
ACHIEVING RELIABLE DISTRIBUTED SYSTEMS: THROUGH EFFICIENT RUN-TIME
MONITORING AND PREDICATE DETECTION

By

Vidhya Tekken Valapil

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2020

ABSTRACT

ACHIEVING RELIABLE DISTRIBUTED SYSTEMS: THROUGH EFFICIENT RUN-TIME
MONITORING AND PREDICATE DETECTION

By

Vidhya Tekken Valapil

Runtime monitoring of distributed systems to perform predicate detection is critical as well as a

challenging task. It is critical because it ensures the reliability of the system by detecting all possible

violations of system requirements. It is challenging because to guarantee lack of violations one has

to analyze every possible ordering of system events and this is an expensive task. In this report, we

focus on ordering events in a system run using HLC (Hybrid Logical Clocks) timestamps, which

are $ (1) sized timestamps, and present some efficient algorithms to perform predicate detection

using HLC. Since, with HLC, the runtime monitor cannot find all possible orderings of systems

events, we present a new type of clock called Biased Hybrid Logical Clocks (��!�), that are

capable of finding more possible orderings than HLC. Thus we show that ��!� based predicate

detection can find more violations than HLC based predicate detection. Since predicate detection

based on both HLC and ��!� do not guarantee detection of all possible violations in a system run,

we present an SMT (Satisfiability Modulo Theories) solver based predicate detection approach,

that guarantees the detection of all possible violations in a system run. While a runtime monitor

that performs predicate detection using SMT solvers is accurate, the time taken by the solver to

detect the presence or absence of a violation can be high. To reduce the time taken by the runtime

monitor, we propose the use of an efficient two layered monitoring approach, where the first layer of

the monitor is efficient but less accurate and the second layer is accurate but less efficient. Together

they reduce the overall time taken to perform predicate detection drastically and also guarantee

detection of all possible violations.

Copyright by
VIDHYA TEKKEN VALAPIL

2020

ACKNOWLEDGEMENTS

I would like to thank everyone who has helped and supported me throughout my journey as a Ph.D.

student. This journey has helped me grow at a professional and personal level, and I am very

grateful for this experience.

First and foremost I would like to thank my advisor Dr.Sandeep Kulkarni for being a patient,

motivating and supportive mentor. I have always admired how he can turn every simple idea into

something impactful by perceiving it in every different possible aspect. I am thankful for every

formal and informal discussion that I have had with him because I have learnt something new from

every single conversation. I am very grateful for his continuous support and guidance at every step

during the program.

I would like to thank my committee members: Dr. Philip McKinley, Dr. Rajesh Kulkarni

and Dr. Eric Torng for their time, insightful comments and critical suggestions. I would like to

thank Dr. Torng for his valuable guidance and for also being a great team member in the multiple

projects that we have worked together. I would also like to thank my lab mates and project team

members, especially Duong Nguyen and Sorrachai Yingchareonthawornchai for being supportive

team mates.

Finally, I would like to thank my husband, my parents and my sisters for making this journey

possible. I am grateful for the countless meals cooked bymy husband and for his support throughout

my ups and down in this journey. I would like to thank my father for his constant encouragement

to aim higher and for teaching me the importance of continuous learning. I would like to thank

my mother and sisters for their emotional support and for giving me strength and confidence every

time that I needed it.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 PRELIMINARIES . 10
2.1 System Model . 10
2.2 Hybrid Logical Clocks . 11
2.3 Predicate Detection . 12
2.4 Runtime Monitoring . 14

CHAPTER 3 EFFICIENT PREDICATE DETECTION USING HYBRID LOGICAL
CLOCKS . 16

3.1 Identifying consistent global states using Hybrid Logical Clocks 16
3.2 Predicate Detection Framework . 17

3.2.1 Reporting information required for the detection of weak conjunctive
predicates . 18

3.3 Algorithms for Detecting Conjunctive Predicates 20
3.3.1 Naive Algorithm . 21
3.3.2 C-point tree Algorithm . 22
3.3.3 Monitoring with report/message delivery guarantees 27

3.4 Detecting Arithmetic Predicates . 30
3.5 Advantages and Limitations of HLC based Predicate Detection 32

CHAPTER 4 IMPROVEDPREDICATEDETECTIONUSINGBIASEDHYBRIDLOG-
ICAL CLOCKS . 34

4.1 Biased Hybrid Logical Clocks . 34
4.1.1 Hybrid Logical Clocks - Naive Algorithm 36
4.1.2 Idea of using a Bias . 37
4.1.3 Biased Hybrid Logical Clocks Algorithm 39

4.2 Extensions of ��!� . 41
4.2.1 Extension 1: Multiple Simultaneous Instances of ��!� 41
4.2.2 Extension 2: Algorithm ��!�A : Resetting clocks at cut-points 41
4.2.3 Extension 3: Algorithm ��!�0: Adjusting message rate 42

4.3 Predicate Detection using Biased Hybrid Logical Clocks 42
4.4 Experimental Setup . 43

4.4.1 Effectiveness of ��!� under different system parameters and Bias � . . . 44
4.4.2 Effectiveness of ��!�A . 47
4.4.3 Effectiveness of ��!� under Non-uniform Message Distribution 48

v

4.5 Advantages and Limitations of performing Predicate Detection using ��!� 49

CHAPTER 5 RELIABLE PREDICATE DETECTION USING SMT SOLVERS 51
5.1 Predicate Detection using SMT Solvers . 51

5.1.1 Reporting . 52
5.1.2 Reporting a change in variable value . 53
5.1.3 Reporting Message Events . 54

5.2 Monitoring setup . 54
5.3 Experimental Results . 56

5.3.1 Experimental Setup . 56
5.3.2 Interpreting the Experimental Results . 57
5.3.3 Effect of Communication Frequency . 58
5.3.4 Effect of Communication Latency . 60
5.3.5 Effect of Variable Stability . 60
5.3.6 Effect of Clock Drift . 61

5.4 Advantages and Limitations of predicate detection using SMT solvers 61

CHAPTER 6 EFFICIENTANDRELIABLEPREDICATEDETECTIONUSINGTWO
LAYERED MONITORING . 63

6.1 Predicate Detection with HLC: Trade-off in False Positives and Negatives 63
6.1.1 False Negatives with HLC . 63
6.1.2 Eliminating False Negatives with n extension 65
6.1.3 Reducing False Positives with W-extension 67
6.1.4 Analyzing False Positives and Negatives with W extension 68

6.1.4.1 Experimental Setup . 68
6.1.4.2 Observation . 69

6.1.5 Implications of False Negatives/Positives 73
6.2 Two-Layered Monitoring Approach . 74

6.2.1 Evaluating Efficiency of the Two Layered Monitor 76
6.2.1.1 Application based on time division multiplexing. 76
6.2.1.2 Two-layered Monitoring Setup 76
6.2.1.3 Experimental Results . 77

6.3 Advantages and Limitations of predicate detection using W-extension and two-
layered monitoring . 79

CHAPTER 7 RELATED WORK . 81
7.1 Detection of different types of predicates . 81
7.2 Accounting for real time information . 82
7.3 Trading off false negatives/positives for efficiency 83
7.4 Adaptive runtime monitoring . 84

CHAPTER 8 FUTURE WORK . 86
8.1 Extensions of runtime monitoring using SMT solvers 86

8.1.1 Online monitoring with multiple monitors. 86
8.1.2 Detecting different types of predicates. 87

vi

8.2 Considering alternatives for SMT solvers. 88
8.3 Detecting latent concurrency bugs under uncertainty in communication delay . . . 89
8.4 Predicate Detection as a Constraint Satisfaction Problem 90

CHAPTER 9 CONCLUSION . 92

APPENDIX . 95

BIBLIOGRAPHY . 99

vii

LIST OF TABLES

Table 1.1: Summary of properties of different monitoring approaches for performing
predicate detection in distributed systems . 9

Table 3.1: Summary of Conjunctive Predicate Detection Algorithms based on HLC 20

Table 6.1: Percentage of Valid Snapshots out of all snapshots detected during Conjunctive
Predicate Detection using W-extension. Each entry corresponds to precision
(No. of Valid Snapshots detected/Total Snapshots Detected). 71

Table 6.2: Percentage of Valid Snapshots detected during Conjunctive Predicate Detec-
tion using W-extension out of all Valid Snapshots in the system. Each entry
corresponds to recall (No. of Valid Snapshots detected/No. of Valid Snapshots
in the system) . 72

Table .1: Percentage of Valid Snapshots out of all snapshots detected during mutual
exclusion detection using W-extension. 97

Table .2: Percentage of Valid Snapshots detected during mutual exclusion detection
using W-extension out of all Valid Snapshots in the system. 98

viii

LIST OF FIGURES

Figure 1.1: Identifying Concurrent events . 3

Figure 1.2: Identifying Concurrent events using Physical Clock timestamps 4

Figure 1.3: Physical Clock timestamps failing to capture causality 6

Figure 3.1: Intervals of process ?1 timestamped using HLC 19

Figure 3.2: Conjunctive Predicate Detection when Local Predicates are true for some
duration of time . 23

Figure 3.3: An Illustrative Example for Algorithm 3 . 26

Figure 4.1: Identifying Concurrent events using HLC timestamps 35

Figure 4.2: A sample execution in a system of three partially synchronized processes. . . . 37

Figure 4.3: A scenario with non-uniformmessage distribution (= corresponds to the naive
HLC value with bias=1, ; corresponds to the modified naive HLC value with
bias=2). 39

Figure 4.4: a) Effect of varying clock drift, (b) Effect of varying the rate at which local
predicate becomes true, (c) Effect of varying frequency of sending a message,
(d) Effect of varying message delay on Standard Biased Hybrid Logical Clocks . 45

Figure 4.5: (a)Effect of varying clock drift, (c) Effect of varying frequency of sending a
message and (b) Effect of varying the rate at which local predicate becomes
true and (d) Effect of varying Message delay on Extended biased clocks with
reset every 100ms. 47

Figure 4.6: No. of violations (consistent cuts where the predicate is true) detected in
(a)Non-uniform Message distribution 1 and (b)Non-uniform Message distri-
bution 2 . 48

Figure 5.1: Example (a) there are four variable events and no messages. Due to clock
drift, it is possible that both processes simultaneously had E8 = CAD4 if n > 5.
Scenario (b) has the same four variable events plus a message <. Because
of the message, the two processes cannot have had E8 = CAD4 simultaneously
regardless of n . 53

Figure 5.2: Analysis of the role of system parameters on monitoring latency 59

ix

Figure 6.1: Analyzing the state of ?0 considered by the monitor when evaluating the
global predicate at 〈7, 0〉. (n = 5 in the system) (a) & (b) consider a monitor
that uses HLC, (c) considers a monitor that uses HLC with n-extension. 64

Figure 6.2: Reducing false positives with W-extension . 67

Figure 6.3: Time taken by the SMT Solver to detect violations of mutual exclusion in a
time division multiplexing protocol when processing all windows vs windows
marked by W-extension. W is varied as fractions of n (taking floor value if the
fraction is not an integer). Time is measured in milliseconds. Default values:
n=10, n = 100, U = 0.1, X = 10. 78

Figure 8.1: Violation revealed when messages get delivered in a specific order [30] 89

x

LIST OF ALGORITHMS

Algorithm 1 Hybrid Logical Clocks (HLC) Algorithm from [27] 12

Algorithm 2 Naive Algorithm . 21

Algorithm 3 Algorithm for inserting a change point into a C-?>8=C tree 25

Algorithm 4 Online min-heap algorithm based on local ordering property. 28

Algorithm 5 Naive Hybrid Logical Clocks Algorithm from [27] 36

Algorithm 6 Algorithm ��!� with Input Parameter � 40

xi

LIST OF ALGORITHMS

1 Hybrid Logical Clocks (HLC) Algorithm from [27] 12

2 Naive Algorithm . 21

3 Algorithm for inserting a change point into a C-?>8=C tree 25

4 Online min-heap algorithm based on local ordering property. 28

5 Naive Hybrid Logical Clocks Algorithm from [27] 36

6 Algorithm ��!� with Input Parameter � . 40

xii

CHAPTER 1

INTRODUCTION

The growing complexity of software and the increasing number of interacting subsys-

tems promises an unending discovery of new vulnerabilities. [34]

Most real world software systems ranging from wireless sensor network applications to cloud-

native applications have the underlying structure of distributed systems, where the system consists

of multiple components or processes that communicate with each other and also simultaneously

execute their individual tasks to achieve a common goal of the system. These systems are inherently

complex, making them a breeding ground for various types of software bugs. It is therefore essential

to analyze and evaluate these systems for any violations or bugs to guarantee their correctness and

reliability. Specifically, to ensure reliability of a system, one has to make sure that the system

never violates its requirements when subject to any type of input or in any environmental setting.

To provide such guarantee one has to first (i) observe the system behavior for different inputs and

environmental settings, (ii) then analyze the observed behavior to determine if the system ever

violates any of its requirements. However, with distributed systems there are several challenges

associated with performing steps (i) and (ii), i.e. in observing and analyzing the system’s behavior

for all inputs.

Need for runtimemonitoring. The problemwith the first step i.e., in observing system behavior

for all types of input or in all possible environmental settings is that it is not always possible to

deploy and evaluate the system for all possible inputs or environmental settings. The input space

to be considered can be very large thereby making testing for all inputs infeasible. Furthermore, in

some scenarios it may not be possible for the system designer or developer to anticipate or predict

all the environmental settings or external factors that the system may be subject to precisely. To

account for such uncertainty, one can perform runtime monitoring, where to ensure reliability

the system is equipped with a monitor that is responsible for monitoring the system behavior

1

during its execution. More specifically, the task of the monitor is to observe the system behavior

without interfering with the actual underlying execution and to detect if the system ever violates its

requirements during the current run.

Challenges caused by non-determinism in distributed systems. In a distributed system, where

there are multiple processes, an event at a process corresponds to an execution of some action (at

the process) that changes its local state. So local states at the processes can be defined in terms of

the events that occur at the processes. For an event 4 at a process, let B4 denote the corresponding

local state at the process, i.e. the local state of the process is B4 after the occurrence of event 4. In

a distributed system, an event 41 is said to have happened-before another event say 42, denoted as

41→ 42, if and only if one of the following conditions hold: i) if event 41 occurred before event 42

at the same process, ii) if 41 is a message send event and 42 is the corresponding message receive

event, or iii) if event 41 happened before event G and event G happened before event 42. Furthermore,

two events 41, 42 are concurrent (denoted as 41 | |42) if and only if ((41 9 42) ∧ (42 9 41)).

Local states corresponding to concurrent events at the processes are concurrent states. A global

state say 6 of a distributed system contains a local state per process. The global state 6 is a

consistent global state if and only if every local state in it is concurrent with every other local state

in it. Consistent global states are also referred to as consistent snapshots or consistent cuts. For

a distributed system, an observed system behavior i.e., an observed run of the system can contain

several consistent global states that the system could have gone through during its observation.

For example, consider the execution of a distributed system shown in figure 1.1 (a) that has two

processes ?0 and ?1 that execute asynchronously. During the observed run of the system, let events

�, � be the local events that happened consecutively at ?0 and let events �, � be local events that

happened consecutively at ?1. If there is no communication between processes ?0 and ?1 before

or during events � and �, then events �, � are concurrent events. If B� and B� are the local states

at processes ?0, ?1 corresponding to events � and �, then B�, B� are concurrent states. So B�

and B� together form a consistent global state of the observed distributed system. Furthermore, if

the processes ?0 and ?1 never communicated during the entire observed run, then events � and

2

?0

?1
A B

C D
(a) No communication scenario

?0

?1

A B

C D

<

(b) With communication scenario

Figure 1.1: Identifying Concurrent events

�, � and �, � and � can also be considered as concurrent events. In other words, these events

do not have a happened-before relationship with each other. Thus the set of consistent global

states that the system could have gone through are {B�, B�}, {B�, B�}, {B�, B�}, and {B�, B�}.

Therefore, while performing the second step of analyzing the observed system behavior, to ensure

complete reliability, the runtime monitor has to evaluate every consistent global state of the system,

to guarantee that the system never violated its requirements at any point during its execution.

The process of identifying all consistent global states and evaluating them is commonly referred

to as predicate detection in distributed systems. More specifically, in predicate detection the first

step is to identify all consistent global states and the second step is to evaluate every consistent

global state against a predicate or a condition. This condition can correspond to a representation

of a violation (or satisfaction) of some specific system requirement.

Identifying all consistent global states. The total number of consistent global states depends on

the causality relationship[28] between the events at the processes, i.e. events at different processes

that have a happened-before relationship. For example, as shown in figure 1.1 (b), if the event � is

a message send event at process ?0 and � is the corresponding message receive event at process

?1, then the consistent global states that the system could have gone through are {B�, B�} and

{B�, B�}, because events �,� and �, � have a happened-before relationship and therefore are not

concurrent events.

Eliminating infeasible global states with the help of time. The number of consistent global

states can be reduced further if the knowledge of when the events happened in real time is available.

For instance, let us consider the scenario in figure 1.2 (a) where processes ?0 and ?1 have local

physical clocks associated with them and that these clocks are perfectly synchronized with each

3

?0

?1

10
A

15
B

15
C

25
D

(a) Concurrency when (n = 0) and when (n = 5)

?0

?1

10
A

15
B

15
C

25
D

<

(b) With communication scenario

Figure 1.2: Identifying Concurrent events using Physical Clock timestamps

other. Let the initial states of ?0 and ?1 be �?0 and �?1 respectively. Now if local events �, �

happened at ?0 at local physical time 10, 15, likewise local events �, � happened at ?1 at local

physical time 15, 25 and if ?0 and ?1 never communicated during the observed run, then we know

that the only concurrent events in the observed run are �,�, that have equal physical timestamps.

So the first consistent global state of the system is {B�, �?0} at time 10where an event � at ?0 altered

its local state and ?1 is still in its initial state at 10. The next consistent global state is {B�, B�} at

time 15 where events �,� altered the local states at ?0 and ?1 respectively. The final consistent

global state is {B�, B�} since the state of ?0 at time 25 is the same as it was at 15 (because there

are no events at ?0 after �). So the consistent global states are {B�, �?0}, {B�, B�} and {B�, B�}.

While the presence of perfectly synchronized clocks is beneficial in eliminating some global states

as infeasible, they are not available in most real-world distributed systems.

In practice, most distributed systems have partially synchronized clocks, where each process

has a local physical clock and the clock drift i.e., difference between the clocks of any two processes

is bounded by a specified amount, say n . Therefore in this case, events that happened more than

n apart from each other cannot be concurrent events. If the clock drift in the distributed system

considered in the above example shown in Figure 1.2 (a) is n = 5, then events � and � are clearly

not concurrent because they happened more than n apart from each other. Recall that for the

corresponding scenario in Figure 1.1 (a) in the absence of real/physical time information {B�, B�}

was considered as a consistent global state because � and � did not have a happened-before

relationship. Thus, the total number of consistent global states can be reduced by eliminating

global states that are infeasible because the events/states in it are far apart in physical time. This

can be achieved even if the local physical clocks at the processes are not perfectly synchronized but

4

are partially synchronized, by accounting for their clock drift.

Desirable properties of runtimemonitors. While runtimemonitoring can help ensure reliability

of distributed systems, the effectiveness of the monitors depend on their correctness and the cost

associated with monitoring. In other words an ideal runtime monitor is a runtime monitor that

is correct i.e., reports all bugs in the system and never reports phantom bugs, and also has low

overhead or computation cost. To identify and report all bugs the runtime monitor has to identify

and evaluate all consistent global states for bugs or violations of system requirements. To avoid

reporting phantom or incorrect bugs the runtime monitor should not consider global states that

are inconsistent or infeasible. Therefore, the correctness of a runtime monitor directly depends on

its ability to eliminate inconsistent/infeasible global states while identifying all consistent global

states. To achieve this, based on our discussion, the runtime monitor should account for causality

among events, time at which events happened and clock drift between processes.

One of the most commonly used approaches for capturing causality among events is times-

tamping events using Vector Clocks [18, 36]. A runtime monitor can use vector clock timestamps

associated with events to determine if they have a causal relationship. Vector clocks are $ (=)

sized clocks, where = is the number of processes in the system. However, a problem with vector

clocks is that they do not capture real time information associated with the events. On the other

hand, one cannot rely solely on physical clocks to eliminate global states that are inconsistent or

infeasible, because physical clocks do not capture causality among events. For example, consider

the scenario in figure 1.3 where event � is a message send event and� is the corresponding message

receive event. In this case the physical clocks at the processes are partially synchronized to be

within n = 5 of each other. Observe that the message send event can have a larger timestamp than

the receive event because the local physical clock at process ?1 is behind (slower than) the local

physical clock at process ?0. Furthermore, with physical clocks, the message send and receive

events can also have equal timestamps, so they can be incorrectly considered as concurrent events.

As a solution, the runtime monitor could use both vector clock and physical clock timestamps to

account for causality and physical time information. However, the problem with this is that vector

5

?0

?1

13
A

15
B

10 C
25

D

<

(n = 5)

Figure 1.3: Physical Clock timestamps failing to capture causality

clock timestamps are $ (=) sized timestamps. For every pair of events, to determine if they have

a causal relationship, the runtime time monitor will have to compare two = sized timestamps, this

will increase the monitoring/computation overhead.

Efficient but less-accurate runtime monitors that have false negatives. A runtime monitor that

guarantees the detection of all consistent global states while eliminating all inconsistent/infeasible

global states can suffer from high monitoring overhead. In other words, a runtime monitor that is

accurate can be expensive. A runtime monitor that is expensive will not be suitable in scenarios

where the cost of monitoring has to be kept low. For instance, in scenarios where the system

being monitored is a lightweight distributed application that has time/memory constraints, using

a runtime monitor that has high monitoring overhead would not be feasible. In such scenarios,

runtime time monitors that are efficient (have less monitoring overhead) but less accurate would

be acceptable. For example, a runtime monitor that evaluates only a subset of consistent global

states and reports violations identified in those states would be acceptable. Such a monitor will

have false negatives, i.e., it will miss some bugs or violations. In Chapter 3, different algorithms

that can be used by a runtime monitor for predicate detection are presented. These algorithms have

low monitoring overhead but suffer from substantial number of false negatives, i.e., they can miss

some bugs or violations. Specifically, these algorithms keep the monitoring cost low by relying

on Hybrid Logical Clocks (HLC) [27], which are $ (1) sized clocks. To reduce the number of

false negatives, an extension of HLC called Biased Hybrid Logical Clocks (BHLC), which are also

constant sized clocks, are introduced in Chapter 4. With BHLC, the number of consistent global

states considered for predicate detection is increased by creating a bias while capturing causality

resulting from inter-process communication.

6

Accurate but less-efficient runtime monitors. In some scenarios, the accuracy of the runtime

monitor may be critical than the associated monitoring cost. In such scenarios, a high monitoring

cost may be acceptable as long as the runtime monitor is accurate (i.e., it has no false negatives

or false positives). For such scenarios, the monitoring framework presented in Chapter 5 can be

used, where the accuracy of the runtime monitor is guaranteed with the help of SMT (Satisfiability

Modulo Theories) solvers. However, the time taken by the runtime monitor that uses SMT solvers

to identify all consistent global states (without considering inconsistent/infeasible global states)

can be high.

Efficient but less-accurate runtime monitors that have false positives. A runtime monitor

can also reduce its monitoring overhead by not accounting for all causal relationships among

events. Such a monitor will not miss violations/bugs but may identify/report phantom bugs that

are not actually present in the system. The first half of Chapter 6 considers such an approach,

where the runtime monitor considers all consistent global states during predicate detection by

extending an approach from Chapter 3 to account for clock drift. However, the monitor also

considers some inconsistent global states by not accounting for causality resulting from inter-process

communication. While this approach achieves low monitoring cost it suffers from substantial

number of false positives (phantom bugs). A slight modification of the approach that helps in

achieving a trade-off between false negatives and false positives while keeping the monitoring cost

low is also discussed in the chapter.

Accurate and efficient runtimemonitors. For scenarios where an accurate runtimemonitor that

takes smaller computation time is desired, a hybrid monitoring approach is presented in the second

half of Chapter 6. Specifically, the runtime monitor uses a two layered monitoring approach, where

an efficient but less accurate monitor is used as the first layer and an accurate but comparatively

less efficient monitor (i.e. comparatively expensive monitor) is used as the second layer. The first

layer is less accurate because it has false positives, but the accurate monitor in the second layer

helps in eliminating the false positives. On the other hand, the first layer acts as a filtering layer

and invokes the less efficient monitor in the second layer only when it thinks that a violation or bug

7

is feasible. Together, they enable detection of violations without false positives or false negatives

while requiring only a smaller computation time.

Contributions (summarized in Table 1.1).
In this report, a range of monitors that fall in different places on the efficiency and accuracy

spectrum are presented.

• Efficient algorithms to perform predicate detection using Hybrid Logical Clocks(HLC)[48]

are presented in Chapter 3, where the runtime monitor has low monitoring overhead but can

miss violations or bugs.

• An extension of Hybrid Logical Clocks (HLC) called Biased Hybrid Logical Clocks (��!�)

is presented in Chapter 4, and it is shown that they can identify more consistent global states

than HLC and thereby perform better predicate detection than HLC [44]. BHLC are constant

sized clocks like HLC, so the monitoring overhead is kept low, but violations or bugs can

still be missed.

