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ABSTRACT

SPATIAL PATTERNING OF LAKE NUTRIENTS AND MORPHOMETRY AT
MACROSCALES: IMPORTANCE OF REGIONAL FACTORS AND

AQUATIC-TERRESTRIAL LINKAGES

By

Joseph Jeremy Stachelek

Lakes are classically viewed as discrete ecosystems bounded on all sides by land. However, a

narrow focus on lakes as discrete units is incompatible with the scale of many management

programs and ignores the placement of lakes relative to their larger ecological context. While

it is clear that lakes are not isolated units but are instead embedded components of lake-river

networks and have a broader landscape (i.e. regional) context, it is not always clear how this

embedding is borne out quantitatively. For example, is the position of a lake in a multi-lake

network a dominant predictor of nutrient retention? Or, how strongly does the arrangement

of streams and near-stream land-use (i.e. aquatic-terrestrial linkages) affect lake nutrient

concentrations? To date, we have been unable to quantitatively address these questions in a

synthetic manner because the necessary data has not previously been available for many lakes

over large geographic extents (i.e. the macroscale). As a result, prior research has mostly

been conducted on single lakes or in some cases groups of nearby lakes in a single region. In

each of the following chapters, I developed macroscale lake databases to examine hundreds

to thousands of lakes across diverse local and regional settings and used these databases to

investigate the roles of both local and regional processes and aquatic-terrestrial linkages in

determining lake nutrient retention, nutrient concentrations, and basic lake morphometry.

In my first chapter, I show that throughout Northeastern and Midwest US, lakes with

higher connectivity have lower nutrient retention but this “connectivity effect” is apparent at

the scale of entire lake networks rather than more localized lake subwatersheds. My findings

suggest that a broader whole-network perspective is likely to be more effective than a narrow

lake-specific perspective in regulatory frameworks focused on eutrophication. In my second



chapter, I show that lake nutrient concentrations are related to a variety of agricultural

activity measures beyond the percent of the watershed in agricultural land use. I show that

when one measure in particular, the percentage of agricultural land use in near-stream areas,

is elevated, this signals a high likelihood of elevated lake nutrient concentrations. I further

show that lake total phosphorus concentrations have different relationships with measures

of agricultural activity compared to lake total nitrogen concentrations. My findings suggest

that differences in lake nutrient sensitivity to agricultural activity may affect the outcome of

policies to enhance water quality depending on whether they focus on lake N or P. In my third

and final chapter, I test the utility of geometric models for predicting lake depth for lakes

with missing depth information. Using bathymetric data for 5,000 lakes, I show that one of

the assumptions of such models, that slope proxies of the surrounding land are representative

of true in-lake slope, is not supported by available evidence. This lack of relationship has

implications for predictive accuracy and model bias in lakes of different types or shapes. My

findings specifically suggest that geometric models are likely to overestimate the depth of lakes

with concave cross-section shapes and those classified as reservoirs. Across all chapters, I use

the frameworks of landscape limnology and macrosystems ecology to explore the relationships

between watershed and lake characteristics. I show that such macroscale analyses, which

explicitly consider hierarchy in the freshwater landscape, provide a nuanced understanding of

controls on lake nutrients and morphometry across a broad array of lakes.
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In addition to the papers that make up my Dissertation, I was either lead author or co-author

on papers that are not explicitly listed above but were instead precursors to Dissertation

chapters:

• Stachelek, J., Ford, C., Kincaid, D., King, K., Miller, H., and Nagelkirk, R., 2018. The
National Eutrophication Survey: Lake characteristics and historical nutrient concentra-
tions. Earth System Science Data, page 6. doi:10.5194/essd-10-81-2018

• Hollister, J. and Stachelek, J., 2017. Lakemorpho: Calculating lake morphometry
metrics in R. F1000Research, 6:1718. doi:10.12688/f1000research.12512.1

Each Dissertation chapter (and many of my co-authored papers) were written following

the principles of "open science" where data (and often code or software) are archived and

made publicly available. The publishing of these materials is meant to increase research

transparency, facilitate reproducibility, and enable future research developments. The software

and data packages produced as part of this open science effort include:
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• Stachelek, J. and Oliver, S, 2019. LAGOSNE: Interface to the Lake Multi-Scaled
Geospatial and Temporal Database. https://github.com/cont-limno/LAGOSNE

• Stachelek, J., 2019a. Gssurgo: Python Toolbox Enabling an Open Source gSSURGO
Workflow. https://github.com/jsta/gssurgo

• Stachelek, J., 2019c. Freshwater connectivity and stream morphology metrics for
Northeast and Midwestern US lakes. doi:10.5281/zenodo.2554212

• Stachelek, J., 2018a. nhdR: R Tools for Working with the National Hydrography Dataset.
https://github.com/jsta/nhdR

• Stachelek J, Ford C, Kincaid, D, King K, Miller H, and Nagelkirk R, 2017. The National
Eutrophication Survey: Lake characteristics and historical nutrient concentrations.
doi:10.5063/F10G3H3Z

I also authored papers that were not directly related to my Dissertation but were instead a

result of my participation with two collaborative research groups, the Continental Limnology

project (https://lagoslakes.org/projects/continental-limnology) and the CNH Lakes project

(https://www.cnhlakes.frec.vt.edu/). My participation included attending monthly conference

calls, annual project meetings, and collaborating on additional research projects outside of

my Dissertation.

The Continental Limnology project consisted of approximately 25 people with

expertise in ecology, freshwater science, statistics, and machine learning. The goal of this

project was to understand and predict nutrient patterns for all continental US lakes to

inform estimates of lake contributions to continental and global nutrient cycles. The papers I

co-authored while on this project include:

• Wagner, T., Lottig, N. R., Bartley, M. L., Hanks, E. M., Schliep, E. M., Wikle, N. B.,
King, K. B. S., McCullough, I., Stachelek, J., Cheruvelil, K. S., Filstrup, C. T., Lapierre,
J. F., Liu, B., Soranno, P. A., Tan, P.-N., Wang, Q., Webster, K., and Zhou, J., 2019.
Increasing accuracy of lake nutrient predictions in thousands of lakes by leveraging
water clarity data. Limnology and Oceanography Letters. doi:10.1002/lol2.10134

• Collins, S. M., Yuan, S., Tan, P. N., Oliver, S. K., Lapierre, J. F., Cheruvelil, K. S.,
Fergus, C. E., Skaff, N. K., Stachelek, J., Wagner, T., and Soranno, P. A., 2019. Winter
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INTRODUCTION

Lakes are classically viewed as discrete ecosystems bounded on all sides by land (Golley,

1993). This framing has served as a useful organizing principle particularly with regard to the

study of specific waterbodies (O’Neill, 2001). However, a narrow focus on lakes as discrete

units is incompatible with the scale of many management programs and ignores the links

between lakes, their aquatic-terrestrial linkages, and their larger ecological context (Likens

and Bormann, 1974; Soranno et al., 2010). In recognizing these limitations, a specific focus

of modern limnology has been on further integrating freshwater and terrestrial environments

connected to and surrounding lakes (i.e. their ecological context). Frameworks developed as

part of these efforts include landscape limnology (Soranno et al., 2010) and macrosystems

ecology (Heffernan et al., 2014) that call for explicit consideration of hierarchy in the freshwater

landscape and interactions across time and space among hierarchy levels.

Despite these efforts, several limiting factors have prevented a more full consideration

of lakes relative to their ecological context. Foremost of these has been limited data availability.

It is common for studies to consider the ecological context of lakes relative to their watersheds

for a single lake or several lakes within a single geographic region. However, it is far less

common for studies to consider many lakes across multiple regions (i.e. at macroscales) where

distances span hundreds to thousands of kilometers (but see USEPA (1975), Landers et al.

(1988), and USEPA (2016)). A consequence of the mostly narrow focus on relatively few

lakes is that we lack the perspective necessary to formulate general relationships between

lakes and their ecological context that hold beyond a single lake or region. As macroscale

lake datasets become available, (such as Soranno and et (2017), Read et al. (2017), and

Williams and Labou (2017)), we now have the ability to test our intuition and the generality

of fine-scale relationships identified in prior studies against hundreds to thousands of lakes at

the macroscale.

A further limiting factor preventing a fuller consideration of lake ecological context
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has been lack of data analysis techniques that both account for and leverage spatial variability

at broad scales. Such techniques are necessary to account for multiple interacting drivers

of the lake ecological status (Allan, 2004). A key technique, which I use throughout the

following chapters, is to build models with regionally varying coefficients that capture different

relationships between lake characteristics and landscape predictors depending on geographic

region. This technique avoids some of the risk of drawing imprecise or incorrect conclusions due

to lumping together lakes with fundamentally different responses to a given predictor variable

(Qian et al. 2019). Furthermore, this technique allows for a richer post-hoc examination of

model results in light of unobserved or unaccounted regional variation in underlying lake

drivers.

Given the limiting factors identified above, my aim in this Dissertation was to

use the landscape limnology and macrosystems ecology frameworks to more rigorously test

conventional understanding of lakes gained from studies at limited spatial extents to a

more diverse set of lakes representative of continental-scale gradients through scaling and

extrapolation. I developed each chapter following these general steps 1) Identify an aspect of

lake ecology that has not been explored at broad spatial extents, 2) Develop a conceptual

model linking lake characteristics to different components of the freshwater landscape taking

into account variation across spatial scales, and 3) Formulate statistical or machine learning

models to test this conceptual model. Underpinning each conceptual model were questions

such as: What is the role of local and regional processes and aquatic-terrestrial linkages in

determining lake nutrient retention, nutrient concentrations, or basic lake morphometry? and

How do relationships between lake nutrient retention, nutrient concentrations and morphology

differ when computed over different extents and with different levels of detail?
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CHAPTER 1

DOES FRESHWATER CONNECTIVITY INFLUENCE PHOSPHORUS
RETENTION IN LAKES?

Stachelek, J. and Soranno, P. A., 2019. Does freshwater connectivity influence phosphorus

retention in lakes? Limnology and Oceanography. doi:10.1002/lno.11137

1.1 Abstract

Lake water residence time and depth are known to be strong predictors of phosphorus (P)

retention. However, there is substantial variation in P retention among lakes with the same

depth and residence time. One potential explanatory factor for this variation is differences

in freshwater connectivity of lakes (i.e. the type and amount of freshwater connections to

a lake), which can influence watershed P trapping or the particulate load fraction of P

delivered to lakes via stream connections. To examine the relationship between P retention

and connectivity, we quantified several different measures of connectivity including those that

reflect downstream transport of material (sediment, water, and nutrients) within lake-stream

networks (lake-stream-based metrics) as well as those that reflect transport of material from

hillslope and riparian areas adjacent to watershed stream networks (stream-based metrics).

Because it is not always clear what spatial extent is appropriate for determining functional

differences in connectivity among lakes, we compared connectivity metrics at two important

spatial extents: the lake subwatershed extent and the lake watershed extent. We found that

variation in P retention among lakes was more strongly associated with connectivity metrics

measured at the broader lake watershed extent rather than metrics measured at the finer lake

subwatershed extent. Our results suggest that both connectivity between lakes and streams

as well as connectivity of lakes and their terrestrial watersheds influence P retention.
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1.2 Introduction

Lake phosphorus (P) retention is an important characteristic of lakes that can be used to

predict P concentrations and to evaluate lake sensitivity to nutrient loading and eutrophication

(Alexander et al., 2008; Milstead et al., 2013). Specifically, P retention is an integrated measure

of internal P losses including permanent sedimentation, biological uptake, and other processes

that remove P from the water column (Chapra, 2008). P retention has been well studied in

lakes because P determines lake trophic status and downstream watershed yields (i.e. export

to terminal lakes and coastal estuaries). Although previous studies have shown that lake P

retention is related to water residence time (Vollenweider, 1975), large uncertainties exist

around this relationship (Brett and Benjamin, 2008; Milstead et al., 2013). These uncertainties

can be large in lakes with intermediate water residence times, particularly compared to lakes

with either extremely short or extremely long water residence times (Figure S1.1). For

example, lakes with very long water residence times (on the order of a decade or longer) have

complete or near complete P retention, while lakes with very short water residence times

(on the order of days) have almost no P retention (Brett and Benjamin, 2008). The reason

for the substantial uncertainty in lake P retention between these two extremes may be that

predicting retention solely on the basis of water residence time does not capture many of the

other factors and processes that affect P retention (Figure 1.1).

One well-studied factor that has been shown to influence lake P retention is lake

depth through its influence on internal processing of P loads (Søndergaard et al., 2013;

Vollenweider, 1975). The mechanism for such an influence is that lake depth controls thermal

stratification and material resuspension from the benthos. As a result, shallow lakes have a

tendency to mix throughout the summer causing redistribution of sedimented phosphorus

throughout the mixed zone (Fee et al., 1996). This mixing and redistribution of sedimented

P often leads to tighter benthic-pelagic coupling and increased P recycling (Cha et al., 2013).

Thus, depth is one example of a lake characteristic that is likely to influence P retention in

concert with water residence time (Cheng et al., 2010).
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Figure 1.1: Major lake and watershed factors affecting lake P retention. Shaded symbols
indicate factors typically considered in P retention models whereas open symbols indicate
additional factors specific to the present study. Dashed lines indicate inferred relationships,
which cannot be tested with available data, but are otherwise discussed herein.

A primary tool for evaluating the influence of specific lake characteristics, like lake

depth, on P retention is statistical phosphorus retention modelling. Although the form of such

models is variable, many models estimate P retention as a function of water residence time

and a parameter k that represents in-lake P decay (Chapra, 2008; Vollenweider, 1975). Many

studies treat k as a constant global parameter (i.e., it has the same value for all lakes), which

may be valid only for studies that consider small numbers of lakes in a limited geographic

region, with similar characteristics. Few studies have modeled different k values based on lake

or watershed characteristics, despite the many differences among lakes that likely influence

their ability to process P (Cheng et al., 2010).

For example, there is evidence that the relative proportion of particulate versus

dissolved P loads (hereafter, particulate load fraction), influences P retention in stream and

wetland ecosystems (Jarvie et al., 2011; Kronvang, 1992; Russell et al., 1998; Vanni et al.,

2001). However, evidence for particulate load fraction controls on P retention in lakes remains

limited because of difficulties in tracking the fate of particulate loads after entering a lake
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(Brett and Benjamin, 2008; Dillon and Molot, 1996). Therefore, there is potential to further

study particulate load Ffraction using proxies that may be closely related to it, such as the

relative amounts of point and nonpoint nutrient sources to a lake subwatershed.

In general, point source inputs to lakes are associated with increased dissolved

P loads (Kronvang, 1992; Russell et al., 1998), whereas non-point source inputs to lakes,

such as those in lake watersheds with high agricultural land use cover, typically have higher

particulate P loads (Carpenter et al., 1998; Sharpley et al., 1994). Exceptions to these

generalizations have been observed in areas where increased dissolved P loading occurs not as

a result of point source nutrient inputs but rather as a result of non-point source runoff due

to P saturated soils or legacy P release (Bennett et al., 2001; Powers et al., 2015). Despite

the fact that particulate loads are usually related to non-point source inputs, the fraction of

non-point source inputs that are in particulate form is highly variable and may depend on

intra-annual flow variations as well as watershed erosion characteristics (Jarvie et al., 2011).

Furthermore, quantifying non-point source inputs at broad spatial scales is not commonly

done due to logistical and sampling constraints (Guy et al., 1994). As a result, studies often

infer the relative amounts of particulate and dissolved loading from other available proxy

data such as land-use cover (Ellison and Brett, 2006; Djodjic and Markensten, 2018).

