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ABSTRACT
IDENTIFYING SIGNATURES OF PERCEIVED INTERPERSONAL SYNCHRONY
By
Eric Novotny
Interpersonal synchrony, or the temporal alignment of behaviors between
communicators, forms a basis for social bonding in humans. Synchrony is a phenomenon that
people can evidently see and feel on a Gestalt level, but the phenomenon itself is intricate.
Several qualities of a dyadic interaction can modify its manifestation and effects, including
complexity, entrainment, periodicity, and intentionality of the synchronous interaction. To date,
it is unclear which of these qualities drive perceptions of synchrony and its corresponding
effects. The lack of attention to synchrony’s components results in a potential over-
generalization of the concept, which is compounded by a surplus of measurement techniques. As
an initial attempt to address these concerns, the current study centers on a specific type of
synchrony (complex, reciprocal, repetitive, and purposeful), its correlation with perceived
synchrony, and its relationship to a previously identified social outcome variable: outgroup trust.
Using full-body motion capture of dyadic partners performing a Tai-Chi routine, three-
dimensional movement data were collected and several objective synchrony measures were
applied. Then, by overlaying neutral computer avatars onto the motion data, stimulus videos
showcasing dyads’ movements were created for an online survey. One-hundred fifteen
participants judged synchrony and the leader/follower relationship in the videos. These
perception ratings provided a comparison for convergent validity with objective measures.
Findings suggested that most objective measures significantly correlated with perceived

synchrony, though to different magnitudes. No measures correlated with outgroup trust directly,



but when comparing ingroup to outgroup dyads, synchrony correlated with outgroup trust
positively for ingroup participants and negatively for outgroup participants. Results indicate that
for a complex, reciprocal, repetitive, and purposeful type of synchrony, several measures of
synchrony relate to perceptions. More spontaneous/irregular forms of synchrony may require

more selectivity in measurement.
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INTRODUCTION

Interpersonal synchrony, or the temporal coordination of behavior between interactants,
is a common means of affiliation and bonding among humans (Hove & Risen, 2009; Launay,
Tarr, & Dunbar, 2016). In both an historical and developmental sense, synchrony has been
identified as a deeply rooted tendency by which humans create emotional and psychological
connections. Historically, groups of humans have long performed rituals involving simultaneous,
rhythmic movements to increase group cohesion or work toward a shared goal (McNeill, 1995;
Wiltermuth & Heath, 2009). Developmentally, infants and their mothers show synchronization
of physiological and emotional variables, including heart rate, breathing rate, and mood
(Feldman, 2007). In modern and adult life, synchrony has been well-substantiated as a predictor
of several social outcomes, including cooperation, rapport, and trust (Delaherche et al., 2012). It
has been studied across a range of applied contexts, including psychiatrist-patient relationships
(Ramseyer & Tschacher, 2011), teacher-student interactions (Bernieri, 1988), as well as sports
(Cohen, Ejsmond-Frey, Knight, & Dunbar, 2010). Throughout these studies, a common theme
has emerged: Synchrony is a powerful predictor of human bonding. Despite the solidarity of
these findings, another axiom remains evident: Not all synchronous interactions are created
equal.

Several qualities, or characteristic features, of a synchronous interaction can affect the
appearance and outcomes of the specific version of synchrony that emerges. First is the
complexity, or possible degrees of freedom, of the behavior. For example, dyadic partners may
perform synchronization of simple lateral movements (e.g., Noy, Dekel, & Alon, 2011) or
complex movements in a three-dimensional space (Slawinski et al., 2013). Similarly, the number

of communication channels being synchronized can vary widely between interactions; some may



involve the coordination of eye gaze only (e.g., Harel, Gordon, Geva, & Feldman, 2011),
whereas others can involve full-body synchronization (Niewiadomski et al., 2019). Second is the
type of entrainment, or the one-way or two-way adaptation of rhythms between actors (Bernieri,
Reznick, Rosenthal, 1988; Cacioppo et al., 2014; Konvalinka, Vuust, Roepstorff, & Frith, 2010)
that brings about synchrony. Third, the interaction might follow a steady beat (a rhythm with
equal intervals between events) or be more chaotic in its cadence. Fourth, coordination behaviors
might be purposeful/deliberative or spontaneous/automatic (Koban, Ramamoorthy, &
Konvalinka, 2019). See Table 1 for a summary of these qualities.

Table 1.

Qualities of interpersonal synchrony.

Characteristic Example Levels
Complexity Gaze direction vs. full body motion
Entrainment Unilateral, orchestral, reciprocal
Periodicity Repetitive vs. chaotic
Intentionality Purposeful vs. spontaneous

Each of the above qualities may lead to distinct perceivable properties of the behavior or
resulting social outcomes. For instance, eye gaze synchrony and body posture synchrony would
likely appear differently to observers and may induce correspondingly varying results. However,
to date, few studies have acknowledged how these properties differ or how they may influence
perceptions and outcomes. Without understanding these qualities, researchers might treat the
multidimensional construct of interpersonal synchrony as a unidimensional one, thereby
potentially reducing predictive power (Roznowski & Hanisch, 1990). The “watering down of a

powerful concept” (Bente & Novotny, in press, p. 5) has trickle-down effects unto its



measurement. Indeed, it is well-known that conceptual definitions drive the measurement of
those concepts, but the reverse is also arguable: that the operationalization of phenomena define
the concept one is observing. Conceding this assertion, it is important to acknowledge which
aspects of synchrony the various available techniques actually measure. For instance, measuring
the correlation of postures over time may not assess the latent variable of ‘synchrony’ in the
same way as measuring the alignment of phase angles between actors’ movements (Cheong,
2019).

To address these issues, the goals of the current research are to (a) identify which
objective measures best detect synchrony in an interaction featuring a specific level of each
quality, (b) examine how these measures relate to human perceptions of synchrony, and (c)
observe which measures of synchrony predict outgroup trust — a previously identified outcome
variable (Tamborini et al., 2018). The implications are to enhance understanding about how the
qualities of synchrony, their various levels, the collection of available measures, and social
outcomes align with global perceptions of synchrony. In the following, | discuss interpersonal
synchrony broadly, including its associated definitions, functions, key measures, and outcomes.
Second, I discuss in more depth the qualities of synchrony highlighted above. Third, | present a
study that compared objective synchrony measures of full-body motion capture data with
observer ratings of synchrony. This will allow for examination of which aspects of synchrony
truly relate to its perception.

THE ESSENCE OF INTERPERSONAL SYNCHRONY
Definitions
Broadly, the concept of interpersonal or behavioral synchrony has been used to describe

the mutual attunement of biological and behavioral rhythms between interactants (Bernieri,



Reznick, & Rosenthal, 1988; Burgoon, Stern, & Dillman, 2007). Evidence for synchrony is
found in the alignment of the amplitude (strength) and frequency (rate) of bio/behavioral cycles
such as heart rate (Mitkidis, McGraw, Roepstorff, & Wallot, 2015), breathing rate (Muller &
Lindenberger, 2011), affect (Rafaeli, Rogers, & Revelle, 2007), speech and other expressive
behaviors (Cappella, 1981), as well as body movements (Wiltermuth & Heath, 2009). Restricting
the current research’s consideration of synchrony to the nonverbal domain, interpersonal
synchrony is defined as the temporal coordination of motor behavior rhythms between
interaction partners (Bente & Novotny, in press; Bernieri, Reznick, & Rosenthal, 1988;
Delaherche et al., 2012). Beyond timing, the form of interactants’ movements may also be
similar, though this is not a requirement. Interpersonal coordination types characterized by
occasional matching of postures or movements are better subsumed by the term mimicry
(Chartrand & Bargh, 1999). Unlike synchrony, mimicry often involves a static match between
movement forms, rather than a dynamic sharing of movement timing. A combination of
rhythmic matching and form matching has been dubbed ‘perfect synchrony’ (e.g., perfect unison
of a marching band), whereas general synchrony only requires a match in timing (e.g., an
orchestra; Hale, 2017).
Functions: Why Synchronize?

Numerous explanations exist regarding the ubiquity of synchrony in human interaction.
The first account treats synchronous behavior as an evolutionarily functional behavior (McNeill,
1995; Wiltermuth & Heath, 2009). Throughout human history, countless cultures have developed
rituals that foster motor synchrony: From tribal dances around the fire, to religious practices
involving simultaneous bowing and rising, to vibrant dancing at modern rave festivals. Such

activities are thought to increase cooperation and bonding among group members, as well as



identify potential “free-riders,” or members of the group who do not pull their weight in terms of
coordinating toward group goals (Wiltermuth & Heath, 2009). In the evolutionary perspective,
movement synchrony is thus a way of enhancing group entitativity, or the degree to which a
collection of entities is perceived as a unit (Lakens, 2010).

The second perspective is not at odds with the first, but instead focuses on synchrony as a
perceptual phenomenon that enhances social bonding (Hove & Risen, 2009; Lakens, Schubert, &
Paladino, 2016). Here synchronous movement functions to blur self-other perceptual boundaries
in the mind. This means that when a person witnesses another individual moving in the same
rhythm as his/herself, the neural representation of ‘self” and ‘other’ becomes almost
indistinguishable (Paladino, Mazzurega, Pavani, & Schubert, 2010). Moreover, as Aron, Aron,
Tudor, and Nelson (1991) write: “...to the extent a partner is perceived as part of one's self,
allocation of resources is communal (because benefiting other is benefiting self)” (p. 242). As
such, the self-other merging created from synchrony fosters cooperation and social coordination
(Galinsky, Ku, & Wang, 2005), positive outcomes that could explain our propensity to
synchronize.

A third explanation for synchrony is the brain optimization principle (Koban
Ramamoorthy, & Konvalinka, 2019). This recent account implicates the reduced neural energy
involved in synchrony (as opposed to out of sync motion) as a reason for its prominence in
human behavior. Optimization of brain functionality is founded on the free energy principle,
which refers to the brain’s tendency to minimize coding costs when predicting and representing
environmental stimuli (Friston, 2010). Neural networks have been compared to man-made
electronic devices, in that they are constructed to facilitate minimization of energy cost (Laughlin

& Sejnowski, 2003). The optimization principle proposes that during an interaction where two



people’s perceptual systems are linked (i.e., they can see or hear each other) synchronization is
likely to develop because the brain requires less effort to represent the other’s behavior if it is
similar to that of the self. As such, an implicit desire for less mental energy stimulates
synchronized movements, and subsequently, through properties of dynamic systems (Schmidt,
Carello, & Turvey, 1990), a stable state can emerge where interactants’ behaviors remain in
synchrony. Moreover, Koban et al. posit that the reduced effort involved in synchrony is
experienced as rewarding. The desirable emotional states deriving from synchrony become
associated with the interaction partner, leading to positive bonding variables such as rapport and
cooperation.
Measurement

Interpersonal synchrony has spawned a wealth of measures over the course of its study,
ranging from the most basic (simple human coding of the behavior; Bernieri, 1988) to the most
complex measures assessing the intricate dynamics of dyadic interactions. In the following
sections, | focus on behavioral coding as a basic measure, followed by Pearson correlations,
mutual information, dynamic time warping, phase synchrony, and time-lagged cross correlations,
(see Cheong, 2019). This range of measures addresses different ways to look at synchrony, from
an overall aggregation of similarity to fine pattern recognition.

Behavioral coding. A basic measure of interpersonal synchrony is conducted through
human observation and identification (Bernieri, 1988). This method approaches synchrony as a
Gestalt-level behavior, identifiable not from specific movements per se, but from the degree to
which an interacting dyad generally shares tempos, meshes behaviors smoothly, performs
movements simultaneously, and assumes similar postures (Bernieri, 1988). As Bernieri (1988;

Bernieri, Davis, Rosenthal, & Knee, 1994) contends, synchrony can be faithfully captured from



observations of dyadic video, thus not requiring rigorous movement coding or computational
analyses. It remains to be seen, though, which aspects of synchronous movement drive these
perceptions.

This method typically involves observers watching videos of real interactants in
conversation or some other dyadic activity. The videos are muted, and observers are instructed to
judge nonverbal components of rapport, a psychological construct partially embodied by the
physical expression of motor coordination. In fact, rapport is thought to consist of mutual
attentiveness, positivity, and coordination of behaviors in interaction (Tickle-Degnen &
Rosenthal, 1990). Like synchrony, rapport is characterized as readily observable from nonverbal
behavior (Grahe & Bernieri, 1999).

A clear limitation with behavioral coding of synchrony is the subjugation of measurement
precision for more abstract examination. Bernieri argues that synchrony can be observed from an
abstract viewpoint, but this approach does not answer questions pertaining to specific movement
patterns (in timing or form) that drive perceptions of synchrony or rapport. Thus, the explanatory
power of this method regarding parameters that drive synchrony is relatively limited. Further,
this method is confounded by appearance-based variables of the stimulus dyads (see Bente,
2019, p. 11). Bernieri, Davis, Rosenthal, and Knee (1994) created a video mosaic method to
account for a different appearance-based confound (smiling behaviors being linked to positivity,
thus disrupting measures of synchrony per se), but it is evident from viewing these stimuli that
gender and race are still interpretable (Bente, 2019). As such, we again turn to measurement
procedures that avoid these confounds and enhance precision.

Pearson correlation. The Pearson product-moment correlation, or simply Pearson’s r, is

a widely used and relatively simplistic measure of the strength of association between two



continuous variables (Puth, Neuhauser, & Ruxton, 2014). It assesses the covariation between
variables without making predictions about causal direction. In synchrony research, the
correlation between time series can be calculated to give a measure of covariation between two
actors’ movement activity. This measure is easy to interpret but is limited in (a) its susceptibility
to outliers and (b) its assumption that data are stationary across a time series (Cheong, 2019). To
account for these issues, extensions of the correlation, such as cross-correlations and windowed
cross-lagged correlations, have been developed (Boker, Xu, Rotondo, & King, 2002; Coco &
Dale, 2014). Still, the basic Pearson r is advantageous as a straightforward first look at
association between systems.

Mutual Information (MI). Mutual information (M1, Shannon, 1948; Moddemeijer,
1989) is a measure of statistical dependence conducted between two discrete or continuous
variables (Ince et al., 2017). The formula for Ml is quite straightforward, though the calculations
for its components are more complex (see Hershey & Movellan, 2000, for example, for more
information):

MI(x,y) = H(x) + H(y) - H(x.y)

MI represents mutual information, H represents entropy, and x and y are the two systems being
compared. Entropy is a fundamental measure in Shannon’s mathematical theory of
communication (1948), and indicates the amount of information (in Shannons or bits, typically)
provided by an event in relation to all other possible events. All else equal, more possibilities in
terms of outcomes equals higher entropy. In other words, entropy is the degree of uncertainty
regarding an outcome of an event (Shannon, 1948). Ml is a measure of comparisons of entropy
between two variables. As seen in the formula, M1 consists of the addition of the independent

entropies of variable x and y, and subtracts from this the joint entropy, or the combined entropy



of both events occurring simultaneously. The resulting Ml measure refers to how aligned two
systems are temporally. A higher Ml score indicates higher synchrony; lower Ml indicates lower
synchrony (Prince et al., 2004).

