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ABSTRACT

INDIRECT REACTION METHODS FOR NUCLEAR ASTROPHYSICS: EXPLORING
CHARGE-EXCHANGE AND TRANSFER REACTION MODELS

By

Terri Elizabeth Poxon-Pearson

Indirect reaction methods play an important role in probing many astrophysical nucle-
osynthetic processes in cases where a direct measurement in the laboratory is technically
challenging or not possible. However, the resulting astrophysical data is only as good as
the quality of the reaction theories used to extract it from experimental measurements. In
this thesis we explore two indirect reaction methods, transfer and charge-exchange reactions,
with an emphasis on the reaction theory models used to interpret the measurement.

Deuteron induced transfer reactions are a useful tool for probing single particle capture
reactions. We discuss a methodology that has been developed to extract spectroscopic factors
from transfer to low lying resonances. Spectroscopic factors are used to experimentally
constrain the astrophysical reaction rate of interest via the resonance strength. Here, we
present results of three transfer reaction studies: 3P(dn) to extract the 30P(p,y) reaction
in classical novae, 22Al(d,n) to extract the 3Al(p,y) reaction in type-I x-ray bursts, and
%Ni(d,n) to extract the ®Ni(p,y) reaction, also important in x-ray bursts. In all of these
cases, the transfer data was able to reduce the uncertainty in the astrophysical reaction rate
and this marks the first experimental constraints on the 30P(p,v) reaction rate.

Charge-exchange reactions have diverse applications to astrophysical processes, ranging
from constraining electron capture rates in core collapse supernovae, to probing the nuclear
symmetry energy, important to understanding neutron stars and their mergers. However, the

reactions models which describe charge-exchange reactions remain relatively underdeveloped



compared to those used to describe other reactions. In this thesis we present an initial study
exploring several aspects of charge-exchange reaction models.

We conduct a systematic study of charge-exchange transitions to 07 isobaric analog states
over a range of targets and beam energies using the distorted wave Born approximation. We
use a two-body framework, which is characterized by a nucleon-target Lane potential, and a
three-body framework, which uses an NN interaction to describe charge-exchange between
a scattering nucleon and a valence nucleon bound to an inert core. We explore the impact
of different interactions, varying both the potential which mediates the charge-exchange and
the interaction which describes the incoming and outgoing distorted waves.

We find that the two-body formalism was better able to describe both the shape and mag-
nitude of charge-exchange data, capturing 31% of the data within the error band created by
normalized calculations using two different optical potentials. This is opposed to describing
less that 15% of the data in the three-body model. Although there was a 50% difference, on
average, between the charge-exchange cross sections produced using Koning-Delaroche [1]
and Chapel-Hill [2] parameter sets, neither parameter set is preferred by the data.

The shape of the angular distributions produced by the three-body framework differ
significantly from their two-body counterparts and from experimental data. We determined
that this difference arises from a selection of different partial waves between the formalisms.
The Lane interaction in the two-body framework selects lower partial waves, indicating a
more central interaction, while the Gogny and AV8’ interactions select higher partial waves,
resulting in a reaction located near the surface of the target where the active nucleons are
in close proximity. Overall, the charge-exchange cross section is very sensitive to the choice
of interaction, indicating that charge-exchange could be a useful tool to further constrain

nuclear interactions.
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Chapter 1

Introduction

1.1 Indirect Reactions for Nuclear Astrophysics

Nuclear astrophysics is a unique field which links the fundamental interactions of protons and
neutrons across length and energy scales with the evolution of elements in stars throughout
the universe. Although the field has been very successful in creating a general picture of
how heavy elements have built up since the time of the big bang, there remain many open
lines of investigation, including understanding the complex dynamics of supernovae, verify-
ing astrophysical sites for different nucleosynthetic processes, and gaining an understanding
of the most exotic nuclear matter through the study of neutron stars and their mergers.
Exploring all of these research areas requires large amounts of nuclear physics data, from
reaction rates to masses, and requires extensive reaction networks, models, and simulations
to link astrophysical observations with underlying physics.

This process is further complicated by the fact that many nucleosynthetic processes of
interest involve incredibly short lived nuclei and reactions at sub-Coulomb energies, making
them difficult, or even impossible, to recreate in the lab. Without the ability to directly
measure these nuclear properties, the field must rely on indirect reaction methods which
measure a different, more accessible, reaction process that can probe some aspect of the

reaction of astrophysical interest. Indirect reaction methods require reaction and structure



theory to link measured quantities to the reaction rates required for astrophysical calculations
and simulations. Because of this, the extracted value of astrophysical interest is only as good
as the theory tools used to link it to the experimentally measured observable. In this thesis
we will discuss how charge-exchange has been used as an indirect probe for electron capture
and the nuclear equation of state, and how transfer reactions can be used to probe proton
capture reactions. In both cases, we will be focusing on the reaction theory used to describe

these processes.

1.2 Transfer Reactions as a Probe of Astrophysical Pro-

ton Capture

Single-particle capture reactions are ubiquitous in a wide range of astrophysical environ-
ments. Many of these processes are illustrated in Figure 1.1. Along the proton dripline,
nucleosynthesis of light to medium mass nuclei can proceed through the rapid proton cap-
ture process (rp-process) in environments such as Oxygen Neon (ONe) novae explosions [22]
and x-ray bursters [23]. In these hydrogen rich environments, the reaction network consists
of proton captures followed by BT decays back towards stability.

On the neutron rich side of the chart of the nuclei, the slow neutron capture process
(s-process) builds up elements heavier than lead in Asymptotic Giant Branch (AGB) and
red giant stars through a chain of neutron captures, followed by beta decay back towards
stability [24]. In these environments, the neutron density is low enough that beta decay rates
can compete with the neutron capture rate, creating a reaction chain that clings closely to
the valley of stability and stalls out with the production of lead and bismuth.

The recent observation of a neutron-star merger by LIGO and subsequent multi-messenger



Stable nuclei

82

50

Number of Protons

28

rp-process
r=process

20 Nuclei known = ™pIOLES:
to exist . YA
— neutron star processes
8 = supernova cores
, 1 =  S=process
Z g 50 82 126

Number of Neutrons
—-

Figure 1.1: The chart of the nuclides with various nucleosynthetic processes shown schemati-
cally. The rp-process is shown in red along the proton dripline, the s-process is shown in pink
close to the valley of stability, and the r-process is shown in purple, reaching out towards the
neutron drip line. Figure from [8].

observations of the remnant kilonova have confirmed neutrons stars as a site of the rapid
neutron capture process (r-process) [25]. In this scenario, there is a very high density of
excess neutrons, allowing for many subsequent neutron captures, resulting in highly exotic
nuclei which eventually beta decay back towards stability, forming the heaviest elements.
These astrophysical capture processes involve thousands of reaction and decay rates,
many of which are essential to understanding the observed isotopic abundances. However, in
all but a few cases, direct measurement in the laboratory is impossible. Astrophysical proton
capture reactions proceed below the Coulomb barrier, leading to plummeting cross sections.

As an additional complication, many of these captures are on unstable nuclei, limiting the



experiments to relatively low beam rates accessible through current rare isotope beams. The
situation is even more dire when studying neutron capture onto rare r-process isotopes. In
this scenario, both the target isotope and the neutron are unstable, meaning that neither can
be made into a target for an experiment. Instead, these processes must be explored through
an indirect probe and, in both of these cases, (p,y) and (n,y), transfer reactions provide a
helpful tool.

A(d,p)B and C(d,n)D transfer reactions have the same initial and final state as their
corresponding A(n,y)B and C(p,y)D astrophysical reactions, but are experimentally much
more feasible. For reactions involving an unstable target, the experiment runs in inverse
kinematics, with a deuterated target and a rare isotope beam. Unlike direct proton capture
experiments, these experiments can run well above the Coulomb barrier (> 30 MeV /u) and
still occupy the low lying final state resonances relevant to nuclear astrophysics. Once transfer
to these final states is measured, a variety of theoretical techniques can be used to connect
the transfer data to the astrophysical capture process of interest, including extraction of
the asymptotic normalization coefficient (ANC) or spectroscopic factor (S), which will be

discussed in greater detail throughout this work.

1.3 Charge-Exchange Reactions as an Astrophysical Probe

Charge-exchange reactions are isobaric transitions where a neutron in the target is exchanged
with a proton in the projectile, or vice-versa. These reactions can be performed using single-
nucleon probes, such as (n,p) or (p,n) reactions but, experimentally, it is often advantageous
to use composite probes such as (t,°He) or (d,2He), or even heavy-ion probes such as (12C,

I2N) and (“Li, "Be). These reactions are mediated by the strong nuclear force via meson-



exchange but populate the same initial and final states as processes mediated by the weak
force and, therefore, can be used as a probe in regions where S decay or beta delayed neutron
emission (f-n) data is unavailable or energetically forbidden (see Figure 1.2). In general,
charge-exchange reactions provide insight into two aspects of nuclear astrophysics: they
serve as an indirect probe for stellar electron-capture processes and as a tool for exploring
bulk properties of nuclear matter, such as the nuclear equation of state, which is central to
understanding neutron stars and their mergers. First, we will introduce charge-exchange in

the context of electron-capture.

1.3.1 Electron Capture in Supernovae

a) b)
Charge-Exchange
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Figure 1.2: a) (n,p) charge-exchange reactions populate the same initial and final states
as electron-capture and ST decay, although charge-exchange proceeds through the strong
nuclear force and electron-capture and 3 decay are mediated by the weak force. b) Charge-
exchange is a versatile probe of B(GT) because it is able to populated final states in the
Z-1 isobar up to high excitation energies, while S decay is limited to final states in the Z-1
daughter with excitation energies smaller than the 3% Q-value. Figure is from [9]

Supernovae are an important site for nucleosynthesis and produce significant amounts of
elements heavier than Iron. In both core-collapse and type Ia supernovae, electron-capture
reactions on nuclei in the pf shell (Z ~ 21-40), neutronize the nuclear material, affecting
the dynamics of the nuclear explosion [26]. Understanding these electron-capture reactions

are a key component for interpreting the observed isotopic abundances produced in these



stellar explosions. In most cases, relevant electron-capture rates cannot be measured directly,
but can be estimated with knowledge of the Gamow-Teller transition strengths in the g+
direction. Gamow-Teller transitions are mediated by the o7 operator and change the total
spin (S) and isospin (T) of the nucleus, but not the orbital angular momentum (L) (AL=0,
AS=1, AT=1). Charge-exchange reactions have become an important tool to probe Gamow-
Teller transition strengths (B(GT)) because they can be used to excite transitions that are
energetically blocked to § decay (see Figure 1.2).

Extracting B(GT) from charge-exchange reaction cross sections relies upon an approx-
imate proportionality relation between these two quantities, first established by [27] and

expressed as

Sola=0)] = 6B(ST) (1.1)

where g—g is the charge-exchange cross section, ST specifies the transition of interest (Gamow-

Teller, Fermi, etc), and ¢ is the momentum transfer. A key ingredient is the unit cross section
(¢) which can be determined by direct comparison to  decay data, when available, or by
extraction from a well defined correlation between mass number and unit cross section (e.g.
(28, 29, 30]). This proportionality in Eq. 1.1 is only valid at energies where a single-step
process can be assumed. These studies are commonly performed at ~ 100 MeV /u, where
the single-step approximation is warranted, although its region of validity could extend down
to ~ 50 MeV. At lower energies, multistep reactions become increasingly important. It
has also been extended to, and experimentally verified for, a wide range of charge-exchange
probes including (p,n) (28], (n,p) [31], (d,2He) [32, 33], (t,>He)/(3He,t) [34, 30], and ("Li,"Be)

35, 36).



Undoubtedly, there has been great success using charge-exchange reactions to constrain
astrophysical models. Although core-collapse supernovae models incorporate a large network
of electron-capture reactions, sensitivity studies such as [37] guide experimental efforts by
determining which reactions have the greatest impact on observables such as peak neutrino
luminosity. The study in Sullivan et al. [37] highlighted the "high-sensitivity region” near
the N=50 shell gap closure. Guided by this and other sensitivity studies [38, 39], B(GT)
was extracted from the 86Kr(t,3He)86Br charge-exchange reaction and introduced in the
calculation of stellar electron-capture rates [40]. The extracted electron-capture rates were
significantly smaller than those often derived from a simple single-state approximation of-
ten used in regions without experimental results or high quality structure inputs. When
input into core-collapse supernovae simulations, this difference leads to a reduction in the
deleptonization in the core-collapse, which has effects on observables such as peak neutrino
luminosity and the frequency of gravitational waves emitted from the collapsing star [41].
Both of these are potentially important signals for understanding core-collapse supernovae
as we move into the multimessanger era of astronomy.

In this work, we are only considering transitions between 0T isobaric analog states and,
therefore, do not explore these Gamow-Teller transitions. Still, Fermi transitions can be im-
portant for electron capture in supernovae. High stellar temperatures allow for the population
of excited states and Fermi transitions from these states become possible [42]. Extraction
of electron capture rates are one of the most important applications of charge-exchange cal-
culations and future extension of the framework presented in this thesis should be made to

additionally include Gamow-Teller transitions.



1.3.2 Neutron Stars and the Nuclear Equation of State

Charge-exchange reactions are also a versatile tool for exploring several aspects of bulk nu-
clear matter. These constraints are vital to modeling neutron stars and their mergers, which
were recently confirmed as a central site for the production of r-process elements. One way
charge-exchange reactions constrain bulk nuclear matter is by placing limits on the nuclear
symmetry energy [43]. The symmetry energy encompasses the energy penalty for an im-
balance of neutrons and protons within nuclear matter and is directly linked to the nuclear
equation of state, a key component for modeling the behavior of neutrons stars. Understand-
ing the evolution of the symmetry energy with changes to the neutron-proton asymmetry is
essential for extrapolating from experimental observations of nuclei, with relatively low levels
of asymmetry, to the extreme of asymmetric nuclear matter in neutron stars. In uniform
nuclear matter, with neutron density pp, proton density py,, and total density p = pn + pp,

the energy per nucleon can be expressed as

=y

3=+ s ()’ (1.2

Ey represents the energy of symmetric nuclear matter and S(p) is the density dependent
symmetry energy. S(p) can then be expanded around nuclear saturation density, pg as
Lp—po

S(p) :aaV+§T+.... (1.3)

where a}l/ is the symmetry energy at normal nuclear density and L is the slope of the symme-

try energy. These values directly impact quantities, such as the pressure of nuclear matter,

which inform the nuclear equation of state [44].