Apart from land-use cover, another potential proxy for particulate load fraction

entering lakes is the type and amount of freshwater connections to a lake, which we argue is

easier to measure than other proxies, and could help to improve estimates of lake P retention,

especially in lakes for which we lack P loading data (Figure 1.1). Although freshwater

connectivity may be easy to measure from a logistical standpoint, there are still many ways

to measure connectivity that likely represent different mechanisms of water and material

flow (Figure 1.2). We broadly define and study two types of freshwater connectivity that

correspond to either stream-based metrics or lake-stream-based metrics. First, lake-stream-

based metrics measure the connections between a lake, other upstream lakes, and streams

in their watershed. This type of connectivity can be quantified by measuring the closest
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Figure 1.2: Connectivity metric definitions along with simplified examples of high and low
value lakes that might arise from a binary classification. Both lake-stream-based and stream-
based metrics are associated with restrictions on in-stream transport whereas stream-based
metrics are associated with differences in transport of P from terrestrial runoff to streams.
We use the term "first order stream" to describe a headwater stream.

distance to an upstream stream-connected lake (Figure 1.2A), or by measuring the total

upstream lake area (Figure 1.2B). Second, stream-based metrics measure the connections

between inflowing streams and their surrounding land whereby increasing stream connections

lead to a greater abundance of land-water interfaces and greater transport of material from

hillslope and riparian areas adjacent to watershed stream networks (Figure 1.2C-E).
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Figure 1.3: Diagram showing the lake subwatershed and lake watershed of three lakes. Here
the lake subwatershed of lake 3 encompasses the lake subwatershed of lake 2 because it is
smaller than 10 ha but it does not encompass the lake subwatershed of lake 1 because it has
an area of at least 10 ha. In contrast to the lake subwatershed boundaries, the lake watershed
boundaries extend to the headwaters of the lake chain.

In addition to variation among connectivity metrics and connectivity metric types,

it is also not always clear which spatial extent is appropriate for determining functional

differences in connectivity among lakes (Soranno et al., 2015). Such information is needed

to inform the design of regulatory frameworks balancing controls on cumulative nutrient

transport along stream networks and controls on localized nutrient transport (Alexander et al.,

2008; Carpenter et al., 1998; Withers and Jarvie, 2008). To test the importance of different

spatial extents, we examined connectivity metrics measured for both the lake subwatershed

extent and the lake watershed extent (Figure 1.3). Here, the lake subwatershed extent

includes the elements of the immediate watershed in the direct drainage of a lake whereas the

lake watershed extent includes all of the elements in the entirety of the lake-stream network

up to and including headwater streams (Figure 1.3).

We propose that measures of freshwater connectivity are related to P retention

in the following ways. First, some connectivity metrics reflect the proximity of terrestrial
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watershed areas to the stream network (Covino, 2017). For example, lakes with a high

watershed stream density should have increased particulate matter loading from terrestrial

hillslope and riparian areas adjacent to watershed stream networks because particulate matter

export is limited by overland distance (Gomi et al., 2002). Second, connectivity metrics

can reflect the configuration of lakes within lake-stream networks. For example, lakes with

upstream lakes in close proximity may receive P loads that have previously undergone in-lake

processing whereby labile fractions have already been trapped in upstream lakes (Cardille

et al., 2007). In contrast, lakes with more distant upstream lakes are more likely to receive

the more labile fractions from terrestrial runoff that serve to increase P retention as opposed

to receiving the more recalcitrant fractions that are resistant to biological uptake and are thus

not retained. Although some connectivity metrics have an intuitive relation to P retention, it

is not clear which specific measures of freshwater connectivity are important for transport of

particulate matter. Therefore, our study is designed to examine and compare which measures

of connectivity are more related to lake P retention.

We addressed the above knowledge gaps by quantifying and comparing a range

of freshwater connectivity measures at multiple spatial extents. Taken together, our suite

of connectivity metrics reflect both freshwater connectivity in the direct drainage of lakes

(i.e. the lake subwatershed extent) and freshwater connectivity of the entirety of the stream

network up to and including watershed headwater areas (i.e. the lake watershed extent,

Figure 1.3). Our motivation for measuring connectivity so many ways is that it is easy to

measure connectivity of lakes with small watersheds situated at the beginning of lake chains

but it is much more challenging to identify the type and extent of connectivity in larger,

more complex lake networks. Another reason we examined relationships between P retention,

multiple measures of connectivity, and multiple spatial extents is that many commonly

used connectivity metrics merely reflect watershed size (spatial extent) rather than types of

material transport or particulate load fraction (Leibowitz et al., 2018). Although lakes in

larger watersheds have both a greater potential area from which to source particulate runoff
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and total phosphorus export from the watershed, we expect that delivery of sediment-bound

phosphorus is dependent on connectivity-mediated trapping in the upstream watershed

(T-Prairie and Kalff, 1986).

We asked two questions in this study: 1) Which measures of freshwater connectivity

influence lake phosphorus retention? 2) What spatial extent of connectivity most strongly

influences P retention? To answer these questions, we fit statistical P retention models in

a Bayesian hierarchical framework following Cheng et al. (2010) where 2 separate values of

the k processing parameter were estimated for lakes with either high or low values of each

connectivity metric. Using this approach, higher k values for a specific lake connectivity class

indicates more extensive in-lake processing and higher P retention. We applied this model to

a dataset of 129 lakes across a wide range of hydrologic, geologic, and climatic settings. We

fit separate models using each combination of connectivity metric and spatial extent in an

effort to determine whether P retention is more strongly controlled at the lake subwatershed

extent or the lake watershed extent.

1.3 Methods

1.3.1 Dataset description

We used data on P retention, maximum depth, and water residence time from 129 lakes in

the National Eutrophication Survey (USEPA, 1975; Stachelek et al., 2018). Mean annual P

loading, P discharge, and P retention values in the National Eutrophication Survey (NES)

dataset were calculated based on monthly sampling for P in tributary and outlet discharge

points as well as any municipal waste discharges from 1972 to 1975. Here, P retention is a

unitless value representing the fraction of incoming P loads. Sampling frequency for water

discharge and residence time varied among lakes but details of these variations were not

provided in the source dataset (USEPA, 1975; Stachelek et al., 2018). Estimates of water

discharge and residence time in the NES dataset represent normalized mean flow estimates

expected to occur during a period of average precipitation and hydrology (USEPA, 1975).
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Min Median Max IQR
Total Phosphorus (ug/L) 4 43 1380 20 - 111
Chlorophyll (ug/L) 1 12 381 6 - 21
Secchi Depth (m) 0.2 1.5 19.3 0.9 - 2.4
P Loading (kg/yr) 204 6041 418485 2035 - 24370
P Retention 0.06 0.46 0.99 0.24 - 0.59
Residence Time (yr) 0.03 0.63 17.4 0.2 - 1.8
Lake Area (kmˆ2) 0.25 6.54 453.26 2.93 - 21.88
Maximum Depth (m) 1.1 12.9 96.3 9.2 - 21.3
Agricultural Landuse (%) 0.11 53.27 94.74 17.68 - 74.05
Lake Subwatershed Area (kmˆ2) 5 88 4018 21 - 410
Lake Watershed Area (kmˆ2) 120 143 18641 54 - 550

Table 1.1: Minimum, median, maximum, and interquartile range of selected characteristics of
the study lakes (N = 129).

Water residence time for our study lakes ranged from 1 week to 17 years with an interquartile

range of 3 months to 1.8 years while P retention ranged from 0.06 to 0.99 with an interquartile

range of 0.24 to 0.59 (Table 1.1).

We supplemented the NES dataset with boundaries for lake subwatersheds, as well

as estimates of stream density, upstream lake area, upstream lake connection(s), baseflow (an

index of groundwater inputs), land-use cover, and other water quality measurements from the

LAGOS-NE dataset (Table 1.1; Soranno and et, 2017). Our study lakes encompassed a wide

range of land-use cover types and nutrient levels (Table 1.1). Although, lake subwatersheds

were variable with respect to agricultural land use cover, we did not observe a strong

relationship with lake P retention (Figure S1.2). On average, the water quality (total

phosphorus, chlorophyll concentration, and Secchi depth) of the lakes in our study are similar

to other US lakes as measured by the stratified random sampling design of the National Lakes

Assessment (NLA) lake population (USEPA, 2016). However, our lakes are substantially

larger and deeper than most NLA lakes (Figure S1.3).

We restricted the lakes in the study to those located within the footprint of LAGOS-

NE which includes lakes located in 17 northeastern and midwestern US states (Soranno and

et, 2017). We excluded lakes from our analysis if they had a surface area of greater than 1000
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km2 or a surface area of less than 0.1 km2. We also excluded lakes if they had a maximum

depth of greater than 70 m, lacked upstream surface water connections, or had one of the

North American Great Lakes in its upstream watershed. A total of 129 out of 236 NES lakes

met each of these selection criteria.

1.3.2 Connectivity metrics and spatial extents

In addition to data from the NES and LAGOS-NE datasets, we calculated several connectivity

metrics that we expected would be related to lake P retention (Figure 1.2). Some of these

metrics were stream-based with the goal of capturing aspects of the configuration of each

lakes’ upstream surface water network (Figure 1.2C-D). In particular, we chose metrics that

would quantitatively approximate network complexity under the assumption that highly

complex networks are also low connectivity networks. This assumption is supported by the

findings of stream network simulations where increased network complexity leads to increased

network resistance and ultimately decreases in network connectivity (Rodriguez-Iturbe and

Rinaldo, 2001). In addition to stream-based metrics, we calculated lake-stream-based metrics

that we expected would reflect the likelihood of P trapping in upstream lakes prior to arriving

at a given focal lake via tributary flow (Figure 1.2A, 2B). A simple metric that captures this

likelihood is the presence (or absence) of an upstream lake (greater than 4 ha) which we

define as “lake connection” (Fergus et al., 2017). In addition to lake connection, we calculated

related metrics such as total upstream lake area and the network distance to the closest

upstream lake.

To examine the importance of spatial extent relative to our connectivity metrics,

we calculated each metric at multiple extents (Figure 1.3). First, we calculated connectivity

metrics at the scale of individual lake subwatersheds. We defined a lake subwatershed as the

area draining into a particular lake exclusive of any upstream areas that drain into a lake

greater than or equal to 10 ha (0.1 km2). Next, we calculated connectivity metrics at the

scale of entire upstream lake networks (lake watershed extent). We defined a lake watershed
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as the area draining into any part of the upstream network irrespective of the presence or

absence of upstream lakes (Figure 1.3).

All connectivity metrics were calculated using the high-resolution National Hydrog-

raphy Dataset (NHD) as a primary input (USGS, 2018). Average link length was calculated

as the total stream length in a given watershed divided by the number of stream reaches after

dissolving (removing) any network points that do not occur at a stream junction. Stream

density was calculated as the length of all streams in the watershed (minus artificial lines

through lakes) expressed in units of meters per hectare. Upstream lake area was calculated as

the sum of the lake area in the upstream watershed expressed in square meters. Stream order

ratio was defined as the number of headwater (first-order) streams in the upstream watershed

of the focal lake divided by the total number of higher order (> 1) streams (La Barbera and

Rosso, 1989). Closest distance to an upstream lake was defined as the shortest path-distance

(rather than the straight-line distance) to a lake upstream from the focal lake.

We calculated all connectivity metrics and lake watershed extents using the

streamnet and nhdR R packages respectively (Stachelek, 2018b,a). The algorithms in

the streamnet package use the sf R package (Pebesma, 2018) as well as the v.net and

v.stream.order modules (Jasiewicz and Metz, 2011) included in GRASS GIS (GRASS

Development Team, 2017). All processed connectivity data and code are available at

doi:10.5281/zenodo.2554212.

1.3.3 Modelling lake P retention

We modelled lake total phosphorus retention (hereafter, P retention) using the Vollenweider

equation that models P retention as a function of water residence time and a parameter

(k) conceptually representing in-lake P decay (Chapra, 2008; Vollenweider, 1975). Although

there are several variants of this basic equation, we selected a 2-parameter form (equation

1.1) that has been shown to have good performance in multiple cross-sectional studies (Brett

and Benjamin, 2008; Cheng et al., 2010):
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Ri = 1 − 1
1 + kτxi

(1.1)

where Ri is P retention as a fraction of P inputs, τ is water residence time, k is a

unitless parameter representing in-lake P decay, and x is a unitless parameter representing P

export via hydrologic flushing. Here, higher values of k are associated with greater integrated

P losses from sedimentation and biological uptake resulting in greater P retention. Note

that Eq 1.1 does not include a recycling term. Therefore, our results represent net P

retention (as opposed to gross P retention) under a steady state assumption where lakes

are at equilibrium with respect to recycling (Vollenweider, 1975). Note that although some

forms of the Vollenweider equation use P loading as a predictor variable, it does not appear

in Eq 1.1. The reason for this is two-fold. First, estimates of P loading are more difficult

to obtain than estimates of water residence time and our aim was to develop a model than

can be widely applied to lakes for which we lack detailed data on P loading. Second, loading

based model forms have been shown to be mathematically equivalent to water residence time

based model forms (Brett and Benjamin, 2008).

We used the model described by Eq 1.1 to compare lake P retention in lakes with

different connectivity by fitting the model in two ways. First, we modelled the overall

relationship between P retention and water residence time for all lakes in our dataset (global

model). Second, we fit hierarchical versions of Eq. 1.1 where k was modelled separately (kj)

as a function of a binary sub-population indicator gi denoting membership in one of two lake

classes formed on the basis of specific connectivity metrics (or lake depth) and specific spatial

extents:

Ri = 1 − 1
1 + kjτ

x
i

(1.2)

kj = gi (1.3)
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where greater differences in k between the two groups indicate greater support

for a connectivity effect on P retention. Prior to model fitting, we examined the bivariate

relationships between each connectivity metric, water residence time, P loading, and other

factors related to P retention using Pearson’s correlation coefficients. The purpose of this

exercise was twofold, to determine the potential for collinearity among any of the variables

in Eq 1.2 and to identify any relationships between P retention, water residence time, and

other watershed and lake characteristics that were not included in our model. As only one

connectivity metric was used to define g for each model we did not use the results of this

exercise to exclude variables from further investigation. We quantified the relative support

for an effect of each connectivity metric on P retention in more detail by calculating the

difference in the median value of the P decay parameter k between groups (i.e. ∆k). We

used these median k values along with median estimates of x to determine how differences

in k translated to differences in P retention (Eq 1.2). We judged significance by whether or

not differences in group-wise P retention were greater than the measurement precision of P

retention (> 0.01).

We fit all models in a Bayesian framework using the non-linear extension to the

brms package to interface with the Stan statistical program (Bürkner et al., 2017; Stan

Development Team, 2017). In both models, we set a semi-informative prior on k and x of

N(1.3, 0.1) and N(0.45, 0.1) respectively. These priors were based on the confidence intervals

presented in Brett and Benjamin (2008) and qualitatively matched those used by Cheng et al.

(2010). We used the default settings of brms and rstan to generate posterior estimates using

four chains of 4,000 iterations each with no thinning and initial parameter values drawn from

a uniform distribution bounded between -2 and 2. We also used the brms package for model

evaluation by computing a Bayesian R2 following the method of Gelman et al. (2017).
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1.3.4 Lake connectivity classes

Our lake connectivity classes were formed by dividing the lake dataset into two classes

for each connectivity metric based on the bivariate relationship between each metric and

P retention. Prior studies have used a similar binary splitting approach to examine the

effect of various exogenous factors on lake P retention (Cheng et al., 2010; Shimoda and

Arhonditsis, 2015). We determined splitting criteria for each metric from the results of a

random forest procedure incorporating conditional inference trees (Hothorn and Zeileis, 2015).

This procedure creates binary splits of the independent variables (i.e. each of the connectivity

metrics), which are recursively repeated to find the split that maximizes association with

the dependent variable (P retention). The advantage of the ctree technique over the more

typical classification-regression tree (CART) technique is that tree growth stopping rules

are pre-specified (Hothorn et al., 2006). As a result, some of subjectivity associated with

post-hoc tree pruning is avoided.

