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ABSTRACT 

THE EFFECTS OF GENETIC BACKGROUND ON THE EVOLUTION 

OF ANTIBIOTIC RESISTANCE AND ITS FITNESS COSTS 

By 

Kyle Joseph Card 

Antibiotic resistance is a growing public-health concern. Efforts to control the emergence and 

spread of resistance would benefit from an improved ability to forecast when and how it will 

evolve. To predict the evolution of resistance with accuracy, we must understand and integrate 

information about many factors, including a bacterium’s evolutionary history. This dissertation 

centers on the effects of genetic background on the evolution of phenotypic resistance, its genetic 

basis, and its fitness costs. To address these issues, I used Escherichia coli strains from the long-

term evolution experiment (LTEE) that independently evolved for multiple decades in an 

environment without antibiotics. 

First, I examined how readily these LTEE strains could overcome prior losses of intrinsic 

resistance through subsequent evolution when challenged with antibiotics. Second, I investigated 

whether lineages founded from different genotypes take parallel or divergent mutational paths to 

achieve increased resistance. Third, I tested whether fitness costs of resistance mutations are 

constant across different genetic backgrounds. In these studies, I focused attention on the interplay 

between repeatability and contingency in the evolutionary process. My findings demonstrate that 

genetic background can influence both the phenotypic and genotypic evolution of resistance and 

its associated fitness costs. I conclude this dissertation with a broader discussion about these and 

other factors that can influence the evolution of antibiotic resistance, and their clinical and public-

health implications. 
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Abstract 

Populations often encounter changed environments that remove selection for the maintenance of 

particular phenotypic traits. The resulting genetic decay of those traits under relaxed selection 

reduces an organism’s fitness in its prior environment. However, whether and how such decay 

alters the subsequent evolvability of a population upon restoration of selection for a previously 

diminished trait is not well understood. We addressed this question using Escherichia coli strains 

from the long-term evolution experiment (LTEE) that independently evolved for multiple decades 

in the absence of antibiotics. We first confirmed that these derived strains are typically more 

sensitive to various antibiotics than their common ancestor. We then subjected the ancestral and 

derived strains to various concentrations of these drugs to examine their potential to evolve 

increased resistance. We found that evolvability was idiosyncratic with respect to initial genotype; 

that is, the derived strains did not generally compensate for their greater susceptibility by “catching 

up” to the resistance level of the ancestor. Instead, the capacity to evolve increased resistance was 

constrained in some backgrounds, implying that evolvability depended upon prior mutations in a 

historically contingent fashion. We further subjected a time series of clones from one LTEE 

population to tetracycline and determined that an evolutionary constraint arose early in that 

population, corroborating the role of contingency. In summary, relaxed selection not only can drive 

populations to increased antibiotic susceptibility, but it can also affect the subsequent evolvability 

of antibiotic resistance in an unpredictable manner. This conclusion has potential implications for 

public health, and it underscores the need to consider the genetic context of pathogens when 

designing drug-treatment strategies. 
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Introduction 

A population may encounter an environmental change that removes or reduces a selective pressure 

that was previously important for the maintenance of a trait (Darwin 1859; Lahti et al. 2009). 

Adaptation to the new environment can therefore affect an organism’s fitness in its prior 

environment. These correlated responses may lead to the functional decay of unused traits over 

time or, conversely, their maintenance despite relaxed selection (Lahti et al. 2009). However, the 

evolutionary processes driving these responses are often hard to disentangle because one must rely 

on retrospective studies and historical inference. 

By contrast, evolution experiments with microorganisms provide a powerful approach to 

study correlated responses. Microbes often have large population sizes and fast generations, and 

they are amenable to freezing and revival. One can therefore observe evolution in action, directly 

compare ancestral and derived forms, and simultaneously assess adaptation to one environment 

and quantify correlated fitness responses in another. Accordingly, numerous studies with bacteria 

(Chao et al. 1977; Lenski 1988; Reboud and Bell 1997; Cooper and Lenski 2000; Cooper et al. 

2001; Ellis and Cooper 2010; Leiby and Marx 2014), viruses (Turner and Elena 2000; Duffy et al. 

2006; Agudelo-Romero et al. 2008; Coffey and Vignuzzi 2011; Wasik et al. 2015; Meyer et al. 

2016), and yeast (Wenger et al. 2011; Ratcliff et al. 2012; Koschwanez et al. 2013) have found 

that fitness trade-offs between environments are common. 

Trade-offs are often caused by antagonistic pleiotropy, which occurs when a mutation that 

is beneficial in one environment is deleterious in another. This process can have important public-

health consequences when antibiotic-resistance mutations or acquired resistance genes impose 

costs on bacterial growth and competitiveness relative to their sensitive counterparts in the absence 

of drugs (Lenski 1997; Andersson and Hughes 2010). Previous studies have shown that pleiotropic 
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fitness costs are widespread among resistance determinants to diverse drug classes (Nguyen et al. 

1989; Schrag et al. 1997; Rozen et al. 2007; Han et al. 2009), although their magnitudes are 

variable and may also depend on the genetic background (Lenski et al. 1994; Andersson and 

Hughes 2010; Melnyk et al. 2015; Palmer et al. 2018). 

Given that antibiotic-resistance mutations and genes commonly impose fitness costs, one 

would expect that resistance should decline over time in the absence of antibiotic exposure. 

However, compensatory evolution often reduces or eliminates these trade-offs (Bouma and Lenski 

1988; Schrag et al. 1997; Reynolds 2000; Rozen et al. 2007). Adaptive trends during compensatory 

evolution have been studied using a number of E. coli mutants resistant to the drug rifampicin 

(Barrick et al. 2010). That study found that the mutants were generally less fit than their sensitive 

progenitors in a permissive antibiotic-free environment; moreover, the compensatory effects of 

subsequent beneficial mutations were greater when the resistance was more costly. Thus, 

compensation exhibited a pattern of diminishing-returns adaptation in that study. 

Even when bacteria have no known history of exposure to antibiotics, they may have low 

level resistance to some drugs because of intrinsic structural or functional features, including their 

cell envelope and efflux pumps (Cox and Wright 2013). As a consequence, intrinsic resistance 

may decline in the absence of drug exposure if relevant genes accumulate mutations either by 

selection or drift in permissive environments (Cooper and Lenski 2000). 

A recent study used the E. coli long-term evolution experiment (LTEE), and antibiotic 

resistance as a model trait, to study changes in an organism’s capacity to tolerate environmental 

stresses when it evolves for a long period in the absence of those stresses (Lamrabet et al. 2019). 

In the LTEE, 12 replicate populations were founded from a common ancestor and have been 

propagated daily for over 30 years in a medium without antibiotics (Lenski et al. 1991; Tenaillon 
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et al. 2016). In particular, Lamrabet and colleagues measured changes in mostly low-level intrinsic 

resistance between ancestral and derived strains isolated from each population after generations 

2,000 and 50,000. They found that derived strains were usually more susceptible to most 

antibiotics than their ancestor, and from multiple lines of evidence they inferred that these losses 

of intrinsic resistance resulted primarily from pleiotropic side effects of beneficial mutations that 

arose during the LTEE. 

Although the lineage leading to the LTEE ancestor has no known history of exposure to 

industrially manufactured antibiotics (except streptomycin), it might nevertheless have a history 

of exposure to similar compounds produced by competitors and to host bile salts. Adaptations that 

provide resistance to these other stressors, such as those involving the cell envelope and efflux 

pumps (Thanassi et al. 1997), often confer intrinsic resistance to antibiotics (Cox and Wright 

2013). Thus, even the low-level resistance of the ancestor might reflect this prior natural history, 

and selection was relaxed on these traits in the LTEE environment. 

Taken together, the experimental evolution studies described above have two contrasting 

implications relevant for medicine and public health. First, resistance to antibiotics (including even 

low-level intrinsic resistance) may decline in the absence of drug exposure. Second, evolution can 

often compensate for deleterious side effects of mutations, thereby facilitating the maintenance of 

evolved resistance. The question then arises how readily bacteria can overcome losses of antibiotic 

resistance that arose during periods of relaxed selection through subsequent evolution in the 

presence of drugs. In this study, we address this fundamental question by using the LTEE ancestor 

and derived strains isolated from four populations after 50,000 generations to examine how 

evolution in the absence of antibiotics affects the bacteria’s potential to evolve increased resistance 

when drugs are introduced. In so doing, we examine the role that genetic background plays in 
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resistance evolvability (Figure 1.1). Does resistance evolution tend to follow a general trend of 

diminishing returns (Travisano et al. 1995; Barrick et al. 2010; Wiser et al. 2013; Kryazhimskiy et 

al. 2014), such that derived strains that are initially more susceptible to a drug can increase their 

resistance disproportionately relative to their ancestor (Figure 1.1B)? Or is evolvability 

idiosyncratic with respect to prior evolutionary history (Blount et al. 2008, 2018), such that the 

relative gains in resistance are independent of a strain’s initial susceptibility (Figure 1.1C)? 

 

Figure 1.1. Schematic illustration of the evolvability of antibiotic resistance under three 

scenarios. A strain’s evolvability is defined operationally as the maximum increase in resistance 

from an initially susceptible genotype during one round of drug selection. (A) Null model, with no 

effect of genetic background on evolvability. (B) Diminishing-returns model, such that 

backgrounds with low initial resistance are more evolvable than backgrounds that are initially more 

resistant. (C) Idiosyncratic-effects model, in which evolvability varies among genetic backgrounds 

but is uncorrelated with their initial level of resistance. 

Throughout this chapter, we discuss how differences in genetic background may affect the 

evolvability of antibiotic resistance. This focus brings to mind the concept of epistasis, whereby 

the marginal effect of a particular mutation on some phenotype of interest depends on its 

interaction with another mutation or, more generally, the set of mutations that distinguish genetic 

backgrounds (Levin et al. 2000; Moore et al. 2000; Trindade et al. 2009; MacLean et al. 2010; 
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Chou et al. 2011; Khan et al. 2011; Kryazhimskiy et al. 2014; Wong 2017). In the context of our 

study, epistasis could arise in at least two ways. First, mutations in the same target gene may confer 

different levels of resistance depending on other mutations that differ between backgrounds. 

Second, the physiological mechanisms and associated loci underlying resistance may differ across 

genetic backgrounds. It might seem unexpected that the genetic basis of resistance would differ 

among closely related backgrounds. However, as we will show, the initial levels of resistance vary 

among backgrounds, and the physiological mechanisms that allow cells to resist drugs may depend 

on their concentrations, such that the mechanisms used may also differ across backgrounds. 

Without a more precise mechanistic understanding at this stage of our work, we cannot distinguish 

between these forms of epistasis. More generally, we will use the term evolvability (rather than 

epistasis) because it emphasizes the consequences of these effects for antibiotic resistance. 

We confirmed the finding of Lamrabet and colleagues (2019) that the LTEE-derived strains 

had typically become more susceptible to antibiotics during relaxed selection. However, contrary 

to our expectation based on a diminishing-returns model, we discovered that these derived strains 

were usually no more evolvable (and sometimes less evolvable) than their ancestor when exposed 

to various antibiotics. Instead, idiosyncratic responses dominated over any diminishing-returns 

tendency, such that the capacity to evolve resistance was hampered on some LTEE-derived genetic 

backgrounds. These results indicate that evolution and diversification of a single bacterial species 

in a permissive environment can lead to unpredictable changes in the potential to evolve antibiotic 

resistance. Our work suggests that methods for predicting, at the strain level, a pathogen’s 

evolutionary potential should be developed in light of the global threat of antibiotic resistance. If 

successful, such methods could become an integral aspect of resistance surveillance and patient 

treatment. 
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Materials and Methods 

Bacterial strains 

All of the strains used in this study are from the E. coli LTEE. In the LTEE, 12 replicate 

populations were founded from a common ancestral strain called REL606 (Lenski et al. 1991). 

These populations have been propagated for over 32 years by daily 1:100 transfers in glucose-

supplemented Davis minimal (DM) medium without any antibiotics (Lenski et al. 1991), resulting 

in >73,000 cell generations to date. Samples from each population are frozen periodically at −80˚C. 

In this study, we quantified the intrinsic antibiotic resistance and evolvability of the ancestor and 

derived clones isolated from four populations (designated Ara–5, Ara–6, Ara+4, and Ara+5) after 

50,000 generations of the LTEE. We chose these strains for two reasons. First, the source 

populations of these derived clones retained the low ancestral mutation rate, and therefore they 

accumulated many fewer mutations than their counterparts from several populations that evolved 

hypermutability (Tenaillon et al. 2016). This characteristic should increase the tractability of 

identifying candidate alleles affecting resistance evolvability, which we hope to achieve in future 

work. Second, generation 50,000 is the latest point at which whole-genome sequence data are 

available for the clonal samples (Tenaillon et al. 2016). We also examined when the Ara+5 

population evolved a diminished capacity to increase its tetracycline resistance (as described in the 

Results) by testing two strains isolated from this population at several earlier time points 

(generations 500, 1,000, 1,500, 2,000, 5,000, and 10,000). All of the strains used in this study are 

listed in Appendix A Table 1. 
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Culture conditions and measurements of resistance and evolvability 

All experiments were performed at 37˚C. Bacterial strains were revived from frozen stocks by 

overnight growth in Luria Bertani (LB) medium. Cells from these cultures were then streaked onto 

DM agar plates supplemented with 4 mg/mL glucose. We randomly picked single isolated colonies 

from these plates to start multiple replicate populations in LB. Final population sizes in the LB 

cultures were approximately 1 − 2 × 109 cells/mL. When an initially susceptible cell expands into 

a colony and then a population, new mutations spontaneously occur and increase in number during 

growth (Luria and Delbrück 1943). The evolution of antibiotic-resistant mutants will therefore 

originate by independent mutational events in each replicate population (Luria and Delbrück 1943; 

Kassen and Bataillon 2006). 

We define a strain’s evolvability as the maximum increase in antibiotic resistance from an 

initially susceptible genotype during one round of drug selection. Evolvability experiments were 

performed using Mueller-Hinton (MH) agar (Acumedia, Lansing, MI) supplemented with 1 

mg/mL glucose, 0.1 mg/mL magnesium sulfate, 0.01 mg/mL thiamine, and a series of 2-fold 

dilutions of an antibiotic. We used MH agar because a previous study used this medium to quantify 

the susceptibilities of LTEE clones to various antibiotics (Lamrabet et al. 2019). Our study, in part, 

sought to replicate these findings. We chose the four antibiotics in our study because they have 

diverse cellular targets: ampicillin and ceftriaxone inhibit cell-wall synthesis, ciprofloxacin 

inhibits DNA replication, and tetracycline inhibits protein synthesis. We prepared stock solutions 

of each antibiotic following the manufacturers’ instructions, which were then stored at −20˚C. 

One-milliliter samples of each population were centrifuged at 8,000 rpm for 2 minutes and 

resuspended in an equal volume of saline. We then plated 100 μL (containing approximately 1 – 

2 × 108 cells) from each suspension onto the antibiotic-amended MH agar plates, and MICs were 
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evaluated after 48 hours of incubation. For this study, we operationally define a pair of MICs for 

each series of antibiotic-amended plates as the lowest concentration that prevents either confluent 

growth or isolated colonies. According to this approach, confluence indicates growth by the 

susceptible “parental” strain, while isolated colonies are resistant “daughter” mutants. A strain’s 

evolvability was calculated from the difference in MIC between these two genotypes. For each 

experimental block, putative resistant mutants were confirmed by streaking one randomly chosen 

colony per strain onto fresh antibiotic-amended MH plates. All clones regrew at the corresponding 

concentration. This approach indicated that a selected clone was indeed a resistant mutant with a 

stably inherited increase in its MIC, as opposed to a so-called “persister” that exhibited higher-

than-average phenotypic tolerance relative to genetically identical cells (Balaban et al. 2019). 

Cultures of mutant clones were then frozen at −80˚C in LB medium supplemented with 15% 

glycerol as a cryoprotectant. 

Appendix B Figure 1 provides a schematic representation of our methods for measuring 

the MICs of sensitive parental strains and their resistant daughter derivatives. In Appendix B 

Figure 2, we show an image of the resulting plates for one replicate series across a 256-fold (= 28) 

range of ciprofloxacin concentrations for the LTEE ancestral clone. In this image, one sees 

confluent growth on the first 3 plates, isolated colonies on the next 2 plates, and no evident growth 

on the 4 plates with the highest concentrations. Based on these plates, we scored the MIC of the 

sensitive parental strain as the lowest concentration that inhibited confluent growth, which was 

0.0025 μg/mL in this example. We scored the MIC of the resistant daughter derivative as the lowest 

concentration where even isolated colonies were absent, in this case 0.01 μg/mL. The log2-

transformed difference between these values (i.e., log2 0.01/0.0025 = 2 in this example) provides 

one estimate of the evolvability of the LTEE ancestral strain with respect to ciprofloxacin. We 
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obtained 32 independent estimates of these MICs and the associated evolvabilities for the ancestral 

strain against each of the four antibiotics used in our study. We similarly obtained eight 

independent estimates of the MICs and associated evolvabilities for each of the four 50,000-

generation strains used in our study against each of the same antibiotics. Photographs of all of the 

replicate plate series used to estimate these values have been archived on the Dryad Digital 

Repository: https://datadryad.org/stash/dataset/doi:10.5061/dryad.g41hg96 (Card 2019). 

