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ABSTRACT

PREDICTIVE MODEL BUILDING FOR UTILIZING WORD EMBEDDING MODELS:
APPLICATIONS IN INSURANCE DATA

By

Scott Manski

Textual data contains a vast amount of information, yet for many researchers it has not been

clear how the information could be used for an empirical analysis. Often times textual data are

ignored or discarded in statistical analyses because regression and other statistical methods require

numeric covariates. This dissertation will demonstrate how cutting-edge text mining technologies

can improve empirical analyses by transforming textual data into numeric explanatory variables,

thus allowing textual data to be incorporated into a statistical analysis. By transforming the textual

data, the number of explanatory variables often becomes larger than the number of observations.

For this reason, we explore the application of generalized additive models in tandem with adaptive

lasso. In addition, we construct an algorithm for fitting a Gamma double generalized linear model

with a group lasso penalty. Through this, we show how useful information can be extracted from

textual data. We show how our methods can be applied through several insurance claims examples.

We believe that our work can be widely used for other observational researchers in economics,

business, statistical science, and social science.
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CHAPTER 1

INTRODUCTION

1.1 Using Text as Data

With the advance in technology, data are being collected on a much larger scale. While

traditional data types such as numerical and categorical data are still being collected, there has

been an increase in the collection of digital text data. In many cases, text data can provide more

information than a series of traditional variables, but extracting this vital information is not trivial.

Text mining has been utilized in a variety of contexts, including but not limited to spam filtering,

sentiment analysis, customer churn, stock returns, and politics. Sentiment analysis is the process of

categorizing texts based on the message of the text, usually positive or negative. Pang et al. (2002)

explored the use of Naive Bayes, maximum entropy classification, and support vector machines to

predict the overall opinion, positive or negative, of a movie review. Similar work includes using

discriminant analysis to categorize texts into pre-determined genres by Karlgren & Cutting (1994),

and finding features indicated by the use of subjective language by Hatzivassiloglou & Wiebe

(2000). Text mining has also been used substantially in the prediction of stock prices. Antweiler &

Frank (2004) analyzed internet stock message boards and found that the messages help to predict

market volatility. Moreover, Tetlock (2007) found that high media pessimism predicts downward

pressure on the market, and unusually high or low pessimism predicts high trading volume.

Each of the aforementioned examples are primarily concerned with prediction as opposed to

inference of relationships between the response and the explanatory variables. Some authors have

found text analysis to be helpful in telling a story using the relationship between the response

and the explanatory variables. Stephens-Davidowitz (2014) explored racially charged language

in Google search queries to explain how much racial animus costs a black presidential candidate.

Gentzkow et al. (2016) studied congressional speeches and found that partisanship is far greater in

recent years, with a sharp increase in the early 1990s.
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In almost all situations where text data are utilized, the analysis can be summarized in the

following way:

1. Represent the raw text D as some numeric vector or array I

2. Map I to predicted values _̂ of unknown response _

3. Use _̂ in subsequent analysis

In the following sections, we will discuss a variety of methods used to construct I. We start by

exploring the use of indicator variables and count data to represent text in Section 1.1.1. In Section

1.1.2, we introduce word embeddings along with several methods for obtaining word embedding

matrices. Finally, in Section 1.1.3 we discuss how we will be using cosine similarities to measure

the similarity between words.

1.1.1 Word Occurrence Methods

The most common and simplest way of constructing I is by using indicator variables for the

occurrence of words. We will define D as the collection of documents typically in the form of

a column vector. Furthermore, we will denote the set of words in the 8th document as J8, for

8 = 1, ..., |D|.. Finally, let F be the set of all unique words found in D. Then we can define the

entries of I8=3 as

I8 9 =


1 if F 9 ∈ J8

0 otherwise
for 8 = 1, ..., |D|, 9 = 1, .., |F |.

Consider the following example where you have textual descriptions for 3 observations,

D =


Lightning struck a building

A lightning strike hit a building

Lightning struck a tree


2



The response in our example could be the amount of damage, in dollars, caused by the event. By

our definition, J1 = {lighning, struck, a, building}, for example. Furthermore,

F = {lighning, struck, a, building, strike, hit, tree}.

Then

I8=3 =

;86ℎC=8=6 BCAD2: 0 1D8;38=6 BCA8:4 ℎ8C CA44


1 1 1 1 0 0 0

1 0 1 1 1 1 0

1 1 1 0 0 0 1

An extension of the indicator method is to count the number of occurrences of word F 9 in each

textual description. Using the count method, since the word a is the only word that occurs more

than once in a description, we have

I2>D=C =

;86ℎC=8=6 BCAD2: 0 1D8;38=6 BCA8:4 ℎ8C CA44


1 1 1 1 0 0 0

1 0 2 1 1 1 0

1 1 1 0 0 0 1

If we conduct a lexical analysis of the first and second textual descriptions, we see

Lightning struck a building
noun verb noun

A lightning strike hit a building.
adj. noun verb noun

While the sentence structure of the first and second textual descriptions are different, it is clear that

their meanings are essentially equivalent. Since the sentence structure is different, I8=3 and I2>D=C

are different and they do not appropriately capture this similarity in meaning. Additionally, the only

difference between I8=3 and I2>D=C in the example is the third column, the column associated with

the word a. While the use of the word a is necessary in creating grammatically sound sentences in

our example, it does not add any additional information in regards to our response. Common words

3



that typically add little information to the meaning of a sentence are called stop words. Examples of

stop words include a, the, and, at, and for. In practice, stop words are typically removed from F and

J8 (8 = 1, ..., =) to reduce the number of columns in I and to reduce the number of computations

when constructing I.

1.1.2 Word Embeddings

So far, we have only represented text through indicator variables or counts. While this is easy

to understand and easy to work with, it is a very basic way of summarizing text. Instead, word

embedding representations map words into some vector space. The vector space consists of a word

embedding for each word in the vocabulary. The word embeddings are determined by optimizing

some objective function, such as a likelihood for word occurrences, on a library of texts. There

are several algorithms for determining the word embeddings. We will be introducing two of these

algorithms, word2vec and Global Vectors for Word Representation (GloVe).

1.1.2.1 Word2vec

One approach to obtaining the word embeddings is to use the word2vec algorithm. The word2vec

algorithm can be illustrated using a simplified example. Suppose we use the following seven words

as our simplified vocabulary list:

+ = {lighning, struck, a, building, strike, hit, tree} = {w1, w2, . . . , w7}

Consider the sentence:

lightning struck a building

with center word w2, and context words� = {w̃1, w̃3}. What wewant is some vector representation

] of center words and ]̃ of context words. These word embedding matrices are obtained by letting

an algorithm read through billions of sentences, maximizing a log likelihood, treating] and ]̃ as

parameters to be estimated. For this, we can specify the probability of observing a context word

4



w̃ 9 given a center word w2 by

%A
(
w̃ 9 |w2

)
=

exp
(
w̃ 9 · w2

)∑|+ |
:=1 exp (w̃: · w2)

Going back to the sentence, lightning struck a building, using a naive Bayes assumption (where

we assume the conditional independence of the events of observing context words given a center

word), the negative log likelihood becomes:

! = − log %A (w̃1 |w2) − log %A (w̃3 |w2) = −
∑
w̃ 9 ∈�

w̃ 9 · w2 + |� | log
∑
w̃:∈+

exp (w̃: · w2)

The negative log likelihood is minimized by gradient descent. Note that analytical formulas for

the gradient can be obtained based on the likelihood. In practice using the analytical forms of

the gradient speeds up the convergence, and makes the algorithm more stable. Extensions of the

gradient descent algorithm such as Adam optimizers may be used as well. The] and ]̃ matrices

start from a random initial matrix, and is updated each step of the gradient descent iteration.

Repeating this process for millions and billions of center words and context words, an input word

matrix] and a context word matrix ]̃ is learned.

Word2vec may use either the continuous bag-of-words (CBOW) model or the continuous skip-

grammodel, depending on how the log likelihood is defined. In theCBOWmodel, the log likelihood

represents the probability of observing the center word within a window of context words. In the

continuous skip-gram model, the probability of observing the context word given a center word is

used. Hence, the example shown above would correspond to a continuous skip-gram model.

Nowadays, word embedding matrices trained by word2vec can be downloaded from Google’s

website (https://code.google.com/archive/p/word2vec/). An extension of word2vec,

which uses character n-grams, is fastText, which can be downloaded from (https://fasttext.

cc). FastText is a library for learning word embeddings, created by Facebook’s AI Research (FAIR)

lab.

5
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1.1.2.2 Global Vectors for Word Representation (GloVe)

In this paper, we use the pre-trained word embeddings obtained via an algorithm called GloVe,

developed by Pennington et al. (2014). We note that other methods to create word embedding

matrices exist. From our perspective, the end result of word2vec and GloVe is similar. We chose

GloVe because it is a straightforward algorithm based on word counts, and the approach is well

documented with an emphasis on reproducibility. In practice, the GloVe algorithm has additional

benefits over word2vec in that the algorithm is more easily parallelized. GloVe word embedding

matrices can be downloaded from https://nlp.stanford.edu/projects/glove/. From this

website, the 300 dimension word vectors containing 400 thousand vocabularies, trained over 6

billion tokens appearing in the Wikipedia corpus, has been downloaded. The algorithm used for

this particular word embedding is to minimize a cost function, which has the form

� =

|+ |∑
B=1

|+ |∑
C=1

Ψ
(
"B,C

) (
wB · w̃C + 1B + 1̃C − log("B,C + 1)

)2

where |+ | is the size of the vocabulary, 1B, 1̃C are bias terms, "B,C are entries of the co-occurrence

matrix for all the words found in the corpus over which the algorithm is being applied, wB and w̃C

are the word embeddings corresponding to the position in the co-occurrence matrix "B,C , and Ψ is

a weighting function:

Ψ(G) =


(G/G<0G)b if G < G<0G

1 otherwise

with G<0G = 100 and b = 3/4. The motivation for b = 3/4 is empirical, and with this choice of the

parameter, the performance of the model happens to improve when compared to b = 1. In practice,

we may have any 0 < b < 1. The reader may understand this is a way to give more weight to rare

word combinations found in the corpus. Intuitively, the co-occurrence matrix "B,C records how

often two words occur together in the training corpus.

The algorithm attempts to find a word embedding for each word that gives a dot product that is

close to the transformed co-occurrence matrix entry of the word combination. The resulting word

embedding gives a large dot product for those combinations of words that have a high co-occurrence

6
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Figure 1.1: Plot of Ψ(G) for different values of b, with G<0G = 100

matrix entry, and a low dot product for those combinations of words that correspond to zero matrix

entries. Note that most of the entries of the matrix would be zeros. For additional details on the

GloVe algorithm, we refer to the original paper by Pennington et al. (2014).

Word embedding matrices obtained this way have numerous applications. In the natural

language processing literature, word embeddings are used to construct neural networks that can

predict missing words in sentences, or translate sentences in one language to another. Neural

network based text models are powerful in terms of their prediction. Meanwhile, we are interested

in models that allow us to interpret the relationship between explanatory variables and response

variables. One way this can be achieved is to consider projecting the vector representation of words

onto a set of axes, which we are able to understand. Given a vector representation of phrases,

instead of using the vectors directly inside a prediction algorithm, one may consider projecting the

vectors onto axes defined by a set of keywords.

1.1.3 Word similarities

Once theword vectors are obtained using approaches outlined in Section 1.1.2, explanatory variables

can be formed using cosine similarity of words. The cosine similarity between two words with
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nonzero vector representations a and b is given by

simcos(a, b) =
a · b

| |a | |2 · | |b | |2
(1.1)

One may think geometrically, and interpret the cosine between two unit vectors as the dot product

of the two vectors. The dot product ranges between -1 and 1, with 1 indicating identical vectors,

and -1 indicating two vectors that point in the opposite direction. For example, the cosine similarity

between the words building and buildings is 0.7946, while the cosine similarity between building

and hello is −0.02810.

Figure 1.2 shows a projection of the word vectors in a two-dimensional space for an example

set of words. In the figure, notice that library and museum appear close to each other, since they

have similar functions, and hence may appear in similar contexts. Also, graffiti, vandalism, theft,

stolen all appear at a similar location on the plot. Imagine drawing an arrow from the point (0, 0)

to the word, and the reader may see that the vector corresponding to each of these words are very

similar to one another. The angle between the words is small, and hence the cosine of the angle

between the words would be large (close to 1). Another way to say this is that the dot product

between the words is large. Now consider the word hail and its corresponding vector, and compare

it with the vector corresponding to graffiti. The two words are somewhat unrelated, and hence the

angle between these two words is large. Another way to say this is that the cosine between the unit

vectors corresponding to the two vectors is negative, or in other words the dot product is negative.

Now consider two documents J1 = {01, 02, ..., 0(} and J2 = {11, 12, ..., 1) }. Let a8 (8 =

1, ..., () be the vector representation for word 08, and let b 9 ( 9 = 1, ..., )) be the vector representation

for word 1 9 . Goldberg (2017) suggests using the similarity metric

sim∗cos(J1, J2) =
(∑
B=1

)∑
C=1

simcos (aB, bC) .

Essentially this metric assumes the vectors within a document can be added to form a vector

representing the entire document. We tried using this metric, and discovered that the results could

8
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Figure 1.2: Example of a two dimensional projection of the word embeddings

be improved using a different metric. Hence, in this paper, we use the similarity metric

simcos(J1, J2) = max
B=1,...,(

(
max

C=1,...,)
(simcos(aB, bC))

)
.

Thus the cosine similarity between two documents corresponds to the maximum cosine similarity

between any two words found within the documents. In particular, the similarity between a single

word 0 and J = {11, 12, ..., 1(} is given by

simcos(0, J) = max
B=1,...,(

(simcos(a, bB)) . (1.2)

Defining the features this way is equivalent to max-pooling the features of a one-dimensional

convolutional neural network. Max-pooling tends to work better than alternatives such as average

pooling, as explained in page 120 of Chollet & Allaire (2018). When used with a single word 0, the

similarity will be 1 if the particular word appears in the claim description. Hence, in some sense,

the similarity can be thought of as a detector of whether a particular word or concept appears in

the claim description. This provides more interpretability, as it is a generalization of indicators for

word appearance.

Continuing the example described in Section 1.1.1, we can calculate I using equation 1.2, the

formula for cosine similarities,
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Ĩ2B =

;86ℎC=8=6 BCAD2: 0 1D8;38=6 BCA8:4 ℎ8C CA44


1.000 1.000 1.000 1.000 0.507 0.684 0.230

1.000 0.684 1.000 1.000 1.000 1.000 0.230

1.000 1.000 1.000 0.356 0.507 0.684 1.000

Notice that the cosine similarities for the words lightning and a are 1 for all three cases because

thewords appear in each of the three documents. In addition, recall thatJ1 = {lightning, struck, a, building}.

The cosine similarity between the word tree and J1 is 0.230. The word within J1 that achieves

this maximum cosine similarity is the word a. This further emphasizes the importance of removing

stop words from the textual descriptions. By removing stop words from each description and from

F, we construct I as

I2B =

;86ℎC=8=6 BCAD2: 1D8;38=6 BCA8:4 ℎ8C CA44


1.000 1.000 1.000 0.507 0.684 0.228

1.000 0.684 1.000 1.000 1.000 0.228

1.000 1.000 0.238 0.507 0.684 1.000

When using cosine similarities, we are often more interested in the similarities closer to 1,

while smaller similarities provide less information about the word of interest. For this reason, we

can calculate the components of I as

I8 9 (Y) = simcos(J8, F 9 ) �
(
simcos(J8, F 9 ) ≥ Y

)
for 8 = 1, ..., =, 9 = 1, ..., |F | (1.3)

where 0 < Y ≤ 1. Continuing our example, I (0.3) is

I2B (0.3) =

;86ℎC=8=6 BCAD2: 1D8;38=6 BCA8:4 ℎ8C CA44


1.000 1.000 1.000 0.507 0.684 0

1.000 0.684 1.000 1.000 1.000 0

1.000 1.000 0 0.507 0.684 1.000

Moreover, note that as Y increases to 1,I2B (Y) becomes closer toI8=3 . Specifically,I2B (1) = I8=3 .
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1.1.4 Data Size Considerations

The accuracy and efficiency of any statistical method applied to I is heavily influenced by the

choice of F. Recall that the number of words in F is the number of columns that will be in I. As

we did with the example in Section 1.1.1, we could let F be the set of all words that appear in D.

Using the National Oceanic andAtmospheric Administration (NOAA) dataset, Figure 1.3 illustrates

how the number of unique words is a function of the number of documents, or observations. It is

clear that the number of unique words will plateau at some number of documents, which follows

our intuition. Eventually the addition of another document in the dataset will not contain any words

that have not appeared in the previous documents.

Figure 1.3: The number of unique words as a function of the number of documents in the NOAA
dataset.

