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ABSTRACT 

QUANTIFYING THE “NUTRIENT LANDSCAPE” IN THE GREAT LAKES REGION: 

MAPPING AND ANALYZING NUTRIENT SOURCES AND GROUNDWATER NITRATE 

By 

Quercus Florence Hamlin 

Since the mid-19th century, the rise of industrial agriculture and growing population has 

significantly altered nutrient cycling. These changes are from multiple sources, such as chemical 

fertilizers, livestock waste, and human waste. Excess nutrients have led to a suite of water quality 

problems that damage human and animal health, ecology, and economics. In this thesis, I begin 

to quantify the “Nutrient Landscape”, a term I use to refer to the set of processes and properties 

that drive cycling of nitrogen and phosphorus throughout our modern environment. 

To understand the “Nutrient Landscape”, I first develop algorithms utilizing broadly 

available data to estimate nutrient inputs from seven distinct sources across the U.S. portion of 

the Laurentian Great Lakes Basin at 30 meter resolution. Chapter I’s mapping effort, referred to 

as the Spatially Explicit Nutrient Source Estimate map (SENSEmap), provides new information 

for management and modeling, as well as a classification system to categorize watersheds based 

on their nutrient source composition. Second, I examine the groundwater component of the 

“Nutrient Landscape” by exploring a dataset of over 300,000 nitrate samples from drinking water 

wells using Classification and Regression Tree (CART) analysis to determine drivers of elevated 

concentration. This analysis revealed high nitrate concentrations result from a combination of 

hazardous land use and vulnerable geology. The data products and findings in this thesis provide 

a quantitative framework for informing management strategies and driving the next generation of 

nutrient modeling. 
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CHAPTER 1:  

QUANTIFYING LANDSCAPE NUTRIENT INPUTS WITH SPATIALLY EXPLICIT 

NUTRIENT SOURCE ESTIMATE MAPS 

Abstract 

Nutrient management is an essential part of watershed planning worldwide to protect water 

resources from both widespread landscape inputs of nutrients (N and P) and point source 

emissions. To provide information to regional watershed planners and better understand nutrient 

sources, we developed the Spatially Explicit Nutrient Source Estimate Map (SENSEmap) to 

quantify individual sources of N and P at their entry points in the landscape. We modeled seven 

sources of N and six sources of P across the United States Great Lakes Basin at 30m resolution: 

atmospheric deposition, septic systems, chemical non-agricultural fertilizer, chemical 

agricultural fertilizer, manure, nitrogen fixation, and point sources. By modeling these sources, 

we provide a more detailed view of nutrient inputs to the landscape beyond what would be 

possible from land use alone. We found 71% and 88% of N and P, respectively, came from 

agricultural sources. The nature of agricultural nutrient inputs varied significantly across the 

basin, as relative contributions of chemical agricultural fertilizers, manure, and N fixation 

changed according to diverse land use practices regionally. We then applied k-means cluster 

analysis and identified nine Nutrient Input Landscapes (NIL) with N and P source characteristics, 

grouped into intensive agricultural, urban, and rural landscapes. These NILs can offer insights 

into landscape variability that land use data alone cannot; within agricultural NILs, application of 

chemical fertilizer and manure varied greatly, but land uses were similar. These NILs can 

provide a framework for broadly categorizing watersheds that may prove useful to both 

ecological and management practices. 
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1. Introduction 

Agricultural intensification, rising population, and increased meat consumption have led 

to a massive increase in landscape nutrient inputs worldwide. Anthropogenic nitrogen and 

phosphorus inputs dominate global nitrogen (N) and phosphorus (P) cycles, and drive 

eutrophication of both inland and coastal waters (Howarth, 2008; Smith et al., 1999; Anderson, 

2002). Beyond fundamentally altering ecosystems, these high loads of N and P have fueled 

harmful algal blooms (HABs), which directly harm human and ecosystem health, and bring 

negative economic consequences (Paerl & Otten, 2013; Carmichael, et al. 2001; Dodds et al. 

2009; Brooks et al. 2016). The need to manage anthropogenic inputs of nutrients has become 

clear, however a lack of detailed information regarding where and how nutrients are applied 

hinders both science and management. 

Nutrients are applied to the landscape through a host of natural and anthropogenic 

mechanisms, few of which can be effectively measured, and even fewer of which are actively 

monitored. Further complicating the issue is that where present, federal and provincial level 

statues exempt non-point source inputs from reporting requirements. For instance, the US Clean 

Water Act tightly regulates point source loads from wastewater treatment plants and other 

facilities but allows unreported nutrient applications for agricultural and municipal land 

management (Clean Water Act, 1972). Lacking detailed data, scientists and watershed managers 

commonly turn to nutrient modeling as a primary tool to understand and quantify nutrient inputs, 

especially to aid in the management of Total Maximum Daily Loads (TMDL), a part of the US 

EPA’s Clean Watershed Act (US EPA, 1991).  

Since nutrients are poorly monitored, modeling has become a major tool to understand 

non-point source nutrient fluxes within watersheds. Land use is commonly used to determine 
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nutrient loads, as distinct sources can be estimated by land uses. An “export coefficient” based 

on land use may be used, or land use may be an input within a more mechanistic transport 

framework. USGS SPAtially Referenced Regressions on Watershed attributes (SPARROW) uses 

a variety of watershed characteristics to fit a regression model calibrated with measured in 

stream loads and transported through a stream network (Smith et al., 1997; Alexander et al., 

2004). Other methods include the Net Anthropogenic Nitrogen Index (NANI) which correlates 

riverine N flux with four variables: synthetic fertilizer, agricultural N fixation, atmospheric 

deposition, and net movement of human and animal food and has recently been applied to all 

counties in the United States (Swaney et al., 2018; Howarth et al., 2012; Howarth et al., 1996). 

Nutrient sources and land use are also inputs to process-based models. For example, the 

ELEMeNT (Exploration of Long-tErM Nutrient Trajectories) modeling approach uses land use 

and nitrogen surplus calculations (atmospheric deposition, biological nitrogen fixation, chemical 

fertilizer, and manure) within a legacy and transport framework (Van Meter et al., 2017). A 

commonly used process-based model, SWAT (Soil and Water Assessment Tool) represents 

different nutrient source input rates through parametrized land use types (Arnold et al., 1998). 

However, these approaches often make broad assumptions about the loading rate from a 

single land use. This has been identified as a concern in regional USGS SPARROW models 

(Preston et al., 2011), and becomes especially problematic in agricultural landscapes where a 

variety of crops are grown and fertilized with different amounts and types of fertilizer. This is an 

issue for quantifying the environmental effects of different fertilizing systems, as manure and 

chemical fertilizers have different nitrous oxide emissions (a potent greenhouse gas) and nitrate 

leaching to groundwater (Basso & Ritchie, 2005; Tuomisto et al., 2012; Charles et al., 2017). 

Additionally, local data about septic systems and point sources have been shown to improve 
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modeling when added to coarser national data (Scown et al., 2017). Approaches that use explicit 

sources, like NANI, generally estimate loads at large watershed or county scales and are used to 

predict riverine outputs (Han & Allan, 2008; Hong et al., 2013; Goyette et al., 2016), rather than 

informing specific changes in local management. 

Here we describe the first version of the Spatially Explicit Nutrient Source Estimate Map 

(SENSEmap) product, constructed using an approach that seeks to avoid compromises frequently 

made between spatial extent, resolution, and detail of nutrient specificity. We then demonstrate 

the approach for the U.S. portion of the Laurentian Great Lakes Basin (US-GLB), a region that 

contains both inland lakes and Great Lakes representing relatively pristine to highly eutrophic 

conditions, and where HABs are increasingly inflicting ecological, human health, and economic 

harm. With SENSEmap-US-GLB, we estimate landscape nutrient inputs for seven N and six P 

sources at 30 m resolution. Sources include atmospheric deposition, septic systems, chemical 

non-agricultural fertilizer, chemical agricultural fertilizer, manure, nitrogen fixation from 

legumes, and point sources.  

SENSEmap-US-GLB was developed from and expands upon previous research in 

Michigan’s Lower Peninsula where six nutrient sources were quantified and transported using a 

statistical model to estimate riverine exports (Luscz et al., 2015; 2017). Highlights of 

improvements to the method include updating and improving all nutrient source modeling 

methods, adding N Fixation, and upscaling our analysis from Michigan’s Lower Peninsula to all 

eight Great Lakes States. SENSEmap outputs include pixel-based nutrient inputs aggregated to 

the HUC12 watershed scale. We also identify nine distinct Nutrient Input Landscapes (NILs), 

which are sets of watersheds most similar in their quantity and composition of nutrient sources. 
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These NILs reduce a complex set of 13 spatially varying nutrient sources into a straightforward 

framework that can be linked to other indicators of water quality and ecological condition. 
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2. Materials and Methods 

2.1 Study Area  

The North American Laurentian Great Lakes Basin (GLB) consists of five basins 

surrounding Lakes Superior, Michigan, Huron, Erie, and Ontario, covering 580,000 square 

kilometers in the United States and Canada. HABs are found throughout the world and across the 

American Great Lakes region, most notably in the large annual blooms in western Lake Erie 

(Figure 1.1). The HABs in Lake Erie have been particularly dangerous due to toxins in 

cyanobacteria that cause neurological and liver damage to humans and animals, resulting in 

Toledo’s 2014 drinking water ban (Carmichael et al., 2001; Michalak, et al. 2013; Fitzsimmons, 

2014). Intensive use of chemical agricultural fertilizer and manure are major causes of modern 

high nutrient loads (Withers et al., 2014). Although Lake Erie is a prominent example, 

eutrophication and HABs are a problem at all scales, and problems as large as those found in 

Lake Erie result from mismanagement of landscapes in the contributing watershed. 
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Figure 1.1 SENSEmap study area. Land use/land cover in the U.S. Great Lakes Basin from 

NLCD 2011. Nonurban areas use the Anderson level 1 description, while urban areas are 

differentiated using Anderson level 2 description. 

 

This study describes the development of SENSEmap-US-GLB, which quantifies average 

annual nutrient inputs for the 2008-2015 period over the United States Great Lakes Basin (US-

GLB) portion of eight states: Indiana, Illinois, Michigan, Minnesota, New York, Ohio, 

Pennsylvania, and Wisconsin. This expansion of nutrient input maps was possible due to readily 

available data in the US, including census, agricultural census, and land use datasets. Future 

work may extend these maps to the Canadian portion of the basin and develop temporal 

estimates of landscape nutrient inputs.  

Climatologically, the US-GLB is temperate and sub-humid, and includes Koeppen-

Geiger zones Dfa and Dfb (hot-summer and warm-summer humid continental climates, 

respectively). Annual average (1981 - 2010) temperatures range from 3 - 10° C (PRISM). 
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Annual precipitation is distributed relatively uniformly between 700 and 1000 mm, with local 

areas receiving up to 1500 mm/yr. A significant annual snowpack accumulates during the winter 

months, melting intermittently during the season in the southern part of the basin and often 

persisting until early spring in the northern parts of the basin. 

The US-GLB exhibits a north-south gradient of land use: in the north, typically above 43 

to 45 degrees N, population density is low and land use/cover (LULC) is primarily forest and 

wetlands, with some low intensity agriculture (Figure 1.1). In the central and southern basin, 

intensive agriculture and urban centers dominate. Ohio, Indiana, and southern Michigan 

primarily grow corn and soybean in rotations with a single annual growing season. Alfalfa and 

other hay crops are also grown as a primary crop in northern regions. Winter wheat and other 

small grains like rye and barley are also common. Specialty crops include potatoes, apples, 

grapes, blueberries, dry beans, cherries, squash, sugar beets, asparagus, carrots, tomatoes, and 

cucumbers. Livestock agriculture is also common, primarily chickens, dairy cows, cattle, hogs, 

chickens, and turkeys. Wisconsin notably has intensive dairy operations (USDA Ag Census, 

2012).   

The Great Lakes Basin contains Detroit, Michigan; Milwaukee, Wisconsin; Cleveland, 

Ohio; and Buffalo, New York, as well as other mid-size cities and many rural agricultural towns. 

Population density is higher in the southern and central GLB, as there are more major cities and 

agricultural towns. Although cities and many towns have wastewater treatment plants, septic 

systems are still heavily used within suburbs, small towns, and rural populations. Septic systems 

are a dispersed, but commonly neglected, nutrient source that loads directly to groundwater.  

The last glacial period and subsequent melt deposited coarse-textured sediments across 

much of the basin. Exceptions to this are areas of lake plain clays that formed in pro-glacial 
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lakes, now covering some of the areas adjacent to lakes Huron and Erie. As a result, soil textures 

vary from coarse sands and gravels to fine textured soils with greater than 90% clay particles. 

This variability in soil textures is relevant to what crops are grown, how much fertilizer is 

applied, and eventually how much of those applied nutrients are used by crops versus those that 

are mobilized via runoff, erosion, or deep percolation into groundwater systems. 

2.2 Data Sources  

SENSEmap quantifies nutrient inputs at their origin on the landscape at a 30 m resolution 

to match the resolution of the National Land Cover Dataset (NLCD, Homer et al., 2015). The 

model uses data from 2008 to 2015 to produce average annual nutrient inputs estimates for this 

timespan. Those data sources are listed in Table 1.1 and are described in further detail for each 

nutrient source in the following section. Core datasets for SENSEmap include the US Census 

(population and households), USDA Agricultural Census (livestock, crops), USDA Cropland 

Data Layer (remote sensing product locating major crops), and the NLCD (land use/land cover).
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Table 1.1 Summary of SENSEmap-US-GLB data sources. Data sources, time period, and resolution for each nutrient source. 

Description Dataset(s) Source(s) Year(s) Resolution Used For 

Land Cover, 

Imperviousness 

National Land Cover 

Dataset (NLCD) 

Multi-Resolution Land Characteristics 

Consortium (MRLC) 2011 30 m All 

N Atmospheric 
Deposition 

Total Deposition Maps 
(Total N, wet+dry) 

National Atmospheric Deposition 

Program (NADP) 
Schwede & Lear (2014) 2008-2015 4134.354 m Atm. Dep. 

Soil Properties SSURGO 
National Resources Conservation 
Service n/a Vector/30 m 

N Fixation, Chem. 

Ag. Fertilizer, 
Manure 

Crop Locations 

Cropland Data Layer 

(CDL) USDA NASS 2008-2015 30 m 

N Fixation, Chem. 

Ag. Fertilizer, 

Manure 

Crop Yields Agricultural Census USDA NASS 2007, 2012 County 

N Fixation, Chem. 

Ag. Fertilizer, 

Manure 

Chemical Fertilizer 
Quantities 

County level chemical 
fertilizer 

USGS: Brakebill & Gronberg (2017), 
Gronberg & Spahr (2012) 2008-2012 County 

Chem. Ag., Chem. 
NonAg. Fertilizer 

Remotely-sensed 

Greenness LANDSAT 

NASA, Accessed via Google Earth 

Engine 2008-2015 30 m N Fixation 

Animal/Farm 
Inventories Agricultural Census USDA NASS 2012 County Manure 

Confined Animal 

Feeding Operations State Databases     Point Manure 

Incorporated Areas, 

Census Blocks TIGER Line Files US Census 2010 Polygon Septic 

Drinking Water 
Well Locations State Databases     Point Septic 

Regulated Point 

Sources 

National Pollutant 

Discharge Elimination 

System (NPDES) Reports USEPA Discharge Monitoring Report 2008-2015 Point 

Septic, Point 

Sources 

Household 

Information US Census US Census, IPUMS 2010 Tabular 

Septic, Chem. 

NonAg Fertilizer 

Golf Course 

Locations Original Google Earth imagery 2008-2015 Polygon 

Chem. NonAg 

Fertilizer 
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2.3 Mapping Nutrient Sources 

Seven nutrient sources are included in SENSEmap as illustrated in Figure 1.2, which 

shows the different landscape processes associated with each source. SENSEmap’s high spatial 

resolution allows these processes to be captured at their origin, rather than averaged over a 

watershed or county. SENSEmap’s individual source inputs are data-driven and vary at 30 meter 

resolution. Quantification and spatial location of each input source is done via one of four sets of 

methods: 1) summarizing reported loads at known locations for point sources, 2) interpolation of 

observed data for atmospheric deposition, 3) spatial disaggregation of county-level estimated 

inputs for chemical agricultural and non-agricultural fertilizers,  and 4) summarizing, locating, 

and disaggregation of “population”-based inputs, from a variety of coarser scales for CAFOs, 

septic systems, non-CAFO manure, and N fixation.   

 

Figure 1.2 Schematic diagram of SENSEmap nutrient sources on the landscape. Sources 

pictured include (clockwise from upper left): point sources, chemical non-agricultural fertilizer, 

atmospheric deposition (wet and dry), manure (confined and unconfined), septic tanks, N 

fixation from legumes, and chemical agricultural fertilizer. 
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For both N and P, the individual SENSEmap sources are quantified as mass of Total N 

(TN as kg) or Total P (TP as kg) across all organic and inorganic forms. Each of the individual 

sources consists of multiple species, which are summed according to source-specific procedures. 

For all non-point sources, inputs are reported as annual area-specific inputs (kg-N/ha/yr or kg-

P/ha/yr). Point source loads are quantified as annual mass fluxes (kg-N/yr or kg-P/yr). 

For nutrient accounting, we considered all significant sources of nutrients added directly 

to the landscape. For example, all nutrients from animal excretion could become applied manure 

(although some N is lost to the atmosphere prior to application, as described below), even though 

some of those nutrients likely came from harvested N and P within the Great Lakes Basin. By 

contrast, properly-maintained septic systems are regularly pumped out, thus removing a 

significant quantity of the nutrients that are then commonly land-applied. Here we omit land 

application of septage and assume that all human-excreted nutrients deposited into septic tanks 

are applied at the septic location.  

In the follow sub-sections, we describe key details about the seven nutrient sources. 

Much more detailed information, including flow charts illustrating the complete workflow for 

each source are included in the Appendix Figures A1.3-A1.10. 

2.3.1 Atmospheric Deposition 

Atmospheric loading of nitrogen and phosphorus occurs through both wet and dry 

deposition and can be the primary loading mechanism for either nutrient in remote areas. The 

main components of phosphorus emitted to the atmosphere are dust from soils, marine aerosols, 

volcanic ash, biomass burning, and combustion of oil and coal. Agricultural activity and 

phosphate manufacturing and mining may contribute to higher rates of localized deposition in 

some areas. Fossil fuel combustion and high intensity agriculture are the main sources of 
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nitrogen to the atmosphere. Wet deposition is measured by collecting precipitation in a sampler 

and analyzing for nitrogen and phosphorus compounds. The volume of collected precipitation is 

then multiplied by the analyzed concentrations of nitrogen and phosphorus compounds and 

corrected for sampler cross-sectional area. Dry deposition is more challenging to directly 

measure, so rates are estimated by modeling particle deposition velocities of measured 

atmospheric concentrations of compounds (USEPA, 2010).  

