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ABSTRACT

SUB-LINEAR SPARSE FOURIER TRANSFORM ALGORITHM

By

Ruochuan Zhang

The Discrete Fourier Transform (DFT) plays a crucial role in signal processing and sci-

entific computing. The most famous algorithm of computing the DFT is the Fast Fourier

Transform (FFT), which has runtime O(N logN) for an input vector with length N . How-

ever, with the increasing size of data set, the FFT is no longer fast enough and often becomes

the major computational bottleneck in many applications. The Sparse Fourier Transform

(SFT) tries to solve this problem by finding the best s−term Fourier representation using

only a subset of the input data, in time sub-linear in the data set sizeO(poly(s, logN)). Some

of the existing SFT algorithms are capable of working with equally spaced samples[23], while

others just assume that the algorithms can sample anywhere they want[4, 6], which is an

unrealistic assumption in many real-world applications. In this thesis, we propose a generic

method of transforming any noise robust SFT algorithm into a sublinear-time sparse DFT

algorithm which rapidly approximates F f from a given input vector f ∈ C
N , where F is

the DFT matrix. Our approach is based on filter function and fast discrete convolution. We

prove that with an appropriate filter function g (periodic Gaussian function in this thesis),

one can always approximate the value of the convolution function g ∗ f at the desired point

rapidly and accurately even when f is a high oscillating function. We then construct several

new sublinear-time sparse DFT algorithms from existing sparse Fourier algorithms which

utilize unequally spaced function samples [6, 4, 8]. Besides giving the theoretical runtime

and error guarantee, we also show empirically that the best of these new discrete SFT algo-



rithms outperforms both FFTW[24] and sFFT2.0[23] in the sense of runtime and robustness

when the vector length N is large. At the end of the thesis, we present a deterministic sparse

Fourier transform algorithm which breaks the quadratic-in-sparsity runtime bottleneck for a

large class of periodic functions exhibiting structured frequency support. We show empiri-

cally that this structured SFT algorithm outperforms standard sparse Fourier transforms in

the rapid recovery of block frequency sparse functions.
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Chapter 1

Introduction

1.1 Sparse Fourier Transform

The Discrete Fourier Transform (DFT) is one of the most important components of many

computational techniques. It has been widely used in signal processing and scientific com-

puting. The discrete Fourier transform converts a finite sequence of equally-spaced samples

of a function in time space into an equivalent-length sequence of equally-spaced samples

of the function in Fourier space. The most popular approach for computing the DFT is

the Fast Fourier Transform (FFT). It was invented by J. W. Cooley and J. W. Tukey in

1965 [17]. Without directly applying the definition of DFT, the FFT rapidly computes such

transformations by factoring the DFT matrix into a product of sparse (mostly zero) factors

[18], where the DFT matrix F ∈ CN×N is defined as

Fω,j :=
e−2πiωj/N

N
(1.1)

for 0 ≤ ω, j < N . As a result, it reduces the runtime complexity of computing a DFT of a

length N sequence from O(N2) to O(N logN), which represented a major leap forward in

the size of problems that could be solved on available hardware. The FFT was described

as "the most important numerical algorithm of our lifetime" by Gilbert Strang [20], and it

has been named one of the "Top Ten Algorithms" of the past century by the IEEE journal
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Computing in Science & Engineering [19]. However, in recent years with the concept of Big

Data becoming more and more popular, the size of the data set can easily exceed terabytes.

Even with advanced hardware and optimized implementations (e.g. parallel computing and

GPU), for large N the FFT still represents the major computational bottleneck in many

applications. Furthermore, by the Nyquist−Shannon sampling theorem [21], one needs at

least N equally-spaced samples to recover a signal with bandwidth N , which may cause some

potential sampling problems. Since when N is very large, it can be challenging to acquire

enough data to run the FFT algorithm. For example, patients need to spend a long time in

an MRI machine because it needs a lot of samples to retrieve the medical image. Because

of above reasons, people try to develop algorithms that can compute the Fourier Transform

in sub-linear time (the runtime is considerably smaller than the size of the data size N) and

use a minuscule fraction of the input data. The Sparse Fourier Transform (SFT) provides

exactly these desired features.

One of the reasons the FFT cannot satisfy the sub-linear runtime requirement is because

it computes all N Fourier coefficients. However, it is well known that in many applications

(e.g. video, audio, medical images, spectroscopic measurements, GPS signals, seismic data,

etc.) the DFT of the signals are compressible or are sparse, i.e. only s frequencies are non-

zeros or are significantly large. In this case, when s � N , one can retrieve the information

with high accuracy using only the coefficients of the s most significant frequencies. The

SFT uses the same strategy by asking the SFT algorithm to only report the largest s terms

in the signal’s DFT. Because of that, it is possible for the SFT to significantly outperform

even highly optimized FFT implementations [24] when the signal is sparse in Fourier space

[23, 22, 2, 4, 6].

To achieve sub-linear runtime, besides only reporting significant frequencies, the SFT
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cannot even afford to read all the inputs (which takes O(N) runtime complexity for a signal

with bandwidth N). So all the SFT algorithms must either be approximate or succeed with

high probability. The discrete uncertainty principle proved by Dohono and Stark [16] in

1989 provides the theoretical guarantee for sub-sampling in the time domain if the signal is

sparse in Fourier space (actually, Fourier space is one possible choice, however, in this paper,

we focus on Fourier space). They proved in the paper that if Nt and Nω are the number of

non-zero elements of a length N signal in the time and Fourier space respectively. Then

NtNω ≥ N

It tells us that Fourier sparse functions must be dense in time space, which means that

we can get meaningful (non-zero) samples easily. Also, this discrete-time principle shows

that a wide-band signal can be reconstructed from narrow-band data, which suggests that

if the signal is sparse in Fourier space, then by carefully designing the sampling scheme, the

number of total samples needed to recover the signal can be much less than the bandwidth

N .

Because of the excellent properties (sub-sampling and sub-linear runtime), some of the

existing SFT techniques that can work with discrete data have been applied to many signal

processing problems including, e.g., GPS signal acquisition [11], analog-to-digital conversion

[13, 15], and wideband communication/spectrum sensing [14, 12]. However, there also exist

some other SFT algorithms [4, 6] which have good runtime and error guarantee. They have

not been widely used because they assume that the algorithm can sample anywhere they

want, which is not a realistic assumption in many applications. Actually, in most of the

real-world problems, one can only expect to have equally spaced samples. In this thesis, we
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propose a generic method of transforming any noise robust SFT algorithm into a sublinear-

time sparse DFT algorithm which rapidly approximates f̂ from a given input vector f ∈ CN .

As a result, we can construct several new sublinear-time sparse DFT algorithms from existing

sparse Fourier algorithms which utilize unequally spaced function samples [8, 2, 4, 6, 10].

Moreover, for the new discrete SFT algorithm based on the Algorithm 3 in [4], we show that

it can always identify a vector v which has only s non-zero elements and satisfies

‖ f̂ − v ‖2≤‖ f̂ − f̂
opt
s ‖2 +

33√
s
‖ f̂ − f̂

opt
s ‖1 +198

√
s ‖ f ‖∞ N−r (1.2)

where 1 ≤ r ≤ N
36 with runtime poly(s, r, logN). The f̂

opt
s indicates the optimal s-term

approximation of f̂ . At the very end, we show empirically that the best of our new algorithms

can outperform both FFTW[24] and sFFT2.0[23] in the sense of runtime and robustness when

the vector length N is large.

At the end of this thesis, we consider the problem of deterministically recovering a special

type of periodic function f : [0, 2π]→ C as rapidly as absolutely possible via sampling. More

specifically, we focus on a specific set of functions f whose dominant Fourier series coefficients

are all associated with frequencies contained in a small number, n, of unknown structured

support sets S1, ..., Sn ⊂ (−dN/2e, bN/2c]∩Z, where N ∈ N is very large. In such cases the

function f will have the form

f(x) =
n∑
j=1

∑
ω∈Sj

cωe
iωx (1.3)

where each unknown Sj has simplifying structure. (e.g., has |x− y| < B � N for all x, y ∈

Sj). Instead of using FFT, which takes O(N logN) time, to solve this problem, we consider
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a faster deterministic Sparse Fourier Transform (SFT) methods which are guaranteed to

recover such f using a number of samples and operations that scale at most polynomially in

both
∑n
j=1 |Sj | and log(N) [30].

1.2 Related work

The first work that tried to solve the sparse approximate DFT problem can be found in [47],

in which they designed an algorithm based on the Hadamard Transform, i.e. the Fourier

transform over the Boolean cube. Later, a polynomial time algorithm to interpolate a sparse

polynomial was developed in [49]. The method in this paper inspired the authors of [40], in

which they described an algorithm that can be used to approximate the DFT when N is a

power of 2. In the early 2000s, people paid a lot of attention to the sparse approximation

problem in Fourier space. The first algorithm with sub-linear runtime and the sub-sampling

property was given in [39], in which they give a randomized algorithm for finding an near-

optimal s-term approximation ŷ, with probability 1− δ, in poly(s, logN, log(1/δ), 1/ε) time.

Here given the input signal f , and let f̂opts be the optimal s-term approximation to f̂ . The

near-optimal s-term approximation ŷ is defined as

‖ f̂ − ŷ ‖22≤ (1 + ε) ‖ f̂ − f̂
opt
s ‖22 (1.4)

Equation (1.4) is known as an `2/`2 guarantee, which is a strong guarantee and it was shown

in [37] that this guarantee cannot hold for a sub-linear deterministic algorithm. One thing

worth to mention here is that the runtime of the algorithm in [39] is quadratic in sparsity s.

This algorithm was modified later in [40] to reduce the power of s in runtime to 1. However,
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unlike [39] which uses only equally spaced samples, the algorithm in [40] are allowed to

use unequally spaced data. Since the standard FFT can only be used for equally-spaced

data, the algorithm in [38] was applied to reduce the runtime when calculating the DFT

for unequally spaced samples. Even so, the algorithm can only outperform the FFT for the

signal with small s. Shortly after that, as an extension of the algorithm in [46], [35] proved

hard-core predicates using list decoding. However, the runtime of the algorithm in [35] has

a high dependence on sparsity compared with [39] and [40].

All the SFT algorithms above are randomized algorithms. This means they have small

probability to fail to give the correct or optimal recovery on each input signal. Thus, they

are not appropriate for long-lived failure intolerant applications. The first deterministic sub-

linear time SFT algorithm was developed in [33] based on the deterministic Compressed Sens-

ing results of Cormode and Muthukrishnan (CM)[25, 51, 50]. A simpler optimized version of

this algorithm was given in [2], which has similar runtime/sampling bounds (O(s2 log4N))

to the one in [40]. Later, a further modified SFT algorithm was provided in [4]. It showed

simple methods for extending the improved sparse Fourier transforms to higher dimensional

settings. More specifically, the algorithm can find the near optimal s-term approximation for

any given input function, f : [0, 2π]D → C in O(s2D4) time (neglecting logarithmic factors).

The algorithms in [33, 2, 4] are all aliasing-based search algorithms [9], which means they

rely on the combinatorial properties of aliasing among frequencies in the sub-sampled DFTs.

The algorithms first find the residues of the significant frequencies modulo with different

sample lengths, and then use the Chinese Reminder Theorem to finish the reconstruction.

In this series of work, the error bound is of the form

‖ f̂ − ŷ ‖2≤‖ f̂ − f̂
opt
s ‖2 +

1√
s
‖ f̂ − f̂

opt
s ‖1 (1.5)
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In 2012, an algorithm that can compute the non-zero coefficients in time O(s logN) was

given in [23]. The algorithm leverages techniques from digital signal processing (notably

Gaussian and Dolph-Chebyshev filters) and unlike other randomized algorithms, this algo-

rithm is not iterative. It identifies and estimates the s largest coefficients in one shot. This

makes the algorithm have good performance even when the sparsity is large. The algorithm

has runtime O(logN
√
Ns logN) and it satisfy the so-called `∞/ `2 guarantee. Specifically,

for a precision parameter δ = 1/NO(1) and a constant ε > 0, the algorithm outputs ŷ such

that:

‖ f̂ − ŷ ‖2∞≤
ε

s
‖ f̂ − f̂

opt
s ‖2 +δ ‖ f ‖21 (1.6)

with probability 1− 1/N .

Around the same time, a new deterministic SFT algorithm based on phase encoding was

presented in [10] with runtime O(s log s). The authors first gave a few observations relating

the Fourier coefficients of time-shifted samples to unshifted samples of the input function.

Then they used this observation to detect when aliasing between two or more frequencies

has occurred, as well as to determine the value of unaliased frequencies. The algorithm has a

simple structure and is easy to implement, however, it can only be used for noiseless signals

and hence cannot be utilized in real-world applications due to imprecise instrumentation or

noisy environment. Later, the authors extended their algorithm to noisy setting by using

the multiscale error-correcting method [6]. This new algorithm is an adaptive algorithm

with runtime O(s log(s) log(N/s)). Most recently, another phase encoding SFT algorithm

was presented in [54], in which the authors developed an efficient algorithm for sparse FFT

for higher dimensional signals by extending some of the ideas in [10]. The algorithm was

using the so-called “partial unwrapping” and “tilting methods”. These two methods allow the
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algorithm in [54] to efficiently compute the sparse FFT of higher dimensional signals with

O(Ds log s) computational complexity and O(Ds) sampling size for any given input function

f : [0, 2π]D → C. There are also some researches try to conquer the SFT problem in Fourier

space from other aspects. For example, from implementation [28, 29], and hardware [31, 32]

perspectives.

1.3 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2 we set up the notations

that will be used throughout the thesis. In Chapter 3 we introduce the background of

sparse Fourier transform and then focus on two specific SFT algorithms: GFFT (stands

for Gopher Fast Fourier Transform) [33, 2, 4, 8] and CLW-SFT (stands for Christlieb

Lawlor Wang - Sparse Fourier Transform) [6, 10]. For both of them we first illustrate the

basic idea of the SFT algorithm with the simplest single frequency case (s = 1), and then

we talk about how these two SFT algorithms work in general case (s ≥ 2). In Chapter

4 we talk about our approach to building fully discrete SFT algorithm based on periodic

Gaussian function and fast discrete convolution. We show that by using our approach, the

evaluation of the value of convolution function (g ∗ f) at the desired point can always be

approximated very accurately using only the given discrete data with runtime O(logN).

