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ABSTRACT

VARIABLE SELECTION FOR SPATIAL DATA AND ITS APPLICATION TO

NEUROIMAGING

By

Abdhi Amitabha Sarkar

Ecological research, geological studies, image analysis are a few examples of high resolu-

tion spatial data where proximity describes the relationship between data points collected

at various locations. Such dependencies play a vital role in modeling the data accurately

to improve both its predictive capacity and parameter estimation. Rapid technological ad-

vancement has brought about an abundance of such information. To better understand this

information, we are in need of feature selection techniques for spatially dependent data that

can tease out relevant predictors associated with the response of interest. When the response

variable at the various sites is in the form of discrete binary or count data we are faced with

an added layer of complexity due to the inability of explicitly describing a joint parametric

distribution. This dissertation explores the benefits of adopting a penalized quasi-likelihood

approach to model a fixed number(p) or an expanding dimension(pn) of predictor variables

with regard to a discrete spatial response variable. In the past this approach has been exten-

sively studied in longitudinal data analysis. Introducing random fields that exhibit certain

ρ-mixing conditions we are able to provide some general theoretical results of the estimator

obtained from the solving the penalized score equation. The oracle properties of the estima-

tor as described by J. Fan & Li (2001) are provided, followed by an algorithm to successfully

implement the method. Multiple simulation studies showcase the effectiveness of the method

under covariance misspecification. We apply this technique to real data obtained from the

Michigan Natural Features Inventory.



Variable selection in neuroimaging has a unique formulation that leads to selection of

activated regions of a brain in Task-based fMRI. As one of the most non-invasive formats of

studying an active brain, Task-based fMRI provides a unique opportunity in neuroscience to

study the dynamic aspects of brain function. Crude statistical techniques such as voxel-wise

regression analysis have been used in the past with some success to identify active brain

regions based on the blood-oxygen-level dependent (BOLD) signal of the image. Inspired

by graphical covariate models proposed for genetic data we incorporate a similar idea and

expand our understanding of penalized regression of weighted least squares with a separable

space-time covariance model in this setup. Two penalty terms are introduced as a result;

one for selection (LASSO) and another for smoothing (Ridge-type). We explore the inter-

pretability of the proposed model as opposed to its Bayesian counterparts, its computational

feasibility and various approaches to selecting an optimal tuning parameter in the case of

a Single-subject study. The description of the model and its implementation are presented

with discussions about theoretical implications. Extensive simulation studies and a real data

example of a human brain subject to two visual stimuli are also given to provide evidence of

the capability of this method.
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Chapter 1

Introduction and Literature Review

Spatial data innately incorporates dependencies based on proximity. Ignoring such depen-

dencies in the analysis of data gives rise to inconsistent and inaccurate results as formally

stated in Fitzmaurice (1995) and other sources. There exists a very intuitive notion of short-

range dependence that suggests, observations at locations closer to each other are more likely

to be homogeneous than observations at locations that are farther apart. A variety of ex-

amples can be seen in climate and meteorological data, geological data on Earth and outer

space, demographic social/economic data and image analysis. The focus of this dissertation

lies in studying discrete spatial data with binary or count-like information at different sites.

Several approaches to model these dependencies in the form of latent Gaussian processes are

explained in P. J. Diggle et al. (1998) with some early beginnings seen in the seventies with

extensive work done by Matheron (1970) in the development of kriging.

A parallel rather statistical approach with auto-normal and auto-logistic models were

considered using Markov Random Field by Besag (1974) with the use of the positivity con-

dition (Hammersley & Clifford, 1971). A very comprehensive take on spatial data analysis

can be seen in Cressie (1993). In chapter 6 of his book, Cressie discusses the initial pairwise-

dependence approaches that were employed for exponential distributions of the response

(Poisson, Gamma, Binomial etc.) and chapter 7 elaborates that the non-Gaussian case
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of the maximum pseudo-likelihood estimator introduced in Besag (1975) may not have a

structure to obtain an optimum solution.

P. Diggle et al. (2007) give us an overview of using the latent processes to interpolate

surfaces using generalized linear geospatial models (GLGM). However lack of closed form ex-

pressions of full and marginal likelihoods leads to adopting Expectation Maximization (EM)

algorithms or Bayesian methods. Bayesian techniques in the form of hierarchical mixed mod-

els have been prodigious in modeling parametric spatial models, (Banerjee et al., 2014) but

heavily rely on maximum likelihood methods that suffer from model misspecification. A sim-

ilar model for spatial binary data was proposed by Heagerty & Lele (1998) using a penalized

composite likelihood in the form of probit models. The model specifically assumes that there

exists a Gaussian spatial process with binary responses that are indicators of whether the

spatial process was measured with error. Here certain score function asymptotic properties

with regularity conditions formalized by Guyon (1995) are used. These regularity conditions

are required in the study of GEEs in chapter 2 of this dissertation. In the context of spatial

regression for discrete data not much has been explored in great detail. Wedderburn (1974)

published seminal work on quasi-likelihood functions describing regression based techniques

that required only parametric structures to be imposed on the first two moments of a ran-

dom variable; a semi-parametric method instead a full distributional assumption in terms of

a maximum likelihood (MLE) method. No closed form expressions were necessary for the

objective Quasi-likelihood function. Further, conditions were cautiously provided whenever

the observations are dependent, (McCullagh & Nelder, 1989, Chapter 9). Gotway & Stroup

(1997) propose a quasi-likelihood method for estimation and prediction with generalizations

to universal and indicator kriging but provide no theoretical justification.

The use of generalized estimating equations (GEE) has been very well developed in
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longitudinal data analysis also known as growth curve analysis. The methods established

in Liang & Zeger (1986) do not directly translate into the spatial setting but are modified

with the assumption of a latent process as in Zeger (1988); McShane et al. (1997). Lin &

Clayton (2005) provided very strong theoretical justifications for binary spatial data and

asymptotics under the increasing domain framework using GEE and the quasi-likelihood.

A generalization of this method was given in Lin (2008) that extends the technique for

using these methods for both binary and count data also allowing the underlying covariance

structure to be more flexible. A working correlation setup was incorporated into the existing

methodology by Lin (2010) to accommodate covariance-misspecification.

Model selection is an incredibly practical problem especially in the initial exploratory

stage of any data analysis. For estimating equations usual criterion for stepwise selection

are inadequate and therefore a modified version of the Akaike information criterion was

introduced by Pan (2001). Prior to which some other attempts were made by using Mal-

low’s Cp and AICc using Kullback-Leibler (Hurvich & Tsai, 1995). L. Wang & Qu (2009)

used the quadratic inference function which generalizes the method of moments to longi-

tudinal data and formed a novel BIC-type model selection procedure, as well as a test for

checking the goodness of fit. This method does not require either the full-likelihood or the

quasi-likelihood to have explicit closed form expressions. Modern penalized regularization

techniques in machine learning and statistics with faster convergence algorithms have gained

immense popularity and credibility over previous techniques, especially with the success of

LASSO (Tibshirani, 1996). Essentially it has been formulated to specifically cater to model

complexity in the form of high-dimensional data. The review article by Bickel et al. (2006)

describes methods for independent samples that are commonly adopted (regularized least

squares) and succeeded in addressing complex problems. Better penalty functions refer-
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ring to those satisfying oracle properties like Smoothly Clipped Absolute Deviation (SCAD,

J. Fan & Li (2001)) were soon established in the form of hard-thresholding by Donoho et

al. (1994), Adaptive LASSO by Zou (2006), the Dantzig selector by Candes & Tao (2007)

and Minimax Concave Penalty (MCP) by Zhang et al. (2010) among some potential oth-

ers. Some penalized methods for dependent samples has been investigated and developed

in a time series model by H. Wang et al. (2007). The method establishes a lasso tuning

parameter for both the covariate regression coefficients and the autoregressive covariance

parameter. A computationally efficient algorithm for GIS model selection of neighborhood

extents and patterns on lattice data was explored by H.-C. Huang et al. (2010) in the form of

spatial LASSO but lacked detailed theoretical backing. In general there appears to be a gap

of regularization techniques applied to dependent data. J. Zhu et al. (2010) established a

penalized maximum likelihood method under spatial adaptive lasso for data that has a con-

ditional auto-regressive (CAR) model to simultaneously select covariates of relevance and a

neighborhood structure.

The beginnings of penalized quasi-likelihood methods are seen in Breslow & Clayton

(1993) with the use of Laplacian methods originally formulated by Green (1987) for semi-

parametric regression models with an iterated weighted least squares algorithm for correlated

response. These models too incorporate dependence in the form of a random effect. However

the only known spatially correlated penalized quasi-likelihood methods were explored by

Dean et al. (2004). No aymptotic properties are shown and the penalty is not in the context

of regularization techniques. Additionally the spatial relationships discussed are in the form

of adjacency matrices or a Laplacian approximation of the integral of the quasi-likelihood

under a GLMM setup.

In chapter 2 of this dissertation, GEE techniques in the similar context of longitudinal
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data analysis is considered. Specifically we look at a model selection procedure for a large

number of predictors associated with a discrete spatial response on a lattice. Here the within-

cluster covariance has a spatial structure satisfying certain ρ−mixing conditions and with

no replicates at each location. This chapter considers two specific cases; the first where the

number of predictors p is fixed and the second where the dimension suffixed by n denotes is

expanding. i.e. pn →∞ as n→∞. The penalized quasi-likelihood score function properties

are shown to posses properties in the current spatial setup that match Johnson et al. (2008)

similar to results shown in Feng et al. (2016) with a working correlation that satisfies the

ρ−mixing condition in Lin (2008). Extensive simulations under various working correlations

with both count and binary data are conducted and showcased in this chapter.

Portnoy (1988) addressed a very fundamental question regarding the number of param-

eters required for valid statistical analysis using asymptotic results. It was shown that for

exponential families applying MLE methods for estimation, p2/n should be very small. Thus

formalizing methods where the number of parameters pn goes to infinity. In the case of ex-

panding dimensions, we therefore require comparable selection techniques since no results

have been established for this scenario with regard to GEE in the spatial context. Section

2.4 addresses this by using (Ortega & Rheinboldt, 1970, Theorem 6.3.4) given in L. Wang

(2011) to prove the existence and consistency of the estimate obtained from solving the

penalized quasi-likelihood estimations. Similar to L. Wang et al. (2012) we show selection

consistency obtained form the estimating equations of the penalized score function. Specif-

ically a theoretical explanation is provided that under this setup a difference in the rate at

which the dimension expands varies significantly in comparison to the longitudinal setup or

maximum likelihood setup (Portnoy, 1988). This has been briefly touched upon by Xie et

al. (2003) under the setup n is bounded and m → ∞ where m denotes the cluster of time
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points repeated for every individual. We require p4
n.n
−1 = o(1) as opposed to p2

nn
−1 = o(1)

respectively as n → ∞. In section 2.3.2 we describe the model implementation and the

use of Majorize-minimize(MM) algorithm by Hunter & Li (2005). Another important as-

pect of regularization techniques is finding an optimal tuning parameter. Cross validation

techniques tend to select over-fitted models but is widely popular and successful in methods

involving independent data. Since the concept of a complete replicate guides the method,

this intuition is not apparent in the context of dependent data. Therefore optimal values are

obtained based on a grid search over a range of values and root mean squared error is used

as the optimality criterion. The purpose of this work is to lay down foundations and ex-

plore possibilities of solving ecological or geospatial applications involving high-dimensional

data. The section 2.4.2 of chapter 2 establishes theoretical results with regard to variable

selection for expanding dimensions of covariates. The oracle properties and selection con-

sistency along with characterization of the solution of the penalized equations is provided

in detail. The method in its current form can handle scenarios where the true underlying

number of covariates (denoted by sn) satisfies s4
nn
−1 = o(1) and pn = o(n) where pn is the

total number of covariates. Two real data analyses have been performed in section 2.3.4.

The first real data is obtained from the Michigan Natural Features Inventory affiliated to

the State Department of Michigan and Michigan State University, to study fire disturbances

in the region and obtain predictors that may have sustained such disturbances in the early

1800s. The second example is county-wise data of Lung cancer incidence in the state of Iowa

obtained from SEER (Surveillance, Epidemiology and End Results program) database. Here

we are interested in learning which factors are associated with high or lower rates of lung

cancer incidence in particular areas of Iowa.

Image analysis comprises the processes of restoration of an image from contamination,
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extraction of vital information such as bar codes, facial recognition and interpretation of im-

ages. Data from these images are obtained in different forms. For example, remote sensing

by satellites, digital or chemical photography using electronic photo-detectors, exposure to

film respectively or through medical imaging such as recording transmission of X-rays, elec-

tron microscope imaging, ultrasound, magnetic resonance imaging (MRI), positron emission

tomography (PET), diffusion tensor imaging (DTI) etc. With the advent of computer tech-

nology into the processing of images and pattern recognition, spatial statistics has played a

key role. (Cressie, 1993, Section 7.4) provides details of spatial methodologies employed in

the study of images.

Neuroimaging has in the past few decades (since 1990) improved greatly in terms of data

acquisition. The most noninvasive procedures of taking an image of the brain is MRI. As

an application to variable selection for spatial data, the focus of chapter 3 is to identify

activated regions of the brain responding to a stimulus based on a task performed. fMRI

(functional magnetic resonance imaging) detects active brain parts by measuring changes in

the blood oxygen level dependent (BOLD) signal. For an in-depth understanding of fMRI

data, Lindquist (2008) describes the nature of the field from a statistician’s perspective. In

general there are two major classes of experimental designs: block designs and event-related

(Task-based designs). Another version of fMRI data is in the form of resting state fMRI

famously introduced by Biswal et al. (1995) investigating connectivity in the brain when the

human is at resting-state (performing no task). This version of the data has received mixed

critiques but has seen success in studying diseased brains compared to healthy controls. Due

to its unique structure in the context of variable selection, the focus of chapter 3 of this

dissertation is to propose a selection technique for Task-based fMRI.

Unlike the data we have seen so far, Task-based fMRI results in large amounts of noisy
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data with a complicated spatio-temporal correlation structure. Additionally in the context of

selection, the design matrix associated with the response has a handful of stimuli randomly

assigned over time. The objective therein is to select only those brain regions that are

responding to the stimulus provided over time. Thus there are co-efficients attached to each

spatial unit of the image (known as a voxel) and the data is collected over time at each voxel.

Section 3.1 provides details of the experiment conducted and the nature of the data collected.

It is important to note that the BOLD signal is regressed against a modeled hemodynamic

response function (HRF) with the intuition that the coefficient associated with the voxel

quantifies activation amplitude (the magnitude of correlation) between the stimulus and the

voxel over time.

In the early nineties voxel-wise regression analysis was extensively used due to it’s sim-

plicity with respect to both the implementation and interpretation of the method. However a

blatant draw-back was almost immediately recognized with the realization that an extremely

large number of non-independent univariate comparisons were performed, thus sizeably in-

flating the Type-I error. Statistical Parametric Maps (SPMs) (Friston et al., 1994) was

among the earliest most well established techniques referring to the probabilistic behavior

of stationary Gaussian random fields (Adler, 1981) to construct a threshold using the Euler

characteristic (Worsley et al., 1992). These techniques were studied for PET scans to calcu-

late the approximate p-value in order to find the statistically significant regions of activation.

Therefore the analysis was done in two steps. The first being a voxel-wise analysis of the

time series data and the second step being the spatial adjustments of the p-values using

random field theory (RFT). Bayesian methods had been very successfully implemented in

image restoration by Geman & Geman (1984) where they judiciously exploited the equiva-

lence of Gibbs distribution and the Markov Random Field (MRF) to construct a maximum
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a posteriori MAP estimate of the degraded image. Gössl et al. (2001) introduced a hierar-

chical Bayesian method that incorporated modified intrinsic autoregressive priors as a kind

of stochastic interpolation of neighbors for modeling spatial dependence (Gaussian MRFs)

and random walks for modeling temporal dependence. The aim of their formulation was to

be able to simultaneously model spatial and temporal dependencies directly in a single step.

Some improvements of spatial adaptivity were made by extending the above technique to

Laplacian and Cauchy-type priors by few others.

A slightly different interpretation of the voxel selection was adopted by Smith & Fahrmeir

(2007). Instead of priors on the amplitudes themselves they impose an Ising (Ising, 1925)

prior on the unobservable indicator latent variables of the activation effects. Thus the se-

lection is now based on a probability map of more likely activated areas of the brain. The

Ising prior or the binary spatial MRF treats the lattice of voxels as a graph incorporating

neighboring interactions to determine clusters of activated regions. This spatial Bayesian

variable selection (SBVS) method empirically refined issues of over smoothing and edge

effects but was not generalized to model in time dependencies due to the additional compu-

tation burden. Lee et al. (2014) integrated auto-regressive (AR) and moving average (MA)

time series to the setup of Smith & Fahrmeir (2007) and rigorously applied it to a longi-

tudinal study of Alzheimer’s disease (AD). For the block-design experiment they found the

setup not conducive for moving averages but implemented an Empirical Bayes approach to

estimate (ρ) parameter associated with AR(1). They also compared this with models AR(2),

ARMA(1,1) and MA(1) but found AR(1) to provide the best results. In general for multiple

subjects with each subject having over 100,000 voxels over a 20-30 mins study, the data

is unimaginable massive. Furthermore with Bayesian MCMC methods applied to the data

a healthy compromise between a suitable method and computational complexity must be
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sought. Musgrove et al. (2016) identify this issue and propose a partitioning of the brain

optimally and then fitting models to these partitions. They show through simulations that

this kind of parcellation does not exhibit unnecessary edge-effects and boundary problems

but no theoretical justification is provided.

Although the probability maps based on the latent indicator process determines whether

the effect of a voxel is active or inactive, it does not necessarily render a simplistic interpre-

tation of the activation amplitude itself (co-efficient of interest). Regularization methods in

bio-informatics has seen significant success with widely available data and greater computa-

tional flexibility. Infusing complex neighborhood structures that models correlated predic-

tors using graph-structured regression covariates for variable selection in high-dimensional

genomic data as seen in Li & Li (2010) is one such example. A generalization of this method

is adopted by introducing sparse laplacian shrinkage (SLS, J. Huang et al. (2011)) where the

LASSO penalty for sparsity is replaced by MCP for its oracle properties. In a similar vein, to

study the HIV type I protease structure Xue et al. (2012) incorporated coupling coefficients

using the Ising model to select the true underlying structure of interactions using the non-

concave SCAD penalty. These rather non-Bayesian methods for massive data incorporate

the coordinate-descent algorithm that produces remarkable computational efficiency. Some

key aspects of this algorithm are touched upon based on a technical report by Tseng (1988)

in section 3.6 of this dissertation. Further, Grosenick et al. (2013) provide a comprehensive

report of attempts made to use of-the-shelf machine learning methods to analyze fMRI data.

For a whole brain analysis with correlated data they provide a handful of variants of the

Graph-constrained Elastic Net (GraphNet). These methods are proposed and implemented

on whole brains of multiple subjects based on event-designs with fewer than 10 time points.

In chapter 3 of this dissertation we venture to propose a rather frequentist approach
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using regularization methods discussed above by treating the 2D or 3D image as a graph and

applying a method similar to that employed by Li & Li (2010) in a single subject study with

fMRI block-design experiments. There exists a fundamental difference in the implementation

of the method in a single subject fMRI study unlike Genomic data on multiple subjects due

to the spatio-temporal setup. Replicates for each node on the graph i.e. each voxel is in

the form of time-series and no other independent replicates exist. Thus the responses are

directly associated with the graphical structure imposed in the smoothing penalty of Li & Li

(2010). Details of the method are provided in section 3.3. Two penalty terms to a weighted

least squares objective function are applied. The first penalty term is a LASSO continuous

convex non-differentiable penalty for selection and the second is a smoothing penalty that

uses an adjacency matrix which shares properties of a Laplacian matrix on a graph to obtain

a convex penalty.

The method is demonstrated through a variety of simulation studies that uses a known

spatio-temporal formulation with some examples incorporating covariance tapering (Ex:

Wendland) to infuse additional sparsity in a rather dense matrix formulation. This induction

of sparsity improves the computationally feasibility of the method. Additionally some vari-

ation of the coordinate descent method are like path-wise coordinate descent, warm starts,

active sets and full tuning parameter search grids in section 3.3.2. We also use the block-

design to our advantage and investigate the performance of the method to find optimal tuning

parameters using time Cross Validation explained in 3.3.2.4. One more attempt is made at

efficiently locating the tuning parameter using the empirical bayes estimate obtained for the

LASSO in the Bayesian LASSO approach introduced by Park & Casella (2008). Using Zou &

Hastie (2005) we can reformulate the two penalty and convert it to a LASSO regularization

method and then use the empirical bayes estimate of the LASSO tuning parameter.
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The empirical investigation of this method suggests that there is a need to find an ade-

quate criteria to find optimal tuning parameters. Furthermore the extent of spatio- temporal

variance may affect the selection of these parameters. We would like to in the future like

to explore the theoretical properties of the estimator obtained from this method. Lastly

as a real data application we consider a single subject study where an individual’s brain is

scanned through a series of visual stimuli. Specifically two stimuli, an object and a landscape

image are shown to the individual randomly at regular intervals with some rest. The result

show which portions of th brain appear to be activated by these stimuli. This study was

conducted in Michigan State University, Department of Radiology by David Zhu.
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Chapter 2

Variable Selection for Discrete Spatial

Data using a Penalized

Quasi-likelihood Approach

2.1 Model Setup

Let us consider a discrete, binary or count random field denoted by a random variable

Y = {Y (s1), Y (s2), ..., Y (sn)} as an n-dimensional vector associated with sampling sites

s1, ..., sn arranged on a spatial domain in Rd, where d ≥ 2. Let X denote the design matrix

with n × p dimension. In the context of regression, the corresponding coefficient vector

β = (β1, .., βp)
T denotes the magnitude and direction of the impact of a predictor on the

response. The mean of the response vector E(Y ) = µ = (µ(s1), ..., µ(sn))T is assumed to be

related to the matrix X of p predictors through a link function g(·) such that g(µ) = Xβ.

