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ABSTRACT

BAYESIAN UNCERTAINTY QUANTIFICATION OF COMPUTER MODELS WITH
EFFICIENT CALIBRATION AND COMPUTATION

By
Vojtech Kejzlar

The use of mathematical models, typically implemented in the form of computer code,
proliferates to solve complex problems in many scientific applications such as nuclear physics
and climate research. The computational and statistical tools of Uncertainty Quantification
(UQ) are instrumental in assessing how accurately a computer model describes a physical
process. Bayesian framework for UQ has become the dominant approach, because it provides
a principled way of quantifying uncertainty in the language of probabilities. The ever-growing
access to high performance computing in scientific communities has meanwhile created the
need to develop next-generation tools and theory for analysis of computer models. Motivated
by practical research problems, this dissertations proposes novel computational tools and
UQ methodology aimed to enhance the quality of computer models which leads to improved
predictive capability and a more “honest” UQ.

First, we consider model uncertainty, which arises in situations when several competing
models are available to describe the same or a similar physical phenomenon. One of the
historically dominant methods to account for this source of uncertainty is Bayesian Model
Averaging (BMA). We perform systematic analysis of prediction errors and show the use of
BMA posterior mean predictor leads to mean squared error reduction. In a response to a
recurrent research scenario in nuclear physics, BMA is extended to a situation where models
are defined on non-identical study regions. We illustrate our methodology via pedagogical
simulations and applications of forecasting nuclear observables, which exhibit improvements
in both prediction error and empirical coverage probabilities.

In the second part of this dissertation, we concentrate on individual computer models

with particular focus on those which are computationally too expensive to be used directly



for predictions. Furthermore, we consider computer models that need to be calibrated with
experimental observations, because they depend on inputs whose values are generally un-
known. We develop an efficient algorithm based on variational Bayes inference (VBI) for the
calibration of computer models with Gaussian processes (GPs). To preserve the efficiency
of VBI in the presence of dependent data, we adopt the pairwise decomposition of the data
likelihood using vine copulas that separate the information on dependence structure in data
from their marginal distribution. We provide both theoretical and empirical evidence for
the computational scalability of our algorithm and demonstrate the opportunities given by
our method on a real-data example through calibration of the Liquid Drop Model of nuclear
binding energies.

As a fast and easy-to-implement alternative to the fully Bayesian treatment (such as the
VBI approach), we propose an empirical Bayes approach to computer-enabled predictions
of physical quantities. We offer a new perspective to the Bayesian calibration framework
with GPs and provide its representation as a Bayesian hierarchical model. Consequently,
a posterior consistency of the physical process is established, assuming certain smoothness
properties of the GP priors and the existence of a strongly consistent estimator of a noise
scale. A simulation study and a real-data example that support the consistency and efficiency

of the empirical Bayes method are provided as well.
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CHAPTER 1

INTRODUCTION

With the advancements of computer architectures in the 215 century, mathematical mod-
els implemented on a computer, which we shall refer to as computer models, have become the
driving force behind the acceleration of the cycle of the scientific process. This is because
computer models are typically much faster, safer, and economical to run than physical exper-
iments. For example, experiments in high energy physics are conducted in particle colliders
that cost billions of dollars and can take up to a decade to build. Moreover, some physical
experiments associated with rare natural events such as volcanic eruptions or earthquakes
are infeasible to carry out for all practical purposes.

Computer models, despite being an extremely useful tool (Box, 1976), are an imperfect
representation of physical systems. The comprehensive study of the impact of all forms
of modeling errors is called uncertainty quantification (UQ). Bayesian methodology of UQ),
which is the main approach considered in this work, has been a heavily utilized statistical
device due to its natural way to describe uncertainty in the language of probabilities; see
Higdon et al. (2015); McDonnell et al. (2015), and King et al. (2019) for examples in nuclear
physics, Sexton et al. (2012) and Pollard et al. (2016) for examples in climatology, and
Williams et al. (2006); Lawrence et al. (2010), Plumlee et al. (2016) and Zhang et al. (2019)
for applications in engineering, astrophysics, and medicine.

Meanwhile, the incoming era of exascale computing (systems capable of 1018 double
precision floating point operations per second) has spawned the development of complex
computer models that produce massive amounts of data. This consequently creates the need

to bring the computational and statistical tools of UQ into the big-data age.



1.1 Computer models and sources of uncertainty

To illustrate various sources of uncertainties in computer models on a simple example,
let us consider the 4-parameter Liquid Drop Model (LDM) (Weizsécker, 1935; Bethe and
Bacher, 1936; Myers and Swiatecki, 1966; Kirson, 2008; Benzaid et al., 2020) which is a
global (across the whole nuclear chart) model of nuclear binding energies; the minimum
energy needed to disassemble the nucleus of an atom into unbound protons and neutrons.

In principle, the LDM treats the nucleus like a drop of incompressible fluid of very
high density. Despite this simplification, the LDM makes reasonable estimates of average

properties of nuclei. The LDM is formulated through the semi-empirical mass formula as:

(N — 2)? Z(Z 1)

EB(N7 Z) :aVOlA—asurfA2/3 _asymT _GCW7 (11)

where Z is the proton number, N is the neutron number, and A = Z + N is the mass
number of the nucleus. The model parameters are (ayop, agyy f, dsym, ac) representing the
volume, surface, symmetry and Coulomb energy, respectively. These parameters have specific
physical meaning, where a,,,; is for instance proportional to the volume of the nucleus. See
Krane (1987) for more details. We can identify the following sources of uncertainty as

proposed by Kennedy and O’Hagan (2001).

Parameter uncertainty: The model is a function of fixed but unknown parameters
(Ayol, Asur f> asym, ac). These parameters are context specific and need to be estimated with

reported standard errors. The process of model fitting is also known as calibration.

Observation error: In estimating the unknown model parameters, we will be making
use of experimental data from the actual physical process. These measurements typically

contain some observation error that should be accounted for.

Model inadequacy: As we already mentioned at the beginning of this chapter, computer

models are an imperfect representation of physical systems. Even if we know the true values



the model parameters, the LDM predictions will not equal the true values of the physical
process. This uncertainty (error) is often interpreted as “missing physics” in the model and

is differentiated from the observation error by its systematic nature.

Parametric uncertainty: Note that the LDM is a linear function of the parameter vector
(Ayol Asur f> asym, ac). Tt is possible that one or more predictor variables are highly linearly

correlated (multicollinearity) and the LDM can be reduced to a model with less parameters.

Model uncertainty: The LDM is not the only model of nuclear binding energies. In fact,
there are many alternative and competing models. In order to conduct comprehensive UQ
of modeling framework, we should allow for this possibility.

The subsequent two sections describe Bayesian formalisms that provide statistically prin-
cipled ways to account for the various sources of uncertainty described above with exception
of the parametric uncertainty. The parametric uncertainty is not the focus of this disserta-
tion, and we refer the reader to Jaganathen et al. (2017) and Kejzlar et al. (2020) for some

examples in nuclear physics.

1.2 Bayesian calibration of imperfect computer models

Let us consider observations y = (y1,...,yn) of a physical process ((t;) depending on a

known set of inputs ¢; € € C RP following the relationship
yi=C(ti) +oe, i=1....n, (1.2)

where o represent the scale of observation error (noise), typically ¢; - v (0,1). Our aim
is to establish statistically principled predictions of new values y* = (y7,...,y%) of the
physical process ( at, yet to be observed, inputs (t7,. .. ,t*J) using y and a computer model
fm defined as a mapping (t,0) — fiu(t,0). As we can see, the computer model depends
on an additional set of inputs @ € © C R that we call calibration parameters. These

are considered fixed but unknown quantities common to all the observations y; and all the



instances of the physical process that we intend to predict using the calibrated computer
model. The calibration parameters represent inherent properties of the physical process that
cannot be directly measured or controlled in an experiment. In the most rudimentary form,
one can think of the calibration parameters as parameters in standard regression problems.
To this extent, we suppose the relationship between the observations y;, the physical process

(¢, and the computer model f, as proposed by Kennedy and O’Hagan (2001)
Yyi = fm(ti, 0) + 6(t;) + oej, (1.3)

where §(t;) represents an unknown systematic error between the computer model and the
physical process. While §(¢;) is intrinsically deterministic, a non-parametric approach using

Gaussian process prior model is typically imposed for Bayesian inference.

Definition 1. §(t) has a Gaussian process distribution if for every i = 1,2,3... the joint
distribution of 0(t1),...d0(t;) is multivariate normal. It is fully characterized by mean func-

tion m(t) = E[0(¢)] and covariance function k(t,t') = Cov[d(t),5(t')]. We write
0(t) ~ GP(mg(t), ks(t,t)).

Gaussian processes are a convenient way of placing a distribution over a space of functions
with the covariance function characterizing the relationship of the process at different inputs.
Typically, the mean function is chosen to be zero or some dense family of basis functions

(wavelets, Fourier, polynomials) across the input domain:
T
m(-) = h()" B,

where h(-) = (h1(-),...hp(-)) are the basis functions and 3 is a hyperparameter. A typical
choice for the covariance function is a stationary covariance function that depends on the
inputs through t—¢'. For example, a Gaussian kernel covariance function (also called squared

exponential or radial basis function kernel) takes the form

k(t,t) = n? exp( — %(t — T Mt - t’)),



where M corresponds to a positive definite diagonal matrix of hyperparameters and 7 is a
scaling parameter. We refer to the case of M = ng[ , for some ¢ > 0, as an isotropic version of
the kernel, because it is invariant to the rotation. The case of M with different diagonal terms
is called an anisotropic version of the kernel. Other popular choices for stationary covariance
functions are Matérn kernels, polynomial kernels, or exponential kernels (Rasmussen and

Williams, 2006). See Figure 1.1 to visualize realizations of a Gaussian process.

2— ‘.’
—~ 0— —
Y
_1—
_2—
0.0 0.2 0.4 0.6 0.8 1.0
r

Figure 1.1: Realizations of a Gaussian process with zero mean and squared exponential
covariance function with n =1 and ¢ = 0.1.

It is often the case the evaluation of the computer model f;, is too expensive in terms
of both time and space (memory). It is common practice to reduce the number of necessary

computer model evaluations by considering a Gaussian process prior model
fm(t,8) ~ GP(my(t,0),ks((t,0),(t',6"))).

In this setup, the data also include a set of model evaluations z = (21, ..., zs) over a grid
{(51,51), . ({5, 55)} These are usually selected using some space-filling design such as
a uniform or Latin hypercube design (Morris and Mitchell, 1995), which is a design that

has a good coverage of the space with evenly distributed points in each one-dimensional



projection. The complete data set d in the case of computationally expensive models consists
of n observations y; from the physical process ¢ and s evaluations z; of the computer model
fm, ie. d = (dy,...,dp+s) == (y,z). We shall denote the set of unknown parameters as
¢ = (0,~,0) with v denoting the set of hyperparameters of Gaussian processes’ mean and
covariance functions. Consequently, the complete dataset d conditioned on (0,4, o) follows

the multivariate normal distribution

d|0,~,0 ~N(M(0,~),K(0,~,0)), (1.4)
where
0 (8,) = | MrEuO) F M) .
M, (T(80))
and
5 N
K(8,7,0) = Ky Tu(9) 1,6) tK‘S(Ty’Ty) 0% Kf<Ty(€)’TZ(€)) (1.6)

K ((T.(6). T,(6)) K ((T2(6). T-(8))

f
Here, Kf(Ty(H), Ty(0)) is the matrix with (4, j) element k¢((¢;,0), (¢;,0)), Ks(Ty, Ty) is the
matrix with (i, j) element ks(t;,t;), and Kf(TZ(g), T.(6)) is the matrix with (, j) element
kf((£:,6,), (t,6;)). We can similarly define K (T, (6), T:(8)) with the kernel ky.

Under this framework, the Bayesian calibration consists of deriving the full posterior

distribution p(¢|d) given by the Bayes’ theorem, namely

__pldlop(e)
p(¢!d)—fp(d|¢)p(¢)d¢ p(d|o)p(), (1.7)

where p(¢) expresses our prior uncertainty about the unknown parameters. The Bayesian
predictions of y* are specified by the posterior predictive distribution p(y*|d). This is given
by integrating the conditional density of y*, given ¢ and the data d, against the posterior
density p(¢|d):

Wyl = [ ply7ld. $)p(old) Ao, (1.8)



The conditional density p(y*|d, ¢) is a multivariate normal density given directly by the
statistical model (1.3) and the specification of the Gaussian processes. We postpone the
detailed description of this likelihood to Chapter 3.

Here we point out a few caveats of the framework described above. First, the calibra-
tion parameter 6 is in general non-identifiable. Indeed, 6(¢;) = ((t;) — fm(t;, 0) yields the
same distribution for y; for any choice of . Several authors have pointed this out and
proposed various methods to mitigate the problem including Brynjarsdéttir and O’Hagan
(2014); Plumlee (2017); Tuo and Wu (2015, 2016); Bayarri et al. (2007). Our main goal here,
nonetheless, is not the correct identification of @, but a prediction. Second, the posterior
distribution p(¢|d) does not have a closed form and needs to be approximated. The tradi-
tionally used Markov Chain Monte Carlo (MCMC) methods that approximate p(¢|d)—such
as the Metropolis-Hastings (MH) algorithm (Chib and Greenberg, 1995) or more advanced
ones including the Hamiltonian Monte Carlo or the No-U-Turn samplers (NUTS) (Homan
and Gelman, 2014)—work only with a relatively small sample size because of the computa-
tional costs associated with the evaluation of p(d|¢). This clearly calls for the development

of computationally efficient alternatives to the traditional approaches.

1.3 Bayesian model averaging

Bayesian model averaging (BMA) is the natural Bayesian framework in scenarios with
several competing models My, ..., M when one is not comfortable selecting a single model
at the desired level of certainty (Bernardo and Smith, 1994; Kass and Raftery, 1995; Hoeting
et al., 1999; Wasserman, 2000). The seminal review work by Geweke (1999) introduced BMA
in econometrics and later in other fields such as political and social sciences; BMA has also
been applied to the medical sciences (Balasubramanian et al., 2014; Schorning et al., 2016),
ecology and evolution (Silvestro et al., 2014; Hooten and Hobbs, 2015), genetics (Wei et al.,
2011; Wen, 2015), astrophysics (Parkinson and Liddle, 2013), fluid dynamics (Radaideh

et al., 2019), machine learning (Clyde et al., 2011; Hernandez et al., 2018), and lately in



nuclear physics (Neufcourt et al., 2019, 2020a,b; Kejzlar et al., 2020).
For any quantity of interest O, e.g., the value y*, the BMA posterior density p(O|d)
corresponds to the mixture of the posterior densities of the individual models:

K
p(Old) = Y p(Old, My,)p(My|d), (1.9)
k=1

where d are given datapoints. These datapoints are typically observations y unless we
consider the specific scenario of computationally expensive computer models in Section 1.2,
where we also include the set of model runs z. For notation consistency, we shall denote the
set of datapoints as d throughout this dissertation with the actual content of d clarified by
the context in which it is considered. Formula (1.9) expresses the actual posterior probability
of a quantity of interest O is the average of O’s posterior distributions given each model,
weighted by the model posterior probabilities. In other words, (1.9) is simply a mixture of
K distributions, which makes sampling from the BMA posterior density immediate once we
obtain the posterior samples under each model. The posterior model weights p(M}|d) are
the posterior probabilities that a given model is the hypothetical true model; it is given by
a simple application of the Bayes’ theorem:
p(d|My,)p(Mp)

S0 p(dIM)p(My)

where p(M;,) represents the prior probability that M, is the true model. The so called

p(My|d) =

(1.10)

evidence (integrals) p(d|M;.) are obtained by integrating the data likelihood against the

prior density of the model parameters ¢y, namely

pldlMy) = / p(d| g, Mi)p(yl My) deby. (1.11)

Additionally, the definition of expected value yields the posterior mean of O as

E[O|d] = ZEO|d Mylp(M|d), (1.12)
k=1



and the well-known conditional variance formula (Casella and Berger, 2002) yields the pos-

terior variance of O, given d, as

K
Var[O|d] = Zp(/\/lk|d)Var[A|d, M| + Var[E(A|d, M)|d]. (1.13)
k=1
Note that the term Var[E(O|d, M)|d] is the variance of a function of the discrete random

variable M (the set of all models being considered), which accounts for the model uncertainty.
This model uncertainty is not accounted for by individual models. Its inclusion thus allows
for a more honest UQ.

One of the challenges of BMA is that it becomes unclear how one should proceed in
scenarios where alternative models are defined on different subsets of the same input space.
This is, for example, a usual situation in nuclear physics, for instance for nuclear mass models;
ab initio (also known as A-body) models range over lighter nuclei due to contemporary
computational limitations, while Energy Density Functionals (EDF) can cover the whole

nuclear chart (Klupfel et al., 2009; Kortelainen et al., 2010b).

1.4 Dissertation outline

The main content of this dissertation is organized as follows. Chapter 2 provides a survey
of the remaining details for successful implementation of the BMA framework with particular
focus on the calculation of the evidence integral (1.11). We perform a systematic analysis of
the prediction errors, focusing on the fact that BMA is the optimal linear combination (pro-
jection) in the L? sense under the posterior probability distribution, among all the possible
mixtures of models. Motivated by recurrent scenarios in nuclear physics, we subsequently
extend BMA to the situations when the different models constrain different subsets of the
data. Lastly, we present a set of pedagogical examples as well as real-data applications of the
BMA methodology highlighting its benefits in terms of the improvement of the prediction
accuracy and UQ. Some results from this chapter are also provided in Kejzlar et al. (2019).

Chapter 3 presents a novel and computationally efficient algorithm based on variational

Bayes inference (VBI) for the calibration of computer models with Gaussian processes. We



provide both theoretical and empirical evidence for the computational scalability of our
methodology and describe all the necessary details for an efficient implementation of the
proposed algorithm. We demonstrate the opportunities given by our method for practitioners
on a real data example through the calibration of the Liquid Drop Model of nuclear binding
energies. The algorithmic development done in this chapter is also provided in Kejzlar and
Maiti (2020).

Chapter 4 develops an empirical Bayes (EB) approach for the Bayesian calibration frame-
work outlined in Section 1.2 that can be understood as an easy-to-implement and fast ap-
proximation of the fully Bayesian treatment. Firstly, we utilize the structural convenience of
Gaussian processes and restate the calibration framework as a Bayesian hierarchical model.
Secondly, we make use of this new representation and extend the results of Choi and Schervish
(2007a) on non-parametric regression problems to theoretically investigate the proposed EB
approach. A numerical simulation study and a real data example are also provided.

In Chapter 5, we discuss the likely future theoretical and computational extensions of
the methodologies developed in Chapters 2 — 4.

For ease of readability, all proofs of lemmas, propositions, and theorems, altogether with
technical details of numerical studies, are provided in the section titled “Technical details and
supplementary results” at the end of respective chapter. We also provide fully documented
Python code that reproduces all the results in this dissertation and can be easily modified

and used by practitioners in a public repository at https://github.com/kejzlarv.
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CHAPTER 2

SURVEY OF BAYESIAN MODEL AVERAGING WITH EXAMPLES AND
EXTENSION TO DISCREPANT DOMAINS

Interest for model averaging arises, as discussed in Chapter 1, in situations when several
competing models are available to solve the same or similar problem, and no single model
can be selected at a desired level of certainty. For example, there is a multitude of competing
computer models for numerical weather prediction including the American model (Global
Forecast System) and the European model (European Centre for Medium-Range Weather
Forecasts) (Lynch, 2008). In nuclear physics, alternative models arise through different
theoretical strategies in modeling atomic nuclei such as the A-body modeling approach or
the density functional theory (DFT) (Nazarewicz, 2016).

In this chapter, we consider a general situation where measurements (t;,1;)? ; of a
physical process t — ((t) are used to predict new values y* of the physical process (, where
t € Q C RP. Furthermore, we suppose there are K competing models Mq,..., Mg of

k" model is parametrized by a vector of unknown parameters

observations y;, where the
¢ € RPk for k = 1,...,K and p, > 1 (e.g., for the Bayesian calibration with Gaussian
processes ¢ = (0,7, 0)). Given each model, we consider the data likelihood p(d|¢y,, M},) and
the prior density p(¢y|M;.); the dataset d typically consists of the experimental observations
y = (y1,-..,yn) only, however, it can also include a set of computer model evaluations
z = (z1,...,2s) under the Bayesian calibration framework with computationally expensive
models described in Section 1.2.

BMA provides a way of accounting for model uncertainty induced by the existence of
alternative models. If O is the quantity of interest, e.g., the value y*, the BMA posterior

density p(O|d) corresponds to the mixture of the posterior densities of the individual models:

K
p(Old) = > p(Old, My)p(My]d). (2.1)
k=1
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The posterior weights p(M.|d) are given by a simple application of the Bayes’ theorem:

p(/\/lk|d) _ p(d|Mk‘>p(Mk:) (2.2)

YK pdM)pMy)

These weights are determined by two quantities that are the key to a successful implemen-

tation of the BMA framework. First, one needs to assign suitable prior probabilities p(M},)

that M, is the true model. Hoeting et al. (1999) notes that,

When there is little prior information about the relative plausibility of the mod-
els considered, the assumption that all models are equally likely a priory is a

reasonable “neutral” choice.

One can, nevertheless, choose informative prior distributions when prior information about
the plausibility of each model is available. Eliciting an informative prior is a non-trivial task,
but Madigan et al. (1995) provide some guidance in the context of graphical models that
can be applied in other settings as well.

The second key quantity is the evidence integral

pAM) = [ pdidp M@ M) ddy. 23)

The numerical evaluation of evidence integrals is challenging in practice, because a closed
form solution is available only in elementary situations for the exponential family distribu-
tions with conjugate priors (see Section 2.4 for a simple example) and thus requires approx-
imation. The simplest and most commonly used approximation in the literature, and which

we have adopted in our applications, is to use the Monte Carlo (MC) integration estimate
~ 1 (i)
Py (dMy) = > p(didy’, M), (2.4)
nypce i k

where q’)g) are i.i.d. samples from the prior p(¢pp|My) for i = 1,... ,ny;c. While this MC
integration yields reasonable results, it requires separate evaluations of the likelihood at new

samples from the prior p(¢y|M},), which can be very costly in computing time.
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Another frequently used method is the Laplace approximation, which relies on the fact
that the integration (2.3) has a closed form in the case of a linear regression with Gaussian
noise. It corresponds to a second order Taylor expansion of the log-likelihood around its

maximum, which makes the likelihood Gaussian. Namely the Laplace approximation is
R P ~ 1 ~ ~
pr(dMy) = (2m) 2 |Z]2p(d|@p My )p(dr| M), (2.5)

where ¢y, is the mode of p(¢y|d, M}.) and 2f, = (—D2l(¢h;)) L is the inverse of the Hessian
matrix of second derivatives (evaluated at ¢y.) of I(¢r) = log(p(d|dg, My )p(dp|My)). The
Laplace method typically gives very good results for very peaked likelihoods. We refer the
reader to Kass and Raftery (1995) for an exhaustive survey of classical methods used to
compute the evidence integral. Also, more recently proposed Nested Sampling algorithm by
Skilling (2006) and expanded by Feroz et al. (2009) provides another alternative to these
classical approaches.

BMA, while a conceptually straightforward and natural approach to account for model
uncertainty, becomes challenging in scenarios where alternative models are defined on dif-
ferent subsets of the same input space; this can typically arise with local models or with
numerical models with different constraints. It is also a usual situation in nuclear physics,
for instance for nuclear mass models; ab initio models range over lighter nuclei due to con-
temporary computational limitations, while EDFs can cover the whole nuclear chart (Klupfel
et al., 2009; Kortelainen et al., 2010b). This also happens when one considers mixing models
produced by the calibration of observables of different types — typically some nuclear models
are fitted on nuclear binding energies, while others on binding energies and other observables
such as rms charge radii (a measure of the size of an atomic nucleus). Surprisingly, we have
not found in the literature a principled approach to adapt BMA to this situation, or how
to compare models with similar, overlapping, but significantly non-identical domains. To
address this “domain discrepancy”, in Section 2.2 we present a method which relaxes the
requirement that all models cover the same domain (d is common to all models considered).