Then in Chapter 5, we apply our approach to GFFT. We first show that the GFFT is noise

robust by extending the Theorem 7 in [4]. Then we give the runtime and error guarantee

for the fully discrete SFT algorithm based on GFFT in both deterministic and randomized

version. In Chapter 6 we empirically evaluate the performance of DMSFT (generated from

GFFT) and CLW-DSFT (generated from CLW-SFT), and then we compare their runtime
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and robustness characteristics with FFTW 3.3.41 and sFFT 2.02. Finally, in Chapter 7

we present a deterministic sparse Fourier transform algorithm which breaks the quadratic-

in-sparsity runtime bottleneck for a large class of periodic functions exhibiting structured

frequency support. We focus on the numerical experiments of the structured SFT algorithm

and point the reader to [30] for more details of the theoretical guarantee.

1http://www.fftw.org/
2https://groups.csail.mit.edu/netmit/sFFT/
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Chapter 2

Notation and Setup

In this chapter we define the notations that will be used later. The Fourier series represen-

tation of a 2π−periodic function f : [−π, π]→ C will be denoted by

f (x) =
∑
ω∈Z

f̂ωe
iωx

with its Fourier coefficients given by

f̂ω =
1

2π

ˆ π

−π
f (x) e−iωx dx.

We let f̂ :=
{
f̂ω

}
ω∈Z

represent the infinite sequence of all Fourier coefficients of f . Given

two 2π−periodic functions f and g we define the convolution of f and g at x ∈ R to be

(f ∗ g) (x) = (g ∗ f) (x) :=
1

2π

ˆ π

−π
g (x− y) f (y) dy.

This definition, coupled with the definition of the Fourier transform, yields the well-known

equality

f̂ ∗ gω = f̂ω ĝω ∀ω ∈ Z.

We may also write f̂ ∗ g = f̂ ◦ ĝ where ◦ denotes the Hadamard product.

10



For any N ∈ N, define the Discrete Fourier Transform (DFT) matrix F ∈ CN×N by

Fω,j :=
(−1)ω

N
e
−2πi·ω·j

N ,

and let B :=
(
−
⌈
N
2

⌉
,
⌊
N
2

⌋]
∩Z be a set of N integer frequencies centered at 0. Furthermore,

let f ∈ CN denote the vector of equally spaced samples from f whose entries are given by

fj := f

(
−π +

2πj

N

)

for j = 0, . . . , N − 1. One can now see that if

f (x) =
∑
ω∈B

f̂ωe
iωx,

then

F f = f̂ (2.1)

where f̂ ∈ CN denotes the subset of f̂ with indices in B, and in vector form. More generally,

bolded lower case letters will always represent vectors in CN below.

For any positive integer p, let f[p] denotes the length p vector whose elements are equally

spaced samples from f

f[p](j) := f

(
−π +

2πj

p

)

for j = 0, ..., p − 1. Let f[p,ε] be the discrete array by sampling f(x) at rate 1
p starting at

x = ε. That is, for j = 0, ..., p− 1

f[p,ε](j) = f

(
−π + 2π(

j

p
+ ε)

)

11



Define fn
[p]

and fn
[p,ε]

to be the noisy versions of vectors f[p] and f[p,ε], that is

fn[p] = f[p] + n (2.2)

fn[p,ε] = f[p,ε] + n (2.3)

where n is a length p vector whose entries are complex i.i.d standard normal random variables,

i.e. nj = σ(η1
j + iη2

j ), where σ is the standard deviation of the noise. Finally, let f̂[p], f̂[p,ε],

f̂n
[p]

and f̂n
[p,ε]

be the discrete Fourier transform vector of f[p], f[p,ε], f
n
[p]

and fn
[p,ε]

respectively.

As mentioned above, f̂ :=
{
f̂ω

}
ω∈Z

is the infinite sequence of all Fourier coefficients of

f . For any subset S ⊆ Z we let f̂ |S ∈ CZ be the sequence f̂ restricted to the subset S, so

that f̂ |S has terms
(
f̂ |S
)
ω

= f̂ω for all ω ∈ S, and
(
f̂ |S
)
ω

= 0 for all ω ∈ Sc := Z\S. Note

that f̂ above is exactly f̂ |B excluding its zero terms for all ω /∈ B. Thus, given any subset

S ⊆ B, we let f̂ |S ∈ CN be the vector f̂ restricted to the set S in an analogous fashion. That

is, for S ⊆ B we will have
(
f̂ |S
)
ω

= f̂ω for all ω ∈ S, and
(
f̂ |S
)
ω

= 0 for all ω ∈ B \ S.

Given the sequence f̂ ∈ CZ and s ≤ N , we denote by Ropt
s

(
f̂
)
a subset of B containing

s of the most energetic frequencies of f ; that is

R
opt
s

(
f̂
)

:= {ω1, . . . , ωs} ⊆ B ⊂ Z

where the frequencies ωj ∈ B are ordered such that

∣∣∣f̂ω1

∣∣∣ ≥ ∣∣∣f̂ω2

∣∣∣ ≥ · · · ≥ ∣∣∣f̂ωs∣∣∣ ≥ · · · ≥ ∣∣∣f̂ωN ∣∣∣ .
Here, if desired, one may break ties by also requiring, e.g., that ωj < ωk for all j < k with
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∣∣∣f̂ωj ∣∣∣ =
∣∣∣f̂ωk ∣∣∣. We will then define fopt

s : [−π, π]→ C based on Ropt
s

(
f̂
)
by

f
opt
s (x) :=

∑
ω∈Ropt

s

(
f̂
) f̂ωeiωx.

Any such 2π-periodic function fopt
s will be referred to as an optimal s-term approximation to

f . Similarly, we also define both f̂opt
s ∈ CZ and f̂

opt
s ∈ CN to be f̂ |

R
opt
s

(
f̂
) and f̂ |

R
opt
s

(
f̂
),

respectively.
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Chapter 3

Background and Review

In this chapter, we introduce the background of sparse Fourier transform and then focus

on two SFT algorithms: the CLW-SFT developed by Andrew Christlieb, David Lawlor and

Yang Wang in 2013 [6]; and GFFT developed by Mark Iwen in 2013 [4].

The primary challenge of sparse Fourier transform algorithm is how to isolate one fre-

quency from other frequencies efficiently and accurately. It can be shown that if the signal

contains only one frequency and it is noiseless, then we can find this single frequency and

its corresponding coefficient by using only two samples from the signal. However, if noise

contaminates the signal, then one will need a logarithmic number of samples to guarantee to

recover the frequency. Since all the methods for general cases can be solved by reducing it to

several sub-problems involving only one frequency, in Section 3.1.1 and 3.2.1, we discuss two

different approaches to solving this simple single frequency problem. This reducing process

can be achieved by grouping subsets of Fourier space together into a small number of bins.

Then we can recover the isolated frequency by using the techniques mentioned earlier. This

means the runtime of a (sparse) Fourier Transform algorithm is closely related to the number

of bins. One of the ideas about how to set up the bins is to let each bin corresponding to

a subset of bandwidth. Usually, this approach works well when the significant frequencies

are distributed uniformly in the bandwidth (the distance between different significant fre-

quencies in Fourier space is relatively far). However, this method can fail when two non-zero
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frequencies are very close to each other. In the worst case, one will need N bins to guarantee

the isolation; this leads to totally O(N logN) runtime, which is equivalent to the runtime of

Fast Fourier Transform(FFT).

On the other hand, one can also design or set up the bins cleverly to significantly reduce

the number of bins. However, since each of the significant frequencies have to be isolated at

least once, one will need at least s bins to guarantee the correctness of recovery, where s is

the number of significant frequencies (sparsity) of the signal in Fourier space.

The remainder of this chapter is organized as follows. In Section 3.1 we introduce the

sparse Fourier algorithm based on the phase encoding method[10][6], in Section 3.2 we briefly

review another method developed by Mark Iwen, which is an aliasing-based search method.

For both Section 3.1 and 3.2, we start with the simplest single frequency case, and then

we move to the more general case of which the signal contains more than one significant

frequency.

3.1 CLW-SFT

CLW-SFT is a sparse Fourier transform algorithm developed by Andrew Christlieb, David

Lawlor, and Yang Wang[6]. It is a phase encoding method. The noiseless version of this algo-

rithm was first published in [10] in 2013. It is an adaptive algorithm which has running time

O(s log s). Although fast, it is not robust to noise. Unfortunately, any signal recorded from

real-world data is contaminated due to either imprecise instrumentation or noisy environ-

ment. Later in another paper [6], they developed a multi-scale sub-linear Fourier algorithm

with runtime O(s2 log(s)). It is worth to mention that this multi-scale algorithm is robust

to high-level noise when measuring the error under Earth Mover Distance. For more details,
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we point the reader to [6] and [10].

Next, we start with the simplest single frequency case, and then we talk about how the

algorithm works in the general case.

3.1.1 Single Frequency Recovery

Let us assume that the signal is noiseless and it contains only one significant frequency ω

with corresponding coefficient f̂ω. Then for an integer p and ε ≤ 1
N (get ride of wrap-

around aliasing), we take two sets of samples f[p] and f[p,ε] and then take the discrete Fourier

transform. We have:

f̂[p](h) =


pf̂ω, h = ω (mod p)

0, otherwise

(3.1)

and

f̂[p,ε](h) =


pf̂ωe

2πiεω, h = ω (mod p)

0, otherwise

(3.2)

for h = 0, ..., p− 1.

Now we can easily recover the significant frequency ω by using the equation below:

ω =
1

2πε
Arg

( f̂[p,ε](h)

f̂[p](h)

)
(3.3)

where Arg(z) denote the phase angle of the complex number z in (−π, π]. It is clear that as

long as ε ≤ 1
N , the number of samples we need to recover the significant frequency is O(1)

(independent to the bandwidth N).

16



3.1.2 General Case

From above we know that if the signal is noiseless and contains only one frequency, then we

can find the significant frequency in O(1) time. In this section, we talk about the algorithm

in [6] in the more general case.

Assume now that there are s > 1 significant frequencies {ωj}sj=1 in the signal function

and assume their corresponding coefficients are {f̂ωj}
s
j=1. Then the method in section 3.1.1

can no longer guarantee to find the significant frequencies all the time. This is because when

aliasing occurs the equation 3.1 and 3.2 is not always true and so the reconstruction via 3.3

is no longer valid. More specifically, when there are more than one significant frequencies in

the signal, if we still take two sets of samples f[p] and f[p,ε], then 3.1 and 3.2 becomes

f̂[p](h) = p
∑

ωl≡h (mod )p)
f̂ωl (3.4)

and

f̂[p](h) = p
∑

ωl≡h (mod )p)
f̂ωle

2πiωlε (3.5)

for h = 0, ..., p − 1. Now it is clear that we cannot use 3.3 to reconstruct the frequency

when two or more frequencies are congruent modulo the sampling rate p. However, if we can

detect when the aliasing happens, we can always change the sampling rate p to some other

number to avoid the aliasing. The Lemma below in [10] helps to solve the aliasing detection

problem.

Lemma 1. Let p > 1 and h ∈ {0, 1, ..., p−1}. Then for almost all ε > 0 we have |̂f[p,ε](h)| 6=

|̂f[p](h)|.

In practice, to detect the aliasing, we only need to set a tolerance τ in order to accept or
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reject frequencies according to the criterion

∣∣∣∣∣ f̂[p,ε](h)

f̂[p](h)
− 1

∣∣∣∣∣ ≤ τ (3.6)

The above inequality allows us to detect whether or not two or more frequencies are

aliased, so that we only add non-aliased terms to our representation. Then we quickly

discover all frequencies present in the signal function f by choosing a different value for p in

a subsequent iteration. Please see [10] for a more rigorous prove.

The previous phase shift and aliasing detection method can only be used for the noiseless

signal because the shift ε is sensitive to noise. However, due to imprecise instrumentation or

noisy environments, any signal recorded from the real-world will more or less contain some

errors. Next, we introduce the method in [6] to show that it is possible to get a noise robust

method by modifying the phase shift and aliasing detection method mentioned above.

Now, assume the two sets of samples we have are fn
[p]

and fn
[p,ε]

. Notice that the super

scribe nmeans the signal is contaminated by complex Gaussian noise with standard deviation

σ. It has been proved in [6] that if f̂n
[p]

and f̂n
[p,ε]

denote the DFT of fn
[p]

and fn
[p,ε]

, then for

h ∈ {0, 1, ..., p− 1} we have

∣∣∣∣∣Arg
(
f̂n
[p,ε]

(h)

f̂n
[p]

(h)

)
− 2πωε

∣∣∣∣∣ ≤ O(
σ
√
p

|̂f[p](h)|
) (3.7)

This means if we use the method stated previously, then the noise frequency estimate ω

satisfy

|ω̃ − ω| ≤ O(
σ
√
p

2πε|̂f[p](h)|
) (3.8)

where ω is the true frequency. Turns out that if the noise level is low, then we can fix
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this problem with a minor modification. The approach is simply round the noisy frequency

estimate ω̃ to the nearest integer of the form np+ h. The improved estimate ω̃’ is therefore

given by

ω̃′ = p · round(
ω̃ − h
p

) + h (3.9)

where round(x) returns the neatest integer to x. This modification works because when the

noise level is low the noise frequency estimate ω̃ is deviated by less than p/2 from the true

frequency ω. However, this is not true for large noise level.

The multi-scale method in [6] solves this problem by using multiple shifts εq. The key

idea of the multi-scale algorithm is that if we know |ω| < L
2 for some positive number L,

then it is enough to let ε < 1
L to identify ω. Later we will see that this fact allows us to use

much coarser sampling rate than the previous simple rounding method 3.9.

The algorithm starts by choosing an appropriate p and ε < 1
2N and calculating the initial

frequency estimates ω̃0
j , j = 1, ..., s∗ with

ω̃0
j = p · round

(
1

2πεp

(
Arg

(
f̂n
[p,ε]

(h)

f̂n
[p]

(h)

)
− h

))
+ h (3.10)

which will deviate from the true frequency ωj by approximately σ/2πε√p. We then use an

iterative frequency estimation procedure to correct for the error in phase. For each of the s∗

estimated frequencies, we increase the ε with a factor of 2B , where B is a parameter. Then

we take several other sets of samples

fn[p](q) = e
−2πiω̃0

j q/pf(
q

p
) (3.11)

fn[p,ε](q) = e
−2πiω̃0

j (q/p+ε2B)
f(
q

p
+ ε2B) (3.12)
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for j = 1, ..., s∗, and take DFTs on them. Note now that we can improve our estimation

from 3.10 by letting

ω̃1
j = ω̃0

j + p · round

(
1

2πε2Bp
Arg

(
f̂n
[p,ε]

(0)

f̂n
[p]

(0)

))
(3.13)

This is because the way we collect samples in 3.11 and 3.12 will shift the peak location

h = ωj( mod p) down by ω̃0
j ( mod p). So we expect to see the peak corresponding to ωj to

appear at the zero frequency in the demodulated signal. Also we notice that the difference

between thezero frequency of the shifted and unshifted DFT values is proportional to ω̃0
j−ωj ,

which lead us to 3.13. Then we just repeat this process until the algorithm converge. For

the coefficients, we simply take the median of the real and imaginary parts of the estimates.

