipsbetweendevelopmente˙ort,cost,powerconsumption,anddata throughputforthemostcommonSDRdigitalsignalprocessingarchitectures(adaptedfrom[29]). 23 ForthepurposeofcreatinganSDRreceivercapableofmakingradiatedemissionmeasurements inthefrequencyrangeof30MHzto1000MHz,aGPParchitecturewouldbeideal.Thisisbecause anSDRreceiverdesignedforthispurposewouldnothaveanystrictpowerrequirementsandwould notneedtoprocesshigh-throughputsignals.Infact,modernGPPsarefastenoughtoimplement allofthenecessarydigitalsignalprocessingforpracticalradios[29].IfaGPPisusedforallofthe digitalsignalprocessing,theSDRreceiverwillonlyrequireadditionalcircuitryfortheorangeand greenshadedareasshowninFigure2.13.ThiscircuitrywillbecometheSDRfrontend[32]and thecombinationoftheSDRfrontendwithaGPPcreatesa"software-centric"SDRreceiver[29]. Onesuchsoftware-centricSDRisshowninFigure2.15.ThisSDRutilizesseveralICs:the AnalogDevices9364ASICperformstheanalogRFsignalhandlingwhileaXilinx ® Spartan- 6 ® FPGAperformsboththereceiverdigitaldown-conversionandthetransmitterdigitalup- conversion[33].The˝nalIQsamplesfromtheB200minireceiveraresentoverUSBtoaGPP (usuallytheCPUofahostPC).ThisuniqueICarrangementallowstheGPPtofocussolely ondigitalsignalprocessing,whichisagreatadvantagewhenimplementingcomplexwireless communicationprotocols[29].However,theB200minihasmanyfeaturesthatareunnecessary forsimplyperformingRFmeasurements.Thesefeaturesmakeittooexpensiveforreplacingthe spectrumanalyzerinthelow-costtestsetupshowninFigure2.11.Fortunately,manyothertypes ofsoftware-centricSDRsareavailablethankstotheirpopularityinthehobbyistradiomarket[34]. Aselectionofsoftware-centricSDRfrontendsareshowninFigure2.16. NotethatwhileitistechnicallythecombinationoftheSDRfrontendandaGPPthatmakesa completesoftware-centricSDR,thetermSDRiscommonlyusedinreferencetojustthefrontend byitself.Throughouttherestofthisthesis,thetermSDRwillrefertotheSDRfrontend. TheSDRsshowninFigure2.16wereallconsideredaspotentialreplacementsforaspectrum analyzer.TheyeacharecapableofreceivingRFsignalsinthefrequencyrangefrom30MHzto 1000MHzand(atthetimeofwriting)costsigni˝cantlylessthanaspectrumanalyzer. TheNESDRSMArtSDRwasthemostcompactmodeltested,butitslowsamplingrateand simplistichardwaredesignmakeittooinaccurateformakingconsistentRFsignalmeasurements. 24 Figure2.15:TheB200minifromEttusResearch Š isacompactFPGA-basedSDRfrontendwith transmitandreceivecapabilitiesoverawidefrequencyrange. AnotherissuerelatedtothisSDR'slowsamplerateistheuserexperience;searchingforradiated emissionsoverarangeof970MHzinroughly1.8MHzincrementsisaveryslowandtedious process.This1.8MHzspanfurthermakesidentifyingrealsignalsdi˚cultbecauseoftheartifacts thatarecreatedbythezero-IFtunerICusedbytheNESDRSMArtSDR. TheHackRFOneistheonlySDRshowninFigure2.16withtransmissioncapabilities.Italso coversamuchlargerfrequencyrange,muchliketheB200mini.However,bothoftheseproperties maketheHackRFOneanunsuitablespectrumanalyzerreplacementforthesamereasonsthe B200miniwasnotconsidered.TheHackRFOnealsohasaconsiderablyworsesignal-to-noiseratio (SNR)thantheotherSDRsshowninFigure2.16[34].Itisthisauthor'sopinionthattheHackRF Oneshouldonlybeconsideredforlow-costapplicationsfocusingonRFsignaltransmission. TheAirspyR2isaninterestingSDRbecauseithasthesamezero-IFRFtunerICusedbythe NESDRSMArtSDRcombinedwithamoreadvanced12-bitA/Dconverter[36].Thisallowsthe AirspyR2SDRtohaveamuchmoreusablespanofalmost10MHz.Whilethisfrequencyspan isstillmuchsmallerthanwhatispossiblewiththetrackinggeneratorofaspectrumanalyzer,it makesseparatingrealRFsignalsfromthezero-IFartifactsveryeasyfortheoperator.TheAirspy R2isalsoverycompactandissmallerthantheRSP2pro,HackRFOne,andeventheB200mini. AlloftheSDRsdiscussedthusfarareonlycapableofmeasuringRFsignalstrengthinrelative 25 Figure2.16:Severalsoftware-centricSDRsthatwereconsideredforthisthesis.Thehardware characteristicsshownwereretrievedfromthemanufacturerwebsites([35][36][37][38]). unitsofdBFS.Thismeansthatitisimpossibletoknowtheactualpowerofthereceivedsignal,which isunacceptableforprecomplianceradiatedemissionmeasurements.AnyoftheseSDRscouldbe usedtomeasureabsolutesignalstrengthbycalibratingthedBFSreadingwithaknowninputpower, butano˙-the-shelfSDRcapableofsuchmeasurementswouldbemuchmoreconvenient. 26 2.4TheRadioSpectrumProcessor2Pro(RSP2pro) TheRSP2proSDRshowninFigure2.17isasoftware-centricSDRcapableofperforming absolutesignalstrengthmeasurementsthankstoitsproprietarycompanionsoftware,SDRuno. Figure2.18showsasimpli˝edblockdiagramoftheRSP2proandFigure2.19showshowthese componentsarearranged. Figure2.17:TheRSP2profromSDRplayisasoftware-centricSDRreceiverwithmanyuniqueRF signalconditioningcapabilities. ThePortAandBsignalchaincontainsmanyoftheRFsignalconditioningfeaturesthatmakethe RSP2prouniquewhencomparedtoothersoftware-centricSDRs.TheselectableRF˝lternetwork reducesout-of-bandsignals,justlikeaspectrumanalyzer.ThereisalsoanoptionalAM/FM notch˝lterforsuppressingpowerfulbroadcastsignals.Thisfeatureisidealfortheuncontrolled RFenvironmentusedduringalow-costprecompliancetest,wheresuchbroadcastsignalsmay maskemissionsfromtheEUT.TheRSP2prohasadedicatedRFgaincontrolstage(shownafter theAM/FMnotch˝lterinFigure2.18)andanLNA.Bothcanbecontrolledbytheoperatorvia software,althoughinpracticeitisbesttouseautomaticgaincontrolfortheLNA[39]. 27 Figure2.18:Asimpli˝edblockdiagramshowingthemaincomponentsoftheRSP2proSDR (adaptedfrom[39]and[40]). Figure2.19:InternalviewoftheRSP2pro;the10bandselectableRF˝lternetworkcanbeseenon thelower-centerofthePCB,whiletheRFtunerICcanbeseenonthelower-right. 28 AllofthereceiverfunctionalityoftheRSP2proishandledbytwoASICs:theMiricsSemicon- ductor,Inc.,MSi001RFtunerandMSi2500USBinterfaceIC.TheMSi001featuresbothzero-IF andlow-IFoperation,aswellasadedicatedLNAforeachofitsRFinputs.Itisimportanttonote thatthelow-IFimplementationusedbytheRSP2proisnotthesameasthedigitallow-IFimple- mentationshownbythegreenshadedareainFigure2.13.Thisisbecausetheselectionbetween zero-IFandlow-IFmodeontheRSP2protakesplaceintheRFtunerchip(i.e.theorangeshaded areainFigure2.13).Thisdi˙erencedoesnotsigni˝cantlyimpacttheoperationoftheRSP2pro becausebotharchitecturesconditionanRFsignalinthesameway. Inlow-IFmode,theMSi001˝rstampli˝estheconditionedRFsignalandthenusesaquadrature mixertoseparatethesignalintoIandQcomponentsatanIF.TheIFIQcomponentsarethen separatelydigitizedbytheMSi2500'sintegratedA/Dconvertersandthe˝nalIQdatastreamissent overUSBtoaGPPforfurtherdigitalsignalprocessing. The˛agshipfeatureoftheRSP2proisitsabilitytomeasuretheabsolutepowerofRFsignals. ModernSDRsmeasuresignallevelattheinputoftheA/Dconverter[39]wheretheincoming voltageissampledattwicetherateoftheIQbandwidth.ModernA/Dconvertershavevery accuratereferencevoltages,sothevoltagereadingattheA/Dinputisveryprecise.However,this voltageisnotthesameasthereceivedsignalstrengthbutisinsteadtheresultingvoltagefromall oftheprecedingRFstages.ThisiswhymostSDRscannotmeasuretheabsolutepoweroftheRF input.ThedesignersoftheRSP2prowereabletosolvethisissuebycreatingacomplexdataset ofthegaine˙ectsforeveryusablecon˝gurationoftheRFstagesshowninFigure2.18[39].The appropriateadjustmentisautomaticallymadetothespectrumdisplaybasedonhowtheoperator hascon˝guredtheRSP2prosopowermeasurementscanbemadeseamlessly.Unfortunatelythese datasetsarenotavailabledirectly,sotheRSP2procanonlymakeabsolutepowermeasurements whenitisusedwithitscompanionsoftware(seetheendofthissectionformoreinformation). TheRSP2procanalsomakeveryaccuratefrequencymeasurements.Itdoesthisbyusinga precision0.5ppmtemperature-compensatedoscillator(TCXO)asareferencefortheIQconversion andA/Dsampling.Thisfeature,theabsolutepowermeasurementcapability,andtheallmetal 29 shieldedenclosuremaketheRSP2promorecomparabletoapieceoflaboratoryequipmentthana hobbyistSDRreceiver[41].Together,theymaketheRSP2prothebestcandidateforsuccessfully replacingaspectrumanalyzerforlow-costprecompliancemeasurements.Table2.2summarizes allofthekeyhardwarespeci˝cationsoftheRSP2pro. Table2.2:TheRSP2prohardwarespeci˝cationsthatarerelevanttothisthesis.Allinformation takenfrom[42]and[41]. Software-centricSDRsrelyheavilyonaGPPforsignalprocessing,andtheRSP2proisno exception.Asmentionedpreviously,onemustusetheRSP2pro'scompanionsoftwareinorder tomakeabsolutepowermeasurements.ThissoftwareiscalledSDRunoandisavailableonthe SDRplaywebsite[37].Atthetimeofwriting,SDRunoonlysupportsWindowsoperatingsystems. Figure2.20showstheSDRunouserinterface.Itiscomposedofmultipleblocksthatmimic theappearanceofatraditionalamateurradioreceiver.Thespectrumdisplayhastwocomponents: atraditionalspectrumdisplayandawaterfallplot.Thex-axisisthefrequencyofthereceived 30 signalinMHzandthey-axisforthespectrumdisplayisthemagnitudeofthesignalinunitsof dBm(decibelsrelativetoonemilliwatt).They-axisforthewaterfallplothasunitsofsecondsand hasunitsofsecondsandshowshowthemeasuredsignalvarieswithtime,withthemostrecent measurementbeingshownatthetop. Thewaterfallplotisconvenientwhencomparingbackgroundsignalstotheradiatedemissions fromtheEUT.BypoweringtheEUTonhalfwaythroughacompletewaterfallcapture,theoperator canquicklyseeifnewpeakshaveappearedorifthenoise˛oorhasbeena˙ectedbytheEUT. Thisisespeciallytrueforweakorintermittentsignals,whichcanbehardtonoticewithjustthe spectrumdisplay. Figure2.20:TheSDRunouserinterface. ThepowermeterinSDRunoworksbymeasuringthepeaksignalstrengthwithinthebandwidth ofthesecondaryspectrumdisplayinthetoprightcornerofFigure2.20.Thebandwidthofthis secondaryspectraldisplayisalsoshownbythegrayregioninthemainspectrumdisplay.Thepower metermeasuresthepeakvaluewithintheselectedbandwidth.Forradiatedemissionmeasurements, 31 usingthecontinuous-wave(CW)modeworksbestbecauseitallowsforthenarrowestbandwidth. CWmodealsoincludesabuttonthatwillmovethereceiverfrequencytothemeasuredpeakvalue. Thepowerlevel(indBm)andthefrequencyofthemeasuredpeakcanbecontinuouslysavedtoa csv˝lewherethetimeintervalbetweenindividualmeasurementscanbesetbytheoperator. BeforetheRSP2procanbeusedasaspectrumanalyzer,theaccuracyofitsmeasurementsmust beveri˝ed.Thetestsperformedin[39]foundthattheabsolutesignalaccuracyoftheRSP2pro between1to2dB.Thenextchapterwillfocusonperformingalargenumberofmeasurements underconditionsthatareclosertotheintendedusecase(i.e.measurementsthatwouldbeexpected duringaradiatedemissionstest). 32 CHAPTER3 PERFORMANCEOFTHERSP2PRO Thischapterfocusesondescribingthetestequipmentandproceduresthatwereusedtocharacterize theRSP2pro'smeasurementaccuracy.Adescriptionofthetestequipmentthatwasusedisgiven inSection3.1.Section3.2thenoutlinesthesemi-automatedcharacterizationproceduresthatwere usedtoobtainalargenumberofreadingsfromboththeEMCanalyzerandthreeRSP2prounits. Sections3.3and3.4showthecharacterizationresultsobtainedfromtheseprocedures.These resultsarethenusedtoshowthemarginoferrorformeasurementstakenwiththeRSP2pro. 3.1EquipmentInformation ThetestequipmentdescribedinthissectionwasusedtocharacterizetheRSP2pro.The importantinformationforeachpieceoftestequipmenthasbeenprovidedhereforconvenience. MeasurementstakenwiththeAgilentE7410AEMCanalyzerwereusedtoassessthemeasure- mentperformanceoftheRSP2prothroughoutthisthesis.TheEMCanalyzerwasalsousedinthis sectiontocalibrateandcharacterizethesignalgenerator. Theantennafactor(AF)valuesofseveralEMCantennaswereusedtodeterminetheoutput frequencyandamplitudecombinationsusedbythesignalgeneratorinSection3.2.TheBicoLOG 30100XEMCantennawasalsousedforperformingnarrow-bandandbroad-bandradiatedemission testswithboththeEMCanalyzerandtheRSP2proinChapters4and5. TheHP8657Asignalgeneratorwasusedtogeneratecontinuouswave(CW)signalswith speci˝cfrequenciesandamplitudesforthecharacterizationproceduredescribedinSection3.2. Thesignalgeneratorwasalsocombinedwithastandardwhipantennatocreatenarrow-band radiatedemissionsthatweremeasuredbyboththeEMCanalyzerandtheRSP2proinSection4.2. 33 3.1.1AgilentE7401AEMCAnalyzer TheAgilentE7401AEMCanalyzershowninFigure3.1isasuperheterodynespectrumanalyzer withseveralspecializedEMCfeatures,includingaCISPR-16-1compliantquasi-peak(QP)detector [43].Ithasa50 RFinputthatiscapableofmeasurementsinthefrequencyrangefrom9.5kHz to1.5GHz.Accordingtothedatasheet[43],theE7401Ahasanabsoluteamplitudemeasurement accuracyof 0.30dB. TheE7401AEMCanalyzerisprogrammableviatheIEEEgeneral-purposeinterfacebus (GPIB).ThisallowedfortheautomationofnearlyalloftheEMCanalyzermeasurementspresented inthisthesis.Toautomatemeasurements,anEMCanalyzerstate˝lewascreatedforeach measurementtype.Eachstate˝lecanbeloadedbytheEMCanalyzertoquicklypresettheanalyzer settingsbeforeameasurementistaken.Thesestate˝lesaredescribedinTable3.1.Theleftmost columnshowsthenameofeachspeci˝cstate˝lewhiletheremainingcolumnsshowtheanalyzer settingsforthatstate˝le.Thistablewillbereferredtothroughouttherestofthisthesisasnecessary. The"DefaultSweep"state˝lewasusedwheneveraQPmeasurementwasnecessary.The variable 5 8= representsthedesiredcenterfrequencyforaparticularmeasurement.Thisstate˝le Figure3.1:TheAgilentE7104AEMCanalyzerthatwasusedforallmeasurementcomparisons withtheRSP2pro. 34 hasthesmallestfrequencyspanandthe˝nestresolutionbandwidth(RBW)becausetheQPdetector modeoftheE7401Ahasanextremelylongsweeptime,makinglargerspanningQPmeasurements unrealisticgiventheamountofmeasurementsthatwasnecessaryforthisthesis.Thecombination ofthesmallspanand˝neRBWmakethe"DefaultSweep"stateidealforcapturingthepeakvalueof thenarrowbandsignalscreatedbythesignalgeneratorsourcethatwasusedforthemeasurements inthischapter.The"SpectrumSweepPart1"through"SpectrumSweepPart4"state˝leswere usedtogetherwheneverafullsweepoftheCISPR-22frequencyrangeof30MHzto1000MHzwas necessary.Separatingthisfrequencyrangeintofourstate˝lesallowsthesignaltraceresolutionof afullsweeptobe32,768pointsratherthan8192points. Thelaststate˝le,"RESweep,"wasusedtogetaninitialmeasurementbeforetheQPmeasure- mentstakenwiththe"DefaultSweep"state˝lesettings.The"RESweep"statehasamuchlarger spanandRBWsothatameasuredsignal'speakvaluecanbeacquiredquickly.Onceapeakhas beenacquired,thefrequencyofthepeakisusedasthecenterfrequencyofthe"DefaultSweep." ThisallowstheQPmeasurementtoalwaysbecenteredattheappropriatefrequencyforagiven inputsignal. Table3.1:ParametersoftheEMCanalyzerstate˝lesthatwereusedtocontrolthesettingsofthe EMCanalyzer. 35 3.1.2EMCAntennas AsmentionedinChapter2,radiatedemissionmeasurementsareusuallyperformedwithspecialized antennascalledEMCantennas.EMCantennasareprovidedwithaparametercalledtheantenna factor,whichisde˝nedbyEquation2.5andcanbeusedtoconvertthemeasuredvoltageto thestrengthoftheelectric˝eldincidentupontheEMCantenna(thisisshowninFigure2.8). Manufacturerprovidedantennafactorsareusuallygiveninatableorchartandwillbelistedat anumberofuniformly-spacedfrequencies;forexample,atevery10MHzforfrequenciesfrom 30MHzto1000MHz.Figures3.2cand3.4ashowtheantennafactorsofseveraldi˙erentEMC antennasthatwereusedforthisthesis. TheEMCantennasshowninFigures3.2aand3.2bareabletocovertheentireCISPR-22 frequencyrangewhenusedtogether.TheAgilent11955AEMCantennashowninFigure3.2ais abiconicalantennadesignedforreceivingsignalsfrom20MHzto200MHz.Theantennafactor dataprovidedbyAgilent[44]forthisantennaisin10MHzincrementsandthisdatawasusedto plotthe11955AantennafactorshowninFigure3.2c.ThisantennaismostsensitivetoRFsignals measuredinthefrequencyrangefrom50MHzto100MHzasindicatedbytheverylowantenna factorbetweenthesefrequencies[2].At300MHz,thesensitivityofthe11955AEMCantennais morethan10dBbelowitspeaksensitivity.Thissharpdecreaseinsensitivityhappensbecauseof thenullthatdevelopsdirectlyinfrontoftheantenna'sboresightasthisfrequencyisapproached [45].The11955AEMCantennaisbestsuitedformeasurementsbetween80MHzand200MHz becauseitiswellmatchedinthisrange,asindicatedbythelowvariationoftheantennafactor betweenthesefrequencies[45]. TheAgilent11956AEMCantennashowninFigure3.2bisalogperiodicantennawithan antennafactorthatincreasesnearlylinearlyfrom200MHzto900MHz.Thesharpdecline observedat900MHzinFigure3.2cismostlikelycausedbythelossesintheantenna'sfeeder coaxialtransmissionline[45].The11956AantennafactorinFigure3.2cwasplottedusingthedata providedbyAgilent[44]andisin25MHzincrements.Itshouldbenotedthatthis11956Aantenna isprovidedwithanantennafactorupto2000MHzforusewithothertypesofEMCmeasurements. 36 (a) (b) (c) Figure3.2:(a)TheAgilent11955Aand(b)11956AEMCantennasand(c)theirantennafactors [44]. 