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ABSTRACT

SAMPLE PATH PROPERTIES OF GAUSSIAN RANDOM FIELDS AND STOCHASTIC
PARTIAL DIFFERENTTAL EQUATIONS

By

Cheuk Yin Lee

Gaussian random fields are studied and applied in a wide range of scientific areas. In
particular, the solutions of stochastic partial differential equations (SPDEs) form an impor-
tant class of random fields and it is of interest to study the properties of their sample paths.
The objective of this dissertation is to develop some methods for studying Gaussian random
fields and to use these methods to investigate the sample path properties of SPDEs. We
study the existence of multiple points for a general class of Gaussian random fields including
fractional Brownian sheets, systems of stochastic heat equations and systems of stochastic
wave equations. We also study the regularity of local times and the Hausdorff measure of
level sets of Gaussian random fields and give an application to the stochastic heat equation.
Moreover, for the stochastic wave equation, we examine further properties including local

nondeterminism, the exact modulus of continuity, and the propagation of singularities.
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Chapter 1

Introduction

Gaussian random fields are studied extensively in probability, and have useful applications in
a wide range of scientific areas such as statistics, physics, engineering, biology, economics and
finance. Random fields are generalization of stochastic processes in the sense that they are
indexed not only by a single time variable t € R, but by multi-dimensional variables such
as spatial position z € R™ (n = 1,2 or 3) or even time and space variables (¢,z) € Ry x R™.

In particular, a large class of random fields arise naturally as solutions of stochastic partial
differential equations (SPDEs). In this thesis, SPDEs are partial differential equations that
are subject to random perturbations such as a white noise. Some of them are motivated from
physics and can be used to model randomness in physical phenomena. In both mathematic
and scientific point of view, it is interesting and meaningful to investigate properties of
solutions of SPDEs.

For fundamental Gaussian random fields such as the Brownian motion, fractional Brow-
nian motion and Brownian sheet, many sample path properties have been studied in the
literature. Moreover, some unified methods for anisotropic Gaussian random fields with
general assumptions were developed (see e.g. Xiao [70]). These methods allow us to study
many properties including modulus of continuity, small ball probabilities, hitting probabil-
ities, fractal properties of ranges, graphs, and level sets, existence and regularity of local

times, etc.



There are different approaches for studying SPDEs. One of them is the random field ap-
proach based on Walsh’s theory of stochastic integration. This approach emphasizes solutions
as real-valued random fields, as opposed to other approaches that consider solutions that
take values in certain infinite dimensional spaces. The links between different approaches
are discussed by Dalang [12]. In this thesis, we focus on the random field approach. As we
will see, the methods of random fields are useful for obtaining precise results on analytic and
geometric properties of the sample paths of SPDEs.

The main purpose of this thesis is to develop some methods of Gaussian random fields
and to use these methods to study sample path properties of the solutions of SPDEs.

This thesis is organized as follows. In Chapter 2, we begin with some preliminaries and
overview of Gaussian random fields and SPDEs. We introduce some important examples
of Gaussian random fields, and then review Walsh’s theory of stochastic integration and
SPDEs. We also introduce two important examples of SPDEs, namely the stochastic heat
equation and wave equation.

In Chapter 3, we study the multiple points (or self-intersections) of the sample paths of
Gaussian random fields. Based on a covering argument, we prove that for a large class of
Gaussian random fields, multiple points do not exist in critical dimensions. We apply this
result to the fractional Brownian sheet, systems of stochastic heat equations and systems of
stochastic wave equations.

Chapter 4 is devoted to the study of the local times and level sets of a class of anisotropic
Gaussian random fields that satisfies the property of strong local nondeterminism. We
prove joint continuity and Hélder conditions for their local times, and discuss the Hausdorff
dimension and Hausdorff measure of their level sets. Our results can be applied to the

solution of stochastic heat equation, which satisfies strong local nondeterminism. We also



determine the gauge function for the Hausdorff measure of its level sets.

In Chapters 5 and 6, we examine further properties of the stochastic wave equation driven
by an additive Gaussian noise that is white in time and colored in space. In Chapter 5, we
prove a property of local nondeterminism for the solution of the stochastic wave equation
and apply this property to derive the exact uniform modulus of continuity for the solution.
In Chapter 6, we discuss the notion of singularity for the stochastic wave equation and study
the existence and propagation of singularities based on a simultaneous law of the iterated
logarithm.

Throughout the thesis, we use C' and K denote constants whose value may vary in each
appearance, and we use C1,C9, K1, ... for specific constants. We let R4 denote the set of all
non-negative real numbers. Also, |z| is the absolute value of x if € R, and the Euclidean

norm of z if x € R".



Chapter 2

Preliminaries

The purpose of this chapter is to give an overview of Gaussian random fields and stochastic
partial differential equations (SPDEs). We first define Gaussian random fields and give
some important examples. Then we give a self-contained introduction to Walsh’s theory
on stochastic integration and SPDEs. The stochastic heat equation and stochastic wave
equation are the most important examples of SPDEs. We state some existence results and
regularity properties of their solutions. The materials in this chapter are known in the
literature, and they will provide sufficient preliminary knowledge for understanding the rest

of the thesis.

2.1 Gaussian Random Fields

An N-parameter d-dimensional random field, or (N, d)-random field is a stochastic process
u = {u(zx) : z € T} that is indexed by a subset T of R"V and takes values in R?, i.e. a family
of random variables u(z) = (u1(z), ..., ug(x)) : @ = R? indexed by © € T. We say that u is
a Gaussian random field if the nd-dimensional random vector (u(x1), ..., u(xy)) is Gaussian
for all n > 1 and all z,...,x, € T. The probability distributions of the collection of all
these random vectors are called the finite dimensional distributions.

The function m : T — R? defined by m(z) = E(u(x)) is called the mean function and
the function C' : T'x T — R4 ¢ = (Cij)i<i j<d» defined by C;;(z,y) = Cov(u;(z),u;(y)),
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is called the covariance function. We say that u is centered if E(u(z)) =0 for all x € T..
We can define a Gaussian random field by specifying the mean function and covariance
function because a Gaussian random field is determined by its finite dimensional distribu-
tions, which in turn are determined by the mean function and the covariance function. More
RA*d

precisely, if we are given a function m : T" — R? and a function C: T x T — which is

symmetric i.e. C(z,y) = C(y,z), and nonnegative definite in the sense that

d n
> aipaj Cijlag,xy) =0

ij=1k,l=1

for all n > 1, for all x1,...,2p, € T and all a;3, € R (i = 1,...,d, k = 1,...,n), then
there exists an (N, d)-Gaussian random field {u(x) : © € T'} whose mean function is m and
covariance function is C'.

The following are two fundamental examples of Gaussian random fields.

Example 2.1.1. Multiparameter fractional Brownian motion.
The (N, d)-fractional Brownian motion with Hurst index H € (0,1) is defined as a centered
(N, d)-Gaussian random field {B(t) : t € RN} with covariance function

w?H + ‘8‘2H - ’t . S|2H
2

E(B;i(t)Bj(s)) = dij

for t,s € RNV, where 0;j = 1 if i = j, and 0;; = 0 otherwise. It follows that the coordinate
components By, ..., By of B are independent and identically distributed (i.i.d.).

This Gaussian random field has stationary increments in the sense of Yaglom: for any
heRN, {B(t+h)—B(h) :t e RV} and {B(t) — B(0) : t € RV} are equal in finite

dimensional distributions.



When N =1 and H = 1/2, it is the standard d-dimensional Brownian motion. When
N =1and 0 < H < 1, it is the d-dimensional fractional Brownian motion of Hurst index

H. When N > 1 and H = 1/2, it is known as Levy’s multiparameter Brownian motion.

Example 2.1.2. Fractional Brownian sheet.
The (N, d)-fractional Brownian sheet of Hurst indices Hy,...,Hy € (0,1) is defined as a

centered (N, d)-Gaussian random field {B(t) : t € RN} with covariance function

N 1, 2H, 2H, 2H
[l + [sgl ™7 — [ty — ¢ ™74
E(B;i(t)Bj(s)) = 6;; | | 5
(=1
fort,s e RN. When Hy = --- = Hy = 1/2, it is called the (N, d)-Brownian sheet.

The fractional Brownian sheet has the property of being anisotropic in the sense that it
can have different regularities and sample properties along different directions.

Also, the fractional Brownian sheet does not have stationary increments and it has subtle
properties that are different from those of the fractional Brownian motion. For example, they

have different form of small ball probabilities and Chung’s law of the iterated logarithm.

For a Gaussian random field u = {u(t) : t € T'}, it will be convenient to use the notation

oult, s) = (Elu(t) — u(s)|?)"/2

to denote the canonical metric (or pseudo-metric) on 7. In many examples, we can find

at,...,an € (0,1) and positive finite constants C, Cy such that
N N
C1 Y _Itj— 51" S oult,s) < Co Y Jtj — ;| (2.1)
j=1 j=1



for all t,s € T. The parameters aq, ..., ay play important roles in characterizing the sample
path properties of u(t) e.g. regularity, fractal properties and hitting probabilities (see [70]).
In Example 2.1.1, the (N, d)-fractional Brownian motion of Hurst index H satisfies (2.1)
with oy = -+- = apy = H. In Example 2.1.2, the (N, d)-fractional Brownian sheet of Hurst
indices Hy, ..., Hy satisfies (2.1) with a; = H; fori=1,..., N.
In the next section, we will see more examples of Gaussian and non-Gaussian random

fields that arise as solutions of stochastic partial differential equations.

2.2 Stochastic Partial Differential Equations

As explained in the Introduction, solutions of SPDEs form a large class of random fields
and we are interested in studying their sample path properties. We follow [64] and give
an introduction to Walsh’s theory of stochastic integration, which allows us to construct
random field solutions to SPDEs. We will then discuss two of the most important examples
of SPDEs, namely the stochastic heat equation and stochastic wave equation.

Consider a differential operator & with constant coefficients and the SPDE

Du(t,x) = o(u(t,z))W(t, z) + blu(t,z)), t>0,zecRF (2.2)

where o : R — R and b : R — R are Lipschitz functions, and W is a Gaussian noise, whose
definition will be given later.

From the theory of partial differential equations, the differential operator & always has
a fundamental solution G, namely a distribution G that solves G = 4, where g is the

Dirac measure at 0 € R and it follows that u = G * ¢ solves the equation Zu = ¢ for



any ¢ in S(Ry x Rk), the space of smooth rapidly decreasing functions (Schwartz space),
where G * ¢ is the convolution of G and ¢ in (¢, z)-variables. See [55, Ch. §].
In view of this, a mild solution to the SPDE (2.2) is a jointly measurable real-valued

random field {u(t,z) : t > 0,z € R} that satisfies

u(t,z) =G * <a(u)W + b(u)>

R

and is adapted to a filtration generated by the noise W (defined in (2.5) below). To explain
the meaning of the above stochastic integral, let us introduce Walsh’s approach [64] of

martingale measures and stochastic integration.

2.2.1 Walsh’s Stochastic Integration

We will consider spatially homogeneous (centered) Gaussian noise W that is white in time
and has spatial covariance f, which is a non-negative definite function. The Gaussian noise
is defined as a centered Gaussian process {W(g) : ¢ € C(RIF)} that is indexed by ¢ in
Cgo(Rl+k), the space of real-valued smooth functions on R1T* of compact support, and has

covariance
BV W) = [ ds [ dy [ aiets.n) - o )eis)
R, JR R
for all ¢, € C2(RI1TF). Formally, we write

E(W (s, )W (s',y) = do(s = ') [y = ). (2.3)



We say that TV is a space-time white noise if f = dp, the Dirac delta function. Another
spatial covariance that is commonly used is f(y) = \y|_ﬁ , where 0 < 8 < k.

Let %,(R¥) denote the set of all bounded Borel sets in R¥. The martingale measure
induced by the noise W is the stochastic process {M;(A) : t € Ry, A € B (RF)} defined by

My(A) = lim W(gen), (2.4)

n—oo

where the right-hand side is the limit of a sequence {W (¢y,) : n > 1} in L2(Q,.Z,P), and ¢,
is any sequence in C2°(R11#) such that ¢, | Lig,xA- 1t follows that for each A € By, (RF),

the stochastic process {M(A) : t > 0} is a martingale with respect to the filtration
Ty =o{Ms(B):0<s<t BeBRY, t>0. (2.5)

Let us define an elementary process as a stochastic process g(t,z) : @ — R, with ¢ > 0

and x € Rk, of the form

gt z,w) = X(W)1gp) () 1p(),

where 0 < a < b, B € %b(Rk), and X is a bounded, .#,-measurable random variable. For

an elementary process, we can naturally define its stochastic integral as

/[0 xRk 9(s,y)W(ds dy) := X (Mpp(B) — Mina(B)).

By linearity, we can then extend the definition of stochastic integration to the class . of all
linear combinations of elementary processes, which we will call simple processes.

For the martingale measure M, we can define a function Qs by Qpr((s,t] x B x C) =



(M.(B), M.(C)) — (M.(B), M.(C))s, for any 0 < s < t and B, C € B(R").
We say that the martingale measure M is worthy if there exists a random o-finite measure

K (Ax B x C,w), where A € B(R.), B,C € B(RF) and w € Q, such that
1. BxCw Kjp(Ax B x C,w) is nonnegative definite and symmetric;
2. {K3((0,t] x Bx C):t> 0} is a o(.%)-measurable process for all B,C € %B(RF);
3. For all ¢ > 0 and compact sets B,C' € B(RF), E[K,((0,1] x B x C)] < oo;
4. For all t > 0 and B,C € ZRF), |Qx((0,t] x Bx )| < K3;((0,1] x B x C) a.s.

Consider ¢ € [0,T], where T' > 0 is fixed. If M is a worthy martingale measure, then for

any t € [0, 7], the stochastic integral defines a linear map

g— 0k g(s,y)W(ds dy), (2.6)

from .7 to L?(Q, .Zp,P), which is continuous with respect to the norm || - ||3; on . and the

L?-norm on L?(Q, Zp,P), where || - || is defined by

o =B [ o 00l sy )y (2.7

Example 2.2.1. Suppose that W is a space-time white noise i.e. f =200 in (2.3). Then
Qur((0,t] x B x C) =t \.(BNC), where A\, is the k-dimensional Lebesque measure. Take

Ky(Ax BxC) = M(A)N(BNC). It follows that M is a worthy martingale measure and
2 T 2
ol =E [ [ lots.)ldsdy.
0 JR

10



Example 2.2.2. Suppose that the Gaussian noise W satisfies (2.3) with f(y) = |y|_5 and

0< B <k. Then

Qur((0.1] x B x C) =t /B /C ly— o/ dydy.

We can take

KM<A><B><G>=A1<A>/B/C|y—y’|5dydy’,

and the martingale measure M is worthy and

T
loll%, =E / / / 905, 1)9(s, )l — /|7 ds dy
0o JRk JRK

Let &) be the set of all o(.%)-measurable processes g such that ||g||p; < oo. Then
(2 |- lar) is a Banach space and . is dense in &);. It follows that (2.6) extends to a
continuous linear map from & to LQ(Q, F1,P). Therefore, we are now able to define the

stochastic integral

g 805 W s )

as the image of g under this map, for a large class of processes g in &).

2.2.2 Stochastic Heat Equation

Consider the stochastic heat equation

2u(t,x) — Au(t,z) =W(t,z), t>0,zeRF
ot (2.8)

u(0, ) = up(x),

11



where W is a Gaussian noise. The fundamental solution for the heat equation is

For the moment, suppose that the spatial dimension is 1 (i.e. & = 1) and W is a space-
time white noise. Then the mild solution to (2.8) is the real-valued Gaussian random field

{u(t,z) :t >0,z € R} defined by

u(t,z) = (G *ug)(t, z) + /[0 Ik G(t — s,z —y)W(dsdy).

However, for £ > 2, the stochastic integral above is not well-defined because the norm

| - [[as of the integrand defined in (2.7) is infinite:

t
||G<t—-,x—->||%w=// Gt — 5,2 —y)2ds dy = .
0 JRE

As a consequence, there is no real-valued process solution for (2.8) when k& > 2. The solution
is a random Schwartz distribution, but we will not discuss this kind of solution in this thesis.

To obtain real-valued solutions when k > 2, Dalang’s approach [11] is to replace the
space-time white noise by a Gaussian noise that in white in time but correlated in space.

Consider the nonlinear stochastic heat equation

gu(t,x) — Au(t,z) = o(u(t,z))W(t,z) + b(u(t,z)), t>0,zeRF
t (2.9)

u(0, ) = ug(z).

12



Suppose that the Gaussian noise W satisfies (2.3):
E[W (s, y)W (s, y/)] = do(s — ) fly = o/).

Recall the natural filtration {.%;} of the noise defined in (2.5). By a mild solution to (2.9) we
mean a jointly measurable, {.%;}-adapted, real-valued random field {u(t,z) : t > 0,2 € R¥}
that satisfies the integral equation
utia) = G xu)ta) + [ Gt s, = o(uls. ) W(dsdy)
[0,¢] xRF

(2.10)
+ / G(t — s,z —y)b(u(s,y)) ds dy.
[0,t] xRF

Suppose that f > 0 and f is a non-negative definite function, i.e.

[ er @)@y 20
R

for all ¢ € S(R¥), and @(z) := ¢(—z). Let u be a nonnegative measure on R¥ whose Fourier
transform is f(z). For example, if f(z) = |x|_ﬂ, where 0 < # < k, then u(df) = ck75|§\ﬁ_kd£
for some constant ¢, g depending on k and .

The following is an existence and uniqueness result: if ug is measurable and bounded, o

and b are Lipschitz, and p satisfies Dalang’s condition

p(d§)
/Rk e =%

13



then there exists a unique solution to (2.9) which is L?-continuous and satisfies

sup sup E(|u(t,z)[P) < oo
0<t<T gk

for any 7' < oo and p > 1. See [11] (cf. [49, 50]).

The solution can be obtained by Picard iteration. Define ug(t,z) = ug(z) and

i (t) = (G rw)ta) + [ Gt s = olua(s,)W (ds dy)

[0,¢] xRF

4 / Gt — 5,2 — y)blun(s, ) ds dy
[0,t] xRF

for n > 1. One can verify that wu,(t,z) converges in L? using Gronwall’s lemma, and show
that the limit u(¢, z) satisfies the integral equation (2.10).
Here is a regularity result for the solution: wug is a bounded, p-Holder continuous function

for some p € (0,1), o and b are Lipschitz, and

/Rk —(1’1(7;)2)77 < o0 (2.11)
for some n € (0,1), then the solution wu(t,x) of (2.9) is a.s. f1-Ho6lder continuous in ¢ and
[Bo-Holder continuous in z, for any 0 < 51 < %(,0/\ (I1—n))and 0 < B2 < pA(1—mn). Indeed,
forany T'>0,p>2,0< 1 < %(p/\ (1—mn))and 0 < B9 < pA (1 —mn), there exists C' such
that

E(fu(t,z) — uls,y)[P) < C([t — |17 + o — y|*2P)

for all t,s € [0,T] and z,y € R¥. In particular, if f(y) = |y|=7, then (2.11) is satisfied if

and only if 0 < 5 < 2n A k. See [58].

14



2.2.3 Stochastic Wave Equation

Consider the stochastic wave equation

92 :
%u(t,x) — Au(t,z) = W(t,z), t>0,z¢eRF
(2.12)
o
u(0,x) =0, au(O,x) =0,

with an additive Gaussian noise W.

Suppose that if & = 1, W is either a space-time white noise or satisfies
E[W (s,y)W(s',y/)] = do(s = Ny —o/| 7, 0<B<1;

and if k > 2, W satisfies
E[W (s,y)W(s',y/)] = do(s = Ny —¢/| 7, 0<p<2

Let G be the fundamental solution of the wave equation. Recall that if k = 1, G(t,z) =

%1{|x\<t}; if k> 2 and k is even,

L g\ (k22 B
Gty =a (i) kP

if k> 3 and k is odd,

(k=3)/2 &
G(t,x) = ¢ (%%) % (tdx),

where of denotes the uniform surface measure on the sphere {z € R¥ : |z| = t}, see [22,

15



Chapter 5].

Since G is a function when k = 1 or 2, the solution of (2.12) can be defined by

t
u(t,z) = /0 /]Rk G(t — s,x —y)W(dsdy) (2.13)

in the sense of Walsh. For k > 3, GG is not a function but a distribution. It is not straight-
forward to define the stochastic integral (2.13) in this case.

However, for all dimensions, the Fourier transform of GG in variable z is still a function:

F(C(t,))E) = Si“gg’),

t>0,¢ eRF. (2.14)

Based on this observation, Dalang [11] extended the definition of Walsh’s stochastic inte-
gration so that the integrand can be taken from certain class of distributions whose Fourier
transform in z is a function. As a result, for all dimensions we can obtain real-valued process

solutions of equation (5.1):

t
u(t,$):/0 /Rk G(t — s,z —y) W(dsdy).

The range of 5 has been chosen so that the stochastic integral exists, and the solution is a
Gaussian random field.

/

Dalang and Sanz-Solé [20, Proposition 4.1] proved that for all 0 < a < a’ < oo and

0 < b < o0, there exist positive finite constants C7, C such that

Cr(lt — sP>7P + |z — y*7P) <E(u(t, ) — u(s,y)|?) < Ca(|t — s> 0 + |z — y*7F)

16



for all (¢, ), (s,y) € [a,d'] x [=b,b)*. By the Kolmogorov continuity theorem, the solution
u(t, z) is a.s. Holder continuous in (¢, x) of any exponent < (2 — () /2.
For the nonlinear stochastic wave equation

82
or?

u(t,x) — Au(t,z) = o(u(t,z))W(t,z) + b(u(t,z)), t>0, zeRF (2.15)
the case k = 1 was studied by many authors, see e.g. [8, 9, 39, 45, 64]. For k = 2, the
existence and regularity of the solution were studied by Dalang and Frangos [13], and Millet
and Morien [43]. For k = 3, the Hélder-Sobolev regularity of the solution was studied by

Dalang and Sanz-Solé [19]. Not much is known for the nonlinear stochastic wave equation

in dimension k& > 4.
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Chapter 3

Multiple Points of Gaussian Random

Fields

3.1 Introduction

In this chapter, we study the non-existence of multiple points of Gaussian random fields.
Let v = {v(z) : z € RF} be an R%valued Gaussian random field. For a set T C R* and an
integer m > 2, we say that z € R is an m-multiple point of the sample path v(-,w) on T if
there are m distinct points !, ..., 2™ € T such that z = v(z!,w) = --- = v(z™,w). This
chapter is based on [16].

