
STATISTICAL MACHINE LEARNING THEORY AND METHODS FOR
HIGH-DIMENSIONAL LOW SAMPLE SIZE (HDLSS) PROBLEMS

By

Kaixu Yang

A DISSERTATION

Submitted to
Michigan State University

in partial ful�llment of the requirements
for the degree of

Statistics�Doctor of Philosophy

2020

ABSTRACT

STATISTICAL MACHINE LEARNING THEORY AND METHODS FOR
HIGH-DIMENSIONAL LOW SAMPLE SIZE (HDLSS) PROBLEMS

By

Kaixu Yang

High-dimensional low sample size (HDLSS) data analysis have been popular nowadays

in statistical machine learning �elds. Such applications involves a huge number of features

or variables, but sample size is limited due to reasons such as cost, ethnicity and etc. It

is important to �nd approaches to learn the underlying relationships via a small fraction

of data. In this dissertation, we study the statistical properties for some non-parametric

machine learning models that deal with these problems and apply these models to various

�elds for validation.

In Chapter 2, we study the generalized additive model in the high-dimensional set up

with a general link function that belong to the exponential family. We apply a two-step

approach to do variable selection and estimation: a group lasso step as an initial estima-

tor, then followed by a adaptive group lasso step to obtain �nal variables and estimations.

We show that under certain conditions, the two-step approach consistently selects the truly

nonzero variables and derived the estimation rate of convergence. Moreover, we show that

the tuning parameter that minimizes the generalized information criterion (GIC) has asymp-

totically minimum risk. Simulations in variable selection and estimation are given. Real data

examples including spam email and prostate cancer genetic data are also used to support

the theory. Moreover, we discussed the possibility of using a l0 norm penalty.

In Chapter 3, we study a shallow neural network model in the high-dimensional classi�-

cation set up. The sparse group lasso, also known as the lp,1 + l1 norm penalty, is applied

to obtain feature sparsity and a sparse network structure. Neural networks can be used to

approximate any continuous function with an arbitrary small approximation error given that

the number of hidden nodes is large enough, which is known as the universal approximation

theorem. Therefore, neural networks are used to model complicated relationships between

the response and predictors with huge interactions. We proved that under certain conditions,

the sparse group lasso penalized shallow neural network has classi�cation risk tend to the

Bayes risk, which is the optimal among all possible models. Real data examples including

prostate cancer genetic data, Alzheimer's disease (AD) magnetic resonance imaging (MRI)

data and autonomous driving data are used to support the theory. Moreover, we proposed a

l0 + l1 penalty and showed that the solution can be formulated as an mixed integer second

order cone optimization (MISOCO) problem.

In Chapter 4, we propose a stage-wise variable selection technique with deep neural

networks in the high-dimensional set up, named ensemble neural network selection (ENNS).

We apply an ensemble on the stage-wise neural network variable selection method to further

the falsely selected variables, which is shown to be able to consistently �lter out unwanted

variables and selected the truly nonzero variables under certain conditions. Moreover, we

proposed a second approach to further simplify the neural network structure by specifying the

desired percentage of nonzero parameters in each hidden layer. A type of coordinate descent

algorithm is proposed to obtain the solution from the second step. We also show that the two

step approach achieves universal consistency for both regression and classi�cation problems.

Simulations are studied to support various arguments. Real data examples including the

ribo�avin production data, the prostate cancer genetic data and a region of interest (ROI)

in MRI data are used to validate the method.

I dedicate this dissertation to my parents, Xiangyang Xu and Zhidong Yang, my wife,
Jun Liu, and many friends, who all have been supporting me during this hard time.

iv

ACKNOWLEDGMENTS

Here, I would like to express my deepest gratitude to my advisor Dr. Tapabrata Maiti for his

guidance towards my studies and researches. Dr. Maiti is extremely kind and knowledgeable.

He always provide constructive insights and suggestions that help me make great progress.

Without Dr. Maiti's guidance, I wouldn't be able to have such a profound understanding in

this gorgeous �eld.

I would also like to extend my sincere appreciation to my dissertation committee mem-

bers, Dr. Lyudmila Sakhanenko, Dr. Ping-shou Zhong and Dr. David Zhu. Their comments

and suggestions are extremely bene�cial for my research.

I am also grateful to the help I obtained from all the professors in the Department of

Statistics and Probability, both academically and in other aspects. During my Ph.D. life,

I learn a lot from the courses o�ered by these excellent professors, and I'm able to apply

the knowledge I learn to my research. The professors who I have worked with as a teaching

assistant also impress me a lot by the way they deal with di�erent kinds of di�culties.

During my seven years at Michigan State University, I made lots of friends and because

of them, I never feel lonely in these years. A lot of thanks to my friends at MSU. They either

have graduated and become successful faculty members or statisticians in big companies,

or are still working hard to pursue their Ph.D. degree. I sincerely wish all of you have a

wonderful future.

Last but not least, I would like to express my sincere thanks to my parents for their

support and concerns, as well as my wife for her accompany and working hard together

towards a glorious future.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xii

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Sparsity in High-dimensional Modeling . 3

1.2.1 Choosing the Tuning Parameters . 6
1.2.2 Algorithms for Training Sparse Models 7
1.2.3 Stage-wise Selection . 8

1.3 The Projection Approach . 9
1.4 Non-parametric Modeling . 12

1.4.1 Basis Expansion . 12
1.4.2 Neural Networks . 13
1.4.3 Deep Neural Networks . 15

Chapter 2 High-dimensional Generalized Additive Modeling 18
2.1 Introduction . 18
2.2 Model . 22
2.3 Methodology & Theoretical Properties . 29

2.3.1 First Step: Model Screening . 29
2.3.2 Second Step: Post Selection . 36

2.4 Tuning Parameter Selection . 43
2.5 Other Possible Penalty . 46

2.5.1 The L0 Norm Penalty . 46
2.5.2 The L0 and L1 Norm Penalty . 48

2.6 Numerical Properties . 49
2.6.1 Simulated Examples . 50

2.6.1.1 Logistic Regression . 51
2.6.1.2 Other link functions . 57

2.6.2 Real Data examples . 58
2.7 Discussion . 65

Chapter 3 Sparse Neural network . 67
3.1 Introduction . 67
3.2 The Binary Classi�cation Problem . 70
3.3 The Consistency of Neural Network Classi�cation Risk 77
3.4 Simulation . 82

3.4.1 DNP Simulation: Revisit . 82

vi

3.4.2 Smaller Sample Size Case . 83
3.5 Real Data examples . 85

3.5.1 example 1: Prostate Cancer Data . 85
3.5.2 example 2: MRI Data for Alzheimer's Disease 86
3.5.3 example: KITTI Autonomous Driving Data 89

3.6 Discussion . 92
3.6.1 The l1 + l0 Penalty and Algorithm 92

Chapter 4 Ensemble Neural Network Selection (ENNS) 98
4.1 Introduction . 99
4.2 The Two-step Variable Selection and Estimation Approach 102

4.2.1 The Ensemble Neural Network Selection (ENNS) Algorithm 103
4.2.2 Estimation With Regularization . 110

4.2.2.1 Dropping Out and Bagging 110
4.2.2.2 Stage-wise Training . 111
4.2.2.3 L1 Norm Regularization . 112

4.3 Theoretical Guarantee . 113
4.4 Simulation Study . 121

4.4.1 Stage-wise Correct Selection Probability Decreasing Study 121
4.4.2 False Positive Rate Study . 122
4.4.3 Variable Selection Simulation Study 123
4.4.4 Estimation Simulation Study . 126
4.4.5 Variable Selection and Estimation . 127
4.4.6 Correlated Predictors . 127

4.5 Real Data examples . 132
4.5.1 Variable Selection: MRI Data . 132
4.5.2 Regression: Ribo�avin Production Data 135
4.5.3 Classi�cation: Prostate Cancer Data 136

4.6 Conclusion . 140

Chapter 5 Epilogue . 141

APPENDICES . 143
APPENDIX A Technical Details and Supplementary Materials for Chapter 2 . . . 144
APPENDIX B Technical Details and Supplementary Materials for Chapter 3. . . 198
APPENDIX C Technical Details and Supplementary Materials for Chapter 4 . . . 206

BIBLIOGRAPHY . 233

vii

LIST OF TABLES

Table 2.1: Simulation results for the two-step approach compared with the Lasso,
GAMSEL and GAMBoost in the three cases of example 2.1. NV, average
number of the variables being selected; TPR, the true positive rate; FPR,
the false positive rate; and PE, prediction error (here is the misclassi�cation
rate). Results are averaged over 100 repetitions. Enclosed in parentheses
are the corresponding standard errors. 54

Table 2.2: Simulation results for the two-step approach compared with the Lasso,
GAMSEL and GAMBoost in example 2.2 with correlation 0.3 and 0.7 for
n = 100, p = 200 and s = 3. NV, average number of the variables being
selected; TPR, the true positive rate; FPR, the false positive rate; and
PE, prediction error (here is the misclassi�cation rate). Results are aver-
aged over 100 repetitions. Enclosed in parentheses are the corresponding
standard errors. 56

Table 2.3: Simulation results for the two-step approach compared with the Lasso,
GAMSEL and GAMBoost in example 2.3, with n = 100, p = 200, s = 3
and signal strength reduced. NV, average number of the variables being
selected; TPR, the true positive rate; FPR, the false positive rate; and
PE, prediction error (here is the misclassi�cation rate). Results are aver-
aged over 100 repetitions. Enclosed in parentheses are the corresponding
standard errors. 57

Table 2.4: Simulation results for the two-step approach compared with the Lasso,
GAMSEL and GAMBoost in example 2.4 for Poisson regression and Gamma
regression with n = 100, p = 200 and s = 3. NV, average number of
the variables being selected; TPR, the true positive rate; FPR, the false
positive rate; and PE, prediction error (here is the misclassi�cation rate).
Results are averaged over 100 repetitions. Enclosed in parentheses are the
corresponding standard errors. The GAMBoost method does not support
Gamma regression with non-canonical link function, while the canonical
link falls outside of range, therefore it does not support Gamma regression. 59

Table 3.1: The AUC and F1 score of the compared models in the simulation study.
Standard errors are given in the parentheses. 84

Table 3.2: The AUC and F1 score of the compared models in a smaller sample size
scenario with m = 5. Standard errors are given in the parentheses. 84

Table 3.3: Test accuracy with standard error in parentheses and median of number of
features for di�erent classi�ers in the Prostate gene data example. 87

viii

Table 3.4: Test accuracy with standard error in parentheses and median of number of
features for di�erent classi�ers in the MRI Alzheimer's disease example. . 89

Table 3.5: Test accuracy with standard error in parentheses and median of number of
features for di�erent classi�ers in the KITTI autonomous driving example. 91

Table 3.6: The MISOCO formulation for the l1 + l0 penalty in dealing with the l0
norm step. 96

Table 4.1: The proportion of correct variable selection after 0-4 correct variables in
the model, for di�erent cases over 1000 repetitions. The results show the
mean. The results show three di�erent data generation structures: linear,
additive non-linear and neural network for both regression and classi�cation.122

Table 4.2: Selection false positive rate average of the ENNS and DNP under di�erent
number of true variables in 101 repetitions. Standard deviations are given
in parenthesis. 123

Table 4.3: Variable selection capacity of ENNS and other methods with low signal
strength in the regression (top) and classi�cation (bottom) set up. The
numbers reported are the average number of selected variables which are
truly nonzero. The standard errors are given in parenthesis. 124

Table 4.4: Variable selection capacity of ENNS and other methods with normal signal
strength. The numbers reported are the average number of selected vari-
ables which are truly nonzero. The standard errors are given in parenthesis. 125

Table 4.5: Variable selection capacity of ENNS and other methods with high signal
strength. The numbers reported are the average number of selected vari-
ables which are truly nonzero. The standard errors are given in parenthesis. 126

Table 4.6: Prediction results on the testing set using neural networks with and without
l1 norm regularization for s = 2, 5, 10. RMSE is rooted mean squared error,
MAE is mean absolute error, and MAPE is mean absolute percent error.
Accuracy is the percentage of correct prediction, auc is area under the ROC
curve, and f1 score is the inverse of inverse precision plus the inverse recall. 129

Table 4.7: Model performance of the combination of ENNS algorithm and l1 threshold-
ing estimation, compared with DNP, Lasso and HSIC-Lasso for s = 2, 5, 10
cases in both regression and classi�cation. The average performance of 101
repetitions with their standard errors in parenthesis are presented. 130

ix

Table 4.8: Selection and estimation comparison for predictors with correlation 0, 0.3
and 0.7. The number of nonzero predictors is set to 5. For selection,
the average number of correct selected variables with its standard error
is given. For estimation the average RMSE or AUC with their standard
errors is given. The results are averaged over 101 repetitions. 131

Table 4.9: Variable selection result for the AD data. The table includes all biolog-
ically important variables with three levels: red (very important), yellow
(secondly important) and green (thirdly important). The non-important
variables are not included in the model. Checkmarks indicate whether the
corresponding algorithm selected the variable or not. 134

Table 4.10: Variable selection result for the AD data. The reported numbers include
IS, the weighted average of selected important variables with the weights
being 3, 2 and 1 for red (most important), yellow (secondly important) and
green (thirdly important), respectively; NI, number of important variables
selected; and NU, number of unimportant variables selected. 135

Table 4.11: Test MSE with standard error in parentheses and median of number of
features for di�erent models in the ribo�avin gene data example. 136

Table 4.12: Test accuracy with standard error in parentheses and median of number of
features for di�erent classi�ers in the Prostate gene data example. 137

x

LIST OF FIGURES

Figure 1.1: A diagram for the single-layer neural network model 14

Figure 2.1: The classi�cation accuracy against the number of nonzero variables mea-
sured on a testing set for example 2.5 over 50 repetitions. The two-step
approach, the logistic regression with Lasso, the l1 norm penalized SVM
and the sparse group lasso neural network are included in comparison. . 61

Figure 2.2: The estimated functions for the most frequently selected functions for
example 2.5. 62

Figure 2.3: The classi�cation accuracy against the number of nonzero variables mea-
sured on a testing set for example 2.6 over 500 repetitions. The two-step
approach, the logistic regression with Lasso, the l1 norm penalized SVM
and the sparse group lasso neural network are included in comparison. . 63

Figure 2.4: The estimated functions for the most frequently selected functions ordered
by descending in frequency for example 2.6. 64

Figure 2.5: The testing MSE against the number of nonzero variables measured on
a testing set for example 2.7 over 50 repetitions. The two-step approach
and logarithm transformation with the Lasso are included in comparison. 65

Figure 3.1: example image from the KITTI 2D object detection data set. 89

Figure 3.2: example images of pedestrians and cars after pre-processing 90

Figure 3.3: Test accuracy score vs sparsity level in the three examples. 91

Figure 4.1: Testing mean squared error (MSE) for di�erent models on the ribo�avin
data. 138

Figure 4.2: Testing accuracy for di�erent models on the prostate cancer data. 139

xi

LIST OF ALGORITHMS

Algorithm 1: Training classi�cation neural network with l1 + l0 penalty 97

Algorithm 2: Feature selection in ENNS . 109

Algorithm 3: l1 norm estimation using coordinate descent 113

xii

Chapter 1

Introduction

In this Chapter, we will state the problems that we study and discuss some existing work

that have signi�cant impact to this �eld.

1.1 Overview

During the past decades, high-dimensional data analysis became increasing more popular.

[11] de�nes that �High-dimensional statistics refers to statistical inference when the number

of unknown parameters is of much larger order than sample size." This will be the de�nition

of high-dimensional statistics through the whole thesis. Sometimes, by �high-dimensional",

people may refer to a feature space whose dimension is greater than 2 when constructing

data visualization, see for example [3], this is not the �high-dimensional" we refer to in this

thesis. Let n be the size of sample we have, and let p be the number of unknown parameters

involved, thus we have

p >> n (1.1)

in high-dimensional statistics. Consider a linear regression model

yi = µ+

p∑
j=1

βjxij + εi, i = 1, ..., n, (1.2)

1

with p >> n. It's obvious that the estimation of the unknown parameters µ, β1, ..., βp can

not be estimated without proper assumptions, such as the sparsity assumption, which we

will discuss in the next section. For example, the least squared estimator

µ̂, β̂1, ..., β̂p = arg min
µ,β1,...,βp

1

n

n∑
i=1

(yi − µ− βjxij)2

is under-determined thus has in�nitely many solution.

Various methods have been proposed to solve this issue since [39] brought the problem

to people's sight, where the authors considered an orthogonal design in the case n = p. In

the rest of this Chapter, we will review the work that has been done in high-dimensional

statistics �eld.

On the other hand, non-parametric modeling has been popular for several decades. Non-

parametric research happened as early as in 1947, when [133] studied a local averaging

approach. Some literature regarding non-parametric research even trace back to the 1930's

about partitioning estimation, but this was not fully studied by then. As [61] states, in

non-parametric modeling, one does not restrict the class of possible relationship between the

response y and the predictors x1, ..., xp, but assume that y depends on x1, ..., xp through a

general function f(x1, ..., xp). Di�erent approaches have been used to approximate f(·) in

a workable way, including averaging, partitioning, basis expansion, neural network approxi-

mation, and etc. Further assumptions can also be made on f(·), for example, assuming an

additive structure will result in the generalized additive model (GAM), see for example [63],

de�ned as

yi = µ+

p∑
j=1

fj(xij) + εi, i = 1, ..., n. (1.3)

The relationship is not as general as the f(x1, ..., xp) we just de�ned, but is much more

2

handy. We will discuss these non-parametric work in the rest of this Chapter.

1.2 Sparsity in High-dimensional Modeling

Assuming sparsity is an e�ective way of dealing with the high-dimensionality, i.e., we assume

that only s of the p variables are involved in predicting the response y. Rich literature have

assumed sparsity, for example see [126, 46, 155, 148, 85, 47, 65, 91]. Taking the linear

regression model as an example, let β ∈ Rp be the parameters. A direct method to obtain

sparsity is to restrict the number of nonzero parameters, i.e.,

β̂ = arg min
β∈Rp

1

n
‖y − xβ‖22, s.t. ‖β‖0 ≤ K, (1.4)

for some positive integer K, where y ∈ Rn is the response vector and x ∈ Rn×p is the design

matrix. The l0 norm is de�ned as

‖β‖0 = {# of βj : βj 6= 0, j = 1, ..., p}. (1.5)

This optimization problem can be written into the Lagrangian form as

β̂ = arg min
β∈Rp

1

n
‖y − xβ‖22 + λ‖β‖0 (1.6)

for some corresponding λ of K. However, optimizing a loss function with zero norm has

been proved to be a non-deterministic polynomial-time hardness (NP-hard) problem, see

[99], which requires exponential time to solve.

Fortunately, it has been proved that instead of directly penalizing the number of nonzero

3

coe�cients by l0 norm, l1 norm penalty is able to shrink some coe�cients to zero, and thus

the features corresponding to these coe�cients are not included in the model. As a famous

piece of work, [126] proposed the method least absolute shrinkage and selection operator

(Lasso) in the linear regression set up, which yields sparse estimations for the parameters.

The model considers a l1 norm penalized least square model, i.e.,

β̂ = arg min
β∈Rp

1

n
‖y − xβ‖22 + λ

p∑
j=1

|βj |, (1.7)

for some hyper-parameter λ. The Lasso was not intended for high-dimensional modeling, but

yields sparsity in the estimators, i.e., with proper choice of λ, the estimated parameters are

shrunk towards zero and some of them will be exactly zero. A number of statisticians have

studied the properties of the Lasso, for example, [73] derived the asymptotic distributions of

the Lasso estimator and showed its estimation consistency. Later people found that this l1

norm penalty works well in the high-dimensional set up, both practically and theoretically.

[60] derived the l1 norm bound for a persistent sequence of estimator in the Lasso model. [38]

considers the high-dimensional case and considered minimizing the l1 norm of the parameters

restricted to zero training error. He shows that this method consistently identify the true

subset of nonzero variables given that the true model is sparse. [95] proposed a neighborhood

selection scheme that consistently identi�es the nonzero entries in the covariance matrix of a

multivariate normal distribution. [152] showed the selection consistency of the Lasso under

the irrepresentable condition. [149] studied two di�erent sparsity assumptions in the linear

model, the strong sparsity

max
j=s+1,...,p

|βj | = 0 (1.8)

4

and the weak sparsity
p∑

j=s+1

|βj | ≤ η1 (1.9)

for some η1. The authors showed that Lasso consistently selects the true subset of variables

with the weak sparsity assumption and the irrepresentable condition.

Later on, Lasso became much more mature and widely applied to obtain a sparse solution

in the high-dimensional set up. Variations of the Lasso also emerges rapidly. [46] mentioned

that the best tuning parameter λ may not be obtained by minimizing the prediction error,

thus Lasso can not reach selection consistency and prediction consistency at the same time.

Therefore, Lasso does not have the so-called oracle property. The authors proposed the

smoothly clipped absolute deviation penalty (SCAD) and showed its oracle property. [41]

argued that Lasso does not work well in correlated predictors, thus [156] proposed the elastic

net penalty to overcome this issue. In the next year, [155] proposed a data-driven approach

named the adaptive lasso, where a weighted l1 norm of the parameters is used to replace the

l1 norm, i.e.,

β̂ = arg min
β∈Rp

1

n
‖y − xβ‖22 + λ

p∑
j=1

wj |βj |, (1.10)

for some wj , j = 1, ..., p. A simple convention is to choose wj = 1/|β̂j | for some initial

estimator β̂j , and set wj = ∞ if the initial estimator is zero. The author showed that the

adaptive Lasso enjoys the oracle property. [20] proposed the Dantzig selector and showed

its oracle property.

[148] discussed various grouped variable selection techniques, including the well-known

group lasso penalty, see also [135, 65]. Consider that β = (β1,1, ..., β1,g1
, ..., βp,1, ..., βp,gp),

where β involves p groups with each group having gj parameters j = 1, ..., p. This case is

useful in a lot of real world applications. For example, if a categorical variable include 3

5

levels, after one-hot encoding, it does not make sense to only include one of the three levels

in the model. The group lasso minimizes the loss function plus a grouped penalty

β̂ = arg min
β∈Rp

1

n
‖y − xβ‖22 + λ

p∑
j=1

√
gj‖βj‖2, (1.11)

where βj denotes parameter vector in the j
th group. The sum of l2 norms encourages group-

wise sparsity but in-group non-sparsity. Adaptivity in the group lasso is also discussed by

the authors. To be more general, [5] named this type of penalty as lp,1 norm penalty, where

the l2 norm in equation 1.11 is replaced by lp norm with 1 ≤ p <∞.

A more intuitive penalty emerged later as [114] proposed the sparse group lasso, which

is a combination of the group lasso and the lasso

β̂ = arg min
β∈Rp

1

n
‖y − xβ‖22 + λ1

p∑
j=1

√
gj‖βj‖2 + λ2

p∑
j=1

gj∑
g=1

|βj,g|, (1.12)

The penalty encourages both group-wise sparsity and in-group sparsity, and is greatly bene-

�cial in neural network models. A huge number of di�erent types are also widely used in the

statistics and machine learning applications, for example, the fused Lasso [127], the graph

fused Lasso [122], the tree Lasso [71] and etc.

1.2.1 Choosing the Tuning Parameters

The power of regularization is decided through the hyper parameter, which is also called

the tuning parameter. Intuitively, choosing larger tuning parameter λ results in a more

sparse model. However, make the model too sparse may lead to losing the true underlying

relationship between the response and the predictors. Several criteria are useful in helping

6

choose a appropriate tuning parameter, for example, BIC [111], EBIC [24], and GIC [151,

52]. Speci�cally, [52] showed the risk consistency of tuning parameter selection using GIC.

Another practical tool is the cross-validations, where the tuning parameter is chosen such

that the cross-validated metric is optimized. Conventional theory for cross-validation is given

in chapter 8 of [61].

1.2.2 Algorithms for Training Sparse Models

The regularization methods usually involve l1 norm penalty term, which is not easy to solve

using regular gradient descent algorithms, see for example [142]. This issue is general for

all models with l1 penalty. Note that the group lasso penalty does not have explicit l1

norm penalty but involves sum of l2 norms, which is equivalent to l1 norm penalty in terms

of optimization theory. Coordinate descent algorithms [143, 54], also known as proximity

gradient descent algorithms are useful in dealing with the l1 norm penalty. For the l1 norm

penalty, not restricted to the linear regression case, a soft-thresholding function S(·, ·) :

Rp × R→ Rp, where

(S(z, λ))j = sign(zj)(|zj | − λ)+, j = 1, ..., p (1.13)

can be applied after the gradient descent for the smooth part to zero some parameters. While

for the group lasso penalty, the soft-thresholding function becomes S(·, ·) : R
∑p
j=1 gj ×R→

Rp, where

(S(z, λ))j =

(
1−

λ
√
gj

‖θ(x,y,β)‖2

)
+
βj , j = 1, ..., p, (1.14)

7

where θ(x,y,β) is a quantity depending on x, y, β and the loss function. The coordinate

descent algorithm might be slow in updating the groups, thus a block co-ordinate gradient

descent method by [132] can be applied, where a second order Taylor approximation is used

to simplify the smooth part of the original loss function.

As the development of classical algorithms, the models can also be formulated as classical

optimization problems and solved with existing software. The Lasso in the linear regression

case can be formulated as a linear programming problem, see for example [30]. The group

Lasso in the linear regression set up can be formulated as a second order cone quadratic

programming problem, see for example [1]. Mature packages are available for solving these

classical optimization problems. As we mentioned the l0 penalty before, the fast development

of optimization software also make this type of penalty easier to apply. The l0 penalty in the

linear regression set up can be formulated as a mixed integer second order cone optimization

(MISOCO) problem, see for example [92].

1.2.3 Stage-wise Selection

Various stage-wise algorithms are used to obtain a path selection. The least angle regression

[41] provides a forward algorithm to add new features by looking at the correlation. The

LARS algorithm with simple modi�cation can be used to obtain the lasso solution path.

[128] provides a stage-wise algorithm, which provides very close solution path to the lasso

solution path. [102] studied a stage-wise algorithm to incorporate the l2, l1 and l0 norm

penalty with the gradients with respect to the input weights. The gradient has implicit

connections with the correlation studied in [41].

It worth noting that [125] has shown that there is an equivalence between using the

stage-wise algorithm and the group lasso penalty. This built a connection between the

8

regularization methods and the stage-wise variable selection algorithms. [82] has applied the

result on deep arti�cial neural networks to do feature selection. Compared with optimizing

penalized loss functions, stage-wise algorithms starts from the null model and adds variables

gradually. This is bene�cial to complicated models such as neural networks, since learning

a complicated model on all variables involves unpredictable uncertainty, and thus might be

sensitive to initialization.

1.3 The Projection Approach

Another popular approach to deal with the high-dimensionality, though not studied too much

in this thesis, is worth mentioning, the projection-based methods, also known as dimension-

ality reduction. Projection methods �nd a lower dimensional representation for the original

feature space. Classical work include [141, 129, 31, 16, 68, 157, 21]. Projection methods have

more �avor of unsupervised learning, since the lower dimensional representation should not

depend on the response but is purely a property of the design matrix. A main drawback of

projection based approaches is that one loses interpretability, because the projected features

are no longer the original features, and thus not interpretable.

General dimensional reduction methods do not work in the high-dimensional set up. For

example, the principal component analysis (PCA) uses a linear projection on x. It uses a

matrix A ∈ Rd×p to project x ∈ Rp to Ax ∈ Rd, where the matrix A is chosen to maintain

the greatest variance based on the training data. During the computation, the sample

covariance matrix Σ̂n = XTX/n is used to estimate the population covariance matrix

Σ = Cov(x), and the principal components can be obtained from the eigenvectors of the

sample covariance matrix. However, in the high-dimensional set up, the sample covariance

9

matrix is no longer a consistent estimator of the population covariance matrix, i.e.

Σ̂n 6→ Σ as n→∞,

if we have p > n. [69] gave the conditions when PCA works in the high dimensional case:

the largest eigenvalues have to be large enough.

Variations of the PCA include the Simpli�ed Component Technique LASSO (SCoTLASS)

by [68] and the sparse PCA by [157]. The former considers a L1 penalty on the projection

matrix A that yields some sparse solution in A. However, this is not feasible in practice,

since there is no guideline for choosing the tuning parameter and a high computational

cost due to the non-convexity. The latter obtained the connection between PCA and ridge

regression, and use the ridge or elastic net to obtain a sparse approximation to the original

PCA. In both methods, their projection matrix A is sparse in the original features, i.e., some

columns of A are exactly zeros. These build a bridge connecting with the sparse assumption

to some extent.

After the classic work of manifold learning (non-linear dimensionality reduction) such

as [130, 107, 124], current manifold learning focuses on two aspects: image processing and

data visualization. In image processing, manifold learning can be used to reduce the di-

mensionality to its intrinsic dimension, see for example [89, 154, 84]. These applications are

not generalized to a broader set up. Manifold learning applied to data visualization usually

reduces the dimensionality to two or three, see for example [139]. These applications are not

useful in building models. Another concern is the out-of-sample performance of manifold

learning, which is recently studied by [123]. According to the paper, most current manifold

learning algorithms fail to map new data to the previously learnt embedding.

10

Autoencoder [75] uses neural network as a non-linear projection to encode the original

feature space to a lower dimensional space, which is chosen to be such that the original

feature space can be recovered with another neural network. Training a high-dimension

neural network is still challenging, sparse autoencoder [100, 90] eliminates the insigni�cant

connections and thus kills those parameters.

Another useful tool is the random projection, which relies on the Johnson-Lindenstrauss

lemma

Lemma 1.1 ([67]). Given 0 < ε < 1, a set X of m points in RN , and a number n >

8 log(m)/ε2, there is a linear map f : RN → Rn such that

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

for all u, v ∈X.

The lemma states that there exist a lower dimensional projection that well maintains

the distance in the original feature space, however, there isn't a guideline of how to �nd

such a lower dimensional space. [21] used random projection over classical classi�ers as an

ensemble classi�er, and provided an e�cient algorithm due to the fact that the random

projection matrices are drawn from distributions rather than computed from data. They

also showed that the best random projection can be found in linear time when the random

projection matrices are sampled according to Haar measure. One possible drawback of

random projection is that it does not provide us with any lower-dimensional representation

information.

11

1.4 Non-parametric Modeling

Non-parametric modeling assumes an arbitrary relationship between the response and the

variables. We would like to �nd a function f(·) : Rp → R such that f(x) is a good approxi-

mation of y or a representation of y, see [61]. It's common to assume that f(·) is continuous,

but this is not necessary. Complicated machine learning models such as tree models, see

[108, 81, 56], neural networks, see [116] and etc. can be considered as non-parametric mod-

els that approximate a complicated relationship. An arbitrary function with great �exibility

can be wiggly, i.e., it may perfectly �t the training data. Therefore, people usually need to

restrict the smoothness of a function by restricting

∫ (
f ′′(x)

)2
dx, (1.15)

see for example [11]. Obviously, a linear function has the quantity equal to zero and thus is

the smoothest, but the approximation power of a linear function is sub-optimal. Therefore,

a balance between the approximation power and the smoothness needs to be considered.

1.4.1 Basis Expansion

Directly working with the arbitrary function f is not realistic, since the candidate space

is in�nitely dimensional. Therefore, parametric approximations are need. Consider the

univariate case, a great number of approaches can be used to approximate a continuous

function f(·) : R→ R. The most popular approach is basis expansion

f(x) =
∞∑
k=1

βkφk(x), (1.16)

12

where {φk(·), k ∈ N+} is a set of basis functions. A �nite number of bases is usually used

to approximate the in�nite sum. As mentioned above, a set of basis with maximal di�eren-

tiability is a good property, therefore B-spline is among the most popular basis functions,

see [110]. According to [120], a spline with degree l consists of piece-wise polynomials up to

degree l on K pre-speci�ed partitions, with connection knots l′ times continuously di�eren-

tiable, where 0 ≤ l′ ≤ l− 2. According to [65], there exists a normalized B-spline basis {φk}

such that

fn(x) =
K+l∑
k=1

βkφk(x). (1.17)

[65] showed that using the above B-spline basis, we have the following approximation error

‖f − fn‖22 =

∫ b

a
(f(x)− fn(x))2dx = O((K + l)−2d), (1.18)

where the parameter d = k + α is such that the kth derivative of function f(·) satis�es the

Lipschitz condition of order α

|f (k)(s)− f (k)(t)| ≤ C|s− t|α,

for some constant C. This result shows that as we increase the number of partitions in a

basis expansion, the approximation error can be arbitrarily small under certain conditions.

1.4.2 Neural Networks

To approximate an arbitrary multi-variate function f(·) : Rp → R, neural network is a

powerful tool. Neural network is used to mimic human's brain: the input does not lead to

the output directly, but a few intermediate nodes are needed. Originated from a multi-layer

13

Input
layer

Hidden
layer

Output
layer

... ...

Input 1
Input 2

Input p− 1

Input p

Ouput

Figure 1.1: A diagram for the single-layer neural network model

perceptron in [106], which is a multi-layer version of the perceptron in [105], neural network

has been getting deeper and more powerful in approximating a continuous function. �gure

1.1 shows a diagram of a single hidden layer neural network, which is also known as a shallow

neural network. The hidden layer consists of linear combinations of the �rst layer's inputs

plus a non-polynomial activation function.

Mathematically, let x ∈ Rp be the input vector, the output of a shallow neural network

is

η(x) =
K∑
k=1

βk · σ (θx+ t) + b ∈ R, (1.19)

where βk ∈ R, k = 1, ..., K are the output layer coe�cients, θ ∈ RK×p is the hidden layer

coe�cient matrix, t is the hidden layer intercept vector, b is the output layer intercept, and

σ(·) is an activation function. A notable theorem on the approximation power of a shallow

neural network is given by [33] as follow

Theorem 1.1 (Universal approximation theorem, Cybenko 1989). Let σ(·) be such that

σ(t)→ 0 as t→ −∞ and σ(t)→ 1 as t→∞. For a continuous function f on [0, 1]n and an

14

arbitrary ε > 0, there exist a K and parameters θ,β, t, b such that

|f(x)− η(x)| < ε, ∀x ∈ [0, 1]n

This theorem guarantees the universal approximation ability of shallow neural networks

and is the reason that neural networks are useful in many cases. Typical activation functions

includes

� Hyperbolic Tangent: σ(x) = tanh(x).

� Sigmoid: σ(x) = ex

1+ex .

� Recti�ed Linear Unit (ReLU): σ(x) = x+.

� Leaky ReLU: σ(x) = max εx, x for some small ε > 0.

Actually, as long as that the activation function is not polynomial, a shallow neural network

has the universal approximation ability, see [113]. Recti�ed Linear Unit (ReLU) is one of

the most popular activation functions nowadays, though it may su�er from the dead ReLU

problems, see [87]. It's computationally e�cient and converges fast.

1.4.3 Deep Neural Networks

Deep neural networks refer to neural networks with more than one hidden layers. As the

development of deep neural networks, people found the limitations of shallow neural net-

work such that the number of neurons needed to achieve a desire error increases as fast as

exponentially, see [29, 28]. After that people found that �the two hidden layer model may be

signi�cantly more promising than the single hidden layer model�, see [103]. Sum neural net-

works, or equivalently, polynomial neural networks have been studied [36, 86], and universal

15

approximation property has been established recently by [43] that a continuous function in

Fnd can be approximated with error ε by a quadratic network who have depth

O

(
log(log(

1

ε
)) + log(

1

ε
)

)

and number of weights

O

(
log(log(

1

ε
))(

1

ε
)d/n + log(

1

ε
)(

1

ε
)d/n

)

where d is the dimension of domain. The approximation theory for regular deep neural

networks have also been established recently. [104] showed that a deep network need

O

(
(n− 1)

(ε
L

)−2
)

model complexity to approximate a L-Lipshitz continuous function of n variables instead of

O

((ε
L

)−n)

in a shallow neural network. [112, 113] provides more detailed results for the deep neural

network approximation power.

Therefore, it's promising that a deeper neural network works better in learning compli-

cated relationships. Through this thesis, we will start from the generalized additive model

(GAM), study its properties and tuning parameter selection in Chapter 2, then move to a

more complicated shallow neural network model and talk about its asymptotic properties in

chapter 3, and �nally dive into deep neural networks in chapter 4, where we proposed an en-

16

semble variable selection algorithm and estimation method. In chapter 5, we will summarize

the work we have done and the future work to be done.

17

Chapter 2

High-dimensional Generalized Additive

Modeling

In this chapter, we will study the generalized additive model (GAM), see [63]. We consider

a non-linear link function that belong to the exponential family. A two-step approach is

used for variable selection and estimation, with a group lasso followed by an adaptive group

lasso applied to the basis expansion of the non-parametric functions. We will show that the

variable selection result in the second step is consistent, and we also derive the convergence

rate of the second step estimator. Moreover, we discuss the tuning parameter selection and

showed that we reach risk consistency by using the generalized information criterion (GIC).

Simulations and read data examples on various aspects are given to support the arguments.

2.1 Introduction

The main objective of this work is to establish theory driven high dimensional generalized ad-

ditive modeling method with nonlinear links. The methodology includes consistently select-

ing the tuning parameter. Additive models play important roles in non-parametric statistical

modeling and in machine learning. Although this important statistical learning tool has been

used in many important applications and there are free software available for implementing

these models along with their variations, to our surprise, there is no procedure with nonlinear

18

link available which has been studied systematically with theoretical foundation. generalized

additive modeling allows the nonlinear relationship between a response variable and a set of

covariates. This includes the special case, namely, the generalized linear models, by letting

each additive component be a linear function. In general, let (yi,Xi), i = 1, ..., n be inde-

pendent observations, where yi's are response variables whose corresponding p-dimensional

covariate vectors are Xi's. A generalized additive model [62] is de�ned as

µi = E(yi|Xi) = g−1

 pn∑
j=1

fj(Xij)

 , (2.1)

where g(·) is a link function, fj 's are unspeci�ed smooth functions and Xij is the jth com-

ponent of vector Xi. One of the functions could be a constant, which is the intercept term,

but this is not necessary. The number of additive components is written as pn, since it

sometimes (usually in high dimensional set up) increases as n increases. A simple case that

many people studied is pn = p, where the number of additive components is �xed and less

than the sample size n. The choice of link functions is as simple as in generalized linear

models, where people prefer to choose link functions that make the distribution of the re-

sponse variables belong to popular exponential family. A widely used generalized additive

model has the identity link function g(µ) = µ, which gives the classical additive model

yi =

pn∑
j=1

fj(Xij) + εi, (2.2)

where εi's are i.i.d random variables with mean 0 and �nite variance σ2.

On the other hand, high dimensional data has increasingly become a part of many modern

days scienti�c applications. Often the number of covariates pn is much larger than the

19

number of observations n, which is usually written as pn � n. A most interesting scale is

pn increases exponentially as n increases, i.e. log pn = O(nρ) for some constant ρ > 0. [48]

called this as non-polynomial dimensionality or ultra high-dimensionality.

In this chapter, we consider the generalized additive model in a high-dimensional set up.

To avoid identi�cation problems, the functions are assumed to be sparse, i.e. only a small

proportion of the functions are non-zero and all others are exactly zero. A more generalized

set up is that the number of nonzero functions, denoted sn, also diverges as n increases. This

case is also considered in this paper.

Many others have worked on generalized additive models. Common approaches use ba-

sis expansion to deal with the nonparametric functions, and perform variable selection and

estimation methods on the bases. [94] considered a simpler case, as in 2.2, with a new

sparsity-smoothness penalty and proved it's oracle property. They also performed a simu-

lation study under logit link with their new penalty, however, no theoretical support was

provided. [45] proposed the nonparametric independence screening (NIS) method in screen-

ing the model as in 2.2. However, the selection consistency and the generalized link functions

were not discussed. [91] discussed the practical variable selection in additive models, but

no theory was given. [83] considered a two-step oracally e�cient approach in generalized

additive models in the low dimensional set up, but no variable selection in the high dimen-

sional set up was done. [65] focused on the variable selection of 2.2 with �xed number of

nonzero functions using a two step approach: First group lasso [7, 148] on the bases to select

the nonzero covariates and then use adaptive group lasso to estimate the bases coe�cients.

They then established the selection consistency and provided the rate of convergence of the

estimation. [2] reviewed several existing algorithms highlighting the connections between

them, including the non-negative garrote, COSSO and adaptive shrinkage, and presented

20

some computationally e�cient algorithms for �tting the additive models. [98] extended the

consistency and rate of convergence of [65] to spatial additive models. [51] studied the

GAM with identity link under the endogeneity setting. It worth mentioning that alternative

methods to penalization have also been studied, for example, [134] studied �tting GAM and

perform variable seleciton implicitly through likelihood based boosting.

However, though widely used, no systematic theory about selection and estimation con-

sistency and rate of convergence has been established for generalized additive models with

non-identity link functions.

In this chapter, we establish the theory part for generalized additive models with non-

identity link functions in high dimensional set up. We develop a two-step selection approach,

where in the �rst step we use group lasso to perform a screening, which, under mild assump-

tions, is able to select all nonzero functions and not over-select too much. In the second

step, the adaptive group lasso procedure is used and is proved to select the true predictors

consistently.

Another important practical issue in variable selection and penalized optimization prob-

lems is tuning parameter selection. Various cross validation (CV) techniques have been used

in practice for a long time. Information criteria such as Akaike information criterion (AIC),

AICc, Bayesian information criterion (BIC), Mallow's Cp and etc. have been used to select

`the best' model as well. Many equivalences among the tuning parameter selection methods

have been shown in the Gaussian linear regression case. However, the consistency of these

selection methods were not established. Later some variations of the information criteria

such as modi�ed BIC [150, 137] extended BIC [24] and generalized information criterion

(GIC) [52] were proposed and shown to have good asymptotic properties in penalized linear

models and penalized likelihoods. However, the results are not useful for grouped variables in

21

additive models, for which basis expansion technique is usually used and thus brings grouped

selection.

In this chapter, we generalize the result of generalized information criterion (GIC) by

[52] to group-penalized likelihood problems and show that under some common conditions

and with a good choice of the parameter in GIC, we are able to select the tuning parameter

that corresponds to the true model.

In section 2.2, the model is speci�ed and basic approach is discussed. Notations and

basic assumptions are also introduced in this section. Section 2.3 gives the main results of

the two steps selection and estimation procedure. Section 2.4 develops the tuning parameter

selection. Variation of penalty functions is discussed in section 2.5. Extensive simulation

study and real data example are presented in section 2.6 followed by a short discussion in

section 2.7. The proofs of all theorems are deferred to Appendix A.

2.2 Model

We consider the generalized additive model (2.1) where the link function corresponds to an

exponential family distribution of the response. For each of the n independent observations,

the density function is given as

fyi(y) = c(y) exp

[
yθi − b(θi)

φ

]
, 1 ≤ i ≤ n, θi ∈ R. (2.3)

Without loss of generality, we assume that the dispersion parameter 0 < φ <∞ is assumed

to be a known constant. Speci�cally we assume φ = 1. We consider a �xed-design through

this paper, i.e., the design matrix X is assumed to be �xed. However, we have shown in

22

appendix A that the same theory works for a random design under simple assumptions on

the distribution of X. The additive relationship assumes that the densities of yi's depend

on Xi's through the additive structure θi =
∑pn
j=1 fj(Xij). This is the canonical link. If we

use other link functions, for example, A(·), the theory also works as long as the functions

A(·) satis�es the Lipschitz conditions for some order. Let b(k)(·) be the k-th derivative of

b(·), then by property of the exponential family, the expectation and variance matrix of

y = (y1, ..., yn)T , under mild assumptions of b(·), is given by µ(θ) and φΣ(θ), where

µ(θ) = (b(1)(θ1), ..., b(1)(θn))T and Σ(θ) = diag{b(2)(θ1), ..., b(2)(θn)}. (2.4)

The log-likelihood (ignoring the term c(y) which is not interesting to us in parameter

estimation) can be written as

l =
n∑
i=1

yi
 pn∑
j=1

fj(Xij)

− b
 pn∑
j=1

fj(Xij)

 . (2.5)

Assume that the additive components belong to the Sobolev space W d
2 ([a, b]). According

to [110], see pages 268-270, there exists B-spline approximation

fnj(x) =

mn∑
k=1

βjkφk(x), 1 ≤ j ≤ p. (2.6)

with mn = Kn + l, where Kn is the number of internal knots and l ≥ d is the degree of the

splines. Generally, it is chosed that d = 2 and l = 4, i.e., cubic splines.