37 TheantennafactorshowninFigure3.2chasbeentruncatedat1000MHzbecausethatisthehighest signalfrequencyrelevanttothisthesis. Whilebothoftheseantennasareidealforfullcompliancetests,theirlargeelementsizecanlead toissueswhenusedinalow-costprecompliancesetupliketheoneshowninFigure2.11.Thisis becausethemeasurementdistanceusedbythissetupiscomparabletotheelementlengthofthese antennasandthusthebeamwidthoftheradiatedemissionsfromtheequipmentundertest(EUT) maynotfullyilluminatetheseantennascompletely[2].Formeasurementdistancescloseto1m, Ott[2]recommendsanantennathatmeetsthefourfollowingcriteria: ‹ Haveawidebandwidth(e.g.the30MHzto1000MHzrequiredforCISPR-22) ‹ Besmallinphysicalsize(ideallylessthan12incheslong) ‹ Beverysensitive(i.e.anantennafactorlessthan6dB) ‹ Havea(reasonably)˛atfrequencyresponse Ott[2]acknowledgesthatthesecriterioncanbecontradictory(e.g.asensitiveantennaat30MHz cannotalsobephysicallysmall).However,bycarefullymakingcompromiseswiththesecriteria, onecanhaveanEMCantennathatisbettersuitedforlow-costprecompliancetestingatshort distancesthanthetraditionalEMCantennasliketheonesshowninFigures3.2aand3.2b.A physicallysmallantennahasamuchbetterchanceofavoidingtheaforementionedillumination issuethatisinherenttothelargerEMCantennasatdistancesnear1m.Soanexampleofagood compromisewouldbeforgoinga˛atfrequencyresponseorhighsensitivitytoensureasmall physicalantennasize. TheBicoLOG30100XEMCantennafromAaroniaAGshowninFigure3.3isaphysically small,activeantennathatisdesignedtoreceivesignalsfrom30MHzto1000MHz.Thisantenna isabletomeettwoofOtt's[2]fourcriteriabycompromisingontheoverallsensitivityandresponse ˛atness.TheBicoLOG30100X'santennafactorisshowninFigure3.4a.Thisdatawasprovided byAaroniaAG[46]andisin10MHzincrements.UnliketheantennafactorsshowninFigure3.2c, 38 theBicoLOG30100Xantennafactorsareallnegative.ThisisbecausetheBicoLOG30100Xisan activeantennathatusesabuilt-inpreampli˝ertoachieveitswidebandwidth[47].Thepreampli˝er gainfortheunitthatwasusedinthisthesisisshowninFigure3.4b.Thisdatawastakenfromthe preampli˝erusingthemethoddescribedin[48]andrepresentsthevaluesmeasuredbyAaronia AGforthisspeci˝cpreampli˝er. TheBicoLOG30100XEMCantennaismostsensitivetomeasurementsinthefrequencyrange from150MHzto500MHz.Thisisindicatedbythelowantennafactorshownbetweenthese frequencies[2]inFigure3.4a.OnecanalsoseethattheBicoLOG30100XismuchliketheAgilent 11956Ainthefrequencyrangefrom300MHzto1000MHzinthattheantennafactorsofboth increaselinearlywiththefrequencyinthisrange. Figure3.3:TheBicoLOG30100XEMCantenna. Figure3.4bshowsthatthegainofthepreampli˝erisvery˛atacrosstheentirefrequencyrange, withtheexceptionofanapproximatereductionof0.5dBinthefrequencyrangefrom800MHz to1000MHz.This˛atresponsemeansthatthelargevariationintheBicoLOG30100Xantenna factorshowninFigure3.4aisalmostentirelycausedbytheantennaconstructionitself.Theuseof apreampli˝erdoescomplicateusingthisantennainthatthereisausablebatterylifeofonlythree 39 (a) (b) Figure3.4:(a)TheBicoLOG30100Xantennafactorand(b)thegainofitspreampli˝er.The antennafactorshownin(a)isnegativebecauseofthelargegainofthepreampli˝ershownin(b) [47]. 40 tofourhours[48].Usingtheantennawhileattachedtothechargerisnotrecommendedbythis author,asthechargerintroducessigni˝cantbackgroundradiatedemissionsthatcaninterferewith measurements. ThesmallphysicalsizeoftheBicoLOG30100Xcombinedwithitsabilitytoperformmeasure- mentsacrosstheentireCISPR-22frequencybandmakeitidealforperforminglow-costprecom- pliancemeasurementsatdistancesbetween1to2m.Thisantennawasusedforalloftheradiated measurementsinChapter4ofthisthesis.Thisantennawasalsousedforthelow-costantenna characterizationspresentedinSections5.2and5.3.Lastly,thisantennawasusedaspartofthe moretraditionalprecompliancetestsetupinSection5.4. 41 3.1.3HP8657ASignalGenerator TheHP8657AsignalgeneratorshowninFigure3.5isasynthesizedsignalgeneratorwithacarrier frequencyrangefrom100kHzto1040MHzandanamplituderangeof-127dBmto+13dBminto 50 [49].TheHP8657Ahasa50 RFoutputandcanbecontrolledfromacomputerviaitsGPIB interface.Thisfeaturewasusedtoautomatenearlyallofthemeasurementsinthisthesisinvolving thesignalgenerator.Allmeasurementsinthisthesisinvolvingthesignalgeneratorrequiredsignal levelslessthan0dBm,sothepossibleamplitudeerrorcausedbythesignalgeneratorisassumed tobelessthan1.0dB[49].Thiserrorisnotcriticaltotheresultsofthisthesisbecausethisthesis isonlyinterestedinthemeasurementaccuracyoftheRSP2prorelativetotheEMCanalyzer. Figure3.5:TheHP8657Asignalgenerator. AnimportantlimitationontheaccuracyofthefrequencymeasurementsinSections3.4and4.2 arecausedbythespeci˝cHP8657Asignalgeneratorthatwasusedforthisthesis.Accordingto themanufacturer[49],thesignalgenerator'soutputcenterfrequencyshouldneverstraymorethan 500Hzawayfromthecenterfrequencysetting.However,theunitusedforthisthesiswasfound tohaveafrequencyerrormuchgreaterthanthis.Sinceanothersignalgeneratorwasnotavailable, arudimentarycalibrationprocesswasimplementedby˝rstmeasuringtheactualfrequencyfor eachdesiredfrequencythatwasgoingtobeusedandthencalculatinghowfaro˙themeasured frequencywasforeachdesiredfrequency. 42 Thecenterfrequencysetting 5 2 ofthesignalgeneratorrequiredforthedesiredcenterfrequency 5 8= canberepresentedas 5 2 = 5 8= 5 > (3.1) where 5 > istheunknownfrequencyo˙setfrom 5 8= thatmustbeaccountedfor.Therewere114 separatevaluesfor 5 8= requiredforthemeasurementsinvolvingthesignalgeneratorpresentedin thisthesis.Theprocedurefor˝ndingthevalueof 5 2 correspondingtoeachvalueof 5 8= was automatedviathePythonscriptoutlinedinFigure3.6.TheEMCanalyzerandthesignalgenerator wereautomatedviatheirGPIBinterfacesusingcommandsfromthePyVISAlibrary[50]. Beforetheprocedurebegins,theEMCanalyzerandthesignalgeneratorareallowedtowarm Figure3.6:FlowchartforthePythonscriptthatwasusedto˝ndthefrequencyo˙setsofthe uncalibratedHP8657Asignalgenerator. 43 upforonehour.Thesignalgeneratoristhensettoanoutputlevelof50dB ` Vandthe˝rstofthe 114 5 8= valuesisloadedfromaninputcsv˝le.TheEMCanalyzerloadsthe"RESweep"state˝le fromTable3.1andusestheloadedvalueof 5 8= asthecenterfrequencyofthespectrumsweep. TheEMCanalyzer'sbuilt-inpeaksearchfunctionthenmarksthepeakvaluewithinthe100kHz measurementspan.Thefrequencyofthispeakisstoredasatemporaryvariable"x"andusedtoset thecenterfrequencyofthesignalgeneratorforasecondmeasurement.Thissecondmeasurement isperformedwiththe"DefaultSweep"state˝lesettings.Thismeansthatthefrequencyspanofthe secondmeasurementismuchnarrower(3kHz),resultingina˝nerpeakfrequencymeasurement. Thefrequencyofthispeakmeasurementisstoredasthenewvalueof"x."Thesemeasurements arethenrepeatedusingthenewvalueof"x"astheinitialinputfrequency. The˝nalvalueof"x"afterthisrepetitionistheresultoffourmeasurements.The˝nalvalueof "x"isstoredinanewcsv˝leasthe 5 2 correspondingtothedesiredfrequency 5 8= andtheentire processisrepeatedforthenextvalueof 5 8= fromtheinputcsv˝le.Thisprocedureresultedinaset offrequenciesthatwasusedforallofthemeasurementsinthisthesisinvolvingthesignalgenerator. Thismeansthattheactualsignalgeneratorcenterfrequencysettingforthesemeasurementsisnot thedesiredfrequency 5 8= ,butthefrequency 5 2 fromEquation3.1.Figure3.7showshowthevalue of 5 > fromEquation3.1increasedlinearlyasthedesiredfrequency 5 8= wasincreased. Thiswholeprocedurehadtobeperformedtwiceindi˙erentsessions,asthevaluesof 5 8= that wereonlymultiplesof25MHzwerenotincludedinthe˝rstsession.OnecanseefromFigure 3.7thatbothdatasetsincreaselinearlywith 5 8= ,butthattheconditionsparticulartoeachsession a˙ectedthevalueof 5 > .Thiskindofinaccuracyisunavoidableandindicatestheimportanceof measurementconditionswhenusingthesignalgenerator. Onesuchmeasurementconditionistheoperatingtemperatureofthesignalgenerator,which increasesoverthetimethatthesignalgeneratorispoweredon.Asthistemperatureincreases,itcan causethecenterfrequencyofthesignalgeneratoroutputtovaryovertime.Thecharacterization measurementresultsinSections3.3and3.4allinvolvedthesignalgeneratorandrepeatingthesame measurementstoacquirealargenumberofsamplesforeachofthe114valuesof 5 8= .Sometimes 44 Figure3.7:Plotofthe 5 > associatedwitheachvalueof 5 8= fromEquation3.1. thesemeasurementstookaslongas14hourstocomplete,someasurementsatthesamefrequency wouldoccurhoursapart.Automatingthesemeasurementsmadethiskindofdatacollection possible,butthelongmeasurementtimesmeantthattheequipmentwassubjecttoperiodsof continuousoperationandthuspotentialfrequencydriftfromchangesintheoperatingtemperature. TheEMCanalyzerhasabuilt-incalibrationroutinethatwasusedtopreventpotentialfrequency drift,butsucharoutinewasnotanavailableforthesignalgenerator.Tobetterunderstandthe impactofcontinuousoperation,aprocedurewasusedtocharacterizethefrequencydriftoftheHP 8657Asignalgeneratorovera24-hourperiod.ThePythonscriptusedtoautomatethisprocedure isoutlinedinFigure3.8.TheEMCanalyzerandthesignalgeneratorwereautomatedviatheir GPIBinterfacesusingcommandsfromthePyVISAlibrary[50]. Beforetheprocedurestarts,theEMCanalyzerisallowedtowarmupforonehour.The˝rst frequency 5 2 fromthefrequencytablecreatedbythePythonscriptfromFigure3.6isusedasthe centerfrequencyoftheEMCanalyzer.Thesignalgeneratoristhensettoaconstantoutputlevel 45 Figure3.8:FlowchartforthePythonscriptthatwasusedtocharacterizethefrequencydriftofthe signalgeneratorovera24-hourperiod. of50dB ` Vandanewcsv˝leiscreatedforthecurrenthour.Thesignalgeneratorfrequencyisset to 5 2 andtheEMCtraceisstoredtothenewcsv˝le.Thisprocessisrepeateduntiltheendofthe frequencytableisreached,afterwhichthereisadelayofexactlyonehour.Duringthishourthe EMCanalyzerandthesignalgeneratorarelefton. Afteranhourhaspassed,theEMCanalyzeriscalibratedandtheentireprocessisrepeateduntil therearedatasetsforeachofthe114 5 2 valuesoverafull24-hourperiod.Therecordedtraces foreachhourcanbecomparedtoseehowthesignalgeneratorcenterfrequencyataparticular frequencysettingdriftsfromhour-to-hour. Figure3.9showsthefrequencydriftofthesignalgeneratoratallfrequencysettingsoverthe ˝rsttwelvehoursofa24-hourperiod.Onecanseethatallfrequencysettingshavesigni˝cant 46 driftoverthe˝rsthour,butthenthefrequencydriftfromhour-to-hourgreatlydecrease.Figure3.9 alsoshowsthathigherfrequencieshaveamuchlargerfrequencydrift,whereaslowerfrequencies becomeverystableafteronlytwohours.Notethattheconstantvalueobservedforthe C = 0 hourdatafromapproximately620MHzonwardoccursbecausetheyfrequencysettingsabovethis frequencydriftedbymorethanthemeasurementbandwidthoftheEMCanalyzer. Figure3.9:Measuredsignalgeneratorfrequencydriftfor C = 0 to C = 12 hours. Figure3.10showsthefrequencydriftforallfrequencysettingsoverthesecondtwelvehours ofa24-hourperiod.Onecanseethatthefrequencydriftatthelowerfrequencysettingsisalmost non-existentwhilethefrequencydriftatthehigherfrequencysettingsismuchmoresigni˝cant. However,thefrequencydriftatallfrequencysettingsisstillwellbelow2kHz. Therearetwokeyconclusionsfromtheresultsofthefrequencydriftcharacterizationprocess. The˝rstisthatthefrequencydriftoftheHP8657Aiswellbelow1000Hzifthesignalgeneratoris allowedtowarmupforatleastonehour.Whilethisamountofdriftisnotwithinthespeci˝cation [49],itiscloseenoughtohavecon˝dencewhencomparingtherelativefrequencymeasurements betweentheEMCanalyzerandtheRSP2pro.Forthisreason,awarmuptimeofonehourwas usedforallofthemeasurementsinvolvingthesignalgenerator.Thesecondconclusionisthat 47 Figure3.10:Measuredsignalgeneratorfrequencydriftfor C = 13 to C = 24 hours. extendedperiodsofoperationaltimeincreasethestabilityofthesignalgeneratorcenterfrequency. However,theamountofstabilityvariessigni˝cantlywiththesignalgeneratorfrequencysetting. Thisvarianceiswellbelow2kHzatallfrequencies,solongmeasurementtimesdonotsigni˝cantly a˙ecttheresultspresentedinSection3.4. Figure3.11showsthefullCISPR-22ClassBspectrummeasuredbytheEMCanalyzerdirectly connectedtothesignalgeneratorwiththesignalgeneratorsettoanoutputlevelof50dB ` Vat afrequencyof500MHz.Fromthis˝gureonecanseethatthesignalgeneratoroutputhasno unexpectedRFsignals.Figure3.12showsadetailedviewofthe500MHzsignalshowninFigure 3.11.This˝gureshowsthatthesignalgeneraotroutputisextremelynarrowband,witha3-dB bandwidthofonly300Hz. 48 Figure3.11:Theoutputofthesignalgeneratorwithafrequencysettingof500MHzandasignal levelof50dB ` V. Figure3.12:DetailedviewofthesignalinFigure3.11showinghownarrowbandthesignal generatoroutputis. 49 3.2CharacterizationProcedureandMeasurementAutomation AllthreeoftheantennafactorsshowninFigures3.2and3.4awereusedtogeneratedatasetsfor controllingthesignalgeneratoramplitudeintheprocedurediscussedinSection3.2.Thesespeci˝c antennaswerechosenbecausetheyrepresentthreecommontypesofEMCantennas.Rearranging Equation2.5andsolvingforthereceivervoltage + yields: + 3`+ = ˆ 3`+ š < ˙ 3 1 š < .(3.2) RadiatedemissionsneartheCISPR-22ClassBlimitinFigure2.7iswheretheRSP2proneedstobe themostaccuratewhencomparedtotheEMCanalyzerbecausethisisthelevelexpectedfroman EUTthatisbreakingtheregulatorylimit.Testingtheaccuracyinthisregionisachievedbyusing theCISPR-22ClassBradiatedemissionslimittosetthesignalgeneratorvoltage.Byreplacing + inEquation3.2withthesignalgeneratorvoltage + 6 andreplacing ˆ withtheCISPR-22ClassB radiatedemissionlimitataparticularfrequency ˆ ;8<8C ,theequationforthesignalgeneratorvoltage ataparticularfrequencycanberepresentedas + 6 3`+ = ˆ ;8<8C 3`+ š < ˙ 3 1 š < ¸ ˘ 3 (3.3) wheretheantennafactor ˙ canbetheantennafactorvalueataparticularfrequencyforoneof thethreeEMCantennasdescribedinSection3.1.2and ˘ isanadjustmentfactorthatisinitially setto0dB.Tounderstandtheperformanceatotherpotentialradiatedemissionlevels,severalextra datasetswerecreatedbyadjustingthevalueof ˘ by 10dBtocreateatotalofninedatasets.All ninedatasetshavebeensummarizedinTable3.2.Inthistable, + 6 and ˘ arefromEquation3.3 andtheirentriesrepresentthevaluesofthesevariablesforaparticularantennafactor(or ˙ as showninEquation3.3).Thecsv˝lesforthesedatasetsareavailableintheDigitalAppendixthat isincludedwiththedigitalversionofthisthesis(refertoAppendixBformoreinformation). The˝fthcolumnofTable3.2describesthesourceusedforthevalueof ˙ inEquation3.3. Forexample,DataSet1wascreatedwiththeantennafactorfortheAgilent11955AEMCantenna (showninFigure3.2)andavalueof10dBfor ˘ .Thefrequencyrangeandstepsizeforeach 50 Table3.2:DescriptionoftheninedatasetsthatwereusedtocharacterizetheEMCanalyzerand theRSP2pro. datasetwasdeterminedbythefrequencycomponentoftheantennafactorparticulartothatdata set.FromthefourthcolumnofTable3.2,onecanseethatthesignalgeneratoramplitudelevel + 6 variedoverawiderangeacrosstheninedatasets.Thishighlightshowalargerangeofinput voltagelevelsweretestedbyusingjustnineinputdatasets.EachdatasetinTable3.2hasbeen assignedanumberthatisusedwhentheyarereferredtoinSections3.3and3.4. ThesetupusedtocharacterizetheRFsignalmeasurementaccuracyoftheRSP2proisshownin Figure3.13.Inthis˝gure,thesetuphasbeencon˝guredforRSP2promeasurementsbutthesame setupwasalsousedfortheEMCanalyzermeasurements.Thelaptoppicturedwasconnectedtothe EMCanalyzerandthesignalgeneratorviaaGPIB-to-USBadapter.TheRSP2prowasconnectedto thelaptopviaUSB.Thetestsetup'stwoRFsignalchainsareshowninFigure3.14.ThesameSMA cablewasusedtoforboththeEMCanalyzerandRSP2promeasurements.Theonlydi˙erence betweenthemeasurementchainsshowninFigure3.14wastheadditionalRFadapterthatwas necessaryforconnectingtheEMCanalyzertotheSMAcable.ThreeseparateRSP2prounitswere characterizedtoinvestigatehowthemeasurementperformancevariedacrossseveralunits. 51 Figure3.13:ThecharacterizationtestsetupconsistingoftheEMCanalyzer,signalgenerator, RSP2pro,andlaptop.HerethesignalgeneratorisshownconnectedtotheRSP2pro. Figure3.14:DiagramshowingtheRFsignalchainsusedforthecharacterizationtestsetup. 52 Forthefourdevicesthatwerecharacterized(theEMCanalyzerandthreeRSP2prounits),the measurementresultsfromthenineinputdatasetsshowninTable3.2werecollected˝veseparate times.Eachofthesetimesisreferredtoasa"set"(foratotalof˝vemeasurement"sets"per inputdataset)andeachofthese"sets"werecollectedatadi˙erenttime,usuallydaysapartfrom oneanother.Foreachofthese˝vesets,theindividualmeasurementswithinasetwererepeated tentimes.Eachofthesemeasurementsisreferredtoasa"trial."Thismeansthatatotalof50 measurementswereperformedforeachdatapointofthenineinputsets.Thusforeachdevicethat wascharacterized,23,850individualmeasurementswereperformedforagrandtotalof95,400 individualmeasurements.Tocollectsuchalargeamountofdata,thecharacterizationprocesswas automatedasmuchaspossible.Di˙erencesintheuserinterfacesoftheEMCanalyzerandthe RSP2prounitsmadethecharacterizationprocessforeachslightlydi˙erent.Forthisreason,two separate,semi-automatedprocessesweredevelopedforperformingcharacterizationmeasurements. Thesemi-automatedprocedureforperformingtheEMCanalyzercharacterizationmeasure- mentsisoutlinedinFigure3.15.TheEMCanalyzerandthesignalgeneratorwereautomatedvia theirGPIBinterfacesusingcommandsfromthePyVISAlibrary[50].Theprocessbeginswiththe usermanuallyselectingthemeasurementsetnumber,whichstartsatone.Theuserthenstartsthe automatedPythonscript. ThePythonscript˝rstcommandstheEMCanalyzertoloadthe"DefaultSweep"setup˝le.The ˝rstofthenineinputdatasetsfromTable3.2isthenloadedandthefrequencyandvoltagesettings fromthisdatasetareusedtosettheoutputofthesignalgenerator.TheEMCanalyzercaptures thetracedataandrecordsthemeasuredquasi-peak(QP)value.Thisprocessisrepeateduntildata hasbeenrecordedforallofthedatapointsfromtheinputdataset.Afterallofthedatapointsare collected,theyaresavedtoanewcsv˝leandthe˝rsttrialiscomplete.After˝vetrials,theEMC analyzeriscalibratedbeforethenext˝vetrialsarerecorded.Oncetentrialsarecollected,theEMC analyzeriscalibratedagainandthewholeprocessstartsoverwiththenextinputdataset.After collectingtentrialsforeachofthenineinputdatasets,theautomatedPythonscriptendsandthe usermustmanuallyenterthemeasurementsetnumberandstartthePythonscriptagain.After˝ve 53 Figure3.15:Flowchartforthesemi-automatedprocedurethatwasusedtocollecttheEMCanalyzer characterizationdata. 