• The idea of performing predicate detection using HLC and SMT solvers is presented in

Chapter 5, whrere the runtime monitor identifies all possible consistent global states in an

observed run, and thereby guarantees reliable predicate detection [45]. However, it is shown

that the time taken by the monitor to perform predicate detection is high in some scenarios.

• A runtimemonitoring approach that has lowmonitoring overhead and guarantees the absence

of false negatives in presented in Chapter 6. Here, the lowmonitoring overhead is achieved at

the cost of false positives. A modification of the approach that helps in achieving a trade-off

between false positives and false negatives is also discussed in the chapter.

• An efficient hybrid monitoring approach that reduces the computation time required by the

monitor while ensuring the absence of false positives and false negatives is also presented in

Chapter 6.

8

Chapter Monitoring Approach Correctness Monitoring Overhead

3 Predicate detection using HLC has false nega-
tives

low - uses $ (1) sized
clocks

4 Predicate detection using BHLC has lesser false
negatives

low - uses $ (1) sized
clocks

5 Predicate detection using HLC and
SMT solvers

No false posi-
tives, No false
negatives

high computation time
taken by the solver

6

Predicate detection using HLC ac-
counting for clock drift and not ac-
counting for communication based
causality

has false positives low - uses $ (1) sized
clocks

6 Two layered monitor - combining
the above two approaches

No false posi-
tives, No false
negatives

smaller computation time
taken by the solver

Table 1.1: Summary of properties of different monitoring approaches for performing predicate
detection in distributed systems

9

CHAPTER 2

PRELIMINARIES

In this chapter, we will provide an overview of the key concepts that the following chapters rely

on. Specifically, the predicate detection algorithms that we will discuss in the following chapters

assume that the system model of the underlying distributed system (that they run on) is identical to

the model presented in Section 2.1. Algorithms presented in Chapters 3, 5 and 6 assume that the

underlying distributed system uses Hybrid Logical Clocks (HLC), so we introduce Hybrid Logical

Clocks briefly in Section 2.2. In Section 2.3, we identify the steps involved in performing predicate

detection and the need to perform predicate detection. We will also discuss some specific types

of predicates, especially ones that the algorithms in the following chapters aim to detect. Finally,

in Section 2.4, we discuss about runtime monitoring and the desirable characteristics of runtime

monitors.

2.1 System Model

We consider a distributed system that consists of a set of = processes, ?1 to ?=. Each process

?8 has its own physical clock, where 1 ≤ 8 ≤ =. We assume that the underlying system guarantees

that the local physical clocks of any two processes differ by at most n , the clock drift, by using a

clock synchronization protocol such as NTP[38]. The processes communicate via messages. The

minimum and maximum message delays between processes are X<8= (could be 0) and X<0G (could

be ∞), respectively. The execution of each process can be denoted as a sequence of events that

happen at the process. Each process is associated with a set of variables, and the state of a process

is identified by the values of its variables. We categorize the events that can happen at each process

into three categories: send events, receive events, and local events. A send or a receive event

corresponds to the event of a process sending or receiving a message. A local event corresponds

to an event at a process where the state of the process may change. The state of a process does

not change between any two consecutive events at a process. Each event 4 at a process 8 is also

10

associated with a physical clock value or timestamp ?C.4, which is the physical clock value of

process 8 when the event 4 happened.

2.2 Hybrid Logical Clocks

Hybrid Logical Clocks (HLC) [27] are constant sized clocks that have the benefits of both

physical clocks and Logical Clocks[28]. With Hybrid Logical Clocks, every process in the system

maintains two variables ;, 2, and together 〈;, 2〉 corresponds to the process’ HLC value. The

variable ; corresponds to the highest physical clock value (of any process) that the process is aware

of and 2 captures causality information. Each process in the system is in charge of updating the

values of its own clock variables ; and 2 whenever an event occurs at the process.

With Hybrid Logical Clocks, events and messages in the system have timestamps associated

with them. Therefore, when an event 4 occurs at a process, the process updates its HLC value i.e.,

the value of 〈;, 2〉, and then assigns the updated HLC value as the timestamp of event 4, say ℎ;2.4.

So the timestamp of event 4 i.e., ℎ;2.4 is of the format 〈;.4, 2.4〉, where ;.4 is the highest physical

clock value that the process is aware of at that moment. The value of 2.4 is set in such a manner

that together 〈;.4, 2.4〉 uniquely identify event 4 at the process and any causality (happened-before)

relationship that event 4 has with any other prior event is also captured.

Like Logical Clocks, Hybrid Logical Clocks provide the guarantee that for any two events 4, 5

where (4 → 5), i.e., if event 4 happened before event 5 , then ℎ;2.4 < ℎ;2. 5 . More specifically,

(4 → 5) ⇒ (;.4 < ;. 5) ∨ ((;.4 = ;. 5) ∧ (2.4 < 2. 5)).

Therefore, with Hybrid Logical Clocks if two events have exactly equal timestamps, then they

are concurrent events,

((;.4 = ;. 5) ∧ (2.4 = 2. 5)) ⇒ (4 | | 5).

Furthermore, since Hybrid Logical Clocks are guaranteed to stay close to physical time, any

two events 4 and 5 in a system where the clock drift between the physical clocks at the processes

is at most n , if |;.4 − ;. 5 | ≤ n , then 4 and 5 could have happened at the same time.

As mentioned earlier, with Hybrid Logical Clocks, events and messages in the system have

11

timestamps associated with them. Specifically, when a message-send event is assigned an HLC

timestamp, the message being sent is also tagged with this timestamp value, i.e. any message has

an HLC timestamp associated with it which is the timestamp of the corresponding message send

event. The algorithm for Hybrid Logical Clocks is as shown in Algorithm 1.

Algorithm 1 Hybrid Logical Clocks (HLC) Algorithm from [27]
Send/Local Event at process ?8
1: ;’.8 := ;.8
2: ;.8 := <0G(;’.8, ?C.8) //tracking maximum time event, ?C.8 is physical time at ?8
3: If (;.8 = ;’.8) then 2.8 := 2.8 + 1 //tracking causality
4: Else 2.8 := 0
5: Timestamp the event (and the message for send event) with ;.8, 2.8

Receive Event of message m at process ?8
6: ;’.8 := ;.8
7: ;.8 := <0G(;’.8, ;.<, ?C.8) // ;.< is ; value in the timestamp of the message received
8: If (;.8 = ;’.8 = ;.<) then 2.8 := <0G(2.8, 2.<) + 1
9: Elseif (;.8 = ;’.8) then 2.8 := 2.8 + 1
10: Elseif (;.8 = ;.<) then 2.8 := 2.< + 1
11: Else 2.8 := 0
12: Timestamp event with ;.8,2.8

2.3 Predicate Detection

Predicate detection has several applications in testing and debugging of distributed systems

[5, 29, 25, 31], where the system behavior is analyzed to determine if a specific condition or

predicate becomes true. Predicate detection generally involves (i) computation of all possible

consistent global states and (ii) verifying if a condition or a predicate P (often representing a

violation) becomes true in any of the consistent global states. As stated in the Introduction, a

consistent global state of a distributed system is one that contains a local state per process (i.e.,

a global state of the system) and every local state is concurrent with every other local state in it.

Consistent global states are also referred to as consistent snapshots or consistent cuts. Predicate P

is a condition defined over the variables of more than one process, so we also refer to it as a global

predicate. We refer to a consistent global state where P is true as a valid snapshot of the system.

Computing all possible consistent global states is essential, because even if the system did not

12

actually go through a computed consistent global state during the observed system run, it indicates

a potential that a violation can occur in a future run of the system. We refer to bugs that become

visible only when events occur at the processes in a specific relative order and do not show up in

other cases as latent concurrency bugs. Computing all possible consistent global states is essential

in identifying such latent bugs in the system. Computing consistent global states can also be useful

in recovery, where a system has to recover to a consistent global state in the past where there was

no violation i.e. a valid state of the distributed system before the occurrence of the actual violation

or failure.

Detection of some violations in distributed systemsmay not require computation of global states

and can be detected by local checking. For instance, some violations can be detected locally by a

process in the system [2], based on its knowledge of its own state and/or based on its knowledge of

the state of its neighbouring process. In this report, we will focus on the detection of predicates that

require computation of all possible consistent global states. Furthermore, predicates or conditions

that represent a violation or a bug can involve state information or (values of) variables related to all

or a subset of the processes in the distributed system. In this report, we will focus on the detection of

specific types of predicates namelyWeak Conjunctive Predicates (WCP) and Arithmetic Predicates.

A weak conjunctive predicate (WCP) is true in an observed run of the system, if there exists a

consistent global state in the run, where the corresponding local predicate or condition becomes

true at all processes in the system [24]. In other words, conjunctive predicates are those that can be

defined as a conjunction of local predicates, i.e., they are predicates of the form
∧=
9=1 ?A 9 , where

?A 9 is the local predicate at process ? 9 and = is the number of processes in system. Local predicates

are conditions defined in terms of the local state or local variables associated with the processes in

the system. So the value of ?A 9 can depend on local variables at process ? 9 .

Classic problems like identifying the lack of a leader or mutual exclusion in distributed systems

can be formulated as conjunctive predicates. For example, for mutual exclusion, where a critical

resource can be accessed strictly by at most one process in the system at any time, this condition

can be represented as a conjunction of local predicates, where the local predicate would correspond

13

to the fact that if a process is accessing the resource or not. More specifically, if each process ?8

in the system has a boolean variable 2B8 and the value of 2B8 is true only if process ?8 is accessing

the critical resource, then mutual exclusion with respect to the resource can be represented as

∃(?8, ? 9) : {(8 ≠ 9) ∧ (1 ≤ 8, 9 ≤ =) ∧ (2B8 ∧ 2B 9)}. In other words, the condition evaluates if

there are two processes in the system that are accessing the critical resource. Thus if there is a

consistent global state in an observed run, where this predicate or condition becomes true, then

there is a possible violation of mutual exclusion, i.e., it indicates a possibility that more than one

process was accessing the critical resource simultaneously.

Arithmetic predicates are predicates of the form 5 (G1, . . . , G=) ≤ �, where � is a constant,

G 9 is a variable at process ? 9 , and 5 is an arbitrary arithmetic function. Problems like overall

resource usage, network density, aggregated parametric analysis, etc., can be expressed as arithmetic

predicates. For example, consider a system of = sensors, ?1 to ?=, distributed in a radioactive

environment. Let us consider that it is a violation if the overall radiation sensed by the sensors

becomes more than a specific limit say�. Then this violation can be expressed as (∑=
8=1 B8 .A8) ≥ �,

where A8 is the radiation sensed by sensor ?8 and B8 is the sensitivity of the sensor ?8. So if

there exists a consistent global state where this condition becomes true, then it indicates a possible

violation.

2.4 Runtime Monitoring

Distributed systems have several sources of non-determinism like non-deterministic order of

events, clock drift, unanticipated environmental settings or inputs, etc. So runtime monitoring of

distributed systems is essential to ensure their correctness and reliability. Runtime monitoring can

be performed in an offline or an online setting. When performed in an offline setting, various

aspects of the system behavior are logged during its execution and after the actual execution of the

system the log is analyzed by the monitor to detect violations of the system requirements. When

runtime monitoring is performed in an online setting, the system is equipped with a monitor that

observes the system behavior as its executes and analyzes the observed behavior simultaneously to

14

detect any violations of the system requirements.

The most desirable characteristics of runtime monitors are (i) non- intrusiveness (ii) efficiency

and (iii) timeliness. While non-intrusiveness and timeliness are applicable only to online monitors,

efficiency applies to both online and offline runtime monitors. Specifically, an online runtime

monitor is non-intrusive if it does not interfere with the underlying system execution during the

monitoring process. An efficient monitor is one that does the task of monitoring with low compu-

tation overhead. Finally, the usefulness and effectiveness of an online runtime monitor depends on

how quickly it can detect a violation, i.e. smaller the duration between when the monitor detected

the violation and when the violation actually happened in the system the better the effectiveness

and usability of the monitor. In the next chapter, we will discuss specific algorithms that aid in per-

forming non-intrusive, timely, and efficient monitoring of distributed systems to perform predicate

detection using Hybrid Logical Clocks.

15

CHAPTER 3

EFFICIENT PREDICATE DETECTION USING HYBRID LOGICAL CLOCKS

In this chapter, we present several algorithms for performing efficient predicate detection using

Hybrid Logical Clocks. Specifically, in Section 3.1, we first discuss how the monitor can identify

consistent global states in an observed run using the HLC timestamps assigned to the events at

the processes. Then in Section 3.2, we briefly present the specific format in which the processes

are required to report information related to their events to the monitor to aid the monitoring task.

Followed by this, in Section 3.3 we present some offline and online monitoring algorithms that

utilize the information reported by the processes to perform detection of conjunctive predicates.

In Section 3.4, to reuse the algorithms presented in Section 3.3 to perform detection of arithmetic

predicates, we identify themodifications required in terms of the format in which events are reported

by the processes and the data-structures associated with the algorithms. Finally, we conclude the

chapter by discussing the advantages and limitations of performing predicate detection usingHybrid

Logical Clocks.

3.1 Identifying consistent global states using Hybrid Logical Clocks

With Hybrid Logical Clocks, as discussed in Section 2.2, two events with equal timestamps are

concurrent events, i.e. for any two events 4 and 5 ,

((;.4 = ;. 5) ∧ (2.4 = 2. 5)) ⇒ (4 | | 5).

Local states of the processes corresponding to concurrent events are concurrent local states. A

consistent global state is a set of local states, one state per process, where each local state is

concurrent with every other local state in it. Therefore, in a distributed system, where events

are timestamped using Hybrid Logical Clocks, a consistent global state can be formed by putting

together events at the processes that have exactly equal HLC timestamps. Thus, for an HLC

timestamp say C, putting together the events of all the processes with that timestamp C forms

a consistent global state. For example, to obtain a consistent global state corresponding to an

16

HLC timestamp say 〈; = 3, 2 = 2〉, one has to identify the event of each process with largest

HLC timestamp value say C1 ≤ 〈; = 3, 2 = 2〉 and put them together. So if a process does

not have an event with the exact timestamp 〈; = 3, 2 = 2〉, but has events with timestamps

〈; = 1, 2 = 0〉,〈; = 1, 2 = 1〉,〈; = 3, 2 = 0〉,〈; = 3, 2 = 1〉 and 〈; = 4, 2 = 0〉, then the local state

corresponding to the event with timestamp 〈; = 3, 2 = 1〉 is chosen. This is because the local state

of the process clearly did not change in between timestamps 〈; = 3, 2 = 1〉 and 〈; = 4, 2 = 0〉 (no

other events in that duration), so the local state of the process at timestamp 〈; = 3, 2 = 2〉 should

be same as that at timestamp 〈; = 3, 2 = 1〉. This can also be viewed as creating a phantom local

event at that process with timestamp 〈; = 3, 2 = 2〉 where the local state of the process is same as

it was at 〈; = 3, 2 = 1〉.

3.2 Predicate Detection Framework

To identify concurrent events in the system, the monitor needs information regarding the events

at all the processes and their associated timestamp information. Therefore to aid the monitor in

performing predicate detection, the processes in the system report their events and their associated

HLC timestamp information to the monitor. Furthermore, to evaluate the predicate or condition of

interest in the computed consistent global states, the monitor has to know the local state information

at the processes (values of the local variables, especially those that are required to evaluate the

global predicate) corresponding to the computed global state. For instance, in the mutual exclusion

violation detection example discussed in Section 2.3, to compute the value of the predicate:

∃(?8, ? 9) : {(8 ≠ 9) ∧ (1 ≤ 8, 9 ≤ =) ∧ (2B8 ∧ 2B 9)} in a consistent global state say corresponding

to HLC timestamp C, the monitor has to know the value of the variable 2B8 at every process 8 at

timestamp C. So when a process ?8 in this system reports an event to the monitor, it also reports the

latest value of its variable 2B8 after the occurrence of the event. Thus, in general, for the purpose

of monitoring, when events occur, the processes in the distributed system report the events with

their associated timestamps, and also any other required local state information to the monitor

depending upon the predicate being monitored. In the case of offline runtime monitoring, these

17

pieces of information are recorded or logged for offline analysis in the future, rather than being

reported to the monitor in real time.

3.2.1 Reporting information required for the detection of weak conjunctive predicates

Let us consider the generalized form of weak conjunctive predicates (WCPs) presented in Section

2.3, where each process ? 9 in the system has a local predicate ?A 9 associated with it and
∧=
9=1 ?A 9

denotes a weak conjunctive predicate. If the goal of the monitor is to detect weak conjunctive

predicates of the form
∧=
9=1 ?A 9 , then it is sufficient for the processes in the system to only report

when the value of the local predicate ?A changes, rather than reporting all types of events at the

processes. Therefore, whenever the value of the local predicate ?A 9 at a process ? 9 changes, the

process has to update its local Hybrid Logical Clock value and report the current value of the local

predicate ?A 9 along with the updated Hybrid Logical Clock value. Here since ?A represents a

condition, its value is either true or false at any instant. We will refer to instants at which the value

of the local predicate ?A changes as change points.

Note that in this scenario, the goal of the monitor is to find a common HLC timestamp C where

the corresponding values of the local predicates at all the processes are true. In the rest of this

chapter, we will refer to this generalized form of weak conjunctive predicates while discussing the

various monitoring algorithms to perform detection of WCPs.

Remark 1. Different monitoring techniques may require the processes to report different informa-

tion. Since monitoring algorithms in this chapter utilize Hybrid Logical Clocks, and with Hybrid

Logical Clocks two events with exact same timestamps are concurrent (guaranteed to not have a

happened before relationship), it is sufficient to report the timestamps and not the details related

to the type of the event (local event, message send or receive event). In Chapter 5, we will see

an example where the processes report event details like type of the event to the monitor to help

identify all possible consistent global states by eliminating global states where the events have a

happened before relationship.

18

Figure 3.1: Intervals of process ?1 timestamped using HLC

In online runtime monitoring, the reporting-messages from the processes can arrive at the

monitor in any order. Therefore, rather than reporting individual change points, reporting is done

in an interval format. More specifically, for detection of WCP, each process ? 9 reports to the

monitor the intervals when the local predicate ?A 9 is true. For instance, a process in the system

reports the interval [〈;1, 21〉; 〈;2, 22〉), where 〈;1, 21〉 is the timestamp of the change point when

the local predicate first became true and continued to be true until 〈;2, 22〉, i.e., 〈;2, 22〉 is the HLC

timestamp of the change point when the local predicate became false. In other words, the local

predicate was true at any HLC timestamp C s.t.〈;1, 21〉 ≤ C < 〈;2, 22〉. Note that the interval is left-

closed and right-open, so it includes the starting timestamp 〈;1, 21〉 but does not include the ending

timestamp 〈;2, 22〉. Thus, if we have an interval ending at time C and another interval beginning at

time C (corresponding to a different process), in a sorted list of intervals reported by all processes

at the monitor, the ending event will occur before the begin event. If multiple interval endpoints

(corresponding to different processes) start at the same time, their ordering can be arbitrary. The

same observation applies to interval endpoints that end at the same time.

We illustrate reporting and timestamping in Figure 3.1, where for simplicity we set the 2 values

in the HLC timestamps to be 0. In this figure, process ?1 has two intervals during which its local

predicate was true. Process ?1 reports the first interval as [〈0, 0〉; 〈3, 0〉), i.e., the local predicate

was first true at ?1 when its Hybrid Logical Clock value was (; = 0, 2 = 0) and became false at

〈; = 3, 2 = 0〉. Similarly ?1 reports the next interval as [〈4, 0〉; 〈6, 0〉).

Consider the case where the processes report individual change points rather than intervals. For

example, let us consider that reports of change points from a process get delivered at the monitor

in this order 〈0, 0〉, 〈6, 0〉, 〈3, 0〉, 〈4, 0〉. The monitor will incorrectly assume that the predicate

19

Section Algorithm Running
Time Assumption

3.3.1 Naive $ (�=) Offline
3.3.2 C-?>8=C Tree $ (� log �) -
3.3.3 Naive with Minheap $ (� log =) Local Ordering Property
3.3.3 Naive with Δ-BoundedMessage Delay $ (� log(Δ=)) Message Delivery Property

Table 3.1: Summary of Conjunctive Predicate Detection Algorithms based on HLC

holds at this process for the interval [〈3, 0〉, 〈4, 0〉) after receiving the change point 〈6, 0〉, i.e., until

it receives the change point 〈3, 0〉. The situation becomes even more complex when considering

intervals from multiple processes. Thus, we require that the processes report change points as a

pair to the monitor. So the goal of the monitor is to find an overlap in the reported intervals i.e., to

find a common HLC timestamp t that is in some interval reported by each process in the system.

An issue with this reporting mechanism is that if the local predicate stays true forever at any

process, then the corresponding interval is never reported, until the end of the system execution. To

avoid stalling the detection task under such scenarios, we will split such long intervals by creating

artificial endpoints at thresholds and report them as smaller intervals.

3.3 Algorithms for Detecting Conjunctive Predicates

In this section, we will consider various algorithms that perform conjunctive predicate detection

using Hybrid Logical Clocks. The first algorithm in Section 3.3.1 is applicable in an offline setting

where the intervals from all the processes are logged and available upfront for analysis by the

monitor. The remaining algorithms are applicable in an offline or an online setting, i.e., they can

handle the scenario where the intervals are not available ahead of time and are reported by the

processes in real-time. The summary of the algorithms discussed in this section is provided in

Table 3.1.

20

3.3.1 Naive Algorithm

In this section, we present our first, naive, algorithm for detecting weak conjunctive predicates.

This algorithm works in an offline setting, so we assume that each process reports all of its intervals

in a sorted order to the monitor when the process terminates. As noted in the previous section, the

goal of the monitor is to find a timestamp C that is included in some interval reported by each of the

= processes. Given this as the goal, we can reduce the problem to finding the maximum overlap

among all the intervals. If this overlap is =, then we know that there is a timestamp where the global

predicate is true. Moreover, this algorithm immediately extends to the more general case where

we want to evaluate whether ?A 9 is true for some fixed size subset of processes. This algorithm is

based on a key observation that the value of the maximum overlap among the intervals would get

updated only at the endpoints of the intervals.

Outline of the algorithm. Our algorithm processes each change point one at a time, in

order, from the smallest timestamp to the largest timestamp, maintaining the current overlap value

which is initialized to 0. Recall that each interval has two change points, a left endpoint and a right

endpoint. If the current change point is a left endpoint, we add +1 to the current overlap and check

if the overlap is =, in which case we report that the conjunctive predicate is satisfied. If the current

change point is a right endpoint, we add -1 to the current overlap. A pseudo-code description is

provided as Algorithm 2.

Algorithm 2 Naive Algorithm
1: loop until there are no unprocessed change points
2: C := smallest timestamp among unprocessed change points
3: - := set of change points with timestamp t
4: ? [C] := 0 // net effect at C, initialized to 0
5: foreach 2? ∈ -
6: ? [C] := ? [C] + ? [2?]
7: >E4A;0?_2>D=C := >E4A;0?_2>D=C + ? [C]
8: if >E4A;0?_2>D=C = =D<14A_> 5 _?A>24BB4B then
9: Report conjunctive predicate detected
10: end if
11: end loop

21

Illustration of Algorithm 2. We illustrate this algorithm using the example in Figure

3.2, where timestamps are simplified to non-negative integers. Our algorithm first processes

the change point 0 with timestamp 0 (this is the value of ;, considering 2 = 0 for the sake of

simplicity). Since 0 is a left endpoint, the value of >E4A;0?_2>D=C increases from its initial value

of 0 to 1. Our algorithm then processes the change point 1 with timestamp 1, and the value of

>E4A;0?_2>D=C increases to 2. Then the algorithm processes change points 2 and 3 together with

common timestamp 2. We compute ? [2] = ? [2] + ? [3] = 0 because ? [2] = +1 and ? [3] = −1,

so >E4A;0?_2>D=C = 2 + ? [2] = 2. The naive algorithm then processes change point 4 with the

timestamp 3, and the value of >E4A;0?_2>D=C increases to 3. Since this satisfies the condition of

>E4A;0?_2>D=C = =D<14A_> 5 _?A>24BB4B, a conjunctive predicate is detected and reported the

monitor.

Advantages and disadvantages of the algorithm. The naive algorithm is reasonably efficient

with a worst case complexity of $ (�=) in a system of = processes and � reported intervals, and is

very easy to understand. However, it has two key disadvantages. First, it requires all the events or

change points to be available at the beginning. If we try to use this in an online setting where the

events of different processes are reported at different speeds, then it may not work correctly. For

instance, consider the example in Figure 3.2, if [3, ℎ) is reported after [4, 6) so that the change

point 3 is processed after the change point 6, then the algorithm will fail to detect that the global

predicate is true at time 4. Second, while its worst case complexity is polynomial, there is a linear

dependence on =, the number of processes. We focus on alleviating these deficiencies in our next

algorithm in Section 3.3.2.