1.4 Results

1.4.1 Interactions between connectivity, hydrology, and P loading

We examined the bivariate relationships between connectivity, water residence time, P loading

and other factors related to P retention to determine the potential for strong relationships

among any of the variables which were not accounted for by our model structure (Eq 1.2,

Figure 1.4). We found evidence for some relationships among these variables, but none that

suggest either redundancy among connectivity metrics or that otherwise limit our ability to

infer relationships with P retention (Figure 1.4). For example, the Pearson correlation (r)

between water residence time and stream density, which is implicitly accounted for in our

model structure, was 0.29 (p < 0.05). In contrast, the correlation between water residence

time and upstream lake area, which is unaccounted for in our model structure, was only 0.10

(p > 0.05). Note that interactions between connectivity metrics and water residence time are
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Figure 1.4: Correlation among connectivity metrics and selected lake characteristics. Cell
shading and color reflects the correlation coefficient value. Only coefficients accompanied
by a significant p value < 0.05 are shown as text. Here, WS is the lake watershed extent
whereas SWS is the lake subwatershed extent. Connectivity metrics are defined in Figure 1.2.

accounted for in our hierarchical model structure because Eq. 1.2 uses a global coefficient x

for water residence time that is estimated separately from the hierarchical and connectivity-

dependent P decay coefficient k. This is conceptually similar to fitting the k-connectivity-P

retention relationship to the residuals of the water residence time to P retention relationship.

Perhaps surprisingly, we did not observe strong correlations between P loading and water

residence time (r = 0.13, p > 0.05) or between lake depth and most connectivity metrics (r <

0.17). This suggests that our P retention results are not confounded by variations in lake

depth, by interactions between connectivity and P loading, or by interactions between water

residence time and P loading.

A secondary purpose of examining the bivariate relationships between connectivity,

water residence time, P loading and other factors related to P retention was to determine if
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our connectivity metrics were related to each other such that they provide similar information.

With the exception of stream density and baseflow (r = -0.52, p < 0.05), correlations

among connectivity metrics were low and of a similar magnitude as the correlations between

connectivity metrics and water residence time (0.10 < r < 0.29). The strongest correlation

between any connectivity metric or lake characteristic was upstream lake area and lake

watershed area (r = 0.77, p < 0.05).

We observed notably strong correlations between P loading and several lake charac-

teristics not accounted for in Eq 1.2. These include the correlation between P loading and

lake watershed area (r = 0.62, p < 0.05) as well as the correlation between P loading and

lake subwatershed area (r = 0.76, p < 0.05). In addition, the correlation between P loading

and upstream lake area was quite strong (r = 0.52, p < 0.05). Despite strong correlations

between P loading, watershed area, and upstream lake area, we did not observe a strong

correlation between P loading and P retention (r = 0.15, p > 0.05). Notably, this correlation

was much weaker than the correlation between water residence time and P retention (r =

0.44, p > 0.05). Our observation that the correlation between P retention and P loading was

not appreciably stronger than correlations between P retention and our connectivity metrics

suggests that our estimates of connectivity metric effects on P retention are not confounded

by interactions between water residence time and P loading.

Although we did not observe strong correlations among connectivity metrics, we

found that lakes with similar connectivity metric values, were spatially clustered (Figure

1.5). In particular, we found that lakes were concentrated in either the southern or northern

portions of our study area depending on their connectivity metric value (Figure 1.5). This

observation is consistent with the findings of Fergus et al. (2017) that lakes in the northern

portion of our study area have distinct freshwater connectivity as compared to lakes in the

southern portion of our study area.
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defined in Figure 1.2.
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and shaded interval estimates represent hierarchical model fits to the data (R2 = 0.41, n
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connectivity metric relative to P retention (B). Equations for these lines at median water
residence time for low and high link length lakes are: Rp = 1 - (1 / (1 + 1.32 τ0.4)) and Rp
= 1 - (1 / (1 + 1.08 τ0.4)) respectively.

1.4.2 Effects of connectivity on P retention

We found that freshwater connectivity metrics were associated with lake P retention (Figure

1.6, 1.7). Across all connectivity metrics except stream order ratio, we found that the P

decay coefficient k and thus P retention was associated with whether a lake had a high or

low value of each connectivity metric. These findings matched our expectations in several

ways. Most notably, lakes with shorter average link lengths had higher P retention relative

to lakes with longer average link lengths. In addition, lakes with less upstream lake area had

higher P retention than lakes with more upstream lake area (Figure 1.6, 1.7).

We found that some connectivity metrics were more strongly related to P retention

than others. For example, the model R2 for network average link length was higher (R2 =

0.41) than the global model (R2 = 0.34). For other connectivity metrics, such as network

stream order ratio, goodness-of-fit (R2 = 0.36) was very similar to the global model (R2 =

20



Global

Stream order ratio*

Baseflow*

Max depth*

Upstream lake area*

Lake connection*

Stream density

Closest lake distance

Link length*

0.8 1.0 1.2 1.4 1.6

k Value

a. Lake Subwatershed

Global

Stream order ratio

Baseflow*

Max depth*

Upstream lake area*

Lake connection*

Stream density*

Closest lake distance*

Link length*

0.8 1.0 1.2 1.4 1.6

k Value

b. Lake Watershed
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indicate lakes with higher connectivity metrics values. For lake connection, lighter colored
lines indicate lakes without upstream lakes. Connectivity metrics are defined in Figure 2.
Labels associated with models where differences in k translated to significant differences in P
retention are bolded and starred.

0.34). Model fit for other connectivity metrics was in between these two extremes (0. 36 < R2

< 0.41). Overall, we found that all hierarchical models had at least a marginally better fit to

the water residence time versus P retention relationship than a global model which does not

account for connectivity (Figure 1.6). Although we found a discernable effect of connectivity

metrics on lake P retention, the somewhat modest improvements in model fit may be due

to the fact that water residence time remains a dominant effect even after accounting for

freshwater connectivity.

1.4.3 Comparison across connectivity metrics and spatial extent

Differences in P retention among lakes with different connectivity metric values was reflected

in differences among connectivity class-specific values of the P decay parameter k (Figure
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Low High
Metric Units Scale Delta k Split Value N N
Average link length m WS 0.23* 2380 33 96
Closest lake distance m WS 0.22* 3774 26 103
Stream density - WS 0.2* 13.84 95 34
Lake connection - focal 0.17* - 27 102
Upstream lake area ha WS 0.16* 154 62 67
Max depth m focal 0.15* 19.81 87 42
Average link length m SWS 0.14* 2177 36 93
Upstream lake area ha SWS 0.13* 279 69 60
Baseflow - SWS 0.12* 63.76 113 16
Stream order ratio - SWS 0.1* 0.67 87 42
Baseflow - WS 0.08* 53.43 65 64
Closest lake distance m SWS 0.05 3274 16 113
Stream order ratio - WS 0.04 0.4 17 112
Stream density - SWS 0.03 4.43 24 105

Table 1.2: Connectivity class split values and samples sizes for connectivity metrics and
lake depth ranked according to the difference in median k (P decay parameter, ∆k) values.
Differences in ∆k that translate to differences in P retention greater than measurement
precision are marked with an asterisk. Here, WS is the lake watershed extent whereas SWS
is the lake subwatershed extent. Lakes with metric values above or equal to the split value
were assigned to a separate connectivity class relative to lakes below the split value. N is
sample size. Connectivity metrics are defined in Figure 1.2.

1.7). The connectivity metric that had the most effect on k was average link length (Table

1.2). For instance, hierarchical models fit with the average link length metric had a median

effect size of 0.23 and 0.05 for k and P retention respectively (Table 1.2), which means that

for this metric, lakes with shorter average link lengths retained 4.7 to 4.9% more P than lakes

with longer average link lengths. The influence of lake-stream-based connectivity metrics on

lake P retention was similar to stream-based connectivity metrics (Figure 1.7). This suggests

that both lake-stream-based connectivity between lakes and streams as well as stream-based

connectivity of lakes and their terrestrial watersheds influence P retention (Figure 1.2).

We found that connectivity metrics measured at the lake watershed extent were

more strongly associated with P retention than metrics measured at the lake subwatershed

extent (Table 1.2, Figure 1.7). Specifically, the metrics that had the strongest association
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with P retention such as average link length (∆k = 0.23), closest lake distance (∆k = 0.22),

and stream density (∆k = 0.20) also had a stronger association at the lake watershed extent

rather than at the lake subwatershed extent (Table 1.2, Figure 1.7). An exception to this

pattern was observed with the baseflow connectivity metric where although greater differences

at the lake subwatershed extent were more strongly associated with P retention, the sign

of the effect was variable depending on measurement extent (i.e. the value of the P decay

parameter was positively related to connectivity metric values at the subwatershed extent

but was negatively related at the watershed extent). For several connectivity metrics, we

judged that differences in P decay among lakes with either low or high connectivity metric

values were not significant because they translated to differences in P retention that were less

than measurement precision (Table 1.2).

1.5 Discussion

Although prior studies have found that lake P retention is related to water residence time

(Brett and Benjamin, 2008; Cheng et al., 2010; Vollenweider, 1975), there is substantial

variation around this relationship, particularly at intermediate water residence times. We

found that some of this remaining variation could be explained using a hierarchical modelling

framework that accounts for differences in freshwater connectivity among lakes. Although we

found that the magnitude of this effect depends on the specific connectivity metric, our results

are consistent with the findings of previous studies showing that connectivity metrics are

associated with differences in lake carbon input fluxes and differences in lake nitrogen output

fluxes (Cardille et al., 2007; Schmadel et al., 2018). We also found important differences

in the association between connectivity metrics and P retention at different measurement

extents. Specifically, we found that P retention was more strongly associated with connectivity

measured at the broader lake watershed extent rather than connectivity measured at the

finer lake subwatershed extent.
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1.5.1 Connectivity and P retention

We found that differences in P retention among lake connectivity classes was influenced

by specific connectivity metrics including average link length, closest lake distance, and

stream density (Table 1.2, Figure 1.7). Indeed, these metrics were more strongly associated

with P retention than covariates typically used in statistical P retention models (e.g. lake

depth, Figure 1.1). Note that we were able to examine the influence of specific metrics as

separate effects apart from water residence time because our model structure treats them as

hierarchical coefficients on the P decay parameter k. As a result, although water residence

time remains the dominant effect on lake P retention, we were able to estimate the specific

influence of each metric in a way that is not possible using integrated water residence time

and connectivity metrics such as watershed transport capacity (Fraterrigo and Downing,

2008).

Several of the connectivity metrics that were most strongly associated with P

retention were weakly correlated with watershed size (Figure 1.4). The weak nature of these

correlations are consistent with the mixed results of prior studies linking watershed size to

lake processes. For example, Zimmer and McGlynn (2018) found that carbon export was

related to watershed size, but Smith (2003) found that the nitrogen flux was not strongly

related to watershed size. Taken together, our results and the results of prior studies suggest

that watershed size and lake depth alone may not always reflect functional differences in

potential material transport. One consequence of a correlation between connectivity metrics

and watershed size is that metrics derived from watershed size, such as catchment to lake

area ratio, are also likely to be associated with connectivity. Catchment to lake area ratio in

particular has been previously used as an approximation or proxy of water residence time

(Rasmussen et al., 1989; Sobek et al., 2007). Although our results differ from those of Soranno

et al. (2015) who found that the presence of an upstream lake connection was not strongly

associated with catchment to lake area ratio, our results suggest that catchment to lake area

ratio likely incorporates some connectivity information and caution is needed before using it
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as a proxy for water residence time.

Another lake characteristic that was strongly related to watershed size was P loading.

In particular, positive correlations between P loading and watershed size are consistent with

the idea that lakes in larger watersheds receive greater P loading (T-Prairie and Kalff, 1986).

A related observation is that the correlation between P loading and upstream lake area was

positive. This can be explained by the fact that larger watersheds often have greater numbers

of lakes nested within them (Zhang et al., 2012). Another notable result is that we observed a

weaker correlation between P loading and watershed area relative to the correlation between

P loading and subwatershed area. One explanation for this result is that land-use cover at

the finer lake subwatershed extent has more of an influence on P loading than land-use cover

at the broader lake watershed extent (Soranno et al., 2015).

1.5.2 Relative importance of connectivity spatial extent

One of the challenges in quantifying the effect of freshwater connectivity on lake P retention is

that it is not always known what spatial extent of the watershed is functionally connected to a

lake. We found that connectivity at the broader lake watershed extent rather than connectivity

at the finer lake subwatershed extent was more strongly associated with differences in lake

P retention. In addition, we found that individual characteristics such as lake depth (or

more discrete measures of connectivity such as the presence of an upstream lake) were more

strongly associated with P retention than any of the other connectivity metrics measured at

the lake subwatershed extent (Table 1.2). These findings contrast with Soranno et al. (2015)

who examined the association between lake nutrient concentrations (as opposed to retention)

and land-use measured at varying spatial extents and found that measurements at the finer

lake subwatershed extent rather than measurements at the broader lake watershed extent

were more strongly associated with lake nutrient concentrations. One explanation for the

difference between our results and those of Soranno et al. (2015) is that connectivity metrics

may reflect long-range watershed processes to a greater degree than land-use cover. An
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alternative explanation is that controls of lake P retention may differ compared to controls

on lake P concentration.

1.5.3 How connectivity metrics may influence P retention

Prior studies at regional extents have shown that P retention in streams and rivers is largely

determined by the fate of the particulate load fraction (Cushing et al., 1993; Kronvang, 1992;

Russell et al., 1998; Vanni et al., 2001). For instance, the findings of Jarvie et al. (2011)

show that riverine P loads can be controlled by nonpoint-source P delivery of particulate P.

Therefore, it stands to reason that P retention in lakes may also be largely determined by the

fate of the particulate load fraction. However, in the context of our broad-scale study it is

difficult to examine this relationship because although we have estimates of nonpoint versus

point source loading we do not have explicit estimates of particulate load fraction for large

numbers of lakes. Unfortunately, we cannot use nonpoint source loading as a direct proxy for

particulate load fraction because the two quantities do not have a consistent relationship.

For example, Russell et al. (1998) report that the particulate phosphorus fraction of nonpoint

source loads can be anywhere between 62 - 90% while Djodjic and Markensten (2018) report

that this fraction can be anywhere between 33 and 80%. This may explain why prior broad

scale studies that estimate lake P retention have not attempted to estimate separate effects

of particulate versus dissolved loading (Alexander et al., 2008; Brett and Benjamin, 2008).

We developed a conceptual model that places particulate load fraction in context

with other processes affecting P retention (Figure 1.1). We expected that both land-stream

and stream-lake connectivity influences how much particulate P is transported into lakes,

which in turn affects their P retention. This expectation is supported by the findings of

Cushing et al. (1993) as well as Guy et al. (1994) showing that particulate P can be transported

beyond the direct drainage from stream-adjacent hillslopes.

Despite our inability to test such differential transport processes across many lake

watersheds at broad scales, we note that such processes are indirectly supported by our finding
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that connectivity metrics are associated with lake P retention. For example, differential

transport of particulate matter whereby barriers to flux and differences in drainage path

configuration only become apparent beyond fine spatial extents may explain why we observed

stronger association of P retention with metrics measured at the broader lake watershed extent

rather than metrics measured at the finer scale lake subwatershed extent. Another finding

consistent with differential transport of particulate P is our observation that average link

length, which approximates stream network structure and along-stream transport potential

(La Barbera and Rosso, 1989), was one of the more strongly associated metrics with lake P

retention. Finally, it is notable that our stream density metric was influential at the lake

watershed extent but not at the lake subwatershed extent. Given that the stream density

metric captures the average distance or drainage potential between any streams in the network

and their adjacent hillslopes, floodplains, and wetlands (see Leibowitz et al., 2018), this

suggests that differences in terrestrial runoff of particulate matter from hillslope and riparian

areas are likely to be important for P retention.