The existence of multiple points of Gaussian random fields have been studied by several
authors. Sufficient or necessary conditions for the (N, d)-fractional Brownian motion BH —
{BH(t) : t € RF} with Hurst index H to have multiple points were obtained by Kono [32],
Goldman [24] and Rosen [54]. Their results show that if km > (m — 1)Hd, then BH has
m-multiple points on any interval T C R¥: and if km < (m — 1)Hd, then B¥ has no m-
multiple points on R¥\{0}. The multiple points of the Brownian sheet was also studied by
Rosen [54] via self-intersection local times.

For BH | the critical dimension is km = (m — 1)Hd. In general, the problem for proving

the non-existence of multiple points of a random field in the critical dimensions is more
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difficult than the non-critical case. The critical case for the fractional Brownian motion
and the Brownian sheet has been solved by different methods. The former was solved by
Talagrand [61] and the latter was solved by Dalang et al. [15] and Dalang and Mueller [17].

Our study is motivated by the interest in the intersection problems for the solutions of
linear systems of stochastic heat and wave equations, where the method in [15, 17] fails in
general. Based on the framework in [18], we extend Talagrand’s approach in [61] to a large
class of Gaussian random fields including fractional Brownian sheets and the solutions of
systems of stochastic heat and wave equations with constant coefficients. Moreover, our
theorem provides an alternative proof for the results in [15, 17] with the use of general
Gaussian principles and the harmonizable representation of the Brownian sheet.

The chapter is organized as follows. In Section 3.2, we state our assumptions and main
result (Theorem 3.2.4). In Section 3.3, we establish some necessary lemmas and the main
estimate Proposition 3.3.6 for proving the main theorem and, in Section 3.4, we prove the
theorem. In Section 3.5, we provide some examples of Gaussian random fields to which the
theorem can be applied, including the Brownian sheet, fractional Brownian sheets, and the

solutions of systems of stochastic heat and wave equations.

3.2 Assumptions and Main Result

Throughout this chapter, we assume that v = {v(z) : z € R¥} is a centered, continuous R%-
valued Gaussian random field defined on a probability space (€2, %, P) with i.i.d. components.
Write v(z) = (v1(x), . ..,vg(x)) for 2 € R¥. We will study the existence problem of multiple
points of v(x) on a set T C RF.

By a closed interval in RF we mean a set I of the form H;?:l[cj,dj], where ¢; < d;.
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We assume that 7' C R¥ is a fixed index set that can be written as a countable union of
compact intervals. To avoid trivial multiple points, we will take, for example, T' = Rk\{O}
or T = (0, 00).

We consider the following two assumptions, which are slight modification of Assumptions

2.1 and 2.4 in [18].

Assumption 3.2.1. There exists a centered Gaussian random field {v(A,z), A € B(R4),z €
T}, where B(R4) is the Borel o-algebra on Ry = [0,00), such that the following hold:

(a) For all z € T, A — v(A, ) is an R%-valued white noise (or, more generally, an
independently scattered Gaussian noise with a control measure p) with i.i.d. components,
v(Ry, ) =v(z), and v(A,-) and v(B,-) are independent whenever A and B are disjoint.

(b) There exist constants v >0, 5 =1,...,k with the following properties: For every
compact interval F' C T, there exist constants cg > 0 and ag > 0 such that for all ag < a <

b<ooanduz,y € F,

k
[v([a, ), z) — v(z) — v([a,b),y) +v(Y)ll ;2 < o ( > alilz; -yl + 5_1)7 (3.1)
j=1
and
k
([0, a0), ) — ([0, ag), )]l ;2 < co Y _ |zj — yjl- (3.2)
j=1

In the above, || X|| ;2 = (E|X!2)1/2 for a random vector X.

Notice that in Assumption 3.2.1 the constants ap and ¢y may depend on F', but v;
(j=1,...,k) do not. As shown by Dalang et al. [18], the parameters v; (j = 1,...,k) play

important roles in characterizing sample path properties (e.g., regularity, fractal properties,
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hitting probabilities) of the random field {v(z), = € T'}.

Let aj = (vj + D~tand Q = 25:1 aj_l. Define the metric A on RF by

k
Az,y) =Y |y —yi|™. (3.3)
j=1

Assumption 3.2.2. For every compact interval F' C T, there are positive constants g, C
and §; € (aj,1], j =1,...,k, such that the following holds:

For all closed intervals I C F, x € I and 0 < p < g, there is 2’ € 1(p) (here and below,
I(P) denotes the p-neighbourhood of I in the FEuclidean norm) such that for all y,y € 1(p)

with A(z,y) < 2p and A(z,7) < 2p,

k
E((vi(y) — vi@))vi(2')| < C D Jyj - ?Jj|5j, i=1,...,d (3.4)
j=1

The constants €y and C' may depend on F'.

In addition, we impose a non-degeneracy assumption.

Assumption 3.2.3. For any m distinct points el 2™ in T, the random variables
v (zh), ... v (&™) are linearly independent, or equivalently, the Gaussian distribution of
(vl(xl), ..., v1(2™)) is non-degenerate.

The main result of this chapter is the following.

Theorem 3.2.4. Let m > 2. Suppose that Assumptions 3.2.1, 3.2.2 and 3.2.3 hold. If

m@Q < (m — 1)d, then {v(z),z € T} has no m-multiple points almost surely.
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3.3 Preliminaries

In this section, we provide some lemmas and a main estimate that will be used for proving
Theorem 3.2.4. It suffices to prove that if m@Q) < (m — 1)d then, for every compact interval
F c T, {v(z),z € F} has no m-multiple points. Therefore, from now on, we will assume
that T is a compact interval.

For € T and r > 0, denote by S(z,7) = {y € R¥ : A(z,y) < r} the closed ball with
center z and radius r in the metric A in (3.3) and let By(z) = H?:ﬂ% - rl/aj, T +7’1/aj].
Notice that S(z,r) € Br(z) and B, ;(z) C S(z,7).

..,t™ € T, we can find an integer n > 1

Fix m > 2. Given any m distinct points ¢!, .
such that A(t',t/) > 1/n for i # j. For p > 0, let Bf) =B,(t") (i=1,...,m).

Counsider the random set

m
Mtl,.._,tm; = {z eR?:3 (z',...,2™) € H B,
i=1 (3.5)
such that z = v(z!) = -+ = v(xm)},
which is the intersection of the images U(Bz) for « = 1,...,m. By the continuity of the

process v(z), the set of m-multiple points of {v(z) : x € T'} can be written as a countable

union

U U U U Mtl,...,tm;p (3'6)

n=>l ¢l . imyeA, po€(0,1/n)NQ pe(0,09)NQ

where Ay, = {(t!,... ™) : ' e TNQF A(t, /) > 1/n for i # j}.
For the rest of this section, we fix n and (¢t!,...,t™) € A,. Let py € (0,1/n) be a small

number which may depend on ¢!, ..., #™ and will be determined in Lemma 3.3.8 below. For
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simplicity of notation, we assume that Bpo(ti) C T fori=1,...,m (otherwise we take the
intersection with T'), and we omit the subscripts t!, ..., ¢ in (3.5) and write M, »-
Recall from [18] that, under Assumption 3.2.1, A provides an upper bound for the L

norm of the increments of {v(x),z € T} and in particular v(x) is continuous in L?(Q,.%, P).

Lemma 3.3.1. [18, Proposition 2.2] Under Assumption 3.2.1, for all z,y € T with A(x,y) <

min{a&l, 1}, we have [[v(x) —v(y)|| 2 < depA(x, y).

Assumption 3.2.1 suggests that for any s € T and x that is close to s, the increment
v(xz) —v(s) can be approximated well by v([a, b), z) —v([a, b), s) if we choose a and b carefully.

The following lemma from [18] quantifies the approximation error on S(s, cr).
Lemma 3.3.2. Let ¢ > 0 be a constant. Consider b >a > 1, g >r >0 and set

-1 —1
11
A:Zan P 4L
7=1
There are constants Ay, K and ¢ (depending on cy in Assumption 3.2.1 and ¢) such that if

A< Agr and

u> KA logl/2 <%> : (3.7)

then for any s € T,

P{ s Jole)—vls) — (olfa0)e) —olla.0) )| 2 uf < exp (—%) .

xeS(s,cr)

Remark 3.3.3. The constant ¢ in Lemma 3.3.2 and Proposition 3.3.6 below is not important.
It merely helps to simplify the presentation in Section 3.4, where sometimes we switch back

and forth between a ball S(s,r) and an interval By (z).
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For describing the contribution of the main part v([a,b], ) — v([a, b], s), we will apply
the small ball probability estimate given in Lemma 3.3.5 below. We refer to Lemma 2.2 of
[60] for a general lower bound on the small ball probability of Gaussian processes. However,
it was pointed out by Slobodan Krstic (personal communication) that the condition of that
lemma is not correctly stated. Indeed, the lemma fails if we consider S consisting of two
points and independent standard normal random variables indexed by the two points. We

will make use of the following reformulation of the presentation of Talagrand’s lower bound

given by Ledoux [34, (7.11)—(7.13) on p. 257].

Lemma 3.3.4. Let {X(t),t € S} be a separable, vector-valued, centered Gaussian process
indexed by a bounded set S with the canonical metric dx (s, t) = (E|X(s) — X(t)[2)Y/2. Let
N:(S) denote the smallest number of dx-balls of radius € needed to cover S. If there is a
decreasing function ¢ : (0,0] — (0,00) such that N:(S) < ¢(g) for all € € (0,6] and there

are constants cg > c¢1 > 1 such that

c19(e) < ¥(e/2) < expple) (3.8)

for all € € (0,0], then there is a constant K depending only on ¢1 and co such that for all
u € (0,9),

]P’( sup | X (s) — X(t)] < u) > exp (— K¢(u)). (3.9)

s,tes
Let p € (0,pg/3), recall that B%p, . ,Bé”p are the rectangles centered at ¢!,...,¢"™. By

applying Assumption 3.2.1 and Lemma 3.3.4, we derive the following lemma.

Lemma 3.3.5. Suppose that Assumption 3.2.1 holds and p € (0, pg/3) is a constant. Then

there exist constants K and 0 < ng < po/3, depending on cqy in Assumption 3.2.1, such that
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forall(sl,...,sm)EB%pxn-XB%,forallO<a<band0<u<7“<n0, we have

: : Q
IP( sup sup |v([a,b),z") — v([a,]),s")] < u) > exp K. (3.10)
L<i<m gieg(sir) u@
Proof. As suggested by the proof of (3.3) in Talagrand [61], (3.10) can be derived from

r
ul/a

there should be raised to the power N) and the suggested proof by introducing the auxiliary

Lemma 3.3.4. However, there was a typo in the exponent in (3.3) in [61] (the ratio

process Z does not give the correct power for lr/a in (3.3) in [61], which is needed for
u
proving Proposition 3.4 in [61]. Hence we give a proof of (3.10).
For (s!,...,s™) € B%p X -+ X By and 1 < po/3, define S = (J; S(s',r). Under our
assumption, we have S(s%,r) C T fori =1,...,m. Thus, S C T. It follows from Assumption

3.2.1 that for all z, y € S,

o[, b), 2) = v([a,b), y)||72 = l[o(x) = v(B)]72 = o(R+ \ [a,b),2) = (R \ [a,0),9) 17

< [[o(a) - v(y)]2,.

By Lemma 3.3.1, we have that the canonical metric for {v(|a,b),z), x € S} satisfies

dy(s,t) := |[v([a, b), 2) = v([a,b),y)l| ;2 < dcoA(z,y)

for all x, y € S with A(z,y) small. Hence there is a constant 7y € (0, pg/3) such that for all

r € (0,m9) and € < r, the minimal number of d,-balls of radius € needed to cover S is

N=(S) < 0(e) == Cn q(r/e)?.
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Note that this function ¢ (¢) satisfies (3.8) with the constants ¢; = ¢p = 2¢ which are greater
than 1. It follows from Lemma 3.3.4 that there is a constant K such that (3.10) holds. This

proves Lemma 3.3.5. O
The following is the main estimate. It is an extension of Proposition 3.4 in [61].

Proposition 3.3.6. Let ¢ > 0 be a constant and suppose that Assumption 3.2.1 holds. Then
there are constants K1 and 0 < 1y < 1 such that for all 0 < rg < n1, p € (0,p9/3), and

(31,...,sm)€B%p><---><B§”p, we have

-1/Q

: - 1

P(Elr € [r%,ro], sup sup  Jo(z') —ou(s")] < K1r<1oglog —) )
r

1<ism xiES(si,cr)
1\ 1/2
>1—exp| — | log— .
ro

Proof. The method of proof is similar to that of Proposition 3.4 in Talagrand [61]. But
the latter contains several typos. For completeness we provide a proof of Proposition 3.3.6
here. The main ingredients are the small ball probability estimate in Lemma 3.3.5 and the
estimate of the approximation error in Lemma 3.3.2,

As in [60, 61] and [18], let U > 1 be fixed for now and its value will be chosen later. Set
ry = TOU_% and ay = U%_l/ro. Consider the largest integer ¢ such that

_ log(1/n0)

. 11
0= "91gU (3.11)
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Then for ¢ < ¢y, we have ry > 7“8. It suffices to show that, for some large constant K7,

P31 <¢</{y sup sup  |o(z!) —u(s)| < K, i

L<iSm gies(st, ory) (loglog %)I/Q
L\ 1/2
>1l—exp| — (log—) .
70

It follows from Lemma 3.3.5 that, for K large enough so that K/KlQ < 1/4,

. . /r‘g
Pl sup sup folfag, apq), 2") = o(lag, apg), s')] < K 10
L<i<m yieS(st, cry) (loglog )
K 1
> exp ——Qloglog— (3.12)
K e

1\ /4
> (log —) .
Ty

Thus, by the independence of the Gaussian processes v([ag, apy1),-) (¢ =1,...,4y), we have

; 1 T
P | 3 < by, sup ~ Sup |U([a€7a3+1)>xz) - U([ag,ag+1), SZ)| < Ky 61 1/Q
I<i<m xteS(st, erp) (log log ﬁ>
‘o
S1-TI4 (s s el e?) - olaaga). o)
(=1 lsism gicS(st, ery)

Ty
<K
= (loglog %)VQ)
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By (3.12), we see that the last expression is greater than or equal to

‘0 14 —1/4Y %
1 1
1—” 1—(10g—) >1—-q91—|log—
(=1 re "0

d
i (3.13)
>1—exp | =4 (log —2>
0
Set
k -1 -1
o, —1 o
a=Sa
j=1
Notice that rpay = U1 and reapy1 = U. Then

. -1 b (el

Ayt = ()™ (agar) =Y U AU < (k+ 1)U, (3.14)
J=1 j=1

with 8 = min{1, min;_; __(a;"

j — 1)} > O since a; < 1 for j =1,... k. Therefore, for U

large enough, Ay < Agry, and for u > Kr,UP\/logU, (3.7) is satisfied. Hence, by Lemma

3.3.2 and (3.14),

P( sup sup |v(xz) — v(si) — v([ay, ag+1,xi) + v([ag, apsq, sz)| > u)
1<i<m xieS(si,crg)

< u?
> exXp %

<e ( w’ U25)
X —_ 5 .
=P T )22

Now we take u = Kqrp(loglog %)‘UQ, which is allowed provided

-1/Q

1 .

Klrg(loglogr—) zKrgU_ﬁ\/logU.
0
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This is equivalent to

2 1/Q
U*B(logU)_l/2 > Kﬁl(loglog %) , (3.15)

which holds if U is large enough. It follows from the above that

IP( sup sup  [u(2") = v(s) — v(lag, agr1), 2') + o((ag, 1), )| > Klw)l/Q>

1<i<m xiES(si,crg) (log log %
U2p
< ex — . 3.16
Let
; ; K ¢
F={ s s fofapap)a) — oapap, s < T b
I<i<m rteS(st, erp) (log log ﬁ)
Ge=13 swp s () —olsh) — ullap age, o) + vllag age, o)
I<i<m rteS(st, erp)
S Ky Ty
= 9 131
2 (loglog 7,)1/€
Then
P[3J1<¢< 4y, sup sup  |u(z?) —u(s)| < Ky 7’61 70
1<i<m xiES(si,crg) (log log ﬁ)
to
> IP’( U(FWG?)>
/=1
3.17
) KO c ( )
(U (G
/=1 /=1
to o
>P|l R | -P| G
/=1 /=1
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By (3.13), we have

4 L\ VA
P Fl>1- —0p [ log — ,
(9r)2-n (-0 ee) )

U
P Gy | <lpexp | —- .
(ZLJ1 ) ( é(k + 1)2(log log %)Q/Q)

Combining this with (3.17), we get

and by (3.16),

P[31<¢< 4y, sup sup  |u(a) —o(s)] < K e

L<ism gieg (st cry) B (loglog %)UQ

> 1 o { 1og o ¢ Chak
Z 1l—=exp| — 0g — —lpexp | — )
"\ ’ c(k +1)2(loglog 7)<

Therefore, the proof will be completed provided

o |1 ! o + /4 v
€Xp | —*to | 08 & 0eXp | ==
i é(k +1)%(loglog +)2/9

1\ 1/2
< exp (— <log r_) ) .
0

Recall the condition (3.15), and the definition of ¢y in (3.11). If we set

1\ 1/28)
U= (log r_> ,
0

(3.18)

then for rg small enough, by (3.11),

—1
1 1
by > é (log —) (loglog —) > 1.
2 70 70
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Therefore, the left-hand side of (3.18) is bounded above by

(e d) % g
- og — |exp | —
¢(k +1)2loglog % : o P é(k + 1)%(loglog %)Q/Q

1\ 1/2
< exp (— <log %) )

provided rq is small enough. This completes the proof of Proposition 3.3.6. O

exp

For each small p > 0, by Assumption 3.2.2, there are (fl, e ,fm) € Bép X o X Bgz’) such
that for alli =1,...,m and all z,y € ng,

k
[E((v() = v(y)) - v(f)| < O |y — w4, (3.19)
j=1

The points #1,. .., ™ are fixed.

Let Y9 denote the o-algebra generated by v(f!), ..., v({™). Define
v z) = E(v(2)[S2), vl(z) = v(z) — v?(2). (3.20)

The Gaussian random fields v! = {v!(z),z € T} and v? = {v?(z),z € T} are independent.

Lemma 3.3.7. There is a constant Ko depending on t%,... & and the constant C in

Assumption 3.2.2 such that for allt=1,...,m and all x,y € ng,

k
5 .
|v?(z) — v*(y)| < szz:l [z —y;l7 X (@]

Proof. By Assumption 3.2.3, the subspace in L2(Q; Rd) of random vectors  — RY spanned
by v(t!),...,v(#™), has dimension m > 2. Let {37, amv(fi) 7 =1,...,m} be an
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orthonormal basis of this subspace, where a; ; are constants that depend on AT L0
Then
m m ) m
v (z) = ZE{Zamv(tz) : v(m)} (Zag’jv(té)).
j=1 ‘ti=1 =1
By (3.19), we have
m m m )
@) =) = | 2 (ZZ s jag B | (0(@) = v(y) - v(d)| )v(t%
(=1 “i=1j=1
k
<K — J
Z |25 = yjl 1She, |U )|
j=1
This completes the proof. O

Lemma 3.3.8. Suppose Assumptions 3.2.1, 3.2.2 and 3.2.3 are satisfied. Then there exist
constants K and py > 0 depending on t*, ... t"™ such that for all p € (0, p0), ag,...,am €
R >0, and all (zb, ... ™) EB}; X - X B,

2<i<m

IP( sup |U2(l‘1) _’U2<IZ) . ai| S T> S KT’(m_l)d

Proof. We first assume d = 1. We claim that if py is small then v?(z!),...,v?(z™) are
linearly independent for all p € (0,pg) and (z!,...,2™) € B}) x -« x B, Indeed, by

Assumption 3.2.3, we can find K > 0 such that Var(3 7, bju(t))) > K|b|? for all b € R™.
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By the Cauchy-Schwarz inequality, we have

:

< 1Y (@) = v@)ll 2 + o) = vl 2 )-
i=1

It follows that

E(; biv2(l’i)>

1/2 1/2 1/2

E(ébiv(ti)>2] (Zb (") — v¥( ')))2]

> (KW‘ =3 (It = w(@)l o + () - v(xi>||L2)) b

1=1

Notice that, Assumption 3.2.1 implies the L?(P)-continuity of v(z) [cf. Lemma 3.3.1], we
can find a small constant py > 0 depending on ¢!, ..., ¢ so that the above is > Cb| for all
pe€(0,pp)and (z,... 2™ € B;x- X Byt where C' > 0. It follows that (2, 0™
are linearly independent, and so are v2(x1) — v2(2?), v2(z}) — v2(23), ... V2 (z!) — 2 (2™).

