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ABSTRACT 
 

HAPTIC ASSISTANCE STRATEGIES FOR ENHANCING THE LEARNING OF 

KINEMATICALLY REDUNDANT MOTOR TASKS 

 

By 

 

Rakshith Lokesh 

 

Advances in robotic technology and interfaces have led to the adoption of robot-mediated 

assistance for training motor skills in a wide array of fields ranging from neurorehabilitation to 

skill acquisition. The assistance from the robot to control movements during learning is ‘haptic’ – 

i.e., in the form of forces applied to the body. Even though numerous studies have explored haptic 

assistance strategies to enhance motor learning, this has been examined only in ‘non-redundant’ 

tasks where there is only a single movement solution available. Therefore, the purpose of this 

dissertation was to develop haptic assistance strategies for kinematically redundant motor tasks 

where multiple solutions are available.  

We designed a kinematically redundant steering task and used it as a framework for this 

dissertation. The task was to manipulate a cursor placed at the mean position of the two hands 

along a ‘W-shaped’ path as fast as possible while maintaining the cursor inside the track. This 

made the task kinematically redundant because the same cursor position could be achieved with 

different hand positions. We then conducted three experiments to examine the role of haptic 

feedback when learning such tasks with redundant solutions.  

In our first experiment, we explored the effects of task difficulty on learning and how kinematic 

redundancy is utilized during task learning, without any haptic feedback. We found that the 

participants exploited the redundancy in the task to enhance task performance and reduced 

variability that did not affect task performance with learning. Surprisingly, while task difficulty 



had an effect on performance, we found no effect of task difficulty on the utilization of redundancy 

in the task.  

In the second experiment, we enabled haptic assistance at the redundant effectors (hands) in 

two ways: (i) restricted the usage of redundant solutions, or (ii) allowed the usage of redundant 

solutions. We also compared the effect of training with progressively reducing assistance levels 

versus training at constant assistance levels. We found that restricting the usage of redundant 

solutions was detrimental to motor learning, indicating that using redundancy was critical to 

learning. Moreover, fading assistance linearly did not offer any learning benefits relative to 

constant assistance.  

In the third experiment, we tested the effectiveness of a performance-adaptive assistance 

algorithm in comparison to linearly reducing assistance. We found that the adaptive assistance 

group showed enhanced learning over the linearly faded assistance group. Analysis of the task 

learning dynamics revealed how adaptive assistance was beneficial for different initially skilled 

participants. We have also presented a learning dynamic variable that correlated with the retention 

of task performance after training with haptic assistance. 

Overall, this dissertation explored the application of haptic assistance strategies for 

kinematically redundant motor tasks with multiple effectors. The outcomes of this dissertation will 

motivate research for the exploration of novel haptic assistance strategies in neurorehabilitation, 

human-robot collaboration, athletic training, etc. 
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Chapter 1  

INTRODUCTION 

Learning motor skills like reaching and walking is fundamental to human development.  Even 

though humans are adept at acquiring many of these motor skills through trial and error without 

much external assistance, there are certain situations where external assistance is required because 

self-learning is slow and leads to sub-optimal motor performance. These situations include 

learning of complex skills where making errors have high consequences (like surgery), or in 

contexts of movement impairments, where assistance may be required to physically produce the 

desired movement. The focus of this work is to understand how one specific type of assistance - 

haptic assistance using a robot - can be used to facilitate the learning of motor skills.  

1.1 Requirement for assistance in precision tasks 

A large proportion of human motor skills involve the production of movements along spatial 

trajectories. Typically, predefined continuous trajectories are prescribed at the end-effector, and 

the learner practices to closely follow the prescribed trajectories. The end-effector could be a part 

of the body i.e., the hand or the position of a tool being directly moved by the user or an object at 

the output of the human-computer interface or the robot end position being teleoperated by the 

human user.  For example, consider a motor learning context where a novice surgeon is learning 

to operate a surgical tool to conduct surgeries.  Here, the surgeon is faced with the task of moving 

the tool along a prescribed spatiotemporal trajectory. There are two inherent features of the motor 

system that hinder the surgeon’s ability to perform effectively. Firstly, the motor system is prone 
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to internal and external disturbances leading to errors in produced trajectories. Such motor errors 

are magnified when trying to produce faster movements due to the Speed-Accuracy tradeoff i.e., 

the faster the movements the lesser the precision (Accot and Zhai, 1997; Fitts, 1954). Secondly, 

motor variability is an ubiquitous feature of the human motor control which reduces the ability of 

individuals in reproducing trajectories exactly (Harris and Wolpert, 1998; Jones et al., 2002; 

Newell and McDonald, 1992). Thus, the surgical task performance can be measured by how 

closely the end-effector follows the prescribed trajectory and how consistently the trajectories are 

reproduced. The former can be quantified by a ‘spatial error’ metric and the latter can be quantified 

by ‘task variability’. Thus, the surgeon is required to maintain the spatial error and variability 

within admissible (depends on the task and implications) limits. Moreover, the end goal for the 

surgeon is to be able to perform the motor task in the absence of assistance. Thus, a central question 

in motor learning is therefore to understand how to setup practice conditions to assist learners in 

learning the task and improving task performance. 

1.2 Haptic assistance for motor tasks 

A common strategy to facilitate motor learning is by augmenting assistance during learning 

(Sigrist et al., 2013). Specifically, with respect to controlling variability, a method of aiding 

learners has been through the use of haptic assistance using robotic devices (Rosenberg, 1993). 

Unlike other forms of assistance that rely on the learners to change their movement, haptic 

assistance has an advantage in that it can be used to directly generate forces on the limbs to control 

movement variability and error. For the example of surgeon learning a spatiotemporal movement 

(with hand or teleoperated tools), software programmed force fields called ‘virtual fixtures’ can 

be overlaid on top of the reflected workspace to prevent deviations of controlled end-effectors into 
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disallowed regions or to encourage movement along desired directions (Abbott et al., 2007; Moore 

et al., 2003; Park et al., 2001). In addition to directly altering movements, the haptic forces also 

convey perceptual information, reduce overloading of the visual modality, and reduce mental 

processing required to complete the task (Rosenberg, 1995). Going further, virtual fixtures in the 

form of force channels or tunnels were successfully applied in rehabilitation to maintain ‘spatial 

errors’ in movements and to control ‘task variability’ of the relevant joint (Banala et al., 2007; 

Duschau-Wicke et al., 2010). The use of virtual fixtures is a well-established method to assist 

learners in maintaining variability at the task level.  

1.2.1 Assistance in the context of motor redundancy  

But does minimizing ‘task variability’ mean that ‘motor variability’ also needs to be minimized?  

For example, the surgeon has constraints on the movement of the tool according to the 

requirements of the task, but not on the various joints in his/her arm that are responsible for the 

movement. This means that there may be multiple possible combinations of the joint angles in the 

arm that can lead to the same position of the tool. Such systems are called redundant systems where 

there are more elemental variables than required to generate the outcome or task variables 

(Bernstein, 1967; Turvey et al., 1982). The feature of redundancy means that motor variability 

essentially can be decomposed into two parts: a ‘task-space variability’ (or ‘bad’ variability), 

which influences the task variability, and a ‘null-space variability’ (or ‘good’ variability as it does 

not effect on task performance), which has no effect on the task (Latash et al., 2002; Scholz and 

Schöner, 1999). It is pivotal to understand the distinction between task variability that refers to 

outcome variability that is tied to task performance and ‘task space variability’ that refers to the 

component of the overall motor variability. If learners exploit the redundancy in the system, they 
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could be performing with a higher overall motor variability while still maintaining a low task space 

variability (Latash, 2012).  

This leads to the first question of this dissertation; how should haptic assistance be designed to 

control motor variability in redundant motor tasks? Prior studies using haptic assistance have relied 

almost exclusively on non-redundant tasks, where reducing task variability necessitates reducing 

motor variability. However, with a redundant system, there are now two possibilities: (i) provide 

haptic assistance to control all motor variability (i.e., both task space and null space variability), 

which restricts learners to use a stereotypical, repetitive solution (i.e., like a non-redundant system) 

or (ii) use haptic feedback to control only the task space variability, which allows learners to 

exploit redundancy in the system. The second possibility promotes flexibility in movements 

(Latash, 2010), whereas the first possibility promotes a use-dependent learning mechanism 

(Diedrichsen et al., 2010c). The possibilities can be applied to the context of the surgeon learning 

to manipulate the tool along a prescribed spatial trajectory. According to the first possibility, haptic 

assistance should be provided at the different joints responsible for the movement of the tool. 

Whereas, from the second possibility, haptic assistance should be provided only at the location of 

the tool. The first possibility restricts all variability whereas the second possibility restricts 

variability in the movement of the tool only. Which of the two possibilities, control all variability 

vs just task space variability enhances motor learning? 

1.2.2 Enhancing performance versus learning 

Haptic assistance undoubtedly enhances task performance when provided, but the performance 

drops significantly when assistance is subsequently removed (Crespo and Reinkensmeyer, 2008; 

Powell and O’Malley, 2012). Such observations are common with assistance strategies where the 

assistance is maintained at high levels throughout practice and provided very frequently during 
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motor execution. Such strategies are not optimal for learning as this could make the learner over-

dependent on assistance according to the ‘Guidance hypothesis’ (Salmoni et al., 1984), thereby 

leading to the significant deterioration in performance once the feedback is removed. Moreover, 

assisting movements physically alters the task dynamics and leads to the learning of an entirely 

different task.  It is also posited that assistance might only be required in the initial stages of 

learning when the learner is facing the highest practice difficulty (Crespo and Reinkensmeyer, 

2008). Thus, assistance should be reduced progressively to mitigate the overreliance effect and to 

gradually converge to the original task dynamics. However, it is not clear how effectively 

assistance should be reduced with learning given the myriad algorithms for reducing assistance.  

Progressive assistance strategies can be divided into ‘open-loop’ and ‘closed-loop’ strategies. 

In open-loop strategies, the assistance levels are reduced progressively in training, independent of 

the performer. A simple way to implement open-loop strategy is to reduce the assistance levels in 

a linear fashion. Both the constant and progressive strategies mentioned earlier are ‘open-loop’ in 

that the change (or lack of change) in the assistance is unrelated to the learner’s performance. 

Although implementing open-loop strategies is easier, a limitation is that they do not account for 

inter-individual variation in performance and rates of learning. Closed-loop strategies circumvent 

this limitation by adaptively setting practice conditions based on the individual learners’ task 

difficulty. Thus, closed-loop strategies assign assistance levels by estimating assistance 

requirements for each learner independently and are consistent with the idea of a challenge point 

(Guadagnoli and Lee, 2004), which suggests that motor learning is optimal when the learner is 

challenged during task execution. The idea here is to continuously challenge the learner by 

manipulating the assistance level, which in turn changes the functional task-difficulty.   
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1.3 Dissertation aims and summary 

With recent advancements in robotic technology, there has been an increased focus on haptic 

assistance strategies to aid in the learning/completion of physical tasks. The haptic assistance has 

almost exclusively been enabled for non-redundant tasks and at the final joint/effector whose 

movement determines task performance. However, for kinematically redundant motor tasks the 

movement at the joint/effector of interest is caused by multiple other joints or effectors. In this 

dissertation, we have tested the possibility of enhancing motor learning by enabling haptic 

assistance at the redundant joints. In summary, we conducted the dissertation with the following 

aims:  

1. Determine how kinematic redundancy is utilized in the learning of the task under no haptic 

assistance  

2. Determine whether restricting redundant solutions or allowing redundant solutions using 

haptic assistance is better for learning 

3. Determine if performance adaptive manipulation of assistance (closed-loop) is better than 

fixed manipulation of assistance (open-loop). 

We designed a kinematically redundant task to address the aims of the dissertation. The task 

was to manipulate a cursor placed at the mean position of the two hands along a ‘W-shaped’ path 

of definite width as fast as possible while maintaining the cursor inside the path. The task was 

kinematically redundant because a given position of the cursor could be reproduced with different 

spatial hand locations. We evaluated task performance using a score variable which was composed 

of the time taken to complete the movement and the time spent by the cursor outside the path. 

Since the task was redundant, the motor variability could be decomposed into null space variability 

that did not cause deviation of the cursor and task space variability that caused deviations in the 
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position of the cursor. We derived task and null space variabilities throughout learning to 

determine how learners organized motor variability to learn the task. 

1.3.1 Aim 1 – Determine how kinematic redundancy is utilized in the learning 

of the task under no haptic assistance  

It has been observed that the structuring of motor variability or the exploitation of task redundancy 

changes with practice in systematically different ways depending on the nature of the task (Latash, 

2010; Wu and Latash, 2014). We conducted Experiment 1 to characterize the utilization of 

redundancy in our task and to identify task parameters the task parameters that offered appropriate 

task difficulty and provided scope for the learning of the task. As expected, we found that the 

learners exploited the redundancy in the task to maintain task performance - they minimized task 

space variability by allowing higher null space variability. We also observed that irrespective of 

the task difficulty null space variability reduced monotonically with learning. Besides, participants 

traded-off task space variability to increase movement speeds with learning.  

1.3.2 Aim 2 - Determine whether restricting redundant solutions or allowing 

redundant solutions using haptic assistance is better for learning 

On one hand, the flexibility in movement solutions allows exploitation of redundancy to maintain 

task relevant variability (Latash, 2012). On the other hand, the repetition of similar movements 

across trials can promote a use-dependent learning mechanism (Diedrichsen et al., 2010c) and the 

formation of accurate inverse maps (Ranganathan et al., 2013). We conducted Experiment 2 to 

determine whether flexibility in adopting redundant solutions should be preserved while designing 

haptic assistance. We augmented haptic force channels that restricted the usage of redundant 

solutions during training for one group and allowed the usage of redundant solutions for another 

group. We found that restricting the usage of redundant solutions was detrimental to the learning 
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of the task and increased learner’s reliance on haptic assistance to complete the task. We believe 

that the inherent flexibility in hand movements promotes the stabilization of the cursor and 

exploration of the movement space, which could be critical especially in the initial phases of 

learning.  

1.3.3 Aim 3 - Determine if performance adaptive manipulation of assistance 

(closed-loop) is better than fixed manipulation of assistance (open-loop). 

Practicing at constant levels of assistance renders learners to rely on assistance to complete the 

task and incapable of performing in the absence of assistance (Heuer and Lüttgen, 2015; Powell 

and O’Malley, 2012). Therefore, in Experiment 2, we reduced the assistance levels by reducing 

the force gains linearly and progressively during training. Unexpectedly, we found that simply 

reducing assistance levels with learning did not provide any significant benefits overtraining at 

constant assistant levels. The failure of simple linear progressively reducing assistance, despite it 

being in accordance with the guidance hypothesis, directed our attention towards performance-

based manipulation of assistance. The assistance level can be reduced based on the size of 

improvement in motor performance - assistance is reduced as the learner improves performance, 

and this continually challenges the learner to actively participate in the task (Guadagnoli and Lee, 

2004). Since assistance is tailored to the requirements of the learner, we expect that adaptive or 

‘closed-loop’ assistance will be more effective than ‘open-loop’ assistance strategies explored in 

the second aim. In Experiment 3, We implemented a performance adaptive algorithm to 

manipulate assistance during training for a new group of learners and found a subtle improvement 

in task performance over the group that practiced under linearly reducing assistance. Going further, 

we wanted to determine how the performance-based manipulation of assistance aided in the 

learning of the task. We proposed a method to analyze the learning dynamics by studying the 
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dynamics between changes in assistance levels and task performance during training. We were 

able to show how learners of different initial skill levels and learning capabilities utilized the 

adaptive nature of assistance to improve task performance. We also identified a dynamic learning 

variable that correlated with the retention of performance in the absence of assistance. Even though 

several studies have demonstrated the benefits or shortcomings of assistance control strategies, we 

believe that this is the first attempt at evaluating the strategies by analyzing the effects of changes 

in assistance on learner’s performance during training. 

The outcomes of this dissertation have applications in domains where robotic technology can 

be used to augment assistance in the completion of motor activities. The results will motivate 

research in the exploration of novel haptic assistance strategies for motor tasks involving multiple 

effectors. Whether a surgeon is learning to perform a novel maneuver or a stroke survivor is 

relearning movements in a rehabilitation setting, adopting suitable haptic assistive strategies can 

lead to more effective learning. The presented evidence will also aid in designing and evaluating 

assistance paradigms that promote not just improvements in motor performance but the retention 

of performance in the absence of assistance. 
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Chapter 2  

RELATED WORK AND BACKGROUND 

2.1 Augmented assistance as feedback 

Humans learn numerous motor skills throughout their lifetime through cooperative action of the 

sensory system and the motor system. The sensory system which provides feedback about the 

ongoing motor activity is integral to the closed-loop theory of motor learning (Adams, 1971). The 

feedback received by the motor system intrinsically in the form of sensory perceptual information 

is natural and mostly sufficient for several self-acquired motor skills. However, for increasingly 

complex motor tasks and shorter temporal learning requirements, it becomes necessary to augment 

feedback externally. For example, a novice surgeon, performing a complex surgical tool maneuver 

might be greatly difficult and might require extensive amounts of training to learn the skill. In such 

cases, external feedback can be augmented to provide greater information about motor 

performance. It has been established that making provisions for additional feedback during the 

movement known as the knowledge of performance (Wallace and Hagler, 1979) and after the 

movement in the form knowledge of results (Newell, 1976; Salmoni et al., 1984; Winstein, 1991) 

can assist learners in improving their motor performance.  Such extrinsic feedback can be used to 

provide numerical feedback about task performance, direct attention towards certain aspects of the 

task, reiterate desired movements and task instructions, etc. 

 Humans learn numerous motor skills throughout their lifetime through cooperative action of 

the sensory system and the motor system. The sensory system which provides feedback about the 

ongoing motor activity is integral to the closed-loop theory of motor learning (Adams, 1971). The 
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feedback received by the motor system intrinsically in the form of sensory perceptual information 

is natural and mostly sufficient for several self-acquired motor skills. However, for increasingly 

complex motor tasks and shorter temporal learning requirements, it becomes necessary to augment 

feedback externally. For example, a novice surgeon, performing a complex surgical tool maneuver 

might be greatly difficult and might require extensive amounts of training to learn the skill. In such 

cases, external feedback can be augmented to provide greater information about motor 

performance. It has been established that making provisions for additional feedback during the 

movement known as the knowledge of performance (Wallace and Hagler, 1979) and after the 

movement in the form knowledge of results (Newell, 1976; Salmoni et al., 1984; Winstein, 1991) 

can assist learners in improving their motor performance.  Such extrinsic feedback can be used to 

provide numerical feedback about task performance, direct attention towards certain aspects of the 

task, reiterate desired movements and task instructions, etc. 

