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ABSTRACT
EXPANSION POSETS FOR POLYGON CLUSTER ALGEBRAS
By
Andrew Claussen

Define an expansion poset to be the poset of monomials of a cluster variable attached to an
arc in a polygon, where each monomial is represented by the corresponding combinatorial object
from some fixed combinatorial cluster expansion formula. We introduce an involution on several
of the interrelated combinatorial objects and constructions associated to type A surface cluster
algebras, including certain classes of arcs, triangulations, and distributive lattices. We use these
involutions to formulate a dual version of skein relations for arcs, and dual versions of three
existing expansion posets. In particular, this leads to two new cluster expansion formulas, and
recovers the lattice path expansion of Propp et al. We provide an explicit, structure-preserving
poset isomorphism between an expansion poset and its dual version from the dual arc. We also
show that an expansion poset and its dual version constructed from the same arc are dual in the
sense of distributive lattices.

We show that any expansion poset is isomorphic to a closed interval in one of the lattices
L(m,n) of Young diagrams contained in an m x n grid, and that any L(m, n) has a covering by
such intervals. In particular, this implies that any expansion poset is isomorphic to an interval in
Young’s lattice.

We give two formulas for the rank function of any lattice path expansion poset, and prove that
this rank function is unimodal whenever the underlying snake graph is built from at most four
maximal straight segments. This gives a partial solution to a recent conjecture by Ovsienko and
Morier-Genoud. We also characterize which expansion posets have symmetric rank generating

functions, based on the shape of the underlying snake graph.



We show that the support of any type A cluster variable is the orbit of a groupoid. This implies
that any such cluster variable can be reconstructed from any one of its monomials.

Finally, in work joint with Nicholas Ovenhouse, we partially generalize T-paths to configura-
tions of affine flags, and prove that a 7-path expansion analogous to the type A case holds when
the initial seed is from a fan triangulation. We finish by describing the structure of two types of

expansion posets in this context.
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Chapter 1

Introduction

Cluster algebras are a class of inherently combinatorial commutative algebras that were defined by
Fomin and Zelevinsky in [14]. The definition of cluster algebras was motivated by observations in
representation theory. Since then, cluster algebra structures have been recognized and studied in
various other fields of mathematics, such as decorated Teichmiiller theory and Poisson geometry
(see [18] and [12]], [13]]), higher Teichmiiller theory [9]], rings of invariants (see [10] and [11]]),
elementary number theory [5] including diophantine equations [34], and knot theory [26]], just
to name a few.

Each cluster algebra has a distinguished set of generators, called the cluster variables. These
generators are grouped into overlapping subsets, called clusters, all having the same cardinality,
called the rank of the cluster algebra.

A seed of a cluster algebra is a triple consisting of a cluster, a coefficient tuple, and a skew-
symmetrizable matrix called an exchange matrix. In any rank n cluster algebra, each seed can
be mutated in direction ¢ for any 1 < ¢ < n to produce n more seeds. By construction, seed
mutation is an involution. Clusters in adjacent seeds differing by a mutation in direction 7 are
equal, except that the it" variables in each differ from one another by what is called an exchange
relation. This means that their product is a certain binomial sum whose form is governed by the
exchange matrices. Any cluster algebra can be computed by fixing an initial seed and iterating

seed mutation to produce all the cluster variables.



A Laurent polynomial is a polynomial with negative exponents allowed, i.e., any Laurent poly-
nomial can be written as ) ;czm ar X . One of the first fundamental results of cluster algebra
theory is that any cluster variable can be written as a Laurent polynomial with respect to any
cluster. This is called the Laurent phenomenon.

We will work within the subclass of cluster algebras in which exchange matrices and matrix
mutation may be replaced by quivers and quiver mutation, respectively. These cluster algebras
are called cluster algebras from quivers, or skew-symmetric cluster algebras of geometric type

A large subclass of cluster algebras are the cluster algebras from surfaces [8]]. In such a cluster
algebra, the cluster variables are in bijection with certain curves in the surface called tagged arcs,
seeds are in bijection with tagged triangulations of the surface, and mutation corresponds to a flip
of a tagged arc in a tagged triangulation.

The combinatorics of the subclass of cluster algebras from a disc with 7 + 3 marked points on
the boundary (i.e., a polygon) are the main focus of this paper. These cluster algebras are examples
of cluster algebras of finite type A;,. As the notion of tagged triangulations and tagged arcs is
unnecessary in this restricted level of generality, we will henceforth only speak of (ordinary)
arcs. Any seed in a cluster algebra of finite type A,, can be modeled by a triangulated (n + 3)-
gon, made up of n triangulating arcs (which we also call internal diagonals, or just diagonals), and
n + 3 segments that make up the boundary of the polygon, called boundary segments. Mutation
corresponds to a flip of one of the n internal diagonals in the triangulation. Figure below
shows one of the two possible flips inside a triangulated polygon.

Numerous combinatorial cluster expansion formulas for surface type and type A, cluster al-
gebras have been developed in recent years. Each such expansion gives an explicit formula to
compute any cluster variable by writing it as a weighted sum over a certain class of combinato-

rial objects. We recall three such expansion formulas from the literature - perfect matchings of



Figure 1.1: A flip inside a triangulated pentagon

~_ 7 "~ 7

snake graphs, perfect matchings of angles, and T'-paths. (see [30] and [31]], [42] and [43], and [36]],
[38], and [37] respectively).

The monomials of any cluster variable can be naturally arranged into a poset [15]. We can
equip each such poset with the additional node structure it inherits from some combinatorial
expansion formula. We call any such poset an expansion poset (in fact, each of these posets is
isomorphic to a distributive lattice [31]).

In this paper, inspired by the snake graph involution introduced in [33] and the involution
“Jimm” in [41]], we define a new notion of duality, a certain involution on several of the combi-
natorial objects found in type A cluster theory, including for instance triangulations of an n-gon,
and a certain class of distributive lattices. Each such object is parameterized by a binary word
w, so that duality between objects is controlled by duality w <+— w™ on the underlying words.
These constructions yield a dual version of skein relations for arcs. Furthermore, we use this
duality to produce an equivalent yet combinatorially distinct version (built from the dual arc in
the dual triangulation) of each of the three expansion posets mentioned above.

Namely, we observe that there is an explicit poset isomorphism (respecting additional node
structure) between the perfect matching expansion poset P, and the dual lattice path expansion
poset I, « associated to the dual word. This duality, minus poset structures, was given in [33]

in the context of frieze patterns. We define two more expansion posets, new to the best of our



knowledge, which we call lattice paths of angles B, and S-walks Sy, respectively. We observe
that there is an explicit structure-preserving poset isomorphism between the expansion posets
Ay, and B, «, and likewise between the T-path expansion poset T, and S, «.

The three isomorphisms just indicated are all written in terms of either snake graph duality,
or traingulation duality. Here, we call any such isomorphism an expansion duality. The horizontal
maps in the figure below represent expansion dualities. The maps comprising the two triangles
are written either in terms of the folding/unfolding maps from [29], or the “angle projection” maps
defined in [43] (or some combination of the two).

Figure 1.2: Expansion duality
Py +—— L

[ /1

Ay

-

Ty — S},

Furthermore, we show that the two isomorphism classes of expansion posets attached to any
arc are dual in the sense of distributive lattices mentioned above.

A partition of a positive number m is a weakly decreasing sequence (A1, A9, ..., A;) such that
m = A + Ao+ -+ \. A Young diagram is a visualization of a partition of a positive integer by
rows of boxes (see [35]). Young’s lattice is the infinite lattice whose nodes are Young diagrams,
which are ordered by inclusion (see [35] and [39]). Young’s lattice possesses a collection of finite

sublattices, typically called L(m, n), whose nodes are all those Young diagrams that fit within an

n-+m

m X n rectangular grid, and whose rank function is the ¢g-binomial coefficient [ m

}q. We give
a groupoid structure on the set of all snake graphs which reconstructs the posets L(m,n). That

is, each orbit of this groupoid can be given the structure of a poset, which is isomorphic to one of



the lattices L(m, n), and furthermore (the isomorphism class of) every L(m,n) can be obtained
in this way. We show that each expansion poset considered above is isomorphically embedded
as a closed interval in some L(m,n), and moreover that each L(m,n) has a covering by such
embeddings.

We provide two closed formulas for the rank function L, (¢) of any lattice path expansion
poset Ly, of lattice paths on the snake graph G,. The first is written as sums of products of hook
snake graphs, and its terms are parameterized by the nodes in a Boolean lattice. The second for-
mula we introduce is a refinement of the first, and is written in terms of ¢-numbers corresponding
to lengths of the maximal straight segments that Gy, is built from. The latter formula is obtained
by considering the snake graph Gy, itself as a lattice path on another snake graph. In fact, this
construction makes G, into the central node in a Fibonacci cube, an interconnection topology
defined in [23].

Recently, a conjecture was made in [27] that is equivalent to asking if the coefficients of
the rank generating function of any expansion poset are unimodal, meaning that they weakly
increase, and then weakly decrease. By again studying lattice path expansions, we show this
conjecture to be true for snake graphs built from at most four maximal straight segments. We
also characterize, based on the shape of the underlying snake graph, which expansion posets
have palindromic, or symmetric, coeflicients.

Next, we interpret the support of any cluster variable x,, in a type A surface cluster algebra as
an orbit of a certain groupoid. It follows that any two cluster variables, written with respect to the
same initial seed, have disjoint supports. Thus, any cluster variable x,, is completely determined
by any one of its Laurent monomials.

Lastly, in work joint with Nicholas Ovenhouse, we partially generalize the 7-path expansion

mentioned above to configurations of affine flags (see [9]]). We describe in two special cases the



poset structure on the Laurent monomials from an expansion in this context.



Chapter 2

Cluster Algebras

We begin this chapter by defining the subclass of cluster algebras called cluster algebras from
quivers, or skew-symmetric cluster algebras of geometric type. Next, we introduce cluster algebras
from surfaces. Finally, we describe surface cluster algebras of type A, which is the class of cluster

algebras we study in the rest of the paper.

2.1 Cluster Algebras from Quivers

Definition 2.1. A quiver is a 4-tuple Q = (Qq, @1, $,t), where Q) is a set of nodes or vertices,
(21 is a multiset of arrows whose elements are from Q)¢ x (), and the source and target functions
s,t: Q1 — Qo are the first and second projection, respectively. A quiver () contains a loop if
there exists a node v € g and an arrow e € 1 such that v = s(e) = t(e). We say () contains
a 2-cycle if there exists two distinct nodes v1,v9 € )y and two arrows e1,es € ()1 such that
v = s(e1) = t(eg) and v9 = s(eg) = t(eq). A quiver ) contains a 3-cycle if there exist three
distinct nodes vy, v, v3 € Qo and three arrows e, e9,e3 € () such that v; = s(ey) = t(e3),
vy = s(eg) = t(ey), and v3 = s(e3) = t(ea). We say @ is finite if both )y and ()1 are finite sets.

In this case, we label the vertices of Q) by 1,2, ..., #{nodes in Q}.

From now on, we only consider finite quivers (unless stated otherwise) that do not contain

any loops or 2-cycles.



Definition 2.2. Let Q = (Qq, Q1) be a quiver with vertices Qg = {1,2,...,n}. We define
quiver mutation at vertex k to be the the map on quivers ;. whose image 1. (Q) is defined by the

following procedure:

1. For each pair of arrows ¢ — k& — j, create a new directed edge ©« — j (note that prohibiting

2-cycles implies that ¢ # 7).
2. Reverse the orientation of each arrow incident to k

3. Delete any and all 2-cycles created in step 1.

Example 2.3. In Figure 2.1} we illustrate the three-step process in Definition 2.2 by mutating the
left-most quiver at vertex 1 to produce the right-most quiver.

Figure 2.1: Quiver mutation

—3 OE——3 D——%3

1&&——
@:\‘ / \ / \ / \ / (@
Step 1 Step 2 ) Step 3

We say that two quivers ()1 and ()9 are mutation equivalent if one can be obtained from the
other by some sequence of quiver mutations. One can check that quiver mutation at vertex k is

an involution, so that mutation equivalence is indeed an equivalence relation.

Definition 2.4. Fix n < m andlet Q = (Qq, Q1) be a quiver with vertices Qg = {1,2,...,n,n+
1,...,m}. Partition Q¢ into the two sets Q(T)n“mble ={1,2,...,n} and Qomzen ={n+1,n+
2,...,m}, which we call the mutable vertices and the frozen vertices, respectively. Fix an am-
bient field F = Q(f1, f2, -, fn, fnt1, -, fm). By associating to each vertex i in ¢ the inde-
terminate f;, we obtain a seed in F, denoted ((fl, f2y s fm), Q) The variables f1, fa, ..., fn

are called cluster variables (or mutable variables), and f, 11, ..., f; are called frozen variables.



The n-tuple (f1, fo, ..., fn) is called the cluster of the seed ((fl, foy s fm)s Q), and the m-tuple

(f1, f2, -, fm) is the extended cluster of the seed ((fl, foy s fm)s Q).

Definition 2.5. Consider the seed ((fl, fay s frm), Q). For 1 < k < n, we define seed mutation

at variable k to be the map on seeds 1, whose image

16 ((F1 f2seons ) Q) = ((F1s fas oy Fn)s 1(Q))

is defined as follows:

« If j # k, then f; = f;.

« If j = k, then f;. and ﬁ are related by the following exchange relation:

fef= 1 £+ 1 #

s—k k—t
Definition 2.6. Consider the initial seed ((mh 9, ey Tyn), Q) with initial cluster (x1,x3, ..., xp)
and initial cluster variables x1, %9, ...,xn. Let S be the set of all seeds mutation equivalent to
((961, L9, ooy Tym), Q), and let X' be the union of all cluster variables in all seeds in S. Let R =
Zxp+1, -, Tm). The cluster algebra A = A((ml,xg, ey Tm)s Q) from the quiver () is the R-

algebra generated by X'. The rank of the cluster algebra A is the cardinality n of any of its clusters.