Other applications of our framework could include time series with missing data, or different
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time scales, e.g. in a financial setting where additionally different classes of assets can be
treated as observables.

The remaining sections of this chapter are organized as follows. Section 2.1 provides a
systematic analysis of prediction errors under individual models as compared to the BMA
framework. Section 2.2 develops the BMA methodology for models with discrepant domains.
Section 2.3 contains an extensive collection of simulation studies, pedagogical examples as
well as real-data applications highlighting the benefits of BMA in terms of the improvement of
the prediction accuracy and UQ. All technical details and supplementary results are provided

in section 2.4.

2.1 Optimality of BMA predictions

BMA is not the only way to deal with several alternative models and to account for
model uncertainty, but it does have the property of reducing the Posterior Mean Square
Error (PMSE) of prediction of a new observation y*. In this section, we illustrate this
property in a clear and concise way.

Let us, for simplicity of notation, consider two competing models M7 and My - the
treatment of multiple models follows from a similar argument, and our verbal descriptions
below in this section occasionally refer to the general case without further comment. Denote
g;\i‘ = E[y*|d, M1] and gfé‘ = E[y*|d, Ms] as the posterior means of y* under each model, and
let y* := E[y*|d]. We also define pj, := p(My]|d) for k = 1,2 for the posterior probability
of each model. Thus the BMA posterior mean estimator (1.12) can be written as y/;‘ =
pl?ff + pgy/%‘. The PMSE of y* is then defined as E[(y* — y*)2|d] and has the following

decomposition.
Lemma 1. For every A\, Ao > 0 satisfying \1 + Ao = 1, we have
El(y* — y*)*|d] = El(y" — My} — doy3)’ld] - [\ —p1)yf + 2 —p2)ys)*  (26)

This Lemma shows explicitly that the PMSE of the BMA predictor is smaller than

the PMSE associated with any convex combination )\13}% + )\ng‘ of the each of the two
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models’ posterior means. It also measures how much smaller it is, and shows that equality
holds as soon as the convex coefficients \; are equal to the posterior probabilities p;. of
each model, k = 1,2. Specifically, by applying Lemma 1 twice, with (A1, A2) = (1,0) and
with (A1, A2) = (0,1), we obtain the following dual expression for the PMSE or the BMA
predictor, involving each individual model’s PMSE, showing how much smaller the former

is compared to the two latter:
El(y* — y7)°Id] — p3(y} — 5)” = Elly" — y)°ld] = El(* - 3)°ld) — pi (v} — )% (27)
The relationship (2.7) directly implies
El(y* —y*)*d] <El(y" —yp)?d), k=12 (28)

This inequality clearly states that the BMA estimator (1.12) gives prediction error at least
as small as the best of the models considered, in the PMSE sense. We interpret this as a
translation of the fact that each model that goes into creating the BMA estimator necessarily
ignores model uncertainty. Note that this says nothing about how the BMA estimator would
compare to a model not used in its definition.

Moreover, since Lemma 1 covers all convex combinations of the original models, it shows
that BMA achieves the following minimum

(PMpld)y_yp=  argmin  E[(y" — Oy} +Aays)’ld) (2.9)
T A€E[0,1)2:0+ag=1

Hence, the BMA estimator is actually optimal over all convex combinations of the individual
estimators yAik and yg‘ The optimality of BMA can be also established from a decision-
theoretic perspective, see Chapter 6 in Bernardo and Smith (1994) for details.

We can also express the reduction of the PMSE for the BMA estimator, compared to the
best (lowest) PMSE among all of the individual models’, as

E[(y/;‘ : y*)2|d]
ming, E[(y} — y*)2|d]’

2
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In the specific case of two competing models, if we assume for instance that the ’best’ model
is Mo, we can obtain an even more explicit expression for 'r% A Which provides the relative

gain attained by BMA, namely

)2 ({f - 95)2

. (2.11)
El(y; — y*)?|d]

rhaa =p(Mild

Below in Section 2.3, we denote the sample version of the expression in (2.10) as 7% MA>
which we will use to evaluate the performance of BMA quantitatively.

To finish this section, we decompose the quantity E[(y* — y*)2|d] against the residuals
(g;;’g —y*), k= 1,2, from each individual model assuming pi, po > 0. This is easily done by
symmetrizing formula (2.7) via reintroducing y* to identify these residuals, and then taking
another conditional expectation with respect to d to avoid an expression which depends on
unobserved data. We obtain

El(y* —y)*ld] = (1 — pD)EI(y" — 47)°1d] + (p2 — P)EI(" — 3)*|d] 21
— (T +PE[} — )" — v3)ld].
Formula (2.12) shows that the PMSE of the BMA estimator is an explicit linear combination
of the prediction errors of estimators for each constituent model, but that one must subtract
a coupling correction term on the right hand side of (2.12).

It is interesting to note that the weights in the aforementioned linear combination can be
interpreted as the variances of Bernoulli random variables with the posterior model probabili-
ties p1 and po as their success probabilities. Also note that, since these variances pj,— pi < P,
the linear combination is not convex, but is smaller. The correction term is not necessarily
a subtraction of a positive term, but it is likely to be when both individual models have
significant biases in opposite directions for prediction of y*. This is particularly interesting
when the two models have similar posterior performances. Both values of p; will be in this
situation close to 1/2, which minimizes the values of p;. — p% for both £ = 1,2. This is a
scenario where using BMA will significantly improve prediction errors even when each model

is competitive compared to the other, regardless of how large the individual models’ biases
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are, and without knowing in what direction they go, as long as the two models are assumed
to have significant defects that work in opposite directions.

A sanity check reveals an interesting characteristic of BMA: suppose that p; = 1, so that
the BMA estimate is given by y* = yAi‘ According to (2.12) we must have E[(y* —y*)2|d] = 0,
and further E[(y* — yA*)Z] =0, ie y* = yA* = yAf a.s. given d, in other words, model 1 must

provide a perfect description of the reality.

2.2 BMA with discrepant domains

Let us continue with the discussion about BMA of models with similar, overlapping, but
significantly non-identical domains from the beginning of this chapter in a formal setting. Let
us consider two models M 4 and M p, which we will also denote by (A) and (B) or merely
A and B for simplicity, and assume that they are respectively defined only on different strict
subsets t(4) and £(B) of the data. We denote d() and d(B) the corresponding d data as
well as d=4) and d(=8) their respective complements in d. The actual Bayesian evidence
for each of these models are the probabilities p(d|A) and p(d|B), but these quantities are
not clearly defined. On the other hand p(d4)|A) and p(dB)|B), where each model refers
only to its original range of validity, are the evidences of the models corresponding to the
classical BMA theory described in Section 1.3 and also at the beginning of this chapter.

Nevertheless, we have the following expansion:
p(d|A) = p(d W), dY|4) = p(d V| A)p(d=|d D), 4). (2.13)

This expression means that to obtain model (A)’s actual Bayesian evidence, p(d(4)|A) must
be multiplied by a corrective factor p(d(_A)]d(A), A) which represents the information one

(=4) assuming that model (A) holds and that it does not provide any prediction at

has on d
the data points in d(~4). Note that the distribution p(d|A) is meaningful only to the extent
that d — and thus d(~4) — is measurable in the underlying probability space, which implies
the existence of underlying distributions p(d(~*))) and subsequently of p(d(=|d(4)) and

p(d(_A)|d(A), A). To that extent, the problem of averaging models with different domains
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can be ill posed, if these distributions cannot be defined convincingly.

If the data d() and d(—4) are independent, conditionally to model (A), in other words if
no information can be gleaned about d(=4) from d(4) or from (A), ie. d) is unconstrained
by (A) and by d(_A), then it is legitimate to ignore the aforementioned correction factor
which should be p(d(~4)|d4) A) = 1. In particular, this is the case if, given model (A),
d=4) is considered deterministically equal to its sample value. Conversely, setting the
corrective factor to p(d<_A)\d<A), A) = 1 outside of this scope is an approximation to such
extent, and not in general a fair evaluation of the information contained in the ”globality”
of a model. We shall refer to this case as BMA with independent model domains. Although
it has been adopted as a natural matter of convenience, it raises serious safeguards for which

we cannot find better words than Trotta’s ascertainment (Trotta, 2008):

On the other hand, it s important to notice that the Bayesian evidence does not
penalize models with parameters that are unconstrained by the data. It is easy
to see that unmeasured parameters (i.e. parameters whose posterior is equal to
the prior) do not contribute to the evidence integral, and hence model comparison

does not act against them, awaiting better data.

Let us point out as an extreme situation that occurs when model (A) predicts the values
d=4) that have no physical meaning, e.g. in the case of nuclear mass models, this can be
the mass of a nucleus which a model predicts not to exist, and therefore the mass has no
physical meaning. In this case, the model (A) is actually strongly constrained by d(*A), to
the point that p(d(=Y|A) = 0, yielding p(d=Y|d(4), A) = 0, which rules the model (A)

(=4) is not empty.

impossible as long as d
Another tempting option is to restrict the domain of interest to the domain common to
all models and simply consider p(d()NB)|A) and p(d(B)|B), which can be obtained in

a standard way according to (2.3). As we ignore even more data, this approach is arguably

worse than setting p(d(=4|d(), A) = 1.

18



Let us illustrate how the assumption of independent model domains, namely setting
p(d(_‘4)|d(f4)7 A) = 1, can fail to provide a satisfactory ranking of models in two examples

where a model takes a shortcut by ’refusing’ to predict challenging points.

Scenario 1. Consider the situation where one model My is empty so that p(Mgl|d) o
p(Mp). On the other hand, any other model which constrains any part of the data will have
an evidence most likely lower than 1 which implies that the model will end up with lower
posterior weights when starting from equal prior weights. Thus any predictive model will be

deemed inferior to a non-predictive one.

Scenario 2. Take two deterministic models A and B with input space (domain of ¢) {a, b};
assume model A has deviation 0 at location a and 109 at location b, and that model B has
deviation 1.001 at location a, but does not predict anything at location b. One can easily
adjust the numbers to reach an extreme situation (e.g. making A’s prediction at location b to
be extremely poor) where model B ends up with a much higher Bayes evidence than model
A, while the common sense by which no prediction is a form of extremely poor prediction,

would always imply that model A is better than model B.

These examples show how important it is to acknowledge that a model’s inability to make
predictions in some locations is not a neutral property. The classical BMA approach offers
no trade-off: a model withholding its predictions at the most difficult points will always
improve its weight. We now introduce our “domain-corrected BMA” where we amend the
model weights to account more fairly for the (in-)ability of a model to provide predictions

at locations of interest.

2.2.1 Two models

Starting from (2.13), instead of setting p(d(_A)]d(A),A) = 1 which removes the ef-

fect of a model’s domain in its posterior weights, we propose the weaker assumption that
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p(d=D|dA)| A) is independent from the model, i.e. we assume
p(d= D, 4) = p(d=Vja ), (2.14)

This is quite natural if we consider that model (A) implies a distribution p(d(4)|A4) but
provides no information on d(=4) leaving d(~4) unconstrained by (A) (see the introduction

of this section). The evidence p(d|A) is now given by
p(d|A) ocq p(d | A)p(d =] ). (2.15)
Our assumption dY) U d(B) = d implies that d(~4) can only be informed by (B). Hence
p(d=V)d D) = p(@=D|d™), B) = p(d= 1@ ) B), (2.16)
which can be written as an explicit integral with respect to model (B)’s parameter ¢p,
Jold A 5, B)p(g5la I, B) s (2.17)

To approximate (2.17), one can use the same approximation methods as in the case of

classical evidence integral (see the beginning of this section for more details).

2.2.2 K models

In the general case, each model M, constrains a subset d®) of the data d (for k =
1,...,K); as in the case of two models, d(=*) denotes the complement subset of d®) in
d. We also introduce d(©) := Nk d(%) as the set of data common to all individual models.
Moreover we assume that d = (J. d(k), i.e. every datapoint is covered by at least one model.
We also assume, up to taking equivalence classes on models (see Section 2.4.3 for details),
that for each pair of models there exists a chain of models joining them where each model
M. shares a data point in its domain d*) with each of its neighbours. Relying on the same

principles described in Section 2.2.1, we set
p(dMa®), My) = pa ™), (2.18)
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which leads to the model posterior probabilities of the form
p(Myld) ocy p(d=PdM)p(ry|d M), (2.19)

Compared to the two-model case, the computation of the corrective factors poses ad-
ditional difficulty that, when there is more than one model constraining d(_k), the factor
p(d=F)|d*)) is no longer equal to a single p(d(~F)|d*). M}.), but rather to the an aver-
age of all models constraining d(=%). Hence our domain-corrected BMA corresponds to the
intermediate solution where one replaces the factors of the likelihood corresponding to the
missing model predictions by a geometric average of the likelihoods over the models which
do produce predictions, based on the predictive models’ posterior weights. We have found
that similar ideas have been developed in the broader framework of evidence theory (Park
and Grandhi, 2012, Section 2.2).

The notation for a given corrective factor can become cumbersome when model domains
have very general intersections, but these corrective factors can still be computed recursively

rather than directly. We relegate the calculations of the general case to Section 2.4.3.

2.3 Examples and applications

To illustrate the methodology described in Chapter 2, we present several examples in
which BMA leads to the reduction in prediction error and improved UQ. Our first example
is a simple yet sensible scenario of averaging two different models of proton potentials. The
second example is an application of BMA methodology to state-of-the-art nuclear mass
models and nuclear mass data. The third example is a BMA study of the LDM (1.1)
published by Kejzlar et al. (2020). Lastly, we provide a pedagogical application of model
averaging to a synthetic dataset which highlights the interest of the domain-corrected BMA.

The predictive improvement is measured in the examples as a relative reduction in the
mean square error (MSE), a sample version of (2.10), which we denote as ?]23 A Asa

measure of UQ fidelity, we consider what is know as the empirical coverage probability
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(ECP) (Gneiting et al., 2007; Gneiting and Raftery, 2007). Formally, it can be written as

J
1
=1

where 1 is the indicator function, I, (t;) is the a—credibility interval produced by a given
model at a new input ¢7, and y;’s are the (new) testing data. The ECP represents the
proportion of a model’s prediction of independent testing points falling into the respective
credibility intervals. This quantity is typically plotted against the credibility level « to form
a so called ECP line (e.g., Figure 2.2). This line should theoretically follow the diagonal so
that the actual fidelity of the interval corresponds to the nominal value. If the respective ECP
line falls above the reference, credible intervals produced by a given model are too wide (UQ
is conservative). Naturally, a model with an ECP line below the reference underestimates
the uncertainty of predictions (UQ is liberal). While values of empirical proportions close
to the reference curve are desirable, it is preferable to be conservative rather than liberal.
Overly narrow credible intervals declare a level of assurance higher than it should be.

Each of the examples in this section looks at a situation with several competing models
without any prior knowledge of which is better; thus we set the prior model weights to be
uniform over the model space. All the posterior samples were computed using the NUTS. The
evidence integrals were approximated using the MC integration. All the credible intervals
discussed are the highest posterior density (HPD) credible intervals. Given a credibility level
a, the a-HPD of a scalar quantity consists of the minimum width interval containing an «
proportion of its MCMC posterior samples. Lastly, some of the supplementary results and

modeling details are delegated to Section 2.4.4.

2.3.1 Averaging of proton potentials

In this first example we demonstrate the potential of BMA to improve both prediction
accuracy and honesty of UQ in a favorable situation where we average two models associated

with different proton potentials.
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We consider two single-proton potentials describing the average interaction acting on a
proton within the spatial range of a nucleus; namely, the Woods-Saxon (WS) potential
representing respectively the strong nuclear forces between nucleons (protons and neutrons),
and the Coulomb potential V5 representing the electromagnetic interactions between protons.
For a given nucleus, which we will take with proton and neutron numbers Z = 100 and

N = 150 and mass number A = 250, they can be expressed as

1

Vi(r) = _VWSTRA’ (2:21)
l14+ea
Z
Va(r) = _VC'?' (2.22)

Here, Viiyg = 50 MeV, Vo = 0.5 MeV fm, and a = 0.5 are fixed parameters, and R4 =
AL/3 % 1.25 fm is the radius of the nucleus of interest. These two models for energy potentials
have the interesting property that both are non-decreasing and vanishing at infinity, while
with different speeds, and can correspond to two phenomenons with different length scales.
As a matter of fact, the strong interactions described by the WS potential are confined to the
volume of atomic nuclei (several fm = 1071 m), i.e. they are short-ranged; in contrast the
electrostatic ones are long-ranged, i.e. they act on much larger length scales (> 1010 m) and
compete with the strong interactions in superheavy elements, causing the so-called Coulomb
frustration (see Nazarewicz (2018)). This fact is reproduced in our example where we also
expect that V; should be well constrained by a dataset of stable nuclei, while Vo should
play an important role in the description of short-lived superheavy nuclei. More generally,
we have in mind a scenario where two models have been developed for different subsets
of an input domain and are in competition on some common intermediate domain. Both
of these modeling approaches are equally confident that they prevail on the intermediate
domain, while the truth is somewhere in between. This situation is quite realistic despite its
simplicity, and we can reasonably expect model mixing to have positive outcomes.

We simulate the experimental data {(r;,y;)};_; at different spatial locations r;, relatively
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far from the nucleus (r > R 4) following a mixture of the two models. Namely

yi = (1 = w)V1(r;) + wVa(r;) + ¢, (2.23)

where ¢; are standard normal errors, and we take w = % Note that in reality, the ob-

servations of the potentials are not available as such, but can be inferred indirectly from
experimental nucleonic densities measured in nucleon scattering experiments (Anni et al.,
1995). In particular, we drew a dataset of 210 observations generated according to the model

(2.23) with the locations r; sampled uniformly over (R4, 10).

0-
N i
= —10
=)
=-15
= —— Coulomb potential
—20- Woods-Saxon potential
e Training data
_75. + Testing data
8.0 8.5 9.0 9.5 10.0
r [fm]

Figure 2.1: The Woods-Saxon potential and the Coulomb potential along with the training
(140 observations) and the testing datasets (70 observations) generated from the mixture of
the two potentials.

We further randomly divided the data into a training dataset of 140 observations and
kept the remaining 70 observations for testing (see Figure 2.1). The two statistical models
M1 and My considered here are given by the respective energy potentials (2.23) obtained
with w = 0 and w = 1 and additive independent experimental errors distributed according
to N(0, aj) for j = 1,2. The prior distributions for standard deviations o;’s were take to be
the non-informative Inv-Gamma(1,30).

Table 2.1 shows the estimated root MSE (RMSE) for the testing dataset. We can see

that this simple example gives significantly better predictions under the BMA posterior mean
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predictor than each of the models individually. This is, of course, not a surprise and shows

that BMA behaves as expected.

Model RMSE  P(Mgly) 7Ha4
My 3.540 0512 0.930
M3 3.607 0488  0.933

Mprma 0.935 - -

Table 2.1: RMSE (in MeV) and the improvement under the BMA posterior mean predictor
calculated on the testing dataset (n = 70, A = 250).

More interesting results can be seen from the angle of the quality of the predictions’
UQ in Figure 2.2. In contrast with the individual models, the ECP of the BMA posterior
predictions matches closely the reference line and provides evidence that accounting for

model uncertainty leads to the desired more honest UQ.
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Figure 2.2: ECPs for the testing dataset (m = 70, A = 250).

2.3.2 Averaging of nuclear mass emulators in the Ca region

An important challenge in nuclear structure is to produce quantified predictions of nu-

clear observables, such as nuclear masses (McDonnell et al., 2015), for all possible pairs
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(Z, N) of proton numbers Z and neutron numbers N which can be bound together in a nu-
cleus. Such predictions are of direct interest to guide future nuclear experiments or to feed
astrophysical calculations for the abundance of elements in the universe. The underlying
astrophysical processes, such as the rapid neutron capture which produces heavy elements
in stellar environments (Horowitz et al., 2019), take place far from the region of nuclear
stability, where no experimental measurement are available, and these observables have to
be extracted from extreme extrapolations of theoretical nuclear models.

In their recent work, Neufcourt et al. (2019) used GPs (see Section 1.2 for definition) to
model the discrepancies between the experimental data and the theoretical calculations for
several nuclear models based on the DFT, and obtained quantified extrapolations for nuclear
masses in the Calcium region (at the frontier between experimental and theoretical limits).
They computed a simplified BMA of 9 global mass models (Bartel et al., 1982; Dobaczewski
et al., 1984; Chabanat et al., 1995; Kliipfel et al., 2009; Kortelainen et al., 2010a, 2012, 2014)
listed in Table 2.2 defined across the full nuclear landscape from the light to the superheavy
nuclei, thus suitable for extrapolations. Their weights, proportional to p(y* > 0|y, M}.),
are based on each model’s probability to assign a positive separation energy y* to a testing
set of nuclei which have been experimentally observed after 2003, thus independent from
the training set of measured neutron separation energies y (separation energy is the energy
needed to remove a neutron or proton form an atomic nucleus). Here, we compare the
results of Neufcourt et al. (2019) to the full BMA analysis with model weights given by
their posterior probabilities p(M}.|y). Note that all the physical models are taken here as
calibrated and their parameter estimation is not part of our analysis.

We consider the same training dataset of one-neutron (57, ) and two-neutron (Ss,) sep-
aration energies AME2003 (Audi et al., 2003) restricted to the calcium (Ca) region on the
nuclear landscape with Z > 14 and N < 22 (n = 139). The predictive performances of
each model augmented with the GP model for systematic discrepancies and the BMA pos-

terior mean predictor are evaluated on both the training dataset and a testing dataset of
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new measurements in AME2016 (n = 14) that we denote as AME2016 \ AME2003 (Wang
et al., 2017). The predictive performances of each model augmented with a GP model for
systematic discrepancies and the BMA posterior mean predictor are evaluated on both the
training dataset and a testing dataset of new measurements in AME2016 (n = 14) (Wang
et al., 2017). Similarly to Neufcourt et al. (2019), we calculate the model posterior prob-
abilities independently over four non-overlapping nuclear domains according to the parity
of numbers Z and N with uniform prior distribution over the model space. We assess the
performance of BMA using the MSE improvement and the ECP. These were combined over
odd and even parities of numbers Z and N in order to mitigate the relatively small size of
each parity subset. The GP model specification and the sample sizes breakdown based on

the parity of Z and N are given in Section 2.4.4.

| Model posterior weights | Errors

| S1n, (0odd N) | Sgp, (even N) | Training | Testing
Model |even Z | odd Z | even Z |odd Z | RMSE 7%,, 4| RMSE 7%,, 4
SLy4 0.000 [0.000 |0.000 ]0.008 [0.076 - 0.713  0.313
SkP 0.000 [0.000 |0.000 |0.000 |0.127 0.308 [0.989 0.642
SkM* 0.000 [0.000 |0.000 |0.000 |0.142 0.449 ]0.924 0.591
SV-min 0.000 {0.000 |0.000 |0.001 |0.107 0.023 |[0.840 0.505
UNEDFO 0.000 [0.009 |0.000 |0.000 |0.136 0.400 [0.809 0.466
UNEDF1 0.845 10.669 |0.000 |0.089 |0.110 0.077 |[0.550 -
UNEDF2 0.002 [0.013 |0.000 |0.125 |0.109 0.058 [0.806 0.462
FRDM-2012 [0.153 |0.308 |0.902 |0.310 {0.114 0.149 |0.808 0.465
HFB-24 0.000 ]0.001 |0.098 |0.467 |0.146 0.477 |0.806 0.463
MBarA(prior) 0.110 0.045 |0.641 0.078
M B A(simple) 0.118 0.110 |0.680 0.131
Mprra 0.105 - 0.591 -

Table 2.2: Model posterior weights for 9 nuclear mass models with the RMSE (in MeV)
and the MSE improvement for the training and the testing datasets. The last three rows
correspond to the averaging with the prior weights, the simplified BMA (Neufcourt et al.,
2019), and the full BMA.