2.2 Haptic assistance strategies to control motor variability 

Several motor tasks require the manipulation of the hand or foot or an external tool along a 

prescribed spatiotemporal trajectory. However, errors in the manipulation of the end-effector are 

inevitable and each repeated end-effector trajectory is kinematically different due to the effects of 

sensorimotor noise. Kinematic variability is unavoidable even for well-trained skills and it is 

almost impossible to completely nullify motor variability (Newell and Corcos, 1993). Such 

variability in motor execution is an outcome of the accumulation of noise in the motor pathways 

arising due to channel noise in neurons (White et al., 2000), synaptic noise (Calvin and Stevens, 

1968) and also due to chaotic dynamics in neural networks (Van Vreeswijk and Sompolinsky, 

1996). Moreover, such sensorimotor noise can be amplified with an increase in magnitudes of 
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neural signals (Harris and Wolpert, 1998; Van Beers et al., 2004), the magnitude of impulsive 

forces, and amplitude of movements (Accot and Zhai, 1997; Fitts, 1954). Although it is evident 

that such variability can be decreased with practice, the initial variability and errors could be too 

large leading to safety concerns (Reinkensmeyer and Patton, 2009), for example, a patient who is 

retraining balance has a risk of falling in the absence of assistance. Moreover, with tasks that 

present high functional difficulty, unsatisfactorily large amounts of practice might be required, and 

the lack of performance (due to large errors) might curb motivation to practice the task (Sanger, 

2004). A study on golf putting with robotically modulated task space variability found that 

assisting to lower task space variability improved skill and enhanced self-reported competence in 

comparison to practicing under no assistance for initially less skilled subjects (Duarte and 

Reinkensmeyer, 2015). Thus, the learning could be made more efficient by assisting in the control 

of such variability. 

On the other hand, haptic assistive strategies can also be used to teach spatial characteristics of 

movement. The simultaneous visual and haptic exploration of trajectories might lead to an 

enhanced representation of shape memory. It is posited that the sensorimotor system optimally 

integrates multimodal visual and haptic information making it better than unimodal information 

(Helbig and Ernst, 2007). Significant learning benefits have been documented for handwriting 

learning due to visuo-haptic integration of feedback (Bara et al., 2004; Kalenine et al., 2011).  

2.2.1 Position control strategies 

Haptic assistance strategies that provide a varying degree of autonomy to learners have been 

employed. On one end, strict position control strategies have been adopted where the robot moves 

the learner’s limbs along prescribed trajectories irrespective of the intentions of the learner. The 

idea behind such training is that the nervous system can derive topological information about the 
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trajectory by processing the haptic force feedback (Liu et al., 2005).  In a 3D tracing task, 

participants had to move their hand while gripping a robot end-effector along a desired trajectory 

on a 3-dimensional spherical surface under three different conditions: visual, haptic, and visuo-

haptic (Feygin et al., 2002a). In the visual condition, participants watched the robot move along 

the desired trajectory, in the haptic condition the robot moved the participant’s hands along the 

required trajectory but couldn’t see their hand and in the visuo-haptic condition they could see 

their hand while being guided by the robot. The visual group could reproduce the shape better than 

the haptic only group and the visuo-haptic group performed as good as the visual only group in a 

short-term retention test. Another study adopted the same task but increased the number of practice 

trials and tested retention with a larger number of trials, but did not find any significant differences 

between the visual and visuo-haptic groups (Liu et al., 2005). Similarly, active robot training for 

reaching in stroke survivors provided no added benefit in comparison to training without any 

assistance (Kahn et al., 2006). Such position control strategies deter motor learning because it 

renders a passive role for the motor system (Powell and O’Malley, 2012) and curbs error-driven 

learning mechanisms (Emken and Reinkensmeyer, 2005).  It has also been observed that limiting 

movement variability in simple reaching tasks can prolong the motor learning process (Scheidt et 

al., 2000). Moreover, providing assistance frequently deviates the dynamics of the task from the 

target task decreasing motor learning (Crespo and Reinkensmeyer, 2008),  according to the 

“guidance hypothesis” (Salmoni et al., 1984; Schmidt and Bjork, 1992).  

2.2.2 Bandwidth assistance strategy 

Bandwidth based (Sherwood, 1988) assistance approaches have been employed to reduce the 

frequency of haptic assistance during motor execution, wherein the assistance is only enabled 

outside an error bandwidth. Thus, the learners only receive assistance when the end-effector 
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deviates beyond a certain preset region around the target position. In a rowing task, the robot 

applied an elastic torque when the oar deviated outside an error threshold (Rauter et al., 2015). 

Similar elastic forces that pull the end-effector to the target position were adopted in training 

reaching during rehabilitation (Krebs et al., 1998) and for training automotive steering skills 

(Crespo and Reinkensmeyer, 2008). This method was first introduced in the form of ‘virtual 

fixtures’, wherein computer-generated force fields in the overlaid workspace were used to assist 

subjects in telemanipulating a robotic arm used to perform a peg insertion task (Rosenberg, 1993). 

Such virtual fixtures have been adopted extensively to prevent the deviation of the end-effector 

into forbidden regions and enhance task completion times in various telemanipulation applications 

(Abbott et al., 2007; Dewan et al., 2004; Li et al., 2007; Park et al., 2001). In the application of 

robotics in rehabilitation, such techniques are commonly referred to as ‘assist-as-needed’ (ANN) 

training methods (Emken et al., 2005). The assistance is typically implemented in the form of force 

tunnels or force channels that are created around the prescribed end-effector trajectories (Cai et 

al., 2006; Krebs et al., 2003). Haptic forces are applied to the end-effector when they deviate away 

from the boundaries of the force channels and usually, the forces are applied in proportion to the 

magnitude of the deviation. Such force channels have been used effectively in lower limb 

rehabilitation to control the deviation of the ankle from normative paths during gait (Banala et al., 

2007; Duschau-Wicke et al., 2010). Such bandwidth-based assistance methods have also enabled 

the retention of novel motor skills significantly (Chen and Agrawal, 2013; Crespo and 

Reinkensmeyer, 2008; Marchal-Crespo and Reinkensmeyer, 2009; Williams and Carnahan, 

2014a). 

 

 



 

15 
  

2.2.3 Fading assistance strategies to enhance learning 

We have discussed the bandwidth strategy to reduce the frequency of haptic assistance provided 

within a given movement trial. A related question is how assistance should be 

manipulated/scheduled during practice over multiple trials to mitigate the overreliance effect. At 

the level of practice, training with constant assistance levels throughout the practice period can 

have detrimental effects on learning as discussed earlier. Specifically, practicing with constant 

assistant levels enhances performance when provided, but performance reduces significantly upon 

removal of assistance (Crespo and Reinkensmeyer, 2008; Heuer and Lüttgen, 2015; Powell and 

O’Malley, 2012; Williams and Carnahan, 2014a). Several studies that initially adopted haptic 

assistance for teaching motor skills reported significant drops in task performance upon removal 

of assistance and unsatisfactory retention of learned skills (Feygin et al., 2002a; Kahn et al., 2006; 

Li et al., 2009b; Liu et al., 2005; Teo et al., 2002). Thus, it would be beneficial to reduce the level 

of haptic assistance along with practice, such that the task dynamics can converge to the target task 

dynamics. In the context of using haptic forces to assist movements, the assistance level is 

determined by a force gain (also called stiffness coefficient when spring-like convergent forces are 

incorporated), and reducing assistance level is equivalent to reducing the force gain. 

On a broad level, there are two fundamental strategies to fade assistance levels progressively 

with learning – open-loop and closed-loop. Open-loop strategies reduce the assistance levels in a 

predetermined manner for all learners. Very few studies have adopted open-loop strategies to 

reduce assistance and the results have shown mixed benefits towards learning (Chen and Agrawal, 

2013; Heuer and Lüttgen, 2014a; Lee and Choi, 2010). However, learners possess different skill 

levels initially and some learners might benefit more from assistance than others (Marchal-Crespo 

et al., 2010a). Thus, the assistance could be tailored to the individual using simple performance 
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adaptive approaches – a learner outputting high task performance might not require assistance as 

much as a learner having low task performance. Such manipulations of the assistance according to 

the requirement of the learner can be termed as closed-loop strategies. The closed-loop strategies 

for manipulation of assistance are also supported by the challenge point framework (Guadagnoli 

and Lee, 2004) - the learner is challenged to perform with a reduced assistance level after an 

increase in performance. Performance adaptive strategies were first adopted in rehabilitation 

studies with individuals affected by hemiparesis (Kahn et al., 2004; Krebs et al., 2003) where the 

assistance levels were manipulated according to either absolute performance measures or changes 

in performance measures. The assistance manipulation was also setup as an optimization problem 

with the quadratic costs on motor errors and assistive forces (Emken et al., 2005), which resulted 

in an effective algorithm to fade assistance to zero. Several studies that adopted performance 

adaptive assistance manipulation strategies reported favorable short term benefits for retention of 

motor skills especially with less skilled learners and benefits early on in learning (Banala et al., 

2009; Crespo and Reinkensmeyer, 2008; Huegel and O’Malley, 2010; Li et al., 2009a; Marchal-

Crespo et al., 2010a). However, some studies have reported null effects of reducing assistance in 

a performance adaptive manner (Lee and Choi, 2014). 

Overall, according to the guidance hypothesis, open-loop strategies should benefit learning 

more than fixed assistance, and due to added learning benefits, closed-loop strategies should be 

more effective than open-loop strategies. However, there is a lack of research on effectively 

characterizing the learning benefits of closed-loop strategies in comparison to open-loop strategies. 

Moreover, prior studies have mostly looked at learning from a Pre-test to Post-test standpoint and 

ignoring the learning dynamics that occur while training with assistance. Analyzing the effects of 
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manipulating assistance levels in an open-loop or closed-loop manner on the task performance 

throughout the training period might provide valuable insights about the learning process. 

2.2.4 Error augmentation strategies 

So far, we have only discussed haptic assistive strategies that resist any undesirable deviations of 

the end-effector from the prescribed trajectories. However, a number of studies have also tested 

the effects of strategies that increase errors in place of resisting them (Williams and Carnahan, 

2014a). While the assistive strategies utilize convergent force fields, the error augmenting 

strategies adopt divergent force fields that force the end-effector away from the desired path. It is 

posited that such error augmenting strategies are effective because they enable error-driven 

learning (Emken and Reinkensmeyer, 2005; Patton et al., 2006; Shadmehr et al., 2010; van Beers, 

2009). Moreover, such strategies are also supported by the challenge point theory (Guadagnoli and 

Lee, 2004) that suggests that learning is optimal when the learners are challenged sufficiently when 

executing motor activities. In agreement with the challenge point framework, error augmenting 

strategies have been found to be more effective than error resisting strategies for high skilled 

subjects and especially for adaptation paradigms (Cesqui et al., 2008; Lee and Choi, 2010; Patton 

et al., 2006; Tseng et al., 2007). However, such error augmenting strategies might be detrimental 

for less-skilled subjects and frequent large errors could lead to lower task performance resulting 

in lower motivation for training (Sanger, 2004). For complicated tasks and tasks posing safety 

concerns especially in the rehabilitation setting (Marchal-Crespo and Reinkensmeyer, 2009), error 

resisting strategies could be inevitable and favored more than error augmenting strategies. 
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2.3 Haptic assistance at redundant effectors 

2.3.1 Variability in redundant motor tasks 

Most of the discussed studies employed haptic feedback to reinforce or notify errors caused at 

the end-effector. An important characteristic of the motor system is the feature of redundancy. The 

feature of redundancy means that a given motor task can be achieved using multiple movement 

solutions. Bernstein first documented this phenomenon when he observed a blacksmith adopt 

different movement paths of the tip of the hammer while still successfully hitting the target and 

termed it as ‘repetition without repetition’ (Bernstein, 1967). Almost all the motor activities that 

humans perform possess the feature of redundancy which manifests at different levels – kinematic, 

kinetic, temporal, muscle, and limb levels. In this dissertation, we particularly focus on kinematic 

redundancy observed at the limb level. 

The feature of redundancy means that the end-effector can be manipulated along similar paths 

while adopting observably different kinematics at the redundant effectors. For example, we can 

maintain our fingertip at a given location in space while adopting different orientations of the wrist, 

forearm, and the upper arm. Therefore, it could be possible to have a high overall motor variability 

even while having low end-effector variability. The motor variability for kinematically redundant 

motor tasks can be decomposed into two components (i) task space variability – the component of 

variability that affects task variables (ii) null space variability – the component of variability that 

does not affect task variables (Domkin et al., 2002; Latash et al., 2001; Liu et al., 2010; Mosier et 

al., 2005; Scholz and Schöner, 1999). The notion of task variables is task dependent and for us, 

task space variability implies the component of the motor variability that leads to variability in the 

end-effector position and null space variability is the component of overall motor variability that 

does not contribute to the variability of the end-effector position. 



 

19 
  

2.3.2 Assistance to control variability 

 As discussed earlier, the task goal for end-effector control is to minimize errors from desired 

paths and variability between reproduced paths. Prior studies have only used haptic assistance to 

control the end-effector variability directly, even when multiple redundant effectors are 

contributing to the movement of the end-effector. However, for redundant tasks, the end-effector 

variability can be controlled by controlling the variability of the redundant effectors. A natural 

question is whether providing assistance at the redundant effectors is beneficial than providing 

haptic assistance only at the end-effector. Therefore, haptic assistance for redundant motor tasks 

presents the following two possibilities to control task space variability or the end-effector 

variability (i) provide assistance at the end-effector to control task space variability only (ii) 

provide assistance at the redundant effectors to control overall motor variability. The first 

possibility would mean that there is the flexibility to use redundant solutions over multiple trials, 

whereas the second possibility restricts the usage of redundant solutions. The question boils down 

to whether redundant solutions should be allowed or restricted while practicing kinematically 

redundant motor tasks. 

On one end, we have theoretical and experimental evidence against restricting the adoption of 

redundant solutions. Optimal control models have proposed that it is optimal for the motor system 

to adopt multiple solutions to the same task as long as there are no deviations from the task goals 

which is also referred to as the minimum intervention principle for motor control (Diedrichsen et 

al., 2010a; Todorov and Jordan, 2002). Specifically, the minimum intervention principle states that 

the motor system has to correct movements of the redundant effectors only when there is a 

deviation of the end-effector from the required path. Experimental evidence that led to the 

uncontrolled manifold hypothesis (Scholz and Schöner, 1999) and the goal equivalent manifolds 
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(Cusumano and Cesari, 2006), and states that the motor system stabilizes task variables (low task 

space variability or goal equivalent variability) by allowing higher variability in the null space. 

Several other studies have reported results in agreement with the uncontrolled manifold hypothesis 

(Dingwell et al., 2013; Domkin et al., 2002; Latash et al., 2001; Müller and Sternad, 2004; Scholz 

et al., 2000; Wu et al., 2014). Besides, the usage of redundant solutions promotes exploration of 

the movement subspace (Sternad, 2018), reduces fatigue that could arise from repetitive 

movements, allows compensation for unexpected perturbations, and simultaneous solutions to 

secondary tasks (Latash, 2012). 

On the other hand, repeating similar movements at the redundant effectors might offer learning 

benefits. Even though the minimum intervention principle states that variability that does not affect 

task performance need not be minimized, experimental evidence reveals a tendency of the motor 

system to reduce overall movement variability with learning (Domkin et al., 2002; Georgopoulos 

et al., 1981; Yang and Scholz, 2005). It was also found that the flexibility to use redundant 

solutions might be important only to learn task-relevant parameters and a flexible system uses 

redundant solutions only when there are constraints towards using a preferred set of solutions 

(Ranganathan and Newell, 2010). The repetition of similar movements might also promote a use-

dependent learning mechanism which suggests that the motor system learns by repeating similar 

movements over successive trials (Diedrichsen et al., 2010c). The motor system naturally tends to 

reinforce successful movement solutions leading to a model-free learning mechanism and 

repeating successful solutions might benefit learning (Haith and Krakauer, 2013). Moreover, the 

repetition of similar movements can speed up the formation of inverse maps between the lower 

dimensional task space and higher dimensional joint space (Liu and Scheidt, 2008; Mosier et al., 

2005; Ranganathan et al., 2013). Experimental evidence showing the benefits of using variable 
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solutions have been mostly in adaptation paradigms where exploration is critical (Wu et al., 2014). 

Besides, practice conditions that enforced high null space variability were found to impair learning 

in a study requiring reduction of variability around a preferred solution (Cardis et al., 2017). 

2.3.3 Bimanual tasks as a model for studying redundancy 

We use our two hands to perform several motor tasks in our everyday life and most of the tasks 

involve interactions with external objects. The two hands coordinate in a multiple number of ways 

to cooperatively manipulate objects constituting a redundant system. Any given orientation of an 

object placed in between the hands can be obtained with different hand positions on the object. 

The minimum intervention principle and the uncontrolled manifold hypothesis were verified for 

the case of a bimanual redundant system, where two hands were used to control a cursor placed at 

the average position of the hands (Diedrichsen, 2007). Specifically, the variability in the position 

of the cursor was minimized by allowing variability in the position of the hands.  Such a system is 

well suited to study the application of assistance to redundant systems because the assistive force 

channels can be independently integrated for the two hands. 

The ubiquity of bimanual coordinated movements in our life and the dexterity afforded by our 

hands encourages the use of bimanual action for human-robot cooperation tasks (Talvas et al., 

2014). Moreover, the past decade has seen a rapid advancement in the use of haptic enabled robotic 

systems for surgical interventions (Enayati et al., 2016). Alongside, virtual reality platforms have 

also made their way to train surgeons for certain surgical skills in training (Derossis et al., 1998). 

Encouraging transfer of skills from training to the operation room has been reported in surgical 

training studies (Escobar-Castillejos et al., 2016; Hyltander et al., 2002; Sturm et al., 2008; 

Vaughan et al., 2016). A fundamental question is how to effectively enable haptic feedback to the 

two hands to provide sufficient information during the surgical task and how to best organize 
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surgical training to ensure the transfer of learned skills outside simulations. Lately, there has also 

been an increased use of the bimanual modality for telepresence and telemanipulation systems in 

applications for tasks in space (Artigas et al., 2016), disaster response activities (Katyal et al., 

2014) and tasks in hazardous environments (Kron et al., 2004). 

Two-handed training protocols have also been used extensively in rehabilitation due to the 

ubiquity of bimanual movements in the activities of daily living.  A major goal for the 

rehabilitation of the upper limb is to restore the motor capabilities of bimanual coordination (Rose 

and Winstein, 2004). The coordination between the two hands can be retrained only using bilateral 

tasks and not by training each arm separately due to differing motor control processes (Waller and 

Whitall, 2008). Moreover, bilateral training can improve unilateral paretic limb functions partially 

due to neurophysiological mechanisms. Several clinical studies have adopted bilateral arm training 

using robot mediated assistance in acute and chronic stages post-stroke and have reported 

favorable results (Hesse et al., 2003; Lewis and Perreault, 2009; Stinear and Byblow, 2004; Whitall 

et al., 2000). 