It is clear that choosing F to be the set of all words that appear in D will be difficult in any

statistical analysis due to the large number of covariates. For this reason, we explore a variety of

other options for choosing F.

The first method for determining F is having a subject matter expert manually choose words

they believe to be the most related to the variable of interest. This method has the advantage of

allowing the expert to choose as many or as few important words as they see fit. However, several

possible issues may arise. To start, the subject matter expert will need to be familiar enough with

cosine similarities to make appropriate choices. In addition, the expert will also have their own
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biases that may influence the analysis. In Chapter 2 we will show how this method can be effective

in claims classification and risk mitigation.

We could also consider using a data driven method for choosing F. Since the majority of words

will most likely not be strong predictors of the response variable, we can assume that the true model

will be sparse. Therefore, we choose to use Lasso to select our set of words F. In Section 1.2 we

discuss the Lasso estimator along with several generalizations. In Chapters 3 and 4 we show how

Lasso type penalties can be used to select F.

1.2 Lasso and Generalizations

In this section we describe the Lasso estimator along with generalizations of the Lasso method.

Tibshirani (1996) originally proposed the lasso, a method combining the least squares loss with

an ℓ1-constraint. Suppose we have a response vector y of length =, an = × ? covariate matrix ^,

unknown intercept V0, and unknown parameter vector # of length ?. Then the lasso estimator is

expressed

arg min
V0,#

{
1

2=
| |y − V01 − ^#| |22

}
subject to | |#| |1 ≤ C, (1.4)

where 1 is a vector of = ones. The tuning parameter C determines the total size of the coefficients,

and therefore shrinks the coefficients to zero as C increases. Often, after standardizing the covariates,

the lasso problem is rewritten in the Lagrangian form

arg min
V0,#

{
1

2=
| |y − ^#| |22 + _ | |#| |1

}
, (1.5)

for some tuning parameter _ ≥ 0. The tuning parameter _ is directly related to the tuning parameter

C from Equation 1.4. Now that we have introduced the lasso estimator, we will discuss several

generalizations. While variable selection by lasso is consistent under some conditions, the lasso

method was extended to improve the consistency of variable selection.
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1.2.1 Adaptive Lasso

Zou (2006) established a necessary condition for variable selection to be consistent. By doing so,

they showed the existence of certain scenarios where the lasso estimator is inconsistent. For this

reason, the adaptive lasso was proposed. Choosing W > 0, the adaptive lasso solves

arg min
#


1
2
‖y − ^#‖22 + _

?∑
9=1

F 9 |V 9 |
 , (1.6)

where F 9 = 1/| Ṽ 9 |W , and #̃ is some initial estimate. Given the initial estimates, it can be shown

that equation 1.6 is convex in #. When ? < =, the least squares estimates can be used as the initial

estimates. When ? ≥ =, the least squares estimates are not defined, however Huang, Ma, and Zhang

(2008) showed that, under some general conditions, the marginal least squares estimates can be

used as initial estimates. Zhang, Jeng, and Liu (2008) showed that using the lasso estimates as the

initial estimates in adaptive lasso improves the sparsity recovery rate. In addition, Furthermore,

Zou (2006) showed that the adaptive lasso recovers the true model under more general conditions

than the lasso when the initial estimates are
√
= consistent.

1.2.2 Group Lasso

In many applications of regression, the covariates may have some natural group or block structure,

and it may be sensible to have all the coefficients within the group be estimated as zero or nonzero

together. The most common example of this is the use of categorical variables. In practice,

a categorical variable is typically coded as a series of dummy variables, and we want to either

include or exclude the entire set of dummy variables from the model. This scenario provides

motivation for the group lasso.

Consider a linear regression model with � groups of covariates, and each group contains ? 9

covariates for 9 = 1, ..., �. That is, we have design matrix ^ = (^1^2 · · · ^�) where ^ is an

= ×∑�
9=1 ? 9 matrix, and # = (#1#2 · · · #�) where # 9 is a vector of length ? 9 for each 9 = 1, ..., �.
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Yuan & Lin (2006) proposed the group lasso which solves

arg min
#


1
2
‖y − V01 − ^#‖22 + _

�∑
9=1

√
? 9

# 92

 , (1.7)

for some tuning parameter _ ≥ 0. In addition to categorical data, group lasso can be used in the

additive model framework. If we apply some basis expansion to a numeric explanatory variable,

then the expansion could now be thought of having a group-like structure. This idea will be explored

in Chapters 3 and 4.

1.2.3 Adaptive Group Lasso

Wang & Leng (2008) combined these extensions to formulate the adaptive group lasso, and showed

the ability of the method to identify the true model consistently. For some tuning parameter _ ≥ 0,

the adaptive group lasso solves

arg min
#


1
2
‖y − V01 − ^#‖22 + _

�∑
9=1

F 9

# 92

 , (1.8)

where F 9 = 1/
Ṽ 9W2 , and #̃ is some initial estimate. In addition, Wang & Leng (2008) proved

estimation consistency and selection consistency for the adaptive group lasso estimator. We will

illustrate how adaptive group lasso can be utilized in Chapter 3.

14



CHAPTER 2

CLAIMS CLASSIFICATION AND RISK MITIGATION USING SHORT TEXTUAL
DESCRIPTIONS

2.1 Introduction

When an insurance claim arises, one of the first things that is reported to a claims manager of an

insurance company is a short textual description of the insurance claim, along with demographic

information regarding the policyholder. Losses may be reported via a notice form, where one of

the common forms used is the Association for Cooperative Operations Research and Development

(ACORD) form. See page 7.16 of Kearney (2010). Upon this initial report, the claims department

is responsible for a number of important tasks. The claims department would identify the policy

and set adequate reserves, contact the insured, investigate the claim, document the claim, determine

the precise cause of loss, liability, and the loss amount. In this process, the claims manager would

coordinate with the actuarial department in order to predict the amount of insurance claim and set

the adequate case reserve for each claim. In practice, parametric loss models are fit to data, and the

resulting distribution is used for the prediction of the ultimate claim amount.

In this process, regression analysis helps us understand the relationship among variables. The

goal of a standard regression model is to understand the relationship between the response variable

y, and explanatory variables ^, and predict future responses under a set of assumptions. The

relationship 6 {E[y]} = ^#, where typically a distributional assumption is imposed on the error,

allows us to interpret the relationship between y and ^ in a systematic way. In case y is a binary

response, logistic regression can be used. For a general overview of regression, see Frees (2009).

When forming the ^ matrix for empirical research using traditional approaches, useful information

is discarded from the analysis, because traditional regression analysis requires numeric descriptor

variables. Textual information has been one example.

In this chapter, we demonstrate how we can implement the tools discussed in Section 1.1 so
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that traditional analysis can be performed. The extracted information is used to build a regression

model for the response variable of interest. Through this demonstration, we show how information

can be extracted from textual data. We demonstrate two illustrative case studies in insurance

claims classification, and insurance risk mitigation. We believe these approaches demonstrate

how text processing methods can improve insurance analytics in the actuarial practice. In addition,

understanding the factors that relatewith large insurance lossesmayhelp usmitigate future insurance

losses.

Generalized additive models (GAM) extend linear models to contain smooth functions for

each of the covariates, while retaining inference about the functions. Applications of GAMs

have been discussed in Hastie & Tibshirani (1990). These applications include studying kyphosis

in laminectomy patients, atmospheric ozone concentration, and the intensity of ischaemic heart

disease risk factors, among others.

Moreover, Hastie et al. (2009) describes an example of utilizing GAMs to classify emails as

spam. While this example does analyze text, the method has several significant differences from

that of our analysis. The spam example observes the number of occurrences of certain words, and

fits a GAM with each word as a covariate. While the spam example in Hastie et al. (2009) also

discusses the interpretability of the model, the primary goal is to predict the probability of an email

being spam. In our analysis, we start by quantifying the similarity between a description and a

series of selected words. The main interest in this analysis is the interpretation of the smoothing

functions. This provides a much more complete explanation of the various factors that lead to high

losses, and therefore, may provide for a more improved strategy of risk mitigation. A recent work,

Wood (2017), provides a comprehensive overview of GAMs.

There is a vast literature in insurance claims modeling, where parametric models are employed

to understand insurance claims distributions. To the best of our knowledge, combining text mining

approaches with loss modeling is a new approach, which hasn’t been attempted in the past. In

particular, there seems to be no prior work utilizing text mining approaches to empirically under-

stand and model insurance claims data. The rest of the Chapter proceeds in the following order:
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In Section 2.2, the Wisconsin Local Government Property Insurance Fund (LGPIF) data are intro-

duced. In Section 2.3, two applications of word similarity models are presented: insurance claims

categorization, and risk mitigation. In Section 2.4, concluding remarks are provided.

2.2 Data

In this section we provide some summary statistics for the dataset. For our case study, we utilize

a unique dataset of claim descriptions and loss amounts from the Wisconsin Local Government

Property Insurance Fund (LGPIF). The dataset is obtained from the Office of the Commissioner

of Insurance (OCI) of Wisconsin. The Wisconsin LGPIF has been established to make property

insurance available for local government units. The property fund essentially acts as an insurance

company in the area, providing property coverage for thousands of government entities.

In Table 2.1, it is interesting to observe that claim categories with high frequency tend to have

low severity, while claim categories with low frequency tend to have high severity. In order to

illustrate this effect, the table has been sorted in decreasing order of the number of observations # .

Modelers have studied insurance claim frequency and severity models, and empirically it has been

discovered that claim frequencies and severities are often correlated; see Frees et al. (2016).

2.2.1 Data Generation

The number of claims observations is 4991 in the training sample, and 1039 in the validation

sample, which totals to 6030 observations. The data used for this chapter is already in tabular form

corresponding to the data generating processes in Section 2.3, and we consider the data cleaning

process, including the metadata analysis, as a black-box process that has already been performed

by the provider of the data. We assume all claims are closed, and the claim amounts are fixed.

Descriptions for the observed insurance claims are recorded in the dataset. These claim

descriptions are human generated, and there are 2797 unique words found in the training sample

and validation sample all together. Figure 2.1 shows a projection of the word vectors in a two-

dimensional space, for common words found in the dataset. Word vectors are explained in Section

17



1.1.2. For now, imagine that there exists a framework, where every word corresponds to some two-

dimensional vector, with related words having similar vector representations. A plot of common

words found in the claim descriptions file may look like Figure 2.1.
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Figure 2.1: Two dimensional projection of the word embeddings for common words

In Figure 2.1, notice that library andmuseum appear close to each other, since they have similar

functions, and hence may appear in similar contexts. Also, graffiti, vandalism, theft, stolen all

appear at a similar location on the plot. Imagine drawing an arrow from the point (0, 0) to the

word, and the reader may see that the vector corresponding to each of these words are very similar

to one another. The angle between the words is small, and hence the cosine of the angle between

the words would be large (close to 1). Another way to say this is that the dot product between

the words is large. Now consider the word hail and its corresponding vector, and compare it with

the vector corresponding to graffiti. The two words are somewhat unrelated, and hence the angle

between these two words is large. Another way to say this is that the cosine between the unit vectors

corresponding to the two vectors is negative, or in other words the dot product is negative.
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2.2.2 Textual Data Preprocessing

Figure 2.2 shows the most common words in the dataset. Stop-words such as a, the, and, etc. have

been removed. No other pre-processing of the words have been performed. Notice that the word

damage is most frequent in the descriptions. The word vandalism is also frequent, as vandalism

turns out to be one of the most frequent claim causes in the dataset. Abbreviations such as hs (high

school), ms (middle school), es (elementary school), dmg (damage), bldg (building) also appear in

the dataset.

Note that both bldg and building are valid words. Imagine we search for the word building in

a search engine. In this case, phrases with the word bldg and building should both appear in the

search. We also note that building and buildings both appear in the vocabulary. The reason why

both bldg and buildings appear when building is already in the vocabulary list, is because they

are distinct words. How much these words relate to claim occurrence is determined by the cosine

similarities of the words with selected key words. The advantage of our approach is that minimal

data preprocessing is needed, so that such similar words can all be kept in the data.

Note, the claim descriptions are short phrases, such as lightning damage to building, or vandal-

ism damage at recycle center. A total of 4991 such claim descriptions are in the training dataset.

Each claim description is associated with the loss amount corresponding to the description. Each

claim is categorized into one of the following claim categories: vandalism, fire, lightning, wind,

hail, vehicle, water (weather related), water (non-weather related), and miscellaneous losses.

Table 2.1 shows a summary of the loss amounts for each of the nine claim categories. According

to the table, vandalism has the lowest average loss amount, while the frequency of vandalism is the

highest. Hail damages are the largest in terms of median and mean value, while the frequency is

the lowest. The largest hail damage with a loss of 6.6 million is a hail damage to multiple buildings

insured by the property fund. It is interesting to observe that the maximum loss amount happened

within the weather related water damages category, which is a loss of 12.9 million. This largest

loss corresponds to a water damage to a school. The second most frequent claim category is the

vehicles category. This category of claim happens when a vehicle (car, plow, truck, etc.) runs into
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Figure 2.2: Distribution of common words

a government property building or structure, such as a light pole.
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Table 2.1: Summary statistics of losses by claim category

Validation sample Training sample
Peril min median mean max N min median mean max N
Vandalism 1 500 6,190 981,599 310 6 587 2,084 207,565 1774
Vehicle 1 3,000 5,662 135,268 227 37 2,500 3,905 111,740 852
Lightning 500 5,000 11,623 88,603 123 1 4,431 11,087 655,092 832
Water (weather) 55 19,337 51,608 411,641 38 1 8,898 80,432 12,922,218 426
Miscellaneous 70 3,025 9,723 242,918 103 1 3,929 29,150 2,633,822 362
Wind 325 9,010 46,304 1,048,683 107 1 4,960 18,125 492,478 296
Water (non-weather) 544 6,739 60,538 2,672,184 67 1 6,306 23,974 1,114,595 202
Fire 125 11,355 83,767 964,150 46 100 8,964 81,762 1,570,619 171
Hail 7,886 49,184 103,674 332,412 18 124 17,819 145,488 6,615,117 76
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To conclude the data description, we provide some ground-truth information regarding the

quality of the data. The data has no missing values, and the categories for each claim are all

observed. We inspected the claim categorizations and believe that the data quality is mostly

dependable, although some errors may exist because the categorization has been performed by

human experts.

2.3 Applications

In this section, we demonstrate how the explanatory variables extracted from textual data can

be used in specific models. We provide two examples: an example in claims classification, and

an example in risk mitigation. In both applications, the Generalized Additive Models (GAM)

framework is used as an underlying theme. We selected the GAM framework for its flexibility in

capturing potential nonlinear effects of the cosine similarities. Word vectors are used in order to

improve the classification results in all examples. These applications specifically use short textual

descriptions of insurance claims, which may be found in initial reports of the claims to an insurance

claims department. For long textual descriptions or claim adjuster notes, other methods such as

recurrent neural networks (RNNs) using LSTM cells, or convolutional neural networks (CNNs)

with multiple layers, may be preferred. For more details regarding neural network approaches to

textual data analyses, see Goodfellow et al. (2016) and Goldberg (2017). Yet, the simplicity of our

approach may make it attractive for actuaries working with simple textual descriptions of claims.

2.3.1 Claims Classification

2.3.1.1 Model

In practice, an insurance claims manager would have to classify given claims based on their

properties. This task may be supported with a claims classification engine, which would take

the claim description as its input, and output the correct claim category. This motivates our first

application of word embedding models, which is the classification of insurance claims into discrete

categories.
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The engine would be trained over a training dataset, and validated over a test dataset. Within

the training dataset, we assume category �8 and description J8 are observed for each claim 8. Thus,

the sample consists of observations {(�1, J1), . . . (�=, J=)}. Note that J8 = (081, 082, . . . , 08@(8)),

a description consisting of @(8) words, where @(8) is the number of words consisting the 8-th

description. We assume that = = =0 + =1 + . . . + = 9<0G , thus we imagine that nine samples each of

size =0, =1, . . . , = 9<0G are stacked to form the given sample of size =. In this paper, 9<0G = 8. The

claim categories for the training sample and test sample are shown in Table 2.2. Thus, the response

variable �8 takes on the values 0, . . . , 9<0G .

