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ABSTRACT

WIENER-CHAOS ANALYSIS ON BAYESIAN MODELS WITH APPLICATIONS IN
AGRICULTURE AND CLIMATOLOGY

By

Han Wang

Understanding the challenges to increasing maize productivity in sub-Saharan Africa has

important implications for policies to reduce national and global food insecurity. There is

insufficient research on the key agronomic and environmental factors that influence maize

yield in a smallholder-farm environment. We implement a Bayesian analysis with longi-

tudinal household survey data covering 1,197 plots among 320 farms in central Malawi.

The results reveal a high positive association between a leaf chlorophyll indicator and yield,

with significance levels exceeding 95% Bayesian credibility at all sites, and the posterior

mean of the regression coefficient ranging from 28% to 42% on a relative scale. A parasitic

weed, Striga asiatica, is the variable that negatively associated with yield of high inten-

sity. The impact of rainfall varies by site and season, either directly or indirectly. We

conclude that the determinants preventing striga infestation and enhancing nitrogen fertility

will lead to higher maize yield in Malawi. To improve plant nitrogen status, fertilizer is ef-

fective at higher-productivity sites, whereas soil carbon and organic inputs are important at

marginal sites. Uniquely, the Bayesian approach allows differentiation of response by site for

a modest-sample-size study. Considering the biophysical constraints, our findings highlight

area-specific recommendations as well as management strategies for crop yield.

Quantifying the sensitivity of climate forcing factors such as greenhouse gas concentra-

tion and solar irradiation, is critical in comprehending the evolution of the Earth’s climate.

There exists a variety of statistical methods to reconstruct temperature in the past, but the



same is not true for projecting future temperatures. We produce a multi-level stochastic

model to systematically reconstruct and project the northern-hemisphere average tempera-

ture anomalies, for the past millennium (1000-1999) and the next century (2019-2100), by

coordinating with climatic forcings and natural proxies from diverse data sources. Additive

noises are applied to the model to capture the unaccounted variability. Model parameters

are estimated using Bayesian-inference techniques, resulting in complete distributional in-

formation. Reconstructions with memory features (no, short, long) are evaluated through

selected validation metrics, and the results constitute evidence in favor of using a moderate-

memory length. For the purpose of temperature projections, we incorporate realistic climate

forcing uncertainties to Year 2100. Similarly, we include an uncertainty component on top of

using representative carbon pathway scenarios for global greenhouse gases. Our projections’

posterior means show a great level of agreement with the 95% confidence interval provided

by the Coupled Model Intercomparison Project, while featuring differences in most cases.

The models described above are both implemented via Gibbs sampler with 10,000 itera-

tions. In order to avoid its potential computational heft, we combine the use of maximum

likelihood estimators for regression elements with properties of Wiener chaos, to approxi-

mate the predictive samples with specific chaos distributions that do not require sampling

via numerics. Some of the approximations’ statistics, such as error variances are also ex-

plicitly provided. The precision are relatively high (nearly 0.1% and 0.5%) depending on

dimension circumstances. This allows practitioners to estimate approximation accuracy and

convergence rates in practice, with no resort to heavy computational demands.
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Chapter 1

Introduction

1.1 Bayesian Regression Modeling

Bayesian statistics is based on the concept of probability to predict the future, where

probability is interpreted as a degree of belief in an event. The degree of belief can come

from previous knowledge or personal beliefs about the event. Bayesian statistics was named

after Thomas Bayes, who first described the outcome of a coin-toss experiment using Bayes’s

theorem on his paper published in 1763.

From the late 1700s to the early 1800s, Pierre-Simon Laplace established the Bayesian

interpretation of probability, and many other Bayesian methods were developed by other

scholars during that time. Over much of the 20th century, the widely-used statistical methods

were based on the frequentist interpretation. Bayesian methods were not in favor of, even

controversial to many statisticians, due to computational reliance and practical restrictions.

Since the 1950s, researchers began to apply Bayes’s theorem to account for model un-

certainties, by incorporating educated guesses about the likelihood of something happening,

and then making predictions. However, it is difficult to implement these types of guesses.

In the recent two decades, particularly with the emergence of high-performance computers

and new repetitive algorithms like Markov chain Monte Carlo (MCMC), Bayesian methods

have been more recognized as powerful tools in the scientific community after overcoming

1



the implementation difficulties.

Bayesian linear regression is a modeling approach in which the statistical analysis is un-

dertaken within the context of Bayesian inference. When the regression model has an error

following a normal distribution, and a particular form of prior distribution is assumed, the

full posterior probability distributions for every model parameter are explicitly available.

Not only does it provide more information than point estimates like means and variances in

classical frequentist statistics, but credible intervals are straightforward to interpret even by

non-statisticians. P-values can be computed in a Bayesian way, with more power and flex-

ibility in assessing the significance of explanatory variables [1], avoiding misinterpretations

of p-values [2, 3]. Also, the Bayesian approach allows background knowledge from domain

specialists to be incorporated into the analysis, as a type of participatory model building,

improving the accuracy and credibility of the estimations [4].

Last but not least, Bayesian statistics has an advantage in statistical power for data-

limited studies [5, 6]. There is an often quoted but rarely if ever formally cited rule of

thumb, by which the number of parameters (or degrees of freedom) that one can estimate

reliably (e.g., with credibility level higher than 90%) in a linear model, is a third of the total

number of data points, compared to a tenth in ordinary frequentist linear regression [7].

1.2 Chaos Structure of Wiener Space

Polynomial chaos (also called Wiener chaos expansion) is a non-sampling-based method

to determine evolution of uncertainty in a dynamic system in which the parameters have

probabilistic uncertainties. It was first introduced by Norbert Wiener in 1938, where Hermite

polynomials were used to model stochastic processes with Gaussian random variables [8].
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When the second moment is finite, such an expansion converges in the L2 sense for any

arbitrary stochastic process, which is applicable in most physics systems.

In any real and separable Hilbert space H, there exists an isonormal Gaussian process

of a centered Gaussian family (G(ϕ), ϕ ∈ H) of random variables on a probability space

(Ω,F ,P), such that

E[G(ϕ)G(ψ)] = 〈ϕ, ψ〉H (1.1)

The Wiener chaos of order n is defined as the closure in L2(Ω), a linear span of the random

variables Hn(G(ϕ)), where Hn is the Hermite polynomial of degree n, and ||ϕ||H = 1. For

any F ∈ L2(Ω), there is a unique sequence of functions fn ∈ H�n (symmetric tensor

product) such that

F =
∞∑
n=0

In(fn) (1.2)

where In is the Wiener stochastic integral with respect to G, I0(f0) := E[F ], and all of them

are mutually orthogonal in L2(Ω). This is the fundamental decomposition of L2(Ω) as a

direct sum of all Wiener-chaos terms [9].

Moreover, L2(Ω) is closed under multiplication, for any p, q and f ∈ H�p, g ∈ H�q

(symmetric), the product of Wiener integrals is calculated by:

Ip(f)Iq(g) =

p∧q∑
n=1

r!CrpC
r
q Ip+q−2r(f ⊗r g) (1.3)

where the contraction f ⊗r g is an element of H⊗(p+q−2r). In particular, the special case

when p = q = 1 is mostly used as follows:

I1(f)I1(g) =
1

2
I2(f ⊗ g + g ⊗ f) + 〈f, g〉H (1.4)
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1.3 Dissertation Overview

This dissertation focuses on the applications of Bayesian regression models, specifically in

agriculture and climatology, as well as Wiener-chaos analysis on the predictive distribution

of the response variable under linear-regression-model setup. Here is the breakdown:

• Chapter 2 introduces a multi-linear regression model to mainly explore the determi-

nants of maize yield stability in Malawi.

• Chapter 3 develops a hierarchical Bayesian model to investigate the reconstruction and

the projection of temperature anomalies in northern hemisphere.

• Chapter 4 proposes an estimation framework of predictive distribution using Wiener-

chaos-expansion technique, which can give rise to a better understanding on the risk

of a linear-regression model and the approximation error.

• Chapter 5 discusses the possible work directions in the future.
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Chapter 2

Maize Yield Determinants and

Management Strategies

2.1 Introduction

Yield gaps in African smallholder agriculture are pervasive and large. The yields achieved

on the vast majority of African farms are 10-30% of their genetic potential [10]. Yield-

limiting factors have been identified, such as environment, sub-optimal planting in terms of

timing and spacing, deficiencies in soil nutrients, moisture, as well as damage from weeds and

pests [11,12]. Agricultural economists commonly emphasize market prices, farmer education,

and related socio-economic factors to influence on-farm production [13]. There are many

challenges to carrying out effective diagnostic analysis of yield gaps, and often the focus has

been on the size of the gap. Yet if research priorities and agronomic recommendations are

to address farm-level constraints, there is urgent need for evidence-based examination of the

main determinants of yield in specific contexts.

This is the first study to understand maize yield determinants by applying a Bayesian

approach to a unique survey dataset from central Malawi. Crop simulation models are

often used for gap analysis, and are suited to providing insights into yield potential as well

as technology response to weather variability; however, they do not reveal the drivers of
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yield gaps [14]. In field experimentation, trials are often run under conditions that are not

representative of on-farm conditions. Smallholders in sub-Saharan Africa often have marginal

soils with less intensive management, facing weed, disease, and other pest problems [15].

The disconnect between soil conditions at research stations and those on smallholder farms

is illustrated by a nationwide assessment in Malawi, where soil organic matter levels at

research stations are 1.5 to 2 times as high as those observed on smallholder farms [16].

Researchers generally choose a field site and invest resources, so as to ensure a homogeneous

environment, within which to evaluate a practice or to address a specific research question.

Thus field research sites tend to be flat, uniform, and high-potential, given that conventional

research experimentation usually tests one or two component practices while controlling

other sources of variability [17].

The overall objective of the project is to conduct a Bayesian analysis of household-survey

data that comprises multiple visits to maize-focal plots in central Malawi, to determine

which variables influence the maize yield [18]. Specifically, we examine the predictive ability

of time-series environmental factors and management practices regarding field observations

of maize yield. Furthermore, we assess leaf chlorophyll status and parasitic weed incidence

to provide site-specific models and recommendations.

2.2 Materials

2.2.1 Study Sites

Central Malawi agriculture is dominated by mixed maize production systems with limited

livestock presence, which is broadly typical for poor-resource smallholder farms in southern

Africa [19]. Administrative units in the Malawi government are comprised of region, agricul-
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tural development division, and extension planning area (EPA). The study sites are chosen

using a stratified random sampling scheme, where all EPAs within central Malawi are clas-

sified using the strata of marginal, moderate or mesic for plant growth based on rainfall and

evapotranspiration. There is one marginal site that contains two adjacent EPAs–Golomoti

and Mtakataka (referred herein as Golomoti), two moderate-potential sites which are Kandeu

and Nsipe, and one high-potential site called Linthipe, a total of 22 village clusters included

within these five EPAs [19]. Golomoti is located near the lakeshore at a low elevation and

a high evapotranspiration, with a mix of soil types dominated by Eutric Cambisols and Eu-

tric Fluvisols. Linthipe has well-distributed rainfall and a long history of maize-dominated

agriculture. Soils in Linthipe are primarily Ferric Luvisols, whereas in Kandeu and Nsipe,

soils are mixed with Chromic Luvisols and Orthic Ferrasols [20]. Market access also varies

across locations, with Kandeu and Nsipe being moderately remote, Golomoti and Linthipe

being proximate.

2.2.2 Data Collection

The data are from a panel of 320 farm households, two maize plots per household surveyed

in 2014/2015 and in 2015/2016, with a survey instrument approved through the Michigan

State University Human Research Protection Program in the Office of Regulatory Affairs,

following a human subjects’ protocol with informed consent obtained from all farmers, trans-

lated into local languages. The farmers are asked to choose two maize plots at random, and

the same plots and farmers are then revisited and surveyed at preseason (October 2014 and

2015), mid-season (March 2015 and 2016), and harvest (May 2015 and 2016). Enumerators

are trained over a one-week period, and supervised by graduate students on the field. The

data collection process involves close attention to data entry and quality control. The infor-
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mation on the survey is voluntary and every effort is carried out to maintain confidentiality.

The survey topics address crop production, socioeconomic information (household size

and composition, household head’s educational level), farm management and practices (la-

bor, seed, planting dates, plot history, residue, crop grown, time of sowing and weeding,

fertilizer application), and soil characteristics (pH, total carbon, permanganate oxidizable

carbon). Mid-season survey is to assess maize planting arrangements (including row spac-

ing), and maize leaf chlorophyll, which is based on soil plant analysis development (SPAD)

absorbance. Enumerators record three reading replicates per plant for four plants at each of

the eight locations. To avoid edge effects, the enumerators observe at least two ridges from

the plot border, and randomly choose three locations (two-ridge apart) along a diagonal

transect. The spacing is from the center of one ridge to the center of the adjacent one.

Additionally, two types of measurements are made to investigate the incidence of Striga

asiatica (L.) Kuntze, commonly known as witchweed, a genus of parasitic plants. One is

directly asking farmers if they have a problem with striga on a given maize plot. The other

one is obtained by enumerators who make eight observations per plot at random sites along

rows following a prescribed procedure; thus, striga information is recorded from 0 to 8 for

each plot. At harvest, a survey is provided to measure maize yield by weighing biomass of

stover and grain from three-square-meter plots per field, where grain is removed from cobs

to allow for a dry weight basis.

In summary, there are 1,197 plots in total, which are geographically located with GPS

coordinates in October of 2014, involving a small amount of missing data. The plot-level

data is longitudinal, and combine socioeconomic characteristics, maize production, plant and

soil information, as well as farm management.
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2.3 Modeling Framework

2.3.1 Explanatory Variables

Environmental factors (rainfall and soil properties) are continuous variables, which are

standardized for comparison with the estimated coefficients on the same scale. Rainfall data

come from the Climate Hazards InfraRed Precipitation with Station (CHIRPS) resource,

which is a public quasi-global rainfall data set starting from 1981. This is the only com-

prehensive precipitation data source that is available for Malawi, and has been previously

validated by comparisons to local rainfall records for three of the five EPAs [19]. We include

three variables in the model that indicate the amount of rainfall (in millimeter) for

(a) December, January, and February (the sowing period)

(b) March (the end of the rainy season)

(c) April and May (the harvest period)

to explore the association between seasonal-rainfall variability and maize yield by measuring

at three critical stages of the maize growing season. Using more than one subset of semi-

annual rainfall is common in certain agricultural studies and practices, such as the definition

and calculation of rain-index-based crop insurance [21]. Regarding soil properties, perman-

ganate oxidizable carbon (POXC), which is a sensitive indicator of active soil organic carbon,

and pH are selected as the main soil factors in the model.