Simultaneous bimanual perception is also found to be superior to unimanual perception and 

visual perception of surfaces. Bimanual simultaneous exploration of haptic surfaces can provide 

more relevant information than unimanual exploration (Leganchuk et al., 1998). The integration 

of haptic feedback between the two hands increases the perception of curvature and allows better 

discrimination of surfaces (Panday et al., 2013). A kinematic chain is formed with the two hands 

and the object in between, and this leads to the transfer of learning between the hands. Moreover, 

a frame of reference is created between the two hands and that facilitates the reduction in task 

completion times without affecting task precision (Talvas et al., 2014).  
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Chapter 3  

DIFFERENTIAL CONTROL OF TASK AND 

NULL SPACE VARIABILITY IN RESPONSE 

TO CHANGES IN TASK DIFFICULTY WHEN 

LEARNING A BIMANUAL STEERING TASK 

*The work presented in this chapter has been published* (Lokesh and Ranganathan, 2019) 

https://doi.org/10.1007/s00221-019-05486-2  

 

 

3.1 Abstract 

The presence of motor redundancy means that movement variability can be split into a ‘task space’ 

component that affects task performance, and a ‘null space’ component which has no effect on 

task performance. While the control of task space variability during learning is essential because 

it is directly linked to performance, how the nervous system controls null space variability during 

learning has not been well understood. One factor that has been hypothesized to govern the change 

in null space variability with learning is task difficulty, but this has not been directly tested. Here 

we examined how task difficulty influences the change in null space variability with learning. 

Healthy, college-aged participants (n = 36) performed a bimanual steering task where they steered 

a cursor through a smooth W-shaped track of a certain width as quickly as possible while 

https://doi.org/10.1007/s00221-019-05486-2
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attempting to keep the cursor within the track. Task difficulty was altered by changing the track 

width and participants were assigned into one of three groups based on the track width that they 

practiced on - wide, narrow, or progressive (where the width of the track progressively changed 

from wide to narrow over practice). The redundancy in this task arose from the fact that the position 

of the cursor was defined as the average position of the two hands. Results showed that movement 

time depended on task difficulty, but all groups were able to decrease their movement time with 

practice. Learning was associated with a reduction in null space variability in all groups, but 

critically there was no effect of task difficulty. Further analyses showed that while the task space 

variability showed an expected speed-accuracy tradeoff with movement time, the null space 

variability showed a qualitatively different pattern. These results suggest differential control of 

task and null space variability in response to changes in task difficulty with learning and may 

reflect a strong preference to minimize overall movement variability during learning. 

3.2 Introduction 

The large number of degrees of freedom in the human body creates redundancy, which means that 

most motor tasks can be accomplished through multiple movement solutions (Bernstein, 1967). 

For example, when reaching to a location in 3D space, the human arm has at least 7 degrees of 

freedom at the joint level, which means that there are multiple arm postures that can be used to 

reach that location (Turvey et al., 1982). This example of mechanical redundancy allows 

movement variability to be decomposed into two components - (i) a ‘task space’ (or goal-relevant) 

component where the variability directly affects the task outcome, and (ii) a ‘null space’ (or goal-

equivalent) component where variability has no effect on the task outcome (Cusumano and Cesari, 

2006; Domkin et al., 2002; Mosier et al., 2005; Müller and Sternad, 2004; Scholz and Schöner, 
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1999). Understanding how the nervous system controls these two components of variability when 

learning a novel task is critical from both theoretical and applied viewpoints. 

Although it is apparent that task space variability must be controlled with learning due to its 

direct link to task performance, the role of null space variability with learning remains rather 

unclear (Wu and Latash, 2014). On the one hand, there is evidence that overall movement 

variability (i.e., both task and null space variability) generally decreases with learning (Darling 

and Cooke, 1987; Ranganathan and Newell, 2010; Shmuelof et al., 2012), indicating that even in 

the presence of many solutions, there is a tendency to use certain ‘preferred’ solutions. However, 

on the other hand, reducing null space variability could also be considered ‘wasted effort’ since it 

has no impact on task performance (Todorov and Jordan, 2002). Moreover, reducing null space 

variability may also be counter-productive since the presence of null space variability may allow 

flexibility to accommodate perturbations or secondary tasks (Latash, 2012; Rosenblatt et al., 2014; 

Zhang et al., 2008). A recent review (Latash, 2010) revealed a mixed pattern of results – in some 

tasks, there was an increase in null space variability (relative to the task space variability) with 

learning, whereas in others there was a decrease. One potential hypothesis raised to explain this 

pattern of results was that of task difficulty - simple tasks with lower task difficulty generally 

showed greater reduction in null space variability, whereas complex tasks with higher task 

difficulty led to relative preservation of the null space variability. These results point to a need to 

clarify the role of task difficulty in the change of null space variability in learning. 

However, a major limitation of inferring the role of task difficulty from prior work is the 

necessity to make comparisons between learning completely different tasks (e.g. pointing at a 

target vs. multi-finger force production). Although it seems intuitive that some tasks may be more 

difficult than others, there is no common metric of task difficulty across these different tasks, 
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which is critical to quantitatively test this hypothesis. Here we overcome this limitation by using 

a single task that could be varied on a quantifiable metric of task difficulty. Specifically, we used 

a steering task where participants had to steer a cursor through a track while staying within a track. 

This paradigm allowed us to manipulate task difficulty by altering the width of the track, while 

holding all other experimental factors constant.  

The goal of this study was to examine the effect of manipulating task difficulty on the change 

in null space variability with learning. Participants performed a bimanual steering task where the 

goal was to steer a screen cursor through a desired track of specified width as quickly as possible 

without crossing the boundaries of the track. Critically, the screen cursor position was determined 

as an average of the position of the two hands, which meant that the same cursor path could be 

achieved by different combination of hand paths. We manipulated the task difficulty by adjusting 

the track width; in two groups (wide and narrow), the track width was held constant throughout 

practice, and in a third group (progressive), we changed the track width during practice. We 

evaluated the change in null space variability with learning. Based on the task difficulty hypothesis 

(Latash et al., 2001), we hypothesized that there would be a reduction in variability with learning 

in both cases, but that the group with higher task difficulty (i.e., the narrow group) would show 

higher amounts of null space variability relative to the group with easier task difficulty. As a 

second exploratory aim, we also examined if progressive modification of task difficulty (gradually 

moving from lower to higher task difficulty) had a differential effect on the use of null space 

variability relative to the groups that practiced with the same level of task difficulty throughout.  
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3.3  Methods 

3.3.1 Participants 

Participants were 36 healthy college-aged adults (age range: 20-24 yrs., 20 females). Participants 

received extra course credit for participation. All participants provided informed consent and the 

procedures were approved by the Institutional Review Board at Michigan State University.  

3.3.2 Apparatus 

We used a bimanual manipulandum (KINARM Endpoint Lab, BKIN Technologies Ltd., ON), 

which consists of two separate robotic arms that allow motion in a 2-D horizontal plane. A handle 

located at the end of each arm could be grasped by participants. Participants were seated on a 

height-adjustable chair and looked into a screen at around 45-degree angle below eye level (Figure 

3.1A). The visual information was presented in such a way that the objects on the screen appear to 

be located in the plane of the hands. Kinematic data from both handles were sampled at 1000 Hz.  

3.3.3 Task Description 

The participants controlled a cursor of diameter 4 mm and steered it from start position to end 

position along a smooth W-shaped track of length 738 mm (Figure 3.1B). The goal of the 

participants was to do this as quickly as possible, while maintaining the cursor within the track. 

The width of the track was always visible to the participant- both the track (i.e., the ‘allowed 

region’), and the surrounding region were highlighted in different colors. When the cursor deviated 

from the track, the surrounding region changed color serving as a visual cue to help maintain the 

cursor within the track. Regardless of the track width, the center of the track always remained in 

the same position in the workspace for all participants and conditions. 

 



 

28 
  

 

Figure 3.1 Experiment 1 setup and task schematic. (A) Schematic of experimental apparatus. 

Participants held the handles of a bimanual manipulandum and looked into a screen that displayed 

the image in the same plane as their hands. Participants could not see their hands directly. (B) Task 

Schematic. Participants were asked to steer a cursor though the W-shaped track as quickly as 

possible from start to finish while maintaining the cursor inside the track. The position of the cursor 

was displayed at the average position of the two hands (hands were not visible to the participant). 

Hands are drawn only for the sake of clarity and are not to scale. 

3.3.4 Cursor mapping 

The position of the cursor (XC, YC) was displayed at the average position of the two hand locations 

(X and Y coordinates of the left and right hands), making the task redundant (Diedrichsen, 2007). 

This 4-to-2-mapping can be represented as follows (Liu and Scheidt, 2008; Mosier et al., 2005) 

C =  [
XC

YC
] =  [

0.5 0.5 0 0
0 0 0.5 0.5

] [

XL

XR

YL

YR

] = A H                               (1) 

Where C is the cursor position, A is the ‘mapping matrix’ and H is the vector of hand positions. 
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3.3.5 Procedures 

At the start of each trial, participants saw two individual cursors (one for each hand), which 

allowed them to position each hand in its own start circle – this was done to ensure that the two 

hands always started at the same position for each trial. Once each hand reached its start position, 

the individual cursors disappeared and were replaced by a single cursor at the average position of 

the two hands. Participants then moved this cursor towards the finish position as fast as possible 

staying within the width of the track. Participants were asked to ‘pass through’ the finish box (i.e., 

they did not have to stop the cursor at the finish box).  

To encourage participants to go faster while staying inside the track, participants were shown a 

'Points Score’ at the end of the trial that reflected their task performance - higher scores (max 100 

points) were generated for faster times and for staying inside the track. Participants received a 

penalty in proportion to the time they took to complete the whole movement (tm) and the time that 

the cursor spent outside the track (to) (See equation below). If the cursor completely went outside 

even the surrounding region, they were awarded zero points on that trial. 

Points score = 100 − 0.22 ∗ (tm)2 − 6.66 ∗ (to)2                                (2) 

3.3.6 Experimental Protocol 

Participants were divided into three groups (n = 12/group) – Narrow, Progressive and Wide, based 

on the track width during practice. (Figure 3.2). All participants initially performed a 

familiarization block of 10 trials on the wide track, where they familiarized themselves with the 

task and the scoring system. Subsequently, each group practiced for 12 blocks (24 trials in each 

block) on a different track width over two days of practice. We decided the total number of trials 

based on pilot tests, mainly to allow sufficient practice for learning the task. And, given the large 

number of trials, we spread the practice trials over two days to avoid practice fatigue. The Narrow 
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group had a 6 mm wide track, the Wide group had a 10 mm wide track, and the width for these 

two groups remained constant throughout all 12 blocks of the experiment (1 block = 24 trials). For 

the Progressive group, the track width started at 10 mm (i.e., same as the wide group) and was then 

gradually reduced by 2 mm after every two blocks until it reached 6 mm (same as the narrow 

group). After 10 blocks of practice, the Progressive group performed one block of trials on the 

narrow setting (6mm) on block 11, and one block of trials on the widest setting (10 mm) in block 

12. Participants in the Progressive group were not explicitly informed about the changes in track 

width, although the width of the track was visible to them.  

 

Figure 3.2 Experiment 1 protocol for the three groups. Each block of practice consisted of 24 trials 

with a ~24-h break between blocks 6 and 7. The Wide and Narrow groups practiced with track 

widths of 10 mm and 6 mm respectively throughout the experiment. For the Progressive group, 

the track width was reduced during practice (blocks 1 to 10) by 1 mm every 2 blocks, going from 

10 mm in block 1 to 6 mm by block 9. After the last practice block (block 10), the progressive 

group faced a 6 mm track on block 11 (the same as the Narrow group) and faced a 10 mm on block 

12 (the same as the Wide group). These two blocks essentially served as post-tests for comparisons 

with Narrow and Wide groups respectively. 
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3.4 Data analysis 

3.4.1 Movement time 

Based on our task instruction, the primary variable of interest was movement time. Movement 

time was measured as the time between the instant when the participant moved the cursor out of 

the start circle and the instant when the cursor moved into the finish box.  

3.4.2 Error percentage  

Because participants also had an accuracy requirement of staying inside the track, the error 

percentage was computed as the time duration that the cursor stayed outside the track in any given 

trial expressed as percentage of the movement time of that trial. 

3.4.3 Task and null space variability 

Because of the redundancy in the task, participants could maintain the same cursor position with 

differing positions of the individual hands. Therefore, the variability in hand positions could be 

further decomposed into task and null space variability (Liu and Scheidt, 2008; Mosier et al., 2005; 

Ranganathan et al., 2013). 

The path from each trial was divided into 51 spatially equidistant points from the start to the 

end. At each point, the corresponding hand positions from all trials in that block were extracted 

into a matrix H (See Cursor mapping section) and the Moore-Penrose inverse matrix was used to 

decompose the hand positions into null space and task space components. Based on the mapping 

matrix A defined in the ‘Cursor mapping’ section, the null space (Hn) and task space (Ht) 

decomposition of hand positions were calculated as  

Ht = A′ ∗ (A ∗ A′)−1 ∗ A ∗ H                                                   (3) 

Hn = (I4 − A′ ∗ (A ∗ A′)−1 ∗ A) ∗ H                                             (4) 
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Where I4 is an identity matrix of size 4 x 4. The variances of these null and task components of 

the hand positions were computed and summed to obtain total null space and task space variability 

at each spatial point.  

3.5 Statistical analysis 

Based on the experimental design, we refer to blocks 1-10 as the ‘practice blocks’ and blocks 11-

12 as the ‘post-test blocks’. Specifically, block 11, which was used to compare the Progressive 

and Narrow groups is referred to as Post-test Narrow; and block 12, which was used to compare 

the Progressive and Wide groups is referred to as Post-test Wide.  

3.5.1 Analysis of practice blocks 

The data from the first and last practice blocks (blocks 1 and 10) were analyzed to evaluate the 

effects of practice and task difficulty. For movement time and error percentage, we used a two-

way repeated measures ANOVA (Practice x Group), with Practice being the repeated measure. 

For the task and null space variability, we used a three-way repeated measures ANOVA (Practice 

x Path Location x Group), with Practice and Path Location being repeated measures. Here, Path 

Location refers to five spatial points (0%, 30%, 50%, 70% and 100%) on the cursor path measured 

as a percentage of the total length of the path (these 5 Path Location points were identified from 

the 51 sampled points). The approximate locations of these path locations for any given block are 

shown in Figure 3.1B. 

3.5.2 Analysis of post-tests 

In order to evaluate the effect of progressive practice, we analyzed the post-tests focusing on the 

two groups which practiced on the same track width (thereby removing the effect of task 
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difficulty). In the Post-test Narrow, we compared the narrow and progressive groups; and in the 

Post-test Wide, we compared the wide and progressive groups. For each post-test, we used a one-

way ANOVA (Group) to analyze differences in movement time and error percentages and a two-

way ANOVA (Path Location x Group) to analyze differences in task and null space variabilities. 

The significance level was set at α = 0.05. Post-hoc comparisons were adjusted using the 

Bonferroni correction and Greenhouse-Geisser corrections were applied to account for violations 

in sphericity.  

3.6 Results 

First, we examined null and task variabilities in each block and removed participants whose 

variability fell outside the Tukey's (Tukey, 1977) fences (Q3 + 1.5 *IQR and Q1 - 1.5 * IQR, Q1 

= lower quartile, Q3 = upper quartile, IQR = Interquartile Range). There were 6 such outliers in 

total, which reduced the sample sizes to 10 in each group.  

3.6.1 Movement Time 

Practice. As expected, both task difficulty and practice influenced the movement time (Figure 

3.3A). Participants in the Narrow and Wide groups were able to reduce movement time with 

practice, but the Progressive group did not show changes in movement time with practice (because 

the task difficulty was constantly increased in this group). The analysis of the practice blocks 

revealed a significant main effect of Group (F(2,27) = 34.05, p < 0.001), Practice (F(1,27) = 59.05, 

p < 0.001) and a significant Group x Practice interaction (F(2,27) = 16.27, p < 0.001). Pairwise 

Bonferroni adjusted comparisons for the Group x Practice interaction showed: block 1- that 

movement times were longer for the narrow group compared to the Wide and Progressive groups 

(p < 0.001), whereas there was no significant difference between the Progressive vs. Wide (p = 
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0.268), block 10-movement times for the wide group were significantly smaller than both Narrow 

and Progressive groups (p < 0.001), but there was no significant difference between the Narrow 

vs. Progressive (p > 0.999).  

Post-tests. Progressive practice did not facilitate reduction in movement time on the narrow track, 

and led to a small but significant increase in the movement time on the wide track. Comparisons 

in the Post-test Narrow revealed no significant differences between Progressive and Narrow 

groups (F(1,18) = 0.79, p = 0.379). In the Post-test Wide, movement times were higher for the 

Progressive group compared to the Wide group (F(1,18) = 6.03, p = 0.024). 

Figure 3.3 Experiment 1 task performance results. (A) Average movement time in each group as 

a function of practice. Movement times were affected by track width and practice. Blocks 1 to 10 
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Figure 3.3 (cont’d)…represent the practice phase and blocks 11 and 12 represent the post-tests. 

There was a ~24h break between blocks 6 and 7. (B) Average error percentage in each group as a 

function of practice. Error percentages were generally low, and remained constant throughout 

practice, except for the Progressive group. Error bars represent one standard error (between-

participant). Average cursor speeds for (C) Wide Group and (D) Narrow Group in the first practice 

block (continuous line) and last practice block (dotted line). Improvements in speed were greater 

in the straighter portions of the track when compared to the curved portions of the track. 

3.6.2 Error percentage  

Practice. Overall, the error percentage was low for all groups (between 5-15%) (Figure 3.3B). 

Participants in the Narrow and Wide groups had nearly constant movement error percentages 

throughout practice whereas the Progressive group had an increasing movement error percentage 

(because of the gradual increase in task difficulty). The analysis of practice blocks revealed a 

significant main effect of Practice (F(1,27) = 9.12, p = 0.005) and a significant Group x Practice 

interaction (F(2,27) = 15.76, p < 0.001). Pairwise Bonferroni adjusted comparisons for the Group 

by Practice interaction showed: block 1- no significant differences between groups: Progressive 

vs, Narrow (p = 0.130), Progressive vs. Wide (p = 0.88) and Narrow vs. Wide (p > 0.99), block 

10- error percentages were higher for Progressive in comparison to the Wide (p = 0.013) and there 

were no significant differences between Progressive vs. Narrow (p = 0.170) or Narrow vs. Wide 

(p = 0.682). The main effect of Group was also not significant (F(2,27) = 1.78, p = 0.187). 

Post-tests. Progressive practice did not significantly affect the error percentage both on the 

narrow and wide tracks. Comparisons in the Post-test Narrow revealed no significant differences 

between Progressive vs. Narrow (F(1,18) = 3.37, p = 0.082) and comparisons in the Post-test Wide 

revealed no significant difference between Progressive vs. Wide (F(1,18) = 0.10, p = 0.753). 

