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ABSTRACT 

IDENTIFYING SIGNATURES OF PERCEIVED INTERPERSONAL SYNCHRONY 

By 

Eric Novotny 

Interpersonal synchrony, or the temporal alignment of behaviors between 

communicators, forms a basis for social bonding in humans. Synchrony is a phenomenon that 

people can evidently see and feel on a Gestalt level, but the phenomenon itself is intricate. 

Several qualities of a dyadic interaction can modify its manifestation and effects, including 

complexity, entrainment, periodicity, and intentionality of the synchronous interaction. To date, 

it is unclear which of these qualities drive perceptions of synchrony and its corresponding 

effects. The lack of attention to synchrony’s components results in a potential over-

generalization of the concept, which is compounded by a surplus of measurement techniques. As 

an initial attempt to address these concerns, the current study centers on a specific type of 

synchrony (complex, reciprocal, repetitive, and purposeful), its correlation with perceived 

synchrony, and its relationship to a previously identified social outcome variable: outgroup trust. 

Using full-body motion capture of dyadic partners performing a Tai-Chi routine, three-

dimensional movement data were collected and several objective synchrony measures were 

applied. Then, by overlaying neutral computer avatars onto the motion data, stimulus videos 

showcasing dyads’ movements were created for an online survey. One-hundred fifteen 

participants judged synchrony and the leader/follower relationship in the videos. These 

perception ratings provided a comparison for convergent validity with objective measures. 

Findings suggested that most objective measures significantly correlated with perceived 

synchrony, though to different magnitudes. No measures correlated with outgroup trust directly, 



 

 

 
 

but when comparing ingroup to outgroup dyads, synchrony correlated with outgroup trust 

positively for ingroup participants and negatively for outgroup participants. Results indicate that 

for a complex, reciprocal, repetitive, and purposeful type of synchrony, several measures of 

synchrony relate to perceptions. More spontaneous/irregular forms of synchrony may require 

more selectivity in measurement. 
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INTRODUCTION 

Interpersonal synchrony, or the temporal coordination of behavior between interactants, 

is a common means of affiliation and bonding among humans (Hove & Risen, 2009; Launay, 

Tarr, & Dunbar, 2016). In both an historical and developmental sense, synchrony has been 

identified as a deeply rooted tendency by which humans create emotional and psychological 

connections. Historically, groups of humans have long performed rituals involving simultaneous, 

rhythmic movements to increase group cohesion or work toward a shared goal (McNeill, 1995; 

Wiltermuth & Heath, 2009). Developmentally, infants and their mothers show synchronization 

of physiological and emotional variables, including heart rate, breathing rate, and mood 

(Feldman, 2007). In modern and adult life, synchrony has been well-substantiated as a predictor 

of several social outcomes, including cooperation, rapport, and trust (Delaherche et al., 2012). It 

has been studied across a range of applied contexts, including psychiatrist-patient relationships 

(Ramseyer & Tschacher, 2011), teacher-student interactions (Bernieri, 1988), as well as sports 

(Cohen, Ejsmond-Frey, Knight, & Dunbar, 2010). Throughout these studies, a common theme 

has emerged: Synchrony is a powerful predictor of human bonding. Despite the solidarity of 

these findings, another axiom remains evident: Not all synchronous interactions are created 

equal.  

Several qualities, or characteristic features, of a synchronous interaction can affect the 

appearance and outcomes of the specific version of synchrony that emerges. First is the 

complexity, or possible degrees of freedom, of the behavior. For example, dyadic partners may 

perform synchronization of simple lateral movements (e.g., Noy, Dekel, & Alon, 2011) or 

complex movements in a three-dimensional space (Slawinski et al., 2013). Similarly, the number 

of communication channels being synchronized can vary widely between interactions; some may 
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involve the coordination of eye gaze only (e.g., Harel, Gordon, Geva, & Feldman, 2011), 

whereas others can involve full-body synchronization (Niewiadomski et al., 2019). Second is the 

type of entrainment, or the one-way or two-way adaptation of rhythms between actors (Bernieri, 

Reznick, Rosenthal, 1988; Cacioppo et al., 2014; Konvalinka, Vuust, Roepstorff, & Frith, 2010) 

that brings about synchrony. Third, the interaction might follow a steady beat (a rhythm with 

equal intervals between events) or be more chaotic in its cadence. Fourth, coordination behaviors 

might be purposeful/deliberative or spontaneous/automatic (Koban, Ramamoorthy, & 

Konvalinka, 2019). See Table 1 for a summary of these qualities.  

Table 1. 

Qualities of interpersonal synchrony. 

Characteristic Example Levels 

Complexity Gaze direction vs. full body motion 

Entrainment Unilateral, orchestral, reciprocal 

Periodicity Repetitive vs. chaotic 

Intentionality Purposeful vs. spontaneous 

Each of the above qualities may lead to distinct perceivable properties of the behavior or 

resulting social outcomes. For instance, eye gaze synchrony and body posture synchrony would 

likely appear differently to observers and may induce correspondingly varying results. However, 

to date, few studies have acknowledged how these properties differ or how they may influence 

perceptions and outcomes. Without understanding these qualities, researchers might treat the 

multidimensional construct of interpersonal synchrony as a unidimensional one, thereby 

potentially reducing predictive power (Roznowski & Hanisch, 1990). The “watering down of a 

powerful concept” (Bente & Novotny, in press, p. 5) has trickle-down effects unto its 
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measurement. Indeed, it is well-known that conceptual definitions drive the measurement of 

those concepts, but the reverse is also arguable: that the operationalization of phenomena define 

the concept one is observing. Conceding this assertion, it is important to acknowledge which 

aspects of synchrony the various available techniques actually measure. For instance, measuring 

the correlation of postures over time may not assess the latent variable of ‘synchrony’ in the 

same way as measuring the alignment of phase angles between actors’ movements (Cheong, 

2019).  

To address these issues, the goals of the current research are to (a) identify which 

objective measures best detect synchrony in an interaction featuring a specific level of each 

quality, (b) examine how these measures relate to human perceptions of synchrony, and (c) 

observe which measures of synchrony predict outgroup trust – a previously identified outcome 

variable (Tamborini et al., 2018). The implications are to enhance understanding about how the 

qualities of synchrony, their various levels, the collection of available measures, and social 

outcomes align with global perceptions of synchrony. In the following, I discuss interpersonal 

synchrony broadly, including its associated definitions, functions, key measures, and outcomes. 

Second, I discuss in more depth the qualities of synchrony highlighted above. Third, I present a 

study that compared objective synchrony measures of full-body motion capture data with 

observer ratings of synchrony. This will allow for examination of which aspects of synchrony 

truly relate to its perception.  

THE ESSENCE OF INTERPERSONAL SYNCHRONY 

Definitions 

Broadly, the concept of interpersonal or behavioral synchrony has been used to describe 

the mutual attunement of biological and behavioral rhythms between interactants (Bernieri, 
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Reznick, & Rosenthal, 1988; Burgoon, Stern, & Dillman, 2007). Evidence for synchrony is 

found in the alignment of the amplitude (strength) and frequency (rate) of bio/behavioral cycles 

such as heart rate (Mitkidis, McGraw, Roepstorff, & Wallot, 2015), breathing rate (Muller & 

Lindenberger, 2011), affect (Rafaeli, Rogers, & Revelle, 2007), speech and other expressive 

behaviors (Cappella, 1981), as well as body movements (Wiltermuth & Heath, 2009). Restricting 

the current research’s consideration of synchrony to the nonverbal domain, interpersonal 

synchrony is defined as the temporal coordination of motor behavior rhythms between 

interaction partners (Bente & Novotny, in press; Bernieri, Reznick, & Rosenthal, 1988; 

Delaherche et al., 2012). Beyond timing, the form of interactants’ movements may also be 

similar, though this is not a requirement. Interpersonal coordination types characterized by 

occasional matching of postures or movements are better subsumed by the term mimicry 

(Chartrand & Bargh, 1999). Unlike synchrony, mimicry often involves a static match between 

movement forms, rather than a dynamic sharing of movement timing. A combination of 

rhythmic matching and form matching has been dubbed ‘perfect synchrony’ (e.g., perfect unison 

of a marching band), whereas general synchrony only requires a match in timing (e.g., an 

orchestra; Hale, 2017). 

Functions: Why Synchronize? 

Numerous explanations exist regarding the ubiquity of synchrony in human interaction. 

The first account treats synchronous behavior as an evolutionarily functional behavior (McNeill, 

1995; Wiltermuth & Heath, 2009). Throughout human history, countless cultures have developed 

rituals that foster motor synchrony: From tribal dances around the fire, to religious practices 

involving simultaneous bowing and rising, to vibrant dancing at modern rave festivals. Such 

activities are thought to increase cooperation and bonding among group members, as well as 
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identify potential “free-riders,” or members of the group who do not pull their weight in terms of 

coordinating toward group goals (Wiltermuth & Heath, 2009). In the evolutionary perspective, 

movement synchrony is thus a way of enhancing group entitativity, or the degree to which a 

collection of entities is perceived as a unit (Lakens, 2010). 

The second perspective is not at odds with the first, but instead focuses on synchrony as a 

perceptual phenomenon that enhances social bonding (Hove & Risen, 2009; Lakens, Schubert, & 

Paladino, 2016). Here synchronous movement functions to blur self-other perceptual boundaries 

in the mind. This means that when a person witnesses another individual moving in the same 

rhythm as his/herself, the neural representation of ‘self’ and ‘other’ becomes almost 

indistinguishable (Paladino, Mazzurega, Pavani, & Schubert, 2010). Moreover, as Aron, Aron, 

Tudor, and Nelson (1991) write: “…to the extent a partner is perceived as part of one's self, 

allocation of resources is communal (because benefiting other is benefiting self)” (p. 242). As 

such, the self-other merging created from synchrony fosters cooperation and social coordination 

(Galinsky, Ku, & Wang, 2005), positive outcomes that could explain our propensity to 

synchronize.  

A third explanation for synchrony is the brain optimization principle (Koban 

Ramamoorthy, & Konvalinka, 2019). This recent account implicates the reduced neural energy 

involved in synchrony (as opposed to out of sync motion) as a reason for its prominence in 

human behavior. Optimization of brain functionality is founded on the free energy principle, 

which refers to the brain’s tendency to minimize coding costs when predicting and representing 

environmental stimuli (Friston, 2010). Neural networks have been compared to man-made 

electronic devices, in that they are constructed to facilitate minimization of energy cost (Laughlin 

& Sejnowski, 2003). The optimization principle proposes that during an interaction where two 
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people’s perceptual systems are linked (i.e., they can see or hear each other) synchronization is 

likely to develop because the brain requires less effort to represent the other’s behavior if it is 

similar to that of the self. As such, an implicit desire for less mental energy stimulates 

synchronized movements, and subsequently, through properties of dynamic systems (Schmidt, 

Carello, & Turvey, 1990), a stable state can emerge where interactants’ behaviors remain in 

synchrony. Moreover, Koban et al. posit that the reduced effort involved in synchrony is 

experienced as rewarding. The desirable emotional states deriving from synchrony become 

associated with the interaction partner, leading to positive bonding variables such as rapport and 

cooperation.  

Measurement 

 Interpersonal synchrony has spawned a wealth of measures over the course of its study, 

ranging from the most basic (simple human coding of the behavior; Bernieri, 1988) to the most 

complex measures assessing the intricate dynamics of dyadic interactions. In the following 

sections, I focus on behavioral coding as a basic measure, followed by Pearson correlations, 

mutual information, dynamic time warping, phase synchrony, and time-lagged cross correlations, 

(see Cheong, 2019). This range of measures addresses different ways to look at synchrony, from 

an overall aggregation of similarity to fine pattern recognition. 

 Behavioral coding. A basic measure of interpersonal synchrony is conducted through 

human observation and identification (Bernieri, 1988). This method approaches synchrony as a 

Gestalt-level behavior, identifiable not from specific movements per se, but from the degree to 

which an interacting dyad generally shares tempos, meshes behaviors smoothly, performs 

movements simultaneously, and assumes similar postures (Bernieri, 1988). As Bernieri (1988; 

Bernieri, Davis, Rosenthal, & Knee, 1994) contends, synchrony can be faithfully captured from 
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observations of dyadic video, thus not requiring rigorous movement coding or computational 

analyses. It remains to be seen, though, which aspects of synchronous movement drive these 

perceptions. 

 This method typically involves observers watching videos of real interactants in 

conversation or some other dyadic activity. The videos are muted, and observers are instructed to 

judge nonverbal components of rapport, a psychological construct partially embodied by the 

physical expression of motor coordination. In fact, rapport is thought to consist of mutual 

attentiveness, positivity, and coordination of behaviors in interaction (Tickle-Degnen & 

Rosenthal, 1990). Like synchrony, rapport is characterized as readily observable from nonverbal 

behavior (Grahe & Bernieri, 1999). 

 A clear limitation with behavioral coding of synchrony is the subjugation of measurement 

precision for more abstract examination. Bernieri argues that synchrony can be observed from an 

abstract viewpoint, but this approach does not answer questions pertaining to specific movement 

patterns (in timing or form) that drive perceptions of synchrony or rapport. Thus, the explanatory 

power of this method regarding parameters that drive synchrony is relatively limited. Further, 

this method is confounded by appearance-based variables of the stimulus dyads (see Bente, 

2019, p. 11). Bernieri, Davis, Rosenthal, and Knee (1994) created a video mosaic method to 

account for a different appearance-based confound (smiling behaviors being linked to positivity, 

thus disrupting measures of synchrony per se), but it is evident from viewing these stimuli that 

gender and race are still interpretable (Bente, 2019). As such, we again turn to measurement 

procedures that avoid these confounds and enhance precision. 

 Pearson correlation. The Pearson product-moment correlation, or simply Pearson’s r, is 

a widely used and relatively simplistic measure of the strength of association between two 
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continuous variables (Puth, Neuhauser, & Ruxton, 2014). It assesses the covariation between 

variables without making predictions about causal direction. In synchrony research, the 

correlation between time series can be calculated to give a measure of covariation between two 

actors’ movement activity. This measure is easy to interpret but is limited in (a) its susceptibility 

to outliers and (b) its assumption that data are stationary across a time series (Cheong, 2019). To 

account for these issues, extensions of the correlation, such as cross-correlations and windowed 

cross-lagged correlations, have been developed (Boker, Xu, Rotondo, & King, 2002; Coco & 

Dale, 2014). Still, the basic Pearson r is advantageous as a straightforward first look at 

association between systems. 

Mutual Information (MI). Mutual information (MI, Shannon, 1948; Moddemeijer, 

1989) is a measure of statistical dependence conducted between two discrete or continuous 

variables (Ince et al., 2017). The formula for MI is quite straightforward, though the calculations 

for its components are more complex (see Hershey & Movellan, 2000, for example, for more 

information): 

MI(x,y) = H(x) + H(y) - H(x,y) 

MI represents mutual information, H represents entropy, and x and y are the two systems being 

compared. Entropy is a fundamental measure in Shannon’s mathematical theory of 

communication (1948), and indicates the amount of information (in Shannons or bits, typically) 

provided by an event in relation to all other possible events. All else equal, more possibilities in 

terms of outcomes equals higher entropy. In other words, entropy is the degree of uncertainty 

regarding an outcome of an event (Shannon, 1948). MI is a measure of comparisons of entropy 

between two variables. As seen in the formula, MI consists of the addition of the independent 

entropies of variable x and y, and subtracts from this the joint entropy, or the combined entropy 
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of both events occurring simultaneously. The resulting MI measure refers to how aligned two 

systems are temporally. A higher MI score indicates higher synchrony; lower MI indicates lower 

synchrony (Prince et al., 2004).  