Below we state the Laurent Phenomenon in the restricted generality of cluster algebras from

quivers.

Theorem 2.7. (Theorem 3.1 in [14]) Let A be the cluster algebra from the quiver () with arbitrary
initial seed ((ml, Ty ey T, Q) Then any cluster variable in A can be expressed as a Laurent

polynomial in the variables x1, x2, ..., Ty, with coefficients in Z.
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2.2 Cluster Algebras from Surfaces

See [12], [9] for details on the topics presented in this section. In particular, we remind the reader

that tagged arcs are required for the general discussion but will not be mentioned here.

Definition 2.8. An oriented surface X with nonempty boundary is called a marked surface if X

comes equipped with a collection of finitely many marked points on its boundary.

Definition 2.9. An arc is any curve inside > with endpoints at marked points, considered up to
isotopy relative the set of marked points on the boundary of 3., and such that the relative interior
of this curve is disjoint from the boundary of ¥. Any curve beginning and ending at distinct
marked points which lies entirely within the boundary of ¥ and does not contain any marked

points in its interior is called a boundary segment.

Definition 2.10. Two arcs in X are called compatible if they have isotopy representatives that
do not intersect, except possibly at endpoints. An ideal triangulation A is a maximal collection
of distinct pairwise compatible isotopy classes of arcs, along with all boundary segments. The
arcs of a triangulation cut the surface into ideal triangles. A flip (or Whitehead move) of an ideal
triangulation at an arc -y is the process of removing v from A and replacing it with the unique

arc 7 that gives another ideal triangulation of X (see Figure[6.2).

Figure 2.2: Flip inside a quadrilateral

It is known that any two ideal triangulations of ¥ are connected by a sequence of flips.
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Definition 2.11. Let ¥ be a marked surface. We now construct a cluster algebra A(X), called the
cluster algebra from the surface X, that depends only on 3. To do this, we construct a quiver whose
nodes are in one-to-one correspondence with the collection of arcs and boundary segments of
some ideal triangulation A of ¥, and whose arrows form clockwise 3-cycles inside each ideal

triangle. This construction does not depend on the choice of ideal triangulation.

The correspondences below follow from the construction given in the previous definition.

initial cluster variables of A(X) <— arcsin A

non-initial cluster variables of A(¥) «— arcs in ¥ that are not in A
frozen variables of A(X) <— boundary segments of 3
seeds of A(X) <— triangulations A of

seed mutations in A(X) <— flips of arcs in A

2.3 Cluster Algebras of Finite Type A,

A type Ay, Dynkin diagram is an undirected graph with n nodes 1, 2, ..., n and one edge between

each pair of consecutive nodestand ¢+ 1for1 <i<n — 1.

Definition 2.12. A cluster algebra of (finite) type A, is any cluster algebra from a quiver () =
(Qo, @1, s,t) such that the induced subquiver on the mutable vertices ngmme is mutation

equivalent to some orientation of a type A, Dynkin diagram.

Any cluster algebra from a surface A(X) such that ¥ is an (n + 3)-gon, i.e. ¥ is a closed

disc with n 4+ 3 marked points on its boundary, is a rank n cluster algebra of type A;,. As is the

11



case for general surfaces, cluster variables correspond to arcs in the (n + 3)-gon, frozen variables
correspond to the boundary segments, seeds correspond to triangulations, and seed mutations

correspond to flips of arcs.

Example 2.13. Figure 2.3 below shows one seed of a surface cluster algebra of type A3.
Figure 2.3: One seed for As.

4

We will use this seed as the basis for a running example to be followed throughout the rest

of this text.
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Chapter 3

Combinatorial Constructions

In this chapter, we recall several interrelated objects and constructions naturally occuring in type

A cluster combinatorics. The objects found in this chapter are parameterized by binary words.

3.1 Words

Definition 3.1. A (binary) word of length n — 1 is a finite string formed from n — 1 choices of
elements from the set {a,b}. A word of length n — 1 will be denoted w = wyws...w,,_1 and its

lengthis [(w) =n — 1.

The word

w:aa-..abb...b...
S——

k1times kotimes
will be abbreviated w = aF15F2 . . . .

As mentioned above, the constructions that follow are parameterized by the words w.

Definition 3.2. A word w is straight if the only letter occurring in w is a, or the only letter

occurring in w is b. Conversely, a word is zigzag if neither of the substrings aa nor bb occur in w.

Example 3.3. We fix the word w = ab for our concrete running example to be followed through-

out this section. Note that the word w = ab is zigzag.

13



3.2 Type A, Dynkin Quivers

Recall that a type A,, Dynkin diagram is an undirected graph with n nodes 1, 2, ..., n and one edge
between each pair of consecutive nodes ¢ and ¢ + 1 for 1 < i < n — 1. We picture any type A,
Dynkin diagram as shown in Figure

Figure 3.1: Type A, Dynkin diagram

Order the nodes 1,2, ..., n and edges 7, ¢ + 1 of any type A, Dynkin diagramby 1 <2 < ... <
nand 1,2 < 2,3 < ... < n — 1,n, respectively. An orientation of a type A, Dynkin diagram is a

choice of orientation for each of the n — 1 edges of A,.

Definition 3.4. A type A, Dynkin quiver is a quiver that is mutation equivalent to an orientation

of a type A;, Dynkin diagram.

Figure 3.2/ shows one of the 21 possible orientations of a Dynkin diagram of type A, each
of which is an example of a type A, Dynkin quiver (since it is mutation equivalent to itself).
Figure 3.2: Orientation of a type A, Dynkin diagram

1 > 2 > n

Definition 3.5. Let w = wjws...w,_1 be a word of length I(w) = n — 1, and A,, the Dynkin
diagram of type A, with nodes labeled 1, 2, ..., n. The type A,, Dynkin quiver Ay, associated to w
is defined by mapping each w; to the ith edge 7,7 + 1 of the Dynkin diagram A,, and declaring
that any edge labeled by a becomes oriented ¢ «+— 7 + 1, and that any edge labeled by b becomes

oriented 1 — 7 + 1.

Example 3.6. The word w = ab gives the Dynkin quiver A, shown in Figure

14



Figure 3.3: The Dynkin quiver A,

1¢% 9_b .3

Remark 3.7. If the word w is straight then the edges in the Dynkin quiver A, are all oriented
in the same direction. Conversely, if the word w is zigzag then the edges in A, alternate in

orientation.

3.3 Posets

The posets we define here are called piecewise-linear posets in [1]], and zig-zag chains in [25].

Definition 3.8. Define the poset (', associated to w to be the Hasse diagram of a poset whose
underlying graph is the Dynkin diagram A;, and covering relations are ¢ < j in Cy, iff 1 — j in
Ay We visualize the edges of Cy, as taking unit diagonal steps upwards.
Example 3.9. Figure 3.4 shows the poset C,.

Figure 3.4: The poset C,

N A

2

Remark 3.10. If the word w of length [(w) = n — 1 is straight then the poset C, is a linear chain

with n elements and n — 1 edges. In this case, the covering relations are
1>2>3>--->n

ifw=a""", or
1<2<3<---<n

15



if w = b" 1. Conversely, if the word w is zigzag, then the poset Cy, is a fence or zigzag poset (see

[28]) with n elements and n — 1 edges, with covering relations
1>2<3>---

if w = ababa - - - , or

1<2>3<---

if w = babab - - - . See Figure [3.5/for four examples of a fence poset from a word w.

Figure 3.5: Four examples of fence posets C',

Cab =
C

N
NN

~

Cabab

Catata g\/\/\

3.4 Triangulations

A subquiver ()’ of the quiver () is subcollection of nodes and arrows from Q. We say that Q' is a
complete subquiver if it can be obtained from () by first specifying a subcollection of nodes of (),

and then declaring that any arrow from () which starts or ends at some vertex of this subcollection

16



is also an arrow of ()’.
Form a new quiver (), containing A,, as a complete subquiver, by adding n + 3 frozen nodes

and 2n + 4 directed edges to and from A, as follows:

« For each edge 7,7 + 1 in Ay, introduce a node n + 7 and two directed edges between n + i

and the endpoints 2 and 7 + 1 of 7, 7 + 1 such that a clockwise 3-cycle is formed. See Figure

B.6l
Figure 3.6: Clockwise 3-cycles created from edges in A,
t+n
R 1 +1--- or R i+ 1.
1+n

+ Add two nodes 2n and 2n + 1 that form a clockwise 3-cycle with the first node 1 of Ay,.
This is shown in Figure
Figure 3.7: Leftmost 3-cycle

2n +1

N

1...

—

2n

+ Add two nodes 2n + 2 and 2n + 3 that form a clockwise 3-cycle with the last node n of Ay,.

If {(w) is odd, or /(w) is even and w ends in a? or b2, form the 3-cycle shown in Figure

17



Figure 3.8: Rightmost 3-cycle, if either I(w) is odd or /(w) is even and w ends in a? or b?.

2n + 2

e

.-n

I

2n+ 3

If [(w) is even and w ends in ab or ba, instead form the 3-cycle shown in Figure
Figure 3.9: Rightmost 3-cycle, if [(w) is even and w ends in ab or ba.

2n+3

e

..n

I

2n + 2

Example 3.11. Figure shows the quiver Q.

Figure 3.10: The quiver @,

NN,
|/ NN

9

By construction, each quiver )y, comes equipped with an embedding into the plane. We
will always consider (), under this embedding. We can now construct a triangulated polygon
from this quiver; nodes of (), correspond to edges in the triangulation, and each triangle in the

triangulation corresponds to the 3-cycle in the quiver which it contains.
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Definition 3.12. The quiver (), induces the triangulation Ay, associated to w of the (n + 3)-gon
> whose elements are the internal diagonals labeled by 1,2, ..., n and boundary edges labeled

byn+1,n+2,...,2n+ 3.

The ordering of nodes in Ay, — )y, induces an ordering of the internal diagonals

0] <9 < -+ <y

of Ay,.

For 1 < i < n — 1, let A; be the unique triangle cut out by Ay, such that the two internal
diagonals 0; and ;41 are sides of A;. Let A( be the unique triangle with sides consisting of two
boundary segments and the internal diagonal 41, and A, the unique triangle with sides consisting
of two boundary segments and the internal diagonal §,,. The ordering of the internal diagonals
induces an ordering Ag < Ay < --- < Ay, on the triangles A;.

By construction, the pair of consecutive triangles A; | and A; each has precisely one edge
labeled ¢, and there are no other common labels among their edges. We use the notation ¥, =
[Ag, Aq,...,Ay] to indicate that the surface ¥ with the triangulation A, can be built by suc-

cessively gluing A; 11 to A; along the edge labeled i + 1 for each i.

Example 3.13. Figure shows the triangulated polygon X,;, with both edge labels ¢ and

triangles A; indicated (along with the quiver @), its edges pictured here with dashed arrows).

The quiver @)y, induces a type A, cluster algebra A(X),, with initial extended cluster equal to
(1,29, ..., Tn, Tntl, .-, Ton+3). In the next section we assign to any word w a cluster variable

in the associated cluster algebra.

Definition 3.14. We say that Ay, is a fan triangulation if there exists some vertex v of > such
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Figure 3.11: The triangulated polygon X,
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that each internal diagonal 1, d9, . . ., I, has v as one of its endpoints. We say that A, is a zigzag
triangulation if no three internal diagonals share a common endpoint.

Remark 3.15. If w is straight, then Ay, is a fan triangulation. Conversely, if w is zigzag, then

Ay, is zigzag triangulation.

Example 3.16. The triangulation A, shown in Example is a zigzag triangulation. Figure
below shows one example of a fan triangulation. This particular triangulation will be en-

countered again later, starting in Chapter

Figure 3.12: A fan triangulation
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3.5 Arcs, Cluster Variables, and Resolutions

Definition 3.17. Let A be the vertex of A that is not an endpoint of edge 41, and let B be the
vertex of A, that is not an endpoint of edge d,,. Consider the directed arc v, = y4_, g from A to
B in ¥, with initial vertex A and terminal vertex B. We call the arc ,, the arc in >, associated

to w. The resulting cluster variable zy, is called the cluster variable associated to w.

Example 3.18. Figure below shows the arc 7, and the associated cluster variable z, pa-

rameterized by the word w = ab.

Figure 3.13: The arc v, inside X3, and the associated cluster variable x

- x%1:7958+x2x5x7m9+x4x5x6x9+x2m4x6m8+x1x3m6x9

ab 717973
4
7 9
1 2
A Vab B
6 3 8
5}

Any cluster variable z,, can be written as

where f is a polynomial with coefficients from Z[x,, 11, Zp+9, . . ., Z2,+3]. The first goal of the
remainder of this section is to explain the resolution process given in [19] used to compute the
monomials in f, and hence the cluster variable x,,. The second goal is to define the set Res(w)

of resolutions associated to w, and the set Tree(w) of resolution trees associated to w.
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Fix w and consider the arc 7,, inside the triangulated polygon ¥,,. Recall the diagonals of A,
are 01,09, . .., 0n, and that by construction vy, crosses each of these n internal diagonals, creating
n intersection points in ¥,,. Call these intersection points p; = Yy N 6;.

To resolve the intersection point p;, we choose a small neighborhood of p; and replace it with
a pair of nonintersecting smooth curves in one of two different ways, shown below in Figure

Figure 3.14: Resolution of the intersection point p;
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. / . /\ /
/ /
N / N /
N ~ e ’ N ~ e ’
Choose one resolution out of the two above for each intersection point p;; this results in a

collection of n + 1 nonintersecting curves in Y. Note that closed curves based at some v € X can

occur, but that this process never leads to a closed curve that is not attached to some vertex of 3.

Definition 3.19. The set of resolutions Res(w) associated to w consists of those diagrams that can

be obtained from resolving each p; in one of the two possible ways, in some chosen order.

Each element in Res(w) is weighted as follows. First, replace each arc in r € Res(w) with
distinct endpoints with the arc or boundary segment from A, that it is isotopic to. Let £(r) be

the collection of arcs and boundary segments from A, produced from the resolution r, along
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with & if any closed loops are present. Note that F/(r) is in fact a multiset, since a resolution can
produce two isotopic arcs. Define the weight of any resolution r to be z, = [| JEE(r) Ty where

I@IO.

