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ABSTRACT 

INCORPORATING DIFFERENTIAL SPEED IN COGNITIVE DIAGNOSTIC MODELS 

WITH POLYTOMOUS ATTRIBUTES 

 

By 

Hope Onyinye Akaeze 

The recent increase in interest for instructional relevance and fine-grained feedback from 

assessments has led to a unified paradigm of educational measurement, combining cognitive 

psychology with psychometrics, and thus, cognitive diagnostic assessment or CDA. CDAs are 

particularly useful for identifying areas of students’ needs as well as designing individualized 

instruction and learning/teaching interventions to meet those needs. However, the typical CDAs 

assess coarsely defined attributes and lack information on the cognitive processes that underlie test 

performance. 

Cognitive processing takes time. A typical CDA is time-limited and the time an examinee 

allocates to tasks can provide insight on the cognitive process underlying the response. Response 

time (RT) has therefore been identified as important collateral information that can be used to 

account for examinee behavior in cognitive assessment. However, the use of RT in measurement 

models has, so far, been limited to approaches with the strict assumption that a test taker maintains 

a constant speed over the test process. In addition, most cognitive diagnostic modeling approaches 

have been directed towards classification of examinees based on their profiles on dichotomized 

status on the latent skill. Classifying latent attribute status into mastery and non-mastery not only 

obscures information but also ignores the fact that learning can be progressive, and respondents in 

the same category (mastery/non-mastery) may possess the skill to a considerably varying degree. 

These two concerns are the focus of the current study.  



This study aims to develop a more adaptable and informative modeling approach for 

examining and accounting for the effect of time speededness on examinees’ cognitive processing 

behavior and ability in diagnostic models with polytomous attributes, thereby increasing the 

diagnostic potentials of CDAs. This is achieved by integrating variable working speed and partial 

mastery (polytomous attributes) into cognitive assessment model. The strengths of the model are 

assessed and compared to existing models using an empirical data and a simulation study. This 

new model, where applicable, allows for finer-grained feedback and flexibility in the assumed 

role of RT in cognitive diagnostic assessment while providing useful supplementary information 

to better understand testing strategies and behaviors.



iv 
 

To the memory of my beloved parents, Israel and Obioma Ilechukwu 

and 

To my “Dad” & “Mom”, Ikechukwu and Chibuzor Ilechukwu 

Thank you for investing in me unconditionally. 

“Your greatest contribution to the universe may not be something you do,  

but someone you raise” - Unknown 



v 
 

ACKNOWLEDGMENTS 

 

Many thanks to my advisor and dissertation chair, Dr. Kimberly Kelly. I would not have 

made it this far without her unwavering support. I thank her for believing in me, even when I 

doubted myself. I would also like to thank my committee members, Dr. Mark Reckase, Dr. Aline 

Godfroid, and Dr. Chi Chang. This project was developed and refined by their constructive 

feedback and insights. I lack the words to adequately describe how blessed I feel to have their 

unconditional support, even with the inconveniences created by the COVID-19 situation. 

My immense gratitude goes to my brother (“Dad”), Ikechukwu Ilechukwu, and his wife 

(“Mom”), Chibuzor Ilechukwu. I am grateful for their unfailing emotional, financial, and 

spiritual support; their dedication to my success fuels my dreams. I also want to thank my 

siblings and siblings-in-law. Their unconditional love and support cannot be measured. They 

held me through and gave me a reason to persevere to the finish line, especially after my 

mother’s demise. I am eternally grateful to God for them. Special thanks go to my husband, 

Henry Akaeze, for his sacrifices and patience through this arduous journey. A big thank you to 

my nieces and nephews for their support and sincere belief in my ability to set a good example 

for them. 

I would also like to thank my mentors and colleagues at the Center for Statistical 

Training and Consulting (CSTAT). The mentoring and support I received as a member of the 

CSTAT team, together with the statistical consulting experience, enriched my Ph.D. experience 

in no small measure.  Many thanks also go to the Office of International Students and Scholars 

(OISS) and the Community Volunteers for International Program (CVIP) at MSU for their 

unwavering financial support through the most challenging periods of my journey through MSU. 



vi 
 

For their prayers and support, I sincerely appreciate Pastor and Mrs. Ozoemena Ani, and 

terrific friends like Nathalie, the Aboludes, the Nwankwos, the Mwikas, and the Flynns. Time 

and space would fail me to mention everyone by name. I also want to especially thank my 

friends and study buddies, Talesha, Tingqiao, Kathy, Lin, and Lora, who held me accountable for 

every minute of procrastination and helped me stay on track. I cannot forget many other friends 

who traveled the rough paths with me, cheered me on, and celebrated each accomplishment – the 

list is long. I am grateful for such good friends. 

My special thanks also go to Dr. Peida Zhan of Zhejiang Normal University, Jinhua, 

China, for providing me with helpful references, reviewing and providing feedback on my R 

codes, and generously sharing his knowledge about the cognitive diagnostic model with me. I 

also thank Dr. Tzur Karelitz of The National Institute for Testing & Evaluation, Jerusalem, 

Israel, for granting me free access to his data. 

Finally, and most importantly, “To the only wise God our Saviour, be glory and majesty, 

dominion and power, both now and ever. Amen.” Jude vs. 25.



vii 
 

TABLE OF CONTENTS 

 

 

LIST OF TABLES ......................................................................................................................... ix 

 

LIST OF FIGURES ....................................................................................................................... xi 

 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

1.1 Statement of Problem ....................................................................................................... 3 

1.1.1 The Dichotomy Problem ........................................................................................... 3 

1.1.2 The Speededness Effect ............................................................................................ 4 

1.2 Purpose of Study .............................................................................................................. 6 

1.3 Research questions ........................................................................................................... 8 

1.4 Overview of Chapters....................................................................................................... 8 

 

CHAPTER 2: LITERATURE REVIEW ...................................................................................... 10 

2.1 Cognitive Diagnostic Modeling ..................................................................................... 10 

2.2 The Q-Matrix.................................................................................................................. 11 

2.3 The Nature of Attributes ................................................................................................ 14 

2.3.1 Higher-order Latent Trait Model ............................................................................ 16 

2.3.2 Attribute Hierarchy Model ...................................................................................... 17 

2.4 Implementation of Cognitive Diagnostic Models .......................................................... 19 

2.4.1 Bayesian Estimation Using MCMC........................................................................ 20 

2.4.2 Estimating attribute profiles .................................................................................... 24 

2.4.3 Assessing model fit ................................................................................................. 26 

2.4.4 Response Time Models ........................................................................................... 27 

2.5 Response Time and Response Accuracy ........................................................................ 27 

2.5.1 Joint Models of Response Time with Accuracy ..................................................... 29 

2.6 Response Time in Cognitive Diagnostic Models ........................................................... 29 

 

CHAPTER 3: METHODOLOGY ................................................................................................ 31 

3.1 The log-normal random quadratic variable speed model ............................................... 31 

3.2 Deterministic, Input, Noisy ‘And’ Gate (DINA) Model for Polytomous Attributes ..... 33 

3.3 The Joint Differential Speed DINA (JDS-DINA) Model .............................................. 36 

3.3.1 Model Specifications .............................................................................................. 41 

3.3.2 Parameter Estimation .............................................................................................. 42 

3.3.3 Assessment of Model Fit ........................................................................................ 46 

3.4 Real data analysis ........................................................................................................... 47 

3.4.1 Model Comparisons ................................................................................................ 49 

3.5 The Simulation Study ..................................................................................................... 51 

3.5.1 Simulation design.................................................................................................... 51 

3.5.2 Data Generation ...................................................................................................... 54 

3.5.3 Model Evaluation .................................................................................................... 56 

 

CHAPTER 4: RESULTS .............................................................................................................. 58 



viii 
 

4.1 Research Question 1 ....................................................................................................... 58 

4.1.1 Model fit statistics ................................................................................................... 58 

4.1.2 Standard error of item parameter estimates ............................................................ 60 

4.2 Research Question 2 ....................................................................................................... 61 

4.2.1 Comparison of model fit ......................................................................................... 61 

4.2.2 Classification accuracies ......................................................................................... 62 

4.3 Research Question 3 ....................................................................................................... 63 

4.3.1 Overall parameter recovery of the JDS-DINA model ............................................ 63 

4.3.2 Effect of design conditions on parameter recovery ................................................ 67 

4.4 Research Question 4 ....................................................................................................... 72 

4.5 Research question 5 ........................................................................................................ 80 

 

CHAPTER 5: DISCUSSION AND CONCLUSION ................................................................... 84 

5.1 Summary of Findings ..................................................................................................... 84 

5.1.1 Dichotomization ...................................................................................................... 84 

5.1.2 Response time ......................................................................................................... 84 

5.1.3 Variable speed ......................................................................................................... 85 

5.1.4 Supplementary RT information .............................................................................. 85 

5.2 Limitations and future research ...................................................................................... 87 

5.2.1 Test length ............................................................................................................... 87 

5.2.2 Parameter values ..................................................................................................... 88 

5.2.3 Simulation conditions ............................................................................................. 88 

5.2.4 Computational burden ............................................................................................. 89 

5.3 Summary ........................................................................................................................ 90 

 

APPENDICES .............................................................................................................................. 92 

APPENDIX A: SUPPLEMENTARY MATERIALS FOR RESEARCH QUESTION 4 ............ 93 

APPENDIX B: SUPPLEMENTARY MATERIALS FOR RESEARCH QUESTION 5 .......... 101 

APPENDIX C: JAGS CODES FOR STUDY MODELS ........................................................... 119 

 

REFERENCES ........................................................................................................................... 130 



ix 
 

LIST OF TABLES 

 

Table 1 Binary Q-matrix ..............................................................................................................12 
 

Table 2 Polytomous Q-matrix ......................................................................................................13 
 

Table 3 Design conditions – person parameters ..........................................................................53 
 

Table 4 Design conditions – structural parameters ......................................................................54 
 

Table 5 Model fit statistics for the 2012 PISA computer-based mathematics test ......................59 
 

Table 6 Estimated item parameters for the 2012 PISA computer-based mathematics items ......60 
 

Table 7 Model fit statistics for the Language Rule data ..............................................................61 
 

Table 8 Classification accuracy rates of attributes for the language data ....................................62 
 

Table 9 Bias and RMSE of item and structural parameters of JDS DINA with polytomous 

attributes .......................................................................................................................................63 
 

Table 10 MANOVA and ANOVA results for item parameters ..................................................67 
 

Table 11 MANOVA and ANOVA results for attribute structural parameters ............................69 
 

Table 12 Bias and RMSE of 𝛿0 by simulation design conditions – binary attributes .................73 
 

Table13 Exact and weighted classification accuracy rates ..........................................................79 
 

Table 14 Bias and RMSE of 𝛿0 by simulation design conditions – polytomous attributes .........81 
 

Table 15. Exact and weighted classification accuracy rates with polytomous attributes ............83 
 

Table 16 Computation times (in minutes) for study models ........................................................89 
 

Table A1 Bias and RMSE of λ by simulation design conditions – binary attributes ..................102 
 

Table A2 Bias and RMSE of δ1 by simulation design conditions – binary attributes.................104 
 

Table A3 Bias and RMSE of γ0k2 by simulation design conditions – binary attributes .............106 
 

Table B1 Bias and RMSE of λ by simulation design conditions – polytomous attributes ..........110 
 

Table B2 Bias and RMSE of δ1 by simulation design conditions – polytomous attributes ........112 
 



x 
 

Table B3 Bias and RMSE of γ0k2 by simulation design conditions – polytomous attributes .....114 
 

Table B4 Bias and RMSE of γ0k3 by simulation design conditions – polytomous attributes .....116 
 

Table B5 Bias and RMSE of γ0k4 by simulation design conditions – polytomous attributes .....118 
 

Table B6 Bias and RMSE of γ1 by simulation design conditions – polytomous attributes ........120 
 

 

 

 

 

 

 



xi 
 

LIST OF FIGURES 

 

Figure 1 Forms of attribute hierarchy ..........................................................................................18 

Figure 2 Diagrammatic representation of the DINA model ........................................................34 

Figure 3 Higher order polytomous attributes model ....................................................................39 

Figure 4 K × I Q matrix for binary attributes ..............................................................................52 

Figure 5 K × I Q matrix for binary attributes ..............................................................................52 

Figure 6 Profile correct classification rates .................................................................................65 

Figure 7 Effect of στ0
2  on absolute bias and standard error of λ ..................................................68 

Figure 8 Effect of στ1
2  on absolute bias and standard error of λ ..................................................68 

Figure 9 Effect of στ2
2  on absolute bias and standard error of λ ..................................................69 

Figure 10 Effect of ρθτ0 on absolute bias and standard error of γ0k2 .........................................70 

Figure 11 Effect of ρθτ0 on absolute bias and standard error of γ0k3 .........................................70 

Figure 12 Effect of ρθτ0 on absolute bias and standard error of γ0k4 .........................................71 

Figure 13 Effect of στ0
2  on absolute bias and standard error of γ1 ...............................................71 

Figure 14 Effect of ρθτ0 on absolute bias and standard error of γ1 .............................................72 

Figure 15 Bias of λ across simulation conditions ........................................................................76 

Figure 16 RMSE of λ across simulation conditions ....................................................................76 

Figure 17 Bias of δ0 across simulation conditions ......................................................................77 

Figure 18 RMSE of δ0 across simulation conditions ..................................................................77 

Figure 19 Bias of δ1 across simulation conditions  .....................................................................78 

Figure 20 RMSE of δ1 across simulation conditions ..................................................................78 

Figure 21 Bias of 𝛾0𝑘2 across simulation conditions ...................................................................79 



xii 
 

Figure 22 Bias of 𝛿0 across simulation conditions – polytomous attribute configuration ..........80 

Figure 23 RMSE of 𝛿0 across simulation conditions – polytomous attribute configuration .......83 

Figure 24 Relationships among person parameters from PISA computer-based Math test ........86 

Figure A1 RMSE of γ0k2 across simulation conditions – polytomous attribute configuration...108 

Figure A2 Bias of γ1 across simulation conditions – polytomous attribute configuration ..........108 

Figure A3 RMSE of γ1 across simulation conditions – polytomous attribute configuration ......109 

Figure B1 Bias of δ1 across simulation conditions – polytomous attribute configuration ..........122 

Figure B2 RMSE of δ1 across simulation conditions – polytomous attribute configuration ......122 

Figure B3 Bias of γ0k2 across simulation conditions – polytomous attribute configuration.......123 

Figure B4 RMSE of γ0k2 across simulation conditions – polytomous attribute configuration ...123 

Figure B5 Bias of γ0k3 across simulation conditions – polytomous attribute configuration.......124 

Figure B6 RMSE of γ0k3 across simulation conditions – polytomous attribute configuration ...124 

Figure B7 Bias of γ0k4 across simulation conditions – polytomous attribute configuration.......125 

Figure B8 RMSE of γ0k4 across simulation conditions – polytomous attribute configuration ...125 

Figure B9 Bias of γ1 across simulation conditions – polytomous attribute configuration ..........126 

Figure B10 RMSE of γ1 across simulation conditions – polytomous attribute configuration ....126 

Figure B11 Bias of λ across simulation conditions – polytomous attribute configuration ..........127 

Figure B12 RMSE of λ across simulation conditions – polytomous attribute configuration ......127 

 

 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

 

Learning, even from the best-designed instruction, can only be verified through 

assessment.  A well-designed assessment provides evidence to validate the expected effect of 

instruction. It is, therefore, an indispensable tool in any teaching and learning process. Educational 

assessments are of two broad types – summative assessment and formative assessment – depending 

on the purpose. Summative assessments are comprehensive assessments administered at the end 

of the course of study, as a summary evaluation of student learning. On the other hand, formative 

assessments are designed to evaluate students’ learning over the study period, primarily to inform 

and enhance the teaching and learning process. The feedback from formative assessments is 

particularly useful for diagnosing the strengths and weaknesses of students and/or instructional 

materials/approach and for determining the best improvement strategy, when necessary. 

Over the past few decades, there has been an increased push for fine-grained feedback from 

formative assessments; feedback that provide information, not only on examinees’ cognitive 

abilities, but also on their proficiencies in the required processing skills (Leighton, Gierl, & Hunka, 

2004; Sessoms & Henson, 2018; Sheehan & Mislevy, 1990) on a test. This interest has led to a 

unified paradigm of educational measurement, combining cognitive psychology with 

psychometrics, and thus, cognitive diagnostic assessment or CDA (Leighton & Gierl, 2007). 

Cognitive diagnostic assessment is an alternative form of assessment that provides formative 

information on students’ cognitive strengths and weaknesses in the targeted skills. Such 

assessments are particularly useful for identifying areas of students’ needs as well as designing 

individualized instruction and learning/teaching interventions to meet those needs. 
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Truly, CDAs provide detailed information on cognitive ability or performance level, but 

the classic CDA is devoid of information regarding the cognitive processes that underlie test 

performance (De Boeck & Jeon, 2019). The knowledge of whether a student got an item 

right/wrong, or whether a student has mastered a skill or not, is insufficient to tell the cognitive 

process that led to the answer (Tatsuoka & Tatsuoka, 1979). Process information provides an 

answer to the ‘why’ and ‘how’ of a task response. Knowledge of this cognitive process has several 

advantages – detection of aberrant test behaviors, better understanding and interpretation of test 

scores, better calibration of tests and test items, and richer information for developing remedial 

interventions. 

One approach for developing theoretical information about cognitive process is using 

expert knowledge of the process domain in assessment development (Rupp, Templin, & Henson, 

2010). Another method is to retrospectively or concurrently review the examinees’ instructional 

background (Tatsuoka & Tatsuoka, 1979) , or probe the examinees for self-report of their solution 

strategies (Rupp et al., 2010); both of which can be daunting with large scale assessments. 

Alternative evidence for cognitive process comes from eye tracking information (De Boeck & 

Jeon, 2019; Rupp et al., 2010). Predicated on the fact that the mind follows the eye, this technique 

tracks eye movement and uses location and duration of fixation to approximate the cognitive 

processes of examinees. As Rupp et al. (2010) noted, this procedure can be resource-intensive. De 

Boeck and Jeon (2019) identified an even more sophisticated procedure - evaluating the brain’s 

electrical activity from electroencephalogram (EEG) – as another source of collateral information 

for process-related measurement. 

Cognitive processing, as we know it, takes time; and the time an examinee allocates to 

tasks can provide insight on the cognitive process underlying the response (De Boeck & Jeon, 
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2019). The time taken to carry out all the operations required for a task is therefore a useful source 

of information that can be put to multiple uses, including improved estimation of examinees’ 

performance. Moreover, with the advent of computerized testing, response time data have become 

accessible for this purpose. Several research efforts have also been directed towards modeling the 

relationship between response time and test performance, especially within the IRT framework 

(e.g., Sen, 2012; Tatsuoka & Tatsuoka, 1979); van der Linden, 2007; Verhelst, Verstralen, & 

Jansen, 1997; Wang & Hanson, 2005). A few others have also been devoted to improving cognitive 

diagnostic model (CDM) estimation and inferences by integrating response time with responses 

(e.g. Huang, 2019; Zhan, Jiao & Liao, 2018a; Zhan, Liao, & Bian, 2018b).  

1.1 Statement of Problem  

1.1.1 The Dichotomy Problem 

As noted earlier, cognitive diagnostic assessments are developed to meet the need for finer-

grained feedback from educational tests and to make these tests more relevant to classroom 

instruction.  However, most modeling approaches have been directed towards classification of 

examinees based on their profiles as dichotomized status on the latent skills – mastery/non-

mastery. Like any random variable, dichotomization leads to loss of information. Classifying latent 

attribute status into mastery and non-mastery not only obscures information (Karelitz, 2008), but 

it also ignores the fact that learning can be progressive (Karelitz, 2004), and respondents in the 

same category (mastery/non-mastery) may possess the skill to a considerably varying degree 

(Zhan, Ma, Jiao, & Ding, 2019a). On the other hand, modeling continuous attributes places 

students on a continuum that is, in most cases, not informative enough for meaningful formative 

and diagnostic purposes (Karelitz, 2004). To create a middle ground between these two extremes, 

researchers are calling for cognitive diagnostic modeling with theoretically relevant polytomous 
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attributes that would allow some gradation in skills diagnosis (e.g., Hartz, 2002; Karelitz, 2004, 

2008; Zhan, Wang, & Li, 2019b). 

1.1.2 The Speededness Effect 

Response time (RT), as a measure of cognitive process, has been identified as important 

collateral information that can be used to account for examinee behavior and improve the 

estimation of students’ proficiency levels in cognitive assessment (Schnipke & Scrams, 2002). A 

good number of modeling approaches have therefore been proposed to explore the benefits of 

response time in item response models (e.g., Sen, 2012; Simonetto, 2011; van der Linden, 2007) 

and cognitive diagnostic models (e.g., Zhan et al., 2018a; Zhan et al., 2018b).  These studies have 

shown that incorporating response time in item response modeling can improve estimation and 

classification accuracy, detect aberrant test-taking behaviors, and differentiate among different 

test-taking strategies. 

Gulliksen (1950) identified two unique types of tests, with respect to timing – power tests 

and speed tests. Power tests are designed to measure only the knowledge level of examinees. For 

these tests, examinees are allowed unlimited time and are scored based on their responses alone. 

Speed tests are designed to measure cognitive processing speed and are scored based on the time 

taken to answer a fixed number of items or the number of items completed within a set time 

interval. Contemporary educational assessments, however, though designed to measure knowledge 

only, are usually time-limited. This time constraint on a power test introduces construct irrelevant 

variance into the measurement (Wollack, Cohen, & Wells, 2003; Kahraman, Cuddy, & Clauser, 

2013), due to the intricate relationship between response time and accuracy/ability. This 

relationship is reflected in the phenomena known as the speed-accuracy tradeoff and speed-ability 

relationship. The speed-accuracy tradeoff defines a within-person negative nonlinear relationship 
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between accuracy and time; the faster an examinee completes a task, the lower his or her level of 

accuracy on the tasks (van der Linden, 2007). At the between-person level, we can only define a 

speed-ability relationship whereby examinees with higher ability take less time to complete the 

test. While changes in speed are sometimes negligible (van der Linden, Breithaupt, Chuah, & 

Zhang, 2007), more substantial speed changes within an examinee are frequent in time-limited 

high-stakes tests. These can present unobserved dependencies in the item responses. 

In cognitive assessments, RT is sometimes treated as a parallel dependent variable with 

response accuracy (RA), as a covariate for RA, or as a co-dependent variable with RA to explain 

local dependency (De Boeck & Jeon, 2019). While all three options for incorporating RT have 

been explored in the IRT framework (e.g., ; Fox & Marianti, 2016; Molenaar, Tuerlinckx & van 

der Maas, 2015; van der Linden, 2007) and cognitive diagnosis (e.g., Huang, 2019; Zhan et al., 

2018a; Zhan et al., 2018b), the use of RT in measurement models has, so far, been limited to 

approaches with the assumption of constant speed. These approaches assume that a test taker 

maintains a constant speed over the test period. Few exceptions to this are the works by Fox & 

Marianti (2016) and Molenaar, Oberski, Vermunt, & De Boeck (2016), where response time is 

incorporated into the IRT model with differential speed. To date, no similar work has been 

recorded in cognitive diagnostic modeling. 

Pure cognitive diagnostic models that use only the responses ignore the speededness effect 

– the effect that time constraint has on responses, and subsequent ability or mastery-based 

inferences. Accounting for response time with a constant speed assumption improves estimation 

but only captures the between-level relationship between response time and responses. However, 

this between-level relationship tells nothing about the within-level relationship and may cause the 

item responses to violate the local independence assumption. In a time-limited test, an examinee 
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may change the speed of response due to fatigue, change in strategy, a reminder of a time limit, or 

other aberrant behavior like cheating or guessing. Hence, it would be naive to impose a constant 

speed assumption in modeling students’ cognitive speed of performance on a test. 

If RTs are to become routinely used as supplementary information in cognitive diagnostic 

modeling, more flexibility in the framework for incorporating RT is needed. Such modeling 

framework would provide insight into the effect of test speededness and reveal aberrant behaviors 

that could distort the ability estimates of examinees. It would also allow researchers to integrate 

changes in working speed and test their specific hypotheses about the role of RT in cognitive 

diagnostic models. 

1.2 Purpose of the Study 

The insight for this study is drawn from Fox & Marianti (2016)’s joint model for improving 

IRT estimation by incorporating RT with varying speed; Zhan et al. (2018a)’s work on 

incorporating RT in cognitive diagnostic models; and the need to increase the diagnostic potential 

of CDMs via polytomous attributes (Chen & de la Torre, 2013; Karelitz, 2004, 2008; Zhan et al., 

2019b; Hartz, 2002). The current study provides an adaptable and informative modeling 

framework to examine and account for the effect of time speededness on examinees’ cognitive 

ability and processing behavior in diagnostic models. The research goal is to propose a new 

approach that allows for finer-grained feedback and flexibility in the assumed role of RT in 

cognitive diagnostic assessment, and to compare the performance of the approach with existing 

ones, where applicable. 

Karelitz, (2004) and Zhan et al. (2019b) developed two modeling frameworks to address 

diagnostic measurement with polytomous attributes. Karelitz (2004) proposed an ordered category 

attribute coding (OCAC) framework to model attributes with ordinal levels, each coded from 0 
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(for the lowest level) to the highest level. However, his approach assumes (1) invariant item 

parameters, which is unrealistically restrictive, and (2) a saturated latent structural model for the 

attributes, which can quickly become computationally intensive. To improve on the OCAC 

framework, Zhan et al. (2019b) proposed the partial mastery, the higher-order latent structural 

model for polytomous attributes. This model relaxes the OCAC constraint of common slipping 

and guessing parameters across items and shows that constraining the structural model with a 

higher-order latent trait model was equally good at parameter recovery and more parsimonious 

and time efficient (Zhan et al., 2019b). However, these two approaches, did not recognize the lack 

of local independence in responses that could be attributed to the underlying cognitive processes 

students engage in while responding to tasks used in measuring these attributes. 

To account for the effect of cognitive processes using response time, Fox & Marianti 

(2016) proposed a joint model for responses and response times that allows for differential speed 

via a latent growth model for response times. Such an extension has never been explored with 

cognitive diagnostic models. On the cognitive diagnostic modeling side, Zhan et al. (2018a) 

proposed joint modeling of RT and RA, with a correlational structure between the model person 

and item parameters, following the hierarchical modeling framework of van der Linden (2007). 

Modeling the correlational structure of parameters, with a constant speed component, accounts for 

the interdependence between RT and RA but fails to account for the effect of differential test 

speededness on RA. 

The current study (1) extends Fox & Marianti’s (2016) work to cognitive diagnostic 

models, (2) generalizes the study by Zhan et al. (2018a) to polytomous attributes and (3) permits 

variable speed as examinees progress through the tasks on a test. The main objectives of this study 

are to (1) propose a new flexible model for incorporating response time into cognitive diagnostic 
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models, with polytomous attributes and differential speed across tasks; (2) assess the performance 

of the new model in terms of parameter recovery for different conditions of sample size, number 

of items and correlations between RT and ability and (3) compare the performance of the new 

model with that of existing models on real data, in terms of model fit and precision of parameter 

estimates. 

1.3 Research questions 

In line with the objectives listed above, this study seeks to answer the following research 

questions: 

1. How does the new model compare with existing models, in terms of model fit and 

precision of estimates? 

2. How does the dichotomization of polytomous attributes affect correct classification 

accuracies? 

3. How is the recovery of item and person parameter estimates in the new model affected by 

the variances of RT parameters and the correlation between RT and RA parameters? 

4. How well does the new model recover person and item parameter estimates when 

attributes are dichotomized? 

5. How well does the new model for polytomous attributes recover person and item 

parameter estimates? 

1.4 Overview of Chapters 

In the following chapters, cognitive diagnostic models, response time models, and their 

joint models are discussed in greater detail, with emphasis on the aspects that are germane to the 

objectives of the current study. Chapter 2 presents definitions of relevant concepts and 

terminologies related to response time and cognitive diagnostic models. In this chapter, the study’s 
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rationale is established through a comprehensive literature review of existing studies related to 

exploiting response time in cognitive diagnostic modeling. 

Chapter 3 describes the methods used to address the research questions, including the 

technical details of the proposed and existing models, model estimation and assessment 

procedures, description of empirical data, and the design and implementation of the pertinent 

simulation study. The results from the methods described in Chapter 3 are summarized and 

presented in Chapter 4. Finally, Chapter 5 provides a discussion of the results and their implication 

for cognitive diagnostic modeling. This fifth chapter concludes the study with the limitations of 

the current study and recommendations for future studies. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Cognitive Diagnostic Modeling 

Cognitive diagnostic models or CDMs (de la Torre, 2009; Huebner, 2010) are 

psychometric models specially designed to assess examinees’ proficiency and classify them based 

on their mastery or non-mastery of postulated attributes. CDMs are also known by several other 

names in literature, such as restricted latent class models (Haertel, 1989; Xu, 2017), diagnostic 

classification models (Rupp et al., 2010; Sessoms & Henson, 2018), cognitive psychometric 

models, multiple classification latent class models or MCLCM (Maris, 1999) structured item 

response theory (SIRT) models (Rupp & Mislevy, 2007; Leighton et al., 2004), and latent response 

models (Maris, 1995) (check Rupp & Templin, 2008 for more labels). These variants differ in 

functional forms, assumptions, complexities, and areas of emphasis, but they all provide nuanced 

information on examinees’ skills, which are then used to classify them based on their score profiles 

on the skills. 

The major difference between CDMs and traditional multidimensional item response 

theory (IRT) or CTT models is that the former is concerned with a binary (mastery or non-mastery) 

or polytomous latent variable for diagnostic and criterion-referenced purposes while the latter 

provide scores on a continuously valued latent variable, mostly for norm-referenced 

interpretations. The categorical nature of the latent variable is one similarity between CDMs and 

conventional latent class models. However, in latent class models, subjects are classified into one 

of many possible categories of a single latent variable based on their observed response pattern, 

but CDM classifies subjects based on their membership to latent categories of many latent 
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variables or attributes (Maris, 1999) and classification is restricted by the assumed form of 

interaction among the measured attributes. 