There are five farm-management variables, namely ridge (row) spacing, total ridge-weed

biomass, fertilizer application, intercropping, and manure/compost use. Although fertilizer

and SPAD are highly correlated, they both have explanatory power for maize yield. Ridge

spacing (in centimeter) is the distance between two ridges at each of three locations within
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a field. Total ridge-weed biomass (in quadrat of 0.5 m2) is weighted in the field at harvest,

and treated as an index of weeding effectiveness. Intercropping and manure/compost use

are both binary variables, and we do not consider the density or the genre of the crop that

farmers intercropped with maize. Fertilizer is calculated by the amount of nitrogen applied

with any type of fertilizer amendment. Endogeneity bias is possible, particularly for these

choice variables. However, we are unable to address endogeneity because our data set does

not include suitable instrumental variables, that strongly predict the endogenous explanatory

variables but do not directly affect the response variables. As a result, coefficient estimates

should be interpreted as indicating association rather than causality.

2.3.2 Regression Model

A Bayesian framework is applied to estimate the statistical relationship in a linear re-

gression setting, and an agronomy perspective based on expert knowledge is used to form

the basis of this model as the following:

Yijk = αi +Xijkβi + σεijk (2.1)

• Yijk (response variable): maize yield (in kilogram per hectare) of plot k managed by

farm household j at EPA site i

• αi (y-intercept): can either be a constant or vary from location to location

• Xijk (design matrix): incorporates all the data from 12 explanatory variables

• βi (regression coefficients): measure how much of the variation of maize yield (Yijk) is

explained by the covariates (Xijk)
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• εijk (noise terms): independently and identically distributed N (0, 1) representing the

error of the model

• σ: scale of the error

To evaluate the determinants of maize yield, we compare the effects of each explanatory

variable on the response in any one of our three models (i.e., yield, SPAD, striga). Because

all variables in the models have been standardized, the estimated regression coefficients (βi)

of each variable give a magnitude of influence, which can be compared with the scale of the

noise terms (σ), to find out which predictor(s) has the strongest effect. Usually, σ is quite

large relative to a single regression coefficient, but one should add the absolute magnitudes of

several independent variables for a more meaningful comparison, since the statistical error

needs to be compared to the strength of all the explanatory factors combined. For each

model, the set of explanatory variables is chosen to be consistent with agronomists’ beliefs

about what factors may influence yield, SPAD, or striga. Each of the three models is specified

in the simple linear framework, with appropriate logistic modifications in the case of the the

striga model, to distinguish between incidence of striga and levels of striga. Such a linear

framework can be seen as a first-order approximation for each response.

We can gauge the random effect of location since αi and βi both depend on the EPA index

i. Pooling the two-year data avoids model misspecification, and has the added benefit of

increasing statistical power. Further models test response variables SPAD and the parasitic

weed striga, to uncover the underlying key drivers of maize yield, where we expect striga

to be a negative factor and SPAD to be positive. The noise terms (εijk) are assumed

to be independent across all three models in order to minimize the number of parameters

needed to be estimated. It also avoids the use of a large number of correlation parameters
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(hyperparameters) at the prior level in the Bayesian context, which need to be consistent

when investigating a system of 3 equations with 11 common explanatory variables between

any pair of models. Consequently unobserved factors that might simultaneously affect more

than one model are not taken into account.

The eight striga records have been reverted to a scale of quantitative values from 0 to 8;

with 0 indicating the absence of striga, and 1 to 8 revealing the level of striga infestation.

The striga model can be thought of as a two-step procedure:

• First, the zero and non-zero values provide two alternatives which allow us to estimate

the influence of the presence or absence of striga via logistic regression, speaking for

the possibility of prevention.

• Next, when conditioning on the presence of striga (1–8), ordinary linear regression is

employed, which links to the insights on effectiveness of striga control

Although having a large number of observations equal to zero (known as zero inflation) may

induce biased results, the proposed strategy mitigates this problem, since the standard linear

regression model is relative to the non-zero striga values.

In addition to the models described above, we conduct two sets of analysis to consider

if socioeconomic indicators—educational level of the household head and total dependency

ratio of each household—are of importance in predicting maize yield, by adding these two

variables to the covariate matrix X. The available data is also used to investigate non-specific

household effects, which utilizes simplified versions of the three linear models, allowing the

y-intercept (α) to depend on the household identifier (dummy variable) to help determine

whether households are predictive of maize yield, SPAD, or striga. This may be interpreted

as pointing indirectly to socioeconomic effects, or directly to effects of farmer skill.
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We apply the package ‘PyMC3’ built into Python to implement the methodology. This

package provides a way to estimate the posterior distribution of our model parameters (i.e.,

regression coefficients and error terms) by implementing a sampling mechanisum for these

distributions. It uses the ordinary Gibbs sampler to produce samples, with a burn-in period

of 500 initial samples, and an additional 10,000 iterations with two independent MCMC

chains after each burn-in. Without having prior knowledge on the distribution of the param-

eters, we employ the classical weakly-informative prior distributions: the standard normal

distributions (for βi) and inverse-gamma distribution (for σ). These prior choices present

numerical advantages in terms of conjugacy [1,22]. We monitor the convergence of the proce-

dure by keeping track of the discrepancy between the two aforementioned chains using R-hat

statistics (a widely-accepted convergence diagnosis). All the R-hat values are below the ac-

ceptable threshold of 1.1, which implies that the chains successfully converge, producing

excellent parameters’ estimates as well as their credible intervals.

In a word, we focus on biophysical determinants, yet there is more to be explored in the

future regarding socioeconomic drivers. Given the limited amount of data, this project does

not delve into the higher-complexity models, since they lie beyond the scope of our data set

and thus of our analysis. Hence, the three structural models are uniquely characterized by

their respective response variables and explanatory variables.

2.4 Results

2.4.1 Descriptive Statistics

Table 2.1 provides descriptive statistics for the variables in the model categorized by EPA

location. Figure 2.1 shows the precipitation for all study regions during the maize-growing
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season over two years. Mean values for rainfall are consistent with earlier characterization

of Golomoti as a low-rainfall (marginal) site. The other locations differ in terms of mean

rainfall for March, with Linthipe (mesic site) having the highest rainfall level.

Golomoti Linthipe Kandeu Nsipe
Environment

Dec.–Feb. precipitation (mm) 563.0 (78.0) 624.5 (27.7) 629.5 (94.6) 636.8 (132.8)
March precipitation (mm) 78.6 (26.8) 128.9 (42.0) 102.8 (26.5) 116.8 (25.4)

Apr.–May precipitation (mm) 25.2 (10.4) 43.8 (11.6) 39.1 (9.1) 44.4 (8.8)
POXC (mg carbon/kg soil) 278.9 (152.43) 466.9 (220.5) 390.41 (191.15) 340.70 (160.22)

Soil pH 6.56 (0.61) 6.09 (0.46) 6.10 (0.53) 6.32 (0.61)
Crop performance
Maize yield (kg/ha) 1567.44 (1039.3) 2636.3 (1526.0) 2069.4 (1471.5) 2320.9 (1452.9)

SPAD 41.20 (8.85) 46.98 (7.15) 46.00 (8.62) 41.84 (8.11)
Management practice

Maize spacing (m) 0.897 (0.11) 0.927 (0.11) 0.970 (0.13) 0.914 (0.14)

Weed biomass (kg/m2) 0.183 (0.16) 0.079 (0.07) 0.201(0.15) 0.246 (0.16)
Fertilizer (kg) 8.908 (13.60) 13.763 (25.48) 15.901 (18.04) 12.411 (12.86)
Striga (binary) 0.22 (0.42) 0.31 (0.46) 0.16 (0.37) 0.28 (0.45)

Intercrop (binary) 0.66 (0.47) 0.77 (0.42) 0.74 (0.44) 0.60 (0.49)
Compost (binary) 0.41 (0.49) 0.45 (0.50) 0.31 (0.46) 0.27 (0.45)

Total number of observations 312 282 298 305

Table 2.1: Mean and (standard error) of all model variables by location

Soils are generally marginal at Golomoti sites, as evidenced by low mean value for soil

active carbon (POXC), in accordance with previous reports [19]. The highest POXC value

appears to be in Linthipe. Soil pH varies little among locations, and mean values are con-

sistent with moderate acidity, and thus non-limiting pH conditions for the crops grown.

Crop response consists of maize yield and leaf nitrogen content, as indicated by SPAD

values. Average maize yield is the lowest in Golomoti, followed by Nsipe and Kandeu, and the

highest is in Linthipe. SPAD data has a similar but not identical pattern: low in Golomoti

and Nsipe, and high in Kandeu and Linthipe.

Striga incidence and weed biomass are distributed across EPAs with no clear spatial

pattern. Farmer-reported striga problems on about 16-30% of sampled fields, and from 0.18

to 0.25 kg/m2 dry-weight weed biomass remaining in the field at harvest. The latter is an
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Figure 2.1: 10-day precipitation (CHIRPS) from December to May at all EPA sites

indicator of how effective farmers’ weed management is, although the endogenous infestation

levels of weeds at a site could also contribute to observed presence.

Overall, fertilizer use is lower at Golomoti site than the other ones. This is accordant

with the intuition that farmers in marginal environments have less motivation to invest

in their lands and crops. Fertilizer application is similar in Linthipe, Kandeu, and Nsipe.

Compost use is higher in Golomoti and Linthipe than it is in Kandeu and Nsipe. As expected,

intercropping is more frequently practiced in Linthipe and in Kandeu, where many farmers

grow bean and cowpea (legume) in mixed stands with maize. Average plant spacing is lower

in Golomoti and Nsipe, and the highest in Kandeu.
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2.4.2 Bayesian Inference

Statistical significance is determined under a linear Bayesian circumstance. For example,

an explanatory variable (such as SPAD) for a response variable (such as yield) is statistically

significant at 95% Bayesian credibility if its regression coefficient has a posterior probability

of being on one side of zero which exceeds 95%. It is true as soon as the 95% credible

interval of that variable’s regression coefficient lies on either side of zero. If this condition

fails to happen, then strictly speaking, one may accuse it of not being statistically significant.

This is a steep threshold to apply in most cases, since a variable with 90% credibility, still

holds some predictive information. In this project, however, when an explanatory variable

fails to be significantly associated with the model’s response variable, the failure occurs at

a much lower level than 90%. The size of an association needs to be distinguished from its

significance. For variables which are significant in terms of size (or intensity), the significance

are measured by their regression coefficients’ posterior mean.

2.4.2.1 Maize yield

Figure 2.2 presents the 95% credibility intervals for the determinants of maize yield at

different sites. In general, maize yield is positively associated with SPAD and negatively

associated with plant spacing; the magnitude of the coefficients for SPAD are particularly

large. There is also a small but positive direct relationship between fertilizer and maize

yield for Kandeu and Nsipe. Yield is not consistently affected by soil pH, weed biomass,

intercropping, or March rainfall. The α values differ markedly from each other by EPA,

which suggests that location has an important influence on maize yield, independently of

other factors in the model. Since those factors are capable of exacerbating differences in

maize yield by location, we turn to consider specific locations from now on.
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Figure 2.2: 95% credible intervals for the determinants of maize yield

First, rainfall levels are only significant factors for yield in Linthipe and Nsipe. In both

areas, early-season rainfall (i.e., December to February) has a positive relation with maize

yield. In Nsipe, high rainfall in April/May is associated with low maize yield, perhaps a

reflection of late-season disease harming the crop such as Fusarium ear rot [23]. Secondly,

soil active carbon and compost application are positively associated with maize yield at

Golomoti. Third, in Linthipe and Nsipe, striga has a large negative effect on maize yield,

whereas it is not significantly related with maize yield in Golomoti or Kandeu. Slightly-

streamlined yield models are also investigated, where either SPAD or striga is removed. It

turns out that these reduced models resulted in decreasing explanatory power for all variables,

which could be easily assessed via the posterior distributions of regression coefficients.

Overall, the results indicate that maize leaf nitrogen (SPAD) and striga are the strongest
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determinants of maize yield at all sites, while early and late rainfall are significant at some

sites. As farmer behavior can directly influence striga and SPAD, we evaluate separate

models to uncover the drivers of these two critical inputs.

2.4.2.2 SPAD

As we can see from Figure 2.3, there are three main predictors for SPAD: rainfall, POXC,

and application of fertilizer or compost. Rainfall is generally found to be influential on SPAD,

except in Kandeu, where rainfall variables are not statistically significant. In Golomoti,

SPAD increases with March rainfall, whereas in Linthipe and Nsipe it is the early rainfall

that has a positive impact on SPAD. Also in Nsipe, a negative association with SPAD is

observed for late-season rainfall.

Figure 2.3: 95% credible intervals for the determinants associated with SPAD

Fertilizer quantity is an important driver of SPAD at all sites except Golomoti, which
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in turn is highly predictive of maize yield. The magnitude of its effect on SPAD is higher

in Kandeu and Nsipe than it is in Linthipe. In dry and marginal sites, plant growth and

response to fertilizer are often limited by insufficient soil moisture, thus fertilizer application

does not necessarily lead to plant uptake of nitrogen (or yield). The results in the yield model

also show a lack of response to fertilizer in Golomoti (see Figure 2.2), where compost/manure

and POXC are positively related to SPAD. Fertilizer impacts on both SPAD and yield are

substantial, however, suggesting the need to improve the effectiveness of fertilizer applied.

2.4.2.3 Striga

Factors that influence striga incidence (Figure 2.4) and level of striga infestation (Figure

2.5) are shown below. Among farm management and soil properties, most are either not

significant or of small magnitude in relationship to striga. There is some evidence of soil

fertility amendments being useful in prevention, as fertilizer application is associated with

striga absence (as reported by farmers) in Kandeu and in Linthipe. Fertilizer is also an

apparent control factor in Linthipe, where it is a predictor of low striga-infestation level.