54 measurementsetshavebeencollected,theEMCanalyzercharacterizationprocedureiscomplete. Semi-automatingthisprocesswasrelativelystraight-forwardthankstotheEMCanalyzerand signalgeneratorGPIBinterfaces.ThisisbecausetheGPIBcommandsinthePythonscriptarejust mimickingtheuserinputsontheEMCanalyzerandthesignalgeneratorfrontpanels.Toslightly improvethespeedofeachmeasurement,theEMCanalyzerdisplaywasdisabled.Thispreventsthe EMCanalyzerfromhavingtowastetimecreatingthetraceonthedisplay.Thefewsecondsthat thissavedforeachindividualmeasurementresultedinamuchfasteroverallcollectiontimegiven thelargenumberofindividualmeasurementsthatwereperformed. Thesemi-automatedprocedureforperformingtheRSP2procharacterizationmeasurementsis outlinedinFigure3.16.ThesignalgeneratorwasautomatedviaitsGPIBinterfaceusingcommands fromthePyVISAlibrary[50].TheRSP2prounitsrequireduseoftheSDRunocompanionsoftware describedinSection2.4.Table3.3summarizestheSDRunosettingsthatwereusedforallofthe RSP2promeasurementspresentedinthisthesis.Thesesettingswerechosentohaveameasurement spancomparabletothe"DefaultSweep"usedbytheEMCanalyzer.TheRSP2prowasalsousedin thelow-IFmode,whichhasfeweroptionsfortheRSP2prosamplingratecomparedtotheoptions availablewithzero-IFmodeoperation.AsdiscussedinSection2.3,thelow-IFoperationreduces theamountofintermodulationproductsattheoutputoftheSDRmakingitmoresuitablethanthe zero-IFmodeinspectrumanalysisapplications.WhileSDRunosupportsseveralcon˝gurations forthelow-IFmode,itwasimportanttousethesamesettingsforallmeasurementssothataccurate comparisonscouldbemadebetweentheresultspresentedthroughoutthisthesis. SincetheSDRunouserinterfaceisdesignedformanualuserinputviaamouseandkeyboard, aspecializedcontrolsoftwarecalledAutoItwasusedtoautomatetheRSP2promeasurements. AccordingtothetheAutoItwebsite[51],AutoItisa"scriptinglanguagedesignedforautomating theWindowsGUI"that"usesacombinationofsimulatedkeystrokes,mousemovementandwin- dow/controlmanipulationinordertoautomatetasksinawaynotpossibleorreliablewithother languages."BycombiningacustomAutoItscriptwithSDRuno'sbuilt-inabilitytosavemeasure- mentdatatoacsv˝le,itwaspossibletocompletelyautomateSDRunomeasurements.TheAutoIt 55 Table3.3:SummaryoftheSDRunosettingsusedforalloftheRSP2promeasurementspresented inthisthesis. scriptisoutlinedbytheyellowelementsshowninFigure3.16. TheprocedureinFigure3.16beginswiththeusermanuallyconnectingthe˝rstRSP2prounit's PortASMAconnectortothesignalgeneratorasshowninFigure3.14.Theuserthenconnectsthe RSP2protothehostlaptopandmanuallyselectsthemeasurementsetnumber,whichstartsatone. Finally,theuserstartstheAutoItscript. TheAutoItscript˝rststartsaPythonscriptthatcontrolsthesignalgenerator.ThisPython scriptthenloadsthe˝rstinputdatasetfromthenineshowninTable3.2andthefrequencyand voltagesettingsfromthisdatasetareusedtosettheoutputofthesignalgenerator.ThePython scriptthenwaitsfortheAutoitscripttomeasureadatapoint.WhilethePythonscriptiswaiting, theAutoItscriptopensSDRunoandappliesthesettingsshowninTable3.3.Itthencreatesanew storagecsv˝leforthecurrenttrial.Next,theAutoItscriptsetstheRSP2protunerfrequencyand optimizestheRFgain(theRFgainoptimizationprocessisshownseparatelyinFigure3.17). UsingSDRuno'sbuilt-inpeakmeasurementbutton,AutoItrecordsthemeasuredfrequencyand amplitudeofthestrongestsignalinthe5kHzmeasurementspan.Thispeaksignalistheoutput fromthesignalgeneratorforthecurrentdatapoint.Whenthedatapointisrecorded,thePython scriptdetectsthe˝lechangeinthestoragecsv˝leandupdatesthesignalgeneratorsettingswith 56 Figure3.16:Flowchartforthesemi-automatedprocedurethatwasusedtocharacterizetheRSP2pro units. 57 thenextvaluesfromtheinputdataset.Thisprocessisrepeateduntiltentrialshavebeencollected. Aftertentrialshavebeencollected,theAutoItscriptrestartsSDRunoandtheentireprocess isrepeateduntiltentrialshavebeencompletedforeachofthenineinputdatasets.Afterall ofthetrialshavebeencollected,theAutoItscriptterminatesthePythonscriptandcloses.The usermanuallyupdatesthemeasurementnumberandthenstartstheAutoItscriptagain.After ˝vemeasurementsetshavebeencollected,theuserrestartstheentireprocedurewiththenext RSP2prounit.After˝vemeasurementsetshavebeencollectedforallthreeoftheRSP2prounits, theRSP2procharacterizationprocedureiscomplete. Figure3.17showshowtheRFgainwasoptimizedforeachRSP2promeasurement.According to[40],thebestwaytooptimizetheRFgainsettingistoincreasetheRFgainuntilananalog-to- digitalconverter(ADC)overloadoccurs.Fromhere,thegaincanbereducedbyoneortwostages untiltheADCoverloadhascleared.TheyellowADCoverloadindicatorcanbeseenintheSDRuno windowshowninFigure3.17.ThankstoAutoIt'sabilitytousescreenpixelcolorsasfunction inputs,theAutoItscriptcandetectwhenanADCoverloadoccursbymonitoringthepixelsnear theADCoverloadindicator. TheRFgainoptimizerinFigure3.17startswiththeAutoItscriptsettingtheRFgaintozero. AutoItthenincreasestheslider(showninthecenteroftheSDRunowindowshowninFigure3.17) byonestage.Next,thescriptdetectsthescreenpixelcolorneartheADCoverloadindicatortosee ifanoverloadhasoccurred.Ifthecheckedpixelisnotyellow,thegainstageisincreaseduntilan ADCoverloadoccursandthepixelisyellow.Thegainsettingisthenreducedbyonestageand theRFgainhasbeenoptimized.WhentheADCoverloadoccursatthelowestgainsetting,theRF gaincannotbeoptimized.ThishappenswhentheinputRFsignalistoostrong.ThenumberofRF gainstagesavailablevarydependingonthetunerfrequency[52],sotheamountoftimeittookto optimizetheRFgainataparticularfrequencyvariedthroughoutthecharacterizationprocess. 58 Figure3.17:TheRFgainoptimizerthatispartoftheAutoItscriptoutlinedinFigure3.16.An outlineoftheAutoItcodeisshownontheleftandtheSDRunowindowwiththeRFgaincontrol andADCoverloadindicatorisshownontheright. 59 3.3SignalLevelMeasurementPerformance InthissectiontheaccuracyoftheRSP2pro'ssignallevelmeasurementcapabilityisexamined bydirectcomparisontotheEMCanalyzer.Onekeydi˙erencebetweenthetwodevicesisthe abilitytodisplaymeasuredRFsignalsindi˙erentunits.TheEMCanalyzerisabletodisplaythe amplitudeofmeasuredsignalsinavarietyofunitssuchasdBm(decibelsrelativetoonemilliwatt) anddB ` V.However,SDRunoisonlycapableofdisplayingtheamplitudeofmeasuredsignalsin dBm. AccordingtotheRSP2prodatasheet[42],theRSP2pro'sPortARFinputhasanimpedanceof 50 .Withthisknowledge,SDRunomeasurementsrecordedindBmcanbeconvertedtodB ` Vso thattheycanbecomparedtothemeasurementsmadewiththeEMCanalyzer.NotethattheEMC analyzermeasurementsweremadeinunitsofdB ` Vbecausethegoalofthisthesisistousethe RSP2protomeasureradiatedemissions,whichhaveunitsofdB ` V/m.TheconversionfromdBm todB ` VcanbeaccomplishedbyderivinganequationthatrelatesdBmanddB ` Vforasystem thatisassumedtohaveapurelyresistiveimpedance, ' . AccordingtoPaul[1],thepowerofasignalexpressedindBm, % 3< ,isde˝nedas % 3< = 10log 10 % 10 3 where % representsthepowerofthesignalinWatts.Rewritingthisequationintermsof % 3< yields % = ¹ 10 3 º 10 % 3< š 10 .(3.4) AlsoaccordingtoPaul[1],thevoltageofasignalexpressedindB ` V, + 3`+ ,isde˝nedas + 3`+ = 20log 10 + 10 6 (3.5) where + representsthevoltageinVolts.Rewritingthisequationintermsof + 3`+ yields + = ¹ 10 6 º 10 + 3`+ š 10 .(3.6) Forasystemthatisassumedtobepurelyresistive,thetimeaveragepower % isrelatedtotheRMS voltageofthesignal + byOhm'slawandcanbeexpressedas % = + 2 ' .(3.7) 60 ThederivationbeginsbysubstitutingEquations3.4and3.6intoEquation3.7andrearranging termssothatthe % 3< and + 3`+ termsareonthesamesideoftheequation: % = + 2 ' ¹ 10 3 º 10 % 3< š 10 = ¹ 10 12 º 10 + 3`+ š 10 ' ¹ 10 3 º 10 % 3< š 10 10 + 3`+ š 10 = 10 12 ' 10 ¹ % 3< + 3`+ ºš 10 = 10 9 ' . Thenextstepsinthederivationaretotakethelogarithmofeachsideoftheequationandtothen usethelogarithmproductandpowerrulestosimplifyeachterm: log 10 h 10 ¹ % 3< + 3`+ ºš 10 i = log 10 10 9 ' ¹ % 3< + 3`+ º 10 = log 10 1 š ' ¸ log 10 10 9 ¹ % 3< + 3`+ º 10 = log 10 1 š ' 9 . The˝nalstepistosimplifytheremainingtermsfurtherandtosolvefor + 3`+ : % 3< + 3`+ = 10log 10 1 š ' 90 + 3`+ = % 3< 10log 10 1 š ' ¸ 90 .(3.8) 61 Equation3.8showsthatfora50 system + 3`+ = % 3< 10log 10 1 š ' ¸ 90 ' = 50 = % 3< 10log 10 1 š 50 ¸ 90 = % 3< ¸ 16 Ł 9897004 ŁŁŁ ¸ 90 = % 3< ¸ 106 Ł 9897004 ŁŁŁ ˇ % 3< ¸ 107 . ThustheconversionbetweendBmanddB ` Vfora50 systemcanbeperformedwiththeequation + 3`+ = % 3< ¸ 107 .(3.9) ThisequationwasusedtoconvertalloftheRSP2promeasurementspresentedinthisthesisinto dB ` VsothattheycouldbedirectlycomparedwiththemeasurementstakenwiththeEMCanalyzer. Equation3.9isverycommonlyusedwhenperformingradiatedemissionmeasurementsbecause mostspectrumanalyzersandreceivershavea50 RFinput.ThisequationisalsohowtheHP 8657AsignalgeneratorconvertsitsoutputsignalunitsfromdBmtodB ` V[49].NotethatEquation 3.9onlyholdstrueifthesystemhasa50 impedance.Ifthesystemhassomeotherimpedance (forexample,75 tomatchwithsometypesofco-axialcable),Equation3.8canbeusedinstead. Equation3.9alsoassumesthattheimpedanceofthesystemismatchedto50 atallfrequencies. WhiletheRSP2prodoeshavea50 RFinput,itsinputwillnotbeperfectlymatchedatall frequencies.Thisistrueforallinstrumentswitha50 inputoroutput[26].AccordingtoAgilent [26],themeasurementerror "ˆ indBduetotheimpedancemismatchbetweenaspectrumanalyzer andtheRFsourceitismeasuringcanbecalculatedas "ˆ = 20log 10 1 d 0 d B (3.10) where d 0 and d B arethemagnitudeofthere˛ectioncoe˚cientsforthespectrumanalyzerinput andtheRFsource,respectively.There˛ectioncoe˚cientmagnitude d isrelatedtothevoltage 62 standingwaveration(VSWR)withthefollowingequation: d = ¹ VSWR 1 º ¹ VSWR ¸ 1 º .(3.11) TheE7401AEMCanalyzerhasacharacteristicRFinputVSWRof1.35forsignalsmeasured from1to1500MHz[43]andtheHP8657Asignalgenerator'sRFoutputhasaVSWRof(atmost) 1.5forpoweroutputlevelsettingslessthan+5dBm[49].UsingEquation3.11tocalculatethe re˛ectioncoe˚cientforboththeEMCanalyzer( d 0 )andthesignalgenerator( d B )yields d 0 = ¹ 1 Ł 35 1 º ¹ 1 Ł 35 ¸ 1 º = 0 Ł 1489362 ŁŁŁ ˇ 0 Ł 15 , d B = ¹ 1 Ł 5 1 º ¹ 1 Ł 5 ¸ 1 º = 0 Ł 20 . ThesevaluescanthenbeusedwithEquation3.10tocalculateboththenegativeerrordueto mismatch "ˆ = 20log 10 1 ¸ 0 Ł 030 = 20 ¹ 0 Ł 128372 ŁŁŁ º = 0 Ł 256744 ŁŁŁ ˇ 0 Ł 26 dB andthepositiveerrorduetomismatch "ˆ ¸ = 20log 10 1 0 Ł 030 = 20 ¹ 0 Ł 132282 ŁŁŁ º = 0 Ł 264565 ŁŁŁ ˇ 0 Ł 26 dB 63 ThusalloftheEMCanalyzermeasurementswherethesignalgeneratorwasusedasasourcehave anerrorduetomismatch, "ˆ ˆ ,ofatleast "ˆ ˆ = 0 Ł 26 dB.(3.12) ThislossiscomparabletotheoverallamplitudemeasurementaccuracyoftheEMCanalyzer,which accordingto[43]isapproximately 0.30dB. ThereisadditionalsignallosscausedbytheSMAcablethatwasusedwithboththeRSP2pro unitsandtheEMCanalyzer(refertoFigure3.14).Usinganetworkanalyzer,theS-parametersof theSMAcableweremeasuredandusedtocomputetheVSWRatbothendsoftheSMAcablefrom 30MHzto1000MHz.TheseareshowninFigure3.18.ThemeasuredS-parameterswerealso usedtoplottheinsertionlossofthecableinFigure3.18b.Notethatthey-axisshowninFigure 3.18astartsat0.90sothatadetailedviewofthemeasuredVSWRcanbeshown. OnecanseethatatbothendsoftheSMAcablethereisalmostaperfectimpedancematch forfrequenciesupto200MHz.ThisisindicatedbytheVSWRbeingveryclosetooneoverthis frequencyrange.Atfrequenciesabove200MHz,theimpedancemismatchbeginstoincreaseinan oscillatorymannerthatvariesbetweenaVSWRof1.00and1.04.Theconclusionhereisthatany impedancemismatcherrorsinthemeasurementspresentedinthisthesisarepredominantlycaused bythedevicesconnectedtotheSMAcable,nottheSMAcableitself. Figure3.18bshowsthattheinsertionlossoftheSMAcabledoesbecomesigni˝cantrelative tothe 0.30dBmeasurementaccuracyoftheEMCanalyzerwhenthesignalfrequencyisgreater thanorequaltoapproximately600MHz.Theinsertionlossofthecableisgreatestaround1000 MHz,whereithasavalueofalmost0.40dB.Whenperformingcomplianceradiatedemission measurements,theinsertionlossofanycablesusedforsaidmeasurementsmustbeaccountedfor beforeusingtheantennafactortoconvertthemeasuredvoltageintotheradiatedemission˝eld strength.However,themeasurementsinthisthesisarefocusedoncomparingtheRSP2protothe EMCanalyzerandallofthecomparisonmeasurementswereperformedwiththesameSMAcable. ThismeansthattheinsertionlossshowninFigure3.18bcanbeignoredwhendirectlycomparing themeasurementaccuracyoftheRSP2protothemeasurementaccuracyoftheEMCanalyzer. 64 Figure3.18:(a)TheVSWRand(b)theinsertionlossoftheSMAcablethatwasusedforallofthe measurementspresentedinthisthesis. TocharacterizetheRFsignalmeasurementaccuracyoftheRSP2pro,theprocessdescribedin Section3.2wasusedtocollectmeasurementswiththeEMCanalyzerandthreeRSP2prounits. ThemeasurementsusedavarietyofCWsignalsthateachhadaspeci˝cfrequencyandsignallevel (refertoTable3.2).Figure3.19showstheaveragevoltagefrom50separatemeasurementsmade usingtheEMCanalyzerforeachofthenineinputdatasets. ThesignalsshowninFigure3.19aand3.19brepresentthedatasetscorrespondingtothe Agilent11955Aand11956Aantennafactors(respectively),whileFigure3.19cshowsthesignals correspondingtotheBicoLOG30100Xdatasets.Oneachoftheseplots,themiddletraceshows thevoltagelevelforareceivedsignalthatwouldbeexactlyattheCISPR-22ClassBlimitwhen measuredwiththatparticularEMCantenna.Theothertracesoneachplotcorrespondtothedata setsthatwerecreatedbyusing ˘ valuesof 10dBwithEquation3.3.Onecanseethatthesignals 65 Figure3.19:AverageEMCanalyzervoltagemeasurementfor:(a)DataSets1,2,and3,(b)Data Sets4,5,and6,and(c)DataSets7,8and9.Eachdatapointrepresentstheaverageof50 measurements. 66 inDataSets1through6carrysigni˝cantlylesspowerthanthoseinDataSets7,8,and9.The abruptshiftinsignalpowerobservedat230MHzonalloftheseplotsisfromtheCISPR-22Class BradiatedemissionlimitthatwasshowninFigure2.7;at230MHz,thelimitsincreasefrom30 dB ` V/mto37dB ` V/m. ThemeasurementsshowninFigure3.19werealsoperformedusingthreeRSP2prounits.Note thatthefrequencyofeachdatapointpresentedinthissectionhasbeenadjustedtothedesiredsignal generatorfrequency 5 8= sothatthedi˙erencesinthemeasuredsignallevelofeachdatapointcan bemoreeasilycompared. Figures3.20,3.21,and3.22showthestandarddeviationofeverydatapointfromtheRSP2pro andEMCanalyzermeasurementsthatwascollectedusingtheinputdatasetsfromTable3.2.Each ofthese˝gurescorrespondswithoneofthethreeEMCantennasdiscussedinSection3.1.2(i.e. each˝gureshowstheresultsfromthreeofthedatasetsinTable3.2). Figure3.20showsthestandarddeviationresultsforDataSets1,2,and3.Thesecorrespond withtheAgilent11955Aantennafactorand ˘ valuesof+10dB,0,and-10dB(respectively).One canseefromFigure3.20a,3.20b,and3.20cthatthestandarddeviationoftheRSP2prounitsis veryconsistentacrosstheentirefrequencyrange,withanaveragevalueofapproximately0.10 dB ` VatallfrequenciesacrosstheCISPR-22ClassBband.TheEMCanalyzerhasalower standarddeviationthantheRSP2prounitsinFigure3.20aandasimilarstandarddeviationtothe RSP2prounitsinFigure3.20b.Interestingly,Figure3.20cshowsthattheEMCanalyzerhasa muchlargerstandarddeviationthantheRSP2prounits.ThisismostlikelybecauseDataSet3has thesecondlowestoverallsignalpowerlevelofthenineinputdatasetsandtheRSP2prohasabetter receiversensitivity(-147dBm)thantheEMCanalyzer,whichhasadisplayedaveragenoiselevel ofapproximately-119dBmforthefrequencyrangeshowninFigure3.20[43]. ThissametrendcanbeseeninFigure3.21,whichshowsthestandarddeviationresultsforData Sets4,5,and6.TheseinputdatasetscorrespondwiththeAgilent11956Aantennafactorand ˘ valuesof+10dB,0,and-10dB(respectively).Allthreeplotsinthis˝gureshowthattheRSP2pro unitseachhaveastandarddeviationofapproximately0.10dB ` VwhiletheEMCanalyzerhasa 67 Figure3.20:RSP2proandEMCanalyzervoltagemeasurementstandarddeviationfor:(a)Data Set1,(b)DataSet2,and(c)DataSet3.Eachdatapointrepresentsthestandarddeviationfor50 measurements. 68 Figure3.21:RSP2proandEMCanalyzervoltagemeasurementstandarddeviationfor:(a)Data Set4,(b)DataSet5,and(c)DataSet6.Eachdatapointrepresentsthestandarddeviationfor50 measurements. 69 Figure3.22:RSP2proandEMCanalyzervoltagemeasurementstandarddeviationfor:(a)Data Set7,(b)DataSet8,and(c)DataSet9.Eachdatapointrepresentsthestandarddeviationfor50 measurements. 