Like every other modeling tool, CDM has had its fair share of criticisms. Most of the 

criticisms of CDM applications are concerned with the lack of evidence for reliability, validity, 

distinctiveness of attributes, measurement invariance, and informed practical decision-making 

(e.g., Sinharay & Haberman, 2009; Bradshaw, Izsák, Templin & Jacobson, 2014; Chen & de la 

Torre, 2014; Henson, 2009; Jurich & Bradshaw, 2014; Ravand, 2016; Rupp & Templin, 2008). A 

more overarching problem, which seems to be the source of all the other limitations, is that most 

existing educational assessments are designed to align to content instead of attributes. As a result, 

CDM applications employ the retrofitting procedure, with items that are coded for attributes after 

the test had been developed and administered. This qualifies the utility of inference generated from 

CDMs since the items were not originally developed to measure these micro-level attributes (Gierl, 

Alves, & Majeau, 2010). Details of these limitations are discussed elsewhere in Roussos, Templin 

& Henson (2007). 

2.2 The Q-Matrix 

In the cognitive diagnostic assessment framework, any skill or specific knowledge that a 

student requires to perform a task is generally referred to as an attribute. For any item/task, the 

combination of attributes needed for a correct response to it is known as its attribute profile. Every 

examinee is also characterized and classified by attribute profile, which is his/her mastery levels 

on the vector of attributes being measured. The complete list of all possible combinations of 

attributes assessed in a test is called the latent attribute space (Tatsuoka, 1990). The Q matrix is a 

matrix representation of the relationship between test items and the attributes of interest in a 

diagnostic assessment. It is a I by K matrix with elements qik indicating the mastery level of 
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attribute k required to answer item i correctly, where I is the number of items, and K is the number 

of attributes (Karelitz, 2008; Zhan et al., 2019). The columns of the Q matrix represent the 

attributes and the rows represent the items so that qjk = l-1 (l = 1…Lk) if item i requires examinees 

to possess level l of attribute k (k = 1…K) for a correct response, where Lk is the number of mastery 

levels measured for attribute k. The first mastery level of every attribute is set to 0 so that qjk = 0 

if item i requires the lowest mastery level of attribute k for a correct response. 

The Q matrix for a test with binary attributes is a special case of that described above. If 

all attributes are measured at only two levels, mastery/non-mastery, then the Q matrix reduces to 

a binary matrix of zeros and ones but with the same dimension. As an example, Table 1 provides 

the Q-matrix for the attributes in the Numbers content domain of TIMSS 2011 eighth-grade 

mathematics, adapted from Table 2 of Terzi & Sen (2019).  

Table 1 

Binary Q-matrix 

Item j 
Attribute k 

α1 α2 α3 

1 1 1 0 

2 0 1 0 

4 1 0 0 

5 1 1 1 

15 1 1 0 

16 1 1 0 

18 0 0 1 

30 0 0 1 

31 0 0 1 

Note. α1 – Possesses understanding of fraction equivalence and ordering; uses equivalent fractions 

as a strategy to add and subtract fractions. α2 – Understands decimal notation for fractions and 

compares decimal fractions; performs operations with decimals. α3 – Understands ratio concepts 

and uses ratio reasoning to solve problems; finds a percent of a quantity as a rate per 100. 

Table 2 represents the same information on Table 1 but, for illustrative purposes only, 

hypothetical entries have been assigned in the matrix to represent a hypothetical testing scenario 
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for polytomous attributes. Here, the first attribute is measured at two levels and the last two at 

three mastery levels (non-mastery, intermediate, and mastery). 

Table 2 

Polytomous Q-matrix 

Item j 
Attribute k 

α1 α2 α3 

1 0 0 0 

2 1 0 0 

4 1 0 2 

5 1 1 2 

15 0 2 0 

16 1 2 0 

18 0 1 0 

30 0 1 1 

31 0 0 2 

 

The Q-matrix is very similar to the loading matrix of a factor analysis model. However, 

unlike the loading matrix of FA, the Q-matrix is a key input for CDMs, and its correct specification 

is essential for a valid CDM-based assessment. An incorrect specification can lead to wrong 

parameter estimation and incorrect classification of examinees into proficiency groups (Chiu, 

Douglas, & Li, 2009; Köhn & Chiu, 2018a). For a Q-matrix to be valid, it must be complete, which 

means it should allow for all the possible proficiency profiles of examinees to be identified (e.g., 

Chiu et al., 2009). 

Construction of Q-matrix is usually done by a panel of subject-matter experts, item 

developers, or teachers. The results of such combined qualitative inputs can be very subjective. 

Given the crucial role of Q-matrix in CDM, the subjectivity in its construction can pose severe 

problems in parameter estimation and model validation. As such, several studies in the literature 

have been devoted to studying the completeness, validation, and impact of misspecification of the 

Q-matrix on CDM and CDM-based inferences (e.g., Kunina‐Habenicht, Rupp & Wilhelm, 2012; 
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Chiu, 2013; Terzi & Sen 2019; DeCarlo, 2011; de la Torre, 2008; de la Torre & Chiu, 2016; Liu 

et al., 2012; Terzi & de la Torre, 2018). 

2.3 The Nature of Attributes 

Latent traits, skills, attributes, latent characteristics, and elements of processes are all 

different labels used in literature for the categorical latent variables assessed in CDMs. The choice 

of label depends on the theoretical interpretations and inferences to be made about them. The 

degree of detail desired in the resulting inference determines the definitional specificity or 

definitional grain size of the attributes (Rupp, et al., 2010; Hong, Wang, Lim, & Douglas, 2015). 

A task with broad scope would often be operationalized with coarse-grained attributes to keep the 

dimension of the corresponding CDM practicable. The more finely-defined the attributes are, the 

higher the number of mastery levels for the attributes, and the more unmanageable the CDM 

becomes. To overcome this limitation, most CDMs are implemented with coarsely defined 

attributes for tasks that are broad in scope and finely defined attributes for tasks with smaller scope 

(Rupp et al., 2010). The selection, labeling, definition, and coding instructions for attributes must 

be done carefully to sufficiently represent the theoretical basis and intended use of the diagnostic 

assessment and, at the same time, prevent ambiguity and high inter-rater disagreement (Rupp, et 

al., 2010). For a meaningful diagnosis, the definition of grain size for an attribute must have 

theoretical support for its existence and developmental levels (Karelitz, 2008) 

In practice, the skills or attributes measured in a test are conceptually related. Such 

relationships need to be accounted for in cognitive assessment modeling (de la Torre & Douglas, 

2004) to reflect the way the attributes interact in the response process. The assumed nature of this 

relationship among attributes at the item level leads to the categorization of CDM into 

compensatory and non-compensatory models (Roussos, Templin, & Henson, 2007). 
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Non-compensatory models assume that the solution to an item depends on a combination 

of attributes. An examinee must possess of all these attributes for a correct response on that task. 

Examples of such models include the DINA (deterministic input noisy and) model (Haertel, 1989); 

NIDA model (Junker & Sijtsma, 2001); HYBRID model (Gitomer & Yamamoto, 1991); unified 

model (UM) (DiBello, Stout, & Roussos, 1995); re-parameterized unified model (RUM) (Hartz, 

2002); and the conjunctive MCLCM” (Roussos et al., 2007). These models assume that an 

examinee who lacks any one of the required attributes cannot provide a correct response to the 

task unless by guessing. An examinee who possess all the required attributes cannot get it wrong 

unless by slipping. 

Compensatory models, on the other hand, assume that the correct response to a task can be 

achieved if an examinee has mastered at least one of the attributes required to perform the task. 

Such models are particularly applicable in psychiatric and other medical diagnoses, where a 

disease can be considered present if at least one of its symptoms is present (Roussos et al., 2007) 

or in tasks for which multiple appropriate strategies (each requiring different skills) could be 

applied to arrive at the correct answer. Some examples of compensatory cognitive diagnostic 

models are the disjunctive MCLCM and compensatory MCLCM of Maris (1999), the DINO 

(deterministic input noisy or) model of Templin and Henson (2006), and the NIDO (noisy input 

deterministic or) model of Templin, Henson, and Douglas (2006) (as cited in Roussos et al., 

2007).The form of attributes’ interaction assumed in a model depends on the purpose of the 

assessment and the definition of the attributes.  

Whether compensatory or non-compensatory, CDMs make the fundamental assumption of 

conditional independence of response vectors, like the traditional IRT and LCA models. The item 

responses are independent, given an examinee’s mastery profile on the latent attributes. The latent 
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attributes, however, do not influence the responses in isolation. If the k polytomous attributes had 

Lk levels, then, without any relationship or constraints imposed on the polytomous attributes, the 

maximum number of possible latent profiles is  𝐶 = ∏ 𝐿𝑘
𝐾
𝑘=1  where Lk is the number of mastery 

levels for attribute k, and K is the number of the attributes measured by the assessment. In the 

actual implementation of CDM, only ∏ 𝐿𝑘
𝐾
𝑘=1  – 1 parameters are estimated since the profiles are 

mutually exclusive and collectively exhaustive. The model with all parameters estimated is the 

unstructured or saturated model. For the constrained CDM, there are several approaches for 

accounting for the correlation among the attributes – the higher-order (HO) latent trait model of 

de la Torre & Douglas (2004), the attribute hierarchy model (AHM) of Leighton et al. (2004), and 

the hierarchical diagnostic classification model (HDCM) of Templin & Bradshaw (2014). There 

has been only one attempt, by Zhan, Ma, Jiao, & Ding (2019), to combine two of these approaches 

in one model. 

2.3.1 Higher-order Latent Trait Model 

The higher-order latent trait model assumes that a continuously valued latent variable or 

general ability underlies the binary latent attributes, such that a two-parameter logistic model 

defines each attribute as a function of the underlying latent trait (de la Torre & Douglas, 2004): 

𝑃(𝛼𝑗𝑘 = 1|𝜃𝑗) =
𝑒𝛾0𝑘+𝛾1𝑘𝜃𝑗

1 + 𝑒𝛾0𝑘+𝛾1𝑘𝜃𝑗
                    (1) 

Where 𝜃𝑗 is the trait level of examinee j and is assumed to follow the standard normal distribution,  

𝛾0𝑘  is the intercept or location parameter and 𝛾1𝑘  is the slope or discrimination parameter for 

attribute k. The reasoning behind this approach is that an examinee with a higher value on the 

latent trait is more likely to demonstrate mastery of an attribute (de la Torre & Douglas, 2004). 

When the higher-order approach is incorporated into a CDM, it reduces the dimension of the model 
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parameter space to from 2K – 1 to 2K and provides summative information on the latent trait, in 

addition to the mastery levels of the latent attributes.  

2.3.2 Attribute Hierarchy Model 

The attribute hierarchy model of Leighton et al. (2004) is based on the assumption that the 

attributes assessed on a test are the basic cognitive processes necessary to solve the task correctly, 

and the performance on the test is based on a set of skills that are hierarchically organized such 

that mastery of the lower-level attributes in the hierarchy is prerequisite to mastery of the higher-

level ones. A fundamental premise for the application of this framework is that the attribute 

hierarchy must be determined before the test “because the hierarchical organization of attributes 

must guide the development of test items” (Leighton et al., 2004). Leighton et al. (2004) identified 

four distinct forms of attribute hierarchy – the linear, convergent, divergent, and unstructured 

hierarchies. Two or more of these hierarchies can be combined to form a complex hierarchy, where 

the complexity varies with the cognitive load of the task (Kim, 2001). 

The linear attribute hierarchy organizes attributes in increasing order of cognitive load. It 

requires that all attributes be mastered sequentially such that mastering attribute 1 is a prerequisite 

for mastering 2; attribute 3 cannot be mastered without 2, and so on. With the linear hierarchy, 

there is only one attribute at the top of the hierarchy and only one path to get from the lowest to 

highest skill level. The convergent hierarchy also has only one attribute at the top of the hierarchy, 

but an examinee can attain the highest skill level through multiple different paths. For instance, 

attribute 1 is a prerequisite for 2 and 3; attribute 4 can be mastered if an examinee has mastered 2 

or 3, and attribute 4 is a prerequisite for 5. With this structure, an examinee can attain the skill 

level of 5 by mastering 1, 2, and 4 or 1, 3, and 4. The divergent and unstructured hierarchies also 

start with a single prerequisite attribute, but end with multiple skills at the highest level. With the 
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divergent hierarchy, we have intermediate prerequisites before reaching any of the top skills. For 

the unstructured, all attributes except the single prerequisite, are at the top level so that there are 

no intermediaries. Figure 1 (Leighton et al., 2004) represents a diagrammatic representation of 

these hierarchy forms using six attributes. 

Specifying a hierarchical relationship among attributes reduces the number of plausible 

attribute profiles. For instance, suppose that a ‘1’ denotes mastery, and ‘0’ indicates non-mastery 

of an attribute, then, for the linear hierarchy, it is not possible to have the profile 101111 because 

skill 3 cannot be mastered without skill 2. With the linear form of hierarchy and six attributes, the 

number of possible profiles reduces from 26 = 64 to 6+1 = 7. The extent of reduction depends on 

the number of attributes and the form of hierarchy stipulated. Implementation of the attribute 

hierarchy approach requires proper identification of the plausible attribute profiles that map onto 

the specified kind of hierarchy and guarantees a complete Q-matrix (Köhn & Chiu, 2018a; 

Templin, & Bradshaw, 2014). 
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2.4 Implementation of Cognitive Diagnostic Models  

CDM estimation entails estimating the item parameters (as defined by the model of choice), 

structural parameters, and attribute profiles (respondent parameters). These sets of parameters may 

be estimated simultaneously by joint maximum likelihood estimation (ML) or marginalized 

maximum likelihood (MML) estimation using the expectation-maximization (EM) algorithms (de 

la Torre, 2009; von Davier, 2005; Rupp et al., 2010). ML estimates can become computationally 

complex when complex constraints are imposed on them (Rupp et al., 2010). In the MML, a 

population distribution is assumed for the structural parameters, which are then treated as ‘known’ 

and marginalized out for the estimation of the item parameters. The estimated item parameters are 

then treated as ‘known’ for the estimation of attribute profiles, and the entire process is repeated 

until the stopping criterion is satisfied. Implementation of the MML for LCDM in the Mplus 

(Muthen & Muthen, 2018) statistical software is outlined in Rupp et al. (2010). The MML 

procedure is computationally expensive because it requires integration across the distribution of 

the latent variables for each examinee variable. The EM algorithm increases in computational 

intensity with increase in number of latent classes. It also requires the specification of starting 

values to initialize the algorithm convergence of the algorithm. Convergence may take longer or 

never be attained if these values are far from the true unknown values (Rupp et al., 2010). 

  Alternatively, item parameters and attribute profiles may be obtained simultaneously in 

the Bayesian estimation context using a Markov Chain Monte Carlo (MCMC) estimation (e.g., de 

la Torre & Douglas, 2004). This approach is especially useful when dealing with complicated 

likelihood functions, for which optimization with EM algorithm is not feasible. It focuses on 

determining the posterior distribution for each parameter from which specific estimates are 

obtained as a summary statistic like the mean, mode, or percentile of the distribution. While this 
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approach provides an alternative for cases where EM estimation is not feasible, its application is 

impeded by technical details such as choice of prior, burn-in length, and occasional convergence 

issues (Templin, 2004; Rupp et al., 2010). 

2.4.1 Bayesian Estimation Using MCMC 

In Bayesian inference, the uncertainty about parameter estimates is expressed in terms of 

probability models (distributions), implying that parameters are random instead of fixed. It is 

grounded in the Bayes' theorem, whereby one’s prior knowledge or belief about the unknown 

parameter is combined with the data at hand to derive an updated or posterior knowledge about 

the parameter. The initial knowledge is commonly specified in the form of a probability density 

or the prior distribution. Information from data at hand is defined in terms of its likelihood, and 

the resulting updated distribution is the posterior distribution. The algebraic expression of this 

process is expressed with the Bayes’ theorem as follows: 

𝑃(𝛀|𝒀) =
𝑃(𝑌|𝛀) × 𝑃(𝛀)

𝑃(𝒀)
                    (2) 

Where 𝛀 is a set of unknown parameters that are of interest in the estimation, 𝑃(𝛀) is the prior 

distribution of 𝛀, 𝑃(𝑌|𝛀) is the likelihood of the data given 𝛀, and 𝑃(𝒀) represents the marginal 

likelihood of the data. Since the observed data 𝒀  is considered as fixed, 𝑃(𝒀)  is simply a 

normalizing constant to ensure that 𝑃(𝑌|𝜽) × 𝑃(𝛀) is a true density, and can be dropped from 

equation (2) to yield: 

𝑃(𝛀|𝒀) ∝ 𝑃(𝑌|𝛀) × 𝑃(𝛀)                    (3) 

The left-hand side of equation (3) is the posterior distribution, obtained by modifying the 

prior knowledge about the parameter 𝑃(𝛀)  by the likelihood of the observed data 𝑃(𝑌|𝛀) . 

Bayesian estimates of the unknown parameters are obtained as descriptive measure of the 

corresponding posterior distribution – mean, median, mode, credible interval, etc. 
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With simple models, the parameter estimates can be obtained algebraically from the 

posterior distribution but, when models are considerably complex, determining the exact solution 

from closed form of the posterior is often impossible (Kruschke, 2014; Robert & Casella, 1999). 

For instance, with the DINA model, the posterior distribution would be a complex joint distribution 

of attribute profiles for all examinees as well as guessing and slipping parameters for all items. 

This limitation with complex models had restricted earlier implementation of Bayesian estimation 

to the use of conjugate priors – priors that are in the same distributional family as their resulting 

posteriors (Robert & Casella, 1999). When making draws from posterior distributions proves 

difficult, simulation methods like the Markov Chain Monte Carlo Methods (MCMC) are used to 

obtain and characterize the posterior distribution. 

Monte Carlo integration is a method for drawing independent samples from a required 

distribution and using the sample averages in approximating the expectation of the distribution. A 

Markov chain is a sequence of random variables 𝑋𝑡 with the property that the state t of the variable 

only depends on the state t-1 of the random variable generated just previously. This property 

ensures that estimates based on any of the MCMC methods at each iteration depend only the 

iteration just preceding it (Roberts, 1996). In the MCMC estimation procedure, a Markov chain is 

constructed by generating samples from the posterior distribution. This begins with some trial 

initial values, followed by a series of random draws. These steps are run many times until a 

stationary distribution is reached. For 𝑋𝑡  to attain a stationary distribution, the chain must be 

irreducible, aperiodic, and positive recurrent. See Roberts (1996) for more details. The stationary 

distribution for each parameter represents its posterior distribution (Roberts, 1996; Rupp, et al., 

2010). In the MCMC process, there are several techniques for drawing random samples from the 

posterior distribution. These include the slice sampling, the Metropolis-Hastings algorithm, and 
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the Gibbs sampling, among others. These sampling techniques differ in terms of the proposal 

distribution chosen to construct the chain and the probability of moving between states. 

The Metropolis-Hastings (or M-H) algorithm begins the sampling procedure by drawing 

from a proposal distribution that depends on the current state of the Markov chain and computes 

an acceptance probability to decide whether to retain the sample and move to the next state or not. 

The proposal distribution is defined by a step-size, which must be adjusted (or tuned) at each step. 

If a Gaussian distribution is chosen, as is commonly the case, the variance parameter is used as the 

step size (Dittmar, 2013). The typical M-H algorithm proceeds as follows (Hastings, 1970): 

1. Choose a random starting value 𝑋𝑡 and an arbitrary proposal distribution 𝑔(𝑦|𝑥𝑡) from 

which the next sample value y is drawn given the previous value, 𝑥𝑡 . The density 

𝑔(. |𝑥𝑡) must be a symmetric distribution so that 𝑔(𝑦|𝑥𝑡) = 𝑔(𝑥𝑡|𝑦). 

2. For each iteration, draw a candidate value y from 𝑔(. |𝑥𝑡) and accept y with probability: 

𝛼(𝑥𝑡, 𝑦) = 𝑚𝑖𝑛 (1,
𝑔(𝑥𝑡|𝑦)𝜋(𝑦)

𝑔(𝑦|𝑥𝑡)𝜋(𝑥𝑡)
) 

3. If y is accepted, set 𝑥𝑡+1 = 𝑦; otherwise, set 𝑥𝑡+1 = 𝑥𝑡 

Unlike the M-H, the Gibbs sampling algorithm uses the conditional posterior distribution 

as the proposal distribution, and acceptance probability is set to 1, making Gibbs sampling a special 

case of M-H algorithm. This technique requires the conditional posterior distribution for each 

parameter, given the other parameters and the data, to be fully specified (Geman & Geman, 1984). 

It also assumes that, if the regularity conditions are met, the joint posterior distribution is 

determined by all the full conditional posterior distributions (Geman & Geman, 1984; Casella & 

George, 1992). The Gibbs sampling proceeds as follows: 

1. Choose random starting values for all P unknown parameters 𝜃1
0, 𝜃2

0⋯𝜃𝑃
0 
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2. Given the starting values 𝜃1
(0), 𝜃2

(0)⋯𝜃𝑃
(0)

 , sample 𝜃𝑝
𝑡+1 from the conditional posterior 

distribution of 𝜃𝑘 given the data and presumably known values of the other parameters, 

𝑃(𝜃𝑝|𝑌, 𝜃1
(𝑡+1), 𝜃2

(𝑡+1)⋯𝜃𝑝−1
(𝑡+1), 𝜃𝑝+1

(𝑡) , ⋯ 𝜃𝑃
(𝑡)). This step is looped through all the P 

parameters in the set, replacing the already sampled parameters 𝜃1, 𝜃2, ⋯ 𝜃𝑝−1 with 

their sampled values 𝜃1
(𝑡+1), 𝜃2

(𝑡+1)⋯𝜃𝑝−1
(𝑡+1)

 in the conditional posterior distribution. 

The Gibbs sampling algorithm is feasible and straightforward when the joint distribution 

is not explicitly known or is difficult to sample from directly, but the conditional distribution of 

each parameter is known and is easy to sample from. In more complicated models, where the 

conditional distribution cannot be directly sampled from, alternative MCMC algorithms like the 

M-H algorithm or the slice sampling may be adopted for this step. 

The slice sampling (Neal, 2003) is not as popular as the M-H or Gibbs algorithm but 

circumvents the problem of tuning proposal distributions by adaptively adjusting the step-size to 

match the local properties of the density function. The basic idea is that one can sample from a 

distribution by sampling uniformly from the region under the density plot. The slice sampling 

algorithm may be summarized as follows (Neal, 1997):  

1. Choose a starting value 𝑥0  for which 𝑓(𝑥0) > 0, where 𝑓(𝑥) is proportional to the 

posterior density of interest 

2. Draw a 𝑦 ~ (0, 𝑓(𝑥0) 

3. Slice 𝑓(𝑥) horizontally at 𝑦 

4. Sample a point (𝑥, 𝑦) from the line segment 

5. Repeat steps 2 through 4 using the new 𝑥. 

For the multivariate posterior distribution, the univariate algorithm above can be used to sample 

and update each parameter in turn (Neal, 2003). 



24 
 

Irrespective of the algorithm used to draw samples, the sequence of values produced in the 

MCMC process are dependent since every new state depends on the previous one, making the first 

set of values unrepresentative of the posterior distribution being sampled (Kim & Bolt, 2007). As 

a result, the initial set of values, also known as burn-in, are discarded before assessing the posterior 

distribution. There are, therefore, some practical concerns in the implementation of MCMC 

estimation. These include: (1) The length of chain; (2) The burn-in length; (3) The choice of 

starting values, which may affect convergence; (4) The number of chains needed to attain 

stationary posterior distributions for each parameter. While there are suggestions in literature for 

each of these concerns (e.g., Roberts, 1996; Gelfand & Smith, 1990; Gelman & Rubin, 1992; 

Raftery & Lewis 1992a), diagnostic checks of the Markov chain can be used to evaluate the 

performance of the process before parameter estimates are extracted. 

For convergence check Gelman & Rubin (1992) proposed the 𝑅̂ statistic that is based on a 

comparison of the pooled between chain variances and within chain variances for each parameter. 

Stability is indicated by a ratio that is close to 1. Other diagnostic approaches have also been 

recommended (e.g., Geweke, 1992; Raftery & Lewis 1992b), but there is no consensus on which 

is optimal. Knowledge about whether the Markov chain has converged via convergence 

diagnostics or examination of trace plots can be used to inform the decision about the required 

burn-in. 

2.4.2 Estimating attribute profiles 

Given the class membership and class-specific response probabilities, examinees can be 

scored and classified to classes based on their mastery level of the attribute vector using one of 

three common approaches - via maximum likelihood estimation (MLE), maximum a posteriori 
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(MAP), or expected a posterior (EAP) (Huebner & Wang, 2011). The MLE approach assigns an 

examinee to the attribute pattern 𝛼̂𝑀𝐿𝐸 that maximizes the likelihood of the responses: 

𝐿(𝑿𝑗|𝜶) =∏𝑃(𝑋𝑖𝑗|𝜶)

𝐼

𝑖=1

               (2) 

Sometimes, prior information is available on the proportion of examinees expected in each 

skill pattern, and this can be incorporated into the likelihood with the maximum a posterior (MAP) 

approach. With a non-informative prior, the MLE and MAP yield the same results (Huebner & 

Wang, 2011). Given C skill patterns, the prior probability can be denoted as 𝑃(𝜶𝑐)  such 

that ∑ 𝑃(𝜶𝑐)
𝐶
𝑐=1 = 1 then, each examinee is classified into the skill pattern that maximizes the 

posterior probability. The posterior probability is defined by Huebner & Wang (2011), from Bayes 

theorem, as: 

𝑃(𝜶𝑐|𝑿𝑗) =
𝐿(𝑿𝑗|𝜶𝑐)𝑃(𝜶𝑐)

∑ 𝐿(𝑿𝑗|𝜶𝑚)𝑃(𝜶𝑚)
𝐶
𝑚=1

               (3) 

Though statistically straightforward, the MLE and MAP results may be hard to interpret 

because they do not provide separate probability estimates for each attribute. Expected a posterior 

(EAP) approach, on the other hand, provides probability estimates for each of the attributes for all 

response patterns by taking the aggregate of probabilities across all latent classes where the specific 

attribute has been mastered. EAP calculates the probabilities of mastery for each attribute and sets 

up a cutoff probability at (usually) 0.5 to determine if the attribute has been mastered or not for 

each examinee (Huebner & Wang, 2011; Rupp et al., 2010; Embretson & Reise, 2000). 

Huebner & Wang (2011) compared all three approaches in a simulation study. Their results 

show that, across all the varied conditions, MLE/MAP had a higher proportion of correctly 

classified examinees on all skills, but the EAP presented a higher proportion correct classification 

on total skills. They conclude that none of the methods can be judged as better than the others; 
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rather, preference for classification method should be guided by the purpose of the diagnostic 

assessment.  

2.4.3 Assessing model fit 

As with all statistical models, the results of CDMs are meaningless if the model fit is 

unacceptable. Assessment of CDM fit could be in terms of absolute or relative fit. Measures of 

absolute model fit include the absolute value of the deviations of Fisher-transformed correlations 

and the limited information RMSEA (Houts & Cai, 2013) or RMSEA2 (Hu, Miller, Huggins-

Manley, & Chen, 2016). RMSEA2 values of <0.089 indicate adequate fit, while values <0.05 are 

indicative of a close fit for multidimensional IRT (Maydeu-Olivares & Joe, 2014), and these values 

have been adopted for CDMs as well (e.g., Hu et al., 2016).  

To evaluate relative model fit, CDM researchers use relative fit indices like the Akaike 

Information Criterion (AIC; Akaike, Parzen, Tanabe & Kitagawa, 1998) and Bayesian Information 

Criterion (BIC; Schwarz, 1978) (Sessoms & Henson, 2018). These fit statistics are used to compare 

fit among multiple competing models (e.g., de la Torre and Douglas, 2008). Kunina‐Habenicht et 

al. (2012) and Hu et al. (2016) compared the performances of relative fit indices in DCMs. Kunina‐

Habenicht et al., (2012) studied the performance of AIC, BIC, and SABIC for the LCDM and 

multidimensional IRT models under varying levels of item quality, and base rate of attribute 

mastery. They found that all the indices performed well with strong-quality items but extremely 

poor with medium to low-quality items. Hu et al. (2016) implemented a similar study but focused 

more on the misspecification of the Q-matrix with the G-DINA model. Their study found that AIC 

and BIC are sensitive to over- and under-specification of the Q-matrix. Both studies recommend 

that model fit assessment should rely on multiple sources of evidence to select among non-nested 

models. 
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2.4.4 Response Time Models 

The RT models are focused on describing the non-negative positively skewed distribution 

of RT. Of these RT models, the log-normal model by van der Linden (2006) is the most popular. 

This model can handle the skewness of RTs while allowing the benefits of the statistical properties 

for normal distribution for the log-transformed RT. Schnipke & Scrams (1997). Fox, Klein Entink, 

and van der Linden (2007) and Klein Entink, Fox, & van der Linden (2009a) extended the log-

normal model to include a slope parameter for the person speed parameter that characterizes the 

differential effects of items on the speed of examinees. Klein Entink, van der Linden & Fox 

(2009b) also acknowledged additional limitation of the log-normal model in handling skewness of 

RT and proposed the Box-Cox normal model to provide more flexibility in characterizing RT data. 

However, van der Linden, Scrams, & Schnipke (1999) have demonstrated a good model fit for RT 

using the log-normal distribution. More details on this model follow in the next chapter. 

Other models have also been used to characterize RT. These include the Weibull (Loeys et 

al., 2011), inverse Gaussian (Lo & Andrews, 2015), Gamma (Maris, 1993), Ex-Gaussian (Ratcliff 

& McKoon, 2008) and the shifted Wald (Anders, Alario, & Van Maanen, 2016). For an overview 

of these distributions, see De Boeck & Jeon (2019). 

2.5 Response Time and Response Accuracy 

Response time (RT), in educational testing, refers to the amount of time an examinee takes 

to provide a response (correct or incorrect) to a task (item or test). Prior to the advent of computers 

in educational testing, it was difficult to record RT on tests. Hence, research on RT in educational 

testing gained interest only recently. The spike in interest is predicated on its relationship with 

response accuracy (RA) and the need to understand examinee test-taking behaviors and the 

cognitive processes that lead to correct or incorrect responses. Ignoring these behaviors can lead 
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to a violation of the local independence assumption of the popular IRT models and compromised 

test validity (Wang & Xu, 2015). For instance, an examinee may speed through the questions in a 

high stakes test to answer all the questions. Such rapid response may contaminate the estimate of 

examinee’s true ability with construct irrelevant variance, posing a severe threat to score 

interpretation (Lu & Sireci, 2007). 