Proposition 3.20. (Proposition 2.1 in [19]) Fix the word w. Consider the arc 7y, in the triangulated
polygon ¥, triangulated by Ay,. Then any internal diagonals obtained by a resolution belong to

Ay The cluster variable x,, is equal to

1
Ty — —1. T - Z Ty.
1F2- - rERes(w)

We now describe how to produce a resolution tree from w. Each node of such a tree is a diagram
of arcs inside the (n + 3)-gon ¥, and is weighted by the product of cluster variables associated to
those arcs (or zero if there is a closed loop in the diagram). The root of any resolution tree from
w is the diagram consisting of the arc v, inside ¥,. Choosing an intersection point p; to resolve
at creates two children of this root (see Figure [3.14). If we continue along in this way (choosing
an intersection point to resolve at in each child, etc.), and halt whenever we have resolved every

intersection point, a binary tree (with additional node structure) is produced.

Definition 3.21. The set of resolution trees Tree(w) associated to w is the set whose elements are

the binary resolution trees from w as described above.
Note that Res(w) is equal to the union of the leaves of the trees in Tree(w).

Example 3.22. The figure below shows one element of Tree(w) for the word w = ab.
Although our construction of arcs seems restrictive, the next lemma shows that there is in

fact no loss of generality.
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Figure 3.15: One element of Tree(ab)
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Lemma 3.23. Any cluster variable associated to an arc in a polygon can be computed as x,, for

some word w.

Proof. Let v be an arc in the triangulated polygon YA, triangulated by A. If v crosses every
internal diagonal in A, then we are done. Otherwise, we work inside the triangulated subpolygon
E’A in ¥ A obtained by deleting from A any edge that is not an edge of some triangle crossed by
v. Furthermore, we “freeze” any edge 1 bordering a deleted triangle, meaning we disallow this
arc to be flipped, so that also xy cannot be mutated.

Figure 3.16: An arc in a triangulated subpolygon

ZA g \

The result now follows by noting that any arc obtained by resolving v will be contained

entirely within the triangulated subpolygon just mentioned. [
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3.6 Snake Graphs

Definition 3.24. The snake graph G, associated to w is the labeled planar graph recursively

defined by the procedure given below.

1. Choose an orientation-preserving embedding of the triangulated square [A(, A1] into the
discrete plane Z? such that its image Ty is a triangulated unit square with vertices
(0,0),(1,0),(0,1), and (1,1) in Z2, and such that the point A € Ag maps to the point
(0,0). Note that the (line spanned by the) image of the triangulating edge will have slope

—1.

2. Choose an orientation-reversing map of [A1, As] into Z? such that its image Ty is a trian-
gulated unit square (again, with triangulating edge having slope —1) glued to T along the

unique edge in each labeled j € {n + 1, ..., 2n + 3}.

3. Continue this process, using orientation-preserving maps for < odd and orientation-reversing
maps for 7 even, to get the graph G, built from triangulated unit squares ﬁ in Z? (with
all triangulating edges having slope —1) glued either above or to the right of the previous
square. Each ﬁ will be called a tile of é\;, The triangulating edge of each fl is called the
diagonal of’.ﬁ-.

4. The snake graph G, is the graph in Z? gotten by deleting each diagonal from each tile in

Gw.

Let 7} be the tile T’Z after its diagonal has been removed. We will call 7; a tile of G,. We will
often refer to the corners (SW, SE, NE, NW) and edges (S,E,N,W) of a tile 7} as indicated in the

next figure.
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Figure 3.17: Shorthand to describe the corners and edges of a tile 7;

NW N NE
SW S SE

Order the tiles of Gy by 17 < 1o < --- < Ty,. A boundary edge of Gy, is any edge of Gy,
not occurring as a shared edge between any two of its consecutive tiles. Any edge that is not a
boundary edge (i.e., each gluing edge) will be called an internal edge of GG4;,. Let the internal edges

of Gy, be labeled e1, €9, . .., e,_1, where ¢; is the gluing edge between tiles 7; and 75, 1.

Definition 3.25. A snake graph G, is called straight if all of its tiles lie in a single row or column.

A snake graph is called zigzag if no three consecutive tiles are straight.

Example 3.26. In Figure [3.18 we illustrate the construction of the (straight) snake graph G,

associated to the (zigzag) word w = ab.

Remark 3.27. It follows easily from the constructions that a straight word w yields a fan trian-
gulation A, (see Remark 3.16), which in turn results in a zigzag snake graph G,,. Conversely, a

zigzag word w yields a zigzag triangulation A, which gives a straight snake graph G,.

Remark 3.28. The definition we have given for building a snake graph from a triangulated sur-
face is essentially a process called unfolding. Conversely, any snake graph from a surface can be
folded back up to reconstruct the surface. Later, it will be convenient to use the folding/unfolding
maps to relate certain expansions to others. For details see [29]. Figure[3.19below illustrates the

folding and unfolding maps.

Definition 3.29. Fix a word w and the snake graph G,. Form a word sh(G,) of length n — 1,

called the shape of the snake graph G, by letting ¢ run through 1,2, ..., n in the following rule:
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Figure 3.18: Construction of the snake graph G,
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Figure 3.19: The folding and unfolding maps
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, unfolding .,
remove/add
diagonals
folding

If tile 75+ 1 is glued to the right of tile 7}, write the letter a, and if tile 7; is glued to the top of

tile T}, write the letter b
Example 3.30. The shape of the snake graph for the word w = ab is sh(Gy,) = bb.

Remark 3.31. If w is straight then G, is zigzag (see Remark and so sh(Gy) is zigzag.

Conversely, if w is zigzag then G, is straight and hence sh(G,) is straight.
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Definition and Definition below will be used in the next section to define the con-
tinued fraction associated to a word.

Recall that G, has an embedding into 7?2 such that the first tile T7 of Gy has vertices
(0,0),(1,0),(0,1), and (1, 1). Additionally, recall that each tile T} of G, is glued either above
or to the right of the previous tile 7;_;. Informally, the snake graph G, “goes up and to the

right”.

Definition 3.32. (see [5]) Fix the word w and the associated snake graph G,. Let x and y be the
names of the coordinate functions on Z2. Note that the midpoint m, of each edge e in Gy, lies
on precisely one of the diagonal lines y = = + (5 + %) for j € Z. The sign function s on G, is

the function on the edges e of Gy, to the set {—, +} defined by

—, ifmeliesony=z+ (5 + %) for j even
s(e) =

+, ifmeliesony=x+ (j+ %) for 5 odd.

Example 3.33. The construction of the sign function s on GG}, is shown below in Figure

Figure 3.20: The sign function s on G,

For € € {—, +}, define
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+ ife=—

— ife=+.
Recall the internal edges of GG, are labeled eq, ..., e, _1. Let eg be the S edge of the first tile
T1 of Gy Suppose that GGy, has three or more tiles. In this case, the definition of e,, depends on
the shape of the last three tiles of GGy;. If the last three tiles are straight, then e, is defined to be
whichever edge in T}, that is across from e,,_1 (so that s(ep,) = —s(ep—1)). If instead the last
three tiles of G, form a zigzag snake graph, then the edge e, is either the N or E edge in 77,

whichever is adjacent to e,,_1 (thus, s(e;) = s(ey—1)). If Gy, has two tiles, we choose e;, = €2

to be the N edge of the last tile of G. If Gy, has one tile, then e,, = e is the edge across from ey.

Definition 3.34. (see [5]) Fix the word w, the associated snake graph G, and the sign function

s on the edges of G. The sign sequence sy, associated to the word w is the sequence s, =

(s(eg), s(er),...,s(en))-

Example 3.35. For w = ab the associated sign sequence is s, = (—, +, —, +).

Figure 3.21: The sign sequence s, on G,

i
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3.7 Continued Fractions

In [5] (see also [6]], [26]), connections between cluster algebras, continued fractions, and snake
graphs were established. We review some of the basic definitions found there, and use them to

define the continued fraction associated to a word w.

Definition 3.36. Fix k; € Z and for 2 < ¢ < d fix the positive integers k; € Z. A finite continued

fraction, denoted by [k1, ko, ..., kg| is an expression of the form
1
k1 +
1
ko +
1

ks +

_ 1

C+ k_d

Say that the continued fraction [k1, ko, . . ., ky] is positive if k; > 0 for every i. From now on

we will only consider positive continued fractions.

Definition 3.37. Fix a word w of length n — 1, along with the snake graph G,. Recall the sign

sequence sy, = (s(eq), ..., s(en)) of Gy, and our convention that s(ey) = —. Let € = —. Define
positive integers k1, ..., k; as indicated below.
sw=(s(eg),...,s(en)) = (e,6,....6,—€,—€,...,—€,...,(=1)Fe, (=1)Fe, ... (=1)Fe).
—— ~~ o ~ ~ ~
k1 times ko times k, times

Define the (finite, positive) continued fraction CF(w) associated tow to be CF(w) = [k1, ko, ..., kg].

Remark 3.38. By Theorem A in [5] (which we recall as Theorem [4.5| below), simplifying the

continued fraction CF(w) gives a rational number in lowest terms that is greater than 1.
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Example 3.39. The continued fraction CF(ab) is equal to g Indeed, the associated sign sequence

issyp = (—,+,—,+), so that

CF(ab) = [1,1,1,1] = 1 + —— — g

1+ —
+1

Remark 3.40. Suppose the word w is either straight or zigzag, and that its length is [(w) =
n — 1. By Remark [3.31] this implies that sh(Gy,) is either zigzag or straight, respectively. Let the
Fibonacci numbers be denoted by F1 = 1, Fy = 1, F3 = 2, etc. Consider the continued fraction

CF(w).

(a) If sh(Gy,) is the straight word sh(Gy,) = ™! then

Fri9

CF(w) =2, 1,...,1] = 2=

()= =
n—1 times

(b) If sh(Gy) is the straight word sh(G.,) = b~ then

Fpio
CF(w) =[1,1,1,...,1] = =2*=
(w) bl B | ] Fn+1

n—+1 times

(c) If sh(Gy,) is the zigzag word sh(Gy,) = bab- - - then CF(w) = [1,n] = 2L,

(d) If sh(Gy) is the zigzag word sh(Gy) = aba - - - then CF(w) = [n] = 1 = n.

31



3.8 Distributive Lattices

Definition 3.41. Let D be a finite poset. The meet of the elements p € D and g € D is the

unique element denoted p A ¢ € D (if it exists) that satisfies:
(@) pAgq<pandpAq<gq,and
(b) if there exists some r € D such that r < pandr < ¢,thenr < pAq.
The join of p and ¢ is the unique element p V ¢ € D (if it exists) that satisfies:
(@) pVg=>pandpVq=>q, and
(b) if there exists some r € D such thatr > pandr > ¢, thenr > pV q.
We say D is a lattice if for any two elements p,q € D, both p A g and p V ¢ exist.

Remark 3.42. Let D be a finite poset. An element m € D is called a minimal element if there
does not exist d € D such that d < m. Similarly, an element M € D is called maximal if there
does not exists d € D such that M < d. If D has a unique minimal (resp., maximal) element,
then we call it the minimum (resp., maximum) element. It is easy to see that every finite lattice

has a minimum element and a maximum element.

Definition 3.43. Suppose that the finite poset D is a lattice. We say D is a distributive lattice if

for all p, ¢, r € D the following two distributive laws hold:
@ pA(gVr)=(@nrgV(pAT)

(b) pV(gAT)=(@PVgA(pVr).

Definition 3.44. Let C be a finite poset. An order ideal I of C' is a subset of C' such thatif p € 1
and g € C' with ¢ < p, then g € I. We denote by Z(C) the poset (ordered by inclusion) of order

ideals of C.
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Example 3.45. The poset of order ideals of a fence on n vertices is called a Fibonacci cube of order n.
We will denote the order ideals of Cy, for I[(w) = n — 1, w = aba--- by I'y,. Alternatively, the
Fibonacci cube of order n may be defined as a graph, with vertices those binary words from {a, b}
with n bits that do not contain two consecutive instances of the bit b. There is an edge between
two vertices if they differ by precisely one bit in the same position. For original references, see
[22] and [23]. For a somewhat recent survey on Fibonacci cubes, see [24]. Figure below
shows the Fibonacci cubes which result from computing the poset of order ideals on each of the

four zigzag posets shown in Figure

Figure 3.22: Four Fibonacci cubes

0 & &

Definition 3.46. Let D be a finite lattice. An element r € D is said to be join-irreducible if r
is not the unique minimum element of D (see Remark [3.42) and there do not exist two elements
p,q € Dwithp <r,q <r,andr = pVq. We denote by J (D) the poset (with the induced order)

of join-irreducible elements of D.

Theorem 3.47. (see [2]) Let D be a finite lattice. Let C' = [J (D) be the poset of join-irreducibles of

D. Then D is a distributive lattice if and only if D is isomorphic to Z(C').

By Theorem[3.47, Z(C,) is a distributive lattice for any word w.
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Definition 3.48. The distributive lattice D, associated to w is defined by Dy, = Z(CY,).

Example 3.49. The distributive lattice D, is isomorphic to the Fibonacci cube I's, shown as the

leftmost poset in Figure
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Chapter 4

Expansion Posets

Fix a word w of length /(w) = n — 1 and the associated objects defined in the previous chapter.

The goals of this chapter are as follows:

(1) Recall three known combinatorial interpretations of the terms in the Laurent expansion of

any cluster variable z,, parameterized by the arc ,,.

(2) Equip each such representation with a poset structure.

4.1 Perfect Matchings of Snake Graphs

It is easy to see that any snake graph with 7 tiles has an even number 2(n + 1) of vertices.

Definition 4.1. A perfect matching P of the snake graph G, is a choice of n 4 1 edges in G,

such that each vertex of GGy, is the endpoint of exactly one edge e in P.

