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ABSTRACT

COMPUTATIONS IN TOPOLOGICAL COHOCHSCHILD HOMOLOGY

By

Sarah Klanderman

In recent work, Hess and Shipley defined an invariant of coalgebra spectra called topo-

logical coHochschild homology (coTHH). In 2018, Bohmann-Gerhardt-Høgenhaven-Shipley-

Ziegenhagen developed a coBökstedt spectral sequence to compute the homology of coTHH

for coalgebras over the sphere spectrum. However, examples of coalgebras over the sphere

spectrum are limited, and one would like to have computational tools to study coalgebras

over other ring spectra. In this thesis, we construct a relative coBökstedt spectral sequence

to study the topological coHochschild homology of more general coalgebra spectra. We con-

sider HFp ∧HZ HFp and HFp ∧BP<n> HFp for certain values of n as HFp-coalgebras and

compute the E2-term of the spectral sequence in these cases. Further, we show that this

spectral sequence has additional algebraic structure, and exploit this structure to complete

coTHH calculations. Finally, we show that coHochschild homology is a bicategorical shadow,

in the sense of Ponto.
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Chapter 1

Introduction

Hochschild homology, which we will denote as HH, is a classical algebraic invariant of rings

that can be extended topologically to give an invariant of ring spectra called topologi-

cal Hochschild homology (THH). In the 1970’s, Doi [14] studied a construction dual to

Hochschild homology for coalgebras, called coHochschild homology (coHH). Recent work of

Hess and Shipley [20] defines the topological analog of Doi’s work, topological coHochschild

homology (coTHH), to study coalgebra spectra.

Work of Malkiewich [25] and Hess-Shipley [20] shows coTHH of suspension spectra is

related to THH for simply connected spaces X via

coTHH(Σ∞
+ X) ≃ THH(Σ∞

+ (ΩX)) ≃ Σ∞
+ LX,

where the last equivalence comes from work of Bökstedt and Waldhausen. Thus coTHH is

relevant for studying the homology of free loop spaces, LX, the main topic of the field of

string topology [12, 13]. Further, because THH is directly related to algebraic K-theory via

trace methods, coTHH also has applications for algebraic K-theory of spaces.

In this paper we will develop computational tools for studying topological coHochschild

homology. The primary tools used to compute topological (co)Hochschild homology are spec-

tral sequences. In the late 1980’s, Bökstedt identified the E2-term of the spectral sequence
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induced from the skeletal filtration of the simplicial object THH(A)● to be the familiar

algebraic theory of Hochschild homology:

E2
∗,∗ = HH∗(H∗(A;k)) Ô⇒ H∗(THH(A);k).

This spectral sequence is referred to as the Bökstedt spectral sequence for a ring spectrum A.

In 2018, Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen showed that in the dual

situation there is a coBökstedt spectral sequence. This is the Bousfield-Kan spectral sequence

for the cosimplicial spectrum coTHH(C)●, for C a coalgebra spectrum over the sphere spec-

trum [4]. As we would hope, this spectral sequence has classical coHochschild homology as

its E2-term, and in cases when it does indeed converge we have:

E
∗,∗
2 = coHH∗(H∗(C;k)) Ô⇒ H∗(coTHH∗(C);k).

In their work however, these tools are only set up to study coalgebra spectra over the

sphere spectrum S, i.e. for C with comultiplication map C → C ∧S C. Examples of this sort

are closely related to suspension spectra of spaces and are fairly limited as shown by recent

work of Péroux-Shipley [30]. In this paper, we broaden these tools to apply to coTHH for

coalgebras over any commutative ring spectrum.

In order to motivate the need for a relative coBökstedt spectral sequence, we examine

a variety of examples of coalgebras over spectra other than S. For example, the following

proposition gives a way of generating coalgebra spectra over a commutative ring spectrum

B.
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Proposition 1.0.1

A map of commutative ring spectra A→ B induces a B-coalgebra structure on the spectrum

B ∧A B.

We call the spectral sequence that allows us to study the topological coHochschild ho-

mology of coalgebras over an arbitrary commutative ring spectrum R the relative coBökstedt

spectral sequence ∶

Theorem 1.0.2

Let E and R be commutative ring spectra, C an R-coalgebra spectrum that is cofibrant as

an R-module, and N a (C,C)-bicomodule spectrum. If E∗(C) is flat over E∗(R), then there

exists a Bousfield-Kan spectral sequence for the cosimplicial spectrum coTHHR(N,C)● that

abuts to Et−s(coTHHR(N,C)) with E2-page

E
s,t
2 = coHH

E∗(R)
s,t (E∗(N),E∗(C))

given by the classical coHochschild homology of E∗(C) with coefficients in E∗(N).

Note in particular that this holds for any generalized homology theory E in addition to

being over the more general ring spectrum R. Further, we identify conditions for convergence

of this spectral sequence. In particular, for the case when E = S, if for every s there exists

some r so that E
s,s+i
r = E

s,s+i
∞ then the relative coBökstedt spectral sequence converges

completely to π∗(coTHHR(N,C)).

A first question is whether the E2-term of this spectral sequence is computable. By

the above proposition, HFp ∧HZ HFp and HFp ∧BP<n> HFp for n = 0,1 and for n = 2 at

the primes p = 2,3 are HFp-coalgebras. In these cases for example, the E2-term is indeed

computable:
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Proposition 1.0.3

For the HFp-coalgebra HFp ∧HZ HFp, the E2-page of the spectral sequence calculating

πt−s(coTHHHFp(HFp ∧HZHFp)) is

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧HZHFp)) ≅ ΛFp(τ) ⊗ Fp[ω]

for ∣∣τ ∣∣ = (0,1), ∣∣ω∣∣ = (1,1).

Proposition 1.0.4

For the HFp-coalgebra HFp ∧BP<n>HFp for n = 0,1 and for n = 2 at the primes p = 2,3, the

E2-page of the spectral sequence calculating πt−s(coTHHHFp(HFp ∧BP<n>HFp)) is

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧BP<n>HFp)) ≅ ΛFp(τ0, . . . τn) ⊗ Fp[ω0, . . . ωn]

for ∣∣τi∣∣ = (0,2pi − 1), ∣∣ωi∣∣ = (1,2pi − 1).

Because computations with this relative coBökstedt spectral sequence are quite compli-

cated, any additional structure on the spectral sequence can help in these calculations. By

work of Angeltveit-Rognes, the classical Bökstedt spectral sequence for a commutative ring

spectrum has the structure of a spectral sequence of Hopf algebras under some flatness condi-

tions [1]. Bohmann-Gerhardt-Shipley show that under appropriate coflatness conditions, the

coBökstedt spectral sequence for a cocommutative coalgebra spectrum has what is called a

◻-Hopf algebra structure, an analog of a Hopf algebra structure for working over a coalgebra

[5]. The following proposition follows from Bohmann-Gerhardt-Shipley’s work:

Theorem 1.0.5

For C a cocommutative coalgebra spectrum, if for r ≥ 2 each E
∗,∗
r (C) is coflat over π∗(C),
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then the relative coBökstedt spectral sequence is a spectral sequence of ◻π∗(C)-Hopf algebras.

This additional ◻-Hopf algebra structure is very computationally useful. For instance,

we can extend the work of Bohmann-Gerhardt-Shipley [5] to show the following:

Theorem 1.0.6

For a field k, let C be a cocommutative Hk-coalgebra spectrum such that coHH∗(π∗(C)) is

coflat over π∗(C) and the graded coalgebra π∗(C) is connected. Then the E2-term of the

relative coBökstedt spectral sequence calculating π∗(coTHHHk(C)),

E
∗,∗
2 (C) = coHHk∗(π∗(C)),

is a ◻π∗(C)-bialgebra, and the shortest non-zero differential d
s,t
r in lowest total degree s + t

maps from a ◻π∗(C)-algebra indecomposable to a ◻π∗(C)-coalgebra primitive.

This algebraic structure proves very useful for explicit computations with the coBökstedt

spectral sequence. We use the relative coBökstedt spectral sequence to show:

Theorem 1.0.7

For a field k, let C be a cocommutative Hk-coalgebra spectrum that is cofibrant as an Hk-

module with π∗(C) ≅ Λk(y) for ∣y∣ odd and greater than 1. Then the relative coBökstedt

spectral sequence collapses and

π∗(coTHHHk(C)) ≅ Λk(y) ⊗ k[w]

as graded k-modules for ∣w∣ = ∣y∣ − 1.

Theorem 1.0.8

Let k be a field and let p = char(k), including 0. For C a cocommutative Hk-coalgebra
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spectrum that is cofibrant as an Hk-module with π∗(C) ≅ Λk(y1, y2) for ∣y1∣, ∣y2∣ both odd

and greater than 1, if pm is not equal to
∣y2∣−1
∣y1∣−1

or
∣y2∣−1
∣y1∣−1

+ 1 for all m ≥ 0, then the relative

coBökstedt spectral sequence collapses and

π∗(coTHHHk(C)) ≅ Λk(y1, y2) ⊗ k[w1,w2],

as graded k-modules for ∣wi∣ = ∣yi∣ − 1.

Further, in a result analogous to the work of Bohmann-Gerhardt-Høgenhaven-Shipley-

Ziegenhagen [4] we have

Theorem 1.0.9

Let k be a field and let C be a cocommutative coassociative Hk-coalgebra spectrum that is

cofibrant as an Hk-module spectrum, and whose homotopy coalgebra is

π∗(C) = Γk[x1, x2, . . .],

where the xi are in non-negative even degrees and there are only finitely many of them

in each degree. Then the relative coBökstedt spectral sequence calculating the homotopy

groups of the topological coHochschild homology of C collapses at E2, and

π∗(coTHHHk(C)) ≅ Γk[x1, x2, . . .] ⊗Λk(z1, z2, . . .)

as k-modules, with zi in degree ∣xi∣ − 1.

Finally, we will show that coHochschild homology (coHH) is a bicategorical shadow.

Ponto [31] and Ponto-Shulman [32] developed the original framework for shadows and traces
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in bicategories. More recently, work of Campbell-Ponto [11] used this fundamental framework

to show that THH is an example of a shadow. In particular, the shadow structure formally

provides many of the desirable properties of THH, including Morita invariance. Therefore

in the same vein, we will show that coHochschild homology (coHH) is also a shadow for the

appropriately defined bicategory.

This thesis is organized as follows. Chapter 2 introduces coalgebras in spectra and topo-

logical coHochschild homology. In Chapter 3 we construct the relative coBökstedt spectral

sequence. In Chapter 4 we study the algebraic structures of this spectral sequence, and

Chapter 5 discusses some explicit topological coHochschild homology calculations. Finally

in Chapter 6 we delve into the theoretical framework of coHochschild homology and show

that it is a shadow.
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Chapter 2

Background

2.1 Hochschild Homology

To begin, we recall the definition of Hochschild homology for associative k-algebras.

Definition 2.1.1

Let k be a commutative ring, A an associative algebra over k, and M an (A,A)-bimodule.

Recall that this algebraic structure gives us a multiplication map µ ∶ A ⊗k A → A and

a unit map η ∶ k → A. Let HH(A,M)● denote the simplicial k-module with r-simplices

HH(A,M)r ∶=M ⊗A⊗r. The face maps are given by

di(m⊗ a1 ⊗ . . .⊗ ar) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ma1 ⊗ . . .⊗ ar i = 0

m⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ ar 1 ≤ i < r
arm⊗ a1 ⊗ . . .⊗ ar−1 i = r,

and the degeneracy maps insert the unit map. In particular,

si(m⊗ a1 ⊗⋯⊗ ar) =
⎧⎪⎪⎨⎪⎪⎩

m⊗ 1⊗ a1 ⊗⋯⊗ ar i = 0

m⊗ a1 ⊗⋯⊗ ai ⊗ 1⊗ ai+1 ⊗⋯⊗ ar 1 ≤ i ≤ r

This simplicial object has the form:

8



⋮
M⊗kA⊗k A
↓↑ ↓↑↓
M ⊗k A
↓ ↑↓
M

Let C∗(A,M) denote the associated chain complex with boundary map d = Σi(−1)idi. Then

the qth Hochschild homology of A with coefficients in M is:

HHq(A,M) ∶=Hq(C∗(A,M)).

The Dold-Kan correspondence gives us the equivalent definition

HHq(A,M) ∶= πq(∣HH(A,M)●∣)

for the geometric realization of the simplicial k-module HH(A,M)●. This latter formulation

makes it clearer how we would extend this definition to create an analogous topological

theory.

Remark 2.1.2

Hochschild homology is defined here with coefficients in an (A,A)-bimodule M . When

M = A, considered as a bimodule over itself, this is denoted by HHq(A).

Remark 2.1.3

If A =M , then together with the extra structure of a cyclic operator

tn(a0 ⊗ a1 ⊗ . . .⊗ an) = an ⊗ a0 ⊗ a1 ⊗ . . .⊗ an−1,

9



these face and degeneracy maps determine a cyclic object, HH(A)●. This complex is called

the cyclic bar construction.

One may also define the Hochschild homology of a graded algebra:

Definition 2.1.4

For a differential graded algebra (A, δ) with trivial derivation δ, let C∗(A, δ) be the cyclic

chain complex given by

[n] ↦ (A, δ)⊗(n+1)

with face maps

di(a0 ⊗ . . .⊗ an) =
⎧⎪⎪⎨⎪⎪⎩

a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an 0 ≤ i < n
(−1)∣an∣(∣a0∣+∣a1∣+...+∣an−1∣)ana0 ⊗ a1 ⊗ . . .⊗ an−1 i = n,

degeneracy maps that insert the unit

si(a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ . . .⊗ an,

and cyclic operator

tn(a0 ⊗ . . .⊗ an) = (−1)∣an∣(∣a0∣+∣a1∣+...+∣an−1∣)+n(an ⊗ a0 ⊗ . . .⊗ an−1).

Then the Hochschild complex associated to C∗(A, δ) is a complex of complexes with bound-

ary map d given by an alternating sum of the face maps

d =
n

∑
i=0

(−1)idi ∶ C∗(A, δ)⊗(n+1) ÐÐ→ C∗(A, δ)⊗n.

10



This bicomplex below has trivial horizontal maps:

⋮ ⋮ ⋮

(A⊗A⊗A)0 (A⊗A⊗A)1 (A⊗A⊗A)2 ⋯

(A⊗A)0 (A⊗A)1 (A⊗A)2 ⋯

A0 A1 A2 ⋯

d

δ

d

δ

d

d

δ

d

δ

d

δ δ

and the weight parts of the tensor product are given by:

(A⊗(n+1))k = ⊕
i0+...+in=k

Ai0 ⊗ . . .⊗Ain .

Then taking the homology of the total complex of this bicomplex with boundary d+0 (since

δ is trivial) gives the Hochschild homology of this differential graded algebra, denoted by

HH∗(A, δ).

2.2 Topological Hochschild Homology

Motivated by applications to algebraic K-theory, in the late 1980’s Bökstedt constructed a

topological version of Hochschild homology [6, 7]. Topological Hochschild homology is an

invariant of ring spectra and can be defined as follows:

Definition 2.2.1

For a commutative ring spectrum R, an R-algebra A, and an (A,A)-bimodule spectrum M ,

we have a multiplication map µ ∶ A ∧R A→ A and a unit map η ∶ R → A along with left and

11



right actions of A on M

ψ ∶ A ∧RM →M γ ∶M ∧R A→M.

Let THHR(A,M)● be the simplicial R-module spectrum with r-simplices THHR(A,M)r ∶=

M ∧R A∧Rr and face maps

di =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ∧ Id∧(r−1) i = 0

Id∧i ∧ µ ∧ Id∧(r−i−1) 1 ≤ i < r
(ψ ∧ Id∧(r−1)) ○ t i = r

where t is the cyclic permutation bringing the last factor around to the front. The degeneracy

maps will again insert the unit map appropriately. Then the topological Hochschild

homology relative to R of A with coefficients in M is the geometric realization

THHR(A,M) ∶= ∣THHR(A,M)●∣

Remark 2.2.2

As before, when M = A we then eliminate it from the notation and write

THHR(A) ∶= ∣THHR(A,A)●∣

In summary, we have now introduced the algebraic definition of Hochschild homology

and its topological analog, topological Hochschild homology. In the following sections we will

introduce analogous theories for coalgebras, coHochschild homology (coHH) and topological

coHochschild homology (coTHH).
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Algebra Topology

Algebras: HH(A) THH(A)

Coalgebras: coHH(C) coTHH(C)

2.3 Coalgebras

First we will recall the definitions of coalgebras and comodules in order to introduce the

classical coHochschild homology of Doi [14] and coHH of a graded coalgebra over a graded

ring, since we will need such structure for the spectral sequence. Then we will introduce

coalgebras in spectra and look at examples.

Definition 2.3.1

Let R be a commutative ring. Then a (coassociative, counital) coalgebra C over R is an R-

module with R linear maps that are the comultiplication ∆ ∶ C → C⊗C that is coassociative

and counit ε ∶ C → R that is counital, i.e. the following coassociativity and counitality

diagrams commute:

C C ⊗C

C ⊗C C ⊗C ⊗C

∆

∆ Id ⊗∆

∆⊗Id

C C ⊗C

C ⊗C R⊗C ≅ C ≅ C ⊗R

∆

∆ Id Id ⊗ε
ε⊗Id

Example 2.3.2

For a field k, the polynomial coalgebra k[w1,w2, . . .] for wi in even degree is the vector space

with basis given by {wji } for j ≥ 0 and i ≥ 1. It has coproduct

13



∆(wji ) = ∑
k

(j
k
)wki ⊗w

j−k
i

and counit

ε(wji ) =
⎧⎪⎪⎨⎪⎪⎩

1 if j = 0

0 if j ≠ 0.

Example 2.3.3

For a field k, the exterior coalgebra Λk(y1, y2, . . .) for yi in odd degrees is the vector space

with basis given by {1, yi} for i ≥ 1, which has coproduct

∆(yi) = 1⊗ yi + yi ⊗ 1

∆(1) = 1⊗ 1

and counit

ε(yi) = 0

ε(1) = 1

Example 2.3.4

For a field k, the divided power coalgebra Γk[x1, x2, . . .] with xi in even degrees is the vector

space with basis given by {γj(xi)} for j ≥ 0 and i ≥ 1. It has coproduct

∆(γj(xi)) = ∑
a+b=j

γa(xi) ⊗ γb(xi)

where γ0(xi) = 1, γ1(xi) = xi, and counit

14



ε(γj(xi)) =
⎧⎪⎪⎨⎪⎪⎩

1 if j = 0

0 if j ≠ 0.

