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ABSTRACT 

NETWORK-WIDE TRAFFIC STATE ANALYSIS: 
ESTIMATION, CHARACTERIZATION, AND EVALUATION 

By 

Ramin Saedi Germi 

The Network Fundamental Diagram (NFD) represents dynamics of traffic flow at the 

network level. It is exploited to design various network-wide traffic control and pricing strategies 

to improve mobility and mitigate congestion. This study presents a framework to estimate NFD 

and incorporates it for three specific applications in large-scale urban networks. Primarily, a 

resource allocation problem is formulated to find the optimal location of fixed measurement points 

and optimal sampling of probe trajectories to estimate NFD accounting for limited resources for 

data collection, network traffic heterogeneity and asymmetry in OD demand in a real-world 

network. Using a calibrated simulation-based dynamic traffic assignment model of Chicago 

downtown network, a successful application of the proposed model and solution algorithm to 

estimate NFD is presented. The proposed model, then, is extended to take into account the 

stochasticity of day-to-day fluctuations of OD demand in NFD estimation. 

Three main applications of NFD are also shown in this research: network-wide travel time 

reliability estimation, network-wide emission estimation, and real-time traffic state estimation for 

heterogenous networks experiencing inclement weather impact. The main objective of the travel 

time reliability estimation application is to improve estimation of this network-wide measure of 

effectiveness using network partitioning. To this end, a heterogeneous large-scale network is 

partitioned into homogeneous regions (clusters) with well-defined NFDs using directional and 

non-directional partitioning approaches. To estimate the network travel time reliability, a linear 

relationship is estimated that relates the mean travel time with the standard deviation of travel time 



 

per unit of distance at the network level. Partitioning and travel time reliability estimation are 

conducted for both morning and afternoon peak periods to demonstrate the impacts of travel 

demand pattern variations. 

This study also proposes a network-level emission modeling framework via integrating 

NFD properties with an existing microscopic emission model. The NFDs and microscopic 

emission models are estimated using microscopic and mesoscopic traffic simulation tools at 

different scales for various traffic compositions. The major contribution is to consider 

heterogenous vehicle types with different emission generation rates in the network-level model. 

Non-linear and support vector regression models are developed using simulated trajectory data of 

thirteen simulated scenarios. The results show a satisfactory calibration and successful validation 

with acceptable deviations from underlying microscopic emission model, regardless of the 

simulation tool that is used to calibrate the network-level emission model. 

Finally, the NFD application for real-time traffic state estimation in a network experiencing 

inclement weather conditions is explored. To this end, the impacts of weather conditions on the 

NFD and travel time reliability relation are illustrated through a scenario-based analysis using 

traffic simulation. Then, the real-time traffic state prediction framework in the literature is adjusted 

to capture weather conditions as a key parameter. The extended Kalman filter algorithm is 

employed as an estimation engine to predict the real-time traffic state. The results highlight the 

importance of considering weather conditions in the traffic state prediction model. 
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CHAPTER 1 – Introduction 
 

1-1- Overview and Objectives 

Improving the mobility and reliability of transportation systems is the main objective of 

traffic state analysis. This analysis can be conducted at segment- (street), node- (intersection), 

facility- (traffic corridors), traffic zone-, and network-level. Traffic state estimation is the first step 

to identify the characteristics of a traffic stream such as stability and travel time variability. Speed, 

density and flow are the three main characteristics describing the state of the traffic flow. 

Incorporating these three elements establishes the concept of fundamental diagram (FD) of a traffic 

stream. This reproducible diagram illustrates the different stages of a traffic condition at facility 

level. It is broadly used to describe the macroscopic behavior of a traffic link segment. Exploiting 

FD facilitates characterization and analysis of concepts such as the shockwave theory, speed 

oscillation phenomenon, and oversaturated flow regime in a traffic stream. 

Aggregating link FDs at the network level by averaging the traffic flow elements over all 

links of a network gives rise to a new concept, which is referred to as Network Fundamental 

Diagram (NFD) or Macroscopic Fundamental Diagram (MFD). This concept initially introduced 

by Godfrey in 1969, elaborated by Mahmassani et al. in 1984, and revisited by Geroliminis and 

Daganzo in 2008 under the MFD terminology. NFD incorporates the main traffic flow 

characteristics at the network level and is a representative of the network-wide traffic state. It can 

be used to design and implement specific control and pricing strategies to improve mobility at the 

network level (Geroliminis et al., 2012; Haddad and Geroliminis, 2012; Ramezani et al., 2015; 

Yildirimoglu et al., 2015a). NFD is well-defined and has low scatter, when congestion distribution 

in the network is homogenous (Gayah and Daganzo, 2011; Geroliminis and Sun, 2011; 

Mahmassani et al., 2013; Zockaie et al., 2014b). Analytical methods to estimate NFD based on 
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variational theory are developed previously by Daganzo and Geroliminis (2008), and later refined 

by Geroliminis and Boyacı (2012) and Leclercq and Geroliminis (2013). These methods are 

limited to urban corridors in stationary conditions and cannot be applied to large-scale 

heterogeneous networks. Estimating NFD in real-world networks, when data collection budget is 

limited and network traffic is heterogeneous and initiated from an asymmetric and time-varying 

origin-destination (OD) demand matrix, is a challenging task that is addressed in this study. 

Characterization of NFD facilitates the estimation of different performance indexes of 

transportation networks. Network travel time reliability, which can be represented by a relationship 

between network space-mean travel time and the standard deviation of network travel time per 

unit of distance (Herman and Lam, 1974; Mahmassani et al., 2012a) is one of the main network 

performance measures. In a large-scale network, estimating the travel time reliability is always 

associated with some inaccuracies, due to the heterogeneity that is imposed to the network by 

congestion distribution. 

Characterizing NFD and its connection with variability of travel time can be utilized to 

develop more efficient routing strategies (Briganti et al., 2014) and urban planning activities 

(Cirianni et al., 2013). Considering the application of heterogeneous network partitioning in traffic 

control strategies (see for example (Haddad and Mirkin, 2017; Kouvelas et al., 2017)), this study 

intends to explore impacts of the network clustering on travel time reliability measures. The main 

objective is to improve estimation of the network travel time reliability with network partitioning. 

NFD can also be utilized to assess the environmental impacts of transportation systems. 

The environmental impacts of vehicular traffic in urban transportation networks have been 

extensively studied. It is widely accepted that pollutants emitted from on-road vehicles constitute 

a majority of air pollution in urban environments (Cen et al., 2016), and have deleterious 
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consequences on human health and climate change (Grote et al., 2016; Jiang et al., 2015). In 2012, 

poor quality of air, due to vehicular emissions, was estimated to cause about 3.7 million premature 

deaths worldwide (Kumar Pathak et al., 2016). This number is expected to rise considerably in the 

next few decades. A systematic manner of investigation and policy making would therefore require 

fast and accurate estimates of emission at the aggregate level. Since accurate measurements in real 

networks are cumbersome, empirical estimation and modeling of vehicular emissions has become 

an important research topic in the disciplines of urban planning and transportation management. 

The existing body of work on estimation of vehicular exhaust emissions can be broadly 

categorized into three types of techniques – macroscopic, microscopic, and mesoscopic modeling. 

For large networks, macroscopic models are usually preferred over microscopic and mesoscopic 

models because of their simplicity, though they often do not take into account the dynamics of 

traffic flow that can significantly affect emissions. This study is an attempt to constructively bridge 

this gap by employing NFD. While existing research advocates the use of NFD in improving 

transportation management of an urban network, there is no sufficient literature on its potential in 

estimating air pollution over the network, or the influence of the aforementioned properties of 

NFD on it. 

Finally, the application of network-wide traffic flow relationships in the real-time traffic 

state estimation within a network that experiences inclement weather conditions is illustrated. The 

evaluation of in-field deployment and experimental analyses indicate that macroscopic traffic flow 

relationships are affected by changes in network supplies, such as climate change, signal 

coordination, number of accidents, and changes in the specifications of roadways and intersections. 

This study first aims to explore the impacts of weather conditions on network-wide fundamental 

diagram and travel time reliability relation through a scenario-based analysis using traffic 
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simulation. Then, it imbeds weather condition factors in a real-time traffic state prediction 

framework. The extended Kalman filter algorithm is employed as an estimation engine of this 

traffic state prediction framework. Note that this framework provides real-time prediction of traffic 

state which is different from the earlier application of NFD for traffic state estimation. 

1-2- Knowledge Gap and Research Motivation 

Despite the growing number of studies on the NFD estimation problem, there is still a need 

to further develop methods to properly estimate NFD, when network loading is not homogenous, 

data from fixed detectors and mobile probes are combined, and data collection resources are 

constrained. Data from fixed detectors are not always available uniformly throughout an urban 

network. Similarly, availability of trajectory data from mobile probes is usually geographically 

limited and yet expensive to acquire. Therefore, this study formulates a resource allocation 

problem as a mathematical model to estimate NFD, using a combined sample of vehicle 

trajectories and fixed detector data in a large-scale real-world network accounting for traffic 

heterogeneity and asymmetry in OD demand. Furthermore, this study extents this concept to take 

into account the stochasticity of day-to-day fluctuation of the OD demand and network supply. 

In addition to addressing the existing limitations in the NFD estimation studies, three 

significant applications of NFD are also presented in this research: network-wide travel time 

reliability estimation, network-wide emission estimation, and real-time traffic state estimation for 

heterogenous networks experiencing inclement weather conditions. Estimation of NFD for 

homogeneous subnetworks of a partitioned large-scale heterogeneous network facilitates the 

reliability of travel time estimation. Heterogeneity due to congestion should be taken into account 

to reflect the errors of aggregating the mean and standard deviation of travel time across the 

network. In order to mitigate the scatter in NFD shape and improve the reliability of travel time 
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estimation, this study investigates how clustering of a heterogeneous network may results into 

presenting a more robust travel time relationship for different subnetworks.  

Network-wide emission estimation is the second application of NFD discussed in this 

study. Estimation of vehicular emissions is a prominent issue in transportation planning and 

management of urban areas, especially large cities that struggle with traffic congestion. Modeling 

is an effective means of estimating emissions, broadly categorized as macroscopic and 

microscopic. For large networks, macroscopic models are usually preferred over microscopic 

models because of their simplicity, though they often do not take into account the dynamics of 

traffic flow that can significantly affect emissions. In this study, a modeling framework is proposed 

for the estimation of emissions at the network level based on the macroscopic traffic flow 

characteristics of the network commonly summarized in the form of NFD. This is achieved by 

integrating the macroscopic properties of a set of NFDs with an existing microscopic emission 

model through traffic micro-simulation for different traffic compositions. 

Lastly, the real-time traffic state prediction in the large-scale networks experiencing 

inclement weather conditions is another gap in the literature, which is aimed to be addressed in 

this research. The growing emergence of traffic congestions has imposed many direct and indirect 

expenses on roadway users. Therefore, an efficient traffic management and control system is an 

indispensable need for large-scale networks. Traffic state estimation is an important part of the 

real-time closed-loop traffic control framework. Although several methodologies have been 

developed regarding network-wide traffic state estimation, there is still the need in the literature to 

focus on the strategies that are applicable to networks experiencing inclement weather conditions. 

To this end, this research studies the problem of real-time traffic state estimation for networks with 

varying weather conditions. 
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Overall, the existing limitations in deterministic and stochastic approaches of NFD 

estimation, besides the necessity for three main applications of it are the knowledge gaps that this 

research aims to fill. 

1-3- Research Significance and Contributions 

The core objective of this study is to provide mathematical frameworks to estimate and 

predict the traffic state for heterogeneously congested large-scale networks that experience 

fluctuating demand and supply. Several novel techniques are presented based on the network-wide 

traffic flow relationships to address some of the existing gaps in the literature of the mobility 

studies in large-scale networks. The main contributions of this study are as follows: 

NFD estimation subject to a limited budget 

- This study presents a mathematical model and solution algorithm to find the optimal 

location of fixed measurement points and sampling of probe trajectories in a resource 

allocation problem framework to estimate NFD in a large-scale heterogeneous network 

with asymmetric demand. 

- The objective is to minimize the discrepancy between the estimated NFD and ground-truth 

NFD subject to a limited budget for data collection given that the availability of fixed 

detectors and probe trajectories are not always uniformly distributed across a network. 

- The main contribution of the proposed method is that it does not require any priory known 

penetration rate for probe trajectories. 

 

Traffic state estimation in heterogeneous networks with stochastic demand and supply 
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- The proposed framework for NFD estimation is modified to capture the stochasticity due 

to day-to-day changes in the network demand and supply. 

- The robustness of the model including different scenarios with various demand levels, 

weather conditions, and other influential factors in the NFD estimation problem is the main 

advantage of this approach. 

Improving travel time reliability estimation with network partitioning 

- This study explores the impacts of partitioning a heterogeneous network on the estimated 

travel time reliability measure. 

- This study also demonstrates an application of partitioning on an actual large-scale 

network, exploring the impacts of different congestion patterns in the morning and 

afternoon peak periods and comparing two partitioning approaches (directional vs. non-

directional), and two methodologies for the network travel time reliability estimation. 

- Moreover, different clustering approaches employing density and space-mean speed of the 

network elements are utilized to propose the best clustering strategy. 

Incorporating NFD into large-scale emission estimation 

- A general framework to produce a network-wide emission estimation model that can be 

easily and reliably used by urban transportation planners and agencies is proposed. The 

presented framework is flexible with respect to modeling parameters, such as the choice of 

the base micro-emission model and traffic simulation tool, which can be determined at the 

system planners’ discretion. This framework can be applied in the real-time traffic 

management and urban planning to control network emission level using incentivizing 

policies for alternative fuel vehicles or congestion management. 
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- This study addresses some key issues associated with current macro-emission estimation 

techniques: (a) It demonstrates the effectiveness of the mesoscopic traffic simulation in 

estimating emissions at a large scale with significantly low resource consumption 

compared to microscopic models. (b) It offers a way to include different vehicle classes 

without the loss of generality for generating NFD by considering their fuel type. (c) It 

allows for the inclusion of an array of road network elements in simulation and emission 

estimation, including freeways, arterial roads, signalized intersections, and interchanges. 

- The relationship between NFD and macro-emission is also discussed in the form of a three-

dimensional diagram, hereby called the network emission diagram (NED). This presents a 

qualitative interpretation of the network emission production process at different stages of 

the network loading cycle. 

Network-wide Real-time Traffic State Estimation Considering Inclement Weather Impact 

- Exploring impacts of weather conditions on network-wide traffic flow relationships 

(network fundamental diagram and network-wide travel time reliability) 

- Imbedding weather condition measures in predicting real-time traffic state for an urban 

network by modeling the network exit flow as a function of not only the network 

accumulation but also the weather variables such as visibility (in mile), snow precipitation 

rate (in inch/hour) and rain precipitation rate (in inch/hour). 

- Utilizing Support Vector Machine (SVM) algorithm to model the network exit flow 

considering the weather condition factors. 

- Solving a resource allocation problem for collecting the network accumulation data by 

equipping only an optimal subset of network links by loop detectors (instead of assuming 
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that the entire accumulation data is available). This decreases the data collection cost 

significantly and improves the algorithm performance with a limited budget. 

1-4- Research Methods and Dissertation Outline 

This dissertation includes eight chapters. The first two chapters provide the description of 

the concept and objectives of the study, as well as a comprehensive background review on the 

dissertation topic. Chapter 3 presents a resource allocation problem to find the optimal location of 

fixed measurement points and optimal sampling of probe trajectories to estimate NFD accounting 

for limited resources for data collection, network traffic heterogeneity and asymmetry in OD 

demand in a real-world network. 

In order to estimate the NFD for a heterogeneous large-scale network, data from fixed 

detectors are used to estimate flows and data from probe trajectories passing through the links with 

fixed detectors are used to estimate space-mean speed. The problem is formulated as a mixed 

integer program with non-linear constraints, which is known to be NP-hard including possible 

local optimal solutions. Therefore, an SA algorithm is used to solve the proposed model using a 

dynamic network model of Chicago. The proposed methodology incorporates the ground-truth 

NFD as an input to find a subset of links and trajectories to estimate NFD for traffic state 

monitoring. As the ground-truth NFD may not always be available, a surrogate needs to be 

obtained analytically or using simulation. Assuming that this surrogate provides the ground-truth 

NFD, the proposed methodology finds the optimal configuration of links and trajectories for data 

collection and to estimate the NFD given a limited budget. 

Chapter 4 extents the concept and formulation of the NFD estimation presented in Chapter 

3 to capture the stochasticity due to the day-to-day fluctuations in the traffic demand and network 

supply. Stochastic variations due to weather conditions, incidents, special events, work zones, and 
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service interruptions may significantly affect the approximation of an estimated NFD. This chapter 

aims to propose a modified and robust framework to estimate network traffic states and observe 

NFD, while capturing the stochasticity in transportation networks. 

Chapter 5 discusses an application of NFD in assessing one of the transportation networks 

performance measures – network-wide reliability of travel time. Network travel time reliability 

can be represented by a relationship between network space-mean and standard deviation of travel 

time. The primary objective of this chapter is to improve estimation of the network travel time 

reliability with network partitioning. A heterogeneous large-scale network is partitioned into 

homogeneous regions (clusters) with well-defined NFDs using directional and non-directional 

partitioning approaches. To estimate the network travel time reliability, a linear relationship is 

estimated that relates the mean travel time with the standard deviation of travel time per unit of 

distance at the network level. The impacts of different partitioning approaches, as well as the 

number of clusters, on the network travel time reliability relationships are also explored in Chapter 

5. To estimate individual vehicle travel times, two distinct approaches are utilized to allocate 

vehicle trajectories to different time intervals, namely trajectory and sub-trajectory methods. The 

proposed framework is applied to a large-scale network of Chicago using a 24-hour dynamic traffic 

simulation. Partitioning and travel time reliability estimation are conducted for both morning and 

afternoon peak periods to demonstrate the impacts of travel demand pattern variations. 

Chapter 6 proposes a network-level emission modeling framework based on the network-

wide fundamental diagram, via integrating NFD properties with an existing microscopic emission 

model. The NFDs and microscopic emission models are estimated using microscopic and 

mesoscopic traffic simulation tools at different scales for various traffic compositions. The major 

contribution is to consider heterogenous vehicle types with different emission generation rates in 
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the network-level model. This framework is applied on a large-scale network of Chicago as well 

as its CBD area. Non-linear and support vector regression models are developed using simulated 

trajectory data of 13 simulated scenarios. The proposed model is also used to demonstrate the 

relationship between macroscopic emission and flow characteristics in the form of a network 

emission diagram. 

Chapter 7 studies the problem of real-time traffic state prediction for large-scale urban 

networks experiencing inclement weather conditions. Note that this study extends the earlier 

discussions on traffic state estimation towards the traffic state prediction to be used proactively in 

developing control strategies, rather than traffic estimation that can be used passively. First, it 

explores the impacts of weather conditions on the network-wide fundamental diagram and travel 

time reliability relations through a scenario-based analysis. Then, a mathematical framework based 

on the supervised learning algorithms is presented to estimate the real time traffic state for a large-

scale network capturing impacts of the inclement weather conditions. 

Chapter 8 provides a summary of the finding of this study besides the potential future 

research directions. 
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CHAPTER 2 – State of the Art Review 
 

2-1- Overview 

A comprehensive review of the previous studies on network-wide traffic flow relationships 

is presented in this chapter. The concept and characterizations of the network wide fundamental 

diagram (NFD) besides the influencing factors are discussed first. It is followed by a review of 

different methodologies and tools presented for the network-wide traffic state estimation. Then, 

some applications of network-wide traffic flow relationships in addressing some of the major 

traffic related issues are presented. 

2-2- The Concept of Network Fundamental Diagram 

Simulation-based and empirical studies in the literature confirm the existence of a 

consistent and well-defined network-wide relationship between flow and density known as 

Network Fundamental Diagram (NFD), also known as Macroscopic Fundamental Diagram (MFD) 

(Godfrey, 1969; Mahmassani et al., 1984; Williams et al., 1985; Mahmassani et al., 1987; 

Geroliminis and Daganzo, 2008; Buisson and Ladier, 2009). NFD is an important indicator of the 

network-wide traffic state and is used to compare the performance, stability, travel time reliability 

and congestion characteristics of urban networks (Castrillon and Laval, 2017; Daganzo and 

Geroliminis, 2008; Geroliminis and Daganzo, 2008; Mahmassani et al., 2013a; Mahmassani et al., 

2013b; Saedi et al., 2018a). The indicators and properties of NFD are naturally important for 

studying and analyzing transportation management strategies. Ji et al. (2010) investigated the 

factors that influence the shape of an NFD and concluded the influence of factors such as weather 

conditions, demand variation, proportion of heavy trucks, and proportion of ‘well-informed’ users.  
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The heterogeneous spatiotemporal distribution of congestion across real networks often 

creates scatter and hysteresis in the NFD (Gayah and Daganzo, 2011; Geroliminis and Sun, 2011; 

Knoop and Hoogendoorn, 2013; Zockaie et al., 2014a). Network performance has been shown to 

be affected by spatial variability of congestion throughout the network (Knoop et al., 2015; 

Mazloumian et al., 2010). Moreover, at a certain level of congestion, heterogeneous networks 

undergo a bifurcation, which causes multivaluedness in the NFD (Daganzo et al., 2011). 

Studies in the literature have mostly used microscopic simulation models (e.g. Mühlich et 

al., 2015), empirical data (e.g. Geroliminis and Sun, 2011; Saberi et al., 2014a; Saberi et al., 

2014b), and simulation-based dynamic traffic assignment tools (e.g. Mahmassani et al., 2013) to 

study the factors affecting the shape and scatter in the NFD. Few studies have also explored the 

network travel time reliability in connection with NFD to further capture network dynamics and 

day-to-day variations in network traffic (Kim and Mahmassani, 2015; Mahmassani et al., 2012a). 

More specifically, Gayah et al. (2014) proposed an analytical model representing the day-to-day 

variability of travel time in a network. Boyacı and Geroliminis (2010) characterized the NFD for 

a network with variable link lengths and signal specifications, including variations caused by 

turning movements and heterogeneous drivers. 

NFD, generally, is not a new concept, but the relevant research on this topic is quite recent. 

Estimation of NFD in real transportation networks and the application of network-wide traffic flow 

relationships, which have been broadly studied during the last decade, are the main subjects to be 

discussed in the next sections. 
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2-3- Traffic State Estimation 

Three main approaches for the traffic state estimation have been proposed in the literature: 

analytical methods (e.g. Daganzo and Geroliminis, 2008; Ramezani et al., 2015), empirical 

experiments (e.g. Geroliminis and Daganzo, 2008; Saberi and Mahmassani, 2012), and simulation-

based approaches (e.g. Keyvan-Ekbatani et al., 2012; Saedi et al., 2018a; Zheng et al., 2012). 

Analytical methods to estimate NFD based on variational theory developed previously by Daganzo 

and Geroliminis (2008) and later refined by Geroliminis and Boyacı (2012) and Leclercq and 

Geroliminis (2013) are limited to urban corridors in stationary conditions and cannot be applied to 

large-scale heterogeneous networks. A recent study by Leclercq et al., (2014) evaluated existing 

estimation methods for NFD focusing only on homogenous network loading. They suggested that 

using the complete population of vehicle trajectories to estimate NFD is the only estimation 

method with no bias agreeing with recent findings of Saberi et al., (2014b). However, availability 

of the entire population of trajectories is still limited in urban networks and will continue to be 

limited even when connected vehicles are deployed in near future. 

Gayah and Dixit (2013) proposed a method to estimate average network density using 

probe vehicles combined with NFD. Leclercq et al. (2014) suggested that combining information 

from probe vehicles and traffic loop detectors can also provide fairly accurate estimation of NFD 

in stationary conditions even for sample rates as low as 10%. Other studies by Ortigosa et al. 

(2014) and Nagle and Gayah (2014) estimate NFD using combined mobile probes and traffic loop 

detector data. Ortigosa et al. (2014) studied the optimal number and location of measurement 

points by minimizing the error in estimated average network density. However, they overlooked 

the potential of using probe trajectory data in the NFD estimation problem. Nagle and Gayah 

(2014) proposed a method to estimate the average network density and flow using data from 
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mobile probes, given a constant and known penetration rate of probes across the network. In a later 

study, Du et al. (2015) extended the method to varying penetration rates with heterogeneous 

demand in an idealized square grid network. A limitation of this method is that the penetration rate 

of probe vehicles must be known a priori. More recently, Ambühl and Menendez (2016) proposed 

a fusion algorithm that decomposes the network into two sub-networks and uses both loop detector 

data and floating car data to estimate NFD. 

The findings of these studies are mostly limited to stationary conditions and homogeneous 

networks with the availability of all vehicle trajectories. Heterogeneity due to the spatiotemporal 

distribution of congestion across the network results in inconsistency and scattered NFDs across 

different days. Day-to-day demand and supply variation is one of the major sources of stochasticity 

in transportation networks that affect the traffic state and travel time reliability (Gayah et al., 

2014a). Moreover, the complete population of trajectories may not be available in real-world urban 

networks due to various technological or privacy-related reasons. These factors necessitate 

considering stochasticity in NFD estimation. The number of studies considering the stochasticity 

in FD/NFD estimation is limited. At the facility level, Qu et al. (2017) proposed an optimization 

model using the theorem of total probability to obtain stochastic fundamental diagrams for freeway 

segments, which can be used to develop and assess various traffic control strategies. At the network 

level, Laval and Castrillón (2015) approximated the NFD of inhomogeneous corridors and 

networks using a probabilistic method. They considered stochastic corridors consisting of different 

segment length and signal coordination. Both studies concluded that stochasticity is an important 

factor in the estimation of facility and network level fundamental diagrams. 

There are growing number of studies on the traffic state estimation problem both on 

deterministic and stochastic approaches, however, there still exists some significant limitations 
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due to simplifying assumptions in these studies. This dissertation aims to address some of these 

limitations. 

2-4- Traffic State Prediction 

Traffic state prediction is the core section of a real-time closed-loop traffic management 

system. Prediction of traffic state denotes identifying the traffic flow variables required by a system 

controller as state feedback at the next time interval. For this purpose, it is assumed that some real-

time measurements are available from the plant (system). Due to the restrictions in number of the 

data collecting sensors, data dropouts and other communication problems, the complete real-time 

traffic state variables are not easy to predict. However, for a large-scale urban network, a complete 

picture of the network should be represented by some traffic state variables. This makes the 

prediction frameworks design more complicated. In addition to the complexity in identifying 

accurate approximation of the unknown traffic state variables, it should be noted that the available 

measurements are associated with some noises. Minimizing deviations between the predicted state 

values from the ground-truth observations is the essential contribution of developing prediction 

frameworks. 

A recent study (Ampountolas and Kouvelas, 2015) presented an algorithm with the main 

objective of maximizing the network throughput. For this purpose, the critical accumulation of the 

network is predicted and utilized as a set-point in feedback controllers. In a similar study, 

Saeedmanesh et al. (2019) presented a framework established on the concept of Extended Kalman 

Filter (EKF) algorithm to predict the traffic state in real-time. Kalman filter is an optimal state 

estimator utilized in linear dynamic systems that incorporates random (Gaussian) noise and 

contains a limited amount of noisy real-time measurements. The EKF algorithm, which is 

applicable for nonlinear systems, will be discussed in detail in Chapter 7. The application of this 
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framework is shown for a large-scale urban network partitioned in multiple clusters in 

Saeedmanesh et al. (2019). It is assumed that the sensor measurements (to correct the predicted 

states) are available from the entire network. This assumption, however, is not always authentic in 

large scale networks. It requires a massive resource availability to collect the measurements on 

every segments of a road network. 