Response time provides important person and item-level information that researchers can 

use to improve the design, administration, and quality control of a test. At the person level, RT 

provides insight on the working speed of the examinee and, on the item level, it gives information 

on the time intensity of the item (Zhan et al., 2018b). Rapid guessing in a high-stakes test could 

indicate test speededness, and rapid response in a low-stake test may suggest a lack of motivation 

(Lee & Chen, 2011). Either of these examinee behaviors introduces construct irrelevant variance 

and harms validity and score interpretation. Response time information on item time-intensities 

can be used to improve item calibration, selection and assembly in adaptive tests and educational 

tests in general (Kahraman et al., 2013; Lee & Chen, 2011; van der Linden, 2007). 

Successful incorporation of RT into measurement requires an appropriate statistical model 

for their distribution, and several models have been proposed to this end. De Boeck & Jeon (2019) 

classified these models into four broad categories – distributional RT models (e.g., Maris, 1993; 

Loeys, Rosseel, & Baten, 2011; and van der Linden, 2006), joint models of RT with other 

dependent variables like accuracy (e.g., van der Linden, 2007; and Zhan et al., 2018a), local 

dependency models with RT as one of two or more correlated dependent variables (e.g., Partchev 

& De Boeck, 2012; Wang & Xu, 2015), and covariate models with RT as an explanatory variable 

(e.g., Sen, 2012; Naumann & Goldhammer, 2017). Each of these models differs in functional form, 
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flexibility, and the assumption it makes about the response process. For a review of these other 

forms of RT models, see De Boeck & Jeon (2019) and Schnipke & Scrams (2002). 

2.5.1 Joint Models of Response Time with Accuracy 

As the name implies, these models take a multivariate approach to simultaneously analyze 

response and response time, usually to improve the parameter estimates of the response model. 

Several frameworks have been proposed in literature for this purpose. van der Linden (2007) 

proposed a hierarchical framework for modeling speed and accuracy on test items where the 

response times and responses are modeled separately at the first level. The dependency among 

their respective parameters is modeled at a higher level. This framework is one of the most popular 

tools to explain the relationship between response speed and accuracy and has been adapted to 

several combinations of response and response time models (e.g., Klein Entink et al., 2009a; Wang 

& Xu, 2015; Fox & Marianti, 2016). 

2.6 Response Time in Cognitive Diagnostic Models 

The need to account for cognitive process using response time has also been emphasized 

and addressed in cognitive diagnostic models. For instance, Zhan et al. (2018b) proposed a joint 

model for RT and the attributes in cognitive diagnosis. Their study integrated the lognormal model 

for RT and the DINA model for latent attributes using the hierarchical modeling framework of van 

der Linden (2007). The proposed joint model was assessed using simulated data and the PISA 

2012 computer-based mathematics data. Their results showed that incorporating RT into the DINA 

model improved the precision of model parameters and the classification rates of attributes and 

profiles. Zhan et al. (2018b) extended the work by Zhan et al. (2018a) to a joint-testlet model to 

address the issue of paired local item dependence due to testlet effects from response and response 
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times. This study used simulated data and the 2015 PISA computer-based mathematics data to 

demonstrate the utility and application of this extension. 

The adaptive testing procedure is not left out. Huang (2019) explored a model for 

improving item calibration in cognitive diagnostic computerized adaptive testing (CD-CAT) with 

higher-order DINA. The study used a modified posterior-weighted Kullback-Leibler (PWKL) 

method that maximizes the item information per time unit and a shadow-test method that 

assembles a provisional test subject to a specified time constraint were developed. The results 

showed that the incorporation of RT is associated with a lower risk of running out of time while 

ensuring acceptable latent trait and speed parameter estimates. 

The importance of cognitive diagnostic modeling to educational assessment is not 

contestable; neither is the relevance of response time in assessing the cognitive processes that 

underlie test responses. However, cognitive diagnostic modeling has been unnecessarily limited to 

the simplistic configuration of attributes into mastery and non-mastery, even when the available 

models can do much better. The works by Karelitz (2004) and Zhan et al. (2019a) have shown that 

there are greater possibilities with cognitive diagnosis. The significance of incorporating cognitive 

processing in skill diagnosis via response time has also been demonstrated, especially with item 

response modeling. However, current approaches for exploiting information from response time 

in cognitive diagnostic modeling have been unduly constrained to the assumption of constant 

speed. Relaxing these constraints for more informative and instructionally relevant skill diagnosis 

is the focus of the current study. The method used to achieve this is laid out in the next chapter.
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CHAPTER 3: METHODOLOGY 

 

3.1 The log-normal random quadratic variable speed model 

Let Tik denote the response time of person j (j = 1, ..., N) on item i (i = 1, ..., I) and assume 

that examinee j chooses his/her speed of response 𝜏𝑗 at the start of the test and maintains this speed 

throughout the test, van der Linden (2006) defines the log-normal distribution for RT of person j 

on item i as: 

𝑓(𝑡𝑖𝑗; 𝜏𝑗 , 𝜎𝑖, 𝜆𝑖) =
𝜎𝑖

𝑡𝑖𝑗√2𝜋
𝑒𝑥𝑝 {−

1

2
[𝜎𝑖 (𝑙𝑛𝑡𝑖𝑗 − (𝜆𝑖 − 𝜏𝑗))]

2

}                (4) 

Which implies that the log of RT can be modeled as (van der Linden, 2016): 

𝑙𝑛(𝑡𝑖𝑗) = 𝜆𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗;             𝜀𝑖𝑗~𝑁(0, 1 𝜎𝑖
2⁄ )               (5) 

Where 𝜏𝑗𝜖(−∞,∞) is the speed of the examinee j on the test, 𝜆𝑖  is the time intensity or time 

consumingness of item i and 𝜎𝑖𝜖(0,∞)  is the discrimination parameter that captures the 

contribution of item i to the precision of the estimate of examinee’s speed (van der Linden, 2016). 

To be identified, the constraint ∑ 𝜏𝑗
𝑛
𝑗=1 = 0 is imposed on the speed parameters. With the 

mean of the distribution being 𝜆𝑖 − 𝜏𝑗, this constraint equates the expected log RT over items and 

persons to the average item difficulty so that person speed parameter values (𝜏𝑗) are estimated as 

deviations from that average (van der Linden, 2006). An examinee with positive (negative) value 

is working faster (slower) than the average level in the population. Note that, while this model 

allows variance of log RT to be item dependent, it assumes examinee speed is constant across 

items, which may not always be true. 

𝜆𝑖 in the log-normal model represents the cognitive load of an item on a time scale. The 

higher the magnitude of 𝜆𝑖, the more time-intensive item i is. An examinee working at a higher 
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speed would complete the item with a lower response time. However, the change in response time 

due to change in speed may vary from item to item. To account for this possible variation, Klein 

Entink et al. (2009a) and Fox (2010) introduced an item discrimination parameter into the log-

normal model. This extended the log-normal model to: 

𝑙𝑛(𝑡𝑖𝑗) = 𝜆𝑖 − 𝜙𝑖𝜏𝑗 + 𝜀𝑖𝑗;             𝜀𝑖𝑗~𝑁(0, 𝜎𝑖
2)               (6) 

Where 𝜙𝑖 is the time discrimination of item i and 𝜎𝑖
2 is the residual variance. 

Building on the log-normal RT model of van der Linden (2006, 2016) and its extended 

version by Fox (2010) and Klein Entink et al. (2009a), Fox & Marianti (2016) proposed a log-

normal random quadratic variable model for RTs to account for changes in examinee’s speed 

across the items on a test. To do this, they defined items in a test as the measurement occasions, 

and the response time as the time between two subsequent items. In particular, 𝑿𝑖𝑗 =

𝑋1𝑗, 𝑋2𝑗… 𝑋𝐼𝑗 is the time variable representing the measurement occasions of items 1 through I 

for examinee j where 𝑋1𝑗 = 0 so that the speed from first item defines the intercept. The time 

variable is placed on an arbitrary 0 to 1 scale by defining 𝑋𝑖𝑗 = (𝑋(𝑖𝑗) − 1) 𝐼⁄  where 𝑋(𝑖𝑗) is the 

order in which item i is completed by examinee j and I is the number of items. By this definition, 

the time scale for this model is only meaningful if respondents are not allowed to take breaks 

between items or go back to review previous items. It is expected, given a typical testing situation, 

that measurement occasions would not be equidistant. To address this, they assume a testing 

situation where the total test time is small enough that the non-equidistance of time has little to no 

effect on the results.  

With these assumptions in place, Fox & Marianti (2016) defined the log-normal RT model 

with a linear and quadratic trend for speed using the time variable X as: 

𝑙𝑛(𝑇𝑖𝑗) = 𝜆𝑖 − 𝜙𝑖(𝜏𝑗0 + 𝜏𝑗1𝑋𝑖𝑗 + 𝜏𝑗2𝑋𝑖𝑗
2 ) + 𝜀𝑖𝑗;      
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(

𝜏0𝑗
𝜏1𝑗
𝜏2𝑗
)~𝑁

(

 
 
 (
0
0
0
) , 𝚺 = (

𝜎𝜏0
2 𝜎𝜏0𝜏1 𝜎𝜏0𝜏2

𝜎𝜏0𝜏1 𝜎𝜏1
2 𝜎𝜏1𝜏2

𝜎𝜏0𝜏2 𝜎𝜏1𝜏2 𝜎𝜏2
2

)

)

 
 
          (7) 

Where 𝜆𝑖 is the usual time intensity of item i, 𝜏0𝑗 represents the initial value of speed, 𝜏1𝑗 is the 

random slope in speed and 𝜏2𝑗 is the random quadratic term to characterize the acceleration or 

deceleration in speed of examinee j. The initial speed as well as the random linear and quadratic 

slope terms are assumed to follow a normal distribution with mean vector of 0 and covariance 

matrix 𝚺 such that the expected response time for the test is still the average time intensities. 

3.2 Deterministic, Input, Noisy ‘And’ Gate (DINA) Model for Polytomous Attributes 

There are numerous CDMs proposed in literature and DINA is one of the most popular 

choice because of its simplicity, parsimony and ease of interpretation (de la Torre, 2009; Zhang, 

2015). The DINA model requires the mastery of all required attributes for an item to solve the item 

correctly. Suppose a test has been designed to assess examinees on K latent attributes where each 

attribute has Lk mastery levels (Lk ≥ 2). Let 𝛼𝑗𝑘 be the mastery level of examinee j on attribute k. 

The lowest mastery level on each attribute is set to 0 so that 𝑞𝑖𝑘 = 𝑙 − 1  if item i requires the lth 

level of mastery on attribute k for a correct response, and 𝛼𝑗𝑘 = 𝑙 − 1 if examinee j has attained 

the lth mastery level on attribute k. 

For each item in the DINA model, an examinee is classified into one of two latent classes 

– those who have attained the required mastery level on the attributes, as required by the item, and 

those who have not attained the required mastery level on at least one of the attributes. Let ηij 

denote this latent class variable for the jth examinee on the ith item; then, 𝜂𝑖𝑗 = 1 if examinee j is 

at or above the mastery level on the attributes as required by item i for a correct response and 0 

otherwise (Zhan et al., 2019). This definition assigns the same probability of success to examinees 
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who lack the required mastery level on at least one of the requisite attributes for an item. Given 

the examinee’s status on ηij, the probability of a correct response for the DINA model is given by: 

𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗) = (1 − 𝑠𝑖)
𝜂𝑖𝑗𝑔𝑖

(1−𝜂𝑖𝑗)                    (9) 

Where 𝑌𝑖𝑗 is the response of examinee j to item i; 𝑠𝑖 is the “slipping” parameter or the 

probability that an examinee who has attained the necessary mastery levels on the required 

attributes for item i would answer the item incorrectly by mistake, and 𝑔𝑖 is the “guessing” 

parameter or the probability that an examinee who falls short on at least one of the required 

attributes for an item would answer the item correctly by guessing or using alternative strategies 

that are not specified by the Q-matrix (de la Torre, 2009). These two parameters, assuming the Q 

matrix has been correctly specified, incorporate the noise (Karelitz, 2004) – the reasons why an 

examinee with 𝜂𝑖𝑗 = 0  could get an item right and an examinee with 𝜂𝑖𝑗 = 1 could answer the 

item incorrectly. 

The two parameters of the DINA model are indexed by item but not attributes; which 

means the complexity of the DINA model stays the same irrespective of number of attributes 

considered in the Q-matrix, keeping the model parsimonious (Zhang, 2015). The probability of a 

𝑌𝑖𝑗 

0 

(𝛼𝑗1, 𝛼𝑗2, … , 𝛼𝑗𝐾) (𝑞𝑖1, 𝑞𝑖2, … , 𝑞𝑖𝑘) 

𝜂𝑖𝑗  

𝑔𝑖 

1 

(1 − 𝑠𝑖) 

𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗) = (1 − 𝑠𝑖)
𝜂𝑖𝑗𝑔𝑖

(1−𝜂𝑖𝑗) 

Figure 2 Diagrammatic representation of the DINA model 



35 
 

correct response is 1 − 𝑠𝑖  if an examinee has attained the requisite mastery levels on all the 

required attributes (i.e.,  𝜂𝑖𝑗 = 1 ) and 𝑔𝑖  otherwise (Henson, Templin, & Willse, 2009). The 

probability function of the DINA model is further constrained by the condition that (1 − 𝑠𝑖) > 𝑔𝑖 

so that an examinee who has achieved all the required mastery levels would always have a higher 

probability of correct answer to the item than one who falls short on at least one of the required 

attributes. As de la Torre (2009) succinctly shows in Figure 2, the DINA model assigns two 

probability values to examinees, (1 − 𝑠𝑖) for those that have mastered required attributes and 𝑔𝑖 

to those who lack the required mastery level on at least one attribute. Partial mastery (mastery 

below the required level or adequate mastery of a subset of the required attributes) is irrelevant to 

the probability of correct response. This feature, though restrictive, is the reason DINA model is 

considered easily estimable and interpretable. 

The DINA model for binary attributes is a special case of the polytomous DINA, with Lk 

= 2 for all attributes. With binary attributes, we are concerned with mastery/non-mastery 

classification so that 𝑞𝑖𝑘 = 1 if item i requires attribute k for a correct response, and 0 otherwise 

and 𝛼𝑖𝑘 = 0 if examinee j has mastered attribute i and 0 otherwise. Also, the latent variable 𝜂𝑖𝑗 =

1 if examinee j has mastered all the attributes required for a correct response on item i. With these 

modified definitions in place, equation (9) defines the conditional probability that examinee j (with 

attribute profile 𝜶𝑗) would provide a correct response to item i. 

The two parameters of the DINA model are both probabilities and hence, bounded between 

0 and 1. To relax these boundaries and ease parameter estimation, DeCarlo (2011) proposed a 

reparameterization of the DINA model where the slipping and guessing parameters are expressed 

as functions that yield positive values within the boundaries of 0 and 1. His proposition gave rise 

to the reparameterized DINA model or RDINA which is written as: 
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𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗) = 𝛿0𝑖 + 𝛿1𝑖𝜂𝑖𝑗                    (10) 

Where 𝛿0𝑖 and 𝛿1𝑖 are the intercept and interaction parameters, respectively; and 𝜂𝑖𝑗 is as defined 

in equation (9). 𝛿1𝑖 is referred to as interaction because it reflects the difference between those 

who possess the required mastery levels (𝜂𝑖𝑗 = 1) for an item and those who do not (𝜂𝑖𝑗 = 0). The 

guessing and slip  𝛿0𝑖 and 𝛿1𝑖 are both logit functions of the guessing and slipping parameters and 

can be used to recover  𝑔𝑖 and 𝑠𝑖 with the following conversion formulas: 

𝛿0𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑔𝑖) 

𝛿1𝑖 = 𝑙𝑜𝑔𝑖𝑡(1 − 𝑠𝑖) − 𝑙𝑜𝑔𝑖𝑡(𝑔𝑖) 

 

3.3 The Joint Differential Speed DINA (JDS-DINA) Model 

Data on response time (RT) provides an additional source of information besides the task 

responses on the test. Both sources of information result from the interaction of item and person 

characteristics. Task responses are determined by examinee ability (mastery) level and the item 

characteristics (e.g., difficulty and discrimination) and response times are determined by 

examinee speed parameters and item parameters (time intensities and discriminations). So far, 

two separate models have been defined for these two sources of information, but it is important 

to also model the relationships between the two models to exploit the benefits of response time 

information in the estimation of item and person parameters. 

From van der Linden (2016), it is understood that the primary reason for the introduction 

of time discrimination parameter into the log-normal model was to achieve similarity between 

the log-normal model for time and the 2PL IRT model for item responses. This similarity in 

model specifications is not relevant to the objective of this study. He further argued that the 

additional parameter is unnecessary and could lead to overparameterization, since the variation 
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in the effect of speed on response time is already captured by the residual variance parameter of 

the log-normal model such that 𝜙𝑖 = 1 𝜎𝑖
2⁄ . As a result, this parameter is excluded from the log-

normal random quadratic variable speed model so that the model becomes: 

𝑙𝑛(𝑇𝑖𝑗) = 𝜆𝑖 − (𝜏𝑗0 + 𝜏𝑗1𝑋𝑖𝑗 + 𝜏𝑗2𝑋𝑖𝑗
2 ) + 𝜀𝑖𝑗;                     (11) 

𝜀𝑖𝑗~𝑁(0, 𝜙𝑖) 𝑎𝑛𝑑 (
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To account for possible correlation or hierarchical structure in the skills, the higher order 

latent trait approach was used, where it is assumed that a continuously valued general ability 

variable 𝜃𝑗 , underlies the attributes, such that attributes of examinee j are independent 

conditional on 𝜃𝑗 . Conventionally, 𝜃𝑗  is assumed to follow a standard normal distribution for 

model identification (Zhan et al., 2019a). The adjacent category logit model of (Zhan et al., 

2019a), is used to probability of mastery to the underlying latent trait. This model defines the 

relationship between 𝜃𝑗  and the polytomous attributes as: 

𝑃𝑗𝑘𝑙 = 𝑃(𝛼𝑗𝑘 = 𝑙 − 1|𝜃𝑗) =
𝑒𝑥𝑝(∑ 𝛾1𝑘𝜃𝑗 − 𝛾0𝑘𝑢

𝑙
𝑢=1 )

∑ 𝑒𝑥𝑝(∑ 𝛾1𝑘𝜃𝑗 − 𝛾0𝑘𝑢
𝑣
𝑢=1 )

𝐿𝑘
𝑣=1

        (12) 

Where 𝑃𝑗𝑘𝑙is the probability that examinee j attains mastery level l on attribute k; 𝜃𝑗   is the 

continuously valued latent variable for examinee j, 𝛾1𝑘 is the slope parameter for attribute k and 

𝛾0𝑘𝑢 is the intercept or location parameter for the lth level of attribute k, with 𝛾0𝑘1 ≡ 0 (Zhan et 

al., 2019a). If 𝜃𝑗 truly underlies the latent attributes then, given 𝜃𝑗 , the 𝑃𝑗𝑘𝑙 are conditionally 

independent so that the probability of an attribute profile c (c = 1 … C) for examinee j  is a 

product of the probabilities for the corresponding levels on individual attributes: 
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𝜋𝑗𝑐 = 𝑃(𝜶𝒋 = 𝜶𝑐|𝜃𝑗) =∏∏𝑃𝑗𝑘𝑙
𝐼(𝛼𝑐𝑘=𝑙−1)

𝐿𝑘

𝑙=1

𝐾

𝑘=1

        (13) 

Where C is the number of permissible attribute profiles on the test; 𝜋𝑗𝑐 is the probability that 

examinee j has attribute profile c,  𝛼𝑐𝑘 is the entry in the C by K matrix of permissible profiles; 

and 𝐼(𝛼𝑐𝑘 = 𝑙 − 1) = 1 if the kth attribute in 𝜶𝑐 is at the lth level and 0 otherwise. 

When 𝐿𝑘 = 2 for all the attributes on a test, equation (12) reduces to: 

𝑃𝑗𝑘 = 𝑃(𝛼𝑗𝑘 = 1|𝜃𝑗) =
𝑒𝑥𝑝(𝛾1𝑘𝜃𝑗 − 𝛾0𝑘)

1 + 𝑒𝑥𝑝(𝛾1𝑘𝜃𝑗 − 𝛾0𝑘)
        (14) 

for the relationship between the binary attributes and the higher order latent trait, 𝜃𝑗; and the 

probability of a response pattern in equation (13) becomes: 

𝜋𝑗𝑐 = 𝑃(𝜶𝑗 = 𝜶𝑐|𝜃𝑗) =∏𝑃𝑗𝑘
𝜶𝑐𝑘(1 − 𝑃𝑗𝑘)

1−𝜶𝑐𝑘

𝐾

𝑘=1

        (15) 

As noted previously, the higher-order approach to modeling correlation among attributes 

provides us with summative information on the underlying latent ability for each examinee, in 

addition to the mastery level for each attribute. In addition, it reduces the number of parameters 

required to estimate the mastery levels from (∏ 𝐿𝑘
𝐾
𝑘=1 ) − 1 to 𝐾 + ∑ (𝐿𝑘 − 1)

𝐾
𝑘=1  and thereby 

reduces the complexity of the estimation process. For instance, a test with 3 attributes, each 

measured at 3 mastery levels, would require 26 structural parameters but the higher order model 

reduces that number to only 9. Figure 3 depicts an example of higher order model with three 

attributes measured by a five-binary-item test. Here, the first attribute (Att1) is measured at three 

mastery levels by all five items, the second attribute at two levels by the last four items and the 

third attribute at two levels by the last two items. The horizontal lines indicate latent thresholds 
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representing marginal percentage correct for items or marginal percent mastery at each level for 

attributes (Rupp et al., 2010). 

Figure 3 Higher order polytomous attributes model 

The unequal positioning of the horizontal lines is to indicate that thresholds can vary 

across items and latent attributes. When the higher order model depicted in Figure 3 is 

incorporated for the structural parameters of the DINA model, we obtain the higher-order DINA 

or HO-DINA. 

Following the hierarchical modelling framework of (van der Linden, 2007), equations 

(10) through (13) make up the separate models for response time and item response at the first 

level. At the second level, two variance-covariance structures are defined to model the 

dependencies among item parameters and person parameters, respectively. To define the joint 

model, some local independence assumptions are required: 

a. Given the person speed parameters, the log response times 𝑙𝑛(𝑇𝑖𝑗) are conditionally 

independent 

b. Given the latent ability, 𝜃𝑗 ,the latent attributes, 𝛼𝑗𝑘, are conditionally independent 
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c. The responses, 𝑌𝑖𝑗, are conditionally independent, given the latent examinees attribute 

profile, 𝜶𝑗 

d. Given the ability and speed parameters, the responses, 𝑌𝑖𝑗 and log response times, 𝑙𝑛(𝑇𝑖𝑗) 

are conditionally independent. 

With these local independence assumptions in place, the joint differential speed DINA 

model for polytomous item is defined as: 

Level 1: 

a. Measurement part: 

𝑙𝑛(𝑇𝑖𝑗) = 𝜆𝑖 − (𝜏0𝑗 + 𝜏1𝑗𝑋𝑖𝑗 + 𝜏2𝑗𝑋𝑖𝑗
2 ) + 𝜀𝑖𝑗;  𝜀𝑖𝑗~𝑁(0, 1 𝜎𝑖

2⁄ ) 

𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗) = 𝛿0𝑖 + 𝛿1𝑖𝜂𝑖𝑗 

b. Structural part: 

𝑃𝑗𝑘𝑙 = 𝑃(𝛼𝑗𝑘 = 𝑙 − 1|𝜃𝑗) =
𝑒𝑥𝑝(∑ 𝛾1𝑘𝜃𝑗 − 𝛾0𝑘𝑢

𝑙
𝑢=1 )

∑ 𝑒𝑥𝑝(∑ 𝛾1𝑘𝜃𝑗 − 𝛾0𝑘𝑢
𝑣
𝑢=1 )

𝐿𝑘
𝑣=1

 

𝜋𝑗𝑐 = 𝑃(𝜶𝒋 = 𝜶𝑐|𝜃𝑗) =∏∏𝑃𝑗𝑘𝑙
𝐼(𝜶𝑐𝑘=𝑙−1)

𝐿𝑘

𝑙=1

𝐾

𝑘=1

 

Level 2: 

a. Person parameters: 

(

 

𝜃𝑗
𝜏0𝑗
𝜏1𝑗
𝜏2𝑗)

 ~𝑁

(

  
 
𝛍𝑝𝑒𝑟𝑠𝑜𝑛, 𝚺𝑝𝑒𝑟𝑠𝑜𝑛 =

(

 
 

1 𝜎𝜃𝜏0 𝜎𝜃𝜏1 𝜎𝜃𝜏2
𝜎𝜃𝜏0 𝜎𝜏0

2 𝜎𝜏0𝜏1 𝜎𝜏0𝜏2
𝜎𝜃𝜏1 𝜎𝜏0𝜏1 𝜎𝜏1

2 𝜎𝜏1𝜏2
𝜎𝜃𝜏2 𝜎𝜏0𝜏2 𝜎𝜏1𝜏2 𝜎𝜏2

2
)

 
 

)

  
 

 

b. Item parameters: 
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(

𝜆𝑖
𝛿0𝑖
𝛿1𝑖

)~𝑁

(

 
 
𝛍𝑖𝑡𝑒𝑚, 𝚺𝑖𝑡𝑒𝑚 = (

𝜎𝜆
2 𝜎𝜆𝛿0 𝜎𝜆𝛿1

𝜎𝜆𝛿0 𝜎𝛿0
2 𝜎𝛿0𝛿1

𝜎𝜆𝛿1 𝜎𝛿0𝛿1 𝜎𝛿1
2

)

)

 
 
        (16) 

Where the person parameters are assumed to follow a multivariate normal with mean vector 

𝛍𝑝𝑒𝑟𝑠𝑜𝑛 and variance-covariance matrix. The items are also assumed to follow a tri-variate 

normal distribution with mean 𝛍𝑖𝑡𝑒𝑚 and variance-covariance matrix 𝚺𝑖𝑡𝑒𝑚. Other terms in the 

model are as previously defined in equations (9) through (13). 

3.3.1 Model Specifications 

Rupp et al. (2010) have shown that the probability of an observed response pattern in 

cognitive diagnostic model, much like the latent class analysis model, is a structural equation 

model with a structural component and a measurement component. Incorporation of response 

time therefore entails an extension of the measurement model for relating observed response 

times to latent speed variables as well as additional structural relationships between latent speed 

factors to the latent attributes. 

The person and item covariance matrices capture the relationship among person and item 

parameters, respectively. The residual error variance, 𝜎𝑖
2is assumed to be independently 

distributed and therefore, not modeled with the item parameters at the second level. For the 

identifiability between 𝜃𝑗 and 𝜆𝑖, the mean and variance of 𝜃𝑗  are set to 0 and 1 respectively, 

which also follows from the higher order latent trait model of equation (12). To identify the scale 

of the speed parameters, the mean vector of the speed parameters is fixed to 0, which means that 

the average time intensity parameter represents the population average time it takes to complete 

the item – when the speed parameters are all zeros. 
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As with regular growth parameters, some form of association is expected among the 

growth parameters. Fox & Marianti (2016) suggested a negative relationship, such that 

examinees with high initial speed tend to slow down towards the end of the test while those with 

low initial speed tend to increase their speed later to finish the test within the time limit. 

However, for model identifiability, they restricted the covariances among the growth parameters 

to zeros. 

The higher order latent trait of de la Torre & Douglas (2004) is based on the idea that 

student with higher values on the underlying latent ability should have a higher probability of 

attaining a higher mastery level on an attribute. To ensure that this is the case, the slope 

parameter is constrained to be positive, 𝛾1𝑘 > 0. Finally, the guessing parameter is constrained 

as 𝑔𝑖 < (1 − 𝑠𝑖) to guarantee that an examinee who has achieved all the required mastery levels 

would always have a higher probability of correct answer to the item than one who falls short on 

at least one of the required attributes.  

3.3.2  Parameter Estimation 

Estimation of the JDS-DINA model can be achieved through the fully Bayesian 

estimation with MCMC procedure for higher-order DINA with polytomous items, as proposed 

by (Zhan et al., 2019). In the present study, parameters of interest include item intercept and 

interaction parameters, time intercept, interaction, time intensity and item time discrimination 

parameters (𝛿0𝑖, 𝛿1𝑖𝜆𝑖, 𝜎𝑖
2) and person attribute and speed parameters (𝛼𝑗 , 𝜏0𝑗 , 𝜏1𝑗 , 𝜏2𝑗). Given the 

local independence assumptions a through d of the JDS-DINA above and a random sample from 

the population of examinees, the joint likelihood of the observed response and response times is 

given as: 
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𝐿(𝒀, 𝒍𝒏(𝑻)|𝜶, 𝝀, 𝜹𝟎, 𝜹𝟏, 𝝉𝟎, 𝝉𝟏, 𝝉𝟐, 𝝈
𝟐)

=∏∏𝑃(𝑌𝑖𝑗|𝛼𝑗 , 𝛿0𝑖, 𝛿1𝑖)

𝐼

𝑖=1

𝑛

𝑗=1

𝑓 (𝑙𝑛(𝑇𝑖𝑗)|𝜆𝑖, 𝜏0𝑗 , 𝜏1𝑗 , 𝜏2𝑗 , 𝜎𝑖
2)        (17) 

Where  

𝑓 (𝑙𝑛(𝑇𝑖𝑗)|𝜆𝑖, 𝜏0𝑗 , 𝜏1𝑗 , 𝜏2𝑗 , 𝜎𝑖
2)

=
𝜎𝑖

𝑡𝑖𝑗√2𝜋
𝑒𝑥𝑝 {−

1

2
[𝜎𝑖 (𝑙𝑛𝑡𝑖𝑗 − (𝜆𝑖 − 𝜏0𝑗 − 𝜏1𝑗 − 𝜏2𝑗))]

2

} 

3.3.2.1 Prior distributions 

The posterior distribution of the parameter space is proportional to the product of the 

likelihood in (17) and all the prior distributions of the parameters.   The posterior distributions 

are then derived by drawing samples from the prior distributions and updating the likelihood of 

the observed response times and responses. Hence, the choice of prior distributions is important 

for ensure model convergence. Given the relationship among item parameters and person 

parameters of the model, the following prior distributions are adopted for person and item 

parameters prior distributions for the JDS-DINA. 

The prior for response time residual variance, 𝜎𝑖
2 is chosen as 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1,1). 