The weight of the edge e is the initial cluster variable x.. The weight of a perfect matching
P is defined to be the product of initial cluster variables p = [[.c p ®e. Let Py, be the set of all

perfect matchings of the snake graph G,.

Example 4.2. Figure[4.1]shows one perfect matching P_ (see Definition[4.6/and Figure[4.4/below

for the notation P_) of the snake graph GG ;. The weight of this perfect matching is z1z3zg29.
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Figure 4.1: The perfect matching P— on G,

9

—_
Qo

6

Theorem 4.3. (Theorem 3.1 in [29]) Let w be any word, and consider the set Py, of perfect matchings

on the snake graph G,. Then the cluster variable x,, can be written as the sum

1
e Y

Example 4.4. Figure [4.2]below shows the five perfect matchings on the snake graph G;,. Note

that summing over the weights of these perfect matchings gives the cluster variable x;, displayed

in Figure

Consider the word w, the snake graph Gy, and the associated continued fraction CF(w) =
la1, a9 ...ap]. For any c such that 0 < ¢ < n, let G, be the subsnake graph of G, obtained from
G by deleting its first c tiles. If ¢ = n, then G¢, is defined to be a line segment, with one perfect
matching. Denote the cardinality of the set P, by |Py,|. Let P{, be the perfect matchings on G¢,

and |P¢ | the cardinality of the set IP,.

36



Figure 4.2: The five perfect matchings on G,
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Theorem 4.5. (Theorem 3.4 in [5]) For any word w, its associated continued fraction CF(w) is equal

to the quotient of cardinalities

and the fraction on the right hand side is reduced.

We now give the set P, a poset structure.
Let P € Py, A twist of P at tile 7 is the local move that takes two edges in P that are located
opposite one another on tile 7; of GG, and replaces them with the remaining two edges of T;.

Directly below is the local picture for the twist at a generic tile 7;.
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Figure 4.3: Twist of a perfect matching at tile 7;

T | < | T;

An up-twist at tile T} is a twist that meets the twist-parity condition (see Theorem 5.4 in [31])):

(1) If 7 is odd, the horizontal edges of T} are replaced with the vertical edges of T}, or

(2) Ifiis even, the vertical edges of T} are replaced with the horizontal edges of 7.

Definition 4.6. The minimal matching P_ of [P, is the unique perfect matching of G, such
that every edge in P_ is a boundary edge of GG, and the S edge of tile 77 is in P—. The maximal
matching Py of Py, is the unique perfect matching of GG, such that every edge in P is aboundary

edge of GG, and the S edge of tile 77 is not in P.

Definition 4.7. Define a poset structure on Py, as follows. The unique minimal element of Py, is
the minimal matching P_, and the unique maximal element is Py. A perfect matching P covers
a perfect matching P if there exists a tile 7; such that P can be obtained from P; by performing

a single up-twist of P at 7;.

Example 4.8. The poset P, of perfect matchings on the snake graph G is shown below in
Figure[4.4] Note that P, is isomorphic to the Fibonacci cube I'3. The sum of the weights attached

to each perfect matching gives the cluster variable x,; shown in Example
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Figure 4.4: The poset P,

at
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Remark 4.9. Let the length of w be [(w) =n — 1.

(a) The poset of perfect matchings P, on a zigzag snake graph G, is isomorphic to a linear

chain with n + 1 elements and n edges.

(b) The poset of perfect matchings Py, on a straight snake graph G, of shape sh(Gy,) = b1

is isomorphic to the Fibonacci cube I';,. If instead GG, is the horizontal straight segment

with n tiles, then Py, is the order-theoretic dual of T'),.

4.2 Perfect Matchings of Angles

Fix a word w of length [(w) = n — 1. By the constructions above, this choice determines the arc

Yw = YA_s B in the triangulated (n + 3)-gon X,. Recall the notation ¥, = [Ag, Ay, ..., Ayl
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Definition 4.10. Any angle o of the triangle A; is incident to its vertex. A perfect matching «
of angles in Xy, is a selection of n + 1 angles from the triangles Ay, A1, ..., Ay, of ¥y, one per

triangle, such that

(1) Each angle is incident to an endpoint of one of the internal diagonals d1, d9, . .., op.

(2) No two angles are incident to the same vertex of the polygon X..

The weight of each angle 0 in A; is the cluster variable x, associated to the edge of A; opposite
of 0. The weight of o is defined to be the product of initial cluster variables x4 = [] ¢, Zo- Let

Ay, be the set of all perfect matchings of angles in >Jy,.

Example 4.11. Shown in Figure[4.5]is one perfect matching of angles in X, (in fact, it is the min-
imal matching a—, explained below). Selecting an angle to be included in a particular matching

is visualized by placing a ball “close” to that angle inside the appropriate triangle.

Figure 4.5: The perfect matching of angles av— on X ;.

>N
1 3

Note that the weight x1x37679 of this element is the same as the weight of the snake graph

perfect matching shown in Example

Theorem 4.12. (Theorem 1.2 in [43]) Let w be any word, and consider the set Ay, of perfect match-

ings of angles on the triangulated surface ¥,. Then the cluster variable x,, can be written as

T = xlazg Z o

OéEAw
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Definition 4.13. An angle is incident to the two arcs in A, which are sides of that angle. By a
boundary angle of ¥,,,, we mean any angle of >, that is incident to exactly one boundary edge of
Ay. Any angle that is neither incident to A or B, nor a boundary angle, will be called an internal

angle.

We now give the set Ay, a poset structure.

Let a € Ay,. A twist of a at diagonal ¢; is the local move that takes two angles in « incident
to opposite vertices of the same internal diagonal 7 and replaces them with the remaining two
angles incident to 9;.

Directly below is the local picture for the twist at diagonal J;.

Figure 4.6: Twist of a perfect matching of angles at diagonal 9,

If were traverse y4_, g from A to B, we obtain a partition of {vertices of X} — {A, B} in two
sets; those vertices which are to the left of v4_, g, and those vertices of X to the right of v4_, 5.
Let [; be the endpoint of ¢ to the left of 7v4_, g, and r; the endpoint to the right. A twist at J; is
an up-twist if the angle from A; incident to r; is replaced with the angle incident to /;, and the

angle from A;_; incident to /; is replaced with the angle incident to ;.

Definition 4.14. The minimal matching a— of Ay, is the unique perfect matching of angles in
Y such that the boundary angle in Ay with boundary edge d2,,+1 is included in «—, and only

boundary angles are used in a—. The maximal matching a1 is the unique perfect matching of
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angles in 3, such that the boundary angle in A with boundary edge d9,, is included in o, and

only boundary angles are used in .

Definition 4.15. The poset structure on Ay, is defined as follows. The unique minimal element
of Ay, is the minimal matching ov—, and the unique maximal element is at. A perfect matching
of angles o covers a perfect matching of angles o if there exists a diagonal d; such that as can

be obtained from o by performing a single up-twist of o at 9;.

Remark 4.16. Alternatively, a— can be defined by the following min-condition, found in [42]. At
each vertex v of Xy, order the angles incident to v in counterclockwise order around v. For each
vertex v of the triangulated polygon X, that is incident to at least one internal diagonal of Ay,
the angle 0 € a_ atwv is the first angle at v. Similarly, a max-condition (replace “counterclockwise”

with “clockwise” in the above) can be used to define a.y.

Figure [4.7| shows the poset of perfect matchings of angles in ¥ ;. This poset is isomorphic to

the one given in Example and one can check that the respective weights coincide as well.

Figure 4.7: The poset A

7 '2 ®
2
(J ° (\5)
T .;) (] () (] ()
/ 2
(J F') [ ) (). ® 8
4 NI

N5 b

ONU4 9
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4.3 'T'-Paths

Recall that the internal diagonals of Ay, are labeled 1,2, ..., n and are ordered 61 < do < -+ <

On, and the notation for the intersection points p; = vy, N d;.

Definition 4.17. A T-path from A to B, denoted T' = (17, T3, ..., Tj(7)), is an ordered selec-
tion of bicolored (either blue or red) edges from the triangulation A, subject to the following

conditions:

1. The edges in 7" form a path from A to B.

2. The number of edges [(T") in T is odd (we call [(T") the length of the T-path).

3. The odd-indexed edges in 7" are all colored blue, and the even-indexed edges in 7" are all

colored red.
4. All edges in T are distinct.
5. Every red edge in 1" crosses v4_, 3.

6. If 9; and ; are two internal diagonals of the triangulation that y4_, g crosses and i < j

then the crossing point of ¢; and v4_, g is closer to a than the crossing point of ¢; and

YA—-B-

For any T € Ty, let T?'U€ be the set of blue edges from T', and let 77 be the red edges from

T'. Define the weight x7 of T by

T = H xp H x?l.

peblue  pcpred

Let Ty, be the set of all T-paths from A to B.
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Example 4.18. Figure[4.8)shows one T-path on the triangulation X, (in fact, it is the minimal T-
path T_, explained below). The weight of this T-path is ﬂ‘x;ﬂ Note that multiplying this weight

by x1x91w3 gives 123769, the weight of the elements in Example [4.1/and Example

Figure 4.8: The T-path 7_ with edges from A

b

Theorem 4.19. (Theorem 1.2 in [36]) Let w be any word, and consider the set T, of T'-paths on the

triangulated surface >.,. Then the cluster variable x,, can be written as

Ty = Z .

TeTw

We now give the set T, a poset structure.

LetT € Ty andlet T = (11,15, . .. aTl(T)) be a T-path. Pick a red edge T} from 7', which
necessarily has as its underlying edge an internal diagonal of Ay,. The two triangles A; and A, |
from 2, that are glued along the underlying edge of 7} determine a triangulated quadrilateral
[A;, Ajy1] with diagonal T;..

Define a twist of 1" to be the local move that colors the four (non-triangulating) sides of the
quadrilateral [A;, A;1 1] as follows: two edges of [A;, A; 1] that are opposite one another are
colored blue, the other two edges are colored red, and uncolored boundary edges in A, are not
allowed to be colored red. Here, if a red edge is colored blue then the colors cancel one another
and that edge is not used in the resulting 7'-path, and similarly for if a blue edge is colored red
[21].

Directly below is the local picture for the 7T-path twist at diagonal J;.
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Figure 4.9: Twist of a T-path at diagonal 9,

Remark 4.20. It is not obvious that a twist of a T™-path is always defined. Figure shows
the eight possibilities for how any 7T-path looks locally at an internal diagonal which is not the
first or last. In each quadrilateral shown, the top and bottom edges are boundary edges, the other
three are internal diagonals, and the dotted lines can be either, as long as a red edge is not on the

boundary. Each of the four arrows indicate when two 7T-paths are related by a twist.

Figure 4.10: T'-path twists at internal diagonals are always defined

b . b b .. ]

“ “ ,'.7” ' ':
b, b b b, b ... b .7

b b b

b cel b+ =
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Thus, twists are well-defined for any diagonal that isn’t the first or last. A similar analysis
shows twists are always defined for the first and last diagonals, as well.

Let u; 1 and d;_1 be the two edges of A;_; that are not equal to d;, such that u; 1 is adjacent
to l;, and d;_1 is adjacent to r;. Let the two edges u; and d; of A; be defined similarly. A twist at
d; is an up-twist if it colors d; 1 and u; red, and colors d; and u; 1 blue.

Recall that the sides of the first triangle A of 3, are labeled 1 — 2n — 2n+1 — 1
in clockwise order. The minimal element T_ of T, is the unique 7-path that starts with the blue
edge 09, and uses only internal diagonals for its edges, except for the first and last boundary
edges. The maximal element Ty of T, is the unique 7-path from A to B that starts with the blue
edge 09,11 and uses only internal diagonals for its edges, except for the first and last boundary

edges.

Definition 4.21. The poset structure on T, is defined as follows. The unique minimal element
of Ty, is T—, and the unique maximal element is 7'. A T-path T5 covers a T-path 77 if there
exists a diagonal ¢; such that 75 can be obtained from 77 by performing a single up-twist of 73

at diagonal 9;.

Example 4.22. Figure shows the poset T of T-paths from A to B associated to the word

w = ab.
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Figure 4.11: The poset T},

b
A v

/ \
b b
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If we sum over the weights of this poset, we obtain

L6L9 + L4L5T6L9 + L5LT7TY + L4TET + L2X7T8

:L' _—
@ L2913 123 123 T3

If we find a common denominator for the five terms in this sum, we see that this expression for

Z4p is equivalent to the one given in Example

4.4 Expansion Isomorphisms

The three expansion posets Py, Ay, and Ty, are each isomorphic to a linear chain when w is
straight, and are each isomorphic to a Fibonacci cube when w is zigzag. In general, the three
posets defined in this chapter are isomorphic to one another when they are parameterized by
the same word. In Proposition [4.23] we recall explicit isomorphisms between these posets which

respects the additional node structure present in each (see [43]] and N[29]).
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Proposition 4.23. Fix the word w. Then there is a commutative diagram of poset isomorphisms

Py
Ay < > T

which each respect the additional node structure of each poset.

Proof. Let a((/}\;,) be the angles from évw which are incident to a diagonal of é\;, i.e., those angles
which are neither the angle incident to the SW corner of ﬁ nor the angle incident to the NE
corner of ﬁ By Lemma 3.2 in [43] there is a bijection between the edges in G, and the set
of angles (X)) in ¥, which are neither incident to A nor B. This bijection is induced by
identifying certain pairs of angles in a(é\;}). The pairs of angles that are identified are those that
are opposite one another in the quadrilateral determined by the diagonals of two consecutive tiles
of é:u Any pair of angles in a((f?\;,) which have been identified correspond to a single internal
angle in a/(Xy).

By [43]], the bijection above induces a set bijection P, =, Ay,. Hence to see it is an isomor-
phism of posets, we must only show that covering relations are preserved. To that end, suppose
the perfect matching P> covers P, and that o is the image of P; and a9 is the image of P».