70 signi˝cantlyhigherstandarddeviation,asshowninFigure3.21c.DataSet6hasthelowestoverall signalpowerlevelofthenineinputdatasets,andFigure3.21ciswherethestandarddeviationof theEMCmeasurementsvariesthemost. Figure3.22showsthestandarddeviationresultsforDataSets7,8,and9.Theseinputdata setscorrespondwiththeBicoLOG30100Xantennafactorand ˘ valuesof+10dB,0,and-10dB (respectively).Figure3.19showsthatDataSet7istheinputdatasetwiththehighestoverallsignal level,andFigure3.22ashowsthattheEMCanalyzerhastheleastamountofstandarddeviation withthisdataset.DataSets8and9arethesecondandthirdmostpowerfulinputdatasets,and Figure3.22band3.22cshowthatforthesedatasetstheEMCanalyzermeasurementshaveabetter standarddeviationthantheRSP2prounitsatallfrequencies.Thismeansthattheinputpowerlevel hasalargeimpactonthemeasurementconsistencyoftheEMCanalyzer.Surprisingly,theRSP2pro unitseachappeartohavethesamestandarddeviationvalueof0.10dB ` Vatallfrequenciesdespite thehigheroverallpoweroftheseinputdatasets.Figure3.22band3.22calsoshowthatthestandard deviationoftheEMCanalyzerandtheRSP2proslightlyincreasewithfrequency.However,this increaseisnegligiblecomparedtotheaveragestandarddeviationobservedatallfrequenciesacross theCISPR-22ClassBband. ThemainconclusionfromFigures3.20,3.21,and3.22isthatthestandarddeviationfor individualRFsignalmeasurementsislessthan0.25dB ` VforthethreeRSP2prounitsthatwere tested.ThisperformanceisonlyslightlyworsethantheEMCanalyzer,andinthecaseoflow powerRFsignalmeasurements,thestandarddeviationperformanceoftheRSP2prounitsisactually betterthanthatoftheEMCanalyzer.ThisismostlikelyduetotheRSP2pro'sexcellentreceiver sensitivityatthefrequencyrangesthatweretested. Figures3.23,3.24,and3.25showtheaveragemeasuredamplitudedi˙erencebetweentheEMC analyzerandeachofthethreeRSP2prounitsforeverydatapointcollected(usingtheinputdatasets fromTable3.2).Eachofthese˝gurescorrespondwithoneofthethreeEMCantennasdiscussed inSection3.1.2(i.e.each˝gureshowstheresultsfromthreeofthedatasetsinTable3.2).For 71 these˝gures,theaverageo˙setvalue + 3 isde˝nedas + 3 = + ' + ˆ (3.13) where + ' representstheaveragevoltagemeasuredbytheRSP2proataparticularinputdatapoint and + ˆ representstheaveragevoltagemeasuredbytheEMCanalyzeratthatsameinputdata point.Thevalueof + 3 hasbeenplottedforallnineoftheinputdatasetsfromTable3.2so thattheamplitudemeasurementaccuracyofallthreeRSP2prounitscanbecomparedwiththe amplitudemeasurementaccuracyoftheEMCanalyzer.RecallthattheEMCanalyzeramplitude hasanabsolutemeasurementaccuracyof 0.30dB[43]foralloftheinputdatapointstested.By usingtheEMCanalyzerforcomparison,anewmarginoferrorcanbedevelopedformeasurements performedwiththeRSP2pro. Figure3.23showstheaverageo˙setvalueofEquation3.13forDataSets1,2,and3.The˝rst observationisthatmeasurementsfromallthreeRSP2prounitsremainveryconsistentacrossall threeplots.ThisconsistencyisindicatedbythenearidenticaltrendofeachoftheRSP2prodata setsshowninallthreeplotsofFigure3.23.AllthreeRSP2prounitsalsohavethesamerelative measurementaccuracy.TheRSP2pro1measurementsareslightlyhigherthantheEMCanalyzer measurement,whiletheRSP2pro2measurementsareconsistentlysmallerthantheEMCanalyzer measurements.Forallthreeplots,onecanseethatthemeasurementsforalloftheRSP2prounits arewithin1.00dBoftheEMCanalyzermeasurementacrosstheentirefrequencyrange.Eachof theRSP2prounitsalsoperformednearlyidenticallyatfrequenciesbetween260and300MHz. Figure3.24showstheaverageo˙setvaluefromEquation3.13forDataSets4,5,and6.While theplotsshowninFigure3.24aand3.24bshowthatthemeasurementsfromallthreeRSP2pro unitsareconsistent,thereislessconsistencyobservedinFigure3.24c.Thisplotcorrespondsto theinputdatasetwiththelowestoverallsignallevel.AllthreeplotsshowthatRSP2prounits1 and3haveaboutthesamemeasurementaccuracyrelativetotheEMCanalyzer,whileRSP2pro2 measurementsareconsistentlylowerthantheEMCanalyzermeasurements.UnlikeFigure3.23, onecanseefromFigure3.24thatthemeasurementsforallthreeunitsarewithin2.00dBoftheEMC 72 Figure3.23:AverageRSP2provoltagemeasuremento˙setfor:(a)DataSet1,(b)DataSet2,and (c)DataSet3.Eachdatapointrepresentstheaverageof50measurements. 73 Figure3.24:AverageRSP2provoltagemeasuremento˙setfor:(a)DataSet4,(b)DataSet5,and (c)DataSet6.Eachdatapointrepresentstheaverageof50measurements. 74 Figure3.25:AverageRSP2provoltagemeasuremento˙setfor:(a)DataSet7,(b)DataSet8,and (c)DataSet9.Eachdatapointrepresentstheaverageof50measurements. 75 analyzermeasurementacrosstheentirefrequencyrange.Thislargeroverallaveragemeasurement o˙setcanbeattributedtothelowpowerlevelofDataSets4,5,and6(refertoFigure3.19b). Figure3.25isthe˝nalo˙setvoltagecomparisonandshowstheaverageo˙setvaluefrom Equation3.13forDataSets7,8,and9.Figure3.25aand3.25bshownearlyidenticaltrendsforthe RSP2pro1and3measurements.Intheseplots,theRSP2pro1and3measurementsalsohavenearly identicalo˙setsfromtheEMCanalyzermeasurementfrom400MHzto600MHzand750MHz to1000MHz.Figure3.25cshowsasimilartrend,buttheaverageo˙setforbothunitsisactually betterintherangefrom600MHzto800MHz.AllthreeoftheplotsinFigure3.25highlightthat themeasurementsfromRSP2pro2weresigni˝cantlydi˙erentfromtheothertwounits.Whilethis trendcanalsobeobservedinFigures3.23and3.24,thelargerfrequencyrangeinthis˝guremore clearlyillustratestheextentthisdi˙erence.DespiteRSP2pro2'spoorerperformance,theoverall averageo˙setforallthreeRSP2prounitsisstillwithin2.00dBoftheEMCanalyzermeasurements. TheresultsshowninFigure3.23,3.24,and3.25indicatethatforallofthesignallevels tested,thethreeRSP2prounitswereabletohaveameasurementaccuracywithin 2.00dBof theEMCanalyzer.Measurementsfromtwooftheunitswereabletoachieveanaccuracyofjust over 1.50dBrelativetotheEMCanalyzer.Thislevelofaccuracyisacceptableforlow-cost precompliancetesting,wheretheradiatedemissionmeasurementerrorscausedbytheuncontrolled RFenvironmentcanrangefrom+6dBto-25dB[23]. WhiletheprocedureinSection3.2hasbeenusedheretocompareseveralRSP2prounitsto anEMCanalyzer,itcanalsobeusedtocalibratetheRSP2pro.WithinSDRuno,theusercan manuallyaccountforadditionalRFgainexternaltotheRSP2prounitbyadjustingthemeasured powerlevelbyaconstantvalueindB[53].Thisfeatureisintendedtoaccountforadditionalgains andlossesintheRFsignalchainconnectedtotheRSP2pro,butcanalsobeusedtomanually calibratethemeasuredsignallevelifsaidsignalleveliscomparedtothelevelmeasuredbyanother calibrateddevice(e.g.aspectrumorEMCanalyzer).However,thisadjustmentisconstantatall frequencies,soitwouldneedtobemanuallyadjustedforeachmeasurementtoaccountforany frequency-dependentdi˙erences.Forexample,inFigure3.25theaverageo˙setfortheRSP2pro 76 2measurementsisonly-0.50dBinthefrequencyrangefrom30MHzto200MHzbutisnearly -2.00dBinthefrequencyrangefrom600MHzto800MHz. Theaccuracyof 2.00dBobservedhereissu˚cientforreplacingaspectrumanalyzerfor low-costprecomplianceradiatedemissionmeasurements.Thecharacterizationtestsetupallowed foraveryhighSNRbecausetheRSP2prounitsandtheEMCanalyzerweredirectlyconnectedto thesignalgeneratorviaanSMAcable.Thisdirectconnectionminimizedthenoise˛oorforallof themeasurements,providingahighSNRforeverymeasurement. AccordingtoHorowitz[54],theSNRofameasuredsignalisaratioindBthatisde˝nedas SNR = 10log 10 E 2 B E 2 = (3.14) where E B and E = representthermsvoltagesofthedesiredsignalandthesignalnoisethatisalso present(respectively).Horowitz[54]explainsthat"thesquaredamplitudes[ofEquation3.14 suggest]aratiointermsofpower,whichistheoriginofthedecibelratiode˝nition"usedfor SNR.TheSNRofameasuredsignalisdirectlyrelatedtothebandwidthofthesignalandthe measurementbandwidthusedbythereceiver(i.e.theRSP2pro).Forexample,asignalwitha narrowbandfrequencyresponsewillcontinuetohavethesamepowerlevelasthemeasurement bandwidthisincreased.ThismeansthattheSNRofthemeasurementcandecreasebecausethe receiverampli˝erwillcontinuetoaddnoisepowerasthemeasurementbandwidthbecomeslarger thanthesignalbandwidth[54].Inthiscontext,themeasurementbandwidthisequivalenttothe spansettingofaspectrumanalyzerorreceiver.RecallthatFigure3.11fromSection3.1.3shows thatthesignalgeneratorusedforthecharacterizationmeasurementshadanarrowbandoutputsignal witha3-dBbandwidthofonly300Hz.Thisbandwidthismuchsmallerthanthespanusedbyboth theEMCanalyzer(3kHz)andtheRSP2pro(128kHz). SDRUnoalsorecordstheSNRwhensavingthemeasuredsignalpeakandfrequency.The SNRdatafromallthemeasurementresultsshowninFigures3.23,3.24,and3.25canbeusedto understandhowtheSNRrelatestotheRSP2prosignalmeasurementaccuracy. Figures3.26,3.27,and3.28showthestandarddeviationoftheSNRforeachofthedatapoints thatwasmeasuredfromtheinputdatasetsshowninTable3.2.Eachofthese˝gurescorrespond 77 withoneofthethreeEMCantennasdiscussedinSection3.1.2(i.e.each˝gureshowstheresults fromthreeofthedatasetsinTable3.2). Figures3.26and3.27showthestandarddeviationoftheSNRforDataSets1through6.With theexceptionofonefrequency(825MHz),theseplotsshowthattheSNRforeverydatapoint testedhadastandardofdeviationlessthan0.5dB.Figure3.19showsthatthesedatasetsallhave signaloutputlevelsbelow40dB ` V.Thisimpliesthatfornarrowbandsignallevelslessthan40 dB ` V,theRSP2proexperiencesaveryconsistentSNR.Thissamelevelofconsistencydidnot occurwiththemuchhigherinputsignallevelsfromDataSet7,8,and9.Figure3.28showsthe standarddeviationfortheSNRwhenmeasuringthesedatasets. AllthreeplotsinFigure3.28showasigni˝cantamountofdeviationintheSNRmeasurements fromallthreeRSP2prounits.Thelargestdeviationoccursinthefrequencyrangefrom230MHz to500MHzinFigure3.28a.Thisfrequencyrangecorrespondswiththelargestinputsignallevels fromDataSet7,whichistheinputdatasetwiththehighestoverallamplitudelevels(refertoFigure 3.19).ThisshowsthattheSNRobservedbytheRSP2provariesbymorethan1dBwhenthe measuredsignalisanarrowbandsignalwithamagnitudeabove60dB ` V.Thefrequencyrange from30MHzto200MHziswhereDataSet9hasasignallevelbelow40dB ` V,andherethe standarddeviationofthemeasuredSNRiscomparabletowhatcanbeobservedinFigures3.26 and3.27.Whilethismayseemlikefurtherevidencethatnarrowbandsignallevelsbelow40dB ` V provideamuchmoreconsistentSNR,thisdiscrepancyactuallyoccursbecausetheanalog-to-digital (A/D)convertersoftheRSP2proarebeingoverloadedwhenmeasuringthesignalshigherthan200 MHz. AnA/Dconverteroverloadcanbeshownbyplottingthedi˙erencebetweenthemeasured SNRofaninputsignalandtheSNRofthesameinputsignalreducedby10dB.Thedi˙erence betweentheSNRmeasurementsshouldbeapproximately10dBbutwillbedi˙erentwhentheA/D convertersareoverloaded.Thismethodworkswellwiththetestsetupusedforthecharacterization processbecausethenoise˛oorisminimizedbythedirectconnectiontothesignalsource.Using theinputdatasetsfromTable3.2,thedi˙erence ˇ GH betweendatasetsthatare10dBapartcanbe 78 Figure3.26:RSP2proSNRmeasurementstandarddeviationfor:(a)DataSet1,(b)DataSet2, and(c)DataSet3.Eachdatapointrepresentsthestandarddeviationfor50measurements. 79 Figure3.27:RSP2proSNRmeasurementstandarddeviationfor:(a)DataSet4,(b)DataSet5, and(c)DataSet6.Eachdatapointrepresentsthestandarddeviationfor50measurements. 80 Figure3.28:RSP2proSNRmeasurementstandarddeviationfor:(a)DataSet7,(b)DataSet8, and(c)DataSet9.Eachdatapointrepresentsthestandarddeviationfor50measurements. 81 usedtocreatesuchplots.Thisdi˙erenceisde˝nedas ˇ GH = SNR G SNR H (3.15) wherexandycorrespondtothedatasetnumbersfromTable3.2.Thisequationwasusedwiththe datasetsfromTable3.2thatusedthesameEMCantennaandwereseparatedby10dBtocreate Figures3.29and3.30. Figure3.29showsthatforDataSets7and8,thevalueofEquation3.15ismuchlessthan10 dBatnearlyeveryfrequency.ThisindicatesthattheA/DconvertersoftheRSP2prounitswere likelyoverloadedwhenperformingmeasurementswiththeseinputdatasets.Figures3.29aand 3.30showthattheotherdatasetsdidnotoverloadtheA/Dconverterssincethedi˙erenceshownin these˝guresisclosetotheexpectedvalueof10dB.Figures3.30aand3.30beachshowasimilar trendforthevalueof ˇ 23 and ˇ 56 .Figure3.30cshowsthatthevalueofEquation3.15forData Sets8and9isonlycloseto10forsignalslessthan200MHz.Thisexplainswhythestandard deviationoftheSNRinFigure3.28cwasmorecomparabletoDataSets1through6;theA/D convertersarenotbeingoverloadedforinputdatapointsfromDataSet9thatareatafrequency below200MHz. Figures3.31,3.32,and3.33showtheaverageSNRforeachofthedatapointsthatwasmeasured fromtheinputdatasetsshowninTable3.2.Eachofthese˝gurescorrespondwithoneofthethree EMCantennasdiscussedinSection3.1.2(i.e.each˝gureshowstheresultsfromthreeofthedata setsinTable3.2). Figure3.31showstheSNRformeasurementswhereDataSets1,2,and3weremeasured. Theplotsinthis˝gureshowthatthemeasuredSNRateveryfrequencywasalmostidenticalfor eachRSP2prounit.AlloftheSNRvaluesinFigure3.31arebetween24and56dB.Figure 3.32showsthattheSNRfortheDataSet4,5,and6measurementsarealsobetween16and56 dB.Forfrequenciesupto600MHz,allthreeRSP2prounitsobservedalmostexactlythesame SNRforeverydatapoint.Figure3.32alsoshowsthattheSNRobservedbyeachRSP2provaried signi˝cantlyat700MHz. 82 Figure3.29:ThevalueofEquation3.15using(a)DataSet1and2,(b)DataSet4and5,and(c) DataSet7and8. 83 Figure3.30:ThevalueofEquation3.15using(a)DataSet2and3,(b)DataSet5and6,and(c) DataSet8and9. 84 Figure3.31:RSP2proSNRmeasurementfor:(a)DataSet1,(b)DataSet2,and(c)DataSet3. Eachdatapointrepresentstheaverageof50measurements. 85 Figure3.32:RSP2proSNRmeasurementfor:(a)DataSet4,(b)DataSet5,and(c)DataSet6. Eachdatapointrepresentstheaverageof50measurements. 86 Figure3.33:RSP2proSNRmeasurementfor:(a)DataSet7,(b)DataSet8,and(c)DataSet9. Eachdatapointrepresentstheaverageof50measurements. 87 Figure3.33showstheSNRformeasurementswhereDataSets7,8,and9weremeasured.In this˝gure,theoverallSNRshownonallthreeplotsismuchhigherthantheSNRshowninFigures 3.31and3.32,witharangespanningfrom40to72dB.AllthreeRSP2prounitsappeartohavethe sameSNRrelativetooneanother,onlydi˙eringbyafewdBatnearlyeverydatapoint.Thetwo exceptionstothisareinFigure3.33c,wheretheSNRrecordedbyRSP2pro1and3isapproximately 6dBlowerthantheSNRrecordedbyRSP2pro2at700MHz.Asmentionedpreviously,DataSets 7,8,and9wereallabletooverloadtheA/DconvertersoftheRSP2prounitsthatweretested. ThemainconclusionfromthissectionisthattheRSP2procanmeasureRFsignalswithan amplitudeaccuracyof 2.00dBsolongastheA/DconvertersoftheRSP2proarenotoverloaded bythemeasuredsignal.ThisamountofaccuracycanbemaintainedwithanSNRaslowas16dB. 88 3.4FrequencyMeasurementPerformance ThefrequencymeasurementperformanceoftheRSP2prowascharacterizedbydirectlycom- paringtothefrequencymeasurementaccuracyoftheEMCanalyzer.AsexplainedinSection3.1.3, theEMCanalyzerwasalsousedtocalibratetheoutputfrequenciesofthesignalgenerator.This meansthattheresultspresentedinthissectionarecompletelyrelativetotheEMCanalyzer,as anindependentcalibratedfrequencysourcewasnotused.Regardless,thestandarddeviationand di˙erenceinmeasuredfrequencybetweentheRSP2proandtheEMCanalyzerisstillusefulfor understandinghowsuitabletheRSP2proisfordeterminingthefrequencyofradiatedemissions duringalow-costprecompliancetest.Thefrequencyofeachdatapointpresentedinthissection hasbeenadjustedtothedesiredsignalgeneratorfrequency 5 8= usingEquation3.1sothatthe di˙erencesintheactualfrequencymeasuredateachdatapointcanbecompared. Figures3.34,3.35,and3.36showthestandarddeviationofeverydatapointfromtheRSP2pro andEMCanalyzermeasurementsthatwerecollectedusingtheinputdatasetsfromTable3.2.Each ofthese˝gurescorrespondwithoneofthethreeEMCantennasdiscussedinSection3.1.2(i.e. each˝gureshowstheresultsfromthreeofthedatasetsinTable3.2). Figure3.34showsthestandarddeviationresultscorrespondingtoDataSets1,2,and3.All threeplotsinthis˝gureshowthatthefrequencymeasuredforeachdatapointwasextremely consistentforallthreeoftheRSP2prounitsandtheEMCanalyzer.Thestandarddeviationforthe RSP2prounitsisbelow20Hz,andtheEMCanalyzeronlyhasoneoutlierwithastandarddeviation of120Hz.TheresultsfromusingDataSets4,5,and6indicateasimilarlevelofconsistencyand areshowninFigure3.35.Figure3.35crepresentstheresultsfromusingtheinputdatasetwiththe lowestoverallsignallevel.Here,theEMCanalyzerbecomeslessconsistentthantheRSP2prounits asthemeasuredfrequencyincreases.However,theEMCanalyzerstillhasastandarddeviation thatislessthan60Hzwhichismorethansu˚cientwhenidentifyingthefrequencyofradiated emissions. Figure3.36showsthestandarddeviationresultscorrespondingtoDataSets7,8,and9.The plotsinthis˝gureshowthatallthreeoftheRSP2prounitsremainedveryconsistentinmeasuring 89 Figure3.34:RSP2proandEMCanalyzerfrequencymeasurementstandarddeviationfor:(a)Data Set1,(b)DataSet2,and(c)DataSet3.Eachdatapointrepresentsthestandarddeviationfor50 measurements. 90 Figure3.35:RSP2proandEMCanalyzerfrequencymeasurementstandarddeviationfor:(a)Data Set4,(b)DataSet5,and(c)DataSet6.Eachdatapointrepresentsthestandarddeviationfor50 measurements. 91 Figure3.36:RSP2proandEMCanalyzerfrequencymeasurementstandarddeviationfor:(a)Data Set7,(b)DataSet8,and(c)DataSet9.Eachdatapointrepresentsthestandarddeviationfor50 measurements. 92 thefrequencyoftheinputsignalatallfrequencies.Thisisindicatedbythesmallseparation betweentheRSP2prodatasetsinallthreeplots,asthelargestseparationbetweentheRSP2prodata setsintheseplotsislessthan40Hz.Figure3.36bhasthelargestincreaseofstandarddeviation fortheEMCanalyzerfrequencymeasurement,whichreachesamaximumvalueof150Hz.Thisis amountofinconsistencyisstillinconsequentialforradiatedemissionmeasurements,whichhavea centerfrequencyintherangefrom30MHzto1000MHz. Figures3.37,3.38,and3.39showtheaveragedi˙erencebetweentheEMCanalyzermeasured frequencyandthemeasuredfrequencyofthethreeRSP2prounitsforeverydatapointcollected fromusingtheinputdatasetsfromTable3.2.Eachofthese˝gurescorrespondwithoneofthe threeEMCantennasdiscussedinSection3.1.2(i.e.each˝gureshowstheresultsfromthreeofthe datasetsinTable3.2).Forthese˝gures,theaveragefrequencyo˙set 5 3 isde˝nedas 5 3 = 5 ' 5 ˆ (3.16) where 5 ' representstheaveragefrequencymeasuredbytheRSP2proforaparticularinputdata pointand 5 ˆ representstheaveragefrequencymeasuredbytheEMCanalyzerforthatsameinput datapoint.Thevalueof 5 3 directlycomparesthefrequencymeasurementaccuracyofallthree RSP2prounitswiththefrequencymeasurementaccuracyoftheEMCanalyzerforalloftheinput datapointstested. TheresultsshowninFigures3.37,3.38,and3.39showthatthefrequencyaccuracyofthe RSP2pro(relativetotheEMCanalyzer)wasveryconsistentforalloftheinputdatasets.Every plotinthese˝guresshowthatthefrequencymeasurementofRSP2pro2wassigni˝cantlymore inaccuratethanthefrequencymeasurementstakenwiththeothertwounits.However,thisinaccu- racywasstilllessthan1.6kHzfornearlyeverydatapointthatwastested.Thisfrequencyisvery smallcomparedtothefrequencyofthesignalsencounteredduringCISPR-22ClassBradiated emissionstesting,whichhavecenterfrequenciesintherangeof30MHzto1000MHz.Figures 3.38and3.39showthatthevalueof 5 3 forallthreeRSP2prounitsincreasedlinearlywiththe inputsignalfrequencyforsignalsfrom200MHzto1000MHz.Onecanalsoobservethislinear behavioroccurringforinputfrequenciesof30MHzto200MHzinFigure3.37.Thevalueof 5 3 in 93 Figure3.37:AverageRSP2profrequencymeasuremento˙setfor:(a)DataSet1,(b)DataSet2, and(c)DataSet3.Eachdatapointrepresentstheaverageof50measurements. 