Following Gelman, Carlin, Stern, Dunson, Vehtari, & Rubin (2013), the joint prior distribution 

for the person parameters is set as multivariate normal 

(

 

𝜃𝑗
𝜏0𝑗
𝜏1𝑗
𝜏2𝑗)

 ~𝑁

(

  
 
𝛍𝑝𝑒𝑟𝑠𝑜𝑛 = [

0
0
0
0

] , 𝚺𝑝𝑒𝑟𝑠𝑜𝑛 =

(

 
 

1 𝜎𝜃𝜏0 𝜎𝜃𝜏1 𝜎𝜃𝜏2
𝜎𝜃𝜏0 𝜎𝜏0

2 0 0

𝜎𝜃𝜏1 0 𝜎𝜏1
2 0

𝜎𝜃𝜏2 0 0 𝜎𝜏2
2
)

 
 

)

  
 

 

The normality assumption and mean vector of 0 for the person parameters follow from 

the identifiability conditions of the higher order latent trait model of (de la Torre & Douglas, 
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2004) and Fox & Marianti (2016)’s variable speed quadratic model for response time. Going by 

the model identifiability constraints, the variance covariance matrix of the growth parameters is 

tridimensional matrix with zeros on the off diagonals. Hence, the only covariance terms of 

interest are those of ability with each of the growth parameters. 

  Completely specifying the covariance matrix entries would be unrealistic. Rather, the 

covariance matrix is defined by hyper-priors with hyperparameters. Since some of the entries of 

𝚺𝑝𝑒𝑟𝑠𝑜𝑛 are fixed, the inverse-Wishart distribution is not applicable (Zhan et al., 2019). 

Following the example of (Zhan et al., 2018a), 𝚺𝑝𝑒𝑟𝑠𝑜𝑛 is first re-parameterized in terms of its 

Cholesky decomposition and priors are then placed on the entries of the resulting lower 

triangular matrix. The Cholesky decomposition of 𝚺𝑝𝑒𝑟𝑠𝑜𝑛  is given as: 

𝚺𝑝𝑒𝑟𝑠𝑜𝑛 = ∆𝑝𝑒𝑟𝑠𝑜𝑛∆
′
𝑝𝑒𝑟𝑠𝑜𝑛= (

1 0 0 0
𝜎𝜃𝜏0 𝜔0 0 0

𝜎𝜃𝜏1 𝜑01 𝜔1 0
𝜎𝜃𝜏2 𝜑02 𝜑12 𝜔2

)(

1 0 0 0
𝜎𝜃𝜏0 𝜔0 0 0

𝜎𝜃𝜏1 𝜑01 𝜔1 0
𝜎𝜃𝜏2 𝜑02 𝜑12 𝜔2

)

′

 

Where 

𝜑01 =
−𝜎𝜃𝜏0𝜎𝜃𝜏1

√𝜎𝜏0
2 −𝜎𝜃𝜏0

2
; 𝜑02 =

−𝜎𝜃𝜏0𝜎𝜃𝜏2

√𝜎𝜏0
2 −𝜎𝜃𝜏0

2
; 𝜑12 =

−𝜎𝜃𝜏1𝜎𝜃𝜏2𝜎𝜏0
2

√(𝜎𝜏0
2 −𝜎𝜃𝜏0

2 )(𝜎𝜏1
2 𝜎𝜏0

2 −𝜎𝜏1
2 𝜎𝜃𝜏0

2 −𝜎𝜃𝜏1
2 𝜎𝜏0

2 )

 

𝜔0 = √𝜎𝜏0
2 − 𝜎𝜃𝜏0

2 ; 𝜔1 = √𝜎𝜏1
2 − 𝜎𝜃𝜏1

2 − 𝜑01
2 ; and 𝜔2 = √𝜎𝜏2

2 − 𝜎𝜃𝜏2
2 − 𝜑02

2 − 𝜑12
2  

The priors for the elements of ∆𝑝𝑒𝑟𝑠𝑜𝑛 are set such that 𝜑01, 𝜑02, and 𝜑12 are each 

assumed to follow  𝑁(0,1) while 𝜔0, 𝜔1, and 𝜔2  are each 𝐺𝑎𝑚𝑚𝑎(1,1) (Zhan et al., 2018a). 

Similarly, following Zhan et al. (2018a), the joint prior distribution adopted for item 

parameters is the multivariate normal distribution: 

(

𝜆𝑖
𝛿0𝑖
𝛿1𝑖

)~𝑁 ([

𝜇𝜆
𝜇𝛿0
𝜇𝛿1  

] , 𝚺𝑖𝑡𝑒𝑚) 
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Again, the parameters for this tri-variate normal distribution were drawn from the 

following hyper-priors: 

𝜇𝜆~𝑁(3, 2) 

𝜇𝛿0~𝑁(−2.197, 2) 

𝜇𝛿1~𝑁(4.394, 2)𝐼(𝜇𝛿1 > 0) 

𝚺𝑖𝑡𝑒𝑚~𝑖𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑹, 3) 

where R is a tridimensional identity matrix and 𝐼(𝜇𝛿1 > 0) puts a truncation on 𝜇𝛿1 to satisfy the 

DINA model constraint of 𝑔𝑖 < (1 − 𝑠𝑖). The parameters of these priors are also drawn from 

(Zhan et al., 2018a). 

For the higher-order latent structural model, the structural parameters are assumed to be 

independently distributed so that their individual priors specified as: 

𝛾1~𝑁(0, 𝜎𝛾1
2 )𝐼(𝛾1 > 0) 

𝛾0𝑘~𝑁(0, 𝜎𝛾0
2 ) 

Where 𝐼(𝛾1 > 0) indicates that the distribution is truncated from below at zero, to align with the 

belief that higher level of the trait is associated with higher probability of possessing a higher 

mastery level on attribute k. Also, for the outcome variables in the model: 

𝑌𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗)) since it is a binary outcome and 𝑙𝑛(𝑇𝑖𝑗)~𝑁 ((𝜆𝑖 − 𝜏0𝑗 − 𝜏1𝑗 −

𝜏2𝑗) , 1 𝜎𝑖
2⁄ ). The latent attribute variable is a categorical variable and therefore, follows a 

categorical distribution: 𝛼𝑗𝑘~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑷𝑗𝑘) where 𝑷𝑗𝑘 is a 1 by Lk vector of probabilities 

for the Lk levels of attribute k. 

Applying the Bayes’ theorem to the likelihood and priors defined above, the joint 

posterior probability distribution for the JDS-DINA model is given as: 
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𝑃(𝛀|𝒀, 𝑙𝑛(𝑻)) ∝ 𝐿(𝒀, 𝒍𝒏(𝑻)|𝜶, 𝝀, 𝜹𝟎, 𝜹𝟏, 𝝉𝟎, 𝝉𝟏, 𝝉𝟐, 𝝈
𝟐) × 𝑃(𝛂|𝛀, 𝜸𝟎, 𝜸𝟏) × 𝑃(𝜸𝟎) × 𝑃(𝜸𝟏)

× 𝑃(𝛀, 𝝉𝟎, 𝝉𝟏, 𝝉𝟐|0, 𝚺𝑝𝑒𝑟𝑠𝑜𝑛) × 𝑃(𝚺𝑝𝑒𝑟𝑠𝑜𝑛) × 𝑃(𝝀, 𝜹𝟎, 𝜹𝟏|, 𝚺𝑖𝑡𝑒𝑚) × 𝑃(𝚺𝑖𝑡𝑒𝑚)

× 𝑃(𝝈𝟐) 

Where 𝛀  is the set of all the parameters to be estimated in the model. 

Given the complex nature of the joint posterior defined above, it would be impossible to 

sample directly from it. Hence, one of the MCMC algorithm described previously was employed. 

Once convergence is achieved, with stationary posterior distributions for all the parameters, the 

mode of the posterior distribution is treated as estimate for 𝛼𝑗𝑘. For the rest of the parameters, the 

means of their posterior distributions was used. 

3.3.3 Assessment of Model Fit 

Beyond the usual model checks in the Bayesian estimation framework, additional model 

assessment specific to joint cognitive diagnostic and response time models have not been 

adequately studied. Hence, given convergence model checks are satisfied, further evaluation of 

model fit for the JDS-DINA model would follow the example of Zhan et al. (2018a). Model fit 

was evaluated separately for the response and response time outcomes. 

For the responses, Zhan et al. (2018a) implemented the posterior predictive model check 

of (Gelman et al., 2014) using the sum of the squared Pearson residuals (Yan, Mislevy, & 

Almond, 2003) to assess the fit for item responses. This discrepancy measure is defined in (Zhan 

et al., 2018a) as: 

𝐷(𝑌𝑖𝑗; 𝛼𝑗 , 𝛿0𝑖, 𝛿1𝑖) =∑∑

(

 
𝑌𝑖𝑗 − 𝑃𝑖𝑗

√𝑃𝑖𝑗(1 − 𝑃𝑖𝑗))

 

2
𝐼

𝑖=1

𝑛

𝑗=1

        (18) 
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Where 𝑃𝑖𝑗 = 𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗) is as defined in equations (9) and (15). Values close to 0.5 are 

indicative of adequate model fit (Zhan et al., 2018a). 

Similarly, the fit for response times is assessed using the sum of the standardized error 

function of 𝑙𝑛(𝑇𝑖𝑗), appropriately modified from (Zhan et al., 2018a) to reflect the variable speed 

quadratic model for response time. This modified statistic is defined as: 

𝐷 (𝑙𝑛(𝑇𝑖𝑗); 𝜆𝑖, 𝜏0𝑗 , 𝜏1𝑗 , 𝜏2𝑗 , 𝜎𝑖
2) =∑∑(

𝑙𝑛(𝑇𝑖𝑗) − 𝐸 (𝑙𝑛(𝑇𝑖𝑗))

𝜎𝑖
)

2
𝐼

𝑖=1

𝑛

𝑗=1

        (19) 

Where 𝐸 (𝑙𝑛(𝑇𝑖𝑗)) = (𝜆𝑖 − 𝜏0𝑗 − 𝜏1𝑗 − 𝜏2𝑗)  is the conditional mean of 𝑙𝑛(𝑇𝑖𝑗). Values close to 

0.5 are also indicative of adequate model fit for the response times (Zhan et al., 2018a). 

3.4 Real data analysis  

For this section of the study, two datasets are available to address the study objectives 

that are related to real data applications. One is the 2012 computer-based PISA mathematics data 

and the other is dataset created and kindly shared by Karelitz (2004). 

The 2012 computer-based PISA mathematics test was developed to assess domain-

specific knowledge and skills in mathematics of students from 65 EU, OECD and OECD-partner 

countries. Test areas include Mathematics, Reading, Science, and financial literacy OECD 

(2014). However, only the computer-based Math test provides the response time data that is 

relevant for this study. To keep this study comparable to that of Zhan et al. (2018a), only the data 

for 1,584 students from Brazil (BRA), Germany (DEU), Shanghai-China (QCN), and the United 

States of America (USA) were used. Also, for the same reason, only ten of the Mathematics test 

questions were considered. These 10 questions were designed to assess seven attributes – change 

and relationships (𝛼1), quantity (𝛼2), space and shape (𝛼3), uncertainty and data (𝛼4), 
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occupational (𝛼5), societal (𝛼6), and scientific (𝛼7) (OECD, 2014; Zhan et al., 2018a). For more 

details, see OECD (2014). 

The second dataset is a 40-item test designed and administered to 200 University of 

Illinois undergraduates by Karelitz (2004), henceforth referred to as the language rule data. The 

test was designed to assess their general language proficiency using fictional grammatical rules. 

The rules tested were grouped into three skills (attributes) with three to four mastery levels each. 

Participants were first randomly assigned to 10 groups and taught rules, where groups differ by 

the type of rule they were taught. Thereafter, questions testing all rules were developed and 

administered to all participants. Responses were then scored as right or wrong. More details on 

this experiment can be found in Karelitz (2004). 

For model comparisons, the HO-DINA differs from the JDS-DINA and JRT-DINA 

because it excludes response time. However, an additional difference is that, in both JDS-DINA 

and JRT-DINA, the item parameters are also modeled at the second level to account for inter-

relationships among them. Since the objective of this study is to highlight the difference that 

response time makes, it is important that every comparison model should only differ in terms of 

how the response time variable is handled. To ensure this is so for comparisons that are made 

with HO-DINA, a modified HO-DINA (MHO-DINA) introduced by Zhan et al. (2018a)  was 

used. MHO-DINA is essentially HO-DINA that includes a higher-level model for the 

relationship among item parameters. The MHO-DINA model is defined as follow: 

Level 1: 

a. Measurement part:𝑃(𝑌𝑖𝑗 = 1|𝜂𝑖𝑗) = 𝛿0𝑖 + 𝛿1𝑖𝜂𝑖𝑗 

b. Structural part: 𝑃𝑗𝑘𝑙 = 𝑃(𝛼𝑗𝑘 = 𝑙 − 1|𝜃𝑗) =
𝑒𝑥𝑝(∑ 𝛾1𝑘𝜃𝑗−𝛾0𝑘𝑢

𝑙
𝑢=1 )

∑ 𝑒𝑥𝑝(∑ 𝛾1𝑘𝜃𝑗−𝛾0𝑘𝑢
𝑣
𝑢=1 )

𝐿𝑘
𝑣=1
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𝜋𝑗𝑐 = 𝑃(𝜶𝒋 = 𝜶𝑐|𝜃𝑗) =∏∏𝑃𝑗𝑘𝑙
𝐼(𝜶𝑐𝑘=𝑙−1)

𝐿𝑘

𝑙=1

𝐾

𝑘=1

 

Level 2: 

c. Person parameters: 𝜃𝑗~𝑁(0,1) 

d. Item parameters: (
𝛿0𝑖
𝛿1𝑖
)~𝑁(𝛍𝑖𝑡𝑒𝑚, 𝚺𝑖𝑡𝑒𝑚 = (

𝜎𝛿0
2 𝜎𝛿0𝛿1

𝜎𝛿0𝛿1 𝜎𝛿1
2 ))        (20) 

3.4.1 Model Comparisons 

This section describes how the models, estimation method, and datasets discussed so far 

are employed to address the research objectives of this study that are related to real data analysis. 

The availability of response time together with item responses in the PISA data makes it 

appropriate for comparison of models that differ in terms of response time. Unfortunately, the Q-

matrix for this test defines only binary attributes. Hence, the first two research questions are 

restricted to comparisons involving the JDS-DINA model for binary attributes. 

On the other hand, the data from Karelitz (2004) concerns attributes with qualitatively 

ordered mastery levels, which would have been more appropriate for the application of JDS-

DINA model for polytomous attributes. However, this data lacks information on response time. 

Hence, the fourth research question in this section is a comparison between polytomous and 

binary attribute specifications using the MHO-DINA model. 

3.4.1.1 Research Question 1: How do the JDS-DINA, JRT-DINA, and MHO-DINA models 

compare in terms of model fit? 

This comparison would serve to verify the advantage of a differential speed response 

time as opposed to constant speed model. All three models, JRT-DINA and MHO-DINA and 

JDS-DINA with binary attributes, were compared based on model fit statistics – the deviance 
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information criterion (DIC), and the posterior predictive probability (PPP) defined in equation 

(18). The standard deviation of the posterior distributions would also be used to assess and 

compare precision across the three models of interest. 

It is expected that the MHO-DINA would present the worst performance among the three 

models. The difference between the JRT-DINA and the JDS-DINA would depend largely on 

what structure of response time model is most appropriate for the data at hand. If there is no 

significant change in speed among the examinees, then the JRT-DINA may present relatively 

smaller standard errors because of its parsimony. The reverse would apply if there is a significant 

change in speed of response among the examinees. 

3.4.1.2 Research Question 2: How does dichotomization of polytomous attributes affect person 

correct classification accuracy? 

The aim of this question is to verify, in the absence of response time information, that 

dichotomization of attributes leads to poorer model results, as suggested by previous studies 

(Karelitz, 2004; Karelitz, 2008; Zhan et al., 2019; Chen & de la Torre, 2013).  This comparison 

would employ the language rule data by Karelitz (2004). To create the binary attributes from the 

Q-matrix of this data, the lowest mastery level for each attribute was coded non-mastery (0) and 

all mastery levels beyond the lowest level were coded as mastery (i.e., 1). 

The appeal of Karelitz (2004)’s data is that, even though it is empirical, the truth about 

examinees mastery levels is known. Hence, besides comparison of model fit indices, as in 

research question 1a, the models with polytomous and binary attributes would also be compared 

in terms of classification accuracies of attributes and attribute patterns. These two quantities are 

defined as follows (Zhan et al., 2019; Chen & de la Torre, 2013): 

𝐴𝐶𝐶𝑅𝑘 =
∑ 𝑊𝑗𝑘
𝑛
𝑗=1

𝑛
        (21) 
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𝑃𝐶𝐶𝑅𝑐 =
∑ ∑ ∏ 𝑊𝑗𝑘

𝐾
𝑘=1

𝑛
𝑗=1

𝑅
𝑟=1

𝑛
         (22) 

Where n is the number of examinees or sample size, R is the number of replications for 

the pattern of interest, and 𝑊𝑗𝑘 = 1 if 𝛼𝑗𝑘 = 𝜎̂𝑗𝑘 and 0 otherwise. For polytomous attributes, 

misclassification could be of varying degrees – classification into adjacent or non-adjacent 

mastery levels. To account for the degree of misclassification, Chen & de la Torre (2013) 

recommend the use of weighted classification accuracy, where  𝑊𝑗𝑘 = 1 2
|𝛼𝑗𝑘−𝜎̂𝑗𝑘|⁄  if  

|𝛼𝑗𝑘 − 𝜎̂𝑗𝑘| < 𝐿𝑘 − 1 and 0 otherwise. 

3.5 The Simulation Study  

For this section of the study, data were generated according to the JDS-DINA model for 

polytomous attributes and analyzed with true model and the alternative models. Alternative 

models to be considered are the JRT-DINA and the MHO-DINA of Zhan et al. (2018a). The 

JRT-DINA accounts for response time in the model but assumes constant speed across the test 

period. The MHO-DINA excludes response time completely, ignoring the effect of time. The 

reason for using MHO-DINA instead of HO-DINA is to ensure that the item parameters are 

modeled similarly across all models so that differences in model performances across these 

models can only be attributed to either the grain size of the attributes, the treatment of response 

time in the model, or both. Each of these models was considered with polytomous and binary 

items to further assess the effect of dichotomizing attributes with respect to each model. In 

summary, data were generated with one model, but six models were estimated and compared 

using the simulated data. 

3.5.1 Simulation design 

In examining and comparing cognitive diagnostic models, previous researchers have 

shown significant variation in model performance due to number of items or test length, number 



52 
 

1     2     3      4      5      6     7      8     9     10    11   12    13    14    15    16    17   18    19    20   21    22    23    24   25    26    27   28   29    30 

of examinees or sample size, misspecification of the Q-matrix, number of attributes, among 

others. However, for the purpose of this study, these factors were held constant, to keep the study 

design manageable. Sample size of 200 was considered. For the Q matrix, number of attributes, 

and number of items, the specification provided in Zhan et al. (2019) was adopted. This means 

the current study considered a 30-item test measuring four attributes with four mastery levels 

each and a Q matrix as defined in Zhan et al. (2019) and shown below. 

Figure 4 K × I Q matrix for binary attributes. 

Blank means “0,” light gray means “1”, dark gray means “2” and black means “3” 

 

To dichotomize the attributes, the Q matrix in Figure 4 is revised such that all levels 

above the first are categorized as mastery (1) and the first level is classified as non-mastery (0). 

This gives rise to the Q matrix in Figure 5 below for the models with binary attributes.  

 

                              

                              

                              

                              

Figure 5 K × I Q matrix for binary attributes. Blank means “0,” light gray means “1” 

 

The factors to be manipulated in the study are variances of speed components, and 

correlation between examinee ability and the speed components. This is to evaluate the 

performance of the JDS-DINA model under varying conditions of assumed variability in 

speed. If speed remains constant throughout the test then, only the variance of the initial speed 

1     2     3      4      5      6     7      8     9     10    11   12    13    14    15    16    17   18    19    20   21    22    23    24   25    26    27   28   29    30 



53 
 

component would be significantly different from zero. The variances of the speed components 

and their covariances with the ability parameter were considered at two levels each.  

There are only a few studies that have considered the variable speed model in 

combination with item response models. In most cases, the item response model used is an IRT 

model. However, estimates from these studies provide suggestions on plausible values for the 

correlation between ability and the speed components. Zhan et al. (2018a), working with the 

JRT-DINA model, found a theoretically contradictory negative correlation of -0.57 between the 

initial speed component and ability. Their model did not consider the variable speed components 

and was based on a 10-item test for seven attributes, which is not likely to produce trustworthy 

estimates. Fox & Marianti (2016), on the other hand, reported a positive correlation of 

0.72 between initial speed and ability and negative correlations of -0.02 and -0.09 for the linear 

and quadratic components, respectively.  

Following the estimates reported in Fox & Marianti (2016), the parameters for the speed 

components are set as 0.1 and 0.5 for low and high variances respectively for each of the speed 

components. Also, the correlation parameters are set to (0.3, -0.05, -0.1) and (0.7, -0.1, -0.3) as 

low and high correlations between ability and the initial speed, linear trend, and quadratic 

components, respectively. Table 3 below shows these values. 

Table 3 

Design conditions – person parameters  

Level 𝝈𝝉𝟎
𝟐  𝝈𝝉𝟏

𝟐  𝝈𝝉𝟎
𝟐  𝝈𝜽𝝉𝟎 𝝈𝜽𝝉𝟏  𝝈𝜽𝝉𝟐 

Low 

High 

0.1  

0.5  

0.1  

0.5  

0.1  

0.5  

0.3  

0.7  

-0.05  

-0.1  

-0.1  

-0.3  

 

The covariances among the parameters were determined by the correlations and variances 

specified above. Unlike the person parameters, the variance of time residuals is fixed at 0.25 
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and the true values of the higher-order latent trait model parameter, 𝛾1𝑘 and 𝛾0𝑘𝑙 were specified 

like in Zhan et al. (2019), as shown in Table 4 below: 

Table 4 

Design conditions – structural parameters 

Attribute  𝜸𝟏𝒌 
𝜸𝟎𝒌𝒍 

l=2  l=3  l=4  

a1  1.5  -1.00  -0.50  0.00 

a2  1.5  -0.50  -0.25  0.25  

a3  1.5  -0.25  0.25  0.50  

a4  1.5  0.00 0.50  1.00  

 

The values for the item parameters were motivated from results of real data analysis 

reported by Zhan et al. (2018a) and set to 

𝚺𝑖𝑡𝑒𝑚 = (

− 𝜆 𝛿0 𝛿1
𝜆 0.24 −0.44 0.25
𝛿0 −0.44 3.86 −2.45
𝛿1 0.25 −2.45 2.50

) 

𝛍𝑖𝑡𝑒𝑚 = (
4.30
−2.31
3.25

) 

The choices of variances and covariance values make a total of 64 simulation 

conditions – two variances each of the speed components by two covariances each of speed 

components with ability. For each condition, 60 samples were generated. 

 

3.5.2 Data Generation 

To generate the data, person and item parameters were randomly sampled from 

the following multivariate normal distributions: 
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(

 

𝜃𝑗
𝜏0𝑗
𝜏1𝑗
𝜏2𝑗)

 ~𝑁

(

  
 
[

0
0
0
0

] , 𝚺𝑝𝑒𝑟𝑠𝑜𝑛 =

(

 
 

1 𝜎𝜃𝜏0 𝜎𝜃𝜏1 𝜎𝜃𝜏2
𝜎𝜃𝜏0 𝜎𝜏0

2 0 0

𝜎𝜃𝜏1 0 𝜎𝜏1
2 0

𝜎𝜃𝜏2 0 0 𝜎𝜏2
2
)

 
 

)

  
 

 

(

𝜆𝑖
𝛿0𝑖
𝛿1𝑖

)~𝑁([
4.30
−2.31
3.25

] , 𝚺𝑖𝑡𝑒𝑚 = (
0.24 −0.44 0.25
−0.44 2.86 −2.45
0.25 −2.45 2.5

)) 

Where the unknown entries of 𝚺𝑝𝑒𝑟𝑠𝑜𝑛 are replaced by the values specified in Table 3, and 

higher-order latent trait model parameters are drawn from Table 4. 

Once the parameters have been generated, the attribute mastery level on each attribute for 

each examinee, 𝛼𝑗𝑘, would be generated from a categorical distribution with probabilities 

(𝑃𝑗𝑘1, 𝑃𝑗𝑘2, 𝑃𝑗𝑘3, 𝑃𝑗𝑘4), where 𝑃𝑗𝑘𝑙 is as defined in equation (12). The log response time would 

then be randomly drawn according to equation (11), and the binary response variable is 

generated with equation (10), where 𝜂𝑖𝑘 is determined from the examinee mastery status 𝛼𝑗𝑘 and 

the Q matrix in Figure 3. 

Data generation and model estimations were carried out using JAGS, automated within R 

(Plummer, 2012). JAGS implements the Bayesian MCMC estimation procedure using an 

adaptive sampling scheme. In other words, JAGS searches through the catalog of samplers and 

chooses the sampling algorithm most appropriate for the conditional posterior distribution for 

each parameter (Plummer, 2012). For each of the 60 replications, two Markov chains were 

generated to improve the precision of parameter estimates (Brooks & Gelman, 1998), with 

10,000 iterations per chain. Based on inspection of the trace plot, burn-in was set at 5,000. 

Random starting values were used for all model parameters. Model convergence was assessed 

using trace plots and the Gelman–Rubin potential scale reduction factor 𝑅̂, where 𝑅̂ < 1.2 

indicates approximate convergence (Brooks & Gelman, 1998). 
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3.5.3 Model Evaluation 

To evaluate parameter recovery, the absolute bias (AB) and the root mean square error 

(RMSE) were computed. These two quantities are defined as follows: 

𝐴𝐵(𝜈̂) = |𝜈̂𝑟 − 𝜈|        (23) 

𝑅𝑀𝑆𝐸(𝜈̂) = √
∑ (𝜈̂𝑟 − 𝜈)2
𝑅
𝑟=1

𝑅
        (24) 

Where R is the number of replications (60 in this study), 𝜈 is the true value of the parameter of 

interest and 𝜈̂𝑟 is its estimated value at the rth replication. The commonly used relative bias was 

not used in this study because some of the parameters have zeros as true value. 

To evaluate item parameter recovery, the bias was averaged across all items; thus the 

mean absolute bias was reported to avoid the cancellation of positive and negative bias. For the 

classification accuracy, this study calculated and compared the attribute correct classification rate 

(ACCR) and the pattern correct classification rate (PCCR), as defined in equations 21 and 22.  

3.5.3.1 Research Question 3: How is the recovery of item and person parameter estimates in 

JDS-DINA affected by variance of speed components and their correlations with person 

ability? 

This part of the analysis was done using multivariate analysis of variance (MANOVA) 

model with eight factors. The factors to be considered are (1) variance of each initial speed 

component with two levels each, (2) variance of each linear trend component with two levels, (3) 

variance of each quadratic speed component with two levels, (4) covariance between initial 

speed components and ability with two levels, (5) covariance between linear trend component 

and ability with two levels, and (6) covariance between quadratic speed components and ability 

with two levels. 
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The MANOVA was carried out separately for each parameter. Outcome variables for 

each parameter were the AB and standard errors of estimates. Significant effects from the 

MANOVA results were probed further with univariate ANOVA and graphically. 

3.5.3.2 Research Question 4: How well does the JDS-DINA for dichotomous attributes recover 

person and item parameter estimates (as reflected in the bias of estimates)? 

 

For this research question, the bias, RMSE, ACCR, and PCCR were compared across all 

three models but with only the binary configuration of the attributes. The aim of this is to see 

which of these models gets the closest to the truth in the presence of information loss due to 

categorization of attributes. Only the model estimates with the binary attribute configuration 

were compared. 

The comparison between JDS-DINA and JRT-DINA should reveal the effect of ignoring 

differential speededness on the accuracy of parameter estimates. The comparison between MHO-

DINA with JDS-DINA and JRT-DINA would highlight the effect of ignoring time in CDM 

estimation. 

3.5.3.3 Research Question 5: How well does the JDS-DINA for polytomous attributes recover 

person and item parameter estimates (as reflected in the bias of estimates)? 

 

This last question is like the previous, but with the polytomous configuration of the 

attributes. All three models were compared as well. The idea is to determine how much loss, if at 

all, is incurred when we fail to account for the speededness effect in modeling data that came 

from a population of students with differential test speed. The model with the minimum average 

bias and RMSE and the maximum ACCR and PCCR is the preferred model. 



58 
 

CHAPTER 4: RESULTS 

 

This chapter presents the results of the analyses, organized into five sections 

corresponding to the five research questions posited in Chapter 1 and described in Chapter 3. The 

first section summarizes the results of empirical data analysis that uses the PISA data to 

determine the best-fitting model, while the second section investigates the effect imposing a 

binary-attribute model on a polytomous attribute data using the higher other DINA model. 

Sections 3 through 5 are based on the simulation study, beginning with model evaluation, to 

assess how well the proposed differential speed DINA model for polytomous attributes, JDSP for 

short, recovers parameter estimates and attribute profiles under varying data conditions. Sections 

4 and 5 are concerned with model comparisons, to examine the effect of ignoring the 

speededness effect as well as the effect of wrong specification of attribute categories, as implied 

by the model choice. 

4.1 Research Question 1 

In this first study, data from the 2012 computer-based PISA mathematics test was used to 

compare the three models of interest in this study – the modified higher-order (MHO) DINA, the 

joint response time (JRT) DINA models and the proposed joint differential speed (JDS) DINA.  

The adequacy of these three models for the PISA Mathematics data was assessed via relative 

model fit statistics as well as standard error of estimates. The following two subsections 

summarize the results of this study. 

4.1.1 Model fit statistics 

The DIC and BIC were used to assess the relative adequacy of the three models. The 

model with the smallest DIC and BIC is preferred. Posterior predictive probability (PPP) was 
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also used to assess the model fit for responses (PPP-Score) and response times (PPP-Time). PPP 

values range from zero to one, where values close to 0 or 1 mean that observed discrepancies are 

extreme values and are suggestive of model-data misfit (Almond, Mislevy, Steinberg, and 

Williamson, 2015). The model with PPP value closest to 0.5 is preferred. 

Table 5 

Model fit statistics for the 2012 PISA computer-based mathematics test 

Parameter MHO-DINA JRT-DINA JDS-DINA 

DIC 67812.87 52301.180 53142.52 

BIC 416972.2 150292.3 156290.4 

PPP-Score 0.544 0.580 0.599 

PPP-Time --- 0.591 0.608 

Posterior SD    

δ0 0.306 0.265 0.234 

δ1 0.369 0.324 0.304 

λ 1.578 0.018 0.017 

θ 0.339 0.629 0.630 

  

Table 5 presents the summary information about overall model fit statistics. The deviance-

based statistics, DIC and BIC, point to the JRT-DINA model as preferred, but the PPP value 

chooses the MHO-DINA. However, standard error of posterior distribution for the item and person 

parameters are relatively high with MHO-DINA model, suggesting high instability in these 

estimates. The JDS-DINA model, on the other hand, shows greater stability in parameter estimates. 