In addition to EKF, the Bayesian approach is also utilized in dynamic state prediction 

(Herring et al., 2010; Hofleitner et al., 2012). In this method the state probability density function 

at every time interval is created based on the historical data (previous state values up to the end of 

the current time interval). The Bayesian approach consists of two stages: prediction and correction 

(based on available measurements) similar to the EKF approach. In the prediction stage, the state 

probability distribution is predicted based on the transition probabilities. Then, utilizing the Bayes 

theorem, the available measurements are incorporated to update the state probability distribution. 

Recursive implementation of Bayesian filter establishes another method called Particle Filter, 

which is also a powerful prediction engine (Arulampalam et al., 2002). Monte Carlo simulation is 

exploited to apply the recursive Bayesian filter in this algorithm. Particle Filter has extensive 

application in prediction problems for complex nonlinear systems. Particle filtering utilizes a set 

of particles to represent the posterior distribution of a stochastic process, where only limited noisy 

state measurements are available. 

One of the main capabilities of the methods such as EKF and PF is that these algorithms 

can provide an accurate prediction of the states that no real-time measurements available for them. 

If an explicit (or even implicit) relationship with other state variables can be established, these 

algorithms can provide a prediction for the target variable (with no measurements available) with 

acceptable accuracy. Besides the prediction engines, simulation-based models are also developed 
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for real-time traffic state predictions. DYNASMART-X is a simulation-based real-time traffic 

state estimation and prediction tool that works based on dynamic traffic assignment (DTA) (Fei et 

al., 2009). Application of DYNASMART-X facilitates the conjunction of prediction and 

estimation procedures with real-time surveillance data to design multiple traffic management 

strategies and scenarios. Utilizing DYNASMART-X enables the traffic control centers to respond 

to unfolding situations, such as bottlenecks and incidents, by providing the real-time traffic 

information to road users. The time-consuming nature of the DTA methodology makes the 

prediction process very slow in comparison to the prediction engines. This is the main drawback 

of the simulation tools in the real-time traffic state prediction problem. 

2-5- Applications of Network-wide Traffic Flow Relationships 

The concept of NFD has been extensively used in network-wide transportation and traffic 

flow analyses since 2008. Its applications have been identified in network congestion control, 

urban planning, real-time traffic estimation and prediction, emission estimation, etc. Employing 

an NFD stipulates the implementation of a new generation of traffic control schemes that enhance 

the mobility of transportation networks (Haddad and Mirkin, 2016; Mariotte et al., 2017; Ramezani 

et al., 2015; Yang et al., 2017; Yildirimoglu et al., 2015a; Zhong et al., 2017). Characterizing NFDs 

can also be used to model the uncertainty in urban network dynamics (Gao and Gayah, 2017), 

formulate the dynamic user equilibrium (Laval et al., 2017) and evaluate the environmental 

impacts of vehicular traffic in urban areas (Saedi et al., 2020). NFD is also an important factor in 

determining the long-term stability of networks (Geroliminis and Sun, 2011). This section 

discusses major applications of NFD. 



 19 

2-5-1- Network Partitioning 

Congestion naturally induces heterogeneity in a transportation network. Geroliminis and Ji 

(2011) and Saeedmanesh and Geroliminis (2016) explored the properties of NFD in a 

heterogeneous network and suggested approaches to partition the network in regions to increase 

the homogeneity level in the spatial distribution of congestion and reduce scatter in the estimated 

NFD for each region. Partitioning a heterogeneous network into homogeneous clusters based on 

the spatial and temporal distribution of link densities is expected to improve estimation of well-

defined NFDs. Along this line, Briganti et al. (2014) partitioned a heterogeneous transportation 

network based on the spatial distribution of urban activities and consequently estimated NFDs for 

partitioned sub-networks. Similarly, Huang and Gao (2014) reviewed existing heterogeneous 

network partitioning algorithms and evaluated different methodological approaches. The 

applications of partitioning of heterogeneous networks are also studied in developing traffic 

control strategies (Haddad and Mirkin, 2017; Kouvelas et al., 2017), travel time prediction (Lopez 

et al., 2017a), and speed estimation (Lopez et al., 2017b). 

2-5-2- Travel Time Reliability Analysis 

In heterogeneous transportation networks the degree of uncertainty, due to the variability 

of travel time and the behavioral characteristics of travelers, is a contributing factor in the 

reliability of the system. Travel time reliability describes the performance of a transportation 

network from the users' perspective (Chen et al., 2002; Chen et al., 2003). In the literature, the 

distance-weighted standard deviation of travel time rate is considered as a measure of travel time 

variability (Herman and Lam, 1974), and it is suggested that there is a linear relationship between 

the mean and standard deviation of travel time per unit of distance (Mahmassani et al., 2012a). 
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Characterizing NFD and its connection with variability of travel time has been utilized to develop 

more efficient routing (Briganti et al., 2014) and urban planning (Cirianni et al., 2013) strategies. 

2-5-3- Vehicular Emission Estimation 

The existing body of work on estimation of vehicular emissions can be broadly categorized 

into three types of techniques: microscopic, macroscopic, and mesoscopic modeling. Microscopic 

modeling is common in emission estimation at both vehicular and network levels (Ahn et al., 2002; 

Noland et al., 2004). These models invariably rely on vehicular motion state characteristics, such 

as speed and acceleration, rather than vehicle-specific characteristics such as engine specifications 

and drivers’ behavior (Boulter et al., 2006; Ntziachristos and Samaras, 2000). While average speed 

models neglect the role of speed fluctuations (Boulter et al., 2006; Han et al., 2016), instantaneous 

speed models are more robust in capturing traffic flow dynamics. Several studies use speed and 

acceleration profiles of individual vehicles to calculate vehicle performance measures such as 

vehicle specific power, which in turn are used to build emission estimates (El-Shawarby et al., 

2005; Qi et al., 2004; Zegeye et al., 2013). Normally, these detailed profiles are created by using 

an equivalent microscopic traffic assignment model and used simultaneously to generate the values 

of emission (El-Shawarby et al., 2005). CMEM and MOVES Lite are two of the main software 

packages that work on this principle. Alternatively, detailed vehicle trajectories are generated 

using traffic micro-simulators like PTV Vissim, Paramics, and Aimsun (Barceló and others, 2010; 

Int Panis et al., 2006), which are then used to estimate emission on a second-by-second basis (Sun 

et al., 2015). This process, however, is resource intensive and is therefore not preferred for larger 

systems such as urban road networks. 

Macroscopic emission models, on the other hand, are used on relatively larger scales such 

as the zone or network level. They typically use aggregate properties such as traffic flow and 
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density to estimate network-wide emissions without capturing variations of traffic and emission 

variables at the individual level (Dia et al., 2006). Popular packages like MOBILE (User’s Guide 

to MOBILE6.1 and MOBILE6.2: Mobile Source Emission Factor Model, 2002), EMFAC (CARB, 

2007) and COPERT (Ntziachristos et al., 2009) make use of macroscopic emission models. While 

macroscopic models can be used to approximate emissions on large scales, they systematically 

ignore important actions and interactions such as vehicle acceleration and braking that are integral 

parts of the more accurate microscopic models. As a macroscopic tool, a simplified method of 

NFD application in emission estimation is shown by Shabihkhani and Gonzales (2013) in an ideal 

ring model, but has not seen an application on large real urban road networks. 

Mesoscopic models lie between microscopic and macroscopic models in both scope and 

utility. They typically operate on presumably homogeneous platoons within the network based on 

traffic characteristics, and therefore present a somewhat reasonable approximation of microscopic 

effects of traffic dynamics without significant addition to the resource complexity. The VT-Meso 

modeling framework proposed by Zegeye et al. (2013), for example, requires using a micro-

emission model – VT-Micro (Ahn, 1999) on such homogeneous platoons, which are computed 

based on the unrealistic assumption of absolute homogeneity of traffic composition. Despite the 

apparent advantages of the mesoscopic models, the application of such hybrid approaches in 

emission estimation is currently limited to basic isolated networks, such as freeways (Zegeye et 

al., 2013), signalized intersections (Gori et al., 2013), and simple theoretical networks 

(Jamshidnejad et al., 2017). The lack of effective tools, therefore, necessitates the development of 

quick and effective techniques for large-scale emission approximation, such as in large cities that 

consist of different types of roadways and intersections. 
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2-5-4- Urban Traffic Control 

NFD has also been exploited to propose an efficient control strategy to ameliorate traffic 

congestions and delay in urban networks (Haddad and Mirkin, 2016; Mariotte et al., 2017; 

Yildirimoglu et al., 2015b; Zheng et al., 2012). Several studies employed NFD for traffic control 

purposes of single and multi-region networks (Aboudolas and Geroliminis, 2013a; Daganzo, 2007; 

Geroliminis et al., 2012; Haddad and Geroliminis, 2012; Haddad and Shraiber, 2014; Keyvan-

Ekbatani et al., 2012). Although many traffic signal control strategies have been developed, there 

is still the need for designing a framework to be applicable to heterogeneous large-scale networks. 

The required strategy entails considering the traffic congestion and propagation, especially in over-

saturated traffic flow conditions. 

The background of traffic signal control is traced back to 1980s by introducing strategies 

such as SCOOT and SCATS (Hamilton et al., 2013; Hunt et al., 1982; Robertson and Bretherton, 

1991; Sims, 1979; Yagar and Dion, 1996). Given that these strategies are not efficient under 

saturated traffic flow conditions, researchers have come up with advanced responsive strategies, 

which are unduly complex to be applied to real-time network-wide applications (Lo et al., 2001; 

Putha and Quadrifoglio, 2010). A feasible strategy for saturated traffic flow conditions is Traffic-

responsive  Urban  Control (TUC), which seeks to minimize the oversaturation and spill-back of 

link queues (Dinopoulou et al., 2006). This strategy makes use of a gating component to limit the 

inflow of the links before overloading. However, these strategies may lead to sub-optimal solutions 

when they are applied to heterogeneous networks with multi-centric congestion patterns. 

Gating is one of the most common used strategies in urban traffic control in which the 

inflow to a protected network (PN) is metered and the traffic is held back upstream. This strategy 

prevents the PN from over-saturation. The majority of the studies in this area concentrate on only 
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the control of the urban region borders, called perimeter control, using NFD. This type of control 

has been proposed for single-region networks in various studies (Daganzo, 2007; Haddad and 

Shraiber, 2014; Keyvan-Ekbatani et al., 2012).  Different control approaches have been utilized so 

as to propose an algorithm for perimeter control strategies. Ramezani et al. (2015) and Zhou et al. 

(2016) pursued a hierarchical control approach named model-predictive control to solve the 

optimal control problem. Using the current state of plant feedback, the model-predictive control 

approach acquires the current control variables of each step by solving an open-loop control 

problem (Haddad and Geroliminis, 2012). Keyvan-Ekbatani et al. (2012, 2014) proposed a 

feedback-based gating strategy that makes use of urban NFD to propose an efficient traffic control 

plan with an application to the urban network of Chania, Greece. However, these approaches may 

lack practicability in that they require precise models. Furthermore, the aforementioned perimeter 

control strategies might be suboptimal in the presence of heterogeneity in the congestion 

distribution. To address these drawbacks, Keyvan-Ekbatani et al. (2013) presented a multiple 

concentric-boundary feedback-based control strategy, which takes into account the heterogeneity 

of congestion in transportation networks. 

Several studies exploited partitioning strategies in order to split the heterogeneous network 

into multiple homogenous regions with different individual NFDs as mentioned earlier (Aboudolas 

and Geroliminis, 2013b, 2013a; Geroliminis et al., 2012; Haddad and Geroliminis, 2012; 

Hajiahmadi et al., 2013). This multiple-region strategy adds another layer of aggregated control 

approach to the previously implemented single-region perimeter control method. 

Given the significant impacts of signal timing on the existence and shape of NFD, several 

researches have been conducted to evaluate the influence of signal coordination and network 

irregularities on the shape and existence of NFD. Zhang et al. (2013) investigated the effects of 
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adaptive signal controls on the shape of NFD. They considered multiple realistic signal timing 

scenarios and compared them with a pre-designed highly adaptive traffic signal system. This study 

concludes that the NFD of a self-organizing adaptive system is situated above the realistic systems 

in terms of the performance. Similarly, Gayah et al. (2014b) and Girault et al. (2016) examined 

the impacts of adaptive traffic signal systems as well as their endogenous parameters such as cycle 

length on the network and NFD stability. 

To overcome the limitations of previous studies (Haddad, 2017; Kouvelas et al., 2017, 

2015) a hybrid signal timing strategy is suggested by Hajiahmadi et al. (2015, 2013). The proposed 

signal timing strategy is composed of a switching signal timing plan in addition to the perimeter 

control. This method showed a better performance in comparison to previous perimeter control 

strategies. Similarly, Keyvan-Ekbatani et al. (2016) examined the efficiency of a combined 

strategy including an adaptive traffic signal strategy and a perimeter control. This study concludes 

that the combined perimeter and signal timing control creates a network with lower delays and 

shorter boundary queues. However, the mentioned studies consider limited fixed timing scenarios 

for the inter-regional signal timings. Therefore, there is still a gap in the literature to propose an 

optimal signal coordination control strategy using NFD that considers the split of all signalized 

intersections in the network.  

2-5-5- Public Transportation Planning 

Analysis and evaluation of public transportation system performance is another application 

of NFD. The concept of passenger network fundamental diagram (p-NFD) is recently introduced 

in Chiabaut (2015) to create a unified relationship capturing the traffic flow of cars and buses. The 

main objective is to evaluate of the efficiency of a global transport system consisting cars and 

buses. This research shows that the p-NFD characteristics highly depend on the ratio of different 
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modes. Optimal transit strategies are proposed utilizing the introduced concept in this study. 

Exploiting simulated data, a three-dimensional NFD (3D-NFD) relating the traffic flow 

characteristics of cars and buses is presented in Zheng et al. (2013). They derived an analytical 

function for 3D-NFD of passenger network flows and suggested the presented model applications 

in monitoring traffic performance and designing optimal traffic management strategies in bi-modal 

networks. Similarly, Geroliminis et al. (2014) developed a three-dimensional vehicle NFD (3D-

vNFD) relating cars and buses network-wide accumulation and flow. They proposed a 

parsimonious model to estimate a three-dimensional passenger NFD (3D-pNFD). The presented 

framework shows a different perspective of traffic flow characteristics in bi-modal networks 

assuming that buses transport more passengers. 

Utilizing the data gathered by fixed loop detectors and automatic vehicle location devices 

(AVL) of public transport vehicles, Loder et al. (2017) presented an empirical estimation tool for 

3D-NFD. The application of the proposed framework is investigated in identifying the share of 

public transport users in maximizing trip speeds in an urban network. In a similar research, vehicle 

and passenger network fundamental diagrams (vNFD and pNFD) are employed to evaluate the 

performance of a multimodal network experiencing various traffic states (Hemdan et al., 2017). 

The reviewed studies in this section are important steps toward designing proper strategies for 

public transportation system employing the NFD concept. 

2-6- Weather Impact on Traffic Flow  

Inclement weather conditions, defined based on its type (rain, snow, etc.), duration, and 

intensity, affect the driving behavior and consequently the traffic flow characteristics (Hou et al., 

2013). Depending on the network size and specification, the network-wide traffic flow 

relationships are influenced by the fluctuation in weather indexes. According to Maze et al. (2006), 
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traffic demand, safety and flow relationships are all affected by the prevailing weather conditions. 

Drastic increase in the collision rate is reported for the networks experiencing inclement weather 

in comparison to clear weather condition (Andrey et al., 2003; Eisenberg and Warner, 2005; 

Khattak et al., 2000). The network average speed also reduces as a result of harsh weather 

conditions (Maze et al., 2006). The adverse weather has a direct impact on traffic demand volume. 

Based on the adversity type, e.g. snow versus rain (Ibrahim and Hall, 1994), trip type, e.g. commute 

versus recreational (Datla and Sharma, 2008), and hour of the day, e.g. off-peak versus peak 

periods (Datla and Sharma, 2008), the severity of the impact is different. Using the traffic data 

collected on freeways, it has been shown that the slope of the flow-occupancy curve is reduced by 

inclement weather conditions (Hall and Barrow, 1988). Highways maximum flow rate also 

decreases by adverse weather conditions (Ibrahim and Hall, 1994). 

In order to control the detrimental impacts of inclement weather on traffic flow and safety 

characteristics, different efforts have been made. Several statistical models are created to quantify 

the impacts of adverse weather on traffic flow specifications (Hranac et al., 2006). These models 

are then exploited in developing decision support systems and weather-responsive traffic 

management strategies with the main objective of system control for different scenarios of weather 

severity (Hou et al., 2013; Mahmassani et al., 2009). In order to characterize this in greater depth 

(Hou et al., 2013) presented a systematic framework to consider the weather impact in the traffic 

state estimation problem. Traffic flow models are initially calibrated for different weather 

scenarios. Then, the calibrated models are incorporated in a mesoscopic dynamic traffic 

assignment (DTA) framework to estimate the weather-sensitive traffic flow measures. 

Different statistical procedures are adopted to quantify the weather impacts on traffic flow 

relationships. Using the data collected by loop detectors in several metropolitan areas in the United 
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States, weather adjustment factors (WAFs) are developed to incorporate the impact of weather 

condition in traffic flow characteristics (Rakha et al., 2008). Calibrating weather sensitive DTA 

models for different specifications of road networks is another procedure adopted in the literature 

to capture the impacts of inclement weather conditions in the traffic flow estimation process (Dong 

et al., 2010; Mahmassani et al., 2012b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

CHAPTER 3 – A Resource Allocation Problem to Estimate Network 
Fundamental Diagram 

  

3-1- Overview 

Despite the growing number of studies on the NFD estimation, there is still a need to further 

develop methods to properly estimate NFD when network loading is not homogenous, data from 

fixed detectors and mobile probes are combined, and data collection resources are constrained. 

Data from fixed detectors are not always available uniformly throughout an urban network. 

Similarly, availability of trajectory data from mobile probes is usually geographically limited and 

yet expensive to acquire. Therefore, in this chapter a resource allocation problem is formulated as 

a mathematical model to estimate NFD using a combined sample of vehicle trajectories and fixed 

detector data in a large-scale real-world network accounting for traffic heterogeneity and 

asymmetry in OD demand. Information from mobile probes provides an accurate space-mean 

network speed while information from fixed detectors provides an accurate mean network flow as 

shown in Leclercq et al. (2014) and Ambühl and Menendez (2016). Similarly, probe vehicles can 

be applied to estimate flow only when all trajectories are available or the penetration rate of probe 

vehicles are known a priori. Building upon recent studies by Leclercq et al. (2014) and Du et al. 

(2016), the proposed method finds the optimal location of measurement points and optimal set of 

trajectories associated to OD pairs in a heterogonous network required to estimate an NFD. The 

main contribution of this chapter is, therefore, formulating NFD estimation as a resource allocation 

problem and the presented solution algorithm that facilitates estimation of NFD by optimally 

locating fixed measurement points and sampling of probe trajectories. Note that unlike some of 

the previous studies, this research takes advantage of both fixed and mobile data sources without 

the need for an aggregate pre-known penetration rate for probe vehicles. 
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The proposed mathematical model minimizes the deviation between the NFD and 

estimated network average flows and densities using the optimal configuration of detectors and set 

of trajectories from OD pairs. The optimal configuration considers a budget constraint for detector 

installation and trajectory data acquisition. In the proposed formulation, flows are estimated from 

links selected to be equipped with the detectors. However, traffic flow can only be used in NFD 

estimation, if at least a single trajectory is available to measure the link space mean speed. The 

proposed methodology incorporates the ground-truth NFD as input to find a subset of links and 

trajectories to estimate NFD, and it does not rely on the ground-truth NFD calculation method. 

Evidently, the ground-truth NFD may not be available or might just be measured for certain 

conditions. Here, the objective is the estimation of NFD in general conditions considering 

variability of demand and day-to-day traffic patterns. Therefore, a surrogate is necessary to provide 

this input such as analytical methods or traffic simulation. Assuming that this surrogate provides 

the ground-truth NFD, the proposed methodology finds the optimal configuration of links and 

trajectories to collect data and estimate the NFD considering the available budget for data 

collection. To demonstrate the performance of the proposed framework based on a certain ground-

truth NFD, the estimated NFD by the selected detectors and trajectories are compared with the 

ground-truth NFD, under a range of different demands. This comparison confirms applicability of 

the model various conditions. Note that the presented approach also contributes to estimation of 

network traffic state any given time t. Even when the ground-truth NFD is known, there is still the 

need to estimate network traffic state for traffic control purposes; in other words, where on the 

NFD the network is at any time t. 

The proposed model is a mixed integer problem with non-linear constraints. Mixed integer 

linear problems are known to be NP-hard, and non-linear constraints add more complexity by 
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providing local optimal solutions for the formulated problem. As a result, no exact solution method 

exists for large-scale network applications. Therefore, a heuristic solution algorithm, Simulated 

Annealing (SA), is implemented to solve the problem. The method starts with an initial solution 

that is randomly selected as the current solution. Then, the current solution is perturbed iteratively 

to a neighbor solution (selected randomly) and is substituted by the neighbor solution, when the 

objective function is improved. The neighbor solution is also probabilistically accepted when the 

objective function is not improved to avoid local optimal solutions. This probability needs to be 

reduced by the iteration number to ensure convergence of the algorithm. This study shows that 

how different combinations and variations in the proportion of fixed detection points and OD 

trajectories affect the estimated NFD. The focus of the chapter is not on the implemented solution 

algorithm. Therefore, no comparison with other possible solution methodologies is made. The 

study mainly focuses on the problem formulation and numerical results from a real-world network. 

The successful implementation of the SA algorithm in the numerical results section for a case 

study with large-scale network application confirms suitability of this heuristic method for the 

proposed mathematical model. The SA algorithm is a proper methodology for problems in which 

evaluation of the objective function is intuitive for a given solution of decision variables. This is 

the case for the proposed model, where average flows and densities need to be calculated for a 

given detector and set of trajectories. 

3-2- Model Formulation 

Here, the NFD estimation problem is formulated as a resource allocation problem to find 

the optimal locations of fixed measurement points and the optimal set of trajectories associated 

with OD pairs given a fixed data acquisition budget. For this purpose, the presented mathematical 

model finds a subset of candidate links for fixed detectors in order to estimate an NFD with the 
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maximum possible precision. Moreover, the mathematical model finds a subset of OD pairs in 

which their associated trajectory data are needed to improve NFD estimation. The optimal 

combination of the fixed detectors and OD pairs provides an accurate estimation of both network-

wide space-mean speeds and average flows, when a sufficient fixed data acquisition budget is 

provided. Using the space-mean speeds estimated by trajectories and estimated flows by fixed 

detectors, densities can be calculated using the traffic flow fundamental identity q=k.v. Both flow 

and space-mean speed are estimated at the link level to be later incorporated in estimation of 

network-wide averages. 

The constraints of the model limit the total number of detectors to be deployed and the total 

number of trajectories to be acquired. The optimal solution for the mathematical model includes 

the optimal measurement locations and OD pairs that provide an estimated NFD with minimum 

discrepancy from the case with no constraints on the number of loop detectors and trajectories. 

Here, a heuristic solution algorithm is also presented to estimate the optimal solution in a 

reasonable computational time frame for large-scale applications considering heterogeneous 

traffic demand distribution and asymmetric OD demand matrix. The proposed problem 

formulation is as follows. 
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In the formulation, x and y are binary decision variables, specifying if a detector is located 

on a link (xi=1) or a specific OD pair is selected to acquire data trajectories (yj=1). z and w are 

binary state variables. z specifies if there is any crossing trajectory on link i at time t based on the 

decision variable y over OD pairs. w specifies if the link should be considered for the network-

wide average value calculation or not based on availability of detectors (specified by x) and 

trajectory data over the link (specified by z). The latter is one for a specific link and time interval 

when both x and z are equal to one for that link and time interval. 
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Equation 3-1 lists the objective function as the weighted sum of squared deviations in 

network-wide average values of flow and density at different time intervals. In this equation, 

estimated network-wide average values by selected links and trajectories are compared with the 

NFD calculated by all links and trajectories. As the order of network-wide average values for flow 

and density are different, the two terms are weighted with different factors (𝜁𝑎𝑛𝑑	𝜂). Equations 3-

2 and 3-3 present NFD using network-wide average flow and density for each time interval based 

on all link flows and space-mean speeds. Note that the weighted average values are calculated 

considering the lane-length of each link. Equation 3-4 calculates the average travel time on each 

link at each time interval using experienced travel times by crossing probe vehicles at the time 

interval of interest. The probe vehicles’ travel times are considered in the average travel time, if 

the OD pair of the probe vehicle is selected in the optimal solution. This equation simply goes over 

all trajectories that can be observed (with y equal to 1) and adds the observed travel time for each 

link i along the trajectory with departure time interval of t to the total travel time for that link and 

time interval. Then, it divides the total observed travel time for each link and time interval by 

actual number of observed trajectories. Equation 5 calculates the space-mean speed for each link 

and time interval. Equations 3-6 and 3-7 specify if there is any crossing probe vehicle available 

that its origin and destination are among the selected OD pairs in the optimal solution (specifying 

z based on y). When there is at least one trajectory that crosses link i at time interval t, which can 

be observed (with y equal to 1), z needs to be equal to 1 for that link and time interval to hold 

Equation 3-6. In this case, Equation 3-7 would not be binding. When there is no such trajectory, 

Equation 3-7 sets z for that link and time interval to zero and Equation 3-6 would not be binding. 

In this model, for simplicity of the presentation, it is assumed that when an OD pair is selected, all 

trajectories traveling between the origin and destination are available for NFD estimation. The 
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model formulation can be easily adjusted to consider other assumptions such as partial trajectory 

availability for OD pairs by considering an extra binary variable for each trajectory in these 

equations (ukj). Equations 3-8, 3-9, and 3-10 determine if a link and time interval should be 

considered in the network-wide average calculation based on the availability of both detector and 

crossing probe vehicles at that link and time interval (specifying w based on z and x). Note that the 

three linear constraints in Equations 3-8, 3-9 and 3-10 can be replaced by a single non-linear 

constraint as 𝑤/( = 𝑥/ × 𝑧/(. Equations 3-11 and 3-12 estimate the average flow and density at each 

time interval over the selected links in the optimal solution with positive w. Equation 3-13 enforces 

the budget constraint by limiting the number of selected links and OD pairs. Equations 3-14 to 3-

17 are feasibility constraints for the binary variables. Note that the feasibility constraint for non-

binary variables, which is positivity constraints, is not listed in the above formulation. 