Table 2.2: Claim Categories for Training and Validation Datasets

Misc. Vandalism Fire Lightning Wind Hail Vehicle Water(NW) Water(W) Total
(�8 = 0) (�8 = 1) (�8 = 2) (�8 = 3) (�8 = 4) (�8 = 5) (�8 = 6) (�8 = 7) (�8 = 8)

Training 362 1774 171 832 296 76 852 202 426 4991
Test 103 310 46 123 107 18 227 67 38 1039

Ageneralized additive model (GAM) framework can be thought of as a generalized linear model

with a linear predictor involving smooth functions of covariates. See Hastie & Tibshirani (1990)

and Wood (2017). For the analysis, we construct design matrix using Equation 1.3 as described in

Section 1.1.3. That is, the explanatory variables, u8 are defined by

D8,: = simcos(F: , J8) · � (simcos(F: , J8) ≥ Y), : = 1, . . . ,  

where Y = 0.2 is used, and F: is the :-th word used in the model, and J8 is the description of the

8-th claim. For the model, we use a multinomial specification. We made this choice (as opposed to

other classification methods), based on the fact that the multinomial model provides a framework

that is easily generalizable to a GAM model. In this case, the probability of observing a specific

peril type 9 is given by

f8 ( 9) =


1
/ ©«1 +

9<0G∑
9′=0

exp
(
k 9′,8

)ª®¬ for base peril type 9 = 0,

exp
(
k 9 ,8

) / ©«1 +
9<0G∑
9′=0

exp
(
k 9′,8

)ª®¬ for peril type 1 ≤ 9 ≤ 9<0G
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with

k 9 ,8 = U 9 +
 ∑
:=1

q 9 ,: (D8,: )

where U 9 is an intercept, and q 9 ,: (: = 1, . . .  ) may be smooth functions of the covariate, and  

is the number of words used in the model. We denote the base peril type as miscellaneous claims,

and call it 9 = 0. If we assume the functions are linear so that estimation time could be saved, then

we have

q 9 ,: (D8,: ) = D8,: V 9 ,: , : = 1, . . . ,  

and hence

f8 ( 9) =


1
/ ©«1 +

9<0G∑
9′=0

exp
(
U 9′ + u′8# 9′

)ª®¬ for base peril type 9 = 0,

exp
(
U 9 + u′8# 9

) / ©«1 +
9<0G∑
9′=0

exp
(
U 9′ + u′8# 9′

)ª®¬ for peril type 1 ≤ 9 ≤ 9<0G

Here, # 9 are  dimensional coefficients. Note that with this choice of q 9 ,: , the GAM model

becomes the GLM model. This simplification is useful for reducing the computation time, when a

large number of explanatory variables are included in the model.

Table 2.3 shows  = 7 words defining the set F used in the model. The reader may imagine

projecting each claim description J8 onto a space represented by  = 7 axes. In this paper, the

feature words have been selected by a human expert with a good understanding of the dataset. In

practice, the most frequent words found in the claim descriptions may be used as the key words.

Abbreviated words are valid choices. In the claims classification problem, our goal is to construct

an engine that gives the best possible classification result, and the focus is less on the interpretability

of the coefficients resulting from the estimation. For applications such as that found in Section

2.3.2, the interpretability is more important, and hence the feature words should be selected more

carefully by a human expert using the engine.

Table 2.3: Words used for Classification

vandalism fire lightning wind hail vehicle water
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The reader may be curious why a censoring of the cosine similarities is needed. The reason is

that cosine similarities smaller than the threshold is basically noise. One way to understand this

phenomenon is to imagine a search engine returning results on the internet. The first few results

are highly related to the search string that has been entered, but as one goes down the list, more

and more irrelevant results may be observed. These junk results tend to add noise to the regression

result, and hence we censor the cosine similarities with a threshold Y = 0.2, where the choice of Y is

an empirical question. Figure 2.3 in Section 2.3.1.2 shows the classification accuracy as a function

of the threshold Y.

2.3.1.2 Result

Table 2.4: Confusion matrix for multinomial model

Actual Predicted Category
Category Misc. Vandalism Fire Lightning Wind Hail Vehicle Water(NW) Water(W) Total
Misc. 24 33 1 1 0 0 39 0 5 103
Vandalism 17 267 0 0 2 0 23 0 1 310
Fire 0 2 18 3 0 0 20 2 1 46
Lightning 3 1 0 114 0 1 3 0 1 123
Wind 4 4 2 3 88 2 1 0 3 107
Hail 0 0 0 0 0 17 1 0 0 18
Vehicle 31 5 4 0 0 0 182 2 3 227
Water(NW) 2 4 0 0 0 0 5 4 52 67
Water(W) 5 1 0 0 4 0 0 1 27 38
Total 86 317 25 121 94 20 274 9 93 1039

The analysis of classification accuracy is often performed by the Receiver Operating Charac-

teristic (ROC) curve in the binary classification problem. The ROC curve is created by plotting the

true positive rate (TPR) against the false positive rate (FPR) at various thresholds. The Area Under

the Curve (AUC) is often used as a measure of how well the classification engine is performing.

In the multiple class problem, numeric measures such as the average accuracy, error rate, and

precision are better suited for analyzing the classification accuracy. These quantities are defined by

Average Accuracy =
1

9<0G + 1

9<0G∑
9=0

C ? 9 + C= 9
C ? 9 + 5 = 9 + 5 ? 9 + C= 9

,

Error Rate =
1

9<0G + 1

9<0G∑
9=0

5 ? 9 + 5 = 9
C ? 9 + 5 = 9 + 5 ? 9 + C= 9

,
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Precision =
1

9<0G + 1

9<0G∑
9=0

C ? 9

C ? 9 + 5 ? 9
,

where C ? 9 is the number of true positives, C= 9 is the number of true negatives, 5 ? 9 is the number

of false positives, 5 = 9 is the number of false negatives; see Sokolova & Lapalme (2009). Figure

2.3 shows the average accuracy, error rate, and precision. With Y = 0.2, the average accuracy is

93.62%, the error rate is 6.37%, and the precision is 63.9%. We tested if these numbers changed

as the threshold Y changed.
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Figure 2.3: Average accuracy, error rate, and precision in log scale

Figure 2.3 shows that the average accuracy, error rate, and precision changes as Y is altered by

0.005. The solid lines show degree 10 splines fit to the experiment data. Notice that when Y = 1

(or in other words when log Y = 0) the accuracy and precision reduces, and the error rate increases

significantly. This is precisely the case when the cosine similarities boil down to indicator variables

of whether the particular words are found in the claim descriptions (in other words, when there exists

an embedding for at least one word in the description that is a constant multiple of the keyword).

Figure 2.3 is evidence that the model matrix based on cosine similarities is outperforming that

based on indicators. Our choice Y = 0.2 is shown as a vertical dotted line at log(0.2) = −1.609. We

emphasize once more that the choice of Y is an empirical question, as the classification accuracy

is not influenced much by the threshold. Moreover, since the graph is stable on the left-hand side,

26



Y = 0 may also be a reasonable choice, if prediction alone is the concern. Yet, for interpretation of

the coefficients, we have chosen a non-zero threshold.

2.3.2 Risk Mitigation

2.3.2.1 Model

In order to understand the factors that relate with high losses, we assume a sampling frame in the

following form: We assume that the loss amount, the category of the loss, and the description of

the loss are observed. While �8 was a random variable in section 2.3.1, here we assume �8 = 9 is

fixed. Also, we assume for each category, = 9 losses are observed.

Let 9 be the category of the loss, and let .∗
9 ,8

be the underlying loss amount, and J 9 ,8 the

description of the 8-th loss in the 9-th category. Thus, the dataset consists of distinct samples with

observations of the form

{(.∗0,1, J0,1), . . . , (.∗0,=0
, J0,=0)}

...

{(.∗
9<0G,1, J 9<0G,1), . . . , (.

∗
9<0G,= 9<0G

, J 9<0G,= 9<0G
)}

For a given 0 < W < 1, responses . 9 ,8 are formed by

. 9 ,8 = � (.∗9 ,8 > @ 9 (W))

@ 9 (W) = inf{H : %(.∗9 ≤ H) ≥ W}

where W = 0.5 is used to obtain the median for each category. For our analysis, the empirical

quantile has been used for @ 9 (W). In other words, for any given loss, . 9 ,8 is an indicator of whether

the observed loss .∗
9 ,8

is above the 50th percentile of losses in that category of loss. Any other

quantile could have been used. For instance, the 95th percentile could have been used. Different

quantiles would give different stories, because the definition of a large claim would be different for

each case. The 50th percentile has been arbitrarily selected for demonstration.
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We analyzed the losses for vandalism, fire, wind, vehicle, and the two water damage categories,

omitting lightning, hail, and miscellaneous losses from the analysis because for the latter three it

was difficult to identify keywords that correspond to large claims. Detailed results are shown for

the vandalism peril type only, in order to limit the number of pages of the paper. The question is,

whether we can understand the factors that are related to response values . 9 ,8 = 1, corresponding

to high losses, through text analysis.

Using the word similarity metric described in Section 1.1.3, we can create variables for risk

measures of interest. Consider a specific description of a claim in a given category. Suppose a

modeler is interested in creating a risk metric corresponding to a word F 9 ,: , : = 1, . . . ,  9 ( 9 :

number of risk metrics in category 9). Suppose an insurance claim is described by the phrase J8,

for the 8-th observation, 8 = 1, . . . , =, where = is the number of claims found in the dataset. We

create a variable by

D 9 ,8,: = simcos(F 9 ,: , J8) · � (simcos(F 9 ,: , J8) ≥ Y 9 )

for a threshold Y 9 . In this paper, Y 9 = 0.2 is chosen for each 9 . Thus, D 9 ,8,: is the cosine similarity

between a search word F 9 ,: and the description of the claim �8, with a censoring below a certain

similarity level. For example, the modeler may be interested in the risk metric graffiti. The modeler

may be interested in the relationship between this risk metric, and a response variable of interest,

say the magnitude of loss. If the metric has a high correlation with large losses, then attention

should be given to the particular risk metric in order to mitigate the risk inherent in this metric.

In this case, the modeler may create a column vector for graffiti. For a particular response, say

the likelihood of a high vandalism claim, a modeler may have a set of risk metrics of interest, say:

graffiti, laptop, window, shelter, pool (In this case,  9 = 5). This gives a matrix of  9 explanatory

variables, which can be used in standard regression models. Table 2.5 summarizes the explanatory

variables used for the vandalism model.

For category 9 (this section will focus on the vandalism category in particular), given a claim
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Table 2.5: Summary statistics of explanatory variables (vandalism model)

Min. Median Mean Max.
laptop 0.000 0.000 0.130 1.000
graffiti 0.000 0.520 0.424 1.000
window 0.000 0.246 0.348 1.000
shelter 0.000 0.221 0.187 1.000
pool 0.000 0.260 0.209 1.000

8, the GAM model for each peril type can be specified as

6
{
E(. 9 ,8)

}
= U 9 +

 9∑
:=1

q 9 ,: (D 9 ,8,: )

where

6(` 9 ,8) = log
(
` 9 ,8

1 − ` 9 ,8

)
,

and U 9 is the coefficient for the intercept, and q 9 ,: are smooth functions of the covariates D 9 ,8,: ,

subject to the constraint such that
∑=
8=1 q 9 ,: (D 9 ,8,: ) = 0. In other words, a logit link is used since

. 9 ,8 is a binary variable taking on the value of 1 or 0. We have

` 9 ,8 =
exp(^′

9 ,8
# 9 )

1 + exp(^′
9 ,8
# 9 )

, + (` 9 ,8) = ` 9 ,8
(
1 − ` 9 ,8

)
Let the matrix ^ 9 include transformed columns representing the spline bases for the q 9 ,: . For this

study, a second order B-spline basis with three terms is used. In this case, the design matrix ^ 9

can be constructed by first forming the matrix

� 9 ,: =



�1
1(D 9 ,1,: ) �1

2(D 9 ,1,: ) �1
3(D 9 ,1,: )

�1
1(D 9 ,2,: ) �1

2(D 9 ,2,: ) �1
3(D 9 ,2,: )

...
...

...

�1
1(D 9 ,=,: ) �1

2(D 9 ,=,: ) �1
3(D 9 ,=,: )


, : = 1, . . .  9

where �<
;
(D) are the B-spline basis functions, presented in Wood (2017). Then the columns are

transformed using QR factorization, in order to impose the identifiability constraint. This involves

decomposing each vector �)
9,:

1 into the form

�)
9,:

1 =
[
W 9 ,:,1 W 9 ,:,2

] 
X 9 ,:

0
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and then taking W 9 ,:,2 for : = 1, . . . ,  9 to form the design matrix

^ 9 =

[
1; � 9 ,1W 9 ,1,2; � 9 ,2W 9 ,2,2; . . . � 9 , 9

W 9 , 9 ,2

]
.

This ensures that an intercept is included in the design, and also allows the basis functions q 9 ,: to

satisfy
∑=
8=1 q 9 ,: (D 9 ,8,: ) = 0. The idea of P-IRLS is that a weight matrix is adjusted each time the

algorithm iterates until convergence. The algorithm follows the following steps.

1. Given the current ^ 9 #
[ℎ]
9

, calculate the diagonal matrix] [ℎ]
9

,
[ℎ]
9 ,88

=

[
�
[ℎ]
9 ,88

2
+

(
`
[ℎ]
9 ,8

)]−1

and

z
[ℎ]
9
= M

[ℎ]
9

(
y 9 − -

[ℎ]
9

)
+ ^ 9 #

[ℎ]
9

where M [ℎ]
9

is a diagonal matrix satisfying � [ℎ]
9 ,88
= 6′

(
`
[ℎ]
9 ,8

)
, and `[ℎ]

9 ,8
= 6−1

(
^ 9 #

[ℎ]
9

)
.

2. Then minimize √]
[ℎ]
9

(
z
[ℎ]
9
− ^ 9 # 9

)2

+
 9∑
:=1

_ 9 ,: #
)
9 W

)
9,:,2Y 9 ,:W 9 ,:,2# 9

with respect to # 9 .

3. Repeat steps 1 and 2 until convergence.

Here, ℎ is the iteration index, and Y 9 ,: are matrices designed to penalize the roughness of the

smooth functions. In this paper, we used the difference penalty

Y 9 ,: = J)J, where J =


−1 1 0

0 −1 1


The _ 9 ,: are selected by generalized cross validation. Cross validation is applied to a subset of the

training sample corresponding to each peril type. This involves minimizing the generalized cross

validation score

V9 =
= 9

∑= 9

8=1(H 9 ,8 − Ĥ 9 ,8)
2

[= 9 − CA (G 9 )]2
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where G 9 is the influence matrix for the 9-th category. For details of the theory behind cross

validation, we reference Wood (2017). The above procedure is performed for each 9 , where in our

work each of the following peril types are considered: vandalism, fire, wind, vehicle, water (non-

weather), water (weather). Generalized additive models are implemented in the R programming

language via packages such as gam and mgcv. In this paper, parameters are estimated using the

mgcv R package, implemented by the author of Wood (2017). We chose this package because it

provides a convenient interface regarding the choice of basis functions and graphical outputs.

2.3.2.2 Result
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Figure 2.4: GAM model plots for vandalism

In this section, we present the analysis results for the vandalism category. For the vandalism

category, explanatory variables laptop, graffiti, window, shelter, pool were included in the GAM

model. Among these, laptop turns out to have a positive relationship with high losses. Figure

2.4 shows the shape of the smooth functions q 9 ,: , 9 = 1, : = 1, . . . , 5, as the explanatory variable
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varies from 0 to 1. The shaded regions in Figure 2.4 illustrate the 95% credible intervals of the

smooth functions at each point on the curve.

Notice that data for large values of cosines are scarce, hence the credible interval widens for

large values of the explanatory variables. Figure 2.5 shows the words with highest cosine similarity

with laptop, which turns out to be positively related with high losses. Presumably, vandalisms

and thefts to laptops, computers, portables turn out to result in relatively high losses within the

vandalism category. Note that vandalisms are small frequent losses. Although the loss amounts in

this category are small, the frequent nature of the losses may make it worthwhile to mitigate thefts

to laptops. The words in Figure 2.5 are not necessarily found in the training data. They are words

found in the word embedding matrices. What we are saying here is that since the word laptop has

a high correlation with large losses, related words such as laptops, computers, and phones are also

suspects for potential high losses, due to their relationship to the word laptop. This type of chart

helps an insurance claims department to learn which type of property to focus on, when mitigating

risk.
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Figure 2.5: Words that relate with high vandalism losses

2.3.2.3 Model diagnostic

Table 2.6 provides a summary of the GAM models. The j2 statistic reported for each smooth

function is based on Wood (2013), or page 305–308 of Wood (2017). Essentially, this tests the

hypothesis

�0 : q 9 ,: (D) = 0
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for all D in the range of the cosine similarities for category 9 . A high p-value would indicate the

function q 9 ,: is not needed in the model. The smooth functions for vandalism all turn out to be

significant, according to Table 2.6.

Table 2.6: GAM model summary (vandalism model)

Chi.sq p.value
s(laptop) 32.560 0.000
s(graffiti) 39.250 0.000
s(window) 47.430 0.000
s(shelter) 132.930 0.000
s(pool) 9.020 0.001
R-sq.(adj) 0.206

2.4 Concluding Remarks

In this chapter, we introduced a framework for incorporating textual data into insurance claims

modeling, and considered its applications in claims management processes. An insurance claim

representative is responsible for investigating the claim, in order to determine the handling process.