Understanding Hopf algebras will also be essential for this work, so we recall the definition

here. First we introduce bialgebras.

Definition 2.3.5

A bialgebra A over a commutative ring R is a unital associative R-algebra with multipli-

cation µ ∶ A ⊗R A → A and unit η ∶ R → A along with comultiplication ∆ ∶ A → A ⊗R A

and counit ε ∶ A → R such that A is also a counital coassociative R-coalgebra satisfying the

following commutative diagrams, where all ⊗ below are over R:

1.

A⊗A µ //

∆⊗∆
��

A
∆ // A⊗A

A⊗A⊗A⊗A Id⊗t⊗Id // A⊗A⊗A⊗A
µ⊗µ
OO

where t swaps the two components of A⊗A.

2.

A⊗A
ε⊗ε

&&

µ // A
ε

yy
R⊗R ≅ R

3.

R⊗R ≅ R
η⊗η
xx

η

%%
A⊗A A

∆
oo

15



4.

R η
&&

Id
��

A

εxx
R

Definition 2.3.6

A Hopf algebra A is a bialgebra over a commutative ring R together with a map of R-

modules χ ∶ A→ A called the antipode such that the following diagram commutes:

A⊗A χ⊗Id // A⊗A

µ
##

A

∆
;;

∆ ##

ε
// R η

// A

A⊗A Id ⊗χ // A⊗A
µ

;;

where µ is the multiplication, ∆ is the comultiplication, η is the unit, and ε is the counit.

It will also be useful to have the “dual” notion of modules on which C coacts :

Definition 2.3.7

Let R be a commutative ring and C an R-coalgebra. Then N is a right C-comodule if it

is an R-module together with an R-linear map γ ∶ N → N ⊗R C that is coassociative and

counital, i.e. that makes the following diagrams commute:

N N ⊗R C

N ⊗R C N ⊗R C ⊗R C

γ

γ Id ⊗∆

γ⊗Id

N N ⊗R C

N

γ

Id
Id ⊗ε

γ is referred to as a right C-coaction.

Similarly, a left C-comodule is an R-module together with an R-linear map ψ ∶ N → C⊗RN

16



that is coassociative and counital, i.e. that makes the following diagrams commute:

N C ⊗RN

C ⊗RN C ⊗R C ⊗RN

ψ

ψ ∆⊗Id

Id ⊗ψ

N C ⊗RN

N

ψ

Id
ε⊗Id

ψ is referred to as a left C-coaction.

Similar to the way in which right and left module structures together may create a

bimodule structure, the analogous definition holds for comodules:

Definition 2.3.8

For R-coalgebras C,D, a (C,D)-bicomodule N is a left C-comodule with left coaction

ψ ∶ N → C ⊗R N and right D-comodule with right coaction γ ∶ N → N ⊗R D that satisfies

the following commutative diagram:

N N ⊗RD

C ⊗RN C ⊗RN ⊗RD

γ

ψ ψ⊗Id

Id ⊗γ

2.4 CoHochschild Homology

In [14], Doi defines coHochschild homology as an invariant of coalgebras:

Definition 2.4.1

Let k be a commutative ring, C a (coassociative, counital) k-coalgebra, and N a (C,C)-

bicomodule. Then C comes equipped with a coassociative comultiplication ∆ ∶ C → C ⊗ C
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and counit ε ∶ C → k. We build the cochain complex C∗(N,C):

⋯ ←ÐÐ N ⊗C ⊗C ←ÐÐ N ⊗C ←ÐÐ N ←ÐÐ 0

with coboundary map δ = Σi(−1)iδi for δi given by

δi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ⊗ Id⊗r i = 0

Id⊗i ⊗∆⊗ Id⊗(r−i) 1 ≤ i ≤ r
t̃ ○ (ψ ⊗ Id⊗r) i = r + 1

where γ denotes the right coaction, ψ denotes the left coaction, and t̃ is the map that twists

the first factor to the last. Then the qth coHochschild homology of C with coefficients in

N is

coHHq(N,C) ∶=Hq(C∗(N,C)).

Remark 2.4.2

We denote coHochschild homology with coefficients in C by coHHq(C) when C is viewed as

a (C,C)-bicomodule over itself.

Remark 2.4.3

Work of Hess-Parent-Scott [19] shows that the coHochschild homology of a differential graded

coalgebra over a graded ring follows as above with the addition of signs that follow from the

Koszul rule. In the spectral sequence of the next chapter we will use the following definition

of coHH of a graded coalgebra over a graded ring based on their definition with trivial

differential:

Definition 2.4.4

For a differential graded coalgebra (D,∂) with trivial coderivation ∂, let C∗(D,∂) be the
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cyclic cochain complex given by

[n] ↦ (D,∂)⊗(n+1)

with coface maps

δi =
⎧⎪⎪⎨⎪⎪⎩

Id⊗i ⊗∆⊗ Id⊗(r−i) 0 ≤ i ≤ r
(−1)∣d0∣(∣d1∣+∣d2∣+...+∣dn∣)t̃ ○ (∆⊗ Id⊗r) i = r + 1,

where t̃ is the map that twists the first factor to the last, codegeneracy maps that insert the

counit

σi = Id⊗(i+1) ⊗ ε⊗ Idr−i,

and cocyclic operator

t̄n(d0 ⊗ . . .⊗ dn) = (−1)∣d0∣(∣d1∣+∣d2∣+...+∣dn∣)+n(d1 ⊗ . . .⊗ dn ⊗ d0).

Then the coHochschild complex associated to C∗(D,∂) has coboundary map given by an

alternating sum of the coface maps

δ =
n

∑
i=0

(−1)iδi ∶ C∗(D,∂)⊗n ÐÐ→ C∗(D,∂)⊗(n+1),

19



and the bicomplex below has trivial horizontal maps:

⋮ ⋮ ⋮

(D ⊗D ⊗D)0 (D ⊗D ⊗D)1 (D ⊗D ⊗D)2 ⋯

(D ⊗D)0 (D ⊗D)1 (D ⊗D)2 ⋯

D0 D1 D2 ⋯

∂ ∂

δ

∂ ∂

δ δ

δ

∂ ∂

δ δ

where the weight parts of the tensor product are given by:

(D⊗(n+1))k = ⊕
i0+...+in=k

Di0 ⊗ . . .⊗Din .

Taking the cohomology of the total complex of this bicomplex with coboundary δ+0 gives the

coHochschild homology of this differential graded coalgebra, denoted by coHH∗(D,∂).

2.5 Coalgebras in Spectra

Now we will introduce coalgebras in spectra. First we state the definition of a coalgebra for

the general setting of a symmetric monoidal category.

Definition 2.5.1

Let (D ,⊗,1) be a symmetric monoidal category. Then a (coassociative, counital) coalgebra

C ∈ D has a comultiplication ∆ ∶ C → C ⊗C that is coassociative and a counit morphism ε ∶

C → 1 that is counital, i.e. the following coassociativity and counitality diagrams commute:
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C C ⊗C

C ⊗C C ⊗C ⊗C

∆

∆ Id ⊗∆

∆⊗Id

C C ⊗C

C ⊗C 1⊗C ≅ C ≅ C ⊗ 1

∆

∆ Id Id ⊗ε
ε⊗Id

Definition 2.5.2

A coalgebra spectrum is a coalgebra in one of the symmetric monoidal categories of

spectra.

Definition 2.5.3

For a commutative ring spectrum R, an R-coalgebra spectrum C is a coalgebra in the

symmetric monoidal category of R-modules. It has comultiplication ∆ ∶ C → C ∧R C and

counit ε ∶ C → R, satisfying the coassociativity and counitality conditions.

Example 2.5.4

For a space X, the diagonal map X →X∧X on topological spaces induces a comultiplication

map on the suspension spectrum Σ∞(X):

∆ ∶ Σ∞(X) → Σ∞(X ∧X) ≃ Σ∞(X) ∧Σ∞(X),

making Σ∞(X) into a coalgebra spectrum.

However, it should be noted that most spectra do not have diagonal maps and thus ex-

amples of this form are quite limited, as shown in work of Péroux-Shipley [30]. In particular,

they prove that all coalgebra spectra over S are cocommutative in strict monoidal categories

of spectra. As we saw in the above example, some coalgebras over the sphere spectrum

come from suspension spectra, but Péroux-Shipley further show that in model categories all
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S-coalgebras are closely related to suspension spectra. This rigid structure of S-coalgebras

therefore provides motivation for studying other kinds of coalgebra spectra.

Because examples of coalgebras in spectra over S are limited, a primary goal of this work

is to develop tools to study coalgebras over other commutative ring spectra. One source of

such coalgebra spectra is the following general construction:

Proposition 2.5.5

A map of commutative ring spectra φ ∶ A → B induces a B-coalgebra structure on the

spectrum B ∧A B.

Proof.

To have a coalgebra structure, we first want a comultiplication map

∆ ∶ B ∧A B → (B ∧A B) ∧B (B ∧A B)
↓ ≅

B∧AB ∧A B

But we have the equivalence iA ∧ Id ∶ B ∧A B → B ∧A A ∧A B. The map iA inserts an extra

copy of A:

iA ∶ B

≅
��

// B ∧A A

B ∧ S Id∧ηA // B ∧A

OO

for unit map ηA. Applying φ yields

B ∧A B ≅ B ∧A A ∧A B
Id∧φ∧IdÐÐÐÐÐ→ B ∧A B ∧A B

which induces our desired comultiplication map.

We further need a counit map ε ∶ B ∧A B → B. By definition, B ∧A B is the coequalizer
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of

B ∧A ∧B
Id∧ψÐÐÐ→ÐÐÐ→
γ∧Id

B ∧B → B ∧A B

for module actions

A ∧B B

B ∧B

ψ

φ∧Id
m

B ∧A B

B ∧B

γ

Id∧φ m

where the ring map m ∶ B ∧B → B is the multiplication in the commutative ring spectrum

B. Consider mapping to B in this diagram:

B ∧A ∧B
Id∧ψ //
γ∧Id

// B ∧B //

m
��

B ∧A B

B

Diagram 2.1

If we consider the two composites in Diagram 2.1,

B ∧A ∧BId∧ψ //

Id∧φ∧Id
��

B ∧B //m // B

B ∧B ∧B
Id∧m

88

B ∧A ∧Bγ∧Id //

Id∧φ∧Id
��

B ∧B //m // B

B ∧B ∧B
m∧Id

88

we see that they agree since B is in particular an associative ring spectrum, so we have a

map from B ∧A ∧B → B, making the diagram 2.1 commute. By the universal property of

coequalizers, there exists a unique map ε ∶ B ∧A B → B in this diagram
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B ∧A ∧B
Id∧ψ //
γ∧Id

//

**

B ∧B //

m
��

B ∧A B
ε

yy
B

and this map ε gives us the desired counit map. Now we must check that this is indeed a

coalgebra by confirming that it satisfies the necessary coassociativity and counitality dia-

grams.

First, we need to check that we satisfy coassociativity of the comultiplication, that is

(Id ∧ ∆)∆ = (∆ ∧ Id)∆. This property can be shown by proving the following diagram

commutes:

B ∧A B (B ∧A B) ∧B (B ∧A B)

(B ∧A B) ∧B (B ∧A B) (B ∧A B) ∧B (B ∧A B) ∧B (B ∧A B)

∆

∆ Id ∧∆

∆∧Id

This result follows from a diagram chase through the definition of the comultiplication.

Recall that iA inserts − ∧AA and similarly iB will insert − ∧B B, so that the map ∆ in this

setting is the composition:

∆ ∶ B ∧A B
iA∧Id // B ∧A A ∧A B

Id∧φ∧Id // B ∧A B ∧A B
Id∧iB∧Id// (B ∧A B) ∧B (B ∧A B).

So now expanding the above diagram with this decomposition of the comultiplication yields

Diagram 1 given in the Appendix. Commutativity of each of the squares in that diagram

follows because each of the vertical (and horizontal) maps are equivalent at each level with

additional copies of the identity inserted as appropriate. Thus the coassociativity axiom is

satisfied.

Counitality follows from showing (ε ∧ Id)∆ = Id = (Id ∧ ε)∆. Because B is commutative,

the left and right module actions of B on B ∧A B coincide:
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(B ∧A B) ∧B (B ∧A B) Id∧ε // (B ∧A B) ∧B B ≅ B ∧A B ≅ B ∧B (B ∧A B) (B ∧A B) ∧B (B ∧A B)ε∧Idoo

B ∧A B
∆

ll

∆

22

so it suffices to show why one of these triangles commutes. The right-hand composition can

be broken down as

B ∧A B
iA∧IdÐÐÐ→ B ∧A A ∧A B

Id∧φ∧IdÐÐÐÐ→ B ∧A B ∧A B
Id∧iB∧IdÐÐÐÐÐ→ B ∧A B ∧B B ∧A B

ε∧IdÐÐ→ B∧B(B ∧A B)
↓ ≅
B ∧A B.

Observe that the last factor of B is unchanged by this map, and so this composition map

comes from

B ≅ B ∧ S B ∧A B ∧B B,
Id∧ηA

Id∧ηB

Id∧φ m

where the first part of this composite must be Id∧ηB by the definition of map of ring spectra.

However, unitality of B implies that m(Id∧ηB) = IdB , and therefore the right triangle in our

diagram is equivalent to the identity on B ∧AB. A similar justification can be used to show

the left triangle commutes as well, so we have shown that B ∧A B coming from the map of

commutative ring spectra φ ∶ A→ B is a coassociative, counital B-coalgebra spectrum.

Examples of these kinds of coalgebra spectra include HFp-coalgebras such as HFp∧HFp,

HFp ∧HZHFp, and HFp ∧BP<n>HFp for n = 0,1 and for n = 2 at the primes p = 2,3, some

of which we will examine later on in further detail.
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2.6 Topological CoHochschild Homology

We will define (topological) coHochschild homology for any general symmetric monoidal

category as in Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen [4]. Thereafter we will

be primarily using the definition as it applies to spectra, although classical coHochschild

homology as defined by Doi [14] can be recovered from the following more general definition

by considering the category of coalgebras over a field.

Definition 2.6.1

Let (D ,⊗,1) be a symmetric monoidal model category and let C ∈ D be a coalgebra with

coassociative comultiplication ∆ ∶ C → C ⊗ C and counit ε ∶ C → 1. Further, let N be a

(C,C)-bicomodule with left and right coactions ψ ∶ N → C⊗N and γ ∶ N → N ⊗C. Then let

coTHH(N,C)● be the cosimplicial object with r-simplices coTHH(N,C)r ∶= N ⊗C⊗r, with

coface maps

δi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ⊗ Id⊗r i = 0

Id⊗i ⊗∆⊗ Id⊗(r−i) 0 < i ≤ r
t̃ ○ (ψ ⊗ Id⊗r) i = r + 1

where t̃ is the map that twists the first factor to the last, and with codegeneracy maps

σi ∶ N ⊗C⊗(r+1) → N ⊗C⊗r for 0 ≤ i ≤ r

σi = Id⊗(i+1) ⊗ ε⊗ Id⊗r−i.

This gives a cosimplicial object of the form
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⋮
N⊗C ⊗C
↑↓ ↑↓↑
N ⊗C
↑ ↓↑
N

Then the topological coHochschild homology of the coalgebra C with coefficients in N

is given by

coTHH(N,C) ∶= Tot(RcoTHH(N,C)●)

where R is the Reedy fibrant replacement and Tot represents the totalization.

Remark 2.6.2

We defined topological coHochschild homology with coefficients in a (C,C)-bicomodule N ,

but when we consider C as a bicomodule over itself, we write coTHH(C) for coefficients

in C. As with topological Hochschild homology, we will further decorate the notation with

coTHHR(C) when we consider the topological coHochschild homology of C relative to R,

i.e. coTHH of an R-coalgebra C for R a commutative ring spectrum.

Remark 2.6.3

Recall that for rings and ring spectra A, HH(A)● and THH(A)● are examples of cyclic bar

constructions. Similarly for a coalgebra C, the coHochschild complex for C together with a

cyclic operator

t̃n(a0 ⊗ a1 ⊗⋯⊗ an) = a1 ⊗⋯⊗ an−1 ⊗ an ⊗ a0.

is called the cyclic cobar construction, and both coHH(C)● and coTHH(C)● are exam-

ples.
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As mentioned above, working in the category of coalgebras over a field recovers the clas-

sical coHH of Doi [14]. Our general convention will be to specifically refer to this construc-

tion as topological coHochschild homology when we are considering as input some coalgebra

spectrum. For instance, we will refer to the work of Hess-Parent-Scott [19] as studying

coHochschild homology of differential graded coalgebras (dg-coalgebras) over a field.

2.7 The Classical Bökstedt Spectral Sequence

Before constructing the coBökstedt spectral sequence for coTHH, we first recall the classical

Bökstedt spectral sequence for THH, due to Bökstedt in [6]. Recall that for a ring spectrum

A (i.e. an S-algebra with multiplication µ ∶ A ∧A→ A and unit η ∶ A→ S), we can build the

simplicial spectrum THH(A)● via

⋮
A∧A ∧A
↓↑ ↓↑↓
A ∧A
↓ ↑↓
A

where the face maps di ∶ A∧(r+1) → A∧r are given by

di =
⎧⎪⎪⎨⎪⎪⎩

Id∧i ∧ µ ∧ Id∧(r−i−1) 0 ≤ i < r
(µ ∧ Id∧i) ○ t i = r

for t that cyclically permutes the last element to the front, and where the degeneracy maps
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si ∶ A∧(r+1) → A∧(r+2) insert the unit map for 0 ≤ i ≤ r:

si = Id∧(i+1) ∧ η ∧ Id∧(r−i)

Then for this simplicial spectrum THH(A)●, one can consider the spectral sequence that

comes from its skeletal filtration and converges to H∗(THH(A);k), where k is a field. For

this spectral sequence, E1∗,q is isomorphic to the normalized chain complex of Hq(THH(A)●).

So we consider the homology applied to each simplicial level of THH(A)●:

⋮
H∗(A∧A ∧A;k)

↓↑↓ ↑↓
H∗(A ∧A;k)

↓ ↑↓
H∗(A;k).

Note then that

H∗(A ∧A ∧⋯ ∧A;k) ≅ π∗(A ∧A ∧⋯ ∧A ∧Hk)
≅ π∗((A ∧Hk) ∧Hk (A ∧Hk) ∧Hk ⋯∧Hk (A ∧Hk))
≅ π∗(A ∧Hk) ⊗π∗Hk π∗(A ∧Hk) ⊗π∗Hk ⋯⊗π∗Hk π∗(A ∧Hk)

where the last isomorphism follows from the Künneth spectral sequence because π∗(A∧Hk)

is flat over π∗Hk ≅ k. Thus we can rewrite each level to get:

H∗(A ∧A ∧⋯ ∧A;k) ≅H∗(A;k) ⊗k H∗(A;k) ⊗k ⋯⊗k H∗(A;k)

Further, the d1-differential of the spectral sequence under this identification agrees with
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the differential of the complex computing HH∗(H∗(A;k)). Therefore the E2-term of this

spectral sequence is HH∗(H∗(A;k)), the classical Hochschild homology of H∗(A;k).