94 Figure3.38:AverageRSP2profrequencymeasuremento˙setfor:(a)DataSet4,(b)DataSet5, and(c)DataSet6.Eachdatapointrepresentstheaverageof50measurements. 95 Figure3.39:AverageRSP2profrequencymeasuremento˙setfor:(a)DataSet7,(b)DataSet8, and(c)DataSet9.Eachdatapointrepresentstheaverageof50measurements. 96 this˝gureislessthan400Hzforinputfrequenciesupto200MHz.Thisisidenticaltotheresults showninFigures3.38and3.39. Therearetwomainconclusionsfromtheresultspresentedinthissection.First,thatthe frequencymeasuredbytheRSP2proisveryconsistentforsignalsfrom30MHzto1000MHz, varyinglessthan60Hzforalloftheinputdatapointsthatweretested.Thisismostlikelyduetothe accuracyoftheRSP2pro'stemperature-compensatedoscillator(TCXO).Thesecondconclusionis thatthevalueof 5 3 increasedlinearlywithanincreaseinthemeasuredfrequency.Thisindicates thattherewaslikelyaninaccuracywiththefrequencymeasuredbytheEMCanalyzer,notthe RSP2prounits,becausetheEMCanalyzerwastheonlycommonfactorbetweenallofthe 5 3 valuesshown. 97 CHAPTER4 USINGTHERSP2PROFORRADIATEDEMISSIONSTESTING HavingestablishedamarginoferrorfortheRSP2pro'sabsolutesignallevelmeasurementsin thepreviouschapter,theRSP2proisnowusedtomeasureradiatedemissionsfromtwodi˙erent sourcesandtheresultsaredirectlycomparedtotheEMCanalyzer.Section4.1outlinestheradiated emissionsmeasurementprocedureusedwithboththeEMCanalyzerandtheRSP2pro.Thissection includesadescriptionoftheRFenvironmentthatwasselectedfortestingandprovidesadetailed descriptionofthetwosignalsourcesthatwereusedtocreateradiatedemissions.Section4.2 presentstheresultsoftheradiatedemissiontests,andthereceivedRFpowermarginof 2.00dB developedfortheRSP2prointhepreviouschapteriscomparedtotheseresults. 4.1RadiatedEmissionsMeasurementProcedure Beforetheprocedureformeasuringradiatedemissionswasdeveloped,severallocationswere examinedto˝ndanRFenvironmentsuitableforradiatedemissionstests.Sincetheprimarygoal ofthisthesisistoshowthattheRSP2procanreplacethespectrumanalyzerusedinalow-cost precompliancesetupliketheoneshowninFigure2.11,onlyuncontrolledRFenvironmentswere considered.AnuncontrolledRFenvironmentinthiscontextisde˝nedasanareawheretheRF signalsexternaltotheEUTbeingevaluatedcannotbecontrolled.TheseexternalRFemissionsare typicallyfromsourceslikenearbyFMradiostationsorothertelecommunicationsequipmentthat operateinthefrequencyrangefrom30MHzto1000MHz.Figures4.1a,4.2a,and4.3ashowthe threeuncontrolledRFenvironmentsthatwereconsideredforradiatedemissiontesting.Foreach environment,theEMCanalyzerandtheBicoLOG30100XEMCantennawereusedtoperform ascanofthebackgroundRFenvironmentfrom30MHzto1000MHzusingthefour"Spectrum Sweep"state˝lesfromTable3.1tocon˝guretheEMCanalyzer. Figure4.1ashowsthe˝rstRFenvironmentthatwasconsidered:anoutdoorareaonMSU's campusnearPavilionDrive.ThenearbyMSUObservatory(picturedinthebackgroundofFigure 98 4.1a)wasusedtopowertheEMCanalyzer.Figure4.1bshowsthebackgroundRFnoiseatthis location.Onecanseethatthenoise˛oorinthisenvironmentisat50dB ` V,whichissigni˝cantly higherthantheidealnoise˛oorof20dB ` Vfromthecharacterizationtestsetup(refertoFigure 3.11).AlsonotablearetheFMbroadcastsignals,thestrongestofwhicharevisiblebetween90 and100MHzwithamplitudesofover100dB ` V.Figure4.1balsoshowsmanyotherbackground RFsignals.AccordingtotheNationalTelecommunicationsandInformationAdministrationO˚ce ofSpectrumManagement[55],thestrongsignalsobservedjustbefore200MHzarebroadcast televisionchannels7through13,whilethestrongsignalsobservedjustbefore300MHzaremost likelyfromavarietyofnearbymobiletelecommunicationstowers.Figure4.1balsoshowsstrong signalsjustbefore600MHz,thestrongestofwhichhasanamplitudelevelabove100dB ` V.These correspondtotelevisionbroadcastchannels21through36[55]. ThereareseveralreasonswhytheoutdoorenvironmentshowninFigure4.1awasnotchosen forradiatedemissionstesting.Onereasonwasasimplelackofconvenience,asweatherandtime constraintsmadecollectingdataatthelocationdi˚cult.However,themainreasonwasthelarge amountofbackgroundRFnoisethatwouldhavemadeidentifyingradiatedemissionsfromanEUT verydi˚cult.TheissueofbackgroundRFnoiseisalsoaproblemforcreatingtheopenareatest sites(OATS)usedforfullcompliancetesting,asthenumberofambientsignalsfromthingslike digitalbroadcastsarealwaysincreasing[23]. ThenextRFenvironmentthatwasconsideredisshowninFigure4.2a.Thetunnelshownin this˝gureconnectsthebasementsofAnthonyHallandtheG.M.TroutFoodScienceandHuman NutritionBuildingonMSU'scampusandisapproximately2.1mwideand2.5mtall.ThisRF environmentwasconsideredforradiatedemissiontestingbecauseitslocationgreatlyreducesthe amountofambientRFsignals,asshowninFigure4.2b.OnecanseethattheFMbroadcast transmissionsarestillpresent,buttheiramplitudeshavebeenreducedbymorethan30dBfrom whatwasmeasuredattheoutdoorlocationshowninFigure4.1b.Themeasurednoise˛oorin Figure4.2bisverylow,onlyslightlyhigherthanthe20dB ` Vnoise˛oorpresentduringthe characterizationmeasurementsthatwereshowninChapter3. 99 (a) (b) Figure4.1:(a)Theoutdoorareathatwasconsideredforradiatedemissiontestingand(b)the ambientRFsignalsmeasuredattheoutdoorareafrom30MHzto1000MHz(averageof3trials). 100 (a) (b) Figure4.2:(a)Theundergroundtunnelthatwasconsideredforradiatedemissiontestingand(b) theambientRFsignalsmeasuredintheundergroundtunnelfrom30MHzto1000MHz(average of3trials). 101 ThisRFenvironmentwasultimatelyrejectedforthreemainreasons.First,theareawasnot veryaccessibleandmadecollectingmeasurementsdi˚cultbecauseofthelargeamountoftimeit tooktotransportthetestequipmentrequiredfortheradiatedemissiontests.Second,thenarrow dimensionsofthetunnelmeantthattherewasanincreasedchanceforstrongsignalre˛ectionsfrom theEUT.Thesekindofre˛ectionsaredi˚culttopredictandwouldhavecontributedtoalarge amountofinconsistencyinradiatedemissionsmeasurements.Thelastreasonisthatthislocation istoounique.Mostproductdesignerswillnothaveaccesstoanundergroundtunnelforperforming radiatedemissionmeasurements. Figure4.3ashowsthehallwayintheMSUEngineeringBuildingthatwaschosenforperforming theradiatedemissionmeasurementspresentedinthisthesis.Thishallwayislocatedonthesecond ˛ooroftheMSUEngineeringBuildingandhasawidthofapproximately3.7mandaceilingheight ofabout2.5m.OnecanseefromFigure4.3bthatalthoughthenoise˛ooriscomparabletothe undergroundtunnel,therearemanymoreambientRFsignalspresent(especiallyinthefrequency rangefrom80MHzto500MHz).Theseadditionalsignalsgreatlyobscurethenoise˛ooracross mostofthe30MHzto1000MHzfrequencyrange,saveforthesmallregionfrom30MHzto40 MHz.However,thelargestambientRFsignalsarestillreducedbymorethan20dBcomparedto theresultsfromtheoutsideareashowninFigure4.1b. TheRFenvironmentshowninFigure4.3awaschosenfortworeasons.Themainreasonis thattheareaislikelycomparabletothekindofuncontrolledRFenvironmentthatwouldbereadily availabletoanelectronicproductdesigner.Theothermainreasonisthatthislocationallowedfor testingat10mwhilealsobeingveryclosetowherethetestequipmentwasstored.Thisproximity tothetestequipmentstoragelocationgreatlyreducedsetuptime,allowingforagreaternumberof radiatedemissionteststobeperformed. OncetheRFenvironmentshowninFigure4.3awasselected,aprocedurewasdevelopedfor performingconsistentradiatedemissionmeasurementsatadistanceof1mand10m.These distanceswerechosensothatthee˙ectsoftheuncontrolledRFenvironmentthatwerediscussed inSection2.2couldbeinvestigated.Figure4.4showsthetestsetupusedfortheradiatedemissions 102 (a) (b) Figure4.3:(a)Theindoorhallwaythatwasultimatelychosenforradiatedemissiontestingand(b) theambientRFsignalsmeasuredinthehallwayfrom30MHzto1000MHz(averageof3trials). 103 measurementprocedureforbothdistances.ThetestsetupconsistedoftheEMCanalyzerandthe RSP2prounits,whichwereplacedonamovabledesk,andtheBicoLOG30110XEMCantenna, whichwasmountedonacameratripod.Forbothofthedistancestested,theradiatedemissions sourcewasplacedonafoamteststandthatwasthesameheightastheEMCantenna.Sincethe goaloftheradiatedemissiontestprocedurewastocomparetheperformanceoftheRSP2proand theEMCanalyzer,theantennawasonlyusedatasingle˝xedheight.Whenperforminganactual radiatedemissiontestwithanEUT,theantennashouldbeverticallyscannedwhenpossiblesothat thestrongestradiatedemissionscanbefound[2].Figure4.5showstheRFsignalchainthatwas usedbybothtestsetupsshowninFigure4.4. (a) (b) Figure4.4:TheradiatedemissionstestsetupconsistingoftheEMCanalyzer,BicoLOG30100X EMCantenna,RSP2pro,andradiatedemissionssourceat(a)10mand(b)1m. Figure4.5:DiagramshowingtheRFsignalchainsusedfortheradiatedemissionstestsetup. 104 4.1.1NarrowbandSource:WhipAntenna Threetypesofsignalsthatareverycommonwithelectricalsystemsarecontinuouswave(CW) narrowbandsignals,repetitivebroadbandsignals,andsingleeventbroadbandsignals[56].The ˝rsttwotypesweretestedfortheresultspresentedinthisthesis.Thissectiondescribesthe radiatedemissionssourcethatwasdesignedtocreateCWnarrowbandradiatedemissions.Table 4.1describesthefrequencyandamplitudeoftheeleveninputdatapointsthatwereusedbytheCW sourceshowninFigure4.6.Thesespeci˝cfrequencieswereprimarilyselectedduetotheoutput limitationsofthebroadbandsourcedescribedinSection4.1.2. Table4.1:InputdatapointsusedbytheCWradiatedemissionssourceshowninFigure4.6. TheVHF/UHF"whip"antennashowninFigure4.6wastheradiatedemissionssourcethat wasusedtotransmittheCWsignalsfromtheHP8657Asignalgenerator.Accordingtothe manufacturer[57],thisomni-directionalwhipantennaisdesignedfortransmittingRFsignalsin thefrequencyrangesof136to174MHzand400to520MHz.Thisantennaalsohasamagnetic basesothatitcanbeattachedtometallicsurfacesliketheexteriorofavehicle[57].Inorderto understandhowthisantennawouldperformwhentransmittingsignalsatotherfrequenciesinthe 30MHzto1000MHzband,anetworkanalyzerwasusedtomeasureitsVSWR.TheVSWRofthe antennawasmeasuredwhileitwasattachedtoametallicsurface(Figure4.7a)andonceagainwhen itwasplacedonthefoamteststand(Figure4.8a).Theresultsofeachmeasurementareshownin 105 Figure4.6:DetailedviewofthewhipantennaarrangementusedtosimulateCWnarrowband radiatedemissionsfromanEUT. Figures4.7band4.8b.Fromthese˝gures,onecanseethatusingthemagneticbasegreatlye˙ects theperformanceofthewhipantenna. Whenattachedtoametallicsurface,themeasuredVSWRofthewhipantennaapproachesa valueofoneattwoseperatefrequencies:154MHzand450MHz.Thisistobeexpectedbasedupon themanufacturerspeci˝cations[57].Anantennaisoftenconsideredtohaveagoodimpedance matchwithitssourcewhentheVSWRislessthantwo[58],andonecanseefromFigure4.7bthat overmostofthe30MHzto1000MHzrangethewhipantennahasapoorimpedancematch.This isespeciallytrueforfrequenciesbelow100MHz,andthisisthereasonwhyonlythreefrequencies below100MHzweretested(refertoTable4.1). OnecanseefromFigure4.8bthatthemeasuredVSWRwassigni˝cantlydi˙erentwhenthe antennawasnotmagneticallyattachedtoametallicsurface.Inthiscon˝guration,thereareseveral 106 (a) (b) Figure4.7:(a)ThewhipantennausedtocreateCWnarrowbandradiatedemissionsattachedtoa metalsurfaceand(b)itsmeasuredVSWRfrom30MHzto1000MHz(averageof5measurements). 107 (a) (b) Figure4.8:(a)ThewhipantennausedtocreateCWnarrowbandradiatedemissionsonanon- metallicsurfaceand(b)itsmeasuredVSWRfrom30MHzto1000MHz(averageof5measure- ments). 108 othernarrowfrequencyregionswithlowVSWRvaluesandthetwolargestnullsshiftslightlyup infrequency,withnewcenterfrequencyvaluesofapproximately180MHzand480MHz.During testing,itwasfoundthattheradiatedemissionscreatedwiththeantennaat480MHzwerecapable ofoverloadingtheEMCanalyzerandtheRSP2pro,evenatadistanceof10m.Thisiswhythe inputdatapointfor480MHzshowninTable4.1istheonlyinputdatapointwithanamplitude of50dB ` V.NotethatthemeasuredVSWRcanvarygreatlydependingontheorientationofthe antenna(particularlywiththeantennaspositionrelativetootherobjectsinthenear˝eld)andso thevaluesshowninbothFigures4.7band4.8bshouldonlybeconsideredtypicalvaluesforthe speci˝ccon˝gurationsshowninFigures4.7aand4.8a. 4.1.2BroadbandSource:CustomEquipmentUnderTest(EUT) Repetitivebroadbandradiatedemissionscaneasilybecreatedbycommonelectronicsystemcom- ponentssuchasdigitalclocks[56].Thesetypesofemissionsareusuallyfromtheharmonics createdbyanelectricsignalatsomefundamentalfrequency.Theseharmonicsoccuratinteger multiplesofthefundamentalfrequencyandcanhaveradiatedemissionsthatarelargerthanthose causedbytheelectricsignalatthefundamentalfrequency.Digitalclocksignalscauseparticularly largeradiatedemissionsbecauseoftheirfastrisetimes[2].Whilefastrisetimesaredesirablefrom adigitalsignalprocessingperspective,Ott[2]explainsthat"repetitive,high-frequencysignalswith largecurrentsandfastrise/falltimeswillhavelargespectracontent."Clocksignalstypicallyhavea 50%dutycycle,whichmeansthattheoddharmonicsofthefundamentalfrequencywilldominate thespectralcontentoftheclocksignal[4]andthustheoddharmonicswillcreatethestrongest radiatedemissions. Thelargespectralcontentofclocksignalscanbeexploitedtocreateacircuitthatiscapable ofcreatingradiatedemissionsatauser-selectablefrequency.AcustomEUTthatdoesthiswas createdforuseinthisresearch.Thedesignwasbaseduponasimilarcircuit[7]thatusesa10MHz squarewaveoscillatortodemonstratethatcommon-modecurrentsarethedominantsourceofthe radiatedemissionsabove30MHzthatarecreatedbysystemcabling.AsexplainedbyPauland 109 Bush[7],thesourceandloadsidesofthecircuitarepoweredviabatterytoshowthatdevicesnot connectedtothecommercialpowergridcancreatelargeradiatedemissionsfromcommon-mode currents.Asimpli˝edblockdiagramofthecustomEUTbasedonthedesignin[7]isshownin Figure4.9.Figure4.10showsadetailedviewofthesourcesideoftheEUT.Theloadsideofthe customEUTissimplyalogicinverterwithaninputcapacitanceof15pFanditsownisolated5V powersupply.Thedesign˝lesforthecustomEUTareavailableintheDigitalAppendixthatis includedwiththedigitalversionofthisthesis(refertoAppendixBformoreinformation). ThecustomEUTisabletoproducesignalsatmultipledi˙erentfrequenciesusingahigh- frequencymultiplierICthatusesaphased-lockloop(PLL)implementation.PLLsaremixed signaldevicesconsistingofaphasedetector,ampli˝er,andvoltage-controlledoscillator[54]. AccordingtoHorowitz[54],PLLsaretypicallyusedintelecommunicationsdevicestosetthe frequencyofeachoperatingchannel.InthecustomEUTshowninFigure4.9,thePT7C4511 PLLICisusedwiththreedi˙erentcrystaloscillatorstoproducemultipleoutputfrequencies.The smalltanrotaryswitchesshowninFigure4.10areusedtoselectthecrystaloscillatorusedby thePLL(10,20,or30MHz).TheredandwhitetoggleswitchesshowninFigure4.10arethen usedtocontrolthedigitallogicinputsofthePLLICaccordingtothedatasheet[59].ThePLL ICusestheseinputstodeterminethefrequencymultiplierappliedtotheinputfrequencytocreate thedesiredoutputfrequency.Theharmonicfrequenciesofseveraloutputfrequenciesareshown inTable4.2andwereusedtomeasureradiatedemissionsacrosstheentire30MHzto1000MHz spectrum. ThethirdcolumninTable4.2showstheharmonicfrequencies(andthustheradiatedemission frequencies)thatweremeasured.ThistablealsoshowshowtheEUT'sribboncable(withalength of41cm)comparestothewavelengthofeachofthemeasuredfrequencies.Radiatedemissions becomestrongerwhentheconductorsintheEUTbecomecomparabletoawavelength[4],sothe harmonicfrequenciesabove120MHzshouldproducethestrongestradiatedemissions. Boththetime-domainandfrequency-domaincharacteristicsofthecustomEUTwerecharacter- izedusingthesetupsshowninFigure4.11aand4.11b.A1GHzoscilloscopewith500MHzprobes 110 Figure4.9:Simpli˝edblockdiagramofthecustomEUTconstructedtocreatewidebandradiated emissionsatmultiplefrequencies.RefertoAppendixAforthecustomEUTcircuitdiagrams. Figure4.10:DetailedviewofthesourcesideshowninFigure4.9. 111 Table4.2:DetailsforthefrequenciesthatwerecreatedbythecustomEUTtotestradiatedemissions acrosstheCISPR-22ClassBfrequencyband. wasusedtomeasurethetime-domaincharacteristicsofthesignalcreatedbythePLLICateach endoftheribboncableconnectingthesourceandloadsidesofthecustomEUT.Acurrentprobe wasthenusedtomeasurethecommon-modecurrentontheribboncablesothatthemagnitude oftheharmonicsofthePLLICsignalcouldbedetermined.Thecurrentprobewasplacedatthe centeroftheribboncablefollowingthemethodusedbyPaulandBush[7],whofoundthatthe common-modecurrentonaribboncableatVHFandUHFfrequenciesremainsmostlyconstant alongtheentirelengthofthecable.ThisprocedurewasrepeatedforalloftheEUTPLLfrequencies showninthe˝rstcolumnofTable4.2. Figures4.12,4.13,4.14,and4.15showtheresultsfromthecustomEUTcharacterization procedure.Eachofthese˝guresshowsthetime-domaincharacteristicsatthetopandthefrequency- domaincharacteristicsatthebottom.Also,themostsigni˝cantharmonicshavebeenmarkedin eachofthefrequency-domainplots.Thecurrentprobethatwasusedhasavery˛atresponse from10MHzto500MHz:itstransferimpedancedecreasesbylessthan10dBoverthisentire frequencyrange.Thisallowsforafaircomparisonbetweenthemagnitudesoftheharmonicsthat weremeasuredbetween10MHzand500MHz. Figure4.12showsthecharacteristicsofthecustomEUTwhensettoafrequencyof40MHz. OnecanseethatthesignalreceivedbytheloadsideoftheEUTissigni˝cantlydistortedwhen 112 (a) (b) Figure4.11:(a)Thetestsetupusedtomeasurethetime-domaincharacteristicsofthecustom EUTand(b)thetestsetupwiththecurrentprobethatwasusedtomeasurethefrequency-domain characteristicsofthecustomEUT. 