FRACTURETOUGHNESSCHARACTERIZATIONOF THERMOSETTINGPOLYMERSYSTEMSREINFORCEDBY GRAPHENENANOPLATELETS By AbdulrahmanAlfadhli ATHESIS Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof MechanicalEngineering|MasterofScience 2020 ABSTRACT FRACTURETOUGHNESSCHARACTERIZATIONOFTHERMOSETTING POLYMERSYSTEMSREINFORCEDBYGRAPHENENANOPLATELETS By AbdulrahmanAlfadhli Theinterlaminarfracturetoughnessisacriticalpropertyforthedamagetolerance,im- pactresistance,anddelaminationofer-reinforcedpolymer(FRP)composites.Toenhance thisproperty,variousstrategieshavebeenexplored,fromintroducingthroughthethickness reinforcement,strengtheningtheer-matrixinterface,toimprovingthefracturetoughness ofthematrixresins.ThisresearchexaminestheofGrapheneNanoplatelet(xGnP) onthefracturetoughnessofepoxyresinscommonlyusedinFRPs.Twoepoxysystemswere examined:EPON862andSC-15.xGnPwasaddedintotheepoxyresinsattwoweightfrac- tions:0.1wt%and0.5wt%.Thefracturetoughnessofthereinforcedresinswasinvestigated withthecompacttension(CT)experiment.ItwasobservedthatxGnPresultedinagreater enhancementinthefracturetoughnessofEPON862thanthatofSC-15.ForEPON862, the G IC valuehadanimprovementof87%and156%forthereinforced0.1wt%and0.5wt%, respectively.ForSC-15,theimprovementwas21%and14%forthereinforced0.1wt%and 0.5wt%,respectively.SC-15isalreadyrubbertoughened.Forcomparisonpurpose,EPON 862wasalsoreinforcedwithnano-silicaparticles.At0.1wt%and0.5wt%,theimprovement in G IC was49%and87%,respectively.Insummary,addingxGnPcantlyimprove thefracturetoughnessofarelativelybrittleepoxysystem.Atalowconcentration,xGnPis muchmoretthannano-silicaintermsofimprovingthefracturetoughness.Finally, infractureexperiment,themethodofintroducingpre-crackwasfoundtohaveat onthemeasuredfracturetoughnessvalue. ACKNOWLEDGMENTS IwouldliketoexpressmydeepestappreciationtomyadvisorDr.XinranXiaoforher support,encouragement,andguidanceduringmygraduatestudy.Theprofessorhastaught mehowtoreviewliteraturepapersandhowtoformaresearchplan.Withoutherassistance, Iwouldneverbeabletoaccomplishthisthesis.Dr.Xiaowasalwaysavailableandwilling togiveaboveandbeyondtohelpmewiththeresearch.Ialsowouldliketoacknowledge Dr.ShiwangChengforhiscontribution.Hiscontributionbyprovidingthematerialwith thenanoadditiveswasprecious.IamthankfultoDr.PatrickKwonforacceptingtobe amemberofthemasterthesiscommittee.Iamalsogratefultoallmycolleaguesfortheir continuoussupportandhelp,includingSakibIqbal,ShutianYan,RoyalIhuaenyi,JieFu, andRuTao. Iwanttoshowgratitudetomyparents,whotoraiseandeducateme.Without theirinspiration,guidance,andsupport,ImightnotbethepersonIamtoday.Iamdeeply thankfultomywifeforhercontinuoussupportandencouragement.Withouther,Iwould neverbeabletocontinuemygraduatestudies.Iappreciatemybrothers,sisters,andfriends fortheirgreatmotivation.Finally,IwouldliketothanktheKingdomofSaudiArabiaand TheIslamicUniversityofMadinahforthefellowshiptopursuemyhighereducation. iii TABLEOFCONTENTS LISTOFTABLES .................................... vi LISTOFFIGURES ................................... vii KEYTOSYMBOLS .................................. x Chapter1IntroductionandLiteratureReview ................ 1 1.1ThesisOrganization................................1 1.2Introduction....................................2 1.3Graphene-basedNanocomposites........................3 1.3.1TougheningMechanisms.........................5 1.3.2Dispersionof.........................6 1.4FractureMechanics................................7 1.4.1TypesofFracture.............................8 1.4.2Modesoffracture.............................9 1.4.3Linear-ElasticFractureMechanics(LEFM)...............9 1.4.3.1EnergyBalanceCriteria...............10 1.4.3.2StressIntensityFactor(K)...................11 1.4.3.3RelationshipBetweenEnergyReleaseRateandStressInten- sityFactor...........................13 1.4.4Elastic-PlasticFractureMechanics(EPFM)..............13 1.4.4.1Cracktipopeningdisplacement(CTOD)...........13 1.4.4.2J-integral............................14 Chapter2FractureToughnessExperiment ................... 15 2.1TestingStandardsandCalculations.......................15 2.2MaterialsandMethods..............................18 2.2.1CuringCycleandSpecimenPreparation................19 2.3ExperimentSetup.................................22 2.4DataAcquisition.................................24 Chapter3ResultsandDissection ......................... 26 3.1tPre-crackingProceduresandtheir..............26 3.2FracturetoughnessResults............................30 3.2.1EPON862.................................30 3.2.2SC-15...................................33 3.3StressDistributionandPlasticityCorrection..................35 3.3.1CreagerandParis(1967)'sEstimation.................43 3.3.2StressDistributionfortSamples'Loading...........44 3.3.3PlasticZoneShape............................45 iv Chapter4Conclusion ................................ 48 4.1SummaryandConclusion............................48 4.2FutureWork....................................49 APPENDIX ........................................ 50 BIBLIOGRAPHY .................................... 54 v LISTOFTABLES Table3.1:Comparisonbetweentwoentpre-crackingmethodsonEPON862's fracturetoughness...............................28 Table3.2:Comparisonbetweentwotpre-crackingmethodsonSC-15'sfrac- turetoughness.................................28 Table3.3: K IC ( MPa: p m )averagesofEPON862withxGnP.............31 Table3.4: G IC ( J=m 2 )averagesofEPON862withxGnP...............31 Table3.5: K IC ( MPa: p m )averagesofEPON862withNano-silica..........32 Table3.6: G IC ( J=m 2 )averagesofEPON862withNano-silica............32 Table3.7: K IC ( MPa: p m )averagesofSC-15withxGnP...............35 Table3.8: G IC ( J=m 2 )averagesofSC-15withxGnP..................35 Table3.9:MechanicalPropertyofSC-15baseline....................38 Table3.10:ThethreeexamplesamplesofSC-15with0.5wt%xGnP...........39 TableA.1:SC-15Samples-baseline............................51 TableA.2:SC-15Samples-0.1wt%xGnP.........................51 TableA.3:SC-15Samples-0.5wt%xGnP.........................51 TableA.4:EPON862Samples-baseline.........................52 TableA.5:EPON862Samples-0.1wt%xGnP......................52 TableA.6:EPON862Samples-0.5wt%xGnP......................52 TableA.7:EPON862Samples-0.1wt%Nano-Silica...................52 TableA.8:EPON862Samples-0.5wt%Nano-Silica...................53 vi LISTOFFIGURES Figure1.1:Mode-Iinterlaminarfracturetoughnessofcomposites G c IC andmode-I matrixtoughness G m IC forconventionalcomposites[1]............3 Figure1.2:Mapsoftmechanicalpropertiesfornanocompositeswithrespect toparticleloading:(a)Fracturetoughnessmap.(b)map.(c) Ultimatetensilestrengthmap.Obtainedfrom[2]..............4 Figure1.3:Modesoffracture:ModeIOpening,ModeIIIn-planeshear,ModeIII Out-of-planeshare,Drawingobtainedfrom[3]...............9 Figure1.4:Anwideplatewithathroughthicknessellipsecracksubjectedto remotetensilestress,Drawingobtainedfrom[4]...............11 Figure1.5:Polarcoordinatesofthestressesaheadofthecracktip.Drawingobtained from[4].....................................12 Figure2.1:TheASTMD5045standard[5]:(a)Specimen(b)Load vsloadingpointdisplacementcurve.....................16 Figure2.2:Solventevaporationprocess..........................20 Figure2.3:Sample'sdesignandsiliconmolds:(a)Thedesignthestainlesssteelproto- typein(mm)followingthestandards[5].(b)Thestainlesssteelprototype andthesiliconmold..............................21 Figure2.4:Aftercompletingthecuringcycle:(a)Samplesliftinsidetheopendoor oventocooldownafterthecuringcycle.(b)Samplesareready tobecarefullyextractedfromthemolds...................21 Figure2.5:SC-15samples,fromright:baseline,0.1wt%,then0.5wt%ofxGnP....22 Figure2.6:EPON862samples:(a)0.1wt%,0.5wt%ofnano-silica.(b)0.1wt%,0.5wt% ofxGnP.(c)Baseline.............................22 Figure2.7:Theexperimentsetupwithcameraandlightsource............23 Figure2.8:Samplesarrangementbeforeattachingtothetensilegrip:(a)Frontview. (b)Sideview..................................24 vii Figure2.9:Theexperiment'sstagesuntilthefracture:(a)Thesecondstillimage. (b)Themiddleofthetest.(c)Themomentbeforethefracture.(d)The momentafterthefracture...........................25 Figure3.1:Thetwomethodsofpre-cracking:(a)Pressingtherazorintothenotch. (b)Slidingtherazoronthenotch......................27 Figure3.2:Thestrainofthepressedsample:(a)Beforeinsertingtheblade.(b) x afterinsertingtheblade.