Wet deposition rates are generally driven by large scale processes and can be 

significantly correlated between sites separated by large distances (Anderson and Downing, 

2006): therefore, all sites selected were within 700 km of the Great Lakes Basin. Large 

phosphorus particles can move over short distances while finer dust may be able to travel over 

thousands of kilometers (Tipping et al., 2014) and a 700 km buffer was chosen for atmospheric 

phosphorus analysis as well.  

Atmospheric phosphorus concentrations are much lower relative to other macronutrients 

making accurate detection difficult (Mahowald, 2008). As a result, atmospheric monitoring is 

limited and nutrient accounting models rarely include it within their budgets (David & Gentry, 

2000). Luscz et al. (2015) used four sites from a single monitoring network to interpolate P 

deposition. To expand this analysis, we identified all comparable P deposition data through an 

extensive literature review (see Appendix Text 1.1 for a detailed description of this review 

process). Through this review, we identified 23 papers and 1 monitoring network containing data 

from 98 sites reporting total wet and dry TP deposition within a 700 km radius of the GLB from 

1970 to 2011 (see complete references in Table A1.1). We assumed that P deposition rates have 

remained largely stable through time. This assumption is consistent with a review by Tipping et 

al. (2014) who found that P deposition rates at sites with ten or more years of continuous data 
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shows that significant systematic changes are uncommon. This is supported by our longest 

continuous set of atmospheric phosphorus data collection which showed no significant trend in 

annual deposition (Eimers et al., 2009). In contrast, both emission and subsequent deposition 

rates of atmospheric nitrogen during the past four decades largely declined on national and 

regional scales (Monks et al., 2009; Kothawala et al., 2011).  

Due to the limited available data points and their inherent distribution across the 

landscape, available phosphorus data was interpolated using kriging to develop spatially 

distributed loading estimates. IDW and kriging interpolation methods were tested to find the 

most appropriate model for both nutrients. Interpolation methods were tested and selected based 

upon the parameters which best minimized the root mean square error (see Text A1.1). 

Phosphorus is mostly collected through bulk precipitation methods (both dry and wet fallout) and 

as such loading estimates were modeled one time as total phosphorus.  

SENSEmap uses the National Atmospheric Deposition Program (NADP) Total 

Deposition Science Committee (TDEP) product for total nitrogen deposition. TDEP estimates 

atmospheric nitrogen deposition rates using a hybrid approach combining modeled 

concentrations with measured concentrations (Schwede and Lear, 2014). The approach estimates 

dry concentrations using data from the Clean Air Status and Trends Network (CASTNET), the 

Ammonia Monitoring Network (AMoN) and the SouthEastern Aerosol Research and 

Characterization (SEARCH) network combined with modeled concentrations from the 

Community Multiscale Air Quality (CMAQ) model. The dry deposition value estimates are then 

combined with wet deposition values from the National Trends Network (NTN) to develop total 

deposition values of nitrogen including organic nitrogen. The TDEP model is useful for regional, 

broad-scale deposition mapping (Bytnerowicz et al., 2016; Sicard et al., 2016). SENSEmap uses 
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a mean of 2008-2015 values from gridded TDEP maps to capture average annual total nitrogen 

deposition for that timeframe (ftp.epa.gov/castnet/tdep).  

2.3.2 Septic Systems 

Onsite wastewater treatment systems, known as septic tanks, are widely used in rural and 

suburban areas. They can be considered point sources on small scales, but on a regional scale 

they are best represented as a non-point sources due to unknown locations, high densities, and 

small loads. While septic tanks are an urban source of nutrients, they are a direct source of 

nutrients to groundwater and therefore transport differs significantly from surface-applied urban 

nutrients such as non-agricultural chemical fertilizer.  

Our septic source model consists of three elements: 1) creating an exclusion mask 

defined by service area boundaries of wastewater treatment plants (WWTP) within which no 

septic systems are placed, 2) overlaying an inclusion mask based on land use and appropriate set 

back distances, and 3) calculating septic system numbers and loading rates from US Census data 

and literature sources. Determining exclusion areas required extensive data synthesis to model 

WWTP service areas, as these are not publicly available at the scale of the GLB. Drinking water 

wells, population density, and distance to WWTPs were used to classify service areas. Inclusion 

areas were selected based on land use, using primarily urban, non-WWTP service areas. Within 

each Census block in inclusion areas, one septic system was assumed per household unit. These 

septic systems were first placed adjacent to well locations, and then randomly within the primary 

inclusion mask of each Census block if there were more reported household units than known 

wells.  Septic systems were placed at densities less than 1 per 675 square meters (equivalent to ⅙ 

acre, a normal household lot size in the US) and were secondarily applied to non-urban areas 

near roads as needed. See Text A1.2 for more information. 

ftp://ftp.epa.gov/castnet/tdep
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Septic nutrient discharge was assumed to occur at the septic system location and vary 

across Census blocks according to average household size and vacancy. We did not consider 

pumping for off-site disposal of septage solids--an omission that would not change total loaded 

nutrients within a watershed but would affect the spatial placement. For specific nutrient rates, 

we used the EPA’s Onsite Wastewater Treatment Systems Manual estimate of 4.1 

kg/year/person nitrogen and 1 kg/year/person phosphorus (USEPA, 2002). These values were 

then multiplied by average household size at the Census block level and reduced to account for 

household units that are designated seasonal or vacant. Within each Census block, the final per-

septic load was applied to all placed septic systems. These loading rates were then rasterized and 

summed at the 30 m cell size. 

2.3.3 Chemical Non-agricultural Fertilizer 

Non-agricultural chemical fertilizers, which are primarily applied to lawns and golf 

courses, are major sources of nutrients in urban areas. We developed a two-part approach to 

spatially disaggregate county-level estimates of total non-agricultural chemical fertilizer sales 

from 2008-2012, where 2012 was the latest available year (Brakebill & Gronberg, 2017), to the 

30 meter scale. Within each county, fertilizer applications were placed on golf courses, followed 

by distribution of the remaining nutrients to suburban and urban lawn areas.  

Golf courses, which generally have large and frequent fertilizer applications, were first 

identified using state-specific golf course business directories. Golf courses were first batch 

identified based on two general golf business directories with golf course addresses in each GLB 

state. When available, additional state and county specific golf course business directories were 

used to find courses that may not have been identified in the first sweep. To create a complete 

golf course inventory, we further located golf courses not included in business directories 
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through systematic visual inspection of 2008 - 2015 aerial imagery across the Great Lakes Basin. 

The golf courses listed in the business directories were then address-matched in ArcGIS to locate 

them. For each golf course, polygons were manually delineated for each course. We analyzed the 

average proportion of fairway and green to total golf course area (which includes cart paths, sand 

traps, roughs, and water features) and estimated the fertilizable area to be 85% for this region. 

We then randomly applied nutrients at local (Midwest) golf course fertilizer application rates (N: 

117 kg/ha/yr; P: 10.7 kg/ha/yr) estimated by a survey from the Environmental Institute for Golf 

to golf course raster cells (GCSAA, 2009) until the total fertilized area matched the estimated 

area within each the course. 

Following golf course applications, remaining nutrients from the county-level sales data 

(Brakebill & Gronberg, 2017) was applied to urban lawns. As in Ruddy et al. (2006), we 

assumed that areas with higher population density are more likely to apply lawn fertilizer. In 

other words, more lawns and businesses choose to fertilize when there are more people nearby. 

In aggregate, this increases fertilizer application rates per Census tract area; here we assumed 

that rates increase linearly to a maximum of 4996 kg N/km2 within a tract at a population density 

of 700 persons/km2. This method was also used in Luscz et al. (2015). Remaining county 

fertilizer was distributed among tracts and placed randomly within urban cells between 10 and 

100 m from roads, assuming that fertilizer would be primarily applied to lawns near roads. Rates 

within each selected cell were given by average recommended residential application rates for 

low-maintenance established lawns given by the University of Minnesota Extension (N: 73.2 

kg/ha/yr, P: 10.7 kg/ha), and sufficient cells within each tract were selected to match the tract-

level application rate (Rosen et al., 2015). Finally, total cell input amounts were corrected based 

on the cell percent perviousness (NLCD 2011, Homer et al. 2015).  
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2.3.4 Point Sources 

Point source data was acquired through EPA’s Discharge Monitoring Report (DMR) 

Pollutant Loading Tool (US EPA, 2017), which combines National Pollutant Discharge 

Elimination System (NPDES) permit data with DMR data to describe the nature and amount of 

discharge from each point source. NPDES observes and regulates effluent information for 

facilities that discharge to surface waters in the United States. Depending on the facility and its 

permit, reporting parameters, techniques, and frequency can vary, making the data difficult to 

use without harmonization. As such, we downloaded data for each state within the Great Lakes 

Basin for each year from 2008 to 2015. Depending on the facility, nitrogen or phosphorus is 

occasionally reported as something other than simply N or P (such as NH3, NO3-N, and PO4). In 

these situations, we converted the reported value based on mass balance equations, so all data 

were represented as either nitrogen or phosphorus on a mass basis. Most sources did not report 

every year, so to arrive at a representative value for 2008-2015 we calculated a geometric mean 

for each point source across the eight years.  

2.3.5 Agricultural Fertilizer Sources 

The majority of the nutrient demand for agricultural crops are met by applications of 

manure and chemical agricultural fertilizers. Crop-specific fertilizer demand was only used for 

N, with values scaled by intensity and area normalized using recommended rates for Michigan 

(Warncke et al., 2004; Warncke & Dahl, 2003 – see Table A1.3 for values). P requirements are 

commonly determined based on local soil tests and desired crop yield rather than simply crop 

type, so we did not include a P crop demand variable within the fertilizer demand model 

(Warncke et al., 2004). We assumed that if a local source of manure is available, farmers will 

choose manure over chemical agricultural fertilizers due to lower costs, or the need to spread 
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manure associated with larger animal feeding operations, thus leading to high rates of nutrient 

input (Long et al., 2018). The process for determining which cells would have manure applied 

are described in the manure section. Since farmers often apply additional N fertilizer to manured 

fields, we applied N chemical agricultural fertilizer to pixels where manure had not met the 

pixel’s N demand (Long et al., 2018). The cells outside of manure spreading areas then received 

chemical agricultural fertilizer as described below.  

Quantities of manure and chemical agriculture N fertilizer applications were both based 

on a per-crop pixel fertilizer demand model. This was first parameterized using county-level 

data, then applied at the pixel scale to disaggregate county-level fertilizer totals. The model 

considered four county-level averaged variables: latitude, soil texture, cropland area, and crop-

specific nutrient demand. The county level was chosen to match the resolution of USGS fertilizer 

use data (Brakebill & Gronberg, 2017). We used gradient boosted regression trees (BRT) in 

scikit-learn, a machine learning technique that creates many regression trees (models that 

separate predictors by binary splits) and has better predicting power at extremes than CART 

models (Elith et al., 2008; Pedregosa et al., 2011). The BRT models produced good fits to county 

data (N: R2 = 0.93; P: R2 = 0.87), suggesting that the model could handle a wide range of 

predictor values at the cell level. We then applied the BRT using per-pixel values for the four 

variables to predict per-pixel fertilizer demand, which was then used as a starting estimate for 

manure and chemical fertilizer applications. Additional information on the methods used to 

model fertilizer demand is provided in Text A1.3, including additional details on our BRT 

application. 
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2.3.5.1 Manure 

We used multiple data sources to estimate manure application areas with animal-specific 

and nutrient-specific loading rates. This procedure consists of four steps: 1) determine a 

complete animal inventory including counts, types, and confinement status for all farms; 2) 

calculate how much manure is produced at each farm, quantify N volatilization during storage, 

and determine the total acreage to which manure should be applied; 3) place the farms within 

each county; and 4) create a buffered area around each farm upon which the manure will be 

spread.  

Key details about each of these steps are discussed below, with additional information in 

Text A1.4. Animal inventories and confinement status for all farms were estimated using a 

combination of USDA Ag Census data and state-level records. These records do not allow us to 

precisely determine the size of each farm, but rather to designate appropriate numbers of farms in 

different size intervals within each county. Manure is then produced by each animal at specific 

loading rates, either provided by literature or estimated via an empirical relationship based on 

average animal size (for less common animal types). Some N is lost to the atmosphere during 

manure storage, which is estimated for each farm and animal type separately. An additional 

small fixed ratio of manure is lost from CAFOs due to incomplete recovery. Farms are then 

placed within each county, at actual known locations for large Confined Animal Feeding 

Operations and pseudo-randomly within agricultural areas of each county for smaller farms. 

Finally, a buffer is iteratively created around each farm to which manure is applied on both row 

crop and grassland land use types. Within each buffer, manure is applied at relative rates given 

by the BRT fertilizer demand model, adjusted to match total farm nutrient production following 

losses. 
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2.3.5.2 Chemical Agricultural Fertilizer 

Following manure application, chemical agricultural fertilizer was applied to all non-

manured cells at the N and P determined rates from the BRT demand model. Manured cells that 

had not met N demand received supplemental N fertilizer. Brakebill and Gronberg (2017) 

calculated chemical agricultural fertilizer use by county based on observed values and a fertilizer 

spending model for states without records up to 2012. We used the average value from 2008-

2012 as our observed county fertilizer load and scaled non-manured fertilized pixels within each 

county to match observed county values. Additional information on chemical agricultural 

fertilizer methodology can be found Text A1.1.5. 

2.3.6 Nitrogen Fixation 

Symbiotic nitrogen fixation is an important component of nitrogen budgets in agricultural 

regions. Legumes such as beans, hay, and clover host microbes within their root systems that fix 

nitrogen that becomes incorporated both within plant biomass and surrounding soil at rates 

varying by crop yield, soil, and climatic conditions (Goolsby et al., 1999; Barry et al., 1993; 

Meisinger & Randall, 1991). In regions with significant legume cultivation, omitting N fixation 

from budgets would significantly underestimate agricultural N source inputs to the landscape. 

Because of this, we included four nitrogen fixing crops that are commonly grown in the GLB: 

soybeans, dry beans, alfalfa, and non-alfalfa hay. Natural N fixation was not included, as high 

natural N fixing biomes (savannah, grassland) are not present across significant areas of the 

GLB, while forested biomes almost entirely recycle N (Cleveland et al., 2013).  

Here we calculate nitrogen fixation as a function of crop type, yield, soil conditions, and 

local fertilization rates following methods developed in other studies. In the literature, both area-

based and yield-based calculations have been used to estimate N fixation rates. Area-based 
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calculations use a fixed rate per unit area of cropland (Han & Allan, 2008; Boyer et al., 2002). 

Yield-based estimates can be based on either aboveground-only or total system biomass 

(Meisinger & Randall, 1991). Above-ground yield-based estimates rely on percentages of grain 

to total plant mass, protein content in grain, and the proportion of above-ground accumulated N 

harvested (nitrogen harvest index) (David & Gentry, 2000; David et al., 1997). These authors 

used a constant rate of nitrogen from fixation based on data from Illinois for extents as broad as 

the Mississippi River Basin, irrespective of yield variability (David et al. 2010). As relatively 

cool temperatures and shorter growing seasons limit yields in much of the US-GLB, we chose to 

account for heterogeneity in crop N fixation using a yield-dependent approach following the 

method of Han and Allan (2008), which was developed from Meisinger and Randall’s (1991) 

work. This provides estimates of fixed nitrogen mass per unit crop corrected for typical crop-

specific moisture rates (i.e., the ratio of harvested dry biomass to total harvest mass) based on a 

range of published field studies. Meisinger and Randall (1991) also provide guidelines to 

estimate the percent of total plant nitrogen from fixation based on soil nitrogen availability and 

other nitrogen inputs such as fertilization. 

We consider N fixation from soybeans, dry beans, alfalfa, and non-alfalfa hay, which are 

the primary N fixing crops grown in the US-GLB region. Details of the N fixation model, 

including how we statistically estimated yield using soil type and remotely-sensed greenness, are 

provided in Text A1.1.6. To account for crop rotation, especially the common corn-soy rotation, 

we adjusted per-cell values based on how frequently the cell was planted in soy between 2008 

and 2015 using the CDL. As a satellite product, the CDL contains inaccuracies and errors in area 

due to mixed pixels (cells with one class that may have multiple classes within them). To correct 

for area inaccuracy, we used ancillary data from the USDA Ag Census 2012 to adjust total 
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cultivated areas, as recommended by Lark et al. (2017). Using this yield-based method, our N 

fixation values varied based on yield, soil, N applications, and percent organic matter. As a result 

of crop-rotation based averaging across the 2008-2015 model period, final values for average 

annual N fixation are lower than fixation during a single fixing crop year. The resulting model 

considers more heterogeneous landscape features and integrates multiple remote sensing and 

spatially explicit datasets. 

2.4 Analytical Methods 

After producing the 30 m rasters for each source, we analyzed these rasters individually 

and in their spatially aggregated forms to identify patterns and compare to other data. Three 

scales of aggregation were used: Great Lakes catchment (US-side only), Hydrologic Unit Code 

8-digit (HUC8), and HUC 12-digit (HUC12). Within those catchments, a variety of aggregate 

quantities were calculated, including totals of each source, totals across N and P, and ratios of 

N:P inputs within aggregation features. Finally, we used k-means clustering to identify 

watersheds with similar nutrient input profiles, which we call Nutrient Input Landscapes (NILs). 

SENSEmap results were summarized at the HUC12 watershed level, which average 79 

km2 in the US-GLB. By aggregating to a fine watershed scale, we can understand local patterns 

in nutrient inputs at a scale relevant to management. Additionally, aggregating removes any 

potential privacy issues that may exist with 30 m outputs (i.e., farms). Furthermore, HUC12 is 

the spatial framework within the NOAA Great Lakes Basin Tipping Point Planner, a multi-model 

decision support system to aid watershed planners (tippingpointplanner.org). The Tipping Point 

Planner is being used to help Great Lakes communities understand the health of their watersheds.  
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2.4.1 k-means Clustering and Nutrient Input Landscapes 

We grouped the resultant 3627 HUC12 watersheds based on their nutrient input 

composition using k-means clustering to identify similar watersheds across the US-GLB. K-

means clustering is a commonly used clustering algorithm that minimizes the sum of squared 

error among a specified number of groups (Jain, 2010). We explored the effect of different 

numbers of groups (k) and different ways of explaining a watershed’s nutrient loads (rate of 

input by source (kg/ha/yr), total input from source (kg), and percent of total nutrient input by 

source). The goal was to find physically meaningful patterns in the landscape, rather than fit a 

specific predictive model. Our final model included 9 groups (k=9) generated from 13 variables 

(% of total nutrient input by source for all N and P) described watersheds in the most physically 

meaningful way and produced the highest mean silhouette score (measure of similarity of k-

groups) (mean silhouette score = 0.39; silhouette plot and further cluster information found in 

Text A1.2). We labelled nine Nutrient Input Landscapes post-hoc based on the composition of 

sources, land use, and input rates within the groups (See section 3.3). 