Since this structure follows from the general spectral sequence that arises from the skeletal

filtration of the simplicial spectrum THH(A)●, this can be extended to any homology theory,

which is formally stated in the context of S-modules in the following theorems of Elmendorf-

Kriz-Mandell-May [15]:

Theorem ([15] Thm IX.2.9)

Let E be a commutative ring spectrum, A a ring spectrum, and M a cell (A,A)-

bimodule. If E∗(A) is E∗-flat, then there is a spectral sequence of the form

E2
p,q = HHE∗p,q (E∗(A),E∗(M)) Ô⇒ Ep+q(THHS(A,M))

Here E∗ is the homology theory associated to the commutative ring spectrum E, i.e.

E∗(A) = π∗(E ∧A). Thus the above result comes from the spectral sequence derived from

the simplicial filtration of THHR(A,M) (for the case R = S) as given in:

Theorem ([15] Thm X.2.9)

Let E and R be ring spectra and K∗ be a proper simplicial R-module spectrum.

Then there is a natural homological spectral sequence {Erp,qK∗} such that

E2
p,qK∗ =Hp(Eq(K∗))

and {Erp,qK∗} converges strongly to E∗(∣K∗∣).
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Note that this Theorem X.2.9 from [15] gives a more general statement of the Bökstedt

spectral sequence for topological Hochschild homology of an R-algebra, which we state here

for clarity.

Theorem 2.7.1

Suppose E and R are commutative ring spectra, A is an R-algebra, and M is a cell (A,A)-

bimodule. Then if E∗(A) is flat over E∗(R), then there exists a spectral sequence

E2
p,q = HH

E∗(R)
p,q (E∗(A),E∗(M)) Ô⇒ Ep+q(THHR(A,M))

We quickly verify that this spectral sequence has the indicated E2-term. For this spectral

sequence, E1∗,q is isomorphic to the normalized chain complex of Eq(THHR(A,M)●). So we

consider the E-homology applied to each simplicial level of THHR(A,M)●:

E∗(M ∧R A ∧R ⋯∧R A) ≅ π∗(E ∧M ∧R A ∧R ⋯∧R A)
≅ π∗(E ∧M ∧E∧R E ∧R ∧R A ∧E∧R E ∧R ∧R ⋯∧E∧R E ∧R ∧R A)
≅ π∗(E ∧M ∧E∧R E ∧A ∧E∧R E ∧A⋯∧E∧R E ∧A)
≅ π∗(E ∧M) ⊗π∗(E∧R) π∗(E ∧A) ⊗π∗(E∧R)⋯⊗π∗(E∧R) π∗(E ∧A)

(since π∗(E ∧A) is flat over π∗(E ∧R) by hypothesis)

≅ E∗(M) ⊗E∗(R) E∗(A) ⊗E∗(R)⋯⊗E∗(R) E∗(A)

The d1-differential of the spectral sequence under this identification agrees with the dif-

ferential of the complex computing HHE∗(R)(E∗(A),E∗(M)), so we identify the E2-term:

E2
p,q = HH

E∗(R)
p,q (E∗(A),E∗(M)) Ô⇒ Ep+q(THHR(A,M))

Now that we’re equipped with the relative statement of the theorem for the theories of

HH and THH, we want to investigate what is currently known about the dual situation
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for coTHH, and then see how we can extend that work in order to have a tool for general

R-coalgebra spectra.
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Chapter 3

Construction of a relative coBökstedt

spectral sequence

Associated to a cosimplicial spectrum is a Bousfield-Kan spectral sequence [8]. Applied

to the cosimplicial spectrum coTHH(C)● this yields a spectral sequence whose E2-term

was identified in Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen [4] as the classical

coHochschild homology of coalgebras in the sense of Doi [14]. Specifically, they show:

Theorem ([4] Thm 4.1)

Let k be a field and C a coalgebra spectrum that is cofibrant as a spectrum. Then

the Bousfield-Kan spectral sequence for the cosimplicial spectrum coTHH(C)●

gives a coBökstedt spectral sequence for calculating Ht−s(coTHH(C);k) with

E2-page

E
s,t
2 = coHHks,t(H∗(C;k))

given by the classical coHochschild homology of H∗(C;k) as a graded k-module.

Bear in mind that the Bousfield-Kan spectral sequence does not always converge,

although the authors do specify conditions under which the coBökstedt spectral sequence
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will converge completely.1 Note that this spectral sequence applies to the ordinary homology

of coTHH(C) where C is an S-coalgebra. Now we want to create a relative version of

this theorem for R-coalgebra spectra that would give the Bousfield-Kan spectral sequence

computing the homology of coTHHR(C). As we saw in the THH setting, we would expect

that some flatness conditions must be satisfied.

For commutative ring spectra E and R, an R-coalgebra spectrum C, and a (C,C)-

bicomodule N , we will see that if E∗(C) is flat over E∗(R), then the Bousfield-Kan spec-

tral sequence for the cosimplicial spectrum coTHHR(N,C)● can be used in calculating

Et−s(coTHHR(N,C)) with E2-page

E
s,t
2 = coHH

E∗(R)
s,t (E∗(N),E∗(C)).

We will refer to this spectral sequence as the relative coBökstedt spectral sequence. Note in

particular that this holds for any generalized homology theory in addition to being over the

more general ring spectrum R.

We will first formally state and prove that this relative coBökstedt spectral sequence

exists, and then identify a corollary that will be useful for later computations. Further, we

will describe conditions for convergence of this spectral sequence.

Theorem 3.0.1

Let E and R be commutative ring spectra, C an R-coalgebra spectrum that is cofibrant as

an R-module, and N a (C,C)-bicomodule spectrum. If E∗(C) is flat over E∗(R), then there

exists a Bousfield-Kan spectral sequence for the cosimplicial R-module coTHHR(N,C)● that

1For instance, the coBökstedt spectral sequence converges when C is a suspension spectrum Σ∞+ X for
simply connected X [4].
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abuts to Et−s(coTHHR(N,C)) with E2-page

E
s,t
2 = coHH

E∗(R)
s,t (E∗(N),E∗(C))

given by the classical coHochschild homology of E∗(C) with coefficients in E∗(N).

Proof. To begin, we will recall the general construction of the Bousfield-Kan spectral se-

quence [8] for a general Reedy fibrant cosimplicial R-module X●.

Let ∆ be the cosimplicial space with the standard n-simplex ∆n as its nth level. The

category of R-modules is cotensored over pointed spaces (see e.g. [2]), and the notation DK

will be used for the cotensor of an R-module D with a simplicial space K. So for our Reedy

fibrant cosimplicial R-module X● the totalization of X● is given by:

Tot(X●) = eq( ∏
n≥0

(Xn)∆n ⇉ ∏
α∈∆([a],[b])

(Xb)∆a).

Let sks∆ ⊂ ∆ be the cosimplicial subspace with nth level sks∆n that is the s-skeleton of

the n-simplex. Then one can define

Tots(X●) ∶= eq( ∏
n≥0

(Xn)sks∆n ⇉ ∏
α∈∆([a],[b])

(Xb)sks∆a).

The inclusions sks∆↪ sks+1∆ induce a tower of fibrations

⋯ → Tots(X●) psÐÐ→ Tots−1(X●)
ps−1ÐÐÐ→ Tots−2(X●) → ⋯

p1ÐÐ→ Tot0(X●) ≅X0.

↑ is ↑ is−1 ↑ is−2 ↑ i0
Fs Fs−1 Fs−2 F0
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We then have an associated exact couple

π∗(Tot∗(X●)) π∗(Tot∗(X●))

π∗(F∗)

p∗

∂i∗

that yields a half plane cohomological spectral sequence {Er, dr} with differentials

dr ∶ Es,tr → E
s+r,t+r−1
r .

We now want to identify the fiber Fs. Recall that the normalized cochain complex NsX●

is defined to be:

NsX● =
s−1

⋂
i=0

ker(σi ∶Xs →Xs−1)

for codegeneracy maps σi as given by the cosimplicial structure.

Then each fiber Fs can be identified with

Fs ∶= Ωs(NsX●).

The E1-term of the spectral sequence can thus be identified:

E
s,t
1 = πt−s(Fs)

≅ πt−s(Ωs(NsX●))
≅ πt(NsX●)
≅ Nsπt(X●)

with differential d1 ∶ Nsπt(X●) → Ns+1πt(X●). This map can then be identified with
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Σ(−1)iπt(δi), and we have

H∗(Nsπt(X●)) ≅Hs(πt(X●))
Ô⇒ E

s,t
2 ≅Hs(πt(X●),Σ(−1)iπt(δi))

Here we care about the specific case when X● = R(E ∧ coTHHR(N,C)●), where R

indicates the Reedy fibrant replacement, and so we get

π∗(X●) = π∗(R(E ∧ coTHHR(N,C)●) ≅ π∗(E ∧ coTHHR(N,C)●).

Recall that coTHHR(N,C) has cosimplicial structure:

⋮
N∧RC ∧R C
↑↓ ↑↓↑
N ∧R C
↑ ↓↑
N

so when we take π∗(E ∧ −), at the nth level we see that:

π∗(E ∧N ∧R C ∧R ⋯∧R C) ≅ π∗(E ∧N ∧E∧R E ∧R ∧R C ∧E∧R E ∧R ∧R ⋯∧E∧R E ∧R ∧R C)
≅ π∗(E ∧N ∧E∧R E ∧C ∧E∧R E ∧⋯ ∧E∧R E ∧C)
≅ π∗(E ∧N) ⊗π∗(E∧R) π∗(E ∧C) ⊗π∗(E∧R) ⋯⊗π∗(E∧R) π∗(E ∧C)

(since π∗(E ∧C) is flat over π∗(E ∧R) by hypothesis)

≅ E∗(N) ⊗E∗(R) E∗(C) ⊗E∗(R) ⋯⊗E∗(R) E∗(C)

and so we get

37



π∗R(E ∧ coTHHR(N,C)n) ≅ π∗(E ∧ coTHHR(N,C)n)
≅ E∗(N) ⊗E∗(R) E∗(C)⊗E∗(R)n.

Then Σ(−1)iπ∗(δi) gives the coHochschild differential under this identification, and thus we

get the coHochschild complex:

E
s,t
2 ≅Hs(πt(X●),Σ(−1)iπt(δi))

≅Hs(Et(N) ⊗E∗(R) Et(C)⊗E∗(R)n,Σ(−1)iπt(δi))

≅ coHH
E∗(R)
s,t (E∗(N),E∗(C))

Therefore the result is the Bousfield-Kan spectral sequence

E
s,t
2 = coHH

E∗(R)
s,t (E∗(N),E∗(C)) ??Ô⇒ Et−s(coTHHR(N,C))

where we use ?? as a reminder that this sequence does not converge in general.

Because it will be particularly useful in future examples, we state the following special

case when E = S as a corollary:

Corollary 3.0.2

Let R be a commutative ring spectrum and C an R-coalgebra spectrum. If π∗(C) is flat over

π∗(R), then there exists a Bousfield-Kan spectral sequence that abuts to πt−s(coTHHR(C))

with E2-page

E
s,t
2 = coHH

π∗(R)
s,t (π∗(C))

given by the classical coHochschild homology of π∗(C).

Now we want to see the conditions we require for convergence. Based on work of Bousfield-
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Kan [8] and Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen [4], we have the following

convergence result.

Proposition 3.0.3

If for every s there exists some r so that E
s,s+i
r = Es,s+i∞ , then the relative coBökstedt spectral

sequence for coTHHR(C) converges completely to

π∗TotR(E ∧ coTHHR(C)●)

Conditions for complete convergence can be found in Goerss-Jardine [18]. Further, from

the natural construction of a map Hom(X,Y ) ∧Z → Hom(X,Y ∧Z) we get a natural map

P ∶ E ∧Tot(RcoTHHR(C)●) → TotR(E ∧ coTHHR(C)●)

Applying homotopy to the above gives us the following corollary.

Corollary 3.0.4

If for every s there exists some r so that E
s,s+i
r = Es,s+i∞ and P ∶ E ∧Tot(RcoTHHR(C)●) →

TotR(E∧coTHHR(C)●) induces an isomorphism in homotopy, then the relative coBökstedt

spectral sequence for coTHHR(C) converges completely to E∗(coTHHR(C)).

For the examples in which we will compute topological coHochschild homology in this

thesis, we are taking E = S and so the condition on the map P is satisfied. We formally state

this specific case here for easy reference:

Corollary 3.0.5

When considering E = S, if for every s there exists some r so that E
s,s+i
r = Es,s+i∞ then the

relative coBökstedt spectral sequence converges completely to π∗(coTHHR(C)).
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Chapter 4

Algebraic structures in the (relative)

(co)Bökstedt spectral sequence

Understanding additional algebraic structure in a spectral sequence can help facilitate calcu-

lations. In this section we study the structure of the relative coBökstedt spectral sequence.

By work of Angeltveit-Rognes, the classical Bökstedt spectral sequence for a commutative

ring spectrum has the structure of a spectral sequence of Hopf algebras under some flatness

conditions [1]. Bohmann-Gerhardt-Shipley show that under appropriate coflatness condi-

tions the coBökstedt spectral sequence for a cocommutative coalgebra spectrum has what is

called a ◻-Hopf algebra structure, an analog of a Hopf algebra structure working over a coal-

gebra [5]. It follows from Bohmann-Gerhardt-Shipley’s work that the relative coBökstedt

spectral sequence also has this type of ◻-Hopf algebra structure, and this additional algebraic

structure is computationally useful. For instance, with this structure the shortest nonzero

differential maps from an algebra indecomposable to a coalgebra primitive.

In this section, we will begin by examining the structure of the Bökstedt spectral sequence

and the implications of that algebraic structure as in Angeltveit-Rognes [1]. We will then

introduce the necessary definitions and theorems for the ◻-Hopf algebra structure and state

the result of Bohmann-Gerhardt-Shipley [5] that the coBökstedt spectral sequence has this

structure. Finally we will see how the relative coBökstedt spectral sequence by extension
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also has this ◻-Hopf algebra structure.

4.1 Hopf algebra structure in the Bökstedt spectral

sequence

In order to show that the Bökstedt spectral sequence is a spectral sequence of Hopf algebras,

Angeltveit-Rognes [1] show as in Elmendorf-Kriz-Mandell-May [15] that for a commutative

ring spectrum A, THH(A) is a Hopf algebra over A itself in the homotopy category. One

can identify THH(A) with A ⊗ S1 as commutative S-algebras [26], which induces maps on

THH that give the Hopf structure in the homotopy category. In particular, THH(A) is a

commutative Hopf algebra, but it is not cocommutative in general because the coproduct is

induced from the pinch map, which is not homotopy cocommutative. Angeltveit-Rognes also

study an analogous Hopf structure on the entire Bökstedt spectral sequence, under flatness

conditions [1].

Definition 4.1.1

The standard simplicial circle S1● is given by ∆1/∂∆1 for the one simplex ∆1. Then ∆1
r

has elements {x0, . . . , xr+1} for xj ∶ [r] → [1] that sends j terms to 0. Identifying x0 ∼ xr+1

creates the quotient S1
r with face maps

di(xr) =
⎧⎪⎪⎨⎪⎪⎩

xr r ≤ i
xr−1 r > i

and degeneracy maps
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si(xr) =
⎧⎪⎪⎨⎪⎪⎩

xr r ≤ i
xr+1 r > i.

In the case of THH(A)● ≅ A ⊗ S1● , the Hopf algebra structure over A on THH(A) is

induced by simplicial maps on S1● :

• The inclusion of the basepoint η ∶ ∗ → S1● induces the unit map η ∶ A→ THH(A)●.

• The retraction ε ∶ S1● → ∗ induces the counit map ε ∶ THH(A)● → A.

• The fold map φ ∶ S1● ∨ S1● → S1● induces the multiplication map

φ ∶ THH(A)● ∧A THH(A)● → THH(A)●.

There is no simplicial pinch map S1● → S1● ∨S1● for this simplicial model of of S1, so [1] needed

to also employ a double circle model. The double circle dS1● is the quotient of the double

1-simplex given by

dS1
● = (∆1∐∆1) ∐

∂∆1∐∂∆1
∂∆1.

They then use the double circle model dS1● to define the coproduct. There is a simplicial

pinch map ψ ∶ dS1● → S1● ∨ S1● taking the double circle to the wedge of two circles, and a

simplicial reflection map χ ∶ dS1● → dS1● , which interchanges the two copies of ∆1. These

maps induce maps on a corresponding “double model” of THH, which [1] shows is weakly

equivalent to ordinary THH. Therefore, one gets the following coproduct and antipode maps

in the homotopy category that make THH into an A-Hopf algebra in the homotopy category:
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ψ ∶ THH(A) → THH(A) ∧A THH(A)
χ ∶ THH(A) → THH(A).

Angeltveit-Rognes further prove that these simplicial maps on the circle yield structure

in the Bökstedt spectral sequence as well.

Theorem 4.1.2 ([1] 4.5)

If A is a commutative ring spectrum, then:

1. If H∗(THH(A);Fp) is flat over H∗(A;Fp), then there is a coproduct

ψ ∶H∗(THH(A);Fp) →H∗(THH(A);Fp) ⊗H∗(A;Fp)H∗(THH(A);Fp)

and H∗(THH(A);Fp) is an A∗-comodule H∗(A;Fp)-Hopf algebra, where A∗ is the

dual Steenrod algebra.

2. If each term Er∗,∗(A) for r ≥ 2 is flat over H∗(A;Fp), then there is a coproduct

ψ ∶ Er∗,∗(A) → Er∗,∗(A) ⊗H∗(A;Fp) E
r
∗,∗(A)

and Er∗,∗(A) is an A∗-comodule H∗(A;Fp)-Hopf algebra spectral sequence. In partic-

ular, the differentials dr respect the coproduct ψ.

As mentioned above, we are using the notation A∗ for the dual Steenrod algebra, which
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is the Fp-Hopf algebra:

A∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Fp[ξ1, ξ2, . . .] ⊗ΛFp(τ0, τ1, . . .) p odd

Fp[ξ1, ξ2, . . .] p = 2

for ∣ξi∣ = 2(pi − 1) (or 2i − 1 if p = 2), ∣τi∣ = 2pi − 1 [28].