3.3.2 C-point tree Algorithm

In Section 3.3.1, we described a naive algorithm with complexity$ (�=) that can be used for offline

detection of WCPs, where all the intervals are available in advance. In this section, we focus on

adapting that algorithm so that (1) it can be used online, where the monitor receives each interval

in a possibly unsorted manner, and (2) its complexity does not directly depend on =, the number of

22

Figure 3.2: Conjunctive Predicate Detection when Local Predicates are true for some duration of
time

processes.

Change-point tree (C-?>8=C tree). The key notion behind this algorithm is to use an

augmented tree from [15], that we refer to as a change point tree (C-?>8=C tree), to keep track of the

change points reported by the processes. The C-?>8=C tree differs from other augmented trees like

interval or segment trees in that nodes represent change points rather than intervals. Specifically,

the C-?>8=C tree maintains the change points in a balanced binary tree sorted by HLC timestamp

which allows us to insert or delete change points efficiently. The timestamp of a node is denoted

C [=>34]. For any C-?>8=C tree) with node G, let) (G) denotes the subtree of) rooted at node G.

Each node G is augmented with three additional attributes that allows us to calculate the maximum

overlap efficiently. These values are ? [G], which is +1 or −1 depending on whether G is a left or

right endpoint of an interval, E [G] which denotes the sum of all ? values of nodes in) [G], and

< [G], a comparatively complex attribute. Let F be any node in) (G); then BD<G (F) is the sum of

all ? values of nodes in) (G) with timestamps at most C [F]. Then < [G] = maxF∈) (G) BD<G (F). It

follows that, at any time, < [A>>C] gives the maximum overlap that occurs at any timestamp for the

intervals and change points that have been processed.

Outline of the algorithm. We now illustrate how the algorithm operates, which basically

involves how we update the tree when a change point is inserted. We start with an empty C-?>8=C

tree) . Intervals arrive at the monitor in any order, which inserts the left and right endpoints into) .

Let G be a change point to be inserted into) . We set ? [G] based on whether the =>34 corresponds

23

to a left or right endpoint. We then insert G into) . We defer setting E [G] or < [G] until G has been

inserted.

After insertion, which may involve re-balancing) , we must update E [H] and < [H] for each

node H whose subtree was modified during the insertion. Because we are working with a balanced

binary search tree, this is at most $ (log �) nodes. We update E [H] and < [H] for the affected nodes

in a bottom up fashion as follows.

E [H] = E [;4 5 C_H] + ? [H] + E [A86ℎC_H]

< [H] = <0G



< [;4 5 C_H],

//max is in the left subtree of y

E [;4 5 C_H] + ? [H],

//max is at y

E [;4 5 C_H] + ? [H] + < [A86ℎC_H],

//max is in the right subtree of y

For the above formula, we do need to handle the special case where H has no left child, in which

case< [H] is the max of the second and third cases. After all the nodes have been updated, we check

< [A>>C] to determine if the global predicate has been satisfied. For efficiency, if multiple change

points have the same timestamp, we maintain a single node for that timestamp. Pseudo-code for

the algorithm with this optimization is presented as Algorithm 3.

Illustration of Algorithm 3. We revisit the example in Figure 3.2 to illustrate Algorithm 3.

Let us consider that the intervals are reported to the monitor in the following order: [0, 2), [1, 5),

[3, ℎ), [4, 6). After the first interval is reported, two nodes are inserted into the tree, (%2, 0, +1) for

change point 0 and (%2, 2,−1) for change point 2. Here the node contains process id, (simplified)

HLC timestamp associated with the change point and the value associated with the endpoint i.e.,

+1 or -1. The resulting tree, with nodes for change points 0 and 2 inserted first, is shown in Figure

3.3 (a).

When [1, 5) is reported to the monitor, it inserts two nodes (%1, 1, +1) and (%1, 5,−1) corre-

24

Algorithm 3 Algorithm for inserting a change point into a C-?>8=C tree
Given a new change point from process ? 9 :
1: =>34 G := 2A40C4_=>34(9 , ?_2;>2:, ?[G]) //if G is left endpoint ? [G] = +1, ? [G] = −1

otherwise
2: If node G (with ?_2;>2:) exists in the tree already then
3: Append 9 to process id of the existing node,

Add value of ? [G] to existing ? [G]
// values of E [G] and < [G] will be updated below

4: Else
5: 8=B4AC_=>34(G) // maintains balanced tree
6: -∗ = { H | the modification or insertion of node G caused a change at node H or some descendant

of node H }
// node G is in -∗

7: for each node H in -∗ in a bottom up fashion do
8: E [H] := E [;] + ? [H] + E [A]

//; is H → ;4 5 C_=>34, A is H → A86ℎC_=>34
//if ; or A does not exist then E [;/A] = 0,< [;/A] = 0

9: <_;4 5 C := < [;]
10: <_=>34 := E [;] + ? [H]
11: <_A86ℎC := E [;] + ? [H] + < [A]
12: C4<? := <0G(<_=>34, <_A86ℎC)
13: If ; exists, then < [H] := <0G(<_;4 5 C, C4<?)
14: Else < [H] = C4<?

//< [H] must include one timestamp
15: end for
16: if < [A>>C] = = then
17: <0G_?A43_B4C := CA024_102: (< [A>>C])
18: end if

sponding to 1 and 5 and updates attributes < and E of the nodes affected by the insertion as shown

in Figure 3.3 (b). We mark the affected nodes by a star to identify nodes that need to recompute

their values for < and E. When [3, ℎ) is reported to the monitor, since the tree has an existing node

(%2, 2,−1) with the timestamp value 2, the monitor updates the node (%2, 2,−1) to ((%2, %3), 2, 0)

(Lines 2 to 3 in Algorithm 3); note that the value of ? increases from −1 to 0. Then the monitor

creates and inserts node (%3, 6,−1) for change point ℎ resulting in the tree shown in Figure 3.3

(c). Finally, when [4, 6) is reported to the monitor, the insertion of node (%3, 4, +1) for the change

point 4 will make < [A>>C] to be 3 (equal to the number of processes) and the monitor can report

that the global predicate was satisfied. The final tree after the change point 6 gets processed, results

25

Figure 3.3: An Illustrative Example for Algorithm 3

in existing node (%3, 6,−1) getting updated to ((%2, %3), 6,−2), as shown in Figure 3.3 (d).

Advantages and disadvantages of the algorithm. This algorithm has several advantages

over the naive algorithm in the previous section. First, it can be used in an online setting at runtime

and is robust against messages arriving out of order and arbitrarily large delays as long as the

delays are finite. Whenever all the necessary intervals arrive, thereby allowing the detection of

the global predicate, this information will be available at the root node. In fact, once the intervals

have been inserted, detection of conjunctive predicate just means checking if < [A>>C] = =, which

requires $ (1) time. The main drawback with this algorithm is that � may be large; in fact, � log �

may be larger than �=. Unfortunately, the running time cannot be improved without making some

additional assumptions, because we must sort the change points when there is no guarantee about

the ordering of intervals, and sorting � elements requires at least Ω(� log �). We next explore some

26

possible improvements when we make some additional assumptions.

3.3.3 Monitoring with report/message delivery guarantees

In this section, we return to the naive algorithm from Section 3.3.1 and show that we can perform

runtime monitoring and reduce the worst case time complexity if we add some assumptions about

message delivery to the monitor. We consider two types of message delivery assumptions: (1) local

ordering property and (2) bounded message delay. We first focus on the local ordering property

and then show how to adapt this algorithm to leverage bounded message delay. So let us consider

that the following is guaranteed:

Intervals reported by a process arrive in a FIFO manner at the monitor.

In this case the only sorting that is required is sorting intervals across the processes. Sowe extend

Algorithm 2, by utilizing a min-heap of size = to perform this sorting. Specifically, all unprocessed

change points from different processes are buffered in separate lists. The min-heap is filled by

fetching change points from these lists of sorted intervals. Specifically, the min-heap contains at

most = change points, one unprocessed change point per process. Each of these change points is the

smallest unprocessed change point at the corresponding process, and this is straightforward because

of the FIFO guarantee among intervals from the same process. The extended algorithm is as shown

in Algorithm 4. This algorithm first checks if the min-heap is full (one change point per process)

and only if it is full it extracts the change point with the smallest timestamp. Rest of the processing

is same as in Algorithm 2. Observe that the size of the heap is always at most =. Therefore to

process each change point, it takes $ (1) time to find the minimum in the heap, $ (log =) time to

remove this minimum from the heap and $ (log =) to insert the next change point into the heap.

Hence, the complexity to process one change point is $ (log =). Since the number of change points

is 2� (two change points or endpoints per interval), the overall complexity is $ (� log =).

Advantages and disadvantages of this algorithm. This algorithm has two key advantages:

it has $ (� log =) worst case complexity, so it is efficient, and it can be used in both offline and

27

Algorithm 4 Online min-heap algorithm based on local ordering property.
1: � := min-heap containing first endpoint of each process
2: >E4A;0?_2>D=C := 0
3: loop
4: ? := �GCA02C"8=(�)
5: >E4A;0?_2>D=C := >E4A;0?_2>D=C + ?.E0;
6: if >E4A;0?_2>D=C = =D<14A_> 5 _?A>24BB4B then
7: Report conjunctive predicate detected
8: end if
9: �=B4AC (�, next endpoint from ?.?A>24BB_83)
10: // wait if the next endpoint is not available yet.
11: end loop

online settings. It has the disadvantage that it requires the intervals from each process to arrive in

FIFO order at the monitor. The online version has the disadvantage that if some process takes a

long time to report an interval, the monitor must buffer change points reported by other processes.

Such a delay may occur if the local predicate at that process remains false for a longer duration or

because of message delays.

Bounded Message Delay. Now we will consider an alternative assumption i.e. we assume

that the messages are delivered at the monitor with bounded delay. Specifically, we introduce the

following bounded message delay property.

At time C, the monitor has received any message that was sent by time C − Δ .

Recall that Algorithm 4 maintains the unprocessed change points for each process in a sorted

list and a newly reported change point can just be appended to the end of the appropriate list. Given

that the change points may not arrive in order, we modify the management of these lists by utilizing

another min-heap.

At any point in time C, the monitor maintains a latest timestamp value <0G(C). This is initially

set to 0. We maintain the invariant that all change points with timestamps at most <0G(C) −Δ have

been placed into the sorted lists for their respective processes (and perhaps subsequently entered

into the min-heap where points are actually processed). The remaining change points are stored in

a single min-heap of unplaced change points, where the heap order is still based on timestamps.

28

When the monitor receives a new interval message, it checks to see if the message results in

an update of <0G(C). If so, it updates <0G(C), adds the two new change points to its min-heap of

unplaced change points, and then extracts the change point with the minimum timestamp, say G, if

that change point has timestamp C (G) ≤ <0G(C) − Δ and places G into the corresponding process’s

sorted list of change points. This extraction continues until the minimum timestamp change point

G has timestamp C (G) > <0G(C) − Δ . The rest of the algorithm is same as Algorithm 4.

The running time for this algorithm is identical to that of Algorithm 4, except for the min-heap

required to process unplaced change points. We observe that this min-heap for unplaced points

must have a bounded size as follows. The timestamp of every change point on a given process is

unique. Also, in HLC [27], the timestamp is of the form 〈;, 2〉, where ; captures the most recent

physical time that the change point was aware of and 2 is a bounded counter. In [27], it has been

shown that the theoretical maximum value of 2 is $ (=). (In practice, this value remains less than

5.) Hence, the number of change points reported by a process in Δ time units is $ (Δ=). And, the

total number of change points reported by all the processes in Δ time units is $ (Δ=2). Thus, the

min-heap for unplaced change points has a size of at most $ (Δ=2) and so the maximum time for

any insertion or deletion is at most $ (logΔ=), giving a total additive cost of $ (� logΔ=).

To use this algorithm in an online setting, we must ensure that the messages not only reach the

monitor in a timely manner, but that each process provides frequent updates. Specifically, we must

ensure that each process ? 9 sends at least one message to the monitor within each closed interval of

length Δ . Without this condition, even with bounded message delay, the monitor cannot be certain

that it has up to date information on process ? 9 and cannot detect predicate satisfaction in a timely

manner.

Advantages and disadvantages of this algorithm. This algorithm has two advantages:

it has $ (� logΔ=) worst case complexity, so it is efficient, and it can be used in both offline and

online settings. It has the disadvantage that it requires intervals from each process to arrive at the

monitor with bounded delay. The online version also has the disadvantage that if the local predicate

at some process stays true for a long time, then the monitor may not have up to date information

29

about that process. So to handle this, the processes in the system are required to send frequent

updates, specifically within each closed interval of length Δ .

3.4 Detecting Arithmetic Predicates

In this section, we discuss the modifications required to the reporting framework and to the

algorithms presented in Section 3.3, to use them in detecting arithmetic predicates. For arithmetic

predicates, we assume that each process ? 9 has a variable G 9 and we wish to test some inequality

5 (G1, . . . , G=) ≥ �. For the purpose of our discussion, we will focus on the detection of arithmetic

predicates of the type (∑=
9=1 2 9 .G 9) ≥ �, where G 9 is an integer variable of process ? 9 , 2 9 and �

are constants.

A process ? 9 can report changes in the value of G 9 individually or in an interval format.

Specifically, if the variable G 9 increases from 4 to 7 and then to 6, process ? 9 can report the

change to 7 as an 8=2E0; of 3 with its corresponding timestamp, and then report the change to 6

as 8=2E0; = −1 with its corresponding timestamp. The second alternative is to impose an interval

structure on the change points by having the process report consecutive change points in overlapping

pairs. So if the value of variable G 9 changes from 4 to 7 and then to 6, ? 9 reports the pair of values

(4, 7) and their corresponding timestamps, when it encounters the change to 7. It then reports the

pair of values (7, 6) and the corresponding timestamps, when it encounters the change to 6.

Offline Arithmetic Predicate Detection. Recall that in an offline setting all the change points

are available up front. If the changes points are available upfront, but are not in a sorted order, then

we can run any of our presented algorithms, at worst case with an$ (� log �) additive cost for sorting

them and then executing the algorithms. This applies regardless of the reporting mechanism. If we

assume that the points from each process are reported in order, then the algorithms can be applied

with no additional $ (� log �) cost. Furthermore, with arithmetic predicates if multiple change

points have the same timestamp, then we must process all the change points for a given timestamp

before we can assert the predicate is true at that timestamp.

Online Arithmetic Predicate Detection. The reporting mechanism plays a critical role in

30

performing online arithmetic predicate detection. If processes report individual change points

rather than intervals, then without any assumptions about message delivery, the resulting detection

can be incorrect. For instance, if the change points are delivered in an incorrect order, any of

the discussed monitoring algorithms can make incorrect conclusions. Therefore, we must either

assume the interval-based reporting mechanism or make some additional assumption about the

message order or message delivery. We consider both the options below.

Local Ordering Property. If we assume that each process delivers messages in order to

the monitor, as in the first case in Section 3.3.3, then we can use either reporting mechanisms and

employ Algorithm 4. The key observation is that when we process a change point, we know that

it is the change point with the minimum timestamp. As was the case in Section 3.3.3, the online

monitor may stall and require large buffers if some processes are slow in delivering messages to

the monitor. Also, as noted above, we cannot report predicate satisfaction at timestamp C until all

change points with timestamp C have been processed.

Bounded Message Delay Property. If we assume that each process delivers messages with

bounded delay to themonitor, as in the second case in Section 3.3.3, then we can use either reporting

mechanisms if the monitor employs the modified algorithm from Section 3.3.3. To ensure timely

and correct predicate detection, we do need to further require frequent updates from the processes

to the monitor.

Change Points Delivered in Pairs. If we assume that the change points are delivered in pairs

i.e., as intervals to the online monitor, we can reuse Algorithm 4 with only a slight modification

without assuming anything about message order or message delay. Specifically, for each process

? 9 , the online monitor has to store ? 9 ’s unprocessed messages and maintain a variable E0; (9),

which is the current maximum validated timestamp at ? 9 . The idea behind E0; (9) is that E0; (9)

is the largest timestamp such that the monitor knows the exact value of G 9 for all the timestamps

in the interval [0, E0; (9)). We maintain the invariant that all the change points of process ? 9

with timestamp up to E0; (9) are placed into process ? 9 ’s sorted list of change points (and perhaps

subsequently entered into the min-heap). Initially E0; (9) is undefined and each process sends out

31

a special message with timestamp 0 and the initial value of G 9 .

When the monitor receives a new message from process ? 9 , it checks to see if the first change

point in the message has timestamp identical to E0; (9) or if it is the special initialization message.

If so, then it can update E0; (9) and add the corresponding change point into ? 9 ’s sorted queue. It

then repeatedly checks its received messages to determine if the next message in order has already

been received, in which case it updates E0; (9) and adds the next change point into ? 9 ’s sorted

queue until this cannot continue. Otherwise, the message is added to the unprocessed messages

from ? 9 .

The rest of the Algorithm 4 can be used as it is. Therefore, the extra time required is for

processing and managing the unsorted messages. We can maintain this list using a min-heap,

which would require at most $ (log �) time for each insertion and deletion, thereby adding an

$ (� log �) complexity or cost to the running time of the algorithm in the worst case. This assumes

a worst case, where each process’s min-heap is large. In practice, this seems unlikely and the

algorithm will likely run more quickly.

3.5 Advantages and Limitations of HLC based Predicate Detection

Predicate detection using HLC has low overhead because HLC timestamps are $ (1) sized

timestamps. Furthermore, based on the property of HLC which guarantees that events with equal

HLC timestamps are concurrent, identifying a common timestamp C, where the local predicates

at all the processes are true can be done efficiently and in a timely manner using the algorithms

presented in this chapter. However, predicate detection based on HLC has the key disadvantage

that it can result in false negatives, i.e., it can fail to identify some possible valid instances were the

predicate was satisfied. This is because Hybrid Logical Clocks only guarantee one way causality,

i.e., for any two events 4, 5 , (4 → 5) ⇒ {(;.4 < ;. 5) ∨ ((;.4 = ;. 5) ∧ (2.4 < 2. 5))}. The

reverse implication is not guaranteed, i.e., {(;.4 < ;. 5) ∨ ((;.4 = ;. 5) ∧ (2.4 < 2. 5))}; (4 → 5).

This extends to the fact that, if events have equal timestamps, they are guaranteed to be concurrent

events, but concurrent events are not guaranteed to have equal timestamps. Due to this lack of

32

information, Hybrid Logical Clocks fail to identify all possible consistent global states and thereby

fail to identify all instances of predicate satisfaction. Therefore in the next chapter, we will focus

on improving the ability of Hybrid Logical Clocks to perform predicate detection. We will do so

by modifying some aspects of Hybrid Logical Clocks and thereby introducing a new type of clock

called Biased Hybrid Logical Clocks (BHLC).

33

CHAPTER 4

IMPROVED PREDICATE DETECTION USING BIASED HYBRID LOGICAL CLOCKS

As discussed in the previous chapter, predicate detection based on HLC timestamps have low

overhead, but do not guarantee detection of all possible instances of predicate satisfaction. This is

mainly because like Logical Clocks, Hybrid Logical Clocks also guarantee only one way causality.

Therefore in this chapter, we will focus on extending the notion behind Hybrid Logical Clocks and

introduce a new type of clock called Biased Hybrid Logical Clocks(��!�), that aim to reduce the

number of missed instances of predicate satisfaction in a system. Specifically, in Section 4.1 we

will introduce the idea behind ��!� and present the algorithm. In Section 4.2, we consider some

extensions of ��!�. In Section 4.3, we will present the approach to perform predicate detection

using ��!�. In Section 4.4, we will study the effectiveness of ��!� in performing predicate

detection, especially by comparing it with HLC based predicate detection. Finally, in Section 4.5,

we will conclude by discussing the benefits and limitations of performing predicate detection using

��!�.

4.1 Biased Hybrid Logical Clocks

As discussed in Section 2.3, the first step in predicate detection is identifying all possible

consistent global states. The key to identifying all possible global states is the ability to find all

possible concurrent events across processes in the system. Recall that this is because local states

corresponding to concurrent events at the processes are concurrent local states and every local

state in a consistent global state is concurrent with every other local state in it. Vector clocks

(VC) [18, 36] which are $ (=) sized clocks have this ability to identify all possible concurrent

events in the system. However, Vector Clocks do not account for physical time information, so

two events that are concurrent based on their VC timestamps may not be actually concurrent if

they are far apart in physical time. This can lead to false positives while performing predicate

detection using VC, i.e., some identified instances of predicate satisfaction may be invalid. Hybrid

34

?0

?1

〈10, 0〉

A
〈15, 0〉

B
〈15, 0〉

C

〈24, 0〉

D
(a) No communication scenario

?0

?1

〈10, 0〉

A

〈15, 0〉

B

〈15, 0〉 C
〈24, 0〉

D

<

(b) With communication scenario

Figure 4.1: Identifying Concurrent events using HLC timestamps

Vector Clocks [46], that extend the notion of VC, overcome this issue because they account for

physical time information. However, like VC timestamps, HVC timestamps are also $ (=) sized

timestamps in the worst case. Therefore, the monitoring overhead is high when using VC or HVC

timestamps for predicate detection. As discussed in Section 3.5, predicate detection using HLC

timestamps have low overhead because they are constant sized clocks, but the monitor may suffer

from false negatives. In other words, HLC based predicate detection may fail to detect some

instances of predicate satisfaction. Thus, it is desirable to have clocks, that are of constant size like

Hybrid Logical Clocks, but that result in reduced number of false negatives when used to perform

predicate detection.

The issue with using HLC timestamps to perform predicate detection is that when events

across processes are ordered based on HLC timestamps, one cannot identify all possible concurrent

events. This leads to false negatives. For example, consider the two scenarios in Figure 4.1, where

events �, �, �, and � have the exact same HLC timestamps in Figure 4.1 (a) and Figure 4.1

(b). Let us consider that the maximum clock drift n = 15. Clearly, HLC timestamps do not help

in distinguishing between the two cases considered in the figure. In the first scenario, the set of

possible concurrent events are (�,�), (�, �), (�,�) and (�, �). In the second scenario, the set

of possible concurrent events are (�,�) and (�, �). However, based on the HLC timestamps, the

only conclusion that one can make in both the cases is that � and � are concurrent events because

they have equal HLC timestamps. The order between events (�,�), (�, �), and (�, �) that have

unequal HLC timestamps, remains unclear. Based on this observation, we will now extend Hybrid

Logical Clocks to introduce a new type of clock called Biased Hybrid Logical Clocks(��!�), that

35

aim to identify more concurrent events than HLC.

4.1.1 Hybrid Logical Clocks - Naive Algorithm

We start with the naive version of Hybrid Logical Clocks (from [27]) shown in Algorithm 5. The

naive version maintains a single clock variable ; at all processes rather, than maintaining ; and 2.

Specifically, in naive Hybrid Logical Clocks algorithm, each process ? 9 maintains a variable

;. 9 that captures the logical time associated with an event. Intuitively, ;. 9 corresponds to a

logical clock that is subject to the constraint that ;. 9 is always at least as large as ?C. 9 , the

physical time at ? 9 . Hence, for a send event, rather than just increasing ;. 9 by 1, we set ;. 9 to be

<0G(;. 9 + 1, ?C. 9). And, for a receive event, instead of setting ;. 9 to be <0G(;. 9 + 1, ;.< + 1), we

set it to <0G(;. 9 + 1, ;.< + 1, ?C. 9). Thus, the naive Hybrid Logical Clocks algorithm is as shown

in Algorithm 5.

Algorithm 5 Naive Hybrid Logical Clocks Algorithm from [27]
At node 9
1: Initially ;. 9 := 0

Send/Local event
2: ;. 9 := <0G(;. 9 + 1, ?C. 9)
3: Timestamp with ;. 9

Receive event of message m
4: ;. 9 := <0G(;. 9 + 1, ;.< + 1, ?C. 9)
5: Timestamp with ;. 9

Key properties of naive HLC are:

(4 → 5) ⇒ (;.4 < ;. 5) and (;.4 = ;. 5) ⇒ (4 | | 5)

A key disadvantage of the naive HLC algorithm is that the drift between ;. 9 and ?C. 9 could

grow unbounded. Whereas, in the HLC algorithm (c.f. Algorithm 1 in Section 2.2), instead of

adding 1 to ;. 9 or ;.< when an event is created, the value of ; can remain unchanged. Since this can

create the possibility of two successive events on a process (or a send event and the corresponding

receive event) to have the same timestamp, an additional variable 2. 9 is maintained. 2. 9 is a counter

36

Figure 4.2: A sample execution in a system of three partially synchronized processes.

(shown to be provably bounded). Thus, HLC timestamps which are of the form 〈;, 2〉, satisfy the

following property,

(4 → 5) ⇒ (;.4 < ;. 5) ∨ ((;.4 = ;. 5) ∧ (2.4 < 2. 5))

The Biased Hybrid Logical Clocks algorithm proposed in this chapter is based on the naive

version of Hybrid Logical Clocks described in Algorithm 5. Hybrid Logical Clocks and naive

Hybrid Logical Clocks have the same capability in terms of being able to detect the satisfaction of

a given global predicate.

4.1.2 Idea of using a Bias

Consider the system execution shown in Figure 4.2, where there are three processes, and six events

per process. We assume that the physical clock value of a process increases by 1 between every

two events. Furthermore, assume that the maximum clock drift n is 10 and that there are no

messages in this execution. This implies that 〈08, 1 9 , 2:〉 is a possible consistent global state for

any 1 ≤ 8, 9 , : ≤ 6. In such a system, let the predicate of interest be
∧=
@=1 ?A@ , where ?A@ is a local

predicate at process ?@ .