2.4.2 Model Comparisons 

We compared SENSEmap nutrient inputs to three other products: 1) The USGS 

SPAtially Referenced Regressions on Watershed attributes (SPARROW) model (Smith et al., 

1997), 2) Net Anthropogenic Nitrogen Index (NANI) inputs from Swaney et al., (2018), and 3) 5 

km annual fertilizer maps from Cao et al. (2018). SPARROW provides both a nutrient inputs 

database, in some ways comparable to the SENSEmap product here, along with regressions of 

nutrient uptake within watersheds. We compared chemical agricultural fertilizer, chemical non-

agricultural fertilizer, and total manure to SPARROW inputs from Robertson and Saad’s (2011) 

SPARROW model including the Great Lakes Basin using data processed by Wieczorek and 
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Lamotte (2011). We summarized these sources from SENSEmap at the HUC8 level to be 

consistent with SPARROW output summaries. NANI from Swaney et al. (2018) quantifies key 

nitrogen inputs and exports at county level across the continental US. We summarized 

SENSEmap at the county level and normalized to county area to compare to chemical 

agricultural fertilizer, total manure, and N fixation. Cao et al. (2018) produced 5 km resolution 

maps of nitrogen fertilizer applications from 1850 to 2015 that depict crop-specific rates, 

application timing, and ammonium-N and nitrate-N proportions. SENSEmap was aggregated to 

5 km cells using mean input intensity and compared to the average value of Cao et al. (2018) 

between 2008-2012 to match SENSEmap’s fertilizer time period. Comparisons are discussed in 

Section 3.4 and additional details in Text A1.4. 

2.4.3 Sensitivity of Chemical Agricultural Fertilizer 

 We performed a sensitivity analysis of SENSEmap chemical agricultural fertilizer inputs 

to better understand the role of this important nutrient source in controlling broader landscape 

patterns. For this analysis, county level totals from Brakebill & Gronberg (2017) were adjusted 

to create fourteen new simulations addressing three different types of uncertainty: systematic 

bias in 1) positive or 2) negative direction, and 3) random uncertainty. Following the 

methodology described above to produce the chemical agricultural fertilizer values, these 

county-level values were used to adjust pixel level predictions. For each of the fourteen 

simulations, N and P were aggregated at the HUC12 watershed level with variation between runs 

quantified via coefficient of variation. Watersheds in each simulation were then assigned to 

Nutrient Input Landscapes using the k-means clusters defined from the primary run. Changes 

between Nutrient Input Landscape classifications for each of the simulations and the primary run 
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were then tabulated. Further description of sensitivity analysis methods can be found in A1.5 and 

discussion of the sensitivity results can be found in Section 3.5. 
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3 Results and Discussion 

3.1 SENSEmap-US-GLB 

The primary SENSEmap-US-GLB product is composed of seven N sources and six P 

sources, with each N source input map shown in Figure 1.3 (P sources are visually similar in 

distribution, see Figure A1.13). Generated at 30 m resolution, the full variability within each map 

is difficult to visualize in printed form. Within Figure 1.3, we provide an inset for each source 

showing an enlarged area surrounding Toledo in western Ohio to better illustrate the high-

resolution 30 m outputs. The full raster datasets, along with the HUC12 and HUC8 summaries, 

are available for download from Hydroshare 

(https://doi.org/10.4211/hs.1a116e5460e24177999c7bd6f8292421). 

  

https://doi.org/10.4211/hs.1a116e5460e24177999c7bd6f8292421
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Figure 1.3 SENSEmap nitrogen sources for the U.S. Great Lakes Basin. The color bar breaks 

were selected to highlight variability within each nutrient source at this map scale. Refer to Table 

A1.5 for pixel-level distributions. At the top right of each subfigure is a zoom box, with location 

identified in (A). (A) Chemical agricultural (Ag) fertilizer, (B) Manure, (C) N fixation, (D) 

Atmospheric deposition, (E) Chemical nonagricultural (NonAg) fertilizer, (F) Septic tanks, (G) 

Point sources, and (H) Proportion of sources to total inputs of each nutrient within the U.S. Great 

Lakes Basin (US-GLB). 
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Agricultural sources (chemical agricultural fertilizer, manure, and N fixation) dominate 

nutrient inputs at the scale of the US-GLB. Chemical agricultural fertilizer makes up 34% of N 

and 45% of P inputs, while manure contributes 27% of N and 42% of P (See Figure 1.3H). 

Across the GLB, chemical agricultural fertilizer use is most intense in western Ohio and eastern 

Indiana, as well as in Michigan’s thumb region. While agriculture is also common in the 

southern lower peninsula of Michigan, Wisconsin, and New York, nutrient input intensities are 

lower in these areas. Nitrogen fixation shows similar patterns as chemical agricultural fertilizer 

due to the common practice of corn-soy rotations. Nitrogen fixation makes up 11% of N inputs 

in the US-GLB, making it an important source to estimate in nutrient budgets. The landscape 

patterns of manure appear differently than chemical agricultural fertilizer and N fixation due to 

model assumptions that manure is spread close to the farms and CAFOs where it is generated. 

This creates circular pockets of high intensity manure loads as is apparent in the inset manure 

map. Although there are farms and CAFOs in Ohio, Indiana, and Michigan, more livestock 

operations are present in Wisconsin and New York causing higher intensity manure inputs. 

Urban sources are generally smaller contributors to total inputs but can be major sources 

in localized areas. Chemical non-agricultural fertilizer and septic tanks represent similar 

proportions of nutrient input in the US-GLB (chemical non-ag. fertilizer N: 2%, P: 2%; septic N: 

2%, P: 2%) but have very different landscape patterns. Cities serviced by WWTPs do not have 

septic system inputs, but nearby suburbs and rural areas have more densely populated areas, 

leading to higher septic input intensities. Although septic systems do not amount to a high 

proportion of total nutrient input within the US-GLB, they load distinctly differently than surface 

inputs, supplying nutrients directly into groundwater pathways. Furthermore, septic systems are 

often present in areas lacking other sources (except for atmospheric deposition), and they tend to 
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cluster near water bodies where their nutrient loads may contribute to lake eutrophication (Beal 

et al., 2005; Holman et al., 2008). Chemical non-agricultural fertilizer shows an opposite 

landscape pattern to septic: proximal suburbs and urban cores have high intensity input due to 

extensive lawn and golf course fertilizer application. Similarly to septic systems, chemical non-

agricultural fertilizer can be an intense local nutrient input, even if its relative proportion is low 

at the US-GLB scale. Point sources are highest in urban areas with large or multiple WWTPs, 

with reporting requirements varying by state. As is the case with septic systems, point sources 

generally load directly to streams. Thus, fewer mechanisms for nutrient removal exist, and 

transport times are shorter--magnifying the impact of this relatively small proportion of total 

inputs on in-stream loads and deliveries to the Great Lakes. 

Atmospheric deposition follows a gradient based on population and agricultural LULC. 

The highest rates of atmospheric deposition are found in heavily farmed and more densely 

populated areas in the southern basin, while lower values are found in the more sparsely 

populated and forested northern basin. However, in these northern areas, atmospheric deposition 

may be the dominant nutrient input source. For N, atmospheric deposition is a significant source 

across the US-GLB, accounting for 22% of total inputs, while just 5% of applied P comes from 

atmospheric deposition. 

SENSEmap-US-GLB’s non-point sources (atmospheric deposition, septic systems, 

chemical non-agricultural fertilizer, chemical agricultural fertilizer, manure, nitrogen fixation 

from legumes) were combined into maps of total non-point N and P (Figure 1.4). Figure 1.4 is 

classified in quantiles to show the distribution of input across the US-GLB, with each color 

representing 20% of cells within the domain. N and P show similar trends in the highest loading 

quantiles (red and orange) across the intensely farmed southern US-GLB. However, N and P 
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show differences in the northern basin. While broadly similar, patterns in low loading quantiles 

in Michigan’s upper peninsula vary from N to P; in N, there is a distinct input increase from west 

to east, whereas P shows a less distinct pattern and more variability. This is driven by the greater 

relative importance of atmospheric deposition to landscape N inputs than for P. Also, cells with 

higher quantiles of N inputs are concentrated toward to the lower portion of Michigan’s lower 

peninsula than for P.  

 

Figure 1.4 Total nonpoint N and P. (A) Total nonpoint nitrogen and (B) Total nonpoint 

phosphorus. The color breaks are classified to assign ~20% of pixels to each nutrient input rate 

bin. Point sources are excluded because they are applied as a mass flux, rather than an area-

specific mass flux of the nonpoint sources. 

 

We analyzed nutrient source compositions (Figure 1.5A-B) and input intensity (Figure 

1.5C) at individual lake basin scales to better understand the heterogeneity across the US-GLB. 

Such metrics can be useful to understand the relative possible nutrient sources to a lake and the 

highest possible loading. Recall, these sources and input rates refer to the landscape inputs and 

are not estimates of a total load to the lakes. Strikingly, landscape’s that drain to Lakes Erie, 

Huron, Michigan, and Ontario receive ~70-75% N and ~80-90% P input from agricultural 

sources (chemical ag fertilizer, manure, N fixation). Non-agricultural human sources (point, 

septic, chemical non-ag fertilizer) make up less than 10% of lake basin inputs except P inputs to 

Lake Superior, which receives 11% loading from septic and an additional 10% of loading from 

point and chemical non-ag fertilizer combined. Lake Superior receives a more balanced P input 
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composition than any other lake, but has an atmospheric deposition-dominated N load. However, 

as seen in Figure 1.5C, Lake Superior’s input rates are very small compared to other more 

agricultural and populated lake basins. Despite similar source compositions in all lake basins 

(excluding Superior), Lake Erie has a catchment loading rate ~1.5x higher than Lakes Huron, 

Michigan, and Ontario. This high input rate and intense agricultural contribution supports the 

accepted understanding of Lake Erie’s HAB problem. It is notable that in the 45 years since the 

passage of the Clean Water Act, point source loads have dropped sufficiently that they no longer 

dominate nutrient inputs. In contrast to the success of reducing point sources, non-point source 

inputs remain high as they are not regulated in a similar manner. An additional concern with high 

input rates of non-point sources is the presence of land use legacies that can result in decades of 

delay before improvements to surface water concentrations are observed (Meals et al., 2010, 

Martin et al., 2011, 2017; Verhougstraete, et al. 2015; Ray et al. 2012; Van Meter & Basu, 

2015). 
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Figure 1.5 Summaries of sources and application intensity at the lake basin scale. (A) 

Proportion of N input from each source by lake basin, (B) Proportion of P input from each source 

by lake basin, and (C) Input intensities by lake basin (area normalized by the land area of the 

U.S. lake basin. 

 

3.2 N:P Ratios 

Nitrogen to phosphorus (N:P) ratios can be used to help understand nutrient inputs and 

their potential ecological effects. The Redfield Ratio is a ratio of N:P typical of aquatic life and is 

commonly near 16:1 in natural waters. High N:P ratios within the water column are associated 

with oligotrophic, non-anthropogenic impacted lakes; whereas, low N:P ratios are associated 

with mesotrophic to eutrophic lakes with higher anthropogenic inputs (Downing & McCauley, 

1992). For comparison, we calculated N:P ratios of nutrient inputs at the HUC12 watershed scale 

to provide a view of N:P inputs in the US-GLB watersheds (Figure 1.6A). When viewed this 

way, the northern basin is highly N-enriched (and thus P-poor), with a 51:1 ratio of nutrient 

inputs to Lake Superior’s US basin (Figure 1.6B). This is consistent with studies that have 
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described Lake Superior as an extreme, low P environment (Sterner, 2011). Lake Superior’s N 

source is largely from atmospheric deposition (Figure 1.5A) and shows a much higher N:P 

landscape input ratio than the other Great Lakes (Figure 1.5C). Generally, and perhaps 

surprisingly, more southern watersheds have input ratios within range of the Redfield Ratio (pale 

yellow), with urban and low agricultural intensity areas being more N-enriched than intensive 

agricultural areas. Few watersheds had lower ratios than 12:1, and those that did were frequently 

high manure watersheds. These values provide a first look at nutrients relative to one another the 

lake basin scale; however, due to varied transport rates of different sources, these values are not 

representative of loads to the lake. 

 
Figure 1.6 SENSEmap N:P Ratios. (A) Map of N:P input ratio by HUC12 watershed and (B) 

Bar chart of N:P input ratio by US portion of each lake basin. 
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3.3 Nutrient Input Landscapes 

SENSEmap-US-GLB at its finest scale shows 30 m cell values of nutrient inputs; 

however nutrient inputs are a result of wider landscape processes that are managed at watershed 

scales. By zooming out to the HUC12 watershed scale, nutrient input patterns become more 

readily visible. Following k-means clustering (section 2.4.1), nine Nutrient Input Landscapes 

(hereafter, “landscapes”) were classified, and then labelled after clustering according to the 

nutrient and land use characteristics of each cluster. Those 9 landscapes of the US-GLB can then 

be grouped into three broad categories: intensive agricultural, urban, and rural landscapes (Figure 

1.7). Names for each of the landscapes are provided in the Figure 1.7 legend and landscape 

definitions visualized through watershed source distributions are shown in Figure 1.8. For 

summary statistics of each landscape definition, see Table A1.1.4. 
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Figure 1.7 Nutrient Input Landscapes. Nutrient Input Landscapes determined from k-means 

clusters and labeled post hoc according to cluster characteristics. Letters indicate major cities, A: 

Detroit, MI; B: Cleveland, OH; C: Buffalo, NY. Landscapes, as described in the legend, include 

three intensive agricultural groups (manure dominated, chemical agricultural fertilizer 

dominated, and mixed), three urban groups (urban core, suburban, and suburban edge), and three 

rural groups (towns, low intensity agriculture, and remote). Landscapes are colored to be 

identifiable by group, with intensive agricultural landscapes in warm colors, urban landscapes in 

greyscales, and rural landscapes in blue. 

 

The intensive agricultural group contains three separate landscapes, clustered based on 

proportions of chemical agricultural fertilizer versus manure: Manure Dominated, Chemical 

Fertilizer Dominated, and Mixed (Figure 1.8 A-C). These landscapes are found primarily in the 

south and central US-GLB (Figure 1.7). Large areas in Wisconsin and New York as well as 

multiple smaller areas in Michigan are dominated by manure, whereas northern Indiana and Ohio 

and much of the central Lower Peninsula of Michigan are dominated by chemical agricultural 

fertilizer. Agricultural HUC12 watersheds at the periphery of the Manure and Chemical 

Fertilizer Dominated landscapes tend to fall into the Mixed class. 
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Figure 1.8 Distribution of N and P source percent within each Nutrient Input Landscape. 

(A) Intensive Ag: Chemical Fertilizer Dominated, (B) Intensive Ag: Manure Dominated, (C) 

Intensive Ag: Mixed, (D) Urban Core, (E) Suburban, (F) Suburban Edge, (G) Rural: Towns, (H) 

Rural: Low Intensity Agriculture, (I) Remote. Legend: NF: N fixation, CA: Chemical 

agricultural fertilizer, MN: Manure, AD: Atmospheric deposition, NA: Chemical nonagricultural 

fertilizer, SP: Septic, PT: Point. Hatched boxes: Phosphorus, unhatched boxes: Nitrogen.  
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More densely populated areas of cities and suburbs classify into Urban Core, Suburban, 

and Suburban Edge landscapes. Urban Core watersheds have large contributions from point 

sources (Figure 1.8D), meaning in general that they are located in urban watersheds with major 

WWTPs. Suburban watersheds are characterized by high chemical non-agricultural fertilizer due 

to lawns and golf courses (Figure 1.8E). Suburban edge watersheds have both rural and suburban 

populations, leading to a mixture of agricultural sources, chemical non-agricultural fertilizer, and 

septic tanks (Figure 1.8F). The radiating spatial pattern of an Urban Core downtown 

transitioning to Suburban, Suburban Edge and beyond can be seen in both Detroit in southeast 

Michigan and Cleveland in northeast Ohio, as well as around Buffalo in New York 

(municipalities labeled on Figure 1.7 caption).  

Rural landscapes are most abundant in the northern tier of the US-GLB and in less 

populated portions of New York state (Figure 1.7). These landscapes are classed into: Towns, 

Low Intensity Agricultural, and Remote. Nutrient inputs in remote regions come almost entirely 

from atmospheric deposition, whereas rural towns and rural low intensity agriculture have 

appreciable fractions of anthropogenic sources including septic/non-ag fertilizer and chemical 

fertilizer/manure sources respectively (Figure 1.8G-I).  

Nutrient inputs and loading are often linked to LULC because it is a proxy for 

management practices and population dynamics, however LULC is insufficient to characterize 

the source composition of nutrients. Since SENSEmap is source-specific, it allows a more 

detailed interpretation of land uses that affect nutrient sources than LULC alone. In Intensive 

Agricultural landscapes, distributions of nutrient source (Figure 1.8A-C) vary significantly by 

source despite similar LULC (Figure 1.9A-C) (See Figure A1.12 for LULC for all landscapes). 

Similar to the intensive ag landscapes, Urban Core and Suburban landscapes have similar LULC 
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signatures but receive nutrients from very different sources, point sources and chemical non-

agricultural fertilizer, respectively (Figure 1.8D-F, Figure A1.12 D-F). Without source 

specificity, unique characteristics of nutrient source and composition cannot be determined. Our 

Nutrient Input Landscapes thus illuminate additional patterns in the landscape not visible with 

LULC alone. 

 

Figure 1.9 Distributions of LULC within three intensive agricultural Nutrient Input 

Landscapes. Distributions of LULC are shown as violin plots, where filled area represents 

probability density to provide additional information on the underlying distribution. Note that 

while source distributions for these three classes (Figures 1.8A – 1.8C) differed greatly, their 

LULC distributions are strikingly similar. (A) Intensive Agriculture: Chemical Fertilizer 

Dominated, (B) Intensive Agriculture: Manure Dominated, (C) Intensive Agriculture: Mixed. 

 

The additional complexity of the landscape becomes clear when LULC maps are 

juxtaposed with different views offered by SENSEmap and Nutrient Input Landscapes (Figure 

1.10). For instance, variations in total non-point P (Figure 1.9B) within land classified simply as 

agriculture have P inputs from 5 to 10 kg/ha/yr depending on location and crop practices. 