Using the approximation above, [65] proved that fnj well approximates fj in the sense

23

of rate of convergence that

‖fj − fnj‖22 =

∫ b

a
(fj(x)− fnj(x))2dx = O(m−2d

n). (2.7)

Therefore, using the basis approximation, the log-likelihood (ignoring the term c(y) which

is not related to the parameters) can be written as

l =
n∑
i=1

yi
 pn∑
j=1

mn∑
k=1

β0
jkΦk(xij)

− b
 pn∑
j=1

mn∑
k=1

β0
jkΦk(xij)


=

n∑
i=1

[
yi

(
β0TΦi

)
− b
(
β0TΦi

)]
, (2.8)

where β0 and Φi are the vector basis coe�cients and bases de�ned below.

It's also worth noting that the number of bases mn increases as n increases. This

is necessary since [110] mentioned that one need to have su�cient partitions to well ap-

proximate fj by fnj . If we �x mn, i.e. let mn = m0, though in the later part we

will show the approach to estimate the basis coe�cients can have better rate of conver-

gence, the approximation error between the additive components and the spline functions

‖fj(x)−fnj(x)‖2 = [
∫ b
a (fj(x)−fnj(x))2dx]1/2 = O(1) will increase and lead to inconsistent

estimations. Therefore, mn, or more precisely, Kn, need to increase with n.

Our selection and estimation approach will be based on the bases approximated log like-

lihood 2.8. Before starting the methodology, we list the notations and state the assumptions

we need in this paper.

Notations

The design matrix is X(n×pn) = (x1, ...,xn)T .

24

The basis matrix is Φ(n×mnpn) = (Φ1, ...,Φn)T , where

Φi = (φ1(xi1), ..., φmn(xi1), ..., φ1(xipn), ..., φmn(xipn))T .

The true basis parameters

β0 = (β0
11, ..., β

0
1mn , ..., β

0
pn1, ..., β

0
pnmn)T ∈ Rmnpn

We assume the functions f1, ..., fpn are sparse, then β0 is block-wise sparse, i.e. the

blocks β0
1 = (β0

11, ..., β
0
1mn

)T , ...,β0
pn = (β0

pn1, ..., β
0
pnmn)T are sparse.

Let µy be the expectation of y based on the true basis parameters and ε = y − µy.

De�ne the relationship an � bn as there exists a �nite constant c such that an ≤ cbn.

For any function f de�ne ‖f‖2 = [
∫ b
a f

2(x)dx]1/2, whenever the integral exists.

For any two collections of indices S, S̃ ⊆ {1, ..., pn}, the di�erence set is denoted S − S̃.

The cardinality of S is denoted card(S). For any δ ∈ Rmnpn , de�ne δ1, ..., δpn as its sub-

blocks, where δi ∈ Rmn , and de�ne the block-wise support

suppB(δ) = {j ∈ {1, ..., pn}; δj 6= 0}.

De�ne the block-wise cardinality

cardB(δ) = card(suppB(δ)).

25

For S = {s1, ..., sq} ⊆ {1, ..., pn}, de�ne sub-block vector

δS = (δTs1 , ..., δ
T
sq)T

The number of additive components is denoted pn, which is possible to grow faster than the

sample size n. Let T = suppB(β0) and T c be the compliment set. Let card(T) = sn, where

sn is allowed to diverge slower than n.

For each U ⊆ {1, ..., pn} with card(U − T) ≤ m for some m, de�ne

B(U) = {δ ∈ Rmnpn ; suppB(δ) ⊆ U},

B(m) = {B(U); for any U ⊆ {1, ..., pn};Card(U − T) ≤ m}.

Let q be an integer such that q > sn and q = o(n). De�ne

B1 = {β ∈ B : cardB(β) ≤ q},

where B is a su�ciently large, convex and compact set in Rd.

Assumptions

Assumption 2.1 (On design matrix). Using the normalized B-spline bases, the basis ma-

trix Φ has each covariate vector Φj , j = 1, ..., pn bounded, i.e., ∃ cΦ such that ‖Φj‖2 ≤
√
ncΦ,∀j = 1, ...,mn × pn.

Assumption 2.2 (Restricted Eigenvalues RE). For a given sequence Nn, there exist γ0 and

26

γ1 such that

γ0γ
2sn
2 m−1

n ≤
δTΦTΦδ

n‖δ‖22
≤ γ1m

−1
n , (2.9)

where γ2 is a positive constant such that 0 < γ2 < 0.5, for all δ ∈ C, where δT = (δT1 , ..., δ
T
pn)

and

C = {δ ∈ Rpnmn : ‖δ‖2 6= 0, ‖δ‖2 ≤ Nn and cardB(δ) = o(sn)} . (2.10)

Assumption 2.3 (On the exponential family distribution). The function b(θ) is three times

di�erentiable with c1 ≤ b′′(θ) ≤ c−1
1 and |b′′′(θ)| ≤ c−1

1 in its domain for some constant

c1 > 0. For unbounded and non-Gaussian distributed Yi, there exists a diverging sequence

Mn = o(
√
n) such that

sup
β∈B1

max
1≤i≤n

∣∣∣b′ (∣∣∣ΦTi β∣∣∣)∣∣∣ ≤Mn. (2.11)

Additionally the error term εi = yi−µyi 's follow the uniform sub-Gaussian distribution, i.e.,

there exist constants c2 > 0 such that uniformly for all i = 1, .., n, we have

P (|εi| ≥ t) ≤ 2 exp(−c2t2) for any t > 0. (2.12)

Assumption 2.4 (On nonzero function coe�cients). There exist a sequence cf,n that may

tend to zero as n→∞ such that for all j ∈ T , the true nonzero functions fj satisfy

min
j∈T
‖fj‖2 ≥ cf,n.

We note that assumption 2.1 is a standard assumption in high dimensional models, where

the design matrix needs to be bounded from above. assumption 2.2 is a well-known condition

in high-dimension set up on the empirical Gram matrix [15]. It is di�erent than the regular

27

eigenvalue condition, since when n < p, the p × p Gram matrix has rank less than p, thus

it must have zero eigenvalues. Therefore, it is not realistic to bound the eigenvalues away

from zero for all ν ∈ Rpnmn , but we need to restrict to some space C. In our set up, C is the

restricted sub-block eigenvalue condition on sub-blocks of the Gram matrix studied by [9].

Though the lower bound and upper bound are imposed on the �xed design matrix, we gave

a derivation in Appendix A that this condition holds when X is drawn from a continuously

di�erentiable density function which is bounded away from 0 and in�nity on the domain of

X. This result is similar to the results in [65].

Assumption 2.3 is a standard assumption to generalized models. 2.11 and 2.12 together

controls the tail behavior of the responses, and as mentioned by [52], ensures a general and

broad applicability of the method. Analogous assumptions to 2.11 can also be seen in [50] and

[11]. Speci�cally, for example, we have b(θ) = log(1 + exp(θ)). It's easy to verify that both

its second and third derivatives have their absolute values all bounded from above by 1. For

equation (2.11), observe that the �rst derivative is the mean of Bernoulli distribution, and

thus it is also bounded. The error term is also bounded by 1, therefore, taking c2 = log(2)

will make equation (2.12) satisfy all logistic regression cases. Moreover, bounded second

moment in logistic regression ensure that there exist ε such that the probability pi of each

observation satis�es ε < p < 1− ε.

Assumption 2.4 appears often in variable selection methodologies, because intuitively

a nonzero function or covariate has to contribute enough to the response in order to be

considered nonzero.

Remark 2.1. In assumption 2.2, δ = β − β0 is the di�erence vector between a β and the

28

true coe�cients β0, thus we can view C as a restricted neighborhood of β0, i.e.,

NRE
β0

= {β : ‖β − β0‖2 ≤ Nn, mn × cardB(δ) ≤ n∗ = o(n)} .

If β ∈ NRE
β0

, then by assumption 2.2 we have

(β − β0)TΦTΦ(β − β0)

n‖β − β0‖22
≥ γ0γ

2sn
2 m−1

n .

This, together with the bounded variance assumption in assumption 2.3, ensures the re-

stricted strong convexity of the target function, i.e., for a β∗ ∈ NRE
β0

, we have

(β∗ − β0)TΦTΣ(β)Φ(β∗ − β0)

n‖β∗ − β0‖22
≥ γ0c1γ

2sn
2 m−1

n , ∀ β ∈ NRE
β0

. (2.13)

2.3 Methodology & Theoretical Properties

We propose a two step procedure for selecting high dimensional additive models with gen-

eralized link that has improved convergence rates compared to single stage selection.

2.3.1 First Step: Model Screening

The objective of this step is to recover the true support T of the additive components. Let

T̂ be a random support given by a model selection procedure and |T̂ | be the number of

variables selected. A good model selection procedure, especially our second stage estimation

with good convergence rates, should satisfy the common screening consistency conditions

T ⊂ T̂ , |T̂ | = O(sn), w.p. converging to 1. (2.14)

29

There have been many variable selection penalization [49, 135, 50, 48] in generalized linear

models and [65] in linear additive models this condition holds. Speci�cally, [50] satis�es the

requirements in 2.14 in generalized linear models and [65] also satis�es 2.14 in additive

models with identity link function. In this paper, we show that under mild conditions, by

maximizing the log-likelihood with group lasso-like penalization, we can select a model that

satis�es 2.14. We also provide a rate of convergence of this �rst step selection.

De�ne the objective function to be

L(β;λn1) = − 1

n

n∑
i=1

[
yi

(
βTΦi

)
− b
(
βTΦi

)]
+ λn1

pn∑
j=1

‖βj‖2. (2.15)

Let β̂ be the optimizer for 2.15, i.e.

β̂ = arg min
β∈Rpnmn

L(β;λn1).

Let T̂ = suppB(β̂).

The objective function is negative log-likelihood plus the group lasso penalization term,

and the parameters are estimated as the minimizers of the objective function. Here the

negative log likelihood function is averaged among the n observations to ensure that it is

under the same scale as the penalization function. An analogy is to omit the 1/n and

consider the re-scaling in the choice of λ. Similarly, since we have same group sizes, instead

of multiplying the group size to each penalty term, we consider it in the choice of λ. Two

analogies of the objective functions are

L(β;λn1) = −
n∑
i=1

[
yi

(
βTΦi

)
− b
(
βTΦi

)]
+ λn1

pn∑
j=1

‖βj‖2

30

and

L(β;λn1) = − 1

n

n∑
i=1

[
yi

(
βTΦi

)
− b
(
βTΦi

)]
+ λn1

pn∑
j=1

√
mn‖βj‖2

[148, 93]. Since they only di�er in a multiplier, we can suppress these terms into the selection

of λ, which gives the target function we used.

With this group lasso type penalized log-likelihood, the selected model has the following

properties.

Theorem 2.1. Consider the model T̂ obtained by minimizing 2.15. Under assumptions 1-4,

for some constant C and any diverging sequence γn > 0, choose the regularization parameter

λbn1 = C
√
mn

√
γn + log(pnmn)

n

for bounded response (i.e., |yi| < c), and the regularization parameter

λubn1 =
√
mnγn

√
log(pnmn)

n

for unbounded sub-Gaussian response, as the sample size increases,

(i) With probability tending to 1,

|T̂ | = O(sn)

(ii) With probability tending to 1,

pn∑
j=1

∥∥∥β0
j − β̂j

∥∥∥2

2
=OP

(
snγ
−2sn
2

m2
n log(pnmn)

n

)
+O(λbn1

2
m2
nsnγ

−2sn
2)

+O(s2
nm

1−2d
n γ−2sn

2)

31

for the bounded response and

pn∑
j=1

∥∥∥β0
j − β̂j

∥∥∥2

2
=OP

(
snγ
−2sn
2 γn

m2
n log(pnmn)

n

)
+O(λubn1

2
m2
nsnγ

−2sn
2)

+O(s2
nm

1−2d
n γ−2sn

2)

for any diverging sequence γn and unbounded sub-Gaussian response.

(iii) If snγ
−2sn
2 m2

n log(pnmn)/n << cf,n (snγ
−2sn
2 m2

nγn log(pnmn)/n << cf,n in the un-

bounded case), γ−2sn
2 m2

nλ
2
n1sn/mn << cf,n and s2

nm
1−2d
n γ−2sn

2 << cf,n, with prob-

ability tending to 1, all nonzero coe�cients are selected.

The proof of this theorem is given in Appendix A.

Remark 2.2. To avoid estimability issues, here the constants C are selected to be large

enough such that the number of parameters to be estimated, i.e., the number of selected

nonzero functions |T̂ | multiplied by the number of basis function mn should be less than or

equal to n. Moreover, considering the multicollinearity in the design matrix, the constants

are chosen such that mn × |T̂ | = o(n).

Remark 2.3. The additional term γn in the convergence rate is due to unboundedness

nature of the response variable rather due to non-linear link function.

Remark 2.4. For the special case, linear (Gaussian) additive model our results coincides

with the results in [65]. The di�erence is that we study a �xed design with assumptions on

the eigenvalues of the design matrix and they studied a random design with assumption on

the distribution of the design matrix. We have put further assumption on the eigenvalue

due to the divergence of sn, the number of nonzero variables. In the special case that sn

32

is �xed, our assumptions coincides with the assumptions in [65]. Another di�erence is that

we include a diverging term γn that establishes the rate of convergence with probability

converging to one.

There are three terms in the convergence rate: the �rst term comes from the regression

it self, the second term comes from shrinkage, and the third term comes from the spline

approximation error.

Also noting that in generalized linear models, each additive component is a simple mul-

tiplication, i.e. mn = 1. Moreover, we don't have the spline approximation error. So the

following corollary is a direct result from theorem 2.1.

Corollary 2.1. In generalized linear models, under the assumptions in theorem 2.1, consider

the model T̂ obtained by minimizing 2.15, for some constant C and any diverging sequence

γn > 0, choose the regularization parameter

λbn1 = C

√
γn + log(pn)

n

for bounded response (i.e., |yi| < c), and the regularization parameter

λubn1 = γn

√
log(pn)

n

for unbounded sub-Gaussian response, we have

(i) With probability tending to 1, we have

|T̂ | = O(sn)

33

(ii) With probability tending to 1, we have

∥∥∥β0 − β̂
∥∥∥2

2
= OP

(
sn

log(pn)

n

)
+O(λbn1

2
sn)

for the bounded response case and

∥∥∥β0 − β̂
∥∥∥2

2
= OP

(
snγn

log(pn)

n

)
+O(λubn1

2
sn)

(iii) If sn log(pn)/n << cf,n (snγn log(pn)/n << cf,n in the unbounded case), and

λ2
n1sn << cf,n, with probability tending to 1, all nonzero coe�cients are selected.

Let f̂nj(x) =
∑mn
k=1 β̂jkφk(x). We can also state the results of the �rst selection step in

terms of functions, which is a direct consequence of theorem 2.1.

Theorem 2.2. Consider the model T̂ obtained by minimizing 2.15. Under Assumptions 1-4,

for some constant C and any diverging sequence γn > 0, choose the regularization parameter

λbn1 = C
√
mn

√
γn + log(pnmn)

n

for bounded response (i.e., |yi| < c), and the regularization parameter

λubn1 =
√
mnγn

√
log(pnmn)

n

for unbounded sub-Gaussian response, we have

(i) With probability tending to 1, we have

|T̂ | = O(sn)

34

(ii) With probability tending to 1, we have

pn∑
j=1

∥∥∥fj − f̂nj∥∥∥2

2
=OP

(
snγ
−2sn
2

mn log(pnmn)

n

)
+O(λbn1

2
mnsnγ

−2sn
2)

+O(s2
nm
−2d
n γ−2sn

2)

for the bounded response case and

pn∑
j=1

∥∥∥fj − f̂nj∥∥∥2

2
=OP

(
snγ
−2sn
2 γn

mn log(pnmn)

n

)
+O(λubn1

2
mnsnγ

−2sn
2)

+O(s2
nm
−2d
n γ−2sn

2)

for any diverging sequence γn.

(iii) If snmnγ
−2sn
2 log(pnmn)/n << cf,n (snmnγ

−2sn
2 γn log(pnmn)/n << cf,n in the un-

bounded case), λ2
n1snmnγ

−2sn
2 << cf,n and s2

nm
−2d
n γ−2sn

2 << cf,n, with probability

tending to 1, all nonzero coe�cients are selected.

The proof of this theorem is given in Appendix A.

Remark 2.5. The two theorems together tell us under Assumptions 1-4, by choosing proper

γn, the functions selected by minimizing the �rst target function satisfy

T ⊂ T̂ and |T̂ | = O(sn)

with probability converging to 1, i.e. we obtained screening consistency.

35

2.3.2 Second Step: Post Selection

After we have a �good� initial estimator, we use the adaptive group lasso to recover the true

model [65] and we are able to achieve selection consistency in probability with some mild

assumptions. Adaptive group lasso idea is similar to adaptive lasso [155] which enjoys better

theoretical properties than simple lasso. [22] and [34] studied rate of convergence and other

asymptotic properties of the adaptive lasso estimator. De�ne the objective function to be

La(β;λn2) = − 1

n

n∑
i=1

[
yi

(
βTΦi

)
− b
(
βTΦi

)]
+ λn2

pn∑
j=1

wnj‖βj‖2, (2.16)

where the weights depend on the screening stage group lasso estimator

wnj = +


‖β̂j‖−1

2 , if ‖β̂j‖2 > 0

∞, if ‖β̂j‖2 = 0

. (2.17)

Let β̂AGL be the optimizer for 2.16, i.e.

β̂AGL = arg min
β∈Rmnp

La(β;λn2).

For the choice of weights, the �rst stage estimators need not to be necessarily the solution

of group lasso, rather more general that satisfy following assumptions.

Assumption 2.5. The initial estimator β̂ is rn consistent at zero, i.e.,

rn max
j∈Tc

‖β̂j − β0
j‖2 = OP (1), (2.18)

36

and there exists a constant c3 such that

P
(

min
j∈T
‖β̂‖2 ≥ c3bn1

)
→ 1, (2.19)

where bn1 = minj∈T ‖β0
j‖2.

Assumption 2.6. Let s∗n = pn − sn be the number of nonzero components. The tuning

parameter λn2 satis�es

√
log(s∗nmn)

n1/2λn2rn
+

sn

λn2rnm
d+1/2
n

+
λn2rn

γn
√
sn/n

= o(1) (2.20)

for any diverging sequence γn.

assumption 2.5 gives the restrictions on the initial estimator. We don't require our initial

estimator to be the group lasso estimator, but any initial estimator satisfying assumption 2.5

will be able to make the adaptive group lasso estimator consistently selects and estimates

the true nonzero components. However, the rate of convergence of the adaptive group lasso

estimator depends on the rate of convergence of the initial estimator, which is assumed to

be rn in assumption 2.5. Moreover, the initial mustn't have a 0 estimation for the nonzero

components, otherwise it will mislead the results in the proceeding step. assumption 2.6

put restrictions on the tuning parameter λn2 in the adaptive group lasso step. The �rst two

terms gives the upper bound for λn2 and the third term gives the lower bound. Only with

�appropriate" choice of λn2 we can have the selection consistency and estimation consistency.

It worth noting that if we take the group lasso estimator as our initial estimator, as-

sumptions 5 and 6 are automatically satis�ed. Speci�cally, a trivial choice of rn would

37

be

rn = O−1
P

(
√
snγ
−sn
2

mn
√

log(pnmn)√
n

)
+O−1(λbn1mn

√
snγ
−sn
2) +O−1(snm

0.5−d
n γ−sn2)

for the bounded response and

rn = O−1
P

(
√
snγ
−sn
2
√
γn
mn
√

log(pnmn)√
n

)
+O−1(λubn1mn

√
snγ
−sn
2)+O−1(snm

0.5−d
n γ−sn2)

for the unbounded case and any diverging sequence γn, since we observe that for j ∈ T c,

β̂j is either estimated as zero, or has a rate of convergence to βj bounded by the rate of

convergence in theorem (2.1). For equation (2.19), observe that the rate of convergence of the

group lasso estimator is higher order in�nitesimal of the minimal signal strength of nonzero

coe�cients, thus taking c3 = 0.5 is su�cient. In assumption 6, with our trivial choice of rn,

we are able to �nd a range of tuning parameters that satisfy equation (2.20). Therefore, it's

reasonable to take the group lasso estimator as an initial estimator for the adaptive group

lasso.

Let the notation β̂n
0
= β0 denote that the sign of each β̂j and β

0
j are either both zero

or both nonzero. Then we have the following asymptotic properties for the adaptive group

lasso estimator.

Theorem 2.3. Assume assumptions 1-6 hold, consider the estimator β̂AGL by minimizing

2.16, we have

(i) If fc,n >>
√
sn/n, the adaptive group lasso consistently selects the true active predic-

38

tors with probability converging to 1, i.e.,

P
(
β̂AGL

0
= β0

)
→ 1. (2.21)

(ii) The rate of convergence of the adaptive group lasso estimator is given by

∑
j∈T
‖β̂AGLj − β0

j‖
2
2 =Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n)

+O(λ2
n2m

2
nsnγ

−2sn
2)

for the bounded response case and

∑
j∈T
‖β̂AGLj − β0

j‖
2
2 =Op

(
γnsnγ

−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n)

+O(λ2
n2m

2
nsnγ

−2sn
2)

for the unbounded response case, where γn is any diverging sequence.

The proof of this theorem is given in Appendix A. It's interesting to compare the adaptive

group lasso results with [138], who studied the asymptotic properties of the adaptive group

lasso for generalized linear models. It worth noting that we considered a more general case

by allowing the group size to diverge with n, and the eigenvalue to be bounded by sequences

that depending on n on a broader domain. In the special case that corresponds to their

assumptions, our results (Theorem 4.2) coincides with their results. These results are also

true in the special case: generalized linear models. The special case is given in the following

corollary.

39

Corollary 2.2. Consider the generalized linear models with the assumptions same as in

theorem 2.3, but with λn2 satis�es

√
log(s∗n)

n1/2λn2rn
+

λn2rn

γn
√
sn/n

= o(1),

we have

(i) If fc,n >>
√
sn/n, the adaptive lasso consistently selects the true active predictors

with probability converging to 1, i.e.,

P
(
β̂AL

0
= β0

)
→ 1, (2.22)

where β̂AL is the adaptive lasso estimator corresponding to the adaptive group lasso

estimator in the nonparametric set up.

(ii) The rate of convergence of the adaptive lasso estimator is given by

‖β̂AL − β0‖22 = OP

(
sn

log(sn)

n

)
+O(λ2

n2sn) (2.23)

for the bounded response case and

‖β̂AL − β0‖22 = OP

(
γnsn

log(sn)

n

)
+O(λ2

n2sn) (2.24)

for the unbounded response case, where γn is any diverging sequence.

Similar to the group lasso estimator, we also derive results for the non-parametric function

estimation.

40

Let f̂AGLj(x) = Φj(x)β̂AGLj , then we have the following results.

Theorem 2.4. Assume assumptions 1-6 hold, consider the estimator β̂AGL by minimizing

2.16, we have

(i) The adaptive group lasso consistently selects the true active predictors in probability,

i.e.,

P
(
‖f̂AGLj(x)‖2 > 0, j ∈ T and ‖f̂AGLj(x)‖2 = 0, j ∈ T c

)
→ 1. (2.25)

(ii) The rate of convergence of the adaptive group lasso estimator is given by

∑
j∈T
‖f̂AGLj − fj‖22 =Op

(
snγ
−2sn
2 mn

log(snmn)

n

)
+O(s2

nγ
−2sn
2 m−2d

n)

+O(λ2
n2mnsnγ

−2sn
2)

for the bounded response case and

∑
j∈T
‖f̂AGLj − fj‖22 =Op

(
γnsnγ

−2sn
2 mn

log(snmn)

n

)
+O(s2

nγ
−2sn
2 m−2d

n)

+O(λ2
n2mnsnγ

−2sn
2)

for the unbounded response case, where γn is any diverging sequence.

The proof of this theorem is given in Appendix A. The theorems in this section ensures

that under mild assumptions, we are able to recover the true model with probability tend-

ing to 1 and achieves a rate of convergence better than the initial estimator. Particularly,

if the restrictions of n, pn,mn and sn in the previous section satisfy, the group lasso esti-

41

mator is actually a good initial estimator. Therefore, this two step procedure actually is a

complete procedure that gives us a way to do this model selection and estimation on any high-

dimensional generalized additive model. However, the procedure is not practically complete

without proper selection of the tuning parameter λ. Therefor, we propose a theoretically

validated tuning parameter selection in the next section.

The convergence rate for the group lasso estimator is

pn∑
j=1

∥∥∥fj − f̂nj∥∥∥2

2
= OP

(
snγ
−2sn
2

mn log(pnmn)

n

)
+O(λbn1

2
mnsnγ

−2sn
2)+O(s2

nm
−2d
n γ−2sn

2),

while for the adaptive group lasso estimator is

∑
j∈T
‖f̂AGLj−fj‖22 = Op

(
snγ
−2sn
2 mn

log(snmn)

n

)
+O(λ2

n2mnsnγ
−2sn
2)+O(s2

nγ
−2sn
2 m−2d

n)

The regression term di�ers by the size of candidate set. The price we pay by not knowing

the true set is log(pmn) in the group lasso step, and becomes log(snmn) in the adaptive

group lasso step, since the initial estimator have recovered a super set of the true set with

cardinality O(sn). The penalty term's di�erence appears on the tuning parameter, where

λn2 is of a smaller order than λn1 with a multiplier of r−1
n . According to our choice of λn2,

it has a trivial upper bound which is of order O(λ2
n1). Therefore, the tuning parameter part

in the penalty convergence rate term becomes quadratic. The approximation error term is

not a�ected by the adaptive group lasso step.

The adaptive group lasso is important in two reasons: �rst, with probability tending to

1, this is enable to select the true nonzero components accurately, which is not always the

case in group lasso; second, the rate of convergence of the adaptive group lasso estimator is

42

faster than the rate of convergence of the group lasso estimator. The di�erence in the leading

terms are in the order of r−1
n . This makes the adaptive group lasso estimator to achieve a

better error with the same sample size, or the same error with a smaller sample size.

2.4 Tuning Parameter Selection

One important issue in penalized methods is choosing a proper tuning parameter. It is known

that the selection results are sensitive to the choice of tuning parameter. The theoretical

results only provide the order of the tuning parameter, which is not very useful in practice.

The reason is that the order of a sequence describes the limit properties when n goes to

in�nity. In reality, our n is a �xed number, so we must have a practical instruction of

selecting the tuning parameter.

Despite it's importance, there isn't much development for tuning parameter selection in

the high dimensional literature. The conventional tuning parameter selection criteria tend

to select too many predictors, thus is hard to reach selection consistency. Another reason,

especially in group lasso problems, is that the solution path of group lasso is piece-wise

nonlinear, which makes the testing procedure even harder. Here, we propose the generalized

information criterion (GIC) [151, 52] that supports consistent model selection.

Let β̂
λ
be the adaptive group lasso solution with tuning parameter λ. The generalized

information criterion is de�ned as

GIC(λ) =
1

n
{D(µ̂λ;Y) + an|T̂λ|}, (2.26)

where D(µ̂λ;Y) = 2{l(Y ;Y) − l(µ̂λ;Y)}. Here the l(µ;Y) is the log-likelihood function

43

in equation (2.3) expressed as a function of the expectation µ and Y . l(Y ;Y) represents

the saturated model with µ = Y , and µ̂λ = b′(
∑pn
i=1 f̂

λ
j (xij)) = b′(φβ̂

λ
) is our estimated

expectation when the tuning parameter is λ. The hyper-parameter an here is chosen to

penalize the size of the model. Using GIC, under proper choice of an, we are able to select

all active predictors consistently. The result is given in the following theorem.

The importance of the following consistency theorem is that the result in the previous

section guarantees that with probability converging to 1, there exists a λn0 that will be able

to identify the true model. Therefore, a good choice of an will be able to identify the true

model with probability converging to 1. For a support A ⊂ {1, ..., p} such that |A| ≤ q,

where q ≥ sn and q = o(n), let

I(β(A)) = E [log(f∗/gA)] =
n∑
i=1

[
b′(Φiβ

0)ΦTi (β0 − β(A))− b(ΦTi β
0) + b(ΦTi β(A))

]
(2.27)

be the Kullback-Leibler (KL) divergence between the true model and the selected model,

where f∗ is the density of the true model, and gA is the density of the model with population

parameter β(A). Let β∗(A) be the model with the smallest KL divergence over all models

with support A, and let

δn = inf
A 6⊃T
|A|≤q

1

n
I(β∗(A))

Here we note that if T ⊂ A, the minimizer is automatically β0 and thus the KL-divergence

is zero. For an under�tted models T 6⊂ A, δn describes how easily one can distinguish the

models from the true model by measuring the minimum distance from the true model and

the �best estimated models�. Later in the theorems we will need to assume lower bounds on

δn so that we will be able to reach our consistency results. The following theorem proves

44

that GIC works under mild conditions.

Theorem 2.5. Under assumptions 1-6, suppose that δnK−1R−1
n → ∞, nδns−1

n a−1
n → ∞

and anψ−1 → ∞, where Rn and ψn are de�ned in lemma A.3 and lemma A.4, we have, as

n→∞,

P{ inf
λ∈Ω−∪Ω+

GICan(λ) > GICan(λn0)} → 1, (2.28)

where

Ω− = {λ ∈ [λmin, λmax] : Tλ 6⊃ T},

Ω+ = {λ ∈ [λmin, λmax] : Tλ ⊃ T and Tλ 6= T},

where Tλ is the set of predictors selected by tuning parameter λ. λmin can be chosen as the

smallest λ such that the selected model has size q that satis�es the theorem assumption, and

λmax simply corresponds to a model with no variables.

The proof of this theorem is given in Appendix A. In practice, a choice of an is proposed

to be mn log(log(n)) log(pn). We have

Corollary 2.3. Under assumptions 1-6, with choice of an = mn log(log(n)) log(pn), we have

P{ inf
λ∈Ω−∪Ω+

GICan(λ) > GICan(λn0)} → 1.

In our two step procedure, there are two tuning parameters to be selected: λn1 in the

group lasso step and λn2 in the adaptive group lasso step. The choice of λn2 is of more

importance, since λn1 only serve as the parameter in screening. As long as we have a

screening step that satis�es 2.14, we are ready for the adaptive group lasso step. To be

simple, we propose to use GIC for selecting both λn1 and λn2. As a result of the previous

45

theorem, we are able to reach selection consistency.

2.5 Other Possible Penalty

In this section we brie�y discussed other possible penalty functions in the context of high

dimensional generalized additive models. In particular we consider the best subset selection,

which corresponds to a L0 penalty, and the best subset with shrinkage which corresponds

to a combination of L0 and Lq, 0 < q ≤ 2 penalty. The procedures have many practical

advantages such as dealing with correlated variables, predictive power, better estimation

errors etc, these are not well studied neither numerically nor theoretically due to various

reasons. The main drawback is the non-convexity of the loss function, thus an algorithm

is di�cult to build. [85] studied the L0 + L1 penalty for linear model and support vector

machine. They also proposed to use the mixed-integer programming (MIP) method to solve

the problem. Recently a few other works on this have brought important development. [92]

studied the linear model with these penalties. They gave the algorithm and discussed the

advantages under the low signal-to-noise ratio. In this section, we discusses these penalties

under the additive set up and compare with our proposed methods.

2.5.1 The L0 Norm Penalty

The L0 penalty instead of L1 penalty provides an unbiased estimator, thus we don't have

the error (bias) from shrinkage. Consider the problem of optimizing

β̂ = arg min
β

‖y − φβ‖22 + λ

p∑
j=1

1‖βj‖2 6=0, (2.29)

46

where y is n × 1 continuous response, φ is n × (pnmn) basis matrix, and β is (pnmn) × 1

coe�cient vector.

The L0 penalty penalizes the number of predictors being selected. This formulation is

equivalent to

β̂ = arg min
β

‖y − φβ‖22, s.t.
p∑
j=1

1‖βj‖2 6=0 ≤ k (2.30)

for some k, which is related to the selection of λ.

Theorem 2.6. Let T̂ = {j : ‖β̂j‖2 6= 0}, i.e. the indices of predictors that are nonzero

in the estimated model, and k̂ = |T̂ | =
∑p
j=1 1‖β̂j‖2

6= 0, i.e., the number of nonzero

predictors in the estimated model. If the λ is chosen such that k̂ ≥ sn or k is chosen such

that sn ≤ k = O(sn), where sn is the number of nonzero predictors in the true parameter

coe�cients, we have

i) The rate of convergence

p∑
j=1

‖β̂j − β0
j‖

2
2 = Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n).

ii) If furthermore snmn log(pnmn)/λ → 0 and ns2
nm
−2d
n /λ → 0, then with probability

tending to 1, we have

|k̂ − sn| → 0 as n→ 0.

The proof of this theorem is given in Appendix A. Our group lasso type penalty has rate

of convergence

‖β̂ − β0‖22 = Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n) +O(λ2
n2m

2
nsnγ

−2sn
2).

(2.31)

47

The di�erence is because there is no shrinkage from the penalty in the L0 norm, thus we

don't have the error term from shrinkage.

2.5.2 The L0 and L1 Norm Penalty

Consider the problem of optimizing

β̂ = arg min
β

‖y − φβ‖22 + λ1

p∑
j=1

‖βj‖2 + λ2

p∑
j=1

1‖βj‖2 6=0, (2.32)

where y is n × 1 continuous response, φ is n × (pnmn) basis matrix, and β is (pnmn) × 1

coe�cient vector.

The L0 penalty penalizes the number of predictors being selected. This formulation is

equivalent to

β̂ = arg min
β

‖y − φβ‖22 + λ1

p∑
j=1

‖βj‖2, s.t.
p∑
j=1

1‖βj‖2 6=0 ≤ k (2.33)

for some k, which is related to the selection of λ2.

In this target function, the selection is done by the L0 penalty, and we choose λ1 to be

such that the L1 penalty is dominated by the L0 penalty, i.e., the L1 penalty does not do any

penalization on top of k predictors, but just provides a shrinkage estimator. Therefore, the

estimator will perform well in both selection and estimator, since it possess the advantages

of shrinkage estimators as well. Similar to theorem 2.6, we have the following theorem.

Theorem 2.7. Let T̂ = {j : ‖β̂j‖2 6= 0}, i.e. the indices of predictors that are nonzero

in the estimated model, and k̂ = |T̂ | =
∑p
j=1 1‖β̂j‖2

6= 0, i.e., the number of nonzero

predictors in the estimated model. If the λ2 is chosen such that k̂ ≥ sn or k is chosen such

48

that sn ≤ k = O(sn), where sn is the number of nonzero predictors in the true parameter

coe�cients, and λ1 is chosen such that no more coe�cients are shrunk to zero on top of the

L0 penalty, we have

i) The rate of convergence

p∑
j=1

‖β̂j − β0
j‖

2
2 =Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n)

+OP (γ−2sn
2 m2

nλ
2
n1sn).

ii) If furthermore snmn log(pnmn)/λ2 → 0, ns2
nm
−2d
n /λ2 → 0 and

λ1s
3/2
n mn log(pnmn)/λ2 → 0, then with probability tending to 1, we have

|k̂ − sn| → 0 as n→ 0.

The proof of this theorem is given in Appendix A.

Remark 2.6. So far, there hasn't been any method of selecting the tuning parameters that

has a theoretical base to ensure the selection consistency. The most common way is to use

cross-validation and generalized cross-validation type of methods [92]. Selecting a consistent

tuning parameter with some criterion in this case can be a future research interest.

2.6 Numerical Properties

In this section we conduct various empirical exercises to illustrate our theoretically guided

method in practice. To optimize the group lasso problems, we apply the algorithm named

groupwise-majorization-descent (GMD) by [147], which approximates the convex log-likelihood

49

part with second order Taylor expansion and solve it with a quadratic function's closed form

solution, wrapped in a block coordinate descent algorithm. We made the algorithm in

GAM available as a python class, which is available at https://github.com/KaixuYang/

PenalizedGAM.

As smoothness is a heavy concern in practical GAM computations, we bring the P-spline

[42] penalty into the model while implementing the model numerically. The P-spline penalty

controls the di�erence between coe�cients of consecutive basis functions, and thus yields

smoother spline functions.

Speci�cally, let l(β;X,y) be the loss function in section 2.3, either the group lasso loss

function or the adaptive group lasso loss function. The loss function with smoothness penalty

is de�ned as

ls(β;X,y) = l(β;X,y) + λs

p∑
j=1

βTj Dβj , (2.34)

where

D =



1 −1 0 .

−1 2 −1 .

0 −1 2 .

. . . .


A slightly modi�ed soft-thresholding function is used to handle the combination of group

lasso penalty and the smoothness penalty.

2.6.1 Simulated Examples

Here we undertake extensive simulation study to see the performance of our proposed two

step selection and estimation approach. We investigate the performance of both uncorre-

50

https://github.com/KaixuYang/PenalizedGAM
https://github.com/KaixuYang/PenalizedGAM

lated and correlated covariates and we consider di�erent sample sizes and varying number of

predictors in each case. In this section, we will consider three di�erent types of generalized

models: the logistic regression (Bernoulli distribution), the Poisson regression (Poisson dis-

tribution) and the Gamma regression (Gamma distribution). Through the whole subsection,

we choose l = 4 which implies a cubic B-spline. We choose mn = 9 for most cases unless

stated otherwise. The choice of l andmn implies that there aremn−l = 5 inner knots, which

are evenly placed over the empirical percentiles of the training data. In this subsection, we

will compare the performance of the two-step approach with the Lasso [126], the GAMBoost

[134] and the GAMSEL [27]. We implement our two-step approach with our own package

mentioned above. The Lasso is implemented with the scikit-learn package in python. The

GAMBoost and GAMSEL methods are implemented using their packages in R. In the group

lasso step, we choose the tuning parameter corresponding to ng variables, where ng is the

largest number such that ng ×mn <= n. This choice prevents estimation issues when we

have too many parameters. The GIC procedure is applied in the adaptive group lasso step

to select tuning parameters. In the GIC procedure, the tuning parameter selection criterion

is de�ned as

GIC(λ) =
1

n
{D(µ̂λ;Y) + an|T̂ |}. (2.35)

From our results in the previous section, we choose an = (log log n)(log p)mn.

2.6.1.1 Logistic Regression

First, we consider the logistic regression

yi ∼ Bernoulli(θi), i = 1, ..., n, (2.36)

51

where θi = logit−1[α+
∑p
j=1 fj(xij)] and xij is the (i, j)− th element of the design matrix

X.

Example 2.1. We �rst consider the logistic additive model on an independent design matrix

case, where each predictor in X is independent of other predictors. Each element of the design

matrix is generated from a Unif(−1, 1) distribution. We consider 3 di�erent cases with all n,

p and s increasing, which coincides with our theory in section 2.3. Speci�cally, the three cases

are: n = 100, p = 200 and s = 3; n = 200, p = 500 and s = 4; n = 300, p = 3000 and s = 5.

A testing sample of size 1000 is generated independently to measure the performance. For all

three cases, we have nonzero functions f1(x) = 5 sin(3x), f2(x) = −4x4+9.33x3+5x2−8.33x

and f3(x) = x(1 − x2) exp(3x) − 4. These three general terms include a periodic term, a

polynomial term and an exponential term. The last two cases have one more function of

f4(x) = 4x, a linear term. Finally, the last case has an addition f5(x) = 4 sin(−5 log(
√
x+ 3),

a complicated composite function. Without loss of generality, the �rst s functions are set

to be nonzero. The constants in the functions are to ensure similar signal strength and

smoothness. The other functions fs+1(x) = ... = fp(x) = 0.

Our results focus on NV, the average number of variables being selected; TPR, the

true positive rate (what percent of the truly nonzero variables are selected); FPR, the false

positive rate (where percent of the zero variables are selected); and PE, the prediction error.

In the logistic regression problem, our metric to measure the prediction error will be the

misclassi�cation rate, which is also the measurement in [27]. The simulation results are

averaged over 100 repetitions.

The simulation results are summarised in table 2.1 on page 54. Compared with the

classical method Lasso and the existing GAM methods GAMSEL and GAMBoost, the two-

step approach performs the best in terms of both variable selection and estimation in the

52

high-dimensional set up. The two-step approach performs signi�cantly better in prediction

errors. In variable selection, the two-step approach selects the closest number of variables to

the ground truth, while keeping the TPR high and FPR low. The existing GAM algorithms

have similar TPR but includes too many false positives. The existing GAM algorithms were

not intended for very high-dimensional, and thus fails to handle the variable selection and

prediction at the same time. As mentioned in [46], the tuning parameter in the Lasso for

consistent variable selection is not the same as the tuning parameter for best prediction. We

can see this may also be true for the group lasso case, since the estimated nonzero coe�cients

in the group lasso step are much over-penalized. This also proves that an adaptive group

lasso step is important, in terms of both variable selection and prediction.

53

54

n=100
p=200
s=3

n=200
p=500
s=4

n=300
p=3000
s=5

NV TPR FPR PE NV TPR FPR PE NV TPR FPR PE

Two-step
3.56
(1.19)

.920
(.146)

.004
(.005)

.148
(.027)

4.82
(1.02)

.989
(.057)

.002
(.002)

.128
(.018)

4.92
(0.535)

.968
(.086)

.000
(.000)

.122
(.018)

Lasso
30.0
(17.9)

.920
(.144)

.138
(.090)

.249
(.041)

64.7
(19.2)

.978
(.452)

.122
(.039)

.229
(.024)

85.2
(68.3)

.816
(.243)

.027
(.022)

.211
(.024)

GAMSEL
10.1
(11.1)

.820
(.209)

.039
(.055)

.241
(.035)

14.0
(12.6)

.943
(.112)

.021
(.025)

.214
(.023)

33.9
(27.9)

.986
(.065)

.010
(.009)

.208
(.016)

GAMBoost
44.7
(4.84)

.738
(.055)

.213
(.025)

.231
(.027)

85.4
(6.88)

1.00
(.000)

.164
(.014)

.196
(.018)

138
(9.64)

.996
(.028)

.044
(.003)

.186
(.015)

Table 2.1: Simulation results for the two-step approach compared with the Lasso, GAMSEL and GAMBoost in the three cases
of example 2.1. NV, average number of the variables being selected; TPR, the true positive rate; FPR, the false positive rate;
and PE, prediction error (here is the misclassi�cation rate). Results are averaged over 100 repetitions. Enclosed in parentheses
are the corresponding standard errors.

In practice, the predictors are sometimes correlated to each other. It's interesting to see

how well the procedure performs in correlated predictor cases. Therefore, we also perform

the same procedure on correlated predictors.

Example 2.2. In this example, we study the case where the design matrix contains corre-

lated predictors. We generate the data in the following way. First we generate each element

of Xn×p independently from Unif(−1, 1). Then we generate u from Unif(−1, 1), indepen-

dently from Xn×p. Then all columns of X are transformed using Xj = (Xj + tu)/
√

1 + t2.

This procedure controls the correlation among predictors through t such that corr(xik, xij) =

t2/(1 + t2). Here the simulation is run on n = 100, p = 200 and s = 3. All other set-ups are

kept the same as example 2.1. In our example, we choose t =
√

3/7, where the correlation

is 0.3 and t =
√

7/3, where the correlation is 0.7.