Each xij is finite and corresponds to the jth predictor at site si i.e. maxij |xij | < ∞. We

further impose that this link function g(·) is smooth over µ such that the first and second

order derivatives of g−1(·) are finite.The variance function v(·) of Y is assumed to be smooth

such that V ar(Y (si)|xi.) = v(g−1((xTi β)). Let Cov(Y ) = V (µ)σ2 = V σ2 where σ2 is
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independent of µ. By virtue of the data being collected on sites at a different spatial locations,

a dependence structure in assumed for the variance of the response Y i.e. σ2V = Σ1/2ΓΣ1/2

where Γ is the true underlying symmetric, isotropic and positive definite spatial covariance

matrix and Σ = diag{v(g−1(x1β))), .., v(g−1((xnβ)))} is a diagonal matrix with variance

components.

In order to alleviate distribution restrictions for correlated discrete data that does not

have a likelihood function that can be expressed explicitly, we use a Quasi-likelihood ap-

proach, previously used by Lin & Clayton (2005). In this chapter we explore two cases in

which the design matrix X presents itself.

(Case 1) The design matrix X has a fixed number of predictors. i.e. p < n and is fixed.

(Case 2) The design matrix X has a varying number of predictors that grows as the sample

size increases. i.e. pn →∞ as n→∞ but pn < n.

Below is a brief review of Quasi-likelihood functions and score functions as described in

(McCullagh & Nelder, 1989, Chapter 9); with regard to the structure and attributes of both

cases considered above.

2.2 Penalized Quasi-likelihood Estimating Equations

The Quasi-likelihood Estimating equations for the parameter of interest β is obtained by dif-

ferentiating an objective Quasi-likelihood function QL(β), resulting in solving the equations

U(β) = 0 where the Quasi-score function is given by,

U(β) = DTV −1(Y − µ)/σ2 (2.1)

14



Dij =
∂µi
∂βj

, the partial derivative of the ith mean function with respect to jth regression

coefficient. The derivative of the score function with respect to β that yields the gradient,

∂2µi
∂βk∂βj

are assumed to be finite and equal the covariance of U(β). Specifically,

Cov(U(β)) = DTΣ−1/2ΓΣ−1/2D (2.2)

E[5βU(β)] = −DTΣ−1/2ΓΣ−1/2D (2.3)

For correlated observations, however there may be multiple roots that solves equation (2.1).

As suggested by (McCullagh & Nelder, 1989, Section 9.3.2) to ensure that β̂ is unique and

globally maximizes the quasi-likelihood, we require a V −1 such that 5βU(β) is symmetric

in order for the integral of the score-function that describes the Quasi-likelihood to be path

independent. This is satisfied by our choice of Γ explained in section 2.1.

In order to obtain asymptotic properties of the score function we require some additional

conditions on the dependence structure of the matrix Γ. Let ∧ denote a lattice subset of

the locations. Lin (2008) defined the ρ-product mixing coefficients as a generalization of

(Guyon, 1995, Page 112) as given below,

ρk,l p(m) = sup[|Cov{
∏
si∈∧1

y(si),
∏

sj∈∧2

y(sj)}| : E(|y(s)|2) ≤ 1,

| ∧1 | ≤ k, | ∧2 | ≤ l, dp(∧1,∧2) ≥ m] (2.4)

where dp(∧1,∧2) = inf{‖s1 − s2‖p : si ∈ ∧i} and F∧i is the σ algebra formed by

the random variables corresponding to ∧i. Further it is assumed that sup[E(|Y |)2+δ : s ∈

∧] < ∞ for some δ > 0. The mixing coefficient ρk,l p(m) is defined to control the extent
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of correlation between random variables at the different sites. The central limit theorem

associated with these conditions are described in section 2.3.

The objective of this chapter is to construct robust statistical methodology that can

simultaneously select variables and estimate the parameters of interest. Quasi-likelihood

estimating equations have been proven to provide unbiased estimates of β co-efficients (Lin

& Clayton, 2005). We impose a penalty to these score functions (Johnson et al., 2008), under

the current model setup and study its properties.

We therefore consider obtaining an estimate for β that minimizes the objective function,

−QL(β) + npλ(|β|) (2.5)

where pλ(|β|) is the penalty function with a tuning parameter λ. QL(β) is the quasi-

likelihood function which yields the score function in equation 2.1. Thus the new penalized

score function is given by,

Up(β) = U(β)− nqλ(|β|)sign(β) (2.6)

where qλ(|β|) = (∂pλ(|β1|)/∂|β1|sign(β1), ..., ∂pλ(|βp|)/∂(|βp|sign(βp))
T . Therefore β̂ is

the solution of Up(β) = 0.

It is important to note that U(β) is a p× 1 or pn × 1 dimensional vector for Case 1 and

Case 2 respectively. Theoretical justifications of asymptotic properties in these scenarios

vary considerably. The chapter henceforth is split in two sections addressing both cases.
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2.3 Asymptotic Properties of the Penalized

Quasi-Likelihood Estimator (p-fixed)

Lin (2008) developed a central limit theorem (CLT) for a random field on a lattice under

Lp metrics in the increasing domain framework using the mixing conditions defined in 2.4.

Under similar conditions for sampling sites {s1, .., sn} ∈ R2 on an n = n1 × n2 regular

grid, the consistency and asymptotic properties of the estimate obtained from solving the

following system of equations are established.

Up(β) = DTΣ−1/2Γ−1Σ−1/2(Y − µ)− nqλ(|β|) (2.7)

Notice that the portion of equation 2.7 associated with the penalty term is discontinuous

and non-differentiable at |βj | = 0 for some j = {1, ..p}. Therefore we study the two portions

of this equation separately. Let us begin by looking at the score function that resembles

equation 2.1.

Asymptotics for Score Function:

Let Sn =
∑
s∈∧n{Y (s) − µ(s)} and σ2

n = var(Sn) where ∧n is a strictly increasing sub-

sequence of lattice sets. With ρk,l;p(m) as defined in 2.4,

Lemma 2.3.1. Lin (2008) If a random field satisfies the conditions

(i) ρ1,2;p(m) = O(m−d−ε) for some ε > 0

(ii) ρk,l;p(m) = O(m−d) for k + l ≤ 4

then Sn/σn converges in distribution to N(0, 1) and n→∞.
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This generalization of the CLT for weakly dependent stationary processes does not have

any structural restrictions on the covariance other than (i) and (ii). It can be verified that

both exponential and spherical covariances satisfy the conditions needed for CLT. Liang &

Zeger (1986) have successfully adopted robust non-parametric covariance matrix estimates

to replace the unknown correlation matrix in the form of a working correlation matrix and

still obtained efficient unbiased estimates of the mean parameters. Therefore as long as

the true underlying correlation structure as well as the misspecified correlation structure

substituted in its place satisfy the ρ mixing conditions (i) and (ii) CLT holds. Thus during

the implementation of the method not only can the parameters of a working correlation be

misspecified, we can additionally misspecify its structure as well. Consequently, we replace

the true Γ with a working correlation Γ̂ that satisfies (i) and (ii). Henceforth, we investigate

properties of the score function with the working correlation matrix denoted by Uw(β) as

shown below,

Uw(β) = DTΣ−1/2Γ̂−1Σ−1/2(Y − µ) (2.8)

Since Y (s) follows a central limit theorem based on the above Lemma, if all elements of

DTΣ−1/2Γ̂−1Σ−1/2 are finite, then asymptotic normality for the score function 2.8 can be

established using the following assumption.

(A1) There exists a working correlation matrix Γ̂ such that n−1DTΣ−1/2Γ̂Σ−1/2D → I0(β)

as n→∞ where I0(β) is bounded and positive definite.

Based on the model setup in section 2.1, maxi |µ(si)| and maxi |µ(si)
−1| are finite and

∃ a constant M0 > 0 such that maxij |Dij | ≤ M0. Also Lin (2008) showed that for a

correlation matrix Γ where each element is denoted by γij = co||i − j||−d−ε which satisfies
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the mixing conditions in 2.3.1, we obtain that each element of the inverse matrix Γ−1 is also

bounded. Hence a constant M1 > 0 may be found such that DTΣ−1/2Γ̂−1ΓΓ̂−1Σ−1/2D ≤

M1J
TΣ1/2ΓΣ1/2J where Jn×p is a matrix of 1s. Since

∑n
j=1 γij = O(1) we have

DTΣ−1/2Γ̂−1ΓΓ̂−1Σ−1/2D = O(n) (2.9)

Thus we require the following assumption to establish asymptotic properties of the score

function in the context of replacing the true underlying correlation with a working correlation

satisfying (i),(ii) in lemma 2.3.1 and (A1).

(A2) There exists a working correlation matrix Γ̂ such that

1
nD

TΣ−1/2Γ̂−1ΓΓ̂−1Σ−1/2D → I1(β) as n→∞

where I1(β) is bounded positive definite matrix. Refer to (Lin, 2010, Appendix Proof of The-

orem 1) for details. Thus an adequate working correlation maybe found to satisfy condition

2.9. Let us consider an estimate β̂ which is the solution to Uw(β) = 0.

Lemma 2.3.2. (Lin, 2008, Theorem 2) Under current model setup assumptions (A1) and

a working correlation satisfying (i),(ii) and equation 2.9, we get,

n−1/2Uw(β)→ N(0, I0(β)).

Let us now consider the asymptotic properties of the gradient matrix that is denoted by

5βUw(β). Specifically, 5βUw(β) = (5β1
DT , ..,5βpD

T ) ◦ Σ−1/2Γ̂Σ−1/2(Y − µ) +

DT ◦ (5β1
(Σ−1/2Γ̂Σ−1/2), ...,5βp(Σ−1/2Γ̂Σ−1/2))(Y − µ) − DTΣ−1/2Γ̂Σ−1/2D. Due to

the finiteness and smoothness assumptions of the link function g(·), it can be seen that

(5β1
DT , ..,5βpD

T )◦Σ−1/2Γ̂Σ−1/2 and DT ◦ (5β1
(Σ−1/2Γ̂Σ−1/2), ...,5βp(Σ−1/2Γ̂Σ−1/2)
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are both bounded vectors. A similar justification as given in (Lin, 2008, Theorem 3) with

bounded vectors and the asymptotic normality of Y (s) we have, a multivariate normal ran-

dom variable Z∗ such that n−1/2{(5β1
DT , ..,5βpD

T ) ◦ Σ−1/2Γ̂Σ−1/2(Y − µ) +

DT ◦(5β1
(Σ−1/2Γ̂Σ−1/2), ...,5βp(Σ−1/2Γ̂Σ−1/2)(Y−µ)} is equivalent to Z∗+op(1).Therefore,

n−15β Uw(β) = n−1Op(n
1/2)− n−1DTΣ−1/2Γ̂Σ−1/2D (2.10)

Hence by assumption (A1) we have that,

n−15β Uw(β)→ −I0(β) in probability as n→∞.

The Inverse function theorem and an open ball argument can now be used for this score

function 2.8 with a Γ̂ to show that the solution β̂ of the system of equations Uw(β) = 0

is consistent with regard to the underlying true β0 asymptotically (Lin, 2008, Theorem

3 Proof). We can therefore represent these results in a compact form that is exactly an

assumption used in (Johnson et al., 2008, Condition C.1) for most commonly used estimating

equations. The combined results of asymptotic normality of the score function, the positive

definite limit in probability for the gradient function and the consistency of the β̂ estimate

result in the following corollary.

Corollary 2.3.2.1. There exists a positive definite matrix A, such that for a given constant

M > 0,

sup

|β−β0|≤Mn−1/2
|n−1/2Uw(β)− n−1/2Uw(β0)− n1/2A(β − β0)| = op(1)

So far consistency results have been established for estimates of β that solves 2.8. How-

ever situations rise where we are interested in selecting only those relevant predictors for a

relatively large number of available predictors. Incorporating a penalty term like LASSO
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(Tibshirani, 1996) or SCAD (J. Fan & Li, 2001) would allow us to simultaneously select the

variables and estimate them. There is a natural sparsity assumption that builds into this

formulation of the penalized score function. We proceed by investigating properties of the

penalty term additionally attached to 2.1.

Asymptotics for Penalty Term:

Consider the true β0 = (β01, ..., β0p)
T for a fixed p. Without loss of generality, suppose

β0j 6= 0 for j ≤ s and β0j = 0 for j > s, where s denotes the true number of non-zero βs.

We now consider solving the following system of equations and investigate the relationship

of between β0 and the solution β̂ obtained from solving U
p
w(β̂) = 0 where U

p
w(β) is given by,

U
p
w(β) = DTΣ−1/2Γ̂−1Σ−1/2(Y − µ)− nqλ(|β|) (2.11)

The penalty function, specifically its derivative must posses certain properties that basically

ensures a consistent solution with regard to selection and estimation. Therefore we consider

assumptions identical to (Johnson et al., 2008, Condition C.2).

(A3) For all nonzero θ, limn→∞n1/2qλn(|θ|) = 0 and limn→∞q′λn(|θ|) = 0

where q′λn(|θ|) := ∂
∂θqλn(|θ|)

(A4) For any M > 0, limn→∞ inf |θ|<M
√
n qλn(|θ|)→∞

Conditions (A3) particularly secures equation 2.11 whenever β0j 6= 0 from being dominated

by the penalty term since it vanishes i.e. n1/2qλn(|β0j |) = 0. For β0j = 0 for some j > s the

penalty term diverges. These properties allows us to consistently distinguish significantly

large coefficients. Further, (A4) also implies that for any consistent solutions of equation

2.11 there must satisfy zero estimates i.e. β̂j = 0. An alternative and equivalent version of
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consistency can be established by showing 2.22 described in section 2.4 for the case p→∞

as n→∞. Finally both these conditions ensure the oracle property of the penalty term as

defined by J. Fan & Li (2001). Some examples of penalty terms that satisfy (A4) and (A4)

are SCAD, Adaptive LASSO (Zou, 2006), hard-thresholding (Donoho et al., 1994) and MCP

(Zhang et al., 2010). Examples of those penalty terms that do not satisfy these conditions

are LASSO and Elastic-Net (EN,(Zou & Hastie, 2005)).

2.3.1 Selection Consistency and Oracle Property

Singularity at the origin:

The derivative of the penalty terms under consideration used in equation 2.11 for a given

βi = 0 is discontinuous. The sign function that results from modulus-type and indicator func-

tions fluctuates at the origin rendering it difficult to obtain an exact zero-crossing solution.

Therefore as suggested by (Johnson et al., 2008, Theorem 1a) a solution β̂ is zero-crossing

if,

lim sup
ε→0+

n−1U
p
wj

(β̂ + εej)(U
p
wj

(β̂ − εej) ≤ 0 (2.12)

where ej is the jth canonical unit vector. Additionally, an approximate zero crossing esti-

mator is defined by,

lim sup
n→∞

lim sup
ε→0+

n−1U
p
wj

(β̂ + εej)(U
p
wj

(β̂ − εej) ≤ 0 (2.13)

Consequently, the zero-crossing is an exact solution to the penalized score function when-

ever U
p
w is continuous. Using this definition we show that the system of equations maybe
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solved to obtain a
√
n-consistent estimator with oracle properties.

Lemma 2.3.3. Existence: Under assumptions (i),(ii) in lemma 2.3.1, (A1)-(A4) there exists

a
√
n consistent approximate zero-crossing of U

p
w(β).

With an approximate zero-crossing solution we proceed to check if the estimator posses

selection consistency of the true zeroes in the true sparse β co-efficient vector. Based on

the sparsity of β as defined in section 2.3, we assume that there are a fixed number of true

non-zero βs s << p. Then we show the following.

Lemma 2.3.4. Selection Consistency: For any
√
n consistent zero-crossing solution of

U
p
w(β) under assumptions (A3) and (A4),

lim
n→∞

P (β̂j = 0, j > s) = 1

The current estimator thus exhibits selection consistency indicating potential for quality

variable selection with a working correlation. The oracle property introduced by J. Fan

& Li (2001) is established for non-concave penalty functions such as SCAD that satisfies

assumption (A3) and (A4). The oracle property means that the penalized estimator is

asymptotically equivalent to the oracle estimator that is the ideal estimator obtained only

using the true non-zero (signal) variables without subjecting it to regularization.

Theorem 2.3.5. Oracle Property: Under assumptions (i),(ii) and (A1)-(A4), for s << p,

we denote β̂1 = (β̂1, .., β̂s)
T as the estimates of the true non-zero βs denoted by β01 =

(β01, .., β0s)
T . Then,

√
n(B11 + I011

){β̂1 − β01 + (B11 + I011
)−1bn} →d N(0, V )

23



where B11 = diag{−q′λn(|β01|)sign(β01}, I011
is an s× s sub-matrix of I0,

bn = −(qλn(|β01|)sign(β01), ..., qλn(|β0s|)sign(β0s))
T and V is the s× s sub-matrix of

I0(β0)−1I1(β0)I0(β−1
0 ).

Limiting conditions of assumptions (A1) and (A2) result in matrices I0 and I1. The

proofs of 2.3.3, 2.3.4 and 2.3.5 are provided in the Appendix of chapter 2. The theoretical

results of consistency and oracle properties of the estimator provides strong evidence of the

performance of the proposed statistical methodology. We have addressed the discontinuity of

the score function in this section by defining approximate zero-crossing. In general numerical

methods like Newton-Raphson algorithm are used to obtain the solution for the simultaneous

equations using a simple update rule. However, the penalized score function in 2.11 is

also non-differentiable and a modification is therefore needed to successfully implement the

method. The following section provides an update rule using the MM-algorithm (Hunter &

Li, 2005) and a way to incorporate a data-driven working correlation into the rule to be used

in practice.

2.3.2 Model Implementation

2.3.2.1 MM-Algorithm

Maximum likelihood estimation (MLE) have dominated the field of Statistics for a long time

with a very natural theoretical intuition and efficiency. Thus they have also been very well

formulated and studied. In the context of MLE, regularization methods have been extensively

applied to create variable selection methods. It is known that the Quasi-likelihood functions

coincide with maximum likelihood for data having distributions in the exponential family.

When a penalty term is added to this setup it too faces discontinuity and non-differentiable
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issues as mentioned in section 2.3.1. J. Fan & Li (2001) introduced a unified framework for

the optimization using local quadratic approximations to be able to use a Newton-Raphson

like update rule. This approximation for βj with an initial starting value β0
j is given by,

[pλ(|βj |)]′ = qλ(|βj |)sign(βj) ≈
qλ(|β0

j |)
|β0
j |

βj

i.e. for β0j 6= 0 and βj ≈ β0
j we have,

pλ(|βj |) ≈ pλ(|β0
j |) +

qλ(|β0
j |)

2|β0
j |
{β2
j − β

0
j

2} (2.14)

Since 2.14 is undefined at β0
j = 0, the associated βs were set to 0 and the approximation is

used only for the non-zero βs. Those βs that are set to 0 remain so for all of the iterations.

Alternatively, Hunter & Li (2005) introduced the Majorize-Minimize (MM)- Algorithm in

the context of MLE that both generalized the EM algorithm and circumvented the issue of

discontinuity while generalizing the initial local quadratic approximation previously discussed

as a special case of the MM-algorithm. By incorporating a perturbation to 2.14 smoothening

out the denominator the function does not majorize the original piece-wise differentiable pλ(·)

but a perturbed version of it. Then they proposed that asymptotically this perturbation does

not indeed affect the optimization process using a Newton-Raphson like update rule.