113 comparedtothesignalthatwasmeasuredonthesourcesideoftheEUT.Alsonotableisthenearly 3.5nsincreaseintherisetimebetweenthesourceandtheload.Thisindicatesthatthesignalis becomingveryspreadoutasittravelsalongtheribboncable.Thefrequencycharacteristicsshown inFigure4.12indicatethatthefundamentalfrequencyof40MHzwasnotthestrongestsignal presentontheribboncable,butthatthesecondharmonicat80MHzwas.Themagnitudesofthe markedharmonicsaredisplayedtotherightoftheplot,where + 5 indicatesthemagnitudeofthe harmonicfrequencyand + G5 indicatesthemagnitudeofthe G thharmonic.Thesemagnitudesshow that(withtheexceptionofthesecondharmonic)theoddnumberedharmonicsweresigni˝cantly strongerthantheevenharmonics.Thisisbecausethedutycycleofthesignalcomingfromthe sourcesideoftheEUTisnearly50%.The˝rst,second,andthirdharmonicsshowninFigure4.12 weremeasuredduringthebroadbandradiatedemissionstesting. Figure4.13showsthecharacteristicsofthecustomEUTwhensettoafrequencyof50MHz. OnecanseethatthesignalreceivedbytheloadsideoftheEUTissigni˝cantlydistortedwhen comparedtothesignalthatwasmeasuredonthesourcesideoftheEUT.Therisetimeonthe sourcesideoftheribboncableisalsosigni˝cantlyshorterthantherisetimeobservedattheload side.ThefrequencycharacteristicsinFigure4.13showthatthefundamentalfrequencyof50MHz wasthestrongestsignalpresentontheribboncable.Interestingly,themagnitudesofthemarked harmonicsthataredisplayedtotherightoftheplotshowthattheevenharmonicsarestrongerat thefrequenciesabove450MHz.The˝rst,second,andthirdharmonicsshowninFigure4.13were measuredduringthebroadbandradiatedemissionstesting. Figure4.14showsthecharacteristicsofthecustomEUTwhensettoafrequencyof120MHz. OnecanseethatthesignalreceivedbytheloadsideoftheEUTissigni˝cantlyreducedwhen comparedtothesignalthatwasmeasuredonthesourcesideoftheEUT.However,therisetimeof thesignalhasincreasedbylessthan1ns.Thisindicatesthattheamplitudeisbeingreducedbysome othermeans.Table4.2showsthatat120MHz,theribboncableisequivalenttoone-sixthofthe signalwavelength.Thismeansthattheribboncablecanquitee˙ectivelyradiate120MHzsignals, andsotheloadsideattenuationislikelyduetoradiation.Thefrequencycharacteristicsshownin 114 Figure4.12:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 40 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x"andtheirvaluesareshown. 115 Figure4.13:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 50 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x"andtheirvaluesareshown. 116 Figure4.14:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 120 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x"andtheirvaluesareshown. 117 Figure4.15:TimeandfrequencycharacteristicsoftheEUTwhensettothebasefrequency 5 = 160 MHz.Thesigni˝cantharmonicsof 5 havebeenmarkedwithan"x"andtheirvaluesareshown. 118 Figure4.14supportthis,asthemagnitudeofthe120MHzsignalisthestrongestobservedyetat over90dB ` V.Themagnitudesofthemarkedharmonicsdisplayedtotherightoftheplotshow that(withtheexceptionofthesecondharmonic)theoddnumberedharmonicsaresigni˝cantly strongerthantheevenharmonics,againduetothe50%dutycycleoftheEUTsignal.Thesecond, third,andfourthharmonicsshowninFigure4.14weremeasuredduringthebroadbandradiated emissionstesting.Notethatthe120MHzsignalmeasuredforradiatedemissionstestingwasthe thirdharmonicofthe40MHzsignalshowninFigure4.12,asthefundamentalfrequencyofthe 120MHzsignalshowninFigure4.14overloadedtheEMCanalyzerandtheRSP2pro. Figure4.15showsthecharacteristicsofthecustomEUTwhensettoafrequencyof160MHz. Interestingly,atthisfrequencythesignalcreatedbythePT7C4511PLLICisalmostperfectly sinusoidal.Aswasobservedat120MHz,thesignalreceivedbytheloadsideoftheEUTis signi˝cantlyreducedwhencomparedtothesignalthatwasmeasuredonthesourcesideofthe EUT.Also,therisetimeoftheloadsidesignalhasincreasedbylessthan0.1ns.Table4.2shows thatat160MHz,theribboncableisequivalenttoone-˝fthofthesignalwavelength.Thismeans thattheribboncablecane˙ectivelyradiate160MHzsignals,andsotheloadsideattenuationis likelyduetothesignalbeingradiated.ThefrequencycharacteristicsshowninFigure4.15support this,asthemagnitudeofthe160MHzsignalisverystrong(nearly90dB ` V).Themagnitudes ofthemarkedharmonicsdisplayedtotherightoftheplotshowthat(withtheexceptionofthe secondharmonic)theoddnumberedharmonicsarestillstrongerthantheevenharmonicsdespite thesinusoidalshapeofthe160MHzsignal.The˝rstand˝fthharmonicsshowninFigure4.15 weremeasuredduringthebroadbandradiatedemissionstesting. FollowingthemethoddescribedbyPaulandBush[7],thecommon-modecurrentmeasured bythecurrentprobe( ˚ ? )canbeusedtopredicttheradiatedemissionsoftheEUTataspeci˝c frequency 5 withtheequation j ˆ 2 <0G j = 6 Ł 28 10 7 ˚ ? !5 ' (4.1) where ! isthelengthoftheconductors, ' representsthemeasurementdistanceinm,and j ˆ 2 <0G j representsthemaximumelectric˝eldcreatedbythecommon-modecurrentsalongtheconductors 119 inunitsofV/m.Notethathere, ˚ ? hasunitsofmicroamps.Tocompare j ˆ 2 <0G j totheCISPR-22 ClassBlimits,itisconvertedtodB ` V/musingEquation3.5. Thevoltagesmeasuredwiththecurrentprobe(showninthebottomofFigures4.12,4.13,4.14, and4.15)canbeconvertedtothemeasuredcurrent ˚ ? ofEquation4.1usingthetransferimpedance ofthecurrentprobe.ThetransferimpedancehasunitsofdB .Using + ? torepresentthevoltage measuredbythecurrentprobeataparticularfrequency,themeasuredcurrent ˚ ? canbecalculated withtheequation ˚ ? = + ? / ) (4.2) where / ) isthecurrentprobe'stransferimpedanceatthatfrequency.Notethathere ˚ ? hasunitsof dB ` A.Alsonotethatthemeasuredcurrent ˚ ? isequivalenttotwicethevalueofthecommon-mode currentpresentontheribboncable[4]. Table4.3showsthepredictedradiatedemissionsforthecustomEUTatthefrequenciesthat weretested(thefrequenciestestedareshownincolumnthree).ThePLLfrequencyusedtocreate eachradiatedemissionfrequencyisshownincolumnoneforreference.Onecanseefromtheresults inTable4.3thattheradiatedemissionscreatedbythecustomEUTaresigni˝cantlyhigherthan CISPR-22ClassBlimits.Itwasdiscoveredduringinitialtestingthattheradiatedemissionscreated bythecustomEUTwereactuallycapableofoverloadingtheEMCanalyzerandtheRSP2pro,so twoferritecoreswereusedontheribboncabletoreducethecommon-modecurrentsintheribbon cableanddampentheradiatedemissions.Theferritecoreswereplacedaroundtheribboncable onthesourcesideoftheEUTasshowninFigure4.16. Figure4.16alsoshowsthecon˝gurationofthecustomEUTthatwasusedforallofthe broadbandradiatedemissiontests.ThecustomEUTwasplacedonafoamteststandthatwasthe sameheightastheEMCantenna.Thecenterofthe41cmcablewasplacedinthecenterofthe foamteststand.Thesourceandloadboardseachhadtheirownvoltageindicatortoensurethatall testswereperformedwithbothboardsoperatingat5V. 120 Table4.3:Theconversionofthevoltagesmeasuredbythecurrentprobeintothepredictedmaximum radiatedemissions, j ˆ 2 <0G j ,usingEquations4.1and4.2withdistancesof10mand1m. Figure4.16:DetailedviewofhowthecustomEUTwasarrangedduringbroadbandradiated emissiontests. 121 4.2NarrowbandResults Figures4.17and4.18showtheaveragemeasuredamplitudedi˙erencebetweentheEMC analyzerandeachofthethreeRSP2prounitsforeverydatapointcollectedfromusingtheinput datapointsfromTable4.1attestdistancesof10mand1m(respectively).Eachoftheplotsshown inthese˝gurescorrespondstooneoftheRSP2prounitsthatwastested.Recallthattheaverage o˙setvalue + 3 isde˝nedinEquation3.13as + 3 = + ' + ˆ where + ' representstheaveragevoltagemeasuredbytheRSP2proatparticularinputdatapoint and + ˆ representstheaveragevoltagemeasuredbytheEMCanalyzeratthatsameinputdatapoint. Eachinputdatapointwasmeasuredthreetimesfortheresultspresentedinthissection.Recallthat theEMCanalyzeramplitudehasanabsolutemeasurementaccuracyof 0.30dB[43]forallofthe inputdatapointstested.ByusingtheEMCanalyzerforcomparison,themarginoferrorof 2.00 dBdevelopedinSection3.3canbeassessed.EachplotinFigures4.17and4.18alsoshowsthe measuredSNRateachdatapointusingtherightmosty-axis.Theblackdotsintheseplotsrepresent themeasuredSNR. Fromtheresultsforthemeasurementsperformedatadistanceof10mshowninFigure4.17,one canseethatallthreeRSP2prounitshadanaverageo˙setgreaterthan2.00dB.Somefrequencies performedwithina 2.00dBmarginoftheEMCanalyzer,butwithallthreeRSP2prounitsthe radiatedemissionsmeasuredat40,160,and360MHzwereoutsidethismargin.Additionally, RSP2pro1'smeasurementat50MHzwaso˙bymorethan+10.00dBfromtheEMCanalyzer measurement.TheSNRdataintheseplotsshowthatateveryfrequencytested,theSNRexperienced byallthreeRSP2prounitswascomparabletotheSNRobservedinSection3.3.TheaverageSNR valueshowninFigure4.17wasabout10dBhigherforfrequenciesabove200MHzforallthree RSP2prounits. Figure4.18showstheresultsforthemeasurementsperformedatadistanceof1mwiththeCW radiatedemissionssource.Onecanseethatcomparedtothe10mresultsinFigure4.17,allthree 122 Figure4.17:AverageRSP2provoltagemeasuremento˙setfromEquation3.13fortheinputdata pointsshowninTable4.1measuredatadistanceof10m.Eachdatapointrepresentstheaverage ofthreemeasurements. 123 Figure4.18:AverageRSP2provoltagemeasuremento˙setfromEquation3.13fortheinputdata pointsshowninTable4.1measuredatadistanceof1m.Eachdatapointrepresentstheaverageof threemeasurements. 124 RSP2prounitshadamuchlargeraverageo˙setfromtheEMCanalyzeratmultiplefrequencies, especiallybelow80MHzandabove200MHz.Interestingly,thereisaregionbetween60and150 MHzwhereallthreeRSP2prounitshadanaverageo˙setofapproximately2dB.Alsonotableis thatallthreeRSP2prounitsmeasuredalowerlevelofradiatedemissionswhenthefrequencywas below60MHzwhilenearly80%ofthemeasuredradiatedemissionsabove80MHzwherelarger thanwhatwasmeasuredbytheEMCanalyzer.Thelargeroverallaverageo˙setatmostfrequencies andtheshortmeasurementdistanceof1mindicatesthattheRSP2proADCsweremostlylikely beingoverloaded.TheSNRdatainFigure4.18showsthatateveryfrequencytested,theSNRwas about10dBhigherthanwhatwasmeasuredat10m. 4.3BroadbandResults Figures4.19and4.20showtheaveragemeasuredamplitudedi˙erencebetweentheEMC analyzerandeachofthethreeRSP2prounitsforeachoftheradiatedemissionfrequenciesshown inTable4.3attestdistancesof10mand1m(respectively).Eachoftheplotsshowninthese ˝gurescorrespondstooneoftheRSP2prounitsthatwastested.Recallthattheaverageo˙setvalue + 3 isde˝nedinEquation3.13as + 3 = + ' + ˆ where + ' representstheaveragevoltagemeasuredbytheRSP2proatparticularinputdatapoint and + ˆ representstheaveragevoltagemeasuredbytheEMCanalyzeratthatsameinputdatapoint. Eachinputdatapointwasmeasuredthreetimesfortheresultspresentedinthissection.Recallthat theEMCanalyzeramplitudehasanabsolutemeasurementaccuracyof 0.30dB[43]forallofthe inputdatapointstested.ByusingtheEMCanalyzerforcomparison,themarginoferrorof 2.00 dBdevelopedinSection3.3canbeassessed.EachplotinFigures4.19and4.20alsoshowsthe measuredSNRateachdatapointusingtherightmosty-axis.Theblackdotsintheseplotsrepresent themeasuredSNR. Figure4.19showstheresultsfrommeasuringradiatedemissionsfromthecustomEUTata distanceof10m.OnecanseethattheRSP2promeasurementsabove100MHzaresigni˝cantly 125 lowerthantheEMCanalyzermeasurementsforallthreeunits.AllthreeRSP2prounitsalsoexhibit averylargeo˙setatafrequencyof40MHz,wheretheydi˙erfromtheEMCanalyzermeasurement by20dB.WhiletheRSP2prounitsmeasureconsistentlywithoneanother,theyareonlywithinthe 2.00dBmarginatthefrequenciesbetween50and100MHz.ThemeasuredSNRiscomparable towhatwasseenfromthenarrowbandCWradiatedemissionsat10mshowninFigure4.17. Thebroadbandradiatedemissionsmeasurementsat1mshowninFigure4.20arebyfarthe resultswiththemostdeviationfromtheEMCanalyzermeasurementsforallthreeRSP2prounits. Notethattheplotsinthis˝gurehaveamaximumvalueof0dB,not20dB.Muchliketheresults from10mshowninFigure4.19,Figure4.20showsthatthemeasurementswereconsistentacross allthreeunits.However,ateveryfrequency(withtheexceptionof40MHz)allthreeRSP2pro unitsmeasuredmorethan10dBlowerthantheEMCanalyzer.Inthefrequencyrangefrom50 MHzto200MHz,mostofthemeasurementsfromallthreeunitswere20dBlessthanwhatwas measuredbytheEMCanalyzer.TheSNRdatashowninthis˝gureisverysimilartotheSNR thatwasobservedwhenmeasuringthesamebroadbandemissionsat10m.However,itisvery likelythattheRSP2proADCswereoverloadedwhenmeasuringbroadbandradiatedemissionsat 1m.ThisisimpliedbythelargedeviationfromtheEMCanalyzervoltagemeasurementsatthe frequenciesthatweretested. TheresultsinthissectioncanbecomparedtothenarrowbandCWresultsfromSection4.2 toconcludethattheRSP2prounitsaremoreaccuratewhenmeasuringCWradiatedemissions. ThiscouldbebecausetheRSP2proisdesignedtobearadioreceiver,andsotheSDRunosettings havebeentailoredtomeasurethecorrectpowerlevelwhenmeasuringnarrowbandcommunication signalsinsteadofbroadbandnoisesignals.Tofurtherinvestigatethevalidityofthisconclusion, thepredictionsfromTable4.3canbecomparedtotheactualradiatedemissionsmeasuredbythe threeRSP2prounitsandtheEMCanalyzer.ByaddingatermfortheinsertionlossfromtheSMA cabletoEquation2.6,themeasuredvoltagescanbeconvertedinto˝eldstrengthsandcomparedto thepredictions: ˆ 3`+ š < = + 3`+ ¸ ˙ 3 1 š < ˚! 3 (4.3) 126 Figure4.19:AverageRSP2provoltagemeasuremento˙setfromEquation3.13forthecustomEUT radiatedemissionfrequenciesshowninTable4.3measuredatadistanceof10m.Eachdatapoint representstheaverageofthreemeasurements. 127 Figure4.20:AverageRSP2provoltagemeasuremento˙setfromEquation3.13forthecustomEUT radiatedemissionfrequenciesshowninTable4.3measuredatadistanceof1m.Eachdatapoint representstheaverageofthreemeasurements. 128 where ˚! representsthemeasuredinsertionlossoftheSMAcableataspeci˝cfrequencyindB. Table4.4and4.5showthemeasuredradiatedemissionsat10mand1m(respectively)thatwere convertedfromthemeasuredvoltagesusingEquation4.3.Thesecondtolastcolumnofeachtable showsthepredictedradiatedemissionsfromTable4.3.Notethatforbrevity,onlythemeasured voltagefortheEMCanalyzer( + ˆ )isshowninTable4.4and4.5.Thevaluesofthevariablesin Equation4.3usedtoconvertthemeasuredvoltageintoanelectric˝eldareshownineachrow.The valuesof ˙ correspondtotheBicoLOG30100Xantennafactor. Table4.4showsthatthemeasuredradiatedemissionsoftheEMCanalyzer( ˆ ˆ )andallthree RSP2prounits( ˆ ' 1 , ˆ ' 2 , ˆ ' 3 )atadistanceof10m.Allofthemeasuredradiatedemissionsare signi˝cantlylowerthanthepredictedradiatedemissions, j ˆ 2 <0G j .Thiscouldbeforanynumber ofreasons,buttwomaincausesaretheuncontrolledRFenvironmentandtheferritechokesused todampentheradiatedemissions.Table4.4showsthat,withtheexceptionof800MHz,allthree RSP2prounitswerewellwithin3.00dBofoneanotheratallfrequencies.However,theradiated emissionsmeasuredfromallthreeunitsvariedgreatlyfromthevaluesmeasuredbytheEMC analyzer. Table4.5showsthatthemeasuredradiatedemissionsoftheEMCanalyzer( ˆ ˆ )andallthree RSP2prounits( ˆ ' 1 , ˆ ' 2 , ˆ ' 3 )atadistanceof1m.Theseresultsareverysimilartotheones showninTable4.4.Allofthemeasuredradiatedemissionsaresigni˝cantlylowerthanthepredicted radiatedemissions, j ˆ 2 <0G j .OnecanalsoseefromTable4.5that,withtheexceptionof50MHz, allthreeRSP2prounitswerewellwithin 3.00dBofoneanotheratallfrequencies.However,the radiatedemissionsmeasuredfromallthreeunitsvariedgreatlyfromthevaluesmeasuredbythe EMCanalyzer. 129 Table4.4:MeasuredradiatedemissionsfromthecustomEUTat10mcomparedtothepredicted radiatedemissions. Table4.5:MeasuredradiatedemissionsfromthecustomEUTat1mcomparedtothepredicted radiatedemissions. 130 CHAPTER5 ACOMPLETEPRECOMPLIANCETESTSETUP ThischapterdiscussesthecombinationoftheRSP2proandtwocommontelevisionantennas,which togethercreateacompleteprecompliancetestsetup.First,thespeci˝csofhowtheantennaswere selectedandthemodi˝cationsthatweremadetothemaredescribedinSection5.1.Thatsection alsoincludesadescriptionofthetestprocedureusedforcharacterizingeachantenna.Theresults ofthischaracterizationprocedurearediscussedinSection5.2andSection5.3.Finally,Section 5.4assessestheutilityoftheRSP2protestsetupcomparedtotheutilityofthetraditionalsetupby measuringanEUTwithknownradiatedemissions.Thisassessmentincludesadiscussionofthe relativecost,measurementaccuracy,andoverallconvenienceofusingeachtestsetup. 