Mutual information has been utilized as a measure of synchrony, mainly within the
psychophysiological literature as an indicator of audio-visual synchrony (Hershey & Movellan,
2000; Prince et al., 2004). In the case of Hershey and Movellan (2000), MI was calculated for the
synchrony between an audio signal and a spatially localized video signal. As Prince et al. (2004)
note, “The HM [i.e., Hershey & Movellan] algorithm is relatively general, detecting temporal
synchrony between two time-based input streams” (p. 89). Though little research has used
mutual information to measure interpersonal motor synchrony, the generality in this respect
gives it potential. In sum, Ml is a previously established method with possible application to
different synchrony scenarios. One could use this measure to provide an aggregate measure of
total alignment in time of two motor systems, though it is not useful for uncovering specific
dynamic patterns in the data (e.g., leader-follower relationships).

Dynamic Time Warping (DTW). Dynamic time warping is a test that measures
similarity between two time series while accounting for time shifts and speed differences (Sakoe
& Chiba, 1978). DTW realigns two time series by plotting their data arrays against each other in
a matrix and comparing each time series’ data points to those of the other (Mueen & Keogh,
2016; Pouw & Dixon, 2020). It involves calculation of a warp line, or a path through the matrix
that connects all the lowest values (i.e., smallest distances between data points). Starting with the
upper right cell, which is the last time point for both time series, the DTW procedure checks for
the minimum value among the adjacent cells: one cell to the left, one to the diagonal lower left,

and one to the lower. Whichever value is the lowest, the warp line is traced to that cell. The



drawing of this line continues until it reaches the lower left cell of the matrix. The resulting warp
line can be compared to the ideal diagonal to indicate how closely the two time-series are aligned
and visualizes any temporal differences or time shifts between the two. Data from two people
who were perfectly synced would generate a warp line that was very close to the ideal diagonal.
A final distance value can be computed that sums all the minimum values, providing an
aggregate representation of overall difference between the two time series.

Phase synchrony. Derived from dynamic systems research (Rosenblum, Pikovsky,
Kurths, Schafer, & Tass, 2001; Schmidt & O’Brien, 1997), phase synchrony measures the
relationship between two time series in terms of their phase. Along with period, frequency, and
amplitude, phase is a feature of an oscillating system’s (a system whose parts show a periodic
behavior) cycle that defines the dynamic behavior. For an exemplary oscillating system, consider
two people each swinging a pendulum next to one another (cf. Schmidt & O’Brien, 1997). The
system has two oscillators (each of the swinging pendulums) and each of these oscillators
exhibits a periodic behavior. The period is the length of time it takes for the pendulum to
complete one movement cycle (i.e., starting from the left, swinging to the right, and reaching the
left again). The frequency is the inverse of the period and represents the rate of the behavior. In
the pendulum example, this would be complete pendulum swings per time unit. The amplitude is
the magnitude of the behavior, or the y-axis in a time series graph. In our example the amplitude
is the physical distance the pendulum swings laterally. Finally, the phase is point in the cycle at
which the oscillator operates at a given time. A pendulum’s cycle could be thought to start at 0°
on the left endpoint, swing to 180 ° on the right endpoint, and then restart the cycle at the left

again.
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This explanation of phase relates to the oscillatory behavior of one system. Phase
synchrony, however, represents the relation between phase angles of two oscillating systems.
Considering the pendulum example again, phase synchrony represents the alignment of the
phases of each pendulum over time. Coupling in turn relates to the entrainment of two systems;
in the case of interpersonal synchrony, coupling refers to an interdependent relationship
facilitated through a shared visual or auditory space (Oullier et al., 2008; Schmidt, Bienvenu,
Fitzpatrick, & Amazeen, 1998). It has been shown that once in action, coupled systems stabilize
to either an in-phase (same phase angle) or anti-phase (opposite angles; e.g., 0 and 180) angle,
and remain in this state robustly (Schmidt et al., 1990).

Phase synchrony is a useful measure when researchers are interested in the alignment of
rhythms between two systems. It is advantageous in that it can identify synchronous rhythms
between even noisy and nonstationary systems (Rosenblum et al., 2001). For example, in a
conversation in which movements are not repetitive or cyclical, phase synchrony can still
identify interdependencies of phases. However, phase synchrony operates independently of the
amplitude of the systems, thus not giving meaningful information about the magnitude of
behaviors.

Rolling Window Time-Lagged Cross Correlations (RWTLCC). One popular time
series method is the windowed time-lagged cross correlation (WTLCCs; Boker, Xu, Rotondo, &
King, 2002; Cheong, 2019), which involves calculation of correlations of a given parameter
between two time series, like a standard Pearson correlation, but additionally provides
correlations between the two series at different time lags. Rather than just calculating the
movement similarity between person A and person B at an intersubject lag of 0 (‘on the spot’),

the WTLCC provides correlations for each of a range (specified by the researcher) of lags (see
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Figure 1, from Boker et al., 2002; p. 9). Additionally, WTLCCs improve over correlations alone
in that the latter assumes the time series data are stationary — that is, that the mean and variance
of a parameter is relatively stable throughout an interaction (Hendry & Juselius, 2000, 2001;
Jebb, Tay, Wang, & Huang, 2015; Moulder & Boker, 2018). As many unstructured dyadic
interactions are not stable in this regard, the WTLCC addresses this lack of stationarity by using

small windows of time rather than producing correlations that cover a whole time series.

=T - - I - LR

rt_Wx.W_w r(Wx,Wy) r{Wx,Wy) r(_wxw_w

results
matrix

Figure 1. Windowed time-lagged cross correlation visualization from Boker et al. (2002). From
p. 9: “Four pairs of windows selected from two data vectors, X and Y. Results of correlating
each pair of windows is stored into the results matrix whose columns represent the relative lag of
the two windows and whose rows represent the starting time of the window selected from X.”
With WTLCCs researchers can obtain information about the relative covariation between
events, whether the parameter represents overall movement activity (e.g., the change in
movement from time one to two) or position similarity. Further, when aggregating correlations,

one can either calculate the average or maximal correlation between two time series (Coco &
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Dale, 2014), and with these single metrics, perform basic cross-sectional statistical tests like
ANOVA or regression. WTLCC thus has utility for both static and dynamic analyses. The

formula for WTLCCs is as follows (see Boker, Xu, Rotondo, & King, 2002):

(H;r Wi ) B L T (H;_-,_-ﬂ — l‘if”;!.‘)(l’i"’j}i _ ny)
f - = {“u =1 .‘i(f('p/lf"_'f:)H(I(M/”)

where Tw is the number of observations in each window, Wxt and Wyt are elements of two time
series for t €{1...Tw}, X and Y within the windows Wx and Wy, Wx and Wy are the mean
values of each window, and sd(Wx) and sd(Wy) are the standard deviations of each window.
Prior to running WTLCCs, the researcher must specify four parameters: window size, window
increment, maximum lag, and lag increment (Boker et al., 2002). First, window size is the
number of data points in each window. If the window size is too short, the WTLCC measure
cannot capture enough information to describe faithfully a relationship. If it is too long, shifting
leads or lags can cancel one another out, leading to low correlations. Second, window increment
is the amount of time that elapses from one window to the next. If this is too short, successive
data rows may show too little variation; too long, and there may be too much variation, resulting
in apparently unrelated successive observations. Third, the maximum lag determines the
maximum difference between starting points of two windows (each from a different time series).
Fourth, the lag increment determines the interval of time between each successive lag observed
(Boker et al., 2002). Each of these four elements should be selected by the researcher in a
manner appropriate for the phenomenon at hand. For example, one would not use a maximum
lag of 2 minutes in an economics study forecasting stock values by decade.

The rationale for using WTLCCs over aggregate measures like standard correlations is

that it provides a more precise representation of dynamic data patterns. Between the cross-
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correlations themselves and the resulting heat maps, one can identify (both statistically and
visually) similarities and differences between dyad members’ nonverbal behavior throughout an
interaction. One can contrast this with basic human coding, which might be useful for having a
broad sense of how well a dyad is moving in unison, but is arguably less functional for
identifying rapid leader and follower fluctuations or onset/offset patterns of synchrony. A
disadvantage of WTLCCs is the difficulty or arbitrariness of selecting values for the four
parameters. As Boker et al. (2002) advise, researchers should conduct pilot tests on data to see
which parameter sizes fit best. Another potential disadvantage is that the WTLCC’s assumption
of local stationarity (i.e., that the mean and variance is stable throughout a window) can be
violated, driving down estimates of correlations. In the current study, | leverage a continuous
form of the WTLCC, the rolling WTLCC, or RWTLCC (see Cheong, 2019). With this version,
the windows overlap to form a higher-resolution graph, depicting smoother changes in leader and
follower dynamics.

Dynamic mimicry. For the current study, a custom measure was created that compares
the positions of each of 15 joints over time. Whereas other measures here make use of overall
movement activity (i.e., changes in position), this measure serves as a dynamic comparison of
the specific locations of two actors’ body parts in a 3-D space. In this way, it can be thought of as
a measure of the ‘perfect synchrony’ (rhythmic matching as well as form matching) discussed
earlier in this manuscript (Hale, 2017). In addition, the output of this measure gives a lag offset
measure similar to that of the RWTLCC.

Dynamic mimicry is useful for any researcher interested in both rhythm and form of
synchronous dyads. However, for a researcher who is only interested in rhythm/timing of

movements (such as the timing of overall movement activity shifts), this measure would not be
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the optimal first choice. Given its recent creation, it has not been applied in other synchrony
research to date. In the current study, this measure provides the only instance of form-similarity.
As such, if only this measure relates to perceived synchrony, these findings would suggest that
similar movement form is indeed vital to people’s perceptions of synchrony. Table 2 summarizes

the measures covered in this section.
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Table 2.

Summary of synchrony measures.

information

Synchrony Component Output Advantages Disadvantages
Measure Targeted Type
Behavioral coding | Movement activity | Aggregate Relatively simple Coarse/imprecise
similarity to enact measurement;
human error
Pearson Movement activity | Aggregate Simple and an Ignores dynamic
Correlation similarity easy-to-interpret information;
overview of inappropriate for
synchrony nonstationary data
Mutual Shared entropy Aggregate Easy to understand | Misses
Information leader/follower info
Dynamic Time Movement activity | Dynamic or | Works for signals Computationally
Warping similarity Aggregate of varying lengths | complex; abstract for
understanding
Phase Synchrony | Phase angle Dynamic or | Allows Ignores
similarity Aggregate identification of amplitude/magnitude
cycle patterns of movements
Windowed Time- | Movement activity | Dynamic or | Increases Window size is
Lagged Cross similarity Aggregate precision/resolution | potentially arbitrary
Correlation over Pearson r
Dynamic Positional similarity | Dynamic or | Features both Ignores changes in
Mimicry over time Aggregate position and timing | overall movement

activity
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Outcomes

Interpersonal synchrony has been found to predict many social outcomes, mostly related
to affiliation and/or bonding. In a meta-analysis on the prosocial effects of interpersonal
synchrony, Rennung and Goritz (2016) discovered a moderate effect for synchrony on prosocial
attitudes and behaviors. Attitudes included entitativity, liking, similarity, and trust (Launay,
Dean, Bailes, 2013). Another notable attitude stemming from synchrony not mentioned in that
meta-analysis is rapport (Bernieri, 1988; Bernieri, Davis, Rosenthal, & Knee, 1994), a dyadic
construct reflecting positivity, attention, and coordination in an interaction (Tickle-Degnen &
Rosenthal, 1990). Behavioral outcomes of synchrony included cooperation (Wiltermuth &
Heath, 2009), conformity (Wiltermuth, 2012), helping behavior (Cirelli & Einarson, & Trainor,
2014), other-related attention (Miles, Nind, Henderson, & Macrae, 2010), and trust toward
outgroup members when the synchrony partner is also an outgroup member (Tamborini et al.,
2018). Though most of the effects of synchrony are beneficial in nature (Rennung & Goritz,
2016), effects of the “dark side” of synchrony have been found, including destructive
disobedience (Wiltermuth, 2012) and reduced trust toward outgroup members when the
synchrony partner is an ingroup member (Tamborini et al., 2018). This outgroup trust measure
will be the focal outcome variable in the current research.
Quialities of Synchrony

Complexity. The phenomenon of interpersonal synchrony can be quite complex, both in
terms of the number of channels that synchronize (e.g., facial expressions, movements, gaze) as
well as the degrees of freedom of the movements themselves (Bente & Novotny, in press;
Poyatos, 1983). Research has been conducted on the full range of complexity of synchronous

movements, from the simplest (left-to-right slider movements; Noy, Dekel, & Alon, 2011) to the
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most complex (full-body motion routines captures in a three-dimensional space; Novotny,
Tamborini, & Bente, 2019).

Each level of complexity (low versus high; or unidimensional versus multidimensional)
offers advantages and disadvantages for study. The benefit of the reductionist approach of
measuring synchrony is that it restricts all other variables except a single dimension of
movement, allowing researchers to isolate the temporal dynamics of the exercise (Richardson et
al., 2007). The resulting time-series graphs show the position of the oscillator on the y-axis and
time on the x-axis, providing a clear indication of where the oscillator was in space and time
throughout an interaction. Then, researchers can compare the time series of two actors’
movements with various time series methods, such as cross-lag correlations or co-confident
motion analysis, a measure of smoothness not used in the current study (Noy, Dekel, & Alon,
2011). The disadvantage of this method, of course, is that it is not necessarily reflective of the
bodily synchrony that occurs in the real world. For example, consider the complexity of two
figure skaters attempting to synchronize in their routine. Their dance is one of many parts and
directions, showcasing the maximal degrees of freedom. To capture fully the intricacies of this
interaction, one would need to consider multiple body parts (usually major joints or limbs) as
well as their positions in six degrees (three directions of translation in x, y, and z planes; as well
as three directions of rotation of pitch, yaw, and roll). As such, multidimensional measures of
synchrony are more advantageous in capturing the true nature of full-body synchrony.

However, like the reductionist approach, the multidimensional approach has its
drawbacks. Namely, the capture of all oscillators and directions has yet to be fully realized in a
single method. Currently, two techniques that attempt to capture the complexity of body

synchrony are in use: motion energy analysis and motion capture. The former (MEA; Ramseyer
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& Tschacher, 2011) is a video-based technique that segments frames into cells, and quantifies the
amount of pixel change within each cell from one frame to the next. The technique thus provides
a frame-by-frame illustration of the amount of movement activity a person shows in each area of
the two-dimensional video space, which can then be compared to that of another actor to
approximate synchrony. Though this technique is innovative in demonstrating full-body
synchrony, it lacks the specificity to show where individual body parts are in space and time;
rather it is an aggregate picture of movement activity. More recent versions of MEA involve
segmenting cells into head versus body areas, but this approach is still not comprehensive (see
Bente & Novotny, in press). Motion capture offers an alternative to MEA and is advantageous in
that it captures movements (a) of individual body parts and (b) in all directions, providing the
most comprehensive means of assessing full-body synchrony that is currently available.