 

Experimental design and data analyses 

All MIC values were transformed by taking their base-2 logarithm because the antibiotic 

concentrations were tested across a series of 2-fold dilutions. For each experimental block, an 

independently isolated LTEE ancestral clone was paired with each derived clone. We had two 

predictions when we began this study: (i) the derived bacteria would be more susceptible to 

antibiotics (lower MICs) than their common ancestor as a consequence of the relaxed selection 

they experienced in the permissive LTEE environment and (ii) the derived bacteria would be more 

evolvable than their ancestor when challenged with antibiotics, following a general trend of 

diminishing-returns adaptation. 

Statistical tests that rely on normally distributed data were deemed inappropriate for this 

study owing to the discrete, lumpy nature of the measurements. Instead, we used nonparametric 

methods. There were also numerous instances in which the derived clones were equal both in MIC 

and evolvability to the paired assays for the ancestor, and these ties introduced additional 

complications. Therefore, we used trinomial tests to examine changes in the direction of our 

expectations relative to the null hypothesis that changes are equally frequent in either direction 

(Bian et al. 2011). We performed these analyses by individually comparing the four derived clones 
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with their paired ancestors across each antibiotic. Probabilities were then combined from these 

independent significance tests using Fisher’s method with 8 degrees of freedom (i.e., df = 2k; 

where k is the number of comparisons) (Fisher 1934; Sokal and Rohlf 1994). As explained 

previously (Figure 1.1C), evolvability might be idiosyncratic and therefore not correlated with the 

initial level of resistance. To assess this possibility, we performed a Kruskal-Wallis one-way 

ANOVA to test for heterogeneity in evolvability among the LTEE lines. Datasets and the details 

of our statistical analyses are provided in an R Notebook on the Dryad Digital Repository: 

https://datadryad.org/stash/ dataset/doi:10.5061/dryad.g41hg96 (Card 2019). 

We performed fluctuation tests to estimate effective mutation rates (Luria and Delbrück 

1943) for the ancestral strain (REL606) to 4 μg/mL tetracycline, and for a derived clone from the 

Ara+5 population (REL1162A) to 2 μg/mL tetracycline. The two strains were taken from the 

freezer and grown overnight in LB broth. Each culture was then serially diluted in saline solution, 

and fewer than 1,000 cells were transferred into each well of a 96-well plate; each well contained 

0.1 mL of LB broth. After 24 hours, we removed the entire volume from each of 84 wells and 

spread it on an MH agar plate amended with either 2 μg/mL or 4 μg/mL tetracycline for REL1162A 

or REL606, respectively. The other 12 wells were sampled to enumerate the bacteria using a 

Coulter counter (Multisizer 4e, Beckman) with a 30-μm aperture; we set a cutoff of 0.2 fL to 

distinguish cells from background debris and subtracted counts from a sterile LB-only negative 

control. We incubated the antibiotic-amended plates for 48 hours and we then scored each plate 

for the absence or presence of one or more colonies, as required for the p0 method to estimate 

mutation rates. 

  



13 

 

Results 

Antibiotic susceptibility profiles of the LTEE ancestral and derived clones 

Antibiotic susceptibility measurements were generally quite repeatable (Figure 1.2). For each 

antibiotic, all 32 independent ancestral replicate minimum inhibitory concentration (MIC) 

measurements were identical. Among the 16 sets of derived-clone replicates (4 clones × 4 

antibiotics), the 8 replicate assays gave identical MICs in 2 cases (12.5%), they deviated minimally 

by a factor of 2 in 12 cases (75%), and in only 2 cases they deviated by a factor of 4 (12.5%). 

These results provide strong support for the use of our plate-based approach, as described in the 

Materials and Methods and shown in Appendix B Figure 1, to quantify antibiotic susceptibility 

profiles. 

 

Figure 1.2. Intrinsic resistance usually declined over time in the absence of drug exposure. 

Comparison of the LTEE ancestor and four independently derived clones sampled after 50,000 

generations for their susceptibilities to ampicillin, ceftriaxone, ciprofloxacin, and tetracycline (A–

D). MICs are shown on a log2-transformed scale to reflect the fact that antibiotic concentrations 

were tested across a series of 2-fold dilutions. In each panel, points show values obtained from 32 

and 8 replicate assays for the ancestor and derived strains, respectively. Horizontal bars show the 

median of the log2-transformed MIC values for each strain on each antibiotic. The absolute values 

of the concentrations shown on the y-axis differ among the four antibiotics, but the range is the 

same in each panel. 
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Changes in susceptibility under relaxed selection during the LTEE 

For each antibiotic, we made 32 comparisons between the MICs of derived clones (4 clones × 8 

replicates) against their paired and independently isolated ancestral clones. On balance, we 

observed increased susceptibility of the strains that evolved under relaxed selection (i.e., in the 

absence of antibiotics) during the LTEE, consistent with recently published results (Lamrabet et 

al. 2019) (Figure 1.2). All four derived strains have increased sensitivity to ampicillin (Figure 

1.2A), ceftriaxone (Figure 1.2B), and tetracycline (Figure 1.2D) relative to their common ancestor, 

and two of the derived strains were more susceptible to ciprofloxacin (Figure 1.2C). These trends 

toward lower resistance are well supported by trinomial tests, as described in the Materials and 

Methods, and as shown in Table 1.1 and Appendix A Table 2. 

Table 1.1. Statistical analyses of declines in intrinsic resistance during relaxed selection of 

clones sampled at generation 50,000 of the LTEE. 

Antibiotic χ2 p 

Ampicillin 40.06  < 0.0001 

Ceftriaxone 45.33  < 0.0001 

Ciprofloxacin 27.15 0.0007 

Tetracycline 41.40  < 0.0001 

Analyses were performed using Fisher’s combined probability method (df = 8) for multiple 

independent hypothesis tests of the same hypothesis, with an underlying trinomial distribution for 

the null. 

Evolvability profiles of the ancestor and derived clones 

Next, we examined how the prior history of relaxed selection affected the evolvability of antibiotic 

resistance in the different genetic backgrounds. To address this question, we selected mutants of 

the ancestral and LTEE-derived strains that survived and grew sufficiently to form colonies at 

higher concentrations of the four antibiotics than their corresponding parental strains (Appendix B 
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Figure 1). As described in the Materials and Methods, we operationally define evolvability as the 

maximum observed increase in antibiotic resistance from an initially susceptible genotype during 

one round of drug selection (Figure 1.1). 

Evolvability measurements tended to be more variable than the MIC measurements. We 

examined the evolvability of 128 independent ancestral clones across the four antibiotics. There 

were 73 cases (57%) in which these measurements corresponded to the median for that antibiotic, 

49 cases (38.3%) in which they differed by a factor of 2, and 6 cases (4.7%) in which they differed 

by a factor of 4. Likewise, among the 16 sets of replicates for the LTEE-derived clones, the 8 

assays varied by a factor of 2 in 12 cases (75%) and by a factor of 4 in 4 other cases (25%). The 

greater variation in evolvability measurements in comparison with MIC values among replicate 

assays is expected given the stochastic appearance of mutations in replicate cultures (Luria and 

Delbrück 1943). Also, increased resistance can occur through multiple mutational paths (Toprak 

et al. 2012; Baym et al. 2016), and those mutations affecting one mechanism might confer greater 

resistance evolvability relative to mutations affecting some other mechanism. 

 

Effects of genetic background on the evolvability of resistance 

We examined the possibility of two broad patterns of genetic-background effects with respect to 

resistance evolvability in our study. First, we asked whether evolvability followed a trend of 

diminishing returns, such that the more susceptible LTEE-derived genetic backgrounds generally 

produced mutants with proportionally greater grains in resistance than the ancestor. Both the 

ancestral and derived strains evolved resistance to varying degrees (Figure 1.3). The evolutionary 

potential of two of the four derived clones (Ara–5 and Ara–6) was noticeably greater relative to 



16 

 

their ancestor in the ampicillin environment (Figure 1.3A), but there were no clear instances of 

similar trends in the three other drug environments (Figure 1.3B–D). 

 

Figure 1.3. Genetic background affects the evolvability of LTEE lines exposed to antibiotics. 

Lines joining susceptible parental strains with their daughter mutants show the increases in 

resistance during one round of selection with ampicillin, ceftriaxone, ciprofloxacin, and 

tetracycline (A–D). If the slope of a derived strain is greater than that of the ancestor, then it has 

greater evolvability; and vice versa. Median MICs are shown on a log2-transformed scale to reflect 

the fact that antibiotic concentrations were tested across a series of 2-fold dilutions. The y-axis 

ranges for the four drugs have been scaled to the ceftriaxone environment, which had the largest 

gains in resistance between the susceptible parental cells and the resistant daughter cells. 

Overall, there was no statistical support for the diminishing-returns trend, despite the visual 

impression for the ampicillin treatment. We compared each derived strain’s evolutionary potential 

with its paired ancestor in the four drug environments. We used trinomial tests to quantify the 

likelihood that each derived strain’s evolvability was greater than its ancestral counterpart when 

tested against the null hypothesis of equally frequent changes in either direction, after taking into 

account the many numerical ties (Bian et al. 2011). Although the capacity of the derived Ara–5 

clone to evolve increased resistance was significantly greater than its ancestor when considered in 

isolation (Appendix A Table 3), it was marginally nonsignificant when we examined overall trends 
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for each antibiotic (Table 1.2) using a meta-analysis approach (Fisher 1934; Sokal and Rohlf 

1994). 

Table 1.2. Statistical analyses of diminishing-returns trends in resistance evolvability of 

clones sampled at generation 50,000 of the LTEE. 

Antibiotic χ2 p 

Ampicillin 14.63 0.0668 

Ceftriaxone 0.18 1 

Ciprofloxacin 7.88 0.4456 

Tetracycline 5.97 0.6511 

Analyses were performed using Fisher’s combined probability method (df = 8) for multiple 

independent tests of the same hypothesis, with an underlying trinomial distribution for the null 

hypothesis. 

We then asked whether the proportional resistance gains when exposed to the antibiotics 

were idiosyncratic among LTEE lines. For example, the capacity to evolve ceftriaxone resistance 

appeared to be reduced among three LTEE-derived backgrounds (Ara+5, Ara–6, and especially 

Ara+4) relative to their common ancestor (Figure 1.3B). Similarly, the evolvability of the Ara+5 

background with respect to tetracycline appears to be constrained (Figure 1.3D). Indeed, this latter 

case was the only one in which the mutants of a strain systematically achieved a lower level of 

resistance than did the mutants of other strains that were initially more susceptible (indicated by 

the crossing lines in Figure 1.3D). These idiosyncratic tendencies are statistically well supported 

by Kruskal-Wallis tests. For both ceftriaxone and tetracycline, these tests reject the null hypothesis 

of homogeneity in proportional resistance increases across the different genetic backgrounds 

(Table 1.3). 
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Table 1.3. Statistical analyses of idiosyncratic patterns in resistance evolvability of clones 

sampled at generation 50,000 of the LTEE. 

Antibiotic χ2 p 

Ampicillin 9.19  0.0566 

Ceftriaxone 23.45  0.0001 

Ciprofloxacin 7.59  0.1077 

Tetracycline 10.18 0.0376 

Analyses were performed using a Kruskal-Wallis one-way nonparametric ANOVA (df = 4). 

Given these idiosyncratic effects of genetic background, we chose to examine one of the 

cases in greater detail. In particular, we asked when the evolvability of the Ara+5 background 

declined with respect to tetracycline. To address this question, we examined clones isolated during 

this population’s early history and tested whether they had lost their capacity to evolve tetracycline 

resistance during a single exposure, to an extent commensurate with the ancestral strain’s 

evolvability. As shown in Figure 1.4, the reduced evolvability was evident in all of the clones 

isolated from generation 2,000 onward as well as in one of two clones isolated at generation 1,500. 

With one exception, all of the LTEE-derived parental backgrounds across this time series had the 

same MIC value as the ancestor (Figure 1.4A). However, the daughter mutants from the later-

generation Ara+5 genetic backgrounds had progressively lower levels of tetracycline resistance 

(Figure 1.4B), which when coupled with the same initial resistance level indicates they had become 

less evolvable in this respect (Figure 1.4C). A Kruskal-Wallis test decisively rejects the null 

hypothesis of equal evolvabilities across the entire set of clones (χ2 = 67.89, df= 12, p < 0.0001), 

and Dunnett’s tests comparing the evolvability of each derived clone from LTEE population Ara+5 

with that of the ancestor support the temporal break point described above (Table 1.4). 
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Figure 1.4. Capacity to evolve tetracycline resistance was diminished early in one LTEE 

lineage. (A) Comparison of the intrinsic tetracycline resistance of the ancestor and a time series of 

derived strains isolated from the Ara+5 population. Strains are ordered by their time of isolation. 

The strain identifiers begin with a number corresponding to the generation (in thousands) of their 

isolation, followed by an arbitrary letter; strains 2A and 2B, for example, are two clones isolated 

at generation 2,000 of the LTEE. (B) Comparison of the evolved resistance levels after one round 

of drug selection, based on the MICs of the mutant daughter cells derived from the corresponding 

parental strains. MICs are shown on a log2-transformed scale to reflect the fact that the 

concentrations of antibiotics were tested across a series of 2-fold dilutions. (C) Evolvability is 

quantified for each strain as the difference in the log2-transformed MICs of the parental strain and 

its corresponding daughter mutant. Points show 10 independent replicates per strain. Horizontal 

bars show the median log2-transformed MICs (A, B) for 10 replicate assays and the evolvability 

(C) based on the corresponding 10 paired differences. 
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Table 1.4. Statistical analyses comparing tetracycline resistance evolvability of clones 

isolated from the Ara+5 population at different generations to the LTEE ancestor. 

Strain Difference Lower 95% CI Upper 95% CI p 

0.5A -0.3 -0.9 0.3 0.6921 

0.5B -0.3 -0.9 0.3 0.6921 

1A 0.0 -0.6 0.6 1 

1B -0.2 -0.8 0.4 0.9607 

1.5B -0.3 -0.9 0.3 0.6921 

1.5A -0.6 -1.2 0.0 0.0412 

2A -1.0 -1.6 -0.4 < 0.0001 

2B -0.8 -1.4 -0.2 0.0021 

5A -0.7 -1.3 -0.1 0.0101 

5B -1.2 -1.8 -0.6 < 0.0001 

10A -1.2 -1.8 -0.6 < 0.0001 

10B -1.3 -1.9 -0.7 < 0.0001 

Analyses were performed using a Dunnett’s test. Strain identifiers begin with a number that 

corresponds to the generation (in thousands) of their isolation, followed by an arbitrary letter; 

strains 2A and 2B, for example, are two clones isolated at generation 2,000 of the LTEE. 

Multiple factors can contribute to differences in evolvability 

The observed changes in evolvability of tetracycline resistance in the Ara+5 population could, in 

principle, reflect several factors, including differences among genotypes in cell density, mutation 

rate, and the number of potential mutations that confer sufficient resistance to allow growth at a 

given drug concentration (i.e., the effective mutational target size). To examine these factors, we 

performed Luria-Delbrück fluctuation tests (Luria and Delbrück 1943; Pope et al. 2008; Lang 

2018) with the LTEE ancestor and 2,000-generation clone 2A at tetracycline concentrations of 4 

μg/mL and 2 μg/mL, respectively. We used these different antibiotic concentrations because, in 

our evolvability assays, the 2,000-generation clone had never produced any mutants that formed 

colonies at 4 μg/mL (Figure 1.4). We grew 96 replicate 0.1-mL cultures of each strain, starting 

from small population sizes to ensure mutational independence (Luria and Delbrück 1943; Pope 

et al. 2008). Because antibiotic-resistant mutants often grow more slowly than their progenitors 
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(Schrag et al. 1997; Rozen et al. 2007; Han et al. 2009; Andersson and Hughes 2010; Barrick et 

al. 2010; Melnyk et al. 2015), we used the “p0” method to estimate effective mutation rates. This 

method is insensitive to possible differences in growth rate between parent strains and daughter 

mutants, as it uses only the fraction of the replicate assays that do not yield any mutants (Luria and 

Delbrück 1943; Pope et al. 2008). For each strain, we used 12 cultures to estimate the population 

size and 84 cultures to test for resistant mutants at the relevant concentration. 