In this execution, since there are no messages, all the events are local events, so the value

of ;.4 (in the HLC timestamp of 4) for an event 4 is same as the physical time of the process

when event 4 happened. Thus the consistent global states where HLC can detect if ∧?A@ is true

include {〈01, 11, 21〉 〈02, 12, 22〉 〈03, 13, 23〉 〈04, 14, 24〉, 〈05, 15, 25〉, 〈06, 16, 26〉 }, i.e., only

37

global states containing events with equal HLC timestamps. Even though there are several other

consistent global states, HLC does not have enough information to help the monitor in identifying

them. For instance, HLC does not allow us to conclude that 01, 12 and 22 are possibly concurrent

events. Now, let us change the implementation of receive in Algorithm 5 as follows:

Upon receiving a message <, to create a receive event 1,

;. 9 = <0G(;. 9 + 1, ;.<+ 2, ?C. 9)

;.1 = ;. 9

Observe that in this implementation, we have a bias for messages. For local and message send

events, we still add one to differentiate the new event from the previous event on the process.

However, for message receive, we added 2 (instead of 1 as done in Algorithm 5, line 4). This

modified implementation of naive Hybrid Logical Clocks will guarantee that if 4 and 5 are events

on two different processes, then (4 → 5) ⇒ (;.4 + 1 < ;. 5). It follows that, if 4 and 5 are events

on two different processes and if |;.4 − ;. 5 | ≤ 1 then 4 and 5 are concurrent events. Recall that if

the timestamping was based on the original naive Hybrid Logical Clocks algorithm, then the only

guarantee was (;.4 = ;. 5) ⇒ (4 | | 5).

From this discussion, it follows that with this new implementation, global states such as

〈01, 12, 22〉 (cf. Figure 4.2) are also identified as consistent global states and the monitor can then

evaluate them for predicate satisfaction, i.e., evaluate if the given predicate ∧?A@ is true in the

consistent global state. We view the above implementation as a solution with a bias value of 2.

The default implementation in Section 4.1.1 corresponds to a bias of 1. We also denote it as an

unbiased implementation.

With a bias of 2, in Figure 4.2, we can see that there is an increased potential to find a consistent

global state where the given predicate is true. Furthermore, the effectiveness of predicate detection

in the scenario considered in Figure 4.2 will increase as the value of bias increases. In particular,

if we use a bias of 6 then all possible consistent global states will be identified by the monitor.

38

We note that the addition of bias is not free of cost. In particular, there is a potential that some

consistent global states that were detected with bias of 1 (i.e., with Algorithm 5 in Section 4.1.1)

are not detected by an algorithm with a higher bias value. As an illustration, consider the scenario

in Figure 4.3. Here, process ? 9 has received several messages, and others did not receive any

messages. In this case, ;. 9 becomes significantly higher than ;.ℎ. Hence, even with the increased

drift permitted between ;. 9 and ;.ℎ, it is possible that some consistent global state detected by naive

HLC will not be detected by an algorithm with a higher bias.

Figure 4.3: A scenario with non-uniform message distribution (= corresponds to the naive HLC
value with bias=1, ; corresponds to the modified naive HLC value with bias=2).

From the above discussion, we can see that the notion of introducing a bias for messages has

the potential to increase the effectiveness of monitoring, without affecting the overall complexity

of the detection algorithm. However, there is a potential of missing some consistent global states

found by the unbiased algorithm.

4.1.3 Biased Hybrid Logical Clocks Algorithm

Our first algorithm for Biased Hybrid Logical Clocks (��!�) is based on the idea discussed in

Section 4.1.2. Specifically, each process ? 9 maintains a variable ;. 9 to keep track of its (biased)

clock value. This value is initialized to 0. We also utilize physical clock ?C. 9 for process ? 9 .

This value is updated automatically. As far as our algorithm is concerned, it is a read-only value.

39

However, the underlying system will ensure that the clocks of any two processes differ by at most

n . As an input, ��!� takes a parameter �, that denotes the bias value.

When a new event occurs at process ? 9 , ;. 9 is updated. The updated value is assigned as a

timestamp to the new event. If the event is a message send event or a local event, then the algorithm

works exactly the same as the naive HLC algorithm. It increases the value of ;. 9 by 1 and sets it

to a value that is at least as large as ?C. 9 . If it is a message send event, then the message is tagged

with the updated value of ;. 9 . If the event is a message receive event, where message < is received,

then ;. 9 is set to <0G(;. 9+1, ;.<+B, ?C. 9). In other words, the algorithm biases its clock to be at

least ;.< + �. Thus, the algorithm is as shown in Algorithm 6.

Algorithm 6 Algorithm ��!� with Input Parameter �
At node 9
1: Initially ;. 9 := 0
2: Set � to the input bias value

Send/Local event
3: ;. 9 := <0G(;. 9 + 1, ?C. 9)
4: Timestamp with ;. 9

Receive event of message m
5: ;. 9 := <0G(;. 9 + 1, ;.< + �, ?C. 9)
6: Timestamp with ;. 9

From this algorithm, we can show that the following properties are satisfied.

Lemma 1. Let 4 and 5 be events on two different processes and let ;.4 and ;. 5 be the timestamps

assigned to them by Algorithm 6. Then, we have

(4 → 5) ⇒ (;.4 + � ≤ ;. 5)

Proof. This proof follows from Line 5 of Algorithm 6. �

Lemma 2. Let 4 and 5 be events on two different processes and let ;.4 and ;. 5 be the timestamps

assigned to them by Algorithm 6. Then, we have

(|;.4 − ;. 5 | < �) ⇒ (4 | | 5)

40

Proof. We consider two cases: ;.4 ≥ ;. 5 and ;. 5 ≥ ;.4. In the first case, clearly ‘4 happened before

5 ’ is false. Also, since ;.4 − ;. 5 < �, i.e., ;. 5 + � > ;.4. From Lemma 1, ‘ 5 happened before 4’ is

also false. Thus, 4 | | 5 . And, the analysis of the second case is identical.

�

4.2 Extensions of ��!�

4.2.1 Extension 1: Multiple Simultaneous Instances of ��!�

Algorithm of Biased Hybrid Logical Clocks takes � as a parameter. We can run two versions of

this algorithm, say with � = �1 and � = �2. Observe that if any one of them allows the monitor to

conclude that two events are concurrent, then they are indeed concurrent. However, if we run two

versions of the same algorithm, it would increase the storage and computational cost.

4.2.2 Extension 2: Algorithm ��!�A : Resetting clocks at cut-points

Based on the analysis of the scenario in Figure 4.3, we can see that Biased Hybrid Logical Clocks

will work effectively if the length of the computation is small so that the number of messages

received by different processes are close. Therefore, we consider two extensions to deal with these

issues.

First, to deal with long computations, we introduce the notion of (periodic) cut-points with

length C. Thus, the first interval is 〈0..C − 1〉. The next interval is 〈C..2C − 1〉, and so on.

Whenever, the clock of a process reaches its cut-point, we increase its ; value to a large enough

value that is guaranteed to not occur before that cut-point. This is straightforward to achieve because

the computation length between cut-points has a fixed length. Note that this would create a problem

in terms of comparing events, when event on one process is just before the cut-point and an event

on another process is just after the cut-point. To deal with this issue, we can maintain another clock

which resets at 1
2C,

3
2C,

5
2C and so on. As discussed in Section 4.2.1, even if one of these clocks

41

allow the monitor to conclude concurrency of two events, then they are indeed concurrent events.

The resulting algorithm is referred to as ��!�A .

4.2.3 Extension 3: Algorithm ��!�0: Adjusting message rate

Figure 4.3 also suggests that biased clocks would work most effectively if the number of messages

received by each process is roughly the same. If the underlying system does not have such amessage

distribution, then we can achieve this by allowing a process to pretend to receive fake messages.

This can be achieved as follows: Let G(C) denote the number of messages that are expected to

be received by a process by time C. If the actual number of messages received by a process is

smaller, then the process pretends to receive a message (and updates its clock value). The resulting

algorithm is denoted as ��!�0. We use ��!�A0 to denote the algorithm that uses both extensions

2 and 3.

4.3 Predicate Detection using Biased Hybrid Logical Clocks

In this section, we will discuss the algorithm or approach to perform detection of conjunctive

predicates in a system that uses Biased Hybrid Logical Clocks to timestamp its events. Specifically,

let us consider that every process ?8 in the system has a boolean variable E8 and the goal is to detect

if E8 becomes true at all processes simultaneously, ∧E8 (1 ≤ 8 ≤ =). When an event occurs at a

process, the process updates its Biased Hybrid Logical Clock value and then timestamps the event

with the updated Biased Hybrid Logical Clock value and the current physical clock value. Initially,

E8 is false at every process ?8.

Reporting. Let 4 and 5 denote (successive) events where E8 becomes true and false respectively.

Let 〈1.4, ?C.4〉 denote the value of ��!� and physical clock timestamp of event 4. Likewise, let

the timestamp of 5 be 〈1. 5 , ?C. 5 〉. Thus, E8 is true in the interval [〈1.4, ?C.4〉, 〈1. 5 , ?C. 5 〉). Hence,

process ?8 creates a candidate [〈1.4, ?C.4〉, 〈1. 5 , ?C. 5 〉) and adds it to its queue. The monitoring

process uses these queues for the detection of conjunctive predicate i.e., in this instance to detect if

the variable E was true at all the processes at a common point in time.

42

Predicate Detection. The monitor forms a global state of the system by picking one candidate

per process. It then evaluates that for any two candidates in the global state, say [〈1.48, ?C.48〉,

〈1. 58, ?C. 58〉) and [〈1.4 9 , ?C.4 9 〉, 〈1. 5 9 , ?C. 5 9 〉), if there is some point in time within a candidate

interval that is possibly concurrent with some point in time within the other candidate interval.

This is achieved by checking if ((|1. 58 − 1.4 9 | < �) ∨ (|1. 5 9 − 1.48 | < �)) ∧ ((|?C. 58 − ?C.4 9 | ≤

n) ∨ (|?C. 5 9 − ?C.48 | ≤ n)). If this evaluates to true for every pair of candidates in the global

state, then it is a consistent global state where the conjunctive predicate is satisfied. When the

monitor detects such a consistent global state, it reports a satisfaction of conjunctive predicate ∧E8

(1 ≤ 8 ≤ =).

4.4 Experimental Setup

In our simulations, we considered a system of 10 independent processes, where each process

had a physical clock and a biased clock associated with it. We treated a clock tick to be 0.1ms.

Each simulation run was for a total of 100 (virtual) seconds, i.e., each process incremented the

physical clock from 0 to 1, 000, 000. Every process ?8 had a boolean variable E8 associated with it.

Whenever E8 is eligible for a change, process ?8 changed E8’s value with probability V. Once the

value of E8 changes, this value remains unchanged for a minimum length of time 8=C4AE0; before

becoming eligible to change again. The default set of parameters that we used are clock drift

n = 10ms (100 clock ticks), message delay X = 1ms (10 clock ticks), V = 10% (the expected time

before the variable E8 becomes true is 1ms), local predicate (in this case E8) stays true for just 0.1ms

(8=C4AE0; = 1 clock tick) and an average communication frequency of 1000 messages per second

(10% chance of sending a message every clock tick). To compare the effectiveness of biased clocks

under different configurations, we varied one parameter at a time.

Our experiments focused on identifying the number of consistent global states or consistent

cuts where the given predicate is true. Subsequently, we determined how many of these consistent

global states or consistent cuts are found by HLC/��!�. In this sense, our analysis is independent

of the predicate being considered. However, if we change the predicate under consideration, we will

43

need to change the algorithm used in detecting it. However, the comparison of consistent global

states or consistent cuts identified by Hybrid Logical Clocks and Biased Hybrid Logical Clocks

will remain unaffected.

4.4.1 Effectiveness of ��!� under different system parameters and Bias �

In this section, we analyze the effect of varying system parameters namely clock drift, communi-

cation frequency, message delay, local predicate rate and the amount of bias (�) on the ability of

the monitor in detecting satisfaction of predicates using Biased Hybrid Logical Clocks and Hybrid

Logical Clocks.

Varying Clock Drift (n). To analyze the effect of varying clock drift or clock synchronization

of the processes in the system, we used the default set of system parameters and varied the clock

drift n . Specifically, we considered clock drifts of 0.1ms, 0.2ms, 0.5ms, 1ms, 10ms and 100ms. In

Figure 4.4a, we observe that the monitor using Biased Hybrid Logical Clocks with any value of �

performs orders of magnitude better than the monitor using Hybrid Logical Clocks. In terms of

clock synchronization, a monitor that uses Biased Hybrid Logical Clocks implementation performs

better when the processes in the system are more tightly synchronized with each other. More

specifically, when the processes in the system are tightly synchronized with each other, detection

using Biased Hybrid Logical Clocks with � = 10 detects almost all consistent global states or cuts

where the predicate is true.

Varying local predicate rate (V). Starting from the default experimental setup, we considered

different rates at which the local predicate becomes true, starting from the case where V = 1

(means that the local predicate is always true), i.e., in our example, when variable E8 is always

true, to V = 0.1 (probability that E8 is true is 0.1). The observed effect is as shown in Figure

4.4b. As V decreases, the number of consistent global states or cuts satisfying the predicate in the

system decrease. As expected, all the methods of detection detect fewer cuts with smaller V. The

earlier observation that the monitor using Biased Hybrid Logical Clocks performs better than the

monitor using Hybrid Logical Clocks continues to hold for Figure 4.4b. Again, detection using

44

1

10

100

1000

10000

0.1 0.2 0.5 1 10 100

N
o.

 o
f C

ut
s

D
et

ec
te

d

Clock drift in ms

Standard Biased Clocks- Effect of clock drift
Base Truth

HLC

bias=10

bias=25

bias=50

bias=75

bias=10 and bias=25

bias=10 and bias=50

bias=10 and bias=75

bias=25 and bias=50

bias=25 and bias=75

bias=50 and bias=75

(a)

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1 1.2

N
o.

 o
f c

ut
s

de
te

ct
ed

Frequency of predicate becoming true in ms

Standard Biased Clocks - Effect of rate at which local
predicate changes

Base Truth
HLC
bias=10
bias=25
bias=50
bias=75
bias=10 and bias=25
bias=10 and bias=50
bias=10 and bias=75
bias=25 and bias=50
bias=25 and bias=75
bias=50 and bias=75

(b)

1

10

100

1000

10000

100000

10 1 0.5 0.2 0.1

N
o.

 o
f c

ut
s

de
te

ct
ed

Frequency of sending a message in ms

Standard Biased Clocks - Effect of communication
frequency Base Truth

HLC

bias=10

bias=25

bias=50

bias=75

bias=10 and bias=25

bias=10 and bias=50

bias=10 and bias=75

bias=25 and bias=50

bias=25 and bias=75

bias=50 and bias=75

(c)

1

10

100

1000

10000

0.1 0.2 0.5 1 2 5 10 100

N
o.

 o
f c

ut
s

de
te

ct
ed

Message delay in ms

Standard Biased Clocks - Effect of message delay
Base Truth

HLC

bias=10

bias=25

bias=50

bias=75

bias=10 and bias=25

bias=10 and bias=50

bias=10 and bias=75

bias=25 and bias=50

bias=25 and bias=75

bias=50 and bias=75

(d)

Figure 4.4: a) Effect of varying clock drift, (b) Effect of varying the rate at which local predicate
becomes true, (c) Effect of varying frequency of sending a message, (d) Effect of varying message
delay on Standard Biased Hybrid Logical Clocks

45

Biased Hybrid Logical Clocks with � = 10 and a simultaneous implementation with � = 10 and

� = 75 perform the best. More specifically, simultaneous implementation with � = 10 and � = 75

identifies approximately 70% of the actual cuts.1

Varying communication frequency (U). Starting from the default experimental setup, we

varied U from 0.1 (roughly 100 messages per second) to 1 (roughly 10000 messages per second).

As shown in Figure 4.4c, all detection methods detect fewer consistent global states or cuts as the

communication frequency increases; as the number ofmessages increase, there are fewer concurrent

events.

We observe that the monitor using Biased Hybrid Logical Clocks continues to perform better

than the monitor using Hybrid Logical Clocks. On an average, the monitor using Biased Hybrid

Logical Clocks detects about 50% of the total cuts. In general, predicate detection based on Biased

Hybrid Logical Clocks performs better if communication frequency is low. This is expected, given

that biased clocks were motivated by what happens when message the communication frequency

is very low. Hence, one may consider allowing for higher bias to improve performance. However,

very high bias also means longer jumps in Biased Hybrid Logical Clocks. In turn, this may also

result in rejection of more consistent global states. From Figure 4.4c, we find that monitor using

Biased Hybrid Logical Clocks with � = 25 and � = 50 works best.

Varying Message Delay (X). For this case, we considered message delays of 0.1ms, 0.2ms,

0.5ms, 1ms, 2ms, 5ms, 10ms and 100ms. Remaining parameters were the same as in the case of

the default setup. From Figure 4.4d, we can observe that with increase in message delay, predicate

detection using Biased Hybrid Logical Clocks performs significantly better. When the message

delay is small, the monitor using Biased Hybrid Logical Clocks detects less than 10% of the actual

consistent cuts in the system. However, as the message delay increases the predicate detection rate

of the monitor using Biased Hybrid Logical Clocks improves rapidly to 80%, specifically when

message delay ≥ 2ms.

1Note that for the sake of comparison the analysis was done over the same set of execution traces
and when we considered multiple bias amounts, common consistent global states were counted
only once.

46

1

10

100

1000

10000

0.1 0.2 0.5 1 10 100

N
o.

 o
f c

ut
s

de
te

ct
ed

Clock drift in ms

Extended Biased Clocks - Effect of clock drift
Base Truth

HLC

bias=10

bias=25

bias=50

bias=75

bias=10 and bias=25

bias=10 and bias=50

bias=10 and bias=75

bias=25 and bias=50

bias=25 and bias=75

bias=50 and bias=75

(a)

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1 1.2

N
o.

 o
f c

ut
s

de
te

ct
ed

Frequency of predicate becoming true in ms

Extended Biased Clocks - -Effect of rate at which local
predicate changes

Base Truth
HLC
bias=10
bias=25
bias=50
bias=75
bias=10 and bias=25
bias=10 and bias=50
bias=10 and bias=75
bias=25 and bias=50
bias=25 and bias=75
bias=50 and bias=75

(b)

1

10

100

1000

10000

100000

10 1 0.5 0.2 0.1

N
o.

 o
f c

ut
s

de
te

ct
ed

Frequency of sending a message in ms

Extended Biased Clocks - Effect of communication
frequency

Base Truth

HLC

bias=10

bias=25

bias=50

bias=75

bias=10 and bias=25

bias=10 and bias=50

bias=10 and bias=75

bias=25 and bias=50

bias=25 and bias=75

bias=50 and bias=75

(c)

1

10

100

1000

10000

0.1 0.2 0.5 1 2 5 10 100

N
o.

 o
f c

ut
s

de
te

ct
ed

Message delay in ms

Extended Biased clocks - Effect of message delay

Base Truth

HLC

bias=10

bias=25

bias=50

bias=75

bias=10 and bias=25

bias=10 and bias=50

bias=10 and bias=75

bias=25 and bias=50

bias=25 and bias=75

bias=50 and bias=75

(d)

Figure 4.5: (a)Effect of varying clock drift, (c) Effect of varying frequency of sending a message
and (b) Effect of varying the rate at which local predicate becomes true and (d) Effect of varying
Message delay on Extended biased clocks with reset every 100ms.

4.4.2 Effectiveness of ��!�A

In this section we analyze the effectiveness of ��!�A , where clocks at the processes are reset

periodically to overcome the issue of biased clocks growing far apart over time.

We perform the same set of experiments presented in Section 4.4.1 using ��!�A where clocks

are reset every 1000 clock ticks, i.e. every 100 ms. We vary one system parameter at a time and

present the results in Figure 4.5. We observe that the detection capability of the monitor using

��!�A is similar to the detection capability of the monitor using standard Biased Hybrid Logical

Clocks.

47

1

10

100

1000

10000

N
o

of
 c

on
si

st
en

t c
ut

s d
et

ec
te

d

Detection based on timestamping using

Non-uniform inter-cluster message distribution

Base Truth HLC

(BHLC)bias=10 (BHLC)bias=10 and bias=75

(BHLCr)bias=10 (BHLCr)bias=10 and bias=75

(BHLCa)bias=10 (BHLCa)bias=10 and bias=75

(BHLCra)bias=10 (BHLCra)bias=10 and bias=75

(a)

1

10

100

1000

10000

N
o.

 o
f c

on
si

st
en

t c
ut

s
de

te
ct

ed

Detection based on timestamping with

Non-uniform intra-cluster message distribution

Base Truth HLC

(BHLC)bias=10 (BHLC)bias=10 and bias=75

(BHLCr)bias=10 (BHLCr)bias=10 and bias=75

(BHLCa)bias=10 (BHLCa)bias=10 and bias=75

(BHLCra)bias=10 (BHLCra)bias=10 and bias=75

(b)

Figure 4.6: No. of violations (consistent cuts where the predicate is true) detected in (a)Non-
uniform Message distribution 1 and (b)Non-uniform Message distribution 2

4.4.3 Effectiveness of ��!� under Non-uniform Message Distribution

In this section we analyze the effectiveness of ��!� and its extensions in a system with non-

uniform message distribution. Specifically, we focus on the extension of ��!� discussed in

Section 4.2.3, where processes compensate for non-uniform message distribution.

We consider a scenario where we partition the set of 10 processes into two groups (5 in

each). The first group (processes 1-5) receive messages at twice the rate of the second group

(processes 6-10). Hence, processes 6-10 compensate by adding twice as much bias in the receive

statement. In other words, if we instantiate ��!� with � = 10, processes 1-5 add 10 on Line 5

and processes 6-10 add 20. In this scenario, we consider two sub-cases: (1) processes in one group

only communicate among themselves (cf. Figure 4.6b) and (2) processes choose their destination

randomly and, hence, they could send messages to processes in the other group (cf. Figure 4.6a).

For this version (��!�0), we utilize the following observation to decide if two events are related

by happened-before relation.

4 −→ 5 iff


;.4 + 10 < ;. 5 5 is on processes 1..5

;.4 + 20 < ;. 5 5 is on processes 6..10

From Figures 4.6a and 4.6b, we find that ��!�, ��!�0 and ��!�A0 work better than HLC.

However, ��!�0 and ��!�A do not provide the desired improvement. Rather, (standard) ��!�

works better. In part, this happens because ��!�0 does an abrupt jump of size 2� for processes

48

6..10. This abrupt jump makes it harder to find concurrent events at processes 1..5. That said,

the addition of bias improves the predicate detection capability when compared with unbiased

implementation (which corresponds to HLC).

4.5 Advantages and Limitations of performing Predicate Detection using
��!�

Predicate detection using Biased Hybrid Logical Clocks has low overhead like Hybrid Logical

Clocks because they are also $ (1) sized clocks. Our analysis shows that with biased clocks

presented in this chapter, the chances of finding the predicate of interest being true is substantially

higher than detection using Hybrid Logical Clocks. On an average, in our experiments, monitors

using biased clocks were able to find 100-200 times as many instances where the global predicate is

true when compared to monitors using Hybrid Logical Clocks. This result was observed to be true

for different communication frequencies, message delays, clock drifts and frequencies of the local

predicate being true. Furthermore, for many scenarios, Biased Hybrid Logical Clocks was able to

find more than half of the instances where the given predicate was true. Given that Biased Hybrid

Logical Clocks are $ (1) sized clocks and predicate detection using Biased Hybrid Logical Clocks

finds a substantial fraction of instances where the given predicate is true, we expect that Biased

Hybrid Logical Clocks will provide an inexpensive and effective way to perform better predicate

detection.

Though the number of concurrent events that monitors using BiasedHybrid Logical Clocksmiss

to identify is substantially smaller than the number of concurrent events that monitors using Hybrid

Logical Clocks may miss, monitors using Biased Hybrid Logical Clocks still do not guarantee

detection of all possible consistent global states. Therefore predicate detection using Biased Hybrid

Logical Clocks can still miss to identify instances of predicate satisfaction. If we want to detect

all possible instances where a global predicate is true without finding any phantom instances, then

$ (=) sized clocks are necessary. Therefore in the next chapter an alternative monitoring approach

is discussed, where the monitor continues to use Hybrid Logical Clocks based event-timestamps but

49

achieves guaranteed detection of all instances of predicate satisfaction with the help of Satisfiability

Modulo Theories (SMT) Solvers.