By definition, P, and P> are related by a twist at some tile 7;. Suppose that ¢ is odd. Then by
the twist-parity condition, the up-twist at tile ¢ exchanges the two horizontal edges of 7; with the
remaining two vertical edges of 7. Represent these two pairs of edges by their corresponding
angles in Oz(GA;,). Now via the orientation-preserving map T; — [A;_1, A;] we see that o is
obtained from o1 by an up-twist at diagonal §;. Thus the map in question is a poset isomorphism.

If instead 7 is even, then an up-twist replaces vertical edges with horizontal ones. An argument
similar to the above shows the map P, — Ay, still preserves covering relations in this case,

keeping in mind that now we must reverse orientation to go between i and [A;_1, A].
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It is clear that this poset isomorphism preserves node weights. Thus, there is a structure-
preserving poset isomorphism P, — Ay, as claimed.

It is known that there is a set bijection P, — T, (see Remark 3.8.9 in [20] and Theorem 4.4
in [29]). This map can be described as follows. First, we fold G, keeping track of the images of
the edges from P € Py, under each fold, to obtain a multiset of n + 1 diagonals and boundary
segments in Ay, (note that folding may send two distinct edges of P to the same internal diagonal
of Ay). We consider each such edge colored blue. Now, we superimpose a red edge on top of
each internal diagonal in the diagram that is the union of A, and the multiset just mentioned,
deleting any pair of opposite colored edges with the same underlying (internal) diagonal. The
result of this process is a T-path from A to B.

The proof that this map is indeed a structure-preserving isomorphism of posets is similar to
the proof that the map P, — A, has these properties. The only difference to note is that the

1

weights of the nodes in T, are all multiplied by T

T which corresponds to the superimposi-

tion of the n red edges.
Now define the last map A,, — T, to be the composition that first applies the inverse of
P, — Ay to a perfect matching of angles, and then applies the map P, — T,. By the above

discussion, this map has the desired properties. This completes the proof. [

Example 4.24. We illustrate two of the maps in Proposition with the three posets associated
to the word w = ab from our running example.
The map P,;, — A,y is defined by taking the preimage of each edge in a perfect matching

P € P, under the surjection from a(G ) to the edges in G, and then folding the result.
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Figure 4.12: The map P,;, — A, via angle identification and folding

N / D) \ ) — : T~
i . fold each node ° °

The second map A, —> Ty, is defined by sending each angle in a matching o € A to the

edge in Ay, it is opposite of, and then coloring each internal diagonal red.

Figure 4.13: The map A, — T via diagonal coloring and cancellation
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cancel |
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Example 4.25. Figure shows explicitly the application of the composition of bijections

Py — Ay — Toup — Pyp to the input P € Py,
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Figure 4.14: The composition P, — A, — T, — P, restricted to minimal elements
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Chapter 5

Dual Combinatorial Constructions

5.1 Words

For any w; € {a,b}, let w; € {a,b} be the image of w; under the involution a +— b.

Definition 5.1. Let w = wjws ... w,_1 be a word of length n — 1. The dual word w* is the word

of length n — 1 defined by w* = wjwowiwyws - - -
Example 5.2. The dual of the word w = ab is w* = a*b = bb.

Remark 5.3. The dual of a straight word w is a zigzag word w* and vice versa.

5.2 Type A, Dynkin Quivers

Definition 5.4. Let A, be the Dynkin quiver associated to the word w. The dual Dynkin quiver

A}, is obtained by reversing the orientation of every other edge of A, starting with the first.
The next result is clear from the definitions.
Proposition 5.5. For any word w, we have Ay, = A, «.

Example 5.6. In Figure the Dynkin quiver A, is shown on the left, and the dual Dynkin

quiver A3, = A, x = Ay is shown on the right.
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Figure 5.1: The quiver A, and its dual Ay,

1¢% 9_b 3 1 b yo_by3

5.3 Posets

Recall the poset C;, associated to the word w. Define the orientation of an edge in Cy, to be either

NW or NE, according to whether it is labeled by a or b, respectively.

Definition 5.7. The dual poset C; is defined by changing the orientation of every other edge of

Cu, starting with the first.

Caution: The term "dual poset" is commonly used for the poset obtained from C', by reversing
all covering relations. Whenever we refer to the latter, we use the term "order-theoretic dual" to

avoid confusion.
Proposition 5.8. For any word w, we have Cj;, = C x.

Example 5.9. The leftmost poset in Figure [5.2]is the poset C;, (see Figure 3.4), and on the right

is the dual poset C};, = C,,x = Cl,.

Figure 5.2: The poset C;, and its dual Cy,

Remark 5.10. If w is straight then C, is isomorphic to a linear chain, and the dual poset Cy;, is

isomorphic to a fence.
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5.4 Triangulations

Recall the notation 3, = [Ag, Ay, -+, Ayp], where A; are the ideal triangles (with edge labels
from Definition cut out by the triangulation A, of 3. Let V; be the edge-labeled triangle
with the same positive integer labels as A; but with opposite orientation. Define the triangle map

by the assignment

Yw = [A0,A1,..., Ap] = [Ag, V1,A9,V3, Ay, ... |.

Define the image of this map to be 3.

Definition 5.11. Consider the triangulation A, of ¥ associated to w. The dual triangulation A}

of ¥ is the triangulation of ¥ obtained by application of the triangle map >, — ;.

Example 5.12. Fix w = ab. Figure [5.3/ shows how the dual triangulation Ay, = A%, = Ay is

built by applying the triangle map to X .

Figure 5.3: The triangle map applied to X gives Xy,

A triangle
7
==L qgﬁbmw @hﬁ@
6
5 ;
A AQ AA3

The next result again follows from the constructions given thus far.
Proposition 5.13. For any word w, we have ¥}, = ¥, « and Ay, = A «.

Remark 5.14. If w is straight then A, is a fan triangulation and the dual A} is a zigzag trian-
gulation. Conversely, if w is zigzag then Ay, is a zigzag triangulation and the dual A}, is a fan
triangulation.
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Application of the triangle map to 3, gives a new seed for a cluster algebra A (X),+ isomor-
phic to A(X)y. If the new initial variable y; is attached to the arc labeled 7 in X, we relabel this
arc with the variable x;. This combinatorial relabeling is introduced so that when we compute
cluster variables attached to arcs in the dual triangulation, the result is a Laurent monomial in

the initial cluster variables from the original seed.

5.5 Slides, Arcs, and Cluster Variables

Fix a word w and the associated arc v,y = v4_,p in ¥4. Recall the internal diagonals of A,
are 01,092, ...,0p. For 1 <1 < n,let p; = 7w N ; be the intersection point of ~,, with the ith
internal diagonal 0; of Ay,. Set pg = A and p,, 11 = B. Choose a point m; € Int(A;) Ny, for

each 0 < ¢ < n. Let ; be the portion of the arc vy, strictly between m;_{ and m;. Let 7£ef P he

the portion of 7; strictly between m;_1 and p;, and 7, 7

; " the portion of ; strictly between p;

and m;.

Definition 5.15. For 1 < i < n, define a slide of v, at p; by the following two-step process.

(1) Perform the smooth isotopy that fixes 7,, —7; and sends p; to one of the endpoints of 9; such

that the images of %l-ef tand 7{29 " 4o not intersect any arc, and have no self-intersections.

(2) Delete the diagonal 9;.

Choosing one of the two possible slides at each p; results in a collection of curves in ¥, which
only intersect possibly at their endpoints. Note that closed curves based at some v € ¥ are the
only loops that can occur. Replace each curve with distinct endpoints by the arc or boundary
segment from A, with the same endpoints, and replace each closed curve with @. See Figure

below.

55



Figure 5.4: Dual resolution of the intersection point p;

Definition 5.16. The set of dual resolutions Res(w)* associated to w has as its elements those
diagrams that can be obtained from sliding each p; in one of the two possible ways, in some
order. For r* € Res(w)*, let E(r*) be the collection of arcs and boundary segments from Ay,
produced from the resolution 7*, along with & if any closed loops are present. Define the weight

of any dual resolution r* to be z,.x = HjeE(r*) xj, where zg = 0.

We now describe how to produce a dual resolution tree from w. Each node of such a tree is a
diagram of arcs inside the (n+3)-gon ¥, and is weighted by the product of cluster variables asso-
ciated to those arcs, or zero if there is a closed loop in the diagram. The root of a dual resolution
tree from w is the diagram consisting of the arc vy, inside >;,. Choosing an intersection point
p; to slide at creates two children of this root (see Figure [5.4). Continuing in this way (choos-
ing an intersection point to slide at in each child, etc.) and halting whenever either we create a
loop or we have performed a slide at every intersection point, a binary tree (with additional node

structure) is produced.

Definition 5.17. The set of dual resolution trees Tree(w)* associated tow is the set whose elements
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are dual slide trees from w as described above.

*

Remark 5.18. The set Res(w)* is equal to the union of the leaves of the trees in Tree(w)*.

Example 5.19. Fix w = ab. Figure [5.5| shows one element of Tree(w™)* = Tree(bb)*. Note that
this tree is isomorphic to the element of Tree(w) = Tree(ab) from Example and that the
weights of the leaves here coincide with the weights of the leaves there.
Figure 5.5: One element of Tree(bb)*
[* = mzomsr.
_— T
N

P

9] )]
ooo

—3321'7368 + T2T5T7TY + TAT5TELY + TRT4TEL +T123T6L9

Definition 5.20. Let A* and B* be the images of A and B under the triangle map ¥, — 3.
The dual of the arc vy is the oriented arc 7,,x = 7}«_, g« from A* to B* inside the polygon X7,

The cluster variable ), dual to x,, is defined by

1
*
Ty = ———— X%
Y mma, Z "
r*cRes(w)*

Remark 5.21. We caution that in general the arc ~,; is not equal to the arc 7,,. Furthermore, we
do not yet know that x}, is in fact a cluster variable in a cluster algebra; this is part (c) in Theorem
[6.22 below.

57



5.6 Snake Graphs

The notion of a dual snake graph was introduced in [33]].

Definition 5.22. Fix the arc 7 in the triangulated polygon ¥, triangulated by A,,. The dual

snake graph G, associated to w is the labeled planar graph recursively defined as follows:

1. Choose an orientation-preserving embedding of the triangulated square [A(, V1] into the
discrete plane Z2 such that its image T | is a triangulated unit square with vertices (0, 0),
(1,0), (0,1), and (1,1) in Z2, and such that the point A € Ay maps to the point (0, 0).

Note that the (line spanned by the) image of the triangulating edge will have slope —1.

2. Choose an orientation-preserving map of [A1, V5] into Z? such that its image TVQ* is a tri-
angulated unit square (again, with triangulating edge having slope —1) glued to Tl* along
the unique edge in each %} labeled j € {n + 1,...,2n + 3}. Note that if the intersection
point of the diagonals d1 and d9 is to the left (resp. right) of vy, then i’;* is the triangulated

square directly above (resp. to the right of) fl* .

3. Continue this process, using orientation-preserving maps for both i odd and even, to get the
graph C/J\%U, built from triangulated unit squares in Z? (with all triangulating edges having
slope —1) glued either above or to the right of the previous square. Each i; will be called

a tile of Cf;\%u The triangulating edge of each i’vz* is called the diagonal of i’vz*

4. The dual snake graph G}, is the graph in 7 gotten by deleting each diagonal from each tile

in (%
in G%,.

Example 5.23. Fix w = ab. Figure[5.¢|illustrates the construction of the dual snake graph G}, =

Gy from the triangulation A 4.
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Figure 5.6: Construction of the dual snake graph Gy,
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.................... s> Tie s
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We give now an explicit procedure G, — G, for computing the dual snake graph, starting

from Gy,.

Definition 5.24. Consider the snake graph G, with tiles 17,75, ...,T}. Let the diagonal of
T; be called d;. The antidiagonal of tile T}, denoted D, is the line segment inside 7; formed by

joining the SW and NE corners of 7;.

For any snake graph H with n tiles, the diagonal d; of T}; gives two subgraphs H; 1 and H;
of H that respectively consist of all vertices and edges of H weakly below or weakly above the
line spanned by d;. Define Hi to be the snake graph produced by reflecting H; about the line

spanned by D; and regluing the image of H; to H; 1. It is clear that the result of this operation
is another snake graph. Write (H Ti)Tj = glioTj,

T10T2O"'0Tn
w

One can see from the constructions that we have G, — G = G7,. Namely,

performing this composition of maps gives each tile of GG, a half-twist (as in Definition [5.22),

TyoT90--0Tp
w

and furthermore the shape of G coincides with the shape of G7;.
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A N Ty oTyo---0T
Example 5.25. We demonstrate in Flgurethe factorization Gy, — Gago 200 Gpp.

Figure 5.7: Transforming G, into its dual Gy,

9
) 8
9 8
5
1 3 2 8 2 9
2 3 8 2 5 . 2 5
w4
o207 4 5 9 7 4 3 7 4 3
6 6 1 ) 6 1 6 1
Ty Ty T3

The next result follows from the factorization just given.

Proposition 5.26. For any word w, we have
(a) sh(Gy) = w* and sh(G},) = w.
(b) Sh(Gu)* = sh(G).
(c) Gy, = G =

Definition 5.27. Fix the word w, and consider the sign sequence s, = (s(eg), s(e1), ..., s(en))

on the snake graph G,. The dual sign sequence s}, is defined by

sw = (s(eo), —s(e1), s(e2), —s(e3), - ..)-

Proposition 5.28. For any word w, we have s;,, = s, .

w

Proof. This follows immediately from Proposition|[5.26] O

Example 5.29. Below is the sign sequence s, and its dual s7; = sy,
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Figure 5.8: The sign sequence s, and its dual sy,

Sw:(_)+a_7+) Szt):(_v_v_7_)
5.7 Continued Fractions

For more on the involution on continued fractions given in the next definition, see [41]].

Definition 5.30. Consider the finite positive continued fraction [k1, k9, . . . , k4|. The dual contin-
ued fraction [k, ko, ..., kg]* is gotten from [k, ko, .. ., k4] by first writing each k; as 1+14...+1,

substituting these expressions into their respective entries in the continued fraction, and applying

2

the involution that exchanges the symbol “)” with the symbol “+”.