Table 2.2 presents the resulting posterior weights of the models, as well as the RMSE and
the MSE improvement for both averaging procedures. The predictions based on the full BMA

(Mpara) outperform the simplified method of Neufcourt et al. (2019) (M pasa(simpte)) by
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11% on the training dataset and 13% on the testing one, as measured by ?QB ara- The lowest
RMSE on the training dataset was attained by SLy4 and UNEDF1 respectively for AME2016
\ AME2003. This result should not discourage practitioner from using BMA posterior mean
predictors, because the BMA methodology outlined in this paper allows for existence of a
“best” model for a particular data domain. However, such a model does not account for
modeling uncertainty whereas BMA does, and therefore the BMA posterior mean estimator
performs consistently well irrespective of the dataset. In fact it attains the second lowest
RMSE on both AME2003 and AME2016 \ AME2003.

Moreover, if we consider only a subset of the whole model space, the BMA attains the
lowest RMSE. See Table 2.8 in Section 2.4.4 for the results with a restricted model space.
Figure 2.3 shows the ECP of the averaged nuclear mass emulators. While it is not clear that
the BMA has an improved ECP compared to each individual models, its ECP is certainly

significantly better than the worst models and comparable to the models with highest fidelity.
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Figure 2.3: The ECPs calculated on the independent testing dataset (AME2016 \
AME2003).
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2.3.3 Averaging of the Liquid Drop Model variants

In our second real-data example, we demonstrate the opportunities in nuclear theory
offered by BMA through averaging of the LDM that has been optimized to various subsets
of the nuclear domain. In the context of the following discussion, it is useful to clarify the
notion of a “model”. In this specific scenario, by model we understand the combination
of the algebraic model formula, the dataset used for its parameter determination, and a
statistical model that describes the error structure.

The parameters of the LDM are (ayy, dgy £, asym, ac) representing the volume, surface,
symmetry and Coulomb energy, respectively. Because of its linearity and simplicity, the
LDM has become a popular model for various statistical applications (Bertsch et al., 2005;
Toivanen et al., 2008; Utama et al., 2016; Yuan, 2016; Bertsch and Bingham, 2017; Zhang
et al., 2017; Cauchois et al., 2018; Shelley et al., 2014; Pastore, 2019).

To study the impact of the fitting domain on prediction accuracy, and UQ fidelity of
nuclear mass models, we shall consider the experimental binding energies of 595 even-even
nuclei of AME2003 (meaning both Z and N are even) divided into 3 domains according
to Figure 2.4. Namely, we define the domain of light nuclei with Z < 40 and N < 50,
heavy nuclei with Z > 50 and N > 80, and the intermediate domain D7 consisting of the
remaining even-even nuclei. To keep some of our results within computable ranges we will
also consider 8 randomly selected nuclei in the central subset of the intermediate domain
which we will denote De. By dividing nuclear domains according to A, we are trying to
simulate the current theoretical strategy in modeling atomic nuclei: light nuclei are often
described by different classes of models than heavy nuclei, with the intermediate domain
being the testing ground for all approaches Nazarewicz (2016). Here we use, for testing, the
same LDM expression in all domains. The models are distinguished merely by the fitting
datasets.

In terms of these separated data domains, we consider four LDM variants fitted on specific

regions of the nuclear landscape:
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Figure 2.4: Even-even nuclei from AME2003 divided into the domains of light (Z < 40,

N < 50), heavy (Z > 50, N > 80), and intermediate nuclei (remaining 155 nuclei). The
subset of 8 randomly selected nuclei is also depicted (From Kejzlar et al. (2020)).

(i) LDM(A) — LDM fitted on all 595 even-even nuclei.

(ii) LDM(L) — LDM restricted to the light domain (153 nuclei).

(iii) LDM(H) — LDM restricted to the heavy domain (287 nuclei).

(iv) LDM(L + H) — LDM fitted on the both light and heavy domain (440 nuclei).

We emphasize that the intermediate domain D7 (and Dg) is not used for training in variants
(ii)-(iv), but kept aside as an independent testing domain where the different LDM variants
compete. Thus we use the binding energies in the intermediate domain to evaluate the
predictions and error bounds of these variants and their Bayesian averages. In short, this
setup is designed to produce a scenario where two models, which have been optimized on

their respective domains, compete to explain the data on a third disconnected domain.
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Our statistical model for binding energies y; is the standard
yi = fm(t;,0) + o€, (2.24)

where the function fp,(t,80) represents the LDM prediction (1.1) with a given parameter
vector @ = (ayol, Agyr f5 Gsym, ac) for a nucleus indexed by t = (Z, N). The errors are mod-
eled as independent standard normal random variable ¢; with mean zero and unit variance,
scaled by o. For the LDM parameters ayy, agyf and asym we use independent normal
prior distributions N (0, 100) with mean 0 and standard deviation 100, while for ac we take
N(0,2). For o we assume a gamma prior distribution Gamma(5,2) with shape parameter 5
and scale parameter 2. These are chosen to be weakly informative, i.e., distributions where
hyperparameters are chosen to ensure that the prior distribution spans a much wider domain
than the resulting posterior. Since the parameter estimation is not topic of this study, we
refer the reader to Kejzlar et al. (2020) for more details about the posterior distributions of
these parameters.

In this example, we wish to select a model’s weight according to its predictive ability
and also to avoid overfitting, in the same spirit as the approach implemented in Neufcourt
et al. (2019, 2020a,b). To this end, we evaluate the evidence integrals over a set of binding
energies y* from the intermediate domain of Figure 2.4, which corresponds to integrating
the posterior distribution of new predictions against the posterior distribution of the model

parameters

p(y* |y, M) = /p(y*|y,Ok,ak,Mk)P(Bk,UHy,Mk)dek doy. (2.25)

Given that posterior distribution of the parameters reflects the true distribution of the pa-
rameter more accurately than the prior, (2.25) more accurately represents the probability
that M}, can explain data y. To assess the impact of the number of evidence datapoints, we
evaluate evidence integrals both on the full intermediate domain D7 and a smaller central

domain Dg.
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The integral (2.25) can be estimated using the MC integration as

"MC

(y |y7Mk = Z y |y79](€2)70-](€2)aMk)7 (226)
where (0](;), 0](:)) are samples from the posterior distributions p(0y., oy |y, M;.).
Table 2.3 shows the posterior weights obtained under averaging scenarios with two (L

and H) and three (L, H, and L+H) models. The corresponding RMSE values for individual

models and the BMA posterior mean predictors are listed in Table 2.4.

LDM(L) LDM(H) LDM(L+H)
D, | BMA(LH) 0.000  1.000
BMA(L,H,L+H) 0.000  0.000 1.000
D, BMA (L,H) 0.008  0.992
BMA(LHL+H) 0002  0.255 0.743

Table 2.3: Posterior model weights under the averaging scenarios with two (L and H; left)
and three (L, H, and L+H; right) models. The weights for the full intermediate domain of
nuclei and the subset of 8 randomly selected nuclei are listed.

As expected, model (H) is selected in the two model variant, and the (L+H) variant
dominates when it is included — this is true for both sets of evidence datasets Dy and D7.
This is consistent with the RMSE of these models. It shall be emphasized that BMA performs
a model selection in the two-model variant, where the RMSEs of the competing models are
very different, and model averaging in the three-model variant, where the RMSE of (H)
and (L+H) are close enough. Table 2.4 also shows how the RMSE of the BMA predictions
compare with that of the individual models. In the two-model setup, BMA is very much
like (H) and it has a similar RMSE. In the three-model setup, BMA performs much better
than the worst model and very close to the best of the averaged models. When computed
on the full test domain Dz, the RMSEs are systematically smaller for BMA than for all
the individual models involved in the averaging (not considering LDM(A)). One may notice

that the RMSE of BMA(L, H, L+H) is, perhaps unexpectedly, slightly worse than that of

32



LDM(L+H) on the small domain De. However, these values are based merely on 8 data

points and should be viewed as a crude estimate of true predictive performance.

LDM(A) LDM(L) LDM(H) LDM(L+H)
M;, 3206 8176  3.811 3.351
D7 [ BMA(L,H) 3.810
BMA (L,H,L+H) 3.223
M;, 1.930  6.825  3.292 1.881
De | BMA(L,H) 3.300
BMA(L,H,L+H) 1.926

Table 2.4: The RMSEs (in MeV) of the predictions from the 4 LDM variants as well as the
values from BMA, calculated on the held-out data in the intermediate domain of even-even
nuclei from AME2003.
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Figure 2.5: The ECPs for the four LDM variants used in our study and the averaging
scenarios with two (L and H) and three models (L, H, and L+H) (From Kejzlar et al.
(2020)).

Similarly to all the previous examples in Chapter 2, we also evaluate the models from UQ
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quality perspective using the ECP curves. Figure 2.5 shows that the LDM variants fitted to
the smaller domains (L or H) tend to underestimate the uncertainty of the predicted binding
energies compared to the rather conservative UQ of the (L+H) variant and the LDM fitted to
the entire AME2003 dataset. On the other hand, BMA (L,H,L+H) yields an ECP superior to
all the LDM variants, including LDM(A), which aligns with our hypothesis that meaningful

averaging can lead to an improved UQ).

2.3.4 Averaging of models with discrepant domains: a pedagogical example

In this example we study a simulated scenario where two models with t-dynamics of the
same order act in the opposite directions. We consider these models to be the realizations

of GPs with means
m;(t) = a;t? + 6;, ie{1,2}, (2.27)

where oy = 0.5 and g = —0.5, and #; and 09 represent unknown parameters to be estimated.

The covariance function used for the GPs is squared exponential kernel

(t—t')?

! 2 2/2 )
ki(t,t') =nie i i€ {1,2}. (2.28)

The prior distributions for the unknown parameters (6;,7;,¢;) are listed in Section 2.4.4.
Overall, the two statistical models M7 and M3 considered here are given by the respective
GPs and additive independent errors distributed according to N (0, ;) for j =1,2.

The two means (2.27) emulate a natural scenario of competition between models, similar
to the proton potential example above, where we are uncertain about the nature of the
physical law and resort to BMA in order to account for this uncertainty. To do so, we
consider a synthetic dataset y of 18 observations drawn independently from N (0, 10_3) at
input points t = {+k,k = 1,2,...9}. Additionally, we study the impact of the domain
correction by assigning a different training dataset y(k) to the models M1 and Mas, using

seven different scenarios with proportions of shared observations (D req) ranging from 20%
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to 80% according to the scheme in Table 2.5. Note the break of symmetry in the domain of
y(k> denoted by a circle, we shall refer to those as symmetric and asymmetric scenarios.
For each value of Dgjpeq, We carried out the domain-corrected procedure detailed in
Section 2.2 and computed the evidence integrals p(y(k) |M},) as well as the corrective terms
p(y(_k)\y(k)). Also note that the approximate computation of these terms (2.17) is more
demanding than the computation of the evidence integrals, because it requires integration

against the posterior distribution of parameters.

Training dataset y(k)
Dghareqg Model -9 8 -7 6 -5 4 -3 2 -1 1 2 3 45 6 7 89

0.9 M; x x X X X X X X X X

) Mo X X X X X X X X X X
0.3 M @ ® ® ® ® ® ® ® ® ®

' Mo B OV & ¥ ®§ ® ® &
0.4 My X X X X X X X X X X

’ Mo X X X X X X X X X X
0.5 My B RQR ORIV K K

' Mo B ® Q8 80 O @ &
0.6 My X X X X X X X X X X

’ Mo X X X X X X X X X X
0.7 My Q¥ @ ® & ® ¥ ® ® &

' Mo B ® Q0 ¥ ® ®§ ® &
0.8 My X X X X X X X X X X

: Mo X X X X X X X X X X

Table 2.5: Scheme depicting the observations contained in the training dataset of the
models according to the proportion of shared data. The crosses mark the values contained
in the domain of each model.

Table 2.6 gives a quantitative summary of the simulation results in the asymmetric sce-
nario, where the impact of the domain correction is stronger. See Table 2.9 in Section 2.4.4
for the symmetric case, where the impact of the domain correction is minor due to the sym-
metry of training data and the response functions. The RMSE was calculated based on the
set of common observations (t < 5). BMA(Q) and BMA(Q) represent respectively the
domain corrected BMA and the BMA with independent model domains. () denotes the pos-

terior odds ratio p(y—Y |y p(M1]yM)/[p(y =2 |y )p(My]y)] used to draw samples
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Dyhared Model RMSE py®My) py P y®) Qo Q@ 74

My 469 2.69-10721 2.13.10716 0.495
0.3 | My 468 7.78-10720 925.10~18 0.03 0.80 (0.494
Mprrag) 333 - - -

M,y 463  7.79-10720 544.10713 0.512
0.5 | My 438 3.29.10718 212.10714 0.02 0.61 0.456
Mpragy 429 - - -

My 436  3.23.1071% 1.13.10°8 0.593
0.7 | Mo 3.62 1.45-10716 3.49.10710 0.02 0.72 g.410

Table 2.6: Summary of the domain corrected BMA analysis in the asymmetric case of the
pedagogical example.

from the mixture distribution (2.1) and Qg is the ratio p(M;|y™M))/p(Ma|y?)). The MSE
improvement ?23 a4 18 with respect to the BMA with domain correction.

As expected from our construction, BMA leads to a spectacular decrease of the MSE
by about 50%. The BMA posterior mean predictor outperforms consistently the individual
models, at all proportions of the shared training data. As the overlap between the two
model domains increases, the RMSEs consistently decrease. The same observations hold in
the symmetric case. The domain corrected BMA has consistently lower RMSE than the
BMA with independent model domains across Dgpgreq- We observe that the values of the
corrective factors increase exponentially towards 1 as D req increases; indeed the extreme
case Dgpared = 1, where both models are defined on the same domain, corresponds to the
classical BMA framework. The odds ratios stay expectedly close to 1, due to the fact that
the deviations from out-of-domain data are comparable across the models; still the domain-
corrected odds ratio () has a consistently larger variability than (g, the difference vanishes

as the proportion Dy qreq Of data shared between the two models increases.
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2.4 Technical details and supplementary results

2.4.1 A simple example of evidence integral with closed form solution

Let us suppose the following set of K models of experimental observations (t;, ;)" ;
yi:fk(ti)—i—okei, k=1,..., K,

where y;.(t) are known deterministic functions, €; are independent identically distributed
standard normal random variables, and a]% ~ Inv-Gamma(ay, f;). We can calculate the

evidence integrals (2.3) explicitly as

N (_zm(ti)—?yk(ti))z) 5ok (_%k)
M) = | % 20} e 1 %) 07

2770—]%)% I'(ag) (J%)%He
ay, <_ 3 &(y(ti)—gk(ti»?wk)
5k 1 o7 do']%

) <2w>3r<ak>/0 ) FrT
BrET(3 + ay) .
(2m) 3T ( syl — b)) + ) 7k

2.4.2 Proofs

Proof of Lemma 1.

First, the standard factorization identities give the following expression:

~

(" — )% — (" — M\yi — Aavs)?
= 20" — (M + 1)y} — N2+ p2)us] (M — p1)yt + (N2 — p2)us).

To get the result of the Lemma, we now take the expectation of the expression above condi-

tioned on d and notice that the right hand side is, with the exception of y*, d-measurable.
El(y* — y*)*|d] — E[(y* = My} — Moy3)*|d]

= [(p1 — A)yp + (P2 — A)ys] (M1 — p1)yi + (N2 — p2)us).
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2.4.3 Supplement for the general case of K models

Let us consider a dataset d and K models My, ..., M, and assume that each model M
is defined on a subset (%) of the data inputs. Denote also d®) the subset of d corresponding
to inputs t() and d=%) the complementary subset as well as d©) .= Nk dk). Suppose that
all data locations are in the domain of at least one model so that d = | J;, d®).

Note that if the datasets are disjoint, there is simply no basis to compare the models.
Given a set of models, one can define a unique minimal equivalence relationship x on the
models (i.e. with a number of equivalence classes maximal) satisfying M % M’ if M and M’
share at least one data point, i.e. M % M’ if and only if there exists r > 0 and a sequence
of models M =: My, My, ..., M, := M’ such that M; and M;,1 have a common data
point for each 0 < i < r. The computation of the posterior weights of the models can then
be done within each class of equivalence, and we will therefore assume that there is only one
such equivalence class.

In the standard BMA where all models share d, one can express the posterior probabilities

on the models p(M;.|d) using the Bayes formula
p(Mpld) o, p(d| M) p(My) (2.29)

and estimate the evidence integral p(d|M}.) as at the beginning of this chapter. In our
situation, however, the model M, provides an expression p(d®)|M}.) instead of p(d|M}),
so that the standard procedure cannot be applied without a further argument.

Starting from (2.29), we expand p(d|M},) similarly to the two-model (2.13) case as
pldMy) = p(d®), dTO M) = p(dDd®), Mppd DMy, (230

Instead of setting p(d(~)|d(*) M,) = 1 which advantages models that withhold their pre-
dictions at difficult locations (see the example scenarios and discussion in Section 2.2), our

domain-corrected BMA estimates
p(d =M d®), My) = p(d = d ™). (231)
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This yields the evidence and the posterior weights given respectively by

pldMy) = p(d P d®)p(d M My) (2:32)
p(Mgld) o p(d1dM)p(d | My)p(My), (2.33)
similarly to the two-model case. All that is left now is to evaluate the p(d(~%)|d(*)).

Let & be the set of ¢ indices of the models that constrain d(_k), we can compute

p(d(*k) |d(k)) by conditioning with respect to the models with indices in §. Namely,

p(d=R)ak)y = p<d<fk>|d<k> UM =Myl e S])

= p(d ) Mp)p(M;, dP))
ZZGSP<M17 ZGZS

- p(d ), M)p(M;|d®))
Zzesp(Mz\d (k) ZEZS P

The simplest case is when d=F) is non-divisible, in the sense that for every [ € S, we have
d=F) c dV) or d=F) nd®) = 0. Then p(d—F)|d*) M;) is given by (2.17) and the sum
above have explicit expressions. In the general case, some models may be defined only on a

strict subset of y(_k). In that case we have

p(dRdB) M) = p(d RN g=RNED gk ag)
= p(d=PNW 1R A p(d—FINED R g=RND) Ag))

_ (@ =P00 N0 ) p(d RN g0 gDy

The first term can be explicitly computed as (2.17) and p(d(=%)0(1|g() @M=D)y can be
computed recursively. For practical purposes, it is important to notice that the complexity
of the underlying algorithm is at most exponential in the number of models, where each
iteration requires the computation of a posterior predictive distributions of decreasing subsets
of the data given decreasing subsets of the data, posterior model weights given decreasing
subset of the data, and N computations of corrective likelihoods, where N is the number of

non-divisible subsets.
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2.4.4 Supplement for the examples and applications

Averaging of nuclear mass emulators in the Ca region. In this real data application,
we follow the experimental framework of Neufcourt et al. (2019). Given a (known) theoret-
ical nuclear model fy,(t) for the one- and two-neutron separation energies, we consider the

relationship between the experimental observations y; and the nuclear model as

yi = Jm(t) +6(¢),

for t :== (Z, N) ranging over the two-dimensional nuclear domain. We model the systematic

discrepancy 0 as the GP
5(Z7 N) ~ gP(()’ kﬁ,€{<Za N)7 (Z/7 N/)})v

with the mean 0 and the quadratic exponential covariance kernel with three parameters

(z-7')2 (N-N")2

2 2
kjn,f{(za N)7 (Z,7 Nl)} = 7726 2€Z 2£N )

with independent gamma prior distributions with shape and scale parameters
n, Lz, {n ~ Gamma(a,b),

where b = 1 and a respectively set to 0.8, 0.5 and 1.8. Note that this corresponds to the
framework of Bayesian calibration of imperfect computer models described in Section 1.2.
The only difference is that here we consider models that were already calibrated, and we
don’t explicitly model the experimental error (the is common practice in the nuclear physics
community since the experimental error is negligible compared with the systematic error for
state-of-the-art models). See supplemental material to Neufcourt et al. (2019) for exhaustive

description of the framework.

Averaging of models with discrepant domains: a pedagogical example. Table 2.9

gives a quantitative summary of the simulation results in the symmetric scenario. Figure 2.6
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\ Sample Size
| S1n (odd N) | Sa,, (even N)

Dataset |even Z |odd Z | even Z | odd Z
AME2003 41 31 39 28
AME2016 \ AME2003 |3 3 3 5

Table 2.7: Sample size breakdown for the training (AME2003) and the testing (AME2016 \
AME2003) datasets of nuclear separation energies in the Ca region according to Z and N
parities.

| Model posterior weights | Errors

| S1n, (odd N) | S2p, (even N) | Training |  Testing
Model |even Z |odd Z | even Z | odd Z | RMSE 7%,, 4 | RMSE 7%,, 4
SkM* 0.000 [0.001 |0.000 [0.000 |0.142 0.375 [0.925 0.413
FRDM-2012|1.000 [0.997 [0.900 |0.399 |0.114 0.031 |0.808 0.231
HFB-24 0.000 |0.002 |0.100 |0.601 {0.146 0.405 |0.806 0.227
Mparra \ \ \ \ 10.112 - 10.709 -

Table 2.8: The model posterior weights, RMSE (in MeV) and MSE improvement
calculated on both the training (AME2003) and the testing (AME2016 \ AME2003)
datasets for 3 nuclear mass models.

(asymmetric design) and Figure 2.7 (symmetric design) show the posterior mean predictions
for M1, Ms, domain corrected BMA Mg, AQ) and BMA with independent model do-
mains Mgy A(Qp)- These were obtained for the pedagogical example 2.3.4 using the domain
correction developed in Section 2.2. The RMSE for both BM A(Q)) and BM A(Q) is almost
identical here (up to a roundoff error) due to the symmetric nature of both the training
dataset y(k) and the response functions.

The prior distributions used in the example were

0; ~N(0,1),
01-2 ~ Inv-Gamma(10, 1),
¢; ~ Gamma(1l, 10),

n; ~ Inv-Gamma(10, 1),
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where both the gamma and the inverse gamma distributions are parametrized in terms of

the shape and the rate parameters for ¢ € {1,2}.

Dgparea Model RMSE p<y(k)|Mk) p(y(_k)|y(k)) Qo @ ?2BMA
My 469 2.78-10721 1.98.10~1 0.512
0.2 | My 458  2.73-10721 211.10719 1.02 0.96 (.488

Mprrag) 328 - - -

M,y 464  7.99-10720 4.33.10716 0.511
0.4 | My 453  7.95-10720 3.96.1016 101 1.10 0.486

My 437  3.32-10718 859.10712 0.504

0.6 | M, 433 329.10718 784.10712 1.01 1L.11 0.495
Mpraq) 307 - - -

Mprag) 308 - - -

My 3.61 1.45-10716 2.99.106 0.509
0.8 | My 3.56 1.42-10716 298.1076  1.02 1.03 0.495
MBMA(Q) 2.53 - - -

Table 2.9: Summary of the domain corrected BMA analysis in the symmetric case of the
pedagogical example.
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Figure 2.6: Posterior mean predictions (with 68% HPD credible intervals) for the 10
observations y for the two models in (2.27) as well as their BMA, with the domain
correction and with the assumption of independent model domains. This is the asymmetric
case. The dashed line segments represent the translated values of the original observations.
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Figure 2.7: Posterior mean predictions (with 68% HPD credible intervals) for the 10
observations y for the two models in (2.27) as well as their BMA, with the domain
correction and with the assumption of independent model domains. This is the symmetric
case. The dashed line segments represent the translated values of the original observations.
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CHAPTER 3

AN EFFICIENT ALGORITHM FOR BAYESIAN CALIBRATION OF
COMPUTER MODELS VIA VARIATIONAL INFERENCE

With the ever-growing access to high performance computing in scientific communities,
the use of computational models proliferates to solve complex problems in many scientific
applications such as nuclear physics and climate research. An important class of such prob-
lems is making predictions, in order to aid the cycle of the scientific process. In particular,
our task is to establish statistically principled predictions of new values y* of a physical
process ( using a computer model fy,, and a set of observations y = (yq,...,yn) from this
process. We would also like to account for various sources of uncertainty associated with
individual models (see Section 1.1 for detailed discussion on UQ of computer models). The
general framework that we shall follow and allows for predictions with UQ is called Bayesian
calibration. It was originally developed by Kennedy and O’Hagan (2001) with extensions
provided by Higdon et al. (2005, 2008); Bayarri et al. (2007); Plumlee (2017, 2019); Gu and
Wang (2018) and Xie and Xu (2020), to name a few.