(c) y afterinsertingtheblade........29 Figure3.3:LoadvsLoading-pointdisplacementofEPON862withxGnP.......30 Figure3.4: K IC and G IC ofEPON862withxGnP....................31 Figure3.5:ComparisonbetweenEPON862withxGnPandEPON862withNano- Silicaforentweightfractions......................32 Figure3.6:LoadvsLoading-pointdisplacementofSC-15withxGnP.........33 Figure3.7: K IC and G IC ofSC-15withxGnP......................34 Figure3.8:Thestressnearthecracktip......................35 Figure3.9:First-orderandsecond-orderestimatesofplasticzonesize( r y and r p , respectively).Thecross-hatchedarearepresentstheloadthatmustbe redistributed,resultinginalargerplasticzone.Obtainedfrom[6].....37 Figure3.10:Thespecimen'snormalstress ˙ y distributionalongthecrackpath justbeforethefracture............................40 Figure3.11:Thesecondspecimen'snormalstress ˙ y distributionalongthecrackpath justbeforethefracture............................40 Figure3.12:Thethirdspecimen'snormalstress ˙ y distributionalongthecrackpath justbeforethefracture............................41 Figure3.13:LoadvsCTODforthethreesamples.....................42 Figure3.14:ComparisonbetweenIrwin'smoandCreagerandParis'sesti- mation.....................................44 Figure3.15:Thenormalstress ˙ y distributionalongthecrackpathfortloading.45 Figure3.16:TheplasticzoneshapeestimationfromtheelasticsolutionforModeI. Obtainedfrom[6]...............................46 viii Figure3.17:TheestressfromaelementanalysisVstheplasticzone estimation[6]..................................46 Figure3.18:Straindistributionofy-direction.......................47 FigureA.1:Compacttensionspecimen..................51 FigureA.2:Microscopicimageofacracktipmadebyrazorsliding...........53 FigureA.3:Microscopicimageofacracktipmadebyrazorpressing..........53 ix KEYTOSYMBOLS FRPFiber-reinforcedPolymer xGnPGraphenenanoplatele CNTsCarbonnanotubes K IC ModeICriticalStressIntensityFactor G IC ModeICriticalStrainEnergyReleaseRate CTODCrackTipOpeningDisplacement JJ-integral LEFMLinearElasticFractureMechanic EPFMElastic-PlasticFractureMechanics TTemperature T g GlassTransitionTemperature SSYSmallScaleYielding EDMElectricalDischargeMachining CTCompactTension SENBSingleEdgeNotchedBend PLoad BThickness WWidth aCrackLength DICDigitalImageCorrelation FEAFiniteElementAnalysis SEMTheStandardErroroftheMean x Chapter1: IntroductionandLiteratureReview 1.1 ThesisOrganization Thisthesisisstructuredasfollows: Chapter1 reviewstherelationshipbetweenthefracturetoughnessofthematrixand theinterlaminarfracturetoughnessoftheer-reinforcedpolymer.Thischapteroverviews theliteratureonthemechanicalofaddingrstoepoxyresins.Thereasons forchoosingthegraphenenanoplateletsasanadditivearediscussed.Sincethefocusison thefracturetoughnessproperty,fracturemechanicsandfracturetoughnessareexplainedin thischapter. Chapter2 discussesthemethodologyofthestudy,fromidentifyingthestandards, preparingthematerial,tomanufacturingthespecimens.Thetestingprocedureandthe dataacquisitionmethodaredescribed. Chapter3 reportstheofbothepoxysystemsandevaluatestheof addingnanoadditives.Thelastpartofthischapterpresentsanalyticalsolutionsforthestress distributionalongthecrackpathandthecrack-tipplasticity.Furthermore,acomparison betweentheanalyticalsolutionsandtheexperimentalanalysisispresented. Chapter4 summarizesandconcludesthethesisinadditiontorecommendingfuture work. 1 1.2 Introduction Theinterlaminarfracturetoughnessisakeypropertyforthedamagetoleranceandimpact resistanceofber-reinforcedpolymer(FRP)composites[7{10].Toimprovethisproperty, variousstrategieshavebeenexplored,fromintroducingthroughthethicknessreinforcement, increasingtheer/matrixinterfacestrength,toenhancingthetoughnessofthematrix resins.Eachmethodhasledtosomeimprovement,buttheproblemisfarfrombeingsolved. Thisthesisfocusesoninvestigatingtheenforcementofthematrixbygraphenenanoplatelets asthecorrelationbetweencomposites'andmatrices'fracturetoughnessisevident. Thematrixtoughnessisoneofthedominantfactorsdeterminingtheinterlaminarfracture toughnessofcompositesduototheinteractionbetweenthenanoparticlesandthereinforcing [1,10,11].Toimprovethematrixresintoughness,variousstrategieshavebeende- veloped,includingrubbertoughenedthermosetresinsandthermoplasticresins.Thematrix tougheningisgaugedbythe G c IC / G m IC ratio,i.e.TheMode-Iinterlaminarfracture toughnessofthecompositeovertheMode-Ifracturetoughnessofthematrixresin.Improv- ingthematrixtoughnessisparticulartforbrittleresinsystems.Ageneraltrendis G c IC / G m IC > 1forbrittlematriceswhen G m IC < 500 J=m 2 ,and G c IC / G m IC < 1fortoughmatrices when G m IC > 500 J=m 2 inconventionaler-reinforcedpolymers(FRP)s,asshowninFigure 1.1.Itwasfoundthatthehigheramountofnanoparticlesdispersedintotheresin,thelower matrixtoughening G c IC / G m IC observed[11]. 2 Figure1.1:Mode-Iinterlaminarfracturetoughnessofcomposites G c IC andmode-Imatrixtoughness G m IC for conventionalcomposites[1]. 1.3 Graphene-basedNanocomposites Thefracturetoughnessandstrengtharetwofundamentalpropertiesforstructuralmaterial. Usually,theyarenotcompatible.Theimprovementofoneisoftenattheexpenseoftheother. Theemergingnanocompositehaschangedthisperspective.Withtheadditionofnano-sized polymerscanbetougher,stronger,andwithaddedmulti-functionality.Amongthem, grapheneappearstohavethehighesteatthelowloadingregion. Itisnotasimpletasktocomparetheoftduetothediversity inmaterialssource,thewiderangeofdispersionmethods,andthesizesoftheseBy compilingdatafromhundredsofresearchpapersonepoxy-basednanocomposites,Domun etal.[2]generatedasetofmapsthatcomparetheeoffourtypesofnanoparticles onfracturetoughness,andstrength,asshowninFigure1.2.Inthesemaps,The propertiesaregivenastheratiototheneatepoxy,andthedatapointsabove1.0lineindicate apositiveTheFigurescomparetheofnanoparticles/epoxynanocompos- ites(withCarbonnanotubes,graphene,nanoclayandnanosilicon)withrespecttoparticle loadingweightfraction[2]. 3 Figure1.2:Mapsoftmechanicalpropertiesfornanocompositeswithrespecttoparticleloading:(a) Fracturetoughnessmap.(b)map.(c)Ultimatetensilestrengthmap.Obtainedfrom[2]. 4 Figures1.2showsthatthegrapheneisaclearwinnerintheregionoflowweightfraction upto0.5wt%.Grapheneconsistentlyout-performedcarbonnanotubes(CNTs),nanoclay andnanosilicainallthreeproperties.Thistheearlierofetal.[12] thatatalowconcentrationof0.1wt%,graphenenanoplatelet(GNP)/epoxyoutperformed SWCNT/epoxyandMWCNT/epoxynanocompositesbyatmarginintensilemod- ulus,strength,Mode-Ifracturetoughness,andfatiguecrackingresistance. 1.3.1 TougheningMechanisms Theremarkabletougheningofhasbeenattributedtoadditionaltoughening mechanismsbroughtuponbythese[11].For0-Dand1-Dtheseincludegreater energyabsorptionfromresindebondingand/ornanotubepull-outduetothe extraordinarilylargeinterfacearea,reducedplasticzoneduetoincreasedmatrixyieldstress, andhighererinterfacialstrength.Innanoclaycomposites,itwasobservedthat theplateletsproducenanovoids/cracksandpromoteshearyieldingofthematrixatthecrack tip. ThemechanicsofgraphenenanocompositeshavebeendiscussedbyYoungetal.[13]. Inagraphenesheet,thecarbonatomsareheldtogetherby sp 2 bonds,whichrenderthe graphenewithultra-highin-planestrength,andconductivity.Thebondsbetween sheetlayersareweakvanderWaalsforces.Theinterfacialshearstrengthbetweenthe graphenesheetswasfoundtobeattheorderof1MPa.Forin-planemodulusofelasticity, Leeatal.[14]measurementforthemonolayergraphenemembranewasabout1TPa.How thisuniquestructurelinkstoitsreinforcinginnanoandmultiscalecompositesisyet tobeunderstood.Theabovesuggestthatfurtherresearchisneededtoexplorethe potentialofusinggraphene-moresinsinimprovingtheinterlaminarfracturetoughness 5 andimpactresistanceofstructuralcomposites. 