Knowledge of the neutron skin thickness, defined as the difference between the root mean
square radii of proton and neutron distributions inside nuclei, constrains the symmetry en-
ergy [45, 46]. Because of this, precise measurements of the neutron skin thickness have
become a goal for many types of reaction probes. However, while neutron stars contain a
vast imbalance of excess neutrons, ordinary nuclear matter, even the unstable nuclei acces-
sible with rare isotope beams, have relatively small proton-neutron asymmetry. This small
asymmetry shrinks the neutron skin thickness, making its precise determination difficult.
Charge-exchange reactions allow access points to this difference of proton and neutron den-

sities, referred to as the isovector density.
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Figure 1.3: Constraints from different theoretical and experimental sources on the symmetry
energy at saturation density (ag) and the slope of the symmetry energy at the saturation
density (L). The constraints from the isobaric analog state (IAS) study by Danielewicz et
al. are shown in yellow [10] and predictions from neutron matter calculations within chiral
effective field theory (yEFT) in N3LO are shown in brown [11]. Constraints from observables
include neutron skin (n-skins) thickness [12] shown in green, neutron-star observations [13]
shown in purple, nuclear masses [14] shown in blue, and heavy-ion collisions [15] shown in
pink. Figure is an adaptation from [10], first presented in [9].

Fermi transitions (AL=0, AS=0, AT=1) between isobaric analog states (IAS) provide a



unique tool for exploring isovector densities. In (p,n)-type reactions, the IAS maintains the
same structure as the target nucleus, except replacing one neutron with a proton. Isospin
symmetry holds that the excitation energy of the IAS will be approximately equal to the
Coulomb energy of the incoming proton. This energy matching means that Fermi transitions
to the TAS are often considered to be "elastic” in nature, except that the isospin projection
of the projectile is flipped by the isovector term of the interaction potential, transforming a
proton to a neutron or vice-versa. There have been several theoretical efforts, informed by
measurements of TAS reactions, to explore the isovector properties of nuclei.

These isospin flipping transitions to the IAS can be described using the Lane optical
potential [47]

T

U(r) = Uo(r) + T U1(7) (1.4)

where 7 is the isospin operator which acts on the scattering particle and 7" is the isospin

operator which acts on the target nucleus. Additionally,

Up(r) oc Up(r) — Up(r) (1.5)

is the isovector term which drives the TAS transition. Phenomenological potentials fit to
proton/neutron elastic scattering data on a wide variety of targets and scattering energies
are often used for U, /n(r). They take the form of Woods-Saxon potentials with real and
imaginary terms, as well as terms to describe absorption at the surface of the target and
a spin-orbit interaction. Adjusting the radius and diffuseness of these potentials will affect
the shape of both the elastic and charge-exchange reaction cross sections they produce.

Recent work by Danielewicz et al. [10] allowed the radius and diffuseness parameters for

10



a particular parameterization [1] of U, /n(r) to vary in order to simultaneously fit data for
proton elastic scattering, neutron elastic scattering, and charge-exchange to the IAS. The
modified potential parameters from this procedure are then compared to the values fit only
to elastic scattering data. These values were then related to various aspects of the symmetry
energy, notably, the symmetry energy at normal nuclear density (ag) and the slope of the
symmetry energy as a function of density, evaluated at saturation density (L). Figure 1.3
demonstrates the constraints the work by Danielewicz et al. [10] put on these properties of the
symmetry energy (labeled IAS) as well as other theoretical and experimental efforts, including
calculations using ab-initio nuclear interactions [11], measurements of nuclear masses [14],
heavy-ion collisions [15], neutron skin thicknesses [12], and neutron star observations [13].

Similar theoretical efforts use a more microscopic approach. In this vein, charge-exchange
transitions to the TAS are studied within the folding model where effective NN interactions
are integrated over the proton and neutron densities of target nuclei. In the case of (3He,t)
reactions, this potential is also folded over the projectile nucleus in the so-called double-
folding model [48, 49, 50, 51, 52]. These calculations require neutron and proton densities
for the target which can be taken from experiment or calculated using a realistic nuclear
interaction. The radius parameter of the proton and neutron densities can then be adjusted
to best produce IAS charge-exchange data. From these adjusted potentials, a neutron skin
thickness can be extracted [51].

In particular, (3He,t) reactions are of interest because some argue that the spatial overlap
between the probe and target could create nuclear densities close to or above the nuclear
saturation density, allowing a unique probe of nuclear symmetry energy. By varying the
sensitivity of the effective interaction to isovector density and comparing these results with

observational constraints from x-ray bursters, Ref. [50] concluded that equations of state
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with a 7soft” density dependence on isovector density are unrealistic and data favored a
stiffer equation of state.

One challenge in this field is that current IAS data comes from measurements on stable
targets. Then, results based on these measurements must be extrapolated to the limits
of nuclear asymmetry inside neutron stars. In order to more effectively probe the nuclear
symmetry energy, there is a need for high quality measurements of IAS transitions on neutron
rich nuclei, such as those that will be produced by the Facility for Rare Isotopes Beams. It
is notable, however, that such measurements will create new experimental challenges, as
these reactions must be run in inverse kinematics. The TAS has been measured successfully
measured in unstable, neutron rich isotopes, such as 16C [53]. Because neutrons are also
unstable, (n,p) type reactions will require the use of composite probes such as (d,2He),

although this is limited to measuring Gamow-Teller transitions.

1.4 Motivation

Although there have been significant efforts to improve precision and validate new charge-
exchange probes in the experimental regime, there are many opportunities to explore ad-
ditional complications in the reaction mechanics. For example, almost exclusively, charge-
exchange calculations are performed assuming a single-step process in the framework of the
distorted wave Born or impulse approximation (see Section 2.3), regardless of the beam
energy of the reaction. When comparing to experiments at intermediate energies (~100
MeV /u), a single-step process is likely a good approximation. This is evidenced by a rel-
atively good description of the g shape (although, for the case of composite probes, not

necessarily the magnitude) of experimental angular distributions. However, charge-exchange
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reaction experiments which investigate the population of the have been performed at ~25-50
Mev/u (see [17, 18]). While DWBA is within its region of validity for the electron-capture
studies run at ~100 Mev /u, it will become increasingly less accurate with decreased beam en-
ergy and dedicated study is necessary to understand where this approximation breaks down.
As with all indirect reaction methods, an incomplete understanding of charge-exchange re-
action theory will impact the quality of extractions made for astrophysical applications.
Investigations of reaction dynamics in charge-exchange has not yet implemented recent
developments in the realm of other reactions such as the incorporation of non-local interac-
tions (see [54, 55, 56, 57, 58]). In this work we hope to begin to broaden our understanding
of charge-exchanges reactions, including the impact of using two-body versus three-body
reaction formalisms, and the effect of nuclear interactions on charge-exchange observables.
There are several opportunities to explore the impact of interactions which mediate
isospin transitions in charge-exchange. Most commonly, for experimental charge-exchange
studies, the effective nucleon-nucleon (NN) interaction parameterized by Love and Franey
[59, 60] is used to describe the isospin transition. This phenomenological potential has an
operator form, and uses a sum of real and imaginary Yukawa potentials. Of course, the
choice of the effective NN interaction will directly affect the shape and magnitude of the
calculated cross section. The Love and Franey potential is best constrained above about
100 MeV. It would be informative to explore the effects of different effective interactions,
including microscopic and non-local potentials. In particular, in this initial study we will
be looking at reactions in the 25-45 MeV energy range, where LF interaction has not been
parameterized. In this thesis, we take this as an opportunity to investigate the effect of other
NN interactions on charge-exchange observables. Having this goal in mind, the reaction code

developed here is not restricted to interactions with Yukawa form factors. In future reac-
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tion studies, however, it would be informative to implement the LF interaction for ease of
comparison with calculations using different formalisms. Although studying the effects of
non-local potentials is outside of the scope of this thesis, the code developed for this work,
CHEX, can readily be extended to include non-local interactions.

In many TAS studies which have been used to study properties of nuclear matter, optical
model potentials are used to construct, not only the incoming and outgoing scattering states,
but also the Lane potential which describes the transition. It has been shown in the realm
of transfer reactions that the phenomenological optical model potentials used to produce
initial and final distorted wave functions are not very well constrained and produce large
uncertainties [61]. In this work we begin to investigate the uncertainty derived from these
phenomenological interactions, although similar, more rigorous, studies are needed in the
realm of charge-exchange before uncertainties can be properly quantified.

Finally, we begin to explore the ways in which the reaction formalism effects charge-
exchange observables. The two-body formalism which utilizes Lane potentials offers a simple
way to explore charge-exchange transitions, but a three-body formalism can better describe
microscopic transitions between single-particle states in the target. Instead of using a dif-
ference of proton and neutron optical potentials that adjusts the isospin projection of the
target, we employ an NN potential that operates directly on the valence nucleon. In this
work, we present a systematic study, over a variety of target nuclei and beam energies, to

highlight the impact of various reaction formalisms in charge-exchange.
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1.5 Outline

This thesis is organized in the following way: In Chapter 2, we begin by presenting the
necessary reaction theory to build up to our description of transfer and charge-exchange
reactions, including an introduction to optical model potentials, which are used throughout
this work, and the fundamentals of elastic scattering theory. After this initial discussion,
this thesis proceeds on a dual track, with the first part of each chapter discussing transfer
reactions and the second half discussing how the topic of that chapter pertains to charge-
exchange reactions. For example, after the general introductions, Chapter 2 goes on to
introduce the reactions framework used for our transfer reaction studies, and the theoretical
tools necessary to connect these reactions to astrophysical capture processes. Then, in the
final section of Chapter 2, we introduce the reactions frameworks used to study charge-
exchange in this thesis.

Chapter 3 discusses details of implementing the theoretical methods discussed in the
previous chapter in reaction calculations. First, in Section 3.1, we discuss transfer calcu-
lations, including the bound state approximation which we have used to calculate transfer
to unbound resonances. Then, in Section 3.2, we discuss the details of the charge-exchange
reactions code, CHEX developed for this thesis and the implementation of our two-body and
three-body formalisms in that code, including a discussion of the various potentials explored
in this work.

In Chapter 4 we present results for transfer and charge-exchange reactions. This thesis
contains three separate transfer reaction studies, all utilizing a similar methodology. Section
4.1 highlights one of these transfer studies, the case of 30P(d,n), in detail and discusses

how this methodology was expanded in a study of 23A1(d,n)?4Si. The remainder of the
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transfer reaction results can be found in Appendix A, including a preliminary study for a
proposed new method for constraining spectroscopic factors in transfer measurements using
the Active Target Time Projection Chamber (AT-TPC). Section 4.2 discusses the results
of our charge-exchange reaction study, for both the two-body and three-body frameworks
presented here. Finally, Chapter 5 presents conclusions and outlooks for both the transfer
and charge-exchange studies discussed in this thesis.

Some of the more technical developments made for this thesis have been included here
in the appendices. In addition to the aforementioned transfer results in Appendix A, Ap-
pendix B contains the full derivation of the two-body charge-exchange T-matrix presented
in this work. Similarly, Appendix C contains T-matrix derivations for each of the operators
considered in the three-body charge-exchange framework: isospin central, isospin tensor,
isospin spin-spin, and isospin spin-orbit. Finally, Appendix D presents the tests performed

to benchmark and check the charge-exchange code, CHEX, developed for this thesis.
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Chapter 2

Reaction Theory

Regardless of which astrophysical process we are probing, reliable results can only be ex-
tracted if there is an adequate and valid reaction theory used in the extraction. In this
chapter we will build up to more complicated reaction descriptions by, first, introducing the
basics of scattering theory, starting with the introduction of optical potentials and elastic
scattering, and then expand on these topics to describe the transfer and charge-exchange

formalism used in this thesis.

2.1 Optical Model Potentials

The effective nuclear interaction between a projectile nucleon and an A-body target results
from a complicated, many-body problem and, although there are current efforts to develop
scattering potentials from a many-body framework (e.g. [62]), it is not currently feasible
to describe the full dynamics of complex reactions using an ab-initio framework. Therefore,
throughout this work, in both the realms of transfer and charge-exchange reactions, inter-
actions between the projectile/ejectile and the target/residual nucleus are described using
optical model potentials (OMP). These are phenomenological potentials fit to reproduce elas-
tic scattering data. They have real components, as well as imaginary terms which account
for flux loss to non-elastic processes. The optical model effectively imposes a two-body ap-

proximation, freezing the A-body target into an inert object in its ground state. This implies
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that many-body effects such as NN-correlations and anti-symmeterization are incorporated
into the phenomenological fit via a strong mass and beam energy dependence [63, 64, 65].

When data is available, these fits can be developed for a particular projectile/target pair
at the energy of interest. However, for many cases, this data is unavailable and global optical
potentials are used instead. Global potentials are created by simultaneously fitting elastic
scattering for a wide range of targets over a large energy range. These fits produce potentials
which vary smoothly over mass and energy, allowing for interpolation or extrapolation to
targets and energies without dedicated fits (Examples include [66, 1, 2]). Although these
potentials are able to capture general trends over different mass and energy regions, it is
worth noting that they are fit to stable nuclei and their validity for unstable nuclei has not
been demonstrated. Despite this, they are currently used to describe reactions on unstable
targets, because there are no better alternatives available.

Typically optical potentials follow a common form which can be expressed as

UR) =V(R)+i(W(R)+ Ws(R)) + Vso(R) + Vo(R), (2.1)

where V(R)/W (R) are real/imaginary central terms, Ws(R) is the imaginary surface term,
Vso(R) is the real spin-orbit term, and Vo (R) is the Coulomb term. Most terms are param-
eterized by a Woods-Saxon potential or its derivative. The central real and imaginary terms

have the form

v,

T (R ar (2:2)

V(R) =

where V,. (W, for imaginary central) is the depth parameter which specifies the strength of

the potential, R, is the radius term defined by R, = rp AL/ 3 and a, is the diffuseness.
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The surface term has only an imaginary contribution and accounts for reactions that
occur at the surface of the target (usually strongest at low energies). It takes the form of

the derivative of a Woods-Saxson such that

d Wy
WilR) = —as o R Royjas (2:3)
The spin-orbit term is typically real and also has a derivative form expressed as
h \22L-s d Vso
Vso(R) = — 2.4
sol) <mwc> R dRexp[(R — Rgo)/aso)]’ (24)

where my is the pion mass [67]. Finally, for potentials where both the projectile and target
are charged, there is an additional Coulomb term. Outside of the Coulomb radius defined

as Rg = rcAl/ 3 a simple point-Coulomb potential is valid, defined by

 ZpZye?

Ve(R) P

(2.5)

where Z) is the projectile charge and Z; is the target charge. Inside R, the point approx-
imation is no longer valid and a homogeneous charge distribution is taken for the target,

resulting in:

_ szt62<3 R? )

Ro \2 2R,

(2.6)

Here, we will simply note that optical potential fits for each target and energy contain
a large number of fit parameters (~ 12) and these fits are not unique, even when these

parameters have limited ranges of applicability. This introduces large uncertainties that
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propagate through to the observables calculated with these potentials as inputs (e.g. transfer
cross-sections). Recent efforts to quantify this uncertainty using Bayesian methods have
found that the uncertainty is larger than previously assumed, at times larger that 100%
[68]. This insight is important to note when comparing calculations using these potentials

to experimental results.