Compost is related with both striga absence and low incidence in Nsipe, with contrasting

results observed in Kandeu. At Golomoti site, fertility amendments have no striga control

benefits, and the only farm-management effect is wide ridge spacing, which is negatively

correlated to striga presence and intensity. In addition, intercropping is neither helpful nor

harmful to striga prevention and control. The only exception is Linthipe where intercrops

are associated with striga problems.
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Figure 2.4: 95% credible intervals for the drivers of striga prevention (logistic)

Figure 2.5: 95% credible intervals for the determinants of striga control

20



2.4.2.4 Household (farmer) effect

With most of the 320 households, and up to four plots per household (two plots per

household in two years), we find that it is not possible to determine if there is a connec-

tion between any particular farmer and the corresponding data. However, some statistical

significance is extracted from roughly 10% of cases, meaning that the variability among the

four data points of such households is almost certainly not due to chance alone. Moreover,

the effect is most likely to identify a favorable household environment. Specifically, setting

the significance level at 5%, we compute the number of households for which the regression

intercept α is away from zero with posterior probability at least 95% (see Table 2.2).

Model Positive effect Negative effect
Yield 23 (7.5%) 5 (1.6%)
SPAD 11 (3.6%) 7 (2.3%)
Striga 26 (8.5%) 0 (0.0%)

Table 2.2: Number and (proportion) of households where the y-intercept is significantly
non-zero at 95% credibility level in all models

Despite the limited data per household, we are able to detect such effects with nearly 10%

of the households. In the yield model, the total number of significant households exceeds 9%.

Interestingly, among these households, there are far more cases where the yield is higher than

it is lower (7.5% against 1.6%). In other words, when the data towards a farmer having a

significant effect on yield, the odds are about 5:1 that this is a skilled farmer with high maize

yield. For SPAD, about 6% of households have SPAD levels which cannot be explained by

chance. The odds of having high SPAD against low SPAD is about 3 to 2.

As for the striga model, there is no case that a farmer could avoid striga entirely, while

8.5% of farmers are likely to be associated with a striga problem. It may seem surprising to

say that we cannot determine any farmer with the skills or the knowledge of practices to be
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superior to others in preventing striga. This result is not to be taken as a discouraging fact.

Instead, it reflects that over two thirds of all plots in the study regions are striga-free. Thus,

while one third of the plots being infected with striga reaches epidemic levels, having two

thirds of plots without striga makes its absence so prevalent that the 320 households cannot

identify anyone with unusual striga-prevention skills. Readers are referred to the full striga

model for more precise recommendations on striga.

2.4.2.5 Socioeconomic factors

The credible intervals for the two socioeconomic drivers (2nd and 3rd line in Figure 2.6)

overlap rather heavily with the zero vertical line in most cases, and are small in magnitude

compared to other determinants, indicating inconclusive significance and small impact. It

also shows that the regression coefficients of other variables are insensitive to whether or not

one includes the additional two socioeconomic indicators. This could be a sign of insufficient

data to draw conclusions on either rejecting or asserting socioeconomic importance at any

reasonable level of significance (e.g 80% credibility or higher). We also carry out additional

models by removing insignificant variables from X, and the remaining analysis (not reported)

are largely unaffected, which are similar to Figure 2.6. In sum, these evidence imply that

our regression model is robust.
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Figure 2.6: 95% credible intervals for determinants including two socioeconomic factors
associated with maize yield

2.5 Discussions

The plot-level longitudinal data set and Bayesian regression models place biophysical

constraints in sharp focus in the analysis of what influences maize yield in central Malawi.

Some have strong effects with very high credibility, notably SPAD, striga, and sub-seasonal

rainfall pattern, which is consistent with much of the literature on small-scale, mixed-maize

production systems [12,15]. Yet, fertilizer application does not necessarily lead to improving

leaf nitrogen nutrition (SPAD) or in subsequent maize yields. Hence, the results highlight

the challenges to ensure effective nitrogen uptake and translation into grain, particularly in

marginal environments.

Fertilizer is generally associated with high plant nitrogen tissue at all areas but Golomoti.

Soil organic carbon fractions tend to be sensitive for crop response at lower values, as Golo-
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moti is 20-40% lower compared to the other locations, which both recommend farmers to

apply manure or legume rotations at marginal sites, to build nitrogen supply capacity [14].

Integrated management of soil fertility combining manure and fertilizer has been shown pre-

viously to be highly effective and profitable for raising maize yields [24]. In concurrence, a

study finds out that maize yield response to nitrogen fertilizer application is low when soil

organic matter is low [25].

Rainfall is another crucial factor, particularly early-to-mid season, which supports a pos-

itive association between seasonal rainfall and maize yield based on an econometric analysis

of farm-level data [24]. At Kandeu, we find a negative relationship of late-season rainfall to

yield and SPAD. This could reflect a leaching problem, with rainfall inducing soil inorganic

nitrogen losses and thus limiting nitrogen availability during the critical maize grain filling

period, which requires high nitrogen availability [26]. It could also be related to Fusarium or

other infections of the corn ear, induced by a late-season moist environment causing grain

spoilage and yield loss [5]. To our knowledge, it is the first study to produce this type of

differentiated conclusions based on panel survey data.

Although weed biomass alone has no discernible effect on maize yield, parasitic weed

striga is a strong negative determinant, especially in Linthipe and Nsipe. It is a bit surprising

that the phenomena are only observed in the two relatively high-potential locations, as the

presence of striga is typical throughout the study sites and is indeed ubiquitous nationwide

[27]. This implies that a barrier to crop production that has been largely overlooked by

agricultural research and policy makers, where the focus has often been on subsidized access

to hybrid maize seeds and fertilizers. Effective and affordable means of striga prevention and

control are in need.

In Malawi, farmers primarily rely on hand weeding for striga control, which appears to
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be apparently ineffective due to the parasitic nature of striga. Therefore, maize growth sup-

pression has already occurred by the time hand weeding is done [28]. The utility of fertilizer

and manure/compost links low-nitrogen soil to higher striga incidence [29, 30]. Similarly,

farmers in a recent survey rank manure application as the best option for striga control [31].

Another study reveals complex relationships that early application of fertilizer helps maize

plants overcome early effects of striga attachment, whereas late application is associated

with worse striga [32]. Given the observed differences in soil fertility and fertilizer across the

EPAs, we expect higher striga infestation in Golomoti over the other areas, instead there

is a widespread presence of striga and lack of uniformity in what works for prevention and

control. For instance, fertilizer is found to be a critical factor for striga, but only in Kan-

deu and Linthipe. Manure/compost appears to have merits for reducing striga problems in

Nsipe only. In short, our findings suggest a complex mode of action with difficult-to-predict

reactions of maize to striga presence.

Overall, the results from this project call for area-specific recommendations. The Malawi

government’s suggestions for hybrid maize production have mainly focused on nitrogen

rate [33]. We find evidence that shows targeting complementary investments and timing

of application could potentially add value. For example, maize yield at the mesic sites would

gain benefits on early and judicious use of fertilizer for not only striga control, but also for

nitrogen nutrition. Whereas for the marginal sites, response is markedly different, with no

fertilizer or striga drivers observed on yield, and instead soil active carbon and compost

are positive determinants of yield, recommending practices should focus on managing soil

organic matter. Soil carbon accumulation provides important environmental services at all

sites; however, marginal locations benefit from stable production over time and space to

substantial gains in nitrogen efficiency, and the incremental gains in soil carbon are high.
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Compost preparation and utilization at modest amounts have beneficial influence on some

sites, with gains in plant health as indicated by nitrogen status and striga suppression. This

management practice is especially helpful during a poor-rainfall season in a marginal area.

With little to no downside, government policies, extensions, and educational efforts by civil

society, can all play crucial roles in building appreciation for compost advantages.
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Chapter 3

Global Temperature’s Reconstruction

and Projection

3.1 Introduction

Understanding the evolution of the climate on Earth is one of the major scientific chal-

lenges for this century. Quantifying the link between the sensitivity of the climate system

constituents, and its response to the climate forcing factors can be critical to discover the

underlying relationship in climate change [34]. Although the most updated instrument-base

observational temperature has a record since 1850, it is desirable to extend the temperature-

reconstruction methodology to make use of climate proxies, hence better capturing the cli-

mate variability on different time scales [35].

The Intergovernmental Panel on Climate Change (IPCC) is dedicated to providing an

objective and comprehensive view of climate change to the world, and pushes forward the

development of accurate climatic models like General Circulation Models (GCMs), which are

used for forecasting global and regional climate change [36]. Coupled Model Intercomparison

Project Phase 6 (CMIP6) is another ongoing collaborative framework organized by the World

Climate Research Program (WCRP), aiming to gather the efforts of the international climate

research community, to improve the design of global climate model [37,38]. In addition, there
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are plenty of research articles relating the past temperature to proxies [35,39,40], such as tree

ring, ice cores, lacustrine deposits, etc., implying that the natural proxies are good indicators

for paleoclimate because they accurately reflect a wide range of climate sensitivity [41].

Previous approaches used in temperature reconstruction including principal component

regression (PCR) [42,43], canonical correlation analysis (CCA) [43–45], regularized expecta-

tion maximization (RegEM) [46–48], and linear regression with various kinds of regulariza-

tions [49,50]. These literatures significantly improve the comprehension of the climate in the

past. However, the lack of spatiotemporal covariance specification and uncertainty quantifi-

cation continue to be the statistical challenges [51–53]. Several recommendations like model

simplification, model averaging, have been proposed in order to address these issues [54–56].

The idea of using Bayesian model to reconstruct past temperature first appears in [57],

and further studied by [40, 58, 59]. An advantage of applying hierarchical modeling frame-

work to paleo-climate reconstruction problem is that it can incorporate different sources

of information (proxies, forcings), to capture the variability of temperature. Furthermore,

parameters estimates are systematically updated within Bayesian inference, which simultane-

ously provides the full posterior distributions of each model parameter to better understand

the relation between each factor and the mean temperature, as well as reduces and quantifies

the reconstruction uncertainty in a more statistically meaningful way [35,40,53].

Stochastic models have been applied to hydrology and coral archives involving proxies

and paleo-data [60,61]. In this study, we develop a multi-level stochastic model to reconstruct

northern hemisphere (NH) temperature over the past millennium (1000-1999), and extend

the three forcing time series (solar, volcanic, greenhouse gases) to project the temperature in

this century (2019-2100). The first level (data) embeds the climate proxies into the underly-

ing temperature anomalies, and the second level (process) linearly relates the temperature to
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solar irradiance, volcanic activity, and greenhouse gas concentration. Finally, we implement

the Bayesian technique to estimate all the parameters in the model, due to a limited amount

of data in the calibration interval.

3.2 Data Source

There are three data sources employed in the project. Four main types of proxies includ-

ing tree ring widths, lacustrine sediment cores, ice cores and speleothems (cave formations)

between 1000 and 1999. Observational surface temperature over the period 1900-1999, and

estimates of three natural climate forcings (solar, volcanic, greenhouse gas) from 1000 to

1999 (for reconstruction), as well as from 2019 to 2100 (for projection).

The original proxy data comprises of 1209 annually and decadal series [62]. Owing to the

focus of NH average temperatures reconstruction instead of spatial analysis, it is reasonable

to reduce the dimension of proxies and maintain as much climatic information as possible

at the same time. Moreover, proxy reduction can avoid model overfitting and decrease

computational time of parameters estimations, yield a more parsimonious model due to a

limiting calibration period. All the natural proxies are aggregated into a single variable

through a rigorous selection and averaging process [41,58,63].

HadCRUT4 is the longest and most up-to-date global temperature data set, which

combines observational near-surface air temperature [64] and sea-surface temperature [65]

anomalies evolution since 1850 [66]. Anomalies are calculated relative to the average of

1961-1990 [65, 67]. Because the climate proxies may intrinsically carry notable noise, and

the data before 1900 may not be reliable enough, we choose 1900-1999 to be the calibration

time to circumvent the potential significant amplitude attenuation issue [68].
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Total solar irradiance (TSI) is the measurement of solar power per unit area (W/m2)

on the Earth’s upper atmosphere. The solar activity is a complex phenomenon, whose

fluctuation is considered to be around an overall constant 1361.0 W/m2 [38,69]. We take a

proxy-base reconstruction of TSI [70] that is in accordance with the climate reconstruction

in [52]. Its relationship with NH temperature is studied in [71]. In terms of projection,

we use the dataset recommended for CMIP6, where it calculates the weighted average of

three statistical models, namely, analogue forecast (non-parametric), autoregressive model

(parametric), and harmonic model (non-linear) [38]. The volcanic forcing is proposed based

on ice core aerosol proxies, which is generated by the ejected particles during the explosive

volcanic eruptions [72]. The impact of volcanism on global and regional temperature are

also investigated [73,74] .

Greenhouse gas concentration (measured by parts per million (ppm), denoted by CO2),

is the most dominant forcing account for climate variations since 1950 [72]. According to the

level of greenhouse gas (equivalent to radiative forcing in W/m2) at Year 2100 (Figure 3.1),

the IPCC chooses and names four possible representative concentration pathways (RCP) for

the evolution of the global greenhouse gases, depending on how fast the human civilization

adapts itself to reduce the emission of greenhouse gas [75, 76]. The first scenario (RCP2.6)

describes a trajectory where the emissions stay very low, as a result of the environment-policy

changes drastically made by governments and firms [77]. The medium scenarios are RCP4.5

and RCP6.0, a situation where the greenhouse gases increase but still stabilize before or

after 2100 [78]. RCP8.5 is the worst scenario where the greenhouse gas concentration keeps

increasing without stabilization [79].

All three forcings are available over 1000 till 1999 for reconstruction purpose. The full

description regarding their derivation is in [72].
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Figure 3.1: Greenhouse gas projections of four RCP scenarios

3.3 Model Specification

3.3.1 Forcing Transformation and Extension

The volcanic influence can be extremely strong among the years following eruptions, but

fast decays over non-volcanic years, leading to a cooling effect in the long run [74,80]. Hence,

we apply a decreasing logarithm transformation

Ṽt = log(−Vt + 1) (3.1)

to the original data to mitigate the impact of large volcanic eruptions during calibration

period [35]. Also, we consider the simplest transformation

C̃t = log(Ct) (3.2)
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given that the radiative forcing depends on greenhouse gases logarithmically [81, 82].

In order to project the NH mean temperature for the century, we need to expand the

three forcing series to 2100. Following [38], we remove the 11-year cycle in the solar forcing

via a moving-average process, since this periodic cycle does not appear in the reconstructed

data that we use. In addition, the solar constant of the series has to be adjusted by about

5 W/m2, because of the technological update on its evaluation [38,69].

As for greenhouse gas forcing, we add a random drifting noise term to each RCP scenario,

to capture the uncertainty in the global evolution with respect to the climate policies’ change.