In order to understand this spectral sequence structure in the setting of Angeltveit-Rognes

[1], we recall a few definitions:

Definition 4.1.3

For an augmented algebra A over a commutative ring R with augmentation ε ∶ A → R, the

indecomposable elements of A, denoted by the R-module QA, are given by the short

exact sequence

IA⊗ IA µÐÐ→ IAÐÐ→ QAÐÐ→ 0

for multiplication map µ and IA ∶= ker(ε).

Example 4.1.4

Indecomposable elements in the polynomial algebra k[w1,w2, . . .] are classes of the form wi.

The augmentation in this case is

ε ∶ k[w1,w2, . . .] → k

wi ↦ 0

so IA = ker(ε) = (w1,w2, . . .). So then the image of the product on IA will be terms of the

form w
mi
i . . .w

mj
j for Σmk > 1, which means QA is given by elements of the form wi.
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Example 4.1.5

Similarly, in the exterior algebra Λk(y1, y2, . . .), indecomposable elements are classes of the

form yi. The augmentation is given by

ε ∶ Λk(y1, y2, . . .) → k

yi ↦ 0

so IA = ker(ε) = (y1, y2, . . .). The image of the product on IA will be terms of the form

yi1 , yi2 . . . yin for n > 1, which means QA is given by elements of the form yi.

Definition 4.1.6

For a coaugmented coalgebra C over a commutative ring R with coaugmentation η ∶ R → C

and counit ε ∶ C → R, the primitive elements of C, denoted by the R-module PC, are

given by the short exact sequence

0ÐÐ→ PC ÐÐ→ JC
∆ÐÐ→ JC ⊗ JC

for comultiplication map ∆ and JC ∶= coker(η). An element x ∈ ker(ε) is primitive if its

image under the quotient by Im(η) in JC is in PC.

Remark 4.1.7

In a coaugmented coalgebra C, x is primitive if ∆(x) = 1⊗x+x⊗1. Note that this formulation

is equivalent to the above definition because the coproduct on x ∈ IC = ker(ε) is given by

∆(x) = 1⊗ x + x⊗ 1 +Σix
′
i ⊗ x

′′
i .

Since C is coaugmented, it splits as R⊕ IC, which means that
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C ⊗C = (R⊗R) ⊕ (IC ⊗R) ⊕ (R⊗ IC) ⊕ (IC ⊗ IC).

Because C is counital,

Id = (ε⊗ Id) ○∆ = (Id⊗ ε) ○∆,

so Σix
′
i ⊗ x

′′
i ∈ IC ⊗ IC. But

η ∶ R ÐÐ→ C ≅ R⊕ IC
r ↦ (r,0)

has cokernel JC ≅ IC, so for primitive x ∈ IC ≅ JC,

0ÐÐ→ PC ÐÐ→ JC
∆ÐÐ→ JC ⊗ JC

x↦ x↦ 0

means that Σix
′
i ⊗ x

′′
i ∈ JC ⊗ JC must be zero, and so ∆(x) = 1⊗ x + x⊗ 1 as desired.

Example 4.1.8

Primitive elements in the polynomial coalgebra k[w1,w2, . . .] are classes of the form w
pm

i for

p = char(k). The coaugmentation

η ∶ k ÐÐ→ k[w1,w2, . . .]
1↦ 1

has cokernel JC with basis {wj1,w
j
2, . . .} for all j ≥ 1. Recall the comultiplication is given by

∆(wji ) = ∑
k

(j
k
)wki ⊗w

j−k
i
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Since p is the characteristic of k,

∆(wp
m

i ) = 1⊗wp
m

i +wp
m

i ⊗ 1

so w
pm

i is primitive. The other wni are not primitive because ∆(wni ) ≠ 1⊗wni +w
n
i ⊗ 1 since

those binomial coefficients do not vanish.

Example 4.1.9

In the exterior coalgebra Λk(y1, y2, . . .), primitive elements are classes of the form yi. Recall

that the coproduct on Λk(y1, y2, . . .) is given by ∆(yi) = 1⊗yi+yi⊗1 and therefore the those

terms are primitive.

Example 4.1.10

Primitive elements in the divided power coalgebra Γk[x1, x2, . . .] are classes of the form xi.

Recall that the divided power coalgebra has comultiplication

∆(γj(xi)) = ∑
a+b=j

γa(xi) ⊗ γb(xi)

So since γ0(xi) = 1 and γ1(xi) = xi, we have

∆(xi) = 1⊗ xi + xi ⊗ 1.

The other γj(xi) for j > 1 are not primitive because their image under ∆ will have additional

γa(xi) ⊗ γb(xi) terms.

Studying primitive and indecomposable elements can be particularly useful because of

results like the following from Angeltveit and Rognes:
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Theorem (Prop 4.8 [1])

Let A be a commutative S-algebra with H∗(A;k) connected and such that HH∗(H∗(A;k))

is flat over H∗(A;k). Then the E2-term of the Bökstedt spectral sequence

E2
∗,∗(A) = HH∗(H∗(A;k))

is an H∗(A;k)-Hopf algebra, and a shortest non-zero differential drs,t in lowest total degree

s + t, if one exists, must map from an algebra indecomposable to a coalgebra primitive in

HH∗(H∗(A;k)).

Proof. We will go through the proof as presented by Angeltveit-Rognes [1] since the proof

of the analogous result for the coBökstedt spectral sequence will be similar.

First we justify why E2∗,∗(A) is an H∗(A;k)-Hopf algebra. Recall that the Hopf algebra

structure includes a comultiplication map, multiplication map, counit map, unit map, and

antipode. As we saw above, THH has an A-Hopf algebra structure in the homotopy cate-

gory that comes from identifying topological Hochschild homology with the simplicial tensor

THH(A) ≅ A ⊗ S1. Then this simplicial structure gives a filtration that induces a spectral

sequence. The E2-term in this case is Hochschild homology of H∗(A;k), and the product

and coproduct descend to E2.

Now suppose d2, ..., dr−1 are all zero. Since E2 is an H∗(A;k)-Hopf algebra, this means

E2∗,∗(A) = Er∗,∗(A) is still an H∗(A;k)-Hopf algebra. If the class xy is decomposable for

classes x, y with positive degree such that dr(xy) ≠ 0, then applying the Leibniz Rule yields:

dr(xy) = dr(x)y ± xdr(y),
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which implies that dr(x) ≠ 0 or dr(y) ≠ 0. Therefore xy cannot be in the lowest possible total

degree for the source of the differential, and thus the lowest total degree nonzero differential

must map from an algebra indecomposable instead.

On the other hand, if we assume dr(z) is not a coalgebra primitive, then the co-Leibniz

Rule says

∆ ○ dr(z) = (dr ⊗ 1 ± 1⊗ dr)∆(z)
= (dr ⊗ 1 ± 1⊗ dr)(z ⊗ 1 + 1⊗ z +Σiz

′
i ⊗ z

′′
i )

= (dr(z) ⊗ 1 + dr(1) ⊗ z +Σid
r(z′i) ⊗ z

′′
i ) ± (z ⊗ dr(1) + 1⊗ dr(z) +Σiz

′
i ⊗ d

r(z′′i ))
= (dr(z) ⊗ 1 +Σid

r(z′i) ⊗ z
′′
i ) ± (1⊗ dr(z) +Σiz

′
i ⊗ d

r(z′′i )) (since dr(1) = 0)

where the tensor products are over H∗(A;k). So this implies that dr(z′i) ≠ 0 or dr(z′′i ) ≠ 0

for some i, because if they’re all zero then

∆(dr(z)) = dr(z) ⊗ 1 ± 1⊗ dr(z),

which by definition that says that dr(z) is primitive, contradicting our initial assumption.

So since either dr(z′i) ≠ 0 or dr(z′′i ) ≠ 0 and the coproduct preserves degree (i.e. deg(z′i) +

deg(z′′i ) = deg(z) for z′i and z′′i in positive degree), deg(z′i) < deg(z) and deg(z′′i ) < deg(z).

But then z′i and z′′i are in lower total degree than z, so the shortest non-zero differential in

lowest total degree has to hit a coalgebra primitive.

Remark 4.1.11

The result in Angeltveit-Rognes [1] further shows that when k = Fp there is an A∗-comodule

structure, but since we don’t use an analogous structure in the coalgebra setting we chose

not to include it in the above discussion.
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4.2 ◻-Hopf algebra structure in the coBökstedt spec-

tral sequence

We have now examined certain properties that were known about the Bökstedt spectral

sequence and computational implications of that structure, and so we now want to address

the analogous coBökstedt spectral sequence setting.

As we saw in the previous section, under appropriate flatness conditions the Bökstedt

spectral sequence for a commutative ring spectrum A is a spectral sequence of Hopf algebras

over the commutative ring H∗(A;k). However, in this dual setting we would then want to

show that we have a Hopf algebra over the coalgebra H∗(C;k). However, this requires a

notion of a Hopf algebra over a coalgebra, which Bohmann-Gerhardt-Shipley [5] call a ◻-Hopf

algebra. To start, we will thus recall background information about the cotensor product ◻

before stating that the coBökstedt spectral sequence has a ◻-Hopf algebra structure.

For an R-coalgebra C, a right C-comodule M with γ ∶M →M⊗C, and a left C-comodule

N with ψ ∶ N → C ⊗N , the cotensor of M and N over C is defined to be the equalizer in

R-modules:

M ◻C N ∶= eq((M ⊗R N)
γ⊗IdN //

IdM⊗ψ
//M ⊗R C ⊗R N).

Note that the cotensor does not always yield a C-comodule, but under some conditions

it does. In particular, if C is a coalgebra over a field and M and N are C-bicomodules, then

M ◻C N is a C-bicomodule.

In order to give the definition of a ◻C -Hopf algebra for a coalgebra C over a field k, we

first need the definitions of a ◻C -coalgebra and a ◻C -bialgebra.

Definition 4.2.1 ([5])

Let C be a coalgebra over a field. A ◻C-coalgebra D is a C-bicomodule along with a
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comultiplication map ∆ ∶ D → D ◻C D and a counit map ε ∶ D → C that are coassociative

and counital maps of C-comodules.

Definition 4.2.2 ([5])

Let C be a coalgebra over a field. A ◻C-bialgebra D is a ◻C -coalgebra that is also equipped

with a multiplication map µ ∶D◻CD →D and a unit map η ∶D → C that satisfy associativity

and unitality. The multiplication must also be compatible with the ◻C -coalgebra structure.

A ◻C-Hopf algebra D is a ◻C -bialgebra along with an antipode χ ∶ D → D that is a

C-comodule map satisfying the corresponding hexagonal antipode diagram.

See [5] for more details on the diagrams for coassociativity and counitality and those

specifying the interactions between the algebra and coalgebra structures.

As we saw above, in the commutative case we can identify THH(A)● as the tensor of A

with S1● . Similarly, coTHH(C)● can be viewed as a cotensor with S1● . We also discussed how

[1] shows that the simplicial pinch and fold maps induce maps on THH and the Bökstedt

spectral sequence. In the same way, work of Bohmann-Gerhardt-Shipley shows that sim-

plicial pinch and fold maps in the dual setting induce maps on the coBökstedt spectral

sequence. In [5], they describe topological coHochschild homology as the following cotensor

with S1

coTHH●(C) ≅ CS1● ,

so that the simplicial maps on S1 ultimately induce a ◻-Hopf structure on the coBökstedt

spectral sequence. In order to state this result, we require the following definition:

Definition 4.2.3

For a coalgebra C over a field k, a right comodule M over C is called coflat if M ◻C − is

exact as a functor from left C-comodules to k-modules.
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We can now state the analog of [1, Theorem 4.5] for coTHH.

Theorem 4.2.4 ([5])

For C a cocommutative coalgebra spectrum, if for r ≥ 2 each E
∗,∗
r (C) is coflat over H∗(C;k),

then the coBökstedt spectral sequence is a spectral sequence of ◻H∗(C;k)-bialgebras.

They further show that this bialgebra structure makes the coBökstedt spectral sequence

into a spectral sequence of ◻H∗(C;k)-Hopf algebras by defining the appropriate antipode

map.

4.3 ◻-Hopf algebra structure in the relative coBökstedt

spectral sequence

We now want to see how the ◻-Hopf algebra structure extends to the relative coBökstedt

spectral sequence. We will consider coalgebras over Hk, for k a field. Adapting the notation

from Bohmann-Gerhardt-Shipley’s work [5], we first define the cotensor in the quasicategory

of cocommutative Hk-coalgebras, denoted by CoCAlgHk. Note that [5] uses the notation

CoCAlg(ModHk) based on the symmetric monoidal quasicategory of Hk-modules, ModHk,

so this is minor condensing of notation.

Definition 4.3.1

Given C ∈ CoCAlgHk and a simplicial set X●, we write CX● for the cotensor of C with the

simplicial set X●. On the nth cosimplicial level this is:

(CX●)n = ∏
x∈Xn

C.
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So using this notion of cotensor in CoCAlgHk and the simplicial circle S1● from the last

section, coTHHHk(C)● ≅ CS1● .

Remark 4.3.2

Note that since the relative coBökstedt spectral sequence was stated in generality for any

homology theory E, we now need to restrict ourselves to the appropriate conditions for the

◻-coalgebra structure. In this thesis we are specifically interested in such examples where

E = S that are Hk-coalgebras.

Theorem 4.3.3 ([5])

For C a cocommutative coalgebra spectrum, if for r ≥ 2 each E
∗,∗
r (C) is coflat over π∗(C),

then the relative coBökstedt spectral sequence is a spectral sequence of ◻π∗(C)-Hopf algebras.

The proof follows as in [5], in which cotensoring with the simplicial fold map S1● ∨S1● → S1●

induces the comultiplication, and the multiplication further comes from the simplicial pinch

map on the double circle simplicial model dS1● → S1● ∨S1● . As we saw in the Bökstedt spectral

sequence, we now want to use the additional algebraic structure to understand differentials

in the spectral sequence. However, in order to make sense of these ideas in the dual setting,

we also need the following definitions and results regarding indecomposable and primitive

elements.

Definition 4.3.4

A unital ◻C -algebra A with multiplication µ ∶ A◻CA→ A and unit η ∶ C → A is augmented

if there exists an augmentation map ε ∶ A→ C such that εµ = ε ◻ ε and εη = Id.

Definition 4.3.5

A counital ◻C -coalgebra D with comultiplication ∆ ∶ D → D ◻C D and counit ε ∶ D → C is
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coaugmented if there exists a coaugmentation map η ∶ C → D such that ∆η = η ◻ η and

εη = Id.

Definition 4.3.6 ([5])

Given a coaugmented ◻C -coalgebra D, let PD be defined by the short exact sequence

0ÐÐ→ PD ÐÐ→ JD
∆ÐÐ→ JD ◻C JD,

where JD = coker(η). An element in ker(ε) is primitive if its image in JD is in PD.

Definition 4.3.7 ([5])

For an augmented ◻C -algebra A, the indecomposables of A, denoted by QA, are defined

by the short exact sequence

IA ◻C IA
µÐÐ→ IAÐÐ→ QAÐÐ→ 0,

where IA = ker(ε).

Since the theorem regarding the Hopf structure in the relative coBökstedt spectral se-

quence will require π∗(C) to be connected, we define that term here:

Definition 4.3.8 ([5])

A graded k-coalgebra D∗ is connected if D∗ = 0 when ∗ < 0, and the counit map ε ∶ D∗ → k

is an isomorphism in degree zero.

Theorem 4.3.9

For a field k, let C be a cocommutative Hk-coalgebra spectrum such that coHH∗(π∗(C)) is

coflat over π∗(C) and the graded coalgebra π∗(C) is connected. Then the E2-term of the
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relative coBökstedt spectral sequence calculating π∗(coTHHHk(C)),

E
∗,∗
2 (C) = coHHk∗(π∗(C)),

is a ◻π∗(C)-bialgebra, and the shortest non-zero differential d
s,t
r in lowest total degree s + t

maps from a ◻π∗(C)-algebra indecomposable to a ◻π∗(C)-coalgebra primitive.

Proof. The proof follows as in the non-relative version in [5]. Note that the requirement

that coHH(π∗(C)) is coflat over π∗(C) is really a condition on E2. However since we can

do this argument page by page, no differentials on the E2-page implies that E2 ≅ E3 and

so the same coflatness condition will hold for that page. Thus, since we’re just concerned

about the first of the non-zero differentials, the only condition we have to satisfy is the one

we need for the E2-page.
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Chapter 5

Explicit calculations

A natural question that comes up when studying coTHH is to ask what kinds of coalgebra

spectra exist, and for those that exist, is the E2-page of the relative coBökstedt spectral

sequence computable? Although Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen [4]

demonstrate that the coBökstedt spectral sequence can input examples of the form Σ∞+ X

for simply connected X, Péroux-Shipley show that examples of S-coalgebras are still quite

limited [30]. So now that we have a way of generating new R-coalgebra spectra of the form

B∧AB and studying them via the relative coBökstedt spectral sequence, we will go through

a few specific examples. In particular, we will examine the coalgebras HFp ∧HZ HFp and

HFp∧BP<n>HFp (for those n and p such that BP < n > is commutative). In this chapter, we

will start by computing the E2-term of the relative coBökstedt spectral sequence computing

π∗(coTHH(C)) for these examples.

These results confirm that we can indeed compute the E2-pages of the relative coBökstedt

spectral sequence calculating relative topological coHochschild homology of some examples

of, in this case, HFp-coalgebras. As discussed in the last chapter, in order to use the ◻-

Hopf algebra structure to find the E∞-page and complete the computation of the homotopy

groups of coTHH, we need our coalgebra spectra to be cocommutative. As a result, these

examples cannot be simplified using the ◻-Hopf algebra techniques because they are not

cocommutative. However, we will consider cocommutative coalgebras with homotopy that
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is similar to the above E2-page examples later in this chapter.

5.1 E2-page Examples

Proposition 5.1.1

For the HFp-coalgebra HFp ∧HZ HFp, the E2-page of the spectral sequence calculating

πt−s(coTHHHFp(HFp ∧HZHFp)) is

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧HZHFp)) ≅ ΛFp(τ) ⊗Fp Fp[ω]

for ∣∣τ ∣∣ = (0,1), ∣∣ω∣∣ = (1,1).

Proof. By Proposition 2.5.5, HFp ∧HZ HFp is an HFp-coalgebra coming from the map φ ∶

HZ→HFp, which is induced by Z
mod pÐÐÐÐ→ Fp.