2.2 Elastic Scattering

We will begin with a description of two-body, elastic scattering of projectile, p, with target,
t, under the influence of a spherically symmetric potential. The reduced mass of the system
is ;1 and the center of mass scattering energy is E. The dynamics of the system are dependent
on the wave function that describes the scattering particle, so we must therefore solve the

Schrodinger equation

~

[T+ U(R) — EJ(R,0) = 0, (2.7)

where U(R) is the nuclear potential, and T is the kinetic energy operator. In general, we
can fix the incoming particle momentum along the z-axis. In this picture, the incoming wave
function is modeled as a plane wave, characterized by its momentum. After interacting with
U(R), the outgoing wave function is a superposition of the incoming plane wave and an

outgoing spherical wave according to the relation

) kR
GISYT(R, §) = oikz 4 f(Q)%, (2.8)

where f(6) is the scattering amplitude which characterizes the strength of the interaction
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where, for example, U(r) = 0 would lead to a scattering amplitude f(6)=0. When both
short-range nuclear interactions and Coulomb potentials are present, the total scattering
amplitude is equal to the sum of both the Coulomb scattering amplitude, f.(6) and the
nuclear scattering amplitude, under the influence of Coulomb, f1(f> (0). Because the Coulomb
interaction is long range, but the nuclear potential goes to 0 at far distances, we use different
methods to calculate these scattering amplitudes. The effect of the nuclear interaction can
be found by expanding in Legendre polynomials, Py (cos ), which is known as a partial wave

decomposition. The expansion takes the form

00

B(R,0) = LZ::O@L + 1) Py (cos )X (R), (2.9)
where k is the projectile momentum. The Legendre polynomials (Pj) are a convenient
choice for this expansion because they are eigenfunctions of both the L% and L, operators
with eigenvalues L(L+ 1) and mj, = 0 for the case of a central potential, respectively. Thus,

we are able to solve the Schrodinger equation for each partial wave separately. This means

that equation 2.7 can be decomposed to give

h2 /s d®>  L(L+1)
[_@<d}z2_ R2

>+U(R)—E]XL(R) —0. (2.10)

Solving this expression is then straightforward. Inside the range of the interaction, Equa-
tion (2.10) can be solved using a trial wave function uy (R) according to a chosen numerical
method utilizing the constraints that the wave function must go to 0 at R = 0 and have a
non-zero derivative at R = 0. Once this solution, uy (R), is found, it can be matched to the

the behavior at large distances (R>a), outside of the range of the nuclear potential. The

true wave function is xr,(R) = Brur(R), where we impose a normalization consistent with
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the plane wave for the non-interaction process. Outside the range of the nuclear force, there
are still effects from the long ranged Coulomb interaction, so the external form of the wave

function, as given in [67], is

XL(R > a) = LHy (0, kR) — SLHJ (n, kR)). (2.11)

In this expression, Hf(n, kR) are the Hankel functions as defined in [67], 7 is the dimen-

sionless Sommerfeld parameter defined as

n= %(i)m, (2.12)

h 2F

and Sy is the S-matrix for each individual partial wave. The S-matrix can be calculated
through the use of the R-matrix which matches the logarithmic derivatives of the true and

trial wave functions at the matching radius a such that

L) lu
R = axp(a) aul(a) (2.13)

and

_Hp - aRLH}J_.
Hf —aRH["

St (2.14)

Finally, the nuclear scattering amplitude (under the influence of a Coulomb potential)

can be written as

o

£a(0) = ﬁ LZ_O(2L 1) Py (cos )L (S, — 1), (2.15)
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where o (n) is the Coulomb phase shift defined as

or(n) = argl'(1+ L+ in). (2.16)

the point Coulomb scattering amplitude is given in [67] as

N wa/z)ew[—mm(smm/ 2)) + 2iog ()] (2.17)

fe(0)

and the total differential cross section is given by
0~ 11e(0) + Fa(6)P (2.18)
dQ - C n . .

2.3 Transfer Reaction Formalism and DWBA

For many reactions, a two-body description is insufficient to describe the complexities of the
reaction process. This is particularly true in cases where mass partitions are rearranged,
such as in (d,N) transfer reactions. For both transfer and charge-exchange reactions, we will
therefore employ a three-body formalism which freezes an inert core within the target, but
allows for the rearrangement of the other two particles during the reaction. We will begin by
introducing the three-body formalism used to describe transfer reactions, such as A(d,n)B,
where a proton is transferred from the scattering deuteron to the inert target. For these
reactions, it is useful to use the T-matrix formalism, which is based on integral relations, as
opposed to the S-matrix used in the previous section, which is based on asymptotic matching.

The T-matrix can be described equivalently using either the initial (prior form) or final

(post form) coordinates of the system (see Figure 2.1) which correspond to the mass partition
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rearrangement during this process.

A

Figure 2.1: Coordinates for A(a,b)B transfer reactions in the a) initial channel (prior form)
and b) final channel (post form) where a=b+v and B=A+v

Using these coordinates, the prior T-matrix can be expressed as [67]

Tt — (W)t (p o RV + Via — Uil®p.1, (rop)Xi(Ry)) (2.19)

and the post T-matrix can be written as

Toost = (@1 o1 (Toa)X g (Rp) Voy + Vs — Ug| W (7,3, R;)) (2.20)

where ¢ I;:1; is the overlap between the 7 and f wave functions, V; ¢ is the interaction between
the ith and fth bodies, U is an optical potential between the scattering body and the target
in either the initial or final channels, x is a distorted scattering wave produced using U, and
geract s the exact three-body wave function. The last two terms of the interaction, Vj, 4 — U;
in the prior formalism and V4 — U £ In the post formalism, are referred to as the remnant
term. In the case of deuteron induced transfer reactions, the two potentials in the post-form
remnant term have similar magnitudes, and it is often a good approximation to neglect it.
Therefore, we will continue using the post T-matrix form.

peract
1

is the solution to the three-body Shrédinger equation such that
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(TR, + Trp + Voo + Voa + Voa — EJUE = 0, (2.21)

where TRz‘ is the kinetic energy operator of the scattering vb system, and 1y, s the kinetic
energy of the internal motion of particles v and b.
Similarly to Equation (2.11), we can formulate an expression for Wt at far distances

for each set of quantum numbers in the initial and final channels («; /) with the form

U(Rf) = bac; Fr (N, kyRy) + Taa;Hf (nL, kyRy) (2.22)

where F7, is the regular Coulomb function, HZF is the Hankel function, and Toq; is the T-
matrix. It is often challenging to solve for this exact wave function, so there are a number of
approximations that can be made to simplify the T-matrix expression. Most commonly, the
Distorted Wave Born Approximation (DWBA) is applied. In DWBA, W¢%% ig simplified to
the elastic channel, a product of the scattering distorted wave and the corresponding bound
state wave function. This simplification models the reaction as a single-interaction process
and will generally break down at low scattering energy. Applying the DWBA and neglecting

the remnant term, transforms Equation (2.20) into

Toodt B4 = (@ 1 (ro )X (R Vil @1, () i (Ry)). (2.23)

Once the T-matrix is calculated, it can be easily related to the scattering amplitude by

Mt Mp, o Mt Hp;
fuphy  (Kisky) = F%}Tuthp “(kiskg), (2.24)

where I/t is the spin projection of the projectile and target and p, is the reduced mass of
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the system. Finally, averaging over initial state spin projections and summing over final spin

projections, gives us the cross section

1 Mt p; 2
o(0) = 272 S ughy  (kiskg)I?, (2.25)
Pit; p; bt Ppht

where I = /(21 +1).

2.3.1 Adiabatic Distorted Wave Approximation

Often, DWBA is not sufficient to describe deuteron induced reactions accurately. The
deuteron is weakly bound (2.2 MeV) and, therefore, has a large probability for breakup
in the potential field of the target nucleus. Theoretical studies have demonstrated that tak-
ing this breakup into account is critical for reproducing experimental observations [69]. In
DWBA, the exact incoming wave function is simplified as the product of the deuteron ground
state wave function and the deuteron distorted wave, which means that this breakup is not
included, apart for its influence on the optical potential which describes the deuteron elastic
scattering. The adiabatic distorted wave approximation (ADWA) allows for the considera-
tion of deuteron breakup, but offers a less computationally expensive alternative to including
the full three-body wave function.

ADWA is based on a separation of scales between the deuteron beam energy and its
internal binding energy (E >> ¢;, where ¢; is the excitation energy of the n/p system).
With this separation of scales, the excited states of the deuteron can be taken as essentially
degenerate with the ground state. To ensure accuracy, the deuteron beam energy should
be above about 20 MeV to ensure the separation of scales between the beam and internal

energies. One consequence exploited by [70, 71] is that the three-body wave function is only
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necessary within the relatively short range of the deuteron binding potential, Vj,,. Within
that limited range, the exact wave function can be expanded in some choice of basis functions.
In this case Weinberg states [72], ¢;(r), are used to describe the relative motion inside the
deuteron and are complete within the range of the deuteron interaction. x;(R) are used to

describe the relative target-deuteron motion. This expansion can be expresses as

o
weract o GAPWA N "6, (r)xi(R). (2.26)
i=0

ADWA retains only the first term of this expansion, UAPWA ~ ¢, (r)xo(R), where ¢q(r)
is an eigenfunction of the internal deuteron Hamiltonian with the deuteron binding energy as
its eigenenergy and yq(r) is referred to as the adiabatic scattering wave function. Retaining
just the first term has been shown to be a good approximation for our purposes [73]. xq(r)
is calculated using the adiabatic potential which is defined using neutron-target and proton-
target optical potentials. It is worth noting that this adiabatic potential is no longer useful

to describe elastic scattering. The final ADWA T-matrix for (d,N) transfer is written as

TabtV A = (@ .1, (rya) X (Ry)| Vi U APTA) (2.27)

2.3.2 Spectroscopic Factors and Resonance Strengths

Once transfer cross sections have been calculated, a theoretical framework must be used
to connect this value to the astrophysical capture process. Commonly, and for the cases
discussed throughout this thesis, this is achieved through the extraction of spectroscopic
factors. From a theory perspective, the single-nucleon spectroscopic factor is defined as the

norm of the single-nucleon overlap function:
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S = (o sl (2.28)

where ¢; and ¢ are the radial parts of (PIZ.:If from equations (2.19) and (2.20).

In an intuitive sense, the spectroscopic factor can be thought of as a measure of how
well a given state can be well described in a "single-particle” picture where the transferred
nucleon occupies a single orbital in the mean field of the target. For states that are highly
single-particle in nature, S will be close to one, and a small S can be interpreted as a more
fractured structure that involves the participation of nucleons in several orbitals. Therefore,
the full wave function overlap for the composite A+1 nucleus in both the single-particle
transfer reaction or the particle capture reaction that it correlates to, can be related to the

overlap in a single-particle picture vy by the relation

o(ran) = SV 20 (ran), (2.29)

where 7 4y is the coordinate that connects the target nucleus with the transferred (captured)
nucleon. As shown in Equation (2.27) the transfer cross section is proportional to this over-
lap squared. Because the experimentally measured transferred cross section will contain
information about the full wave function overlap, and our calculations were performed by
modeling the final bound state with a single-particle, Woods-Saxon potential, the spectro-
scopic factor can easily be obtained by normalizing the experimental cross section to the

theoretical value as shown below:

_ do/dQexp

_ , 2.30
do [dSy, (230
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Practically, this normalization is often performed at the first peak of the differential cross
section. In many cases, in (d,n) reactions where the outgoing neutron is difficult to measure,
angular information is unavailable and the comparison must be performed by simply taking
the ratio of the full angle-integrated cross sections.

Once the spectroscopic factor is extracted, it can be used to place constraints on the
astrophysical capture rate of interest. For particle capture cases where the final state reso-
nances are narrow and isolated (often the case for proton captures into low lying resonances)
the reaction cross section to a isolated state is described by a Breit-Wigner resonance. It

can be shown that the astrophysical reaction rate is [74]

el

No(ov) o (T)~3/2 Z(Wy)ie‘ (2.31)

where N, (ov) is the reaction rate, T' is the temperature of the astrophysical environment,
E; is the excitation energy of the final resonance states, and w-; is the resonance strength.
The negative exponent in Equation (2.31) dictates that only low lying resonances will con-
tribute significantly to the reaction rate. For most cases of interest, these excitation energies
have been measured experimentally, however, w~; remains relatively unconstrained. The

resonance strength w~ is described by the relationship

2Jp+1)  T,o,

5 2.32

Wi = |

where Jy is the spin of the final state, J; is the spin of the initial state, jp is the spin of the
captured proton, I'y is the gamma decay width for the final state and I'y, is the proton decay
width for the final state. However, for many of these low lying resonances, the Coulomb

barrier reduces the proton decay width by orders of magnitude relative to the gamma decay
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width, such that the resonance strength can, to very good approximation, be expressed as

(2Jf + 1)
2jp +1)(2J; +1) ¥

Finally, the proton decay width can be related to the single-particle decay width through

the spectroscopic factor such that

In this expression, C' is a Clebsch-Gordan coefficient and I'sy, is the single-particle decay
width. I's) is obtained by calculating elastic scattering from a central Woods-Saxon potential
where the depth is adjusted to reproduce the energy of the resonance of interest and is easily
calculated. By these means, the spectroscopic factor extracted from the transfer reaction
can be used to constrain the calculation of the proton decay width and, therefore, directly

constrain the proton capture reaction rate.

2.4 Charge-Exchange Framework

Similar to the reaction framework presented here for transfer reactions, charge-exchange
reactions can be described using a T-matrix formalism. Within this work we have em-
ployed a two-body and a three-body framework, both using single step DWBA, to analyze
charge-exchange reactions to the isobaric analog state. Here, we will introduce both of these
methods, and more in depth derivations of the relevant T-matrix expressions can be found

in Appendices B and C.
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2.4.1 Two-Body Formalism

The first description of charge-exchange reactions involves a two-body formalism where the
charge-exchange transition is caused by changes in a bulk optical potential which describes
the interaction between the projectile nucleon and the target. The coordinates for two-body
charge-exchange are show in Figure 2.2. Because charge-exchange is an isobaric transition,
the mass difference between the target and residual nucleus is neglected and we utilize the
same scattering coordinate, Rj4, in the initial and final channel. For (p,n) reactions, the
projectile, 1, is a proton in the incoming channel, and a neutron in the outgoing channel,

representing a isospin flip interaction.

a) b)

Figure 2.2: Coordinates for A(p,n)B charge-exchange reactions where the residual nucleus,
B, is an isobar of the target, A.