The small item pool in this test may have favored the parsimony of the MHO-DINA, 

resulting in the relatively good PPP-Score. Every other fit statistic rejects MHO-DINA in favor of 

the models that account for response time. Almond et al. (2015) also noted that the PPP value can 

be too conservative, failing to reject model-data misfits. Standard errors of parameter estimates are 

similar for the item time intensity and higher-order ability estimates, but not for the item intercept 
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and slope parameters. These values were obtained by aggregating across the ten items. The next 

section takes a closer look at these items, to evaluate model fit with respect to individual items. 

4.1.2  Standard error of item parameter estimates 

Given the true values of these item parameters are unknown, it is impossible to tell which 

of these models provide the true estimates for these items but, the standard deviations provide 

some information on the reliability of these estimates. The item level estimates in Table 6 show 

similarities in the parameter estimates provided by the three models, particularly between the 

JRT and JDS model. Overall, the JDS-DINA provides the smallest standard errors for the item 

parameter estimates. 

Table 6 

Estimated item parameters for the 2012 PISA computer-based mathematics items 

Item 

δ0 δ1 

MHO JRT JDS MHO JRT JDS 

Item1 -1.102(0.831) -0.614(0.267) -.583(0.225) 4.400(0.883) 3.823(0.435) 3.894(.457) 

Item2 -5.912(0.952) -5.592(0.703) -5.446(0.225) 5.933(0.963) 5.567(0.703) 5.432(.656) 

Item3 -4.001(0.418) -4.269(0.652) -4.089(0.648) 5.059(0.448) 5.292(0.658) 5.108(.494) 

Item4 -3.400(0.209) -3.439(0.220) -3.452(0.221) 3.224(0.235) 3.166(0.246) 3.165(.251) 

Item5 -0.586(0.067) -0.601(0.069) -.606(0.068) 2.029(0.186) 1.924(0.175) 1.919(.180) 

Item6 -2.225(0.133) -2.355(0.150) -2.377(.153) 3.088(0.195) 3.177(0.201) 3.188(.200) 

Item7 -0.913(0.076) -0.957(0.078) -.959(0.080) 2.344(0.176) 2.326(0.174) 2.311(.173) 

Item8 0.410(0.067) 0.375(0.071) .375(0.071) 0.895(0.174) 0.853(0.157) .863(.161) 

Item9 -1.934(0.123) -2.217(0.172) -2.205(.158) 2.068(0.179) 2.297(0.207) 2.302(.199) 

Item10 -2.497(0.192) -2.812(0.265) -2.766(.243) 3.041(0.250) 3.115(0.283) 3.077(.265) 

 

The results of this study clearly exclude the MHO-DINA as a plausible model for the 

PISA Mathematics data. This suggests that, subject to the sample of models considered here, 

models that account for response time provide a better fit for this data. The relative model fit 

statistics favor the choice of JRT DINA, but item level assessment suggests that the JDS 

provides better local fit for the items on the test. The results of this study may have been limited 
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by the number of items, relative to the number of attributes – ten to seven. The effect of this 

limitation in item pool may vary across these models and affect their results differently. 

4.2 Research Question 2 

The aim of this question is to verify that, in the absence of response time information, 

imposing a dichotomous-attribute model on data obtained from polytomous attributes leads to 

poorer model results, as suggested by previous studies (Karelitz, 2004; Karelitz, 2008; Zhan et 

al., 2019; Chen & de la Torre, 2013).  This comparison used the language rule data by Karelitz 

(2004), to compare two models – the higher-order DINA (HO-DINA) model and the 

reparametrized partial mastery higher-order DINA (RPa-DINA) model of Zhan et al. (2019). 

HO-DINA fits a binary-attribute model while the RPa-DINA models the ordered categories of 

the attribute using the adjacent category logit model for the structural parameters. 

4.2.1  Comparison of model fit 

Table 7 

Model fit statistics for the Language Rule data 

Parameter HO-DINA RPa-DINA 

DIC 8176.217 7753.088 

Deviance 7839.987 7020.388 

BIC 9621.282 10902.46 

PPP Score 0.497 0.665 

 

The deviance and DIC statistics selected the RPa-DINA over the HO-DINA model. The 

BIC and PPP, however, did not favor the RPa-DINA model. It has been noted earlier that the 

PPP value can be conservative in rejecting wrong models. Also, for Bayesian estimation of 

cognitive diagnostic models, the DIC is preferred over the BIC (personal communication with 

Dr. Peida Zhan). Hence, judging from the DIC and the deviance statistics, the RPa-DINA model 

is preferred to the HO-DINA. In other words, imposing a binary-attribute model on polytomous-
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attribute data leads to poorer model fit. The next subsection further examines the effect of this 

model-data mismatch on the correct classification rates. 

4.2.2 Classification accuracies 

The language rule data comes with true mastery level data for all 200 participants, which 

means that the attribute correct classification rate (ACCR) and person correct classification rates 

(PCCR) can be computed and compared for these models. Tables 8 shows the relevant results for 

this comparison. 

Table 8 

Classification accuracy rates of attributes for the language data 

  Exact   Weighted  

Model 
ACCR   

PCCR 
ACCR 

PCCR 
α1 α3 α3 α1 α3 α3 

HO-DINA 0.020 0.185 0.675 0.000 0.426 0.507 0.838 0.169 

RPa-DINA 0.660 0.400 0.660 0.205 0.889 0.789 0.830 0.579 

 

The exact classification rate considers the exact match between estimated and true 

mastery status, ignoring the degree of adjacency in the mismatch. The weighted classification 

rate formula adjusts for the degree of adjacency between estimates and true values and is 

therefore recommended for models with categorical attributes. As expected, the exact 

classification rates are generally low for both models. From the weighted classification rates, we 

see additional evidence in favor of the RPa-DINA model, especially with the first two attributes. 

The PCCRs are generally low, though relatively higher with the RPA-DINA model. The 

aim of this study was to assess the effect of dichotomizing polytomous attributes by imposing a 

binary-attribute model on data. The DINA model has been used for this purpose, but there are 

many other options that could have been considered. These low values may stem from the fact 

that the assumptions of the DINA model may not have aligned well with the data, to begin with. 

Nonetheless, the results of this section show that, keeping the base model constant (DINA), 
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dichotomizing polytomous attributes leads to a considerable loss in model fit and accuracy of 

parameter estimates.  

4.3 Research Question 3 

In this section, a simulation study was conducted to evaluate the parameter recovery of 

the proposed model, the joint differential speed (JDS) DINA, and to assess the effect of select 

design conditions on the model. The independent variables manipulated for this simulation were 

the variance of each of the speed components (two levels each) and the correlation of each speed 

component with the higher-order ability, θ, also at two levels each. See Table 3 for the specific 

values of these manipulated factors. Data were simulated using the JDS model with polytomous 

configuration for the attributes, where each attribute had four category levels. 

4.3.1 Overall parameter recovery of the JDS-DINA model 

Table 9 

Bias and RMSE of item and structural parameters of JDS DINA with polytomous attributes 

Attributes 

Bias RMSE 

Bk 
dkl 

Bk 
dkl 

l=2 l=3 l=4 l=2 l=3 l=4 

A1 0.119 0.100 -0.054 -0.091 0.390 0.578 0.565 0.545 

A2 0.164 0.020 -0.025 -0.038 0.417 0.502 0.558 0.502 

A3 0.138 0.053 -0.028 -0.033 0.406 0.470 0.541 0.529 

A4 0.071 0.021 0.048 -0.113 0.365 0.420 0.476 0.539 

Item parameters        

𝛌   0.000    0.069  

𝛅𝟎   -0.004    0.689  

𝛅𝟏   -0.001    0.786  

 

Table 9 presents the bias and RMSE of item and structural parameters, averaged across 

all simulation conditions. In terms of bias and RMSE, the recovery of item and structural 

parameters was quite good, with similar recovery of structural parameters across attributes. 

ACCR ranged from 85% to 89%. The bias and RMSE values are similar to those reported in 

previous studies for the same data (e.g., Zhan et al., 2018a) 
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The weighted classification accuracies are generally low, but Figures 6 provides an 

explanation for these low values – small sample size. The proportions within the bars represent 

the average recovery rate for that profile group, while the numbers above the bars represent the 

average sample size (across all conditions) for that profile group. Profiles with higher number of 

test-takers are associated with higher recovery rates. A sample size of 200 test-takers implies that 

some of the 256 profiles that result from the four attributes would be empty. Larger sample size 

is required and, since profiles would be generated and assigned at random, sample size should be 

sufficiently greater than 256 to ensure that every profile group is assigned, at least, one test taker. 
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Figure 6 Profile correct classification rates 
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Figure 6 (cont’d) 
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4.3.2 Effect of design conditions on parameter recovery 

To assess the effect of simulation design variables on parameter recovery for the JDS-

DINA model, multivariate analysis of variance (MANOVA) was used to analyze the absolute 

bias and standard error for each of the parameters. For results that were significant, graphical 

analysis and univariate analysis of variance (ANOVA) were used to determine which of the 

variables was significantly affected. Tables 10 and 11 summarize the MANOVA and ANOVA 

results for the item and structural parameters, respectively. Test statistics and p-values are 

reported for the MANOVA, but only p-values are reported for ANOVA. 

Table 10 

MANOVA and ANOVA results for item parameters 

Model Parameter 𝛔𝛕𝟎
𝟐

 𝛔𝛕𝟏
𝟐  𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟏 𝛒𝛉𝛕𝟐 

  𝛌   

MANOVA Pillai 0.693 0.209 0.075 0.001 <0.001 0.001 

 p-value <0.001 <0.001 <0.001 0.331 0.760 0.304 

ANOVA 

(p-values) 

Bias <0.001 <0.001 0.001 0.320 0.712 0.416 

SD <0.001 <0.001 <0.001 0.272 0.518 0.187 

  𝛅𝟎   

MANOVA Pillai <0.001 0.001 0.001 <0.001 <0.001 <0.001 

 p-value 0.459 0.363 0.185 0.446 0.553 0.613 

  𝛅𝟏   

MANOVA Pillai 0.001 0.001 0.001 <0.001 <0.001 <0.001 

 p-value 0.207 0.308 0.321 0.515 0.618 0.567 

 

From the MANOVA results in Table 10, none of the correlation variables had effect on 

the item parameters. The variance of speed components had effect on the recovery of the item 

time intensity parameter, but not on the item slope and the intercept. The follow-up ANOVA 

result shows that the variance components affect both the bias and standard error of λ. These 

results were further examined graphically, in Figures 7 through 9. 
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Figure 7 Effect of 𝜎𝜏0
2  on absolute bias and standard error of 𝜆 

 

Figure 8 Effect of 𝜎𝜏1
2  on absolute bias and standard error of 𝜆 

A review of the graphs shows that the effect of variance of speed components is greater 

on the standard error of λ, and that low values of bias and standard error of λ were obtained when 

variance of the variances of speed components were smaller. The graphs also show that the 

variance of the initial speed component τ0 has the strongest effect on parameter recovery. This 

implies that the JDS-DINA performs better when the variability in speed components is low. 
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Figure 9 Effect of 𝜎𝜏2
2  on absolute bias and standard error of 𝜆 

Table 11 

MANOVA and ANOVA results for attribute structural parameters 

Model Parameter 𝛔𝛕𝟎
𝟐

 𝛔𝛕𝟏
𝟐  𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟏 𝛒𝛉𝛕𝟐 

  γ0k2   

MANOVA Pillai <0.001 <0.001 0.001 0.004 0.001 0.001 

 p-value 0.663 0.945 0.354 <0.001 0.102 0.200 

ANOVA Bias 0.867 0.849 0.206 0.879 0.308 0.107 

 SD 0.367 0.750 0.313 <0.001 0.126 0.231 

  γ0k3   

MANOVA Pillai <0.001 <0.001 0.001 0.002 <0.001 <0.001 

 p-value 0.684 0.498 0.065 0.011 0.919 0.811 

ANOVA 

(p-values) 

Bias 0.395 0.764 0.088 0.039 0.798 0.740 

SD 0.687 0.305 0.268 0.008 0.806 0.652 

  γ0k4   

MANOVA Pillai <0.001 <0.001 <0.001 0.004 0.001 <0.001 

 p-value 0.570 0.979 0.787 <0.001 0.197 0.794 

ANOVA Bias 0.649 0.995 0.702 0.340 0.173 0.745 

 SD 0.426 0.846 0.653 <0.001 0.447 0.507 

  γ1   

MANOVA Pillai 0.003 0.001 <0.001 0.027 <0.001 0.001 

 p-value 0.004 0.099 0.433 <0.001 0.959 0.227 

ANOVA 

(p-values) 

Bias 0.707 0.311 0.756 0.729 0.817 0.467 

SD 0.005 0.397 0.432 <0.001 0.991 0.446 

For the structural parameters, Table 11, only the correlation between initial speed 

component and higher-order ability ρθτ0, had a significant effect on the recovery of all the 
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attribute threshold parameters. The follow-up univariate ANOVA results show that ρθτ0 affects 

the standard errors of these parameters but not their biases. Figures 10 through 14 provide a 

graphical display for these significant results. The figures show that these effects, though 

statistically significant, may not be practically meaningful. Further investigation is required to 

obtain a more conclusive evidence for these effects. 

 

Figure 10 Effect of 𝜌𝜃𝜏0 on absolute bias and standard error of 𝛾0𝑘2 

 

Figure 11 Effect of 𝜌𝜃𝜏0 on absolute bias and standard error of 𝛾0𝑘3 

 



71 
 

 

Figure 12 Effect of 𝜌𝜃𝜏0 on absolute bias and standard error of 𝛾0𝑘4 

 

 

Figure 13 Effect of 𝜎𝜏0
2  on absolute bias and standard error of 𝛾1 
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Figure 14 Effect of 𝜌𝜃𝜏0 on absolute bias and standard error of 𝛾1 

 

 

4.4 Research Question 4 

This fourth study was focused on comparing the JDS-DINA model to existing models, 

specifically, the MHO-DINA and JRT-DINA model. MHO-DINA ignores response time in 

modeling test responses, while JRT-DINA accounts for response time with the assumption of 

constant speed. The importance of this study is to highlight the importance of response time 

information in cognitive diagnostic model estimation as well as the effect of imposing a wrong 

attribute configuration on polytomous attribute data. Data for this comparison were generated 

using the JDS DINA model with polytomous attribute configuration, but all the models used here 

were fit with the binary attribute configuration. The idea is to understand which of these models 

comes closest to the truth, given that the wrong attribute configuration has been imposed on the 

data by the model choice 
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Table 12 

Bias and RMSE of 𝛿0 by simulation design conditions – binary attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOB JRTB JDSB MHOB JRTB JDSB 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.335 0.347 0.344 1.041 1.030 1.030 

2 -0.3 0.348 0.356 0.359 1.005 1.001 1.005 

3 
-0.10 

-0.1 0.330 0.341 0.337 0.989 0.984 0.983 

4 -0.3 0.354 0.362 0.358 1.021 1.006 1.005 

5 

0.7 

-0.05 
-0.1 0.323 0.335 0.335 0.977 0.968 0.968 

6 -0.3 0.329 0.344 0.343 0.989 0.988 0.988 

7 
-0.10 

-0.1 0.353 0.361 0.360 1.003 0.997 0.996 

8 -0.3 0.366 0.376 0.371 1.055 1.045 1.046 

9 

0.5 

0.3 

-0.05 
-0.1 0.342 0.347 0.346 0.966 0.952 0.952 

10 -0.3 0.337 0.349 0.346 1.013 1.006 1.006 

11 
-0.10 

-0.1 0.316 0.329 0.328 0.996 0.987 0.986 

12 -0.3 0.368 0.374 0.370 1.039 1.031 1.030 

13 

0.7 

-0.05 
-0.1 0.353 0.372 0.370 1.062 1.056 1.053 

14 -0.3 0.342 0.357 0.355 0.988 0.982 0.984 

15 
-0.10 

-0.1 0.332 0.350 0.350 0.987 0.981 0.981 

16 -0.3 0.346 0.361 0.360 1.005 1.003 1.004 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.339 0.349 0.347 1.020 1.010 1.012 

18 -0.3 0.338 0.343 0.346 0.981 0.967 0.969 

19 
-0.10 

-0.1 0.359 0.366 0.366 1.054 1.045 1.046 

20 -0.3 0.331 0.342 0.341 0.990 0.985 0.985 

21 

0.7 

-0.05 
-0.1 0.341 0.357 0.355 1.002 0.990 0.989 

22 -0.3 0.343 0.356 0.356 0.997 0.984 0.986 

23 
-0.10 

-0.1 0.325 0.334 0.333 1.032 1.018 1.015 

24 -0.3 0.399 0.406 0.404 1.058 1.049 1.048 

25 

0.5 

0.3 

-0.05 
-0.1 0.327 0.338 0.338 1.007 1.001 1.002 

26 -0.3 0.368 0.379 0.376 1.020 1.013 1.011 

27 
-0.10 

-0.1 0.379 0.386 0.383 1.048 1.042 1.039 

28 -0.3 0.357 0.369 0.369 1.011 1.006 1.007 

29 

0.7 

-0.05 
-0.1 0.311 0.324 0.323 0.981 0.974 0.976 

30 -0.3 0.340 0.350 0.350 1.028 1.017 1.016 

31 
-0.10 

-0.1 0.352 0.361 0.360 1.004 1.001 0.999 

32 -0.3 0.321 0.331 0.330 1.007 0.995 0.996 
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Table 12 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
Bias RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.348 0.358 0.358 1.061 1.051 1.051 

34 -0.3 0.324 0.328 0.326 1.006 0.992 0.995 

35 
-0.10 

-0.1 0.320 0.335 0.335 1.025 1.014 1.016 

36 -0.3 0.305 0.320 0.318 0.998 0.982 0.980 

37 

0.7 

-0.05 
-0.1 0.351 0.382 0.385 1.022 1.016 1.019 

38 -0.3 0.344 0.358 0.359 1.046 1.040 1.041 

39 
-0.10 

-0.1 0.377 0.386 0.387 1.046 1.037 1.039 

40 -0.3 0.347 0.369 0.370 1.014 1.023 1.022 

41 

0.5 

0.3 

-0.05 
-0.1 0.316 0.329 0.325 0.978 0.967 0.968 

42 -0.3 0.303 0.318 0.321 1.028 1.026 1.026 

43 
-0.10 

-0.1 0.328 0.335 0.335 0.987 0.981 0.980 

44 -0.3 0.346 0.357 0.356 1.027 1.021 1.019 

45 

0.7 

-0.05 
-0.1 0.331 0.350 0.349 1.014 1.003 1.003 

46 -0.3 0.358 0.373 0.370 1.021 1.012 1.010 

47 
-0.10 

-0.1 0.341 0.352 0.352 1.010 0.996 0.997 

48 -0.3 0.336 0.345 0.342 0.998 0.992 0.989 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.316 0.334 0.332 0.987 0.969 0.965 

50 -0.3 0.363 0.371 0.369 1.061 1.053 1.052 

51 
-0.10 

-0.1 0.317 0.330 0.332 0.987 0.980 0.980 

52 -0.3 0.364 0.370 0.374 1.080 1.073 1.075 

53 

0.7 

-0.05 
-0.1 0.350 0.375 0.374 1.041 1.036 1.035 

54 -0.3 0.337 0.360 0.358 1.010 1.006 1.006 

55 
-0.10 

-0.1 0.320 0.343 0.346 0.996 0.990 0.992 

56 -0.3 0.320 0.332 0.333 0.955 0.943 0.942 

57 

0.5 

0.3 

-0.05 
-0.1 0.316 0.323 0.320 1.024 1.007 1.007 

58 -0.3 0.349 0.358 0.357 1.021 1.011 1.011 

59 
-0.10 

-0.1 0.360 0.372 0.373 1.056 1.051 1.052 

60 -0.3 0.345 0.351 0.352 1.019 1.010 1.010 

61 

0.7 

-0.05 
-0.1 0.347 0.366 0.366 1.025 1.016 1.016 

62 -0.3 0.347 0.363 0.366 1.035 1.019 1.024 

63 
-0.10 

-0.1 0.330 0.355 0.355 1.053 1.051 1.054 

64 -0.3 0.298 0.308 0.304 1.003 0.986 0.985 

 Mean 0.340 0.352 0.352 1.016 1.007 1.007 

 

Table 12 shows the bias and RMSE for  δ0 . The design conditions are numbered, 1 

through 64 in the first column. The next six columns define these conditions. For instance, 

condition 1 has στ0
2 = 0.5,  στ1

2 = 0.1, στ2
2 = 0.1,  ρθτ0 = 0.3, ρθτ2 = −0.05 and  ρθτ2 = −0.1, 
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and so on. For each row, the bias and RMSE were averaged across the 60 replications for each of 

the comparison models. 

The results show that MHO-DINA has the worst performance, which is not surprising 

since data were generated from the JDS-DINA with polytomous attributes. However, JDS-DINA 

and JRT-DINA have very similar results. The reason may be that, given the values that have 

been chosen for the speed components, the relatively low parsimony of the JDS model trumps its 

ability to extract additional information from the differential speed component of the model. 

Similar result tables are available for all the item and structural parameters in the appendix. All 

parameters show similar results as with  δ0 shown here. 

Graphical analysis was used to further examine and compare the results from these three 

models. Figures 15 through 20 display the results for the item parameters. Each of these graphs 

showed evidence that the JRT-DINA and JDS-DINA are indistinguishable in performance, but 

the MHO -DINA model was consistently poor performing. 

Of note is the step or shift observed in the graphs for the item time intensity parameter, λ. 

This occurs right after condition 32. The first 32 conditions all have one thing in common -  

στ0
2 = 0.1. This suggests that the JRT and JDS DINA models perform better (lower bias and 

RMSE) at  στ0
2 = 0.1, compared to στ0

2 = 0.5. In other words, high variability in initial speed is 

associated with poorer parameter recovery. This further highlights the need to account for this 

variance in cognitive diagnostic model estimation.
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Figure 15 Bias of 𝜆 across simulation conditions 
 

 
Figure 16 RMSE of 𝜆 across simulation conditions 
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Figure 17 Bias of 𝛿0 across simulation conditions 
 

 
Figure 18 RMSE of 𝛿0 across simulation conditions 
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Figure 19 Bias of 𝛿1 across simulation conditions 

 

Figure 20 RMSE of 𝛿1 across simulation conditions 
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Figure 21 Bias of 𝛾0𝑘2 across simulation conditions 

The bias and RMSE values for structural parameters were similar across models. While this 

would suggest that the most parsimonious model, MHO-DINA is appropriate, it is also important to 

remember that the results here are subject to the values that have been chosen for the speed components in 

the simulation. These results may be different for other values of speed components. Moreover, the 

primary aim of a cognitive diagnostic test is to estimate attribute profile, and the importance of model 

performance with respect to classification cannot be overemphasized. Table 13 below compares the 

attribute and person classification accuracies across these three models. 

Table13 

Exact and weighted classification accuracy rates 

 Exact  Weighted 

Model 
 ACCR 

PCCR 
ACCR 

PCCR 
α1 α2 α3 α4 α1 α2 α3 α4 

MHOB 0.192 0.220 0.268 0.252 0.025 0.438 0.469 0.510 0.489 0.107 

JRTB 0.253 0.348 0.425 0.468 0.094 0.511 0.578 0.634 0.673 0.214 

JDSB 0.253 0.348 0.425 0.468 0.094 0.511 0.578 0.634 0.673 0.214 

 

The classification accuracies are generally low across models. This is expected since all three 

models were estimated with binary attribute configuration, but data was generated with polytomous 
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configuration.  Given the wrong attribute configuration, the relatively higher accuracy rates for the JDS-

DINA and JRT-DINA underscores the importance of response time. 

Taken together, the results from this study show that, while JDS and JRT DINA outperform 

MHO-DINA and are similar in item and structural parameters, the additional complexity introduced by 

JDS-DINA in accounting for speededness has no added benefit for correct classification accuracy rates. In 

other words, accounting for speededness makes no difference if the wrong attribute configuration has 

been imposed by the model. 

4.5 Research question 5 

This last study is like the previous, but with the correct attribute configuration. Data was 

generated with the JDS-DINA for polytomous attributes, and all three models are once again estimated 

and compared as before. For all three models, the results with this polytomous attribute configuration are 

better than with binary configurations. However, the patterns observed in the estimates and among models 

remain the same. The JRT and JDS DINA models remain considerably indistinguishable, while MHO-

DINA still shows poor performance, as expected. 

Table 14 shows the results for δ0. The tables and figures for other item and structural 

parameters are also available in the appendix. 

 

Figure 22 Bias of 𝛿0 across simulation conditions – polytomous attribute configuration
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Table 14  

Bias and RMSE of 𝛿0 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.001 0.013 0.015 0.746 0.735 0.732 

2 -0.3 -0.046 -0.026 -0.024 0.695 0.677 0.680 

3 
-0.10 

-0.1 -0.030 -0.015 -0.008 0.719 0.708 0.702 

4 -0.3 -0.044 -0.033 -0.025 0.685 0.670 0.665 

5 

0.7 

-0.05 
-0.1 -0.028 -0.006 -0.004 0.660 0.645 0.643 

6 -0.3 -0.030 -0.011 -0.016 0.712 0.695 0.697 

7 
-0.10 

-0.1 0.014 0.023 0.021 0.676 0.668 0.667 

8 -0.3 -0.009 -0.004 -0.001 0.721 0.708 0.709 

9 

0.5 

0.3 

-0.05 
-0.1 0.004 0.018 0.016 0.662 0.644 0.650 

10 -0.3 -0.019 0.004 0.001 0.708 0.691 0.694 

11 
-0.10 

-0.1 -0.042 -0.023 -0.021 0.730 0.715 0.715 

12 -0.3 -0.032 -0.017 -0.020 0.703 0.683 0.685 

13 

0.7 

-0.05 
-0.1 -0.028 -0.012 -0.017 0.700 0.687 0.688 

14 -0.3 -0.030 -0.010 -0.014 0.681 0.663 0.664 

15 
-0.10 

-0.1 -0.023 -0.006 -0.003 0.676 0.660 0.664 

16 -0.3 -0.022 -0.011 -0.013 0.696 0.683 0.682 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.003 0.015 0.016 0.688 0.680 0.678 

18 -0.3 0.003 0.011 0.014 0.685 0.668 0.668 

19 
-0.10 

-0.1 -0.003 0.012 0.012 0.715 0.699 0.702 

20 -0.3 -0.035 -0.020 -0.023 0.697 0.690 0.690 

21 

0.7 

-0.05 
-0.1 -0.001 0.013 0.010 0.680 0.670 0.672 

22 -0.3 -0.027 -0.005 -0.008 0.702 0.681 0.680 

23 
-0.10 

-0.1 -0.047 -0.027 -0.034 0.737 0.721 0.723 

24 -0.3 0.025 0.034 0.040 0.738 0.718 0.716 

25 

0.5 

0.3 

-0.05 
-0.1 -0.004 0.011 0.011 0.682 0.675 0.676 

26 -0.3 -0.025 -0.011 -0.011 0.686 0.679 0.683 

27 
-0.10 

-0.1 -0.012 0.005 0.006 0.713 0.696 0.690 

28 -0.3 -0.003 0.013 0.008 0.715 0.714 0.716 

29 

0.7 

-0.05 
-0.1 -0.060 -0.048 -0.052 0.686 0.687 0.685 

30 -0.3 -0.008 0.010 0.007 0.725 0.709 0.707 

31 
-0.10 

-0.1 -0.006 0.004 0.003 0.682 0.667 0.669 

32 -0.3 -0.059 -0.043 -0.042 0.704 0.691 0.688 
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Table 14 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
Bias RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.021 0.000 0.004 0.732 0.707 0.706 

34 -0.3 -0.004 0.019 0.016 0.688 0.682 0.682 

35 
-0.10 

-0.1 -0.020 -0.001 -0.003 0.714 0.686 0.685 

36 -0.3 -0.048 -0.020 -0.029 0.709 0.692 0.694 

37 

0.7 

-0.05 
-0.1 0.003 0.031 0.035 0.718 0.681 0.685 

38 -0.3 0.000 0.024 0.022 0.718 0.706 0.703 

39 
-0.10 

-0.1 0.000 0.020 0.015 0.708 0.697 0.697 

40 -0.3 -0.008 0.011 0.009 0.708 0.706 0.709 

41 

0.5 

0.3 

-0.05 
-0.1 -0.040 -0.028 -0.029 0.682 0.649 0.653 

42 -0.3 -0.037 -0.021 -0.023 0.730 0.705 0.708 

43 
-0.10 

-0.1 -0.010 0.002 0.004 0.679 0.684 0.683 

44 -0.3 -0.033 -0.024 -0.029 0.697 0.687 0.690 

45 

0.7 

-0.05 
-0.1 -0.016 0.011 0.009 0.712 0.685 0.688 

46 -0.3 -0.007 0.010 0.008 0.680 0.660 0.657 

47 
-0.10 

-0.1 -0.010 0.009 0.008 0.717 0.692 0.692 

48 -0.3 -0.026 -0.015 -0.017 0.699 0.671 0.671 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.047 -0.029 -0.028 0.690 0.670 0.672 

50 -0.3 0.008 0.027 0.028 0.742 0.728 0.731 

51 
-0.10 

-0.1 -0.025 -0.005 -0.014 0.700 0.691 0.699 

52 -0.3 0.002 0.018 0.016 0.714 0.718 0.714 

53 

0.7 

-0.05 
-0.1 -0.018 -0.006 -0.006 0.714 0.693 0.696 

54 -0.3 -0.016 -0.006 -0.006 0.664 0.650 0.654 

55 
-0.10 

-0.1 -0.044 -0.017 -0.021 0.698 0.667 0.669 

56 -0.3 -0.001 0.014 0.014 0.657 0.632 0.630 

57 

0.5 

0.3 

-0.05 
-0.1 -0.040 -0.023 -0.022 0.713 0.685 0.683 

58 -0.3 -0.014 0.001 0.001 0.705 0.689 0.691 

59 
-0.10 

-0.1 -0.017 0.001 0.004 0.730 0.716 0.718 

60 -0.3 0.007 0.015 0.015 0.730 0.716 0.718 

61 

0.7 

-0.05 
-0.1 -0.016 -0.004 -0.001 0.725 0.705 0.704 

62 -0.3 -0.048 -0.022 -0.025 0.707 0.679 0.678 

63 
-0.10 

-0.1 -0.043 -0.020 -0.020 0.768 0.750 0.749 

64 -0.3 -0.053 -0.037 -0.036 0.716 0.704 0.705 

Mean -0.020 -0.003 -0.004 0.704 0.688 0.689 
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Figure 23 RMSE of 𝛿0 across simulation conditions – polytomous attribute configuration 

Table 15 

Exact and weighted classification accuracy rates with polytomous attributes 

 Exact  Weighted 

Model 
 ACCR 

PCCR 
ACCR 

PCCR 
α1 α2 α3 α4 α1 α2 α3 α4 

MHOP 0.165 0.181 0.213 0.201 0.012 0.494 0.479 0.483 0.441 0.095 

JRTP 0.466 0.515 0.570 0.644 0.782 0.466 0.515 0.570 0.644 0.170 

JDSP 0.464 0.514 0.569 0.644 0.169 0.848 0.862 0.869 0.887 0.580 

 

The classification accuracies, in Table 15, improved considerably from the previous 

section, but the JDS-DINA shows considerably better values, as expected. The PCCR for the 

JDS model, though higher than others, is also low. This is unexpected since it is the true model. 