Mutual information has been utilized as a measure of synchrony, mainly within the 

psychophysiological literature as an indicator of audio-visual synchrony (Hershey & Movellan, 

2000; Prince et al., 2004). In the case of Hershey and Movellan (2000), MI was calculated for the 

synchrony between an audio signal and a spatially localized video signal. As Prince et al. (2004) 

note, “The HM [i.e., Hershey & Movellan] algorithm is relatively general, detecting temporal 

synchrony between two time-based input streams” (p. 89). Though little research has used 

mutual information to measure interpersonal motor synchrony, the generality in this respect 

gives it potential. In sum, MI is a previously established method with possible application to 

different synchrony scenarios. One could use this measure to provide an aggregate measure of 

total alignment in time of two motor systems, though it is not useful for uncovering specific 

dynamic patterns in the data (e.g., leader-follower relationships). 

Dynamic Time Warping (DTW). Dynamic time warping is a test that measures 

similarity between two time series while accounting for time shifts and speed differences (Sakoe 

& Chiba, 1978). DTW realigns two time series by plotting their data arrays against each other in 

a matrix and comparing each time series’ data points to those of the other (Mueen & Keogh, 

2016; Pouw & Dixon, 2020). It involves calculation of a warp line, or a path through the matrix 

that connects all the lowest values (i.e., smallest distances between data points). Starting with the 

upper right cell, which is the last time point for both time series, the DTW procedure checks for 

the minimum value among the adjacent cells: one cell to the left, one to the diagonal lower left, 

and one to the lower. Whichever value is the lowest, the warp line is traced to that cell. The 
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drawing of this line continues until it reaches the lower left cell of the matrix. The resulting warp 

line can be compared to the ideal diagonal to indicate how closely the two time-series are aligned 

and visualizes any temporal differences or time shifts between the two. Data from two people 

who were perfectly synced would generate a warp line that was very close to the ideal diagonal. 

A final distance value can be computed that sums all the minimum values, providing an 

aggregate representation of overall difference between the two time series. 

Phase synchrony. Derived from dynamic systems research (Rosenblum, Pikovsky, 

Kurths, Schafer, & Tass, 2001; Schmidt & O’Brien, 1997), phase synchrony measures the 

relationship between two time series in terms of their phase. Along with period, frequency, and 

amplitude, phase is a feature of an oscillating system’s (a system whose parts show a periodic 

behavior) cycle that defines the dynamic behavior. For an exemplary oscillating system, consider 

two people each swinging a pendulum next to one another (cf. Schmidt & O’Brien, 1997). The 

system has two oscillators (each of the swinging pendulums) and each of these oscillators 

exhibits a periodic behavior. The period is the length of time it takes for the pendulum to 

complete one movement cycle (i.e., starting from the left, swinging to the right, and reaching the 

left again). The frequency is the inverse of the period and represents the rate of the behavior. In 

the pendulum example, this would be complete pendulum swings per time unit. The amplitude is 

the magnitude of the behavior, or the y-axis in a time series graph. In our example the amplitude 

is the physical distance the pendulum swings laterally. Finally, the phase is point in the cycle at 

which the oscillator operates at a given time. A pendulum’s cycle could be thought to start at 0º 

on the left endpoint, swing to 180 º on the right endpoint, and then restart the cycle at the left 

again.  
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This explanation of phase relates to the oscillatory behavior of one system. Phase 

synchrony, however, represents the relation between phase angles of two oscillating systems. 

Considering the pendulum example again, phase synchrony represents the alignment of the 

phases of each pendulum over time. Coupling in turn relates to the entrainment of two systems; 

in the case of interpersonal synchrony, coupling refers to an interdependent relationship 

facilitated through a shared visual or auditory space (Oullier et al., 2008; Schmidt, Bienvenu, 

Fitzpatrick, & Amazeen, 1998). It has been shown that once in action, coupled systems stabilize 

to either an in-phase (same phase angle) or anti-phase (opposite angles; e.g., 0 and 180) angle, 

and remain in this state robustly (Schmidt et al., 1990). 

Phase synchrony is a useful measure when researchers are interested in the alignment of 

rhythms between two systems. It is advantageous in that it can identify synchronous rhythms 

between even noisy and nonstationary systems (Rosenblum et al., 2001). For example, in a 

conversation in which movements are not repetitive or cyclical, phase synchrony can still 

identify interdependencies of phases. However, phase synchrony operates independently of the 

amplitude of the systems, thus not giving meaningful information about the magnitude of 

behaviors. 

Rolling Window Time-Lagged Cross Correlations (RWTLCC). One popular time 

series method is the windowed time-lagged cross correlation (WTLCCs; Boker, Xu, Rotondo, & 

King, 2002; Cheong, 2019), which involves calculation of correlations of a given parameter 

between two time series, like a standard Pearson correlation, but additionally provides 

correlations between the two series at different time lags. Rather than just calculating the 

movement similarity between person A and person B at an intersubject lag of 0 (‘on the spot’), 

the WTLCC provides correlations for each of a range (specified by the researcher) of lags (see 
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Figure 1, from Boker et al., 2002; p. 9). Additionally, WTLCCs improve over correlations alone 

in that the latter assumes the time series data are stationary – that is, that the mean and variance 

of a parameter is relatively stable throughout an interaction (Hendry & Juselius, 2000, 2001; 

Jebb, Tay, Wang, & Huang, 2015; Moulder & Boker, 2018). As many unstructured dyadic 

interactions are not stable in this regard, the WTLCC addresses this lack of stationarity by using 

small windows of time rather than producing correlations that cover a whole time series. 

 

Figure 1. Windowed time-lagged cross correlation visualization from Boker et al. (2002). From 

p. 9: “Four pairs of windows selected from two data vectors, X and Y. Results of correlating 

each pair of windows is stored into the results matrix whose columns represent the relative lag of 

the two windows and whose rows represent the starting time of the window selected from X.” 

With WTLCCs researchers can obtain information about the relative covariation between 

events, whether the parameter represents overall movement activity (e.g., the change in 

movement from time one to two) or position similarity. Further, when aggregating correlations, 

one can either calculate the average or maximal correlation between two time series (Coco & 
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Dale, 2014), and with these single metrics, perform basic cross-sectional statistical tests like 

ANOVA or regression. WTLCC thus has utility for both static and dynamic analyses. The 

formula for WTLCCs is as follows (see Boker, Xu, Rotondo, & King, 2002): 

, 

where Tw is the number of observations in each window, Wxt and Wyt are elements of two time 

series for t ∈{1...Tw}, X and Y within the windows Wx and Wy, W̄x and W̄y are the mean 

values of each window, and sd(Wx) and sd(Wy) are the standard deviations of each window. 

Prior to running WTLCCs, the researcher must specify four parameters: window size, window 

increment, maximum lag, and lag increment (Boker et al., 2002). First, window size is the 

number of data points in each window. If the window size is too short, the WTLCC measure 

cannot capture enough information to describe faithfully a relationship. If it is too long, shifting 

leads or lags can cancel one another out, leading to low correlations. Second, window increment 

is the amount of time that elapses from one window to the next. If this is too short, successive 

data rows may show too little variation; too long, and there may be too much variation, resulting 

in apparently unrelated successive observations. Third, the maximum lag determines the 

maximum difference between starting points of two windows (each from a different time series). 

Fourth, the lag increment determines the interval of time between each successive lag observed 

(Boker et al., 2002). Each of these four elements should be selected by the researcher in a 

manner appropriate for the phenomenon at hand. For example, one would not use a maximum 

lag of 2 minutes in an economics study forecasting stock values by decade.  

 The rationale for using WTLCCs over aggregate measures like standard correlations is 

that it provides a more precise representation of dynamic data patterns. Between the cross-
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correlations themselves and the resulting heat maps, one can identify (both statistically and 

visually) similarities and differences between dyad members’ nonverbal behavior throughout an 

interaction. One can contrast this with basic human coding, which might be useful for having a 

broad sense of how well a dyad is moving in unison, but is arguably less functional for 

identifying rapid leader and follower fluctuations or onset/offset patterns of synchrony. A 

disadvantage of WTLCCs is the difficulty or arbitrariness of selecting values for the four 

parameters. As Boker et al. (2002) advise, researchers should conduct pilot tests on data to see 

which parameter sizes fit best. Another potential disadvantage is that the WTLCC’s assumption 

of local stationarity (i.e., that the mean and variance is stable throughout a window) can be 

violated, driving down estimates of correlations. In the current study, I leverage a continuous 

form of the WTLCC, the rolling WTLCC, or RWTLCC (see Cheong, 2019). With this version, 

the windows overlap to form a higher-resolution graph, depicting smoother changes in leader and 

follower dynamics.  

 Dynamic mimicry. For the current study, a custom measure was created that compares 

the positions of each of 15 joints over time. Whereas other measures here make use of overall 

movement activity (i.e., changes in position), this measure serves as a dynamic comparison of 

the specific locations of two actors’ body parts in a 3-D space. In this way, it can be thought of as 

a measure of the ‘perfect synchrony’ (rhythmic matching as well as form matching) discussed 

earlier in this manuscript (Hale, 2017). In addition, the output of this measure gives a lag offset 

measure similar to that of the RWTLCC. 

 Dynamic mimicry is useful for any researcher interested in both rhythm and form of 

synchronous dyads. However, for a researcher who is only interested in rhythm/timing of 

movements (such as the timing of overall movement activity shifts), this measure would not be 
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the optimal first choice. Given its recent creation, it has not been applied in other synchrony 

research to date. In the current study, this measure provides the only instance of form-similarity. 

As such, if only this measure relates to perceived synchrony, these findings would suggest that 

similar movement form is indeed vital to people’s perceptions of synchrony. Table 2 summarizes 

the measures covered in this section. 
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Table 2. 

Summary of synchrony measures. 

Synchrony 

Measure 

Component 

Targeted 

Output 

Type 

Advantages Disadvantages 

Behavioral coding Movement activity 

similarity 

Aggregate Relatively simple 

to enact 

Coarse/imprecise 

measurement; 

human error 

Pearson 

Correlation 

Movement activity 

similarity 

Aggregate Simple and an 

easy-to-interpret 

overview of 

synchrony 

Ignores dynamic 

information; 

inappropriate for 

nonstationary data  

Mutual 

Information 

Shared entropy Aggregate Easy to understand Misses 

leader/follower info 

Dynamic Time 

Warping 

Movement activity 

similarity 

Dynamic or 

Aggregate 

Works for signals 

of varying lengths 

Computationally 

complex; abstract for 

understanding 

Phase Synchrony Phase angle 

similarity 

Dynamic or 

Aggregate 

Allows 

identification of 

cycle patterns  

Ignores 

amplitude/magnitude 

of movements 

Windowed Time-

Lagged Cross 

Correlation 

Movement activity 

similarity 

Dynamic or 

Aggregate 

Increases 

precision/resolution 

over Pearson r 

Window size is 

potentially arbitrary 

Dynamic 

Mimicry 

Positional similarity 

over time 

Dynamic or 

Aggregate 

Features both 

position and timing 

information 

Ignores changes in  

overall movement 

activity  
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Outcomes 

 Interpersonal synchrony has been found to predict many social outcomes, mostly related 

to affiliation and/or bonding. In a meta-analysis on the prosocial effects of interpersonal 

synchrony, Rennung and Goritz (2016) discovered a moderate effect for synchrony on prosocial 

attitudes and behaviors. Attitudes included entitativity, liking, similarity, and trust (Launay, 

Dean, Bailes, 2013). Another notable attitude stemming from synchrony not mentioned in that 

meta-analysis is rapport (Bernieri, 1988; Bernieri, Davis, Rosenthal, & Knee, 1994), a dyadic 

construct reflecting positivity, attention, and coordination in an interaction (Tickle-Degnen & 

Rosenthal, 1990). Behavioral outcomes of synchrony included cooperation (Wiltermuth & 

Heath, 2009), conformity (Wiltermuth, 2012), helping behavior (Cirelli & Einarson, & Trainor, 

2014), other-related attention (Miles, Nind, Henderson, & Macrae, 2010), and trust toward 

outgroup members when the synchrony partner is also an outgroup member (Tamborini et al., 

2018). Though most of the effects of synchrony are beneficial in nature (Rennung & Goritz, 

2016), effects of the “dark side” of synchrony have been found, including destructive 

disobedience (Wiltermuth, 2012) and reduced trust toward outgroup members when the 

synchrony partner is an ingroup member (Tamborini et al., 2018). This outgroup trust measure 

will be the focal outcome variable in the current research.   

Qualities of Synchrony 

 Complexity. The phenomenon of interpersonal synchrony can be quite complex, both in 

terms of the number of channels that synchronize (e.g., facial expressions, movements, gaze) as 

well as the degrees of freedom of the movements themselves (Bente & Novotny, in press; 

Poyatos, 1983). Research has been conducted on the full range of complexity of synchronous 

movements, from the simplest (left-to-right slider movements; Noy, Dekel, & Alon, 2011) to the 
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most complex (full-body motion routines captures in a three-dimensional space; Novotny, 

Tamborini, & Bente, 2019).  

 Each level of complexity (low versus high; or unidimensional versus multidimensional) 

offers advantages and disadvantages for study. The benefit of the reductionist approach of 

measuring synchrony is that it restricts all other variables except a single dimension of 

movement, allowing researchers to isolate the temporal dynamics of the exercise (Richardson et 

al., 2007). The resulting time-series graphs show the position of the oscillator on the y-axis and 

time on the x-axis, providing a clear indication of where the oscillator was in space and time 

throughout an interaction. Then, researchers can compare the time series of two actors’ 

movements with various time series methods, such as cross-lag correlations or co-confident 

motion analysis, a measure of smoothness not used in the current study (Noy, Dekel, & Alon, 

2011). The disadvantage of this method, of course, is that it is not necessarily reflective of the 

bodily synchrony that occurs in the real world. For example, consider the complexity of two 

figure skaters attempting to synchronize in their routine. Their dance is one of many parts and 

directions, showcasing the maximal degrees of freedom. To capture fully the intricacies of this 

interaction, one would need to consider multiple body parts (usually major joints or limbs) as 

well as their positions in six degrees (three directions of translation in x, y, and z planes; as well 

as three directions of rotation of pitch, yaw, and roll). As such, multidimensional measures of 

synchrony are more advantageous in capturing the true nature of full-body synchrony.  

However, like the reductionist approach, the multidimensional approach has its 

drawbacks. Namely, the capture of all oscillators and directions has yet to be fully realized in a 

single method. Currently, two techniques that attempt to capture the complexity of body 

synchrony are in use: motion energy analysis and motion capture. The former (MEA; Ramseyer 
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& Tschacher, 2011) is a video-based technique that segments frames into cells, and quantifies the 

amount of pixel change within each cell from one frame to the next. The technique thus provides 

a frame-by-frame illustration of the amount of movement activity a person shows in each area of 

the two-dimensional video space, which can then be compared to that of another actor to 

approximate synchrony. Though this technique is innovative in demonstrating full-body 

synchrony, it lacks the specificity to show where individual body parts are in space and time; 

rather it is an aggregate picture of movement activity. More recent versions of MEA involve 

segmenting cells into head versus body areas, but this approach is still not comprehensive (see 

Bente & Novotny, in press). Motion capture offers an alternative to MEA and is advantageous in 

that it captures movements (a) of individual body parts and (b) in all directions, providing the 

most comprehensive means of assessing full-body synchrony that is currently available. 

Motion capture is a technique in which participants wear special suits with reflective 

markers placed throughout and uses unique tracking cameras (typically infrared) to track the 

position of these nodes over time. The tracking data are transmitted to a software (e.g., Optitrack 

Motive) which displays the data as a moving avatar for visualization. The data can also provide 

source material for spreadsheets that display body marker names along the x-axis, time frames 

along the y-axis, and global position/rotation data in the cells. Arguably, the complexity of this 

technique most closely approaches that of real-life synchrony, but like the other techniques, 

motion capture is not flawless. Major drawbacks noted in the literature are the expense as well as 

the potential for obtrusiveness of the equipment. As Paxton and Dale (2013) note: 

“Once these systems become cheaper and less restrictive, motion tracking may become a 

standard tool for bodily synchrony research. Nevertheless, for researchers facing 

limitations in funding and for those whose questions are not compatible with the high-
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tech motion capture requirements, body-suit motion capture still poses significant 

challenges” (p. 331). 