In this formalism, the transition potential is defined using the Lane potential [47] which

is cast in the form

U(Rya) = Up(Ryg) + =

o Vi), (2.35)

where Uy(Ry4) is the isoscalar potential which drives elastic scattering, Uj(Ry4) is the
isovector potential which drives the charge-exchange transition, and 7 and T are the isospin
operators which act on the projectile nucleon and target nucleus, respectively. The dot

product of the isospin operators can be expanded as
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T - T=1T,+714T_+7_T4. (2.36)

where 7, /— are the isospin raising/lowering operators.

Throughout this work, we use the convention that neutrons have isospin projection %
and protons have isospin projection —%. The first term in Equation (2.36) can be neglected
in charge-exchange reactions, because it will not cause an isospin-flip. The third term will
produce 0 because T_]% — %> = 0. Therefore, only the second term, which increases the
isospin projection of the proton and lowers the isospin projection of the target, can contribute.
The factors in Equation (2.35) are chosen such that it can be rearranged to express elastic
scattering of neutrons and protons:

N -7
Unp = Up(R14) £ n Ur(R14) (2.37)

where the upper sign corresponds to neutron scattering potentials and the lower sign corre-
sponds to protons. Neutron number, N, charge number, Z, and mass number, A, pertain to
the target nucleus. This makes it clear that the isovector part of the Lane potential can be

written in terms of proton and neutron elastic scattering potentials giving us

U1(R1) = 77— UaRua) = UplFa) (2.39)

Up and Uy are typically taken to be optical potentials with a form similar to that introduced
in Section 2.1. The choice of optical potential, however, is not unique and we will discuss
the potentials used in this study more thoroughly in the next chapter.

The transition matrix element for charge-exchange can been expressed simply as
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VIN-Z],,

Tsy = (X (R14) 27— U1(R1a)[xi(R14)). (2.39)

Xi(R14) and xf(Ry A) represents the p+A/n+B distorted waves, which are calculated us-
ing an optical potential. As discussed earlier, the incoming and outgoing scattering wave

functions can be expanded in partial waves, giving us a T-matrix expression of

Tyy = <Xf(R1A)|2¥U1(R1A)|X1(R1A)> = >

LyJyMyL;J;
z‘Lz‘—Lfesz‘(—DLi%Mf_MIl)Hf_Mf% iﬁ'g}lm Zf](\ﬁ DIk
, —uIip
£ki A (2.40)

R J . . L N
Y5 (B = (-e0) g VR BN @AY, ()
Xz, (B1a) (255 U BL) G g (Bra)

5
Ry y

d€2 Ad§1dRy 4.

where primed variables have undergone an isospin transition.
This expression can be simplified using a number of properties, including the fact that
the Lane potential is a scalar operator, so the total angular momentum in the initial and

final channels must couple to 0. Once the expression is fully simplified, we are left with

<Xf(R1A)|2MU1

y (R14)Ixi(R14)) =

’L'O'L‘

e “i L; (2.41)
/ > ki R?,
CJZ'NI CJiﬂl YLZ' ﬁ(]%f)deA'

LiOTypy ™ Ly (py —pl) ) Iy i)~ g =
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To get the cross section, we average over initial state projections, and sum over the final

projections to give us

do ko papy 1 g0
— = L —|T" (2.42)
GYEYING:]

where J4 and Jpg are the initial and final spin of the target and equal 0 in the case of 0"

transitions.

2.4.2 Three-Body Formalism

The two-body formalism discussed previously offers a simple way to explore charge-exchange
transitions but freezing the target into an inert, single body, necessarily erases interesting
phenomenon introduced by the internal structure of the target. Although in most cases of
interest computing reactions using the full, A+1 body system remains intractable, we will
introduce an additional complication into the formalism by now expressing the target as
an inert core with a valence nucleon. This three-body formalism can describe transitions
between single-particle states in the target. Instead of using a difference of proton and
neutron optical potentials that adjusts the isospin projection of the target, we will now
employ an NN potential that operates directly on the valence nucleon.

The coordinates for the three-body charge-exchange formalism are show in Figure 2.3.
The valence particle, 2, occupies a well defined single-particle state with a given value of [
and j, which we assume can be described by a Woods-Saxon potential.

In this description, the formalism is built on two coordinates, Ry 4 which runs from the
projectile/ejectile to the target/residual, and 79, which runs from the valence nucleon to the

inert core. The NN interaction discussed above will, therefore, run along the coordinate 19,
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which connects the projectile and valence nucleons. Because this coordinate is different than
the basis coordinates which describe our wave functions, it poses an additional complication.

In our work, the NN potential is expanded in a multipole expansion.

Figure 2.3: Coordinates for A(p,n)B charge-exchange reactions within the three-body reac-
tion formalism.

NN potentials utilized in this three-body framework must be cast in an operator form
in coordinate space. Because we are interested in charge-exchange reactions, we will only
include terms of the potential which contain the 7 - 7, Fermi operator where, in the three-
body framework, the operator acts on the projectile and valence nucleons. These potentials
contain a radial dependence that can be phenomenologically fit to charge-exchange data or
derived from a more ab-initio approach. They can be wholly real or contain a mixture of real
and imaginary components. Some interactions are energy dependent while others are not. In
addition to a central isospin term, these potentials can contain other isospin operators such
as the spin-spin, (o - o)(T - T), operator or the spin-orbit operator, (L - S)(T - T), among
others. The choice of potential will be discussed in more detail in the next chapter.

The charge-exchange three-body T-matrix can be written in a similar form as the two-

body T-matrix:
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TSE = Ocp(B1a) P, (Eo €2, r2e) INNIP L1y (Ees €2, T2¢) Xi(R1.4)) (2.43)

where now the target/residual wave functions have a dependence on the core spin compo-
nents, the valence spin components, and the internal coordinate r9.. The Lane potential is
replaced by an NN potential. As previously mentioned, the NN potential is directed along
the r19 coordinate which runs from the projectile proton to the valence neutron. Various NN
potentials are parameterized using different terms, but only terms that contain the 71 - 72
operators will contribute to charge-exchange. For example, the AV8’ potential considered in
this work ([75]) has 8 terms, 4 of which contain isospin operators. Because all of the opera-
tors I discuss for charge-exchange contain the isospin operators, I will often drop this from
the description of the operators and refer to them, instead, as the central, tensor, spin-spin,

and spin-orbit terms. In this case, tjryv is written as

tny = Vo(rig)m - 12 + VT(T12)\/ M?W(Tl $72) [YQ(M) o1 ® o2l (2.44)

+ Vgs(ri2)(o1 - o2)(11 - T2) + Vis(r12)(L - S) (71 - T2)

where Vio(r12), Vr(r12), Vsg(ri2), and Vig(ria) give the radial dependence of the cen-
tral, tensor, spin-spin, and spin-orbit terms, respectively. An expression for the three-body
charge-exchange T-matrix with an isospin central interaction is given here, along with a brief
commentary on the expressions involving the isospin-tensor, isospin-spin-spin, and isospin-
spin-orbit operators. For a full derivation of these expressions, see Appendix C. For the case

of only an isospin central term, Equation (2.44) simplifies to
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tny = Vol(rig)m - m2 (2.45)

In addition to making the isospin flip, the isospin operators will give a factor of % and
we will also add a (2j + 1) factor to account for all available neutrons in the valence shell.
Now, we must express this quantity using an expansion in our current coordinates using the
method from [67]. The relationship between the two coordinate vectors and 719 is

m
r19 = Rig — m—zr2c, (2.46)

where m, is the mass of the core and m, is the mass of the target. The potential only
depends on the magnitude of 19, so we can calculate T%z

2
2 2 m 2 2mc
rg = g+ _m2c "¢ — ma Rygracz, (247)

A

where z = cos f12 and 019 is the angle between R; 4 and r9.. Then we can build a multipole

function, Fy, using the potential so that:

1 1
F\(Ry4:72¢) = 5 / ) VN (ri2)Py(2)dz, (2.48)

where P) are Legendre Polynomials. Then, our final potential is

(25 +1) A N 5o (27+1)
(2.49)

As before, we can expand our incoming and outgoing wave functions in partial waves.
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In addition to the scattering wave functions previously used in the two-body description,
there will also be an expression for the internal valence-core wave function. Including all the

appropriate factors, the T-matrix can be written as

O (B1a)®1e:1,, (Ee €2, 20) [INN P11y (s €2, m2e) Xi (Raa)) = ook
LpJ ML,
mjimjfuculc

v i CJfo+“1 Jill oJarA oIBHB

L
f
Mf ks LM Iy © L0 gimj Tee mejffcﬂc[ (Rya)EN (- 51)] (M i)

[Ylf<r26>zf2<—52>]ifmjf [YEir = @] [ 0= @), =5 ez 6

0j;(rac) L p7 (B1ASINN Gy (r2e) Fp g, (Bua)
72 Ry gr3,dRy AdracdQacdShy 4d&1dEadEe,
14

(2.50)

where

3
y :Z.Lf—LZ-(_ )L +Lf+Mf—|—u1+mjf i, M

2.51
e (251)
Ideally, we simplify all angular components of this integral in order to ease its implemen-
tation in our calculations. We can accomplish this by using a number of angular momentum

identities and, again, taking advantage of the scalar nature of the central operators (see

Appendix C). After all of these manipulations, we are left with a final expression that only

contains a radial integral:
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O (B1a) P11, (&o €2, rre) IN NPTy (Ees €2, T2e)Xi(R14)) =

Ly o JeMptph 14 M M
DR ST AU e Yo g oMy
(2.52)
N oM oJara oJBEB Ly Ji Il |l Ji Iy
LiOL pOF 1010 gim, Tepe™j pmj  Tepe

Je Ly M) g 1 A
¢jf(7‘2c)FLfJf(RlA)F)\(Ry7“)¢j2-(7"2c)FLZ-JZ-(R1A)

R2 R%ArgcdeAdTZCa
14
where
3 22 4 2a 4 an
. M ptph+my M g+ ;41 +ji+H g+ 19 4 2 Ly Led;Jpg;9¢l1
hs = iLJH—L@(—l) f+“1+mjf JHJitH ity 2ewLi (2j; + 1) (4m)2 L; Ly i flidfbi f.
Qkfki 22
(2.53)
Now the total cross section expression is
do kr papy 1
dQ o ki 4n2(hc)? Jiﬂ%
PALB (2.54)

X | O (R1a)®reny, (o €2, 20 EN NI P11y (Ees €2, m2¢) Xi (R 4)) 2

where J4 and Jp are the initial and final spins of the target. A similar expression can also
be worked out for additional terms in the interaction. Here, we just remark on a few unique
features of each term considered in this work.

The spin-spin operator, which has the form
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Vspin—Spin = Vss(r12)(o1 - o2)(T1 - T2), (2.55)

is relatively straightforward to consider because the additional operator, o1 + 9, acts only
in spin space. The operator therefore factorizes and much of the T-matrix expression re-
mains unchanged. This operator, often referred to as the Gamow-Teller operator or spin-flip
operator, is capable of switching the spin projection of the projectile and valence nucleus,
causing a net change of AS = 1. However, like the 7 - 7 operator, it can be broken down
into three terms: o4 - 09 = 01,09, + 014092 + 01_09. Because we are only considering
Fermi transitions in this work, we only consider contributions from o1,09, (AS=0).

The tensor operator offers an additional challenge, however, because it mixes spin and

position space operators. The tensor operator has the form

24 R
Viensor = Vr(ri2)y/ Tﬂ(ﬁ - T2) [Y2(7‘12) o1 ® o292, (2.56)

where Y5(r19) is a rank two spherical harmonic directed along the rio coordinate. Because
our initial and final wave functions are written in the Rj4 and 79, coordinates, the tensor
operator’s spherical harmonic must be expanded in terms of the other two coordinates. This
greatly complicates the expression. Details for this process can be found in Appendix C.
Finally, we also considered the spin-orbit operator. This operator has a similar compli-
cation to the tensor operator, where it operates both on spin space and angular momentum
space (which contains an angular dependence). Unlike the spherical harmonic from the ten-
sor operator, however, there is not a simple spherical harmonic expansion that can be used
to express the angular momentum operator, L, in terms of the coordinates we have chosen to

express the problem. Although it is possible to express this term exactly, it would introduce
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the need for a numerical angular integral in the T-matrix expression and require a signifi-
cant alteration to the framework used for our calculations code. Therefore, we experimented
with several approximate way of including the spin-orbit interaction which is described in
detail in Appendix C. After these investigations, we felt we were unable to reliably extract
meaningful information regarding the magnitude or shape of the spin-orbit contribution, so
we have instead, chosen to not include this operator in our calculation and leave this as an
open area for future development and investigation.

Once we have developed our formalism for charge-exchange reactions, the challenge is
to operationalize these expressions in a reaction code. The next chapter discusses the code,

CHEX, that has been developed to explore these reaction formalisms.

41



Chapter 3

Calculations and Inputs

3.1 Transfer Reactions with FRESCO

All transfer cross sections were calculated using the reaction code FRESCO [76]. Each of
the different transfer reactions considered in this thesis followed the same basic prescription
for calculating cross sections to various final states of interest. Any differences, if present,
are noted in the discussion of the results. For all cases considered, (d,n) and (d,p) theo-
retical cross sections were calculated using the finite-range adiabatic approximation [70, 71]
described in Section 2.3.1 which explicitly incorporates deuteron breakup in the field of the
target. To implement the ADWA formalism, the adiabatic optical potential for the incom-
ing channel must be constructed from proton and neutron optical potentials and then fed
into FRESCO. The effective adiabatic potentials for (d,p) and (d,n) were computed with
TWOFNR [77]. The CH89 [2] optical potential was used for the nucleon-target interactions
in the initial and final channels.

The deuteron bound state in the initial channel is parameterized using the Reid soft
core NN interaction [78] (built into FRESCO). For consistency, the V,; interaction in the
transition amplitude from Equation (2.27) is also from [78]. In these calculations, the target
nucleus is taken as inert and the final state of the target-like nucleus is modeled by placing

the transferred nucleon into a single-particle bound state described by a real Woods-Saxon
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potential with central and spin-orbit terms. The radius and diffuseness of the Woods-Saxon
are chosen to be standard values of r=1.25 fm and a=0.65, respectively, and the depth of the
spin-orbit term is chosen to be 6 MeV. For further discussion of the shape of this potential,
see Section A.2. In the case of bound final states, FRESCO automatically adjusts the depth
of the central potential to reproduce the experimental binding energy. In the case of unbound
resonances in the final channel, we implemented either continuum binning or a bound state

approximation which we explore in further detail now.

3.1.1 Bound State Approximation

For all of the cases considered in this work, the final states of astrophysical interest are low-
lying, positive energy, resonances where the transferred particle sits in an excited state above
the one proton separation energy. Still, these low-lying resonances exhibit many aspects of
a bound excited state, including a confined wave function and well defined excitation energy
with a relatively small width. In these cases, there are a couple of different choices for
representing the final states.