Example 5.31. The continued fraction associated to the word w = ab is CF(ab) = [1,1, 1, 1] (see

Example [3.39). The dual continued fraction is computed as

CF(w)* = CF(ab)* = [1,1,1,1]* = [1+ 1+ 1+ 1] = [4] = CF(bb) = CF(w*)

Remark 5.32. The continued fractions in (a) from Remark are dual to those in (c), and the

same for (b) and (d).

Proposition 5.33. For any word w we have

CFw)* = CFw").
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Proof. This follows immediately from Proposition[5.28| O

5.8 Distributive Lattices

Definition 5.34. The distributive lattice dual to Dy, is simply D, « = Z(Cy,).

Example 5.35. The three expansion posets pictured in Examples and are all isomor-

phic to the same distributive lattice D,; = I'3. The dual lattice Dy is a chain poset on 4 vertices.

See Figure

Figure 5.9: The Fibonacci cube I'3 and its dual

Dy Dy,

Remark 5.36. In general, a chain poset with n 4 1 vertices is dual to the Fibonacci cube I',.
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Chapter 6

Dual Expansion Posets

6.1 Lattice Paths on Snake Graphs

We recall here the lattice path expansion posets from [33]).

Definition 6.1. A lattice path in a snake graph G, with n tiles is a choice of n + 1 edges L from
G which when concatenated form a path, taking only unit steps right or up, from the SW vertex
of tile 77 to the NE vertex of tile 7},. The weight xj of L is defined to be the product of initial

cluster variables 7 = [[;cr, ;. Let Ly, be the set of all lattice paths of the snake graph G.

Example 6.2. Figure|6.1|shows one of the five lattice paths on the snake graph G/, dual to G g,
Note that the weight of this lattice path coincides with the weight of the the perfect matching

shown in Figure

Figure 6.1: The lattice path L_ on Gy,

o

6 1

The next expansion formula is from [33]].
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Theorem 6.3. Letw be any word, and consider the set L, of lattice paths on the dual snake graph

G, *. Then the cluster variable x,, can be written as

1
e — Y
w

Corollary 6.4. For any word w, we have |Py,| = |L, «| and |Ly| = |P].

Let CF(w) = [k1, ko, ..., ky] and CF(w*) = [K1, K9,..., K|, and recall the notation G¢,,
P¢,, and |P§,| given directly before Theorem [4.5). Define LS, and |L§| similarly. Combining

w:?

Corollary [6.4 with Theorem[4.5| gives the next result.

Corollary 6.5. For any word w, we have

P L
Py
w w*
and
P L
Rty = PPusl _ [l
Ca

We now give the set L, a poset structure.

A flip of L at tile T} is the local move that takes two edges of L located on the same tile 7} of
Gy that are incident to a common vertex of 7; (necessarily the two edges in question are the S
and E edges of 7}, or the W and N edges of tile 7};) and replaces them with the other two edges
of T;.

Directly below is the local picture for the flip at a generic tile 7.
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Figure 6.2: Flip of a lattice path at tile 7;

T | <> | T;

An up-flip at tile T; is a flip that replaces the S and E edges of 7; with the N and W edges of

T;.

Definition 6.6. The minimal element L_ of L, is the unique lattice path of G, such that every
edge in L_ is a boundary edge of Gy, and the S edge of tile 71 is in L_. The maximal element
Ly of L, is the unique lattice path of (G, such that every edge in L is a boundary edge of Gy,

and the S edge of tile 7% is notin L_.

Definition 6.7. The poset structure on Ly, is defined as follows. The unique minimal element
of Ly, is the minimal lattice path L_, and the unique maximal element is L. A lattice path Lo
covers a lattice path L if there exists a tile 7} such that Ly can be obtained from L by performing

a single up-flip of L at 7j.

Example 6.8. Fix w = ab. In Figure we illustrate the poset I, « = Ly, of lattice paths on

the dual snake graph Gy;,. Compare with Figures and [4.11]from Chapter
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Figure 6.3: The poset Ly,
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Remark 6.9. If the word sh(Gy,) is straight, the poset Py, is isomorphic to a Fibonacci cube (see
(b) in , and likewise L., « is isomorphic to the same Fibonacci cube. Conversely, if the word
sh(Gy) is zigzag, then both the posets P, and L« are isomorphic to the same linear chain.

Similar remarks hold for the other expansion formulas. See Theorem below for details.

6.2 Lattice Paths of Angles

Say that a vertex v of X is incident to any triangle that it is a vertex of.

Definition 6.10. A lattice path of angles 3 of ¥, is a selection of n + 1 angles from the triangles

Ao, A1, ..., Ay of A, one per triangle, such that the following hold.

(1) Each angle is incident to an endpoint of one of the internal diagonals 41, 09, . . ., dy.
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(2) Consider the internal diagonal §; and one of its endpoints v. If v is incident to an even (resp.,

odd) number of triangles, then an even (resp., odd) number of angles of 3 are incident to v.

Each angle oin A; can be assigned the cluster variable z, associated to the edge of A; opposite
of 0. The weight of 3 is defined to be the product of initial cluster variables 15 = [],¢ 3 To- Let

By, be the set of all lattice paths of angles in >3y,.

Example 6.11. Below we show one of the five lattice paths of angles on the dual triangulated

surface 37, = Yy,

Figure 6.4: The lattice path of angles 5_ on Gy,

6] /1 3\ 19

The next result is included as part of the statement of Theorem (e), and is proved there.

Theorem 6.12. Let w be any word. Consider the set B« of lattice paths of angles on the dual

triangulated surface .,. Then the cluster variable ., can be written as

1
T = Y g
xlwg...xnﬁeﬁ .

w

We now give the set By, a poset structure.

A flip of § at diagonal 9; is the local move that takes two angles in 3 that are each incident to
the same endpoint of the internal diagonal ; and replaces them with the remaining two angles
incident to ¢;.
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Directly below is the flip at a generic internal diagonal §;.

Figure 6.5: Flip of a lattice path of angles at diagonal ¢;

Let [; be the endpoint of J; to the left of v4_, g, and r; the endpoint to the right. An up-flip

of § at diagonal ¢; is a flip that meets either of the following two conditions:

(1) 7 is odd, and the two angles incident to [; are replaced with the two angles incident to 7;,

or
(2) i is even, and the two angles incident to r; are replaced with the two angles incident to /;.

Definition 6.13. The minimal element 3_ of B, is the unique lattice path of angles such that the
boundary angle in Ay with boundary edge d2,,+1 is included in 5_, and only boundary angles
are used in S_. The maximal element 34 of By, is the unique lattice path of angles such that the
angle the boundary angle in Ay with boundary edge 9, is included in £, and only boundary

angles are used in 3.

Definition 6.14. The poset structure on By, is defined as follows. The unique minimal element
of By, is the minimal lattice path of angles 5_, and the unique maximal element is 5. A lattice
path of angles 39 covers another lattice path of angles (31 if there exists a diagonal d; such that

(o can be obtained from (3] by performing a single up-twist of 31 at 9;.

Example 6.15. Fix w = ab. The poset of lattice paths of angles on the dual triangulated surface

>y is shown in Figure [6.6] below.
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Figure 6.6: The poset By,

8

Ot

6 113\ 9

6.3 S-walks

Let F' = (V, E) be any graph, with vertex set V' and edge set . A walk is a sequence of vertices
(vg,v1,...,v;) such that consecutive vertices are incident, i.e., (v;,v;11) € F for each ¢ with
0 <i <k — 1. We say that k is the length of the walk.

Recall the notation ¥, for the triangulation associated to w, and that A and B are the end-

points of the (directed) arc v,y = v4_B-

Definition 6.16. An S-walk from A to B isawalk S = (A = vg,v1,...,vp+1 = B) of length
n+ 1 which uses the vertices of the triangulation A, and is such that at least one edge from each

triangle A; in ¥, occurs in S.

Define the weight xg of S by x5 = [[,cg ®s. Let Sy, be the set of all S-walks from A to B.

Again, the proof of the next result is given in Theorem below.

Theorem 6.17. Let w be any word. Consider the set S« of S-walks from A* to B* with edges
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taken from the dual triangulation A},. Then the cluster variable x,, can be written as

1
o — T us
w

We now give the set S, a poset structure.

Recall that /; is the endpoint of §; to the left of v4_, g, and r; is the endpoint to the right.
Consider the (triangulated) minimal quadrilateral [A; 1, A;], and let the endpoints of §; be [;
and r;. A flip of S at diagonal J; is the local move that replaces the two distinct edges in S which
are both boundary edges of [A;_1, A;] incident to r; (resp. [;), and replaces them with the other
two boundary edges of [A; 1, A;] incident to [; (resp. 7;).

Directly below is the local picture of an S-walk flip at a generic internal diagonal ¢;.

Figure 6.7: Flip of an S-walk at diagonal J;

An up-flip of S at diagonal ; is a flip that meets either of the following two conditions:

(1) 7is odd, and the two edges in S incident to 7; are replaced with the two edges in (); incident

to l;, or
(2) iiseven, and the two edges in S incident to /; are replaced with the two edges in (); incident
to r;.
Definition 6.18. The minimal element S_ of S, is the unique S-walk that starts with the bound-
ary edge 02,41, and only uses internal diagonals as edges, except for the first and last (boundary)
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edges. The maximal element Sy of S, is the unique S-walk that starts with the edge d2),, and

only uses internal diagonals as edges, except for the first and last (boundary) edges.

Definition 6.19. The poset structure on Sy, is defined as follows. The unique minimal element
of S is the minimal S-walk S_, and the unique maximal element is S. An S-walk S5 covers
another S-walk S if there exists a diagonal §; such that S can be obtained from S by performing

a single up-flip of S7 at 9;.

Example 6.20. Fix w = ab. The poset of S-walks on the dual triangulated surface ¥7, = ¥, is

displayed in Figure Note that the “middle” internal diagonal in S is used twice.

Figure 6.8: The poset Sy

We now give the analogue of Proposition The proof of this result will follow from part

(d) of Theorem

Proposition 6.21. Fix the word w. There is a commutative diagram of weight-preserving poset

isomorphisms
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We illustrate Proposition with the three dual posets Ly, By, and Sy, from the running
example. By Lemma 3.2 in [43] there is a bijection between the angles in >, not incident to A or
B, and the edges in Gy, induced by identifying certain pairs of angles in Gu. The pairs of angles
that are identified are those that are opposite one another in the quadrilateral determined by two
consecutive tiles of éz) Any pair of angles in Cf}'\;} which have been identified correspond to a
single internal angle in 3.

Thus, given a lattice path L € L,,, we can associate to it a collection of angles in G and fold
the result to obtain a lattice path of angles 3 in >Jy;,.

Figure 6.9: The map L, — By, via angle identification and folding

PR /‘\

N
. AN
\&./ Sy 7
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The map By, — Sy, is defined by taking the collection of edges which are opposite some
vertex in S € Sy,. See Figure[6.10]below.

Figure 6.10: The map By, — Sy, via associating edges to angles

"project” onto edges

The map L., — Sy, is defined by folding and is the composition of the previous two.

6.4 Expansion Duality
Theorem 6.22. Fix the word w.

(a) There is a explicit bijection Tree(w)* — Tree(w™) that preserves additional node structure,

and weights of leaves.

(b) There is a weight-preserving bijection Res(w)* — Res(w™) respecting additional node struc-
ght-p 8 g 3

ture.

(c) The Laurent polynomial 3, is a cluster variable in A(X),,*, and is equal to xy, = .

w
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(d) There are explicit isomorphisms of distributive lattices

Py — Loy, Ay — B x, and Ty = S,

respecting the additional structure of each lattice, and making the following diagram commute.

Py «—— L3

[ /1

Ay

o

Tw «—— S5,

Namely, corresponding nodes in the six posets have the same weight, except for the nodes of

1

the T'-path expansion poset. In this case, node weights have an additional factor of IR

that is not preset in any of the node weights for the other five expansion posets.

(e) The cluster variable x,, can be written as

1 1 1
D T
w w w

(f) There are isomorphisms of distributive lattices Dy, = Z(Cy) = Py, and D« = I(Cy,) =
L. Thus, Py, andLy, are dual to one another in the sense of distributive lattices (see Definition

539

Proof.  (a) Lett € Tree(w)*. The map Tree(w)* — Tree(w™) is defined by the application of
the triangle map to each node of the input tree ¢, except that we must additionally specify
how to transform arcs § € ¥, which are not contained in the triangulation A, into arcs
0% € Xy,
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Suppose 0 ¢ Ay, is an arc in a diagram which is a node in ¢, and that § crosses the triangles
A;, ..., Aj. The obvious one-to-one correspondence induced by the triangle map between

angles in Y, and angles in 3} gives a natural candidate for the image of the arc ¢.

Namely, suppose the endpoints of ¢ are v; and v;, corresponding to the angles ; an «; in
A; and Aj, respectively. Let a; and a;‘- be the angles which are the respective images of
; and aj under the triangle map. Let v be the vertex that o] is incident to, and let v; be

the vertex that a}f is incident to. Then &™* is the arc that

(1) starts at the vertex v},
(2) ends at the vertex U;-‘,

(3) passes through the center of precisely those triangles in 3}, which are the images of

the triangles A;, ... A; under the triangle map, and

(4) has asits only intersections (besides endpoints) the midpoint of each internal diagonal

it crosses.

For instance, suppose the arc § starts at A, is contained in the triangulated subpolygon
[Ag, A, ..., Aj], and ends at vertex v; of A;. The output §* for the two subcases j even

and j odd are shown in Figure

This map is well-defined by induction on n, and that edge weights of leaves are preserved is
obvious. The inverse map Tree(w)* — Tree(w*) is defined similarly, and the composition
is the identity. Hence the map in question is an invertible bijection respecting additional

node structure as claimed.

This follows directly from (a), since Res(w) is equal to the union of the leaves in the trees

in Tree(w), and Res(w)* is equal to the union of the leaves in the trees in Tree(w)*.