Taken together, our findings are consistent with the idea that both connectivity

between lakes and streams as well as connectivity of lakes and their terrestrial watersheds

affect lake P retention. This conclusion matches that of prior studies showing that aquatic

transport of phosphorus and nitrogen at the sub-continental scale is strongly controlled

by processes affecting along-stream flux such as reservoir trapping (Alexander et al., 2008;

Schmadel et al., 2018).

1.6 Conclusion

We provide evidence that freshwater connectivity has an effect on lake P retention and that

connectivity metrics measured at the broader lake watershed extent more strongly captures

functional differences in the effect of connectivity on P retention among lakes compared to

connectivity metrics measured at the finer lake subwatershed extents. Furthermore, our

results suggest that lake P retention is related to both connectivity of lakes and streams as
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well as connectivity of lakes and their terrestrial watersheds. Taken together, our findings

suggest that a broader network perspective would be useful for the design of regulatory

frameworks and the development of best management practices focused on eutrophication,

given the importance of lake P retention in determining the trophic state of lakes. Specifically,

our findings highlight the need to consider cumulative network effects of P transport in

addition to localized transport mechanisms.

1.7 Supplemental information

It is difficult to examine the uncertainties surrounding the relationship between water residence

time and lake P retention because empirical measures of these quantities do not exist for

many lakes. One of the few comprehensive sources of these data is modelling studies which

produce largely unverified estimates of water residence time and P retention (Milstead et al.,

2013). Such model output data may not be appropriate for statistical P retention modelling

because P retention and water residence time values are not independently estimated. As an

alternative, we performed a more qualitative analysis fitting separate smoothed functions

to lakes of differing connectivity (see appendix source code for details). Specifically, we

used the connectivity data provided in LAGOS-NE (Soranno and et, 2017) and described in

detail by (Fergus et al., 2017) where lakes are grouped based on whether they have upstream

lake connections (DR_LakeStream), or upstream stream connections (DR_Stream), are

headwater lakes, or are isolated lakes.
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Figure S1.1: Relationship between residence time and phosphorus retention for inland lakes
with surface area greater than 4 ha in Northeastern USA (New England). Vertical dashed
lines denote lakes with intermediate residence times (within the interquartile range). Best fit
lines are colored based on whether they have upstream lake connections (DR_LakeStream),
or upstream stream connections (DR_Stream), are headwater lakes, or are isolated lakes.
Data from (Milstead et al., 2013).

Our study lakes encompassed a range of land-use cover types and nutrient levels. Here, we

examined whether a strong relationship of lake P retention with agricultural land use cover

could be obscuring relationships with connectivity metrics. We used P retention data from

the National Eutrophication Survey (Stachelek et al., 2018) and land cover data from the 1992

National Land Cover Database clipped to lake watersheds and available in the LAGOS-NE

dataset (Soranno and et, 2017).

Although our study considered many lakes spread across a broad spatial extent, we wanted to

assess whether their basic characteristics were representative of lakes in general. We compared

water quality (total phosphorus, chlorophyll concentration, and Secchi depth) of the lakes in

our study with other US lakes as measured by the stratified random sampling design of the

National Lakes Assessment (NLA) lake population (USEPA, 2016). Our lakes are similar in

most respects except that they are substantially larger and deeper than most NLA lakes.
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Figure S1.3: Comparison of selected lake characteristics among the stratified random sampling
design of the National Lakes Assessment (nla) and the haphazard sampling of the National
Eutrophication Survey (nes) lakes analyzed in the present study.
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CHAPTER 2

GRANULAR MEASURES OF AGRICULTURAL LAND-USE INFLUENCE
LAKE NITROGEN AND PHOSPHORUS DIFFERENTLY AT

MACROSCALES

Stachelek, J., Weng, W., Carey, C. C., Kemanian, A. R., Cobourn, K. M., Wagner, T.,

Weathers, K. C., and Soranno, P. A., 2020. Granular measures of agricultural land-use

influence lake nitrogen and phosphorus differently at macroscales. Ecological Applications.

doi:10.1002/eap.2187

2.1 Abstract

Agricultural land-use is typically associated with high stream nutrient concentrations and

increased nutrient loading to lakes. For lakes, evidence for these associations mostly comes

from studies on individual lakes or watersheds that relate concentrations of nitrogen (N) or

phosphorus (P) to aggregate measures of agricultural land-use, such as the proportion of

land used for agriculture in a lake’s watershed. However, at macroscales (i.e., in hundreds

to thousands of lakes across large spatial extents), there is high variability around such

relationships and it is unclear whether considering more granular (or detailed) agricultural

data, such as fertilizer application, planting of specific crops, or the extent of near-stream

cropping, would improve prediction and inform understanding of lake nutrient drivers.

Furthermore, it is unclear whether lake N and P would have different relationships to such

measures and whether these relationships would vary by region, since regional variation has

been observed in prior studies using aggregate measures of agriculture. To address these

knowledge gaps, we examined relationships between granular measures of agricultural activity

and lake total phosphorus (TP) and total nitrogen (TN) concentrations in 928 lakes and their

watersheds in the Northeastern and Midwest U.S. using a Bayesian hierarchical modelling

approach. We found that both lake TN and TP concentrations were related to these measures
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of agriculture, especially near-stream agriculture. The relationships between measures of

agriculture and lake TN concentrations were more regionally variable than those for TP.

Conversely, TP concentrations were more strongly related to lake-specific measures like depth

and watershed hydrology relative to TN. Our finding that lake TN and TP concentrations

have different relationships with granular measures of agricultural activity has implications

for the design of effective and efficient policy approaches to maintain and improve water

quality.

2.2 Introduction

Freshwaters are vulnerable to eutrophication in areas of high agricultural land-use and land

cover because agricultural activities are associated with high nutrient runoff and loading to

groundwater and streams (Allan, 2004; Arbuckle and Downing, 2001; Daniel et al., 2010;

Taranu and Gregory-Eaves, 2008). High runoff and loading in these areas is a result of

high rates of nutrient input combined with hydrologic modifications that decrease the travel

time of these inputs from the land surface to lakes (Blann et al., 2009). Surprisingly, while

some studies have found strong relationships between agricultural land-use and land cover

(hereafter referred to as “land-use” or LULC) and lake nutrient concentrations (Arbuckle and

Downing, 2001; Downing et al., 2001; Taranu and Gregory-Eaves, 2008), others have found

more mixed results (Jones et al., 2008), particularly in studies that include many lakes located

in multiple regions (Soranno et al., 2015). Further examples of such macroscale studies (see

Heffernan et al. 2014) in which lakes are spread across many regions at distances spanning

hundreds to thousands of kilometers include Collins et al. (2017) and Read et al. (2015), who

found that the strength of agriculture and lake nutrient relationships varied depending on

geographic region and lake characteristics.

Mixed results from prior studies may be due to two difficulties in quantifying lake

nutrient and agricultural land-use relationships. First, the pathways of nutrients from fields

to streams and ultimately to lakes are complex and indirect (Cherry et al., 2008; Heathwaite
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et al., 2003; King et al., 2005). For example, in order for nitrogen applied as fertilizer to reach

a lake, it must be transported to streams or groundwater in excess of microbial denitrification,

plant use, and microbial uptake. Then, it must travel, again, often undergoing repeated

chemical transformation as it passes through riparian buffers and along stream networks

before finally entering the lake (Maranger et al., 2018). Each step of the journey represents

an opportunity for those nutrients to be sequestered or removed. Further, overall hydrologic

transport is influenced by soil type (Naiman et al., 2010), and topography. Thus, the nutrients

that ultimately enter a lake are a function of filtering by the landscape as well as geochemical

transformation processes that are difficult to capture at broad scales (Canham et al., 2012;

Maranger et al., 2018).

Second, much of our evidence for a connection between agricultural land-use and

increased nutrient concentrations comes from studies focusing on a single watershed or on

several watersheds within a single geographic region (Capel, 2018; Daniel et al., 2010; Hayes

et al., 2015; Renwick et al., 2008). These studies tend to focus on very detailed measures of

agricultural activity such as tillage and other practices, nutrient amendments, and their spatial

arrangement. However, studies at broader spatial scales (i.e., the macroscale, Heffernan

et al. 2014, which aim to provide a more general view of relationships between lake nutrient

concentrations and agriculture, tend to focus only on relatively coarse measures of agricultural

activity (Filstrup et al., 2018; Read et al., 2015; Schmadel et al., 2019). As a result, it is

unclear to what extent the mixed results from prior broad-scale studies might be due to the

limited use of detailed measures of agricultural activity or simply from regional variation.

There are two ways in which detailed (i.e., granular) measures of agricultural activity

may be substituted for their coarse (i.e., aggregate) counterparts. The first is by using granular

measures that are recorded in the same locations as their aggregate equivalents but are more

descriptive. For example, in broad-scale studies, the proportion of land used for agriculture

in a lake watershed is sometimes replaced by separate representations of the land used for

pasture and the land used for row-crops (Abell et al., 2011; Collins et al., 2017). The second
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is by using granular measures that have the same description as their aggregate equivalents,

but that are measured in more specific locations. For example, a small number of lake studies

have compared the proportion of land used for agriculture in near-stream buffers versus the

watershed as a whole (Gémesi et al., 2011; Soranno et al., 2015). Although the term granular

can be used in a general sense to describe any detailed agricultural measure, we define the

term more narrowly as only those that have a specific aggregate counterpart (Table 2.1).

Prior use of granular data in broad-scale studies of lake water quality has been

limited. For this reason, findings from broad-scale studies may be less useful in applied

management settings because coarse (i.e. aggregate) land-use and land cover change metrics

have become less widely used policy instruments (Morefield et al., 2016). Instead, recent

policy interventions go beyond aggregate measures of agricultural activity to target more

specific measures such as implementation of specific farming practices, no-till agriculture,

and construction of riparian buffer strips (Capel, 2018; NRC, 2010; Yang et al., 2005). Thus,

broad-scale studies could be made more relevant for informing policy interventions if they

used covariates that have a similar level of granularity to those used in fine-scale studies. For

example, implementation of no-till agriculture policies may be better informed by covariates at

the granular crop level rather than solely by aggregate covariates like land used for agriculture

(Figure S2.1).

One likely reason that broad-scale studies have rarely used granular agricultural

data is that until recently, such data have not been available with corresponding lake nutrient

concentration data over large geographic extents. Although a few examples exist of studies

connecting granular agricultural data to either stream nitrogen or phosphorus concentrations

at the macroscale (Boyer et al., 2002; Bellmore et al., 2018; Metson et al., 2017), most

studies have focused on either nitrogen (N) or phosphorus (P) but not on both at the

same time (Alexander et al., 2008). Crucially, we are not aware of prior work examining

relationships between a multiple granular measures of agricultural activity on either lake N

or P concentrations at macroscales.
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Variable Granularity Median Q25 Q75
Ag (percent) Aggregate 42.0 25.00 63.0
Pasture (percent) Granular 14.0 7.20 24.0
Corn (percent) - 6.9 2.20 17.0
Soybeans (percent) - 4.5 0.86 14.0
Buffer Ag (percent) - 25.0 11.00 48.0
Buffer natural (percent) - 41.0 23.00 59.0
Fertilizer N (kg/ha) - 55.0 32.00 91.0
Fertilizer P (kg/ha) - 9.6 6.40 16.0
Manure N (kg/ha) - 27.0 17.00 45.0
Manure P (kg/ha) - 7.0 4.80 12.0
Forest (percent) Other 25.0 12.00 46.0
Wetlands (percent) - 2.8 0.52 8.2
N deposition (kg/ha) - 5.7 4.60 7.0
Precipitation (mm/yr) - 910.0 830.00 1000.0
Baseflow - 49.0 33.00 62.0
Wetland potential (percent) - 15.0 5.30 26.0
Soil organic carbon (g C/m2) - 4000.0 2900.00 5300.0
Clay (percent) - 10.0 5.00 17.0
Max depth (m) - 9.4 6.10 14.0
Watershed-lake ratio - 15.0 6.00 34.0

Table 2.1: Medians followed by first and third quantiles of predictor variables for 928 lakes.
Also shown is whether each predictor is defined as an aggregate or granular measure of
agriculture or as a non-agriculture (other) predictor. Dashed entries for the granularity
category indicate an identical categorization as the preceding predictor.

There are several plausible expectations, which are based on the findings of broad-

scale stream studies as well as the findings of fine-scale lake studies, for the type of relationships

between such measures and lake nutrient concentrations that may emerge at macroscales.

First, we expect that increased nutrient inputs to the land surface as fertilizer and manure

will increase lake nutrient concentrations (Bellmore et al., 2018; Renwick et al., 2008). Second,

we expect that lakes with watersheds that have high soil clay content and high soil organic

carbon content will have higher lake nutrient concentrations. This will occur because clay

soils tend to have higher rates of surface runoff and have higher organic matter content

relative to sandy soils, despite the tendency for higher organic matter content to increase

water storage and reduce surface runoff (Capel, 2018). Finally, we expect that lakes with
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stream networks characterized by extensive near-stream agriculture will have higher nutrient

concentrations because there will be less interception of agricultural runoff (Naiman et al.,

2010).

Although we can formulate potential expectations for relationships between agri-

cultural activities and lake nutrients at the macroscale by building on the findings of prior

studies, several key uncertainties remain. The first key uncertainty is the extent to which lake

and watershed characteristics, such as watershed hydrology and soil type, affect relationships

between granular measures of agricultural activity and lake nutrient concentrations at the

macroscale. For example, macroscale studies have found that lake P concentrations are

strongly dependent on lake depth (Collins et al., 2017), but the degree to which granular

agricultural data provide additional explanatory power is unknown. Similarly, Abell et al.

(2011) found that watershed to lake area ratio (i.e. lake water residence time) was positively

related to lake N concentrations after controlling for aggregate measures of agricultural

land-use, but it is unknown whether this mediation effect would also affect relationships with

more granular measures of agriculture.

The second key uncertainty is the extent to which relationships between granular

measures of agricultural activity and lake nutrient concentrations vary regionally. For example,

previous macroscale studies on lake nutrient concentrations have found that relationships

between lake chlorophyll and nutrient concentrations vary regionally according to hydrologic

subregions (Wagner et al., 2011; Qian et al., 2019). Models in which separate relationships

(e.g. slopes) are estimated for different regions, such as those used by Wagner et al. (2011),

can be used to test differences among regions in the sensitivity to nutrient predictors. Wagner

et al. (2011) found that the slope of the chlorophyll to P relationship was notably higher

in several of their study regions and found that lakes with high pasture land-use in their

watershed were more sensitive to changes in P concentrations (larger, positive slope estimate).

They suggest that elevated sensitivity in high pasture regions is due to dual N and P nutrient

enrichment associated with this land cover type. Given the findings of this and other studies
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in stream ecosystems (Alexander et al., 2008), it follows that other relationships in lakes

may vary regionally, but whether or not this includes relationships with granular measures of

agricultural activity remains unknown.

We addressed the knowledge gaps described above by asking two questions using

data from approximately 900 lakes in the Northeastern and Midwestern US: 1) How do

granular measures of agricultural activity relate to lake N and P concentrations? And, 2)

How do relationships between agricultural activities and lake nutrients vary regionally among

hydrologic and climatic regions? To answer these questions, we fit statistical models of lake

nutrient concentrations as a function of granular measures of agricultural activity such as

the proportion of watershed area land-use of specific crops, and near-stream land-use, as

well as fertilizer and manure applications. We also included a variety of lake and watershed

characteristics as predictors to account for the influence of other drivers. Finally, our models

included a hierarchical component where relationships between watershed land-use and

lake nutrient concentrations were allowed to vary among hydrologic subregions to examine

potential regional variation in these relationships.