1.3.2 Dispersionof Oneofthemostcriticalstepsinpreparinghigh-qualitygraphene-basedepoxycomposites isthemethodofnano-graphenedispersion.Improperdistributionofthegrapheneintothe epoxymaycauseissuessuchasvoidformation,tcuringoftheepoxy,viscosity buildupoftheepoxy,andshearthinning[15].Theoptimalmethodofgraphenedisper- sionwillhelptogethighermechanicalbondingbetweentheepoxyandthenano-graphene platelets(NGP)andenhancematerialperformance[15]. Solutionmixingandhighshearmixingaretwoofthemostcommonlyusedmethodsfor dispersingnano-grapheneplatelets(NGP)intothepolymer[15].Solutionmixingusesthe sonicationprocesstodispersetheNGPsintoaproperorganicsolventwingbyaddingthe epoxyandthenevaporatethesolvent[16,17].Highshearmixingmechanicallydistribute theNGPsintothepolymer[18,19].Kumar[18]usedonlyahighshearmixerat2000rpmto dispersetheNGPsintotheepoxyfollowingnotesfromtheNGPmanufacturer,andreported gooddispersionqualityandrandomorientation.However,athigherweightfraction,some agglomerationofthegrapheneplateletshaveoccurred.Kumarin2018[19],followingYang's paper[20]suggestions,hydrogenpassivatedtheNGPsusing5%H2/N2mixturetoimprove dispersionoftheplateletsthenusedahighshearmixertodisperseHP-NGPsintothe epoxy.Kumarusinganopticalmicroscopecomparedpassivatedandnon-passivatedNGPs compositesandshowedthebofthehydrogenpassivationonthedispersionofthe NGPs. [16]dispersedGPLintoacetoneusinghighamplitudeultrasonicthenaddedthe epoxywingthesameprocedure.Theacetonelaterwasremovedthroughheatingthemix- 6 ture.Wajid[17]preparedthegraphene-basedepoxycompositesusingtwotechniques:solu- tionprocessingandfreeze-dryingandcomparedbetweenthem.Wajidforthemethod usedDMFasasolventforPVP-stabilizedgraphenebeforeaddingtheepoxy.DMFwascho- senbecausetheyfoundittobethebestcompatibilitywiththeirepoxyresin.Afteradding theepoxy,thesolutionwastipsonicatedtoensuretheuniformdispersionofthegraphene \lessagglomeration".Then,theDMFwasevaporatedbyheatingthemixturewhilemag- neticallymixthesolutiontoensuretheuniformdistributionoftheepoxyinthemixture.To ensuretheeliminationoftheremainingsolvent,thesolutionwasplacedinavacuumovenat asptemperaturefor14h.Theothermethodisfreeze-drying.Thepolymer-stabilized grapheneinwaterwerefreeze-driedusingaVitrisBenchtopFreezeDryerthroughout48h toobtainadarkgraycoloredpowder.Thefreeze-driedPVP-stabilizedgraphenewasredis- persedintheresinbystirringandsonicatingfor30min.Thehardenerwasaddedtothe graphene/resinmixtureandwascuredunderthesameconditionsasthesolutionprocessing method.Wajid[17]concludesthatthesolutionprocessingmethodresultsinreliabledis- persionqualitybutfromresidualsolventathigh-grapheneconcentrations,unlikethe solvent-freetechnique,freeze-drymixing,thatavoidsthisproblem. 1.4 FractureMechanics Itisoftenassumedduringthedesignprocessthatthematerialisisotropicandwless. However,thisisalmostimpossibletoachieve,asmicrostructureandotherscalesdefects areusuallyinevitableduringthemanufacturingprocess.Iftheexistenceofcracksisnot takenintoaccountduringdesign,thesewscancausesevereconsequences.Thesedefects canleadtoacompletefailureofthesystemeventhoughthetotalstressiswaybelowthe 7 ultimatetensilestrengthofthematerial.Manyaccidentsoccurredinhistoryduetoalack ofconsiderationoffracturemechanics,whichisthetheoreticalexplanationofthecracks' behaviorinmaterials.Iftheconceptoffracturemechanicsisappropriatelyapplied,mostof theseincidentscouldbeavoided. Fracturetoughnessisthestudyofthematerial'sresistancetocrackpropagationand describedbyseveralparameters;stressintensityfactor(K),energyreleaserate(G),J-integral (J),andcracktipopeningdisplacement(CTOD).Tensileproperties,crackgeometry,and temperaturearefactorsthefracturetoughnessofthematerial.Epoxyresinscan fractureeitherinthelinearelasticornonlinearelastic-plasticregimes.Therearetwomain approachestodescribethefracturemechanics;LinearElasticFractureMechanics(LEFM) andElastic-PlasticFractureMechanics(EPFM).Epoxiesoftenobey(LEFM)whentheyare wellbelowtheirglasstransitiontemperature T g andobey(EPFM)whentheyarenearand abovetheir T g . 1.4.1 TypesofFracture. Therearemainlytwotypesoffracture:brittlefractureandductilefracture.Brittlefracture correspondstothesuddenandrapidcrackpropagationunderstress,wherethematerial exhibitedlittleornoplasticdeformationpriortofailure.Consequently,arelativelysmall amountofenergyisrequiredtocompletethefracture.Ontheotherhand,ductilefracture occurswhenthecrackhasasubstantialplasticdeformationbeforeseparation,andthis usuallytakeslongertimeandrequiredmoreenergy[4]. 8 Figure1.3:Modesoffracture:ModeIOpening,ModeIIIn-planeshear,ModeIIIOut-of-planeshare, Drawingobtainedfrom[3]. 1.4.2 Modesoffracture TherearethreebasicmodesoffractureindicatedinFigure1.3.Inarealsituation,materials andcrackscouldexperienceacombinationoftwoorallthreestyles.ModeIhastheload perpendiculartothecracksurface,andthismoderequireslowloadandenergytopropagate thecrackcomparedtotheothertwomodes.ModeIloadingisthemostcommonmodeused forfracturetoughnesscharacterization.ModeIIloadingexperiencesin-planeshearingstress andModeIIIexperiencesout-of-planeshearingstress. 1.4.3 Linear-ElasticFractureMechanics(LEFM) Linearelasticfracturemechanics(LEFM)isatheorybasedonGcriteriaanddescribes theexperiencedstressatcrackswithintheyieldlimit.Thistheorydescribesthedeformation intheelasticregionformaterialsthatobeyHooke'slawoflinearelasticity.However,small scaleyielding(SSY)mostlyoccurs,anditisgenerallyneglectable.LEFMhastwoparameters forthefracturetoughness:Energyreleaserate(G)andStressintensityfactor(K). 9 1.4.3.1 EnergyBalanceCriteria AnEnglishaeronauticalengineerA.A.inthe1920s[21]hasledoneofthewell-known earlyadvancesoffracturemechanicswherehestudiedbrittlefractureonglass.Followingthe principleofthelawofthermodynamics,theassumptionwasthattheoverallenergyex- periencedbythecrackwouldbeinequilibriumwiththeloadappliedtothecrack.Therefore, thereisnochangeintotalenergyunderequilibriumuntilthecrackhitsthecriticalstageand startgrowing.Whenthecrackprogresses,itreleasesenergy,sotheenergythatisapplied tothecrackandtheenergyreceivedbythecrackisnolongerinequilibrium,andthere willbeanetdecreaseofenergy.Forthecracktoexpand,theremustbeenoughpotential energytosurmountthesurfaceenergy.Foranwideplatewithathrough-thickness cracksubjectedtotensilestressin-planestressconditionasshowninFigure1.4,The energybalanceforgrowthinthecrackarea dA isexpressedinequilibriumconditionsasin Eq.1.1.Whereisthepotentialenergysuppliedbytheinternalstrainenergyandexternal stress,and W s istheworkneededtocreatenewsurfaces.AfterdevelopmentbyG (1921)basedontheanalysisofInglis[22],thefracturestress, ˙ f isobtainedasinEq.1.2for isotropiclinearelasticmaterialswhere s isthesurfaceenergyofthematerial. d dA + dW s dA =0(1.1) ˙ f = r 2 s E ˇa (1.2) In1956,Irwin[23]introducedafractureenergysolutionthatisbasicallysimilartoGrif- concept,exceptthatIrwin'sapproachisinshapemorepracticaltoaddressengineering 10 Figure1.4:Anwideplatewithathroughthicknessellipsecracksubjectedtoremotetensilestress, Drawingobtainedfrom[4]. challenges.Irwindetheenergyreleaserate G whichisthemeasurementoftheavailable energyforacrackextension,astherateofchangeinpotentialenergywiththecrackarea. Irwin[23]describesthereleasedenergyduotothecrackinitiationsinEq.1.3.Whereis thepotentialenergyofthecrack,whichisalsoknownasthecrackextensionforce,andAis thecrackarea. G = d dA (1.3) 1.4.3.2 StressIntensityFactor(K) Westergaard[24],Irwin[25],etal.arethetodriveexpressionsdescribingthestress nearthecracktipforacrackedbodywithexternalforceconsideringtheisotropicbehavior oflinearelasticmaterials.Therstorderstresscouldbeinalinearisotropic material,settingthecracktipastheoriginofthepolarcoordinateaxis,asshowninFigure 1.5andexpressedinEq.1.4.Where ˙ ij isthestresstensor, K isthestressintensityfactor, 11 Figure1.5:Polarcoordinatesofthestressesaheadofthecracktip.Drawingobtainedfrom[4]. and f ij isadimensionlessfunction,while r and arepolarthecoordinates. ˙ ij = K p 2 ˇr f ij ( )+ (1.4) StressintensityfactorKisaparameterintroducedbyIrwin[25]usedinLEFMtopredict thestressstatenearthecracktip.Asubscriptisassignedtothestressintensityfactorto denotetheloadingmode,thatis, K I , K II ,or K III .Eq.1.5istodetermine K I ofthe stressesinthevicinityofthecracktip.Where Y isadimensionlessfactordependsoncrack geometryandloadingcondition, ˙ istheappliedload,and a isthecracklength. Y inthe caseoffracturetoughnesstestdescribedasafunctionofcracktowidthratio a=W asin Eq.1.6. K I = Y˙ p ˇa (1.5) K I = P B p W f a W (1.6) 12 1.4.3.3 RelationshipBetweenEnergyReleaseRateandStressIntensityFactor Energyreleaserate G andStressintensityfactor K aretwotparametersdescribing cracks. G isaparameterbasedonthestrainenergy,and K isbasedonthestressnearthe cracktip.ConsideringthetwoEquationsin1.7,arelationshipbetweenthetwoparameters canbedescribedforplanestrainconditionsasinEq.1.8. G = ˇ˙ 2 a E K I = ˙ p ˇa (1.7) G = K 2 1 v 2 E (1.8) 1.4.4 Elastic-PlasticFractureMechanics(EPFM) Theprevioustwoparameters,theenergyreleaserateandstressintensityfactordon'tde- scribethematerialthatexhibitingatplasticdeformationatthecracktipand woulddeformplasticallyafterreachingthemaximumstress.Twonewparameterswould beintroducedforthistypeofmaterials:Cracktipopeningdisplacement(CTOD)andJ- integral. 1.4.4.1 Cracktipopeningdisplacement(CTOD) AfracturecriterionknownascracktipopeningdisplacementwasintroducedbyWells[26] thatmeasuresthephysicalopeningofthecracktip.CTODisthedistanceoftheopening ofaninitialcracktiptothepointofstableorunstablecrackextensioninatypicalfracture toughnesstestspecimen.Themaximumcracktipopeningduetocleavagecrackingorplastic failureistheCTOD.Materialsthatshowingelastic-plasticbehaviorbeforefracturewould 13 experienceplasticdeformationatthecracktip. 