Specifically, we have:

C ′2019+t = C2019+t +
t

82
σCεC , t ∈ [0, 81] (3.3)

with εC ∼ N (0, 1) and σC is decided by

σC =
1

10

(
maxCt −minCt

)
, 2019 ≤ t ≤ 2100 (3.4)

which yields an uncertainty that grows with the RCPs’ magnitudes. Various uncertainties

have been applied to test robustness of the model (refer Appendix A).

To our knowledge, there has not been any literature about the long-term volcanic pre-

diction on a global scale. Most studies concentrate on either a specific volcano or forecast-

ing eruptions short-periodically ahead [83–85]. Therefore, we treat volcanic activity as a

stochastic process, allowing to take volcanic uncertainty into account for the temperature’s

projection. Note that the volcanic aerosol concentration decays similarly (up to a rescaling

factor, see Figure 3.2) after eruptions, we thus model the volcanic time series as a succession
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of spikes with random amplitudes and time intervals, which can be written as:

Vt = V0 + τt +
∞∑
i=0

1{t≥Ti}AiPt−Ti (3.5)

where

• V0 is an overall constant

• τt is a small random fluctuation

• Ti are the dates of eruptions with amplitude Ai

• Pt−Ti is the decreasing pattern of the aerosol concentration after each spike

Figure 3.2: The first 36 re-normalized volcanic eruptions’ decay
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Moreover, the time increment (Ti+1 − Ti) and the spike amplitude (Ai) are assumed to

be independent and identically distributed. This assumption is verified by high p-values of

Ljung-Box test (autocorrelations of a time series) applied to both series [86–88]. Eventually,

the three natural forcing factors are normalized to make their influence on the temperature

comparable among each other.

3.3.2 Multi-level Autoregressive Model

The hierarchical stochastic model is established as follows:


Pt = aPt−1 + α0 + α1Tt + σP εt

Tt = bTt−1 + β0 + βSSt−1 + βV Vt−1 + βCCt−1 + σT ηt

(3.6)

where

• εt, ηt: white noises (mean 0, standard deviation 1) without any correlation structure

• a, b: autoregressive parameters

• α, β: coefficients associated with temperature and forcings

At any given year, the non-stationary model has the advantage of taking into account the

impact of forcings in the past years (with an exponential decay) to the current temperature

(see Appendix B for further details). From a Bayesian perspective, we assign the following
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prior distributions to the parameters in the model:

α = (α0, α1) ∼ N ([0, 1], I2)

β = (β0, βS , βV , βC) ∼ N ([0, 1, 1, 1], I4)

σ2P , σ
2
T ∼ IG(2, 0.1)

a, b ∼ U(0, 1)

(3.7)

In is an n-dimensional identity matrix. IG, U represent inverse gamma distribution and

uniform distribution respectively.

The model is run by Gibbs sampling algorithm with 10,000 iterations, but we only take

the last 5,000 samples since the beginning of the chain (burn-in period) is often discarded,

owing to its lacking accuracy to represent the desired distribution. The choice of prior

distributions (normal and inverse gamma) for the linear coefficients and variances, is for the

sake of conjugacy (posterior distributions yield same distributions as priors with different

parameters), thereby avoiding computational burden [89, 90]. The complete computation

of posterior conditional densities for the model may be found in Appendix C. It appears

that small variations in the memory coefficients (a and b) lead to convergence instability

for other model coefficients (α and β). Thus, we explore all the combinations of (a, b) ∈

{0, 0.1, 0.3, 0.5, 0.7, 0.9}2 (no memory to strong memory), and run the Gibbs sampler for all

other parameters. The model is implemented in Python using a few fundamental libraries

such as NumPy and pandas.
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3.4 Results

3.4.1 Validation Metrics

Several metrics are produced to assess the quality of the temperature’s reconstructions

as well as to evaluate the posterior distributions of the parameters, applying them as criteria

to compare with other works.

We first calculate the root mean square error (RMSE) by using the mean of the posterior

distributions. It is a frequently employed measure of the differences between observed values

and predicted values [91–93]. The empirical coverage probability (ECP) indicates the pro-

portion of true value of interest (temperature) fall into the confidence interval [89]. Lower

RMSE implies better model fit.

Additionally, we provide two scoring rules which are interval score (IS) and continuous

ranked probability score (CRPS) [94–97]. IS rates the posterior confidence interval in func-

tion of the quantiles of posterior distribution for each observation, rewarding sharp prediction

intervals and penalizing uncovered observations [96]. ECP and IS are both computed and

compared at the levels of 80% and 95%. CRPS is defined as a squared distance between

the cumulative distribution function F (y) and the indicator function 1y≥x of the predictive

distribution as below:

CRPS(F, x) =

∫ ∞
−∞

[
F (y)− 1y≥x

]2
dy (3.8)

Both scoring rules and ECP are positive-oriented with the designated model (higher values

indicate a more appropriate model).

A Markov chain tends to run through as much state space as possible, and continuously

reduces its variability to focus on the areas of the space with high density for an invariant
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distribution, which it converges toward in the end. Therefore, the total variance of the chain

shrinks until it asymptotically converges to the variance of the invariant distribution. In

order to determine the performance of the MCMC’s convergence, we compute the potential

scale reduction factor (PSRF) for the posterior samples [98, 99]. The PSRF (optimal value

is 1) estimates how much variance needs to be reduced before achieving convergence.

3.4.2 Reconstruction (1000-1999)

Smaller memories are related to lower RMSE (better model performance) is not surpris-

ing, because the no-memory model is equivalent to a linear regression, which comes down to

minimizing the squared error (Table 3.1).

b
a

0 0.1 0.3 0.5 0.7 0.9

0 0.157 0.160 0.169 0.182 0.204 0.219
0.1 0.148 0.151 0.161 0.175 0.199 0.215
0.3 0.139 0.142 0.152 0.166 0.189 0.208
0.5 0.136 0.138 0.146 0.159 0.187 0.212
0.7 0.138 0.143 0.153 0.168 0.203 0.238
0.9 0.175 0.190 0.221 0.288 0.341 0.375

Table 3.1: Root mean square error (RMSE) for all combinations of memory coefficients

For the ECPs, the credible intervals are widened at both levels 80% and 95% when

increasing memory parameters, and a good compromise can be found with a between 0.5

and 0.7, b between 0.3 and 0.7 (Table 3.2). The IS (80% level) does not exhibit any specific

trend, except for extreme memory value (b = 0.9) returning unsatisfactory results. Whereas

at level of 95%, enlarge a and diminish b would lower the negative interval score overall

indicating a better model fit (Table 3.3). The continuous ranked probability scores are quite

similar for a and b below 0.7, but become larger for higher memory values (Table 3.4).

Since the best performances are achieved with a and b at the order of magnitude described
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b
a

0 0.1 0.3 0.5 0.7 0.9

0 71 69 67 73 81 88
0.1 68 67 66 69 81 87
0.3 60 62 67 68 80 84
0.5 58 57 64 70 80 88
0.7 50 52 62 71 79 96
0.9 42 42 41 47 65 96

b
a

0 0.1 0.3 0.5 0.7 0.9

0 89 90 91 96 99 99
0.1 84 86 89 94 98 99
0.3 78 80 82 94 97 99
0.5 74 74 76 91 97 99
0.7 72 72 75 84 98 99
0.9 58 60 63 65 83 100

Table 3.2: Empirical coverage probability (ECP) at levels 80% (up) and 95% (down)

regarding the ECPs (i.e. the uncertainty quantification), we run another set of simulations

refining this particular area (a ∈ [0.5, 0.7] and b ∈ [0.3, 0.7]), results in Table 3.5). Among

the new simulations, the IS(80) and IS(95) are best at low memory parameters until a = 0.6

and b = 0.55. The CRPS does not vary much but seems to decrease as a and b increase.

The highest ECP (80% level) is always attained when a = 0.7. However, the best ECP at

level 95 is obtained for lower values of a. Eventually, considering all the other validation

metrics, we choose the pair a = 0.6, b = 0.5 to be the memory coefficients. It confirms that

even though the no-memory model achieves a better fit, it is necessary to include memories

to properly address model uncertainties [58].

In [58], the authors build a hierarchical Bayesian model with eight scenarios based on

memory or memoryless feature (controlled by two Hurst parameters H and K), with or

without external forcings, and error terms’ structures: fractional Gaussian (fGn) or autore-

gressive (AR). We compute all of the validation measurements for one case (scenario D in [58]
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b
a

0 0.1 0.3 0.5 0.7 0.9

0 0.184 0.184 0.186 0.188 0.193 0.198
0.1 0.188 0.189 0.189 0.186 0.188 0.193
0.3 0.201 0.199 0.193 0.186 0.178 0.189
0.5 0.221 0.215 0.204 0.185 0.178 0.192
0.7 0.254 0.251 0.234 0.218 0.204 0.215
0.9 0.363 0.382 0.415 0.489 0.432 0.344

b
a

0 0.1 0.3 0.5 0.7 0.9

0 0.062 0.061 0.059 0.058 0.062 0.067
0.1 0.066 0.065 0.061 0.058 0.061 0.066
0.3 0.085 0.084 0.067 0.057 0.060 0.065
0.5 0.108 0.101 0.081 0.057 0.061 0.068
0.7 0.137 0.132 0.107 0.076 0.067 0.078
0.9 0.214 0.221 0.219 0.225 0.153 0.129

Table 3.3: Negative interval score (IS) at both 80% (up) and 95% (down) levels

b
a

0 0.1 0.3 0.5 0.7 0.9

0 0.075 0.076 0.076 0.081 0.083 0.086
0.1 0.074 0.075 0.076 0.082 0.084 0.086
0.3 0.075 0.074 0.076 0.077 0.079 0.084
0.5 0.078 0.078 0.076 0.074 0.078 0.081
0.7 0.084 0.086 0.083 0.079 0.079 0.081
0.9 0.117 0.126 0.138 0.173 0.168 0.114

Table 3.4: Negative continuous ranked probability score (CRPS) for different memories

vs. a = 0.6, b = 0.5 in this work) in each model to compare the reconstructions (see Table

3.6 and Table 3.7).

In general, scenario D performs the best among other scenarios, and is also the closest

one to the model in this project, which put short memories in both equations. It turns out

that our model obtains more precise ECPs at both 80% and 95% levels, and the CRPS is less

than half as much as the model in [58]. The interval scores stay quite similar between both

models, and the RMSE is a bit better for [58], but RMSE is not necessarily a performance

indicator since it favors the memoryless models.
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b
a

0.50 0.55 0.60 0.65 0.70

0.30 68 69 76 78 80
0.35 68 70 71 79 80
0.40 70 71 73 79 82
0.45 70 71 74 78 81
0.50 70 71 76 78 80
0.55 72 74 76 79 81
0.60 74 74 76 79 79
0.65 70 73 75 77 79
0.70 71 72 76 78 79

b
a

0.50 0.55 0.60 0.65 0.70

0.30 94 95 96 97 97
0.35 93 94 97 97 98
0.40 94 94 97 97 97
0.45 94 94 97 98 98
0.50 91 94 95 98 97
0.55 90 93 97 98 98
0.60 88 92 97 98 98
0.65 86 88 92 97 98
0.70 84 88 90 95 98

Table 3.5: ECP at two levels 80% (up) and 95% (down) for specific calibrations

Additionally, both models appear to converge towards limit posterior distributions nu-

merically well (PSRFs in Table 3.7), but our model seems to converge slightly better. This

could be explained by the smaller variability in the Gibbs sampling process for our model,

given that a and b are fixed to be 0.6 and 0.5 respectively, whereas the memory parameters

(H and K) are not constants in scenario D [58].

RMSE ECP (80) ECP (95) IS (80) IS (95) CRPS
Scenario D 0.162 74.7 90.9 0.176 0.063 0.209

Model (a = 0.6, b = 0.5) 0.174 76.0 95.0 0.181 0.056 0.074

Table 3.6: Validation metrics (negative IS and CRPS) for both models

We also compare our reconstruction results with another regression method in climatology

domain, namely errors in variables (EIV), which is a scaling regularization allowing for errors
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α0 α1 β0 βS βV βC σ2P σ2T
Scenario D 1.01 1.00 1.05 1.07 1.00 1.03 1.09 1.00

Model (a = 0.6, b = 0.5) 1.00 1.01 1.01 1.01 1.00 1.01 1.00 1.01

Table 3.7: The diagnosis of MCMC’s convergence (PSRF) for both models

in both explanatory and response variables [41, 100]. The comparison may not be perfect,

since our model also incorporates the reconstructions of the three climate forcings, which is

proved to outperform those reconstitutions that only involving proxies [58, 101].

From the curves (displayed in Figure 3.3), we can see the trend is lower on our side as

opposed to [41], implying a more radical temperature in the past millennium, which confirms

that forcings’ incorporation helps produce a cooler reconstruction [58]. The local variations

are rather similar, thanks to the common proxy data used in both methods. The gap between

the two curves is more distinct during the period of notably low solar activity (the Maunder

Minimum, see [102] for more details), which can be easily detected in the solar forcing series

(St), because sunspot number is strongly correlated to the TSI [103,104].

Figure 3.3: Temperature anomalies’ reconstructions between our model and EIV

Furthermore, the memory included in our model takes into account the influence of
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forcings of any given year on the following year. It is especially true for volcanism where

eruptions may yield cooling periods, but whose spikes only last around two years. In [105],

the authors show that tree rings underestimate the cooling effect of large volcanic events,

which means that tree-ring based reconstructions (particularly proxy-only) may not properly

address volcanic eruptions. In this study, the proxy is an aggregation of multiple proxy time

series, less than half of which are tree rings. Hence, our reconstruction compensates this

phenomenon by adding moderate memories in the model.

3.4.3 Projection (2019-2100)

As part of the CMIP5, many institutes publish the result of climate simulations for this

century using different models and data [106]. For the four RCPs from 2006 to 2100, we

compute the means of the surface temperature on the northern hemisphere from different

models (listed in Table 3.8), followed by converting them to temperature anomalies. Al-

though the models and data exhibit difference, the sample paths of the various simulations

have almost identical trends (see Figure 3.4 for an example). Thus, for each RCP, we consider

the temperature projection is equal to the mean of all model simulations, which allowing us

to compare our results with this multi-model average method (Figure 3.5 and Figure 3.6).