The 2,000-generation clone yielded only about half the cell density as the ancestral strain 

(8.4 × 107 versus 1.8 × 108 cells per 0.1-mL culture, p < 0.0001, based on a two-tailed Welch’s t 

test), which indicates one factor that would contribute to its lower evolvability. For the ancestral 

strain, 11/84 test cultures yielded at least one mutant resistant to 4 μg/mL, while the other 73 

cultures yielded none. For the derived strain, 26 test cultures yielded one or more mutants resistant 

to 2 μg/mL, while 58 cultures produced none. Using the p0 method, the estimated effective 

mutation rate for the ancestral strain is 7.7 × 10−10 per cell generation [approximate 95% 

confidence limits of 4.2 × 10−10 − 1.4 × 10−9 based on the uncertainty in p0 only (Agresti and Coull 

1998)], and for clone 2A the estimated rate is 4.4 × 10−9 (approximate 95% confidence limits of 

3.0 − 6.4 × 10−9). 

At first glance, it may seem counterintuitive that the estimated mutation rate was higher 

for the derived clone than for the ancestor, but recall that we tested this clone at a lower antibiotic 

concentration. Hence, the two rates are not directly comparable. Moreover, published genome 

sequences and analyses (Tenaillon et al. 2016) indicate that the underlying point-mutation rate in 

clone 2A is the same as the ancestral rate. The effective mutation rate that is estimated using a 

fluctuation test depends on the product of the underlying mutation rate and the effective mutational 

target size (i.e., the number of mutations that would allow a colony to grow on the antibiotic test 
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plate). Given the same underlying mutation rate, the difference in the estimated mutation rates 

implies that the derived clone has a larger mutational target at 2 μg/mL of tetracycline than the 

ancestral strain has at 4 μg/mL of that antibiotic. These analyses indicate that differences in 

evolvability between genotypes may reflect differences in several factors—cell density, underlying 

mutation rate, and effective target size—that depend not only on the genetic background but also 

reflect complex interactions between the genetic background, potential resistance mutations, and 

the selective environment. 

 

Discussion 

In this study, we addressed a fundamental question about how relaxed selection on a particular set 

of organismal traits affects their evolvability in situations in which those traits again become 

advantageous. The traits we studied are resistances to several antibiotics, and the question of how 

changes in genetic background that occur during relaxed selection affect the subsequent 

evolvability of resistance has potentially important implications for public health. To address these 

issues, we examined the capacity of E. coli strains to evolve increased resistance to four different 

antibiotics after they had evolved in a drug-free environment for 50,000 generations as part of the 

LTEE. 

We confirmed that intrinsic resistance tended to decay among the LTEE-derived clones to 

all four antibiotics we tested (Figure 1.2, Table 1.1). Our results are consistent with a recent study 

that examined losses of intrinsic resistance in all 12 LTEE lines at generations 2,000 and 50,000 

(Lamrabet et al. 2019). Unlike that previous work, however, we then also examined whether and 

how the LTEE- derived bacteria had changed in their evolvability, specifically their potential to 

evolve resistance when challenged across a range of concentrations of the same four antibiotics. 
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We examined two alternative hypotheses that might bear on resistance evolvability. The 

first is called diminishing returns (Figure 1.1B), and it often characterizes the course of adaptive 

evolution (Moore et al. 2000; Orr 2005; Barrick et al. 2010; Khan et al. 2011; Wiser et al. 2013; 

Kryazhimskiy et al. 2014; Passagem-Santos et al. 2018). For example, one study used rifampicin-

resistant mutants to examine the relation between their initial fitness costs in the absence of this 

drug and their ability to reduce or eliminate those costs during subsequent evolution, again in a 

drug-free environment (Barrick et al. 2010). They first isolated eight rpoB mutants after a single 

round of antibiotic selection and showed that the mutants varied in their fitness defects. The authors 

then propagated these mutants and detected the first beneficial mutations to sweep to high 

frequency in those populations. They found that the lower-fitness backgrounds gave rise to 

mutations that conferred greater advantages than did the backgrounds that initially had higher 

fitness, in accordance with a diminishing-returns model. 

If the evolution of antibiotic resistance after a period of decay under relaxed selection 

conformed to the diminishing-returns model, then we would expect the more susceptible LTEE- 

derived backgrounds to be more evolvable than their common ancestor. However, we found little 

statistical support for diminishing returns in our study (Figure 1.3, Table 1.2). There was one 

instance in which an individual LTEE-derived clone was significantly more evolvable than the 

ancestor in the ampicillin environment, and two other clones trended in this direction (Figure 1.3A, 

Appendix A Table 3). However, the statistical support, even for ampicillin, was marginal at best 

when the evolvabilities of the four clones were analyzed together to account for multiple tests of 

the same hypothesis (Table 1.2). In any case, diminishing returns was not typical across the entire 

set of experiments. 
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The absence of an overall trend toward diminishing returns might be attributable in part to 

two methodological issues. First, it might point to a limitation of our plate-based approach, and 

conventional MIC assays in general, to discern subtle differences in MICs and hence in 

evolvabilities based on differences in MIC values. That is, slight differences in evolvability may 

be obscured by the discrete resolution of the assays using 2-fold increasing concentrations of an 

antibiotic. Consistent with this possibility, the range of initial susceptibilities was greatest in the 

ampicillin environment, where the trend toward diminishing returns was most evident (Figure 

1.3A). An alternative approach that might better capture subtle trends would be to use a continuous 

culture device that dynamically adjusts drug concentration in the growth medium to match the 

ongoing adaptive dynamics of the population under study (Toprak et al. 2012). Second, we might 

have had insufficient statistical power to resolve diminishing-returns trends in evolvability. We 

tested four LTEE-derived lines and their ancestor, whereas some other studies that show 

diminishing returns in other contexts have used as many as hundreds of lines (Kryazhimskiy et al. 

2014). 

There is a third factor—one that is biological, rather than methodological—that could also 

obscure any tendency toward diminishing returns, and that is idiosyncratic heterogeneity among 

genetic backgrounds in their evolvability (Figure 1.1C). This pattern occurs when particular 

mutations that arose during relaxed selection happen to either constrain or potentiate a strain’s 

future evolutionary potential with respect to a given selective pressure. We found that the capacity 

to evolve ceftriaxone resistance tended to be lower for the derived clones than for the ancestor 

(Figure 1.3B, Table 1.3). That tendency is in contrast to the ampicillin environment, and it is 

unexpected given that both drugs are β-lactams that target cell-wall synthesis. In a similar vein, 

we also demonstrated that the Ara+5 lineage had become significantly constrained in its ability to 
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evolve tetracycline resistance relative to both its ancestor and the other LTEE-derived lineages 

(Figure 1.3D). 

We conclude, therefore, that historical contingency has played an important role in the 

capacity of the LTEE-derived populations to respond evolutionarily to changed environments, in 

particular when challenged with antibiotics. That is, different lineages accumulated genetic 

differences—even in replicate populations that evolved in the same environment—that influence 

their ability to evolve and adapt in new directions. Several other microbial evolution studies have 

also documented cases of historically contingent outcomes. For example, the mutations that 

accumulated in one LTEE population potentiated the subsequent evolution of a novel metabolic 

capacity that arose in only that one population, despite comparable time and opportunity in the 11 

other replicate populations (Blount et al. 2008; Quandt et al. 2015; Leon et al. 2018). Similarly, an 

experiment with Pseudomonas aeruginosa showed that high-level colistin resistance was 

potentiated by prior mutations in transcriptional regulators phoQ and pmrB (Jochumsen et al. 

2016). However, the consequences of contingency in these two cases were the opposite of what 

we saw in our study: namely, evolvability was potentiated in these studies, whereas it became more 

constrained in ours. Still other studies have found little evidence for historical contingencies 

affecting evolvability. For example, Travisano and colleagues (1995) isolated a clone from each 

LTEE population after 2,000 generations in the glucose-limited medium. They then founded three 

replicate populations from each clone and let them evolve for 1,000 generations in the same 

environment, except with maltose replacing glucose as the limiting resource. The founding clones 

had independent histories in the glucose environment, and they varied greatly in their initial fitness 

in the maltose environment. Despite this initial heterogeneity, however, the populations rapidly 
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converged on similar fitnesses in the new maltose environment. Thus, adaptation dominated over 

contingency in that experiment. 

Returning to our study, we ask the following questions: When did the evolvability with 

respect to tetracycline exposure decline in the Ara+5 population? And why, in molecular-genetic 

terms, did it decline? To answer the first question, we tested clones from throughout this 

population’s history and identified when the bacteria first lost their ability to evolve resistance to 

the same degree as the ancestral strain. We found that this constraint was already present in one of 

two clones sampled at 1,500 generations of the LTEE, and it was evident in all of the clones we 

tested from generation 2,000 and onward (Table 1.4) despite these backgrounds having retained 

the same initial resistance level as the ancestor (Figure 1.4). These data thus confirm the 

idiosyncratic effects of genetic background on the evolvability of resistance. By performing 

fluctuation tests to measure effective mutation rates, we also showed that evolvability can depend 

in complex ways on several factors, including not only a strain’s underlying mutation rate but also 

the cell density it achieves and the effective mutational target size for a given antibiotic 

concentration. 

With respect to the second question, we do not yet know the answer, but the early timing 

of the change in evolvability allows us to narrow substantially the genetic possibilities. By 

combining our phenotypic results with previously obtained genomic data (Tenaillon et al. 2016), 

we have identified three candidate mutations that alone or in combination could explain this 

reduced evolvability. These mutations arose in the following genes: mreB, which encodes a protein 

involved in cell-wall structuring; pykF, which encodes pyruvate kinase that catalyzes the last step 

of glycolysis; and trkH, which encodes a potassium ion transporter. Interestingly, recent studies 

have discovered that mutations in trkH can cause increased susceptibility to tetracycline through 
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changes to the proton-motive force, and this relationship may depend upon the genetic background 

(Lázár et al. 2013; Apjok et al. 2019). In future work, we hope to make genetic constructs that will 

allow us to investigate the genetic basis for the low evolutionary potential of this background when 

exposed to tetracycline. We will also sequence some of the antibiotic-resistant mutants that 

evolved in our experiments to test whether there are any systematic differences among the various 

strains in the genetic targets of the resistant mutations and whether such differences correlate with 

the history of relaxed selection and concomitant increased susceptibility. 

In summary, we have shown that bacterial evolution in the absence of antibiotic exposure 

can lead not only to increased susceptibility but also to genetic background-dependent changes in 

resistance evolvability when cells are exposed to those drugs. The evolution of resistance can thus 

depend upon previously accumulated mutations in a historically contingent fashion. These findings 

could have important health implications if evolution in an antibiotic-free environment sometimes 

erodes not only a pathogen’s resistance level but also its potential to evolve greater resistance. We 

therefore suggest that strategic antibiotic management may benefit not only from surveillance of 

current resistance levels in pathogens but also from analyses of their potential to evolve increased 

resistance. This approach could be valuable both on the scale of the individual patient, where 

effective treatment is paramount, and on a community-wide scale, where judicious efforts to 

control the spread of drug resistance become critical. We hope that our evolvability-based 

approach and extensions thereof prove useful in achieving these objectives. 
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CHAPTER 2: Genomic evolution of antibiotic resistance is contingent on genetic 

background following a long-term experiment with Escherichia coli 
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Abstract 

Antibiotic resistance is a growing health concern. Efforts to control resistance would benefit from 

an improved ability to forecast when and how it will evolve. Epistatic interactions between 

mutations can promote divergent evolutionary trajectories, which complicates our ability to predict 

evolution. We recently showed that differences between genetic backgrounds can lead to 

idiosyncratic responses in the evolvability of phenotypic resistance, even among closely related 

Escherichia coli strains. In this study, we examined whether a strain's genetic background also 

influences the genotypic evolution of resistance. Do lineages founded by different genotypes take 

parallel or divergent mutational paths to achieve their evolved resistance states? We addressed this 

question by sequencing the complete genomes of antibiotic-resistant clones that evolved from 

several different genetic starting points during our earlier experiments. We first validated our 

statistical approach by quantifying the specificity of genomic evolution with respect to antibiotic 

treatment. As expected, mutations in particular genes were strongly associated with each drug. 

Then, we determined that replicate lines evolved from the same founding genotypes had more 

parallel mutations at the gene level than lines evolved from different founding genotypes, although 

these effects were more subtle than those showing antibiotic specificity. Taken together with our 

previous work, we conclude that historical contingency can alter both genotypic and phenotypic 

pathways to antibiotic resistance. 
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Introduction 

Convergent evolution is common in nature. The independent emergence of winged flight in insects 

and mammals, and of camera-like eyes in vertebrates and cephalopod mollusks, are familiar but 

striking examples of how evolution can drive distantly related lineages to similar phenotypic 

outcomes (Conway Morris 2003). For over a century, biologists have sought to understand the 

processes underlying these patterns and quantify the extent of convergent evolution in the natural 

world. However, quantifying convergence in nature is difficult for at least two reasons. First, one 

typically observes only a biased sample of possible outcomes. For example, extinct lineages that 

evolved different, but ultimately unsuccessful, adaptations usually go undetected, causing one to 

overestimate the extent of convergence (Woods et al. 2006; Lenski 2017). Second, comparative 

studies generally cannot account for slight differences in environments or lineages' prior 

evolutionary histories as causes of divergent adaptation, leading to an underestimation of 

convergence (Woods et al. 2006; Achaz et al. 2014; Lenski 2017). 

Controlled and replicated evolution experiments with microbes allow one to overcome 

these limitations and more precisely quantify the extents of parallel and convergent evolution 

(Blount et al. 2018). Populations of bacteria, yeast, and viruses reproduce quickly and grow to 

large numbers, permitting one to observe evolution over timescales of days to years. One can also 

propagate many independent lines under identical conditions and characterize evolutionary 

repeatability at both the phenotypic and genotypic levels. 

Evolution experiments with bacteria can also shed new light on the growing crisis of 

antibiotic resistance. It has been estimated that at least 700,000 people die each year from resistant 

infections, and the mortality rate has been projected to rise to 10 million by 2050, outpacing deaths 

from cancer (O’Neill 2016). Alternative strategies are required to combat drug resistance, 
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especially given the slowing pace at which new drug classes are being developed. Drug discovery 

through large-scale chemical screens or isolation of natural products is one approach to addressing 

the problem of resistance (Wohlleben et al. 2016). However, bacteria will likely evolve resistance 

to these new compounds, as they have to previous antibiotics, diminishing the effectiveness of 

drug discovery over the long-term. 

Alternatively, it might be possible to extend the usefulness of existing therapeutics by 

channeling evolution toward drug susceptible states with an improved understanding of the factors 

that shape evolutionary trajectories (Nichol et al. 2015; Baker et al. 2017; Hughes and Andersson 

2017; Iram et al. 2019). To that end, the phenotypic and genetic repeatability of resistance 

evolution has motivated several studies (Toprak et al. 2012; Imamovic and Sommer 2013; Lázár 

et al. 2013; Baym et al. 2016; Yen and Papin 2017; Card et al. 2019; Maltas and Wood 2019; 

Nichol et al. 2019). In particular, two landmark studies evaluated the reproducibility of 

Escherichia coli populations evolving in and adapting to increasing antibiotic concentrations in 

spatially homogeneous (Toprak et al. 2012) and structured environments (Baym et al. 2016). They 

found strong signatures of genomic parallelism; that is, replicate lines tended to evolve high-level 

resistance through mutations in a limited set of genes. However, the replicate lines in these 

experiments were all founded from genetically identical cells, so it is unknown whether selection 

would target the same genes if the founding genetic background had been different. 

Epistatic interactions between mutations (including between resistance mutations and the 

genetic background in which they occur) can alter adaptive trajectories. Thus, they complicate our 

ability to predict resistance evolution and design effective treatment strategies. In theory, one can 

leverage collateral drug responses—where the evolution of resistance to one drug increases a 

bacterium’s susceptibility to other drugs (Imamovic and Sommer 2013; Lázár et al. 2013; Oz et 
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al. 2014; Chevereau et al. 2015; Yen and Papin 2017; Imamovic et al. 2018)—to forestall or even 

reverse antibiotic resistance in pathogens. Yet differences in genetic background can make this 

approach difficult in practice. For example, replicate E. coli and Enterococcus faecalis populations 

can take different mutational paths to increased resistance that change their collateral responses to 

second-line antibiotics (Maltas and Wood 2019; Nichol et al. 2019). Despite stochasticity at the 

level of individual mutant strains, one can still exploit statistical patterns in resistance profiles 

across many replicates to optimize drug-cycling protocols (Maltas and Wood 2019). Recent work 

showed that such an approach could drive populations to eventual long-term susceptibility through 

intermediate states of high-level resistance (Maltas and Wood 2019). 