We want to find E∗(coTHHR(C)) for R = HFp, E = S, and C = HFp ∧HZ HFp as in

the Corollary 3.0.2. Note that we satisfy the flatness condition that π∗(HFp ∧HZ HFp) is

flat over π∗(HFp) ≅ Fp, because modules are flat over fields. Corollary 3.0.2 states that the

relative coBökstedt spectral sequence has the form:

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧HZHFp))

??Ô⇒ πt−s(coTHHHFp(HFp ∧HZHFp))

where the ?? serve as a reminder that convergence for this Bousfield-Kan spectral sequence

cannot be automatically assumed. We can use the Künneth spectral sequence to calculate

π∗(HFp ∧HZHFp):

Tor
E∗(R)
p,q (E∗(M),E∗(N)) ⇒ Ep+q(M ∧R N)
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which exists if E∗(R) is a flat right R∗-module [15, Theorem IV.6.2]. Here we have E = S

and R = HZ, so since E∗(R) = π∗(HZ) ≅ Z is indeed flat over R∗ = π∗(HZ) ≅ Z, we may

apply the Künneth spectral sequence to get:

Tor
π∗(HZ)
p,q (π∗(HFp), π∗(HFp)) ≅ TorZp,q(Fp,Fp) ⇒ πp+q(HFp ∧HZHFp)

To compute this E2-term, we will need to create a projective resolution of Fp as a Z-

module:

Z
×pÐÐ→ Z

mod pÐÐÐÐ→ Fp Ð→ 0.

Then we can truncate and − ⊗Z Fp to get

Z⊗Z Fp
×pÐÐ→ Z⊗Z Fp Ð→ 0

which simplifies to

Fp
×pÐÐ→
0

Fp Ð→ 0

Thus we have Fp in degree 0 and 1. As a coalgebra this is the exterior coalgebra with

a single generator in degree 1. Now that we know that π∗(HFp ∧HZ HFp) is an exterior

coalgebra over Fp, the E2-page looks like:
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E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧HZHFp))

≅ coHH
Fp
s,t(ΛFp(τ)) (∣τ ∣ = 1)

≅ ΛFp(τ) ⊗ Fp[ω] (by Proposition 5.1 in [4])

with bidegrees ∣∣τ ∣∣ = (0,1) and ∣∣ω∣∣ = (1,1). Thus this E2-page looks like:

0 1 2 3 4

0

1

2

3

4

1

τ ω

τω ω2

τω2 ω3

τω3 ω4

Therefore we have shown the desired result.

Now that we’ve seen one calculation of an E2-term for the relative coBökstedt spec-

tral sequence, let’s consider a similar HFp-coalgebra example, HFp ∧BP<n> HFp. First we

introduce BP based on the complex cobordism spectrum MU as in [33].

Definition 5.1.2 ([9])

The spectrum BP , called the Brown-Peterson spectrum, is named because Brown and

Peterson showed that MU localized at a prime can be split into a wedge product of suspen-

sions of BP . In particular it is characterized by

π∗(BP ) = Z(p)[v1, v2, . . .],
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for ∣vi∣ = 2(pi − 1). There are also truncated Brown-Peterson spectra BP < n >, with

π∗(BP < n >) = Z(p)[v1, . . . , vn]

as shown by [22].

Remark 5.1.3

Note that in order to consider B∧AB as a B-coalgebra, we need A to be a commutative ring

spectrum. Because BP < 0 >= HZ(p) is an Eilenberg-Mac Lane spectrum of a commutative

ring, it will also be commutative. Similarly, [27] show that BP < 1 >= ` is commutative

since it is equivalent to the algebraic K-theory of a commutative ring spectrum. However

for n = 2, BP < 2 > is only known to be commutative for p = 2 [23] and p = 3 [21], and so we

limit our examples to these cases.

Proposition 5.1.4

For the HFp-coalgebra HFp ∧BP<n>HFp for n = 0,1 and for n = 2 at the primes p = 2,3, the

E2-page of the spectral sequence calculating πt−s(coTHHHFp(HFp ∧BP<n>HFp)) is

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧BP<n>HFp)) ≅ ΛFp(τ0, . . . τn) ⊗ Fp[ω0, . . . ωn]

for ∣∣τi∣∣ = (0,2pi − 1), ∣∣ωi∣∣ = (1,2pi − 1).

Proof. HFp ∧BP<n>HFp is an HFp-coalgebra because based on the definition for BP < n >

we have

π∗BP < n >≅ Z(p)[v1, v2, ..., vn]
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for ∣vi∣ = 2pi − 2, so there is a map of ring spectra

BP < n >→HZ(p) →HFp,

given by mapping to the Eilenberg-Mac Lane spectrum on π0. The composition gives a

coalgebra structure by Proposition 2.5.5 for n = 0,1 and for n = 2 at the primes p = 2,3.

We apply the relative coBökstedt spectral sequence of Corollary 3.0.2 with R = HFp,

E = S, and C =HFp ∧BP<n>HFp, giving us:

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧BP<n>HFp))

??Ô⇒ πt−s(coTHHHFp(HFp ∧BP<n>HFp))

Now to compute π∗(HFp ∧BP<n>HFp), we may again use the Künneth spectral sequence:

Tor
E∗(R)
p,q (E∗(M),E∗(N)) ⇒ Ep+q(M ∧R N)

which exists if E∗(R) is a flat right R∗-module. So here we have

Torπ∗BP<n>p,q (π∗HFp, π∗HFp) ≅ Tor
Z(p)[v1,v2,...,vn]
p,q (Fp,Fp) ⇒ πp+q(HFp ∧BP<n>HFp)

To compute this, we will need to create a projective resolution of Fp as a Z(p)[v1, v2, ..., vn]-

module. We may use the Koszul complex, which we will include for n = 2 since that is the

largest case we will consider:
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Σ∣v1v2∣Z(p)[v1, v2]
αÐÐ→Σ∣v1∣Z(p)[v1, v2] ⊕Σ∣v2∣Z(p)[v1, v2] ⊕Σ∣v1v2∣Z(p)[v1, v2]

1↦ (v2,−v1, p)
βÐÐ→ Z(p)[v1, v2]⊕Σ∣v1∣Z(p)[v1, v2] ⊕Σ∣v2∣Z(p)[v1, v2]

γÐÐ→ Z(p)[v1, v2]
ψÐÐ→ Fp ÐÐ→ 0.

(1,0,0) ↦ (v1,−p,0) (1,0,0) ↦ p

(0,1,0) ↦ (v2,0,−p) (0,1,0) ↦ v1

(0,0,1) ↦ (0, v2,−v1) (0,0,1) ↦ v2

where ψ is the module map ψ ∶ Z(p)[v1, v2]
mod pÐÐÐÐ→ Fp that sends v1 and v2 to 0. We then

truncate and − ⊗Z(p)[v1,v2]
Fp to get the resulting complex:

Σ∣v1v2∣Fp
0ÐÐ→ Σ∣v1∣Fp ⊕Σ∣v2∣Fp ⊕Σ∣v1v2∣Fp

0ÐÐ→ Fp ⊕Σ∣v1∣Fp ⊕Σ∣v2∣Fp
0ÐÐ→ Fp ÐÐ→ 0

Since coassociative comultiplication preserves total degree, the resulting Fp⊕ΣFp⊕Σ∣v1∣+1Fp⊕

Σ∣v2∣+1Fp is an exterior coalgebra over Fp generated by what we will call τ0, τ1, τ2 in degrees

∣τ0∣ = 1, ∣τ1∣ = ∣v1∣ + 1, and ∣τ2∣ = ∣v2∣ + 1.1 As in Tilson [35], the spectral sequence computing

π∗(HFp ∧BP<n>HFp) then collapses at this E2-page, and we recover the calculation:

π∗(HFp ∧BP<n>HFp) ≅ ΛFp(τ0, τ1, ..., τn)

for ∣τi∣ = ∣vi∣ + 1 = 2pi − 1, and our computation amounts to the familiar:

E
s,t
2 = coHH

Fp
s,t(π∗(HFp ∧BP<n>HFp))

≅ coHH
Fp
s,t(ΛFp(τ0, τ1, ..., τn)) (∣τ ∣ = 2pi − 1)

≅ ΛFp(τ0, ..., τn) ⊗Fp Fp[ω0, ..., ωn] (by Lemma 5.1 in [4])

1In [35, Prop 5.6] that specifically examines the case where n = 2 and p = 2, these generators are called
2̄, v̄1, and v̄2.
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with bidegrees ∣∣τi∣∣ = (0,2pi − 1) and ∣∣ωi∣∣ = (1,2pi − 1).

Remark 5.1.5

Thanks to a conversation with Mike Hill, we also have the following quotients of the dual

Steenrod algebra for p = 2 that emerge as the homotopy groups of HF2-coalgebras of the

form B ∧A B for ∣ξi∣ = 2i − 1:

π∗

HF2 ∧HF2
HF2 F2

HF2 ∧HZHF2 Λ(ξ1)

HF2 ∧kuHF2 Λ(ξ1, ξ2)

HF2 ∧koHF2 F2[ξ1, ξ2]/ξ4
1 , ξ

2
2

HF2 ∧tmf1(3)HF2 Λ(ξ1, ξ2, ξ3)

HF2 ∧tmf HF2 F2[ξ1, ξ2, ξ3]/ξ8
1 , ξ

4
2 , ξ

2
3

So by Lemma 5.1 in [4] as in the examples that we saw above, we could similarly find the

E2-pages:

E
s,t
2 = coHH

F2
s,t(π∗(HF2 ∧kuHF2)) ≅ ΛF2

(ξ1, ξ2) ⊗ F2[ω1, ω2]

E
s,t
2 = coHH

F2
s,t(π∗(HF2 ∧tmf1(3)HF2)) ≅ ΛF2

(ξ1, ξ2, ξ3) ⊗ F2[ω1, ω2, ω3]

5.2 Computational Tools

We are going to use the ◻-Hopf structure of the last chapter to give further computational

tools. Recall from the previous chapter that the shortest nonzero differential must go from

a ◻-Hopf algebra indecomposable to a ◻-coalgebra primitive. We first study the primitives

of ◻C -coalgebras of the form C ⊗D.
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Proposition 5.2.1 ([5])

For coaugmented k-coalgebras C and D, C⊗D is a ◻C -coalgebra and an element c⊗d ∈ C⊗D

is primitive as an element of the ◻C -coalgebra C ⊗D if and only if d is primitive in the k-

coalgebra D.

Bohmann-Gerhardt-Shipley prove that if coHH(D) is coflat over D then coHH(D) is a

◻D-algebra [5]. We will further need to identify the indecomposable elements, but in that

case we will restrict to the specific computational setting we will need.

The last tool we introduce here is that for Hk-coalgebras the relative coBökstedt spectral

sequence is itself a spectral sequence of k-coalgebras, which will then allow us to restrict

differentials even further to targets that are k-coalgebra primitives. Bohmann-Gerhardt-

Høgenhaven-Shipley-Ziegenhagen [4] showed the following result for the coBökstedt spectral

sequence, and the relative case follows from their work.

Theorem 5.2.2

If C is a connected cocommutative Hk-coalgebra that is cofibrant as an Hk-module, then

the relative coBökstedt spectral sequence for E = S is a spectral sequence of k-coalgebras.

In particular, for every r > 1 there is a coproduct

ψ ∶ E∗,∗r ÐÐ→ E
∗,∗
r ⊗k E

∗,∗
r ,

and the differentials dr respect the coproduct.

Proof. This proof follows as in [4] since for E = S we are already in the setting of cosimplicial

Hk-modules.
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5.3 Exterior Inputs

The goal of this section is to compute the homotopy groups of the topological coHochschild

homology of coalgebra spectra with an exterior homotopy coalgebra. Now because we proved

in the previous chapter that our spectral sequence has a ◻-Hopf algebra structure, we will

use that the shortest nonzero differential goes from an algebra indecomposable to a coalgebra

primitive.

Theorem 5.3.1

For a field k, let C be a cocommutative Hk-coalgebra spectrum that is cofibrant as an Hk-

module with π∗(C) ≅ Λk(y) for ∣y∣ odd and greater than 1. Then the relative coBökstedt

spectral sequence collapses and

π∗(coTHHHk(C)) ≅ Λk(y) ⊗ k[w]

as graded k-modules for ∣w∣ = ∣y∣ − 1.

Proof. Recall that the flatness condition of the relative coBökstedt spectral sequence is

satisfied because we’re taking E = S and R =Hk, so the E2-page is

E
s,t
2 = coHHks,t(Λk(y)) ≅ Λk(y) ⊗ k[w]

by Proposition 5.1 in [4]. But now because the degree of y is both odd and greater than 1,

we will show that the spectral sequence is sparse enough that all differentials will be zero.

By Proposition 4.3.9 we know that the shortest nontrivial differential in lowest total

degree must map from a ◻Λk(y)-algebra indecomposable to a ◻Λk(y)-coalgebra primitive.

Since the E2-page is given by Λk(y) ⊗ k[w], Proposition 5.2.1 implies that elements in this
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◻Λk(y)-coalgebra will be primitive if and only if the component from k[w] is primitive in the

k-coalgebra k[w]. Recall that primitives in the k-coalgebra k[w1,w2, . . .] more generally are

of the form w
pm

i for p = char(k), so here

Λk(y) ⊗ (primitives in k[w]) ≅ Λk(y) ⊗wp
m

Therefore the only terms in the spectral sequence that are possible targets of differentials

are wp
m

and ywp
m

for m ≥ 0 and prime p.

Bohmann-Gerhardt-Shipley also identify the indecomposable elements for the ◻Λk(y)-

algebra Λk(y) ⊗ k[w] as those of the form Λk(y) ⊗ w since the indecomposable elements

of k[w1,w2, . . .] more generally are wi [5]. Thus the only terms in the spectral sequence

that are possible sources of differentials are y and yw, since ywj is decomposable for j > 1.

Because the possible targets are of the form wp
m

and ywp
m

, and the ywp
m

appear in the

same diagonal as both y and yw, those elements cannot be hit by any (r, r − 1)-bidegree

differential. Thus we need only justify why differentials from y and yw cannot hit terms of

the form wp
m

.

Note that the elements we are considering live in the following bidegrees (∣∣− ∣∣) and (t−s)

total degrees (∣ − ∣) for m,n ≥ 1:

∣∣y∣∣ = (0,2n + 1) (since ∣y∣ = 2n + 1 is odd and > 1)

∣∣wpm ∣∣ = (pm, pm(2n + 1)) = (pm,2npm + pm) (since ∣∣w∣∣ = (1,2n + 1))
∣∣yw∣∣ = (1,4n + 2)

∣∣dr(y)∣∣ = (r, ∣y∣ + r − 1) = (r,2n + 1 + r − 1) = (r,2n + r)
∣∣dr(yw)∣∣ = (1 + r,4n + 2 + r − 1) = (1 + r,4n + r + 1)

First, we will justify that ∣∣dr(y)∣∣ ≠ ∣∣wpm ∣∣ for any m ≥ 1. Suppose by contradiction that
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these terms were in the same bidegrees. Then the first coordinate tells us that r = pm, so we

have from the second coordinate:

2n + pm = 2npm + pm

2n = 2npm

1 = pm (since n ≥ 1)

but p is prime and m ≥ 1, so we have a contradiction.

Second we justify that ∣∣dr(yw)∣∣ ≠ ∣∣wpm ∣∣ for any m ≥ 1. Suppose by contradiction that

these terms were in the same bidegrees. Then the first coordinate tells us that r+1 = pm, so

we have from the second coordinate:

4n + pm = 2npm + pm

4n = 2npm

2 = pm,

which is true only when m = 1 and p = 2. However, if m = 1 then r + 1 = pm = 21 implies that

r = 1 and we are already considering the E2-page, so no such differential exists.

Now we want to make sure the convergence conditions of Corollary 3.0.5 hold; that is, if

for every s there exists some r so that E
s,s+i
r = Es,s+i∞ then the relative coBökstedt spectral

sequence converges completely to π∗(coTHHHk(C)). However, because the differentials

starting at the E2-page must be trivial, we satisfy this condition for convergence, which

yields:

E2 ≅ E∞ ≅ Λk(y) ⊗ k[w]

and so we have an isomorphism with π∗(coTHHHk(C)) as graded k-modules.
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Next we consider the computation when we increase the number of cogenerators. Bohmann-

Gerhardt-Shipley identifies the indecomposable elements for this setting more generally:

Proposition 5.3.2 ([5])

The indecomposable elements in the ◻Λk(y1,y2,...,yn)-algebra

coHH(Λk(y1, y2, . . . , yn)) ≅ Λk(y1, y2, . . . , yn) ⊗ k[w1,w2, . . . ,wn]

are given by Λk(y1, y2, . . . , yn) ⊗wi.

Theorem 5.3.3

Let k be a field and let p = char(k), including 0. For C a cocommutative Hk-coalgebra

spectrum that is cofibrant as an Hk-module with π∗(C) ≅ Λk(y1, y2) for ∣y1∣, ∣y2∣ both odd

and greater than 1, if pm is not equal to
∣y2∣−1
∣y1∣−1

or
∣y2∣−1
∣y1∣−1

+ 1 for all m ≥ 0, then the relative

coBökstedt spectral sequence collapses and

π∗(coTHHHk(C)) ≅ Λk(y1, y2) ⊗ k[w1,w2],

as graded k-modules for ∣wi∣ = ∣yi∣ − 1.

Proof. Suppose ∣y1∣ = a and ∣y2∣ = b so that on the E2-page of the spectral sequence y1 appears

in bidegree (0, a), and y2 appears in bidegree (0, b), which implies ∣∣w1∣∣ = (1, a), ∣∣w2∣∣ = (1, b).

Then we assume WLOG that b ≥ a and we will determine if there is the possibility for

differentials by examining the degrees of the terms in the spectral sequence. We will refer to

our assumptions that pm is not equal to
∣y2∣−1
∣y1∣−1

as condition 1 and not equal to
∣y2∣−1
∣y1∣−1

+ 1 as

condition 2.

Note that because of the ◻-coalgebra structure from Proposition 4.3.9 the shortest non-
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trivial differential has to hit a coalgebra primitive. If char(k) = p a prime, then by Proposi-

tion 5.2.1 coalgebra primitives will be of the form

Λk(y1, y2) ⊗wp
m

i

since the primitives in k[w1,w2] are of the form w
pm

1 or w
pn

2 . However, by Theorem 5.2.2

the relative coBökstedt spectral sequence in this setting also has a coalgebra structure over

k. Therefore the first nontrivial differential has to hit a k-coalgebra primitive, that is only

classes of the form yi or w
pm

i (and not any of their tensored combinations). Since the yis

appear in the zero column, they cannot be hit by any differentials, so our only possible targets

are classes w
pm

1 or w
pn

2 . Similarly, if char(k) = 0 then the only primitives in k[w1,w2] are

w1 and w2.