Note that the correction in 3.13 make the deviation of the new estimation smaller by a factor

of 2B . In another words, for each iteration, we improve the accuracy of the estimation by

a digit in the binary sense. The multi-scale algorithm is robust to high level noise and it

has averaged-case runtime O(s2 log(s) log(N)) and sampling complexity O(s2 log(N)). For

more details about the multi-scale SFT algorithm, we encourage the readers to see [6].

3.2 GFFT

The GFFT is a deterministic SFT algorithm built by Mark Iwen in 2010 [2]. The algorithm

was first implemented by Mark Iwen and Ben Segal in 2013 [8]. In this section, we first

illustrate the idea of the GFFT algorithm by accomplishing the fundamental single frequency

recovery task; then we introduce the algorithm in the more general setting.
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3.2.1 Single Frequency Recovery

Let us assume in this section that there is only one significant frequency ω in the signal

function f .

The GFFT is an aliasing-based search method. Its idea works particularly well when the

bandwidth N is a product of several smaller relatively prime numbers. For example, assume

the bandwidth N = p1 · p2 · p3, where p1, p2 and p3 are co-prime numbers. Now, in order to

identify the significant frequency, we take three sets of equally spaced samples with length

p1, p2 and p3, and call them fp1 , fp2 and fp3 respectively. Let f̂p1 , f̂p2 and f̂p3 be the DFTs

of fp1 , fp2 and fp3 . Notice that f̂p1 has exactly one non-zero element since there is only one

significant frequency in the signal. If we assume the indexes of this non-zero element is r1.

Then we know that

ω ≡ r1 mod p1 (3.14)

Similarly, from f̂p2 and f̂p3 we know

ω ≡ r2 mod p2 (3.15)

ω ≡ r3 mod p3 (3.16)

Once we have collected these modulo we can reconstruct ω via Chinese Remainder Theorem

(CRT).

Theorem 1. Chinese Remainder Theorem: An integer x is uniquely specified modulo

N by its remainders modulo m relatively prime integers p1, ..., pm as long as Πml=1pl ≥ N .

Now it is clear that from the CRT, ω can be uniquely determined by 3.14, 3.15 and 3.16

since we have N = p1 ·p2 ·p3. Notice that above method always work as long as N ≤ p1 ·p2 ·p3.
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We borrow the example in [2] to show that this method can dramatically decrease the

needed samples to find the significant frequency. Assume N = 106 and we have three FFTs

with length 100, 101 and 103 samples to determine that ω ≡ 34 mod 100, ω ≡ 3 mod 101

and ω ≡ 1 mod 103, respectively. Using ω ≡ 34 mod 100 and ω ≡ 3 mod 101, we can see

that ω = 3134 mod 100 · 101. This comes from the fact that if

x ≡ a1 mod n1 (3.17)

x ≡ a2 mod n2 (3.18)

Then we have x = a1m2n2 + a2m1n1, where m1 and m2 are the integers which satisfy

m1n1 +m2n2 = 1 (3.19)

Notice that 3.19 is from the Bezout’s identity and can be solved by using extended Euclidean

algorithm. By similar work, we can use ω = 3134 mod 100 · 101 and ω ≡ 1 mod 103 to solve

for ω. This gives us ω = 104134 by Chinese Remainder Theorem.

From above example, we can see that the number of the samples we have used to de-

termine ω is significantly less than N: the conventional DFT method requires 106 samples,

however, by using the CRT, we needed only 100+101+103 = 304 samples from f . Moreover,

this method is deterministic, and hence it has no chance to fail. In next section, we show

that we can also use the CRT to build a deterministic SFT algorithm if we deal with the

potential difficulties caused by frequency collisions carefully.
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3.2.2 General Case

Let us start with two frequency case. In this scenario, the signal function f is in the form

f(x) = C1e
iω1x + C2e

iω2x (3.20)

If we assume that we know some integer n such that

ω1 mod n 6= ω2 mod n (3.21)

Then we say that n separates ω1 and ω2 and we can take advantage of this information to

find ω1 and ω2 as follows. Assume h1 = ω1 mod n and h2 = ω2 mod n. Here we call h1 and

h2 residues modulo n. Notice that h1 and h2 are simply the index of the two largest entries

of f̂[n]. Now if we take an other set of samples f[c·n], where c is relatively prime to n, and

then take DFT to it. Then the elements f̂[c·n] will all be 0 except those satisfy

f̂[c·n](ω1 mod cn) = C1 6= 0 (3.22)

f̂[c·n](ω2 mod cn) = C2 6= 0 (3.23)

However, before we proceed, we must fix two problems: first, the above procedure will not

give us the residues if ω1 and ω2 modulo relatively prime numbers because n divides cn;

second, if C1 = C2 then we will not be able to tell which residues modulo each cn− value

corresponding to ω1 versus ω2. The author of [2] uses the method inspired by [51], [50] and

[52] to solve these difficulties. We use an example to better explain the approach in [2].

Assume we have both f̂[n] and f̂[2n]. Now let us focusing on ω1. Since we have ω1 mod n =
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h1, so for 2n we must have one of the two equations below

ω1 mod 2n = h1, or ω1 mod 2n = h1 + n (3.24)

By using the above fact we can easily determine ω1 mod 2n by

ω mod 2n =


h1, if

∣∣∣̂f[n](h1)− f̂[2n](h1)
∣∣∣ < ∣∣∣̂f[n](h1)− f̂[2n](h1 + n)

∣∣∣
h1 + n, otherwise

(3.25)

Now, once we know ω1 mod 2n we can calculate ω1 mod 2 by

ω1 mod 2 = (ω1 mod 2n) mod 2. (3.26)

If 2 is relatively prime to n, then we can use both residues in the CRT. By setting c to be

several co-prime numbers, i.e. c = 2, 3, 5, 7, ...O(logN), we can reconstruct ω1. The ω2 can

be reconstructed in a similar way.

The above method only works under the assumption that we know an integer n separates

ω1 and ω2. This assumption is not realistic because usually, we do not have any prior

knowledge concerning separating n−values. Next, we will utilize an example to show that

we can still recover the significant frequencies even if we do not have any knowledge about

the n values. This method was inspired by similar number theoretic group testing strategies

used in [53] and [55].

Assume N = 106 and let nj , j = 1, 2, 3, 4, 5 be 5 relatively prime numbers 100, 101,

103, 107 and 109 respectively. Now we can observe that the product of any three of these

co-prime numbers is greater than N . Combine this fact with the CRT we know that as
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long as ω1 6= ω2, they can collide modulo at most two of the relatively prime nj values.

This is because if they collide at three nj values, then they must be identical based on the

CRT. This fact gives us a way to identify ω1 and ω2. We can apply the previous recovery

method for each of the five nj values. Because each time when we apply the method with

a different nj value, we will get at most two unique frequencies, so at the very end we will

have at most 10 answers (with multiplicity). Since we know that the majority of our nj

values (3 out of 5) must separate ω1 and ω2, so ω1 and ω2 must appear in our answers at

least 3 times each. Also from the CRT we know that the incorrect frequency can appears

in our answers at most twice. So we only need to return the answers which appears at least

three times, that will give us ω1 and ω2. We can use the similar majority theory to find

the coefficient of each frequency. This method also works for signals with sparsity greater

than 2. Actually, it has been proved in [33] that it is enough to use 3sblogsNc+ 1 co-prime

numbers to guarantee to find the correct set of significant frequencies. Moreover, we will

obtain a s−term representation f̂ |S of the signal function f in Fourier space which satisfies

‖ f̂ − f̂ |S ‖2<‖ f̂ −R
opt
s (f̂) ‖2 +3

√
s ‖ f̂ −Ropts (f̂) ‖1 (3.27)

where Ropts (f̂) stands for the optimal s−term representation of f̂ . For this deterministic SFT

algorithm, the runtime and the number of measurements used are both O(s2 log4N).

It is worth to mention that one can easily change the above deterministic SFT algorithm

into a randomized algorithm by decreasing the number of co-prime numbers used in the

algorithm. Actually, it has been showed in [2] and [4] that by choosing O(log( N
1−σ )) co-prime

numbers in the SFT algorithm in [33], we will find the correct recovery with probability at

least σ. Both the sampling complexity and runtime will be O(s log3(N) · log
(

N
1−σ

)
). We

25



encourage the reader to go to [33] [2] [4] and [8] for more details.
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Chapter 4

Approach Based On filter function and

fast discrete convolution

From now on, let us assume the input signal f is a length N vector which contains N

equally spaced samples f(2πj
N ) of the signal function, where j = (−N2 ,

N
2 ] ∩ Z. Assume

that there exist a SFT algorithm which requires m samples {f(xk)}mk=1 to find the best

s-term approximation of the signal. However, the given input vector f only contains N

equally spaced samples of f , and so does not necessarily contains all the samples the SFT

algorithm needs. As a consequence, we need to try to interpolate these required function

values {f(xk)}mk=1 from f .

There are two requirements for an ideal interpolation method: fast and accurate. Keep

in mind that we are trying to create a sub-linear algorithm which can outperform some

existing Fourier transform algorithms (e.g. FFTW) in the sense of speed and at the mean

time provide good approximation to the sparse signal. The most straight forward idea is to

use polynomial interpolation. However, we prove in section 4.1 that polynomial interpolation

is poorly conditioned with high oscillate functions. One will need large number of points to

reduce the error. In another word, polynomial interpolation is fast and easy to implement

but not accurate enough. Then we use the rest of this chapter to introduce our approach

based in filter function and fast discrete convolution. In section 4.2, we introduce the filter
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function that used in our approach: periodic Gaussian function. We then point out that

periodic Gaussian function is not the only possible choice, however, it is a very good candidate

because it has relatively simple analytic form and can be numerical evaluated easily. Then

in section 4.3 we give the description of our proposed approach in the form of pseudo code.

At the very end, in section 4.4, we show that the value of function at desired point can be

evaluated rapidly and accurately by using the filter function and fast discrete convolution

approach.

4.1 Polynomial interpolation

In this section, we first consider an simple and intuitive method, e.g. polynomial interpola-

tion, to get the desired function value at points {xk}mk=1 ⊂ [−π, π]. Polynomial interpolation

is easy to implement and can be evaluated rapidly. However, by using the results from [5],

we get the modified Lemma 2 which shows that the value of the desired points {xk}mk=1 can

only be evaluated accurately with polynomial interpolation when all the high frequencies of

the signal function vanished. More precisely, polynomial interpolation can only works if all

the frequencies ω with |ω| ≥ N
2π have zero coefficients. This is equivalent to oversampling the

signal function with a factor of π. We present the details of the result in the lemma below.

Lemma 2. Let x ∈ (−π, π] and yj = −π+2πj
N for j = 0, ..., N−1. Set j′ := arg minj

∣∣x− yj∣∣.
Suppose that f̂ω = 0 for all |ω| ≥ N

2π . Let P (x) denote the value of polynomial interpolation

by using the value of 2κ terms in f nearest to x, i.e. {f(xj′+j)}
κ
j=−κ+1. Then we have

|f(x)− P (x)| < ε (4.1)
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when κ =
⌈

log2(
2‖f̂‖1
ε )

⌉
.

Proof. Let us take 2κ terms nearest to the desired point x and calculate the real and imag-

inary part of polynomial interpolation P (x) separately. Let PR denote the real part of the

polynomial interpolation, and PI be the imaginary part.

Note that

|Re{f(x)} − PR(x)| =
f (2κ)(ε)

(2κ)!

κ∏
m=−κ+1

(xj′ −
2π(j′ +m)

N
)

≤ ‖ f (2κ) ‖∞
(2κ)!

κ∏
m=1

(
m2π

N
)2

=
‖ f (2κ) ‖∞

(2κ)!
(
2π

N
)2κ

κ∏
m=1

m2

= ‖ f (2κ) ‖∞ (
2π

N
)2κ (κ!)2

(2κ)!

≤ ‖ f (2κ) ‖∞
2κ

(
2π

N
)2κ

The first equation is Lagrange interpolation error. Also we notice that for ‖ f (2κ) ‖∞ we

have:

‖ f (2κ) ‖∞ = |
∑
|ω|<N

2π

f̂(ω)(iω)2κeiωx̄|

≤
∑
|ω|<Nπ

|f̂(ω)|(N
2π

)2κ

≤ ‖ f̂ ‖1 (
N

2π
)2κ
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Plug this into previous inequality we get:

|Re{f(x)} − PR(x)| ≤ ‖ f̂ ‖1
2κ

Set κ = dlog2(
2‖f̂‖1
ε )e, we have |Re{f(x)} − PR(x)| ≤ ε

2 .

Same argument imply imagine part also has |Im{f(x)} − PI(x)| ≤ ε
2 .

From above Lemma, we can see that in order to get accurate estimation from the polyno-

mial interpolation, we need to oversampling the signal function f with a factor of π, which

is an unpleasant assumption. The reason polynomial interpolation method not working very

well is because the high order derivative grows exponentially, which makes the polynomial

interpolation to be poorly conditioned with high oscillate functions. A very natural idea is

to try to control or eliminate the high frequency terms in Fourier space. Filter function is

an ideal choice in this task.

In the next few sections, we try to solve this problem by showing that with appropriate

filter function (e.g. periodic Gaussian function), one only needs very few samples O(logN)

to estimate the desired points accurately and rapidly.

4.2 Periodic Gaussian Function

The filter function plays a crucial role in our approach. Later (in section 4.4) we will show

that a good filter function can help us to evaluate the value of the function at desired points

rapidly and accurately. Before we start to discuss what properties we expect to see in the

filter function, let us first give the definition of effective support.