3-3- Solution Algorithm 

The proposed model, formulated as a Mixed Integer Non-Linear Program (MINLP), aims 

to minimize the deviation of the estimated NFD by a limited number of links and trajectories, due 

to the budget constraint for data collection or acquisition, and the calculated NFD using all the 

network links and trajectories. The location problems are known to be NP-hard, especially for the 

defined problem in this study where the non-linear constraints add to the problem complexity. 

Thus, a heuristic algorithm is developed to estimate NFD with optimal sampling of fixed detection 

points and OD pairs. Here, a Simulated Annealing (SA) algorithm (e.g. Černý, 1985; Davidovich 

and Mikhailovich, 1980; Kirkpatrick et al., 1983; Metropolis et al., 1953; Van Laarhoven and 

Aarts, 1987) is implemented to solve the proposed mathematical model. SA is a proper solving 

technique for the problem of interest in this study, as it can find the optimal solution without being 

trapped in local optimal solutions. Note that the problem of interest has non-linear constraints that 
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might lead to including many local optimal solutions. SA is an appropriate methodology for 

problems in which the objective function can be evaluated by simple calculations when the 

decision variables are known. This is the case for the formulated problem where given x and y, the 

objective function can be simply calculated.   

The implementation of the SA method in this study is based on the Metropolis algorithm 

(Hejazi, 1999; Metropolis et al., 1953) and the more recent implementation in Zockaie et al. (2016) 

and Ghamami et al. (2016) is followed here. The algorithm derives its underlying idea from the 

heating and cooling phenomenon of solid materials. A solid at a liquid state cooled gradually will 

form a crystal, whereas rapid cooling from the same initial condition will lead to a frozen solid. 

Accordingly, the SA algorithm usually “simulates” the process of gradual temperature decreasing. 

At each temperature, an equilibrium state should be achieved before moving to a lower 

temperature. The final solution will be achieved at the minimum or final temperature.  

The SA algorithm starts with a feasible initial solution. In each iteration, it picks a 

neighborhood solution through a local search and evaluates the objective values, C(.), at the 

current, n, and previous, m, solutions. The algorithm will then decide whether to move to the new 

solution or to stay at the current solution as follows. It sets ∆𝐶jk = (𝐶(𝑛) − 𝐶(𝑚))/𝐶(𝑚). 

If	∆𝐶jk ≤ 0, n is selected as the new solution with probability 1, and if	∆𝐶jk > 0, n is selected 

as the new solution with the probability of exp(q∆r!"
Osjt

), where Temp is a control parameter 

interpreted as the “temperature” in the cooling process. This implies that a solution worse than the 

current one may be adopted with a non-zero probability. This specification provides the 

opportunity of not being trapped in a local optimal solution. The above process continues until an 

equilibrium state is reached at a certain temperature such as Temp. In each step, Temp is reduced 

and the system is equilibrated under a new temperature. The algorithm terminates at a small Temp 
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such that any increase in the objective function value is prohibited (Zockaie et al., 2016). A 

description of the basic SA algorithm follows. 

Simulated Annealing Algorithm 

Step1: Consider an initial solution m (which assigns variable x and y to 0 or 1 for different sets of 

i and j considering the budget constraint to maintain feasibility) 

Set iteration index iter=0; Set an initial Temp0, the number of main iteration Iter and the 

number of inner iteration Inner-Iter 

Step2: Repeat Steps 3-5 Inner-Iter times and afterwards go to Step 6. 

Step 3: Select solution n close to m (finding a neighbor solution by changing one of x and y values 

for a particular i or j considering the budget constraint to maintain feasibility) 

Step 4: Calculate ∆𝐶jk = (𝐶(𝑛) − 𝐶(𝑚))/𝐶(𝑚) (where function C(.) calculates the objective 

function) 

Step 5: If ∆𝐶jk ≤ 0	,	 then set m=n; 

Otherwise, if 𝑒𝑥𝑝 vq∆r!"
Osjt#

w > Random number ∈ [0,1) then set m=n. 

Step 6: iter = iter + 1 

Step 7: Reduce Temp using 𝑇𝑒𝑚𝑝/(sz{Q = 𝑓(𝑇𝑒𝑚𝑝/(sz), if 𝑖𝑡𝑒𝑟 ≤ 𝐼𝑡𝑒𝑟 go to Step 2, else stop. 

 Several remarks on implementation issues are in order here. The first has to do with the 

choice of control parameters, such as initial temperature, the number of inner iterations at each 

temperature, the temperature reduction function, and the number of main iterations. The second 

issue is related to the choice of initial solution and the third and perhaps the most important 

implementation question is how to get a neighbor solution by perturbing the current solution. In 
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this study, following Zockaie et al. (2016), the initial temperature is assumed to be 0.05. The 

temperature is decreased by the rate of 0.85 for each outer loop iteration. Therefore, the following 

relation at Step 7 of the algorithm is used: 

𝑇𝑒𝑚𝑝/(sz{Q = 	0.85	 ∗ 	𝑇𝑒𝑚𝑝/(sz					𝑜𝑟					𝑇𝑒𝑚𝑝/(sz{Q = (0.85)/(sz𝑇𝑒𝑚𝑝� (3-18) 

To select the initial and neighbor solutions, random number generation is used, considering 

uniform distribution, to select specific x, and y to be included in the initial or neighbor solutions. 

The main challenge in the random selection strategy is how to move from current solution to a 

neighbor solution satisfying the budget constraint (Equation 3-13). For the simplicity, it is assumed 

that the costs associated with the fixed detection and trajectory data are uniformly distributed over 

the network and OD pairs. Therefore, the budget constraint is enforced through solving the 

problem for different proportions of both fixed detection points and OD trajectories. Furthermore, 

it is assumed that 𝜁 = 1 and 𝜂 = 1. Note that these assumptions do not affect the generality of the 

solution method and do not limit its applicability to the formulated problem. It is also assumed that 

the availability of trajectory data is linked to the OD pairs. 

The algorithm uses proportion rates for available fixed detections, a, and trajectory OD 

pairs, b, as the main input. Note that parameters a and b do not represent the penetration rate of 

probe vehicles. They represent the proportion of employed fixed detection points and OD pairs, 

respectively. To further clarify, parameters a and b are only representative of the “estimation 

budget”. Given the proportions, a set of links and OD pairs are randomly selected as the initial 

solution and are stored as the current solution. To find the neighbor solution, first it is randomly 

decided to perturb the current solution, by choosing between modifying the location of fixed 

measurement points and modifying OD trajectories, to move to a neighbor solution. Then, based 

on this decision, one of the links or OD pairs in the current solution is randomly selected and 
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removed from the current solution. Also, one of the links or OD pairs that is not in the current 

solution is selected to be added in the neighbor solution. Note that by adding one link or OD pair, 

and removing another link or OD pair, the neighbor solution has exactly the same proportion rates 

as the current solution. Furthermore, for any given current and neighbor solutions, estimating the 

objective function is intuitive. At the selected locations of fixed measurements, the link flows are 

known, and crossing trajectories are used to estimate the space-mean speed. Knowing flow and 

space-mean speed, density can be calculated using the traffic flow fundamental identity. Finally, 

network-wide flow and density averages at each time interval can be calculated using Equations 

3-11 and 3-12. Applying the random selection strategy to find the initial and neighbor solutions 

and estimating the objective function as explained earlier, the iterative steps of the algorithm can 

be implemented as discussed in Step 2 to Step 7 of the algorithm. In this study, 100 inner loop 

iterations are considered to reach an equilibrium state at each temperature for each of the outer 

loop iterations required iterations to decrease temperature and as a result decreasing probability of 

accepting worse neighbor solutions relative to the current solution. The temperature for 50 

iterations as the outer loop is also modified. 

3-4- Numerical Results 

Here, the proposed mathematical model is applied to a large-scale network of Chicago to 

estimate the NFD for downtown sub-network as illustrated in Figure 3-1. In the proposed 

framework, the ground-truth NFD is an input. As mentioned earlier, the actual ground-truth might 

not be available at all or it might be measured under specific conditions. In this study, a 

methodology is developed to estimate the ground-truth NFD using sampled observations from 

detectors and trajectories. Here, a surrogate of the ground-truth NFD is used as an input to optimize 

the sampling procedure. The surrogate NFD used here can be measured experimentally or 
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analytically for small networks. However, for large-scale network applications, a mesoscopic 

traffic simulation model can alternatively be used. Here, a calibrated simulation-based dynamic 

traffic assignment (DTA) model of Chicago is utilized to estimate the surrogate for the ground-

truth NFD. Then, the optimal location of trajectories and detectors will be found. Observations 

made by the located detectors and trajectories under general conditions provide proper estimation 

of NFD. To examine the applicability of the proposed methodology under general conditions, this 

study also shows the performance of the estimation method for cases where ground-truth NFD is 

modified as a result of variation in demand and seed number for random number generations that 

are used for different purposes throughout the network simulation (demand generation, signal 

control, en-route users assignment, etc.). 

3-4-1- Study Network 

DYNASMART-P is employed to conduct the experiments and to obtain the ground-truth 

NFD using fixed measurements of density and flow at all links throughout the selected sub-

network. DYNASMART-P is a simulation-based dynamic traffic assignment tool and it has the 

capability to find the dynamic user equilibrium in an iterative process. It also can distribute traffic 

over the network using the best current path, which can be changing during the simulation time 

depending on the congestion distribution across the network. In this study, the best current path, 

often known as zero shot simulation, is used. Modeled trajectory of all vehicles in the network 

during the simulation horizon is available. The Chicago downtown network, which is bound from 

West and East by O’Hare airport and Lake Michigan respectively, is considered as the large-scale 

case study. It includes downtown Chicago and some Western and Northern suburban cities of 

Chicago, and contains 1578 nodes, 4805 links, and 218 zones.  The simulation horizon is the AM 

peak period between 5:00 AM and 10:00 AM. The static hourly demand is provided by the Chicago 
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Metropolitan Agency for Planning (CMAP) for the AM peak. The static demand is transformed 

into a time-dependent OD demand table through the OD-estimation techniques presented in 

Zockaie et al. (2014a) resulting in about 550,000 vehicles simulated in the network. In this case 

study, estimation of NFD for a sub-network located in Downtown Chicago is targeted. This sub-

network, which is illustrated in Figure 3-1, includes 921 links and 7,212 OD pairs with positive 

demand. Chicago CBD is selected because it is the most congested part of the greater Chicago area 

network. The traffic distribution is more homogenous in this part of the network relative to the 

entire network. Also, the NFD for this portion of the network is more difficult to estimate relative 

to the entire network, where the congestion regime is phased out in the average value calculation 

by many uncongested links in other parts of the network. Generally speaking, the proposed method 

can be applied to any network, larger or smaller in size without any computational complexity 

issue. Note that the dynamic simulation is conducted for the greater Chicago area network. 

Therefore, the OD pairs counted and reported relate to the larger network. The simulation is run 

for the larger network, but the proposed method is only applied to the CBD sub-network for the 

NFD estimation. 

 

Figure 3-1- Illustration of the Chicago network and its downtown sub-network 
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3-4-2- Optimal Locating of Fixed Measurement Points and Sampling of Probe Trajectories 

It is first examined that how different proportions of fixed detection points a = {0.2, 0.4, 

0.6, 0.8} and OD pairs b = {0.2, 0.4, 0.6, 0.8} affect the initial and optimal objective values as a 

representation of discrepancy between the estimated and ground-truth NFD. All the 4 × 4 

combinations are tested, and the selected numerical results are reported to demonstrate the 

applicability of the proposed method in a large-scale heterogeneous network. Figures 3-2 and 3-3 

show a comparison of the ground-truth, initial, and estimated NFDs for a combination of a and b 

values. First, the proportion of fixed detection points is set to a constant a=0.2 and the proportion 

of OD pairs b={0.2, 0.4, 0.6, 0.8} is changed as illustrated in Figure 3-2. 

 

Figure 3-2- Comparison of estimated NFD, initial NFD, and ground-truth NFD for different 

proportions of ODs b={0.2, 0.4, 0.6, 0.8} with a constant proportion of fixed detectors a ={0.2} 
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The initial NFD is estimated from randomly selected links for fixed detection and randomly 

selected ODs for probe trajectories. The estimated NFDs obtained from optimally selected links 

and ODs are also shown. Then, the proportion of OD pairs is set to a constant b=0.2 and the 

proportion of fixed detection locations a={0.2, 0.4, 0.6, 0.8} is changed as illustrated in Figure 3-

3. The comparison of NFDs demonstrates that the optimal estimated NFDs have smaller deviation 

from the ground-truth NFD compared to NFDs estimated from randomly selected initial solutions, 

as expected. Later, it will be shown that increasing the proportion of fixed detection points or 

increasing the proportion of OD pairs both improve the initial estimated NFD. 

 

Figure 3-3- Comparison of estimated NFD, initial NFD, and ground-truth NFD for different 

proportions of fixed detectors a = {0.2, 0.4, 0.6, 0.8} with a constant proportion of ODs b={0.2} 
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Finally, it will be shown that for a constant proportion of detection points, increasing the proportion 

of trajectories does not affect the quality of the estimated NFD. However, for a constant proportion 

of OD pairs, increasing the proportion of detection points improves the estimated NFD with small 

deviation from the ground-truth NFD. 

Figure 3-4 illustrates the location of the optimally selected fixed measurement points in the 

network for the same combination of a and b values. An interesting observation is the variation 

between the selected links across cases with the fixed a=0.2. Although the proportion of fixed 

detection points is constant, the locations of the detection points vary because of the changing 

proportion of ODs b={0.4, 0.6, 0.8}. Figure 3-5 visualizes the selected OD pairs for the same 

combination of a and b values and for the entire network including all ODs using a schematic 

graph. Here, a circular graph is drawn with nodes on the circumference of the circle in order of 

node degree and links connecting nodes. A node pair is connected with a link if the OD pair is 

selected for estimating NFD. The graph showing all ODs represents the entire OD matrix of the 

Chicago network. The circular illustration here does not represent the links entering or exiting the 

CBD area. All traffic analysis zones with positive demand crossing the CBD area are located on 

the circle to show the connectivity between different OD pairs in the network. It is found that the 

selected ODs across the network vary even when the proportion of OD pairs is fixed (e.g. b=0.2) 

because of varying proportion of fixed measurement points a = {0.2, 0.4, 0.6, 0.8}. Increasing 

detection points proportion for a fixed proportion of OD pairs results in more dispersed distribution 

of selected OD-pairs. This improves the network connectivity to cover the increased selected 

number of links.  

Figure 3-6 shows the convergence pattern for the same combination of a and b values. The 

initial objective value, representing the deviation between estimated and ground-truth NFD, is as 
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large as 10,000. However, as the number of iterations increases, the SA algorithm significantly 

reduces the optimal objective value, demonstrating the convergence pattern of the algorithm. 

When the number of iterations is large enough, increasing the OD pair proportions does not 

improve the optimal objective value. In other words, when the link proportion is limited, there is 

no benefit in increasing the OD pair proportion to cover the entire network. However, increasing 

the OD pair proportion to a certain limit, ensures reliability of the optimal solution. Note that the 

number of iterations listed in this figure, includes both inner and outer loops. Iterations 1 to 100 

are associated with the first outer loop and iterations 101 to 200 are associated with the second 

outer loop and so on. 

 

Figure 3-4- Selected locations for optimal estimation of NFD for different proportions of ODs 

and fixed detectors 
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Figure 3-5- Selected ODs for optimal estimation of NFD for different proportions of ODs b={0.2, 

0.4, 0.6, 0.8} with a constant proportion of fixed detectors a ={0.2} and for different proportions 

of fixed detectors a ={0.2, 0.4, 0.6, 0.8} with a constant proportion of ODs b={0.2}; for all ODs 

 

Figure 3-6- Convergence pattern for different proportions of ODs a = {0.2, 0.4, 0.6, 0.8} with a 

constant proportion of fixed detectors b={0.2} 
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Figure 3-7 shows the initial and optimal objective values as a function of 𝑎 and 𝑏. Figure 

3-7(a) illustrates the change in the initial and optimal objective values for a set of constant 

proportions of fixed measurements 𝑎	while changing 𝑏. The initial objective values are relatively 

large and do not follow a specific pattern given that they are mainly based on a random selection 

of links and OD pairs for NFD estimation. Counter intuitively, the optimal objective value does 

not change monotonically with increase or decrease of  𝑏 for constant link proportions 𝑎. However, 

the value of optimal objective function for different OD pair proportions decreases with increase 

of the link proportion. Figure 3-7(b), indicates the change in the initial and optimal objective values 

for a set of fixed proportion of OD pairs 𝑏 while changing 𝑎. The initial objective values follow a 

decreasing pattern for all 𝑏 when 𝑎 increases (except 𝑏 = 0.2 due to the randomness of the 

methodology). The optimal objective values also follow a decreasing pattern when 𝑎 increases. 

Results suggest that for a fixed proportion of OD trajectories, the increase in the proportion 

of fixed detection points decreases the deviation from the ground-truth NFD as expected. However, 

when the proportion of fixed detection points is set to be constant, the increase in the proportion 

of OD trajectories does not necessarily improve the estimated NFD. This is due to the fact that for 

a certain link proportion, an optimal level of OD pair proportion can be found. Increasing or 

decreasing the level of OD pair proportion might lead to selection of some links in the optimal 

solution that increases the objective function value. To clarify why such pattern is observed in the 

numerical results, a simple example is presented to explain how increasing the OD pair proportion 

might increase the objective function value. Let’s say a certain link proportion results in selecting 

n links among the m links of the network. The OD pair proportion is set to a certain value that 

exactly results in crossing probe vehicles in n-1 of the links. Let’s say the left-out link is the least 

similar link to the ground-truth NFD. Increasing the OD pair proportion results in selecting the 



 47 

left-out link as the maximum link proportion is n. As this link has the minimum similarity to the 

ground-truth NFD, this addition would increase the deviation of the estimated NFD from the 

ground-truth NFD. Although increasing OD pair proportion might not improve the objective 

function value for a constant link proportion, it might improve the reliability of the estimated NFD 

under general conditions. In a rare case, there might be only a single link in the network with a 

fundamental diagram that matches the ground-truth NFD. Selecting this link alone, along with 

OD-pairs that include probe vehicles crossing this link, results in the objective function value of 

zero. However, this estimation is not reliable and with a minor change in the network conditions, 

the ground-truth NFD might deviate from the estimated NFD. Therefore, as far as the budget 

constraint allows, the link and OD pair proportions should be increased.  

To understand the reliability of the solution found by the proposed methodology, the 

performance of NFD estimation by the selected detectors and trajectories under general conditions, 

with different ground-truth NFDs relative to the one that is used as the input to the model, is 

studied. To this end, three different ground-truth NFDs, all derived from the simulation, are 

considered. The first ground-truth NFD is the base scenario that is used as the input for the 

mathematical model to find the optimal set of detectors and trajectories as shown in Figure 3-8(a) 

and Figure 3-8(d). Decreasing the total simulated demand in the base scenario by 5 percent results 

in the second ground-truth NFD, shown in Figure 3-8(b) and Figure 3-8(e), and increasing the 

demand by 5 percent results in the third ground-truth NFD, shown in Figure 3-8(c) and Figure 3-

8(f). In both scenarios, different seed numbers are used for generating random numbers to specify 

users who have access to en-route travel time information. Results show that changes in demand 

and route assignment create significant variations in the shape of the ground-truth NFD. 
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The proposed methodology is applied to the first scenario to find the optimal set of 

detectors and trajectories to estimate the NFD for two different cases. The proportion rate for 

detectors is considered as 0.6 for both cases (𝑎=0.6), while the proportion rate for OD pairs is 0.2 

for the first case (𝑏=0.2) and 0.6 for the second case (𝑏=0.6). The actual NFD for the first scenario 

and the estimated NFDs by the proposed methodology for both cases are presented in Figure 3-

8(a) and Figure 3-8(d). The OD pairs proportion of 0.2 seems to be as effective as of the OD pairs 

proportion of 0.6 to estimate the ground-truth NFD. However, the role of the additional proportion 

rate of OD pairs can be seen in the reliability of the NFD estimation in Figure 3-8(b), Figure 3-

8(c), Figure 3-8(e) and Figure 3-8(f). In these figures, the selected detectors and subset of 

trajectories, as the optimal solution based on the ground-truth NFD in the first base scenario, are 

used to observe the NFD under decreased and increased demand scenarios, respectively. Figure 3-

8(b) compares the observed NFD with the ground-truth NFD of the decreased demand scenario, 

where the proportion rates of detectors and OD pairs are 0.6 and 0.2. Figure 3-8(e) presents a 

similar comparison for the decreased demand scenario when the proportion rates of detectors and 

OD pairs are both equal to 0.6. Figure 3-8(c) and Figure 3-8(f) present similar comparisons for the 

increased demand scenario. In both scenarios, the observed NFDs better match with the ground-

truth NFD in the second case, Figure 3-8(e) and Figure 3-8(f), where the proportion rate of the 

selected trajectories based on the first scenario is higher. This is unlike the similar performances 

of the two cases in the base scenario and demonstrates the importance of finding reliable optimal 

solutions. It shows the importance of considering stochasticity of the travel demand and supply in 

the NFD estimation, which is the subject of Chapter 4. 
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Figure 3-7- Initial and optimal objective values as a function of a and b 
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Figure 3-8- Comparison of estimated and actual NFD a) base scenario with a=0.6, b=0.2,  b) 

decreased-demand scenario with a=0.6, b=0.2,  c) increased-demand scenario with a=0.6, b=0.2,  

d) base scenario with a=0.6, b=0.6,  e) decreased-demand scenario with 𝑎=0.6, 𝑏=0.6,  f) 

increased-demand scenario with 𝑎=0.6, 𝑏=0.6 
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3-4-3- Sensitivity to the initial solution 

The proposed methodology and the implemented SA algorithm are robust to the initial 

solution. To further demonstrate this, different initial solutions are used and the estimated NFDs 

are presented. In the SA algorithm, the initial solution can affect the number of required iterations 

to achieve an acceptable optimal solution. The number of iterations is related to the computational 

efficiency of the algorithm, which was not an issue for the large-scale proposed case study. 

Therefore, for any initial solution with a proper number of iterations, the optimal solution can be 

achieved. Here, the model is applied for three different initial solutions with link and OD 

proportions of a=b=0.6 as an example and the results is compared to demonstrate the robustness 

of the methodology with respect to the initial solution. Note that the SA algorithm avoids local 

optimal solutions by accepting the worse solutions in the initial outer loop iterations.  

The first and second initial solutions here are generated randomly with different seed 

numbers. The third initial solution is generated by considering a different distribution of link types 

relative to the other two initial solutions. Instead of considering a uniform distribution of link types, 

in this solution, all freeways and ramps are selected. The remaining links for the initial solution 

are selected randomly among the arterial links with a different seed number relative to the other 

two initial solutions. Results presented in Figure 3-9 suggest that having a different initial solution 

does not significantly change the estimated optimal NFD. The values of the objective function for 

all three initial solutions and their associated optimal objective function values are shown in Table 

3-1. This shows that although the initial solutions are different, the estimated NFDs in all three 

cases are comparable. 
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Figure 3-9- (a) Initial and (b) optimally estimated NFDs for three different initial solutions 

Table 3-1- Objective function values of the initial and optimal solutions for three different initial 

solutions 

 Objective function value 
 Initial Optimal 

Initial solution 1 2,074 13 
Initial solution 2 6,764 22 
Initial solution 3 28,506 31 

 
3-4-4- Sensitivity to the availability of trajectories 

Here, it is demonstrated that the proposed method is implicitly sensitive to the proportion 

of trajectories available for each OD pair. The proposed mathematical framework does not 

optimize the proportions of trajectories for each OD pair as decision variables. Instead, selecting 

trajectories is based on their availability. Note that not all trajectories may be available for each 

OD pair. Using a portion of trajectories from each OD pair instead of all trajectories can indeed 

affect the quality of the space mean speed estimates. Without loss of generality, it is assumed that 

all trajectories are available for each selected OD pair. As mentioned earlier, the proposed 

formulation can be easily modified and extended to cases with less than 100% availability of 

trajectories. To demonstrate the impact of trajectory availability, a fraction of all trajectories is 
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randomly selected for each OD pair in the network (10%, 25%, and 50%) with a fixed link and 

OD proportion rates of a= 0.6 and b = 0.6, and the results are compared with the original case 

where 100% of trajectories are available (called base case). Note that here, for simplicity, a fixed 

proportion of trajectory availability is considered for all OD-pairs to demonstrate sensitivity of the 

method to this parameter. In reality, different proportions might be available for different OD-

pairs. 

Figure 3-10 shows that the difference between the estimated NFDs for all examined cases 

is very small. The values of the objective function are significantly improved from initial values 

(see Table 3-2). This suggests robustness of the method to the proportion of available trajectories. 

Reducing the fraction of available trajectories has no impact on the number of selected OD pairs 

and link detectors selected in the estimation process as a=b=0.6. The optimal objective function 

value increases with the reduction of the available trajectories, as expected. However, the 

methodology successfully decreases the objective function value to an acceptable level even for 

the 10% case. This clearly indicates that the model amends the optimal solution when the 

availability of trajectories for each OD pair is different. Nevertheless, the estimated NFDs have 

low errors and good agreement with the ground truth NFD. 

In another experiment, the optimal solution (configuration of links and OD pairs) of the 

base case is utilized to evaluate the objective function for the cases with 50%, 25% and 10% of 

trajectories available for each OD pair without running the optimization algorithm. The objective 

function values for each case are also presented in Table 3-2. Results suggest that considering a 

proportion of trajectories for each OD pair does not affect the objective function, while the 

solutions (selected links and OD pairs) are different. The formulated mathematical problem aims 

to find the optimal location of fixed measurement points and set of OD pairs in estimating NFD. 
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The model responds to the proportion of available trajectories for each OD pair implicitly and as 

a result, the optimal solution will differ when different proportions are used. However, the model 

does not explicitly find the optimal proportion of trajectories to be available. It is actually shown 

that the resulting estimated NFD when a lower proportion of trajectories is available may not affect 

the estimated NFD as long as there is at least one trajectory going through the links with detectors. 

Considering that, it is obvious that a greater availability of trajectories may result in higher quality 

and more reliable estimation. 

Table 3-2- Summary statistics of the Base, 50%, 25% and 10% cases; when a=b=0.6 

 
Initial value of 

objective 
function 

Optimal value 
of objective 

function 

Shared OD 
Pairs with 
Base case 

Shared Link 
Detectors with 

Base case 

Base case 2,074 29 100% 100% 

50% case 3,307 47 70% 64% 

50% case 
using Base 
Solution 

1,654 - 100% 100% 

25% case 17,329 73 69% 64% 

25% case 
using Base 
Solution 

16,043 - 100% 100% 

10% case 129,905 137 67% 65% 

10% case 
using Base 
Solution 

131,262 - 100% 100% 
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Figure 3-10- Optimal estimation of NFD for the base case (all trajectories available), 50% case 

(50% of trajectories available), 25% case (25% of trajectories available) and 10% case (10% of 

trajectories available); when a=0.6 and b=0.6. 

3-5- Practical Insights 

Here, several insights on the distribution of links and OD pairs for a more accurate 

estimation of network traffic states (e.g. average network flow and speed) are presented. In real 

world networks, obtaining a ground truth NFD is almost impossible, given the complexity of 

network geometry, traffic control, turning movements, changing capacities and OD patterns. It is 

also almost infeasible to have loop detectors on all links and have access to detailed trajectory of 

every single vehicle in the network. Therefore, a more practical approach is to estimate NFD using 

a combination of loop detector and probe vehicle data.  