50

CHAPTER 5

RELIABLE PREDICATE DETECTION USING SMT SOLVERS

As discussed in Chapters 3 and 4, though predicate detection using Hybrid Logical Clocks and

Biased Hybrid Logical Clocks are efficient in terms of monitoring overhead, they fail to identify all

possible instances of predicate satisfaction. Therefore in this chapter a new monitoring approach

of performing predicate detection using Hybrid Logical Clocks and Satisfiability Modulo Theo-

ries(SMT) solvers is discussed. Specifically, in Section 5.1, a brief discussion about SMT solvers

and how SMT solvers can be used to perform predicate detection is presented. In Section 5.1.1, the

specific set of information that has to be reported by the processes in the system to the monitor, to

aid the predicate detection task is identified. In Section 5.2, the details of how the monitor uses the

reported information and provides corresponding inputs to the solver to identify the instances of

predicate satisfaction is discussed. The experimental setup and results from evaluating the effec-

tiveness of this approach are presented in Section 5.3. Finally, in Section 5.4, the advantages and

disadvantages of performing predicate detection using Hybrid Logical Clocks and SMT solvers are

discussed.

5.1 Predicate Detection using SMT Solvers

As discussed in Section 2.3, performing predicate detection to detect all possible instances

where a predicate is true is critical in identifying latent concurrency bugs in distributed systems.

Specifically, the first step in predicate detection i.e., identifying all possible consistent global states

is critical in the detection of latent concurrency bugs. This is because latent concurrency bugs

do not manifest themselves in all runs of the system, they are visible only if the events across the

processes occur in a specific relative order. Also, as discussed in Section 2.3, the total number

of possible consistent global states to be evaluated for predicate detection increases exponentially

as the number of processes and events per process increase. In this chapter we will discuss how

the monitor can use SMT solvers to handle this explosion and guarantee detection of all possible

51

instances of predicate satisfaction accurately.

Generally, an SMT solver takes a formula and a list of constraints as its input. The solver then

identifies whether the formula can be satisfied while simultaneously satisfying all the constraints.

If satisfiable, it produces a satisfying variable assignment for the formula. Otherwise, it reports that

the formula cannot be satisfied. In our case, we use SMT solvers to perform predicate detection as

follows. First, we develop a formula to represent the violation of a safety specification in the system.

This formula is developed once for the system. Then during runtime, we propose a lightweight

method for the monitor to learn the system events and generate corresponding constraints that

define the partial order on the system events (that capture all causal relationships between events)

that any valid ordering of events must follow. The SMT solver then determines if there is a valid

ordering of events that would lead to violation of the safety specification. The lightweight method

for accepting system events and for generating constraints that define the partial order on system

events is presented in Section 5.2. On the whole, the goal of the monitor is to help the solver

in finding a consistent global state where the predicate of interest P is satisfied, by providing

constraints that help the solver in eliminating invalid choices i.e., eliminate invalid global states or

consistent global states where P does not hold true.

Relying on SMT solvers for runtime monitoring has several advantages. The most important

advantage is the correctness. Since an SMT solver evaluates all possible combinations of variables

before declaring the formula as unsatisfiable, it guarantees the correctness of the monitor; i.e., it

will not miss a violation and it will not identify phantom violations.

5.1.1 Reporting

Asmentioned in the beginning of the chapter, the overall approach still uses Hybrid Logical Clocks.

Specifically, processes in the system timestamp their events and messages using Hybrid Logical

Clocks. The systemmodel is same as themodel presented in Section 2.1. For the sake of discussion,

once again we consider that every process ?8 in the system has a boolean variable E8 and the goal

is to detect if E8 becomes true at all processes simultaneously, ∧E8 (1 ≤ 8 ≤ =). Next we describe

52

Do both processes possibly simultaneously have E8 = CAD4?
?1

?2

?1

?2

〈45, 0〉 〈50, 0〉

〈55, 0〉 〈60, 0〉
(a) Yes

〈55, 0〉 〈60, 0〉〈54, 0〉

〈45, 0〉 〈50, 0〉
〈51, 0〉

<

(b) No

Figure 5.1: Example (a) there are four variable events and no messages. Due to clock drift, it is
possible that both processes simultaneously had E8 = CAD4 if n > 5. Scenario (b) has the same
four variable events plus a message <. Because of the message, the two processes cannot have had
E8 = CAD4 simultaneously regardless of n .

how each process reports changes in the values of its variables and information about inter-process

communication to the monitor.

5.1.2 Reporting a change in variable value

Every time when the value of the variable E8 changes, process ?8 updates it HLC value and sends

a message with three pieces of information to the monitor: the previous value of E8, the HLC

timestamp of the previous variable update event, and the current HLC timestamp associated with

the new variable update event. The two timestamps are sent as an interval that includes the left

endpoint but excludes the right endpoint. Note that here the variable E8 corresponds to the local

predicate.

We assume that process ?8 starts with the Hybrid Logical Clock value of 〈0, 0〉 and initially

E8 = �0;B4. The information related to the new variable update event (containing the current value

of E8) will be captured in the next report sent to the monitor when the next variable update event

occurs. Providing the previous value of E8 and the associated HLC timestamp allows the monitor

to process reports correctly even if they arrive out of order, though out of order reports may delay

detection of predicate satisfaction. To illustrate these variable update event reports, consider the run

of the program in Figure 5.1 (a) or (b), where the duration for which E8 is true is marked as intervals.

Process ?1 sends two variable update-event reports to the monitor. The first report has E1 = �0;B4,

[〈0, 0〉, 〈45, 0〉) and is sent at 〈45, 0〉. The second report has E1 =)AD4, [〈45, 0〉, 〈50, 0〉) and is

53

sent at 〈50, 0〉. Likewise process ?2 sends two variable update-event reports to the monitor. The

first report has E2 = �0;B4, [〈0, 0〉, 〈55, 0〉) and the second report has E2 =)AD4, [〈55, 0〉, 〈60, 0〉).

5.1.3 Reporting Message Events

The process that receives a message from another process is responsible for reporting both the

send and receive events to the monitor. Specifically, the receiver process reports four things to

the monitor: the sender process ID and the HLC timestamp for the send event (information that is

included in the message by the sender process before sending the message), the receiver process

ID, and the HLC timestamp for the receive event. For example, in Figure 5.1 (b), process ?2 sends

a message to the monitor with the sender ID ?1, the send event timestamp 〈51, 0〉, the receiver

process ID ?2, and the receive event timestamp 〈54, 0〉.

5.2 Monitoring setup

Nowwe will see how the monitor generates corresponding constraints to define the partial order

of the events that any event ordering should follow and the formula representing the predicate to

be detected, to the SMT solver, to perform predicate detection. The basic setting is that for each

process ?8, the monitor uses three variables: E8, ;8, and 28 that correspond to a variable value and the

associated HLC timestamp for that variable value. The formula and the constraints that the monitor

creates are satisfiable if there is a way to assign values to all 3= variables such that the formula and

constraints are simultaneously satisfied. The intuition behind a satisfying variable assignment for

E8, ;8, and 28 is that they should correspond to a consistent global state where the formula/predicate

is satisfied. The monitor adds several constraints to ensure that only consistent global states will

satisfy the SMT formula, some of which are static constraints, that do not depend on the actual run.

Others are dynamic constraints, that depend on the events and their causal relationship observed

during the actual run.

Clock Synchronization Constraints. First the monitor enforces the clock synchronization

requirement of a consistent global state, i.e., event/states in a global state should be concurrent with

54

each other so they should be within 4?B8;>= of each other. Specifically, the value of ;8 for each

process ?8 must be at most n apart from the value of ; 9 of every other process ? 9 . The monitor

enforces this by adding the following static constraint:

∀8, 9 1 ≤ 8 < 9 ≤ = : |;8 − ; 9 | ≤ n

Communication Constraints. Next the monitor enforces all communication requirements of

a consistent global state that capture causality. Specifically, if process ?8 sends a message at time

〈;B, 2B〉 to process ? 9 , which receives the message at time 〈;A , 2A〉, then if process ? 9 ’s timestamp

in the consistent global state is at least 〈;A , 2A〉 which means process ? 9 has received the message,

then ?8’s timestamp in the consistent global state should be greater than 〈;B, 2B〉, which means that

?8 has sent the message. This is to ensure that if the message receive event is recorded in the global

state, then the corresponding message send event should also be recorded in it. Thus, for each

message reported to the monitor, the monitor adds the following constraint:

(〈; 9 , 2 9 〉 ≥ 〈;A , 2A〉) ⇒ (〈;8, 28〉 > 〈;B, 2B〉)

These are dynamic constraints as we need one for every inter-process message. Continuing

with the example discussed in Figure 5.1 (b), when the monitor receives the details of the message

< from the receiver process ?2, it adds the following constraint:

(〈;2, 22〉 ≥ 〈54, 0〉) ⇒ (〈;1, 21〉 > 〈51, 0〉)

Variable Update Event Constraints. The monitor also adds constraints to ensure that variable

E8 takes on the correct value corresponding to the consistent global state or consistent snapshot. This

is ensured by adding one constraint per variable update-event reported to the monitor. Specifically,

if process ?8 sends a variable update event report E8 = E0;, [〈;1, 21〉, 〈;2, 22〉), then the monitor

adds the constraint:

(〈;8, 28〉 ≥ 〈;1, 21〉) ∧ (〈;8, 28〉 < 〈;2, 22〉) ⇒ E8 = E0;

Predicate Constraints. Finally, to ensure that the predicate being monitored is satisfied at

the consistent snapshot or consistent global state, the predicate is also provided to the solver by

the monitor. This is a static formula that depends only on the = E8 variables. For example, if the

predicate being monitored requires that all values of E8 are true simultaneously, then it would be

55

captured by providing
∧
E8 as a formula to the solver. If E8 is an integer variable at process ?8 and if

the goal is to check that the sum of E8 across the = processes is at least 10, then it would be captured

by providing
∑
E8 ≥ 10 as a formula to the solver.

5.3 Experimental Results

5.3.1 Experimental Setup

In our simulation, we used a system of 10 independent processes. In one set of experiments, we

use a synthetically generated workload, where the process variable E8 changes value randomly; we

considered E8 as a boolean variable and as a integer variable. In another set of experiments, we

considered the case of an exclusive access to a shared resource in a time division multiplexing

protocol based application, that has a timing error, that can potentially cause two processes to

simultaneously access the shared resource. We ran our experiments for one second of (virtual)

time, where the processes reported events as described in Section 5.1.1. Themonitor generated SMT

constraints and formula as described in Section 5.2. The SMT solver Z3[16] was then invoked on

the SMT constraints/formula. In our simulation, the SMT solver was invoked periodically (period

chosen to be 1s). It could also be changed so that it is invoked when a new event occurs (or when a

given threshold number of events occur).

The default parameters were a clock tick of 0.01ms, a clock drift n = 10ms (1000 clock

ticks), message delay X = 1ms (100 clock ticks), V = 1% (the expected time before the variable

E8 becomes true is 1ms), 8=C4AE0; = 0.1ms (variable E8 stays true for 10 clock ticks) and an

average communication frequency of 1000 messages per second (1% chance of sending a message

every clock tick). Among all the experiments performed, the predicate of interest was satisfiable

approximately 70% of the time. Since we avoid generating instances where the satisfaction of

the predicate of interest is too easy, we do not observe a clear pattern that indicates a correlation

between the time taken by Z3 and whether the predicate of interest is satisfiable or not, so we omit

discussion of whether the given predicate is satisfiable.

Synthetic workload. In our synthetic workload, the E8 variables were either boolean variables

56

or integer variables. When they were integer variables, we restricted them to {0, 1}. In both the

cases, whenever E8 is eligible for a change, process ?8 changed E8’s value with probability V. Once

the value of E8 changes, this value remains unchanged for a minimum length of time 8=C4AE0;

before becoming eligible to change again. When E8 was a Boolean variable, we considered

three different predicates: the conjunctive predicate
∧
E8 that requires all E8 variables to be true

simultaneously, the exactly 5 predicate |{E8 = CAD4}| = 5, that requires exactly 5 E8 variables to be

true simultaneously, and at least 5 predicate, |{E8 = CAD4}| >= 5, that requires at least 5 E8 variables

to be true simultaneously. When E8 was an integer variable, we considered two predicates ΣE8 = 5

and ΣE8 ≥ 5 that were equivalent to the exactly 5 and at least 5 boolean predicates, respectively.

Exclusive access workload. We considered an application that uses time division multiplexing

protocol, where each process accessed the shared data in its time slot, which had a length of 100ms

and that the clock drift was at most 10ms. We assumed that each process started accessing the data

at the start of its time slot. To ensure that there is no simultaneous access, each process stopped

accessing 10ms before the end of its time slot. For example, process 1 accessed the shared data

in the interval [0<B, 90<B), process 2 accessed it in the interval [100<B, 190<B), and so on. We

introduced a chance of error where each process held on to its access for an extra 1ms with a

probability of 10%, which means that the process ?8 and process ?8+1 might simultaneously access

the data. For this experiment, E8 was a boolean variable that indicated when process ?8 accessed

the shared data, and the predicate to be detected was that whether two E8 variables might be true

simultaneously. Next, we will identify how one can interpret the results of our experiments.

5.3.2 Interpreting the Experimental Results

There are two approaches for implementing run-time monitors; a standalone approach where a

monitoring process is independent of the application processes, which is how we have described

the monitor process so far, and a combined approach where the monitor runs on the same machines

as the processes and uses a certain fraction of the resources from those machines. We now describe

how to interpret our Z3 timing results using these two perspectives. Recall that we run the process

57

for one second in all experiments.

Let us start with the standalone monitor. If the monitoring time is at most one second, a single

monitor running on the given environment (Windows 8.1 on 2.19 GHz Intel(R) Core(TM) i5 and

8.00 GB RAM) would be sufficient with a latency of at most 1B. If the monitoring time is more

than one second, say two seconds, then we need two machines and two instances of Z3. If two

monitors are used then it could be achieved by sending events at odd time (first, third, fifth second)

to the first monitor and sending events at other times to the second monitor. Some overlap may be

necessary to ensure that events that span across boundary are recorded correctly. In general, if the

Z3 monitoring time (time required for solving the SMT problem) is A seconds, then we need dAe

machines and dAe instances of Z3 to keep pace. Note that we can reduce the machine requirements

and latency by getting a more efficient machine or finding a more efficient SMT solver.

Let us now consider the combined approach. In this case, if monitoring one second of execution

time on 10 processors takes A seconds, then each process would need to devote roughly A × 10% of

its resources to the monitor to ensure that the monitoring process can keep up with the application.

We can view this as either needing a A×10%more efficient machine or that A×10
100+A×10 of its resources

are devoted to monitoring, meaning that the application itself will slow down due to monitoring.

In our experiments we observed that in general for a run that is 1 second long, the monitor took

1 to 2 seconds to perform predicate detection. Therefore to use SMT solvers to perform predicate

detection in an online runtime monitoring setup, where the monitor has to catch up with the system

being monitored, one may have to choose one of the two implementation techniques discussed

above.

5.3.3 Effect of Communication Frequency

We first discuss how the inter-process communication frequency affects the time required for

monitoring. Figure 5.2 (a) summarizes these results. We used our default parameters except that

we varied communication frequency from an average of 100 messages per second (0.1% chance

of sending a message to another process every clock tick) to an average of 10,000 messages per

58

(a) Effect of communication frequency (b) Effect of change in message delay X

(c) Effect of rate at which the local predicate changes (d) Effect of duration for which the local predicate
stays unchanged

(e) Effect of change in clock drift n

Figure 5.2: Analysis of the role of system parameters on monitoring latency

59

second (10% chance of sending a message to another process every clock tick). We can observe

that as the communication frequency decreases, the time for verification also decreases. This holds

for all the predicates that we studied. Also, monitoring the faulty shared memory access protocol

required less time than monitoring the synthetic workloads.

5.3.4 Effect of Communication Latency

Next we analyze how inter-process communication latency affects the time required for monitoring.

Figure 5.2 (b) summarizes these results. We used our default parameters except that we varied

communication latency from 0.1ms to 100ms. We can observe that communication latency has a

small effect on the time required for monitoring. For all predicates considered, the monitoring time

increases with an increase in communication latency, but by at most half a second even when the

latency increases from 0.1ms to 100ms.

5.3.5 Effect of Variable Stability

Next, let us consider how variable stability affects the time required for monitoring. Note that there

are two parameters that affect variable stability in the synthetic workload experiments: V which is

the probability of changing the variable value at a given time and 8=C4AE0; which determines how

long the variable value will remain stable after a change. We used our default parameters except

that we first varied V from 0.1% (the expected time before the variable becomes true is 10ms) to

10% (the expected time before the variable becomes true is 0.1ms) in one set of experiments and

varied 8=C4AE0; from 0.01ms (1 clock tick) to 10<B (1000 clock ticks) in the other. Figure 5.2

(c) summarizes the results where we varied V and Figure 5.2 (d) summarizes the results where we

varied 8=C4AE0;. We see that more variable stability leads to faster monitoring. As we decrease

the probability of changing variable value or increase the stable interval time, Z3 monitoring time

drops.

60

5.3.6 Effect of Clock Drift

Next, we analyze how the clock drift n affects the time required for monitoring. Figure. 5.2 (e)

summarizes these results. We used our default parameters except that we varied the clock drift

n from 0.1ms to 100ms. We can see that unlike other parameters, clock drift does not have a

monotonic affect on monitoring time. For some predicates such as conjunctive predicates, the time

for monitoring first increases as n increases and then decreases as n increases further. While we

do not know the exact reason for this, we suspect the following is true. We are looking for a valid

global snapshot where the given predicate is true, which in some sense requires examining n-length

intervals in the execution. The number of n-length windows is inversely proportional to n . The

number of events within an n length window and thus the complexity of the window is proportional

to n . Thus, there are competing pressures making the exact complexity a complicated function of

n .

5.4 Advantages and Limitations of predicate detection using SMT solvers

Unlike the solutions presented in Chapters 3 and 4, using SMT solvers to perform predicate

detection has no false negatives (and no false positives). Also, the field of SMT solvers is an active

field where new advances result in more efficient solvers. Thus, over time, runtime monitors based

on SMT solvers will be able to monitor more complex systems. Furthermore, predicate detection

using SMT solvers can be used in an online and offline runtime monitoring setup. However,

though runtime monitoring using SMT solvers guarantees detection of all instances of predicate

satisfaction, they can take more time for detection when compared to the solutions presented in

Chapters 3 and 4. As discussed in Section 2.4, timeliness is an important characteristic for online

runtime monitors. Especially in an online runtime monitoring setup, if the solvers are not quick

enough in solving the input constraints i.e., in performing predicate detection, then the detection

latency gets accumulated over time and can cause the monitor to lag behind the system being

monitored, making the overall solution not usable in an online setting. Therefore, in the next

chapter a two layered monitoring approach is presented, where the predicate detection approach

61

using SMT solvers discussed in this chapter is used as the second layer of the monitor. We will see

how the time taken by the monitor for detection can be decreased drastically with the help of a first

layer, which acts as a filtering layer, that reduces the number of times the solver gets invoked in the

second layer during the detection process.

62

CHAPTER 6

EFFICIENT AND RELIABLE PREDICATE DETECTION USING TWO LAYERED
MONITORING

In this chapter, first an approach to modify the HLC based monitoring algorithms from Chapter 3,

that have false negatives, into monitoring algorithms that do not have false negatives is discussed in

Section 6.1.2. Themodification preserves efficiency but introduces potentially many false positives.

The extension can handle predicates encountered in practice (conjunctive, arithmetic, violation of

mutual exclusion), etc. Section 6.1.3 focuses on how the monitor can be used in scenarios where

one would like to reduce the number of false positives, but can afford some false negatives, by

modifying a single parameter W in this extended detection approach. The effectiveness of the

monitoring approach is then evaluated with the help of experiments in Section 6.1.4, where the

number of false positives/negatives reported by the the monitor when used in detecting conjunctive

predicates are analyzed.

In the later half of the chapter, a two-layered monitoring algorithm that combines the algorithm

that uses HLC with parameter W from Section 6.1.3 with the monitoring algorithm from Chapter 5

that uses SMT solvers to perform predicate detection is presented in Section 6.2. This two layered

monitoring approach eliminates all false positives and, depending on W, eliminates many or all false

negatives, while performing detection in a timely manner with small monitoring overhead. The

effectiveness of the two-layered monitoring approach is evaluated in Section 6.2.1 by computing

the time taken to detect violations of mutual exclusion in an application that uses time division

multiplexing.

6.1 Predicate DetectionwithHLC: Trade-off in False Positives andNegatives

6.1.1 False Negatives with HLC

The key property used by the monitors to perform predicate detection using HLC (presented in

Chapter 3) is that the state of each process does not change between events. For example, consider

63

?0

〈1, 0〉

41

?1

〈7, 0〉

51
(a) Monitor considers the
state at 〈1, 0〉

?0
〈1, 0〉

41

〈3, 0〉

42
?1

〈7, 0〉

51
(b) Monitor considers the
state at 〈3, 0〉 only

?0
〈1, 0〉

41 4′1〈6, 2<0G 〉

〈3, 0〉

42

4′2〈8, 2<0G 〉

?1 〈7, 0〉 51 5 ′1

〈12, 2<0G 〉

(c) With n -extension: Monitor
considers the state at 〈1, 0〉 and 〈3, 0〉

Figure 6.1: Analyzing the state of ?0 considered by the monitor when evaluating the global
predicate at 〈7, 0〉. (n = 5 in the system) (a) & (b) consider a monitor that uses HLC, (c) considers
a monitor that uses HLC with n-extension.

the execution in Figure 6.1(a) and the timestamp 〈7, 0〉. The monitor (that uses HLC) needs to

evaluate the predicate at both the processes at 〈7, 0〉. For process ?1, this is trivial. For process ?0,

the monitor evaluates the state at 〈7, 0〉 by evaluating ?0’s global state at 〈1, 0〉; this works because

the state of the process does not change without an event and there is no event for ?0 between 〈1, 0〉

and 〈7, 0〉. Essentially, an HLC based monitor computes the consistent global state or consistent

global snapshot corresponding to every event 4 using the closest preceding event 5 (i.e., event with

the largest timestamp less than or equal to ℎ;2.4) on every other process. Stated another way, this

HLC monitor does two things when processing an event 41 on process 8: (1) it ends the current

state of process 8 that was in effect before ℎ;2.41 and (2) introduces a new state for process 8 that is

in effect from ℎ;2.41 until the ℎ;2.42 where 42 is the next event on process 8.

A disadvantage in performing predicate detection using HLC is that it suffers from false

negatives. In particular, lets reexamine what happens when it computes the global snapshot for a

given timestamp C for an event 4 on process 8. When it considers a process 9 ≠ 8, an HLC based

monitor will only use the state of process 9 from the most recent preceding event 5 (i.e., the event

with largest �!� timestamp that is less than or equal to C = ℎ;2.4). This is not a problem if event

5 occurs more than n before C, but it is problematic if 5 occurs within n of C.

For example, consider Figure 6.1(b) where n = 5, with a new event 42 on ?0 at timestamp 〈3, 0〉

which is within n of 〈7, 0〉. When the HLC monitor computes the global snapshot at timestamp

〈7, 0〉, for process ?0, it will only consider the state of process ?0 after event 42 even though the

64

period prior to event 42 also lies within n of 〈7, 0〉 and thus is concurrent with event 51. To ensure

that there are no false negatives, the monitor needs to consider all possible states of ?0 that can be

concurrent with C at ?1; namely any state of ?0 within n of 〈7, 0〉 should also be considered.

6.1.2 Eliminating False Negatives with n extension

As discussed in Section 6.1.1, HLC based monitor misses consistent snapshots consisting of events

41 and 51 where there exists an event 42 such that ℎ;2.41 < ℎ;2.42 < ℎ;2. 51 and ;. 51 − ;.42 < n .

To overcome this limitation, we introduce the notion of n-extension, where the effect of event 41

(in the previous sentence) is extended by n . Specifically, for an event 4 if ℎ;2.4 is 〈;.4, 2.4〉, we

define ℎ;2.4 + n to be 〈;.4 + n, 2<0G〉, where 2<0G is the maximum possible value of 2. Extending

by n leads to multiple possible values for a process where the extended intervals overlap.

To illustrate this, let G8 be a variable of process 8 used in predicate P that is being monitored,

and suppose G8 is set to E0 at timestamp C0 and then changed to E1 at timestamp C1. As we observed

earlier, the HLC monitor would use the event at timestamp C1 to perform two actions: (1) remove

E0 as the value of G8 and (2) add E1 as the value of G8. With n-extension, at timestamp C1, we only

perform the second action of adding E1 as a possible value for G8. At timestamp C1 + n , we perform

the first action of removing E0 as a possible value of G8. This extends the effective interval where

G8 has value E0 from [C0, C1) to [C0, C1 + n). Note that we explicitly must consider multiple possible

values, in this case E0 and E1, for G8 for any snapshot in the time interval [C1, C1 + n). Stated more

generally, with n-extension, we treat each event 4 as two events, 4 and 4′, where event 4 has its

original timestamp C and event 4′ has timestamp C + n . At event 4, we perform the second action

where we add a new possible value for a variable. At event 4′, we perform the first action where

we remove a possible value for a variable.

As an illustration, consider the execution in Figure 6.1, where we have events 41, 51 and 42

as shown. Effect of event 41 would be in the interval [〈1, 0〉, 〈3, 0〉) (c.f. Figure 6.1b). The

n-extension (c.f. Figure 6.1c) will change it to interval [〈1, 0〉, 〈8, 2<0G〉). The effect of event 42

is in the interval [〈3, 0〉, 〈∞,−〉). Thus, in the interval between 〈3, 0〉 and 〈8, 2<0G〉, we consider

65

both states of ?0 corresponding to events 41 and 42.