Beyond just a single nutrient map, N:P ratios at the HUC12 level (Figure 1.10C) help illustrate 

variable N:P input relationships over a small area. While similarly classified, agricultural 

watersheds with low ratios are likely hotspots for P loading to the western Lake Erie Basin, 

exacerbating algal bloom issues there. These watersheds can then become key focus areas for 
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management action to reduce P deliveries to the Lake. The four intensive ag watersheds in 

Figure 1.10D are all P-enriched relative to their largely chemically-fertilized neighbors. While 

some of this may be due to assumptions within SENSEmap (i.e. fields receive either manure or 

chemical fertilizer, not both), manure is highly P enriched due to significant losses in N between 

animal emissions and field inputs. Thus, these maps serve to highlight the benefits that may be 

achieved through policies demanding robust design and enforcement of nutrient management 

plans for livestock operations. Beyond simple input differences, the pathways and rates of 

nutrient transport and uptake differ across sources. By being space- and source- specific, 

SENSEmap provides the detailed view of the landscape needed by local planners to better 

manage their watersheds. 



 

 

41 

 

 

Figure 1.10 Comparison Panel of LULC, SENSEmap TP, N:P ratios, and NILs. Four views 

of a portion of the US-GLB surrounding Toledo, OH (red box on locator map). (A) LULC; see 

Figure 1.3 for caption and legend, (B) Total nonpoint P, (C) N:P ratio at HUC12 watershed level, 

and (D) Nutrient Input Landscapes. 
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3.4 Comparisons to Other Products 

To better understand SENSEmap’s performance, we compared SENSEmap to other 

existing nutrient products. No other products were found to compare at the same resolution and 

for all nutrient sources; however, we selected USGS SPARROW (Robertson  & Saad, 2011), the 

Net Anthropogenic Nitrogen Index (NANI) (Swaney et al., 2018), and Cao et al’s. (2018) N 

chemical agricultural fertilizer product. Here, we summarize the results of these comparisons. 

Additional information can be found in Text A1.4.1, A1.4.2, and A1.4.3. 

We compared the landscape inputs within a subset of the SENSEmap sources to those 

from the USGS SPARROW model (Robertson & Saad, 2011; Wieczorek & Lamotte, 2011). 

Note that these products are not equivalent: SENSEmap calculates discrete nutrient inputs in 

kg/ha/yr, whereas USGS SPARROW uses both LULC area and nutrient masses to statistically 

compute source-specific fluxes. In particular, SPARROW designates urban inputs by LULC, 

rather than by urban sources (i.e., septic and non-agricultural chemical fertilizer). Differences 

between mean HUC8 N and P landscape input rates were small, with SENSEmap-US-GLB 

showing slightly higher rates for N and slightly lower for P (TN: 2.1 +/- 8.5 kg/ha/yr, TP: -0.1 

+/- 1.3 kg/ha/yr; positive values indicate SENSEmap was higher). These differences could be 

partly due to different data sources and timeframes. For source specific comparisons and data 

differences, see Text A1.4.1.  

The Net Anthropogenic Nitrogen Index focuses on mass fluxes of key nitrogen sources to 

explain nitrogen dynamics and in-stream concentrations. Swaney et al. (2018) calculated N 

fixation, total fertilizer, agricultural fertilizer, manure, and atmospheric deposition at the county 

level across the United States. Unlike SENSEmap, NANI includes nitrogen exports via food and 

feed, whereas SENSEmap describes only nutrient inputs. We compared 2012 N input values for 
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manure, chemical agricultural fertilizer, and N fixation at the county-level using rates per total 

county area. We found that N intensity of manure and chemical agricultural fertilizer were 

similar, with SENSEmap showing consistently higher manure and lower chemical agricultural 

fertilizer values, while N fixation had more variation (mean +/- standard deviation, positive 

values denote SENSEmap had higher values: Manure N: 3.8 +/- 6.2 kg/ha/yr, Chemical 

Agricultural Fertilizer N: -2.7 +/- 5.6 kg/ha/yr, N Fixation: 7.1 +/- 15.9 kg/ha/yr). Additional 

information is provided in Text A1.4.2. 

Cao et al.’s (2018) recently developed 5 km resolution maps of nitrogen fertilizer inputs, 

which are directly comparable (though at a coarser resolution) to the chemical agricultural 

fertilizer N source layer from SENSEmap. Following aggregation of SENSEmap to 5 km 

resolution, we found that in general the fertilizer estimates had good agreement (1.5 kg/ha +/- 9 

kg/ha). At low nutrient level (< 20 kg/ha), there was no net bias between the two products 

(Figure A1.17), while SENSEmap had slightly higher estimates in higher nutrient pixels. 

Differences were more pronounced in intensive agricultural areas; in high manure areas 

SENSEmap tended to have lower chemical agricultural fertilizer values, while the reverse was 

true in non-manured areas (Figure A.16). As a result of this source-specific bias between 

products, differences were not spatially uniform (Figure A1.16). For additional methodology and 

figures, see A1.4.3. 

3.5 Sensitivity to Chemical Agricultural Fertilizer 

SENSEmap is driven by external products to quantify chemical agricultural and chemical 

non-agricultural fertilizer. Brakebill & Gronberg (2017) have recently updated work by Ruddy et 

al. (2006) and Gronberg & Spahrg (2012) to model county level N and P fertilizer kg per year. 

However, the Brakebill & Gronberg (2017) product is modelled based on fertilizer expenditures 
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and there are few other fertilizer products to compare to. This reliance on a single product 

methodology introduces uncertainty into nutrient budgets based on these values, such as 

SENSEmap. Given the dominance of the chemical agricultural fertilizer source across much of 

the GLB, a sensitivity analysis of SENSEmap to uncertainty within the county-level Brakebill & 

Gronberg (2017) product is warranted. 

 TN and TP were largely unaffected at the HUC12 scale (coefficient of variation (CV, or 

standard deviation divided by mean): TN: 2.3%, TP: 5.1%), while as expected total chemical 

agricultural fertilizer (kg) was more affected (CV: chem. ag fertilizer kg N: 11.4%, P: 17.0%). 

Landscape level patterns, as described by Nutrient Input Landscapes, remained largely the same. 

85% of HUC12 watersheds were always assigned the same landscape, regardless of change in 

chemical agricultural fertilizer. Among the 15% of watersheds with at least one simulation 

producing a different landscape, changes were primarily between Intensive Ag: Chemical 

Agricultural Fertilizer Dominated and Intensive Ag: Mixed. Suburban Edge, the least cohesive 

cluster, also saw significant numbers of changes. Overall, broad patterns in the landscape were 

not sensitive to specific values of total chemical agricultural fertilizer at the county level. 

Additional information can be found in Text A1.5. 
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4 Conclusions 

SENSEmap provides a spatially- and source- explicit description of landscape nutrient 

inputs in a format that should be useful to both managers and scientists. By quantifying seven 

sources of nutrients, we found agricultural sources (Chemical Ag Fertilizer, Manure, N Fixation) 

dominate the US-GLB, accounting for 71% of N and 88% of P.  We can use the insights from 

SENSEmap-US-GLB to provide managers with detailed estimates of nutrient inputs. As part of 

the Great Lakes Basin Tipping Point Planner, we are cultivating connections with watershed 

managers.  

To summarize nutrient source budgets and find patterns in inputs, we used k-means 

clustering to describe nine Nutrient Input Landscapes. Notably, land use composition did not 

vary significantly between three intensive agricultural landscapes, suggesting that land use alone 

does not capture the heterogeneity and detail in nutrient sources. Individual nutrient sources 

(specifically manure and chemical agricultural fertilizer) behave differently in terms of 

speciation and transport, making it important to recognize that a total input from agriculture can 

have significantly differences based on nutrient source. The concept of our Nutrient Input 

Landscapes can serve a number of other purposes, such as analyzing different management 

strategies across similarly composed watersheds to better understand their transferability and 

developing metamodels for nutrient modeling. 

Quantifying uncertainty in a product with no ground truthing is difficult, but uncertainty 

arises from errors in classification in remote sensing products (NLCD, CDL), pseudo-random 

placement (septic, non-CAFO manure farms), literature compilation of P deposition, and 

statistical models used to approximate spatial heterogeneity (chemical agricultural fertilizer, N 

fixation). Because of the assumptions and pseudo-random placement within many algorithms, 
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we do not claim that SENSEmap inputs are precise at the 30 m scale; rather, they are more 

accurate at aggregated watershed scales that are better representative of spatial uncertainties. We 

also recognize that this approach does not account for every nutrient source; future work will add 

other nutrient sources that are regionally-minor but locally-important, such as land applied 

septage, land-applied secondary treated wastewater, commercial septic systems, urban animal 

wastes, and aquaculture. 

Opportunities for future work with the SENSEmap framework are broad. We plan to 

investigate different spatial extents and use both statistical and process-based modeling to 

explore surface and subsurface nutrient transport. We are currently applying the SENSEmap 

framework to the Canadian GLB, and the methods developed here can also be expanded to any 

part of the continental United States. Currently, SENSEmap-US-GLB is being used as a driving 

variable to determine causes of coastal wetland invasion within the region. Additionally, we are 

processing SENSEmap-US-GLB source inputs with a statistical and geospatial nutrient transport 

model, similar to the methods used in Luscz et al. (2017). The SENSEmap-US-GLB products 

can also be used as inputs to a range of crop, hydrology, and biogeochemical models. 
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Text A 1.1 Source Methodology 

The following sections contain additional methodology for nutrient source modeling processes. 

Text A1.1.1 Atmospheric Deposition of Phosphorus  

Compared to nitrogen, atmospheric phosphorus deposition is more difficult to measure 

and lacks the extent of monitoring networks that are available for nitrogen. To overcome this 

limitation, we conducted an extensive literature review to gather reporting data on annual 

atmospheric phosphorus deposition rates. We first conducted an exhaustive search, then limited 

the papers based on the following criteria: sites could be a maximum of 700 kilometers distance 

from the Great Lakes basin, a year or more of data must have been collected, and the study must 

have used acceptable collection methods, as discussed below. Data collection methods varied, 

and studies were excluded for reasons such as basing annual load estimates on 5-months of 

collection, collections based off of ships, and using volunteer collected samples.  

Each site selected for our modeling had to be reviewed and selected individually, a 

process which often involved nutrient species and unit conversions, averaging of loading rates 

across multiple years and removal of outliers on a case by case basis. To standardize the model 

all units were converted to kg/ha/yr. Variations of units were common, including “thousandths of 

a ton/day/mi^2” and units of time, weight or area had to be carefully converted and double 

checked. A number of papers also reported values in phosphate (PO4) and were converted to 

phosphorus (P) for our model. Site locations often lacked specific latitude and longitude 

coordinates. In these cases, site locations were estimated based on georeferencing of map images 

from the papers. The map scale at which images were georeferenced varied.  

A number of papers had multiple collection sites but did not report individual collector 

deposition rates, instead opting to average site deposition values across study. These sites would 

have the same values as other sites from the same paper. With individual sites rates unavailable, 
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“duplicate” sites were denoted, unaltered and interpolated as is. Clustered sites were considered 

to be points 5 miles away or less from each other and may have been from the same or different 

studies. In total there were 7 clusters that were each were examined very carefully; means were 

established for each cluster, and individual sites within the clusters were closely examined to see 

if their values coincided with nearby sites in the same cluster. Consideration was made whether 

to average nearby sites together to achieve "area averages", however this was not done. 

In total, 98 sites were input to the ArcGIS kriging toolset to develop spatially distributed 

loading estimates for both atmospheric nitrogen and phosphorus. Other modeling techniques 

(IDW) were also tested. In ArcGIS Desktop, ESRI’s ‘Compare’ function under the Geostatistical 

Analyst was used to compare and adjust models and variables until we were confident in the 

accuracy of our model. Model optimization was based on minimizing the root mean square error. 

Wet and dry nitrogen were modeled separately using ordinary kriging, with no transform, no 

trend removal, and parameters non-optimized settings. Their outputs were summed together to 

develop a total nitrogen load estimate. One model for total phosphorus (both dry and wet 

deposition) was generated using ordinary kriging; log-transform; no trend removal; hole-effect 

model; parameters optimized settings. Optimized versus non-optimized in this context refers to 

whether the Optimize button in the Geostatistical Analyst was used. We found that we were able 

to best minimize the root mean error using non-optimized settings for nitrogen and optimized 

settings for phosphorus.  
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Figure A1.1 Atmospheric deposition P site map by region.
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Table A1.1 Summary of phosphorus atmospheric deposition sites. 

Regions Range Mean Median 
Number  Number 

States Included 
of Sites of Papers 

Upper Midwest 0.07 - 0.51 0.24 0.23 32 9a MI, MN, ND, ON, WI 

Lower Midwest 0.25 - 0.56 0.43 0.41 12 3b IL, IA 

Southeast Ontario 0.09 - 0.56 0.33 0.35 36 8c ON 

Northeast   0.04 - 0.29 0.11 0.09 16 3d CT, NJ, NY, PA, RI 

Southern 0.18 - 0.49 0.33 0.33 2 2e NC, TN 

a(Bradley, 2011), (Delumyea and Petel, 1978), (Eisenriech et al., 1977), (Linsey et al., 1987), (Munger, 1982), 

 (Robertson et al., 2009), (Schindler et al., 1971), (Schindler et al., 1973), (Schindler et al., 1976),  (Wright, 1976) 
b(Anderson and Downing, 2006), (Eisenriech et al., 1977), (Murphy, 1974)  
c(Bradley, 2011), (Brown et al., 2011), (Foster, 1974), (Linsey et al., 1987), (Schindler and Nighswander, 1970),  

(Winter et al., 2002), (Winter et al., 2007)     
d(Koelliker et al., 2003), (Pearson and Fisher, 1983), (Yang et al., 1996)  
e(Brinson et al., 1980), (Swank and Henderson, 1976)     
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Text A1.1.2 Septic - Exclusion and Inclusion Masks 

Our exclusion mask, given by the service areas of WWTPs throughout the study area, 

was determined based on drinking water well data, US Census data, and WWTP locations as 

reported in the Clean Watershed Needs Act database (US Census, 2010; CWNS, 2012). Because 

no comprehensive statewide data were available for WWTP service areas, we developed an 

algorithm to infer their locations from these three datasets. The automated wastewater treatment 

plant (WWTP) service area delineation model was developed as an improvement to the Luscz et 

al. (2015) septic placement model, which required hand delineation of WWTP service 

boundaries. The larger spatial extent necessitated a more efficient, systematic, and reproducible 

method to estimate boundaries.   

To facilitate WWTP service area classification, we compiled a point dataset of drinking 

water wells in all eight Great Lakes states. The algorithm uses these along with Census data to 

compute two quantities at the Census block level: the ratio of corrected drinking water well 

counts to household unit and population density. Individual states collect and maintain well 

records; however, the quality and completeness of digitized records varies. After compiling and 

removing non-domestic classified wells, we compared ratios of wells to household units in 

blocks unlikely to be in service areas (not in a Census designated place, greater than 5 household 

units, greater than 1 well) to come up with an approximated “undercount” of wells. Our 

assumption was that a fixed proportion of wells would be missed in each county because of 

incomplete digitization efforts at the county level, and by using only blocks highly likely to be 

outside of WWTP service areas, we could find this proportion of missing wells. For example, if a 

rural Census block had 10 household units and 8 wells, we could assume an undercount of 2, or 

20%. We would then divide the 8 wells by 80% to add 2 wells and raise the well number to 10, 

matching household units in a block highly likely to be outside a WWTP service area. We 
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applied a fixed undercount proportion at each county. The county undercount value was chosen 

by taking a state-calibrated percentile of all block undercounts within a county. This state 

threshold percentile (85-95%) was  set to the 90th percentile where possible; however, Indiana 

had to be lowered to the 85th because of excess misclassified agricultural wells that led to 90th 

percentile values over 1. We chose a high percentile to select a ratio that was reflective of areas 

most likely to be unserved, thus adding a conservative amount of wells. At the county level, all 

blocks’ well counts were divided by the undercount well:household ratio to add the corrected 

number of wells. 

Block classification was based on corrected well to household unit ratios, population 

density (block group level), and block membership to a Census designated place. Census 

designated places are named loci of population but may or may not be incorporated (US Census, 

2010). Variables were calibrated based on multiple runs, qualitative assessment of spatial 

distributions, comparison to existing service area maps, and confirmation of existing wastewater 

services for small, low density areas. Calibrations were performed at the state level to account 

for variation in drinking water well data collection (Table A1.1). The conditions (Figure A1.2) 

followed the assumption that a block with higher density, low well to household unit ratio (given 

by Table A1.3), and inside a CDP would be within a service area. Additional conditions to 

account for small, low density areas and densely populated areas with an inflated ratio due to low 

household unit number were also included. After initial classification, the 97th percentile of 

density in serviced blocks was calculated and used to reclassify blocks that had higher ratios than 

the standard ratio threshold.  

After initial classification, blocks were dissolved. Dissolved, in the GIS sense, refers to 

removing boundaries of subregions (Census blocks) with common characteristics (WWTP 
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service area classification) to create larger, contiguous regions. This created a layer of service 

areas, non-service areas, and unclassified blocks. To correct for small polygons likely 

misclassified (identifiable by being surrounded by a different class), we used buffered WWTP 

points from Clean Watershed Needs Survey data (CWNS 2012). Buffer size was variable based 

on the population receiving treatment and determined by qualitative assessment of distance from 

WWTP to plausible boundaries in each state. Because WWTPs are not always centrally located, 

buffer sizes erred on the large side. Buffer population ranges and corresponding size were 

determined for each state. To improve the service areas, polygons under 2 km2 were “flipped” 

from service area to unserviced based on if they fell within a WWTP buffer. For example, if a 1 

km2 polygon was originally classified as unserviced but was within a WWTP buffer, it would be 

changed to serviced. The flipped polygons were dissolved again to create final service areas. 

After excluding WWTP service areas, primary and secondary inclusion masks for septic 

placement were defined. The primary inclusion mask represents urban and suburban areas, 

whereas the secondary inclusion mask proved necessary to account for septic systems in rural 

settings. The primary inclusion mask includes all areas with NLCD cells classified as urban, over 

15 meters away from water features, and between 10 and 60 meters from roads. These setbacks 

were selected to represent a reasonable set of requirements for riparian sanitary codes, distances 

to public infrastructure, and under the assumption that in most cases, residences are built 

relatively close to roads. The secondary inclusion mask included all non-urban cells that met the 

riparian and road set back requirements. 

  



 

 

56 

 

Table A1.2 Calibrated values for WWTP and Septic conditions. See Figure A1.2 for 

conditions. 