Resonance states can be represented with continuum bins [67]. Using this method, one
can place the resonance at the exact experimental excitation energy and calculate a wave
packet (the integral of the corresponding wave function over energy or momentum) within
a chosen energy window around the resonance. In this configuration, the potential depth of
the single-particle Woods-Saxon is not automatically adjusted by FRESCO. Therefore, we
manually tuned the depth of the Woods-Saxon until the phase shift goes through 7 /2 at the
appropriate resonance energy. For narrow proton resonances at low excitation energies, the
complete transition from 0 to 7 in phase can happen over the span of less than 1 eV (as

compared to the natural energy scale of MeV) and locating this resonance is often difficult.
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Once the resonance is located, the width can be calculated by taking the derivative of
the phase shift and determining the full width at half max. Although using FRESCO to
determine widths is an accurate and reliable method, it is inefficient and, for the narrowest
resonances, infeasibly time consuming.

For most results presented in this thesis, we have sidestepped this process by using a
bound state approximation. In this approximation, a low lying resonance is artificially bound
by about 0.001 MeV. This is based on the idea that a resonance which is just slightly unbound
will have a similar spacial distribution as a very shallow bound state. This is particularly
valid in the case of proton transfer where the Coulomb barrier contributes to an even more
localized resonance state. Of course, at some point, this approximation will break down as
the resonance energy increases. Although this approximation has been widely used prior to
the applications presented in this thesis, its accuracy had not been rigorously tested. Below,
we present the effect of the bound state approximation on reaction cross section results for
the particular case of resonant states in 3!S, and note that these results generalize to other
nuclei studied in this thesis.

A reasonable place to start is to check that the wave functions produced by the artificially
bound states behave similarly to the wave functions calculated using continuum binning.
Figure 3.1 shows this comparison for a [ = 1 proton resonance in 3!S at E, = 6.833 MeV
(Eres = 702 keV). It is clear that the unbound resonance behaves very similarly to a shallowly
bound state and, therefore, it is reasonable to expect similar cross sections produced by the
two configurations.

Next, we examined the impact of the bound state approximation on the angle integrated
transfer cross section which will be used to constrain the astrophysical capture rate (see

Section 2.3.2). To evaluate whether or not the bound state approximation is accurate, it
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Figure 3.1: Comparing the single-particle wave functions created using the bound state
approximation (red) and the exact calculation using continuum binning (black) for a proton
resonance in °1S at E,=6833 keV. The green curve shows the difference between the two
wave functions.

is important to compare the error introduced through this method with other errors and
uncertainties present in our model. The main source of uncertainty in our calculations are
the OMPs used to describe our incoming and outgoing distorted scattering waves. These
optical potentials are obtained from fits to elastic scattering data between the nucleons and
the initial (final) state nuclei at the initial (final) energies. However, for target and energy
combinations for which this experimental information do not exist, one uses global optical
potentials which are created by simultaneously fitting large data sets over a wide variety of
energies and masses. These parameterizations describe trends across the nuclear chart, but
are not necessarily valid for a given target at a particular energy, especially if it is unstable.
Additionally, the parameterization for each potential contain around 15 different parameters
and the choice of parameterization is not unique, leading to a large uncertainty, typically

around 30%, but which has in some cases been shown to be over 100% [61].
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Another, less rigorous, way to gauge the scale of the uncertainty introduced by the optical
potential is to repeat the calculation using different global parameterizations and observe the
effect on the angle integrated cross section. For example, all transfer results presented in
this thesis use the parameterization by Varner et al. [2] (CH89), but these calculations can
be repeated using another choice of global optical potential, such as the Becchetti-Greenlees
parameterization [66]. When such a substitution is made, the propagated difference to the
angle integrated cross section is at least on the order of about 10-15%, depending on the
case. Errors from the bound state approximation will be independent of errors introduced by
the optical potential and, thus, will be added in quadrature to those errors in our theoretical
calculations. This means that the errors introduced through this bound state approximation
should be significantly less than the errors introduced by the optical potentials to avoid a
large proliferation of errors.

Table 3.1 shows the result of comparing the angle integrated transfer cross sections ob-
tained using continuum bins to describe the unbound resonances and those obtained via the
bound state approximation. As we would expect, the errors associated with this method
increase as the resonance energy increases. Another clear trend is that the value of orbital
angular momentum has a large impact on the effect of the approximation. For [=1 states
the error is consistently higher than the error associated with [=2 or 3 states. This is not
surprising as the potential barrier will be increased for larger values of angular momentum.
This increased barrier will better mimic the potential of a bound state in an attractive po-
tential well. This effect is evidenced in the single-particle widths calculated for these states.
As the angular momentum increases, the resonances become narrower and behave more like
bound states.

For 318, the error associated with the bound state approximation can be tolerated for
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[=1 states including and below the resonance located at 226 keV, as we would expect the
error to continue decreasing for lower energies. For [=1 states above that threshold, the
bound state approximation introduces too large an error into our calculated cross sections,
and continuum binning should be performed. Continuum binning is, however, much more
feasible for these higher energy resonances with wider widths. It appears that the bound
state approximation is safe to use for resonances with [ >1 up to resonance energies of at least
450 keV. The error associated with the [=2 resonance with Ejpes=452 keV is only 2.4%, so
it is reasonable to assume that the region of validity extends to significantly higher energies.

When applying this approximation to other systems, it will be imperative to locate the
energy at which the error associated with the bound state approximation become too large.
For [=0 and [=1 systems, this point seems to be much lower than was previously thought.
For states with large orbital angular momentum, the approximation is very likely to hold for

most resonances of interest.

Final State Comparison

Eres (keV) | Ep (keV) | nl,j | Bound State Approximation xs (mb) | Continuum Binning xs (mb) | xs % Difference | Width (eV)
226.0 6357.0 | 2,1,1.5 1.52 1.43 6.13 3.67E-04
246.0 6377.0 | 1,3,3.5 6.68 6.75 -1.05 1.02E-06
262.0 6393.0 | 1,2,2.5 1.14 1.16 -1.39 2.64E-04
411.0 6542.0 2,1,1.5 1.04 0.92 12.05 1.02E00
452.0 6583.0 | 1,2,1.5 0.82 0.80 2.36 6.51E-02
702.0 6833.0 | 2,1,1.5 1.55 1.23 22.51 2.02E+02

Table 3.1: Comparison of angle integrated transfer cross sections to states in 31S calculated
using the bound state approximation and the continuum binning method. As the resonance
energy increases, and the value of [ decreases, the approximation breaks down.

3.2 Charge-Exchange Reactions with CHEX

All charge-exchange calculations presented here were produced using the reaction code,

CHEX, developed for this thesis. Of course, there are a number of charge-exchange reaction
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codes on the market, such as DW81 [79] for (p,n)/(n,p) reactions and FOLD [80] which can
be used for the analysis of composite probes, such as (3He,t). However, older codes, such as
DWS81, were not written with the expressed goal of exploring reaction dynamics and prove
difficult for outside users to explore and extend. More modern codes such as FOLD are more
accessible, but we decided it was necessary to build our code with components that we could
fully understand and control, allowing for a stronger base for future extensions in the reaction
mechanism. The goal of CHEX is for a flexible and user friendly tool that can be used for
exploring and expanding the description of reaction dynamics for charge-exchange reactions.
To this end, CHEX is built on a modular design where well described tasks occupy different
subroutines. Additionally, CHEX utilizes a front end interface to solicit input parameters

from the user. The general flow of CHEX calculations are shown in Figure 3.2.

User creates Calculates wave
inputs with functions utilizing -
front-end relevant routines C?Iculat?s ra}c::al Calculates T- Combines
program and from NLAT and | |ntegtr’a\”s\IW|t N-A matrix for each T-matrix g—g
parameters calculate elastic reievant T or - specified operator expressions
are read into scattering cross [ EE S
CHEX sections

Figure 3.2: Flowchart showing the general organization of CHEX, the charge-exchange reac-
tion code created for this thesis. The primary observables calculated by CHEX are charge-
exchange cross sections.

The wave functions in CHEX are created using subroutines adapted from the NLAT
reaction code [81]. NLAT (nonlocal adiabatic transfer) is a transfer reaction code which
allows for the inclusion of non-local nucleon-target and bound state interactions. Within
this context, the Schrodinger equation is solved using an iterative method. Although the
effects of non-local potentials have not yet been explored in charge-exchange reactions, CHEX

utilizes the NLAT Schrodinger equation solver to allow for an easy extension to including
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effects from non-locality in future studies. Elastic scattering cross sections for the entrance
and exit channels are also calculated. The remainder of this section will discuss some of the
key inputs and methods used in CHEX charge-exchange calculations. For an outline of the

benchmarks and checks performed for CHEX, see Appendix D.

3.2.1 Two-Body Calculations

As previously discussed, charge-exchange reactions described in a two-body framework utilize
a Lane potential, defined in the equations in Section 2.4.1, which is proportional to the
difference of neutron and proton optical potentials. The user is free to choose the form of these
optical potentials. CHEX has incorporated Lane potentials based on the global potentials
developed by Koning-Delaroche (KD) [1] and Varner et al. (CH89) [2]. Lane potentials
derived from these OMPs have a non-zero range ~7-8 fm, with the exact range depending
on the case, and have real and imaginary components. As demonstrated in Figure 3.3 , Lane
potentials derived from different optical potentials differ from one another significantly. In
addition to the Lane interaction which mediates the charge-exchange, an optical potential
must be chosen to describe the incoming and outgoing distorted waves. CHEX has built in
options to use the KD or CH89 global potentials, or the user can input parameters for a
specific OMP which is cast in the form discussed in 2.1.

In the two-body picture, the target has no internal structure and, therefore, bound-state
wave functions do not enter into the cross-section calculations. Additionally, there is only
an isospin central component. This greatly simplifies the two-body calculations and allows

for short computation times.
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Figure 3.3: Plot of the radial form of the Lane potential calculated using parameters from
KD and CH89. The case shown is for 8Ca and L=0.

3.2.2 Three-Body Calculations

CHEX also includes the implementation of charge-exchange using the three-body formalism
presented in this work. Similar to the two-body calculations described above, the user has the
ability to specify the optical potential used to describe the incoming and outgoing distorted
waves, and to specify the interaction that will mediate charge-exchange. CHEX has built in
options to implement the isospin components of the NN interactions developed by Dechargé-
Gogny (Gogny) [82] and Pudliner et al. (AV8’), which is based on the Argonne v1g potential
[75, 83]. These potentials will be discussed in more detail in the following section. The user
can also decide which operators to include in the calculation.

In the three-body picture, the target is comprised of an inert core with a valence particle
in a well defined single-particle state. In this work we study nuclei that undergo transitions

to their IAS. The TAS is the lowest energy excited state in the final nucleus with the same
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isobaric spin, T, as the target nucleus. In a basic picture, the wave function of the IAS can
be thought of as identical to the initial state, with a neutron replaced by a proton for the case
of isospin lowering reactions or vice versa for isospin raising reactions. Unlike other reaction
codes, such as DW81 and FOLD, the current version of CHEX does not input transition
densities to many possible final states created by shell-model or other structure calculations.
Instead, the user selects a specific initial and final single particle state with a value of [ and
j. This state is modeled using a Woods-Saxon potential with a radius of rg=1.25 fm and
a diffuseness of a=0.65. The user must adjust the depth of the potential to reproduce the
experimental binding energies of these states. Because of this set up, CHEX is currently best

suited to calculate specific microscopic transitions with well defined initial and final states.

3.2.3 Details of NN Potentials

One of the most important inputs in the charge-exchange calculations is the choice of NN
interaction which mediates the charge-exchange reaction. One of the goals of this work
is to explore the sensitivity of the charge-exchange observable to the choice of interaction.
As a general note, CHEX is capable of incorporating any NN interaction which can be
written in an operator form in position space. Most commonly, the effective NN interaction
parameterized by Love and Franey (LF) [59, 60] is used to describe the isospin transition.
LF is a phenomenological, energy dependent interaction that is cast in an operator form with
isospin central, tensor, and spin-orbit terms. Each term uses a sum of real and imaginary
Yukawa potentials with different ranges, correlating to 7, p, and 27 meson exchange. The LF
potential was fit to reproduce NN scattering data and, its updated form, includes in-medium
effects which have been demonstrated to alter the bare NN potential [84]. LF has been

tabulated for energies ranging from 50 MeV to 1000 MeV. The LF interaction has proven
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to be a useful interaction for describing charge-exchange reaction data, although it is best
constrained above about 100 MeV.

In the LF potential, the parameterization is chosen to explicitly and separately account
for the knock-on exchange contributions to the transition amplitude. Exchange contributions
arise from interchange of position of the projectile and valence nucleons [85]. The exchange
contribution is estimated to be about 35% in [18]. At this time, CHEX does not implement
an exchange term, either approximately or exactly. For this reason, the LF potential was
not used in this analysis. Based on this, we impose the additional constraint that all NN
interactions currently implemented in CHEX should not contain explicit parameterizations
for knock-on exchange.

With this in mind, we selected two other NN interactions to implement in CHEX and
explore the effect on charge-exchange cross sections. The first interaction chosen was AVS8’
[75]. AV’ is a reprojection of the Argonne v1g potential [83] which reduces the 18 terms to
just 8, while still reproducing key features including the deuteron binding energy. wig is a
high-quality, bare, NN potential with 40 adjustable parameters that were fit to a database
of thousands of nn, np, and pp scattering data, as well as the deuteron binding energy.
Within this framework, vig obtains a x? per datum of 1.09 over an energy range of 0-350
MeV. Unlike the Lane and LF interactions, vig is fully real and is not energy dependent. It
can be written in an operator form with 18 distinct operators, half of which contain isospin
operators.

A full implementation of the 9 relevant isospin terms for vig is a complicated task and
lies outside the scope of this thesis. Additionally, choosing to implement only some of those
9 operators is risky because v1g is not fit on an operator by operator basis and, therefore,

it can be difficult to predict the effect of excluding operators. This effect is amplified by
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the fact that reaction amplitudes from various components are able to add destructively.
For this reason we, instead, implemented AV8’. AV8’ has only 8 operator terms and can be

expressed as

V= ). p(rif) O} (3.1)

p=1,8

where the various operators are: central, isospin central, spin-spin, isospin spin-spin, tensor,

isospin tensor, spin-orbit, and isospin spin-orbit. These operators are expressed as

05‘21’8 =1,(1; - 1), (05 - 0j), (0 - 05)(7 - T¢), Sij, Sij(Ti - 7¢), (L - S), (L - S) (7 - Tf),

(3.2)
respectively, and v;g(rij) gives the radial form of each term. The strength of the radial forms
are derived from a recombination of the first 14, charge-independence components of v;g.
For the purpose of charge-exchange reactions, we only need to consider contributions from
isospin dependent forms, reducing the potential which must be implemented to just four

terms:

vii(rig) = vg(rij) (75 - 75) + vy(rij) (o4 - 05) (75 - Tf) (3.3)

+vg(rij)Sij (13 - Tf) + vg(ri) (L - S)(7; - 7¢).