In this chapter, we explored the use of word similarities as a tool for modeling insurance claims and

mitigating insurance risks. Our results demonstrate how textmining technology can be incorporated

into a traditional regression analysis. The methodology is applicable in many different areas of

applications, where textual data arises. Possible applications of our approach for an insurance risk

manager may include:

• Classification of claims based on textual descriptions of the claims

• Classification of policyholders based on textual descriptions of the policyholders

• Prediction of insurance claims at the claim level

• Prediction of insurance claims at the policyholder level

• Analysis of insurance claims and risk mitigation

We explored the LGPIF data in the form of case studies to understand the factors that relate

with high insurance losses, classify insurance claims, and model the loss amounts using parametric
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distributions involving covariates derived from textual information. We make some remarks on the

current limitations of our framework, where potential improvements can be made.

• Under the current framework, words not found in the word embedding matrix cannot be used

in the modeling.

• The threshold Y is selected using heuristics by a human expert, under the current framework.

• Because pre-determined word embedding matrices are limited to one-grams (single words)

at the time the paper is being written, the incorporation of =-grams (use of phrases longer

than one word as a search key) remains an open question.

• Further linguistic barriersmay exist, if the textual descriptions are longer than those appearing

in the dataset used for this paper. Examples may be polysemy, false friends, compoundwords.

• In order to use the proposed method, insurers that focus on specific insurance segments may

be constrained to build its own word embedding matrices, as the terms appearing in the claim

descriptions may be specific to the field. For example, a medical insurer may find GloVe

insufficient, and may need a word embedding matrix trained on medical terms in order to use

our proposed approach.

Economic losses due to property damage caused by perils including fire, lightning, wind, hail,

or vandalism have vast implications to our society. Understanding the nature of property damage

can improve our readiness and contribute to minimizing the losses. We have illustrated a way to

help realize this goal using a new analysis method, which, to the best of our knowledge, has not

been attempted before in the actuarial literature. We believe our methodology may help broaden

the horizon of empirical research, and contribute to the advancement of the understanding of our

world and the risks residing within it. In addition, we believe that our approach will improve the

claim handling procedures of insurance claims departments.
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CHAPTER 3

A THREE STAGE APPROACH TOMODEL BUILDING

3.1 Introduction

In practice, an important task of an insurance analyst is to assist the claims manager in setting

the case reserves for reported claims. The case reserve for a given claim can be understood as the

difference between the reported claim amount and the paid amount for an individual claim. Note

that the case reserve excludes incurred but unreported claims, for which a separate incurred but

not reported (IBNR) reserve should be prepared. For the purpose of this chapter, the reader should

understand that the case reserve is an approximation to the ultimate amount of the claim, given

information available at the time of the report of the claim. Sometimes the case reserve is set by

the claims department of an insurance company, while in other cases the task is outsourced to an

outside adjustor. Part of the information available to the claims department at the report time of

the claim is a textual description of the claim. In this chapter, we are interested in approaches that

use the textual information regarding an insurance claim to predict the ultimate loss amount, by

regressing the loss amount on a set of covariates derived from the textual description. Given a

dataset of historic loss descriptions and ultimate loss amounts, an actuary may use the approach to

improve the case reserving procedure.

Part of the problem in this prediction task is that if we use a large number of keywords in

forming the design matrix extracted from the textual descriptions of claims, the resulting problem

is high-dimensional in nature. In this case study, we use the framework of Lee et al. (2019) and

analyze a dataset of loss descriptions and amounts, downloaded from the National Oceanic and

Atmospheric Administration (NOAA).

For this analysis, a generalized linear model (GLM)may not be appropriate because the linearity

assumption may not appropriately fit the data. To solve such a problem, we may consider using a

nonparametric regression technique. A variety of nonparametric regression techniques have been
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developed, including but not limited to regression splines, kernel smoothing, neural networks, and

generalized additive models (GAM). Nonparametric regression has been applied in many areas,

frommodeling daily pollution in the U.K. (Wood et al., 2017), to estimating relative risk for disease

mapping of lung cancer (Dreassi et al., 2014). See Simonoff (1996) for more details and examples

of nonparametric regression. In this chapter, we consider the GAM.

Hastie & Tibshirani (1986) proposed the generalized additive model that consists of the sum-

mation of smooth functions, allowing for the ability to capture the true, not necessarily, nonlinear

relationship. In the generalized additive model setup, more information is needed to estimate each

function as compared to the generalized linear model setup. Therefore, the data must have many

more observations than the number of covariates. In addition, when working with high dimensional

data, the scalability of the algorithm is also extremely important when considering a method. Our

approach is motivated by these characteristics.

Considerable work has been done in efficiently estimating larger datasets using generalized

additive models. Most recently, Wood et al. (2017) developed a method for estimating GAM

with the number of coefficients of order 104, and observations up to 108. This method reduces

the number of matrix operations, utilizes parallelization, and reduces the memory necessary by

marginal discretization of themodel covariates. Li &Wood (2019) extended this work by proposing

an alternative method of calculating X′WX where X is a model matrix and W a diagonal or tri-

diagonal matrix, which results in a 30 fold reduction in computational time. Previous works include

Marra & Wood (2011) and Wood et al. (2015). Code for these methods are found in the R package

mgcv, Wood (2019).

While the aforementioned GAM results provide for a scalable algorithm, a hindrance of GAM

is the restriction on the number of covariates. Considering the GLM, there are several methods

for combating the high dimensionality issue, with most notably being lasso by Tibshirani (1996).

Similar to the GLM, the lasso maximizes the likelihood, but instead has an additional !1 penalty

term. This term is typically referred to as the shrinkage term. Extensions of the lasso have also

been developed, including but certainly not limited to, group lasso from Yuan & Lin (2006) and

36



adaptive lasso from Zou (2006). The group lasso is applied to variables with group-like structure,

and it uses a slightly altered penalty term where each variable in a group is penalized equally. This

is particularly important due to the group-like structure induced by the basis expansion used in

the estimation of the generalized additive model. The adaptive lasso simply applies a weight to

each coefficient in the penalty term, with these weights typically estimated through ordinary least

squares or lasso. Wang & Leng (2008) combined these extensions to formulate the adaptive group

lasso, and showed the ability of the method to identify the true model consistently.

Our proposedmethod is a three step approach consisting of (1)weight calculation by group lasso,

(2) the shrinkage step by adaptive group lasso, and (3) the smoothing step. This approach combines

the adaptive group lasso dimension reduction technique with the scalable GAM algorithm.

3.2 Data and Preprocessing

For our analysis, we utilize the publicly available NOAA Storm Events Database. The analysis

is performed on property loss amounts at the event level, using storm event observations involving

textual descriptions of the events. The data are collected over time, however we use a cross-sectional

model in this paper, in order to focus on the relationship between the textual information and the

response. Only Thunderstorm Wind events taking place in Michigan and from 2000 to 2018 are

considered for the analysis. For validations, the dataset is divided into training and validation

datasets. The reason we use this dataset is because it contains relatively clean, lengthy descriptions

of losses from storm events in the United States each year, along with the property and crop damage

amount estimates. These damage amounts are initial estimates of the losses, and hence are different

from the ultimate loss amounts. Yet, the structure of the data is identical to that available to a

claims adjuster, and hence is a good test dataset for the analytical framework explained in this

chapter. Another advantage of this dataset is that it is publicly available, allowing dissemination

and reproducibility to be easy.

Each event is recorded with an event narrative. An example of an observation with an estimated

property damage of $10,000 has an event narrative that reads: Roof damage was incurred to a barn
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Table 3.1: Summary statistics for the log(loss) for the training and validation datasets.

N Min Mean SD Max
Training 2353 2.30 8.97 1.44 17.03
Validation 126 6.21 8.78 1.56 14.00

six miles northwest of Mason due to a severe thunderstorm wind gust and a large tree limb was

blown down in South Lansing.
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Figure 3.1: Frequency for the most common words.

Figure 3.1 shows the most common words in the descriptions of the losses. Stop-words such as

a, the, and, etc. have been removed. Notice that the word trees is most frequent in the descriptions.

A few of the most common words are typically used to describe what is happening to trees, such as

blown and wind. In addition, several of the other most common words like power, lines, damage,

and outages are used to describe the results of downed trees.

There are a total of 2, 353 observations in the training set, with 126 observations in the validation

set. As previously mentioned, the claim descriptions are quite lengthy, with an average of 16.8

words per description. There are a total of 2, 642 unique words used in the dataset. To capture only

relevant words, stop-words, numbers, and words that only occurred once were removed, resulting in

1, 998 words. Table 3.1 provides summary statistics for the log(loss) for the training and validation

datasets.

In order to better understand the relationship between the words in the claim description and

the property loss amount, each word is represented by a vector. Recent advancements in word
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embedding models have made it possible to obtain these representations easily. We utilize the 300

dimensional word embeddings developed by the authors of Pennington et al. (2014). To form the

design matrix, we follow the framework described in Section 1.1.3. That is, we will choose our

design matrix, ^=×?= , to be I2B where F is the set of all unique words found inD, = is the number

of descriptions in D, and ?= is the number of words in F.

Each value in the matrix is now continuous and restricted to [−1, 1]. Figure 3.2 shows the

relationship between cosine similarity and property loss for house and thunderstorm. From the

figure, we see that the relationship between cosine similarity and property loss is nonlinear in nature

and therefore a generalized additive model is appropriate.
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Figure 3.2: Cosine similarity against property loss for house and thunderstorm.

3.3 The Model and Basis Expansion

In this section, we describe our methodology in specific terms. We consider the generalized

additive model

`8 = � [H8 |^8] = 6−1 ©«
?=∑
9=1

5 9 (-8 9 )
ª®¬ , (3.1)

where the link function corresponds to that of the corresponding exponential family distribution.

For each of the = independent observations, the density function is given by

5H8 = 2(H) exp
[
H\8 − 1(\8)

q

]
, 1 ≤ 8 ≤ =, \8 ∈ R (3.2)
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We assume that a matrix of explanatory variables is given. Let’s call it ^=×?= , and use the notation

^ = (^)1 , ^
)
2 , . . . , ^

)
= )) . We have

^=×?= =



-11 -12 . . . -1?=

-21 -22 . . . -2?=
...

...
. . .

...

-=1 -=2 . . . -=?=


(3.3)

Thus, = is the number of observations, and ?= is the number of explanatory variables available. We

assume that the parameter 0 < q < ∞ is known. Without loss of generality, let q = 1. Also, we

assume that the density of H8 depends on ^8 via the structure

\8 =

?=∑
9=1

5 9 (-8 9 ), (3.4)

where \8 are defined in equation 3.2. Let the values -8 9 be defined over intervals [0, 1], and

let 0 = b0 < b1 < . . . < b < b +1 = 1 be a partition on [0, 1], where  =  = = =E , with

0 < E < 0.5, such that

max
1≤:≤ +1

|b: − b:−1 | = $ (=−E). (3.5)

For smooth functions 51, . . . , 5?= , there exist functions 5=1, . . . , 5=?= ∈ S=, such that 5=1, . . . , 5=?=

well approximate 51, . . . , 5?= . Here, S= is the space of polynomial splines of degree ; ≥ 1. In

other words, S= is the space of piecewise polynomials on each interval of the partition, which are

;′ ≤ ; − 2 times continuously differentiable for ; ≥ 2. Smoothness is defined in the same way

as Huang et al. (2010). According to Schumaker (1981), there exists a normalized B-spline basis

{q: , 1 ≤ : ≤ <=} for S=, where <= =  = + ; = =E1 . For a practical overview of the B-spline basis

function, the reader may refer to Wood (2017), section 5.3.3, starting from page 204. We want to

write

5= 9 (-8 9 ) =
<=∑
:=1

Φ
[ 9]
8:
V 9 : , (3.6)
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for some value Φ[ 9]
8:

. For this, our next goal is to construct a design matrix

�=×@= =
(
1 : �[1] : �[2] : . . . : �[?=]

)
=

(
1 : �[1]W [1]2 : �[2]W [2]2 : . . . : �[?=]W [?=]2

)
(3.7)

from ^=×?= , where �[ 9] are matrices of basis functions. Denote @= = <= × ?=. Here, �[ 9] are

each =×<= matrices of transformed basis functions, where <= is the number of parameters within

each basis function consisting the design matrix. We consider the matrix of basis functions

�[ 9] =



q1(-1 9 ) q2(-1 9 ) . . . q<= (-1 9 )

q1(-2 9 ) q2(-2 9 ) . . . q<= (-2 9 )
...

...
. . .

...

q1(-= 9 ) q2(-= 9 ) . . . q<= (-= 9 )


. (3.8)

From here on, we assume q: (G) are <=-parameter B-spline basis functions of order 3. In order to

obtain the design matrix, we form the QR decomposition(
�[ 9]

))
1 = W

[ 9]
1 X[ 9] + W [ 9]2 0 (3.9)

and take the W [ 9]2 matrix corresponding to the zero part of the decomposition, and define

�[ 9] = �[ 9]W [ 9]2 (3.10)

Finally, let the�=×@= matrix be given by expression (3.7). We call� our design matrix, and denote

the elements of the design matrix q8C , for 8 = 1, . . . , = and C = 1, . . . @=. We also denote

�8 9 =
(
Φ
[ 9]
81 ,Φ

[ 9]
82 , . . . ,Φ

[ 9]
8<=

))
, for 8 = 1, . . . , =, and 9 = 1, . . . ?=. (3.11)

Under this framework, the response variable is related to the covariate -8 9 via

5 9 (-8 9 ) = �)8 9 # 9 , 8 = 1, . . . , =, 9 = 1, . . . , @, (3.12)

where # 9 is the coefficient corresponding to the 9-th explanatory variable. We may see that # 9

must be a length <= vector, since the 9-th spline contains <= parameters. The illustrated approach
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to constructing the design matrix ensures that the basis functions satisfy

=∑
8=1

5= 9 (-8 9 ) = 0 for each 9 = 1, . . . , ?=. (3.13)

In other words, selecting the model matrix this way imposes an identifiability constraint, which

states that the smooth function defined by the basis functions must satisfy

=∑
8=1

5= 9 (-8 9 ) = 1)�[ 9]# 9 = 0 (3.14)

Notice that equation (3.14) holds because

1)�[ 9]# 9 = 1)�[ 9]W [ 9]2 # 9 =
[
X[ 9] 0

] 
W
[ 9]
1

W
[ 9]
2

 W
[ 9]
2 # 9 = X[ 9]W [ 9]1 W

[ 9]
2 # 9 = 0 (3.15)

since W
[ 9]
1 and W

[ 9]
2 are orthogonal. Simply stated, if 5= 9 (G) is a spline, the coefficients for the

spline are now given by W [ 9]2 # 9 instead of # 9 after the transformation. Our methodology is related

to Chouldechova & Hastie (2015), yet we use a three step procedure. We are looking for the

parameters for

6 {� [H8 |^8]} = V0 +
?=∑
9=1

5= 9 (-8 9 ) = V0 +
?=∑
9=1

�)8 9 # 9 = V0 +�8# (3.16)

where we have used the notation �8 to denote the 8-th row of �, and # = (#)1 , #
)
2 , . . . , #

)
?=
)) ,

where some of the V 9 ’s are zero, while others are non-zero. The approach in Chouldechova &

Hastie (2015) is to minimize the penalized negative log-likelihood

− 1
=
ℓ(#) + _=2

?=∑
9=1

√
#′
9
Y 9 # 9 +

1
2q

?=∑
9=1

_=3 9 #
′J 9 # (3.17)

where ℓ(#) is the log-likelihood for an exponential family distribution:

ℓ(#) =
=∑
8=1

H8 ©«
?=∑
9=1

<=∑
:=1

Φ
[ 9]
8:
V 9 :

ª®¬ − 1 ©«
?=∑
9=1

<=∑
:=1

Φ
[ 9]
8:
V 9 :

ª®¬


=

=∑
8=1

[
H8

(
�)8 #

)
− 1

(
�)8 #

)]
(3.18)
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The hope is that the second term in equation (3.17) induces zeros into groups of coefficients, while

the last term imposes smoothness into the “surviving” coefficients. Here, Y 9 is an identity matrix

of dimension <=, and J 9 is a constraint matrix to impose smoothness into the estimated functions

5 9 . There are several practical difficulties with this approach:

• When ?= is large, or in other words when the problem dimension is large, there are too many

_=3 9 tuning parameters to estimate. Wood (2017) discusses algorithms for large = cases, but

does not talk about cases where ?= is large.

• Theory behind selecting the tuning parameters _=3 9 , discussed in Wood (2017) is no longer

directly applicable, because of the extra group lasso type penalty term.

• Implementing the coordinate descent algorithm, which brings in sparsity into #, becomes

tricky with the smoothing penalty. Usually fast algorithms for lasso type estimators with

GLMs are implemented by locally approximating the likelihoodwith aTaylor’s approximation

at each iterative step, yet the extra penalty term makes this tricky.

• Estimating the coefficients may take a very long time, especially when the number of ex-

planatory variables ?= is large, as in the application we consider in this paper.