The results are summarised in table 2.2 on page 56. In the correlated cases, all four

methods are in�uenced, more or less. In terms of variable selection, the two-step approach

still has the closest number of selected variables. The methods behave di�erently in TPR and

FPR. GAMBoost tends to have greater numbers in both TPR and FPR, while GAMSEL

tends to have both lower numbers. The two-step approach balances between those two

methods, while maintaining the smallest FPR among all methods. In terms of the prediction

error, the two-step approach signi�cantly beats the other methods. The results show the

good performance of the two-step approach, and again emphasize that the adaptive group

lasso step is necessary for better selection and estimation.

This underselection for correlated predictors has been an issue for the lasso and adaptive

lasso methods. For nonparametric additive models, [65] found the same issue when dealing

with correlated predictors. Also the NIS proposed by [45] did not perform well in correlated

predictors compared to uncorrelated case. Our two-step approach is not a�ected too much

55

Cor=0.3 Cor=0.7
NV TPR FPR PE NV TPR FPR PE

Two-step
2.82
(.994)

.753
(.229)

.003
(.004)

.171
(.033)

2.05
(.829)

.557
(.170)

.002
(.003)

.174
(.022)

Lasso
37.0
(38.2)

.690
(.259)

.176
(.194)

.312
(.069)

21.9
(37.9)

.327
(.291)

.103
(.193)

.288
(.047)

GAMSEL
15.4
(16.0)

.573
(.285)

.069
(.079)

.342
(.065)

12.5
(9.15)

.397
(.271)

.057
(.044)

.264
(.033)

GAMBoost
44.2
(5.21)

.977
(.085)

.209
(.026)

.268
(.033)

33.7
(4.52)

.860
(.178)

.158
(.014)

.203
(.026)

Table 2.2: Simulation results for the two-step approach compared with the Lasso, GAMSEL
and GAMBoost in example 2.2 with correlation 0.3 and 0.7 for n = 100, p = 200 and s = 3.
NV, average number of the variables being selected; TPR, the true positive rate; FPR, the
false positive rate; and PE, prediction error (here is the misclassi�cation rate). Results
are averaged over 100 repetitions. Enclosed in parentheses are the corresponding standard
errors.

with the correlation, in terms of both variable selection and prediction.

It also happens in the real world that the signal strength is low. Therefore, it is interesting

to consider a cases where we have lower signal strength than in example 2.1.

Example 2.3. In the next example, we reduce the signal strength of example 2.1 by a

factor of 2, while all other assumptions are kept the same. The results are shown in 2.3 on

page 57. From the table we see that minimal signal strength is an important factor to the

performance of variable selection in the generalized models. The performance is impacted

by the signal strength for all models. The two-step approach still have the closest number of

nonzero variables to the ground truth. Though the true positive rate is lower than that of the

Lasso or the GAMBoost, the latter two methods have too many false positives. The Lasso

or GAMBoost selects too many variables and should not be considered as good variable

selection methods. Moreover, the prediction error of the two-step approach remain the best

among all four methods.

56

NV TPR FPR PE

Two-step
3.91
(2.05)

.703
(.240)

.009
(.009)

.218
(.033)

Lasso
30.0
(30.5)

.770
(.304)

.142
(.154)

.258
(.036)

GAMSEL
15.3
(18.0)

.510
(.266)

.070
(.090)

.377
(.054)

GAMBoost
50.3
(5.11)

.980
(.079)

.240
(.026)

.308
(.028)

Table 2.3: Simulation results for the two-step approach compared with the Lasso, GAMSEL
and GAMBoost in example 2.3, with n = 100, p = 200, s = 3 and signal strength reduced.
NV, average number of the variables being selected; TPR, the true positive rate; FPR, the
false positive rate; and PE, prediction error (here is the misclassi�cation rate). Results
are averaged over 100 repetitions. Enclosed in parentheses are the corresponding standard
errors.

2.6.1.2 Other link functions

In this subsection, we study the performance of the two-step approach numerically on the

Poisson regression and Gamma regression. In the Poisson regression, we have

yi ∼ Poisson(θi), i = 1, ..., n, (2.37)

where θi = exp[α+
∑p
j=1 fj(xij)] and xij is the (i, j)− th element of the design matrix X.

In the Gamma regression, we have

yi ∼ Gamma(θi, φ), i = 1, ..., n, (2.38)

where θi = exp[α+
∑p
j=1 fj(xij)] and xij is the (i, j)− th element of the design matrix X.

The dispersion parameter φ is assumed to be known. Without loss of generality, we take

φ = 1.

Example 2.4. In this example, we keep the same set up as in example 2.1 to generate

57

the design matrix, and use the Poisson distribution/Gamma distribution above to generate

response variables. All other parameters are kept the same as in example 2.1, but the signal

strength is set to 1/4 of the original signal strength, and we have n = 100, p = 200 and

s = 3. We compare the two-step approach with generalized linear models (GLM) and the

GAMBoost. Note that the GAMSEL only support Gaussian and Binomial link, thus is not

used as a comparison here. The GAMBoost only supports generalized models with canonical

link. The canonical link for Gamma regression su�ers from the risk that the mean might

fall outside of its range, thus the canonical link is not useful in practice. Therefore, we

only use GAMBoost in Poisson regression as a comparison. Our algorithm works for both

Gamma regression and Poisson regression, and to the best of our knowledge, is the only

public algorithm that supports both in the high-dimensional case. The GLMs are run with

the scikit-learn package in python.

The results are showed in table 2.4. We see the two-step approach works signi�cantly

better than the linear model, and than the GAMBoost in the Poisson regression case, except

for the true positive rate. The GAMBoost has a perfect true positive rate, which is slightly

better than that of our two-step approach. However, the same issue as before is that it

selected too many variables and make the false positive rate much higher than tolerable.

Moreover, the prediction performance on the two-step approach is also in the �rst place in

both cases.

2.6.2 Real Data examples

In this section, we use three real data examples to illustrate our procedure. In the �rst

example, we consider the case n > p in the classi�cation set up, in the second example,

we consider the high-dimensional set up n < p in the classi�cation set up, and in the third

58

Poisson Regression Gamma Regression
NV TPR FPR PE NV TPR FPR PE

Two-step
4.30
(1.51)

.930
(.172)

.008
(.009)

2.34
(.703)

3.57
(0.98)

.997
(.033)

.003
(.005)

14.4
(19.5)

Lasso
13.4
(9.79)

.867
(.189)

.054
(.050)

3.51
(.403)

12.5
(7.72)

.887
(.196)

.048
(.039)

42.3
(11.5)

GAMBoost
82.1
(4.27)

1.00
(.000)

.401
(.022)

15.4
(2.12) NA NA NA NA

Table 2.4: Simulation results for the two-step approach compared with the Lasso, GAMSEL
and GAMBoost in example 2.4 for Poisson regression and Gamma regression with n = 100,
p = 200 and s = 3. NV, average number of the variables being selected; TPR, the true
positive rate; FPR, the false positive rate; and PE, prediction error (here is the misclassi-
�cation rate). Results are averaged over 100 repetitions. Enclosed in parentheses are the
corresponding standard errors. The GAMBoost method does not support Gamma regression
with non-canonical link function, while the canonical link falls outside of range, therefore it
does not support Gamma regression.

example, we consider a Gamma regression.

Example 2.5. In this example, we use the data set in example 1 of [55], the spam data

as an example of the case n > p. The data set is available at https://web.stanford.

edu/~hastie/ElemStatLearn/data.html. This data set has been studied in many di�erent

contexts with the objective being to predict whether an email is a spam or not based on

a few features of the emails. There are n = 4601 observations, among which 1813 (39.4%)

are spams. There are p = 57 predictors, including 48 continuous real [0, 100] attributes of

the relative frequency of 48 `spam' words out of the total number of words in the email,

6 continuous real [0, 100] attributes of the relative frequency of 6 `spam' characters out of

the total number of characters in the email, 1 continuous real attribute of average length

of uninterrupted sequences of capital letters, 1 continuous integer attribute of length of

longest uninterrupted sequence of capital letters, and 1 continuous integer attribute of total

number of capital letters in the e-mail. The data was �rst log transformed, since most of the

predictors have long-tailed distribution, as mentioned in [55]. They were then centered and

59

https://web.stanford.edu/~hastie/ElemStatLearn/data.html
https://web.stanford.edu/~hastie/ElemStatLearn/data.html

standardised.

The data was split into a training data set with 3067 observations and a testing data

set with 1534 observations. We choose order l = 4 which implies a cubis B-spline. We

choose mn = 15, which implies there are 11 inner knots, evenly placed over the empirical

percentiles of the data. We compare the result with the logistic regression with Lasso penalty,

the support vector machine (SVM) with Lasso penalty, and the sparse group lasso neural

network (SGLNN, [53], see also [146]). The Lasso and SMV are implemented with the skikit-

learn module in python, and the SGLNN is implemented with the algorithm in the paper in

python. By changing the tuning parameter or stopping criterion, we get estimations with

di�erent sparsity levels. All results are averaged over 50 repetitions. The classi�cation error

with di�erent level of sparsity is shown in �gure 2.1 on page 61. The two-step approach

and the neural network perform better than the linear methods, which indicates a non-linear

relationship. The two-step approach has best accuracy 0.944, while the neural network

has best accuracy 0.946. The neural network performs a little better than the two-step

approach due to its ability to model the interactions among predictors, but this di�erence

is not signi�cant. However, neural network has no interpretation and takes longer to train.

All four methods have performance increase as more predictors are included, which indicates

that all predictors contributes to some e�ect to the prediction. However, we are able to reach

more than 0.9 accuracy with only 15 predictors included. With the GIC criterion, the two-

step approach selects 14.6± 1.52 predictors, with an average accuracy of 0.914± 0.015. The

most frequently selected functions are shown in �gure 2.2 on page 62, which also shows that

these functions are truly non-linear. The plots are of the original functions, i.e., before the

logarithm transformation. The estimated functions are close to the results in [55], Chapter 9,

with slight scale di�erence due to di�erent penalization. The results show that the additive

60

model by the adaptive group lasso is more suitable for this data than linear models.

Figure 2.1: The classi�cation accuracy against the number of nonzero variables measured
on a testing set for example 2.5 over 50 repetitions. The two-step approach, the logistic
regression with Lasso, the l1 norm penalized SVM and the sparse group lasso neural network
are included in comparison.

Example 2.6. For high-dimensional classi�cation example, we use the prostate cancer gene

expression data described in http://featureselection.asu.edu/datasets.php. The data set has

a binary response. 102 observations were studied on 5966 predictor variables, which indicates

that the data set is really a high dimensional data set. The responses have values 1 (50

sample points) and 2 (52 sample points), where 1 indicates normal and 2 indicates tumor.

All predictors are continuous predictors, with positive values.

To see the performance of our procedure, we ran 100 replications. In each replication, we

randomly choose 76 of the observations as training data set and the rest 26 observations as

testing data set. We choose order l = 4 which implies a cubis B-spline. We choose mn = 9,

which implies there are 5 inner knots, evenly placed over the empirical percentiles of the data.

61

Figure 2.2: The estimated functions for the most frequently selected functions for example
2.5.

Similar to the last example, we compare the result with the logistic regression with Lasso

penalty, the SVM with Lasso penalty, and SGLNN. The classi�cation error with di�erent

level of sparsity is shown in �gure 2.3 on page 63. From the �gure we see that compared

with linear methods such as the logistic regression or support vector machine, the non-

parametric approaches converges faster. The two-step approach reaches a testing accuracy

of 0.945 when around 15 variables are included in the model, while the linear methods need

over 30 variables to reach competitive results. Compared with neural network, the two-step

approach is easier to implement and performs stabler. A drawback of the non-parametric

methods is to easily over�t small sample, and that's the reason the performance drops as too

many variables entered the model. With the GIC criterion, the two-step approach selects

3.25 ± 1.67 predictors, with an average accuracy of 0.914 ± 0.016. To show the non-linear

relationship, �gure 2.4 on page 64 shows the estimated functions for the 6 most frequently

62

selected variables.

Figure 2.3: The classi�cation accuracy against the number of nonzero variables measured
on a testing set for example 2.6 over 500 repetitions. The two-step approach, the logistic
regression with Lasso, the l1 norm penalized SVM and the sparse group lasso neural network
are included in comparison.

Example 2.7. In this example, we investigate the performance of the two-step approach on

Gamma regression. The data set is from National Oceanic and Atmospheric Administration

(NOAA). We use the storm data, which includes the occurrence of storms in the United

States with the time, location, property damage, a narrative description and etc. Here we

only take the data in Michigan from 2010 to 2018 and keep the narrative description as our

predictor variable and the property damage as our response variable. The description is in

text, therefore we applied wording embedding algorithm Word2vec [96] to transform each

description into a numeric representation vector of length p = 701, similar word embedding

preprocessing can be found in [77]. The response variable property damage has a long

tail distribution, thus we use a Gamma regression here. After removing outliers, the data

63

Figure 2.4: The estimated functions for the most frequently selected functions ordered by
descending in frequency for example 2.6.

set contains 3085 observations. In order to study the high-dimensional case, we randomly

sample 10% of the observations as our training data (n = 309) and the rest are used for

validation. Moreover, the response is normalized with the location and scale parameters of

gamma distribution.

To see the performance of our procedure, we ran 50 replications. We choose order l = 4

which implies a cubis B-spline. We choose mn = 9, which implies there are 5 inner knots,

evenly placed over the empirical percentiles of the data. Since there's limited libraries avail-

able in variable selection under high-dimensional set up, we compare the two-step approach

with the linear regression with Lasso on a logarithm transformation on the response variable.

The prediction error with di�erent level of sparsity is shown in �gure 2.5 on page 65. With

the GIC criterion, the two-step approach selects 34.45 ± 3.52 predictors, with an average

64

MSE of 0.004334± 0.000115.

Figure 2.5: The testing MSE against the number of nonzero variables measured on a testing
set for example 2.7 over 50 repetitions. The two-step approach and logarithm transformation
with the Lasso are included in comparison.

2.7 Discussion

In this chapter, we considered ultra high-dimensional (log pn = O(nρ)) generalized additive

model with a diverging number of nonzero functions (sn → 0 as n→∞). After using basis

expansion on the nonparametric functions, we used two step procedures�group lasso and

adaptive group lasso to select the true model. We have proved the screening consistency of

the group lasso estimator and the selection consistency of the adaptive group lasso estimator.

The rates of convergence of both estimators were also derived, which proved that the adaptive

group lasso does have an improvement on the estimator. The whole paper provides a solid

foundation for the existing methods. Finally we proved that under this nonparametric set

up, the generalized information criterion (GIC) is a good way to select the tuning parameter

65

that consistently selects the true model.

In this paper, we used a �xed design on the data matrix X. A random design on X

could be considered, i.e., X has a continuous distribution function fX(X) on its interval [a, b],

however, extra assumptions such as the boundedness of the density function are needed to

reach the same result. Also we proved the selection consistency of the GIC procedure on

the adaptive group lasso estimator, conditioning that the initial estimator satis�es 2.14,

which is possessed by the group lasso procedure with probability tending to 1. However, the

theory of screening consistency for the group lasso estimator is still to be established. This

is a challenging problem, since there doesn't have to exist a tuning parameter that gives

selection consistency in the group lasso procedure, but this is an interesting problem that

deserves further investigation. We also discussed the subset selection and subset selection

with shrinkage under our set up. The theoretical investigation suggests the other penalty

functions may not have clear advantages over the proposed procedure.

Moreover, the heteroskedastic error case is also attracting in high-dimensional GAM.

The square root Lasso [10] has been proved to overcome this issue, however, it hasn't been

extended to the non-parametric set up. It could be interesting to apply square root Lasso

on the GAM to incorporate this case. This is an demanding topic that deserves further

investigation as well.

66

Chapter 3

Sparse Neural network

As we mentioned in the introduction chapter, the generalized additive model is appropriate

in the additive case. If the variables interact with each other, it's better to use a multi-variate

approximation, the neural network. In this chapter, we will study the sparse group lasso

penalized shallow neural network. We will show that under certain assumptions, this model

have classi�cation risk tending to the optimal risk, the Bayes risk. Simulations and real data

examples are used to support the arguments.

3.1 Introduction

High-dimensional models with correlated predictors are commonly seen in practice. Most

statistical models work well either in low-dimensional correlated case, or in high-dimensional

independent case. There are few methods that deal with high-dimensional correlated pre-

dictors, which usually have limited theoretical and practical capacity. Neural networks have

been applied in practice for years, which have a good performance under correlated predic-

tors. The reason is that the non-linearity and interactions are brought in by the activation

functions and nodes in the hidden layers. A universal approximation theorem guarantees

that a single-layer arti�cial neural network is able to approximate any continuous function

with an arbitrarily small approximation error, provided that there is a large enough number

of hidden nodes in the architecture. Thus the ANN handles the correlation and interactions

67

automatically and implicitly. A popular machine learning application that deals with this

type of dependency is the spatio-temporal data, where the traditional statistical methods

model the spatial covariance matrix of the predictors. However, by arti�cial neural networks,

working with this big covariance matrix can be avoided. Moreover, arti�cial neural networks

also have good performance in computer vision tasks in practice.

A main drawback of neural networks is that it requires a huge number of training sample

due to large number of inherent parameters. In some application �elds, such as clinical

trials, brain imaging data analysis and some computer vision applications, it's usually hard

to obtain such a large number of observations in the training sample. Thus there is a need

for developing high-dimensional neural networks with regularization or dimension reduction

techniques. It is known that l1 norm regularization [126] shrinks insigni�cant parameters

to zero. Commonly used regularization includes lp norm regularization, for example, see

the keras package [26]. lp norm regularization with p ≥ 2 controls the model sensitivity

[74]. On the other hand lp norm regularization with p < 2, where people usually take

p = 1 for computation e�ciency, does not encourage group information. The group lasso

regularization [148] yields group-wise sparseness while keeping parameters dense within the

groups. A common regularization used in high-dimensional arti�cial neural network is the

sparse group lasso by [114], see for example [53], which is a weighted combination of the

lasso regularization and the group lasso regularization. The group lasso regularization part

penalizes the input features' weights group-wisely: a feature is either selected or dropped,

and it is connected to all nodes in the hidden layer if selected. The lasso part further shrinks

some weights of the selected inputs features to zero: a feature does not need to be connected

to all nodes in the hidden layer when selected. This penalization encourages as many zero

weights as possible. Another common way to overcome the high-dimensionality is to add

68

dropout layers [117]. Randomly setting parameters in the later layers to zero keeps less non-

zero estimations and reduces the variance. Dropout layer is proved to work well in practice,

but no theoretical guarantee is available. [82] considers a deep network with the combination

of regularization in the �rst layer and dropout in other layers. With a deep representation,

neural networks have more approximation power which works well in practice. They propose

a fast and stable algorithm to train the deep network. However, no theoretical guarantee is

given for the proposed method other than practical examples.

On the other hand, though widely used, high-dimensional arti�cial neural networks still

do not have a solid theoretical foundation for statistical validation, especially in the case of

classi�cation. Typical theory for low-dimensional ANNs traces back to the 1990s, including

[33, 8, 119, 4]. The existing results include the universal approximation capabilities of single

layer neural networks, the estimation and classi�cation consistency under the Gaussian as-

sumption and 0-1 loss in the low dimensional case. These theory assumes the 0-1 loss which

is not used nowadays and are not su�cient for high-dimensional case as considered here.

Current works focus more on developing new computing algorithms rather building theoreti-

cal foundations or only have limited theoretical foundations. [53] derived a convergence rate

of the log-likelihood function in the neural network model, but this does not guarantee the

universal classi�cation consistency or the convergence of the classi�cation risk. The conver-

gence of the log-likelihood function is necessary but not su�cient for the classi�cation risk

to converge. In this paper, we obtained consistency results of classi�cation risk for high-

dimensional arti�cial neural networks. We derived the convergence rate for the prediction

error, and proved that under mild conditions, the classi�cation risk of high-dimensional arti-

�cial neural network classi�er actually tends to the optimal Bayes classi�er's risk. This type

of property has been established on other classi�ers such as KNN [23], which derived the

69

result that the classi�cation risk of KNN tends to the Bayes risk, LDA [79], which derives the

classi�cation error rate under Gaussian assumptions and etc. Popular tasks like analyzing

MRI data and computer vision models were also included in these research papers, and we

applied the high-dimensional neural network to these demanding tasks as well.

In section 3.2, we will formulate the problem and the high-dimensional neural network

formally. In section 3.3, we state the assumptions and the main consistency result. In section

3.4, we compared the high-dimemsional neural network with other neural network variable

selection approaches. In section 3.5, we apply the high-dimensional neural network in three

di�erent aspects of examples: the gene data, the MRI data and the computer vision data.

In section 3.6, further ideas will be discussed.

3.2 The Binary Classi�cation Problem

Consider the binary classi�cation problem

P (Y = 1|X = x) = f(x), P (Y = 0|X = x) = 1− f(x),

where x ∈ Rp is the feature vector drawn from the feature space according to some dis-

tribution PX , and f(·) : Rp → R is some continuous function. Note here that, in the

function f(x), there can be any interactions among the predictors in x, which ensures the

possibility to handle correlated predictors. Let PX,Y be the joint distribution on (X, Y),

where X ∈ Rp and Y ∈ {0, 1}. Here p could be large, and may be even much larger than

the training sample size n. To study the theory, we assume p has some relationship with

n, for example, p = O(exp(n)). Therefore, p should be written as pn, which indicates the

70

dependency. However, for simplicity, we suppress the notation pn and denote it with p.

For a new observation x0 ∈ Rp, the Bayes classi�er, denoted C∗(X), predicts 1 if f(x) ≥

ps and 0 otherwise, where ps ∈ (0, 1) is a probability threshold, which is usually chosen as

1/2 in practice. The Bayes classi�er is proved to minimize the risk

R(C) =

∫
Rp×{0,1}

1{C(X)6=Y }dPX,Y . (3.1)

However, the Bayes classi�er is not useful in practice, since f(x) is unknown. Thus a

classi�er is to be found based on the observations {(x1, y1), ..., (xn, yn)}, which are drawn

from PX,Y . A good classi�er based on the sample should have its risk tend to the Bayes risk

as the number of observations tends to in�nity, without any requirement for its probability

distribution. This is the so-called universal consistency.

Multiple methods have been adopted to estimate f(x), including the logistic regression

(a linear approximation), generalized additive models (GAM, a non-parametric nonlinear

approximation which do not take interactions into account), neural networks (a complicated

structure which is dense in continuous functions space) and etc. The �rst two methods

usually work in practice with good theoretical foundation, however, they sometimes fail to

catch the complicated dependency among the feature vector x in a wide range of applications

(brain images, computer visions, spatial data analysis). The neural network structure is

proved to be able to capture this dependency implicitly without explicitly specifying the

dependency hyper-parameters. Consider a single layer neural network model with p predictor

variables. The hidden layer has mn nodes, where mn may be a diverging sequence depending

on n. Similar to pn, we suppress mn as m.

For an input vector x ∈ Rp, its weight matrix θ ∈ Rp×m and its hidden layer intercept

71

vector t ∈ Rm, let the vector ξ ∈ Rm be the corresponding values in the hidden nodes,

which is de�ned as

ξk = tk + θTk x, k = 1, ...,m.

Let ψ(·) be an activation function, then the output for a given set of weight β is calculated

by

b+ βTψ(ξ),

where the function ψ(·) is the function ψ(·) being applied element-wisely. We have a wide

range of choices for the activation function. [78] proved that as long as the activation is not

algebraic polynomials, the single layer neural network is dense in the continuous function

space, thus can be used to approximate any continuous function. This structure can be

considered as a model which, for a given activation function ψ(·), maps a p× 1 input vector

to an real-valued output

η(θ,t,β,b)(x) = βTψ(t+ θTx) + b =
m∑
k=1

βkψ(tk + θTk x) + b,

where η(θ,t,β,b)(x) ∈ R is the output of the single hidden layer neural network with parameter

(θ, t,β, b). Applying the logistic function σ(·), σ(η(θ,t,β,b)(x)) ∈ (0, 1) as an approximation

of f(x) with parameters (θ, t,β, b)

P (Y = 1|X = x) ≈ σ(η(θ,t,β,b)(x)), P (Y = 0|X = x) ≈ 1− σ(η(θ,t,β,b)(x)),

where σ(·) = exp(·)/[1+exp(·)]. According to the universal approximation theorem, see [33],

with a big enough m, the single layer neural network is able to approximate any continuous

72

function with a quite small approximation error.

By [8], assuming that there is a Fourier representation of f(x) of the form f(x) =∫
Rp e

iωTxF̃ (dω), let ΓB,C = {f(·) :
∫
B ‖ω‖2|f̃(dω) < C} for some bounded subset of Rp

containing zero and for some constant C > 0. Then for all functions f ∈ ΓB,C , there

exists a single layer neural network output η(x) such that ‖η(x) − f(x)‖2 = O(1/
√
m)

on B. Later [113] generalizes the result by relaxing the assumptions on the activation

function and improved the rate of approximation by a logarithmic factor. They showed

that on a bounded domain Ω ⊂ Rp with Lipschitz boundary, assuming f ∈ Hr(Ω) satis�es

γ(f) =
∫
Rp(1 + |ω|)m+1|f̂e(ω)|dω < ∞ for some extension fe ∈ Hr(Rp) with fe|Ω, if the

activation function σ ∈ W r,∞(R) is non-zero and satis�es the polynomial decay condition

|(Dkσ(t))| ≤ Cr(1 + |t|)−s for some 0 ≤ k ≤ r and some s > 1, we have

inf
fm∈NeuNetm

‖f − fm‖Hr(Ω) ≤ C(s, r,Ω, σ)γ(f)m−1/2,

where the norm is in Sobolev space of order r, and C(s, r,Ω, σ) is a function of s, r, Ω and

σ only. Both results ensure the good approximation property of single layer neural network,

and the convergence rate is independent of the dimension of x, p, as long as f has a Fourier

transform which decays su�ciently fast.

Towards building the high-dimensional ANN, we start by formalizing the model. Let X

be a n× p design or input matrix,

X =


x11 · · · x1p

· · · · · · · · ·

xn1 · · · xnp

 =


xT1

...

xTn

 =

[
x(1) · · ·x(p)

]
,

73

let y be a n× 1 response or outcome vector,

y =

[
y1 · · · yn

]T
,

let θ be a p×m parameter or input weight matrix,

θ =


θ11 · · · θ1m

· · · · · · · · ·

θp1 · · · θpm

 =


θT(1)

...

θT(p)

 =

[
θ1 · · ·θm

]
,

let t be a p× 1 parameter vector,

t =

[
t1 · · · tm

]T
,

let β be a m× 1 parameter vector representing node weights,

β =

[
β1 · · · βm

]T
,

and let b be a scalar parameter.

When one tries to bring neural network into the high-dimension set up, or equivalently,

the small sample size scenario, it usually does not work well. The estimability issue [70] arise

from the fact that even a single layer neural network may have too many parameters. This

issue might already exist in the low dimensional case (n < p), let alone the high dimension

case. A single layer neural network usually includes mp + 2m + 1 parameters, which is

possible to be much more than the training sample size n. In practice, a neural network

may work well with one of the local optimal solutions although this is not guaranteed by

74

theory. Regularization methods can be applied to help obtain a sparse solution. On one

hand, proper choice of regularization shrinks partial parameters to zero, which addresses

the statistical estimability issue. On the other hand, regularization makes the model more

robust.

Assuming sparsity is usually the most e�cient way of dealing with the high dimensional-

ity. A lasso type regularization on the parameters has been shown numerically to have poor

performance on neural network models. On one hand, lasso does not drop a feature entirely

but only disconnect it with some hidden nodes. On the other hand, lasso does not select

dependent predictor variables in a good manner [41]. Consider the sparse group lasso pro-

posed by [114], which penalizes the predictors group-wise and individually simultaneously.

It is a combination of the group lasso and the lasso, see for example [53]. The group lasso

regularization part penalizes the input features' weights group-wisely: a feature is either

selected or dropped, and it is connected to all nodes in the hidden layer if selected. The

lasso part further shrinks some weights of the selected inputs features to zero: a feature does

not need to be connected to all nodes in the hidden layer when selected.

De�ne the loss function as the log-likelihood function

l(θ, t,β, b)

=
n∑
i=1

[
yi(

m∑
k=1

βkψ(tk + θTk xi) + b)− log

(
1 + exp

(
m∑
k=1

βkψ(tk + θTk xi) + b

))]
. (3.2)

Besides the sparse group lasso regularization, we consider a l2 regularization on other pa-

75

rameters. Then we have

θ̂sgl, t̂sgl, β̂sgl, b̂sgl = arg min
θ,t,β,b∈Rpm×m×m×1

− 1

n
l(θ, t,β, b)

+αλ

p∑
j=1

‖θ(j)‖2 + (1− α)λ‖θ‖1, (3.3)

such that

‖β‖22 + ‖t‖22 + b2 ≤ K.

The sparse group lasso penalty [114, 53] includes a group lasso part and a lasso part,

which are balanced using the hyper-parameter α ∈ (0, 1). The group lasso part treats each

input as group of m variables, including the weights for the m hidden nodes connected to

each input. This regularization will be able to include or drop an input variable's m hidden

nodes group-wisely [148]. The lasso regularization is used to further make the weights sparse

within each group, i.e., each input selected by the group lasso regularization does not have to

connect to all hidden nodes. This combination of the two regularization makes the estimation

even easier for small sample problems. The l2 norm regularization on the other parameters

is more about practical concerns, since it further reduces the risk of over-�tting.

Though with slight di�erence on the regularization, [53] proposed a fast coordinate gra-

dient descent algorithm for the estimation, which cycles the gradient descent for the di�er-

entiable part of the loss function, the threshold function for the group lasso part and the

threshold function for the lasso part. Three tuning parameters, α, λ and K can be selected

with cross-validations on a grid search.

76

3.3 The Consistency of Neural Network Classi�cation

Risk

In this section, we conduct the theoretical investigation of classi�cation accuracy of the neural

network model. Before stating the theorems, we need a few assumptions. The independence

property of neural networks, see [119], [4] and [53], states that the �rst-layer weights in θ, t

satisfy

(θi, ti) 6= ±(θi′ , ti′),∀i 6= i′ = 1, · · · ,m

and

θi 6= 0, ∀i,

the set of dilated and translated functions Rp → R

{1, σ(θT1 x+ t1), ..., σ(θTmx+ tm)}

is linearly independent.

The independence property means that di�erent nodes depend on the input predictor

variables through di�erent linear combinations and none of the hidden nodes is a linear

combination of the other nodes, which is crucial in the universal approximation capability of

neural networks. [113] proved that the above set is linearly independent if θ′is are pairwise

linearly independent, as long as the non-polynomial activation function is an integrable

function which satis�es a polynomial growth condition.

According to [53], if the parameters φ = (θ, t,β, b) satisfy the independence property,

77

the following equivalence class of parameters

EQ(φ) = {φ̃ ∈ Θ : η
φ̃

(x) = ηφ(x)∀x}

contains only parameterizations that are sign-�ips or rotations and has cardinality exactly

2mm!.

Let P be the distribution of Y for �xed X and Pn be the empirical measure. The

best approximation in the neural network space is the equivalence class of parameters by

minimizing the population loss

EQ0 = arg min
φ∈Θ

∫
Rp×{0,1}

lφ(y,x)dPX,Y ,

where lφ(y,x)dPX,Y is the loss function with parameters φ. Let Q be the number of

equivalent classes in EQ0. The Excess loss is de�ned as

ε(φ) =

∫
Rp×{0,1}

(
lφ(Y,X)− l

φ0(Y,X)
)
dPX,Y (3.4)

where φ0 is a set of parameters in EQ0. Moreover, when we refer to a set of parameters in

EQ0 for some parameter φ, we mean that φ0 ∈ EQ0 has the minimum distance to φ. [53]

has shown that this excess loss plus the estimation of the irrelevant weights is bounded from

above and may tend to zero with proper choices of n, p and the tuning parameters.

Another concern is the estimability of the parameters. A common remedy is to assume

sparsity of the predictors. Thus we make the following assumption.

Assumption 3.1 (Sparsity). Only s of the predictors are relevant in predicting y (without

loss of generality, we assume the �rst s predictors, denoted S are relevant, and the rest,

78

denoted SC , are irrelevant), all weights in θ associated with SC , denoted θ
SC

, are zero in

the optimal neural network EQ0.

The next assumption is a standard assumption in generalized models, which controls

the variance of the response from below and above. Consider a general exponential family

distribution on y with canonical function b(θ), common assumptions is to bound b′′(θ) and

b′′′(θ) from above and below. However, in binary classi�cation problems, these functions are

automatically bounded from above by 1, thus we only need to assume the boundedness from

below. Some literature assume constant bounds on these quantities, however, we do allow

the bounds to change with n and the bounds may tend to zero as n goes to in�nity.

Assumption 3.2 (Boundedness of variance). The true conditional probability of y for a

given x is bounded away from 0 and 1 by a quantity ε̃, which might tend to zero.

The following two assumptions are inherited from [53]. The next assumption is a relatively

weak assumption on the local convexity of the parameters.

Assumption 3.3 (Local convexity). There is a constant hmin > 0 that may depend on m,

s, f and the distribution PX,Y , but does not depend on p such that for all φ ∈ EQ0, we

have [
∇2
φ

(∫
Rp×{0,1}

lφ(y,x)dPX,Y

)]
φ=φ0

� hmin

I 0

0 0


where A � B means that A−B is a positive semi-de�nite matrix.

The next assumption is made to bound the excess loss from below for the parameters

outside EQ0, i.e., the true model is identi�able. Let d0(φ) be the minimum distance from

an element in EQ0 to φ, then we assume

79

Assumption 3.4 (Identi�ability). For all ε > 0, there is an αε that may depend on m, s, f

and the distribution PX,Y , but does not depend on p such that

αε ≤ inf
φ

ε(φ) : d0(φ) ≥ ε and ‖θ
SC
‖1 ≤ 3

∑
j∈S

Ωα(θ(j)

−θ0,(φ)
(j)

) + ‖(t,β, b)− (t0,(φ),β0,(φ), b0,(φ))‖2
}

Assumption 3.3 states that though neural network is a non-convex optimization problem

globally, the parameters of the best neural network approximation of the true function f(x)

has a locally convex neighborhood. The assumption can be assured in this way. By the

continuity of the representation of neural network and the loss function, the integration in

assumption 3.3 is in�nitely continuously di�erentiable with respect to the nonzero parame-

ters, therefore the second derivative is a continuous function of the nonzero parameters. By

the de�nition of the parameters of the best neural network approximation, φ0 minimizes

the integration in assumption 3.3. If there isn't a positive hmin that satis�es assumption, it

either contradicts with the fact that the second derivative is continuous or the de�nition of

φ0.

Assumption 3.4 states that the non-optimal neural networks can be distinguished from

the best neural network approximation in terms of the excess loss, if the parameters of the

non-optimal neural network is not in the ε-neighborhood of any of the parameters of the best

neural network class EQ0. Similar to the compatibility condition in [18], the condition does

not have to or even may not hold for the whole space, but is only needed in the subspace

{φ : ‖θ
SC
‖1 ≤ 3

∑
j∈S Ωα(θ(j) − θ

0,(φ)
(j)

) + ‖(t,β, b) − (t0,(φ),β0,(φ), b0,(φ))‖2}, thus this

is a weaker condition than imposing the lower bound on the excess loss. The subspace is

80

derived from the the basic inequality of the de�nition of φ̂ with rearranging terms and norm

inequalities, see for example [18]. Similar subspace can also been found in the compatible

condition in [94]. Since s is unknown, it can not be checked in practice, but it is su�cient

to check the inequality for all sets S ∈ {1, ..., p} with cardinality s0 if s0 is known, which is

a stronger version of assumption 3.4.

Now we are ready to state our main result. We have to admit that our theory based

on the estimator from 3.3 is the global optima, which su�ers from the biggest problem in

optimization research: the gap between the global optima in theory and a local optima in

practice. We will leave this computational issue to future research.

Theorem 3.1. Under assumptions 1-4, let our estimation be from 3.3, choosing tuning pa-

rameter λ ≥ 2T λ̃ for some constant T ≥ 1 and λ̃ = c
√
m log n/n(

√
logQ+

√
m log p log(nm)

/(1−α+α/
√
m)), if log(n)/(nε̃2)→ 0, s2mλ2/(nε̃2)→ 0 and n−1m9/2s5/2

√
log(p)→ 0 as

n→∞, assume that our prediction is within a constant distance from the best approxima-

tion η0(x), then we have

R(Ĉ)−R(C∗)→ 0 as n→∞

A proof of this theorem is given in appendix. This theorem states that with proper

choice of tuning parameters and under some mild assumptions and controls of n, p and s,

the high-dimensional neural network with sparse group lasso regularization tends to have

the optimal classi�cation risk. This is a signi�cant improvement in the theoretical neural

network study, since it gives the theoretical guarantee that high dimensional neural network

will de�nitely work in such situations.

81

3.4 Simulation

In this section, we will show two examples. The �rst example is a revisit of the simulation

study in [82], where we show numerical results that the SGLNN's performance is close to

the DNP's performance in their set up. The second example considers a scenario where the

sample size is much smaller, where we show numerical results that the SGLNN out-performs

the DNP.

3.4.1 DNP Simulation: Revisit

In this subsection, we revisit the experiment in [82] and compare those models with the

neural network with sparse group lasso regularization. We use exactly the same setup as

[82]. The input variable X is drawn from U(−1, 1), where the feature dimension p is �xed

to be 10000. The corresponding labels are obtained by passing X into the feed forward

neural network with hidden layer sizes {50, 30, 15, 10} and ReLU activation functions. Input

weights connecting the �rst m inputs are randomly sampled from N(0, 0.5). The remaining

input weights are kept zero. Furthermore, 5% of the labels are randomly chosen and �ipped

to add noises. For each m = 2, 5, 10, 25, we generate 800 training samples, 200 validation

samples and 7500 test samples. We report the AUC and F1 scores of the models in table 3.1

on 5 repetitions of the data generation, which is exactly the same as in [82]. The DNP model

is coded according to their algorithm outline in python with pyTorch. The HSICLasso is

implemented with the package by the authors followed by the SVM package in scikit-learn.

The LogR-l1 model is implemented with the LogisticRegressionCV package in scikit-learn.

In this simulation study, the assumptions in our theory are all satis�ed. First, we have a

sparse level of 2, 5, 10 and 25, which are very small portions of the total number of features,

82

10000, thus assumption 2.1 is satis�ed. Second, we've controlled the seed such that the

labels are balanced between 0 and 1, and the true probabilities generated from the neural

network are bounded away from 0 and 1 by a non-negligible constant, thus assumption 2.2

is satis�ed. Then, we generate x from uniform distribution and y from a neural network

structure, which is a continuous distribution plus a continuous map from the original space

to the probabilities [0, 1]. Therefore, the local convexity assumption is justi�ed by continuity.

Finally, assumption 2.4 is a property of neural networks that has been argued in section 3.3.

Therefore, this example not only serves as a revisit of the DNP paper, but also serves as a

support for our theory.

Results of this example is shown in table 3.1. From the results, we see both the SGLNN

model and the DNP model outperform the other two baseline models. The SGLNN's per-

formance is very close to the performance of DNP with a small gap, which is in accordance

to our expectations. Deeper neural networks have much higher representation powers of

complicated functions. The stability of the two models are close, with the SGLNN having

slightly smaller SE in the m = 2 and m = 5 cases. The DNP model does not use dropout

in the prediction process, while the SGLNN uses l1 norm penalty along with the group

lasso penalty. The SGLNN is expected to show stabler results. The reason that we see no

signi�cant di�erence in SE is that the sample size, 800, is large enough to train the DNP

with a full network on the selected variables without over-�tting. To further investigate the

performance, we study the smaller sample scenario in the next subsection.

3.4.2 Smaller Sample Size Case

In this subsection, we consider a smaller sample size, which happens in many applications

such as clinic trials, genetic expression data analysis and MRI data analysis. With the same

83

True Dim 2 5 10 25
LogR-l1 AUC(std) 0.897(0.015) 0.745(0.035) 0.661(0.029) 0.629(0.015)

HSIC-Lasso AUC(std) 0.920(0.001) 0.844(0.015) 0.732(0.025) 0.638(0.021)
DNP AUC(std) 0.925(0.020) 0.879(0.035) 0.784(0.020) 0.669(0.016)

SGLNN AUC(std) 0.911(0.015) 0.862(0.021) 0.770(0.021) 0.658(0.016)
LogR-l1 F1 score(std) 0.889(0.022) 0.748(0.032) 0.668(0.037) 0.638(0.027)

HSIC-Lasso F1 score(std) 0.914(0.000) 0.791(0.010) 0.680(0.012) 0.368(0.028)
DNP F1 score(std) 0.959(0.009) 0.849(0.033) 0.769(0.017) 0.811(0.015)

SGLNN F1 score(std) 0.940(0.005) 0.839(0.012) 0.747(0.019) 0.754(0.015)

Table 3.1: The AUC and F1 score of the compared models in the simulation study. Standard
errors are given in the parentheses.

Training size Metric 100 200 300 500
DNP AUC(std) 0.606(0.118) 0.701(0.091) 0.727(0.074) 0.828(0.043))

SGLNN AUC(std) 0.624(0.099) 0.703(0.089) 0.762(0.053) 0.820(0.026)
DNP F1 score(std) 0.567(0.095) 0.634(0.073)) 0.679(0.043) 0.750(0.035)

SGLNN F1 score(std) 0.602(0.073) 0.641(0.069) 0.690(0.029) 0.746(0.029)

Table 3.2: The AUC and F1 score of the compared models in a smaller sample size scenario
with m = 5. Standard errors are given in the parentheses.

set up as the model generation in the last subsection, we generate a training sample of size

n = 100, 200, 300 and 500. The number of active features is �xed to be m = 5. The total

sample size is set to 10000, thus the corresponding testing sample sizes are 9900, 9800, 9700

and 9500. We compare the performance between the SGLNN and DNP in this set up. The

results are shown in table 3.2.

From the results, we see the SGLNN model outperforms the DNP in the smaller sample

size scenario when n = 100, 200, 300. The reason is that DNP over�ts the training data due

to small sample size, while SGLNN has lower risk of over-�tting compared with DNP. In

all the four sample sizes, the SGLNN has smaller SE than the DNP model's SE. SGLNN

achieved this by a simpler representation and the extra l1 norm regularization. The results

suggest that we need a simpler model to prevent over-�tting when the training sample size

84

is very small, which is the case in most biology data. Moreover, an extra l1 regularization

makes the model more stable and reliable.

3.5 Real Data examples

In this section, we gave real data applications in di�erent research areas: gene expression

data, MRI data and computer vision data. These examples indicate that the sparse neural

network has good performance and is useful in correlated predictor situations. Through all

three examples, the regularized neural network was implemented with fast speed using the

algorithm by [53] through their library in python3 on a desktop computer with Ubuntu 18

system on a i7 processor and GTX1660TI graphic cards.

To evaluate the model performance, all accuracy results are measured on the testing sets

which are not used for training and averaged on di�erent train test splits. The number of

features in the results are medians among all numbers of features that correspond to the

best models evaluated from cross-validation.

3.5.1 example 1: Prostate Cancer Data

In this example, we considered a prostate cancer gene expression data, which is publicly

available in http://featureselection.asu.edu/datasets.php. The data set contains a

binary response with 102 observations on 5966 predictor variables. Clearly, the data set

is really a high dimensional data set. The responses have values 1 (50 sample points) and

2 (52 sample points), where 1 indicates normal and 2 indicates tumor. All predictors are

continuous predictors, with positive values.

40 observations from no expression group and 40 observations from expression group were

85

http://featureselection.asu.edu/datasets.php

randomly selected to form the training group. The rest 22 observations form the testing

group. We run the sparse ANN model on a replication of 100 di�erent train-test splits. On

average, the sparse neural network selects only 18 predictors and uses 4 hidden nodes. Using

a cross-validation technique, the hyper-parameters thus the number of features were decided.