Denote the determinant of the covariance matrix of the last random vector by

det COV<UQ(y1) - U2(y2)7 v2(yl) - U2(y3)7 s 7U2(y1) - UQ(ym))'

Then the map (y1,...,y™) — det Cov(v?(y1) —v?(y2), v2(y1) =02 (¥P), . .., o2 (y1) =2 (y™))

is continuous and positive on the compact set B})O - X B%, so it is bounded from below
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by a positive constant depending on ¢!, ... ¢™. This and Anderson’s theorem [3] imply that
Pl sup |[02(z!) = (@) —a;| <r | <P| sup [WP(z!) =) <r| <KL
2<i<m 2<i<m

Since v(x) has i.i.d. components, the case d > 1 follows readily. ]

We end this section with the following lemma which is obtained by applying Theorem
2.1 and Remark 2.2 of [28] to the metric space (T, A). It provides nested families of “cubes”
sharing most of the good properties of dyadic cubes in the Euclidean spaces. For this reason,
we call the sets in 2, generalized dyadic cubes of order q. Their nested property will help

us to construct an efficient covering for M.

Lemma 3.3.9. There exist constants c1,co, and a family 2 of Borel subsets of T, where

2= Ugil Dy, 2qg={Ig0:0=1,...,nq}, such that the following hold.
(1) T = Ugi1 I, ¢ for each ¢ > 1.
(ii) Fither Iy e Iq/,f/ =g orl,,C Iq/j/ whenever ¢ > ¢, 1 < (< ng, 1 < < Nyl

(#ii) For each q,l, there exists xy g € T such that S(xyg,c1279) C 1y 9 C S(xyp,02279) and

{wge: 1o ngt CHagpre:l=1,...,ng41} for all ¢ > 1.

3.4 Proof of Theorem 3.2.4

Recall that, by (3.6), it suffices to show that for all integers n and all points t1,... t™ € T
such that A(t!,t) > 1/n for i # j, we can find a small pg > 0 depending on t!,...,t" so
that for all p € (0,p9), M, is empty with probability 1. When m@ < (m — 1)d (we refer

this as the sub-critical case), the last statement can be proved easily by using a standard
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covering argument based on the uniform modulus of continuity of v = {v(z),z € T} on
compact intervals. In the following we provide a unified proof for both the critical and
subcritical cases.

Now let t1,...,#™ € T be m distinct points such that A(t",#/) > 1/n for i # j and some
integer n > 1. They are fixed in the rest of the proof. We choose a constant py > 0 such
that both Lemma 3.3.8 and Assumption 3.2.2 hold for all p < pg (e.g., we take pg < gq).
Hence we can find (£!,...,i™) € B§p X -+ X By such that (3.19) holds. Furthermore, we
assume that there is a compact interval F' C T such that the Bg 20 C Fforalll<j<m.

Fix p € (0, pg). For each integer p > 1, consider the random set

Ry = {(81,...,Sm) € B%p X oo X Bg;‘) :dr e [2_2p,2_p] such that

. . 1\ Ve
sup sup lv(z") —v(s")] < Kir <log log —) ,
r

1<i<m xiES(siAch)

where co is the constant given by Lemma 3.3.9. Let f§ = min{s*,1}/2, where §* =
min{d;/a; —1: j = 1,...,k}. Let A denote the Lebesgue measure on R™k . Consider

the events

A(Rp) = A(BY, x -+ x BE)(1 = exp(—y/p/4)) |,

Qo = { max |v(£)] < 2510} .

1<i<m

By applying Proposition 3.3.6 with ¢ = 4c¢9 and Fubini’s theorem, we derive that for p

sufficiently large,

P((sl, s € Rp) > 1 — exp(—/D/2)
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for all (s!,...,s™) € B%p x -+ x By Then by Fubini’s theorem, Pt Py, 1) < .
Moreover, it is clear that Z;O:l P2 o) < 0.
Denote by 2 = Ugozl 2y, the family of generalized dyadic cubes given by Lemma 3.3.9

that intersect the compact interval F'. Consider the event

Q3 = {w € 29y, sup |v(z) —v(y)| < K32—2pp1/2}.
z,yel

For every I € 9, Lemma 3.3.1 implies that the diameter of I under the canonical metric
dp(z,y) = |lv(z) —v(y)[| 2 is at most c3 2727, By applying Lemma 2.1 in Talagrand [60]

(see also Lemma 3.1 in [18]) we see that for any positive constant K3 and p large,

IF’( sup |v(z) —v(y)| > K32_2pp1/2> <exp ( - (ﬁyp).

z,yel Cc3

Notice that the cardinality of the family 29, of generalized dyadic cubes of order 2p is at
most K229, We can verify directly that Zgil P(Qg’g) < oo provided K3 is chosen to
satisfy K3 > 2¢3Q) In 2.

Let Q) = Qp71 N Qp72 N Qp73 and

o =N W

0>1p>4

It follows that the event Q* occurs with probability 1. We will show that, for every w € Q*,
we can construct families of balls in R? that cover M -

For each p > 1, we first construct a family ¢, of subsets in R™MK (depending on w).
Denote by %, the family of subsets of 7" of the form C = Ty > X g, for some

integer ¢ € [p, 2p|, where ]q’gl. € 2y are the generalized dyadic cubes of order ¢ in Lemma
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3.3.9.

We say that a dyadic cube C' = I x -+ x I"™ of order ¢ is good if it has the property

that
sup  sup lwl(z) —vl(y) < dg, (3.21)
1<i<m zyell
where
k
dg = 2(K1 + Ko 3 (2¢2)°3/%7)27(log log 29) "1/ (3.22)
j=1

For each z ¢ B%px---me

5y, consider the good dyadic cube C' containing x (if any) of

smallest order ¢, where p < g < 2p. By property (ii) of Lemma 3.3.9, we obtain in this way
a family of disjoint good dyadic cubes of order ¢ € [p, 2p] that meet the set B% p XX Bg‘p.
We denote this family by %pl.

Let %1,2 be the family of dyadic cubes in T of order 2p that meet B}; X +++ x By but
are not contained in any cube of gpl. Let ¥ = gpl U gpz . Notice that for each C € €), the
events {C' € gpl} and {C € %p?} are in the o-algebra X1 := o(v!(z) : z € T).

Now we construct a family %, of balls in R? (depending on w) as follows. For each C' €
%p, we choose a distinguished (non-random) point ¢ = (.:z%,, o) in Cﬂ(B%px- X By).

If C'is a cube of order g, then we define the ball B), ¢ as follows.

(i) fC e %pl, take B, ¢ as the Euclidean ball of center v(a:é) of radius rp, o = 4d,. Recall

that dg is defined in (3.22).
(i) fC e %pz, take By, ¢ as the Euclidean ball of center v(xlc) of radius r, o = 2K32"2Ppl/2.
(iii) Otherwise, take B), o = @ and r, ¢ = 0.

Note that for each p > 1,C" € 6}, the random variable r}, ¢ is X1-measurable. Consider the
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event

Qpc = {w cO: sup !v(xé,w) — v(w’é,w)! < rpp(w)} )
2<i<m

Ifwe Q" NQ,c, define Fp(w) = {B) ¢ : C € Gp(w)}. Otherwise, define Fp(w) = @.

Choose an integer pg such that 29277 < p and

P2 (log p)™ exp(—+/p/4) < p"C (3.23)

for all p > pg. We now show that .#)(w) covers M,(w) whenever p > pg and w € €2y,

Let w € Qp and 2 € M,(w). By definition, we can find a point (y*,...,y™) € B}) X e X
BJ' such that z = v(yl,w) = -+ = v(y™,w). By the definitions of gpl and gpQ, the family
“p(w) of dyadic cubes covers B; x - x By, thus the point (y',...,y™) is contained in some
C=TI'x-xI™¢c %y (w). We will show that z € B, c and w € Q, ¢. To this end, we

distinguish two cases.

Case 1. If C' € gpl (w), then it is a good dyadic cube of order ¢q € [p, 2p] such that
sup ]vl(xé,w) — ol (yf,w)| < dy.
1<i<m

By Lemma 3.3.9, xic,yi € I' € S(z*,c9279) for some z* € T, so we have

k k
N ek —yi%T <Y (2e)’/ G2 a045Y), (3.24)
=1 =1
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.
recall that f* = min {a—j — 1}. Since w € Q) 2, Lemma 3.3.7 and (3.24) imply that

1<j<k ~J
. - k *
sup ‘02(:610) — U2(yz)‘ < Ko 2(202)51'/0‘12"1(1+B -8 < dg. (3.25)
1<i<m j=1

It follows that

sup !v(xic,w) —z|= sup |U(x%,w) - U(yi,w)‘ < 2dy,
1<i<m 1<i<m

which implies that 2z € By, ¢ and w € (2, .

Case 2. Now we assume C' € %pQ(w). Since w € 2 3, we have

sup [v(zf, w) — 2| = sup [v(ak, w) — v(y',w)| < K327 %pl/2,

2 2

hence z € B), ¢ and w € Q), ¢.

Therefore, for every w € Q*, F,(w) covers M,(w) when p is large enough. We claim
that, with probability 1, the family %, is empty for infinitely many p. This will imply that
M, is empty with probability 1 and the proof will then be complete.

We prove the aforementioned claim by contradiction. Suppose the claim is not true.
Then the event ' that F is nonempty for all large p has positive probability and the event

QN =Upq ﬂng(Q’ N ) also has positive probability. Denote

o(r) = rM@=m=Ud(1og10g(1/r)™,  f(r) = ™9 (loglog(1/r)™,
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and consider the random variables X, defined by

- _ —(m-1)d
Xp = log, Y brpe) = 1o/, > frpor Lcegpylo, o (3.20)
Bp7ceyp C’e%p

Let X :=liminf, X;. Since m@Q < (m — 1)d, we have ¢(r) — oo as r — 0+. Moreover,
for every w € /' N Q*, Zp(w) is not empty for all large p. This and the definition of X, in
(3.26) imply that X (w) = oo on ' N Q*. In particular, E(X) = oo.

On the other hand, notice that gpl covers Ity on the event €2 for all p > py. Indeed, if
w e Qp, s= (st,...,s™) € Rp(w), and C' = It x - x I™ is the dyadic cube of order ¢ in %pl
containing s, then there exists r € [272P, 27P] that satisfies the condition in the definition of

Ry and we can find ¢ such that 2701 <« <979 p< g <2, and

sup sup lu(z") — v(s")| < K1279(log log 2q)_1/Q. (3.27)
I<i<m xiES(si,QCQQ*q)
By the property that I* C S(2!,c9279) for some 2’ and by Lemma 3.3.7, it follows from
(3.25) and (3.27) that (3.21) holds. Thus C is a good dyadic cube. This proves that %pl (w)
covers Rp(w).

By the choice of pg, the cubes in %pz are contained in B% p XX B

; 1
2 thus in BQP X

+ x By, \ Rp, whose Lebesgue measure is at most exp(—,/p/4) on €. For any C' =
I'x...xIme f?g of order 2p, each I’ contains a set S(xi, 012*217) for some z* and the set
has Lebesgue measure K 2_2pQ, so €1y, is contained in the event Qp that the cardinality of
%172 is at most K22PMQ exp(—+/p/4).

Recall that both ffpl and %pz depend on 1. We see that ﬁp belongs to the o-algebra 1.
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Hence for p > po,

E(Xp) <E (1~ > fpe 1{06%}1%0)
C’E‘Kp
( > flrpe) m 1d1{Ces¢p}P(Qp,c|21)) (3.28)
Ce%p

<KIE<1~ > flrpe )1{06%})

Ce%p

where the last inequality follows from Lemma 3.3.8 and independence of v! and v2.

Now consider any dyadic cube C' € €), of order ¢q. If C' € gpl, then f(r, o) < K2-1mQ <
KX(C) (where A(+) denotes Lebesgue measure); if C' € %pQ, then f(r, o) < K27 2pmQpmQ/2(1og pym
Moreover, for p > pg the dyadic cubes in gpl are disjoint and contained in B% p X X Bgz

These observations, together with (3.28) and (3.23), imply that for all p > py,

B06) < KB( 30 NON g+ 080" expl—vi/1) ) < Ko™
Cesp

By Fatou’s lemma, we derive E(X) < Kp™% < oo. This is a contradiction. The proof of

Theorem 3.2.4 is complete. O

3.5 Examples

In this section we provide some examples where Theorem 3.2.4 is applicable. These in-
clude fractional Brownian sheets, and the solutions to systems of stochastic heat and wave

equations.
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3.5.1 Fractional Brownian Sheets

The (N, d)-fractional Brownian sheet with Hurst parameter H = (Hy,..., Hy) € (0,1)N
is an R%valued continuous Gaussian random field {v(z),z € ]Riv } with mean zero and

covariance
N

1 . . .
E(vj(w)or(y) = 80 TT 5 (lwal® + i = [ = il
=1
When N =1, it is the fractional Brownian motion and the non-existence of multiple points

in the critical dimension was proved by Talagrand [61]. So we focus on the case N > 2.

Let a € (0,1) be a constant. We start with the identity that any = € R,

1 — cosxé 1 —cosé -1/2
200 2

x| =¢ ————d&, where cq = (/ —d§) ,
o = [, g * = e T

which can be obtained by a change of variable in the integral. It implies that for any x,y € R,

<|x|2a + |y|2a — |z — y|2a> — 2 / {(1 — cos z§)(1 — cos y§) i sin x¢ sin y§ de.

«Q ’£|2a+1 |§|2oz+1

N | —

It follows that for H € (0, 1)N and z,y € RN, we can write

i . i) Jo; Wik
11 <|$i|2Hi + [y — |y —yz'|2Hi> =cir Y /NH fpi(:rgjg)];[ffi(lyg)dg,

- RV -
1=1 pE{O,l}N i=1

N | —

(3.29)
where fo(t) = 1—cost and f1(t) = sint. It gives a representation for the fractional Brownian

sheet: If W), p € {0, l}N , are independent R%-valued Gaussian white noises on RY and

N fp (i)
v)=cy Y. / HWWp(df), (3.30)

RV
pG{O,l}N =1
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then (a continuous modification of) {v(z),z € Riv} is an (N, d)-fractional Brownian sheet
with Hurst index H. In particular, when H; = % fori =1,...,k, the Gaussian random field
{v(z),z € RV} is the Brownian sheet and (3.30) provides a harminozable representation for
it.

We take T = (0, 00)V [since v(z) = 0 for all z € 8]1%]1&7 a.s., the existence of multiple points
is trivial on 6Rﬁ ]. We use the representation (3.30) to show that the fractional Brownian
sheet satisfies the assumptions of Theorem 3.2.4 on T'.

Define the random field {v(A,z), A € B(Ry),z € T} by

N LiSi
= Y [ [T -2 o)

H:
pef0,}NV {max; |§;|7 €A} i
Lemma 3.5.1. For anyn > 1, let F, = [1/n,n]N, g9 = (2n)71, a9 = 0 and v; = HZ-_1 -1
There is a constant cq > 0 depending on n such that for all0 < a < b < oo and x,y € Fy,
N
[(v(z) = v(la,b),2)) = (v(y) = v([a.b),9))|[ 2 < co(za”m — vl + b_l)- (3.31)

i=1

Proof. Without loss of generality, we may assume d = 1. For any 0 < a < b < o0, let

B = {¢ e RN : max; |§]|Hi € [a,b)}. Then we can express its complement as

N

RV B = {|g] < ap, V1 <k < NYU | {I&] > bi},
k=1

where a; = al/Hi and b; = pl/H;.
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Note that

N
(:&) fpz(yzfz)
H g7 H e
I (Wi&5) fpj(25&5)

fp; ( i ;&) — f, Z(yzgi)
:Z< = & ’H+12;2 H Hi+1/2 H H+1/2)'

1<5<4 ’5]’ J 1<j<N ’5]' J

It follows that

[(v(z) —v(la, b),2)) — (v(y) — v([a,b),y)) ;2
N N 9 71/2
foi(@i&) 1 o Wik)
X [/{|ek|<ak7wf}(H|si\Hz‘+1/2 Z-:Hly@\ffﬁl/?) dﬁ]

pe{0,1}N =1

N N N 9 71/2
fp; (%) o (Wi&i) ) ]
>y [] T 225 ) d
[/{|§k|2bk} ( ’5i|Hi+l/2 i—1 |£z‘|Hi+1/2 ‘

pE{OJ}N k=1 =1

N
fpi(@i&i) = fp; (Wi&i)
= CZ Z [/{Ifk;lmkﬂk}( & | Hit1/2 H

P =1 1<j<i I&j]

1
fo: (Wi&5) fpi(x€5) 2
s T )

1<5<i |€j 1<j<N |§7

1
fp: (y5&5) fp:(x5€5) 2
JH]-+1/2 11 ! ]+1/2>d§]

1<j<N |€]|

N N
foi (@i&i) — fp; (Wi&i)
+CZZZ [/{|€k|>bk}< |§z‘|Hi+1/2 H

P k=1l=1

Using the bounds | fp, (2§) — fp; (¥€)| < [z — yl[¢| and | fp, (2€) — fp, (y€)| < 2 for p; = 0 and

1, we see that the above is at most

N . .. 1/2
|7 — yi|? o (Y5&5) fpi(@5€;)
CZZ [/{ - |2H?Z-J—1 ( H ]H +1/2 H ]H—H/2) dg

p =1 |&il<ai} |€Z 1<j<i ’5]‘ J i<j<N ’5]‘ J
N N " sy 1/2
4 fp; (y5€5) fp;(@5€5)
.. [ (1 gy By
;kzl;[ {legl=by} 16 [2Hit 1£[< & i1/ ZEN g it/
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Then by (3.29) the above is bounded from above by

N 1/2
c§j§jbfﬁ%uf—wF]I\wFW II|%F%]

p =1 1<« 1<j<N

N N i " " 1/2
+czzz[bk CTT P TT kP j] |

P k=1i=1 1<5<4 1<j<N
Since |z, |y;| < n + (2n)~1, we obtain (3.31) for some cg depending on n. O

Lemma 3.5.2. For any n > 1, there is ¢ > 0 such that for all x € [1/n,n]V, [vj(@)ll 2 = ¢
for all j. There is C' > 0 such that for all z € [1/n,n]N and y,§ with |x; — y;| < 1/2n and
|z — gil <1/2n,

N
[E((w;(9) = v @)v;@)| < €Y v =51
=1
for all j, where §; = min{2H;, 1}.

Proof. The first statement is obvious because ||v;(x)| 2 > (Hz]\il |2;|2H)1/2. For the second

statement, it suffices to show that

N N N

2H; 2H; 2H; 2H; | - 12H; _12H; — 19
TP a2 = |y — g P70) = T sl 2 4 (P — g = s PH0) | < KO |y — 3]
i=1 i=1 i—1

For 1 <¢ < N,let Ay = Uy —Vp, where

¢ ¢
2H, 2H; 2H, OH; | |- |2H; _oH,
Up =TT (il + w2 = oy — wil?™0), Vo= T (sl + 13127 = |2 — 53] *).
i=1 1=1

When £ =1, we have [Aq] < ||y 271 — g1 [271] + ||oy — g2 [PH1 — oy —gn PH1|. 1f2H) < 1,

then by the triangle inequality, |A1| < 2|y; — §1|2H1; if 2H; > 1, then we can use the mean
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value theorem to get |A1| < K|y; — 71|. Thus [4;] < Kly; — 51|°1. For 2 < ¢ < N,

o ¥l of OH, | 1~ (2H _of
Ap = Up_q(Jzo|7C + |yel =7 — g — yo|770) — Vo_q (|zp| =7 + 7|7 — 20 — 50|77¢)
o o o
= Ap_1 (2770 + yel =70 — |z — yo| =)

OH, |- |2H _oH o
+ Vi1 (el =7 — 9| =7 + |z — 9| =7 — |mg — 7).

Then |Ay| < K(|Ap_1+|ys—7|%) and by induction we obtain |Ay| < KZé\Ll lye—70%. O

The following lemma verifies Assumption 3.2.3 for fractional Brownian sheets. The sec-

torial local nondeterminism in Theorem 1 of Wu and Xiao [65] provides more information

on the conditional variances among v(z1),...,v(zm).

Lemma 3.5.3. If el 2™ e (0, oo)N are distinct points, then the random variables
v(z1),...,v(xm) are linearly independent.

Proof. Suppose that ay, ..., an are real numbers such that y_;* agu(#) = 0 a.s. Recalling

the representation (3.30) for v(x), we have

:E(iaw(#)) — Y / (iaﬂfpj +1/2>2d§

pe{0, 1}N (=1 j=1 ’gj‘

Then for each p € {0, 1}N, Yorlqap vazl fpj(:vﬁé’j) = 0 and, equivalently,

m N
Zaﬂ H p] gfj

(=1 j=1
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for all € € RN, where fo(t) =1 — cost and fi(t) = —isint. It follows that

m N m N
Zag H (1 — exp(iz; {j)) = Zag H pj Kfj (3.32)
=1 j=1 pG{O,l}N (=1 j=1
for all ¢ € RNV, We claim that a; = 0. Let Lyg,.. -aLl,k:l be partitions of {1,...,m}
obtained from the equivalence classes of the equivalence relation ~1 defined by ¢ ~q k if and
k

only if x{ = r7. We may assume 1 € Ly 1. Let i’%, e ,92’71”1 be such that x{ = i”f for all

te Ll k=1...,my. Let §,...,{y € R be arbitrary and define ¢1 1,19, .. , C1my by

N

Cli = Z ap H (1 - exp(z’xﬁ@)) :

‘€€L1,/€ j=2

Then by (3.32), we have, for all {; € R,

N .AaMm
c1,1 exp(id}&y) + -+ 1y exp(id] 1&1) + (c1,1 + - + c1,my) = 0.

Since :i'%, . ,i{nl are non-zero and distinct, the functions exp(z'i‘%ﬁ), o ,exp(iﬁvgnlf), 1 are
linearly independent over C, we have ¢y 1 =+ = c1,m; = 0. In particular, we have

Z ay H ( — exp(iz’; @)) 0

KGLLI j=2

for all §o,...,&n € R. Next we consider the partitions Lo 1, . .. » L2,me, of {1,...,m} obtained

from equivalence classes of ~9 defined by ¢ ~9 k iff x‘g = xé (with 1 € Lo1). Then the
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argument above yields

N
Z ay H (1 — exp(imﬁfﬂ) = 0.