One possible reason could be the sample size used in the study. Given the complexity of the JDS 

model, larger sample size rapidly increases the computational burden. It is worth investigating 

further, to see if sample size alone explains the low PCCR that was observed in this study.
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CHAPTER 5: DISCUSSION AND CONCLUSION 

 

5.1 Summary of Findings 

The aim of this study was multi-faceted. First, it proposed a new model that allows partial 

mastery and greater flexibility in incorporating response time in cognitive diagnostic models. 

Second, it assessed the performance of the new model under varying data conditions and compared 

it with existing models. Third, the study examined the effect of dichotomizing polytomous 

attributes using empirical and simulated data. From the simulated and real data analyses, several 

key findings were drawn. 

5.1.1 Dichotomization 

The dichotomization of polytomous attributes has implications for the accuracy of 

parameter estimates and skills diagnosis. The result showed very low classification accuracies 

when a binary classification model was imposed on polytomous attribute data. While binary 

classification models are relatively straightforward and easy to implement, this study, together 

with those from Karelitz (2004) and Zhan et al. (2019), has shown that dichotomizing attributes 

could lead to misleading results and wrong skills diagnosis. If attributes are meaningfully binary, 

artificially increasing their categorical levels to implement a polytomous attribute model would 

also be wrong. This study argues that if a set of attributes are meaningfully defined as polytomous, 

appropriate models that account for the ordinal category levels should be used. 

5.1.2 Response time 

Response time provides crucial supplementary information that can improve parameter 

estimation and classification accuracies. The real data analysis of the PISA computer-based data 

compared models with and without response time. The models with response time, though less 
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parsimonious, showed better model fits and standard error of parameter estimates than the model 

that ignores response time. From the simulation study, results also showed that ignoring response 

time leads to poorer model performance. The typical testing situation imposes limited test time, 

even on supposedly power tests. This time limit introduces a new source of dependence in observed 

responses that are not accounted for in the traditional cognitive or item response models. This also 

means the all-important assumption of conditional independence is not satisfied with these data. 

The results of this study have shown that it is indeed important to account for time effect in 

modeling responses to tests for item calibration or for skills profile estimation. 

5.1.3 Variable speed 

The comparison between the JRT DINA with constant speed and the proposed JDS DINA 

with variable speed showed that both models performed equally well in recovering item and 

structural parameter estimates. In particular, the JRT-DINA recovered model parameter well, even 

when data was generated with a differential speed model. However, the effect of ignoring the 

differential speed is seen in the classification accuracies. This suggests that the flexibility provided 

by JDS DINA may be particularly important for correct classification, which is indeed the aim of 

cognitive diagnostic modeling. This result, however, is limited to the few data conditions that were 

explored. The influence on the item and structural parameters may be more pronounced with much 

higher or lower values for the variance of speed components. 

5.1.4 Supplementary RT information 

The results obtained from the 2012 computer-based Math test analysis showed that the 

data was more suited to a joint response time with constant speed (JRT DINA). As previously 

noted, this result is severely limited by the length of the test. The shortness of the test may not 

support a variable speed model, especially with a non-high-stakes test like PISA. It is very 
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possible that students would keep a regulated speed of response through such a short test. That 

said, implementation of the variable speed model not only provides comparable parameter 

estimates with the constant speed model, but it also supplies additional information that could 

give insight to possible differences in test-taking behaviors and strategies. Figure 24 is a 

graphical depiction of what might be possible with the information obtained from a JDS model. 

 
Figure 24 Relationships among person parameters from PISA computer-based Math test 

In generating the figure above, only the data for the country of the USA was used. 

Observed patterns are similar across all the other countries in the data. The ability estimates were 

crudely split into three groups - low, medium, and high ability groups. The patterns show that the 

relationship among the person parameters differ across the three ability groups. This could 

indicate different test-taking strategies across these groups. For instance, panels A and B of 
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Figure 24 suggest that the high ability students are slow starters but increase speed very quickly, 

while the low to medium ability students start and proceed quickly through the test. Given PISA 

is not a high-stakes test, the observed pattern may be indicative of low motivation and (perhaps) 

guessing of answers among the low ability test-takers. Analysis of these patterns is beyond the 

scope of the current study. However, a detailed examination of this additional information could 

provide essential data to enhance skills diagnosis as well as item development and calibration for 

diagnostic purposes. 

5.2 Limitations and future research 

This section briefly discusses some limitations of the study while also offering directions 

for future research. 

5.2.1 Test length 

Research question 1 used the PISA data to examine the consequence of ignoring response 

time and the speededness effect.  The result suggested that response time was important but not 

speededness effect. The item pool severely limited the results of this study. There were ten items 

used to assess seven attributes. By default, the associated Q-matrix is incomplete (Köhn & Chiu, 

2018b), which may have affected the results. The nature of the test may have also played a role 

in the results. The PISA test a not a high-stakes test, and students are probably not highly 

motivated to finish the test. As such, the change in speed may not be very informative for skills 

diagnosis since the ability is further confounded with motivation. The findings, nonetheless, are 

interesting and promising. Future research should explore similar comparisons with a larger item 

pool to verify the findings of this study further. 
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5.2.2 Parameter values 

The simulation study was used to address the last three questions of this study. Due to the 

limited number of studies on the relationship between speededness and cognitive ability, prior 

information on plausible values for the correlation between speed components and cognitive 

ability was not readily available. The empirical data available were not adequate to furnish 

reliable values either. The results of the current study may have been limited by the choice of the 

variance and correlation values used. A large item pool with response time information could be 

used to re-estimate these models and obtain more realistic true values for these parameters. 

5.2.3 Simulation conditions 

To reduce computational burden, a sample size of 200 was used in the simulation study. 

For a typical latent variable model, this is considered a small sample size. However, the study 

was kept at this sample size because of the computational burden of the JDS model. The number 

of iterations was also kept at 10,000 for the same reason. With 10,000 iterations, convergence for 

the person speed parameters in the variable speed model was relatively poor across the design 

conditions, with convergence rates between 73% and 84% for 𝜏0; 21% and 33% for 𝜏1, and 

between 26% and 43% for 𝜏2. 

The rest of the parameters had a convergence rate of at least 94%, except for 𝜆, which 

had between 69% and 100% convergence rates. For this reason, all model comparisons were 

restricted to item and structural parameters only. However, the poor convergence for these few 

parameters may have affected the classification accuracy rates obtained for the differential speed 

model. Given the low convergence for the person speed parameters, future studies would need to 

significantly increase the number of iterations to improve mixing for these parameters, taking 
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note of the associated cost in computation time.  Larger sample sizes should also be explored to 

understand the large sample behavior the variable speed model parameters. 

5.2.4 Computational burden 

Although the JDS-DINA offers more flexibility in the use of response time, the model, as 

defined in this study, is computationally intensive. In assessing these computation times, the 

JAGS estimation procedure was programmed to track all parameters and estimates in the model. 

Hence, the differences in estimation times are expected, especially because some of the 

additional estimates in the JDS model are incidental, increasing with sample size. 

The current study was carried out using multiple computers with different specifications, 

and hence, estimation time across models could not be meaningfully compared. To show what is 

possible, the estimation time for one replication was obtained for each model using a computer 

with four cores, a base speed of 1.99GHz, and eight processors. Table 16 displays the 

computation times observed for one replication of the first design condition in the study. As 

expected, the polytomous configuration requires more time than binary attribute configuration, 

and computation time is very similar between MHO-DINA and JRT-DINA. 

Table 16 

Computation times (in minutes) for study models 

 MHO-DINA JRT-DINA JDS-DINA 

Binary 7.32 7.77 192.77 

Polytomous 11.62 10.58 202.60 

 

However, with JDS-DINA, there is a substantial increase in computation time. The 

computer-based PISA Mathematics data required 95.65 minutes to estimate the JDS-DINA 

model with 7 binary attributes, ten items, and 1,584 students. In the simulation study, sample size 
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was reduced to 200, the number of attributes also dropped to 4, but the number of items 

increased from 10 to 30. These changes doubled the estimation time for the model with binary 

configuration. Hence, with a large item pool, the use of the variable speed model may be 

prohibitive. 

Researchers should carefully consider the tradeoff between the flexibility and 

supplementary information offered by the differential speed model and the computational burden 

associated with its implementation, especially for large-scale assessment data. Alternative model 

specifications that offer the same amount of information and flexibility, but with lower time cost, 

could be explored. For instance, instead of a hierarchical model to relate response time to ability, 

one could use response time as a covariate for the ability level estimation via latent speed. 

5.3 Summary 

Literature is replete with studies that have proposed new models for analyzing cognitive 

diagnostic assessments. The call for transparency and accountability makes these research efforts 

expedient for enhancing the significance of educational assessments. However, most of the 

models in the literature have focused on the development of new diagnostic models to better 

reflect one or more specific test theories underlying a set of test responses. Only a few of these 

have investigated improving the outcome from these models by exploring information from 

response time. 

 This study explored a new model that expands existing models to incorporate response 

time and graded mastery levels in skills diagnosis. The examination of the model proved to be 

computationally demanding, but feasible. Comparison with existing models showed that 

incorporating response time with at least a constant speed is essential for item calibration. 

Extending response time to reflect variable speed may not significantly improve model 
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parameter estimation, but it does improve attribute classification accuracy, which is the crux of 

diagnostic assessment.  

The unavailability of cognitive diagnostic assessments for determining population 

parameter values qualified the outcome of this study. This is because most assessments are not 

designed for cognitive assessments, and current modeling attempts are restricted to retrofitting. 

More research efforts should be directed towards test construction and item calibration for 

diagnostic purposes to improve the modeling outcomes for these tests. Nonetheless, the results of 

the current study demonstrate great possibilities for using readily available response time to 

inform and enhance parameter estimation and classification accuracy in cognitive diagnostic 

modeling. Additional information supplied by this model can also provide insight into test 

behaviors that may compromise predicating test theory if ignored.
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    APPENDIX A: SUPPLEMENTARY MATERIALS FOR RESEARCH QUESTION 4 

 

Table A1  

Bias and RMSE of 𝜆 by simulation design conditions – binary attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
Bias RMSE 

MHOB JRTB JDSB MHOB JRTB JDSB 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -- -0.006 -0.005 -- 0.055 0.055 

2 -0.3 -- 0.000 0.000 -- 0.057 0.057 

3 
-0.10 

-0.1 -- 0.005 0.005 -- 0.057 0.058 

4 -0.3 -- 0.000 0.000 -- 0.056 0.056 

5 

0.7 

-0.05 
-0.1 -- 0.003 0.002 -- 0.056 0.056 

6 -0.3 -- 0.005 0.006 -- 0.059 0.059 

7 
-0.10 

-0.1 -- -0.003 -0.004 -- 0.055 0.056 

8 -0.3 -- 0.000 0.001 -- 0.057 0.058 

9 

0.5 

0.3 

-0.05 
-0.1 -- 0.001 0.002 -- 0.060 0.061 

10 -0.3 -- 0.006 0.006 -- 0.063 0.063 

11 
-0.10 

-0.1 -- 0.004 0.006 -- 0.061 0.061 

12 -0.3 -- -0.002 0.000 -- 0.060 0.059 

13 

0.7 

-0.05 
-0.1 -- 0.007 0.007 -- 0.060 0.060 

14 -0.3 -- -0.003 -0.003 -- 0.060 0.060 

15 
-0.10 

-0.1 -- 0.003 0.003 -- 0.063 0.063 

16 -0.3 -- 0.000 0.000 -- 0.058 0.059 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -- 0.001 0.003 -- 0.064 0.063 

18 -0.3 -- -0.002 0.001 -- 0.061 0.061 

19 
-0.10 

-0.1 -- 0.010 0.009 -- 0.065 0.066 

20 -0.3 -- -0.001 -0.002 -- 0.060 0.060 

21 

0.7 

-0.05 
-0.1 -- -0.005 -0.004 -- 0.062 0.064 

22 -0.3 -- 0.011 0.013 -- 0.064 0.065 

23 
-0.10 

-0.1 -- 0.008 0.007 -- 0.061 0.061 

24 -0.3 -- -0.004 -0.003 -- 0.062 0.063 

25 

0.5 

0.3 

-0.05 
-0.1 -- 0.009 0.009 -- 0.068 0.068 

26 -0.3 -- 0.002 0.001 -- 0.067 0.067 

27 
-0.10 

-0.1 -- 0.006 0.008 -- 0.066 0.068 

28 -0.3 -- 0.003 0.004 -- 0.067 0.067 

29 

0.7 

-0.05 
-0.1 -- 0.002 0.002 -- 0.065 0.065 

30 -0.3 -- 0.006 0.005 -- 0.066 0.066 

32 
-0.10 

-0.1 -- -0.004 -0.002 -- 0.063 0.063 

32 -0.3 -- -0.001 0.000 -- 0.064 0.065 
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Table A1 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
Bias RMSE 

MHOB JRTB JDSB MHOB JRTP JDSB 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -- -0.010 -0.006 -- 0.073 0.075 

34 -0.3 -- 0.006 0.005 -- 0.073 0.076 

35 
-0.10 

-0.1 -- -0.008 -0.007 -- 0.074 0.077 

36 -0.3 -- 0.002 0.004 -- 0.068 0.072 

37 

0.7 

-0.05 
-0.1 -- 0.007 0.009 -- 0.068 0.070 

38 -0.3 -- 0.018 0.017 -- 0.072 0.072 

39 
-0.10 

-0.1 -- 0.000 0.000 -- 0.070 0.075 

40 -0.3 -- 0.012 0.009 -- 0.068 0.069 

41 

0.5 

0.3 

-0.05 
-0.1 -- 0.009 0.010 -- 0.070 0.071 

42 -0.3 -- 0.001 -0.001 -- 0.075 0.076 

43 
-0.10 

-0.1 -- 0.005 0.007 -- 0.075 0.079 

44 -0.3 -- 0.011 0.011 -- 0.069 0.071 

45 

0.7 

-0.05 
-0.1 -- 0.009 0.008 -- 0.078 0.079 

46 -0.3 -- 0.006 0.009 -- 0.074 0.076 

47 
-0.10 

-0.1 -- 0.008 0.008 -- 0.076 0.077 

48 -0.3 -- -0.001 0.000 -- 0.074 0.072 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -- 0.011 0.011 -- 0.074 0.076 

50 -0.3 -- 0.007 0.007 -- 0.070 0.075 

51 
-0.10 

-0.1 -- 0.006 0.002 -- 0.083 0.081 

52 -0.3 -- 0.002 0.009 -- 0.073 0.074 

53 

0.7 

-0.05 
-0.1 -- -0.007 -0.004 -- 0.073 0.076 

54 -0.3 -- 0.003 0.004 -- 0.080 0.079 

55 
-0.10 

-0.1 -- 0.002 0.003 -- 0.081 0.079 

56 -0.3 -- 0.008 0.013 -- 0.078 0.077 

57 

0.5 

0.3 

-0.05 
-0.1 -- 0.002 0.009 -- 0.084 0.085 

58 -0.3 -- 0.006 0.006 -- 0.072 0.073 

59 
-0.10 

-0.1 -- 0.004 0.009 -- 0.083 0.086 

60 -0.3 -- -0.002 -0.003 -- 0.082 0.090 

61 

0.7 

-0.05 
-0.1 -- 0.014 0.013 -- 0.078 0.078 

62 -0.3 -- -0.004 -0.005 -- 0.078 0.079 

63 
-0.10 

-0.1 -- 0.000 0.004 -- 0.076 0.078 

64 -0.3 -- 0.008 0.008 -- 0.080 0.081 

 Mean -- 0.003 0.004 -- 0.068 0.069 
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Table A2  

Bias and RMSE of 𝛿1 by simulation design conditions – binary attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOB JRTB JDSB MHOB JRTB JDSB 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.862 -0.875 -0.874 1.322 1.325 1.326 

2 -0.3 -0.830 -0.838 -0.841 1.265 1.271 1.275 

3 
-0.10 

-0.1 -0.849 -0.860 -0.856 1.275 1.284 1.282 

4 -0.3 -0.849 -0.858 -0.855 1.281 1.281 1.279 

5 

0.7 

-0.05 
-0.1 -0.822 -0.832 -0.833 1.241 1.242 1.243 

6 -0.3 -0.837 -0.851 -0.850 1.262 1.269 1.269 

7 
-0.10 

-0.1 -0.882 -0.892 -0.891 1.288 1.293 1.292 

8 -0.3 -0.881 -0.891 -0.887 1.331 1.331 1.330 

9 

0.5 

0.3 

-0.05 
-0.1 -0.880 -0.889 -0.889 1.291 1.294 1.294 

10 -0.3 -0.833 -0.846 -0.844 1.270 1.279 1.277 

11 
-0.10 

-0.1 -0.832 -0.847 -0.846 1.258 1.265 1.265 

12 -0.3 -0.885 -0.893 -0.890 1.303 1.306 1.306 

13 

0.7 

-0.05 
-0.1 -0.848 -0.864 -0.863 1.300 1.305 1.304 

14 -0.3 -0.816 -0.831 -0.829 1.242 1.247 1.246 

15 
-0.10 

-0.1 -0.872 -0.887 -0.887 1.285 1.292 1.293 

16 -0.3 -0.862 -0.876 -0.874 1.310 1.315 1.314 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.856 -0.868 -0.865 1.300 1.304 1.304 

18 -0.3 -0.847 -0.854 -0.857 1.267 1.268 1.271 

19 
-0.10 

-0.1 -0.863 -0.872 -0.872 1.314 1.316 1.317 

20 -0.3 -0.840 -0.851 -0.850 1.279 1.284 1.285 

21 

0.7 

-0.05 
-0.1 -0.851 -0.867 -0.865 1.271 1.274 1.274 

22 -0.3 -0.853 -0.868 -0.867 1.263 1.265 1.266 

23 
-0.10 

-0.1 -0.833 -0.843 -0.843 1.282 1.283 1.282 

24 -0.3 -0.896 -0.903 -0.904 1.334 1.337 1.338 

25 

0.5 

0.3 

-0.05 
-0.1 -0.829 -0.842 -0.840 1.273 1.280 1.281 

26 -0.3 -0.859 -0.870 -0.869 1.289 1.294 1.292 

27 
-0.10 

-0.1 -0.857 -0.866 -0.865 1.302 1.307 1.306 

28 -0.3 -0.846 -0.860 -0.860 1.280 1.287 1.288 

29 

0.7 

-0.05 
-0.1 -0.842 -0.855 -0.852 1.260 1.267 1.268 

30 -0.3 -0.842 -0.853 -0.853 1.305 1.310 1.310 

31 
-0.10 

-0.1 -0.854 -0.863 -0.862 1.273 1.279 1.277 

32 -0.3 -0.853 -0.864 -0.865 1.292 1.295 1.297 
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Table A2 (cont’d). 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOB JRTB JDSB MHOB JRTB JDSB 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.828 -0.840 -0.840 1.295 1.299 1.298 

34 -0.3 -0.829 -0.835 -0.832 1.283 1.284 1.283 

35 
-0.10 

-0.1 -0.811 -0.824 -0.824 1.266 1.267 1.269 

36 -0.3 -0.837 -0.853 -0.852 1.285 1.290 1.289 

37 

0.7 

-0.05 
-0.1 -0.865 -0.890 -0.892 1.295 1.302 1.303 

38 -0.3 -0.853 -0.868 -0.869 1.297 1.304 1.305 

39 
-0.10 

-0.1 -0.873 -0.881 -0.882 1.298 1.295 1.297 

40 -0.3 -0.872 -0.889 -0.890 1.305 1.323 1.323 

41 

0.5 

0.3 

-0.05 
-0.1 -0.836 -0.849 -0.845 1.271 1.273 1.273 

42 -0.3 -0.798 -0.811 -0.814 1.273 1.281 1.282 

43 
-0.10 

-0.1 -0.842 -0.849 -0.848 1.288 1.291 1.291 

44 -0.3 -0.850 -0.863 -0.863 1.296 1.303 1.302 

45 

0.7 

-0.05 
-0.1 -0.834 -0.852 -0.852 1.278 1.280 1.280 

46 -0.3 -0.867 -0.880 -0.878 1.294 1.298 1.297 

47 
-0.10 

-0.1 -0.850 -0.859 -0.859 1.278 1.277 1.278 

48 -0.3 -0.842 -0.849 -0.848 1.267 1.268 1.267 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.844 -0.863 -0.861 1.284 1.286 1.284 

50 -0.3 -0.843 -0.852 -0.852 1.293 1.295 1.296 

51 
-0.10 

-0.1 -0.815 -0.828 -0.829 1.261 1.267 1.268 

52 -0.3 -0.883 -0.890 -0.895 1.323 1.327 1.331 

53 

0.7 

-0.05 
-0.1 -0.857 -0.879 -0.878 1.303 1.312 1.311 

54 -0.3 -0.835 -0.855 -0.853 1.276 1.284 1.283 

55 
-0.10 

-0.1 -0.850 -0.867 -0.868 1.278 1.282 1.282 

56 -0.3 -0.816 -0.827 -0.828 1.248 1.246 1.246 

57 

0.5 

0.3 

-0.05 
-0.1 -0.808 -0.817 -0.815 1.253 1.251 1.251 

58 -0.3 -0.869 -0.879 -0.879 1.298 1.301 1.302 

59 
-0.10 

-0.1 -0.848 -0.861 -0.862 1.310 1.319 1.320 

60 -0.3 -0.815 -0.823 -0.824 1.270 1.272 1.272 

61 

0.7 

-0.05 
-0.1 -0.845 -0.862 -0.861 1.271 1.277 1.279 

62 -0.3 -0.860 -0.874 -0.875 1.305 1.305 1.308 

63 
-0.10 

-0.1 -0.857 -0.878 -0.877 1.327 1.338 1.341 

64 -0.3 -0.813 -0.823 -0.821 1.253 1.252 1.251 

 Mean -0.847 -0.859 -0.859 1.285 1.289 1.289 

 



97 
 

Table A3  

Bias and RMSE of 𝛾0𝑘2 by simulation design conditions – binary attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOB JRTB JDSB MHOB JRTB JDSB 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.069 -0.066 -0.072 0.208 0.206 0.205 

2 -0.3 -0.061 -0.063 -0.055 0.217 0.215 0.217 

3 
-0.10 

-0.1 -0.106 -0.107 -0.114 0.221 0.221 0.221 

4 -0.3 -0.088 -0.096 -0.095 0.213 0.213 0.212 

5 

0.7 

-0.05 
-0.1 -0.090 -0.092 -0.094 0.219 0.221 0.222 

6 -0.3 -0.057 -0.052 -0.048 0.223 0.219 0.218 

7 
-0.10 

-0.1 -0.147 -0.157 -0.147 0.235 0.232 0.235 

8 -0.3 -0.081 -0.086 -0.083 0.209 0.209 0.208 

9 

0.5 

0.3 

-0.05 
-0.1 -0.122 -0.130 -0.134 0.220 0.219 0.217 

10 -0.3 -0.018 -0.018 -0.020 0.248 0.248 0.247 

11 
-0.10 

-0.1 -0.085 -0.083 -0.080 0.231 0.228 0.228 

12 -0.3 -0.067 -0.072 -0.078 0.224 0.225 0.223 

13 

0.7 

-0.05 
-0.1 -0.057 -0.048 -0.046 0.229 0.224 0.223 

14 -0.3 -0.069 -0.067 -0.063 0.227 0.228 0.227 

15 
-0.10 

-0.1 -0.057 -0.048 -0.041 0.217 0.217 0.220 

16 -0.3 -0.122 -0.116 -0.107 0.211 0.212 0.215 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.104 -0.110 -0.102 0.213 0.212 0.213 

18 -0.3 -0.091 -0.095 -0.089 0.218 0.216 0.215 

19 
-0.10 

-0.1 -0.152 -0.156 -0.150 0.222 0.221 0.221 

20 -0.3 -0.085 -0.079 -0.084 0.209 0.211 0.211 

21 

0.7 

-0.05 
-0.1 -0.096 -0.101 -0.099 0.231 0.229 0.230 

22 -0.3 -0.111 -0.116 -0.109 0.225 0.225 0.225 

23 
-0.10 

-0.1 -0.058 -0.060 -0.058 0.238 0.237 0.237 

24 -0.3 -0.096 -0.105 -0.108 0.227 0.225 0.225 

25 

0.5 

0.3 

-0.05 
-0.1 -0.100 -0.098 -0.101 0.229 0.226 0.228 

26 -0.3 -0.074 -0.077 -0.070 0.231 0.232 0.230 

27 
-0.10 

-0.1 -0.041 -0.048 -0.040 0.233 0.233 0.231 

28 -0.3 -0.064 -0.067 -0.062 0.226 0.226 0.225 

29 

0.7 

-0.05 
-0.1 -0.177 -0.175 -0.169 0.232 0.231 0.231 

30 -0.3 -0.094 -0.101 -0.095 0.223 0.223 0.222 

31 
-0.10 

-0.1 -0.018 -0.021 -0.016 0.226 0.226 0.226 

32 -0.3 -0.098 -0.103 -0.102 0.213 0.212 0.213 
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Table A3 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOB JRTB JDSB MHOB JRTB JDSB 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.141 -0.144 -0.128 0.247 0.244 0.244 

34 -0.3 -0.139 -0.150 -0.148 0.225 0.225 0.226 

35 
-0.10 

-0.1 -0.093 -0.084 -0.082 0.236 0.234 0.235 

36 -0.3 -0.134 -0.144 -0.131 0.215 0.215 0.213 

37 

0.7 

-0.05 
-0.1 -0.196 -0.182 -0.167 0.233 0.225 0.227 

38 -0.3 -0.088 -0.089 -0.084 0.228 0.226 0.227 

39 
-0.10 

-0.1 -0.049 -0.059 -0.049 0.202 0.205 0.206 

40 -0.3 -0.128 -0.109 -0.126 0.208 0.208 0.208 

41 

0.5 

0.3 

-0.05 
-0.1 -0.165 -0.162 -0.159 0.219 0.218 0.217 

42 -0.3 -0.197 -0.190 -0.189 0.232 0.229 0.231 

43 
-0.10 

-0.1 -0.089 -0.091 -0.086 0.216 0.215 0.216 

44 -0.3 -0.001 -0.006 -0.005 0.222 0.222 0.224 

45 

0.7 

-0.05 
-0.1 -0.149 -0.147 -0.154 0.212 0.212 0.208 

46 -0.3 -0.076 -0.077 -0.071 0.218 0.216 0.217 

47 
-0.10 

-0.1 -0.145 -0.138 -0.141 0.223 0.228 0.228 

48 -0.3 -0.071 -0.067 -0.067 0.230 0.229 0.226 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.072 -0.071 -0.067 0.221 0.219 0.218 

50 -0.3 -0.089 -0.088 -0.088 0.227 0.226 0.224 

51 
-0.10 

-0.1 -0.064 -0.060 -0.048 0.223 0.225 0.224 

52 -0.3 -0.086 -0.097 -0.078 0.234 0.231 0.231 

53 

0.7 

-0.05 
-0.1 -0.085 -0.083 -0.081 0.229 0.224 0.225 

54 -0.3 -0.069 -0.069 -0.065 0.218 0.215 0.214 

55 
-0.10 

-0.1 -0.112 -0.099 -0.091 0.221 0.223 0.223 

56 -0.3 -0.121 -0.123 -0.104 0.219 0.219 0.219 

57 

0.5 

0.3 

-0.05 
-0.1 -0.128 -0.137 -0.143 0.226 0.226 0.228 

58 -0.3 -0.100 -0.097 -0.097 0.206 0.207 0.206 

59 
-0.10 

-0.1 -0.093 -0.094 -0.088 0.210 0.211 0.211 

60 -0.3 0.014 0.011 0.014 0.231 0.231 0.232 

61 

0.7 

-0.05 
-0.1 -0.137 -0.133 -0.126 0.224 0.221 0.218 

62 -0.3 -0.215 -0.218 -0.209 0.227 0.227 0.227 

63 
-0.10 

-0.1 -0.122 -0.121 -0.113 0.224 0.224 0.230 

64 -0.3 -0.160 -0.164 -0.169 0.229 0.227 0.229 

 Mean -0.098 -0.099 -0.095 0.223 0.222 0.222 
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Figure A1 RMSE of γ0k2across simulation conditions – polytomous attribute configuration 

 

Figure A2 Bias of γ1  across simulation conditions – polytomous attribute configuration 
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Figure A3 RMSE of γ1 across simulation conditions – polytomous attribute configuration
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    APPENDIX B: SUPPLEMENTARY MATERIALS FOR RESEARCH QUESTION 5 

 

Table B1  

Bias and RMSE of 𝜆 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
Bias RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -- -0.007 -0.007 -- 0.055 0.055 

2 -0.3 -- 0.000 0.001 -- 0.057 0.058 

3 
-0.10 

-0.1 -- 0.004 0.003 -- 0.057 0.057 

4 -0.3 -- -0.001 -0.001 -- 0.056 0.057 

5 

0.7 

-0.05 
-0.1 -- 0.001 0.000 -- 0.056 0.056 

6 -0.3 -- 0.003 0.003 -- 0.058 0.059 

7 
-0.10 

-0.1 -- -0.006 -0.006 -- 0.055 0.056 

8 -0.3 -- -0.002 -0.003 -- 0.057 0.058 

9 

0.5 

0.3 

-0.05 
-0.1 -- 0.000 0.002 -- 0.060 0.060 

10 -0.3 -- 0.004 0.005 -- 0.063 0.063 

11 
-0.10 

-0.1 -- 0.004 0.004 -- 0.061 0.061 

12 -0.3 -- -0.002 -0.003 -- 0.059 0.060 

13 

0.7 

-0.05 
-0.1 -- 0.005 0.004 -- 0.060 0.060 

14 -0.3 -- -0.005 -0.005 -- 0.060 0.060 

15 
-0.10 

-0.1 -- -0.001 0.002 -- 0.062 0.062 

16 -0.3 -- -0.002 -0.001 -- 0.059 0.058 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -- 0.001 0.003 -- 0.063 0.064 