It has a average training error rate of 0.04 and a testing error rate of 0.045. The results

compared with other methods are listed in table 3.3. The sparse ANN and l1 penalized linear

SVM perform the best with 95.5% and 95% accuracy, respectively. The gradient boosting

tree classi�er [25] is a powerful ensemble classi�cation method but performs worse than

regularized methods in the high-dimensional setting with an accuracy of 92.2% using 83.5

features (on an average). The logistic regression with l1 regularization uses 36 features and

achieves an accuracy of 93.3%. The GAM performs the worst with an accuracy of 91.8%,

mainly due to the infeasibility of basis expansion in this data set, where the data distribution

is highly skewed.

In summary, we showed numerically that the sparse group lasso penalized neural network

is able to achieve at least as good as the existing methods along with providing strong theo-

retical support. The greater standard error mainly comes from additional tuning parameters.

In terms of the number of predictor variables, it is not the best. However, as we found in the

investigation, since ANN is a non-convex optimization problem, as people continue to train

the model and tune the hyper-parameters, they get better accuracy rates with less number

of predictor variables.

3.5.2 example 2: MRI Data for Alzheimer's Disease

Data used in this example is from the Alzheimer's disease Neuroimaging Initiative (ADNI)

database (http://www.loni.ucla.edu/ADNI). We used T1-weighted MRI images from

86

http://www.loni.ucla.edu/ADNI

Classi�er Test accuracy Number of features
Regularized neural network 0.955(0.066) 18
Gradient boosting tree 0.922(0.058) 83.5

Logistic Regression with Lasso 0.933(0.058) 36
l1 penalized Linear SVM 0.950(0.052) 16

Generalized additive model with group lasso 0.918(0.061) 5

Table 3.3: Test accuracy with standard error in parentheses and median of number of features
for di�erent classi�ers in the Prostate gene data example.

the collection of standardized datasets. The description of the standardized MRI imaging

from ADNI can be found in http://adni.loni.usc.edu/methods/mri-analysis/adni-\

standardized-data/. The images were obtained using magnetization prepared rapid gra-

dient echo (MARAGE) or equivalent protocols with varying resolutions (typically 1.0× 1.0

mm in plane spatial resolution and 1.2 mm thick sagittal slices with 256× 256× 256 voxels).

The images were then pre-processed according to a number of of steps detailed at http://

adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/, which corrected gra-

dient non-linearity, intensity inhomogeneity and phantom-based distortion. In addition, the

pre-processed imaging were processed by FreeSurfer for cortical reconstruction and volumet-

ric segmentation by Center for Imaging of Neurodegnerative Diseases, UCSF. The skull-

stripped volume (brain mask) obtained by FreeSurfer cross-sectional processing were used in

this study.

In our example, we used images from ADNI-1 subjects obtained using 1.5 T scanners at

screening visits, and we used the �rst time point if there are multiple images of the same

subject acquired at di�erent times. There are totally 414 subjects, among which 187 are

diagnosed as Alzheimer's disease and 227 healthy subjects at the screening visit. An R

package ANTsR were applied for imaging registration. Then 3dresample command in AFNI

were used to adjust the resolution and reduce the total number of voxels of the imaging to

87

http://adni.loni.usc.edu/methods/mri-analysis/adni-\standardized-data/
http://adni.loni.usc.edu/methods/mri-analysis/adni-\standardized-data/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/

18× 22× 18. The x axis and y axis for horizontal plane, x axis and z axis for coronal plane

and y axis and z axis for sagittal plane. Only the 1100 voxels located in the center of the

brain were used as features for classi�cation. After removing the voxels with zero signal for

most of the subjects, we have 1971 voxels left in use.

We randomly sampled 100 from the 187 AD subjects and 100 from the 227 healthy

subjects as our training set, and the rest 214 subjects as testing set. The sparse ANN model

was run on 100 replications of di�erent train-test split. On average, the neural network

�nally selects 7 predictors and used 12 hidden nodes. It has a training error rate of 0.21

and a testing error rate of 0.224. The results compared with other methods are listed in

table 3.4. The sparse ANN has a competitive performance which is slightly better than

the PMLE-LDA with similar standard error. The goal of this experiment is not to show

that the sparse group lasso neural network outperforms the other methods signi�cantly,

but just demonstrates that the model can be tuned to work as good as the other methods

along with statistical theory. With �ner tuning of the hyper-parameters, the results can be

further improved. We compared the results with a few methods including the MLE-LDA, the

PMLE-LDA (penalized MLE-LDA; [79]), the PREG-LDA (penalized regular LDA; [79]), the

FAIR (Feature Annealed Independence Rule; [44]) and the NB (Naive Bayes; [14]). Methods

without regularization are not presented, since the high-dimensionality prevents it from

giving stable solutions. The penalized MLE-LDA produces an accuracy rate of 77.2% using

only 5 predictor variables. The PREG-LDA method has the least number of predictors, 3,

but has a lower accuracy rate 0.750. The rest of the methods perform worse. Besides the

application, this example indicates that the ANN could be an alternative tool for spatial

data modeling, at least for classi�cation.

88

Classi�er Test accuracy Number of features
Regularized neural network 0.776(0.031) 7

MLE-LDA 0.692(0.030) 1971
PREG 0.750(0.029) 3

PMLE-LDA 0.772(0.025) 5
FAIR 0.632(0.033) 7
NB 0.674(0.024) 1971

Table 3.4: Test accuracy with standard error in parentheses and median of number of features
for di�erent classi�ers in the MRI Alzheimer's disease example.

Figure 3.1: example image from the KITTI 2D object detection data set.

3.5.3 example: KITTI Autonomous Driving Data

For the generalization, we also give an example on the computer vision tasks. The data

used in this example is from [57], which has di�erent aspect of images or stereos from high-

resolution color and gray-scale video cameras or ladar (laser radar). The image and stereo

data includes daily tra�c data that help developing autonomous driving in di�erent aspects.

In our example, we used the 2D object detection data, for example, see �gure 3.1.

The 2D object data set includes 7481 training images and 7518 testing images, comprising

a total of 80256 labeled objects. All images are colored and saved as png. Since this was an

open competition, the labels for testing data are not available. We only used the training

data set as our example data. The original data includes 13 di�erent label classes, however,

to emphasize the binary classi�cation ability of the regularized ANN model, we took only 2

89

Figure 3.2: example images of pedestrians and cars after pre-processing

classes: pedestrian and car. The sub-images of pedestrians and cars were extracted from the

original images using the location information provided by the data set. This gives us 18000

car images and 7000 pedestrian images of resolution ranging from 40-by-40 to 180-by-150.

Since the regularized ANN methods is especially useful when the sample size is small, we

randomly sample 2000 cars and 2000 pedestrians as our data. We shu�ed the 4000 images,

and divided them into 800 training images and 3200 testing images. �gure 3.2 show the

images after pre-processing. A pre-processing steps are done with python libraries including

matplotlib, PIL and pandas.

Since ANN does not handle local feature information as good as convolutional neural

networks (CNN), we did a feature extraction using the pre-trained VGG19 CNN model

[115], whose weights were trained on 120 million images of over 1000 classes. We adopted

the convolutional layers from the model as a feature extractor. To feed the images into the

model, a re-sizing (from the original size to 224-by-224-by-3) were performed using bi-linear

interpolation methods. The VGG19 feature extractor generates a 4096-by-1 vector from each

image. Our ANN model takes this 4096-dimensional input and trains on the 800 images. We

compare our results with the regular ANN, the logistic regression with l1 regularization, the

90

Classi�er Test accuracy Number of features
SGLNN 0.994(0.001) 148

Neural network 0.514(0.102) 4096
Log-l1 0.991(0.002) 176
SVM-l1 0.993(0.001) 144
GAM 0.989(0.002) 152

Table 3.5: Test accuracy with standard error in parentheses and median of number of features
for di�erent classi�ers in the KITTI autonomous driving example.

Figure 3.3: Test accuracy score vs sparsity level in the three examples.

SVM with l1 regularization and the GAM with group lasso regularization. The results are

shown in table 3.5. The regular neural network totally failed due to the high-dimensionality

and hence estimability issue. The logistic regression and the GAM have more nonzero

features and slightly greater standard error. The SVM has similar result to the SGLNN, but

the SGLNN gains a slightly better performance.

Moreover, we have plotted the accuracy score for all three examples along with the

sparsity level. l1 logistic regression, l1 SVM and group lasso penalized generalized additive

model (GAM) are used along with the sparse group lasso neural network (SGLNN). These

plots give us a hint how sparsity level in�uences the prediction results. The plots are given

in �gure 3.3. All these examples illustrate the usefulness and the numerical properties of our

proposed high dimensional neural network model.

91

3.6 Discussion

In this paper, we considered the sparse group lasso regularization on high-dimensional neural

networks and proved that under mild assumptions, the classi�cation risk converges to the

optimal Bayes classi�er's risk. To the best of our knowledge, this is the �rst result that

the classi�cation risk of high-dimensional sparse neural network converges to the optimal

Bayes risk. Neural networks are very good approximations to correlated feature functions,

including computer vision tasks, MRI data analysis and spatial data analysis. We expect

further investigation warranted in coming days. The computational issue of �nding the global

optimal in non-convex optimization problems is still waiting to be solved to eliminate the

gap between the theory and in practice. This will pave way for further theoretical research.

3.6.1 The l1 + l0 Penalty and Algorithm

An innovative idea that deserves further investigation is to specify a larger number of hidden

nodes and use a l0 + l1 norm penalty on the hidden nodes parameters β. This methods

searches a grander of solution �eld and will give a model at least as good as the l2 norm

penalty. Moreover, l0 + l1 norm penalty is proved to work well in low signal cases [92]. In

detail, the formulation is to minimize 3.3 plus an extra regularization on β: λ3‖β‖0+λ4‖β‖1.

This formulation does not bring in extra tuning parameters, since we release the penalization

on l2 norm of β and the number of hidden nodes m. With l0 + l1 norm penalty, the

parameters can be trained using coordinate descent algorithm with the l0 + l1 norm penalty

being handled by mixed integer second order cone optimization (MISOCO) algorithms via

optimization software like Gurobi. This algorithm adds an extra step to the algorithm in

[53] to handle the l0 + l1 norm penalty.

92

Speci�cally, we are optimizing

θ̂sgl, t̂sgl, β̂sgl, b̂sgl = arg min
θ∈Rp×m,t∈Rm,β∈Rm,b∈R

− 1

n
l(θ, t,β, b)

+ αλ1

p∑
j=1

‖θ(j)‖2 + (1− α)λ1‖θ‖1 + λ2‖β‖1

such that

‖β‖0 ≤ k

Let's start by computing the partial derivative of l with respective to θ(j). Let σ(·) be

the sigmoid function

σ(x) =
exp(x)

1 + exp(x)

which is our choice of the activation function ψ(·). Noting that the sigmoid function has

derivative σ′(x) = σ(x)[1− σ(x)]. Then we have

∂l

∂θjk
=

n∑
i=1

{
[yi − σ (ηi)] βkσ

′(ξik)xij
}

Note that

∂θjk
∂θk

= (0, ..., 0, 1, 0, ..., 0)T

Then we get,

∂l

∂θk
=

n∑
i=1

{
[yi − σ (ηi)]σ

′(ξi)xi
}
βk = βkx

Tdiag[y − σ(η)]σ′(ξk) (3.5)

93

The partial derivative of l w.r.t t is given by

∂l

∂t
= diag[β]

[
σ′(ξ)(y − σ(η))

]

where σ′(ξ)ki = σ′(ξki). The partial derivative of l w.r.t β is given by

∂l

∂β
= σ(ξ)(y − σ(η))

Finally, the partial derivative of l w.r.t b is given by

∂l

∂b
= y − σ(η)

Since the sparse group lasso penalty only applies to θ, thus similar to [53], a generalized

gradient descent can be applied to �nd a critical point. Now we �x β and iterate θ, t and

b. This update includes three steps. The �rst step is to update the parameters θ, t and b

in the likelihood part using gradient descent. Then let S(·, ·) : Rm×n × R 7→ Rm×n be the

coordinate-wise soft-thresholding operator

(S(x, c))ij = sign(xij)(|xij | − c)+

The second step performs a soft-thresholding operation for each θij due to the lasso penalty.

Finally the third step performs a soft-scaling operation on each group θ(j) due to the group

lasso penalty. The soft-scaling operation, see [114], is given by

θnew(j) =

1− γλα

‖θold(j)‖2


+

θold(j)

94

where θold
(j)

is after the soft-thresholding operation and γ is the step size. The step size can

be found using line search. In speci�c, let ε(k) be the 2-norm of the change of θ, t and b in

the (k + 1)th iteration. The line search criterion is satis�ed if

− 1

n
l(θ(k+1), t(k+1), b(k+1)) ≤ − 1

n
l(θ(k), t(k), b(k))− tγ(k+1)(ε(k))2

for some �xed t ∈ (0, 1).

After updating θ, t and b, we �x them and update β. For some L, we have

β̂ = arg min
β∈Rm

− 1

n

n∑
i=1

[
yi(σ(ξi)

Tβ + b)− log(1 + exp(σ(ξi)
Tβ + b))

]
+ ‖β‖1 s.t. ‖β‖0 ≤ k

:= f(β) + ‖β‖1 s.t. ‖β‖0 ≤ k

Using Taylor expansion of β around some β0, we have

f(β) = f(β0) +∇f(β0)T (β − β0) +
1

2
(β − β0)T∆f(β∗)(β − β0)

≤ f(β0) +∇f(β0)T (β − β0) +
L

2
‖β − β0‖22

:= M(β)

for some β∗ and L. By the properties of sigmoid function, L ≥ 1 is preferred. Observe that

minimize M(β) + λ‖β‖1 s.t. ‖β‖0 ≤ k ⇔ minimize M̃(β) + λ‖β‖1 s.t. ‖β‖0 ≤ k

where

M̃(β) =
L

2

∥∥∥∥β − (β0 −
1

L
∇f(β0)

)∥∥∥∥2

2

95

minimize u+ λ2v

s.t.
L

2

∥∥∥∥β − (β(m) − 1

L
∇f(β(m))

)∥∥∥∥2

2
≤ u

−Mzj ≤ βj ≤Mzj , j = 1, ..., p

zj ∈ {0, 1}, j = 1, ..., p∑
j

zj = k

− β̄j ≤ βj ≤ β̄j , j = 1, ..., p

β̄j ≥ 0, j = 1, ..., p,
∑
j

β̄j ≤ v

Table 3.6: The MISOCO formulation for the l1 + l0 penalty in dealing with the l0 norm step.

This suggest a simple cycling for β, i.e.

β(m+1) = arg min
β∈Rm

L

2

∥∥∥∥β − (β(m) − 1

L
∇f(β(m))

)∥∥∥∥2

2
+ λ2‖β‖1 s.t. ‖β‖0 ≤ k

This convert optimizing β to a mixed integer second order cone optimization (MISOCO)

problem, see [92]. The formulation is given in table 3.6. The optimization problem is a

second order cone with one quadratic constraint and some linear constraints. It can be solved

using optimization software like Gurobi. Therefore, the results suggest a cycling iteration on

the parameters algorithm to �nd the estimated parameters of the high-dimensional neural

network model. The detail algorithm is given in algorithm 1.

96

Algorithm 1: Algorithm for training classi�cation neural network with l1 + l0
penalty

Initial neural network parameters θ(0), t(0), β(0) and b(0). Choose initial step size
γ(0) and step size scaling parameter s ∈ (0, 1). Select tolerance τ ;
while Error of all parameters is greater than τ do

while Error of θ, t and b is greater than τ do

θ(k+1), t(k+1), b(k+1) = θ(k), t(k), b(k) − γ(m)∇
(
− 1

n
l(θ(k), t(k), b(k))

)
θ(k+1) = S

(
θ(k+1), γ(m)λ1(1− α)

)
for j=1,...,p do

θ
(k+1)
(j)

=

1− γ(m)λα

‖θ(k+1)
(j)

‖2


+

θ
(k+1)
(j)

;

end

γ(m+1) = sγ(m);
Until some line search criterion satis�es;

end
while Error of β is greater than τ do

Use the MISOCO formulation above to optimize β as below

β(k+1) = arg min
β∈Rm

L

2

∥∥∥∥β − (β(k) − 1

L
∇f(β(k))

)∥∥∥∥2

2
+ λ2‖β‖1 s.t. ‖β‖0 ≤ k

end

end

97

Chapter 4

Ensemble Neural Network Selection

(ENNS)

We have mentioned that directly optimizing the penalized neural network loss function is

risky when the sample size is small, since it's easy to get trapped in a local minimal. As

there is a connection between the lp,1 norm penalty and the stage-wise selection algorithm,

it's natural to consider adding variables one by one. However, the deep neural pursuit

(DNP) algorithm in [82] does not implement methods to stabilize the selection process, and

the estimation is based on a full neural network, which still bring in the estimability issue.

In this chapter, we consider an ensemble stage-wise variable selection algorithm with deep

neural networks, which is named as ensemble neural network selection (ENNS). Moreover,

we propose a heuristic methods to further sparsify the neural network by imposing soft-

thresholding functions to the parameters. We will provide methodology for the two-step

approach, and we will show that the two-step approach enjoys selection consistency and

risk consistency under certain conditions. Simulations and real data examples are used to

support the arguments.

98

4.1 Introduction

High-dimensional statistics modeling [18] has been popular for decades. Consider a high-

dimensional regression or binary classi�cation problem. Let x ∈ Rp be the feature vector,

and let y ∈ R for regression problem and y ∈ {0, 1} for classi�cation problem be the response.

Our goal is to build a model based on the training sample {(x1, y1), ..., (xn, yn)}. We have

more features than the sample size, i.e., p > n. Moreover, many data have complicated

relationship among di�erent variables, which is hard to capture through a linear model.

Neural network is the one of the best models at capturing complicated relationships. It's

interesting to consider a neural network structure between x and y.

In general, high-dimensional model does not have consistent estimations since the systems

have less constraints than number of variables. Two major approaches can be used to deal

with the high-dimensionality. The �rst major approach is to assume that the feature space

is sparse, i.e., only a small fraction of the variables are included in the modeling with y.

A model with only a fraction of the original features enjoys simplicity and interpretability.

Sparse solutions can be obtained using regularization [126, 65] or stage-wise algorithms [41].

Regularization obtains sparse solution by shrinking the unimportant features' coe�cients

to zero. The estimated coe�cients are shrinkage estimators and thus have smaller variance

[32]. However, regularization with multiple tuning parameters takes longer to run and may

be sensitive in the tuning parameters in practice. Stage-wise algorithms adds variables one

by one and stops at a preferred time.

The second major approach is projection-based. One �nds a lower dimensional represen-

tation of the original feature space. Linear projection methods include the PCA [64] in the

low dimensional case and some of its variants [68, 157] in the high-dimensional case. Kernel

99

PCA [109] performs PCA on a reproducing kernel Hilbert space to achieve non-linearity.

Manifold learning [76] embeds the original feature space to a low-dimensional manifold. Ex-

cept for the manifold learning algorithms that reduce the original dimensionality to 2 or

3 dimension for visualization, a few manifolding learning including the multidimensional

sacling (MDS) by [130], the local linear embedding (LLE) by [107], and the Isomap by [124].

Applications of the manifold learning algorithms in the high-dimensional set up is studied

for speci�c �elds, but a general framework is not available. Another popular dimension re-

duction technique is the auto-encoder [75], which uses a neural network to encode the feature

space and decode the representation to be as close to the original feature space as possible.

All of the above methods are unsupervised, and the lower-dimensional representation is no

longer any of the original features. Therefore, we lose interpretability by doing so. Current

manifold learning algorithms focus more on data visualization, which reduces the dimension-

ality to two or three, see for example [139]. These applications are not useful in building

models.

On the other hand, neural networks have been utilized to model complicated relation-

ship since the 1940s [72], and gained much more attention since the computer hardware's

great improvement in this century. Speci�cally, [101] showed that the computation of neu-

ral networks can be greatly improved by GPU acceleration than purely running on CPU,

thus makes it easy to train deeper network structures. Nowadays, variant neural networks

are being applied world-wide, including the convolutional neural network (CNN), recurrent

neural network (RNN), residual network (ResNet), and etc. In theory, neural network works

in representing complicated relationships mainly lies on the universal approximation theo-

rem [33, 8, 4, 113]. The theorem states that a shallow neural network (neural network with

one hidden layer) is able to approximate any continuous function with an arbitrarily small

100

error given a huge number of hidden nodes, under mild assumptions. In practice, to reach

this good approximation, usually a huge set of training data is needed, since the number

of parameters in a neural network is much more than that in other models. Moreover, the

non-convexity of a neural network structure makes it impossible to obtain a global optimum.

Luckily, a local optimum of the neural network provides a good approximation.

Deep Neural Network (DNN) is a neural network with a deep structure of hidden lay-

ers, which has better performance than the shallow neural network (neural network with

only 1 hidden layer) in many aspects including a broad �eld of subjects including pattern

recognition, speech recognition and etc., see for example [97, 80, 66]. The deep structure

has a greater approximation power than a shallow neural network. There have been a few

literature regarding the approximation power of deep neural networks [12, 104, 112, 43]. The

results suggest that using a deep neural network helps reduce the approximation error, which

is useful in the cases where the approximation error dominates the total error. Therefore, it's

necessary to consider a deep neural network model over a shallow model. However, �nding

a way to make the deep neural network well trained on a small sample size is necessary.

In this paper, we will discuss the stage-wise variable selection algorithm with neural

networks. We will show that the existing stage-wise algorithm performs well at the beginning

and selects the correct variables. However, at the later steps, the probability that it will select

a correct variable decreases. Thus we will propose an ensemble algorithm on the stage-wise

variable selection algorithm, named ensemble neural network selection (ENNS) algorithm.

We will show that the new algorithm select all correct variables with high probability and its

false positive rate converges to zero. Moreover, instead of a regular neural network trained

on the select variables, we proposed a few methods to further reduce the variance of the

�nal model. We will give numerical comparison of these proposed algorithms, and propose

101

an algorithm for the l1 penalized neural network with soft-thresholding operators.

In section 4.2, we will present the ideas and algorithms behind the ENNS algorithm and

the methods of increasing stability during the estimation step. In section 4.3, we will provide

the theory for the arguments in this paper. In section 4.4, we will present the results of some

numeric study to support our theorems and arguments. In section 4.5, we will evaluate the

new method on real world data. Section 4.6 will discuss some conclusion and future works.

4.2 The Two-step Variable Selection and Estimation Ap-

proach

Consider a feature vector x ∈ Rp and a response y ∈ R for the regression set up and y ∈ {0, 1}

in the classi�cation set up. We have data {(x1, y1), ..., (xn, yn)} consisting of independent

observations. Denote the design matrix X = (x1, ...,xn)T ∈ Rn×p and the response vector

y = (y1, ..., yn)T . As we mentioned before, we have more variables than observations, i.e.,

p > n. According to the previous discussion, variable selection is an important step in high-

dimensional modeling. If one includes all variables in the model, there will be at least p

parameters to estimate, which can not be done stably with the n observations. If a more

complicated model is needed, the number of parameters will be tremendous, which will cause

severe over-�tting and high variance with a small training sample size.

Therefore, we hope a feature selection step at �rst can help pick the import variables, and

another estimation step could build a more accurate model based on the selected variables.

Moreover, we will use deep neural networks as the structure, since it will be able to capture

the complicated relationships. We will consider a stage-wise algorithm in the variable selec-

tion step, which performs a similar function as the DNP model in [82]. However, we will

102

show that the stage-wise algorithm in DNP su�ers from some disadvantage and propose an

ensemble algorithm to relieve this situation. In the second step, we will discuss the methods

to reduce variance and prevent over-�tting, since a deep neural network with only a few

input variables can still have a huge number of parameters.

4.2.1 The Ensemble Neural Network Selection (ENNS) Algorithm

Consider the feature selection approach in [82]. Let D : Rp → R be a deep neural network

function that maps the original feature space to the output space. We don't speci�cally mark

the number of hidden layers and hidden node sizes in the notation, but simply assume the

deep neural network has m hidden layers with sizes h1, ..., hm. Denote the weight matrices in

each layer to beW 0, ...,Wm, whereW 0 ∈ Rp×h1 ,W i ∈ Rhi×hi+1 for i = 1, ...,m− 1 and

Wm ∈ Rhm×1. Denote ti the intercept for the ith hidden layer and b the intercept of the

output layer. Let θ = (W 0, ...,Wm, t1, ..., tm, b) be the parameters in the neural network

model. For an input x ∈ Rp, denote the output

ηθ,x = Dθ(x) (4.1)

where in the regression set up, the output is from a linear layer and η ∈ R, while in the

classi�cation, an extra sigmoid layer is added and η ∈ (0, 1). Moreover, we assume sparse

feature, i.e., only a small fraction of the variables are signi�cantly related to the response.

Without loss of generality, we assume

S0 = {1, ..., s}

103

of the variables are truly nonzero variables.

De�ne the loss function for regression to be the squared error loss

l(θ) = E
[
(y − η)2

]
(4.2)

In practice, we work with the empirical loss

l(θ;X,y) =
1

n
‖y − η‖22 (4.3)

where η ∈ Rn with ηi = ηθ,xi , i = 1, ..., n. De�ne the loss function for classi�cation to be

the negative log-likelihood, which is known as the cross-entropy loss

l(θ) = E [y log η + (1− y) log(1− η)] (4.4)

In practice, we work with the empirical loss

l(θ;X,y) =
1

n

n∑
i=1

[yi log ηi + (1− yi) log(1− ηi)] (4.5)

Let Gi be the gradient of the loss function with respect to W i in the back propagation

process for i = 0, ...,m, i.e.,

Gi =
∂

∂W i
l(θ;X,y), i = 0, ...,m (4.6)

The DNP algorithm starts with the null model and adds one variable at a time. Let S be

104

the selected set and C be the candidate set. At the beginning, we have

S = {intercept} and C = {1, ..., p} (4.7)

The model is trained on S only and the submatrix of W 0 corresponding to the features in

C is kept zero. After the training done, one chooses a lq norm (usually with q = 2) and

compute the gradient' norm for each j ∈ C of W 0.

G0j =
∂

∂W 0j
l(θ;X,y), j ∈ C (4.8)

The next variable that enters the model, j+ is

j+ = arg max
j∈C

‖G0j‖q (4.9)

Then S = S/j+ and C = C ∪ {j+} To increase the stability, instead of computing G0j

directly, the DNP algorithm computes G0j through the average over multiple dropouts. Let

B1 be the number of dropouts, the next variable is

j+ = arg max
j∈C

1

B1

B1∑
b=1

‖Gb0j‖q (4.10)

where Gb0j denotes the gradient of the loss function with respect to the �rst layer's jth

weight vector after the bth random dropout.

The algorithm works because ‖G0j‖q describes how much the loss function will change

when the next update on the corresponding variable's weight is performed [102]. [125] also

indicates that selecting variable by comparing ‖G0j‖q has an equivalence to applying the

105

group lasso penalization, see also [85].

The algorithm works well at the very beginning, which is described by proposition 4.1

and proposition 4.2 in section 4.3. However, it su�ers from a few disadvantages. First,

as we include more correct variables in the model, the probability that we select another

correct variable decreases. A simulation study in section 4.4 provides numeric support for

this argument. Second, one needs to pre-specify how many variables need to be selected

before stopping, denoted s0. If this number is chosen to be more than the number of true

variables, denoted s, there will be s0 − s variables that should not be included but was

included, i.e., the false positive rate could be high. Finally, the model does not use dropout

or regularization during prediction, which has potential over-�tting risk. Here we propose

the ensemble neural network selection (ENNS) algorithm to remedy these issues, and we will

discuss possible solutions in preventing over-�tting in the prediction step.

One could observe that when a fraction of S0 are already involved in the model, i.e.,

in S, the model is trained such that these variables are used to explain the variations by

all variables in S0. This weakens the e�ect of those truly nonzero variables in C. These

variables become less important than when there's no variable in S. Moreover, there are less

truly nonzero zero variables in C than at the very beginning, the probability that we select

a correct variable in the next step is

P(jnext ∈ S0) =
∑

j∈S0∩C
P(jnext = j) (4.11)

which will be even lower as |S0∩C| decreases. Therefore, there will be a nonzero probability

that at one stage the selected variable does not belong to S0. We consider an ensemble

method to remedy this issue.

106

The idea behind this ensemble method is similar to bagging [17, 19]. Assume that we

want to add sj variables in one step. Consider a bootstrap sample of size nb from the

original sample. The DNP with random initialization is trained on this sample, which yields

a selection set S1 = {j1, ..., jsj}. In stead of just doing one pass, we propose that for b2

in 1, ..., B2 and a bootstrap sample size nr, we perform the feature selection on a random

selection of nr observations. Denote the features being selected in all B2 rounds as

J1 = {j11, ..., j1sj}, ...,JB2
= {jB21, ..., jB2sj

}

We will only allow a variable to enter the model if it appears at least [B2ps] times in the B2

rounds, for a �xed proportion ps. Mathematically,

J = {j in at least [B2ps] of J1, ...,JB2
}

is the set of variables that will actually enter the model in this step.

The reason that this ensemble will improve the selection lies on three points. First, the

algorithm is an averaging of di�erent bootstrapping results, thus the e�ect of some extreme

observations could be averaged out. The �nal selection result represents the common part

of the whole sample. Secondly, neural network uses random initialization. In two di�erent

training, though the predictions seem similar, the estimated parameters are actually from

di�erent local minimums of the loss function. Therefore, these di�erent training results

represent di�erent aspects of the model. Combining the two reasons, if we select a smaller

nb compared to n, the selection results are closer to independent. However, nb can not be

too small to avoid misleading the neural network. Finally, if a variable is selected by mistake

107

in some round, this is possibly due to the speci�c bootstrap sample making the relationship

between the variable and the response stronger, which is not general in all bootstrap samples.

In practice, one will observe that though false selection happens, those false variables are

di�erent in di�erent rounds. Therefore, this ensemble will actually make the probability of

false selection tend to zero. This result is described by theorem 4.1 in section 4.3. Moreover,

if two variables' interaction e�ect is important in the model, they are likely to be included

in the model in the same step.

It's possible that the proposed method selects less or more variables than the number of

variables we speci�ed, sj . If the sample is not enough to represent the true relationship be-

tween the variables and the response, it's very possible that the number of selected variables,

denoted ŝj , is less than sj . In this case, we exclude the variables that are already in C from

the neural network and perform another round of variable selection with S = {1, ..., p}/C

and then C = {intercept}. The number of variables to be selected in this round will be

sj − ŝj . On the other hand, ŝj being more than sj happens when the selection propor-

tion ps is speci�ed too small. In this case, one would sort the variables by their appearing

proportions and only select the �rst sj variables in the list.

In summary, we specify a number s0 at the very beginning, which mean the �nal model

will include s0 variables. In the jth iteration, let sj be the number of variables to be selected.

Right now there are |Sj | variables in the model, denoted Sj . Let X−n be the sub-matrix of

X where the columns with indices in Sj removed. Train the ensemble on X−n and obtain

selection result Ŝj . Let sj+1 = sj − |Ŝj |. The algorithm is repeated until the model has

selected s0 variables. An algorithm is given in Algorithm 2. Under mild assumptions, the

algorithm will �nally reach selection consistency. This argument is described in theorem 4.2

in section 4.3. Moreover, a comparison of the variable selection performances of di�erent

108

modeling is presented in section 4.4.

Algorithm 2: Algorithm for feature selection ENNS
Initialize number of selected variables S = ∅, s = 0 and target s0;
while |S| < s0 do

for b = 1, ..., B do
Bootstrap sampling;
Random initialization with zero feature;
Run the DNP algorithm and obtain selection set Jb;

end

Obtain J =
⋃B
b=1 Jb;

Compute JT by �ltering number of appearance;
if JT <= s0 − |S| then

S = S ∪ JT ;
Remove the columns in JT from training data;

else
JT is the m− s elements with highest number of appearance;
S = S ∪ JT ;

end

end

The computation complexity of the ENNS algorithm on a single machine is the number of

bagged neural networks times the computation complexity of training a single neural network,

which is equal to O(Bhsnp). Here B is the number of bagged neural networks, h is the neural

network structure complexity, s is the number of variables to be selected, n is the sample

size and p is the variable dimension. However, since bagging algorithm has independent

elements, it's easy to parallelize the bagged neural networks by submitting di�erent jobs. In

this case, the computation complexity reduces to O(hsnp), which is the same as that of DNP

in [82]. As a comparison, [82] also mentioned the computation complexity of HSIC-Lasso in

[144], which grows cubicly with the sample size as O(sn3p).

109

4.2.2 Estimation With Regularization

In this subsection ,we will discuss possible procedures to prevent over-�tting. After feature

selection, the deep neural network can be trained on the selected features. However, the

number of parameters in the neural network model is still huge. A 4 hidden layer neural

network with s selected variables and hidden layer sizes h1, ..., h4 has sh1 + h1h2 + h2h3 +

h3h4 +h4 parameters (without counting the intercepts). For example, if we use the common

hidden layer sizes [50, 30, 15, 10] with the number of selected variables being 5, this brings

2466 parameters. As a comparison, the linear model has 6 parameters, while the GAM with

4 knots and degree 3 has 36 parameters. Compared to the number of parameters, the small

sample size is still a challenging issue. Therefore, we need to be careful on the training of

the neural network on the selected variables. A few methods are discussed below. Moreover,

the Xavier initialization [59] is used here to assure that the initial weights are in a proper

range.

4.2.2.1 Dropping Out and Bagging

In the variable selection step, over-�tting is overcome by dropout layers, where we randomly

set parameters to zero in the later layers. However, using dropout layers in prediction is

risky, since we are not able to measure the performance of doing a random dropout. One

way is to use bagging again in this step. First, the connections in the estimated neural

network, denoted N is randomly cut o�, i.e., the weights are set to zero. By doing this we

obtained Nr, where r stands for reduced. Then a prediction is made on model Nr, denoted

ŷr. This process is repeated for K times. Denote the reduced neural networks to be Nkr

110

and their predictions with ŷkr. In the regression set up, the �nal prediction is de�ned as

ŷ =
1

n

K∑
k=1

ŷkr

In the classi�cation set up, the �nal prediction is de�ned as

ŷi =


1, if p̂i > pc

0, if p̂i < pc

, for i = 1, ..., n

where pc is some pre-speci�ed threshold.

p̂ =
1

n

K∑
k=1

ŷkr

and p̂i is the ith element of p̂. A simulation study is performed in Section 4.4.

4.2.2.2 Stage-wise Training

The stage-wise training idea comes from [82], where the authors used it as a step-wise

variable selection technique. However, here we adopt the idea to train the �nal model on

the selected variables. The intuition behind this is that at each step, the information that

is already trained remains in the training process. Therefore, adding a new variable adjusts

the previous trained weights. Moreover, training with adaptive gradient algorithm (Adagrad,

[40]) allows adaptive learning rates for di�erent parameters and thus ensures faster and more

accurate convergence. In detail, assume that we have selected m variables J from the ENNS

algorithm. Let XJ be the sub-matrix of X whose columns' indices are in J . Then the

DNP algorithm in [82] is trained on XJ with |J | being the target number of variables. A

111

simulation study is performed in Section 4.4.

4.2.2.3 L1 Norm Regularization

It's mentioned that l1 regularization gives sparse neural network and controls over-�tting

by shrinking parameters towards zero, and some parameters can be shrunk to zero exactly.

Therefore, we choose to use l1 norm regularization to control the parameter size and the

number of nonzero parameters.

Let Ŝ be the set of indices of the variables that are selected from the �rst step. Let

Θ = θ1, ..., θL be the hidden layer weights and T = t1, ..., tL be the hidden layer intercepts

(including the output layer). Let f(x; Θ,T) be the neural network structure with such

parameters that maps the original input to the output. In the classi�cation problem, de�ne

Θ̂, T̂ = arg min
Θ,T

− 1

n

n∑
i=1

[
yif(x

Ŝ,i
)− log(1 + exp(f(x

Ŝ,i
)))
]

+
L∑
l=1

λnl|θL|, (4.12)

where x
Ŝ,i

denotes the ith observation with only the selection variables included.

A direct training of the loss function 4.12 with the built-in l1 loss penalty directly added

to the cross-entropy loss does not work well in the current neural network libraries includ-

ing tensor�ow and pytorch. Therefore, a coordinate descent algorithm is needed to obtain

sparsity in the neural network. De�ne the soft-thresholding operator S(·, ·) : Rd × R → Rd

as

(S(x, c))i = sign(xi)(|xi| − c)+, i = 1, ..., d. (4.13)

The algorithm consists an iterative process of updating the neural network weights with-

out the l1 penalty and then applying the soft-thresholding operator 4.13. The number of

epochs is pre-speci�ed. However, the performance on the validation set can be monitored

112

and an early-stopping criterion can be speci�ed. The training will be stopped if the perfor-

mance on the validation set does not improve for a pre-speci�ed number of patience level.

It worth noting that instead of selecting the tuning parameter, a sparsity level of each layer

can be speci�ed. Assuming there are M hidden layers with sizes h1, h2, ..., hM . One may

specify percentile pm for m = 1, ...,M . Denote Wm the weight of layer m and Wpm the

pthm percentile of Wpm . Then for layer m, the soft-thresholding operator can be applied as

S(Wm,Wpm). For example, choosing a percentile of 50 will make a certain layer have 50%

sparsity level. An algorithm is given in Algorithm 3. A simulation that compares the built-in

l1 penalty and the soft-thresholding operator is given is Section 4.4.

Algorithm 3: Algorithm for l1 norm estimation using coordinate descent
Initialize the weights with Xavier initialization;
while Early stopping False OR epochs < k do

One step gradient descent for the neural network part;
for weights in layers do

Apply the soft-thresholding function with a pre-speci�ed percentile;
end
Check early stopping criterion;

end

4.3 Theoretical Guarantee

In this section, we will develop theoretical supports for the proposed methodology. The

methodology supports the intuitions used in the method. A few assumptions are made in

the derivations of the theorems. The �rst famous assumption in high-dimensional modeling

is sparsity. Here we provide two versions of sparsity: a stronger version and a weaker version.

These are stated in assumption 4.1 and assumption 4.2.

Assumption 4.1 (Sparsity (weak)). The features are sparse, i.e., only s < n = o(p) of the

113

p variables are strongly related with the response. Speci�cally, if y depends on x through a

linear relationship with coe�cients β = (β1, ..., βp)
T , we have

min
j=1,...,s

|βj | ≥ γn and

p∑
j=s+1

|β|j = τn = o(γn) (4.14)

where γn is a sequence that may go to zero as n goes to in�nity.

Assumption 4.2 (Sparsity (strong)). The features are sparse, i.e., only s < n = o(p) of the

p variables are related with the response. Speci�cally, if y depends on x through a linear

relationship with coe�cients β = (β1, ..., βp)
T , we have

min
j=1,...,s

|βj | ≥ γn and

p∑
j=s+1

|β|j = 0 (4.15)

where γn is a sequence that may go to zero as n goes to in�nity.

We know that in most cases the predictors are dependent, or at least weak correlation

exists. However, even weak correlation put great complexity in the methodology. Therefore,

we assume independent predictors in this section when deriving methodology. Extensive

simulation study will cover the cases when the predictors are correlated. Though the theo-

rems are proved under this assumption, the results can be extended to the assumption that

the correlation are up to o(1).

Assumption 4.3 (Independence). The predictors in the design matrix satisfy

cor(xj , xk) = 0, 1 ≤ j < k ≤ p (4.16)

The behavior of the design matrix should also be controlled. Here we consider a random

114

design and assume the following assumption

Assumption 4.4 (Design matrix). The covariate vector x has a continuous density and

there exist constants C1 and C2 such that the density function gj of xj satis�es 0 < C1 ≤

gj(x) ≤ C2 <∞ on [a, b] for every 1 ≤ j ≤ p.

As a typical assumption for bagging, we require the bagging sample proportion to be not

too small.

Assumption 4.5 (Sample proportion). In each bagging round, every sample has qn proba-

bility to be included, where qn satis�es

nqn →∞ as n→∞

Note that if we choose the bootstrap sample size to be the same as the sample size n, by

law of large numbers, we have approximately qn = 1− 1/e.

The following two propositions considers a scenario that the true underlying relationship

between the predictors and the response is linear, which demonstrates how the probability

of choosing one variable over another in the �rst step is decided. The �rst proposition gives

the probability that we select one variable over another, and the second proposition gives

the probability that we will select a correct variable in the �rst step.

Proposition 4.1. Consider the case where y depends on x through a linear structure with

coe�cients β1, ..., βp which satisfy assumption 4.1. Also under assumption 4.3 and 4.4, if

the sub-matrix of x consisting of the columns corresponding to the nonzero coe�cients is

column-wise orthogonal, let cj be the criterion to select predictor j. Recall that we will

select predictor j if j = arg maxj cj , where cj is the L2 norm of the gradient with respect to

115

the jth input. Then we have

P(cj < ck) =2L

(|βj | − |βk|√
2σ

,−|βk|
σ
,

1√
2

)
+ 2L

(|βj |+ |βk|√
2σ

,
|βk|
σ
,

1√
2

)
+

Φ

(|βj | − |βk|√
2σ

)
+ Φ

(|βj |+ |βk|√
2σ

)
− 2 (4.17)

where

L(a, b, ρ) = P(X1 > a,X2 > b) (4.18)

is the bivariate orthant probability with correlation ρ and Φ(·) is the standard normal dis-

tribution CDF.

Proposition 4.2. Under assumptions 4.1, 4.3 and 4.4, the probability that we select a

nonzero predictor at the very beginning using the stage-wise neural network selection is

P(A nonzero predictor enters the model �rst) =
s∑

k=1

∫ ∞
0

fk(x)

p∏
j 6=k

Fj(x)dx (4.19)

where

Fk(x) =
1

2

[
erf

(
x+ |βk|√

2σ2

)
+ erf

(
x− |βk|√

2σ2

)]
and

fk(x) =
∂

∂x
Fk(x) =

√
2

πσ2
e
−
x2+β2

k
2σ2 cosh

βkx

σ2
(4.20)

and erf(·) is the error function. Moreover, if βmax = maxj=1,...,s is bounded, as s → ∞,

116

the probability is bounded from above

P ≤ 1− δ

where δ is a nontrivial quantity.

Proofs of the two propositions are given in the Appendix. Proposition 4.1 and 4.2 describe

the behavior of neural network stage-wise algorithm at the very beginning. The probability

that we select one predictor over another depends on the sum of their signal strength and

the di�erence of their signal strength. The greater the di�erence, the higher probability that

we will select the predictor with higher signal strength. The probability that we will select

a correct predictor at the very beginning is described by the error function and standard

normal density functions. Though the form of the probability looks complicated, since error

function can be approximated by an exponential function with proper constants, we will be

able to show that in some cases, it is not guaranteed that a variable entering the model �rst

is a nonzero variable. Speci�cally, this happens when we have a low signal strength or a

huge number of candidate variables.

So there is a concern that a wrong variable will mistakenly enter the model due to a special

training case of the neural network model, as shown in the previous proposition. With the

bagging algorithm, we are able to eliminate the false positive selections with probability

tending to 1. The intuition is that false positive selection of a certain predictor happens

due to a speci�c observation of the design matrix, which appears to be more correlated to

the response or residual. However, with di�erent sub-samplings, it's very unlikely that they

yield the same wrong selection. This property is captured by the following theorem.

Theorem 4.1. If one of the two following cases happen, then in each selection step of the

117

ENNS algorithm, the probability of false positive converges to zero, i.e.

P(j ∈ Ŝ and j /∈ S)→ 0 as n→∞ and B2 →∞ (4.21)

(a) Under assumptions 4.1, 4.3, 4.4 and 4.5, also assume that

s0 ≤ s and
p− s0

s
eτn−γn → 0 as n→∞

where τn and γn are de�ned in assumption 4.1.