Formally, let y = (y1,...,yn) be observations of a physical process ((¢;) depending on a

known set of inputs t; € € C RP. Assume that y; follows

Yi = C(tz) + o€, (31)

where o represent the scale of observation error ¢; i N(0,1). As a mathematical descrip-
tion of ¢, we consider a computer model f,, defined as the mapping (t,0) — f,(t,0) which
depends on an additional set of inputs 8 € © C R? that we call calibration parameters.
These are fixed but unknown quantities representing fundamental properties of the physical
process that cannot be directly measured or controlled in an experiment. We assume a single
value of calibration parameter @ to be common among all the observations y; and all the

future instances of the physical process.
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As we discussed in Chapter 1, a computer model is an imperfect description of the
reality, and there often exists some systematic discrepancy (error) between the model and
the physical process. To this extent, we assume that ( satisfies ((t) = fin(t,0) + (t),
where 0(t) is the systematic discrepancy of the model whose form is generally unknown.

The complete statistical model then reads as
yi = fm(t;,0) +(t) + o¢;. (3.2)

The systematic discrepancy is modeled non-parametrically using a Gaussian process (GP)

with the mean function mgs(¢) and the covariance function kg(t,¢):
0(t) ~ GP(mg(t), ks(t,t)). (3:3)

The definition of a GP with examples is provided in Section 1.2.

In addition to the computer model being imperfect, it is often too expensive in terms of
both computational time and memory to be used directly for inference. A common remedy
is to consider the computer model as a realization of a GP with the mean function m¢(t, 0)

and the covariance function k¢((t,8), (t',0")):
fm(t,0) ~ GP(m(t,0),k;((t,0),(t,0))). (3.4)

In this situation, we generate an additional synthetic dataset of model runs z = (z1,. .., z5)
over a fixed grid of inputs {(£1,81), ..., (ts, 0)} selected using a space-filling design such as
a uniform or Latin hypercube design (Morris and Mitchell, 1995). The complete dataset d
therefore consists of n observations y; from the physical process ¢ and s evaluations z; of the
computer model fp,, i.e. d = (dy,...,dp+s) = (y,z), and follows the multivariate normal

distribution
d(¢ ~ N(M (), K(d)), (3.5)

where ¢ = (0,7, 0) is the set of all unknown parameters with v denoting the set of hyper-
parameters of the GPs’ mean and covariance functions. M (¢) (1.5) is the mean vector and

K(¢) (1.6) is the covariance matrix given by the GPs’ specifications.
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Under this framework, the Bayesian predictions of y* are given by the posterior predictive

distribution p(y*|d), namely

ply*|d) = / p(y*|d, p)p(ld) dp. (3.6)

The conditional density p(y*|d, ¢) is a multivariate normal density given by the statistical
model (1.3) and the specification of GPs (the explicit form is provided in Section 3.4). The

posterior distribution of the unknown parameters p(¢|d) is given by the Bayes’ theorem

C o(d)p(e)
POld) = T dlo)p(e) dp (3.7)

The term “calibration” in the Bayesian paradigm includes both an estimation of ¢ and a full

evaluation of uncertainty for every parameter under a prior uncertainty expressed by p(¢).
It is also worth noting that the posterior predictive density is rarely computed directly from
(3.6). Instead, we first generate samples ¢(1), ce ¢(M) from p(¢|d) and then obtain samples
y*(l) ) ,y*(M) so that y*(i) ~ p(y*|d, (,b(i)), i=1,..., M. The posterior predictive density

is then approximated using the empirical density of samples y*(l), o ,y*(M ).

As a consequence of this simple two-step algorithm, we are interested in effective sampling
(approximation) from the posterior distribution p(¢|d). This becomes quickly infeasible with
the increasing size of datasets, number of parameters, and model complexity. Traditional
MCMC methods that approximate p(¢|d)—such as the MH algorithm or more advanced
ones including the Hamiltonian Monte Carlo or the NUTS—typically fail because of the
computational costs associated with the evaluation of p(d|¢). The conventional approaches
to scalable Bayesian inference are in general not applicable here because of the highly corre-
lated structure of K(¢) or the nature of calibration itself. Indeed, parallelization of MCMC
(Neiswanger et al., 2014) works in the case of and independent d, and GP approximation
methods are developed in the context of regression problems (Quinonero-Candela and Ras-
mussen, 2005; Titsias, 2009; Bauer et al., 2016).

This chapter presents a scalable and statistically principled approach to Bayesian calibra-

tion of computer models. We offer an alternative approximation to posterior densities using
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variational Bayesian inference (VBI), which originated as a machine learning algorithm that
approximates a target density through optimization. Statisticians and computer scientists
(starting with Peterson and Anderson (1987); Jordan et al. (1999)) have been widely using
variational techniques because they tend to be faster and easier to scale to massive datasets.
Moreover, the recently published frequentist consistency of variational Bayes by Wang and
Blei (2019) established VBI as a theoretically valid procedure. The scalability of VBI in
modern applications hinges on the efficiency of stochastic optimization in scenarios with
independent data points. This efficiency, however, diminishes in the case of Bayesian cali-
bration of computer models due to the dependence structure in data (Robbins and Monro,
1951; Hoffman et al., 2013). To maintain the speed and scalability of VBI, we adopt a
pairwise decomposition of data likelihood using vine copulas that separate the information
on a dependence structure in data from their marginal distributions (Cooke and Kurowicka,

2006). Our specific contributions are as follows:

1. We propose a novel version of the black-box variational inference (Ranganath et al.,
2014) for Bayesian calibration of computer models that preserves the efficiency of

stochastic optimization in a scenario with dependent data.

2. We implement the Rao-Blackwellization, control variates, and importance sampling to

reduce the variance of noisy gradient estimates involved in our algorithm.

3. We provide both theoretical and empirical evidence for scalability of our methodology
and establish its superiority over the MH algorithm and the NUTS both in terms of

time efficiency and memory requirements.

4. Finally, we demonstrate the opportunities in UQ given by the proposed algorithm on

a real-word example in the field of nuclear physics.

The rest of this chapter is organized as follows. In Section 3.1, we give a general overview

of VBI. In Section 3.2, we derive our proposed VBI approach to perform an inexpensive and
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scalable calibration. We establish statistical validity of the method and provide theoretical
justification for its scalability. Subsequently, in Section 3.3, we discuss the implementation
details with focus on strategies to reduce the variance of the gradient estimators that are
at the center of stochastic optimization for VBI. Section 3.4 presents a simulation study
comparing our approach with state-of-the-art methods to approximate posterior distribution
and illustrates our method on a real-data application. All technical details, proofs, and

supplementary results are provided in section 3.5.

3.1 Variational Bayes inference

VBI is an optimization based method that approximates p(¢|d) by a family of distribu-
tions q(¢|A) over latent variables with its own variational parameter A. Many commonly
used families exist with the simplest mean-field family assuming independence of all the
components in ¢; see Wainwright and Jordan (2008); Hoffman and Blei (2015); Ranganath
et al. (2016); Tran et al. (2015, 2017) for examples of more sophisticated families. The
approximate distribution ¢* is chosen to satisfy

¢" = argmin K'L(q(¢|A)||p(¢|d)). (3.8)
a(@[N)
Here, KL denotes the Kullback-Leibler divergence of ¢(¢|\) from p(¢|d). Finding ¢* is

done in practice by maximizing the evidence lower bound (ELBO)

L) =E, [1ogp<d|¢>] _ KL((éN]p(9). (3.9)

which is a sum of the expected data log-likelihood log p(d|¢@) and the K L divergence between
the combined prior distribution p(¢) of calibration parameters, the error scale o, and GP hy-
perparameters and the variational distribution ¢(¢|A). Note that we set L(A) := L(q(¢p|\))

for the ease of notation. Minimizing the ELBO is equivalent to minimizing the original

49



objective function. Indeed,

KL(g(éIN) [p(old)) = E, [longw] _E, [1ogp<¢\d>}

=~ (& 1ozl | - KL (@) ) + 08 pta).

The ELBO can be optimized via the standard coordinate- or gradient-ascent methods.
These techniques are inefficient for large datasets, because we must optimize the variational
parameters globally for the whole dataset. Instead, it has become common practice to use a
stochastic gradient ascent (SGA) algorithm, which Hoffman et al. (2013) named “stochastic
variational inference” (SVI). Similarly to the traditional gradient ascent, SGA updates A at
the ! iteration with

At1 — A+ ped (M) (3.10)

Here, I(A) is a realization of the random variable £(\), so that E(L(X)) = VyL(A), and
Ranganath et al. (2014) showed that the gradient of ELBO with respect to the variational

parameter A can be written as

(@A)

VAL(A) = Eq | Valog g(¢|A)(log p(d|p) — log (@)

), (3.11)

where Vy log ¢(¢|A) is the gradient of the variational log-likelihood with respect to A.
SGA converges to a local maximum of £(\) (global for £(X) concave (Bottou et al., 1997))

when the learning rate py follows the Robbins-Monro conditions (Robbins and Monro, 1951)

0 0
Zpt = 00, Zp? < 0. (3.12)
t=1 t=1

The bottleneck in the computation of the gradient VyL(A) is the evaluation of the log-
likelihood log p(d|¢), which makes the traditional gradient methods as hard to scale as
MCMC methods. SGA algorithms address this challenge. If we consider N independent

observations d; ~ p(d;|¢), then we can define a noisy estimate of the gradient Vy£L(A) as

q(p|\)
p(d) |

£(N) = NE, |V logq<¢|A><1ogp<df|¢>>} _E, [VA log ¢(|A) log (3.13)
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where I ~ U(1,...,N) with E(L(X)) = VAL(A). Each update of A computes the likelihood
only for one observation d; at a time and makes the SVI scalable for large datasets. One can

easily see that, under the framework for Bayesian calibration, E(L(X)) # V£L(A) and that

the corresponding the SVI does not scale (the noisy estimates are biased).

3.2 Variational calibration of computer models

In this section, we derive the algorithm for scalable variational inference approach to
Bayesian computer model calibration. The first step is finding a convenient decomposition
of the likelihood p(d|¢) that allows for an unbiased stochastic estimate of the gradient
VAL(A) that depends only on a small subset of data. Multivariate copulas, and specifically
their pairwise construction which we shall introduce below, provide such a decomposition.
We are not the first ones to use copulas in the context of VBI. For instance, Tran et al.
(2015) and Smith et al. (2020) proposed a multivariate copula as a possible variational
family. However, we are the first ones using copulas in the context of computer model

calibration implementing via VBI.

3.2.1 Multivariate copulas and likelihood decomposition

Fundamentally, a copula separates the information on the dependence structure of N > 1
random variables X1, ..., Xy from their marginal distributions. Let us assume, for simplic-
ity, that the marginal cumulative distribution functions (CDFs) F1,..., Fjy are continuous
and possess the inverse functions F|- 1, L F &1. It follows from the probability integral
transform that U; := F;(X;) ~ U(0,1) and conversely that X; = Fi_l(Ui). With this in

mind, we have
P(Xy < F{Yz1),.... XNy < Fyl(ay) = P(Uh < 21,..., Uy < ay) = C(zq, ..., 2N).

The function C'is a distribution with support on |0, 1]N , uniform marginals, and is called

a copula. Under the above assumptions, a one-to-one correspondence exists between copula
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C' and the distribution of X = (X7, ... ,XN)T, as stated in the following theorem due to

Sklar (1959). To keep the notation consistency and readability, we re-state the theorem here.

Theorem 1 (Sklar (1959)). Given the random v. Xi,..., Xy with continuous marginals
Fy, ..., Fyx and the joint distribution function F', there exists a unique copula C such that
for all x = (x1,...,z5)T € R": F(zq,...,z2n) = C(F1(21),..., Fn(zy)). Conversely,
given the CDFs Fy, ..., Fy and a copula C, F defined through C(Fy(z1), ..., Fp(zy)) is an

N-variate distribution function with marginals Fy, ..., F.

Consequently, one can write the joint probability density function (pdf) f of X =
(X1,...., X5 as

N
fay, . ay) = c(Fi(z),..., Fa(zy)) [ fiz), (3.14)
i1

where ¢ represents the copula density and f; is the marginal pdf of Xj.
The key reason for considering copulas is that one can decompose the N-dimensional
copula density ¢ into a product of bivariate copulas. The starting point for this construction

is a recursive decomposition of the density f into a product of conditional densities

flz1,...,zN) = ﬂ flzilzy, .. zi_q) f(z1). (3.15)
For N = 2, the Sklar’s theorem implies tl_‘:zft
f(x1,m2) = c1a(F1(z1), Fa(x2)) f1(z1) f2(22), (3.16)
and
f(z1]wg) = c1a(Fi (1), Fa(x2)) f1(21), (3.17)
where
c12 = c12(F1(xy1), Fo(x9)) (3.18)

is a density of C(Fy(x1), Fy(x2)) = F(x1,22). Using (3.17) for the decomposition of (X7, X})

given Xo, ..., X;_1, we obtain
t—2
floglay, .. 1) = (H Cs tyst1,.t—1)C(¢—1) ¢ - Jt(Tt), (3.19)
s=1
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where
Ci i yonrip, = Cigisiq ooy (F (@il @iy s -y ), F(@jlay, oo @,) (3.20)
and
Fag, xjlwig, . viy) = Cijuiy i (F@ilwig, - owg ), Fagleg, . x)). (3.21)

Using (3.15) and (3.19) with the specific index choices s = i,t = i + j, we have that

1N—j

f(xlw"a |:H HC (i+5);(i4+1),...,(i+5— 1:|ka$k (322)

j=1 =1
Note that ¢ jij, ...i, are two-dimensional copulas evaluated at the CDFs F(xi|viy,. .. ’xik>
and F(zj|zi, ..., ;). The decomposition above is called a D-vine distribution. A similar
class of decompositions is possible when one applies (3.17) on (X;_1, X3) given Xq,..., Xy o

and sets j =t — k,j +1i =1 to get a canonical vine (C-vine) (Cooke and Kurowicka, 2006):

N t-1
orseeeson) = o) | T TL e heaoonony - flon)]
=2 k=1
N—1N—j
[H H Cj,(j41);1,m, (= 1]kaxk
J=1 i=1

One can easily imagine that many such pair-copula decompositions exist. Bedford and
Cooke (2002) observed that these can be represented graphically as a sequence of nested
trees with undirected edges, which are referred to as wvine trees. In order for a pair-copula
decomposition to be feasible, Bedford and Cooke (2002) defined a regular vine tree (R-vine)
on N variables consisting of connected trees Ti,...,Ty_1 with nodes N; and edges E;

satisfying the following conditions:
1. 71 has nodes N1 = {1,..., N} and edges Fj.

2. For i = 2,...,N — 1 the tree T; has nodes N; = E; 1 (i.e., edges in a tree become

nodes in the next tree).

3. Two edges in 7; are joined in 7; 1 if they share a common node in 7;.
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Figure 3.1: A D-vine tree representation of a copula with 5 variables.

Here, we focus exclusively on the D-vine and C-vine decompositions because they repre-
sent the most-studied instances of regular vines and provide an especially efficient notation.

We note, however, that the following results can be extended to any regular vines.

Properties of vine copulas (Cooke and Kurowicka, 2006). The vine copula con-
struction is particularly attractive for two reasons. First, each pair of variables occurs only
once as a conditioning set. Second, the bivariate copulas involved in the decompositions have
convenient form in the case of Gaussian likelihood f. In particular, let X = (Xq,..., X N)T
follows a multivariate normal distribution with F; = ®,5 =1,..., N, where @ is the standard

normal CDF. The bivariate copula density is

1 /-$2(wi2 + w?) — 2KW;w;
Ci i oo (Ui Uj) = ﬁexp{— ST (3.23)
Here, uj = F(x|wgy,. .. i), uj = Flajleg ...z ), wp = O~ 1wy, wj = <I)_1(uj), and
K= P e i, is the partial correlation of variables 7, ; given i1,...,7;. The D-vine and

C-vine decompositions also involve conditional CDFs, for which we need further expressions.

Let v € D and D_y := D \ v so that D contains more than one element, F(zj[zp) is
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typically computed recursively as

F(zjlep) = MF(zjlep_, ), Flzolep_,)lpjup_,) (3.24)

and the function A is for the Gaussian case given by

O (w;) = pijiy,. i, @ (1)
5 1,...71 ¥l
hui, wjlpijoig,...ip.) = ‘1)( > k . (3.25)
\/1 T Pieiq i,
Lastly, the partial correlation can be also computed recursively as
Pij-D_y — Piw-D_,Pv,j-D_y (3 26)

Pij-D = -
’ 2 2
\/1 ~ Piv-D_, L= Pv.j-D_,

3.2.2 Scalable algorithm with truncated vine copulas

We now consider the data likelihood p(d|¢) according to (3.5) and make use of vines to
construct a noisy estimate of the gradient Vy£(A). We additionally assume that N = n+s,
where n is the number of observations y; from the physical process, and s is the number of
computer model runs z;. The log-likelihood log p(d|¢) can be rewritten according to the

D-vine decomposition as
N—1N—j

logp(d|d) = > > phiy;(9) (3.27)

j=1 i=1

where

1
P14 (®) =108 (14 j)s(i1),.. (i4j-1) + m(logm(dﬂw +logpitj(ditjle)). (3.28)

This can be conveniently used in the expression of the ELBO gradient. For a D-vine, we

have that
1N—j

q(p|\)
p(®)

N—
VAL =
j=1 i=1

Ba VA log BN 058D - By | Valoza(@in o L0 320

The following proposition gives a noisy unbiased estimate £p(A) of the gradient (3.29).
Similarly, we can derive a noisy estimate ﬁc(/\) of the gradient using a C-vine. We leave

the details to Section 3.5.1.
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Proposition 1. Let Lp(X) be an estimate of the ELBO gradient Vy\L(\) defined as

q(@|A)
p(o) |

£p(yy =M=

Eq|Va logQ(czSI)\)(p?D(K)(cb))} —Eq [V,\ log q(¢[A) log

where K ~U(1, ..., N—(N_rl)), and Ip is the bijection

N(N —1)

Ip:{l..., =} = {(i+)) i€ {l..,N=j}forje{l...N-1}},

then Lp(N) is unbiased i.e., E(Lp (X)) = VAL(A).

As in the case of SVI for independent data, these noisy estimates allow to update the
variational parameter A without the need to evaluate the whole likelihood p(d|¢). We need
to consider only the data consisting of a copula’s conditioning and conditioned sets. Un-
fortunately, both £p(X) and Lo (M) can be relatively costly to compute for large datasets
because of the recursive nature of calculations involved in the copula densities’ evaluation.
According to Brechmann et al. (2012); Dissmann et al. (2013), and Brechmann and Joe
(2015), the most important and strongest dependencies among variables can be typically
captured best by the pair copulas of the first trees. This notion motivates the use of trun-
cated vine copulas, where the copulas associated with the higher-order trees are set to the
independence copulas. From the definition of a regular vine, one can show that the joint
density f can be decomposed as

N-1 N
fldy,....dy) = { 1T 11 Cj(e),k(e);D(e)] T fdw),
j=1 ecE; k=1
where e = j(e), k(e); D(e) € E; is an edge in the i tree of the vine specification. We define

the truncated regular vine copula as follows.

Definition 2 (Brechmann et al. (2012)). Let U = {Uy,...,Un} be a random vector with
uniform marginals, and letl € {1,..., N—1} be the truncation level. Let 11 denote the bivari-
ate independence copula. Then, U s said to be distributed according to an N-dimensional

I-truncated R-vine copula if C' is an N-dimensional R-vine copula with

C'(e),k;(e)p(e) =1l VeekFk, i=I0+1,...,N—1.

7

56



For the case of an I-truncated D-vine, we have

I N—j

fldy,....dy) = [H H 1,(1+7);(i+1),...,(i+5—1)
j=1 i=1

and analogically to the case of D-vine with no truncation, the log-likelihood p(d|¢) can be

N
H Fr(dy), (3.30)

written as a sum of unique elements given in Proposition 2.

Proposition 2. If the copula of p(d|®) is distributed according to an l-truncated D-vine, we

can rewrite
D
logp(d|¢) = Z Z pi,il+j(¢)> (3.31)

where

D 1 1
P; Zlﬂ((ﬁ) = 1086 (i45)s(i+1),...,(i+5—1) T o log p;(d;|¢) + bies log pi+j(ditjle), (3.32)

and
a; = 20 — |:(l +1-— i)ﬂigl + (l — N+i)]li>N—l:|a
bi—i—j =2l — [(Z +1—-35—- i)]liJrjgl +({—-N+j+ i>1i+j>N11-

The main idea for the scalable variational calibration (VC) of computer models is replac-
ing the full log-likelihood log(d|¢) in the definition of ELBO with the likelihood based on a

truncated vine copula. This yields the [-truncated ELBO for the l-truncated D-vine

I N—j
Lp,(N) {Z Z Piiy (@) — KL(a(#|N)][p(6)) (3.33)
with its gradient
L 41N
VaLp, N =) > Eq [Wogq DN (p; Zﬂ(qb))} ~Eq {Wongw log =75 |
7j=1 =1 p

The following proposition gives a noisy unbiased estimate £ D (A) of the gradient VL D, (A).
We can analogously derive an unbiased estimate /jcl(/\) of the gradient using C-vine (see

Section 3.5.1).
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Proposition 3. Let EDZ()\) be an estimate of the ELBO gradient V)\EDZ()\) defined as

(2N [+1 pY
£y = " [ g @ 7 ()] B Vatozatein o 10
where K ~U(1, ..., w), and IDZ is the bijection
IDZ:{1,...,l(2N_2(l+1))}%{(i,z’+j):ie{l,...,N—j} for j € {1, .1},

then ENDZ()\) is unbiased i.e., E(ZDZ(A)) = V/\EDZ(/\).

Considering the I-truncated ELBO defined above, our proposed algorithm for variational
calibration of computer models with truncated vine copulas is stated in Algorithm 3.1. Note
that £ Dl()\) does not have closed form expression in general due to expectations involved
in the computation. Therefore, we resort to a MC approximation of the gradient estimate

L D, (A) using samples from the variational distribution.

Algorithm 3.1: Variational calibration with truncated D-vine copulas.
Input: Data d, mean and covariance functions for GPs in Kennedy-O’Hagan
framework, variational family ¢(¢|A), truncation level 1
A < random initial value
t<+1
repeat
for s=1to S do
L gz,’) ~q ¢’)\) // Random sample from g

K« U(,... G,
tth

mohA W N =

=]

7 p value of a Robbins-Monro sequence

o xe xS | o (LN ! (1) -

2 q(@[s]|A)
EN=(T) 18 p(pls) >}
9 t+—t+1
10 until change of X is less than €

Scalability Discussion. The complexity of a bivariate copula evaluation depends on the
size of the conditioning dataset due to the recursive nature of the calculations involved (Cooke

and Kurowicka, 2006). From the vine tree construction, the cardinality of the conditioning
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set for D-vine and C-vine is in the worst case N — 2. Nevertheless, on average, we can do

better.

Lemma 2. Let X be the cardinality of the conditioning set in p?D(K>(¢) or p?C(K)((b),
then

px == NZUHD e ie0 . N—2) (3.34)

N
(2)
and E(X) = ¥
The cardinality of conditioning set in Lemma 2 is on average roughly N/3. On the other
hand, the cardinality of conditioning set for the case of Algorithm 3.1 is at most [ — 1 with

the average given by the following lemma.