Further, the source of the shortest nontrivial differential must be a ◻-algebra indecompos-

able, which by Proposition 5.3.2 will be of the form Λk(y1, y2) ⊗wi. Thus we only consider

differentials from the following sources that land in bidegrees:

∣∣dr(y1)∣∣ = (r, a + r − 1)
∣∣dr(y2)∣∣ = (r, b + r − 1)

∣∣dr(y1y2)∣∣ = (r, a + b + r − 1)
∣∣dr(w1)∣∣ = (1 + r, a + r − 1)
∣∣dr(w2)∣∣ = (1 + r, b + r − 1)

∣∣dr(y1w1)∣∣ = (1 + r,2a + r − 1)
∣∣dr(y2w1)∣∣ = (1 + r, a + b + r − 1)
∣∣dr(y1w2)∣∣ = (1 + r, a + b + r − 1)
∣∣dr(y2w2)∣∣ = (1 + r,2b + r − 1)

∣∣dr(y1y2w1)∣∣ = (1 + r,2a + b + r − 1)
∣∣dr(y1y2w2)∣∣ = (1 + r, a + 2b + r − 1)
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The primitive elements that could serve as possible targets live in bidegrees:

∣∣wp
m

1 ∣∣ = (pm, apm)

∣∣wp
m

2 ∣∣ = (pm, bpm)

Note that if there is a nonzero differential hitting one of these classes, comparing the

degree of the first coordinate implies information about either r or 1+ r. In the char(k) = 0

case, ∣w1∣ = (1, a) and ∣w2∣ = (1, b) imply that no nontrivial differentials exist since we are

already on the E2-page. Thus we assume char(k) = p is prime so that the first coordinate

implies r = pm or 1 + r = pm, which we will use to simplify the second coordinate of the

bidegree.

Suppose dr(y1) hits a class w
pm

1 . Then by comparing degrees:

a + pm − 1 = apm.

This gives either that a = 1 (except we’re assuming ∣yi∣ > 1) or that m = 0 (then a could be

anything), but in that case r = pm = 1, and we’re already on the E2-page. Thus there is no

such possible differential. A similar argument can be used to justify why dr(y2) ≠ wp
m

2 .

Suppose dr(y1) hits a class w
pm

2 . Then by comparing degrees:

a + pm − 1 = bpm.

So a−1
b−1 = pm, but we assumed that b ≥ a, so this equality only holds if pm = r = 1. But we

are considering the E2-page, so no such differential exists. A similar justification regarding
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r determines that dr(y1w1) ≠ wp
m

1 and dr(y2w2) ≠ wp
m

2 .

Suppose dr(y2) hits a class w
pm

1 . Then by comparing degrees:

b + pm − 1 = apm

so pm = b−1
a−1 . Now we assumed in condition 1 that

∣y2∣−1
∣y1∣−1

≠ pm, so no such differential exists.

Suppose dr(y1y2) hits a class w
pm

1 . Then

a + b + pm − 1 = apm,

so b = (pm − 1)(a − 1), but b is odd and a − 1 is even and we can’t have equality due

to the parity issue, so there are no such possible differentials. Similar parity issues arise

to show dr(y1y2) ≠ w
pm

2 , as well as for dr(w1) ≠ w
pm

1 or w
pm

2 , dr(w2) ≠ w
pm

1 or w
pm

2 ,

dr(y1y2w1) ≠ wp
m

1 or w
pm

2 , and dr(y1y2w2) ≠ wp
m

1 or w
pm

2 .

Now suppose dr(y1w1) hits a class w
pm

2 . Then the first coordinate implies that r+1 = pm,

so the second coordinate gives:

2a + r − 1 = b(1 + r),

so 2a−1
b−1 = r + 1. But a ≤ b so 2a−1

b−1 ≤ 2(1) < 3 ≤ r + 1 since r ≥ 2 and so no such differential

exists. Similar justifications based on the assumption that a ≤ b allow us to conclude that

dr(y2w1) ≠ wp
m

2 and dr(y1w2) ≠ wp
m

2 .

Suppose dr(y2w1) hits a class w
pm

1 . Then

a + b + pm − 2 = apm,
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so b−1
a−1 = pm − 1. However we assumed in condition 2 that pm cannot be equal to

∣y2∣−1
∣y1∣−1

+ 1,

so no such differential exists. This condition also arises in the case dr(y1w2) ≠ wp
m

1 .

Finally suppose dr(y2w2) hits a class w
pm

1 . Then

2b + pm − 2 = apm,

so 2 b−1
a−1 = pm. However, we claim that the assumption pm ≠ 2

∣y2∣−1
∣y1∣−1

is already eliminated

by the existing conditions. First, if m = 0 then pm = 1 and this assumption does not apply

since we assumed above that ∣y2∣ ≥ ∣y1∣. Therefore, we need only justify that pm ≠ 2
∣y2∣−1
∣y1∣−1

for

m ≥ 1. If p is odd, an odd prime p to any power will still be odd and so pm ≠ 2
∣y2∣−1
∣y1∣−1

due to

parity.

If p = 2, consider the case where
∣y2∣−1
∣y1∣−1

is odd. Then 2
∣y2∣−1
∣y1∣−1

will only be equal to a power

of p = 2 if the power is 1. But m = 1 would imply here that r = 1 and we are already on the

E2-page. If
∣y2∣−1
∣y1∣−1

is even, then verifying that pm ≠ 2
∣y2∣−1
∣y1∣−1

for m ≥ 1 is equivalent to checking

that pn ≠ ∣y2∣−1
∣y1∣−1

for n ≥ 0, i.e. condition 1. So, no such differential from y2w2 to w
pm

1 exists

if condition 1 is satisfied.

We have now justified via combinatorics why all possible differentials can be eliminated,

whether that is for parity reasons, because we’re already on the E2-page, or because we

restricted values of pm based on the conditions listed in the hypotheses. Thus the spectral

sequence collapses, and the convergence conditions of Corollary 3.0.5 hold so we have the

desired result.

Remark 5.3.4

Note that the conditions on pm allow us to avoid cases like ∣y1∣ = 3, ∣y2∣ = 5, which has a

possible d2 differential from y2 to w2
1 for the prime p = 2 (which is in this case is eliminated
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by condition 1).

5.4 Divided Power Input

Along with proving the existence of the coBökstedt spectral sequence in Bohmann-Gerhardt-

Høgenhaven-Shipley-Ziegenhagen [4], they show the following significant computational re-

sult:

Theorem 5.4.1 ([4] 5.4)

Let C be a cocommutative coassociative coalgebra spectrum that is cofibrant as a spectrum,

and whose homology coalgebra is

H∗(C;k) = Γk[x1, x2, . . .],

where the xi are cogenerators in non-negative even degrees and there are only finitely many

cogenerators in each degree. Then the coBökstedt spectral sequence for C collapses at E2,

and

E2 ≅ E∞ ≅ Γk[x1, x2. . . .] ⊗Λk(z1, z2, . . .)

with xi in degree (0, ∣xi∣) and zi in degree (1, ∣xi∣).

Now we would like to have an analogous result for the relative coBökstedt spectral se-

quence for the case when E = S and R =Hk for a field k. Recall that these restrictions allow

us to use the ◻-Hopf algebra structure of the spectral sequence to eliminate certain possible

differentials.

Theorem 5.4.2

Let C be a cocommutative coassociative Hk-coalgebra spectrum that is cofibrant as an
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Hk-module spectrum, and whose homotopy coalgebra is

π∗(C) = Γk[x1, x2, . . .],

where the xi are in non-negative even degrees and there are only finitely many of them

in each degree. Then the relative coBökstedt spectral sequence calculating the homotopy

groups of the topological coHochschild homology of C collapses at E2, and

π∗(coTHHHk(C)) ≅ Γk[x1, x2, . . .] ⊗Λk(z1, z2, . . .)

as k-modules, with zi in degree ∣xi∣ − 1.

Proof. Since E∗(C) = π∗(C) = Γk[x1, x2, . . .] is flat over E∗(R) = π∗(Hk) ≅ k, the relative

coBökstedt spectral sequence that abuts to πt−s(coTHHHk(C)) has E2-page

E
s,t
2 = coHHks,t(Γk[x1, x2, . . .])

By Proposition 5.1 in [4],

coHHk∗,∗(Γk[x1, x2, . . .]) ≅ Γk[x1, x2, . . .] ⊗Λk(z1, z2, . . .),

where ∣∣zi∣∣ = (1, ∣xi∣). Now we want to examine the differentials on this E2-page of our

spectral sequence. In particular, Theorem 4.3.9 says that the coalgebra structure implies that

the shortest nonzero differential has to hit a ◻-coalgebra primitive. Since coHH∗(π∗(C)) is

a ◻-coalgebra over π∗(C) = Γk[x1, x2, . . .], we know by Proposition 5.2.1 that the primitive
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elements will be of the form

Γk[x1, x2, . . .] ⊗ (primitives in Λk(z1, z2, . . .)),

where the primitives in Λk(z1, z2, . . .) viewed as a k-coalgebra are of the form zi.

Note that since all of the xi’s appear in degree (0, ∣xi∣), all xi’s and all the divided powers

will stay in the zero column. Similarly, the exterior cogenerator zi is in degree (1, ∣xi∣), and

so all possible targets, i.e. combinations of xi’s with a single zi, will be in the first column.

Because we are on the E2-page, the differentials of bidegree (2,1) will be mapping outside

of these two columns, as will all possible dr differentials on later Er-pages. Thus beyond

the zero and first columns, the only elements that may be hit by differentials are those that

include at least zizj . However, as we said above, such elements are not primitive, and the

shortest non-zero differential d
s,t
r in lowest total degree s + t has to hit a ◻π∗(C)-coalgebra

primitive. Therefore, our spectral sequence collapses at E2.

Now we want to make sure the convergence conditions of Corollary 3.0.5 hold; that is, if

for every s there exists some r so that E
s,s+i
r = Es,s+i∞ then the relative coBökstedt spectral

sequence converges completely to π∗(coTHHHk(C)). However, because the differentials

starting at the E2-page must be trivial, we satisfy this condition for convergence, and so we

have the following isomorphism of k-modules:

π∗(coTHHHk(C)) ≅ Γk[x1, x2, . . .] ⊗Λk(z1, z2, . . .).

.
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Chapter 6

Shadows

In a symmetric monoidal category (C ,⊗,1), an object C is called dualizable with dual D ∈ C

if there is a coevaluation map η ∶ 1 → C ⊗D and evaluation map ε ∶ D ⊗C → 1 that satisfy

the triangle identities:

(IdC ⊗ ε) ○ (η ⊗ IdC) ∶ C → C ⊗D ⊗C → C = IdC
(ε⊗ IdD) ○ (IdD ⊗ η) ∶D →D ⊗C ⊗D →D = IdD

Using this structure, one can define the trace of a map f ∶ C → C as

1
ηÐ→ C ⊗D f⊗IdÐÐÐ→ C ⊗D ≅D ⊗C εÐÐ→ 1.

Observe that the symmetric monoidal setting critically provides the symmetry isomorphism

C ⊗ D ≅ D ⊗ C. One might want to extend the notion of trace to bicategories. For two

objects C and D in a bicategory, there is a horizontal composition C ⊙D. However, one

would not expect to have a symmetry isomorphism relating C⊙D and D⊙C. Indeed, C⊙D

and D ⊙C may not even live in the same category.

Work of Ponto [31] and Ponto-Shulman [32] develops a notion of a bicategorical shadow

to address this issue. More recently, work of Campbell-Ponto [11] used this framework to

show that THH is a shadow. In this chapter we will show that coHochschild homology
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(coHH) is also a shadow. Note in particular that once we have the structure of a shadow,

other properties such as Morita invariance follow as a consequence. Some of these properties

were already shown via other methods, but the framework of shadows gives us another

perspective.

6.1 (Co)Bar Constructions

Because we will need bar and cobar constructions to give examples of shadows in this chapter,

we state those definitions here.

Definition 6.1.1

Let k be a commutative ring, A a k-algebra, M a right A-module, and N a left A-module.

Define a simplicial k-module

⋮
M ⊗k A⊗k A⊗k N

↓↑ ↓↑↓
M⊗kA⊗k N

↓ ↑↓
M ⊗k N

with face maps given by

di(m⊗ a1 ⊗ . . .⊗ ar ⊗ n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ma1 ⊗ . . .⊗ ar ⊗ n i = 0

m⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ ar ⊗ n 1 ≤ i < r
m⊗ a1 ⊗ . . .⊗ ar−1 ⊗ arn i = r,

and degeneracy maps that insert the unit map:
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si(m⊗ a1 ⊗⋯⊗ ar ⊗ n) =
⎧⎪⎪⎨⎪⎪⎩

m⊗ 1⊗ a1 ⊗⋯⊗ ar ⊗ n i = 0

m⊗ a1 ⊗⋯⊗ ai ⊗ 1⊗ ai+1 ⊗⋯⊗ ar ⊗ n 1 ≤ i ≤ r.

Then the two-sided bar complex Bar●(M,A,N) is given by the simplicial k-module

defined above. Further one can form a chain complex of k-modules via the boundary map

d = Σi(−1)idi to create the two-sided bar construction Bar(M,A,N).

Definition 6.1.2

Let R be a commutative ring spectrum, A an R-algebra, M a right A-module with structure

map γ ∶M ∧A→M , and N a left A-module with ψ ∶ A∧N → N , where all ∧ in this definition

are over R. Define a simplicial R-module

⋮
M ∧A ∧A ∧N

↓↑ ↓↑↓
M∧A ∧N
↓ ↑↓
M ∧N

with face maps given by

di =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ∧ Id∧r i = 0

Id∧i ∧ µ ∧ Id∧r−i 1 ≤ i < r
Id∧r ∧ ψ i = r,

and degeneracy maps that insert the unit map:

si = Idi+1 ∧ η ∧ Idr−i+1,

for 0 ≤ i ≤ r. Then the two-sided bar complex Bar●(M,A,N) is given by the simplicial
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R-module defined above, which we can then geometrically realize to get the two-sided bar

construction Bar(M,A,N).

Definition 6.1.3

Let k be a commutative ring, C a k-coalgebra, M a right C-comodule with right coaction

γ ∶ M → M ⊗k C, and N a left C-comodule with left coaction ψ ∶ N → C ⊗k N . Define a

cosimplicial k-comodule

⋮
M ⊗k C ⊗k C ⊗k N

↑↓ ↑↓↑
M⊗kC ⊗k N

↑ ↓↑
M ⊗k N

with coface maps given by

δi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ⊗ Id⊗r+1 i = 0

Id⊗i ⊗∆⊗ Id⊗(r−i+1) 1 ≤ i ≤ r
Id⊗r+1 ⊗ ψ i = r + 1

and codegeneracy maps that insert the counit map for 0 ≤ i ≤ r − 1:

σi = Id⊗(i+1) ⊗ ε⊗ Id⊗r−i.

We denote the cosimplicial two-sided cobar complex by coBar●(M,C,N). One can form

a cochain complex of k-comodules via the boundary map δ = Σi(−1)iδi to create the two-

sided cobar construction coBar(M,C,N).
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6.2 Shadow Background

We first recall some basic definitions.

Definition 6.2.1 ([32, 11])

A bicategory B consists of

• a collection objects, ob(B), called 0-cells

• categories B(R,T ) for each pair R,T ∈ ob(B). The objects in these categories are

referred to as 1-cells and the morphisms as 2-cells.

• unit functors UR ∈ ob(B(R,R)) for all R ∈ ob(B)

• horizontal composition functors for R,T,V ∈ ob(B)

⊙ ∶ B(R,T ) ×B(T,V ) →B(R,V )

which are not required to be strictly associative or unital.

• natural isomorphisms for M ∈ ob(B(R,T )), N ∈ ob(B(T,V )), and P ∈ ob(B(V,W )),

Q ∈ ob(B(W,X)) for R,T,V,W,X ∈ ob(B)

a ∶ (M ⊙N) ⊙ P ≅ÐÐ→M ⊙ (N ⊙ P )
l ∶ UR ⊙M ≅ÐÐ→M

r ∶M ⊙UT
≅ÐÐ→M

that satisfy the monoidal category coherence axioms (triangle identity and pentagon

identity):
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(M ⊙UT ) ⊙N M ⊙ (UT ⊙N)

M ⊙N

r⊙Id

a

Id⊙l

(M ⊙N) ⊙ (P ⊙Q)

((M ⊙N) ⊙ P ) ⊙Q M ⊙ (N ⊙ (P ⊙Q))

(M ⊙ (N ⊙ P )) ⊙Q M ⊙ ((N ⊙ P ) ⊙Q)

aa

a⊙Id

a

Id⊙a

Example 6.2.2

The bicategory Mod/Ring whose 0-cells are rings, and Mod/Ring(R,T ) =RModT is the

category of (R,T )-bimodules for rings R,T . The unit UR is the (R,R)-bimodule R, and

horizontal composition is given by the tensor product of bimodules

⊙ ∶ B(R,T ) ×B(T,V ) →B(R,V )
(M,N) ↦M ⊙N ∶=M ⊗T N

Example 6.2.3

The bicategory D(Ch/Ring) has 0-cells that are rings and D(Ch/Ring)(R,T ) = D(RModT )

is the derived category of (R,T )-bimodules. The unit UR is the (R,R)-bimodule R viewed

as a chain complex, and horizontal composition is given by the derived tensor product ⊗L:

⊙ ∶ B(R,T ) ×B(T,V ) →B(R,V )
(M,N) ↦M ⊙N ∶=M ⊗LT N

Note that Bar●(M,T,N) ≃M⊗LT N viewed as a trivial simplicial object via the isomorphism
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that in degree j multiplies together all the factors of T . Thus we may also consider this

horizontal composition as the two-sided bar construction.

Example 6.2.4

Let D(Mod/Ring Spectra) denote the bicategory whose 0-cells are ring spectra, and for ring

spectra R,T D(Mod/Ring Spectra)(R,T ) is the homotopy category of (R,T )-bimodules.

The unit UR is the (R,R)-bimodule spectrum R, and horizontal composition is given by the

derived smash product ∧L of spectra

⊙ ∶ B(R,T ) ×B(T,V ) →B(R,V )
(M,N) ↦M ⊙N ∶=M ∧LT N

Note that as in the previous example M ∧LT N ≃ Bar(M,T,N) [15, Prop IV.7.5], and so we

may also consider this horizontal composition as the two-sided bar construction.