(b) Under assumptions 4.2 4.3, 4.4 and 4.5, also assume that the number of variables to be

selected satis�es

s0 ≤ C · s = o(p)

for some constant C.

A proof is given in the appendix. In variable selection algorithms, the most important

property is to be able to selection the correct predictors consistently. Here we show that

ENNS enjoys this property in the following theorem.

Theorem 4.2. Under assumptions 4.2, 4.3, 4.4 and 4.5, let Kn be the upper bound of the

norm of the best parameters in the neural network model when S is included, and K be the

size of the �rst hidden layer, with the ensemble, if γn satis�es

K
log(p− s)

n
log

(
1− 1

2
e−cγ

2
n

)
→ 0 as n→∞

118

for some constant c, and

K2
n

√
log(nKn)

n
→∞ as n→∞

the probability that all nonzero variables are selected converges to 1, i.e.,

P(Ŝ = S)→ 1 as n→∞ and B2 →∞ (4.22)

A proof is given in the appendix. In theorem 4.2, we showed that with strong enough

signal strength in the true nonzero variables, the algorithm will be able to select all nonzero

variables with probability tending to 1. The conditions are not veri�able in practice, how-

ever, extensive examples in section 4.4 shows that the ENNS algorithm reaches selection

consistency easier than the other algorithms.

For the estimation step, there has been some discussion about the asymptotic properties

such as [53, 146], where the results of using sparse group lasso penalty are given. The l1

norm penalty is actually a special case of the sparse group lasso with the lasso parameter

being 1 and the group lasso parameter being 0. Therefore, the results of these papers hold

as long as we have Ŝ = S0, which has probability tending to 1 by theorem 4.2. Here we will

adapt the theory in [61] and will provide the following result.

Theorem 4.3. Assume assumptions 4.2, 4.3, 4.4 and 4.5, consider the variables selected

from the ENNS algorithm and the estimation with the l1 regularization method. Denote

the l1 regularization tuning parameter with λn and the corresponding Lagrangian parameter

Kn. Denote the hidden layer size with kn. In the regression set up, assume E(Y 2) < ∞, if

119

Kn →∞, kn →∞ and kns2K4
n log(knsK

2
n)/n→ 0, we have

lim
n→∞,B2→∞

P
(
E
∫
|fn(x)− f(x)|2µ(dx)→ 0

)
= 1

where fn is the estimated neural network and f is the true function. In the classi�cation

set up, assuming that the probability of response being 1 is bounded away from 0 and 1

by ε̃, denote with Q the maximum number of equivalent neural network classes, choosing

tuning parameter λn ≥ c
√
kn log n/n(

√
logQ +

√
kn log s log(nkn), if log(n)/(nε̃2) → 0,

s2knλ
2
n/(nε̃

2)→ 0 and n−1k
9/2
n s5/2

√
log(sn)→ 0 as n→∞, we have

lim
n→∞,B2→∞

P (R(fn)−R(f∗)→ 0) = 1

where R(fn) is the risk of neural network classi�er and R(f∗) is the risk of Bayes classi�er.

Theorem 4.3 states that under the previously discussed conditions, the regression reaches

weak estimation consistency of the non-parametric function de�ned in [61]. For the clas-

si�cation, the neural network classi�er's risk tends to the optimal risk, Bayes risk, see for

example [37]. The theorem is a direct result from the existing results of the low dimension

neural network regression model and classi�ers. Conditioning on the fact that we can select

all correct variables with probability tending to 1, applying the full probability formula, the

consistency of the two-step approach can be derived with the low dimensional consistency

plus the probability of non-selection-consistency.

The consistency error comes from two aspects: the variable selection error and the esti-

mation error. The intuition behind this is that with a wrong selection result, the estimation

error may be big, however, this happens with probability tending to zero. With a correct

120

selection result, the estimation error behaves the same as in the low dimensional case, which

converges to zero.

4.4 Simulation Study

In this section, we use a few examples as numerical supports to our arguments in the previous

sections. The code for DNP is composed according to the algorithm outline in [82], and the

code of ENNS is composed according to the algorithm in this paper. Both codes can be

found at https://github.com/KaixuYang/ENNS.

4.4.1 Stage-wise Correct Selection Probability Decreasing Study

In this subsection, we use an example to demonstrate that the chance of selecting a correct

variable in a stage-wise neural network decreases as we have more correct variables in the

model. Consider a design matrix X that is drawn from a uniform distribution between -1

and 1. The sample size is set to n = 1000 and the number of predictors is set to p = 10000.

s = 5 of the predictors are related with the response. We consider three di�erent true

structures of the relationship between the predictors and the response: linear, additive non-

linear and neural network. For the response, we consider two di�erent cases: regression

and classi�cation. In the linear case, the coe�cients are drawn from a standard normal

distribution. In the additive non-linear case, the functions are set to

η = sin(x1) + x2 + exp(x3) + x2
4 + log(x5 + 2)− 2 (4.23)

121

https://github.com/KaixuYang/ENNS

where y = η + ε in the linear case and prob = σ(η) in the classi�cation case. In the

neural network case, we set hidden layers as [50, 30, 15, 10] and weights from standard normal

distribution.

For each of the cases, we test the cases when we start from 0 to 4 correct predictors. In

order to eliminate the e�ect of di�erent signal strength from di�erent predictors, we random

sample i indices from 1, ..., 5 as the selected variables, for i = 0, ..., 4, and include these i

indices predictors as the initially selected variables. We run a repetition of 1000 times and

report the proportion that the next variable that enters the model is a correct predictor.

The results are summarized in table 4.1.

y structure 0 variable 1 variable 2 variables 3 variables 4 variables

Reg
Linear 0.995(0.002) 0.952(0.006) 0.863(0.010) 0.774(0.013) 0.430(0.016)
Additive 0.993(0.003) 0.847(0.011) 0.905(0.009) 0.794(0.012) 0.531(0.016)
NN 0.998(0.001) 0.971(0.005) 0.932(0.007) 0.788(0.013) 0.574(0.016)

Cls
Linear 0.989(0.003) 0.918(0.009) 0.873(0.009) 0.813(0.011) 0.552(0.016)
Additive 0.992(0.003) 0.957(0.006) 0.911(0.009) 0.706(0.014) 0.633(0.015)
NN 0.994(0.002) 0.968(0.006) 0.947(0.004) 0.895(0.009) 0.762(0.013)

Table 4.1: The proportion of correct variable selection after 0-4 correct variables in the model,
for di�erent cases over 1000 repetitions. The results show the mean. The results show three
di�erent data generation structures: linear, additive non-linear and neural network for both
regression and classi�cation.

In the table, we see that the probability of selecting a correct predictor decreases as we

have more correct predictors in the model, in all cases. The only exception is in the regression

set up with additive non-linear structure from 1 variable to 2 variables, which may due to

random error.

4.4.2 False Positive Rate Study

In this subsection, we use an example to demonstrate that the false positive rate of ENNS

(the probability of selecting a wrong variable) is superior than the pure stage-wise algorithm.

122

Note that if one set the number of variables to be s, stage wise algorithm always select 5

variables, while ENNS will stop if there isn't any new variable that satisfy the condition

to be added. Therefore, it's possible that ENNS selects less number of variables and avoid

wrong selection. We used the same setup as [82] to generate responses. Two di�erent types of

responses including regression and classi�cation will be considered here. The input variable

X was drawn from U(−1, 1), where the feature dimension p was �xed to be 10, 000. The

corresponding labels were obtained by passing X into the feed forward neural network with

hidden layer sizes {50, 30, 15, 10} and ReLU activation functions. Input weights connecting

the �rst s inputs were randomly sampled from N(1, 1) for regression and N(0, 1) for classi-

�cation. The remaining input weights were kept zero. For each s = 2, 5, 10, we generated

1000 training samples. In table 4.2, we report the false positive rate between the ENNS

algorithm and the neural network stage-wise algorithm.

Response Method s=2 s=5 s=10

Regression
ENNS 10.4%(21.5%) 11.5%(22.1%) 12.8%(23.6%)
DNP 22.5%(29.5%) 30.2%(28.7%) 41.4%(33.2%)

Classi�cation
ENNS 4.7%(17.9%) 7.4%(18.6%) 9.8%(20.3%)
DNP 16.5%(24.4%) 24.8%(29.7%) 40.5%(32.8%)

Table 4.2: Selection false positive rate average of the ENNS and DNP under di�erent number
of true variables in 101 repetitions. Standard deviations are given in parenthesis.

It can be tested that the ENNS's false positive rate is signi�cantly less than the false

positive rate of DNP under signi�cance level α = 0.05. This provides strong evidence that

the ENNS is useful in reducing the probability of selecting an incorrect variable.

4.4.3 Variable Selection Simulation Study

In this subsection, we study the variable selection capability of the ensemble neural network

selection (ENNS) algorithm in the complicated set up. We used similar setup as in the last

123

subsection to generate responses. Two di�erent types of responses including regression and

classi�cation will be considered here. The input variableX was drawn from U(−1, 1), where

the feature dimension p was �xed to be 10, 000. The corresponding labels were obtained

by passing X into the feed forward neural network with hidden layer sizes {50, 30, 15, 10}

and ReLU activation functions. Input weights connecting the �rst s inputs were randomly

sampled from N(0, 2) for regression and N(0, 1) for classi�cation. The remaining input

weights were kept zero. The DNP model was coded according to their algorithm outline in

python with pyTorch. The ENNS algorithm is based on the DNP algorithm with an ensemble

wrapper. The LASSO [126] is implemented by the scikit learn library, and the HSIC lasso

[144] is implemented using the HSICLasso library. In all four algorithms, the number of

selected variables are strictly restricted to the same as the true number of variables. In the

ENNS, we run a bagging of 10 rounds with selection proportion 0.3. We report the average

number of correct variables that are selected on 101 repetitions of the data generation in

table 4.3.

Response Method s=2 s=5 s=10

Regression

ENNS 1.73(0.52) 4.21(0.56) 9.25(1.11)
DNP 1.61(0.50) 3.92(0.56) 8.77(1.13)
LASSO 1.65(0.57) 3.87(0.62) 9.62(1.38)

HSIC-LASSO 1.67(0.47) 3.80(0.66) 3.61(1.17)

Classi�cation

ENNS 1.81(0.49) 4.24(0.87) 8.04(1.25)
DNP 1.67(0.76) 3.76(1.06) 5.95(1.29)
LASSO 1.67(0.56) 3.76(0.75) 5.76(1.38)

HSIC-LASSO 1.67(0.47) 2.80(0.91) 3.61(1.17)

Table 4.3: Variable selection capacity of ENNS and other methods with low signal strength
in the regression (top) and classi�cation (bottom) set up. The numbers reported are the
average number of selected variables which are truly nonzero. The standard errors are given
in parenthesis.

We observe that the ENNS outperforms the other variable selection algorithms in all

three cases, and the di�erence is signi�cant when s = 10 under a t-test. The ENNS performs

124

better when there are more nonzero variables. None of the algorithms were able to recon-

struct the original feature indices due to a few reasons: the sample size is relatively small

compared to the number of variables; the data generation through neural network structures

is complicated; the signal strength is relatively low.

To fully study the variable selection power of the ENNS algorithm, we implemented

another simulation case in classi�cation where we have a higher signal strength while keeping

all other conditions the same. In this simulation study, we increase the mean of the weights

of the nonzero variables to 3.5. With the same implementations, we summarize the results

in table 4.4. Moreover, table 4.5 summarizes the results for signal strength 10.

Method s=2 s=5 s=10
ENNS 2.00(0.00) 4.71(0.55) 8.38(2.06)
DNP 1.86(0.35) 4.38(0.84) 7.43(2.36)
LASSO 1.81(0.39) 4.19(1.01) 7.47(2.40)

HSIC-LASSO 1.71(0.45) 3.71(1.12) 4.95(2.13)

Table 4.4: Variable selection capacity of ENNS and other methods with normal signal
strength. The numbers reported are the average number of selected variables which are
truly nonzero. The standard errors are given in parenthesis.

The ENNS reaches selection consistency when s = 2, while the other compared algorithms

still do not have selection consistency. However, all algorithms have obvious improvements in

all cases. We have to admit that selecting the correct subset of variables in all 101 repetitions

is extremely challenging, since the data have great variable in di�erent repetitions. Moreover,

when s gets greater, the importance of a few variables are less likely to be observed from the

data.

Moreover, as we know, the bagging algorithm can be paralyzed since di�erent runs are

independent of each other. Therefore, the computational e�ciency of this variable selection

algorithm is almost the same as the computation e�ciency of a single run.

125

Method s=2 s=5 s=10
ENNS 2.00(0.00) 5.00(0.00) 9.90(0.29)
DNP 2.00(0.00) 5.00(0.00) 9.47(1.10)
LASSO 2.00(0.00) 4.90(0.29) 9.23(1.74)

HSIC-LASSO 2.00(0.00) 4.62(0.84) 7.76(2.76)

Table 4.5: Variable selection capacity of ENNS and other methods with high signal strength.
The numbers reported are the average number of selected variables which are truly nonzero.
The standard errors are given in parenthesis.

4.4.4 Estimation Simulation Study

In this subsection, we compare the estimation methods in section 4.2. To fully study the

di�erence between these methods without the e�ects of other factors, in this subsection we

assume correct selection and perform the estimation on the correct subset of variables. The

data are generated according to the same scheme as in the last subsection. We will compare

the performance of these di�erent estimation methods for s = 2, 5, 10 assuming that we know

the correct subset of variables. The simulation is run on 101 repetitions of data generation

using di�erent seeds. In the results, we report the RMSE, the MAE and the MAPE for

regression, and the accuracy, the auc score and the f1 score for classi�cation. These are in

table 4.6.

On average, we see l1 norm regularization gives best performance, except for the MAPE

of s = 10 in regression. Moreover, we observe that both built-in l1 and soft-thresholding gives

smaller standard errors, which coincides with the shrinkage estimator's properties. However,

soft-thresholding provides better performance in average than built-in. The reason is that

sparsity is not well supported with most libraries, thus a manual operation is needed to

obtain sparsity.

126

4.4.5 Variable Selection and Estimation

In this subsection, we study the prediction capability of the two-stage approach � ENNS

algorithm with l1 neural network, and compare it with the DNP model, the logistic regression

and the HSIC-lasso with SVM. We use the same neural network structure to generate data

as in this section. Over 101 repetitions, we report the average RMSE (rooted mean squared

error), MAE (mean absolute error) and MAPE (mean absolute percent error) for regression

and average accuracy, AUC and F1 Score for classi�cation, as well as their standard errors.

The results are summarized in table 4.7.

We observe that our proposed algorithm obtained a slight performance boost via the

ensemble method. Moreover, the standard errors of these results are slight greater than

the standard errors in the last subsection, where the estimation was done assuming correct

selection. The increase of standard errors is mainly due to the selection variations.

4.4.6 Correlated Predictors

In this subsection, we use an example to study the numerical performance of the proposed

algorithm in correlated predictor situation. We will consider two di�erent correlations: ρ =

0.3 and ρ = 0.7. As a comparison, the results for ρ = 0 will also be included. Let u1, ..., un

be i.i.d. standard normal random variables, xij be i.i.d. standard normal random variables,

which are independent of u1, ..., un, for i = 1, ..., n and j = 1, ..., p. Do the transformation

xij = (xij + tui)/
√

1 + t2 for some t, then we obtained standard normal correlated variables

cor(xij , xik) =
t2

1 + t2
, i = 1, ..., n; j = 1, ..., p

127

Taking t =
√

3/7 gives correlation 0.3 and taking t =
√

7/3 gives correlation 0.7. Then we

truncate the random variables to interval [−1, 1]. The structure to generate response is kept

the same as in the last subsection. The results of variable selection and estimation is given

in table 4.8.

128

y Metric Method s=2 s=5 s=10

Reg

RMSE

Neural Network 31.24(13.32) 69.46(37.40) 136.64(60.54)
Xavier 18.64(11.07) 58.89(27.73) 136.58(65.57)

l1 built-in 20.47(9.62) 59.37(23.61) 129.55(50.48)
l1 soft 5.97(4.18) 45.83(33.06) 109.31(47.24)

Stage-wise 10.59(11.20) 47.64(22.69) 117.65(43.96)
Bagging 25.48(10.89) 59.49(26.53) 133.45(59.72)

MAE

Neural Network 16.45(10.91) 52.85(28.47) 103.76(45.99)
Xavier 13.65(8.06) 45.34(22.18) 105.17(53.66)

l1 built-in 15.56(7.76) 45.32(18.34) 98.54(38.36)
l1 soft 4.37(3.02) 35.49(26.21) 83.85(36.45)

Stage-wise 7.91(8.23) 38.86(20.00) 89.82(33.82)
Bagging 14.77(7.92) 43.16(20.51) 99.38(41.66)

MAPE

Neural Network 0.012(0.015) 0.030(0.026) 0.033(0.026)
Xavier 0.009(0.009) 0.027(0.022) 0.029(0.017)

l1 built-in 0.011(0.012) 0.029(0.023) 0.032(0.021)
l1 soft 0.005(0.007) 0.017(0.010) 0.029(0.023)

Stage-wise 0.007(0.007) 0.019(0.015) 0.027(0.016)
Bagging 0.010(0.010) 0.026(0.024) 0.030(0.022)

Cls

Accuracy

Neural Network 0.944(0.026) 0.886(0.037) 0.841(0.041)
Xavier 0.952(0.026) 0.891(0.034) 0.831(0.036)

l1 built-in 0.927(0.031) 0.844(0.085) 0.752(0.110)
l1 soft 0.964(0.028) 0.908(0.029) 0.855(0.031)

Stage-wise 0.945(0.030) 0.886(0.038) 0.804(0.042)
Bagging 0.877(0.069) 0.806(0.068) 0.753(0.087)

AUC

Neural Network 0.942(0.027) 0.882(0.038) 0.837(0.042)
Xavier 0.951(0.027) 0.891(0.034) 0.825(0.037)

l1 built-in 0.924(0.031) 0.833(0.100) 0.734(0.123)
l1 soft 0.964(0.029) 0.905(0.029) 0.851(0.032)

Stage-wise 0.943(0.031) 0.884(0.038) 0.800(0.041)
Bagging 0.877(0.065) 0.803(0.063) 0.751(0.084)

F1 Score

Neural Network 0.943(0.027) 0.887(0.045) 0.841(0.049)
Xavier 0.952(0.026) 0.892(0.041) 0.832(0.048)

l1 built-in 0.927(0.031) 0.824(0.192) 0.732(0.200)
l1 soft 0.965(0.026) 0.908(0.036) 0.857(0.033)

Stage-wise 0.944(0.031) 0.883(0.042) 0.806(0.049)
Bagging 0.870(0.077) 0.792(0.060) 0.748(0.088)

Table 4.6: Prediction results on the testing set using neural networks with and without l1
norm regularization for s = 2, 5, 10. RMSE is rooted mean squared error, MAE is mean
absolute error, and MAPE is mean absolute percent error. Accuracy is the percentage of
correct prediction, auc is area under the ROC curve, and f1 score is the inverse of inverse
precision plus the inverse recall.

129

y Metric Method s=2 s=5 s=10

Reg

RMSE

ENNS+l1 15.67(30.35) 48.14(21.16) 174.08(65.38)
DNP 25.42(33.16) 62.63(29.02) 178.91(60.15)
Lasso 79.44(67.31) 104.19(49.38) 192.04(77.34)

HSIC-Lasso 56.32(59.41) 86.77(47.51) 188.35(56.48)

MAE

ENNS+l1 12.03(23.68) 40.12(19.95) 132.07(44.99)
DNP 20.15(27.15) 47.85(22.31) 136.06(45.95)
Lasso 64.11(54.63) 81.97(39.76) 147.86(60.21)

HSIC-Lasso 42.89(34.66) 70.04(41.23) 144.37(48.15)

MAPE

ENNS+l1 0.012(0.025) 0.028(0.036) 0.041(0.037)
DNP 0.017(0.028) 0.032(0.032) 0.042(0.041)
Lasso 0.042(0.029) 0.046(0.035) 0.046(0.025)

HSIC-Lasso 0.033(0.021) 0.036(0.025) 0.048(0.024)

Cls

Accuracy

ENNS+l1 0.967(0.029) 0.848(0.025) 0.756(0.067)
DNP 0.933(0.076) 0.822(0.068) 0.736(0.064)
Lasso 0.732(0.103) 0.726(0.071) 0.692(0.075)

HSIC-Lasso 0.805(0.094) 0.798(0.094) 0.706(0.081)

AUC

ENNS+l1 0.959(0.036) 0.834(0.024) 0.709(0.058)
DNP 0.898(0.148) 0.780(0.100) 0.699(0.052)
Lasso 0.652(0.121) 0.640(0.102) 0.625(0.068)

HSIC-Lasso 0.774(0.125) 0.748(0.121) 0.677(0.061)

F1-Score

ENNS+l1 0.962(0.037) 0.859(0.036) 0.708(0.089)
DNP 0.903(0.208) 0.761(0.199) 0.705(0.100)
Lasso 0.590(0.299) 0.604(0.250) 0.634(0.192)

HSIC-Lasso 0.744(0.206) 0.731(0.242) 0.666(0.208)

Table 4.7: Model performance of the combination of ENNS algorithm and l1 thresholding
estimation, compared with DNP, Lasso and HSIC-Lasso for s = 2, 5, 10 cases in both re-
gression and classi�cation. The average performance of 101 repetitions with their standard
errors in parenthesis are presented.

130

131

Res Model
selection estimation

ρ = 0.0 ρ = 0.3 ρ = 0.7 ρ = 0.0 ρ = 0.3 ρ = 0.7

Reg
ENNS+l1 3.81(0.79) 3.27(0.75) 2.29(0.70) 40.82(19.46) 37.17(27.29) 43.18(44.47)
DNP 3.48(0.96) 2.95(0.79) 2.14(0.56) 81.43(46.00) 92.91(65.25) 101.15(90.63)
LASSO 3.38(0.90) 2.85(0.79) 2.11(1.12) 131.37(74.22) 151.16(108.88) 113.30(97.54)

Cls
ENNS+l1 3.66(1.05) 3.25(0.76) 2.38(0.72) 0.856(0.040) 0.875(0.061) 0.907(0.030)
DNP 3.62(1.09) 3.43(0.91) 2.71(1.03) 0.774(0.100) 0.766(0.106) 0.793(0.092)
LASSO 3.55(0.79) 2.90(1.31) 1.95(0.72) 0.598(0.083) 0.634(0.117) 0.683(0.116)

Table 4.8: Selection and estimation comparison for predictors with correlation 0, 0.3 and 0.7. The number of nonzero predictors
is set to 5. For selection, the average number of correct selected variables with its standard error is given. For estimation the
average RMSE or AUC with their standard errors is given. The results are averaged over 101 repetitions.

From the table we see that in the correlated cases the model works almost as well as

when there's no correlation. All models select less variables when the correlation is higher,

and this is a well-known symptom of variable selection with correlated predictors. However,

this does not a�ect the estimation step, and in some cases even makes the estimation results

better. The reason could be that we have less variables thus the model is simpler. Since

the predictors are correlated, we do not lose too much information by not selecting some

of them. Moreover, some results not in the table includes the false positive rate, where the

average for ENNS is 0.05 ± 0.03, while that of the DNP is 0.29 ± 0.14. Therefore, ENNS

includes less redundant variables in the estimation step and achieves better performance.

4.5 Real Data examples

In this section, we evaluate the performance of the two-step model on some real world data

sets.

4.5.1 Variable Selection: MRI Data

In this example, we evaluate the variable selection capability with other variable selec-

tion models, and compare the results with the biological ground truth. The data used

in this example come from Alzheimer's disease neuroimaging initiatives (ADNI), see http:

//adni.loni.usc.edu/. The data includes n = 265 patients' neuroimaging results, includ-

ing 164 Alzheimer's (AD) patients and 101 cognitively normal (CN) individuals. 145 regions

of interested (ROIs) spanning the entire brain were calculated using Multi-Atlas ROI segmen-

tation, and 114 ROIs were derived by combining single ROIs within a tree hierarchy to obtain

volumetric measurements from larger structures. Therefore, p = 259 ROIs were used in this

132

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/

example. Details of the pre-processing method can be found at https://adni.bitbucket.

\io/reference/docs/UPENN_ROI_MARS/Multi-atlas_ROI_ADNI_Methods_mod_April2016.

pdf. Among those ROIs, biologically important features are picked, see table 4.9, where red

indicated most important, yellow means secondly important, and green means thirdly im-

portant. The combinations and all other ROIs are not listed.

The full data set is used for variable selection, and the selection result is chosen such that

a 3-fold cross-validation performs best. We run the ENNS algorithm along with the LASSO

and the DNP. The selection result are presented in table 4.9. Note here if a model selects a

simple combination of some features, these features are also marked as selected. Moreover,

table 4.10 shows the number of combined features selected for the models and number of

false positive selections. We observe that LASSO misses a lot of important features and

selected about only 1/4 of the combined features as neural networks. This indicates that the

features may have complicated relationship with the response. ENNS performs better than

the shallow DNP in terms of the metrics in table 4.10, where IS is a weighted average score

with the weights for red, yellow and green being 3, 2 and 1, respectively; NI is the number of

selected important variables; and NU is the number of selected unimportant variables. As a

property of the ENNS, it selects less false positive variables. It's hard to track the combined

features, since a lot are involved, however, the combinations represent biological intuitions.

Neural networks selects more combined features and perform better in this sense.

133

https://adni.bitbucket.\io/reference/docs/UPENN_ROI_MARS/Multi-atlas_ROI_ADNI_Methods_mod_April2016.pdf
https://adni.bitbucket.\io/reference/docs/UPENN_ROI_MARS/Multi-atlas_ROI_ADNI_Methods_mod_April2016.pdf
https://adni.bitbucket.\io/reference/docs/UPENN_ROI_MARS/Multi-atlas_ROI_ADNI_Methods_mod_April2016.pdf

134

ROI R31 R32 R36 R37 R38 R39 R40 R41 R47 R48 R49 R50 R51
Lasso X X X X X
DNP X X X X X X X
ENNS X X X X X X X X X X X X
ROI R52 R55 R56 R57 R58 R59 R60 R81 R82 R85 R86 R87 R88
Lasso X X
DNP X X X X X X
ENNS X X X X X X X
ROI R100 R101 R102 R103 R106 R107 R116 R117 R118 R119 R120 R121 R122
Lasso X X X X
DNP X X X X X X
ENNS X X X X X
ROI R123 R124 R125 R132 R133 R136 R137 R138 R139 R140 R141 R142 R143
Lasso X X X X X X X X
DNP X X X X X X X X
ENNS X X X X X X X X X
ROI R146 R147 R152 R153 R154 R155 R162 R163 R164 R165 R166 R167 R168
Lasso X X X X X X
DNP X X X X
ENNS X X X X X X X X
ROI R169 R170 R171 R178 R179 R186 R187 R190 R191 R194 R195 R198 R199
Lasso X X X X X X
DNP X X X X X
ENNS X X X X X X
ROI R200 R201 R202 R203 R204 R205 R206 R207
Lasso X X X
DNP X X X X
ENNS X X X X

Table 4.9: Variable selection result for the AD data. The table includes all biologically important variables with three levels:
red (very important), yellow (secondly important) and green (thirdly important). The non-important variables are not included
in the model. Checkmarks indicate whether the corresponding algorithm selected the variable or not.

Variable selection method IS NI NU
LASSO 1.094 32/86 25/59
DNP 1.428 40/86 15/59
ENNS 1.624 49/86 6/59

Table 4.10: Variable selection result for the AD data. The reported numbers include IS,
the weighted average of selected important variables with the weights being 3, 2 and 1 for
red (most important), yellow (secondly important) and green (thirdly important), respec-
tively; NI, number of important variables selected; and NU, number of unimportant variables
selected.

4.5.2 Regression: Ribo�avin Production Data

In this example, we consider the ribo�avin production with bacillus subtilis data, which is

publicly available in the `hdi' package in R. The data set contains a continuous response,

which is the logarithm of the ribo�avin production rate, and p = 4088 predictors which are

the logarithm of the expression level of 4088 genes. There are n = 71 observations available.

All predictors are continuous with positive values.

We perform 50 repetitions of the following actions. The data is split into training (56) and

testing (15) observations. The training data is further split into training (49) and validation

(7). The training data is normalized with mean zero and standard deviation one. We train

the ENNS algorithm to select variables and perform the l1 neural network to make prediction.

Along with our proposed algorithms, we compare the performance with the lasso penalized

linear regression, which is implemented by the scikit-learn library in python; the group lasso

penalized generalized additive model in [145], where the code can be found at https://

github.com/KaixuYang/PenalizedGAM; and the sparse group lasso penalized neural network

in [53]. �gure (4.1) shows the average testing mean squared error (MSE) along with the

number of selected features for di�erent models. Our proposed algorithm converges fast

and performs competitive. table 4.11 shows the average prediction accuracy with standard

error in parenthesis and the median number of variables selected. Our proposed method has

135

https://github.com/KaixuYang/PenalizedGAM
https://github.com/KaixuYang/PenalizedGAM

Model Test MSE Number of features
ENNS+l1 neural network 0.268(0.115) 42
Regularized neural network 0.273(0.135) 44
Linear model with LASSO 0.286(0.124) 38

Generalized additive model with group lasso 0.282(0.136) 46

Table 4.11: Test MSE with standard error in parentheses and median of number of features
for di�erent models in the ribo�avin gene data example.

competitive mean performance but lower standard error.

The �nal model of small sample utilizes only 2 hidden layers, with over 90% sparsity to

prevent over-�tting, which is necessary for this small training sample size, 49. Training with

large batch size, small learning rate, huge number of epochs and early stopping help the

model learn better and prevent over-�tting. We admit that tuning the network structure

and learning parameters are hard, but we obtain better and stabler results once we have the

right numbers.

4.5.3 Classi�cation: Prostate Cancer Data

In this example, we considered a prostate cancer gene expression data, which is publicly

available in http://featureselection.asu.edu/datasets.php. The data set contains a

binary response with 102 observations on 5966 predictor variables. Clearly, the data set

is really a high dimensional data set. The responses have values 1 (50 sample points) and

2 (52 sample points), where 1 indicates normal and 2 indicates tumor. All predictors are

continuous predictors, with positive values.

We perform 50 repetitions of the following actions. The data is split into training (81) and

testing (21) observations. The training data is further split into training (70) and validation

data (11). In each split, the number of class 0 observations and number of class 1 observations

136

http://featureselection.asu.edu/datasets.php

Classi�er Test accuracy Number of features
ENNS+l1 neural network 0.956(0.053) 15
Regularized neural network 0.955(0.066) 18

Logistic Regression with Lasso 0.933(0.058) 36
l1 penalized Linear SVM 0.950(0.052) 16

Generalized additive model with group lasso 0.918(0.061) 5

Table 4.12: Test accuracy with standard error in parentheses and median of number of
features for di�erent classi�ers in the Prostate gene data example.

are kept roughly the same. We train the ENNS algorithm to select variables and perform the

l1 neural network to make predictions. Along with our proposed algorithms, we compare the

performance with the l1 norm penalized logistic regression; the l1 support vector machine

(SVM), both of which are implemented with the scikit-learn library in python; the group

lasso penalized generalized additive model in [145], where the code can be found at https://

github.com/KaixuYang/PenalizedGAM; and the sparse group lasso penalized neural network

in [53]. �gure (4.2) shows the average testing accuracy over the 20 repetitions along with

the number of selected features for di�erent models. Our proposed algorithm converges fast

and performs competitive. table 4.12 shows the average prediction accuracy with standard

error in parenthesis, and the median number of variables selected. Our proposed methods

has competitive mean performance but lower standard error. One needs to notice that the

mean performance is hard to improve further, since the results are already good and reach

the bottleneck of the current explanatory variables. The reason that GAM performs worse

than the other models is that the range of predictor variables are relatively small and skewed,

thus the basis expansion on GAM does not work well.

137

https://github.com/KaixuYang/PenalizedGAM
https://github.com/KaixuYang/PenalizedGAM

Figure 4.1: Testing mean squared error (MSE) for di�erent models on the ribo�avin data.

138

Figure 4.2: Testing accuracy for di�erent models on the prostate cancer data.

139

4.6 Conclusion

In this paper, we discussed the existing methods to deal with high-dimensional data and how

to apply the stage-wise algorithm with neural networks. We discussed the shortage of the

current stage-wise neural network variable selection algorithms and proposed the ENNS to

overcome these shortage. Moreover, we also compared di�erent methods to further reduce

the over-�tting issue after the variable selection step. Methodology was given to support the

argument and new algorithm, and simulation studies were given as extra evidence for the

algorithm to work.

Though there's a few simulation and methodology study in neural network variable se-

lection, the theory for neural network still deserves much more investigation. We hope this

paper could work as a pioneer and attracts more people's attention to the neural network

theory �eld.

140

Chapter 5

Epilogue

The main goal of this dissertation is to establish theory and propose new methodologies for

non-parametric statistical machine learning modeling for the high-dimensional low sample

size (HDLSS) problems. We have studied three di�erent non-parametric approaches: the

generalized additive model (GAM) in Chapter 2, the sparse group lasso penalized shallow

neural network in Chapter 3 and the ensemble neural network selection (ENNS) algorithm

in Chapter 4. These three models are appropriate in di�erent situations. The GAM is

useful when there is not too much interactions among the variables or there is only weak

interactions among the variables, which has many applications. Actually, in most �elds,

the additive structure is enough to obtain a fairly good result. The shallow neural network

is used when there are interactions among the variables, but the relationship between the

response and the variables is not too complicated. If we have huge interactions and very

complicated relationships, a deep neural network makes better approximation to this rela-

tionship. However, on the other hand, the level of di�culty in training the three models also

increase gradually, especially it's easy to get stuck in a local minimum when training the

neural network. From this aspect, GAM is a convex optimization problem and is guaranteed

to reach a global minimum, thus has smaller training di�culty.

The theory we proved also make great contribution towards this �eld. These theoretical

results guarantee that these methods will work under certain conditions, which is better sup-

141

port than the numerical results only. Moreover, we have applied these methods to di�erent

�elds of examples, including genetic data, computer vision data, autonomous driving data

and MRI data. These non-parametric models are proved to work in di�erent aspects.

In the future, the neural network still have a huge room to investigate. How do we �nd

a more stable way to train a neural network? How do we prevent neural network from

over�tting small sample? How do we eliminate the gap between the global minimum used in

neural network theory and the local minimum obtain in practice? These are left for future

research.

142

APPENDICES

143

APPENDIX A

Technical Details and Supplementary

Materials for Chapter 2

Derivation of Assumption 2.2

Though assumption 2.2 is imposed on the �xed design matrix, however, it holds if the design

matrixX is drawn from a continuous density and the density gj of Xj is bounded away from

0 and in�nity by b and B, respectively, on the interval [a, b]. Let δA be the sub-vector of

δ which include all nonzero entries. Without loss of generality, let δA = {δ1, ..., δk}, where

δk ∈ Rmn and k = O(sn). Let ΦA be the corresponding sub-matrix of Φ.

By lemma 3 in [120], if the design matrix X is drawn from a continuous density and

the density gj of Xj is bounded away from 0 and in�nity by b and B, respectively, on the

interval [a, b], and cardB(δ) = O(sn), we have

‖Φ1δ1 + ...+ Φkδk‖2 ≥ γk−1
2 (‖Φ1δ1‖2 + ...+ ‖Φkδk‖2)

for some positive constant γ2 such that δ0 < 1 − 2γ2
2 < 1, where δ0 = ((1 − bB−1)/2).

Together with the triangle inequality, we have

γk−1
2 (‖Φ1δ1‖2 + ...+ ‖Φkδk‖2) ≤ ‖ΦAδA‖2 ≤ ‖Φ1δ1‖2 + ...+ ‖Φkδk‖2

144

By simple algebra, we have

γ2k−2
2 (‖Φ1δ1‖22 + ...+ ‖Φkδk‖22) ≤ ‖ΦAδA‖22 ≤ 2(‖Φ1δ1‖22 + ...+ ‖Φkδk‖22)

For any j = 1, ..., k, by lemma 6.2 in [153], we have

c1m
−1
n ≤ λmin(n−1ΦTj Φj) ≤ λmax(n−1ΦTj Φj) ≤ c2m

−1
n

for some c1 and c2. Then we have

δTΦTΦδ

‖δ‖22
=
‖ΦAδA‖22
‖δA‖22

≥
γ2k−2

2 (‖Φ1δ1‖22 + ...+ ‖Φkδk‖22)

‖δA‖22

= γ2k−2
2

(
‖Φ1δ1‖22
‖δ1‖22

‖δ1‖22
‖δA‖22

+ ...+
‖Φkδk‖22
‖δk‖22

‖δk‖22
‖δA‖22

)

≥ γ2k−2
2 c1nm

−1
n

(
‖δ1‖22
‖δA‖22

+ ...+
‖δk‖22
‖δA‖22

)

= γ2k−2
2 c1nm

−1
n

Let γ0 = γ−2
2 c1 and observe that k = O(sn), we have

δTΦTΦδ

n‖δ‖22
≥ γ0γ

2sn
2 m−1

n

145

Similarly, we have

δTΦTΦδ

‖δ‖22
=
‖ΦAδA‖22
‖δA‖22

≤
2(‖Φ1δ1‖22 + ...+ ‖Φkδk‖22)

‖δA‖22

= 2

(
‖Φ1δ1‖22
‖δ1‖22

‖δ1‖22
‖δA‖22

+ ...+
‖Φkδk‖22
‖δk‖22

‖δk‖22
‖δA‖22

)

≤ 2c2nm
−1
n

(
‖δ1‖22
‖δA‖22

+ ...+
‖δk‖22
‖δA‖22

)

= 2c2nm
−1
n

Let γ1 = c2, we have

δTΦTΦδ

n‖δ‖22
≤ γ1m

−1
n

Proofs of Lemma and Theorems

The following lemmas are needed in proving theorems.

Lemma A.1. For any sequence rn > 0, under assumption 2.1 and 3, we have for bounded

response such that |yi| < c/2 that

P

(∥∥∥∥∥ΦT
(
y − µy

)
n

∥∥∥∥∥
∞
≤ rn

)
≥ 1− 2pnmn exp(− nr2

n

2c2c2Φ
) (A.1)

Speci�cally, for a diverging sequence tn, taking

rn =
√

2ccΦ

√
log(pnmn) + tn

n

146

we have for response such that |yi| < c/2 that

P

(∥∥∥∥∥ΦT
(
y − µy

)
n

∥∥∥∥∥
∞
≤ rn

)
≥ 1− 2 exp(−tn) (A.2)

Proof. Observe that

ΦTj
(
y − µy

)
n

=
n∑
i=1

(
φij(yi − µyi)

n

)
:=

n∑
i=1

γ(yi)

It's easy to verify that Eγ(yi) = 0 for i = 1, ..., n and |γ(yi)| =
∣∣φij(yi − µyi)/n∣∣ ≤ cdi for

i = 1, ..., n. By assumption 2.1, we have
∑n
i=1 d

2
i ≤ c2Φ/n for i = 1, ..., n. Apply Bonferroni's

inequality and Hoe�ding's inequality, we have

P

(∥∥∥∥∥ΦT
(
y − µy

)
n

∥∥∥∥∥
∞
≤ rn

)
= 1− P

(∥∥∥∥∥ΦT
(
y − µy

)
n

∥∥∥∥∥
∞
≥ rn

)

= 1− P

mn×pn⋃
j=1

{∣∣∣∣∣Φ
T
j

(
y − µy

)
n

∣∣∣∣∣ ≥ rn

}
≥ 1−

mn×pn∑
j=1

P

(∣∣∣∣∣Φ
T
j

(
y − µy

)
n

∣∣∣∣∣ ≥ rn

)

≥ 1−mn × pn × 2 exp

(
− nr2

n

2u2
nc

2
Φ

)
− c2n1−c3c24

with our choice of

rn =
√

2ccΦ

√
log(pnmn) + tn

n

147

we have

P

(∥∥∥∥∥ΦT
(
y − µy

)
n

∥∥∥∥∥
∞
≤ rn

)
≥ 1−mn × pn × 2 exp

(
− nr2

n

8c2c2Φ

)

= 1−mn × pn × 2 exp

(
−
n2c2c2Φ(log(pnmn) + tn)

2c2c2Φn

)

= 1− 2 exp(−tn)

Lemma A.2. In the unbounded response case, under assumptions 2.1 and 2.3, let Tn =

n−1‖ΦTj (y − µy)‖∞ = maxj=1,...,pnmn n
−1|ΦTj (y − µy)|, we have

ETn = O(1)n−1/2√pnmn (A.3)

and then for any diverging sequence an,

P

(
Tn ≥ an

√
log(pnmn)

n

)
→ 0 as n→ 0 (A.4)

Proof. By the maximal inequality for sub-Gaussian random variables, for example, see Lem-

mas 2.2.1 and 2.2.2 in [136] and application see lemma 2 of [65], we have

ETn ≤ Cn−1
√

log(pnmn) max
j
‖Φj‖2

Then by assumption 2.1, we have

ETn = O(1)n−1/2√pnmn

148

Since Tn ≥ 0, by Markov's inequality, we have

P

(
Tn ≥ an

√
log(pnmn)

n

)
≤ ETn

n−1/2
√

log(pnmn)
=

C

an
→ 0 as n→∞ (A.5)

Remark A.1. From the two lemmas we see that the di�erence between the bounded re-

sponse case and the unbounded response case is the upper bound for the maximum of the

random errors. For the bounded case, the error could be bounded by

rn = C

√
log(pnmn) + tn

n

with any diverging sequence tn. If we take tn = O(log(pnmn)), we have for a di�erent C,

the bounded response errors to be bounded by

rn = C

√
log(pnmn)

n

with probability converging to 1. For the unbounded response case, with probability con-

verging to 1, we need a diverging sequence an instead of a constant multiplied to the main

term, i.e.,

rn = an

√
log(pnmn)

n

This di�erence is re�ected on the choice of the tuning parameter λ.

149

Proof of Theorem 2.1

Proof. First observe that due to the spline approximation, an error is bought into the model.

Let θ =
∑pn
j=1 fj and θ

∗ =
∑pn
j=1 fnj . By the proof of theorem 1 in [65], we have

‖fj − fnj‖∞ = O(m−dn)

Therefore, we have

|θ − θ∗| ≤ ‖
pn∑
j=1

(fj − fnj)‖∞ ≤
sn∑
j=1

‖fj − fnj‖∞ = O(snm
−d
n)

Use Taylor expansion on b′(θ) around θ∗, we have

b′(θ)− b′(θ∗) = b′′(θ∗∗)(θ − θ∗)

where θ∗∗ lies between θ and θ∗. By assumption 2.3, we have

|µyi − µ
∗
yi
| = |b′(θ)− b′(θ∗)| ≤ c−1

1 |θ − θ
∗| = O(snm

−d
n), i = 1, ..., n (A.6)

where µ∗yi is the mean of the ith observation evaluated at the spline approximated functions.

Therefore, we have

‖µy − µ∗y‖∞ = O(snm
−d
n)

As a direct result, we have

1

n
‖µy − µ∗y‖22 = O(s2

nm
−2d
n) (A.7)

150

We start with part (i). The proof of this part is similar to the proof of part (i) of theorem

1 in [65]. But because of the non-identity link function, here we have to make some changes.