Similar to method implemented for MLE, the objective is to minimize the objective

function 2.5. A small perturbation in the form of small ε > 0 renders the local quadratic

approximation differentiable. Therefore we construct a modified penalized score function
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2.11 in the following way,

U
p
w,ε(β) = DTΣ−1/2Γ̂−1Σ−1/2(Y − µ)− nqλ,ε(|β|) (2.15)

where qλ,ε(|β|) = (qλ(|β1|+)sign(β1)
|β1|
ε+|β1|

, ..., qλ(|βp|+)sign(βp)
|βp|
ε+|βp|)

T and

qλ(|βj |+) = limx→|βj |+ p′λ(x), j = 1, .., p. Similar to the solution for MLE provided by

(Hunter & Li, 2005, Section 3.3) we can find a solution β̂ε of 2.15 that requires pλ(·) to be

piece-wise differentiable, non-decreasing, concave on (0,∞), continuous at 0 and p′λ(0+) <

∞. Thus in order to obtain the solution one must iteratively solve,

βk+1
ε = βkε + [H(βkε ) + nE(βkε )]−1U

p
w,ε(β

k
ε ) (2.16)

where H(βkε ) = D(βkε )TΣ−1/2(βkε )Γ̂−1Σ−1/2(βkε )D(βkε ) and

E(βkε ) = diag{
qλ(|βk1,ε|+)

ε+|βk1,ε|
, ...,

qλ(|βkp,ε|+)

ε+|βkp,ε|
}

A choice for ε was proposed by Hunter & Li (2005) ensuring that it satisfies,

|Upw,ε − U
p
w| < τ/2

where τ is a very small predetermined tolerance (Ex: τ = 10−5). Therefore this results in,

ε =
τ

2np′λ(0+)
min{|β̂0

j | : β̂
0
j 6= 0} (2.17)

Several start values of β̂0 must be employed however to ensure that the algorithm con-

verges to a global maximum, otherwise the algorithm may oscillate near local maximas.

Convergence is obtained when ‖β̂k+1− β̂k‖ < δ for some δ > 0. It is important to note that

the smoothening using the perturbation and update-rules do not drive down the βs to be
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exactly 0, thus whenever convergence is attained, if |Uw(β̂kj )| > τ , then β̂kj is set to 0.

SCAD penalty

Smoothly Clipped Absolute Deviation (SCAD, J. Fan & Li (2001)) satisfies all assumptions

associated with equation 2.15, (A3)-(A4) and has been implemented in our current efforts

to showcase the methodology. The explicit form of the derivative of the penalty is given by,

qλ(β) = λ

{
I(β ≤ λ) +

(aλ− β)+

(a− 1)λ
I(β > λ)

}
(2.18)

A recommended value of a = 3.7 provided by (J. Fan & Li, 2001, Section 2.1) is used for the

simulations in section 2.3.3.

2.3.2.2 Tuning Parameter Selection

In regularization methods selection of the optimal tuning parameter is extremely crucial for

efficiency of the method. Cross validation (CV) techniques have proven to be fruitful in

doing so. The premise of this method lies in the independence assumption of data. Spatial

data disallows for such independence and therefore CV techniques seem unreliable in this

paradigm. The most natural cross-validation technique that is usually used in kriging would

be a jackknife-like n-fold CV estimate. However for a sequence of lambda estimates it appears

to be computationally highly inefficient.

Alternative methods of using likelihood based criteria like AIC and BIC are not possible.

We may have been able to calculate the modified AIC for gee by Pan (2001), however a closed

form expression for the quasi-likelihood needs to be explicit is yet another barrier in using the

method.Therefore we resort to a grid search of the tuning parameters over plausible values
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and find the tuning parameter that satisfies an optimality criteria like minimizing prediction

error. Therefore we implement the MM-algorithm with multiple starts on a sequence of

tuning parameters and select the β̂ with the minimum mean squared error.

2.3.2.3 Construction of Working Correlation

To implement the update rule 2.16, the working correlation Γ̂ is required. Since the un-

derlying true spatial covariance function is unknown, we use the Pearson residuals at each

iteration (k). The start value β̂(0) is obtained using GLM under independence. Then at

each iteration of the update rule the pearson residuals is calculated and given by,

r̂
(k)
i = (y(si)− µi(β̂(k)))/

√
Σii(µ(β̂(k)))

The over-dispersion parameter σ2 is then estimated using σ̂2
(k) =

∑n
i=1(r̂

(k)
i )2/(n − p(k)).

After which the residuals are used to fit a variogram model denoted by γ(h) at lag h to

parametric models that satisfy (i) and (ii) of lemma 2.3.1. Γ̂ is then constructed by using

the estimated γ̂(h) as Γ̂(h) = 1 − γ̂(h). Fit using least squares may increase computation

time significantly. Certain instabilities creep when each iteration may result in a slightly

different variogram model shape. Fixing the model structure in the beginning may instill

some stability in the method. Further details maybe found using this method in Feng et al.

(2016) where it is employed specifically to spatial binary data.

2.3.3 Simulation

In order to investigate the effectiveness of the proposed method we consider two scenarios of

responses; binary and count spatial response.

Let us first consider the binary case. Three different unit-distance grids : 15×15, 20×20
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and 25×25 are considered i.e. n = 225, 400, 625 respectively. The number of predictors asso-

ciated with the response is 20 with 3 non-zero coefficients i.e.β0
20×1 = (1,−1.5, 1, 0, . . . , 0)T .

The corresponding design matrix X20×n are generated from a Uniform(0,1) distribution.

The mean of the spatial binary distribution is associated with the predictors through a logit

link i.e. E(y(si)) = πi such that log
πi

1−πi
= xTi β

0 for i = 1, . . . , n. Two spatial correlation

functions are considered the power correlation ρ
dij where dij = ‖si − sj‖ and the Matérn

covariance function with parameters θ and ν. In the tables below ρ̃ denotes the working

correlation value substituted. The binary data is generated using the archived R package

mvtBinaryEP based on the paper by Emrich & Piedmonte (1991) that describes generating

correlated binary data using tetrachoric correlation. A renewed version of the model gener-

ating function may be found in the R package MultiOrd. For each setup 100 data sets were

simulated. The estimated mean squared error (MSE) is equal to 1
100

∑100
j=1 ‖β̂j − β0‖2. We

compare results obtained from using SCAD, LASSO as the penalty function and since p < n

we used the score function obtained from the original QL method in equation 2.1.

Both tables 2.1 and 2.2 indicate that the penalized quasi-likelihood approach provides

considerably better estimates compared to the quasi-likelihood approach. The choice of work-

ing correlation parameter does not have a very significant impact on estimation efficiency.

Further there is a tendency for the method to over-select when there is a stronger spatial

dependence. Compared to results using the SCAD penalty, the LASSO penalty provides a

less sparse result yielding a more complex model with many more predictors selected but

not significantly improving the MSE. Consequently, even though TP results with the LASSO

penalty is slightly better, FP results is also larger than that for the case with the SCAD

penalty. A noticeable improvement is observed when a misspecified parameter working cor-

relation is incorporated in comparison to employing the method under the independence
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Table 2.1: Simulation results for spatial binary data generated using the power correlation
model with ρ = 0.1. QL represents a quasi-likelihood approach without a penalty term,

PQL.LASSO represents a penalized quasi-likelihood approach with the LASSO penalty and
PQL.SCAD represents a penalized quasi-likelihood approach with the SCAD penalty.
PQL.LASSO.Ind and PQL.SCAD.Ind uses the identity matrix as working correlation

assuming independence.

Grid Size MSE TP FP CP

PQL.LASSO.Ind
15× 15 0.10 2.70 7.31 0.85
20× 20 0.08 2.82 4.98 0.92
25× 25 0.07 2.99 3.97 0.95

PQL.SCAD.Ind
15× 15 0.12 2.27 3.44 0.72
20× 20 0.11 2.60 2.37 0.88
25× 25 0.14 2.94 0.70 0.96

ρ̃ = 0.1 Grid Size MSE TP FP CP

QL
15× 15 0.30 2.94 14.42 −
20× 20 0.15 2.99 13.61 −
25× 25 0.08 3.00 12.14 −

PQL.LASSO
15× 15 0.11 2.66 7.16 0.87
20× 20 0.08 2.79 4.46 0.93
25× 25 0.07 2.99 3.68 0.94

PQL.SCAD
15× 15 0.12 2.23 3.17 0.69
20× 20 0.11 2.62 2.26 0.87
25× 25 0.14 2.94 0.57 0.96

ρ̃ = 0.3 Grid Size MSE TP FP CP

QL
15× 15 0.33 2.95 14.65 −
20× 20 0.15 2.99 13.53 −
25× 25 0.09 3.00 12.76 −

PQL.LASSO
15× 15 0.10 2.63 6.22 0.86
20× 20 0.08 2.80 4.94 0.87
25× 25 0.06 2.99 3.54 0.93

PQL.SCAD
15× 15 0.12 2.35 3.11 0.78
20× 20 0.11 2.70 1.95 0.88
25× 25 0.14 2.92 0.78 0.93

assumption i.e. using the identity matrix as the working correlation. Finally both MSE and

selection results significantly improve as the sample size increases.

The proposed method with assumptions (i) and (ii) of the ρ mixing conditions in lemma

2.3.1 allow for the misspecification of parameters and the covariance structure as long as
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Table 2.2: Simulation results for spatial binary data generated using the power correlation
model with ρ = 0.3. QL represents a quasi-likelihood approach without a penalty term,

PQL.LASSO represents a penalized quasi-likelihood approach with the LASSO penalty and
PQL.SCAD represents a penalized quasi-likelihood approach with the SCAD penalty.
PQL.LASSO.Ind and PQL.SCAD.Ind uses the identity matrix as working correlation

assuming independence.

Grid Size MSE TP FP CP

PQL.LASSO.Ind
15× 15 0.10 2.58 6.59 0.91
20× 20 0.08 2.84 4.13 0.96
25× 25 0.06 2.99 4.13 0.96

PQL.SCAD.Ind
15× 15 0.11 2.26 3.04 0.87
20× 20 0.10 2.67 2.12 0.90
25× 25 0.15 2.89 0.72 0.92

ρ̃ = 0.1 Grid Size MSE TP FP CP

QL
15× 15 0.28 2.95 14.72 −
20× 20 0.15 3.00 13.74 −
25× 25 0.10 3.00 12.85 −

PQL.LASSO
15× 15 0.10 2.61 6.73 0.83
20× 20 0.07 2.90 4.42 0.92
25× 25 0.07 2.97 3.74 0.84

PQL.SCAD
15× 15 0.11 2.16 2.86 0.78
20× 20 0.10 2.74 2.44 0.90
25× 25 0.15 2.90 0.55 0.89

ρ̃ = 0.3 Grid Size MSE TP FP CP

QL
15× 15 0.25 2.98 14.32 −
20× 20 0.13 2.98 13.39 −
25× 25 0.08 3.00 12.44 −

PQL.LASSO
15× 15 0.09 2.67 5.94 0.78
20× 20 0.07 2.88 4.34 0.85
25× 25 0.06 2.99 3.64 0.93

PQL.SCAD
15× 15 0.12 2.28 3.11 0.71
20× 20 0.10 2.72 1.94 0.81
25× 25 0.14 2.93 0.63 0.88
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the assumptions are satisfied. Therefore in what follows, (see table 2.3) we generate spatial

binary data using the Matérn correlation model,

C(θ, ν) =
(
√

2νθ)νKν(
√

2νθ)

2ν−1Γ(ν)
(2.19)

where Kν(·) is the modified Bessel function of second kind. The true parameters θ0 = 0.7

and ν0 = 0.3. The working correlation is substituted with the true underlying spatial corre-

lation, one with misspecified parameters θ̃ = 0.8 and ν̃ = 0.4 and a misspecified exponential

correlation structure with ρ̃ = 0.1. The results in table 2.3 show that the performance of the

method under misspecification is comparable to results obtained under the true correlation

structure. The LASSO penalty still tends to over-select thus worsening the FP rate. A

significant improvement in selection is observed as the same size increases in all scenarios

i.e. TP rate increases and FP rate decreases as n increases.

We further explore whether multicollinearity or correlated predictors affect the perfor-

mance of the proposed method. In the setup of table 2.4 we consider once again spatial

binary data that is generated with the exponential covariance with ρ = 0.3. There is a

marked breakdown of the method for significantly high correlated variables as high as 0.9.

An investigation was made as well to consider the setup which involves a mixture of

correlated and independent variables with the true non-zero coefficients shared among both

sets of variables. Results in table 2.5 indicate that there is slight improvement in identifying

the variables thus confirming our notion that like most methods, very high multicollinearity

naturally produces identifiable issues and thus may result in poorer performance.

For the second case, we consider investigating this method for count data. Similar to

the binary setup we use three different unit-distance grids : 15 × 15, 20 × 20 and 25 × 25
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Table 2.3: Simulation results when a Matérn correlation model with θ = 0.7 and ν = 0.3 is
used to generate spatial binary data. The results are compared to misspecification of

Matérn parameters θ̃ = 0.8 and ν̃ = 0.4 and misspecification of structure exponential with
ρ̃ = 0.1.

θ̃ = 0.7, ν̃ = 0.3 Grid Size MSE TP FP CP

QL
15× 15 0.30 2.93 14.19 −
20× 20 0.13 2.98 13.32 −
25× 25 0.08 3.00 12.42 −

PQL.LASSO
15× 15 0.10 2.78 7.58 0.84
20× 20 0.07 2.94 5.01 0.91
25× 25 0.06 2.99 3.80 0.94

PQL.SCAD
15× 15 0.18 2.59 4.21 0.76
20× 20 0.15 2.71 1.38 0.77
25× 25 0.15 2.94 0.56 0.93

θ̃ = 0.8, ν̃ = 0.4 Grid Size MSE TP FP CP

QL
15× 15 0.28 2.97 14.24 −
20× 20 0.14 2.98 13.24 −
25× 25 0.08 3.00 12.46 −

PQL.LASSO
15× 15 0.10 2.83 7.46 0.85
20× 20 0.07 2.94 5.10 0.90
25× 25 0.06 2.99 3.88 0.95

PQL.SCAD
15× 15 0.18 2.51 3.91 0.73
20× 20 0.15 2.81 1.47 0.91
25× 25 0.14 2.92 0.67 0.91

ρ̃ = 0.1 Grid Size MSE TP FP CP

QL
15× 15 0.31 2.98 14.29 −
20× 20 0.14 2.99 13.63 −
25× 25 0.09 3.00 12.43 −

PQL.LASSO
15× 15 0.10 2.79 7.54 0.84
20× 20 0.07 2.95 5.39 0.93
25× 25 0.06 2.98 4.01 0.93

PQL.SCAD
15× 15 0.17 2.45 2.48 0.70
20× 20 0.15 2.85 1.24 0.86
25× 25 0.15 2.86 0.71 0.89

are considered i.e. n = 225, 400, 625 respectively. The number of predictors associated

with the response is 20 with 3 non-zero coefficients i.e.β0
20×1 = (1,−1.5, 1, 0, . . . , 0)T . The

corresponding design matrix X20×n are generated from a Uniform(0,1) distribution. The
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Table 2.4: Simulation results when the covariates are correlated. Spatial binary data with
a power correlation model (ρ = 0.3) on 20× 20 grid are considered. A power correlation

model was used to construct a working correlation matrix (ρ̃). t is the level of dependence
among covariates.

LASSO t ρ̃ MSE TP FP
1 0.1 0.14 2.55 6.19
1 0.3 0.16 2.36 5.52
3 0.1 0.19 1.72 6.75
3 0.3 0.58 1.60 7.68

SCAD t ρ̃ MSE TP FP
1 0.1 0.17 2.24 3.93
1 0.3 0.18 1.98 3.49
3 0.1 0.20 1.38 4.71
3 0.3 0.20 1.28 4.31

Table 2.5: Simulation results when 10 covariates are correlated and 10 are independent.
Spatial binary data with a power correlation model (ρ = 0.3) on 20× 20 grid are

considered. A power correlation model was used to construct a working correlation matrix
(ρ̃). t is the level of dependence among covariates. β0 = (1,−1.5, 0 . . . , 1, 0 . . . )T i.e. 2

non-zero coefficients are correlated and 1 is independent.

LASSO t ρ̃ MSE TP FP
1 0.1 0.11 2.62 5.61
1 0.3 0.12 2.62 5.59
3 0.1 0.15 2.29 4.9
3 0.3 0.20 2.32 5.74

SCAD t ρ̃ MSE TP FP
1 0.1 0.18 2.28 2.68
1 0.3 0.19 2.41 4.58
3 0.1 0.25 2.13 4.63
3 0.3 0.45 2.34 7.89

mean of the spatial Poisson distribution is associated with the predictors through a log link

i.e. E(y(si)) = λi such that log(λi) = xTi β
0 for i = 1, . . . , n. The spatial correlation

function considered once again is the power correlation ρ
dij where dij = ‖si − sj‖. In

study areas such as crime statistics, disease mapping spatial count data plays a very keen

role. However without the existence of a known joint distribution ensuring that the moment
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Table 2.6: Simulation results when the power correlation model with ρ = 0.1 is used to
generate spatial Poisson data. The power correlation model with ρ̃ is used for the working

correlation matrix for estimation.

ρ̃ = 0.1 Grid Size MSE TP FP

QL
15× 15 0.24 2.83 14.10
20× 20 0.15 3.00 9.96
25× 25 0.07 3.00 10.74

PQL.LASSO
15× 15 0.19 2.74 11.49
20× 20 0.12 3.00 7.22
25× 25 0.04 3.00 6.91

PQL.SCAD
15× 15 0.24 2.95 14.31
20× 20 0.13 3.00 9.84
25× 25 0.07 3.00 10.81

ρ̃ = 0.3 Grid Size MSE TP FP

QL
15× 15 0.25 2.76 13.71
20× 20 0.19 3.00 11.22
25× 25 0.07 3.00 10.84

PQL.LASSO
15× 15 0.21 2.54 11.50
20× 20 0.16 3.00 9.11
25× 25 0.04 3.00 7.65

PQL.SCAD
15× 15 0.24 2.87 14.52
20× 20 0.16 3.00 9.96
25× 25 0.06 3.00 10.61

conditions can hold as those assumed in the proposed method may be challenging. The

review paper by Inouye et al. (2017) covers known areas of simulating correlated count data

with a particular Poisson like marginal distribution using copula methods, mixed models

and Gaussian random fields etc. However these methods may be able to approximate the

intended model there is a fair amount of deviation that may not be easily accounted for.

Therefore we resort to generating spatial Poisson data from a Poisson-Normal model with a

conditional autoregressive (CAR) correlation structure for a Normal error with mean Xβ.

Tables 2.6 and 2.7 provide results but are not nearly as satisfactory. There is an unusual

amount of selection with very high FP values. Unfortunately we attribute the failure of
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Table 2.7: Simulation results when the power correlation model with ρ = 0.3 is used to
generate spatial Poisson data. The power correlation model with ρ̃ is used for the working

correlation matrix for estimation.

ρ̃ = 0.1 Grid Size MSE TP FP

QL
15× 15 0.24 2.99 14.38
20× 20 0.11 3.00 9.69
25× 25 0.07 3.00 11.49

PQL.LASSO
15× 15 0.19 2.92 12.16
20× 20 0.09 3.00 7.84
25× 25 0.05 3.00 10.74

PQL.SCAD
15× 15 0.25 2.98 14.62
20× 20 0.10 3.00 10.35
25× 25 0.08 3.00 12.14

ρ̃ = 0.3 Grid Size MSE TP FP

QL
15× 15 0.25 2.99 13.69
20× 20 0.13 3.00 10.68
25× 25 0.06 3.00 11.21

PQL.LASSO
15× 15 0.20 2.88 11.28
20× 20 0.11 3.00 7.49
25× 25 0.03 3.00 7.35

PQL.SCAD
15× 15 0.25 2.99 14.54
20× 20 0.11 3.00 9.33
25× 25 0.07 3.00 11.42

the method to the inability of generating data that satisfy the assumptions of the method,

especially with respect to correlation satisfying the ρ mixing conditions.

2.3.3.1 Synthetic Analysis: Lansing Woods

To illustrate how this method may perform on real data, we use the well known Lansing

woods data, originally used as application by (Lin & Clayton, 2005, Section 3). The data

obtained from (Fingleton, 1986, Page 49) consists of 576 sites located on 24 X 24 grid. At

each site there is a recording of whether there may be an oak, hickory or maple tree nearby

in that gridded block, see Fig 2.1. Lin & Clayton (2005) tried to specifically study whether

the presence of a hickory tree inhibits the presence of a maple tree. They specify that using
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a conditional logistic model would be viable technique for the data set and if the spatial

dependence were to be ignored then the method would asymptotically result in a chi-square

test for independence (Agresti & Kateri, 2011). The estimates obtained from the using the

quasi-likelihood approach for two predictors; presence of oak and hickory, with the response

presence of maple lie within the the liberal estimates using a deflated chi-square test by

Fingleton (1986) and the conditional binary logistic.

Figure 2.1: Lansing Woods Data on 24× 24 grid showing the presence/absence of a specific
tree

Maple Hickory Oak

For our purposes of implementing a variable selection technique, we considered a set of

spurious covariates that include 18 arbitrary covariates generated from 9 standard normal

and 9 standard uniform distributions and the two interesting indicator variables for oak

and hickory. By employing a SCAD penalty and using the power correlation to construct

a working correlation as described in section 2.3.2.3 we successfully discarded all artificially

added variables. The estimates obtained are shown in Table 2.8.These estimates are similar

to the results obtained from Lin & Clayton (2005) where the estimate for the co-efficient

of the presence of Hickory (-0.26) with standard deviation (0.001), thus indicating that the

method efficiently selects and estimates the parameters of interest.
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Table 2.8: Lansing Woods: Estimates and 95% C.I.