3.6.3 Task space variability 

Cursor and hand trajectories of all trials in block 1 and block 10 of practice for a representative 

participant in each group are shown in Figure 3.4.  
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Figure 3.4 Participants empirical movement trajectories. Sample trajectories (cursor, left and right 

hand) from one participant in each group are shown for first block of practice (block 1) and last 

block of practice (block 10). The individual hand trajectories become less variable with practice 

even though cursor variability remains roughly the same. 

Practice. Task space variabilities are shown as a function of path location for the first (block 1) 

and last block (block 10) of practice (Figure 3.5-A, B). Because the track width essentially 

constrains the task space variability, we expected to see group differences as a result of our 

experimental manipulation. In agreement, there was a significant effect of Group (F(2,27) = 11.86, 

p < 0.001), Path Location (F(2.7,73.3) = 92.03, p < 0.001), and a significant interaction effect 

Group x Path Location (F(5.4,73.3) = 11.49, p < 0.001).   

Pairwise comparisons for the Group x Path Location interaction showed the following trends: 

while there were no significant differences between the groups at the 0% path location, the Narrow 

group had smaller variability than the Wide group throughout the rest of the path (p < .001). The 

Narrow group also had smaller variability than the Progressive group almost through the entire 

path (30% path location  p = 0.007; 50% p = 0.032, 70% p = 0.147, 100% p < 0.001), whereas the 

Wide group had higher variability than the Progressive group throughout the path except at the 

end (30% p = 0.077, 50% p = 0.033, 70% p = 0.035, 100% p > 0.99). There were no other 

significant effects - Practice (F(1,27) = 0.01, p = 0.911), Practice x Group (F(2,27) = 0.86, p = 
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0.433), Practice x Path Location (F(2.2,60.4) = 1.32, p = 0.273) and Group x Practice x Path 

Location (F(4.5,60.4) = 0.39, p = 0.834). 

Post-tests. Practicing with progressive widths did not affect task space variability on either of 

the post-tests (Figure 3.6-A, B). In Post-test Narrow, there was a significant effect of Path Location 

(F(3.1,56.1) = 60.49, p < 0.001) and a significant interaction effect Group x Path Location 

(F(3.1,56.1) = 3.28, p = 0.025). Paired comparisons at various path locations revealed a significant 

difference between the Progressive and Narrow groups generally in the latter half of the trajectory 

- 70 % path location (p = 0.022), but the 50% path location (p = 0.109) and 100 % path location 

(p = 0.107) were not significant. Group differences were not significant in the first half of the 

trajectory - 0% path location (p = 0.928), 30% path location (p = 0.765). There was no significant 

effect of Group (F(1,18) = 2.80, p = 0.110). 

In Post-test Wide, there was a significant effect of Path Location (F(2.4,43.9) = 44.05, p < 

0.001) which was similar to the effect seen in practice. There was no significant effect of Group 

(F(1,18) = 0.55, p = 0.465), or Group x Path Location (F(2.4,43.9) = 0.43, p = 0.690). 
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Figure 3.5 Task and Null space variabilities during practice. Average task space variability for 

each group in the (A) first practice block (block 1), and (B) last practice block (block 10). Task 

space variability differed between groups but did not change significantly with learning. Average 

null space variability for each group in the (A) first practice block and (D) last practice block.  Null 

space variability was similar between the groups and showed reductions from the first to last block. 

Error bars indicate one standard error (between-participant). 

3.6.4 Null space variability 

Practice. Null space variabilities are shown as a function of path location for first (block 1) and 

last block (block 10) of practice (Figure 3.5-C, D). We observed that (i) null space variability 

showed an increasing trend along the path from start to finish, and (ii) there was a reduction in null 
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space variability with practice for all groups and for all blocks. Comparisons of null space 

variability revealed a significant effect of Practice (F(1,27) = 30.65, p < 0.001),  Path Location 

(F(1.3,36.7) = 57.79, p < 0.001), and Practice x Path Location (F(1.3,34.5) = 15.71, p < 0.001). 

Pairwise comparisons between blocks 1 and 10 at various path locations yielded an overall 

decrease in variability throughout the path at all path locations (p < 0.001) except at the 0% path 

location (p = 0.296). Importantly, there was no significant effect of Group (F(2,27) = 1.518, p = 

0.237), or other interactions - Group x Practice (F(2,27) = 1.27, p = 0.296), Group x Path Location 

(F(2.7,36.7) = 0.38, p = 0.924), Practice x Group x Path Location (F(2.5,34.5) = 0.47, p = 0.872). 

Post-tests. Progressive practice did not affect null space variability on either post-test (Figure 

3.6-C, D). In Post-test Narrow, there was a significant effect of Path Location (F(1.7,30.8) = 20.56, 

p < 0.001) which showed a similar increasing trend from start to finish. There was no significant 

effect of Group (F(1,18) = 0.93, p = 0.346), or Group x Path Location (F(1.7,30.8) = 1.21, p = 

0.304).    

Similarly, in Post-test Wide, there was a significant effect of Path Location (F(1.8,33.8) = 47.18, 

p < 0.001), showing a similar increasing trend from start to finish. There was no significant effect 

of Group (F(1,18) = 1.17, p = 0.292), or Group x Path Location (F(1.8,33.8) = 2.55, p = 0.095).   
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Figure 3.6 Task and Null space variabilities in post-test. Average task space variability for the 

relevant groups in the (A) Post-test Narrow (block 11), and (B) Post-test Wide (block 12). Average 

null space variability for the relevant groups in the (C) Post-test Narrow and (D) Post-test Wide 

blocks.  There were no advantages to progressive practice either in task or null space variability in 

both post-tests. Error bars indicate one standard error (between-participant). 

 

3.6.5 Variabilities as function of movement time 

Finally, to examine speed-accuracy effects, we examined null and task space variabilities for all 

participants as a function of movement time in the first and last block of practice, block 1 and 



 

41 
  

block 10 respectively (Figure 3.7-A,B). For this analysis, the task and null space variabilities were 

averaged across all path locations for each participant. Because the scatter plots indicated that 

relation was not linear, we used the Spearman’s ranked correlation (ρ) to compute the correlation. 

 

Figure 3.7 Variability as a function of movement time. (A) Average task space and (B) average 

null space variability plotted against movement time in the first practice block (black symbols) 

and the last practice block (grey symbols). Each symbol represents a participant, Task-space 

variability shows a negative correlation in both practice blocks, indicating a speed-accuracy 

tradeoff, whereas the null space variability shows a qualitatively different pattern, going from a 

slightly positive correlation in block 1 to a non-significant correlation in block 10. 

Task space variability exhibited a speed-accuracy tradeoff both early and late in learning – i.e., 

shorter movement times were associated with higher task space variability. This was indicated by 

a significant negative correlation for both block 1 (ρ = -0.69, p < 0.001) and block 10 (ρ = -0.81, 

p < 0.001). However, null space variability showed a qualitatively different pattern of results. 

Rather than a speed-accuracy tradeoff (i.e., a negative correlation), the observed correlation was 

positive early in block 1 (ρ = 0.455, p = 0.012) and was not significant in block 10 (ρ = 0.13, p = 

0.479).  
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3.7 Discussion 

The goal of the study was to examine changes in null space variability when learning tasks of 

different difficulty. Participants performed a bimanual steering task through a W-shaped track and 

we modulated the task difficulty using the width of the track. Based on the task difficulty 

hypothesis (Latash, 2010), we hypothesized that the narrow group would show higher amounts of 

null space variability relative to the wide group. Our results did not support the hypothesis - 

although both task difficulty and practice had an effect on the movement time (indicating that the 

manipulation worked and there was learning), there was no effect of task difficulty on the null 

space variability. Instead, with practice, null space variability simply showed an overall reduction 

for all groups. With regard to our exploratory aim on progressive practice, we found that practicing 

with progressive difficulty did not have any beneficial effects (and in some measures resulted in 

slightly worse performance) relative to the groups that practiced with constant difficulty.  

3.7.1 Effect of Task difficulty on Performance 

Because error percentages were generally low for all groups and fairly constant, movement time 

was treated as the primary performance variable. Changing task difficulty had anticipated effects: 

movement times in the narrow track were longer relative to the wide track, indicating a speed-

accuracy tradeoff (Fitts, 1954). Even though original version of the Fitts’ law task was developed 

for discrete point-to-point movements, other versions for path-based control have been developed 

(Accot and Zhai, 1997). Such a tradeoff between movement time and accuracy (imposed by the 

track width) has been attributed to signal-dependent noise (Harris and Wolpert, 1998; Schmidt et 

al., 1979). However, with practice, participants were able to complete the task faster, which is 

consistent with the idea that learning results in reduced motor variability (Darling and Cooke, 
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1987; Georgopoulos et al., 1984; Gottlieb et al., 1988; Shmuelof et al., 2012). In particular, there 

was a greater improvement in speed in the straighter portions of the track when compared to the 

curved portions (Figure 3.3-C, D). 

3.7.2 Effect of Task difficulty on Movement Variability 

However, because this task was redundant, we could further examine how participants changed 

their performance with learning. First, we observed that the task space variability was constrained 

mainly by the track width and did not change with learning, which is consistent with the idea that 

participants did not reduce their task space variability any more than what was required to do the 

task.  When we examined the null space variability however, there was no effect of task difficulty; 

instead the main change was simply an overall reduction with practice in all groups. In other words, 

as participants learned to move faster through the same track, their hand paths from trial-to-trial 

became more consistent, leading to a reduction in the amount of null space variability (even though 

the cursor variability was unaffected). These results are somewhat contradictory to the predictions 

of a two-stage learning model (Latash, 2010). In this model, the first stage of learning, which is 

more pronounced for tasks with higher task difficulty, should lead to strengthening of motor 

synergies (i.e., a relative preservation of the null space variability), followed by an optimization 

process (where null space variability may be decreased). Instead, we found that regardless of task 

difficulty, there was almost a steady reduction in null space variability during learning.  

A simple explanation for these results is that our manipulation of task difficulty was simply not 

large enough – the wide and narrow groups did not differ sufficiently enough in task difficulty to 

create significant differences in the null space variability. However, we think that this explanation 

is unlikely because the effect of task difficulty is clearly seen in the movement time; the narrow 

group almost took twice as long as the wide group throughout the entire practice duration. 
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This raises the question – what is the purpose of reducing null space variability with learning if 

it has no effect on task performance? There are two possibilities – first previous literature on the 

learning of redundant tasks have argued that reductions in null space variability could be a 

reflection of learning the metric properties of the task space (Mosier et al., 2005) or the learning 

of an inverse map from cursor coordinates to hand coordinates (Liu et al., 2010; Ranganathan et 

al., 2013). Second, because the task here focused on reduction of variability, the reduction in 

individual hand variability (and therefore null space variability) could also be due to use-dependent 

or ‘model-free’ learning– in other words, repetition of successful movements (Diedrichsen et al., 

2010c; Shmuelof et al., 2012). This is also consistent with evidence that high amounts of null space 

variability may impair this use-dependent learning mechanism and affect subsequent learning, 

even if it does not affect immediate performance (Cardis et al., 2017; Ranganathan and Newell, 

2013). While the current study was not designed to address the mechanisms of how this variability 

was reduced with learning - i.e. reduction in motor noise vs. increased error correction gains 

(Hasson et al., 2016), the results show that null space variability, although having no effect on 

performance, is also tightly controlled with learning.  

3.7.3 Control of task and null space variability 

Interestingly, when considering performance at a single time point (i.e., ignoring the learning 

aspect), the task and null space variability showed patterns both within- and across-participants, 

that were consistent with an optimal feedback control framework (Todorov and Jordan, 2002). At 

the within-participant level, when we examined task variability along the track, task space 

variability was higher in the middle of the track compared to the start and end. However, when we 

examined the null space variability, we found an increasing trend throughout the path from start 

to finish, consistent with other evidence in static force production tasks (Shim et al., 2004). This 
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is also consistent with the results based on optimal feedback control (Todorov and Jordan, 2002) 

because the system had nothing to gain by ‘correcting’ null space deviations (since they would be 

wasted effort), and therefore the variability simply accumulated throughout the path.  

At the between-participant level, we also found that while the task space variability showed the 

typical speed-accuracy tradeoff (i.e., shorter movement times associated with higher task space 

variability), the null space variability showed a qualitatively different pattern, where faster 

movement times generally resulted in lower null space variability, particularly late in learning.  

These results are also consistent with optimal feedback control (Todorov and Jordan, 2002) - as 

participants went faster, there was less time for feedback-based compensation between the two 

hands, and therefore participants would have had to be more consistent with both hands (i.e., use 

less null space variability) to still be successful at the task.  

3.7.4 Effect of Progressive practice 

Finally, we examined the progressive group to investigate if changing task difficulty had any 

beneficial transfer effects (Day, 1956). We observed no benefits to gradually increasing task 

difficulty level relative to the groups that practiced with constant track width. In both post-tests, 

the progressive group did not outperform the group that had practiced on the constant track width 

(narrow or wide). In the Post-test Narrow condition, we in fact observed a higher null and task 

space variability in the progressive group, indicating that the progressive group had a carry-over 

effect of practicing with wider track widths, and therefore had slightly higher overall variability. 

In general, the results support a “specificity” account of learning (Bachman, 1961; Baker et al., 

1950; Henry, 1958; Woodworth and Thorndike, 1901), where the best performance was obtained 

by direct practice on the to-be-learned condition.  
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There are a number of important caveats that need to be addressed. First, from a task paradigm 

perspective, in our task, participants were required to maintain task space variability, but were free 

to select movement time. There is some evidence that instructions have an effect on the use of 

redundancy – for example, in well-learned reaching movements, participants required to maintain 

the same movement time across task difficulty show changes in the use of null space variability 

(Tseng et al., 2003), however, this effect seems to disappear if participants self-select the 

movement time (Greve et al., 2015). Because our task was more novel, we expected to see if the 

non-significant differences found in Greve et al. were due to ‘ceiling’ effects of using a well-

learned behavior, but surprisingly, this was not the case. Second, the mean position of the track 

was never changed during the experiment, which meant that participants really did not have to 

explore during learning, instead they only to reduce the movement time while maintaining the task 

variability. Although this argues against the use of null space variability as a buffer to avoid 

increased task space variability (Todorov & Jordan, 2002), this lack of exploration could have also 

resulted in decreased null space variability. While this is outside the scope of the current study, 

introducing task variations to enhance motor exploration (such as manipulating the position of the 

channel, or the contribution of the hands to the shared cursor) may be ways to examine if the null 

space variability is critical to exploration. 

In summary, we found that task difficulty did not have any differential effects on the use of null 

space variability. Null space variability decreased with practice, even as movement times got 

faster. These results suggest that in tasks involving the reduction of variability, the nervous system 

may use null space variability early on in learning but rely on the strategy of reducing overall 

variability regardless of task difficulty. 



 

47 
  

Chapter 4  

HAPTIC ASSISTANCE THAT RESTRICTS 

THE USE OF REDUNDANT SOLUTIONS IS 

DETRIMENTAL TO MOTOR LEARNING 

*The work presented in this chapter has been published* - (Lokesh and Ranganathan, 2020) 

© 2020 IEEE. Reprinted, with permission, from R. Lokesh and R. Ranganathan (2020), "Haptic 

assistance that restricts the use of redundant solutions is detrimental to motor learning," in IEEE 

Transactions on Neural Systems and Rehabilitation Engineering. 

https://doi.org/10.1109/TNSRE.2020.2990129  

4.1 Abstract 

Understanding the use of haptic assistance to facilitate motor learning is a critical issue, especially 

in the context of tasks requiring control of motor variability. However, the question of how haptic 

assistance should be designed in tasks with redundancy, where multiple solutions are available, is 

currently unknown. Here we examined the effect of haptic assistance that either allowed or 

restricted the use of redundant solutions on the learning of a bimanual steering task. 60 college-

aged participants practiced steering a single cursor placed in between their hands along a smooth 

W-shaped track of a certain width as quickly as possible. Haptic assistance was either applied at 

(i) the ‘task’ level using a force channel that only constrained the cursor to the track, allowing for 

the use of different hand trajectories, or (ii) the ‘individual effector’ level using a force channel 

https://doi.org/10.1109/TNSRE.2020.2990129
https://doi.org/10.1109/TNSRE.2020.2990129
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that constrained each hand to a specific trajectory. In addition, we also examined the effect of 

simply ‘fading’ assistance in a linear fashion– i.e., decreasing force gains with practice to reduce 

dependence on haptic assistance. Results showed all groups improved with practice - however, 

groups with haptic assistance at the individual effector level performed worse than those at the 

task level. Besides, we did not find sufficient evidence for the benefits of linearly fading assistance 

in our task.  Overall, the results suggest that haptic assistance is not effective for motor learning 

when it restricts the use of redundant solutions. 

4.2 Introduction 

Robotic training is widely adopted to assist in the learning of novel motor tasks, especially those 

requiring precision. For example, a stroke survivor attempting to place a cup of coffee on a narrow 

ledge is faced with a task of moving the cup in a specified trajectory while controlling task 

variability – i.e., variability that affects the movement of the cup.  Although several different 

algorithms have been used to explore how haptic feedback can be used to influence motor learning 

in such contexts (Duarte and Reinkensmeyer, 2015; Lüttgen and Heuer, 2012; Marchal-Crespo 

and Reinkensmeyer, 2009; Reinkensmeyer and Patton, 2009; Sigrist et al., 2013), here we focus 

on ‘haptic assistance’ which is designed to minimize errors during training. 

A critical issue in this regard is how to design haptic assistance to best control task variability.  

Prior studies have almost exclusively used non-redundant tasks where task variability can only be 

controlled directly by controlling the movement variability of the end-effector, i.e. enforcing the 

same movement from trial to trial (Feygin et al., 2002b; J. Liu et al., 2006; Teo et al., 2002; 

Teranishi et al., 2018). However, when tasks have multiple degrees of freedom, the redundancy 

associated with this arrangement leads to a situation where task variability can be controlled 
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without necessarily repeating the same movements at all the individual effectors. This strategy of 

‘repetition without repetition’ (i.e., achieving the same task goal without repeating the same 

movements) has been observed extensively in human motor control (Domkin et al., 2002; John et 

al., 2016; Scholz and Schöner, 1999; Sternad, 2018; Todorov and Jordan, 2002). However, the 

question of how haptic assistance has to be provided in such redundant tasks to enhance learning 

is not known.  

Haptic assistance can be provided at two levels in redundant tasks - (i) the ‘task’ level where 

the assistance constrains deviations only when they interfere with the task, or (ii) the ‘individual 

effector’ level where the assistance constrains deviations of individual effector motions. The key 

distinction between these two levels is that haptic assistance at the task level allows the use of 

multiple redundant solutions and flexibility in movements from trial-to-trial (Latash, 2010). On 

the other hand, haptic assistance at the individual effector level limits such flexibility from trial-

to-trial, but may still be able to facilitate learning through a ‘use-dependent’ learning mechanism 

(Diedrichsen et al., 2010c; Haith and Krakauer, 2013).   