The T-matrix for each operator is calculated in a separate subroutine in CHEX, and then
combined. The radial form factors of the operators are implemented using a subroutine from

[86] and are shown in Figure 3.4.
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Figure 3.4: Plot of the radial form factors of the AV8” and Gogny potential operators con-
sidered in this work.

AV8’ is a bare NN interaction, like v;g. We know that nucleons undergoing charge-
exchange reactions will feel the effects of other nucleons in the target. However, one could
imagine a scenario where, as the valence nucleon undergoing charge-exchange in our model
becomes less and less bound, these effects might begin to decrease. For this reason, we would
like to study the charge-exchange response to bare NN interactions. Additionally, for this
work, we have chosen the Gogny interaction [82], which does include in-medium effects.

The Gogny interaction is a real, effective interaction. Although it also contains a density
dependent and spin-orbit term, for our purposes studying charge-exchange reactions, it takes

the simple form of the sum of Gaussians,
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V()= 3 (HP, — MP,Py)e ™10 (3.4)
i=1,2

where 7 is the distance between the nucleons, M, H, and p are parameters which specify the
strength of the interaction, and Pr = %(1 + 71 - 72). Because we are only concerned with

terms which can cause an isospin transition, this expression can be stated as

V) = 3 SH(y - 72) — M(61 - G2)(Ry - F))ie (35)

The Gaussians used simulate a short range and intermediate range interaction. Because
the Gogny interaction seeks to describe in-medium effects, it was fit using a different, and
much smaller set of nuclear data from AVS8’, including empirical data in nuclear matter, such
as nuclear symmetry energy. The parameters used in these calculation are: p; = 0.7fm,
o = 1.2 fm, Hy = —496.2 MeV, Hy = 37.27 MeV, M| = —32.56 MeV, My = —68.81 MeV

and produce the forms shown in Figure 3.4.
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Chapter 4

Results

4.1 Selected Transfer Results

This section contains a detailed look at the methods and results for a study of the 30P(d,n)SIS

reaction with applications to the astrophysical 30P(p,7)318 capture reaction. Additionally,
Section 4.1.4 discusses an extension of this method to study 2?’Al(d,n)MSi for applications
to the 23Al(p,y)?4Si astrophysical reaction rate. The analysis of the %Ni(d,n)°’Cu and

%0Ni(d,p)°7Ni reactions are briefly summarized in Appendix A.1.

4.1.1 Motivation for Studying *°P(p,7)*'S via **P(d,n)3!S

The astrophysical proton capture reaction rate for 30P(p,7)318 remains one of the largest
uncertainties in models of oxygen neon (ONe) novae explosions. In these systems, an ONe
white dwarf star is in a binary system with a hydrogen-rich companion star which accretes
mass onto the surface of the white dwarf until the temperature and pressure build up enough
to ignite an explosive thermonuclear runaway [87]. Nucleosynthesis in this environment
follows the path of the rp-process discussed in Section 1.2, terminating with the production
of elements near Ca. Although the rp-process involves a complex network of capture reactions
and beta decays, it has been shown that uncertainty in the 30P(p,’y)318 reaction rate plays

a key role in determining the synthesis of heavier elements in the rp-process [88].

56



Additionally, the structure of the final state nucleus, 1S, remains largely unknown. Past
experimental studies that examined this nucleus yielded conflicting results for the final state
spins and parities [89, 90, 91] and updated shell model calculations which include the full
sd-pf model space indicated that contributions from negative parity resonances are likely to
dominate the proton capture reaction rate in the Gamow window [92, 93]. Determining the
exact location and spins of these negative parity states is crucial to minimizing the large
uncertainties remaining in the proton capture reaction rate.

However, direct measurements of 30P(p,’y)3lS are not currently feasible. P has a half
life of 2.5 minutes, so experiments must be run in inverse kinematics with rare isotope beams.
Beam energies must be well below the Coulomb barrier to directly populate the final states
of interest (E), < 500 keV), greatly suppressing the reaction cross section and rendering the
radioactive isotope beam intensity insufficient for a direct measurement. For these reasons,
the 30P(d,n)318 transfer reaction has been used to probe the astrophysical capture rate

through the extraction of spectroscopic factors, as described in Section 2.3.2.

4.1.2 Experimental and Theoretical Methods

The experimental 3'P(d,n)3!S transfer cross sections were measured by our collaborators
at the National Superconducting Cyclotron Laboratory at Michigan State University [94].
A 30 MeV/u beam of 30P was created via in-flight fragmentation and impinged on a solid
deuterated target, populating the excited states of interest in 31S. These excited states
quickly decay to bound states, releasing v rays that were detected by GRETINA (Gamma-
Ray Energy Tracking In-beam Array) which surrounded the target. GRETINA is a high-
resolution, high-efficiency, v ray detector capable of an energy resolution around 2-3 keV in

the energy region of interest [95]. The heavy 313 reaction products have a large forward
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momentum and continue moving in the direction of the beam until detected in the S800
Spectrograph [96]. This method can be used to determine the transfer cross section to
each of the excited states of interest through 3!S-v coincidence. The cross section to the
ground state, however, cannot be measured directly because it will not decay via v emission.
Additionally, the outgoing neutron is not detected and the ~ ray statistics are insufficient to
extract angular distribution information, so only the angle integrated cross section to each
final state can be compared to theoretical calculations. This method was first validated for
the case of 26A1(d,n)27Si, successfully reproducing known spectroscopic factors and resonance
strengths [94].

We then calculated theoretical transfer cross sections for each observed state, according
to the procedure described in Section 3.1. For each of the excited states of astrophysical in-
terest, the bound state approximation provided sufficient accuracy. Spectroscopic factors for
each transition were then extracted by taking the ratio of the experimental angle integrated
cross section to the theoretical cross sections. In several cases where a transition was not
observed in GRETINA, there was an upper bound placed on the cross section and, therefore,
the spectroscopic factor. Once S is obtained, resonance strengths for each state that will
significantly contribute to the astrophysical capture rate were calculated according to the

procedure presented in Section 2.3.2.

4.1.3 Results and Conclusions

A summary of the results for the cross sections, spectroscopic factors, and relevant resonance
strengths are summarized in Table 4.1. Full results for this work are available in [3].
A key result from this work is that the three strongest states measured in this experiment

are all negative parity states and they correlate with the three states predicted to have the
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E; (keV)  Epes (KeV) JI = J}T Oexp (mb) oy, (mb) CQSezp CzSSM l wry H

6138.6(6) 80(6) (3/2F,72F) = 7/2F <0030 0188 < 0.16(7) 0
6158.5(5)  27.9(6) 7/205) = 7/2- 0.177(33)  4.94 0.036(13) 026 3

7/2(-) — 5/2%
6255.3(5)  124.7(6) 1/2F = 1/2% <0019 0938 <0.19 0 95x10712
6279.0(6)  148.4(6) 3/2t <0029  0.188 <0.16 0
6327.0(5)  196.4(6) 3/27 —1/2t 0.025(10)  1.07 0.023(12) 029 1 35(19)x 1077
6357.3(2)  226.7(3) 5/2— <0.017 1.60 <0.011 1 <14x10°6
6376.9(4)  246.3(5) 9/27 = 17/27 0.32(5) 6.21 0.051(17) 039 3

9/27 = 7/2%
6390.2(7)  259.6(7) 3/2+ <0042 0.189 <0.22 0 24x107°
6392.5(2)  261.9(3) 5/2(t) — 3/2+ 0.034(9)  4.66 0.007(3)  0.0032 2 4.8(21)x 1077
6394.2(2)  263.6(3) 11/2+ <0.018 1.20 < 0.002 4
6541.9(4)  411.3(5) 7/2+ <0037 621 <59x1073 2 <1.7x1074
6583.1(20)  452.5(20) (7/2) <0027  3.72 < 0.007 3

Table 4.1: Summary of results from [3] for the study of 3'P(p,y)3!S via 30P(d,n)3!S. Tran-
sitions which were not observed in the experiment provide upper limits for the experimental
cross sections and spectroscopic factors. Theoretical spectroscopic factors are shown for ob-
served transitions and were produced via the shell model using the USDA Hamiltonian [4]
for positive parity states and the WBP Hamiltonian [5] for negative parity states. Reso-
nance strengths are shown for states that will contribute significantly to the proton capture
reaction rate, noting that states with high [ value will be suppressed.

largest spectroscopic factors by shell model calculations. It is notable however, that all
of the measured spectroscopic factors corresponding to negative parity states are about an
order of magnitude smaller than those predicted in the shell model. This indicates that
the single-particle strength is, in fact, highly fragmented. This is not unreasonable given
the complicated structure of the odd-odd nucleus, 30P, which has many low-lying excited
states. This result also indicates that the remaining single-particle strength must lie higher in
excitation energy than about 6.7 MeV (about 0.5 MeV above the proton emission threshold).
Above this energy, proton decays begin to compete with and dominate vy decay as a means to
depopulate excited states in 31S and, once this occurs, it is no longer a good approximation
to purport that I'y > I'y. In this case, the resonance strength becomes sensitive to both the
proton decay width and gamma decay width, invalidating the approximation in Equation

(2.33) and the experimental method.
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Figure 4.1: The proton capture reaction rate for various final states of 30P(p,7)318 in the
astrophysical temperature range relevant for novae. Solid lines indicate the use of spectro-
scopic factors extracted from this work. In cases where a final state was not observed, the
spectroscopic factor is provided by theoretical shell model calculations. At low temperatures
the 3/2 state at 196 keV dominates the reaction rate, but at high temperatures, the 3/2%
state at 260 keV might become dominant, although this state was not observed in [3]. Figure
adapted from [3].

The resonance strengths determined or constrained by upper limits in this study can
then be used to calculate proton capture rates over the temperature range relevant for novae
events. Those reaction rates are shown in Figure 4.1. States that were experimentally con-
strained by (d,n) in this study are shown in the full lines, while results from fully theoretical
(p,y) predictions are indicated by dashed lines. In particular, the resonance strength of the
3/27 resonance at 260 keV comes from shell model calculations using the USDE interaction
calculated in [89]. For temperatures between about 0.10 and 0.17 GK, the 3/27 state at
196 keV which was first constrained by this work is expected to dominate the reaction rate.
It is notable that, because the spectroscopic factor extracted here was much smaller than
shell model predictions, this marks a significant decrease in the predicted reaction rate at

low temperatures. Above about 0.17 GK, the 3/2% resonance at 260 keV is predicted to

60



dominate the reaction rate. However, this state was not measured in the work presented
here and, therefore, the reaction rate shown in Figure 4.1 is based solely on shell model
predictions, which is likely to be significantly higher than the true reaction rate. Measuring
this state will be crucial to further reducing the uncertainty in the 30P(p,'y)318 reaction rate.
Nevertheless, this study marks the first experimental constraints of the 30P(p,’y)318 reaction
rate and has reduced the overall uncertainty, particularly at temperatures between about
0.10 and 0.17 GK, in this key reaction for novae nucleosynthesis.

While this work was able to successfully constrain the spectroscopic factors for states in
319 it is oftentimes difficult to determine the correct { and j values for the single particle,
final state, resonances. This information is encoded in the shape of the angular distribution,
whose first peak is pushed towards higher angles for higher values of angular momentum
transfer ({). This probably is particularly pronounced for targets with non-zero spin, allowing
for more angular momentum couplings. Additionally, spectroscopic factors extracted at the
first peak of the distribution, as opposed to from the total angle integrated cross section,
are more exact. For this reason, an experimental advance that allowed for a measurement of
angular distributions would be useful. This is difficult in the case of (d,n) transfer reactions

where beam rates for radioactive isotopes are relatively low and, of course, detection of the

emitted neutrons in the final state is much more difficult that charged particle detection.

4.1.4 2Al(d,n)*Si

In type-I x-ray bursts (XRBs), a neutron star is in a binary system with a companion, low
mass main sequence or red giant star, which is accreting hydrogen rich material onto the
surface of the neutron stars. The transferred mass reaches high temperatures and densities

until it eventually ignites thermonuclear runaway powered by hydrogen and helium burning
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[23]. Recent advances in modeling XRBs could allow us to constrain neutron star properties,
such as the mass and radius, but these models depend on nuclear reaction network inputs.
Therefore, it is essential to reduce the large uncertainties in some key hydrogen and helium
burning reaction rates in order to obtain meaningful neutron star properties from these
models.

The 23Al(p,7)24“Si reaction rate has been shown by systematic studies to have a significant
effect on the XRB light curve [97, 98]. These curves, which show luminosity over time, are
the primary observables of XRBs. Similarly to the 30P(p,’y) case, direct measurement of the
proton capture reaction on 23Al is not possible because of Coulomb suppression of the cross
section to final excited states of interest. Additionally, 23Al is unstable, with a half-life of
about 0.47 seconds, so the experiment must be performed in inverse kinematics. Therefore,
the 23Al(d,n)24Si transfer reaction is used as a probe for the astrophysical capture rate.

A similar procedure to that described in Section 4.1 was used to measure the 23Al(d,n)%4Si,
this time using a 48 MeV/u beam of 23 Al impinging on the deuterated target. As before,
GRETINA was used to measure v rays from the de-exciting final state in 24Si in coincidence
with heavy ion detection of 24Si in the S800. Unique to this experiment was the addition
of the low-energy neutron detector array (LENDA) to also measure the outgoing low en-
ergy neutrons from the (d,n) transfer. This setup allows for a complete measurement of the
transfer reaction and, if enough neutrons are detected, could provide angular distribution
information for the cross sections of various excited states, simplifying the comparison to
theoretical calculations.

Theoretical transfer cross sections were produced in the ADWA framework using FRESCO
and TWOFNR using the same potentials and procedures discussed in Section 3.1. As before,

the theoretical spectroscopic factors were calculated in the framework of the shell model, this
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time using the USDB interaction [4]. Because the ground state of 23Al is 5/2%, there are
many possible values of [ transfer that couple to the appropriate initial and final spin of the
target nucleus. Therefore, these theoretical cross sections for each [ value were combined to

obtain experimental spectroscopic factors according to the relation

2 Q1 )
025«2' _ C theo ™ Ptheo « Oexp (4 1)
exp ” 7 p :
Zi/(CQScheo X Uiheo) Ttheo

where the sum over i’ runs over all of the possible [j quantum number combinations for each
of the final excited states. A summary of these results for the observed populations of states
in 24Si are shown in Table 4.1. The partial cross section listed for the ground state was
obtained by subtracting the sum of all excited state cross sections measured in GRETINA
from the total cross section measured in the S800. The state at 3471 keV has two possible
spin assignments, 07 or 47, and no conclusion was made regarding this state, so both results

are given. Resonance strengths are shown for the resonance states measured in this work.