Except RCP8.5, the temperature’s posterior means in our model exactly fall into the

95% confidence intervals of CMIP5 projections. For RCP4.5 and RCP6.0, we can also see

that the 95% credible intervals cover CMIP5 means very well, especially for RCP6.0, the

temperature’s posterior means are almost the same as the CMIP5 projections. We cannot

explain why both our model and CMIP5 have a jump at the beginning, however, we do

not intend to model the high-frequency fluctuations from year to year. In the initial 13-year

(2006-2018) projections, we note that the discrepancy between the NH average temperature’s
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Modeling center or group (Location) Model (acronym)

AORI, NIES, JAMSTEC (Japan)
MIROC-ESM-CHEM
MIROC-ESM
MIROC5

Canadian Centre for Climate Modelling and Analysis (Canada) CanESM2
Centre national de recherche météorologique (France) CNRM-CM5

Commonwealth Scientific and Industrial Research Organisation (Australia)

ACCESS1.0
ACCESS1.3
CSIRO-Mk3.6.0
CSIRO-Mk3L

EC-Earth (Europe) EC-EARTH
Institute of Atmospheric Physics, Chinese Academy of Sciences (China) FGOALS-s2

Institut Pierre Simon Laplace (France)
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

Max Planck Institute for Meteorology (Germany)
MPI-ESM-LR
MPI-ESM-MR

Meteorological Research Institute (Japan)
MRI-CGCM3
MRI-ESM1

Met Office Hadley Centre for Climate Science and Services (UK) HadGEM2-AO

NASA Goddard Institute for Space Studies (USA)
GISS-E2-H-CC
GISS-E2-H

Norwegian Climate Centre (Norway)
NorESM1-ME
NorESM1-M

Table 3.8: List of CMIP5 models used for multi-averaging temperature calculations

annual fluctuations and CMIP5, our projection is smoother with greater magnitude than this

initial jump, which could be viewed as part of the fact that the feature of yearly fluctuations

are missing from our model and from CMIP5.

In terms of the model robustness, not only do we add various choices of σC to expand

greenhouse gas concentration forcings (Appendix A), but we compute the differences over

two separate projection periods (2006-2100 and 2019-2100) using the same model (Table

3.9). The trends in the graphs are relatively similar to each other (the progression re-

sults can be found in the supplemental materials), and the values in Table 3.9 are rather

minimal compared with the projected temperature anomalies in the corresponding RCP sce-

narios. Therefore, both methods justify that our model is quite robust and the uncertainty
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Figure 3.4: Temperature prediction for RCP8.5 between 2006 and 2100 (CMIP5)

Figure 3.5: Temperature projections until 2100 for all four RCPs: comparisons with CMIP5
multi-model average

quantification is reasonable, which is not allowed to be evaluated by the model averaging

methodology of CMIP5.

Besides, following [35], we extend and test all memory combinations-white noise (WN,

no memory), AR(1) and AR(2) (short-term memory), and fGn (long-term memory) for the

purpose of projection in [58]. The outcomes are shown in Table 3.10 below.

In similar to the reconstruction results, the best one is the no-memory model (WN-WN)

except the ECPs, where the AR(1)-fGn achieves better at both levels. Models with stronger

memory yield worse RMSE, since memoryless model corresponds to the classical framework

of linear regression, which directly minimizes the mean squared error. The scoring measures
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Figure 3.6: Temperature projections’ comparisons with CMIP5 for medium scenarios (up:
RCP4.5; down: RCP6.0)

Year RCP2.6 RCP4.5 RCP6.0 RCP8.5
2020 0.039 0.026 0.061 0.196
2030 0.044 0.032 0.076 0.284
2040 0.041 0.029 0.104 0.400
2050 0.052 0.031 0.120 0.540
2060 0.034 0.025 0.127 0.717
2070 0.066 0.031 0.168 0.914
2080 0.050 0.048 0.214 1.134
2090 0.045 0.046 0.239 1.354
2100 0.042 0.039 0.244 1.627

Average 0.045 0.033 0.148 0.775
Maximum 0.066 0.052 0.266 1.627

Table 3.9: Temperature differences (in absolute values) between two projection periods

(IS and CRPS) do not have explicit pattern. Scenario AR(1)-AR(1) model attains decent

validation metrics, and beats WN-WN model with respect to the ECPs, which assures to

incorporate memories to more suitably quantify uncertainties.

For the coefficients part, the values of α1 are much larger for the models with a white

noise in the proxy equation, because the noise is anticipated to take a part of the signal.

Among the forcings, the greenhouse gas concentration (βC) is always the highest with low

standard deviation, which identifies its statistical significance. This is also reasonable because

it explains the temperature’s increase over the last century [72,100]. Solar coefficient (βS) is
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H K α0 α1 β0 βS βV βC

WN

WN -0.015 (0.008) 0.684 (0.008) -0.474 (0.018) 0.026 (0.018) 0.010 (0.018) 0.127 (0.018)
AR(1) -0.029 (0.005) 0.573 (0.005) -0.538 (0.038) 0.046 (0.038) -0.008 (0.038) 0.153 (0.038)
AR(2) -0.028 (0.005) 0.587 (0.005) -0.526 (0.045) 0.041 (0.045) -0.008 (0.045) 0.158 (0.045)

fGn -0.024 (0.005) 0.629 (0.005) -0.444 (0.210) 0.007 (0.210) -0.005 (0.210) 0.151 (0.210)

AR(1)

WN -0.234 (0.034) 0.230 (0.034) -0.053 (0.986) -0.012 (0.986) -0.413 (0.986) 0.895 (0.986)
AR(1) -0.188 (0.028) 0.266 (0.028) -0.550 (0.047) 0.084 (0.047) -0.017 (0.047) 0.113 (0.047)
AR(2) -0.076 (0.022) 0.253 (0.022) -1.006 (0.180) 0.071 (0.180) -0.019 (0.180) 0.278 (0.180)

fGn -0.171 (0.034) 0.285 (0.034) -0.574 (0.086) 0.071 (0.086) -0.018 (0.086) 0.130 (0.086)

AR(2)

WN -0.204 (0.040) 0.224 (0.040) -0.543 (0.043) 0.089 (0.043) -0.018 (0.043) 0.107 (0.043)
AR(1) -0.179 (0.055) 0.268 (0.055) -0.535 (0.055) 0.077 (0.055) -0.017 (0.055) 0.113 (0.055)
AR(2) -0.185 (0.044) 0.257 (0.044) -0.550 (0.047) 0.083 (0.047) -0.018 (0.047) 0.114 (0.047)

fGn -0.170 (0.062) 0.282 (0.062) -0.531 (0.122) 0.048 (0.122) -0.017 (0.122) 0.132 (0.122)

fGn

WN -0.167 (0.313) 0.190 (0.313) -0.542 (0.044) 0.078 (0.044) -0.015 (0.044) 0.113 (0.044)
AR(1) -0.153 (0.159) 0.202 (0.159) -0.648 (0.155) 0.065 (0.155) -0.020 (0.155) 0.159 (0.155)
AR(2) -0.081 (0.103) 0.214 (0.103) -1.086 (0.249) 0.075 (0.249) -0.022 (0.249) 0.291 (0.249)

fGn -0.133 (0.158) 0.247 (0.158) -0.618 (0.142) 0.048 (0.142) -0.018 (0.142) 0.154 (0.142)

H K RMSE ECP (80) ECP (95) IS (80) IS (95) CRPS

WN

WN 0.126 0.72 0.65 0.126 0.036 0.056
AR(1) 0.118 0.50 0.63 0.224 0.122 0.074
AR(2) 0.115 0.52 0.65 0.213 0.114 0.071

fGn 0.106 0.46 0.68 0.185 0.090 0.064

AR(1)

WN 0.169 0.63 0.90 0.204 0.072 0.082
AR(1) 0.158 0.69 0.92 0.172 0.053 0.071
AR(2) 0.297 0.64 0.90 0.347 0.110 0.138

fGn 0.167 0.76 0.95 0.169 0.050 0.073

AR(2)

WN 0.157 0.70 0.92 0.170 0.055 0.070
AR(1) 0.156 0.82 0.97 0.147 0.049 0.064
AR(2) 0.153 0.76 0.97 0.147 0.048 0.064

fGn 0.172 0.88 0.99 0.152 0.052 0.067

fGn

WN 0.159 0.73 0.92 0.167 0.049 0.070
AR(1) 0.203 0.90 0.99 0.176 0.065 0.095
AR(2) 0.310 0.82 0.92 0.319 0.106 0.012

fGn 0.178 0.83 0.99 0.161 0.054 0.070

Table 3.10: Gibbs sampler convergence for the posterior means and (standard deviations) of
model coefficients in Scenario D as well as validation metrics for each memory combination
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the same order of magnitude even though it is smaller than βC , which is in accordance with

the solar activity has a non-negligible influence on the climate before greenhouse gas explodes

[71]. The volcanic coefficient (βV ) is always negative with probability greater than 99% in

most models. Considering we apply a decreasing transformation on volcanism log(−Vt + 1),

which means that the volcanic activity is expected to slightly warm the planet. However,

the volcanic eruptions are known to produce an overall global cooling effect [105]. It cannot

have any impact beyond five or six years since eruptions are represented as short-memory

spikes (in Vt). Therefore, long-period volcanic activity is more appropriately addressed by

autoregression proposed in our study.

In sum, increasing the memory parameters would decrease all the coefficients except

for volcanism. It is coherent because increasing memory grants more weights to the past

climate forcing factors and temperature in the model. The stability of the volcanic coefficient

indicates that stronger memories help taking the impact of past eruptions over the following

years into consideration.

3.5 Conclusions and Discussions

In the study, we build a multi-level stochastic model to reconstruct NH temperature

anomalies over the past millennium and to make projections for this century, by incorporating

natural climate forcings (solar irradiance, volcanism, greenhouse gases) with memories in

both levels. Bayesian inference is adopted to systematically estimate the magnitude of all

unknown quantities as well as model uncertainties.

Moderate memory is suggested by the validation metrics in comparisons from both re-

constructions and projections. The memory inclusion in our model (autoregression) not only
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allows for the influence of external forcings at any given year on the years after, but also

strengthens the overall decreasing trend appeared in reconstructions (Figure 3.3). It gener-

ates lower temperatures (especially before Year 1900) compared to [41], noticing the model

and data are different though. The projection deviation between this paper and CMIP5 is

proportional to the greenhouse gas growth amplitude, which may be a consequence of the

solar activity prediction took from the CMIP6, where the solar decay over the next century

is a novelty that CMIP5 did not take into account [38]. We believe that the solar activ-

ity’s decay is more impactful on the temperature when the greenhouse gas concentration is

smaller, which explains the evolution of the gap.

There are a few possible extensions of this paper. One is to simultaneously evaluate mem-

ory parameters (a and b) with other prior distributions involving model coefficients (α and

β), which most likely would cause higher computational demand. Another possibility is to

include spatiotemporal component by designing a spatial pattern for proxies over time [59],

providing more smooth reconstructions [107]. This implementation requires more compre-

hensive understandings of climatic system to propose a more proper and feasible temporal

covariance structure for the model, which probably might simplify computations and create

further scientific insights.
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Chapter 4

Predictive-distribution

Approximation via Wiener Chaos

4.1 Preliminaries

Assume we have the simplest linear regression model:

Yi =
k∑
j=1

Xijβj + σεi (4.1)

where i = 1, 2, ..., n, j = 1, 2, ..., k, and εi
i.i.d.∼ N (0, 1). Let X, Y, βββ, εεε denote Xij , Yi, βj , εi

respectively in matrix forms. The model (4.1) is rewritten as:

Y = Xβββ + σεεε (4.2)

The log-likelihood function of the parameters (βββ, σ2) up to a constant term is:

l(βββ, σ2) = −nln(σ)− 1

2σ2
(Y −Xβββ)2 (4.3)
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Then the maximum likelihood estimator (MLE) of (βββ, σ2) can be derived from (4.3) by

letting
∂l(βββ,σ2)
∂βββ = 0 and

∂l(βββ,σ2)

∂σ2
= 0. Thus, the MLEs of the parameters are


β̂ββ = (XTX)−1XTY

σ̂2 =
1

n
(Y −Xβ̂ββ)2

(4.4)

β̂ββ is known as the ordinary linear squared (OLS) estimator, which is unbiased for βββ (i.e.,

E(β̂ββ) = βββ). However, σ̂2 is biased for σ2. An unbiased estimator of σ2 (i.e., E(s2) = σ2) is

s2 =
YTY − β̂ββTXTY

n− (k + 1)
(4.5)

where β̂ββ is independent from s2 and

(n− (k + 1))s2

σ2
∼ χ2n−(k+1) (4.6)

The variance-covariance matrices of (β̂ββ, s2) are


C(β̂ββ) = (XTX)−1XTV(Y)((XTX)−1XT)T = σ2(XTX)−1 := C

V(s2) = V
( σ2

n− (k + 1)
χ2n−(k+1)

)
=

σ4

(n− (k + 1))2
V
(
χ2n−(k+1)

)
=

2σ4

n− (k + 1)

(4.7)
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4.2 Approximation Error

4.2.1 Wiener-chaos Expansion

Intuitively, s2 is an unbiased estimator of σ2, so we decide to use s2 to replace σ2 in C(β̂ββ)

and in V(s2). Then the error of the approximation e
s2

for V(s2) is

e
s2

=
2σ4

n− (k + 1)
− 2s4

n− (k + 1)
(4.8)

Now let d = n− (k + 1). (4.6) becomes

Z :=
ds2

σ2
∼ χ2d (4.9)

where E(Z) = d, V(Z) = 2d. Then

Z̃ := Z − d ∼ χ2d (4.10)

is a centered chi-squared distribution (i.e., E(Z̃) = 0) with degrees of freedom d.