2.3 Methods

2.3.1 Data description

We analyzed data on lake total nitrogen (TN) and total phosphorus (TP) concentrations from

the LAGOS-NE data product (Soranno and Cheruvelil, 2017a). The LAGOS-NE nutrient

data are limited to surface (or “epilimnetic”) samples and were derived from federal, state,

tribal, and non-profit agencies, as well as university researchers and citizen scientist data

collections (Soranno and et, 2017). We collapsed lake nutrient data to long-term median

values computed using all data from the summer stratified period (i.e. 15 June through

15 September) available for each lake between 2000 and 2010. For the lakes that met our

selection criteria (see below) the median number of samples per lake was nine (range = 3-94)

and the median number of years sampled was four (range = 2-10).
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Our first source for granular agricultural information was the 2010 Cropland Data

Layer (CDL, USDA-NASS 2019), which we used to generate lake watershed and stream buffer

estimates of the proportion of land cover due to specific crops such as corn and soybeans.

We used the R package cdlTools to access CDL products (Chen and Lisic, 2018). We used

the 2010 CDL data because this was the first year of high resolution (30 x 30m) CDL data

collection that matched our lake nutrient data collection window. Because the CDL contains

detailed coverage for dozens of crops, including rare crops with little to no coverage, we

re-categorized CDL data based on Lark et al. (2015) to a more limited set of categories (Table

S2.1).

As a more granular representation of watershed agricultural land use, we measured

the proportion of land cover in agricultural and “natural” land-uses in 100-m buffers of lake

shorelines and streams for each lake watershed. We chose a 100-m buffer width because

this width is inclusive of nearly all “riparian buffers” (Mayer et al., 2007). Here agricultural

land-use is defined in the aggregate sense as the proportion of land used for agriculture in

a lake’s watershed whereas “natural” land-uses include the sum of all non-agriculture and

non-developed CDL classes. We identified the streams associated with each lake using the

stream network extraction tool in the nhdR interface (Stachelek, 2019b) to the National

Hydrography Network (USGS, 2019). We compiled soil characteristics for each lake watershed

using the Gridded Soil Survey Geographic Database (gSSURGO, Soil Survey Staff 2016)

where we used the python package gssurgo (Stachelek, 2019a) to access gSSURGO products.

One such product was wetland potential, defined as the percentage of the soil grid that meets

the criteria for hydric soils formed under conditions of saturation, flooding, or ponding long

enough to develop anaerobic conditions but not so long as to be classified as a permanent

waterbody (Soil Survey Staff, 2016). Finally, we compiled mean annual nutrient inputs via

fertilizer and manure to lake watersheds from 1982-2001 using county level data provided

by Ruddy et al. (2006). We spatially aligned these county level estimates to lake watershed

polygons provided by LAGOS-NE (Soranno and Cheruvelil, 2017b) using the area-weighted
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interpolation functions provided by the sf R package (Pebesma, 2018). All of our data and

data processing code are available at doi:10.5281/zenodo.3754916.

2.3.2 Location information

We restricted the lakes included in the study to those located within the footprint of LAGOS-

NE which includes lakes located in 17 Northeastern and Midwest U.S. states (Soranno and

et, 2017). We excluded lakes from our analysis if they had a surface area > 400 km2 or a

maximum depth > 35 m. These removals resulted in exclusion of approximately 40 lakes

which we regarded as outliers that would likely have undue influence on model results because

such large and deep lakes are likely to respond differently to enrichment as a result of enhanced

stratification. To ensure an adequate comparison between aggregate and granular measures

of agriculture, we further limited lakes in our study to those with at least 10% of the total

watershed area devoted to agricultural land-use and those that were sampled at least three

times between 2000 and 2010. A total of 928 lakes met these selection criteria (Figure 2.1).

Because we focused on lakes in agricultural watersheds, more than 35 percent of lakes in

our study are considered eutrophic to hypereutrophic using chlorophyll a as a diagnostic

versus only 15 percent for all lakes from Soranno and et (2017) located within our study

extent (Figure S2.3). For the regional terms in our models, we used hydrologic regions at

the subbasin (i.e. HUC4) level because this level was small enough to give a sense of overall

spatial variation but large enough to encompass sufficient numbers of lakes to estimate within

region variance.

2.3.3 Model overview

We evaluated the effects of agricultural activities on lake TN and TP concentrations using a

Bayesian hierarchical modelling approach. A list of lake and watershed covariates with their

summary statistics is available in Table 2.1. In the first part of our model evaluation, we

compared models that each had only a single measure of watershed land-use along with all
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Figure 2.1: A) Map of lake locations and B) hydrologic (HUC4) regions.

remaining non-watershed land-use predictors. These non-watershed land-use predictors were

included in every fitted model and were defined as measures of near-stream land-use, soil

characteristics, and lake and watershed characteristics. We took this approach of evaluating

one watershed land-use measure at a time for two reasons: 1) because measures of watershed

land-use were highly correlated, and 2) because it allowed us to more rigorously test our

expectation that granular measures of agriculture provide additional explanatory power

beyond that offered by more typical aggregate measures of agriculture. In the second part of

our model evaluation, we selected the top-ranked watershed land-use model according to our

selection criteria for lake N and P (see below) for further inspection of their standardized

coefficient values (See Table 2.1). Our models were of the form:

yi = N(αj(i) + β1 ∗X1i...βn ∗Xni + γ1j(i) ∗W1i + γmji ∗Wmi)(
αj
γ1j

)
∼ MVN

((
µα
µγ1

)
,Σ
) (2.1)

where yi is either TN or TP concentration for lake i, and β are “global” (i.e. fixed effect)

coefficients. This set of global coefficients included estimates for watershed soil characteristics,

near-stream land-use, as well as fertilizer and manure inputs for each lake (Xi). Whereas

β coefficients were estimated as fixed effects, γ coefficients and α intercepts were estimated

as varying (i.e. random) slopes and intercepts respectively among m hydrologic regions j on

watershed land-use (Wij). Region specific intercepts α and γ slopes were assumed to come

from a multivariate normal distribution (MVN) where µα and µγ1 are their respective grand
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mean (i.e., population level) estimates. We tested a variety of watershed land-use types

for Wij , including both granular and more aggregate measures of agricultural activity. Our

only aggregate measure of agricultural activity was agricultural land-use whereas we used

several granular measures of agricultural activity. These included both detailed measures

of watershed land-use such as corn and soybean cover as well as more detailed measures of

nutrient inputs and near-stream land-use (Table 2.1). We included measures of both N and

P inputs in both N and P models because of the possibility for stoichiometric interaction.

Given our regularization scheme (i.e. our use of “horseshoe priors” described below) there

was little reason to exclude P inputs from N models (and vice versa) because unless P inputs

are strongly related to lake TN concentration, their coefficient will be forced close to zero.

All models had the same set of fixed effect coefficients while each individual model

used a single different watershed land-use variable as a random effect. This modelling strategy

is supported by our view that watershed land-use is an indirect proxy (sensu Burcher et al.

2007; Hayes et al. 2015; King et al. 2005) for other unquantifiable agricultural activities.

Therefore, we expect the makeup of specific activities represented by this indirect measure to

vary regionally. This contrasts with other predictor variables e like lake depth, where we have

little evidence from prior studies that its effect on lake nutrient concentrations is spatially

variable. Prior to model fitting, we examined the bivariate relationships between lake nutrient

concentrations and all predictor variables using Pearson’s correlation coefficients (Figure A5)

to determine the overall structure of the predictor dataset. We did not use the results of

this exercise for building our model, performing model selection, or variable selection. For

qualitative analysis of our model results, we classified predictor variables following Collins et al.

(2017) into categories based on the dominant mechanism affecting lake nutrient concentrations,

which includes nutrient inputs, nutrient transport, spatial configuration of land-use in stream

buffers (Spatial config.), lake characteristics, and watershed land-use (LULC).

We fit all models in a Bayesian framework using the brms R package interface to

the Stan statistical program (Bürkner et al., 2017; Stan Development Team, 2017). We used
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horseshoe shrinkage priors on all fixed effect coefficients to evaluate variable importance

(Carvalho et al., 2010). We considered a response variable sensitive to a given predictor if the

predictor’s 95% credible interval did not overlap 0. We standardized all predictor variables

by subtracting the mean of each variable and dividing by their respective standard deviation

so that model coefficients could be compared on roughly the same scale. As a result, the

relative sensitivity of a response variable to a particular predictor is related to the relative

magnitude of its coefficient estimate. We evaluated model fit of each watershed land-use

variable (i.e., each model having one regionally varying coefficient) in two ways. First, we

computed a Bayesian R2 following the method of Gelman et al. (2017) and second, we

computed differences in expected log predictive density (ELPD) using the leave-one-out cross

e validation routines provided by the loo R package and implemented in brms (Vehtari et al.,

2017). The loo package uses leave-one-out cross validation to estimate overall model error by

computing the average error of models iteratively trained on all the data except for a single

point. ELPD values have a similar interpretation to information criterion measures such

as Akaike information criterion (AIC) or Watanabe-Akaike information criterion (WAIC)

except that values are on a different scale (Gelman et al., 2013). Typically, models are

considered to be different if they are separated by an AIC value of greater than 2 (Anderson

and Burnham, 2002), which is equivalent to an ELPD value of -1 (Gelman et al., 2013). We

report differences in ELPD among models using the notation ∆ELPD. We selected the model

with the lowest absolute value ELPD as the “top-ranked” model for detailed reporting and

discussion as this signifies the model with the lowest leave one out cross-validation error for

N and P respectively.

We used the default settings of brms to generate posterior estimates using four

chains of 4,000 iterations each with no thinning and discarding the first 1,000 iterations. We

examined model fits to ensure that all models had acceptable convergence of MCMC chains

and had approximately normal model residuals. We further tested for spatial correlation

among model residuals using the spind R package (Carl et al., 2018). All of our code for
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model fitting and evaluation is available at doi:10.5281/zenodo.3754916.

2.4 Results

2.4.1 Effects of agriculture on lake nitrogen and phosphorus

Lake characteristics (e.g., maximum depth and watershed to lake area ratio) along with

measures of nutrient transport (e.g., baseflow) and near-stream agriculture were significant

predictors in all lake N and P models that we fit. When we compared among different models

for each nutrient individually, we found that those with agricultural watershed land-use

(in the aggregate sense) were top-ranked (i.e., had the lowest absolute value leave-one-out

cross validation score) for models of both TN and TP concentrations (Figure 2.2, Table 2.2).

Although we observed no difference in the specific watershed land-use predictor used in each

top-ranked model, we found differences in the extent to which each top-ranked model was

substantially different from lower ranked models. For example, in the case of P, all models

had nearly identical R2 (0.63) and the difference between the top-ranked model and second

ranked model was modest (∆ELPD = 0.41). For N models, however, agricultural and corn

land-use models had higher R2 (0.58) compared to other models and the difference between

the top-ranked and second ranked model was more substantial (∆ELPD = 2.58, Figure 2.2,

Table 2.2).

When we looked more closely at each top-ranked model, we found similarities in

the types of predictors that contributed significantly to the top-ranked N and P models

(Figure 2.3). First, both N and P models included measures of lake characteristics such as

maximum depth and watershed to lake area ratio as significant predictors, with the sign of

these associated coefficients matching our conventional understanding, in which shallower

lakes and lakes with greater hydrologic loads have higher TN and TP concentrations. Second,

both models included measures of nutrient transport such as baseflow and precipitation, in

which lakes with a “flashier” hydrology (i.e., having lower baseflow) where incoming water

is primarily from surface runoff rather than from groundwater, had higher TN and TP
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Figure 2.2: Population level slope estimates (µγ) for the effect of watershed land-use cover
on lake TN and TP from six candidate models. Values shown are posterior medians (filled
circles) and 95% credible intervals (solid lines). Also shown is a comparison to a zero effect
(solid vertical line). Values that do not overlap zero are shaded in red. Coefficient estimates
are reported relative to standardized predictor variables centered at zero with unit variance.

response term R2 LOO-ELPD
tp ag 0.63 0.00
tp wetlands 0.63 -0.41
tp corn 0.63 -0.59
tp pasture 0.63 -0.75
tp forest 0.63 -0.76
tp soybeans 0.63 -1.43
tn ag 0.58 0.00
tn corn 0.58 -2.58
tn wetlands 0.54 -16.41
tn soybeans 0.53 -20.88
tn pasture 0.53 -21.01
tn forest 0.53 -22.37

Table 2.2: Diagnostics for each model listed by regionally varying coefficient. Table is
sorted by decreasing R2 and expected log predictive density (ELPD). ELPD has a similar
interpretation to information criterion measures like AIC. Typically models are considered to
be different if they are separated by an Akaike information criterion (AIC) value of greater
than 2, which is equivalent to an ELPD value of -1.
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Figure 2.3: Global (fixed effect) coefficient values (β, for all non-LULC predictors) and
population level estimates for the effect of watershed land-use (µγ , for LULC) on lake TN and
TP for each respective top-ranked model. Note that the values for LULC here are identical
to their corresponding values in Figure 2. Values shown are posterior medians (filled circles)
and 95% credible intervals (solid lines). Also shown is a comparison to a zero effect (solid
vertical line). Values that do not overlap zero are shaded in red. Horizontal bars separate
coefficients in distinct predictor categories. Coefficient estimates are reported relative to
standardized predictor variables centered at zero with unit variance and correspond with β
(and µγ for LULC) from Equation 2.1.

concentrations. Finally, both models indicated that high near-stream agriculture (i.e., a high

proportion of the area adjacent to the stream network was in agricultural land-use) was

associated with lakes having higher TN and TP concentrations. Where N and P models

differed was in the effect of soil clay content, in which soils with low clay content were

associated with high lake N but had no significant relationship with P.

Although top-ranked N and P models shared some similarities in the type of

predictors that contributed significantly to each model, the coefficients of these models

differed in magnitude, and thus the top-ranked models varied in their sensitivity to specific

predictors (Figure 2.3). For example, the top-ranked P model was more sensitive to lake
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characteristics, whereas the top-ranked N model was more sensitive to watershed land-use.

Quantitatively, lake TP concentrations were more sensitive to maximum depth (βdepth:

median = -0.39, SD = 0.04) compared to lake TN concentrations (βdepth: median = -0.14,

SD = 0.04); whereas lake TN concentrations were more sensitive to watershed agriculture

land-use (βag: median = 0.44, SD = 0.11) compared to lake TP concentrations (βag: median

= 0.10, SD = 0.08). Finally, although we found that near-stream agriculture was associated

with both higher TN and TP concentrations (i.e., a source-effect of near-stream agriculture),

there was not a significant difference in the magnitude (i.e., sensitivity) of this coefficient

between N (βbufferag: median = 0.16, SD = 0.06) and P (βbufferag: median = 0.12, SD =

0.06) models.

No predictors in the nutrient input category appeared to be strongly related to

either TN or TP concentrations. One explanation may be that these variables co-varied

with watershed and near-stream land-use variables (Figure A5). In an attempt to further

investigate this possibility, we fit alternative models excluding all land-use predictors. The

results show that, at least in the case of N, removing these predictors caused model variance

to be apportioned from watershed and buffer land-use predictors to N input and P fertilizer

predictors (Figure A4). However, this non-land-use N model had a relatively poor fit (R2 =

0.40) compared to the top-ranked model that included land-use as a predictor (R2 = 0.58).