While having to consider multiple values will increase complexity and decrease efficiency, we

expect that the number of values are likely to be small given that we are only extending effective

intervals by n . For example, in the above scenario, multiple values of G8 are only considered in

the interval [C1, C1 + n). Also, it is expected that such multiple values would need to be considered

only for a small subset of processes. For example, not all processes would have multiple permitted

values in the interval [C1, C1 + n).

Furthermore, for many types of predicates, it is possible to eliminate multiple values altogether.

For example, consider the conjunctive predicate P = ∧P8. Clearly, for any interval where P8 can

be both true and false, we can just record that P8 is true. For example, if P8 is set to true at C0 and

then set to false at C1, then in the interval [C0, C1 + n), we would only record that P8 is true and only

begin recording that P8 is false at timestamp C1+ n . Beyond conjunctive predicates, this also applies

to predicates of the form ΣG8 > � and ΣG8 < �. In the first case, we choose the maximum value

of G8; in the second case, we choose the minimum value of G8 when multiple values are possible.

For predicates of the form G1 < G2, we can choose the largest value of G1 and smallest value of

G2. The first case ΣG8 > � includes violation of mutual exclusion, where G8 = 1 means process 8 is

accessing the shared resource and we set � = 1.

Observe that the n-extension does not account for messages. Therefore, it will lead to false

positives. Furthermore, instead of detecting the given predicate P, if we detect a slightly weaker

predicate, it will increase the rate of false positives. Allowing false positives will enable us to detect

more complex predicates. For example, if the predicate we want to detect is �1 < ΣG8 < �2, we

can split this predicate into two separate predicates, one for the upper bound and one for the lower

bound, both of which we can detect efficiently. We may increase the false positive rate with respect

to the original predicate if there are no choices of G8 that simultaneously satisfy both bounds. We

discuss in Section 6.1.5 how the false positive rate can be effectively managed.

66

?0

?1

〈2, 0〉

e

〈4, 0〉

g

〈9, 2<0G〉

g’

〈8, 0〉
f

〈10, 0〉

h

〈15, 2<0G〉

h’

<

(a) With n-extension (n = 5)

?0

?1

〈2, 0〉

e

〈4, 0〉

g

〈7, 2<0G〉

g’

〈8, 0〉
f

〈10, 0〉

h

〈13, 2<0G〉

h’

<

(b) With W-extension (W = 3)

Figure 6.2: Reducing false positives with W-extension

6.1.3 Reducing False Positives with W-extension

The n-extension eliminates false negatives at the cost of introducing false positives. In particular,

the n-extension allows the state of a process to be extended by n into the future even if causality

shows that such an extension is impossible. As an illustration, in Figure 6.2(a), where the maximum

clock drift is n = 5, event 4 happened before event 6 which happened before event 5 . However, the

approach of n-extension would incorrectly allow the state of ?0 at 〈2, 0〉 to be considered by the

monitor at timestamp 〈8, 0〉. In other words, the monitor considers 4 and 5 to be concurrent even

though they are not, resulting in a false positive.

If the intervals in Figure 6.2(a) were extended for a shorter duration, say W < n , then the rate of

false positives will decrease at the cost of reintroducing false negatives. For example, for W = 3, the

state of ?0 at 〈2, 0〉 will never be considered at timestamp 〈8, 0〉 (c.f. Figure 6.2(b)). Thus, it will

not be part of the false positives. However, for W = 3, in the absence of communication (even when

4 9 5), the snapshot consisting of 4 and 5 will be discarded, thereby resulting in a false negative.

The parameter W provides a mechanism to control the rate of false positives and false negatives.

In the next section, we analyze the false positives/negatives for different values of W and other

system parameters. Specifically, we evaluate the effectiveness of performing predicate detection

using W-extension through experimental analysis; that is, we compute the precision (1−false positive

rate) and recall (1− false negative rate) of a monitor that uses W-extension to perform conjunctive

predicate detection.

67

6.1.4 Analyzing False Positives and Negatives with W extension

6.1.4.1 Experimental Setup

To analyze the effectiveness of using HLC with W-extension in performing predicate detection, we

simulate a distributed system of 10 processes. Although this analysis is for the case of conjunctive

predicates, we note that the approach is general enough to be applied for other predicates. We use

conjunctive predicates because evaluating the ground truth (i.e., identifying all valid snapshots in

the system) is feasible using [20]. And, this ground truth is essential to compute the number of

false positives and negatives reported by the monitor.

In this work, each process has a physical clock ?C and a hybrid logical clock associated with

it. Each process 8 is also associated with a boolean variable E8. The processes execute in a round

robin fashion and each process executes a million times. Each time a process executes it advances

its physical clock with a certain probability such that the physical clock value of any two processes

differ by at most n . When a process advances its clock, it sends a message with a probability U to

a uniformly randomly chosen process. Based on the value of X-message delay and time at which a

message was sent, the process receives any message that was sent to it if it is ready to be delivered.

If the value of the variable E8 is false the process sets its value to true with a probability V. If E8

is true, it remains true for a duration of length ℓ (counted in terms of physical clock of 8). Then,

it is set to false. The process updates its hybrid logical clock value every time it sends or receives

a message, and whenever it changes the value of E8 based on the HLC algorithm (Algorithm 1)

presented in Section 2.2.

Each process 8 reports every duration forwhich E8 was true as an interval to a commonmonitoring

process. Each interval consists of the HLC timestamp when E8 became true and the HLC timestamp

when E8 became false after that. The monitor applies W-extension by adding W to the interval-end

timestamp (of every interval) since it is always advantageous to choose E8 to be true whenever there

is a choice. The monitor then reports all snapshots where
∧
E8 becomes true (i.e., when W extended

intervals of all processes overlap). The monitor can use any algorithm discussed in Chapter 3 to

68

compute the overlap after the W-extension.

We extend the predicate detection algorithm in [20] to identify the ground truth with two

modifications. First, we replace Vector Clocks with Hybrid Vector Clocks(HVC)[46] to account

for clock synchronization. Second, we modified the algorithm so that it continues the detection

process until all valid snapshots are identified. Specifically, after finding a valid snapshot, we look

for the next non-overlapping valid snapshot.

We compute the number of true positives, false positives, and false negatives by comparing

the results returned by both monitoring solutions. For a valid snapshot identified by the modified

HVC based algorithm if the monitor using HLC with W-extension is unable to detect that snapshot

(or another overlapping snapshot), then it is a false negative (i.e., the monitor using HLC with

W-extension missed to identify this snapshot). If the monitor using HLC with W-extension finds a

snapshot but it (or another overlapping snapshot) is not reported by the HVC based algorithm then

it is a false positive. And, if the snapshot is reported by both then it is a true positive.

6.1.4.2 Observation

To analyze the effectiveness of W-extension, we computed the true positives, false positives and

false negatives reported by the monitor under different system settings as we varied W used by the

monitor. Our precision and recall results are displayed in Tables 6.11 and 6.2, respectively.

Precision of the monitor is computed as the ratio of the number of valid snapshots (i.e.,

consistent global states where P is true) detected by the monitor to the total number of snapshots

reported by it. In the table we provide the actual ratio i.e., number of valid snapshots divided by the

total number of snapshots reported in brackets, right next to the precision. Recall of the monitor

is computed as the ratio of the number of valid snapshots detected by the monitor to the number

of actual valid snapshots in the system. In the table we provide the actual ratio i.e. number of

valid snapshots detected divided by the number of actual snapshots in the system in brackets, right

1We report the precision as NA when the monitor does not detect any snapshots and therefore
detects no valid snapshots and the precision would be 0/0. This only happens for small W (for
example V = 0.02, W = 0.1 ∗ n).

69

next to the recall. We computed the precision and recall of the monitor under different system

parameters namely V - the rate at which the local predicate becomes true at a process, U - rate at

which a process sends a message, n - clock drift, X - message delay, ℓ - duration for which the local

predicate remains true at a process and = - number of processes.

Effect of V, ℓ and =. We observe that precision and recall increase with increase in V and

ℓ, because as V or ℓ increase they increase the probability of the local predicate being true in a

consistent snapshot. We also observe that for a smaller = (c.f. Tables 6.1f and 6.1g) the monitor

has a better precision and recall than for a higher =, because for an increased number of processes

the probability of a conjunctive predicate (
∧P8) being true in a snapshot decreases.

Effect of U and X. We observe that the precision decreases with increase in U and decrease

in X. This observation is compatible with our discussion in Section 6.1.3. Specifically, in Section

6.1.3, we considered the scenario where a snapshot or global state that is not a consistent due to

inter-process communication (i.e., due to causality between the events in the snapshot) is incorrectly

declared as a consistent snapshot/consistent global state by the monitor using W-extension. As U

increases - communication increases and as X decreases - messages are not delayed (causality has

immediate effect), therefore the number of false positives increase and precision of the monitor

decreases. On the other hand, recall increases with increase in U and decrease in X. This is

because in general an increase in U and decrease in X reduces the chance of a snapshot (or global

state) being a consistent snapshot (consistent global state), thereby reducing the number of actual

valid snapshots in the system. A decrease in the number of actual valid snapshots in the system

(denominator in recall) increases the recall.

70

No. of Valid Snapshots/Total Snapshots Detected (Default values: n = 10, n = 100, U = 0.1, X = 10, ℓ = 1, V = 0.02)
Precision V = 0.02 V = 0.025 V = 0.03 V = 0.035 V = 0.04 V = 0.045

W = 0.10 * n NA NA 0.333 (1/3) 1.000 (4/4) 0.739 (17/23) 0.929 (26/28)
W = 0.15 * n 0.500 (1/2) 0.000 (0/3) 0.529 (9/17) 0.650 (13/20) 0.797 (102/128) 0.743 (113/152)
W = 0.20 * n 0.500 (2/4) 0.286 (2/7) 0.511 (46/90) 0.582 (46/79) 0.732 (341/466) 0.742 (339/457)
W = 0.25 * n 0.200 (3/15) 0.190 (4/21) 0.477 (126/264) 0.466 (110/236) 0.688 (778/1131) 0.706 (771/1092)
W = 0.50 * n 0.077 (44/572) 0.070 (42/604) 0.192 (699/3635) 0.192 (722/3756) 0.383 (2756/7188) 0.384 (2780/7246)
W = 0.75 * n 0.025 (71/2827) 0.024 (70/2931) 0.107 (809/7575) 0.109 (844/7721) 0.304 (2877/9473) 0.305 (2905/9518)
W = n 0.013 (71/5651) 0.013 (71/5665) 0.088 (813/9208) 0.092 (850/9252) 0.292 (2879/9855) 0.295 (2907/9859)

(a) Varying V - rate at which the local predicate becomes true at a process
Precision U = 0.01 U = 0.1 U = 0.2

W = 0.10 * n 1.000 (9/9) NA NA
W = 0.15 * n 0.913 (21/23) 0.500 (1/2) NA
W = 0.20 * n 0.911 (51/56) 0.500 (2/4) NA
W = 0.25 * n 0.901 (136/151) 0.200 (3/15) 0.000 (0/1)
W = 0.50 * n 0.830 (1373/1655) 0.077 (44/572) 0.006 (1/164)
W = 0.75 * n 0.688 (3348/4867) 0.025 (71/2827) 0.001 (1/1131)
W = n 0.541 (4141/7657) 0.013 (71/5651) 0.000 (1/3084)

(b) Varying U - rate at which processes send messages

Precision n = 100 n = 1000

W = 0.10 * n NA 0.077 (76/993)
W = 0.15 * n 0.500 (1/2) 0.076 (76/1000)
W = 0.20 * n 0.500 (2/4) 0.076 (76/1000)
W = 0.25 * n 0.200 (3/5) 0.076 (76/1000)
W = 0.50 * n 0.077 (44/572) 0.076 (76/1000)
W = 0.75 * n 0.025 (71/2827) 0.076 (76/1000)
W = n 0.013 (71/5651) 0.076 (76/999)

(c) Varying n-clock drift
Precision X = 1 X = 5 X = 10 X = 50 X = 100 X = 1000

W = 0.10 * n NA NA NA NA NA NA
W = 0.15 * n 0.000 (0/5) 0.500 (1/2) 0.500 (1/2) 1.000 (1/1) NA 1.000 (1/1)
W = 0.20 * n 0.000 (0/10) 0.286 (2/7) 0.500 (2/4) 1.000 (5/5) NA 1.000 (4/4)
W = 0.25 * n 0.054 (2/37) 0.111 (3/27) 0.200 (3/15) 0.800 (8/10) 0.909 (10/11) 1.000 (8/8)
W = 0.50 * n 0.010 (7/678) 0.042 (25/602) 0.077 (44/572) 0.752 (415/552) 0.846 (452/534) 0.871 (452/519)
W = 0.75 * n 0.002 (7/2911) 0.011 (31/2864) 0.025 (71/2827) 0.565 (1535/2717) 0.800 (2176/2719) 0.794 (2144/2701)
W = n 0.001 (8/5768) 0.006 (31/5578) 0.013 (71/5651) 0.382 (2116/5536) 0.679 (3737/5502) 0.693 (3759/5426)

(d) Varying X - message delay
Precision ℓ = 1 ℓ = 10 ℓ = 20 ℓ = 50 ℓ = 100 ℓ = 1000

W = 0.10 * n NA 0.500 (1/2) 0.923 (12/13) 0.859 (140/163) 0.887 (524/591) 0.908 (1337/1472)
W = 0.15 * n 0.500 (1/2) 0.600 (6/10) 0.765 (26/34) 0.801 (233/291) 0.860 (762/886) 0.892 (1653/1854)
W = 0.20 * n 0.500 (2/4) 0.576 (19/33) 0.675 (54/80) 0.756 (356/471) 0.829 (1035/1249) 0.867 (1984/2289)
W = 0.25 * n 0.200 (3/15) 0.476 (40/84) 0.570 (102/179) 0.704 (533/757) 0.776 (1295/1669) 0.832 (2309/2775)
W = 0.50 * n 0.077 (44/572) 0.183 (191/1041) 0.275 (434/1581) 0.421 (1325/3150) 0.546 (2419/4430) 0.629 (3451/5483)
W = 0.75 * n 0.025 (71/2827) 0.070 (261/3744) 0.126 (551/4373) 0.262 (1555/5934) 0.388 (2664/6868) 0.492 (3701/7525)
W = n 0.013 (71/5651) 0.041 (264/6368) 0.082 (566/6898) 0.201 (1568/7812) 0.320 (2687/8394) 0.431 (3723/8639)

(e) Varying ℓ- duration for which the local predicate remains true
No. of Valid Snapshots/Total Snapshots Detected (Default values: n = 5, n = 100, U = 0.1, X = 10, ℓ = 20, V = 0.004)

Precision V = 0.02 V = 0.01 V = 0.005 V = 0.004 V = 0.002

W = 0.10 * n 0.953 (784/823) 0.915 (483/528) 0.700 (7/10) 1.000 (2/2) NA
W = 0.15 * n 0.937 (1145/1222) 0.904 (768/850) 0.667 (12/18) 0.667 (2/3) NA
W = 0.20 * n 0.913 (1548/1696) 0.869 (1059/1218) 0.710 (22/31) 0.667 (2/3) NA
W = 0.25 * n 0.893 (1977/2214) 0.847 (1409/1663) 0.596 (28/47) 0.600 (3/5) NA
W = 0.50 * n 0.751 (3856/5133) 0.666 (3011/4518) 0.376 (86/229) 0.286 (12/42) 0.000 (0/2)
W = 0.75 * n 0.628 (4532/7222) 0.535 (3634/6789) 0.182 (141/776) 0.135 (26/192) 0.333 (1/3)
W = n 0.556 (4681/8426) 0.462 (3756/8123) 0.104 (184/1766) 0.067 (38/566) 0.071 (1/14)

(f) Varying V - rate at which the local predicate becomes true at a process
Precision U = 0.01 U = 0.025 U = 0.05

W = 0.10 * n 1.000 (2/2) 1.000 (2/2) 0.667 (2/3)
W = 0.15 * n 1.000 (3/3) 1.000 (3/3) 0.667 (2/3)
W = 0.20 * n 1.000 (3/3) 1.000 (3/3) 0.667 (2/3)
W = 0.25 * n 1.000 (6/6) 0.833 (5/6) 0.667 (4/6)
W = 0.50 * n 0.850 (34/40) 0.590 (23/39) 0.390 (16/41)
W = 0.75 * n 0.631 (113/179) 0.425 (74/174) 0.271 (49/181)
W = n 0.493 (276/560) 0.310 (174/562) 0.157 (90/572)

(g) Varying U - rate at which processes send messages
Table 6.1: Percentage of Valid Snapshots out of all snapshots detected during Conjunctive Predicate
Detection using W-extension. Each entry corresponds to precision (No. of Valid Snapshots
detected/Total Snapshots Detected).

71

No. of Valid Snapshots detected/No. of Valid Snapshots in the system(Default values: n = 10, n = 100, U = 0.1, X = 10, ℓ = 1, V = 0.02)
Recall V = 0.02 V = 0.025 V = 0.03 V = 0.035 V = 0.04 V = 0.045

W = 0.10 * n 0.000 (0/71) 0.000 (0/71) 0.001 (1/813) 0.005 (4/850) 0.006 (17/2879) 0.009 (26/2907)
W = 0.15 * n 0.014 (1/71) 0.000 (0/71) 0.011 (9/813) 0.015 (13/850) 0.035 (102/2879) 0.039 (113/2907)
W = 0.20 * n 0.028 (2/71) 0.028 (2/71) 0.057 (46/813) 0.054 (46/850) 0.118 (341/2879) 0.117 (339/2907)
W = 0.25 * n 0.042 (3/71) 0.056 (4/71) 0.155 (126/813) 0.129 (110/850) 0.270 (778/2879) 0.265 (771/2907)
W = 0.50 * n 0.620 (44/71) 0.592 (42/71) 0.860 (699/813) 0.849 (722/850) 0.957 (2756/2879) 0.956 (2780/2907)
W = 0.75 * n 1.000 (71/71) 0.986 (70/71) 0.995 (809/813) 0.993 (844/850) 0.999 (2877/2879) 0.999 (2905/2907)
W = n 1.000 (71/71) 1.000 (71/71) 1.000 (813/813) 1.000 (850/850) 1.000 (2879/2879) 1.000 (2907/2907)

(a) Varying V - rate at which the local predicate becomes true at a process
Recall U = 0.01 U = 0.1 U = 0.2

W = 0.10 * n 0.002 (9/4141) 0.000 (0/71) 0.000 (0/1)
W = 0.15 * n 0.005 (21/4141) 0.014 (1/71) 0.000 (0/1)
W = 0.20 * n 0.012 (51/4141) 0.028 (2/71) 0.000 (0/1)
W = 0.25 * n 0.033 (136/4141) 0.042 (3/71) 0.000 (0/1)
W = 0.50 * n 0.332 (1373/4141) 0.620 (44/71) 1.000 (1/1)
W = 0.75 * n 0.809 (3348/4141) 1.000 (71/71) 1.000 (1/1)
W = n 1.000 (4141/4141) 1.000 (71/71) 1.000 (1/1)
(b) Varying U - rate at which processes send messages

Recall n = 100 n = 1000

W = 0.10 * n 0.000 (0/71) 1.000 (76/76)
W = 0.15 * n 0.014 (1/71) 1.000 (76/76)
W = 0.20 * n 0.028 (2/71) 1.000 (76/76)
W = 0.25 * n 0.042 (3/71) 1.000 (76/76)
W = 0.50 * n 0.620 (44/71) 1.000 (76/76)
W = 0.75 * n 1.000 (71/71) 1.000 (76/76)
W = n 1.000 (71/71) 1.000 (76/76)

(c) Varying n -clock drift

Recall X = 1 X = 5 X = 10 X = 50 X = 100 X = 1000

W = 0.10 * n 0.000 (0/8) 0.000 (0/31) 0.000 (0/71) 0.000 (0/2116) 0.000 (0/3737) 0.000 (0/3759)
W = 0.15 * n 0.000 (0/8) 0.032 (1/31) 0.014 (1/71) 0.000 (1/2116) 0.000 (0/3737) 0.000 (1/3759)
W = 0.20 * n 0.000 (0/8) 0.065 (2/31) 0.028 (2/71) 0.002 (5/2116) 0.000 (0/3737) 0.001 (4/3759)
W = 0.25 * n 0.250 (2/8) 0.097 (3/31) 0.042 (3/71) 0.004 (8/2116) 0.003 (10/3737) 0.002 (8/2759)
W = 0.50 * n 0.875 (7/8) 0.806 (25/31) 0.620 (44/71) 0.196 (415/2116) 0.121 (452/3737) 0.120 (452/3759)
W = 0.75 * n 0.875 (7/8) 1.000 (31/31) 1.000 (71/71) 0.725 (1535/2116) 0.582 (2176/3737) 0.570 (2144/3759)
W = n 1.000 (8/8) 1.000 (31/31) 1.000 (71/71) 1.000 (2116/2116) 1.000 (3737/3737) 1.000 (3759/3759)

(d) Varying X - message delay
Recall ℓ = 1 ℓ = 10 ℓ = 20 ℓ = 50 ℓ = 100 ℓ = 1000

W = 0.10 * n 0.000 (0/71) 0.004 (1/264) 0.021 (12/566) 0.089 (140/1568) 0.195 (524/2687) 0.359 (1337/3723)
W = 0.15 * n 0.014 (1/71) 0.023 (6/264) 0.046 (26/566) 0.149 (233/1568) 0.284 (762/2687) 0.444 (1653/3723)
W = 0.20 * n 0.028 (2/71) 0.072 (19/264) 0.095 (54/566) 0.227 (356/1568) 0.385 (1035/2687) 0.533 (1984/3723)
W = 0.25 * n 0.042 (3/71) 0.152 (40/264) 0.180 (102/566) 0.340 (533/1568) 0.482 (1295/2687) 0.620 (2309/3723)
W = 0.50 * n 0.620 (44/71) 0.723 (191/264) 0.767 (434/566) 0.845 (1325/1568) 0.900 (2419/2687) 0.927 (3451/3723)
W = 0.75 * n 1.000 (71/71) 0.989 (261/264) 0.973 (551/566) 0.992 (1555/1568) 0.991 (2664/2687) 0.994 (3701/3723)
W = n 1.000 (71/71) 1.000 (264/264) 1.000 (566/566) 1.000 (1568/1568) 1.000 (2687/2687) 1.000 (3723/3723)

(e) Varying ℓ- duration for which the local predicate remains true
No. of Valid Snapshots detected/No. of Valid Snapshots in the system(Default values: n = 5, n = 100, U = 0.1, X = 10, ℓ = 20, V=0.004)

Recall V = 0.02 V = 0.01 V = 0.005 V = 0.004 V = 0.002

W = 0.10 * n 0.167 (784/4681) 0.129 (483/3756) 0.038 (7/184) 0.053 (2/38) NA
W = 0.15 * n 0.245 (1145/4681) 0.204 (768/3756) 0.065 (12/184) 0.053 (2/38) NA
W = 0.20 * n 0.331 (1548/4681) 0.282 (1059/3756) 0.120 (22/184) 0.053 (2/38) NA
W = 0.25 * n 0.422 (1977/4681) 0.375 (1409/3756) 0.152 (28/184) 0.079 (3/38) NA
W = 0.50 * n 0.824 (3856/4681) 0.802 (3011/3756) 0.467 (86/184) 0.316 (12/38) NA
W = 0.75 * n 0.968 (4532/4681) 0.968 (3634/3756) 0.766 (141/184) 0.684 (26/38) 1.000 (1/1)
W = n 1.000 (4681/4681) 1.000 (3756/3756) 1.000 (184/184) 1.000 (38/38) 1.000 (1/1)

(f) Varying V - rate at which the local predicate becomes true at a process
Recall U = 0.01 U = 0.025 U = 0.05

W = 0.10 * n 0.007 (2/276) 0.011 (2/174) 0.022 (2/90)
W = 0.15 * n 0.011 (3/276) 0.017 (3/174) 0.022 (2/90)
W = 0.20 * n 0.011 (3/276) 0.017 (3/174) 0.022 (2/90)
W = 0.25 * n 0.022 (6/276) 0.029 (5/174) 0.044 (4/90)
W = 0.50 * n 0.123 (34/276) 0.132 (23/174) 0.178 (16/90)
W = 0.75 * n 0.409 (113/276) 0.425 (74/174) 0.544 (49/90)
W = n 1.000 (276/276) 1.000 (174/174) 1.000 (90/90)
(g) Varying U - rate at which processes send messages

Table 6.2: Percentage of Valid Snapshots detected during Conjunctive Predicate Detection using
W-extension out of all Valid Snapshots in the system. Each entry corresponds to recall (No. of
Valid Snapshots detected/No. of Valid Snapshots in the system)

72

Effect of W. We observe that irrespective of the underlying system setting the precision of the

monitor decreases and the recall increases as the value of W increases. For example in Table 6.1a,

consider the case where V = 0.045, as the value of W increases from 0.1 ∗ n to n , the precision of

the monitor drops from 0.929 to 0.295.On the other hand, in Table 6.2a, for the case V = 0.045,

as the value of W increases from 0.1 ∗ n to n the recall of the monitor increases from 0.009 to 1.