This assertion is seven years old as of the writing of this paper and is likely accurate that 

advances will make the technology more cost-effective and seamless. In fact, these advances 

have already begun to occur since their claim. This lends credence to our use of motion capture 

in the current research, which captures the motion of 15 key body parts per participant in a 3-D 

space. 

Entrainment. Interpersonal synchrony can arise through different types of entrainment 

(an adjustment to an external rhythm) between interaction partners (Bernieri, Reznick, & 

Rosenthal, 1988; Schmidt & O’Brien, 1997). Entrainment is accomplished in human interaction 

through one-way or two-way adaptation within shared visual or auditory environments (Oullier 

et al., 2008; Schmidt, Bienvenu, Fitzpatrick, & Amazeen, 1998). As Cacioppo et al. (2014) 

describe, there are three types of entrainment, any of which can precede synchrony.  

First, unilateral entrainment is one-way entrainment that signifies a strict leader-follower 

relationship. The resulting behavior can be thought of as temporal mimicry; two people become 

unilaterally entrained when one actor perceives and follows the rhythmic behavior of another. In 

this case, the adaptation is said to be one-way because while the follower adjusts his/her rhythms 

to follow the leader, the leader need not adjust his/her rhythms in return. Second, orchestral 

entrainment entails multiple actors becoming synchronized indirectly with each other through 

some zeitgeber (external pace-making entity; Strogatz, 2003). The term orchestral is appropriate 

here, as a musical orchestra is a quintessential example of the phenomenon. Though the rhythms 

of the individual players are synchronized, the master rhythm is set by the motions of the 

conductor. Thus, there is not (necessarily) mutual entrainment between players, but rather, 
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several adjacent instances of unilateral entrainment between each player and the conductor. 

Lastly, reciprocal entrainment involves the mutual adaptation of two or more individuals’ 

behavioral rhythms. In this case, there is no strict leader or follower; rather, the dyad or group is 

engaged in a bi- or poly-directional joint action that is typically spontaneous (Noy, Dekel, & 

Alon, 2011; Oullier et al., 2008). An improvised dance where the rhythmic movements are 

unplanned, yet harmonious and co-created (generated by both people rather than only one), 

would fit as an example of synchrony attained through reciprocal entrainment.  

Some evidence suggests that the manifestation of entrainment types, or the leader-

follower relationship (LFR) can affect the smoothness and performance of the resulting 

interaction. Noy, Dekel, and Alon (2011) showed that joint improvisers who mutually adapted to 

one another’s motions performed more confident and smooth movements compared to dyads in a 

leader-follower condition. Thus, the presence of a true leader/follower versus a more balanced 

approach has implications for the dynamic patterns embedded within the interaction. If a 

researcher is interested in the LFR, he or she should employ measures that enable its observance. 

Static/aggregate measures such as the Pearson correlation give overall information about the 

similarity between two time series, but provide no insight into the dynamic LFR. Techniques 

such as windowed time-lagged cross correlations, dynamic time warping, phase synchrony, and 

dynamic mimicry allow for the visualization and quantification of the LFR. These techniques 

will be used in the current study to provide evidence of LFR among reciprocally-entrained 

dyads. 

Periodicity. Periodicity refers to the regularity of intervals between events over time. It is 

a concept frequently used in sciences like ecology (Carrero-Colon, Nakatsu, Konpka, & 2006) 

and geology (Kvet, 1990), often to track and forecast the recurrence of target events. In the case 
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of interpersonal synchrony, periodicity can be thought of as the ‘beat’ of an interaction, or how 

regularly a person/dyad’s behaviors return to a specific state (Coco & Dale, 2014). As one can 

imagine, the periodicity of a synchronous interaction is highly variable; periodicity may differ 

between or within dyadic partners’ movements overall and can even change over the course of 

an interaction.  

To understand the concept of periodicity, it is helpful to consider its poles: on one end is 

a perfectly regular, fixed rhythm. A clear example of this is a well-maintained clock. One can 

expect that exactly every second, the second hand will move another six-degree tick around the 

circle. Quite literally, one can set one’s watch to this regularity. In human movement research, 

Richardson et al. (2007) has shown that human dyads keep a steady rhythm with one another 

when performing regular movements (both swinging pendulums and rocking in chairs), and tend 

to stabilize to either an in-phase or anti-phase state.  

At the other end of the spectrum is a completely irregular rhythm. This type of rhythm (or 

lack thereof) can often be seen in the erratic cycles of the stock market, which though 

occasionally exhibiting some trends, can hardly be called regular. Focusing again on the body 

movements, Fujiwara and Daibo (2016) demonstrated the irregularity of behavior that occurs 

within unscripted dyadic conversations. In such conversations, there is a lack of steady structure; 

instead, synchrony can be found as more of an alignment of overall frequencies of movements.  

The degree of periodicity may determine the measures one can appropriately use to 

assess synchrony. For example, a highly regular or stationary time series can be represented in 

terms of synchrony by a simple correlation. However, unstructured conversations or less regular 

interactions will not allow for simple correlation to precisely measure the dynamics of an erratic 

interaction. As such, one may turn to measures that account this non-stationarity, such as 
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windowed time-lagged cross correlations or dynamic time warping analyses (Cheong, 2019). In 

the current study, participants perform a movement routine that lacks a regular and fixed rhythm, 

separate from the fact that the interaction type is indeed repetitive.  

 Intentionality. Means of entering synchrony can be classified as either purposeful or 

spontaneous (Bente & Novotny, in press; Koban et al., 2019). Purposeful synchrony occurs when 

two or more individuals become entrained in service of shared goals (Keller, Novembre, & 

Hove, 2014), which could feasibly be overt or covert. Overt goals in this sense include sports in 

which synchronized movements facilitate success, such as rowing (Cohen et al., 2009), whereas 

covert goals constitute for example religious or cultural rituals that build unity through shared 

movement (McNeill, 1995; Wiltermuth & Heath, 2009). Some evidence suggests that shared 

intentionality of the coordination behavior can enhance cooperation and trust more than just 

matched behavior alone (Reddish, Fischer, & Bulbulia, 2013).  

Conversely, spontaneous synchrony has no overarching goals, and typically arises 

through purely physical/dynamical or perceptual means (Oullier et al., 2008; Richardson, Marsh, 

Isenhower, Goodman, & Schmidt, 2007; Schmidt & O’Brien, 1997). Examples of this include 

the rocking chairs of adjacent sitters becoming synchronized through an adjustment to shared 

visual inputs (Richardson et al., 2007), or the claps of a theatre audience becoming coordinated 

following a performance (Neda, Revasz, Brechet, Vicsek, & Barabasi, 2000). In the current 

study, participants will purposefully synchronize their movements to one another in the form of a 

jointly-performed martial arts routine.  

Each of the above qualities can be altered to form a unique synchronous experience. To 

begin understanding how altering levels of the qualities can impact (a) synchrony’s perception 

and (b) its associated outcomes, the current research leverages a previous dataset, which 
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involved an interaction type that exhibited one level of each quality. The previous sections 

outlined how each quality is represented by that dataset. To review: Regarding complexity, the 

interactions in this study provided high degrees of freedom – 15 key body parts in a three-

dimensional space. Regarding entrainment, the interaction was based on reciprocal entrainment, 

wherein two participants mutually aligned their behaviors without a present conductor or 

designated leader/follower. Regarding periodicity, we induced a routine that, while repetitive in 

the sense that the routine recurred, did not feature a steady pulse or beat. Regarding 

intentionality, we induced a purposeful type of synchrony that was repetitive; participants were 

instructed to memorize and re-enact a movement routine with a partner five times. A summation 

of these levels can be seen in Table 3. 

Table 3. 

Levels of each quality of synchrony demonstrated in the current study. 

Quality Level  

Complexity High (full-body capture) 

Entrainment Reciprocal (mutual adaptation) 

Periodicity Repetitive (irregular rhythm, but repeats) 

Intentionality Purposeful 

 

STUDY OVERVIEW 

The following study examines how objective measures of a given type of synchrony 

relate to its perceptions. As a source of full-body motion capture data, we refer to a previous 

unpublished experiment (Novotny, Tamborini, & Bente, 2019) that induced synchrony in dyads 

performing a Tai-Chi routine (a rhythmic martial artform), and subsequently tested its impact on 
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trust toward racial outgroup members. The resulting motion data allowed for (a) calculations of 

various objective synchrony measures and (b) the creation of stimulus videos depicting the 

movements via neutral computer characters (i.e., characters whose appearance lacked age, race, 

gender, or cultural cues, which can confound judgments; see Bente, 2019). A series of these 

stimulus clips was presented to a sample of participant observers, who judged both synchrony 

and the leader-follower relationship of each dyad. The ratings generated from this study provided 

a comparison measure against which to judge the objective operationalizations (Bernieri, 

Reznick, & Rosenthal, 1988; Cappella 1981). If synchrony is a readily perceivable phenomenon 

at the Gestalt-level, and currently available measures capture synchrony validly, we should see a 

high correlation between subjective observer ratings and the various objective synchrony 

measures. 

Attempting to find just this, researchers (Schoenherr et al., 2019) conducted a study to 

validate various time series analytic methods by comparing them to human coder ratings. Using 

a therapist-patient context, they found that only in an artificial condition (comparing person A’s 

movements with a time lagged version of his/her own movements) were time series methods 

reliably correlated with human ratings. Conversely, in more naturalistic conditions (where person 

A’s movements were compared with Person B’s), the algorithms did not agree highly with raters 

in terms of identifying synchrony. As the authors explain: “Our study revealed that a lot of 

algorithms with very high identification quality in the artificial configuration failed in the 

naturally embedded configuration. This could mean that the algorithms had another synchrony 

concept than the human raters in our study” (p. 17). This comparison between algorithms and 

coders will be retested in the current study, though with an enhanced means of measuring 

movements. Notably, Schoenherr’s study used motion energy analysis (Ramseyer & Tschacher, 
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2011) as the technique to extract time series measures. This method, though popular, evidently 

lacks precision with respect to analyzing specific body part locations throughout an interaction 

(Bente, 2019). The use of full-body motion capture in the current study may further illuminate 

the relationship between objective synchrony measures and human observer ratings. To address 

this possibility, we ask: 

 RQ1: Which objective measures of synchrony predict perceived synchrony? 

Second, beyond capturing the degree of synchrony, I am also interested in the role of the leader-

follower relationship (LFR) in a synchronous interaction. This is often the product of the 

entrainment of the relationship as outlined earlier. In a leader-follower type interaction, one 

person mimics the behavior of another with some delay, whereas in a reciprocally adaptive 

interaction, each person synchronizes through mutual prediction and reaction in real-time 

(Konvalinka et al., 2010). The nature of this relationship has been shown to impact the 

smoothness or performance of the involved partners (Noy, Dekel, & Alon, 2011). If LFR is a 

central defining factor of a synchronous interaction, and synchrony can ostensibly be perceived 

by observers, then objective measures that can accurately identify leader-follower patterns 

should align with observers’ ability to detect these same patterns: 

RQ2: Which objective measures of synchrony predict observer ratings of leader-follower 

relationships (LFRs)? 

Lastly, I am interested in whether the outcomes of these various measures can predict a 

previously identified outcome variable of outgroup trust (Tamborini et al., 2018). Interpersonal 

synchrony has previously been linked to a reduction in outgroup bias generally. Inzlicht et al. 

(2012) found that mimicking an African-American actor’s motions improved implicit attitudes 

(e.g., lowered bias) toward African-American people compared to passive viewing of an 
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African-American actor’s movements or mimicry of a Caucasian actor’s movements. Similarly, 

Tuncgenc and Cohen (2016) found that for children assigned to minimal groups, those who 

synchronized with outgroup members exhibited higher intergroup bonds compared to those who 

were asynchronous with respect to outgroup members. Finally, we have elaborated previously on 

the findings of Tamborini et al. (2018), which showed a marginal increase in outgroup trust 

given synchrony with an outgroup member. 

An enhanced sense of affiliation is often cited as the mechanism through which 

synchrony breaks down intergroup barriers. Coordination in general functions as a social binding 

variable, increasing a group’s sense of unity (Wiltermuth & Heath, 2009). This enhanced unity 

can attenuate previously established biases toward outgroup members, facilitating trust. If the 

measures we feature in the current research faithfully capture synchrony in its essence, we would 

expect to see these measures correlate with outgroup trust. 

 RQ3: Which synchrony measures correlate significantly with outgroup trust? 

METHOD 

Generation of Movement Database  

Motion capture procedure. The OptiTrack Motion Capture system (NaturalPoint) was 

used to collect full-body motion data. Motion capture took place in two divided square cells (15’ 

x 15’) in a laboratory. Twelve optical cameras were suspended from a truss system in each cell. 

These cameras detect motion through transmission of infrared light from reflective markers on 

the participants’ body suits. The suits are composed of tight-fitting black Nylon, and feature 37 

passive Velcro markers placed throughout the participant’s body. Motive, the software that 

operates the OptiTrack system, recorded and stored the motion tracking time series data. 
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The motion capture procedure was divided into four phases. In phase one, participant 

dyad members individually entered separate rooms in a laboratory and donned motion capture 

outfits before completing a pre-test outgroup trust measure at separate computer stations. Next, 

in phase two, they separately learned and mimicked a Tai-Chi routine from a virtual avatar 

appearing as a gender- and race-neutral wooden mannequin. This instructor, who appeared on a 

large wall projection, performed five repetitions of a 30-second routine, thus providing the 

training necessary for the next phase. In phase three, participants were instructed to perform the 

same routine they just learned, but now with a black or white virtual partner (the main 

manipulation) appearing on the screen, whose movements were generated in real-time by their 

real dyadic partner. The avatar movements were created by relaying the movement data in real 

time to an animation software that displayed a black or white avatar (matched to the dyad’s 

gender; Figure 2 demonstrates the routine in phase three). Notably, this was the stage in which 

the participants’ movement data (body part locations in 3-D space at each time frame) were 

collected via motion capture. Finally, in stage four participants completed a post-test outgroup 

trust measure to assess the effect of partner group and synchrony on this outcome.  
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Figure 2. Motion capture to character animation procedure. 

 Spatial normalization. A spatial normalization procedure of motion capture data was 

performed as recommended by Poppe et al. (2014). This is advised for comparing motion capture 

data between actors of different sizes and with different starting positions. To begin, I merged 

the motion capture files of two dyadic partners using Motionbuilder 2018 (Autodesk). I then 

applied the a pre-rendered character (described below) to each actor’s motion capture data for 

visualization purposes. Once characterized, I scaled uniformly each character according to the 

average size of a male (1.75m or 5’9”) and female (1.62m or 5’4”) in the U.S. After scaling, I 

translated each actor’s root node (the hip joint) to the origin of the scene: the point where x, y, 

and z are all set to 0 in Motionbuilder’s viewer window. Next, I ‘snapped’ the two actors’ hips to 

this origin; that is, throughout the scene, the translation both actors’ hips were constrained to the 

origin point while the rest of their bodies moved freely as in real life. The last step here was to 
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set the starting orientation (at frame 0) of each actor to the front of the scene by rotating the 

Woody’s hip joint to 0º around the y-axis. The resulting scene shows two identically sized 

characters, both facing forward, and their hips fixed together. See Figure 3 for a still shot of this 

result.  

 

Figure 3. Visualization of two participants’ movement data. Figures are snapped by the hips and 

standardized in size. The orange actor is Participant A, and the blue actor is Participant B. 

Motion data export. The movement data were exported (one data file per dyadic 

partner) via the tool Export Global Data for Motionbuilder 2018 (Leuschner, 2010). This tool 

outputs the movement data as a spreadsheet in which the rows are time frames (at 25Hz) and the 

columns are the movement translation in x, y, and z dimensions of 15 key body parts as advised 

by Poppe et al. (2014). Given a dyadic routine lasting 2.5 minutes, this would result in a rich 

dataset of 168,750 cells (3750 frames x 45 body part translation columns) per partner.  