In the classic Wiener space L2[0, 1], a centered Gaussian family G(ψ), ψ ∈ L2[0, 1] of

random variables can be identified as the stochastic differential of a Wiener process W :

G(ψ) :=

∫ 1

0
ψ(s)dW (s) (4.11)

In order to find how big the approximation error in (4.8) is, it is convenient to represent
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Z̃ in terms of Wiener integrals for computational sake, that is

Z̃ =
ds2

σ2
− d D=

d∑
i=1

(G2
i − 1) (4.12)

where

Gi =

∫ 1

0
εi(s)dW (s) := W (εi) = IW1 (εi) (4.13)

and εi, i ≥ 1 are orthonormal family existed on L2[0, 1]. By contraction rule,

W 2(εi)− 1 = IW2 (ε⊗2i ) (4.14)

Hence, applying product formula and (4.14) to Z̃2, we have

Z̃2 − E(Z̃2)
D
=

d∑
i=1

d∑
j=1

(G2
i − 1)(G2

j − 1) =
d∑
i=1

d∑
j=1

(
W 2(εi)− 1

)(
W 2(εj)− 1

)
=

d∑
i=1

d∑
j=1

IW2 (ε⊗2i )IW2 (ε⊗2j ) =
1

4

d∑
i=1

d∑
j=1

[
IW2 (ε⊗2i + ε⊗2j )2 − IW2 (ε⊗2i − ε

⊗2
j )2

]
=

1

4

d∑
i=1

d∑
j=1

[
IW4
(
(ε⊗2i + ε⊗2j )⊗ (ε⊗2i + ε⊗2j )

)
+ 4IW2

(
(ε⊗2i + ε⊗2j )

⊗1 (ε⊗2i + ε⊗2j )
)]
− 1

4

d∑
i=1

d∑
j=1

[
IW4
(
(ε⊗2i − ε

⊗2
j )⊗ (ε⊗2i − ε

⊗2
j )
)

+ 4IW2
(
(ε⊗2i − ε

⊗2
j )⊗1 (ε⊗2i − ε

⊗2
j )
)]

=
1

4

d∑
i=1

d∑
j=1

[
4IW4 (ε⊗2i ⊗ ε

⊗2
j ) + 16IW2 (ε⊗2i ⊗1 ε

⊗2
j )
]

= IW4

( d∑
i=1

d∑
j=1

εi ⊗ εi ⊗ εj ⊗ εj
)

+ 4IW2

( d∑
i=1

d∑
j=1

ε⊗2i ⊗1 ε
⊗2
j

)
(4.15)

52



where

ε⊗2i ⊗1 ε
⊗2
j (s1, s2) =

∫ 1

0
εi(s1)εi(s)εj(s2)εj(s)ds =


0 i 6= j

εi(s1)εj(s2) = εi ⊗ εi i = j

(4.16)

Note that E(Z̃2) = V(Z̃) + E2(Z̃) = 2d. Therefore, Z̃2 becomes

Z̃2 D= IW4

( d∑
i=1

d∑
j=1

εi ⊗ εi ⊗ εj ⊗ εj
)

+ 4IW2

( d∑
i=1

εi ⊗ εi
)

+ 2d (4.17)

4.2.2 Error Magnitude

The error (4.8) in the replacement of σ2 by s2 for V(s2) is equal to

e
s2

=
2σ4

d
− 2

d

(σ2(Z̃ + d)

d

)2
= −2σ4

d3
(Z̃2 + 2Z̃d)

D
= −2σ4

d3

(
IW4

( d∑
i=1

d∑
j=1

εi ⊗ εi ⊗ εj ⊗ εj
)

+ (2d+ 4)IW2

( d∑
i=1

εi ⊗ εi
)) (4.18)

with E(e
s2

) = 0 because it only contains the sums of chaos terms.

For any function g and q ≥ 1,

V(Iq(g)) = q!‖g‖2
L2([0,1]q)

(4.19)
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Then the variance of the approximation given (4.19) is

V(Z̃2) = 4!

∥∥∥∥ d∑
i=1

d∑
j=1

εi ⊗ εi ⊗ εj ⊗ εj
∥∥∥∥2
L2([0,1]4)

+ 16× 2!

∥∥∥∥ d∑
i=1

εi ⊗ εi
∥∥∥∥2
L2([0,1]2)

= 24
d∑
i=1

d∑
i′=1

d∑
j=1

d∑
j′=1

1 + 32
d∑
i=1

d∑
i′=1

1

= 24d2 + 32d

(4.20)

Apply the results in (4.20), the variance of e
s2

is

V(e
s2

) =
(
− 2σ4

d3

)2(
24d2 + (2d+ 4)2 × 2d

)
=

4σ8

d6
(
8d3 + 56d2 + 32d

)
=

32σ8

d3
+O

( 1

d4
)

(4.21)

Similarly, we employ the same methodology to C to find its approximation error e
β̂ββ

.

e
β̂ββ

= (σ2 − s2)(XTX)−1

=
(
σ2 − σ2(Z̃ + d)

d

)
(XTX)−1

= −σ
2

d
Z̃(XTX)−1

D
= −σ

2

d
IW2

( d∑
i=1

εi ⊗ εi
)

(XTX)−1

(4.22)

where E(e
β̂ββ

) = 0 since it only includes the second-chaos terms. The variance of e
β̂ββ

is

V(e
β̂ββ

) =
(
− σ2

d

)2
× 2× V

(
(XTX)−1

)
=

2σ4

d2
V
(
(XTX)−1

) (4.23)
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4.3 Prediction Evaluation

4.3.1 Explicit Boundaries

Considering prediction for a new observation X∗. The density of
√
σ2ε∗ is

law
√
σ2ε∗ = law

(√
N
(
σ2,

2σ4

d

)
× ε∗

)

= law

(√
σ2 +

√
2σ4

d
η × ε∗

)
≈ law

(
σ
(

1 +
1

2

√
2

d
η
)
× ε∗

)
= law

(
σε∗
(

1 +
1√
2d
η
))

(4.24)

where η ∼ N (0, 1). ε∗ and εεε are independent, which is consistent with εi
i.i.d.∼ N (0, 1).

Based on the approximation error calculated above, replacing σ2 with s2 (data-base value),

the approximate distribution of Y ∗ from (4.2) is

l̂aw Y ∗ = law (X∗β̂ββ +
√
s2ε∗) (4.25)

with 
β̂ββ ∼ N

(
(XTX)−1XTY, Ĉ

)
s2 ∼ N

(
s2,

2s4

d

) (4.26)

where Ĉ = s2(XTX)−1.

Thus, the predictive distribution of Y ∗ in (4.25) is approximated by convolution as

l̂aw Y ∗ ≈ N
(
µY ∗ , σ

2
Y ∗
)
~ law

(
sε∗
(
1 +

1√
2d
η
))

(4.27)
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with 
µY ∗ = X∗

(
XTX

)−1
XTY

σ2Y ∗ = X∗ĈX∗T
(4.28)

Define

U1 = sε∗ ∼ N (0, s2), U2 = 1 +
1√
2d
η ∼ N (1,

1

2d
) (4.29)

U1 and U2 are independent by definition. Then

U := U1 × U2 = sε∗ +
s√
2d
ε∗η (4.30)

is a product of two independent normal random variables.

Lemma 4.3.1. ηε∗ is a product of two independent standard normal variables, which can

be represented in the second Wiener chaos as follows:

ηε∗ =
1

2

(
(η′)2 − (ε∗′)2

)
where η = 1√

2
(η′ + ε∗′) and ε∗ = 1√

2
(η′ − ε∗′). η′, ε∗′ ∼ N (0, 1) are independent.

The distribution of U can be seen as a non-convolution sum of two coupled (due to the

common ε∗) random variables. The first piece is N (0, s2), the second piece is a product nor-

mal, which can be characterized by two independent chi-square distributions (from Lemma

4.3.1), each with degree of freedom 1 (i.e., χ2(1)), and a scaling factor s√
8d

.

Corollary 4.3.2. When σ2 = 1 (i.e., X is standard normal), for ε > 0

1

2
e−

(ε+1)2

2 ≤ P(X ≥ ε) ≤ 1

2
e−

ε2
2
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Proof.

P(X ≥ ε) =

∫ ∞
ε

1√
2π
e−

x2
2 dx

=

∫ ∞
0

1√
2π
e−

(x+ε)2

2 dx

≥
∫ 1

0

1√
2π
e−

(x+ε)2

2 dx

≥ 0.34e−
ε2+2ε

2

≥ 1

2
e−

(ε+1)2

2

P(X ≥ ε) =

∫ ∞
0

1√
2π
e−

(x+ε)2

2 dx

≤
∫ ∞
0

1√
2π
e−

x2+ε2
2 dx

=
1

2
e−

ε2
2

Equivalently,

P(X ≥ ε) ≤ 1

2
e−

ε2
2 ≤ P(X ≥ ε− 1) (4.31)

showing the upper bound is between the tail probabilities within one standard deviation.

Hence, the cumulative distribution function (CDF) of U , namely ΦU (u) = P(U ≤ u), u >

0 is computed as

ΦU (u) = 1− P(U ≥ u) = 1− Eη
[
Pε∗
(
sε∗ +

s√
2d
ηε∗ ≥ u

∣∣η)]
= 1− Eη

[
Pε∗
(
ε∗ ≥ u

s(1 + η√
2d

)

∣∣η)1{η>−√2d}
+ Pε∗

(
ε∗ <

u

s(1 + η√
2d

)

∣∣η)1{η<−√2d}]
(4.32)
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Remark. η ∼ N (0, 1). Suppose d > 4,

Pε∗
(
ε∗ <

u

s(1 + η√
2d

)

∣∣η) < Pε∗(ε
∗ < 0) < 0.5

P(η < −
√

2d) < P(η < −3) < 0.0015

which makes it negligible compared to the first term inside Eη.

Based on Corollary 4.3.2, the bounds of ΦU (u) are

Φ1(u, d) ≤ ΦU (u) ≤ Φ2(u, d) (4.33)

with


Φ1(u, d) = 1− Eη

[
1

2
e

− u2

2s2
1

(1+
η√
2d

)2
]

= 1− 1

2

∫ ∞
−
√
2d

1√
2π
e−

x2
2 e

− u2

2s2
1

(1+ x√
2d

)2

dx

Φ2(u, d) = 1− Eη
[

1

2
e

−
[u+s(1+

η√
2d

)]2

2s2(1+
η√
2d

)2
]

= 1− 1

2

∫ ∞
−
√
2d

1√
2π
e−

x2
2 e

−
[u+s(1+ x√

2d
)]2

2s2(1+ x√
2d

)2

dx

(4.34)

Theorem 4.3.3. s =

√
YTY−β̂ββTXTY

d defined in (4.5).

1− 1

2
e
− u2

2s2 ≤ lim
d→∞

ΦU (u) ≤ 1− 1

2
e
− (u+s)2

2s2

Proof. Φ1(u, d): For each x ∈ (−
√

2d,∞),

lim
d→∞

e−
x2
2 e

− u2

2s2
1

(1+ x√
2d

)2

= e−
x2
2 e
− u2

2s2
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Also, ∣∣∣∣e−x22 e−
u2

2s2
1

(1+ x√
2d

)2
∣∣∣∣ ≤ e−

x2
2 ,

∫ ∞
−∞

e−
x2
2 =

√
2π <∞

By Dominated Convergence Theorem,

lim
d→∞

Φ1(u, d) = 1− 1

2

∫ ∞
−∞

1√
2π

lim
d→∞

e−
x2
2 e

− u2

2s2
1

(1+ x√
2d

)2

dx = 1− 1

2
e
− u2

2s2

In similar, for Φ2(u, d), using Dominated Convergence Theorem,

lim
d→∞

e−
x2
2 e

−
[u+s(1+ x√

2d
)]2

2s2(1+ x√
2d

)2

= e−
x2
2 e
− (u+s)2

2s2 ,

∣∣∣∣e−x22 e−
[u+s(1+ x√

2d
)]2

2s2(1+ x√
2d

)2
∣∣∣∣ ≤ e−

x2
2

⇒ lim
d→∞

Φ2(u, d) = 1− 1

2

∫ ∞
−∞

1√
2π

lim
d→∞

e−
x2
2 e

−
[u+s(1+ x√

2d
)]2

2s2(1+ x√
2d

)2

dx = 1− 1

2
e
− (u+s)2

2s2

Therefore, when d −→∞,

1− 1

2
e
− u2

2s2 = lim
d→∞

Φ1(u, d) ≤ lim
d→∞

ΦU (u) ≤ lim
d→∞

Φ2(u, d) = 1− 1

2
e
− (u+s)2

2s2

Lemma 4.3.4. Let X ∼ N (µ, σ2) be a Gaussian random variable. For any non-negative

integer m, the m-th moment of X is

E(Xm) =


µσm−12

m+1
2

Γ(m2 + 1)
√
π

M(
1−m

2
,
3

2
,− µ

2σ2
), m is odd

σm2
m
2

Γ(m+1
2 )
√
π

M(−m
2
,
1

2
,− µ

2σ2
), m is even

(4.35)
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Γ(z) =

∫ ∞
0

tz−1e−tdt

is the gamma function and

M(a, b, z) =
∞∑
n=0

a(a+ 1) · · · (a+ n− 1)zn

b(b+ 1) · · · (b+ n− 1)n!

is the Kummer’s confluent hypergeometric function. In particular, if µ = 0,

E(Xm) =

∫ ∞
−∞

xm
1

σ
√

2π
e
− x2

2σ2 dx

= σm(m− 1)!!

(4.36)

when m is even. !! denotes double factorial, all odd moments are 0.