By KKT conditions, a necessary and su�cient condition for β̂ to be a minimiser of the target

function is 
1

n
ΦTk (y − µ̂∗y) =

λn1β̂k

‖β̂k‖2
, ∀ k s.t. ‖β̂k‖2 > 0

1

n
ΦTk (y − µ̂∗y) ∈ [−λn1, λn1], ∀ k s.t. ‖β̂k‖2 = 0

(A.8)

where µ̂∗y is the mean of response approximated by splines and evaluated at the solution β̂

and the second belonging relationship is element-wise. Let

sk =
ΦTk (y − µ̂∗y)

nλn1

Then we have 
‖sk‖2 = 1, ∀ k s.t. ‖β̂k‖2 > 0

‖sk‖2 ≤ 1, ∀ k s.t. ‖β̂k‖2 = 0

(A.9)

We consider the following subsets of {1, ..., p}. Let A1 be such that

{
k : ‖β̂k‖2 > 0

}
⊂ A1 ⊂

{
k :

1

n
ΦTk (y − µ̂∗y) =

λn1β̂k

‖β̂k‖2

}
∪ {1, ..., sn} (A.10)

Let A2 = {1, ..., p}\A1, A3 = A1\T , A4 = A1 ∩ T c, A5 = A2\T c and A6 = A2 ∩ T c.

Therefore, the relationships are

j ∈ T j ∈ T c

A1: selected j and some j ∈ T A3 A4

A2: j not in A1 (includes unselected only) A5 A6

151

Then we have

ΦTA1
(y − µ̂∗A1

) = SA1
(A.11)

where SA1
= (STK1

, ..., STKq1
)T , SKi = nλn1ski and µ̂

∗
A1

= b′(ΦA1
β̂A1

). Also from the

inequality in KKT, we have

−CA2
≤ ΦTA2

(y − µ̂∗A1
) ≤ CA2

(A.12)

where CA2
= (CTK1

, ..., CTkq2
)T and CKi = nλn11{‖β̂Ki‖2=0} ·emn×1, where all the elements

of e are 1. Let ε∗ = y − µ∗y, then from (A.11) we have

ΦTA1
(µ∗y + ε∗ − µ̂∗A1

) = SA1

use Taylor expansion on µ∗y around µ̂∗A1
, we have

ΦTA1
Σ1ΦA1

(βA1
− β̂A1

) + ΦTA1
Σ1ΦA2

βA2
+ ΦTA1

ε∗ = SA1

where Σ1 = Σ(θ1), θ1 lies on the line segment joining Φβ and ΦA1
β̂A1

, and Σ(θ) =

diag(b′′(θ1), ..., b′′(θn)) is the diagonal variance matrix evaluated at θ. From (A.12), we have

−CA2
≤ ΦTA2

Σ1ΦA1
(βA1

− β̂A1
) + ΦTA2

Σ1ΦA2
βA2

+ ΦTA2
ε∗ ≤ CA2

Let Σij = ΦTAi
Σ(θ1)ΦAj/n, we have

Σ11(βA1
− β̂A1

) + Σ12βA2
= SA1

152

and

−CA2
≤ Σ21(βA1

− β̂A1
) + Σ22βA2

+ ΦTA2
ε∗ ≤ CA2

With our choice of λn1, the constants are su�cient large, by lemma 1 in [140], the eigenvalues

of Σ11 are bounded from below. Thus without loss of generality, we assume Σ11 is invertible.

Then we have

Σ−1
11 SA1

n
= βA1

− β̂A1
+ Σ−1

11 Σ12βA2
+

Σ−1
11

n
ΦTA1

ε∗ (A.13)

and

‖Σ−1/2(µy − µ∗y)‖2
n

+ nΣ22βA2
− nΣ21Σ11−1Σ12βA2

≤CA2
− ΦTA2

ε∗ −Σ21Σ−1
11 SA1

+ Σ21Σ−1
11 ΦTA1

ε∗ (A.14)

De�ne

V1j =
1√
n

Σ
−1/2
11 QTAj1SAj , j = 1, 3, 4

and

wk = Σ
1/2
1 (I − P 1)Σ

1/2
1 ΦAk

βAk
, k = 2, ..., 6

where

P 1 = Σ1/2ΦA1
(ΦTA1

ΣΦA1
)−1ΦTA1

Σ1/2

and QAjk is the matrix representing the selection of variables in Ak from Aj .

Consider j = 4. For any k ∈ A4, we have ‖β̂k‖2 > 0, then ‖sk‖22 = 1. Then we have

153

‖SA4
‖22 =

∑
k∈A4

N(A4), where N(A4) is the number of predictors in A4. Thus

‖V14‖22 =
1

n
‖Σ−1/2

11 QTA41SA4
‖22

≥ 1

n
c1‖QTA41SA4

‖22

= c1n
∑
k∈A4

‖λn1sk‖22

≥ c1nλ
2
n1(q1 − sn)

That is

(q1 − sn)+ ≤
‖V14‖22
c1nλ

2
n1

(A.15)

Then, we need to �nd a bound for ‖V14‖22 and q1 ≤ (q1− sn)+ + sn will be bounded. Using

(A.13) and consider

V T14(V14 + V13) = STA4
QA41

Σ−1
11

n
SA1

= STA4
QA41(βA1

− β̂A1
+ Σ−1

11 Σ12βA2
+

Σ−1
11

n
ΦTA1

ε∗)

= STA4
QA41Σ−1

11 Σ12βA2
+
STA4

QA41Σ−1
11

n
ΦTA1

ε∗ + STA4
(βA4

− β̂A4
)

Observe βA4
= 0, and

STA4
β̂A4

=
∑
k∈A4

λn1β̂
T
k β̂k

‖β̂k‖2
=
∑
k∈A4

λn1‖β̂k‖2 > 0

we have

V T14(V14 + V13) ≤ STA4
QA41Σ−1

11 Σ12βA2
+
STA4

QA41Σ−1
11

n
ΦTA1

ε∗

154

On the other hand, by (A.14),

‖w2‖22 = βTA2
ΦTA2

Σ
1/2
1 (I − P 1)Σ1(I − P 1)Σ

1/2
1 ΦA2

βA2

≤ c−1
1 βTA2

ΦTA2
Σ

1/2
1 (I − P 1)Σ

1/2
1 ΦA2

βA2

= c−1
1 βTA2

ΦTA2
Σ1ΦA2

βA2
+ c−1

1 βTA2
ΦTA2

Σ1ΦA1
(ΦTA1

Σ1ΦA1
)−1ΦTA1

Σ1ΦA2
βA2

= c−1
1 βTA2

(nΣ22βA2
− nΣ21Σ−1

11 Σ12βA2
)

≤ c−1
1 βTA2

(CA2
− ΦTA2

ε∗ −Σ21Σ−1
11 SA1

+ Σ21Σ−1
11 ΦTA1

ε∗)

= c−1
1 βTA2

CA2
− c−1

1 βTA2
(ΦTA2

−Σ21Σ−1
11 ΦTA1

)ε∗ − c−1
1 βTA2

Σ21Σ−1
11 SA1

= c−1
1 βTA2

CA2
− c−1

1 βTA2
Σ21Σ−1

11 SA1
− c−1

1 wT2 Σ−1
1 ε∗

Then we have

V T14(V14 + V13) + c1‖w2‖22

≤

STA4
QA41Σ−1

11

n
ΦTA1

− wT2 Σ−1
1

 ε∗ − STA3
QA31Σ−1

11 Σ12βA2
+ βTA2

CA2

De�ne

u =
ΦA1

Σ−1
11 Q

T
A41SA4

/n−Σ−1
1 w2

‖ΦA1
Σ−1

11 Q
T
A41SA4

/n−Σ−1
1 w2‖2

155

Observe

‖ΦTA1
Σ−1

11 Q
T
A41SA4

/n−Σ−1
1 w2‖2

≤2(‖ΦTA1
Σ−1

11 Q
T
A41SA4

/n‖22 + ‖Σ−1
1 w2‖22)

≤2‖ΦTA1
Σ−1

11 Q
T
A41SA4

/n‖22 + 2c−2
1 ‖w2‖22

=2‖V14‖22 + 2c−2
1 ‖w2‖22

Observe c1 < c−1
1 implies c1 < 1, then

‖V14‖22 + c1‖w2‖22 + V T14V13 ≤(2c−2
1 ‖V14‖22 + 2c−2

1 ‖w2‖22)1/2|uTε∗|

+
√
n‖V13‖2‖Σ

−1/2
11 Σ12βA2

‖2 + λn1‖βA5
‖1 (A.16)

By (A.15), we have

‖V13‖22 =
1

n
‖Σ−1/2

11 QTA31SA3
‖22

≤ c−1
1

‖QA31SA3
‖22

n

= c−1
1

∑
k∈A3

‖λn1sk‖22

≤ c−1
1 nλ2

n1N(A3)

156

By (A.16), we have

‖V14‖22 + c1‖w2‖22

≤c−1
1 (2‖V14‖22 + 2‖w2‖22)1/2|uTε∗|+

√
c−1
1 nλ2

n1N(A3)‖V14‖2

+

√
c−1
1 nλ2

n1N(A3)‖Σ−1/2
11 Σ12βA2

‖2 + λn1‖βA5
‖1 (A.17)

De�ne

B1 =
√
c1nλ

2
n1sn and B2 =

√
c−1
1 nλ2

n1sn

consider the event

E =

{
|uTε∗|2 ≤

(|A1| ∨mn)c21nλ
2
n1

4mn
= (|A1| ∨mn)

c31B
2
1

4snmn

}

later we will show that this event holds with probability tending to 1. On the event E , by

(A.15), we have

‖V14‖22 ≥
q1
sn
B2

1 −B
2
1

then

|uTε∗|2 ≤
c31q1mnB

2
1

4snmn
≤
c31
4

(‖V14‖22 +B2
1)

and we have

c−1
1 (2‖V14‖22 + 2‖w2‖22)1/2|uTε∗| ≤ c−3

1 |u
Tε∗|2 +

c31
4
c−2
1 (2‖V14‖22 + 2‖w2‖22)

≤ 1

4
(‖V14‖22 +B2

1) +
c31
4
c−2
1 (2‖V14‖22 + 2‖w2‖22)

≤ 3

4
‖V14‖22 +

1

4
B2

1 +
c1
2
‖w2‖22

157

Then we have

‖V14‖22 + c1‖w2‖22 ≤
3

4
‖V14‖22 +

1

4
B2

1 +
c1
2
‖w2‖22 +

√
c−1
1 nλ2

n1N(A3)‖V14‖2

+

√
c−1
1 nλ2

n1N(A3)‖Σ−1/2
11 Σ12βA2

‖2 + λn1‖βA5
‖1

i.e.

‖V14‖22 + 2c1‖w2‖22 ≤ B2
1 + 4

√
c−1
1 nλ2

n1N(A3)(‖V14‖2 + ‖Σ−1/2
11 Σ12βA2

‖2) + λn1‖βA5
‖1

Consider the set A1 that contains all βk 6= 0. We have q1 ≥ sn and

{
k : ‖β̂k‖2 > 0 or k /∈ T c

}
⊂ A1 ⊂

{
k :

1

n
ΦTk (y − µ̂∗y) =

λn1β̂k

‖β̂k‖2
or k /∈ T c

}
(A.18)

Then we have A5 = ∅, N(A3) = sn ≤ q1 and βA2
= 0. Then we have

‖V14‖22 ≤ B2
1 + 4

√
c−1
1 nλ2

n1sn‖V14‖2 = B2
1 + 4B2‖V14‖2

Use the truth that x2 ≤ c+ 2bx implies x2 ≤ 2c+ 4b2, we have

‖V14‖22 ≤ 2B2
1 + 16B2

2

Then we have from (A.15) that

(q1 − sn)+ ≤
‖V14‖22
c1nλ

2
n1

≤
2B2

1 + 16B2
2

c1nλ
2
n1

= c5sn

158

where c5 = (2c21 + 16)/c21, i.e.

(q1 − sn)+ + sn ≤ (c5 + 1)sn (A.19)

We note that the constant c5 only depends on c1 and (A.18) simply requires larger A1, (A.19)

holds for all A1 satisfying (A.10). Note that (A.19) holds if

q1 ≤ N(A1 ∪ A5) ≤ n

mn
and |uTε∗|2 ≤

(|A1| ∨mn)c21nλ
2
n1

4mn
(A.20)

So it remains to show that (A.20) holds with probability tending to 1. De�ne

x∗m = max
|A|=m

max
‖UAk

‖2=1,k=1,...,m

∣∣∣ε∗T
ΦA(ΦTAΣAΦA)−1S̄A −Σ

−1/2
A (I −Σ

1/2
A ΦA(ΦTAΣAΦA)−1ΦTAΣ

1/2
A)Σ

1/2
A Φβ

‖ΦA(ΦTAΣAΦA)−1S̄A −Σ
−1/2
A (I −Σ

1/2
A ΦA(ΦTAΣAΦA)−1ΦTAΣ

1/2
A)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣
(A.21)

for |A| = q1 = m ≥ 0, S̄A = (S̄TA1
, ..., S̄TAm)T where S̄Ak

= λn1UAk
, ‖UAk‖2 = 1

and ΣA is the variance matrix evaluated at some θ corresponding to the remainder of

the Taylor expansion when the subset A is considered. To simplify the notations, let

QA = λn1ΦA(ΦTAΣAΦA)−1 and PA = Σ
1/2
A ΦA(ΦTAΣAΦA)−1ΦTAΣ

1/2
A , then we have

x∗m = max
|A|=m

max
‖UAk

‖2=1,k=1,...,m

∣∣∣∣∣∣ε∗T QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣ (A.22)

159

De�ne

Ω∗m0
= {(U, ε∗) : x∗m ≤ C

√
(|A| ∨ 1)mn log(pnmn),∀m = |A| ≥ m0}

and

Ωm0 = {(U, ε) : x∗∗m ≤ C
√

(|A| ∨ 1)mn log(pnmn),∀m = |A| ≥ m0}

for a large enough generic constant C, where

x∗∗m = max
|A|=m

max
‖UAk

‖2=1,k=1,...,m

∣∣∣∣∣∣εT QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣
By triangle inequality and Cauchy-Schwarz inequality, we have

∣∣∣∣∣∣ε∗T QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣εT QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣+ ‖θn‖2

≤

∣∣∣∣∣∣εT QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣+ Cn1/2snm
−d
n

≤

∣∣∣∣∣∣εT QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣+ C
√

(|A| ∨ 1)mn log(pnmn)

Then we have

(U, ε) ∈ Ωm0 ⇒ (U, ε∗) ∈ Ω∗m0
⇒ |uTε∗|2 ≤ |x∗m|2 ≤

(|A1| ∨mn)c21nλ
2
n1

4mn
for q1 ≥ m0 ≥ 0

160

Since εi's are sub-Gaussian random variables by assumption 2.2, we have

1− P
(
(U, ε) ∈ Ωq

)
=P
(
x∗∗m > C

√
(m ∨ 1)mn log(pnmn),∀m = |A| ≥ m0

)
≤
∞∑
m=0

P
(
x∗∗m > C

√
(m ∨ 1)mn log(pnmn)

)

≤
∞∑
m=0

(
pn
m

)
P

∣∣∣∣∣∣εT QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ

‖QAUA −Σ
−1/2
A (I − PA)Σ

1/2
A Φβ‖2

∣∣∣∣∣∣ > C
√

(m ∨ 1)mn log(pnmn)


≤2

∞∑
m=0

(
pn
m

)
exp (−C(m ∨ 1)mn log(pnmn))

=2(pnmn)−Cmn + 2
∞∑
m=1

(
pn
m

)
(pnmn)−Cmmn

≤2(pnmn)−Cmn + 2
∞∑
m=1

1

m!

(
pn

(pnmn)Cmn

)m
=2(pnmn)−Cmn + 2 exp

(
pn

(pnmn)Cmn

)
− 2→ 0 as n→∞

Therefore, the proof of part (i) is complete.

Then we prove part (ii). Consider the bounded response case. For a sequence Nn such

that ‖β̂−β0‖2 ≤ Nn, de�ne t = Nn/(Nn+‖β̂−β0‖2), then consider the convex combination

β∗ = tβ̂ + (1− t)β0. We have β∗ − β0 = t(β̂ − β0), which implies

‖β∗ − β0‖2 = t‖β̂ − β0‖2 =
Nn‖β̂ − β0‖2
Nn + ‖β̂ − β0‖2

≤ Nn (A.23)

Recall the log likelihood function

ln(β) =
1

n

n∑
i=1

[
yi

(
α + βTΦi

)
− b
(
α + βTΦi

)]

161

ln(β∗) = ln(β0) +
1

n

n∑
i=1

[
yiΦi − µ∗yiΦi

]T
(β∗ − β0)

− 1

2n

n∑
i=1

(β∗ − β0)TΦTi b
′′(α + β∗∗TΦi)Φi(β

∗ − β0)

= ln(β0) +
(β∗ − β0)TΦT (y − µ∗y)

n
− 1

2n
(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0) (A.24)

where β∗∗ lines on the line joining β∗ and β0, and

Σ(β∗∗) = diag
(
b′′(α + β∗∗TΦ1), ...b′′(α + β∗∗TΦn)

)

is the variance matrix of response when the coe�cients take value on β∗∗. On the other

hand, by convexity of the log likelihood function,

ln(β∗) = ln(tβ̂ + (1− t)β0) ≥ tln(β̂) + (1− t)ln(β0)

by norm inequality, we have

pn∑
j=1

‖β∗j‖2 =

pn∑
j=1

‖tβ̂j + (1− t)β0
j‖2 ≤

pn∑
j=1

(t‖β̂j‖2 + (1− t)‖β0
j‖2)

joining the two inequalities above and by the de�nition of β̂ gives

ln(β∗)− λn1

pn∑
j=1

‖β∗j‖2

≥tln(β̂) + (1− t)ln(β0
j)− λn1

pn∑
j=1

(t‖β̂j‖2 + (1− t)‖β0
j‖2)

≥ln(β0)− λn1

pn∑
j=1

‖β0
j‖2

162

which implies

ln(β∗)− ln(β0) ≥ λn1

pn∑
j=1

‖β∗j‖2 − λn1

pn∑
j=1

‖β0
j‖2 (A.25)

By (A.24) and (A.25) together we have

λn1

pn∑
j=1

(
‖β∗j‖2 − ‖β

0
j‖2
)
≤

(β∗ − β0)TΦT (y − µ∗y)

n
− 1

2n
(β∗−β0)TΦTΣ(β∗∗)Φ(β∗−β0)

and move one term to the left hand side, we have

1

2n
(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0)

≤
(
β∗ − β0

)T
ΦT
(
y − µ∗y

)
n

+ λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

=

(
β∗ − β0

)T
ΦT
(
y − µy

)
n

+

(
β∗ − β0

)T
ΦT
(
µ∗y − µy

)
n

+ λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

(A.26)

We have for the second term

(
β∗ − β0

)T
ΦT
(
µ∗y − µy

)
n

=

(
β∗ − β0

)T
ΦTΣ(β∗∗)1/2Σ(β∗∗)−1/2

(
µ∗y − µy

)
n

≤
‖Σ(β∗∗)1/2Φ

(
β∗ − β0

)
‖2‖Σ(β∗∗)−1/2

(
µ∗y − µy

)
‖2

n

≤(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0)

4n
+
‖Σ(β∗∗)−1/2

(
µ∗y − µy

)
‖22

n

≤(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0)

4n
+ c1dn (A.27)

where dn = O(s2
nm
−2d
n), the �rst inequality follows from Cauchy-Schwarz inequality, the

163

second inequality follows from the identity uv ≤ u2/4 + v2, and the third inequality follow

from assumption 2.3 and (A.7). Then joining (A.26) and (A.27), we have

(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0)

4n

≤
(
β∗ − β0

)T
ΦT
(
y − µy

)
n

+ λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

+ c1dn (A.28)

For the �rst term on the right hand side of (A.28), we have

(
β∗ − β0

)T
ΦT
(
y − µy

)
n

=

(
β∗ − β0

)T
ΦTΣ(β∗∗)1/2Σ(β∗∗)−1/2

(
y − µy

)
n

≤(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0)

8n
+

2‖Σ(β∗∗)−1/2
(
y − µy

)
‖22

n
(A.29)

where the inequality is by the identity aT b ≤ ‖a‖22/8 + 2‖b‖22. Joining (A.31) and (A.29),

we have

(β∗ − β0)TΦTΣ(β∗∗)Φ(β∗ − β0)

8n

≤
2‖Σ(β∗∗)−1/2

(
y − µy

)
‖22

n
+ λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

+ c1dn (A.30)

By remark 2.1, we have

γ0c1γ
2sn
2 m−1

n

8
‖β∗ − β0‖22

≤
2‖Σ(β∗∗)−1/2

(
y − µy

)
‖22

n
+ λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

+ c1dn (A.31)

164

Observe that

‖Σ(β∗∗)−1/2 (y − µy) ‖22 ≤ c−1
1 ‖y − µy‖

2
2

≤
c−1
1 mn

γ0γ
2sn
2

‖ΦT (y − µy)‖22

Then by lemma A.1, we have

γ0c1γ
2sn
2 m−1

n

8
‖β∗{T∪T̂} − β

0
{T∪T̂}‖

2
2

≤OP

(
snmn

log(pnmn)

nγ2sn
2

)
+ λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

+O(s2
nm
−2d
n) (A.32)

Observe that

λn1

pn∑
j=1

(
‖β0

j‖2 − ‖β
∗
j‖2
)

≤λn1

∑
j∈T∪T̂

∥∥∥β0
j − β

∗
j

∥∥∥
2

≤λn1
√
sn

∥∥∥β∗{T∪T̂} − β0
{T∪T̂}

∥∥∥
2

≤
γ0c1γ

2sn
2 m−1

n

16

∥∥∥β∗{T∪T̂} − β0
{T∪T̂}

∥∥∥2

2
+

4λ2
n1sn

γ0c1γ
2sn
2 m−1

n

(A.33)

where the �rst two inequalities are by norm inequality, and the third inequality is by the

identity aT b ≤ ‖a‖22 + ‖b‖22/4. Joining (A.32) and (A.33), we have

∥∥∥β∗ − β0
∥∥∥2

2
= OP

(
snγ
−2sn
2

m2
n log(pnmn)

n

)
+O(λ2

n1m
2
nsnγ

−2sn
2) +O(s2

nm
1−2d
n γ−2sn

2)

(A.34)

165

For some Nn such that

‖β∗ − β0‖2 ≤ Nn/2

By de�nition of β∗, we have

‖β∗ − β0‖2 =
Nn

Nn + ‖β̂ − β0‖2
‖β̂ − β0‖2 ≤

Nn
2

The inequality above implies

‖β̂ − β0‖2 ≤ Nn

Therefore,

‖β̂ − β0‖22 = OP

(
snγ
−2sn
2

m2
n log(pnmn)

n

)
+O(λ2

n1m
2
nsnγ

−2sn
2) +O(s2

nm
1−2d
n γ−2sn

2)

In the unbounded response case, the only di�erence that we have to make is in (A.29), we

have

(
β∗ − β0

)T
ΦT
(
y − µy

)
n

≤γ0c1
8
‖β∗{T∪T̂} − β

0
{T∪T̂}‖

2
2 +OP

(
snmnan

log(pnmn)

n

)
(A.35)

where the convergence rate is by lemma A.2. Then with the choice of λn1 for this case, we

have

‖β̂ − β0‖22 = OP

(
snγ
−2sn
2

m2
n log(pnmn)

n

)
+O(λ2

n1m
2
nsnγ

−2sn
2) +O(s2

nm
1−2d
n γ−2sn

2)

Part (iii) is a direct result of part (ii). By assumption 2.4, we have ‖fj‖2 ≥ cf > 0, and we

166

have

‖fnj‖2 ≥ ‖fj‖2 − ‖fj − fnj‖2 ≥ cf −O(m−dn) ≥ 1

2
cf

for large n. By the properties of spline in [35], see for example [121] and [65], there exist

positive constants c1 and c2 such that

c1m
−1
n ‖β0

j‖
2
2 ≤ ‖fnj‖2 ≤ c2m

−1
n ‖β0

j‖2

Then we have ‖β0
j‖

2
2 ≥ c−1

2 mn‖fnj‖22 ≥ 0.25c−1
2 mnc

2
f . Suppose there is a j ∈ T such that

‖β̂j‖2 = 0, then we have

‖β0
j‖2 ≥ 0.25c−1

2 mnc
2
f

which is a contradiction to the result in (ii) and the theorem assumption. Therefore, part

(iii) follows.

Proof of Theorem 2.2

Proof. By the de�nition of f̂nj , j = 1, ..., p, part (i) and part (iii) follows directly from part

(i) and part (iii) in theorem 3.1. It remains to show part (ii). By the properties of spline in

[35], see for example [121] and [65], there exist positive constants c1 and c2 such that

c1m
−1
n ‖β̂nj − βnj‖22 ≤ ‖f̂nj − fnj‖

2
2 ≤ c2m

−1
n ‖β̂nj − βnj‖22 (A.36)

167

Therefore, we have

‖f̂nj − fnj‖22 = OP

(
snγ
−2sn
2

mn log(pnmn)

n

)
+O(λbn1

2
mnsnγ

−2sn
2) +O(s2

nm
−2d
n γ−2sn

2)

(A.37)

for the bounded response case and

‖f̂nj − fnj‖22 = OP

(
snanγ

−2sn
2

mn log(pnmn)

n

)
+O(λbn1

2
mnsnγ

−2sn
2) +O(s2

nm
−2d
n γ−2sn

2)

(A.38)

for the unbounded response case. This, together with (2.7) and triangle inequality implies

part (iii).

Proof of Theorem 2.3

Proof. We start with part (i). To prove part (i), it's equivalent to prove that the selection

is done as it is performed right on the active set, and none of the nonzero components are

dropped with probability tending to 1. Let

β̂NZ = arg min
β∈Rpnmn :βTc=0

La(β;λn2)

be the adaptive group lasso estimator restricted to the true nonzero components. First we

show that with probability converging to 1, β̂NZ is the solution to minimizing (2.16), i.e.,

with probability converging to 1, the minimizer of 2.16 is β̂NZ . Note that the adaptive group

lasso is a convex optimization problem with a�ne constraints, therefore the KKT conditions

are necessary and su�cient. The KKT conditions for a vector β ∈ Rpnmn to be the solution

168

of (2.16) is 
1

n
ΦTj (y − µ∗) = λn2wnj

βj
‖βj‖2

, if ‖βj‖2 > 0

‖ 1

n
ΦTj (y − µ∗)‖2 ≤ λn2wnj , if ‖βj‖2 = 0

(A.39)

where µ∗ = b′(Φβ). It is su�cient to show that

P
(
β̂NZ satis�es (A.39)

)
→ 1

Note that for any j ∈ T , we have the KKT conditions for β̂NZ that


1

n
ΦTj (y − µ̂∗NZ) = λn2wnj

β̂NZj

‖β̂NZj‖2
, if ‖βj‖2 > 0, j ∈ T

‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 ≤ λn2wnj , if ‖βj‖2 = 0, j ∈ T

(A.40)

which are the equality condition in (A.39) and part of the inequality condition in (A.39).

Therefore, it su�ces to show that

P
(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 ≤ λn2wnj , ∀ j /∈ T

)
→ 1 (A.41)

This is equivalent to show that

P
(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > λn2wnj , ∃ j /∈ T

)
→ 0 (A.42)

Use Taylor expansion on 1
nΦTj (y − µ̂∗NZ), we have

1

n
ΦTj (y − µ̂∗NZ) =

1

n
Φj(y − µy) +

1

n
ΦTj (µy − b′(Φβ0)) +

1

n
ΦTj ΣΦ(β̂NZ − β0)

169

where Σ is the variance matrix evaluated at some β∗ located on the line segment joining β0

and β̂NZ . Then we have

P
(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > λn2wnj , ∃ j /∈ T

)
≤P
(
‖ 1

n
Φj(y − µy)‖2 >

λn2wnj
3

, ∃ j /∈ T
)

+ P
(
‖ 1

n
ΦTj (µy − b′(Φβ0))‖2 >

λn2wnj
3

, ∃ j /∈ T
)

+ P
(
‖ 1

n
ΦTj ΣΦ(β̂NZ − β0)‖2 >

λn2wnj
3

, ∃ j /∈ T
)

≡P1 + P2 + P3

Now let's consider P1. By assumption 2.3, the errors yi − µyi 's are sub-Gaussian. For

bounded responses, we have by lemma A.1 and assumption 2.6 that

P1 = P
(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > λn2wnj , ∃ j /∈ T

)
≤ P

(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > Cλn2rn, ∃ j /∈ T

)
+ o(1)

= P
(

max
j /∈T
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > Cλn2rn

)
+ o(1)

≤ P
(

max
j /∈T
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > Cλn2rn|max

j /∈T
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2

≤ Cn−1/2
√

log(s∗nmn)
)

+ o(1)

→ 0 as n→∞

By lemma A.2, we have

E

(
max

j /∈T,k=1,...,mn

∥∥∥∥ 1

n
ΦTjk(y − µy)

∥∥∥∥
2

)
≤ c6n

−1/2
√

log(s∗nmn) (A.43)

170

for some constant c6. Observe that by assumption 2.5, we have wnj = OP (rn) ≤ Crn for

some general constant C. Then we have by Markov's inequality and assumption 2.6 that

P1 = P
(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > λn2wnj , ∃ j /∈ T

)
≤ P

(
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > Cλn2rn, ∃ j /∈ T

)
+ o(1)

= P
(

max
j /∈T
‖ 1

n
ΦTj (y − µ̂∗NZ)‖2 > Cλn2rn

)
+ o(1)

≤
E
(

maxj /∈T,k=1,...,mn

∥∥∥ 1
nΦTjk(y − µy)

∥∥∥
2

)
Cλn2rn

+ o(1)

≤
c6
√

log(s∗nmn)

Cn1/2λn2rn
+ o(1)→ 0 as n→∞

Then we consider P2. We have shown that

1

n
‖µy − µ∗y‖22 = O(s2

nm
−2d
n)

This implies that

1√
n
‖µy − µ∗y‖2 = O(snm

−d
n)

Then by assumption 2.1,

max
j /∈T

∥∥∥∥ 1

n
Φj(µy − µ∗y)

∥∥∥∥
2

≤Cm−1/2
n

1√
n

∥∥µy − µ∗y∥∥2

=O(snm
−d−1/2
n)

171

By assumption 2.6, we have P2 → 0 as n → ∞. Next, we look at P3. By the de�nition of

β̂NZ , we have by norm inequality

1

n
ΦTj ΣΦ(β̂NZ − β0) =

1

n
ΦTj ΣΦT (β̂NZT − β0

T)

The MLE on the true nonzero set has a rate of convergence
√
snmn/n. The penalized

solution has been proved to be close to the MLE asymptotically ([149]; [46]; [88]). Knowing

the true nonzero set, the rate of convergence of β̂NZ is
√
snmn/n. Then we have

P3 =P
(∥∥∥∥ 1

n
ΦTj ΣΦT (β̂NZT − β0

T)

∥∥∥∥
2
>
λn2wnj

3
, ∃ j /∈ T

)
≤P
(∥∥∥∥ 1

n
ΦTj ΣΦT (β̂NZT − β0

T)

∥∥∥∥
2
> Cλn2rn, ∃ j /∈ T

)
+ o(1)

≤P

(
max
j /∈T

∥∥∥∥ 1

n
ΦTj ΣΦT

∥∥∥∥
2
>

Cλn2rn

an
√
snmn/n

)
+ P

(∥∥∥β̂NZT − β0
T

∥∥∥
2
> an

√
snmn

n

)
+ o(1)

→0 as n→∞

for any diverging sequence an, where the �rst probability in the last step goes to 0 by

assumption 2.1 that the left hand side is of order m−1/2
n and assumption 2.6. The second

probability goes to 0 by the rate of convergence of β̂NZT .

Therefore, we have that β̂NZ is our adaptive group lasso solution with probability con-

verging to 1. The components selected by adaptive group lasso is asymptotically at most

those which are actually nonzero. Then we want to prove that the true nonzero components

172

are all selected with probability converging to 1. By our assumptions, we have

min
j∈T
‖β̂NZj‖2 ≥ min

j∈T
‖β0

j‖2 − ‖β̂NZj − β
0
j‖2

≥ c
−1/2
2 m

1/2
n cf − oP (1)

> 0

Therefore, none of the true nonzero components are estimated as zero. Combining the two

results above, we have that with probability converging to 1, the components selected by the

adaptive group lasso are exactly the true nonzero components, i.e.,

P
(
β̂AGL

0
= β0

)
→ 1 as n→∞

Part (i) is proved. Then we look at part (ii), where based on the result in part (i), we only

consider the high probability event that the selection of the adaptive group lasso estimator

is perfect. Similar to part (ii) of theorem 2.1, we consider a convex combination of β0 and

β̂AGL

β∗ = tβ̂AGL + (1− t)β0

where t = Nn/(Nn + ‖β̂AGL − β0‖2) for some sequence Nn. Similar to (A.26), we have

1

2n
(β∗T − β

0
T)TΦTTΣΦT (β∗T − β

0
T) ≤

(β∗T − β
0
T)TΦTT (y − µy)

n

+
(β∗T − β

0
T)TΦTT (µy − µ∗y)

n
+ λn2

sn∑
j=1

wnj(‖β0‖2 − ‖β∗‖2)
(A.44)

173

Then by the fact that |aT b| ≤ ‖a‖22 + ‖b‖22/4, we have

1

2n
(β∗T − β

0
T)TΦTTΣΦT (β∗T − β

0
T)

≤
(β∗T − β

0
T)TΦTT (y − µy)

n
+

1

4n
(β∗T − β

0
T)TΦTTΣΦT (β∗T − β

0
T)

+
‖Σ−1/2(µy − µ∗y)‖22

n
+ λn2

sn∑
j=1

wnj(‖β0‖2 − ‖β∗‖2)

Then by (A.7),

1

4n
(β∗T − β

0
T)TΦTTΣΦT (β∗T − β

0
T)

≤
(β∗T − β

0
T)TΦTT (y − µy)

n
+O(s2

nm
−2d
n) + λn2

sn∑
j=1

wnj(‖β0‖2 − ‖β∗‖2)

By (2.13), the fact that |aT b| ≤ ‖a‖22 + ‖b‖22/4 and norm inequality, we have

γ0c1γ
2sn
2 m−1

n

4
‖β∗ − β0‖22 ≤

(β∗T − β
0
T)TΦTT (y − µy)

n
+O(s2

nm
−2d
n)

+
2(maxj∈T wnj)

2

γ0c1
λ2
n2sn

+
γ0c1γ

2sn
2 m−1

n

8
‖β∗ − β0‖22

Then by assumption 2.6,

γ0c1γ
2sn
2 m−1

n

8
‖β∗T − β

0
T ‖

2
2 ≤

(β∗T − β
0
T)TΦTT (y − µy)

n
+O(s2

nm
−2d
n) +O(λ2

n2sn)

174

Use the fact that |aT b| ≤ ‖a‖22 + ‖b‖22/4 on the �rst term of the right hand side, we have

γ0c1γ
2sn
2 m−1

n

8
‖β∗T − β

0
T ‖

2
2 ≤

γ0c1γ
2sn
2 m−1

n

16
‖β∗T − β

0
T ‖

2
2

+
4

γ0c1γ
2sn
2 m−1

n n2
‖ΦTT (y − µy)‖22 +O(s2

nm
−2d
n) +O(λ2

n2sn)

By norm inequality and lemma A.1, we have

4

γ0c1γ
2sn
2 m−1

n n2
‖ΦTT (y − µy)‖22

≤ 4

γ0c1γ
2sn
2 m−1

n n2
snmn‖ΦTT (y − µy)‖∞

=OP

(
snγ
−2sn
2 mn

log(snmn)

n

)

Combine the last two results, we have with probability converging to 1,

‖β∗T − β
0
T ‖

2
2 = Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n) +O(λ2
n2m

2
nsnγ

−2sn
2)

Then similar to the argument in the proof of part (ii) of theorem 2.1, we have

∑
j∈T
‖β̂AGLj − β0

j‖
2
2

=Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n) +O(λ2
n2m

2
nsnγ

−2sn
2)

175

In the unbounded response case, we replace lemma A.1 with lemma A.2 and get

∑
j∈T
‖β̂AGLj − β0

j‖
2
2

=Op

(
snγ
−2sn
2 m2

nan
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n) +O(λ2
n2m

2
nsnγ

−2sn
2)

for any diverging sequence an. Part (ii) is proved.

Proof of Theorem 2.4

Proof. The proof is similar to the proof of theorem 2.2.

Proof of Theorem 2.5

Proof. The idea of the proof is similar to the proofs in [52], but due to the group penalization

structure, some changes have to be made. First, the GIC criterion has the solution of

adaptive group lasso, which is not easy to study. So we use a proxy, the MLE on the nonzero

components selected by the adaptive group lasso estimator. Let

β̂
∗
(A) = arg max

{β∈Rpnmn :suppB(β)=A}

1

n

n∑
i=1

[
yi

(
βTΦi

)
− b
(
βTΦi

)]
(A.45)

for a given A ⊂ {1, ..., p}, and the proxy of GIC is de�ned as

GIC∗an(A) =
1

n
{D(µ̂∗A;Y) + an|A|} (A.46)

176

where µ̂∗A = b′(Φβ̂
∗
(A)). The �rst result is that the proxy GIC∗an(T) well approximates

GICan(λ0). To prove this, observe by the de�nition of β̂0 = β̂
∗
(T), we have the �rst order

necessary condition

∂

∂β
ln(β̂0) = 0 (A.47)

Use Taylor expansion and by assumptions 1 and 2, we have

0 ≥ GIC∗an(T)−GICan(λ0)

=
1

n

(
ln(β̂(λn0))− ln(β̂0)

)
= − 1

n

(
β̂(λn0)− β̂0

)T
ΦTΣ(β∗)Φ

(
β̂(λn0)− β̂0

)
≥ −c1γ0

∥∥∥β̂(λn0)− β̂0

∥∥∥2

2
(A.48)

where β∗ lies on the line segment joining β̂(λn0) and β̂0. Then we need to bound∥∥∥β̂(λn0)− β̂0

∥∥∥2

2
. By the de�nition of β̂(λn0), we have

ΦTT

(
y − b′(ΦT β̂T (λn0))

)
+ nλn0νT = 0 (A.49)

where the elements of νT are wnjβ̂j(λn0)/‖β̂j(λn0)‖2 for j ∈ T . On the other hand, by the

de�nition of β̂0, we have

ΦTT

(
y − b′(ΦT β̂0T)

)
= 0 (A.50)

Together we have

ΦTT

(
b′(ΦT β̂0T)− b′(ΦT β̂T (λn0))

)
+ nλn0νT = 0 (A.51)

177

Use Taylor expansion on the left hand side of the equation, we have

ΦTTΣ(β∗∗)ΦT
(
β̂T (λn0)− β̂0T

)
= nλn0νT (A.52)

where β∗∗ lies on the line segment joining β̂T (λn0) and β̂0T . Taking 2 norm and together

with assumptions 1 and 2 and the results in theorem 2.1, we have

∥∥∥β̂T (λn0)− β̂0T

∥∥∥
2
≤ Cλn0‖wT ‖2 ≤ Cλn0

√
sn‖wT ‖∞ (A.53)

where wT = (wnj , j ∈ T)′. Then we have

‖β̂(λn0)− β̂0‖2 = O(λn0
√
sn) (A.54)

Choose an to be any diverging sequence, then we have

‖β̂(λn0)− β̂0‖2 = o(λn0
√
snan) (A.55)

Then by (A.48), we have

GICan(λ0)−GIC∗an(T) = o(λn0
√
snan) (A.56)

As a direct result,

GICan(λ)−GICan(λn0) ≥ (GIC∗an(αλ)−GIC∗an(T)) + (GIC∗an(T)−GICan(λn0))

= (GIC∗an(αλ)−GIC∗an(T)) + op(λn0
√
snan) (A.57)

178

The using this proxy, next we prove that the proxy GIC∗ is able to detect the distance

between a selected model and the true model. Since the GIC∗ depends only on the MLE

and has nothing to do with the penalization, this is the same as the generalized linear model,

but with the spline line approximation error being considered.

Due to the estimation problem, we are only interested in the models A such that |A| ≤ K

where Kmn = o(n). As the proof in [52], we consider the under�tted model and over�tted

model (de�ned in their paper). Brie�y, the under�tted models are A such that A 6⊃ T and

the over�tted models are A such that A) T . Also in the result of theorem 2.1, the model

size |A| = O(sn) = o(n) and thus the KL divergence has a unique minimiser for every such

model A, as discussed in [52].

Lemma A.3 implies that for all under�tted models

GIC∗An(A)−GIC∗an(T) = 2|A|I(β∗(A)) + (|A| − |T |)ann−1 + |A|OP (Rn)

≥ δn − snann−1 −OP (KRn)

≥ δn
2

if δnK−1R−1
n → ∞ and an = o(δns

−1
n n). This result states that there is a negligible

increment on the GIC∗ if one of the nonzero component is missed, when the parameters

satisfy the conditions. Lemma A.4 implies that for all over�tted models

GIC∗an(A)−GIC∗an(T) =
|A| − |T |

n
[an −OP (ψn)] >

an
2n

if anψn → ∞. This result states that there is a negligible increment on the GIC∗ if one of

the zero component is selected along with the true model, when the parameters satisfy the

179

conditions. Therefore,

P
(

inf
A 6⊃T

GIC∗an(A)−GIC∗an(T) >
δn
2

and inf
A)T

GIC∗an(A)−GIC∗an(T) >
an
2n

)
→ 1

(A.58)

Combine this result with (A.57) and theorem assumptions, we have

P{ inf
λ∈Ω−∪Ω+

GICan(λ) > GICan(λn0)} → 1

Lemma A.3. Under assumptions 2 and 3, as n→∞, we have

sup
|A|≤K

A⊂{1,...,pn}

1

n|A|
∣∣D(µ̂∗A;Y)−D(µ̂∗0;Y)− 2I(β∗(A))

∣∣ = OP (Rn)

where either a) the responses are bounded or Gaussian distributed,

Rn =
√
γnmn log(pn)/n, and mn log(pn) = o(n); or b) the responses are unbounded

and non-Gaussian distributed, Rn =
√
γnmn log(pn)/n + γ2

nmnM
2
n log(pn)/n and log(p) =

o(min{n(log n)−1K−2m−1
n γ−1

n , nM−2
n }).

Proof. lemma A.3 is a direct result from lemma A.7 and lemma A.8.

Lemma A.4. Under assumption 2.1, 2 and 3, and suppose log p = O(nκ) for some 0 < κ < 1,

as n→∞, we have

1

|A| − |T |
(
D(µ̂∗A;Y)−D(µ̂∗0;Y)

)
= OP (ψn)

uniformly for all A) T with |A| < K and either a) ψn = mn
√
γn log(pn) when the responses

180

are bounded, K = O(min{n(1−2κ)/6, n(1−3κ)/8}) and κ ≤ 1/2; or b) ψn = mnγn log(pn)

when the responses are Gaussian bounded; or when the response are unbounded and non-

Gaussian distributed, and the last three terms in lemma A.10 are dominated by mnγn log pn.

Proof. lemma A.4 is a direct result from lemma A.9 and A.10.