State 

Well : Household Ratio Population Density (Pop/km2) 

Low Standard High Low  Standard High 

IN 0.08 0.12 0.5 20 220 500 

IL 0.1 0.1 0.5 20 300 400 

MI 0.05 0.1 0.5 18 135 400 

MN 0.1 0.1 0.5 20 250 400 

NY 0.1 0.1 0.5 20 220 400 

OH 0.1 0.12 0.5 20 230 400 

PA 0.1 0.1 0.5 12 300 500 

WI 0.08 0.12 0.5 30 300 400 

 

 

 
Figure A1.2 Logical statements used to classify blocks as WWTP service area. 
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Text A1.1.3 Fertilizer Demand Model 

The basis for the spatial arrangement of both manure and chemical agricultural fertilizer 

models is crop- and location-specific fertilizer demand. In reality, this is an incredibly complex 

function of environment, management, policy, economic, and individual considerations—the 

modeling of which is beyond the scope of this effort. Instead, we chose a more straightforward 

approach of fitting a machine learning model of fertilizer nutrients as determined from fertilizer 

sales data at the county-level (Brakebill & Gronberg, 2017) created using Boosted Regression 

Trees (BRT) to county-level crop, soil, and geographic variables. We used the guiding principles 

that fertilizer is applied based on type of crop, as well as soil texture, regional agricultural 

intensity, and climate. To vary fertilizer application within a county, we fit a boosted regression 

tree model that used crop type, soil texture, total cropland, and latitude to the average rate of 

chemical agricultural fertilizer spread over county cropland (kg/ha N and P). This model 

produces a relative demand of fertilizer across crop types, specific to each location across the 

Great Lakes Basin. This demand model, applied at the pixel-level, is then used as a means to 

spatially distribute crop nutrient applications within manured areas and across chemically 

fertilized areas of each county. 

Boosted regression trees (BRT) is a method that combines classification trees and 

boosting. Classification trees take any number of variables and breaks data into mutually 

exclusive groups that explain the most variance between groups (Brieman et al., 1984). The 

“tree” is built by continuous binary splitting until the most variance can be explained in the 

datasets by these logical rules. The boosting algorithm combines many individual models to 

increase the analysis’s predictive power (Quinlan, 1996; Friedman et al., 2000). The final model 

used by BRT utilizes a cumulative regression that forms through recursive trees and calculated 
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residuals (Elith et al., 2008). Independent variables are ranked on their relative influence, 

allowing for a proportional measure of variable importance. 

We used BRT to quantify crop-specific nutrient demand at the county level in response to 

geography, soil, and crop types, with input variables described in section A1.1.3.1 below. BRT 

has a number of input parameter that control aspects of the algorithm. Our implementation, 

conducted using Python’s scikit-learn version 0.19.1, used largely default parameters. We did, 

however specify 100 boosting stages and required a minimum of 5 samples per leaf (each split 

produces two leaves) within each classification tree. 

The county-model was fit with variables that are also observed at the pixel level. Ideally, 

we could fit a pixel-level model to observed fertilizer rates in fields; however, this was not 

possible. Thus, the model is fit to observed county-level variables, including Brakebill and 

Gronberg (2017)’s county fertilizer rates. We then applied the county-level BRT to predict 

fertilizer application rate in every cropland pixel in the GLB. At the pixel level, crop demand 

was calculated based on the average demand hectares (described below) over an 8-year crop 

rotation, described by CDL data from 2008-2015. The total hectares of cropland within a county 

was applied to all pixels within the county as an additional measure of regional agricultural 

intensity. Latitude and soil texture were native to 30 m resolution. Applying this model created 

variation within applications within a county. Finally, we adjusted all pixel rates within each 

county by a debiasing factor to match the observed total fertilizer at the county level.  

In the future, we hope to improve this method with point observations for validation, 

regionally-specific crop recommended rates, and rules for smoothing rates within fields. 

Text A1.1.3.1 Fertilizer Demand Model Variables 

 1. Crop-specific demand: Crop types were categorized into four levels of demand, based 

on Michigan recommended rates given in Warncke (2004). Table A1.3 provides the input 
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fertilizer rates and their demand classes. The median fertilizer rate specified by Warncke (2004) 

for each demand group was used to create a scaled coefficient applied as a “weight” to area. 

“Fertilizer demand hectares” were calculated by multiplying crop areas by their demand class 

weight. Thus, 100 hectares of corn would be weighted to more fertilizer demand hectares than 

100 hectares of a lesser fertilized crop like wheat. Ag Census 2012 Crop harvested area for all 

crops with greater than 1000 ha in the US-GLB was converted to demand hectares and area 

normalized (USDA, 2012).  

2. Latitude: We chose latitude as a variable that describes both regional practice and 

climate, as in the US-GLB, there is a north-south gradient in both climate and agricultural 

intensity. Southern parts of the US-GLB like Ohio and Indiana are intensely farmed and more 

suitable for high yields, thus resulting in higher fertilizer application rates, whereas central and 

northern counties produce lower yields and apply fertilizer at lower rates. 

3. Soil Texture: Soil texture was represented via mapunit-, horizon- and component-

weighted average percent sand and percent clay from SSURGO for depths 0-50 cm. These were 

processed from the gSSURGO dataset (gSSURGO 2019).  

4. Total Cropland: Total area of cropland was used as a variable to describe agriculture 

intensity, following the idea of agriculturally intense counties applying fertilizer at higher rates. 

We used the 2012 Ag Census total cropland area at the county level. 
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Table A1.3 Nitrogen fertilizer rates. Rates derived from Warncke et al. (2004) and Warncke & 

Dahl (2003). Raw rates were not applied in SENSEmap. 

Fertilizer Demand Group Crop N Fertilizer kg/ha/yr 

High Potatoes 203 

  Onions 180 

  Sod/Grass Seed 162 

  Cabbage 158 

  Corn 143 

  Sweet Corn, Popcorn 133 

  Carrots 124 

Medium High Tomatoes 111 

  Peppers 111 

  Greens 111 

  Watermelons 111 

  Sugarbeets 106 

  Sunflower 89 

  Herbs 89 

  Squash 89 

  Pumpkins 89 

  Mint 89 

  Cherries 84 

  Peaches 84 

  Asparagus 79 

  Christmas Trees 72 

Medium Low Sorghum 67 

  Spring and Winter Wheat 67 

  Millet 67 

  Speltz 67 

  Grapes 67 

  Cranberries 67 

  Triticale 62 

 Canola 57 

  Apples 57 

  Radishes 57 

Low Blueberries 49 

  Dry Beans 44 

  Peas 44 

  Barley 27 

  Oats 27 

  Rye 22 

No Fertilizer 

Switchgrass, Soybeans, 

Alfalfa, Other Hay, Clover, 0 
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Text A1.1.4 Manure 

The animal inventory was built from two sources: 1) the 2012 USDA Agricultural 

Census that reports county level information for all states on the number and type of farms, and 

2) separate state-level records of confined animal feeding operations (CAFOs), which only 

include addresses and inventories for farms with animals counts above a certain size (CAFO 

designations vary across both animals and states). The USDA Agricultural Census includes all 

farms, including those regulated as CAFOs. However, the Census does not disclose animal 

counts for all farms, especially small operations, out of privacy concerns. To estimate animal 

counts for undisclosed farms, the number of animals in CAFOs were subtracted from the USDA 

Census population to give an average herd size of non-CAFO farms, by animal type and county. 

Herd sizes were used to label farms as pasture operations or confined operations based on a 

threshold confinement level given by Kellogg et al (2000). The confinement threshold limit 

differs by animal; for example, dairy cows are always confined, while hogs are only confined if 

the head count is greater than 450 (Kellogg et al., 2000).  

For each farm in the animal inventory, a nutrient excretion rate and average county-level 

application rate was then estimated. Nutrient loads for each animal type in each county were 

calculated based on estimated nutrient excretion rates per animal (NRCS, 2008).  Not all animal 

types in the USDA Ag Census have an excretion rate described by the NRCS. For animals with 

no nutrient excretion information, data on excretion rates was used to create a linear model to 

estimate excretion rate as a function of animal weight, following the method used by Luscz et al 

(2015). Manure is typically stored prior to application, and N is volatilized and lost to the 

atmosphere via denitrification during this time. We used per-animal empirical ratios of N to P for 

applied manure (Table 6 and 7, from Lorimor et al., 2008) to quantify denitrification for each 

farm, based on the original N:P ratio. County-average manure application rates were then 
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calculated by dividing the spreadable manure acreage from the Ag Census by total county animal 

excretion in terms of kg P.  

We then randomly placed individual non-CAFO farms reported in the USDA Ag Census 

into agricultural areas, defined using a combination of the 2011 NLCD and CDL. We assumed 

that manure fertilizer would be used in the area surrounding farms, rather than transported to 

distant fields, as farmers would minimize transportation expenses. Farms were only placed in 

cells where the surrounding area could support the required area to spread manure, calculated 

using the proportion of that farm’s load to the total county load with the reported spreadable 

manure acres.  

To prevent spreading manure from confined farms on pasture areas for unconfined 

animals, we created exclusion buffers for pasture animal farms. These were created according to 

the farm’s required spreadable area. For confined farms, including CAFOs, manure spreading 

(inclusion) buffers were created according to estimates of the required spreading area. To 

account for overlapping initial buffers and areas where the buffers intersect roads and urban 

areas, buffer sizes increased iteratively until 96% of farms met their required area for manure 

spreading. Overlapping buffers were merged and dissolved after each iteration of the buffer size, 

and re-clipped to include only agricultural land.  

Each confined farm is assumed to lose a portion of manure during transport and storage. 

This portion, given by Kellogg (2000), varies by animal species and is applied as a single point 

at the location of each confined farm. Manure loads were applied within buffers at the rate of P 

fertilizer demand given by the fertilizer demand model. Demand was summed and adjusted by 

the factor to match observed farm P loads. N applications were determined by the N:P ratio after 

N loss for each farm. Due to manure being significantly P-enriched after N loss, we applied at 
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the crop’s desired P rate in order to not over-fertilize with N. If N need was not met, additional N 

chemical agricultural fertilizer was applied. 

Text A1.1.5 Chemical Agricultural Fertilizer 

Chemical agricultural fertilizers are applied following manure separately for two cases: 

1) areas within a manure buffer that did not receive adequate N fertilizer from manure alone, and 

2) cropland areas outside of a manure buffer. For the first case, applied manure was subtracted 

from N demand from the county-adjusted BRT prediction at each pixel and any remaining 

demand was satisfied using chemical agricultural fertilizer. The remaining cropland cells 

received N and P fertilizer at the rate predicted by the relative demand model, applied based on 

the 8-year rotation for each pixel. We then adjusted all pixels within a county by the factor 

needed to match the observed county fertilizer from Brakebill & Gronberg (2017). Since the 

county level fertilizer is derived from purchasing data, intercounty transport (i.e. a farmer 

purchases fertilizer in one county and applies it in a neighboring county) can create unrealistic 

TN and TP values at the county level. To assure realistic values, we put upper and lower bounds 

on the adjustment factors used to assure aggregate inputs matched the county-level data in order 

to keep pixels within reasonable fertilizer rates. As a result, occasionally inputs of fertilizers did 

not sum to the observed county value. In particular, we specified that pixel values for N could 

not be adjusted by a multiplicative factor less than 0.2 or greater than 5, which represent the 3rd 

and 95th percentile of county level adjustment factors. P had a minimum factor of 0.1 (5th 

percentile) and no maximum factor because the crop specific demand model for P tended to 

overestimate actual fertilizer applications.  

Text A1.1.6 Nitrogen Fixation 

To calculate nitrogen fixation from legumes, we used the Cropland Data Layer (CDL, 

USDA NASS, 2008-2015) to identify cells containing leguminous crops and grasses (here soy, 
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dry beans, alfalfa, and other hay). We then applied a fixation rate to all legume and grass cells 

based on soil inorganic N, applied manure fertilizer, and spatially disaggregated yield.  

Measurements of yield are available at the county level in the in the USDA Agricultural 

Census and Survey. To calculate yield at the 30 m cell resolution, we analyzed the relationship 

between county yield from the 2012 Ag Censuses and county mean vegetation indices, plant 

available water, and latitude at the included cells. Greener fields and higher plant available water 

are associated with higher yields and are available at high spatial resolutions (Courault et al., 

2016). Latitude was included due to a north-south gradient in climatic change and suitability of 

fields for soybeans and hay. The southern parts of the basin in Ohio and southern Michigan are 

more heavily planted with soybeans, while alfalfa and other hay are more associated with 

northern latitudes in northern Michigan, Wisconsin, Minnesota, and New York (CDL). Using 

these relationships allowed for spatially disaggregating coarser county yield data to individual 

cells within a county.  

We tested three vegetation indices: greenness index (GI), normalized difference 

vegetation index (NDVI), and enhanced vegetation index (EVI). Landsat 5, 7, and 8 images 

(native 30 m resolution) were compiled and cleaned in Google Earth Engine over the 2008-2015 

time series used for placement. Cells were only included if the CDL crop type matched the 

identified crop type in each year. We ran versions of each model with all CDL cells over the 8 

year period and with only cells with the correct crop more frequent than one year to adjust for 

random error in the CDL. Median and mean of annual maximum values were tested in the 

regression. Plant available water (PAW) was estimated using SSURGO textural classes mapped 

to hydrologic properties using the ROSETTA database (Schaap et al. 2001), and calculated as 
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field capacity minus wilting point for the depths 0-50 cm. Cell row in our model grid was used as 

a proxy for latitude.  

We built models using both multiple linear regression and CART (Classification and 

Regression Trees). CART using NDVI median of annual maximum, latitude, and PAW produced 

the best model for soybeans (R2 = 0.75, p < 0.001). Multiple linear regression using EVI median 

of annual maximum and latitude was the most successful model for dry beans (R2 = 0.53, p < 

0.001). Unsurprisingly, there was little variation in R2  values (< .05 difference) across models 

due to similarity between vegetation indices. Once yield was calculated at all cells, rates were 

debiased by multiplying the observed Census and Survey average yield divided by average 

county calculated yields. This assured calculated mean county yield was equal to observed 

county yield. Alfalfa and non-alfalfa hay did not produce satisfactory relationships: the models 

could not predict high yields and coefficients of determination were between 0.1 and 0.4. We 

chose to assign county yields to all cells within a county and not spatially disaggregate the 

values.  

To calculate N fixation, we first determined available soil inorganic N. We followed the 

method described in Goolsby et al. (1999) and used in Han and Allan (2008). Using SSURGO 

data converted to raster and resampled to our model grid as previously described, we calculated 

the mass of organic matter in the upper 50 cm of soil (to capture the majority of root zone 

activity) with the product of bulk density, volume, and percent organic matter. We followed 

literature (Han & Allan 2008; Goolsby et al. 1999) and used soil N content of 3% of organic 

matter mineralization at a rate of 2% per year in cultivated soil (Gentry et al., 1998; Stevenson, 

1994). Using mineralized N, applied manure, and applied chemical fertilizer; we calculated 

percent of plant N fixed using Meisinger and Randall’s (1991) formula (Eq 1).  
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𝑁 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 (
𝑘𝑔

ℎ𝑎
) =  𝑌𝑖𝑒𝑙𝑑 (

𝑘𝑔

ℎ𝑎
) ∗ % 𝑃𝑙𝑎𝑛𝑡 𝑁 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∗ % 𝑁 𝑓𝑟𝑜𝑚 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛   (1) 

Meisinger and Randall (1991) provide a table of common values of nitrogen content based on 

crop and moisture rate. To pick a rate for non-alfalfa hay, we determined the types of commonly 

grown hay in the GLB through contact with the Michigan and Minnesota agricultural extensions. 

We averaged rates for the major types of hay (clover, birdsfoot trefoil, orchard grass and 

bluegrass) from Meisinger and Randall (1991) and used a rate of 0.02% N from fixation 

(Warncke et al., 2004; Kaiser et al., 2011). Rates for soy, dry beans, and alfalfa were 0.055%, 

0.036%, and 0.0235% respectively (Meisinger & Randall, 1991). We calculated N fixation 

(kg/ha/yr) in each cell as the product of yield (kg/ha/yr), N content, and percent N from fixation 

(Eq 1).  

Since our model is not a specific year, but rather a “circa” 2010 timeframe, we included 

all cells in the Cropland Data Layer (CDL) that had been any N fixing crop between 2008 and 

2015. By using multiple years of data, we allowed for the effect of a corn-soy rotation. Although 

we use all cells, we corrected calculated fixed nitrogen to take into account frequency and yearly 

area. To do this, we adjusted each cell to a proportion of total yearly fixation based on the 

frequency of being identified as the assigned crop (e.g., 5-year soybean cell received the 

predicted fixation multiplied by ⅝). After correcting for frequency, we corrected the calculated 

fixation based on area using the USDA Agricultural Census 2012 values, as suggested as a best 

practice for CDL use in Lark et al. (2017). By adjusting by observed area divided by CDL area, 

we assured that we did not over-account for the usual planted area of each crop. The final cell 

values are abstract, in that they do not represent an actual yearly load at the point, but when 

aggregated to scales of analysis they provide representative total loads. 
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Text A1.1.7 Source Methodology Flow Charts 

The following figures contain flow charts for each SENSEmap source methodology. Additional 

description of terminology and variables for each chart can be found in the main document 

Methods Section 1.2.3, and in the Text S1.1 above. 
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Figure A1.3 Septic WWTP Delineation flowchart. 
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Figure A1.4 Septic Placement flowchart 
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Figure A1.5 Chemical Non-Agricultural Fertilizer flowchart. 
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Figure A1.6 Point Sources flowchart. 
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Figure A1.7 Manure flowchart. 
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Figure A1.8 Chemical Agricultural Fertilizer Placement flowchart.
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Figure A1.9 N Fixation Yield Calculation flowchart 
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Figure A1.10 N Fixation Calculation flowchart. 
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Text A1.2 K-means clustering of watersheds to produce Nutrient Input Landscapes 

Data clustering, or cluster analysis, uses algorithms to find underlying, natural groups or 

patterns in a representation of objects based on similarities (Jain, 2010). The term representation 

refers to how objects within a dataset are described – for example, we could cluster watersheds 

based on land use, population, flow, or nutrients and we would find different groups based on 

their similarity. Additionally, the way we quantified the variables of choice could influence the 

clusters – in that using total area of each land use compared instead of percent land use could 

create different groups. Similarity is a broad term and how similarity is determined is decided by 

the clustering algorithm used (Jain, 2010).  

In our analysis, we selected k-means clustering to determine if there were natural 

groupings of watersheds based on their relative composition of nutrient sources. K-means 

clustering is one of the oldest, simplest, and widely used clustering algorithms, dating back in 

multiple fields to the 1950s and 1960s (Jain, 2010). K-means creates clusters for a set of n-

dimensional points into an a priori determined K number of clusters where the squared error of a 

point and the mean cluster centroid is minimized (Jain, 2010). 

 We experimented with different representations of watershed nutrients by using rates of 

nutrient input sources in kg/ha, including total nitrogen and phosphorus, and using percent 

nutrient input by nutrient source. We experimented with the value of k, which determines the 

number of clusters, as well as running multiple times with different initialization random seeds. 

Silhouette coefficients are used in clustering analysis to describe how cohesive clusters are. 

Silhouette coefficients are calculated by comparing the distance of a sample to the mean distance 

to other samples in the same clusters compared to the mean distance of the next nearest cluster. 

Figure A1.11 visualizes the silhouette coefficients from our Nutrient Input Landscapes. We 

found nine clusters best physically represented the data. At fewer than nine clusters, our point 
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source-dominated “urban core” cluster (or landscape) was lost, due to its small size. By using our 

clusters, we provide a way to categorize watersheds based on the 13 variables of N and P 

sources. 