Hence, in order to keep the estimation procedure scalable for large ?= (and hence large @=), we

propose a three step approach to the estimation problem for the model (3.16). The first step of

the approach is to perform a group lasso estimation with the first and second terms of equation

(3.17). The second step uses the resulting coefficient estimates to perform an adaptive group lasso

estimation of the parameters. The third and final step uses the nonzero coefficients obtained from

the second step to induce smoothness into the implied spline function 5= 9 (·), for each nonzero

function 5= 9 . These steps are formalized in the following section.

Moreover, to provide a statistical validation, we present both the numerical results in section 3.6

and the theory for the estimated functions in Appendix A, which works as another support of our

proposed 3-stage approach. We aim at validating two things: the variables selected are consistent;

43



the estimators are consistent with respect to the unknown true functions. Appendix B contains a

short simulation study illustrating the effectiveness of the method on a simulated dataset.

3.4 The 3-Stage Approach

3.4.1 Stage 1 – Group lasso

Define the objective function to be

! (#;_=1) = −
1
=

=∑
8=1

[
H8

(
�)8 #

)
− 1

(
�)8 #

)]
+ _=1

?=∑
8=1
‖# 9 ‖2 (3.19)

Let #̂ be the optimizer for (3.19), or in other words

#̂ = arg min
#∈R?=·<=

! (#;_=1) (3.20)

3.4.2 Stage 2 – Adaptive group lasso

Define the objective function to be

!0 (#;_=2) = −
1
=

=∑
8=1

[
H8

(
�)8 #

)
− 1

(
�)8 #

)]
+ _=2

?=∑
9=1

F= 9 ‖# 9 ‖2 (3.21)

where the weights depend on the screening stage group lasso estimator

F= 9 =


‖ #̂ 9 ‖−1

2 if ‖ #̂ 9 ‖2 > 0

∞ if ‖ #̂ 9 ‖2 = 0
(3.22)

Numerically, the weights are set to a large number, for the case when ‖ #̂ 9 ‖2= 0.

Let #̂��! be the optimizer for (3.21). In other words,

#̂��! = arg min
#∈R?=·<=

!0 (#;_=2) (3.23)

Let (̂= be the subset of {1, . . . , ?}, such that the 9 th coefficient of #��! with 9 ∈ (̂= are nonzero.

Thus, the second stage estimates are sparse, meaning that the coefficients are zero for some 9 . This

reduces the coefficient size in the third stage.
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3.4.3 Stage 3 – The smoothness penalty

Let �(̂= be the matrix consisting of columns from � corresponding to the set (̂=. Let #(̂= be in

RB̂=·<= , where B̂= = |(̂= |. Define the objective function to be

!B< (#; ,=3) = −
1
=

=∑
8=1

[
H8

(
#)�(̂=

8

)
− 1

(
#)�(̂=

8

)]
+ 1

2q

∑
9∈(̂=

_=3 9 #
)
9 J 9 # 9 (3.24)

where ,=3 = (_=31, _=32, . . . , _=3?=). Let #̂B< be the optimizer for (3.24). In other words

#̂B< = arg min
#∈R<=B̂=

!B< (#; ,=3) (3.25)

Since the problem of dimension has been reduced, the third step estimation may be performed

using existing generalized additive models routines, using #̂��! as the initial guess for the P-IRLS

procedure. The tuning parameters ,=3 may be obtained by generalized cross validation or REML

as described in Wood (2017).

3.4.4 Tuning Parameters

Each stage has a tuning parameter, _=1, _=2, and ,=3, respectively. The selection of _=1 and _=2

can greatly influence the performance of the model and the efficiency of the algorithm. Larger

values of _=1 and _=2 will lead to an over-simplified model with faster computation time, while

smaller values will lead to an over-fitted model with slower computation time. To find the “sweet

spot”, cross validation is used to determine _=1 and _=2. The tuning parameters ,=3 is obtained by

generalized cross validation or REML as described in Wood (2017).

3.5 Algorithm

We now discuss the implementation of the method using R. For stage 1 and stage 2, we utilize

functions from the gglasso package (Yang & Zou, 2017) and for stage 3 we utilize functions

from the mgcv package (Wood, 2019). The code is provided in an R package at github.com/

scottmanski/TAGAM.
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3.5.1 Stage 1 – Group lasso

The gglasso function is modified such that we loop through the grid of _=1 values, but once the

number of nonzero coefficients is greater than =, the algorithm is stopped. By doing so, we ensure

that we will be able to execute stage 3.

3.5.2 Stage 2 – Adaptive group lasso

The implementation of stage 2 is very similar to that of stage 1, except for the addition of the

weights. In order to incorporate the weights, let V′
9
= F= 9 V 9 for each 9 ∈ {1, ..., ?=}. Then

equation 3.21 can be written as

!0 (#
′
;_=2) = −

1
=

=∑
8=1

H8 ©«
?=∑
9=1

1
F= 9

�[ 9])
8

#
′
9
ª®¬ − 1 ©«

?=∑
9=1

1
F= 9

�[ 9])
8

#
′
9
ª®¬
 + _=2

?=∑
9=1
‖#
′
9 ‖2 (3.26)

3.5.3 Stage 3 – The smoothness penalty

The mgcv package is used to implement stage 3. In the mgcv package, there is a gam function and a

bam function, with the former designed for smaller datasets and the latter designed for much larger

datasets. In this analysis, we utilize bam. To increase the computational efficiency we also choose

to have the function discretize the data following the method described in Wood et al. (2017).

3.6 Results

In this section, we discuss the results of our model. Table 3.2 provides information for the

final model. As previously mentioned, 1,998 words appeared in the dataset, and were considered

as possible covariates. For the model, we chose to use the penalized regression spline. Stage 1

effectively reduced the number of covariates to 261, and stage 2 further reduced the number of

words to 149. While the number of functions to interpret may seem cumbersome, the final model is

relatively simple compared to the number of possible covariates that could have been in the model.

Figure 3.3 shows the estimated functions for several covariates. All of the function estimates

have a few characteristics in common. For smaller cosine similarity values, the estimated functions
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Table 3.2: Summary statistics for the final model. The Residual DF comes from the estimated
degrees of freedom from the GAM, and the MSPE is the out of sample mean squared prediction
error.

 = ; _=1 _=2 B̂= Residual DF Deviance MSPE
4 2 0.0005255074 0.0001063902 149 2167.387 70.7% 1.016
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Figure 3.3: Function estimates for several covariates.

are approximately zero. We expect this because smaller cosine similarities between a word and a

phrase indicates that the word has very little meaning in common with the phrase. For large cosine

similarity values, the 95% credible interval for the functions becomes wider as compared to cosine

similarity values around 0.2. This is also expected simply due to the lack of observations for higher

cosine similarities.

The function estimates help us understand the relationship between a word, its related words,

and the property loss amount. Many of these estimated functions seem to follow our intuition.

For example, house, losing, widespread, gusts, and tree are all words that would typically be

associated with property loss. Words with the highest cosine similarity to house are shown in figure

3.4. Most of these related words are types of homes. From the function estimate, we see that an

incident involving a house results in higher property loss than that of an incident involving offices

or apartments.
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Figure 3.4: Words with the highest cosine similarity with house.

While many function estimates obviously follow our intuition, there are some that seem harder

to interpret. Words like quarters, shutting, and orchards all seem unrelated to property loss. To

shed some light on this issue, we look at a sentence from a description that includes quarters; Two

eyewitnesses in Covington reported hail greater than the size of quarters during the peak of the

storm. The use of quarters here is related to the size of hail. It is expected that larger hail will lead

to larger property loss. Words related to quarters include nickel and dime, which are also used to

describe hail size. In a similar way, we find out that shutting is referring to the closure of major

roadways. In the case of orchards, several observations involved damage to apple orchards. With

Michigan producing the third most apples of any state, it is clear why damage to apple orchards

results in large property loss.

The model also performed well with out of sample prediction. Figure 3.5 shows the predicted

property loss amounts against the true loss amounts for the validation sample. The Spearman

correlation for the validation set is 76.06%, while the Spearman correlation for the training dataset

is 80.30%.

To measure the stability of the method, for a selected year, the model was trained using the

previous years, and tested on data from the selected year. This was completed for each year from

2001 to 2018. This resulted in an average mean squared prediction error of 1.34 with a standard

error of 0.123. Using a lasso model increases each of these values by about 8% respectively. The
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Figure 3.5: Predicted property loss amounts against the true property loss amounts for the validation
sample. The Spearman correlation is 76.06%.

3 stage method selected a more parsimonious model as compared to the single step lasso model,

resulting in greater model stability.

3.7 Implications

We have presented an analytical method for analyzing losses due to storm events in relation

to their textual descriptions. The fact that losses may be predicted more accurately with textual

information implies that the case reserving proceduremay be improved significantly. The traditional

approach to case reserving is to take the average amount of the reported losses, yet this does not

take advantage of the heterogeneity of information contained within the initial report of a loss to

an insurance company. The new method allows for a more accurate prediction of the ultimate loss

to be indemnified for a specific reported loss.

Being able to explain the factors that contribute to higher or lower severity of losses by selecting

the relevant keywords from a set of words allows the actuarial analyst to avoid manually selecting

the keywords needed for the textual risk analysis. This technique may be useful especially when

the number of words describing the loss is large, or statistically the problem is high-dimensional.

The analyst may also be able to understand the factors that relate to high losses using the selected

covariates, and this may help mitigate future losses.

In addition, these factors that contribute to higher severity of property loss can indicate areas
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needing improvement in the way they protect against various weather events. For example, events

involving orchards resulted in high property loss, illustrating the need for additional preventative

measures to protect the apple trees during a thunderstorm.

The fact that a simple three-step approach allows for the regression selection problem to be

solved easily using existing routines in the R programming language. The approach may be

applied in general to problems where nonlinear effects of a large number of continuous explanatory

variables must be understood in relation to the response. We have focused on the log-normal case

of the response, yet the method is general enough to be applied to non-normal responses, including

responses following a gamma distribution, or Poisson distribution. Future work may focus on these

specific cases.

3.8 Concluding Remarks

In this chapter, we consider a general high dimensional text analysis problem and propose a

3 stage approach by adopting modern statistical methods. Stage 1 and 2 effectively reduced the

high dimensional problem to one that mgcv can handle. The use of stage 1 and 2 to reduce the

problem instead of utilizing a subject matter expert allows for simple replicability of the process.

We showed how the use of cosine similarities from textual descriptions can provide interpretable

results when predicting property loss. While there are many other possible applications in risk

analysis, our framework could also be applied in:

• classification of users on a social networking site based on their posts,

• prediction of a company’s change in stock price from related articles,

• caller scam classification based on call transcripts.
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CHAPTER 4

GAMMA DOUBLE GENERALIZED LINEAR MODELWITH GROUP LASSO

4.1 Introduction

4.1.1 Overview

The recent advancement of coordinate descent approaches to the Lasso estimation problem has

allowed the variable selection problem to be solved in a systematic way. Lasso is an approach

to induce sparsity into the coefficients estimated from a regression analysis, which has been

introduced by Tibshirani (1996). Since its introduction, the method has gained popularity in the

statistics literature due to its elegancy and ability to solve high dimensional regression problems.

In a highly cited paper by Yuan & Lin (2006), the authors have introduced a method to group the

coefficients in a regression for group-wise variable selection.

In spite of the popularity and the extensive research performed on the Lassomethod, applications

in the actuarial science literature has been limited until now. The reason is in part because datasets

found in the actuarial literature are typically not high dimensional in nature, and in part also because

generalizing the fast coordinate descent methods to non-normal responses remained a challenging

task. Although works by authors such as Friedman et al. (2010) have extended the Lasso method

to logistic regression and multinomial regression, problems involving other non-normal responses

such as the Tweedie distributed case were left as open problems.

Yet, in a recent strand of works by Yang & Zou (2015) and Qian et al. (2016), an approach to

solve the Tweedie distributed case with high speed has been introduced. The approach approximates

the likelihood function with a second order Taylor series expansion around the current estimate of

the coefficients, and uses the approximation to construct a closed form update to the coefficient

estimates. This paper extends the works by Yang & Zou (2015) and Qian et al. (2016) and applies

the technique to textual data analysis in the actuarial science literature using the gamma distribution,
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which is a special case of the Tweedie distribution.

Insurance claims prediction using textual data analysis methods is a natural application of the

group Lasso technique for non-normal responses. The use of the technique in conjunction with

dispersion modeling is new to the literature to the best of our knowledge. In the actuarial science

literature, double GLM approaches have been used by authors such as Smyth (1989) and Smyth &

Jørgensen (2002). In a dispersion modeling framework, one uses an additional link function for

the dispersion. The gamma distribution double GLM model has been explored in Smyth (1989),

and the Tweedie model has been explored in Smyth & Jørgensen (2002). Our idea in this paper

is to incorporate a group Lasso type penalty in both the dispersion parameterization and the mean

parameterization of a gamma model.

The rest of the chapter proceeds in the following order: In Section 4.2 the model is explained

along with a fast algorithm for obtaining the parameters. In Section 4.3 we discuss the asymptotic

convexity of the negative log-likelihood. In Section 4.4 two simulations are conducted to investigate

the performance of the models explained in Section 4.2. Section 4.5 describes the application of the

method to insurance claim predictions using textual data analysis. Finally, Section 4.6 concludes

the chapter with closing remarks.

4.2 Model

4.2.1 One Dimensional Unpenalized Problem

In order to explain our approach, we demonstrate the algorithm in Yang & Zou (2015) and Qian

et al. (2016) for a one-dimensional problem. For simplicity, suppose we have the one dimensional

negative log-likelihood

ℓ(V) =
=∑
8=1

H84
−V + V, (4.1)

which arises from the gamma regression model with only an intercept term V. The Taylor series

approximation around a point Ṽ is given by

ℓ& (V) = ℓ( Ṽ) +
=∑
8=1

(
−H84−Ṽ + 1

)
(V − Ṽ) + 1

2

=∑
8=1

H84
−Ṽ (V − Ṽ)2 (4.2)
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This can be simplified to

ℓ& (V) =
1
2

=∑
8=1

Ẽ8 ( H̃8 − V)2 + 2( Ṽ) (4.3)

where

Ẽ8 = H84
−Ṽ and H̃8 = Ṽ + (1 − H−1

8 4 Ṽ) (4.4)

and 2( Ṽ) is constant given Ṽ. Fixing the ℓ& (V) function, which is an approximation to the ℓ(V)

function, we try to minimize ℓ& (V) by solving the problem

arg min
V

ℓ& ( V̆) + *̆ (V − V̆) +
1
2
�̃ (V − V̆)2 (4.5)

assuming a current estimate for V̆ is given. The idea is, we update V̆ until it converges to the

minimum of a given ℓ& (V) fixed for a given Ṽ. Once this minimization is achieved, we update Ṽ

and continue. Here,

*̆ =
mℓ&

mV
= −

=∑
8=1
( H̃8 − V̆)Ẽ8 and �̃ =

m2ℓ&

mV2 =

=∑
8=1

Ẽ8

The first order condition for equation (4.5) is given by

V̆(=4F) = V̆ − �̃−1*̆ (4.6)

The resulting V̆(=4F) satisfies ℓ& ( V̆(=4F)) ≤ ℓ& ( V̆), because

ℓ& ( V̆(=4F)) =
1
2

=∑
8=1

Ẽ8 ( H̃8 − V̆(=4F))2 + 2( Ṽ)

=
1
2

=∑
8=1

Ẽ8 ( H̃8 − V̆ − ( V̆(=4F) − V̆))2 + 2( Ṽ)

=
1
2

=∑
8=1

Ẽ8 ( H̃8 − V̆)2 −
=∑
8=1

Ẽ8 ( H̃8 − V̆) ( V̆(=4F) − V̆) +
1
2

=∑
8=1

Ẽ8 ( V̆(=4F) − V̆)2 + 2( Ṽ)

= ℓ& ( V̆) −
=∑
8=1

Ẽ8 ( H̃8 − V̆) ( V̆(=4F) − V̆) +
1
2

=∑
8=1

Ẽ8 ( V̆(=4F) − V̆)2

= ℓ& ( V̆) + *̆ ( V̆(=4F) − V̆) +
1
2
�̃ ( V̆(=4F) − V̆)2

≤ ℓ& ( V̆) + *̆ ( V̆ − V̆) +
1
2
�̃ ( V̆ − V̆)2 = ℓ& ( V̆) (4.7)
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where, the inequality in equation (4.7) is due to the fact that V̆(=4F) is the solution for the mini-

mization problem (4.5). Hence, the iteration scheme eventually converges to the solution

V̂ = arg min
V

ℓ(V) (4.8)