C

Lemma 3. Let X be the cardinality of the conditioning set in pZS (K)(qb) or plé (K)(¢)’
l l
then
~ N—=(+1) :
P(X:Z):m fOT‘ ZG{O,...,Z—l}, (335)
s ett))
and

I—1)(3N —21—2)
32N —1—1)

E(X) = ¢

As a consequence of Lemma 3, E(X) ~ 2 for N = 10° and truncation level I = 5, which
is a significant improvement to the average case I K)(qb) and Prn( K)(q_’)) (~ 33333 for

N = 1()5). This provides a heuristic yet convincing argument for the scalability.

3.3 Implementation details

3.3.1 Selection of truncation level

Selection of the truncation level [ is an important element in effective approximation
of the posterior distribution p(¢|d) under Algorithm 3.1. Dissmann et al. (2013) propose
a sequential approach for selection of [ in the case of vine estimation. One sequentially
fits models with an increasing truncation level until the quality of fit stays stable or com-

putational resources are depleted. We adopt similar idea for the case of VC of computer
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models with vine copulas. Let A\(I) represents the value of variational parameter estimated
with Algorithm 3.1 for a fixed truncation level [. One can then sequentially increase [ until

AA(l+1),A(1)) < € for some distance metric A and a desired tolerance e.

3.3.2 Variance reduction of Monte Carlo approximations

The computational convenience of simple MC approximations of the gradient estimators
based on the I-truncated D-vine and C-vine copulas £ Dl()\) and /jcl()\) (see Section 3.2.2)
is typically accompanied by their large variance. The consequence in practice is the need for
small step size p; in the SGA portion of Algorithm 3.1 which results in a slower convergence.
In order to reduce the variance of MC approximations, we adopt the same approach as Ruiz
et al. (2016) and use the Rao-Blackwellization (Casella and Robert, 1996) in combination
with the control variates (Ross, 2006) and importance sampling. The reminder of this section

focuses on the case of D-vine decomposition, see Section 3.5.1 for the derivations for C-vines.

Rao-Blackwellization. The idea here is to replace the noisy estimate of gradient with
its conditional expectation with respect to a subset of ¢. For simplicity, let us consider
a situation with ¢ = (¢1,¢2) € R? and variational family g(¢|A) that factorizes into
q(d1|A1)q(d2|A2). Additionally, let ﬁ)‘(qﬁl,@) be the MC approximation of the gradient

VAL(A). Now, the conditional expectation E[ﬁ A (01, P2)|#1] is also an unbiased estimate of
VAL()) since Eg(B[Lx(¢1, 92)[01]) = Eq(La(d1, ¢2)) and

Varg(E[Lx(¢1, ¢2)|¢1]) = Varg(La(d1,¢2)) — E[(Lx(¢1, 62) — E[Lx(61. d2)|¢1])%]

shows that Varg(E[L(¢1, 92)|¢1]) < Varg(Lx(61, $2)). The factorization of the variational

family also makes the conditional expectation straightforward to compute as

E[ﬁ)\<¢1>¢2)‘¢1]:/ ]E[ﬁ}\((m,¢2)]C](¢1|A1)Q(¢2|)\2)

b o) 092 = Eg(69]29)(LA(91,62));
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i.e., we just need to integrate out some variables. Let us consider the MC approximation of

the gradient estimator £ Dl()\). The j* entry of the Rao-Blackwellized estimator is

2 (ol
QN _(+1) ®

S
%2_31 (N9, gt o) i (65D

where ﬁ(j)(cﬁ) are the components of pIDlé ( K)(cﬁ) that include ¢;.
l

Control Variates. To further reduce the variance of the MC approximations we will
replace the Rao-Blackwellized estimate above with a function that has the same expectation
but again smaller variance. For illustration, let us first consider a target function £(¢) whose

variance we want to reduce, and a function v (¢) with finite expectation. Define

() = &(¢) — a(v(d) — Eq[v:(e)]), (3.36)

where a is a scalar and ]Eq(f((ﬁ)) = Ey4[¢(@)]. The variance of £() is

Varg(£(¢)) = Varg(&()) + a*Varg(1(¢)) — 2aCovg(£(), ¥(4))- (3.37)

This shows that a good choice for function ¢(¢) is one that has high covariance with £(¢).

Moreover, the value of a that minimizes (3.37) is

o = Covg(§(9), @D(@)' (3.38)

Varqg(y())

Let us place the CV back into the context of calibration. Meeting the above described
criteria, Ranganath et al. (2014) propose 1(¢) to be V log g(@|A), because it depends only

on the variational distribution and has expectation zero. We can now set the target function

&(¢) to be

12N — (141 y - i
( 2( i )>v>\j log a(9;12) (P()($) = jon— 1y o8 q(p(];j)]))7
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which gives the following jth entry of the MC approximation of the gradient estimator £ D, (A)

with CV
sCV(j
‘CDl (])(}\)
a(olsllx;) . p
S 2(log —L—=L +a’)
1SN = (1+ 1) ) CRE
— E 1 . . . _
where de is the estimate of a* based on additional independent draws from the variational

approximation (otherwise the estimator would be biased).

Importance sampling. Here, we outline the last variance reduction technique that makes
use of importance sampling. We refer to Ruiz et al. (2016) for full description of the method
and illustration of its efficiency in the VBI framework. Fundamentally, instead of taking
samples from the variational family g(¢|\) to carry out the MC approximation of the ELBO
gradient estimate, we will take samples from an overdispersed distribution 7(¢|X, 7) in the
same family that depends on an additional dispersion parameter 7 > 1. Namely, we can

write the estimate EDZ()\) as

2N —(1+1))

2 A
Ey(g/77) 5 V log q(p|A) @% 0(®)- a(#|\)

N — (1 1) p(g)

where w(¢) = q(@d|N)/r(p|\, 7) is the importance weight which guarantees the estimator to

Jw(e) |,

be unbiased. The reason to formulate the £ Dl()\) this way comes from the fact the optimal

proposal (Robert and Casella, 2005) distribution to form the MC estimate is not q(¢|\),

but rather
() o g(SINIE(B)], (3.39)
where
RN (14 1) D 2 AN
(o) = 5 Vxlogq(cblA)(pIél(K)(@ SN D) 8 () ). (3.40)

However, the normalizing constant for the optimal 7*(¢) is intractable, and so Ruiz et al.

(2016) propose that an overdispersed version of the variational family that assigns higher
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probability to the tails of ¢(¢p|A) is closer to the optimum than g(¢|\) itself. For example, if
the value of A makes the variational family a poor fit, then the samples @[s] ~ q(¢|A) have
a high value for the variational distribution but low for the true posterior. On the other
hand, 7*(¢) proposes values of ¢[s] for which £(¢) is large that are in the tails of p(¢|\).
To see how the importance sampling leads to the reduction of variance of the MC esti-

mates, let us consider the following estimator

S
Lo =g 661D, ol ~p(olN), (3.41)
s=1
then
~ 1 1.~
Var[Lysc] = SEq[€¥(9)] - g[ﬁDl(A)}2~ (3.42)
Similarly, we can derived the variance of the MC estimator with the importance weights
Pls||A)
MC’ - S Zg W ¢[S] ~ T(¢|A7 T)7 (343)
as
1 A 1. -
Var[Lc] = Eq & (¢)—r((];q|§)’\ i)} - E[EDZ()‘)]Q' (3.44)
Now, if we choose the distribution r(¢|\, 7) such that
2, .\ 4(@|N) 2
E,[¢ (¢)W} <E,[¢°(9)], (3.45)

the variance reduction will be achieved. The optimal r* obviously satisfies the condition
(3.45). Ruiz et al. (2016) show that the choice of overdispersed version of the variational
family ¢(¢|A) has similar effect on the variance reduction as the optimal r*. The details
on the form of overdispersed families for specific variational families are discussed later in
Section 3.3.4.

Combining the ideas of the Rao-Blackwellization, CV, and importance sampling, we have

the following jt" entry of the MC approximation of the gradient estimator £ Dl()\)

90V
l
(05ls10)
$ 2<10gqj—,8j—|—ap)
;[ DG toga(s]12)) g (01s) - lmi((é_ﬂ(;)“))] Juo(é51s]) |
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where ¢[s| ~ r(¢|A, 7) and

iy =
I
— J12N—(+1))w($;) _ ngﬁ%ﬁ
Covy( 5 Va; 1084(9j12)(B(j)(®) — qan=qz1y ) VA, log a(d)Az)w(e;))

Vary (Vi 10g ¢(0j|Aj)w(@;))
The extension of Algorithm 3.1 with the variance reductions of the MC approximations due

to the Rao-Blackwellization, control variates, and importance sampling is in Algorithm 3.2.

Algorithm 3.2: Variational calibration with truncated D-vine copulas II.
Input: Data d, mean and covariance functions for GPs in Kennedy-O’Hagan
framework, variational family ¢(¢|A), dispersion parameter 7 truncation

level 1
1 A < random initial value
2 t+1
3 repeat
4 for s=1to S do
5 L q’)[s] ~ T(¢|)\,T) // Random sample from r
o | Koo, 12N
7 p tth value of a Robbins-Monro sequence
I(2N—(1+1 -
o et pEEy [N, ogato; 41 (s (81D -
sttog {91
P61 |
v ) w(@ls)
9 t+—t+1

10 until change of X is less than €

3.3.3 Choice of the learning rate

Even though the SGA is straightforward in its general definition, the choice of learning
rate p; can be challenging in practice. Ideally, one would want the rate to be small in the
situations where the noisy estimates of the gradient have large variance and vice-versa. The

elements of variational parameter A can also differ in scale, and one needs to set the learning
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rate so that the SGA can accommodate even the smallest scales. The rapidly increasing usage
of machine learning techniques in recent years produced various algorithms for element-wise
adaptive-scale learning rates. We use the adaptive gradient (AdaGrad) algorithm (Duchi
et al., 2011) which has been considered in similar problems before, e.g., Ranganath et al.
(2014), however, there are other popular algorithms such as the ADADELTA (Zeiler, 2012)
or the RMSProp (Tieleman and Hinton, 2012). Let g be the gradient used in the Tth step
of the SGA algorithm, and G¢ be the matrix consisting of the sum of the outer products of

these gradients across the first ¢ iterations, namely

t
Gi =Y grgt. (3.46)
T=1
The AdaGrad defines the element-wise adaptive scale learning rate as
pr = n - diag(Gy) "1/, (3.47)

where 7 is the initial learning rate. It is a common practice, however, to add a small constant

value to diag(Gy) (typically of order 1075) to avoid division by zero.

3.3.4 Parametrizations

Variational families. We use a Gaussian distribution for real valued components of ¢
and a gamma distribution for positive variables. Both of these families are parametrized
in terms of their mean and standard deviation. Moreover, in order to avoid constrained
optimization, we transform all the positive variational parameters A to A= log (e)‘ —1) and

optimize with respect to A

Overdispersed families. Given a fixed dispersion coefficient 7, the overdispersed Gaus-
sian distribution with mean p and standard deviation ¢ is a Gaussian distribution with
mean g and standard deviation o+/7. The overdispersed gamma distribution with mean g

2
and standard deviation o is a gamma distribution with mean p + (7 — 1)% and standard

2 2
+ro2(r—1
deviation o x Y2 ;U (=) (Ruiz et al., 2016).
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3.4 Applications

This section empirically establishes the efficiency of our methodology for the VBI based
calibration of computer models. First, we conduct an extensive simulation study, where we
focus both on the fidelity of variational approximation and prediction accuracy. Second, we
demonstrate the opportunities in UQ given by the proposed methodology on calibration of
the Liquid Drop Model.

The Bayesian predictions of new observations from the physical process ¢ at input loca-
tions (¢7,...,t) are obtained according to (3.6). The conditional distribution p(y*|d, ¢) is

a multivariate normal distribution with the mean vector

My(¢) = M(T;5(8)) + Ms(T;) + C K ()~ (d — M()), (3.48)

and the covariance matrix

K+ () = K (T, (0),Ty(0)) + K5(Ty;, Ty)) + 0 Iy — C K () ' C, (3.49)

where

Cs = (K (T5(0). T,(0)) + K5(T;.Ty) K (T;(6).T:(6))). (3.50)

Here, M(¢) and K(¢) is the mean vector and the covariance matrix of the data likelihood
p(d|o), Kf(TJ(O), 1y(0)) is the matrix with (¢, j) element k¢((¢7,0), (¢;,0)) and K3(T;,Ty)

is the matrix with (i, ) element ks(¢7,t;). We can similarly define Kf(Ty*(O),TZ(O)) with

the kernel & Iz

3.4.1 Simulation study

In this section, we study Algorithm 3.2 in a simulated scenario, where we first demonstrate
the method’s fidelity in approximating the posterior distribution of calibration parameters
p(0]d) and substantiate the indispensability of the variance reduction techniques described
in Section 3.3.2 in order to achieve convergence. Second, we show the scalability of our

method in comparison to the popular MH algorithm and the NUTS.
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Let us consider a simple scenario following the model (3.4) with a two-dimensional cali-
bration parameter 8 = (0.39,0.60) that was obtained as a sample from its prior distribution
p(0) and a two-dimensional input variable t = (¢1,t2). We model f;,(¢,0) and 6(¢) with GPs
according to the specifications in Table 3.1 with the particular choices of ny = 3%, Iy =1,

lg=1n5= %, ls = %, and (5 = 0.15.

\ GP mean GP covariance function
. E=t|1> _ |lo—6"||*
fm | O1cos(ty) + Oasin(tz) ;- exp(— o7 - 2%
5 3 exp(— =12y
5 s P{——F92

2l6

Table 3.1: The specification of GPs for the simulation study.

We choose the variational family to be the mean-field family with Gaussian distribu-
tions for real valued parameters and gamma distributions for positive variables following
the parametrization discussed in Section 3.3.4. The variational parameters are initialized to

match the prior distributions, and we use the AdaGrad for the learning rate updates.

Calibration. For the purpose of model calibration, we sampled the data d jointly from
the prior with the experimental noise following N (0, ﬁ) The calibration parameter values
for the model runs z were selected on a uniform grid over [0, 1]? and the inputs t over [0, 3]2.
For the first set of experiments, the size of the dataset was N = 225 with n = 144 and
s = 81. We used 50 samples from the variational family to approximate the expectations in
Algorithm 3.2 and 10 samples to implement the control variates.

Figure 3.2 demonstrates the quality of the variational approximation (Algorithm 3.2) in
comparison to the MH algorithm and the NUTS. We can see that our method was able
to accurately match both MCMC-based approximations with a minor deviation in 1. It
is important to note, however, that the variance reduction through the combination of the
Rao-Blackwellization, control variates, and importance sampling was necessary to achieve

meaningful convergence.
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Figure 3.2: The approximate posterior distributions for the target calibration parameters.
The VC (Algorithm 3.2) was carried out using [ = 3 truncated D-vine and compared with
the results from the NUTS and the MH algorithm.

In particular, Figure 3.3 shows the MSE of the posterior predictive means, evaluated
on an independently generated set of 50 data points, based on the VC with cumulatively
implemented variance reduction techniques. Algorithm 3.2 which employs the importance
sampling clearly outperforms the calibration with only the Rao-Blackwellization and the
calibration with control variates. In fact, each additional attempt to reduce the variance
tends to decrease the MSE by one order of magnitude. There is naturally a time and space
(memory) cost associated with each variance reduction technique. Figure 3.3 shows that the
control variates and the importance sampling practically double the time per iteration of
the algorithm. This additional complexity is, however, outweighed by the gain in the MSE
reduction. The increase in memory consumption is less significant and is due to the storage of
dispersion coefficients used for importance sampling and samples needed to compute control
variates. Note that the memory consumed by the algorithms rises over time, because we
chose to store the values of variational parameters during each step; the memory demands
can be dramatically reduced if we drop these intermediate results.

For completeness, in Table 3.2, we also compare the MSE of the MCMC approximations
and the VC at the point of convergence of the algorithms. The resulting errors in the

predictions were, for all practical purposes, equivalent.
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Figure 3.3: The evolution of MSE of the posterior predictive means based on the VC with
cumulatively implemented variance reduction techniques described in Section 3.3.2. The
figure is based on an independently generated set of 50 testing points. Time and memory
demands for each of the implementations are also plotted the VC (Algorithm 3.2) was
carried out using [ = 3 truncated D-vine.

Algorithm | MSE

Variational Calibration - RB + CV + 1S |2.9 x 10~3
Metropolis-Hastings 3.0 x 1073
No-U-Turn 3.0 x 1073

Table 3.2: Comparison of the MSE for the simple scenario using the MH, the NUTS, and
the VC algorithms.

Scalability. We now significantly increase the size of the dataset from N = 225 to 0.5 x 10%
and eventually to 2 x 10* with the simulated experimental measurements and the model
runs split equally (n = s). For better numerical stability, we expand the space of the
input variables to t € |0, 10]2 and select those using the Latin hypercube design. We also

enlarge the testing dataset to 200 points. All the remaining simulation parameters are
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unchanged. The conventional MCMC methods are already impractical for the purpose of
Bayesian calibration with these moderately large amounts of data. We were able to obtain
only around 600 posterior samples in the case of N = 1 x 10* and about 120 for N = 2 x 10%

in 25 hours of sampling using the MH algorithm (significantly less with the NUTS).
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Figure 3.4: The evolution of the MSE of the posterior predictive means based on the VC
(Algorithm 3.2), the MH algorithm, and the NUTS. The figure is based on an
independently generated set of 200 testing points. The VC (Algorithm 3.2) was carried out
using [ = 5 truncated D-vine.

Figure 3.4 demonstrates that Algorithm 3.2 (D-vine with truncation | = 5) converges
to the predictive MSE of about 0.003 under 4 hours for N = 2 x 10* and 2 hours for
N = 0.5 x 10%. Tt took similar time for the MH to achieve this MSE value for N = 0.5 x 10*
but almost 25 hours for the NUTS. Once we increased the data size to 2 x 104, neither the
NUTS nor the MH were able to achieve a similar predictive MSE as the VC within the 25

hour window allotted for sampling. In fact, they were by an order of magnitude larger. It
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is important to mention that both MCMC-based algorithms have also substantially larger
memory demands than the VC as depicted in Figure 3.5. These memory profiles were
recorded during a one hour period of running the algorithms. The MH algorithm and the
NUTS were implemented in Python 3.0 using the PyMC3 module version 3.5. The memory
profiles were measured using the memory-profiler module version 0.55.0 in Python 3.0. The

VC was also implemented in Python 3.0.
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Figure 3.5: Recorded memory profiles of Algorithm 3.2, the MH algorithm, and the NUTS
for the duration of 1 hour under the simulation scenario.
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3.4.2 Calibration of the Liquid Drop Model

Over the past decade or so, the statistical tools of UQ have experienced a robust ramp-up
in use in the field of nuclear physics (Ireland and Nazarewicz, 2015). Bayesian calibration has
been especially popular because it enhances the understanding of a nuclear model’s structure
through parameter estimation and potentially advances the quality of nuclear modeling by
accounting for systematic errors. In this context, we use our variational Algorithm 3.2 to cal-
ibrate the 4-parameter LDM. Since we discussed the LDM several times in this dissertation,
we refer reader to Section 1.1 for a detailed description of the model.

Here we also note that this is by no means the first case when Bayesian calibration
methodology is applied to study the LDM. In fact, the LDM is a popular model for statistical
applications (Bertsch et al., 2005; Yuan, 2016; Bertsch and Bingham, 2017) which is why we
choose the model to illustrate our methodology as well. The LDM also generally performs
better on heavy nuclei as compared to the light nuclei which alludes to the existence of a
significant systematic discrepancy between the model and the experimental binding energies
(Reinhard et al., 2006; Kejzlar et al., 2020). Namely, we consider the following statistical
model

y=ER(N,Z)+ 0(N,Z) + oe, (3.51)

where 6(N, Z) represents the unknown systematic discrepancy between the semi-empirical
mass formula Fg(N,Z) and the experimental binding energies y. The parameter o is as
usual the scale of observation error € ~ A(0,1). The nuclear physics community often
(Dobaczewski et al., 2014) considers the least squares (LS) estimator of @ defined as
n
01, = arggninz (yi — Bs(Ni, Zi))* (3.52)
=1
which is also the maximum likelihood estimate of 8 in the case of § = 0. The benefit of
this estimator is that it is fast, easy-to-compute, and allows for analysis under the standard
linear regression theory. It, however, neglects some sources of uncertainty that are accounted

for in the Bayesian calibration framework.
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To this end, we shall consider a GP prior with the mean zero and the squared expo-
nential covariance function for the systematic discrepancy §(Z, N). Since the main purpose
of the example is to provide a canonical illustration of the methodology in a real data sce-
nario, we also set a GP prior for the LDM and treat Fg(Z, N) as an unknown function.
We use 2000 experimental binding energies randomly selected from the AME2003 dataset
(Audi et al., 2003) (publicly available at http://amdc.impcas.ac.cn/web/masstab.html)
for calibration, see Figure 3.6, and an additional set of 10% model evaluations. The calibra-
tion inputs were generated with the Latin hypercube design so that all the reasonable values
of (ayol, Ggurf, Gsym, ac) given by the literature are covered (Weizsdcker, 1935; Bethe and
Bacher, 1936; Myers and Swiatecki, 1966; Kirson, 2008; Benzaid et al., 2020). The model
inputs (Z, N) were selected from the set of 2000 experimental binding energies, duplicated
five-fold, and randomly permutated among the generated calibration inputs to span only the
set of relevant nuclei. This relatively large number of model runs was chosen so that the
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Figure 3.6: Experimental binding energies of nuclei in AME2003 dataset (2225
observations).

combined 6 dimensional space of calibration parameters and model inputs is sufficiently cov-

ered considering the existence of a non-trivial systematic discrepancy. In fact, the uniform
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experimental design would amount only to 4-5 points per dimension.

Independent Gaussian distributions centered at the LS estimates éL2 (in Table 3.3)
with standard deviations large enough to cover the space of inputs used for generating the
model runs were selected to represent the prior knowledge about the calibration parameters.
Independent gamma distributions were used as the prior models for the hyperparameters
of the GP’s covariance functions. We choose the variational family to be fully-factorized
with the Gaussian distributions for real valued parameters and the gamma distributions
for positive variables. The means of variational families were initialized as random samples
from their respective prior distributions and the variances were set to match those of the
prior distributions. We used the AdaGrad for stochastic optimization. See Section 3.5.3 for

further discussion on the prior distributions and the experimental design.

Results. Including the generated model runs, the overall size of the training dataset is
1.2 x 10* which already makes the MCMC-based calibration impractical, as illustrated by the
simulation study in Section 3.4.1. We therefore asses the quality of variational approximation
only against the standard LS estimation and do not consider the MCMC methods. In
particular, we consider the testing dataset of the remaining 225 experimental binding energies
in AME2003 that were excluded from the training data. The predictions g* of these testing
binding energies y* were calculated, under the variational approximation, as the posterior
means of y* conditioned on the 1.2 x 10* binding energies from the training data set, i.e.,
the posterior means of the predictive distribution p(y*|d). The predictions under the LS
estimates 0 Ly Were given by the semi-empirical mass formula (1.1).

Table 3.3 gives the RMSEs for both methods under consideration. The VC (Algorithm
3.2) results are based on a 24 hour window dedicated to running the algorithm with 50
samples used to approximate the expectations, 10 samples used to implement the control
variates, and the truncation level selected to be | = 3. By using GPs to account for the

systematic discrepancies of the semi-empirical mass formula and the uncertainty of the LDM
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itself, we were able to significantly reduce the RMSE approx. 57% compared to the LS
benchmark. Table 3.3 additionally shows the calibration parameter estimates and their
standard errors. The estimates under the VC are given by the means of their variational
families. Both the methods calibrate the LDM around the same values with notably low
standard errors of the LS estimates. This is, however, expected since 0 Ly are ordinary LS
estimates that in the presence of heteroscedasticity (see Figure 3.7) become inefficient and

tend to significantly underestimate the true variance (Goldberger, 1966; Johnston, 1976).

Method | Parameter estimate and standard errors | Testing error
‘ Aol Qsurf agym ac ‘ RMSE (MeV)

LS 15.42 (0.027) 16.91 (0.086) 22.47 (0.070) 0.69 (0.002 3.54

VC 15.78 (0.198) 15.99 (0.681) 21.94 (0.510) 0.68 (0.018 1.52

Table 3.3: The RMSE of the VC (Algorithm 3.2) after 24 hours dedicated to running the
algorithm compared with the RMSE based on the LS estimates. The parameter estimates
(and their standard errors) are also displayed.