Motion capture is a technique in which participants wear special suits with reflective
markers placed throughout and uses unique tracking cameras (typically infrared) to track the
position of these nodes over time. The tracking data are transmitted to a software (e.g., Optitrack
Motive) which displays the data as a moving avatar for visualization. The data can also provide
source material for spreadsheets that display body marker names along the x-axis, time frames
along the y-axis, and global position/rotation data in the cells. Arguably, the complexity of this
technique most closely approaches that of real-life synchrony, but like the other techniques,
motion capture is not flawless. Major drawbacks noted in the literature are the expense as well as
the potential for obtrusiveness of the equipment. As Paxton and Dale (2013) note:

“Once these systems become cheaper and less restrictive, motion tracking may become a

standard tool for bodily synchrony research. Nevertheless, for researchers facing

limitations in funding and for those whose questions are not compatible with the high-
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tech motion capture requirements, body-suit motion capture still poses significant

challenges” (p. 331).

This assertion is seven years old as of the writing of this paper and is likely accurate that
advances will make the technology more cost-effective and seamless. In fact, these advances
have already begun to occur since their claim. This lends credence to our use of motion capture
in the current research, which captures the motion of 15 key body parts per participant in a 3-D
space.

Entrainment. Interpersonal synchrony can arise through different types of entrainment
(an adjustment to an external rhythm) between interaction partners (Bernieri, Reznick, &
Rosenthal, 1988; Schmidt & O’Brien, 1997). Entrainment is accomplished in human interaction
through one-way or two-way adaptation within shared visual or auditory environments (Oullier
et al., 2008; Schmidt, Bienvenu, Fitzpatrick, & Amazeen, 1998). As Cacioppo et al. (2014)
describe, there are three types of entrainment, any of which can precede synchrony.

First, unilateral entrainment is one-way entrainment that signifies a strict leader-follower
relationship. The resulting behavior can be thought of as temporal mimicry; two people become
unilaterally entrained when one actor perceives and follows the rhythmic behavior of another. In
this case, the adaptation is said to be one-way because while the follower adjusts his/her rhythms
to follow the leader, the leader need not adjust his/her rhythms in return. Second, orchestral
entrainment entails multiple actors becoming synchronized indirectly with each other through
some zeitgeber (external pace-making entity; Strogatz, 2003). The term orchestral is appropriate
here, as a musical orchestra is a quintessential example of the phenomenon. Though the rhythms
of the individual players are synchronized, the master rhythm is set by the motions of the

conductor. Thus, there is not (necessarily) mutual entrainment between players, but rather,

20



several adjacent instances of unilateral entrainment between each player and the conductor.
Lastly, reciprocal entrainment involves the mutual adaptation of two or more individuals’
behavioral rhythms. In this case, there is no strict leader or follower; rather, the dyad or group is
engaged in a bi- or poly-directional joint action that is typically spontaneous (Noy, Dekel, &
Alon, 2011; Oullier et al., 2008). An improvised dance where the rhythmic movements are
unplanned, yet harmonious and co-created (generated by both people rather than only one),
would fit as an example of synchrony attained through reciprocal entrainment.

Some evidence suggests that the manifestation of entrainment types, or the leader-
follower relationship (LFR) can affect the smoothness and performance of the resulting
interaction. Noy, Dekel, and Alon (2011) showed that joint improvisers who mutually adapted to
one another’s motions performed more confident and smooth movements compared to dyads in a
leader-follower condition. Thus, the presence of a true leader/follower versus a more balanced
approach has implications for the dynamic patterns embedded within the interaction. If a
researcher is interested in the LFR, he or she should employ measures that enable its observance.
Static/aggregate measures such as the Pearson correlation give overall information about the
similarity between two time series, but provide no insight into the dynamic LFR. Techniques
such as windowed time-lagged cross correlations, dynamic time warping, phase synchrony, and
dynamic mimicry allow for the visualization and quantification of the LFR. These techniques
will be used in the current study to provide evidence of LFR among reciprocally-entrained
dyads.

Periodicity. Periodicity refers to the regularity of intervals between events over time. It is
a concept frequently used in sciences like ecology (Carrero-Colon, Nakatsu, Konpka, & 2006)

and geology (Kvet, 1990), often to track and forecast the recurrence of target events. In the case
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of interpersonal synchrony, periodicity can be thought of as the ‘beat’ of an interaction, or how
regularly a person/dyad’s behaviors return to a specific state (Coco & Dale, 2014). As one can

imagine, the periodicity of a synchronous interaction is highly variable; periodicity may differ

between or within dyadic partners’ movements overall and can even change over the course of
an interaction.

To understand the concept of periodicity, it is helpful to consider its poles: on one end is
a perfectly regular, fixed rhythm. A clear example of this is a well-maintained clock. One can
expect that exactly every second, the second hand will move another six-degree tick around the
circle. Quite literally, one can set one’s watch to this regularity. In human movement research,
Richardson et al. (2007) has shown that human dyads keep a steady rhythm with one another
when performing regular movements (both swinging pendulums and rocking in chairs), and tend
to stabilize to either an in-phase or anti-phase state.

At the other end of the spectrum is a completely irregular rhythm. This type of rhythm (or
lack thereof) can often be seen in the erratic cycles of the stock market, which though
occasionally exhibiting some trends, can hardly be called regular. Focusing again on the body
movements, Fujiwara and Daibo (2016) demonstrated the irregularity of behavior that occurs
within unscripted dyadic conversations. In such conversations, there is a lack of steady structure;
instead, synchrony can be found as more of an alignment of overall frequencies of movements.

The degree of periodicity may determine the measures one can appropriately use to
assess synchrony. For example, a highly regular or stationary time series can be represented in
terms of synchrony by a simple correlation. However, unstructured conversations or less regular
interactions will not allow for simple correlation to precisely measure the dynamics of an erratic

interaction. As such, one may turn to measures that account this non-stationarity, such as
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windowed time-lagged cross correlations or dynamic time warping analyses (Cheong, 2019). In
the current study, participants perform a movement routine that lacks a regular and fixed rhythm,
separate from the fact that the interaction type is indeed repetitive.

Intentionality. Means of entering synchrony can be classified as either purposeful or
spontaneous (Bente & Novotny, in press; Koban et al., 2019). Purposeful synchrony occurs when
two or more individuals become entrained in service of shared goals (Keller, Novembre, &
Hove, 2014), which could feasibly be overt or covert. Overt goals in this sense include sports in
which synchronized movements facilitate success, such as rowing (Cohen et al., 2009), whereas
covert goals constitute for example religious or cultural rituals that build unity through shared
movement (McNeill, 1995; Wiltermuth & Heath, 2009). Some evidence suggests that shared
intentionality of the coordination behavior can enhance cooperation and trust more than just
matched behavior alone (Reddish, Fischer, & Bulbulia, 2013).

Conversely, spontaneous synchrony has no overarching goals, and typically arises
through purely physical/dynamical or perceptual means (Oullier et al., 2008; Richardson, Marsh,
Isenhower, Goodman, & Schmidt, 2007; Schmidt & O’Brien, 1997). Examples of this include
the rocking chairs of adjacent sitters becoming synchronized through an adjustment to shared
visual inputs (Richardson et al., 2007), or the claps of a theatre audience becoming coordinated
following a performance (Neda, Revasz, Brechet, Vicsek, & Barabasi, 2000). In the current
study, participants will purposefully synchronize their movements to one another in the form of a
jointly-performed martial arts routine.

Each of the above qualities can be altered to form a unique synchronous experience. To
begin understanding how altering levels of the qualities can impact (a) synchrony’s perception

and (b) its associated outcomes, the current research leverages a previous dataset, which
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involved an interaction type that exhibited one level of each quality. The previous sections
outlined how each quality is represented by that dataset. To review: Regarding complexity, the
interactions in this study provided high degrees of freedom — 15 key body parts in a three-
dimensional space. Regarding entrainment, the interaction was based on reciprocal entrainment,
wherein two participants mutually aligned their behaviors without a present conductor or
designated leader/follower. Regarding periodicity, we induced a routine that, while repetitive in
the sense that the routine recurred, did not feature a steady pulse or beat. Regarding
intentionality, we induced a purposeful type of synchrony that was repetitive; participants were
instructed to memorize and re-enact a movement routine with a partner five times. A summation
of these levels can be seen in Table 3.

Table 3.

Levels of each quality of synchrony demonstrated in the current study.

Quality Level

Complexity High (full-body capture)

Entrainment Reciprocal (mutual adaptation)
Periodicity Repetitive (irregular rhythm, but repeats)
Intentionality Purposeful

STUDY OVERVIEW
The following study examines how objective measures of a given type of synchrony
relate to its perceptions. As a source of full-body motion capture data, we refer to a previous
unpublished experiment (Novotny, Tamborini, & Bente, 2019) that induced synchrony in dyads

performing a Tai-Chi routine (a rhythmic martial artform), and subsequently tested its impact on
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trust toward racial outgroup members. The resulting motion data allowed for (a) calculations of
various objective synchrony measures and (b) the creation of stimulus videos depicting the
movements via neutral computer characters (i.e., characters whose appearance lacked age, race,
gender, or cultural cues, which can confound judgments; see Bente, 2019). A series of these
stimulus clips was presented to a sample of participant observers, who judged both synchrony
and the leader-follower relationship of each dyad. The ratings generated from this study provided
a comparison measure against which to judge the objective operationalizations (Bernieri,
Reznick, & Rosenthal, 1988; Cappella 1981). If synchrony is a readily perceivable phenomenon
at the Gestalt-level, and currently available measures capture synchrony validly, we should see a
high correlation between subjective observer ratings and the various objective synchrony
measures.

Attempting to find just this, researchers (Schoenherr et al., 2019) conducted a study to
validate various time series analytic methods by comparing them to human coder ratings. Using
a therapist-patient context, they found that only in an artificial condition (comparing person A’s
movements with a time lagged version of his/her own movements) were time series methods
reliably correlated with human ratings. Conversely, in more naturalistic conditions (where person
A’s movements were compared with Person B’s), the algorithms did not agree highly with raters
in terms of identifying synchrony. As the authors explain: “Our study revealed that a lot of
algorithms with very high identification quality in the artificial configuration failed in the
naturally embedded configuration. This could mean that the algorithms had another synchrony
concept than the human raters in our study” (p. 17). This comparison between algorithms and
coders will be retested in the current study, though with an enhanced means of measuring

movements. Notably, Schoenherr’s study used motion energy analysis (Ramseyer & Tschacher,
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2011) as the technique to extract time series measures. This method, though popular, evidently
lacks precision with respect to analyzing specific body part locations throughout an interaction
(Bente, 2019). The use of full-body motion capture in the current study may further illuminate
the relationship between objective synchrony measures and human observer ratings. To address
this possibility, we ask:

RQ1: Which objective measures of synchrony predict perceived synchrony?
Second, beyond capturing the degree of synchrony, | am also interested in the role of the leader-
follower relationship (LFR) in a synchronous interaction. This is often the product of the
entrainment of the relationship as outlined earlier. In a leader-follower type interaction, one
person mimics the behavior of another with some delay, whereas in a reciprocally adaptive
interaction, each person synchronizes through mutual prediction and reaction in real-time
(Konvalinka et al., 2010). The nature of this relationship has been shown to impact the
smoothness or performance of the involved partners (Noy, Dekel, & Alon, 2011). If LFR is a
central defining factor of a synchronous interaction, and synchrony can ostensibly be perceived
by observers, then objective measures that can accurately identify leader-follower patterns
should align with observers’ ability to detect these same patterns:

RQ2: Which objective measures of synchrony predict observer ratings of leader-follower

relationships (LFRs)?
Lastly, | am interested in whether the outcomes of these various measures can predict a
previously identified outcome variable of outgroup trust (Tamborini et al., 2018). Interpersonal
synchrony has previously been linked to a reduction in outgroup bias generally. Inzlicht et al.
(2012) found that mimicking an African-American actor’s motions improved implicit attitudes

(e.g., lowered bias) toward African-American people compared to passive viewing of an
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African-American actor’s movements or mimicry of a Caucasian actor’s movements. Similarly,
Tuncgenc and Cohen (2016) found that for children assigned to minimal groups, those who
synchronized with outgroup members exhibited higher intergroup bonds compared to those who
were asynchronous with respect to outgroup members. Finally, we have elaborated previously on
the findings of Tamborini et al. (2018), which showed a marginal increase in outgroup trust
given synchrony with an outgroup member.

An enhanced sense of affiliation is often cited as the mechanism through which
synchrony breaks down intergroup barriers. Coordination in general functions as a social binding
variable, increasing a group’s sense of unity (Wiltermuth & Heath, 2009). This enhanced unity
can attenuate previously established biases toward outgroup members, facilitating trust. If the
measures we feature in the current research faithfully capture synchrony in its essence, we would
expect to see these measures correlate with outgroup trust.

RQ3: Which synchrony measures correlate significantly with outgroup trust?

METHOD
Generation of Movement Database

Motion capture procedure. The OptiTrack Motion Capture system (NaturalPoint) was
used to collect full-body motion data. Motion capture took place in two divided square cells (15’
x 157) in a laboratory. Twelve optical cameras were suspended from a truss system in each cell.
These cameras detect motion through transmission of infrared light from reflective markers on
the participants’ body suits. The suits are composed of tight-fitting black Nylon, and feature 37
passive Velcro markers placed throughout the participant’s body. Motive, the software that

operates the OptiTrack system, recorded and stored the motion tracking time series data.
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The motion capture procedure was divided into four phases. In phase one, participant
dyad members individually entered separate rooms in a laboratory and donned motion capture
outfits before completing a pre-test outgroup trust measure at separate computer stations. Next,
in phase two, they separately learned and mimicked a Tai-Chi routine from a virtual avatar
appearing as a gender- and race-neutral wooden mannequin. This instructor, who appeared on a
large wall projection, performed five repetitions of a 30-second routine, thus providing the
training necessary for the next phase. In phase three, participants were instructed to perform the
same routine they just learned, but now with a black or white virtual partner (the main
manipulation) appearing on the screen, whose movements were generated in real-time by their
real dyadic partner. The avatar movements were created by relaying the movement data in real
time to an animation software that displayed a black or white avatar (matched to the dyad’s
gender; Figure 2 demonstrates the routine in phase three). Notably, this was the stage in which
the participants’ movement data (body part locations in 3-D space at each time frame) were
collected via motion capture. Finally, in stage four participants completed a post-test outgroup

trust measure to assess the effect of partner group and synchrony on this outcome.
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Participant A

Participant B

(1) Participants Assume
Poses in Mo-Cap

Outfits

(2) Movements
captured and
rendered as neutral

avatars in Motive

(3) Black or white
avatars overlaid onto
Motive skeletons via
MotionBuilder

Figure 2. Motion capture to character animation procedure.