1.4.4.2 J-integral Rice[27]proposedtheJ-integralenergyapproach,whichisbasedonthedensityofthestrain energyaroundthecracktip.J-integraldescribestheindependentcrackpathofstrainenergy releaserate,applicabletobothlinearandnonlinearelasticmaterial.TheJ-integralwould haveaconstantvaluecharacterizingthestressandstraininthevicinityofthecrack tip.InLEFM, G isassumedtobetheavailableenergytoextendthecrack,whichisequalto J.However,foranelastic-plasticmaterial,partoftheenergyisusedinplasticdeformation asthecrackpropagates. 14 Chapter2: FractureToughnessExperiment Themethodologyofthisstudyisdescribedinthischapterasfollows.Sincethebaseof thisthesisisthefractureexperiment,thesectionidenthestandardsthatwere adaptedfortesting,fromdesigningthesamples,performingthetest,tocalculatingthe properties.Preparingthematerialandmanufacturingthespecimenstookadecentamount ofthechapterduetoitstroleinresults.Beforemovingontothenextchapter thatdiscussingtheresults,detailedinformationwasincludedaboutthetestingprocedure anddataacquisition. 2.1 TestingStandardsandCalculations ThemodeIplanestrainfracturetoughnesstestforplasticmaterialsfollowsTheASTM D5045standardtodeterminethecriticalstressintensityfactor K IC ,andtheenergyperunit areaofcracksurfaceorcriticalstrainenergyreleaserate G IC .ASTME399formetallic materialswithbrittlefractureisusedformoredetailsandrequirements.Thestandard permitstwotspecimenshapes:singleedgenotchedbend(SENB)andcompact tension(CT)showninFigure2.1(a).Thecompacttension(CT) hasbeenselectedforthisresearch.Thestandardindicatesthatthreemeasurementsare necessaryfor K IC and G IC calculations:thethicknessB,thecracklengtha,andthewidth W.Therecommendedtestingconditionforthetemperatureis23 C,andthecross-head displacementratetobe(10mm/min).Theloadingtimesshouldn'tbelessthan1msbecause theriskofdynamiccausingerrors.Thestandardrequiresatleastthreereplicate testsforeachmaterialconditionandaccurateintegrationoftheloadversaloadingpoint 15 Figure2.1:TheASTMD5045standard[5]:(a)Specimen(b)Loadvsloadingpointdis- placementcurve. displacement,whichisusedtodetermineaccurateresultsofcriticalstrainenergyrelease rate G IC .Theidealcaseofthetestisalineardiagramwithasuddendropoftheloadat theinstantofcrackinitiation[5]. Forpre-cracking,thestandardASTMD5045recommendsthenaturalcracktobemade bysawingortappingafreshrazorblade.Thelengthofthepre-crackshouldbeatleast twicelongerthanthewidthofthesawed-inslotorthetipradiusofthemachinednotch.If thepre-crackcannotbegeneratedbytappingtherazorbecauseofthematerialbrittleness, slidingtherazorbladeacrossthemachinedgrooveistheotheroption.Pressingtherazorinto themachinedgrooveshouldbeavoidedforductilematerialsbecauseoftheriskofinducing residualstressesatthecracktipthatmightpromotehigher K IC and G IC values. IntheloadvsloadingpointdisplacementcurveshowninFigure2.1(b).AB'isasketched linewith5%lessslopethantheABline,andthecorrespondingpinttotheintersection betweenthelineAB'andtheload-displacementcurveis P Q .If P max isbetweenABand AB',itwouldbecalled P Q ,andwillbeusedtocalculate K Q .Ifnot, P Q willbeused. 16 Moreover,if P max =P Q islessthan1.1,then P Q isvaluedtobeused;otherwise,thetest wouldbeinvalid. K Q ,whichissofaraconditionalfracturetoughnessuntilpassthevalidity Eq.2.2,canbecalculatedusingEq.2.1.WhereBandWarethethicknessandthewidth, respectively,and f ( x )isadimensionlessfactorthatdependsontheratio x = a=W . K Q becomes K IC whenitpassesthevchickofsizecriteriainEq.2.2where K Q isthe conditional K IC ,and ˙ y istheyieldstressofthepolymer.Thisrelationshipwillensurethat thicknessBisenoughtoconsidertheproblemfollowingtheplanestraincondition.The term( W a )istoensurepreventingplasticityintheligamentwhiletheothersideofthe equationisrepresentingthesmallsizeoftheprocesszone,thattheinitialassumptionof LEFMisbasedon. K Q = P Q BW 1 2 ! f ( x )(2.1) f ( x )= (2+ x )(0 : 886+4 : 64 x 13 : 32 x 2 +14 : 72 x 2 5 : 6 x 4 ) (1 x ) 3 2 B;a; ( W a ) > 2 : 5 K Q ˙ y 2 (2.2) Forcalculatinganaccuratecriticalstrainenergyreleaserate G IC ,acorrectiontotheload- displacementcurveisrequiredduotopinpenetration.Thatinvolvesloadinganunnotched CTsampletothepointthattheregularspecimenwouldfailthensubtractstheresulting areaunderthecurvefromtheonesobtainedfromthenotchedsamples.Thecorrected newenergyisrepresentingtherequiredenergyforthefractureaftersubtractingthepin penetrationEq.2.3isusedtocalculate G IC ,where U isthecorrectedcriticalenergy ortheareaundertheload-displacementcurve,and ; isadimensionlessfactorthatdepends 17 ontheratio x = a=W . G IC = U ( BW ; ) (2.3) ; = (1 : 9118+19 : 118 x 2 : 5122 x 2 23 : 226 x 3 +20 : 54 x 4 )(1 x ) (1 : 9118 5 : 0244 x 69 : 678 x 2 +82 : 16 x 3 )(1 x )+2(1 : 9118+19 : 118 x 2 : 5122 x 2 23 : 226 x 3 +20 : 54 x 4 ) 2.2 MaterialsandMethods Twothermosetepoxyresinshavebeencharacterizedforfracturetoughnessinthisthe- sis:SC-15andEPON862.SC-15,alow-viscosity,rubbertoughenedepoxycuredwith aCycloaliphaticamine,wasobtainedfromAppliedPoleramic(Benicia,CA).EPON862 (di-glycidyletherofbisphenol-Fepoxy(DGEBF))anditscuringagent`W'(DETDA(di- ethyltoluenediamine))wereobtainedfromMiller-StephensonChemicalCo.Thenanopar- ticlesthatwereusedinthisstudyareGraphenenanoplateletsandnano-silica.Graphene Nanoplatelets(xGnP)areuniquenanoparticlesconsistingofshortstacksofgraphene.xGnP gradeCparticlesobtainedfromXGSciences,consistofaggregatesofsub-micronplatelets thathaveaparticlediameteroflessthan2micronsandatypicalparticlethicknessofafew nanometerswithaveragesurfaceareasof750 m 2 =g [28].Thenano-silicaparticles(MEK- AC-5140)withanaveragediameterof80 nm wereobtainedfromNissanChemicalAmerican Corporation.Dr.ShiwangCheng,afacultymemberoftheChemicalengineeringandmate- rialssciencedepartmentofMSU,suppliedtheparticlesandpreparedtheepoxieswiththe nanoadditive.xGnPweredispersedintoEPON862andSC-15in0.1wt%and0.5wt%while thenano-silicaparticlesweredispersedonlyinEPON862in0.1wt%and0.5wt%.Thedis- persionmethodisanessentialstepforgettingthemostmechanicalbondingandenhancing themechanicalperformance.tdispersionmethodswerereviewedinsection1.3.2. 18 xGnPweredirectlydispersedinTetrahydrofuran(THF)ataconcentrationof0.1wt%.The Graphene/THFsuspensionwasfurtherdispersedwith1-hoursonicationbeforedispersing intoEPON862andSC-15.TheNano-silicaparticles(MEK-AC-5140)wereprecipitated intoHexaneandresuspendedintoTetrahydrofuran(THF)uptoaconcentrationof10wt% beforedispersingintotheEPON862.AftertheepoxiesbeingdeliveredbyDr.Cheng,we stillhaveonemoresteptopreparethemformanufacturing,whichissolventevaporation. Forepoxiespreparedwiththenanoparticles,fullevaporationofthesolventisneeded beforestartingtomixtheepoxieswiththecuringagents.Otherwise,amassivereduction inthemechanicalpropertieswilloccur.Therearemultiplemethodstoevaporatesolvents, dependingontheamountofsolventandequipmentavailability.Inoursituation,avacuum chamberwasusedtoreducetheboilingtemperatureofthesolvent;however,itwasfoundto beinadequate.Subsequently,aheatingsourcewasusedtoreduceviscosityandtomakeit easierforthesolventtobereleased,Figure2.2.Forthelaststageoftheevaporation,stirring theepoxieswereneededtoensuretheremovalofallunwantedsolvent.Allthesestepswere weightmonitoredbyweightingthemixturetogettingridofallthesolvent.These stepstookanaverageofsixdays. 2.2.1 CuringCycleandSpecimenPreparation Themixingweightratiooftheepoxiestocuringagentsis100:30forSC-15and100:26.4 forEPON862,asrecommendedbythemanufacturer.Themixtureofthetwosystemswas degassedusingaregularvacuumchambertoremovethebubblescreatedduringthestirring process.Ittook25mintoremoveallbubblesinSC-15.ForEPON862,additionalheating isrequiredsinceEPON862hasahigherviscositycomparedtoSC-15.Afterdegassing,the resinswerepouredintothepreheatedsiliconmolds.Thesiliconmoldsweremadewitha 19 Figure2.2:Solventevaporationprocess. stainlesssteelprototype,whichwasmachinedusingElectricalDischargingMachine(EDM), asshowninFigure2.3. Afterpouringthemixture,thesiliconmoldswereplacedintoanovenandsubjectedto acurecyclewingliterature[18,29]andconsideringmanufacturerrecommendations.For SC-15,thesampleswerecuredat60 Cfor4hoursandthenpost-curedat121 Cforother 3hours.ForEPON862,thecyclehastworamps:theonefor30minfrom90 Cto 121 C,thenmaintainingat121 Cfor2h.Thesecondrampisforanother30minfrom 121 Cto177 Candthenmaintainsthetempat177 Cforanother2h.Afterthecuring cyclethemoldswerecooledtoroomtemperature,andthesampleswerereadyto betested,seeFigure2.4. AsshowninFigures2.5and2.6,theoriginalcolorofEPON862samplesisyellow 20 Figure2.3:Sample'sdesignandsiliconmolds:(a)Thedesignthestainlesssteelprototype in(mm)following thestandards[5].