Definition 1. Assume X is the domain of a function f . Then for any positive number ε,
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the effective support of f according to ε is:

Xε(f) = {x ∈ X | |f(x)| > ε}

Intuitively, we want our filter function to have wide effective support in Fourier space,

so that we only need to shift it a few times in order to cover the whole bandwidth. And

at the same time, we want it to have narrow effective support in time space. The benefit

of these two properties will be discussed in more detail later. The good news is that the

uncertainty theorem of Heisenberg tells us that the balance has to be reached between the

time and frequency resolution. More precisely, if we let σt and σω denote the root deviation

of a function f in time space and Fourier space respectively. Then we have

σtσω ≥
1

4
(4.2)

This means if a function has large variance in Fourier space, then it must have small variance

in time space, which is exactly what we want.

There are a lot of different kinds of filter functions available in the market. For example,

rectangular window function (sometimes known as the boxcar or Dirichlet window), Pro-

late spherical functions, Kiaser Bessel functions and C∞ bump function, etc. Theoretically

speaking, they all can be used in our method. However, we choose to use periodic Gaussian

function in our approach because of two reasons: first, it has simple analytic form which

makes it easier to control its variance in time and Fourier space; and second, which is also the

most important part, periodic Gaussian function is easy for a computer to evaluate. Next,

we give the definition of periodic Gaussian function in Lemma 4.3 and then show that we
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can always get the desired effective support in both time and Fourier space by tuning its

parameters.

In the sections that follow the 2π−periodic Gaussian g : [−π, π]→ R+ defined by

g (x) =
1

c1

∞∑
n=−∞

e

− (x−2nπ)2

2c21 (4.3)

with c1 ∈ R+ will play a special role. The following lemmas recall several useful facts

concerning both its decay, and its Fourier series coefficients.

Lemma 3. The 2π−periodic Gaussian g : [−π, π]→ R+ has

g (x) ≤
(

3

c1
+

1√
2π

)
e

− x2

2c21

for all x ∈ [−π, π].

Lemma 4. The 2π−periodic Gaussian g : [−π, π]→ R+ has

ĝω =
1√
2π

e
−
c21ω

2

2

for all ω ∈ Z. Thus, ĝ = {ĝω}ω∈Z ∈ `2 decreases monotonically as |ω| increases, and also

has ‖ĝ‖∞ = 1√
2π

.

Lemma 5. Choose any τ ∈
(

0, 1√
2π

)
, α ∈

[
1, N√

lnN

]
, and β ∈

(
0, α

√
ln(1/τ

√
2π)

2

]
. Let

c1 = β
√

lnN
N in the definition of the periodic Gaussian g from (4.3). Then ĝω ∈

[
τ, 1√

2π

]
for

all ω ∈ Z with |ω| ≤
⌈

N
α
√

lnN

⌉
.

The proofs of lemmas 3, 4, and 5 are included in Appendix A for the sake of completeness.

Intuitively, we will utilize the periodic function g from (4.3) as a bandpass filter below.
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Looking at lemma 5 in this context we can see that its parameter τ will control the effect

of ĝ on the frequency passband defined by its parameter α. Deciding on the two parameters

τ, α then constrains β which, in turn, fixes the periodic Gaussian g by determining its

constant coefficient c1. As we shall see, the parameter β will also determine the speed and

accuracy with which we can approximately sample (i.e., evaluate) the function f ∗g. For this

reason it will become important to properly balance these parameters against one another

in subsequent sections.

4.3 Description of the Proposed Approach

In this section we give the reader a general idea about the structure of our discrete SFT

approach. Let us assume that we have access to an SFT algorithm A which requires m

function evaluations of a 2π-periodic function f : [−π, π]→ C in order to produce an s-sparse

approximation to f̂ . For any non-adaptive SFT algorithm A them points {xk}mk=1 ⊂ [−π, π]

at which A needs to evaluate f can be determined before A is actually executed. As a result,

the function evaluations {f(xk)}mk=1 required by A can also be evaluated before A is ever

run. Indeed, if the SFT algorithm A is both nonadaptive and robust to noise it suffices to

approximate the function evaluations {f(xk)}mk=1 required by A before it is executed.1 These

simple ideas form the basis for the proposed computational approach outlined in Algorithm 1.

The objective of Algorithm 1 is to use a nonadaptive and noise robust SFT algorithm

A which requires off-grid function evaluations in order to approximately compute the DFT

of a given vector f ∈ CN , f̂ = F f . Note that computing f̂ is equivalent to computing

1We hasten to point out, moreover, that similar ideas can also be employed for adaptive and noise robust
SFT algorithms in order to approximately evaluate f in an “on demand” fashion as well. We leave the details
to the interested reader.
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Algorithm 1: A Generic Method for Discretizing a Given SFT Algorithm A
Input : Pointer to vector f ∈ CN , sparsity s ≤ N , nodes {xk}mk=1 ⊂ [−π, π] at

which the given SFT algorithm A needs function evaluations, and α, β
satisfying lemma 5

Output: R̂s, a sparse approximation of f̂ ∈ CN
1 Initialize R̂, R̂s ← ∅
2 Set c1 = β

√
lnN
N in the definition of periodic Gaussian g from (4.3), and c2 = α

√
lnN
2

3 for j from 1 to dc2e do
4 q = −

⌈N
2

⌉
+ 1 + (2j − 1)

⌈
N

α
√

lnN

⌉
5 Modulate g to be g̃q(x) := e

−iqxg(x)
6 for each point x ∈ {xk}mk=1 do
7 Use f to approximately compute (g̃q ∗ f)(x) as per §4.4
8 end
9 Run given SFT algorithm A using the approximate function evaluations

{(g̃q ∗ f)(xk)}mk=1 in order to find an s-sparse Fourier approximation,
R̂temp ⊂ Z× C, of ̂̃gq ∗ f .

10 for each (frequency,Fourier coefficient) pair (ω, cω) ∈ R̂temp do
11 if ω ∈

[
q −

⌈
N

α
√

lnN

⌉
, q +

⌈
N

α
√

lnN

⌉)
∩B then

12 R̂ = R̂ ∪
{(
ω, cω

/ ( ̂̃gq)
ω

)}
13 end
14 end
15 end
16 Choose the s frequencies ω with (ω, c̃ω) ∈ R̂ having the largest |c̃ω|, and put those

(ω, c̃ω) in R̂s

17 Return R̂s
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the Fourier series coefficients of the degree N trigonometric interpolant of f . Hereafter

the 2π-periodic function f : [−π, π] → C under consideration will always be this degree

N trigonometric interpolant of f . Our objective then becomes to approximately compute

f̂ using A. Unfortunately, our given input vector f only contains equally spaced function

evaluations of f , and so does not actually contain the function evaluations {f(xk)}mk=1

required by A. As a consequence, we are forced to try to interpolate these required function

evaluations {f(xk)}mk=1 from the available equally spaced function evaluations f .

Directly interpolating the required function evaluations {f(xk)}mk=1 from f for an arbi-

trary degree N trigonometric polynomial f using standard techniques appears to be either

too inaccurate, or else too slow to work well in our setting.2 As a result, Algorithm 1 instead

uses f to rapidly approximate samples from the convolution of the unknown trigonometric

polynomial f with (several modulations of) a known filter function g. Thankfully, all of the

evaluations {(g ∗ f)(xk)}mk=1 can be approximated very accurately using only the data in f

in just O(m logN)-time when g is chosen carefully enough (see §4.4 below). The given SFT

algorithm A is then used to approximate the Fourier coefficients of g ∗f for each modulation

of g using these approximate evaluations. Finally, f̂ is then approximated using the recovered

sparse approximation for each ĝ ∗ f combined with our a priori knowledge of ĝ.

2Each function evaluation f(xk) needs to be accurately computed in just O(logc N)-time in order to
allow us to achieve our overall desired runtime for Algorithm 1.
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4.4 Rapidly and Accurately Evaluating the convolution

In this section we will carefully consider the approximation of (f ∗ g) (x) by a severely trun-

cated version of the semi-discrete convolution sum

1

N

N−1∑
j=0

f

(
−π +

2πj

N

)
g

(
x+ π − 2πj

N

)
(4.4)

for any given value of x ∈ [−π, π]. Our goal is to determine exactly how many terms of

this finite sum we actually need in order to obtain an accurate approximation of f ∗ g at an

arbitrary x-value. More specifically, we aim to use as few terms from this sum as absolutely

possible in order to ensure, e.g., an approximation error of size O(N−2).

Without loss of generality, let us assume that N = 2M + 1 is odd – this allows us to

express B, the set of N Fourier modes about zero, as

B :=

(
−
⌈
N

2

⌉
,

⌊
N

2

⌋]
∩ Z = [−M,M ] ∩ Z.

In the lemmas and theorems below the function f : [−π, π] → C will always denote a

degree-N trigonometric polynomial of the form

f (x) =
∑
ω∈B

f̂ωe
iωx.

Furthermore, g will always denote the periodic Gaussian as defined above in (4.3). Finally,

we will also make use of the Dirichlet kernel DM : R→ C, defined by

DM (y) =
1

2π

M∑
n=−M

e
iny =

1

2π

∑
n∈B

e
iny.
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The relationship between trigonometric polynomials such as f and the Dirichlet kernel

DM is the subject of the following lemma.

Lemma 6. Let h : [−π, π] → C have ĥω = 0 for all ω /∈ B, and define the set of points{
yj
}2M
j=0 =

{
−π + 2πj

N

}2M

j=0
. Then,

2π (h ∗DM ) (x) = h (x) =
2π

N

2M∑
j=0

h
(
yj
)
DM

(
x− yj

)

holds for all x ∈ [−π, π].

Proof. By the definition of DM , we trivially have 2π
(
D̂M

)
ω

= χB (ω) ∀ω ∈ Z. Thus,

ĥ = 2π · ĥ ◦ D̂M = 2π · ĥ ∗DM

where, as before, ◦ denotes the Hadamard product, and ∗ denotes convolution. This yields

h (x) = 2π (h ∗DM ) (x) and so establishes the first equality above. To establish the second

equality above, recall from (2.1) that for any ω ∈ B we will have

ĥω =
(−1)ω

N

2M∑
j=0

h

(
−π +

2πj

N

)
e

−2πijω
N =

1

N

2M∑
j=0

h
(
yj
)
e
−iωyj ,

since h is a trigonometric polynomial. Thus, given x ∈ [−π, π] one has

h (x) =
∑
ω∈B

ĥωe
iωx =

1

N

2M∑
j=0

h (yj) ∑
ω∈B

e
iω
(
x−yj

) =
2π

N

2M∑
j=0

h
(
yj
)
DM

(
x− yj

)
.

We now have the desired result.

We can now write a formula for g∗f which only depends on N evaluations of f in [−π, π].
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Lemma 7. Given the set of equally spaced points
{
yj
}2M
j=0 =

{
−π + 2πj

N

}2M

j=0
one has that

(g ∗ f) (x) =
1

N

2M∑
j=0

f
(
yj
) ˆ π

−π
g
(
x− u− yj

)
DM (u) du

for all x ∈ [−π, π].

Proof. By Lemma 6, we have

(g ∗ f) (x) =
1

2π

ˆ π

−π
g (x− y) f (y) dy =

1

N

ˆ π

−π
g (x− y)

2M∑
j=0

f
(
yj
)
DM

(
y − yj

)
dy

=
1

N

2M∑
j=0

f
(
yj
) ˆ π

−π
g
(
x− u− yj

)
DM (u) du.

The last equality holds after a change of variables since g and DM are both 2π−periodic.

The next two lemmas will help us bound the error produced by discretizing the integral

weights present in the finite sum provided by Lemma 7 above. More specifically, they will

ultimately allow us to approximate the sum in Lemma 7 by the sum in (4.4).

Lemma 8. Let x ∈ [−π, π] and yj = −π + 2πj
N for some j = 0, . . . , 2M . Then,

ˆ π

−π
g
(
x− u− yj

)
DM (u) du =

∑
n∈B

ĝne
in
(
x−yj

)
.

Proof. Recalling that 2π
(
D̂M

)
ω

= χB (ω) for all ω ∈ Z we have that

ˆ π

−π
g
(
x− u− yj

)
DM (u) du = 2π (DM ∗ g)

(
x− yj

)
=

∑
n∈Z

ĝnχB (n) e
in
(
x−yj

)

=
∑
n∈B

ĝne
in
(
x−yj

)
.
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Lemma 9. Denote I (a) :=
´ a
−a e

−x2
dx for a > 0; then

π

(
1− e

−a2
)
< I2 (a) < π

(
1− e

−2a2
)
.

Proof. Let a > 0 and observe that

I2 (a) =

ˆ a

−a

ˆ a

−a
e
−x2−y2

dxdy >

¨{
x2+y2≤a2

} e−
(
x2+y2

)
dxdy = π

(
1− e

−a2
)
.

The first equality holds by Fubini’s theorem, and the inequality follows simply by integrating

a positive function over a disk of radius a as opposed to a square of sidelength 2a. A similar

argument yields the upper bound.

We are now ready to bound the difference between the integral weights present in the

finite sum provided by Lemma 7, and the g
(
x− yj

)
-weights present in the sum (4.4).

Lemma 10. Choose any τ ∈
(

0, 1√
2π

)
, α ∈

[
1, N√

lnN

]
, and β ∈

(
0, α

√
ln(1/τ

√
2π)

2

]
. Let

c1 = β
√

lnN
N in the definition of the periodic Gaussian g so that

g (x) =
N

β
√

lnN

∞∑
n=−∞

e
− (x−2nπ)2N2

2β2 lnN .

Then for all x ∈ [−π, π] and yj = −π + 2πj
N ,

∣∣∣∣g (x− yj)− ˆ π

−π
g
(
x− u− yj

)
DM (u) du

∣∣∣∣ < N1−β
2

18

β
√

lnN
.
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Proof. Using Lemma 8 we calculate

∣∣∣∣g (x− yj)− ˆ π

−π
g
(
x− u− yj

)
DM (u) du

∣∣∣∣ =

∣∣∣∣∣∣g (x− yj)−
∑
n∈B

ĝne
in
(
x−yj

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n∈Bc

ĝne
in
(
x−yj

)∣∣∣∣∣∣
≤ 1√

2π

∑
|n|>M

e
−
c21n

2

2 (Using Lemma 4)

≤ 2√
2π

ˆ ∞
M

e
−
c21n

2

2 dn

=

√
2

π

ˆ ∞
M

e
−β

2n2 lnN
2N2 dn.