75



Figure 6.11: The arc ¢, and the output arc §* for both j odd and j even

(d) Define the set map P, — L« by applying G, — GgloTQo"'oTn

to the underlying snake
graph of each node P € P, keeping track of the images under the maps 7; of all the edges
in P. It follows from [33] that P, — L« is a well-defined set bijection. That this map
extends to an isomorphism of posets is much like the proofs given in[4.23] It is obvious that

weights are preserved. Thus, there is a structure-preserving poset isomorphism P, —

L, as claimed.

One can check from the definitions that the nonzero leaves of Res(w™)* are precisely the
S-walks from A* to B* with edges from the dual triangulation 3} . Similarly, T-paths from

A to B with edges from Ay, are in bijection with the nonzero leaves in Res(w) (induced
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by mulitplication or division by zjz9...2z;,). Hence by part (b), there is a set bijection
T — S,* which is induced by the triangle map. Clearly, corresponding node weights
differ by multiplication or division by x1x9...x,. It is again straightforward to check
that covering relations are preserved by using cases on the parity of 7. Thus, the map

Tw — S, * is a structure-preserving poset isomorphism, as claimed.

The map of sets A, — B, is defined by the one-to-one correspondence of angles
a(Xy) — a(X,*) (mentioned in part (a) above) induced by the triangle map. To see
that this map is well-defined, we can use the following observation. Suppose we are given
a perfect matching of angles o € «(Xy,). Now glue a new triangle to one of the two bound-
ary edges in Ay, that are incident to B. In either case, there is a unique angle from this
new triangle that we can add to the original matching « to create a new perfect matching
of angles in the larger triangulated polygon just constructed. That this choice is unique
follows from part (2) of Definition Now we use induction on n. So, suppose >, has
n + 1 internal diagonals, and consider the perfect matching of angles @ € A,,. Let 3/,
be the triangulated subpolygon of ¥, obtained from deleting the last triangle, and define
Zéu* C X« similarly. By induction, the triangle map restricted to X}, produces a lattice

path of angles in E;U «. The claim now follows by considering cases on the parity of n.

One can construct each map in the triangle of isomorphisms from Proposition as a
composition of duality maps and the appropriate map from Proposition Thus the

diagram in question is commutative.

Finally, that IP,, is a distributive lattice follows from Theorem 5.2 in [31]. Thus, the rest are

distributive lattices as well.
(e) Follows directly from (d).
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w

(f) That Z(Cy,) = Py, follows from Definition 5.3 and Theorem 5.4 in [31]]. That Z(C};) = L
follows from the construction on page 18 of [25]. Namely, the poset C;: can be built from
the minimal path L_ in G, by deleting the first and last steps in L_, and rotating the result
45° clockwise. That P, and IL,, are dual as distributive lattices follows from the definition.

]

Example 6.23. We illustrate how applying the isomorphisms from Theorem (d) to the three
minimal elements in the running example from the previous chapter gives the three respective

minimal elements from the running example in this chapter.

The next figure shows the minimal matching P_ in P, being sent to L_ in Ly,

Figure 6.12: Transforming the minimal element P_ into the minimal element L _

9
2 8
9 8
5
1 3 2 8 2 9
2 3 8 2 5 . 2 5
w4
T |27 4 5 9 7 4 3 7 4 3
6 6 1 L2 6 1 6 1
Ty ib) T3

To compute the image of o— € A, under A, — By, we apply the triangle map. This is

shown in Figure [6.13]

Figure 6.13: Transforming the minimal element a— into the minimal element 5_
£ D)
AP -
(] > [) (]
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The isomorphism T,;, — Sy is obtained by coloring all internal diagonals blue, canceling
blue-red pairs if necessary, and then applying the triangle map. See Figure

Figure 6.14: Transforming the minimal element 7_ into the minimal element S_

, b , b ) b triangle map
[) b Z) ()
b b b

\/\/

color diagonals blue  cancel
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Chapter 7

Expansion Posets as Intervals in Young’s

Lattice

Loosely speaking, a graded poset is one whose elements can be arranged into “horizontal ranks”.
Each graded poset has an associated rank-generating function, which is a polynomial in one
variable whose ;1" nonnegative integer coefficient records the number of elements sitting at rank
J. The first objective of this chapter is to give some preliminaries on graded posets and their rank
functions, and to note that each expansion poset we have studies thus far is graded.

Our second objective is to put an equivalence relation on the set of all snake graphs, and
refine each resulting equivalence class to a graded poset. The covering relation in each such
poset resembles a flip of a lattice path inside a snake graph. We observe that each poset of snake
graphs from our construction is isomorphic to one of the well-known lattices L(m, n) whose rank
generating functions are the classical ¢-binomial coefficients. For more on the posets L(m,n)
and their (symmetric and unimodal) rank generating functions (and much more on unimodality
in general, and related concepts), see [40], [4], and [3]].

Our final objective in this chapter is to show how each poset L(m,n) has a covering by
intervals, each of which is isomorphic to one of the lattice path expansion posets considered
above. This covering is such that two lattice path expansions embed into the same lattice L(m,n)

if and only if their underlying snake graphs are elements of the same snake graph poset. Finally,

80



since each L(m,n) is itself an interval in Young’s lattice, this shows that each expansion poset is

isomorphic to an interval in the latter.

7.1 Graded Expansion Posets

Definition 7.1. Let D be a finite poset. A chain in D is a totally ordered subset of D. A maximal
chain in D is a chain that is not a proper subset of any other chain in D. The length of a chain
with & elements is £ — 1. We say that D is a graded poset if all maximal chains in D have the
same finite length. If D is graded then there exists a rank functionp : D — N = {0,1,2,...}

that satisfies the following.

(1) The minimal elements of D map to 0.
(2) For every z,y € D, z < y implies p(z) < p(y).

(3) If < y and there does not exist z € D such that x < z < y (ie., if y covers x), then

We say the element © € D has rank i if p(x) = i. The rank of the finite graded poset D is

equal to the length of any maximal chain.

It is an easy consequence of Birkhoff’s Theorem|3.47|above that every finite distributive lattice
D is graded. Indeed, for input the orderideal I € Z(C') = D therankis p(I) = ||, the cardinality
of I. Thus, Dy, = Z(CY,) is graded for each word w.

The next result is an analogue of Theorem 5.1 in [29].

Proposition 7.2. The rank of any lattice path L € 1L, is the number of tiles enclosed by the

symmetric difference L © L_ of L with the minimal lattice path L_ from Definition[6.6
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Proof. The minimal path L_ has rank 0. Covering relations are given by up-flips, and performing

an up-flip of a lattice path increases the number of tiles in L © L_ by one. ]

Simply put, the rank of a lattice path is the number of tiles in the snake graph that are “below”

the lattice path.

Definition 7.3. Suppose w has length n — 1 and consider the graded distributive lattice ;. The
rank-generating function 1L, (q) of the lattice L, is the polynomial in ¢ of degree n defined by

Lu(g) = > 1 r;q', where 7; equals the number of lattice paths of rank i in L.

Definition 7.4. Let p be the rank-generating function of a graded poset D of rank n. The rank-
generating function p(q) = S  7;q" is unimodal if there exists some m such that ry < 7] <
Tl < T 2 Tl > o > . We say p(q) is symmetric if r,_; = r; for each i. We
call D a rank-unimodal poset (or just unimodal) if its rank function is unimodal, and call D a

rank-symmetric poset (or just symmetric) if its rank function is symmetric.
For instance, Fibonacci cubes are unimodal, and those of even order are symmetric. [28]].

Example 7.5. Figure|7.1{shows three snake graphs G, , Gy, and Gy, along with their respec-
tive shapes and lattices. Below these figures, we indicate the respective rank generating functions.
Note the rank-generating functions Ly, (¢) are unimodal for ¢ = 1,2, 3 and symmetric for i = 2

or 3.
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Figure 7.1: Posets, shapes, and rank functions for three snake graphs

Ly, =
Luwg =
sh(Gwy) = baa sh(Gwy) = baab sh(Gyy) = aabaa

Lu(@) = 1+ q + 2¢*> + 2¢* + ¢*
Lug(q) = 1 + 2¢ + 3¢* + 3¢ + 2¢* + ¢
Luwg(q) = 1 + 2 + 3¢% + 3¢3 + 3¢* +2¢° + ¢°

7.2 Posets of Snake Graphs and the ¢g-binomial Coeflicients

Let L™ be the set of snake graphs with n > 1 tiles. Let £ = UL". Consider the equivalence
relation on £ defined by saying that two snake graphs are equivalent if they have the same

number of tiles, and are related by the following local move:

Figure 7.2: Local picture for two equivalent snake graphs

In particular, each straight snake graph (and each snake graph with less than three tiles) is

the sole member of its equivalence class.

Each £" is a union of equivalence classes. For n > 3, we parameterize any equivalence class
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of L" by the snake graph Gﬁ’j it contains which is of shape aF1-1pk2—1 = gk1-1pJ | where
n = k1 + ko — 1. Let {O;L};’:_Ol be the n equivalence classes of L.

Refine each equivalence class O? of L" to a poset (O)? by declaring that the snake graph G
is the minimal element, and by saying that performing the swap ab — ba corresponds to going

up in the poset.
Example 7.6. Figure [7.3[show the poset @g from the subgroupoid £° < L.

Figure 7.3: The poset (O)g
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// \\
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| |
\ /
\ /

/ \\//\
AN 7N
/ \ / \
| | | \
\ / \l /
\ / \ /
\\//\ /\\//

// ;\
/ \
| |
\ /
\l /
\\//
AN
/ \
| |
/
[T,
~ g

The rank functions of the posets @? are well known.
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Definition 7.7. The g-binomial coefficients are defined by

where (k]! = (1+¢)(14+q+¢?) ... (1+q+---+¢*1). Each g-binomial coefficient is a rational
function in the indeterminate ¢, and is in fact a polynomial function with positive coefficients.

Note that taking the limit ¢ — 1 recovers the standard binomial coefficients.

Definition 7.8. The product of two posets (P, <p) and (Q, <) is the poset whose underlying

set is equal to the Cartesian product P x Q with covering relations given by

(r1,91) <pxo (p2,92) < p1 <pprandq <g ¢o.

Let k and 1 be the chain posets with %k and [ vertices, respectively. Consider the product poset
k x 1. Then the rank generating function of the poset of order ideals of k x 1 is equal to the
g-binomial coefficient [k?_l} (see [40]). The g-binomial coefficients are also the rank generating
functions for the area under lattice paths in a rectangular Young diagram with % boxes by [ boxes.
Equivalently, the ¢-binomial coefficients the are rank-generating functions of Young diagrams
that fit inside a £ by [ rectangular grid. Here, the rank of a Young diagram is the number of boxes
is contains.

It is not hard to see that any g-binomial coefficient is symmetric (for instance see [40]). How-
ever, it is a nontrivial fact that these coefficients are unimodal. This was first proved by Sylvester

in 1878 (see [40] and [3]). The first combinatorial proof of unimodality was given over one hun-

dred years later by O’Hara in [32]].

85



Example 7.9. For instance, the rank generating function of @g =~ 7(3 x 3) is equal to

14+q+2¢° +3¢° +3¢* +3¢° +3¢° +2¢" + ¢® + ¢°.

This is visualized in the next figure.

Figure 7.4: The poset 3 x 3 (bottom), its lattice of order ideals Z(3 x 3) (top left), and the rank
function of (O)g =~ 7(3 x 3) (top right)

3 x3

7.3 The Embeddings L, — O7

Recall that a partition of a positive number m is a weakly decreasing sequence A = (A, Ao, ..., ;)

such that m = A\ + Ag + - - - + A;. For example, A\ = (4, 3) is one partition of 7. A Young diagram
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is a way to visualize a partition as a left-justified collection of rows of boxes. For instance, to form
the Young diagram associated to the partition (4, 3) of 7, we draw an array of 7 boxes, consisting
of a row of 4 boxes followed by a row of 3 boxes.

Figure 7.5: The Young diagram associated to the partition (4, 3) of 7

Definition 7.10. Let P be a poset. Let z,y € P. The closed interval [z, y] is the subposet of P

defined by z € [z, y] ifand only if 2 < z < y.

Young’s lattice is the infinite poset whose nodes are Young diagrams of partitions, ordered
by inclusion (see [35]]). The minimal element is the empty set, and there is no maximal element.
Each (O);‘ is isomorphic to a finite closed interval [&, A] in Young’s lattice (see Theorem for a
proof), whose minimal element is the empty set and with maximal element a rectangular array of
boxes A (indeed, ) is the smallest rectangular array of boxes containing the minimal snake graph
G™),

Consider the dual cluster variable z}, on the snake graph G, with n > 1 tiles. Let 7 be any
Laurent monomial of x , represented by the lattice path L on G,. We can naturally associate to
L a word by labeling any E step in L by a, and any N step in L by b. Let GG, be the snake graph
whose shape is determined by the assignment just described. Note that GG, has two more tiles
than G,.

The above remarks give a map

¢ : Supp(alh) — L2 x4 - G
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Figure 7.6: Snake graphs from lattice paths

If we apply ¢ to the monomial weight of each node in IL,, we obtain an isomorphic poset
I, = Ly, where each node of [, is a snake graph in L2 The covering relation in [, is the

one shown in Figure [7.2]above.

Example 7.11. Figure |7.7|shows the poset IL,;, on the left, and the isomorphic poset I ;; on the
right.

Figure 7.7: The posets L ;; and [, = L,

The above discussion leads to the next result, which states that each poset @?+2 can be built

from gluing together the lattice path posets corresponding to the snake graphs in some Q7.
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Theorem 7.12. Suppose the words w, w1, and w9 are each of length n — 1. Let Ly, be the poset of
lattice paths on Gy. Let Ly = Ly, and Lg = Ly, be the posets of lattice paths on Gy = Gy, and

G = Guy,, respectively. Label their snake graph representations by Ly = I} and Ly = Io.
(a) Each poset @?+2 is isomorphic to the poset of lattice paths in a rectangular grid.
(b) The rank generating function of the graded poset @;H'Q is equal to a g-binomial coefficient.
(c) Each poset @?+2 is isomorphic to the closed interval [&, \] in Young’s lattice.
(d) Each lattice Ly, = 1, is isomorphic to a closed interval in one of the posets @;-H'Q.