Replicate populations also accumulate genetic differences as they evolve in permissive 

environments, and these differences can change their ability to adapt when challenged with 

antibiotics. We recently used several strains from the E. coli long-term evolution experiment 

(LTEE) to examine the role that genetic background plays in the evolution of drug resistance (Card 

et al. 2019). In the LTEE, 12 replicate populations were founded from a common ancestral strain 

and have been propagated daily for over 30 years in an environment without antibiotics (Lenski et 

al. 1991; Tenaillon et al. 2016). Clones from several populations evolved increased antibiotic 

sensitivity compared to their ancestor (Card et al. 2019; Lamrabet et al. 2019). We asked whether 

these strains could compensate for their increased sensitivity through subsequent evolution under 

drug selection. We found that their evolutionary potential was idiosyncratic with respect to their 

initial genotype, such that resistance was constrained in some backgrounds but not in others, 

indicating the role of historical contingency in this process (Blount et al. 2018; Card et al. 2019). 

In this study, we sequenced the complete genomes of antibiotic-resistant clones that 

evolved from several different founding strains during our earlier experiments and used this 
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information to examine how genetic background affects the genomic evolution of antibiotic 

resistance. First, we validated our statistical approach by demonstrating that mutations in particular 

target genes were associated with each of the four antibiotic treatments. We then showed that 

evolution was also contingent, albeit more subtly, on differences in genetic background, such that 

resistant lines that evolved from the same genotype had, on average, slightly more mutations in 

common. These results, taken together with our previous work, indicate that even slight differences 

in genetic background may complicate one’s ability to predict phenotypic and genotypic outcomes 

of antibiotic resistance evolution. 

 

Materials and Methods 

Evolution experiments and bacterial strains 

The LTEE has been described in detail elsewhere (Lenski et al. 1991; Lenski 2017). Briefly, 12 

replicate populations of E. coli were founded from a common ancestral strain called REL606. 

These populations have been propagated for more than 73,000 bacterial generations by daily 1:100 

transfers in a glucose-limited Davis minimal (DM) medium without antibiotics. 

In a previous study (Card et al. 2019), we measured the intrinsic resistance of the LTEE 

ancestor and derived clones isolated from four populations (designated Ara–5, Ara–6, Ara+4, and 

Ara+5) at generation 50,000 to the antibiotics ampicillin (AMP), ceftriaxone (CRO), ciprofloxacin 

(CIP), and tetracycline (TET). We also quantified these strains’ capacities for evolving resistance 

by challenging them across a range of concentrations to these same drugs during one round of 

selection. In this study, we sequenced the complete genomes of a subset of the resistant mutants 

that evolved during these experiments, and we examined whether the genetic targets of the 

resistance mutations systematically differed between the four antibiotics and five genetic 
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backgrounds. Specifically, for each antibiotic treatment we sequenced 4 mutants that 

independently evolved from the ancestral background, and 3 mutants from each derived 

background, for a grand total of 64 sequenced mutants (16 mutants × 4 antibiotics) (Appendix A 

Table 4). 

 

Library preparation and genomic sequencing 

Glycerol stocks of frozen samples were grown overnight in 3 mL of Luria Bertani (LB) medium 

at 37oC with shaking at 250 rpm. Overnight cultures were harvested by centrifugation and genomic 

DNA was extracted using the E.Z.N.A. Bacterial DNA kit (Omega Bio-tek). DNA was quantified 

using the QuantiFluor dsDNA system (Promega). Then, 250 ng of purified genomic DNA was 

used from each sample for library preparation using the Nextera DNA Flex Library Prep Kit 

(Illumina) per the manufacturer’s protocols. The 12 pM final libraries were loaded into a 600-cycle 

V3 MiSeq reagent cartridge and sequenced on an Illumina MiSeq at North Carolina A&T State 

University. The resultant FASTQ files of 300-base paired-end reads were deposited to the NCBI 

Sequence Read Archive. 

 

Mutation identification 

We trimmed sequencing reads to remove low-quality bases using Trimmomatic v0.38 (Bolger et 

al. 2014) on the Galaxy web platform (Afgan et al. 2018). A sliding-window approach was used; 

reads were clipped when the average quality score was < 20 in a 4-bp window and to a minimum 

length of 36-bp. Mutations were then identified in the genomes using breseq v0.35 (Barrick et al. 

2014) with default parameters. We used a version of the REL606 reference genome with updated 

gene annotations for variant calling (Jeong et al. 2009; Tenaillon et al. 2016). 
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Each population evolved unique substitutions in pykF during the LTEE that distinguish 

them from one another (Tenaillon et al. 2016). Therefore, we first compared this locus for each 

resistant clone against its corresponding parental strain to test for possible external and cross-

contamination. Strains KJC184 and KJC217 from the CIP and CRO treatments, respectively, were 

supposed to derive from the Ara+4 and Ara+5 parental backgrounds, respectively, but they had 

pykF alleles corresponding to other backgrounds used in this study. Likewise, strain KJC152 from 

the CIP treatment was supposed to derive from the Ara+4 background, but its genome was 

identical to a resistant mutant derived from the ancestral clone. We discarded these three cross-

contaminants from our study.  

The breseq results for each of the other 61 sequenced resistant clones gave information on 

both its genetic background and the mutations that evolved during our previous antibiotic-selection 

experiments. We manually curated the results by removing the background-specific mutations 

(i.e., those that arose during the LTEE), which we did by comparing each resistant clone to its 

parental strain. We also excluded expansions and contractions of hypermutable short sequence 

repeats that are unlikely to contribute to stably inherited resistance, and mutations within multi-

copy elements (e.g., ribosomal RNA operons and insertion sequences) that may result from gene 

conversions but cannot be fully resolved using the short-read sequencing data. In addition, we 

resolved numerous structural variants by manually examining the depth of read coverage across 

the genome and predictions of new sequence junctions from split-read mapping for each clone 

(Barrick et al. 2014). To verify the predicted mutations, we applied the genomic changes in each 

parental background to the REL606 reference genome and reran breseq. 

In total, we identified mutations in 59 of the 61 antibiotic-resistant clones. Two clones 

(KJC65 and KJC66) had no clear genetic changes despite exhibiting increased phenotypic 



36 

 

resistance in our earlier study (Card et al. 2019). This discrepancy suggests at least two possible 

explanations. First, these resistant lines might have mutations that could not be adequately resolved 

by short-read sequencing, including amplifications of genes or chromosomal regions and 

inversions bounded by identical sequences (e.g., multi-copy IS elements) (Raeside et al. 2014). 

Second, these lines might have had unstable genetic changes, including copy number changes in 

homopolymeric tracts and amplifications, which are often unstable and can lead to 

hypermutability, phase variation, and other complications (Moxon et al. 1994; Sandegren and 

Andersson 2009; Blount et al. 2012; Jiang et al. 2019). To look for amplifications that might have 

been missed by the breseq pipeline, we also used another pipeline (Blount et al. 2020) to examine 

the two genomes without identifiable mutations for evidence of regions with above-average read 

coverage. However, this analysis did not reveal any amplifications in these two clones. More 

details can be found in the R Notebook provided on GitHub (https://github.com/KyleCard/LTEE-

ABR-mutant-sequencing). 

 

Statistical methods 

We quantified the specificity of genomic evolution with respect to antibiotic treatment by 

comparing the gene-level similarity of mutations between independent resistant lines that evolved 

under the same treatment versus different treatments. Similarly, for each antibiotic we quantified 

the specificity of genomic evolution with respect to genetic background by comparing the gene-

level similarity of mutations between lines derived from the same parental genotype versus 

different parental genotypes. Following Deatherage et al. (2017), we included in our comparisons 

nonsynonymous point mutations, small indels, and IS element insertions in genes or within 150-

bp upstream of the start of a gene. However, we modified their approach to also include large 
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deletions and amplifications if at least one of the affected genes was also found to be mutated in 

another clone or if there were parallel changes across lines. We excluded from these analyses 

synonymous mutations, the two clones with no identified genetic changes, and a third clone with 

only a large amplification that was unique and could not be assigned to any particular gene. A total 

of 71 mutations qualified based on these criteria. 

We then calculated Dice's coefficient of similarity, S, for each pair of evolved clones, where 

𝑆 = 2|𝑋 ∩ 𝑌|/(|𝑋| + |𝑌|). Here, |X| and |Y| represent the number of genes with qualifying 

mutations in each clone, and |𝑋 ∩ 𝑌| is the number of mutated genes in common between them. S 

therefore ranges from 0, when the pair of clones have no mutated genes in common, to 1, when 

both have mutations in exactly the same set of genes (Sokal and Rohlf 1994; Deatherage et al. 

2017; Blount et al. 2020). We then calculated the average of these coefficients for all pairs of 

clones evolved within the same treatment or from the same parental genotype, Ss, and for all pairs 

of clones evolved across different treatments or different genotypes, Sd. The difference between 

these two values serves as a test statistic for the specificity of genomic evolution. 

The observed outcome can be seen as one of many possible but equally likely outcomes 

that could have arisen by chance. One can therefore perform a randomization test to evaluate the 

significance of the test statistic associated with the observed outcome (Sokal and Rohlf 1994). To 

do so, we repeatedly rearranged the clones associated with each antibiotic treatment, or the clones 

within each treatment when testing for background specificity, while maintaining the number and 

identity of the mutations in any clone (Deatherage et al. 2017). For example, if mutations A and B 

were found together in the same sequenced clone, we retained their association throughout the 

procedure but randomly assigned the set to a different clone label. We calculated the specificity 

test statistic for each of 10,000 permutations of the clone labels. This procedure yields the expected 
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distribution of the test statistic under the null hypothesis that the similarity among lines is 

independent of the antibiotic treatment or founding genotype. We then calculated an approximate 

p-value for rejecting this null hypothesis from the proportion of permutations in the expected 

distribution with a specificity statistic value greater than or equal to the observed value. 

To quantify the specificity of genomic evolution with respect to genetic background, we 

performed an independent randomization test for each of the four antibiotics. Because these tests 

address the same null hypothesis, we combined the resulting p-values using Fisher’s method with 

2k = 8 degrees of freedom, where k is the number of comparisons (Fisher 1934; Sokal and Rohlf 

1994). We provide the datasets and details of our statistical analyses in an R Notebook on GitHub 

(https://github.com/KyleCard/LTEE-ABR-mutant-sequencing). 

 

Results 

Genomic evolution of strains evolved under four different antibiotic treatments 

In our previous study (Card et al. 2019), we isolated antibiotic-resistant mutants that evolved from 

five different parental genotypes: the LTEE ancestor and four derived clones isolated from the 

LTEE at generation 50,000. The experiment was performed over one round of drug selection. 

Here, we sequenced the complete genomes of 64 of the resistant clones, but we discarded 3 that 

were identified as cross-contaminants (Materials and Methods) (Appendix A Table 4). 

The 61 remaining resistant clones had a total of 76 mutations. Forty-five genomes had a 

single mutation, 11 others had two mutations, and 3 genomes had three mutations (Figure 2.1). 

Two other clones (both in the tetracycline treatment) had no identifiable mutations; they might 

have had unstable genetic changes or types of mutations that could not be resolved by our analyses 

of the short-read sequencing data (see Materials and Methods). In any case, we have excluded 
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these two clones from the analyses that follow. Twenty-seven of the 76 mutations (35.5%) were 

single-base substitutions; of these, 22 were either nonsynonymous or nonsense mutations that 

altered the encoded protein’s amino-acid sequence, 1 was synonymous, and 4 occurred in alaT, 

which encodes a tRNA rather than a protein. Five other mutations (6.6%) were in intergenic 

regions within 150-bp upstream of a gene, which suggests that they affect regulation. 
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Figure 2.1. Numbers and types of mutations in evolved genomes. Summary of the 76 mutations 

observed in 61 antibiotic-resistant clones after selection in ampicillin, ceftriaxone, ciprofloxacin, 

or tetracycline. Mutations are color-coded by the type of genetic change, according to the legend 

at the bottom. The “Other” category represents mutations in the non-protein-coding gene alaT. 

Evolved genomes are labeled according to their parental genetic background and replicate. Two 

tetracycline-selected clones (Ara–5-1 and Ara+5-1) had no identifiable mutations (see Materials 

and Methods). 
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The largest proportion of mutations in the resistant lines were structural variants. They 

comprise 44 (57.9%) of the observed changes (Figure 2.1). Eleven of these were IS-element 

insertions in protein-coding genes; 8 were small insertions and deletions (indels) of less than 50 

bp, 13 were large deletions, and 12 were large amplifications. Twelve of the 13 large deletions and 

11 of the 12 large amplifications were found in lines derived from the generation-50,000 

backgrounds (Figure 2.1). However, 45 of the 61 clones (73.77%) belong to that group, and neither 

observed distribution deviates significantly from that null expectation (binomial tests, p = 0.1077 

and p = 0.1368 for large deletions and large amplifications, respectively). 

 

Genomic parallelism at the functional level 

Antibiotic resistance can arise through mutations that change gene regulation and expression, cell 

permeability and efflux, and metabolism (Blair et al. 2015). To determine how drug selection acted 

on these functions in our experiment, we quantified the extent of genomic parallelism in the 

resistant lines at the functional level – i.e., sets of genes that share broadly defined functions. We 

used the curated descriptions of cellular processes in EcoCyc (Keseler et al. 2017) to match each 

mutated gene to an associated function. We excluded large deletions and amplifications when the 

affected genes do not share a common function. 

About 37% of the 57 mutations that fit the criteria for inclusion occurred in regulatory 

genes, ~26% in metabolic genes, ~21% in genes that encode transporters, and ~11% in genes 

involved in transcription or translation (Figure 2.2). More mutations in some of these functional 

categories than in others suggest a pattern of parallel evolution. However, more E. coli genes are 

involved in some functions than in others, and therefore a random mutation is more likely to occur 

in those categories that constitute a larger proportion of the genome. To examine whether the 
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observed number of mutations in each category occurred more frequently than expected, we 

modeled the data using the Poisson cumulative expectation 𝑃(𝑥 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜆), where λ is (total 

number of mutations) × [(combined length of all genes in functional category) / (total genome 

length)] (Tenaillon et al. 2012). The derived parental backgrounds evolved slightly smaller 

genomes during the LTEE (Tenaillon et al. 2016), so we used their average genome size (4,602,572 

bp) when calculating λ. 
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Figure 2.2. Distribution of independent mutations in different functional categories. The 

observed and expected distributions are shown as shaded regions and outlines, respectively. See 

text for statistical analysis. 

Regulatory genes accrued mutations about 5 times more often than expected from the 

Poisson distribution (Figure 2.2), and this difference is highly significant (p < 0.0001). Genes 

involved in transport functions had about 1.6 times more mutations than expected by chance, but 

this difference was marginally non-significant (p = 0.0723). Genes involved in transcription or 

translation had about 1.8 times as many mutations as expected, but this difference was also not 

statistically significant given the small number of mutations in these targets (p = 0.1245). It should 

be emphasized that this analysis is conservative because it lumps together all of the genes in each 

functional category. However, mutations in only a subset of these genes are likely to cause 

resistance. Therefore, the effective mutational target size and the resulting expected number of 

mutations is presumably much smaller. 
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Specificity of genomic evolution in the different antibiotic environments 

We compared the gene-level similarity of mutations between independent lines that evolved in the 

same antibiotic treatment and across the four different treatments to evaluate the effect of the 

selective environment on the genetic paths to increased antibiotic resistance. As described in the 

Materials and Methods, we computed Dice’s coefficient of similarity for each pair of clones using 

the 71 qualifying mutations that can be assigned to a particular gene. The average within-treatment 

similarity was 0.089 and the average between-treatment similarity was 0.032 (Figure 2.3). In other 

words, two clones that independently evolved under the same antibiotic selection had on average 

8.9% of their mutated genes in common, whereas those that evolved under different antibiotics 

shared on average only 3.2% of their mutated genes. A randomization test shows that the 5.7% 

difference in similarity is highly significant (p < 0.0001). Thus, genomic evolution was 

demonstrably specific with respect to the antibiotic treatment. 
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Figure 2.3. Specificity of genomic evolution with respect to antibiotic treatment. Treatments 

and the edges connecting them are labeled with Dice’s coefficient scores that show the average 

similarity for all clone pairs evolved in the same antibiotic (Ss) and in different antibiotics (Sd), 

respectively. Only the 71 qualifying mutations (see Materials and Methods) were included in the 

calculations. The weighted averages of Ss and Sd are shown in the grey box. The difference between 

these two values indicates the extent to which genome evolution was specific to the antibiotic 

treatment. The resulting p-value was calculated using a randomization test. 