Spatial normalization. A spatial normalization procedure of motion capture data was
performed as recommended by Poppe et al. (2014). This is advised for comparing motion capture
data between actors of different sizes and with different starting positions. To begin, | merged
the motion capture files of two dyadic partners using Motionbuilder 2018 (Autodesk). I then
applied the a pre-rendered character (described below) to each actor’s motion capture data for
visualization purposes. Once characterized, | scaled uniformly each character according to the
average size of a male (1.75m or 5°9”) and female (1.62m or 5°4”) in the U.S. After scaling, |
translated each actor’s root node (the hip joint) to the origin of the scene: the point where x, y,
and z are all set to 0 in Motionbuilder’s viewer window. Next, I ‘snapped’ the two actors’ hips to
this origin; that is, throughout the scene, the translation both actors’ hips were constrained to the

origin point while the rest of their bodies moved freely as in real life. The last step here was to
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set the starting orientation (at frame 0) of each actor to the front of the scene by rotating the
Woody’s hip joint to 0° around the y-axis. The resulting scene shows two identically sized
characters, both facing forward, and their hips fixed together. See Figure 3 for a still shot of this

result.

Figure 3. Visualization of two participants’ movement data. Figures are snapped by the hips and

standardized in size. The orange actor is Participant A, and the blue actor is Participant B.

Motion data export. The movement data were exported (one data file per dyadic
partner) via the tool Export Global Data for Motionbuilder 2018 (Leuschner, 2010). This tool
outputs the movement data as a spreadsheet in which the rows are time frames (at 25Hz) and the
columns are the movement translation in x, y, and z dimensions of 15 key body parts as advised
by Poppe et al. (2014). Given a dyadic routine lasting 2.5 minutes, this would result in a rich

dataset of 168,750 cells (3750 frames x 45 body part translation columns) per partner.
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Generation of Video Stimuli

Using the motion database, | created stimulus videos of dyadic partners performing the
Tai-Chi routine side by side. This process involved rendering the motion capture data as standard
virtual characters and producing a video for embedding into the final survey.

Characterization procedure. First, the motion capture take data (time frames x body
part locations) of the first participant in a dyad (Participant A) were exported from Motive as an
FBX file. FBXs are animation files that operate within Motionbuilder, which features a plugin
for Motive. Using the Motive plugin, | overlaid a neutral character, appearing as a wooden
mannequin, onto the motion capture data for the first participant in a dyad. This wooden
character was adopted from previous research (Bente, Leuschner, Al-1ssa, & Blascovich, 2010),
and can be seen in Figure 4. The purpose of using a neutral character such as this was to disguise
the identities of participants in a controlled manner while preserving the fidelity of the human

movement (cf. Bente, 2019).
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Figure 4. Standard wooden mannequin avatar from Bente et al. (2010).

Once the character was applied, I merged Participant A’s dyadic partner’s (Participant B)
movement data into the same FBX file. Because these two participants originally performed the
Tai-Chi routine at the same time, | produced a file that shows both participants performing the
routine with the same start/end frames and side-by-side — even though in real life, they were
physically separated. After merging the partner’s data, I applied the character to Participant B’s
movements as well.

The next step was to align the two characters so that they were are facing forward at
frame one and were each centered on their half of the screen. To do so, | set the global rotational
angle (the angle of a given body part with respect to the scene’s origin point) to 0° at the hip joint
(the body hierarchy’s root node). Following this, I checked that the two actor’s movements were
generally going in the same direction throughout their interaction. In the dyadic interactions, 21
pairs performed opposite movements (i.e., mirror mimicry) whereas 17 performed same-
direction movements (i.e., rotational mimicry). If they were mirrored rather than rotational, |
corrected this by mirroring Participant B’s movements across the y-axis. For instance, if
Participant A typically swung her arm to the left and Participant B swung hers to the right, |
flipped B’s movements so that both swung to the left. While it is an empirical question whether
the direction of imitation matters for perceptions of synchrony, we did not wish to test this
variable in the current research; feasibly, observers could witness a highly syncing dyad who was
mirrored (rather than rotational), and this could impact the synchrony ratings differently
compared to a highly synchronizing dyad who mimicked rotationally. In sum, control of the
visual stimuli was more important in the current research than testing the effect of movement

direction.
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Video production procedure. Once the characterization process was complete, the scene
was rendered as an AVI file in Motionbuilder. The frames were set to PAL (25Hz, or 25 frames
per second) and the video was compressed to the highest quality available within Motionbuilder.
The resulting files averaged 3668.87 frames, or about 2 minutes and 27 seconds. The next step
was to segment each AVI file into the first three cycles of the Tai-Chi routine. This was done to
provide more stimuli for the survey, as well as to provide more appropriate time segments for
observers. Segments were created by noting the time frame at which the Tai-Chi cycle restarted,;
that is, the point at which both participants had their arms down at the starting point at the same
time. If a simultaneous restarting of both participants did not occur, | noted when just one
participant restarted. AVI cutting was performed in the program Bandicut, and the files were
compressed to MP4 files using the program VLC Media Player. Because one dyad had an
erroneous third segment resulting from a capture error, the final stimulus pool featured 113
videos (38 dyads x 3 segments, minus 1 faulty segment), with an average segment length of 24
seconds. An example of the final stimulus video participants would view is demonstrated in

Figure 5.
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Figure 5. Still shot of a stimulus video from the observer survey.

Measures
Perceived synchrony. Perceived synchrony was measured on a slider scale from 0 (no
synchrony) to 100 (perfect synchrony) for each video. Participants received the following
instruction:
“After each video, we will ask you (a) how "in sync" the pairs were, and (b)
whether one person led the interaction (versus a more balanced interaction). "In
sync" just refers to how smoothly and similarly the two moved together in time
(‘high coordination'.) On our slider scale, 100 = perfect sync. The opposite of "in
sync" would be clumsy, out of tune, or awkward (‘poor coordination’). On our
scale, 0 = no sync.”
Perceived LFR. The perceptions of the leader-follower relationship of the dyad was

judged for each video through the following multiple-choice item: “Was one person leading the
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interaction, or was it fairly balanced?” Possible responses to this question were: “Person A (on
the left) led mostly,” “Person B (on the right) led mostly”, “It was fairly balanced”, and “Not
sure.” Responses to this item were tallied for each stimulus and divided by the total number of
occurrences of that stimulus to provide the proportion A led per stimulus, the proportion B led
per stimulus, and the proportion of balanced ratings per stimulus.

Two variables for quantifying synchrony. Two variables were used to quantify
synchrony: the similarity of shifts in overall movement activity (used for Pearson correlations,
MI, DTW, Phase Synchrony, and RWTLCC) and the similarity of position (used in Dynamic
Mimicry).

Overall movement activity. For most of the various synchrony measures outlined below,
the variable of interest is the overall movement activity exhibited by a single dyad member with
respect to his/her partner. Rather than focusing on the form of movements, for example in
behavioral mimicry research (Lakin & Chartrand, 2003), this approach focuses on the timing of
general movement activity, the variable more central in the concept of synchrony (Hove &
Risen, 2009). Overall movement activity of each participant was calculated in the following way.
First, taking a file from each dyadic partner in one dyad, the X, y, and z translation of 15 primary
body locations joints were targeted as suggested by Poppe et al. (2014). These include: Chest,
left arm, left forearm, left hand, right arm, right forearm, right hand, head, right upper leg, light
leg, right foot, left upper leg, left leg, and left foot. Second, we performed a standard Z-
transformation vertically (over time) to normalize the data for 14 of these 15 joints (the hips were
locked at 0, 0, 0 throughout the interaction). Lastly, an average was conducted laterally (across

joints) to give a single “movement activity” score for each time frame. This score served as the
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y-axis variable that fluctuates in the various time series measures used in this study (except for
dynamic mimicry).

Positional difference. Rather than implementing the changes in overall movement as a
measure of synchrony, this variable represents a comparison of specific positions of two actors’
body parts in a shared global space. Specifically, it is the difference in Euclidean distance (X, y,
and z translation) between all 14 joints of two actors. A lower difference of positions indicates
higher mimicry, which, when looked at over time and with different lags, gives us the dynamic
mimicry measure detailed below.

Behavioral data-based synchrony measures. The following measures were collected
using a combination of Python codes, mainly using a synchrony suite created by Cheong (2019).
The final program script for all analyses can be found in Appendix A.

Pearson correlation. To compute a Pearson correlation between two time series, the
Python program takes the average value of a given time series and correlates it with the average
value of a second time series.

Mutual information. Mutual information (MI) was calculated by a custom Python

program (https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-

mutual-information-using-numpy) that was appended to the original program by Cheong (2019).

Uusing the formula mentioned earlier: MI(x,y) = H(X) + H(y) - H(X,y), where M1 is the mutual
information, and H(X) is the entropy of time series x, H(y) is the entropy of time series y, and
H(x,y) is the joint entropy (shared by both systems).

Dynamic time warping. Dynamic time warping (DTW) is computed by minimizing the
distance between two time series’ data points in a matrix, and comparing the resulting diagonal

line to an ideal diagonal. The package dtw (https://github.com/pierre-rouanet/dtw) was used to
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visualize the DTW matrix, and provide overall distance scores for each dyad. These distance
scores indicate the distance of the diagonal to the ideal line; a smaller distance indicates higher
synchrony.

Phase synchrony. The phase angles of two time series can then be compared for a
measure of interpersonal synchrony. First, one must transform the movement data using a Hilbert
transform, which separates a time series signal into its phase and power (Zayed, 1998). Then, the
phase angles are plotted along a time series and inter-subject comparisons can be made. To
obtain a score of phase synchrony, the program compares the phase angles by the following:

PS =1 - sin(jal1-al2/2)),
where PS is phase synchrony, all is the phase angle of time series A at a given point, al2 is the
phase angle of time series B at a given time point. Finally, this PS score is averaged over a whole
time series to give a measure of overall phase synchrony, to be used for correlations with other
variables.

Rolling windowed time-lagged cross correlation. The program executes Pearson
correlations between two time series over given windows of time, and smoothing this process out
with a more continuously sliding window. In the current study, we use a window size of 125
frames (4 seconds) for correlations, but a window increment of only 5 frames (.2 seconds). In
this way, the resulting time series graph gives a smoothly rolling output that is more visually
interpretable.

Dynamic mimicry. This measure aggregates the position (rather than overall movement
activity) of one participant’s joints limbs in X, y, and z directions of translation, and compares
these values with those of his/her dyadic partner. The difference in position is then plotted over a

time series with a range of time lags along the y-axis (as with RWTLCCs). The lag offset at
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which positional differences are the smallest (i.e., most similar) is plotted in a separate graph,
and will be used as the aggregate measure of positional similarity for correlation with other
variables.

Outgroup trust. Outgroup trust was assessed during collection of the initial movement
database. It was measured using a custom computer game called “Will they Ship?”, adapted from
Bente et al. (2014.; original game developed by Bolton, Katok, & Ockenfels, 2004). The game
involves choosing to buy or not buy textbooks from 32 (16 pretest, 16 posttest) virtual
salespeople who would ship or not ship the textbook. A payoff matrix similar to the famous
Prisoner’s Dilemma game, with potential risks and rewards of making a deal with another player,
was used to motivate the actions of players. These sellers were depicted as White or Black static
avatars (16 of each), pretested by Tamborini et al. (2018) to appear neutrally trustworthy and
natural looking.

Outgroup trust was calculated by first tallying the number of ‘outgroup buys’ for pretest
and posttest rounds. Outgroup buys were instances when a player selected ‘buy’ from an
outgroup salesperson (for example, when a White participant bought from a Black salesperson).
Next, | aggregated outgroup buys into a pretest proportion (outgroup buys/total encounters with
outgroup salesperson during pretest) and posttest proportion (outgroup buys/total encounters
with outgroup salesperson during pretest). Following this, the pretest proportion was subtracted
from the posttest proportion to get an outgroup trust change score for one participant. Finally, the
change scores were averaged between dyad members to generate a dyadic average for outgroup

trust change.
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Observer Survey

Participants. Participants were 115 individuals (Mage = 23.3, SDage = 10.92, 54%
female, 78% White) collected from two sources. The first set of participants (n = 13, Mage = 46.0,
SDage = 17.62, 54% female, 85% White) consisted of family and friends of the researcher, who
were provided a survey link via email. These participants were blind to the research questions of
the researcher, and received only thanks for participation. The second set (n = 102, Mage = 19.89,
SDage = 1.50, 50% female, 74% White, 14% Asian, 12% other races) consisted of
undergraduates from a large public university in the midwestern United States. This group
participated to fulfill optional research credits for a communication course of their choice. All
procedures were approved by the institutional review board at the university from which the
second sample was drawn.

Survey. A survey was created in Qualtrics Survey Software. The survey presented to
participants a pseudo-random series of 30 videos to view and rate. This stimulus sampling
method was chosen because it selected videos at random while still ensuring each video was
viewed the same amount. The survey asked participants to watch each video until it auto-
advanced to the next page, which asked them to rate both synchrony and LFR. Demographic
questions, which appeared at the end of the survey, asked for age, race/ethnicity, and gender.

Procedure. A link to an online consent form was distributed to friends and family via
email, and to undergraduates through a participant pool management software. Upon consenting
to participation, the consent page rerouted participants to the observer survey. Due to
coronavirus-related quarantine procedures, participants filled out the survey from a location of
their choosing rather than a computer laboratory. The survey guided participants through

viewing and rating of 30 stimulus clips.
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Programming script. A custom Python program was adapted from Cheong (2019). In
the original code, this program calculates Pearson correlations, dynamic time warping, phase
synchrony, and windowed time-lagged cross correlations. A custom script that computes Z-
transformations of selected joints, and which additionally calculates mutual information, was
appended to this code (see Appendix A). The script begins firstly by importing necessary
packages and defining the variables to be measured. Secondly, one selects the variables for
which he/she would like to view figures and descriptive statistics. Thirdly, once the measures are
selected, the program looks for a list of CSV files (described in the previous section) from which
to derive data. In the current study, this list includes 38 files for participant As and 38 files for
participant Bs. Fourthly, the “movement activity” score for each time frame is conducted in the
means described in the Overall movement activity section. Fifthly, a filter of the user’s choosing
is applied. In the current study, we used a Butterworth bandpass filter, which normalizes the
‘cutoff” frequency, at which data finer than a certain threshold are smoothed (Paxton & Dale,
2013). Finally, when the program runs, it outputs text files of descriptive data for selected
measures (e.g., distance scores for DTW for each dyad) as well as a PDF of all figures.