 
Figure A1.11 Silhouette plot for Nutrient Input Landscapes silhouette coefficients. 

Silhouette coefficients represent how well a sample fits into its cluster and range from -1 to 1, 

where negative values indicate a sample should have been classified in a different cluster. Each 

watershed is represented by a line, sorted by cluster, thus creating different thickness of each 

cluster representative of how many watersheds are in a cluster. For example, Urban Core is the 

smallest cluster and Remote and Intensive Ag: Chemical Fertilizer are the largest. The line 

extends in the x direction to its silhouette coefficient.  
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Figure A1.12 Proportion of LULC within all Nutrient Input Landscapes. The violin 

represents the distribution of LULUC proportions for each watershed. For example, a hash mark 

at ~60% for agriculture in (A) means the median percentage agriculture in Intensive Ag: Chem 

Fert landscapes was 60%. 
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Table A1.4 Summary statistics for Nutrient Input Landscapes. All 13 variables define a single landscape.     

Nutrient Input Landscape 

N (%) 

Chem NonAg 

Fertilizer 

Atmospheric 

Deposition 
Septic Point Manure 

Chem Ag 

Fertilizer 
N Fix 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Intensive Ag: Mixed 1.2 2.3 18.9 7.5 1.9 1.7 0.4 2.7 28.8 7.4 37.6 9.0 11.2 4.5 

Intensive Ag: Manure 0.8 1.6 14.9 7.7 1.2 0.9 0.2 1.0 54.0 10.1 19.4 8.4 9.5 4.7 

Intensive Ag: Chem Fertilizer 1.1 2.0 18.8 7.5 2.0 1.7 0.5 2.0 8.7 5.3 54.9 8.5 14.0 5.6 

Urban Core 16.2 13.1 31.6 21.0 2.2 2.6 41.4 28.9 1.5 3.5 6.0 8.7 1.3 1.7 

Suburban 42.7 13.0 44.8 8.7 4.1 5.0 2.8 7.7 1.0 2.1 3.7 4.7 0.8 1.3 

Suburban Edge 7.8 7.8 45.1 11.7 7.8 5.4 1.5 5.5 8.4 5.8 21.7 9.8 7.7 5.2 

Remote 0.2 0.6 97.8 2.5 0.7 1.0 0.0 0.2 0.3 0.8 0.5 0.9 0.4 1.0 

Rural: Low Intensity Ag 1.4 3.2 50.5 12.9 2.8 2.5 0.6 3.1 25.9 8.1 8.5 6.1 10.3 7.2 

Rural: Towns 2.0 3.8 81.7 8.9 4.8 4.6 0.2 1.0 4.7 4.1 3.4 3.8 3.3 3.2 

Nutrient Input Landscape P (%) 

Intensive Ag: Mixed 1.0 1.9 4.3 2.3 3.8 3.4 0.6 1.8 43.2 8.9 47.1 8.4     

Intensive Ag: Manure 0.5 1.0 2.8 2.0 2.2 1.7 0.3 1.5 71.4 9.2 22.8 8.5     

Intensive Ag: Chem Fertilizer 1.0 2.0 5.0 2.4 4.4 3.7 1.0 3.1 14.2 8.4 74.5 9.3     

Urban Core 18.9 14.1 8.3 4.6 5.4 6.6 52.3 20.6 2.8 5.0 12.3 13.4     

Suburban 58.8 18.6 14.6 4.6 11.8 13.7 3.3 8.2 2.2 4.3 9.4 10.1     

Suburban Edge 7.7 8.1 13.3 6.3 19.0 11.7 2.2 5.6 15.2 10.0 42.6 12.8     

Remote 0.5 1.9 89.0 10.9 5.4 6.4 0.2 2.2 1.8 4.3 3.1 5.0     

Rural: Low Intensity Ag 1.5 3.4 16.2 7.6 7.8 5.7 1.1 4.2 52.6 11.1 20.7 10.1     

Rural: Towns 3.5 6.1 43.7 13.3 19.9 14.9 1.9 8.2 15.2 12.7 15.7 11.4     
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Text A1.3 Results Figures and Tables 

The following pages contain additional results related figures and tables. 

 

Figure A1.13 SENSEmap phosphorus sources. Color breaks are not necessarily representative 

of individual pixel values due to visual resampling. Colors are meant to show physically 

meaningful patterns in the data visible at this map scale. Pixel level distributions of sources can 

be found in Table A1.4. 
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Table A1.5 Pixel level quantile values for N nonpoint source maps. Zeroes are excluded. 

  N (kg/ha/yr) 

Percentile 

Chem NonAg 

Fertilizer 

Septic Atmospheric 

Deposition 

Chem Ag 

Fertilizer 

Manure Nitrogen 

Fixation 

0 0.59 11.4 3.6 0.01 0.74 0.01 

20 28.4 93.2 6.9 40.4 250.4 4.4 

40 41.6 112.1 8.5 56.1 346.6 11.9 

60 51.7 125.0 10.0 69.9 451.7 20.6 

80 67.8 144.1 11.4 87.5 615.7 30.0 

100 167.6 1000.0 22.1 477.1 915.6 301.7 

 

 

 

Table A1.6 Pixel level quantile values for P nonpoint source maps. Zeroes are excluded. 

  
P (kg/ha/yr) 

Percentile 

Chem NonAg 

Fertilizer 

Septic Atmospheric 

Deposition 

Chem Ag 

Fertilizer 

Manure 

0 0.08 2.7 0.11 0.10 0.12 

20 4.1 22.5 0.17 4.6 46.0 

40 6.0 27.0 0.21 6.1 62.3 

60 7.6 30.1 0.28 7.9 83.4 

80 10.3 34.7 0.33 11.4 119.4 

100 28.3 200.0 0.43 27.9 198.4 
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Text A1.4 Comparisons to other Products 

The following sections detail methodology and results from comparisons made between 

SENSEmap and other nutrient products. 

Text A1.4.1 SPARROW  

Table A1.7 shows mean and standard deviation of absolute difference between nutrient 

inputs at the HUC8 level in units kg/ha/yr, where positive values indicate SENSEmap had higher 

values than SPARROW. SENSEmap and SPARROW have a few key differences in data sources 

and temporal resolution. SENSEmap-GLB uses the 2012 Agricultural Census for manure 

calculations and Brakebill & Gronberg (2017) data for chemical fertilizer (2008-2012), whereas 

SPARROW uses earlier data from Ruddy et al. (2006) for both manure and chemical fertilizer. 

SENSEmap also uses more contemporary state-level CAFO datasets, which may have raised the 

total confined manure quantities. Additionally, each model used different approaches to spatially 

disaggregate datasets and distribute them across watersheds, thus creating additional variance 

between the two datasets. 

 

Table A1.7 Summary statistics comparing SENSEmap and SPARROW. Mean and standard 

deviation of difference between SENSEmap and SPARROW. Positive values indicate 

SENSEmap had higher values than SPARROW. 

SPARROW Source Difference (kg/ha/yr) 

N TN 2.1 +/- 8.5 

  Total Manure 4.9 +/- 8.6 

  Chem NonAg Fert. 0.1 +/- 1.1 

  Chem Ag Fert -2.8 +/-  5.8 

P TP -0.1 +/- 1.2 

  Total Manure 0.6 +/- 1.3 

  Chem NonAg Fert. -0.1 +/- 0.3 

  Chem Ag Fert -0.7 +/- 1.1 
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Figure A1.14 HUC8 level comparison of SPARROW and SENSEmap. kg/ha/yr. Grey line 

indicates 1:1.  
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Text A1.4.2 Net Anthropogenic Nitrogen Index (NANI) in Swaney et al. (2018) 

SENSEmap was compared to the Net Anthropogenic Nitrogen Index (NANI) as 

presented in Swaney et al. (2018). N inputs in kg/ha/yr were calculated at the county-level using 

total county area. 2012 inputs were compared due to SENSEmap using the 2012 Agricultural 

Census and fertilizer data ending in 2012. Figure A1.15 shows bivariate plots for chemical 

agricultural fertilizer, manure, and N fixation.  

Table A1.8 Summary statistics comparing SENSEmap and NANI. Mean and standard 

deviation of difference between SENSEmap and NANI (Swaney et al., 2018) at county level. 

Positive values indicate SENSEmap was higher than NANI. 

NANI Source Difference (kg/ha/yr) 

N Total Manure 3.8  +/- 6.2 

 Chemical Agricultural Fertilizer -2.7 +/- 5.6 

  N Fixation 7.1 +/- 15.9 
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Figure A1.15 County level comparisons between SENSEmap and NANI. kg/ha/yr. Grey line 

indicates 1:1. 
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Text A1.4.3 Chemical Agricultural Fertilizer – Cao et al. (2018) 

We compared SENSEmap’s chemical agricultural fertilizer N to Cao et al.’s (2018) 5 km N 

fertilizer product. SENSEmap was resampled to 5 km resolution with mean fertilizer intensity to 

match Cao et al. (2018). SENSEmap generally had lower fertilizer intensities in areas with 

higher manure content (Wisconsin, northeastern Indiana, western Michigan) and higher fertilizer 

intensities in intensely farmed areas like Ohio and the thumb of Michigan (Figure A1.16).  

 
Figure A1.16 Difference map between SENSEmap and Cao et al. (2018) N fertilizer. 

Positive difference indicates SENSEmap > Cao et al. (2018).  
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Figure A1.17 Pixel level differences by SENSEmap fertilizer application intensity. The 

difference between Cao et al. (2018) and SENSEmap is plotted on the y-axis, with positive 

values indicating SENSEmap had higher fertilizer application and negative values indicating Cao 

et al. (2018) was higher. The grey line marks zero and the black line is a fitted lowess curve. 
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Text A1.5 Sensitivity to Chemical Agricultural Fertilizer  

We performed a sensitivity analysis based on the “observed” value of total kg N and P of 

chemical agricultural fertilizer at the county level. Our final model uses the average value from 

2008-2012 from Brakebill & Gronberg’s (2017) county annual fertilizer product. In order to test 

SENSEmap’s sensitivity to this total fertilizer, we ran 14 new simulations with different values 

of chemical agricultural fertilizer at the county level. County-level values are used within 

SENSEmap to adjust pixel level predictions by the ratio needed to match simulated values to 

observed county N and P. However, these values are not “observed” and are also model outputs 

from the USGS’s fertilizer modeling based on expenditures. 

We produced 14 new simulations of pixel level chemical agricultural fertilizer N and P. 

New county fertilizer values were chosen based on the following methods. First, mean and 

standard deviation of N and P kg was calculated for both 2000-2012 and 2008-2012 in each 

county. One standard deviation was added and subtracted to each mean per county, creating 4 

runs where values were systematically shifted positively or negatively. The other method created 

random noise by using a random adjustment uniformly between +/- 1 standard deviation per 

county, with 5 runs using the 2000-2012 distribution and 5 runs using 2008-2012 distribution. 

This resulted in 14 new simulations of county-level chemical agricultural fertilizer. 

 After pixels were adjusted for each simulation, HUC12 watershed aggregations were 

performed. Coefficient of variation (standard deviation/mean) was calculated across all 

simulations per watershed for chemical agricultural fertilizer N and P (kg/yr) and total N and P 

(kg/yr) to describe the width of the distribution across runs. 

Finally, to assess changes in broader nutrient patterns, we applied our Nutrient Input 

Landscape cluster definitions to each sensitivity simulation. K-means clusters produce a centroid 

value for each cluster and distance is computed to find which cluster a sample belongs in. Thus, 
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we can apply clusters trained on a different dataset (i.e. primary SENSEmap) to predict which 

cluster any watershed would fall in. If the product is not sensitive to these changes in chemical 

agricultural fertilizer, Nutrient Input Landscape should always be the same. 85% of watersheds 

remained consistent through all sensitivity simulations.  
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CHAPTER 2: 

CONNECTING LANDSCAPE CHARACTERITICS TO GROUNDWATER NITRATE 

CONCENTRATION 

Abstract 

Nitrate in groundwater has become a growing concern due to recent studies suggesting that even 

low concentrations can lead to elevated cancer risk. Data on groundwater nitrate concentrations 

is not widely available due to varying regulations and sampling limitations. Here, we utilize a 

dataset of 300,000+ nitrate samples collected across Michigan’s Lower Peninsula since the 

1980s to better understand drivers of groundwater nitrate concentrations. We focus on the 2006-

2015 period and evaluate the probability of exceeding 0.4 mg/L and 2 mg/L concentrations using 

interpolated nitrate concentrations. Classification and Regression Tree (CART) analysis was 

used with watershed-level summaries of concentration exceedance probabilities with a suite of 

potential driver variables, including land use, geologic attributes, soil characteristics, and 

nitrogen loading. CART divides a dataset into groups that minimize within-group variance based 

on the highest performing split in driver variables. CART explained 43.2% of variation in the 

>0.4 mg/L case with only six terminal groups, which is a strong performance for a small final 

tree and a complex dataset. Aquifer recharge was identified across all analyses as the most 

important initial variable to separate low and high concentration watersheds. A combination of 

deep soil variables (texture and saturated hydraulic conductivity) and land use variables further 

separated low, medium, and high probability groups. Our findings suggest that sufficient 

recharge is necessary to mobilize nitrogen, and that even forested or low intensity agricultural 

areas can load nitrate to aquifers if high recharge and vulnerable geologic features are present. 

These findings can improve identification of high nitrate risk areas and determine how and where 

management strategies will affect aquifers based on climatologic and geologic vulnerability. 
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1 Introduction 

Nitrogen cycling has been significantly altered by anthropogenic activities with the rise 

of industrial agriculture and growing population (Keeler et al., 2016; Vitousek et al., 1997). 

Nitrogen sources including chemical fertilizer, manure, and human waste have created a suite of 

water quality challenges that affect the environment, human health, and economics. Nitrogen 

loading to groundwater can threaten human health when ingested via drinking water. As early as 

the 1930s, high concentrations of nitrate in drinking water from wells in agricultural areas was 

shown to cause infant methemoglobinemia, also known as blue baby syndrome, a fatal condition 

that renders hemoglobin unable to carry oxygen throughout the body (Ward et al., 2005). These 

high nitrate loads were a result of increasing prevalence of chemical fertilizers and resulted in 

public health regulations limiting drinking water to less than 10 mg/L NO3-N (Walton, 1951). 

In recent years, researchers have begun to link nitrate in drinking water to higher 

prevalence of multiple cancers and birth defects, such as colorectal cancer, thyroid cancer, and 

adverse pregnancy outcomes (Manassaram et al., 2006; Ward et al., 2005, 2018). In contrast to 

infant methemoglobinemia, these risks occur at much lower nitrate concentrations in drinking 

water. Ward et al. (2018) reviewed epidemiology literature and found many studies with 

increased risk of various cancers associated with exposure to drinking water nitrate at 

concentrations as low as 1.5 mg/L NO3-N, with multiple studies finding heightened risk around 2 

mg/L NO3-N (Schullehner et al, 2018; Temkin et al., 2019) . As these health risks become 

quantified, it is increasingly important to understand what environmental conditions lead to high 

groundwater nitrate concentrations, and through both this and more extensive sampling identify 

communities at risk. Additionally, nitrate in groundwater is a consistent and long-term source of 
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nitrogen to streams and lakes, making it important to understand when constructing nutrient 

budgets and addressing eutrophication (Benettin et al., 2016; Vero et al., 2017). 

Limited data on groundwater nitrate is available due to varying regulations combined 

with the effort, cost, and privacy concerns related to sampling wells. There can be highly 

heterogeneous patterns of nitrate concentrations in the subsurface due to variable loading pulses, 

geologic characteristics, and the laminar flow characteristics of groundwater (Canter, 1997). 

Thus, extensive sampling would be required to effectively map areas. These challenges have led 

researchers to turn to a variety of index-based, statistical, and process-based modeling methods 

to both understand drivers of groundwater nitrate concentration and predict nitrate concentration 

at unsampled locations. 

Recently, machine learning methods like classification and regression trees (Burow et al., 

2010), boosted regression trees (Motevalli et al., 2019; Nolan, Fienen, & Lorenz, 2015; Ransom 

et al., 2017), and random forest (Messier et al., 2019; Wheeler et al., 2015) have been used to 

link large datasets of nitrate samples to driver variables to predict concentrations at non-sampled 

locations. In addition to producing non-linear predictions, these tree-based algorithms assess the 

importance of different variables in describing concentrations, which can help decipher the 

underlying conditions that lead to elevated nitrate concentrations in a region. Large datasets of 

well samples are frequently used to train the models with related variables summarized within 

circular buffers. These studies have ranged from continental to small watershed scales and have 

had varying predictive success. Studies have reported the most significant driver variables falling 

into categories related to nitrogen inputs (Nolan et al., 2014; Nolan & Hitt, 2006), geologic 

properties (Barzegar et al., 2018; Messier et al., 2019; Motevalli et al., 2019), redox conditions 

(Ransom et al., 2017), and well depth (Wheeler et al., 2015).  
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Here, we analyze drivers of groundwater nitrate concentration with classification and 

regression tree analysis (CART) using an extensive dataset of nitrate measurements from 

drinking water wells across Michigan’s Lower Peninsula (LP) in the Midwest United States. 

Over 300,000 samples from 76,724 unique wells were used to characterize nitrate concentration 

across the region and interpolated using kriging. Probabilities of exceedance for two 

concentration levels were calculated from kriging and aggregated to a small surface-watershed 

(HUC12) scale to analyze using CART with 29 physical and management variables (USGS, 

2013). Unlike other machine learning studies published to date, we utilize the high sampling 

density in our dataset to interpolate and generate training data using watershed summaries 

instead of circular buffers surrounding sparse individual well points. The objectives of this work 

are to: 

1. Map nitrate concentration in Michigan’s Lower Peninsula during 2006-2015 using over 

76,000 unique wells with more than 300,000 samples. 

2. Assess drivers of nitrate concentration using landscape characteristics at small watershed 

level with CART. 

With this extensive dataset, we provide maps of nitrate concentration in groundwater and link 

them to the physical processes and land use management. By understanding the drivers of 

groundwater nitrate concentrations, we can inform management strategies and quantify nitrate 

exposure. 
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2 Study Area 

Michigan’s Lower Peninsula (hereafter LP) is located in the Midwestern United States 

and bordered by four of five Laurentian Great Lakes (Figure 2.1B). The state of Michigan 

includes the largely forested Upper Peninsula, however it was not included in this analysis due to 

limited data.  