EELl,lﬁLQ,l 7=3

By induction, we obtain

Z ap = 0.

€€L171ﬂ---ﬂLN71
Note that L 1N---N Ly = {1} because 21, ..., 2™ are distinct. Hence a; = 0. Similarly,

we can show that ay =0 for £ =2, ... m. O

Proposition 3.5.4. Let v = {v(z),x € Rf} be an (N, d)-fractional Brownian sheet with
Hurst parameter H € (0,1)N. If m@Q < (m — 1)d where Q = sz\il Hz-_l, then v has no

m-multiple points on (0, oo)N almost surely.

Proof. By the three lemmas above, {v(z), = € [1/n, n]N} satisfies the assumptions of The-
orem 3.2.4 with Q) = le\il H; ! for every n > 1. Hence the result follows immediately from

the theorem. 0

We remark that for the case of Brownian sheet i.e. H; = 1/2 for all 7, the above result

provides an alternative proof for the main results in [15, 17] .

3.5.2 System of Stochastic Heat Equations

Let k > 1 and 8 € (0,kA2), or k =1 = 3. Consider the R%valued random field

{v(t,z), (t,z) € Ry x RF} defined by

it —t]E]?
i) = [ [ e e R War ),

€% —ar
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where W is a Clvalued space-time Gaussian white noise on RMF e W = W1 4 iWq and
W1, Wy are independent R%valued space-time Gaussian white noises on RI+E, According
to Proposition 7.2 of [18], the process 0(t,z) := Rew(t, z), (t,z) € Ry x R¥ has the same

law as the mild solution to the system of stochastic heat equations

Eﬁj(t’@ = A@j(t, x)+ Wj(t,x), j=1,...,d, 3.3

0(0,z) =0,

where W is an R%-valued spatially homogeneous Gaussian noise that is white in time with
spatial covariance \x—y[‘ﬁ if k> 1and g € (0,kA2); it is an R valued space-time Gaussian
white noise when k£ = 1 = . Note that, in this case, we take T' = (0, 00) X RF.

The Hélder exponents of v(t,z) are oy = (2 — §)/4 in time and ag = -+ = a4 =
(2 — )/2 in space. See [18, §7] or [14]. In this case, we have Q = (4 + 2k)/(2 — f3).

The following lemma can also be found in [52, Lemma A.5.3].

Lemma 3.5.5. Let (t!, 1), ... (¢ 2™) be distinct points in (0,00) x R¥. Then the random

variables @1(t1, xl), o, 01 (™M, ™) are linearly independent.
Proof. Suppose that aq,...,ay, are real numbers such that Z;”zl ajf)l(tj, 27) = 0 a.s. Then
m 2 m . . . 2
_ PR R N —iead  —irt] g2 dr dg
O—E(g a;01(t x])> —// E a;e W (g7 e )
J ) J _
st RJRE | (1€]* + 72) |k =F

and thus Z;nzl aje_zg'xj (e_”t‘] — eIl ) =0 forall 7 € R and € € R¥. We claim that

aj=0foral j=1,...,m. Let 1, ..., #P be all distinct values of the t/’s. Fix an arbitrary
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¢ € RF. Then for all 7 € R, we have

- el \ _irtl N~ gl e
Z( Z aje—zf-x )e—zﬂf _Zaje—zf-x —tJ|¢| —0.

j=1

. A L p
Since the functions e/t ... ,e_”tp, 1 are linearly independent over C, it follows that for

all ¢ e RF forall¢=1,...,p,

Z aje_ig'xj =0. (3.34)

jitd =tt
Since (t1,z1), ..., (t", 2™) are distinct, the 27’s in the sum in (3.34) are distinct for any fixed
¢. By linear independence of the functions e_’f'x‘], we conclude that a; = 0 for all j. [

The following result solves the existence problem of m-multiple points for (3.33).

Proposition 3.5.6. If m(4+2k)/(2— ) < (m—1)d, then {0(t,z),t € (0,00), z € RF} has

no m-multiple points a.s.

Proof. Assumptions 3.2.1 and 3.2.2 are satisfied with Q) = (4 + 2k)/(2 — 8) by Lemma 7.3
and 7.5 of [18]. Assumption 3.2.3 is also satisfied by Lemma 3.5.5 above. The result follows

from Theorem 3.2.4. OJ

3.5.3 System of Stochastic Wave Equations

Let k > 1and 8 € [1,kA2), or k = 1 = 8. Consider the R%valued random field

{v(t,z), (t,z) € Ry x RF} defined by

i) = [ [ Pt ¢ win,de),
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where W is a C%-valued space-time Gaussian white noise on R and

e—iCx—itt 1 _ Sit(T+[E]) 1 _ git(r—[¢])

Flor) =g | "v@ -1

By Proposition 9.2 of [18], the process i(t, z) = Rewv(t, z), (t,z) € Ry x R, has the same

law as the mild solution to the system of stochastic wave equations

02

821)](75 r) = Aﬁj(t,m)—l—Wj(t,a:), j=1,...,d,

0(0,x) =0, %ﬁ(O,x) =0,

where W is the spatially homogeneous R%valued Gaussian noise as in (3.33).
The Hélder exponents of v(t,z) are a1 = ag = -+ = a4 = (2 — )/2 in both time and

space. See [18, §9] or [20]. In this case, we have @ = (2 + 2k)/(2 — 5).

Lemma 3.5.7. Let (t',z!), ... (™, ™) be distinct points in T = (0,00) x R¥. Then the

random variables 01 (¢!, 931), ooy 01(E &™) are linearly independent.

Proof. Suppose that ay, ..., am are real numbers such that Z;nzl ajf)l(tj, 27) = 0 a.s. Then

_E<§:1aj@1(tj,xﬂ) //

It follows that 7 € R and & € R, Zj 1 Q5 F(t),29,7,€) = 0 and thus

2 drde¢

F(t), 20 7€) e

m .

—irt]
g bje T4 e+ o9 =0,
j=1
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_igad
where b; = —2a;|{|e il
j=1
and
ez =Y ajlele 6 (WIE 4 e~
j=1

We claim that a; =0 for all j =1,...,m. Let #1,... P be all distinct values of the #/’s. If

we take arbitrary & € R* and take derivative with respect to 7, we see that

p .
3 (_# 3 bj>e—m‘+q 0

=1 j:tjzfg

.1 ..
for all 7 € R. Since the functions e 7" ... e_”tp, 1 are linearly independent over C, we

have

—it' Y by =0

j:tj !

forall ¢ =1,...,p. It implies that for all € € RF, forall ¢ =1,...,p,

S gt =, (3.35)
j:tj:fg
Since (t1,z1), ..., ("™, &™) are distinct, the z7’s that appear in the sum in (3.35) are distinct

for any fixed ¢. By linear independence of the functions e_’f'mj, we conclude that a; = 0 for

all j. O]
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Proposition 3.5.8. If m(2+2k)/(2—B) < (m—1)d, then {0(t,z),t € (0,00), z € RF} has

no m-multiple points a.s.

Proof. Assumptions 3.2.1 and 3.2.2 are satisfied with @ = (2 + 2k)/(2 — ) by Lemmas 9.3
and 9.6 of [18]. Assumption 3.2.3 is also satisfied by Lemma 3.5.7. Hence the result follows

from Theorem 3.2.4. O
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Chapter 4

Local Times and Level Sets of

Gaussian Random Fields

4.1 Introduction

The purpose of this chapter is to study the local times and level sets of anisotropic Gaussian
random fields satisfying strong local nondeterminism with respect to an anisotropic metric.
We will prove joint continuity for the local times in Section 4.2 and Holder condition in
Section 4.3. Then we discuss the Hausdorff dimension and Hausdorff measure of the level
sets in Section 4.4. As an example, we apply these results to the stochastic heat equation in
Section 4.5.

Let Y = {Y(t) : t € RN} be a real-valued centered Gaussian random field. Let us

consider the (N, d)-Gaussian random field X = {X(¢) : t € RV} defined by

X(t) = (Xl(t>> ce 7Xd(t>>7

where X7q,..., X  are i.i.d. copies of Y. We will study the regularities of the local times of
X and the Hausdorff measure of the level sets {t € RV : X(¢) = 2}.

Consider a fixed closed bounded cube T c RY. Suppose there is a constant vector
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H = (Hy,...,Hy) € (0,1)N (not depending on T') and two positive finite constants C} and
(9 such that

Cip(t,s)* < E[(Y (1) = Y(5))?] < Cop(t, s)? (4.1)

for all t,s € T', where p is the metric defined by

N
H.:
plt,s) = |tj—sj|".

j=1
Suppose that Y satisfies strong local nondeterminism in the following sense: there is a
positive finite constant C5 such that for all integers n > 1, for all ¢,¢1,... t" € T,

Var(Y (£)|Y (t1), ..., Y (t") > C3 Jmin p(t, 2, (4.2)

where 0 = 0.

The property of local nondeterminism (LND) is useful for investigating sample paths of
Gaussian random fields. This terminology was first introduced by Berman [6] for Gaussian
processes and extended by Pitt [51] for Gaussian random fields to study their local times.
Later, the property of strong local nondeterminism was developed to study exact regularity
of local times, small ball probability and other sample paths properties for Gaussian random
fields (see, e.g., [68, 69]).

For example, the multiparameter fractional Brownian motion satisfies strong local non-
determinism with p(t,s) = |t — s|H (see Pitt [51]). Sufficient conditions in terms of spectral
measures for Gaussian random fields with stationary increments to satisfy strong LND can
be found in [70, 37]. In Section 4.5, we will show that the stochastic heat equation satisfies

strong local nondeterminism.
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The Holder conditions for the local times and the Hausdorff measure of the level sets of
strongly locally nondeterministic Gaussian random fields with stationary increments were
studied by Xiao [67]. The case of anisotropic Gaussian random fields satisfying a weaker
form of LND called sectorial local nondeterminism was considered by Wu and Xiao [66].
An example of Gaussian random field that satisfies sectorial local nondeterminism is the
fractional Brownian sheet. The Gaussian random field X that we consider here satisfies
strong local nondeterminism (4.2) with respect to an anisotropic metric, but it does not
necessarily have stationary increments.

Let S € RY be a Borel set. We say that an R%-valued random field X = {X(t) : t ¢ RV}
has a local time on S if the occupation measure pg(A) = Ay{t € S : X(t) € A}, A € B(RY),
is absolutely continuous with respect to the Lebesgue measure \; on RZ. In this case, the
local time is defined as (a version of) the Radon-Nikodym derivative

d
L(z,S) = dLAj(x)’ z e RY

Note that if X has local time on .S, then it also has local time on any Borel set B C S.
By Theorem 6.4 of [23], the local time satisfies the following occupation density formula:

for any Borel set B C S and any nonnegative measurable function f : R% — R,

/B FX () dt = /Rd (@) L(x, B) da. (4.3)

By Theorem 8.1 of [70], if condition (4.1) holds on 7" and if d < Zévzl H;l, then X has
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a local time L(-, S) € L2(R?) on any Borel set S C T, with the representation

L(z,8) = (2m) "¢ / ]

du e—i{u) / dt X (1) (4.4)
R S

for almost every x € RY.

4.2 Joint Continuity of Local Times

Let T = Hé\le[Tj, i +hj] C RY be a closed bounded cube, where hj>0forj=1,...,N.
Suppose X has a local time L(z,-) on T. We say that the local time is jointly continuous

on T if we can find a version of the process

N N
{L(m, H[Tj,Tj + sj]> czeR% s € H[O,hj]}
j=1

J=1

such that with probability 1, the sample function

is continuous in all variables on the domain RY x Hj-vzl[o, h;]. If the local time is jointly
continuous on 7', then for each z, L(x,-) is a well-defined measure on the Borel sets in T,
supported on the level set X 1(z)NT = {t € T: X(t) = x} (see [1], Theorem 8.6.1).

The goal of this section is to prove the following:

Theorem 4.2.1. Suppose (4.1) and (4.2) hold on the closed bounded cube T C RY . Suppose
d < @, where ) = Zévzl Hj_l. Then the Gaussian random field X has a jointly continuous

local time on T almost surely.
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The key of the proof is to derive moment bounds for the increments of the local time.
We follow Lemma 2.5 of Xiao [67].
For a € RY and r > 0, let By(a,r) ={t € RN : p(t,a) < r} denote the anisotropic ball

at a of radius r under the metric p.

Lemma 4.2.2. Let T be a closed bounded cube in RY . Suppose 0 < d < < By < Q, where
Q= Zj\le Hj_l. Then there exists a positive finite constant C depending on N, d, H and Sy

only such that for all subset S of T, for all integers j > 1, for allt!,... t) € T, we have

—B
i k 5/Q 1-8/Q
/g[0<22?—1pQ’t)} dt < Cj7<AN(S) : (4.5)

In particular, for all a € RN, 0 <r <1, with D := By(a,r) €T, for all integers j > 1, for

altl,... ) €T, we have

—p
' k < iBlR QP
/D [Oérgl%?_lp(t,t )} dt < CjPl*r . (4.6)

Proof. Let I denote the integral in (4.6). For [ =0,...,j — 1, define

I,={teS:ptt)= mi ¢ty L
z { p(t, 1) Oérlglglrjl_lp( )}

Then S = Ug:_ol I'; and
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Fix 1 € {0,1,...,7 — 1}. Let us consider a change of variables on I';:

ty =t} + h 1 [cos(0y)]7/H11,

to = th + WY/ H2[sin(6;) cos(62))2/ H2,

tn_1 = th g+ hEN-1[sin(0) .. sin(Oy_g) cos(@y_ )7 HN-1,

ty = t{N + hl/HN [Sin(el) .. .SiH(QNZ) Sin(QN—l)]2/HN’

for @ = (A1,...,0n_1) € A:=1[0,27] x [0,7]V =2 and h € [0, ;(0)], where [2]P := sgn(x)|z|P.

We may write the integral

N -
/(thm—twm) dt
Y m=1

into a sum of 2V terms, each of which is an integral over the intersection of T'; with one of
the 2V open quadrants centered at ¢! Then the Jacobian exists on each open quadrant and
the absolute value of its determinant is hQ_lgo(G) for some bounded function ¢. We can use

the change of variables formula for each term and then recombine the terms to get

Jj—1 0
l
I = —52/ d@gp(@)/ he=1=Bqn
=0 A 0
NB _
— o= 2 [ e pe)as
—Bi=Ja
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Note that the Lebesgue measure of I'; is

Mm@
A(Fl):/ d9<,0(9)/ he=Ldn
A 0

_On

< /e 0)% Cte(0) do,

where Cy == [ ¢(6)df. Since 0 < § < @, the function = — 21-B/Q is concave on 0, 00).

Then by Jensen’s inequality and (4.7),

_ OwN~ i 1-8/Q
N Z/A () do

C N—d] 1 B 1_5/62
| /A (0)2C3o(0)a0)
=0

CyN—dI2
=07 = (QMF”

1< 03(1 A(Fl)l—ﬂ/Q>
7120
1 J—1 1‘3/@
<Cj (3 )\(Fl)>

— Cjﬂ/Q)\(5>1—5/Q7

where C' depends on N, d, Q) and ). Hence we obtain (4.5). This implies (4.6) immediately,

since Ay (Bpy(a,r)) < or9. O
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The following proposition gives a moment estimate for the local time on anisotropic balls.

Proposition 4.2.3. Suppose (4.1) and (4.2) hold on the closed bounded cube T C RN.
Suppose d < (), where ) = Z}Z\le Hj_l. Then there exists a positive finite constant C' such

that for all subset S of T', for all x € R? and all integers n > 1, we have
E[L(z,S)"] < C"(n)¥Q\y (5)"1=4/@),

In particular, for all a € RN, r € (0,1) with D := Bpy(a,r) € T, for all x € R? and all
integers n > 1, we have

E[L(z, D)"] < C™(n})¥/Qpn(@=d)

Proof. By (4.4), we have

E[L(z,S)"] = (27) ”d/ du/ dFe i Z=1 >E[i2?=1<“]’x(tj)> 7
gnd  Jgn

where u = (ul, .u™) and t = (tl, ..., t"). Since X1,..., X  are i.i.d. copies of Y, we have

o
E[L(z, S)"] < (2r) " / dtH / gy ¢ 2V Y ()

= (2m) /2 / [det Cov(Y (th),..., Y (")) P
S’ﬂ
where u;. = (ullf, ... up). Since
det Cov(Y (t),..., Y(t")) = Var(Y (")) ﬁ Var(V(#)[Y (th), ...,V (#~1)),
j=2
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it follows from assumption (4.2) that

n ) —d
E[L(z, S)"] < C(2r) "/ / H{ min p(tj,tk)} dt. (4.8)

<k<j—
Snj:1 0<k<j—1

If we integrate (4.8) in the order of dt”,dt" 1, ... dt', and apply Lemma 4.2.2 (with 3 = d)

repeatedly, we deduce that
E[L(z, S)"] < C™(n)¥Qxy (5)"(1-4/Q),

This yields the first statement of the proposition. The last statement follows immediately

since Ay (D) < Cr9. O

Next, we would like to extend the moment estimate in the above proposition to moment
estimates for the increments of the local time. To this end, we need some lemmas. The

following lemma is taken from [10, Lemma 2.

Lemma 4.2.4. Let Y7,...,Y, be mean zero Gaussian random wvariables that are linearly

2
independent and assume that [p g(v)e™ " dv < co for alle > 0. Then

1 - (2m)(n /2 —v2/2
/]R” g(v1) exp {—§Var(§vl¥'l>] dvy ...dvy, = dot Cov (V1. . ,Yn)1/2 /Rg(v/al)e /2y

where o1 = Var(Y1|Ys,...,Yn).

Let us recall the following version of Besicovitch’s covering theorem for cubes in RV, See

[26], Theorem 1.1.

Lemma 4.2.5. There ezists a positive integer M = M(N) depending only on N with the

following property. For any bounded subset A of RN and any family = {Q(x) : = € A}
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of closed cubes such that Q(x) is centered at x for every x € A, there exists a sequence {Q;}

in A such that:
(1) AcU;Qir
(17) the cubes of {Q;} can be distributed in M families of disjoint cubes.
We will use the covering theorem to prove Lemma 4.2.6 below. Before that, let us

introduce the notation:

X g
t,s) = ti— sl
it s) 1?;%\1'] <l

Note that

plt,s) < plt,s) < Ni(t,s) (4.9)

for all t,s € RY. Then under the assumption (4.2), for any closed bounded cube 7" in RN ,
there exists a positive finite constant C3 (depending on T') such that for all integers n > 1

and all t,t1, ... " e T,

Var(Y($)|Y (t)),...,Y (") > C3 Jmin p(t, th?2. (4.10)

Lemma 4.2.6. There exists a positive integer K = K(N) depending only on N such that
for any integer n > 1, for any distinct points sV, st, ..., s" € RN, the cardinality of the set

of all € {1,...,n} such that
p(s?,sY) = min{p(s?, ") : 0 <i<n,i+#j} (4.11)

18 at most K.

Proof. Without loss of generality, we may assume that (4.11) is satisfied for j = 1,... k.
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Note that for s € RV and r > 0, the ball Bjs(s,r) = {t € RN : j(t, s) < r} under the metric
p is the closed cube centered at s with side lengths orl/ Hl, e ,27"1/ HN  We will use Lemma

4.2.5 to show that k£ < K for some positive integer K = K(N) that depends on N only.

~r 1 0
50:min{M:i,je{1,...,k}}.

To this end, let

p(s7, sY)

Note that 0 < dy < 1. Take a small 0 < g9 < 1 such that (1—eg)"/#p(1 +53/Hp) > 1 for all
pe{l,....,N}. Let e = egmin{p(s’,s9) : 1 <i < k}. Let A = {s!,... s¥} and consider the
family % = {Bﬁ(sl, 1)y, Bﬁ(sk, )} of closed cubes, where r; = j(s’, s9) —e. By Lemma

4.2.5, we can find By,..., By C B, with B; = {Bﬁ(si’l,rivl), ce B~(si"]( )y TiJ(i )} such

p

that

A—{l k}CUUB s’jrm

i=1j=1

and for each 7, the cubes of %; are pairwise disjoint, where M = M(N) is a positive integer

which depends on N only. For each 1 < j < k, by the assumption (4.11), if £ # 7, then

p(s?, st > p(s?, V) > 7;. In other words, for each 1 < j <k, the cube Bﬁ(sj,rj) does not

contain any other s', where ¢ # j. It means that we need at least k cubes to cover the set
A, and hence k < J(1) +---+ J(M).

Let us fix 7 and estimate the cardinality J (i) of the family %;. Let us consider the family

B = {Bﬁ(si’l,r;‘,l), . ,Bp(szJ( 0%}, where r*

i, J () i = p(s"3, s9). Since the cubes of %;

are pairwise disjoint, for any pair sf # s we can find p € {1,..., N} such that

; 1/H 1/H,
\s;)’g— ’]]> ép—l— /p.
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Then by the definition of e, g and g,

sp" = 5571 > (p(s™, %) = ) Hp 4 ((s7, 50) — o)1/ H
> (1 80)1/Hp <I5(Si,€’s())1/Hp _i_ﬁ(si,j,SO)l/Hp)
= (1= 20) 11+ g )51, )V
> (s, s0) L/ Hp
= (rF )Y/ Hp.

1,J

It follows that p(s™¢, s57) > Ty ;» which means that the cube B (5%, Ty j) does not contain any

0 so these cubes are

other s where ¢ # j. On the other hand, every cube of HB; contains s
not pairwise disjoint. Then another application of Lemma 4.2.5 to the set {si’l, e ,si"](i)}

and the family % implies that J(i) < M. Therefore, we have k& < M 2 and we may take

K = M?. O

We use the previous lemma to prove the lemma below, which provide a correction to the

estimate (2.20) in Xiao [67].