H Ey (keV) Epes (KeV)  JT = J7  0cap (ub) oy, (ub) C?Sezp C?Sgpr

0 <271 98 <28 344
1874(3) 2f = 0f,  263(83) 139 0.6(2) 027
473 0.07(2)  0.03 3/2
411 04(1)  0.17 5/2

I g wry H
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2
3449(5) 156 (2) =2 78(41) 86 0.7(4) 045 0 1/2 42x107°

2

2

2

2

2

5/2
1/2

402 0.002(1)  0.001 3/2
349 0.3(2)  0.176 5/2

3471(6) 178 (47) — 2] 54(30) 722 0.07(4)  0.016 3/2 52x1077
629  0.004(3)  0.001 5/2

(0F) — 2 54(30) 69 0.8(4) 0.24 5/2 5.0x10°6

Table 4.2: Summary of results from [6] for the study of 23Al(p,y)?*Si via 23Al(d,n)?4Si. Ten-
tative spin allocations for states in 2#Si are shown in parenthesis and a final spin assignment
could not be determined for the 3471 keV state. The ground state cross section represents an
upper limit. Theoretical spectroscopic factors were produced in the shell model framework
using the USDB interaction [4] and theoretical spectroscopic factors were determined using
the relation given in Equation (4.1).

Unfortunately, due to low reaction yield, there were only about 100 counts registered in
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LENDA between 6 and 16 MeV at the measured angles. With these low statistics, it was not
possible to distinguish individual neutron distributions for the various final states measured
in 24Si. However, the total differential cross section could still be used to independently verify
the results obtained from the GRETINA/S800 measurement. Each of the single | transfer
theoretical cross sections could be weighted by their respective experimental spectroscopic
factors and summed to create a total differential cross section and compared to the total cross
section measured in LENDA. This comparison is shown in Figure 4.2 where the dashed lines
indicate the uncertainty in the experimental spectroscopic factors. The agreement between
the two measurements is remarkable and demonstrates the potential of using this method to

extract all of the required information for astrophysical reaction rates with one experiment.

3-5 L .. L) | | L) 1 L) | | L) | | 1 | | ]
30; @ This Work ]
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Figure 4.2: Differential cross section for 22Al(d,n)?4Si in the center of mass system using the
LENDA detector (blue dots) compared with the sum of theoretical distributions calculated
using ADWA | weighted by experimental spectroscopic factors (solid pink). The error bands
(dashed lines) are due to the uncertainty in the experimental spectroscopic factors. Figure
adapted from [6].

When the results of this work are applied to the astrophysical reaction rate for 23A1(p,7)24Si,

the uncertainty is reduced by as much as 3-4 orders of magnitude in the temperature region
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relevant for XRBs. This is shown in Figure 4.3. This reduction in uncertainties will allow

for improved constrains on neutron-star compactness from XRB observations.
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Figure 4.3: The 1-0 uncertainty band of the reaction rate determined by [6] is shown in grey,
compared with the previous 1-o uncertainty outlined in black. The green dashed line shows
the recommendations from the REACLIB database which contain reaction rates to be used
in astrophysical model calculations. The blue line shows the REACLIB value decreased by
a factor of 30, which fell within previous uncertainties, but would be able to remove the by
pass of material from the 2?Mg waiting point [16]. Figure adapted from [6].

4.2 Charge-Exchange Results

Investigation of charge-exchange reaction dynamics has not yet incorporated some of the
recent developments developed for other reaction channels, such as transfer reactions and
Coulomb dissociation (see [99, 55, 56, 57, 58]). In this work, we have begun some of these
explorations and, in this chapter, we present the results of this initial study. In this work, we

examined many facets of charge-exchange through a reaction theory lens, including the sensi-
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tivity to the interaction which mediates charge-exchange and what effect the charge-exchange
formalism has on the resulting cross sections (i.e. two-body vs. three-body framework).

We focused on (p,n) charge-exchange reactions to IAS in 4a 48Ca, and 9%Zr. These
targets were chosen because they span a large range of nuclear masses, their valence nucleons
occupy shells with a large range of orbital angular momentum values (1), their final IAS are
bound and, therefore, amenable to being modeled by our three-body formalism, and there is
experimental charge-exchange cross section data available for each target’s IAS transition.
Each of these reactions are studied at three different lab energies: E=25, 35, and 45 MeV. It is
worth noting that this energy range is much lower than charge-exchange reaction experiments
typically used to extract transition strengths (i.e. B(GT)) using relations such as Equation
(1.1). We chose to focus on this energy regime for a couple different reasons. First, in our
current study we chose to study transitions between 0 IAS. Experimental data for these
types of transitions are most common in this 20-50 MeV energy region. Additionally, a large
motivation for studying charge-exchange reactions is to probe properties of the isovector
density, which is most efficient with lower energy projectiles which probe the surface region
of the target.

Experimental cross sections for 14C(p,n) are taken from Taddeucci et al., where the
reaction to the IAS was measured at Ej,;, = 25.7, 35 and 45 MeV [17]. Experimental error
bars were estimated to be around 10% for all data points. Experimental charge-exchange
cross section for 48Ca(p,n) and 90Zr(p,n) come from Doering et al., in which transitions were
measured at Ej,, = 25, 35 and 45 MeV for both targets [18]. For most data points in these
sets, a 7% error bar was reported, although some data points, usually at large angles, have
a larger percent error.

The charge-exchange results are organized in the following way: Section 4.2.1 presents
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the results from our study of the two-body formalism introduced in Section 2.4.1. Calcu-
lations were performed using CHEX. This work is similar to the (p,n) reactions calculated
in Danielewicz et al.[10], but here we will extend our calculations to explore the effect of
utilizing different OMPs in the Lane potential which mediates the charge-exchange. We
present results utilizing KD and CH89 optical potentials [1, 2]. Additionally we compare
these results to experimental data.

Next, in section 4.2.2 we will present the results for charge-exchange reactions in the
three-body framework introduced in Section 2.4.2. First, we comment on overall features of
the cross sections in the framework, including trends with beam energy, target mass, and
angular momentum of the valence nucleon. In this work we also explore the effect of various
NN potentials, specifically the Gogny and AVS8’ interactions [82, 75, 83] and the effect of
using different OMPs for the scattering wave functions. Finally, we compare these results to
data and discuss the quality of that description.

In Section 4.2.3 we will explore the differences between results produced in the two-
body and three-body calculations. Specifically, we explore the cause of significant differences
in the magnitude and shapes of the angular distributions from two-body and three-body
calculations. Finally, Section 4.2.5 discusses the limitations of this study, and the models
used herein. We explore the possible effects of these constraints and present key areas for

future exploration and extension.

4.2.1 Two-Body Results

In the first part of our charge-exchange study we calculated TAS charge-exchange transi-
tions using a two-body formalism and a Lane-type potential to mediate the charge-exchange

transition, as introduced in Section 2.4.1. For all cases presented here, we calculated the
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charge-exchange cross section using two choices for the OMPs (KD and CH89). For con-
sistency, the given parameter set was used to calculate both the distorted waves for the
projectile-like nucleon and the Lane potential. Calculations for each of the cases studied
here required less than 10 partial waves to converge and each calculation takes only a few
seconds to run. In addition to the charge-exchange presented here, each run calculates the
elastic scattering cross section for the incoming and outgoing nucleon. Although it does not
effect the charge-exchange results presented here, we note that, as a general rule, the CH89
parameter set requires more partial waves than KD to converge the elastic scattering cross
sections. This could be relevant to future work which makes use of these elastic scattering
cross sections, particularly in applications to uncertainty quantification.

The two-body charge-exchange cross sections for each of the targets considered in this
work are shown in left hand panels of Figures 4.4 (14C), 4.5 (48Ca), and 4.6 (Zr). Panels
(a), (b), and (c) show the results for £, = 25, 35, and 45 MeV, respectively. Insets show the
same information in a log scale, which is particularly helpful for clarifying behavior at large
angles where cross sections are typically small. First we will remark on general properties of
the results. Notably, all calculations are peaked at forward angles, which is compatible with
the data that indicates a direct reaction process.

When comparing cross sections produced with KD versus CHS89, it is clear that the choice
of OMP has a large impact on the angular distributions that are produced. Although the
general features of the cross sections for all targets and energy are preserved, the magnitude
can change drastically between KD and CH89. Additionally, the diffraction patterns in
the angular distributions are often shifted relative to one another, which is to be expected
because the diffraction pattern is closely related to the radius parameter of the interaction

(rg) which varies between OMPs. One way to quantify the spread caused by the choice of
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OMP is to look at the percent difference in the value of the cross section at the first peak.
This percent difference ranges from 21% for *8Ca(p,n) at 25 MeV, to 140% for 9OZr(p,n) at
25 MeV. There is no clear trend with either target mass or projectile energy. The average
percent difference over all of the cases presented here is 50%. As mentioned earlier, the
variation produced through various choices of OMP gives a rough idea of the uncertainty in
the calculation. The 50% value mentioned here is similar magnitude to the standard 30%
uncertainties that are often cited in transfer reactions [100]. Of course, this is a very rough
estimate and the 50% value here is the result of a given choice of two OMPs. This value
would surely be different if we compared two different parameter sets. Still, this variation is
sizable and a more rigorous uncertainty quantification effort, like those by Lovell et al. [68]
which apply Bayesian methods to uncertainty quantification in transfer reactions, should
be applied to charge-exchange. The full results for the percent difference are shown in the

column labeled "2-Body Apjsp’ in Table 4.3.
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Figure 4.4: Charge-exchange cross sections for the 14C(p,n)14NIAS transition at Ej,, =
25 (a), 35 (b), and 45 (¢) MeV. The left column shows the results for calculations using a
two-body formalism with Lane potentials using OMP parameters from KD (solid blue) and
CHS89 (dashed pink). The right column shows the results for calculations using a three-body
formalism. The solid/dashed blue lines utilized the AV8’ NN interaction and distorted waves
derived from KD/CHS89. The solid/dashed pink lines utilized the Gogny NN interaction
and distorted waves derived from KD/CHS89. Insets show the same results in a log scale.
Experimental data from [17] is shown in black.
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Figure 4.5: Charge-exchange cross sections for the 4SCa(p,n)488cI AS transition at Ewp =
25 (a), 35 (b), and 45 (c¢) MeV. The left column shows the results for calculations using a
two-body formalism with Lane potentials using OMP parameters from KD (solid blue) and
CHB89 (dashed pink). The right column shows the results for calculations using a three-body
formalism. The solid/dashed blue lines utilized the AV8" NN interaction and distorted waves
derived from KD/CH89. The solid/dashed pink lines utilized the Gogny NN interaction
and distorted waves derived from KD/CHS89. Insets show the same results in a log scale.
Experimental data from [18] is shown in black.
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Figure 4.6: Charge-exchange cross sections for the 9OZr(p,n)90NbI AS {ransition at Ewp =
25 (a), 35 (b), and 45 (c¢) MeV. The left column shows the results for calculations using a
two-body formalism with Lane potentials using OMP parameters from KD (solid blue) and
CHB89 (dashed pink). The right column shows the results for calculations using a three-body
formalism. The solid/dashed blue lines utilized the AV8" NN interaction and distorted waves
derived from KD/CH89. The solid/dashed pink lines utilized the Gogny NN interaction
and distorted waves derived from KD/CHS89. Insets show the same results in a log scale.
Experimental data from [18]is shown in black.

Our two-body calculations can also be compared to experimental charge-exchange cross
section data. As can be seen in panels (a)-(c) of Figures 4.4, 4.5, and 4.6, it is clear that
the two-body charge-exchange calculations are able to capture the overall features of the
charge-exchange data at small and large angles. Quantitatively, one option to explore the

"goodness of fit” is through the traditional x2/N, defined as [67]
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Reaction Percent Difference Evaluated at 0.

Target | Ej,p (MeV) || 2-Body Aparp | Gogny Aparp | AVS Apayrp | 3-Body Ay n
¢ 25 21 12 15 190
e 35 39 20 17 191
14¢ 45 40 21 18 192
8Ca 25 67 54 51 161
18Ca 35 12 37 146 159
8Cq 45 35 30 45 168
N7y 25 141 143 145 144
W07y 35 51 104 101 149
N7y 45 53 66 83 146

Table 4.3: Percent difference evaluated at the first peak for cross sections produced using
different models.

N O'thi — g€TP(; 2
X2:;< Ol )

where ¢ sums over all of the data points, and Ac(i) is the error in data point ¢ and N
is the number of data points. In the cases studied here, the typical experimental percent
error was 10% for the reactions on 14C and 7% for reactions on *¥Ca and 99Zr. The second
metric we will use is the percent of data, including experimental error bars, which falls
between the normalized curves produced for each target/energy pair with differing choices of
OMP. The rational is that two curves resulting from varied OMPs give a rough idea of the
theoretical error, so this number represents that percent of the data which can be reproduced,
within experimental and theoretical error bars. A summary of these values for the two-body
calculations are given in Table 4.4.

The average x> /N and normalization values for two-body calculations produced with KD
and CH89 OMP are very similar, implying that neither potential is preferable to describe
the data. This notion is backed up by visual inspection of the cross section calculations

in comparison to data. Although a particular potential may describe any specific data set
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Reaction 2-Body KD | 2-Body CH89 | 2-Body Apyrp
Target | By, (MeV) || x?/N | Norm | x?/N | Norm % Data
1i¢ 25 520 | 0.60 | 1.67 | 0.80 33.33
¢ 35 833 | 0.60 | 5.73 | 0.60 33.33
¢ 45 0.86 | 0.50 | 0.51 | 0.60 70.00
48Ca 25 16.02 | 1.00 | 16.87 | 2.30 13.89
BCa 35 22.05 | 0.50 | 5.94 | 1.40 30.30
8Ca 45 322 | 1.40 | 5.63 | 1.40 24.00
N7y 25 13.87 | 1.10 | 21.40 | 7.10 24.24
N7y 35 15.10 | 1.10 | 22.87 | 2.90 16.67
N7y 45 834 | 1.00 | 528 | 3.70 34.38

Average 31.13

Table 4.4: Numerical comparison of two-body charge-exchange angular distributions to ex-
perimental data. The final column shows the percentage of the data, including experimental
errors, which falls between the theoretical curves produced by two-body calculations with
the KD and CH89 OMP.

better than the other, the opposite may be true for a different target/energy combination.
This is unsurprising because OMPs are fit to large data sets and, while their fit might favor
particular nuclei, they are optimized to best describe trends in elastic scattering data over a
wide range of energies and target masses.