A second issue when providing haptic assistance is that of ‘fading’ assistance. Learners with 

constant haptic assistance throughout practice tend to become dependent on it  (Winstein et al., 

1994) leading to a significant deterioration in performance upon removal of assistance (Marchal-

Crespo et al., 2013; Williams and Carnahan, 2014b). One strategy to counter this overreliance on 

haptic feedback is by fading assistance– i.e. gradually decreasing assistance with practice (Emken 

et al., 2007; Heuer and Lüttgen, 2014a; Huegel and O’Malley, 2009; Powell and O’Malley, 2012). 

Fading can also implicitly be built into the task by implementing ‘assist-as-needed’ protocols, 

wherein haptic assistance is provided only outside a bandwidth of errors and the forces are 



 

50 
  

increased proportionally to errors (Wolbrecht et al., 2008). However, how the effect of fading 

interacts with the level of haptic assistance (i.e., task or individual effector) is not known. 

Here, we examined the role of haptic assistance in learning redundant tasks. We developed a 

task where participants had to trace a complex trajectory using a cursor. Critically, the cursor was 

placed at the mean position of the two hands, which made the task kinematically redundant because 

the same cursor position could be achieved by different positions of the hands. We examined two 

specific questions in this context - (i) how does the level at which haptic assistance is provided – 

i.e. task or individual effector, influence motor learning, and (ii) how does the strength of haptic 

assistance – i.e. constant or faded, influence motor learning. 

4.3 Methods 

4.3.1 Participants 

60 healthy college-aged adults (age range: 18-24 years, 20 men, 40 women) participated in the 

study and received extra course credit for participation. All participants provided informed consent 

and the procedures were approved by the Institutional Review Board at Michigan State University. 

4.3.2 Apparatus 

We used a bimanual manipulandum (KINARM Endpoint Lab, BKIN Technologies Ltd., ON), 

which consisted of two separate robotic arms that allowed motion in a 2-D horizontal plane. Each 

robotic arm had a handle located at the end which could be grasped by participants. Participants 

were seated on a height-adjustable chair and looked into a screen at around 45-degree angle below 

eye level as shown in Figure 4.1. The visual information was presented in such a way that the 
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objects on the screen appear to be located in the plane of the hands. Kinematic data from both 

handles were sampled at 1000 Hz. 

4.3.3 Task Description 

The participants performed a bimanual steering task (Lokesh and Ranganathan, 2019). Participants 

controlled a cursor of diameter 4 mm and steered it from a start position to end position along a 

smooth W-shaped track of length 738 mm (Figure 4.1). The goal of the task was to complete the 

movement as fast as possible while maintaining the cursor within the grey track. The width of the 

track was always visible to the participant and consisted of two regions highlighted in different 

colors. The width of the inner grey track was 6 mm (the ‘allowed region’) and the width of the 

surrounding green track was 3mm. When the cursor deviated from the track, the surrounding track 

changed color to red serving as a visual cue to help maintain the cursor within the track. 

 

Figure 4.1 Experimental Setup. Participants held the handles of a bimanual manipulandum and 

looked at a screen that appeared to be in the plane of their hands. (left) They traced a ‘W’ shaped 

track using a blue cursor placed in between their hands, and the goal was to move as fast as possible 

while maintaining the cursor within the grey track. 
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4.3.4 Cursor Mapping 

The position of the cursor (XC, YC) was displayed at the average position of the two hand locations, 

making the task redundant. This 4-to-2-mapping can be represented as shown in (1):        

             C =  (
XC

YC
) = A ∗  [XL YL XR YR]T = A ∗ h                                       (1) 

Where C is the cursor position, A is the ‘mapping matrix’ and h is the vector of the left hand 

and right hand coordinates. 

4.3.5 Procedures 

At the start of each trial, participants saw two individual cursors (one for each hand), which 

allowed them to position each hand in its start circle – this was done to ensure that the two hands 

always started at the same position every trial. Once each hand reached its start position, the 

individual cursors disappeared and were replaced by a single cursor at the average position of the 

two hands. Participants then moved this cursor towards the finish position as fast as possible 

staying within the width of the track.  

To encourage participants to go faster while staying inside the track, participants were shown a 

score at the end of the trial. Participants started with a maximum of 100 points at the beginning of 

a trial and received a penalty in proportion to the time they took to complete the whole movement 

(tm) and the time that the cursor spent outside the track (to) according to (2). The equation was 

determined based on pilot studies and was consistent with our goal of getting the participants to 

move quickly (i.e., minimize movement time) while also staying in the channel (i.e., minimize out 

of time). If the cursor completely went outside the surrounding track, they were awarded zero 

points on that trial. In addition to the trial score, the sum of trial scores from the completed trials 

in the ongoing block was shown to the participants after each trial.  
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           Trial score = 100 − 0.22 ∗ (tm)2 − 6.66 ∗ (to)2                                (2) 

4.3.6 Groups and Experimental Protocol 

Participants were randomly assigned to 5 groups (n = 12/group) based on the mode of haptic 

assistance. Four groups received haptic assistance during training, and the fifth group received no 

haptic assistance. The four groups that received haptic assistance varied based on two factors – (i) 

the level at which haptic assistance was provided – at the task level (i.e., based on the motion of 

the cursor), or at the individual effector level (i.e., based on the motion of the individual hands), 

and (ii) the strength of the haptic assistance – constant or faded.  Thus the four groups were (i) 

constant haptic assistance applied to the cursor (Cursor Constant – ‘CursConst’) (ii) faded haptic 

assistance applied to the cursor (Cursor Faded – ‘CursFade’) (iii) constant haptic assistance applied 

to each hand (Hands Constant – ‘HandConst’) (iv) faded haptic assistance applied to each hand 

(Hands Faded – ‘HandFade’). The fifth group (‘Unassisted’) did not receive any haptic assistance 

during training. We used data for the ‘Unassisted’ group from an earlier experiment, where the 

task conditions were exactly the same (Lokesh and Ranganathan, 2019). 

 

Figure 4.2 Experimental protocol for all 5 groups (Cursor Constant, Cursor Faded, Hand 

Constant, Hand Faded, Unassisted).  Participants did a Pre-test followed by five blocks of training 

on the first day, and 5 blocks of training followed by a Post-test on the second day 

The experimental protocol is shown in Figure 4.2. The track width and length of the track 

remained constant throughout the protocol and for all groups. All participants practiced initially 

for 10 trials without assistance, where they familiarized themselves with the task and the scoring 

system. After familiarization, they performed a Pre-test in which no haptic assistance was 
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provided. This was followed by ten blocks of training where each participant received haptic 

assistance based on their group membership. Since the total number of trials in training was large 

enough to possibly induce fatigue in participants, we spread the training blocks over two days. At 

the end of the training on the second day, participants performed a Post-test in which no haptic 

assistance was provided. All blocks (Pre-test, training and Post-test) consisted of 24 trials each.  

4.3.7 Haptic Assistance 

Haptic assistance was provided either at the task level (i.e., based on the motion of the cursor) or 

the individual effector level (i.e., based on the motion of the individual hands). In both cases, a 

compliant force field channel modelled by a spring of stiffness (K = 1 N/mm) was programmed 

into the task in the form of a virtual fixture. The channel applied a force (F) proportional to the 

deviation of the cursor/hand (Δd) from the centerline of its track in a direction perpendicular to the 

track according to (3). The ‘w’ here represents the width of the track, and the force was 0 as long 

as the cursor/hand was within the track width. 

                              F = f ∗ K ∗ max (Δd −
w

2
, 0)                                                       (3)                                                               

Depending on the level at which haptic assistance was introduced (task or individual effector), the 

channel was applied to the motion of the cursor or the two hands as shown in Figure 4.3. For the 

Cursor groups, the computed force according to (3) was applied to both the hands similarly. For 

the Hand groups, we first obtained reference channels for each hand using the average of the Post-

test hand trajectories from the participants in the Unassisted group. Each hand then felt forces 

independent of the other hand, based on the deviation from its own channel.  
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Figure 4.3 Haptic assistance design and empirical trajectories. Haptic assistance using spring-

like forces were applied based on cursor motion for the Cursor groups and based on individual 

hand motion for the Hand groups.  Cursor, left hand and right hand trajectories from a 

representative participant from each group are shown for Block 1 and 10 in training. 

The strength of haptic assistance was either maintained constant or faded with practice in the 

training blocks according to Figure 4.4. We used a force factor (f) according to (3), to fade the 

level of haptic assistance, wherein a force factor of 2 represented the maximum haptic assistance 

(100%), and a force factor of 0 represented no haptic assistance (0%). 

4.4 Data analysis 

4.4.1 Block Score 

The score provided to the participant on each trial was computed using (2). This score was 

averaged across all trials in a block for each participant. 
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4.4.2 Movement Time 

Movement time was defined as the time between the instant when the participant moved the cursor 

out of the start circle and the instant when the cursor moved into the finish box. Movement times 

were averaged across all trials in a block for each participant. 

 

Figure 4.4 Assistance manipulation for linear assistance fading. During the training blocks, 

Constant groups received 100% assistance, whereas the Faded groups received a linear decrease 

in the assistance at the start of each block. The Unassisted group did not receive any haptic 

assistance during training. There was no haptic assistance during the Pre-test and Post-test blocks 

for all groups. 

4.4.3 Out of Track Time 

Out-of-track time was defined as the time that the cursor was outside the track from the start to the 

end of movement. The out of track time was then averaged across all trials in a block for each 

participant.  

4.4.4 Task and Null Space Variability 

Since the task was kinematically redundant, the variability in hand positions was decomposed into 

task and null space variabilities (Liu and Scheidt, 2008; Mosier et al., 2005; Ranganathan et al., 
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2013). The task space variability refers to the component of the movement variability that affects 

cursor motion whereas the null space variability refers to the component of the overall movement 

variability that has no effect on cursor motion. The path from each trial was divided into 51 

spatially equidistant points from the start to the end. At each point, the corresponding hand vectors 

‘h’ (as described in (1)) from all the 24 trials in the block were extracted into a matrix H as shown 

in (4) and the Moore-Penrose inverse was used to decompose the hand positions into null space 

(Hn) and task space (Ht) components(Liu and Scheidt, 2008; Lokesh and Ranganathan, 2019; 

Mosier et al., 2005) as shown in (5) and (6) respectively, where I4 is an identity matrix of size 4.   

H = [h1 h2 … … … h23 h24 ]                                                          (4) 

                               Ht = A′ ∗ (A ∗ A′)−1 ∗ A ∗ H                                                          (5) 

                        Hn = (I4 − A′ ∗ (A ∗ A′)−1 ∗ A) ∗ H                                                   (6) 

The variances of the null and task components of the hand positions were computed and 

summed to obtain null space and task space variability at each sampled point. Then, the task and 

null space variabilities were averaged across the 51 sampled points to obtain null and task space 

variabilities for the block. These equations meant that if the cursor position was identical across 

multiple trials, then the task space variability would be zero. Additionally, if both hands were also 

at the same location in space across multiple trials, then the null space variability would also be 

zero.  

4.4.5 Haptic Force Reliance 

Because the haptic forces that participants experienced depended both on the error as well as the 

time they spent outside the track, the haptic reliance on each trial was calculated by computing the 

net force impulse – i.e. integrating the forces experienced by the participant from start to end of 
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the movement. Note that the haptic reliance was zero for the Unassisted group during training, and 

in the Pre-test and Post-test block for all groups since there was no haptic assistance provided in 

these cases.  

4.5 Statistical analysis 

Our primary research questions were to determine the effect of the level of haptic assistance - 

HapticLevel (cursor/hand) and the strength of haptic assistance - HapticStrength (constant/faded) 

on the task outcome variables. Because the block score, movement time and the out-of-track time 

are mathematically related according to (2), we show all three variables on the graphs, but exclude 

the out-of-track time from the statistical analysis. 

4.5.1 Training phase  

To examine the effects of haptic assistance while it was provided, we used the last block of training 

(Block 10). Because our groups were based on a 2 x 2 design (HapticLevel x Haptic Strength), we 

used a 2 x 2 ANOVA on the Block 10 values with HapticLevel and HapticStrength as factors.  

We compared the effects of haptic assistance relative to the Unassisted group by using a One-

way ANOVA on Block 10 values with Group (5 groups) as a factor. For post-hoc comparisons, 

we used Dunnett tests to compare the four haptic groups with the Unassisted group. 

4.5.2 Test phase 

To examine the effect of learning in groups that received haptic assistance, we only used the test 

phases (i.e., pre- and post-test). Because our groups were based on a 2 x 2 design (HapticLevel x 

Haptic Strength), we used a 2 x 2 ANCOVA on the Post-test values with Pre-test values as 

covariate, and HapticLevel and HapticStrength as factors.  
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We compared the effects of haptic assistance relative to the Unassisted group by using 

ANCOVA on the Post-test values with Pre-test values as covariates and Group (5 groups) as a 

factor. For post-hoc comparisons, we used Dunnett tests on the adjusted means for comparing the 

four haptic groups with the Unassisted group. The significance level for all tests was set at α = 

0.05. 

4.6 Results 

To examine any outliers, we compared the overall change in the Block score from the pre- to post-

test for all groups. Using Tukey’s (Tukey, 1977) outlier criterion (i.e., above 1.5 IQR of the third 

quartile or below 1.5 IQR of the first quartile), we eliminated two participants from further 

statistical analysis (one from HandConst and one from HandFade). 

4.6.1 Training Phase 

Block Score 

The Constant groups had higher scores relative to the Faded groups (Figure 4.5a). The ANOVA 

revealed a significant effect of HapticStrength (F(1,42) = 60.86, p<0.001), no significant effect of 

HapticLevel (F(1,42) = 1.96, p = 0.16) and no significant interaction effect (F(1,42) = 2.22, p = 

0.14).  

Comparison to Unassisted group. The haptic groups had higher scores relative to the Unassisted 

group (Figure 4.5a). The ANOVA revealed a main effect of Group (F(4,53) = 19.31, p < 0.001). 

Post-hoc Dunnett tests to compare the haptic groups with the Unassisted group indicated 

significantly higher scores for CursConst (p < 0.001), CursFade (p = 0.0013), HandConst (p < 

0.001) and HandFade (p = 0.0016). 
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Figure 4.5 Plots of performance variables versus practice. (a) Block score- All groups improved 

scores with practice, but the Hand groups had relatively lower mean scores compared  to the Cursor 

groups and the Null group (b) Movement time- All groups showed decreasing movement time 

with practice, and the Hand groups had relatively higher mean movement times in comparison to 

the Cursor and Null groups in the Post-test (c) Out of track time- Out of track times remained 

similar from Pre to Post, and the Hand groups showed relatively higher mean out of track times in 

comparison to the Cursor groups and the Null group in the Post-test. 
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Figure 4.6 Plots of computed variables versus practice. (a) Haptic force reliance- The hand groups 

experienced greater but progressively reducing amounts of haptic force in training in comparison 

to the Cursor groups (b) Task space variability- The Cursor groups showed increasing task space 

variability whereas the other groups showed reducing or unchanging task space variability with 

practice (c) Null space variability- Null space variability reduced with practice for all groups, but 

due to our haptic manipulation the Hand groups had lower null space variability in comparison to 

the Cursor groups in training. 
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Movement Time 

The Faded groups had higher movement times relative to the Constant groups and the Hand groups 

had higher movement times than Cursor groups (Figure 4.5b). The ANOVA revealed a significant 

effect of HapticStrength (F(1,42) = 21.46, p < 0.001), a significant effect of HapticLevel (F(1,42) 

= 8.55, p = 0.005) and no significant interaction effect (F(1,42) = 0.55, p = 0.46).  

Comparison to Unassisted group. The haptic groups had lower movement times relative to the 

Unassisted group (Figure 4.5b). The ANOVA revealed a main effect of Group (F(4,53) = 18.90, p 

< 0.001). Post-hoc Dunnett tests to compare the haptic groups with the Unassisted group indicated 

significantly lower movement times for CursConst(p < 0.001), CursFade (p < 0.001), HandConst 

(p < 0.001) and HandFade (p = 0.011). 

Haptic Force Reliance 

The Faded groups showed similar force reliance to that of the Constant groups within each 

HapticLevel factor, whereas the Hand groups experienced greater force reliance than the Cursor 

groups (Figure 4.6a). The ANOVA revealed no significant effect of HapticStrength (F(1,42) = 

3.57, p = 0.065), a significant effect of HapticLevel (F(1,42) = 92.16, p < 0.001) and no significant 

interaction effect (F(1,42) = 0.074, p = 0.78). 

Task Space Variability 

The Cursor groups had higher task space variability in comparison to the Hand groups (Figure 

4.6b), likely due to the fact that their movement times were lower. The ANOVA revealed no 

significant effect of HapticStrength (F(1,42) = 1.51, p = 0.22), a significant effect of HapticLevel 

(F(1,42) = 25.5, p < 0.001) and no significant interaction effect (F(1,42) = 1.09, p = 0.30).  

Comparison to Unassisted group. The Cursor groups had higher task space variability relative 

to the Unassisted group (Figure 4.6b). The ANOVA revealed a main effect of Group (F(4,53) = 

7.88, p < 0.001). Post-hoc Dunnett tests to compare the haptic groups with the Unassisted group 
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indicated significantly higher task space variability for CursConst(p = 0.015) and CursFade (p = 

0.0095), and no significant differences for HandConst (p = 0.41) and HandFade (p = 0.99). 

Null Space Variability 

The Hand groups had lower null space variability in comparison to Cursor groups (Figure 4.6c), 

indicating that the manipulation was successful in restricting the use of redundant solutions. The 

ANOVA revealed no significant effect of HapticStrength (F(1,42) = 0.081, p = 0.77),  a significant 

effect of HapticLevel (F(1,42) = 60.89, p < 0.001) and no significant interaction effect (F(1,42) < 

0.001, p = 0.99).  

Comparison to Unassisted group. The Hand groups had lower null space variability relative to 

the Unassisted group (Figure 4.6c). The ANOVA revealed a main effect of Group (F(4,53) = 15.51, 

p < 0.001). Post-hoc Dunnett tests to compare the haptic groups with the Unassisted group 

indicated no significant differences for CursConst(p = 0.061), and significantly higher null space 

variability for CursFade (p = 0.036), and significantly lower null space variability for HandConst 

(p = 0.0091) and HandFade (p = 0.015). 

4.6.2 Test Phase 

Block Score 

 The Cursor groups had higher scores relative to the Hand groups in the Post-test relative to Pre-

test scores (Figure 4.5a). The ANCOVA indicated a significant effect of HapticLevel (F(1,41) = 

4.31, p = 0.044), no significant effect of HapticStrength (F(1,41) = 0.57, p = 0.45) and no 

significant interaction effect (F(1,41) = 1.11, p = 0.29).   

Comparison to Unassisted group. The Hand groups and the CursConst group had lower scores 

in comparison to the Unassisted group (Figure 4.5a). The ANCOVA indicated a significant main 

effect of Group (F(4,52) = 4.32, p = 0.004). Post-hoc Dunnett tests to compare the haptic groups 
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with the Unassisted group indicated significantly lower scores for HandFade group (p = 0.0021), 

HandConst group (p = 0.0067) and CursConst (p = 0.037), and no significant difference for 

CursFade group  (p = 0.32).  