Variable Name Estimate 0.025% 0.975%
Presence of Hickory -0.24 -0.25 -0.23

Presence of Oak 0.29 0.28 0.30

2.3.4 Real Data Analysis

In this section we discuss two examples showcasing the technique discussed above. The first

example is binary response data describing the presence or absence of fire disturbances in

Crawford County in Michigan, U.S. The second is an example of count data that relates to

county-wise lung cancer incidence in Iowa, U.S. Results of these two studies are published

in Feng et al. (2016).

The notion of distances between locations in the datasets described are computed in two

alternative ways.

I Euclidean distance between the latitude and longitude coordinates in degrees.

II Geodesic distant between the latitude and longitude coordinates in kms with consid-

eration to the curvature of the Earth’s surface.

Coordinate transformation for Geodesic distance - Bearing Measurement

To convert the distances in kms with respect to the Earth’s curvature, we begin by using an

average radius from the center of the Earth i.e. R = 6378.137 kms.

Let us consider two distinct points w1 = (κ1, ψ1) and w2 = (κ2, ψ2), then we define the

differences between coordinates of w1 and w2 which are converted to radians to be,

∆Lat = (κ2− κ1) ∗ π/180 and ∆Lon = (ψ2− ψ1) ∗ π/180. Then we calculate the following,

a = sin(
∆Lat

2
) ∗ sin(

∆Lat

2
) + cos(

κ1 ∗ π
180

) ∗ cos(κ2 ∗ π
180

) ∗ sin(
∆Lon

2
) ∗ sin(

∆Lon

2
)
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b = cos(
κ1 ∗ π

180
) ∗ sin(

κ2 ∗ π
180

)− sin(
κ1 ∗ π

180
) ∗ cos(κ2 ∗ π

180
) ∗ cos(∆Lon)

c = 2 ∗ arctan(

√
a

1− a
)

d = sin(∆Lon) ∗ sin(
κ2 ∗ π

180
)

We then use a, b, c, d to calculate the length denoted by r = R ∗ c and its corresponding

angle, θ = arctan( bd).

In this example consider w1 to be the reference point, then distance r and angle θ for

every other point may be obtained relative to this reference. These points are then projected

into a Cartesian coordinate system such that the euclidean distance of two points in the new

coordinate system is the kilometer distance between them.

2.3.4.1 Crawford County Fire Disturbances

Within the spatial framework considered so far we base the real data example on a regularly

shaped political border constructed for Crawford county belonging to the high plains region

of the southern peninsula of Michigan. The response variable Y (s) is the presence or absence

of fire disturbances in a 1.2 mile resolution with a total of 1484 locations. This data dates

back to the early 1800’s using satellite information and land use surveys conducted by the

Michigan Natural Features Inventory associated with Michigan State University and the

State Department.

The covariates or explanatory variables include several vegetation types, soil types,

drainage indices and multiple topological indices at various spatial resolutions. Some pre-

liminary interpolation techniques have been used to standardize the scale of resolution for

each of these variables. To avoid issues of what is better known as separation in statistics,
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Figure 2.2: Crawford County Fire Disturbance Map

we only considered those covariates that covered over 25 percent of the spatial area under

investigation. Specifically, since we are looking at binary responses (presence/absence) we

want to make sure that multiple combinations of the explanatory exist for both outcomes,

i.e. there is sufficient variability among the covariates. We also excluded certain highly

correlated vegetation types, soil types and indices (ex: correlation =0.9). After screening

through these variables we had 11 covariates under consideration; three vegetation types

(Jack Pine-Red Pine, mixed Coniferous swamp, Pine Barrens), one soil cover type (glacial

out-wash sand and gravel and post-glacial alluvium), topographical indices (TPI) at one mile

and 240 meters radius, Schaetzl’s drainage index from Schaetzl (1986), water capacity of soils

in each 1 mile polygon, sand cover, elevation and slope of the region. The distances between

points is measured based on the geographic coordinate system (latitude and longitude) for

rectangular polygons of 1.2 square miles covering the Crawford county uniformly.

After applying the variable selection method for binary responses on the presence/absence

responses, imposing an power correlation structure and obtaining a working correlation as
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explained in section 2.3.2.3. Two relevant variables were selected using the SCAD penalty

with distances in terms of I in section 2.3.4. Table 2.9 provides the estimates and the 95%

confidence intervals using the asymptotic normality obtained from the oracle property.

Table 2.9: Crawford County: Estimates and 95% C.I.

Variable Name Estimate 0.025% 0.975%
Proportion of Pine Barrens coverage 0.0204 0.0199 0.0220

TPI 1-mile -0.0293 -0.0318 -0.0267

Diagnostically the consulting geologist provided us evidence that the vegetation type

Pine Barrens is known to be associated with presence of Fire as observed in the State of

New Jersey by Givnish (1981). When compared to a regular generalized linear model for

independent data it may be observed that the selected variables were indeed very statistically

significant.

Crawford county fire disturbances (in kms) Applying the transformation II in sec-

tion 2.3.4 to the coordinates of Crawford county and then performing the variable selection

method with SCAD penalty as described in Section 2.3.1, exactly one variable was selected.

The proportion of Pine Barrens at each location had a coefficient estimate of 0.0275 with

95% CI (0.0248, 0.0302).

2.3.4.2 Lung Cancer Incidence of Counties in Iowa

In order to showcase the method with respect to spatial count data, we provide results

obtained from using this selection technique to find relevant socio-economic predictors that

relate to lung cancer incidence in the state of Iowa. The county-wise rate of lung cancer

incidence represents a time normalized aggregate between the years 2008 and 2012. This

data is combined from sources like the Iowa State Cancer Registry (SEER data, National

Cancer Institute Ries et al. (2006)), State Data Center of Iowa (Census Data) and Iowa
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Public Health Tracking to obtain a complete spectrum of socio-economic covariates related

to each of the 99 counties in Iowa. Due to the natural regular shape of the administrative

county boundaries, we used to the Geographical Coordinate System to locate the center of

the counties. The distances between sites are related to these central locations. The response

variable Y (si) is the rate of incidence of lung cancer in the ith county.

Figure 2.3: Lung Cancer Incidence Map of Iowa and bubble plot indicating county-wise
population

The model applied to the count data was a Poisson distribution i.e. Y (si) ∼ Poisson(µi)

with µi = Eie
xiβ where Ei is the estimated population at risk for the ith county and is

calculated by considering the age-adjusted risk at both the county level and population

level. Details and formulae can be found in Dass et al. (2012).

Among the 33 original variables that were collected, a screening process was implemented

to discard repetitive and highly correlated variables. From the 19 variables that were deemed

suitable for the analysis, we applied the proposed method and used a power correlation

structure based on the empirical variogram with the iterative working correlation estimation

algorithm as described in section 2.3.2.3. This resulted in the selection of three variables.

Additional diagnostics using the Lung Cancer data indicated that under the independence
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Table 2.10: Iowa Lung Cancer Incidence Rate: Estimates and 95% C.I.

Variable Name Estimate 0.025% 0.975%
Percentage population below 18 years of age -0.0806 -0.0873 -0.0739

Percentage population with education less than 9th grade 0.0652 0.0583 0.0722
Percentage population that moved within the same county -0.0675 -0.0743 -0.0607

assumption if a generalized linear model approach is considered only the selected variables

are significant. If the analysis is only performed on the selected variables the likelihood ratio

test determined that the two models one with all variables present and the second with only

the selected variables were statistically similar.

Iowa state County-Wise Lung Cancer Data (in kms)

Applying the geodesic transformation as shown in II in section 2.3.4 and then performing

the variable selection method proposed with a SCAD penalty and a corresponding log link

function for the corresponding Poisson rate data, the same three variables were selected and

their estimates are shown in the table 2.11.

Table 2.11: Iowa Lung Cancer Incidence Rate: Estimates and 95% C.I.

Variable Name Estimate 0.025% 0.975%
Percentage population below 18 years of age -0.0925 -0.0928 -0.0922

Percentage population with education less than 9th grade 0.09404 0.0937 0.09438
Percentage population that moved within the same county -0.0839 -0.0842 -0.0835

In the following section, we build on the existing setup to try and solve issues of selection

whenever the predictor space pn → ∞ as n → ∞ and create a premise to solve high-

dimensional problems in the discrete spatial paradigm.
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2.4 Asymptotic Properties of the Penalized

Quasi-Likelihood Estimator (p - expanding

dimension)

2.4.1 Score Function Asymptotics

Until now we have demonstrated the need for variable selection techniques for applications

using discrete spatial data with fixed p number of covariates. A natural extension of this

method is the case where the number of predictors in the design matrix X increases with

the size of the data. Let us denote the dimension of the new design matrix as pn×n. These

predictors are then regressed on to a response Y (s) on different sites {s1, ..., sn} ∈ Rd as

discussed earlier in section 2.1. In this portion we will study the asymptotics of an estimator

β̂n obtained from solving generalized estimating equations where pn → ∞ as n → ∞. The

parameters of interest βn are suffixed with an n to distinguish the solution from the fixed p

case. We continue to assume that the working correlation used in the score function and the

true underlying spatial covariance satisfy the conditions on ρ−mixing. It is also important

to note that no asymptotics for the score function within the spatial architecture has been

established, to the best of our knowledge. Therefore we begin by first studying the properties

of the score function for pn →∞.

We characterize the score function in the following way,

Un(βn) =
1√
n
XTΣ1/2(βn)Γ−1Σ−1/2(βn)(Y − µ(βn)) (2.20)
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Unlike the original score function seen in equation 2.1, we consider only those smooth link

functions g(·) such that Dij =
∂µi
∂βj

= XΣ. It is known that responses Y (s) from a marginal

canonical exponential family share this property. The corresponding score function in which

a working correlation Γ̂ with properties similar to those described in section 2.3 is denoted

by Ûn(βn).

Further in L. Wang et al. (2012) a decomposition is shown of the derivative of 2.20 in

the supplementary material with derivative of matrix product properties specified in Pan

(2002).

Lemma 2.4.1. The gradient of the score function can be decomposed as,

∂Unk(βn)

∂βTn
= Hnk(βn) + Enk(βn) + Gnk(βn) (2.21)

:= −5β Unk

where, Unk(βn) = eTkUn(βn), ek is a pn dimensional basis vector with the kth element

equal to 1 and

Hnk(βn) = − 1√
n
eTkX

TΣ1/2(βn)Γ−1Σ1/2(βn)X

Enk(βn) = − 1

2
√
n
eTkXΣ1/2(βn)Γ−1Σ−3/2(βn)C(βn)D(βn)X

Gnk(βn) =
1

2
√
n
eTkXΣ1/2(βn)D(βn)J(βn)X

for D(βn) = diag(µ̈(XT
1 βn), .., µ̈(XT

n βn)), C(βn) = diag(Y1 − µ1, .., Yn − µn) and J(βn) =

diag(Γ−1Σ−1/2(βn)(Y − µ(βn))).

In order to show that there exists a sequence of roots β̂n of Ûn(βn) = 0 such that
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‖β̂n − βn‖ = Op(
√
pn/n) it is sufficient to show that ∀ε > 0 there exists a constant ∆ > 0

such that for n sufficiently large,

P ( sup
‖βn−βn0‖=∆

√
pn/n

(βn − βn0)T Ûn(βn) < 0) ≥ 1− ε (2.22)

This result follows from results similar to GEE in longitudinal models for clustered binary

data in (L. Wang et al., 2012, Section 3). Before we formally verify 2.22 we require certain

regularity conditions to hold. The absence of the summation for the score function illustrates

the case of a single subject study with the cluster size going to infinity and the cluster exhibits

spatial autocorrelation, in the context of longitudinal studies.

2.4.1.1 Regularity Conditions

Below are some regularity conditions that appear most commonly in longitudinal data anal-

ysis literature using score functions and GEE’s in L. Wang (2011), Xie et al. (2003) and

Balan et al. (2005).

(A5) supi,j |Xij | = O(
√
pn)

(A6) βn parameters belong to a compact subset B ⊆ R
pn
n , and the true unknown parameter

belongs to the interior of B and there exists a positive constant such that 0 < b1 <

g(βn0).

(A7) There exists two positive constants c1 and c2 for some α ∈ [0, 1] such that,

c1 ≤ λmin( 1
nαX

TX) ≤ λmax( 1
nαX

TX) ≤ c2.

(A8) Let Sn = {βn : ‖βn − βn0‖ ≤ ∆
√
pn/n}, then µ̇(Xβn) is uniformly bounded above

and below by positive constants and µ̈(Xβn) and
...
µ(Xβn) are uniformly bounded by
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a finite positive constant M ′ on Sn.

(A9) ‖Γ̂−1−Γ−1‖ = Op(
√
pn/n) where both Γ̂ and Γ satisfy ρ− mixing conditions and are

positive definite.

(A10) Let r = Σ−1/2(Y − µ) and E(rT r)/n < M∗ ∀n > Nε.

Assumptions (A5) and (A7) are used in the study of asymptotics of M-estimators with large

p in Portnoy (1985) and imposes the condition that XTX is positive definite. Assumption

(A6) ensures the minimum eigenvalue of Σ with diagonal entries that are a function of g have

a positive lower bound i.e. 0 ≤ b3 ≤ λmin(Σ(βn0)). Assumption (A8) is identical to (A6)

in L. Wang et al. (2012) is common in GEE literature and holds true for the log and logit

link functions. Condition (A9) was shown to be true in longitudinal data with the robust

non-parametric working correlation in (L. Wang, 2011, Example 2). In this case we require

a similar assumption with the structure of the covariances satisfying (i) and (ii) in lemma

2.3.1.

Remark 1. It is also necessary to highlight that the asymptotics presented below are valid

under the increasing domain of the spatial random field. Bachoc & Furrer (2016) under

this increasing domain framework establish a lower bound on the minimum eigen value of

the covariance matrix that is away from zero. This is a vital consequence that is necessary

for the asymptotic results that follow. (Lin, 2008, Section 2) shows algebraically that the

maximum eigen value of the inverse correlation matrix can be bounded above.

Assumption (A10) is necessary to control the sum of variance of all pairwise residuals of

a naturally unbounded random variable.

In order to show the consistency of the estimator obtained from solving 2.20, below we

note some common properties of matrix theory that are essential. For some, C > 0
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(Note 1) Consider a symmetric positive definite matrix A with dimension n× n,

then λmax(A) ≤ C · n.

(Note 2) Whenever A is invertible, − 1
C·n ≥ −λmin(A−1)

The inclusion of the working correlation and how it relates to the original score function

with regard to the expanding dimension of pn requires investigation. Therefore based on the

assumptions above we have the lemma below.

Lemma 2.4.2. Under assumptions (A5)-(A10) and p2
nn
−1 = o(1) we have

‖Ûn(βn0)− Un(βn0)‖ = Op(n
α/2√pn)

Similar results need to be established for terms based on the decomposition in lemma

2.4.1 with respect to the working correlation and therefore we have the following lemma.

Lemma 2.4.3. Assume the conditions (A5)-(A10). If n−1p2
n = o(1) then ∀∆ > 0, for

bn ∈ Rpn , we show

sup
‖βn−βn0‖≤∆

√
pn/n

sup
|bn‖=1

|bTn [5βUn(β∗n)−5βÛn(β∗n)]bn| = Op(n
α√pn)

Similar to the identities established in (L. Wang, 2011, Section 3) we require to show the

following to establish relationships between terms in the decomposition 2.4.1 where β∗n lies

between βn and βn0.

Lemma 2.4.4. Assume the conditions (A5)-(A10). If n−1p2
n = o(1) then ∀∆ > 0, we show

sup
‖βn−βn0‖≤∆

√
pn/n

|(βn − βn0)T [Ĥn(β∗n)− Ĥn(βn0)](βn − βn0)| = op(p
2
nn

α−3/2)
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Lemma 2.4.5. Assume the conditions (A5)-(A10). If n−1p4
n = o(1) then ∀∆ > 0, we show

sup
‖βn−βn0‖≤∆

√
pn/n

(βn − βn0)T [5βÛn(β∗n)− Ĥ(β∗n)](βn − βn0) = op(pn)

Proof of the lemmas above can be found in the Appendix section of chapter 2. Based

on all the notes and conditions considered above we therefore have the following theorem

that provides both the existence and consistency of the estimator obtained from solving the

system of equations in 2.20.

Theorem 2.4.6. Existence and Consistency

Assume (A5)-(A10), for α ∈ (0.5, 1] and let p4
nn
−1 = o(1), then Ûn(βn) = 0 has a root β̂n

such that ‖β̂n − βn0‖ = Op(
√
pn/n).

Proof. On the set Sn = {βn : ‖βn−βn0‖ = ∆
√
pn/n}, we would like to show 2.22, therefore

we begin by examining the Taylor expansion,

(βn − βn0)TUn(βn) = (βn − βn0)TUn(βn0)− (βn − βn0)T 5 Un(β∗n)(βn − βn0)

:= In1 + In2

where, In1 = (βn − βn0)T Ûn(βn0) + (βn − βn0)T [Un(βn0)− Ûn(βn0)]

:= In11 + In12

From lemma 2.4.2 and n−1p2
n = o(1) we have,

|In12| ≤ ‖βn − βn0)‖‖Ûn(βn0) − Un(βn0)‖ = ∆
√
pn/nOp(n

α/2√pn) = ∆op(pnn
(α−1)/2) ≤

∆op(pn)
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The last inequality holds true due to α ∈ [0, 1]. For In11 consider,

E(‖Ûn(βn0‖2) =
1

n
(Y − µ)TΣ−1/2Γ̂−1Σ1/2XXTΣ1/2Γ−1Σ−1/2(Y − µ))

≤ λmax(XXT )λmax(Γ̂−2)λmax(Σ)
1

n
E(rT r)

≤ Tr(XTX)λmax(Γ̂−2)λmax(Σ)
1

n
E(rT r)

≤ Cpn ·M∗n = C ′npn

=⇒ |In11| ≤ ‖βn−βn0‖‖Ûn(βn0)‖ ≤ k∆
√
pn/n

√
npn for some k > 0, then |In1| ≤ ∆pn.

Now consider In2 rewritten with working correlation,

In2 = −(βn − βn0)T 5β Û(β∗n)(βn − βn0)− (βn − βn0)T [5βUn(β∗n)−5βÛn(β∗n)](βn − βn0)

:= In21 + In22

where,

In21 = −(βn − βn0)T 5β Ûn(β∗n)(βn − βn0)

= −(βn − βn0)T [Ĥn(βn0)](βn − βn0)− (βn − βn0)T [Ĥn(β∗n)− Ĥn(βn0)](βn − βn0)

− (βn − βn0)T [5βÛn(β∗n)− Ĥn(βn∗)](βn − βn0)

:= In211 + In212 + In213

Evaluating each term in the following way we find,

In211 = −(βn − βn0)T [Hn(βn0)](βn − βn0)

≤ − 1√
n
λmin(Γ−1)λmin(XTX)‖βn − βn0‖2λmin(Σ)

50



≤ −c̃∆2nα
pn

n3/2

Thus |In211| = o(1) for α ∈ (0, 1) applying assumptions (A7), (A6) and (Note 2). Fur-

ther we see from lemma 2.4.4 that |In212| = op(p
2
nn

α−3/2) and from lemma 2.4.5 that

|In213| = op(pn) and In22 = op(p
3/2
n nα−1)

For a choice of α = (0.5, 1) we can therefore see (βn− βn0)TUn(βn) on the set Sn is asymp-

totically dominated in probability by In2 which is negative for a large enough ∆. �

In order to explore the distributional behavior of the score function equation 2.20, we

build up on conditions considered in the fixed p case. Therefore consider the following,

Lemma 2.4.7. If p4
nn
−1 = o(1) and assumptions (i),(ii), (A3)-(A10) then for ‖a‖ = 1

1

nα/2
aT Ûn(βn0) :=

1

n(1+α)/2
aTXTΣ1/2Γ̂−1Σ−1/2(Y − µ)→d N(0, aT I2(βn0)a)

as n→∞ where I2(βn0) is a bounded positive definite matrix.

Sketch of Proof:

Since Y (s) has a CLT from Lin (2008) as shown in section 2.3, with the assumptions of ρ

mixing conditions we can show that the linear combination of the score function is indeed

asymptotically normally distributed if the variance of the score function has a positive definite

limit.