Land use within the LP is highly variable, with urban, intensive agriculture, and large 

swaths of forests and wetlands throughout the state (Homer et al., 2015). There is a significant 

north-south divide in land use, where major urban areas and extensive agriculture lie south of 44⁰ 

N (Figure 2.1A). Metropolitan areas such as Detroit and Grand Rapids are located on the 

southeastern and western central regions, home to most of Michigan’s over 9 million residents 

(U.S. Bureau, 2020). Much of the land area of the southern LP is under agricultural management, 

including corn-soy rotations, wheat, and hay in major row- and field- cropped areas and orchards 

along the coast of Lake Michigan (USDA Ag Census, 2012). North of 44⁰ N, the LP is largely 

forested and sparsely inhabited.   

The Quaternary period deposited much of the glacial and post-glacial alluvial geology 

making up aquifers commonly used for private drinking water wells in the LP. Coarse-textured 

glacial deposits cover much of the LP, with the exception of increased clay and silt in the central 

and eastern LP, which was formerly a lakebed. Quaternary glacial drift aquifers are used for 

private drinking water wells for much of the LP due to sandy, high conductivity sediments. This 

aquifer is deepest in the northwest aquifer thickness exceeds 100 meters (Figure A2.1, Soller and 

Garrity 2018). Soil saturated hydraulic conductivity (KSat) ranges from 3-550 mm/hr with lower 

values in the south central and eastern former lake beds, and higher conductivity across the 

western and northern LP (Figure 2.1D). These patterns correspond with soil texture (Figure 
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A2.2). Bedrock wells are used where glacial drift is limited (Figure A2.1, <5 meters). Aquifer 

recharge, an important characteristic for groundwater nitrate analysis, exhibits an east-west 

gradient due to a combination of highly conductive soils and high precipitation in the west 

(Figure 2.1C). The western half of the LP has increased precipitation in the form of lake effect 

precipitation due to its proximity to Lake Michigan. Annual precipitation for the LP ranges from 

approximately 700-1100 mm/yr (PRISM Climate Group, 2012). 
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Figure 2.1 Groundwater nitrate study area. Michigan’s Lower Peninsula (LP) with key 

environmental variables shown. A) Locator map of Continental United States with study area 

highlighted in red, B) Land use/land cover map modified from NLCD 2011 (Homer et al., 2015), 

C) Modeled map of yearly aquifer recharge (See Section 2.3.6), D) Map of soil saturated 

hydraulic conductivity for 100-300 cm depth from SSURGO with quantile breaks (NRCS, 2017).  
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3 Data 

The following subsections briefly describe the data sources used for this study. Table 2.1 

summarizes these sources. 

Table 2.1. Summary of data sources. Detailed variables found in each group can be found in 

Table A2.1.  

Data Type Data Source Author Time 

Spatial 

Resolution 

Nitrate  Well Chemistry MI EGLE 2006-2015 Well Points 

Well Geology Wellogic MI EGLE 2006-2015 Well Points 

Groundwater N  SENSEmap Hamlin et al (2020), Wan et al (In prep) 2008-2015 120 m 

Soil Properties gSSURGO USDA NRCS   30 m 

Aquifer KSat Wellogic Wellogic, Farrand & Bell (1982)  120 m 

Recharge Modeled 

Hyndman et al. (2007); Wan et al. (In 

prep) 2010 120 m 

Land Use NLCD Homer et al. (2015) 2011 30 m 

 

3.1 Well Chemistry 

Well chemistry data was retrieved via a Freedom of Information Act request from the 

Michigan Department of Environment, Great Lakes, and Energy (EGLE) in December 2019. 

This database included over 3.6 million samples of various chemicals from drinking water wells 

across the state dating from 1984 to 2019. Well chemistry data was provided as two categories of 

wells, described here as “public” and “private”. Public wells include public supply wells, 

industrial wells, and wells belonging to businesses or organizations. Private wells, which are 

those used in private residences, were sampled when drilled, generally resulting in a single 

chemistry sample per well, whereas public wells are routinely monitored depending on their 

category of use. 
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3.2 Wellogic 

EGLE provides a publicly available database of drinking water well information digitized 

from drillers’ boring logs called Wellogic, which contains all wells drilled since 1996 and partial 

records of wells drilled prior to 1996 due to variability in county-by-county archival digitization 

efforts. Information includes date of drilling, screening intervals, and aquifer properties. In this 

study, we utilized both the spatial location of the wells, as well as information on which aquifer 

each well was screened within.  

3.3 Nitrogen Loads 

The Spatially Explicit Nutrient Source Estimate map (SENSEmap) was used to quantify 

total nitrogen inputs to groundwater (Hamlin et al., 2020; Wan et al., In Prep).  SENSEmap 

quantifies point sources and six non-point sources of nitrogen inputs to the landscape in Hamlin 

et al. (2020) by synthesizing literature, remote sensing products, government records (ie., US 

Census, US Agricultural Census), and modeling products (ie. Estimates of county level fertilizer 

loads). Sources include atmospheric deposition, chemical agricultural fertilizer, manure, 

chemical non-agricultural fertilizer, septic tanks, N fixation from legumes, and point sources. 

Wan et al. (In prep) implements a statistical transport model to quantify how much nitrogen 

survives to the Great Lakes coastline after attenuation along surface and groundwater pathways. 

This model was updated from previous work by Luscz et al. (2017). In this study, we use two 

model outputs: the total nitrogen (TN) load to groundwater per year from all surface-applied 

sources (kg/ha/yr) and the TN load from septic tanks to groundwater (kg/ha/yr). Both estimates 

are representative of an average year during 2008-2015. See Figure A2.3 for the map of TN 

loads to groundwater. 
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3.4 Land Use/Land Cover 

Land Use/Land Cover (LULC) variables were summarized from the 2011 National Land 

Cover Database, shown in Figure 2.1 (Homer et al., 2015). Both individual land use classes as 

reported in NLCD and aggregated land use classes (ie., Total urban, total forest, total agriculture) 

were used within analysis. Land use per category was tabulated and normalized to the proportion 

of the watershed. 

3.5 Soil 

Soil variables were extracted from gSSURGO and processed using ROSETTA (NRCS, 

2017; Schaap et al., 2001). This study used data from soil layer 1 (0-5 cm) and soil layer 4 (100-

300 cm). Variables included were texture by percent (Figure A2.2) and saturated hydraulic 

conductivity (KSat) (Figure 2.1D). 

3.6 Aquifer Recharge 

Aquifer recharge was calculated using outputs from the Landscape Hydrology Model 

(LHM) and statistical relationships derived from those results. Modeling was performed over a 

28-year period for an approximately 20,000 km2 within the Muskegon HUC8 watershed in west-

central LP (Hyndman, Kendall, & Welty, 2007; Kendall, 2009). This watershed has diverse 

geologic and land use characteristics reasonably representative of conditions found across the 

remainder of the LP. Within each of five major land use classes (urban, agricultural, grass, 

deciduous, coniferous), linear regressions were developed to quantify the fraction of annual 

precipitation that has been simulated to become aquifer recharge as a function of soil hydraulic 

conductivity. 
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3.7 Aquifer Saturated Hydraulic Conductivity 

Aquifer saturated hydraulic conductivity (KSat) was estimated by the Michigan State 

University Remote Sensing & GIS using well log descriptions of sediment texture and pump 

tests to determine K values and was reported in the Michigan Wellogic Database (Michigan 

Waterwells for WELLOGIC dataset, 2019). To extend these well-based measurements to the rest 

of Michigan, we used the geometric mean of well-based K for each Quaternary geologic polygon 

(Farrand & Bell, 1982). Polygons without wells used the average K for other polygons of similar 

geologic class. See Figure A2.4 for this map of aquifer conductivity. 
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4 Methods 

Utilizing the large well chemistry dataset collected, analyzed, and stored by a variety of 

organizations and individuals resulted in the need for extensive pre-processing and quality 

assurance/quality control (QA/QC) protocols. For more details, see section A2.1. Briefly, we 

used the following major steps to prepare well chemistry data for use: 1) Geocode data, or 

identify spatial coordinates for each point, 2) Perform QA/QC on geocoded addresses, 3) 

Perform QA/QC on concentration measurements, and 4) Join well chemistry data to well 

geologic data from Wellogic. At this time, only nitrate measurements were used, while future 

work will include processing sulfate and nitrite for use in this analysis. The 2006-2015 period 

was used in this analysis to incorporate a large volume of data and match the time period of a 

key analysis dataset, SENSEmap, which represents the average nitrogen inputs expected within 

2008-2015. 

4.1 Kriging 

Kriging, a geostatistical interpolation method, was used to create two distinct map types: 

1) a continuous surface of groundwater nitrate concentrations, and 2) a similar surface of the 

probability for exceedance of different nitrate concentrations. Kriging fits a function to the 

spatial autocorrelation (here, semivariogram) calculated from known points in a geographic 

dataset, assuming that some variation between points is due partially to randomness and to the 

distance between points (Bailey & Gatrell, 1995). Depending on the data, the weight given to 

each point near a prediction cell varies by the shape of the chosen semivariogram function. Due 

to the large spatial extent, variable sampling density, and variation in concentration 

measurements, we used Empirical Bayesian Kriging (EBK) in ArcGIS Pro 2.5 to automate the 

kriging process (ESRI, 2020a). This method iteratively produces semivariograms for subsets of 
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the data to tailor the kriging function to each neighborhood of points, thus removing the user’s 

manual control of fitting a semivariogram function to the entire dataset (ESRI, 2020b; Hussain, 

Pilz, & Spoeck, 2010).   

Probability kriging is a method that computes the probability of a cell’s kriging 

prediction to exceed a given threshold. This provided additional information beyond kriging 

predictions. The probability kriging option within EBK was used to test four thresholds of 

exceedance in this analysis: 0.4 (the most common detect limit, or lowest detectable 

concentration of nitrate by the machine), 2, 5, and 10 mg/L NO3-N. 2 mg/L NO3-N was chosen 

to be representative of new health literature indicating increased risk at values from >2 mg/L 

NO3-N (Schullehner et al., 2018; Temkin et al., 2019). 5 mg/L NO3-N was chosen as a mid-level 

and 10 mg/L NO3-N was chosen as the EPA’s maximum contaminant limit (MCL) for public 

drinking water. Results are only be presented here for exceedance of 0.4 mg/L and 2 mg/L NO3-

N. 

Although kriging produces a prediction at every cell within the study area, error rises 

with distance from known data points. We only included kriging results within 3 km of a sample 

point to eliminate areas where kriging does not have enough data, and predictions approach the 

dataset mean rather than being influenced by nearby points. This threshold was chosen because 

as it is the length of correlation, or range, found from a preliminary simple kriging of the entire 

dataset. Essentially, these 3 km buffered inclusion masks allow for the benefits of kriging to 

extrapolate and spatially debias the point data, without over-extending the kriged extrapolations 

to areas distant from sampling locations. 
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4.2 CART 

Classification and Regression Trees (CART)  analysis was used to explore nonlinear 

statistical relationships between groundwater nitrate concentration and potential driver variables 

(De’Ath & Fabricius, 2000). CART performs a nested hierarchical series of “splits” to a dataset 

using a single response variable and a suite of driver variables as inputs. CART starts with the 

entire dataset and breaks the response variable into two groups based on thresholds in the driver 

variable that minimizes within-group variance. Each resultant group is then split again (the split 

is referred to as a node) based on whichever driver threshold next minimizes variance. These 

recursive splits create the inverted “tree” shape familiar to decision trees. CART stops splitting 

groups apart when the “pruning” criteria is reached. Here, we specified that if an individual split 

does not improve the performance (here measured using the complexity parameter, otherwise 

known as proportion reduction of error, PRE) of the CART by at least 3%, the group will not be 

split further. The final CART results include the optimal decision tree and terminal groups, a 

measure of response explained (PRE), and a list of “competitor” and “surrogate” options for each 

split. PRE behaves similarly to the coefficient of determination (R2) used in linear regression, 

ranging from 0 to 1 and corresponding to the percent of dataset variance explained. Competitor 

splits are defined for each node and would divide the data into groups with a similar PRE, but 

typically create different groups than the optimal split. Surrogate splits are other driver 

thresholds that would split the group in a similar manner to the optimal split. Analysis of 

competitor and surrogate splits can provide extended understanding of how the driver variables 

are related. 

We summarized driver and response data at the watershed level using the USGS 

Watershed Boundary Dataset Hydrologic Unit Code system; specifically at the HUC12 scale 
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which includes watersheds for small streams with approximately 80 km2 area (USGS, 2013). 

Within watersheds, summarizes were compiled using medians for all variables except land use 

and soil texture, which were reported as areal proportions summing to one. CART analysis was 

performed for all exceedance thresholds for both Quaternary and Bedrock aquifers, producing 

eight CART trees. Median probability of threshold exceedance in each watershed was used as 

the response variable. For sensitivity analysis, mean concentration from all wells in watersheds 

with over 20 wells was used as a response variable in a separate CART analysis. Driver variables 

included representatives from all variables in Table 2.1. Detailed descriptions of all 29 variables 

included can be found in Table A2.1. 
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5 Results and Discussion 

Groundwater nitrate concentrations can first be viewed as a map of well points and 

concentrations for each aquifer after QA/QC and geocoding (Figure 2.2). Concentration breaks 

were determined based on physically meaningful thresholds described in Section 4.1. Quaternary 

aquifer wells are most densely located in the western and north central areas of the state, as well 

as a strip in the eastern portion, directly outside Detroit (Figure 2.2A-3) that generally 

corresponds to glacial sediment features greater than 50 meters thick (Figure A1.1). The western 

portion of the state consistently had areas of elevated nitrate concentration, including in the 

northwestern region where land cover is primarily forest (Figure 2.1A). The areas of highest 

concentration samples are north of Grand Rapids (Figure 2.2A-1) and south of Kalamazoo 

(Figure 2.2A-2), both corresponding with intensive agricultural areas. 26% of Quaternary wells 

have detectable nitrate (>=0.4 mg/L NO3-N), with the distribution shown in legend of Figure 

2.2A. Bedrock wells are primarily found in the eastern and south-central portions of the state, 

and only 6% of these wells had detectable concentrations (>=0.4 mg/L, Figure 2.2B legend). 

Bedrock wells in the most southern central area are associated with higher nitrate concentrations, 

likely due to their placement in an intensely agricultural region (Figure 2.1A). The remaining 

analysis focuses on wells in the Quaternary glacial deposit aquifers, due to their wide use for 

drinking water and closer relationship with surficial nitrogen loading processes (Figure 2.2A). 
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Figure 2.2 Well-level nitrate concentration maps. Locations and concentration values of wells 

sampled in 2006-2015 in the A) Quaternary Aquifer and B) Bedrock Aquifer. Legends show the 

distribution within each bin normalized to 100%. Highest concentration point values are plotted 

on top. Blue numerals in Figure 2.2A denote general locations of major cities: 1) Grand Rapids, 

2) Kalamazoo, 3) Detroit. 

 

Kriging provides both a smooth surface of predicted concentrations (Figure 2.3A) and 

probability layers for exceeding selected thresholds, here >0.4 mg/L (Figure 2.3B) and >2 mg/L 

NO3- N (Figure 2.3D).  The probability of exceedance can be understood conceptually through 

the lens of sampling within a watershed. A new sample collected within a given watershed would 

have an expected probability of exceeding 0.4 mg/L NO3-N shown in Figure 2.3C. Thus, 

localized areas within the watershed will be both more and less likely to exhibit nitrate 

exceedance than the watershed median.  

Although the general pattern of higher nitrate values in the western portion of the region 

remains throughout all maps in Figure 2.3, the nuance of simply having detectable nitrate to 

having likelihood of health concern can be seen in the variation in pattern in Figure 2.3B and 
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2.3D. Much of the western half of the LP has median probabilities of exceedance of 0.4 mg/L 

NO3-N over 0.5, visible in both continuous (Figure 2.3B) and watershed summarized (Figure 

2.3C) views. In contract, probability of exceeding 2 mg/L NO3-N is less than 0.25 for most of the 

study region (Figure 2.3D), excluding pockets within the western LP with higher values. These 

pockets are more easily identified as the medium reds in Figure 2.3E. This distinction is also 

temporally relevant: although this provides recent nitrate concentrations, areas with detectable 

nitrate may exceed 2 mg/L if nitrogen continues to be loaded in excess levels to what is taken up 

by plants.  
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Figure 2.3 Nitrate kriging results. Quaternary aquifer (2006-2015) kriged map, exceedance 

probabilities, and watershed (HUC12) summarized median exceedance probabilities. Empirical 

Bayesian Kriging produces a predicted concentration at each cell and probability of exceedance 

of selected thresholds. Both predictions and probability layers are clipped to areas presumed to 

have enough data to be confident, here chosen by the correlation length of 3 km buffers around 

each well. Probability exceedance maps are then summarized to the HUC12 watersheds if there 

were nitrate concentration predictions for greater than 66% of the area. A) Predicted NO3-N 

concentration clipped to areas of confidence. B) Probability of exceeding 0.4 mg/L, or the 

detection limit. C) Median probability of exceeding 0.4 mg/L at HUC12 watershed level. D) 
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Figure 2.3 (cont’d) Probability of exceeding 2 mg/L NO3-N. E) Median probability of 

exceeding 2 mg/L at HUC12 watershed level. 

 

5.2 Interpreting CART 

The benefits of CART for this study are: 1) Identifying the most descriptive variables 

leading nitrate concentrations and 2) Grouping similarly behaving watersheds. Additional 

analysis of competitor and surrogate splits can further identify correlations between driver 

variables and determine breaks in the dataset. Often, spatial trends emerge in these groups due to 

the inherent spatial nature of geographic analysis – geology and climate influence land use, 

population density, and nitrogen inputs. Here, we present CART analysis for two cases: 

Quaternary aquifer exceedance of 0.4 mg/L NO3-N (Figure 2.4) and Quaternary aquifer 

exceedance of 2 mg/L NO3-N (Figure 2.5). Results are discussed by examining each split in the 

decision tree (Figure 2.4A, Figure 2.5A), the distribution of terminal CART groups (Figure 2.4B, 

2.5B), and the geographic distribution of exceedance probabilities within each terminal CART 

group (Figure 2.4C, Figure 2.5C).  

Variables referred to in this section fall into four groups determined by physical 

understanding and analysis of competitor and surrogate splits: 1) recharge, 2) geologic, 3) land 

use/land cover (LULC), 4) nitrogen inputs. Recharge is isolated to its own category due to its 

specific nature as a “combination” variable: it is influenced by precipitation (climate), land use 

(ability of water to permeate soil), and geology (soil characteristics, unsaturated zone travel 

time). Geologic variables include soil textures, soil saturated hydraulic conductivity, and aquifer 

saturated hydraulic conductivity. LULC describe the land use composition of a watershed – e.g., 

how much is forested, urban, or agricultural. Nitrogen inputs are described by total nitrogen 

loads to groundwater and loads from septic systems, which are another variable combining 
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driving factors: nitrogen loading is determined by specific management (not visible solely by 

land use), geologic conditions, and precipitation driving transport.  