Lemma 4.2.7. Let 0 < v < 1. Let t9 = 0 and t',. .. t" be distinct points in {t € RN : |t| <
R}\ {0}, where R > 0. Then there exist a positive integer K = K(N) depending on N only,
a positive finite constant C' depending only on R, H, N, and a permutation m of {0,1,...,n}

with w(0) = 0 such that

n n
— L : —— <C"[] 1 :
i min{5(t7,t))7 : 0 <i < n,i # 5} p(tm() ¢m(i—1))2Ky

1 j=1

Proof. Since (min; ciHj)ﬁ(t, s) < ple 1t els) < (max; ciHj)ﬁ(t, s), it suffices to prove the
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result for R = 1/2. In this case, p(t%,#/) < 1 for all i, 5. Let 7(0) = 0. Define (1), ..., 7(n)
inductively such that

(™M) 0) = min{p(t,0):i=1,...,n}

and for j > 2,

H(t™9) (1)) = min {ﬁ(ti, U0y e {1, )\ {x(1), ..., 7(j — 1)}} .

Then 7 is a permutation of {0,1,...,n} with 7(0) = 0 and we have

[T min{pt, )" : 0 < i< nyi# 5} = [[min{p™9,6) -0 <i <nji#n(j)}
J=1 j=1

For 1 <j<nand0<m <n with m # m(j), let us define

1 if p(™W) ¢y = min{p(t™9) 1) 1 0 < i < myi # 7(j)},
L =

0 otherwise.

For each j, by the definition of 7, 5(t™), #™) > 5(¢™() ¢7(U+1)) for all m such that 7~ (m) >

J + 1. This implies

min{p(t™0, i) c0<i<ni#x(G) > [[ AT,
0<m<n,
)
L m)<j+1

Indeed, if there is a unique m such that F(t™(), ™) = min{p(t™ ), ) : 0 < i < n,i # 7(j)},
then the equality holds; if there are more than one m such that the minimum is attained

(ie. [ jm = 1 for more than one m), then we get the above inequality by the condition that
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p(tt,t7) < 1 for all 4,5. It follows that

n
[ min{p(t?,¢)" c0<i<ni#j}> ] [T A, emlim?
Jj=1 1<j<n  0<m<n,
m#m(j),
r~Lm)<j+1

= H H ﬁ(ﬂ(ﬂ) tm)lj,mf
0<m<n 1<5<n,
T(j)#m,
mLm)<j+1

Putting m = w(¢) with 0 < ¢ < n, we have

n
. . I.
[[uwin{pt,6) c0<i<nizjy> [[ [ a0, 0)5n@7,
j=1 0<l<n 1<j<n,
J#L, 1L

By the definition of 7, for 0 </ <nand 1 < j <n with j # /¢, j > ¢ — 1, we have

ﬁ(tﬂ(j)’ tﬂ'(f)) > min {ﬁ(tﬂ(f—l)’ tﬂ‘(ﬁ))’ ﬁ(tﬂ(g—i—l)’ tﬂ(f))}

Y

with the notation 7(—1) := 7(1) and 7(n + 1) := 7(n — 1). Then

n
[T min{at, 1) 0 <i <n.i#j}
j=1

> IT TI (min {r=0.4m0) a0 gm0} ) im0

0<l<n 1<j<n,
J#L jH1>L

_ H <m111 {ﬁ(tﬂ'([fl)’tﬂ(f)), ﬁ(tW(EJrl)’ tﬂ'(@)})KéV ’

0<i<n
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where

Kp= Y Lz
1<5<n,
J#£L, j+H1>4

For each fixed ¢, we have ;. ;1 I; ~(p) < K(N) = K by Lemma 4.2.6. Hence Ky < K and

K
(min {ﬁ(tﬂ'(f—n’tﬂ‘(@)’ ﬁ(tﬂ(f—kl)’tﬂ(f))}) il > ﬁ(tﬂ(é—l)’ tﬂ(ﬂ))K’yﬁ(tw(é—&—l)’ tﬂ(ﬁ))K’y.
Therefore, we get that
n . .
H min {,oﬁ(ifj,ifz)ﬂy 0<i<ni#j}> H ﬁ(tﬂ(@iﬁ(f—l))?lﬁ"
j=1 1</<n
This proves the lemma. O

Now, we prove a moment estimate for the increments of the local time.

Proposition 4.2.8. Suppose (4.1) and (4.2) hold on the closed bounded cube T C RN,
Suppose d < @), where ) = Zévzl H;l. Then there is a positive integer K depending only
on N, and there is a positive finite constant C' depending only on T, N,d and H such that
for all small 0 < v < 1, for all Borel set S C T, for all xz,y € Rd, for all even integers

n > 2, we have
E[(L(z,S) — L(y, S))"] < C"|z — yln'y(n!)d/Q—F(l—i—ZK/Q)fy/\N(S)n(l—(d+2K7)/Q)‘

In particular, for all small0 <~ <1, for alla € RN and 0 < r < 1 with D := By(a,r) C T,

for all x,y € R, for all even integers n > 2, we have

E[(L(z, D) — L(y, D))"] < C"|z — y|™ (n!)#/ @+ (1+2K/Q)y,n(Q=d=2K7)
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Proof. Recall that for any even integer n > 2 and z,y € R,

E[(L(z,5) = L(y, 5))"]
di

n . . 4.12
= (2m)~ " / i aa]] [ez«uﬂm _ ez‘<uﬂ,y>} E [ei 27:1<ul,X<tl>>] | (4.12)
gn Rnd 1
]_
where @ = (ul,...,u") € R and £ = (#1,...,t") € S™. Note that
PSPl X () L (S oty
E [e I=1""" 1 = exp [—§I;Var(§uk}/(t ))] (4.13)

for all ul,... 0" € R® and 1,...,¢" € S. For any 0 < v < 1, we have et — 1| < 217V |u|Y

and |u 4 v|7 < |u|? + |v|7 for all u,v € R. Tt follows that

| I G i 9)| < o=y _ |WZH |uk K (4.14)
J=1 koJ=1
for all wl,... ,u™ z,y € RY, where the summation is taken over all k = (k1,...,kn) €

{1,...,d}". Then (4.12), (4.13) and (4.14) imply that

H‘\
N\

E((L(x,S) - L(y,5))"] < (27) """ 2"z — yI"WZ/ (4.15)

where
n - 1 d n
T — J l l -
J(t, k) = /Rnd (]1:[1 |ukJ] ) exp [—5 kgl Var( ZE 1 uY (t ))1du

for £ = (t',...,t") € 8" and k = (ky,...,kn) € {1,...,d}". By the generalized Holder
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inequality,

If we fix £, k and j, then by Lemma 4.2.4, we have

/Rnd |uk |mexp {—— ZVar(ZukY )}du
k=1 =1
_ (27‘(‘)(71(1 1)/2 /‘ _02/2d
det Cov(Y (1), ..., Y (tn))d/2 0j

where o} = Var(Y(t)|Y (t!) : 1 <1< n,l # j). By Jensen’s inequality and the moments of

the standard Gaussian,

2 1
nfyfv/2d< 2(/
Jolere i< e ( [

It follows that

) v
lv|"e™? /2dv) < V2r(n!)7.

o C"(n!)7 L
(k) < det Cov(Y (t1), ..., Y (tn))d/2 gl_ll a_] (4.16)

for some C' depending on d. By (4.10),

| L 1
Ha_zg,l:[ v/2 ;

j=1 min{ﬁ(tﬂ thT:0<1<n,l#j}

1
e 1) —n/2
<(C3n1) Hmln{p(tjtl)v 0<1<nl#j}
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Then by Lemma 4.2.7 and (4.9),

Il = ]Hl p(t7(0) ¢n(i=1))2k7

7=1 UJ

where K is a positive integer that depends only on N, and C' is a positive finite constant

that depends on T, N and H. By assumption (4.1),

Var(y (") y (¢"0) 1 =1, j = 1) < Cop(t™D), #7072,

Hence
n n K~
[ 5=l T —
2195 i Var(Y(tTONy (t7D) 1 =1,...,j—1) (4.17)
n (02 \ 1)Kn
det Cov(Y (t1),..., Y (t") Ky
Then (4.16), (4.17) and assumption (4.2) imply that
- = C™(n!)7
J(t, k) <
& 5) det Cov(Y (t1), ..., Y (tn))d/2+Ky
—d—2K~ (4.18)

< C"( n'VH{ min p(t/, )

0<i<yj— 1

where C' depends on T, N, H and d. Since d < ), we can choose and fix some d < 6y < Q.

If 0 < v < 1is chosen small enough such that

d<d+2Ky < fy <@,
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then by Lemma 4.2.2 with § = d + 2K+, we have

—d—2K~y
} df < CM(n)[H2EN/Q ) (g)n(1-(d=2K7)/Q)

n
min tj, #h
o XL in o

=1

which gives
/ (R dE < O ()Y QHIFREQN (g1 (2K)/Q) (4.19)
S
Note that this bound does not depend on k. Combining (4.15), (4.18) and (4.19), we have
E[(L(z,S) — L(y, $))"] < C" |z — y[™ (n) W @TAF2E/Qr ) (g)n(=(dH2K7)/Q)

This completes the proof of Proposition 4.2.8. O]
Now, we turn to the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. By Proposition 4.2.8 and the multiparameter version of Kolmogorov’s
continuity theorem (see e.g. [29], Theorem 4.3), for any anisotropic ball B,(a,r) C T', X has
a local time L(z, By(a,r)) that is continuous in .

Next, we prove the joint continuity. Let T = Hj-vzl[Tj,Tj + hj]. For simplicity, denote
7,7+ s] = H;-Vzl[Tj,Tj + 5] for any s1,...,sy > 0. For all z,y € RY st € Hle[o, h]

and all even integers n > 2, we have

E[(L(z, [r,7 + s]) = L(y, [7, 7 + 1]))"]

< 2 HE[(L(e, [r, 7+ 8]) = L(w. [r, 7+ )] + E[(L(y, [r, 7+ 5]) — L(w, [, 7+ 1)"]}.
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By Proposition 4.2.8, we can find some small v > 0 such that the first term is

E[(L(z, [, 7+ s]) = L(y, [7. 7 + 8]))"] < Clz —y[™.

For the second term, by considering the symmetric difference of the cubes [r,7 + s] and
(7,7 + t], we see that L(y,[r,7 + s]) — L(y, [r, 7 + t]) can be written as a sum of M terms
of the form +L(y,T;), where M is a finite number depending only on N and T; is a closed
bounded cube in T' = [7, 7 + h] with at least one edge length < |s — ¢|. Then by Proposition

4.2.3, the second term is

< MO ()Y @y (1)1 Q)

< Ofs — r(1-4/Q).

Combining the two terms, we have

E((L(z, 7,7+ s]) — L(y, [r, 7 +1]))"] < Clz — y|"® + |5 — t|*P)

for some small f > 0. Therefore, by Kolmogorov’s continuity theorem, X has a jointly

continuous local time on 7T'. ]

4.3 Holder conditions of Local Times

In the previous section, we derive joint continuity for the local time. In fact, we can also

derive a Holder condition for the local time.
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Theorem 4.3.1. Suppose X satisfies (4.1) and (4.2) on a closed bounded cube T C RN,
Suppose d < @ where QQ = Z;V:1 Hj_l. For any = € R?, let L(z,-) be a (joint continuous)
local time of X, a random measure on T that is supported on the level set X_l(x) NT =
{t e T: X(t) = x}. Then there exists a positive finite constant C' such that for any x € R,

with probability 1, for L(z,-)-almost every t € T,

lim sup Liz, Bplt,r) N T) <C, (4.20)
r—0-+ SO(T)
where o(r) = r9 4 (loglog(1/r))¥/€.

Proof. For any z € R? and any integer k > 1, consider the random measure Li(x,-) on

Borel subsets C' of T' defined by

Li(z, C) :/C (%)dﬂexp (-M) dt
_ /C/Rd (zi)d exp (—% i, X(t) — x>> dudt.

By the occupation density formula (4.3) and the continuity of y — L(y, C') for all rectangles

(4.21)

C in T, one can verify that a.s. for all C, Lp(z,C) — L(z,C) as k — oo. It follows that
a.s., Lp(z,-) converges weakly to L(z, ).

For each m > 1, define f;,(t) = L(x, By(t,27™)). By Proposition 4.2.3, 4.2.8 and the
multiparameter version of Kolmogorov’s continuity theorem [29], fy,(¢) is a.s. bounded and
continuous on 7. Then by the a.s. weak convergence of L (x,-), for all m,n > 1,

/T O] L(z,dt) = lim [ [fm(D)]"Li(z,dt) as.

k—oo JT
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Hence, by the dominated convergence theorem, (4.21) and (4.4), we have

E/T[L(:v,Bp(t,Q_m))]”L(x,dt)

2
_ (27r)d kgH;oE dt/ du exp — % + Z(u X( ) >>[L(x’B(t’27m)>]n

_ (u, X (t)—x) —my\n
(%)d/Tdt/Rddue E[L(z, B(t,2"™))"]

_ 1 . =i Sy g (i W X (0
— (271_)(n+1)d /T/Bp(t,Q_m)n ds /]R(n-i-l)d due ( )a

where @ = (u!, ... ,u”+1) S R(”+1)d, 5= (t,s2,...,s") and s! = ¢. Similar to the proof

of Proposition 4.2.3, we can deduce that

E /T (L, By(t,2~™)" L(z, dt)

. / ds
<C
TxBp(t,2~m)" [det Cov (Y (¢),Y (s2), ..., Y (s"F1))]4/2

(4.22)

< cn (n!)d/QZ—nm(Q—d)'

Let A > 0 be a constant to be determined. Consider the random set
B ={teT:L(zx,By(t,27")) > Ap(2~™)}.

Consider the random measure p on 7' defined by u(B) = L(z, B) for any B € #(T'). Take

n = [logm], the integer part of logm. Then by (4.22) and Stirling’s formula,

L(x, By(t,27))]" L(z, dt)
[Ap(2=m)]n
C"(n))d/@o—nm(Q—d) _

- AnQ—nm(Q—d)(logm)nd/Q =m

E u(By) < I

-2
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provided A > 0 is chosen large enough. This implies that

E Z w(Bm,) < o0.

m=1

By the Borel-Cantelli lemma, with probability 1, for p-a.e. t € T, we have

. L(:EaBp(ta 27m))
lim sup —
m—00 SO(Q m)

< A (4.23)

For any r > 0 small enough, there exists an integer m such that 27™ < r < 27+ and
(4.23) can be applied. Since ¢(r) is increasing near r = 0, we can use a monotonicity

argument to obtain (4.33). O

4.4 Hausdorff Measure of Level Sets

Let us consider the class € of functions ¢ : [0,d9] — R4 such that ¢ is nondecreasing,
continuous, ¢(0) = 0, and satisfies the doubling condition, i.e. there exists a positive finite

constant ¢q such that

< (4.24)

for all s € (0,9¢/2).
For any Borel set A in RV the Hausdorff measure of A with respect to the function

@ € € in the metric p is defined by

o0 0
Hy(A) = 61_1)161+ inf { ngl ©(2rp): AC nL;Jl B,(t", ) where t" € RN 7, <6 for all n}

When ¢(s) = s, where 8 is a positive real number, ”Hf(A) is called the S-dimensional
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Hausdorff measure of A in the metric p, and the Hausdorff dimension of A in the metric p

is defined as

dim?, (A) = inf{8 > 0 : H}(A) = 0}.

Suppose X satisfies (4.1) and (4.2) on a closed bounded cube T ¢ RN, Let Q =
Z;-Vzl H;l and consider the level set X~ 1(z)NT = {t € T : X(t) = z}. By Theorem 7.1
of [70], if d < @, then X~ 1(z)NT = @ as.; if Q > d, then the Hausdorff dimension of

X~Yz)NT in the Euclidean metric is (assuming that 0 < Hy < Hy < --- < Hy < 1)
" H,
dimpy (X1 S 4 N-—k—Hyd:1<k<N 4.25
i (X1 (x) 1 mm{ZH WilSESN) ()

which is also equal to

ik
ZFT—FN—T—HTCZ
j=1""

where 7 is the unique integer between 1 and N such that ZT ! H l<a< Z]T-Zl Hj_l. On
the other hand, Theorem 4.2 of [66] implies that if d < @, then the Hausdorff dimension of

X~Yx)N T in the metric p is
dim?, (X1 (2)NT)=Q - d.

It would be interesting to determine the exact gauge function for the Hausdorff measure

of the level set, that is, to find a function ¢ such that
0< ”Hf(Xfl(x) NT)<oo as.

The following theorem is a partial result that gives a lower bound for the Hausdorff measure.
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Theorem 4.4.1. Suppose X satisfies (4.1) and (4.2) on a closed bounded cube T C RN,

Suppose d < ) where () = Zj\le Hj_l. Then there is a positive finite constant C' such that
CL(x,T) <HJ)(X Ha)NT) as.,

where o(r) = r9 4 (loglog(1/r))%/€.

Proof. Recall that there exists a positive constant ¢ > 1 depending only on ¢q in (4.24) such

that for any finite Borel measure p on RY and any Borel set £ C RNV,

—1q. s f PP 14 PP
¢ H,(E) tléllf? Dy (t) < u(E) < cHp(E) tsgg Dy () (4.26)

where

— By(t
D;f’p(t) := lim sup wBp(t.r))
r—0+ o(r)

is called the p-upper p-density of p at the point ¢ (see Theorem 4.1 of [66]). We can take
p = L(z,-NT), which is a.s. a finite Borel measure on RY supported on X ~1(z)NT. Then

by Theorem 4.3.1, there exists a positive finite constant C' such that
supﬁ;f’p(t) <C as.

tek

This and the upper bound of (4.26) with E = X ~(z) N T yields the desired result. O
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4.5 Stochastic Heat Equation and Strong Local Non-

determinism

Consider the system of stochastic heat equations

Guj(t,r) — Auj(t, ) = Wi(t,z), t>0,2€RV,

uj(0,2) =0, ji=1,....d,

where W;, j =1,...,d, are i.i.d. Gaussian noises that are white in time and colored in space
with covariance

E[W;(t, 2)W;(s,y)] = do(t — )|z —y|~°

where 0 < 8 < 2AN. Let u(t,z) = (uy(t,z),...,ug(t,x)). Then {u(t,z):t >0,z € RV}
is a (1 + N, d)-Gaussian random field and uq, ..., u, are i.i.d.

Recall that for any 0 < a < b < oo, there exist positive finite constants C7, Cy such that

Crp((t, ), (5,9)) < El(ur(t, ) —u1(s,9))°]"/* < Cop((t,2), (s,9)) (4.27)

for all (t,), (s, ) € a,8] x [0, 1], where p((t,2), (s,9)) = [t — | *=/* 4 o — 9| 2012,
See e.g. Lemma 4.2 of [14]. It shows that u satisfies condition (4.1) on any closed bounded
cube in (0, 00) x RV,

Recall Section 3.4.2. We may assume that uq(¢, ) has the following representation:

. —irt _ —t[¢|? N
up (t,x) = / / e~ i) e WEB2 N (dr de), (4.28)
R JRN €12 — T
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where W is a C-valued space-time Gaussian white noise on RN The following proposition

shows that u also satisfies the condition (4.2) of strong local nondeterminism.
Proposition 4.5.1. For any 0 < a < b < oo, there exists a positive finite constant C' such

that for all integers n > 1, for all (t,x), (1,2, ..., (t", z") € [a,b] x [<b, 0]V

Var(up (¢, ) |ug (¢4, 21), ... ug (17, 2™)) >01212np((t z), (', 2))%. (4.29)

Proof. Since u is Gaussian, the conditional variance in (4.29) is the squared L2-distance of

u1(t, ) from the linear subspace of L2(IP’) spanned by ul(tl, ml), oo up (™ ™), that is,

Var(uq (t, )|ug (¢4, 2Y), .. u (1", 2™) =  inf E

af,...,an€R

(ul(t,x) — Zn:ajul(tj, mj))2] .

J=1

Therefore, it suffices to show that there exists a positive constant C' such that

n 2
<u1 (t,x) Zajul t), 27) ) > Or2 P,
7=1
for any n > 1, any (t,x),(tl,:cl),...,(t”,x”) € [a,d'] x [-b, b]N, and any ai,...,an € R,

where

r = min (|t—t]|1/QV|x—x3|)
1<j<n

From (4.28), we have

n 2
E (ul(t,x) — Zajul(tj,a}j)) ] (4.30)

) (it _ e—t|§|2 Xn: gxﬂ o—irth _ eftj|§|2) 2| |‘i|5_|N|2_
I+ T
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Let M be a positive finite constant depending on o’ and b such that |t—t/|1/2V|z—2/| < M
for all (t,z),(t,2') € [a,a'] x [-b,b]N. Let p = min{a/M?1}. Let ¢ : R — R and
¢ : RN — R be nonnegative smooth bump functions that vanish outside [—p, p] and the
unit ball respectively and satisfy p(0) = 1(0) = 1. Let @,(7) = r2p(r—27) and ¢,(€) =

r~Nyp(r1€). Let us consider the integral

n . .
I:= /}RdT /RN dg {e_i@’@(e_m - e_t|§|2 Z 5”7 eIt _ e_t]|5|2)

% 62<§,x> ethar (T)wr (S) _
By inverse Fourier transform, we have

I — (27T)1+N

©r(0)r(0)—=r(t) (Pt * ¢r)(0)

Zn:% (907" (t—t))hr(z — 27) — or(t)(p,; *wr)(x—wj))],

Jj=1

where p¢(z) is the heat kernel

L e/t

pe(z) = W

By the definition of r, for every j, we have either |t — t/| > r2 or |z — 27| > r, thus

or(t — )by (x — 27) = 0. Moreover, since t/r2 > a/M? > p, we have o, (t) = 0 and hence

I = (2m)1H N2, (4.31)
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On the other hand, by the Cauchy—Schwarz inequality and (4.30),

<u1(t,x)—§:ajul(tj,xﬂ> ]//RN O (e + 1712 1€V Pdr de.