V ar(
1

nα/2
aT Ûn(βn0)) =

1

nα+1
aTXTΣ1/2Γ̂−1ΓΓ̂−1Σ1/2Xa := aT V̂na (2.23)

51



We can further show that,

1

nα+1
aTXTΣ1/2Γ̂−1ΓΓ̂−1Σ1/2Xa ≤ 1

nα+1
aTλmax(XTX)Σ1/2Γ̂−1ΓΓ̂−1Σ1/2a

≤ K∗
1

n
aTΣ1/2Γ̂−1ΓΓ̂−1Σ1/2a

due to assumption (A7). Condition (A1) in section 2.3 provides a positive definite limit in

the special case of the identity link function. Consequently, we have,

K∗
1

n
aTΣ1/2Γ̂−1ΓΓ̂−1Σ1/2a→ aT I2(βn0)a as n→∞ (2.24)

where I2(βn0) is a positive definite matrix. Thus we are able to establish the asymptotic

distribution of score function 2.20. As a consequence we also have,

Corollary 2.4.7.1. 1

nα/2
aT V̂

−1/2
n Ûn(βn0) ∼ N(0, 1) as n→∞ for all a ∈ Rpn and ‖a‖ = 1.

We would now like to establish asymptotic normality of the GEE estimator β̂n obtained

from solving 2.20. Following along with results similar to (L. Wang, 2011, Theorem 3.8) we

can show that,

Theorem 2.4.8. Asymptotic Normality Under assumptions (i),(ii) (A1),(A5)-(A10), for

α = 1, n−1p4
n = o(1) and ‖a‖ = 1, as n→∞ we have,

1

nα/2
aT V̂

−1/2
n Ĥn(βn0)(β̂n − βn0)→d N(0, 1)

Proof. Consider the following,

1

nα/2
aT V̂−1/2

n Ûn(βn0) =
1

nα/2
aT V̂−1/2

n Un(βn0) +
1

nα/2
aT V̂−1/2

n [Ûn(βn0)− Un(βn0)] (e.1)
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=
1

nα/2
aT V̂−1/2

n 5β Un(β∗n)(β̂n − βn0) +
1

nα/2
aT V̂−1/2

n [Ûn(βn0)− Un(βn0)]

=
1

nα/2
aT V̂−1/2

n Ĥn(βn0)(β̂n − βn0) +
1

nα/2
aT V̂−1/2

n [5βUn(β∗n)− Ĥn(βn0)](β̂n − βn0)

+
1

nα/2
aT V̂−1/2

n [Ûn(βn0)− Un(βn0)]

The second inequality is due to the Taylor expansion of Un(βn0) where Un(β̂n) = 0. Since the LHS

of equation e.1 is asymptotically normal from lemma 2.4.7, it suffices to show,

sup
‖βn−βn0‖≤∆

√
pn/n

| 1

nα/2
aT V̂−1/2

n [5βUn(βn)− Ĥn(βn0)](β̂n − βn0)| = op(1) (T.1)

1

nα/2
aT V̂−1/2

n [Ûn(βn0)− Un(βn0)] = op(1) (T.2)

The proof for statements T.1 and T.2 have been redirected to the Appendix of chapter 2. �

The theoretical properties of the score function under the expanding dimension indeed

seem to preserve properties of consistency and asymptotic normality, however only under

the condition that the number of predictors pn expands very slowly with respect to n i.e.

p4
n.n
−1 = o(1). In reality, data in exploratory studies often have a large number of covariates

and the goal is to extract only interesting covariates that are significantly correlated to the

response. In the context of expanding variates, even though the initial number of parameters

may not be very large, if one begins to include interactions of variables with enough degrees

of freedom allocated, the number of covariates tends to increase with the sample size wherein

only a fraction of the considered covariates may have an important effect. Thus a penalized

approach where only sn number of true non-zero coefficients associated with the predictors

can be successfully identified with a natural sparsity assumption may be a more effective

method.
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2.4.2 Penalized Score Function Asymptotics

The method described in the rest of this section emulates established results in longitudinal

data analysis by L. Wang, Zhou, & Qu, 2012 but under the current setup. We will proceed

by using the above formulations specifically for α = 1. The new set of penalized estimating

equations that has a normalizing factor similar to what is seen for consistency results of

expanding dimensions of parameters of a response belonging to an exponential family by

Strawderman & Tsiatis (1996), is under consideration and is given by,

Û
p
n(βn) =

1

n
XTΣ1/2Γ̂−1Σ−1/2(Y − µ(βn))− qλn(|βn|)sign(βn) (2.25)

where qλn is the derivative of the penalty function described for equation 2.6 that satisfies

assumptions (A3) and (A4). The estimator β̂n is obtained by solving the equations in 2.25.

Once again we can see that Û
p
n(βn) is discontinuous at 0 for βnj = 0 for any j. Thus we

consider an approximate solution Û
p
n(βn) = o(ωn) where ωn → 0 as n → ∞. Due to the

discontinuity, once again the MM-algorithm may be implemented as shown in section 2.3.2.

Let us denote the true βn0 = (βTn10, β
T
n20)T where without loss of generality we can

assume that the first sn coefficients are associated with βn10; the truly non-zero coefficients

and the remaining pn − sn predictors associated with βn20 are the truly zero coefficients.

Based on the results obtained in 2.4.1 we require sn = o(n1/4). Therefore we include one

more assumption with regard to the penalty function similar to (A7) in L. Wang et al. (2012),

(A11) min1≤j≤sn |βn0j |/λn → ∞, λn → 0,
nλ2
n

log(n)2
→ ∞, s4

nn
−1 → 0,

s2nlog(n)
λn
√
n

= o(1) =⇒

s
3/2
n log(n)
λn
√
n

= o(1),
pns

3
nlog

2(n)

n2λ2
n

= o(1) and
pns

3
nlog

4(n)

n2λ4
n

= o(1) as n→∞.

A stronger modification of the design matrix is needed to be made in the form of the following
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assumption,

(A12) Xij are uniformly bounded where i = 1, . . . , n j = 1, . . . , pn.

In order to establish the selection consistency of the score function 2.25, we would like to

as in (L. Wang et al., 2012, Theorem 1) show the following where the associated penalty

function is the SCAD penalty (J. Fan & Li, 2001) with details provided in section 2.3.3,

Theorem 2.4.9. Under assumptions (i),(ii) in lemma 2.3.1 and (A1)-(A12) there exists an

approximate solution β̂n that solves equation 2.25 such that,

P

(
|Ûpnj(β̂n)| = 0, j = 1, . . . , sn

)
→ 1 (2.26)

P

(
|Ûpnj(β̂n)| ≤ λn

log(n)
, j = sn + 1, . . . , pn

)
→ 1 (2.27)

as n→∞.

Properties 2.26 and 2.27 characterize the solution of the estimating equations in 2.25.

This technique is an alternative approach to the zero-crossing solution defined by Johnson et

al. (2008). The oracle properties now easily follow from results obtained in the un-penalized

version of the score function 2.28 and can be easily derived from lemma 2.4.7 with a minor

adjustment to the normalizing factor,

Corollary 2.4.9.1. Under assumptions (i), (ii), (A4)-(A12) and α = 1 we have,

P (β̂n2 = 0)→ 1 and ∀a ∈ Rpn such that ‖a‖ = 1, aT V̂
−1/2
n Ĥn1(βn0)(β̂n − βn0)→d N(0, 1)

as n→∞.

Now that the oracle properties of the estimator are established we need to deduce the

order in which the number of covariates pn is increasing. It is rather realistic to suppose
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a fixed dimension for the underlying true model i.e. sn is fixed. (L. Wang et al., 2012,

Remark 3) in provides the order of the λn and pn. Similarly using conditions imposed in

assumption (A11) we have the following remark.

Remark 2. Based on conditions assumed in (A11), the above results are applicable to

pn = o(nη) where 0 < η < 3
2 restricted to λn = O(n−ν) where 0 < ν < 2−η

4 satisfying all

impositions in (A11).

Therefore similar to results obtained in the longitudinal case we are indeed able to utilize

the proposed method for pn = o(n). However in order to truly address statistical problems

of high-dimensional spatial regression with dimensions of exponential order with respect to

sample size, we may require a stronger theoretical justification.

56



2.5 Discussion

This chapter establishes a variable selection method under the framework of discrete spatial

observations. It provides foundational scope for high dimensional variable selection and

bridges a gap in statistical methodology that has not been previously explored. Using the

GEE formulation, well studied in longitudinal data analysis we have provided asymptotic

theory of the estimators that solve penalized quasi-likelihood score equation 2.11 with rigor.

We begin by considering the fixed p < n scenario. Under a slightly strong assumption

of ρ mixing co-efficients (i) and (ii) we are able to obtain selection consistency and oracle

properties of the estimator. Simulation results in the binary response case appear efficient

and perform well under covariance misspecification. To justify the technique, we investigate

performance of the method under various scenarios. The synthetic example provides evidence

of the method with results being validated by the real data analysis in Lin & Clayton (2005).

In general during the implementation of the proposed method and the MM-algorithm,

an improvement can be made with regard to tuning parameter selection. Without the

availability of a likelihood expression, regular criteria like AIC and BIC cannot be used.

Based on evidence provided by J. Fan & Li (2004) and Johnson et al. (2008) for selection

in semi-parametric we adopt a variation of the generalized cross-validation (GCV) statistic

but on a sequential grid of tuning parameters. More efficient methods may be explored to

cater to spatial dependence.

With regard to simulations related to spatial count response, there needs to be a more

meticulous exploration of successfully generating multivariate Poisson models. The review

article Inouye et al. (2017) provides well established methods for pair-wise dependence.

Certain copula based techniques can be used to explore the method as one suggested by
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Yahav & Shmueli (2012) who were successful in approximately obtaining correlated Poisson

with a small bias but was restrictive in regard to the amount of correlation that can be

imposed. The method for generation of binary data too suffered from being unable to

incorporate a higher level of dependence.

We then proceed to establish results for expanding dimensions with a rate i.e. (p4
n.n
−1 =

o(1)) which is much slower than the usual rate for longitudinal data i.e. (p2
n.n
−1 = o(1))

established by L. Wang (2011). Both the consistency and asymptotic normality of the

estimator are established under certain regularity condition 2.4.1.1. What is most noticeable

here is that a normalizing factor as seen in Strawderman & Tsiatis (1996) was required to

achieve these results. In the spatial paradigm no such results exist unlike the ones that

exist and have been used in the fixed p-case. Focusing on the goal of selection we then use

a penalized approach similar to that of L. Wang et al. (2012) and obtain consistency and

oracle properties of the estimator. In its current form the theory allows for pn = o(n) but

we eventually seek to look at modifications of the method whenever the dimensions increase

exponentially.

In order to fully study and investigate these methods we seek to perform a series of

simulation studies in the future. The theoretical results suggest that these methods may

be successful in the pn = n case but may require additional theoretical backing for a high

dimensional setup. Therefore having formulated these basic ideas there is tremendous scope

for future work of our current model setup.
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APPENDIX

Fixed Dimension P- Proofs

Lemma: 2.3.3

Proof. Since β̂ obtained from solving 2.11 is
√
n consistent i.e. β̂ = β0 + Op(n

−1/2), for all

non-zero β′s j = 1, .., s under assumption (A3) and lemma 2.3.2 we get,

lim sup
ε→0+

n−1/2U
p
wj

(β̂ ± εej) = lim sup
ε→0+

{
n−1/2U

p
wj

(β̂ ± εej)−
√
nqλn(|β̂ ± εej |)

} p→ 0

as n→∞.

Under assumption (A4) for j > s,
√
nqλn(εej) dominates in equation 2.11 with opposing

signs for β′s that are necessarily 0. Thus there exists a β̂ an approximate zero-crossing and

√
n-consistent solution of U

p
w(β). �

Lemma: 2.3.4

Proof. (Johnson et al., 2008, Appendix), (Feng et al., 2016, Appendix)

Consider the sets in probability space Cj = {β̂ 6= 0}, j = s + 1, .., p. We need to show that

for any ε > 0 there exists an n > Nε such that P (Cj) < ε. Since β̂ is
√
n consistent, there

exists an Mε for a sufficiently large n such that

P (Cj) = P (β̂j 6= 0, |β̂j | < Mεn
−1/2) + P (β̂j 6= 0, |β̂j | ≥Mεn

−1/2)

≤ P (β̂j 6= 0, |β̂j | < Mεn
−1/2) +

ε

2
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Consider the Taylor expansion of non-penalized score function and equation 2.8 we have,

n−1/2Uw(β) = n−1/2Uw(β0) + n−1/25β Uw(β̃)(β̂ − β0) + o(1)

= n−1/2Uw(β0) + n1/2(−I0(β) + op(1))(β̂ − β0) + o(1)

= n−1/2Uw(β0)− n1/2I0(β)(β̂ − β0) + op(1)

Thus on the set {β̂j 6= 0, |β̂j | < Mεn
−1/2} for the penalized score function we get,

{n−1/2Uwj (β0)− n1/2I0j(β)(β̂ − β0) + op(1)− n1/2qλn(|β̂j |)sign(β̂j)}2 = op(1)

where I0j is the jth row of I0.

This implies that for a large n , there exists a M∗ε such that,

P (β̂j 6= 0, |β̂j | < Mεn
−1/2,

√
nqλn(|β̂j |) > M∗ε ) < ε/2

Assumption (A4) implies that if β̂j 6= 0 and |β̂j | < Mεn
−1/2 then for large n,

√
nqλn(|β̂j |) >

M∗ε . Thus P (β̂j 6= 0, |β̂j | < Mεn
−1/2,

√
nqλn(|β̂j |) > M∗ε ) = P (β̂j 6= 0, |β̂j | < Mεn

−1/2)

and P (Cj) < ε. �

Theorem: 2.3.5 (Johnson et al., 2008, Appendix)

Proof. The corollary 2.3.2.1 for the true non-zero βs can be rewritten as,

n−1/2Uw1(β0) + n1/2I01(β)(β̂1 − β01)− n1/2qλn(|β̂1|)sign(β̂1) = op(1)

where Uw1 is an s × 1 dimensional vector associated with the signal βs. Using Tay-

lor expansion of n1/2qλn(|β̂1|)sign(β̂1) we have, n−1/2Uw1(β0) + n1/2I01(β)(β̂1 − β01) −

n1/2qλn(|β01|)sign(β01)− n1/2q′λn(|β01|)sign(β01)(β̂1 − β01) = op(1)

Using lemma 2.3.2 for the first s elements of the score function and re-arrangng the terms
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such that B11 = −diag{q′λn(|β01|)sign(β01)} is an s× s diagonal matrix and

bn = −qλn(|β01|)sign(β01) is an s× 1 dimensional vector, we get the desired result.

�

Expanding Dimension P-Proofs Lemma: 2.4.2

Proof.

Ûn(βn0)− Un(βn0) =
1√
n
XTΣ1/2Γ̂−1Σ−1/2(Y − µ)− 1√

n
XTΣ1/2Γ−1Σ−1/2(Y − µ)

=
1√
n
XTΣ1/2(Γ̂−1 − Γ−1)Σ−1/2(Y − µ)

=
1√
n
XTΣ1/2(Γ̂−1 − Γ−1)r

Consider,

E‖Un(βn0)− Ûn(βn0)‖2 ≤ 1

n
‖Γ̂−1 − Γ−1‖2λmax(XTX)λmax(Σ)Er2

≤ Knα+1 · pn
n

From (Note 1) for λmax(Σ) and λmax(XTX), assumptions (A9) and (A10) and due to

Chebyshev’s inequality, for some K > 0 it is proved. �

Lemma: 2.4.3

Proof. In order to ensure that lemma 2.4.3 is true, it is sufficient to show the following,

sup
‖βn−βn0‖≤∆

√
pn/n

sup
|bn‖=1

|bTn [H(β∗n)− Ĥ(β∗n)]bn| = Op(n
α√pn) (L.1.)

sup
‖βn−βn0‖≤∆

√
pn/n

sup
|bn‖=1

|bTn [E(β∗n)− Ê(β∗n)]bn| = Op(n
(α−1)/2√pn) (L.2.)
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sup
‖βn−βn0‖≤∆

√
pn/n

sup
|bn‖=1

|bTn [G(β∗n)− Ĝ(β∗n)]bn| = Op(1) (L.3.)

Discordant to the above statements L.1.and L.2., condition L.3. is obtained under n−1p2
n =

o(1). Let’s begin with (L.1.)

|bTn [H(β∗n)− Ĥ(β∗n)]bn| = |bTn [
1√
n
XTΣ1/2Γ−1Σ1/2X +

1√
n
XTΣ1/2Γ̂−1Σ1/2X]bn|

=
1√
n
|bTn [XTΣ1/2[Γ−1 − Γ̂−1]Σ1/2X]bn|

≤ B
1√
n
‖bn‖2λmax(Σ)λmax(XTX)‖Γ−1 − Γ̂−1‖

≤ B′
1√
n
n.nα ·

√
pn/n

The third inequality is due to Cauchy-Shwartz inequality and inequalities due to the largest

eigenvalues. The last inequality is due to assumption (A7),(A9) and (Note 1) for some

constant B > 0.

Now consider L.2.,

|bTn [E(β∗n)− Ê(β∗n)]bn| =
1

2
√
n
|bTn [XTΣ1/2ΓΣ−3/2CD(β∗n)X −XTΣ1/2Γ̂−1Σ−3/2CD(β∗n)X]bn|

=
1

2
√
n
|bTn [XTΣ1/2[Γ−1 − Γ̂−1]Σ−3/2CDX]bn|

≤ K
1√
n
λmax(D)λmax(XTX)‖bn‖2λmax(Σ−1)‖Γ− Γ̂−1‖

≤ K′nα · √pn/n

λmax(Σ−1) = 1/λminΣ ≤ k due to assumption (A6) where k ≥ 0. Inequalities are due to

reasons similar to the proof of L.1.. We require assumption (A8) for a finite upper bound
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for λmax(D). In order to prove L.3. consider,

E‖ 1

2
√
n
bTnX

TΣ1/2D[J(β∗n)−Ĵ(β∗n)]Xbn‖2

≤ 1

4n
K′′‖XTX‖2λmax(Σ−1)[λmax(Γ−1 − Γ̂−1)]2E(r2)

≤ K∗
pn
4n

pn
n
E(r2)

≤ K′p2
n/n

Note that (A9) implies λmax(Γ−1 − Γ̂−1) = Op(
√
pn/n) since the covariance matrices are

symmetric. (L. Wang, 2011, Remark 2 pg 396). Further we require assumptions (A10) for the

last inequality and (A6) for the last but one inequality. From the assumption p2
nn
−1 = o(1)

we have L.3.. Lemma 2.4.3 is proved. �

Lemma: 2.4.4

Proof. Consider,

|In212| = |βn − βn0)T [Ĥn(β∗n)− Ĥn(βn0)](βn − βn0)|

=
1√
n
|(βn − βn0)T [XTΣ1/2(β∗n)Γ̂−1Σ1/2(β∗n)X −XTΣ1/2(β∗n)Γ̂−1Σ1/2(βn0)X

+XTΣ1/2(β∗n)Γ̂−1Σ1/2(βn0)X −XTΣ1/2(βn0)Γ̂−1Σ1/2(βn0)X](βn − βn0)|

≤ 1√
n
|(βn − βn0)TXT [Σ1/2(β∗n)Γ̂−1Σ1/2(β∗n)− Σ1/2(β∗n)Γ̂−1Σ1/2(βn0)]X(βn − βn0)|

+
1√
n
|(βn − βn0)TXT [Σ1/2(β∗n)Γ̂−1Σ1/2(βn0)− Σ1/2(βn0)Γ̂−1Σ1/2(βn0)]X(βn − βn0)|

:= In2121 + In2122
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We further evaluate the two portions separately as follows similar to (L. Wang, 2011,

Supplemenatry Material Lemma 3.5),

In2121 =
1√
n
|(βn − βn0)TXTΣ1/2(β∗n)Γ̂−1[Σ1/2(β∗n)− Σ1/2(βn0)]X(βn − βn0)|

≤ 1√
n
‖(βn − βn0)TXTΣ1/2Γ̂−1/2‖‖Γ̂−1/2[Σ1/2(β∗n)− Σ1/2(βn0)]X(βn − βn0‖

by Cauchy-Schwartz inequality. Now consider the two parts of the inequality,

‖(βn − βn0)TXTΣ1/2Γ̂−1/2‖2 = (βn − βn0)TXTΣ1/2Γ̂−1Σ1/2(β∗n)X(βn − βn0)

≤ λmax(Γ̂−1)λmax(Σ(β∗n))‖X(βn − βn0‖2

‖Γ̂−1/2[Σ1/2(β∗n)− Σ1/2(βn0)]X(βn − βn0‖

≤ λ
1/2
max(Γ̂−1)λ

1/2
max(Σ1/2(β∗n)− Σ1/2(βn0)]‖X(βn − βn0‖

Hence,

|In2121| ≤
1√
n
λmax(Γ̂−1)λ

1/2
max(Σ(β∗n)) max

ij
|(Σij(β∗n)− Σij(βn0))|λmax(XTX)‖βn − βn0‖2

≤ 1√
n

√
nmax

ij
‖Xij‖‖βn − βn0‖K̃nα

pn
n

∆2

≤ √pn
√
pn
n

pn
n
nα∆2.K

= Op(p
2
nn

α−3/2)