Theorem 4.3.5. s =

√
YTY−β̂ββTXTY

d (same as in Theorem 4.3.3). For any u > 0,

∣∣∣∣∣ΦU (u)−
(

1− 1

2
e
− (u+s)2

2s2 − u(u+ s)(2− e−d)
4s2
√
πd

e
− (u+s)2

2s2

)∣∣∣∣∣ ≤ δ2(u, d)

where

δ2(u, d) =
u2
[
3 + (us + 1)2

]
8s2d

e
− (u+s)2

2s2

The proof uses second-order Taylor series expansion on e
− (u+s)2

2s2 and Lemma 4.3.4 (see

Appendix D for further reference). Finally, Y ∗ can be divided as the following:

Y ∗ ≈ X∗β̂ββ +
√
s2ε∗

= µY ∗ + σY ∗ε
′ + sε∗

(
1 +

1√
2d
η
)

= µY ∗ +
(
σY ∗ε

′ + sε∗
)

+
s√
2d
ηε∗

(4.37)
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where ε′ ∼ N (0, 1) is independent from ε∗ and η. The CDF of

V := σY ∗ε
′ + U (4.38)

is ΦV (v) = P(V ≤ v), v > 0 derived as

ΦV (v) = P(σY ∗ε
′ + U ≤ v) = Eε′

[
P(U ≤ v − σY ∗ε

′)
]

= Eε′
[
ΦU
(
v − σY ∗ε

′)]

Thus, according to Theorem 4.3.5, the bound of ΦV (v) is

ΦV (v) ≤ Ex
[
1− 1

2
e
−
(v−xσY ∗+s)

2

2s2 + δ′2(v − xσY ∗ , d)
]

= 1− 1

2

∫ ∞
−∞

e
−
(v+s−xσY ∗)

2

2s2
1√
2π
e−

x2
2 dx+ Ex

[
δ′2(v − xσY ∗ , d)

]
= 1− 1

2

∫ ∞
−∞

1√
2π
e
−1
2

[(
1+

σ2
Y ∗
s2

)
x2−2

(v+s)σY ∗
s2

x+
(v+s)2

s2

]
dx+ Ex

[
δ′2(v − xσY ∗ , d)

]

= 1− e
− (v+s)2

2(s2+σ2
Y ∗)

2
√

2π

∫ ∞
−∞

e
−1
2

[s2+σ2
Y ∗

s2

(
x−

(v+s)σY ∗
s2+σ2

Y ∗

)2]
dx+ Ex

[
δ′2(v − xσY ∗ , d)

]

= 1− se
− (v+s)2

2(s2+σ2
Y ∗)

2
√
s2 + σ2

Y ∗
+ Ex

[
δ′2(v − xσY ∗ , d)

]
(4.39)

given

δ′2(u, d) = δ2(u, d) +
u(u+ s)(2− e−d)

4s2
√
πd

e
− (u+s)2

2s2 (4.40)
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Denote the density function of X ′ ∼ N (µX′ , σ
2
X′) as

fX′(x) =
1

σX′
√

2π
e

−
(x−µX′)

2

2σ2
X′


µX′ =

(v + s)σY ∗
s2 + σ2

Y ∗

σ2
X′ =

s2

s2 + σ2
Y ∗

(4.41)

Using Lemma 4.3.4, we have

Ex
[
δ′2(v − xσY ∗ , d)

]
=

∫ ∞
−∞

(v − xσY ∗)e
−
(v−xσY ∗+s)

2

2s2

4s2
√
d

(
(v − xσY ∗ + s)(2− e−d)√

π

+
v − xσY ∗

2
√
d

[
3 +

(v − xσY ∗
s

+ 1
)2])e−x22√

2π
dx

=
e
− (v+s)2

2(s2+σ2
Y ∗)

4s
√
d(s2 + σ2

Y ∗)

∫ ∞
−∞

(v − xσY ∗)
(

(v − xσY ∗ + s)(2− e−d)√
π

+
v − xσY ∗

2
√
d

[
3 +

(v − xσY ∗
s

+ 1
)2])

fX′(x)dx

=
e
− (v+s)2

2(s2+σ2
Y ∗)

4s
√
d(s2 + σ2

Y ∗)

{
2− e−d√

π

[
v(v + s)− (2v + s)σY ∗µX′ + σ2Y ∗

(
µ2
X′

+ σ2
X′
)]

+
1

2
√
d

[
4
(
v2 − 2vσY ∗µX′ + σ2Y ∗

(
µ2
X′ + σ2

X′
))

+
2

s

(
v3

− 3v2σY ∗µX′ + 3vσ2Y ∗
(
µ2
X′ + σ2

X′
)
− σ3Y ∗

(
µ3
X′ + 3µX′σ

2
X′
))

+
1

s2

(
v4 − 4v3σY ∗µX′ + 6v2σ2Y ∗

(
µ2
X′ + σ2

X′
)
− 4vσ3Y ∗

(
µ3
X′

+ 3µX′σ
2
X′
)

+ σ4Y ∗
(
µ4
X′ + 6µ2

X′σ
2
X′ + 3σ4

X′
))]}

(4.42)
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Hence,

∣∣∣∣∣ΦV (v)−
(

1− se
− (v+s)2

2(s2+σ2
Y ∗)

2
√
s2 + σ2

Y ∗
− (2− e−d)e

− (v+s)2

2(s2+σ2
Y ∗)

4s
√
πd(s2 + σ2

Y ∗)

[
v(v + s)

− (2v + s)σY ∗µX′ + σ2Y ∗
(
µ2
X′ + σ2

X′
)])∣∣∣∣∣ ≤ δ(v, d)

(4.43)

with a precision as

δ(v, d) =
e
− (v+s)2

2(s2+σ2
Y ∗)

8sd
√
s2 + σ2

Y ∗

[
4
(
v2 − 2vσY ∗µX′ + σ2Y ∗

(
µ2
X′ + σ2

X′
))

+
2

s

(
v3

− 3v2σY ∗µX′ + 3vσ2Y ∗
(
µ2
X′ + σ2

X′
)
− σ3Y ∗

(
µ3
X′ + 3µX′σ

2
X′
))

+
1

s2

(
v4 − 4v3σY ∗µX′ + 6v2σ2Y ∗

(
µ2
X′ + σ2

X′
)
− 4vσ3Y ∗

(
µ3
X′

+ 3µX′σ
2
X′
)

+ σ4Y ∗
(
µ4
X′ + 6µ2

X′σ
2
X′ + 3σ4

X′
))]

(4.44)

and µX′ , σ
2
X′ defined in (4.41). The sharpness of the bound (4.43) is proved in Appendix E.

Let

g(v, d) = v(v + s)− (2v + s)σY ∗µX′ + σ2Y ∗
(
µ2
X′ + σ2

X′
)

(4.45)

be the non-normal correction for ΦV (v). For the sake of simplicity and also without loss of

generality, removing e−d, we have

eV = 1− e
− (v+s)2

2(s2+σ2
Y ∗)

2
√
s2 + σ2

Y ∗

(
s+

1

s
√
πd
g(v, d)

)
(4.46)
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Plug in (4.41) to expand g(v, d).

g(v, d) =
s2

(s2 + σ2
Y ∗)

2

[
s2v2 + (s3 − sσ2Y ∗)v + σ4Y ∗

]
=

s2

(s2 + σ2
Y ∗)

2

[
s2
(
v +

s2 − σ2
Y ∗

2s

)2 − (s2 − σ2
Y ∗)

2

4
+ σ4Y ∗

]
=

s4

(s2 + σ2
Y ∗)

2

(
v +

s2 − σ2
Y ∗

2s

)2
+
s2(3σ2

Y ∗ − s
2)

4(s2 + σ2
Y ∗)

(4.47)

is increasing in v when v > −
s2−σ2

Y ∗
2s , so is eV .

Denote the precision term δ(v, d) in (4.44) as

δ(v, d) =
e
− (v+s)2

2(s2+σ2
Y ∗)

8sd
√
s2 + σ2

Y ∗

(
h1(v, d) + h2(v, d) + h3(v, d)

)
(4.48)

where

h1(v, d) = 4
[
v2 − 2vσY ∗µX′ + σ2Y ∗

(
µ2
X′ + σ2

X′
)]

h2(v, d) =
2

s

[
v3 − 3v2σY ∗µX′ + 3vσ2Y ∗

(
µ2
X′ + σ2

X′
)
− σ3Y ∗

(
µ3
X′ + 3µX′σ

2
X′
)]

h3(v, d) =
1

s2

[
v4 − 4v3σY ∗µX′ + 6v2σ2Y ∗

(
µ2
X′ + σ2

X′
)
− 4vσ3Y ∗

(
µ3
X′ + 3µX′σ

2
X′
)

+ σ4Y ∗
(
µ4
X′ + 6µ2

X′σ
2
X′ + 3σ4

X′
)]

(4.49)
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Using the similar expansion in (4.47),

h1(v, d) =
4s2

(s2 + σ2
Y ∗)

2
(s2v2 − 2σ2Y ∗sv + s2σ2Y ∗ + 2σ4Y ∗)

=
4s4

(s2 + σ2
Y ∗)

2

(
v −

σ2
Y ∗
s

)2
+

4s2σ2
Y ∗

s2 + σ2
Y ∗

h2(v, d) =
2

s(s2 + σ2
Y ∗)

3

[(
s6 + s4σ2Y ∗ + 2s2σ4Y ∗ + σ6Y ∗

)
v3 − 3s5σ2Y ∗v

2

+ 3s4σ2Y ∗
(
s2 + 2σ2Y ∗

)
v − s3σ4Y ∗

(
3s2 + 4σ2Y ∗

)]
h3(v, d) =

1

s2(s2 + σ2
Y ∗)

4

[
s8v4 − 4

(
s7σ2Y ∗ + 3sσ8Y ∗

)
v3 + 6

(
s8σ2Y ∗ + 2s6σ4Y ∗

)
v2

− 4
(
3s7σ4Y ∗ + 4s5σ6Y ∗

)
v + s4σ4Y ∗

(
3s4 + 12s2σ2Y ∗ + 10σ4Y ∗

)]

(4.50)

Plug (4.50) into (4.48), δ(v, d) is

δ(v, d) =
e
− (v+s)2

2(s2+σ2
Y ∗)

8s3d(s2 + σ2
Y ∗)

9
2

[
s8v4 + 2

(
s9 + 3s5σ4Y ∗ + 3s3σ6Y ∗ − 5sσ8Y ∗

)
v3

+ 2
(
2s10 + 10s8σ2Y ∗ + 11s6σ4Y ∗

)
v2 − 2

(
s9σ2Y ∗ + 5s7σ4Y ∗ + 6s5σ6Y ∗

)
v

+ s4σ2Y ∗
(
4s6 + 13s4σ2Y ∗ + 18s2σ4Y ∗ + 10σ6Y ∗

)]
(4.51)

which shows that except for the well-expected 1
d , δ(v, d) is free of d.

4.3.2 Simulation Results

Now we choose different values for s and σ2
Y ∗ under certain circumstances. Note that

δ(v, d) is homogeneous degree 0 (i.e., dimension-free). Given a standardized data set, the

values of v are one-standard-deviation percentile and two-standard-deviation percentile at

α = 2.5%, 16%. As we can see from Table 4.1, when n is large, the precision of the approxi-
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mation is quite high because δ(v, d) is extremely small (roughly 0.1% and 0.5% of eV in each

respective scenario). We may lose some degree of accuracy when the significance level α is

increasing. Even if n is not large enough compared to the number of explanatory variables k,

our approximation is still reliably precise (later blocks in Table 4.1). The non-normal correc-

tion eV is monotonously increasing when the magnitude of new noise σ2
Y ∗ becomes bigger.

The largest percentile v appears at s2 is comparable with σ2
Y ∗ , but overall not affected much

by the the noise scale, which indicates its consistency.

4.4 Discussions

In this chapter, not only do we construct an explicit sequence of closed-form functions

to approximate the true predictive distribution of the response variable, but also we provide

a comprehensive analysis on the approximation based on Wiener’s polynomial chaos. The

approximation is with a great deal of accuracy, and the unbiased estimation convergences in

a relatively-fast fashion.

The biggest advantage of this approximation methodology is to avoid numeric sampling

algorithms such as Markov chain Monte Carlo, which reduces the computational burden to

a certain level [108]. Also, the boundary formulations as well as the asymptotic properties

yield the benefits to closely monitor the performance of predictions.

Second Wiener chaos is a linear space, and because the model is linear, its solution lies in

the same chaos. In many practical situations, however, incomplete or inaccurate statistical

knowledge about parameters’ uncertainties limits the utility of high-order polynomial chaos

expansions [109]. Fortunately, in order to create a finite-order expansion, we just need

some reliable information on the probability measure that can be represented by a finite
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number of moments. One of the possible extensions is to explore the behavior in a nonlinear-

model setting such as involving stochasticity. This may require the derivation of maximum

likelihood estimators under approximated log-likelihood functions [110].
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α n k s2 σ2
Y ∗ v eV δ(v, d)

0.5% 1000 3 0.15

0.01 -0.3944 0.5153 0.0005
0.05 -0.3944 0.5650 0.0006
0.13 -0.3944 0.6310 0.0006
0.48 -0.3934 0.7527 0.0007
1.50 -0.3934 0.8468 0.0006

2.5% 1000 3 0.15

0.01 -0.3943 0.5153 0.0005
0.05 -0.3945 0.5650 0.0006
0.13 -0.3939 0.6310 0.0006
0.48 -0.3949 0.7527 0.0007
1.50 -0.3949 0.8468 0.0006

10% 1000 3 0.15

0.01 -0.3945 0.5153 0.0005
0.05 -0.3949 0.5650 0.0006
0.13 -0.3941 0.6310 0.0006
0.48 -0.3946 0.7527 0.0007
1.50 -0.3932 0.8468 0.0006

16% 1000 3 0.15

0.01 -0.3944 0.5153 0.0005
0.05 -0.3945 0.5650 0.0006
0.13 -0.3949 0.6310 0.0006
0.48 -0.3974 0.7527 0.0007
1.50 -0.4025 0.8468 0.0006

0.5% 200 12 1.50

0.15 -1.2763 0.5211 0.0028
0.47 -1.2763 0.5591 0.0033
1.52 -1.2763 0.6401 0.0034
4.33 -1.2763 0.7386 0.0037
12.5 -1.2450 0.8303 0.0033

2.5% 200 12 1.50

0.15 -1.2787 0.5211 0.0028
0.47 -1.2787 0.5591 0.0033
1.52 -1.2738 0.6402 0.0034
4.33 -1.3031 0.7385 0.0038
12.5 -1.3031 0.8303 0.0035

10% 200 12 1.50

0.15 -1.2783 0.5211 0.0028
0.47 -1.2783 0.5591 0.0033
1.52 -1.2763 0.6401 0.0034
4.33 -1.2867 0.7386 0.0037
12.5 -1.3063 0.8303 0.0036

16% 200 12 1.50

0.15 -1.2780 0.5211 0.0028
0.47 -1.2709 0.5591 0.0033
1.52 -1.2765 0.6401 0.0034
4.33 -1.2769 0.7386 0.0037
12.5 -1.2775 0.8303 0.0035

Table 4.1: Approximation results for various combinations of (s2, σ2
Y ∗) under different sig-

nificance levels (α), dimension (n), and number of coefficients (k)
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Chapter 5

Future Work Directions

In the agriculture study, one way to improve the analysis is to include more data points

from later years. We could also remove the irrelevant explanatory variables from the model,

or to develop a link among maize yield, SPAD, and striga to systematically analyze the

determinants of each individual response. The latter proposal is most definitely going to

generate more coefficients needed to be estimated [18].

For the climatology project, assigning more proper prior distributions to the model co-

efficients may be able to achieve their estimates all at once. However, it is very likely to be

accompanied with more computational burden. Another possibility is to incorporate a spa-

tial pattern for the natural proxies over time [59], which needs an extensive understandings

of climatic system to propose a more feasible temporal covariance structure, thus simplifying

calculations and bringing more meaningful insights.