The similarity analysis does not reveal the specific genes that contribute to the antibiotic-

treatment specificity. To address this issue, we used Fisher’s exact tests to identify genes that had 

an excess of qualifying mutations in the replicate lines evolved under the four treatments (Figure 

2.4). We found 5 “signature” genes in which mutations contributed significantly to antibiotic 

specificity (Figure 2.4, Table 2.1). The alaT gene encodes a tRNA; it was mutated in 4 of the 14 

CIP-resistant lines, but in none of the other 44 lines with qualifying mutations (Figure 2.4). The 

ompR gene is part of the two-component system that regulates the production of outer-membrane 
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proteins; it was mutated in 6/14 TET-resistant lines as well as in 4/44 lines that evolved resistance 

to other drugs. The other gene in this two-component system, envZ, was mutated in 2 of the 10 

TET-resistant lines that did not have an ompR mutation. Two genes, ompF and hns, were 

associated with resistance to ceftriaxone (Table 2.1). The former encodes an outer-membrane porin 

and was mutated in 6/15 CRO-resistant lines along with 3/43 other lines; the latter encodes a 

histone-like global regulator and acquired mutations in 3/15 CRO-resistant lines and 1 of the 43 

lines that became resistant to another antibiotic (Figure 2.4). Finally, a large deletion was found in 

3 of the 15 AMP-resistant lines but not in any of the other 43 lines (Table 2.1); this deletion affects 

multiple genes including phoE, which encodes an outer membrane porin (Figure 2.4). 
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Figure 2.4. Identity of mutated genes in antibiotic-resistant lines. A total of 61 lines (labels at 

left) evolved from 5 different genetic backgrounds in ampicillin, ceftriaxone, ciprofloxacin, or 

tetracycline environments. Two (TET Ara–5-1, TET Ara+5-1) had no identifiable mutations; a 

third (AMP Ara+4-2) had no qualifying mutation that could be assigned to a specific gene (see 

Materials and Methods). These three lines are not shown. Filled cells identify the 71 qualifying  
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Figure 2.4. (cont’d) 

mutations by the affected genes (shown along the bottom and listed in order of the number of 

mutations). The darkly shaded cells identify the signature genes, in which mutations are 

significantly associated with one antibiotic treatment (Table 2.1). A deletion or amplification 

spanning a given genomic region is indicated when two gene names are shown. If a gene name is 

shown in brackets, then only part of that gene is affected. If a gene name is preceded by Δ, then 

those genes are deleted; otherwise, they are amplified. Part of the ompF gene is deleted in the CRO 

Ara–5-1 line. 

Table 2.1. Gene targets that contributed to antibiotic-treatment specificity. 

Antibiotic Gene target p 

Ampicillin [ECB_00212]–[phoE] 0.0147 

Ceftriaxone ompF 0.0064 

 hns 0.0493 

Ciprofloxacin alaT 0.0024 

Tetracycline ompR 0.0087 

Statistical significance was calculated using Fisher’s Exact Test for the association between 

antibiotic treatment and genetic targets. 

Specificity of genomic evolution with respect to genetic background 

We next employed Dice’s coefficient of pairwise similarity to quantify the specificity of genomic 

evolution with respect to the parental strain’s genetic background. Using the ampicillin treatment 

as an example (Figure 2.5A), the clones that evolved independently from the same founding 

genetic background and from different backgrounds had, on average, 14.8% and 3.1% of their 

mutated genes in common, respectively, indicating a difference of 11.7%. This trend of greater 

similarity for clones derived from the same genetic background also occurred in the three other 

antibiotics (Figure 2.5B–D). 
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Figure 2.5. Specificity of genomic evolution with respect to genetic background. Five different 

backgrounds and the edges connecting them are labeled with Dice’s coefficient scores that show 

the average similarity for all clone pairs evolved from the same genetic background (Ss) and from 

different backgrounds (Sd), respectively, in ampicillin (A), ceftriaxone (B), ciprofloxacin (C), and 

tetracycline (D). The difference between Ss and Sd indicates the extent to which genome evolution 

was specific to the genetic background. Two of the three replicates derived from the Ara+4 

background in ciprofloxacin were excluded owing to cross-contamination, and Ss cannot be 

calculated in that case (*). See Figure 2.3 for additional details. 

We performed separate randomization tests for the clones in each antibiotic treatment to 

evaluate whether the effects of genetic background were significant. The associations between 

genomic evolution and the identity of the parental strain were significant for the lines that evolved 
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in the ampicillin and ceftriaxone environments (Figure 2.5A and 2.5B), and they were marginally 

nonsignificant for the lines in the ciprofloxacin and tetracycline environments (Figure 2.5C and 

2.5D). When we combined the probabilities from these four independent tests of the hypothesis 

that differences in genetic background influence the genetic basis of antibiotic resistance using 

Fisher’s method (Fisher 1934; Sokal and Rohlf 1994), the overall trend toward greater similarity 

(gene-level parallelism) of lines evolved from the same founding genotype was highly significant 

(χ2 = 24.67, df = 8, p = 0.0018). 

In our analysis of genome specificity with respect to antibiotic treatment, we identified 

several signature genes that contributed significantly to that specificity (Figure 2.4, Table 2.1). We 

have much less statistical power to identify particular genes that contribute to specificity with 

respect to genetic background, because only 3 or 4 replicate lines derive from any given 

background in each antibiotic treatment. Nonetheless, we can identify candidate loci that may 

contribute to that specificity, which might be further studied in the future. Table 2.2 shows all of 

those genes that fulfilled both of the following criteria for a given antibiotic treatment: (i) two or 

more lines derived from the same background had mutations affecting the same gene; and (ii) that 

background produced at least as many mutations affecting that gene as did the other four 

backgrounds combined. In the case of each antibiotic treatment, at least two genetic backgrounds 

have candidate signature genes that fulfill these criteria. 
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Table 2.2. Candidate genes that may contribute to genetic-background specificity. 

Antibiotic Genetic background Gene target 

Ampicillin Ancestor ompR 

Ampicillin Ara–6 yfiH 

Ampicillin Ara+5 [ECB_00212]–[phoE] 

Ceftriaxone Ara–5 [insA-26]–[fimB] 

Ceftriaxone Ara–6 [yeaS]–[menC] 

Ceftriaxone Ara+4 hns 

Ciprofloxacin Ancestor alaT 

Ciprofloxacin Ara–5 alaT 

Ciprofloxacin Ara+5 [yedV]–[cbl/nac] 

Tetracycline Ancestor ompR 

Tetracycline Ara–6 [yfcTU]–[yfiH] 

 

Discussion 

How does genetic background affect the evolution of antibiotic resistance? We previously 

addressed this question by examining the resistance potential of the E. coli ancestor of a long-term 

experiment and derived clones isolated from four populations after generation 50,000. We 

challenged these strains using a series of drug concentrations, and we found that several strains 

had a reduced capacity to evolve resistance relative to their ancestor, implicating the role of 

historical contingency in this process (Blount et al. 2008, 2018; Card et al. 2019). In this study, we 

asked whether and how genetic background influences the evolution of resistance through 

chromosomal mutations. We sequenced the complete genomes of 61 resistant lineages that evolved 

in our earlier experiment to identify the mutations that conferred resistance. We then determined 

if there were particular signatures of (i) the antibiotic treatment and (ii) the initial background 

evident from the identities of the mutated genes. 

The populations that evolved resistance to the four different drugs in our study exhibited 

divergent underlying genetic changes (Figure 2.3). This result was expected given that bacteria 

generally evolve resistance through mutations specific to a drug’s mechanism of action (Toprak et 
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al. 2012; Chevereau et al. 2015; Baym et al. 2016). This specificity was driven by parallel 

mutations in several genes (Table 2.1). Overall, ompR and ompF had more mutations than any 

other genes (Figure 2.4). OmpR is a transcriptional regulator involved in responses to osmotic and 

acid stress; mutations to OmpR also contribute to antibiotic resistance by altering the expression 

of the OmpF major porin (Aiba and Mizuno 1990; Chakraborty and Kenney 2018; Choi and Lee 

2019). A recent study showed that ompF deletions reduce the permeability of β-lactams (e.g., 

ampicillin and ceftriaxone) across the outer membrane, thus increasing resistance (Choi and Lee 

2019). We found that ompF mutations were strongly associated with ceftriaxone-resistant lines, 

consistent with this prior study. However, the evolution of ampicillin resistance occurred through 

more diverse mutational paths in our experiment. Although there were some mutations in ompF 

and ompR in the ampicillin treatment, we saw a significant association of that treatment with 

deletion of a different outer-membrane porin, PhoE. The down-regulation of this porin also 

partially modulates the cell’s response to osmotic stress (Meyer et al. 1990). In the tetracycline 

treatment, mutations were more common in ompR than in ompF, which suggests that altering the 

expression of other genes in this regulon also contributes to resistance. Mutations in hns were 

associated with ceftriaxone-resistant lines. Nishino and Yamaguchi (2004) showed that deletion 

of this global transcriptional regulator increases resistance to multiple drugs because it causes 

overexpression of several efflux pumps. In contrast to the results for the other three antibiotics, the 

evolution of ciprofloxacin resistance was not associated with mutations in genes related to outer-

membrane proteins. Instead, mutations in alaT, which encodes an alanine tRNA, were a signature 

of this treatment. The mechanism behind this resistance is unknown. One possibility is that these 

mutations modulate interactions that have been reported between this tRNA and tmRNA, which 

rescues stalled ribosomes after aberrant translation (Gillet and Felden 2001). Enhanced rescue 
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might directly promote survival or indirectly affect the expression of other vital genes, when cells 

are treated with this antibiotic. 

The signature genes that we observed for each treatment are not the canonical resistance 

genes for the respective antibiotics (Blair et al. 2015). Ampicillin and ceftriaxone irreversibly bind 

to transpeptidases and disrupt cell-wall synthesis; ciprofloxacin targets topoisomerase and inhibits 

DNA replication; and tetracycline targets the ribosome and hinders protein synthesis. Drug 

resistance often arises through modifications to these targets, yet these changes rarely occur in our 

study. This discrepancy may reflect two factors: one environmental and the other genetic. First, 

altering a drug target often confers high-level resistance, but at the expense of bacterial growth 

rate (Andersson and Hughes 2010; Hughes and Andersson 2017). We used moderate drug 

concentrations to select for mutants (Card et al. 2019), and the observed resistance rarely reached 

levels thought to be clinically relevant (EUCAST 2020). This moderate environment should favor 

mutations that provide sufficient resistance at a low fitness cost, because they will leave more 

descendants during population growth before treatment, and consequently they will be seen more 

often after the antibiotic challenge. Second, the E. coli used in our experiments are all derived from 

a B strain that differs in important ways from the K-12 strains that are more widely used in studies 

of antibiotic resistance (Studier et al. 2009). In particular, E. coli K-12 has two major porins, OmpC 

and OmpF, whereas E. coli B expresses only OmpF (Pugsley and Rosenbusch 1983; Schneider et 

al. 2002). Thus, the use of the E. coli B background may well have influenced which genes could 

mutate to yield resistance in our experiments. 

We also found genomic signatures of adaptive divergence associated with differences in 

genetic background, and these differences are far smaller than those between E. coli B and K-12. 

We sequenced and analyzed resistant lines that evolved from five genetic backgrounds that were 
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separated in time by only a few decades, and which differed only in the mutations that had 

accumulated in the antibiotic-free environment of the LTEE (Figure 2.1). Three or four resistant 

lines independently evolved from each parental background for each of the four antibiotics studied, 

allowing us to assess the genomic specificity of resistance with respect to the genetic background 

(Figure 2.5). Although these background effects were more subtle than those showing antibiotic 

specificity, they are compelling when taken together. Various factors might contribute to the 

genetic background specificity. Most broadly, epistatic interactions can cause the same mutation 

to have different effects on resistance, or on its fitness costs, in different genetic backgrounds. The 

rates at which particular resistance mutations arise may also vary between different genetic 

backgrounds. 

Imagine that the same mutation arises in separate populations founded from two distinct 

backgrounds. If the mutation confers less resistance in one background than the other, then it may 

go undetected when those populations are challenged at a high drug concentration. This type of 

epistasis could therefore generate a signature of genomic specificity of resistance mutations with 

respect to the genetic background. It is also possible that different genetic backgrounds affect the 

evolution of resistance by changing the likelihood of certain genomic amplifications or deletions. 

These types of structural mutations often occur by homologous recombination between IS 

elements, and they can confer resistance by altering the number of membrane transporters or drug 

targets (Sandegren and Andersson 2009). Such mutations can also occur spontaneously at very 

high rates (Cooper et al. 2001; Sandegren and Andersson 2009). In our study, many of the 

resistance mutations were mediated by insertion sequences, including new copies in the derived 

backgrounds that previously arose during the LTEE (Tenaillon et al. 2016). The evolution of 
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resistance in these cases is therefore influenced, at least in part, by changes in the rates at which 

certain types of mutations arise in the derived backgrounds. 

Antibiotic resistance is a growing public-health concern. If the likely routes to resistance 

can be predicted, at least to some extent, then there exists a potential opportunity to control the 

emergence of resistance through rational treatment strategies. However, to predict the evolution of 

resistance with accuracy, we must understand and integrate information about many factors, 

including a bacterial lineage’s genetic history, and how that history may potentiate or constrain its 

future evolution. The results from this study, together with our previous findings, demonstrate the 

importance of historical contingency in the evolution of drug resistance at both the phenotypic and 

genotypic levels. This contingency underscores the importance of accounting for stochasticity, in 

the past as well as at present, when designing evolutionarily informed treatment strategies. 
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CHAPTER 3: Idiosyncratic variation in the fitness costs of tetracycline-resistance 

mutations in Escherichia coli 
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Abstract 

A bacterium’s fitness relative to its competitors, both in the presence and absence of antibiotics, 

plays a key role in its ecological success and clinical impact. In this study, we examine whether 

tetracycline-resistant mutants are less fit in the absence of the drug than their sensitive parents, and 

whether the fitness cost of resistance is constant or variable across independently derived lines. 

Tetracycline-resistant lines suffered, on average, a reduction in fitness of almost 8%. There was 

substantial among-line variation in the fitness cost. This variation was not associated with the level 

of phenotypic resistance conferred by the mutations, nor did it vary significantly across several 

different genetic backgrounds. The two resistant lines with the most extreme fitness costs involved 

functionally unrelated mutations on different genetic backgrounds. However, there was also 

significant variation in the fitness costs for mutations affecting the same pathway and even 

different alleles of the same gene. Our findings demonstrate that the fitness costs of antibiotic 

resistance do not always correlate with the phenotypic level of resistance or the underlying genetic 

changes. Instead, these costs reflect the idiosyncratic effects of particular resistance mutations and 

the genetic backgrounds in which they occur. 
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Introduction 

Antibiotics are an essential component of modern medicine. Although they have dramatically 

reduced the morbidity and mortality caused by severe bacterial infections, their benefits have 

diminished in recent years because of their overuse in the clinic and in agriculture, which has led 

to the evolution and proliferation of antibiotic-resistant pathogens. As a result, many infections 

have become more difficult to treat with mainline drug therapies, and in some severe cases, some 

pathogenic strains have become resistant to all available drugs. An understanding of the forces 

underlying and shaping antibiotic resistance is therefore critical to the future health of the human 

population. 

Bacteria can evolve resistance by either spontaneous mutations or horizontal acquisition of 

resistance genes. Spontaneous mutations commonly confer resistance by altering the cellular target 

of the antibiotic or increasing its efflux (Blair et al. 2015). Mechanisms associated with horizontal 

gene transfer include target modification, drug detoxification, and the acquisition of novel efflux 

pumps (Blair et al. 2015). In either case, resistant variants have a clear advantage over their 

sensitive counterparts when exposed to the corresponding antibiotic. However, these resistant 

types often suffer fitness costs because they disrupt the normal functioning of metabolic pathways 

and physiological processes or increase the energetic burden on the cell (Lenski and Bouma 1987; 

Nguyen et al. 1989; Andersson and Hughes 2010; Vogwill and MacLean 2015). Resistant types 

should therefore have lower growth rates than, and be outcompeted by, their sensitive counterparts 

in the absence of drugs. 

A resistant bacterium’s competitive fitness, both in the presence and absence of a drug, is 

an important factor that contributes to its ecological success and thus its clinical impact (Lenski 

1997; Vogwill and MacLean 2015; Hughes and Andersson 2017). For example, the fitness of a 
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resistance mutation determines its likelihood of persisting in a bacterial population prior to drug 

exposure, its maintenance in a population at a particular drug concentration, and its reversibility 

when the antibiotic is reduced or removed from the environment (Hughes and Andersson 2017; 

Santos-Lopez et al. 2019). 

The expected time required to reduce the frequency of a resistant mutant in a bacterial 

population following the cessation of antibiotic use is inversely proportional to the fitness cost of 

the resistance mutation (Lenski 1997). Although mathematical models can predict the rate of these 

frequency declines (Levin et al. 1997), these theoretical expectations often are not met under real-

world scenarios for at least two reasons. First, some resistance mechanisms are inherently cost 

free, at least in certain environments. Several mutations in the gene rpsL confer resistance to 

streptomycin, but they have little or no fitness cost in both Escherichia coli and Salmonella 

typhimurium (Tubulekas and Hughes 1993), and they even confer a competitive advantage over 

wild-type strains in some animal infection models (Björkman et al. 1998; Enne et al. 2005). These 

cost-free rpsL mutations are also found in streptomycin-resistant Mycobacterium tuberculosis 

populations, where they may facilitate the long-term maintenance of this resistant type (Böttger et 

al. 1998; Andersson and Hughes 2010). Similarly, treatment of Helicobacter pylori infections with 

clarithromycin has been found to select for highly resistant commensal Enterococcus species that 

persist for years after drug treatment (Sjölund et al. 2003). This last outcome demonstrates a 

troubling side-effect of antibiotic use, in which the microbiome can act as both a reservoir for 

resistance genes and as a conduit for their horizontal transfer to pathogens (Sommer et al. 2010).  