4.2.2 One Dimensional Penalized Problem

Now, consider the penalized problem

V̂∗ = arg min
V

ℓ(V) + _ |V | (4.9)

where _ is a tuning parameter. In this subsection, we denote the solution to the penalized problem

with an upper asterisk (*). We try to minimize %& (V) = ℓ& (V) + _ |V | by solving the minimization

problem

arg min
V

ℓ& ( V̆∗) + *̆ (V − V̆∗) +
1
2
�̃ (V − V̆∗)2 + _ |V | (4.10)

at each iterative step, for a given current estimate V̆∗. Notice, we have

%& ( V̆∗(=4F)) =
1
2

=∑
8=1

Ẽ8 ( H̃8 − V̆∗(=4F))
2 + 2( Ṽ) + _ | V̆∗(=4F) |

=
1
2

=∑
8=1

Ẽ8 ( H̃8 − V̆∗ − ( V̆∗(=4F) − V̆
∗))2 + 2( Ṽ) + _ | V̆∗(=4F) |

= %& ( V̆∗) −
=∑
8=1

Ẽ8 ( H̃8 − V̆∗) ( V̆(=4F) − V̆∗)

+ 1
2

=∑
8=1

Ẽ8 ( V̆(=4F) − V̆∗)2 + _ | V̆∗(=4F) | − _ | V̆
∗ |

= %& ( V̆∗) + *̆∗( V̆∗(=4F) − V̆
∗) + 1

2
�̃ ( V̆∗(=4F) − V̆

∗)2 + _ | V̆∗(=4F) | − _ | V̆
∗ |

≤ %& ( V̆∗) + *̆∗( V̆∗ − V̆∗) +
1
2
�̃ ( V̆∗ − V̆∗)2 + _ | V̆∗ | − _ | V̆∗ | = %& ( V̆∗) (4.11)

Hence, the iteration scheme converges. Let the unpenalized solution be V̆(=4F) , in contrast to

the penalized solution V̆∗(=4F) . According to the first order condition without the penalty, as

in section 4.2.1, we would have V̆(=4F) = V̆ − �̃−1*̆∗. The solution for equation (4.10) can
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be obtained using the first order conditions for three different cases. The first case is when

V̆(=4F) = V̆ − �̃−1*̆∗ > �̃−1_ > 0. In this case, locally, the problem would be

arg min
V

ℓ& ( V̆∗) + *̆∗(V − V̆∗) +
1
2
�̃ (V − V̆∗)2 + _V (4.12)

Differentiating this objective function with respect to V and setting the expression to zero results in

the solution:

V̆∗ − *̆
∗

�̆
− _
�̆

(4.13)

The second case is when V̆(=4F) = V̆ − �̃−1*̆∗ < −�̃−1_ < 0. In this case, using a similar

argument, the solution becomes

V̆∗ − *̆
∗

�̆
+ _
�̆

(4.14)

The third case is when | V̆∗(=4F) | = | V̆
∗ − �̃−1*̆∗ | ≤ �̃−1_. In this case, we have V̆∗(=4F) = 0. To

see why, without loss of generality, assume 0 ≤ V̆∗(=4F) = V̆∗ − �̃−1*̆∗ ≤ �̃−1_. The objective

function in equation (4.12) relevant to the solution (excluding constant terms) can be simplified to

obtain the following expression:

(*̆∗ − V̆∗�̃ + _)V + 1
2
�̃V2 (4.15)

which is minimized at zero, since the coefficient for V in the first term is positive, and we have

assumed that V̆∗(=4F) is positive. The three cases can be expressed compactly in one expression:

V̆∗(=4F) = �̃
−1(�̃ V̆∗ − *̆∗)

(
1 − _

|�̃ V̆∗ − *̆∗ |

)
+

(4.16)

Hence, we repeatedly update the estimate using expression (4.16), updating *̆∗ and �̃ along the

way. This gives an iteration scheme, which ultimately converges to V̂∗.

4.2.3 Gamma Generalized Linear Model

The unpenalized negative log-likelihood for the gamma generalized linear model is

ℓ(V0, #) =
=∑
8=1

E8

(
H8 exp

(
−V0 − #)x8

)
+ V0 + #)x8

)
, (4.17)
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where E8 are weights, H8 are responses, V0 is an intercept, # are coefficients excluding the intercept,

and x8 are the explanatory variables for observation 8. We are interested in solutions of the form(
V̂0, #̂

)
= arg min
(V0,#)

ℓ (V0, #) + _
�∑
9=1

F 9 ‖# 9 ‖2 (4.18)

where # =
(
#)1 , #

)
2 , . . . , #

)
�

))
treating the coefficients for each word 9 = 1, . . . , � as groups. We

use the algorithm presented in Yang & Zou (2015) and Qian et al. (2016) to estimate the gamma

regression coefficients with a group lasso penalty. The solution for the Tweedie model with group

lasso penalty is discussed in Qian et al. (2016) for the case when the power parameter is less

than two. When the power parameter equals two, the model results in the gamma model, yet the

derivation for this special case is not explicitly discussed in Qian et al. (2016), so we present it below.

The algorithm iteratively updates the estimate of the coefficients given a current estimate. Given

current estimates Ṽ0, #̃, the second order Taylor series approximation of the negative log-likelihood

around the current estimate is

ℓ& (V0, #) = ℓ( Ṽ0, #̃) +
=∑
8=1

E8

(
−H8 exp

(
−Ṽ0 − #̃

)
x8

)
+ 1

) (
V0 + #)x8 − Ṽ0 − #̃

)
x8

)
+ 1

2

=∑
8=1

E8H8 exp
(
−Ṽ0 − #̃

)
x8

) (
V0 + #)x8 − Ṽ0 − #̃

)
x8

)2

=
1
2

=∑
8=1

Ẽ8 ( H̃8 − V0 − #)x8)2 + � ( Ṽ0, #̃), (4.19)

where

Ẽ8 = E8H8 exp
(
−Ṽ0 − #̃

)
x8

)
(4.20)

H̃8 = Ṽ0 + #̃
)
x8 +

E8

Ẽ8
(H8) (4.21)

56



and � ( Ṽ0, #̃) is a constant given the current estimate. Given ℓ& (V0, #), consider updating the

current estimates V̆0, #̆. Then

* 9 (V0, #) =
mℓ& (V0, #)

m# 9
= −

=∑
8=1

Ẽ8

(
H̃8 − V0 − #)x8

)
x8 9 (4.22)

*0 (V0, #) =
mℓ& (V0, #)

mV0
= −

=∑
8=1

Ẽ8

(
H̃8 − V0 − #)x8

)
(4.23)

� 9 (V0, #) =
m2ℓ& (V0, #)
m# 9 #

)
9

=

=∑
8=1

Ẽ8x8 9x
)
8 9 (4.24)

�0 (V0, #) =
m2ℓ& (V0, #)
mV0mV

)
0

=

=∑
8=1

Ẽ8 (4.25)

With these values, the expression for the new coefficients for the penalized problem in equation

(4.18), according to the algorithm in Qian et al. (2016) is

#̆ 9 (=4F) =

(
W̃ 9 #̆ 9 − *̆ 9

) (
1 −

_F 9

‖W̃ 9 #̆ 9−*̆ 9 ‖2

)
+

W̃ 9
(4.26)

#̆0(=4F) = V̆0 − W̃−1
0 *̆0 (4.27)

where W̃ 9 is the largest eigenvalue of �̆ 9 , and W̃0 =
∑=
8=1 Ẽ8.

4.2.4 Gamma Double Generalized Linear Model

.8 ∼ �0<<0(\8, :8), 8 = 1, ..., = (4.28)

where

`8 = \8:8 = 4
58 and :8 = 4

68 . (4.29)

For simplicity of the derivation, in this section we assume the design matrix includes a column

of ones, corresponding to the intercept. Then, the negative log-likelihood is

ℓ()) =
=∑
8=1

ℓ8 ( 58, 68) =
=∑
8=1

{
468

(
H84
− 58 + 58

)
+ log Γ

(
468

)
− 68468 +

(
1 − 468

)
log H8

}
(4.30)
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where 58 = #)x8, and 68 = ")x8. Let ) = (#) ,") )) . The goal is to solve the following

minimization problem

)̂ = arg min
)

ℓ()) + _U
�∑
9=1

F 9
" 92 + _V

�∑
9=1

F 9

# 92
(4.31)

where _U > 0 and _V > 0 are tuning parameters, and F 9 are the positive group lasso weights for

each group 9 = 1, 2, ..., �. We have m 58/m# = m68/m" = x8. Define

�8 =
m2ℓ8
m 5 2
8

= 468 H84
− 58 (4.32)

�8 =
mℓ8

m 58
= 468

(
−H84− 58 + 1

)
(4.33)

�8 =
m2ℓ8
m62
8

= 468
(
H84
− 58 + 58

)
+ k (1)

(
468

)
4268 + k (0)

(
468

)
468 − 2468 − 68468 − 468 log H8

(4.34)

�8 =
mℓ8

m68
= 468

(
H84
− 58 + 58

)
+ k (0)

(
468

)
468 − 468 − 68468 − 468 log H8 (4.35)

Then, by the chain rule, we have

∇ℓ8 =

�8x8

�8x8

 and ∇2ℓ8 =


�8x8x

)
8

�8x8x
)
8

�8x8x
)
8

�8x8x
)
8

 (4.36)

We define ℓ& ()) to be the second order Taylor series expansion of ℓ()) around the current estimate

of the parameters )̃:

ℓ& ()) = ℓ()̃) + ∇ℓ()̃) () − )̃) +
1
2
() − )̃))∇2ℓ()̃) () − )̃) (4.37)

Then plug in the expressions for∇ℓ()̃) and∇2ℓ()̃) in terms of �8, �8,�8, and �8 into the expression

for ℓ& ()) and simplify. The result is

ℓ& ()) = b ()̃) +
1
2

=∑
8=1

�̃8 (x)8 #)
2 + 1

2

=∑
8=1

�̃8 (x)8 ")
2

+
=∑
8=1

{
�̃8x

)
8 # − �̃8 (x

)
8 #̃) (x

)
8 #) − �̃8 (x

)
8 "̃) (x

)
8 #)

}
+

=∑
8=1

{
�̃8x

)
8 " − �̃8 (x

)
8 "̃) (x

)
8 ") − �̃8 (x

)
8 #̃) (x

)
8 ")

}
+

=∑
8=1

�̃8 (x)8 #) (x
)
8 ") (4.38)
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where b ()̃) is a constant given )̃ . Then we would like to minimize the following penalized objective

function

%& ()) := ℓ& ()) + _U
�∑
9=1

F 9
" 92 + _V

�∑
9=1

F 9

# 92
. (4.39)

To minimize 4.39, we utilize a blockwise majorization descent method. Fixing the ℓ& ()) function

at the point )̃ , we have

∇ℓ& ()) =

mℓ&/m#

mℓ&/m"

 (4.40)

where

mℓ&/m# =
=∑
8=1

�̃8 (x)8 #)x8 +
=∑
8=1

�̃8x8

−
=∑
8=1

�̃8 (x)8 #̃)x8 −
=∑
8=1

�̃8 (x)8 "̃)x8 +
=∑
8=1

�̃8 (x)8 ")x8 (4.41)

mℓ&/m" =
=∑
8=1

�̃8 (x)8 ")x8 +
=∑
8=1

�̃8x8

−
=∑
8=1

�̃8 (x)8 "̃)x8 −
=∑
8=1

�̃8 (x)8 #̃)x8 +
=∑
8=1

�̃8 (x)8 #)x8 (4.42)

Also, we have the hessian matrix

∇2ℓ& ()) =

∑=
8=1 �̃8x8x

)
8

∑=
8=1 �̃8x8x

)
8∑=

8=1 �̃8x8x
)
8

∑=
8=1 �̃8x8x

)
8

 (4.43)

For a specific group of the parameter, call it # 9 , or " 9 , we have

* 9 ()) = mℓ&/m# 9 =
[ =∑
8=1

�̃8 (x)8 #) +
=∑
8=1

�̃8

−
=∑
8=1

�̃8 (x)8 #̃) −
=∑
8=1

�̃8 (x)8 "̃) +
=∑
8=1

�̃8 (x)8 ")
]
x8 9 (4.44)

+ 9 ()) = mℓ&/m" 9 =
[ =∑
8=1

�̃8 (x)8 ") +
=∑
8=1

�̃8

−
=∑
8=1

�̃8 (x)8 "̃) −
=∑
8=1

�̃8 (x)8 #̃) +
=∑
8=1

�̃8 (x)8 #)
]
x8 9 (4.45)
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and we have the following hessian matrices:

�̃# 9
= ∇2

# 9
ℓ& =

=∑
8=1

�̃8x8 9x
)
8 9 (4.46)

�̃" 9 = ∇
2
" 9
ℓ& =

=∑
8=1

�̃8x8 9x
)
8 9 (4.47)

Given ℓ& ()), consider updating the current estimates #̆ 9 for a given group 9 (1 ≤ 9 ≤ �). Suppose

that "̃ and #̆ are the current estimates, and define *̆ 9 = *̃ 9 ( #̆). Then #̆ 9 (=4F) is updated by

solving

arg min
# 9

ℓ& ( #̆, "̃) + *̆)9 (# j − #̆ 9 ) +
W̃V 9

2
(# j − #̆ 9 )) (# j − #̆ 9 ) + _VF 9

# 92
. (4.48)

Similarly, "̆ 9 (=4F) is updated by solving

arg min
" 9

ℓ& ( #̃, "̆) + +̆)9 (" j − "̆ 9 ) +
W̃U 9

2
(" j − "̆ 9 )) (" j − "̆ 9 ) + _UF 9

" 92 . (4.49)

The expression for the new coefficients for the penalized problem is

#̆ 9 (=4F) =

(
W̃# 9

#̆ 9 − *̆ 9
) (

1 −
_F 9

‖W̃# 9 #̆ 9−*̆ 9 ‖2

)
+

W̃# 9

(4.50)

"̆ 9 (=4F) =

(
W̃" 9 "̆ 9 − +̆ 9

) (
1 −

_F 9

‖W̃" 9 "̆ 9−+̆ 9 ‖2

)
+

W̃" 9
(4.51)

where W̃# 9 is the largest eigenvalue of �̆# 9
, and W̃" 9 is the largest eigenvalue of �̆" 9 . Algorithm

4.1 summarizes the process of estimating " and # by minimizing %& ()).
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Algorithm 4.1: Algorithm for solving the Gamma Double GLM

1. Initialize #̃ and "̃.

2. (Outer Loop) Update the penalized objective function 4.39.

a) (Inner Loop: #). Obtain the minimizer of the objective function 4.39.
• Compute �̃8, �̃8, �̃8, �̃8 for each 8 = 1, 2, ..., =.
• Compute �̃# 9

and the maximum eigenvalue W̃# 9 for 9 = 1, 2, ..., �.

• Initialize #̆ = #̃.
• Repeat the following until #̆ converges.

– Update #̆. For 9 = 1, 2, ..., �,
∗ Compute *̆ 9 = *̃ 9 ( #̆) by 4.44.
∗ Compute #̆ 9 (=4F) by 4.50.
∗ Set #̆ 9 = #̆ 9 (=4F).

• Set #̃ = #̆.
b) (Inner Loop: "). Obtain the minimizer of the objective function 4.39.

• Compute �̃8, �̃8, �̃8, �̃8 for each 8 = 1, 2, ..., =.
• Compute �̃" 9 and the maximum eigenvalue W̃" 9 for 9 = 1, 2, ..., �.
• Initialize "̆ = "̃.
• Repeat the following until "̆ converges.

– Update "̆. For 9 = 1, 2, ..., �,
∗ Compute +̆ 9 = +̃ 9 ("̆) by 4.45.
∗ Compute "̆ 9 (=4F) by 4.51.
∗ Set "̆ 9 = "̆ 9 (=4F).

• Set "̃ = "̆.

3. Repeat until #̃ and "̃ converges.
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4.3 Convexity

In this section, we show the convexity of the problem described in the previous section. We

can use an alternative formulation to express the model in equation 4.29. Model the response as

.8 ∼ �0<<0(\8, :8), 8 = 1, ..., =

where

\8 = 4
5̃8 0=3 :8 = 4

6̃8

and

5̃8 = b)x8 0=3 6̃8 = a)x8

We have 
4 58 = 4 5̃8+6̃8

468 = 46̃8

and thus 
" = a

# = a + b

i.e., 
"

#

 =

1 0

1 1



a

b


The negative log-likelihood function of the equivalent formulation is

ℓ()) = 1
=

=∑
8=1

;8 ( 5̃8, 6̃8) =
1
=

=∑
8=1

{
log Γ(46̃8 ) + 5̃846̃8 − (46̃8 − 1) log H8 + H84− 5̃8

}
(4.52)

where ) = (a) , b) )) . For the gradient descent algorithm to reach to the global optimum, the

negative log-likelihood function needs to have a global minimum. Therefore, ℓ()) needs to be

a convex function. This function may not be convex in general, because an extreme case of the

observations may violate the definition of convexity. However, it is convex with high probability

as we increase the sample size.