Finally, the percent of data captured by two-body calculations with various OMPs are
shown in the final column of Table 4.4. The two-body calculations do a reasonable job of
capturing trends in the data considering that these calculations included no free parameters,
describing at least some data points in all cases. The percentage of captured data ranges
from 13.89% for the case of ¥¥Ca(p,n) at 25 MeV, and 70.00% for the case of 1*C(p,n) at 45
MeV. The average percent of data captured among all data sets for our two-body calculations

is 31.13%.
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4.2.2 Three-Body Results

Next we present the results of our charge-exchange calculations utilizing the three-body
formalism introduced in Section 2.4.2. For these calculations, we study the same IAS transi-
tions in 14C, ¥8Ca, and P97Zr at Ej,, = 25, 35, and 45 MeV. For these calculations, the Lane
potential operator is replaced by a NN operator which acts directly between the projectile
and valence nucleons. For our study here, we considered the bare AV8 and in medium
Gogny interactions (see Section 3.2.3) [75, 83, 82] . For the case of AV8’, we included isospin
contributions from the central, tensor, and spin-spin operators. For the Gogny interactions,
we included isospin contributions from the central and spin-spin operators. Additionally,
incoming and outgoing distorted waves were calculated using the KD and CH89 OMPs for
all cases.

In the three-body formalism, we incorporate a bound state wave function for the valence
nucleon in the target which will undergo charge-exchange. Each bound state is calculated
using a real Woods-Saxson potential with quantum numbers, [ and j. The angular momen-
tum of each state, j, should match the spin of the core because we only consider transitions
between 0" TAS in this work. The excitation energy of the bound state is an input to CHEX
and the user then adjusts the depth of the Woods-Saxson potential (V},) to reproduce the
experimental binding energy. The other Woods-Saxon parameters, rg and a, are fixed at
1.25 fm and 0.65, respectively. There is also a spin-orbit term included in the bound state
potential with a depth of 6.0 MeV. The parameters used to define the bound states used in
these calculations are given in Table 4.5.

Charge-exchange reactions can involve a complicated admixture of transitions between

initial and final states. In the work presented here, we only include a single transition
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Nucleus | Ez(MeV) | 1| j | Core Spin | Binding Energy (MeV) | V;, (MeV)
¢ gs. 1105 0.5 8.17 48.6
4N 2.31 1105 0.5 5.24 48.7
8Ca g.s. 3135 3.5 9.95 51.7
483, 6.67 3135 3.5 2.67 51.2
A g.s. 4145 4.5 11.97 46.6
90N 5.01 4145 4.5 0.07 58

Table 4.5: Bound state parameters used in the three-body calculations with CHEX.

between single particle states. While this is not, in general, a good approximation, here we
study a limited set of cases involving transitions between 07 isobaric analog states. In each
of the target nuclei, 14C, #¥Ca, and 90Zr, there is a shell closure or subshell closure for both
proton and neutrons, indicating a simpler nuclear structure. To further test the validity of
this assumption, we explicitly calculated the one body transition densities between *8Ca and

483¢ [101]. The one body transition density is defined as

(Sl @ M)

NN ’

OBTD = (4.3)

where A = 1 and aza’q, is the creation operator which creates a particle with isospin projec-
tion ¢ = —1/2 (neutron) with single particle quantum numbers, kq. @ 5.4 is the annihilation
operator which destroys a particle with isospin projection ¢ = 1/2 (proton) with single par-
ticle quantum numbers kg. The calculation yielded a one body transition density very close
to 1 (0.98648) for the f; /2 = f7 /2 transition and gave negligible contributions for each other
transition included in the calculation. Similar calculations were performed indicating the the
140 transition was similarly dominated by a single P1/2 transition. For the IAS in %9Zr, the

99/2 = 99/2 transition is the most important configuration with a OBTD of 0.85, although

there is a secondary py /o — py /9 transition with a OBTD of 0.14 which is not included in
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this work. However, as discussed later, we find that the cross section for a p; /2 = P1/2
transition is negligible compared to the cross section from the gq /2 = 99/2 configuration.
This gives us confidence that the single-state approximation made throughout this work is
valid these these specific transitions.

First we examine the three-body charge-exchange cross sections produced using the AV’
interaction, shown in Figure 4.7. Calculations for three-body cross sections with AV8’ require
about 10 partial waves to converge for all cases studied here, and typical run times range
from about 1 min for the isospin central term to about 5-10 minutes for the isospin spin-
spin term, although these calculations could be further optimized for speed. This quick
convergence indicates that, even though our NN interactions have large radial form factors
at 719 = 0, once the interaction is folded with our wave functions, the resulting T-matrix
is well behaved. As with the two-body case, we observe that cross sections are peaked at
relatively forward angles, consistent with the data which indicates a direct reaction process
in all cases. In this figure, the cross section resulting from the isospin central, tensor, and
spin-spin operators are shown separately, as well as the total cross section. We observe that,
depending on the case, contributions from various components of the interaction can add

constructively or destructively.
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Figure 4.7: Charge-exchange cross sections for the 14C(p,n)14NIAS, 48Ca(p,n)4gScIAS, and
D7r(pn)ONLIAS transitions at Ej,, = 25, 35, and 45 MeV calculated using the AV’
potential. The contribution to the cross section from various potential operators are shown
in dashed black for central, dotted green for spin-spin, dash-dotted red for tensor, and solid
blue for the total cross section. Calculations shown here use the KD OMP for to calculate
distorted waves.

As the beam energy increases, both the individual components of the cross sections
and the total cross sections increase in magnitude and their first peaks shift to more forward
angles. The location of the first peak of the total cross section increases with target mass, but
in the cases chosen here, this also correlates to an increase in the angular momentum of the

valence neutron, [. In order to try to disentangle these two effects, we ran a test calculation
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of charge-exchange on ®8Fe which is heavier than *8Ca, but has a valence nucleon with =1,
opposed to [=3 in 48Ca or I=4 in PZr. The results of this calculation are shown in Figure
4.8. The 58Fe(p,n)58Co cross section peaks around 30 degrees, compared to 52 degrees for
4BCa(p,n)*BSc and 25 degrees for 1*C(p,n)!*N. This indicates that the location of the first

peak is a convolution of target mass and valence nucleon angular momentum.
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Figure 4.8: Charge-exchange cross sections for the ?Fe(p,n)?2Co!4% transitions at Fj,, =
23 MeV calculated using the AV8’ potential. The contribution to the cross section from
various potential operators are shown in dashed black for central, dotted green for spin-spin,
dash-dotted red for tensor, and solid blue for the total cross section. Calculations shown
here use the KD OMP for to calculate distorted waves.

Contributions from the central term dominate the calculations at all energies in 14C(p,n) 1N,
but, expectedly, contributions from the tensor term grow with increased values of [, com-
peting with the central term in 48Ca (I=3) and dominating in %Zr (I=4). Calculations
of 58Fe(p,n)°2Co show a dominant contribution from the central term, indicating that the
growth in the tensor term is, in fact, related to larger values of [, as opposed to target mass.

It is worth noting that while the spin-spin term is negligible in 48Ca and W07y it repre-
sents a sizable contribution in C I=1 . This can also be observed in "®Fe. One possible

explanation is related to the spin-spin operator’s radial form factor which can be seen in
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Figure 3.4. The spin-spin radial form is the only component of the NN interactions consid-
ered in this work which contains both an attractive and repulsive region, crossing through
0 MeV at around 0.5 fm. The degree to which various regions of the potential form factor
will contribute to the cross section is related to the two dimensional radial integral of the
potential along with the incoming and outgoing scattering and bound state wave functions.
Because "8Fe and 14C have (=1, their bound state wave functions peak at lower values of
the internal radial coordinate, r9.. This could result in capturing a larger portion of the
attractive spin-spin interaction, resulting in a larger contribution to the overall cross section.

Next we examine the three-body charge-exchange cross sections produced using the
Gogny interaction, shown in Figure 4.9. Calculation time and convergence properties for
calculations with the Gogny interaction are very similar to their counterparts in AV8’ calcu-
lations. Again, we observe forward peaked cross sections, consistent with a direct reaction
process in all cases. In this figure, the cross section resulting from the isospin central and

spin-spin operators are shown separately, as well as the total cross section.
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Figure 4.9: Charge-exchange cross sections for the 14C(p,n)MNIAS, 48Ca(p,n)4SSCIAS, and
QOZr(p,n)goNbIAS transitions at Fj,;, = 25, 35, and 45 MeV calculated using the Gogny
potential. The contribution to the cross section from various potential operators are shown
in dashed black for central, dotted green for spin-spin, and solid blue for the total cross
section. Calculations shown here use the KD OMP for to calculate distorted waves.

As with the AV®’ calculations, the cross sections produced using Gogny grow in mag-
nitude and become more forward peaked with increased beam energy. Unlike the results
from AV8’) the central term of the Gogny interaction dominates for all target and energy
combinations. This is unsurprising given that, in Figure 3.4, we see that the isospin central
and spin-spin terms are both repulsive potentials with similar form factors, except that the

central term is about 5 times larger in magnitude.
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We next consider the effect of the choice of KD versus CH89 OMP for the distorted waves
on the charge-exchange cross section in the three-body framework. These results, including
contributions from all potential operator terms, can be seen in panels (d)-(f) of Figures 4.4,
4.5, and 4.6. Note that in these figures, the cross sections utilizing the AV8’ interaction have
been enhanced by a factor of 10 so they could be viewed on the same scale as the calculations
using the Gogny interaction. The results for the calculations using AV8’ are shown in solid
lines, while the results utilizing Gogny are shown in dashed lines. It is clear that, while the
choice of OMP can have significant effects on the magnitude of the cross section, the angular
distributions are relatively similar, regardless of the choice of OMP. This is in contrast to
results from the two-body formalism where changing the OMP could significantly change the
shape of the cross sections, although in the two-body case, using a different OMP for distorted
waves also corresponds to changing the Lane interaction. Additionally, in the two body case,
we saw that in some cases using the KD parameters led to a larger magnitude in the cross
sections, while sometimes the opposite was true and CH89 lead to the larger cross sections.
However, in the three-body formalism, the KD OMP consistently produces the larger cross
section. This is likely related to the fact that the CH89 parameter set is more absorptive,
particularly at the surface, decreasing the contribution to the charge-exchange cross section.
The percent difference between the cross sections produced with KD versus CH89, evaluated
at the first peak, are given in the columns labeled "AV8” Aprp” and "Gogny Apprp” of
Table 4.3. We note that the percent difference seems to be loosely correlated with the mass
of the target, and has no observable trend with regards to the beam energies studied here.
The average percent difference over all targets and energies is 58% for AV8’ and 55% for
Gogny, which is similar to the 50% demonstrated for the two-body calculations.

Comparing the results from AV8’ to those obtained with the Gogny interaction, we note

82



that the cross sections produced with the Gogny interactions are consistently about an order
of magnitude larger than those produced with AV8’. The percent difference between cross
sections produced using these two NN interactions are given in the ”3-Body A" column of
table 4.3. The average percent difference between calculations produced with the AV8’ and
Gogny interactions, across all cases studied here, is 167%, which represents a significantly
larger variation than is introduced through the choice of OMP. This is easily understandable
given the relative magnitudes of the Gogny and AVS8’ central terms in Figure 3.4. This
mismatch in the radial form factor could be a result of Gogny being fit to observables which
include in medium effects, as opposed to the bare AV8 NN interaction.

Finally, we can compare results from our three-body calculations to experimental data.
As we can see in Figures 4.4, 4.5, and 4.6, calculations using both the AV8 and Gogny
interaction do a poor job of describing the experimental data, with severe mismatches in
both the magnitude and the shape of the distributions. As in the two-body case, we can
normalize our calculations to the data and calculate the percent of data, within errors,
captured by our normalized calculations. These results are shown in Tables 4.6 and 4.7 for
AVS8’ and Gogny, respectively. For the case of 14C(p,n), the cross sections utilizing the AV&’
interactions needed to be enhanced by a factor of about 50 to match the magnitude of the
data, while the magnitude of the cross section was similar to data in all other cases. The
Gogny interaction produced results that is similar to the magnitude to the data in all cases,
although it consistently overshoots experimental results.

Additionally, we can asses the quality of the calculation through the percentage of data
captured inside the rough uncertainty band defined by the two curves corresponding to
calculations with different OMPs. Visual inspection asserts that both AV8 and Gogny do

a poor job reproducing experimental data and this is backed up with this metric. Both the
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AV8 and Gogny interaction have one case where they capture none of the data within error.
Additionally, the maximum percent of data reproduced by the AV’ calculation is 38% for
the case of 14C(p,n) at 35 MeV, with an average across all cases of just 13%. The picture is
similar for the Gogny interaction, which has a maximum of 34% for the case of 90Zr(p,n) at

45 MeV and an average across all data sets of 14%.

Reaction 3-Body KD | 3-Body CH89 | 3-Body Apurp
Target | By, (MeV) || x?/N | Norm | x?/N | Norm % Data
¢ 25 484 | 58 | 551 63 0.00
4o 35 735 | 34 | 678 | 45 37.50
¢ 45 195 | 25 | 1.71 | 32 3.13

48(a 25 12.17 | 2.10 | 12.66 | 3.90 0.00
BCa 35 6.85 | 1.80 | 7.24 | 2.70 15.63
48Ca 45 6.26 | 1.60 | 5.84 | 2.50 12.50
NZr 25 13.81 | 1.00 | 18.89 | 6.20 9.38
N7y 35 9.39 | 0.23 | 9.69 | 2.00 9.38
N7y 45 6.91 | 0.50 | 6.62 | 1.20 25.00

Average 12.50

Table 4.6: Numerical comparison of three-body charge-exchange angular distributions to ex-
perimental data. The final column shows the percentage of the data, including experimental
errors, which falls between the theoretical curves produced by three-body calculations with
the AV8” NN interaction and the KD and CH89 OMP used for distorted waves.

The large variation in the magnitude and shape of charge-exchange cross sections that
results from the implementation of different interactions implies that the charge-exchange
cross section is very sensitive to the choice of interaction. With this in mind, we wished to
explore whether or not charge-exchange across a range of target masses and beam energies,
such as those explored in the work, could be well described by a potential with a simple
form, such as the Gogny interaction. For this brief exploration, we tuned the 4 parameters

which define the isospin central term of the Gogny interaction to best fit experimental data
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Reaction 3-Body KD | 3-Body CH89 | 3-Body Apurp
Target | By, (MeV) || x?/N | Norm | x?/N | Norm % Data
1i¢ 25 6.80 | 0.70 | 6.83 | 0.80 9.38
¢ 35 11.47 | 0.30 | 11.25 | 0.40 28.13
e 45 6.42 | 0.20 | 4.22 | 0.40 6.25
48Ca 25 9.93 | 020 | 888 | 0.40 3.13
B(Ca 35 13.72 | 0.10 | 18.29 | 0.10 28.13
8Ca 45 2.38 | 0.20 | 2.01 | 0.30 9.38
N7y 25 13.95 | 0.20 | 14.09 | 1.20 0.00
N7y 35 7.07 | 0.10 | 7.20 | 0.40 9.38
N7y 45 4.00 | 0.10 | 454 | 0.20 34.38

Average 14.24

Table 4.7: Numerical comparison of three-body charge-exchange angular distributions to ex-
perimental data. The final column shows the percentage of the data, including experimental
errors, which falls between the theoretical curves produced by three-body calculations with
the Gogny NN interacti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>