RESULTS
Observer Judgments

Synchrony ratings. An average synchrony score (perceived sync) between 0 and 100
was calculated for each of the 113 stimulus videos: M perceivedsync = 44.47, SD perceivedsync = 16.18,
MaxX perceivedsync = 73.84 (Dyad 11), Min perceivedsync = 21.20 (Dyad 30). The synchrony means were
also broken down by averaging synchrony across the three segments for each dyad: M
segmenttPerceivedsync = 44.49, SDsegmenttPerceivedsync = 16.48; Msegmentzperceivedsync = 44.26,

SDSegmentZPerceivedSync = 18-23; MSegment3PerceivedSync = 43-64, SDSegmentSPerceivedSync =17.15. An
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ANOVA was conducted to test whether these three segments differed statistically from each
other (in other words, to see if there was a change in synchrony ratings over time). The
difference between time segments was non-significant, F(2, 112) = .054, p = .947, partial eta® =
.001, suggesting no change in ratings over the course of the three segments of dyadic interaction.
Table 4 shows the breakdown of synchrony ratings from the mostly highly- to lowly-rated dyad.

Intraclass correlations. Intraclass correlations (ICCs) were conducted across all stimuli
to check for inter-rater reliability in judging perceived sync. A matrix was created with videos as
rows and raters as columns. Because each rater viewed only a random 30-video subset out of the
entire 113, the matrix featured a high number of empty cells — making a normal ICC calculation
unfeasible. As such, | deleted all empty cells by pushing filled cells to the left. While this
procedure changes the columns (i.e., distorts which rater made which rating), it preserves the
rows (i.e., the ratings each stimuli received). The resulting measure is thus an indicator of the
consistency with which stimuli were rated, not the consistency between raters per se. Using this
strategy, consistency between 10 ratings for each video (the minimum number of columns in
which all videos were rated) was analyzed for reliability. The average ICC was high at .908, 95%
Cl1(.881, .932), F (111, 999) = 11.09, p < .01, suggesting strong agreement within stimuli
ratings.

Perceived leader-follower relationships. Three average proportions for each stimulus
were calculated: (a) the percentage A was rated as leading, (b) the percentage B was rated as
leading, and (c) the percentage of ratings indicating a balance of leadership/followership. The
breakdowns are summarized in Table 4. Pearson correlations were conducted to check for
covariation between perceived sync and the perceived proportion that A led (LFR_A), B led

(LFR_B), or that there was an even LFR (LFR_E). Perceived sync was positively correlated with
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LFR_E, r =.576, p <.001, negatively correlated with LFR_A, r =-.421, p =.009, and had no

relationship with LFR_B, r = .126, p = .45. This suggests that the perception of a balanced LFR

is related to perceived synchrony.

Table 4.

Percentage breakdowns of leader-follower relationship ratings across all stimuli.

A Led B Led Even LFR
Mean % 34.14 43.42 22.45
Maximum % 86.07 (Dyad 38) 77.59 (Dyad 23) 49.11 (Dyad 11)
Minimum % 4.89 (Dyad 12) 6.91 (Dyad 38) 7.02 (Dyad 38)

Note. Consistent with the idea that synchrony involves a reciprocal leader-follower relationship,

Dyad 11 had the highest even LFR as well as the highest average synchrony ratings.

Behavioral Data

For each of the objective synchrony measures, | provide a comparison of figures between

Dyad 11 (the highest LFR_E, or most balanced dyad) and Dyad 38 (the lowest LFR_E, or least

balanced dyad). A juxtaposition of these figures demonstrates how each measure showcases the

range of synchrony from high to low (see Figures 6 through 12).

Pearson correlations. The average correlation of movement activity between participant

A and B was calculated for each dyad with an intersubject lag of 0 frames, Mpearson = 0.28,

SDpearson = 0.27. The correlation between participants in Dyad 11 was r = 0.66, p < .01. The

correlation for Dyad 38 was r = -0.02, p = 0.23. The time series of general movement activity

featuring these correlations can be seen in Figures 6a and 6b. A higher correlation indicates

higher synchrony.
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Dyad 11: Pearson r = 0.66
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Figure 6a. Pearson correlations over time for Dyad 11. Higher correlations indicate higher
synchrony, which is indicated by a close matching of the orange (Participant A) and blue

(Participant B) lines. Dyad 11°s lines overlap more often than Dyad 38 (see Figure 6b).
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Dyad 38: Pearson r =-0.02
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Figure 6b. Pearson correlations over time for Dyad 38.
Mutual Information (M1). Ml indicates the information we can predict from one system
based on observations of another system. The average Ml for all dyads was Mm = 10.68, SDmi =
0.15. For Dyad 11, Ml = 10.84, and for Dyad 38, MI = 10.86. Interestingly, Dyad 11 had a
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slightly lower MI score than Dyad 38, despite Dyad 11 generally appearing higher across other
synchrony measures. This suggests that MI may not be strongly aligned with other measures of
interpersonal synchrony.

Dynamic Time Warping (DTW). The DTW score indicates synchrony of overall
movement activity irrespective of the length of an interaction. The average distance (DTW) for
all dyads was Mptw = 6221.92, SDptw = 1132.20. For Dyad 11, DTW = 5674.25, and for Dyad
38, DTW = 6356.17. A comparison of these dyads’ DTW scores can be found in Figures 7a and
7b. The lower distance score of Dyad 11 indicates that this dyad exhibited more similarities in

overall movement activity over time compared to Dyad 38.
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Dyad 11: DTW distance = 5674.25
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Figure 7a. Dynamic time warping distance matrix for Dyad 11. The X-axis is one participant’s
timeline whereas the y-axis is his/her partner’s timeline. The white line traces the minimum
distance between participants’ movement activity at each time point. A white line more
approximating a perfect diagonal represents a smaller distance, or higher synchrony. Dyad 11°s

distance is less than that of Dyad 38 (see Figure 7Db).
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(7b)
Dyad 38: DTW distance = 6356.17
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Figure 7b. Dynamic time warping distance matrix for Dyad 38.

Phase synchrony. This measure indicated the degree to which the phase angles of two
participants’ overall movement activity were aligned. The average phase synchrony was
Mphasesync = 0.48, SDphasesync = 0.10. For Dyad 11, PhaseSync = 0.69, and for Dyad 38,
PhaseSync = 0.38. A comparison of these dyads’ phase synchrony can be found in Figures 8a
and 8b. The higher PhaseSync score of Dyad 11 indicates that Dyad 11 was more temporally
aligned in the cycles of their movements compared to Dyad 38.
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Dyad 11: Angle at each Timepoint and
Instantaneous Phase Synchrony (bottom)
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Figure 8a. Phase synchrony for Dyad 11. The top graph shows the angle at each timepoint, with
red representing one actor and blue the other. The bottom graph shows phase synchrony (from 0
to 1) continuously throughout the interaction. Dyad 11 more often shows phase synchrony scores

approximating 1.0, whereas Dyad 38 shows this less often (see Figure 8b).
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(8b)

Dyad 38: Angle at each Timepoint (top) and
Instantaneous Phase Synchrony (bottom)
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Figure 8b. Phase synchrony for Dyad 38.

Lag offset (from RWTLCC). This measure indicates the amount of lag between
participants at which synchrony of movement activity was typically the highest. The average lag
offset in frames, given by the RWTLCC, was Miag = 18.42, SDiog = 13.58. For Dyad 11, Lag = 2
frames, and for Dyad 38, Lag = 43 frames. The RWTLCC graphs can be found in Figures 9a and

9b, and a comparison of these dyads’ lag offsets can be found in Figures 10a and 10b.
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Dyad 11: Rolling Window Time-Lagged
Cross Correlations
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Figure 9a. RWTLCCs for Dyad 11. Blue indicates highly negative correlations, red indicates
highly positive correlations, and white indicates no association. The midline for Dyad 11 (0
offeset) shows that the highest positive correlation (i.e., synchrony) occurred almost on the spot.

This is not true for Dyad 38 (see Figure 9b).
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Dyad 38: Rolling Window Time-Lagged
Cross Correlations
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Figure 9b. RWTLCCs for Dyad 38.
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Figure 10a. Lagged synchrony for Dyad 11. Optimal offset for Dyad 11 is 2 frames, and offset
for Dyad 38 is 43 frames (indicated by the red dotted lines; see Figure 10b). Left of the black
dotted line indicates that Subject A leads, and right of the black dotted line indicates that Subject
B leads. The smaller optimal offset for Dyad 11 compared to Dyad 38 suggests a more

temporally aligned dyad with respect to overall movement activity.
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(10b)
Dyad 38: Offset (RWTLCCs)

Figure 10b. Lagged synchrony for Dyad 38.

Dynamic mimicry. Dynamic mimicry represents the similarity of positions of two
actors’ joints over time. Here we show calculations of dynamic mimicry for Dyads 11 and 38
(see Figures 11a and 11b). Further, the optimal offset of dynamic mimicry (i.e., the time lag
value at which positional differences were smallest) was also calculated. For Dyad 11, offset = 7
frames; for Dyad 38, offset = -41 frames. The absolute values of these lags were used in

correlations, as the sign should not impact the strength of association.
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Dyad 11: Dynamic Mimicry
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Figure 11a. Dynamic mimicry for Dyad 11. The blue coloring around the midline for Dyad 11
indicates a low difference in positions between the two actors when lag = 0. This is less evident
for Dyad 38, whose coloring was less consistent in this regard (see Figure 11b). This suggests

that the positions of Dyad 11°s actors’ body parts were more aligned when lag = 0 compared to

those of Dyad 38.

(11b)
Dyad 38: Dynamic Mimicry
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Figure 11b. Dynamic mimicry for Dyad 38.
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Dyad 11: Offset (Dynamic Mimicry)

Distance
— — "
B 3 E]

—
=
=

._.
[ ¥]
=]

=== Center
=== Peak mimicry
1 1
0 20 40 &0 80 100 120
Offset

140

Figure 12a. Offset of dynamic mimicry for Dyad 11. Dyad 11 shows a lag closer to 0 compared

to Dyad 38, indicating less of a delay when movement similarity was at its peak (see Figure 12b)
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Figure 12b. Offset of dynamic mimicry for Dyad 38.

Research Questions

To address the research questions, first, correlations were run among the among the
various objective and subjective synchrony measures as well as outgroup trust and LFR_E. The
results of these correlations can be seen in Table 5. To refresh, we would expect high

correlations among all synchrony variables, though the sign depends on the measures. For
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Perceived Sync, Pearson r, Ml, PhaseSync, and LFR_E, a higher score indicates more

synchrony. For DTW, RWTLCC, and Dynamic Mimicry, a lower score indicates synchrony.

Table 5.

Correlations of major variables.

Perceived Pearson r Ml DTW  PhaseSync RWTLCC Dyn. Outgroup  LFR_E

Sync Mimicry  Trust

1.Perceived Sync

2.Pearson r .828™

3.Mutual Info 337" 207

4.DTW -.292 -468™ 297

5.PhaseSync .849™ 9677 260 -.372"

6.RWTLCC -512" -586" -.428™ -125 -569™

7.Dyn. Mimicry -.717" -639™ -269 .286 -.648™ 583"
8.0utgroup Trust-.243 .052 -.037 -269 -.001 -.074 .049

9.LFR_E 576 516™  .318  .103 581" -4417 -397" -.006

**_Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).
In response to RQ1, which asked which measures of synchrony predict perceived synchrony,
perceived sync correlated significantly with phase synchrony, r = 0.85, p <.001, followed by
Pearson r, r =0.83, p < .001, dynamic mimicry, r =-0.72, p < .01, and mutual information, r =
0.34, p = .04. A regression was run to check for a causal linear relationship between the objective
measures and perceived sync. Diagnostics revealed that multicollinearity was not a concern, as

only one variable pairing showed variance proportions higher than .90 (see Hair, Black, Babin, &
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Anderson, 2013). The regression revealed strong fit of the predicted model, F(6, 31) = 19.60, p <
.01, R? = .74. Dynamic mimicry was the only individual variable that significantly predicted
perceived sync, standardized beta = .34, t=-2.81, p = .01.

Regarding RQ2, which asked which objective measures of synchrony predict observer
ratings of leader-follower relationships (LFRs), the balance of the leader-follower relationship
(LFR_E) was correlated significantly with Pearson r (r = 0.58, p <.01), phase synchrony (r =
0.58, p <.01), lag offset (r = -0.44, p <.01) and dynamic mimicry (r =-0.40, p =.014). A
regression checking for the effect of the objective measures on ratings of LFR was conducted.
The regression showed moderate fit, F(6, 31) = 4.42, p < .01, R? = .46. No individual variables
significantly predicted LFR_E, all p > .05.

Relationship between Synchrony and Outgroup Trust

Research question 3 inquired whether any of the synchrony measures would predict
outgroup trust. No significant relationships were found between synchrony variables and
outgroup trust (all correlations between synchrony variables and outgroup trust > p = .10.).
However, in the original study by Tamborini et al. (2018), the effect of synchrony on outgroup
trust was only found when moderated by the group membership (ingroup versus outgroup) of the
virtual partner. As such, separate correlations were calculated for those who had ingroup versus
outgroup partners. For those with ingroup partners, Pearson r (r = 0.52, p =.03) and DTW (r = -
0.59, p = .01) were both significantly correlated with outgroup trust. For those with outgroup
partners, perceived sync (r = -0.54, p =.02) alone correlated significantly with outgroup trust.
These findings are inconsistent with those of Tamborini et al. (2018), though in that study, the
nature of the synchronous routine was different (i.e., more of a mimicked interaction compared

to reciprocal), which may account for the difference in results.
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DISCUSSION

The goal of this research was to illuminate which objective measures of interpersonal
synchrony best relate with global perceptions of synchrony, while taking into consideration that
synchronous interactions differ in several qualities. A type of interaction that was complex,
reciprocally entrained, repetitive, and purposeful was used as a first example with which to apply
these measures. Results indicated that numerous measures including phase synchrony, Pearson
correlations, mutual information, and dynamic mimicry are all linked to global synchrony
perceptions for this interaction type. Moreover, the reliability of synchrony judgments was high
when comparing ratings within stimuli. Next, a balance in LFR was related to Pearson r, phase
synchrony, lag offset (RWTLCC), and dynamic mimicry. Interestingly, only a few synchrony
measures related to the findings about outgroup trust as previously discovered by Tamborini et
al. (2018), and these were in the opposite direction than expected. In the following discussion, |
first remark on the findings pertaining to the research questions, speculating on how these
findings could change with interaction types featuring different levels of synchrony qualities.
Following this, I discuss implications and limitations of this research.
Findings Pertaining to Research Questions

The first research question inquired which measures of synchrony would predict the
subjective measure perceived sync. In order of correlation strength from strongest to weakest,
phase synchrony, Pearson r, dynamic mimicry, and M1 all were significantly related to perceived
sync. Beginning with phase synchrony, the strength of this measure’s association with perceived
sync may stem from the repetitive nature of this study’s interaction routine. The phase of an
interaction is a feature of its periodic or cyclic nature; the more aligned two systems’ phases are,

the more rhythmic they can be said to be. Despite the fact that the interaction type in the current
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study was not regular (in the sense that it did not feature a steady pulse of movements), the
repetitive and scripted nature of the Tai-Chi routine likely improved participants’ ability to
achieve phase synchrony. In more spontaneous interactions, such as free-flowing conversations,
it might be more difficult for the phase synchrony measure to identify rhythmic regularities like
this. Accordingly, this measure is often used for scripted or regular interactions (Ouwehand &
Peper, 2015; see for an exception Schmidt & Morr, 2012).