62



Definition 4.1 (Asymptotically convex). We say that a sequence of random functions 5= (G) is

asymptotically convex if

lim
=→∞

P ( 5= (G) is convex) = 1 (4.53)

We have, for the loss function above, the following theorem. The theorem guarantees that when

we have a large sample size, it’s very likely that we observe a convex loss function.

Theorem 4.1. The loss function 4.52 is asymptotically convex.

Proof. First, we quantify the variation of H8 and log(H8) using law of large numbers. Observe that

the gamma distribution has finite expectation and variance and that

E(H8) = \8:8, 8 = 1, ..., =

Therefore, the variables H8 − \8:8 have mean zero. By the strong law of large numbers, we have

1
=

=∑
8=1
(H8 − \8:8)

0.B.−−−→ 0 0B =→∞ (4.54)

Also observe that

E(log H8) = log \8 + k (0) (:8)

where k (0) (G) is the digamma function. Similarly, we have

1
=

=∑
8=1
(log H8 − log \8 − k (0) (:8))

0.B.−−−→ 0 0B =→∞ (4.55)

Equations 4.54 and 4.55 guarantee that the following quantities can be arbitrarily close when = is

large
1
=

=∑
8=1

H8 ∼
1
=

=∑
8=1

\8:8 0=3
1
=

=∑
8=1

log H8 ∼
1
=

=∑
8=1

log \8 + k(:8)

Therefore, when = is large, we have

ℓ()) ≈ 1
=

=∑
8=1

{
log Γ(46̃8 ) − k (0) (46̃8 )46̃8 + log H8 + H84− 5̃8

}
(4.56)

By definition, it’s easy to show that

• the sum of two convex functions
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• the composition of two convex functions

are both convex. By the first rule, it suffices to show that

;8 ()) = log Γ(46̃8 ) − k (0) (46̃8 )46̃8 + log H8 + H84− 5̃8 (4.57)

is convex. Again observe that log H8 is a constant which is automatically convex. Then observe that

H8 > 0 since it follows a gamma distribution, thus we have H84− 5̃8 is also convex in ) . Therefore, it

suffices to show that

;8 ()) = log Γ(46̃8 ) − k (0) (46̃8 )46̃8 (4.58)

is convex. By the second rule, the composition of convex functions is convex. Since 46̃8 is convex

in ) , we only need to show that the function

ℎ(D) = log Γ(D) − Dk (0) (D) (4.59)

is convex on D ∈ (0,∞), since D = 46̃8 > 0. Denote with k: (G) the (: +1)Cℎ derivative of log Γ(G),

i.e. the polygamma function or order : , we have

ℎ′(D) = −Dk (0) (D)

and

ℎ′′(D) = −k (0) (D) − Dk (1) (D)

Observe that ℎ′′(D) is continuous and decreasing, we have

ℎ′′(D) ≥ lim
G→∞

ℎ′′(G) = 0, ∀D ∈ (0,∞)

Therefore, the function ℎ(D) in equation 4.59 is convex. We have with probability converging to

one that the loss function is convex, as =→∞. �

Remark 4.1. Since the parameters in the classic formulation is a linear transformation of the

parameters in the second formulation, the negative log-likelihood function of the classic formulation

is also asymptotically convex. It doesn’t matter which formulation we use, we may easily obtain

the parameters of another formulation by performing the linear transformation.
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4.3.1 The Asymptotic Convexity

We draw a random design matrix x of size = × ? from a standard multivariate normal distribution

with independent entries. " and # are also drawn from standard multivariate normal distributions.

The y is generated according to the gamma distribution. Then we randomly draw # = 10000 pairs

of )1 = ("1, #1) and )2 = ("2, #2) and check the convexity by definition

_ℓ()1) + (1 − _)ℓ()2) ≥ ℓ(_)1 + (1 − _))2) (4.60)

where _ is randomly drawn from uniform distribution between 0 and 1. We fix ? = 10 and repeat

the simulation for = = 1, 5, 10, 20, 50, 100. The proportion of pairs of points that violates the

convexity definition is given in Table 4.1. The simulation shows that as the sample size increases,

there’s less chance to see a non-convex region. Moreover, the sample size needs not be too big to

reach this good property.

Table 4.1: Proportion of randomly sampled pairs of points that violate the convexity definition for
different sample sizes, each over 5 repetitions. The standard error of the 5 repetitions are given in
parenthesis.

n 1 5 10 20 100
Proportion 0.1210 0.0231 0.0048 0.0004 0.0000

Standard Error (0.0012) (0.0009) (0.0003) (0.0001) (0.0000)

4.4 Simulation

In the simulation study, we investigate the performance of the method using two examples. The

following models are investigated in the simulation study,

• Double Group Lasso - The mean and dispersion are modeled by group lasso

• Group Lasso - The mean is modeled by group lasso with only an intercept term for modeling

the dispersion. This is achieved by choosing _U to be large.

• Double Lasso - The mean and dispersion are modeled by lasso, no group structure is assumed

in the model.
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• Lasso - Themean is modeled by lasso with only an intercept term for modeling the dispersion,

no group structure is assumed in the model.

All models assume the response follows a Gamma distribution. In both examples, _U and _V are

selected using the Bayesian information criterion (BIC).

4.4.1 Example 1

In each run of the simulation, 500 observations and 200 observations are used for the training and

testing datasets, respectively. To create the design matrix, we will construct four blocks, each with

three covariates. The ;th block, H; (; = 1, ..., 4), is sampled from a multivariate normal distribution

with mean 0 and variance �. For :, 9 = 1, 2, 3, we set �: 9 = 1 when : = 9 and �: 9 = l when

: ≠ 9 , where l = 0 or 0.5. The design matrix is constructed as ^ = (H1, H2, H3, H4). For

8 = 1, ..., =, H8 is sampled from a Gamma distribution with scale parameter \8 and shape parameter

:8, where

log(`8) = log(\8:8) = 1 +
3∑
9=1
(−1) 9+1(H18 9 + H28 9 ) (4.61)

log(:8) = −1 +
3∑
9=1
(−1) 9 (0.5H18 9 + 0.5H38 9 ) (4.62)

where H;8 9 is the 8th observation for the 9 th covariate from the ;th block. In the construction of the

response, H1 and H2 are the only active blocks in calculating the mean, and H1 and H3 are the only

active blocks in calculating the dispersion. In the simulation study, we are interested in how well

the method selects the true nonzero blocks. We will consider a block active in the model if at least

one of the coefficients in the block are nonzero. We will quantify the performance by counting the

number of correctly active blocks (C) along with the number of incorrectly active blocks (IC).

Table 4.2 summarizes the average simulation results for the Lasso model and the Double Lasso

model. The Double Lasso model performs better than the Lasso model with respect to the log-

likelihood and the Gini index calculated on the testing dataset. While the Double Lasso model and
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Table 4.2: Average simulation results for 100 runs for the Lasso and Double Lasso models. The
standard error is provided in the parentheses.

Dispersion Mean BIC log-likelihood Gini IndexC IC C IC
l = 0
Double Lasso 2 1.17 2 1.25 -119.86 (28.92) 12.61 (6.12) 0.863 (0.005)
Lasso — — 2 1.6 260.76 (26.96) -28.34 (6.04) 0.852 (0.005)
l = 0.5
Double Lasso 2 1.52 2 1.44 398.54 (35.63) -27.08 (8.46) 0.791 (0.009)
Lasso — — 2 1.76 659.07 (32.29) -57.77 (7.55) 0.787 (0.008)

Table 4.3: Average simulation results for 100 runs for the Grouped Lasso and Double Grouped
Lasso models. The standard error is provided in the parentheses.

Dispersion Mean BIC log-likelihood Gini IndexC IC C IC
l = 0
Double Grouped Lasso 2 0.58 2 0.18 -115.23 (28.84) 11.62 (6.15) 0.853 (0.005)
Grouped Lasso — — 2 1.07 263.39 (27.06) -28.1 (6.06) 0.854 (0.006)
l = 0.5
Double Grouped Lasso 2 0.8 2 1.04 400.07 (37.65) -28.09 (8.5) 0.792 (0.009)
Grouped Lasso — — 2 1.18 665.39 (32.67) -58.4 (7.61) 0.781 (0.011)

the Lasso model both appropriately estimate H1 and H2 as nonzero when modeling the mean, the

Double Lasso model incorrectly estimates nonzero blocks less often than the Lasso model.

Table 4.3 summarizes the average simulation results for the Grouped Lasso model and the

Double Grouped Lasso model. The Double Grouped Lasso model performs better than the Lasso

group model with respect to the log-likelihood and the Gini index calculated on the testing dataset.

While the Double Grouped Lasso model and the Grouped Lasso model both appropriately estimate

H1 and H2 as nonzero when modeling the mean, the Double Grouped Lasso model incorrectly

estimates nonzero blocks less often than the Lasso model.

In general, the Double Lasso and Double Grouped Lasso methods outperform the Lasso and

Grouped Lasso methods, respectively. In addition, by modeling for the dispersion, the model for

the mean more accurately reflects the true relationship. That is, it is more likely that H3 and H4

will be incorrectly included in the model for the mean by not modeling for dispersion.
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4.4.2 Example 2

Consider a scenario where we have some variable -1 that is binary, with 0 indicating a good driver

and 1 indicating a bad driver. We want to estimate the premium .8 for each driver 8 = 1, ..., 1000.

Assume further that we have 9 additional highly correlated explanatory variables that do not affect

our response. Formally,

H8 ∼ �0<<0(\8, :8), 8 = 1, ..., =

where

`8 = \8:8 = exp {log(100) + log(100)-18} and :8 = exp {log(1) + log(10)-18} .

We compare the results of two different models; Double Lasso and Lasso. The data are simulated

1000 times. Table 4.4 shows the proportion of replications where the U and V coefficients related

to -1 and -2 (noise) are nonzero. In general, the Double Lasso model appropriately shrinks the

coefficients related to -2 while accurately estimating the coefficients related to -1.

Table 4.4: Proportion of replications that the coefficient is nonzero in the Double Lasso model.

-1 -2
U 0.9941 (0.0042) 0.0445 (0.0113)
V 0.9941 (0.0042) 0.0653 (0.0135)

The value at risk (VaR) is also estimated for each simulation and the resulting distributions are

shown in figure 4.1 and figure 4.2. The plots on the left represent the 95% VaR for good drivers

(-1 = 0) while the 95% VaR for bad drivers (-1 = 1) are shown in the plots on the right. The

vertical lines represent the true 95% VaR in each case. Since the Double Lasso method models

the dispersion as a function of -1, the estimated 95% VaR is much closer to the true value as

compared to the Lasso model. The Lasso model underestimates the 95% VaR for good drivers

while overestimating the 95% VaR for bad drivers. Since the risk capital is underestimated for

good drivers, there is a risk of insolvency. Since the risk captial is overestimated for bad drivers, it

is likely that the company will lose business from bad drivers.
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Figure 4.1: 95% VaR for Double Lasso model

Figure 4.2: 95% VaR for Lasso model

4.5 Empirical Analysis

4.5.1 Data

For our case study, we obtained data from the Office of the Commissioner of Insurance (OCI)

of Wisconsin. The dataset contains claim descriptions with loss amounts from the Wisconsin

Local Government Property Insurance Fund (LGPIF). Table 4.5 is a summary of the frequency

and severity of loss amounts for 6030 events recorded in the LGPIF dataset. For the analysis, we

will focus only on claims in the Vandalism event type. The resulting 2084 events have an average

property damage amount estimate of $2,695. The maximum loss amount in the sample was caused

by vandalism to a pool that resulted in a loss of $981,598.

Figure 4.3 gives the reader a better idea of the distribution of words found in the event narratives

of the events. The counts of each word is shown for the four most common event types. The reader

may observe that the word vandalism and the word glass are common in descriptions for Vandalism

events, whereas in the descriptions for Lightning, light, pole, and hit are common words. Given
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Table 4.5: Summary of loss amounts by event type

Event type Frequency Severity
Vandalism 2084 2,695
Vehicle 1079 4,274
Lightning 955 11,156
Misc 465 24,846
WaterW 464 78,071
Wind 403 25,606
WaterNW 269 33,081
Fire 217 82,187
Hail 94 137,480
Total 6030 19,674

Figure 4.3: Frequency of words in descriptions of Vandalism events

that different event types have different average severities, as implied by Table 4.5, we may infer

that certain keywords may be indicative of the magnitude of property losses.

4.5.2 Methods

By using cosine similarities, we can extract features from textual descriptions of losses. For

example, if we consider the word vandalism, the cosine similarities will give a value between -1

and 1, increasing in the word’s relationship with the observed sentence. If we consider multiple

words, then we may obtain multiple explanatory variables, which can be used for a multivariate

regression model. The question is, which words should be used for extracting the explanatory
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variables? Previous work has focused on using words carefully selected by a human expert. This

approach worked for short textual descriptions of insurance losses. However, as the descriptions

become longer, we may require a method that is more clever. One possible approach would be to

try every possible word in the English language, and then use variable selection methods to reduce

the model to one that includes only significant variables. Another possible approach would be to

try only the words observed in the descriptions within the dataset. We use the latter approach in

this case study.

Figure 4.4: Cosine similarities of selected words with log loss amounts for Vandalism

Figure 4.4 shows a plot of the cosine similarities for selected words with the corresponding loss

amounts in log scale. The spearman correlations with the loss amounts for the nine words are shown

in Table 4.6. Keywords shown in Table 4.6 may be the words that are indicative of large losses.

Similarly, those words with small correlation may be words indicative of small losses. Figure 4.5

illustrates the effect of the existence of selected words in the narrative. The plot illustrates that, for

instance, the occurrence of the word caused increases the average loss amount of the event by a

significant amount.

We construct the design matrix ^ = (x1, x2, . . . , x=)) using the cosine similarities. In order

to do this, consider the matrix of basis functions � 9 =

(
51, 9 , 52, 9 , . . . , 5=, 9

))
, where 58, 9 =(

%1(D8, 9 ), %2(D8, 9 ), %3(D8, 9 )
)) with D8, 9 = simcos(a, 3) for description 38 and unique words 0 9 .
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Table 4.6: Spearman correlation of cosine similarities and loss amounts

vehicle computers equipment stolen computer missing fire lot damaged
0.334 0.321 0.29 0.285 0.282 0.214 0.148 0.142 0.137

Figure 4.5: Effect of word indicator on loss amount

Here, %: (D) are cubic penalized regression spline (P-spline) basis functions with penalty order

1. For an overview of the P-spline basis function, the reader may refer to Wood (2017). Then,

from the QR decomposition �)
9
1 = W 9 ,1X 9 + W 9 ,20 take W 9 ,2 and form the design matrix ^ =(

�1W1,2,�2W2,2, . . . ,��W�,2
)
. Under this framework, the response variable is related to the

covariate D8, 9 via a smooth function

5 9 (D8, 9 ) = #)9 x8 9 , (4.63)

where # 9 is the coefficient corresponding to the 9-th word describing observation 8. This ensures

that the basis functions satisfy
∑=
8=1 5 9 (D8, 9 ) = 0 for each 9 = 1, . . . , �.

4.5.3 Results

Figure 4.6 shows the cross-sectional solution path of the algorithm for three selected words. The

reader may verify that group Lasso is applied to both the mean and the dispersion of the gamma
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distribution. Notice that the three lines corresponding to a single word converge to zero at the same

tuning parameter value.

Figure 4.6: Solution path of the algorithm

Ten-fold cross validation using the Spearman correlation of the predicted loss amount is used in

order to determine the tuning parameters for the model. The tuning parameters for the final model

are _U = 0.7040 and _V = 1.0822. The final model contained 172 words for modeling the mean and

130 words for modeling the dispersion. Figures 4.7 and 4.8 show the curve estimates for 9 selected

words for modeling the mean and the dispersion, respectively. Note that the curve estimates for the

dispersion associated with computer and damaged are zero. Looking back at figure 4.4, we can see

how the model has captured the change in the mean and variance of the loss amount as the cosine

similarity changes.

The Spearman correlation with the validation sample loss amounts and the predicted loss
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Figure 4.7: V curve estimates

Figure 4.8: U curve estimates
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amounts using the model turns out to be 48.68%, while the Spearman correlation for the training

sample was 66.38%. A plot of the predicted losses versus the actual losses in the training and

validation samples are shown in log scale in the figure 4.9.

Figure 4.9: Prediction versus out-of-sample claims (log scale)

4.6 Concluding Remarks

In this paper, we explored the use of the group Lasso technique to predict non-normal loss

amounts based on covariates derived from textual descriptions of the losses. Our contribution to

the literature is the extension of the group Lasso technique to the case where the mean and the

dispersion are both modeled with a penalty term, as well as the application of the methodology

in the textual data analysis context. The approach has applications in the insurance case reserving

problem, and has promising results according to the real data analysis performed using a training

sample and a validation sample.

Limitations to our approach may be the fact that a vector representation of words should be

available in order for the described approach to work. The methodology may be vulnerable to

spelling errors in the descriptions of the losses. However, for the presented dataset, spelling

errors were minimal and did not turn out to be a problem in terms of the prediction results.