Note that @, (1) = 3(r?7) and @/b\r(f) = @/Z)\(Tf) Then by a scaling of variables, we have

/ /RN O (Iel* + 1) 1e1¥ - Par d
p=6+8-2N / / BEBE) (g + 1712) 1N Par de,

where the last integral is finite since » and QZ are Schwartz functions. It follows that

<u(t, z) — i aju(t!, acj)) 2] (4.32)

J=1

for some finite constant Cjy (depending on a, a’ and b). Combining (4.31) and (4.32), we

obtain

n 2
E (u(t, T) — Zaju(tj, 513"7)) ] > (27T)Q+2NO()_17“2_B.
j=1
The proof is complete. O

With (4.27) and Proposition 4.5.1, the following result is a direct consequence of Theorem

4.2.1 and 4.3.1.

Theorem 4.5.2. Suppose d < @, where Q = (4 + 2N)/(2 — ). Let T be any closed
bounded cube in (0,00) x RN . Then {u(t,z) : t > 0,2 € RV} has a jointly continuous local

time L(-,T) on T that satisfies the following Holder condition: there exists a positive finite
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constant C' such that for any x € R, with probability 1,

. L(va,O(tvr))
lim sup

<C 4.33
r—0+ r@=d(loglog(1/r))4/Q ~ (4.33)

for L(zx,-)-almost every t € T.

The theorem below identifies the correct gauge function for the Hausdorff measure (in
the metric p) of the level sets u ™ (2) = {(t,z) € (0,00) x RN : u(t, z) = 2} of the stochastic

heat equation.

Theorem 4.5.3. Suppose d < Q = (4+2N)/(2— ). Then for any z € R and any closed

bounded cube T C (0,00) X ]RN, there exists a positive finite constant C' such that
CL(z,T) < ’Hf(u_l(z) NT)<oo a.s., (4.34)

where o(r) = 1%~ (loglog(1/r))¥/<.

Remark 4.5.4. We conjecture that there exist positive finite constants Cq and Cy such that
C1L(2,T) < HF(u " z)NT) < CoL(x,T) as.

We also conjecture that the gauge function for the Hausdorff measure in the Euclidean metric

of the level set is o(r) = rP(loglog(1/r))¥/ @, where B is the Hausdorff dimension in (4.25).

Proof of Theorem 4.5.3. The lower bound of (4.34) follows immediately from Theorem 4.4.1.
To prove that the Hausdorff measure is finite, we use the method in [67], which is similar

to Talagrand’s covering argument in [61] and Chapter 3 of this thesis. To this end, note that
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we may assume 1" = B((tg, zq),n9), where ng > 0 small and (¢y, zg) € T are fixed. Let

ul(t, z) = u(t,z) — u’(t, x),

u?(t, ) = E(u(t, z)|ulty, 7))

Note that u! and u? are independent.
By Proposition 3.3.6, there exists 17 > 0 small such that for all 0 < rg < 11, and all

(t,x) € T, we have

-1
' (Hr € [l e [ult, z) = u(s, y)] < Kyr (loglog l) /Q>
T

(s,y)€Bp((t,),2cor)
>1—exp ( — (log%)lﬂ)
0

Moreover, recall that Assumption 3.2.2 is satisfied with J; = 1 (see [18], Lemma 7.5). Then

(4.35)

by Lemma 3.3.7, for all (¢,z), (s,y) € T,

N

WP (t, ) — u?(s,y)] < Ko([t — s| + > |oj — y;l)u(to, o). (4.36)
j=1

Let
Ry = {(t,x) €T :3r e [27%,27P] such that

sup u(t, z) —u(s,y)| < Kw"(loglog 1>_1/Q}'
(s,y)€Bp((t,r),2co7) r
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Counsider the events

Q1 = {w: Aw(Bp) 2 AN(T)(1 = exp(—v/4) },

Qp2 = {w u(to, xo)| < 2pb}7

where b > 0 is chosen and fixed such that ﬁ —b > 1. By (4.35), P((t,z) € Rp) >
1 —exp(—+/p/2). Then by Fubini’s theorem, Zgil P}, 1) < oco. Moreover, it is easy to
see that > %4 P2 9) < o0. Let 2 = Up=1 Zp be the family of (generalized) dyadic cubes

in T" given by Lemma 3.3.9. Consider the event

Qp,gz{w:we%p, sup |u<t,x>—u<s,y>|SK32—2pp1/2}.
(t,x),(s,y)el

It is shown in the proof of Theorem 3.2.4 (Section 3.4) that > 24 P2 3) < oo provided

K3 is a large enough constant. Let € = (2, 1 M€y 9 N2, 3 and

O =W

{>1p>4

Then Q* is an event of probability 1.
We are going to construct a random covering of the level set u_l(z) NT. For any p > 1
and (t,x) € T, let Iy(t,z) € 2Z) be the unique dyadic cube of order p containing (¢, z). We

say that I4(t,x) is a good dyadic cube of order ¢ if it satisfies the following property:

sup lul(s,y) — ul(s',y)| < K127 9(loglog 2q)_1/Q. (4.37)
(Say)7(5/ay/)€Iq(ta$)

For each (t,x) € Ry, since I is contained in some ball B,(c22™ %) by Lemma 3.3.9 (iii), there
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is a good dyadic cube I € 2 containing (¢,x) of smallest order g, where p < ¢ < 2p. By
property (ii) of Lemma 3.3.9, we obtain in this way a family %pl of disjoint dyadic cubes that
cover Rp. On the other hand, we cover T'\ Ry by a family %])2 of dyadic cubes in 2y, of
order 2p that are not contained in any cube of gpl. Let ¢4, = gpl ngQ. Note that ¥, depends
only on the random field {u'(¢,z) : (t,2) € T}.

For any dyadic cube I € 2, choose a distinguished point (¢t7,z7) € INT. Fix p > 1. For

any I € 24 of order ¢, where p < ¢ < 2p, consider the event

Qpr=Aw:|ultr,zr) — 2| < 2rp, 1}

where

K127 %(loglog 2‘1)_1/Q if I € %pl,
"pl =
K127 2Ppl/2 if 1 €92,

Let .7, be the subcover of ¥, (depending on w) defined by

Ipw) ={l € Gp(w) :weQ, 1}

We claim that for p large, on the event €, %, covers the set u_l(z) NT. Suppose €2y
occurs and (t,#) € u~1(z) NT. Since ¥, covers T, the point (t,z) is contained in some
dyadic cube I and either I € gpl or [ € 54]72.

Case 1: if I € gpl, then I = Iy(t,x) is a good dyadic cube of order ¢, where p < ¢ < 2p,

and (4.37) holds. Note that I is contained in some ball B,(c227 ) by Lemma 3.3.9 (iii).
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Since €2, o occurs, it follows that from (4.36) and (4.37) that

ultr, xp) — 2| < [ut (tp, 2p) —ul ()] + [0 (tr, 2p) — u?(L )]
4 2 9
< K127 9(log log 29) "1/ @ 1 K2<(2c22*/3 +2Ne2 P2 q2—6>2pb.
This is < 2r, 1 for p large because b is chosen such that ﬁ —b> 1. Hence I € Z,.

Case 2: if I € 54},2, since €2, 3 occurs, we have
luty,xp) — 2| = |u(ty, zp) — u(t,z)| < K327 2pt/2,

In this case, I € .%). Hence the claim is proved.
Let ¥1 be the o-field generated by {ul(t,z) : (t,z) € T}. To estimate the conditional

probability P(£2, 1|31), note that by (4.27), for all (t,x) € T' = B,((to,z0),m0),

Var(E(u(t, z)|u(to, xg))) = Var(u(t, z)) — E[Var(u(t, z)|u(tg, zg))]

> inf Var(u(t,z)) —Cy sup p((t,z), (to, 20))>
(t,x)eT (t,x)eT

>K >0

provided ng > 0 is chosen small enough. Then P(|u2(t,z) — v| < r) < Kr? for all (¢t,z) € T,
v e R and r > 0. It follows from the independence of u!' and u? that P(€2, 1131) < KTZZ,I-

Let Qp denote the event that the cardinality of 54],2 is at most K22PQ exp(—/p/4). Note
that Qp € Y. Since T'\ R} has Lebesgue measure < exp(—,/p/4) on €, 1 and each I of

order 2p has Lebesgue measure ~ K27 2P9 by Lemma 3.3.9 (iii), it follows that the event
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Q1 is contained in Q. Let g[I] denote the order of I € F,. Then

—qll
E 1Qp Z ©(2¢92 ql ]) <E Z Z (20927 9) 1{]6% }IQ
IEﬁp —PIGQq
2 |10, 30 3 el e, )
| 9=pIc2yq

Z > 0262 N1 pey, }E(1Q |21)

q=p Iequ

< KE |1 Zzgpzczz @y

,11{16%@}
IfI e gpl is of order ¢, then

@(2022_(1)7’3[ < K27 91@=D (195 10g 20)%/ Q214 (10g log 29) ¥/ Q < KAy (1),
and these I'’s are disjoint sets contained in T'. If [ € gpz, then

@(2022_27’)7"2,] < K279 (log log 2%P)%/Q /2
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and there are at most K22PQ exp(—,/p/4) many such I’s on Q. Tt follows that

E |1g, > o2~ | < KE S (D) Jrl~ E “Q(log log 22)4/Q 1/

1e7p Ie%} Ieiﬂ
< K (A (T) + (log log 227)/ Q2 exp(~/p/4))
< K(An(T) +1)

provided p is large. Recall that .%) is a cover for ufl(z) NT on €, for large p and each I is

contained in a p-ball of radius 022_‘1[[]. Therefore, by Fatou’s lemma,

E [Hf(u—l(z) N T)] —E [19* HE (™ (2) N T)}

< —qI]
E lgi})%f 1g, Z ©(2c92 )
IEﬁp

. . q
< lgggéfIE 1Qp Z (2c927
€%

< KOAN(T)+1) < .

This completes the proof of Theorem 4.5.3. [
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Chapter 5

Local Nondeterminism and the Exact
Modulus of Continuity for the

Stochastic Wave Equation

5.1 Introduction

Let k >1and 0 < B < kA2 ork=1= (. Let us consider the linear stochastic wave

equation in arbitrary spatial dimension k > 1:

2 .
a—2u(t,x) = Au(t,z)+ W(t,z), t>0,x¢€ RF
ot (5.1)
u(0,z) = %U(O,l’) = 0.

Here, W is the space-time Gaussian white noise if & = 1 = 3; and is a Gaussian noise that

is white in time and colored in space with covariance

E(W (£, 2)W (s,y)) = do(t — s)|e — y| ™"

if k> 1and 0 < 8 < kA2 The purpose of this chapter is to study the exact modulus of

continuity for the solution. This part is based on [35].
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In Chapter 4, we considered Gaussian random fields with the property of strong local
nondeterminism and we showed that the stochastic heat equation satisfies this property. In
this chapter, we will show that the stochastic wave equation satisfies a different form of local
nondeterminism. As an application, we use this property to determine the exact uniform
modulus of continuity of the solution in time and space variables jointly.

It is well known that the Brownian sheet {B(t) : t € Rfy } does not satisfy strong local
nondeterminism, but it satisfies sectorial local nondeterminism (see [31], Proposition 4.2).

Namely, for all € > 0, there exists C' > 0 such that for alln > 1, for all ¢, ¢!, ... t" € [e, oo)N,

N
BB, ... B(t")) > in |t. — 4.
Var(B(t)|B(t),...,B(t ))—C;1§1§n|t3 £

Recall from Theorem 3.1 of [64] that if W is the space-time white noise, the solution u(t, z)

of (5.1) has the representation

u(t,z) = %W (15_7; %) , (5.2)

where W is a modified Brownian sheet (cf. [64, p.281]). In this special case, u(t,z) shares
many properties with the Brownian sheet. It is therefore natural to study whether the
stochastic wave equation satisfies local nondeterminism.

In this chapter, we investigate the property of local nondeterminism for the solution
of (5.1) and use this property to study the uniform modulus of continuity of its sample
functions. The main results are Proposition 5.2.1 and Theorem 5.3.1. Proposition 5.2.1
shows that for any spatial dimension k, the solution u(t, x) satisfies an integral form of local

nondeterminism. When k& = 1 and 8 = 1, this property (see (5.6) below) can also be derived
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from the sectorial local nondeterminism for the Brownian sheet in [31, Proposition 4.2] after
a change of coordinates. While for £ = 1 and g € (0,1), property (5.6) is similar to the
sectorial local nondeterminism in [65, Theorem 1] for a fractional Brownian sheet, which
suggests that the sample function u(¢, ) may have subtle properties that are different from
those of Gaussian random fields with stationary increments (an important example of the
latter is fractional Brownian motion). We believe that Proposition 5.2.1 is useful for studying
precise regularity and other sample path properties of u(t,z). In Theorem 5.3.1, we apply
Proposition 5.2.1 to derive the exact uniform modulus of continuity of u(¢, z).

The exact modulus of continuity provides precise information about the regularity and
oscillation of sample paths. General conditions for uniform and local exact moduli of con-
tinuity of Gaussian processes were studied by Marcus and Rosen [40]. The exact moduli of
continuity for anisotropic Gaussian random fields were studied by Meerschaert, Wang and
Xiao [42], with applications to fractional Brownian sheets and one-dimensional stochastic
heat equation driven by the space-time white noise. Similar results for the stochastic heat

equation driven by fractional-colored noise can be found in [62, 27].

5.2 Local Nondeterminism

Let G be the fundamental solution of the wave equation. Recall from Section 2.2.3 that for
k > 3, G is not a function but a distribution. Also recall that for any dimension k > 1, the

Fourier transform of G in variable x is given by

_ sin(t|¢])

F(G(t,)(€) = T t>0,¢ e RF. (5.3)
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In [11], Dalang extended Walsh’s stochastic integration and proved that the real-valued

process solution of equation (5.1) is given by

t
u(t,a:)z/o /]Rk G(t —s,x —y) W(dsdy),

where W is the martingale measure induced by the noise W. The range of 3 has been chosen

so that the stochastic integral is well-defined. Recall from Theorem 2 of [11] that

s[( [ [ o) | e [[a [ asersmenor 6y

provided that s — H (s, -) is a deterministic function with values in the space of nonnegative

distributions with rapid decrease and

' B—k| o 2
[ as [ aclel Bz e @R < o

The following result shows that the solution u(¢, ) satisfies an integral form of local nonde-

terminism.

Proposition 5.2.1. Let 0 < a < a’ < 00 and 0 < b < oo. There exist constants
C > 0 and § > 0 depending on a, a’ and b such that for all integers n > 1 and all

(t,x), (th, 2, ... (", 2™) in [a,d'] x [=b,b]F with |t — tJ| + |& — 27| < 8, we have

Var(u(t,x)|u(t1,:v1),...,u(t”,xn))20/ min |(t — ) + (z — 27) - w|> P dw, (5.5)
sk—11<j<n

where dw s the surface measure on the unit sphere sk—1.

Remark 5.2.2. When k = 1, the surface measure dw in (5.5) is supported on {—1,1}. It
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follows that u(t, x) satisfies sectorial local nondeterminism:

Var(u(t, z)|u(tt, z1), ... u(t™, z™))
(5.6)

>C( min |(t—t/ — )2 in |(t—t/)— (z— a7,
>0 (min (0= #) + (o= )P+ min (0= 0) - (o - )

As we pointed out in the introduction in Section 5.1, property (5.6) is similar to the sectorial
local nondeterminism but different from the strong local nondeterminism of Gaussian ran-
dom fields with stationary increments. It indicates that u(t,z) may have properties that are
different from those of Gaussian random fields with stationary increments such as fractional

Brownian motion.

Proof of Proposition 5.2.1. Take 6 = a/2. For each w € Sk=1 let

r(w) = 1r§nji£n (7 — ) — (27 — z) - w).

Since u is a centered Gaussian random field, the conditional variance Var(u(t, z)|u(tt, z1), . . .,
u(t™, 2™)) is the squared distance of u(t, z) from the linear subspace spanned by u(t!, 1), ...,
w(t™, ") in L?(P). Thus, it suffices to show that there exist constants C' > 0 and 6 > 0 such

that for all (¢, z), (1, 21), ..., (¢, ™) in [a, a/] x [—=b,b)* with |t — /| + |z — 27| < 6, we have

E u(t,x)—iozju(tj,xj) i >C k_lr(w)2_5dw (5.7)
j=1 S

for any choice of real numbers av, ..., ay. Using (5.3), (5.4) and spherical coordinate £ = pw,
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we have

Alon-gmen)
o [ [

n . 2
sin((t — s)[¢])1 Z JEsin((#7 - s)l¢)1 0,4(5)
00 dp B 2
> ckﬁ/ ds/ Sk— sin((t — s)p Za e~ =2} W gin (41 — 5)p)
kB i(t—s)p _ —i(t—s)
/ / ypyS BB Jgr1 (e~ ’)
n . . . 2
C Y agerivla ) <ei<tﬂ—s>p _ e—z’(tﬂ—sm) ‘
j=1
_. kS A(w) dw.
8 Jsk—1

Let A = min{1,a/[2(d’ + 2v/kb)]} and consider the bump function ¢ : R — R defined by

1
exp (1_ —1 2)» [yl < A,
1—|A
p(y) = o

0, ly| > A.

Let @ (y) = r~Lp(y/r). For each w € S¥~1 such that r(w) > 0, consider the integral

/ ds/ dp{ )P _ e_i(t_s)p)

- Z ajeifl (a7 ) (ei(tjs)p _ ei(tjs)p) }el(t VG, ) (P)-
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By the inverse Fourier transform (or one can apply the Plancherel theorem), we have

|
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Note that r(w) < |t/ —t|+ |27 —z| < a/ +2v/kb. For any s € [0, a/2], we have 2(t—s) /r(w) >

a/[(d’ + 2vkb)] and |(2f — z) - w — (tF — )| /r(w) > 1, thus
Or(w) (2(t—5)) =0 and @, ((2/ —2)-w—(# 1)) =0 forj=1,...,n
Also, [(2f — ) -w — (F —t) + 2(t — 5)]/r(w) > (=6 +a)/[(a’ + 2v/kb)] > A, thus
Eriu) (7 — ) - w — () — 1) + 2t — 5)) = 0.

It follows that

I(w) = arr(w) ™1,

On the other hand, by the Cauchy-Schwarz inequality and scaling, we obtain

(am)*r(w) ™ = [1(w)* < A(w) / / dp |3 (r(w)p) *|ol*~
= (a/2)A(w)r(w)”! /_oo dp |2(0) 1~

= CA(w)r(w)?=*
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for some finite constant C. Hence we have

A(w) > C'r(w)> P (5.8)

and this remains true if r(w) = 0. Integrating both sides of (5.8) over S¥=1 yields (5.7). O

5.3 The Exact Uniform Modulus of Continuity

Let f: 1 — R be a function with I € RV, Let ¢ : [0,00) — [0,00) be a function such that
lime_,04 ¢(g) = ¢(0) = 0. Recall that ¢ is called a modulus of continuity for f on I if there

exists a finite constant C' such that

[f(@) = f(y)] < Co(lz —yl)

for all z,y € I.
In order to identify the optimal modulus function, Marcus and Rosen [40] introduced the
following definition. Let o be a metric on I. We say that ¢ is an exact modulus of continuity

for f on (I, 0) if there exists a positive finite constant C' such that

. |f(z) = f(y)]
1 2 =
0+ yer. O0(r,y))
0<o(z,y)<e

For example, Lévy’s theorem of modulus of continuity shows that the exact modulus of
continuity for the Brownian motion is ¢(¢) = /elog(1/e) with C = v/2 (and o being the
Euclidean metric).

It is known that sectorial local nondeterminism is useful for proving the exact uniform
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modulus of continuity for Gaussian random fields [42]. In this section we show that the
integral form of local nondeterminism in Proposition 5.2.1 can serve the same purpose for
deriving the exact uniform modulus of continuity of the solution u(t, x) to (5.1).

Let us denote

o[(t,x), (t',2")] = E[(u(t, z) — u(t’,2"))?]}/2.

Recall from [20, Proposition 4.1] that for any 0 < a < @’ < co and 0 < b < oo, there are

positive constants C7 and C9 such that

k

k 2-3 2-3
cr(le=e14 X ley—all) < olital P < o=t Xl -a4l) 69
j=1

j=1

for all (t,z),(t',2') € [a,a] x [—b, b]F.
The following result establishes the exact uniform modulus of continuity of w(t,z) in the

time and space variables (t, ).

Theorem 5.3.1. Let I = [a,a’] x [—b,b]¥, where 0 < a < d’ < 00 and 0 < b < co. Let

v[(t2), (', 2)] = o[(t ), (t',2))] \/10g (1+o[(t,), (¢, 2)] 7).
Then there is a positive finite constant K such that

lim sup |U(t, :E) _ U’(tla $/)| .
e—0+ (t,x),(t/,x/)GI, v [(t) l’), (t’, J:/)] )
0<a(t,z), (¢ a")]<e

a.s. (5.10)
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Proof. For any € > 0, let

Ju(t, z) —u(t',2")|
J(e) =
© (t,x),isl’lz’)g, v[(t,z), (', 2)]
0<0[(t,x),(t/,x/)]§g

Since € +— J(¢) is non-decreasing, we see that the limit lim. o4 J(e) exists a.s. In order to
prove (5.10), we prove the following statements: there exist positive and finite constants K*

and K such that

i J < K* .S. 5.11
im (e) < K*, as (5.11)
and
lim J(e) > Ky, as. (5.12)
e—0+

Then the conclusion of Theorem 5.3.1 follows from Lemma 7.1.1 of [40] where 7 is chosen
to be the Euclidean metric and d is the canonical metric o(t,z), (¢, 2')]. [It is a 0-1 law
for the modulus of continuity which is obtained by applying Kolmogorov’s 0-1 law to the
Karhunen—Loeve expansion of u(t, x).]