The optimal solution is characterized with three measures: (i) distribution of OD pair 

distances, (ii) distribution of link types (arterial, freeway, and ramps), and (iii) spatial center of the 

links in the network. Three different initial solutions are also considered. In the first case, initial 
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solution is obtained from a synthesized distribution of the OD pair distances, which is different 

from the overall distribution in the network (Figure 3-11a). In the second case, the initial solution 

has a different distribution of link types relative to the overall link type distribution across the 

network (Figure 3-11b). Finally, in the third case, initial solution is obtained such that the spatial 

center of the selected links is located furthest away from the spatial center of all links in the 

network (Figure 3-11c). The spatial center of links is defined as the average of the center point of 

the links weighted by the link lane-length. This measure represents the extent that selected 

(optimal) links are spatially distributed. These initial solutions are selected to represent a different 

pattern relative to the original network. Following, specifications of the optimal solution relative 

to the initial solutions and network overall specifications are explored. 

Figure 3-11a shows the normalized frequency of OD pair distances in the network, the 

synthesized initial solution, and the optimal solution for a fixed link and OD-pair proportions 

(a=b=0.6). While the frequency of OD pair distances in the initial solution follows an almost 

triangular distribution, the proposed optimization framework results in an optimal solution that 

follows the overall distribution of OD pair distances in network more closely. The objective 

function values for the initial and optimal solution are 2038 and 23, respectively. Results further 

suggest that the proposed method is robust to the initial solution and reveal that the optimal OD 

pairs for estimating NFD should follow a similar distribution of OD pair distances in the network. 

A similar pattern can also be observed from Figure 3-11b where the frequency percentage 

of link types in the optimal solution almost matches the frequency percentage in the network while 

the initial solution follows a completely different distribution. Also, Figure 3-11c illustrates the 

evolution of the spatial center of the links in the initial and optimal solutions compared to the 

spatial center of the links in the network when b=0.6 and a varies between 0.2 and 0.8. Regardless 
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of the location of the initial solution and parameters a and b, the optimal solution moves towards 

the spatial center of all links in the network. The numbers next to the center points on the figure 

show the average distance of the selected links to the spatial center of the network weighted by the 

link lane-length as a dispersion measure for selected links. This value is equal to 1.1 km for the 

network and optimal solutions in all cases. This means that the distribution of the selected links 

(optimal solution) around the spatial center is similar to the distribution of all the links around the 

spatial center of the network, which is different for the initial solutions. 

Overall, results suggest that for an accurate estimation of network density and flow, when 

combined loop detector and probe vehicle data are used, selected links and OD pairs should be 

distributed over the network such that it follows a similar spatial pattern to the network original 

links and OD pairs distribution. A previous study by Courbon and Leclercq (2011) suggested that 

loop detectors should be uniformly distributed within links across the network. Findings of this 

study suggest that the selection of an appropriate set of links with loop detectors and OD pairs are 

also important. It was shown that a uniform distribution across the network may not necessarily 

result in optimal solution. Instead, distribution of links and OD pairs should follow the same 

distribution of links and OD pairs in the network. 
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Figure 3-11- Normalized frequency of OD pair distances for a=b=0.6, (b) Frequency percentage 

of link types for a=b=0.6, (c) Evolution of the spatial center of the links in the initial and optimal 

solutions compared to the spatial center 

3-6- Summary 

This chapter presents a mathematical model and solution algorithm to find the optimal 

location of fixed measurement points and sampling of probe trajectories in a resource allocation 

problem framework to estimate NFD in a large-scale heterogeneous network with asymmetric 

demand. The major findings of the chapter are summarized below: 

• A combination of fixed detectors and probe vehicles provides sufficient data to estimate NFD 

with minimal deviation from the ground-truth NFD in a heterogeneous network. 
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• When the proportion of fixed detection points is constant, increasing the proportion of probe 

trajectories does not necessarily improve the estimated NFD under the same conditions, 

however, it might improve reliability of NFD estimation under general traffic conditions. 

• When the proportion of probe trajectories is constant, increasing the proportion of fixed 

measurement points improves the estimated NFD. 

• The optimal locations of fixed measurement points are not only a function of the proportion 

rate of fixed measurement points; rather, it also changes when the proportion of probe 

trajectories varies.  

• The optimal set of OD pairs is not only a function of the proportion rates of OD pairs; rather, 

it also changes when the proportion rates of fixed measurements varies.  
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CHAPTER 4 – Traffic State Estimation in Heterogeneous Networks with 
Stochastic Demand and Supply 

 

4-1- Overview 

Stochastic variations in network demand and supply due to weather conditions, incidents, 

special events, work zones, and service interruptions may significantly affect the approximation 

of an NFD. This chapter aims to propose a modified framework to estimate network traffic states 

to observe NFD while capturing the stochasticity in transportation networks. It actually presents a 

modified version of the previous chapter formulation. A mixed integer problem with non-linear 

constraints is formulated to address stochasticity in the NFD estimation problem. To solve this 

NP-hard problem, a solution algorithm based on the Simulated Annealing method is applied. The 

problem is formulated and the solution algorithm is implemented to find an optimal configuration 

of loop detectors and probe vehicles to estimate the NFD of the Chicago downtown network and 

capture its day-to-day variations, considering a given available budget. The main contribution of 

this chapter is to capture stochasticity in demand and supply sides to find a more robust subset of 

links and trajectories to be acquired for the NFD estimation. 

Incorporating the data collected by probe vehicles, known as the Lagrangian approach, and 

fixed loop detectors, known as the Eulerian approach, facilitates the estimation of an NFD 

(Leclercq et al., 2014; Nagle and Gayah, 2014; Ortigosa et al., 2014). To overcome the limitations 

of recent studies, the previous chapter proposed a resource allocation formulation to estimate an 

NFD using a mixed Lagrangian-Eulerian approach. In Chapter 3, the NFD estimation was 

facilitated with an optimal fusing of fixed measurement points data and sample vehicle trajectories 

based on the available budget without requiring any assumption on the penetration rate of probe 

vehicles on each link. 
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Although the proposed model in the previous chapter addressed the main limitation of 

several previous studies, it does not capture the impacts of the day-to-day variations in network 

demand and supply on the optimal configuration of loop detectors and probe trajectories. So, there 

is a need to further explore the effect of stochasticity due to demand variation in observation and 

estimation of an NFD. Figure 4-1 establishes this need by showing NFDs associated with the AM-

peak period of two different weekdays for the Chicago downtown network. The NFDs are 

estimated based on complete data from a dynamic traffic simulation for the selected two days 

where the input of the simulation model varies based on the observed weather conditions, 

incidents, and demand level (estimated using total observed counts at all available loop detectors). 

The figure shows that the fluctuation in network input can significantly alter the shape and 

characteristics of the NFD. 

 

Figure 4-1- Estimated NFDs of the AM-peak period for Chicago downtown network on two days 

with different observed operational conditions 
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To capture the effects of stochasticity due to network demand and supply variation in 

estimation of the NFD, the model proposed in the previous chapter is modified in this study. To 

this end, the mathematical optimization framework for NFD estimation is updated to capture the 

resource limitation, traffic heterogeneity, and stochasticity due to day-to-day network demand and 

supply variations. To estimate the NFD, information from fixed measurement points and probe 

vehicle trajectories are incorporated and applied to a large-scale real-world network. The main 

objective, therefore, is to peruse the NFD estimation by solving a resource allocation problem 

where the network demand and supply vary across multiple days. 

The difference between a measured ground-truth NFD and an estimated NFD (based on 

the selected Lagrangian and Eulerian observations in the simulation model) is calculated for each 

scenario based on the network demand and supply settings. The sum of these values over all 

scenarios is minimized by the proposed mathematical model that finds the optimal sub-set of fixed 

measurement points and probe trajectories while subject to a budget constraint restriction. In the 

proposed model, the flow information is obtained from the detectors installed on the optimally 

selected links. However, to use the flow information from a detector, there should be at least one 

probe trajectory passing through the link to acquire the link’s space mean speed information. The 

pre-known ground-truth NFDs of different scenarios are used as inputs to the proposed framework. 

Since the ground-truth NFD might not be available, especially under different network demand 

and supply settings, a surrogate ground-truth NFD is required to be extracted by simulation or an 

analytical method. The sensitivity of the proposed model to demand variation is discussed in the 

previous chapter. Note that this study also estimates the network traffic state, which is not 

obtainable as a historical ground-truth NFD, to be monitored in real-time to incorporate proper 

control strategies. 
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The formulated mixed integer problem (MIP) in this study contains non-linear constraints 

and is an NP-hard problem. MIP refers to the optimization problems that contain both continuous 

and discrete variables. MIP is utilized to model complex planning and control problems. The main 

objective is to capture non-convexity by MIP. Although the concept of MIP is not new, the advent 

of new generation computers proliferated its application. The problem presented in this study is 

even more complicated due to the non-linear constraints, which provide many locally optimal 

solutions for the proposed model. Therefore, there is no analytical method to obtain the optimal 

solution. To solve the problem, a heuristic solution technique based on the Simulated Annealing 

(SA) concept is employed. This is the same solution algorithm implemented in the previous 

chapter, which is adjusted here to capture the stochasticity. 

A randomly selected initial solution triggers the algorithm and is set as the current solution. 

Then, a neighbor solution is iteratively and randomly selected, and its objective value is compared 

with the objective value of the current solution. If the objective value decreases, the neighbor 

solution will replace the current solution. Also, to avoid being trapped in the local optimal solutions 

when the objective value is not reduced, the neighbor solution is probabilistically accepted. This 

probability should be decreased in each iteration to certify the convergence of the algorithm. The 

final links selected to be equipped with loop detectors and the sample trajectories account for the 

stochasticity due to day-to-day network demand and supply perturbations. It is shown that how 

this stochasticity may affect the estimated NFD. To this end, the deterministic and stochastic 

solutions are compared for different scenarios and show the superiority of the stochastic solution 

in reflecting the estimated NFDs. 
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4-2- Model Formulation 

In this section, building upon the previous chapter, the stochastic NFD estimation is 

formulated as a resource allocation problem to find the optimal solution given a fixed data 

provision budget. This solution provides the optimal set of links that should be equipped with loop 

detectors and the optimal set of OD-pairs whose vehicle trajectories should be collected. 

Information provided by loop detectors is utilized to estimate the average flow, and data from 

probe samples are employed to estimate the space-mean speed. Then, the next step is to calculate 

the density using the fundamental identity equation for each budget scenario. Finally, the objective 

function will be calculated using Equation 4-1, which is the weighted sum of squared deviations 

between the ground-truth and estimated average values of density and flow at different time steps 

for different network demand and supply settings (traffic scenarios). 

Model constraints limit the number of links selected to be equipped with loop detectors 

and the number of probe trajectories based on the available budget. The optimal solution for the 

proposed model contains the fixed measurement points and OD pairs that give estimated NFDs 

with minimum deviation from ground-truth NFDs over all given traffic scenarios for different 

network demand and supply settings. The proposed problem formulation in this chapter is 

developed based on updating the model presented in the previous chapter to capture stochasticity. 

The main updates include the definition of the key variables to reflect the scenarios, and 

modification of the objective function to sum the deviations in the flow and density estimation 

over all traffic scenarios. However, the structure of the constraints remains the same. The model 

formulation is as follows.  
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In the formulation, use of binary decision variables 𝑥 and 𝑦 specify if a link or OD pair is 

selected, respectively. If a link 𝑖 is equipped with a detector, then 𝑥/ = 1, and if an OD pair 𝑗 is 

considered to obtain data trajectory, then 𝑦9 = 1. Furthermore, 𝑧 and 𝑤 are the main binary state 

variables whose definitions are updated relative to the last chapter. Variable z, based on the 

decision variable 𝑦 over OD pairs, indicates that if any trajectory crosses the link i at time 𝑡 for 

scenario 𝑠. Variable 𝑤 indicates whether the link should be included in the calculation of average 

values for the flow and density at the network level or not, based on the detector availability 

(specified by 𝑥) and trajectory data crossing the link (specified by 𝑧). For link 𝑖, time interval 𝑡, 

and scenario 𝑠, 𝑤/�( = 1 when 𝑥 and 𝑧 are equal to one for ordered triple of (i,t,s). 

In Equation 4-1, s is the scenario index for different days, S is the total number of scenarios, 

t is the time interval index, T is the total number of time intervals, 𝑄�( and 𝑄)�( are ground-truth 

and estimated network-wide average flow at time interval t for scenario s, 𝐾�( and 𝐾+�( are ground-

truth and estimated network-wide average density at time interval t for scenario s, and 𝜁 and 𝜂 are 
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the weight factors for minimizing the deviations between the estimated and ground-truth network-

wide average flow and density, respectively. Equation 4-1 presents the objective function that 

includes a weighted sum of two main terms over different time intervals and traffic scenarios. The 

first term presents the difference between the estimated and ground-truth network-wide average 

flow. The second term calculates the difference between the estimated and ground-truth network-

wide average density. Equation 4-1 minimizes the total objective function value over all the time 

intervals and scenarios. The objective function value for each time interval and scenario is defined 

as the deviation between the estimated network-wide average values, which are calculated using 

only the optimal links and trajectories, and ground-truth values, which are calculated using all links 

and trajectories. 

Equations 4-2 and 4-3 calculate the ground-truth NFD for each time interval and scenario 

assuming all links and trajectories are available. In this equation, i is the link number index, I is 

the total number of links in the network, 𝑙/ is the lane-length of link i, and 𝑞/�( and 𝑣/�( are the flow 

and space-mean-speed of link i at time interval t for scenario s. Equation 4-2 uses network-wide 

link flows and finds the weighted average flow in the network based on link lengths. Equation 4-

3 finds the average network-wide density for each scenario and each time interval similar to 

Equation 4-2. It incorporates the ratio of the link flow to the link space-mean speed to estimate 

density for each link.  

Equation 4-4 presents the average travel time for each link, time interval, and scenario. In 

this equation, k is the trajectory index for origin-destination pairs, j is the index of the origin-

destination pair, J is the number of origin-destination pairs in the network, 𝐾(𝑗, 𝑠) is the number 

of available trajectories for origin-destination pair j in scenario s, 𝑝/9:�(  is a binary parameter 

determining if the kth trajectory of origin-destination pair j includes link i at time interval t for 
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scenario s, 𝑡𝑡;/9:�(  is the observed travel time at link i and time interval t for the kth trajectory of 

origin-destination pair j for scenario s, and 𝑡𝑡</�( is the observed average travel time at link i and 

time interval t for the available trajectory of selected origin-destination pairs for scenario s. Travel 

times experienced by probe vehicles at the scenario and time interval of interest are utilized to 

calculate the average travel time of each link. Simply, in order to calculate the average travel time 

for the ordered triple (i,t,s), this equation considers all the trajectories in the solution. If they have 

crossed the link 𝑖, it sums up the experienced travel time for link 𝑖 along the trajectory with 

departure time 𝑡 with the total travel time for that link, time interval, and scenario. Then it makes 

an average value by dividing the total experienced travel times for each link in each time interval 

and scenario by the total number of trajectories associated with it. 

Equation 4-5 finds the estimated space-mean speed of each link, time interval, and scenario 

based on the length of the link and its average travel time. In this equation, 𝑣�/�( is the calculated 

space-mean speed from probe trajectories for scenario s, at link i and time interval t. Equations 4-

6 and 4-7 are feasibility constrained. In Equation 4-6, M is a large number. Equation 4-6 ensures 

that for each time interval and scenario, if there is no trajectory crossing link 𝑖 for OD pairs in the 

optimal solution (which means 𝑧/ = 0), then there is no probe vehicle for the OD pairs crossing 

link 𝑖 for that specific time interval and scenario. In other words, if there is at least one trajectory 

that crosses link 𝑖 for a specific OD at a given time interval and scenario, 𝑧 must be equal to 1 for 

Equation 4-6 to hold. In this case, Equation 4-7 is not binding. But when such trajectory is not 

available, based on Equation 4-7, 𝑧 for that link at the given time interval and scenario is enforced 

as zero. Therefore, Equation 4-6 would not be binding. For the sake of simplicity, it is assumed 

that when an OD pair is chosen, all of its trajectories are available for the NFD estimation. To 

account for other assumptions, another binary variable should be added to the formulation. 
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Equations 4-8 to 4-10 show the relationship among the binary variables. They specify if a link and 

time interval in a certain scenario should be included in the network-wide average calculations 

considering the availability of both fixed measurement locations and probe vehicles crossing that 

link (specifying w based on x and z). 

Equations 4-11 and 4-12 respectively calculate the estimated network-wide average flow 

and the network-wide average density for each time interval and scenario for the cases meeting the 

𝑤/�( = 1 condition. Equation 4-13 is the budget constraint. In this equation, 𝑐/ and 𝑓9 are 

respectively the data collection cost associated with installing a loop detector in link i and the cost 

of adding a probe trajectory data to the available probes from origin-destination pair j, and B is the 

given budget. Finally, constraints 4-14 to 4-17 are feasibility constraints for different variables. 

It is noteworthy that although the model modifications relative to the previous chapter seem 

to be trivial, the computational complexity is not comparable in the two studies due to the 

additional dimension in the data structure (scenarios). Computational complexity does not vary 

linearly by the number of scenarios, resulting in a much more complex problem. Thus, special 

remedies (e.g. setting number of main and inner iterations) were needed to improve the 

computational efficiency of the solution algorithm. Moreover, the new proposed model has 

significant practical implications, especially when a low data collection budget is available. 

4-3- Solution Algorithm 

The presented MIP minimizes the total difference between the estimated and ground-truth 

NFDs over all scenarios. The NFD estimation is based on known percentages of links and 

trajectories, which are constrained by the limited data collection budget. The ground-truth NFD is 

known through simulation or other methods using all network links and trajectories. The proposed 

model is NP-hard and requires a metaheuristic algorithm to be solved in a reasonable time. The 
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algorithm used in this study to solve the proposed mathematical model is based on the Simulated 

Annealing (SA) approach. SA has been widely used to solve NP-hard problems. The discussed 

problem contains non-linear constraints, which may result in numerous local optima. This obstacle 

can be overcome by using proper metaheuristic algorithms. SA is one such algorithm that can find 

the optimal solution without getting stuck in locally optimal solutions.  

Therefore, this study follows the Metropolis algorithm (Hejazi, 1999; Metropolis et al., 

1953) and the framework presented in Zockaie et al. (2016) and Ghamami et al. (2016) to 

implement the SA method. The metaheuristic solution method proposed in this study begins with 

a feasible initial solution that is set as the current solution. After calculating the objective function 

based on the current solution, 𝐶(∙), it moves to a neighbor solution through a local search. Then, 

it evaluates the new objective function for the neighbor solution. The new objective function value 

is compared to the objective function value of the current solution. If the new solution improves 

the objective function, then the neighbor solution becomes the new current solution. Even for the 

cases where the objective function does not improve, the algorithm may move to the neighbor 

solution probabilistically based on the difference in the objective function values and a control 

parameter. The probability of accepting a worse solution decrease as the algorithm advances by 

changing the control parameter to ensure the convergence of the algorithm. This mechanism helps 

the SA algorithm to not get trapped in local optimum solutions. The above process continues until 

it reaches the equilibrium point where the objective function value cannot be further improved. 

Figure 4-2 illustrates the proposed solution framework based on the SA algorithm. 
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Figure 4-2- The proposed solution framework based on the SA algorithm 

Algorithm 

Input: Maximum number of main iteration 𝐼𝑡𝑒𝑟, maximum number of inner iterations 𝐼𝑛𝑛𝑒𝑟_𝐼𝑡𝑒𝑟, 

number of scenarios 𝑆𝑐𝑒𝑛_𝑛𝑢𝑚, budget. 

Output: 𝑥∗ and 𝑦∗ 
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Initialize:  

An initial random solution (based on the budget constraint, assign 0 or 1 to variables 𝑥 and 𝑦 for 

different sets of 𝑖 and 𝑗) 𝑥′( and 𝑦′( 

Set the current temperature stage 𝑡 = 0, choose initial temperature 𝑇𝑒𝑚𝑝( 

Set main iteration index 𝑖𝑡𝑒𝑟 = 0 

Calculate the objective function based on the current solution 𝐶′(𝑡) 

While 𝑡 < 𝐼𝑡𝑒𝑟, do 

Set inner iteration index 𝑘 = 0. Set 𝑥: = 𝑥′(, 𝑦: = 𝑦′( and 𝐶(𝑘) = 𝐶′(𝑡) 

While 𝑘 < 𝐼𝑛𝑛𝑒𝑟_𝐼𝑡𝑒𝑟. do 

Set 𝑘 = 𝑘 + 1  

 Find a neighbor solution 𝑥: and 𝑦: close to the current solution by perturbing either 

the 𝑥 or 𝑦 value for a specific 𝑖 or 𝑗 by taking the budget into account 

 Set s=0 and 𝐶(𝑘) = 0 

While s< Scen_num 

  Set 𝑠 = 𝑠 + 1 

Estimate NFD for the current scenario with the neighbor solution 

Calculate the objective function for the scenario 𝐶(𝑘�) 

𝐶(𝑘) = 𝐶(𝑘) + 𝐶(𝑘�) 

End while 

Draw a random number 𝜀 = 𝑢[0,1]. 

If 𝐶(𝑘) < 𝐶∗ then 

𝐶∗ = 𝐶(𝑘), 𝑥∗ = 𝑥: and 𝑦∗ = 𝑦: 

End if 
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If 𝐶(𝑘) < 𝐶(𝑘 − 1) then 

𝐶′(𝑡) = 𝐶(𝑘), 𝑥′( = 𝑥: and 𝑦′( = 𝑦: 

ElseIf   exp vr(:)qr(:qQ)
Osjt$

w > 𝜀 then 

	𝐶′(𝑡) = 𝐶(𝑘), 𝑥�( = 𝑥: and 𝑦�( = 𝑦: 

Else 

Discard the neighbor solution 

End if 

End while 

Set t=t+1, 𝐶′(𝑡) = 𝐶(𝑘), 𝑥�( = 𝑥: and 𝑦�( = 𝑦:, 𝑇𝑒𝑚𝑝( = 𝜃𝑇𝑒𝑚𝑝(qQ, 𝑤ℎ𝑒𝑟𝑒	𝜃 = 0.85. 

End while 

Report the optimal solution 𝐶∗, 𝑥∗ and 𝑦∗ 

Several remarks are helpful to implement the algorithm efficiently. First, the initial 

temperature and the reduction rate in each iteration affect the required number of iterations for 

convergence. Following the previous chapter, the initial temperature is considered to be 𝑇𝑒𝑚𝑝� =

0.05 and is decreased by 0.85 factor for each outer iteration. Second, generating the random 

neighbor solution is based on the assumption of a uniform cost between all links and all OD pairs 

for installing loop detectors or being equipped with probe vehicles, respectively. Therefore, 

considering the available proportional budget for loop detector installment or probe vehicle 

trajectories data collection, the number of links and ODs are limited based on the given budget. 

Third, it is assumed that 𝜁 = 𝜂 = 1, which implies that the deviation of the estimated flows and 

densities from their ground-truth values are weighted equally in the objective function. While this 



 74 

assumption doesn’t violate the generality of the modeling framework, estimating the best values 

for different designs is beyond the scope of this study. 

To further clarify the process of finding the neighbor solution, it is important to know that 

proportion rates 𝑐 and 𝑓 used in the budget constraint as inputs to the model are the deciding factors 

for the number of selected links and OD pairs. These parameters are different from the penetration 

rates of probe vehicles as is mentioned in Chapter 2. They represent the proportion of the estimated 

budget for providing all the possible loop detectors or probe vehicles. As a uniform cost is assumed 

for links and OD pairs, 𝑐 and 𝑓 provide the percentage of links and OD pairs relative to the total 

number. A group of links and OD pairs are selected randomly to generate the initial solution and 

are then labeled as the current solution. For the neighbor solution, the algorithm modifies the set 

of links or the set of OD pairs based on a random variable. According to this modification, a 

randomly selected link or OD pair is removed from the current solution and is replaced by another 

link or OD pair, which does not belong to the current solution. With this approach, the budget 

constraint is always met. 

4-4- Numerical Results 

This section presents the case study used for the application of the proposed model. Here, 

the description of the study network is followed by the numerical results to assess the performance 

of the proposed algorithm. Downtown Chicago is selected as the large-scale study network. The 

proposed formulation uses the ground-truth values of flow and density as inputs; these values may 

not be available or may only be available under limited conditions. Therefore, a surrogate of the 

ground-truth NFD is used in this study. For small networks, surrogate NFDs can be extracted using 

analytical and experimental methods. However, for large-scale networks, mesoscopic traffic 

simulation models can be employed. In this study, the surrogate of the ground-truth NFD is 
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measured by a calibrated simulation-based dynamic traffic assignment (DTA) model implemented 

on the Chicago downtown network. The real-world observations from 86 weekdays in winter 2010 

are utilized to estimate the ground-truth NFDs as accurate as possible. Different levels of demand, 

weather conditions, incidents, and routing policies are considered to generate travel time variations 

in each scenario. For each scenario, a demand factor, which represents the different levels of 

demand among scenarios, is calculated using the observations of loop detectors (associated with 

each day/scenario) installed on freeways. Visibility, and rain and snow precipitation intensities are 

the three measures describing the weather conditions for each scenario. Weather data are extracted 

from the Automated Surface Observing System (ASOS) station at the Chicago Midway 

International Airport for each day/scenario. Incident data for each scenario, include the location 

and time of the occurred incident on each day, and their severity in terms of the capacity drop. 

These data are obtained from the Illinois Department of Transportation. The actual data of different 

weather conditions, number of incidents, and OD tables are provided to the simulation tool to 

extract NFDs. Based on the ground-truth NFDs, an optimal set of links and OD pairs is found for 

any given budget. The robustness of the scenarios is the main advantage of this method over the 

deterministic NFD estimation method.  

Note that the major contribution of this chapter relative to the previous chapter is capturing 

the stochasticity. One cannot fully capture stochasticity by counting all possible scenarios due to 

an endless number of scenarios that may occur at the network level in the real world. Thus, 86 

scenarios generated based on data collected over 86 real days are utilized to capture stochasticity. 

These scenarios, while can be handled reasonably in terms of the computational complexity, 

provide an acceptable level of stochasticity at the network level while considering different 

weather conditions, crashes, and demand levels based on actual data sets. 
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4-4-1- Study Network 

In order to implement the proposed framework and to measure the ground-truth NFD, 

DYNASMART-P (Mahmassani, 1994) is employed as the traffic simulation tool. It generates the 

trajectory of all vehicles during the simulation time. The large-scale network used in this study, 

downtown Chicago, is bound from West and East by O’Hare airport and Lake Michigan, 

respectively. This network includes 4,805 links, 1,578 nodes, and 218 zones. The simulation 

horizon used in this study is the morning peak period (5:00 AM to 10:00 AM). Chicago 

Metropolitan Agency for Planning (CMAP) has provided the information of daily demand for the 

Chicago Regional network. Using the technique presented in Zockaie et al. (2014a), the 

deterministic demand is converted into a time-dependent OD demand matrix for the extracted sub-

network (Chicago downtown network), which provides almost 550,000 vehicles traveling in the 

sub-network during the AM peak period. The case study considered here for the NFD estimation 

is the area located in the middle of Chicago downtown sub-network (Figure 4-3), which includes 

921 links and 9,406 OD pairs with positive demand. 