(b)Thestainlesssteelprototype andthesiliconmold.Figure2.4:Aftercompletingthecuringcycle:(a)Samplesliftinsidetheopendooroventocooldownafter thecuringcycle.(b)Samplesarereadytobecarefullyextractedfromthemolds. 21andtransparent,whereasSC-15samplesarewhiteandopaque.Afteradding0.1wt%of xGnP,theEPON862samplesturnedinblackwhiletheSC-15samplesbecamedarkgray. With0.5wt%ofxGnP,EPON862stayedblackandtheSC-15changedtofullyblack.For EPON862sampleswith0.1wt%and0.5wt%ofnano-silica,thesampleslostitstransparent gradually.Fordigitalimagecorrelation(DIC)measurement,allsampleshavebeenpainted withwhiteandthenblackspraypainttocreatespecklesonsurface. Figure2.5:SC-15samples,fromright:baseline,0.1wt%,then0.5wt%ofxGnP. Figure2.6:EPON862samples:(a)0.1wt%,0.5wt%ofnano-silica.(b)0.1wt%,0.5wt%ofxGnP.(c)Baseline. 2.3 ExperimentSetup ForthefracturetoughnessModeIexperiment,ASTMstandardD5045[5]hasbeenfollowed. TheexperimentswereperformedusingtheMTSInsightElectromechanicaltestframewith 10KNloadingunit,asshowninFigure2.7.Tocapturetheimagesduringexperimentfor DICmeasurement,aStingraycamerawithimagepre-processingbyAlliedVisionwasused. 22 Figure2.7:Theexperimentsetupwithcameraandlightsource. Theimageswererecordedatarateof20imagespersecondtomatchthemachine'ssampling rateof20Hz.Thetestsrunningtimewereabout3to5.5secondsdependingonthematerial andtheamountofneededforfracturewithcross-headspeed10 mm=min .Duo tothesmallsizeoftheCTspecimenusedinthiswork,insteadofusingstandardcompact tension(CT)analternativeloadingmethodwasdevelopedasshowninFigure2.8.A 5mmhollowtensionpinandatoughcopperaluminumwirewereusedtolinkthespecimens tothetestingmachineusingtheregulartensilegrip.Additionalattentionwaspaidto thesamples'alignmentforeverytrialtoensurehavingtheloadperpendiculartothecrack surface.Thedimensions,theinitialandcracklengthofthesamplesweremeasured perASTMstandardD5045.Afterperformingthetestandobtainingdataandimages,DIC analysiswasperformedandtheresultwillbediscussedinchapter3. 23 Figure2.8:Samplesarrangementbeforeattachingtothetensilegrip:(a)Frontview.(b)Sideview. 2.4 DataAcquisition DICisanon-contactopticaltechniqueforthemeasurementofdeformation,and strainonthesurfaceofmaterialsandstructures.Itcanbeusedinbothstaticanddynamic conditions,anditsapplicationsrangefrommicrosizetestingtolargestructures.Inme- chanicaltestingsuchastensile,torsion,bending,andfracturetesting,DIChasbeenused toreplacestraingaugeandextensometermeasurement. DICanalysiswasperformedusingGOMsoftware.ThefourimagesinFigure2.9show thetypicaldeformationprocessofaCTspecimeninfracturetesting.Usinganoptical extensometerinGOM,thedisplacementattheloadingpointwasmeasured.The load-displacementcurvewasthenusedtocalculatetheenergyreleaserates.Thismethodis moreaccuratethanthedisplacementrecordedbythecross-headdisplacementofthetesting machine.AnothermeasurementwastheCracktipopeningdisplacement(CTOP).CTOPisa fracturecriterionassociatedwithEPFM.Itisalsohelpfulforrecordingthesmallplasticityat thecracktip.Thepositionswheretheloading-pointdisplacementandCTODweremeasured wereindictedinFigure2.9.TheDICdisplacementresolutionis ˘ 0 : 002 mm ,andtheDIC strainresolutionis ˘ 0 : 1%. 24 Figure2.9:Theexperiment'sstagesuntilthefracture:(a)Thesecondstillimage.(b)Themiddleofthe test.(c)Themomentbeforethefracture.(d)Themomentafterthefracture. 25 Chapter3: ResultsandDissection Inthischapter,theofpre-crackingmethodwasexaminedusingtheresultsofEBON 862specimens.Thentheexperimentalresultsoffracturetoughnessoftwoepoxieswiththe nano-additivesarepresented.Inthelastsection,thecracktipplasticzoneswereanalyzed, andtheresultswerecomparedwiththeexperimentalobservations. 3.1 tPre-crackingProceduresandtheir Thepurposeofpre-crackingistointroduceaninitialcracksimilartothatnaturallyproduced duringcrackpropagationprocess.Themeasuredfracturetoughnessdependsonthewayhow theinitialcrackisintroduced.Toinvestigatetheofinitialcrack,McAninch[29] createdthecrackbyseveralmethods,suchasinsertingttypesofthininto polymersamplesbeforecuring;scoringthesampleswithathindouble-edgedrazorblade; andusingthicksingle-edgedrazortomake\instantlypropagated"cracks,i.e.anaturalcrack propagatedaftertherazortip.Itwasfoundthat,unlikeinstantlypropagatedcracks,the specimenswithinitialcrackbyrazorscoringorinsertingthinyieldedhigherfracture toughnessvalues.McAninch'sstudyraisestheofhavingasharpcrackinfracture toughnessmeasurement. ASTMD5045standardrecommendsapre-crackingprocedureusingarazor.Tocreate apre-crackinanotchedspecimen,itsuggeststhatonecaneithertapetherazorbyhand orapplyaslidingmotion.Inthiswork,bothmethodshavebeentried.However,tapingby handwasnotttointroduceaninitialcrack.Toincreasetheload,amechanicalvise wasemployedtopressthebladeintothenotch,asshowninFigure3.1(a).Ontheother 26 Figure3.1:Thetwomethodsofpre-cracking:(a)Pressingtherazorintothenotch.(b)Slidingtherazoron thenotch. hand,themethodofapplyingaslidingmotionwassuccessfultogenerateaninitialcrack. ThismethodisshowninFigure3.1(b). Table3.1presentsthefracturetoughnessvaluesmeasuredwiththreeEPON862baseline specimens:onewiththeinitialcrackgeneratedbypressingtherazorintothenotch,andthe othertwowiththeinitialcrackgeneratedbyslidingmotion.The K IC valueofthespecimen pre-crackedbyforcingtherazorintothesampleis ˇ 1 : 99 MPa: p m ,andfor G IC is ˇ 1397 J=m 2 .Thetwospecimenspre-crackedbyslidingtherazoryieldedlowerfracturetoughness. Themeasuredvalueswere ˇ 1 : 25 MPa: p m and ˇ 0 : 75 MPa: p m in K IC ,and ˇ 623 J=m 2 and ˇ 201 J=m 2 in G IC .Theresultsshowthatpre-crackmadebypressingtherazorledtoa muchhighermeasuredfracturetoughnessthanthatmadebyslidingmotion.Furthermore, EPON862baselinematerialappearedtobeverysensitivetothepre-crackingprocess.Even forthespecimenspre-crackedwiththesameslidingmotion,themeasuredfracturetoughness wasquitet. 27 Table3.1:Comparisonbetweentwotpre-crackingmethodsonEPON862'sfracturetoughness K IC ( MPa: p m ) G IC ( J=m 2 ) Sliding0.75201 Sliding1.25623 Pressing1.991397 Table3.2comparesthefracturetoughnessvaluesmeasuredwithtwoSC-15baseline specimens.Again,thepre-crackintroducedbypressingtherazoryieldedahigherfracture toughnessvaluethantheonewithslidingmotion.Itwassuspectedthatpre-crackingby pressingtherazormayintroducelocalcompressiveresidualstressesatthecrack-tip.To examinethisDICwasusedtomeasurethestrainbeforeandafterthepre- crackingprocedurebypressingtherazor.Figure3.2presentstheDICresultsforaEPON 862baselinespecimeninthisprocess.Asshown,pre-crackingleftacompressiveresidual strainatthecracktip.Themeasuredmaximum x strainvaluewas-6.672%.Witha compressiveresidualstressnormaltothecracksurface,theforcerequiredforMode-Itype crackpropagationwouldbehigher.Thisexampleshowsthatthemeasuredhigherfracture toughnessusingspecimenspre-crackedbypressingtherazoristheartifactofimproperpre- crackingmethod.ItisnotedthatthefracturetoughnessmeasurementforSC-15appeared tobelesssensitivetothepre-crackingmethodascomparedthattoEPON862.Thiscan beattributedtothefactthatSC-15neatresinisrubbertoughened.Itisnotasbrittleas EPON862neatresin.Indeed,thexGnPandtheNano-silicamoEPON862resins werelesssensitivetopre-crackingprocess,astobediscussedinthenextsection. Table3.2:Comparisonbetweentwotpre-crackingmethodsonSC-15'sfracturetoughness K IC ( MPa: p m ) G IC ( J=m 2 ) Sliding1.547965 Pressing2.121550 28 Figure3.2:Thestrainofthepressedsample:(a)Beforeinsertingtheblade.(b) xafterinsertingthe blade.(c) yafterinsertingtheblade. 293.2 FracturetoughnessResults TheMode-IfracturetoughnessoftheEPON862andSC-15baselineresinsandthenano additivemotworesinswasmeasuredfollowingASTMD5045standardusingCTspec- imenspre-crackedbyusingarazorwithslidingmotion.Thecriticalstressintensityfactor K IC andthecriticalenergyreleaserates G IC weredetermined. 3.2.1 EPON862 Figure3.3comparesthetypicalload-displacementcurvesofEPON862baselineandEPON 862with0.1and0.5weightfractions(wt%)ofxGnP.Ascanbeseen,addingxGnPincreased theslopoftheload-displacementcurvesandthemaximumload.However,itdidnotchange theshapeofthecurve.Allsamplesexhibitedalinearcurveuptofailure,indicatingbrittle fracture.Therefore,themaximumloadswereusedtocalculatethefracturetoughnessvalue. Figure3.3:LoadvsLoading-pointdisplacementofEPON862withxGnP. 