The proof of the upper bound (5.11) is standard. For any ¢ > 0, denote by N(/,¢,0)
the smallest number of balls of radius € in the canonical metric o[(t,z), (¢',2')] that are
needed to cover the compact interval I. By the upper bound in (5.9), we have N(/,¢,0) <

Ce=(14K)/(2=8) and thus

13
/ Viog N(I,&,0)dé < Cey/log(1 + e~ 1).
0
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By Theorem 1.3.5 of [2], there is a positive finite constant K™ such that

t _ t,,
s s D) —u(t o)

e—0+ (t,a:),(t/,x/)ef, ) log(l +5_1)

O<U[(t,x),(t/7m/)]§5

< K* as.

From this we can deduce (5.11) by considering ¢,41 < o[(t, z), (¢, 2')] < e, where &5, = 1/n,

and using the fact that the function € —+ e1/log(1 + ¢~1) is increasing for ¢ small, and

ent/log(1+ 1) _,

ent1y/log(1+2,1)

lim

n—oo

Next we prove the lower bound (5.12). This is accomplished by applying Proposition
5.2.1, a conditioning argument and the Borel-Cantelli lemma. We first choose § according
to Proposition 5.2.1 and let &' = min{6/(1 + Vk),d’ — a,2b}. Note that &' depends only on

a, a’ and b. For each n > 1, let
en = [Ca((1 + k)2 P2 (2=Bn)1/2,
Fori=0,1,...,2" let " = ¢ + 6’2" and x;” = —b+1i0'27". Then

lim J(e) = lim sup Ju(t, z) — u(t’, 2')|
T nI0 i ayer,  E2) ()]

O<U[(t,x),(t’,m/)]§€n

NG N0\ _ ngt—1 ne—1
s it B0 a0
neo 1sis2 em/log(1+eﬁl)

=: liminf J),.
n—oo

To obtain the inequality, we have used the fact that o[(t%, ™), (t"~1 z™i=1)] < &, and
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that the function € — e4/log(1 + £~1) is increasing for & small.

Let Ky > 0 be a constant whose value will be determined later. Fix n and write t"%¢ = ti,

nai

2™t = 2! to simplify notations. By conditioning, we can write

P(Jy < Ky)

ti 7 _ tz’—l i—1
:IP) max ’U( 7:6) u( 7$ )’ <K*

Lsi<2? ent/log(1+¢ep 1) N ) (5.13)

LI T RS . o
1AIP<|“( )zl T O gl ey 0 <i<on 1) |,

En\/log(l +57;1) -

where A is the event defined by

=E

T 0\ i—1 -1
A:{ B G e Gt | P

1<i<an-1 eny/log(1 —|—8,§1) B }

Since [t2" — | + |22" — & < 6, by Proposition 5.2.1 we have
Yy

Var (u(th, x2n)]u(ti, ) 0<i<2" — 1) (5.14)

v

c/ min (2" — #) + (2" — 27) - w2 dw
sk—10<i<2n -1

v

(J/ min [§'(2" — )27+ 8 (2" —i)27"(1,...,1) - w> P dw
{fweSkF—1:(1,...,1)-w>0} 0<i<2m—1

> 0(5')2 0 2= (2=F)n / dw
{weSk—1:(1,...,1)w>0}

= Cpe?

for some constant Cy > 0 depending on a, a’ and b.
Since the conditional distribution of u(t2n, $2n), given u(t!, z"), (0 < i < 2"—1), is Gaus-

sian with conditional variance Var (u(th, xQn)]u(ti, x?) 10 <4 < 2% — 1), it follows from An-
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derson’s inequality [3] and (5.14) that

P<|u<t2”,x2”> —u@® L

€ny\/ log(1 + 57;1)

<P (lZl < Ki\/Cy M log (1 +€El)>

u(ti,xi):ogigw—l)

where Z is a standard normal random variable. Using P(|Z| > z) > (v2r) tz~Lexp(—22/2)

forz >1land 1+e 1 <2 /e for € small, we deduce that when n is large the above probability

is bounded from above by

) ) _@-pKE
_ Clen/2)5H/%) ( C@J%mﬂ%m>§@m<_6kgfﬁ>

Kolog 2/en) P\ Ko /log 2/en) v

where Cg, > 0 is a constant depending on K. Then by (5.13) and induction, we have

_(2-B)KZ
Ck.2

NG

IP’(Jn < K*) < exp (— om

We can now choose Ky > 0 to be a sufficiently small constant such that

(2— B)K?2

1 —
4CY

> 0.

Then 22021 IP’(Jn < K*) < 0o. Hence, by the Borel-Cantelli lemma, liminf,, J, > K, a.s.

and the proof is complete.
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Chapter 6

Propagation of Singularities for the

Stochastic Wave Equation

6.1 Introduction

In this chapter, we consider the stochastic wave equation in one spatial dimension:

o 0* :
@u(t,x) @u(t, x)=W(tz), t>0,zeR,

(6.1)
u(0,z) =0, %U(O,(L’) =0,

where W is a Gaussian noise that is white in time and colored in space with spatial covariance

E[W (t,2)W (s,)] = do(t — 5|z — y| 7 (6.2)

with 0 < f < 1. The purpose of this chapter is to study the singularities of the solution
{u(t,z) : t > 0,2 € R}. This chapter is based on [36].

In this context, singularity is related to exceptionally large increments of a stochastic
process. By singularity we mean a random point at which the process has local oscillations
that are much larger than those specified by the law of the iterated logarithm (LIL). For

the Brownian motion, this phenomenon was first studied by Orey and Taylor [48]. Tt is
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well known that at a fixed time, the increments of a Brownian path satisfies the LIL almost
surely. However, it is not true that the LIL holds simultaneously for all time points with
probability one. Indeed, according to Lévy’s modulus of continuity, we can find random
points at which the LIL fails and the increments are exceptionally large, and therefore we
can define these exceptional points as singularities. Similarly, we can define singularities for
other general random fields.

The singularities of the Brownian sheet and the one-dimensional stochastic wave equation
driven by the space-time white noise were studied by Walsh [63, 64], and those of semi-
fractional Brownian sheet was studied by Blath and Martin [7]. Based on a simultaneous
law of the iterated logarithm, Walsh [63] showed that the singularities of the Brownian sheet
propagate parallel to the coordinate axis. Moreover, Walsh [64] found an interesting relation
between the Brownian sheet and the solution u(t,x) to (6.1) driven by the space-time white
noise. Specifically, Theorem 3.1 in [64] shows that the solution can be written as the sum of

three components:

u(t,x)z%{B(%,%) +W(%,O) +W<O%)} (6.3)

where the main component B is a Brownian sheet and W is the modified Brownian sheet
defined in Chapter 1 of Walsh [64], and the processes { B(s,t) : s,t > 0}, {IW(s,0) : s > 0}
and {W(0,t) : t > 0} are independent. This relation implies that the singularities of u(t, x)
propagate along the characteristic curves t —x =c and t + = = c.

Later, Carmona and Nualart [9] extended the study of singularities of the solution to the
linear stochastic wave equation (6.1) driven by space-time white noise in [63, 64] to the case

of one-dimensional nonlinear stochastic wave equations driven by a space-time white noise.
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Their approach is based on the general theory of semimartingales and two-parameter strong
martingales. In particular, they proved the law of the iterated logarithm for a semimartingale
by the LIL of Brownian motion and a time change. They also proved that, for a class of
two-parameter strong martingales, the law of the iterated logarithm in one variable holds
simultaneously for all values of the other variable.

The main objective of this chapter is to study the existence and propagation of singu-
larities of the solution to (6.1) driven by a Gaussian noise that is white in time and colored
in space with spatial covariance given by (6.2) with 0 < 8 < 1. In this case, the solution
shares some similarity with the fractional Brownian sheet, but it seems to us that there is
not a natural relation like (6.3) between the solution and the fractional Brownian sheet.
Also, the method in Carmona and Nualart [9] based on semimartingales and two-parameter
strong martingales is not applicable in the case of colored noise. Our approach is based on
a simultaneous LIL for the solution and general methods for Gaussian processes.

This chapter is organized as follows. First, we establish a simultaneous LIL for the
solution of the stochastic wave equation. We prove that after a rotation, the LIL in one
variable holds simultaneously for all values of the other variable. The proof consists of two
parts: proving the upper bound and lower bound. The upper bound is proved in Section
6.2 and the lower bound is proved in Section 6.3. In Section 6.4, we introduce the definition
of singularity for the stochastic wave equation and apply the simultaneous LIL to study
the propagation of singularities. The main result Theorem 6.4.3 shows that singularities

propagate along the characteristic curves.
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6.2 Simultaneous Law of Iterated Logarithm: Upper

Bound

The noise in (6.1) is defined as the mean zero Gaussian process W () indexed by compactly

supported smooth functions ¢ € CZ°(R4+ x R) with covariance function

IE?[W(SO)W(Q/J)]:/R dS/Rdy/Rdy’SD(s,y)!y—y’l_ﬂw(s,y’)
+

1 a . Z((s. N(E)
-4 /R K /R u(de) F(p(5, ) (€ F W5, ) E)

for all ¢, € C°(Ry x R), where p is the measure whose Fourier transform is | - |~ and

F(p(s,+))(€) is the Fourier transform of the function y — ¢ (s, y) in the following convention:

see [59, p.117]. We assume that W is defined on a complete probability space (2, .#,P).

Following [11, 13], for any bounded Borel set A in R4 x R, we can define

W(A) = lim W(en)

n—oo

in the sense of L2(IP)-limit, where (¢y,) is a sequence in C2°(Ry x R) with a compact set K

such that supp ¢, C K for all n and ¢, — 14. From (6.4), it follows that for any bounded
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Borel sets A, B in Ry x R, we have

E[W(A)W(B)] = /R s / dy / a5 1 (5.9l — |1 (5. 1/)
+

c
/ / % 5 N R I E )G
Ry R ‘f|

(6.5)

In dimension one, the fundamental solution of the wave equation is %1 {Jz|<t}> SO the mild

solution of (6.1) is

t
D=5 [ et sy () Widsdy) = WA ) (6.6

where A(t,z) = {(s,y) E Ry xR:0< s <t |[x—y| <t—s}
Consider a new coordinate system (7, ) obtained by rotating the (¢, x)-coordinates by

—45°. In other words,

We are going to prove a simultaneous LIL for the Gaussian random field {a(7,\) :
7 > 0,A > 0}. The following result shows an upper bound for the LIL in A, which holds
simultaneously for all values of 7. By a symmetric argument, we can also prove that the LIL

in 7 holds simultaneously for all \.
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Proposition 6.2.1. For any A > 0, we have

P | lim sup [@(r, A+ h) — @, Al < Kgforalte€[0,00) | =1, (6.7)
h=0+ 3 (7 4+ k2B loglog(1/h)

where

J1-B)/2  \1/2
Kﬁ:(@—ﬁ)(l—ﬁ)) |

Lemma 6.2.2. For any 0 < <1, a <b and ¢ < d, we have

)2 g Am _ 2B
Cﬂ/ Ners=e—pa—p" 2 (68)

and

d
G [ PO F @

)(\6—612 Bild—alr P —|c —a]2_5—\d—b\2_5).

T (2- ﬁ)(l

Proof. The Fourier transform of the function 1[a,b] is

It follows that

s | 1P O iy = s [ 10 1Pt

~ Cylo— [

—o0 €37
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The last equality follows by scaling. The proof of Proposition 7.2.8 of [56] shows that

/OO |GZ€ B 1|2 df _ 2’/T ‘
oo €3 (2= BT (2 - B)sin(%P)

Also, using the relations I'(2z) = 22177 1/27(2)I'(z + 1), [(2)[(1 — 2) = 7/sin(rz) and

2[(z) =T(z+ 1) (cf. [25, p.895-896]), we can show that

21 (2 - ) sin(g)
1-p

Cp =

Hence (6.8) follows.

For the second part,

o0 — d£ o0 i€(c—a 1&(d— 1€(c— i§(d—a —df
/_ooyl[a,bﬂf)%[cadl(f)\gp—ﬂ_/_oo (¢i6(e=0) y (i€(d=D) _ citle—b) _ cit(d ))Ifl?’ﬂ'

Note that this integral is real, so we have

o sl [ §(c—a —€(c—a 1§(d— —1€(d—
| P OF @ g = 5 [ (67 4 e g D) ietaD

1€(c—b —i&(c—b i&(d—a —i€(d—a d§
_ eible=b) _ —i&(c=b) _ jif(d—a) _ —i&( ))lﬁl?’—ﬁ

Since |e®€(@=¥) — 1|2 = 2 — ¢i6(@=y) _ ~i6(@=Y) for all 2,y € R, we have

| AP T @
— €l
— %/ (— |elf(c—a) — 1’2 _ |elf(d—b) _ 1‘2 + |elf(c—b) _ 1|2 + ‘elf(d—a) . 1|2) Cilf_ﬁ
- €
Now the result follows from the first part of the proof. o
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Lemma 6.2.3. For any 7,\,h > 0,
E[(a(r, A+ h) — i(r, N)?) = 5 K3 [(r+ 0n2 7 4 3 )]

where

H(1-8)/2  \1/2
o= ((2—5)@ —6)) |

Proof. Note that

E[(a(r, A+ h) — a(r,\))?]

:E{(U(T+\;\§+h7—7+\/g+h> _“(T\J/F;\v_i/g)\)f]

(W(A<T+\;\§+h7—T-i;/;+h>\A<T\j—§)\7—7;/—_|2—)\>>)2] |

Then by (6.5) and Lemma 6.2.2,

E

1
4

E[(a(r, A+ h) — a(r,\))?]

T4+
{/f o B I ESTV N

T+A+h

2 °© Cgd 9
+/T+A ds/ €11 6“/ \/§r+s,ﬁ(A+h)—s](f)| }
&
1 T+A TH+A+h
= /f (V2h)*~ 5ds+/ VZ (Va7 + A+ h) —25) 7 ds
2(2-p)(1 %A
- K3 [<T+A)h2 O @3-p) . =

Recall a standard result for large deviation (cf. [33, 41]): If {Z(t) : t € T'} is a continuous
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centered Gaussian random field which is a.s. bounded, then

1 1
lim — logP (supZ t) > 7) = — . 6.9
138 32 108 P (Gap 20 Zoupier BUZ (D7) o

By symmetry of the distribution of {Z(¢) : t € T}, we have

1
2suprer B(Z(1)?)

1
lim — logP (sup |Z(t)] > 7) = (6.10)
teT

=00 42

Now, we prove Proposition 6.2.1.

Proof of Proposition 6.2.1. 1t suffices to show that forany 0 < a < b < ocoandany 0 < € < 1,

o (i T A+ 1) — (7. 3)

<(I+e)Kpgforall T €a,b] | =1. (6.11)
h—0+ \/(7' + N h2=Bloglog(1/h)

Let ¢ € [a,b], § = (a + A\)e/2 and d = ¢+ §. Take 0 < 6 < 1 such that #(1 4 ¢) > 1. Choose

a real number ¢ such that 1 < ¢ < [A(1 + )]/(2=#). Consider the event

Ap = { sup sup }ﬂ(T, A+ h) —a(r, )\)‘ > ”yn},
7€[0,d] he[0,g— "]

where

=1+ 5)Kﬁ\/(c + M) (g~1)2=Floglog ¢".

By Lemma 6.2.3,

E [(a(r, A+ 8) — (r, )] = 5 K3 [+ 020 4 3 )13
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By (6.10), for all large n,

) f
5z s P(An) < TR+ NP+ (3= B) g 0]

It follows that

820
P(An)gexp(— ; (1 +e)(c+A)

A3+ (5= ] o)) = o)

where
(1 +¢)?
PP+ 2+ 3-8 e+ N lg ]

Pn =

Recall that § = (¢ + \)e/2. If n is sufficiently large, then (3 — 8)"Yc+ A\)"lg™ < /2,

which implies that

Hence Y ° {P(A4,) < oo and by the Borel-Cantelli lemma, we have P(A, i.0.) = 0. It

follows that with probability 1,

u(T, A+ h) —u(r, \
sup sup [ir, A+ h) =z, | <(I+¢)Kp

el =Lq=n) meled] /(¢ + 2)(g==1)2~ loglog g”

eventually for all large n. Hence

P [ T sup |a(T, A+ h) —a(r, \)|
h—0+ \/(7’ + M h2=Bloglog(1/h)

<(I+e)KgforallTelc,d | =1

From this, we can deduce (6.11) by covering the interval [a, b] by finitely many intervals [c, d]

of length §. m
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6.3 Simultaneous Law of Iterated Logarithm: Lower

Bound

In this section, we prove the lower bound for the simultaneous LIL:

Proposition 6.3.1. For any A > 0,

P | Iim sup |u<7—7 A+ h) — u<7—7 >‘)|
h—0+ \/(T + M\)h2=Bloglog(1/h)

> Kg forall 7 € [0,00) | =1, (6.12)

where Kg is the same constant as in Proposition 6.2.1, 1.e.

o(1-p)/2 1/2
o= ((2—5)(1 —6)) |

Recall the following version of Borel-Cantelli lemma [55, p.391].

Lemma 6.3.2. Let {A,, : n > 1} be a sequence of events. If

(i) 2101021 P(A;) = oo and

g1 = P(A N AE)
W T T

then P(Aj i.0.) = 1.

We will also use the following lemma, which is essentially proved in [57]. For the sake of

completeness, we provide a proof for this result.

Lemma 6.3.3. Let Z1 and Zs be jointly Gaussian random variables with B(Z;) = 0, IE(ZE) =
1 and E(Z1Z9) = r. Then for any v1,7v2 > 0, there exists a number r* between 0 and r such
that

P(Zy > 1, Z2 > 72) — P(Z1 > 71)P(Z2 > 72) = rg(y1,72;77),
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where g(x,y;r) is the standard bivariate Gaussian density with correlation r, i.e.

1 22+ y2 — 2raxy

g(x,y;r):meXp<— 2(1—12) >

Proof. Let v1,7v2 > 0 and p(r f71 fV? x,y;r)dzx dy. Define the Fourier transform of a
function f(x,y) as Z = [[g2e” W@€+yC) f(z, y) dx dy. Note that
g,y [ T g€ ) de dd

and

1/¢2 2
[Fole; (€, Q) =2,
By the dominated convergence theorem,

_1 IO F g 1))(€, C) dE d.

Org(z,y;7

]RZ

Since (Zé)(ZC) ’ ngf(f, C) = [yamayﬂ (57 C)? we have
Orglw.yir) = 5o / /]R , €TV F 0,059 (4 )€, ) dE A = Da0yg (. y:r).

Therefore,

o0
(9Tp:/ / 0z Oyg(x,y;r) dx dy = g(y1,72;7).
7

The mean value theorem implies that p(r) — p(0) = rg(y1,v2;7*) for some r* between 0 and

r, and hence the result. O
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Let 0 and ¢ be the canonical metric on R4 x R for v and u, respectively, i.e.
ol(t, x), (', ')] = El(u(t, 2) — u(t',")*"/?,

G, A), (=", \)] = E[(a(r, \) — a(r’, X)) 12,

For a rectangle I = [a,d’] X [=b,b], where 0 < a < @’ < 0o and 0 < b < 0o, recall from [20,

Proposition 4.1] that there exist positive finite constants C7 and Cy such that
Lt =t +x— /) FI2 <ot 2), (¢, ) < Co(lt— | + o — /) B2 (6.13)

for all (t,z), (t',2") € I.

The proof of the following lemma is based on the method in [46, 47].

Lemma 6.3.4. Let 7 >0, A\ >0 and ¢ > 1. Then for all 0 < e < 1,

a(r A+ ¢ —alr, A ¢ " L .
P ( AT T (r AT D) > (1 —¢)+/2loglog ¢" infinitely often in n | = 1.

(6.14)

Proof. For n > 1, let Ay, = {Z;, > v}, where

W, A +q ") —a(r, A+ ¢ ")

o= A+ ) (m A+ D]

and

n = (1 —e)y/2loglog ¢™.

We will complete the proof by showing that (i) and (ii) of Lemma 6.3.2 are satisfied. For
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(i), by using the standard estimate

P(Z > z) > (2v2r) ta Lexp(—2?2/2), x> 1, (6.15)

for a standard Gaussian random variable Z, we derive that for large n,

C
n(l_a)zx/logn

P(Zp > ) >

and hence Y 07 | P(4,,) = oo.

Next, we show that (ii) is satisfied. Since

Z > [P(Aj N Ay) — P(A))P(Ay)] =E

(3, -ra) | =0

J

and > >° | P(A;,) = oo, it is enough to prove that

2 1<j<k<nlP(A; N AL) — P(A;)P(AL)]
lgglo%f J 7 PP <0. (6.16)

We are going to use Lemma 6.3.3 to estimate the difference in the numerator. First, we esti-

-n —-n
mate the correlation r ;. between Z; and Zj, for j < k. Let (tn, zn) = (T+)‘:/r§q , T+\)‘/gq ).
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Let Aj = A(tj,z;). By (6.5), we have

E[((r, A +q77) — alr A+ D)) alr A+ ¢ 7F) —a(r. A+ ¢ 7))
= EE[W(Aj\Aj+1)W(Ak\Ak+1)]

1 > Cgdg o T
- / s [ eion T My (6 DO F a6 )0

tk—H Cﬂd& -
= /]R |€|1 Ik+1+tk+1—s,xk—i—tk—s])(f)/ (1[xj+1+tj+1—s,xj+tj_5])(f)
Cﬁdf _
|§|1 xk—tk+s,xk+tk—s])<€>/ <1[xj+1+tj—|—1_3’33j+tj—8])(€)‘

k+1

Note that (6.5) also implies that this covariance is nonnegative. Then by Lemma 6.2.2,

E[(i(r, A +q ) = i(m A+ g ) @ar A+ g7 —alr, A+ ¢ )]
= Ctysy [(q_j_l k2B (i k128
g — g F 2B (T - q—k)2—ﬂ}

=:J1 + Jo. (6.17)

Let us consider the first term J;. By the mean value theorem, we can find some a and b

such that

¢ g <a<qg T g cgT g <h< g - L
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and

Suppose j < k—2. By the mean value theorem again, we can find some £ between g —q_kj_1

and ¢~ — q_k such that

(67— (@ )T ==l - @ =)
<=8 =g P
<S(1=B)(g 7 =g 72 Fg

<A=8)g =g )P

It follows that

J1 < C(g )Py F.

k—1 —k:]

Next, we consider the term Jo in (6.17). For every s € [¢~ "+, ¢~ "], we can find some a

and b (depending on s) such that
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and

For j < k — 2, by the mean value theorem again, there exists 7 between ¢~/ — s and

g It — q_k such that

Then we have

—k
q . . . .
Jo = C/ 1 [(q’]*1 Sl B R A L (R L (/e R 2
.