5.1AntennaSelection,Modi˝cations,andProcedure AsmentionedinSection2.2,alow-costprecompliancetestsetupliketheoneshowninFigure 2.11typicallyusessometypeofVHForUHFantennainplaceofatraditionalEMCantenna.While thishasthemajordisadvantageofnotallowingtheuseofanantennafactor,itdoesgreatlyreduce thecostofthetestsetup.AccordingtoAndréandWyatt[25],commontelevisionantennaswork wellintheVHFandUHFfrequencybands.Figure5.1showstwocommontelevisionantennas thatwerepurchasedonlineforlessthan$20.00.The"rabbitear"antennashowninFigure5.1ahas adjustableelementsandcanbeusedformeasuringsignalsintheVHFfrequencyrangefrom65to 200MHz[25].Figure5.1bshowsthe"bowtie"UHFantennathatisusableforsignalsfrom300 MHzto800MHz[25].InSections5.2and5.3,theusefulnessofeachantennainthefrequency rangesdescribedbyAndréandWyatt[25]isassessed. BeforeeitheroftheantennasshowninFigure5.1wasused,supporthardwarewascreatedso thatconsistentmeasurementscouldbemadewitheachantenna.Thisincludedacustom-designed antennaholderthatallowseachantennatobeplacedinahorizontalorverticalorientation.Figure 5.2showstheCADmodelsfortheantennaholders.Twodi˙erentversionswererequired,aseach 131 (a) (b) Figure5.1:(a)TheVHF"rabbitear"televisionantennaand(b)theUHF"bowtie"television antenna. antennahasauniqueshapethatmustbecradledbytheholdersothattheantennacannotmove. ThewhiteholderinFigure5.2wasdesignedfortherabbitearantennawhilethegreenholderwas designedforthebowtieantenna.Whiletheseholderswerespeci˝callydesignedfortheantennas purchasedforthisthesis,itshouldbenotedthattheseholderswillworkwithotherantennasof thesamestyle.Thisisbecausemosttelevisionantennasareverysimilarinshapeandsize.The holdermodelsshowninFigure5.2were3D-printedusingblackPLAmaterial(the˝nalholdersare shownbeingusedinFigure5.1).Thiswasultimatelyapoorchoice,asPLAhasaverylowmelting point.Duringseveraloutdoormeasurementtests,theholdersactuallydeformedduetoexposure tobrightsunlight.Usingboilingwater,theholderswereabletobereshaped.Thisproblemcan beavoidedbyusingamoreresilientmaterialtoconstructtheantennaholders.Thedesign˝lesfor eachantennaholderareavailableintheDigitalAppendixthatisincludedwiththedigitalversion ofthisthesis(refertoAppendixBformoreinformation). Toallowtheantennastobeplacedineithertheverticalorhorizontalorientation,eachofthe antennaholderswasdesignwithanL-shapedmountingpointthatusesarecessednuttoattach astandardcameratripodadapter.Figure5.3showshowthecameratripodadaptersattachtothe 132 L-shapedmountingpoint.TherecessednutscanbeseeninFigure5.3aandthecameratripod adapterscanbeseeninFigure5.3b. Thelasthardwareaccessorythatwasdesignedfortheantennaswasaclipthatpreventsthe angularadjustmentoftherabbitearantennaelements.TheCADmodelforthisclipisshownin Figure5.4.Theclipforcestheantennaelementsoftherabbitearantennatoremainseparated by180 ° .Thismakestheantennamorelikeacenter-feddipole.Theclipalsoallowsformore consistentmeasurementssincetheelementsareabletobeplacedinthesamepositionforeachtest. Figure5.2:CADmodelsfortheantennaholdersthatareshowninFigure5.1. (a) (b) Figure5.3:(a)Theantennaholder'sdualattachmentpointsand(b)theantennaholderwithboth cameratripodadaptersattached. 133 Figure5.4:CADmodeloftheantennaclipthatwasusedto˝xtheangularpositionofrabbitear antennaelementsto180 ° . Theclipwas3D-printedusingastereolithographyprocess.Adetailedviewofthe˝nalclipcan beseeninFigures5.6band5.6b.Theresinmaterialusedbythestereolithographyprocessworked muchmorereliablythanthePLAthatwasusedtocreatetheantennaholders. Thetelevisionantennaseachcomewithalongtwinleadcablethatisdesignedforbeingattached directlytoabalun.Abalunisatypeofmatchingtransformerthatgetsitsnamefromacombination ofthewords"BALanced"and"UNbalanced."Balunsaremostoftenusedtointerfacebalanced center-fedantennastounbalancedcoaxialcables[60].O˙-the-shelftelevisonbalunsarealso capableofimprovingtheimpedancematchbetweentelevisionantennasandthe50 impedance usedbymostspectrumanalyzersandreceivers[3].Thebalunsconsideredforthisthesisareshown inFigure5.5a.Thesearecommontelevisionbalunsthatusea4:1transformertomatchthe300 televisionantennastothe75 impedanceoftelevisioncoaxialcable. Figure5.5ashowsthateachbalunusesadi˙erentconstructiontoachievethedesiredmatching behavior.Thismeansthatitisimportanttocharacterizetheantennasthatareusedwiththespeci˝c balunthatisavailable.ThebalunshownontheleftsideofFigure5.5awasusedforthisthesis. 134 Figure5.5bshowshowthebalunwasoriginallywired.Thetwoinputsofthe4:1transformer elementwereconnectedtocapacitorsthatwereattachedtothescrew-terminalsonthebalun.This waswherethebladesonthetelevisionantennas'twin-leadcableswouldnormallybeattached. Figures5.5cand5.5dshowhowtheoriginaldesignwasmodi˝ed.Thescrew-terminalswere removedandthecapacitorleadswerefedthroughtwosmallholesthatweredrilledintothebalun enclosure.Thismodi˝cationwasinspiredbyWyatt[3],whorecommendsshorteningthetelevision antennatwin-leadsasmuchaspossibletoimprovetheimpedancematchoftheantennatothebalun. Figure5.5eshowsthebowtieantennawithitsleadscompletelyremovedandhowtheslotinthe 3D-printedantennaholderallowsthebaluntobedirectlysolderedtotheantenna. Therabbitearantennarequiredfurthermodi˝cationstobeusedwiththebalunand3D-printed antennaholder.Figure5.6ashowshowthebodyoftherabbitearantennawas˝rstreducedinsize byremovingitsplasticmountingrod.This˝gurealsoshowsthewhitetwin-leadcablethatwas originallyattachedtotheantenna.Figure5.6bshowstheconnectorsofeachantennaelementafter removingthetwin-leadcable.This˝gurealsoshowshowthe3D-printedclipfromFigure5.4was attachedtotherabbitearantennabodytolocktheantennaelementsinplace.Lastly,Figure5.6c showsthewiresthatwereattachedtotheconnectorsinFigure5.6b.Thesewiresaremuchshorter thantheoriginaltwin-leadcableandallowtherabbitearantennatobesoldereddirectlytothe modi˝edbalun(likethebowtieantennashowninFigure5.5e). Aftertheantennasweremodi˝edtobettermatchthe50 impedanceoftheEMCanalyzer andtheRSP2pro,eachwascharacterizedby˝rstmeasuringtheVSWRwithanetworkanalyzer. TheVSWRwasmeasuredtodeterminetheimpedancemismatchlossesofthetelevisionantennas andtodetermineiftheusablefrequencyrangesforeachantennaasdescribedbyAndréand Wyatt[25]arecorrect.Theantennaswerethenusedtomeasuretheradiatedemissionsfromthe customEUTdescribedinSection4.1.2atadistanceof1musingthesetupshowninFigure4.4b. ThesemeasurementswereperformedbysweepingacrosstheentireCISPR-22ClassBfrequency rangewiththeEMCanalyzerandthefour"SpectrumSweep"state˝lesdescribedinTable3.1. IdenticalmeasurementswerethenperformedusingtheBicoLOG30100XEMCantennasoadirect 135 (a) (b) (c) (d) (e) Figure5.5:(a)Two4:1televisonbaluns(theoneontheleftwasused),(b)internalcomponentsof thebalun,(c)balunwiththescrew-terminalsremoved,(d)the˝nalmodi˝ed4:1balun,and(e)the connectionbetweenthemodi˝edbowtieantennaandthemodi˝edbalun. 136 (a) (b) (c) Figure5.6:(a)Removalofthemountingpost,(b)theexposedantennaelementconnectors,and(c) the˝nalmodi˝edrabbitearantenna. comparisonofitsperformancecouldbemadewitheachtelevisionantenna.Figure5.7showsthe RFsignalchainsusedforthesemeasurements. NotethatitisamisconceptionthattheminimumVSWRofatransmissionlineconnectedto anantennaoccursatthefrequencywheretheantennaisresonant[58].AminimumVSWRat aspeci˝cfrequencyonlyindicatesthatthereisminimalreturnlossbetweentheantennaandthe transmissionline.Forthisreason,thedirectcomparisontotheBicoLOG30100Xantennaisa muchbetterindicatoroftheresonantfrequenciesofeachtelevisionantenna.Accordingto[58],a VSWRofasmuchas6:1isstillacceptableforsignalreceptionintheVHFandUHFfrequency bands(althoughaVSWRoflessthan2:1isgenerallypreferred). 137 Figure5.7:DiagramshowingtheRFsignalchainsusedduringthetelevisionantennacomparison testsetup. 5.2VHF"RabbitEar"AntennaPerformance Threedi˙erentelementlengths( ˆ! )werechosenfortherabbiteartelevisionantenna:0.375 m,0.667m,and0.991m.Theseelementlengthswerecarefullymeasuredeachtimeameasurement wasperformedtoensureconsistencybetweenmeasurements.Notethatthelongerelementlengths madeitimpossibletousetherabbitearantennaintheverticalorientation,andsotheantennawas onlycharacterizedinthehorizontalorientation.Eachoftheselengthsareshownfromshortest ˆ! tolongest ˆ! inFigures5.8a,5.8b,and5.8c. Figure5.8showsthemeasuredVSWRforeachofthethreeelementlengthsthatweretested. Onecanseethatas ˆ! increases,theVSWRimprovesatlowerfrequencies.Thisisbestobserved intheregionfrom60MHzto80MHz,wheretheVSWRimprovesbymorethanfouras ˆ! increases.TheelementlengthsshowninFigures5.8band5.8cperformedbestinthisregionand theregionfrom100MHzto200MHz.Interestingly,theshortestelementlengththatwastestedhas aVSWRoflessthanthreebetweenapproximately250and350MHz.However,allthreeelement lengthsshowedaveryoscillatoryVSWRbehaviorabove200MHz,whichindicatesthattheusable regionof65to200MHzforthisantennadescribedbyAndréandWyatt[25]isaccurate. UsingEquations3.10and3.11,themeasuredVSWRofeachelementlengthshowninFigure 5.8canbeusedtoplotthemeasurementerrorduetoimpedancemismatchwhentheantennais 138 (a) (b) (c) Figure5.8:MeasuredVSWRoftheVHFrabbitearantennawith(a) ˆ! =0.375m,(b) ˆ! =0.667 m,and(c) ˆ! =0.991m.Eachtraceistheaverageof˝vetrials. 139 usedwiththeEMCanalyzer( "ˆ ˆ ).Figure5.9showsthevalueof "ˆ ˆ forallthreerabbitear elementlengthstested.Onecanseethatthemismatcherrorislessthan2.00dBacrosstheentire frequencyrange,indicatingthatthemodi˝edbalunisdoingagoodjobofmatchingtherabbitear antennatoa50 system.This˝gurealsoshowsthattheelementlengthcane˙ectthemismatch errorbyupto 0.5dBatmultiplefrequencies. Figures5.10,5.11,and5.12showtheradiatedemissionsmeasuredbytherabbitearantennaat eachofthethreeelementlengthscomparedtotheradiatedemissionsmeasuredbytheBicoLOG 30100XEMCantenna.Ineachofthese˝gures,theBicoLOG30100Xresultsareshownatthetop andtheotherthreeplotsshowtheresultsfromusingtherabbitearantenna(withtheelementlength ˆ! increasingfromplot(b)toplot(d)).Thesourceoftheradiatedemissionsbeingmeasuredwas thecustomEUTthatwaspresentedinSection4.1.2. Figure5.9:TheamountofpotentialmismatcherrorwiththeEMCanalyzer "ˆ ˆ forallthreeof therabbirearantennaelementlengths ˆ! thatweretested. 140 Figure5.10showstheresultsfrommeasuringthecustomEUTat1mwithabasefrequency settingof40MHz.OnecanseethattheresultsfromtheBicoLOG30100XshowninFigure5.10a indicatethatitissigni˝cantlymoresensitivethantherabbitearantenna.Figures5.10b,5.10c, and5.10dshowthattheelementlengthoftherabbitearantennadoesnotappeartosigni˝cantly a˙ectwhichfrequenciestheantennaissensitiveto.TheoneexceptionisinFigure5.10b,where theradiatedemissionsabove200MHzaredetectedmuchbetterbytheshortestantennathanbythe othertwoelementlengths. Figure5.11showstheresultsfrommeasuringthecustomEUTat1mwithabasefrequency settingof50MHz.Figures5.11b,5.11c,and5.11dshowthattheantennawiththelongestelement lengthismuchmoresensitivetothefundamentalfrequencyof50MHzthantheotherlength antennas.However,allthreeantennaswereabletomeasurethestrongestharmonicat150MHz withamarginoflessthan10dB. Figure5.12showstheresultsfrommeasuringthecustomEUTat1mwithabasefrequency settingof120MHz.Figures5.12b,5.12c,and5.12dshowthattheshortestelementlengthwasmuch moresensitivetofrequenciesabove400MHz.However,thisfrequencyrangeisnotrecommended becauseofthepreviouslydiscussedVSWRbehaviorabove200MHz.Theplotsinthis˝gurealso illustratehowtheBicoLOG30100XEMCantennaissigni˝cantlymoresensitivethantherabbit earantennaatallofthefrequenciestested. 141 Figure5.10:RadiatedemissionsfromthecustomEUTsetto40MHzmeasuredbyusing(a)the BicoLOG30100XEMCantennaandbyusingtherabbitearantennawith(b) ˆ! =0.375m,(c) ˆ! =0.667m,and(d) ˆ! =0.991m. 142 Figure5.11:RadiatedemissionsfromthecustomEUTsetto50MHzmeasuredbyusing(a)the BicoLOG30100XEMCantennaandbyusingtherabbitearantennawith(b) ˆ! =0.375m,(c) ˆ! =0.667m,and(d) ˆ! =0.991m. 143 Figure5.12:RadiatedemissionsfromthecustomEUTsetto120MHzmeasuredbyusing(a)the BicoLOG30100XEMCantennaandbyusingtherabbitearantennawith(b) ˆ! =0.375m,(c) ˆ! =0.667m,and(d) ˆ! =0.991m. 144 5.3UHF"BowTie"AntennaPerformance Figure5.13showsthemeasuredVSWRforboththehorizontalorientation(Figure5.13a)and theverticalorientation(Figure5.13b)ofthebowtieantenna.ThemeasuredVSWRwaslessthan sixintheregionfromapproximately350MHzto1000MHz.Thisresultisveryclosetotheusable rangeof300MHzto800MHzdescribedbyAndréandWyatt[25]. UsingEquations3.10and3.11,themeasuredVSWRofeachelementlengthshowninFigure 5.13canbeusedto˝ndtheamountofmismatcherrorfromusingeachorientationofthebowtie antennawiththeEMCanalyzer( "ˆ ˆ ).Figure5.14showsthevalueof "ˆ ˆ forbothorientations ofthebowtieantennaacrosstheentireCISPR-22ClassBfrequencyband.Aswiththerabbitear antenna,onecanseefromthis˝gurethatthemismatcherrorislessthan2.00dBatallfrequencies. ThisisduetotheimprovedimpedancematchbetweentheantennaandtheSMAcableusingthe modi˝edbalun.Mostnotableisthesharpnullthatoccursjustpast500MHz.Here,thevalueof "ˆ ˆ isnearlyzeroindicatinganalmostperfectimpedancematchwiththeEMCanalyzer.Since theresultsfromeachorientationaresosimilar,onlythehorizontalorientationwasusedforradiated emissionmeasurements. Figures5.15and5.16showtheradiatedemissionsmeasuredbythebowtieantennaineach orientationcomparedtotheradiatedemissionsmeasuredbytheBicoLOG30100XEMCantenna. Ineachofthese˝gures,theBicoLOG30100Xresultsareshownatthetopandtheotherplotsshow theresultsfromusingthebowtieantenna.Thesourceoftheradiatedemissionsbeingmeasured wasthecustomEUTthatwaspresentedinSection4.1.2. Figure5.15showstheresultsfrommeasuringthecustomEUTat1mwithabasefrequency settingof120MHz.OnecanseethatthebowtieantennaismuchlesssensitivethantheBicoLOG 30100XEMCantenna.However,thebowtieantennawasabletomeasuretheradiatedemissions causedbytheharmonicsofthe120MHzsignal.Onaverage,eachmeasuredharmonicwas approximately40dBlowerthanwhatwasmeasuredbytheBicoLOG30100XEMCantenna.Also notableishowthebowtieantennawasabletomeasurethefundamentalfrequencyat120MHz,well outsidethesuggestedusablefrequencyrangeof300MHzto1000MHz.Thisismoreindicative 145 (a) (b) Figure5.13:MeasuredVSWRoftheUHFbowtieantennain(a)thehorizontalorientationand(b) theverticalorientation.Eachtraceistheaverageof˝vetrials. 146 Figure5.14:TheamountofpotentialmismatcherrorwiththeEMCanalyzer "ˆ ˆ forthehorizontal andverticalorientationsofthebowtieantenna. ofthestrongemissionscreatedbythecustomEUTandlessindicativeofthebowtieantennabeing sensitivebelow300MHz. Figure5.16showstheresultsfrommeasuringthecustomEUTat1mwithabasefrequency settingof160MHz.Aswasobservedwiththe120MHzresults,thebowtieantennawasable tomeasurethemajorharmonicscreatedbythe160MHzsignaldespiteitsveryweaksensitivity relativetotheBicoLOG30100XEMCantenna.BothFigures5.15and5.16showthatthebowtie isunabletoreceivethestrongFMradiosignalsaround100MHzthatarereceivedbytheEMC antenna. 147 Figure5.15:RadiatedemissionsfromthecustomEUTsetto120MHzmeasuredbyusing(a)the BicoLOG30100XEMCantennaand(b)thebowtieantennainthehorizontalorientation. 148 Figure5.16:RadiatedemissionsfromthecustomEUTsetto160MHzmeasuredbyusing(a)the BicoLOG30100XEMCantennaand(b)thebowtieantennainthehorizontalorientation. 149 5.4ComparisontoaMoreTraditionalTestSetup Thelastsectionofthisthesisdirectlycomparesamoretraditionalprecompliancetestsetup withthelow-costprecompliancetestsetup.Figure5.17ashowsthemoretraditionaltestsetup consistingoftheEMCanalyzerandtheBicoLOG30100XEMCantennawhileFigure5.17bshows thecompletelow-costsetupconsistingoftheRSP2proandtherabbitearantennawithanelement lengthof0.991m.Thiselementlengthwaschosenbasedupontheradiatedemissionsfromthe EUT.Figure5.19showstheRFsignalchainsusedbyeachtestsetup. TheEUTthatwasmeasuredfortheresultspresentedinthissectionwastheTPS57161-Q1 evaluationmodulefromTexasInstruments.Thismoduleisbasedaroundahigh-frequencybuck converterthatisdesignedtoconverta12V ˇ˘ inputtoa5V ˇ˘ output[61].Theradiatedemissions forthisevaluationmoduleweremeasuredbyTexasInstruments[61]inacontrolledRFenvironment withabiconnicalEMCantennaliketheoneshowninFigure3.2a.Theresultsfrom[61]canbeused todirectlyaccessthee˙ectivenessofbothtestsetupsshowninFigure5.17.Radiatedemissionsat twofrequencies,approximately41and50MHz,weremeasuredforcomparisontotheresultsfrom [61]. Figures5.20aand5.20bshowtheRFspectrumasmeasuredbythemoretraditionaltestsetup near41MHzwhentheEUTispoweredo˙andthenturnedon,respectively.Theresultshereare (a) (b) Figure5.17:(a)Thetraditionalprecompliancetestsetupand(b)thelow-costtestsetup. 