Movement Time 

The Hand groups had higher movement times in comparison to the Cursor groups in the Post-test 

with respect to the Pre-test times (Figure 4.5b). The ANCOVA indicated a significant effect of 

HapticLevel (F(1,41) = 5.48, p = 0.024), no significant effect of HapticStrength (F(1,41) = 0.064, 

p = 0.80) and no significant interaction effect (F(1,41) = 0.017, p = 0.89).  

Comparison to Unassisted group. The haptic groups had movement times similar to the 

Unassisted group (Figure 4.5b). The ANCOVA indicated no significant main effect of Group 

(F(4,52) = 1.79, p = 0.14). 

Task Space Variability 

The Hand and Cursor groups had similar task space variabilities in the Post-test with respect to 

Pre-test variabilities (Figure 4.6b). The ANCOVA indicated no significant effect of HapticLevel 

(F(1,41) = 0.46, p = 0.49) or HapticStrength  (F(1,41) = 0.15, p = 0.69) or their interaction  (F(1,41) 

= 0.51, p = 0.47). 

Comparison to Unassisted group. The haptic groups had task space variabilities similar to the 

Unassisted group (Figure 4.6b). The ANCOVA indicated no significant main effect of Group 

(F(4,52) = 1.41, p = 0.24). 

Null Space Variability 

The Hand and Cursor groups had similar null space variabilities in the Post-test with respect to the 

Pre-test variabilities (Figure 4.6c). There was no significant effect of HapticLevel (F(1,41) = 2.4, 

p = 0.12)  or HapticStrength  (F(1,41) = 0.16, p = 0.68)  or their interaction  (F(1,41) = 0.40, p = 

0.52). 
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Comparison to Unassisted group. The haptic groups had null space variabilities similar to the 

Unassisted group (Figure 4.6c). The ANCOVA indicated no significant main effect of Group 

(F(4,52) = 1.28, p = 0.29). 

4.7 Discussion 

The goal of this study was to examine haptic assistance in the learning of tasks with redundancy. 

We specifically asked two questions - (i) how does the level at which haptic assistance is provided 

– i.e. task or individual effector, influence motor learning, and (ii) how does the strength of haptic 

assistance – i.e. constant or faded influence motor learning. We found that (i) haptic assistance at 

the individual effector level was detrimental to motor learning relative to the task level, and (ii) 

fading haptic assistance had no beneficial effect on learning relative to constant haptic assistance 

in our context.  

When we examined the overall amount of learning based on the level of haptic assistance (task 

or individual effector), we found that all groups improved their performance substantially from 

pre- to post- test (movement times were cut by almost ~ 40% from pre- to post- test). However, 

the groups that received assistance at the level of individual effectors (i.e., the Hand groups) 

performed worse compared to the groups that received assistance at the task level (i.e., the Cursor 

groups). This was mainly driven by changes in movement time, with the Cursor groups going 

faster than the Hand groups. One potential reason for this effect is that the Hand groups had limited 

use of redundancy as evidenced by the lower null space variability during training. This meant that 

participants in these groups were not able to use the redundancy in the task to flexibly change their 

individual hand trajectories from trial to trial. Moreover, the use of redundant solutions also 

seemed to be a ‘natural’ tendency for the nervous system, which was impaired in the Hand groups. 
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This was reflected by the increased reliance on haptic forces in training and the sudden increase in 

null space variability during the post-test when the haptic forces were removed. We note here that 

the reference channels set for the Hand groups have might not been ideal for all participants. We 

chose the post-test of the unassisted group as the basis for the reference channels because Pre-test 

behavior was characterized by high variability. One important point is that because the reference 

channels for the Hand group were derived empirically, the midline of the reference channels was 

not perfectly aligned along the centerline of the track. However, we found that the final learned 

trajectories in all groups were similar to each other, and therefore, there was no evidence of a bias 

due to these reference channels. It would be of interest to see how the results would be impacted 

if reference channels were customized for participants based on their movement characteristics. 

Even though customization of reference trajectories for stereotypical movements like reaching and 

gait has been implemented (Marchal-Crespo and Reinkensmeyer, 2009; Vallery et al., 2008; Wu 

et al., 2018), similar methods for novel human-robot collaboration tasks are rarely adopted. 

These results are consistent with theoretical perspectives (Sternad, 2018) such as the 

uncontrolled manifold (Latash, 2012; Scholz and Schöner, 1999) and optimal feedback control 

(Diedrichsen et al., 2010b; Todorov and Jordan, 2002) which suggest a critical role for the ‘null 

space’ in these redundant tasks. One particular idea is that the null space acts as a ‘noise buffer’ 

allowing task variability to be small; as a result, controlling the null space variability might have 

had a negative effect on learning the task. Although it is unclear if there is an optimal amount of 

flexibility which maximizes learning (since we had only 2 groups in this study), we show that 

limiting such flexibility can potentially have a detrimental effect on motor learning. Prior studies 

in multi-effector coordination tasks typically have shown that practicing with individual effectors 

sequentially is less effective than practicing simultaneously with the available redundancy (Wu et 
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al., 2012). Here, we further strengthen this argument by showing that even when groups perform 

simultaneous bimanual movements, the group that is restricted in its use of redundant solutions 

shows poorer learning. Although this was not a primary aim of our study, our results in this 

bimanual task are also similar to observations in two-partner collaborated tasks (Che et al., 2016; 

Takagi et al., 2017), where sharing of haptic feedback between partners led to improvements in 

performance. Because the coordination between two limbs relies on very different mechanisms 

from the coordination between two partners, a more direct comparison of these strategies may be 

an interesting avenue to pursue in the future. 

When comparing the groups that received haptic assistance with the Unassisted group, we found 

that in general, no group outperformed the Unassisted group. Even though the haptic groups had 

better performance over the unassisted group in the training blocks, they could not retain the same 

levels of performance in the post-test when the haptic assistance was removed. These results are 

consistent with prior work showing that haptic assistance has a stronger influence on performance 

but did not enhance learning (Williams and Carnahan, 2014b). While these results support the 

‘specificity of practice’ principle (Henry, 1958; Shea and Kohl, 1990) (i.e., that learning is best 

when training conditions match testing conditions), it is also important to note that, in an absolute 

sense, the haptic assistance groups (esp. the Cursor groups) were relatively close to the 

performance of the unassisted group in the post-test. This indicates that haptic assistance may be 

especially useful in contexts where it may not be feasible to experience large errors even during 

training (for e.g., if there are safety issues involved with experiencing large errors) (Emken et al., 

2007).   

Finally, with respect to the effect of fading, surprisingly we found no significant effects of 

fading on learning. Even though a simple linear fading of assistance is in line with the guidance 
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hypothesis (Powell and O’Malley, 2012; Salmoni et al., 1984; Schmidt, 1991), we did not find 

evidence for the benefits of fading assistance progressively. There are two possible reasons for this 

– first, because assistance was only applied when the cursor or hand exceeded the channel 

boundary, as participants performed better on the task, this naturally leads to a decrease in the 

reliance on haptic assistance, even though the strength of the haptic assistance was not changed. 

Second, the fading of the assistance was done in an open-loop fashion (i.e., all participants got the 

same strength regardless of performance) and may not have been optimal in our case because 

participants may not have had enough practice at a given haptic strength before moving to the next 

lower strength level. This is supported by the observation that even the Faded groups experienced 

a significant drop in performance going from the training block to the post-test. This suggests that 

performance of the faded groups was not completely stabilized towards the end of training and 

could have benefitted from an increased training time. Finally, we speculate that fading could be 

more effective if it is made ‘closed-loop’ and tied to task performance by using performance 

adaptive assistance algorithms (Colombo et al., 2012; Huegel and O’Malley, 2010; Krebs et al., 

2003; Lee and Choi, 2014; Marchal-Crespo et al., 2013).  

The current results potentially have important implications for the design of robots for 

rehabilitation. With the rise in the use of exoskeletons for learning and rehabilitation, a big 

unanswered question is how these devices need to be used to facilitate learning. Previous results 

have suggested that strategies that allow some degree of variability are important for motor 

learning (Lewek et al., 2009; Ziegler et al., 2010). Our results here further add to this evidence by 

showing that not only is variability important, but preserving the ability of the nervous system to 

use redundant solutions during learning is critical for learning. Therefore, rather than enforcing a 
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‘single’ movement pattern, it is likely that exoskeletons that allow for the use of these redundant 

solutions would be optimal for rehabilitation. 
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Chapter 5  

PERFORMANCE-ADAPTIVE HAPTIC 

ASSISTANCE IN LEARNING A REDUNDANT 

TASK  

5.1 Introduction 

Robotic movement training has gained prominence over the last two decades due to advancements 

in robotic technology and assistive protocols. Such training has been particularly adopted for 

hemiparetic rehabilitation (Meng et al., 2015), surgical skills training (Bric et al., 2016), and 

bimanual haptic training (Talvas et al., 2014). The premise of robotic movement training lies in 

the employment of forces generated by a robot to assist in the execution and learning of motor 

skills. Typical advantages of such training are the high degree of repeatability of movements, 

greater control over kinematic/dynamic movement aspects, and precise and timely feedback about 

movements (Cao et al., 2014; Marchal-Crespo and Reinkensmeyer, 2009; Powell and O’Malley, 

2012).  

However, a fundamental shortcoming of current robotic training strategies is that they are 

successful in enhancing the performance of  motor skills but not the retention of motor skills 

(Heuer and Lüttgen, 2015; Williams and Carnahan, 2014b). To be specific, the learners performed 

maximally as long as robotic assistance was enabled, but, the performance dropped significantly 

when assistance was withdrawn (Feygin et al., 2002b; Heuer and Lüttgen, 2015; Liu et al., 2006; 

Sigrist et al., 2013; Teo et al., 2002). It has been posited that providing robotic assistance physically 
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alters the inherent task dynamics and practice with robotic assistance leads to the learning of a 

different task (Powell and O’Malley, 2012). Besides, from a motor control standpoint, assisting 

the learner concurrently renders a passive role for the motor system, decreases a participant’s 

physical/mental effort, and leads to slacking in the preparation and production of movements 

(Marchal-Crespo and Reinkensmeyer, 2009). Moreover, from a learning standpoint, training at 

constant and high levels of assistance throughout the training period leads to overdependence on 

assistance for the completion of the motor task (Crespo and Reinkensmeyer, 2008; Heuer and 

Lüttgen, 2015; Salmoni et al., 1984; Schmidt, 1991). Therefore, one strategy that has been 

proposed to overcome the negative effects of concurrent and high assistance levels is to fade 

assistance levels progressively to enhance the retention of trained motor skills (Powell and 

O’Malley, 2012). The fading of the assistance level implies a gradual increase in motor 

requirements of the learner and lower control/forces exerted by the robot.  

Progressive assistance reduction strategies can be broadly divided into open-loop and closed-

loop strategies. Open-loop strategies reduce assistance levels in a predetermined fashion 

irrespective of learning outcomes (Huegel and O’Malley, 2010; Lee and Choi, 2010), whereas 

closed-loop strategies manipulate assistance levels based on the learner assistance requirements 

(Crespo and Reinkensmeyer, 2008; Emken et al., 2007; Huegel and O’Malley, 2010; Lee and Choi, 

2014). Open-loop strategies are simple to design but do not account for differences in individual 

learning capabilities or the needs of the learner. A few studies have employed open-loop strategies 

and reported mixed benefits for motor learning (Chen and Agrawal, 2013; Heuer and Lüttgen, 

2014b; Lee and Choi, 2010). On the other hand, closed-loop strategies provide assistance-as-

needed, thus optimizing the assistance for each learner separately. Such closed-loop strategies are 

corroborated by the challenge point framework (Guadagnoli and Lee, 2004) because the learner is 
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challenged to maintain task performance under reducing assistance levels. Thus, the manipulation 

of assistance is usually based on task performance metrics – assistance is reduced as performance 

improves and vice versa. Performance adaptive assistance manipulations were first proposed and 

implemented in neurorehabilitation of individuals affected by hemiparesis (Kahn et al., 2004; 

Krebs et al., 2003), and the algorithm for reducing assistance was explained using a mathematical 

model that optimizes movement error and robot effort (Emken et al., 2005).  

Several studies have reported benefits of training with performance adaptive assistance 

strategies in rehabilitation (Banala et al., 2009, 2007; Kahn et al., 2006) and in the acquisition of 

novel skills (Crespo and Reinkensmeyer, 2008; Huegel and O’Malley, 2010; Marchal-Crespo et 

al., 2010b). A few of these studies also made comparisons between performance adaptive 

strategies (closed-loop strategy) and constant or fixed assistance strategy (open-loop strategy) 

(Crespo and Reinkensmeyer, 2008; Huegel and O’Malley, 2010), and found that the performance 

adaptive strategy was better than constant or fixed assistance strategy (Powell and O’Malley, 

2012). However, these comparisons are confounded by the fact that the benefits could have due to 

closed loop manipulation of assistance rather than a systematic reduction of assistance (Schmidt, 

1991). Therefore, the real advantage of closed-loop strategies can be more determined by 

comparing closed-loop strategies with open-loop faded assistance strategies under the same task 

and experimental settings.  

The purpose of the study was to examine the differences in learning when the assistance level 

was manipulated in the following ways (i) open-loop – linearly reducing assistance (ii) closed-

loop – performance adaptive assistance. Addressing this question allowed us to determine if there 

are any added benefits of ‘performance-adaptive’ assistance manipulations over open-loop 
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assistance reductions. We also examined the learning dynamics of how changes in assistance 

influenced performance and learning using a novel analysis method.  

5.2 Methods 

Some portions of the methods (in sections 5.2.2, 5.2.3, 5.2.4 and 5.2.5) are identical to those used 

in our earlier study (Lokesh and Ranganathan, 2019), and are summarized here for completeness. 

5.2.1 Participants 

36 healthy college-aged adults (age range: 18-24 years, 20 men, 40 women) participated in the 

study and received extra course credit for participation. All participants provided informed consent 

and the procedures were approved by the Institutional Review Board at Michigan State University. 

5.2.2 Apparatus 

We used a bimanual manipulandum (KINARM Endpoint Lab, BKIN Technologies Ltd., ON), 

which consisted of two separate robotic arms that allowed motion in a 2-D horizontal plane. Each 

robotic arm had a handle located at the end which could be grasped by participants. Participants 

were seated on a height-adjustable chair and looked into a screen at around 45-degree angle below 

eye level as shown in Figure 5.1a. The visual information was presented in such a way that the 

objects on the screen appear to be located in the plane of the hands. Kinematic data from both 

handles were sampled at 1000 Hz. 

5.2.3 Task Description 

The participants performed a bimanual steering task (Lokesh and Ranganathan, 2019). Participants 

controlled a cursor of diameter 4 mm and steered it from a start position to end position along a 
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smooth W-shaped track of length 738 mm (Figure 5.1a). The goal of the task was to complete the 

movement as fast as possible while maintaining the cursor within the grey track. The width of the 

track was always visible to the participant and consisted of two regions highlighted in different 

colors. The width of the inner grey track was 6 mm (the ‘allowed region’) and the width of the 

surrounding green track was 3mm. When the cursor deviated from the track, the surrounding track 

changed color to red serving as a visual cue to help maintain the cursor within the track. 

5.2.4 Cursor Mapping 

The position of the cursor (XC, YC) was displayed at the average position of the two hand locations, 

making the task redundant. This 4-to-2-mapping can be represented as shown in (1):        

             C =  (
XC

YC
) = A ∗  [XL YL XR YR]T = A ∗ h                                 (1) 

Where C is the cursor position, A is the ‘mapping matrix’ and h is the vector of the left hand 

and right hand coordinates. 

5.2.5 Procedures 

At the start of each trial, participants saw two individual cursors (one for each hand), which 

allowed them to position each hand in its start circle – this was done to ensure that the two hands 

always started at the same position every trial. Once each hand reached its start position, the 

individual cursors disappeared and were replaced by a single cursor at the average position of the 

two hands. Participants then moved this cursor towards the finish position as fast as possible 

staying within the width of the track.  
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Figure 5.1 Experimental setup, protocol and adaptive assistance manipulation. (a) Experimental 

setup - Participants held the handles of a bimanual manipulandum and looked at a screen that 

appeared to be in the plane of their hands. (left) They traced a ‘W’ shaped track using a blue cursor 

placed in between their hands, and the goal was to move as fast as possible while maintaining the 

cursor within the grey track. (b) Experimental protocol for the 3 groups (PerformAdapt, 

LinearFade and Unassisted). Participants did a Pre-test followed by five blocks of training on the 

first day, and 5 blocks of training followed by a Post-test on the second day. (c) Robotic assistance 

manipulation. The assistance was reduced in a progressively linear manner during training for the 

LinearFade group, in a performance adaptive manner (one possible variation shown) for the 

PerformAdapt group, and maintained at zero for the Unassisted group. 
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To encourage participants to go faster while staying inside the track, participants were shown a 

score at the end of the trial. Participants started with a maximum of 100 points at the beginning of 

a trial and received a penalty in proportion to the time they took to complete the whole movement 

(tm) and the time that the cursor spent outside the track (to) according to (2). The equation was 

determined based on pilot studies and was consistent with our goal of getting the participants to 

move quickly (i.e., minimize movement time) while also staying in the channel (i.e., minimize out 

of time). If the cursor completely went outside the surrounding track, they were awarded zero 

points on that trial. In addition to the trial score, the sum of trial scores from the completed trials 

in the ongoing block was shown to the participants after each trial.  

           Trial score = 100 − 0.22 ∗ (tm)2 − 6.66 ∗ (to)2                                  (2) 

5.2.6 Groups and Experimental Protocol 

Participants were randomly assigned to 3 groups (n = 12/group) based on the manipulation of 

assistance levels with learning. Two groups received robotic assistance during training, and the 

third group received no assistance. The two groups that received assistance during training were 

as follows (i) ‘LinearFade’ – the assistance levels reduced in a linear fashion for all participants 

(ii) ‘PerformAdapt’ – the assistance levels were manipulated based on changes in the participant’s 

performance.  

The experimental protocol is shown in Figure 5.1b. The track width and length of the track 

remained constant throughout the protocol and for all groups. All participants practiced initially 

for 10 trials without assistance, where they familiarized themselves with the task and the scoring 

system. After familiarization, they performed a Pre-test consisting of 24 trials which were 

unassisted. This was followed by ten blocks of training with 24 trials in each block, where each 

participant received assistance based on their group membership, which we explain in subsection 
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5.2.8. Since the total number of trials in training was large enough to possibly induce fatigue in 

participants, we spread the training blocks over two days. At the end of the training on the second 

day, participants performed a Post-test consisting of 24 trials which were unassisted.  