2.4.2 Regional variation in agriculture sensitivity

Both TN and TP concentrations were sensitive to measures of watershed land-use as well as

near-stream agriculture (Figure 2.2, Table 2.2). Despite these similarities, we found differences

in both the magnitude of these effects and the extent to which we observed regional variation

in watershed land-use sensitivity for N and P models (Figure 2.4). For P, there was little

evidence that sensitivity to watershed land-use was regionally variable. More specifically,

the credible intervals for the slope of each individual region overlapped the global slope

estimate (Figure 2.4). In contrast, for N we found evidence for regional variation in sensitivity
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Figure 2.4: Effect of watershed land-use (γj) for individual regions in the top-ranked lake N
and P models. Values shown are posterior medians (filled circles) and 95% credible intervals
(solid lines) for individual hydrologic units (HUC4s) ordered from top to bottom according
to longitude (west to east). Also shown is a comparison to a zero effect (solid vertical line).
Values that are different from the population level effect are shaded in red.

to watershed land-use. For this nutrient, the credible intervals for 2 of the 37 regions did

not overlap the global estimate (Figure 2.4). These regions were found in parts of Iowa,

Minnesota, and Illinois and appear to be more sensitive to watershed land-use – i.e., lake N

increases at a faster rate per unit increase in agricultural land-use compared to other regions

(Figure 2.5). The median soil clay content of watersheds in these regions was higher than the

median across watersheds in all other regions (Figure 2.6). Furthermore, these two regions

had a unique combination of both high soil clay content and extensive tile drainage (Figure

S2.6).
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Figure 2.5: Location of hydrologic regions sensitive to watershed land-use cover corresponding
to highlighted credible intervals in Figure 2.4
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Figure 2.6: Histograms showing the distribution of soil clay content for watersheds in regions
sensitive to watershed land-use (see highlighted credible intervals in Figure 2.4) relative to
watersheds all other regions. Medians for each group are shown as vertical dashed lines.

2.5 Discussion

2.5.1 Effects of granular measures of agriculture on lake nitrogen and phospho-
rus

There is substantial unexplained variation around simple linear relationships between ag-

gregate representations of watershed land-use in agriculture and both lake N and P (Figure

S2.2). Our study was designed to examine these relationships in greater detail by testing

whether more granular measures of agriculture could help explain some of this uncertainty for

both N and P, and whether there were regional differences in these relationships. In sum, all

models for TN and TP concentrations included at least one granular measure of agriculture,

but there were also important differences between N and P related to the type of measures
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that were important to each. For example, we found little benefit of increased granularity of

description (i.e., where measures are recorded in all the same locations as their aggregate

equivalents) but consistent benefit of granular representation of the spatial configuration of

land-use in near-stream buffers.

2.5.2 Spatial configuration

The result showing that lake TN and TP concentrations are sensitive to the spatial configura-

tion of land-use in near-stream buffers is consistent with our expectation and prior research.

Specifically, our finding that model coefficients on near-stream agriculture (i.e., agricultural

land-use in stream buffers) in all N and P models were significant and positive indicates a

nutrient-delivery effect of stream buffer agriculture and suggests that the spatial configuration

of agriculture with respect to stream buffers has a detectable influence on both lake N and

P at macroscales. This is consistent with prior studies conducted over more limited spatial

extents which examined relationships between lake or stream nutrient concentrations and

agricultural land-use in stream buffers (Diebel et al., 2009; Baker et al., 2006; Gémesi et al.,

2011; Soranno et al., 2015). In contrast to near-stream agriculture, we found that near-stream

“natural” land-use was not significant in either N or P models. While we cannot definitively

answer why, it may be related to the role that natural buffers play in nutrient cycling for

N and P (Alexander et al., 2008; Canham et al., 2012). In the case of N, natural buffers

may reduce stream loading by facilitating denitrification, whereas, in the case of P, natural

buffers may trap particulate bound material without necessarily removing it (Mayer et al.,

2007; Naiman et al., 2010). An alternative possibility is that we are observing a scale effect

whereby the delivery effect of near-stream agriculture is spatially consistent whereas the

trapping and removal effects of N and P by natural buffers is more spatially variable (Pärn

et al., 2012). Finally, we may not have observed a protective effect of natural buffers because

natural land-use in buffers is too coarse of a proxy for “riparian buffers” composed of forest

or herbaceous vegetation (Mayer et al., 2007).
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2.5.3 Crop type

We found that for N models, land-use of specific crops was significant, although it was

not found in the top-ranked model. Specifically, we found that watershed land-use in corn

production was a significant predictor in the second-ranked N model (Table 2.2). In the case of

P by contrast, neither aggregate nor granular measures of watershed land-use were significant

in any models (Figure 2.2). This can be explained by our finding that all watershed land-use

metrics had weak relationships with lake P, especially relative to the strong relationships we

observed between P and other factors like lake depth, hydrology, and near-stream agricultural

land-use. Here, our finding is consistent with prior studies in stream ecosystems showing that

the influence of hydrology exceeds that of agricultural land-use or anthropogenic P inputs

(Metson et al., 2017).

2.5.4 Nutrient inputs

None of the nutrient input variables were significant for either N or P models. On the surface,

this would seem to contradict the findings of prior research such as that of Bellmore et al.

(2018), who found that stream TN concentrations were more strongly controlled by N input

predictors relative to measures of either watershed or near-stream land-use. However, our

finding has several alternative explanations. First, differences between our lake study and the

Bellmore et al. (2018) stream study may simply point to differences in the controls on stream

nitrogen concentrations relative to lake nitrogen concentrations (Allan, 2004; Canham et al.,

2012). Second, our finding that N and P were insensitive to nutrient input variables may be

a result of shared variance between nutrient input variables and watershed land-use. This

makes sense given that agricultural land-uses and corn land-use in particular are associated

with high rates of fertilizer and manure application (Powers, 2007). To test this explanation,

we formulated N models without a watershed land-use term and observed that model variance

was transferred from watershed land-use to the nutrient input terms total N input and P

fertilizer (Figure S2.4). While the positive coefficient on total N input has a straightforward
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interpretation, the negative coefficient on P fertilizer is unclear. Rather than evidence of a

true inverse relationship between P fertilizer and N (or evidence for stoichiometric interaction

sensu Paerl et al. 2016, we interpret the negative coefficient on P fertilizer as evidence of

either model misspecification (i.e., model fit was poor compared to the model with land-use

because N was very sensitive to land-use) or as evidence of multicollinearity among nutrient

input variables (Figure S2.5). Thus, we think that it is likely that the removal of one of the

key drivers of N (being land-use) caused model variance to be transferred to nutrient input

predictors generally such that the specific highlighting of P fertilizer is a result of noise rather

than a true relationship.

2.5.5 Nutrient transport

An important category of predictors in our models was nutrient transport. For example, we

found that baseflow was a significant predictor in all N but especially all P models. This is

consistent with prior research at macroscales showing the sensitivity of lake nutrients to this

metric (Collins et al., 2017). In contrast to baseflow, we found that watershed soil clay content

was a significant predictor in all N models but not in any P models. Furthermore, we found

that the coefficient on soil clay content was negative, which was contrary to our expectation,

and prior research. It seems to suggest a negative correlation between clay content and N.

However, upon closer inspection, we did not find evidence for such a relationship. Instead,

we found evidence for a non-linear relationship, which may explain the negative coefficient

on clay, whereby clay and TN were positively correlated over most of the range of watershed

clay content but were negatively correlated in watersheds with very high soil clay content (>

20%; Figure S2.7). This non-linear relationship may be an artifact of the specific non-random

sampling of our lakes whereby the lakes with extremely high soil clay content watersheds

happen to have extremely long water residence times leading to extensive removal of N loads

due to denitrification (Groffman et al., 2009). Overall, granular measures of agriculture were

significant in both N and P models. However, the contribution of such measures relative
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to other non-agricultural predictors was greater for N models (Figure 2.2, Figure 2.3). One

reason why granular measures of agricultural activity had a greater effect on N models may

be that variation in N is less effectively captured solely by lake and watershed characteristics

owing in part to the more complex nature of transformations in the nitrogen cycle. This

finding is consistent with that of Collins et al. (2017) and Wagner and Schliep (2018) who

found that lake depth coefficients were of a much higher magnitude for P relative to N. This is

expected since depth strongly controls internal P loading (i.e., recycling), which is a dominant

control on lake phosphorus dynamics (Søndergaard et al., 2013).

2.5.6 Regional variation in agriculture–nutrient relationships

The macroscale nature of our study motivated our second research question examining how

relationships between agricultural activities and lake nutrients vary regionally. This is because

recent research has shown that analyzing macroscale lake datasets without considering the

possibility of regionally varying relationships runs the risk of drawing imprecise or incorrect

conclusions because it can lump together lakes with fundamentally different responses to a

given predictor variable (Qian et al., 2019). Additionally, we looked at this question because

prior studies have shown regional variation in the relationship of lake nutrient concentrations

to aggregate measures of agriculture (Wagner and Schliep, 2018).

In our study, we found mixed evidence for regional variation in relationships with

watershed land-use, depending on the lake nutrient response variable. For N, we found

evidence for regional variation whereby lakes in two of the 37 regions were more sensitive

to changes in agricultural land-use relative to other regions. The reasons for this elevated

sensitivity are unclear, but one possible reason may be that watersheds in these more sensitive

regions had higher median soil clay content than the median soil clay content of watersheds

in less sensitive regions (Figure 2.6). Higher soil clay content in particular may ultimately

control the nitrogen content of field runoff because it is associated with more direct (i.e., tile)

drainage. For example, maps produced by Capel (2018) suggest that our more sensitive regions
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correspond roughly with areas where field exports of nutrients are likely to bypass trapping

by riparian buffers. As evidence of this association, data from Nakagaki and Wieczorek (2016)

indicate that watersheds in these two sensitive regions had a unique combination of high soil

clay content and extensive tile drainage (Figure S2.6).

For P, we found no evidence for regional variation in its relationship with watershed

land-use. This finding, that watershed land-use can be modelled as a global (fixed) effect,

is consistent with that of Taranu and Gregory-Eaves (2008), who found no statistically

significant differences in region-specific relationships between lake P and agricultural land-use.

However, it is inconsistent with that of Wagner et al. (2011), who found regionally variable

relationships between lake P and agricultural land-use using a multilevel modelling framework.

One reason that both our analysis and the Taranu and Gregory-Eaves (2008) study did not

observe regional variation in the watershed land-use versus P relationship may be that P is

so strongly controlled by lake depth that there is little additional explanatory power offered

by including a watershed land-use term. In addition, if lake P is controlled primarily by lake

depth, which we can assume does not change with time, then our results may explain the

finding of Oliver (2017) that lake P trends are spatially consistent whereas lake N trends

have distinct regional variability.

2.5.7 Management implications

Knowledge of differences in the drivers of lake N and P can support the design of effective and

efficient policy approaches to maintain or improve water quality. For instance, our finding of

regional variation in the relationship between lake TN concentrations and watershed land-use

in agriculture suggests spatial targeting of best management practices (BMPs) to specific

regions known to be highly sensitive (Holmes et al., 2016). In addition, our finding of strong

relationships between lake TP concentrations and lake characteristic predictors contrasts with

the strong relationships we observed between watershed land-use and lake TN. Given that

watershed land-use, rather than lake characteristics, is a more feasible management target,
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our results suggest that the cost-effectiveness of BMPs could differ depending on whether

the goal is to protect against excess N, P, or both (Paerl et al., 2016). For P, our analysis

suggests that nutrient control policies are likely to be especially effective in shallow lakes

and lakes with low baseflow (i.e., those with flashier hydrology). Conversely, phosphorus

control in deeper lakes and reservoirs with long residence times will likely require recovery

efforts in addition to prevention efforts due to the long time-scales of stored (i.e., legacy)

P (Powers et al., 2015). In contrast to P, our results show that lake TN concentrations

are more sensitive to watershed land-use. This suggests that policies to enhance the use

of BMPs to reduce N inputs to lakes are likely to require a greater degree of stakeholder

involvement, possibly through consideration of tradeoffs between land retirement and working

lands programs (Capel, 2018; NRC, 2010).

2.5.8 Future research priorities

Due to a lack of temporally resolved data, our study focused on spatial patterns in sensitivity

of lake TN and TP concentrations to measures of agricultural activity and did not examine

the possibility that such relationships could be temporally variable. A consequence of this was

that we assumed that relationships between lake N and P relative to agricultural drivers did

not change over our data collection window (2000 - 2010). However, there are several instances

where time may be important, and these would likely be fruitful areas for future research. For

example, Lark et al. (2015) showed marked conversion of conservation reserve program (CRP)

lands to cropland throughout the footprint of our study from 2008 to 2012. Such changes in

land-use could make it more difficult to quantify lake sensitivity to agriculture if relationships

vary through time especially if relationships are subject to threshold effects (Renwick et al.,

2008). A more subtle illustration of when time may be important is when field-scale nutrient

export is highly dependent on episodic hydrology. For example, a number of previous studies

have shown that field-scale nutrient export of N is greatest when a series of dry years is

followed by a wet spring (Motew et al., 2017; Strickling and Obenour, 2018). It might make
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sense then to organize modeling around whether lake watersheds are generally subject to

slowflow, fastflow, or drainflow (Capel, 2018) nutrient transport rather than solely taking

a spatial regionalization approach (i.e., using HUCs). Barriers to more detailed temporal

approaches include greater demands of spatio-temporally resolved data products. Overall, our

results point to hydrology predictors like baseflow as an instance where we only have spatially

coarse information and development of more granular estimates of watershed hydrology,

possibly using the output of hydrology models, would likely improve future research efforts.

2.6 Conclusion

We show that granular measures of agricultural activity are related to both lake N and P and

that these relationships are regionally variable for lake N. Taken together, our results suggest

that lake TP concentrations are more strongly driven by lake characteristics; whereas, lake

TN concentrations are more strongly driven by watershed land-use. A consequence of our

finding is that lake TP concentrations are largely predictable from lake-specific measures such

as near-stream land-use, lake depth, and transport metrics like baseflow; whereas, accurate

predictions of lake N likely requires not only lake specific information (including granular

measures of agriculture) but also consideration of regional context due to complex regional

variation of soil characteristics. Such differences in lake nutrient model sensitivity to measures

of agricultural activity may affect the outcome of policies to enhance water quality depending

on whether they focus on lake N or P.
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2.7 Supplemental information

Total Ag

Total Ag

Pasture

Row Crops

Ag Cover Type

Corn

Soybeans

Pasture

Individual Crops

Figure S2.1: Example of increasing granularity for total Ag to Ag versus pasture, to pasture
versus specific crops. For illustration, only corn, soybeans, and pasture are shown rather
than all CDL land-use categories.