Now that we have the underlying bicategorical structure, we will define a shadow on that

bicategory:

Definition 6.2.5 ([31, 32])

A shadow functor for a bicategory B consists of functors

⟨⟨ − ⟩⟩C ∶ B(C,C) → T

for every C ∈ ob(B) and some fixed category T equipped with a natural isomorphism for

M ∈ B(C,D), N ∈ B(D,C)

θ ∶ ⟨⟨M ⊙N⟩⟩C
≅ÐÐ→ ⟨⟨N ⊙M⟩⟩D.
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For P ∈ B(C,C), these functors must satisfy the following commutative diagrams (when

they make sense):

⟨⟨(M ⊙N) ⊙ P ⟩⟩C
θ //

⟨⟨a⟩⟩
��

⟨⟨P ⊙ (M ⊙N)⟩⟩C
⟨⟨a⟩⟩

// ⟨⟨(P ⊙M) ⊙N⟩⟩C

⟨⟨M ⊙ (N ⊙ P )⟩⟩C
θ // ⟨⟨(N ⊙ P ) ⊙M⟩⟩D

⟨⟨a⟩⟩
// ⟨⟨N ⊙ (P ⊙M)⟩⟩D

θ

OO

⟨⟨P ⊙UC⟩⟩C
θ //

⟨⟨r⟩⟩ ((

⟨⟨UC ⊙ P ⟩⟩C
⟨⟨l⟩⟩
��

θ // ⟨⟨P ⊙UC⟩⟩C

⟨⟨r⟩⟩vv
⟨⟨P ⟩⟩C

We can now consider shadows for the bicategories that we introduced earlier.

Example 6.2.6

The “underived version” of Hochschild homology (or HH0(R;M)) is a shadow on the bicat-

egory Mod/Ring [32]. Recall that Mod/Ring(R,R) =RModR, so let R be a ring and M be

an (R,R)-bimodule to define

⟨⟨ − ⟩⟩R ∶RModR → A b

M ↦ R⊗R⊗RopM ≅ HH0(R;M)

where A b is the category of abelian groups and the isomorphism above follows since

R⊗R⊗RopM =H0(R⊗LR⊗RopM)

= TorR⊗Rop0 (R,M)
= HH0(R;M)

Equivalently we could define this shadow of the (R,R)-bimodule M to be the coequalizer of

R⊗M
γ //

ψ
//M // ⟨⟨M⟩⟩,

where γ and ψ are the right and left module actions respectively.

The main property of shadows that we want to justify is that for an (R,T )-bimodule M
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and an (T,R)-bimodule N , there is an isomorphism

θ ∶ ⟨⟨M ⊙N⟩⟩R
≅ÐÐ→ ⟨⟨N ⊙M⟩⟩T

Unpacking this we see

⟨⟨M ⊙N⟩⟩R ∶= ⟨⟨M ⊗T N⟩⟩R = R⊗R⊗Rop (M ⊗T N)
≅ HH0(R;M ⊗T N)

⟨⟨N ⊙M⟩⟩T ∶= ⟨⟨N ⊗RM⟩⟩T = T ⊗T⊗Top (N ⊗RM)
≅ HH0(T ;N ⊗RM)

So justifying that there is such an isomorphism θ comes down to comparing M ⊗T N quo-

tiented by the action of R⊗Rop and N ⊗RM quotiented by the action of T ⊗ T op.

Recall the 0th Hochschild homology of a k-algebra A with coefficients in an (A,A)-

bimodule B is given by:

HH0(A;B) ≅ B/ < ab − ba > .

So to define θ above, we need a map

θ ∶M ⊗T N/ < rm⊗ n −m⊗ nr >ÐÐ→ N ⊗RM/ < tn⊗m − n⊗mt > .

We would like to define θ as the map that swaps the tensor factors m⊗n↦ n⊗m. However,

in order for this map to be a well-defined map, we need to verify that rm⊗n−m⊗nr maps

to 0. But because of the universal property of ⊗R, we can bring r through the tensor so that

θ takes
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rm⊗T n −m⊗T nr z→n⊗R rm − nr ⊗R m = n⊗R rm − n⊗R rm = 0.

Therefore we have defined θ in one direction. A similar argument justifies that its inverse

sends n⊗m↦m⊗ n, and together these give the desired isomorphism:

θ ∶ HH0(R;M ⊗T N) ≅ÐÐ→ HH0(T ;N ⊗RM).

We have seen above that HH0(R;−) is a shadow. Now we will see that Hochschild

homology is as well.

Example 6.2.7

Hochschild homology is a shadow on the category D(Ch/Ring). So let R be a ring and M

be a chain complex of (R,R)-bimodules to define

⟨⟨ − ⟩⟩R ∶ D(Ch/Ring)(R,R) → D(ChZ)
M ↦ R⊗LR⊗RopM ≅ HH(R,M)

where ChZ is chain complexes of abelian groups and HH(R,M) denotes the complex whose

homology gives Hochschild homology. The isomorphism above follows since

Hi(R⊗LR⊗RopM) = TorR⊗Ropi (R,M)
= HHi(R;M)

Again, the argument amounts to justifying that for M a chain complex of (R,T )-

bimodules and N a chain complex of (T,R)-bimodules, there is an isomorphism
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θ ∶ ⟨⟨M ⊙N⟩⟩R
≅ÐÐ→ ⟨⟨N ⊙M⟩⟩T

Unpacking this and using the fact that M ⊗LT N ≃ Bar(M,T,N) we see

⟨⟨M ⊙N⟩⟩R ∶= ⟨⟨M ⊗LT N⟩⟩R = R⊗LR⊗Rop (M ⊗LT N)
≅ HH(R,M ⊗LT N) ≅ HH(R,Bar(M,T,N))

⟨⟨N ⊙M⟩⟩T ∶= ⟨⟨N ⊗LRM⟩⟩T = T ⊗LT⊗Top (N ⊗LRM)
≅ HH(T,N ⊗LRM) ≅ HH(T,Bar(N,R,M))

So justifying that there is such an isomorphism θ amounts to constructing an isomorphism:

θ ∶ HH(R,Bar(M,T,N)) ≅ÐÐ→ HH(T,Bar(N,R,M)).

Recall that Hochschild homology is calculated using a cyclic bar construction, and applying

the Dold-Kan correspondence between chain complexes and simplicial k-modules allows us

to identify both of the above bisimplicial chain complexes, HH●(R;Bar●(M,T,N)) and

HH●(T ;Bar●(N,R,M)) with the bisimplicial object H●● that at the (i, j)-spot is given by:

R⊗R⊗ . . .⊗R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i⊗ ⊗
N M

⊗ ⊗j
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
T ⊗ T ⊗ . . .⊗ T

where the face maps are given by multiplication of adjacent terms. Then the map θ is given

degree-wise by:

θ ∶M ⊗ T ⊗⋯⊗ T ⊗N ⊗R⊗⋯⊗R ÐÐ→ N ⊗R⊗⋯⊗R⊗M ⊗ T ⊗⋯⊗ T
m⊗ t1 ⊗⋯tj ⊗ n⊗ r1 ⊗⋯⊗ ri ↦ ±n⊗ r1 ⊗⋯⊗ ri ⊗m⊗ t1 ⊗⋯⊗ tj ,
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where the ± is determined by the Koszul sign convention. This map is defined because

of the (R,T )-bimodule structure on M and the (T,R)-bimodule structure on N . This

bisimplicial identification then gives an equivalence of complexes and thus defines the desired

isomorphism θ. This approach is often referred to as a Dennis-Waldhausen Morita Argument

[36, 3].

Example 6.2.8 ([11])

Topological Hochschild homology is a shadow on the bicategory D(Mod/Ring Spectra). Let

R be a ring spectrum and M an (R,R)-bimodule spectrum, and define

⟨⟨ − ⟩⟩R ∶ Ho(Mod(R,R)) → Ho(Sp)
M ↦ THH(R,M)

where Ho(Sp) is the homotopy category of spectra.

Again, the argument amounts to justifying that for an (R,T )-bimodule M and a (T,R)-

bimodule N , there is an isomorphism

θ ∶ ⟨⟨M ⊙N⟩⟩R
≅ÐÐ→ ⟨⟨N ⊙M⟩⟩T

Unpacking this as before shows that justifying that θ is an isomorphism is equivalent to

showing that there is an isomorphism

θ ∶ THH(R,Bar(M,T,N)) ≅ÐÐ→ THH(T,Bar(N,R,M)).

As above we may apply the Dennis-Waldhausen Morita Argument to identify both

THH●(R,Bar●(M,T,N)) and THH●(T,Bar●(N,R,M)) with the bisimplicial spectrum that

at the (i, j)-spot looks like
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R ∧R ∧ . . . ∧R´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i∧ ∧

N M.
∧ ∧j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
T ∧ T ∧ . . . ∧ T

Then the geometric realization yields the desired equivalence [3].

Now we will see how to extend this work to the dual situation with coalgebra inputs.

6.3 CoHochschild Homology is a Shadow

We want to show that coHochschild homology is also a shadow. We first describe the

following bicategory.

Definition 6.3.1

For a field k, the bicategory CoAlgk has 0-cells that are coalgebras over k, say C,D, and

CoAlgk(C,D) is the category of (C,D)-bicomodules. The unit UC is the (C,C)-bicomodule

C, and horizontal composition is given by the cotensor product ◻ given by

⊙ ∶ B(C,D) ×B(D,E) →B(C,E)
(M,N) ↦M ⊙N ∶=M ◻D N

For (C,D)-bicomodule M , (D,E)-bicomodule N , and (E,F )-bicomodule P the natural

isomorphisms

a ∶ (M ⊙N) ⊙ P ≅ÐÐ→M ⊙ (N ⊙ P )
l ∶ UC ⊙M ≅ÐÐ→M

r ∶M ⊙UD
≅ÐÐ→M

follow as in [14] from the natural isomorphisms
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(M ◻D N) ◻E P ≅M ◻D (N ◻E P )
C ◻C M ≅M
M ◻D D ≅M.

The maps above are given by:

a ∶ (M ◻D N) ◻E P ≅M ◻D (N ◻E P )
(m⊗ n) ⊗ p↦m⊗ (n⊗ p)

l ∶ C ◻C M ≅M
Σici ⊗mi ↦ Σiε(ci)mi

r ∶M ◻D D ≅M
Σimi ⊗ di ↦ Σimiε(di)

We refer to [10, 11.6] for the proof that the cotensor is associative since the field k ensures

flatness.

Theorem 6.3.2

The 0th Hochschild homology, coHH0, is a shadow on the bicategory CoAlgk. That is, it

gives a family of functors

coHH0(−,C) ∶ CoMod(C,C) → A b

N ↦ N ◻C⊗Cop C ≅ coHH0(N,C)

that satisfy the required shadow properties.

Proof. We use the bicategory with 1- and 2-cells from CoMod(C,C), which is the category

of (C,C)-bicomodules as defined above. Recall the horizontal composition:
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⊙ ∶ B(C,D) ×B(D,E) →B(C,E)
(M,N) ↦M ⊙N ∶=M ◻D N

Note that since we are working with coalgebras over a field k, the cotensor M ◻D N is a

bicomodule.

We want to define the required functor:

⟨⟨ − ⟩⟩C ∶ CoMod(C,C) → A b

N ↦ N ◻C⊗Cop C ≅ coHH0(N,C)

where A b is again the category of abelian groups. The isomorphism above follows from

N ◻C⊗Cop C =H0(N ◻C⊗Cop C)
= CoTor0

C⊗Cop(N,C)
= coHH0(N,C)

Now the brunt of what we need to justify to show that coHH0 is a shadow is that for M

a (C,D)-bicomodule and N a (D,C)-bicomodule, we have an isomorphism

θ ∶ ⟨⟨M ⊙N⟩⟩C ÐÐ→ ⟨⟨N ⊙M⟩⟩D

But unpacking our notation gives

⟨⟨M ⊙N⟩⟩C ∶= ⟨⟨M ◻D N⟩⟩C = (M ◻D N) ◻C⊗Cop C
≅ coHH0(M ◻D N,C)

⟨⟨N ⊙M⟩⟩D ∶= ⟨⟨N ◻M⟩⟩D = (N ◻C M) ◻D⊗Dop D
≅ coHH0(N ◻C M,D).
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Recall that the 0th coHochschild homology of a k-coalgebra A with coefficients in an

(A,A)-bicomodule B with coactions γ ∶ B → B ⊗A and ψ ∶ B → A⊗B is given by:

coHH0(B,A) = {b ∈ B ∣ t̃ψ(b) = γ(b)}

where t̃ is the twist map [14]. We want to define a map θ

θ ∶ {m⊗ n ∈M ◻D N ∣ t̃ψ1(m⊗ n) = γ1(m⊗ n)} ÐÐ→ {n⊗m ∈ N ◻C M ∣ t̃ψ2(n⊗m) = γ2(n⊗m)}

for the following comodule and structure maps

γ1 ∶M ◻D N →M ◻D N ⊗C
m⊗ n↦m⊗ γN(n)

ψ1 ∶M ◻D N → C ⊗M ◻D N

m⊗ n↦ ψM(m) ⊗ n
γ2 ∶ N ◻C M → N ◻C M ⊗D

n⊗m↦ n⊗ γM(m)
ψ2 ∶ N ◻C M →D ⊗N ◻C M

n⊗m↦ ψN(n) ⊗m

γM ∶M →M ⊗D
ψM ∶M → C ⊗M
γN ∶ N → N ⊗C
ψN ∶ N →D ⊗N.

We would like to define θ as the map that swaps the factors m ⊗ n ↦ n ⊗m. In order

for this map to be well-defined, we need to verify that t̃ψ2(n ⊗m) = γ2(n ⊗m). Note the

definition of cotensor

M ◻D N ÐÐ→ (M ⊗N)
γM⊗IdN//

IdM⊗ψN

//M ⊗D ⊗N

implies that for m⊗ n ∈M ◻D N , γM(m) ⊗ n =m⊗ ψN(n), verifying

t̃ψ2(n⊗m) = t̃(ψN(n) ⊗m) = n⊗ γM(m) = γ2(n⊗m).

A similar argument justifies the map in the other direction as well, so we can define the
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isomorphism θ by

θ ∶ coHH0(M ◻D N,C) ≅ÐÐ→ coHH0(N ◻C M,D).
m⊗ n↦ n⊗m

We need to show that for a chain complex of (C,C)-bicomodules P the following diagrams

are commutative when they make sense:

⟨⟨(M ⊙N) ⊙ P ⟩⟩ θ //

⟨⟨a⟩⟩
��

⟨⟨P ⊙ (M ⊙N)⟩⟩ ⟨⟨a⟩⟩
// ⟨⟨(P ⊙M) ⊙N⟩⟩

⟨⟨M ⊙ (N ⊙ P )⟩⟩ θ // ⟨⟨(N ⊙ P ) ⊙M⟩⟩ ⟨⟨a⟩⟩
// ⟨⟨N ⊙ (P ⊙M)⟩⟩

θ

OO

⟨⟨P ⊙UC⟩⟩ θ //

⟨⟨r⟩⟩ ''

⟨⟨UC ⊙ P ⟩⟩
⟨⟨l⟩⟩
��

θ // ⟨⟨P ⊙UC⟩⟩

⟨⟨r⟩⟩ww
⟨⟨P ⟩⟩

But notice that the first diagram above is equivalent to

coHH0((M ◻D N) ◻C P,C) θ //

⟨⟨a⟩⟩
��

coHH0(P ◻C (M ◻D N),C) ⟨⟨a⟩⟩// coHH0((P ◻C M) ◻D N,C)

coHH0(M ◻D (N ◻C P ),C) θ // coHH0((N ◻C P ) ◻C M,D) ⟨⟨a⟩⟩// coHH0(N ◻C (P ◻C M),D)

θ

OO

So if we apply the definitions of a and θ from above, a tedious check based on the definition

of coHH0 shows that this diagram commutes.

Further by the definition of the shadow, the second diagram is equivalent to:

coHH0(P ◻C C,C) θ //

⟨⟨r⟩⟩ **

coHH0(C ◻C P,C)
⟨⟨l⟩⟩
��

θ // coHH0(P ◻C C,C)

⟨⟨r⟩⟩tt
coHH0(P,C)

This diagram commutes because ⟨⟨r⟩⟩ and ⟨⟨l⟩⟩ just apply the counit ε to the copies of

C in the coefficients while θ ∶ coHH0(P ◻C C,C) → coHH0(C ◻C P,C) by definition just

shuffles the P component to the appropriate spot. Therefore the 0th coHochschild homology

is a shadow in this bicategorical setting.
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Definition 6.3.3

For a field k, let D(CoAlgk) denote the bicategory whose 0-cells are coalgebras over k, and

D(CoAlgk)(C,D) = D(CoMod(C,D)) is the derived category of (C,D)-bicomodules. The

unit UC is the (C,C)-bicomodule C viewed as a cochain complex, and horizontal composition

is given by the derived cotensor product, which we denote by ◻̂:

⊙ ∶ B(C,D) ×B(D,E) →B(C,E)
(M,N) ↦M ⊙N ∶=M ◻̂DN

Note that there is a quasi-isomorphism of cochain complexes M ◻̂DN ≃ coBar(M,D,N), and

so we may also consider this horizontal composition as the two-sided cobar construction.

Remark 6.3.4

Using this equivalence, we define the natural isomorphisms for this setting as:

a ∶ coBar(coBar(M,D,N),E,P ) ≅ÐÐ→ coBar(M,D, coBar(N,E,P ))
(m⊗ d1 ⊗⋯⊗ di ⊗ n) ⊗ e1 ⊗⋯⊗ ej ⊗ p↦m⊗ d1 ⊗⋯⊗ di ⊗ (n⊗ e1 ⊗⋯⊗ ej ⊗ p)

l ∶ coBar(C,C,M) ≅ÐÐ→M

c⊗ c1 ⊗⋯⊗ ci ⊗m↦ ε(c)ε(c1)⋯ε(ci)m
r ∶ coBar(M,D,D) ≅ÐÐ→M

m⊗ d1 ⊗⋯⊗ dj ⊗ d↦mε(d1)⋯ε(dj)ε(d).

where i, j denote the number of tensored copies in the cobar construction.

Theorem 6.3.5

CoHochschild homology, coHH, is a shadow on the bicategory D(CoAlgk). That is, it gives

a family of functors
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coHH(−,C) ∶ D(CoMod(C,C)) → D(CoChk)
N ↦ C◻̂C⊗CopN ≅ coHH(N,C)

as a complex that satisfy the required properties, where CoChk is the category of cochain

complexes.