 



 

 

31 
 

Generation of Video Stimuli 

Using the motion database, I created stimulus videos of dyadic partners performing the 

Tai-Chi routine side by side. This process involved rendering the motion capture data as standard 

virtual characters and producing a video for embedding into the final survey.  

Characterization procedure. First, the motion capture take data (time frames x body 

part locations) of the first participant in a dyad (Participant A) were exported from Motive as an 

FBX file. FBXs are animation files that operate within Motionbuilder, which features a plugin 

for Motive. Using the Motive plugin, I overlaid a neutral character, appearing as a wooden 

mannequin, onto the motion capture data for the first participant in a dyad. This wooden 

character was adopted from previous research (Bente, Leuschner, Al-Issa, & Blascovich, 2010), 

and can be seen in Figure 4. The purpose of using a neutral character such as this was to disguise 

the identities of participants in a controlled manner while preserving the fidelity of the human 

movement (cf. Bente, 2019).  
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Figure 4. Standard wooden mannequin avatar from Bente et al. (2010). 

Once the character was applied, I merged Participant A’s dyadic partner’s (Participant B) 

movement data into the same FBX file. Because these two participants originally performed the 

Tai-Chi routine at the same time, I produced a file that shows both participants performing the 

routine with the same start/end frames and side-by-side – even though in real life, they were 

physically separated. After merging the partner’s data, I applied the character to Participant B’s 

movements as well.  

The next step was to align the two characters so that they were are facing forward at 

frame one and were each centered on their half of the screen. To do so, I set the global rotational 

angle (the angle of a given body part with respect to the scene’s origin point) to 0º at the hip joint 

(the body hierarchy’s root node). Following this, I checked that the two actor’s movements were 

generally going in the same direction throughout their interaction. In the dyadic interactions, 21 

pairs performed opposite movements (i.e., mirror mimicry) whereas 17 performed same-

direction movements (i.e., rotational mimicry). If they were mirrored rather than rotational, I 

corrected this by mirroring Participant B’s movements across the y-axis. For instance, if 

Participant A typically swung her arm to the left and Participant B swung hers to the right, I 

flipped B’s movements so that both swung to the left. While it is an empirical question whether 

the direction of imitation matters for perceptions of synchrony, we did not wish to test this 

variable in the current research; feasibly, observers could witness a highly syncing dyad who was 

mirrored (rather than rotational), and this could impact the synchrony ratings differently 

compared to a highly synchronizing dyad who mimicked rotationally. In sum, control of the 

visual stimuli was more important in the current research than testing the effect of movement 

direction. 
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Video production procedure. Once the characterization process was complete, the scene 

was rendered as an AVI file in Motionbuilder. The frames were set to PAL (25Hz, or 25 frames 

per second) and the video was compressed to the highest quality available within Motionbuilder. 

The resulting files averaged 3668.87 frames, or about 2 minutes and 27 seconds. The next step 

was to segment each AVI file into the first three cycles of the Tai-Chi routine. This was done to 

provide more stimuli for the survey, as well as to provide more appropriate time segments for 

observers. Segments were created by noting the time frame at which the Tai-Chi cycle restarted; 

that is, the point at which both participants had their arms down at the starting point at the same 

time. If a simultaneous restarting of both participants did not occur, I noted when just one 

participant restarted. AVI cutting was performed in the program Bandicut, and the files were 

compressed to MP4 files using the program VLC Media Player. Because one dyad had an 

erroneous third segment resulting from a capture error, the final stimulus pool featured 113 

videos (38 dyads x 3 segments, minus 1 faulty segment), with an average segment length of 24 

seconds. An example of the final stimulus video participants would view is demonstrated in 

Figure 5. 



 

 

34 
 

 

Figure 5. Still shot of a stimulus video from the observer survey.  

Measures 

 Perceived synchrony. Perceived synchrony was measured on a slider scale from 0 (no 

synchrony) to 100 (perfect synchrony) for each video. Participants received the following 

instruction: 

“After each video, we will ask you (a) how "in sync" the pairs were, and (b) 

whether one person led the interaction (versus a more balanced interaction). "In 

sync" just refers to how smoothly and similarly the two moved together in time 

('high coordination'.) On our slider scale, 100 = perfect sync. The opposite of "in 

sync" would be clumsy, out of tune, or awkward ('poor coordination'). On our 

scale, 0 = no sync.” 

 Perceived LFR. The perceptions of the leader-follower relationship of the dyad was 

judged for each video through the following multiple-choice item: “Was one person leading the 



 

 

35 
 

interaction, or was it fairly balanced?” Possible responses to this question were: “Person A (on 

the left) led mostly,” “Person B (on the right) led mostly”, “It was fairly balanced”, and “Not 

sure.” Responses to this item were tallied for each stimulus and divided by the total number of 

occurrences of that stimulus to provide the proportion A led per stimulus, the proportion B led 

per stimulus, and the proportion of balanced ratings per stimulus. 

 Two variables for quantifying synchrony. Two variables were used to quantify 

synchrony: the similarity of shifts in overall movement activity (used for Pearson correlations, 

MI, DTW, Phase Synchrony, and RWTLCC) and the similarity of position (used in Dynamic 

Mimicry). 

Overall movement activity. For most of the various synchrony measures outlined below, 

the variable of interest is the overall movement activity exhibited by a single dyad member with 

respect to his/her partner. Rather than focusing on the form of movements, for example in 

behavioral mimicry research (Lakin & Chartrand, 2003), this approach focuses on the timing of 

general movement activity, the variable more central in the concept of synchrony (Hove & 

Risen, 2009). Overall movement activity of each participant was calculated in the following way. 

First, taking a file from each dyadic partner in one dyad, the x, y, and z translation of 15 primary 

body locations joints were targeted as suggested by Poppe et al. (2014). These include: Chest, 

left arm, left forearm, left hand, right arm, right forearm, right hand, head, right upper leg, light 

leg, right foot, left upper leg, left leg, and left foot. Second, we performed a standard Z-

transformation vertically (over time) to normalize the data for 14 of these 15 joints (the hips were 

locked at 0, 0, 0 throughout the interaction). Lastly, an average was conducted laterally (across 

joints) to give a single “movement activity” score for each time frame. This score served as the 
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y-axis variable that fluctuates in the various time series measures used in this study (except for 

dynamic mimicry).  

Positional difference. Rather than implementing the changes in overall movement as a 

measure of synchrony, this variable represents a comparison of specific positions of two actors’ 

body parts in a shared global space. Specifically, it is the difference in Euclidean distance (x, y, 

and z translation) between all 14 joints of two actors. A lower difference of positions indicates 

higher mimicry, which, when looked at over time and with different lags, gives us the dynamic 

mimicry measure detailed below.    

Behavioral data-based synchrony measures. The following measures were collected 

using a combination of Python codes, mainly using a synchrony suite created by Cheong (2019). 

The final program script for all analyses can be found in Appendix A. 

Pearson correlation. To compute a Pearson correlation between two time series, the 

Python program takes the average value of a given time series and correlates it with the average 

value of a second time series.  

Mutual information. Mutual information (MI) was calculated by a custom Python 

program (https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-

mutual-information-using-numpy) that was appended to the original program by Cheong (2019). 

Uusing the formula mentioned earlier: MI(x,y) = H(x) + H(y) - H(x,y), where MI is the mutual 

information, and H(x) is the entropy of time series x, H(y) is the entropy of time series y, and 

H(x,y) is the joint entropy (shared by both systems).  

Dynamic time warping. Dynamic time warping (DTW) is computed by minimizing the 

distance between two time series’ data points in a matrix, and comparing the resulting diagonal 

line to an ideal diagonal. The package dtw (https://github.com/pierre-rouanet/dtw) was used to 

https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-mutual-information-using-numpy
https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-mutual-information-using-numpy
https://github.com/pierre-rouanet/dtw
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visualize the DTW matrix, and provide overall distance scores for each dyad. These distance 

scores indicate the distance of the diagonal to the ideal line; a smaller distance indicates higher 

synchrony.  

Phase synchrony. The phase angles of two time series can then be compared for a 

measure of interpersonal synchrony. First, one must transform the movement data using a Hilbert 

transform, which separates a time series signal into its phase and power (Zayed, 1998). Then, the 

phase angles are plotted along a time series and inter-subject comparisons can be made. To 

obtain a score of phase synchrony, the program compares the phase angles by the following: 

PS = 1 - sin(|al1-al2/2|), 

where PS is phase synchrony, al1 is the phase angle of time series A at a given point, al2 is the 

phase angle of time series B at a given time point. Finally, this PS score is averaged over a whole 

time series to give a measure of overall phase synchrony, to be used for correlations with other 

variables. 

Rolling windowed time-lagged cross correlation. The program executes Pearson 

correlations between two time series over given windows of time, and smoothing this process out 

with a more continuously sliding window. In the current study, we use a window size of 125 

frames (4 seconds) for correlations, but a window increment of only 5 frames (.2 seconds). In 

this way, the resulting time series graph gives a smoothly rolling output that is more visually 

interpretable.  

Dynamic mimicry. This measure aggregates the position (rather than overall movement 

activity) of one participant’s joints limbs in x, y, and z directions of translation, and compares 

these values with those of his/her dyadic partner. The difference in position is then plotted over a 

time series with a range of time lags along the y-axis (as with RWTLCCs). The lag offset at 
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which positional differences are the smallest (i.e., most similar) is plotted in a separate graph, 

and will be used as the aggregate measure of positional similarity for correlation with other 

variables.  

Outgroup trust. Outgroup trust was assessed during collection of the initial movement 

database. It was measured using a custom computer game called “Will they Ship?”, adapted from 

Bente et al. (2014.; original game developed by Bolton, Katok, & Ockenfels, 2004). The game 

involves choosing to buy or not buy textbooks from 32 (16 pretest, 16 posttest) virtual 

salespeople who would ship or not ship the textbook. A payoff matrix similar to the famous 

Prisoner’s Dilemma game, with potential risks and rewards of making a deal with another player, 

was used to motivate the actions of players. These sellers were depicted as White or Black static 

avatars (16 of each), pretested by Tamborini et al. (2018) to appear neutrally trustworthy and 

natural looking.  

Outgroup trust was calculated by first tallying the number of ‘outgroup buys’ for pretest 

and posttest rounds. Outgroup buys were instances when a player selected ‘buy’ from an 

outgroup salesperson (for example, when a White participant bought from a Black salesperson). 

Next, I aggregated outgroup buys into a pretest proportion (outgroup buys/total encounters with 

outgroup salesperson during pretest) and posttest proportion (outgroup buys/total encounters 

with outgroup salesperson during pretest). Following this, the pretest proportion was subtracted 

from the posttest proportion to get an outgroup trust change score for one participant. Finally, the 

change scores were averaged between dyad members to generate a dyadic average for outgroup 

trust change. 

 

 



 

 

39 
 

Observer Survey 

Participants. Participants were 115 individuals (MAge = 23.3, SDAge = 10.92, 54% 

female, 78% White) collected from two sources. The first set of participants (n = 13, MAge = 46.0,  

SDAge = 17.62, 54% female, 85% White) consisted of family and friends of the researcher, who 

were provided a survey link via email. These participants were blind to the research questions of 

the researcher, and received only thanks for participation. The second set (n = 102, MAge = 19.89,  

SDAge = 1.50, 50% female, 74% White, 14% Asian, 12% other races) consisted of 

undergraduates from a large public university in the midwestern United States. This group 

participated to fulfill optional research credits for a communication course of their choice. All 

procedures were approved by the institutional review board at the university from which the 

second sample was drawn.  

Survey. A survey was created in Qualtrics Survey Software. The survey presented to 

participants a pseudo-random series of 30 videos to view and rate. This stimulus sampling 

method was chosen because it selected videos at random while still ensuring each video was 

viewed the same amount. The survey asked participants to watch each video until it auto-

advanced to the next page, which asked them to rate both synchrony and LFR. Demographic 

questions, which appeared at the end of the survey, asked for age, race/ethnicity, and gender.  

Procedure. A link to an online consent form was distributed to friends and family via 

email, and to undergraduates through a participant pool management software. Upon consenting 

to participation, the consent page rerouted participants to the observer survey. Due to 

coronavirus-related quarantine procedures, participants filled out the survey from a location of 

their choosing rather than a computer laboratory. The survey guided participants through 

viewing and rating of 30 stimulus clips. 
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Programming script. A custom Python program was adapted from Cheong (2019). In 

the original code, this program calculates Pearson correlations, dynamic time warping, phase 

synchrony, and windowed time-lagged cross correlations. A custom script that computes Z-

transformations of selected joints, and which additionally calculates mutual information, was 

appended to this code (see Appendix A). The script begins firstly by importing necessary 

packages and defining the variables to be measured. Secondly, one selects the variables for 

which he/she would like to view figures and descriptive statistics. Thirdly, once the measures are 

selected, the program looks for a list of CSV files (described in the previous section) from which 

to derive data. In the current study, this list includes 38 files for participant As and 38 files for 

participant Bs. Fourthly, the “movement activity” score for each time frame is conducted in the 

means described in the Overall movement activity section. Fifthly, a filter of the user’s choosing 

is applied. In the current study, we used a Butterworth bandpass filter, which normalizes the 

‘cutoff’ frequency, at which data finer than a certain threshold are smoothed (Paxton & Dale, 

2013). Finally, when the program runs, it outputs text files of descriptive data for selected 

measures (e.g., distance scores for DTW for each dyad) as well as a PDF of all figures. 

RESULTS 

Observer Judgments 

Synchrony ratings. An average synchrony score (perceived sync) between 0 and 100 

was calculated for each of the 113 stimulus videos: M PerceivedSync = 44.47, SD PerceivedSync = 16.18, 

Max PerceivedSync = 73.84 (Dyad 11), Min PerceivedSync = 21.20 (Dyad 30). The synchrony means were 

also broken down by averaging synchrony across the three segments for each dyad: M 

Segment1PerceivedSync = 44.49, SDSegment1PerceivedSync = 16.48; MSegment2PerceivedSync = 44.26, 

SDSegment2PerceivedSync = 18.23; MSegment3PerceivedSync = 43.64, SDSegment3PerceivedSync = 17.15. An 
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ANOVA was conducted to test whether these three segments differed statistically from each 

other (in other words, to see if there was a change in synchrony ratings over time). The 

difference between time segments was non-significant, F(2, 112) = .054, p = .947, partial eta2 = 

.001, suggesting no change in ratings over the course of the three segments of dyadic interaction. 

Table 4 shows the breakdown of synchrony ratings from the mostly highly- to lowly-rated dyad. 

Intraclass correlations. Intraclass correlations (ICCs) were conducted across all stimuli 

to check for inter-rater reliability in judging perceived sync. A matrix was created with videos as 

rows and raters as columns. Because each rater viewed only a random 30-video subset out of the 

entire 113, the matrix featured a high number of empty cells – making a normal ICC calculation 

unfeasible. As such, I deleted all empty cells by pushing filled cells to the left. While this 

procedure changes the columns (i.e., distorts which rater made which rating), it preserves the 

rows (i.e., the ratings each stimuli received). The resulting measure is thus an indicator of the 

consistency with which stimuli were rated, not the consistency between raters per se. Using this 

strategy, consistency between 10 ratings for each video (the minimum number of columns in 

which all videos were rated) was analyzed for reliability. The average ICC was high at .908, 95% 

CI (.881, .932), F (111, 999) = 11.09, p < .01, suggesting strong agreement within stimuli 

ratings. 