The methodology may also suffer from descriptions with a large number of abbreviations, as

is sometimes the case with insurance claim adjuster notes. Dealing with such messy textual

descriptions may be potential future work.
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CHAPTER 5

CONCLUSION

In this paper, we introduced a framework for incorporating textual data into insurance claims

modeling, and considered its applications in claims management processes. An insurance claim

representative is responsible for investigating the claim, in order to determine the handling process.

In this paper, we explored the use of word similarities as a tool for modeling insurance claims and

mitigating insurance risks.

In Chapter 2, we illustrated how short textual descriptions can be leveraged in the GAM

framework for insurance claim classification and risk mitigation. The method relies on the subject

matter expert to choose the words most impactful to the response.

In Chapter 3, we generalize the previous work to longer textual descriptions without the need

for an expert. When we consider all unique words found in the dataset as explanatory variables and

impose a GAM, the resulting design matrix is high-dimensional. For this reason, we used a group

Lasso penalty to reduce the number of coefficients in the model. The scalable, analytical framework

proposed provides for a parsimonious and interpretable model. We discussed the implications of

the analysis, including how the framework may be used by an insurance company.

In Chapter 4, we showed how we can incorporate a group Lasso type penalty in both the

dispersion and the mean parameterization for a Gamma model, and illustrate its use in a predictive

analytics application in actuarial science. In particular, we applied the method to an insurance claim

prediction problem involving textual data analysis methods. Simulations illustrated the variable

selection and model fitting performance of our method.

Our results demonstrate how text mining technology can be incorporated into a traditional

regression analysis. The methodology is applicable in many different areas of applications, where

textual data arises. Possible applications of our approach for an insurance risk manager may

include:
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• Classification of claims based on textual descriptions of the claims

• Classification of policyholders based on textual descriptions of the policyholders

• Prediction of insurance claims at the claim level

• Prediction of insurance claims at the policyholder level

• Analysis of insurance claims and risk mitigation

We make some remarks on the current limitations of our framework, where potential improve-

ments can be made.

• Under the current framework, words not found in the word embedding matrix cannot be used

in the modeling.

• The threshold Y is selected using heuristics by a human expert, under the current framework.

• Because pre-determined word embedding matrices are limited to one-grams (single words)

at the time the paper is being written, the incorporation of =-grams (use of phrases longer

than one word as a search key) remains an open question.

• Further linguistic barriersmay exist, if the textual descriptions are longer than those appearing

in the dataset used for this paper. Examples may be polysemy, false friends, compoundwords.

• In order to use the proposed method, insurers that focus on specific insurance segments may

be constrained to build its own word embedding matrices, as the terms appearing in the claim

descriptions may be specific to the field. For example, a medical insurer may find GloVe

insufficient, and may need a word embedding matrix trained on medical terms in order to use

our proposed approach.
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APPENDIX A

THREE STAGE APPROACH THEORETICAL RESULTS

In this section, we will provide statistical foundation for the proposed three stage approach. For this

reason, we derive the convergence rate for our 3rd-stage estimator. This will establish statistical

consistency of our procedure. In Yang & Maiti (2018), the following result for the second stage

estimator has been established.

Lemma A.1 (K. Yang and T. Maiti, 2018). The adaptive group lasso consistently selects the true

active predictors in probability, i.e., the estimator #̂��! satisfies:

P
(
‖ 5̂��! 9 (G)‖2 > 0, 9 ∈ ) 0=3 ‖ 5̂��! 9 (G)‖2 = 0, 9 ∈ )2

)
→ 1. (A.1)

The results states that with proper choices of _=1 and _=2, the adaptive group lasso consistently

selects the true nonzero predictors. This theorem guarantees the selection consistency of the 3-stage

algorithm, since the variable selection is done in the second stage and the third stage does not do

variable selection. It’s important for an algorithm to select the correct subset of variables for the

model built on them to work.

With similar assumptions, assume we have

Assumption 1. The true functions 51, ..., 5B= has smoothness order >=, i.e.∫ 1

0
5 ′′9 (G)

23G � >=

where 0= � 1= means there exist constants 2 and 3 such that

2 ≤ 0=
1=
≤ 3

Then, we have
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TheoremA.1. Under assumptions 1 and assumptions in Yang&Maiti (2018), for tuning parameters

_=31, ..._=3B= , we have

‖ 5̂B< − 5 0
B< ‖22 = $?

(
B=W
−2B=
2 <=

log(B=<=)
=

)
+$% (B2=W

−2B=
2 <−23

= ) +$%
©«
∑
9∈(̂=

_=3 9>=
ª®®¬ (A.2)

where W0 and W2 are assumed bounds parameters in eigenvalues of ^, see Yang & Maiti (2018).

Theorem A.1 shows the rate of convergence of the third stage estimator. There are three terms

in the convergence rate: the estimation error, the spline approximation error and the regularization

error. The greater >=, the less _=3, thus the product won’t change. This theorem guarantees that

with proper choice of parameters, the estimated functions are consistent estimators of the true

functions that describe the relationship between the variables and the response.

Proof. Consider the third step, where we have the smoothness penalty. Define the event

S= = {(̂= = (}

The previous lemma showed that

P(S=) → 1 0B =→∞

From now on, let’s condition on the event S=. For convenience, we suppress the notations #̂B< ,

#0
B< and Φ(̂= and denote them with #̂, #0 and Φ.

To study the characteristics of the smoothness term Y 9 , where∫ 1

0
5 ′′9 (G)

23G =
∫ 1

0
q′′(G)q′′(G))3G = #)9 Y 9 #

without loss of generality, consider the case that the knots are evenly distributed on the interval

[0, 1], since changing the length of the intervals does not change the shape of the B-splines but

the span and height (Schumaker, 1981). In the following calculations, we normalize the interval

[0, 1] to [0,  ;=], where each interval has length ;=. According to Huang et al. (2010), assume
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the constant length of the interval satisfies ;= = $ (=−a) with 0 < a < 0.5. The : Cℎ cubic B-spline

basis can be derived from definition

�:,4(G) =



G3

6;3=
− :G

2

2;2=
+ :

2G
2;=
− :

3

6
, ;=: ≤ G ≤ ;= (: + 1),

−3G3

6;3=
+ (9: + 10)G2

6;2=
− 7:2 + 16: + 6

6;=
+ :

3 + 2:2 − 2: − 2
6

,

;= (: + 1) ≤ G ≤ ;= (: + 2),

3G3

6;3=
− (9: + 20)G2

6;2=
+ 9:2 + 42: + 34)G

6;=
− :

3 + 8:2 + 14: + 10
6

,

;= (: + 2) ≤ G ≤ ;= (: + 3),

−G3

6;3=
+ (: + 2)G2

6;2=
− 3:2 + 20: + 32

6;=
+ :

3 + 10:2 + 32: + 32
6

,

;= (: + 3) ≤ G ≤ ;= (: + 4),

0, >.F.

and we have q(G) = {�:,4(G), : = 1, ..., <=}. Taking derivative, we have the second derivative of

the basis function satisfies

�′′
:,4(G) = $ (;

−2
= ) = $ (=2a)

Therefore, the elements

B 9 ,8: = $ (=3a) 5 >A 9 = 1, ..., ? 0=3 8, : = 1, ..., <= Fℎ4A4 B 9 ,8: ∈ Y 9

and equals exactly zero if |8 − : | > 3. As a direct result, the eigenvalue of the matrix Y 9 is bounded

from above by$ (=3a) and from below by some constant. Similarly, if we use a quadratic B-spline,

the elements B 9 ,8: are bounded from above by $ (=4a) and from below by some constant.

Then we begin the convergence rate part. For a converging sequence #= such that ‖ #̂− #0‖2 ≤

#=, define C = #=/(#= + ‖ #̂ − #0‖2), then consider the convex combination #∗ = C #̂ + (1 − C)#0.

We have #∗ − #0 = C ( #̂ − #0), which implies

‖#∗ − #0‖2 = C‖ #̂ − #0‖2 =
#=‖ #̂ − #0‖2
#= + ‖ #̂ − #0‖2

≤ #= (A.3)
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Thismeans #∗ is within a small distance from #0 andwe are safe to use Taylor expansion. Moreover,

if we have

‖#∗ − #0‖2 ≤ '=,

then
#=

#= + ‖ #̂ − #0‖2
‖ #̂ − #0‖2 ≤ '=

Choosing #= to be greater than '=, we have

‖ #̂ − #0‖2 ≤ 2'=

Therefore, it’s sufficient to derive the convergence rate for #∗.

Consider the Taylor expansion

− 1
=

=∑
8=1

[
H8

(
#∗)Φ8

)
− 1
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where -0 is the expectation of y at #0 and Σ(#∗∗) is the covariance matrix of y evaluated ast #∗∗

which is located on the line segment joining #0 and #∗.

By the definition of #∗ and convexity, we have
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Combine this with the Taylor expansion result, we have
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where the second inequality comes from norm inequality, the third inequality comes from Cauchy-

Swarchz inequality, and ` is the expectation of H given 5 0. Rearrangling the inequality, we have

1
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where the inequality is by Cauchy-Swarchz inequality. Consider the penalty matrix J 9 who has

entries 3 9 ,8: = 1 if 8 = : = 1, 3 9 ,8: = 2 if 8 = : ≠ 1 and 3 9 ,8: = −1 if |8 − : | = 1. The matrix

is a constant matrix, thus each #0
9

)
J 9 #

0
9
is of the order $ (>=). Rearranging the terms and by

Concentration inequality, see for example Yang & Maiti (2018), we have
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By remark 2.1 in Yang & Maiti (2018), we have

W021W
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Combine the above result with the condition event S=, we have conditioning on S=
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By the inequality that
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Combine this with the argument at the beginning of the proof, we have

‖ #̂ − #0‖22 = $?
(
B=W
−2B=
2 <=

log(B=<=)
=

)
+$% (B2=W

−2B=
2 <−23

= ) +$%
©«
∑
9∈(̂=

_=3 9>=
ª®®¬

�

84



APPENDIX B

THREE STAGE APPROACH SIMULATION RESULTS

In this section, we outline the process of constructing the simulated datasets along with the results

of our method.

B.1 Data

Several simulated datasets were constructed using various numbers of observations and covari-

ates. For a prespecified number of observations, G 9 is randomly generated from * (0, 1) for each

9 = 1, ..., @. In addition, for each 9 = 1, ..., @, 5 9 is selected from a series of functions; zero, linear,

polynomial, exponential, logarithmic, and sinusoidal. The functions are selected randomly based

on chosen probabilities; 0.6, 0.05, 0.2, 0.05, 0.05, and 0.05. The coefficients used in each function

are also randomly selected. The exact functions used in the simulation study can be found in the

appendix.

B.2 Simulation Results

The performance of our method is summarized through three characteristics; out-of-sample

prediction, function misclassification, and computational performance. In addition, performance

results for other models are included for comparison. These models include results from interme-

diate steps such as Initial Group Lasso and Adaptive Group Lasso, as well as other models such as

True Selected, the GAM model fit to only nonzero functions, and mgcv, the GAM model fit to all

functions using the mgcv package.

Out-of-sample prediction is measured bymean squared prediction error (MSPE), with a training

to testing set ratio of 80:20. Figure B.1 shows the comparison of the out-of-sample prediction

performance for each method when = = 800 and @ = 200. In addition to the aforementioned

comparison models, Null Model and the true f2 were added. This plot is fairly representative of all

plots constructed for each simulated sample. The MSPE from Step 3 decreases as _ decreases, but
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Figure B.1: Mean squared prediction error for each method when - has 800 observations and 200
covariates.

may slightly increases as _ becomes smallest. For the best _, the MSPE of step 3 is typically very

similar to that of True Selected and True Sigma, with the MSPE of mgcv being relatively close all

well. Note that the MSPE of step 2 is higher than that of the null model, which is expected due to

the overfitting nature of the model. This further emphasizes the importance of step 3. Figure B.2

shows the performance of the 3 step approach against the other methods, for a varying number of

observations and covariates. These plots simply omit step 2 for increased readability.
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Figure B.2: Mean squared prediction error from the 3 step approach against other methods, at
various dimensions of - .

We now consider the four misclassification types; zero, the percentage of truly zero functions

estimated as nonzero functions, nonzero, the percentage of truly nonzero functions estimated as zero

functions, linear, the percentage of truly linear functions estimated as nonlinear or zero functions,

and nonlinear, the percentage of truly nonlinear functions estimated as linear or zero functions.

Note nonlinear functions do not include zero functions. Figure B.3 shows the misclassification

rates the for step 2, step 3, and the gamsel model.

Moreover, figures B.4 and B.5 show the estimated functions for the simulated dataset used in

figure B.1 from the 3 step approach and themgcvmodel, respectively. The 3 step approach provides
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Figure B.3: Misclassification error rate for step 2, step 3, and gamsel model, for each misclassifi-
cation type.

function estimates very similar to the true functions, with confidence bands that accurately capture

the observations. Themgcvmodel does not perform as well, and has much wider confidence bands.
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Figure B.4: 3 step approach function estimates for representative covariates from the model
corresponding to figure B.1.
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Figure B.5: mgcv function estimates for representative covariates from the model corresponding to
figure B.1.
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Finally, we consider method runtime as a measure of computational performance. Figure B.7

shows the runtime, in seconds, of each model for the various simulated datasets. The mgcv model

has a shorter runtime than the 3 step method at the best lambda in subplots A, B, C, and D. However,

as the dimension of the dataset becomes larger, the 3 step method at the best lambda runs faster. In

figure B.7, the mgcv model had a runtime of about 12.55 hours compared to about 1.12 hours for

the 3 step method at the best lambda.

The performance of the final model with respect to the three characteristics discussed is directly

affected by the choice of _ in the adaptive group lasso step. In figure B.1, smaller values of

lambda provide for reduced mean squared prediction error. However, in figure B.7, smaller values

of lambda generally lead to longer runtimes. These observations emphasize the importance of

selecting and appropriate lambda in the adaptive lasso step.

Figure B.6: Runtime, in seconds, for each method when - has 800 observations and 100 covariates.
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Figure B.7: Runtime, in seconds, from the 3 step approach the mgcv model, at various dimensions
of - .
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APPENDIX C

GAMMA DOUBLE GLMWITH LASSO ALGORITHM RESULTS

We want to justify that the update schemes in Equation 4.48 and Equation 4.49 by showing that the

penalized objective function in Equation 4.39 decreases with each update.

Lemma C.1. Let X be a column vector of length =, let � a positive definite = × = matrix, and let W

be the largest eigenvalue of �. Then

X)�X ≤ W ‖X‖22 .

Proof. Letting a = X/‖X‖2, it is equivalent to show

a)�a ≤ W.

Let eigendecomposition

� = *�*) ,

where* = (D)1 · · · D
)
= )) is orthonormal and � is a diagonal matrix with _1, ..., _= on the diagonals.

The columns of* form an orthonormal basis and are the eigenvectors corresponding to _1, ..., _=.

Therefore, we have 21, ..., 2= such that a =
∑=
8=1 28D8. Since ‖a‖2 = 1, we have

∑=
8=1 2

2
8
= 1.

Moreover,

a)�a = 〈a, �a〉

=

〈
=∑
8=1

28D8, �

=∑
8=1

28D8

〉
.

By the definition of eigenvalue, �D8 = _8D8 for 8 = 1, ..., =. Then

a)�a =

〈
=∑
8=1

28D8, �

=∑
8=1

28D8

〉
=

=∑
8=1

22
8 _8

≤
(

max
8=1,...,=

_8

) =∑
8=1

22
8 = W.

The inequality holds since � is positive definite resulting in all _8, 8 = 1, ..., = being positive. �

93



Result C.1.
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The last inequality holds by Lemma C.1. �

LemmaC.2. Each iteration of the inner loops inAlgorithm4.1 always decreases penalized objective

function in Equation 4.39.

Proof. It is sufficient to show that the update schemes in Equation 4.48 and Equation 4.49 always

decreases the penalized objective function in Equation 4.39. Without loss of generality, fix 9 ∈

{1, ..., �} and let us consider the update of # 9 . Then we simply need to show that

%& ("̆, #̆(=4F)) − %& ("̆, #̆) ≤ 0.
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Then,
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by Result C.1

= ℓ& ("̆, #̆) + [̆
) ( #̆ 9 (=4F) − #̆ 9 ))

+
W̃ 9

2
( #̆ 9 (=4F) − #̆ 9 ))) ( #̆ 9 (=4F) − #̆ 9 )) + _VF 9

#̆ 9 (=4F)2

− ℓ& ("̆, #̆) − [̆
) ( #̆ 9 − #̆ 9 ))

−
W̃ 9

2
( #̆ 9 − #̆ 9 ))) ( #̆ 9 − #̆ 9 )) − _VF 9

#̆ 92

≤ 0.

The final inequality holds by Equation 4.48. �
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