30 Figure3.4andTables3.3,3.4comparethefracturetoughnessvaluesofEPON862resins. Thebaselinesamplesweresensitivetothepre-crackingandthereforethescatterinmeasured fracturetoughnessvalueswashigh.Thisisshownbytherelativelyhighstandarddeviation (SD)andthestandarderrorofthemean(SEM)values.xGnPmoEPON862showed muchsmallerscatterinfracturetoughnessmeasurement.Adding0.1wt%ofxGnPresulted animprovementin K IC by ˘ 44.87%and G IC by ˘ 87.38%.Adding0.5wt%ofxGnPfurther improved K IC by ˘ 70%,and G IC by ˘ 156.6%. Figure3.4: K IC and G IC ofEPON862withxGnP. Table3.3: K IC ( MPa: p m )averagesofEPON862withxGnP K IC SDSEMImprovementNo.S Baseline1.0063 0.27 0.095-8 0.1wt%1.4578 0.05 0.02344.87%5 0.5wt%1.7114 0.09 0.03970%5 Table3.4: G IC ( J=m 2 )averagesofEPON862withxGnP G IC SDSEMImprovementNo.S Baseline412 221 78-8 0.1wt%772 70 3187.38%5 0.5wt%1058 44 20156.59%5 31 ToexaminethereinforcingoftnanoEPON862hasalsobeenmodi- withnano-silica.TheresultsareshowinFigure3.5andTables3.5,3.6.Adding0.1wt% nano-silica,theimprovementto K IC was ˘ 30.76%and G IC ˘ 48.85%.With0.5wt%of nano-silica, K IC wasincreasedby ˘ 43.697%,and G IC by ˘ 86.52%.Comparingwiththe resultsofxGnP,theimprovementwithnano-silicawasaboutahalfofthevalueofthatwith xGnP,asshownbyFigure3.5.TheresultsshowthatxGnPisamoretadditiveto EPON862thannano-silica. Figure3.5:ComparisonbetweenEPON862withxGnPandEPON862withNano-Silicafortweight fractions. Table3.5: K IC ( MPa: p m )averagesofEPON862withNano-silica K IC SDSEMImprovementNo.S Baseline1.0063 0.27 0.095-8 0.1wt%1.3154 0.07 0.03830.76%4 0.5wt%1.4456 0.06 0.03134.69%4 Table3.6: G IC ( J=m 2 )averagesofEPON862withNano-silica G IC SDSEMImprovementNo.S Baseline412 221 78-8 0.1wt%613 79 3948.58%4 0.5wt%769 102 5186.52%4 32 3.2.2 SC-15 ForSC-15,theresultsshowedaslightimprovementinboththestressintensityfactor K IC andstrainenergyreleaserate G IC whenadding0.1wt%ofxGnP.However,theenhancement startedtodiminishforhaving0.5wt%ofthesameparticles. Figure3.6:LoadvsLoading-pointdisplacementofSC-15withxGnP. Figure3.6comparesthetypicalload-displacementcurvesofSC-15baselineresinand SC-15mowithxGnP.Allthreetypesofsamplesdisplayedabrittlefracture.SC-15 with0.1wt%showedaslightlyhighermaximumload.However,thecurveforSC-15with 0.5wt%xGnPdisplayedaslopeevenlowerthanthebaseline,indicatingalowerof thisspecimen.ACTspecimencanhaveloweraseachspecimenmayhaveaunique initialcracklength.ToprecludethistheinitialcracklengthsofallCTspecimens wereexaminedtoensurethattheload-displacementcurvesofthreetypesofSC-15samples werecomparedusingthespecimenswithsimilarinitialcracklength.Itwasfoundthatthe slopesfortheload-displacementcurvesofSC-15with0.5wt%xGnPwereconsistentlylower 33 thanthetwoothertypesofSC-15samples.Thiscouldbecausedbyresidualsolventinthis typeofsamples.Whensolventisnotremovedcompletely,thenanoadditivemoepoxy resincanbehavesofterthanthebaselineresin.Therefore,thedatawithSC-15with0.5wt% xGnPpresentedhereshouldbetreatedwithcaution. Figure3.7andTables3.7,3.8comparethefracturetoughnessofSC-15baselineresinand SC-15with0.1Wt%,0.5wt%xGnP.UnlikethecaseofbrittleEPON862baselinesample, SC-15baselinesampleswerenotsensitivetothepre-cracking.Adding0.1wt%ofxGnP resultinanimprovementof K IC by ˘ 8.81%and G IC by ˘ 21%.SC-15with0.5wt%of xGnPresultedmuchsmallerimprovementinfracturetoughness. K IC improvedby ˘ 2.63% andthe G IC increasedby ˘ 14.6%.Thislimitedenhancementinthefracturetoughnessmay beattributedtothefactthatSC-15isalreadyrubbertoughened.Ontheotherhand,the resultforSC-15with0.5wt%ofxGnPpresentedheremaynottherealtrend.As statedpreviously,itispossiblethatthesolventwasnotremovedcompletelyinthistypeof material. Figure3.7: K IC and G IC ofSC-15withxGnP. 34 Table3.7: K IC ( MPa: p m )averagesofSC-15withxGnP K IC SDSEMImprovementNo.S Baseline1.5476 0.03 0.015-5 0.1wt%1.6840 0.05 0.0208.81%7 0.5wt%1.5884 0.06 0.0242.63%7 Table3.8: G IC ( J=m 2 )averagesofSC-15withxGnP G IC SDSEMImprovementNo.S Baseline965 46 20-5 0.1wt%1168 115 4321%7 0.5wt%1106 83 3114.6%7 3.3 StressDistributionandPlasticityCorrection Thecracktipstressisaclassicproblemoffracturemechanics.Foracentercrackin anlargeplatesubjectedtobiaxialloading,theLEFMsolutionforelasticstresses nearthecrack-tiphasbeenprovidedbyWestergaard[24].ForMode-Iloading ˙ x = K p 2 ˇr cos 2 1 sin 2 sin 3 2 ˙ y = K p 2 ˇr cos 2 1+sin 2 sin 3 2 ˝ xy = K p 2 ˇr sin 2 cos 2 cos 3 2 (3.1) WhereKistheMode-Istressintensityfactor,risthedistancetothecracktip, istheangle tothex-axismeasuredatthecracktip,asshowninFigure3.8. Figure3.8:Thestresseldnearthecracktip. 35 AlimitationofLEFMisthestresssingularityatthecrack-tip.InEq3.1,whenr approachestozero,the ˙ x and ˙ y stresscomponentsbecomeInreality,aplasticity regionwilldevelopnearthecracktipwheneverthestressexceedstheyieldstrengthofthe materialasthecracktipradiusmustbe[6,30,31].SimplecorrectiontoLEFM,suchas theIrwinapproachareavailablewhenmoderatecracktipyieldingoccurs[6],Forsubstantial yielding,otherparameterssuchJ-integralforthenonlinearmaterialbehaviormustbetaken intoaccount.Thecrack-tipplasticsizecanbeestimatedbytwomethods:theIrwinapproach andthestripyieldmodel[6].TheIrwinapproachusestheelasticstressanalysistoestimate theelastic-plasticboundary.Notethatthetermplasticzoneusuallyreferredtometals,but itisusedheretodescribetheinelasticcracktipbehavior[6].Theestimationoftheplastic zonelengthbeginsbycalculatingthenormalelasticstress ˙ y directlyaheadofthecrack along =0.Astheapproximation,theboundarybetweenelasticandplasticzone occurswhentheelasticstressessatisfyayieldcriterioninEq.3.2. ˙ y = K p 2 ˇr y = ˙ ys (3.2) Forplanestressconditions,yieldingoccurswhen ˙ y = ˙ ys .Solvingfor r y givesarst- orderestimateofplasticzonesizeasexpressedinEq3.3. r y ˇ 1 2 ˇ K 2 ˙ 2 ys (planestress)(3.3a) r y ˇ 1 6 ˇ K 2 ˙ 2 ys (planestrain)(3.3b) ThisprocessisillustratedinFigure3.9.Whenyieldingoccurs,stressesmustberedis- tributedtosatisfytheequilibrium.Forplanestrainconditions,yieldingissuppressedbythe 36 Figure3.9:First-orderandsecond-orderestimatesofplasticzonesize( r y and r p ,respectively).Thecross- hatchedarearepresentstheloadthatmustberedistributed,resultinginalargerplasticzone.Obtained from[6]. triaxialstressstate,andtheIrwinplasticzonecorrectionisreducedbyafactorof3asin Eq3.3b[6].However,specimensalwaysfollowplanestressconditionsatthesurfacesince thereisno ˙ z constrainthedeformationinthethrough-thicknessdirection. FollowingIrwin'sapproach, ˙ y stressdistributionalongthecracksurfaceforseveralCT specimenshasbeencalculated.First,theelasticstresswascalculatedusingEq.3.1.Next,the orderplasticzonesizewasestimatedusingEq.3.3a.The ˙ y stressdistributionwasthen shiftedtotheappropriateposition.Asdiscussedearlier,DICwasusedinfracturetesting tomonitorthedisplacementandstrainUsingDICresults,thestressdistributions nearthecrack-tipcanbevInthiswork,thestressjustbeforefracturewas examined. FromtheDICimagescapturedjustbeforethefracture,thethreestraincomponents inthefrontofthecrackpathweredetermined. ˙ y stressalongthesamepathwasdetermined using3DHooke'slaw.Ifthevon-Misestressvalueatapointexceedstheyieldstrength,it isassumedtofallintotheplasticzoneandsubsequentlythestressvalueisreducedtothe valueoftheyieldstrength.ThemechanicalpropertiesoftheSC-15islistedinTable3.9. 37 Table3.9:MechanicalPropertyofSC-15baseline. Young'smodulus(E)YieldStrength( ˙ ys )Poisson'sratio( v ) 2.5 GPa 60 MPa 0.33 Thevon-MisesstressiscalculatedbyEq.3.4where ˙ 1 , ˙ 2 ,and ˙ 3 aretheprincipalstresses and ˙ v isthevon-Misesstress.Theassumptionisthatthematerialstartyieldingwhenthe von-Misesstressreachestheyieldstrength ˙ ys . ˙ v = 1 p 2 h ( ˙ 1 ˙ 2 ) 2 +( ˙ 1 ˙ 3 ) 2 +( ˙ 2 ˙ 3 ) 2 i 1 2 (3.4) ThreeSC-15specimenswith0.5wt%xGnPwereexaminedaslistedinTable3.10.The proceduretocalculatetheexperimental ˙ y stressdistributionandtheexperimentalplastic zoneisillustratedusingspecimen1.FromDIC,thestraincomponentswererecordedfor eachpointnearthecrack-tipalongthecrackpathwith =0.Forexample,thestrain componentsofthepointare x =-0.4259%, y =3.008%, z =-2.482%,and xy ˇ 0%.The correspondingstresseswerecalculatedusing3DHooke'slawandthestresscomponents werefoundtobe ˙ x =-9.86MPa, ˙ y =56.42MPa.Then,thevon-Misesstress ˙ v inEq.3.4 wascalculatedfromtheprincipalstressesofthestresscomponents,andit'sfoundtobe ˙ v =61.9MPa.Thatmeansthispointfallintotheplasticzone.Forthesecondpoint,the correspondingstresseswere ˙ x =-11.09MPa, ˙ y =53.64MPa.ThevonMisesstressis ˙ v =60MPa= ˙ ys .Thispointwassetastheelasticitylimitsincetheestressreaches theyieldstrengthandthepreviouspointwerereducedtothislimit,asshowninFigure 3.10.Fromthislimit,thecorrespondinglengthfromthecracktipwassetastheestimated experimentalplasticzone,anditisfoundtobe24 mforthissample. ThisprocesswasrepeatedforallDICpointsnearthecrackusingExcel,andthecurves of ˙ y wereplotted.Forthesecondandthethirdspecimen,thesameprocesswaspreformed. 