The residual plot in Figure 3.7, showing the difference between y* and g™ as a function
of the nuclear mass number A, clearly demonstrates a better fit of the testing data with our
methodology than is achieved by the simple LS fit. The majority of the residuals appear to
be randomly spread around 0 which strongly supports the efficiency of GPs in accounting
for the systematic discrepancy 9.
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Figure 3.7: The residual plot for 225 experimental binding energies in the testing dataset.
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3.5 Technical details and supplementary results

3.5.1 Scalable algorithm with truncated vine copulas: C-vine

Here we present the details of the C-vine based versions of Algorithm 3.1 and Algo-

rithm 3.2. First, we can decompose the log-likelihood log p(d|¢) using a C-vine as

—1N—j
log p(d|¢) = Z > 055(¢) (3.53)
J=1 i=1
where
1
5 54i(®) =logc; i (j-1) + ﬁ(logpj(dﬂﬁb) +logpjri(djyile)). (3.54)

This now yields the following expression for the ELBO gradient:

' a(d|)
- S B TAoga(6IN (0| - B[ Tatoza(@in o 10 | 359
j=1 i=1 p(¢)

Equivalently to Proposition 1, we have the following proposition that establishes the noisy

unbiased estimate of the gradient (3.55) using the C-vine copula decomposition.

Proposition 4. Let L(\) be an estimate of the ELBO gradient Vy\L(\) defined as

~ N(N -1
Lo = M0, |9 tow @GS,y (@)| - B | Tatoza(in g L2,
where K ~ U(1,..., N—UV%D), and I is the bijection
Io: {1,...,%}%{(]‘,3'“) cief{l,... . N—j} forje{l,...N—1}},

then Lo(X) is unbiased i.e., E(Lo(X)) = VAL(N).

Again, /:'C()\) can be relatively costly to compute for large datasets due to the recursive
nature of the copula density computations. We now carry out exactly the same development

an using l-truncated C-vine as in the case of Proposition 2 and Proposition 3.
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Proposition 5. If the copula of p(d|@) is distributed according to an I-truncated C-vine, we

can rewrite

I N—j C
log p(d|¢) = Z P ’H—j (3.56)
j=11i=1
where
c 1 1
pifi+j(¢) =log¢; iy, (-1 T o log p;(djl@) + b log pj+i(djvile), (3.57)
and

aj::Af—-L
Let us now replace the full log-likelihood log(d|¢) in the definition of ELBO with the

likelihood based on a truncated vine copula. This yields the l-truncated ELBO for the

l-truncated C-vine

| N—j
£oN) =By 3030 i (0)] - KLaolN o) (3.59)
7j=11=1
with its gradient
LHE a($IN)
Vale,AN) =) Y E {Vxlogq ¢|A><p”+z<¢>>] —Eq [VxlogCI(qﬁP\) log =75 |
j=1i=1

Consequently, we get the following proposition that establishes the noisy unbiased estimate

OfV}!k%(A)

Proposition 6. Let ch(}‘) be an estimate of the ELBO gradient V/\Ecl(}\) defined as

5 _IEN = (+1)) q(9| )

B[ TAIoz 6N, ()] By [ Tatoza(el o

where K ~U(1,..., w), and Ic, is the bijection

e, {1,.”’1(2N —2(l +1))

then ECZ()\) is unbiased i.e., E(/:Cl()\)) = V)‘[’Cl()‘)'

Y= A, j+9)ied{l,...,N —j} forje{l,...1}},

Algorithm 3.3 postulates the version of Algorithm 3.1 based on the truncated C-vine

decomposition.
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Algorithm 3.3: Variational calibration with truncated C-vine copulas.
Input: Data d, mean and covariance functions for GPs in Kennedy-O’Hagan
framework, variational family ¢(¢|A), truncation level 1
A < random initial value
11
repeat
for s=11t0 S do
L ¢ ~q ¢|)\) // Random sample from ¢

K« U(,... YD),
7 p<—tth

o ae x| oo lN) 7, (015D -

(< I N VN

[=2]

value of a Robbins-Monro sequence

2 a(@[s]|A)
=) o8 a0 )}
9 t+—t+1
10 until change of X is less than €

Variance reduction of MC estimates. Let us now consider the MC approximation of

the gradient estimator Ecl()\), the j¥ entry of the Rao-Blackwellized estimator is

2 q(9;[s]IA;)
—(1+1))

S
g { ))VA]' log q(¢;1s1|A7) (B (4ls]) — [(2N

0) |

- C .
where p;y(¢) are here the components of plél(K)(¢) that include ¢;.
We can again use the control variates to reduce the variance of MC approximation of the
gradient estimator Ecl()\). In particular, we consider the following jth entry of the Rao-

Blackwellized MC approximation of the gradient estimator ZCZ (A) with control variates

q(9;lslA;) o
S 2(log —L—L +a%)
~CV l + 1)) . N p((b [S]) J
V=3 B Vi o8 a5 51, (015D - — )|
where djc is the estimate of the optimal control variate scalar a* based on S (or fever)

independent draws from the variational distribution. Namely,

_— _ 5 21o (qb Aj
L Cong(CEY g (0,105 (6) ~ ity Vay loga(ilA)
a; = — .
! Varg(V; log 4(6j1A))
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As in the case of the D-vine, we now derive the ultimate version of Algorithm 3.3.
Again, instead of taking the samples from ¢(¢|A) to approximate the gradient estimates,
we will take samples from an overdispersed distribution r(¢|A, 7). Combining the Rao-
Blackwellization, control variates, and importance sampling, we have the following jth entry

of the MC approximation of the gradient estimator /:Cl (A)
sOCV(j
EC’Z (J)()\)

(@5[s1A;) |
) 2(log qJ—,s‘] + aC)
_y { l i 1))V,\j log ¢(¢;1s]IA;) (P (@ls]) — 1(2J$(qi][(l])+ 1) :

s=1

where @[s] ~ (@[, 7) and w([s]) = q(@[s]|A)/r([s]|A, 7) with

ajC —
2log a(951A5)
2N —(4+1)w(e; . ¢;
Couor(EEZB IO G g g(6510) () (6) — Trrrdi—), V. log a(651A, (@)
J ( (I+1)) J .

Tarr(Va, 08 (0517, 0(0;)

Algorithm 3.4: Variational calibration with truncated C-vine copulas II.

Input: Data d, mean and covariance functions for GPs, variational family ¢(¢|A),
dispersion parameter 7 truncation level 1
A < random initial value
t+1
repeat
for s=1 to S do
L (,b ~T ¢|)\ T) // Random sample from r

K+« U(,... YD)
tth

LA W N =

=]

7 p value of a Robbins-Monro sequence

s | AeaspyS, [%ij log a(6;[s11A) (5 (@ls]) —

165N o
ECOE
ICN—(I+1)) Jw(;ls])
9 t+—t+1

10 until change of X is less than €

2(log
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3.5.2 Proofs

Proof of Proposition 1.

Since P(K = k) = m we have directly from the definition of expectation
N(N—1)
B(Ep() = YD ;;Nﬁ%Tmhn%mwwgww»
-~y | Vatoga(oin) log S22 vy

The final equality is the consequence of the uniqueness of the pairs of variables in the

N(N-1)
N=1)

conditioned sets of the copula density Ci(i45):(i41) s (i 1) and that is the number

of unordered pairs of N variables. m

Proof of Proposition 2.

It is sufficient to show that for [ € {1,..., N — 1} the following equality holds:

N
= logp(dy|e). (3.59)

k=1

I N—j
Z Z LL_ log pi(d;| @) + logpz+j( i+jl®)

j=1i=1 -"

where
a; =2l — [(l +1-— i)]ligl + (- N+i)ﬂi>N—l}a
bi—i—j =2l — [(l +1—-75— i)]li—i—jgl +(I-N+j5+ i)1i+j>N—l:|-

To show this, let us consider the summation

{bgpl (d;|) +log pi i (di;19)

(log p1(di|@) +1ogp14j(ditjl@)) + -+ (logpy—j(dn—j|P) + log pn (dn|D)) |-

ﬂN
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For [ =1, we get

l

—J
Z [logpz d |¢) +10gpz+]( z+]|¢)

]:]_ 1=1

= (logp1(d1|9) + log pa(d2|@)) + - - + (log py—1(dN—1]P) + log pn (dn @),

and for [ > 2

I N—j

>y

[logpZ (dil@) +log piyj(diyjl)

_ [aogp1<d1|¢> +logpa(dal)) + - + (logpy—1(dy11) + 1ogpN<dNr¢>>]

- [aogm(dmb) T logprai(dild)) + -+ (logpy—y(dy_ilé) + 1ogpN<dN|¢>>] .

Note that in the case of | = N — 1, the last summation consists of only one element

logp1(di|@) + logpiy(diiy|¢). By careful examination of the two cases above, we get
the following results. For 2/ < N:

I N—j

> w16 + 1o d4116)

: ’L:

l N—-I N
= (4 k—1)logpy(dplp) + Y 2dlogpy(dyled) + D (N —i+1)logpy(dyle),
k=1 k=I+1 k=N-l+1

where the middle term disappears in the case 2l = N, and for 2[ > N:

I N—j
503 | enitdle) +ospis mw}

7=1 =1
N-I l
=Y (I+k—1)logpy(dple) + > (N —1)logpy(dgl¢)
k=1 k=N-[+1
N
+ > (N —i+1)logpy(di|)-
k=Il+1

If we now check that a; equals to the factors in front of the log-likelihoods in the two cases

above, the proof of Proposition 2 is complete. Note that once we check the equality for a;,
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the same directly translates to b;y; since b;y; is a; with indices set to 7 + j instead of i.
Indeed, for 2l < N

(
l+i—1 <1

a; =N 21 [<i<N-—-1I;

N—i+1 N-I<i
and for 20 > N
[+i—1 1< N-I

a; = §yN—1 N—-l<i<I-

N—i+1 <13

\

Proof of Proposition 3.

By the construction of R-vine (see Section 3.2.1), each tree T;, for i = 1,..., N —1 has exactly
N — i edges (these are the unique conditioned variable pairs). For any R-vine truncated at

level Il € {1,..., N — 1}, we get the number of edges to be

N I(1+1) 12N —(I+1))
Z(N—z)—lN— S = 5

The rest of the proof is identical with that of Proposition 1 due to the uniqueness of the

b

conditioned variable pairs in the copula density Ci (i) (i41) s (i 1) but in this case

Proof of Proposition 4.

The proof is identical with that of Proposition 1 since each conditioned pair in the copula

density € (j40):1,m (—1) is unique as well. O]
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Proof of Proposition 5.

It is sufficient to show that for [ € {1,..., N — 1} the following equality holds:

N
1 1
[@ log pj(dj|#) + b Ingj—&-i(dj—i—i‘qs)} = logp(dy| ), (3.60)
! k=1

where

aj =N — 1,
bj-|-i = (N —1- l)ﬂj—i—igl + 1.

To show this, let us consider the following summation
I N—j
{logpj(djlﬁb) +logpjii(djyild)

=1 1=1

<

N—j
Z { —J logpj(d |¢ + Z 1ngj—|—z( ]+Z|¢)

j= =1

[u—y

l l
= 3N ) oy (dl) +2[10gpj+1 djil®) + -+ logpy(dy|6) |

Jj=1

[u—y

<.

Now, for [ = 1, we have

M-

[10gpj+1(dj+1!¢)) +"'+10gpN(dN|¢)} = log pa(da|®) + .. .logpn (dn (o).
1

J
For [

\%

2, we have

'M“ |

Il
_

oepji1(d5al6) + o+ logpy (il
J

_ [1ogp2<d2|¢> T .logpmdmcb)] Fot [1ogpl+1<dz+1|¢> . logpy(dnla)].

Therefore we can rewrite

l
> {logpgﬂ djt1l®)) + -+10gpN(dN|¢)}

=1

.

l
= (j —1)logp;j(dj|p) + Z log p;(d;|o)
J=1

Jj=l+1
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Overall,

N—j

MN

[logp] (djlp) +logpjii( ]+z|¢)}

11:=1

<.
Il
@

z
(N = j)logpj(dj|@) + Y (5 — 1)logpj(djle) + Z llogp;(d;| o)
j=1 Jj=l+1

I
.MN

<
Il
_

N
(N — 1) log py.(dy|d) + Z 1log py(dy.| ).
+

I
MN

i
[y

Since j € {1,...,1l} and
N-1 j+i<l
bjti = :
l jti>1

the equality 3.60 holds. O]

Proof of Proposition 6.

The proof is identical with that of Proposition 3 since each conditioned pair in the copula

density c; ,GA): (1) is unique, and a C-vine is a special case of R-vine. O]

Proof of Lemma 2.

As we discussed in the proof of Proposition 3, the construction of R-vine implies that each
tree 7;, fori = 1,..., N—1 has exactly N —i edges (pairs of conditioned variables). Moreover,
each tree 7T; corresponds to copulas with the conditioning set of size ¢ — 1. Therefore, for X

being the cardinality of the conditioning set, we get

P(X:z’):w fori e {0,...,N —2}.
(2)
Now
N-2 . N-2
EX)= i J(\iH) NN2—1 [((N =1) =]
1=0 (2) ( >i:O
2 (N=2)(N—-1), (N=2)(N-1)2N-3)] N -2
_N(N—l)[(N_l)[ 2 I- 6 3



Where the equality on the second line is due to the standard algebraic results on the sum of

powers of the first first N integers. O

Proof of Lemma 3.

Analogically to the proof of Lemma 2, while recalling the number of edges for any l-truncated

R-vine provided in the proof of Proposition 3, we have for the cardinality of the conditioning

set X:
~ N—(i+1) .
P(XZZ):M fOI’ZE{O,...,l—l}.
-
Now

1=

-1
N — 2—1—1 2 , 2
[—1

2 (1—1l, (—1)i2l—1)
:l(QN—(lJrl))[(N_l)[ > - 6 }
(I-1)(BN-21-2)
32N —-1-1)

3.5.3 Supplement for the calibration of the Liquid Drop Model

GP specifications. In the case of the LDM Eg(Z, N), we consider the GP prior with the

mean zero and the covariance function

WRVELES s LS
21/% 21/]2\7 21/%
2
B (Agurt — aéurf)2 B (asym — aéym) _ (ac — a’C)2>
2V22 2V§ 2]/2 '

Similarly, we consider the GP prior for the systematic discrepancy §(Z, N) with mean zero

and covariance function

. ( (2 -2 <N—NV>
N5 - exp | — 5—— — 5 :
212, 213
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Experimental design. Kennedy and O’Hagan (2001) recommend to select the calibration
inputs for the model runs so that any plausible value @ of the true calibration parameter
is covered. In this context, we consider the space of calibration parameters to be centered
at the values of least squares estimates 0 Lo and broad enough to contain the majority of
values provided by the nuclear physics literature (Weizsécker, 1935; Bethe and Bacher, 1936;
Myers and Swiatecki, 1966; Kirson, 2008; Benzaid et al., 2020). Table 3.4 gives the lower
and upper bounds for the parameter space so that Lower bound = Lo — 15X SE (é L2> and
Upper bound = éLQ +15x SE(@LQ). Here SE(éLQ) is given by the standard linear regression

theory.

Parameter | Lower bound Upper bound

(ol 15.008 15.829
Uyt 15.628 18.193
(sym 21.435 23.505
ad 0.665 0.72

Table 3.4: The space of calibration parameters used for generating the outputs of the
semi-empirical mass formula (1.1).

Prior distributions. First, we consider the independent Gaussian distributions centered
at the LS estimates éLQ (in Table 3.3) with standard deviations 7.5 x SE(éLz) so that the
calibration parameters used for generating the model runs are covered roughly within two

standard deviations of the priors. Namely,

Ayl ~ N (15.42,0.203),
Agurt ~ N (16.91,0.645),
asym ~ N(22.47,0.525),
ac ~ N(0.69,0.015).
The prior distributions for hyperparameters of the GPs were selected as Gamma(«, 3) with

the shape parameter a and scale parameter (3, so that they represent a vague knowledge about

the scale of these parameters given by the literature on nuclear mass models (Weizsécker,

86



1935; Bethe and Bacher, 1936; Myers and Swiatecki, 1966; Fayans, 1998; Kirson, 2008; Mc-
Donnell et al., 2015; Kortelainen et al., 2010a, 2012, 2014; Benzaid et al., 2020; Kejzlar et al.,
2020). In particular, the error scale o is in the majority of nuclear applications within units
of MeV, therefore we set

o ~ Gamma(2, 1),

with the scale of the systematic error being
ns ~ Gamma(10, 1),

to allow for this quantity to range between the units and tens of MeV. It is also reasonable
to assume that the mass of a given nucleus is correlated mostly with its neighbours on the

nuclear chart. We express this notion through these reasonably wide prior distributions

l7 ~ Gamma(10,1),
Iy ~ Gamma(10, 1),
vy ~ Gamma(10, 1),
vy ~ Gamma(10, 1),

v; ~ Gamma(10, 1), i=1,2,3,4.

Finally, the majority of the masses in the training dataset of 2000 experimental binding
energies fall into the range of [1000,2000] MeV (1165 of masses precisely). We consider the
following prior distribution for the parameter 7y to reflect on the scale of the experimental
binding energies:

ny ~ Gamma(110, 10).
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CHAPTER 4

EMPIRICAL BAYES CALIBRATION OF COMPUTER MODELS WITH
CONSISTENT PREDICTIONS

Up to this point, we have seen that the Bayesian framework for computer-model-aided
inference, described in detail in Section 1.2 and at the beginning of Chapter 3, provides a
statistically principled way to account for various sources of uncertainty and leads to bet-
ter predictions. It can be especially powerful in scenarios where computer models under
consideration are complex and computationally too expensive to be used directly for pre-
dictions with quantified uncertainties, because each evaluation of such models often takes
several days. Despite these advantages, we have also identified many challenges that make
the implementation of the Kennedy and O’Hagan (2001) framework challenging in practice.

Let us recall that under a fully Bayesian treatment, the predictions of new values y*
of a physical ¢ using a computer model f;, are specified by the posterior predictive distri-
bution p(y*|d). The dataset d here and for the rest of this chapter consists of n obser-
vations y; from the physical process ¢ and s evaluations z; of the computer model fi,, i.e.
d=(dy,...,dp+s) := (y, 2z), and follows the multivariate normal distribution (1.4). The pre-
dictive distribution p(y*|d) is obtained by integrating the conditional density p(y*|d, 8,~, o),
which is a multivariate normal density given by the statistical model (1.3) and the specifi-

cation of GPs, against the posterior density p(8,~, o|d), namely

ply*|d) = /¢ p(y*|d, 6,7, 0)p(8, ~, o|d) 46 dry do. (4.1)

An analogical relationship also holds for the predictions of new realizations of the physical
process ¢*. The posterior density p(0,4,c|d), however, does not have a closed form in
general and one typically resorts to MCMC methods for approximation. Additionally, the
nature of the likelihood p(d|@,~, ) makes the problem hard to scale due to the complex
structure of the covariance matrix K(6,7,0) (see (1.6)). In Chapter 3, we developed a

novel VBI algorithm that provides an efficient and scalable alternative to the traditional
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MCMC methods. Nevertheless, the practical implementation of either the MCMC or our
VBI approach can be a non-trivial task and requires some practical experience.

As an easy-to-implement alternative that avoids the difficulties described above, we pro-
pose an empirical Bayes approach for fast and statistically principled predictions of physical
quantities using imperfect computer models which instead of placing a (prior) distribution
on (0,7,0) estimates these parameters directly form the data. One can therefore utilize
the convenience of GPs to obtain closed form, simple, and fast predictions given by the
conditional distribution p(y*|d,0,~,0) (or p(¢*|d,0,,0)). The proposed approach can
be viewed as an approximation of the fully Bayesian treatment that neglects some of the
uncertainty associated with the unknown parameters.

Our contributions are the following. First, we present a fast and easy to implement
framework for computer-model-enabled predictions and provide two alternative plug-in es-
timators for all the unknown quantities involved. Second, we offer a new perspective on
the Kennedy and O’Hagan (2001) framework and provide its representation as a Bayesian
hierarchical model. This alternative representation allows us to discuss the framework in the
context of non-parametric regression problems with GP priors and establish our methods’
theoretical validity through a posterior consistency result. Lastly, we validate the empirical
Bayes approach empirically through a simulation study, and illustrate our methodology on
a real data application in nuclear physics.

The rest of this chapter is organized as follows. In Section 4.1, we show the equivalence of
the general framework for Bayesian calibration of computer models with a Bayesian hierar-
chical model. Then, in Section 4.2, we discuss the theoretical properties of our approach and
establish its posterior consistency. Section 4.3 defines two plug-in estimators for GP model
parameters and a consistent estimator of a noise scale component. Section 4.4 contains a
simulation study that empirically validates the methodology in this chapter. A real-data

application is also included in Section 4.4.
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4.1 Hierarchical model for Bayesian calibration of computer mod-
els

Here we show that we can represent the model of Kennedy and O’Hagan (2001) described
in Section 1.2, hierarchically, as the following hypotheses about the observations y;, the

computer model evaluations z;, and a set of prior distributions.

Model for data:

Y = ((tl> + 0¢; L= ]-7 2z (4 2)
Z]:fm(ijﬁgj)’ ]_17 y S, (4 3)
e "5 N0, 0). (4.4)

Priors:
5(t) ~ GPs(mg(t), ks(t, 1)), given v and independent of € and o,
fm(t,0) ~ GPs(my(t,0),ke((t,0), (t,0")), given ~ and independent of ¢;, o, and 4§,
C()0,y ~GPs+ GPs.

Under this model, the conditional likelihoods for y; and z; are

L )2
PilC(E:), o) = — p(—w) (45)

o\ 2T 202

p(3j|fm<tj, 0]')) = 1Zj=fm(ivj,§')(zj)’ (4.6)
where p(zj|fm(t~j, 5])) is a likelihood with the point mass at z; = fm(zj, gj) Consequently,
the equivalence of the two formulations is given through the equality between the likelihood

(1.4) and the integral

/< /f D(C. . 18,7, 0) Ao dC = /C /f PG, fors0.74.0)D(C. Finl6.7) Ao AC

_/C/f Hp(yiKi,U)Hp(zj]fm’j)p(g,fmw,,y)dfde

:/CHp(yi|Ci,U)P(C,Z\9»’7)dC>
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where ¢ = (C(#1),...,C(&)) = (C1,...,Cn) and frn = (fin(t1,01), ..., fm(ts,65)). The

likelihood p((, z|@,y) is the multivariate normal distribution with the mean M (6,7y) (see

(1.5)) and the covariance

K (0. ) = (Kf(Ty(e),Ty((j)) + K(Ty, Ty) Kf(Ty(e),TZ(g))> |

K 4(T2(8).7,(6)) K4 (T2(8).7:(6))

Again, Kf(Ty(O), Ty(0)) is the matrix with (7, j) element k¢((¢;, 0), (t;,0)), K5(Ty, Ty) is the

matrix with (i, ) element ks(t;,t;), and Kf(TZ(O), T,(0)) is the matrix with (i, j) element

k:f(({i, 6;), ({J’ gj)) Kf(Ty(O), 1%(0)) is defined analogically with the kernel k.