Category Description
Corn Corn
Corn Sweet corn
Corn Pop or orn corn
Corn Non irrigated corn
Forest Forest
Forest Deciduous forest
Forest Evergreen forest
Forest Mixed forest
Pasture Grass pasture
Soybeans Soybeans
Soybeans Non irrigated soybeans
Wetlands Wetlands
Wetlands Woody wetlands
Wetlands Herbaceous wetlands

Table S2.1: Category definitions from the 2010 CDL. See code supplement for listing of
variables classified as ’ag’ (doi:10.5281/zenodo.3754916).
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Figure S2.2: Lake nutrient concentrations plotted against percent watershed agriculture.
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Figure S2.3: Lake trophic state in our study lakes versus all lakes from Soranno and et (2017)
located within our study extent. Trophic state based on the chlorophyll criteria from Carlson
and Simpson (1996).
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Figure S2.4: Global (fixed effect) coefficient values and credible intervals for top-ranked
lake TP and TN models when land-use predictors are excluded. Values shown are posterior
medians (filled circles) and 95% credible intervals (solid lines). Also shown is a comparison to
a zero effect (solid vertical line). Values that do not overlap zero are shaded in red. Horizontal
bars separate coefficients in distinct predictor categories. Coefficient estimates are reported
relative to standardized predictor variables centered at zero with unit variance and correspond
with β from Equation 2.1.
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Figure S2.6: Scatterplot showing the median clay content of watersheds in our hydrologic
regions plotted against percent tile drainage from Nakagaki and Wieczorek (2016). The
regions that are highly sensitive to agricultural land-use from Figure 4 are highlighted in red.
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Figure S2.7: Scatterplot showing the non-linear relationship between watershed clay content
and lake TN concentration. Vertical dashed line shows transition between a positive and a
negative correlation (r) between the two variables. Solid red line shows the fit of a generalized
additive model from the mgcv R package.
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CHAPTER 3

GEOMETRIC MODELS OVERESTIMATE LAKE DEPTH DUE TO
IMPERFECT SLOPE MEASUREMENT

Stachelek, J., Hanly, P. J., and Soranno, P. A., In Prep. Geometric models overestimate lake

depth due to imperfect slope measurement. to be submitted to Water Resources Research

3.1 Abstract

Lake depth is a critical characteristic that influences many important ecological processes in

lakes. Unfortunately, lake depth measurements are labor-intensive to gather and are only

available for a small fraction of lakes globally. Therefore, scientists have tried to predict

lake depth from characteristics that are easily obtained for all lakes such as lake surface

area or the slope of the land surrounding a lake. One approach for predicting lake depth

simulates lake basins using a geometric model where nearshore land slope is assumed to be a

representative proxy for in-lake slope and the distance to the center of the lake is assumed to

be a representative proxy for the distance to the deepest point of the lake. However, these

assumptions have rarely been tested in a broad range of lakes. We used bathymetry data

from 5,000 lakes and reservoirs to test these assumptions and to examine whether differences

in lake type or shape influences depth prediction error. We found that nearshore land slope

was not a representative proxy of in-lake slope and using it for prediction increases prediction

error substantially relative to models using true in-lake slope. We also found that models

using nearshore land slope as a proxy systematically overpredicts lake depth in concave lakes

(i.e.~bowl-shaped; up to 18% of lakes in the study population) and reservoir lakes (up to 30%

of lakes in the study population), suggesting caution in using geometric models for depth

prediction in unsampled lakes.
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3.2 Introduction

Lake depth is an important factor controlling lake physics, chemistry, and biota. Deeper

lakes generally have higher water clarity and less complete mixing compared to shallow lakes

(Fee et al., 1996; Read et al., 2014). These differences are reflected in variation among lakes

in terms of biological productivity (Qin et al., 2020) and rates of greenhouse gas production

(Li et al., 2020). However, because measured depth data is only available for a small fraction

(~25%) of all lakes, our ability to understand and predict depth-dependent processes is limited.

The importance of lake depth, coupled with its limited availability, has led to numerous

attempts to predict depth using measures available for all lakes such as lake surface area or

the nearshore slope of the land surrounding a lake (Heathcote et al., 2015; Oliver et al., 2016;

Sobek, 2011). Given the limited prediction accuracy of prior attempts (± 6-7 m), studies have

explored strategies such as employing more diverse covariates (Oliver et al., 2016), varying

lake buffer sizes (Heathcote et al., 2015), or estimating hidden groupings (e.g. fitting different

models for distinct size classes) among lakes (Sobek, 2011).

One approach for predicting lake depth involves using a geometric model that

assumes lake basins correspond to an idealized shape such as a cone, bowl, or an elliptic

sinusoid (Hollister et al., 2011; Neumann, 1959; Yigzaw et al., 2018). All such geometric

models for lake depth prediction involve implicit assumptions about the terms of geometric

formulae. In the simplest case, where lakes basins are treated as cones (Eq 3.1, Figure 3.1),

two assumptions are required to make depth predictions for all lakes: 1) that nearshore land

slope is a representative proxy for in-lake slope and 2) that the distance to the center of the

lake is a representative proxy for the distance to the deepest point of the lake (Figure 3.1).

This cone model imposes the following fixed (i.e. geometric) relationship between slope and

horizontal distance:

depthgeometric = tan(slope) ∗ distance (3.1)
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Figure 3.1: Diagram showing the relations between true (black) and proxy (orange) metrics
of lake geometry. Geometric depth calculated via Equation 3.1 requires a single distance and
slope metric.

where the product of slope and horizontal distance yields an exact geometric depth estimate

(depthgeometric).

The assumptions of the cone model (as well as other geometric models) can be tested

by comparing proxy measures of lake geometry against corresponding “true” (i.e. in-lake)

values derived from bathymetric maps and by evaluating how lake cross-section shapes differ

from that of an idealized cone (Johansson et al., 2007). For instance, lake cross-section

shapes have been shown to vary from narrow “convex” forms to outstretched “concave”

forms (Hakanson, 1977). Because tests of geometric model assumptions require bathymetric

map data, which is only available for about 15% of all lakes, existing evidence may not be

applicable to all lakes. The few studies that have tested these assumptions have mostly been

limited to individual studies of very large (> 500 ha) lakes or studies on small numbers (<

100) of lakes (Johansson et al., 2007). Studies focused specifically on reservoirs (as opposed

to the more typical case where reservoirs and natural lakes are combined), have been even

more restricted to that of extremely large lakes > 1000 ha (Lehner et al., 2011; Messager

et al., 2016).

As a result of this limited testing, we lack knowledge on both the predictive

performance of geometric models, the effect of proxies on depth prediction, and whether

63



depth predictions are more sensitive to measurement errors in the horizontal dimension

(i.e. distance to the deepest point of the lake) or measurement errors in the vertical dimension

(i.e. in-lake slope). Additionally it is unclear whether model prediction error is related to

differences in lake type such those with different cross-section shapes or those classified as

reservoirs versus natural lakes.

Given the knowledge gaps identified above, we asked three research questions: 1)

How representative is nearshore land slope of in-lake slope; and how representative is the

distance to the center of a lake compared to the distance to the deepest point of a lake? 2)

How does the use of proxies for lake geometry affect lake depth prediction error? 3) How

does lake cross-section shape (i.e. concave versus convex) and lake type (i.e. natural lake vs

reservoir) affect depth prediction error? To answer these questions, we extracted maximum

depth (hereafter referred to as “observed maximum depth”), in-lake slope, cross-section shape

(i.e., concave versus convex), and distance to the deepest point, of approximately 5,000 lakes

in the Northeastern and Midwestern US from bathymetric map data and supplemented this

data with classification estimates of whether lakes are reservoirs or natural lakes. First, we

examined whether measures of lake geometry (in-lake slope and distance to the deepest

point of lakes) were related to geometry proxies (nearshore land slope and distance to lake

centers). Next, we computed geometric depth estimates (Equation 3.1) and prediction “offsets”

to these estimates using the random forest algorithm (Equation 3.2). Covariates used in

offset modeling included a variety of lake, watershed, and hydrologic subbasin measures that

are available for all lakes (Table 3.1). We examined differences in overall prediction error

corresponding to different inputs to geometric depth as well as differences in the relative

distribution of prediction error in lakes with different characteristics.

Given that, by definition, the distance proxy (distance to the center of the lake) must

always be greater or equal to the true distance value (distance to the deepest point of the

lake), we expect that the use of this proxy will lead to overestimation of lake depth (Figure

3.1). Furthermore we expect to see greater overestimation error in reservoirs as compared
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Figure 3.2: Diagram showing our expectation that slope-based models of lake depth will
under predict true depth in convex lakes (left) and over predict true depth in concave lakes
(right). Dashed lines represent extrapolated nearshore land slope while solid lines represent
the lake bottom.

to natural lakes because many reservoirs are known to be drowned river valleys where the

deepest point is close to the edge at the end of the reservoir (i.e. next to the dam) rather than

in the center of the reservoir (Lanza and Silvey, 1985). In a similar fashion, we expect to see

overestimation error associated with using a nearshore land slope proxy in lakes with differing

cross-section shape (Figure 3.2) such that the depth of U-shaped (i.e. concave) lakes will

be overpredicted whereas the depth of V-shaped (i.e. convex) lakes will be underpredicted.

Finally, we expect that overall depth prediction will be strongly related to lake area and

hydrologic subbasin variables as these measures have been influential in prior studies (Oliver

et al., 2016).

By testing these expectations, we can establish whether barriers to increased depth

prediction accuracy lie in lack of correspondence between true and proxy measures of lake

geometry or in hidden grouping (such as lake cross-section shape or reservoir status). This

information could help direct future research efforts to focus on particular dimensions of lake

geometry (i.e. horizontal versus vertical) or to stratify model predictions based on specific lake

types and cross-section shapes. Ultimately, achieving increased depth prediction accuracy

would allow for more precise estimates of depth-dependent biotic and chemical processes

across broad spatial extents.
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3.3 Methods

3.3.1 Data description

We compiled bathymetry data on approximately 5,000 lakes in the Northeastern and Mid-

western US from nine official state databases (Figure S3.1). The original data came in a

variety of formats including pre-interpolated rasters (Minnesota), contour lines (Nebraska,

Michigan, Massachusetts, Kansas, Iowa), contour polygons (New Hampshire, Connecticut),

or point depth soundings (Maine). For the Minnesota data, we simply clipped the raster

for each lake to its outline. For data from the remaining states, we processed each lake by

converting its original representation to a point layer (if necessary), rasterizing these points,

and creating an interpolated bathymetry “surface” using a simple moving window average

in the raster R package (Hijmans, 2019). The size of the moving window was adjusted

iteratively to ensure that each bathymetry raster contained no missing data.

All lake bathymetry was specifically calculated relative to high-resolution (1:24,000

scale) NHD (USGS, 2019) waterbodies such that source data and bathymetry surface outputs

were clipped to the area of each lake polygon. We restricted the lakes in our study to those

with an area of at least 4 ha and a maximum depth of at least 0.3 m (1 ft). The purpose of

these restrictions was to ensure that lakes had enough contours (or points, or polygons) to

generate adequately smooth interpolations with which to calculate in-lake geometry metrics.

We used our generated bathymetry surfaces to find the location of the deepest point

in the lake and we resolved ties by choosing the deepest point that was closest to the center

of the lake. We calculated the center of the lake not as its centroid but rather by finding

the point farthest from the lake shoreline (i.e. its “visual distance to lake center”). For these

calculations, we used the polylabelr R package (Larsson, 2019), which interfaces with the

Mapbox pole of inaccessibility algorithm (Agafonkin, 2019). We calculated in-lake slope

as maximum lake depth divided by the distance to the deepest point and we calculated

nearshore land slope for each lake by computing the slope within a 100-m buffer using data
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Table 3.1: Summary of lake characteristics for the present study (and for lakes in the
contiguous United States from Stachelek et al. (In prep)). Predictor variables for computing
random forest offsets (Eq 3.2) are printed in bold face. Dashes (-) indicate an identical sample
size among this study and that of the contiguous United States.

Variable Median Q25 Q75 n
Max depth (m) 8.2 (7) 4.6 (3.7) 14 (12) 4850 (17700)
Elevation (m) 300 (340) 180 (210) 400 (460) 4850 (17700)
Area (ha) 55 (33) 21 (11) 140 (100) 4850 (17700)
Island area (ha) 0 (0) 0 (0) 0.18 (0.076) 4850 (17700)
Perimeter (m) 4400 (3500) 2500 (1800) 8100 (7300) 4850 (17700)
Shoreline development 1.7 (1.7) 1.4 (1.4) 2.1 (2.2) 4850 (17700)
Watershed-lake ratio 7.8 (10) 3.9 (4.4) 17 (28) 4850 (17700)
Distance to deepest point (m) 180 (-) 110 (-) 290 (-) 4850 (-)
Distance to lake center (m) 240 (-) 160 (-) 380 (-) 4850 (-)
In-lake slope (m/m) 0.046 (-) 0.024 (-) 0.079 (-) 4850 (-)
Nearshore land slope (m/m) 0.077 (-) 0.051 (-) 0.11 (-) 4850 (-)

from a high resolution digital elevation model (~15x15m grain) accessed using the elevatr

R package (Hollister and Shah, 2017) and computed using the terrain function in the raster

R package (Hijmans, 2019).

We categorized lakes based on their cross-section shape and reservoir class. For

cross-section shape, we categorized lakes as either convex or concave following the method of

Hakanson (1977) by computing normalized lake depth-area relationships (i.e. hypsographic

curves) and assigning class membership based on whether a lake’s curve falls above or below

that of a simple straight-sided cone (Figure S3.2). We further classified lakes using data from

Polus et al. (In prep), which uses the output of a machine learning algorithm to assign a

probability to each lake as to whether it is a reservoir or a natural lake. For our purposes,

we determined a lake to be a reservoir if the classification probability was 0.75 or greater.

The Polus et al. (In prep) data product defines reservoirs as any permanent waterbody that

has a water control structure likely to significantly impact flow or pool water, beyond simply

controlling water level. It makes no distinction between different dam types or dam heights.

Covariates used in random forest modeling (Table 3.1, Equation 3.2) for lake

elevation, area, island area, perimeter, shoreline development, watershed to lake area ratio,
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and hydrologic subbasin (i.e. HUC4s), were obtained from the LAGOS-US LOCUS database

(Smith et al., In prep). One such measure, that of shoreline development, is a measure of

lake perimeter shape defined as:

shorelinedevel = perimeter/(2 ∗
√

(π ∗ waterarea ∗ 10000)) (3.2)

where sinuous lakes have larger values of shoreline development and circular lakes have smaller

values of shoreline development. Watershed to lake area ratio is an approximation of water

residence time and is defined as watershed area divided by lake area.

3.3.2 Proxy evaluation

We conducted a qualitative assessment of whether or not proxy measures of lake geometry

are representative of their true values by visual inspection (i.e. plotting each proxy measure

against its corresponding true value) and by computing coefficients of determination (R2).

We further tested proxy measures by examining their effect on lake depth prediction error.

Our approach involved several steps. In the first step, we computed a geometric estimate of

lake depth using only geometry information (depthgeometric, Equation 3.1). In the second

step, we fit a random forest model to predict observed (i.e. true) depth as a function of

geometric depth along with several covariates available for all lakes (Table 3.1). The purpose

of this random forest “offset” modeling was to more rigorously test our expectations regarding

prediction error among different formulations of depthgeometric and among different lake

types. Each of these steps were executed iteratively for each combination of true and proxy

values of slope and distance (Table 3.2).
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3.3.3 Model description

3.3.3.1 Geometric model

We used a geometric model of lakes where basins are treated as cones with a fixed relationship

between slope and distance (Equation 3.1). Note that Equation 3.1 is a geometric formula

and has no intercept or “coefficients” and it produces a perfect depth estimate given true

values of slope and distance. To use this model to predict the depth of all lakes, there is a

necessary assumption that proxy slope and distance measures, which are available for all

lakes, are representative of true slope and distance (Figure 3.1).

3.3.3.2 Random forest models

Nearly all prior studies predicting lake depth using geometric models include a statistical or

machine learning model “layer” or “offset” to boost predictive accuracy. For our purposes,

this offset modeling enabled us to test our expectations that prediction error would be

different among different formulations of depthgeometric and among different lake types. It

also facilitated direct comparison against prior models of lake depth including those that are

non-geometric. We generated an “offset” to geometric depth (sensu Hollister et al., 2011)

using the random forest algorithm and the ranger R package (Wright and Ziegler, 2017) to

predict observed maximum depth as a function of covariates including geometric maximum

depth (from Equation 3.1) along with the lake elevation, area, perimeter, and ratio/index

measures listed in Table 1:

depthobserved ∼ depthgeometric + covariates (3.3)

Neither cross-section shape nor reservoir class was used as a covariate in any random forest

models. We used the random forest algorithm because it makes no assumptions about the

distribution of model residuals, allows for non-linearity, and is insensitive to interactions

(i.e. multicollinearity) among covariates (Prasad et al., 2006).
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3.3.3.3 Model comparisons

We tested model sensitivity to slope and distance proxies by generating multiple “geometric

maximum depth” estimates from 3 different model runs using each of the possible metric

combinations for Equation 3.1 (true slope - proxy distance, proxy slope - true distance, proxy

slope - proxy distance). Prior to entry into Equation 3.1, we standardized proxy distances to

have the same numeric range as their true counterpart. The purpose of this standardization

was to prevent lakes with extremely long proxy distances from having an outsized impact on

model evaluation metrics.

3.3.3.4 Model evaluations

We evaluated model fit and prediction error using root-mean-square error (RMSE) and

coefficient of determination (R2) metrics on a holdout set containing 25% of all lakes. We

evaluated the residuals (residual = observed - predicted) of each model relative to lake

cross-section shape and reservoir classes to determine whether depth is consistently over or

under predicted for some lake types relative to others.