Next, dynamic mimicry was associated with perceived sync. The negative direction of the
correlation indicates that a smaller difference between positions of dyadic partners equates to
higher perceived sync ratings. This shows that the position of the limbs in space, not just the
timing alone, could be related to perceptions that a dyad is in synchrony. The strength of this
measure’s correlation with perceived sync, and the fact that it was the only significant individual
predictor of perceived sync in the regression, show that perhaps people look for ‘perfect
synchrony’ (timing and form matching; Hale, 2017) when making judgments. In sum, in the type
of synchronous interaction shown in this study, the form of the movements evidently played
some role in shaping judgments.

Moving to Pearson r and M, these aggregate measures were also associated with
perceived sync. For this type of interaction, these measures serve as strong indicators of global
synchrony, and are a good starting point for synchrony research involving relatively stationary
data. The fact that they showed association with perceived synchrony in a highly complex
dataset such as this one points to their robustness in identifying synchrony. However, for
researchers interested in (a) non-stationary data types or (b) the dynamic patterns in a dataset,
these measures simply will not suffice. As we saw from this study, the leader-follower

relationship in a synchronous interaction ties in closely to perceptions of global synchrony, so
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researchers interested in the LFR would require more dynamic measures. Further, examination of
figures produced by dynamic measures, such as the RWTLCC chart, can reveal patterns in the
data that may be otherwise missed by aggregate measures. For instance, imagine a dyad who,
visibly, was highly coordinated in their movement dynamics, but had one participant leading the
other by 5 frames. If correlations were conducted only “on the spot” (i.e., with no inter-subject
lag), the result may indicate that there was an absence of synchrony. By looking at the patterns
throughout the range of time lags, though, a strong association could be found at beyond the on-
the-spot portion of the interaction graph. Regardless of definition of synchrony as simultaneous
or simply coordinated, many researchers would likely still be interested in the alignment of this
dyad. As such, aggregate measures are advisable, but not sufficient in cases where dynamics are
of interest.

The second research question asked which measures would correlate with a balance in
leader-follower relationship, as measured by the item LFR_E. The balance of LFR correlated
with several measures including Pearson r, phase synchrony, lag offset (RWTLCC), and
dynamic mimicry. Many synchrony ratings and measures thus seem to be inextricably related to
a balance of leadership and followership in an interaction, even though there are types of
synchrony in which leader and follower roles are not balanced (i.e., unilaterally entrained
synchrony). When leader and follower roles are fixed and there is an accompanying delay in the
follower’s movements (i.e., mimicry), LFR is not balanced — though the movements themselves
are still somehow coordinated in timing. Future studies should continue to investigate the role of
balance in perceptions of synchrony — is it an essential component, or just something that

enhances the synchronous experience?
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The final research question inquired which measures of synchrony would relate to
outgroup trust. No synchrony measures were significantly associated with outgroup trust in a
bivariate sense. However, | then sorted participant groups by ingroup and outgroup conditions as
performed by Tamborini et al. (2018). For dyads in the ingroup condition, Pearson r and DTW
were both positively correlated with outgroup trust, whereas for dyads in the outgroup condition,
perceived sync negatively correlated with outgroup trust. These findings are inconsistent with
Tamborini et al., as in their study they found that for ingroup condition participants, synchrony
decreased outgroup trust, whereas for outgroup condition participants, synchrony marginally
increased outgroup trust. The distinction between these findings feasibly stems from the
difference in measures used between Tamborini et al.’s study and the current Study 2. The
former study used a simple video game score of movement similarity as an indicator, whereas
the latter used more complex motion-capture-based methods and advanced measures of
synchrony. Another possible reason for the inconsistent findings is difference in the nature of the
synchronous activities; Tamborini et al. used a one-way interaction between human and
computer character, more akin to a mimicked interaction than a synchronous one. The current
study used an interaction type that was reciprocal. More research is needed to disentangle how
synchrony types and measures can influence social outcomes.

Given the relative ubiquity of findings stating that synchrony improves social outcomes,
it remains to be seen which types/qualities of synchrony drive these improvements. Is it the
simultaneity of movements? Or the rhythmic aspect? Does the form of movements matter at all?
These questions cannot be ignored by lumping all interaction types together and dubbing them
“synchrony.” The current research brought these issues to the forefront so they may be addressed

going forward. Future research would ideally compare these aspects of synchrony in terms of
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their outcomes; for instance, one might expect perfect synchrony, compared to general
synchrony, to produce stronger social effects, given that shared timing and form have been
shown to contribute independently to social outcomes.

Implications

The first major implication of this research is to establish and compare the validity of
different measurement techniques for assessing interpersonal synchrony. Many synchrony
measures, perhaps predictably, were related to global perceptions of synchrony. This study thus
demonstrated the convergent validity between several of the available synchrony measures and
perceptions. Another key finding here was that the reliability of synchrony ratings was high,
consistent with prior claims that synchrony can be reliably observed without complex
measurement techniques (Bernieri, 1988; Bernieri et al., 1994). Notably, however, these findings
may be peculiar to the type of interaction used in the present research. | encourage other
synchrony researchers to differentiate between interaction types, and to justify their use of
measures over others accordingly.

Another implication pertains to the methodology used in this study as a recommended
protocol for measuring synchrony. Several aspects of this methodology render it an improvement
over other extant methods. First, the use of character animation allows researchers to either alter
or control the appearance of stimuli, while preserving the fidelity of the real human movements.
This balance between control and realism is ideal. Second, the use of full-body motion capture is
relatively rare in synchrony research. Many studies in this domain rely on motion energy
analysis (Ramseyer & Tschacher, 2011), which leverages changes in video pixels as a measure
of broad movement activity shifts. As noted earlier, this technique lacks the precision and

granularity of the current method, which locates the movements of specific joints on the human
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body, which can subsequently be aggregated. Thus, this research is a showcase of the power of
combining character animation and motion capture in nonverbal communication research
involving observations of movement parameters (see Bente, 2019).

Limitations

The first limitation of this study was that it did not compare multiple types of
synchronous interactions (i.e., did not look at comparisons between the various levels of each
synchrony quality). A direct comparison between reciprocal and unilateral interactions, or
between regular versus irregular routines, for example, could be useful in further uncovering the
utility of the various available measures. Still, this study was a first step toward establishing the
need for further research on this topic. By pointing to the need to distinguish synchrony types by
their qualities, and by testing one type’s relationship to global synchrony perceptions, this first
step leaves to future research the task of comparing more types.

A second limitation was the exploratory nature of this research. Strong theoretical
background warranting the use of certain measures over others is lacking in the communication
science literature, as well as in other domains that study synchrony. As such, addressing research
questions instead of hypotheses seemed more appropriate for the current study. As differences
among measures and their relationships to qualities of synchrony continue to be discovered, the
grounding for theoretical advancement will become more plausible.

A third limitation was that this study did not encapsulate all available measures of
synchrony. Other methods such as cross-recurrence quantification analysis (Coco & Dale, 2014,
Shockley, Butwill, Zbilut, & Webber Jr., 2002) and spectral approaches like the cross-wavelet
analysis (Fujiwara & Daibo, 2016; Schmidt, Nie, Franco, & Richardson, 2014) are available,

which look at frequencies of events. Conversely, the current study focused on time-domain
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methods to get a first look at how this range of measures compared with perceptions. Future
studies should incorporate alternative measurements to see how they align with the current
findings.

A final limitation noted here is the relatively small dyadic sample from the original
database, especially when divided into ingroup versus outgroup conditions. The conclusions
made regarding the relationship between synchrony and outgroup trust should thus be taken with
caution. For the current dissertation, the trust variable was of interest to see if synchrony
measures related to a social outcome, but in future research, more focus could be dedicated to
delving deeper into the theoretical relationship between synchrony and outgroup trust.
Conclusion

Interpersonal synchrony can be found in different shapes and scopes throughout the
natural world. Disentangling how a metronome differs from a human, how a religious ritual
differs from a conversation, and how instruction differs from spontaneity are all key questions
for synchrony researchers. Understanding these differences enables scholars to better understand
which tools are right for the job, reducing confusion and promoting clarity. This research was a
first action toward identifying these differences, and showcasing how perceptions of one type of
synchrony (complex, reciprocal, repetitive, and intentional) relate to various available measures.
Several measures were able to detect synchrony differences that corresponded with variation in
general perceptions. Future research may find that more unintentional and spontaneous
interactions show different results with respect to synchrony measures. Indeed, we may wonder,
does synchrony in a free-flowing conversation even exist in the same vein as two partners
rocking back in forth in chairs stably? Answers to such questions must wait for the next wave of

synchrony research.
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APPENDIX

Python Script for Synchrony Analyses

# -*- coding: utf-8 -*-

Created on Mon May 18 10:24:32 2020

@author: novot

# -*- coding: utf-8 -*-

Created on Sun Apr 19 05:17:47 2020

@author: gabente

from scipy.stats import zscore

from os import listdir

import 0s

from os.path import isfile, join

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import scipy.stats as stats

from scipy import signal

from dtw import accelerated_dtw,multi_dtw,dtw
from scipy.signal import hilbert, butter, filtfilt
from scipy.fftpack import fft,fftfreq,rfft,irfft,ifft
from math import sqrt

from numpy import inf

import math

from PIL import Image

import statistics

def Save_PDF():
images=[]
#fpath="C:/Users/gabente/Desktop/ERIC_data/new_matrices/'

onlyfiles = [f for f in listdir(fpath) if isfile(join(fpath, f))and f.endswith('png")]

for f in onlyfiles:
im = Image.open(fpath+f).convert("RGB")
images.append (im)
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rf=fpath+f
os.remove(rf)
images[0].save(fpath+'Eric_Plots.PDF', save_all=True, append_images=images[1:])

def resample (s1,sS):
nrow=len(sl)
j=1
for name in list(s1):
j+=1
for ii in range (0,nrow-ss,ss):
x=0
y=0
for k in range (0,ss):

x+=sl.iloc[ii+k,j]
y+=sl.iloc[ii+k,j]

X=X/5
sl.iloclii,j]=x

drops=int(nrow-(nrow/ss))

s2 = sl.drop(sl.tail(drops).index)
return s2

def z_trans(df):
d1=(df-df.mean())/df.std(ddof=0)
return d1

def butter_bandpass(lowcut, highcut, fs, order=5):
nyq=05*fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype="band’)
return b, a

def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = filtfilt(b, a, data)
return y

def low_pass_filter(x,fs,fc):
w = fc / (fs / 2) # Normalize the frequency
b, a = signal.butter(5, w, 'low’)
x = signal filtfilt(b, a,x,axis=0)
#x= pd.DataFrame(x) #data=x.flatten())
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return x

def high_pass_filter(x,fs,fc):
w = fc/ (fs/ 2) # Normalize the frequency
b, a = signal.butter(5, w, 'high’)
x = signal filtfilt(b, a,x,axis=0)
#x= pd.DataFrame(x) #data=x.flatten())
return x

def median_filter(df,wi):
df.rolling(window=wi,center=True).median()
return df

def crosscorr(datax, datay, lag, wrap=False):
if wrap:
shiftedy = datay.shift(lag)
shiftedy.iloc[:lag] = datay.iloc[-lag:].values
return datax.corr(shiftedy)
else:
return datax.corr(datay.shift(lag))

def shannon_entropy(A, mode="auto", verbose=False):

A =np.asarray(A)

# Determine distribution type
if mode == "auto":
condition = np.all(A.astype(float) == A.astype(int))
if condition:
mode = "discrete"
else:
mode = "continuous”
mode="discrete"
if verbose:
print(mode, sys.stderr)
# Compute shannon entropy
pA=A/A.sum()
# Remove zeros
pA = pA[np.nonzero(pA)[0]]
#print (pA)
#print (A)
if mode == "continuous™:
return -np.sum(pA*np.log2(A))
if mode == "discrete™:
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return -np.sum(pA*np.log2 (pA))

def mutual_information(df, mode="auto", normalized=False):
I(X, Y) = H(X) + H(Y) - H(X,Y)
https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-mutual-
information-using-numpy
x=df['DataA"]
y=df['DataB']

x= x+ abs(x.min())
y=y+ abs(y.min())

# Determine distribution type
if mode == "auto":
condition_1 = np.all(x.astype(float) == x.astype(int))
condition_2 = np.all(y.astype(float) == y.astype(int))
if all([condition_1, condition_2]):
mode = "discrete"
else:
mode = "continuous"

mode="continuous"

H_x = shannon_entropy(Xx, mode=mode)

H_y = shannon_entropy(y, mode=mode)

H_xy = shannon_entropy(np.concatenate([x,y]), mode=mode)

# Mutual Information
| Xy=H x+H_y-H xy
if normalized:
MI=I_xy/np.sqrt(H_x*H_y)
else:
MI= 1_xy
Millist.append(str(round(MI,5)))
print (MI)

def corr(df):
#overall_pearson_r = df.corr().iloc[0,1]
#print(f"Pandas computed Pearson r: {overall_pearson_r}")

# out: Pandas computed Pearson r: 0.2058774513561943

r, p = stats.pearsonr(df.dropna()['DataA’], df.dropna()['DataB'])
#print(f"Scipy computed Pearson r: {r} and p-value: {p}")
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# out: Scipy computed Pearson r: 0.20587745135619354 and p-value: 3.7902989479463397e-
51

# Compute rolling window synchrony
f,ax=plt.subplots(figsize=(14,4))
df.rolling(window=25,center=True).median().plot(ax=ax)
ax.set(xlabel="Time',ylabel="Motion’)

ax.set(title=f"{id} Pearson r = {np.round(r,2)} p= {np.round(p,4)}");
plt.show

f.savefig(fpath+ id +'_' +'Pearson.png’, bbox_inches = "tight™)

r =.5*(math.log(1+r)-math.log(1-r))
a=str(round(r,3))+"\t'+str(round(p,4))
corrlist.append (a)

def RWS(df):