(e) The two posets L1 = 1; and Lo = Iy are embedded as intervals into the same (O);L+2 if and

is covered

only if G1 and G are both elements of the same poset QY. Moreover, each (O);-H'Q

by the collection of such embeddings.

Proof.  (a) Suppose the minimal element of @;HQ has word a¥16%2, where kj + ko — 1 = n.
Note that the covering relations in (O);“L2 preserve the number of a’s and b’s in the shape
of a snake graph. That is, the nodes of (D)?+2 are precisely those snake graphs whose word
has k1 instances of the symbol a, and k9 instances of the symbol b. This description makes

clear the isomorphism between @?JFQ and the lattice paths in a k1 X ko grid.

(b) As mentioned above, each poset of lattice paths in a rectangular grid is isomorphic to a

closed interval [@, A] in Young’s lattice. Now the claim follows from part (a).

(c) Asmentioned above, the rank generating function of lattice paths in a grid is equal to some

g-binomial coefficient. The result now follows from (a).

(d) Embed the underlying snake graph G, into the minimal rectangular grid containing it.

This realizes the poset L, as the interval [L_, L] inside the poset of lattice paths in this
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grid. As was indicated in part (a), the latter poset is isomorphic to (O);-H'Q for some j. Thus

the claim holds.

(e) The snake graphs (G1 and (G5 are nodes in the same poset if and only both snake graphs are
contained within the same minimal rectangular grid. This is true if and only if the lattice
path posets L1 and Ly are embedded as intervals into the same poset of lattice paths in this
minimal rectangular grid. By part (a), this is true if and only if L; and Ly are embedded
into the same @?“LQ. That @?+2 is covered by the collection of these embeddings follows
from the fact that any rectangular grid has a covering by snake graphs.

]

Example 7.13. Figure 7.8/ shows three copies of the same poset, each of which is isomorphic to
@g. In each copy, we display one of the intervals (i.e., poset of lattice paths) in the cover from
Theorem Note that the three distinct snake graphs corresponding to each embedded interval

shown are precisely the elements of @il.

Figure 7.8: Three lattice path posets embedded into (O)gi

11 1 |

mE7 EEE 7 | 07
%44, Z7m | 1] |
17 | W7 | v, EEE
72 70 | A1

I

‘ RN RN

90



Remark 7.14. There is a "dual” equivalence relation that one can impose on £, defined by the
local move shown in the next figure.

Figure 7.9: Local picture for two snake graphs related under the dual equivalence relation

Consider the cluster variable x,, on the dual snake graph GG, . This cluster variable is com-
puted via perfect matchings on Gx. We can associate to each (monomial weight of the) perfect
matching P a snake graph G p. This is done by arranging the edges in P into a sequence, from
which we read off a word whose bit values depend on whether an edge is vertical or horizontal.
We now explain how to order the edges of P to form the aforementioned sequence.

Recall the ordering of tiles 77 < T < --- < T},. The edges of P are arranged into a sequence
by first ordering them according to which tile 7; with minimal ¢ that they lie on. That is, any
edge from tile 7; must come before any edge on tile 7} 1 in this sequence. Note that if two edges
are associated to the same tile 7, then they are both vertical or both horizontal. Thus, this gives
a well-defined sequence of vertical and horizontal edges, built from the matching P on G x.

From this sequence, we obtain a word by declaring that any vertical edge maps to a, and any

horizontal edge maps to b. An example of this assignment is shown in Figure below.
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Figure 7.10: Snake graphs from perfect matchings

Let L be the image of P under the map P« — Ly,. It is immediate from this construction

that G p is the snake graph dual of GG, the snake graph constructed from the lattice path L

on GGy. For example, the lattice path shown at the left of Figure [7.6is the image of the perfect

matching shown at the left of Figure

7.10

under the map P, « —>» L. Furthermore, the snake

graph shown at the right of Figure[7.6]is the dual of the snake graph at the right of Figure

The above observations make it possible to formulate most of the results from Theorem

in terms of perfect matchings.

Example 7.15. Below we show the “dual” of the poset @g. This poset can be obtained by gluing

together the two posets P, and Py, after realizing each perfect matching as a snake graph. Note

that each node of this poset is dual (in the sense of snake graphs) to its respective node from

Figure
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Figure 7.11: The poset dual to @g
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Chapter 8

A Recursion and Two Rank Formulas

The first goal of this chapter is to give a recursive formula for the computation of L, (g). Our
second goal is to give a closed formula for IL,,(¢) in terms of products of hooks, snake graphs
whose shape is either ak16k2 or a*2pk1 for k1, ko > 2. Thirdly, we combine this hook expansion
with an interpretation of a snake graph as the central lattice path on a “stretched” zigzag snake

graph to obtain a closed formula for 1L, (¢) in terms of the entries of the dual continued fraction

CF(w*).

8.1 Lattice Path Recursion

A straight segment is maximal if it is not contained in any other straight segment. Decompose
G into a union of d maximal overlapping straight segments as follows. Let k1 be the number
of tiles in the first maximal straight segment of GGy, k; the number of tiles in the last maximal
straight segment of G, and k; + 1 the number of tiles in the i*" maximal straight segment of
Gy forl < i < d.

Consider the dual continued fraction CF(w*) = [K1, K9, ..., K], and assume K; > 2 (this
is no loss of generality, by the formula [ay,a9,...,am,1] = [a1,a9,...,am + 1]). Form the

continued fraction @(w*) = [f?l, IA(Q, . I?Cﬂ as follows:
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Figure 8.1: The maximal straight segments of G,

ks + 1 tiles

ko + 1 tiles

ki tiles

(1) If K1 = 1, then d = d—1.In this case, the first entry ofa"(w*) is I/(\'l = K1+ Ky =14+ Ko.
The last entry of CF(w*) is Eg—l — K. The rest of the entries are K; = K1 + 1 for

i£1,d—1.

(2) If Ky # 1, then d = d. In this case, the first entry of C/i:(w*) is K1 = K7, and the last entry

is lA(d = K. The rest of the entries are IA(Z = K; + 1.

The next lemma follows from the previous definition, duality, and the fact that the entries in

CF(w) give a decomposition of GG, into maximal zigzag segments.

Lemma 8.1. Define kAl = ki, /{Ad = kg, andlgi = k; + 1 fori such that 1 < i < d. Consider the

continued fraction &(w*) = [I?l, f/(\'z, . [?Cﬂ defined above. Then for each i, we have lgz = I/(\'Z

This result says that the entries in CF (w*) are the lengths of maximal straight segments in

the snake graph Gy,.
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Let the tiles of G, be T1,T5, ..., where T7 is the first tile of G,. We now recursively define
for each w a weight function p,, on the vertices of the snake graph G, which assigns to each
vertex of (G, a polynomial in ¢ with positive integer coefficients. This weighting is such that if
G, is a connected subsnake graph of Gy, which contains 71 and whose shape contains a total
of r instances of “a” and u instances of “b”, then py (1 +1,u+1) =L, /(q). By Lemma these
weights are functions of the entries in CF(w™).

Suppose that G, begins by going right. Initialize the recurrence with the conditions p, (0, 0) =
0 and py(0,1) = py(z,0) =1, for z > 1.

Figure 8.2: Initial step in the recurrence

The remaining vertices in the first maximal straight segment are determined by the condition

pw(z,1) = pw(x,0) + gpu(z —1,1).

The outputs of p,, defined so far are displayed below in Figure Recall that each [m], =
1+qg+---+¢™ isthe g-analog of the integer m.

Next, py(k1 — 1,y) = pw(k1 — 1,1) = [k1]q, for each y > 1, and

pw(k1,y) = pw(k1,y — 1) + ¢ puw(k1 — 1,y)
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Figure 8.3: The recurrence for the first maximal straight segment of G,

1 [2]4 [3]q [4]4 [k1lq (k1 + 1]g

for y > 1. The first few outputs py(k1 — 1,y) = [k1]q and pw(k1,y) for y > 1 are shown in

Figure

Figure 8.4: The recurrence for the second maximal straight segment of G,

Flg | k1 + g t Plkalg
+q[k1lq

Filg | [k + g + ¢[kalg

Falg| k1 +1q

To compute the weights of the vertices in the third (horizontal) straight segment, we use the
same recurrence relation that was used to compute the weights in the first straight segment, only

the initial values are different. Similarly, the vertices in the fourth (vertical) straight segment are
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computed using the second recurrence rule given above, except ¢ is replaced with ¢V~ F2tl we
continue along in this fashion until all outputs have been computed. A similar recurrence holds

when G, starts by going up.

Example 8.2. We use the recurrence just given to compute the lattice path rank function of the

snake graph Gy, from([7.1above.

Figure 8.5: Recursive computation of the rank function L, (q)

Luwg(q) = [4lg +aqldly +P[lq+¢*Blg= 1 + 2¢ + 3¢* + 3¢> + 3¢* + 2¢° + ¢

[3]q [4]g + q2[3]q [4]q + ql4lq[+ ¢°[3lq

8.2 Hook Rank Formula

Now we provide a closed formula for any L, (¢). We continue to assume that G, starts by going
right.

Suppose Gy, has d straights segments. Say tile 7; has an exposed NW corner if there is one
tile glued to its S edge, and one tile glued to its E edge (these three tiles correspond to a subword
ba in sh(Gy)). Similarly, we say tile T} has an exposed SE corner if there is one tile glued to its N

edge, and one tile glued to its W edge (corresponding to a subword ab in sh(Gy,)). Let NW(Gy,)
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be the set of tiles of G, with an exposed NW corner, and let SE(G,) be the set of tiles with an
exposed SE corner.

If Gy, starts by going right, then u = [NW(Gy,)| = Ld—*rlJ . For each T; € NW(Gy,), let TiSE
and Tin respectively denote the SE and NW corner of 7;.

For each i, any lattice path in L., must pass through either TZ-SE or TZ-NW (but not both).
This allows us to partition L, into 2" sets of lattice paths by specifying which corner in each
T; € NW(Gy) a path must pass through.

Consider the natural ordering on the tiles NW(G,) inherited from the ordering of the tiles
of Gy. If t; is one of the two corners of some T; € NW(Gy,), then the assignment t; — 0 if
t; = TZSE and t; — 1ift; = TZNW induces a poset isomorphism from u-tuples (¢, %9, ..., t,)
to By, the Boolean lattice of rank u. Here, one element o9 in B,, covers another oy if o9 can be
obtained from oy by switching one bit “0” in o to the bit “1”.

We now build another poset H, and give an explicit isomorphism from it to a Boolean lattice.

Introduce the following notation:

o Hijp1 =1+ qlkilqlkivlq
* HZ - [ki]Q7
o Define

i qki+ki+1+1 ifi2landi+1+#d
HZ,Z o

Fithitl  ifi=1lori+1=d
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Define a multiplication o on the symbols A Litl por i < 7, define

e HL 3+ if j #i+2
Hlvl o H]J —
¢ Y HVHLHBIHY) if =42

This new multiplication can be extended to products of more than two symbols.. If no confu-
sion will result, we omit the comma appearing in the subscripts and superscripts of these symbols
(e.g., we write H%3 instead of H?3). We also omit the symbol “o” from the computations.

Starting with the minimal element

HigH3s ... Hq_9 4-1Hg

if d is odd, or

HygHsy...Hy 34 2Hg 1,4

if d is even, and interpreting the local procedures
HiH; q — H'HL
Hij1Hipo s HiHTHT2,

o
HiHiqq j42 — H"" Hj o,

and

1,042
H;jy1Hiq9 43— H;H'™"""H; 3

as covering relations, gives a poset H with additional node structure.

100



We now give an explicit isomorphism between the poset H and the Boolean lattice By,. Sup-
pose for the moment that d is even, so that the minimal element of the poset above is
HygHgy ... Hg_1 4. Send this element HygH3y ... Hg_1 g to (0,0,...,0) € By. Now sending
H{H?HyHsg--- — (1,0,0,...), HoH3H*® HgHy7g--- +— (0,1,0,0,...), etc. induces the
aforementioned isomorphism. In other words, each weight in H is given coordinates based on
the symbols with upper subscripts that it contains. The assignment is similar when 7 is odd.
Thus, the nodes H, of H are indexed by o0 € B,,. The next result follows from the above

constructions.

Theorem 8.3. Fix the word w and consider the rank function IL,,(q) of lattice paths on the snake
graph Gy,. Let By, be the Boolean lattice of rank u. Recall the symbols H, each parameterized by

o € By, and representing a polynomial in q with positive integer coefficients. Then we have

Lu(q) = Y H,.

UGBU

Example 8.4. Consider the snake graph G, and the lattice L, with its rank function Ly, (q).

(1) If sh(Gy) = a*171%24¥3~1 then

Ly(q) = HygHsz + Hy H?.

(2) If sh(Gy) = aF1-10F2aF3pkF4=1 then

Ly (q) = HioHzy + HIH* Hy.
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(3) If sh(Gy) = aP1=172aF3pF4aF5~1  then

L(q) = HigH3yHy + Hy H*3 HyHs + Hio H3HY + HyHZ HY.

(4) If sh(Gy) = aP171072aF3pF40F50%6 1 then

Lo(q) = HioHzyHsg + Hi H* HyHsg + Hig H3 H* Hg + Hy H?3 H* Hg,.

Similar formulas can be derived for when G, starts by going up, e.g., for G, such that

sh(Gy) = bF1-1ak20F3=1 we have Ly, (¢q) = Hy Hoz + H'2Hj.

8.3 Fibonacci Rank Formula

The hook expansion formula from the previous section can be refined to an explicit closed for-
mula for L, (¢), as a sum over “face-weighted” products of ¢-deformations of the entries k; from
CF(w)*. Each term in this formula is the weight of a lattice path L on a zigzag snake graph G,
with d — 1 tiles.

By the weight of L, we mean the product of the weights attached to the edges of L, multiplied
by the product of face weights in the symmetric difference 