We leave the details of the integral computation for Section 4.5.1. This representations of
the model is crucial for the theoretical results obtained in the subsequent section. It reframes
the Bayesian model as a version of a non-parametric regression problem with GP prior for

¢(t) and an additive noise. Additionally, we can gain a further insight into the role of the

set of model runs z. Let us consider a function space F and a subset FCF , then
_ n
p(C € Fld, 0,7,0) /f T 2(vilcioo)p(C12, 6,7) dC. (4.7)
1

One can therefore interpret the model runs z as an additional information provided by the
computer model f;,, that enhances the GP prior p({|z, 8,) for the physical process (, having

the mean function

me(t) = my(6,0) + ma(t) + > iy [kp(8,0), &, 0))]| [5 — ms €. 6], (@8)
ij=1

and the covariance function
ke(t, ) = kp((t,0),(t,0)) + ks(t, )

- i Kji [kf((t,O),(fjﬁj))] [kf((fi,éi),(t’,e))], (4.9)

1,7=1

where £ ; is the (j,7) element of the matrix Kf(Tz(é),Tz(é))_l.
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4.2 Posterior consistency, a theoretical validation

The revealing consequence of the previous section is that the Kennedy and O’Hagan
(2001) framework is equivalent to the non-parametric regression model of an unknown func-
tion ((t) with the prior distribution p({|z, @, ). This is not only a new perspective on the
popular framework, but also happens to be the key step that allows us to validate our em-
pirical Bayes approach theoretically and establish the posterior consistency of the physical
process when the prior p({|z, 8,7y) satisfies certain properties.

In the reminder of this section, we assume that the true physical process (( is a con-
tinuously differentiable function on the compact and convex set 2 C RP. Without loss of
generality, we take Q = [0,1]P. Additionally, we shall assume the hyperparameters (6, ~)
take values in a set Y. For any v > 0, we aim to establish, under suitable conditions, the
following;:

sup p(C € Wulyt - U, 2,0,7.60) —— 0 as. Ry, (4.10)
(07)eT "

where P denotes the joint conditional distribution of {y;}°°; given true (y and o, Gy is a

strongly consistent estimator of og, and

Wun :{ /!C ()] dQn(t) < } (4.11)

with @, being the empirical measure on the design points given as Qp(t) = n~1 > Ly, (t).

In Theorem 2, we first present a general result on the consistency of non-parametric
regression problems and subsequently discuss the theorem’s conditions in the context of the
model described in Section 4.1. This is based on the work of Choi and Schervish (2007a) and
Choi (2007), where the authors assume o is included in Wy, 5, and the posterior consistency
is derived jointly for ¢ and 0. On the other hand, the consistency of ¢ conditioned on &y,
requires a non-trivial modification of their original results. The proof of Theorem 2 is given

in Section 4.5.2.

Theorem 2. Let {y;}5°, be independently and normally distributed with the mean ((t;) and

the standard deviation o with respect to a common o-finite measure, where ¢ belongs to a
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space of continuously differentiable functions on [0,1]P denoted as F, and o > 0. Let (o € F
and let Py denotes the joint conditional distribution of {y;}5°, given true (y and oq. Let
{Un}22 1 be a sequence of subsets of F. Let ¢ have a prior I1(-|0,~) where (6,7) take values

in a set Y. For any 0 < e <1 and (o(t;) = (o, define:

p(yil€0.4> 00)
(yilGi o0(1 —€))’

Ki(COa C) = EC@JO (AZ (€07 C)),

Vi(Go, ¢) = Varg, 4, (Ai(G0, €))-

A; =1
Z(COaC) ng

If the following assumptions are satisfied:
(A1) Suppose there exists a set B with 11(B|@,~) > 0 and for any A > 0 a constant

0 < €1 <1, so that for any € < €1:

(1) 32 Vi(fg’g) < 00, V¢ € B,
(i) I(BN{C: K;(¢o,¢) <A for all i}|6,v) > 0.

(A2) Suppose there exist tests {$p}2°,, sets {Fn}>,, and constants Co,Cy,c1 > 0 and

n=1- n=1’

0 < éy <1 so that:

(1) ZSLOZI EC@,UOCI)N <00
(ii) sup(gy)er 1(FT10,7) < Cre—1m

(iii) There exists a constant ¢ > 0 such that for any 0 < € < éy the inequality c¢ + log(1 —

€) — log(1 + ¢) > 0 holds and

sup B¢ 5140 (1= ®n) < CyeC€n,
ceu§'nFy

A38) 6y is strongly consistent, i.e 6, — o9 a.s. Py.
gty 0 0
n
Then

sup p(CeUg|yl7ayn797'Y76n)—>0 a.s. PO
(0.7)eY n
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For the purpose of generality of Theorem 2, we do not explicitly condition on the set
of model runs z. It is clear from our previous discussions (see (4.7) in particular) that the
model runs play the role of fixed constants in the prior distribution over . The dependence
on z in (4.10) arises by setting I1(¢|0,~) := p({|z,0,7).

We now consider the conditions of Theorem 2 in the context of the model in Section 4.1.
These conditions fall into two general categories; one group of conditions is related to the
existence of the test functions @, and the second group revolves around the conditions for
the prior distributions.

Our approach to establish the existence of test functions {®5,}>° | that satisfy the condi-
tions (i) and (iii) in Theorem 2 is similar to that of Theorem 2 in Choi and Schervish (2007a).
We consider a sieve JF,, which grows to the space of continuously differentiable functions on

[0, 1]P. Namely, let

9

Fa={G51 oo Ma 1 57
(3

< ||oo< Mn, Z - 1, st ,p} (412)

where M,, = O(n®) for some « € (%, 1). Also, || - ||oo denotes the supremum norm. Each test
is defined as a combination of tests over finitely many elements in the covering of F;,. The
existence of tests in the specific case of W, , is given in Theorem 3 with its prove provided

in Section 4.5.2.

Theorem 3. Let F, be the sieves defined in (4.12). For any v > 0 there exist tests {®pn}o°

and constants C and 0 < € < 1 so that:

(i) 2on=1E¢),00Pn < 00

(ii) There exists a constant cc > 0 such that for any 0 < € < € the inequality c¢ + log(1 —

€) —log(1 +¢€) > 0 holds and

sup EC,00(1+6)<1 — dp) < Ce™ ™,
CEWS N Fn
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To verify conditions (A1) of Theorem 2, it is sufficient to show that the GP prior for ¢

assigns positive probability to the following set for any 6 > 0:

Bs ={C:|| ¢ = ¢o loo< 6} (4.13)

For any 0 < € < 1, a short calculation leads to

1 1 ti —C(t 2
o) =toatt ~0 5 (1- 72 g ) + [6(2)2821 7

1 1 Got:) — () [I5
Slog(l—e)—i(l_(1_€>2>+|| 02(08)(1_(6))2” .

Let a(e) = log(1—€)—1/2+1/[2(1 —€)?], it is easy to see that a(e) is positive and continuous
at € = 0. Therefore, for every A > 0, there exist 6 > 0 and 0 < € < 1 so that K;({p,() < A
for all 7 and any € < €.

Additionally, for any € < € and any § > 0

wco,o—l[(l_le)z —1]2+ [wr

2

< oo uniformly in 7,

and as a result, for all { € By, >.7%, L(fz(ﬁ < 00. The prior condition (ii) of (A2) for the

sieve Fy, (4.12) is addressed in Lemma 4 (for proof see Section 4.5.2).

Lemma 4. Let the mean function m¢(-) of the GP prior for ¢ defined on [0,1]P be contin-
wously differentiable, and the covariance function k:g(-, -) has mized partial derivatives up to

order 4 that are continuous. Define,

pR(6,7) = sup Var(((#)[z,0,7),
te[0,1]P

0
p(0,7) = sup Var (gé(t)
te[0,1]P i

z,0,7>, 1=1,...,p.

Suppose that Y is a compact set, and pZZ are continuous functions of (6,7) for all (6,~) € T,

1=0,...,p. Then there exist constants C,c > 0 so that
C —cn
sSup p(]:n ‘Z70a7) < 06 )
(0,7)€T
where Fp, are the sieves defined in (4.12).
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Below we present the almost sure consistency result 4.10 as a corollary of Theorem 2,

Theorem 3, and Lemma 4.

Corollary 1. Let Py denotes the joint conditional distribution of {y;}:2, given true (y
and og. Let m¢(-) and k¢(-,-) be the mean and covariance functions of the GP prior for
( satisfying the conditions of Lemma 4. Assume Y is a compact set, and for any 6 > 0,
p(Bsl|z,0,7v) > 0. If 6y, is a strongly consistent estimator of oq, then for any v > 0

sup p(C € Wgn\yl, e Uny 2,0,v,0) —— 0 a.s. Py (4.14)
(6.7)eY "

Prior conditions. The prior positivity condition requiring p(Bg|z, 8,) > 0 for any § was
extensively studied by Ghosal and Roy (2006) and Tokdar and Ghosh (2007). Theorem 4
of Ghosal and Roy (2006) implies that this condition is satisfied for a GP with continuous
sample paths and continuous mean and covariance functions, as long as (g and the m belong
to the reproducing kernel Hilbert space (RKHS) of k. The continuity of GP’s sample paths
is given by the application of Theorem 5 in Ghosal and Roy (2006) which requires the same
continuity conditions as Lemma 4 in this section (excluding those on pZQ) It should be clear
from (4.8) and (4.9) that m¢ is continuously differentiable on [0, 1]?, and k¢ has continuous
mixed partial derivatives up to 41" order on [0,1]P, as long as the same holds about m ¥
and mg and respectively k; and ks. Tokdar and Ghosh (2007) show that the RKHS of
k¢ spans the space of continuously differentiable functions on [0, 1}P, if k¢ is a product of
p isotropic and integrable univariate covariance functions with continuous mixed partial
derivatives up to order 4. For example, the squared exponential covariance function satisfies
these requirements including the continuity of pg fori=0,...,p.

This, of course, does not directly imply that such choices for m ¢ and mg, and ky and ks
respectively, result in the conditional mean m¢ and covariance k¢ functions satisfying these
sufficient conditions. For larger applicability of our results, we note that further investigation
of specific choices for mean and covariance functions that satisfy the desired conditions is

needed. We intend to address this in our future work. Nevertheless, the simulation study
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conducted in Section 4.4.1 strongly suggests that choosing the squared exponential kernel

leads to consistent predictions.

4.3 Parameter estimation and prediction

Thus far, we established that the empirical Bayesian framework provides a principled
approach for inference and enjoys good theoretical properties, all this assuming a (strongly)
consistent estimator of og, smoothness of the prior mean and covariance function, and the
GP hyperparameters (6,-) taking values in some compact set.

In this section, we first propose a strongly consistent estimator of the true noise scale o
and two different plug-in estimators of (8,-y) as minimizers of two alternative loss functions.
In particular, we consider negative data log-likelihood and negative predictive log-likelihood
combined with K-fold cross-validation. Second, we provide the complete empirical Bayes
algorithm for simple and fast predictions of physical quantities using (imperfect) computer
models.

Let us consider n observations y; from the physical process under the model (4.2), we

propose the following estimator of the noise variance 0%:

-1
" 2(n—1) '

Theorem 4. Suppose (y(t) represents the true physical process and 03 be the true value of
the experimental error variance, where t €  is a compact and convex subset of RP, and
Co is continuously differentiable on 2. Let Py denotes the joint conditional distribution of

{yi}i2, given true ¢y and 03. Also assume the following holds about the design points t;:

sup |t2'_|_1’j — tz’,j’ — 0, (AD)
ic{l,..n},je{l,...p} n

then

o — a(% a.s. Py. (4.16)

The proof of Theorem 4 is given in Section 4.5.2. The continuous mapping theorem

directly implies the following.
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Corollary 2. Under the assumptions of Theorem 4,
6n =1/062 —— 09 as. B (4.17)
n

Remark 1. The assumption (AD) is satisfied by a design that contains at least one point in
each hypercube H in S with its Lebesque measure A\(H) > %n, for some constant 0 < K < 1.

This is, for example, the case of equally spaced design.

4.3.1 Estimation of hyperparameters

4.3.1.1 Marginal data likelihood

We first consider estimates of (6,4) as minimizers of a loss function that is reminiscent

of the standard maximum likelihood approach, namely

Lyre(0,7) = —logp(d|6,~,6m), (4.18)

with the negative log-likelihood being

- logp(d’@,’y, 6”) = %(d - M(07’7>>TK<0777 &n)(d - M<977))

n-+s

1 .
+ 5log| K (8,7, 6n)| + log 27.

We can readily interpret the minimizer of L7 g as a trade-off between the data-fit %(d —
MO,y K(8,~,6,)(d — M(6,7)) and the model complexity penalty %10g|K(9,7,6n)|

that depends only on the model parameters and the variable inputs.

4.3.1.2 Predictive likelihood with K-fold cross-validation

Another viable approach to estimating the parameters (6, 4) is to base these on a model’s
predictive performance on unseen data. Cross-validation is a popular and robust approach to
estimate this predictive performance that has been utilized across many statistical applica-

tions. See Sundararajan and Keerthi (2001); Rasmussen and Williams (2006); Martino et al.
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(2017) for applications with GPs. Here, we consider a K-fold cross-validation where the basic
idea is to randomly partition the training detest into K subsets of equal size. We then select
K — 1 subsets for training and the hold-out data as a proxy for estimating the predictive
performance. This is then repeated until we exhaust all the K subsets for the purpose of
validation with typical choices for K being 3, 5, 10, or n (leave-one-out cross-validation).
Formally, let y; represent the ith subset of the observations yand y_; =y~ y;. The

negative predictive log-likelihood under the K-fold cross-validation is

K
Loy (k) (0:7) = = > log p(yily—i, z,0,7,6n), (4.19)

7

The cross-validation should be more robust against model miss-specification and overfitting

(Wahba, 1990).

4.3.2 Algorithm for predictions

One of the main benefits of the empirical Bayes approach is that once we estimate the
unknown parameters (8,7,0), we can obtain a closed form predictive distribution given
these estimates. Formally, let us consider a set of new inputs (¢7,...,t%) at which we want
to obtain the predictions according to the model (1.3). As discussed in Section 3.4, the joint
normality between d and y* implies that the conditional distribution p(y*|d, 0,4, 0) is a

multivariate normal distribution with the mean vector
My*(G,'y, o) = Mf(Ty*(O)) + M(S(Ty*) + CvK (0,7, 0)_1(d — M(0,7)), (4.20)
and the covariance matrix
K,+(0,7,0) = K (T;(0), Ty(0)) + K5(Ty;, Ty) + 0* Iy — Cx K (0,7,0)'C{,  (4.21)

where

C. = (K (T3 (0). Ty(0)) + Ky(Ty,Ty) K (T;(6), T=(6))). (4.22)

Similarly to the conditional covariance matrices discussed previously, K f(Ty* (0),1Ty(0)) is

the matrix with (7, 7) element k¢((t7,0),(¢;,0)) and Ks(T};,Ty) is the matrix with (4, 5)
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element ks(t;,t;). The matrix Kf(T;(O), 1%(0)) is defined accordingly with the kernel k.
Analogical relationship holds for the conditional distribution of the new realizations from
the physical process p(¢*|d, 8,~,c), where the mean vector is identical with (4.20) and the

covariance matrix is

Algorithm 4.1 summarizes the procedure for predictions of physical quantities using im-

perfect and computationally expensive computer models.

Algorithm 4.1: Empirical Bayes algorithm for predictions of physical quantities.

Input: Data d, mean and covariance functions for GPs, and new inputs (¢7,...,t%)
1 Use the experimental observations 1, ..., y, to compute 6y, = /62
2 Minimize either Ly/1p(0,7) or Loy )(6,7) to obtain the estimates (6,%)

~ ~ A~ ~

s Compute M «(0,%,6n) and K «(0,7,6n) or My+(0,%,6n) and K+ (0,7,6n)
respectively to get the posterior predictive distribution

4.4 Applications

The main objective of this section is to empirically establish the efficiency of the empirical
Bayes method in Algorithm 4.1 and support the consistency result presented in section
4.2.  All this while sacrificing minimally in terms of the fidelity of UQ as compared to
the fully Bayesian treatment. To this extent, we consider a simulation study where we
compare our method (under both L, and LCV( K)) to a fully Bayesian treatment with
posterior samples obtained using the standard MH algorithm. Finally, we revisit the LDM

and illustrate our methodology in a real data scenario.

4.4.1 Transverse harmonic wave

Let us consider a simple computer model representing a periodic wave disturbance that
moves through a medium and causes displacement of individual atoms or molecules in the

medium. This is called a transverse harmonic wave, where the displacement fy,((¢,z),8) of
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a particle at location x over time ¢ is given by
fm((t,),0) = 0y sin (kz — 2t + ¢), (4.24)

where 01 represents the amplitude of the wave, and 9 is the frequency of the wave. The
model also depends on the wave number k, which is reciprocal to the wave length, and the
phase constant . For the purpose of this example, we shall consider these to be known
values with k = 5 and ) = 1, and define the model inputs (t, ) over the space [0,1]? (we
assume that the length and time units are all equal to one). The true physical process is

modeled according to
Co(t,z) = fm((t, x),0) + 6(t,z) = 0y sin (5x — Ot + 1) + S, (4.25)

where § = 1 is a constant systematic error of the model, and @ = (01,02) are arbitrarily
set to be (1.2, 1.8). We generate the experimental observation according to the model (1.3)
with the true value of the observation error scale og = 0.2, where the model inputs (¢, x) are
chosen using the Latin hypercube design over the full space [0, 1]2. The space filling prop-
erties of the design guarantee decreasing bias of the estimator 6, with an increasing sample
size. Additionally, we assume that the computer model for the periodic wave disturbance
is computationally expensive and generate the set of model runs z using again the Latin
hypercube design, now over [0,1]2 x [0,2]2. We define the GP priors for f,, and & to have

zero means and the covariance functions

[ | e A Al

kp({t,z, 0}, {t',2',0'}) = ny - exp(—
p({ta, 03, {27, 0°}) = ny - exp( 202 202 202 202 )
1 2
t—t> |z =2
ks({t 2"} =n;s- _l - :
5({ ,.T},{ ,IL’}) UR) eXp( 21/]? 2,/% )

The hyperparameters in this scenario are therefore v = (nf,ﬂt,ﬁx,ﬁgl,fgz,n(;,ut,yx).
For the case of the fully Bayesian treatment, we choose inverse gamma priors with mean
1/2 and variance 1/4 for (o,7y,75), gamma priors with mean 1/3 and variance 1/9 for the

length scales, and independent Gaussian distributions with mean 0 and variance 4 for the
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calibration parameters (61, 02). These are non-informative priors given the spans of both the
input space [0, 1]2 and the parameter space [0, 2]2. Table 4.1 shows the RMSEs of predictions
of new realizations from the true physical process (4.25) evaluated on a testing dataset of
225 realizations over a uniform grid on [0, 1]2. The predictions are taken to be the posterior
predictive means under each method. We consider the estimates of hyperparameters using
the Lysrg loss and the 10-fold cross-validation predictive loss function. The noise scale

parameter was estimated using the consistent estimator &, defined in Section 4.3.

| RMSE values on the testing dataset

‘ Ly Lov(io) Metropolis-Hastings

n =125

s — 195 0.048 0.071 0.049
n = 250
s — 950 | 0.019 0.030 0.037
n = 500
s = 500 0.010 0.019 0.021

Table 4.1: The RMSE comparison of the empirical Bayes approach and the fully Bayesian
treatment. The GP hyperparameters were estimated using Algorithm 4.1.

The proposed empirical Bayes approach closely matches the fully Bayesian treatment. In
fact, the RMSE under the Ly 15 loss is consistently the lowest and monotonously decreases
with the increasing size of the dataset. This is a desirable outcome since the empirical Bayes
fit can be readily obtained in several minutes using standard numerical solvers while sampling
from posterior distributions can take hours. It took approximately 2 hours to obtain 10%

samples in the scenario with the largest sample size on a standard PC with 4 cores.

Parameter | n =125, s =125 n = 250, s = 250 n = 500, s = 500

| Ly Levioy MH | Lyre Leyoy MH | Lyre Leye) MH

01 1.197  1.217 1.251]1.160 1.251 1.166 | 1.207  1.206 1.208
6o 1.781 1.787 1.77111.805 1.799 1.765|1.792 1.818 1.765
o 0.328 0.208 0.259 0.206 0.228 0.198

Table 4.2: The estimates of calibration parameters and the noise scale under each method.
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For completeness, we also show the estimates of calibration parameters and the noise
scale under each method in Table 4.2. Posterior means were taken as the estimates of the
fully Bayesian solution. We can see again a close match between the approximate empirical
Bayes method and the MH algorithm. The only notable difference is in terms of the noise

scale estimate 6,. This is expected since the estimate is asymptotically unbiased.

2.50
2.251
2.00
1.751
1.501
1.251
——= Leyao) =500
1.001 s=250 — MH $=500
0.75 : : : : : : : ‘ ‘
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
X X X
Figure 4.1: Detail of 95% credible bands plotted at ¢ = 0.21.
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N\ \ \
1 \ \ \
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n=250 ’ 4 4
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21 s \ / \ / &t x)
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X X X

Figure 4.2: Comparison of the convergence to the true physical process. The curves with
95% credible intervals are plotted at ¢t = 0.21.

Figure 4.1 and Figure 4.2 show the loss in terms of UQ) is negligible for all practical pur-

103



poses. We can see that the empirical Bayes approach slightly overestimates the uncertainty
for smaller sample size, but this quickly diminishes as the sample size increases. This is likely
the consequence of the inflation of the noise scale given by the bias of 6, which diminishes
with the increasing sample size as expected. See Section 4.5.3 for additional figures of the

empirical Bayes fit at the time locations t =0, t = 0.43, t = 0.71, and t = 1.

4.4.2 The Liquid Drop Model revisited

To illustrate our empirical Bayes framework for computer-enabled predictions on a real
data example, we yet again consider the 4-parameter LDM of nuclear binding energies (see
Section 1.1 for details).

We now present an analysis of 595 experimental binding energies of even-even nuclei from
the AME2003 dataset (Audi et al., 2003) (publicly available at http://amdc.impcas.ac.
cn/web/masstab.html) randomly divided into a training set of 450 nuclei and a testing set of

the remaining 145 nuclei, see Figure 4.3. We consider the statistical model (1.3) and model

110 110
100 Training = 1001
901 HEM Testing i 901 1500
801 ey 801
70- :.._-i-r 70- =
NI o NI . 1000 =
50 - 50 =
401 1= 401 S
i wr 301
30 L 204 500
201 =
104 4 = 10+
o= o=
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
N N

Figure 4.3: Binding energies of even-even nuclei in AME2003 dataset divided into a testing
and a training dataset.

the systematic discrepancy 0 with zero mean GP and the isotropic squared exponential
covariance function. For the purpose of this example, we also assume that the LDM is
computationally expensive (or not directly accessible) and regard it is an unknown function

of (Z,N) and 0. Similarly to the discrepancy 9, we assign a GP prior to Eg(N, Z) with

104


http://amdc.impcas.ac.cn/web/masstab.html
http://amdc.impcas.ac.cn/web/masstab.html

zero mean and the isotropic squared exponential covariance function. To this extent, we
additionally generated a set of 900 model evaluations using the Latin hypercube design
over the space spanning all reasonable values of the parameters @ as given by the nuclear
physics literature similarly to our previous analysis in Section 3.5.3. Corresponding nuclear
configurations, the inputs (Z, N), were randomly assigned to the generated values of 8 from

a set of two times duplicated training nuclei.

Results. The predictions of nuclear binding energies were computed as the means of the
posterior predictive distribution (4.20) conditioned on the estimates of the calibration pa-
rameters @, GP’s hyperparameters -y, and the noise scale ;. The estimates for (0,) were
obtained numerically as the minimizers of L1 r and Loy (1o)- The priors for the GP hyper-

parameters were chosen according to Section 3.5.3 in the case of the fully Bayesian treatment.

| Parameter estimates | Testing error
| avol syt Gsym  ac | RMSE (MeV)

Lyrp | 15.07 1558 22.00 0.68 1.16
Lov(ipy | 15.08 16.08 21.19 0.67 1.26
MH 15.32 16.09 22.09 0.70 1.16

Table 4.3: The RMSEs of the predictions evaluated on 145 even-even nuclei from the
AME2003 dataset. The parameter estimates are also listed. The posterior means are
shown in the case of the MH algorithm.