Second, pleiotropic costs associated with chromosomal- or plasmid-mediated resistance 

can often be reduced or even eliminated through subsequent compensatory evolution (Bouma and 

Lenski 1988; Schrag et al. 1997; Kugelberg et al. 2005; Nilsson et al. 2006; Andersson and Hughes 
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2010; Barrick et al. 2010). For example, clinically relevant levels of fluoroquinolone resistance 

occur through the sequential substitution of mutations in several genes (Lindgren et al. 2003). 

Early genetic changes in the mutational pathway exact a cost on bacterial growth in both laboratory 

media and mouse models, but the cost can be ameliorated through later resistance mutations 

(Marcusson et al. 2009). Thus, evolution can restore a bacterial population’s ancestral growth rate 

in the absence of drug selection while simultaneously preserving resistance in the event of future 

exposure to antibiotics. Moreover, compensatory evolution can sometimes drive multidrug 

resistance; this outcome has been seen when a genetic change simultaneously provides resistance 

to a newly imposed drug while reducing the fitness cost associated with resistance to a previous 

antibiotic (Trindade et al. 2009). Compensatory evolution shows how pleiotropic effects of one 

mutation can set the stage for epistatic interactions with subsequent mutations. 

In general, a bacterium’s genetic background can influence the fitness costs of antibiotic 

resistance. For example, Vogwill and colleagues (2016) examined the costs of rifampicin-

resistance mutations in the gene rpoB across several Pseudomonas species. They found that some 

mutations vary in their fitness effects across backgrounds, and these costs correlate with 

transcriptional efficiency. Thus, the same rpoB mutation can differentially affect transcriptional 

efficiency depending on the genetic background, and these idiosyncratic effects in turn lead to 

heterogeneity in costs. This work evaluated genetic-background effects across a fairly broad 

phylogenetic scale, while focusing on mutations in a single gene. One can also ask whether genetic 

background affects the fitness cost of resistance even among recently diverged clones of a single 

species, and for resistance that has evolved through more diverse mutational pathways. 

To address these issues, we evaluated the competitive fitness in the absence of drugs of 

tetracycline-resistant clones that evolved from several different E. coli backgrounds, which 
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previously diverged during a long-term evolution experiment (LTEE). We ask several questions. 

First, is there a fitness cost to resistance? Second, is the cost greater for mutants that evolved higher 

levels of resistance (Figure 3.1A)? Third, do fitness costs vary in an idiosyncratic manner that does 

not depend on the level of resistance achieved (Figure 3.1B)? Fourth, if there is indeed 

idiosyncratic variation among lines in the cost of resistance, what factors contribute to that 

variability? On balance, we found that the resistant lines are indeed less fit than their sensitive 

counterparts. These fitness costs do not correlate with the level of resistance achieved, nor do they 

vary among the several genetic backgrounds that we examined (Card et al. 2019). Some variation 

in cost of resistance occurs even among different mutations in the same gene, on the same genetic 

background, and conferring the same phenotypic resistance. In any case, further research on the 

fitness effects of antibiotic resistance should be pursued because of its potential implications for 

public health and patient treatment. 
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Figure 3.1. Schematic illustration of fitness effects of antibiotic resistance mutations under 

two scenarios. (A) Tradeoff model, in which the fitness of a resistant line, when measured in the 

absence of drugs, is negatively correlated with the level of resistance conferred by its mutations. 

(B) Idiosyncratic model, in which the fitness of resistant lines varies for reasons unrelated to the 

level of resistance. This idiosyncratic variation might, in principle, reflect differences between 

genetic backgrounds, mutations in different target genes, different alleles in the same target gene, 

secondary mutations, and epistatic interactions between the resistance mutations and their genetic 

backgrounds. The fitness of each resistant line is expressed relative to its sensitive counterpart. A 

log-transformed relative fitness of 0 indicates no fitness cost associated with resistance, while 

values below and above 0 represent fitness costs and benefits, respectively. 
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Materials and Methods 

Experimental conditions and bacterial strains 

The LTEE has been described in detail elsewhere (Lenski et al. 1991; Lenski 2017). In brief, 12 

replicate populations of E. coli were founded from a common ancestral strain, called REL606 

(Daegelen et al. 2009). These populations have been propagated for over 32 years and 73,000 

generations by daily 100-fold dilutions in Davis Mingioli minimal medium supplemented with 25 

μg/mL glucose (DM25). 

In this study, we examined the competitive fitness of tetracycline-resistant mutants that 

evolved from the LTEE ancestor and clones sampled from four LTEE populations (denoted Ara–

5, Ara–6, Ara+4, and Ara+5) after 50,000 generations. Specifically, we analyzed 4 mutants that 

independently evolved from the ancestral background, and 3 mutants that evolved from each 

derived background, for a total of 16 mutants (Appendix A Table 5). We also used three clones as 

common competitors: REL607, REL10948, and REL11638. REL607 is a spontaneous Ara+ 

mutant of REL606, the LTEE ancestor (Lenski et al. 1991). REL10948 is an Ara– clone isolated 

from the Ara–5 population at 40,000 generations, and REL11638 is a spontaneous Ara+ mutant of 

that clone (Wiser et al. 2013; Lenski et al. 2015). The Ara marker is selectively neutral in the 

glucose-limited medium; it serves to differentiate competitors during fitness assays because the 

Ara– and Ara+ cells form red and white colonies, respectively, on tetrazolium-arabinose (TA) agar. 

We used REL607 as the common competitor for REL606 and the four tetracycline-resistant clones 

derived from it. The 40,000-generation clones served as common competitors for the four 50,000-

generation parental clones and twelve resistant mutants that evolved from them; using these 

common competitors ensured that the differences in fitness were not so large that their densities 

would fall below the detection limit during the fitness assays. 
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Fitness assays 

Assays were performed in the absence of antibiotics to assess the relative fitness of drug-resistant 

mutants and their susceptible counterparts. Fitness was measured in an environment identical to 

that of the LTEE, except the medium contained 250 μg/mL glucose (DM250). Resistant mutants 

and their sensitive parents each competed, in paired assays, against the same common competitor 

with the opposite Ara-marker state (Figure 3.2). To set up each competition assay, the competitors 

were revived from frozen stocks, and they were separately acclimated to the culture medium and 

other conditions over two days. The competitors were then each diluted 1:200 into fresh medium, 

and a sample was immediately plated on TA agar to assess their initial densities based on colony 

counts. The competition cultures were then propagated for 3 days, with 1:100 dilutions each day 

in fresh medium. At the end of day 3, a sample was plated on TA agar to assess the competitors’ 

final densities. We quantified the realized growth rate of each competitor based on its initial and 

final density and the net dilutions imposed (Lenski et al. 1991). We then calculated relative fitness 

as the ratio of the realized growth rate of the clone of interest (either a resistant clone or its sensitive 

parent) to that of the common competitor. Lastly, the fitness of a resistant mutant in each assay 

was normalized by dividing it by the relative fitness of the paired assay obtained for its parental 

strain. We performed a total of 80 pairs of fitness assays (160 competitions in total) to produce 5 

replicate estimates of the fitness of each of the 16 tetracycline-resistant mutants relative to its 

sensitive parent. The relative fitness values were loge-transformed before the statistical analyses 

reported in the Results below. 
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Figure 3.2. Schematic illustration showing the derivation of the strains used in this study and 

the methods employed to measure the fitness of resistant lines relative to their sensitive 

parents. Twelve initially identical E. coli populations were founded from the same ancestral strain 

to start the LTEE. A genetic marker distinguishes two sets of six populations each. These 

populations have evolved for >73,000 generations with daily transfers in a minimal glucose 

medium. In paired assays, we examined the fitness of tetracycline-resistant mutants (shown in red) 

that evolved either from the LTEE ancestor or one of four clones sampled at generation 50,000 by 

competing them against marked susceptible competitors (shown in yellow). We used REL607 as 

the common competitor for the LTEE ancestor and resistant lines evolved from it, and two 40,000-

generation clones (see Materials and Methods) as common competitors for the derived parental 

strains and their evolved resistant lines. After acclimation to the culture conditions, competitors 

were mixed at an equal volumetric ratio in a common medium. These cultures were propagated 

for three days in the absence of tetracycline by serial 1:100 transfers. We quantified each 

competitor’s realized growth rate from the initial and final densities after plating on TA agar, 

taking into account the net dilution over the three days. These realized growth rates were then used 

to calculate the fitness of a resistant line relative to its sensitive parent (see Materials and Methods). 
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Results 

Tetracycline-resistant lines have reduced fitness in the absence of the antibiotic 

We ask first whether tetracycline resistance is costly, on average, in the absence of the drug. The 

grand mean of the loge-transformed fitness of the 16 resistant lines relative to their paired parental 

strains is -0.0771, indicating that the resistant mutants grow ~7.7% more slowly than their sensitive 

counterparts during head-to-head competitions with a common competitor. This value differs 

significantly from the null hypothesis that the resistant lines and their sensitive parents are equally 

fit (ts = 2.9973, df = 15, one-tailed p = 0.0045). 

 

Cost of resistance varies among resistant mutants 

We measured the relative fitness of each resistant line with 5-fold replication. This replication 

allows us to test whether the variation in fitness among the 16 tetracycline-resistant lines is simply 

measurement noise or, alternatively, reflects genetic variation in the cost of resistance. Table 3.1 

shows the analysis of variance (ANOVA). The variation among the 16 lines is about 10-fold 

greater than expected from the variation between replicate assays performed on the same line 

(F15,64 = 10.34, p << 0.0001). 

Table 3.1. ANOVA on the log-transformed fitness estimates of 16 tetracycline-resistant lines, 

each measured relative to its sensitive parent. 

Source SS df MS F p 

Line 0.7948 15 0.0530 10.3384 << 0.0001 

Error 0.3280 64 0.0051   

Total 1.1228 79    
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There are many possible reasons why the cost of resistance might vary including mutations 

in different genes, different alleles even in the same gene, different genetic backgrounds, epistatic 

interactions between mutations and genetic backgrounds, and so on. In the sections that follow, 

we examine various possibilities. 

 

Possible reversions of unstable mutations do not explain the variation in fitness cost 

We previously sequenced the complete genomes of the 16 resistant lines, and we compared them 

to their parental strains to identify the mutations responsible for their resistance (Chapter 2). Two 

lines had no identifiable mutations (Ara–5-1 and Ara+5-1), even though they had increased 

phenotypic resistance relative to their respective parent strains (Card et al. 2019). This discrepancy 

suggested that these two resistant lines may have had unstable genetic changes, which might have 

reverted prior to the genomic analysis and our fitness assays. Potentially unstable mutations 

include changes in the copy number of oligonucleotide repeats and gene amplifications. We 

repeated the ANOVA, except excluding the two resistant lines without identifiable mutations. The 

variation in the cost of resistance remains highly significant in the 14 lines with known, stable 

mutations (F13,56 = 10.15, p << 0.0001). 

 

Level of phenotypic resistance does not explain the variation in fitness cost 

All of the resistant lines evolved during a single round of exposure to tetracycline. However, they 

vary in the resulting minimum inhibitory concentration (MIC) that they achieved. They also vary 

in the magnitude of the increase in their MICs relative to their parental strains, which also varied 

in their MICs. It is possible that mutations that provide greater resistance have higher fitness costs 

(Fig. 3.1A). To test that possibility, we examined the correlation between the log-transformed 
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fitness values of the 14 resistant lines and their log-transformed MICs, as previously reported (Card 

et al. 2019). However, the correlation is not significant; in fact, it is weakly positive (r = 0.1682, 

two-tailed p = 0.5655). We also computed the correlation between the log-transformed fitnesses 

and log-transformed fold-increases in resistance, but again the correlation is weakly positive and 

not significant (r = 0.1002, two-tailed p = 0.7332). Thus, we find no evidence that the variation in 

the fitness cost of tetracycline resistance is related to the level of resistance conferred by the 

underlying mutations. 

 

Genetic background does not explain the variation in fitness cost 

The 14 tetracycline-resistant mutants with identifiable mutations evolved on five different genetic 

backgrounds. We asked whether the average cost of resistance differed between the backgrounds. 

In this case, the ANOVA tests whether the variance in the average cost of resistance for mutants 

derived from different backgrounds is greater than expected given the variance in the average cost 

for mutants derived from the same background. This analysis indicates no significant effect of the 

genetic background on the cost of resistance (F4,9 = 0.47, p = 0.7570). 

 

Idiosyncratic differences between mutant lines in the cost of resistance 

Neither the level of phenotypic resistance conferred by mutations nor the genetic background in 

which they arose explains the substantial variation in the fitness effects of tetracycline resistance.  

Instead, it appears there are idiosyncratic differences in the fitness costs associated with different 

resistance mutations (Fig. 3.1B). These idiosyncratic effects could, in principle, reflect mutations 

in different genes, different mutations in the same target gene, secondary mutations that might 

have hitchhiked with the mutations conferring resistance, or epistatic interactions between any of 
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these new mutations and the existing mutations that distinguished the different parental strains. 

Without a much larger number of resistant lines, it is not possible to rigorously disentangle these 

various sources of idiosyncratic fitness costs. However, by examining and contrasting specific 

cases, we are able to shed light on some of the sources of these differences. 

Two resistant clones, Ara+4-3 and Ara+5-2, have fitness costs that are very similar to one 

another, but more than double the cost of any of the other 12 resistant mutants (Figure 3.3). Yet 

these two cases occurred on different genetic backgrounds and have different mutations. Ara+4-3 

has mutations in hns, which encodes a histone-like global regulator, and lpcA, which encodes a 

phosphoheptose isomerase; Ara+5-2 has a single mutation in ompF, which encodes an outer-

membrane porin (Chapter 2). We asked whether these two extreme cases are solely responsible 

for the heterogeneity in fitness costs by performing an ANOVA that excludes them. The variation 

in fitness costs among the other 12 clones is reduced, but it nonetheless remains highly significant 

(F11,48 = 4.44, p = 0.0001). 
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Figure 3.3. Fitnesses of 14 tetracycline-resistant mutants relative to their parental strains. 

The mutants are arranged from lowest to highest fitness. Each symbol shows the mean loge-

transformed fitness, based on 5-fold replication of paired fitness assays. Error bars show 95% 

confidence limits calculated using the t-distribution with 4 df and the pooled standard deviation 

estimated from the ANOVA (Table 1). Letters above the error bars identify mutants with relative 

fitnesses that are not significantly different, based on Tukey’s “honestly significant difference” 

test for multiple comparisons. 

Nine of the 14 resistant clones have a single mutation each, while four of them (Ara–5-2, 

Ara–6-2, Ara+4-3, Ara+5-3) have two mutations, and another (Ancestor-2) has three mutations 

(Chapter 2). It is reasonable to imagine that in each clone one mutation confers the drug resistance, 

while the others merely hitchhiked with the resistance mutation. Such hitchhikers might include 

deleterious mutations that reduce fitness. Therefore, we compared the fitness costs for the resistant 

clones with and without secondary mutations. The average fitness cost of the clones with multiple 

mutations is higher (13.8%) than the average of those with single mutations (5.5%), but the 
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difference is only marginally nonsignificant given the small number of clones in each group and 

the high variation within each group (Welch’s t-test, ts = 1.4751, 9.3 df, one-tailed p = 0.0866). 

It is also interesting to compare the four resistant clones derived from the ancestral LTEE 

background. All four resistant clones evolved the same level of phenotypic resistance, with MICs 

that are 4-fold higher than their parental strain (Card et al. 2019). Moreover, all four have mutations 

affecting the same two-component system that regulates the synthesis of outer-membrane proteins: 

one clone (Ancestor-1) has a 11-bp deletion in envZ, which encodes the sensory histidine kinase; 

the others (Ancestor-2, Ancestor-3, Ancestor-4) have nonsynonymous mutations in ompR, which 

encodes the DNA-binding response regulator. Even with these striking phenotypic and genetic 

similarities, an ANOVA shows significant heterogeneity in the fitness of these clones (F3,16 = 4.50, 

p = 0.0180). We can also compare only Ancestor-3 and Ancestor-4 (each having a single mutation 

in ompR and no other mutation), and the variation in fitness remains significant (F1,8 = 5.71, p = 

0.0439). These results show that different mutations in the same target pathway, and even different 

alleles in the same gene, can lead to different fitness costs of drug resistance. 