# Rolling Window Synchrony
r_window_size = 25 #125 #300
rolling_r = df['DataA'].rolling(window=r_window_size, center=True).corr(df['DataB'])
f,ax=plt.subplots(2,1,figsize=(14,6),sharex=True)

df.rolling(window=25,center=True).median().plot(ax=ax[0])

ax[0].set(xlabel="Frame',ylabel="Motion")
rolling_r.plot(ax=ax[1])
ax[1].set(xlabel="Frame',ylabel="Pearson r')
plt.suptitle("Rolling Window Correlation: "+id)

plt.show

f.savefig(fpath+ id +'_' +'/RWS.png', bbox_inches = "tight")

def TLCC(df):
d1=df['DataA]
d2=df['DataB’]
rs = [crosscorr(d1,d2, lag) for lag in range(-int(seconds*fps),int(seconds*fps+1))]
offset = np.ceil(len(rs)/2)-np.argmax(rs)
#print (len(rs),np.ceil(len(rs)/2) , np.argmax(rs,0))

xs=0
xe=2*int(seconds*fps)+1

f,ax=plt.subplots(figsize=(15,3))
ax.plot(rs)

ax.axvline(np.ceil(len(rs)/2),color="K',linestyle="--",label="Center’)
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ax.axvline(np.argmax(rs),color="r",linestyle="--",label="Peak synchrony")

ax.set(title=f'Lagged Cross Correlation\n{id}\nOffset = {offset} frames\nS1 leads <> S2
leads',xlim=[xs,xe], xlabel="Offset',ylabel="Pearson r')

ax.set_xticks(np.arange(xs,xe, fps))

ax.set_xticklabels(np.arange(-(xe-1)/2, (xe-1)/2+1 , fps))

#ax.set_xticks(np.arange(0, int(seconds*fps)+1, 25.0))

#ax.set_xticklabels(np.arange(-int(seconds*fps),int(seconds*fps), 25))

#ax.set_xticks([0, 50, 100, 151, 201, 251, 301])

#ax.set_xticklabels([-150, -100, -50, 0, 50, 100, 150]);

plt.legend()

plt.show

f.savefig(fpath+ id +'_' +'TLCC.png', bbox_inches = "tight")

RSneg=(rs[0:int(seconds*fps)+1])
RSpos=(rs[int(seconds*fps)+1:int(seconds*fps)*2+1])
rsumA=max(RSneg) #(RSneg.max(axis=0))
rsumB=max(RSpos) #(RSpos.max(axis=0))

rs1=str(round(offset,3))
rs2=str(round(abs(offset),3))

rx=(rsumB/rsumA)

if rx>1:
rx=(rsumA/rsumB)

rs3=str(round(abs(rx),3))

rsd=str(round(abs(rsumB-rsumA),3))

outl=rs1+"\t'+rs2+\t'+rs3+'\t'+rs4
TLCClist.append(outl)

def WTLCC(df):
# Windowed Time-lagged Cross Correlation

no_splits = 100 #int (len(df)/25) #20 #clip = 60 seconds = 1500 frames
samples_per_split = int(df.shape[0]/no_splits)

#print (samples_per_split)

rss=[]

for t in range(0, no_splits):
t_start=t*samples_per_split
t end=(t+1)*samples_per_split
dl = df['DataA'].iloc[t_start:t_end]

69



d2 = df['DataB].iloc[t_start:t_end]

rs = [crosscorr(d1,d2, lag,wrap=False) for lag in range(-
int(seconds*fps),int(seconds*fps+1))]
rss.append(rs)

rss = pd.DataFrame(rss)

f,ax = plt.subplots(figsize=(12,10))

sns.heatmap(rss,cmap="RdBu_r',ax=ax)

#xlim=[75, 176],

ax.set(title=f'Windowed Time Lagged Cross Correlation: '+id, xlabel="Offset',ylabel="Window
epochs’)

ax.set_xticks(np.arange(75, 176, 100/10))

ax.set_xticklabels(np.arange(-5, 6, 1))

ax.set_yticks(np.arange(0,31, 5))

ax.set_yticklabels(np.arange(0, 31,5))

rss2=rss.transpose()

f,ax = plt.subplots(figsize=(18,6))

sns.heatmap(rss2,cmap="RdBu_r',ax=ax)

#xlim=[-2,31],ylim=[75, 176],

#ax.set(title=F'Windowed Time Lagged Cross Correlation: "+id,ylim=[75, 176],
ylabel="Offset',xlabel="Window epochs')

ax.set(title='Windowed Time Lagged Cross Correlation: '+id, ylabel="Offset',xlabel="Time
Line (epochs=1 sec)")

ax.set_yticks(np.arange(75, 176, 100/10))
ax.set_yticklabels(np.arange(-5, 6, 1))
ax.set_xticks(np.arange(-2,34, 5.65))
ax.set_xticklabels(np.arange(0, 71,10))
ax.spines['top'].set_visible(True)
ax.spines['right’].set_visible(True)
ax.spines['bottom'].set_visible(True)
ax.spines['left’].set_visible(True)
ax.spines['top'].set_linewidth(0.5)
ax.spines['right’].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['left’].set_linewidth(0.5)
plt.show

f.savefig(fpath+ id +'_' +'TLCC.png', bbox_inches = "tight™)
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def RWTLCC(df):
# Rolling window Time-lagged Cross Correlation

#seconds = 5 #rapport ==== lag time wondow to right and left

#frames per second = 25 Hz

window_size = 125 #00 #300 #samples = secs * fps * 2 ==== number of samples for
correlation

step_size=5  #frames ==== advancements after each sample

t start=0

t end =t_start + window_size

#print (df)

rss=[]

le=len(df)

while t_end <le: #1500: #5400:

d1= df'DataA".iloc[t_start:t_end]
d2= df['DataB'].iloc[t_start:t_end]

rs = [crosscorr(d1,d2, lag, wrap=False) for lag in range(-
int(seconds*fps),int(seconds*fps+1))]
rss.append(rs)

t start =t start + step_size
t end =t _end + step_size

rss = pd.DataFrame(rss) # either standard display time vertical
rss2=rss.transpose()  # or transposed time line horizontal
rss2=rss2.dropna(axis=0, how="all")

f,ax = plt.subplots(figsize=(18,6))

sns.heatmap(rss2,cmap="RdBu_r',ax=ax)

ax.set(title=f'Rolling Windowed Time Lagged Cross Correlation: '+id,
ylabel="Offset', xlabel="Time Line (epochs = 1/5 sec)")

ymin, ymax = ax.get_ylim()

Xmin, xmax = ax.get_xlim()

#print (ymin,ymax,xmin,xmax)

#ax.set(title=f'Rolling Windowed Time Lagged Cross Correlation:
"+id,ylim=[0,window_size+1], xlim=[0,(le/25)],ylabel="Offset (seconds)',xlabel="Time Line
(seconds, epoch=1/5 secs)")

ax.set_yticks(np.arange(ymin, ymax-1,-ymin/2))
ax.set_yticklabels(np.arange(-seconds,seconds+1,seconds))
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ax.set_xticks(np.arange(xmin,xmax+1, 10.0))
ax.set_xticklabels(np.arange(xmin,xmax+1, 10.0))

#plt.savefig(fpath+id)
plt.show()
f.savefig(fpath+ id + '_' +'RWTLCC.png', bbox_inches = "tight™)

rss2=(np.array(rss2).mean(axis=1))
#rss2[0]=rss2[1] #correct for 1. row

offset = np.ceil(len(rss2)/2)-np.argmax(rss2)

#print (np.ceil(len(rss2)/2),np.argmin(rss2))
f,ax=plt.subplots(figsize=(16,4))
ax.plot(rss2)

xlim=[0,251] #or eric [0,101]

ax.axvline(np.ceil(len(rss2)/2+1),color="k',linestyle="--",label="Center’)

ax.axvline(np.argmax(rss2),color="r',linestyle="--",label="Peak Corr")

ax.set(title=FRWTLCC Pearson Mean\n{id}\nOffset = {offset} frames\nS1 leads <> S2
leads', xlabel="Offset',ylabel="Pearson_r")

ax.set_xticks(np.arange(0,251, 25.0))

ax.set_xticklabels(np.arange(-125, 126, 25))

plt.legend()

plt.show

f.savefig(fpath+ id +'_' +'RWTLCCCorr.png', bbox_inches = "tight")

RSneg=(rss2[0:int(seconds*fps)+1])
RSpos=(rss2[int(seconds*fps)+1:int(seconds*fps)*2+1])
rsumA=max(RSneg) #(RSneg.max(axis=0))
rsumB=max(RSpos) #(RSpos.max(axis=0))

rs1=str(round(offset,3))
rs2=str(round(abs(offset),3))
rx=(rsumB/rsumA)
if rx>1:

rx=(rsumA/rsumB)
rs3=str(round(abs(rx),3))
rs4=str(round(abs(rsumB-rsumA),3))

outl=rs1+\t'+rs2+\t'+rs3+\t'+rs4
RWTLCClist.append(outl)
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def DTW(df):
#Dynamic Time Warping

dl = df['DataA"] #.interpolate().values
d2 = df['DataB"] #.interpolate().values

#d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist="euclidean’)

#d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist="euclidean’)
w= inf

s=1.0

I2_norm = lambda X, y: (X - y)**2

dist, cost_matrix, acc_cost_matrix, path = dtw(d1, d2, dist=12_norm,w=w,s=5s)

f,ax = plt.subplots(figsize=(12,10))

plt.imshow(acc_cost_matrix.T, origin="lower', cmap='jet’, interpolation="nearest')
plt.plot(path[0], path[1], 'wW")

plt.xlabel('Subjectl")

plt.ylabel('Subject2")

plt.title(FDTW Minimum Path with minimum distance: {np.round(dist,2)} : {id}")
plt.colorbar(fraction=0.046, pad=0.04)

plt.show()
f.savefig(fpath+id +' ' +'fastDTW.png')
distlist.append(str(round(dist,3)))

def fastDTW(df):
#Dynamic Time Warping

d1 = df['DataA'].interpolate().values
d2 = df['DataB"].interpolate().values

d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist="euclidean’)
f,ax = plt.subplots(figsize=(12,10))

plt.imshow(acc_cost_matrix.T, origin="lower', cmap='jet’, interpolation="nearest')
plt.plot(path[0], path[1], ‘W")

plt.xlabel('Subjectl’)

plt.ylabel('Subject2’)

plt.title(FDTW Path with minimum distance: {np.round(d,2)}: {id}")
plt.colorbar(fraction=0.046, pad=0.04)
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xx=str(round(100* ( abs(len(d1)-d) /len(dl) ),3))
dd=str(round(d,3))
distlist.append(dd+\t'+xx)

plt.show()
f.savefig(fpath+ id +'_' +'fastDTW.png')

def matDTW(s1,52,Typ):

2 dummy arrays original 1D vectors

:param array x: now len(s1)

‘param array y: now len(s2)

2 3 DoF arrays for distance measures

:param array s1 N1*M*dims array

:param array s2: N2*M*dims array

:param func dist: distance used as cost measure

:param int warp: how many shifts are computed.

:param int w: window size limiting the maximal distance between indices of matched entries
]}

:param float s: weight applied on off-diagonal moves of the path. As s gets larger, the warping
path is increasingly biased towards the diagonal

Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap
path.

ste=5

nrow=len(sl1)

#print (nrow)

df1=[]

df2=[]

new_s1=[]

new_s2=[]

#news2=[]

global fpath

k=0

#resample 25 Hz to 5 Hz either mean of 5 (postion data) or sum of 5 (dynamic data)

if Typ=="pos":

for ii in range (0,int(nrow/ste),ste):

st=ii*ste
en=st+ste
dfl=s1[st:en]
df2=s2[st:en]
k+=1
new_sl.append (dfl.mean(axis=0))
new_s2.append (df2.mean(axis=0))
#print(k,df1.mean(axis=0))
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else:
for ii in range (0,int(nrow/ste),ste):
st=ii*ste
en=st+ste
dfl=sl[st:en]
df2=s2[st:en]
k+=1
new_sl.append (dfl.sum(axis=0))
new_s2.append (df2.sum(axis=0))

sl = pd.DataFrame(new_s1)
s2 = pd.DataFrame(new_s2)

x=len(sl)

y=len(s2)

w=inf

s=1.0

dist, cost_matrix, acc_cost_matrix, path = multi_dtw(x, y,s1,s2,Typ, warp=1,w=w,s=s)
#print (round(dist,3))

f,ax = plt.subplots(figsize=(12,10))

plt.imshow(acc_cost_matrix.T, origin="lower’, cmap='jet’, interpolation="nearest')
plt.plot(path[0], path[1], 'W',linewidth=3)

plt.xlabel('Subjectl’)

plt.ylabel('Subject2")

plt.title(FDTW Path with minimum distance: {np.round(dist,2)}: {id})
plt.title('Matrix-DTW (‘+Typ+"): '+id+' (dist=)"+str(round(dist,3)))
plt.colorbar(fraction=0.046, pad=0.04)

#ymin, ymax = ax.get_ylim()
#xmin, xmax = ax.get_xlim()

#plt.plot(x, label="x")

#plt.plot(y, label="y")

distlist.append(str(round(dist,3)))

plt.show()

f.savefig(fpath+ id +' ' +'MatDTW_'+Typ+'.png’, bbox_inches = "tight")

def PhS(dfRaw):
#Phase Synchrony

y1 = dfRaw['DataA’].interpolate().values
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y2 = dfRaw['DataB'].interpolate().values

#y1 = butter_bandpass_filter(y1,lowcut=lowcut,highcut=highcut,fs=fs,order=order)
#y2 = butter_bandpass_filter(y2,lowcut=lowcut,highcut=highcut,fs=fs,order=order)

all = np.angle(hilbert(yl),deg=False)

al2 = np.angle(hilbert(y2),deg=False)
phase_synchrony = 1-np.sin(np.abs(all-al2)/2)
N =len(all)

# Plot results

f,ax = plt.subplots(3,1,figsize=(14,7),sharex=True)

ax[0].plot(y1,color="r',label="y1")

ax[0].plot(y2,color="b",label="y2")

ax[0].legend(bbox_to_anchor=(0., 1.02, 1., .102),ncol=2)

ax[0].set(xlim=[0,N], title="Filtered Timeseries Data’)

ax[1].plot(all,color="r")

ax[1].plot(al2,color="b")

ax[1].set(ylabel="Angle' title="Angle at each Timepoint',xlim=[0,N])

phase_synchrony = 1-np.sin(np.abs(al1-al2)/2)

ax[2].plot(phase_synchrony)

ax[2].set(ylim=[0,1.1],xlim=[0,N],title="Instantaneous Phase Synchrony:
'+id,xlabel="Time',ylabel="Phase Synchrony")

plt.tight_layout()

f.savefig(fpath+ id + ' ' +'PhS.png’)

print(statistics.mean(phase_synchrony))

def TLMimDyn(s1,s2): #(s1,s2): swapped persons to be compatible with RWTLCC
fps=25
lag=int(seconds*fps)
N=len (s2) #1500
stp=5
Ist=[]
diff_all=[]
for i in range(lag,N-lag,stp):
#step forward
d1=s2.iloc[i]
Ist=[]
dda=0
for j in range (i-lag+1,i+lag):

d2=sl.iloc[j]
dda=0

for k in range(14):
#difference in dyad of Eukledian diffrences between all joints abs (Xtn - Xtn+1)
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x1=dl.iloc[K]
x2=d2.iloc[K]
dd=sqgrt((x1-x2)**2)
dda+=dd