18 -0.3 -- -0.004 -0.001 -- 0.062 0.062 

19 
-0.10 

-0.1 -- 0.009 0.011 -- 0.065 0.066 

20 -0.3 -- -0.002 -0.001 -- 0.060 0.060 

21 

0.7 

-0.05 
-0.1 -- -0.008 -0.007 -- 0.063 0.063 

22 -0.3 -- 0.009 0.010 -- 0.064 0.064 

23 
-0.10 

-0.1 -- 0.006 0.005 -- 0.061 0.062 

24 -0.3 -- -0.007 -0.007 -- 0.063 0.063 

25 

0.5 

0.3 

-0.05 
-0.1 -- 0.008 0.007 -- 0.068 0.068 

26 -0.3 -- 0.002 0.002 -- 0.066 0.067 

27 
-0.10 

-0.1 -- 0.006 0.005 -- 0.066 0.067 

28 -0.3 -- 0.004 0.003 -- 0.067 0.068 

29 

0.7 

-0.05 
-0.1 -- 0.000 0.002 -- 0.064 0.066 

30 -0.3 -- 0.004 0.003 -- 0.066 0.066 

32 
-0.10 

-0.1 -- -0.006 -0.006 -- 0.063 0.064 

32 -0.3 -- -0.002 -0.001 -- 0.064 0.064 
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Table B1 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
Bias RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -- -0.011 -0.011 -- 0.072 0.074 

34 -0.3 -- 0.003 0.005 -- 0.074 0.074 

35 
-0.10 

-0.1 -- -0.013 -0.011 -- 0.076 0.078 

36 -0.3 -- 0.000 0.001 -- 0.069 0.070 

37 

0.7 

-0.05 
-0.1 -- 0.001 0.001 -- 0.069 0.069 

38 -0.3 -- 0.006 0.006 -- 0.071 0.074 

39 
-0.10 

-0.1 -- -0.008 -0.004 -- 0.070 0.073 

40 -0.3 -- 0.003 0.005 -- 0.066 0.069 

41 

0.5 

0.3 

-0.05 
-0.1 -- 0.007 0.004 -- 0.071 0.072 

42 -0.3 -- -0.003 -0.001 -- 0.075 0.075 

43 
-0.10 

-0.1 -- 0.005 0.003 -- 0.076 0.077 

44 -0.3 -- 0.008 0.009 -- 0.068 0.069 

45 

0.7 

-0.05 
-0.1 -- 0.002 0.002 -- 0.079 0.077 

46 -0.3 -- 0.001 0.002 -- 0.072 0.073 

47 
-0.10 

-0.1 -- 0.001 -0.001 -- 0.075 0.073 

48 -0.3 -- -0.006 -0.006 -- 0.072 0.073 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -- 0.008 0.011 -- 0.071 0.074 

50 -0.3 -- 0.005 0.001 -- 0.072 0.073 

51 
-0.10 

-0.1 -- 0.003 0.006 -- 0.082 0.084 

52 -0.3 -- 0.003 0.003 -- 0.073 0.073 

53 

0.7 

-0.05 
-0.1 -- -0.015 -0.013 -- 0.076 0.077 

54 -0.3 -- -0.005 -0.003 -- 0.078 0.079 

55 
-0.10 

-0.1 -- -0.007 -0.004 -- 0.080 0.079 

56 -0.3 -- 0.000 -0.002 -- 0.076 0.079 

57 

0.5 

0.3 

-0.05 
-0.1 -- 0.001 0.002 -- 0.084 0.083 

58 -0.3 -- 0.004 0.003 -- 0.071 0.075 

59 
-0.10 

-0.1 -- 0.004 0.005 -- 0.084 0.086 

60 -0.3 -- -0.004 -0.008 -- 0.083 0.084 

61 

0.7 

-0.05 
-0.1 -- 0.010 0.008 -- 0.076 0.077 

62 -0.3 -- -0.010 -0.011 -- 0.080 0.082 

63 
-0.10 

-0.1 -- -0.007 -0.004 -- 0.078 0.076 

64 -0.3 -- -0.001 0.000 -- 0.081 0.083 

 Mean -- 0.000 0.000 -- 0.068 0.069 
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Table B2 

Bias and RMSE of 𝛿1 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.006 -0.024 -0.025 0.842 0.834 0.831 

2 -0.3 0.046 0.024 0.023 0.795 0.781 0.785 

3 
-0.10 

-0.1 0.033 0.016 0.010 0.815 0.810 0.806 

4 -0.3 0.046 0.030 0.023 0.797 0.786 0.782 

5 

0.7 

-0.05 
-0.1 0.024 0.000 -0.001 0.743 0.732 0.731 

6 -0.3 0.015 -0.007 -0.001 0.799 0.786 0.788 

7 
-0.10 

-0.1 -0.009 -0.019 -0.017 0.764 0.756 0.755 

8 -0.3 0.006 -0.003 -0.005 0.805 0.795 0.795 

9 

0.5 

0.3 

-0.05 
-0.1 -0.020 -0.039 -0.038 0.764 0.751 0.757 

10 -0.3 -0.001 -0.026 -0.023 0.792 0.781 0.784 

11 
-0.10 

-0.1 0.026 0.004 0.002 0.815 0.806 0.806 

12 -0.3 0.026 0.010 0.012 0.791 0.778 0.779 

13 

0.7 

-0.05 
-0.1 0.016 -0.004 0.001 0.801 0.788 0.790 

14 -0.3 0.048 0.026 0.030 0.773 0.758 0.759 

15 
-0.10 

-0.1 0.029 0.010 0.009 0.767 0.761 0.763 

16 -0.3 0.020 0.006 0.007 0.810 0.801 0.801 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.001 -0.022 -0.022 0.799 0.793 0.792 

18 -0.3 0.015 0.003 0.000 0.776 0.767 0.767 

19 
-0.10 

-0.1 -0.001 -0.019 -0.019 0.815 0.805 0.808 

20 -0.3 0.020 0.001 0.004 0.794 0.793 0.793 

21 

0.7 

-0.05 
-0.1 0.018 0.005 0.007 0.775 0.773 0.774 

22 -0.3 0.044 0.020 0.021 0.785 0.769 0.769 

23 
-0.10 

-0.1 0.027 0.005 0.012 0.821 0.809 0.810 

24 -0.3 -0.027 -0.040 -0.043 0.828 0.815 0.814 

25 

0.5 

0.3 

-0.05 
-0.1 0.000 -0.016 -0.016 0.775 0.771 0.771 

26 -0.3 0.017 0.000 -0.001 0.778 0.773 0.779 

27 
-0.10 

-0.1 0.020 0.001 0.001 0.816 0.807 0.801 

28 -0.3 -0.002 -0.020 -0.015 0.814 0.818 0.820 

29 

0.7 

-0.05 
-0.1 0.050 0.035 0.038 0.780 0.781 0.780 

30 -0.3 -0.002 -0.024 -0.021 0.816 0.811 0.809 

31 
-0.10 

-0.1 0.021 0.007 0.008 0.782 0.773 0.776 

32 -0.3 0.036 0.018 0.018 0.795 0.790 0.787 
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Table B2 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.025 0.001 -0.003 0.811 0.791 0.790 

34 -0.3 -0.007 -0.032 -0.028 0.784 0.783 0.783 

35 
-0.10 

-0.1 0.032 0.010 0.011 0.801 0.779 0.779 

36 -0.3 0.032 0.004 0.011 0.803 0.793 0.795 

37 

0.7 

-0.05 
-0.1 -0.012 -0.039 -0.043 0.811 0.780 0.784 

38 -0.3 -0.004 -0.031 -0.028 0.788 0.780 0.778 

39 
-0.10 

-0.1 -0.016 -0.041 -0.036 0.795 0.784 0.783 

40 -0.3 -0.004 -0.022 -0.019 0.801 0.801 0.804 

41 

0.5 

0.3 

-0.05 
-0.1 0.039 0.025 0.027 0.784 0.759 0.762 

42 -0.3 0.042 0.023 0.024 0.820 0.798 0.801 

43 
-0.10 

-0.1 0.014 0.000 -0.004 0.781 0.787 0.787 

44 -0.3 0.029 0.017 0.022 0.794 0.787 0.789 

45 

0.7 

-0.05 
-0.1 0.023 -0.002 -0.002 0.803 0.782 0.783 

46 -0.3 -0.004 -0.022 -0.020 0.781 0.768 0.767 

47 
-0.10 

-0.1 0.003 -0.018 -0.016 0.797 0.777 0.777 

48 -0.3 0.027 0.015 0.016 0.792 0.769 0.768 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.055 0.032 0.030 0.788 0.774 0.775 

50 -0.3 -0.017 -0.039 -0.041 0.818 0.811 0.813 

51 
-0.10 

-0.1 0.019 -0.003 0.005 0.796 0.792 0.799 

52 -0.3 -0.015 -0.033 -0.031 0.798 0.804 0.802 

53 

0.7 

-0.05 
-0.1 0.019 0.004 0.003 0.810 0.794 0.797 

54 -0.3 0.008 -0.002 -0.001 0.762 0.756 0.760 

55 
-0.10 

-0.1 0.033 0.006 0.010 0.786 0.763 0.764 

56 -0.3 0.010 -0.005 -0.005 0.766 0.745 0.744 

57 

0.5 

0.3 

-0.05 
-0.1 0.044 0.026 0.025 0.791 0.770 0.768 

58 -0.3 0.001 -0.014 -0.016 0.786 0.776 0.778 

59 
-0.10 

-0.1 0.021 0.002 -0.001 0.802 0.794 0.796 

60 -0.3 0.003 -0.008 -0.009 0.817 0.806 0.809 

61 

0.7 

-0.05 
-0.1 0.030 0.015 0.013 0.806 0.795 0.793 

62 -0.3 0.044 0.018 0.020 0.796 0.770 0.770 

63 
-0.10 

-0.1 0.043 0.016 0.015 0.853 0.839 0.839 

64 -0.3 0.052 0.033 0.032 0.817 0.810 0.812 

 Mean 0.017 -0.002 -0.001 0.796 0.785 0.786 
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Table B3  

Bias and RMSE of 𝛾0𝑘2 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.075 0.077 0.072 0.160 0.164 0.163 

2 -0.3 0.066 0.072 0.071 0.173 0.173 0.174 

3 
-0.10 

-0.1 0.103 0.112 0.104 0.176 0.176 0.176 

4 -0.3 0.012 0.017 0.014 0.162 0.161 0.163 

5 

0.7 

-0.05 
-0.1 0.087 0.085 0.088 0.185 0.185 0.185 

6 -0.3 0.083 0.082 0.080 0.196 0.197 0.198 

7 
-0.10 

-0.1 0.002 0.007 0.012 0.179 0.179 0.178 

8 -0.3 0.077 0.089 0.082 0.181 0.181 0.182 

9 

0.5 

0.3 

-0.05 
-0.1 0.073 0.074 0.080 0.180 0.179 0.176 

10 -0.3 0.072 0.076 0.078 0.188 0.186 0.187 

11 
-0.10 

-0.1 0.045 0.052 0.057 0.181 0.182 0.182 

12 -0.3 -0.033 -0.033 -0.028 0.180 0.178 0.181 

13 

0.7 

-0.05 
-0.1 0.021 0.025 0.028 0.195 0.190 0.196 

14 -0.3 0.026 0.029 0.035 0.187 0.182 0.184 

15 
-0.10 

-0.1 0.055 0.053 0.057 0.175 0.172 0.171 

16 -0.3 0.018 0.018 0.016 0.182 0.179 0.182 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.033 0.037 0.045 0.173 0.173 0.174 

18 -0.3 0.057 0.064 0.068 0.172 0.167 0.168 

19 
-0.10 

-0.1 0.041 0.048 0.045 0.174 0.172 0.172 

20 -0.3 0.047 0.046 0.045 0.195 0.194 0.195 

21 

0.7 

-0.05 
-0.1 0.023 0.019 0.020 0.175 0.177 0.179 

22 -0.3 0.087 0.092 0.089 0.196 0.193 0.193 

23 
-0.10 

-0.1 0.075 0.079 0.083 0.181 0.180 0.182 

24 -0.3 -0.014 -0.012 -0.018 0.168 0.166 0.169 

25 

0.5 

0.3 

-0.05 
-0.1 0.032 0.043 0.049 0.177 0.177 0.176 

26 -0.3 0.022 0.025 0.025 0.190 0.187 0.187 

27 
-0.10 

-0.1 -0.012 -0.013 -0.016 0.193 0.193 0.195 

28 -0.3 0.048 0.036 0.041 0.181 0.183 0.187 

29 

0.7 

-0.05 
-0.1 0.031 0.039 0.043 0.182 0.183 0.183 

30 -0.3 0.059 0.062 0.059 0.174 0.171 0.175 

31 
-0.10 

-0.1 0.071 0.073 0.072 0.191 0.187 0.185 

32 -0.3 0.029 0.033 0.045 0.184 0.182 0.185 
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Table B3 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.026 0.027 0.028 0.195 0.193 0.196 

34 -0.3 0.068 0.070 0.071 0.182 0.182 0.186 

35 
-0.10 

-0.1 -0.001 -0.007 0.004 0.170 0.167 0.168 

36 -0.3 0.073 0.078 0.073 0.190 0.194 0.197 

37 

0.7 

-0.05 
-0.1 0.018 0.017 0.013 0.178 0.177 0.181 

38 -0.3 0.055 0.069 0.071 0.179 0.179 0.180 

39 
-0.10 

-0.1 0.017 0.013 0.019 0.189 0.185 0.188 

40 -0.3 0.046 0.044 0.049 0.187 0.181 0.182 

41 

0.5 

0.3 

-0.05 
-0.1 0.009 0.010 0.006 0.181 0.181 0.181 

42 -0.3 0.043 0.044 0.042 0.191 0.187 0.192 

43 
-0.10 

-0.1 0.067 0.073 0.081 0.172 0.170 0.171 

44 -0.3 0.041 0.035 0.023 0.185 0.189 0.186 

45 

0.7 

-0.05 
-0.1 0.059 0.063 0.060 0.173 0.180 0.177 

46 -0.3 0.069 0.067 0.069 0.176 0.176 0.174 

47 
-0.10 

-0.1 0.053 0.069 0.060 0.169 0.172 0.169 

48 -0.3 0.030 0.043 0.040 0.194 0.193 0.193 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.073 0.078 0.082 0.163 0.161 0.163 

50 -0.3 0.043 0.058 0.059 0.196 0.190 0.190 

51 
-0.10 

-0.1 0.060 0.068 0.067 0.175 0.174 0.177 

52 -0.3 0.055 0.050 0.055 0.177 0.181 0.182 

53 

0.7 

-0.05 
-0.1 0.022 0.014 0.019 0.186 0.185 0.186 

54 -0.3 0.062 0.047 0.047 0.176 0.176 0.177 

55 
-0.10 

-0.1 0.023 0.022 0.027 0.180 0.175 0.176 

56 -0.3 0.039 0.036 0.034 0.171 0.163 0.162 

57 

0.5 

0.3 

-0.05 
-0.1 0.101 0.097 0.104 0.179 0.178 0.178 

58 -0.3 0.052 0.051 0.054 0.182 0.183 0.185 

59 
-0.10 

-0.1 0.056 0.046 0.050 0.190 0.189 0.188 

60 -0.3 0.105 0.105 0.107 0.184 0.185 0.186 

61 

0.7 

-0.05 
-0.1 -0.005 -0.007 -0.006 0.191 0.189 0.187 

62 -0.3 0.047 0.048 0.043 0.182 0.178 0.178 

63 
-0.10 

-0.1 0.031 0.026 0.031 0.176 0.175 0.178 

64 -0.3 0.076 0.075 0.077 0.178 0.174 0.173 

 Mean 0.046 0.047 0.048 0.181 0.180 0.181 
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Table B4  

Bias and RMSE of 𝛾0𝑘3 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.037 -0.039 -0.041 0.201 0.202 0.204 

2 -0.3 -0.011 -0.013 -0.010 0.185 0.185 0.190 

3 
-0.10 

-0.1 -0.023 -0.023 -0.027 0.190 0.189 0.190 

4 -0.3 -0.009 -0.012 -0.010 0.195 0.198 0.197 

5 

0.7 

-0.05 
-0.1 0.030 0.034 0.032 0.205 0.206 0.209 

6 -0.3 -0.070 -0.063 -0.063 0.197 0.192 0.192 

7 
-0.10 

-0.1 -0.013 -0.017 -0.027 0.201 0.202 0.204 

8 -0.3 -0.062 -0.070 -0.074 0.183 0.185 0.183 

9 

0.5 

0.3 

-0.05 
-0.1 -0.029 -0.031 -0.028 0.207 0.204 0.204 

10 -0.3 0.032 0.024 0.029 0.203 0.199 0.200 

11 
-0.10 

-0.1 -0.013 -0.007 0.000 0.196 0.199 0.197 

12 -0.3 0.019 0.022 0.015 0.189 0.189 0.191 

13 

0.7 

-0.05 
-0.1 0.047 0.058 0.055 0.205 0.207 0.208 

14 -0.3 -0.046 -0.052 -0.048 0.189 0.191 0.189 

15 
-0.10 

-0.1 0.043 0.050 0.047 0.204 0.202 0.202 

16 -0.3 0.026 0.020 0.031 0.209 0.212 0.211 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.003 -0.010 -0.004 0.184 0.182 0.185 

18 -0.3 0.003 0.003 0.005 0.204 0.203 0.203 

19 
-0.10 

-0.1 0.013 0.016 0.026 0.199 0.201 0.199 

20 -0.3 -0.030 -0.022 -0.025 0.215 0.216 0.218 

21 

0.7 

-0.05 
-0.1 0.023 0.030 0.036 0.197 0.197 0.197 

22 -0.3 -0.016 -0.016 -0.018 0.191 0.192 0.192 

23 
-0.10 

-0.1 -0.006 0.000 -0.005 0.181 0.181 0.181 

24 -0.3 0.020 0.026 0.018 0.190 0.191 0.192 

25 

0.5 

0.3 

-0.05 
-0.1 -0.010 -0.011 -0.004 0.196 0.195 0.197 

26 -0.3 -0.037 -0.034 -0.042 0.204 0.201 0.200 

27 
-0.10 

-0.1 0.023 0.023 0.024 0.201 0.202 0.199 

28 -0.3 -0.019 -0.013 -0.010 0.198 0.198 0.201 

29 

0.7 

-0.05 
-0.1 -0.027 -0.033 -0.026 0.184 0.183 0.186 

30 -0.3 -0.039 -0.034 -0.037 0.198 0.201 0.201 

31 
-0.10 

-0.1 -0.008 -0.008 -0.009 0.190 0.187 0.185 

32 -0.3 -0.009 -0.009 -0.003 0.180 0.181 0.183 
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Table B4 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.055 -0.055 -0.052 0.212 0.212 0.211 

34 -0.3 -0.014 -0.016 -0.017 0.185 0.188 0.187 

35 
-0.10 

-0.1 0.004 0.003 0.000 0.191 0.187 0.187 

36 -0.3 -0.054 -0.049 -0.050 0.193 0.192 0.193 

37 

0.7 

-0.05 
-0.1 -0.061 -0.049 -0.049 0.187 0.183 0.184 

38 -0.3 0.035 0.024 0.023 0.190 0.188 0.186 

39 
-0.10 

-0.1 -0.009 -0.013 -0.012 0.183 0.180 0.179 

40 -0.3 -0.036 -0.030 -0.026 0.190 0.191 0.192 

41 

0.5 

0.3 

-0.05 
-0.1 -0.040 -0.041 -0.051 0.181 0.185 0.191 

42 -0.3 -0.027 -0.024 -0.024 0.193 0.192 0.191 

43 
-0.10 

-0.1 0.022 0.020 0.033 0.204 0.199 0.201 

44 -0.3 -0.006 -0.011 -0.017 0.207 0.209 0.209 

45 

0.7 

-0.05 
-0.1 -0.064 -0.062 -0.062 0.184 0.181 0.181 

46 -0.3 -0.038 -0.030 -0.035 0.205 0.202 0.204 

47 
-0.10 

-0.1 0.000 0.008 0.002 0.199 0.195 0.194 

48 -0.3 0.006 0.010 0.004 0.198 0.199 0.200 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.015 -0.014 -0.010 0.199 0.197 0.198 

50 -0.3 -0.077 -0.079 -0.071 0.188 0.189 0.188 

51 
-0.10 

-0.1 -0.057 -0.049 -0.047 0.179 0.178 0.179 

52 -0.3 -0.013 -0.008 -0.009 0.202 0.201 0.201 

53 

0.7 

-0.05 
-0.1 -0.008 -0.019 -0.009 0.185 0.187 0.190 

54 -0.3 -0.021 -0.011 -0.010 0.185 0.183 0.181 

55 
-0.10 

-0.1 0.033 0.024 0.029 0.208 0.204 0.203 

56 -0.3 -0.012 -0.019 -0.017 0.210 0.202 0.201 

57 

0.5 

0.3 

-0.05 
-0.1 -0.075 -0.073 -0.072 0.205 0.203 0.206 

58 -0.3 0.014 0.012 0.008 0.194 0.194 0.195 

59 
-0.10 

-0.1 -0.089 -0.083 -0.078 0.205 0.202 0.205 

60 -0.3 -0.012 -0.010 -0.005 0.199 0.199 0.199 

61 

0.7 

-0.05 
-0.1 0.032 0.035 0.027 0.209 0.207 0.207 

62 -0.3 -0.080 -0.080 -0.077 0.187 0.186 0.187 

63 
-0.10 

-0.1 -0.036 -0.025 -0.027 0.195 0.196 0.198 

64 -0.3 -0.058 -0.057 -0.050 0.195 0.197 0.195 

 Mean -0.016 -0.015 -0.015 0.196 0.195 0.196 
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Table B5  

Bias and RMSE of 𝛾0𝑘4 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.041 0.042 0.040 0.195 0.193 0.190 

2 -0.3 -0.087 -0.085 -0.073 0.194 0.196 0.197 

3 
-0.10 

-0.1 -0.087 -0.093 -0.092 0.187 0.185 0.186 

4 -0.3 -0.092 -0.092 -0.092 0.201 0.202 0.201 

5 

0.7 

-0.05 
-0.1 -0.132 -0.134 -0.128 0.193 0.196 0.197 

6 -0.3 -0.042 -0.044 -0.041 0.178 0.180 0.178 

7 
-0.10 

-0.1 -0.057 -0.057 -0.051 0.191 0.194 0.194 

8 -0.3 -0.075 -0.080 -0.081 0.175 0.177 0.178 

9 

0.5 

0.3 

-0.05 
-0.1 -0.003 -0.007 -0.007 0.192 0.192 0.194 

10 -0.3 -0.086 -0.079 -0.077 0.170 0.170 0.171 

11 
-0.10 

-0.1 -0.092 -0.105 -0.089 0.192 0.193 0.192 

12 -0.3 -0.036 -0.034 -0.034 0.184 0.188 0.190 

13 

0.7 

-0.05 
-0.1 -0.111 -0.130 -0.128 0.197 0.196 0.198 

14 -0.3 -0.092 -0.099 -0.093 0.202 0.203 0.205 

15 
-0.10 

-0.1 -0.020 -0.019 -0.006 0.194 0.190 0.191 

16 -0.3 -0.094 -0.094 -0.096 0.207 0.205 0.206 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.060 -0.053 -0.054 0.206 0.203 0.205 

18 -0.3 -0.034 -0.046 -0.037 0.203 0.205 0.202 

19 
-0.10 

-0.1 -0.149 -0.151 -0.148 0.185 0.185 0.186 

20 -0.3 -0.028 -0.033 -0.038 0.186 0.192 0.189 

21 

0.7 

-0.05 
-0.1 -0.054 -0.063 -0.061 0.183 0.183 0.186 

22 -0.3 -0.057 -0.055 -0.057 0.206 0.208 0.210 

23 
-0.10 

-0.1 -0.051 -0.055 -0.056 0.185 0.188 0.187 

24 -0.3 -0.073 -0.088 -0.084 0.200 0.201 0.203 

25 

0.5 

0.3 

-0.05 
-0.1 -0.044 -0.051 -0.052 0.199 0.205 0.205 

26 -0.3 -0.026 -0.026 -0.024 0.180 0.179 0.179 

27 
-0.10 

-0.1 -0.066 -0.068 -0.064 0.177 0.178 0.175 

28 -0.3 -0.025 -0.025 -0.017 0.185 0.186 0.186 

29 

0.7 

-0.05 
-0.1 -0.128 -0.139 -0.130 0.211 0.210 0.211 

30 -0.3 -0.093 -0.104 -0.103 0.187 0.190 0.187 

31 
-0.10 

-0.1 -0.021 -0.030 -0.024 0.197 0.193 0.193 

32 -0.3 -0.090 -0.095 -0.085 0.169 0.171 0.168 
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Table B5 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE   

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 -0.101 -0.103 -0.094 0.180 0.179 0.487 

34 -0.3 -0.145 -0.141 -0.143 0.183 0.184 0.506 

35 
-0.10 

-0.1 -0.078 -0.084 -0.076 0.202 0.201 0.559 

36 -0.3 -0.073 -0.070 -0.071 0.191 0.193 0.524 

37 

0.7 

-0.05 
-0.1 -0.072 -0.058 -0.054 0.177 0.178 0.490 

38 -0.3 -0.077 -0.082 -0.079 0.195 0.200 0.556 

39 
-0.10 

-0.1 -0.069 -0.080 -0.084 0.183 0.183 0.489 

40 -0.3 -0.011 -0.015 -0.007 0.191 0.199 0.544 

41 

0.5 

0.3 

-0.05 
-0.1 -0.050 -0.046 -0.048 0.202 0.207 0.561 

42 -0.3 -0.140 -0.148 -0.147 0.187 0.190 0.515 

43 
-0.10 

-0.1 -0.053 -0.052 -0.054 0.189 0.189 0.522 

44 -0.3 -0.045 -0.045 -0.053 0.197 0.196 0.535 

45 

0.7 

-0.05 
-0.1 -0.055 -0.048 -0.047 0.187 0.194 0.537 

46 -0.3 -0.058 -0.068 -0.065 0.181 0.179 0.503 

47 
-0.10 

-0.1 -0.127 -0.123 -0.125 0.202 0.199 0.550 

48 -0.3 -0.070 -0.074 -0.077 0.202 0.202 0.558 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 -0.023 -0.026 -0.025 0.194 0.195 0.532 

50 -0.3 -0.105 -0.102 -0.104 0.199 0.192 0.539 

51 
-0.10 

-0.1 -0.051 -0.050 -0.051 0.188 0.189 0.520 

52 -0.3 -0.108 -0.112 -0.113 0.181 0.182 0.500 

53 

0.7 

-0.05 
-0.1 -0.041 -0.051 -0.050 0.210 0.210 0.571 

54 -0.3 -0.091 -0.085 -0.090 0.201 0.202 0.555 

55 
-0.10 

-0.1 -0.035 -0.029 -0.027 0.184 0.182 0.498 

56 -0.3 -0.017 -0.011 -0.016 0.187 0.188 0.525 

57 

0.5 

0.3 

-0.05 
-0.1 -0.081 -0.081 -0.079 0.200 0.198 0.557 

58 -0.3 -0.095 -0.091 -0.096 0.193 0.193 0.539 

59 
-0.10 

-0.1 -0.099 -0.093 -0.090 0.191 0.190 0.522 

60 -0.3 -0.041 -0.043 -0.043 0.192 0.193 0.529 

61 

0.7 

-0.05 
-0.1 -0.091 -0.093 -0.095 0.200 0.201 0.551 

62 -0.3 -0.145 -0.136 -0.132 0.201 0.200 0.551 

63 
-0.10 

-0.1 -0.026 -0.045 -0.036 0.194 0.195 0.535 

64 -0.3 -0.054 -0.058 -0.056 0.198 0.193 0.528 

 Mean -0.069 -0.071 -0.069 0.192 0.192 0.193 
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Table B6  

Bias and RMSE of 𝛾1 by simulation design conditions – polytomous attributes 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

1 

0.1 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.188 0.195 0.200 0.162 0.163 0.166 

2 -0.3 0.139 0.145 0.156 0.137 0.138 0.142 

3 
-0.10 

-0.1 0.064 0.061 0.076 0.137 0.138 0.144 

4 -0.3 0.103 0.107 0.118 0.145 0.145 0.148 

5 

0.7 

-0.05 
-0.1 0.119 0.119 0.126 0.141 0.142 0.143 

6 -0.3 0.168 0.170 0.180 0.147 0.144 0.147 

7 
-0.10 

-0.1 0.140 0.138 0.143 0.146 0.146 0.149 

8 -0.3 0.076 0.072 0.081 0.138 0.141 0.142 

9 

0.5 

0.3 

-0.05 
-0.1 0.140 0.141 0.146 0.152 0.151 0.156 

10 -0.3 0.092 0.098 0.099 0.134 0.136 0.135 

11 
-0.10 

-0.1 0.099 0.098 0.108 0.144 0.142 0.147 

12 -0.3 0.099 0.099 0.108 0.142 0.143 0.144 

13 

0.7 

-0.05 
-0.1 0.146 0.146 0.149 0.154 0.151 0.152 

14 -0.3 0.121 0.122 0.129 0.145 0.148 0.152 

15 
-0.10 

-0.1 0.134 0.134 0.145 0.138 0.135 0.139 

16 -0.3 0.088 0.087 0.093 0.142 0.139 0.142 

17 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.107 0.115 0.120 0.137 0.139 0.143 