 

Discussion 

In previous work, we examined the role that genetic background plays in both the phenotypic and 

genotypic evolution of antibiotic resistance. First, we examined the potential of several different 

LTEE backgrounds to evolve increased resistance to several antibiotics. We found that evolvability 

was idiosyncratic with respect to the parental genotype, such that resistance was more constrained 

in some backgrounds than in others (Card et al., 2019). Genetic differences will accumulate 

between populations, even if they evolve in the same permissive environment. These differences 

can unpredictably alter their ability to respond evolutionarily when challenged with antibiotics. 
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Second, we sequenced the complete genomes of some of these resistant mutants and assessed 

whether the different initial genotypes took similar or divergent mutational paths to increased 

resistance (Chapter 2). Again, we found that the initial genetic background is important. On 

average, the replicate lines that evolved from the same founding genotypes had more gene-level 

mutations in common than lines derived from different founding genotypes. 

The aim of this study was to examine whether and how the genetic background influences 

the fitness effects of resistance mutations in the absence of antibiotic. In particular, we examined 

the fitness costs of tetracycline resistance in 16 lines that evolved from five sensitive parental 

backgrounds. We found that the resistant lines are, on average, less fit than their sensitive 

counterparts in the absence of the antibiotic. This result is not surprising, given that resistance 

mutations often disrupt the normal function of metabolic or physiological processes, or impose 

energetic demands that reduce growth and competitiveness (Andersson and Hughes 2010). We 

also observed highly significant variation among the resistant lines in their fitness costs (Table 

3.1). This variation remained substantial (Figure 3.1) even after we excluded two strains without 

identified mutations (Chapter 2). These two strains exhibited phenotypic resistance in our earlier 

work (Card et al. 2019), but that resistance might have been conferred by unstable genomic 

changes, such as gene amplifications or frameshift mutations in homopolymeric tracts that can 

cause “phase variation” (Moxon et al. 1994). If so, these unstable changes could have reverted 

prior to the genomic analysis and the competition assays that we performed. 

We then addressed two broad possibilities regarding the variation in fitness cost between 

the 14 lines with known, stable mutations. First, we asked whether there is a relation between a 

line’s phenotypic resistance and its fitness cost, such that mutations that confer greater resistance 

are more costly (Figure 3.1A). A meta-analysis of fitness costs across several species and drug 
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classes by Melnyk and colleagues (2015) supported this association, and the authors suggested it 

could be understood from evolutionary and mechanistic perspectives. Imagine a population that is 

well-adapted to one environment and hence near a local fitness optimum. If the environment 

changes, such as with the addition of an antibiotic, then the population may evolve toward a 

different optimum through the substitution of new mutations. Mutations of large effect will bring 

the population closer to this new optimum than mutations of small effect. However, if the 

environment later reverts to its previous state, then populations that substituted the large-effect 

mutations will be further from their previous optimum than those populations that acquired small-

effect mutations. From a mechanistic standpoint, the increased expression of efflux pumps or drug 

targets diverts resources from other cellular processes. Also, resistance mutations that change 

evolutionarily conserved proteins are more likely to disrupt their functions than improve them. In 

our study, however, there was no significant association between fitness costs and the level of 

resistance conferred by mutations, whether on an absolute basis or relative to the parent strain. 

The second broad possibility is that the fitness costs of resistance can vary for reasons 

unrelated to the level of resistance conferred (Figure 3.1B). There are several potential reasons for 

such idiosyncratic variation. One possibility is that the same resistance mutation may have 

different fitness costs in different genetic backgrounds. In Campylobacter jejuni, for example, a 

C257T mutation in the gene gyrA confers fluroquinolone resistance. When fluroquinolone-

resistant and -susceptible strains were inoculated separately into chickens, they colonized equally 

well and each persisted even in the absence of drug exposure (Luo et al. 2005). However, when 

resistant and sensitive strains were co-inoculated, the resistant variants often prevailed. Further 

work indicated that this particular gyrA mutation was beneficial in some genetic backgrounds, 

even in the absence of antibiotic, and costly in others (Luo et al. 2005). In our study, by contrast, 
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the variation in fitness costs among strains was not explained by genetic-background effects, but 

instead involved several other factors. 

One such factor is that resistance mutations can occur in different genes, which can lead to 

different fitness costs. In this study, the relative fitnesses of clones Ara+4-3 and Ara+5-2 were 

significantly lower than the other 12 strains. Ara+4-3 is the only line with mutations in either lpcA 

or hns. Mutations in the former gene have been shown to confer tigecycline resistance in E. coli 

through modifications to the lipopolysaccharide biosynthesis pathway, and these mutations have 

moderate fitness costs in vitro (Linkevicius et al. 2013, 2016). The latter gene encodes the global 

transcriptional regulator H-NS, and mutations in it affect acid resistance (Giangrossi et al. 2005), 

the modulation of osmotic stress (Lucht et al. 1994), and several other important cellular processes. 

Changes to this regulator’s structure and function might therefore have large fitness costs via 

widespread pleiotropic effects. The Ara+5-2 clone evolved a 9-bp insertion in ompF, which 

encodes the sole major porin in the LTEE ancestral strain (Crozat et al. 2011); this mutation 

presumably reduces the cell’s antibiotic uptake, but at the expense of acquiring nutrients (Ferenci 

2005; Phan and Ferenci 2017). Thus, resistance mutations that affect different cellular pathways 

and functions can have variable fitness costs, a finding that is consistent with many other studies 

(Vogwill and MacLean 2015). 

Another factor is that mutations in different genes that are part of the same physiological 

pathway may confer similar resistance levels but have different fitness costs. In our study, four 

tetracycline-resistant lines derive from the same LTEE ancestor: one had a mutation in envZ, while 

the other three had mutations in ompR. These genes encode proteins that comprise a two-

component regulatory system that regulates cellular responses to osmotic stress, and which affects 

antibiotic resistance through altered expression of the major porin OmpF (Chakraborty and 
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Kenney 2018; Choi and Lee 2019). We observed significant heterogeneity in fitness even among 

these lines, implying that different changes within this one pathway can impose unique burdens. 

The evolution of carbapenem resistance in E. coli K12 can also occur by mutations in this same 

two-component system, again with variable fitness costs (Adler et al. 2013). In their study, Adler 

and colleagues (2013) found that envZ mutants had no measurable loss of fitness in the absence of 

antibiotic, whereas ompR mutations suffered a large cost. By contrast, in our study the envZ 

mutation was more costly, which may reflect differences between the E. coli K12 and B strain 

backgrounds or the use of different culture media. 

Yet another factor is that different mutations in the same gene can have different costs. The 

evolution of rifampicin resistance, for example, typically occurs via mutations in several canonical 

regions of rpoB, which encodes the β subunit of the RNA polymerase (Reynolds 2000; Ahmad et 

al. 2002; Barrick et al. 2010; MacLean et al. 2010; Hall and MacLean 2011). Different alleles have 

widely varying costs that impact their competitive ability and, moreover, affect the dynamics of 

subsequent compensatory evolution (Barrick et al. 2010). In our study, two clones derived from 

the same parent had different nonsynonymous mutations in ompR. Both conferred the same level 

of resistance to tetracycline, but they had different fitness costs in the absence of the drug. Such 

differences can have important public-health consequences, because a resistant lineage’s 

competitive fitness in the absence of antibiotics is critically important for its long-term persistence 

in a heterogeneous environment. 

More generally, we argue that further studies of the fitness costs of antibiotic resistance are 

needed, because this phenomenon can inform treatment strategies. Standard clinical practice calls 

for aggressive treatment to eliminate an infecting pathogen before it has time to evolve resistance 

(Craig 2001; Drlica 2003; Mehrotra et al. 2004; Abdul-Aziz et al. 2015; Hansen et al. 2020). This 
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approach is likely beneficial if the population is composed of only drug-susceptible cells. 

However, if the pathogen population already contains drug-resistant cells, then aggressive 

treatment may promote the proliferation of the resistant population by eliminating susceptible 

competitors. To address this problem, an alternative treatment strategy was recently proposed (Day 

and Read 2016; Hansen et al. 2020). Given that resistance often imposes a cost, resistant variants 

might be at a competitive disadvantage relative to their sensitive counterparts at low antibiotic 

concentrations that nonetheless reduce the growth rate of both types. If so, the resulting 

competition might slow the resistant population’s expansion long enough for the immune system 

to clear the infection.  

Both mathematical models (Hansen et al. 2017) and experiments with the LTEE ancestor 

(Hansen et al. 2020) have shown that competition between susceptible and resistant populations, 

mediated in part by fitness costs, can indeed slow the time to treatment failure. However, these 

expectations are complicated by (i) the potential for higher mutation rates, and (ii) idiosyncratic 

fitness costs that depend on the specific resistance mutation and its interaction with the genetic 

background in which it occurs. Regarding the first complication, Hansen and colleagues (2020) 

used a strain with a low mutation rate (Sniegowski et al. 1997). However, six LTEE populations 

evolved hypermutability by generation 50,000 (Tenaillon et al. 2016), and mutation rates vary in 

some pathogens by orders of magnitude (Hughes and Andersson 2017). With respect to the second 

complication, the competitive release of a resistant population should occur faster when fitness 

costs are lower. Given that the cost may depend on the particular mutation and its genetic 

background, the time to treatment failure is harder to predict. We think that these issues and their 

relevance for treatment options are important avenues for future research. 
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CHAPTER 4: Conclusions and future outlook 
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Summary 

Chapter 1 examined how readily bacteria could overcome prior losses of intrinsic resistance 

through subsequent evolution when challenged with antibiotics. My co-authors and I focused on 

the role that genetic background played in this process, with particular attention to the interplay 

between repeatability and contingency in the evolutionary process (Card et al. 2019). We 

addressed these questions using Escherichia coli strains from the long-term evolution experiment 

(LTEE) that independently evolved for multiple decades in an environment without antibiotics. 

We first confirmed that these LTEE-derived strains had typically become more susceptible to 

various drugs during this period of relaxed selection. We then subjected the strains to a range of 

concentrations of these same drugs. We found that evolvability was idiosyncratic with respect to 

initial genotype, such that resistance was more constrained in some backgrounds than in others. 

These results show that replicate populations accumulate genetic differences, even as they evolve 

in permissive environments, that affect their ability to adapt when challenged with antibiotics. 

In that study we focused on empirical trends in the evolution of phenotypic resistance and 

the effects of genetic background on those trends. Chapter 2 asked whether a strain’s background 

also influences the genetic basis of resistance. Do lineages founded by different genotypes take 

parallel or divergent mutational paths to increased resistance? My co-authors and I addressed this 

question by sequencing the complete genomes of antibiotic-resistant clones that evolved from 

several parental genotypes during the earlier experiment described above. Using a statistical 

approach developed to compare mutational targets in populations that evolved under different 

thermal regimes (Deatherage et al. 2017), we demonstrated that genomic evolution was specific to 

antibiotic treatment and that particular gene-level mutations were associated with each drug. These 

results were expected given that antibiotic resistance tends to evolve through ordered mutational 
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pathways in a limited set of genes (Toprak et al. 2012; Baym et al. 2016), but they served to 

validate our statistical approach. Next, we examined the specificity of genomic evolution with 

respect to genetic background. We found that, on average, replicate lines evolved from the same 

founding genotypes had more mutations in common at the gene level than did lines evolved from 

different founding genotypes. Taken together, the results from Chapters 2 and 3 demonstrate that 

a lineage’s evolutionary history can alter both its phenotypic and genotypic paths to antibiotic 

resistance.    

Chapter 3 examined whether the fitness cost of tetracycline resistance is conserved across 

different LTEE backgrounds. Accordingly, my co-authors and I quantified costs by comparing 

resistant mutants to their sensitive parents in the absence of this drug. On average, the resistant 

lines had reduced fitness, and there was significant among-line heterogeneity in fitness costs. 

However, this variation did not correlate with the level of resistance conferred by the mutations, 

nor did the cost vary significantly across the different genetic backgrounds tested. Instead, these 

idiosyncratic differences can be explained by mutations in different genetic targets, mutations in 

different genes that comprise the same physiological pathway, and even different alleles of the 

same gene. We conclude in this Chapter that fitness costs often depend on idiosyncratic effects of 

particular resistance mutations and the genetic backgrounds in which they arise. 

 

The multifactorial nature of antibiotic-resistance evolution 

Antibiotic resistance is a growing public-health crisis. Efforts to control resistance would benefit 

from an improved ability to forecast when and how it will evolve. However, to effectively predict 

evolution, we must integrate information about multiple factors, including a bacterium’s 

evolutionary history. My dissertation centers on the effects of different genetic backgrounds on 
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the evolution of antibiotic resistance and its fitness costs. Other factors, including the mutation 

supply rate and population bottlenecks, can also affect evolutionary trajectories and complicate 

our ability to predict resistance evolution. I discuss these additional factors and their medical 

implications in the following sections. 

 

Mutational supply rate 

The adaptive potential of a population depends upon the number of potential evolutionary paths to 

improvement and the likelihood of finding each of those paths. Antibiotic resistance can arise 

through mutations that change gene regulation, cellular permeability and efflux, or the structure of 

the drug target (Blair et al. 2015). However, not all paths are equal phenotypically because these 

mechanisms can confer different levels of drug resistance; mutations that reduce drug 

accumulation in the cell, for example, tend to be less advantageous than those which alter drug 

targets (Hughes and Andersson 2017). Also, the rate at which these mutations occur depends on 

both population size and an organism’s mutation rate, which together are sometimes called the 

“mutation supply rate”. 

The effects of population demography and mutation rates on adaptive potential are not well 

understood. This situation reflects challenges presented by the great variability of pathogen 

populations. Clinically relevant population sizes can span many orders of magnitude. Many 

newborn deaths worldwide have been caused by sepsis (United Nations Children's Fund 2009), 

and those infections might be driven by bacterial loads as low as 40 cells per milliliter (Stranieri 

et al. 2018); tuberculosis infections can reach 105 cells per milliliter of sputum (Palaci et al. 2007); 

and titers from meningitis patients can exceed 109 cells per milliliter (Bingen et al. 1990; Hughes 

and Andersson 2017). On balance, large populations should be more evolvable because they are 
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more likely to sample rare mutations that provide high levels of resistance, although this 

expectation is complicated by differences in mutation rates between populations. 

In vitro mutation rates are typically characterized by the frequency at which detectable 

mutants arise in a population under selection with a given drug concentration. However, the rate 

of those mutations with sufficient resistance is likely to vary with the drug concentration (see 

Chapter 1 Results and Discussion), making this parameter challenging to quantify. For example, 

the so-called “mutant selection window” (MSW) extends from the minimum drug concentration 

required to inhibit susceptible variants in the population up to that required to inhibit growth of 

resistant variants (Drlica 2003; Drlica and Zhao 2007). Moreover, increased antibiotic resistance 

can arise through mutations in different genes, and these mutations may provide different levels 

of resistance. At low antibiotic concentrations, mutations in any of these genes can effectively 

protect the bacteria. However, as the antibiotic concentration rises, the number of potential 

mutations that confer sufficient resistance (i.e., the effective mutational target size) should 

decrease. One might therefore overestimate a bacterium’s mutation rate at the lower boundary of 

the MSW and underestimate this parameter at the upper boundary (Martínez and Baquero 2000). 

Bacterial populations can evolve elevated mutation rates, typically ranging from 10- to 

1,000-fold higher than their wild-type counterparts (Macía et al. 2005; Wielgoss et al. 2013). 

Hypermutable mutants have a higher probability of discovering rare beneficial alleles compared 

to nonmutator strains, and therefore these mutants may be favored, at least indirectly (Taddei et 

al. 1997; Tenaillon et al. 2001; Lenski 2004), in novel or rapidly changing environments 

(Sniegowski et al. 1997; Jayaraman 2011). For instance, P. aeruginosa infections are a major cause 

of morbidity and mortality in individuals with cystic fibrosis (CF) (Smith et al. 1996). Lung 

defenses against bacterial colonization primarily occur through ciliary action and neutrophilic 
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phagocytosis, both of which are limited by the viscous and hyperosmotic environment of the CF 

lung, resulting in long-term infection (Oliver et al. 2000). This environment, along with recurrent 

and prolonged drug therapy, can select for P. aeruginosa lineages with elevated rates of mutation, 

in some cases 100-fold higher than the ancestral wild-type (Govan and Deretic 1996; Oliver et al. 

2000; Macía et al. 2005; AbdulWahab et al. 2017; Martin et al. 2018). Moreover, these lineages’ 

can have mutation rates that are orders of magnitude higher than the opportunistic, short-term 

infections of the bloodstream, further suggesting that chronic infections of the lung environment 

impose repeated, strong selection on P. aeruginosa populations (Oliver et al. 2000), which 

generates second-order selection for higher mutation rates. 

Population size is another factor in the relation between mutation supply rate and resistance 

potential. For example, Adler and colleagues (2013) examined the effect of an extended-spectrum 

β-lactamase (ESBL)-producing plasmid on the evolution of carbapenem resistance in E. coli. They 

found that the plasmid can increase the mutation rate to ertapenem specifically by 1800- to 6000-

fold with an associated rise in resistance levels. They examined whether this observation could be 

explained by an increased overall mutation rate caused by the plasmid’s presence. However, 

mutation rates to a separate antibiotic (i.e., rifampicin) were nearly equivalent between strains with 

and without the plasmid, indicating that overall mutation rates were not altered. Instead, the authors 

demonstrated that the ESBL-producing bacteria survived at larger population sizes, and therefore 

were able to generate more resistance mutations, compared to cells that did not harbor the plasmid. 