Upon the change of variable v = βn
√

lnN√
2N

, we get that

∣∣∣∣g (x− yj)− ˆ π

−π
g
(
x− u− yj

)
DM (u) du

∣∣∣∣
≤

√
2

π

√
2N

β
√

lnN

ˆ ∞
βM
√

lnN√
2N

e
−v2

dv

=
2N

β
√
π lnN

1

2

ˆ ∞
−∞

e
−v2

dv −
ˆ βM

√
lnN√

2N

−βM
√

lnN√
2N

e
−v2

dv


<

N

β
√
π lnN

√π −
√√√√√π

1− e
−β

2M2 lnN
2N2




=
N

β
√

lnN

1−

√
1−N

−β
2M2

2N2


where the last inequality follows from Lemma 9. Noting now that

y ∈ [0, 1] =⇒ 1−
√

1− y ≤ y,
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and that N
M = 2 + 1

M ∈ (2, 3] for all M ∈ Z+, we can further see that

N

β
√

lnN

1−

√
1−N

−β
2M2

2N2

 ≤ N

β
√

lnN
N
−β

2M2

2N2 ≤ N1−β
2

18

β
√

lnN

also always holds.

With the lemmas above we can now prove that (4.4) can be used to approximate (g ∗ f) (x)

for all x ∈ [−π, π] with controllable error.

Theorem 2. Let p ≥ 1. Using the same values of the parameters from lemma 10 above, one

has ∣∣∣∣∣∣(g ∗ f) (x)− 1

N

2M∑
j=0

f
(
yj
)
g
(
x− yj

)∣∣∣∣∣∣ ≤ ‖f‖p
β
√

lnN
N

1−β
2

18−
1
p

for all x ∈ [−π, π].

Proof. Using lemmas 7 and 10 followed by Holder’s inequality, we have

∣∣∣∣∣∣(g ∗ f) (x)− 1

N

2M∑
j=0

f
(
yj
)
g
(
x− yj

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N

2M∑
j=0

f
(
yj
)(

g
(
x− yj

)
−
ˆ π

−π
g
(
x− u− yj

)
DM (u) du

)∣∣∣∣∣∣
≤ 1

N

2M∑
j=0

∣∣f (yj)∣∣ N1−β
2

18

β
√

lnN
≤ N

−β2

18

β
√

lnN
‖f‖pN

1−1
p .

To summarize, Theorem 2 tells us that (g ∗ f) (x) can be approximately computed in

O (N)-time for any x ∈ [−π, π] using (4.4). This linear runtime cost may be reduced

significantly, however, if one is willing to accept an additional trade-off between accuracy
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and the number of terms needed in the sum (4.4). This trade-off is characterized in the next

lemma.

Lemma 11. Let x ∈ [−π, π], p ≥ 1, γ ∈ R+, and κ := dγ lnNe+1. Set j′ := arg minj
∣∣x− yj∣∣.

Using the same values of the other parameters from lemma 10 above, one has

∣∣∣∣∣∣ 1

N

2M∑
j=0

f
(
yj
)
g
(
x− yj

)
− 1

N

j′+κ∑
j=j′−κ

f
(
yj
)
g
(
x− yj

)∣∣∣∣∣∣ ≤ 2‖f‖p N
−2π2γ2

β2

for all β ≥ 4 and N ≥ β2.

Proof. Appealing to lemma 3 and recalling that c1 = β
√

lnN
N we can see that

g (x) ≤
(

3N

β
√

lnN
+

1√
2π

)
e
− x2N2

2β2 lnN .

Using this fact we have that

g
(
x− yj′±k

)
≤
(

3N

β
√

lnN
+

1√
2π

)
e
−

(
x−yj′±k

)2
N2

2β2 lnN ≤
(

3N

β
√

lnN
+

1√
2π

)
e
− (2k−1)2π2

2β2 lnN

for all k ∈ ZN . As a result, one can now bound

∣∣∣∣∣∣ 1

N

2M∑
j=0

f
(
yj
)
g
(
x− yj

)
− 1

N

j′+κ∑
j=j′−κ

f
(
yj
)
g
(
x− yj

)∣∣∣∣∣∣
above by

(
3

β
√

lnN
+

1

N
√

2π

)N−2κ−1∑
k=κ+1

(∣∣∣f (yj′−k)∣∣∣+
∣∣∣f (yj′+k)∣∣∣) e− (2k−1)2π2

2β2 lnN , (4.5)
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where the yj-indexes are considered modulo N as appropriate.

Our goal is now to employ Holder’s inequality on (4.5). Toward that end, we will now

bound the q-norm of the vector h :=

e
−

(
κ+`−1

2

)2
2π2

β2 lnN


N−2κ−1

`=1

. Letting a := q

(
4

β2 lnN

)

we have that

‖h‖qq =
N−2κ−1∑
`=1

e
−π

2
2

(
κ+`−1

2

)2
a
<

∞∑
`=κ

e
−π

2
2 `2a ≤

ˆ ∞
κ−1

e
−π

2x2
2 a dx

≤
√

1

2πa
− 1

π
√

2a

ˆ π(κ−1)
√
a
2

−π(κ−1)
√
a
2

e
−u2

du ≤
√

1

2πa
e
−aπ

2
2 (κ−1)2 ≤ β

2

√
lnN

2πq
N
−2qπ2γ2

β2
,

where we have used Lemma 9 once again. As a result we have that

‖h‖q ≤
(
β2 lnN

8π

) 1
2q
q
− 1

2qN
−2π2γ2

β2 ≤
(
β2 lnN

8π

) 1
2q
N
−2π2γ2

β2

for all q ≥ 1. Applying Holder’s inequality on (4.5) we can now see that (4.5) is bounded

above by

2

(
3

β
√

lnN
+

1

N
√

2π

)
‖f‖p

(
β2 lnN

8π

)1
2−

1
2p
N
−2π2γ2

β2
.

The result now follows.

We may now finally combine the truncation and estimation errors in Theorem 2 and

Lemma 11 above in order to bound the total error one incurs by approximating (g ∗ f) (x)

via a truncated portion of (4.4) for any given x ∈ [−π, π].

Theorem 3. Fix x ∈ [−π, π], p ≥ 1 (or p = ∞), N
36 ≥ r ≥ 1, and g : [−π, π] → R+ to

be the 2π−periodic Gaussian (4.3) with c1 :=
6
√

ln(Nr)
N . Set j′ := arg minj

∣∣x− yj∣∣ where
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yj = −π + 2πj
N for all j = 0, . . . , 2M . Then,

∣∣∣∣∣∣∣∣∣∣
(g ∗ f) (x)− 1

N

j′+
⌈

6r√
2π

lnN

⌉
+1∑

j=j′−
⌈

6r√
2π

lnN

⌉
−1

f
(
yj
)
g
(
x− yj

)
∣∣∣∣∣∣∣∣∣∣
≤ 3
‖f‖p
Nr .

As a consequence, we can see that (g ∗ f) (x) can always to computed to within O
(
‖f‖∞N−r

)
-

error in just O (r logN)-time for any given f ∈ CN once the
{
g
(
x− yj

) }j′+⌈ 6r√
2π

lnN

⌉
+1

j=j′−
⌈

6r√
2π

lnN

⌉
−1

have been precomputed.

Proof. Combining Theorem 2 and Lemma 11 we can see that

∣∣∣∣∣∣∣∣∣∣
(g ∗ f) (x)− 1

N

j′+
⌈

6r√
2π

lnN

⌉
+1∑

j=j′−
⌈

6r√
2π

lnN

⌉
−1

f
(
yj
)
g
(
x− yj

)
∣∣∣∣∣∣∣∣∣∣

≤ ‖f‖p

 1

β
√

lnN
N

1−β
2

18−
1
p + 2 N

−2π2γ2

β2



where β = 6
√
r ≥ 6, N ≥ 36r = β2, and γ = 6r√

2π
=

β
√
r√

2π
.

We are now prepared to bound the error of the proposed approach when utilizing the

SFTs developed in [4].
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Chapter 5

One Fully Discrete SFT algorithm

In this Chapter, we use the method described in Chapter 4 to create a fully discrete SFT

algorithm based on the Algorithm 3 in [4]. More precisely, we replace the A in line 9

of Algorithm 1 with the SFT Algorithm 3 in [4]. As mentioned in the introduction, the

Algorithm 3 in [4] is a non-adaptive SFT algorithm, which means the m points {xk}mk=1 ⊂

[−π, π] at which Algorithm 3 needs to evaluate f can be determined before the Algorithm 3

is actually executed. One thing that should be mentioned here is that A can also be replaced

by an adaptive SFT algorithm, in which case the value of desired samples cannot be pre-

computed, but has to be approximated on demand. There is, however, one requirement of

the SFT algorithm used to replace A in line 9, that is the SFT algorithm has to be noise

robust. This is because even though from previous chapter we know that we can always

approximate the value of convolution g̃q ∗ f with desired accuracy, the value of the sample

is still not equal to the true value. In that case, the approximated values can be seen as the

contaminated true function value {f(xk) + nk}mk=1. Now it is clear that the SFT algorithm

has to be robust to noise if we want it to find the support of a signal function in Fourier

space correctly by using the contaminated samples.

The reminder of this chapter is organized as follows. In section 5.1 we prove that the

Algorithm 3 in [4] is robust to noise. To do that, first we generalize the Lemma 6 in [4] by

considering the noisy signal samples. Then we prove the noise robust variant of Theorem 7
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from §5 of [4]. This is the necessary prerequisites to use the Algorithm 3 in [4] to replace the

A in Algorithm 1. Then in section 5.2 we give an error guarantee for Algorithm 1 when using

the SFTs proposed in [4]. We also provide the runtime complexity for both deterministic

and randomized version of our new fully discrete SFT algorithm.

5.1 On the Robustness of the SFTs proposed in [4]

The sparse Fourier transforms presented in [4] include both deterministic and randomized

methods for approximately computing the Fourier series coefficients of a given 2π-periodic

function f from its evaluations atm-points {xk}mk=1 ⊂ [−π, π]. The following results describe

how accurate these algorithms will be when they are only given approximate evaluations of

f at these points instead. These results are necessary because we will want to execute the

SFTs developed in [4] on convolutions of the form f ∗ g below, but will only be able to

approximately compute their values at each of the required points x1, . . . , xm ∈ [−π, π].

Lemma 12. Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and n ∈ Cm be an arbitrary noise

vector. There exists a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72

of [4], when given access to the corrupted samples {f(xk) + nk}mk=1, will identify a subset

S ⊆ B =
(N

2 ,
N
2

]
∩ Z which is guaranteed to contain all ω ∈ B with

∣∣∣f̂ω∣∣∣ > 4

ε ·
∥∥∥f̂ − f̂

opt
(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 . (5.1)

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated Fourier series
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coefficient estimate zω ∈ C which is guaranteed to have

∣∣∣f̂ω − zω∣∣∣ ≤ √2

ε ·
∥∥∥f̂ − f̂

opt
(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 . (5.2)

Both the number of required samples, m, and Algorithm 3’s operation count are

O

(
s2 · log4(N)

log
(s
ε

)
· ε2

)
. (5.3)

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, the Monte

Carlo variant of Algorithm 3 referred to by Corollary 4 on page 74 of [4] may be used. This

Monte Carlo variant reads only a randomly chosen subset of the noisy samples utilized by

the deterministic algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs a subset S ⊆ B which is guaranteed to simultaneously satisfy both of the

following properties with probability at least 1− δ:

(i) S will contain all ω ∈ B satisfying (5.1), and

(ii) all ω ∈ S will have an associated coefficient estimate zω ∈ C satisfying (5.2).

Finally, both this Monte Carlo variant’s number of required samples, m̃, as well as its oper-

ation count will also always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (5.4)
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Using the preceding lemma one can easily prove the following noise robust variant of

Theorem 7 (and Corollary 4) from §5 of [4]. The proofs of both results are outlined in

Appendix B for the sake of completeness.

Theorem 4. Suppose f : [−π, π] → C has f̂ ∈ `1 ∩ `2. Let s, ε−1 ∈ N \ {1} with

(s/ε) ≥ 2, and n ∈ Cm be an arbitrary noise vector. Then, there exists a set of m points

{xk}mk=1 ⊂ [−π, π] together with a simple deterministic algorithm A : Cm → C4s such that

A
(
{f(xk) + nk}mk=1

)
is always guaranteed to output (the nonzero coefficients of) a degree

≤ N/2 trigonometric polynomial ys : [−π, π]→ C satisfying

‖f − ys‖2 ≤
∥∥∥f̂ − f̂

opt
s

∥∥∥
2

+
22ε ·

∥∥∥f̂ − f̂
opt
(s/ε)

∥∥∥
1√

s
+ 22
√
s
(∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

)
. (5.5)

Both the number of required samples, m, and the algorithm’s operation count are always

O

(
s2 · log4(N)

log
(s
ε

)
· ε2

)
. (5.6)

If succeeding with probability (1−δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, a Monte Carlo

variant of the deterministic algorithm may be used. This Monte Carlo variant reads only a

randomly chosen subset of the noisy samples utilized by the deterministic algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs (the nonzero coefficients of) a degree ≤ N/2 trigonometric polynomial,

ys : [−π, π] → C, that satisfies (B.9) with probability at least 1 − δ. Both its number of
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required samples, m̃, as well as its operation count will always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (5.7)

We now have the necessary prerequisites in order to discuss our general strategy for

constructing several new fully discrete SFTs.

5.2 An Error Guarantee for Algorithm 1 when Using the

SFTs Proposed in [4]

Given the 2π−periodic Gaussian g : [−π, π] → R+ (4.3), consider the periodic modulation

of g, g̃q : [−π, π]→ C, for any q ∈ Z defined by

g̃q (x) = e
−iqxg (x) .

One can see that

g̃q (x) = e
−iqx

∞∑
ω=−∞

ĝωe
iωx =

∞∑
ω=−∞

ĝωe
i(ω−q)x =

∞∑
ω̃=−∞

ĝω̃+qe
iω̃x,

so that the Fourier series coefficients of g̃q are those of g, shifted by q; that is,

( ̂̃gq)
ω

= ĝω+q.

In line 9 of Algorithm 1, we provide the SFT Algorithm in [4] with the approximate
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evaluations of
{(
g̃q ∗ f

)
(xk)

}m
k=1 , namely,

{(
g̃q ∗ f

)
(xk) + nk

}m
k=1, where, by Theorem 3,

the perturbations nk are bounded, for instance, by

|nk| ≤ 3
‖f‖∞
Nr ∀ k = 1, . . . ,m.

With this in mind, let us apply lemma 12 to the function g̃q ∗ f . We have the following

lemma.