Thus if W is set to be a smaller fraction of n then the monitor will have higher precision and lower

recall. On the other hand if W is set to be closer to n then the monitor will have lower precision and

higher recall. Observe that one can choose W such that both precision and recall of the monitor are

reasonable and not too low. For example, in Table 6.1f for V = 0.02 when W is set to 0.5 ∗ n the

precision is 0.751 and the corresponding recall in Table 6.2f is 0.824.

While the observed precision values are low, observe that the number of actual valid snapshots

in the system for some of the settings are very high. For example, in Table 6.1a for V = 0.045,

W = n , precision is 0.295, and the number of actual valid snapshots in the system is 2907 (c.f. Table

6.2a, V = 0.045, W = n , denominator). This corresponds to the case where the monitor has a low

precision in a system that has several bugs. In such a scenario, bugs in the system could be related

to a common problem and detecting a few bugs and fixing the cause could eliminate majority of

the bugs in the system. Also, on the other hand if a system has so many bugs one should be able to

detect them by generic testing.

6.1.5 Implications of False Negatives/Positives

From Tables 6.1a and 6.2a, we see that the use of W-extension can suffer from high false positives

and/or false negatives. We now discuss how we can cope with false positives and false negatives.

We first consider the case where we only have false positives. We expect that the violations are

likely to be rare. This is due to the fact that we generally deploy programs that are mostly correct.

As an illustration, suppose that the likelihood of an error in a given time unit (say 1 B42>=3) is

0.1% and the false positive rate is 90%. That means that the likelihood that the monitor reports

an error in the given time unit is 1%. In this setting, we can use a second monitor that is accurate

73

but expensive to analyze these computation slices (corresponding to 1% of the computation) to

determine which errors are real. The key observation is that, in this case, 99% of the computation

would not be analyzed with the expensive monitor. We use this idea to develop a two-layered

monitor in Section 6.2.

We next consider the case of false negatives. While false negatives are not ideal, in many

situations, they may be acceptable. For example, if most false negatives are latent errors (rarely

manifest in practice but can be detected with an accurate monitor), even a 90% false negative rate

(i.e., only 1 in 10 latent errors is identified) means the error, on average, would take roughly 10

times as long to detect. Furthermore, we may resort to using a monitor that has false negatives

when the resource requirements of more accurate monitors, such as the one from [20] which

requires $ (=) size clocks, make deploying the more accurate monitor practically impossible. In

such circumstances, we must use the most accurate monitor that can be deployed.

6.2 Two-Layered Monitoring Approach

Predicate detection using SMT solvers discussed in Chapter 5 guarantees the absence of false

positives and false negatives, but the drawback of this monitoring approach is the high computation

time required to perform the detection. If the monitor takes too long, it cannot be used in an

online setting as it will not be able to keep up with the application. In this section, we present

our two-layered monitoring approach that is both accurate and efficient. The first layer uses HLC

based monitor with W-extension, and the second layer uses SMT solvers. We invoke the SMT based

monitor (which is accurate but inefficient) only if the HLC based monitor with W extension (which

is inaccurate but efficient) identifies the possibility that the predicate P of interest is likely to be

true. Specifically, the combined monitor works as follows:

• Similar to the monitoring approach discussed in Section 5.1, each process reports changes of

variables involved in predicate P to the monitor. It also reports to the monitor the timestamps

of messages that are sent and received.

• HLC based monitor with W-extension uses the information about variable changes to deter-

74

mine if P is true. Note that if W = n , this approach suffers from only false positives. For

W < n , it may suffer from false positives and negatives.

• The SMT based monitor creates constraints as discussed in Section 5.1. These constraints

are partitioned into windows based on the timestamps of the corresponding events (message

send/receive events and events where the value of a variable changes). For example, if F is

the length of the window, then the windows correspond to timestamps, [0..F+n], [F..2F+n],

etc. The overlap of n is added to ensure that we do not miss snapshots that cross window

boundaries. In this chapter, we use F = n .

• If themonitor based onHLCwith W-extension finds a consistent snapshot whereP is satisfied,

then themonitor invokes the SMT solver on correspondingwindow of constraints. Otherwise,

the constraints from that window are discarded.

• We batch the windows on which the SMT solver is invoked. This means the SMT solver is

invoked less often but has to deal with multiple windows at once.

The recall of the two-layered monitor depends on the value of W used in the filtering layer. Based

on our discussion in Section 6.1.4.2, if W = n in the filtering layer, then the two-layered monitor

will have perfect recall. If the false positive rate of n-extension is too high thereby resulting in

an inability to run the second layer of the monitor efficiently, we may have to use W < n thereby

sacrificing perfect recall. In this case, the two-layered monitor may suffer from false negatives.

Irrespective of the value of W used, the two-layered monitor will have perfect precision, i.e. no

false positives, because the solver in the second layer will verify and eliminate all false positives.

In general, using HLC with W-extension as a filtering layer will reduce the number of times the

monitor has to invoke the solver. This is due to the fact that if the filtering layer does not detect a

violation in a window, then the monitor does not have to invoke the solver to check that window.

To analyze the effect of the two-layered approach, we compare itwith the single-layered approach

in Chapter 5.

75

6.2.1 Evaluating Efficiency of the Two Layered Monitor

6.2.1.1 Application based on time division multiplexing.

To evaluate the effectiveness of the two-layered monitor, we use it to monitor an application similar

to the exclusive access application considered in Section 5.3.1. The application uses time division

multiplexing to ensure exclusive access to a shared resource. The application has the same setup

discussed in Section 6.1.4.1, except for the parameters V and ℓ. In this application, the value of the

variable E8 at process 8 denotes if the process 8 is accessing the shared resource (E8 = CAD4) or not

(E8 = 5 0;B4).

The basic intuition of time division multiplexing is as follows. Process 0 accesses the resource

in interval [0,)), process 1 accesses it in the interval [), 2)), and so on. After the last process

accesses the resource, process 0 can access it again. And, the cycle repeats.2. To account for clock

drift and avoid simultaneous access, the access-windows are changed to [0,) − n), [), 2) − n)

and so on. However, we introduce an error so that the time to release the resource is changed

with probability of 10%. This will cause some processes to continue accessing the resource while

the next process in the sequence starts accessing the resource. Thus, the predicate P of interest

captures that two or more processes are accessing the resource simultaneously.

6.2.1.2 Two-layered Monitoring Setup

In the two layered monitoring setup, we treat every 100 windows (recall that each window F is

of duration n) of the application run as a batch. At the end of every batch, the monitor first

performs predicate detection using HLC with W-extension by processing all the intervals3 reported

by the processes in the current batch. For every snapshot detected using HLC with W-extension,

the monitor marks the corresponding window in the batch. Then the monitor invokes the solver

to process all the marked windows in the batch. Specifically, the monitor generates constraints

2The application considered in Section 5.3.1 allowed every process to access the resource exactly
once, i.e., without a cyclic repetition.

3Recall that each interval reported by a process 8 corresponds to a duration for which E8 was true

76

corresponding to all the marked windows in the batch and feeds it to the solver. It records the total

time taken by the solver to evaluate them. The monitor then invokes the solver (again) to process

all the windows (marked and unmarked) in the batch and records the total time taken by the solver.

We apply the two-layered monitor in the time division multiplexing protocol based application

varying the parameters U, X, n in the application and W in the monitor where the monitor is trying to

detect if the processes ever violate the exclusive access requirement i.e., if two or more processes

access the shared resource simultaneously. For each setting, we obtain the overall time taken by the

solver to check all the windows in each batch (this corresponds to the time taken by the solver in

the single-layered monitor in Chapter 5) and the overall time taken by the solver to check only the

windows marked by HLC with W-extension in each batch (this corresponds to the time taken by the

solver in the two-layered monitor). We also computed the time taken for predicate detection using

HLC with W-extension in the filtering layer and observed that it takes around 2 to 3 seconds.

6.2.1.3 Experimental Results

We present our experimental results in Figure 6.3. The graphs on the left (Figures 6.3a, 6.3c, 6.3e)

present the time taken (in milliseconds) by the solver in the single-layered monitor in Chapter 5.

For the same settings, we present the corresponding total time taken (in milliseconds) by the solver

in the two-layered monitor in the graphs on the right (Figures 6.3b, 6.3d, 6.3f).

We note that when W = n , the single layered monitor and the two-layered monitor are both

completely accurate with no false positives or false negatives. We observe that the two-layered

monitor is much more efficient. For example, when = = 10, X = 10, n = 100, U = 0.1 in the

application in 6.2.1.1, the two layered monitor takes 2 seconds for the first layer and 1.1 seconds

for the second layer. By contrast, the single layered monitor takes 81 seconds. On average, the

two-layered monitor reduces the cost by 90%, with a minimum savings of 85% across all our

parameter settings. Furthermore, the maximum time required for the second layer across all our

parameter settings is only 2.5 seconds which is comparable to the time required for the first layer.

This ensures that the second layer will not become the bottleneck.

77

0

20000

40000

60000

80000

100000

120000

1 10 100 1000

Av
er

ag
e

To
ta

l T
im

e
Ta

ke
n

(in
 m

s)

δ

Time taken by the solver in single-layered monitor

(a) Varying X and W

-500

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Av
er

ag
e

To
ta

l T
im

e
Ta

ke
n

(in
 m

s)

ɣ

Time taken by solver in two-layered monitor

delta=1 delta=5 delta=10 delta=50 delta=100 delta=1000

(b) Varying X and W (Time taken by the first layer was
approximately 2 seconds)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

0 200 400 600 800 1000

Av
er

ag
e

To
ta

l T
im

e
Ta

ke
n

(in
 m

s)

ϵ

Time taken by the solver in the single layered monitor

(c) Varying n and W

-500

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Av
er

ag
e

To
ta

l T
im

e
Ta

ke
n

(in
 m

s)

ɣ

Time taken by the solver in two-layered monitor

epsilon=1 epsilon=2 epsilon=5

epsilon=10 epsilon=100 epsilon=1000

(d) Varying n and W (Time taken by the first layer was
approximately 3 seconds)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

0 0.1 0.2 0.3 0.4 0.5Av
er

ag
e

To
ta

l T
im

e
Ta

ke
n

(in
 m

s)

α

Time taken by the solver in single layered monitor

(e) Varying U and W

-500

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Av
er

ag
e

To
ta

l T
im

e
ta

ke
n

(in
 m

s)

ɣ

Time taken by the solver in two-layered monitor

alpha=0 alpha=0.01 alpha=0.1 alpha=0.2 alpha=0.5

(f) Varying U and W (Time taken by the first layer was
approximately 3 seconds)

Figure 6.3: Time taken by the SMT Solver to detect violations of mutual exclusion in a time
division multiplexing protocol when processing all windows vs windows marked by W-extension.
W is varied as fractions of n (taking floor value if the fraction is not an integer). Time is measured
in milliseconds. Default values: n=10, n = 100, U = 0.1, X = 10.

78

A W extension (W < n) should be used only if the time required for the n-extension monitor is still

too high, as it will allow us to reduce the time of monitoring further at the cost of false negatives. We

explore how decreasing W reduces the time required by the second layer. The three graphs in Figures

6.3b, 6.3d, 6.3f show a roughly linear decrease in running time for the second layer as a function of

W across all three parameters U, V, and X. Details of the increase in false positives/negatives are in

Tables .1b and .2b in the Appendix. Note that false positives will be removed by the second layer.

In general, we observe that the time taken for the two-layered monitoring approach decreases when

the message frequency decreases, clock drift decreases, or when the message delay increases.

We note that we considered the problem of conjunctive predicate monitoring in Section 6.1.4

as it forms a basis of all predicates. We considered mutual exclusion in this section as it occurs

more frequently in practice. Furthermore, conjunctive predicates cannot be configured easily

to have a nonzero but small number of bugs. However, we find similar results in the case of

conjunctive predicates when the number of bugs is small. Specifically, we observed the same

trend when the two-layered monitor was deployed in the context of conjunctive predicates when

the number of valid snapshots in the system was small (<50). For example, for the setting

= = 5, U = 0.1, ℓ = 20, V = 0.004 where the number of valid snapshots in the system was 38,

the time taken by the solver in the single-layered monitor was 16.8s, whereas in the two-layered

monitor it took 3.2s. (We note that having more than 50 bugs in the runs considered here would

mean the application is not ready to be deployed; it needs to be tested thoroughly, not monitored at

runtime.)

6.3 Advantages andLimitations of predicate detection using W-extension and
two-layered monitoring

In this chapter, HLC based predicate detection (monitoring) with the use of W-extension was first

introduced. A key advantage of this monitor is its simplicity and reduced overhead. Specifically, it

permits the use of just $ (1) sized timestamps. Also, it permits monitoring of complex predicates.

A key disadvantage of HLC based monitors was that they suffered from false negatives. In

79

partially synchronous systems (that rely on clocks being synchronized within n), we can eliminate

the false negatives at the cost of permitting false positives by using n-extension. By choosing a

W extension (W < n), we can obtain a trade-off between false positives and false negatives. We

combined the HLC based monitor with W-extension and the SMT based monitor in Chapter 5 to

obtain efficient and accurate monitors. When we set W = n , these monitors have no false positives

or false negatives (i.e., they identify all bugs without identifying any phantom bugs). Furthermore,

the time required for monitoring is significantly smaller (85-95% less) than the monitoring solution

discussed in Chapter 5.

In the event that the computation time is still higher than anticipated, W-extension (W < n)

can help. Specifically, W-extension reduces the number of false positives thereby reducing the

instances when the SMT solver is invoked. The cost of this is that the monitor will suffer from

false negatives. However, if we are dealing with bugs that stay latent for a long time before they

result in an actual problem, false negatives may be acceptable when the other option is an inability

to monitor. For example, for the application in 6.2.1, when U = 0.1, = = 10, X = 10, n = 100, if we

choose W = 0.25 ∗ n , then the cost of monitoring becomes 228 ms (when compared with 1.1s for

n-extension). In this scenario, the false negative rate is 0.627, i.e., roughly every 3 bugs out of 8

would be identified.

While our approach is designed for partially synchronous systems, it works for asynchronous

(n = ∞) systems as well. Specifically, the notion of W-extension can be applied for any W, W < n .

The number of expected false negatives in such a setting can be characterized by the results in [47].

While this approach would have some false negatives, the overall cost of it would be significantly

lower as it relies on $ (1) HLC timestamps than $ (=) Vector Clock timestamps.

80

CHAPTER 7

RELATEDWORK

7.1 Detection of different types of predicates

Predicate detection in distributed systems has been studied extensively [24, 40, 14, 20, 21, 1]

in the past. Predicate detection algorithms focusing on detection of specific types or classes of

predicates exist in literature [24, 10, 11]. Specifically, a predicate is referred to as a strong predicate

if all serializations or ordering of events (across process) contain a global state where the predicate

becomes true. A predicate is weak if only some serializations of events contain a global state where

the predicate becomes true. Algorithms for detection of strong and weak unstable predicates were

presented in [19] and [24] respectively. A predicate is referred to as an unstable predicate if it

can become false after holding true for some time and stable predicates are predicates that never

become false once they become true. Predicate detection algorithms focusing on stable predicates

were discussed in [10, 42]. In [19], Waldecker and Garg also presented an algorithm that focuses

on the detection of strong linked predicates, where linked predicates are predicates that involve

multiple cuts or global states.

Temporal logic predicates are predicates that involve temporal operators like EF, EG and AG. In

distributed systems, an observed run can correspond to several serializations of events, i.e., events

in the run can be ordered in several different ways. If each serialization is viewed as a possible

path that the system could have taken during execution, then temporal operators help in specifying

requirements in terms of the paths that the system can take. Algorithms for detecting temporal

logic predicates in distributed systems were presented in [40, 41, 4].

In [11], Chase andGarg classified predicates into linear and semi-linear predicates. They showed

that for linear predicates efficient algorithms for detecting the earliest global state that satisfies the

predicate exist, whereas for semi-linear predicates some global state where the predicate is satisfied

can be detected. In [11], an algorithm for the detection of predicates of the type G1+G2+· · ·+G# < : ,

81

called bounded sum predicates (similar to arithmetic predicates in Chapter 3), was also presented.

For predicate detection in [10, 42] processes in the system send their local state information or local

snapshot to other processes in a sequential or coordinated fashion to compute the global snapshot

or global states. Predicate detection algorithms in [24, 19, 11, 41] rely on the use of Vector Clocks.

While Vector Clocks are widely used for predicate detection [24, 20, 22]. A disadvantage of

using Vector Clocks is that each vector clock timestamp is of size $ (=). One can use Optimal

Vector Clocks [50] or Hybrid Vector Clocks [46] to reduce the size of the timestamps. But, the

size still remains$ (=) in the worst case. Another disadvantage of Vector Clocks is that they do not

account for real time information. Capturing real time information can be beneficial in identifying

when the violation happened in real time. Also, as discussed in Chapter 1, capturing real/physical

time information helps in eliminating global states that contain events that are far apart in physical

time as infeasible states, i.e., the system could not have gone through these global states during

system execution. Specifically, if the clock drift in the system is bounded by n , then two events that

seem to be concurrent based on their vector clock or logical clock timestamps are not concurrent

events if they happened more than n apart in physical time. Therefore, predicate detection using

vector clocks can result in false positives.

7.2 Accounting for real time information

To capture real time information, algorithms can use physical timestamps assigned by local

physical clocks at the processes in a distributed system. However, local physical clocks at processes

in distributed systems are not always perfectly synchronized. Local physical clocks can be syn-

chronized using NTP (Network Time Protocol)[38], GPS, WWV radio [33], GOES (Geostationary

Operational Environment Satellites)[39], etc. The clock drift associated with these synchronization

solutions range from 0.1 ms to 10 ms. Since solutions that guarantee almost no clock drift have

higher associated cost or are not suitable in most practical settings, synchronization solutions that

guarantee non-zero but small clock drift are used more commonly in practice. In other words, most

real-world distributed systems are partially synchronized, i.e., local physical clocks at processes

82

have bounded clock drift n , n >0. Therefore, with partially synchronous systems, one has to account

for clock drift when capturing and utilizing real/physical time information for predicate detection.

All the predicate detection algorithms presented in this report capture physical time information

and clock drift between processes. Specifically, all the algorithms presented in this report use

Hybrid Logical Clocks or an extension of it, and the value of ; in Hybrid Logical Clocks is always

guaranteed to stay close to (i.e., within n-clock drift of) the underlying physical clock value.

Predicate detection using physical clocks while also accounting for clock drift was discussed in

[43]. Specifically, in [43], Stoller proposed the use of physical clocks to detect global predicates,

where for a system of = processes, if the inter-event spacing is greater than the clock drift, then the

total number of possible states to be evaluated is$ (�=), where � is maximum number of events at

any process. The predicate detection algorithms considered in this report relied on Hybrid Logical

Clocks (or an extension of it) which are also constant sized clocks like physical clocks. However,

algorithms considered in this report do not make any assumptions about the inter-event spacing. In

terms of complexity, in Chapter 3, several algorithms with comparable complexities ranging from

$ (� log(Δ=)) to $ (�=), where I is number of reported intervals and Δ is the bounded message

delay, were presented.

7.3 Trading off false negatives/positives for efficiency

Several existing monitoring techniques use the notion of allowing false negatives for efficiency.

Specifically, in [17], they perform optimistic hybrid analysis. In hybrid analysis, checks proven by

static analysis are not checked during dynamic analysis. In [17], they show that by carefully making

the static analysis unsound i.e., by allowing false negatives, they can speed up the dynamic analysis.

Specifically, they make the static analysis unsound by making some assumptions (consider some

likely invariant) that may or may not be true. However, they check the assumptions during dynamic

analysis to ensure that they are actually true, if not then the analysis is rolled back and traditional

hybrid analysis is performed i.e., without allowing false negatives during static analysis.

Monitoring approaches that use techniques like sampling [35] and computation slicing [23] aim

83

to improve efficiency of the monitor by analyzing only selected portions of program executions. In

[35], they show that it is possible to sample a multi-threaded program at a low frequency, and yet,

find infrequently occurring data races. They found that even when sampling at a small rate (for

instance 2% of data accesses) they were able to find a lot (70%) of the data races. Essentially, they

allow false negatives (for instance 30% of the data races) to achieve efficiency. In [49], they use

adaptive tracking for efficient detection of data races. To eliminate false positives they switch the

monitoring granularity from object level (for example tracking locksets associated with arrays) to

field level (tracking locksets associated with array elements) only if the object level analysis reports

a warning.

7.4 Adaptive runtime monitoring

Monitors in [32] and [37] adapt to overhead-budgets or timing/memory constraints. Specifi-

cally, in [32], they discuss policies that help decide what monitoring events/operations should be

skipped/dropped while monitoring to reduce the monitoring overhead. They skip some monitoring

operations (leading to false negatives) to stay within predefined overhead budget while maximizing

coverage (reduce false negatives) within the budget.

In [37], they propose a control-theoretic monitoring solution that focuses on improving memory

utilization of themonitor and reducing detection latency. They reducemonitor jitters by dynamically

buffering and reporting events to the monitor periodically. Specifically, in [37], they propose an

approach where the monitor uses a feedback loop to control how frequently the events are reported

to the monitor. This helps the monitor to adapt to the frequency of events in system. They

also propose the use of dynamically-sized buffers, where the size of the buffers that stores events

between monitor invocations changes to adapt to demand. Our two-layered monitoring approach

in Chapter 6 can be combined with the approach in [37]. Specifically, our two-layered monitor

has a fixed polling period (batches of fixed-length) and we consider unbounded buffers. We can

extend our approach to let the polling periods and the buffer sizes to be dynamic. On the other

hand, we could also extend our approach to use a feedback loop to learn about the frequency of

84

events, and dynamically turn off the second layer of the monitor if the frequency is high at the

cost of false positives/negatives (depending on W), and turn it back on when the frequency is not

too high. While the monitoring solutions provided in this report do not dynamically adapt to

timing/memory constraints or adjust monitoring operations to stay within predefined overhead-

budgets, we presented different monitoring approaches that one can choose from to suit their

monitoring budget and coverage.

85

CHAPTER 8

FUTUREWORK

In this chapter, we will discuss some of our potential future research directions. Specifically, in

Section 8.1.1, we will discuss about improving the performance of runtime monitors that use SMT

solvers, presented in Section 5. Furthermore, in Section 8.1.2, we discuss about the applicability

of these monitors in detecting different types of predicates. In Section 8.2, we will discuss the use

of other techniques or models instead of SMT solvers, to aid the monitor in performing predicate

detection. In Section 8.3, we discuss about detection of violations that do not reveal themselves

in all runs, but when the messages in the system are received by the processes in a specific order.

Lastly, in Section 8.4, we discuss about defining the problem of predicate detection as a Constraint

Satisfaction Problem (CSP) and solving it using a constraint programming optimizer.

8.1 Extensions of runtime monitoring using SMT solvers

8.1.1 Online monitoring with multiple monitors.

As discussed inChapter 5, runtimemonitoring using SMT solvers guarantee detection of all possible

instances of predicate satisfaction, but if implemented in an online runtime monitoring setup, the

monitor may fail to keep up with the system being monitored. Therefore, using multiple monitors

to share the monitoring load during runtime monitoring can help in reducing the lag. Specifically,

since our experiments in Chapter 5 showed that the monitor took 1-2 seconds to perform predicate

detection in a system run that was 1s long, using two monitor instances that invoke independent

SMT solver instances can be helpful in such scenarios. In other words, periodically the processes in

the system will have to switch the monitor that they report to. Such a monitoring approach can be

effective if at least one of the two monitors is always readily available to process the newly reported

window of events.

86

8.1.2 Detecting different types of predicates.

Multi-variable predicates. The predicates that we considered so far were conjunctive predicates of

the form
∧=
9=1 ?A 9 and arithmetic predicates of the form 5 (G1, . . . , G=) ≤ �. However, violations

in several practical distributed systems may be represented as predicates that contain more than

one variable. For example, let us consider a set of autonomous robots in motion, and let us say

that it is a violation if these robots come too close to each other. In this case, the corresponding

predicate of interest could be a distance function
√
(G1 − G2)2 + (H1 − H2)2 < �, where (G1, H1),

(G2, H2) correspond to the locations of two different robots. To detect such predicates, first the

reporting mechanism has to be modified. Specifically, the processes have to report the values of

G and H whenever either of them get updated. The reports can be in an interval format or can be

reported as individual change points depending upon the frequency of the updates, i.e., in this case

depending upon the speed of the robots. Algorithm 3 in Chapter 3 cannot be used in detecting such

predicates. Algorithm 6 in Chapter 4 can be used to identify consistent global states (made up of

possibly concurrent locations of the robots), and one can evaluate the predicate using the values

of G and H corresponding to those consistent global states. However, as discussed in Section 4.5,

��!� based predicate detection can miss to identify some possible consistent global states leading

to false negatives. So we would like to utilize the monitoring mechanism presented in Chapter

5 using SMT solvers. As mentioned earlier, the processes will have to report when either of the

variables G, H get updated and the monitor will have to generate corresponding constraints.

The predicate being detected will also have to be provided by the monitor to the SMT solver.

Furthermore, to evaluate the monitoring approach under difficult scenarios of multi-variable pred-

icates, we would like to consider predicates with more than two variables per process and would

like to analyze the efficiency of the monitor as the number of variables being handled increases.