Using Taylor expansion we see that maxij |(Σij(β∗n) − Σij(βn0))| ≤ maxij ‖Xij‖‖βn −

βn0‖. (Note 1) and assumption (A7) are used in the above inequality for some K̃ > 0 and

λmax(Γ̂−1) = 1/λmin(Γ̂) which is bounded due to remark 1 in section 2.4.1.1. Similarly
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In2122 = Op(p
2
nn

α−3/2) �

Lemma: 2.4.5

Proof. Let us consider, In213 = −(βn − βn0)T [5βÛn(β∗n)− Ĥ(β∗n)](βn − βn0)

Since, 5βÛn(β∗n)− Ĥ(β∗n) ≤ |Ê(β∗n)− Ĝ(β∗n)|

In the same spirit as (L. Wang, 2011, Lemma 3.4, 3.5) we can show that if p2
n/
√
n =

o(1) =⇒ p4
nn
−1 = o(1) for some bn ∈ Rpn then,

sup
‖βn−βn0‖≤∆

√
pn/n

sup
‖bn‖=1

|bTn Ê(β∗n)bn| = Op(
√
npn) (a)

sup
‖βn−βn0‖≤∆

√
pn/n

sup
‖bn‖=1

|bTn Ĝ(β∗n)bn| = Op(
√
npn) (b)

Let us begin with proof of (a). It is important to note that the results for Γ and Γ̂ are

identical and interchangeable in what follows. Therefore without loss of generality, consider

the telescopic sum,

E(β∗n) =
1

2
√
n
XTΣ1/2(β∗n)Γ−1Σ−3/2(β∗n)C(β∗n)D(β∗n)X

=
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)D(βn0)X

− 1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)D(βn0)X

+
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)D(β∗n)X

− 1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)D(β∗n)X

+
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(β∗n)D(β∗n)X

− 1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(β∗n)D(β∗n)X

66



+
1√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(β∗n)C(β∗n)D(β∗n)X

− 1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(β∗n)C(β∗n)D(β∗n)X

+
1

2
√
n
XTΣ1/2(β∗n)Γ−1Σ−3/2(β∗n)C(β∗n)D(β∗n)X

=⇒ E(β∗n) =
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)D(βn0)X

+
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)[D(β∗n)−D(βn0]X

+
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)[C(β∗n)− C(βn0)]D(β∗n)X

+
1

2
√
n
XTΣ1/2(βn0)Γ−1[Σ−3/2(β∗n)− Σ−3/2(βn0)]C(β∗n)D(β∗n)X

+
1

2
√
n
XT [Σ1/2(β∗n)− Σ1/2(βn0)]Γ−1Σ−3/2(β∗n)C(β∗n)D(β∗n)X

= E1(βn0) +
5∑
l=2

El(β
∗
n) (E*)

Now let us examine,

E‖E1(βn0)‖2 =
1

4n

n∑
j1=1

n∑
j2=1

Dj1Dj2E(rj1 · rj2) · Tr{XTΣ1/2(βn0)Γ−1Σ−1

ej1e
T
j1XX

T ej2e
T
j2Σ−1Γ−1Σ1/2(βn0)X}

where Dj is the jth diagonal entry and ej denotes a unit vector whose jth entry is 1 and all

others 0. By Assumption (A10) we have the right side of the above inequality which is given

by

E‖E1(βn0)‖2 ≤ C
n∑

j1=1

n∑
j2=1

1

4n
|eTj1XX

T ej2e
T
j2Σ−1Γ−1Σ1/2XXTΣ1/2Γ−1Σ−1ej1|
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≤ C

n∑
j1=1

n∑
j2=1

1

4n
‖eTj1X‖‖X

T ej2‖‖ej2Σ−1Γ−1Σ1/2X‖‖XTΣ1/2Γ−1Σ−1ej1‖

Since, ‖ej2Σ−1Γ−1Σ1/2X‖ ≤ C∗Tr(XXT )1/2λ
1/2
max(Γ−1)λ

1/2
max(Σ−1/2) ≤ C̃

√
pn due to

remark 1 and assumption (A6) we get,

E‖E1(βn0)‖2 ≤ C̃
1

n
pn

n∑
j1=1

n∑
j2=1

‖eTj1X‖‖X
T ej2‖ ≤ C̃ ′

1

n
pn max

ij
|Xij |2 = C̃p2

n/n

due to assumption (A5). =⇒ sup‖bn‖=1|bTnE1(βn0)bn| = Op(1) if p2
n/n = o(1) as n→∞.

Similarly for

E2(β∗n) =
1

2
√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)C(βn0)[D(β∗n)−D(βn0)]X

we consider the following,

E‖E2(β∗n)‖2 =
1

4n

n∑
j1=1

n∑
j2=1

[D(β∗n)−D(βn0)]j1[D(β∗n)−D(βn0)]j2E(rj1rj2)·

Tr[XTΣ1/2(βn0)Γ−1Σ−1ej1e
T
j1XX

T ej2e
T
j2Σ−1Γ−1Σ1/2(βn0)X]

≤ Knp2
n

By assumption (A8) we have that derivatives of the mean function are uniformly bounded

above. Using assumption (A10) and all other trace results are identical to that obtained for

E1(βn0) we have, sup‖bn‖=1|bTnE2(βn0)bn| = Op(
√
npn).

Further looking at the terms of equation E*,

E3(β∗n) =
1√
n
XTΣ1/2(βn0)Γ−1Σ−3/2(βn0)[C(β∗n)− C(βn0)]D(β∗n)X
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where, [C(β∗n)− C(βn0)] = diag(µ(βn0)− µ(β∗n)) := Pn

Then considering,

E(‖E3(β∗n)‖2) =
1

4n

n∑
j1=1

n∑
j2=1

Dj1(β∗n)Dj2(β∗n) Tr{XTPnΣ−3/2Γ−1Σ1/2ej1e
T
j1XX

T

ej2e
T
j2Γ−1Σ−3/2PnX}

Using Taylor expansion and for some constant k̃′ > 0 it can be shown that,

Tr(P2
n) = ‖µ(βn0)− µ(β∗n)‖2 ≤ k̃′‖X‖2‖β∗n − βn0‖2 Thus if p2

nn
−1 = o(1) then,

E(‖E3(β∗n)‖2) ≤ 1

n
K̃ max

ij
‖Xij‖2λmax(Γ−2)λmax(Σ−2) Tr(XTX)k̃′‖X‖2‖β∗n − βn0‖2

≤ K̃ ′′p4
n/n

2∆2 = o(1)

Lastly consider, |bTnE5(βn0)bn|

= | 1

2
√
n

n∑
j=1

Djrjb
T
nX[Σ1/2(β∗n)− Σ1/2(βn0)]Σ−1Γ−1eje

T
j Xbn|

≤ C∗
1√
n

n∑
j=1

|bTnX[Σ1/2(β∗n)− Σ1/2(βn0)]Σ−1Γ−1ej | · |ejXbn|

≤ C∗
1√
n

n∑
j=1

‖Xbn‖2λmax(Γ−1)λmax(Σ−1) max
j
|Σ1/2(β∗n)− Σ1/2(βn0)|

≤ C∗n
1√
n

max
ij
‖Xij‖‖β∗n − βn0‖Tr(XTX)

≤ 1√
n
nC∗
√
pn

√
pn√
n
pn

= C∗p2
n
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Similar to E5 we can show that E4 = O(p2
n). This completes proof of (a)

The proof of (b) has similar arguments that results in using telescopic sums and investigating

the properties of each its terms as discussed above. It can therefore be verified that (b) is

true. Thus |(βn − βn0)T [5βÛ(β∗n) − Ĥ(β∗n)](βn − βn0)| = ∆2op(pn) under the assumption

n−1/2p2
n = o(1) as n→∞.

�

Theorem: 2.4.8 (L. Wang, 2011, Theorem Proof 3.8)

Proof. Here we provide the proof of statements T.1 and T.2

In order to utilize lemmas 2.4.3, 2.4.4 and 2.4.5 we re-express T.1 as follows

sup
‖βn−βn0‖≤∆

√
pn/n

| 1

nα/2
aT V̂

−1/2
n [5βUn(βn)− Ĥn(βn0)](β̂n − βn0)|

≤ sup
‖βn−βn0‖≤∆

√
pn/n

| 1

nα/2
aT V̂

−1/2
n [5βUn(βn)−5βÛn(βn)](β̂n − βn0)|

+ sup
‖βn−βn0‖≤∆

√
pn/n

| 1

nα/2
aT V̂

−1/2
n [5βÛn(βn)− Ĥn(βn)](β̂n − βn0)|

+ sup
‖βn−βn0‖≤∆

√
pn/n

| 1

nα/2
aT V̂

−1/2
n [Ĥn(βn)− Ĥn(βn0)](β̂n − βn0)|

:= in1 + in2 + in3

Consider,

in1 ≤ sup
‖βn−βn0‖≤∆

√
pn/n

[
1

nα
aT V̂−1/2

n (5βUn(βn)−5βÛn(βn))2V̂−1/2
n a]1/2‖β̂n − βn0‖

≤ sup
‖βn−βn0‖≤∆

√
pn/n

max(|λmin(5βUn(βn)−5βÛn(βn))|, |λmax(5βUn(βn)−5βÛn(βn))|

1

nα/2
λmax(V̂−1/2

n )Op(
√
pn/n)
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Since 2.23 has a positive definite limit implies as in assumption (A3) in section 2.3 that λmax(V̂
−1/2
n )

has an upper bound. According to lemma 2.4.3 we have,

≤ sup
‖βn−βn0‖≤∆

√
pn/n

1

nα/2
Op(n

α/2)Op(
√
pn/n)

Therefore α ∈ (0, 1) and p2
nn
−1 = o(1) we get in1 = o(1).

Now consider the next term in3,

in3 ≤ sup
‖βn−βn0‖≤∆

√
pn/n

(
1

nα
aT V̂−1/2

n [Ĥn(βn)− Ĥn(βn0)]2V̂−1/2
n a)1/2‖β̂n − βn0‖

≤ sup
‖βn−βn0‖≤∆

√
pn/n

max(|λmin(Ĥn(βn)− Ĥn(βn0))|, |λmax(Ĥn(βn)− Ĥn(βn0)|

1

nα/2
λmax(V̂−1/2

n )Op(
√
pn/n)

≤ sup
‖βn−βn0‖≤∆

√
pn/n

op(pnn
α−1/2)

1

nα/2
Op(

√
pn/n)

Here for p4
n.n
−1 = o(1),


α = 0.5 =⇒ in2 = o(p

3/2
n n−3/4) = o(1)

α = 1 =⇒ in2 = o(p
3/2
n n−1/2) = o(1)

Let us finally consider,

in2 ≤ sup
‖βn−βn0‖≤∆

√
pn/n

(
1

nα
aT V̂−1/2

n [5βÛn(βn)− Ĥn(βn)]2V̂−1/2
n a)1/2‖β̂n − βn0‖

≤ sup
‖βn−βn0‖≤∆

√
pn/n

1

nα/2
‖ 5β Ûn(βn)− Ĥn(βn)‖λmax(V̂−1/2

n )Op(
√
pn/n)

≤ 1

nα/2
√
npnOp(

√
pn/n)

Therefore only with α = 1 we have in2 = o(1). To complete the proof we look at T.2 for ‖a‖ = 1
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and a ∈ Rpn we have,

[ 1

nα/2
aT V̂−1/2

n [Ûn(βn0)−Un(βn0)]
]2

=
1

nα
aT V̂−1/2

n [Ûn(βn0)− Un(βn0)][Ûn(βn0)− Un(βn0)]T V̂−1/2
n a

≤ 1

nα
λmax(V̂−1

n )‖Ûn(βn0)− Un(βn0)‖2

≤ Kp2
n/n

α

Based on the relation 2.24 for a bounded positive definite matrix I2(βn0) we can find an upper

bound for λmax(V−1
n ) independent of n. Therefore in2 = o(1) for any α ∈ (0.5, 1) under the

assumption p4
nn
−1 = o(1). Thus we obtain the asymptotic normality of the estimate β̂n.

�

Theorem: 2.4.9 (L. Wang et al., 2012, Properties 1,2)

Proof. To prove equation 2.26 we already have Ûnj(β̂n) = 0 from 2.4.1. Since the penalty

function considered now is a SCAD penalty as shown in 2.18, it is sufficient to show that

P (|β̂nj | ≥ aλn, j = 1, . . . , sn)→ 1

since it implies that the penalty portion of equation 2.25 too tends to 0 in probability. It is

simple to see the relation, min1≤j≤sn |β̂nj | ≥ min1≤j≤sn |βn0j | −max1≤j≤sn |βn0j − β̂nj | ≥

min1≤j≤sn |βn0j | − ‖βn10 − β̂n10‖. Thus we have,

P ( min
1≤j≤sn

|β̂nj | > aλn) ≥ P ( min
1≤j≤sn

|βn0j | − ‖βn10 − β̂n10‖ ≥ aλn)

= P (‖βn10 − β̂n10‖ ≤ min
1≤j≤sn

|βn0j | − aλn)→ 1
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Since ‖βn10− β̂n10‖ = op(
√
sn/n) and (A11) imposes min1≤j≤sn |βn0j |/λn →∞ as n→∞.

So we have 2.26.

In order to prove 2.27, we notice that for β̂nk, k = sn + 1, . . . , pn the derivative of the

penalty in 2.18 is indeed 0. Thus we proceed by considering only the first term of equation

2.25 and denote it by

Ŵn(β̂n) :=
1

n
XTΣ1/2Γ̂−1Σ−1/2(Y − µ(β̂n)) (2.28)

and Ŵnk(β̂) = eTk Ŵn(β̂n) where ek has the kth element as 1. Therefore 2.27 is equivalent to

P

(
max

sn+1≤k≤pn
|Ŵnk(β̂n)| ≤ λn

log(n)

)
→ 1

which can be ensured if,

P

(
max

sn+1≤k≤pn
|Ŵnk(β̂n)−Wnk(β̂n)| > λn

2log(n)

)
→ 0 (2.29)

P

(
max

sn+1≤k≤pn
|Wnk(β̂n)| > λn

2log(n)

)
→ 0 (2.30)

To check 2.29 let us consider,

P

(
max

sn+1≤k≤pn
n−1|eTkX

TΣ1/2[Γ̂−1 − Γ−1]Σ−1/2(Y − µ(β̂n))| > λn
2log(n)

)
≤ P

(
max

sn+1≤k≤pn
n−1‖eTkX

TΣ1/2‖‖Γ̂−1 − Γ−1‖‖Σ−1/2(Y − µ(β̂n))‖ > λn
2log(n)

)
≤ P

(
n−1‖ε‖ > λn

2
√
snlog(n)

)
≤ C

n−1/2E(‖ε‖)√snlog(n)

λn
√
n

= O
(√snlog(n)

λn
√
n

)
= o(1)
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where ε = Σ−1/2(Y − µ(β̂n)) is an n × 1 dimensional vector. It is easy to verify that

maxsn+1≤k≤pn ‖e
T
kX

TΣ1/2‖ = O(
√
n) and therefore we get the third inequality from as-

sumption (A9) and Markov’s inequality. The last inequality comes from (A10) and Jensen’s

inequality in the following way,

∃M > 0, such that
1√
n
E‖ε‖ ≤

( 1

n
E‖ε‖2

)1/2 ≤M

Thus using assumption (A11) we have 2.26. In order to prove 2.27 let us begin by considering

the Taylor expansion,

Wnk(β̂n) = Wnk(βn0) +5β,kWnk(β∗n)(β̂n − βn0) + (β̂n − βn0)T
∂2Wnk(β∗n)

∂βn∂βTn
(β̂n − βn0)

(2.31)

where β∗n is between β̂n and βn0. Let Dk(βn) :=
∂2Wnk(β∗n)

∂βn∂βTn
denote the pn × pn matrix of

double derivatives and let Dk1(βn) denote the top left sn×sn sub matrix. Based on the fact

that β̂n − βn0 = (β̂n1 − βn10)T , 0T )T we can rewrite 2.31 as follows,

Wnk(β̂n) = Wnk(βn0) +5β,k1Wnk(β∗n)(β̂n1 − βn10) + (β̂n1 − βn10)TDk1(β∗n)(β̂n1 − βn10)

(2.32)

and similar to the earlier argument we can express the following,

P

(
max

sn+1≤k≤pn
|Wnk(β̂n)| > λn

2log(n)

)
≤ P

(
max

sn+1≤k≤pn
|Wnk(βn0| >

λn
6log(n)

)

)
+ P

(
max

sn+1≤k≤pn
| 5β,k1 (β∗n)(β̂n1 − βn10)| > λn

6log(n)

)
+ P

(
max

sn+1≤k≤pn
(β̂n1 − βn10)TDk1(β∗n)(β̂n1 − βn10) >

λn
6log(n)

)
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:= i1 + i2 + i3

We are required to show that each of i1, i2, i3 = o(1). From corollary 2.4.7.1 and equation 2.24 that

has a positive definite limit for the variance of the score function for a sufficiently large n we have,

P

(
max

sn+1≤k≤pn
| 1√
n
eTk V̂

−1/2
n XTΣ1/2Γ̂−1(Y − µ(βn0))| > λn

√
n

6log(n)
V̂
−1/2
nk

)
≤ exp

[
− 1

2
K

nλ2
n

log(n)2

]

The inequality is obtained from a normal density (ex: P (|X| > t) ≤ e−t
2/2 for X ∼ N(0, 1)).

Due to 2.24 we can find a positive lower bound on the minimum eigen value of V̂nk. Therefore if

nλ2n
log(n)2

→∞ as n→∞ from assumption (A11) we get i1 = o(1)

Let us consider,

i2 = P

(
max

sn+1≤k≤pn
| 5β,k1 (β∗n)(β̂n1 − βn10)| > λn

6log(n)

)
= P

(
max

sn+1≤k≤pn
| 5β,k1 (β∗n)(β̂n1 − βn10)| > λn

6log(n)
, ‖β̂n1 − βn10‖ ≤ ∆

√
sn/n

)
+ P (‖β̂n1 − βn10‖ > ∆

√
sn/n)

From the consistency of β̂n1 in Theorem for consistency (previous section) and the decomposition

of 2.4.1 with the new normalizing factor we have,

i2 ≤ P
(

max
sn+1≤k≤pn

‖ 5β,k1 (β∗n)‖ > λn
√
n

6
√
snlog(n)

)
+ o(1)

≤ P
(

max
sn+1≤k≤pn

‖Hnk1(β∗n)‖ > λn
√
n

12
√
snlog(n)

)
+ P

(
max

sn+1≤k≤pn
‖ 5β,k1 (β∗n)−Hnk1(β∗n)‖ > λn

√
n

12
√
snlog(n)

)
+ o(1)

:= i21 + i22 + o(1)

where Hnk1 = (Hnk1, . . . ,Hnksn)T denotes the subvector Hnk with the first sn elements with a

75



normalizng factor of 1
n instead of 1√

n
as in the original lemma. Now we can easily see from 2.4.5 the

norm of i22 is o(sn) and therefore with (A11) we get i22 = o(1). We can re-express i21 as follows,

i21 = P

(
max

sn+1≤k≤pn
‖Hnk1(β∗n)−Hnk1(βn10)‖ > λn

√
n

12
√
snlog(n)

)
+ P

(
max

sn+1≤k≤pn
‖Hnk1(βn10)‖ > λn

√
n

12
√
snlog(n)

)

The first term is o(1) if λn
√
n

s
3/2
n log(n)

→∞ as n→∞ from lemma 2.4.4 after modifying the normalizing

factor and using assumption (A11). The second term is similar to the proof in supplementary

material of Wang. To begin with we have,

P

(
max

sn+1≤k≤pn
‖Hnk1(βn10)‖ > λn

√
n

12
√
snlog(n)

)
≤ P

(
max

sn+1≤k≤pn
‖Hnk1(βn10)‖2 > C

nλ2
n

snlog2(n)

)
≤ P

(
max

sn+1≤k≤pn
|‖Hnk1(βn10‖2 − E‖Hnk1(βn10)‖2|+ max

sn+1≤k≤pn
E‖Hnk1(βn10)‖2 > C

nλ2
n

snlog2(n)
)

)

It can be shown that |Hnkj(βn0)| is uniformly bounded using assumptions (A12),(A9) and (A8).

Further, maxsn+1≤k≤pn E‖Hnk1(βn0)‖2 = maxsn+1≤k≤pn E(
∑sn

j=1H
2
nkj(βn0)) ≤ Csn. Then from

assumption (A11) we have the second term is o(1). Consider the following for a sufficiently large

n,

P

(
max

sn+1≤k≤pn
|‖Hnk1(βn10)‖2 − E‖Hnk1(βn10)‖2| ≥ Cnλ2

n

2snlog2(n)

)
≤

pn∑
k=sn+1

P

(
|‖Hnk1(βn10)‖2 − E‖Hnk1(βn10)‖2| ≥ Cnλ2

n

2snlog2(n)

)

≤ C

pn∑
k=sn+1

E(
∑sn

j=1[H2
nkj(βn0)− E(H2

nkj(βn0))]2s2
nlog

4(n)

n2λ4
n

= O(pns
3
nlog

4(n)/(n2λ4
n))

The last inequality is from markov’s inequality and assumption (A11). Therefore i2 = o(1).