5.2.7 Haptic Assistance 

The assistance was enabled in the form of a virtual force channel (Cai et al., 2006) centered around 

the W shaped track and having a width equal to the inner track as shown in Figure 5.1a. The force 

channel walls were modelled by a linear spring of stiffness (K = 1 N/mm). Thus, the channel 

applied a force (F) proportional to the deviation of the cursor (Δd) from the centerline of its track 

in a direction perpendicular to the track according to (3). The ‘w’ here represents the width of the 

inner track, and the force was zero as long as the cursor was within the track width. 

                              F = f ∗ K ∗ max (Δd −
w

2
, 0)                                                   (3)  

Since the task was kinematically redundant, wherein the cursor was controlled by the two hands, 

we applied the force ‘F’ to both hands similarly in magnitude and direction.                                                               

5.2.8 Assistance manipulations 

The assistance was manipulated by changing the spring stiffness factor ‘f’ (3). A force factor value 

equal to 2 represented 100% assistance and a force factor value of 0 represented 0% assistance. 

For the LinearFade group, the assistance was reduced in a stepwise manner from 100% to 0% in 

equal intervals after the end of each block from Block 1 to Block 10 in training as shown in Figure 

5.1c. For the PerformAdapt group, each block was divided into three windows of 8 trials each, 

resulting in 30 windows in total from the 10 training blocks. The average movement time in each 

window was used as the performance measure. The assistance for the first window of Block 1 was 
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set to 100% and the assistance for the subsequent windows was manipulated according to the 

update equation (4). The equation was based on the linear update method put forward by Kahn and 

Reinkensmeyer (Kahn et al., 2004), and the value for α was chosen by trial and error. Importantly, 

the assistance was manipulated linearly in proportion to the change in average movement time 

between the previous two windows. Thus, whenever average movement times reduced between 

two successive windows, the assistance was reduced for the following window and vice versa. The 

assistance was also bounded on the upper side by the linear faded assistance levels and bounded 

on the lower side by zero assistance. This ensured that the assistance levels reduced to zero by the 

end of the training. 

 

w = window number ∈ {1, 2, 3 … … 28, 29, 30} 

Aw = assistance level of window w 

A1 = assistance level of first window =  100% 

MTw =  average movement time of window w in seconds 

MT0 = average movement time of final 8 trials in Pre test 

Aw+1 =  Aw +  𝛼 ∗ (MTw − MTw−1)                                              (4) 

𝛼 = 10 

5.3 Data Analysis 

5.3.1 Block Score 

The score provided to the participant on each trial was computed using (2). This score was 

averaged across all trials in a block for each participant. 
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5.3.2 Movement Time 

Movement time was defined as the time between the instant when the participant moved the cursor 

out of the start circle and the instant when the cursor moved into the finish box. The movement 

times were averaged across all trials in a block for each participant. 

5.3.3 Out of Track Time 

Out-of-track time was defined as the time that the cursor was outside the track from the start to the 

end of movement. The out of track time was then averaged across all trials in a block for each 

participant.  

5.3.4 Task and Null Space Variability 

Since the task was kinematically redundant, the variability in hand positions was decomposed into 

task and null space variabilities (Liu and Scheidt, 2008; Mosier et al., 2005; Ranganathan et al., 

2013). The task space variability refers to the component of the movement variability that affects 

cursor motion whereas the null space variability refers to the component of the overall movement 

variability that has no effect on cursor motion. The path from each trial was divided into 51 

spatially equidistant points from the start to the end. At each point, the corresponding hand vectors 

‘h’ as described in (1) from all trials in that block were extracted into a matrix H as shown in (5) 

and the Moore-Penrose inverse was used to decompose the hand positions into null space (Hn) and 

task space (Ht) components (Liu and Scheidt, 2008; Lokesh and Ranganathan, 2019; Mosier et al., 

2005) as shown in (6) and (7) respectively, where I4 is an identity matrix of size 4.   

H = [h1 h2 … … … h23 h24 ]                                                 (5) 

                               Ht = A′ ∗ (A ∗ A′)−1 ∗ A ∗ H                                                (6) 

                        Hn = (I4 − A′ ∗ (A ∗ A′)−1 ∗ A) ∗ H                                           (7) 
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The variances of the null and task components of the hand positions were computed and 

summed to obtain null space and task space variability in each block. These equations meant that 

if the cursor position was identical across multiple trials, then the task space variability would be 

zero. Additionally, if both hands were also at the same location in space across multiple trials, then 

the null space variability would also be zero.  

5.3.5 Haptic Force Reliance 

Because the haptic forces that participants experienced depended both on the error as well as the 

time they spent outside the track, the haptic reliance on each trial was calculated by computing the 

net force impulse – i.e. integrating the forces experienced by the participant from start to end of 

the movement. Note that the haptic reliance was set to zero for the Unassisted group during 

training, and in the Pre-test and Post-test block for all groups.  

5.4 Statistical Analysis 

Our primary research questions were to determine the effect of the haptic manipulations on the 

task outcome variables. Besides, we wanted to compare the two assisted groups with the 

Unassisted group. For the PerformAdapt group, we averaged the variables across the 3 windows 

in each block to obtain block variable values so as to allow comparisons with the other two groups.  

5.4.1 Training Phase 

Since the training phase consisted of 10 blocks, we compared the effects during training using 

the last block. We used a t-test to compare between the two assisted groups, PerformAdapt and 

LinearFade.  
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Comparison to Unassisted group. We used a one-way ANOVA on Block 10 values with the 

three groups as a factor. For post-hoc comparisons, we compared the two assisted groups with the 

Unassisted group using Dunnett’s test.  

5.4.2 Test Phase 

To examine the effect of learning in groups that received assistance, we averaged the variables 

across the windows within the Pre-test and Post-test blocks. We used an ANCOVA on the Post-

test values with Pre-test values as covariate and the Groups (PerformAdapt and LinearFade) as a 

factor.  

Comparison to Unassisted group. We used an ANCOVA on the Post-test values with Pre-test 

values as covariate and the three groups as a factor. For post-hoc analysis, we compared the two 

assisted groups with the Unassisted group using Dunnett’s test on the adjusted means. 

5.4.3 Training to Test-phase 

An important shortcoming of haptic assistance is the significant drop in performance upon 

removal of assistance. To analyze this effect, we compared the variables from the last block in 

training (where haptic assistance was enabled) to the Post-test (haptic assistance was removed). 

We used a 2x2 ANOVA with the Blocks (Block 10, Post-test) and Groups (LinearFade, 

PerformAdapt) as the two factors. For post-hoc analysis we used pairwise t-tests. 
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5.5 Results 

5.5.1 Training Phase 

Block Score 

The LinearFade group had scores similar to the PerformAdapt group as shown in Figure 5.2a. 

The t-test indicated no significant effect of Group (p = 0.23).  

Comparison to Unassisted group. The LinearFade group had higher block scores in comparison 

to the Unassisted group as shown in Figure 5.2a. The ANOVA indicated a significant effect of 

Group (F(2,33) = 4.18, p = 0.024). The Dunnett’s test indicated no significant differences for 

PerformAdapt (p = 0.12) and significantly higher scores for LinearFade (p = 0.014). 

Movement Time 

The LinearFade group had movement times lower than the PerformAdapt group as shown in 

Figure 5.2b. The t-test indicated a significant effect of Group (p = 0.014).  

Comparison to Unassisted group. The LinearFade group had movement times lower than the 

Unassisted group as shown in Figure 5.2b. The ANOVA indicated a significant effect of Group 

(F(2,33) = 8.07, p = 0.0014). The Dunnett’s test indicated no significant differences for the 

PerformAdapt group (p = 0.35), and significantly lower movement time for the LinearFade group 

(p < 0.001). 

Out of track time 

The LinearFade group had out of track times similar to the PerformAdapt group as shown in 

Figure 5.2c. The t-test indicated no significant effect of Group (p = 0.83).  

Comparison to Unassisted group. The assisted groups had out of track times similar to the 

Unassisted group as shown in Figure 5.2c. The ANOVA indicated no significant effect of Group 

(F(2,33) = 1.68, p = 0.202).  

Haptic Force Reliance 
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The LinearFade group appeared to lower haptic force reliance in comparison to the 

PerformAdapt group as shown in Figure 5.3a. The t-test indicated no significant effect of Group 

(p = 0.0507).  

Task Space Variability 

The LinearFade group had task space variability similar to the PerformAdapt group as shown 

in Figure 5.3b. The t-test indicated no significant effect of Group (p = 0.37).  

Comparison to Unassisted group. The LinearFade group had task space variability higher than 

the Unassisted group as shown in Figure 5.3b. The ANOVA indicated a significant effect of Group 

(F(2,33) = 4.76, p = 0.015). The Dunnett’s test indicated no significant differences for the 

PerformAdapt group (p = 0.089), and significantly lower task space variability for the LinearFade 

group (p = 0.009). 

Null Space Variability 

The LinearFade group had null space variability similar to the PerformAdapt group as shown 

in Figure 5.3c. The t-test indicated no significant effect of Group (p = 0.83).  

Comparison to Unassisted group. The assisted groups had null space variability similar to the 

Unassisted group as shown in Figure 5.3c. The ANOVA indicated no significant effect of Group 

(F(2,33) = 2.11, p = 0.13). 

5.5.2 Test Phase 

Block Score 

The LinearFade group appears to have block scores lower than the PerformAdapt group as 

shown in Figure 5.2a. However, the ANCOVA indicated no significant effect of Group (F(1,21) = 

3.96, p = 0.059).  
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Figure 5.2 Plots of performance variables versus practice. (a) Block score- All groups improved 

scores with practice, and the assisted groups had higher scores in comparison to Unassisted group 

in training (b) Movement time- All groups reduced movement times from Pre-test to Post-test, and 

the LinearFade group had lower movement time in comparison to PerformAdapt group in training 

(c) Out of track time- Out of track times remained similar from Pre to Post, and the PerformAdapt 

group had relatively lower out of track time in comparison to the other two groups in the Post-test. 

(d) Haptic Force Reliance- The PerformAdapt group had lower haptic force reliance in comparison 

to the LinearFade group. 
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Figure 5.3 Plots of variability and haptic reliance versus practice. (a) Haptic force reliance- Both 

the assisted groups reduced reliance on haptic assistance with training and the PerformAdapt group 

had lower reliance in comparison to the LinearFade throughout training. (b) Task space variability- 

The assisted groups had higher task space variability in comparison to the Unassisted group in 

training, and they also showed increasing task space variability during training. (c) Null space 

variability – All groups practiced with similar null space variabilities throughout practice. 
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Comparison to Unassisted group. The assisted groups had scores similar to the Unassisted 

group as shown in Figure 5.2a. The ANCOVA indicated no significant effect of Group (F(2,32) = 

1.88, p = 0.16). 

Movement Time 

The LinearFade group had movement times similar to the PerformAdapt group as shown in 

Figure 5.2b. The ANCOVA indicated no significant effect of Group (F(1,21) = 0.48, p = 0.49).  

Comparison to Unassisted group. The assisted groups had movement times similar to the 

Unassisted group as shown in Figure 5.2b. The ANCOVA indicated no significant effect of Group 

(F(2,32) = 0.14, p = 0.86). 

Out of track time 

The LinearFade group had out of track time higher than the PerformAdapt group as shown in 

Figure 5.2c. The ANCOVA indicated a significant effect of Group (F (1,21) = 4.67, p = 0.042).  

Comparison to Unassisted group. The assisted groups had out of track times similar to the 

Unassisted group as shown in Figure 5.2c. The ANCOVA indicated no significant effect of Group 

(F(2,32) = 1.911, p = 0.16). 

Task Space Variability 

The LinearFade group had task space variability similar to the PerformAdapt group as shown 

in Figure 5.3b. The ANCOVA indicated no significant effect of Group (F (1,21) = 0.32, p = 0.57).  

Comparison to Unassisted group. The assisted groups had task space variability similar to the 

Unassisted group as shown in Figure 5.3b. The ANCOVA indicated no significant effect of Group 

(F(2,32) = 0.78, p = 0.46). 

Null Space Variability 

The LinearFade group had null space variability similar to the PerformAdapt group as shown 

in Figure 5.3c. The ANCOVA indicated no significant effect of Group (F (1,21) = 0.038, p = 0.54).  
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Comparison to Unassisted group. The assisted groups had null space variability similar to the 

Unassisted group as shown in Figure 5.3c. The ANCOVA indicated no significant effect of Group 

(F(2,32) = 0.15, p = 0.86). 

5.5.3 Training to Test-phase  

Block Score 

The LinearFade group had significant reduction in block scores and the PerformAdapt group 

had similar block scores, going from the last block in training to the Post-test as shown Figure 

5.2a. The ANOVA indicated no significant effect of Group (F(1,44) = 0.82, p = 0.37), a significant 

effect of Block (F(1,44) = 14.7, p < 0.001), and a significant interaction effect (F(1,44) = 4.99, p 

= 0.03). Pairwise t-test between the two blocks revealed a significant lower Post-test scores for 

LinearFade (p < 0.001), and no significant difference in block scores for PerformAdapt (p = 0.33). 

Movement Time 

Both assisted groups had relatively higher movement time going from the last block in training 

to the Post-test as shown Figure 5.2b. The ANOVA indicated no significant effect of Group 

(F(1,44) = 2.23, p = 0.14), a significant effect of Block (F(1,44) = 8.45, p = 0.0056), and no 

significant interaction effect (F(1,44) = 3.36, p = 0.073). 

Out of track time 

Both assisted groups had higher out of track times going from the last block in training to the 

Post-test as shown Figure 5.2c. The ANOVA indicated no significant effect of Group (F(1,44) = 

3.35, p = 0.073), a significant effect of Block (F(1,44) = 6.23, p = 0.016), and no significant 

interaction effect (F(1,44) = 2.37, p = 0.13). 

Task Space Variability 

Both assisted groups had similar task space variabilities going from the last block in training to 

the Post-test as shown Figure 5.3b. The ANOVA indicated no significant effect of Group (F(1,44) 
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= 1.36, p = 0.24), no significant effect of Block (F(1,44) = 0.16, p = 0.68), and no significant 

interaction effect (F(1,44) = 0.068, p = 0.79).  

Null Space Variability 

Both assisted groups had similar null space variabilities going from the last block in training to 

the Post-test as shown Figure 5.3c. The ANOVA indicated no significant effect of Group (F(1,44) 

= 0.38, p = 0.53), no significant effect of Block (F(1,44) = 0.072, p = 0.79), and no significant 

interaction effect (F(1,44) = 0.41, p = 0.52). 

5.6 Learning analysis  

An important aim of this study was to analyze the differences between open-loop and closed-loop 

manipulation of assistance levels with learning. For the closed-loop condition, the assistance was 

manipulated according to (4) after each window in training based on changes in the average 

movement times between successive windows. Since the change in assistance depended on how 

participants changed their movement times, each participant received assistance based on his/her 

requirements. We analyzed the dynamics between changes in assistance and changes in movement 

time for each participant to understand the effects of the closed-loop manipulation.  

5.6.1 Assistance levels in training 

Firstly, the assistance levels for the 12 participants from the PerformAdapt group are plotted for 

the 30 windows in training as shown in Figure 5.4. The assistance levels used for the LinearFade 

group have been plotted in grey for reference. Each participant in the PerformAdapt group utilized 

different magnitudes of assistance levels throughout the training. Besides, the participants trained 

under assistance levels lower than the LinearFade group early on in training. However, some 
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participants trained with assistance levels equal to the LinearFade assistance levels towards the 

end of the training. 

 

Figure 5.4 Plot of assistance levels for PerformAdapt group in training.  Plot of assistance levels 

for the 12 participants from the PerformAdapt group for the 30 windows in training shown in 

different colors. The assistance level for the LinearFade group is shown in grey for reference. All 

participants practiced under assistance levels lower than the LinearFade reference early on in 

training. 

5.6.2 Response to changes in assistance 

The following four performance (movement times) response conditions were identified for any 

changes in assistance levels between two successive windows in training - (i) ‘Performance 

Improvement’- assistance increases and participants expectedly decrease movement time. (ii) 

‘Performance Decrement’- assistance decreases and participants expectedly increase movement 

times. (iii) ‘Learning’ - assistance decreases, and if the participants are learning they reduce 

movement times. (iv) ‘Forgetting’- assistance increases, and if the participants are forgetting, they 
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increase movement times. The four response strategies are assigned to the four quadrants created 

by setting the change in assistance levels as the x-axis and the change in movement times as the 

y-axis as shown in Figure 5.5.  

 

Figure 5.5 Responses (changes in movement time) to changes in assistance shown in the cartesian 

space. The four quadrants showing the four different response conditions. Quadrant I – Forgetting, 

assistance increased and movement time increased. Quadrant II – Performance Decrement, 

assistance decreased and movement times increased. Quadrant III –Learning, assistance decreased 

and movement times decreased. Quadrant IV – Performance Improvement, assistance increased 

and movement times decreased. 

5.6.3 Evolution of response conditions in training 

The changes in response conditions for the 30 windows in training was used to model the learning 

dynamics. For example, the evolution of Learning responses can be used to understand how if 

participants are learning the task. The cumulative frequency of each response condition was plotted 

as a function of the training window for each participant. An example plot from a participant in 
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the PerformAdapt group is shown in Figure 5.6 along with the average scores in the Pre-test and 

Post-test blocks.  

 

Figure 5.6 Dynamics of response conditions across training. The frequency of response conditions 

plotted as a function of window number in training for a participant from the PerformAdapt group. 

A higher frequency of Learning response conditions shows that the participant was able to improve 

on movement times even upon decreasing assistance.   

5.6.4 Response condition transition proportions 

An interesting observation from Figure 5.6 is that the Performance Improvement and Performance 

Decrement responses alternate between the windows 17 and 24. Thus, identifying the transition 

between response conditions can provide an insight into how participants learnt the task from the 

standpoint of our model. To this end, for each response condition, we identified the response 

condition for the following window and calculated the proportion for each transitioned response 

condition. The transition proportions are plotted for the same participant from Figure 5.6, in Figure 

5.7. We have also plotted the overall proportion for the observed response conditions from all the 
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windows as larger bars. The participant had higher proportions of the Learning and Performance 

Decrement responses, wherein, most of the Learning responses were followed by a Performance 

Decrement response.  

 

Figure 5.7 Response condition transition proportions. For each response condition, the proportion 

of succeeding response condition is shown as smaller bar plots. The overall proportions of each 

response condition in training are shown as larger bars. This participant had higher proportions of 

the Learning and Performance Decrement responses, with each Learning response followed mostly 

by a Performance Decrement response. 

5.6.5 Individual differences in response to changes in assistance 

As shown in Figure 5.4, each participant experienced unique changes in assistance levels after 

each window in training. Moreover, they displayed different levels of Pre-test and Post-test 

performance. The distinct characteristics of the evolution of response conditions are shown for two 

participants from the PerformAdapt group as shown in Figure 5.8; (i) Participant A had the lowest 
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Pre-test score and a very high Post-test score (ii) Participant B had the highest Pre-test score and 

the highest Post-test score. The plots of transition proportions are also shown in Figure 5.9.  