 

Figure 4-3- Chicago network and its CBD area considered for the NFD estimation 
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For each demand scenario, the number of OD pairs depends on the travel pattern on that 

day. This sub-network, Chicago CBD, is the most congested district of the greater Chicago area 

network. Also, the traffic distribution is more homogeneous there compared to the entire network. 

Moreover, the NFD is more sensitive to the demand in this area because in less congested areas 

there are many links with flows below their capacity. As the NFD values are calculated using the 

total average over the selected area, these links alleviate the effect of peak hour demand in the 

network. Therefore, the NFD for the whole Chicago network for the AM peak period remains 

almost the same while for the downtown area changes drastically. 

4-4-2- Results 

It is first examined that how considering the stochasticity affects the optimal objective 

value, which indicates the deviation of the estimated NFDs from the ground-truth NFDs over 

different scenarios. To this end, NFDs of two randomly selected scenarios (out of 86 actual days) 

are estimated applying three different methods: simulation (ground-truth), using the solution of the 

deterministic approach as proposed in Chapter 2, and using the solution of the stochastic approach 

presented in this chapter. Figure 4-4 indicates the results for the two selected scenarios. The 

ground-truth NFDs for both scenarios are simulated using DYNASMART-P and follow a smooth 

trend. Objective functions (Equation 4-1) of the NFDs estimated by the stochastic solution hold 

values less than 750 for both scenarios A and B. Considering the nature of the objective function, 

which represents the sum of squared values, the obtained objective values by the stochastic method 

(746 and 682) show that the estimated NFDs imitate the ground-truth NFDs with an acceptable 

accuracy. The third NFD for both scenarios A and B are estimated using the deterministic solution 

of scenario A. It is quite clear that using the deterministic solution of scenario A to estimate the 

NFD of the same scenario leads to minimal deviation (=64) from the ground-truth NFD (this was 
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shown in Chapter 2). However, using the deterministic solution of scenario A to estimate the NFD 

of scenario B results in a higher objective value (2,392), which is significantly greater than the 

objective value estimated by the stochastic method (=682). In Figure 4-4(b), although the 

stochastic and deterministic NFDs follow the same shape, there is about 10% error in the 

estimation of the maximum network-wide average density once the deterministic approach is used 

(based on scenario A). This is a significant amount at the network level. This shows the importance 

of considering stochasticity in NFD estimation. Figure 4-5 depicts the convergence pattern for 4 

budget configurations {(a=0.2, b=0.2), (a=0.4, b=0.4), (a=0.6, b=0.6), (a=0.8, b=0.8)}. 

 

Figure 4-4- Estimated NFDs for two randomly selected scenarios A and B using three methods: 

simulation (ground-truth), the stochastic solution, and the deterministic solution based on 

scenario A 
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Figure 4-5- Convergence pattern for different budget scenarios 

Note that here a=0.2 means the budget is available to equip 20% of all links with loop 

detectors and b=0.2 represents an available budget to obtain trajectories of 20% of all OD-pairs. 
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Figure 4-5(a) compares the convergence pattern for all budget configuration in one graph. 

Unscaled graphs are presented in Figures 4-5(b) to 4-5(e) for each budget configuration. Results 

show that for a large number of iterations, the objective function values decrease at a very slow 

rate. Therefore, the optimization is stopped at the iteration of 100×100 to make the results 

comparable with the findings of the previous chapter. As expected, the optimal objective function 

decreases when the budget level is increased. Figure 4-6 depicts the optimally selected links in the 

downtown Chicago network for different budget configurations. As the available budget increases, 

more links are selected to be equipped with loop detectors and more OD pairs are selected to have 

probe vehicles. 

 

Figure 4-6- Location of the links selected to be equipped with loop detectors for different budget 

configurations 
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To further investigate the impact of stochasticity on NFD estimation, a comparison 

between the deterministic approach proposed in the previous chapter and the stochastic approach 

presented in this chapter is conducted. The objective value of the stochastic method (Equation 4-

1) reflects the cumulative deviation of the estimated NFDs for different traffic scenarios from the 

corresponding ground-truth NFDs for each scenario. Therefore, to make the objective values 

comparable between the two methods, the deterministic solution is found for every single day. 

Then the deterministic solution of each scenario is implemented to estimate NFDs for all scenarios 

including the same day. Finally, the objective values are summed up and designated as cumulative 

deterministic objective values associated with each deterministic solution. The same procedure is 

performed for all demand scenarios (different days), and the results are compared with the 

objective value evaluated by the stochastic approach. 

Figure 4-7 shows the sorted cumulative deterministic objective values for the 86 demand 

scenarios alongside the objective value evaluated by the stochastic approach for all 4 budget 

combinations. In all cases, the stochastic method has provided a better solution compared to the 

deterministic approach. By increasing the budget, not only the objective values for both stochastic 

and deterministic approaches decrease, but also their difference reduces as well. The reason is that 

by providing more links and OD pairs for data collection, the discrepancy between the solution of 

stochastic and deterministic approach decreases, which makes the solutions more similar. For the 

fourth case (a=b=0.8), almost all of the links and OD pairs are selected; therefore, the discrepancy 

is at minimum, which makes the stochastic method less effective. The extreme case would use all 

of the samples, including all links and OD pairs (a=b=1), which would lead to equal solutions for 

both stochastic and deterministic approaches. 
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Figure 4-7- Comparison of stochastic objective values with cumulative deterministic objective 

values for different traffic scenarios (sorted) and different budget configurations 
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Figure 4-8 illustrates the ratio of the maximum, average, and minimum objective function 

values for the deterministic approach relative to the stochastic method. For the first budget case 

(a=b=0.2), the maximum objective function value of the deterministic method is more than three 

times that of the stochastic objective function value. For the same budget, the minimum value for 

the deterministic objective function is almost 1.7 times that of the stochastic value. This ratio is 

decreased to 1.3 for the budget with a=b=0.8, but it is still more than 1, which shows that the 

stochastic method always provides a better estimation. 

 

Figure 4-8- Ratio of the maximum, average, and minimum objective function values for the 

deterministic approach relative to the stochastic method 

4-5- Summary 

This study presents a modified version of the mathematical model proposed in Chapter 3. 

It is formulated as a resource allocation problem to find the optimal set of links for loop detector 

installment and the optimal sample of OD pairs to be equipped with probe vehicles to estimate the 

NFD in a large-scale network with stochastic day-to-day demand and network supply. The 

objective function minimizes the discrepancy between the estimated flow and density and their 

ground-truth values to find the optimal set of links and OD pairs. The robustness of the model 

including different scenarios with different demands, weather conditions, and other influential 
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factors in the NFD estimation is the main advantage of this approach compared to the method 

presented in Chapter 3. The major findings of the chapter are summarized below: 

• The numerical experiments confirm successful implementation of the methodology for a large-

scale network. 

• Exploring the convergence pattern of the algorithm shows that the optimal objective function 

is achieved and is sensitive to the budget level, which limits the estimation accuracy. 

• Mainly, the comparison of the stochastic approach proposed in this chapter with the 

deterministic approach in Chapter 3 shows that the stochastic approach is superior. 

• Once the budget level is at 20%, the deterministic approach leads to a 70-250% error relative 

to the stochastic approach. 

• Increasing the budget decreases the relative error, but even at the 80% budget level, a minimum 

30% relative error is observed over various scenarios.  
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CHAPTER 5 – Network-wide Travel Time Reliability Analysis 
 

5-1- Overview 

This chapter incorporates different network partitioning and travel time reliability 

estimation approaches in a large-scale network of Chicago using a 24-hour dynamic traffic 

simulation model. It shows that partitioning a large-scale heterogeneous network into multiple 

homogeneous sub-networks improves the travel time reliability estimation. Indeed, the proposed 

method captures travel time variations in high resolution (among different sub-networks), while 

still using the benefits of an aggregate model. It also indicates that the network travel time 

reliability relation depends on the coefficient of variation of density calculated over the simulation 

horizon and across the links in each cluster. This coefficient itself relates to the network 

partitioning based on the density variations. The study also demonstrates an application of 

partitioning on an actual large-scale network, exploring the impacts of different congestion 

patterns in the morning and afternoon peak periods. Two partitioning approaches (directional vs. 

non-directional), and two methodologies for the network travel time reliability estimation, called 

trajectory and sub-trajectory approaches, are compared. It is shown that the sub-trajectory 

approach is a more robust method capturing the travel time variations properly. 

5-2- Methodology 

The study investigates how the spatial distribution of congestion affects the shape and 

scatter of NFD and derives a robust relationship for travel time reliability analysis. 
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5-2-1- NFD estimation 

To estimate NFD (Daganzo, 2007; Gonzales et al., 2011; Mahmassani and Peeta, 1993; 

Saberi and Mahmassani, 2012; Williams et al., 1995; Williams et al., 1987), network-wide average 

flow and density are calculated as follows (Mahmassani et al., 1984; Saberi et al., 2014a): 

𝑄 =
∑ 𝑙/𝑞/�
/

∑ 𝑙/�
/

																																																																						(5 − 1) 

𝐾 =
∑ 𝑙/𝑘/�
/

∑ 𝑙/�
/

																																																																						(5 − 2) 

where 

𝑄: distance-weighted average of flow; 

𝐾: distance-weighted average of density; 

𝑞/: individual link average flow; 

𝑘/: individual link average density; 

𝑙/: lane-length 𝑖, 𝑖 = 1.… .𝑀; and 

𝑀: total number of links. 

There also exists a growing number of studies on NFD estimation in real networks (for 

example see (Du et al., 2016; Leclercq and Geroliminis, 2013; Ortigosa et al., 2014). In recent 

studies, Zockaie et al. (2018) and Kavianipour et al. (2019) formulated resource allocation 

problems to estimate NFD accounting for the limited resources of data collection, network traffic 

heterogeneity, and asymmetry in OD demand in a real-world network. 
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5-2-2- Network partitioning 

The general formulation of a contiguity-constrained partitioning problem for a pre-

specified number of clusters (𝑁�) is presented here. Each cluster should contain a connected set of 

links with similar level of congestion, where connectivity is explicitly imposed by a set of 

constraints as introduced in Saeedmanesh and Geroliminis (2017). Connectivity is defined using 

the concept of directed acyclic graph. Here, a modified objective function is introduced which 

needs a smaller number of variables and is tractable for networks with larger sizes. The new 

objective function calculates the summation of weighted variances, named total variance (TV), of 

all the clusters which is defined as follows: 
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where	𝑘9(𝑡) is the measured data (density) for link 𝑗 and 𝜔�/ is the estimated average for cluster 𝑖 

(𝐶/) at time 𝑡. 𝑥/9 is a binary variable indicating if link 𝑗 belongs to cluster 𝑖 or not. T is the number 

of time intervals in the simulation horizon and 𝑁� is the number of clusters. It is clear that the 

average value of each cluster depends on the partitioning result and is not known before 

partitioning is done. Moreover, the term	�
∑ �%'×:'(()(
')*
∑ �%'(
')*

�, calculating the average density in cluster 

𝑖 is the main source of non-linearity. Hence, the algorithm starts from a random guess for	𝜔�/ and 

solves a Mixed Integer Linear Program (MILP) to find the best partitioning for the current set of	𝜔�/ 

(optimization step). Then, the 	𝜔�/ variables are updated by taking the real average values of clusters 

(updating step). This approach follows a similar concept to the K-means method (heuristic) to find 
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the best clusters. It can be shown that the objective function (minimum distance of the points to 

their center) at each of the two steps is decreasing and since there is a lower bound (i.e. minimum 

summation of distances of different points to their clusters’ center), the method will converge. 

Specifically, there are at most 𝑁�� ways to partition 𝑁 data points into 𝑁� clusters. This is a large 

but finite number. As mentioned before, for each iteration of the algorithm (including the two 

steps), a new clustering is produced only based on the old clustering (previous step). Note that: (a) 

if the old clustering is the same as the new one, then the next clustering will again be the same; 

and (b) if the new clustering is different from the old one then the newer one has a lower cost. 

Since the algorithm iterates a function whose domain is a finite set, the iteration must eventually 

enter a cycle. The cycle cannot have length greater than “1” because otherwise by (b) one would 

have some clustering that has a lower cost than itself, which is impossible. Hence the cycle must 

have length of exactly 1. Hence k-means converges in a finite number of iterations to a local 

minimum. 

To avoid being trapped in local minima, different sets of initial points are chosen for the 

algorithm. This is a common approach for frameworks that may be trapped in a local minimum 

(e.g. steepest (gradient) descent methods). The best clustering is the one with smallest objective 

function. The proposed Mixed Integer linear programming algorithm follows the same logic as K-

means, but with more complicated algorithmic steps that are imposed by the nature of graph 

clustering problems. Specifically, the connectivity constraint makes the first step (step a) of each 

iteration a complex MILP problem to assign the set of connected roads to each cluster; whereas in 

conventional K-means approach the labeling of each point is done based on the nearest center. The 

detailed mathematical formulation is described in Saeedmanesh and Geroliminis (2017). 
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In this chapter, the time-independent partitioning of network is considered. It is known that 

during different times of simulation the configuration of homogeneous clusters might vary and 

then time-dependent clusters can provide a better representation of homogeneous regions that can 

also capture congestion propagation (Saeedmanesh and Geroliminis, 2017). Despite these 

advancements, the integration of dynamic clustering is not straightforward in many applications, 

due to the nature of the problem. For example, there is a vast literature on MFD/NFD perimeter 

control with static clusters. It has been shown that these methods perform very well in alleviating 

congesting compared to standard local traffic control strategies. To account for these temporal 

variations, the clusters are obtained by minimizing the variance of road densities in all clusters (i.e. 

obtaining homogeneous clusters) over different time periods. In other words, the obtained clusters 

are the best (in terms of homogeneity) time-invariant clusters for the entire simulation horizon. 

Note that, the first summation in Equation 5-3 takes all desired time periods, rather than a single 

time point, into account, which ensures having homogeneous clusters and improving the reliability 

parameter estimation. It should be mentioned that having time-invariant clusters is a pre-requisite 

condition for travel time reliability analysis. Hence, the best homogeneous time-invariant clusters 

are obtained by considering temporal interactions to the maximum possible extent. 

5-2-3- Network travel time reliability estimation 

The distance-weighted standard deviation of travel time per unit of distance is often used 

as a measure of travel time variability. Network travel time reliability can be characterized by a 

travel time distribution, with corresponding mean and standard deviation. The first component 

describes the central tendency and the second shows the dispersion. To control for the impacts of 

trip distance variations on travel time reliability, the travel time (t) needs to be normalized by the 

trip distance (d). So, the travel time per unit of distance (t′=t/d) is considered as the travel time 
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measure (Mahmassani et al., 2013). Thus, the distance-weighted mean and standard deviation of 

the travel time rate can be estimated as follows: 
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In Equation 5-4, 𝜇 is the inverse of spatial mean speed (Mahmassani et al., 2013). To 

construct the relationship between distance-weighted mean and standard deviation of travel time 

rate, a linear model has been suggested in the literature (Jones, 1989; Richardson and Taylor, 

1978):  

𝜎(𝑡′) = 𝑝Q + 𝑝L𝜇(𝑡�)																																																															(5 − 6) 

where 

𝜎(𝑡′): standard deviation of the trip time rate t′, 

𝜇(𝑡′): mean value of t′, and 

𝑝Q, 𝑝L: coefficients 

This study uses simulation-generated vehicle trajectories in a network to explore this 

relationship for each identified cluster in the network. To obtain the distribution of travel time per 

unit of distance in the network, two approaches are proposed: 

Trajectory Approach: This approach consists of the following steps to specify the relationship 

between 𝜇 and 𝜎: 
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1. Extract the travel time and travel distance for each set of consecutive links that are traveled 

by a certain vehicle. The set is the longest consecutive sub-set of the vehicle trajectory links 

that belong to the same sub-network. The entry time to the first link of the set determines 

the time interval that the set belongs to as an observation (Figure 5-1a). The observations 

from different pieces of vehicle trajectories associated with each sub-network and time 

interval are used to compute the mean and standard deviation of travel times per unit of 

distance. Each observation has two components: a travel time, which is the total elapsed 

time by vehicle i at set j, and a travel distance, which is the total length of links belonging 

to set j. 

2. Calculate the distance-weighted mean and standard deviation of travel times per unit of 

distance for each time interval in each sub-network (Equations 5-4, and 5-5). Each time 

interval in each sub-network is a sample point to be used in the next step. 

3. Plot the standard deviation of travel time per unit of distance versus its mean value for each 

sub-network and estimate the coefficients (Equation 5-6). 

The same process is followed to specify the travel time distribution measures for the study 

area network (union of all clusters). However, in this case the entire vehicle trajectory is considered 

for the time interval associated with the vehicle departure time. 

Sub-trajectory Approach: This approach also requires three steps to specify the relationship 

between 𝜇 and 𝜎. The second and third steps are exactly the same as steps 2 and 3 of the trajectory 

approach. However, step 1 is modified as follows: 

1. Extract the travel time and travel distance for each segment. A segment is a piece or entire 

of a trajectory produced by a vehicle traveling in a sub-network during a certain time 
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interval (Figure 5-1b). Each segment is considered as one observation for the associated 

sub-network and time interval to be used for mean and standard deviation calculations. In 

this approach, the entire segment is traveled during the associated time interval and the 

maximum travel time is equal to the time interval length. This is unlike the trajectory 

approach, in which each set is assigned to a time interval solely based on the departure 

time. 

The same process is conducted to specify the travel time distribution measures for the study 

network. However, in this case, as the vehicles do not travel in different clusters, their trajectories 

over each time interval are not separated into multiple segments. 

 

Figure 5-1- Extracted observations from vehicle trajectories for (a) Trajectory and (b) Sub-

trajectory approaches to estimate travel time reliability measure 

5-3- Data Description and Study Area 

The Regional Chicago network is considered for the case study (Figure 5-2a). This network 

contains 40,443 links, 13,093 nodes, and 1,961 traffic analysis zones. Traffic data are simulated 

using DYNASMART. Figure 5-2b illustrates the hourly network loading profile over the 24-hour 

simulation horizon. The data for the demand and network is obtained from Chicago Metropolitan 

Agency for Planning (CMAP). A subset of 9,915 links around the CBD area is selected for 
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partitioning based on link density variations over time and space. This subset forms the study 

network depicted in Figure 5-2a. Five-minute time intervals are considered in order to analyze the 

network characteristics including NFD, reliability measure estimation, and network partitioning. 

Figure 5-3 illustrates the entire day NFD and travel time reliability measures calculated by both 

trajectory and sub-trajectory approaches. Network-wide average flow, average density, and 

weighted average mean/standard deviation of the travel times per unit of distance are calculated 

for each 5-minute time interval, resulting in 288 sample points on each graph. Morning peak, 

evening peak, and off-peak periods are separated by different colors to provide a better 

interpretation of the simulation results. 

 

Figure 5-2- (a) Schematic sketch of the Chicago metropolitan network, the study network 

including 9,915 links, and Chicago CBD; (b) Chicago metropolitan network 24-hour loading 

profile 
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Figure 5-3- (a) NFD, (b) Reliability graph estimated by the trajectory approach, and (c) 

Reliability graph estimated by the sub-trajectory approach for the study network over the 24-

hour simulation horizon 

In Figure 5-3, the flow-density NFD is plotted (Figure 5-3a), while the standard deviation 

versus mean of travel time rates measured through the trajectory and sub-trajectory approaches are 

shown as well (Figure 5-3b and 5-3c, respectively). Note that the evening peak experiences larger 

values compared to the morning peak for both average flow and density in the NFD. The NFD 

follows a smooth trend as it reaches the maximum AM peak flow around 9:00 AM. Afterward, the 

network is in the unloading phase, and the system begins to recover while there is a decrease in 

average flow. As the demand level increases at mid-day, the system becomes congested again, and 

density increases. When the average flow reaches the maximum value sometime during the PM 

peak (at around 6:00 PM), the network maintains the maximum average flow, while the average 

density increases, reflecting a growing congestion pattern. The average density keeps increasing 

up to the point that the network is in the unloading phase again and begins to recover to a stable 

condition. 

The very large number of vehicles loaded onto the network (according to the time-

dependent demand table) are not able to complete their trips during the unloading phases of AM 
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peak and (especially) PM peak periods. The trapped vehicles cause the formation of gridlock, 

which brings traffic to a complete standstill with zero flow. A higher percentage of adaptive drivers 

results in more homogenous distribution of the congestion in the network due to avoiding super 

congested areas by these drivers. This would prevent or recover gridlocks in the network. 

Formation of the clockwise hysteresis loop in the NFD diagram is due to the gridlock formation 

in the network and shows the degree to which the system is unstable during the unloading period. 

In Figure 5-3a an incomplete hysteresis loop is formed during the AM peak period followed by a 

complete hysteresis loop during the PM peak period. 

In the trajectory approach, the reliability measure (slope of the estimated linear relation) is 

almost the same for AM and PM peak periods, and substantial fluctuations can be observed in both 

time periods. This is not the case for the sub-trajectory approach. The range of observed values for 

the mean travel time per unit of distance during the peak periods are exactly the same for the two 

methods. However, the sub-trajectory approach provides larger estimated values for the standard 

deviation of travel time per unit of distance compared to the trajectory approach. There are fewer 

fluctuations in the sub-trajectory approach since each travel time segment occurs in the same time 

interval. However, in the trajectory approach, different sets of a certain time interval might occur 

at different simulation time intervals as they only share the same departure time. The trajectory 

approach has a lower standard deviation as it ignores the variation of travel time over each vehicle 

trajectory by simply assuming that the travel time is uniformly distributed over the traveled 

distance (which might occur in multiple time intervals). However, in the sub-trajectory approach, 

each vehicle trajectory is divided into multiple segments associated with each time interval, and 

as a result better captures the variation of travel time over the traveled distance. In other words, 

the trajectory method for any given departure time interval (5-minute time intervals in this study) 
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considers the portion of trajectories entering to a sub-network (departing their trips or transferring 

from other sub-networks) until they exit that sub-network. Given that some sub-networks are large, 

this might take a significant amount of time (maybe multiple 5-minute time intervals). However, 

in the sub-trajectory approach, the maximum length of each applicable trajectory portion is the 

length of the departure time interval (5-minute in this study). Therefore, temporal variations of 

travel time are smoothed in the trajectory approach resulting smaller variances relative to the sub-

trajectory approach. 

A four-hour AM-Peak (from 6:00 AM to 10:00 AM) and a four-hour PM-Peak (from 3:00 

PM to 7:00 PM) are considered in order to perform detailed analyses for different partitioning 

approaches in the next two sections. Note that each of these periods includes the peak hours and 

pre- and post- peak hours to demonstrate the network traffic flow dynamics. 

5-4- Partitioning the Heterogeneous Network 

This section elaborates on the propagation and distribution of congestion in the study 

network during the morning and evening peak periods. The density of different links measured 

every 5 minutes is utilized as an indicator representing the level of congestion. First, a detailed 

analysis is performed to find a proper configuration to run the partitioning algorithm. As the 

analysis approach is the same for both the morning and evening peak, here only the evening peak 

data analysis is explained. Figure 5-4, which is built on the idea presented in Mazloumian et al. 

(2010), illustrates the specification of the heterogeneous network that is considered for the 

partitioning and provides insights on the properties of the network and the purpose of partitioning. 

Figure 5-4a depicts a box-plot representation of density at different time intervals during the 

evening peak. As seen in Figure 5-4b, the average and standard deviation of density increase over 

time. Average and median values are depicted using blue and red colors, respectively. To 
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demonstrate the spatial distribution of congestion, the time interval associated with 6:00 PM is 

selected, where the average and standard deviation of density are at a very high level. This time 

represents a condition where the network is heterogeneously congested. The histogram of densities 

at this time (Figure 5-4c), shows that the density holds a bi-modal distribution (i.e. many links 

have a small density while some links have a very high density), which is the reason for the 

existence of many outliers in the box-plot representation. 

 

Figure 5-4- Density temporal and spatial distributions for the PM peak period 

The study network contains many bi-directional links (4307 pairs). To investigate the effect 

of directional congestion, the histogram of standard deviation in bi-directional links is plotted in 

Figure 5-4d. Many bi-directional links have a smaller standard deviation than the average standard 
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deviation in the network. However, some of the bi-directional links experience different 

congestion levels during the peak hours. The impacts of the directional versus non-directional 

partitioning of bi-directional links are investigated in the numerical results section. In the non-

directional approach, the bi-directional links are forced to be in the same cluster. In the directional 

partitioning, two directions of a roadway may assign to different clusters. 

The proposed mixed integer linear programming optimization is a precise formulation of 

the clustering problem, which formulates a common heterogeneity measure (total variance: TV) 

as the objective function, and explicitly enforces connectivity. However, the optimization problem 

is efficiently solvable within a reasonable amount of time (i.e. with zero gap which implies 

optimality) for networks up to a certain number of decision variables (approximately for networks 

with up to 2,000 links), while the size of study network is very large (about 10,000 links). Hence, 

it is not practical to apply the exact formulation. To tackle the computational issue, a simplification 

step is introduced to improve computational efficiency, by finding and grouping nearby links with 

similar level of congestion throughout the network. This leads to a set of homogeneous and non-

overlapping groups, named local “homogeneous components”. Finally, the exact formulation can 

be applied to the reduced network including obtained components and remaining individual links. 

In the following, different simplification steps are explained in more detail. 

The simplification step of the partitioning methodology finds a set of similar links (i.e. set 

of links with similar density values over the time) in the network. A similar approach to the 

“Snake” methodology introduced in Saeedmanesh and Geroliminis (2016) is utilized. The snake 

method iteratively obtains the most homogeneous neighboring link around the set and adds it to 

the current set. In this approach, each individual link is considered as one snake at the beginning. 

Then, snakes start growing and merging until a certain number of components is obtained. At each 
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iteration, the most similar (i.e. the one with smallest average density differences over the time) 

links or snakes are merged. Note that, connectivity holds by construction in this method. This 

homogeneous non-overlapping component is utilized as an input for the exact optimization method 

in the next step. At this stage, groups of homogeneous links and single non-assigned links can be 

partitioned using the exact formulation introduced in Saeedmanesh and Geroliminis (2017) with 

feasible computational efficiency. 

The performance of the proposed methodology is examined for the study network using 

directional and non-directional approaches for different numbers of clusters (2, 3, and 4 clusters). 

As an example, the results of partitioning into two clusters with the non-directional approach for 

the morning peak period are depicted in Figure 5-5a.  

Determining the optimal number of clusters in a data set or network is a fundamental 

challenge in almost all partitioning (clustering) methods including k-means clustering, which 

requires the user to specify the number of clusters to be generated. Unfortunately, there is no 

definitive answer to this question. The optimal number of clusters is somehow subjective and 

depends on the method used for measuring similarities and the parameters used for partitioning. 