Fixed-length predicates. We would also like to determine the applicability of the online

monitoring approach using SMT solvers in detecting predicates that are satisfied for a specific

duration of time. For instance, reconsider the example of autonomous robots, and let us consider

that the robots are designed for collision avoidance and prevent such situations by moving away

87

from each other. So let us consider that it is a violation only if the robots come too close to each

other and do not move away, i.e., if the distance between them becomes smaller than a specific limit

and stays that way for a longer duration. To handle this scenario, the monitor will have to provide

the SMT solver more information (constraints), to help in identifying valid instances of predicate

satisfaction.

Temporal Logic Predicates. As discussed in Chapter 7, temporal logic predicates are pred-

icates defined over different paths that a distributed system could have taken during an observed

execution or run. If the temporal logic predicate involves detecting if there exists (EF) a path

where a specific condition or predicate finally became true then algorithms presented in this report

can be used to detect the predicate. If the temporal logic predicate involves finding if all paths

(AF or AG) satisfied a specific condition or predicate then algorithms based on Hybrid Logical

Clocks may not be suffice because they do not capture enough information required to enumerate

all possible serializations of events (i.e., all possible paths). However, the combination of HLC

with n-extension and SMT solvers discussed in Chapter 6 can be used to detect such predicates.

Specifically, the HLC with n-extension approach can help in detecting parts of the predicate that do

not require exploring all paths of execution and the SMT solver can be invoked whenever all paths

are required to be analyzed.

8.2 Considering alternatives for SMT solvers.

Binary Decision Diagrams [7], that represent a function as a graph, have been widely used

in performing formal verification, logic synthesis and test generation[8]. Specifically, an ordered

binary decision diagram (OBDD) contains one non-terminal node for every variable in the function

and two terminal nodes: 0 and 1. A path from the root of an OBDD to the terminal 1 corresponds

to a satisfying variable assignment for the corresponding function. We would like to use BDDs

to aid the monitor in performing predicate detection. Specifically, like the runtime monitoring

approach using SMT solvers, presented in Chapter 5, we would like to perform runtime monitoring

using BDDs. For this, the processes in the system will have to report the same set of events to

88

Figure 8.1: Violation revealed when messages get delivered in a specific order [30]

the monitor, as those discussed in Section 5.1.1. The monitor will have to create the same set of

constraints, as those discussed in Section 5.2. However, rather than generating corresponding SMT

constraints, the monitor will have to create an OBDD corresponding to the formula say F, where F

is the conjunction of all the constraints. If the derived OBDD does not have a path from its root

to the terminal 1, then it indicates that the predicate was never satisfied. If the derived OBDD has

a path from its root to the terminal 1, then it corresponds to an instance of predicate satisfaction,

i.e. a consistent global state where the predicate of interest is true. Furthermore, variables in our

work are not strictly boolean variables, so we will have to use extensions of BDD namely MTBDD

[13, 3], BMDs [9] or Hybrid Decision Diagram [12] to handle arithmetic properties.

8.3 Detecting latent concurrency bugs under uncertainty in communication
delay

Consider the scenario in Figure 8.1 from [30], where a violation is revealed only when the

messages in the system get delivered in a specific order. This calls for the need to analyze a given

system run, for possibilities or outcomes when the messages in the observed run get delivered

early or get delayed. Furthermore, the local states at the processes, after message reception, may

depend upon the message receive events. So the local state of a process, at any point in time,

may depend on the number of messages received by the process till that point. We would like to

perform runtime monitoring and evaluate an observed run of a distributed system, to detect any

such violations, by considering the uncertainty in communication delay and corresponding local

states of the processes. We aim to use the monitoring approach presented in Chapter 5, based on

SMT solvers, to achieve this. However, in this scenario the monitor will have to provide additional

89

or modified constraints to the SMT solver to account for the uncertainty factor in terms of message

delay and values of the variables at the processes, that may depend on the messages received by the

processes so far.

8.4 Predicate Detection as a Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSP) are combinatorial optimization problems and several

real world problems like scheduling, sequencing, resource allocation, etc., can be expressed as

CSPs. Formally, a CSP [6] consists of

• a set of variables - = {G1, · · · , G=};

• for each variable G8, a finite set �8 of possible values (its domain);

• a set of constraints restricting the values that the variables can simultaneously take.

A solution to a CSP is a set of variable assignments, for the variables in - , from their domain,

that satisfies the set of constraints. The problem can also have an optional objective function,

defined in terms of the variables in - , in which case the algorithm solving the CSP may aim to find

an optimal solution with respect to that function. Constraint programming, which is mainly based

on logic programming and graph theory, is widely used to solve CSPs. Constraint programming

algorithms, represent the search space as a tree and traverse them to find feasible or optimal

solutions. Some of the common techniques used by constraint programming algorithms to solve

CSPs are backtracking, forward checking and MAC (maintaining arc consistency) [6].

In our work, first we would like to define the problem of predicate detection to detect all

possible instances of violations as a CSP. Specifically, a runtime monitor that recieves reports from

the processes would define the problem as a CSP by creating constraints similar to those discussed

in Section 5.2. Then the monitor can use any of the existing CSP solving approaches to find a

satisfying variable assignment, and this would correspond to an instance of predicate satisfaction.

We plan to use ILOG CP Optimizer, a constraint programming optimizer by IBM to solve the

CSP, i.e., predicate detection in this scenario. This tool benefits from several search techniques

90

that are dynamically changed during the search by adapting to the problem at hand. It uses search

techniques like large neighborhood search, genetic algorithms, etc. [26]. We would like to evaluate

the timeliness of this approach, i.e, we would like to know if the monitor can perform predicate

detection based on this approach in a timely manner. This would depend on the time taken for all

the sub-tasks namely representing the problem as a CSP, invoking the optimizer and the time taken

by the optimizer to find the solution.

91

CHAPTER 9

CONCLUSION

Performing runtime monitoring to detect bugs or violations in distributed systems is critical to

ensure their correctness and reliability. However, analyzing an observed run of a distributed system

to identify violations is challenging due to the exponential number of consistent global states that

are possible in a run. To identify all possible consistent global states in a run, one will have to

order the events in the run using $ (=) sized timestamps, where = is the number of processes in the

system. In other words, $ (=) is an unavoidable cost if the goal is to identify all possible consistent

global states and evaluate them to thereby identify all possible instances of predicate satisfaction,

that indicate possible violations. However, runtime monitoring of distributed systems to perform

predicate detection with less overhead, is possible, if one does not require to identify all possible

instances of predicate satisfaction. Specifically, by using Hybrid Logical Clocks, which are $ (1)

sized clocks, one can perform predicate detection at a lower cost. In this report, we discussed some

efficient algorithms to help the monitor in performing predicate detection using Hybrid Logical

Clocks, in a timely and non-intrusive manner at a low cost.

Another approach to perform predicate detection with low overhead is by using Biased Hybrid

Logical Clocks, which are also $ (1) sized clocks. Since monitors that use Biased Hybrid Logical

Clocks miss to identify fewer consistent global states than monitors that use Hybrid Logical Clocks,

predicate detection using Biased Hybrid Logical Clocks can identify 100-200 times the number of

instances of predicate satisfaction (i.e., violations) identified using Hybrid Logical Clocks. While

Biased Hybrid Logical Clocks successfully improve upon the ability of Hybrid Logical Clocks

to perform predicate detection, they still do not guarantee detection of all instances of predicate

satisfaction.

To achieve detection of all instances of predicate satisfaction the monitor can use Hybrid

Logical Clocks with n-extension, where n is the maximum clock drift in the system. Essentially,

with n-extension the effect of each event at a process is extended for an n duration to compensate

92

for the clock drift. As a result, for each event (or corresponding local state) at a process, the

number of events (local states) at other processes that are considered as concurrent events (states)

by HLC is increased with n-extension. This helps in detecting all possible consistent global states.

While monitoring using HLC with n-extension can guarantee detection of all instances of predicate

satisfaction, it also introduces false positives, i.e., detects phantom instances. Specifically, the

length of the extension (of the effect of events) has direct impact on the number of false positives.

Therefore, the monitor can reduce the false positives by reducing the amount by which it extends

the effect of the events, essentially by extending for a duration W, smaller than n . But this will

re-introduce some eliminated false negatives (i.e., the monitor will again fail to identify some

instances of predicate satisfaction). On the whole, the monitor can achieve a trade-off between

false positives and false negatives by altering W-the amount by which it extends the effect of events

in an observed run.

To achieve detection of all instances of predicate satisfaction using$ (1) sized clocks likeHybrid

Logical Clocks and to avoid detecting phantom instances one can use SMT solvers. Specifically,

while Hybrid Logical Clocks do not capture all the necessary information essential to identify all

possible consistent global states, SMT solvers can help in identifying those instances that can be

missed by a pure HLC based detection solution. However, the timeliness of monitors that use SMT

solver based detection approach depends on the time taken by the solver to solve the problem. In

some scenarios the solver can take longer to solve the problem thereby causing the monitor to lag

and fall behind the application that it is monitoring.

The timeliness of the monitors that rely on SMT solvers can be improved by using the HLCwith

n-extension approach as a filtering layer. Specifically, the monitor can choose to invoke the SMT

solver only if the HLC with n-extension approach indicates a violation. This reduces the number

of times the monitor invokes the solver, thereby reducing the overall monitoring time substantially.

On the other hand, even if the violation identified using HLC with n-extension approach is a false

positive, the SMT solver can verify and eliminate it. Therefore, a two layered monitor that uses

HLC with n-extension and SMT solvers can guarantee timeliness and accuracy.

93

Thus, while choosing or designing a runtime monitor, to perform predicate detection and

identify instances of violation in an observed run, one may have to choose between the desir-

able characteristics of runtime monitors namely non-intrusiveness, timeliness, low overhead and

correctness/accuracy based on the resource limitations of the application being monitored.

94

APPENDIX

95

APPENDIX

EXPERIMENTAL DATA

A.1 Precision and Recall results for application in 6.2.1

Tables .1 and .2 show the two-layered monitor’s precision and recall values when deployed in

the application presented in Section 6.2.1. The corresponding time taken by the solver in each of

these settings were presented in Figures 6.3b, 6.3d, 6.3f.

96

No. of Valid Snapshots / Total Snapshots Detected (Default values: n = 10, n = 100, U = 0.1, X = 10)
Precision X = 1 X = 5 X = 10 X = 50 X = 100 X = 1000

W = 0.10 * n 1 (1/1) 1 (2/2) NA 1 (1/1) 1 (1/1) 1 (1/1)
W = 0.25 * n 1 (4/4) 0.666667 (2/3) 1 (3/3) 1 (2/2) 1 (2/2) 1 (3/3)
W = 0.50 * n 1 (5/5) 0.571429 (4/7) 0.888889 (8/9) 1 (6/6) 1 (4/4) 1 (5/5)
W = 0.75 * n 0.5 (5/10) 0.357143 (5/14) 0.727273 (8/11) 1 (10/10) 1 (8/8) 1 (8/8)
W = n 0.333333 (5/15) 0.263158 (5/19) 0.571429 (8/14) 1 (11/11) 1 (9/9) 1 (11/11)

(a) Varying X - message delay

Precision U = 0 U = 0.01 U = 0.1 U = 0.2 U = 0.5

W = 0.10 * n 1 (1/1) 1 (1/1) NA 1 (1/1) 1 (3/3)
W = 0.25 * n 1 (4/4) 1 (3/3) 1 (3/3) 1 (1/1) 1 (4/4)
W = 0.50 * n 1 (6/6) 1 (6/6) 0.888889(8/9) 1 (2/2) 0.666667 (4/6)
W = 0.75 * n 1 (7/7) 1 (6/6) 0.727273(8/11) 0.4 (2/5) 0.666667 (4/6)
W = n 1 (10/10) 0.888889(8/9) 0.571429(8/14) 0.222222(2/9) 0.5 (4/8)

(b) Varying U - rate at which processes send messages

Precision n = 1 n = 2 n = 5 n = 10 n = 100

W = 0.10 * n 1 (1/1) NA NA 1 (2/2) NA
W = 0.25 * n 1 (1/1) NA 1 (5/5) 1 (4/4) 1 (3/3)
W = 0.50 * n 1 (1/1) 1 (3/3) 1 (8/8) 1 (8/8) 0.888889 (8/9)
W = 0.75 * n 1 (1/1) 1 (3/3) 1 (9/9) 1 (11/11) 0.727273 (8/11)
W = n 1 (14/14) 1 (3/3) 1 (12/12) 1 (11/11) 0.571429 (8/14)

(c) Varying n - clock drift
Table .1: Percentage of Valid Snapshots out of all snapshots detected during mutual exclusion
detection using W-extension.

97

No. of Valid Snapshots detected / No. of Valid Snapshots in the system (Default values: n = 10, n = 100, U = 0.1,
X = 10)

Recall X = 1 X = 5 X = 10 X = 50 X = 100 X = 1000

W = 0.10* n 0.2 (1/5) 0.4 (2/5) 0 (0/8) 0.090909 (1/11) 0.111111 (1/9) 0.090909 (1/11)
W = 0.25* n 0.8 (4/5) 0.4 (2/5) 0.375 (3/8) 0.181818 (2/11) 0.222222 (2/9) 0.272727 (3/11)
W = 0.50* n 1 (5/5) 0.8 (4/5) 1 (8/8) 0.545455 (6/11) 0.444444 (4/9) 0.454545 (5/11)
W = 0.75 * n 1 (5/5) 1 (5/5) 1 (8/8) 0.909091 (10/11) 0.888889 (8/9) 0.727273 (8/11)
W = n 1 (5/5) 1 (5/5) 1 (8/8) 1 (11/11) 1 (9/9) 1 (11/11)

(a) Varying X - message delay

Recall U = 0 U = 0.01 U = 0.1 U = 0.2 U = 0.5

W = 0.10 * n 0.1 (1/10) 0.125(1/8) 0 (0/8) 0.5 (1/2) 0.75 (3/4)
W = 0.25 * n 0.4 (4/10) 0.375(3/8) 0.375(3/8) 0.5 (1/2) 1 (4/4)
W = 0.50 * n 0.6 (6/10) 0.75 (6/8) 1 (8/8) 1 (2/2) 1 (4/4)
W = 0.75 * n 0.7 (7/10) 0.75 (6/8) 1 (8/8) 1 (2/2) 1 (4/4)
W = n 1 (10/10) 1 (8/8) 1 (8/8) 1 (2/2) 1 (4/4)

(b) Varying U - rate at which processes send messages

Recall n = 1 n = 2 n = 5 n = 10 n = 100

W = 0.10 * n 0.071429(1/14) 0 (0/3) 0 (0/12) 0.181818(2/11) 0 (0/8)
W = 0.25 * n 0.071429(1/14) 0 (0/3) 0.416667(5/12) 0.363636(4/11) 0.375 (3/8)
W = 0.50 * n 0.071429(1/14) 1 (3/3) 0.666667(8/12) 0.727273(8/11) 1 (8/8)
W = 0.75 * n 0.071429(1/14) 1 (3/3) 0.75 (9/12) 1 (11/11) 1 (8/8)
W = n 1 (14/14) 1 (3/3) 1 (12/12) 1 (11/11) 1 (8/8)

(c) Varying n - clock drift
Table .2: Percentage of Valid Snapshots detected during mutual exclusion detection using W-
extension out of all Valid Snapshots in the system.

98

BIBLIOGRAPHY

99

BIBLIOGRAPHY

[1] Ranganath Atreya, Neeraj Mittal, Ajay D. Kshemkalyani, Vijay K. Garg, andMukesh Singhal.
Efficient detection of a locally stable predicate in a distributed system. Journal of Parallel
and Distributed Computing, 67(4):369–385, 2007.

[2] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi Dolev. Self-stabilization
by local checking and global reset (extended abstract). In Distributed Algorithms, 8th Inter-
national Workshop, WDAG ’94, Terschelling, The Netherlands, September 29 - October 1,
1994, Proceedings, pages 326–339, 1994.

[3] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. Formal
Methods in System Design, 10(2/3):171–206, 1997.

[4] Andreas Bauer and Yliès Falcone. Decentralised ltl monitoring. In Dimitra Giannakopoulou
and Dominique Méry, editors, FM 2012: Formal Methods, pages 85–100, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[5] Janusz Borkowski, Damian Kopanski, and Marek Tudruj. Implementing control in parallel
programs by synchronization-driven activation and cancellation. In Eleventh Euromicro
Conference on Parallel, Distributed and Network-Based Processing, 2003. Proceedings.,
pages 316– 323, 03 2003.

[6] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction problems:
Algorithms and applications. European Journal of Operational Research, 119(3):557–581,
1999.

[7] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

[8] Randal E. Bryant. Binary decision diagrams and beyond: enabling technologies for formal
verification. In Proceedings of the 1995 IEEE/ACM International Conference on Computer-
Aided Design, ICCAD 1995, San Jose, California, USA, November 5-9, 1995, pages 236–243,
1995.

[9] Randal E. Bryant and Yirng-An Chen. Verification of arithmetic circuits using binary moment
diagrams. STTT, 3(2):137–155, 2001.

[10] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[11] CraigM.Chase andVijayK.Garg. Efficient detection of restricted classes of global predicates.
In Jean-Michel Hélary and Michel Raynal, editors, Distributed Algorithms, pages 303–317,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

100

[12] Edmund M. Clarke, Masahiro Fujita, and Xudong Zhao. Hybrid decision diagrams. In
Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 1995, San Jose, California, USA, November 5-9, 1995, pages 159–163, 1995.

[13] Edmund M. Clarke, Kenneth L. McMillan, Xudong Zhao, Masahiro Fujita, and Jerry Chih-
Yuan Yang. Spectral transforms for large boolean functions with applications to technology
mapping. Formal Methods in System Design, 10(2/3):137–148, 1997.

[14] Robert Cooper and Keith Marzullo. Consistent detection of global predicates. SIGPLAN Not.,
26(12):167–174, December 1991.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[17] David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Optimistic hybrid
analysis: Accelerating dynamic analysis through predicated static analysis. In Xipeng Shen,
James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors, Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, pages 348–362.
ACM, 2018.

[18] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Proceedings of the 11th Australian Computer Science Conference, 10(1):56–66, 1988.

[19] V. K. Garg and B.Waldecker. Detection of strong unstable predicates in distributed programs.
IEEE Transactions on Parallel and Distributed Systems, 7(12):1323–1333, 1996.

[20] VijayK.Garg andCraigM.Chase. Distributed algorithms for detecting conjunctive predicates.
In Proceedings of the 15th International Conference on Distributed Computing Systems,
Vancouver, British Columbia, Canada, May 30 - June 2, 1995, pages 423–430, 1995.

[21] Vijay K. Garg, Craig M. Chase, J. Roger Mitchell, and Richard B. Kilgore. Detecting
conjunctive channel predicates in a distributed programming environment. In 28th Annual
Hawaii International Conference on System Sciences (HICSS-28), January 3-6, 1995, Kihei,
Maui, Hawaii, USA, pages 232–241, 1995.

[22] Vijay K. Garg and Rohan Garg. Parallel algorithms for predicate detection. In Proceedings
of the 20th International Conference on Distributed Computing and Networking, ICDCN ’19,
page 51–60, New York, NY, USA, 2019. Association for Computing Machinery.

[23] Vijay K. Garg and Neeraj Mittal. On slicing a distributed computation. In Proceedings of the
21st International Conference on Distributed Computing Systems (ICDCS 2001), Phoenix,
Arizona, USA, April 16-19, 2001, pages 322–329. IEEE Computer Society, 2001.

101

[24] Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst., 5(3):299–307, 1994.

[25] Yongjian Hu and Iulian Neamtiu. Static detection of event-based races in android apps. ACM
SIGPLAN Notices, 53:257–270, 03 2018.

[26] IBM. Constraint programming. https://developer.ibm.com/docloud/
documentation/optimization-modeling/cp/[Online].

[27] Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo
Leone. Logical physical clocks. In 18th International Conference on Principles of Distributed
Systems OPODIS 2014, volume 8878, pages 17–32, 2014.

[28] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[29] Eryk Laskowski, Marek Tudruj, Richard Olejnik, and Damian Kopanski. Dynamic load
balancing based on applications global states monitoring. In Nicolae Tapus, Dan Grigoras,
Rodica Potolea, and Florin Pop, editors, IEEE 12th International Symposium on Parallel and
Distributed Computing, ISPDC 2013, Bucharest, Romania, June 27-30, 2013, pages 11–18.
IEEE, 2013.

[30] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S. Gunawi, Xiaohui
Gu, Xicheng Lu, and Dongsheng Li. Dcatch: automatically detecting performance cascading
bugs in cloud systems. In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018,
Porto, Portugal, April 23-26, 2018, pages 7:1–7:14, 2018.

[31] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. Fcatch: Automati-
cally detecting time-of-fault bugs in cloud systems. ACM SIGPLAN Notices, 53:419–431, 03
2018.

[32] D. Lo, T. Chen, M. Ismail, andG. E. Suh. Run-timemonitoring with adjustable overhead using
dataflow-guided filtering. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 662–674, 2015.

[33] Michael Lombardi and Glenn Nelson. Wwvb: A half century of delivering accurate frequency
and time by radio. Journal of research of the National Institute of Standards and Technology,
119:25–54, 03 2014.

[34] L Ma, S Mandujano, G Song, and P Meunier. Sharing vulnerability information using a
taxonomically-correct, web-based cooperative database. In CERIAS Tech Report, 03 2001.

[35] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace: effective sampling
for lightweight data-race detection. InMichael Hind and Amer Diwan, editors, Proceedings of
the 2009 ACMSIGPLANConference on Programming LanguageDesign and Implementation,
PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 134–143. ACM, 2009.

[36] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, pages 215–226. North-Holland, 1989.

102

[37] Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister. Runtime
monitoring of cyber-physical systems under timing and memory constraints. ACM Trans.
Embedded Comput. Syst., 14(4):79:1–79:29, 2015.

[38] David L. Mills. Internet time synchronization: the network time protocol. IEEE Trans.
Communications, 39(10):1482–1493, 1991.

[39] A Schwalb, D Cotter, and J Hussey. Goes (geostationary operational environmental satellite)-
next overview. Technical report, NATIONALENVIRONMENTALSATELLITEDATAAND
INFORMATION SERVICE WASHINGTON DC, 1985.

[40] Alper Sen and Vijay K. Garg. Detecting temporal logic predicates on the happened-before
model. In 16th International Parallel and Distributed Processing Symposium (IPDPS 2002),
15-19 April 2002, Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedings. IEEE Com-
puter Society, 2002.

[41] Alper Sen and Vijay K. Garg. Detecting temporal logic predicates in distributed programs
using computation slicing. In Marina Papatriantafilou and Philippe Hunel, editors, Principles
of Distributed Systems, pages 171–183, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[42] Madalene Spezialetti and Phil Kearns. Efficient distributed snapshots. In ICDCS, 1986.

[43] Scott D. Stoller. Detecting global predicates in distributed systems with clocks. Distributed
Computing, 13(2):85–98, 2000.

[44] Vidhya Tekken Valapil and Sandeep S. Kulkarni. Biased clocks: A novel approach to
improve the ability to perform predicate detection with O(1) clocks. In Structural Information
and Communication Complexity - 25th International Colloquium, SIROCCO 2018, Ma’ale
HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages 345–360, 2018.

[45] Vidhya Tekken Valapil, Sorrachai Yingchareonthawornchai, Sandeep S. Kulkarni, Eric Torng,
and Murat Demirbas. Monitoring partially synchronous distributed systems using SMT
solvers. In Runtime Verification - 17th International Conference, RV 2017, Seattle, WA, USA,
September 13-16, 2017, Proceedings, pages 277–293, 2017.

[46] Sorrachai Yingchareonthawornchai, Sandeep S. Kulkarni, and Murat Demirbas. Analysis of
bounds on hybrid vector clocks. In OPODIS 2015, December 14-17, 2015, Rennes, France,
pages 34:1–34:17, 2015.

[47] Sorrachai Yingchareonthawornchai, Duong N. Nguyen, Vidhya Tekken Valapil, Sandeep S.
Kulkarni, and Murat Demirbas. Precision, recall, and sensitivity of monitoring partially
synchronous distributed systems. In Yliès Falcone and César Sánchez, editors, Runtime
Verification - 16th International Conference, 2016, Madrid, Spain, Sept 23-30, volume 10012,
pages 420–435. Springer, 2016.

[48] Sorrachai Yingchareonthawornchai, Vidhya Tekken Valapil, Sandeep S. Kulkarni, Eric Torng,
and Murat Demirbas. Efficient algorithms for predicate detection using hybrid logical clocks.
In Proceedings of the 18th International Conference on Distributed Computing and Network-
ing, Hyderabad, India, January 5-7, 2017, page 10, 2017.

103

[49] YuanYu, TomRodeheffer, andWeiChen. Racetrack: efficient detection of data race conditions
via adaptive tracking. In Andrew Herbert and Kenneth P. Birman, editors, Proceedings of
the 20th ACM Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton, UK,
October 23-26, 2005, pages 221–234. ACM, 2005.

[50] X. Zheng and V. Garg. An optimal vector clock algorithm for multithreaded systems. In
2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pages
2188–2194, 2019.

104