 Perceived leader-follower relationships. Three average proportions for each stimulus 

were calculated: (a) the percentage A was rated as leading, (b) the percentage B was rated as 

leading, and (c) the percentage of ratings indicating a balance of leadership/followership. The 

breakdowns are summarized in Table 4. Pearson correlations were conducted to check for 

covariation between perceived sync and the perceived proportion that A led (LFR_A), B led 

(LFR_B), or that there was an even LFR (LFR_E). Perceived sync was positively correlated with 
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LFR_E, r = .576, p < .001, negatively correlated with LFR_A, r = -.421, p = .009, and had no 

relationship with LFR_B, r = .126, p = .45. This suggests that the perception of a balanced LFR 

is related to perceived synchrony. 

Table 4. 

Percentage breakdowns of leader-follower relationship ratings across all stimuli. 

 A Led B Led Even LFR 

Mean % 34.14 43.42 22.45 

Maximum % 86.07 (Dyad 38) 77.59 (Dyad 23) 49.11 (Dyad 11) 

Minimum % 4.89 (Dyad 12) 6.91 (Dyad 38) 7.02 (Dyad 38) 

Note. Consistent with the idea that synchrony involves a reciprocal leader-follower relationship, 

Dyad 11 had the highest even LFR as well as the highest average synchrony ratings. 

Behavioral Data 

For each of the objective synchrony measures, I provide a comparison of figures between 

Dyad 11 (the highest LFR_E, or most balanced dyad) and Dyad 38 (the lowest LFR_E, or least 

balanced dyad). A juxtaposition of these figures demonstrates how each measure showcases the 

range of synchrony from high to low (see Figures 6 through 12). 

Pearson correlations. The average correlation of movement activity between participant 

A and B was calculated for each dyad with an intersubject lag of 0 frames, MPearson = 0.28, 

SDPearson = 0.27. The correlation between participants in Dyad 11 was r = 0.66, p < .01. The 

correlation for Dyad 38 was r = -0.02, p = 0.23. The time series of general movement activity 

featuring these correlations can be seen in Figures 6a and 6b. A higher correlation indicates 

higher synchrony. 
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Figure 6a. Pearson correlations over time for Dyad 11. Higher correlations indicate higher 

synchrony, which is indicated by a close matching of the orange (Participant A) and blue 

(Participant B) lines. Dyad 11’s lines overlap more often than Dyad 38 (see Figure 6b). 

 

 

 

 

Figure 6b. Pearson correlations over time for Dyad 38.  

Mutual Information (MI). MI indicates the information we can predict from one system 

based on observations of another system. The average MI for all dyads was MMI = 10.68, SDMI = 

0.15. For Dyad 11, MI = 10.84, and for Dyad 38, MI = 10.86. Interestingly, Dyad 11 had a 

(6a) 

Dyad 11: Pearson r = 0.66 

 

(6b) 

Dyad 38: Pearson r = -0.02 
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slightly lower MI score than Dyad 38, despite Dyad 11 generally appearing higher across other 

synchrony measures. This suggests that MI may not be strongly aligned with other measures of 

interpersonal synchrony.   

 Dynamic Time Warping (DTW). The DTW score indicates synchrony of overall 

movement activity irrespective of the length of an interaction. The average distance (DTW) for 

all dyads was MDTW = 6221.92, SDDTW = 1132.20. For Dyad 11, DTW = 5674.25, and for Dyad 

38, DTW = 6356.17. A comparison of these dyads’ DTW scores can be found in Figures 7a and 

7b. The lower distance score of Dyad 11 indicates that this dyad exhibited more similarities in 

overall movement activity over time compared to Dyad 38.  
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Figure 7a. Dynamic time warping distance matrix for Dyad 11. The x-axis is one participant’s 

timeline whereas the y-axis is his/her partner’s timeline. The white line traces the minimum 

distance between participants’ movement activity at each time point. A white line more 

approximating a perfect diagonal represents a smaller distance, or higher synchrony. Dyad 11’s 

distance is less than that of Dyad 38 (see Figure 7b). 

 

(7a) 

Dyad 11: DTW distance = 5674.25 
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Figure 7b. Dynamic time warping distance matrix for Dyad 38.  

Phase synchrony. This measure indicated the degree to which the phase angles of two 

participants’ overall movement activity were aligned. The average phase synchrony was 

MPhaseSync = 0.48, SDPhaseSync = 0.10. For Dyad 11, PhaseSync = 0.69, and for Dyad 38, 

PhaseSync = 0.38. A comparison of these dyads’ phase synchrony can be found in Figures 8a 

and 8b. The higher PhaseSync score of Dyad 11 indicates that Dyad 11 was more temporally 

aligned in the cycles of their movements compared to Dyad 38.  

(7b) 

Dyad 38: DTW distance = 6356.17 
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Figure 8a. Phase synchrony for Dyad 11. The top graph shows the angle at each timepoint, with 

red representing one actor and blue the other. The bottom graph shows phase synchrony (from 0 

to 1) continuously throughout the interaction. Dyad 11 more often shows phase synchrony scores 

approximating 1.0, whereas Dyad 38 shows this less often (see Figure 8b). 

 

 

 

 

 

 

 

 

 

 

(8a) 

Dyad 11: Angle at each Timepoint and 

Instantaneous Phase Synchrony (bottom) 
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Figure 8b. Phase synchrony for Dyad 38.  

Lag offset (from RWTLCC). This measure indicates the amount of lag between 

participants at which synchrony of movement activity was typically the highest. The average lag 

offset in frames, given by the RWTLCC, was MLag = 18.42, SDLag = 13.58. For Dyad 11, Lag = 2 

frames, and for Dyad 38, Lag = 43 frames. The RWTLCC graphs can be found in Figures 9a and 

9b, and a comparison of these dyads’ lag offsets can be found in Figures 10a and 10b.  

 

 

 

 

 

 

 

 

(8b) 

Dyad 38: Angle at each Timepoint (top) and 

Instantaneous Phase Synchrony (bottom) 
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Figure 9a. RWTLCCs for Dyad 11. Blue indicates highly negative correlations, red indicates 

highly positive correlations, and white indicates no association. The midline for Dyad 11 (0 

offeset) shows that the highest positive correlation (i.e., synchrony) occurred almost on the spot. 

This is not true for Dyad 38 (see Figure 9b). 

 

 

 

 

 

 

 

 

(9a) 

Dyad 11: Rolling Window Time-Lagged 

Cross Correlations 
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Figure 9b. RWTLCCs for Dyad 38.  

 

 

 

Figure 10a. Lagged synchrony for Dyad 11. Optimal offset for Dyad 11 is 2 frames, and offset 

for Dyad 38 is 43 frames (indicated by the red dotted lines; see Figure 10b). Left of the black 

dotted line indicates that Subject A leads, and right of the black dotted line indicates that Subject 

B leads. The smaller optimal offset for Dyad 11 compared to Dyad 38 suggests a more 

temporally aligned dyad with respect to overall movement activity. 

(9b) 

Dyad 38: Rolling Window Time-Lagged 

Cross Correlations 

(10a) 

Dyad 11: Offset (RWTLCCs)  
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Figure 10b. Lagged synchrony for Dyad 38.  

 Dynamic mimicry. Dynamic mimicry represents the similarity of positions of two 

actors’ joints over time. Here we show calculations of dynamic mimicry for Dyads 11 and 38 

(see Figures 11a and 11b). Further, the optimal offset of dynamic mimicry (i.e., the time lag 

value at which positional differences were smallest) was also calculated. For Dyad 11, offset = 7 

frames; for Dyad 38, offset = -41 frames. The absolute values of these lags were used in 

correlations, as the sign should not impact the strength of association. 

 

 

 

 

 

 

 

 

 

 

(10b) 

Dyad 38: Offset (RWTLCCs)  
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Figure 11a. Dynamic mimicry for Dyad 11. The blue coloring around the midline for Dyad 11 

indicates a low difference in positions between the two actors when lag = 0. This is less evident 

for Dyad 38, whose coloring was less consistent in this regard (see Figure 11b). This suggests 

that the positions of Dyad 11’s actors’ body parts were more aligned when lag = 0 compared to 

those of Dyad 38. 

 

 

 

 

Figure 11b. Dynamic mimicry for Dyad 38. 

 

(11a) 

Dyad 11: Dynamic Mimicry 

(11b) 

Dyad 38: Dynamic Mimicry 
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Figure 12a. Offset of dynamic mimicry for Dyad 11. Dyad 11 shows a lag closer to 0 compared 

to Dyad 38, indicating less of a delay when movement similarity was at its peak (see Figure 12b) 

 

 

 

 

Figure 12b. Offset of dynamic mimicry for Dyad 38.  

Research Questions 

To address the research questions, first, correlations were run among the among the 

various objective and subjective synchrony measures as well as outgroup trust and LFR_E. The 

results of these correlations can be seen in Table 5. To refresh, we would expect high 

correlations among all synchrony variables, though the sign depends on the measures. For 

(12a) 

Dyad 11: Offset (Dynamic Mimicry) 

(12b) 

Dyad 38: Offset (Dynamic Mimicry) 
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Perceived Sync, Pearson r, MI, PhaseSync, and LFR_E, a higher score indicates more 

synchrony. For DTW, RWTLCC, and Dynamic Mimicry, a lower score indicates synchrony.  

 

Table 5. 

Correlations of major variables. 

 Perceived 

Sync 

Pearson r MI DTW PhaseSync RWTLCC Dyn. 

Mimicry 

Outgroup 

Trust 

LFR_E 

1.Perceived Sync          

2.Pearson r .828**         

3.Mutual Info .337* .207        

4.DTW -.292 -.468** .297       

5.PhaseSync .849** .967** .260 -.372*      

6.RWTLCC -.512** -.586** -.428** -.125 -.569**     

7.Dyn. Mimicry -.717** -.639** -.269 .286 -.648** .583**    

8.Outgroup Trust -.243 .052 -.037 -.269 -.001 -.074 .049   

9.LFR_E .576** .516** .318 .103 .581** -.441** -.397* -.006  

 **. Correlation is significant at the 0.01 level (2-tailed).  

 *. Correlation is significant at the 0.05 level (2-tailed).  

In response to RQ1, which asked which measures of synchrony predict perceived synchrony, 

perceived sync correlated significantly with phase synchrony, r = 0.85, p < .001, followed by 

Pearson r, r = 0.83, p < .001, dynamic mimicry, r = -0.72, p < .01, and mutual information, r = 

0.34, p = .04. A regression was run to check for a causal linear relationship between the objective 

measures and perceived sync. Diagnostics revealed that multicollinearity was not a concern, as 

only one variable pairing showed variance proportions higher than .90 (see Hair, Black, Babin, & 
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Anderson, 2013). The regression revealed strong fit of the predicted model, F(6, 31) = 19.60, p < 

.01, R2 = .74. Dynamic mimicry was the only individual variable that significantly predicted 

perceived sync, standardized beta = .34, t = -2.81, p = .01.  

Regarding RQ2, which asked which objective measures of synchrony predict observer 

ratings of leader-follower relationships (LFRs), the balance of the leader-follower relationship 

(LFR_E) was correlated significantly with Pearson r (r = 0.58, p < .01), phase synchrony (r = 

0.58, p <.01), lag offset (r = -0.44, p < .01) and dynamic mimicry (r = -0.40, p = .014). A 

regression checking for the effect of the objective measures on ratings of LFR was conducted. 

The regression showed moderate fit, F(6, 31) = 4.42, p < .01, R2 = .46. No individual variables 

significantly predicted LFR_E, all p > .05. 

Relationship between Synchrony and Outgroup Trust 

Research question 3 inquired whether any of the synchrony measures would predict 

outgroup trust. No significant relationships were found between synchrony variables and 

outgroup trust (all correlations between synchrony variables and outgroup trust > p = .10.). 

However, in the original study by Tamborini et al. (2018), the effect of synchrony on outgroup 

trust was only found when moderated by the group membership (ingroup versus outgroup) of the 

virtual partner. As such, separate correlations were calculated for those who had ingroup versus 

outgroup partners. For those with ingroup partners, Pearson r (r = 0.52, p = .03) and DTW (r = -

0.59, p = .01) were both significantly correlated with outgroup trust. For those with outgroup 

partners, perceived sync (r = -0.54, p = .02) alone correlated significantly with outgroup trust. 

These findings are inconsistent with those of Tamborini et al. (2018), though in that study, the 

nature of the synchronous routine was different (i.e., more of a mimicked interaction compared 

to reciprocal), which may account for the difference in results.  
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DISCUSSION 

 The goal of this research was to illuminate which objective measures of interpersonal 

synchrony best relate with global perceptions of synchrony, while taking into consideration that 

synchronous interactions differ in several qualities. A type of interaction that was complex, 

reciprocally entrained, repetitive, and purposeful was used as a first example with which to apply 

these measures. Results indicated that numerous measures including phase synchrony, Pearson 

correlations, mutual information, and dynamic mimicry are all linked to global synchrony 

perceptions for this interaction type. Moreover, the reliability of synchrony judgments was high 

when comparing ratings within stimuli. Next, a balance in LFR was related to Pearson r, phase 

synchrony, lag offset (RWTLCC), and dynamic mimicry. Interestingly, only a few synchrony 

measures related to the findings about outgroup trust as previously discovered by Tamborini et 

al. (2018), and these were in the opposite direction than expected. In the following discussion, I 

first remark on the findings pertaining to the research questions, speculating on how these 

findings could change with interaction types featuring different levels of synchrony qualities. 

Following this, I discuss implications and limitations of this research.  

Findings Pertaining to Research Questions 

 The first research question inquired which measures of synchrony would predict the 

subjective measure perceived sync. In order of correlation strength from strongest to weakest, 

phase synchrony, Pearson r, dynamic mimicry, and MI all were significantly related to perceived 

sync. Beginning with phase synchrony, the strength of this measure’s association with perceived 

sync may stem from the repetitive nature of this study’s interaction routine. The phase of an 

interaction is a feature of its periodic or cyclic nature; the more aligned two systems’ phases are, 

the more rhythmic they can be said to be. Despite the fact that the interaction type in the current 
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study was not regular (in the sense that it did not feature a steady pulse of movements), the 

repetitive and scripted nature of the Tai-Chi routine likely improved participants’ ability to 

achieve phase synchrony. In more spontaneous interactions, such as free-flowing conversations, 

it might be more difficult for the phase synchrony measure to identify rhythmic regularities like 

this. Accordingly, this measure is often used for scripted or regular interactions (Ouwehand & 

Peper, 2015; see for an exception Schmidt & Morr, 2012).  

Next, dynamic mimicry was associated with perceived sync. The negative direction of the 

correlation indicates that a smaller difference between positions of dyadic partners equates to 

higher perceived sync ratings. This shows that the position of the limbs in space, not just the 

timing alone, could be related to perceptions that a dyad is in synchrony. The strength of this 

measure’s correlation with perceived sync, and the fact that it was the only significant individual 

predictor of perceived sync in the regression, show that perhaps people look for ‘perfect 

synchrony’ (timing and form matching; Hale, 2017) when making judgments. In sum, in the type 

of synchronous interaction shown in this study, the form of the movements evidently played 

some role in shaping judgments. 

 Moving to Pearson r and MI, these aggregate measures were also associated with 

perceived sync. For this type of interaction, these measures serve as strong indicators of global 

synchrony, and are a good starting point for synchrony research involving relatively stationary 

data. The fact that they showed association with perceived synchrony in a highly complex 

dataset such as this one points to their robustness in identifying synchrony. However, for 

researchers interested in (a) non-stationary data types or (b) the dynamic patterns in a dataset, 

these measures simply will not suffice. As we saw from this study, the leader-follower 

relationship in a synchronous interaction ties in closely to perceptions of global synchrony, so 
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researchers interested in the LFR would require more dynamic measures. Further, examination of 

figures produced by dynamic measures, such as the RWTLCC chart, can reveal patterns in the 

data that may be otherwise missed by aggregate measures. For instance, imagine a dyad who, 

visibly, was highly coordinated in their movement dynamics, but had one participant leading the 

other by 5 frames. If correlations were conducted only “on the spot” (i.e., with no inter-subject 

lag), the result may indicate that there was an absence of synchrony. By looking at the patterns 

throughout the range of time lags, though, a strong association could be found at beyond the on-

the-spot portion of the interaction graph. Regardless of definition of synchrony as simultaneous 

or simply coordinated, many researchers would likely still be interested in the alignment of this 

dyad. As such, aggregate measures are advisable, but not sufficient in cases where dynamics are 

of interest.  