There are couple of methods (which can be categorized into direct and statistical methods) 

designed for obtaining optimal number of clusters. A common direct method, called “Elbow” 

method has been utilized, which looks at the objective function (total weighted sum of squared 

errors) as a function of the number of clusters (see Bholowalia and Kumar, 2014). The number of 

clusters should be chosen so that adding another cluster does not significantly improve the 

objective function. In the objective function vs. number of clusters curve, the location of a bend 

(knee) is generally considered as an indicatior of the appropriate number of clusters. For the 

number of clusters, note that in addition to 2 and 3 clusters, the 4-cluster case is also considered. 
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The results show no significant improvement in terms of both reliability parameter estimation and 

TVn values. This is the reason that the 3-cluster case is selected as the final configuration for 

further analysis. In other words, the analysis is begun with 2 clusters and this number is increased 

until no significant improvement is attained. 

Normalized total variance TVN is a well-established metric utilized to evaluate the 

efficiency of the partitioning algorithm for a single time period (i.e. the objective function of the 

partitioning algorithm is TV). The average value of 𝑇𝑉� over the entire time period (4 hours or 48 

time intervals for each peak period) is considered to account for the performance of each 

partitioning approach. This metric is defined as the ratio between the weighted variance of density 

in the partitioned case to the un-partitioned case: 

𝑇𝑉�(𝑡) =
∑ 𝑁/ × {var(𝐶/)|𝑡}
�&
/PQ
𝑁 × {var(𝐶)|𝑡} 																																																					(5 − 7) 

where 𝑁/ denotes the number of links in cluster 𝑖 and 𝐶 = ⋃ 𝐶/
�&
/PQ .	Note that {var(𝐶/)|𝑡} is the 

variance of densities at time interval t for the links belonging to cluster i. It should be noted that 

there is no overlap between different clusters (i.e. ⋂ (𝐶9, 𝐶/)/®9 = 	∅). The value of TVN is 

demonstrated at different time intervals in Figure 5-5b. The dashed-line curve represents the 

efficiency of obtained clusters for the speed data and the solid-line curve represents the density-

based measure. 𝑇𝑉� takes lower values in more congested time intervals, when the need for 

partitioning is more crucial. A similar pattern is observed for both speed and density data; however, 

the solid-line curve has a lower 𝑇𝑉�  value, since the density data is utilized as an input for the 

partitioning algorithm. Figures 5-5c and 5-5d depict the average density and speed for the obtained 

clusters during the AM peak. Figures 5-6a to 5-6d present the same results for directional 

partitioning with three clusters during the evening peak period from 3:00 PM to 7:00 PM. 
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Figure 5-5- Partitioning results: (a) Two clusters for AM peak and non-directional approach, (b) 

Speed and density descriptor of partitioning quality during the AM peak, (c) Average density for 

the AM peak, and (d) Average space-mean-speed for the AM peak 
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Figure 5-6- Partitioning results: (a) Three clusters for PM peak using directional approach, (b) 

Speed and density descriptor of partitioning quality during the PM peak, (c) Average density for 

the PM peak, and (d) Average space-mean-speed for the PM peak 
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Figures 5-7a to 5-7d present the same results for the non-directional partitioning with three 

clusters defined over the entire simulation time (24 hours). By minimizing average 𝑇𝑉� for the 

entire day, the algorithm tends to find homogeneous clusters over the entire day. The solution has 

lower 𝑇𝑉� values in the PM peak period compared to the AM peak. This is due to the fact that the 

congestion level is higher during the PM peak period and therefore a more accurate partitioning is 

needed there. 

A detailed comparison of the minimum and average values of 𝑇𝑉� over the AM peak 

period, PM peak period, and the entire day for different partitioning approaches is illustrated in 

Figure 5-8. Results confirm superiority of the directional partitioning. In addition, partitioning into 

three clusters instead of two clusters improves the quality of the partitioning in AM peak, PM peak, 

and the entire day results. However, partitioning into four clusters does not significantly improve 

the partitioning quality as compared to the 3-cluster case. Furthermore, partitioning is more 

important for the PM peak period, where heterogeneity of the congestion pattern over the 

simulation horizon is more significant. Therefore, directional partitioning into three clusters for 

the PM peak period is considered for detailed analyses of NFD and travel time reliability measures, 

as described in the next sections. 
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Figure 5-7- Partitioning results: (a) 3 clusters for the Entire day using non-directional approach, 

(b) Speed and density descriptor of partitioning quality during the entire day, (c) Average density 

for the entire day, and (d) Average space-mean-speed for the entire day 
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Figure 5-8- Minimum (lower graph) and average (upper graph) values of TVN over various time 

intervals (AM peak, PM peak, and entire day) for different partitioning approaches with 2 and 3 

clusters [in each X-Y-Z scenario in horizontal axis, X represents AM or PM peak period or the 

entire day (ED), Y represents directional (D) or non-directional (ND) partitioning, and Z 

represents the number of clusters (2C or 3C)] 

5-5- NFD and Travel Time Reliability Estimation 

In this section, the AM and PM peak periods are considered to establish a relation between 

travel time reliability relation estimation and the network partitioning. First, average flow and 

density at each 5-minute interval during the AM and PM peak periods are calculated based on the 

simulated vehicle trajectories for different partitioning approaches. The trajectories are divided 

into segments based on the link assignment to each cluster. The relationship between the average 

flow and density over different 5-minute time intervals is considered as the NFD for each cluster. 

Then, the trajectory and sub-trajectory approaches are applied with the 5-minute interval and for 

each cluster to estimate the reliability measures. 

Figure 5-9 shows NFDs and mean versus standard deviation of travel times per unit of 

distance, by both the trajectory and sub-trajectory approaches, for the study network and its three 
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clusters. The directional partitioning method is used for the evening peak period. The average 

density in the network is 36.9 veh/mile. The ordered pair of size (number of links) and average 

density (veh/mile) for these three clusters are (7038, 19.1), (1563, 84.3), and (1314, 151.5), 

respectively.  

Figures 5-9a to 5-9d show that clusters reflect different NFDs in terms of the shape, 

maximum and average density and flow, and the area of the hysteresis loop. This emphasizes one 

of the main contributions of the partitioning approach, which states that a single NFD for the entire 

network cannot properly describe the network performance because in most cases, congestion is 

heterogeneously distributed throughout the network. In the least congested cluster, the average 

flow and density grow at the same time until a maximum flow rate and density are observed in the 

first phase. In the second phase, the unloading process begins and a reduction in both average flow 

and density can be observed. In the medium congested cluster, the maximum average flow is 

maintained, while the density grows in the first phase. In the second phase, similar to the previous 

case the unloading process begins. In the most congested cluster, a maximum average flow with 

growing average density is maintained for a while. Then, at a certain point the average network 

flow drops while the average density still increases. Finally, at a certain point both average flow 

and density begin to decrease as the unloading phase starts. Depending on the congestion level, 

the NFD shape varies and the hysteresis loop size might be different. 

In Figures 5-9e to 5-9h, upper and lower diagrams are estimated by the trajectory and sub-

trajectory approaches, respectively. The ranges of the mean and standard deviation of travel time 

per unit of distance are almost identical in both approaches for all sub-networks and the overall 

study network. The slope of the diagrams, which captures the rate at which variability increases 

with the mean trip time per unit distance, varies from one cluster to another, while the trend is 
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consistent for both estimation approaches: trajectory, and sub-trajectory. However, there are more 

fluctuations in the trajectory approach diagram relative to the sub-trajectory approach, due to 

assigning trajectories to time intervals solely based on their departure times. 

Detailed descriptors of the reliability diagrams besides the calibration results for the linear 

model are given in Table 5-1. This table presents the point estimates of the model coefficients, t-

statistics, associated p-values, and adjusted R-squared values with 95% confidence bounds. The 

results illustrate that all coefficients are statistically significant for the linear model in both 

approaches. The adjusted R-squared values are generally high, which indicates an acceptable fit. 

The overall R-squared values estimated by the sub-trajectory approach are higher. The loading and 

unloading phases follow different paths in the reliability diagrams, although in many cases, the 

relation between the mean and variability of travel time is still linear. Figure 5-9 illustrates only 

the loading phase in the reliability diagrams. 

The proposed linear travel time reliability relation provides more robust estimation, when 

it is applied on time of day periods with certain spatial and temporal demand distribution (AM 

peak or PM peak versus the entire day). In a heterogeneously congested large-scale network both 

NFD and travel time reliability diagrams experience hysteresis loop and different phases of these 

diagrams experience distinct trends. Therefore, a single robust travel time reliability relationship 

might not exist for the entire day time period. Disaggregating the entire day to AM and PM Peak 

periods improves the accuracy and precision of the proposed model for travel time reliability 

relation and captures the network dynamics as well. However, the resolution of the selected time 

span cannot be stretched beyond a specific point. By increasing the resolution (selecting smaller 

periods) the concept of the network-wide relationship is violated as the network dynamic is 

disregarded. The same concept is true for partitioning a large-scale network. However, in case of 
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rapid and sudden changes in the demand level, the rate of demand variations would not be smooth. 

In this case, one might not be able to easily identify a proper time period with a robust linear 

reliability relation. 

It should be noted that partitioning a large-scale heterogeneous network into multiple 

homogeneous clusters provides a less aggregate travel time reliability measure at sub-network 

level compared to network level. Indeed, the proposed method captures travel time variations in 

high resolution (among different sub-networks), while still using the benefits of an aggregate 

model. This is considered an improvement in travel time reliability estimation. Table 5-1 suggests 

that the estimated travel time reliability relations for all sub-networks and the entire network have 

almost the same attributes. However, a large-scale heterogeneous network is divided into some 

small size homogeneous sub-networks. Therefore, more information about the variability of travel 

time is provided by the sub-network level relation without loss of accuracy in this estimation. 

The two results produced by the two methods of travel time reliability estimation follow 

the same pattern from one cluster to another in terms of changes in the reliability measure, 

however, they estimate slightly different parameter values. The sub-trajectory approach, which 

produces somewhat larger reliability coefficient estimates than the other (trajectory) approach; it 

is also the preferred approach. First, in this method, considering the travel information during each 

time step (5 minutes) reflects a more detailed description of travel time reliability than only 

focusing on the departure time interval. Second, results of the sub-trajectory approach reflect a 

smooth change of mean and standard deviation of travel time rate during the simulation time, 

whereas considerable fluctuations are observed in the results of the trajectory approach. This is 

due to combining travel time information of trajectories that share the same departure times but 

might take place over different time intervals. In other words, the trajectory method considers the 



 109 

trajectories until they exit a region. Given that some regions are large, this might take a significant 

time interval (maybe multiples of 5-min). Accordingly, temporal variation of travel time is 

smoothed resulting in much smaller variances in the trajectory approach. All in all, the sub-

trajectory approach is selected to explore the connection between the network partitioning and the 

variability of travel time. The slope of the linear relationship between the mean and standard 

deviation of travel time per unit of distance indicates the degree to which the system reliability 

degrades with increasing congestion. 

 

Figure 5-9- NFDs over the PM peak period for the directional partitioning approach for (a) study 

network; (b) cluster 1 with 19.1 veh/mile average density; (c) cluster 2 with 84.3 veh/mile 

average density; (d) cluster 3 with 151.5 veh/mile average density; and associated travel time 

reliability diagrams for trajectory (upper diagrams) and sub-trajectory (lower diagrams) 

approaches in (e) study network; (f) cluster 1; (g) cluster 2; and (h) cluster 3 
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Table 5-1- Estimation of the Reliability Coefficient for PM-Peak Directional Partitioning 

Reliability: Trajectory Approach 
Network / 

Sub-network 

Size 

(Links) 

Linear Model 

Constant (𝑝Q) 

Linear Model Coefficient Adjusted 

R² 𝑝L t-stat p-val. 

Study Area 9915 -12.58 4.08 17.56 <10-10 0.87 

Sub-network 1 7038 -22.89 10.58 30.33 <10-10 0.97 

Sub-network 2 1563 -18.05 4.48 59.67 <10-10 0.99 

Sub-network 3 1314 6.07 2.49 39.57 <10-10 0.98 

 

Reliability: Sub-trajectory Approach 
Study Area 9915 -12.55 6.41 90.1 <10-10 0.99 

Sub-network 1 7038 -21.56 10.47 16.8 <10-10 0.90 

Sub-network 2 1563 -14.05 3.81 51.4 <10-10 0.99 

Sub-network 3 1314 3.48 2.36 64.4 <10-10 0.99 

 
Here, the impact of the network partitioning on the reliability coefficient is explored. Figure 

5-10 illustrates the relation between the coefficient of reliability with different congestion 

measures (average density, standard deviation of density, and density coefficient of variation) for 

the morning (Figure 5-10a) and evening (Figure 5-10b) peak periods. The horizontal axis shows 

different cases of partitioning for both directional (blue bars) and non-directional (orange bars) 

approaches with different sizes versus the estimated value for the entire study network (the green 

bar). Clusters are sorted based on the increasing order of the sub-networks average density. Results 

indicate that the coefficient of reliability relation (the slope of the linear fit) significantly changes 

over the clusters in each partitioning approach for both AM peak and PM peak periods (the 

reliability measure for clusters is in the range of 0.5 to 1.7 times of the measure for the overall 

study network). This demonstrates the effectiveness of network partitioning in characterizing the 

reliability performance in different parts of a large regional network.  



 111 

The average and standard deviation of density are inversely correlated with the coefficient 

of reliability relation for different partitioning cases. The density coefficient of variation, which is 

the ratio of the standard deviation to the mean density, seems to play a key role in describing the 

relationship between the congestion measures and reliability of travel time. The third chart from 

the top indicates that this variable is directly correlated with the reliability coefficient for both peak 

periods. The association of these two indicators, which relates a network congestion measure to a 

reliability indicator, is rather intuitive. It is therefore not surprising that if the network is partitioned 

based on the congestion distribution, it can affect the reliability measure estimation depending on 

the level of congestion. 

Figure 5-11 reveals the direct correlation between the magnitude of the clockwise 

hysteresis loop in the entire-day NFD and the anti-clockwise hysteresis loop in the entire-day 

reliability of travel time graph. This figure represents the results for the study area and sub-

networks partitioned based on the entire-day density data. Clusters are sorted based on their 

average density. Characteristics of the hysteresis loop can be utilized to describe the performance 

of the network. 

By increasing the average density of the clusters, the system becomes more unstable during 

the recovery phase. As the congestion level of a network intensifies, more vehicles are trapped in 

the gridlock. Almost immobilized vehicles need a very long time to get out of the gridlock during 

the recovery phase which implies inefficient recovery of the network (Mahmassani et al., 2013). 

Consequently, a large hysteresis loop is formed in the NFD, and a larger range of densities become 

multivalued. Multivaluedness in the NFD implies traffic instability in the network (Saberi et al., 

2014c; Zockaie et al., 2014b), which leads to multivaluedness in the reliability diagram. As a 

conclusion, when the size of the hysteresis loop gets larger, and consequently the system becomes 
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less capable to recover itself efficiently, the average mean travel time rate increases throughout the 

network, which results in a large hysteresis loop in the reliability of travel time diagram. 

 

Figure 5-10- Correlation of the coefficient of reliability relation with different congestion 

measures and the number of clusters during (a) AM Peak Period, and (b) PM peak period 
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Figure 5-11- Correlation between the area of hysteresis loops in (a) NFD and (b) Reliability of 

travel time graph (values are presented in logarithmic scale) 

5-6- Summary 

This chapter explores the impact of partitioning a heterogeneous network on the estimated 

travel time reliability measure, as the main contribution. For this purpose, the reliability measure 

is estimated for the entire heterogeneous network and different clusters generated by employing 

directional and non-directional partitioning approaches. The impact of these approaches, as well 

as the number of clusters on the travel time reliability relation are assessed in this chapter. Two 

different approaches are also used to allocate vehicle trajectories to different time intervals in the 

reliability measure estimation, with different implications for the extent of variability that is 

captured. Applying and comparing two methodologies for partitioning and two approaches for the 

reliability measure estimation under different actual demand patterns (AM peak versus PM peak) 

in an actual large-scale network are other contributions of this study. The key findings from the 

numerical results are as follows: 

• Partitioning a large-scale heterogeneous network into optimal number of homogeneous sub-

networks improves the travel time reliability estimation. In this study, three-cluster partitioning 
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is considered as the preferred case. It should be noted that partitioning into four subnetworks 

improves the partitioning quality, compared to the 3-cluster case, however, it does not provide 

a significant improvement. On the other hand, partitioning the network into four clusters is 

much more challenging than the 3-cluster case. Thus, a trade-off between the computational 

efficiency and the accuracy of the results needs to be made. Thus, the 3-cluster case is adopted 

for the case study. 

• The sub-trajectory approach estimates more robust and higher reliability measures and 

considers network dynamics in a more coherent manner than the trajectory approach. It also 

estimates different values for the AM and PM peak periods, unlike the trajectory approach.  

• The directional partitioning to three clusters has the best performance relative to the non-

directional approach and other cluster sizes based on the defined partitioning quality measure. 

This highlights the importance of considering regions with homogeneous level of congestion 

for the aggregated network model. 

• In both AM and PM peak periods, there is an inverse relation between the reliability measure, 

and average and standard deviation of density. A larger density coefficient of variations 

indicates more uncertainty in the network. 

• The density coefficient of variation is another measure to assess the impacts of the network 

partitioning on the reliability measure which is found to be directly related to the reliability 

measure. 

• The area of hysteresis loops in the entire-day NFD and reliability graphs are directly correlated 

for all partitioning cases. 
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CHAPTER 6 – Estimating Large-Scale Vehicular Emission 
 

6-1- Overview 

Estimation of vehicular emissions at the network level is a prominent issue in transportation 

planning and management of urban areas. For large networks, macroscopic emission models are 

preferred due to their simplicity. However, these models do not consider traffic flow dynamics that 

significantly affect emission production. This chapter proposes a network-level emission modeling 

framework based on the network-wide fundamental diagram (NFD), via integrating NFD 

properties with an existing microscopic emission model. The NFDs and microscopic emission 

models are estimated using microscopic and mesoscopic traffic simulation tools at different scales 

for various traffic compositions. The major contribution is to consider heterogeneous vehicle types 

with different emission generation rates at network-level models. This framework is applied to the 

large-scale network of Chicago as well as its CBD area. Non-linear and support vector regression 

models are developed using simulated trajectory data of thirteen simulated scenarios. The results 

show a satisfactory calibration and successful validation with acceptable deviations from 

underlying microscopic emission model regardless of the simulation tool that is used to calibrate 

the network-level emission model. The microscopic traffic simulation is appropriate for smaller 

networks, while the mesoscopic traffic simulation is a proper means to calibrate models for larger 

networks. The proposed model is also used to demonstrate the relationship between macroscopic 

emission and flow characteristics in the form of a network emission diagram. The results of this 

study provide a tool for planners to analyze vehicular emissions in real-time and implement 

optimal policies to control the level of produced emission in large cities.  
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6-2- Background and Modeling Tools 

6-2-1- Traffic Flow Simulation 

Traffic simulation under the prevalent network and traffic conditions is a common step to 

model calibration and usage, as well as in the calculation of NFD and microscopic emissions. 

Dynamic traffic assignment (DTA) is a more suitable choice for this framework, since it effectively 

incorporates the effects of traffic dynamics on the vehicular mechanical characteristics. DTA 

involves iteratively finding network user equilibrium based on the best paths in the network that 

keep changing due to variations in congestion with time while maintaining that no user can 

unilaterally decrease their travel time by changing the assigned route. This study uses the 

commercial traffic simulation tool PTV-Vissim for microscopic and DYNASMART-P for 

mesoscopic traffic simulations. 

DTA-based traffic simulation results in detailed vehicular trajectories that include the 

vehicular properties, such as vehicle class and engine specifications, as well as dynamic properties 

such as position in the network, speed, and acceleration at each time step. The default simulation 

time steps of 1 and 6 seconds respectively in PTV-Vissim and DYNASMART-P are used for 

simulation and generation of vehicle trajectories. Note that the 6-second step size potentially masks 

the significant speed variations that can occur in this time. Moreover, mesoscopic simulation does 

not differentiate the values of speed and acceleration of individual vehicles moving on a given link 

at a given timestep. These drawbacks of mesoscopic modeling are generally acceptable in case of 

large networks since they are the only viable approach due to the size of the network. Furthermore, 

these important qualifications of mesoscopic simulators may be rendered insignificant if the 

resultant emission estimates can be calibrated against and proven similar to the more robust 



 117 

microscopic emission estimates. Thus, in this study both microscopic and mesoscopic simulation 

tools are utilized to model emissions for one medium and one large sized network. 

In this study, it is assumed that the relevant traffic state of the network at any given time is 

represented by the network fundamental diagram. In this regard, different sets of conditions hereby 

called ‘traffic scenarios’ are considered for training the emission estimation model in order to 

ensure its ability to work over a diverse range of common traffic states. Each traffic scenario leads 

to an observed network-wide flow-density relation (observed NFD) and is characterized by a 

number of factors that are known to influence the shape and existence of the NFD. These factors 

include network size and configuration, traffic demand and capacity, traffic composition, signal 

timing, dynamic user behavior, incidents as well as local weather conditions (Nesamani et al., 

2007). Two key variable factors used as inputs to the traffic simulator are demand level and profile, 

and prevalence of adaptive drivers, which are shown to have significant impacts on network traffic 

state (Ji et al., 2010; Mahmassani et al., 2013; Saberi et al., 2014c). 

 
6-2-2- Traffic Composition 

Vehicular emission rates are significantly dependent on the size of vehicle and its engine 

and fuel characteristics. Based on factors such as the used microscopic emission model, a 

simplified nested traffic composition scheme with four vehicle types is considered for a two-level 

modeling process based on size and fuel type. In this classification scheme, vehicles are first 

categorized as either light (cars, vans, and sports utility vehicles) or heavy vehicles (buses, trucks, 

and tractor-trailers). The light vehicles are then classified on the basis of fuel type—petrol 

(gasoline), diesel, and liquefied petroleum gas (LPG) cars. It is assumed that for a given NFD, the 

proportion of heavy vehicles is fixed and therefore, the fleet composition of the light vehicles can 

vary freely without affecting NFD. Thus, the variation of both size and fuel type can be effectively 
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captured without significant increase of computational complexity. The choice of these specific 

subcategories is based on the availability of calibrated functional coefficients in the micro-

emission model. 

Since the internal composition of light vehicles is a direct and variable indicator of 

network-wide emissions, it is to be tested for a wide variety of combinations. For comprehensive 

and qualitative testing, uniform sampling is a good option. One way of generating these scenarios 

based on uniform sampling is with the use of linear Diophantine equation 𝑝ts(z°± + 𝑝²/s�s± +

𝑝³´µ + 𝑝¶s·¸¹ = 1, where 𝑝/ is the penetration rate of vehicle type 𝑖. Since the proportion of heavy 

vehicles is fixed and known, sets of the light vehicle composition variables, 𝑇𝐶 = (𝑝ts(z°±,

𝑝²/s�s±, 𝑝³´µ, 𝑝¶s·¸¹), hereby called traffic composition sets, can be generated combinatorically 

at a specific uniform spacing using the number theory concept of the stars and bars problem (Feller, 

2008). In this study, for 𝑝¶s·¸¹ = 0.1	and a spacing of 10 percent, i.e., 𝑝/ ∈ {0, 0.1, … , 0.9}, a total 

of IQ�{»qQ»qQ K = 55 combinations are generated, labeled TC1 through TC55. Once these sets are 

generated, the trajectories of the light vehicles can be assigned to a fuel type based on a weighted 

random number using the assumed proportions in each scenario. 

6-2-3- Micro-Emission Model 

The methodology provided in this study does not make any qualifications regarding the 

choice of a microscopic emission estimation model as long as it takes into account the dynamic 

behavior of traffic and the distinction between vehicle types. This study, incorporates the 

polynomial model suggested by Panis et al. (Int Panis et al., 2006) given as: 

𝐸k
t(𝑡) = 𝑐Q

t + 𝑐L
t𝑣k(𝑡) + 𝑐»

t𝑣kL(𝑡) + 𝑐½
t𝑎k(𝑡) + 𝑐¾

t𝑎kL(𝑡) + 𝑐¿
t𝑣k(𝑡)𝑎k(𝑡)	 (1) 
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Here, 𝐸k
t(𝑡) denotes the emission rate of pollutant p (in grams/second) from a vehicle n at 

simulation interval t, v(t) is the vehicle’s speed in that time interval (m/s), a(t) is its acceleration 

(m/s2), and 𝑐Q
t through 𝑐¿

t are coefficients of the fitted curve. For more details on the model 

calibration procedure and coefficients values the readers are referred to Panis et al. (Int Panis et 

al., 2006). The estimated values of micro-emission at different simulation intervals are aggregated 

for each 5-minute time interval and values of macro-emission are calculated by summing the 

values of micro-emission over the simulation period. 

Two air pollutants are considered in this study – carbon dioxide (CO2), and nitrogen oxides 

(NOx). These pollutants have significant environmental and health impacts and have been 

considered by various studies in the literature (Int Panis et al., 2006; Jiang et al., 2015; Niemeier 

et al., 2006). NOx (which is mostly hydrocarbons derived from fossil fuels) are included in 

emission standards by many environmental agencies, such as Hong Kong’s Environmental 

Protection Department (Cen et al., 2016). CO2 acts as a greenhouse gas that is a major cause of 

global warming. It should be noted that the transportation sector is one of the largest contributors 

of CO2 emissions worldwide (Liu et al., 2016; López-Martínez et al., 2017). Note that the 

methodology proposed here provides flexibility to incorporate other pollutants and vehicle types, 

as long as they fit the general structure of the used micro-emission model. 

 
6-3- Modeling Framework 

This study uses a framework that systematically integrates a microscopic emission 

estimation model with a dynamic traffic assignment simulator to assess the emission 

characteristics of vehicles at network-level. This model considers the vehicle dynamics at a 

macroscopic level by generating vehicle trajectories using both microscopic and mesoscopic 
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simulation tools. This is a variation of the more general format of integration of cross-resolution 

modeling techniques, whose reliability has been sufficiently validated in the literature 

(Jamshidnejad et al., 2017; Zhou et al., 2015). 

The procedure followed in this study is illustrated in Figure 6-1. The schematic shows the 

respective steps to be followed for the creation of the model and its validation and application. The 

modeling process includes feeding network and traffic state inputs to the traffic simulator. The 

choice of this traffic simulation model largely depends on the size of the network. This study uses 

two traffic simulation techniques – microscopic and mesoscopic – to distinguish the applicability 

of these two types of techniques at two scales. Traffic simulation is used to generate two key 

outputs – aggregate traffic flow indicators and a set of vehicle trajectories. These data are then 

analyzed to generate NFD and network-wide emission estimates, which can be combined to 

visualize a network emission diagram (NED). 
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Figure 6-1 Research framework to estimate a macro-emission model 
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Two members of supervised learning models, non-linear regression and support vector 

machine (SVM), are utilized to estimate the network-wide emission by incorporating NFD and 

market penetration rates of different vehicle types in the network. SVM is mainly employed in 

classification contexts (Suykens and Vandewalle, 1999). It is also a well-recognized regression 

technique (Smola and Schölkopf, 2004). Support vector regression (SVR) extends sophisticated 

binary classification via kernel trick to regression. In this study, an SVR model is generated with 

the input set {𝐾(𝑡), 𝑄(𝑡), 𝑝ts(z°±, 𝑝²/s�s±, 𝑝³´µ, 𝑝¶s·¸¹} and the radial basis function kernel as 

𝜙(𝑢, 𝑣) = exp	(−𝛾||𝑢 − 𝑣||L)																																																														(2)	

Here, the kernel function 𝜙 measures the degree of similarity between feature vectors (rows of the 

dataset) 𝑢 and 𝑣, and parameter 𝛾, the number of independent variables, is chosen to be 6. In 

addition to SVR, the following non-linear regression (NLR) model is also formulated as the macro-

emission estimator. 