Lemma A.5. Under assumptions 2-3, let γn be a slowly diverging sequence, if

γnLn
√
Kmn logPn/n → 0 as n → ∞, where Ln = O(1) for the bounded case and Ln =

O(Mn +
√

log n) for the unbounded case, then we have

sup
|A|≤K

1

|A|
ZA

(
γnLn

√
|A|mn

log pn
n

)
= OP

(
γ2
nL

2
n
mn log pn

n

)

where

ZA(N) = sup
β∈BA(N)

1

n
|ln(β)− ln(β∗(A))− E [ln(β)− ln(β∗(A))]|

and

BA(N) =
{
β ∈ RP : ‖β − β∗(A)‖2 ≤ N, suppB(β) = A

}
∪ {β∗(A)}

Proof. De�ne

Ωn = {‖ε‖∞ ≤ L̃n}

If we take L̃n = C
√

log n, [52] has showed that P(Ωn)→ 1. Let

Z̃A(N) = sup
β∈BA(N)

1

n
|ln(β)− ln(β∗(A))− E [ln(β)− ln(β∗(A))|Ωn]|

Then we have

sup
|A|≤K)

1

|A|
ZA(N) ≤ sup

|A|≤K)

1

|A|
Z̃A(N) + sup

|A|≤K,β∈BA(N)

1

|A|
RA(β)

181

where

RA(β) =
1

n
|E [ln(β)− ln(β∗(A))]− E [ln(β)− ln(β∗(A))|Ωn]|

By the de�nition of ln, we have

RA(β) =
1

n

∣∣∣E[ε|Ωn]TΦ(β − β∗(A))
∣∣∣

≤ 1

n
‖E[ε|Ωn]‖2 ‖Φ(β − β∗(A)‖2

=

√√√√ 1

n

n∑
i=1

(E[εi|Ωn])2 · 1√
n
‖Φ(β − β∗(A)‖2

≤ CL̃n exp(−CL̃n)‖β − β∗(A)‖2

where the �rst inequality is Cauchy-Schwartz inequality, and the second inequality is lemma

1 in [52] and assumption 2.1. Then we have

sup
|A|≤K,β∈BA(N)

1

|A|
RA(β) = CL̃n exp(−CL̃n)N

Taking L̃n = C
√

log n, N = γnLn
√
|A| log(pnmn)/n and under the lemma assumption, we

have

sup
|A|≤K,β∈BA(N)

1

|A|
RA(β) = o(log(pnmn)/n) (A.59)

Then let's consider Z̃A(N). For any β1,β2 ∈ BA(N), by the mean value theorem, we have

b(ΦTi β1) − B(ΦTi β2) = b′(ΦTi β̃)ΦTi (β1 − β2), where β̃ lies on the line segment joining β1

182

and β2. We have the likelihood function

| − yiΦTi β1 + b(ΦTi β1)− (−yiΦTi β2 + b(ΦTi β2))|

=|(−yi + b′(ΦTi β̃))|ΦTi β1 − ΦTi β2|

≤(L̃n + 2Mn)|ΦTi (β1 − β2)|

to be Lipschitz continuous. Let w1, ..., wn be a Rademacher sequence independent of ε. By

the symmetrization theorem and the concentration inequality, see chapter 14 of [11], we have

E[Z̃A(N)|Ωn] ≤2E

[
sup

β∈BA(N)

1

n

∣∣∣∣∣
n∑
i=1

wi[−yiΦTi β + b(ΦTi β)

−(−yiΦTi β
∗(A) + b(ΦTi β

∗(A)))]|Ωn
∣∣∣]

≤4LnE

[
sup

β∈BA(N)

1

n

∣∣∣∣∣
n∑
i=1

wi[Φi(β − β∗(A)]|Ωn

∣∣∣∣∣
]

≤4LnE

(sup
β∈BA(N)

‖β − β∗(A)‖2

)∑
j∈A

n∑
i=1

mn∑
k=1

∣∣∣∣ 1

n2
(wiφijk)2

∣∣∣∣
1/2


≤4LnN

√
|A|mn

n

where the second last inequality is by Cauchy-Schwartz inequality, and the last inequality is

by the de�nition of BA(N) and wi. Then since

1

n

n∑
i=1

(LnΦTi (β(A)− β0))2 ≤ CL2
nN

2

183

Apply Massart's inequality, see theorem 14.2 in [11], we have

P
(
Z̃A(N) ≥ E[Z̃A(N)|Ωn] + t

)
≤ exp

(
− 1

CL2
nN

2

nt2

2

)

Take t = 4LnNu
√
|A|mn/n with u > 0, N = Ln

√
|A|mn/n(1 + u), u = γn

√
log pn and

observe that
(pn
k

)
≤ (pe/k)k, we have

P

(
sup
|A|≤K

1

|A|
Z̃A(N) ≥ 4L2

n
mn

n
(1 + u)2|Ωn

)

≤
∑
|A|≤K

P
(
Z̃A(N) ≥ 4|A|L2

n
mn

n
(1 + u)2|Ωn

)

≤
∑
k≤K

(pe
k

)k
exp(−CKmnu

2)

≤
∑
k≤K

(pe
k

)k
exp(−CKmnγn log pn)→ 0

Then we have

P

(
sup
|A|≤K

1

|A|
Z̃A(N) ≥ γ2

nL
2
n
mn

n
log pn

)
= o(1) + P(Ωc)→ 0

Lemma A.6. Under assumptions 1-3, we have

sup
|A|≤K

1√
|A|
‖β̂∗(A)− β∗(A)‖2 = OP

(
γnLn

√
mn log pn

n

)

Proof. De�ne the convex combination of β̂
∗
(A) and β∗(A) to be the same way as we did in

184

proving theorem 2.1 as β̂u(A). Then is remains to show

sup
|A|≤K

1√
|A|
‖β̂u(A)− β∗(A)‖2 = OP

(
γnLn

√
mn log pn

n

)

By the de�nition of β̂
∗
(A) and the concavity of the likelihood function, we have

ln(β̂u(A))− ln(β∗(A)) ≥ 0

By the de�nition of β∗(A), we have

E[ln(β∗(A)− ln(β̂u(A)] ≥ 0

Combine the two inequalities above, we have

0 ≤ E[ln(β∗(A)− ln(β̂u(A)] ≤ ln(β̂u(A))− ln(β∗(A))−E[ln(β̂u(A)− ln(β∗(A)] ≤ nZA(N)

(A.60)

On the other hand, for any βA ∈ BA(N), we have

E[ln(βA)− ln(β∗(A))] = E[yTΦβA − 1T b(ΦβA)− yTΦβ∗(A) + 1T b(Φβ∗(A))]

= b′(
pn∑
j=1

fj)
TΦ[βA − β∗(A)]− 1T [b(ΦβA)− b(Φβ∗(A))]

Observe that by the de�nition of β∗(A), we have

Φ[b′(
pn∑
j=1

fj)− b′(Φβ∗(A))] = 0

185

use Taylor expansion, we have

E[ln(βA)− ln(β∗(A))] = b′(Φβ∗(A))TΦ[βA − β∗(A)]− 1T [b(ΦβA)− b(Φβ∗(A))]

= −1

2
(βA − β∗(A))TΦTAΣ̃ΦA(βA − β∗(A))

≤ Cn‖βA − β∗(A)‖22

where the last inequality is by assumptions 1 and 2. Then we have

‖βA − β∗(A)‖22 ≤ CZA(N)

Take N = γnLn
√
|A|mn log pn/n and by lemma A.5, we have

sup
|A|≤K

1√
|A|
‖β̂u(A)− β∗(A)‖2 = OP

(
γnLn

√
mn log pn

n

)

Then lemma A.6 follows.

Lemma A.7. Under assumptions 1-3, we have

sup
|A|≤K

1

n|A|

(
ln(β̂

∗
(A))− ln(β∗(A))

)
≤ γ2

nL
2
nmn log pn
n

Proof. De�ne the event

E =

{
sup
|A|≤K

1√
|A|
‖β̂∗(A)− β∗(A)‖2 = OP

(
γnLn

√
mn log pn

n

)}

By lemma A.6, we have P(E)→ 1. Using the same argument as in (A.60) in proving lemma

186

A.6, we have

0 ≤ ln(β̂
∗
(A))− ln(β∗(A)) ≤ ln(β̂u(A))− ln(β∗(A))− E[ln(β̂u(A)− ln(β∗(A)] ≤ nZA(N)

By lemma A.5, conditioning on E , we have

ln(β̂
∗
(A))− ln(β∗(A)) ≤ nOP

(
γ2
nL

2
n
|A|mn log pn

n

)

Then the lemma follow from P(A) ≤ P(A|E) + P(Ec).

Lemma A.8. Under assumption 2.1, 2.2 and 2.3, we have

sup
|A|≤K

1

n|A|
|ln(β∗(A))− E[ln(β∗(A))]| = OP

(√
γnmn log pn

n

)

where log pn = o(n) for bounded response and γnmnK
2 log pn = o(n) for unbounded re-

sponse.

Proof. By the de�nition, we have ln(β∗(A)) − E[ln(β∗(A))] = εTΦβ∗(A). For bounded

response, by Hoe�ding's inequality, we have

P(|εTΦβ∗(A)| ≥ t) ≤ C exp

(
Ct2∑n

i=1(ΦTi β
∗(A))2

)

≤ C exp

(
− Ct2

n|A|mn

)

Take t = |A|
√
nγnmn log pn, we have

P(|εTΦβ∗(A)| ≥ |A|
√
nγnmn log pn) ≤ C exp(−C|A|γn log pn)

187

Then we have

sup
|A|≤K

1

n|A|
|ln(β∗(A))− E[ln(β∗(A))]| = OP

(√
γnmn log pn

n

)

If the responses are unbounded, we use Bernstein's inequality. First check the condition

E[|Φiβ∗(A)εi|m] = m

∫ ∞
0

xm−1P(|Φiβ∗(A)εi ≥ x)dx

= m|ΦTi β
∗(A)|m

∫ ∞
0

(
x

|ΦTi β
∗(A)|

)m−1

P

(
|εi| ≥

x

|ΦTi β
∗(A)|

)
d

x

|ΦTi β
∗(A)|

≤ m|ΦTi β
∗(A)|m

∫ ∞
0

tm−1C exp(−Ct2)dt)

≤ m|ΦTi β
∗(A)|m(‖Φβ∗(A)‖∞C)m−2m!

2

Then by Bernstein's inequality, we have

P(|εTΦβ∗(A)| ≥
√
nt) ≤ 2 exp

(
−1

2

nt2

C‖ΦAβ∗(A)‖22 + C
√
n‖ΦAβ∗(A)‖∞t

)

Taking t = |A|
√
γnmn log pn, we have

P(|εTΦβ∗(A)| ≥
√
n|A|

√
γnmn log pn)

≤2 exp

(
−1

2

n|A|2γnmn log pn

C‖ΦAβ∗(A)‖22 + C
√
n‖ΦAβ∗(A)‖∞|A|

√
γnmn log pn

)

→0

if K2γnmn log pn/n→ 0.

188

Lemma A.9. Under assumptions 1-3, we have

sup
A⊃T
|A|≤K

1

|A| − |T |
(y − µ0)TΣ

−1/2
0 BAΣ

−1/2
0 (y − µ0) = OP (mn(γn log pn)ξ)

where

BA = Σ
1/2
0 ΦA(ΦTAΣ0ΦA)−1ΦTAΣ

1/2
0

and ξ = 1/2 for bounded response and ξ = 1 for unbounded response.

Proof. Let k = |A| − |T | and PA = BA −BT . It's easy to verify that PA is a projection

matrix, thus we have tr(P) = kmn,
∑n
i=1 Pii = kmn and

∑
i,j Pij = kmn. Let

ỹ = Σ
−1/2
0 (y − µ0)

We have the decomposition

1

mnk
ỹTPAỹ =

1

mnk

n∑
i=1

Piiỹ
2
i +

1

mnk

∑
i6=j

Pij ỸiỸj ≡ I1(A) + I2(A)

Let ỹ∗i be independent copies of ỹi, then by the decoupling inequality, there exists a constant

C > 0 such that

P

 1

mnk
|
∑
i6=j

Pij ỹiỹj | ≥ t

 ≤ CP

 1

mnk
|
∑
i6=j

Pij ỸiỸ
∗
j | ≥ C−1t


For bounded response, apply Hoe�ding's inequality, we have

P(I1(A) ≥ 1 + x) ≤ 2 exp

(
2

Cx2∑n
i=1(mnk)−2P 2

ii

)
≤ 2 exp(−Cmnkx

2)

189

Taking x =
√
γ log pn, use the inequality

(p
k

)
≤ (pe/k)k and use the same technique as we

used in proving lemma A.5, we have

P

(
sup
|A|≤K

I1(A) ≥ 1 +
√
γn log pn

)
≤ 2C

K∑
k=1

(
(pn − sn)e

k

)k
exp(−Cmnkγn log pn)→ 0

Then observe
∑
i6=j P

2
ij =

∑
i(Pii−P 2

ii) ≤ mnk, we have following the decoupling inequality

that

P(|I2(A)| ≥ t) ≤ CP

 1

mnk
|
∑
i6=j

Pij ỸiỸ
∗
j | ≥ C−1t


≤ C exp

(
−C
−2(mnk)2t2∑

i 6=j P
2
ij

)

≤ C exp(−Cmnkt
2)

Taking t =
√
γn log pn and use the same technique as in the previous step, we have

P

(
sup
|A|≤K

I2(A) ≥ 1 +
√
γn log pn

)
→ 0

In the unbounded case, we apply the Bernstein's inequality. In the same way as we did in

proving lemma A.8, we check the condition

E|PiiỸ 2
i |
m ≤ m!Cm−2P

2
ii

2

By Bernstein's inequality, we have

P(I1(A) ≥ x2) ≤ 2 exp(−Cmnkx
2)

190

Taking x =
√
γn log pn, we have

sup
|A|≤K

I1(A) = OP (γn log pn)

For I2(A), we have ∑
i6=j
|Pij |mE[|ỹiỹ∗j |

m] ≤ m!Cm−2
P 2
ij

2

Then by Berstein's inequality and taking x =
√
γn log pn, we have

P(|I2(A)| ≥ γn log pn)→ 0

Lemma A.10. Under assumptions 1-3, for all A ⊃ T and |A| ≤ K, we have

ln(β̂
∗
(A))− ln(β(A)) =

1

2
(y − µ0)TΣ

−1/2
0 BAΣ

−1/2
0 (y − µ0)

+ |A|5/2OP

(
m

5/2
n γ

5/2
n L2

n
(log pn)1+ξ/2

√
n

)

+ |A|4OP
(
m4
nγ

4
nL

4
n

(log pn)2

n

)
+ |A|3OP

(
m3
nγ

3
nL

3
n

(log pn)3/2
√
n

)

Proof. Use Taylor's expansion, we have

ln(β̂
∗
(A))− ln(β∗(A))

=(β̂
∗
(A)− β∗(A))TΦT (y − b′(Φβ∗(A))− 1

2
(β̂
∗
(A)− β∗(A))TΦTΣ0Φ(β̂

∗
(A)− β∗(A))

+ Remainder

≡I1(A) + I2(A) + I3(A)

191

First, by the de�nition of β̂
∗
(A), we have

ΦTA[y − b′(Φβ̂∗(A))] = 0

Then by Taylor expansion, we have

ΦTAy = ΦTAb
′(Φβ̂

∗
(A))

= ΦTAb
′(Φβ∗(A)) + ΦTAΣ0Φ(β̂

∗
(A)− β∗(A)) + ΦTAνA

where νAi = b′′′(ΦTi β̃
∗
(A))(ΦTi (β̂

∗
(A) − β∗(A)))2/2 and β̃

∗
(A) lies on the line segment

joining β̂
∗
(A) and β∗(A). By the de�nition of β∗(A), we have

ΦTA[b′(
pn∑
j=1

fj)− b′(ΦAβ∗(A))] = 0

we have

β̂
∗
(A)− β∗(A) = (ΦTAΣ0ΦA)−1ΦTA(y − b′(

pn∑
j=1

−νA))

Therefore, we have

I1(A) = (y − µy)TΣ
−1/2
0 BAΣ

−1/2
0 (y − µy) +R1,A

where R1,A = −µTAΣ
−1/2
0 BAΣ

−1/2
0 ε. By Cauchy-Schwartz inequality, we have

|R1,A| ≤ ‖BAΣ
−1/2
0 ε‖2‖Σ

−1/2
0 νA‖2

≤ (‖BTΣ
−1/2
0 ε‖2 + ‖R̃1,A‖2)‖Σ−1/2

0 νA‖2

192

where R̃1,A = (BA−B0)Σ
−1/2
0 ε. Observe that Σ0 = E[εεT] and tr(BTBT) = mnsn, take

γn →∞, by Markov's inequality, we have

P
(
‖BTΣ

−1/2
0 ε‖2 ≥

√
mnsnγn

)
≤ 1

mnsnγn
E[‖BTΣ

−1/2
0 ε‖22]

=
1

mnsnγn
tr{BTΣ

−1/2
0 E[εεT]Σ

−1/2
0 BT }

=
1

γn
→ 0

Then we have

‖BTΣ
−1/2
0 ε‖2 = OP (

√
mnsnγn) (A.61)

By lemma A.9, we have

(|A| − |T |)−1/2‖R̃1,A‖2 = OP (m
1/2
n (γn log pn)ξ) (A.62)

Finally, we have

‖Σ−1/2
0 νA‖2 ≤ C‖νA‖2

≤ C

(
n∑
i=1

|ΦTi (β̂
∗
(A)− β)∗(A))|4

)1/2

≤ C

(
n∑
i=1

‖ΦiA‖42‖β̂
∗
(A)− β)∗(A)‖42

)1/2

≤ Cmn|A|n1/2‖β̂∗(A)− β)∗(A)‖22

= m2
n|A|2OP

(
γ2
nL

2
n

log pn√
n

)
(A.63)

193

Combining (A.61), (A.62) and (A.63), we have

I1(A) = (y − µy)TΣ
−1/2
0 BAΣ

−1/2
0 (y − µy) +OP

(
|A|5/2m5/2

n γ
5/2
n L2

n
(log pn)1+ξ/2

√
n

)

Then we look at I2(A). We have

I2(A) =
1

2
(β̂
∗
(A)− β∗(A))TΦTΣ0Φ(β̂

∗
(A)− β∗(A))

=
1

2
(y − µy)TΣ

−1/2
0 BAΣ

−1/2
0 (y − µy) +

1

2
R2,A −R1,A

where

R2,A = νAΣ
−1/2
0 BAΣ

−1/2
0 µA

≤ C‖νA‖22

≤ Cm2
n|A|2n‖β̂

∗
(A)− β∗(A)‖42

= O

(
m2
n|A|4γ4

nL
4
n
m2
n(log pn)2

n2
n

)
= O

(
|A|4m4

nγ
4
nL

4
n

(log pn)2

n

)

Therefore,

I2(A) =
1

2
(y − µy)TΣ

−1/2
0 BAΣ

−1/2
0 (y − µy) +OP

(
|A|5/2m5/2

n γ
5/2
n L2

n
(log pn)1+ξ/2

√
n

)

+O

(
|A|4m4

nγ
4
nL

4
n

(log pn)2

n

)

194

Finally, we have for I3(A) that

|I3(A)| ≤ Cn|A|3/2m3/2
n ‖β̂

∗
(A)− β∗(A)‖32

= OP

(
|A|3m3

nγ
3
nL

3
n

(log pn)3/2
√
n

)

Combining the three results for I1(A), I2(A) and I3(A), we get the desired result.

Proof of Theorem 2.6

Proof. Part (i). Because β̂ is the minimizer, we have

‖y − φβ̂‖22 + λ

p∑
j=1

1‖β̂j‖2 6=0
≤ ‖y − φβ0‖22 + λ

p∑
j=1

1‖β0
j‖2 6=0

(A.64)

i.e.

‖y − φβ̂‖22 + λk̂ ≤ ‖y − φβ0‖22 + λsn (A.65)

Observe that

‖y − φβ̂‖22 = ‖y − φβ0 + φβ0 − φβ̂‖22 = ‖y − φβ0‖22 + ε∗Tφ(β0 − β̂) + ‖φ(β0 − β̂)‖22

where

ε∗ = y − φβ0 = y − f + f − φβ0 := ε+ δ

We have

‖φ(β0 − β̂)‖22 ≤ |ε
∗Tφ(β̂ − β0)|+ λ(sn − k̂) ≤ |ε∗Tφ(β̂ − β0)| (A.66)

195

By assumptions on eigenvalues of φ, we have

‖β0 − β̂‖22 ≥ cnγ2sn
2 m−1

n ‖β0 − β̂‖22

since both β0 and β̂ are sparse. On the other hand, we have

|ε∗Tφ(β̂ − β0)| ≤|(y − f)Tφ(β̂ − β0)|+ |(f − φβ0)Tφ(β̂ − β0)|

≤
cnγ2sn

2 m−1
n

2
‖β̂ − β0‖22 +

1

cnγ2sn
2 m−1

n

‖φ(y − f)‖22

+
cnγ2sn

2 m−1
n

4
‖β̂ − β0‖22 +

2

cγ2sn
2 m−1

n

‖f − φβ0‖22

Combine this with the previous argument, we have

‖β̂ − β0‖22 ≤
4

c2n2γ2sn
2 m−1

n

‖φ(y − f)‖22 +
8

c2nγ2sn
2 m−1

n

‖f − φβ0‖22 (A.67)

By the same arguments in the proof of theorem 2.1, we have

‖β̂ − β0‖22 = Op

(
snγ
−2sn
2 m2

n
log(snmn)

n

)
+O(s2

nγ
−2sn
2 m1−2d

n) (A.68)

Part (ii). From (A.66), we have

λ(k̂ − sn) ≤ |ε∗Tφ(β̂ − β0)| ≤ 1

n
‖φ(y − f)‖22 + ‖f − φβ0‖22 + n‖β̂ − β0‖22 (A.69)

Since k̂ ≥ sn, we have

|k̂ − sn| ≤ O(
snmn log(pnmn)

λ
) +O(

ns2
nm
−2d
n

λ
)→ 0 as n→∞ (A.70)

196

if snmn log(pnmn)/λ→ 0 and ns2
nm
−2d
n /λ→ 0.

Proof of Theorem 2.7

Proof. Part (i). Because β̂ is the minimiser, we have

‖y−φβ̂‖22 +λ1

p∑
j=1

‖β̂j‖2 +λ2

p∑
j=1

1‖β̂j‖2 6=0
≤ ‖y−φβ0‖22 +λ1

p∑
j=1

‖β0
j‖2 +λ2

p∑
j=1

1‖β0
j‖2 6=0

(A.71)

Rearranging the terms and use the theorem conditions, we have

λ1

p∑
j=1

(‖β̂j‖2 − ‖β0
j‖2) ≤ |ε∗Tφ(β̂ − β0)|+ ‖φ(β0 − β̂‖22

Following the same arguments as in (A.26), we have the desired results.

Part (ii). From part (i), we have

λ(k̂ − sn) ≤ |ε∗Tφ(β̂ − β0)|+ λ1

p∑
j=1

(‖β0
j‖2 − ‖β̂j‖2)

≤ 1

n
‖φ(y − f)‖22 + ‖f − φβ0‖22 + n‖β̂ − β0‖22 + λ1

√
sn‖β̂ − β0‖2

Then the results follows from the theorem conditions.

197

APPENDIX B

Technical Details and Supplementary

Materials for Chapter 3.

Proof of Theorem 3.1

In this section, we give the proof for theorem 3.1. To prove the theorem, we need the

following lemmas.

Lemma B.1. For a general classi�er Ĉ(x) of y, denote C∗(x) the Bayes classi�er. Then we

have

R(Ĉ)−R(C∗) ≤ 2EX [|σ(η(X))− σ(η̂(X))|] ≤ 2EX [|η(X)− η̂(X)|]

198

Proof. By the de�nition of R(C) and R(C∗), we have

R(Ĉ)−R(C∗)

=EX,Y

[
1{Ĉ(X)6=Y }

]
− EX,Y

[
1{C∗(X) 6=Y }

]
=EXEY |X

[
1{Ĉ(X)6=Y } − 1{C∗(X)6=Y }

]
=EX

[
1{Ĉ(X)=0}η(X) + 1{Ĉ(X)=1}(1− η(X))

−1{C∗(X)=0}η(X)− 1{C∗(X)=1}(1− η(X))
]

=EX
[
1{Ĉ(X)6=C∗(X)}|2η(X)− 1|

]
=EX

[
1{Ĉ(X)=1,C∗(X)=0 or Ĉ(X)=0,C∗(X)=1}|2η(X)− 1|

]
=2EX

[
1{σ(η̂(X))≥1/2,σ(η(X))<1/2 or {σ(η̂(X))<1/2,σ(η(X))≥1/2}

|η(X)− 1/2|]

≤2EX [|σ(η(X))− σ(η̂(X))|]

For the second inequality, consider the Taylor expansion of σ(η(X)) at η̂(X), we have

EX [|σ(η(X))− σ(η̂(X))|]

=EX
[
|σ′(η∗(X))(η(X)− η̂(X)|

]
≤EX [|η(X)− η̂(X)|]

where η∗(X) lies on the line jointing η(X) and η̂(X), and the second inequality follows from

the fact that σ′(x) = exp(x)/(1 + exp(x))2 ≤ 1.

199

Lemma B.2. Under assumptions, we have

1

n
‖η̂ − η0‖22 = OP

(
log(n)

nε̃2

)
+O

(
1

nε̃2m

)
+O

(
s2mλ2

nε̃4

)
+OP

(
n−1m9/2s5/2

√
log p

)

where η̂ and η0 are the vectors of predictions for the sample x1, ...,xn using the estimated

parameters and the true parameters, respectively. Here the four terms come from the esti-

mation, the neural network approximation, the regularization and the excess loss error by

the sparse group lasso regularization on θ, respectively.

Proof. By the de�nition of η̂, we have

− 1

n

n∑
i=1

[yiη̂(xi)− log (1 + exp(η̂(xi)))]

+ λα

p∑
j=1

‖θ̂(j)‖2 + λ(1− α)‖θ̂‖1

≤− 1

n

n∑
i=1

[
yiη

0(xi)− log
(

1 + exp(η0(xi))
)]

+ λα

p∑
j=1

‖θ0
(j)‖2 + λ(1− α)‖θ0‖1

200

Rearrange the terms and by Taylor expansion, we have

− 1

n
(η̂ − η0)T (y − µ0) +

1

2n
(η̂ − η0)TΣ0(η̂ − η0)

− 1

n

n∑
i=1

∂3l

∂η∗(xi)
(η̂i − η0

i)3

≤λ
sn∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
− λ

p∑
j=sn+1

[
α‖θ̂(j)‖2 + (1− α)(‖θ̂0

(j)‖1
]

≤λ
sn∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1 − ‖θ
0
(j)‖1)

]
(B.1)

where Σ0 is diagonal matrix with Σ0
ii = exp(η0(xi))/[1+exp(η0(xi))]

2, µ0 is the conditional

expectation of y given X in the neural network approximation space, η∗ lies on the line

joining η̂ and η0. Consider the second order term in (B.1), by assumption 3.2, we have

1

2n
(η̂ − η0)TΣ0(η̂ − η0) ≥ ε̃2

2n
‖η̂ − η0‖22

Then the �rst term on the LHS of (B.1), by uTv ≤ ‖u‖22/4+‖v‖22, norm inequality, maximal

inequality (see proof in [65]) and result in [113],

1

n
|(η̂ − η0)T (y − µ0)|

≤ 1

n
|(η̂ − η0)T (y − µ)|+ 1

n
|(η̂ − η0)T (µ− µ0)|

≤ ε̃
2

4n
‖η̂ − η0‖22 +

1

nε̃2
‖y − µ‖22 +

ε̃2

8n
‖η̂ − η0‖22

+
2

nε̃2
‖µ− µ0‖22

=
3ε̃2

8n
‖η̂ − η0‖22 +OP

(
log(n)

nε̃2

)
+O

(
1

nε̃2m

)

201

Combine this result and (B.1), we have

ε̃2

8n
‖η̂ − η0‖22 −

1

n

n∑
i=1

∂3l

∂η∗(xi)3
(η̂i − η0

i)3

≤λ
sn∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2)

+(1− α)(‖θ̂(j)‖1 − ‖θ
0
(j)‖1)

]
(B.2)

Note that ∣∣∣∣ ∂3l

∂η∗(xi)3

∣∣∣∣ =

∣∣∣∣exp(η∗(xi))[1− exp(η∗(xi))]
[1 + exp(η∗(xi))]3

∣∣∣∣ ≤ 1

Then apply norm inequality, (B.2) becomes

ε̃2

8n
‖η̂ − η0‖22 −

1

n
‖η̂ − η0‖32

≤λ
sn∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
+OP

(
log(n)

nε̃2

)
+O

(
1

nε̃2m

)
(B.3)

Apply the auxiliary lemma in [118], see also [53], we have

‖η̂ − η0‖22/nC
2
0

≤λ
sn∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
+OP

(
log(n)

nε̃2

)
+O

(
1

nε̃2m

)
(B.4)

202

where

C0 = max

(
1

ε0
√
n
,

R2

αε0
√
n

)

ε0 =
ε̃2

16

for some constant R, and some aε0 that depends on ε0, sn andK. Then by norm inequalities,

the �rst term of RHS of (B.4) becomes

λ

sn∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
≤λ

sn∑
j=1

[
α‖θ0

(j) − θ̂(j)‖2 + (1− α)‖θ0
(j) − θ̂(j)‖1

]

≤λ
sn∑
j=1

[α +
√
m(1− α)]‖θ0

(j) − θ̂(j)‖2

≤1

2
λ2s[α +

√
m(1− α)]2C2

0 +
1

2C2
0

‖θ0
S − θ̂S‖

2
2 (B.5)

According to [53], when we choose λ ≥ 2T λ̃ for some constant T ≥ 1 and

λ̃ = c
√
m log n/n(

√
logQ+

√
m log p log(nm)/(1− α + α/

√
m)), we have

1

2C2
0

‖θ0
S − θ̂S‖

2
2 ≤

(
λ̃ ∨ ε(θ̂, β̂, t̂, b̂)

)
=O

(
n−1m9/2s5/2

√
log p

)
(B.6)

203

with probability at least

1−
√
m

n2
− c log n exp (

−T
2(
√

logQ+
√
m log p log(nm)/(1− α + α/

√
m))2

c1

)
:= 1− P1

Combining the results in (B.4), (B.5) and (B.6), we have

1

n
‖η̂ − η0‖22 =OP

(
log(n)

nε̃2

)
+O

(
1

nε̃2m

)
+O

(
s2mλ2

nε̃4

)
+OP

(
n−1m9/2s5/2

√
log p

)

Proof of theorem 3.1

Proof. By lemma B.1, we have

R(Ĉ)−R(C∗) ≤ 2EX [|η(X)− η̂(X)|]

Thus it su�ces to bound EX [|η(X)− η̂(X)|], or equivalently, |η(X)− η̂(X)| in probability.

Let W be the random variable |η(X) − η̂(X)| according to PX , then |η(X) − η̂(X)| is a

vector of n i.i.d. copies of W , denoted W1, ...,Wn. By lemma B.2, we have

1

n

n∑
i=1

W 2
i =O

(
log(n)

nε̃2

)
+O

(
1

nε̃2m

)
+O

(
s2mλ2

nε̃4

)

+O
(
n−1m9/2s5/2

√
log p

)

204

with probability at least 1−P2 for some P2 → 0 as n→∞. With proper choice of n, p and

other hyper-parameters, we have

1

n

n∑
i=1

W 2
i

P−→ 0 as n→∞ (B.7)

Since X ∈ X for some bounded space X , by the weak law of large numbers, we have

1

n

n∑
i=1

W 2
i

P−→ EX [W 2] as n→∞

By de�nition, we have for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

W 2
i − EX [W 2]

∣∣∣∣∣ > ε

)
→ 0 as n→∞

Combine this with (B.7), we have

EX [W 2]→ 0 as n→∞

Then by Jensen's inequality, we have

EX [W] ≤
(
EX [W 2]

)1/2
→ 0 as n→∞

Therefore, we have

R(Ĉ)−R(C∗) ≤ 2EX [W]→ 0 as n→∞

205

APPENDIX C

Technical Details and Supplementary

Materials for Chapter 4

.

Proof of Results in Chapter 4

In this section, we will provide the proof of the theorems in section 4.3.

Proof of Proposition 4.1

Proof. Consider independent observations {(x1, y1), ..., (xn, yn)}. Assume

x(j) ∼ N (0, I), j = 1, ..., p

In the regression set up where y is centered, we have

y|x1, ..., xp ∼ N (β1x1 + ...+ βpxp, σ
2).

206

Without loss of generality, we assume that

|β1| ≥ |β2| ≥ ... ≥ |βs|

otherwise, we may re-arrange the order of columns of the design matrix. Furthermore,

without loss of generality, we may assume all coe�cients are positive, otherwise, we may

multiply the corresponding column of the design matrix by −1. Since s < n, we may

without loss of generality consider an orthogonal design on the matrix x(S), which can be

achieved by re-parametrization. Let Ŝ be the set of variables included in the current model.

The algorithm computes

G0j =
∂

∂W 0j
l(θ;X,y) := (G0j1, ..., G0jK)

where K is the size of the �rst hidden layer. Without loss of generality, we may consider

a shallow network in this part, since there isn't any predictor x involved in this section, all

estimates can be treated as constants, which are universal for all j′s. We have

G0jk = − 2

n

n∑
i=1

yiâkσ
′(

p∑
j=1

xij θ̂jk + t̂k)xij , k = 1, ..., K

207

where âk, t̂k are estimated parameters for the initial model and θ̂jk is set to zero for all input

variables at the very beginning. Thus we have

‖G0j‖2 =

√√√√√ K∑
k=1

[− 2

n

n∑
i=1

yiâkσ
′(

p∑
j=1

xij θ̂jk + t̂k)xij]2

=
2

n

√√√√ K∑
k=1

â2
kσ
′(t̂k)|xT(j)y|

Since the leading constant is independent of j, it's easier to consider the di�erent part,

denoted

cj = |xT(j)y|

for j ∈ C, where C is the candidate set. The �rst variable selected is

j+ = arg max
j∈C

cj .

At the very beginning, we have for x ≥ 0 that

P(c1 ≤ x) = P
(
|xT(1)y| ≤ x

)
= P

(
−x ≤ xT(1)y ≤ x

)
= P

(
−x ≤ β1 + xT(1)ε ≤ x

)
= Φ

(
x− β1

σ‖x(1)‖2

)
− Φ

(
−x− β1

σ‖x(1)‖2

)

= Φ

(
x− β1

σ

)
− Φ

(
−x− β1

σ

)
(C.1)

This result implies that greater β leads to higher probability of large c1. Then

208

P(c1 > c2) = P
(
|xT(1)y| > |x

T
(2)y|

)
(C.2)

Let

W1 = xT(1)y and W2 = xT(2)y (C.3)

which are both normally distributed. Therefore, c1 and c2 follow folded normal distribution

c1 ∼ FN(β1, σ
2) and c2 ∼ FN(β2, σ

2) (C.4)

We can calculate

Cov(W1,W2) = Cov(β1 + xT(1)y, β2 + xT(2)y) = σ2xT(1)x(2) = 0 (C.5)

Because both W1 and W2 are normally distributed, W1 and W2 are independent. Therefore,

c1 and c2 are independent. Since both c1 and c2 are positive, the probability is equivalent

to

P(c1 > c2) = P
(
c1
c2
> 1

)
(C.6)

Let

c12 =
c1
c2

Then we have

c12 ∼ RN(β1, β2, σ
2, σ2) (C.7)

209

where RN stands for the ratio of folded normal distributions. By theorem 3.1 in [71], we

have the CDF of c12

F12(x) =2L

(
β1 − β2x

σ
√

1 + x2
,−β2

σ
,

x√
1 + x2

)
+ 2L

(
β1 + β2x

σ
√

1 + x2
,
β2

σ
,

x√
1 + x2

)
+

Φ

(
β1 − β2x

σ
√

1 + x2

)
+ Φ

(
β1 + β2x

σ
√

1 + x2

)
− 2 (C.8)

where

L(a, b, ρ) = P(X1 > a,X2 > b) (C.9)

with X1

X2

 ∼ N
0,

1 ρ

ρ 1




Then we have

P(c1 < c2) = F12(1)

= 2L

(
β1 − β2√

2σ
,−β2

σ
,

1√
2

)
+ 2L

(
β1 + β2√

2σ
,
β2

σ
,

1√
2

)
+

Φ

(
β1 − β2√

2σ

)
+ Φ

(
β1 + β2√

2σ

)
− 2 (C.10)

Release the general assumption of βj > 0 by multiply−1 to those which are negative, we have

the absolute values back on |βj |. This is also true for di�erent βi and βj , since we did not use

the di�erence between the nonzero predictors and zero predictors. By the exchangeability

210

of predictors, the result holds for all i and j. Therefore, we have

P(cj < ck) =2L

(|βj | − |βk|√
2σ

,−|βk|
σ
,

1√
2

)
+ 2L

(|βj |+ |βk|√
2σ

,
|βk|
σ
,

1√
2

)
+

Φ

(|βj | − |βk|√
2σ

)
+ Φ

(|βj |+ |βk|√
2σ

)
− 2

Proof of Proposition 4.2

Proof. Consider independent observations {(x1, y1), ..., (xn, yn)}. Assume

x(j) ∼ N (0, I), j = 1, ..., p

In the regression set up where y is centered, we have

y|x1, ..., xp ∼ N (β1x1 + ...+ βpxp, σ
2).

Without loss of generality, we assume that

|β1| ≥ |β2| ≥ ... ≥ |βs|

otherwise, we may re-arrange the order of columns of the design matrix. Furthermore,

without loss of generality, we may assume all coe�cients are positive, otherwise, we may

multiply the corresponding column of the design matrix by −1. Since s < n, we may

without loss of generality consider an orthogonal design on the matrix x(S), which can be

achieved by re-parametrization. Let Ŝ be the set of variables included in the current model.

211

At the very beginning, we have proved in the proof of proposition 4.1 that

cj ∼ FN(βj , σ
2) j = 1, ..., p (C.11)

and that ci and cj are independent for i 6= j. Denote event

Ek = {ck > max
i6=k

ci}, k = 1, ..., s (C.12)

It's easy to observe that Ek's are mutually exclusive. Therefore, we have

Pr(At least one of c1, ..., cs is greater than all of cs+1, ..., cp)

=Pr

(
s⋃

k=1

Ek

)

=
s∑

k=1

Pr(Ek) (C.13)

We may calculate

Pr(Ek) = Pr(ck > c(−k,p−1))

where c(−k,p−1) is the largest order statistic of c1, ...c(k−1), c(k+1), c(p), which is independent

of ck. Let F(−k,p−1) and f(−k,p−1) be the CDF and PDF of c(−k,p−1), respectively, we have

F(−k,p−1)(x) =

p∏
j 6=k

Fj(x)

and

f(−k,p−1)(x) =
∂

∂x

p∏
j 6=k

Fj(x)

212

where from the properties of folded normal distribution we have

Fk(x) =
1

2

[
erf

(
x+ |βk|√

2σ2

)
+ erf

(
x− |βk|√

2σ2

)]

and

fk(x) =
∂

∂x
Fk(x) =

√
2

πσ2
e
−
x2+β2

k
2σ2 cosh

βkx

σ2

Then we have

Pr(Ek)

=Pr(ck > c(−k,p−1))

=

∫ ∞
0

Pr(ck > x)f(−k,p−1)(x)dx

=

∫ ∞
0

[1− Fk(x)]
∂

∂x

p∏
j 6=k

Fj(x)dx

=

[1− Fk(x)]

p∏
j 6=k

Fj(x)

∣∣∣∣∣∣
∞

0

+

∫ ∞
0

fk(x)

p∏
j 6=k

Fj(x)dx

=

∫ ∞
0

fk(x)

p∏
j 6=k

Fj(x)dx (C.14)

where the second equality is by the convolution formula, the fourth equality is by integration

by parts. Therefore,

Pr(At least one of c1, ..., cm is greater than all of cs+1, ..., cp)

=
s∑

k=1

∫ ∞
0

fk(x)

p∏
j 6=k

Fj(x)dx (C.15)

213

Next we will show that this probability is actually a very high probability. Let

pk =

∫ ∞
0

fk(x)

p∏
j 6=k

Fj(x)dx = Ek

 p∏
j 6=k

Fj(X)


By the formulas for Fk and fk, we have

pk =

∫ ∞
0

√
2

πσ2
e
−
x2+β2

k
2σ2 cosh

βkx

σ2

∏
j 6=k

1

2

[
erf

(
x+ βj√

2σ2

)
+ erf

(
x− βj√

2σ2

)]
dx

=

∫ ∞
0

√
1

2πσ2

e− (x+βk)2

2σ2 + e
− (x−βk)2

2σ2

∏
j 6=k

1

2

[
erf

(
x+ βj√

2σ2

)
+ erf

(
x− βj√

2σ2

)]
dx

(C.16)

Do change of variable z = x/σ, we have

pk =

∫ ∞
0

1√
2π

e− (z+
βk
σ)2

2 + e−
(z−βkσ)2

2

∏
j 6=k

1

2

erf
z +

βj
σ√

2

+ erf

z − βj
σ√

2

 dz
(C.17)

214

Let β̃k = βk/σ, without loss of generality, assume that∞ = β0 ≥ β1 ≥ ... ≥ βp ≥ βp+1 = 0,

we have

pk =

∫ ∞
0

1√
2π

[
e−

(z+β̃k)2

2 + e−
(z−β̃k)2

2

]∏
j 6=k

1

2

[
erf

(
z + β̃j√

2

)
+ erf

(
z − β̃j√

2

)]
dz

=

p∑
i=0

∫ βi

βi+1

1√
2π

[
e−

(z+β̃k)2

2 + e−
(z−β̃k)2

2

]
∏
j 6=k

1

2

[
erf

(
z + β̃j√

2

)
+ 1{j≥i+1}erf

(
z − β̃j√

2

)
− 1{j≤i}erf

(
β̃j − z√

2

)]
dz

(C.18)

By the exponential approximation of the error function, see for example [131], there exist c1

and c2 such that

sup
x>0
|erf(x)− (1− exp[−c1x− c2x2])|

can be arbitrarily small, where approximately c1 ≈ 1.095 and c2 ≈ 0.7565. Consider this

approximation, we have

pk =

p∑
i=0

∫ βi

βi+1

1√
2π

[
e−

(z+β̃k)2

2 + e−
(z−β̃k)2

2

]

∏
j 6=k

1

2

1 + 1{j≥i+1} − 1{j≤i} − e
c21
4c2

e−c22
[
z+

(
β̃j+

c1√
2c2

)]2

+1{j≥i+1}e
−c22

[
z+

(
−β̃j+

c1√
2c2

)]2
− 1{j≤i}e

−c22

[
z−
(
β̃j+

c1√
2c2

)]2
 (C.19)

Here

e

c21
4c2 ≈ 1.48 >> 1

215

Observe that as when i = s, also observe that τn → 0 indicates maxj=s+1,...,p βj → 0, we

have

s∏
j=1,j 6=k

1

2
e

c21
4c2

e−c22
[
z−
(
βj+

c1√
2c2

)]2
− e
−c22

[
z+

(
βj+

c1√
2c2

)]2→ 0 as s→∞

Therefore, the formula of pk can be simpli�ed to

pk = o

 1

2s
e

sc21
4c2

+
s∑
i=0

∫ βi

βi+1

1√
2π

[
e−

(z+β̃k)2

2 + e−
(z−β̃k)2

2

]

∏
j 6=k

1

2

1 + 1{j≥i+1} − 1{j≤i} − e
c21
4c2

e−c22
[
z+

(
β̃j+

c1√
2c2

)]2

+1{j≥i+1}e
−c22

[
z+

(
−β̃j+

c1√
2c2

)]2
− 1{j≤i}e

−c22

[
z−
(
β̃j+

c1√
2c2

)]2


≤ o

 1

2s
e

sc21
4c2


+

s∑
i=0

1

2
e

c21
4c2

s−i 1

2s

[
Φ(β̃i − β̃k)− Φ(β̃i+1 − β̃k) + Φ(β̃i + β̃k)− Φ(β̃i+1 + β̃k)

]
(C.20)

where Φ is the normal CDF and the inequality is by observing

e−x
2
≤ 1

and the term in the bracket is less than 2 when j ≥ i+1. Then summing up p′ks and observing

the double sum is not converging to zero since it consists of a geometric component, when

216

βmax is not big enough and let s→∞, we have

1−
s∑

k=1

pk

≥1− o

s 1

2s
e

sc21
4c2

− s∑
k=1

s∑
i=0

1

2
e

c21
4c2

s−i

1

2s

[
Φ(β̃i − β̃k)− Φ(β̃i+1 − β̃k) + Φ(β̃i + β̃k)− Φ(β̃i+1 + β̃k)

]
≥

s∑
i=1

1

2
e

c21
4c2

s−i s∑
k=1

1

2s
(1− Φ(βmax))− o

s 1

2s
e

sc21
4c2


≥c− o(1) (C.21)

Proof of Theorem 4.1

Proof. In this proof, we will show the probability that the same zero predictor appears in

k bagging rounds tends to zero as k increases. At the �rst step, we have C = {1, ..., p} and

S = {}. By proposition 4.2 we know that the probability that the �rst variable belongs to

S0 converges to one under the conditions.