Proof. We use the bicategory D(CoMod(C,C)), which is the derived category of (C,C)-

bicomodules as defined above. Recall the horizontal composition:

⊙ ∶ B(C,D) ×B(D,E) →B(C,E)
(M,N) ↦M ⊙N ∶=M ◻̂DN ≅ coBar(M,D,N)

Note that this definition requires M to be flat over k, which in this case is satisfied because

k is a field.

We want to define the required functor:

⟨⟨ − ⟩⟩C ∶ D(CoMod(C,C)) → D(CoChk)
N ↦ C◻̂C⊗CopN ≅ coHH(N,C)

where CoChk is cochain complexes of k-modules and coHH(N,C) denotes the complex

whose homology gives coHochschild homology. The isomorphism above follows from

Hi(C◻̂C⊗CopN) = CoToriC⊗Cop(C,N)
= coHHi(N,C)

Now the brunt of what we need to justify to show that coHH is a shadow is that for M

a cochain complex of (C,D)-bicomodules and N a cochain complex of (D,C)-bicomodules,
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we have an isomorphism

θ ∶ ⟨⟨M ⊙N⟩⟩C ÐÐ→ ⟨⟨N ⊙M⟩⟩D

But unpacking our notation and using the fact that M ◻̂DN ≃ coBar(M,D,N) gives

⟨⟨M ⊙N⟩⟩C ∶= ⟨⟨M ◻̂DN⟩⟩C = C◻̂C⊗Cop(M ◻̂DN)
≅ coHH(M ◻̂DN,C) ≅ coHH(coBar(M,D,N),C)

⟨⟨N ⊙M⟩⟩D ∶= ⟨⟨N ◻̂M⟩⟩D =D◻̂D⊗Dop(N ◻̂CM)
≅ coHH(N ◻̂CM,D) ≅ coHH(coBar(N,C,M),D)

and so showing that there exists an isomorphism θ amounts to defining

θ ∶ coHH(coBar(M,D,N),C) ≅ÐÐ→ coHH(coBar(N,C,M),D).

Recall that coHochschild homology is calculated using a cyclic cobar construction, and

both coHH●(coBar●(M,D,N),C) and coHH●(coBar●(N,C,M),D) can be identified with

the bicosimiplicial object H●● that at the (i, j)-spot is given by:

C ⊗C ⊗ . . .⊗C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i⊗ ⊗
N M

⊗ ⊗j
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
D ⊗D ⊗ . . .⊗D

where the coface maps are given by comultiplication at the appropriate index. Then the

map θ is given degree-wise by:

θ ∶M ⊗D ⊗⋯⊗D ⊗N ⊗C ⊗⋯⊗C ÐÐ→ N ⊗C ⊗⋯⊗C ⊗M ⊗D ⊗⋯⊗D
m⊗ d1 ⊗⋯dj ⊗ n⊗ c1 ⊗⋯⊗ ci ↦ ±n⊗ c1 ⊗⋯⊗ ci ⊗m⊗ d1 ⊗⋯⊗ dj ,

where the ± is determined by the Koszul sign. This map behaves well with respect to
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the coface maps because of the (C,D)-comodule structure on M and the (D,C)-comodule

structure on N . This shuffling thus gives an equivalence of cochain complexes and defines

the desired isomorphism θ.

We need to show that for a cochain complex of (C,C)-bicomodules P the following

diagrams are commutative when they make sense:

⟨⟨(M ⊙N) ⊙ P ⟩⟩ θ //

⟨⟨a⟩⟩
��

⟨⟨P ⊙ (M ⊙N)⟩⟩ ⟨⟨a⟩⟩
// ⟨⟨(P ⊙M) ⊙N⟩⟩

⟨⟨M ⊙ (N ⊙ P )⟩⟩ θ // ⟨⟨(N ⊙ P ) ⊙M⟩⟩ ⟨⟨a⟩⟩
// ⟨⟨N ⊙ (P ⊙M)⟩⟩

θ

OO

⟨⟨P ⊙UC⟩⟩ θ //

⟨⟨r⟩⟩ ''

⟨⟨UC ⊙ P ⟩⟩
⟨⟨l⟩⟩
��

θ // ⟨⟨P ⊙UC⟩⟩

⟨⟨r⟩⟩ww
⟨⟨P ⟩⟩

But notice that the first diagram above is equivalent to

coHH((M ◻̂DN)◻̂CP,C) θ //

⟨⟨a⟩⟩
��

coHH(P ◻̂C(M ◻̂DN),C) ⟨⟨a⟩⟩
// coHH((P ◻̂CM)◻̂DN,C)

coHH(M ◻̂D(N ◻̂CP ),C) θ // coHH((N ◻̂CP )◻̂CM,D) ⟨⟨a⟩⟩
// coHH(N ◻̂C(P ◻̂CM),D).

θ

OO

So if we apply the definitions of a and θ from above, a tedious check based on the Dennis-

Waldhausen Morita Argument shows that this diagram, which is expanded in Diagram 2 of

the Appendix, commutes.

Further thanks to the natural isomorphisms of the bicategorical structure, the second

diagram is equivalent to:

coHH(P ◻̂CC,C) θ //

⟨⟨r⟩⟩ ))

coHH(C◻̂CP,C)
⟨⟨l⟩⟩
��

θ // coHH(P ◻̂CC,C)

⟨⟨r⟩⟩uu
coHH(P,C)

This diagram commutes because ⟨⟨r⟩⟩ and ⟨⟨l⟩⟩ just apply the counit ε to the copies of C in

the coefficients while θ ∶ coHH(coBar(P,C,C),C) → coHH(coBar(C,C,P ),C) by definition

just shuffles the P component to the appropriate spot. Therefore coHH is a shadow.
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6.4 Morita Invariance

Classically, we can define Morita equivalence in the context of rings and bimodules:

Definition 6.4.1 ([29])

Two rings R and T are Morita equivalent if there exist bimodules RMT and TNR so that

M ⊗T N ≅ R N ⊗RM ≅ T

as R- and T -bimodules respectively.

Hochschild homology is known to be Morita invariant:

Theorem 6.4.2 ([24])

If R and T are Morita equivalent rings, then there is a natural isomorphism

HH∗(R) ≅ HH∗(T ).

Morita equivalence in the dual setting of coalgebras is often referred to as Morita-Takeuchi

invariance thanks to work of Takeuchi [34]. This work was further developed by Farinati

and Solotar [17], Brezenzinski and Wisbauer [10] and Hess-Shipley [20].

Definition 6.4.3 ([10])

Two coalgebras C andD are Morita-Takeuchi equivalent if there exists a (C,D)-bicomodule

M and a (D,C)-bicomodule N such that there are bicomodule isomorphisms M ◻D N ≅ C

and N ◻C M ≅D.

This gives an equivalence of categories:

N ◻C − ∶ CoModC → CoModD
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CoHochschild homology is similarly known to be Morita-Takeuchi invariant, by work of

Farinati-Solotar:

Theorem 6.4.4 ([16])

If C and D are Morita-Takeuchi equivalent coalgebras, then there is a natural isomorphism

coHH∗(C) ≅ coHH∗(D).

More generally, Morita equivalence is a natural notion of equivalence in bicategories. We

recall the definition of Morita equivalence as presented, for instance, in Campbell-Ponto [11].

In order to define it in the bicategorical setting, we need the following definition.

Definition 6.4.5

For a bicategory B, a 1-cell M ∈ B(C,D) is right dualizable if there exists a 1-cell N ∈

B(D,C), called the right dual, along with a coevaluation 2-cell η(M,N) ∶ UC →M ⊙N and

an evaluation 2-cell ε(M,N) ∶ N ⊙M → UD such that they satisfy the triangle identities:

IdM = (IdM ⊙ ε(M,N)) ○ (η(M,N) ⊙ IdM ) ∶M ≅ UC ⊙M →M ⊙N ⊙M →M ⊙UD ≅M
IdN = (ε(M,N) ⊙ IdN ) ○ (IdN ⊙ η(M,N)) ∶ N ≅ N ⊙UC → N ⊙M ⊙N → UD ⊙N ≅ N

The pair (M,N) is called a dual pair, and N is left dualizable with left dual M .

Definition 6.4.6 ([11])

Let B be a bicategory. Then C,D ∈ ob(B) are Morita equivalent if there exist 1-cells

M ∈ B(C,D) and N ∈ B(D,C) such that (M,N) and (N,M) are dual pairs and the

coevaluation maps η(M,N) ∶ UC →M ⊙N , η(N,M) ∶ UD → N ⊙M and the evaluation maps

ε(M,N) ∶ N ⊙M → UD, ε(N,M) ∶M ⊙N → UC are inverses. That is,

98



η(N,M) ○ ε(M,N) = IdN⊙M ε(N,M) ○ η(M,N) = IdUC
η(M,N) ○ ε(N,M) = IdM⊙N ε(M,N) ○ η(N,M) = IdUD

Example 6.4.7

Using this structure, we see that in the bicategory Mod/Ring, R and T are Morita equivalent

if there exists an (R,T )-bimodule M and a (T,R)-bimodule N such that (M,N) and (N,M)

are dual pairs, giving

M ⊗T N ≅ R
N ⊗RM ≅ T.

Note that since HH0 is a shadow:

⟨⟨M ⊙N⟩⟩R ≅ ⟨⟨N ⊙M⟩⟩T
HH0(R;M ⊗T N) ≅ HH0(T ;N ⊗RM).

Morita invariance says that M ⊗T N ≅ R and N ⊗RM ≅ T . So then we get

HH0(R;R) ≅ HH0(R;M ⊗T N) (Morita equivalence)

≅ HH0(T ;N ⊗RM) (equivalence)

≅ HH0(T ;T ) (Morita invariance)

so our Morita equivalent rings R and T have equivalent “underived” Hochschild homology.

Example 6.4.8

In the bicategory D(Ch/Ring), R and T are Morita equivalent if there exist chain complexes

M of (R,T )-bimodules and N of (T,R)-bimodules such that (M,N) and (N,M) are dual

pairs, giving
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M ⊗LT N ≅ R
N ⊗LRM ≅ T.

Again, since HH is a shadow:

⟨⟨M ⊙N⟩⟩R ≅ ⟨⟨N ⊙M⟩⟩T
HH(R,M ⊗LT N) ≅ HH(T,N ⊗LRM).

Morita invariance says that M ⊗LT N ≅ R and N ⊗LRM ≅ T . So then we get

HH(R,R) ≅ HH(R,M ⊗LT N) (Morita equivalence)

≅ HH(T,N ⊗LRM) (shadows)

≅ HH(T,T ) (Morita equivalence)

so our Morita invariant rings R and T have equivalent Hochschild homology as well.

Example 6.4.9

Since [11] further show that THH is a shadow, the same notion of Morita invariance holds for

the bicategorical setting D(Mod/Ring Spectra). That is, ring spectra R and T are Morita

equivalent if there exists an (R,T )-bimodule spectrum M and a (T,R)-bimodule spectrum

N such that (M,N) and (N,M) are dual pairs, yielding

M ∧LT N ≃ R
N ∧LRM ≃ T.

Then since THH is a shadow,
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⟨⟨M ⊙N⟩⟩R ≅ ⟨⟨N ⊙M⟩⟩T
THH(R,M ∧LT N) ≃ THH(T,N ∧LRM).

Since Morita invariance says that M ∧LT N ≃ R and N ∧LRM ≃ T ,

THH(R,R) ≃ THH(R,M ∧LT N) (Morita equivalence)

≃ THH(T,N ∧LRM) (shadows)

≃ THH(T,T ) (Morita equivalence)

so our Morita equivalent ring spectra R and T have equivalent topological Hochschild ho-

mology as well.

Now we consider which objects are Morita equivalent in the bicategory CoAlgk.

Example 6.4.10

In the bicategory CoAlgk, coalgebras C and D are Morita equivalent if there exists a (C,D)-

bicomodule M and a (D,C)-bicomodule N such that (M,N) and (N,M) are dual pairs (i.e.

there exist coevaluation and evaluation maps for M and N satisfying the conditions of the

definition), yielding

M ◻D N ≅ C
N ◻C M ≅D.

This recovers the classical notion of Morita-Takeuchi equivalence as in [34]. According

to the bicategorical shadow structure we have the following Morita invariance results for

coHochschild homology.
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Proposition 6.4.11

If C and D are Morita equivalent coalgebras in the bicategory CoAlgk then

coHH0(C) ≅ coHH0(D).

Proof. Because coHH0 is a shadow,

⟨⟨M ⊙N⟩⟩C ≅ ⟨⟨N ⊙M⟩⟩D
coHH0(M ◻D N,C) ≅ coHH0(N ◻C M,D).

Suppose C and D are Morita equivalent. By definition, M ◻D N ≅ C and N ◻C M ≅D and

therefore

coHH0(C,C) ≅ coHH0(M ◻D N,C) (Morita equivalence)

≅ coHH0(N ◻RM,D) (shadows)

≅ coHH0(D,D) (Morita equivalence)

Thus C and D have the same 0th coHochschild homology.

Now we consider Morita equivalent objects in the bicategory D(CoAlgk).

Example 6.4.12

In the bicategory D(CoAlgk), coalgebras C and D are Morita equivalent if there exists a

chain complex of (C,D)-bicomodules M and a chain complex of (D,C)-bicomodules N such

that (M,N) and (N,M) are dual pairs (i.e. there exist coevaluation and evaluation maps

for M and N satisfying the conditions of the definition), yielding
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M ◻̂DN ≅ C
N ◻̂CM ≅D.

Morita equivalent objects in the bicategory D(CoAlgk) are classically Morita-Takeuchi

equivalent as well.

Proposition 6.4.13

If C and D are Morita equivalent coalgebras in the bicategory D(CoAlgk) then

coHH∗(C) ≅ coHH∗(D).

Proof. Because coHH is a shadow,

coHH(M ◻̂DN,C) ≅ coHH(N ◻̂CM,D).

Suppose C and D are Morita equivalent. By definition, M ◻̂DN ≅ C and N ◻̂CM ≅ D and

therefore

coHH(C,C) ≅ coHH(M ◻̂DN,C) (Morita equivalence)

≅ coHH(N ◻̂CM,D) (shadows)

≅ coHH(D,D) (Morita equivalence)

Thus Morita equivalent coalgebras C and D have equivalent coHochschild homology.

This recovers a result of Farinati-Solotar [16], using the perspective of shadows.
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Appendix

The following diagrams are referenced in this thesis.

Diagram 1: Coassociativity from proof of Proposition 2.5.5

B ∧A B
iA∧Id

//

iA∧Id
��

B ∧A A ∧A B
Id∧φ∧Id //

Id∧iA∧Id
��

B ∧A B ∧A B
Id∧iB∧Id

//

Id∧iA∧Id
��

(B ∧A B) ∧B (B ∧A B)
Id∧Id∧iA∧Id
��

B ∧A A ∧A B
Id∧φ∧Id
��

iA∧Id∧Id
// B ∧A A ∧A A ∧A B

Id∧φ∧Id∧Id //

Id∧Id∧φ∧Id
��

B ∧A B ∧A A ∧A B
Id∧iB∧Id∧Id

//

Id∧Id∧φ∧Id
��

(B ∧A B) ∧B (B ∧A A ∧A B)
Id∧Id∧Id∧φ∧Id
��

B ∧A B ∧A B
Id∧iB∧Id
��

iA∧Id∧Id
// B ∧A A ∧A B ∧A B

Id∧φ∧Id∧Id //

Id∧Id∧iB∧Id
��

(B ∧A B) ∧A (B ∧A B)
Id∧iB∧Id∧Id

//

Id∧Id∧iB∧Id
��

(B ∧A B) ∧B (B ∧A B ∧A B)
Id∧Id∧Id∧iB∧Id
��

(B ∧A B) ∧B (B ∧A B)
iA∧Id∧Id∧Id

// (B ∧A A ∧A B) ∧B (B ∧A B)Id∧φ∧Id∧Id∧Id// (B ∧A B ∧A B) ∧B (B ∧A B)
Id∧iB∧Id∧Id∧Id

// (B ∧A B) ∧B (B ∧A B) ∧B (B ∧A B)

Diagram 2: Shadow properties of coHH from proof of Theorem 6.3.5

coHH(coBar(coBar(M,D,N),C,P ),C) θ //

⟨⟨a⟩⟩
��

coHH(coBar(P,C, coBar(M,D,N)),C)⟨⟨a
−1⟩⟩
// coHH(coBar(coBar(P,C,M),D,N),C)

coHH(coBar(M,D, coBar(N,C,P )),C) θ // coHH(coBar(coBar(N,C,P ),C,M),D) ⟨⟨a⟩⟩
// coHH(coBar(N,C, coBar(P,C,M)),D)

θ

OO
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in Mathematics. Birkhäuser Verlag, Basel, 1999.

[19] Kathryn Hess, Paul-Eugène Parent, and Jonathan Scott. CoHochschild homology of
chain coalgebras. J. Pure Appl. Algebra, 213(4):536–556, 2009.

[20] Kathryn Hess and Brooke Shipley. Invariance properties of coHochschild homology.
arXiv preprint arXiv:1811.06508, 2018.

[21] Michael Hill and Tyler Lawson. Automorphic forms and cohomology theories on
Shimura curves of small discriminant. Adv. Math., 225(2):1013–1045, 2010.

[22] David Copeland Johnson and W. Stephen Wilson. Projective dimension and Brown-
Peterson homology. Topology, 12:327–353, 1973.

[23] Tyler Lawson and Niko Naumann. Commutativity conditions for truncated Brown-
Peterson spectra of height 2. J. Topol., 5(1):137–168, 2012.

[24] Jean-Louis Loday. Cyclic homology, volume 301. Springer Science & Business Media,
2013.

[25] Cary Malkiewich. Cyclotomic structure in the topological Hochschild homology of DX.
Algebr. Geom. Topol., 17(4):2307–2356, 2017.

[26] J. McClure, R. Schwänzl, and R. Vogt. THH(R) ≅ R⊗S1 for E∞ ring spectra. J. Pure
Appl. Algebra, 121(2):137–159, 1997.

[27] James E McClure and RE Staffeldt. On the topological Hochschild homology of bu, I.
American Journal of Mathematics, 115(1):1–45, 1993.

108



[28] John Milnor. The Steenrod algebra and its dual. Ann. of Math. (2), 67:150–171, 1958.

[29] Kiiti Morita. Duality for modules and its applications to the theory of rings with
minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 6:83–142, 1958.

[30] Maximilien Péroux and Brooke Shipley. Coalgebras in symmetric monoidal categories
of spectra. Homology Homotopy Appl., 21(1):1–18, 2019.

[31] Kate Ponto. Fixed point theory and trace for bicategories. Astérisque, pages xii+102,
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