The studies mentioned above underscore the importance of exploring the roles of 

population size and mutation rate in the evolution of drug resistance. However, it is not well 

understood how genetic background interacts with population size and mutation rate to influence 

evolutionary trajectories to resistance. 
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Future directions 

In my future work, I plan to use E. coli strains from the LTEE to examine the contributions of 

genetic background, population size, and mutation rate to resistance evolvability. The LTEE 

growth medium contains glucose as the limiting nutrient, along with abundant citrate that is present 

as an iron-chelating agent. E. coli cannot normally use citrate as an energy source under the 

oxygen-rich conditions of the experiment. However, after ~31,000 generations the population 

designated Ara–3 evolved the capacity to grow on this substrate (Cit+) (Blount et al. 2008). The 

Cit+ trait caused a several-fold increase in population size. Additionally, the population had the 

low, ancestral mutation rate until a hypermutator phenotype evolved around 35,000 generations 

(Blount et al. 2012). As this population’s history includes changes in both population size and 

mutation rate, one could investigate the resistance potential of strains isolated from across this 

evolutionary time series. 

By generation 31,000, the Ara–3 population had evolved nonsynonymous point mutations 

in genes encoding DNA topoisomerase, efflux pump regulators, and multiple ribosomal proteins 

(Tenaillon et al. 2016). These mutations could conceivably influence resistance evolution to 

various drug classes. Nevertheless, rare pathways leading to high-level resistance may become 

more accessible due to the larger population size after Cit+ evolution. One objective of this study 

could be to assess whether an increase in evolutionary potential due to the larger population size 

outweighs, or is outweighed by, any potentiating or constraining effects of changes in the genetic 

background (Card et al. 2019). Similarly, resistance potential should also increase when this 

population evolved hypermutability. However, this response becomes harder to predict for later-

generation strains that, owing to hypermutability, have accumulated hundreds of background 

mutations that may idiosyncratically interact with resistance mutations. 
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The fitness of a resistant bacterium, including relative to its sensitive counterparts in the 

absence of antibiotics, can affect its evolutionary success over time (Chapter 3). For example, a 

mutation that confers less resistance may ultimately prevail over one that confers greater resistance 

if the latter carries a higher fitness cost than the former (Andersson and Hughes 2010; Melnyk et 

al. 2015). Discovery of more resistant variants in the short-term may not necessarily equate to their 

success over longer timescales. To examine this possibility, one could compete mutants against 

each other and their wild-type progenitors in continuous culture devices (i.e., morbidostats) 

(Toprak et al. 2012; Gopalakrishnan et al. 2019; Kaznatcheev et al. 2019). Morbidostats steadily 

increase the drug concentration in a growth medium as the population under study evolves 

resistance (Toprak et al. 2012; Gopalakrishnan et al. 2019). The evolution of resistance will 

therefore occur over time with increasing antibiotic concentrations and by the sequential 

substitution of multiple mutations. One could then sample the evolving populations periodically 

and perform metagenomic sequencing to examine how the frequency of competitors change over 

time. 

One might also examine the individual effects of population size and mutation rate on 

evolvability by using a ΔmutS variant of the LTEE ancestor. One could compare this hypermutable 

strain against its wild-type counterpart using the experimental approach as described. Population 

sizes could be directly controlled by altering the concentration of glucose in the medium. In any 

case, the ability to predict a pathogen’s resistance potential is an important public health goal. 

Predictions should ideally combine information about a bacterium’s genetic context, mutation rate, 

population size, and the relative fitness of resistance mutations. In this study, one could examine 

the interaction of these factors on resistance evolution using a well-characterized experimental 

population of E. coli. 
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Population bottlenecks 

As discussed in this Chapter, and throughout this dissertation, evolutionary trajectories to 

antibiotic resistance can depend upon several factors including the supply of beneficial mutations 

(dependent upon the mutation rate and population size under selection); a bacterium’s genetic 

context; and the fitness of resistance mutations across varying drug concentrations. In this section, 

I discuss one additional factor with clinical relevance: the size of the transmitted population that 

establishes new infections (Hughes and Andersson 2017). 

Population bottlenecks play important roles in disease dynamics and the evolution of 

antibiotic resistance in pathogen populations. The sexual transmission of HIV-1 can occur through 

stringent bottlenecks as low as one virion particle (da Silva 2012), and in the case of bacterial 

infections, clonal expansions can drive the spread of tetracycline-resistant Group B Streptococcus 

(Da Cunha et al. 2014). Bottlenecks also reduce genetic diversity, and they may reduce fitness 

during transmission events if less-fit genotypes survive a bottleneck event and displace their more-

fit counterparts (Moxon and Kussell 2017).  

Given that genetic variation is the substrate that fuels natural selection, bottlenecks may 

also impose indirect selection that favors mechanisms that can rapidly regenerate diversity (Moxon 

and Kussell 2017). Two important mechanisms include hypermutability (discussed above) and 

phase variation. Phase variation occurs when gene expression is altered, in a reversible manner, 

by insertions and deletions in short genomic repeats, homologous or site-specific recombination, 

or epigenetic modifications (Moxon et al. 1994; van der Woude and Bäumler 2004; Moxon and 

Kussell 2017). Phase variable loci in pathogens can promote virulence by altering cell-surface 

molecules that modulate host-microbe interactions, and they may also facilitate the maintenance 

of some antibiotic-resistance determinants as well (Jiang et al. 2019). 
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Mutation rates, the relative fitness of antibiotic resistance mutations, and population 

bottlenecks can simultaneously affect evolutionary trajectories of antibiotic resistance. For 

instance, high-level fluoroquinolone resistance in E. coli occurs through the sequential substitution 

of mutations in several different genes (Lindgren et al. 2003). The first mutation to be selected in 

this pathway generally occurs in gyrA, which encodes the DNA topoisomerase II drug target. 

Mutations in gyrA confer low levels of fluoroquinolone resistance with minimal associated fitness 

costs (Huseby et al. 2017). However, the second mutation in this sequence is more variable. 

Mutations in the regulator of the major efflux pump AcrAB–TolC that confer resistance occur at 

a high rate of 10–6 per base pair per generation, whereas mutations in the secondary drug target 

topoisomerase IV, parC, occur at the comparatively low rate of 10–9 per base pair per generation. 

This difference in mutation rate can be understood in terms of different mutational target sizes 

(Hughes and Andersson 2017; Huseby et al. 2017). 

Huseby and colleagues (2017) found that changes in efflux pump regulation predominate 

when fluoroquinolone resistance is selected for in vitro, in contrast to clinical strains in which 

second-step mutations often occur in parC. The authors hypothesized that this discrepancy might 

be explained by differences in fitness costs, with parC mutations having smaller costs than 

mutations that upregulate drug efflux. To test their hypothesis, they challenged populations 

(already containing the first-step mutation in gyrA) with increased levels of ciprofloxacin across 

several population bottleneck sizes. They found that when the population bottleneck was large 

enough for both variants to survive the bottleneck, the outcome matched that seen in clinical 

isolates: most replicate lines had mutations in parC (Hughes and Andersson 2017). Therefore, this 

work suggests that the bottleneck size during transmission of this pathogen even between hosts is 

sufficiently large to maintain the rarer, low-cost alleles compared to the more frequent, but costlier, 
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alternative solutions. More generally, more stringent bottlenecks might constrain the trajectories 

of resistance evolution by limiting genetic diversity. 

 

Concluding remarks 

“When we try to pick out anything by itself, we find it hitched to everything else in the 

Universe.” 

– John Muir, My First Summer in the Sierra 

 

In closing, my dissertation research addressed questions about the importance of genetic 

background on the evolution of antibiotic resistance, including its phenotypic and genotypic 

patterns, and its associated fitness costs. Nonetheless, several additional factors can alter 

evolutionary trajectories and complicate our ability to forecast resistance evolution in clinical 

settings. Thus, an evolutionary perspective might complement and benefit efforts to develop new 

strategies to limit the emergence and spread of antibiotic-resistant bacteria.  

And this work has set me on a trajectory of my own—one that is both fascinating and 

important for our collective well-being. 
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Table A.1. Bacterial strains used in Chapter 1. 

Strain Generation LTEE Population 

REL606 0 - 

REL772A 500 Ara+5 

REL772B 500 Ara+5 

REL962A 1,000 Ara+5 

REL962B 1,000 Ara+5 

REL1066A 1,500 Ara+5 

REL1066B 1,500 Ara+5 

REL1162A 2,000 Ara+5 

REL1162B 2,000 Ara+5 

REL2177A 5,000 Ara+5 

REL2177B 5,000 Ara+5 

REL4534A 10,000 Ara+5 

REL4534B 10,000 Ara+5 

REL11339 50,000 Ara–5 

REL11389 50,000 Ara–6 

REL11348 50,000 Ara+4 

REL11367 50,000 Ara+5 

All clones were derived from REL606, the ancestral strain of the LTEE. 
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Table A.2. Statistical significance for changes in intrinsic resistance of the individual clones 

sampled at generation 50,000 of the LTEE for the four antibiotic treatments. 

Antibiotic Clone p 

Ampicillin Ara–5 0.0080 

Ara–6 0.0039 

Ara+4 0.0080 

Ara+5 0.0080 

Ceftriaxone Ara–5 0.0031 

Ara–6 0.0031 

Ara+4 0.0039 

Ara+5 0.0039 

Ciprofloxacin Ara–5 0.2177 

Ara–6 0.1004 

Ara+4 0.0149 

Ara+5 0.0039 

Tetracycline Ara–5 0.0031 

Ara–6 0.0031 

Ara+4 0.0039 

Ara+5 0.0278 

Analyses were performed based on a trinomial distribution, which reflects the many ties in these 

datasets. The reported p-values are one-tailed, which reflects the expectation that resistance should 

decline under relaxed selection in the antibiotic-free LTEE environment. 

  



92 

 

Table A.3. Statistical significance for trends of diminishing-returns resistance evolvability of 

the individual clones sampled at generation 50,000 of the LTEE for the four antibiotic 

treatments. 

Antibiotic Clone p 

Ampicillin Ara–5 0.0456 

Ara–6 0.1094 

Ara+4 0.1592 

Ara+5 0.8408 

Ceftriaxone Ara–5 0.9481 

Ara–6 0.9969 

Ara+4 0.9969 

Ara+5 0.9722 

Ciprofloxacin Ara–5 0.9250 

Ara–6 0.8778 

Ara+4 0.1964 

Ara+5 0.1222 

Tetracycline Ara–5 0.2895 

Ara–6 0.1946 

Ara+4 0.9250 

Ara+5 0.9722 

Analyses were performed based on a trinomial distribution, which reflects the many ties in these 

datasets. The reported p-values are one-tailed, which reflects the directional expectation implied 

by diminishing returns. 
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Table A.4. Bacterial strains sequenced in Chapter 2. 

Antibiotic* LTEE parent† Replicate Strain 

AMP Ancestor 1 KJC108 

AMP Ancestor 2 KJC109 

AMP Ancestor 3 KJC110 

AMP Ancestor 4 KJC111 

AMP Ara–5 1 KJC114 

AMP Ara–5 2 KJC122 

AMP Ara–5 3 KJC130 

AMP Ara–6 1 KJC115 

AMP Ara–6 2 KJC123 

AMP Ara–6 3 KJC131 

AMP Ara+4 1 KJC112 

AMP Ara+4 2 KJC120 

AMP Ara+4 3 KJC128 

AMP Ara+5 1 KJC113 

AMP Ara+5 2 KJC121 

AMP Ara+5 3 KJC129 

CRO Ancestor 1 KJC212 

CRO Ancestor 2 KJC213 

CRO Ancestor 3 KJC214 

CRO Ancestor 4 KJC215 

CRO Ara–5 1 KJC218 

CRO Ara–5 2 KJC226 

CRO Ara–5 3 KJC234 

CRO Ara–6 1 KJC219 

CRO Ara–6 2 KJC227 

CRO Ara–6 3 KJC235 

CRO Ara+4 1 KJC216 

CRO Ara+4 2 KJC224 

CRO Ara+4 3 KJC232 

CRO Ara+5 1 KJC217‡ 

CRO Ara+5 2 KJC225 

CRO Ara+5 3 KJC233 

CIP Ancestor 1 KJC148 

CIP Ancestor 2 KJC149 

CIP Ancestor 3 KJC150 

CIP Ancestor 4 KJC151 

CIP Ara–5 1 KJC154 

CIP Ara–5 2 KJC162 

CIP Ara–5 3 KJC186 

CIP Ara–6 1 KJC155 

CIP Ara–6 2 KJC163 

CIP Ara–6 3 KJC187 

CIP Ara+4 1 KJC152‡ 
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Table A.4 (cont’d) 

CIP Ara+4 2 KJC160 

CIP Ara+4 3 KJC184‡ 

CIP Ara+5 1 KJC153 

CIP Ara+5 2 KJC161 

CIP Ara+5 3 KJC185 

TET Ancestor 1 KJC60 

TET Ancestor 2 KJC61 

TET Ancestor 3 KJC62 

TET Ancestor 4 KJC63 

TET Ara–5 1 KJC66§ 

TET Ara–5 2 KJC74 

TET Ara–5 3 KJC82 

TET Ara–6 1 KJC67 

TET Ara–6 2 KJC75 

TET Ara–6 3 KJC83 

TET Ara+4 1 KJC64 

TET Ara+4 2 KJC72 

TET Ara+4 3 KJC80 

TET Ara+5 1 KJC65§ 

TET Ara+5 2 KJC73 

TET Ara+5 3 KJC81 

*AMP, ampicillin; CRO, ceftriaxone; CIP, ciprofloxacin; TET, tetracycline. 
†Ancestor, E. coli B strain REL606. All other parental strains are clones sampled at generation 

50,000 from the indicated LTEE population. 
‡Three strains (KJC152, KJC184, KJC217) are cross-contaminants, and they were discarded from 

all analyses. 
§Two strains (KJC65, KJC66) have no identifiable mutations. 
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Table A.5. Bacterial strains used in Chapter 3. 

Evolved tetracycline-resistant clones 

Strain name  Derived from  Freezer ID 

Ancestor-1 REL606 KJC60 

Ancestor-2 REL606 KJC61 

Ancestor-3 REL606 KJC62 

Ancestor-4 REL606 KJC63 

Ara–5-1 REL11339 KJC66 

Ara–5-2 REL11339 KJC74 

Ara–5-3 REL11339 KJC82 

Ara–6-1 REL11389 KJC67 

Ara–6-2 REL11389 KJC75 

Ara–6-3 REL11389 KJC83 

Ara+4-1 REL11348 KJC64 

Ara+4-2 REL11348 KJC72 

Ara+4-3 REL11348 KJC80 

Ara+5-1 REL11367 KJC65 

Ara+5-2 REL11367 KJC73 

Ara+5-3 REL11367 KJC81 

Tetracycline-sensitive parental strains 

LTEE population LTEE generation Freezer ID 

Ancestor 0 REL606 

Ara–5 50,000 REL11339 

Ara–6 50,000 REL11389 

Ara+4 50,000 REL11348 

Ara+5 50,000 REL11367 

Strains used as common competitors 

LTEE population LTEE generation Freezer ID 

Ancestor 0 REL607 

Ara–5 40,000 REL10948 

Ara–5 40,000 REL11638 
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Figure B.1. Schematic illustration of the LTEE and evolvability study design. (A) Twelve 

initially identical E. coli populations were founded from a common ancestor to start the LTEE. 

These populations have evolved for >73,000 generations with daily serial transfers in a minimal 

medium without antibiotics. (B) In this study, antibiotic-susceptible ancestral or derived clones 

from generation 50,000 were inoculated into replicate cultures. A resistance mutation may arise 

spontaneously and increase in number during a population’s expansion, resulting in two genetic 

variants: the susceptible parental cells and their descendent resistant daughters. (C) These whole 

populations were then spread onto agar plates supplemented with two-fold increasing 

concentrations of an antibiotic (shown in red). Minimum inhibitory concentrations (MICs) of these 

two variants correspond to the lowest antibiotic concentration that inhibits confluent growth and 

that prevents even isolated colonies, respectively. Resistant clones were confirmed by streaking 

onto fresh plates with relevant antibiotic concentrations. 
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Figure B.2. Experimental plates. Whole populations containing susceptible parental and resistant 

daughter cells were spread onto MH agar amended with two-fold increasing concentrations of 

ciprofloxacin (left to right, and down). Confluent lawns of bacterial growth (plates 1–3) consist 

largely of drug-susceptible cells. Isolated colonies (plates 4–5) are putatively resistant mutants. 
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