At the mth step, denote the candidate set Cm and the selected set Sm. Assume that

S ⊂ S0. Without loss of generality, consider σ2 = 1. If not, we may divide the response and

coe�cients by σ. Consider the �rst case that

Cm ∩ S0 6= ∅

Let Cm ∩ S0 = {j1, ..., js′}. By the proof of proposition 4.2, the probability that a zero

217

variable is selected is at most

P(select zero variable) ≤ 1−
∑
j∈Cm∩S0

e
βj∑

j∈Cm e
βj

= 1−
∑
j∈Cm∩S0

e
βj∑

j∈Cm∩S0
e
βj +

∑
j∈Cm∩SC0

e
βj

=

∑
j∈Cm∩SC0

e
βj∑

j∈Cm∩S0
e
βj +

∑
j∈Cm∩SC0

e
βj

≤ (|Cm| − s′)eτn
s′eγn + (|Cm| − s′)

where |Cm| = O(p) is the cardinality of Cm by theorem condition, βmin = minj=1,...,s βj ,

βmax = maxj=1,...,s βj and by assumption 4.1

τn = o(γn) ≤ o(βmin)

If we have

|Cm| − s′

s′
eτn−γn → 0 as n→∞ (C.22)

Then we have

P(select zero variable)→ 0 as n→∞

In this case, the probability of false positive in the ENNS algorithm goes to zero. However, it

is not always that equation C.22 is satis�ed. It happens that the signal strength of nonzero

variable is not big enough. This case can be combined with the other case that

Cm ∩ S0 = ∅

218

In this case, it is (almost) guaranteed that a zero variable will be selected in the next step.

However, we will show that though a zero variable is selected, as long as the number of zero

variable in S is not too big, which is guaranteed by the theorem condition

s0 ≤ Cs = o(p)

the selected zero variables in di�erent rounds of the bagging algorithm together with the neu-

ral network random initialization make the probability that the same zero variables appears

more than the threshold number of times converges to zero. Now we have

Cm = {j1, ..., jp′} ⊂ {s+ 1, ..., p}

Consider the scenario that all bagging rounds are independent. The residual

y − µ̂Sm

is not related to xj1 , ..., xj′p
by assumption 4.2, where Sm is the selected set at the mth step

and µ̂Sm is the estimated conditional expectation of y given xSm . Therefore, the variables

219

xj , j ∈ Cm are exchangeable. We have

P(j ∈ Sm+1 ∩ Cm) = P

 1

B2

B2∑
b=1

1{cj≥c(s0−|Sm|)
} ≥ ps


=

B2∑
k=[B2ps]

(
B2

k

)
(s0 − |Sm|)k (p− s0)B2−k

(p− |Sm|)B2

≤ exp

(
−B2

[
(1− ps) log

(
(1− ps)(p− |Sm|)

p− s0

)
+ps log

(
ps(p− |Sm|)
s0 − |Sm|

)])
(C.23)

where the last inequality is by [6]. Since we have

s0 ≤ Cs = o(p)

then we have

P
(
j ∈ Sm+1 ∩ Cm

)
→ 0 as s and B2 →∞

Consider the last case that there is at least one variable in Cm that is also in {1, ..., s} and

equation C.22 does not hold. Also consider the truth that the bagging rounds are not fully

independent in practice. Consider variable j and the estimator

ŝmj = 1{‖Gmj‖2≤tm}

Conditioning on the observations, there exist a �xed tm such that ŝmj indicates whether

variable j is not selected (= 1) or selected (= 0). The bagged estimator is de�ned as

ŝmj,B = E
[
1{‖G∗mj‖2≤tm}

]
220

where G∗mj is Gmj evaluated on a bootstrap sample. By the uniform law of large numbers,

see for example [61], we have

sup
x,y

∣∣∣∣∣∣ 1

B2

B2∑
b=1

1{‖G∗
mj,b

‖2≤tm}
− E

[
1{‖G∗mj‖2≤tm}

]∣∣∣∣∣∣→ 0 as B2 →∞ (C.24)

Let PBn be the empirical measure of the bootstrap sample. It's easy to verify that ŝmj is a

smooth function evaluated at PBn . By assumption 4.3, we have independent observations.

Then according to [58], see also [19], there exist an increasing sequence {bn}n∈N such that

bn(‖Gmj‖2 − c0)→ N (0, σ2
∞)

for some constant c0 <∞ and σ2
∞ <∞. By algebra, in the mth step, we have

‖Gmj‖2 =

√√√√ K∑
k=1

[− 2

n

n∑
i=1

(yi − µ̂i)âkσ′(xTi θ̂k + t̂k)xij]2

=
2

n

√√√√ K∑
k=1

â2
k

[
ε̂TΣ′(xTi θ̂k + t̂k)x(j)

]2
(C.25)

where in θ̂k, θ̂jk is estimated from data for j ∈ Sm and θ̂jk equals zero for j ∈ Cm, µ̂i is

the neural network estimate of yi based on xSm , ε̂ is the prediction error based on xSm ,

Σ′(xTi θ̂k + t̂k) is a diagonal matrix consists of σ′(·) evaluated at xTi θ̂k + t̂k and x(j) is the

221

jth column of x. We have

ε̂ = y − f̂(θ̂, t̂, â, b̂,xSm)

=
∑

j∈Cm∩{1,...,s}
βjx(j) +

 ∑
j∈Sm∩{1,...,s}

βjx(j) − f̂(θ̂, t̂, â, b̂,xSm)

+ ε

=
∑

j∈Cm∩{1,...,s}
βjx(j) + ε+O

(
K2
n

√
log(nKn)

n

)
(C.26)

Therefore, for j ∈ Cm ∩{1, ..., s}, since x(j) is normalized and σ′(·) ≤ 1, by norm inequality,

we have

E‖Gmj‖2

≈E

 2

n

√√√√√ K∑
k=1

â2
k

 ∑
j′∈Cm∩{1,...,s}

βj′x
T
(j′)Σ

′(xTi θ̂k + t̂k)x(j) + εTΣ′(xTi θ̂k + t̂k)x(j)

2


≥E

 2

nK

K∑
k=1

|âk|

∣∣∣∣∣∣
∑

j′∈Cm∩{1,...,s}
βj′x

T
(j′)Σ

′(xTi θ̂k + t̂k)x(j) + εTΣ′(xTi θ̂k + t̂k)x(j)

∣∣∣∣∣∣


≥c · |C
m ∩ {1, ..., s}|
nK

γn (C.27)

222

For j ∈ Cm ∩ {s+ 1, ..., p}, by Jensen's inequality, we have

E‖Gmj‖2

≈E

 2

n

√√√√√ K∑
k=1

â2
k

 ∑
j′∈Cm∩{1,...,s}

βj′x
T
(j′)Σ

′(xTi θ̂k + t̂k)x(j) + εTΣ′(xTi θ̂k + t̂k)x(j)

2


≤ 2

n

√√√√√√E


K∑
k=1

â2
k

 ∑
j′∈Cm∩{1,...,s}

βj′x
T
(j′)Σ

′(xTi θ̂k + t̂k)x(j) + εTΣ′(xTi θ̂k + t̂k)x(j)

2


≤ c′

n
√
K

(C.28)

If γn ≥ c′
√
K
c , we have

P

(
min

j∈Cm∩{1,...,s}
E‖Gmj‖2 ≥ max

j∈Cm∩{s+1,...,p}
E‖Gmj‖2

)
→ 1

Since we have s0 ≤ Cs = o(p), taking tm to be the (|Cm| − |Sm|)th smallest value of

‖Gmj‖2, j ∈ Cm, combine this with equation C.24, for j ∈ Cm ∩ {s+ 1, ..., p}, we have

1

B2

B2∑
b=1

1{‖G∗
mj,b

‖2≤tm}
≤ E

[
1{‖G∗mj‖2≤tm}

]
+ ε→ Φ

(
bn(tm − c0)

σ∞
− Z

)

as n and B2 →∞ (C.29)

where the result is by [19], Z is standard normal random variable and Φ(·) is the standard

normal CDF. Observe that bn is a diverging sequence and s0 ≤ Cs = o(p), then we have the

223

probability that a zero variable is selected

P
(
j ∈ Cm ∩ Sm+1c ∩ {s+ 1, ..., p}

)
=P
(
j ∈ Cm ∩ Sm+1c ∩ {s+ 1, ..., p}

∣∣∣E‖Gmj‖2 ≤ tm

)
P
(
E‖Gmj‖2 ≤ tm

)
+ P

(
j ∈ Cm ∩ Sm+1c ∩ {s+ 1, ..., p}

∣∣∣E‖Gmj‖2 ≥ tm

)
P
(
E‖Gmj‖2 ≥ tm

)
≤P
(
j ∈ Cm ∩ Sm+1c ∩ {s+ 1, ..., p}

∣∣∣E‖Gmj‖2 ≤ tm

)
+ P

(
E‖Gmj‖2 ≥ tm

)
≈1− Φ

(
bn(tm − E‖Gmj‖2)

σ∞
− Z

)
+
s0 − |Sm| − |Cm ∩ {1, ..., s}|

p− |Sm|

→0 as n→∞ and B2 →∞ (C.30)

Therefore, the false positive rate of the ENNS algorithm goes to zero.

In the classi�cation set up, we have similarly for equation C.25 that

‖Gmj‖2 =

√√√√ K∑
k=1

[− 1

n

n∑
i=1

(yi − µ̂i)âkσ′(xTi θ̂k + t̂k)xij]2

=
1

n

√√√√ K∑
k=1

â2
k

[
ε̂TΣ′(xTi θ̂k + t̂k)x(j)

]2
(C.31)

where in θ̂k, θ̂jk is estimated from data for j ∈ Sm and θ̂jk equals zero for j ∈ Cm, µ̂i is the

neural network estimate of the mean of yi based on xSm , i.e.

µ̂i = σ

 K∑
k=1

α̂kσ(θTk xi + tk) + b

 ,

ε̂ is the prediction error based on xSm , Σ′(xTi θ̂k + t̂k) is a diagonal matrix consists of

σ′(·) evaluated at xTi θ̂k + t̂k and x(j) is the j
th column of x. The only di�erence between

the regression set up and the classi�cation set up is the formula for the mean. Use Taylor

224

expansion with Lagrange remainder, we have

σ

 s∑
j=1

βjxj

 =σ

 ∑
j∈Cm∩{1,...,s}

βjxj

+ σ′

 ∑
j∈Sm∩{1,...,s}

βjxj + ξ
∑

j∈{1,...,s}/Sm
βjxj


∑

j∈{1,...,s}/Sm
βjxj

for some ξ ∈ (0, 1) and

0 < σ′

 ∑
j∈Sm∩{1,...,s}

βjxj + ξ
∑

j∈{1,...,s}/Sm
βjxj


< σ

 ∑
j∈Sm∩{1,...,s}

βjxj + ξ
∑

j∈{1,...,s}/Sm
βjxj

 < 1

Then

ε̂ =ε+ σ′

 ∑
j∈Sm∩{1,...,s}

βjxj + ξ
∑

j∈{1,...,s}/Sm
βjxj


∑

j∈{1,...,s}/Sm
βjxj +O

(
K2
n

√
log(nKn)

n

)

where ε is the theoretical error of Bernoulli distribution with their means. We don't have a

direct control on ε, but by Cauchy-Schwarz inequality we have for any δ > 0 that

P
(

1

n

∣∣∣εTΣ′(xTi θ̂k + t̂k)x(j)

∣∣∣ > δ

)
≤P
(

1

n
max
i

Σ′(xTi θ̂k + t̂k)
∥∥∥ε‖2‖x(j)‖2

∣∣∣ > δ

)
≤P
(

1

n
‖ε‖2 > δ

)
≤e−nδ

2/8 (C.32)

225

Therefore, the only di�erence between classi�cation and regression is the �rst order approx-

imation term

σ′

 ∑
j∈Sm∩{1,...,s}

βjxj + ξ
∑

j∈{1,...,s}/Sm
βjxj


Observe that this term only depends on the true relationship and is independent of any

j ∈ Cm, therefore can be treated as a constant when comparing ‖Gmj‖2. This �nishes the

proof for the classi�cation case.

Proof of Theorem 4.2

Proof. In the proof of theorem 4.1, we have proved that with probability tending to 1, the

algorithm won't select any zero variables. Therefore, here it su�ces to show that the model

will be able to include all nonzero variables in the model. Though it looks complicated, we

only need to consider the worst case:

Sm = {1, ..., s− 1} and Cm = {s, s+ 1, ..., p}

and prove that variable s will be selected in the next step, since variable s has the smallest

true coe�cient βs among {1, ..., s} and thus all other cases have greater probability to selected

a nonzero variable. Note variable s will be selected

s ∈ Sm+1 ⇐⇒ ‖Gms‖2 = max
j∈Cm

‖Gmj‖2

Now we have

‖Gmj‖2 =
2

n

√√√√ K∑
k=1

â2
k

[
ε̂TΣ′(xs−1

i
T
θ̂
s−1
k + t̂k)x(j)

]2

226

where xs−1
i is the �rst s−1th elements in xi, θ̂

s−1
k is estimated from data as the coe�cient of

xs−1
i , µ̂i is the neural network estimate of yi based on xs−1, ε̂ is the prediction error based on

xs−1, Σ′(xs−1
i

T
θ̂
s−1
k + t̂k) is a diagonal matrix consists of σ′(·) evaluated at xs−1

i
T
θ̂
s−1
k + t̂k

and x(j) is the j
th column of x.

Here we need the probability that ‖Gms‖2 being the greatest among all candidates to

be very big, so that it will not be missed in the ensemble �ltering. For j ∈ {s+ 1, ..., p}, we

have

P
(
‖Gms‖2 > ‖Gmj‖2

)
=P

 K∑
k=1

α̂2
k

[
ε̂TΣ′(xs−1

i
T
θ̂
s−1
k + t̂k)x(s)

]2
>

K∑
k=1

α̂2
k

[
ε̂TΣ′(xs−1

i
T
θ̂
s−1
k + t̂k)x(j)

]2
=P

 K∑
k=1

[(
ε̂T α̂kΣ

′(xs−1
i

T
θ̂
s−1
k + t̂k)x(s)

)2
−
(
ε̂T α̂kΣ

′(xs−1
i

T
θ̂
s−1
k + t̂k)x(s)

)2
]
> 0


(C.33)

In the regression set up, observe that

max
i

Σ′ii(x
s−1
i

T
θ̂
s−1
k + t̂k) = max

i

σ(xs−1
i

T
θ̂
s−1
k + t̂k)

1 + exp(xs−1
i

T
θ̂
s−1
k + t̂k)

≤ max
i
σ(xs−1

i
T
θ̂
s−1
k + t̂k) ≤ 1

and

ε̂ = βsx(s) + ε+O

(
K2
n

√
log(nKn)

n

)

Also by the fact that

A =⇒ B =⇒ P(A) ≤ P(B)

227

we have for regression that

P
(
‖Gms‖2 > ‖Gmj‖2

)
=P

 K∑
k=1

[((
βsx(s) + ε

)T
Σkx(s)

)2

−
((

βsx(s) + ε
)T

Σkx(j)

)2
]

≥ O

(
KK2

n

√
log(nKn)

n

))

=P

 K∑
k=1

[
β2
s

[(
xT(s)Σkx(s)

)2
−
(
xT(s)Σkx(j)

)2
]

+ 2βs

[
xT(s)Σx(s)ε

TΣ(x(s) − x(j))
]

+

[(
εTΣx(s)

)2
−
(
εTΣx(j)

)2
]]
≥ O

(
KK2

n

√
log(nKn)

n

))

≥P

 K∑
k=1

[
c′βs

[
εTΣ(x(s) − x(j))

]
+

[(
εTΣx(s)

)2
−
(
εTΣx(j)

)2
]]
≥

−cKβ2
s +O

(
KK2

n

√
log(nKn)

n

))

(C.34)

Observe by assumption 4.3 that x(s) and x(j) are independent and identically distributed,

we have

P
((
εTΣx(s)

)2
>
(
εTΣx(j)

)2
)

=
1

2

228

Therefore, we have

P
(
‖Gms‖2 > ‖Gmj‖2

)
≥P
(
c′βs

[
εTΣ(x(s) − x(j))

]
+

[(
εTΣx(s)

)2
−
(
εTΣx(j)

)2
]

≥ −cβ2
s +O

(
K2
n

√
log(nKn)

n

))K

→Φ

(
cβs

‖Σ(x(s) − x(j))‖2

)K
≥ (1− δn)1/(p−s) as n→∞ (C.35)

under the theorem conditions for some asymptotically negligible sequence δn > 0. Then

consider the bagging process, similar to C.30, according to theorem 6 in [13], we have

P
(
s /∈ Cm ∩ Sm+1 ∩ Cm+1c

)
=P

 1

B2

B2∑
b=1

1{‖Gms‖2 6=maxj∈Cm ‖Gmj‖2}
≥ 1− pr


≤ 1

1− pr
E

 1

B2

B2∑
b=1

1{‖Gms‖2 6=maxj∈Cm ‖Gmj‖2}


≤ δn

1− pr
→ 0 as n→∞ and B2 →∞ (C.36)

where the �rst inequality is by Markov's inequality, and the second inequality is by C.35.

Therefore, the probability that variable s will not enter the model in the next step tends to

zero, thus with probability tending to 1, all nonzero variables are selected in the regression

set up.

229

Consider the classi�cation case, we have the same as in regression but

ε̂ =ε+ σ′

 ∑
j∈Sm∩{1,...,s}

βjxj + ξ
∑

j∈{1,...,s}/Sm
βjxj

 ∑
j∈{1,...,s}/Sm

βjxj

+O

(
K2
n

√
log(nKn)

n

)

by the proof of theorem 4.1, where ε is the theoretical error of Bernoulli distribution with

their means. Here we no longer have the normality and have an extra term σ′ which can be

treated as constant in this step, but by the central limit theorem we have

√
n(x(s) − x(j))

TΣεT ⇒ N(0,V)

where V is bounded by assumption 4.4 and the fact that Σ is diagonal with the largest

element less than 1. Feeding this back into C.35, we have

P(‖Gms‖2 > ‖Gmj‖2) ≥ (1− δ′n)1/(p−s)

where δ′n is greater than δn up to a factor of constant but still converges to zero as n→∞,

under theorem conditions. Then similar to C.36, we have

P
(
s /∈ Cm ∩ Sm+1 ∩ Cm+1c

)
≤ δ′n

1− pr
→ 0 as n→∞ and B2 →∞

This �nishes the proof for the classi�cation case.

230

Proof of Theorem 4.3

Proof. In this subsection, we prove the estimation and prediction of regression and classi�-

cation, respectively. In the regression set up, under assumption 4.2, we have

y = f(x) + ε = f(xS) + ε

We have

P
(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

)
=P
(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

∣∣∣∣ Ŝ = S
)
P
(
Ŝ = S

)
+ P

(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

∣∣∣∣ Ŝ 6= S)P
(
Ŝ 6= S

)
≥P
(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

∣∣∣∣ Ŝ = S
)
P
(
Ŝ = S

)
=P
(
E
∫
|fn(xS)− f(xS)|2µ(dx)→ 0

)
P
(
Ŝ = S

)
(C.37)

Observe that ∣∣∣β̂∣∣∣ ≤ |θ|1 ≤ Kn

According to [61], when we perform a neural network estimation on the true subset of

variables, we have that the total error is bounded by the approximation error, which is

bounded according to [43], plus the estimation error, which is bounded by the covering

number, then by the packing number, then by the Vapnik-Chervonenkis dimension, and

231

�nally by the space dimension, i.e.

E
∫
|fn(xS)− f(xS)|2µ(dx)

=O

(
L

√
kn
n− 1

)
+ δn (C.38)

where L is the Lipshitz continuity coe�cient, kn is the �rst hidden layer size, and by [61] δn

satis�es

P {sup δn > ε} ≤ 8

(
384K2

n(kn + 1)

ε

)(2s+5)kn+1

e−nε
2/128·24K4

n

Under theorem assumptions, the probability above is summable, thus we have the �rst

probability in C.37 converges to 1. On the other hand, by theorem 4.2, we have the second

probability in C.37 converges to 1. Therefore, the result for regression set up is proved.

In the classi�cation set up, similarly, we have

P
(
R(f

n,Ŝ)−R(f∗S)→ 0
)

=P
(
R(f

n,Ŝ)−R(f∗S)→ 0
∣∣∣ Ŝ = S

)
P
(
Ŝ = S

)
+ P

(
R(f

n,Ŝ)−R(f∗S)→ 0
∣∣∣ Ŝ 6= S)P(Ŝ 6= S)

≥P
(
R(f

n,Ŝ)−R(f∗S)→ 0
∣∣∣ Ŝ = S

)
P
(
Ŝ = S

)
=P
(
R(fn,S)−R(f∗S)→ 0

)
P
(
Ŝ = S

)
(C.39)

By [37], we have

R(fn)−R(f∗)→ 0 as n→∞

and from theorem 4.2, we have the second probability in equation C.39 tends to 1. Combine

these two results, the consistency of classi�cation case is proved.

232

BIBLIOGRAPHY

233

BIBLIOGRAPHY

[1] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical
programming, 95(1):3�51, 2003.

[2] Umberto Amato, Anestis Antoniadis, and Italia De Feis. Additive model selection.
Statistical Methods & Applications, 25(4):519�564, 2016.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125�136, 1972.

[4] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical founda-
tions. cambridge university press, 2009.

[5] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature
learning. In Advances in neural information processing systems, pages 41�48, 2007.

[6] Richard Arratia and Louis Gordon. Tutorial on large deviations for the binomial
distribution. Bulletin of mathematical biology, 51(1):125�131, 1989.

[7] Sergey Bakin. Adaptive regression and model selection in data mining problems. PhD
thesis, School of Mathematical Sciences, Australian National University, 1999.

[8] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory, 39(3):930�945, 1993.

[9] A Belloni and V Chernozhukov. Least squares after model selection in high-dimensional
sparse models. bernoulli 19 521�547.Mathematical Reviews (MathSciNet): MR3037163
Digital Object Identi�er: doi, 10, 2013.

[10] Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Square-root lasso: pivotal
recovery of sparse signals via conic programming. Biometrika, 98(4):791�806, 2011.

[11] Peter Bhlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer Publishing Company, Incorporated, 1st edition,
2011.

[12] Monica Bianchini and Franco Scarselli. On the complexity of neural network classi�ers:
A comparison between shallow and deep architectures. IEEE transactions on neural
networks and learning systems, 25(8):1553�1565, 2014.

234

[13] GÃ�rard Biau, Luc Devroye, and GÃ�bor Lugosi. Consistency of random forests and
other averaging classi�ers. Journal of Machine Learning Research, 9(Sep):2015�2033,
2008.

[14] Peter J Bickel, Elizaveta Levina, et al. Some theory for �sher's linear discriminant
function,naive bayes', and some alternatives when there are many more variables than
observations. Bernoulli, 10(6):989�1010, 2004.

[15] Peter J Bickel, Ya'acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of
lasso and dantzig selector. The Annals of Statistics, pages 1705�1732, 2009.

[16] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction:
applications to image and text data. In Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 245�250. ACM,
2001.

[17] Leo Breiman. Bagging predictors. Machine learning, 24(2):123�140, 1996.

[18] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

[19] Peter Bühlmann, Bin Yu, et al. Analyzing bagging. The Annals of Statistics, 30(4):927�
961, 2002.

[20] Emmanuel Candes, Terence Tao, et al. The dantzig selector: Statistical estimation
when p is much larger than n. The annals of Statistics, 35(6):2313�2351, 2007.

[21] Timothy I Cannings and Richard J Samworth. Random-projection ensemble classi-
�cation. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
79(4):959�1035, 2017.

[22] A Chatterjee and SN Lahiri. Rates of convergence of the adaptive lasso estimators to
the oracle distribution and higher order re�nements by the bootstrap. The Annals of
Statistics, 41(3):1232�1259, 2013.

[23] Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor
classi�cation. In Advances in Neural Information Processing Systems, pages 3437�3445,
2014.

[24] Jiahua Chen and Zehua Chen. Extended bayesian information criteria for model se-
lection with large model spaces. Biometrika, 95(3):759�771, 2008.

235

[25] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785�794, 2016.

[26] François Chollet et al. keras, 2015.

[27] Alexandra Chouldechova and Trevor Hastie. Generalized additive model selection.
arXiv preprint arXiv:1506.03850, 2015.

[28] Charles K Chui, Xin Li, and Hrushikesh Narhar Mhaskar. Limitations of the approxi-
mation capabilities of neural networks with one hidden layer. Advances in Computa-
tional Mathematics, 5(1):233�243, 1996.

[29] CK Chui, Xin Li, and Hrushikesh Narhar Mhaskar. Neural networks for localized
approximation. Mathematics of Computation, 63(208):607�623, 1994.

[30] Vasek Chvatal, Vaclav Chvatal, et al. Linear programming. Macmillan, 1983.

[31] Pierre Comon. Independent component analysis, a new concept? Signal processing,
36(3):287�314, 1994.

[32] John B Copas. Regression, prediction and shrinkage. Journal of the Royal Statistical
Society: Series B (Methodological), 45(3):311�335, 1983.

[33] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303�314, 1989.

[34] Debraj Das, Karl Gregory, and SN Lahiri. Perturbation bootstrap in adaptive lasso.
arXiv preprint arXiv:1703.03165, 2017.

[35] C De Boor. A practical guide to splines (revised ed.) springer. New York, 2001.

[36] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In
Advances in neural information processing systems, pages 666�674, 2011.

[37] Luc Devroye, László Györ�, and Gábor Lugosi. A probabilistic theory of pattern recog-
nition, volume 31. Springer Science & Business Media, 2013.

[38] David L Donoho. For most large underdetermined systems of linear equations the
minimal l1-norm solution is also the sparsest solution. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sci-
ences, 59(6):797�829, 2006.

236

[39] David L Donoho and Jain M Johnstone. Ideal spatial adaptation by wavelet shrinkage.
biometrika, 81(3):425�455, 1994.

[40] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(Jul):2121�2159, 2011.

[41] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle
regression. The Annals of statistics, 32(2):407�499, 2004.

[42] Paul HC Eilers and Brian D Marx. Flexible smoothing with b-splines and penalties.
Statistical science, pages 89�102, 1996.

[43] Fenglei Fan, Jinjun Xiong, and Ge Wang. Universal approximation with quadratic
deep networks. Neural Networks, 124:383�392, 2020.

[44] Jianqing Fan and Yingying Fan. High dimensional classi�cation using features annealed
independence rules. Annals of statistics, 36(6):2605, 2008.

[45] Jianqing Fan, Yang Feng, and Rui Song. Nonparametric independence screening in
sparse ultra-high-dimensional additive models. Journal of the American Statistical
Association, 106(494):544�557, 2011.

[46] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American statistical Association, 96(456):1348�
1360, 2001.

[47] Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional fea-
ture space. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(5):849�911, 2008.

[48] Jianqing Fan and Jinchi Lv. Nonconcave penalized likelihood with np-dimensionality.
IEEE Transactions on Information Theory, 57(8):5467�5484, 2011.

[49] Jianqing Fan, Heng Peng, et al. Nonconcave penalized likelihood with a diverging
number of parameters. The Annals of Statistics, 32(3):928�961, 2004.

[50] Jianqing Fan, Rui Song, et al. Sure independence screening in generalized linear models
with np-dimensionality. The Annals of Statistics, 38(6):3567�3604, 2010.

[51] Qingliang Fan and Wei Zhong. Nonparametric additive instrumental variable esti-
mator: A group shrinkage estimation perspective. Journal of Business & Economic
Statistics, 36(3):388�399, 2018.

237

[52] Yingying Fan and Cheng Yong Tang. Tuning parameter selection in high dimensional
penalized likelihood. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 75(3):531�552, 2013.

[53] Jean Feng and Noah Simon. Sparse-input neural networks for high-dimensional non-
parametric regression and classi�cation. arXiv preprint arXiv:1711.07592, 2017.

[54] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of statistical software, 33(1):1,
2010.

[55] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[56] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data
analysis, 38(4):367�378, 2002.

[57] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[58] Evarist Giné and Joel Zinn. Bootstrapping general empirical measures. The Annals of
Probability, pages 851�869, 1990.

[59] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
arti�cial intelligence and statistics, pages 249�256, 2010.

[60] Eitan Greenshtein, Ya'Acov Ritov, et al. Persistence in high-dimensional linear pre-
dictor selection and the virtue of overparametrization. Bernoulli, 10(6):971�988, 2004.

[61] László Györ�, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free
theory of nonparametric regression. Springer Science & Business Media, 2006.

[62] Trevor Hastie and Robert Tibshirani. [generalized additive models]: Rejoinder. Statist.
Sci., 1(3):314�318, 08 1986.

[63] Trevor J Hastie. Generalized additive models. In Statistical models in S, pages 249�307.
Routledge, 2017.

[64] Harold Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of educational psychology, 24(6):417, 1933.

238

[65] Jian Huang, Joel L Horowitz, and Fengrong Wei. Variable selection in nonparametric
additive models. Annals of statistics, 38(4):2282, 2010.

[66] Bing'er Jiang, Tim O'Donnell, and Meghan Clayards. A deep neural network ap-
proach to investigate tone space in languages. The Journal of the Acoustical Society
of America, 145(3):1913�1913, 2019.

[67] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[68] Ian T Jolli�e, Nickolay T Trenda�lov, and Mudassir Uddin. A modi�ed principal
component technique based on the lasso. Journal of computational and Graphical
Statistics, 12(3):531�547, 2003.

[69] Sungkyu Jung, J Stephen Marron, et al. Pca consistency in high dimension, low sample
size context. The Annals of Statistics, 37(6B):4104�4130, 2009.

[70] Andre I Khuri. Linear model methodology. CRC Press, 2009.

[71] Hea-Jung Kim. On the ratio of two folded normal distributions. Communications in
Statistics-Theory and Methods, 35(6):965�977, 2006.

[72] Stephen Cole Kleene. Representation of events in nerve nets and �nite automata.
Technical report, RAND PROJECT AIR FORCE SANTA MONICA CA, 1951.

[73] Keith Knight and Wenjiang Fu. Asymptotics for lasso-type estimators. Annals of
statistics, pages 1356�1378, 2000.

[74] Matthieu Kowalski. Sparse regression using mixed norms. Applied and Computational
Harmonic Analysis, 27(3):303�324, 2009.

[75] Mark A Kramer. Nonlinear principal component analysis using autoassociative neural
networks. AIChE journal, 37(2):233�243, 1991.

[76] Neil D Lawrence. A unifying probabilistic perspective for spectral dimensionality reduc-
tion: Insights and new models. Journal of Machine Learning Research, 13(May):1609�
1638, 2012.

[77] Gee Y Lee, Scott Manski, and Tapabrata Maiti. Actuarial applications of word em-
bedding models. ASTIN Bulletin: The Journal of the IAA, 50(1):1�24, 2020.

[78] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural networks, 6(6):861�867, 1993.

239

[79] Yingjie Li and Taps Maiti. High dimensional discriminant analysis for spatially de-
pendent data. 2018.

[80] You L Li, Jessica Ducey-Wysling, Aurélie D'Hondt, Dongwoon Hyun, Bhavik Patel,
and Jeremy J Dahl. Vector �ow imaging using a deep neural network. The Journal of
the Acoustical Society of America, 146(4):2901�2902, 2019.

[81] Andy Liaw, Matthew Wiener, et al. Classi�cation and regression by randomforest. R
news, 2(3):18�22, 2002.

[82] Bo Liu, Ying Wei, Yu Zhang, and Qiang Yang. Deep neural networks for high dimen-
sion, low sample size data. In IJCAI, pages 2287�2293, 2017.

[83] Rong Liu, Lijian Yang, and Wolfgang K Härdle. Oracally e�cient two-step estima-
tion of generalized additive model. Journal of the American Statistical Association,
108(502):619�631, 2013.

[84] Yang Liu, Quanxue Gao, Xinbo Gao, and Ling Shao. l{2,1}-norm discriminant manifold
learning. IEEE Access, 6:40723�40734, 2018.

[85] Yufeng Liu and Yichao Wu. Variable selection via a combination of the l 0 and l 1
penalties. Journal of Computational and Graphical Statistics, 16(4):782�798, 2007.

[86] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. A provably e�cient algorithm for
training deep networks. CoRR, vol. abs/1304.7045, 2013.

[87] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and
initialization: Theory and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

[88] Jinchi Lv and Yingying Fan. A uni�ed approach to model selection and sparse recovery
using regularized least squares. The Annals of Statistics, pages 3498�3528, 2009.

[89] Li Ma, Melba M Crawford, and Jinwen Tian. Local manifold learning-based k-nearest-
neighbor for hyperspectral image classi�cation. IEEE Transactions on Geoscience and
Remote Sensing, 48(11):4099�4109, 2010.

[90] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint
arXiv:1312.5663, 2013.

[91] Giampiero Marra and Simon N Wood. Practical variable selection for generalized
additive models. Computational Statistics & Data Analysis, 55(7):2372�2387, 2011.

240

[92] Rahul Mazumder, Peter Radchenko, and Antoine Dedieu. Subset selection with shrink-
age: Sparse linear modeling when the snr is low. arXiv preprint arXiv:1708.03288,
2017.

[93] Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso for logistic
regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(1):53�71, 2008.

[94] Lukas Meier, Sara Van de Geer, Peter Bühlmann, et al. High-dimensional additive
modeling. The Annals of Statistics, 37(6B):3779�3821, 2009.

[95] Nicolai Meinshausen, Peter Bühlmann, et al. High-dimensional graphs and variable
selection with the lasso. The annals of statistics, 34(3):1436�1462, 2006.

[96] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. E�cient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[97] Mitsunori Mizumachi and Maya Origuchi. Superdirective non-linear beamforming with
deep neural network. The Journal of the Acoustical Society of America, 140(4):3167�
3167, 2016.

[98] Siddhartha Nandy, Chae Young Lim, and Tapabrata Maiti. Additive model building
for spatial regression. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3):779�800, 2017.

[99] Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal
on computing, 24(2):227�234, 1995.

[100] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1�19, 2011.

[101] Kyoung-Su Oh and Keechul Jung. Gpu implementation of neural networks. Pattern
Recognition, 37(6):1311�1314, 2004.

[102] Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incremental feature
selection by gradient descent in function space. Journal of machine learning research,
3(Mar):1333�1356, 2003.

[103] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta
numerica, 8:143�195, 1999.

[104] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli
Liao. Why and when can deep-but not shallow-networks avoid the curse of dimension-
ality: a review. International Journal of Automation and Computing, 14(5):503�519,
2017.

241

[105] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[106] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Technical report, Cornell Aeronautical Lab Inc Bu�alo NY, 1961.

[107] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323�2326, 2000.

[108] S Rasoul Safavian and David Landgrebe. A survey of decision tree classi�er method-
ology. IEEE transactions on systems, man, and cybernetics, 21(3):660�674, 1991.

[109] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299�1319,
1998.

[110] LL Schumaker. Spline functions: basic theory. 1981. John Wiley&Sons, New York,
1981.

[111] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461�464, 1978.

[112] Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation
properties for deep neural networks. Applied and Computational Harmonic Analysis,
44(3):537�557, 2018.

[113] Jonathan W Siegel and Jinchao Xu. On the approximation properties of neural net-
works. arXiv preprint arXiv:1904.02311, 2019.

[114] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group
lasso. Journal of Computational and Graphical Statistics, 22(2):231�245, 2013.

[115] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[116] Donald F Specht et al. A general regression neural network. IEEE transactions on
neural networks, 2(6):568�576, 1991.

[117] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from over�tting.
The journal of machine learning research, 15(1):1929�1958, 2014.

[118] Nicolas Städler, Peter Bühlmann, and Sara Van de Geer. Rejoinder: l1-penalization
for mixture regression models. Test, 19(2):209�256, 2010.

242

[119] Eduardo D Stonag. Critical points for least-squares problems involving certain analytic
functions, with applications to sigmoidal nets. Advances in Computational Mathemat-
ics, 5(1):245�268, 1996.

[120] Charles J Stone. Additive regression and other nonparametric models. The annals of
Statistics, pages 689�705, 1985.

[121] Charles J Stone. The dimensionality reduction principle for generalized additive mod-
els. The Annals of Statistics, pages 590�606, 1986.

[122] Wesley Tansey and James G Scott. A fast and �exible algorithm for the graph-fused
lasso. arXiv preprint arXiv:1505.06475, 2015.

[123] Gül³en Ta³kin and Melba M Crawford. An out-of-sample extension to manifold learn-
ing via meta-modeling. IEEE Transactions on Image Processing, 28(10):5227�5237,
2019.

[124] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric frame-
work for nonlinear dimensionality reduction. science, 290(5500):2319�2323, 2000.

[125] Ambuj Tewari, Pradeep K Ravikumar, and Inderjit S Dhillon. Greedy algorithms for
structurally constrained high dimensional problems. In Advances in Neural Information
Processing Systems, pages 882�890, 2011.

[126] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267�288, 1996.

[127] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Spar-
sity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(1):91�108, 2005.

[128] Ryan J Tibshirani. A general framework for fast stagewise algorithms. The Journal of
Machine Learning Research, 16(1):2543�2588, 2015.

[129] Michael E Tipping and Christopher M Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3):611�622, 1999.

[130] Warren S Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,
17(4):401�419, 1952.

[131] Wen-Jen Tsay, Cli� J Huang, Tsu-Tan Fu, and I-Lin Ho. A simple closed-form approx-
imation for the cumulative distribution function of the composite error of stochastic
frontier models. Journal of Productivity Analysis, 39(3):259�269, 2013.

243

[132] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117(1-2):387�423, 2009.

[133] John W Tukey. Non-parametric estimation ii. statistically equivalent blocks and tol-
erance regions�the continuous case. The Annals of Mathematical Statistics, pages
529�539, 1947.

[134] Gerhard Tutz and Harald Binder. Generalized additive modeling with implicit variable
selection by likelihood-based boosting. Biometrics, 62(4):961�971, 2006.

[135] Sara A Van de Geer. High-dimensional generalized linear models and the lasso. The
Annals of Statistics, pages 614�645, 2008.

[136] AW van der Vaart and J. Wellner. Weak Convergence and Empirical Processes: With
Applications to Statistics. Springer Series in Statistics. Springer, 1996.

[137] Hansheng Wang, Bo Li, and Chenlei Leng. Shrinkage tuning parameter selection with
a diverging number of parameters. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 71(3):671�683, 2009.

[138] Mingqiu Wang and Guo-Liang Tian. Adaptive group lasso for high-dimensional gen-
eralized linear models. Statistical Papers, 60(5):1469�1486, 2019.

[139] Rongrong Wang and Xiaopeng Zhang. Capacity preserving mapping for high-
dimensional data visualization. arXiv preprint arXiv:1909.13322, 2019.

[140] Fengrong Wei and Jian Huang. Consistent group selection in high-dimensional lin-
ear regression. Bernoulli: o�cial journal of the Bernoulli Society for Mathematical
Statistics and Probability, 16(4):1369, 2010.

[141] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2(1-3):37�52, 1987.

[142] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming,
151(1):3�34, 2015.

[143] Tong Tong Wu, Kenneth Lange, et al. Coordinate descent algorithms for lasso penal-
ized regression. The Annals of Applied Statistics, 2(1):224�244, 2008.

[144] Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P Xing, and Masashi
Sugiyama. High-dimensional feature selection by feature-wise kernelized lasso. Neural
computation, 26(1):185�207, 2014.

244

[145] Kaixu Yang and Tapabrata Maiti. Ultra high-dimensional generalized additive model:
consistency and tuning parameter selection. Technical report, Michigan State Univer-
sity, 2018.

[146] Kaixu Yang and Tapabrata Maiti. Statistical aspects of high-dimensional sparse arti-
�cial neural network models. Machine learning and knowledge extraction, 2(1):1�19,
2020.

[147] Yi Yang and Hui Zou. A fast uni�ed algorithm for solving group-lasso penalize learning
problems. Statistics and Computing, 25(6):1129�1141, 2015.

[148] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49�67, 2006.

[149] Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-
dimensional linear regression. The Annals of Statistics, pages 1567�1594, 2008.

[150] Nancy R Zhang and David O Siegmund. A modi�ed bayes information criterion with
applications to the analysis of comparative genomic hybridization data. Biometrics,
63(1):22�32, 2007.

[151] Yiyun Zhang, Runze Li, and Chih-Ling Tsai. Regularization parameter selections
via generalized information criterion. Journal of the American Statistical Association,
105(489):312�323, 2010.

[152] Peng Zhao and Bin Yu. On model selection consistency of lasso, 2006.

[153] S Zhou, X Shen, DA Wolfe, et al. Local asymptotics for regression splines and con�-
dence regions. The annals of statistics, 26(5):1760�1782, 1998.

[154] Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen, and Matthew S Rosen.
Image reconstruction by domain-transform manifold learning. Nature, 555(7697):487�
492, 2018.

[155] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American
statistical association, 101(476):1418�1429, 2006.

[156] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the royal statistical society: series B (statistical methodology), 67(2):301�
320, 2005.

[157] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis.
Journal of computational and graphical statistics, 15(2):265�286, 2006.

245

	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1Introduction
	Overview
	Sparsity in High-dimensional Modeling
	Choosing the Tuning Parameters
	Algorithms for Training Sparse Models
	Stage-wise Selection

	The Projection Approach
	Non-parametric Modeling
	Basis Expansion
	Neural Networks
	Deep Neural Networks

	Chapter 2High-dimensional Generalized Additive Modeling
	Introduction
	Model
	Methodology & Theoretical Properties
	First Step: Model Screening
	Second Step: Post Selection

	Tuning Parameter Selection
	Other Possible Penalty
	The L0 Norm Penalty
	The L0 and L1 Norm Penalty

	Numerical Properties
	Simulated Examples
	Logistic Regression
	Other link functions

	Real Data examples

	Discussion

	Chapter 3Sparse Neural network
	Introduction
	The Binary Classification Problem
	The Consistency of Neural Network Classification Risk
	Simulation
	DNP Simulation: Revisit
	Smaller Sample Size Case

	Real Data examples
	example 1: Prostate Cancer Data
	example 2: MRI Data for Alzheimer's Disease
	example: KITTI Autonomous Driving Data

	Discussion
	The l1+l0 Penalty and Algorithm

	Chapter 4Ensemble Neural Network Selection (ENNS)
	Introduction
	The Two-step Variable Selection and Estimation Approach
	The Ensemble Neural Network Selection (ENNS) Algorithm
	Estimation With Regularization
	Dropping Out and Bagging
	Stage-wise Training
	L1 Norm Regularization

	Theoretical Guarantee
	Simulation Study
	Stage-wise Correct Selection Probability Decreasing Study
	False Positive Rate Study
	Variable Selection Simulation Study
	Estimation Simulation Study
	Variable Selection and Estimation
	Correlated Predictors

	Real Data examples
	Variable Selection: MRI Data
	Regression: Riboflavin Production Data
	Classification: Prostate Cancer Data

	Conclusion

	Chapter 5Epilogue
	Appendices
	APPENDIX A Technical Details and Supplementary Materials for Chapter 2
	APPENDIX B Technical Details and Supplementary Materials for Chapter 3.
	APPENDIX C Technical Details and Supplementary Materials for Chapter 4
	Bibliography