There are several directions to extend the work in Chapter 4. For example, we can utilize

Taylor-series expansion with higher order, so to obtain a more statistical power and faster

convergence [111]. Moreover, we can either compare our estimates with the actual MCMC-

method results, or calculate its total-variation distance between chaos terms and the normal

law [112], to see how far the approximations are away from the true values.
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APPENDIX A

Model Robustness

In (3.4), σC is defined to grow with the RCPs’ magnitudes for each scenario. Here,

we test the model robustness by applying different fraction values (i.e., 0, 0.5, 2, 3) in

σC . Apparently, based on the prediction graphs (Figures A.1, A.2, A.3, A.4), the patterns

are quite similar to Figure 3.6 except for reasonable fluctuations when σC increases. The

convergence diagnosis (Figure A.5) shows that the Gibbs samplers indeed converge (and

quite fast). Hence, the projection model is not heavily affected by the added greenhouse gas

uncertainty with various magnitudes (robust in other words).

Figure A.1: Temperature projections’ comparisons (CMIP5) with no σC
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Figure A.2: Temperature projections’ comparisons (CMIP5) with 1
2σC

Figure A.3: Temperature projections’ comparisons (CMIP5) with 2σC

Figure A.4: Temperature projections’ comparisons (CMIP5) with 3σC
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Figure A.5: 10,000 MCMC samples of all model parameters (from top to bottom): α1, α0,
βC , βV , βS , β0, σ2P , σ2T
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APPENDIX B

Exponential Decay

The hierarchical stochastic model described in (3.6) is equivalent as follows after iteration:



Pt = atP0 +
t−1∑
i=0

ai
(
α0 + α1Tt−i

)
+
t−1∑
i=0

aiσP εt−i

= atP0 + (uα)t +
t−1∑
i=0

aiσP εt−i

Tt = btT0 +
t−1∑
i=0

bi
(
β0 + βSSt−i + βV Vt−i + βCCt−i

)
+
t−1∑
i=0

biσT ηt−i

= btT0 + (vβ)t +
t−1∑
i=0

biσT ηt−i

(B.1)

Hereinafter, u ∈MT,2(R) such that ∀t ≤ T :

ut,0 =
t−1∑
i=0

ai, ut,1 =
t−1∑
i=0

aiTt−i (B.2)

and v ∈MT,4(R) is definite and same for all three forcings (t ≤ T ) such that

vt,0 =
t−1∑
i=0

ai, vt,1 =
t−1∑
i=0

aiSt−i, vt,2 =
t−1∑
i=0

aiVt−i, vt,3 =
t−1∑
i=0

aiCt−i (B.3)

These formalizations show that proxy (P) and temperature (T) at time t, take all tem-

perature and forcings before t into consideration respectively with exponential decay.

Moreover, the time series Pt and Tt are non-stationary, whose expectations depend on t.
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When t is large enough, assume P0 = T0 = 0 and let σP = 1− a2, σT = 1− b2. From now

on, we use [Y
∣∣X] to represent the conditional probability distribution of the random variable

Y given X. Then the variances of [P
∣∣T, a, α, σP ] and [T

∣∣b, β, σT ] are approximately equal

to constants σP and σT separately. Namely, the conditional densities of P and T are two

normal distributions with known covariance structures:


[
P
∣∣T, a, α, σP ] ∼ N (uα, σ2PΣP

)
[
T
∣∣b, β, σT ] ∼ N (vβ, σ2TΣT

) (B.4)

where ΣP and ΣT are the covaraince matrices of AR(1) processes with parameters a and b.
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APPENDIX C

Posterior-distribution Computation

Recall the prior distributions: normal (N ), inverse gamma (IG), and uniform (U) that

are assigned to the parameters in the model (3.6):

α ∼ N
(
µα, I2

)
β ∼ N

(
µβ , I4

)
σ2 ∼ IG

(
q, r
)

a, b ∼ U
(
0, 1
)

(C.1)

where

α = (α0, α1), β = (β0, βS , βC , βV ), σ2 = (σ2P , σ
2
T )

q = (qP , qT ), r = (rP , rT )

In is an identity matrix of n dimensions. In particular, we also assign the initial values as:

µα = (0, 1)

µβ = (0, 1, 1, 1)

q = (2, 2)

r = (0.1, 0.1)

(C.2)

After some derivations, we obtain the full posterior distributions for all the parameters.
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Regression coefficients: α, β

[
α
∣∣P,T, a, σ2P ] ∝ [P∣∣α,T, a, σ2P ][α∣∣T, a, σ2P ]

∝ exp

{
− 1

2σ2P

(
P− uα

)T
Σ−1P

(
P− uα

)}
exp

{
−1

2
‖α‖2

}

∝ exp

{
− 1

2σ2P
αT
(
uTΣ−1P u+ σ2P I2

)
α +

1

σ2P
αTuTΣ−1P P

}

∝ exp

{
−1

2
(α− µα)TΩ−1α (α− µα)

}
∼ N

(
µα,Ωα

)

(C.3)

where exp means exponential distribution and


µα =

1

σ2P
Ωαu

TΣ−1P P

Ω−1α =
1

σ2P
uTΣ−1P u+ I2

(C.4)

[
β
∣∣T, b, σ2T ] ∝ [T|β, b, σ2T ][β∣∣b, σ2T ]

∝ exp

{
− 1

2σ2T

(
T− vβ

)T
Σ−1T

(
T− vβ

)}
exp

{
−1

2
‖β‖2

}

∝ exp

{
− 1

2σ2T
βT
(
vTΣ−1T v + σ2T I4

)
β +

1

σ2T
βTvTΣ−1T T

}

∝ exp

{
−1

2
(β − µβ)TΩ−1β (β − µβ)

}
∼ N

(
µβ ,Ωβ

)

(C.5)

with 
µβ =

1

σ2T
Ωβv

TΣ−1T T

Ω−1β =
1

σ2T
vTΣ−1T v + I4

(C.6)
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Scale of noise terms: σ2
P , σ2

T

[
σ2
P

∣∣P,T, a, α] ∝ [P∣∣σ2
P ,T, a, α,

][
σ2
P |T, a, α

]
∝
(

1

σP

)dimT

exp

{
− 1

2σ2
P

(
P− uα

)T
Σ−1P

(
P− uα

)}( 1

σ2
P

)qP+1

× exp

{
− rP
σ2
P

}

∝
(

1

σ2
P

)qP+dimT
2 +1

exp

{
− 1

σ2
P

[
rP +

1

2

(
P− uα

)T
Σ−1P

(
P− uα

)]}

∼ IG
(
q′P , r

′
P

)
(C.7)

where dim is short for dimension and


q′P = qP +

dimT

2

r′P = rP +
1

2

(
P− uα

)T
Σ−1P

(
P− uα

) (C.8)

[
σ2
T

∣∣T, b, β] ∝ [T∣∣σ2
T , b, β

][
σ2
T |b, β

]
∝
(

1

σT

)dimT

exp

{
− 1

2σ2
T

(
T− vβ

)T
Σ−1T

(
T− vβ

)}( 1

σ2
T

)qT+1

× exp

{
− rT
σ2
T

}

∝
(

1

σ2T

)qT+dimT
2 +1

exp

{
− 1

σ2
T

[
rT +

1

2

(
T− vβ

)T
Σ−1T

(
T− vβ

)]}

∼ IG
(
q′T , r

′
T

)

(C.9)

with 
q′T = qT +

dimT

2

r′T = rT +
1

2

(
T− vβ

)T
Σ−1T

(
T− vβ

) (C.10)
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Autoregressive coefficients: a, b

[
a
∣∣P,T, α, σ2P ] ∝ [P|a,T, α, σ2P ][a|T, α, σ2P ]

∝ 1√
det(ΣP )

exp

{
− 1

2σ2P

(
P− uα

)T
Σ−1P

(
P− uα

)}
[
b
∣∣T, β, σ2T ] ∝ [T|b, β, σ2T ][b|β, σ2T ]

∝ 1√
det(ΣT )

exp

{
− 1

2σ2T

(
T− vβ

)T
Σ−1T

(
T− vβ

)}
(C.11)

where det stands for determinant (of a matrix). Finally, we derive the posterior distribution

for temperature (T), from which to draw samples using Gibbs sampler.

[
T
∣∣P, a, b, α, β, σ2P , σ2T ] ∝ [P∣∣T, a, b, α, β, σ2P , σ2T ][T|b, β, σ2T ]

∝ exp

{
− 1

2σ2P

(
P− uα

)T
Σ−1P

(
P− uα

)}

× exp

{
− 1

2σ2T

(
T− vβ

)T
Σ−1T

(
T− vβ

)}
(C.12)

where u relies on T. Let us re-write (P − uα) at time t by expanding u as defined above:

(
P − uα

)
t = Pt − α0

t−1∑
i=0

aiTt−i − α1
t−1∑
i=0

aiTt−i

= Pt − α0
T∑
i=0

at−i1{i≤t} − α1
T∑
i=0

at−iTi1{i≤t}

= P− α0Me− α1MT

(C.13)

where M ∈MT,T (R) with Mi,j = 1{j≤i}a
i−j , and e is a vector whose entries are all ones.
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Therefore,

[
T
∣∣P, a, b, α, β, σ2P , σ2T ] ∝ exp

{
− 1

2σ2P

(
P− α0Me− α1MT

)T
Σ−1P

(
P− α0Me− α1MT

)}

× exp

{
− 1

2σ2T

(
T− vβ

)T
Σ−1T

(
T− vβ

)}

∝ exp

{
−1

2
TT
(α21
σ2P

MTΣ−1P M +
1

σ2T
Σ−1T

)
T

}

× exp

{
α1

σ2P
TTMTΣ−1P

(
P− α0Me

)
+

1

σ2T
TTΣ−1T vβ

}

∝ exp

{
−1

2

(
T− µT )TΩ−1T (T− µT

)}
∼ N

(
µT ,ΩT

)
(C.14)

with 
µT =

α1

σ2P
ΩTMTΣ−1P

(
P− α0Me

)
+

1

σ2T
ΩTΣ−1T vβ

Ω−1T =
α21
σ2P

MTΣ−1P M +
1

σ2T
Σ−1T

(C.15)

Theorem C.0.1. Assume

X =

X1

X2

 ∼ N(
µ1
µ2

 ,
Σ1 Σ12

Σ21 Σ2

)

where Σ21 = ΣT
12. Then

[
X1

∣∣X2
]
∼ N

(
µ1 + Σ12Σ−12

(
X2 − µ2

)
,Σ1 − Σ12Σ−12 Σ21

)

Consider X1 = T1 (past) and X2 = T2 (calibration). According to Theorem C.0.1, the
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posterior distribution of past temperature given the data is:



[
T1

∣∣T2,P, a, b, α, β, σ
2
P , σ

2
T

]
∼ N

(
µ,Ω

)
µ = µ

(1)
T + Ω

(1)(2)
T

(
Ω
(2)(2)
T

)−1(
T2 − µ

(2)
T

)
Ω = Ω

(1)(1)
T − Ω

(1)(2)
T

(
Ω
(2)(2)
T

)−1(
Ω
(2)(1)
T

)
(C.16)

where Ω
(i)(j)
T (i = 1, 2 and j = 1, 2) is the partitioned matrix. The projection (denoted by

T3) can be done via the second level in (3.6) after all climate forcings extended to Year 2100.
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APPENDIX D

Proof of Theorem 4.3.5

Proof. Let H(x) = e

−1
2 [

u
s(1+ x√

2d
)
+1]2

. The first and second derivative of H(x) are

H ′(x) = e

−1
2 [
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s(1+ x√

2d
)
+1]2
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1 (x) +H ′1(x)

]
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(D.1)

82



Use Taylor expansion on H(x) at point a (a ∈ IR),

H(x) =
∞∑
0

H(n)(a)

n!
(x− a)n

= e

− u2

2s2
1

(1+ a√
2d

)2

+ e

− u2

2s2
1

(1+ a√
2d

)2

(x− a)
u2

s2
√

2d

1

(1 + a√
2d

)3
+R1(x)

where R1(x) is the mean-value (or Lagrange) form of the remainder:

R1(x) =
H ′′(ξ)

2!
(x− a)2

=
(x− a)2

2
e

− u2

2s2
1

(1+
ξ√
2d

)2 u2

2s2d

1

(1 + ξ√
2d

)4

[ u2

s2(1 + ξ√
2d

)2
− 3
]

for ξ ∈ [a, x]. When a = 0 (i.e., Maclaurin series),

H(x) = e
− (u+s)2

2s2
[
1 +

ux

s
√

2d

(u
s

+ 1
)]

+RH(x) (D.2)

and

RH(x) =
x2

2!
H ′′(ξ)

=
x2

2
e

−1
2 [

u2

s(1+
ξ√
2d

)
+1]2
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(D.3)

Note that

Φ2(u, d) = 1− 1

2

∫ ∞
−
√
2d

1√
2π
e−

x2
2 e

−
[u+s(1+ x√
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)]2

2s2(1+ x√
2d
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Φ2(u, d) = 1− 1

2
e
− (u+s)2

2s2
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Hence, plug in (D.2) and by triangle inequality,
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H ′′(ξ) is continuous for all ξ ∈ [0, x], x ∈ IR and

∣∣H ′′(ξ)∣∣ ≤ e
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Plug (4.36), (D.5) into (D.3),
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From (D.4) and (D.6),
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Therefore,
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APPENDIX E

Boundaries Justification

Moreover, let G(x) = e
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(E.1)

Then the Maclaurin series of G(x) is

G(x) = e
− u2
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u2x
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2d
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+RG(x) (E.2)
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and the Lagrange form of the remainder for ξ ∈ [0, x] is
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(E.3)

Recall
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For all ξ ∈ [0, x], x ∈ IR, G′′(ξ) is continuous and
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Applying the same calculation in (D.6) to Φ12(u, d),
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So ∣∣∣∣Φ1(u, d)−
(

1− 1

2
e
− u2

2s2 − u2(2− e−d)
4s2
√
πd

e
− u2

2s2
)∣∣∣∣ ≤ u2(3 + u2

s2
)

8s2d
e
− u2

2s2 (E.7)

88



From (E.7), ∣∣∣∣ΦU (u)−
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which shows that δ2(u, d) in Theorem 4.3.5 is sharp enough.

By the similar computation in (4.39) and (4.42),
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Therefore,
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and µX , σ
2
X defined in (E.8), which implies the bounds of ΦV (v) cannot do any better.
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