 The second research question asked which measures would correlate with a balance in 

leader-follower relationship, as measured by the item LFR_E. The balance of LFR correlated 

with several measures including Pearson r, phase synchrony, lag offset (RWTLCC), and 

dynamic mimicry. Many synchrony ratings and measures thus seem to be inextricably related to 

a balance of leadership and followership in an interaction, even though there are types of 

synchrony in which leader and follower roles are not balanced (i.e., unilaterally entrained 

synchrony). When leader and follower roles are fixed and there is an accompanying delay in the 

follower’s movements (i.e., mimicry), LFR is not balanced – though the movements themselves 

are still somehow coordinated in timing. Future studies should continue to investigate the role of 

balance in perceptions of synchrony – is it an essential component, or just something that 

enhances the synchronous experience?   
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 The final research question inquired which measures of synchrony would relate to 

outgroup trust. No synchrony measures were significantly associated with outgroup trust in a 

bivariate sense. However, I then sorted participant groups by ingroup and outgroup conditions as 

performed by Tamborini et al. (2018). For dyads in the ingroup condition, Pearson r and DTW 

were both positively correlated with outgroup trust, whereas for dyads in the outgroup condition, 

perceived sync negatively correlated with outgroup trust. These findings are inconsistent with 

Tamborini et al., as in their study they found that for ingroup condition participants, synchrony 

decreased outgroup trust, whereas for outgroup condition participants, synchrony marginally 

increased outgroup trust. The distinction between these findings feasibly stems from the 

difference in measures used between Tamborini et al.’s study and the current Study 2. The 

former study used a simple video game score of movement similarity as an indicator, whereas 

the latter used more complex motion-capture-based methods and advanced measures of 

synchrony. Another possible reason for the inconsistent findings is difference in the nature of the 

synchronous activities; Tamborini et al. used a one-way interaction between human and 

computer character, more akin to a mimicked interaction than a synchronous one. The current 

study used an interaction type that was reciprocal. More research is needed to disentangle how 

synchrony types and measures can influence social outcomes.  

Given the relative ubiquity of findings stating that synchrony improves social outcomes, 

it remains to be seen which types/qualities of synchrony drive these improvements. Is it the 

simultaneity of movements? Or the rhythmic aspect? Does the form of movements matter at all? 

These questions cannot be ignored by lumping all interaction types together and dubbing them 

“synchrony.” The current research brought these issues to the forefront so they may be addressed 

going forward. Future research would ideally compare these aspects of synchrony in terms of 
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their outcomes; for instance, one might expect perfect synchrony, compared to general 

synchrony, to produce stronger social effects, given that shared timing and form have been 

shown to contribute independently to social outcomes.  

Implications 

 The first major implication of this research is to establish and compare the validity of 

different measurement techniques for assessing interpersonal synchrony. Many synchrony 

measures, perhaps predictably, were related to global perceptions of synchrony. This study thus 

demonstrated the convergent validity between several of the available synchrony measures and 

perceptions. Another key finding here was that the reliability of synchrony ratings was high, 

consistent with prior claims that synchrony can be reliably observed without complex 

measurement techniques (Bernieri, 1988; Bernieri et al., 1994). Notably, however, these findings 

may be peculiar to the type of interaction used in the present research. I encourage other 

synchrony researchers to differentiate between interaction types, and to justify their use of 

measures over others accordingly. 

 Another implication pertains to the methodology used in this study as a recommended 

protocol for measuring synchrony. Several aspects of this methodology render it an improvement 

over other extant methods. First, the use of character animation allows researchers to either alter 

or control the appearance of stimuli, while preserving the fidelity of the real human movements. 

This balance between control and realism is ideal. Second, the use of full-body motion capture is 

relatively rare in synchrony research. Many studies in this domain rely on motion energy 

analysis (Ramseyer & Tschacher, 2011), which leverages changes in video pixels as a measure 

of broad movement activity shifts. As noted earlier, this technique lacks the precision and 

granularity of the current method, which locates the movements of specific joints on the human 
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body, which can subsequently be aggregated. Thus, this research is a showcase of the power of 

combining character animation and motion capture in nonverbal communication research 

involving observations of movement parameters (see Bente, 2019). 

Limitations 

 The first limitation of this study was that it did not compare multiple types of 

synchronous interactions (i.e., did not look at comparisons between the various levels of each 

synchrony quality). A direct comparison between reciprocal and unilateral interactions, or 

between regular versus irregular routines, for example, could be useful in further uncovering the 

utility of the various available measures. Still, this study was a first step toward establishing the 

need for further research on this topic. By pointing to the need to distinguish synchrony types by 

their qualities, and by testing one type’s relationship to global synchrony perceptions, this first 

step leaves to future research the task of comparing more types. 

 A second limitation was the exploratory nature of this research. Strong theoretical 

background warranting the use of certain measures over others is lacking in the communication 

science literature, as well as in other domains that study synchrony. As such, addressing research 

questions instead of hypotheses seemed more appropriate for the current study. As differences 

among measures and their relationships to qualities of synchrony continue to be discovered, the 

grounding for theoretical advancement will become more plausible.  

 A third limitation was that this study did not encapsulate all available measures of 

synchrony. Other methods such as cross-recurrence quantification analysis (Coco & Dale, 2014; 

Shockley, Butwill, Zbilut, & Webber Jr., 2002) and spectral approaches like the cross-wavelet 

analysis (Fujiwara & Daibo, 2016; Schmidt, Nie, Franco, & Richardson, 2014) are available, 

which look at frequencies of events. Conversely, the current study focused on time-domain 
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methods to get a first look at how this range of measures compared with perceptions. Future 

studies should incorporate alternative measurements to see how they align with the current 

findings. 

 A final limitation noted here is the relatively small dyadic sample from the original 

database, especially when divided into ingroup versus outgroup conditions. The conclusions 

made regarding the relationship between synchrony and outgroup trust should thus be taken with 

caution. For the current dissertation, the trust variable was of interest to see if synchrony 

measures related to a social outcome, but in future research, more focus could be dedicated to 

delving deeper into the theoretical relationship between synchrony and outgroup trust.  

Conclusion 

 Interpersonal synchrony can be found in different shapes and scopes throughout the 

natural world. Disentangling how a metronome differs from a human, how a religious ritual 

differs from a conversation, and how instruction differs from spontaneity are all key questions 

for synchrony researchers. Understanding these differences enables scholars to better understand 

which tools are right for the job, reducing confusion and promoting clarity. This research was a 

first action toward identifying these differences, and showcasing how perceptions of one type of 

synchrony (complex, reciprocal, repetitive, and intentional) relate to various available measures. 

Several measures were able to detect synchrony differences that corresponded with variation in 

general perceptions. Future research may find that more unintentional and spontaneous 

interactions show different results with respect to synchrony measures. Indeed, we may wonder, 

does synchrony in a free-flowing conversation even exist in the same vein as two partners 

rocking back in forth in chairs stably? Answers to such questions must wait for the next wave of 

synchrony research.  
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APPENDIX 

 

 

Python Script for Synchrony Analyses 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon May 18 10:24:32 2020 

 

@author: novot 

""" 

 

# -*- coding: utf-8 -*- 

""" 

Created on Sun Apr 19 05:17:47 2020 

 

@author: gabente 

""" 

from scipy.stats import zscore 

from os import listdir 

import os 

from os.path import isfile, join 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import scipy.stats as stats 

from scipy import signal 

from dtw import accelerated_dtw,multi_dtw,dtw 

from scipy.signal import hilbert, butter, filtfilt 

from scipy.fftpack import fft,fftfreq,rfft,irfft,ifft 

from math import sqrt 

from numpy import inf 

import math 

from PIL import Image 

import statistics 

 

 

     

def Save_PDF(): 

    images=[] 

    #fpath='C:/Users/gabente/Desktop/ERIC_data/new_matrices/' 

    onlyfiles = [f for f in listdir(fpath) if isfile(join(fpath, f))and f.endswith('png')] 

    for f in onlyfiles: 

        im = Image.open(fpath+f).convert("RGB") 

        images.append (im) 
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        rf=fpath+f 

        os.remove(rf) 

    images[0].save(fpath+'Eric_Plots.PDF', save_all=True, append_images=images[1:]) 

 

def resample (s1,ss): 

    nrow=len(s1)    

    j=-1 

    for name in list(s1): 

        j+=1    

        for ii in range (0,nrow-ss,ss): 

            x=0 

            y=0 

            for k in range (0,ss): 

                 

                x+=s1.iloc[ii+k,j]      

                y+=s1.iloc[ii+k,j]      

             

            x=x/5     

            s1.iloc[ii,j]=x 

  

    drops=int(nrow-(nrow/ss)) 

  

    s2 = s1.drop(s1.tail(drops).index) 

    return s2   

 

def z_trans(df): 

    d1=(df-df.mean())/df.std(ddof=0) 

    return d1 

 

def butter_bandpass(lowcut, highcut, fs, order=5): 

    nyq = 0.5 * fs 

    low = lowcut / nyq 

    high = highcut / nyq 

    b, a = butter(order, [low, high], btype='band') 

    return b, a 

 

def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): 

    b, a = butter_bandpass(lowcut, highcut, fs, order=order) 

    y = filtfilt(b, a, data) 

    return y 

 

def low_pass_filter(x,fs,fc): 

    w = fc / (fs / 2) # Normalize the frequency 

    b, a = signal.butter(5, w, 'low') 

    x = signal.filtfilt(b, a,x,axis=0) 

    #x= pd.DataFrame(x) #data=x.flatten()) 
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    return x 

def high_pass_filter(x,fs,fc): 

    w = fc / (fs / 2) # Normalize the frequency 

    b, a = signal.butter(5, w, 'high') 

    x = signal.filtfilt(b, a,x,axis=0) 

    #x= pd.DataFrame(x) #data=x.flatten()) 

    return x 

def median_filter(df,wi): 

    df.rolling(window=wi,center=True).median() 

    return df 

 

def crosscorr(datax, datay, lag, wrap=False): 

     if wrap: 

        shiftedy = datay.shift(lag) 

        shiftedy.iloc[:lag] = datay.iloc[-lag:].values 

        return datax.corr(shiftedy) 

     else:  

        return datax.corr(datay.shift(lag))            

 

def shannon_entropy(A, mode="auto", verbose=False): 

 

 

    """ 

    https://stackoverflow.com/questions/42683287/python-numpy-shannon-entropy-array 

    """ 

    A = np.asarray(A) 

 

    # Determine distribution type 

    if mode == "auto": 

        condition = np.all(A.astype(float) == A.astype(int)) 

        if condition: 

            mode = "discrete" 

        else: 

            mode = "continuous" 

    mode="discrete"        

    if verbose: 

        print(mode, sys.stderr) 

    # Compute shannon entropy 

    pA = A / A.sum() 

    # Remove zeros 

    pA = pA[np.nonzero(pA)[0]] 

    #print (pA) 

    #print (A) 

    if mode == "continuous": 

        return -np.sum(pA*np.log2(A))   

    if mode == "discrete": 



 

 

67 
 

        return -np.sum(pA*np.log2 (pA))    

 

def mutual_information(df, mode="auto", normalized=False): 

    """ 

    I(X, Y) = H(X) + H(Y) - H(X,Y) 

    https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-mutual-

information-using-numpy 

    """ 

    x=df['DataA'] 

    y=df['DataB'] 

 

    x=  x+ abs(x.min()) 

    y=  y+ abs(y.min()) 

 

    # Determine distribution type 

    if mode == "auto": 

        condition_1 = np.all(x.astype(float) == x.astype(int)) 

        condition_2 = np.all(y.astype(float) == y.astype(int)) 

        if all([condition_1, condition_2]): 

            mode = "discrete" 

        else: 

            mode = "continuous" 

     

    mode="continuous"         

    H_x = shannon_entropy(x, mode=mode) 

    H_y = shannon_entropy(y, mode=mode) 

    H_xy = shannon_entropy(np.concatenate([x,y]), mode=mode) 

 

    # Mutual Information 

    I_xy = H_x + H_y - H_xy 

    if normalized: 

        MI= I_xy/np.sqrt(H_x*H_y) 

    else: 

        MI=  I_xy          

    MIlist.append(str(round(MI,5))) 

    print (MI) 

     

def corr(df): 

 

    #overall_pearson_r = df.corr().iloc[0,1] 

    #print(f"Pandas computed Pearson r: {overall_pearson_r}") 

    # out: Pandas computed Pearson r: 0.2058774513561943 

 

    r, p = stats.pearsonr(df.dropna()['DataA'], df.dropna()['DataB']) 

    #print(f"Scipy computed Pearson r: {r} and p-value: {p}") 
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    # out: Scipy computed Pearson r: 0.20587745135619354 and p-value: 3.7902989479463397e-

51 

     

    

    # Compute rolling window synchrony 

    f,ax=plt.subplots(figsize=(14,4)) 

    df.rolling(window=25,center=True).median().plot(ax=ax) 

    ax.set(xlabel='Time',ylabel='Motion') 

    ax.set(title=f"{id} Pearson r = {np.round(r,2)} p= {np.round(p,4)}"); 

    plt.show 

    f.savefig(fpath+ id + '_' +'Pearson.png', bbox_inches = "tight") 

  

    r = .5*(math.log(1+r)-math.log(1-r)) 

    a=str(round(r,3))+'\t'+str(round(p,4)) 

    corrlist.append (a) 

 

def RWS(df):   

# Rolling Window Synchrony 

    r_window_size = 25 #125 #300 

    rolling_r =  df['DataA'].rolling(window=r_window_size, center=True).corr(df['DataB']) 

    f,ax=plt.subplots(2,1,figsize=(14,6),sharex=True) 

     

    df.rolling(window=25,center=True).median().plot(ax=ax[0]) 

 

    ax[0].set(xlabel='Frame',ylabel='Motion') 

    rolling_r.plot(ax=ax[1]) 

    ax[1].set(xlabel='Frame',ylabel='Pearson r') 

    plt.suptitle("Rolling Window Correlation: "+id) 

    plt.show 

    f.savefig(fpath+ id + '_' +'RWS.png', bbox_inches = "tight") 

 

def TLCC(df):  

    d1=df['DataA'] 

    d2=df['DataB'] 

    rs = [crosscorr(d1,d2, lag) for lag in range(-int(seconds*fps),int(seconds*fps+1))] 

    offset = np.ceil(len(rs)/2)-np.argmax(rs) 

    #print (len(rs),np.ceil(len(rs)/2) , np.argmax(rs,0)) 

     

     

    xs=0 

    xe=2*int(seconds*fps)+1 

     

    f,ax=plt.subplots(figsize=(15,3)) 

    ax.plot(rs) 

 

    ax.axvline(np.ceil(len(rs)/2),color='k',linestyle='--',label='Center') 
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    ax.axvline(np.argmax(rs),color='r',linestyle='--',label='Peak synchrony') 

    ax.set(title=f'Lagged Cross Correlation\n{id}\nOffset = {offset} frames\nS1 leads <> S2 

leads',xlim=[xs,xe], xlabel='Offset',ylabel='Pearson r') 

    ax.set_xticks(np.arange(xs,xe, fps)) 

    ax.set_xticklabels(np.arange(-(xe-1)/2, (xe-1)/2+1 , fps)) 

    #ax.set_xticks(np.arange(0, int(seconds*fps)+1, 25.0)) 

    #ax.set_xticklabels(np.arange(-int(seconds*fps),int(seconds*fps), 25)) 

    #ax.set_xticks([0, 50, 100, 151, 201, 251, 301]) 

    #ax.set_xticklabels([-150, -100, -50, 0, 50, 100, 150]); 

    plt.legend() 

    plt.show 

    f.savefig(fpath+ id + '_' +'TLCC.png', bbox_inches = "tight") 