38 Table3.10:ThethreeexamplesamplesofSC-15with0.5wt%xGnP. Specimen1Specimen2Specimen3 Pre-crackingmethodSlidingSlidingOneroundsliding WidthW( mm )24.223.9223.8 Cracklengtha( mm )11.4811.1311.06 ThicknessB( mm )6.045.96.12 Criticaldisplacement( mm )0.330.390.48 P Q ( N )161159228 K IC ( MPa: p m )1.5381.5452.1 G IC ( J=m 2 )94611011835 First-orderplasticzone r y ( m)104105195 Second-orderplasticzone r p ( m)208210390 Experimentalplasticzone( m)24196311 Theestimationoftheexperimentalplasticzonewasfoundtobe196 mand311 mforthe secondandthirdspecimenrespectively. Figure3.10forthesampleandFigure3.11forsecondsampleshowsthetheoretical andtheexperimentalstressforthenormaly-direction.Basedoneachsampleparameters, theelasticstressdistributionwasdrawnusingEq.3.1forbothsamples.UsingEq.3.3b,the plasticzone r y wasfoundtobe34.87 mforthesampleand35.20 mfor thesecondonewhilethesecond-orderofplasticzonesaredoubletheBasedonthat,a newlinehasbeenplacedfortheredistributedstress,consideringtheplasticzone. Thetwosampleshaveafractureloadabout160Nandtheir K IC valueswerevery close.However,thecriticalloadingpointdisplacement(u)andcriticalstrainenergyrelease rate( G IC )valuesweret.Thesamplehasacriticaldisplacementof0.33mm and G IC of946 J=m 2 whilethesecondonehasacriticaldisplacementof0.39mmand G IC 1101 J=m 2 .Thesamplefracturedasitreachedtheyieldstrengthofthematerialwitha plasticzonemuchsmallerthantheIrwinplasticzoneestimation,whilethesecondsample crackedwithaplasticzonequitesimilartotheIrwinplasticzoneestimation. 39 Figure3.10:Thespecimen'snormalstress ˙ y distributionalongthecrackpathjustbeforethefracture. Figure3.11:Thesecondspecimen'snormalstress ˙ y distributionalongthecrackpathjustbeforethe fracture. 40 ThethirdsampleinTable3.10andFigure3.12thatwasnotcorrectlypre-cracked recordedahighercriticalloadabout228N,higher K IC about2.1 MPa: p m ,andahigher G IC about1835 J=m 2 .Thetheoreticalsolutionofthestressdistributionalsocomparedto theexperimentalstressforthenormaly-direction,asitcanbeseeninFigure3.12.The samplefracturedasitreachedtheyieldstrengthofthematerialwithaplasticzonelessthan theIrwinplasticzoneestimationby25%. Figure3.12:Thethirdspecimen'snormalstress ˙ y distributionalongthecrackpathjustbeforethefracture. Thetypical(loading-pointdisplacementversaloading)'scurves,thatusedfordetermining theenergyneededforthefracture,arenotgivinganyinductionofplasticityatthecracktip. Allcurvesshowlinerrelationshipuntilthefractureoccurs.However,thecracktipopening displacement(CTOD)isfoundtothisifthesamplehasaplasticityregionaround thecracktipandhowfar.Forthethreesamplesdiscussedearlier,anopticalextensometer isusedtoobtaintheCTODandthebetweenthesesamplesbecameclear.As 41 showninFigure3.13,thesampleappearedtohaveaverysmallplasticzonewhilethe thirdsamplehasthemost.Thismethodofanalysistiatedbetweentheandthe secondsampleintermofplasticzonewhereasaccordingtotheLEFMtheoriesthevalues wereveryclose.CTODisassociatedwiththeElastic-PlasticFractureMechanicsEPFM; however,itisevidentthatthismeasurementisalsorelevanttotheLEFMespeciallyunder theplanestrainconditionsbecauseofthesmallplasticzonearoundthecracktip. Figure3.13:LoadvsCTODforthethreesamples. 42 3.3.1 CreagerandParis(1967)'sEstimation ThestressEquations3.1andCreagerandParis[32]Equations3.5arethetwosets ofequationsdescribingtheelasticstressnearthecracktip.CreagerandParis(1967) Equations3.5hastheWestergaardpartofthesolutionplusconsideringtheblunting WithCreagerandParis'sEquations3.5,wehaveastressdistributionconsidering thecracktipradiuswhilewithEquations3.1,Irwinmowasneededtolimitthe y.StressEquations3.1estimatesthat ˙ y equals ˙ x foraverysharpcracktip; however,thatisn'tsuitableforarealmaterial.Instead,CreagerandParis(1967)looked atthesolutionfromatperspectivebystatingthatthecracktipinactualmaterial wouldbeblunt,andthetipwouldhavearadius( ˆ ).Sothatthe ˙ x startsfrom0atthe cracktipandthenreachesthemaximumvalueatashortdistance. ˙ x = K p 2 ˇr cos 2 1 sin 2 sin 3 2 + K p 2 ˇr ˆ 2 r cos 3 2 ˙ y = K p 2 ˇr cos 2 1+sin 2 sin 3 2 + K p 2 ˇr ˆ 2 r cos 3 2 ˝ xy = K p 2 ˇr sin 2 cos 2 cos 3 2 + K p 2 ˇr ˆ 2 r sin 3 2 (3.5) AcomparisonbetweenthetwotheorieshasbeenmadeinFigure3.14.Itcanbesaidthat CreagerandParis'sestimationfor ˙ y isclosetotheIrwin'smothatconsidersthe plastictothepointoftheestimatedmaximumstress.Afterthat,theydisagreesince CreagerandParissolutiondoesn'tconsiderplasticity.For ˙ x ,theconsiderationofblunting isneededsincetheexperimentaldataof ˙ x iswaybellow ˙ y .Forcalculating ˙ y and ˙ x ,CreagerandParis(1967)Equations3.5hasbeenusedat =0and( r )startsfrom ˆ 2 accordingtothetheory.Foroursamples,thecracktipradiuswasmeasuredusingadigital 43 microscopeandthevaluewasfoundtobeabout60 m. Figure3.14:ComparisonbetweenIrwin'smoandCreagerandParis'sestimation. 3.3.2 StressDistributionfortSamples'Loading Theexperimentalstressdistributionalongthecrackpathhasbeenstudiedfort loadinguntilthefracture,asshowninFigure3.15.Itisobvioushowthestressstartsto concentratenearthecracktipwhileloadingthespacemanuntilthefractureoccurred.Duo tothewaythatthecompacttensionsamplesareloaded,acompressivestressisrecorded after9 mm fromthecracktip,whichalsoincreaseswhileloadingthesample.158Nisthe peakloadbeforethefracture. 44 Figure3.15:Thenormalstress ˙ y distributionalongthecrackpathfortloading. 3.3.3 PlasticZoneShape Toestimatetheplasticzoneforallangles,anappropriateyieldcriterionhastobeappliedto theelasticstressEquations3.1.ConsideringthevonMisescriterion3.4where ˙ v isthe vonMisesstress,and ˙ 1 , ˙ 2 ,and ˙ 3 arethethreeprincipalnormalstress.BasedontheVon Misescriterion,yieldingoccurswhen ˙ v = ˙ ys andtheprincipalstressescanbeobtainedfrom Mohr'scirclerelationship.Then,bysubstitutingtheModeIstressintotheprincipal stressesandthenintotheVonMisesEquation3.4,solvingfor r y willresultintheestimate ofModeIplasticzoneradiusasafunctionof( )Equation3.6. r y ( )= 1 4 ˇ K I ˙ ys 2 1+cos + 3 2 sin 2 (3.6) Figure3.16showstheterenceinsizeandshapeoftheplasticzonesbetween theplanestressandplanestrainconditions.TheestimatesofModeIplasticzoneradius 45 asafunctionof( )andshowninFigure3.16arenotfullycorrectbecausetheyarebased onthepurelyelasticanalysis,andtheredistributionofthestresshasnotbeentakeninto account.EventheIrwinplasticitycorrectionisnottotallycorrect[6,33].Figure3.17 showsacomparisonbetweentheplanestrainplasticzoneshapeestimatedfromEq.3.6with theelastic-plasticcracktipstressobtainedfromelementsimulation,wheren characterizesthestrainhardeningrateofmaterial,and isadimensionlessfactor.The stressdistributionassociatedwiththesimulationseemstobetiltedtothesidealittlefrom theplasticzoneshapeestimatedfromtheequation. Figure3.16:TheplasticzoneshapeestimationfromtheelasticsolutionforModeI.Obtainedfrom[6]. Figure3.17:TheestressfromaelementanalysisVstheplasticzoneestimation[6]. 46 Digitalimagecorrelation(DIC)allowsustovisualizethestraindistributionaroundthe crack,whichwillgiveanideaofwhatshapethestrainandstressaredistributed.Asitcan beseeninFigure3.18,thenormalstraininthey-directionarealsotiltedtotheopposite sideofthecrack,whichmatchestheeelementanalysisoftheestressinFigure 3.17.Asdiscussedbefore,theestimationoftheplasticshapewasnottotallycorrectbecause itwasbasedonanelasticanalysis. Figure3.18:Straindistributionofy-direction. 47 Chapter4: Conclusion 4.1 SummaryandConclusion ThisresearchinvestigatedtheofGrapheneNanoplatelet(xGnP)onthefracture toughnessofEPON862andSC-15.Intwoweightratios,thexGnPwasdispersedintothe twoepoxyresins:0.1wt%and0.5wt%.Forthesakeofcomparison,nano-silicaparticles wereaddedtoEBPN862.Thefracturetoughnessofthebaselineandreinforcedresinswas investigatedwiththecompacttension(CT)experiment. ItwasobservedthatxGnPresultedinagreaterimprovementinthefracturetoughness ofEPON862thanthatofSC-15.ForEPON862,the G IC valuewas412,772,1058 J=m 2 forthebaseline,0.1wt%and0.5wt%reinforced,respectively,representinganimprovement of87%and156%.The K IC valuewas1.0,1.45,1.71 MPa: p m forthebaseline,0.1wt%and 0.5wt%reinforced,respectively,representinganimprovementof45%and70%.ForSC-15, the G IC valuewas965,1168,1106 J=m 2 forthebaseline,0.1wt%and0.5wt%reinforced, representinganimprovementof21%and14%.TheKICvaluewas1.54,1.68,1.58 MPa: p m forthebaseline,0.1wt%and0.5wt%reinforced,representinganimprovementof8.8%and 2.6%.TheadditionofxGnPledtomarginalimprovementat0.1wt%.Thisstartedto diminishat0.5wt%.ThentofxGnPbetweenthetwoepoxiesisassumedtobe becauseSC-15isalreadyrubbertoughened.Forcomparison,EPON862wasalsoreinforced with80 nm diameternano-silicaparticles.At0.1wt%and0.5wt%,theimprovementin G IC was49%and87%,respectivelyandtheimprovementin K IC was30%and34%.Itcanbe saidthatnano-silicaimprovedthe G IC by ˘ 50%and K IC by ˘ 64%oftheenhancement obtainedbyaddingxGnPforbothweightfractions. 