𝐸𝑚	 (𝑡) = -.𝛼𝑖𝑚𝑝𝑖

𝑁

𝑖=1
/𝐾(𝑡) 0𝛽𝑚 + 𝑉(𝑡)1 = -.𝛼𝑖𝑚𝑝𝑖

𝑁

𝑖=1
/0𝛽𝑚𝐾(𝑡)+𝑄(𝑡)1 (3) 

Here, 𝐸j	  is the rate of emission (in gram/second) of pollutant 𝑚 ∈ {COL, NOÇ} at time step 

𝑡 in the observation period, 𝑝/ is the penetration rate of vehicle type 𝑖 in the traffic stream (1: petrol 

(gasoline) car, 2: diesel car, 3: LPG car, 4: heavy vehicle), 𝐾(𝑡), 𝑉(𝑡), and 𝑄(𝑡) are respectively 

network-wide average density, speed, and flow, and 𝛼/j and 𝛽j are the model parameters for 

pollutant 𝑚. 𝛽j represents the offset effect of average density, i.e., the effect of density on 

emissions at very low speeds. A large value of this parameter implies high emission levels in the 

highly congested regime (in the limit case, it dictates the effect of traffic jam on emissions). 

The proposed macro-emission model integrates the network-wide average density, as a 

representative of vehicle accumulation in the network, and average speed as the main incorporating 
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factor in vehicular emission. The macro-emission model follows the structure of the underlying 

micro-emission model where the speed and its variation are the core factors. Multiplication of the 

network-wide average density aggregates the individual vehicles emission at network level. The 

aggregated value then is adjusted by a linear function of different fuel powered vehicles penetration 

rates. More details will be discussed in the next section. 

6-4- Numerical Experiment 

Here, we apply the proposed estimation framework to a large-scale network and a medium 

size network to estimate the emissions. First, we discuss the study area and traffic scenario 

specifications followed by the model calibration. To calibrate the model, actual data from ten 

different days are utilized to generate traffic scenarios. Then, the model is validated employing the 

actual data from the other three days. To better comprehend the relationship between network 

dynamics and emissions, we introduce a visualized form of the calibrated model for different 

pollutants, namely the Network-wide Emission Diagram (NED). 

6-4-1- Study Area and Traffic Scenarios 

The proposition of this study requires traffic information for a large urban road network. 

The city network of Chicago, Illinois is selected as the study area. This network is a part of the 

Greater Chicago metropolitan area, one of the largest metropolitan areas in the United States. This 

network is bound by O’Hare airport to the west and Lake Michigan to the east. The schematic of 

the network and its size parameters are shown in Figures 6-2(a). To include the effects of network 

loading and unloading during peak and off-peak times, a simulation period of 5:00 AM to 12:00 

PM is chosen in this study, which includes the morning peak of traffic rush, as well as the off-peak 

periods before and after it. For the purpose of calibration of macroscopic emission modeling 

against the more effective microscopic modeling, a smaller region of this network is also analyzed. 
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The central business district (CBD) region of this urban network (shown in the right part of Figure 

6-2(a)) is simulated using a microscopic traffic simulator. 

The network data is provided by the Chicago Metropolitan Agency for Planning. This data 

includes the network configuration and a base demand matrix. The demand profile of the base 

calibration scenario and the resultant NFD for both study networks are shown in Figures 6-2(b) 

and 2c. The daily demand of the base scenario is 742,181 vehicles with a composition of 7 percent 

heavy and 93 percent light vehicles. For simplicity and clarity of creating traffic composition sets, 

a base case of 10 percent trucks is assumed for NFD generation and emission estimation. 

The real-world data observed over 86 weekdays are used to create 86 variations of the base 

model. These observations include weather conditions, number of incidents, and total flow 

observed by 122 loop detectors. To limit the numerical experiments, 13 days with clear weather 

conditions are randomly selected for analysis and simulation, and an NFD is observed for each 

day. The selected scenarios are chosen from the days with normal weather conditions to avoid 

considering the weather condition impacts on emissions. Ten of these NFDs are utilized to 

calibrate the proposed model (labeled C1-C10), while the remaining three are used for validation 

(V1-V3). The two parameters used to define these traffic scenarios are aggregate daily traffic 

demand within the network, and the daily average percentage of adaptive drivers in the circulating 

traffic.  

According to Figure 6-2(c), the larger, low-density NFD of the city network contrasts 

sharply with the highly congested, smaller CBD network. The NFD progresses with time in the 

clockwise direction, with a steady increase in both flow and density during the loading phase up 

to the point of maximum flow and receding to the congested phase after that, with an increase in 

network density despite a drop in the throughput. In the recovery phase (the two-hour period of 
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zero total demand), the network readily becomes empty, leading to a decrease in both flow and 

density, but the NFD does not follow the path as of the loading period, resulting in hysteresis. 

NFDs of other scenarios are also observed to be shaped similarly and exhibit hysteresis during the 

recovery phase. The variation of these NFDs is partly represented in Figure 6-3 using three 

network-level measures – maximum of the flow, maximum density, and the area of hysteresis loop. 

Since the results are the average values reported at network level, significant fluctuations are 

observed among different scenarios. 

6-4-2- Model Calibration 

Generated emission values are calculated based on trajectory data and the macro-emission 

model for each pollutant and scenario at every 5-minute time interval for the entire simulation 

period by summing the values of emission rates (grams per second for micro-simulation or per 6 

seconds for mesoscopic-simulation) over 5 minutes across all the links. It is observed that the 

macro-emission rate increases roughly parabolically with increasing density in the loading phase 

(see Figures 6-4(a) and 6-4(c)). This is due to the fact that emission rate is more heavily dependent 

on individual vehicle operational characteristics than their behavior as a group. It should also be 

noted that despite the positive correlation of speed with emission rate in the microscopic model, 

its effect is overshadowed by the effect of the network flow rate (throughput). This is evident in 

Figures 6-4(b) and 6-4(d), where the macro-emission rate increases at the network loading phase 

due to increased network average flow rate, despite of a steady decrease in the average speed. 

However, beyond the flow breakdown point the emission generation rate decreases because of a 

reduction in both the average speed and the throughput in the network. This pattern, however, is 

less prominent in the case of NOx (Figure 6-4(d)). Despite of reduced emission rates in the 
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congested phase, the longer clearance time for the congested traffic due to reduced flow rates, 

imply higher overall pollutions in this phase. 

 

Figure 6-2 (a) Specifications of the study area, (b) simulated demand profiles, and (c) network 

fundamental diagrams of the Chicago city road network and its CBD (diagrams are for the base 

calibration scenario C5) 
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Figure 6-3 Variation of traffic flow characteristics across the different traffic scenarios: (a) 

Maximum Average Flow, (b) Maximum Average Density, and (c) Area of Hysteresis Loop in 

NFD Diagram 

Figure 6-4 also signifies the independent effect of traffic composition of light vehicles on 

emission. For demonstration, ten traffic composition sets are uniformly and exhaustively selected 

and analyzed as seen by the different colored curves in Figure 6-4. They show that for the same 

value of speed and density, different traffic composition sets only have a scaling effect. Therefore, 

the model can be simplified by considering a linear combination of the different proportions in the 

composition set as an independent predictor variable (see Equation 6-3). 
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Figure 6-4 Scaling effect of vehicle type percentages on macro emission model in the loading 

phase of NFD – CBD Network, micro-simulation: (a) emission vs density for CO2 (b) emission 

vs speed for CO2 (c) emission vs density for NOx (d) emission vs speed for NOx for 10 traffic 

composition scenarios in the calibration scenario C1 

The values of the calibrated coefficients of Equation 6-4 for the given study areas are 

presented in Table 6-1. The p-values associated with all the variables are either exactly or 

extremely close to zero, and the R-squared values are very close to one, indicating a strong curve 

fit. Note that the estimated parameters are completely different in two networks, which shows that 

these parameters need to be calibrate for each network and cannot be transferred. Thus, every 

application requires a calibration process based on detail analysis of simulation results or available 

data sets. Using the ten traffic scenarios, an SVR model is also trained to estimate the network-
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wide emission. Traffic state at every 5-minute interval and the market penetration rates of different 

vehicle types are provided to tune the SVR model. The average calibration runtimes of the NLR 

and SVR models for different pollutants and networks are 0.035 and 3.917 seconds, respectively. 

These results are obtained using a computer with i7-6700 octa-core CPU with a 3.4 GHz clock and 

16 GB memory. It can be seen that SVR training is computationally much more consuming than 

NLR. In the next sections, it is shown that it also performs slightly better than NLR, leading to the 

common speed-accuracy tradeoff. 

 

Table 6-1 Parameters of the proposed macro-emission model for the pollutants considered 

Network Pollutant 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜷 Adjusted R2 
CBD 

(microscopic) 
CO2 57.52 47.48 59.14 273.6 2.604 0.98 
NOx 0.088 0.172 0.089 0.580 6.629 0.99 

City 
(mesoscopic) 

CO2 483.6 450.6 484.9 2365 2.305 0.99 
NOx 1.139 2.210 1.125 7.458 4.686 0.98 

 

6-4-3- Model Validation 

The calibrated models are validated using the three validation scenarios. The NFDs of the 

base and validation scenarios are significantly different in terms of congestion pattern (see Figure 

6-3). The effectiveness of the validation is quantified using the average of mean absolute relative 

error (MARE) of the model across each validation scenario. MARE is a widely used error metric 

that uses range normalization. For a pollutant 𝑚, it is given as: 
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Here, 𝐸�,(j  and 𝐸)�,(j  are the estimates of emission rate of pollutant 𝑚 at simulation time step 

𝑡 for traffic composition set 𝑐 made by the reference microscopic emission model and the 
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calibrated macroscopic model, 𝑁r  is the number of traffic composition sets (in this case, 55), and 

𝑁( is the number of time steps in the simulation period (84 5-minute time intervals for a period of 

7 hours). The values of MARE obtained for the validation scenarios are shown in Figure 6-5. It 

can be seen that all values are reasonably low at the aggregate level, lying below 10 percent. The 

figures show that the SVR model performs better than the NLR model in all validation scenarios, 

with an error rate in the range of 2-5 percent. Based on very low error values in the validation 

scheme, the proposed NLR and SVR models (Equation 6-4 and Table 6-1) are considered valid 

for application at the study area. Examination of the error distributions across different traffic states 

did not show any particular pattern, leading us to the conclusion that the errors over different traffic 

phases are random. Based on this conclusion and very low error values in the validation scheme, 

the proposed NLR and SVR models (Equation 6-4 and Table 6-1) are considered valid for 

application at the study area. In summary, the SVR method outperforms NLR, but it must be noted 

that SVR requires significantly more computation than NLR, and unlike NLR does not provide a 

closed-form expression for emission rate. The choice of model – either NLR or SVR, thus, is 

dependent on the practitioner’s preferences. Furthermore, there is no meaningful difference in 

performance of SVR or NLR for the CBD and city networks that are simulated by microscopic 

and mesoscopic simulation tools, respectively. 

The proposed macro-emission model has some approximations relative to the micro-

emission model that is used for its calibration and validation. However, unlike the micro-emission 

model, once it is calibrated, it does not require detailed trajectory of all traveling vehicles. It only 

incorporates the network-wide average flow and density given by an available NFD, and the traffic 

composition, which can be estimated for any given network with various approaches (e.g. see 28, 

29, 44). This makes the proposed model a perfect tool for real time control of emissions, unlike 
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the micro model. Furthermore, it can be used for planning purposes only by changing the traffic 

composition for the desired scenarios.  

The qualitative nature of the inferences made by this model are presented in the next 

section. Note that in addition to estimating the exact emission rate, the model can capture the 

variations of the emission rate over the simulation horizon. This is based on a new concept, which 

is defined as the Network Emission Diagram (NED). 

 

Figure 6-5 Mean absolute relative error in macroscopic emission estimation using the (a) NLR 

model for CBD, (b) NLR model for city network, (c) SVR model for CBD, and (d) SVR model 

for city network 

6-5- Network Emission Diagram 

The network emission diagram (NED) is hereby defined as a graphical representation of 

the relative network-wide emission rates and traffic state variations represented by the network-

wide average values of flow and density. It is a three-dimensional graph whose projection on the 

density-flow plane is simply the network fundamental diagram. In this case, different NEDs are 

obtained for different pollutants across different traffic scenarios and traffic compositions. Figure 

6-6 illustrates an example NED for CO2 in the traffic scenario V2 and traffic composition set TC25, 

in which the percentage of each category of light vehicles is equal to 30% and heavy vehicles 

comprise the other 10%. This figure depicts the three-dimensional NED of CO2 and its projections 
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on the two traffic flow variable planes. This figure shows that the model successfully captures 

variations of the emission generation rate over the simulation horizon with an acceptable precision. 

Some important properties of NED can be inferred from Figure 6-6 that are key factors in 

the analysis of environmental impacts of the network loading mechanism. Macro-emission gets 

the peak value at the peak flow. This follows from the highly correlated variations of emission 

with the traffic flow, which is highly intuitive. However, this variation is not strictly linear, and 

the slopes are different in the two phases. The observations of NEDs of all pollutants show that 

the flow breakpoint segregates the flow-emission diagram into two phases – stable and unstable. 

For the same flow in the network, the unstable phase has higher emission rates compared to the 

stable phase. The unloading phase, characterized by recovering traffic with high density and low 

speed, is also considered a part of the unstable phase in this case. It can be hypothesized that this 

occurs because of higher density in the unstable phase, which may have a higher impact than the 

effect of lower speed in the unstable phase.  

Figure 6-6 illustrates that the emission rate increases rapidly with increase in density and 

reaches a saturation level of maximum at high densities during the loading phase. Then, the flow 

breakdown occurs and emission rate decreases by density increase until the recovery (unloading 

phase) begins. The emission rate drops significantly during the unloading phase, reaching its 

minimum before reloading begins. This is a complementary observation to the varying slopes of 

the emission function with respect to flow. As mentioned earlier, the unstable phase (loading phase 

after flow break-down) experiences higher emission rates compared to the stable phase (loading 

phase before the flow breakdown). 

Flow breakdown results in emission rate reduction and it is due to the slowed down vehicles 

trapped in the gridlock. During the unstable phase (after the flow breakdown), which is stretched 
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out until the unloading begins, the network-wide average speed and throughput continually 

decrease and result in less emission rates. It should be noted that it takes a longer time for a more 

congested network to get recovered from the gridlock. During the unstable phase, vehicles spend 

more time in the network and produce more emission. Therefore, although the emission rate is 

deceased for the unstable phase, vehicles stay in the network for a longer time and generate more 

emissions. So, more congestion results in more cumulative emissions overall. Figure 6-7 illustrates 

the network fundamental diagrams, emission rates, and cumulative emissions for the city network 

for two distinct scenarios. This figure demonstrates that a more congested network produces more 

emission overall, despite the different pattern observed in its NED diagram. Note that the more 

congested scenario would be recovered much later than the less congested one, increasing the 

overall generated emission. 

Furthermore, the phenomenon of a clockwise and counter-clockwise hysteresis loop can 

be observed in the emission rate-density and emission rate-flow diagrams, respectively. Existence 

of the hysteresis loop states that the emission rate is multi-valued for both flow and density. For 

the same amount of flow, there is a higher emission rate in the unstable phase, owing to the 

dominant effect of higher density compared to that of lower speed. Also, the maximum emission 

rate is experienced when the network average flow is near its maximum. A similar phenomenon 

of multivaluedness is also observed in the emission-density graph. However, unlike the emission-

flow diagram, it starts at the beginning of the unloading phase and the emission rate is higher 

during the loading phase. 

Another relevant conclusion that can be drawn from the comparison of NEDs across all 

scenarios is that the rates of emission vary with the distribution of light vehicles in the network. 

For example, the increase in the percentage of diesel cars consistently results in an increase in the 
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emission of nitrogen oxides. A similar case is observed for CO2 with variations in the percentage 

of diesel and LPG cars, providing further credibility to the proposed model in this study. These 

observations collectively provide reasonable evidence to the existence of NED as a general 

concept. In future studies, the importance and interpretation of this concept will be investigated in 

detail. 

 

Figure 6-6 The NED of CO2 for the city network for traffic composition set TC25 in the base 

validation scenario V2 for the macro-emission models NLR and SVR, along with the base 

micro-emission model 

 

Figure 6-7 (a) network fundamental diagram, (b) emission rates, and (c) cumulative emissions 

for two scenarios of C01 and C10 for the city network	
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6-6- Summary 

This chapter focuses on utilizing the concept of network fundamental diagram (NFD) in 

conjunction with a microscopic emission estimation model to derive an analytical model of 

emissions at the urban network level. It involves using network-level traffic demand data to 

simulate multiple network fundamental diagrams, i.e., sets of macroscopic aggregate flow, density, 

and speed, and using these diagrams as base feed for a micro-emission model. A macro-emission 

model is then developed by simulation of different traffic demand and composition scenarios. 

Once the macro-emission model is calibrated and validated in a specific network, it can be 

deployed in daily operations for emission estimation addressing typical demand and vehicle 

composition variations. The major findings of the chapter are summarized below: 

• It is demonstrated that while microscopic traffic simulation yields better estimates of 

macro-emission, it can be replaced with the more resource efficient mesoscopic simulation 

on larger networks without a substantial loss of accuracy. This is an inevitable replacement 

for large networks, such as the city network in this study, where the micro simulation is 

not feasible due to computational complexity. 

• A proper regression model (for large-scale emission estimation) needs to be selected 

depending on the available computational resources. The numerical experiments in this 

study showed that although SVR outperforms NLR, both models provide acceptable 

approximations in the validation scenarios. 

• The results of the proposed model for the emission estimation strongly support the 

existence of a relationship between emissions and the traffic state of the network 

represented by its NFD. 
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• Based on the network emission diagram (NED), the maximum emission rate occurs at 

about the maximum network average flow right before the network breakdown due to 

congestion. However, lower emission rates after the flow breakdown point do not 

demonstrate total less emission, since the flow breakdown stretches the vehicle presence 

in the network due to traffic congestion, resulting more emission overall. 

• The results of NED analysis suggest that the multivaluedness of emission rates for 

emission-flow and emission-density diagrams occur at the flow breakdown and unloading 

points, respectively. 
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CHAPTER 7 – Real-Time Network-Wide Traffic State Prediction 
Considering Inclement Weather Impact 

 

7-1- Overview 

The problem of real-time traffic state prediction for large-scale urban networks is studied 

in this chapter. The network traffic state is affected by fluctuations of the network demand and 

supply. Weather condition is one of the factors that impacts the characteristics of the network-wide 

traffic flow relationships. The spatiotemporal variations in weather parameters such as visibility, 

and rain and snow precipitations affect drivers’ behavior (Böcker et al., 2013; Saneinejad et al., 

2012). This results in distinct characteristics of traffic flow in comparison to a clear weather 

condition (Hou et al., 2013). The impact of adverse weather conditions has not been considered in 

the network level traffic estimation problem. So, as one of the applications of network-wide traffic 

flow relationships, this chapters aims to improve the real-time network-wide traffic state 

estimation. 

First, the impact of various combinations of the weather variables, including visibility, and 

rain and snow precipitations, on the network-wide traffic flow characteristics is investigated using 

a stochastic analysis. The two representatives of the traffic flow state at the network level, i.e. 

network fundamental diagram (NFD) and travel time reliability (TTR), are considered to explore 

this impact. Then, the adverse weather condition is considered in the real-time traffic state 

predicting framework for an urban network by modeling the network exit flow as a function of not 

only the network accumulation, but also the weather variables. To this end, the Support Vector 

Machine (SVM) algorithm is utilized to model the network exit flow to be able to consider the 

weather parameters and make the model applicable to general networks (in terms of the congestion 

level). Then, the network accumulation data is collected using the loop detectors installed on 



 138 

optimally selected links (unlike the current literature that assumes that the accumulation data from 

the entire network is available) to facilitate and verify the traffic state prediction process. To this 

end, the resource allocation problem presented in chapter 3 is reformulated and solved to identify 

the optimal subset of the links to be equipped by the loop detectors to estimate the network 

accumulation efficiently. 

7-2- Data Intuition 

Prior to developing a real-time traffic state prediction framework, the influence of the 

weather conditions on network-wide traffic flow relationships is investigated. Network 

fundamental diagram (NFD) and travel time reliability (TTR), as the two representatives of the 

traffic flow state at the network level, are considered to explore these impacts. These two concepts 

are introduced and broadly discussed in the previous chapters. The real-world traffic data of 86 

weekdays (hereby called scenarios) of the Chicago network is utilized to explore the impacts of 

weather condition variations on NFD and TTR. For each scenario, a demand factor is calculated 

using the observations of loop detectors (associated with each day/scenario) installed on the 

network freeways. This factor represents variations in the base modeled demand among different 

scenarios, comparing the daily observed counts with the average value over all scenarios. 

Visibility, and rain and snow precipitation intensities are used to describe the weather conditions 

for each scenario. Weather data are extracted from the Automated Surface Observing System 

(ASOS) station at the Chicago Midway International Airport for each scenario. Furthermore, 

reported crashes for the same set of dates (weekdays over four months) with available loop detector 

data and weather information are simulated to capture the network supply stochasticity as much as 

possible. 
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Out of 86 scenarios, 65 are identified as clear days (no precipitation and no visibility 

reduction) and 21 are specified as scenarios with adverse weather conditions. Each scenario is 

attributed by three characteristics of rain and snow precipitation rates, crash records, and the 

demand factor. Figure 7-1 illustrates the relationship between these two factors and network-wide 

traffic flow characteristics. The values on the vertical axes are scaled to a number between zero 

and one (the value one stands for the maximum value among the 21 weather scenarios). Scenarios 

with different demand factors (in three levels of less than one, equal to one and more than one) are 

distinguished in this figure and a least square linear regression is fitted to each demand factor 

category. Figure 7-1(a) indicates that greater values of the demand factor intuitively result in higher 

values of the maximum density experienced in the network. It also suggests that the network 

maximum density is positively correlated with the precipitation rate. Figure 7-1(b) illustrates that 

the maximum throughput (flow rate) of the network is decreased as the precipitation rate increases. 

The variation of the area of hysteresis loop in NFD (which shows the degree to which the system 

is unstable during the recovery period) by the precipitation level shows a similar pattern observed 

in the maximum density of the network versus the precipitation rate. This shows that the higher 

precipitation rate, the more unstable system would be in the recovery phase (see Figure 7-1 (c)). 

According to Figure 7-1(d) by intensifying the precipitation rate, network becomes more reliable 

(the coefficient of the reliability relation is decreased). One possible reason for this observation is 

the reduced speed variations, which is the case due to lower adopted speeds by travelers under the 

adverse weather conditions. Therefore, travel time fluctuations are decreased during the high 

precipitation of snow and rain, and this results in a more reliable system. The same conclusion can 

be made for the pattern observed for the demand factor in Figure 7-1(d). More congested networks 
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do not allow travelers to adopt drastically varying speeds, which keeps the travel time fluctuations 

relatively low. 

These results suggest that the macroscopic traffic flow relationships are affected by the 

descriptive variables of the weather conditions. This calls for incorporating particular weather 

condition measures in the real-time network-wide traffic state prediction framework, which is 

explored in this study for large-scale applications in urban areas. 

 

Figure 7-1 Relationship between the precipitation rate and (a) network maximum density, (b) 

network maximum throughput, (c) area of hysteresis loop in NFD, and (d) coefficient of 

reliability relation. The vertical axes values are scaled from zero to one, where one stands for the 

maximum observed value over all weather scenarios 
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7-3- Theory 

7-3-1- Network Dynamics 

Consider an urban network with a well-defined NFD experiencing weather conditions of 

𝑣(𝜏), 𝑟(𝜏), 𝑠(𝜏).  𝑣(𝜏) is the visibility measure (in mile), 𝑟(𝜏) is the rain precipitation rate (in 

inch/hour), and 𝑠(𝜏) is the snow precipitation rate (in inch/hour) at time interval 𝜏 of the study 

horizon (i.e. daily or peak periods). The discrete time NFD dynamics of this system can be 

described by the following first order difference equation (Saeedmanesh et al., 2019): 

𝑛(𝜏) = 𝑛(𝜏 − 1) + 𝑇 v𝑞(𝜏 − 1) − 𝐺I𝑛(𝜏 − 1)Kw   (7-1) 

Here, 𝑛(𝜏) is the network accumulation at time interval 𝜏, 𝑞(𝜏) is the exogenous demand, 𝐺 is the 

network exit flow (arrival rate), which is a function of the network accumulation, and 𝑇 is the time 

interval length (in this study is considered 5 minutes). In this study, we adapt this equation by 

considering G as a function of not only the network accumulation, but also the defined weather 

variables (𝑣(𝜏), 𝑟(𝜏), 𝑠(𝜏)). Equation 7-1 establishes the relationship of the network dynamics 

between the two consecutive time intervals, which is the basis for the state prediction framework 

that is discussed as follows.  

7-3-2- Extended Kalman Filter (EKF) 

Kalman filter is an optimal real-time estimator that is broadly utilized in linear dynamic 

systems (Kalman, 1960; Kalman and Bucy, 1961). Such systems contain a random noise parameter 

(generally assumed as a Gaussian noise) and is fed by diffused noisy real-time measurements. 

Kalman filter was primitively derived for linear systems, however, it is then extended and utilized 

for nonlinear systems. The extended version of the original Kalman filter is the so-called Extended 

Kalman Filter (EKF). This extension is facilitated by applying Taylor series in the estimations. 

EKF transforms the nonlinear function (which is the representative of a nonlinear system) into a 
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linear function by computing Taylor expansion at every discrete time interval. Simply put, the 

Taylor series estimate the linear approximation of a nonlinear function. EKF is the fusion of a 

predefined nonlinear dynamic model (which represents a plant), and real-time noisy measurements 

(from the plant). Incorporating these two, EKF can provide a real-time prediction of the system 

state with an acceptable accuracy. In this study, EKF is utilized to predict the traffic state at the 

network level (i.e. network accumulation). It is also employed to predict an estimation of the 

network demand as an exogeneous variable, which is difficult to be measured in real-time. 

Therefore, it is considered as a time-depended model parameter (i.e. random walk). The values of 

this parameter are predicted in real-time besides the network-side traffic state estimation. 

7-4- Methodology 

In this section, a real-time network-wide traffic state prediction framework is designed. 