     

 

    RSneg=(rs[0:int(seconds*fps)+1]) 

    RSpos=(rs[int(seconds*fps)+1:int(seconds*fps)*2+1]) 

    rsumA=max(RSneg) #(RSneg.max(axis=0)) 

    rsumB=max(RSpos) #(RSpos.max(axis=0)) 

     

    rs1=str(round(offset,3)) 

    rs2=str(round(abs(offset),3)) 

     

    rx=(rsumB/rsumA) 

    if rx>1: 

        rx=(rsumA/rsumB) 

    rs3=str(round(abs(rx),3)) 

     

    rs4=str(round(abs(rsumB-rsumA),3)) 

 

  

    out1=rs1+'\t'+rs2+'\t'+rs3+'\t'+rs4 

    TLCClist.append(out1) 

 

     

def WTLCC(df): 

# Windowed Time-lagged Cross Correlation 

     

    no_splits = 100 #int (len(df)/25) #20 #clip = 60 seconds = 1500 frames 

    samples_per_split = int(df.shape[0]/no_splits) 

    #print (samples_per_split) 

    rss=[] 

 

    for t in range(0, no_splits): 

        t_start=t*samples_per_split 

        t_end=(t+1)*samples_per_split 

        d1 = df['DataA'].iloc[t_start:t_end] 
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        d2 = df['DataB'].iloc[t_start:t_end] 

   

        rs = [crosscorr(d1,d2, lag,wrap=False) for lag in range(-

int(seconds*fps),int(seconds*fps+1))] 

        rss.append(rs) 

   

    rss = pd.DataFrame(rss) 

     

    f,ax = plt.subplots(figsize=(12,10)) 

    sns.heatmap(rss,cmap='RdBu_r',ax=ax) 

    #xlim=[75, 176], 

    ax.set(title=f'Windowed Time Lagged Cross Correlation: '+id, xlabel='Offset',ylabel='Window 

epochs') 

    """ 

    ax.set_xticks(np.arange(75, 176, 100/10)) 

    ax.set_xticklabels(np.arange(-5, 6, 1)) 

    ax.set_yticks(np.arange(0,31, 5)) 

    ax.set_yticklabels(np.arange(0, 31,5)) 

    """ 

    plt.show 

     

    rss2=rss.transpose()  

    f,ax = plt.subplots(figsize=(18,6)) 

    sns.heatmap(rss2,cmap='RdBu_r',ax=ax) 

    #xlim=[-2,31],ylim=[75, 176], 

    #ax.set(title=f'Windowed Time Lagged Cross Correlation: '+id,ylim=[75, 176], 

ylabel='Offset',xlabel='Window epochs') 

    ax.set(title=f'Windowed Time Lagged Cross Correlation: '+id, ylabel='Offset',xlabel='Time 

Line (epochs=1 sec)') 

     

    """ 

    ax.set_yticks(np.arange(75, 176, 100/10)) 

    ax.set_yticklabels(np.arange(-5, 6, 1)) 

    ax.set_xticks(np.arange(-2,34, 5.65)) 

    ax.set_xticklabels(np.arange(0, 71,10)) 

    """ 

    ax.spines['top'].set_visible(True) 

    ax.spines['right'].set_visible(True) 

    ax.spines['bottom'].set_visible(True) 

    ax.spines['left'].set_visible(True) 

    ax.spines['top'].set_linewidth(0.5) 

    ax.spines['right'].set_linewidth(0.5) 

    ax.spines['bottom'].set_linewidth(0.5) 

    ax.spines['left'].set_linewidth(0.5) 

    plt.show 

    f.savefig(fpath+ id + '_' +'TLCC.png', bbox_inches = "tight") 
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def RWTLCC(df):      

# Rolling window Time-lagged Cross Correlation 

 

    #seconds = 5 #rapport   ==== lag time wondow to right and left 

    #frames per second = 25 Hz   

    window_size = 125 #00 #300 #samples = secs * fps * 2 ==== number of samples for 

correlation 

    step_size = 5     #frames                            ==== advancements after each sample 

    t_start = 0 

    t_end = t_start + window_size 

    #print (df) 

    rss=[] 

    le=len(df) 

 

    while t_end < le:   #1500: #5400: 

     

        d1= df['DataA'].iloc[t_start:t_end] 

        d2= df['DataB'].iloc[t_start:t_end] 

 

        rs = [crosscorr(d1,d2, lag, wrap=False) for lag in range(-

int(seconds*fps),int(seconds*fps+1))] 

        rss.append(rs) 

     

        t_start = t_start + step_size 

        t_end = t_end + step_size 

     

    rss = pd.DataFrame(rss)  # either standard display time vertical 

    rss2=rss.transpose()     # or transposed time line horizontal 

    rss2=rss2.dropna(axis=0, how='all') 

     

    f,ax = plt.subplots(figsize=(18,6)) 

    sns.heatmap(rss2,cmap='RdBu_r',ax=ax) 

    ax.set(title=f'Rolling Windowed Time Lagged Cross Correlation: '+id, 

ylabel='Offset',xlabel='Time Line (epochs = 1/5 sec)') 

    ymin, ymax = ax.get_ylim() 

    xmin, xmax = ax.get_xlim() 

    #print (ymin,ymax,xmin,xmax) 

     

    #ax.set(title=f'Rolling Windowed Time Lagged Cross Correlation: 

'+id,ylim=[0,window_size+1], xlim=[0,(le/25)],ylabel='Offset (seconds)',xlabel='Time Line 

(seconds, epoch=1/5 secs)') 

 

    ax.set_yticks(np.arange(ymin, ymax-1,-ymin/2)) 

    ax.set_yticklabels(np.arange(-seconds,seconds+1,seconds)) 
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    ax.set_xticks(np.arange(xmin,xmax+1, 10.0)) 

    ax.set_xticklabels(np.arange(xmin,xmax+1, 10.0)) 

     

    #plt.savefig(fpath+id) 

    plt.show() 

    f.savefig(fpath+ id + '_' +'RWTLCC.png', bbox_inches = "tight") 

     

    rss2=(np.array(rss2).mean(axis=1)) 

    #rss2[0]=rss2[1]  #correct for 1. row 

 

    offset = np.ceil(len(rss2)/2)-np.argmax(rss2) 

 

    #print (np.ceil(len(rss2)/2),np.argmin(rss2)) 

    f,ax=plt.subplots(figsize=(16,4)) 

    ax.plot(rss2) 

    xlim=[0,251] #or eric [0,101] 

     

    ax.axvline(np.ceil(len(rss2)/2+1),color='k',linestyle='--',label='Center') 

    ax.axvline(np.argmax(rss2),color='r',linestyle='--',label='Peak Corr') 

    ax.set(title=f'RWTLCC Pearson Mean\n{id}\nOffset = {offset} frames\nS1 leads <> S2 

leads', xlabel='Offset',ylabel='Pearson_r') 

    ax.set_xticks(np.arange(0,251, 25.0)) 

    ax.set_xticklabels(np.arange(-125, 126, 25)) 

    plt.legend() 

    plt.show 

    f.savefig(fpath+ id + '_' +'RWTLCCCorr.png', bbox_inches = "tight") 

     

     

    RSneg=(rss2[0:int(seconds*fps)+1]) 

    RSpos=(rss2[int(seconds*fps)+1:int(seconds*fps)*2+1]) 

    rsumA=max(RSneg) #(RSneg.max(axis=0)) 

    rsumB=max(RSpos) #(RSpos.max(axis=0)) 

 

     

    rs1=str(round(offset,3)) 

    rs2=str(round(abs(offset),3))   

    rx=(rsumB/rsumA) 

    if rx>1: 

        rx=(rsumA/rsumB) 

    rs3=str(round(abs(rx),3)) 

    rs4=str(round(abs(rsumB-rsumA),3)) 

 

  

    out1=rs1+'\t'+rs2+'\t'+rs3+'\t'+rs4 

    RWTLCClist.append(out1) 
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def DTW(df):   

#Dynamic Time Warping 

 

 

    d1 = df['DataA']  #.interpolate().values 

    d2 = df['DataB']  #.interpolate().values 

 

        #d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist='euclidean') 

 

         

    #d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist='euclidean') 

    w= inf 

    s=1.0 

    l2_norm = lambda x, y: (x - y)**2 

    dist, cost_matrix, acc_cost_matrix, path = dtw(d1, d2, dist=l2_norm,w=w,s=s) 

     

    f,ax = plt.subplots(figsize=(12,10)) 

    plt.imshow(acc_cost_matrix.T, origin='lower', cmap='jet', interpolation='nearest') 

    plt.plot(path[0], path[1], 'w') 

    plt.xlabel('Subject1') 

    plt.ylabel('Subject2') 

    plt.title(f'DTW Minimum Path with minimum distance: {np.round(dist,2)} : {id}') 

    plt.colorbar(fraction=0.046, pad=0.04) 

         

    plt.show() 

    f.savefig(fpath+ id + '_'  +'fastDTW.png') 

    distlist.append(str(round(dist,3))) 

 

def fastDTW(df):   

#Dynamic Time Warping 

 

     

    d1 = df['DataA'].interpolate().values 

    d2 = df['DataB'].interpolate().values 

 

    d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(d1,d2, dist='euclidean') 

    f,ax = plt.subplots(figsize=(12,10)) 

     

    plt.imshow(acc_cost_matrix.T, origin='lower', cmap='jet', interpolation='nearest') 

    plt.plot(path[0], path[1], 'w') 

    plt.xlabel('Subject1') 

    plt.ylabel('Subject2') 

    plt.title(f'DTW  Path with minimum distance: {np.round(d,2)}: {id}') 

    plt.colorbar(fraction=0.046, pad=0.04) 
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    xx=str(round(100*   ( abs(len(d1)-d) /len(d1) ),3)) 

    dd=str(round(d,3)) 

    distlist.append(dd+'\t'+xx) 

     

    plt.show() 

    f.savefig(fpath+ id + '_'  +'fastDTW.png') 

 

def matDTW(s1,s2,Typ): 

    """   

    2 dummy arrays original 1D vectors 

    :param array x: now len(s1) 

    :param array y: now len(s2) 

    2 3 DoF arrays for distance measures 

    :param array s1 N1*M*dims array 

    :param array s2: N2*M*dims array 

    :param func dist: distance used as cost measure 

    :param int warp: how many shifts are computed. 

    :param int w: window size limiting the maximal distance between indices of matched entries 

|i,j|. 

    :param float s: weight applied on off-diagonal moves of the path. As s gets larger, the warping 

path is increasingly biased towards the diagonal 

    Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap 

path. 

    """ 

    ste=5 

    nrow=len(s1) 

    #print (nrow) 

    df1=[] 

    df2=[] 

    new_s1=[] 

    new_s2=[] 

    #news2=[] 

    global fpath 

 

    k=0 

    #resample 25 Hz to 5 Hz either mean of 5 (postion data) or sum of 5 (dynamic data) 

    if Typ=='pos': 

        for ii in range (0,int(nrow/ste),ste): 

            st=ii*ste 

            en=st+ste 

            df1=s1[st:en] 

            df2=s2[st:en] 

            k+=1 

            new_s1.append (df1.mean(axis=0)) 

            new_s2.append (df2.mean(axis=0)) 

            #print(k,df1.mean(axis=0)) 
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    else: 

         for ii in range (0,int(nrow/ste),ste): 

            st=ii*ste 

            en=st+ste 

            df1=s1[st:en] 

            df2=s2[st:en] 

            k+=1 

            new_s1.append (df1.sum(axis=0)) 

            new_s2.append (df2.sum(axis=0)) 

         

         

    s1 = pd.DataFrame(new_s1) 

    s2 = pd.DataFrame(new_s2) 

 

    x=len(s1) 

    y=len(s2) 

    w=inf 

    s=1.0 

    dist, cost_matrix, acc_cost_matrix, path = multi_dtw(x, y,s1,s2,Typ, warp=1,w=w,s=s) 

    #print (round(dist,3)) 

     

     

    f,ax = plt.subplots(figsize=(12,10)) 

    plt.imshow(acc_cost_matrix.T, origin='lower', cmap='jet', interpolation='nearest') 

    plt.plot(path[0], path[1], 'w',linewidth=3) 

    plt.xlabel('Subject1') 

    plt.ylabel('Subject2') 

    plt.title(f'DTW  Path with minimum distance: {np.round(dist,2)}: {id}') 

    plt.title('Matrix-DTW ('+Typ+'): '+id+' (dist=)'+str(round(dist,3))) 

    plt.colorbar(fraction=0.046, pad=0.04) 

         

   

    #ymin, ymax = ax.get_ylim() 

    #xmin, xmax = ax.get_xlim() 

  

    #plt.plot(x, label='x') 

    #plt.plot(y, label='y') 

    distlist.append(str(round(dist,3))) 

    plt.show() 

    f.savefig(fpath+ id +'_' +'MatDTW_'+Typ+'.png', bbox_inches = "tight") 

 

def PhS(dfRaw):    

#Phase Synchrony 

     

    

    y1 = dfRaw['DataA'].interpolate().values 
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    y2 = dfRaw['DataB'].interpolate().values 

     

    #y1 = butter_bandpass_filter(y1,lowcut=lowcut,highcut=highcut,fs=fs,order=order) 

    #y2 = butter_bandpass_filter(y2,lowcut=lowcut,highcut=highcut,fs=fs,order=order) 

     

    al1 = np.angle(hilbert(y1),deg=False) 

    al2 = np.angle(hilbert(y2),deg=False) 

    phase_synchrony = 1-np.sin(np.abs(al1-al2)/2) 

    N = len(al1) 

    # Plot results 

     

    f,ax = plt.subplots(3,1,figsize=(14,7),sharex=True) 

    ax[0].plot(y1,color='r',label='y1') 

    ax[0].plot(y2,color='b',label='y2') 

    ax[0].legend(bbox_to_anchor=(0., 1.02, 1., .102),ncol=2) 

    ax[0].set(xlim=[0,N], title='Filtered Timeseries Data') 

    ax[1].plot(al1,color='r') 

    ax[1].plot(al2,color='b') 

    ax[1].set(ylabel='Angle',title='Angle at each Timepoint',xlim=[0,N]) 

    phase_synchrony = 1-np.sin(np.abs(al1-al2)/2) 

    ax[2].plot(phase_synchrony) 

    ax[2].set(ylim=[0,1.1],xlim=[0,N],title='Instantaneous Phase Synchrony: 

'+id,xlabel='Time',ylabel='Phase Synchrony') 

    plt.tight_layout() 

    f.savefig(fpath+ id + '_' +'PhS.png') 

    print(statistics.mean(phase_synchrony)) 

     

def TLMimDyn(s1,s2):  #(s1,s2): swapped persons to be compatible with RWTLCC 

    fps=25 

    lag=int(seconds*fps) 

    N=len (s2) #1500 

    stp=5   

    lst=[] 

    diff_all=[] 

    for i in range(lag,N-lag,stp): 

        #step forward 

        d1= s2.iloc[i] 

        lst=[] 

        dda=0 

        for j in range (i-lag+1,i+lag): 

 

            d2=s1.iloc[j] 

            dda=0 

 

            for k in range(14): 

                #difference in dyad of Eukledian diffrences between all joints abs (Xtn - Xtn+1) 
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                x1=d1.iloc[k] 

                x2=d2.iloc[k] 

                dd=sqrt((x1-x2)**2) 

                dda+=dd 

 

                 

            lst.append(dda) 

        diff_all.append (lst) 

    rss = pd.DataFrame(diff_all)  # either standard display time vertical 

    rss2=rss.transpose()  

    #rss2=(rss2-rss2.mean())/rss2.std(ddof=0) 

    #rss2 = (rss2 - rss2.mean())/rss2.std(ddof=0)*-1 

    f,ax = plt.subplots(figsize=(16,4)) 