150 Figure5.18:DetailedviewoftheEUTshowingthegold5 resistiveload. (a) (b) Figure5.19:DiagramshowingtheRFsignalchainsof(a)thetraditionaltestsetupand(b)the low-costtestsetup. shownindBmsothattheycanbedirectlycomparedtothesamemeasurementinSDRuno(which canonlydisplaymagnitudeintermsofdBm).Onecanseethattheradiatedemissionsfromthe EUTwereapproximately-55.00dBmatafrequencynear49.950MHz.Figures5.21aand5.21b showsthesameradiatedemissionsasmeasuredbyRSP2pro1.Onecanseefromthebackground measurementinFigure5.21athatthenoise˛oorobservedbytheRSP2proisalmost15dBlower thanthenoise˛oormeasuredbytheEMCanalyzerinFigure5.20a.Thisislikelydueinpartto thethelowsensitivityoftherabbitearantennawhencomparedtotheBicoLOG30100XEMC 151 (a) (b) Figure5.20:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiatedemissions fromtheEUTnear41MHz. antenna.Figure5.21bshowstheradiatedemissionsfromtheEUT.ThelevelmeasuredbySDRuno ismuchlowerthanwhatwasmeasuredbythetraditionaltestsetup,withapeakvalueofonly-78.8 dBm.However,thewaterfallplotinthelowerhalfofthis˝gureclearlyshowshowtheemissions fromtheEUTarecontinuousinnature.Thewaterfallplotalsobetterillustratesthebandwidthof theradiatedemission. Figures5.22aand5.22bshowtheRFspectrumasmeasuredbythemoretraditionaltestsetup near50MHzwhentheEUTispoweredo˙andthenturnedon,respectively.Theresultshereare shownindBmsothattheycanbedirectlycomparedtothesamemeasurementinSDRuno(which canonlydisplaymagnitudeintermsofdBm).Comparedtotheemissionsnear41MHz,onecan seethattheradiatedemissionsmeasuredbythemoretraditionaltestsetuparemuchweaker,having amagnitudecloserto-70.00dBm.Figures5.23aand5.23bshowsthesameradiatedemissionsas measuredbyRSP2pro1.OnecanseefromthebackgroundmeasurementinFigure5.23athatthe noise˛oorobservedbytheRSP2proismorethan15dBlowerthanthenoise˛oormeasuredby theEMCanalyzerinFigure5.22a.However,Figure5.23bshowsthattheradiatedemissionsfrom theEUTasmeasuredbySDRunoaremuchlowerthanwhatwasmeasuredbythetraditionaltest 152 (a) (b) Figure5.21:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiatedemissions fromtheEUTnear41MHz. 153 (a) (b) Figure5.22:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiatedemissions fromtheEUTnear50MHz. setup,withapeakvalueofonly-92.1dBm. Theresultsfromtheradiatedemissionmeasurementsinthissectionhavebeensummarizedin Tables5.1and5.2.Thesetablesalsocomparethemeasuredradiatedemissionswiththeemissions measuredbyTexasInstrumentsfrom[61].Theradiatedemissionsmeasuredbythetraditional testsetupwereconvertedto˝eldstrengthusingthesameprocessthatwasusedinSection4.3. Sincetheantennafactoroftherabbitearantennaisunknown,thesamecouldnotbedoneforthe measurementsrecordedwiththelow-costsetup. Table5.1showshowthebackgroundRFsignalsateachdatapointcompared.Themeasurement from[61](shownincolumnthree)wassigni˝cantlylowerthanthelevelmeasuredbythetraditional testsetup.ThisisduetotheuncontrolledRFenvironmentusedinthisthesis.Forbothdatapoints, thebackgroundlevelmeasuredbythelow-costsetupwassigni˝cantlylowerthantheothertwo testsetups.Thisisbecauseofthelowsensitivityoftherabbitearantenna.Again,notethatthe low-costtestsetupmeasurementisnota˝eldstrengthbuttheequivalentmagnitudethatresults fromconvertingSDRuno'sdBmmeasurementtodB ` VusingEquation3.9. Table5.2comparestheradiatedemissionmeasurementsateachdatapoint.Aswasobserved 154 (a) (b) Figure5.23:(a)ThebackgroundmeasurementwiththeEUTo˙and(b)theradiatedemissions fromtheEUTnear50MHz. 155 Table5.1:ComparisonoftheradiatedemissionsmeasuredfromtheEUTshowninFigure5.18 withseveraldi˙erenttestsetups. Table5.2:ComparisonoftheradiatedemissionsmeasuredfromtheEUTshowninFigure5.18 withseveraldi˙erenttestsetups. inTable5.1,themeasurementfrom[61](shownincolumnthree)wassigni˝cantlylowerthanthe levelmeasuredbythetraditionaltestsetup.Forbothdatapoints,thebackgroundlevelmeasured bythelow-costsetupwassigni˝cantlylowerthantheothertwotestsetups.Thisisbecauseof thelowsensitivityoftherabbitearantenna.Again,notethatthelow-costtestsetupmeasurement isnota˝eldstrengthbuttheequivalentmagnitudethatresultsfromconvertingSDRuno'sdBm measurementtodB ` VusingEquation3.9. Theresultsfromthissectionshowthatthelow-costtestsetupconsistingofthecommon televisionantennaandtheRSP2proiscapableofidentifyingtheradiatedemissionsfromaproduct whenusedproperly.However,withoutknowingtheantennafactorofthetelevisionantennas, theconversionfromtheRSP2promeasurementtotheradiatedemission˝eldstrengthcannotbe performed.Thismakesthelow-costtestsetupsuitableforperformingmultiplebench-topradiated emissionteststhroughouttheelectronicproductdesignprocesstocheckforproblemfrequencies. Oncetheproblemfrequencieshavebeenidenti˝ed,thelow-costtestsetupcanbeusedtoassess 156 thee˙ectivenessofchangesthataremadetotheproduct.Themainbene˝tsfromthelow-costtest setupcomefromitslowcostandcompactsizerelativetothetraditionaltestsetup. TheRSP2prounitsusedinthisthesiswerepurchasedforapproximately$192.00each.The televisionantennas,balun,3D-printedmountinghardware,andcameratripodaccessoriesallcost lessthan$50.00.Bycomparison,theBicolog30100XEMCantennathatwasusedinthisthesis costjustunder$3000.00.Whilethespeci˝cEMCanalyzerusedinthisthesiswasprovidedbythe MSUECEdepartment,aneBaysearchatthetimeofwritingfor"E7401AEMCanalyzer"brings upseverallistingsforusedunitsthatrangeinpricefrom$5500.00to$6999.99.Averagingthese pricestogetanestimatedvalueof$6250.00,thetotalcostofthemoretraditionalprecompliance testsetuppicturedinFigure5.17aisnearly$9250.00whilethelow-costsetupshowninFigure 5.17bcostlessthan$250.00.Notethatthispricedoesnotincludethecostofthenecessaryhost computertouseSDRuno.Thisauthorassumesthatmostelectronicproductdesignershaveaccess toacomputer,andtheSDRUnosoftwareisfree(evenforcommercialuse). JustcomparingtheE7401AEMCanalyzerandtheRSP2prorevealsseveralotheradvantages ofthelow-costsetup.TheEMCanalyzerhasarectangularfootprintof409mmby373mmand aweightof12.6kg[43].Bycomparison,theRSP2prohasarectangularfootprintofonly99mm by87mmandaweightof0.296kg[42].ThismakestheRSP2proextremelyportableandvery convenientforperformingquickbench-topmeasurements.TheRSP2proisalsofullypoweredvia USBandonlyconsumesabout850mW[42]whiletheEMCanalyzerrequires120VACandcan consumeupto300Wduringoperation[43]. ThemajordisadvantageswiththeRSP2proaremostlyrelatedtoitsrelianceonSDRuno. Performingafullspectrumsweepwithaspectrumanalyzerismuchmoreconvenientthanmanually tuningtoeachfrequencythatmustbetested.Additionally,only10MHzoftheRFspectrumcanbe observedatatimewithinSDRuno.Viewing10MHzofthespectrumatatimewithSDRunorequires theuseofthezero-IFmode,whichintroducesspuriousmixingandintermodulationproductsthat canbemistakenforradiatedemissions.Thedi˙erencebetweeneachofthesenoisesignalscanbe determinedbychangingthecenterfrequencyinSDRuno.Thespuriousmixingproductswillalso 157 changeinfrequency,butintermodulationproducts(andmoreimportantly,theradiatedemissions beingmeasured)willnot[62].Todeterminethedi˙erencebetweenintermodulationproductsand theradiatedemissionsthatoneistryingtomeasure,a10dBattenuatorshouldbeaddedtothe RFsignalchain.Intermodulationproductswillbereducedbymuchmorethan10dBwhilethe actualRFsignalsbeingmeasured(andthespuriousmixingproducts)willbereducedby10dB [62].Thesetypesoffalsesignalsarenotanissuewhenusingahighqualityspectrumanalyzerlike theE7401A. 158 CHAPTER6 CONCLUSIONS ThisthesisexaminesthepotentialforusingtheRSP2prosoftware-de˝nedradio(SDR)forthe precompliancetestingofradiatedemissions.Amarginoferrorforthesignallevelmeasuredby theRSP2prowassuccessfullydevelopedbydirectlycomparingtheperformanceoftheRSP2proto atraditionalspectrumanalyzer.Thisthesisalsoexaminestheuseoflow-costtelevisionantennas foridentifyingradiatedemissionsacrosstheCISPR-22ClassBfrequencybandfrom30MHzto 1000MHz.BycombiningtheRSP2prowiththeseantennas,acompletelow-costprecompliance testsetupwasdemonstrated.Thelow-costsetupintroducedinthisthesiscanbeusedbyelectronic productdesignersfromallbackgroundstoquicklyandeasilytestaproductforradiatedemissions throughoutthedesignprocess. Thisworkpresentedinthisthesiscanbegreatlyexpandedupon,particularlywithregardstothe characterizationofthetelevisionantennas.Developingamethodforeithersimulatingormeasuring theantennafactorsoftheseantennaswouldallowthemeasurementstakenwiththelow-costtest setuptobedirectlyconvertedto˝eldstrengthandcomparedtotheradiatedemissionlimits.Further characterizationoftheRSP2prowouldallowforabetterunderstandingoftherelationshipbetween themeasuredSNRinSDRunoandtheaccuracyofthemeasuredsignalpower.Thegreatestavenue formoreresearchwouldbe˝ndingasoftwarereplacementforSDRunothathasauserinterface moresimilartoaspectrumanalyzer.Suchasoftwarecouldimplementthefunctionalityofa trackinggeneratorsothattheRSP2pro's10MHzmeasurementbandwidthcouldbeusedtospan muchlargerfrequencyranges. Atthetimeofwriting,SDRplayisworkingonasoftwareinterfacefortheirSDRsthathasmany ofthecapabilitiesusuallyfoundonaspectrumanalyzer.WhiletheSDRso˙eredbySDRplayare currentlytheonlysoftware-centricSDRswithabsolutepowermeasurementcapabilities,perhaps otherswillbecomeavailableasdesignersrealizethefullpotentialoftheSDR-basedspectrum analyzerconcept. 159 APPENDICES 160 APPENDIXA EUTCIRCUITDIAGRAMSANDBILLOFMATERIALS FiguresA.1andA.2showthecircuitdiagramsforeachofthePCBboardsthattogethercreatethe customEUTfromSection4.1.2.Theschematics,billofmaterials(BOM),andthegerber˝lesfor eachPCBboardcanbefoundintheDigitalAppendix(refertoAppendixB). ThecustomEUTPCBsweredesignedusingKiCad,anopen-sourceelectricdesignautomation softwareavailableformultipleoperatingsystems.Learnmoreaboutitat:https://www.kicad- pcb.org/. FigureA.1:ElectricalcircuitforthesourcesideofthecustomEUTfromSection4.1.2. 161 FigureA.2:ElectricalcircuitfortheloadsideofthecustomEUTfromSection4.1.2. 162 APPENDIXB DIGITALAPPENDIXCONTENTSLIST ThedigitalversionofthisthesisincludesaDigitalAppendixintheformofasinglecompressed archive.TheDigitalAppendixincludesthefollowingsubfoldersand˝les: ‹ Section3.2InputDataSets(fromTable3.2) agilent_11955A.csv agilent_11955A_minus10.csv agilent_11955A_plus10.csv agilent_11956A.csv agilent_11956A_minus10.csv agilent_11956A_plus10.csv bicolog30100X.csv bicolog30100X_minus10.csv bicolog30100X_plus10.csv ‹ Section4.1.2DesignFiles custom_eut_BOM.xlsx custom_eut_load_gerbers.zip custom_eut_load_schematic.pdf custom_eut_source_gerbers.zip custom_eut_source_schematic.pdf 163 ‹ Section5.1DesignFiles antenna_clip_body1.STL antenna_clip_body2.STL antenna_holder_bowtie.STL antenna_holder_rabbit.STL 164 BIBLIOGRAPHY 165 BIBLIOGRAPHY [1]C.R.Paul, IntroductiontoElectromagneticCompatibility ,Second.Hoboken,N.J:Wiley- Interscience,2006. [2]H.W.Ott, ElectromagneticCompatibilityEngineering .Hoboken,N.J:JohnWiley&Sons, 2009. [3]K.Wyatt,RadiatedEmissionsUsingLow-CostBench-TopMethods, InterferenceTechnology2011EMCDirectory&DesignGuide ,pp.Mar.2011. [Online].Available:https://interferencetechnology.com(visitedon02/21/2019). [4]Various,9:RadiatedEmissions,ECE407ClassNotes,MichiganStateUniversity. [5]PCBDesignGuidelinesForReducedEMI,TexasInstrumentsInc,Dallas,TX, Tech.Rep.,1999.[Online].Available:http://www.ti.com(visitedon02/20/2019). [6]Various,8:Regulations,ECE407ClassNotes,MichiganStateUniversity. [7]C.R.PaulandD.R.Bush,EmissionsfromCommon-ModeCurrents,in 1987 IEEEInternationalSymposiumonElectromagneticCompatibility ,Aug.1987,pp. doi : 10.1109/ISEMC.1987.7570770. [8]K.Wyatt,HfCurrentProbe:TheoryAndApplication, InterferenceTechnology2017 EuropeEMCGuide ,pp.2017.[Online].Available:https://interferencetechnology. com(visitedon11/06/2019). [9]R.Cadena, VideoMatters.RFInterferencefromLEDScreensisaBIGProblem! May2012. [Online].Available:https://www.juliusmedia.com(visitedon11/07/2019). [10] FCC'sOETClari˝esEmissionsComplianceTestingforRFLEDLightingDevices ,Jun. 2016.[Online].Available:http://www.arrl.org(visitedon11/07/2019). [11]D.Friskney, HowtokeepyourdigitalsignagefrombeingshutdownbytheFCC ,May2017. [Online].Available:https://www.digitalsignagetoday.com(visitedon11/07/2019). [12]FederalCommunicationsCommission, DOC-355270A1 ,Nov.2018.[Online].Available: https://www.fcc.gov(visitedon02/21/2019). [13]nerdlord20, LEDSigns:AnEMINightmare ,Jun.2017.[Online].Available:https://www. youtube.com(visitedon11/07/2019). [14] AmateurRadioSleuthingPinsDownSourceofStrangeRFInterference ,Sep.2016.[Online]. Available:http://www.arrl.org(visitedon11/07/2019). 166 [15]U.S.FoodandDrugAdministration, AbbottRecallsCentriMagCirculatorySupportSystem MotorDuetoPumpandMotorIssues ,Mar.2019.[Online].Available:http://www.fda.gov (visitedon11/07/2019). [16]Engineer'sGuideToGlobalEMCRequirements:2007Edition,Intertek,Boxborough, MA:IntertekTestingServicesNA,Inc,Tech.Rep.,2007.[Online].Available:https://www. ieee.li(visitedon11/05/2019). [17]KeithArmstrong,PracticalGuideforEN55022andEN5011:MeasuringRadiatedEmis- sions,REO(UK)Ltd,Shropshire,SY79QA,UK,Tech.Rep.[Online].Available:https: //www.emcstandards.co.uk(visitedon02/19/2019). [18]TimothyHegarty,overviewofconductedEMIspeci˝cationsforpowersupplies,Texas InstrumentsInc,Dallas,TX,Tech.Rep.[Online].Available:https://www.ti.com(visitedon 01/20/2020). [19]ofAntennaFactorsinEMIMeasurementsAN-106AF,Com-PowerCorporation, Silverado,CA,Tech.Rep.[Online].Available:http://k3hpa.com(visitedon10/18/2017). [20]T.Karaca,B.Deutschmann,andG.Winkler,ersimulationmodelwithquasi- peakdetector,in 2015IEEEInternationalSymposiumonElectromagneticCompatibility (EMC) ,Dresden,Germany:IEEE,Aug.2015,pp. doi :10.1109/ISEMC.2015. 7256283. [21]MakingConductedandRadiatedEmissionsMeasurements,KeysightTech- nologies,SantaRosa,CA,Tech.Rep.,Apr.2017.[Online].Available:https://www.keysight. com(visitedon11/02/2017). [22]DarylGerke,P.E.andWilliamKimmel,P.E., EDNDesigner'sGuidetoElectromagnetic Compatability .Mesa,AZ:KimmelGerkeAssociates,Ltd.,2005. [23]KeithArmstrongandTimWilliams,TestingPart1-RadiatedEmissions,Cherry CloughConsultantsLtd,Brocton,ST170TF,UK,Tech.Rep.[Online].Available:http: //www.compliance-club.com(visitedon01/09/2018). [24]w-costEMIPre-complianceTestingUsingaSpectrumAnalyzer,Tektronix,Tech.Rep., 2016.[Online].Available:https://www.tek.com(visitedon11/06/2019). [25]P.G.AndréandK.Wyatt, EMITroubleshootingCookbookforProductDesigners .Edison. NewJersey:SciTechPublishing,2014. [26]SpectrumAnalyzer:SpectrumAnalysisBasics150,KeysightTechnologies, SantaRosa,CA,Tech.Rep.,Feb.2016.[Online].Available:https://www.keysight.com (visitedon02/25/2020). [27] UnderstandingRF&MicrowaveSpeci˝cations-PartI .[Online].Available:http://www.ni. com(visitedon11/08/2017). 167 [28] WhatisSoftwareDe˝nedRadio? [Online].Available:https://www.wirelessinnovation.org (visitedon02/27/2020). [29]E.Grayver, ImplementingSoftwareDe˝nedRadio .NewYork:Springer,2013. [30]RodgerH.Hosking, SoftwareDe˝nedRadioHandbook ,Twelfth.UpperSaddleRiver,NJ, 2016. [31] SoftwareDe˝nedRadio-RateofAdoption .[Online].Available:https://www. wirelessinnovation.org(visitedon02/27/2020). [32]V.Giannini,J.Craninckx,andA.Baschirotto, BasebandAnalogCircuitsforSoftware De˝nedRadio ,ser.AnalogCircuitsandSignalProcessingSeries.Dordrecht:Springer, 2008. [33] USRPB200mini .[Online].Available:https://www.ettus.com(visitedon02/27/2020). [34] Review:Airspyvs.SDRplayRSPvs.HackRF ,Feb.2016.[Online].Available:https://www.rtl- sdr.com(visitedon10/11/2017). [35]RTL-SDR.com,TL-SDRBlogV3Datasheet,Tech.Rep.[Online].Available:https: //www.rtl-sdr.com(visitedon03/10/2020). [36] TheUltimateVHF/UHFRX"Brick" ,2020.[Online].Available:https://airspy.com/airspy-r2/ (visitedon03/10/2020). [37] SDRplay .[Online].Available:https://www.sdrplay.com/(visitedon09/20/2018). [38]mossmann, HackRFOne ,2017.[Online].Available:https://github.com/mossmann/hackrf/ wiki/HackRF-One(visitedon03/10/2020). [39]yRSP2, RadCom ,vol.93,no.4,pp.Apr.2017.[Online].Available: https://www.sdrplay.com(visitedon01/10/2019). [40]SDRplayLtd,GainandAGCSettingsinSDRuno,Hampshire,GU341HG,UK, Tech.Rep.,Jun.2018.[Online].Available:https://www.sdrplay.com(visitedon03/02/2020). [41]SteveFord,yRadioSpectrumProcessor2Pro, QST ,vol.101,no.10,Oct.2017. [Online].Available:https://www.sdrplay.com(visitedon10/19/2018). [42]SDRplayLtd,SpectrumProcessor2andRadioSpectrumProcessor2prov2.1, Hampshire,GU341HG,UK,Tech.Rep.,Nov.2017.[Online].Available:https://www. sdrplay.com(visitedon03/01/2020). [43]E7400A-seriesEMCAnalyzersDataSheet,AgilentTechnologies,SantaClara, CA,Tech.Rep.,Oct.2001.[Online].Available:https://www.atecorp.com(visitedon 11/14/2019). 168 [44]EMCTransducerFactors,AgilentTechnologies,SantaClara,CA,Tech.Rep. [Online].Available:https://www.keysight.com(visitedon01/23/2019). [45]JamesMcLean,RobertSutton,andRobHo˙man,pretingAntennaPerformancePa- rametersforEMCApplications:Part3:AntennaFactor,TDKRFSolutionsInc.,Cedar Park,TX,Tech.Rep.[Online].Available:https://www.ttiinc.com(visitedon01/17/2019). [46]AaroniaAG,Strickscheid,Germany,ExcelSpreadsheet,Nov. 2017. [47]KennethWyatt, Review:TheAaroniaBicoLOG30100XandHyperLOG7060EMIantennas , Jul.2015.[Online].Available:https://www.edn.com(visitedon11/02/2017). [48]UBBV-SeriesManual,AaroniaAG,Strickscheid,Germany,Tech.Rep., Mar.2018. [49]SynthesizedRFSignalGeneratorOperatingandCalibratingGuide,Agilent Technologies,SantaClara,CA,Tech.Rep.,Oct.1998.[Online].Available:https://www. keysight.com(visitedon06/01/2019). [50] PyVISA:ControlyourinstrumentswithPython .[Online].Available:https://pyvisa. readthedocs.io/en/latest/(visitedon01/20/2019). [51]AutoItConsultingLtd, AutoIt ,2019.[Online].Available:https://www.autoitscript.com/site/ (visitedon01/20/2019). [52]SDRplayLtd,areDe˝nedRadioAPIR3.01,Hampshire,GU341HG,UK,Tech. Rep.,Aug.2018.[Online].Available:https://www.sdrplay.com(visitedon05/07/2019). [53]unoUserManualv1.33,SDRplayLtd,Hampshire,GU341HG,UK,Tech.Rep., 2019.[Online].Available:https://www.sdrplay.com(visitedon03/01/2020). [54]P.Horowitz, TheArtofElectronics ,Thirdedition.NewYork,NY:CambridgeUniversity Press,2015. [55] UnitedStatesFrequencyAllocations ,Oct.2003.[Online].Available:https://www.ntia.doc. gov(visitedon04/23/2020). [56]Various,3:SignalsandSpectra,ECE407ClassNotes,MichiganStateUniversity. [57] NAGOYAUT-72 ,2020.[Online].Available:https://baofengtech.com(visitedon04/20/2020). [58]H.W.SilverandAmericanRadioRelayLeague, TheARRLAntennaBook:ForRadio Communications ,Twenty-fourth.Newington,CT:ARRL,2019. [59]ClockMultiplier,PericomSemiconductorCorporation,SanJose,CA, Tech.Rep.,Aug.2014.[Online].Available:https://www.diodes.com(visitedon11/06/2017). 169 [60]J.Sevick, Understanding,Building,andUsingBalunsandUnuns:TheoryandPractical DesignsfortheExperimenter .Hicksville,NY:CQCommunications,2003. [61]KrishnamurthyHegde,ScottMonroe,andHaydenHast,andTPS57xx0-Q1 DevicesEMCPerformanceComparisonStudy,TexasInstrumentsInc,Dallas,TX,Tech. Rep.,Dec.2015.[Online].Available:http://www.ti.com(visitedon04/01/2020). [62]Tech_Support, VFO&LOfordummies ,Reply,Feb.2018.[Online].Available:http://www. sdrplay.com(visitedon02/27/2020). 170