First, a plant (here a large-scale traffic network) is attributed by a nonlinear dynamic system. The 

EKF is utilized then to update the state estimates at each time interval. EKF incorporates a state 

transition function that is discussed in the Network Dynamics section. This function requires an 

approximation of traffic exit flow (variable 𝐺 in Equation 7-1). The network exit flow is 

formulated as a function of the network accumulation and weather variables in this study. The 

traffic simulation of 86 scenarios (discussed earlier) is utilized as a surrogate for the real-world 

conditions and based on this, an SVM model is calibrated to estimate the network exit flow. The 

exit flow values are incorporated in the state transition function of the EKF framework to predict 

the traffic state in real-time. Finally, the methodology developed in chapter 3 and 4 of this 

dissertation is used to provide an optimal configurations for the real-time measurements in the 

traffic state estimation and prediction framework. To this end, the resource allocation problem in 

chapter 3 is reformulated to identify an optimal subset of the links to be equipped by loop detectors 
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to collect the accumulation data (instead of travel time and traffic flow observations). The 

predicted values of the traffic state are compared with the ground truth values available from the 

traffic simulation results. 

7-4-1- Nonlinear Dynamic System 

Consider a plant with state 𝑥, input 𝑢, output 𝑝, process noise 𝜔, measurement noise 𝜓, 

and noisy measurement 𝑦. The plant can be represented as a nonlinear dynamic system (NDS) as 

follows: 

NDS:	 Ù𝑥
(𝜏) = 𝑓[𝑥(𝜏 − 1), 𝑢(𝜏 − 1), 𝜔(𝜏 − 1)]
𝑦(𝜏) = ℎ[𝑥(𝜏), 𝑢(𝜏), 𝜓(𝜏)]																								   (7-2) 

Exploiting a prediction engine with a known state transition function and available 

measurements, the traffic state can be predicted in the real time. Figure 7-2 illustrates the 

framework created for the real-time traffic state prediction for an urban network.  

Assume that the traffic state and weather variables are available for a specific time interval, 

and some noisy measurements of the traffic state (here network accumulation) are accessible. 

Moreover, assume that the urban traffic network (plant) can be represented by a nonlinear dynamic 

system. Cyclic exploitation of EKF algorithm facilitates the real-time traffic state prediction, 

which contains the steps of initialization, prediction, and correction using the available 

measurements. According to Figure 7-2, the traffic state measurements are collected real-time at 

each time interval. Incorporating these data and the output of the nonlinear dynamic system into 

the EKF framework predicts the traffic state updates for the next time interval. This cycle is 

repeated until the simulation period is completed. Following sections describe the different 

components of the framework proposed in Figure 7-2.  

 



 144 

 

Figure 7-2 Real-time network-wide traffic state estimation with limited observations and 

incorporating inclement weather impacts 

7-4-2- Real-time EKF Traffic State Prediction 

The network accumulation and exogeneous demand are the states of interest to be predicted 

in the real-time. The predicted values then can be incorporated in control strategies. The discrete 

time NFD dynamics of an urban network, which is represented by the first order difference 
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equation in Equation 7-1, is utilized as the state transition function for the network accumulation. 

This function is an input to EKF algorithm and facilitates the real-time prediction. The 

accumulation measurements are available from the previous time interval. However, it is not 

feasible to collect the real-time exogeneous demand information at the network level. Therefore, 

this state is considered as a model parameter (random walk) and is estimated at each run of the 

framework (see Figure 7-2). Equation 7-3 presents the state transition function for the network 

accumulation and exogeneous demand. 

vk(Ú{Q)Û(Ú{Q)w = vk(Ú)Û(Ú)w + �
OvÛ(Ú)qµIk(Ú)Kw

Ü(Ú)
�    (7-3) 

Here, 𝜁(𝜏) is the noise associated with exogeneous demand and assumed to be a Gaussian noise. 

Equation 7-4 shows the measurements configuration. It is assumed that the network accumulation 

measurements are associated with an error (Gaussian noise), which is defined with respective to 

the latest accumulation value. 

𝑚(𝜏) = 𝑛(𝜏) + 𝑛(𝜏)𝜓(𝜏)     (7-4) 

Here, 𝑚(𝜏) denotes the measurement at time interval 𝜏, and 𝜓(𝜏) is the corresponding percentage 

of the measurement noise in accumulation. Incorporating the state transition function and the 

measurement configuration, the EKF algorithm estimates the states for the next time interval by 

minimizing the error between the posterior state estimation (𝑥�(𝜏)) and the measured state (𝑥(𝜏)). 

Equation 7-5 shows this error term. 

𝐸 = {[𝑥(𝜏) − 𝑥�(𝜏)][𝑥(𝜏) − 𝑥�(𝜏)]O}    (7-5) 
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7-4-3- Exit Flow Function Incorporating Weather Variables 

In the literature, the network exit flow function (arrival rate) is approximated by a third-

degree polynomial function of the network accumulation (Saeedmanesh et al., 2019) as shown in 

Equation 7-6: 

𝐺I𝑛(𝜏)K = 𝛼Q𝑛(𝜏) + 𝛼L𝑛L(𝜏) + 𝛼»𝑛»(𝜏)   (7-6) 

Here, 𝛼/ is the model parameter. There are two certain issues with this model. First, it does not 

include weather variables and only the accumulation value is incorporated. Second, it does not 

show a proper fit for any type of network with different congestion levels. The investigative results 

are presented in the Numerical Results section, showing the improper fit of this model for the 

considered case study in this dissertation. 

In order to overcome these two issues, the network outflow (𝐺) is considered as a function 

of not only the accumulation (𝑛(𝜏)) but also the weather variables (𝑣(𝜏), 𝑟(𝜏), and	𝑠(𝜏)). 

𝐺I𝑛(𝜏)K = 𝑓(𝑛(𝜏), 𝑣(𝜏), 𝑟(𝜏), 𝑠(𝜏)	)    (7-7) 

This function is calibrated utilizing the actual traffic information of 86 days of the Chicago 

network. Support vector regression is employed to calibrate the exit flow function. Support vector 

regression (SVR) extends sophisticated binary classification via kernel trick to regression. In this 

study, an SVR model is generated with the input set of {𝑛(𝜏), 𝑣(𝜏), 𝑟(𝜏), 𝑠(𝜏)} and the radial basis 

function kernel as 

𝜙(𝑝, 𝑞) = exp(−𝛾||𝑝 − 𝑞||L)    (7-8) 

Here, the kernel function 𝜙 measures the degree of similarity between feature vectors (rows of the 

dataset) 𝑝 and 𝑞, and parameter 𝛾, the number of independent variables, is chosen to be 4. 
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7-4-4- Optimal Limited Measurement Configurations 

In real world transportation networks, the traffic data (even at the macroscopic level) is not 

generally available for the entire elements of the network. Even with the help of new emerging 

technologies, collecting the traffic information requires significant available resources and endures 

massive complications. To address this issue, it has been previously shown (in Chapters 3 and 4) 

that the optimal usage of Eulerian observations on a subset of the network links can provide 

acceptable accuracy of network traffic state information. Based on the proposed approach in 

Chapters 3 and 4, here, the resource allocation problem is reformulated to identify the optimal 

subset of the links to be equipped by the loop detectors to gather the accumulation data instead of 

density and traffic flow. The previously presented stochastic modeling framework (in Chapter 4) 

is employed to solve the problem. Note that due to considering a scenario-based analysis for the 

weather factors in this study, using the stochastic resource allocation model is essential. For this 

specific application, the objective function is considered as follows and the other problem 

restrictions are still hold as described in Chapter 4 (Equations 4-2 to 4-17). 

𝑀𝑖𝑛	∑ ∑ (𝑛�( − 𝑛��()LO
(PQ

�
�PQ      (7-9) 

Here, 𝑛�(is the actual accumulation of the network at time interval 𝑡 and scenario 𝑠, and 𝑛��( is the 

accumulation of the network at time interval 𝑡 and scenario 𝑠 based on the accumulation values 

gathered on the optimally selected links. 𝑛�( and 𝑛��( are calculated using the following equations: 

𝑛�( = 	 ∑ 𝑛/�(T
/PQ      (7-10) 

𝑛��( = 	 ∑ Þ%±%2
%)*

∑ Þ'±'
3
')*

× ∑ 𝑛9�(
^
9PQ      (7-11) 

Where,	𝜃/ is the number of lanes of link 𝑖, 𝑙/ is the length of link 𝑖, 𝐼 is the size of the network 

(number of links), 𝐽 is the size of the optimal subset of links and 𝑛/�( is the accumulation data 
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observed on link 𝑖 at time interval 𝑡 and traffic scenario 𝑠. Utilizing the solution algorithm 

presented in Chapter 4 (based on the simulated annealing method) the optimal subset of links for 

certain predefined amounts of resource availability are identified. The accumulation data from 

these links are collected at every time intervals and are used as input in the real-time traffic state 

prediction engine. 

7-5- Numerical Results 

The proposed mathematical framework is applied to the large-scale network of Chicago 

and its CBD area. The specification of these two networks are broadly discussed in Chapter 6 

(section 6-4-1). Figure 7-3 illustrates the two networks besides their morning demand profile (from 

5 AM to 10 AM). The NFDs (here presented by the relationship between the network accumulation 

and network throughput) of the city and CBD networks of Chicago are presented in Figures 7-3(d) 

and 7-3(e), respectively. For both NFDs, an SVM regression and a third-degree polynomial curve 

are fitted. According to Figure 7-3(d), both SVM and polynomial models show a proper fit for 

NFD, however based on Figure 7-3(e) the polynomial model fails to approximate the NFD for the 

CBD network. A possible reason can be the different congestion levels of these two networks. The 

CBD area is reached to its maximum observed flow rate in a shorter time (compared to the city 

network). The two branches of the NFD (before and after the peak point) in the CBD network have 

sharper slopes in comparison to the city network. This trend could not be traced by a polynomial 

model. Even the higher degrees of a polynomial model did not provide a proper fit for the CBD 

network. However, the SVM model provides an acceptable approximation for both networks. 
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Figure 7-3 (a) Chicago city network, (b) Chicago CBD network, (c) morning demand profiles, 

(d) Chicago city network NFD, and (e) Chicago CBD network NFD 

The capability of the presented framework in predicting traffic state is examined by a 

calibration and validation process. To this end, 70% of the available scenarios (60 out of 86 days) 

are exploited to calibrate the presented framework. The calibration process includes tuning the 

SVM model for the exit flow function and incorporating it in the state transition function. Applying 

the calibrated SVM model to estimate the network throughput for the validation scenarios (those 

which were not considered for calibrating the exit function via SVM) is associated with 8.7% 

relative deviations from the ground-truth values. The prediction framework is only applied for the 

validation scenarios (26 out of 86 days). 
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Figure 7-4 shows the real-time traffic prediction results compared with the ground truth 

values for a randomly selected scenario (out of 26 days). All the three subplots are presented as 

time series. Figure 7-4(a) indicates a smooth pattern in the real-time prediction made by EKF 

algorithm for the network accumulation. However, the results in Figure 7-4(b) for the predicted 

exogenous demand is somehow scattered. The main reason is that no measurement is provided to 

correct the predicted values for this parameter and the model approximate its value only based on 

minimizing the error term shown in Equation 7-9, unlike the network accumulation. The 

exogenous demand is considered as a model parameter (a random walk) and estimated in each run 

(time interval) of the prediction engine. Figure 7-4(c) illustrates the estimated network throughput 

incorporating the SVM algorithm. The mean absolute percentage error (MAPE) of the model 

results is calculated for each validation scenario, and the average value across all the validation 

scenarios is utilized to quantify the effectiveness of the presented framework. MAPE is a widely 

used error metric that uses range normalization. For a state 𝑥, it is given as:  

ϵ = Q
�4∙�$

�∑ ∑ ß��4,$q�4,$
�4,$

ß�$
(PQ

�4
�PQ � × 100    (7-12) 

Here, ϵ is the average value of MAPE over all scenarios, 𝑁� is the number of scenarios (which is 

26), 𝑁( is the number of time intervals in the simulation period in each scenarios (here it is 60 5-

minute time intervals over 5 hours of traffic simulation from 5:00 AM to 10:00 AM), 𝑥��,( is the 

posterior estimated state at time interval 𝑡 in scenario 𝑠, and 𝑥�,( is the actual state value at time 

interval 𝑡 in scenario 𝑠. Overall, 1560 (=60×26) datapoints are incorporated to evaluate the validity 

of the model. Figure 7-5 illustrates the results of MAPE. Figure 7-5(a) presents the error terms for 

the network accumulation variable for seven different percentages of resource availability that 

provides limited observations to correct the predicted values for this variable. Values on the 

horizontal axis show the proportion of the network links provided with sensors to collect the 

accumulation data, and the values on the vertical axis illustrate the errors associated with each 

resource availability level. According to these results, the presented framework shows a successful 

application for the Chicago CBD network. For the resource availability level as low as only 5%, 



 151 

the model provides an acceptable accuracy (8.6%) of the real-time network accumulation 

prediction. Note that the reported error terms should be considered more than acceptable, since 

they are average values over various scenarios capturing day-to-day variations in the network. This 

error term is reduced to 1.3% by increasing the resource availability level to 100%. This 

improvement is expected, since more accurate data are provided to correct the predicted values by 

the model in the 100% level. Note that in each resource availability level, an optimization problem 

is solved to identify the optimal set of links to be equipped with sensors to collect link 

accumulation data. 

Figure 7-5(b) presents the error terms for the exogenous demand variable associated with 

different resource availability levels for the network accumulation observations. Intuitively, the 

increase in the percentage of the equipped links for collecting accumulation data does not 

significantly improve the prediction accuracy of the exogenous demand variable (only a slight 

improvement is observed from 12.4% to 8.8% for resource availability levels of 5% and 100%). 

Finally, the MAPE for the network throughput is shown in Figure 7-5 (c). These values are the 

predicted throughputs extracted by placing the predicted accumulation (via framework) values into 

the calibrated exit flow function (via SVM regression). For this variable, only a slight improvement 

is observed from 9.9% to 8.2% for resource availability levels of 5% and 100%. Similar to the 

exogenous demand, no measurement is provided to estimate this variable. Its value is indirectly 

estimated based on the predicted accumulation and stochastically calibrated exit flow function. 
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Figure 7-4 Real-time network-wide traffic state prediction results for a randomly selected 

scenario (a) network accumulation, (b) exogenous demand, and (c) network throughput 
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Figure 7-5 MAPE for (a) network accumulation, (b) exogeneous demand, and (c) network 

throughput considering all validation scenarios (26 days) and prediction time intervals per 

scenario (60) for different resource availability levels of the network accumulation observations 

To assess the effectiveness of using the optimal set of links for observing the network 

accumulation, instead of a random set of links, the MAPE of the predicted network accumulation 

values are compared for these two cases. Note that, here, the entire available dataset (all 86 days) 

are utilized to make this comparison (unlike Figure 7-5 where the results are generated based on a 

70% to 30% train and test process). Figure 7-6 illustrates the actual and predicted accumulation 

values for these two cases (optimal set versus the random set of links equipped with the 

accumulation sensors) for a randomly selected day (out of 86). The results are provided for four 

different levels of the resource availability (5% to 20%). As it is shown, collecting the 

measurements from the randomly selected links does not provide accurate results of the network-

wide traffic state variables. The MAPE results over all scenarios are also shown in Figure 7-7 

considering all the 86 days (scenario) and 60 time intervals per day. As it can be seen, the MAPE 
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value is reduced from 18.5% to 7.6 % for 5% to 20% resource availability levels in the case of the 

random set of selected links for accumulation data measurements. However, incorporating the 

optimal set of links reduces the MAPE values significantly (from 8.6% to 4.4% for 5% to 20% 

resource availability levels). 

 

Figure 7-6 Comparing the predicted accumulation values using the optimal set of links for 

correcting measurements versus a random set of links, in a particular scenario (out of 86 days) 

with different levels of resource availability for data collection (percentages of the network links 

equipped with sensors): (a) 5%, (b) 10%, (c) 15%, and (d) 20% 
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Figure 7-7 MAPE values of the predicted network accumulation over all scenarios (86 days) 

using the optimal set of links for correcting measurements versus a random set of links, with 

different levels of resource availability for data collection 

The core contribution of this chapter is including the adverse weather impact in the real-

time network-wide traffic state prediction model. This is accomplished by incorporating the 

weather variables in the network exit flow function (see Section 7-4-3). To demonstrate the 

significance of this contribution, two cases are compared. In the first case, the presented framework 

is applied utilizing the entire data from all 86 days. However, in the second case, the scenarios 

with the inclement weather (21 days are in this category) are eliminated from the calibration 

process of the exit flow function. Figure 7-8 illustrates the throughput estimation results for the 

two described cases. Figure 7-8(a) shows a randomly selected scenario (day) with clear weather 

conditions (no precipitation), and Figure 7-8(b) illustrates another randomly selected scenario with 

snowy weather conditions (with the cumulative precipitation of 4.9 inches). In these figures, the 

network throughput is estimated by the SVM with and without including the weather variables. As 

it is shown, for the clear day, the estimated values in both cases (including and excluding weather 

variables) are very close to the ground truth values (provided by traffic simulation as a surrogate). 

However, for the snowy day, the estimated values for the case without incorporating the weather 
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variables does not show a proper fit. To quantify the overall deviations, the average MAPE results 

over all available scenarios (86 days with various given weather conditions) are presented in Figure 

7-9 for the network accumulation, demand, and throughput. 

 

Figure 7-8 Estimated exit flow function (network throughput) using SVM approach including 

versus excluding weather variables (a) for a clear day scenario and (b) for a snowy day scenario 

Figure 7-9(a) shows the results for the network accumulation. Excluding the weather 

variables in the calibration process of the exit flow function does not drastically impact the real-

time prediction of the network accumulation. The main reason is that the predicted values of the 

network accumulation are corrected by the real-time measurements at every step of the prediction 

process. In other words, the model parameters are adjusted in a way that the model predicts the 

accumulation as close as possible to the measured real-time values. However, this impacts the 

estimation accuracy of the other parameters such as the exogenous demand. As it is shown in 

Figure 7-9(b) and Figure 7-9 (c), the predicted exogenous demand and network throughput in the 

case that the weather impact is ignored, endure greater associated errors. Thus, considering the 
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weather impact in the real-time traffic state prediction is necessary to provide accurate estimations 

for the real-time traffic state at the network-level. 

 

 

Figure 7-9 Average MAPE values over all scenarios (86 days including various weather 

conditions) including and excluding weather variables in the exit function: (a) network 

accumulation, (b) exogenous demand, and (c) network throughput 

7-6- Summary 

The problem of real-time traffic state prediction for large-scale urban networks is studied 

in this chapter. First, the quantitative difference that the changes in weather variables (visibility 

and rain and snow precipitations) creates in the network-wide traffic flow characteristics is 

investigated. Then, a mathematical framework is developed to provide the real-time network-wide 

traffic state prediction. The proposed framework incorporates different weather variables in the 

traffic state prediction process using Extended Kalman Filter methodology iteratively. In each 
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iteration, a calibrated exit function, the predicted values in the previous iterations for the network 

accumulation, exogeneous demand, and throughput, along with the observed values in the current 

and previous iterations for the network accumulation are used to predict the network accumulation 

and exogenous demand in the current iteration. Considering the weather variables in the calibrated 

exit function is the main contribution of this study. To this end, a Support Vector Machine (SVM) 

model is trained using 60 traffic simulation scenarios (associated with actual data of 60 weekdays) 

for the case study. Then, the trained model is evaluated by the remaining 26 traffic simulation 

scenarios out of 86 scenarios. The major findings of the chapter are summarized as follows: 

• The network maximum congestion (maximum observed density) has a direct correlation 

with the rain and snow precipitation rate. 

• The maximum observed throughput of the network is decreased as the rain and snow 

precipitation rate increases. 

• The variation of the area of hysteresis loop in the NFD diagram by the precipitation shows 

that the higher precipitation causes more instability in the recovery phase of the system.  

• Network becomes more reliable (reduced coefficient of the reliability relation), but also 

more congested, with an increase in the rain and snow precipitation rates. 

• Results suggest that the network-wide traffic flow relationships (NFD and TRR) are 

significantly affected by the changes in the weather variables. This calls for incorporation 

of the weather variables in the real-time network-wide traffic state prediction problem. 

• The proposed SVM model in this study outperforms the third-degree polynomial model 

(used in the literature) in estimating the network exit flow function. It also provides the 

opportunity to incorporate different weather variables in the network exit function. 
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• By optimally selecting a subset of the network links to be equipped with sensors to capture 

accumulation, instead of using data from the entire network, the cost of the real-world 

deployment of the prediction model can be significantly reduced. The numerical results 

provided for the case study demonstrate an acceptable prediction accuracy despite of this 

cost reduction.  

• The successful implementation of the real-time network-wide traffic state prediction 

problem considering weather variables drastically reduces the error terms for the network 

exogenous demand and throughput. This reduction is more than 50% of the error when no 

weather variable is considered in the framework. There is also a slight improvement in the 

error term for the network accumulation, where the predicted values are corrected by 

limited observations.  
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CHAPTER 8 – Concluding Remarks and Future Research 
 

8-1- Concluding Remarks 

Network Fundamental Diagram (NFD) represents dynamics of the traffic flow at the 

network level using main traffic flow elements, namely, flow, density, and speed. It is widely 

employed to design various network-wide traffic control strategies and explore traffic state 

analyses to improve mobility and mitigate congestion. This study presents two frameworks 

(deterministic and stochastic approaches) to estimate NFD and provides three main applications 

of it in large-scale urban networks: network-wide travel time reliability estimation, network-wide 

emission estimation, and real-time traffic state prediction for heterogenous networks experiencing 

inclement weather conditions. Primarily, a mathematical model and solution algorithm are 

proposed to find the optimal location of fixed measurement points and sampling of probe 

trajectories in a resource allocation framework to estimate NFD in a large-scale heterogeneous 

network with asymmetric demand. The proposed framework, then, is extended to capture the 

stochasticity due to fluctuations in the network demand and supply. 

As the premier application of NFD, the impact of partitioning a heterogeneous network on 

the estimated travel time reliability measure is investigated. It is shown that the congestion-

dependent partitioning of a heterogeneous network can significantly affect the estimated reliability 

measure for each sub-network. It is also shown that the density coefficient of variation is a key 

factor that explains the impacts of the partitioning on the reliability measure estimation. As the 

second application of NFD in this study, a network-level emission modeling framework is 

developed via integrating NFD properties with an existing microscopic emission model. The NFDs 

and microscopic emission models are estimated using microscopic and mesoscopic traffic 

simulation tools at different scales for various traffic compositions. The major contribution is to 
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consider heterogeneous vehicle types with different emission generation rates at the network-level 

model. This framework is applied on the large-scale network of Chicago as well as its CBD area. 

Non-linear and support vector regression models are developed using simulated trajectory data of 

thirteen simulated scenarios. The results show a satisfactory calibration and successful validation 

with acceptable deviations from the underlying microscopic emission model regardless of the 

simulation tool that is used to calibrate the network-level emission model. 

Lastly, a real-time network-wide traffic state prediction framework is designed. The core 

objective is to incorporate the adverse weather conditions in the real-time network-wide traffic 

state estimation. This is accomplished by incorporating the weather variables in the network exit 

flow function. Extended Kalman Filter (EKF) algorithm is utilized as the prediction engine. 

Simulated NFDs of a large-scale network under various weather conditions are used, as surrogate 

of the ground truth NFDs, to assess the performance of the prediction methodology. A successful 

application of the presented framework is shown for the Chicago CBD network. 

The major findings of this dissertation are summarized below: 

- A combination of fixed detectors and probe vehicles provides sufficient data to 

deterministically estimate NFD with minimal deviation from the ground-truth NFD in a 

heterogeneous network. 

- In deterministic estimation of NFD, the optimal locations of fixed measurement points are 

not only a function of the proportion rate of fixed measurement points; rather, it also 

changes when the proportion of probe trajectories varies. Similarly, the optimal set of OD 

pairs is not only a function of the proportion rates of OD pairs; rather, it also changes when 

the proportion rates of fixed measurements varies. 
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- The comparison of the stochastic and deterministic approaches of NFD estimation 

demonstrates the superiority of the stochastic approach. 

- Once the budget level is at 20%, the deterministic approach of NFD estimation leads to a 

70-250% error relative to the stochastic approach. Increasing the budget decreases the 

relative error, but even at the 80% budget level, a minimum 30% relative error is observed 

over various scenarios. 

- Partitioning a large-scale heterogeneous network into optimal number of homogeneous 

sub-networks improves the travel time reliability estimation. 

- For a partitioned network, there is an inverse relation between the reliability measure, and 

average and standard deviation of density for each subnetwork in both AM and PM peak 

periods. 

- The density coefficient of variation is an important measure to assess the impacts of the 

network partitioning on the reliability measure, which is found to be directly related to the 

reliability measure. 

- The results of the proposed model for the large-scale emission estimation strongly support 

the existence of a relationship between emissions and the traffic state of the network 

represented by its NFD. 

- A proper regression model for large-scale emission estimation needs to be selected 

depending on the available computational resources. The numerical experiments in this 

study showed that although SVR outperforms NLR, both models provide acceptable 

approximations in the validation scenarios. 
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- The results of NED analysis suggest that the multivaluedness of emission rates for 

emission-flow and emission-density diagrams occur at the flow breakdown and unloading 

points, respectively. 

- The network-wide traffic flow relationships (NFD and TRR) are significantly affected by 

the changes in the weather variables. This calls for incorporation of the weather variables 

in the real-time network-wide traffic state prediction problem. 

- The proposed SVM model in this study outperforms the third-degree polynomial model 

(used in the literature) in estimating the network exit flow function. It also provides the 

opportunity to incorporate different weather variables in the network exit function. 

- By optimally selecting a subset of the network links to be equipped with sensors to capture 

accumulation, instead of using data from the entire network, the cost of the real-world 

deployment of the prediction model can be significantly reduced. An acceptable prediction 

accuracy is shown despite of this cost reduction.  

- The successful implementation of the real-time network-wide traffic state prediction 

problem considering weather variables reduces the error terms for the network exogenous 

demand and throughput by more than 50%. There is also a slight improvement in the error 

term for the network accumulation, where the predicted values are corrected by limited 

observations. 

8-2- Future Research 

Transportation systems have been drastically affected by the advancements in wireless 

communication during the past three decades. Improvement in mobility, safety, reliability, and 

sustainability of transportation networks are offered by incorporating the new communication 
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technologies in traffic management systems. The advent of the new generation of vehicles is a 

recent wave of technological development in transportation. In particular, more sophisticated 

autonomous vehicles have been prototyped by exploiting a variety of sensors and intelligent 

control processors. Vehicle-to-vehicle and vehicle-to-infrastructure communications are provided 

with pervasive wireless communication technologies in autonomous vehicles with the main aim 

of efficiency and reliability improvement.  

Most of the current principles in traffic management, regulation, and even driving laws will 

be altered by the massive deployment of autonomous vehicles. The prospective influence of these 

vehicles on traffic flow properties necessitates implementing a new generation of traffic control 

strategies. Moreover, there is a need to re-design the traffic infrastructure in a way that both 

facilitates the smooth movement of driverless vehicles and enhances the overall mobility of 

transportation networks. This area of study in transportation engineering has only just been 

inaugurated and generated various future research directions. Incorporating the methodologies 

presented in this study with the data availability potentials that the new generation of vehicles offer 

(through the connectivity), establishes a new avenue of research. 
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