Lemma 13. Let s ∈ [2, N ]∩N, and n ∈ Cm be the vector containing the total errors incurred

by approximating g̃q ∗ f via a truncated version of (4.4), as per Theorem 3. There exists

a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72 of [4], when given

access to the corrupted samples
{(
g̃q ∗ f

)
(xk) + nk

}m
k=1 , will identify a subset S ⊆ B which

is guaranteed to contain all ω ∈ B with

∣∣∣(̂̃gq ∗ f)
ω

∣∣∣ > 4

(
1

s
·
∥∥∥∥̂̃gq ∗ f − (̂̃gq ∗ f)opt

s

∥∥∥∥
1

+ 3 ‖f‖∞N−r
)

=: 4δ̃.

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated Fourier series

coefficient estimate zω ∈ C which is guaranteed to have

∣∣∣(̂̃gq ∗ f)
ω
− zω

∣∣∣ ≤ √2δ̃.

Next, we need to guarantee that the estimates of ̂̃gq ∗ f returned by Algorithm 3 of [4]

will yield good estimates of f̂ itself. We have the following.

Lemma 14. Let s ∈ [2, N ]∩N. Given a 2π−periodic function f : [−π, π]→ C, the periodic
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Gaussian g, and any of its modulations g̃q (x) = e
−iqxg (x), one has

∥∥∥∥̂̃gq ∗ f − (̂̃gq ∗ f)opt

s

∥∥∥∥
1
≤ 1

2

∥∥∥f̂ − f̂opt
s

∥∥∥
1
.

Proof. Recall the definition of Ropt
s

(
f̂
)
as the subset of B containing the s most energetic

frequencies of f̂ , and observe that

1

2

∥∥∥f̂ − f̂opt
s

∥∥∥
1

=
1

2

∑
ω∈B\Ropt

s

(
f̂
)
∣∣∣f̂ω∣∣∣ ≥ ∑

ω∈B\Ropt
s

(
f̂
)
∣∣∣( ̂̃gq)

ω
· f̂ω
∣∣∣

since, by lemma 4, ĝω < 1
2 for all ω, and consequently,

( ̂̃gq)
ω

= ĝω+q < 1
2 for all ω.

Moreover,

∑
ω∈B\Ropt

s

(
f̂
)
∣∣∣( ̂̃gq)

ω
· f̂ω
∣∣∣ ≥ ∑

ω∈B\Ropt
s

(
̂̃gq∗f

)
∣∣∣( ̂̃gq)

ω
· f̂ω
∣∣∣ =

∥∥∥∥̂̃gq ∗ f − (̂̃gq ∗ f)opt

s

∥∥∥∥
1
.

Let us combine the guarantees above into the following lemma.

Lemma 15. Let s ∈ [2, N ]∩N, and n ∈ Cm be the vector containing the total errors incurred

by approximating g̃q ∗ f via a truncated version of (4.4), as per Theorem 3. There exists

a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72 of [4], when given

access to the corrupted samples
{(
g̃q ∗ f

)
(xk) + nk

}m
k=1 , will identify a subset S ⊆ B which

is guaranteed to contain all ω ∈ B with

∣∣∣(̂̃gq ∗ f)
ω

∣∣∣ > 4

(
1

2s
·
∥∥∥f̂ − f̂opt

s

∥∥∥
1

+ 3 ‖f‖∞N−r
)

=: 4δ.

51



Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated Fourier series

coefficient estimate zω ∈ C which is guaranteed to have

∣∣∣( ̂̃gq)
ω
· f̂ω − zω

∣∣∣ ≤ √2δ.

The lemma above implies that for any choice of q in line 4 of Algorithm 1, we are

guaranteed to find all ω ∈
[
q −

⌈
N

α
√

lnN

⌉
, q +

⌈
N

α
√

lnN

⌉)
∩B with

∣∣∣f̂ω∣∣∣ > max
ω̃

4δ( ̂̃gq)
ω̃

≥ 4δ

τ

where α and τ are as defined in lemma 5. Moreover, the Fourier series coefficient estimates

zω returned by Algorithm 3 will satisfy

∣∣∣∣∣∣f̂ω − zω( ̂̃gq)
ω

∣∣∣∣∣∣ ≤ max
ω̃

√
2δ( ̂̃gq)
ω̃

≤
√

2δ

τ
.

Following Theorem 3, which guarantees a decay of N−r in the total approximation error,

let us set β = 6
√
r for 1 ≤ r ≤ N

36 . Recall from lemma 3 the choice of β ∈
(

0, α

√
ln(1/τ

√
2π)

2

]
where τ is to be chosen from

(
0, 1√

2π

)
. Thus, we must choose α ∈

[
1, N√

lnN

]
so that

6
√
r ≤ α

√
ln
(
1/τ
√

2π
)

2
⇐⇒ α ≥ 6

√
2r

ln
(
1/τ
√

2π
) .

We may remove the dependence on τ simply by setting, e.g., τ = 1
3 . Then α = O (

√
r).

We are now ready to state the recovery guarantee of Algorithm 1 and its operation

count.
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Theorem 5. Let N ∈ N, s ∈ [2, N ] ∩ N, and 1 ≤ r ≤ N
36 as in Theorem 3. If Algorithm 3

of [4] is used in Algorithm 1 then Algorithm 1 will always deterministically identify a subset

S ⊆ B and a sparse vector v|S ∈ CN satisfying

∥∥∥f̂ − v|S
∥∥∥

2
≤
∥∥∥f̂ − f̂

opt
s

∥∥∥
2

+
33√
s
·
∥∥∥f̂ − f̂

opt
s

∥∥∥
1

+ 198
√
s ‖f‖∞N−r. (5.8)

Algorithm 1’s operation count is then

O

s2 · r
3
2 · log

11
2 (N)

log(s)

 .

If returning a sparse vector v|S ∈ CN that satisfies (5.8) with probability at least (1−p) ∈

[2/3, 1) is sufficient, a Monte Carlo variant of the deterministic Algorithm 3 in [4] may be

used in line 9 of Algorithm 1. In this case Algorithm 1’s operation count is

O
(
s · r

3
2 · log

9
2 (N) · log

(
N

p

))
.

Proof. Redefine δ in the proof of Theorem 7 in [4] as

δ =
1

τ

(
1

2s
·
∥∥∥f̂ − f̂opt

s

∥∥∥
1

+ 3 ‖f‖∞N−r
)

= 3

(
1

2s
·
∥∥∥f̂ − f̂

opt
s

∥∥∥
1

+ 3 ‖f‖∞N−r
)
,

and observe that any ω ∈ B =
[
−
⌈
N
2

⌉
,
⌊
N
2

⌋)
∩Z that is reconstructed by Algorithm 1 will

have a Fourier series coefficient estimate vω that satisfies

∣∣∣vω − f̂ω

∣∣∣ =
∣∣∣vω − f̂ω∣∣∣ ≤ √2 · δ.
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We can thus bound the approximation error by

∥∥∥f̂ − v|S
∥∥∥

2
≤
∥∥∥f̂ − f̂ |S

∥∥∥
2

+
∥∥∥f̂ |S − v|S

∥∥∥
2
≤
∥∥∥f̂ − f̂ |S

∥∥∥
2

+ 2
√
s · δ

=

√√√√√∥∥∥f̂ − f̂
opt
s

∥∥∥2

2
+

∑
ω∈Ropt

s

(
f̂
)
\S

∣∣∣f̂ω∣∣∣2 − ∑
ω̃∈S\Ropt

s

(
f̂
)
∣∣∣f̂ω̃∣∣∣2 + 2

√
s · δ.

(5.9)

In order to make additional progress on (5.9) we must consider the possible magnitudes

of f̂ entries at indices in S\Ropt
s

(
f̂
)

and R
opt
s

(
f̂
)
\S. Careful analysis (in line with the

techniques employed in the proof of Theorem 7 of [4]) indicates that

∑
ω∈Ropt

s

(
f̂
)
\S

∣∣∣f̂ω∣∣∣2 − ∑
ω̃∈S\Ropt

s

(
f̂
)
∣∣∣f̂ω̃∣∣∣2 ≤ s ·

(
8
√

2 + 8
)2
· δ2.

Therefore, in the worst possible case equation (5.9) will remain bounded by

∥∥∥f̂ − v|S
∥∥∥

2
≤
√∥∥∥f̂ − f̂

opt
s

∥∥∥2

2
+ s ·

(
8
√

2 + 8
)2
· δ2 + 2

√
s · δ ≤

∥∥∥f̂ − f̂
opt
s

∥∥∥
2

+ 22
√
s · δ.

The error bound stated in (5.8) follows.

The runtimes follow by observing that c2 = O
(
α · log

1
2 (N)

)
= O

(
r

1
2 · log

1
2 (N)

)
as

chosen in line 2 of Algorithm 1, and for every choise of q in line 4 of Algorithm 1, all of

the evaluations
{

(g̃q ∗ f)(xk)
}m
k=1 can be approximated very accurately in just O(mr logN)-

time, where the number of samples m is on the orders described in Theorem 6.

We are now ready to empirically evaluate Algorithm 1 with several different SFT algo-

rithms A used in its line 9.
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Chapter 6

Numerical Experiment

In this section we evaluate the performance of three new discrete SFT Algorithms resulting

from Algorithm 1: DMSFT-4, DMSFT-6,1 and CLW-DSFT.2 All of them were developed

by utilizing different SFT algorithms in line 9 of Algorithm 1. Here DMSFT stands for the

Discrete Michigan State Fourier Transform algorithm. Both DMSFT-4 and DMSFT-6 are

implementations of Algorithm 1 that use a randomized version of the SFT algorithm GFFT

[8] in their line 9.3 The only difference between DMSFT-4 and DMSFT-6 is how accurately

each one estimates the convolution in line 7 of Algorithm 1: for DMSFT-4 we use κ = 4 in

the partial discrete convolution in lemma 11 when approximating g̃q ∗f at each xk, while for

DMSFT-6 we always use κ = 6. The CLW-DSFT stands for the Christlieb Lawlor Wang

Discrete Sparse Fourier Transform algorithm. It is an implementation of Algorithm 1 that

uses the SFT developed in [6] in its line 9, and κ varying between 12 and 20 for its line

7 convolution estimates (depending on each input vector’s Fourier sparsity, etc.). All of

DMSFT-4, DMSFT-6 and CLW-DSFT were implemented in C++ in order to empirically

evaluate their run time and noise robustness characteristics.

We also compare these new implementations’ runtime and robustness characteristics

1The code for both DMSFT variants is available at https://sourceforge.net/projects/aafftannarborfa/.
2The CLW-DSFT code is available at www.math.msu.edu/ markiwen/Code.html.
3Code for GFFT is also available at www.math.msu.edu/ markiwen/Code.html.
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with FFTW 3.3.44 and sFFT 2.05. FFTW is the highly optimized FFT implementation

which runs in O(N logN)-time for input vectors of length N . All the standard discrete

Fourier Transforms in the numerical experiments are performed using FFTW 3.3.4 with

FFTW_MEASURE plan. The sFFT 2.0 is a randomized discrete sparse Fourier Transform

algorithm written in C++ which is both stable and robust to noise. It was developed by

Indyk et al. in [23]. Note that DMSFT-4, DMSFT-6, CLW-DSFT, and sFFT 2.0 are all

randomized algorithms designed to approximate discrete DFTs that are approximately s-

sparse. This means that all of them take both sparsity s and size N of the DFT’s f̂ ∈ C
N

they aim to recover as parameters. In contrast, FFTW can not utilize existing sparsity to

its advantage. Finally, all experiments are run on a Linux CentOS machine with 2.50GHz

CPU and 16 GB of RAM.

6.1 Experiment Setup

For the execution time experiments each trial input vector f ∈ CN was generated as follows:

First s frequencies were independently selected uniformly at random from [0, N) ∩ Z, and

then each of these frequencies was assigned a uniform random phase with magnitude 1 as

its Fourier coefficient. The remaining frequencies’ Fourier coefficients were then set to zero

to form f̂ ∈ CN . Finally, the trial input vector f was then formed via an inverse DFT.

For each pair of s and N the parameters in each randomized algorithm were chosen so

that the probability of correctly recovering all s energetic frequencies was at least 0.9 per

trial input. Every data point in a figure below corresponds to an average over 100 runs

on 100 different trial input vectors of this kind. It is worth mentioning that the parameter

4This code is available at http://www.fftw.org/
5This code is available at https://groups.csail.mit.edu/netmit/sFFT/
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Figure 6.1: Runtime comparison at sparsity (s) Fixed at 50

tuning process for DMSFT-4 and DMSFT-6 requires significantly less effort than for both

CLW-DSFT and sFFT 2.0 since the DMSFT variants only have two parameters (whose

default values are generally near-optimal).

6.2 Runtime as Input Vector Size Varies

In Figure 6.1 we fixed the sparsity to s = 50 and ran numerical experiments on 8 different

input vector lengths N : 216, 218, ..., 230. We then plotted the running time (averaged over

100 runs) for DMSFT-4, DMSFT-6, CLW-DSFT, sFFT 2.0, and FFTW.

As expected, the runtime slope of all the SFT algorithms (i.e. DMSFT-4, DMSFT-6,

CLW-DSFT, and sFFT 2.0) is less than the slope of FFTW as N increases. Although FFTW

is fastest for vectors of small size, it becomes the slowest algorithm when the vector size N

is greater than 220. Among the randomized algorithms, sFFT 2.0 is the fastest one when

N is less than 222, but DMSFT-4, DMSFT-6, and CLW-DSFT all outperform sFFT 2.0

with respect to runtime when the input vector’s sizes are large enough. The CLW-DSFT

implementation becomes faster than sFFT 2.0 when N is approximately 221 while DMSFT-4
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Figure 6.2: Runtime comparison at Bandwidth (N) Fixed at 226

and DMSFT-6 have better runtime performance than sFFT 2.0 when N is greater than 223.