    #vmin, vmax = 0, 10 

    #sns.heatmap(rss2,cmap='RdBu_r',ax=ax,center=(vmin + vmax) / 2., vmax=vmax) 

    stdev=rss2.std(ddof=0) 

    stdev=2*(stdev.std(ddof=0)) 

    m=rss2.mean() 

    m=m.mean() 

    vmin=m-2*stdev 

    vmax=m+2*stdev 

     

  

    sns.heatmap(rss2,cmap='RdBu_r',ax=ax,vmin=vmin,vmax=vmax) 

    

    ymin, ymax = ax.get_ylim() 

    xmin, xmax = ax.get_xlim() 

    #print (ymin,ymax,xmin,xmax) 

    

    #ax.set_yticks(np.arange(100,-1,-(100/4))) #ymin, ymax,(abs(ymax-ymin)+1)/5)) 

    #ax.set_yticklabels(np.arange(-2, 2.1, 1)) 

    ax.set_yticks(np.arange(0, 2*lag+1,int((2*lag+1)/4))) 

    ax.set_yticklabels(np.arange(-2, 2.1,1)) 

  

     

    ax.set_xticks(np.arange(xmin,xmax+1, 25.0)) 

    ax.set_xticklabels(np.arange(xmin,xmax+1, 5)) 

 

     

    #ax.set(title=f'Rolling Windowed Time Lagged Cross Correlation',xlim=[0,301], 

xlabel='Offset',ylabel='Epochs (1 sec)') 

    ax.set(title=f'Time-Lagged Movement Difference: '+id,ylabel='Offset (seconds)',xlabel='Time 

Line (seconds)') 

 

    #plt.savefig(path+id) 

    plt.show() 
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    f.savefig(fpath+ id + '_' +'MimDyn.png', bbox_inches = "tight") 

 

    rss2=(np.array(rss2).mean(axis=1)) 

     

    offset = np.ceil(len(rss2)/2)-np.argmin(rss2) 

        

    f,ax=plt.subplots(figsize=(16,4)) 

    ax.plot(rss2) 

    ax.axvline(np.ceil(len(rss2)/2),color='k',linestyle='--',label='Center') 

    ax.axvline(np.argmin(rss2),color='r',linestyle='--',label='Peak synchrony') 

    ax.set(title=f'Lag Distribution Synchrony (motion)\n{id}\nOffset = {offset} frames\nS1 leads 

<> S2 leads',xlim=[0,101], xlabel='Offset',ylabel='Distance') 

    ax.set_xticks(np.arange(0, 101, 5.0)) 

    ax.set_xticklabels(np.arange(-50, 51, 5)) 

    #ax.set_xticks(np.arange(0, 251, 25.0)) 

    #ax.set_xticklabels(np.arange(-125, 126, 25)) 

    plt.legend() 

    plt.show 

    f.savefig(fpath+ id + '_' +'MimPos2.png', bbox_inches = "tight") 

     

         

    RSneg=(rss2[0:int(seconds*fps)+1]) 

    RSpos=(rss2[int(seconds*fps)+1:int(seconds*fps)*2+1]) 

    rsumA=max(RSneg) #(RSneg.max(axis=0)) 

    rsumB=max(RSpos) #(RSpos.max(axis=0)) 

     

 

     

    rs1=str(round(offset,3)) 

    rs2=str(round(abs(offset),3)) 

    rx=(rsumB/rsumA) 

    if rx>1: 

        rx=(rsumA/rsumB) 

    rs3=str(round(abs(rx),3)) 

 

    rs4=str(round(abs(rsumB-rsumA),3)) 

 

  

    out1=rs1+'\t'+rs2+'\t'+rs3+'\t'+rs4 

     

    mimdynlist.append(out1) 

     

def TLMimPos(s1,s2):  #(s1,s2):  swapped persons to be compatible with RWTLCC 

    seconds=3 

    lag=int(seconds*fps) 

    N=len(s1)  #1500 
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    stp=75   

    lst=[] 

    diff_all=[] 

    

    for i in range(lag,N-lag,stp): 

        #step forward 

        d1= s1.iloc[i] 

        lst=[] 

        for j in range (i-lag,i+lag): 

            d2=s2.iloc[j] 

            dda=0 

 

            for k in range(14): 

                p=k*3 

                x1=d1.iloc[p] 

                y1=d1.iloc[p+1] 

                z1=d1.iloc[p+2] 

                x2=d2.iloc[p] 

                y2=d2.iloc[p+1] 

                z2=d2.iloc[p+2] 

                dd=sqrt((x1-x2)**2+(y1-y2)**2+(z1-z2)**2) 

                dda+=dd 

            lst.append(dda) 

        diff_all.append (lst) 

     

    rss = pd.DataFrame(diff_all)  # either standard display time vertical 

    rss2=rss.transpose()  

    rss2=rss2.dropna(axis=0,how='all') 

    #print (N,(rss2)) 

    f,ax = plt.subplots(figsize=(16,4)) 

    #vmin, vmax = 0, 500 

    sns.heatmap(rss2,cmap='RdBu_r',ax=ax) #,center=(vmin + vmax) / 2., vmax=vmax) 

    ymin, ymax = ax.get_ylim() 

    xmin, xmax = ax.get_xlim() 

    #print (ymin,ymax,xmin,xmax) 

    ax.set(title=f'Time-Lagged Posture Difference: '+id,ylabel='Lag (seconds)',xlabel='Time Line 

(seconds)') 

    """ 

    ax.set_yticks(np.arange(0, 251, 128)) #2*lag+1,int((2*lag+1)/2))) 

    ax.set_yticklabels(np.arange(-5, 5.1,5)) 

     

    ax.set_xticks(np.arange(xmin,xmax+1, 25.0)) 

    ax.set_xticklabels(np.arange(xmin,xmax+1, 25.0)) 

    """ 

    plt.show() 

    f.savefig(fpath+ id + '_' +'MimPos1.png', bbox_inches = "tight") 
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    rss2=(np.array(rss2).mean(axis=1)) 

    rss2[0]=rss2[1]  #correct for 1. row 

  

    #rss2[0]=rss2[1]  #correct for 1. row 

    offset = np.ceil(len(rss2)/2)-np.argmin(rss2) 

    #print (rss2) 

    #print (np.ceil(len(rss2)/2),np.argmin(rss2)) 

    f,ax=plt.subplots(figsize=(16,4)) 

    ax.plot(rss2) 

    ax.axvline(np.ceil(len(rss2)/2),color='k',linestyle='--',label='Center') 

    ax.axvline(np.argmin(rss2),color='r',linestyle='--',label='Peak mimicry') 

    ax.set(title=f'Lag Distribution Mimicry (position) \n{id}\nOffset = {offset} frames\nS1 leads 

<> S2 leads', xlabel='Offset',ylabel='Distance') 

    #ax.set_xticks(np.arange(0, 256, 25.0)) 

    #ax.set_xticklabels(np.arange(-125, 126, 25)) 

    plt.legend() 

    plt.show 

    f.savefig(fpath+ id + '_' +'MimPos2.png', bbox_inches = "tight") 

         

    RSneg=(rss2[0:int(seconds*fps)+1]) 

    RSpos=(rss2[int(seconds*fps)+1:int(seconds*fps)*2+1]) 

    rsumA=max(RSneg) #(RSneg.max(axis=0)) 

    rsumB=max(RSpos) #(RSpos.max(axis=0)) 

 

     

    rs1=str(round(offset,3)) 

    rs2=str(round(abs(offset),3))   

    rx=(rsumB/rsumA) 

    if rx>1: 

        rx=(rsumA/rsumB) 

    rs3=str(round(abs(rx),3)) 

    rs4=str(round(abs(rsumB-rsumA),3)) 

 

  

    out1=rs1+'\t'+rs2+'\t'+rs3+'\t'+rs4 

    mimiclist.append(out1) 

 

def show_it(df): 

    m1=np.amax(df['DataA']) 

    m2=np.amax(df['DataB']) 

    m=max(m1,m2) 

     

 

    f,ax = plt.subplots(figsize=(16,4)) 

    #plt.title(id+' RawData (z-transformed)') 
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    plt.plot( df['DataA'], label='Person A') 

    plt.plot( df['DataB'], label='Person B') 

    plt.ylim((-m*1.2,m*1.2)) 

    #plt.yticks([-1,1]) 

    plt.show() 

 

 

 

 

#main program 

 

 

id='' 

fpath='' 

fileMovA=[] 

fileMovB=[] 

filePosA=[] 

filePosB=[] 

distlist=[] 

corrlist=[] 

TLCClist=[] 

gazelist=[] 

mimiclist=[] 

mimdynlist=[] 

MIlist=[] 

RWTLCClist=[] 

 

#study ID: 

#case_ID='Rapport'    

case_ID = 'Eric' 

 

#data type: 

mode='rawmat' 

#mode='vectors' 

#mode='SRL' 

 

 

#headers for parameter outputs 

RWTLCClist.append('offset_signed'+'\t'+'off_absolut'+'\t'+'AB_Proportion'+'\t'+'AB_Difference'

) 

mimiclist.append('offset_signed'+'\t'+'off_absolut'+'\t'+'AB_Proportion'+'\t'+'AB_Difference') 

mimdynlist.append('offset_signed'+'\t'+'off_absolut'+'\t'+'AB_Proportion'+'\t'+'AB_Difference') 

TLCClist.append('offset_signed'+'\t'+'off_absolut'+'\t'+'AB_Proportion'+'\t'+'AB_Difference') 

distlist.append('DTW_dist'+'\t'+'Dist_Percent') 

corrlist.append('Pearson_r'+'\t'+'p_value') 

gazelist.append ('direct_perc') 
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org_samp_rate=25 

fs=org_samp_rate 

new_samp_rate=  25  

re_samp=int(org_samp_rate/new_samp_rate) 

lowcut  = .05 #.01  #band pass low 

highcut = .5        #bad pass high 

order = 1 

fc_low = .5     # Cut-off frequency of the low pass filter 

fc_high = .3    # Cut-off frequency of the high pass filter 

mF=50           # median filter constant 

seconds=5 #2       # size off lag for lagged analyses 

 

fps = new_samp_rate 

  

 

if mode== 'rawmat': 

    

    #Eric Data 

    if case_ID=='Eric': 

        fpath='C:/Motion Data/' 

        onlyfiles = [f for f in listdir(fpath) if isfile(join(fpath, f))and f.endswith('0_mov_A.txt')] 

    elif case_ID=='Rapport':          #rapport data 

        fpath='C:/Users/gabente/Desktop/Rapport/SnapData/' 

        onlyfiles = [f for f in listdir(fpath) if isfile(join(fpath, f))and f.endswith('Mov_A.txt')] 

 

    for l in onlyfiles: 

         

        ll=l.upper() 

 

        fileMovA.append(fpath+ll) 

        fileMovB.append(fpath+ll.replace('A','B')) 

  

        filePosA.append(fpath+ll.replace('MOV_A','POS_A')) 

        filePosB.append(fpath+ll.replace('MOV_A','POS_B')) 

         

    l=-1  

    for ff in onlyfiles: 

        if case_ID=='Eric': 

            id="DYAD"+ff[0:2]  #Eric 

        elif case_ID=='Rapport': 

            id="DYAD"+ff[5:7]  #Rapport 

        l+=1     

     

    #Read movemnt data 
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        fid1=fileMovA[l] 

        fid2=fileMovB[l] 

        d1=[] 

        d2=[] 

     

        

hvalid=['Chest','L_Arm','L_ForeArm','L_Hand','R_Arm','R_ForeArm','R_Hand','Head','R_UpLeg

','R_Leg','R_Foot','L_UpLeg','L_Leg','L_Foot'] 

        if case_ID=='Rapport': 

            hvalid=list(map(lambda x: x.upper(), hvalid))   

          

        #hips if in data are skipped as they set to zero in the snap mode 

     

        dfMovA = pd.read_csv(fid1,sep='\t',usecols=lambda column : column in hvalid) 

        dfMovB = pd.read_csv(fid2,sep='\t',usecols=lambda column : column in hvalid) 

         

    #Read postion data 

        fid1=filePosA[l] 

        fid2=filePosB[l] 

        dfPosA = pd.read_csv(fid1,sep='\t',usecols=lambda column : column not in ['HIPS:TX', 

'HIPS:TY', 'HIPS:TZ']) 

        dfPosB = pd.read_csv(fid2,sep='\t',usecols=lambda column : column not in ['HIPS:TX', 

'HIPS:TY', 'HIPS:TZ']) 

     

      

    #z-transform motion data in all joints separetly 

        cols = list(dfMovA.columns) #identical for A and B 

        for col in cols: 

            dfMovA[col] = (dfMovA[col] - dfMovA[col].mean())/dfMovA[col].std(ddof=0) 

            dfMovB[col] = (dfMovB[col] - dfMovB[col].mean())/dfMovB[col].std(ddof=0) 

         

    #correct first row of data 

         

            dfMovA.iloc[0:] = dfMovA.iloc[1:]  

            dfMovB.iloc[0:] = dfMovB.iloc[1:]  

            dfPosA.iloc[0:] = dfPosA.iloc[1:]  

            dfPosB.iloc[0:] = dfPosB.iloc[1:]  

     

         

    #aggregate motion data across joints for A and B 

        d1= dfMovA.sum(axis=1) 

        d2= dfMovB.sum(axis=1) 

    #combine A and B in one file     

        dfx = pd.concat([d1, d2], axis=1, sort=False) 

    #replace variable names 

        names=[] 
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        names.append('DataA') 

        names.append('DataB') 

        dfx.columns = dfx.columns[:0].tolist() + names 

     

    # interpolate missing data and generate unfiltered raw data matrix in dfRaw 

        dfxRaw = dfx #dfx.interpolate() 

 

         

        #calculate low pass butterworth filtered data in df 

 

 

        if new_samp_rate<org_samp_rate: 

            resample (dfx,re_samp) 

            fs=new_samp_rate  

         

        #band pass 

        dfx['DataA'] = 

butter_bandpass_filter(dfx['DataA'],lowcut=lowcut,highcut=highcut,fs=fs,order=order) 

        dfx['DataB'] = 

butter_bandpass_filter(dfx['DataB'],lowcut=lowcut,highcut=highcut,fs=fs,order=order) 

 

        """ 

        #low pass 

        dfx['DataA']=low_pass_filter (dfxRaw['DataA'],fs,fc_low) 

        dfx['DataB']=low_pass_filter (dfxRaw['DataB'],fs,fc_low) 

         

        #high pass 

        dfx['DataA']=high_pass_filter (dfxRaw['DataA'],fs,fc_high) 

        dfx['DataB']=high_pass_filter (dfxRaw['DataB'],fs,fc_high) 

         

        #Median Filter 

        dfx['DataA'] = median_filter(dfx['DataA'],mF) 

        dfx['DataB'] = median_filter(dfx['DataB'],mF) 

        """ 

 

#select procedures\ 

        #show_it(dfx) 

        #corr(dfx) 

       # RWS(dfx) 

        #TLCC(dfx) 

        #RWTLCC(dfx) 

         

         

       # mutual_information (dfx) 

         

       # fastDTW(dfx) 
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        #DTW(dfx) 

        #TLMimPos(dfPosA,dfPosB) 

        #TLMimDyn(dfMovA,dfMovB) 

        #matDTW(dfPosA,dfPosB,'pos')    

        #matDTW(dfMovA,dfMovB,'mov') 

        PhS(dfxRaw)  

        #WTLCC(dfx)    

 

 

with open (fpath+'dist.txt','w') as f: 

    f.write('\n'.join(line for line in distlist)) 

with open (fpath+'corr.txt','w') as f: 

    f.write('\n'.join(line for line in corrlist)) 

with open (fpath+'TLCC.txt','w') as f: 

    f.write('\n'.join(line for line in TLCClist)) 

with open (fpath+'RWTLCC.txt','w') as f: 

    f.write('\n'.join(line for line in RWTLCClist)) 

 

with open (fpath+'MutualInf.txt','w') as f: 

    f.write('\n'.join(line for line in MIlist)) 

 

Save_PDF() 
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