 

Figure 5.8 Learning dynamics for participants with different initial performance. The evolution 

of response conditions with window numbers for two participants A and B from the PerformAdapt 

group, with pre-test and post-test scores inset the plot. Participant A had low initial performance 

and participant B had high initial performance, but both participants improved scores significantly.   

Both the participants benefitted from the assistance as evident from their post-test scores, but 

each of them displayed seemingly different learning dynamics. Participant A had a larger number 

of Learning responses which were spread throughout training, whereas Participant B alternated 

between Performance Improvement and Performance Decrement responses early on in training, 
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before eventually showing Learning responses later on in training. Thus, the performance adaptive 

strategy seems to be helpful for differently initially skilled participants and was adaptive to their 

learning requirements. 

 

Figure 5.9 Response transition proportions for participants with different initial performance. 

Transition proportions for the two participants A and B, who had the lowest and highest 

performance in the Pre-test. Participant A had a higher proportion of Learning responses in training 

and a higher proportion of transitions from the Learning response were into the Learning response 

which indicated task learning. Whereas, participant B had similar proportions of Learning and 

Performance Decrement responses, with equal transitions into Learning and Performance 

Decrement responses from the Learning response. 

Going further, we hypothesized that the Learning responses should be responsible for the 

learning of the task i.e. the number of Learning responses should correlate to the change in 
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participant’s scores from the Pre-test to the Post-test. We correlated the difference between the 

Post-test score and the Pre-test score against the total count of Learning responses in training for 

all the participants (n = 12) as shown in Figure 5.10. The Pearson correlation test indicated a 

significant positive correlation for the regression (r(10) = 0.76, p = 0.0039). 

 

Figure 5.10 Correlation between Learning responses and the difference between Post-test and 

Pre-test scores. The scatter plot of the difference between Post-test and Pre-test scores against the 

total Learning responses for the 12 participants in the PerformAdapt group. The correlation was 

significant indicating that the Learning responses could predict improvements in performance for 

the participants. 

5.7   Discussion 

The goal of this study was to determine the efficacy of performance adaptive control strategies 

from two standpoints (i) Pre to Post-test analysis and comparison with a simpler linearly reducing 

assistance strategy (ii) Training analysis of the interplay between assistance and task performance 

during the learning process.  We found subtle but non-significant advantages for the group that 

trained under the performance adaptive assistance algorithm in comparison to the group that 
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trained under linearly reducing assistance for short-term retention of performance. However, there 

was no evidence for significant benefits of either mode of assistance in comparison to training 

under no assistance. From the learning standpoint, we have put forward a model to understand the 

dynamics between assistance manipulations and performance changes, and to evaluate any given 

assistance manipulation strategy. 

The analysis of the effects of assistance in the training phase revealed significant improvements 

in the movement time for the assisted groups even as the assistance decreased. However, as the 

participants went faster, the out of track times increased possibly due to the speed-accuracy 

tradeoff (Accot and Zhai, 1997; Fitts, 1954), and is also consistent with results for bimanual 

movements where the errors were larger when the two hands travelled faster in a near symmetrical 

fashion (Sherwood and Enebo, 2005). From the viewpoint of the Uncontrolled Manifold 

Hypothesis (Latash et al., 2002), the variability in the null space can be used as a noise buffer to 

stabilize the movement of the cursor leading to lower movement errors. Our observation is in line 

with this hypothesis, wherein the null space variability is significantly larger than the task space 

variability. Besides, the null space variability reduced, and the task space variability increased 

systematically with practice for both assisted groups which possibly explains the increase in the 

out of track times, i.e. a lower null space variability implied a lower stabilization of the cursor.  

From analyzing the reliance on haptic assistance, we observed that the magnitude of haptic 

forces experienced by the participants reduced with practice, and according to the guidance 

hypothesis (Powell and O’Malley, 2012; Schmidt, 1991), this should be beneficial to learning. 

Besides, the group with adaptive assistance had lower reliance on haptic assistance in comparison 

to the group that practiced with linearly reducing assistance. This observation was true for all the 

participants in the performance adaptive group, showing that none of the participants required 
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assistance levels as high as that of the linear assistance especially in the early stages of training. 

Even though this seems to indicate that the closed-loop manipulation was better than open-loop 

manipulation, an open-loop strategy that reduced assistance non-linearly and quickly early on in 

training could also be equally effective. However, it is unclear if the open-loop manipulation can 

be tailored to each participant’s requirements.  

While examining the effect of the different assistance manipulations on the short-term retention 

of performance, we found that the performance adaptive group had relatively higher scores in 

comparison to the linearly fading group. This was mainly driven by the out of track time variable, 

whereas there was no significant difference in movement times. Here, we have shown that 

performance adaptive assistance strategies could be beneficial towards teaching learners to control 

movement errors. Besides, unlike the linearly fading group, the performance adaptive group did 

not show decrements in performance from the last block in training to the post-test. This could be 

due to the following two results; Firstly, the performance adaptive group had lower haptic force 

reliance and assistance levels on average in the last block of training in comparison to the linear 

faded group resulting in a smaller assistance change going into the unassisted post-test block. 

Secondly, the participants in the performance adaptive group experienced different magnitudes of 

changes in the assistance levels in training leading to possibly stronger schematic learning 

(Moxley, 1979; Shea and Wulf, 2005), in comparison to the linear faded group which faced 

reductions of assistance in equal steps.  

Overall, the assisted groups did not exhibit enhanced learning over the unassisted group. 

Although the performance adaptive group seems to show better performance in the post-test, the 

benefits diminish when the Pre-test performance is considered. These results show that robotic 

assistance might not be detrimental to the retention of spatial movement skills contrary to the 
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reports of some studies (Heuer and Lüttgen, 2015) if the assistance is reduced appropriately with 

practice. Moreover, the assisted groups maintained performance levels significantly above the 

unassisted groups which might be advantageous in training situations posing safety concerns like 

balance training in rehabilitation, surgical operations, etc. (Marchal-Crespo and Reinkensmeyer, 

2009), and to maintain practice motivation for tasks that could otherwise impose high levels of 

functional difficulty.  

Finally, we examined the interplay between assistance and performance during training. The 

idea behind using a performance adaptive algorithm was to account for the skill level differences 

at baseline and for the different learning capabilities. Even though it was expected that learners 

would make use of the adaptive nature of the strategy according to their needs, none of the studies 

had attempted to understand the dynamics between learning and augmented assistance. By 

adopting an assistance-response model derived by pairing changes in assistance to the 

corresponding changes in task performance, we were able to show the different learning dynamics. 

The assistance was helpful for both initially high skilled and low skilled participants in as shown 

in Figures 5.7 and 5.8. This result adds to the observations from studies that reported benefits of 

haptic assistance particularly for initially lesser skilled participants (Duarte and Reinkensmeyer, 

2015; Marchal-Crespo et al., 2015, 2010b). Most importantly, we were also able to show that the 

retention of performance in the post-test correlated directly to the number of Learning responses 

seen during training. Overall, we believe that such an analysis of dynamics in training can provide 

valuable insights for the evaluation and design of assistance control strategies for robotic training. 

The results of this manuscript show that performance-based assistance manipulation strategies 

could possibly be better than simpler open-loop strategies like linear fading of assistance for 

robotic movement training. However, more experiments with other open-loop strategies that non-
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linearly reduce assistance are required to make definitive comparisons. The evaluation of assistive 

manipulation strategies can be carried out using the training data as demonstrated by the model in 

addition to a pre to post-test analysis. Further refinement is necessary to ensure the appropriate 

application of such a model towards characterizing the dynamics between augmented assistance 

and learner’s performance. 
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Chapter 6  

GENERAL DISCUSSION 

There has been an increase in the use of robots to assist in the training of motor skills and to 

collaboratively execute specialized physical tasks. The presence of kinematic redundancy in our 

motor system means that the assistance from robots and feedback about task execution can be 

enabled at multiple redundant effectors/joints. However, very few studies have researched the 

effects of providing assistance/feedback at multiple redundant effectors. We have addressed this 

gap in previous research through the following three central pieces of work in the dissertation; (i) 

we developed a bimanual redundant task and characterized learning in terms of task performance 

and changes to the structure of motor variability (ii) we augmented haptic assistance that either 

restricted or allowed the use of redundant solutions and reported the effects on learning (iii) we 

compared learning benefits from an open-loop strategy to a performance-based closed-loop 

strategy for manipulation of assistance with practice, and we showed that studying the interplay 

between changes in assistance and task performance can provide valuable insights about the 

process of learning. We believe that our work will influence the development of novel haptic 

assistance strategies and motivate new directions for research. In this chapter, we have holistically 

summarized our findings, discussed avenues for future work, and addressed the limitations of the 

dissertation.  

 

 



 

101 
  

6.1 Haptic assistance for redundant tasks 

6.1.1 Limiting motor variability 

In experiment 1, when the ability to self-organize variability was preserved, we made an interesting 

observation that learners from all the groups employed similar amounts of null space variability at 

any given point in training. The magnitudes of null space variability were similar even under 

different levels of task difficulty and when the observed task space variabilities were different. 

Besides, the null space variability reduced monotonously with practice for all the groups which is 

not supported by the minimum intervention principle (Todorov and Jordan, 2003) or the UCM 

hypothesis (Latash et al., 2002).  This seems to indicate that the observed high null space variability 

was required in the earlier stages of learning to maintain task space variability within the 

admissible limits. But with greater practice, the motor system could develop greater control over 

task space variability and thus a stabilization mechanism using large null space variability was 

unnecessary. Moreover, once an optimal solution (Todorov and Jordan, 2002) or a use dependent 

solution (Diedrichsen et al., 2010c) is developed, using that solution repeatedly could be preferred 

unless the task conditions change or unpredictable perturbations arise. We also observed that the 

task space variability increased concurrently during training for the assisted groups that had the 

flexibility to use redundant solutions, and the higher task space variability was retained in the post-

test. A reason could be that since the groups went faster their variability increased due to the speed-

accuracy tradeoff (Accot and Zhai, 1997; Fitts, 1954) and due to the effects of signal dependent 

noise (Harris and Wolpert, 1998).  

When the assistance was enabled to control variabilities systematically, there were significant 

performance differences. Importantly, assistance that constrained the use of redundant solutions 

was detrimental to performance and the learners had to adapt to such constraints before they could 
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increase their performance. Here, by restricting the usage of redundant solutions we reduced the 

magnitude of null space variability available for the motor system. Under a natural learning setting, 

the null space variability is generally exploited by the motor system to minimize task space 

variability (Latash, 2012; Scholz and Schöner, 1999), and disrupting such a mechanism could have 

hindered motor learning. Besides, learners who were allowed to freely use null space variability 

performed significantly better than the learners whose null space variability was restricted. The 

unrestricted learners used null space variability magnitudes similar to the learners who trained 

under no assistance indicating that the assistance did not interfere with the natural organization of 

variability. Although we show that practicing with constrained null space variability is detrimental 

to motor performance, it is unclear if there is an optimum amount of null space variability that 

should be enabled or if complete autonomy in organizing variability should be enabled to facilitate 

the best motor performance.  

Even in the immediate retention test, the assisted groups that were constrained in the use of 

redundant solutions performed worse in comparison to the assisted groups that had flexibility in 

using redundant solutions. Since the constrained group had lower performance in training, the low 

performance was mostly carried forward into the immediate retention test. This was predicted from 

the point of view of the ‘guidance hypothesis (Salmoni et al., 1984; Schmidt, 1991) because the 

constrained groups relied on the assistance greater than the flexible groups in training. Besides, 

the abrupt increase in null space variability for the constrained groups in the short-term retention 

test seemed to indicate that the task conditions in the retention test could be largely different and 

novel in comparison to the task conditions in training. A large difference in task dynamics between 

the constrained task condition and the unassisted task conditions can also lead to such learning 

decrements (Powell and O’Malley, 2012). Thus, even when the assistance is enabled at the 
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redundant effectors it should be designed in such a way that the inherent task dynamics is preserved 

to a maximum extent ( Powell and O’Malley, 2012).  

Recommendation 1: We note here that the retention test was administered immediately after 

the last block in training with assistance, and any effects of training observed in the retention test 

might be short-lived and a result of the washout effect of adaptation (Huang and Krakauer, 2009). 

Thus, delayed retention might be more suitable to confirm the learning effects and extend the 

implications of assistance for real-life tasks. 

6.1.2 Integration of haptic and visual feedback 

From a feedback point of view, we observe fundamental differences between the restricted and the 

unrestricted assistance conditions. The unrestricted assistance conditions received haptic feedback 

only when the cursor deviated from the track, and importantly the force channel was visible to the 

learners. However, for the constrained assistance condition, the learners received haptic feedback 

even when the cursor did not deviate from the track, and the force channels nor the hands were 

shown visually. Thus, the agreement between the haptic and visual feedback in the flexible 

assistance condition could have led to the optimal integration of cues and enhanced learning of the 

shape of the trajectory (Ernst and Banks, 2002; Helbig and Ernst, 2007). On the other hand, the 

disagreement between the haptic and visual feedback for the constrained groups could have 

disrupted the integration of feedback. Therefore, we propose that the haptic assistance should be 

designed in such a way that the visual information goes hand-in-hand with the haptic information 

wherever possible. 
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6.2 Manipulating haptic assistance with learning 

6.2.1 Assistance enhances performance 

Even though assistance was manipulated using different strategies, the task performance when 

with assistance was significantly higher than the performance without assistance. This result was 

expected because the assistance is by definition supposed to help learners complete the task 

successfully. This is especially useful in a rehabilitation setting where practicing without assistance 

raises safety concerns to the impaired, for example, the rehabilitation of lower limbs without 

assistance could present the risk of imbalance and falls (Emken et al., 2007). Moreover, practicing 

under low motor errors and higher task performance motivates the learners to practice continually 

and dedicate efforts towards acquiring motor skills (Duarte and Reinkensmeyer, 2015; Marchal-

Crespo and Reinkensmeyer, 2009; Sanger, 2004). However, higher task performance with 

assistance does not necessarily guarantee the same levels of performance when demanded in the 

absence of assistance (Heuer and Lüttgen, 2015).  

6.2.2 Fading assistance with learning 

In the framework of the guidance hypothesis (Salmoni et al., 1984; Schmidt and Bjork, 1992) and 

the assist-as-needed recommendations (Cai et al., 2006), reducing the amount of assistance with 

learning can benefit the retention of trained motor skills. Firstly, we adopted a bandwidth 

assistance strategy to provide assistance only when the deviations were unsatisfactorily large to 

reduce the amount of feedback within a movement trial. Secondly, in experiments 2 and 3, we 

ensured the reduction of assistance levels with practice using open-loop (Lee and Choi, 2010) and 

closed-loop strategies (Crespo and Reinkensmeyer, 2008; Kahn et al., 2004) respectively. The 

simple open-loop strategy did not provide significant learning benefits in comparison to fixed 
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guidance, and there were significant drops in performance for both conditions when assistance was 

removed in the retention test. This observation indicated that there was probably not enough 

duration of training enabled at the lower assistance levels. Moreover, assistance might only be 

required in the early stages of learning and can be reduced faster in a non-linear fashion (Powell 

and O’Malley, 2012).  

Recommendation 2: An open-loop strategy that reduces assistance at faster rates early in training 

in a non-linear fashion might be more suitable and should be tested in the future. The training 

duration could also be increased with more training at each assistance level to observe the 

stabilization of performance by the end of the training phase. 

The challenge point theory (Guadagnoli and Lee, 2004) adds to the argument of the guidance 

hypothesis from the point of view of challenging the learners optimally even while assisting them. 

Accordingly, in experiment 3, we reduced the assistance level whenever the learners improved 

their performance and vice versa. In addition to challenging the learners continually, the nature of 

reduction is typically faster in the early stages of learning as observed in our experiment and 

previous studies (Crespo and Reinkensmeyer, 2008; Huegel and O’Malley, 2010). Thus, closed-

loop strategies simultaneously adhere to the recommendations of the challenge point theory and 

the guidance hypothesis. We observed a subtle advantage for the closed-loop strategy over the 

simple open-loop strategy in terms of learning to control motor errors. Moreover, the abrupt drop 

in performance upon removal of assistance was completely absent with the closed-loop strategy.  

Recommendation 3: A more meaningful comparison between closed-loop and open-loop 

strategies would require training at similar assistance levels for both conditions. To that end, given 

the assistance levels from the closed-loop condition, an open-loop strategy with assistance levels 

yoked from the closed-loop group of learners could be tested in the future. 
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6.2.3 Modelling learning dynamics with haptic assistance 

Previous studies have mostly inferred the effects of assistance in a black-box fashion, where 

performance before training (baseline) and performance after training (retention) are analyzed. 

However, with the use of more complex assistance manipulation strategies, it could be important 

to look at the effects of such manipulations on the learner motor behavior. Thus, we studied the 

effect of each instance of change in assistance on the subsequent change in the learner performance 

for the duration of application of assistance. We proposed a simple method to conduct such 

analysis by classifying the assistance responses into the four quadrants formed by setting changes 

in assistance level on the abscissa and the changes in performance on the ordinate. The plots of 

these assistance responses with the progression of training and their proportions revealed the 

different learning dynamics exhibited by the different learners and how the closed-loop 

manipulation aided in the process of learning. Going further, we particularly focused on the 

‘learning’ response which promoted learning, which was an observation of improvements in 

performance even when assistance was reduced. We observed a significant positive correlation 

between the number of such responses observed in training and the learner’s performance in the 

retention test. We believe that this method can be used to compare the assistance effects under 

different manipulation strategies. 

Recommendation 4: We were not able to make comparisons between the open-loop and closed-

loop strategies with the above model because the assistance was not manipulated in the same 

intervals for the two strategies. Moreover, further research would be needed to refine and develop 

new methods to evaluate the assistance manipulation strategies by utilizing the wealth of 

information available from the learning process. 
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6.3 Summary of results 

In summary, we have reported the following key results in this dissertation. 

1) Functional task difficulty does not influence the exploitation of motor variability. The 

functional task difficulty influenced task performance and task space variability but did not 

have any differential effects on null space variability. Moreover, irrespective of the changes 

in performance with learning, there was a monotonous reduction of null space variability. 

2) Constraining the use of redundant solutions undermined task performance and learning. 

Constraining redundant solutions meant that the null space variability was also minimized 

which could have disrupted the early stages of learning. Moreover, the differing feedback 

from the haptic and visual modes might have prevented the optimal integration of 

multimodal feedback. 

3) Closed-loop performance adaptive manipulation of assistance presented significant 

learning advantages over open-loop linear fading manipulation. The adaptive manipulation 

prevents abrupt degradation of task performance going from training to retention tests and 

was helpful for initially differently skilled learners. The proposed learning response metric 

derived by analyzing the effects of manipulation of assistance on task performance 

correlated positively with task performance in retention. 
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APPENDIX A – IRB APPROVAL LETTER 
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APPENDIX B – IRB CONSENT FORMS FOR ALL EXPERIMENTS 
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