6.3 Runtime as Sparsity Varies

In Figure 6.2 we fix the input vector lengths to N = 226 and run the numerical experiments

on 7 different values of sparsity s: 50, 100, 200, 400, 1000, 2000, and 4000. As expected, the

FFTW’s runtime is constant as we increase the sparsity. The runtimes of DMSFT-4, CLW-

DSFT, and sFFT 2.0 are all essentially linear in s. Here DMSFT-6 has been excluded for ease

of viewing/reference – its runtimes lie directly above those of DMSFT-4 when included in

the plot. Looking at Figure 2 we can see the CLW-DSFT’s runtime increases more rapidly

with s than that of DMSFT-4 and sFFT 2.0. The runtime of CLW-DSFT becomes the

slowest one when sparsity is around 1000. DMSFT-4 and sFFT 2.0 have approximately the

same runtime slope as s increases, and they both have good performance when the sparsity

is large. However, DMSFT-4 maintains consistently better runtime performance than sFFT

2.0 for all sparsity values, and is the only algorithm in the plot that still faster than FFTW
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Figure 6.3: Robustness to Noise (bandwidth (N) = 222, sparsity (s) = 50).

when the sparsity is 4000. Indeed, when the sparsity is 4000 the average runtime of DMSFT-

4 is 2.68s and the average runtime of DMSFT-6 is 2.9s. Both of them remain faster than

FFTW (3.47s) and sFFT 2.0 (3.96s) for this large sparsity (though only DMSFT-4 has been

included in the plot above).

6.4 Robustness to Noise

In our final set of experiments we test the noise robustness of DMSFT-4, DMSFT-6, CLW-

DSFT, sFFT 2.0, and FFTW for different levels of Gaussian noise. Here the size of each

input vector is N = 222 and sparsity is fixed at s = 50. The test signals are then generated

as before, except that Gaussian noise is added to f after it is constructed. More specifically,

we first generate f and then set f = f + n where each entry of n, nj , is an i.i.d. mean 0

random complex Gaussian value. The noise vector n is then rescaled to achieve each desired

signal-to-noise ratio (SNR) considered in the experiments.6

6The SNR is defined as SNR = 20 log
‖f‖2
‖n‖2

, where f is the length N input vector and n is the length N

noise vector.
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Recall that the the randomized algorithms compared herein (DMSFT-4, DMSFT-6,

CLW-DSFT, and sFFT 2.0) are all tuned to guarantee exact recovery of s-sparse functions

with probability at least 0.9 in all experiments. For our noise robustness experiments this

ensures that the correct frequency support, S, is found for at least 90 of the 100 trial signals

used to generate each point plotted in Figure 6.3. We use average L1 error to measure the

noise robustness of each algorithm for each of these at least 90 trial runs. The average L1

error is defined as

Average L1 Error =
1

s

∑
ω∈S

∣∣f̂ω − zω∣∣
where S is the true frequency support of the input vector f , f̂ω are the true input Fourier

coefficients for all frequencies ω ∈ S, and zω are their recovered approximations from each

algorithm. Figure 6.3 graphs the averaged average L1 error over the at least 90 trial signals

where each method correctly identified S.

It can be seen in Figure 6.3 that DMSFT-4, DMSFT-6, sFFT 2.0, and FFTW are all

robust to noise. As expected, FFTW has the best performance in this test. DMSFT-4 and

DMSFT-6 are both more robust to noise when compared to sFFT 2.0. As for CLW-DSFT,

it cannot guarantee a 0.9 probability of correctly recovering S when the SNR is less than

40 and so is not plotted for those SNR values. This is due to the base energetic frequency

identification methods of [10, 6] being inherently ill conditioned, though the CLW-DSFT

results look better when compared to the true f̂ with respect to, e.g., earth mover’s distance.

Frequencies are often estimated incorrectly by CLW-DSFT at higher noise levels, but when

they are they are usually at least close enough to the true frequencies to be informative.
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Chapter 7

Sparse FFT for Functions with

Structured Fourier Sparsity

In this chapter, we consider the problem of deterministically recovering a special type of

periodic function f : [0, 2π] → C as rapidly as absolutely possible via sampling. More

specifically, we focus on a specific set of functions f whose dominant Fourier series coefficients

are all associated with frequencies contained in a small number, n, of unknown structured

support sets S1, ..., Sn ⊂ (−dN/2e, bN/2c]∩Z, where N ∈ N is very large. In such cases the

function f will have the form

f(x) =
n∑
j=1

∑
ω∈Sj

cωe
iωx (7.1)

where each unknown Sj has simplifying structure. (e.g., has |x − y| < B � N for all

x, y ∈ Sj). We say that the function in 7.1 is (n,B)−structured in Fourier space. From (7.1)

one can see that each such f is approximately Bn−sparse. The Algorithm 1 in [30] is based

on the best unstructured SFT algorithm in [4, 2]. As a result, it can recover any Bn-sparse

function f in B2n2 logO(1)N−time. In this chapter, we focus on the results of the numerical

experiments. We show that the Algorithm 1 in [30] is the best known deterministic SFT

method for the recovery of polynomially structured sparse input functions by comparing its
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runtime and robustness characteristics with several other DFT/SFT algorithms. We point

the reader to [30] for more theoretical details.

7.1 Numerical Experiments

In this section, whenever we mention the structured SFT algorithm we refer to the Algorithm

1 in [30]. Here we evaluate the performance of two different variants of the structured SFT

algorithm including (i) the deterministic variant for block sparse functions described in sec-

tion 4.2 of [30] (referred to as the FourierAlgorithm for Structured sparsiTy (FAST) below),

and (ii) a randomized implementation of the structured SFT algorithm which only utilizes

a small random subset of the hashing primes used by FAST for each choice of its param-

eters (referred to as the Fourier Algorithm for Structured sparsiTy with Randomization

(FASTR) below). Both of these C++ implementations are publicly available 1. We also

compare these implementations’ runtime and robustness with GFFT2, CLW-SFT, FFTW

3.3.43 and sFFT 2.04.

Note that FAST and FASTR are both designed to approximate functions that are

(n,B)−block sparse in Fourier space. This means that both FAST and FASTR take up-

per bounds on the number of blocks, n, and length of each block, B, present in the spectrum

of the functions they aim to recover as parameters. In contrast, GFFT (a deterministic sparse

Fourier transform [4]), CLW-SFT (a multiscale sub-linear time Fourier algorithm developed

by Andrew Christlieb, David Lawlor and Yang Wang[6]) and SFFT 2.0 (a randomized noise

robust sparse Fourier transform [23]) only require an upper bound on the effective sparsity,

1http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software
2http://users.math.msu.edu/users/markiwen/Code.html
3http://www.fftw.org/
4https://groups.csail.mit.edu/netmit/sFFT/
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s, of the function’s Fourier coefficients. Herein s is always set so that s = Bn for these

methods. Finally, FFTW is a highly optimized and publicly available implementation of

the traditional FFT algorithm which runs in O(N log N)-time for input vectors of length N.

All the FFTW results below were obtained using FFTW 3.3.4 with its FFTW_MEASURE

plan.

For the runtime experiments below the trial signals were formed by choosing sets of

frequencies with (n,B)−block sparsity uniformly at random from (−dN/2e, bN/2c]∩Z. Each

frequency in this set was then assigned a magnitude 1 Fourier coefficient with a uniformly

random phase. The remaining frequencies were all set to zero. Every data point in a figure

below corresponds to an average over 100 trial runs on 100 different trial signals of this kind.

For different n, B and N , the parameters in each randomized algorithm (i.e. FASTR and

sFFT 2.0) were chosen so that the probability of correctly recovering an (n,B)−block sparse

function was at least 0.9 for each run. Finally, all experiments were run on a Linux CentOS

machine with 2.50GHz CPU and 16 GB of RAM.

7.1.1 Runtime as Block Length B Varies: N = 226, n = 2 and n = 3

In Figure 7.1a we fix the number of blocks to n = 2 and the bandwidth to N = 226,

and then perform numerical experiments for 10 different block lengths B = 22, 23, ..., 211.

We then plot the runtime (averaged over 100 trial runs) for FAST, FASTR, GFFT, CLW-

SFT, sFFT 2.0 and FFTW. As expected, the runtime of FFTW is constant with increasing

sparsity. The runtimes of all the sparse Fourier transform algorithms other than GFFT

are approximately linear in B, and they have similar slopes. Figure 7.1a demonstrates that

allowing a small probability of incorrect recovery always lets the randomized algorithms

(FASTR and sFFT 2.0) outperform the deterministic algorithms with respect to runtime.
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(a) Runtime comparison at bandwidth N =

226 and number of blocks n = 2

(b) Runtime comparison at bandwidth N =

226 and number of blocks n = 3

Figure 7.1: Runtime plots for several algorithms and implementations of sparse Fourier
Transform under different setting

Among the deterministic algorithms, FAST is always faster than GFFT, and only becomes

slower than FFTW when the value of B is greater than 256. The runtimes of both FASTR

and sFFT 2.0 are still comparable with the one of FFTW when the block length B is 2048.

Comparing with sFFT 2.0, FASTR has better runtime performance on these block sparse

functions, and is the only algorithm that is still faster than FFTW when B = 2048. For

CLW-SFT, it has best runtime performance when the sparsity is less than 64, however, its

runtime increasing rapidly with the increasing of sparsity s and it becomes slower than FAST

when the sparsity is 4096. In Figure 7.1b we use the same settings of N and B as in the

previous experiment and increase the number of blocks n from 2 to 3. With these settings

the largest sparsity s = Bn increases from 4048 (2 · 211) to 6144 (3 · 211). The respective

results for the methods are similar in this plot.
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Figure 7.2: Runtime comparison for n = 2 blocks of length B = 64.

7.1.2 Runtime as Signal Size N Varies: n = 2 and B = 64

In Figure 7.2 we fix the number of blocks n = 2 and block length B = 64, then test the

performance of the different algorithms with various bandwidths N . It can be seen in Figure

7.2 that FFTW is the fastest deterministic algorithm for small bandwidth values. However,

the runtime of FFTW becomes slower than the one of FAST when the bandwidthN is greater

than 224. GFFT is the slowest deterministic algorithm for this sparsity level for all plotted

N . Comparing randomized SFT algorithms, FASTR always performs better than sFFT 2.0

when the bandwidth is greater than 218. The CLW-SFT has almost the same performance

with FASTR, which is amazing since the CLW-SFT only needs sparsity information but does

not have to know the structure of signal in Fourier space.

7.1.3 Runtime as Number of Blocks n Varies: N = 226 and B = 32

In Figure 7.3, we fix the bandwidth N = 226 and length of block B = 32, then vary the

number of blocks n from 1 to 10. Looking at Figure 7.3 we can see the deterministic sparse
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Figure 7.3: Runtime comparison for bandwidth N = 226 and block length B = 32.

FFTs, GFFT and FAST both have runtimes that increase more rapidly with n than those

of their randomized competitors. Among the three deterministic algorithms, FAST has the

best performance when the number of blocks is smaller than 6. Similar to the previous

experiments, FFTW becomes the fastest deterministic algorithm when the sparsity s = Bn

gets large enough (greater than 224 in this experiment). The two randomized algorithms

are both faster than FFTW by an order of magnitude when the number of blocks is 10.

Similarly, FASTR is always faster than sFFT 2.0 for the examined value of N. Finally, the

CLW-SFT has the best runtime performance in this numerical experiment. Actually, from

Figure 7.3, Figure 7.1a, Figure 7.1b and Figure 7.2 we can see that the CLW-SFT almost

always has the advantage (in the sense of runtime) when the sparsity s of the signal is small,

e.g. couple hundreds. However, if the sparsity s is large and one has the prior knowledge of

the structure of the signal in Fourier space, then FASTR is the best (randomized) algorithm

comparing with all its competitors.
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7.1.4 Robustness to Noise

To test the robustness of the methods to noise we add Gaussian noise to each of the signal

samples utilized in each method and then measure the contamination of the recovered Fourier

series coefficients for (n,B)−block sparse functions f : [0, 2π]→ C with bandwidth N = 222,

number of blocks n = 3, and block length B = 24. More specifically, each method considered

herein utilizes a set of samples from f given by f = (f(xj))
m−1
j=0 for some x0, ..., xm−1 ∈ [0, 2π)

with m ≤ N . For the experiments in this section we instead provide each algorithm with

noisy function evaluations of the form (f(xj) + nj)
m−1
j=0 , where each nj ∈ C is a complex

Gaussian random variable with mean 0. The nj are then rescaled so that the total additive

noise n = (nj)
m−1
j=0 achieves the signal-to-noise ratios (SNRs) considered in Figure 7.4. 5

Recall that the two randomized algorithms compared herein (SFT 2.0 and FASTR) are

both tuned to guarantee exact recover of block sparse functions with probability at least 0.9 in

all experiments. For our noise robustness experiments this ensures that the correct frequency

support, S, is found for at least 90 of the 100 trial signals used to generate each point

plotted in Figure 7.4. All the other (deterministic) methods always find this correct support

for all noise levels considered herein after sorting their output Fourier coefficient estimates

by magnitude. Figure 7.4 plots the average `1− error over the true Fourier coefficients for

frequencies in the correct frequency support S of each trial signal, averaged over the at least

90 trial runs at each point for which each sparse Fourier transform correctly identified S.

More specifically, it graphs

Average `1 Error =
1

nB

∑
ω∈S

∣∣cω − xω∣∣ (7.2)

5The SNR is defined as SNR = 20 log
‖f‖2
‖n‖2

, where f and n are as given above.
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Figure 7.4: Robustness to Noise (bandwidth (N) = 222, sparsity (s) = 50).

where cω are the true Fourier coefficients for frequencies ω ∈ S, and xω are their recovered

approximations, averaged over the at least 90 trial signals where each method correctly

identified S.

Looking at Figure 7.4 one can see that all of the Fourier transform algorithms in our

experiments are robust to noise. Overall, however, the deterministic algorithms (FAST,

GFFT and FFTW) are more robust than randomized algorithms (FASTR and sFFT 2.0).

As expected, FFTW is the most robust algorithm in this experiment, followed closely by

GFFT. For the randomized algorithms, FASTR is more robust than sFFT 2.0. As for CLW-

SFT, it cannot guarantee a 0.9 probability of correctly recovering S when the SNR is less

than 20 and so is not plotted for those SNR values. This is because the CLW-SFT was not

designed to guarantee to find the correct set of frequencies, but instead, the algorithm aim to

find the frequency set that can explain the signal best. This makes the CLW-SFT results look

better when compared to the true f̂ with respect to, e.g., earth mover’s distance. Frequencies

have a chance to be estimated incorrectly by CLW-SFT at higher noise levels, but when they

are they are usually at least close enough to the true frequencies to be informative.
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Chapter 8

Conclusion

This thesis contains two part. In the first part (from Chapter 3 to Chapter 6) we present

a general method that can convert any SFT algorithm into a fully discrete SFT algorithm.