To complete the proof we now focus on the last term of 2.32 and need to show i3 = o(1). Similar
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to the inequalities obtained above we get,

i3 ≤ P
(

max
sn+1≤k≤pn

|(β̂n1 − βn10)TDk1(β∗n)(β̂n1 − βn10)| > λn
6log(n)

)
≤ P

(
max

sn+1≤k≤pn
|(β̂n1 − βn10)TDk1(β∗n)(β̂n1 − βn10)| > λn

6log(n)
, ‖β̂n1 − βn10‖ ≤ ∆

√
sn/n

)
+ P (‖β̂n1 − βn10‖ > ∆

√
sn/n)

≤
pn∑

k=sn+1

P

(
Tr(Dk1) >

nλn
snlog(n)

)
+ o(1)

≤ K

pn∑
k=sn+1

E[Tr(D2
k1(β∗n))]s2

nlog
2(n)

n2λ2
n

+ o(1)

It can be shown that E[Tr(D2
k1(β∗n))] = E

[∑sn
j=1

∂2Wnk

∂β2
nj

(β∗n)

]2

≤ Cs2
n. Therefore with conditions

similar to L. Wang et al. (2012), if pns3nlog
2(n)

n2λ2n
→ 0 as n → ∞ as in assumption (A11) we have

i3 = o(1).

�

77



Chapter 3

Voxel Selection using Penalized Least

Squares for a Separable Space-Time

Covariance model

3.1 Functional Magnetic Resonance Imaging (fMRI)

Magnetic Resonance imaging (MRI) uses strong a magnetic field and pulsating radio waves

to capture the structure of the brain by measuring magnetic properties of certain molecules

(ex: water by exciting hydrogen nuclei) that has varying densities in different parts of the

brain like white matter, gray matter, brain stem, tumors, blood vessels etc. Different pulse

sequences of the radio waves can be constructed to study different tissue properties, thus

making the MRI an extremely flexible and powerful clinical tool. It is also among the most

non-invasive procedures unlike computed axial tomography (CAT) scan that uses radiation

and PET scans which requires the subject to be injected with a radioactive label. MRI as

an imaging modality is meant to take a static image of the brain and has been successful in

identifying structural anomalies related to certain diseases. Functional MRI (fMRI) on the

other hand is used to detect brain function and connectivity.
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Primarily interested in understanding neural activity in the brain, fMRI provides an

indirect insight of neural function by measuring a BOLD (blood-oxygen-level-dependent)

signal which is the vascular response to high neural activity. The BOLD signal is the ratio

of oxygenated to de-oxygenated hemoglobin in the blood. The fMRI scanner is therefore

tuned to detect the BOLD signal changes with high spatial resolution to detect significantly

active parts of the brain responding to an external stimulus. Experiments are conducted

either using block designs or event-related designs where a particular subject undergoes a

series of active and resting states either performing a task or responding to an environmental

stimulus. During this process 3D images are taken as quickly as possible so as to detect local

increases in blood oxygenation at active areas of the brain in real time. These studies are

tremendously interesting to neuroscientists and psychologists alike to study brain function

and behavior related aspects of the human brain. Detailed explanations of these processes

and further references maybe found in the book by Ashby (2011) that also introduces regular

statistical techniques that are used in studying fMRI data.

Hemodynamic Response Function:

The proof-of-concept experiments indicate that through a process called hemodynamic re-

sponse blood releases oxygen to active neurons at a greater rate than inactive neurons to

meet the metabolic demands created through neural activity. Let us denote a box-car {0,1}

design si,t to be the ith stimulus provided to a subject over time t. For an active voxel re-

sponding to the stimulus it is observed that although the BOLD signal increases with neural

activation it is also sluggish. It is further hypothesized that once the neural activity stops,

an oxygen debt occurs dropping the BOLD signal below baseline levels. Consequently it is

necessary for the design matrix to undergo a transformation which would be a convolution of
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the box-car sequence s and a hypothesized hemodynamic response function (HRF,h(λ, t)).

xi,t =

∫ t

0
h(t− τ)si,τdτ

(Ashby, 2011, Chapter 3) discusses in detail multiple ways of estimating the HRF such

as deconvolution and linear approximations. The parameters of h(·) are usually estimated

based on a pre-processing step for the hypothesized HRF. The most common HRFs used

are Poisson, Gamma or canonical (double-gamma; difference of two gamma). Below is an

example of a hypothesized canonical HRF convolved with a boxcar stimulus.

Figure 3.1: A theoretical double-gamma HRF characterizing the BOLD signal of a voxel
that may respond to the stimulus with some lag and undershoot over time

Thus we are interested in locating those regions that are significantly active and respond-

ing to stimuli based on how close the observed BOLD response is to the convolution of this

hypothesized behavior.
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3.2 Model Description

Single Subject Model:

Measurements obtained from an fMRI experiment detect brain activity associated with

changes in blood flow when subjected to a stimulus repeatedly. The BOLD effect is the

basis of fMRI. Here we propose a selection technique for a single subject study to detect

those active parts βs (amplitudes of activation) that significantly relate to changes in blood

flow incorporating both spatial and temporal dependencies and not requiring additional

hypothesis testing steps.

Let yv,t be denote a measurement obtained from a Task-based fMRI experiment at voxel

v = 1, ..., N and time t = 1, ..,T. Consider the following additive model,

yv,t = zTt αv + xTt βv + εv,t (3.1)

where Z = {z1, ..., zT} and Zαv is a baseline stimulus independent trend, βv = {βv,1, ..., βv,p}

denotes the amplitude of the activation associated with all p stimuli on voxel v of the fMRI

experiment. xt = {xt,1, .., xt,p}T is the row-vector of the T×p design matrix X that consists

of the convolution of a boxcar stimulus and a hypothesized HRF and lastly the error term

εv,t for time t = 1, ..,T and voxel v = 1, .., n accounts for the spatio-temporal dependence in

the responses.

For simplicity and feasibility, we use a separable model to provide a structure for the

spatial and temporal dependence of the responses at each voxel over time. i.e. var(εv,t) = σ2,

cov(εv,t, εv′,t′) = ν(|v − v′|)ρ(|t − t′|) where ν(·) is a stationary isotropic spatial correlation

model and ρ(·) is a stationary correlation function modeling dependence over time for t 6= t′
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and v 6= v′.

In vector form let, Y = {y1, .., yn} where yv = {yv,1, ..., yv,T} for each voxel v = 1, .., n

which is a stacked vector of dimension nT×1. The amplitude co-efficients β is a stacked pn×1

dimensional vector over each stimulus. Let Γ and R be correlation matrices corresponding

to ν(·) and ρ(·) respectively such that cov(Y ) = σ2Q−1 where Q−1 = Γ ⊗ R of dimension

nT × nT. The design matrix must be rewritten as X̄ = I ⊗X where I is an n× n identity

matrix. The equation in vector form is therefore given by,

Y = Zα + X̄β + ε (3.2)

where ε ∼ NnT(0, σ2Q−1).

3.3 Estimation and Selection

Without loss of generality, let us assume that the response BOLD signal is adjusted to the

stimulus independent baseline i.e. Zα = 0. In the usual case of a Gaussian error in model

3.2, the parameters of interest β are estimated by minimizing the MLE or least squares

objective function as shown below,

β̂ = argminβS(β)

S(β) := (Y − X̄β)TQ(Y − X̄β) (3.3)

To correctly identify activated voxels, we use a regularization approach to the problem by

introducing certain penalty terms with the interest in simultaneously selecting and estimat-

ing the amplitude (β) associated with voxels responding significantly to the stimulus. For
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simplicity, let us consider the scenario where only p = 1 stimulus is used in a single-subject

study. The estimated coefficients are therefore obtained by minimizing,

S(λ1, λ2, β) :=
1

2
(Y − X̄β)TQ(Y − X̄β) + λ1

n∑
v=1

|βv|+ λ2β
T (I −MWM)β (3.4)

where W is the adjacency matrix of dimension n × n based on the sampling locations

such that wij = 1 if a voxel is a neighbor and 0 otherwise. λ1 > 0 and λ2 > 0 are tuning

parameters associated with selection (LASSO, l1 penalty) and smoothing penalty terms

respectively. M is a diagonal matrix with Mii = 1√
wi+

where wi+ =
∑n
j=1wij . The matrix

(I −MWM) is specifically,

(I −MWM)ij =



1− 1
wi+

, if i = j and wi+ 6= 0

− 1√
wi+wj+

, if i ∼ j

0, otherwise

This representation is in the form of a Laplacian matrix on a Graph and thus making sure

that (I −MWM) is a positive semi-definite with 0 as the smallest eigenvalue and 2 as the

largest eigenvalue as stated in (Li & Li, 2010, Section 2.1). Further this smoothing penalty

allows us to express the penalty term in the form of sums of differences of βs in the following

way,

βT (I −MWM)β =
∑
i∼j

( βi√
wi+
−

βj
√
wj+

)2
(3.5)

Commonly seen in undirected Graph-based semi-supervised learning as in X. Zhu (2011),

this formulation penalizes those amplitudes on neighboring nodes that differ widely and
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have a smaller penalty for clusters that are less different. Thus incorporating a natural area

activation concept.

Remark 3. The adjacency matrix considered as W in 3.6 provides weights to immediate

neighbors or a pre-defined sized clusters. Some examples of adjacency matrices that can be

constructed and implemented may be found in (J. Huang et al., 2011, Section 3) with regard

to euclidean distances, dissimilarity measures, power adjacency, cluster analysis etc.

For known covariance structure and parameters, we can further simplify 3.4 by using

a cholesky decomposition for Q (= inverse of Cov(Y )) i.e. Q = LLT where L is a lower-

triangular matrix. Define Y ∗ = LTY and X∗ = LT X̄. Then the objective function can be

rewritten as,

S(β, λ, α) =
1

2

n∑
v=1

T∑
t=1

(y∗vt − x∗tβv)2 + λPα(β) (3.6)

where,

Pα(β) = (1−α)
1

2
βT (I−MWM)β+α‖β‖1 = (1−α)

1

2

∑
i∼j

( βi√
wi+
−

βj
√
wj+

)2
+α

n∑
v=1

|βv|

is the convex combination of the two penalty functions and α = λ1/(λ1 + 2λ2) and λ =

(λ1 + 2λ2)/2n.

Remark 4. It is important to note that this formulation is based on a single p = 1 stimulus.

If additional stimuli are added, it affects the formulation with respect to the tuning param-

eters involved. We are at liberty to either restrict the objective function to two distinct

parameters associated with the type of penalty or free them to have 2p tuning parameters in

total, with no interactions associated in the penalty between stimuli or allow to incorporate
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that as well. This liberal representation is currently not addressed in this dissertation.

3.3.1 Coordinate Descent Algorithm

The coordinate descent algorithm explicated by Friedman et al. (2007) is implemented to

solve 3.6. For effective calculation of the derivatives of the objective function, we reconstruct

3.6 as follows,

S(β, λ, α) = S1(β) + S2(β) (3.7)

where for a particular voxel u,

S1(β) =
1

2

n∑
v 6=u,v=1

T∑
t=1

(y∗vt − x∗tβv)2 +
1

2

T∑
t=1

(y∗ut − x∗tβu)2 (3.8)

∂S1

∂βu
= −

n∑
t=1

x∗t y
∗
t + βu

T∑
t=1

x∗2t (3.9)

and

S2(β) =λα
n∑

v 6=u,v=1

|βv|+ λ(1− α)
1

2

∑
z∼v;z,v 6=u

( βz√
wz+

− βv√
wv+

)2
+λα|βu|+ λ(1− α)

1

2

∑
u∼v

( βu√
wu+

− βv√
wv+

)2
(3.10)

∂S2

∂βu
= λα− λ(1− α)

∑
v∼u

βv√
wu+
√
wv+

+ λ(1− α)βu (3.11)
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Combining the derivatives obtained in 3.9 and 3.11,

∂S
∂βu

= −
[ T∑
t=1

x∗t y
∗
t + λ(1− α)

∑
v∼u

βv√
wu+
√
wv+

]
+ λα + βu(

T∑
t=1

x∗2t + λ(1− α))

(3.12)

We therefore obtain the coordinate wise update form for βu devised in (Donoho et al.,

1994, Section 2.2),

β̂u ←
S(
∑T
t=1 x

∗
t y
∗
ut + λ(1− α)

∑
v∼u

βv√
wu+

√
wv+

, λα)∑T
t=1 x

∗2
t + λ(1− α)

. (3.13)

The soft thresholding function S(z, γ) is defined as,

S(z, γ) =: sign(z)(|z| − γ)+ =



z − γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 otherwise.

Previous updates of βv are used to estimate the current coordinate βu and this process

continues until convergence is attained. In the special case of I−MWM = I or more simply

the Elastic Net (EN) in 3.6, Friedman et al. (2010) constructed coordinate descent algorithms

for generalized linear models. The major difference between the Soft thresholding update

created so far is that they do not include residual terms associated with y∗v − ỹ∗v (partial

residuals) associated with the remaining voxels due to the structure of the data. Therefore

in order to yield spatial influences of the amplitudes regardless of the already infused spatio-

temporal covariance, the smoothing penalty structure plays a key role.

Another version of the update rule can be written in terms of the original tuning param-
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eters λ1 > 0 and λ2 > 0 in the following way,

β̂u ←
S(
∑T
t=1 x

∗
t y
∗
ut +

2λ2
n

∑
v∼u

βv√
wu+

√
wv+

,
λ1
n )∑T

t=1 x
∗2
t +

2λ2
n

. (3.14)

3.3.2 Algorithm implementation

Ordinarily one can evaluate the above update rule for each fixed tuning parameter λ and α

in 3.13 or λ1 and λ2 for 3.14 successively at each coordinate and continue until convergence

is attained.

3.3.2.1 Pathwise Coordinate Descent

Friedman et al. (2007) describe the pathwise co-ordinate descent algorithm as a procedure

to be applied in a way that varies the tuning parameter along a path. The solutions are

computed on a decreasing sequence of values for λ given some α ∈ (0, 1), starting at the

smallest value λmax such that all of the co-efficients β̂ = 0. The scheme also exploits the

notion of warm starts, leading to a more stable algorithm. Warm starts is referred to as

the process of providing the smaller λ in the iterative process the start values equal to the

converged estimates obtained in the previous λ considered.

It can be shown that β̂j = 0, j = 1, . . . , n if 1
nT 〈x

∗
j , y
∗
j 〉 ≤ λα. Following Friedman et

al. (2007) we select λmax = max | 1
nT 〈x

∗
j , y
∗
j 〉|. The strategy is to select a minimum value

λmin = ελmax for a typical ε = 0.0001, and construct a sequence of K values from λmin to

λmax in the logarithm scale. K may be any value, depending on computational capabilities,

a common value used is K = 100

87



3.3.2.2 Active Set Convergence

A slightly observation driven approach is considered in the active set convergence that may

speed up the above algorithm significantly. Once the coordinate descent path is established

for each combination of λ and α, usually an iterative procedure is adopted until convergence

of the βs is attained. In active set convergence, after the first iteration we obtain an active

set. Then the proceeding iterations are computed only for those non-zero βs the following

iterations. Continuing with the next combination of λ the same procedure is employed. If

the active set remains unchanged, the remaining process is considered only over the first

liberal active set for λmax, significantly reducing the number of iterations at coordinates

that are originally considered to be zero.

Unfortunately not a very strong theoretical basis has been provided about the rate of

convergence of the method but has been observed to be successful in the LASSO, EN and

group LASSO setup (Meier et al., 2008).

3.3.2.3 Cholesky decomposition properties

In the current model implementation we assume that the spatio-temporal separable covari-

ance is known. The separability is rather restrictive supposition but we hope to exploit

its matrix properties in order to make the method feasible. It is in general important to

understand the scope of this dataset. For fMRI data Lindquist (2008) explains that the

number of slices acquired depends on how quickly the image maybe taken when the brain is

excited. In approximately 2 seconds, standard scanners can image the whole brain volume of

64×64×30 = 122880 voxels. In the block design setup the number of time points considered

depends on the length of the experiment. Unlike event-related designs that have a signif-

88



icantly small number of time points (Ex: 4 to 7) but in block designs they may last upto

30 minutes or more with over 200 time points. In this setup the full covariance matrix for

a single subject could exceed the dimension 24000000 × 24000000. Most high performance

computers will be unable to store such a massive matrix in memory especially for a dense

matrix with both spatial and temporal dependence.

However if this dependence is separable i.e. of the form cov(Y ) = Q−1 = Γ⊗R, in order

to obtain the Cholesky decomposition of Q we can use the following properties for positive

definite matrices using Kronecker products,

1. (Γ⊗R)−1 = Γ−1 ⊗R−1

2. (Γ⊗R)−1 = L
Γ−1L

T
Γ−1 ⊗ LR−1L

T
R−1 = (L

Γ−1 ⊗ LR−1)(L
Γ−1 ⊗ LR−1)T

3. Γ−1 = (LΓL
T
Γ )−1 = (LTΓ )−1(LΓ)−1

where L is a lower triangular matrix. These properties enable us to perform matrix operations

on smaller matrices based on space and time and eventually combine them and vectorize

right away to obtain the weighted least squares without saving the large matrix to memory.

The computational complexity of the space matrix and time matrix is dramatically smaller

and using row wise Kronecker products and the properties above and multiplying it to the

response and design matrix right away directly yields the weighted least squares without the

need of allocating a nT× nT matrix. Details of these properties maybe reviewed in Schacke

(2004).

3.3.2.4 Tuning Parameter Selection

To consistently identify the true model it is crucial to choose an optimal tuning parameter

that ensures the true model is selected every time. Cross validation as in Chapter 2 of this
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dissertation is not easily implementable due to the dependence present in a single subject;

both with regard to space and time. Therefore we seek to locate the optimal value of the

tuning parameters based on a criteria over a grid. Our first candidate criterion is the usual

AIC based on the log-likelihood. Additionally based on the method developed by Y. Fan

& Tang (2013) we adopt the GIC (generalized information criterion) technique. Under the

generalized linear model(GLM) for any independent response variable of the exponential

family they find a sequence an in such a way that the minimum GIC value corresponds to

tuning parameters that are consistently close to the true model. However the fMRI data

structure is fundamentally different from a regular linear model since the selection is not on

the predictors but on the locations with activated voxels. In the discussion section 3.6 we

address the need to modify the GIC by finding a sequence an such that an optimal criterion

may be obtained for the current setup. As a candidate criteria we investigate whether the

GIC for a regular GLM can locate the optimal tuning parameters.

Another attempt is made to use cross validation on block designs by assuming that no

carry-over effects are sustained by the single subject while doing an activity repeatedly. We

produce the illusion of independent replicates of block designs by splitting the different blocks

over time into multiple folds. This drastically reduced the dimensions of correlation matri-

ces used. Permutation matrices and properties of Cholesky decomposition and Kronecker

products too support this formulation. However there is a computational trade-off that is

involved depending on how many folds are constructed based on the blocks. The optimality

of the solution may further depend on these folds. An example of its simulation results are

provide in section 3.4.

The Bayesian LASSO introduced by Park & Casella (2008) provides an empirical Bayes

estimate of the tuning parameter under Bayesian hierarchical setup exploiting a property of
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scalar mixture normals. Based on the LASSO formulation of the EN by Zou & Hastie (2005)

another attempt was made at finding optimal solutions. Certain issues automatically rose

in the conducting the simulation study and are addressed in the discussion section 3.6.

3.4 Simulation Study

Below are a series of simulations conducted to examine the method proposed. Critical issues

of tuning parameter selection arise with regard to criteria required to reach optimal solutions.

Several possibilities are presented for a variety of implementations.

General Setup: Let us consider a 10×10, 15×15 and 20×20 regular grid of 100/225/400

locations each a single unit away. For a single boxcar stimulus (i.e. p=1), we construct a

hemodynamic response function using the Gamma density for 50 time points. Thus the

design matrix is of dimension 5000 × 1, 11250 × 1 and 20000 × 1 respectively. The spatial

covariance function imposed on the locations is given by ν(|v − u|) = exp(−0.7 · |v − u|)

and the corresponding matrix produced is Γ. Further we introduce some additional sparsity

by using the tapering method by Wendland (1995) that leads to a positive definite matrix.

The parameters for the Wendland function used are θ = 15 and k = 2. The temporal

structure R is given two structures a tri-diagonal matrix with ρ(|0|) = 1 for ρ(|t− t′|) = 0.5

if |t − t
′| = 1 or 0 otherwise and an AR(1) with ρ̃ = 0.5. A location is selected in the

grid and its closest neighbors are given an amplitude βv = 6 while all other amplitudes

are assigned a 0 as the simulations studies shown in Musgrove et al. (2016). No additional

baseline trend is considered. The data is generated from a normal distribution with mean

X̄β and Q−1 = Γ⊗R. 100 such datasets are replicated for each setup.