5.2.1 Probability of Exceeding 0.4 mg/L 

CART for detectable nitrate resulted in six groups of watersheds representing low, 

medium, and high probability and are described by a combination of recharge, soil, and land use 

(Figure 2.4A). Low probability, where it would be unlikely to detect nitrate in groundwater, is 

described by Group X1 (mean probability of exceedance = 0.082) and is explained by recharge < 

250 mm/yr and deep soil (100-300 cm) with a sand texture < 65%, paired with a surrogate split 

of deep soil clay texture > 11.5% (Figure 2.4A). This soil textural split corresponds with sandy 

loam. Group X1’s distribution is centered closely around its mean, suggesting that identifying 

low recharge areas with soil with less sand than sandy loam will isolate the least nitrate-

susceptible areas. In contrast, high probability Groups X5 (mean = 0.51) and X6 (mean = 0.53) 

are found on both sides of the recharge split and are described by a combination of geologic and 

land use variables. For Group X5, on the lower recharge side (<250 mm/yr), deep soil is sandy 

(>65%) and has a high proportion of land in crop agriculture (>40%). Although Group X6 falls 

on the high recharge side, it similarly is described by a geologic variable (high deep soil KSat; 

>3.6e-6 m/s) and a land use variable (lower proportion of forest; <= 57%). Medium risk groups 

(X2, mean = 0.21; X3, mean = 0.25; X4, mean = 0.3) are found on the “margins” of nitrate-

favorable geology and land use –  Group X3 has high sand (>65%) but low crops (<40%), while 

Group X4 has low deep soil KSat (<3.6e-6 m/sec) and Group X5 has high deep soil KSat (13 

mm/hr) and high forest (>57%). Note that for simply detecting nitrate, groups of high and 

medium risk fall on both sides of the recharge threshold but are differentiated based on a 

combination of geologic and land use variables.  
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Mapping the groups (Figure 2.4B) reveals a strong east-west divide, where almost the 

entire western half of the LP is at medium or high probability of detectable nitrate. There is not a 

strong north-south divide in high probability Groups X5 and X6, which can be found in any 

latitude in the western LP. Lacking this latitudinal divide drives some of the variability within 

Groups X5 and X6 (Figure 2.4B) – land use in northwestern LP has more forest, smaller towns, 

and lacks intensive corn-soy agriculture found in much of the southwest LP.  
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Figure 2.4 CART results for >0.4 mg/L NO3-N. Results from CART analysis for median 

probability of exceeding 0.4 mg/L, or nitrate detection limit within a HUC12 watershed. A) 

Decision tree identifying each split within the data. Each node contains the group mean 

probability of exceedance, the total watersheds in the group (n), and the proportion response 

explained (PRE), a metric that describes the performance of the split relative to the entire dataset. 

Nodes are colored based on their mean probability, with higher probabilities in darker colors. 
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Figure 2.4 (cont’d) The final CART groups are numbered from low to high concentration. B) 

The final CART groups are mapped by HUC12. Colors correspond and groups are consistent 

with those in A, with higher probabilities in darker colors. C) Violin plots for each final group. 

Violin plots display the range and mean as a line with a probability density function fit to show 

the “shape” of the distribution – thicker areas contain more samples. 

 

5.2.2 Probability of Exceeding 2 mg/L 

The basic tenets of a combination of recharge, soil, and land use remains intact for 

identifying the probability of exceeding human health risk thresholds, 2 mg/L NO3-N, in 

watersheds. Here (Figure 2.5A), recharge again creates a significant break in the data: 624 

watersheds are isolated based solely on having low aquifer recharge at an almost identical 

threshold as detectable NO3-N (0.4 mg/L: <250 mm/yr; 2 mg/L: <251 mm/yr). The remaining 

watersheds are split first based on a relatively rare occurrence which includes the 31 watersheds 

with almost no mixed forest (< 0.3%), with surrogate splits highlighting other non-agricultural or 

urban land cover. These outliers are then divided into the highest and lowest groups (Y1, mean = 

0.014 and Y7, mean = 0.27) based on deep soil KSat (threshold: 15 mm/hr). Moving to the left of 

Mixed Forest, to watersheds that have mixed forest, the groups are split by a series of land use 

variables (Crops < 34%, Grassland < 3.82%) and finally a soil variable (deep soil clay >= 6%). 

Here, the story is less clear and the groups of medium risk (Y5) and high risk (Y6) are both small 

and have wide distributions (Figure 2.5B), with only 17 and 24 watersheds, respectively. 

Generally, those watersheds with higher probabilities of exceedance have more agricultural land, 

and if soil is introduced there is extremely low clay (<5.5%) with a surrogate split of high sand 

content (>90.5%). Spatially, a different pattern emerges – much of the northwestern LP is no 

longer in a medium or high probability category and pockets of such in the southwestern LP 

become more isolated. It is important to note the relative level of difficulty in explaining the 
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probability of exceeding 2 mg/L because the overall probabilities at the watershed level are much 

lower (Figure 2.3E) and few have high values. 

Figure 2.5 CART results for >2 mg/L NO3-N. Results from CART analysis for median 

probability of exceeding 2 mg/L, or detecting nitrate within a HUC12 watershed. A) Decision 

tree identifying each split within the data. Each node contains the group mean probability of 
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Figure 2.5 (cont’d) exceedance, the total watersheds in the group (n), and the proportion 

response explained (PRE), a metric that describes the performance of the split relative to the 

entire dataset. Nodes are colored based on their mean probability, with higher probabilities in 

darker colors. The final CART groups are numbered from low to high concentration. B) The 

final CART groups are mapped by HUC12. Colors correspond and groups are consistent with 

those in A, with higher probabilities in darker colors. C) Violin plots for each final group. Violin 

plots display the range and mean as a line with a probability density function fit to show the 

“shape” of the distribution – thicker areas contain more samples. 

 

5.2.3 Sensitivity 

We performed CART analysis on a response variable based solely on point data to 

confirm that kriging methods produce comparable results. This CART reasonably predicts 

watershed-averaged well point concentrations in Quaternary aquifers (Figure A2.5). This 

response variable includes spatial biases in sampling that we believe were reduced by kriging. 

Regardless, driver variables had similar splitting thresholds. Recharge isolated the lowest 

concentration watersheds at a threshold of 242 mm/year. The group of outliers identified by 

having no mixed forest in the 2 mg/L CART were also identified and further split by a similar 

soil KSat value (12 mm/hr in soil depth 0-20 cm). Forest proportion of 47% and crop proportion 

of 50% appeared and split logically (ie., higher crop proportion was associated with higher 

nitrate concentrations). Aquifer KSat, which was not a top performing driver in the exceedance 

CARTs, appeared and sensibly split away a low concentration group based on low conductivity. 

The CART also performed similarly to the exceedance probability CARTs (PRE=40.3% 

compared to 0.4 mg/L: 43.2%, 2 mg/L: 40%). The similarity of these results, along with the 

benefits of the kriging, suggest that our primary analyses are both robust and preferred to this 

similar watershed point averaging for our dataset. 
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5.3 Understanding Drivers of Groundwater Nitrate Concentration 

5.3.1 Recharge 

Aquifer recharge was consistently the highest performing initial split at a threshold of 

242-251 mm/yr. This threshold creates a visible split in the LP (Figure 2.6A) consistent with the 

general pattern of the presence of groundwater nitrate (Figure 2.6B). There were no comparable 

surrogate splits; however, soil texture variables were almost as effective as competitors. The 

descriptive ability of recharge in LP groundwater nitrate may be due to its multifaceted 

dimensions as a transport variable – combining precipitation and geology. Nitrate would be 

unexpected in an aquifer underlying soils that are not sufficiently permeable; not only must 

nitrogen be applied, regardless of land use, but the resulting nitrate must be mobile within the 

unsaturated and saturated zones. However, recharge never appeared outside of the initial split in 

any CARTs, nor were there any equally performing variable in surrogate or competitor analysis. 

Recharge is a modeled variable and not generally readily available for groundwater nitrate 

analysis elsewhere, suggesting the importance of modeling and the need for better quantified 

recharge maps. After identifying high recharge areas, the nuance in groups was described by 

additional geologic and land use variables. 
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Figure 2.6 Aquifer recharge compared to probability of exceeding 0.4 mg/L NO3-N. A) 

HUC12 summarized median aquifer recharge colored by CART significant splits. >250 mm/yr 

was the consistent split for Quaternary aquifers. 241-250 mm/yr represents the additional 

watersheds included at the lower Bedrock CART recharge split. B) HUC12 summarized median 

probability of exceeding 0.4 mg/L, replicated from Figure 2.3C. Side by side, the figures show 

the broad consistent pattern of high recharge and elevated detectable nitrate probabilities. 

 

5.3.2 Vulnerable Geology and Hazardous Land Use 

Following recharge (a transport-related variables) comes the factors of geology and land 

use. Agricultural land and high nitrogen inputs are found across the LP, but detecting 

groundwater nitrate is improbable in the eastern parts of the state despite extensive row- and 

field- crop agriculture. In contrast, even heavily forested areas in northwestern LP, such as the 

Manistee National Forest, fall into medium detection probability Group X4 (Figure 2.4C). 

Surrogate splits often group land use variables when they appear in CART and similarly group 

soil and geology. Although this analysis does not show the full distributions of each variable 

within a group, future work will bring together the broader “definitions” of exceedance 

probability groups. As it stands, simply having non-vulnerable geology will usually isolate the 
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lowest probability classes. Groups with vulnerable geology combined with hazardous land use 

result in the highest probabilities. 

The breaks in variables identified in CART analysis allow the description of what 

constitutes “vulnerable” geology and “hazardous” land use. Vulnerable geology in the LP 

consists of sandy (>65%), low clay (<6%) soils at 100-300 cm depth with KSat greater than ~14 

mm/hr. Soil texture and hydraulic conductivity are connected variables, with coarser soils having 

increased conductivity. Aquifer KSat did not appear as top CART selection, but surrogate splits 

showed a level of 11-13 m/day was associated with soil variables. Hazardous land use includes 

watersheds with > 30-40% crop land use and minimal natural land use. Although forest and 

agriculture both appeared as deciding land uses, they did not act in binary, meaning that a split at 

40% agriculture did not correspond to a surrogate split of 60% forest due to the complexity of 

other urban and wetland land use. 

Notably, nitrogen inputs to groundwater or inputs from septic did not appear in CART 

analysis for >0.4 mg/L or >2 mg/L. Occasionally, these variables acted as surrogates with land 

use variables (TN and crops; septic and urban), but were not as effective at improving the model 

performance and so were not selected as the split. Nitrogen inputs to groundwater, like recharge, 

is a combination variable affected by land use and management, recharge, and geologic 

conditions. The lack of nitrogen loading as a dominant variable in this analysis may be due to 

modeling parameters or the lack of distinction between nitrogen sources. TN, without chemical 

speciation, may not be effective to describe different behavior of nitrogen sources in variable 

subsurface environments. 
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6 Conclusion 

This analysis provides new views and methods to describe drivers of groundwater nitrate 

concentrations in Michigan’s Lower Peninsula using an extensive well dataset, kriging, and 

CART. Sources of uncertainty include well nitrate measurements, kriging methods, modeled 

inputs, and variables not included in the current analysis. These sources of uncertainty also 

provide avenues of future work and improvements to this study. 

While there are significant benefits of using a spatially and temporally extensive dataset, 

the breadth introduces limitations and uncertainty. Many practitioners retrieved, analyzed, and 

digitized samples across time and space. Water table elevation, recent precipitation conditions, 

and season of sample were not included in this analysis, meaning spatially proximal samples 

may not reflect the same physical conditions. Though, it is likely that this variation is dampened 

by the presence of samples from a wide range of environments. Additionally, we selected a ten-

year period of samples to increase our spatial coverage and sampling density to improve kriging. 

Despite the variable conditions and uncertainty in such a large dataset, we see benefit in 

including more data and allowing kriging to account for uncertainty between nearby data points. 

This analysis did not include some variables found to be significant in other studies, 

notably well depth and a redox condition variable. Future work will include sulfate concentration 

in the watershed from the well chemistry database as a proxy for redox conditions, as dissolved 

oxygen is unavailable in this dataset. Well depth, screening interval, and static water level were 

not included due to insufficient data within the Wellogic database and difficulty summarizing 

this data at the watershed level. Although wells were separated by aquifer type, it is expected that 

shallower wells (with shallow screening interval) are more susceptible to elevated nitrate 

concentration.  
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This extensive dataset from state-collected samples allows for a statistically powerful 

analysis over a wide range of land use and geologic conditions. Future work may include 

increased driver variables, alternative tree-based machine learning methods, extended analysis of 

the distributions of other driver variables in each CART group, and an application of quantifying 

nitrate exposure hotspots based on the relationship between elevated nitrate concentration wells, 

population density, public supply well service, and continued nitrogen loading areas. This 

increased understanding of how vulnerable geology is affected by a variety of hazardous land 

uses can be combined with land use legacies and future projections to identify areas that are of 

concern or worth protecting.   

This study utilizes an extensive database of drinking water nitrate well measurements 

across Michigan’s Lower Peninsula in tandem with a suite of environmental variables to identify 

drivers of groundwater nitrate concentration using CART analysis. Aquifer recharge was isolated 

as an overarching “first cut” variable that can quickly eliminate many watersheds from concern 

of nitrate concentration. Watersheds with sufficient recharge were separated based on a 

combination of vulnerable geology and hazardous land use. Our analysis identified sandy, high 

hydraulic conductivity soils as “vulnerable” geologic conditions and heavy agricultural activity 

as “hazardous” land use. However, even more-forested, sparsely-populated watersheds were 

found to have medium likelihood of detectable nitrate concentrations if they were in high 

recharge, geologically vulnerable areas. These findings can be used to identify areas of concern 

for elevated nitrate concentration and drive modeling efforts using land use legacies, future land 

use projections, and process-based modeling to aid in management strategy. 
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APPENDIX 
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Text A2.1 Methods: Geocoding 

Well chemistry data was not provided with latitude-longitude coordinates for use in 

spatial analysis. However, addresses for each sample were provided. Because wells had been 

sampled and data recorded by many people over a long time span, there were significant 

inconsistencies in how addresses were entered. Wells were also frequently given a street address 

of “Well #1” or “Pumphouse” and only identifiable by an owner. Before we were able to use GIS 

geocoding software to convert address to coordinates, we filtered samples based on addresses 

and eliminated wells without street addresses. Although private wells were usually only sampled 

once, public wells were often sampled multiple times with inconsistently entered addresses. 

OpenRefine (https://openrefine.org/), a software for filtering and parsing text in messy datasets, 

was used to create unique address IDs for samples that had similar addresses so that only one 

spatial point would be created per well. Due to the size of the dataset and our limitations in 

human resources, we were not able to utilize all samples or manually find addresses that were 

not easily identifiable. Geocoding was performed in ArcGIS Pro 2.2 using the ArcGIS World 

Geocoding Service. This geocoding algorithm includes a score which demonstrates how 

confident it is that the address was correctly matched. We selected a minimum score of 95/100 

based on a qualitative analysis of sampled addresses with lower scores. Lower scores were often 

missing a street address (placed at a town center) or were moved to different street numbers than 

the input address had.  

  

https://openrefine.org/
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Text A2.2 Methods: Wellogic Join 

To classify samples aquifer source, data from the well properties database, Wellogic, was 

needed. Public wells are identified by a WSSN code for their owner; however, many owners 

have multiple wells. Public well owners with a single well were joined to the chemistry database 

based on WSSN. All other wells within the database were joined based on a spatial join 

operation performed in ArcGIS Pro 2.5. Wells in the chemistry dataset were joined to the nearest 

Wellogic well within 1 km. If there was not a well within 1 km, the wells could not be joined. 

addresses were available in the Wellogic databases, differences in address nomenclature and 

format required an unrealistic amount of pre-processing work to join wells based on address.  
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Figure A2.1 Map of thickness of Quaternary glacial sediment. From Soller & Garrity (2018). 
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Figure A2.2 Maps of soil textures for soil depths 100-300 cm. Fom NRCS (2017) A) % Sand, 

B) % Silt, C) %Clay 
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Figure A2.3 Map of nitrogen loads to groundwater. TN loads to groundwater. (Hamlin et al., 

2020; Wan et al., In Prep) 

 
Figure A2.4 Map of aquifer saturated conductivity. Calculated using Wellogic and 

Quaternary geology (Farrand & Bell, 1982) 

  



 

 

128 

 

 

Table A2.1 Complete set of variables used within CART. Variables are grouped by variable 

category. 

Category Variable Definition Unit 

Nitrogen TN_GW_kghayr_median 

Total Nitrogen Load to Groundwater, HUC12 

median kg/ha/yr 

  TN_Sep_kghayr_HUC12_md 

Total Nitrogen Load from Septic Tanks, HUC12 

median kg/ha/yr 

Aquifer aq_ksat_mday_median Aquifer Ksat, HUC12 Median m/day 

  recharge_mmyr_median Aquifer Recharge, HUC12 median mm/yr 

  WellProp_Drift Proportion of HUC12 Wells in Quaternary Aquifer  - 

Soil sandtotal_r_lay1_median Soil 0-20 cm % Sand, HUC12 median % 

  sandtotal_r_lay4_median Soil 100-300 cm % Sand, HUC12 median % 

  claytotal_r_lay1_median Soil 0-20 cm % Clay, HUC12 median % 

  claytotal_r_lay4_median Soil 100-300 cm % Clay, HUC12 median % 

  ksat_soil_lay1_median Soil 0-20 cm Ksat, HUC12 median mm/hr 

  ksat_soil_lay4_median Soil 100-300 cm Ksat, HUC12 median mm/hr 

LULC OpenWater_per Open Water %, HUC12 % 

  DevOpen_per Developed - Open %, HUC12 % 

  DevLow_per Developed - Low Intensity %, HUC12 % 

  DevMed_per Developed - Medium Intensity %, HUC12 % 

  DevHigh_per Developed - High Intensity %, HUC12 % 

  Barren_per Barren %, HUC12 % 

  DecidFor_per Forest - Deciduous %, HUC12 % 

  EvergreenFor_per Forest - Evergreen %, HUC12 % 

  MixedFor_per Forest - Mixed %, HUC12 % 

  ShrubScrub_per Shrub/Scrub %, HUC12 % 

  GrasslandHerb_per Grassland Herbaceous %, HUC12 % 

  PastureHay_per Pasture/Hay %, HUC12 % 

  Crops_per Cultivated Crop %, HUC12 % 

  WoodyWetlands_per Woody Wetlands %, HUC12 % 

  HerbWetlands_per Herbaceous Wetlands %, HUC12 % 

  forest_per Aggregated Forest %, HUC12 % 

  urban_per Aggregated Urban %, HUC12 % 

  wetland_per Aggregated Wetland %, HUC12 % 
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Figure A2.5 CART decision tree for sensitivity analysis predicting mean NO3-N 

concentration. Watersheds included must have >= 20 wells in Quaternary aquifer. Variable 

names can be referenced in Table A2.1. 
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