Table 4.3 gives the RMSE values calculated on the testing set of 145 even-even nuclei
for the empirical Bayes approach and also the MH algorithm. The calibration parameter
estimates are also provided with values that do not significantly differ between the methods
considered. The resulting RMSEs are 1.1 — 1.3 MeV which is a consistent result with our
previous study in Section 3.4.2 that was conducted on the whole AME2003 dataset using
the VBI approach. We also carried out a simple least squares fit of the LDM with the

resulting RMSE of 4.10 MeV evaluated on the same testing set of even-even nuclei. This is
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an improvement that is consistent with our previous study on the full dataset using the VBI
algorithm. Overall, this is quite a remarkable result given the considerable effort that needs
to be put forth to implement the fully Bayesian solution and to obtain sufficient amount of

posterior samples.

4.5 Technical details and supplementary results

4.5.1 Equivalency of hierarchical model

To establish the equivalency between the Bayesian model given by the data likelihood
p(d|6,~,0) and the hierarchical model (see Section 4.1), we need to show that the following

equality holds

p(dlf. . 0 / przm, p(C. 2]0,7) d¢ (4.26)

where ¢ = (((t1),...,((tn)) = ((1,--- ,Cn) and p(¢, z|0,~) is the multivariate normal dis-

tribution with the mean M(8,) (see (1.5)) and the covariance

K(6.7) — K (Ty(0).Ty(0)) + K5(Ty, Ty) K;(Ty(6),T-(6))\ _ (Cu Cr2
p\Y Kf(Tz(g),Ty(e)) Kf(Tz<0),Tz(0)) Cy1 Cao

For the ease of notation, let us now assume M(0,~) = (ML, MI)T. Then

n

/C [T p(ilGi p(C. 218.7) d¢ = /C per /2|102 o /Qexp< = )y - c>)

1 1(¢—MNT _ (¢—My
) <2w><n+m>/2er\1/2e"p(‘ (o) w (D)
_ ! Ly =M\ (v - My
_<2w><n+m>/2|ml/2exp< 2<z—Mz) . (z—M))
|K|1/? 1 T, 27 \-1
X/g(zw)n/%?] 2K, 12" p<—§(y—c) (07 1) (y_C))
=M\ (G M\ 1y =M\ g - M
con (S0t (G20 wa(t i) k(1))

B 1 1 y—My T 1 y—My
_<2w><n+m>/2rml/2exp<_5<z—Mz) r (z—Mz)) <
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The integral is equal to 1 since it is an integration of multivariate normal probability density

function over ¢ with the covariance function ((o2I,) ™1 +(Cy1 — 0120521 Co1)~ 1)L Namely,

K|/ _ |C92|Y/2|Cyy + 021, — C19 05t Oy M2
021|222 |02, |1 2|Coo| /2| Cy — ChaChy O |12
|G+ 0Py — CraCoy O 12
o2 |2|Cyy — C12Cy Oy |12
|A+ B|Y/2 1 B 1
CIAEBA APRRBRA L B2 (AT (Bl + B
_ 1 B 1
C|ATIBTIA4+ A-IB-IB|TL/2  |A-IB1A 4 A-L7L2
1 1

A1 (BT + AD A2 T (A-T)[(B-1+ A-L)||A]) 712
1

T (B4 A-L)L)12

where we used the Schur complement identity for determinants in the first equality and

A= Cyy — C19C5 Coy,
B =0,
Lastly, considering the notation
¢ Cro
Co1 Co

-1 _
K, =

we have

e S oot w0 3(S 1) g (200

T
K
XeXp( (z—MZ) (z—MZ

o exp( QIn C + C (o 2In)_1y - %UT(U2In)_1y)

1 M
X exp( § C My 011 + (Z - Mz) 217 (C My) C'12 + (Z - MZ)TOQQ] (C MZ))
x exp( % 2In Ty C)¢+ CTb>
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where C; = C11 — 01202_21021 due to the Schur complement identity for matrix inverse,
and b is a constant column vector. This shows that integral is indeed equal to 1 as stated,

and the equality (4.26) holds.

4.5.2 Proofs
Proof of Theorem 2

Note that for any e > 0, the posterior probability of interest p(¢ € Ug|y1, e Yn, 0,7, 0m)

can be bound from the above as

C A C -
p(C € Un |y17 7yn707770-n) — p(c € Un |y17 7yn707770-n)]‘{‘g8—1‘§6} + 1{‘%_1‘>6}7

where

p(c € U79|yla---ayn>07'770n

{\"” 1]<e}
yz‘Czuo—n) R
< &n ¥ p(Y;1¢;.0m)
1159
Jr Il P(;ilCo,i00) dH(C|0 7)
(yZKpU'G) R
fUCﬂFCH p(y;lCo 1700)1{’U—n—1‘< }dH(C‘H’V)
+
yl'Cpo’l’L
J£ITE: —y 10.6-70) dII(¢l0,~)
— q)n + Iln(y17‘ e Jyn70777an76) + IZn(yla c 7yn;9777(3n7€)

IBn(yL e 7yn7 07 77 a-n) I3n(y17 R 7y’ﬂ7 07 77 6-’/1) .

Since the assumption (A3) implies that 1 — 0 a.s. Fp, it is enough to show that

{’Un —1/>€¢} n

there exists € > 0 so that

sup ¢, — 0 as. Py, (4.27)
®yer "

sup eﬁlnIln(yl, ey Un, 0,7, 0p,€) — 0 as. Py for some 51 > 0, (4.28)
(0.9)€T "

sup eﬂQnIgn(yl, ey Un, 0,7, 0p,€) — 0 as. Py for some B9 > 0, (4.29)
(0,7)€Y t

sup eﬂ3"13n(y1, ey Yn, 0,7,0pn) — 00 a.s. Py for some f3 > 0, (4.30)
(6,7)€Y "
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where 83 < min{f, 82}

The rest of the proof follows the general steps of the proof of Theorem 1 in Choi and
Schervish (2007a) and Theorem 9 in Choi (2007) with some non-trivial treatment of the

constant e. We shall provide step by step details below.

Step 1). By Markov inequality, for any § > 0

1 o0
3 0= <33 By
n=1 n=1

which due to the condition (i) of (A2) and the first Borel-Cantelli Lemma yields

®, — 0 as. Fy.
n

Since this does not depend on (6, ), it implies (4.27).

Step 2). By Fubini’s theorem and for any 0 < € < éy

ECQ,O’O (Iln(yl, R yn, 07 77 a-’flv E))

p( ythUn
=E — &) / 5 dri(¢|e, v }
CO?UO{ " Unﬂfn yzKO i»00) {’gg_l‘§€} (¢l )
:/ / (1-®,) pyzKuUn dPodH(C\G,’Y)
UsNFn yzKO i 00) {’UO ‘

op(1—e)\ "
5 (M) /Uncm 7., Ecoptrel(l = 2a)ldIIC[6,)

1—e\ "
< < ) sup EC,G (1+e)[<1 — ®p)]
Lte)  ccvrCrm, 0

J— —n ~
S (1 6) 0267%” _ 02676571’

1+e

where ¢e = c¢ + log(1 — €) — log(1 + €) together with condition (iii) of (A2) implies ¢ > 0.
Thus

_an SN~ - n
PO{I].TL(y].a"'7yna077a0n76)26 062}§0160626 CenZCle 062'
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Therefore, for any € > 0 so that ¢ < €9 there exists a constant ¢ for which the first Borel-

Cantelli Lemma implies
)
66641171(3/17 <o Yn, 0777 6-717 6) ? 0 a.s. PO

Since this does not depend on (80,7), it implies (4.28).

Step 3). If we proceed as in the step 2), the Fubini’s theorem implies

EC070'0(1271(:U1’ - Yn, 07 v, é-’/h 6))

T PilGi, o) }
PWil&i On) ¢ dri(¢|,
/Uﬁﬁ]-‘n g p(ilo,00) {|F-1|<e) (<16.)

op(1—e)\ "
< <m> /UnCm]-"g EC700(1+6)[1] dI1(¢[60,v)

< (155) o

1+e¢

- ECO,UO

The condition (ii) of (A2) and the first Borel-Cantelli Lemma implies that for any € <

1-e “
14e €1°

7. n
sup ekeZIgn(yl,...,yn,O,'y,&n,e) — 0 a.s. Py,
(0.9)€T "

where ke = ¢1 + log(1 — €) — log(1 +¢).

Step 4). To prove (4.30), given any 0 < p < 1, we first observe the following:

A~ > A A
L3 (Y1, 4n, 0,7, 0n) = I3n(y1, - - 7yn,0,’7,0n)1{‘0n_1’Sp}

> (155) LIt .

y2|<0 I 00)

Let us now define log, () = max{0, log(x)} and log_(z) = —min{0, log(z)} as well as

p(wilCo,i> 90)
p(WilGi,o0(1 = p))’
p(ilCo,i 00)
¥ :
Co, / yz‘CO z»UO 0g+ (y¢|Cz'700(1 _ p))
P(ilo,i» 90)
p(ilGino0(1 —p))

dyi?

(0, C) = / (ilCo.i» 00) log._ dy:.
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Then we get

Varg,, JO(W) E¢,. UO(WQ) {K;L(<07C)}2

< B0 (W7) — {Ki(C0, )}

p(¥il€0.i- 00) >2
p(YilCi, o0(1 = p))

e o N2
= [ pilco o0 (1og (p“”'(“’“ O)p») dys — {K(Cor O

p(yil G, o0(1 —

= ECOaUO(WiQ) + /p(yz'lCo,z',Uo) <1Og— i — {Ki(C. )

= V;(Co,¢)-

Hence, by condition (i) of (A1) for any p < é; and ( € B

n=00 ) n=00
> HanT SN0
2 2

i=1 =1

—~
&
I
~—

and by the Kolmogorov’s strong law of large numbers for independent non-identically dis-

tributed random variables (e.g. Shiryaev (1996), Chapter 3),

Z (0, 0) — Oas. Py.

As a result, for every ¢ € B, with Py probability 1

hnnig%f < Zlo p(yilGi, oo (1 )P))) _ _lggio%f <% Z ~log p(yiKi‘, UOQ — p)))

yz|C0 i, 00 i 1 p(yzKO 1700)
.. yzKO Z)O-O)
= — liminf log
n—00 ( Z yz|<za‘70(1_ )))
. yzK() Z;O'O>
> — limsup log
Z yleZaUO(l - p)))

n—oo

= —limsup EZKZL(COK))
i=1

n—oo
1 1o~ /K 4“0
> —limsup [ — » K;(S0,S5) + — —anel
> e (3Kl 9) )
1 & 1w K;((p, ¢
> —limsup | — K; - Lo
> —lim sup n; (G0, Q) + an;
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The fourth line follows from the almost sure convergence proved in the previous paragraph,
the second to last line follows from Amewou-Atisso et al. (2003). We now make use of the
condition (ii) of (Al). Let us consider § > 0 and select A so that A + \/§ < g and also
C =Bn{C: Ki(¢,¢) <A foralli}. By (Al) there exists €; so that for all 0 < p < &
implies II(C0,~) > 0. Therefore, for each ( € C

lilrgioxéf ( Zl p(yilGi, 701 —p))) > —limsup ; (€0, C) + %; Ki(ng)

yz|<0 17‘70) n—00

)

since = ZZ 1 K;(¢p, Q) < Afor all ¢ € C. Finally, for any p < min{éy, 1_6_5 }
14+e 8

v

2np
hm 1nf€ 8 I3Tl(y17 < Yn, 07 Y 6n)

n—oo
p(yilCisoo(1 — p))
>11m1nfeT<1+p> / ][ 0 Ar(¢|o.~)

n—00 yzKO i 00)
2n3
> hmlnfeT( ) / H plyilGi 201 = 1)) dlI(¢|0,~)
n—00 I+p yz|§027(70)
2np
z/ liminfe S ( ) Hp Wildi 001 = £)) 417219, )
Cc "0 I+p i—1 yzK()zuUO)
= 0.
Note that the actual bound on I3, does not depend on (8,-). Taking € < mm{eg, 72}
concludes the proof. O

Proof of Theorem 3

We shall first define some notation. Let 0 < r < § and ¢t = 7. Let Ny = N(t, Fp, | - [|c)
be the covering number of F,,. In Theorem 2.7.1, van der Vaart and Wellner (1996) show

that there exist a constant K so that log Ny < K%” and therefore Ny = O(M,,), where

M, = O(n®) for a € (%, 1) according to the definition of the sieves. Let us consider

T € (5, %) and define ¢, = n” so that log(/NV¢) = o(c,%). Moreover, let ¢1,..., Nt € F, be
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finitely many elements of the sieve so that for every ¢ € F, thereisi € {1,..., Ny} satisfying
| ¢ — Ci |oo< t. This implies that if ( € F, such that [|((t) — (o(¢)]dQn(t) > v, then
JI¢H () = Go(#) dQn(t) > 5.

The next step in the proof is to construct a test for each ¢’ with the resulting functions
®,, defined as a combination of the individual tests and showing that the probabilities of type
I and type II errors satisfies the properties of the theorem. Let us recall that (; = ((¢;) and
Co.j = Co(t;). For an arbitrary ¢ € JFy, such that || ¢ — ¢ [|so< t, let us define (1 ; = ('(¢;)
and b; = 1if (1 ; > (p; and —1 otherwise. For any v > 0, let Wy[(, ] be the indicator of

set A defined as follows

LS (2590 i

The test functions ®,, are then

- UV
&, = max V,[¢7, =]
"IN, nl¢ 2]

Type I error. The Mill’s ratio implies

G
B¢y oo (¥n) = P Zb (—“) > 2env/n

=1—®(2cy)

The function ®(-) is the CDF of the standard normal distribution. Consequently, we have

Ny
PV
]:

< Nte—Qc% _ elog(Nt)—Qc%

< e_c%

— Y
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and

0
D E¢yop®n < 0.
n=1

v

Type Il error. It is sufficient to find 7 for which the probability of type II error of ¥,,[¢ 0 51,
given an arbitrary ¢ in W,fn N JFn, is sufficiently small. This is because the probability of
type II error for the composite test ®,, is no larger than the smallest of \Ifn[ci, 5]. Note that
here we assume [ |((¢) — (o(t)] dQn(t) > v, and then [ |¢*(t) — (o(t)]| dQn(t) > 5. For every
r < 5, Choi and Schervish (2007b) show that

n
> 16, = Gyl > .

j=1

Let n be large enough so that 4opc, < rv/n, then for any 0 < e < 1

B o1+ = ¥nl6's 5 = Peg(iro [Z bj (—y‘j S ) < 2cn\/ﬁ]

j=1 70
' n
yj— G+ ¢ —C+¢+ G,
= B op(1+e) ij(j — JOJ ) <20/
L j=1
1< (yj—cj) 1 (g—cu)
=P — Y b+ —=) b | —=
Cog(l+e) \/ﬁ; J 70 \/ﬁ]; J 0
1 ¢, — ¢
- ) ) <2
+\/ﬁ; 0 < 2¢p
1 & Yj — G rvn o ryn
<P — > b (1) < 2
< C,cro(l—l-e)_ nj; ]( o0 )— 400 0 + 2¢p
[ 1 Yj — G r/n
<P — b < —
= C,Uo(lJre) njz::l J(00(1+6) = 400(1+€)
_ (_ ry/n )
B dog(1 +€)
400(1 )_;72 2
oog(l +€ 3204 (1+€)
< —0 7 0 .
T/ 2mn ‘

To establish the part (ii) of the theorem, we need to show that there exists a constant

114



0 < € <1 so that for any e < €

2
T 1—c¢
+1 — | > 0. 4.31
Og(l—i—e) ( )

3208(1 + ¢€)?2

2
- T .
Take k = —23200 and define b(¢) to be the left hand side of (4.31),

ot ()

The function b(e) is clearly continuous at € = 0. Hence, for each x > 0, there exists € such

that for all 0 < e < €, b(e) > 0. O

Proof of Lemma 4

Theorem 5 of Ghosal and Roy (2006) implies that there exist positive constants C,d1, ..., dp

so that fori =1,...,p

M,
02 0.4)
Pl sup [C(t)] > Mp|z,0,7, | <Ce P07

te[0,11P
M

0 0
P sup —g(t)) > Mplz,0,7, | <Ce Pi@7)
tefo,1p | Ot

The continuity of p?(@,'y), for i = 0,---,p, on a compact set T implies that they are
uniformly bounded. Therefore, there exist universal constants (2o 1,Z0.2), -, (Ep,1,Zp,2)
such that for i =0,--- ,p,

— 9 —_
0<Zi1 < sup [p;(0,7)] <Epo.
(07)eT

Hence, for i =0,--- ,p,

M2
—dy =1
sup P | sup [C(t)] > Mp|z,0,7, | <Ce 01,

(07)eY  \te[0,1]P

5 g, Mit

sup P | sup —C(t)‘>Mn|z,0,'y, < Ce AN
@y)er  \tefop 'Ot
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Proof of Theorem 4

First, we show that 6% is asymptotically unbiased. Note that

El(yis1 — vi)?] = [Co(tis1) — Co(t:)]* + oBE[(ei11 — &)

= [Co(tit1) — Co(t;))? + 203,

because ¢; i N(0,1). Consequently

S HMGti) — Cota))?

E(on) = 2(n — 1)

+ 3. (4.32)

Since ¢ is continuously differentiable on the compact and convex set €2, it is also (globally)
Lipschitz on € (e.g. Schaeffer and Cain (2016), Corollary 3.2.4), and there exists a real

constant K so that

P
[Cotiv1) = Co) < K> [tivy — til-
j=1
Therefore, due to the design assumption (AD)

0< P o (Eig) — ColEa))? _ K { 2
N 2(n—1) = 2

sup tit1j —tijl| —0, (4.33)
ZE{I,,TL},]E{l,,p} n
and the combination of (4.32) with (4.33) implies

E(62) — 8. (4.34)

To show the almost sure convergence of &%, let us now denote x; = (y;j+1 — yi)2 and

rewrite the estimator &% as a sum of two estimators, each consisting of a sum of independent
variables:
1 Lgl 1 n%
2 72221 L9 72321 L2j-1 9 )
On = + = = Onet Ono
(*27) ("27)

Without loss of generality, we assumed that n is an odd integer. Lastly note that Var(z;) <
C' < oo uniformly in 4. This is because the differences (y(¢;4.1) —(o(%;) are uniformly bounded
on the compact set 2 due to the continuity of (y. Additionally, ;11 — y; are Gaussian and

have bounded moments. We can now apply the Kolmogorov’s strong law of large numbers
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for independent non-identically distributed random variables (e.g. Shiryaev (1996), Chapter

3),
62— 103 a.s. P,
n,e n 2
. 1
07210 — 50(2) a.s. Py,
’ n

and as a result

4.5.3 Supplement for the transverse harmonic wave simulation

This section contains some additional figures comparing the empirical Bayes fit with the

fully Bayesian approach under the posterior samples obtained via MH algorithm.
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Figure 4.4: Detail of 95% credible bands plotted at ¢ = 0.00.
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Figure 4.7: Detail of 95% credible bands plotted at ¢ = 1.00.



2 Leviio) MH
1_
4
/
0 2
2_
1_
0_
5] — {(t, X)
== (o(t, x)
14 95% Cl
n=>500
01 s=500

0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X X

Figure 4.8: Comparison of the convergence to the true physical process (y(t, ). The curves
with 95% credible intervals are plotted at ¢ = 0.00.
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Figure 4.9: Comparison of the convergence to the true physical process. The curves with
95% credible intervals are plotted at ¢t = 0.43.
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Figure 4.10: Comparison of the convergence to the true physical process. The curves with
95% credible intervals are plotted at t = 0.71.
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Figure 4.11: Comparison of the convergence to the true physical process. The curves with
95% credible intervals are plotted at ¢t = 1.00.
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CHAPTER 5

CONCLUSION

We devote the final chapter of this dissertation to the summary of the advances in com-
putational statistics and the developments of new statistical tools of UQ that were made in
Chapters 2, 3, and 4. We also provide an overview of the new and exciting avenues this work
opens for future research.

In Chapter 2, we studied BMA, the natural Bayesian framework to account for the
model uncertainty that arises in situations when multiple competing models are available to
describe the same or similar physical process. Motivated by a recurrent scenario in the field
of nuclear physics, we extended BMA to the scenario where competing models are defined on
non-identical study regions. We gave a theoretical justification for the use of BMA posterior
mean predictor in terms of PMSE reduction. While this predictor does not guarantee a
universal improvement in predictive ability, on average, it performs at least as well as the
best model under consideration. Finally, we applied the methodology outlined in Chapter
2 under several scenarios that lead to better predictions and improved UQ); one simple and
transparent exercise of averaging of proton potentials, and a pedagogical example of domain-
corrected averaging with a synthetic dataset. We also provided a full-scale BMA analysis of
9 state-of-the-art nuclear mass models and a study of the LDM of nuclear binding energies
trained on discrepant domains of the nuclear chart.

In Chapter 3, we developed a novel VBI approach to Bayesian calibration of compu-
tationally complex and many-parameter computer models. We exploited the probabilistic
theory of approximation coupled with pairwise construction of multivariate copulas to create
a computationally efficient and scalable algorithm for calibration. In addition, we proposed
the Rao-Blackwellization, control variates, and importance sampling to reduce the variance
of noisy gradient estimates involved in the stochastic approximation. The theoretical justifi-

cation for scalability was also established. In our examples, we first carried out an extensive
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simulation study that provided empirical evidence for the accuracy and scalability of our
method in scenarios where the traditional MCMC-based approaches become impractical.
We established the superiority of variational calibration over the MH algorithm and NUTS
in terms of time efficiency and memory requirements. We also demonstrated the opportuni-
ties given by our method for practitioners on a real data example through the calibration of
the LDM.

In Chapter 4, we proposed an empirical Bayes approach to model-enabled predictions of
physical quantities as a fast and easy-to-implement alternative to the fully Bayesian treat-
ment (also discussed in Chapter 3). A new hierarchical model representation of the Bayesian
model for calibration of computer models was presented. Theoretical study of the proposed
methodology was provided under this new representation. In particular, we established the
posterior consistency of the physical process, assuming smoothness of the mean and covari-
ance function of GP priors and existence of a strongly consistent estimator of the noise
scale. Consequently, we proposed two plug-in estimators for GP model hyperparameters
and a strongly consistent estimator of the noise scale parameter. A simulation study that
established the efficiency of the method and empirically verified the consistency was pro-
vided. Lastly, we revisited the LDM of binding energies and showed that our method yields

comparable results to the fully Bayesian treatment.

5.1 Future research

The extension of BMA to the situation with models defined over non-overlapping input
domains addresses only one of many practical challenges in Bayesian model mixing. From
methodology perspective, developing a principled approach to average models locally, with
model wights depending on input values, would mitigate the tendency of BMA to perform
global model selection when one of the models significantly dominates on some (small) part
of the input space. Computationally, BMA is a two step procedure, when one needs to first

obtain samples from posterior distributions under individual models and consequently sample
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from the BMA posterior density. A direct approximation of the BMA posterior, potentially
using variational methods, would considerably improve the ease of implementation.

A natural next step to enhance the impact of the VBI approach for calibration of com-
puter models that we proposed in Chapter 3, would be to examine its theoretical properties.
For example, one could pursue similar frequentist consistency result as Wang and Blei (2019).
If we establish the conditions under which the ELBO £(A) and the l-truncated ELBO L D, (A)
(respectively ECZ()\)) are equivalent in limit, namely £ Dl()\) = L(A) + op(1), the asymp-
totic properties of Wang and Blei (2019) will directly extend to our methodology. Besides
theoretical investigations, a procedure that avoids the current sequential approach to select
the truncation level would be beneficial. For instance, using fit indices for finding sufficient
truncation appears to be a promising approach as discussed by Brechmann and Joe (2015).

When it comes to the empirical Bayes approach to model-enabled prediction, we have
already noted the need for further investigation of specific mean and covariance functions of
GP priors that satisfy the smoothness conditions for posterior consistency. Most importantly,
the hierarchical model representation of Kennedy and O’Hagan (2001) framework together
with the theoretical developments in Section 4.2 constitute a solid foundation to establish
the posterior consistency of the physical process ( in the fully Bayesian regime; that is, in
a scenario with suitable prior distributions over the hyperparameters of Gaussian process

priors and the calibration parameters.
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