48 Toconclude,addingxGnPwillgreatlyincreasethefracturetoughnessofafairlybrittle epoxysystem.xGnPisfoundtobemuchmoretthannano-silicaatalowconcen- tration.Themethodofintroducingthepre-crackwasfoundtohaveamajorimpactonthe measurementoffracturetoughnessvalueincompacttension(CT)experiments.Theresid- ualstrainresultingfrompre-crackingprocedurewereanalyzedusingtheDigitalImage Correlation(DIC)method,andthecorrespondingresidualstresswerecalculated.It wasobservedthatthepre-crackingprocedurethatleaveshighcompressiveresidualstresses atthecracktipresultinanincreasedfracturetoughnessvalue. 4.2 FutureWork Thefollowingimportantstepwouldbefractography,whichisthemicroscopicobservation ofthefracturesurfaces,forinterpretingthefracturemechanismsthatoccurredinthetested specimen.Thenextmilestonewouldbetestingtheenforcedepoxieswither-reinforced polymer(FRP)compositesalongwithemployingothercompositeenforcementmethods suchasaquasi-three-dimensional(Q3D)braideder.Theinvestigationcouldinclude quantifyingtheenhancementcausedbythetwomethodstoMode-IandMode-IIinterlaminar fracturetoughnessandimpactresistance. 49 APPENDIX 50 FigureA.1:Compacttensionspecimenation. TableA.1:SC-15Samples-baseline. Sample1Sample2Sample3Sample4Sample5 W( mm )23.9524.092423.9824.03 a( mm )11.1511.1711.1311.1611.12 B( mm )6.256.356.245.885.9 P Q ( N )176173173156166 K IC ( MPa: p m )1.591.521.551.491.56 G IC ( J=m 2 )9921023984894930 TableA.2:SC-15Samples-0.1wt%xGnP. Sample1Sample2Sample3Sample4Sample5Sample6Sample7 W( mm )2423.6524.3423.7823.7423.8523.83 a( mm )11.1211.09511.18411.10411.1061.1141.109 B( mm )66.216.295.845.825.655.45 P Q ( N )173196184174172159162 K IC ( MPa: p m )1.631.771.741.681.671.601.68 G IC ( J=m 2 )1144138211761097101310871276 TableA.3:SC-15Samples-0.5wt%xGnP. Sample1Sample2Sample3Sample4Sample5Sample6Sample7 W( mm )2423.923.823.923.9224.223.7 a( mm )11.3811.3311.1511.1511.13111.4811.06 B( mm )6.156.156.056.25.96.045.83 P Q ( N )170181169180158161153 K IC ( MPa: p m )1.5161.711.591.641.541.531.55 G IC ( J=m 2 )117511781194110911019461037 51 TableA.4:EPON862Samples-baseline. Sample1Sample2Sample3Sample4Sample5Sample6Sample7Sample8 W( mm )2424.0524242424.0524.124 a( mm )1111.211.511.0311.11.1051.10611.5 B( mm )5.9565.86.476.036.76.176.03 P Q ( N )92816414314214714872 K IC ( MPa: p m )0.850.760.651.221.311.211.310.7 G IC ( J=m 2 )254197169481651631729183 TableA.5:EPON862Samples-0.1wt%xGnP. Sample1Sample2Sample3Sample4Sample5 W( mm )24.052424.0824.1524.4 a( mm )11.2111.2411.2811.3511.3 B( mm )5.835.65.75.645.7 P Q ( N )148146147138159 K IC ( MPa: p m )1.431.471.441.41.54 G IC ( J=m 2 )994821719666862 TableA.6:EPON862Samples-0.5wt%xGnP. Sample1Sample2Sample3Sample4Sample5 W( mm )24.324.224.224.5524.2 a( mm )11.6411.511.5911.8311.59 B( mm )5.956.146.26.066.1 P Q ( N )189177190170185 K IC ( MPa: p m )1.851.661.781.641.62 G IC ( J=m 2 )1121104110949951038 TableA.7:EPON862Samples-0.1wt%Nano-Silica. Sample1Sample2Sample3Sample4Sample5 W( mm )24.224.224.3924.1424.1 a( mm )11.3911.411.1811.2411.21 B( mm )6.146.176.066.16.2 P Q ( N )146128140154145 K IC ( MPa: p m )1.351.181.311.411.31 G IC ( J=m 2 )742536600659530 52 TableA.8:EPON862Samples-0.5wt%Nano-Silica. Sample1Sample2Sample3Sample4 W( mm )24.0924.324.5824.6 a( mm )11.4511.521211.51 B( mm )5.825.855.365.61 P Q ( N )135152130151 K IC ( MPa: p m )1.341.481.441.50 G IC ( J=m 2 )635727798914 FigureA.2:Microscopicimageofacracktipmadebyrazorsliding. FigureA.3:Microscopicimageofacracktipmadebyrazorpressing. 53 BIBLIOGRAPHY 54 BIBLIOGRAPHY [1] D.L.Hunston,R.J.Moulton,N.J.Johnston,andW.Bascom,\Matrixresin incompositedelamination:modeifractureaspects,"in Toughenedcomposites ,ASTM International,1987. [2] N.Domun,H.Hadavinia,T.Zhang,T.Sainsbury,G.Liaghat,andS.Vahid,\Improving thefracturetoughnessandthestrengthofepoxyusingnanomaterials{areviewofthe currentstatus," Nanoscale ,vol.7,no.23,pp.10294{10329,2015. [3] E.Preiˇ,\Fracturetoughnessoffreestandingmetallicthinstudiedbybulgetest- ing,"2018. [4] T.L.AndersonandT.L.Anderson, Fracturemechanics:fundamentalsandapplications . CRCpress,2005. [5] ASTMInternational,\D5045-14StandardTestMethodsforPlane-StrainFracture ToughnessandStrainEnergyReleaseRateofPlasticMaterials,"standard,ASTM International,WestConshohocken,PA,2014. [6] T.L.Anderson, Fracturemechanics:fundamentalsandapplications .CRCpress,2017. [7] W.J.CantwellandJ.Morton,\Theimpactresistanceofcompositematerials|are- view," composites ,vol.22,no.5,pp.347{362,1991. [8] M.RichardsonandM.Wisheart,\Reviewoflow-velocityimpactpropertiesofcomposite materials," CompositesPartA:AppliedScienceandManufacturing ,vol.27,no.12, pp.1123{1131,1996. [9] N.SelaandO.Ishai,\Interlaminarfracturetoughnessandtougheningoflaminated compositematerials:areview," Composites ,vol.20,no.5,pp.423{435,1989. [10] V.Dikshit,S.K.Bhudolia,andS.C.Joshi,\Multiscalepolymercomposites:Areview oftheinterlaminarfracturetoughnessimprovement," Fibers ,vol.5,no.4,p.38,2017. [11] Y.Tang,L.Ye,Z.Zhang,andK.Friedrich,\Interlaminarfracturetoughnessand caistrengthofre-reinforcedcompositeswithnanoparticles{areview," Composites ScienceandTechnology ,vol.86,pp.26{37,2013. [12] M.A.J.Z.Wang,H.Song,Z.-Z.Yu,andN.Koratkar,\Enhanced mechanicalpropertiesofnanocompositesatlowgraphenecontent," ACSnano ,vol.3, no.12,pp.3884{3890,2009. 55 [13] R.J.Young,I.A.Kinloch,L.Gong,andK.S.Novoselov,\Themechanicsofgraphene nanocomposites:areview," CompositesScienceandTechnology ,vol.72,no.12, pp.1459{1476,2012. [14] C.Lee,X.Wei,J.W.Kysar,andJ.Hone,\Measurementoftheelasticpropertiesand intrinsicstrengthofmonolayergraphene," science ,vol.321,no.5887,pp.385{388,2008. [15] A.Kumar, Multiscalecharacterizationandmodelingofprogressivefailureinnano- graphenereinforcedcarbon/epoxycomposites .PhDthesis,UniversityofAlabamaLi- braries,2016. [16] M.A.\Graphene-basedcompositematerials," RensselaerPolytechnicInstitute: Troy,NY,USA ,2011. [17] A.S.Wajid,H.T.Ahmed,S.Das,F.Irin,A.F.Jankowski,andM.J.Green,\High- performancepristinegraphene/epoxycompositeswithenhancedmechanicalandelectri- calproperties," MacromolecularMaterialsandengineering ,vol.298,no.3,pp.339{347, 2013. [18] A.Kumar,S.Li,S.Roy,J.A.King,andG.M.Odegard,\Fracturepropertiesof nanographenereinforcedepon862thermosetpolymersystem," CompositesScienceand Technology ,vol.114,pp.87{93,2015. [19] A.KumarandS.Roy,\Characterizationofmixedmodefracturepropertiesof nanographenereinforcedepoxyandmodeidelaminationofitscarbonercompos- ite," CompositesPartB:Engineering ,vol.134,pp.98{105,2018. [20] Y.Yang,W.Rigdon,X.Huang,andX.Li,\Enhancinggraphenereinforcingpotential incompositesbyhydrogenpassivationinduceddispersion," reports ,vol.3, p.2086,2013. [21] A.A.\Vi.thephenomenaofruptureandwinsolids," Philosophicaltrans- actionsoftheroyalsocietyoflondon.SeriesA,containingpapersofamathematicalor physicalcharacter ,vol.221,no.582-593,pp.163{198,1921. [22] C.E.Inglis,\Stressesinaplateduetothepresenceofcracksandsharpcorners," Trans InstNavalArchit ,vol.55,pp.219{241,1913. [23] G.R.Irwin,\Onsetoffastcrackpropagationinhighstrengthsteelandaluminum alloys,"tech.rep.,NavalResearchLabWashingtonDC,1956. [24] H.M.Westergaard,\Bearingpressuresandcracks," TransAIME,J.Appl.Mech. ,vol.6, pp.49{53,1939. 56 [25] G.R.Irwin,\Analysisofstressesandstrainsneartheendofacracktransversinga plate," Trans.ASME,Ser.E,J.Appl.Mech. ,vol.24,pp.361{364,1957. [26] A.Wells,\Unstablecrackpropagationinmetals:cleavageandfastfracture,"in Pro- ceedingsofthecrackpropagationsymposium ,vol.1,1961. [27] J.R.Rice,\Apathindependentintegralandtheapproximateanalysisofstraincon- centrationbynotchesandcracks,"1968. [28] X.G.Sciences,\(xGnP)GrapheneNanoplatelets-GradeC." https://xgsciences.com/product/xgnp/,April2020. [29] I.M.McAninch,J.J.LaScala,G.R.Palmese,andE.J.Robinette,\Thininitiation ofcracksforfracturetoughnessmeasurementsinepoxyresins," JournalofApplied PolymerScience ,vol.134,no.1,2017. [30] G.E.DieterandD.Bacon, Mechanicalmetallurgy ,vol.3.McGraw-hillNewYork,1986. [31] R.W.HertzbergandF.E.Hauser, Deformationandfracturemechanicsofengineering materials .1977. [32] M.CreagerandP.C.Paris,\Elasticequationsforbluntcrackswithreferenceto stresscorrosioncracking," Internationaljournaloffracturemechanics ,vol.3,no.4, pp.247{252,1967. [33] P.KumarandK.Prashant, Elementsoffracturemechanics .TataMcGraw-HillEduca- tion,2009. 57