More specifically, let A be a sublinear-time sparse FFT algorithm which utilizes unequally

spaced samples from a given periodic function f : [−π, π] → C in order to rapidly approx-

imate its sequence of Fourier series coefficients f̂ ∈ `2. In this thesis, we propose a generic

method of transforming any such algorithm A into a sublinear-time sparse DFT algorithm

which rapidly approximates f̂ from a given input vector f ∈ C
N . As a result, we can

construct several new sublinear-time sparse DFT algorithms from existing sparse Fourier

algorithms which utilize unequally spaced function samples [8, 4, 6, 10]. The best of these

new algorithms is shown to outperform existing discrete sparse Fourier transform methods

on both runtime and noise robustness for large vector lengths N . We also present several new

theoretical discrete sparse FFT robust recovery guarantees. These include the first known

theoretical guarantees for entirely deterministic and discrete sparse DFT algorithms which

hold for arbitrary input vectors f ∈ CN . It is worth to mention that the filter function and

fast discrete convolution method described in Chapter 4 can be used in any applications

involve rapid evaluation for the value of a convolution function. We want to emphasize here

that though we choose to use the periodic Gaussian function as the filter function in this

thesis, it is not the only possible choice. Actually, one of the possible future works is to find
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more filter functions that can be used in our frame. Besides that, one could also try to apply

our method to higher dimensional algorithm [54], and structured SFT algorithm [30].

Then, in the second part (Chapter 7) we demonstrate the results of numerical experiments

of the deterministic SFT method we developed in [30]. By comparing with several other

DFT/SFT algorithms (FFTW, sFFT 2.0, GFFT), we show that the algorithm in [30] is the

fastest known deterministic SFT method for the recovery of polynomially structured sparse

input functions.
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Appendix A

Proof of Lemmas 3, 4 and 5

We will restate each lemma before its proof for ease of reference.

Lemma 16 (Restatement of Lemma 3). The 2π−periodic Gaussian g : [−π, π]→ R+ has

g (x) ≤
(

3

c1
+

1√
2π

)
e

− x2

2c21

for all x ∈ [−π, π].

Proof. Observe that

c1g (x) =
∞∑

n=−∞
e

− (x−2nπ)2

2c21 = e

− x2

2c21 + e

− (x−2π)2

2c21 + e

− (x+2π)2

2c21 +
∑
|n|≥2

e

− (x−2nπ)2

2c21

≤ 3e
− x2

2c21 +

ˆ ∞
1

e

− (x−2nπ)2

2c21 dn+

ˆ ∞
1

e

− (x+2nπ)2

2c21 dn

holds since the series above have monotonically decreasing positive terms, and x ∈ [−π, π].

Now, if x ∈ [0, π] and n ≥ 1, one has

e

− (2n+1)2π2

2c21 ≤ e

− (x+2nπ)2

2c21 ≤ e

−4n2π2

2c21 ≤ e

− (x−2nπ)2

2c21 ≤ e

− (2n−1)2π2

2c21 ,
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which yields

c1g (x) ≤ 3e
− x2

2c21 + 2

ˆ ∞
1

e

−π
2(2n−1)2

2c21 dn

= 3e
− x2

2c21 +
1

2

ˆ ∞
−∞

e

−π
2m2

2c21 dm−
ˆ 1

−1
e

−π
2m2

2c21 dm


= 3e

− x2

2c21 +
c1√
2π
− 1

2

ˆ 1

−1
e

−π
2m2

2c21 dm.

Using lemma 9 to bound the last integral we can now get that

c1g (x) ≤ 3e
− x2

2c21 +
c1√
2π
− 1

2

√
2c1
π

√√√√√√π

1− e

− π2

2c21



= 3e
− x2

2c21 +
c1√
2π

1−

√√√√√√
1− e

− π2

2c21




≤ 3e
− x2

2c21 +
c1√
2π

e

− π
2

2c21

≤ 3e
− x2

2c21 +
c1√
2π

e

− x2

2c21 .

Recalling now that g is even we can see that this inequality will also hold for all x ∈ [−π, 0]

as well.

Lemma 17 (Restatement of Lemma 4). The 2π−periodic Gaussian g : [−π, π]→ R+ has

ĝω =
1√
2π

e
−
c21ω

2

2

for all ω ∈ Z. Thus, ĝ = {ĝω}ω∈Z ∈ `2 decreases monotonically as |ω| increases, and also
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has ‖ĝ‖∞ = 1√
2π

.

Proof. Starting with the definition of the Fourier transform, we calculate

ĝω =
1

c1

∞∑
n=−∞

1

2π

ˆ π

−π
e

− (x−2nπ)2

2c21 e
−iωx dx

=
1

c1

∞∑
n=−∞

1

2π

ˆ π

−π
e

− (x−2nπ)2

2c21 e
−iω(x−2nπ) dx

=
1

c1

∞∑
n=−∞

1

2π

ˆ π−2nπ

−π−2nπ
e

− u2

2c21 e−iωu du

=
1

2πc1

ˆ ∞
−∞

e

− u2

2c21 e−iωu du

=
c1
√

2π

2πc1
e
−
c21ω

2

2

=
e
−
c21ω

2

2
√

2π
.

The last two assertions now follow easily.

Lemma 18 (Restatement of Lemma 5). Choose any τ ∈
(

0, 1√
2π

)
, α ∈

[
1, N√

lnN

]
, and

β ∈
(

0, α

√
ln(1/τ

√
2π)

2

]
. Let c1 = β

√
lnN
N in the definition of the periodic Gaussian g from

(4.3). Then ĝω ∈
[
τ, 1√

2π

]
for all ω ∈ Z with |ω| ≤

⌈
N

α
√

lnN

⌉
.

Proof. By Lemma 4 above it suffices to show that

1√
2π

e
−
c21

(⌈
N

α
√

lnN

⌉)2

2 ≥ τ,
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which holds if and only if

c21

(⌈
N

α
√

lnN

⌉)2

≤ 2 ln

(
1

τ
√

2π

)

c1 ≤

√
2 ln

(
1

τ
√

2π

)
⌈

N
α
√

lnN

⌉ .

Thus, it is enough to have

c1 ≤

√
2 ln

(
1

τ
√

2π

)
N

α
√

lnN
+ 1

=

α

√
2 ln

(
1

τ
√

2π

)
lnN

N + α
√

lnN
,

or,

c1 =
β
√

lnN

N
≤
α

√
2 ln

(
1

τ
√

2π

)
lnN

2N
≤
α

√
2 ln

(
1

τ
√

2π

)
lnN

N + α
√

lnN
.

This, in turn, is guaranteed by our choice of β.
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Appendix B

Proof of Lemma 12 and Theorem 6

We will restate lemma 12 before it’s proof for ease of reference.

Lemma 19 (Restatement of Lemma 12). Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and n ∈ Cm

be an arbitrary noise vector. There exists a set of m points {xk}mk=1 ⊂ [−π, π] such that

Algorithm 3 on page 72 of [4], when given access to the corrupted samples {f(xk) + nk}mk=1,

will identify a subset S ⊆ B which is guaranteed to contain all ω ∈ B with

∣∣∣f̂ω∣∣∣ > 4

ε ·
∥∥∥f̂ − f̂

opt
(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 . (B.1)

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associate Fourier series

coefficient estimate zω ∈ C which is guaranteed to have

∣∣∣f̂ω − zω∣∣∣ ≤ √2

ε ·
∥∥∥f̂ − f̂

opt
(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 . (B.2)

Both the number of required samples, m, and Algorithm 3’s operation count are

O

(
s2 · log4(N)

log
(s
ε

)
· ε2

)
. (B.3)

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, the Monte

Carlo variant of Algorithm 3 referred to by Corollary 4 on page 74 of [4] may be used. This
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Monte Carlo variant reads only a randomly chosen subset of the noisy samples utilized by

the deterministic algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs a subset S ⊆ B which is guaranteed to simultaneously satisfy both of the

following properties with probability at least 1− δ:

(i) S will contain all ω ∈ B satisfying (B.1), and

(ii) all ω ∈ S will have an associated coefficient estimate zω ∈ C satisfying (B.2).

Finally, both this Monte Carlo variant’s number of required samples, m̃, as well as its oper-

ation count will also always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (B.4)

Proof. The proof of this lemma involves a somewhat tedious and uninspired series of minor

modifications to various results from [4]. In what follows we will outline the portions of that

paper which need to be changed in order to obtain the stated lemma. Algorithm 3 on page

72 of [4] will provide the basis of our discussion.

In the first paragraph of our lemma we are provided with m-contaminated evaluations of

f , {f(xk) + nk}mk=1, at the set ofm points {xk}mk=1 ⊂ [−π, π] required by line 4 of Algorithm

1 on page 67 of [4]. These contaminated evaluations of f will then be used to approximate

the vector Gλ,K ψ̃A ∈ Cm in line 4 of Algorithm 3. More specifically, using (18) on page 67
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of [4] one can see that each
(
Gλ,K ψ̃A

)
j
∈ C is effectively computed via a DFT

(
Gλ,K ψ̃A

)
j

=
1

sj

sj−1∑
k=0

f

(
−π +

2πk

sj

)
e

−2πikhj
sj (B.5)

for some integers 0 ≤ hj < sj . Note that we are guaranteed to have noisy evaluations of f at

each of these points by assumption. That is, we have f
(
xj,k

)
+nj,k for all xj,k := −π+ 2πk

sj
,

k = 0, . . . , sj − 1.

We therefore approximate each
(
Gλ,K ψ̃A

)
j
via an approximate DFT as per (B.5) by

Ej :=
1

sj

sj−1∑
k=0

(
f
(
xj,k

)
+ nj,k

)
e

−2πikhj
sj .

One can now see that

∣∣∣∣Ej − (Gλ,K ψ̃A)j
∣∣∣∣ =

∣∣∣∣∣∣ 1

sj

sj−1∑
k=0

nj,ke

−2πikhj
sj

∣∣∣∣∣∣ ≤ 1

sj

sj−1∑
k=0

∣∣nj,k∣∣ ≤ ‖n‖∞ (B.6)

holds for all j. Every entry of both Es1 ,K ψ̃A and Gλ,K ψ̃A referred to in Algorithm 3 will

therefore be effectively replaced by its corresponding Ej estimate. Thus, the lemma we seek

to prove is essentially obtained by simply incorporating the additional error estimate (B.6)

into the analysis of Algorithm 3 in [4] wherever an Es1 ,K ψ̃A or Gλ,K ψ̃A currently appears.

To show that lines 6 – 14 of Algorithm 3 will identify all ω ∈ B satisfying (B.1) we can

adapt the proof of Lemma 6 on page 72 of [4]. Choose any ω ∈ B you like. Lemmas 3 and
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5 from [4] together with (B.6) above ensure that both

∣∣∣Ej − f̂ω∣∣∣ ≤ ∣∣∣∣Ej − (Gλ,K ψ̃A)j
∣∣∣∣+

∣∣∣∣(Gλ,K ψ̃A)j − f̂ω
∣∣∣∣

≤ ‖n‖∞ +
ε ·
∥∥∥f̂ − f̂

opt
(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
(B.7)

and

∣∣∣Ej′ − f̂ω∣∣∣ ≤ ∣∣∣∣Ej′ − (Es1 ,K ψ̃A)j′
∣∣∣∣+

∣∣∣∣(Es1 ,K ψ̃A)j′ − f̂ω
∣∣∣∣

≤ ‖n‖∞ +
ε ·
∥∥∥f̂ − f̂

opt
(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
(B.8)

hold for more than half of the j and j′-indexes that Algorithm 3 uses to approximate f̂ω.

The rest of the proof of Lemma 6 now follows exactly as in [4] after the δ at the top of page

73 is redefined to be δ :=
ε·
∥∥∥∥f̂−f̂opt

(s/ε)

∥∥∥∥
1

s +
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞, each

(
Gλ,K ψ̃A

)
j
entry is

replaced by Ej , and each
(
Es1 ,K ψ̃A

)
j′

entry is replaced by Ej′ .

Similarly, to show that lines 15 – 18 of Algorithm 3 will produce an estimate zω ∈ C

satisfying (B.2) for every ω ∈ S one can simply modify the first few lines of the proof

of Theorem 7 in Appendix F of [4]. In particular, one can redefine δ as above, replace

the appearance of each
(
Gλ,K ψ̃A

)
j
entry by Ej , and then use (B.7). The bounds on the

runtime follow from the last paragraph of the proof of Theorem 7 in Appendix F of [4] with

no required changes. To finish, we note that the second paragraph of the lemma above

follows from a completely analogous modification of the proof of Corollary 4 in Appendix G

of [4].
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Now we are ready to give the prove of Theorem 4.

Theorem 6 (Restatement of Theorem 4). Suppose f : [−π, π] → C has f̂ ∈ `1 ∩ `2. Let

s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and n ∈ Cm be an arbitrary noise vector. Then, there

exists a set of m points {xk}mk=1 ⊂ [−π, π] together with a simple deterministic algorithm

A : Cm → C4s such that A
(
{f(xk) + nk}mk=1

)
is always guaranteed to output (the nonzero

coefficients of) a degree ≤ N/2 trigonometric polynomial ys : [−π, π]→ C satisfying

‖f − ys‖2 ≤
∥∥∥f̂ − f̂

opt
s

∥∥∥
2

+
22ε ·

∥∥∥f̂ − f̂
opt
(s/ε)

∥∥∥
1√

s
+ 22
√
s
(∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

)
. (B.9)

Both the number of required samples, m, and the algorithm’s operation count are always

O

(
s2 · log4(N)

log
(s
ε

)
· ε2

)
. (B.10)

If succeeding with probability (1−δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, a Monte Carlo

variant of the deterministic algorithm may be used. This Monte Carlo variant reads only a

randomly chosen subset of the noisy samples utilized by the deterministic algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs (the nonzero coefficients of) a degree ≤ N/2 trigonometric polynomial,

ys : [−π, π] → C, that satisfies (B.9) with probability at least 1 − δ. Both its number of

required samples, m̃, as well as its operation count will always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (B.11)
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Proof. To get the first paragraph of Theorem 6 one can simply utilize the proof of Theorem 7

exactly as it is written in Appendix F of [4] after redefining δ as above, and then replacing the

appearance of each
(
Gλ,K ψ̃A

)
j
entry with its approximation Ej . Once this has been done,

equation (42) in the proof of Theorem 7 can then be taken as a consequence of lemma 12

above. In addition, all references to lemma 6 of [4] in the proof can then also be replaced

with appeals to lemma 12 above. To finish, the proof of Corollary 4 in Appendix G of [4] can

now be modified in a completely analogous fashion in order to prove the second paragraph

of Theorem 6.
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