<Cl )P <o)t
Therefore, by combining (6.17), the upper bounds for Jq, Jo, and recalling (6.13), we see

that for j < k — 2, the correlation r;;, between Z; and Zj, satisfies

Cla ) Pg*
()PP R)I=A

0<rj=E(Z;Z) < Colg WP = ¢ (6.18)

By (6.18), we can choose a fixed [ > 2 such that r := sup{r;, : j < k — 1} < 1. Since
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Y2 1 P(Ay) = oo, in order to prove (6.16), it suffices to prove that for any ¢ > 0, there

exists m such that

Y SRy 0 Ay) — P(A)P(A)]
lgr_lgéf J [2?21 P(Aj)]2 < 9. (6.19)

Let 6 > 0 be given and let m be a large integer that will be chosen appropriately depending

on 4. Let pp, = mlogyk, so that for 1 <75 <k — pp,

&k < Covy (6.20)

Provided m is large, 1 < k — pp. < k — [ for all k£ > m. By Lemma 6.3.3, we have

n k-l n k- PkJ n
YD P(A;NA) —PANPA < | D D + D Z rikg (Vs Vi k)
k=m j=1 k=m j=1  k=mj=|k—p;]

(6.21)
where T;k is a number such that 0 < r;‘k < rjy, for each j, k. Let us consider the two sums

on the right-hand side of (6.21) separately. By (6.18), the first sum is

k-
n L op) Vi 2
> om(1 — 1)1/ B T
k=m j=1 Jk
n  Lk—pg] k202 2 * .
< Z Z T 1R OT ) 200k 7._1@_732/27;;16_713/2.
& & wu-gr T\ T m- )Y

n Lk=pil -2
Coy Coy
S S P
= =1 Cig V2 1 -G,
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Since vy, — 00, we may choose m to be large enough such that this sum is < 5[25}21 IP’(AJ-)]Q.

By (6.15), the second sum on the right-hand side of (6.21) is

k-1 2 2 ;
i 3 an oxp [ + % = 2k
: om(1 — r*2)1/2

k=m j=|k—py] gk 2(1 - T;I%)
- il ik (v — T*k’Yj)Q 1 =22
<> =y 1/2 P <_—j*2> vy te
Fmm j= by 27(1 — Tjk) 2(1 — Tjk:)
2 " ol (1- T*k)ly%
SV X D Gt <—2<1_—32>> P
=m j=|k—py] gk gk

Recall that r = sup{rj;, : j <k — 1} < 1. Moreover, if m is large enough, then

wlog <_M) oy

(1—r2)L/2 2(1+7)

and k — pg. > k/2 for all k > m, so that the last sum above is

2 (1—r)y
RPN S (‘ A ) P(A - py.)

k=1
We get that
n k-l n 2 n
DD P(A; N AL) — P(A)P(AR)] < 6 ( > ]P’(Aj)> +200 > P(A)).
k:mj:1 jzl jZl
Hence (6.19) follows and the proof of Lemma 6.3.4 is complete. n
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We now come to the proof of Proposition 6.3.1.
Proof of Proposition 6.3.1. Fix A > 0. It suffices to show that for any 0 < a < b < oo and

0<e<1,

p (o I ) — (7, 2)
h=0+ 3 /(7 4+ M) h2=B loglog(1/h)

> (1—¢)Kgforall 7€ la,b] | =1 (6.22)

To this end, let us fix a,b and ¢ for the rest of the proof.
—n—1
Note that when g is large, ¢~ (2=5)/2(1 4 %)1/2 < &/4 uniformly for all 7 € [a, b]. So

we can choose and fix a large ¢ > 1 such that

—n—1

1/2
— ¢ 2-h)/2 (1 + q—> —(1—¢)>¢/4 (6.23)

(2-8)/2
) T+ A

(- e/a) (1

for all 7 € [a,b]. We also choose § > 0 small such that

Ae/4)2
5

> 1. (6.24)

Since we can cover [a, b] by finitely many intervals [c,d] of length 0, we only need to show
(6.22) for T € [c,d], where [¢,d] C [a,b] and d = ¢+ 4.

Let us define the increment of @ over a rectangle (7,7'] x (A, \'] by

A((r, 7] x (W) = a(m, ) = alr, N) —a(r’, \) + a(r, \).

122



Then for all 7 € [¢, d] we can write

W, A+ g ") —alm, \) = a(d, A+ g7 ") —a(d, A+ q ")
+a(m A +q¢ " —a(r, ) (6.25)

—Aa((r,d] x A+ ¢ "N+,

By Lemma 6.3.4, we have

a(d, A+ ¢ ™) —a(d, X + ¢ 1)
> (1 —¢e/4)v/2logl n
Slld A+ q ) (drtq Ty =1 Te/)v2lslogg

infinitely often in n with probability 1. By Lemma 6.2.3,

Fl(d, A+, (dA+q 1]

- %\/(d FA+ g (g - )2 (3= 8) (g — )38,

so we have

[i(d, A+q~ ™) —a(d, A\+q "] > (1—8/4)Kf3\/(d + M) (g7 =g 12 Ploglog g™ (6.26)

infinitely often in n with probability 1. Also, by Proposition 6.2.1, with probability 1, for all

T € [e,d] simultaneously,

(A +q ") —a(r V| < Kgy/(r+ A+ (g 12 Floglogq®  (6.27)

eventually for all large n.

Next, we derive a bound for the term Adu((r,d] x (A +¢ "L, A4+ ¢™])). For 7 € [¢,d],
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let

1\ (2-8)/2
o(1) = (1—e/4) (%) d+NY2 g D2 At g D2 (1) (r+ A)1/2

Counsider the events

A,y = { sup |Aa((r,d] x (/\—I—q_n_l,/\-I—q_n])l > Vn}»
T€c,d]

where

o = Kgo(d)y/ ()2 log log g".

Note that Aa((7,d] x (A+¢ "L A\ 4+¢7"]) = %W(Q), where () is the image of the rectangle

(7,d] x (A4 ¢ ™1, X+ ¢7"] under the rotation (7, \) — (%, _\T/g)‘). Provided n is large,

we have () = Q1 U Q2 U (Y3, where

A —n—1 \ —n
Q1:{(t,x):7+ —\;; <t§%,ﬂ()\+q_n_l)—s<x<—\/§7+s},
THA+q " d+A+q " !
=<J(t,x): ——— <t < :
Q2 {( ) 7 NG
V2 g s <o V2 g7 - s,
d+X+q "1 d+\+qg "
s {(t’@‘ . j@q <t§%,—\/§d+sém§\/§(>\+q_n)—s}.
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By (6.5), it follows that

E[(Aa((r,d] x (A+q """ A +q7")?] = EW(Q)?]

T+ g "
1 \/5 o0 Cﬂdf 9
__{ d / a0t s, —y3rss) ©)]

87 r+/\+\%”1 oo |E1P
d+ )\ —n—1
THAq " 5 o |§|1 6| V2 g 1) —s \/5()\—1—61_”)—5](5)‘
V2
d+A+q "

V2 °0 Cpdg 2
d4Xtq 1 ds /_OO ’5‘1 5| —V2d+5,V/2(Aq7 )~ s](§)| }
V2

Then by Lemma 6.2.2,

E[(Aﬂ((T, d x (A + q_”_l, AL q_”]))Q]

1 g
= 2 —n—1yy2-5
‘2(2—&)(1—5){ reragnet (287 VATH A+ s
NG)
dtA+q "1
poragn (VA=) s
NG
didtg "
L (VEd A+ g =29 ﬂds}
\/i
1 22"
= ‘ —n _ —n—1\3-8
22 B)(l—ﬁ){2 35l )
15
F2Z (g A (" q”1>)}
= 3 KB q"%”{@—ﬂ——ijg(q” q"1>)}
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Since d — 7 < d — ¢ = 6§, we have

sup E[(Aa((r,d] x (A + D q_n]))Q] <

K5(q " — g "2 hs,
T€lc,d]

N —

By (6.10), for all large n,

1
logP(Ap) < — .
2" (4a) < K3(g™" —q71)274s

It follows that

o(d)%(g7™)> P loglog ¢"
(g =g 1)2Fs

P(Ay) < exp < - ) = (nlogq)?,

where

By (6.23) and (6.24),

d+ )\ —1\@Br2 —n—1y\1/2 2
pz T amgn(T0) T e (1 ) )

Ae/4)”

1.
5 >

Hence P(A;, i.0.) = 0 by the Borel-Cantelli lemma. Then the symmetry of u and the
monotonic decreasing property of ¢ imply that with probability 1, simultaneously for all

T € [e,d],

|Aa((r,d] x A +q "L +¢7")| < Kgo(r) \/(Q‘”)Q‘ﬁ loglog ¢" (6.28)
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eventually for all large n. By (6.25) and the triangle inequality,

(A +¢7™) —alr, )| > |ald, A+ ¢ — a(d, A+ ¢ ")
—lalr, A+ ") —a(r, )|

— |Aa((r,d] x A+ ¢ A+ 7).

Then (6.26), (6.27) and (6.28) together imply that with probability 1, for all 7 € [e,d]

simultaneously,

|ﬂ(7’, A q ™) —a(r, )\)‘

_1\(@2-8)/2
> [a-em () @ N @I Y )

x Kg \/((]‘”)2_5 log log g™

> (1)K (7 + N (g~ loglog ¢"

infinitely often in n. This yields (6.22) for 7 € [¢,d] and concludes the proof of Proposition

6.3.1. 0

6.4 Singularities and Their Propagation

In this section, we study the existence and propagation of singularities of the stochastic wave
equation (6.1). The main result is Theorem 6.4.3.

Let us first discuss the interpretation of singularities and how they may arise. Proposition
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6.2.1 and 6.3.1 imply that LIL holds at any fixed point (¢, z):

V2 V2 = KB(\/it)l/Q a.s.

lim sup

h—0+ \/hQ—ﬁ log log(1/h)

It indicates the size of oscillation of v when (t,z) is fixed. However, the behavior will be
different when (¢, x) is not fixed. Indeed, from the modulus of continuity in Theorem 5.3.1,
we know that for I = [a,d’] x [—b,b], where 0 < a < a’ and b > 0, there exists a positive

finite constant K such that

t o) — ul(t
. . Ju(t',2) — u(t, )

h=0+ . oer: ol @), (¢, a)]\/log(1 + o|(t, ), (¢, /)] 1)
0<o(tz),(t' 2" <h

=K a.s.

Recalling (6.13), this result shows that the largest oscillation in I is of order 1/h2~Flog(1/h),

which is larger than \/hZ_IB loglog(1/h) specified by the LIL. It suggests that the LIL does

not hold simultaneously for all (¢,z) € I and there may exist random exceptional points
with much larger oscillation. Therefore, we can define singularities as such points where the

LIL fails. More precisely, we say that (7, ) is a singular point of @ in the A-direction if

|a(T, A+ h) —a(r, \)|

lim sup = 00

h=0+\ [1h2=8 loglog(1/h)

and a singular point in the 7-direction if

lim sup |U<T + h7 /\) _ U(T, /\)| — 0.

h—=0+ \/h2_5 loglog(1/h)

Our goal is to justify the existence of random singular points and study their propagation.
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Fix 79 > 0. Let us decompose @ into @ + u9, where

TH+A =T+ A
V2 V2

ﬂi(T,)\):ui( ) i=1.2,

and

up(t,z) = 1W(A(t,az) n{o<t< 70/\/§}>,

i\

ug(t,x) = = W(A(t,x) Nn{t> 70/\/§}>

[\

Let 77, be the o-field generated by (W(BN{0<t<m/V2}): Be %(R?} and the
P-null sets. Note that 970 is independent of the process 9.

Following the approach of Walsh [63] and Blath and Martin [7], we will use Meyer’s
section theorem to prove the existence of a random singularity. Let us recall Meyer’s section
theorem ([21], Theorem 37, p.18):

Let (©2,%4,P) be a complete probability space and S be a Z(R4.) x ¥-measurable subset
of Ry x Q. Then there exists a 4-measurable random variable T' with values in (0, co] such

that
(a) the graph of T, denoted by [T] := {(t,w) € R4 x Q: T'(w) = t}, is contained in S;

(b) {T < oo} is equal to the projection 7(S) of S onto €.

Lemma 6.4.1. Let 79 > 0. Then there exists a positive, finite, ﬁ}o—measumble random
variable A such that

U A — 1 A
limn sup @1 (o, A+ h) — (. M _

h—0+ \/hz_ﬁ loglog(1/h)
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Proof. Note that

: @1 (70, A + 1) — a1 (7m0, A)| _ . |01(70, A + ) — 01(70, M)
lim sup = lim sup
h—0+ \/hz_ﬁ log log(1/h) h—0+ \/hQ—B loglog(1/h)

where 01 (19, \) = @1(19, A) — @1(70,0). The covariance for the process {01(m, A) : A > 0} is
- - 1
E[51 (70, A)d1 (70, N)] = 1 V(AW (Ay)]

for A\, N >0, where Ay = {(t,z): 0 <t < Tg/\/§, —t <z <V2\— t}. By (6.5) and Lemma

6.2.2,

E[ﬁl (7—07 A)@l (TO7 )‘/)]

0/V?2 00 d
1 0 ds/ Cﬁgr

- g 0 s ‘€|1—B‘%1[—s,\/5)\—3](5)‘?1[—3,\&)\/—5] (f)

1 70/V2 o oo vos

:4(2_5)(1_5)/0 (\\/ﬁk\ + V2N PPP — [V2X — V2N >ds
9=(B+8)/2 1, - - o

= e aa= g WINPT = - XPE),

It follows that {Cov1(m9,A) : A > 0} is a fractional Brownian motion of Hurst parameter
(2 — 8)/2 for some constant Cjy depending on 7y and £.

Let

S = {()\,w) € Ry x Q: limsup [91(70, A+ h)(w) = 0170, M) ()] = oo}
h—0+ \/h2—5 log log(1/h)

Then S is B(Ry) X Fr,-measurable. Using Meyer’s section theorem, we can find a positive

F.

7o-measurable random variable A such that (a) [A] C S, and (b) 7(5) = {A < oc}.

130



We claim that A < oo a.s. Indeed, by the modulus of continuity for fractional Brownian

motion (cf. [30], Theorem 1.1), for any 0 < a < b,

U A+h)—2 A
limsup sup |01 (10, A + h) — 01(70, A)|

=C;WV2 as. (6.29)
h—0+ X€la,b] h2—8 log(l/h)

We now use an argument with nested intervals (cf. [48], Theorem 1) to show the existence

of a random \* such that

-~ * 5 *

=0+ 2B loglog(1/h)

with probability 1. First take an event Q* of probability 1 such that (6.29) holds for all

intervals [a, b], where a and b are rational numbers. Let

o(h) = %00—1\/2%—6 log(1/h).

Let hg > 0 be small such that ¢ is increasing on [0, hg]. For an w € Q*, we define two
sequences (An), (A7) as follows. By (6.29), we can choose Aj, A|, say in [1,2], with Ay < X}

such that )\'1 — M < hg and
[91(70, A1) — 1(70, A)| > (N} — A1)
Suppose n > 1 and A, and X, are chosen with A, < A, and

|51(70, Ap) — 01(70, An)| > @(A, — An).
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Since @1 is continuous and (k) is increasing for h small, we can find some A, such that

An < Ap < min{ N, Ay + 27"} and
01 (10, X)) — 01(10, N)| > (AL, — A)  for all X € [An, An). (6.31)

Then we can apply (6.29) for a rational interval [a,b] C [An, An] to find A, and A, 1 such

that Ay < App1 < My < Ap and

191(70: A1) — 01 (70, Ans1)| > (A, 11 — A1)

We obtain a sequence of nested intervals [A;, ]| D [A2,Ay] D -+ with lengths A}, — A, <
2~ "+l Therefore, the intervals contain a common point \* € [1,2] such that )\;1 L1 AT

Since A* € [y, S\n] for all n, by (6.31) we have
|51(70, ) — 01(70, A¥)| > (A, — A¥).

Hence, for each w € QF, there is at least one A* > 0 (depending on w) such that (6.30) holds.
It implies that Q* C 7(S). Then from (b) we deduce that A < oo a.s., and from (a) we

conclude that
|01 (70, A+ h) — 01 (10, M)

lim sup =00 a.s.

h—0+ \/h2*5 loglog(1/h)

The proof of Lemma 6.4.1 is complete. O]
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Lemma 6.4.2. For any 79 > 0 and X > 0,

P | im sup ’U2(7‘, A + h) - u2(7_7 A)‘
h=0+ /2B loglog(1/h)

:K5(7—70+/\)1/2 forall7>m | = 1.

Proof. By Proposition 6.2.1 and 6.3.1,

p [ 1 s [T A B) — ()

= Kg(1 + )\)1/2 forall7>0] =1.
h—=0+ \/h2*5 log log(1/h)

Then the result can be obtained by the observation that {ug(m9 + 7,A) : 7, A > 0} has the
same distribution as {a(7,\) : 7, A > 0}. Indeed, for any bounded Borel sets A, B in R4 x R

and ¢ = (c1,c2) € Ry x R, by (6.5) and change of variables we have

E[W(A+c)W(B+0)]
:/CfodS/Rdy/RdyllA(s_Clay_02)|y_y/‘_ﬁlB(s—cljy_Q)
- ooods/uady/xgdyllfl(say)!y—y’l513(8,3/)

=E[W(A)W(B)]

Since

A(TO+\/T§+)\,_TO?/—;+)\)ﬂ{tzTo/\/i}:A(\J/r;\,_T\/J_;/\)Jrc,
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where ¢ = (%, —\T/—%), it follows that for any 7, \, 7/, \ > 0,

E[@(To + 7, Nag(ro + 7, X))

[ < (7‘ +T+)\ —7-0?/;+)\>ﬂ{t>70/\/—}>

aw(a (TW“’ e )|

;L [ (» (TH T+A>)W(A<T'¢+§AI,_T'¢;A>)}

= Ela(r, Na(r', N)].

The result follows immediately. m

We are now in a position to state and prove our main theorem. The first part of the
theorem justifies the existence of a random singularity. It shows that if we fix 79 > 0, then
based on the information from the o-field F7,, we can actually find a random variable A
such that (79, A) is a singularity in the A-direction. The second part says that if (79, A) is
a singularity in the A-direction, then (7,A) is also a singularity for all 7 > 7p. In other
words, singularities in the A-direction propagate orthogonally, towards the 7-direction. By
a symmetric argument, one can show that singularities in the 7-direction propagate towards

the A-direction. These are the directions of the characteristic curves t +z =cand t —x = c.
Theorem 6.4.3. Let 19 > 0. The following statements hold.

(i) There exists a positive, finite, ‘QTO -measurable random variable A such that

|U(T0, A + h) _ U’(7—07 A)|

lim sup =00 a.S.

h—>0+ \/h2 Bloglog(1/h)
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(i1) If A is any positive, finite, ffTO -measurable random variable, then on an event of prob-

ability 1, we have

fmsup ZO0GATD) — @A) —an ]

h—0+ \/hQ_ﬁ loglog(1/h) h—0+ \/hQ_»B loglog(1/h)

for all T > 19 simultaneously.

Proof. To simplify notations, let

L(7,\) = lim sup [ir, A+ b) — @l V)
h—0+ \/hQ_ﬂ loglog(1/h)

and

u; (T, N+ h) —a; (T, \
Li(r, \) = lim sup (L0 A+ ) — @(m V)
h—0+ \/hQ—ﬁ loglog(1/h)

for i = 1,2. As in [63, 7], we will use the property that for any two functions f and g,

limsup |f(h)| —limsup |g(h)| < limsup |f(h)+g(h)| < limsup |f(h)|+limsup|g(h)| (6.32)
h—0 h—0 h—0 h—0 h—0

provided that limsupy,_,g |g(h)| < oco.
(i). By Lemma 6.4.1, we can find a positive, finite, fm—measurable random variable A
such that

Ll(T(),A) =0 a.s.

Since A is independent of the process 9, Lemma 6.4.2 implies that
Ly(rp, A) = KgA'/?
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which is finite a.s. Since @ = @] + U9, it follows from the lower bound of (6.32) that
L(r9,A) = L1(79, A) — La(70,A) = 00 as.

This proves (i).

(ii). Suppose A is a positive, finite, Fr,-measurable random variable. By (6.32), we have
Li(1,A) — Lo(m,A) < L(1,A) < Li(7,A) + Lo(7,A) (6.33)
for all 7 > 79, provided that Lo(7,A) < co. Note that for 7 > 7y,
ap(r,A+h) —ay(r,A) = a1 (79, A+ h) — @y (19, A),

hence Li(7,A) = Ly(m9,A). Also, by Lemma 6.4.2 and independence between A and g, we
have

IED<L2(T, A) = KB(T -7 +A)1/2 for all 7 > 7'0> =1.

Since A is finite a.s., it follows from (6.33) that
P(Ll(TO,A) — Kg(r =m0+ A)1/2 < L(7,A) < Ly(70,A) + Kg(T — 70 + A)l/2 for all 7 > 7'0) =1,

and it implies

P<L(TOaA):OO<:>L(7_,A):OOfOI‘ allTZT()) =1. ]
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