In figures 3.2 an example of the simulated data under two different time structures for
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various grid sizes and 50 time points is shown. The red blocks indicate where the signal lies.

We can clearly see that albeit the high signal, the data is still very noisy.

Figure 3.2: Simulated fMRI data with different grid sizes and time structures. (a) contains
5000 data points and (b) contains 11250 data points

(a) 10× 10 grid with Tri-Diag Time Correlation

(b) 15× 15 grid with AR(1) Time Correlation

To begin with, three different algorithms are used to look for optimal tuning parameters

under the assumption that the underlying spatio-temporal model is known.

1. Sequential grid for λ1 and λ2: In the general setup considered 3.4, we first consider

exploring the efficiency of the selection method over an entire grid for values of the tuning

parameters λ1 and λ2 as indicated in equation 3.14. A range from 0.1 to 1000 is considered

over 15 instances in the range. Below are image plots indicating the AIC and GIC obtained

from the various values for all 3 grid types considered, averaged over 100 datasets. In Figures
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3.3, 3.4 and 3.5 it is distinctly visible that an obvious optimal combination for the tuning

parameters is not apparent.

Figure 3.3: AIC for sequences of λ1&λ2 ∈ (0.1, 1000)

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.4: GIC for sequences of λ1&λ2 ∈ (0.1, 1000)

(a) 10× 10 (b) 15× 15 (c) 20× 20

Table 3.1: Choice of Lambda sequence parameters based on MSE

Grid Lambda 1 Lambda 2 TP FP MSE
10× 10 142.94 71.52 5.00 31.46 45.57
15× 15 500.05 142.94 5.00 29.52 45.13
20× 20 1000.00 214.36 5.00 32.53 47.90

However based on the mean squared error (MSE), since the true parameters of interest

βv are known, we obtain results in Table 3.1 for each of the grids.
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Figure 3.5: MSE for sequences of λ1&λ2 ∈ (0.1, 1000)

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.6: True Positives (max 5 active) for sequences of λ1&λ2 ∈ (0.1, 1000)

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.7: False Positives (max n-5) for sequences of λ1&λ2 ∈ (0.1, 1000)

(a) 10× 10 (b) 15× 15 (c) 20× 20

2. Pathwise Coordinate Descent For a fixed value of α a decreasing sequence of 20

values of λ is considered, where λmax = max 1
nα | < X̄, y > | and λmin = ε · λmax. Here
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ε = 0.0001. Therefore on a sequence of α ∈ (0, 1) varying over 10 values the selection was

run repeatedly over 100 datasets. Image plots for AIC, GIC and MSE are provided in Figure

3.8, 3.9 and 3.10. In this algorithm the mean squared prediction error (MSPE) (See Fig

3.13) seemed more intuitive with regard to the tuning parameters. λmax values for every

dataset but did not exceed 5.

Figure 3.8: AIC for sequences of the index λ values given α ∈ (0, 1) using pathwise
coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.9: GIC for sequences of the index λ values given α ∈ (0, 1) using pathwise
coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20
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Figure 3.10: MSE (Mean squared error) for sequences of the index λ values given α ∈ (0, 1)
using pathwise coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.11: True Positives (max 5 active) for sequences of the index λ values given
α ∈ (0, 1) using pathwise coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

Table 3.2: Choice of Lambda sequence parameters based on MSE

Grid Lambda index Alpha TP FP MSE
10× 10 4.00 0.55 5.00 24.33 44.89
15× 15 3.00 0.77 5.00 20.27 46.85
20× 20 3.00 0.66 5.00 31.10 49.66

Interestingly the mean squared prediction error for the path-wise coordinate descent

algorithm tends to prefer the LASSO solution at α u 1. See Fig 3.13
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Figure 3.12: False Positives (max n-5) for sequences of the index λ values given α ∈ (0, 1)
using pathwise coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.13: MSPE (Mean squared prediction error) for sequences of the index λ values
given α ∈ (0, 1)using pathwise coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

3. Active Set Convergence In active set convergence, we consider an approach similar

to the path wise coordinate descent except for the consecutive sequences of λ we provide

the solution of the previous iteration as a warm start. Then we proceed to do a coordinate

descent only those voxels/coordinates that have not already been dropped. This results in

a relatively speedy algorithm and leads to rather sparse solutions.
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Figure 3.14: AIC for sequences of the index λ values given α ∈ (0, 1) using pathwise
coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.15: GIC for sequences of the index λ values given α ∈ (0, 1) using pathwise
coordinate descent

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.16: MSE (Mean squared error) for sequences of the index λ values given α ∈ (0, 1)
using active sets

(a) 10× 10 (b) 15× 15 (c) 20× 20
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Figure 3.17: True Positives (max 5 active) for sequences of the index λ values given
α ∈ (0, 1) using active sets

(a) 10× 10 (b) 15× 15 (c) 20× 20

Figure 3.18: False Positives (max n-5) for sequences of the index λ values given α ∈ (0, 1)
using active sets

(a) 10× 10 (b) 15× 15 (c) 20× 20

Table 3.3: Choice of Lambda sequence parameters based on MSE

Grid Lambda index Alpha TP FP MSE
10× 10 5.00 0.55 5.00 23.51 44.91
15× 15 4.00 0.66 5.00 26.31 0.45
20× 20 4.00 0.66 5.00 41.89 0.48
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Figure 3.19: MSPE (Mean squared prediction error) for sequences of the index λ values
given α ∈ (0, 1) using active sets

(a) 10× 10 (b) 15× 15 (c) 20× 20

Cross Validation Regularization methods use cross validation to obtain optimal tuning

parameters in big data settings with independent replicates. As explained in section 3.3.2.4

we try to exploit nature of the experimental design to produce an illusion of replicates.

Assuming there are no carryover effects in these fMRI block-design experiments with respect

to time let us consider the convolved double- gamma (canonical) HRF with a box-car stimulus

shown in Figure 3.20.

Figure 3.20: 4-fold CV on time for design of the single subject fMRI study. Blue solid line
indicates boxcar stimulus and dotted line convolved HRF
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Each cycle of the experiment is considered as a fold. In the Figure 3.20 without loss of

generality we can place the first as the test set and the rest as the training set and continue

until each fold has been the test set once. We average different the criteria and MSPE to find

optimal solutions. This is done on a single dataset, 10× 10 grid. However in this analysis it

is intuitively clear that the criteria considered (like AIC and GIC favor LASSO (see Figure

3.21) or the modified ”Laplacian” Ridge or smoothing penalty based on MSPE and MSE

which is expected when the objective is to reduce prediction error in the hope to reduce bias.

The MSE and MSPE prefer the smoothing penalty as they want the least amount of bias

Figure 3.21: Simulation results of 4-fold cross validation on a 10× 10 grid

AIC GIC

MSE MSPE

and AIC, GIC prefer picking the LASSO penalty as the criteria is proportionate to number

of voxels in the model. Thus there is no indication that CV may yield optimal solutions.
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Simulation study investigating AR(1) Time-Structure Similar to the general setup

provided in the simulation studies above, we wanted to investigate whether the method

can be implemented successfully whenever a more commonly used and better suitable time

correlation structure is used. In the current setup we look at a single pseudo image grid

15 × 15. The spatial covariance and the wendlend taper function is still used to simulate

the data. For the time structure we generate data with a voxel vise auto-regressive AR (1)

model where parameter ρ = 0.5. The total experiment is assumed to have 50 time points

with the same HRF used for the design matrix. All three algorithms are considered and

compared with each other in the image plots 3.22- 3.27.

Figure 3.22: AIC for model simulated using AR(1) Time correlation structure

(a)Sequence CD (b) Pathwise CD (c) Active Set CD

Figure 3.23: GIC for model simulated using AR(1) Time correlation structure

(a)Sequence CD (b) Pathwise CD (c) Active Set CD
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Figure 3.24: MSE for model simulated using AR(1) Time correlation structure

(a)Sequence CD (b) Pathwise CD (c) Active Set CD

Figure 3.25: MSPE for model simulated using AR(1) Time correlation structure

(a)Sequence CD (b) Pathwise CD (c) Active Set CD

Figure 3.26: True Positives (max 5) for model simulated using AR(1) Time correlation

(a)Sequence CD (b) Pathwise CD (c) Active Set CD

The use of an AR(1) model instead of a tridiagonal time structure matrix provides very
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Figure 3.27: False Positives (max n-5) for model simulated using AR(1) Time correlation

(a)Sequence CD (b) Pathwise CD (c) Active Set CD

Table 3.4: Consolidated results for AR(1) simulation with regard to all 3 algorithms

Lambda1 Lambda2 TP FP MSE
Sequence CD 500.05 71.52 4.99 21.54 52.16

Lambda index Alpha TP FP MSE MSPE
Pathwise CD 3.00 0.77 4.99 17.39 53.61 113.74

Active Set CD 4.00 0.77 4.99 23.08 52.04 113.01

similar results. A noticeable increase in the computational time is experienced due to increase

in the density of the matrix. A steady 10% False positive rate is observed with an almost

100% true positive selection.

3.5 Real Data Analysis

Data Acquisition

A healthy college student from Michigan State University volunteered to participate in a

study on a visual stimulation condition with a scene-object fMRI paradigm. Signed consent

forms approved by the Michigan State University Institutional Review Board (IRB) were

obtained from the individual. The experiment was conducted on a 3T GE Signa HDx MR

scanner (GE Healthcare, Waukesha, WI) with an 8-channel head coil. The parameters for

the fMRI scan that were collected were gradient-echo EPI, 36 contiguous 3-mm axial slices
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in an interleaved order, time of echo (TE) = 27.7 ms, time of repetition (TR) = 2500 ms,

flip angle = 80◦, field of view (FOV) = 22 cm, matrix size = 64 × 64, ramp sampling, and

with the first four data points discarded. Each volume of images were acquired 192 times

(8 min) while a subject was presented with 12 blocks of visual stimulation after an initial

10 seconds “resting” period. In a predetermined randomized order, scenery pictures were

presented in 6 blocks and objects pictures were presented in the other 6 blocks. All pictures

were unique. In each block, 10 pictures were presented continuously for 25 seconds (2.5 s for

each picture), followed with a 15 second baseline condition where the subject is defaulted to

a white screen with a black fixation cross at the center. The subject needed to press his/her

right index finger once when the screen was switched from the baseline to picture condition.

Stimuli were displayed in color on a full screen 1024× 768 32-inch LCD monitor (Salvagione

Design, Sausalito, CA) placed at the back of the magnet room. The LCD was subtended at

a visual angle of 10.2◦ × 13.1◦. After the above functional data acquisition, high-resolution

volumetric T1-weighted spoiled gradient-recalled (SPGR) images with cerebrospinal fluid

suppressed were obtained to cover the whole brain with 120 1.5-mm sagittal slices, 8◦ flip

angle and 24 cm FOV. These images were used to identify anatomical locations.

fMRI Data Pre-processing

All stimulus fMRI data pre-processing were conducted with AFNI software (Cox, 1996) as

described in Henderson et al. (2011). The data was detrended for artifacts and the stimulus

independent baseline specifically, slice-timing correction and rigid-body motion correction

were carried out. Spatial blurring with a full width half maximum of 4 mm was applied to

reduce random noise. Multiple linear regressions (using the “3dDeconvolve” routine in AFNI)

were applied on a voxel-wise basis to find the magnitude change when each picture condition

was presented, followed by general linear tests that determine statistical significances between
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stimulus conditions. Once this was completed a mask was created that discarded all of the

potentially irrelevant voxels of the brain with regard to the stimuli. This significantly reduced

the size of the data from 64 × 64 × 31 × 192 ≈ 25 million data points to 6118 voxels with

the original 192 time points ≈ 1 million.

The current model proposed assumes the underlying spatio-temporal covariance is known.

In real data studies this is always untrue and the covariance needs to be estimated. This need

is addressed in the discussion section 3.6 but in order to showcase the method we proceed by

eye-fitting a model on a spatio-temporal variogram. The R package spacetime is used to fit

a separable exponential models for both space and time. The model that reduced the MSE

was eventually considered.

Data Analysis

Once all of the preprocessing was done and an underlying spatio-temporal model was

considered, using the Kronecker product and cholesky decomposition properties in section

3.3.2.3 we used a linear algorithm to avoid saving the Kronecker product to memory. Using

this vectorized formulation we could directly calculate the transformed y∗ and x∗ as explained

in section 3.3. As explained above, the design consists of two stimuli scene and object

provided at random. Based on remark 4 we use the most conservative approach and restrict

the tuning parameters to be identical. It is important to note that since only an instantaneous

image was recorded for both stimuli they are required to be studied simultaneously.

Using the path-wise coordinate descent method in 3.3.2.1 we simplistically vary α ∈ (0, 1)

over 10 points and obtain the sequence of λ between λmin = ε.λmax and λmax for ε = 0.0001

by selecting

λmax = max{| 1

nα
〈x∗objectj , y

∗
j 〉|, |

1

nα
〈x∗scenej , y

∗
j 〉|}
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Based on all the simulation studies done above and the computational feasibility of the

path-wise coordinate descent method, we provide an application of the method to a single-

subject study with two visual stimuli (p=2). The results in the simulation studies above

provide a range of α ∈ (0.5, 0.7) whenever the criteria for optimality is the MSE for true

known coefficients. Although in actuality, the coefficients are never known the selection based

on this criteria provides optimal solutions that where it takes advantage of both penalties.

Thus we crudely consider an α = 0.6 from the studies above and we look at a sequence of

decreasing λs. Below are images of the 36 slices of the axial view and 64 slices of the coronal

and sagittal view showing the selected voxels based on 3 choices of λ based on both stimuli

(object and scene). Alternatively fixing α and varying the λ based on the stimuli has no

novel effect as the intensity of both scene and object on the subject is identical. Therefore

we proceed in the way described above. The results appear to coincide with the study con-

ducted by Henderson et al. (2011). Most significantly we see activity in the visual cortex

and frontal lobe of the brain. Further the method is currently unable to distinguish clearly

activated regions responding to the two stimuli differently, so in the Figures below we see a

fair amount of overlap.
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Figure 3.28: Axial View λ = 0.0019

Object Stimulus Scene Stimulus

Figure 3.29: Coronal View λ = 0.0019

Object Stimulus Scene Stimulus
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Figure 3.30: Sagittal View λ = 0.0019

Object Stimulus Scene Stimulus

Figure 3.31: Axial View λ = 0.19

Object Stimulus Scene Stimulus
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Figure 3.32: Coronal View λ = 0.19

Object Stimulus Scene Stimulus

Figure 3.33: Sagittal View λ = 0.19

Object Stimulus Scene Stimulus
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3.6 Discussion

In chapter 3 of the dissertation we empirically investigate a method proposed for selection

of activated brain areas in a single subject fMRI study. As an application to variable selec-

tion and the study of regularization methods on densely dependent data, this is an area of

study that requires keen exploration. Image analysis is structurally different from most data

under statistical investigation. Medical imaging has vastly improved in the last decade and

resources are being pooled to organize images taken as a regular diagnostic tool and improve

our understanding of human anatomy.

With fMRI data in general, the massive acquisition is perhaps why statisticians refrain

from applying bold methodologies and submit to crude simplistic methods. The formulation

of coordinate descent like algorithms have indubitably eased the computational burden and

it may be an opportunity to explore regularized methods in neuroimaging.

Under the setup of a known spatio-temporal covariance and properties of the Cholesky

decomposition the method in chapter 3, sets up a variable selection routine with two penalty

terms. The vectorized usually 4D structure of the data, i.e. 3D space and time series creates

a matrix far too massive to computationally consider the Cholesky of order O((nT)3). But

the separability assumption allows us to simplify the burden considerably by O(n3)+O(T3).

This computation need not be repeated unless Cross Validation as described in section 3.3.2.4

as permutation matrices are not square and therefore these operations need to be repeated

based on the number of folds.

A careful consideration must be made about however with regard to the implementation

of coordinate descent methods for separable penalties as stated in Friedman et al. (2007).

Although not addressed in J. Huang et al. (2011) and Li & Li (2010) if we look at the
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the derivative of the object function 3.12 we see that the combination of penalties does

not possess separability. Based on Tseng (1988) techniques that might require groups of

coordinates to be updated together as in the case of the fused LASSO may yield better and

more robust results, unless it can be shown otherwise.

A major aspect of the method that is currently overlooked is the estimation of this un-

derlying spatio-temporal covariance and the separability assumption. In general there exists

well developed methods for covariance estimation in the spatio-temporal paradigm using like-

lihood based techniques. There is scope in the future to therefore formalize a methodology.

To address the latter issue of separability, we must first consider the feasibility in general.

Separable assumptions simplify methods making them feasible (Ex: George & Aban (2015))

and reduce the number of parameters to be estimated dramatically. Although in the presence

of non-separable relations among voxels misspecification may lead to inaccurate results, we

could use ideas such as separable approximations for non-separable spatio-temporal models

(Genton, 2007). This aspect is not within the scope of this dissertation and has significant

future scope.

Tuning parameter selection is by far the most puzzling aspect of this setup. The obser-

vation that “ For α ∈ (0, 1) the method tends to be dominated by LASSO but may be an

improvement over the simple lasso as it reduces any degeneracy and erratic behaviors caused

by high correlation in the design” is made in the paper by Friedman et al. (2010) about EN.

We can definitely sense the LASSO domination. The coordinate descent solution for EN

using Cross Validation is given by Kooij et al. (2007) in her thesis and is widely popular.

Therefore in general due to these tendencies the free grid search maybe a suboptimal method

and the path-wise coordinate descent method is preferable.

An interesting approach other than sequential methods or cross validation to obtain
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optimal tuning parameters is estimating it. Park & Casella (2008) were able to do so in the

Bayesian paradigm for the LASSO problem. Below is a conjecture following this notion but

some obvious limitations exist.

3.6.1 Empirical Bayes Estimate using Bayesian LASSO

The proposed method is a generalized version that yields a special case in the form of the

Elastic Net (EN). Similar to (Zou & Hastie, 2005, Section 2.2) let us consider reformulating

the two penalty weighted least squares in 3.4 to a single tuning parameter LASSO objective

function. Therefore given set (Y,X) and λ1, λ2 we define the reformulated (Y ,X) by

Y (nT+n)×1 =

Y
0

 , X(nT+n)×n = 1√
1+λ2

 XnT×n
√
λ2(I −MWM)1/2

 and Q = LLT

where L =

L 0

0 I

 with L described in 3.3 such that for β∗ =
√

1 + λ2β and γ =

λ1/
√

1 + λ2 the object function is denoted by S∗ and given by,

S∗(γ, β∗) := (Y −Xβ∗)TLLT (Y −Xβ∗) + γ|β∗| (3.15)

Thus β̂∗ = argminβ∗S
∗(γ, β∗) subsequently β̂ = 1√

1+λ2
β̂∗.

Tibshirani (1996) interpreted the LASSO solution as the posterior mode estimates when

regression estimates have an independent and identical Laplace priors. Park & Casella

(2008) exploits the fact that the Laplace distribution can be represented as a scalar mixture

of normals to obtain a conditionally inverse-Gaussian distribution for 1/τ2
j with parameters

µ′ =

√
γ2σ2

β2
j

and γ′ = γ2 where β|σ2, τ1, . . . , τ
2
n ∼ Nn(0, σ2Dt) and the variances τ2 have a

Laplace prior with hyper-parameter γ. Based on this hierarchical set up an empirical bayes
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estimate was obtained of the form,

γ(k) =

√√√√ 2n∑n
j=1Eγ(k−1) [τ2

j |y]
(3.16)

In the Bayesian paradigm a Gibbs sampler is used to evaluate the expectation in 3.16. Our

primary objective is to find a suitable method that can be implemented to evaluate this

tuning parameter γ in every iteration of the coordinate descent algorithm. We proceed by

using the relation, Ê(τ2
j |y) =

√
β2
j

γ2 for known σ2 = 1 and γ 6= 0. A simulation study was

attempted but an immediate issue was uncovered in the process. Unlike the Bayesian hier-

archical setup that allows for the parameters of interest β’s to have a normal prior, it is not

possible to obtain 0 estimates. However with the soft-thresholding used the more number of

0 estimates leads to a higher γ(k) estimate which may further penalize the estimates in future

iterations. So there is a tendency for the LASSO estimate to take the value infinity for all 0

β estimates before the estimates actually converge. Thus further investigation is necessary

to find out whether such estimates lead to the selection of optimal tuning parameters.

In conclusion, the coordinate descent method for regularization has a very distinct com-

putational benefit. However these strategies in machine learning and statistics are yet to be

explored when it comes to dense dependent data. With a specific application in fMRI studies

we are able to highlight a need for such methodologies and seek to theoretically justify the

properties of the estimator obtained in the regularization method proposed in this chapter.
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