Ist.append(dda)

diff_all.append (Ist)
rss = pd.DataFrame(diff_all) # either standard display time vertical
rss2=rss.transpose()
#rss2=(rss2-rss2.mean())/rss2.std(ddof=0)
#rss2 = (rss2 - rss2.mean())/rss2.std(ddof=0)*-1
f,ax = plt.subplots(figsize=(16,4))
#vmin, vmax =0, 10
#sns.heatmap(rss2,cmap="RdBu_r',ax=ax,center=(vmin + vmax) / 2., vmax=vmax)
stdev=rss2.std(ddof=0)
stdev=2*(stdev.std(ddof=0))
m=rss2.mean()
m=m.mean()
vmin=m-2*stdev
vmax=m+2*stdev

sns.heatmap(rss2,cmap="RdBu_r',ax=ax,vmin=vmin,vmax=vmax)

ymin, ymax = ax.get_ylim()
Xmin, xmax = ax.get_xlim()
#print (ymin,ymax,xmin,xmax)

#ax.set_yticks(np.arange(100,-1,-(100/4))) #ymin, ymax,(abs(ymax-ymin)+1)/5))
#ax.set_yticklabels(np.arange(-2, 2.1, 1))

ax.set_yticks(np.arange(0, 2*lag+1,int((2*lag+1)/4)))
ax.set_yticklabels(np.arange(-2, 2.1,1))

ax.set_xticks(np.arange(xmin,xmax+1, 25.0))
ax.set_xticklabels(np.arange(xmin,xmax+1, 5))

#ax.set(title=f'Rolling Windowed Time Lagged Cross Correlation’,xlim=[0,301],
xlabel="Offset',ylabel="Epochs (1 sec)")

ax.set(title=f"Time-Lagged Movement Difference: '+id,ylabel="Offset (seconds)',xlabel="Time
Line (seconds)’)

#plt.savefig(path+id)
plt.show()
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f.savefig(fpath+ id +'_' +'MimDyn.png’, bbox_inches = "tight")
rss2=(np.array(rss2).mean(axis=1))
offset = np.ceil(len(rss2)/2)-np.argmin(rss2)

f,ax=plt.subplots(figsize=(16,4))

ax.plot(rss2)

ax.axvline(np.ceil(len(rss2)/2),color="k',linestyle="--",label="Center")

ax.axvline(np.argmin(rss2),color="r',linestyle="--'label="Peak synchrony")

ax.set(title=f'Lag Distribution Synchrony (motion)\n{id}\nOffset = {offset} frames\nS1 leads
<> S2 leads',xlim=[0,101], xlabel="Offset',ylabel="Distance")

ax.set_xticks(np.arange(0, 101, 5.0))

ax.set_xticklabels(np.arange(-50, 51, 5))

#ax.set_xticks(np.arange(0, 251, 25.0))

#ax.set_xticklabels(np.arange(-125, 126, 25))

plt.legend()

plt.show

f.savefig(fpath+ id +'_' +'MimPos2.png’, bbox_inches = "tight™)

RSneg=(rss2[0:int(seconds*fps)+1])
RSpos=(rss2[int(seconds*fps)+1:int(seconds*fps)*2+1])
rsumA=max(RSneg) #(RSneg.max(axis=0))
rsumB=max(RSpos) #(RSpos.max(axis=0))

rs1=str(round(offset,3))
rs2=str(round(abs(offset),3))
rx=(rsumB/rsumA)
if rx>1:

rx=(rsumA/rsumB)
rs3=str(round(abs(rx),3))

rsd=str(round(abs(rsumB-rsumA),3))

outl=rs1+\t'+rs2+\t'+rs3+'\t'+rs4
mimdynlist.append(outl)

def TLMimPos(s1,s2): #(s1,s2): swapped persons to be compatible with RWTLCC
seconds=3

lag=int(seconds*fps)
N=len(s1) #1500
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stp=75
Ist=[]
diff_all=[]

for i in range(lag,N-lag,stp):
#step forward
d1=sl.iloc[i]
Ist=[]
for j in range (i-lag,i+lag):
d2=s2.iloc[j]
dda=0

for k in range(14):
p=k*3
x1=dl.iloc[p]
y1=dl.iloc[p+1]
z1=dl.iloc[p+2]
x2=d2.iloc[p]
y2=d2.iloc[p+1]
z2=d2.iloc[p+2]
dd=sqrt((x1-x2)**2+(yl-y2)**2+(z1-22)**2)
dda+=dd

Ist.append(dda)

diff_all.append (lst)

rss = pd.DataFrame(diff_all) # either standard display time vertical

rss2=rss.transpose()

rss2=rss2.dropna(axis=0,how="all’)

#print (N,(rss2))

f,ax = plt.subplots(figsize=(16,4))

#vmin, vmax = 0, 500

sns.heatmap(rss2,cmap="RdBu_r',ax=ax) #,center=(vmin + vmax) / 2., vmax=vmax)

ymin, ymax = ax.get_ylim()

xmin, xmax = ax.get_xlim()

#print (ymin,ymax,xmin,xmax)

ax.set(title=f'Time-Lagged Posture Difference: '+id,ylabel="Lag (seconds)’,xlabel="Time Line
(seconds)")

ax.set_yticks(np.arange(0, 251, 128)) #2*lag+1,int((2*lag+1)/2)))

ax.set_yticklabels(np.arange(-5, 5.1,5))

ax.set_xticks(np.arange(xmin,xmax+1, 25.0))
ax.set_xticklabels(np.arange(xmin,xmax+1, 25.0))

plt.show()
f.savefig(fpath+ id +'_' +'MimPos1.png', bbox_inches = "tight")
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rss2=(np.array(rss2).mean(axis=1))
rss2[0]=rss2[1] #correct for 1. row

#rss2[0]=rss2[1] #correct for 1. row

offset = np.ceil(len(rss2)/2)-np.argmin(rss2)

#print (rss2)

#print (np.ceil(len(rss2)/2),np.argmin(rss2))

f,ax=plt.subplots(figsize=(16,4))

ax.plot(rss2)

ax.axvline(np.ceil(len(rss2)/2),color="k',linestyle="--",label="Center")

ax.axvline(np.argmin(rss2),color="r',linestyle="--",label="Peak mimicry")

ax.set(title=f'Lag Distribution Mimicry (position) \n{id}\nOffset = {offset} frames\nS1 leads
<> S2 leads', xlabel="Offset',ylabel="Distance’)

#ax.set_xticks(np.arange(0, 256, 25.0))

#ax.set_xticklabels(np.arange(-125, 126, 25))

plt.legend()

plt.show

f.savefig(fpath+ id +'_' +'MimPos2.png’, bbox_inches = "tight™)

RSneg=(rss2[0:int(seconds*fps)+1])
RSpos=(rss2[int(seconds*fps)+1:int(seconds*fps)*2+1])
rsumA=max(RSneg) #(RSneg.max(axis=0))
rsumB=max(RSpos) #(RSpos.max(axis=0))

rs1=str(round(offset,3))
rs2=str(round(abs(offset),3))
rx=(rsumB/rsumA)
if rx>1:

rx=(rsumA/rsumB)
rs3=str(round(abs(rx),3))
rsd=str(round(abs(rsumB-rsumA),3))

outl=rs1+\t'+rs2+\t'+rs3+'\t'+rs4
mimiclist.append(outl)

def show_it(df):
ml=np.amax(df['DataA")
m2=np.amax(df['DataB'])
m=max(m1,m2)

f,ax = plt.subplots(figsize=(16,4))
#plt.title(id+' RawData (z-transformed)")
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plt.plot( df['DataA’], label="Person A")
plt.plot( df['DataB'], label="Person B')
plt.ylim((-m*1.2,m*1.2))
#plt.yticks([-1,1])

plt.show()

#main program

id="

fpath="
fileMovA=[]
fileMovB=[]
filePosA=[]
filePosB=[]
distlist=[]
corrlist=[]
TLCClist=[]
gazelist=[]
mimiclist=[]
mimdynlist=[]
Milist=[]
RWTLCClist=[]

#study ID:
#case_ID='"Rapport'
case_ID ="Eric'

#data type:
mode="rawmat’
#mode="vectors'
#mode='SRL'

#headers for parameter outputs
RWTLCClist.append('offset_signed'+'\t'+'off_absolut'+'\t'+'AB_Proportion'+'\t'+'AB_Difference'
)

mimiclist.append(‘offset_signed'+'\t'+'off_absolut'+'\t'+'AB_Proportion'+'\t'+'AB_Difference’)
mimdynlist.append(‘offset_signed'+\t'+'off_absolut'+\t'+'AB_Proportion'+\t'+'AB_Difference’)
TLCClist.append(‘offset_signed'+'\t'+'off_absolut'+\t'+'AB_Proportion'+'\t'+'AB_Difference’)
distlist.append('DTW_dist'+\t'+'Dist_Percent’)

corrlist.append(‘Pearson_r'+'\t'+'p_value')

gazelist.append (‘direct_perc')
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org_samp_rate=25

fs=org_samp_rate

new_samp_rate= 25
re_samp=int(org_samp_rate/new_samp_rate)

lowcut = .05 #.01 #band pass low

highcut = .5 #bad pass high

order=1

fc_low =.5 # Cut-off frequency of the low pass filter
fc_high =.3 # Cut-off frequency of the high pass filter
mF=50 # median filter constant

seconds=5#2  # size off lag for lagged analyses

fps = new_samp_rate

if mode== 'rawmat’:

#Eric Data
if case_ID=="Eric"
fpath="C:/Motion Data/"
onlyfiles = [f for f in listdir(fpath) if isfile(join(fpath, f))and f.endswith('0_mov_A.txt")]
elif case_ID=="Rapport" #rapport data
fpath="C:/Users/gabente/Desktop/Rapport/SnapData/"
onlyfiles = [f for f in listdir(fpath) if isfile(join(fpath, f))and f.endswith('Mov_A.txt')]

for | in onlyfiles:

I1=l.upper()

fileMovA .append(fpath+Il)
fileMovB.append(fpath+ll.replace('A','B"))

filePosA.append(fpath+Il.replace(MOV_A''POS_A'))
filePosB.append(fpath+ll.replace(MOV_A''POS_B"))

=1
for ff in onlyfiles:
if case_ID=="Eric".
id="DYAD"+ff[0:2] #Eric
elif case_ID=="Rapport"
id="DYAD"+ff[5:7] #Rapport
+=1

#Read movemnt data
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fidL=fileMoVA[l]
fid2=fileMovBI[I]
d1=[]
d2=[]

hvalid=['Chest’,/)L_Arm','L_ForeArm',L_Hand',/)R_Arm''R_ForeArm','R_Hand','Head’,'R_UpLeg
"'R_Leg','R_Foot','L_UpLeg','L_Leg''L_Foot']
if case_ID=="Rapport".
hvalid=list(map(lambda x: x.upper(), hvalid))

#hips if in data are skipped as they set to zero in the snap mode

dfMovA = pd.read_csv(fid1,sep="\t',usecols=lambda column : column in hvalid)
dfMovB = pd.read_csv(fid2,sep="\t',usecols=lambda column : column in hvalid)

#Read postion data
fid1=filePosA[l]
fid2=filePosBJl]
dfPosA = pd.read_csv(fid1,sep="\t',usecols=lambda column : column not in ['HIPS:TX,
'HIPS:TY", 'HIPS:TZ)
dfPosB = pd.read_csv(fid2,sep="\t',usecols=lambda column : column not in [HIPS:TX',
'HIPS:TY", 'HIPS:TZ)

#z-transform motion data in all joints separetly
cols = list(dfMovA.columns) #identical for A and B
for col in cols:
dfMovA[col] = (dfMovA[col] - dfMovA[col].mean())/dfMovA[col].std(ddof=0)
dfMovBJcol] = (dfMovB[col] - dfMovB[col].mean())/dfMovB[col].std(ddof=0)

#correct first row of data

dfMovA.iloc[0:] = dfMovA.iloc[1:]
dfMovB.iloc[0:] = dfMovB.iloc[1:]
dfPosA.iloc[0:] = dfPosA.iloc[1:]
dfPosB.iloc[0:] = dfPosB.iloc[1:]

#aggregate motion data across joints for A and B
d1= dfMovA.sum(axis=1)
d2= dfMovB.sum(axis=1)
#combine A and B in one file
dfx = pd.concat([d1, d2], axis=1, sort=False)
#replace variable names
names=[]
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names.append('DataA")
names.append('DataB’)
dfx.columns = dfx.columns][:0].tolist() + names

# interpolate missing data and generate unfiltered raw data matrix in dfRaw
dfxRaw = dfx #dfx.interpolate()

#calculate low pass butterworth filtered data in df

if new_samp_rate<org_samp_rate:
resample (dfx,re_samp)
fs=new_samp_rate

#band pass

dfx['DataA’] =
butter_bandpass_filter(dfx['DataA'],lowcut=lowcut,highcut=highcut,fs=fs,order=order)

dfx['DataB"] =
butter_bandpass_filter(dfx['DataB'],lowcut=lowcut,highcut=highcut,fs=fs,order=order)

#low pass
dfx['DataA']=low_pass_filter (dfxRaw['DataA"],fs,fc_low)
dfx['DataB"]=low_pass_filter (dfxRaw['DataB'],fs,fc_low)

#high pass
dfx['DataA']=high_pass_filter (dfxRaw['DataA',fs,fc_high)
dfx['DataB']=high_pass_filter (dfxRaw]['DataB'],fs,fc_high)

#Median Filter
dfx['DataA’] = median_filter(dfx['DataA’],mF)
dfx['DataB'] = median_filter(dfx['DataB'],mF)

#select procedures\
#show _it(dfx)
#corr(dfx)

# RWS(dfx)
#TLCC(dfX)
#RWTLCC(dfx)

# mutual_information (dfx)

# fastDTW(dfx)

84



#DTW(dfx)
#TLMimPos(dfPosA,dfPosB)
#TLMimDyn(dfMovA,dfMovB)
#matDTW(dfPosA,dfPosB,'pos’)
#matDTW(dfMovA,dfMovB,'mov’)
PhS(dfxRaw)

H#WTLCC(dfx)

with open (fpath+'dist.txt','w") as f:
f.write('\n".join(line for line in distlist))

with open (fpath+'corr.txt','w') as f:
f.write('\n".join(line for line in corrlist))

with open (fpath+TLCC.txt','w’) as f:
f.write('\n".join(line for line in TLCClist))

with open (fpath+'RWTLCC.txt','w") as f:
f.write('\n".join(line for line in RWTLCClist))

with open (fpath+'MutualInf.txt','w") as f:
f.write(\n".join(line for line in Mllist))

Save_PDF()
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