3.4 Results

Lakes belonging to each cross-section shape and reservoir class were not evenly distributed

across our study area (Figure S3.1). For example, concave lakes were nearly absent from

Michigan whereas Maine lakes had an overabundance of lakes categorized as neither concave

nor convex. Lakes in the southern portions of our study area tended to be classified as

reservoirs whereas lakes in the northern portions of our study area were a more even mix

between reservoirs and natural lakes (Figure S3.1). Approximately 18%, 80%, and 2% of

lakes were classified as having a concave, convex, or neither shape respectively whereas

approximately 30% and 70% of lakes were classified as being a reservoir or a natural lake.

Although proxy distance to lake center was often much larger in magnitude compared

to the true distance to the deepest point of lakes’, they were strongly related (R2 = 0.8).
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Figure 3.3: Comparison among proxy and true values of lake geometry for A) distance to
deepest point versus distance distance to lake center and B) nearshore land slope versus in-lake
slope. A best-fit line and coefficient of determination is shown to illustrate representativeness.

In contrast, proxy nearshore land slope and true in-lake slope were more weakly related

(R2 = 0.17). For slope measures, most lakes had lower magnitude (i.e. shallower) nearshore

land slope compared to true in-lake slope (Figure 3.3). Taken together, these results suggest

that proxy distance to the center of lakes is representative of true distance to the deepest

point of lakes while proxy nearshore land slope is not representative of true in-lake slope. In

addition to overall differences between slope and distance measures, we found differences in

these relationships among lake shape classes. For example, in-lake slope and distance to the

deepest point of the lake metrics were consistently larger in magnitude for convex lakes as

compared to concave lakes (Figure S3.3). However, there were not similar differences among

slope and distance metrics for natural lakes versus reservoirs (Figure S3.3).

The use of proxy nearshore land slope had a larger effect on model fit and prediction

error than the use of proxy distance to lake center (Table 3.2). More specifically, the true

slope - proxy distance model had a better fit (R2 = 0.73) and lower prediction error (RMSE

= 4.23m) compared to the proxy slope - true distance model (R2 = 0.26, RMSE = 6.87m).

Furthermore, analysis of model residuals showed overestimation of lake depth for concave

lakes when models included a proxy slope measure (Figure 3.4). We observed similar but

smaller overestimation depending on if a lake was classified as a reservoir rather than a
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Table 3.2: Model fit and predictive accuracy metrics (RMSE = root mean square error, R2

= coefficient of determination) for all combinations of true (in-lake slope, distance to the
deepest point of the lake) and proxy (nearshore land slope, distance to lake center) metrics.

slope distance RMSE R2

true true - -
true proxy 4.2 m 0.73
proxy true 6.9 m 0.26
proxy proxy 6.6 m 0.31
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Figure 3.4: Depth model residuals (residual = observed - predicted) in meters by cross-section
shape and reservoir class indicating overprediction of concave and reservoir lakes.

natural lake (Figure 3.4).

The most important covariates in offset models were those relating to spatial location,

lake area, and perimeter (Figure S3.4). Conversely, watershed metrics and lake elevation had

little contribution to random forest model fit (Figure S3.4). The spatial location (i.e. HUC4)

covariate was notably less importance in the true slope model compared to the two proxy

slope models. Model importance calculations indicated that omitting a geometric max depth

measure results in a 130%, 60%, or 50% increase in mean square error depending on the

formulation of geometric max depth in Eq 3.1 (Figure S3.4).
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3.5 Discussion

Our tests of geometric lake depth models show that specific proxy measures of lake geometry

are not representative of true measures of lake geometry across a broad array of lakes. Using

a cone model example, we show that nearshore land slope is not representative of in-lake

slope. Furthermore, our results indicate that the use of nearshore land slope for prediction

results in increased error and systematic overestimation of depth in concave and reservoir

lakes. Although our analysis was limited to lakes with available bathymetry data, these lakes

did not have characteristics that differed from that of the overall lake population (Figure S3.5,

S3.7). This lack of difference suggests that our results are likely to be broadly applicable to

all lakes although there is a possibility that there is some hidden bias not explored for in our

analyses.

3.5.1 Representativeness of proxy measures of lake geometry

In comparing among lake geometry measures, our analysis suggests that proxy distance

to lake center is representative of true distance to the deepest point of the lakes but that

proxy nearshore land slope is not representative of true in-lake slope. A simple indication

of this non representativeness is that proxy nearshore land slope was often (in > 74% of

cases) steeper than true in-lake slope. This finding is consistent with Heathcote et al. (2015)

whos results suggest that in-lake slopes are shallower compared to the surrounding land.

The shallow nature of in-lake slopes is likley a function of erosion and sediment transport

processes (Håkanson, 1981; Johansson et al., 2007).

One surprising finding with respect to the relationship between true and proxy

geometry measures when examined by lake class was the fact that there was no greater

difference between proxy and true distances in reservoirs compared to natural lakes. This

is contrary to the idea that most reservoirs are drowned river valleys where the deepest

point is close to the edge at the end of the reservoir (i.e. next to the dam) rather than
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in the center of the reservoir (Lanza and Silvey, 1985). One possible explanation is that

the reservoir classification data from Polus et al. (In prep) uses a more general definition

of a reservoir (i.e. any permanent waterbody that has a water control structure likely to

significantly impact flow or pool water) compared to that of conventional classifications

that are tied to specific dam types or dam heights. Another possible explanation is that

conventional reservoir classifications are conceptually biased towards more southern areas

with few natural lakes (Figure S3.1).

We found other differences among lake geometry measures according to lake cross-

section shape. One finding was that convex lakes, when compared to concave lakes, had longer

distances to lake centers relative to corresponding distances to the deepest point of lakes. In

addition, convex lakes often had steeper in-lake slopes relative to nearshore land slopes as

compared to concave lakes. These differences are reflected in the class-wise differences in

shoreline development (e.g. shorelines were more sinuous in convex lakes compared to concave

lakes, Figure S3.6). It was notable that convex lakes were deeper than concave lakes despite

having similar distributions of lake surface area (Figure S3.6). Given the similarity in lake

surface area, the underlying cause of these differences is unknown but one possibility is that

geometry is tied to the circumstances of lake formation whereby concave lakes were formed

as a result of more intense glacial scouring compared to convex lakes (Gorham, 1958). While

there is some evidence in support of this idea, namely that there is a geographic hotspot of

concave lakes associated with the glaciated “prairie pothole region” (see Hayashi and van der

Kamp, 2000), the overall geographic distribution of lake cross-section shapes does not support

this idea. Instead of a concentrated area of concave lakes in formerly glaciated regions, there

appears to be a fairly even mix of concave and convex lakes distributed amongst the northern

(i.e. glaciated) and southern (non-glaciated) portions of our study area (Figure S3.1).
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3.5.2 Effects of proxy measures of lake geometry depth prediction error

Models using only proxy variables had prediction error rates (RMSE = 6.6m) of a similar

magnitude as that of prior studies (RMSE = 6 - 7.3m) predicting lake depth at broad

geographic extents (Hollister et al., 2011; Oliver et al., 2016; Messager et al., 2016). When

only a single proxy measure was used there was a difference in model sensitivity depending

on if it was a horizontal distance measure or a vertical slope measure. In the case of a true

slope and proxy distance combination, models were more accurate (± 4.2m) than even the

most accurate of prior studies (Hollister et al., 2011; Oliver et al., 2016; Messager et al., 2016).

Conversely, models using a proxy slope and true distance combination had prediction error

rates (± 6.9m) of a similar magnitude as that of the baseline proxy-proxy model (± 6.6m).

The greater sensitivity of depth predictions to proxy slope measures relative to proxy distance

measures may be explained by the fact that proxy slope measures were a more imperfect

representation of true in-lake slopes relative to proxy versus true distances. In addition, these

results help explain the relatively poor predictive performance of prior non-geometric lake

depth models given that they rely heavily on lake area as a predictor (Messager et al., 2016;

Oliver et al., 2016; Sobek, 2011) and both horizontal distance measures and vertical slope

measures appear to be decoupled from lake area (Figure S3.6).

3.5.3 Effects of lake shape and lake type on depth prediction error

As expected, we found that the maximum depth of concave lakes was systematically overpre-

dicted by a simple geometric model using proxy nearshore land slope. However, contrary to

our expectation, we did not observe underprediction of depth in convex lakes. The reason we

did not observe underprediction of the depth of convex lakes is likely because geometric depth

itself was always greater than observed maximum depth owing to the fact that proxy distance

is constrained to be greater than true distance. Although the magnitude of overestimation is

likely related to class imbalance in our dataset (i.e. there was a greater number of convex

lakes), these results suggest that broad scale estimates of lake depth are overestimated
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particularly when those estimates encompass large numbers of lakes with diverse cross-section

shapes.

3.5.4 Future research

One of our models (true slope, proxy distance) was more accurate than even the most accurate

of prior studies. However, parameterization of this model requires data on bathymetry which

is not available for all lakes. We propose that the error rate of this model (± 4.2m) be

used as an out-of-sample prediction benchmark for future studies such that they should

attempt to match it but not expect to exceed it. Because this model requires bathymetry

data, this suggests that it may not be possible with current data and models to produce

depth predictions for all lakes with error rates below about 6m. To approach our benchmark

using data available for all lakes, future studies could explore alternative modeling approaches

such as ordinal modeling, which would capture whether or not a lake crosses some important

depth threshold, but would not seek to predict a specific depth value. These studies could

also explore emerging data types to boost prediction accuracy such as “topobathymetric”

products that integrate both topographic and bathymetric data in a seamless fashion rather

than treating them as separate entities. This would allow for more robust tests of the

representativeness of geometric model inputs. Unfortunately, topobathymetric products are

rare, have mostly been limited nearshore marine environments, and as such are not widely

available for inland waters (Danielson et al., 2016).

Finally, our findings indicate that geometry measures differ according to lake cross-

section shape. This makes it an attractive target for inclusion in depth prediction models.

Unfortunately, identifying a lake’s cross-section shape requires bathymetry data which is

unavailable for most lakes. However, given the conceptual links between cross-section shape,

glaciation, and sedimentation (Johansson et al., 2007) it may be advantageous for future

studies to compile data on sedimentation to determine if this data can be used to predict

cross-section shape and boost depth prediction accuracy.
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3.6 Conclusion

To our knowledge, the present study is the largest and most comprehensive test to date of

geometric models of lake depth. Using bathymetry data on approximately 5,000 lakes, we

show that proxy slope measures are not representative of true in-lake slope and this leads

to inaccuracies in predicting the depth of concave and reservoir lakes. These innaccuracies

suggest that caution is warranted in using geometric models for depth prediction in unsampled

lakes. Despite these apparent biases, overall prediction accuracy was equivalent to that of

prior depth prediction studies (± 6-7m). Only our models using a true measure of in-lake

slope, which is limited in availability to lakes with bathymetry data and where we already

know lake depth, had greater accuracy than that of prior studies (± 4.2m). Lack of improved

prediction accuracy (short of including data that is unavailable for most lakes) suggests that

improved prediction may require new types of data or novel analysis techniques.
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3.7 Supplemental information
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Figure S3.1: Map of study lakes showing A) lake maximum depth measurements, B) cross-
section shape class, and C) reservoir classification.
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percentage of lakes in each state with a convex versus a concave cross-section shape.
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Figure S3.3: Comparison among lake shape and reservoir classes for A-B) distance to deepest
point versus distance to lake visual center and C-D) nearshore land slope versus in-lake slope.
A dashed 1:1 line is shown for comparison. Cross-section shape and reservoir class plots are
not identical because not all lakes had a reservoir classification exceeding a 0.75 probability
confidence level.
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Figure S3.4: Importance plot for random forest variables showing increase in mean square
error. Higher values indicate greater importance to model predictions. See Equation 1 for a
definition of geometric max depth. HUC4 ID is a ’dummy’ variable of geographic (hydrologic
subbasin) location.
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Figure S3.5: Comparison between characteristics of lakes with bathymetry data against lakes
with depth from other sources in the LAGOSUS-Depth product (Stachelek et al., In prep).
The distance to urban area metric is calculated using data from the 2018 US Census Urban
and Rural Classification.
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Figure S3.6: Lake characteristics by categorical variables.
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CONCLUSION

Research Frontiers

Each of the preceding chapters left some analyses unexplored that represent future research

frontiers in macroscale lake research. These unexplored analyses include the development of

new techniques and assembly of new types of data. In Chapter 1, I used lake connectivity

metrics to quantify the effect of connectivity among lakes and streams as well as connectivity

of lakes and their terrestrial watersheds on lake P retention. However, “connectivity” is a

somewhat nebulous idea that is difficult to quantify with specific metrics. For instance, I

found that not all metrics can be mapped onto a “high connectivity” versus “low connectivity”

gradient. A potential alternative to this messy mapping of connectivity onto discrete metrics

is to compare the drainage pattern of a given stream network against an optimal drainage

pattern which has the highest possible connectivity for a given watershed. A recent tool, the

OCNet R package, may facilitate exactly such calculations as it can calculate the optimal

distributions of upstream and downstream lengths, contributing area, and the space-filling

attributes of specific watersheds (Carraro et al. 2020).

In Chapter 2, I examined relationships between lake nutrient concentrations and

measures of agricultural activity quantified at varying levels of spatial and process-level detail.

This effort was limited in the types of agricultural measures that were considered owing to

the spatial extent of the study, challenges in data integration of diverse data types, and

complicated model interpretation and building. For instance, it would have been great to

have included other aspects of agriculture like animal feeding operations. Unfortunately,

the limited spatial resolution of this data (only to the county level) makes it difficult to

integrate with crop and nutrient input data. In addition, I was unable to explore temporal

variation in lake nutrient-agriculture relationships which may have contributed to overall

model uncertainty. Unfortunately, few lakes have adequate nutrient time series data to drive
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such a model.

In Chapter 3, I tested the assumptions of geometric models of lake depth using

bathymetry data. I show that such models are highly sensitive to imperfect proxies of lake

slope. Even with measures of true slope derived from bathymetry, model prediction accuracy

is still barely accurate enough to distinguish between “shallow” and non-shallow lakes. A

fruitful area of future research would be to test different modeling techniques such as ordinal

modeling (i.e. shallow versus not shallow) and new topobathymetric data products that

integrate topographic and bathymetric data into a single product. This may boost predictive

power and avoid changes in resolution and changes in scale that likely introduce uncertainty

in model predictions.

Future Directions

Throughout the process of writing this Dissertation I noticed several commonalities amongst

each chapter. One commonality was simply the large number of modeling choices that

underpin each result. My hope is that the most important of these choices is reflected

in the text and the remaining ones are sufficiently documented in the code supplements

accompanying each chapter. In some cases, I was fortunate to have the opportunity to

explore the sensitivity of my model results to each choice. However, the sheer number of these

choices made it intractable to test them all. Choices such as what type of regionalization

to use or how and when to aggregate data from one spatial scale to another were not

always straightforward. Future exploration of these choices would likely go a long way in

strengthening our understanding of spatial patterning of lake characteristics at macroscales

and generating exciting new research questions.

A second commonality I found was that models incorporating spatial variation

are often superior in terms of predictive performance and model fit relative to non-spatial

models. However, I only really interrogated one level of spatial variation, which was variation

within and among hydrologic subbasins. The question of why two neighboring lakes might
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differ in terms of trophic status despite having nearly identical land-use, nutrient loading,

morphometry, and climate remains largely unresolved by my analyses. Answering this

question may require the application of new techniques considering spatial autocorrelation

within stream networks or new data types derived from the output of fine-scale hydrologic

models. Exploring these is likely to be critical for resolving the types of local-scale spatial

variation which is so important for the management of freshwater ecosystems.
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