18 -0.3 0.131 0.131 0.140 0.143 0.143 0.146 

19 
-0.10 

-0.1 0.086 0.087 0.097 0.140 0.137 0.141 

20 -0.3 0.112 0.119 0.118 0.138 0.140 0.141 

21 

0.7 

-0.05 
-0.1 0.078 0.075 0.079 0.128 0.127 0.131 

22 -0.3 0.100 0.100 0.106 0.139 0.139 0.140 

23 
-0.10 

-0.1 0.130 0.133 0.130 0.138 0.141 0.143 

24 -0.3 0.126 0.123 0.131 0.140 0.141 0.143 

25 

0.5 

0.3 

-0.05 
-0.1 0.137 0.139 0.141 0.139 0.139 0.141 

26 -0.3 0.132 0.136 0.140 0.143 0.146 0.147 

27 
-0.10 

-0.1 0.102 0.103 0.110 0.135 0.136 0.138 

28 -0.3 0.143 0.147 0.152 0.145 0.145 0.150 

29 

0.7 

-0.05 
-0.1 0.065 0.064 0.077 0.130 0.127 0.132 

30 -0.3 0.118 0.124 0.125 0.137 0.138 0.137 

31 
-0.10 

-0.1 0.146 0.144 0.154 0.144 0.143 0.148 

32 -0.3 0.095 0.101 0.104 0.131 0.131 0.133 

 

 



112 
 

Table B6 (cont’d) 

Cond 𝛔𝛕𝟎
𝟐  𝛔𝛕𝟏

𝟐
 𝛔𝛕𝟐

𝟐  𝛒𝛉𝛕𝟎 𝛒𝛉𝛕𝟐 𝛒𝛉𝛕𝟐 
 Bias  RMSE 

MHOP JRTP JDSP MHOP JRTP JDSP 

33 

0.5 

0.1 

0.1 

0.3 

-0.05 
-0.1 0.121 0.125 0.136 0.128 0.130 0.132 

34 -0.3 0.095 0.104 0.108 0.135 0.135 0.140 

35 
-0.10 

-0.1 0.136 0.141 0.146 0.162 0.163 0.163 

36 -0.3 0.097 0.100 0.103 0.135 0.134 0.134 

37 

0.7 

-0.05 
-0.1 0.106 0.105 0.116 0.146 0.143 0.147 

38 -0.3 0.108 0.106 0.107 0.143 0.140 0.140 

39 
-0.10 

-0.1 0.156 0.153 0.155 0.151 0.148 0.149 

40 -0.3 0.154 0.148 0.151 0.144 0.147 0.148 

41 

0.5 

0.3 

-0.05 
-0.1 0.108 0.114 0.115 0.144 0.148 0.148 

42 -0.3 0.073 0.075 0.080 0.139 0.141 0.141 

43 
-0.10 

-0.1 0.125 0.127 0.133 0.142 0.145 0.146 

44 -0.3 0.109 0.113 0.113 0.144 0.142 0.145 

45 

0.7 

-0.05 
-0.1 0.094 0.091 0.104 0.141 0.144 0.149 

46 -0.3 0.131 0.125 0.129 0.141 0.139 0.141 

47 
-0.10 

-0.1 0.134 0.136 0.139 0.144 0.143 0.142 

48 -0.3 0.155 0.150 0.148 0.150 0.150 0.150 

49 

0.5 

0.1 

0.3 

-0.05 
-0.1 0.095 0.099 0.102 0.139 0.141 0.142 

50 -0.3 0.125 0.132 0.133 0.142 0.141 0.142 

51 
-0.10 

-0.1 0.123 0.131 0.132 0.147 0.149 0.151 

52 -0.3 0.122 0.125 0.122 0.143 0.143 0.141 

53 

0.7 

-0.05 
-0.1 0.100 0.095 0.103 0.147 0.148 0.150 

54 -0.3 0.105 0.105 0.111 0.138 0.136 0.141 

55 
-0.10 

-0.1 0.125 0.127 0.126 0.137 0.138 0.137 

56 -0.3 0.111 0.117 0.122 0.141 0.142 0.146 

57 

0.5 

0.3 

-0.05 
-0.1 0.151 0.150 0.157 0.146 0.145 0.151 

58 -0.3 0.093 0.099 0.101 0.136 0.134 0.140 

59 
-0.10 

-0.1 0.112 0.115 0.125 0.144 0.140 0.143 

60 -0.3 0.142 0.143 0.147 0.141 0.141 0.142 

61 

0.7 

-0.05 
-0.1 0.122 0.119 0.124 0.142 0.135 0.137 

62 -0.3 0.068 0.077 0.087 0.146 0.149 0.152 

63 
-0.10 

-0.1 0.094 0.091 0.098 0.146 0.146 0.149 

64 -0.3 0.128 0.133 0.138 0.146 0.146 0.147 

 Mean 0.116 0.118 0.123 0.142 0.142 0.144 
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Figure B1 Bias of δ1 across simulation conditions – polytomous attribute configuration 

 

 
Figure B2 RMSE of δ1 across simulation conditions – polytomous attribute configuration 
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Figure B3 Bias of γ0k2 across simulation conditions – polytomous attribute configuration 

 

 
Figure B4 RMSE of γ0k2 across simulation conditions – polytomous attribute configuration 
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Figure B5 Bias of γ0k3 across simulation conditions – polytomous attribute configuration 

 

 
Figure B6 RMSE of γ0k3 across simulation conditions – polytomous attribute configuration 
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Figure B7 Bias of γ0k4 across simulation conditions – polytomous attribute configuration 

 

 
Figure B8 RMSE of γ0k4 across simulation conditions – polytomous attribute configuration 



117 
 

 
Figure B9 Bias of γ1 across simulation conditions – polytomous attribute configuration 

 

 

 
Figure B10 RMSE of γ1 across simulation conditions – polytomous attribute configuration 
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Figure B11 Bias of λ across simulation conditions – polytomous attribute configuration 

 

 
Figure B12 RMSE of λ across simulation conditions – polytomous attribute configuration 
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    APPENDIX C: JAGS CODES FOR STUDY MODELS 

 

C1. HO DINA model 

HO.DINA <- function(){ 

    ##Partial mastery higher order model 

    for (n in 1:N) {#examinee 

      for (k in 1:K) {#attribute 

        for (l in 1:L[k]){#level within attribute 

          core[n, k,l] <- beta[k]*theta[n]-delta[k,l] #ltm for level l of attribute k 

          sum.core[n,k,l]<-sum(core[n,k,1:l])#in parenthesis of numerator 

          exp.sum.core[n,k,l]<-exp(sum.core[n,k,l])#numerator 

          prob.a[n,k,l]<-exp.sum.core[n,k,l]/sum(exp.sum.core[n,k,1:L[k]])#probability of level l 

      }#level within attribute 

        alpha.star[n,k]~dcat(prob.a[n,k,1:L[k]]) 

        alpha[n,k] <- alpha.star[n,k]-1 

    }#end of attribute 

  }#end of examinee loop 

##Measurement model    

  for (n in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){ 

        w[n,i,k]<-step(alpha[n,k]-Q[i,k])} 

        eta[n,i]<-prod(w[n,i,]) 

        prob[n,i]<-g[i]+(1-s[i]-g[i])*eta[n,i] 

        Score[n,i]~dbern(prob[n,i]) } } 

        #Priors of the latent structural parameters 

  for (k in 1:K){ 

    delta[k,1]<-0 

    for (l in 2:L[k]){delta[k,l]~dnorm(0,0.5)} 

    beta[k]~dnorm(0,0.5)%_%T(0,) } 

      #prior of higher-order ability 

  for (n in 1:N){ 

    theta[n]~dnorm(0,1) 

  } 

      #Priors of item parameters 

  for (i in 1:I){ 

      s[i]~dbeta(1,1) 

      g[i]~dbeta(1,1)%_%T(0,1-s[i]) 

    }}#End of model loop 

 

C2. HO-RPa DINA model 

RPA.DINA <- function(){ 

    ##Partial master higher order model 

    for (n in 1:N) {#examinee 

      for (k in 1:K) {#attribute 

        for (l in 1:L[k]){#level within attribute 
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          core[n, k,l] <- beta[k]*theta[n]-delta[k,l] #ltm for level l of attribute k 

          sum.core[n,k,l]<-sum(core[n,k,1:l])#in parenthesis of numerator 

          exp.sum.core[n,k,l]<-exp(sum.core[n,k,l])#numerator 

          prob.a[n,k,l]<-exp.sum.core[n,k,l]/sum(exp.sum.core[n,k,1:L[k]])#probability of level l 

      }#level within attribute 

        alpha.star[n,k]~dcat(prob.a[n,k,1:L[k]]) 

        alpha[n,k] <- alpha.star[n,k]-1 

    }#end of attribute 

  }#end of examinee loop 

##Measurement model    

  for (n in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){ 

        w[n,i,k]<-step(alpha[n,k]-Q[i,k])} 

        eta[n,i]<-prod(w[n,i,]) 

        prob[n,i]<-g[i]+(1-s[i]-g[i])*eta[n,i] 

        Score[n,i]~dbern(prob[n,i]) } } 

        #Priors of the latent structural parameters 

  for (k in 1:K){ 

    delta[k,1]<-0 

    for (l in 2:L[k]){delta[k,l]~dnorm(0,0.5) } 

    beta[k]~dnorm(0,0.5)%_%T(0,)} 

      #prior of higher-order ability 

  for (n in 1:N){ 

    theta[n]~dnorm(0,1) 

  } 

      #Priors of item parameters 

  for (i in 1:I){ 

      s[i]~dbeta(1,1) 

      g[i]~dbeta(1,1)%_%T(0,1-s[i]) 

    }}#End of model loop 

 

C3. MHO DINA for binary attribute configuration 

MHOB <- function(){ 

  ##Partial mastery higher order model 

  for (nn in 1:N) {#examinee 

    for (k in 1:K) {#attribute 

      for (l in 1:Lb[k]){#level within attribute 

        core[nn, k,l] <- gam.1[k]*theta[nn]-gam.0[k,l] #ltm for level l of attribute k 

        sum.core[nn,k,l]<-sum(core[nn,k,1:l])#in parenthesis of numerator 

        exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,l])#numerator 

        prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:Lb[k]])#probability of level l 

      }#level within attribute 

      att.star[nn,k]~dcat(prob.a[nn,k,1:Lb[k]]) 

      att[nn,k] <- att.star[nn,k]-1 

    }#end of attribute 

  }#end of examinee loop 

   

  ##Measurement model    

  for (nn in 1:N){ 
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    for (i in 1:I){ 

      for (k in 1:K){ 

        w[nn,i,k]<-step(att[nn,k]-Q.bin[i,k])} 

      eta[nn,i]<-prod(w[nn,i,]) 

      logit(prob[nn, i]) <- delta0[i] + delta1[i] * eta[nn,i]#DINA model 

      Score[nn,i]~dbern(prob[nn,i]) } } 

  #Priors of the latent structural parameters 

  for (k in 1:K){ 

    gam.0[k,1]<-0 

    for (l in 2:Lb[k]){ gam.0[k,l]~dnorm(0,0.5)} 

    gam.1[k]~dnorm(0,0.5)%_%T(0,)  } 

  ##Person parameters from joint distribution of response time and responses 

  for (nn in 1:N) {  

    person_parameter[nn]~ dnorm(person_mu, person_den)  

    theta[nn] <- person_parameter[nn] } 

  ##Item parameters from joint distribution of response time and responses 

  for (i in 1:I) {  

    item_parameter[i, 1:2]~ dmnorm(item_mu[1:2], item_den[1:2, 1:2])  

    delta0[i]<-item_parameter[i, 1] #Item intercept from reparameterized DINA model 

    delta1[i]<-item_parameter[i, 2] #Item interaction from reparameterized DINA model 

    logit(g[i])<-delta0[i] #Item guessing parameter 

    logit(ns[i])<-delta0[i] + delta1[i]#Solving for slipping parameter 

    s[i] <- 1 - ns[i]  #Item slipping parameter 

  } 

  person_mu <- 0 #mean ability 

  L_theta <- 1  

  Sigma_theta <- L_theta  

  person_den <- Sigma_theta 

   

  #Hyper priors for miu of item parameters 

  item_mu[1]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA 

  item_mu[2]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta is constrained to be +tive 

   

  #Identity matrix for dsn of item covariance matrix 

  R[1, 1] <- 1  

  R[2, 2] <- 1  

  R[1, 2] <- 0 

  R[2, 1] <- 0  

  item_den[1:2,1:2]~dwish(R[1:2,1:2],2) #hyper prior for Item covariance matrix 

  Sigma_item[1:2,1:2]<-inverse(item_den[1:2,1:2])#Trasforming to inverse Wishart 

}#End of model loop 

 

C4. MHO DINA for polytomous attribute configuration 

MHOP <- function(){ 

  ##Partial mastery higher order model 

  for (nn in 1:N) {#examinee 

    for (k in 1:K) {#attribute 

      for (l in 1:L[k]){#level within attribute 

        core[nn, k,l] <- gam.1[k]*theta[nn]-gam.0[k,l] #ltm for level l of attribute k 
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        sum.core[nn,k,l]<-sum(core[nn,k,1:l])#in parenthesis of numerator 

        exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,l])#numerator 

        prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:L[k]])#probability of level l 

      }#level within attribute 

      att.star[nn,k]~dcat(prob.a[nn,k,1:L[k]]) 

      att[nn,k] <- att.star[nn,k]-1 

    }#end of attribute 

  }#end of examinee loop 

   

  ##Measurement model    

  for (nn in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){ w[nn,i,k]<-step(att[nn,k]-Q.poly[i,k])} 

      eta[nn,i]<-prod(w[nn,i,]) 

      logit(prob[nn, i]) <- delta0[i] + delta1[i] * eta[nn,i]#DINA model 

      Score[nn,i]~dbern(prob[nn,i]) } } 

  #Priors of the latent structural parameters 

  for (k in 1:K){ 

    gam.0[k,1]<-0 

    for (l in 2:L[k]){ gam.0[k,l]~dnorm(0,0.5)   } 

    gam.1[k]~dnorm(0,0.5)%_%T(0,)  } 

  ##Person parameters from joint distribution of response time and responses 

  for (nn in 1:N) {  

    person_parameter[nn]~ dnorm(person_mu, person_den)  

    theta[nn] <- person_parameter[nn] } 

 ##Item parameters from joint distribution of response time and responses 

  for (i in 1:I) {  

    item_parameter[i, 1:2]~ dmnorm(item_mu[1:2], item_den[1:2, 1:2])  

    delta0[i]<-item_parameter[i, 1] #Item intercept from reparameterized DINA model 

    delta1[i]<-item_parameter[i, 2] #Item interaction from reparameterized DINA model 

    logit(g[i])<-delta0[i] #Item guessing parameter 

    logit(ns[i])<-delta0[i] + delta1[i]#Solving for slipping parameter 

    s[i] <- 1 - ns[i]  #Item slipping parameter 

  } 

  person_mu <- 0 #mean ability 

  L_theta <- 1  

  Sigma_theta <- L_theta  

  person_den <- Sigma_theta 

   

  #Hyper priors for miu of item parameters 

  item_mu[1]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA 

  item_mu[2]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta is constrained to be +tive 

   

  #Identity matrix for dsn of item covariance matrix 

  R[1, 1] <- 1  

  R[2, 2] <- 1  

  R[1, 2] <- 0  

  R[2, 1] <- 0  

  item_den[1:2,1:2]~dwish(R[1:2,1:2],2) #hyper prior for Item covariance matrix 

  Sigma_item[1:2,1:2]<-inverse(item_den[1:2,1:2])#Trasforming to inverse Wishart 

}#End of model loop 
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C5. JRT DINA for binary attribute configuration 

 

JRTB <- function(){ 

  ##Partial mastery higher order model 

  for (nn in 1:N) {#examinee 

    for (k in 1:K) {#attribute 

      for (l in 1:Lb[k]){#level within attribute 

        core[nn, k,l] <- gam.1[k]*theta[nn]-gam.0[k,l] #ltm for level l of attribute k 

        sum.core[nn,k,l]<-sum(core[nn,k,1:l])#in parenthesis of numerator 

        exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,l])#numerator 

        prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:Lb[k]])#probability of level l 

      }#level within attribute 

      att.star[nn,k]~dcat(prob.a[nn,k,1:Lb[k]]) 

      att[nn,k]<-att.star[nn,k]-1 

    }#end of attribute 

  }#end of examinee loop 

   

  ##Measurement model    

  for (nn in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){ 

        w[nn,i,k]<-step(att[nn,k]-Q.bin[i,k])} 

      eta[nn,i]<-prod(w[nn,i,]) 

      logit(prob[nn,i])<-delta0[i]+delta1[i]*eta[nn,i]#DINA model 

      Score[nn,i]~dbern(prob[nn,i]) 

      logT[nn,i]~dnorm(lambda[i]-t0[nn],den_epsilon[i])#Draw resp time 4 item i & person nn 

    } } 

  #Priors of the latent structural parameters 

  for (k in 1:K){ 

    gam.0[k,1]<-0 

    for (l in 2:Lb[k]){gam.0[k,l]~dnorm(0,0.5)  } 

    gam.1[k]~dnorm(0,0.5)%_%T(0,) } 

  ##Person parameters from joint distribution of response time and responses 

  for (nn in 1:N) {  

    person_parameter[nn, 1:2]~ dmnorm(person_mu[1:2], person_den[1:2, 1:2])  

    theta[nn] <- person_parameter[nn, 1]  

    t0[nn] <- person_parameter[nn, 2] } 

  ##Item parameters from joint distribution of response time and responses 

  for (i in 1:I) {  

    item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])  

    lambda[i]<-item_parameter[i, 1] #Item time intensity from response time model 

    delta0[i]<-item_parameter[i, 2] #Item intercept from reparameterized DINA model 

    delta1[i]<-item_parameter[i, 3] #Item interaction from reparameterized DINA model 

    logit(g[i])<-delta0[i] #Item guessing parameter 

    logit(ns[i])<-delta0[i] + delta1[i]#Solving for slipping parameter 

    s[i] <- 1 - ns[i]  #Item slipping parameter 

    den_epsilon[i]~ dgamma(1, 1) #Error term from response time model 

    Sigma_epsilon[i] <- 1/den_epsilon[i] #Item time discrimination parameter 

  } 

  person_mu[1] <- 0 #mean ability 
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  person_mu[2] <- 0 #mean initial speed 

  L_theta[1, 1] <- 1  

  L_theta[2, 2]~ dgamma(1, 1)  

  L_theta[2, 1]~ dnorm(0,1) 

  L_theta[1, 2] <- 0  

  Sigma_theta <- L_theta %*% t(L_theta)  

  person_den[1:2, 1:2] <- inverse(Sigma_theta[1:2, 1:2]) 

   

  #Hyper priors for miu of item parameters 

  item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination 

  item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA 

  item_mu[3]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta is constrained to be +tive 

   

  #Identity matrix for dsn of item covariance matrix 

  R[1, 1] <- 1  

  R[2, 2] <- 1  

  R[3, 3] <- 1  

  R[1, 2] <- 0  

  R[1, 3] <- 0  

  R[2, 1] <- 0  

  R[2, 3] <- 0  

  R[3, 1] <- 0  

  R[3, 2] <- 0  

  item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix 

  Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart 

  }#End of model loop 

 

C6. JRT DINA for polytomous attribute configuration 

 

JRTP<-function(){ 

  ##Partial mastery higher order model 

  for (nn in 1:N) {#examinee 

    for (k in 1:K) {#attribute 

      for (l in 1:L[k]){#level within attribute 

        core[nn, k,l] <- gam.1[k]*theta[nn]-gam.0[k,l] #ltm for level l of attribute k 

        sum.core[nn,k,l]<-sum(core[nn,k,1:l])#in parenthesis of numerator 

        exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,l])#numerator 

        prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:L[k]])#probability of level l 

      }#level within attribute 

      att.star[nn,k]~dcat(prob.a[nn,k,1:L[k]]) 

      att[nn,k] <- att.star[nn,k]-1 

    }#end of attribute 

  }#end of examinee loop 

   

  ##Measurement model    

  for (nn in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){ 

        w[nn,i,k]<-step(att[nn,k]-Q.poly[i,k])} 

      eta[nn,i]<-prod(w[nn,i,]) 
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      logit(prob[nn, i]) <- delta0[i] + delta1[i] * eta[nn,i]#DINA model 

      Score[nn,i]~dbern(prob[nn,i]) 

      logT[nn,i]~dnorm(lambda[i]-t0[nn],den_epsilon[i])#Draw resp time 4 item i & person nn}} 

   

  #Priors of the latent structural parameters 

  for (k in 1:K){ 

    gam.0[k,1]<-0 

    for (l in 2:L[k]){ 

      gam.0[k,l]~dnorm(0,0.5) } 

    gam.1[k]~dnorm(0,0.5)%_%T(0,) } 

    ##Person parameters from joint distribution of response time and responses 

  for (nn in 1:N) {  

    person_parameter[nn, 1:2]~ dmnorm(person_mu[1:2], person_den[1:2, 1:2])  

    theta[nn] <- person_parameter[nn, 1]  

    t0[nn] <- person_parameter[nn, 2] } 

    ##Item parameters from joint distribution of response time and responses 

  for (i in 1:I) {  

    item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])  

    lambda[i]<-item_parameter[i, 1] #Item time intensity from response time model 

    delta0[i]<-item_parameter[i, 2] #Item intercept from reparameterized DINA model 

    delta1[i]<-item_parameter[i, 3] #Item interaction from reparameterized DINA model 

    logit(g[i])<-delta0[i] #Item guessing parameter 

    logit(ns[i])<-delta0[i] + delta1[i]#Solving for slipping parameter 

    s[i] <- 1 - ns[i]  #Item slipping parameter 

    den_epsilon[i]~ dgamma(1, 1) #Error term from response time model 

    Sigma_epsilon[i] <- 1/den_epsilon[i] #Item time discrimination parameter 

  } 

  person_mu[1] <- 0 #mean ability 

  person_mu[2] <- 0 #mean initial speed 

  L_theta[1, 1] <- 1  

  L_theta[2, 2]~ dgamma(1, 1)  

  L_theta[2, 1]~ dnorm(0,1) 

  L_theta[1, 2] <- 0  

  Sigma_theta <- L_theta %*% t(L_theta)  

  person_den[1:2, 1:2] <- inverse(Sigma_theta[1:2, 1:2]) 

   

  #Hyper priors for miu of item parameters 

  item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination 

  item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA 

  item_mu[3]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta is constrained to be +tive 

   

  #Identity matrix for dsn of item covariance matrix 

  R[1, 1] <- 1  

  R[2, 2] <- 1  

  R[3, 3] <- 1  

  R[1, 2] <- 0  

  R[1, 3] <- 0  

  R[2, 1] <- 0  

  R[2, 3] <- 0  

  R[3, 1] <- 0  

  R[3, 2] <- 0  
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  item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix 

  Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart 

}#End of model loop 

 

C7. JDS DINA for binary attribute configuration 

 

JDSB <- function(){ 

  ##Partial mastery higher order model 

  for (nn in 1:N) {#examinee 

    for (k in 1:K) {#attribute 

      for (l in 1:Lb[k]){#level within attribute 

        core[nn, k,l] <- gam.1[k]*theta[nn]-gam.0[k,l] #ltm for level l of attribute k 

        sum.core[nn,k,l]<-sum(core[nn,k,1:l])#in parenthesis of numerator 

        exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,l])#numerator 

        prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:Lb[k]])#probability of level l 

      }#level within attribute 

      att.star[nn,k]~dcat(prob.a[nn,k,1:Lb[k]]) 

      att[nn,k] <- att.star[nn,k]-1 

    }#end of attribute 

  }#end of examinee loop 

   

  ##Measurement model    

  for (nn in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){w[nn,i,k]<-step(att[nn,k]-Q.bin[i,k])} 

      eta[nn,i]<-prod(w[nn,i,]) 

      logit(prob[nn, i]) <- delta0[i] + delta1[i] * eta[nn,i]#DINA model 

      Score[nn,i]~dbern(prob[nn,i]) 

      logT[nn,i]~dnorm(lambda[i]-speed[nn,1]-speed[nn,2]-speed[nn,3],den_epsilon[i])#Draw resp time 4 

item i & person nn 

    }} 

  #Priors of the latent structural parameters 

  for (k in 1:K){ 

    gam.0[k,1]<-0 

    for (l in 2:Lb[k]){ 

      gam.0[k,l]~dnorm(0,0.5) 

    } 

    gam.1[k]~dnorm(0,0.5)%_%T(0,) 

  } 

  ##Person parameters from joint distribution of response time and responses 

  for (nn in 1:N) {  

    person_parameter[nn, 1:4]~ dmnorm(person_mu[1:4], person_den[1:4, 1:4])  

    theta[nn] <- person_parameter[nn, 1]  

    t0[nn] <- person_parameter[nn, 2]  

    t1[nn] <- person_parameter[nn, 3] 

    t2[nn] <- person_parameter[nn, 4]  } 

  speed<-person_parameter[,2:4]%*%t(Xn) 

   

  ##Item parameters from joint distribution of response time and responses 

  for (i in 1:I) {  



127 
 

    item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])  

    lambda[i]<-item_parameter[i, 1] #Item time intensity from response time model 

    delta0[i]<-item_parameter[i, 2] #Item intercept from reparameterized DINA model 

    delta1[i]<-item_parameter[i, 3] #Item interaction from reparameterized DINA model 

    logit(g[i])<-delta0[i] #Item guessing parameter 

    logit(ns[i])<-delta0[i] + delta1[i]#Solving for slipping parameter 

    s[i] <- 1 - ns[i]  #Item slipping parameter 

    den_epsilon[i]~ dgamma(1, 1) #Error term from response time model 

    Sigma_epsilon[i] <- 1/den_epsilon[i] #Item time discrimination parameter 

  } 

  person_mu[1] <- 0 #mean ability 

  person_mu[2] <- 0 #mean initial speed 

  person_mu[3] <- 0 #mean slope 

  person_mu[4] <- 0 #mean quadratic term 

  L_theta[1, 1] <- 1  

  L_theta[2, 2]~ dgamma(1, 1)  

  L_theta[3, 3]~ dgamma(1, 1)  

  L_theta[4, 4]~ dgamma(1, 1)  

  L_theta[2, 1]~ dnorm(0,1) 

  L_theta[3, 1]~ dnorm(0,1)  

  L_theta[4, 1]~ dnorm(0,1)  

  L_theta[3, 2]~ dnorm(0,1) 

  L_theta[4, 2]~ dnorm(0,1)  

  L_theta[4, 3]~ dnorm(0,1)  

  L_theta[1, 2] <- 0  

  L_theta[1, 3] <- 0  

  L_theta[1, 4] <- 0  

  L_theta[2, 3] <- 0  

  L_theta[2, 4] <- 0  

  L_theta[3, 4] <- 0  

  Sigma_theta <- L_theta %*% t(L_theta)  

  person_den[1:4, 1:4] <- inverse(Sigma_theta[1:4, 1:4]) 

   

  #Hyper priors for miu of item parameters 

  item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination 

  item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA 

  item_mu[3]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta1 is constrained to be +tive 

   

  #Identity matrix for dsn of item covariance matrix 

  R[1, 1] <- 1  

  R[2, 2] <- 1  

  R[3, 3] <- 1  

  R[1, 2] <- 0  

  R[1, 3] <- 0  

  R[2, 1] <- 0  

  R[2, 3] <- 0  

  R[3, 1] <- 0  

  R[3, 2] <- 0  

  item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix 

  Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart 

}#End of model loop 
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C8. JDS DINA for polytomous attributes 

JDSP <- function(){ 

  ##Partial mastery higher order model 

  for (nn in 1:N) {#examinee 

    for (k in 1:K) {#attribute 

      for (l in 1:L[k]){#level within attribute 

        core[nn, k,l] <- gam.1[k]*theta[nn]-gam.0[k,l] #ltm for level l of attribute k 

        sum.core[nn,k,l]<-sum(core[nn,k,1:l])#in parenthesis of numerator 

        exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,l])#numerator 

        prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:L[k]])#probability of level l 

      }#level within attribute 

      att.star[nn,k]~dcat(prob.a[nn,k,1:L[k]]) 

      att[nn,k] <- att.star[nn,k]-1 

    }#end of attribute 

  }#end of examinee loop 

   

  ##Measurement model    

  for (nn in 1:N){ 

    for (i in 1:I){ 

      for (k in 1:K){w[nn,i,k]<-step(att[nn,k]-Q.poly[i,k])} 

      eta[nn,i]<-prod(w[nn,i,]) 

      logit(prob[nn, i]) <- delta0[i] + delta1[i] * eta[nn,i]#DINA model 

      Score[nn,i]~dbern(prob[nn,i]) 

      logT[nn,i]~dnorm(lambda[i]-speed[nn,1]-speed[nn,2]-speed[nn,3],den_epsilon[i])#Draw resp time 4 

item i & person nn 

    } } 

  #Priors of the latent structural parameters 

  for (k in 1:K){ 

    gam.0[k,1]<-0 

    for (l in 2:L[k]){ 

      gam.0[k,l]~dnorm(0,0.5)} 

    gam.1[k]~dnorm(0,0.5)%_%T(0,)} 

   

  ##Person parameters from joint distribution of response time and responses 

  for (nn in 1:N) {  

    person_parameter[nn, 1:4]~ dmnorm(person_mu[1:4], person_den[1:4, 1:4])  

    theta[nn] <- person_parameter[nn, 1]  

    t0[nn] <- person_parameter[nn, 2]  

    t1[nn] <- person_parameter[nn, 3] 

    t2[nn] <- person_parameter[nn, 4] } 

  speed<-person_parameter[,2:4]%*%t(Xn) 

   

  ##Item parameters from joint distribution of response time and responses 

  for (i in 1:I) {  

    item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])  

    lambda[i]<-item_parameter[i, 1] #Item time intensity from response time model 

    delta0[i]<-item_parameter[i, 2] #Item intercept from reparameterized DINA model 

    delta1[i]<-item_parameter[i, 3] #Item interaction from reparameterized DINA model 

    logit(g[i])<-delta0[i] #Item guessing parameter 

    logit(ns[i])<-delta0[i] + delta1[i]#Solving for slipping parameter 



129 
 

    s[i] <- 1 - ns[i]  #Item slipping parameter 

    den_epsilon[i]~ dgamma(1, 1) #Error term from response time model 

    Sigma_epsilon[i] <- 1/den_epsilon[i] #Item time discrimination parameter 

  } 

  person_mu[1] <- 0 #mean ability 

  person_mu[2] <- 0 #mean initial speed 

  person_mu[3] <- 0 #mean slope 

  person_mu[4] <- 0 #mean quadratic term 

  L_theta[1, 1] <- 1  

  L_theta[2, 2]~ dgamma(1, 1)  

  L_theta[3, 3]~ dgamma(1, 1)  

  L_theta[4, 4]~ dgamma(1, 1)  

  L_theta[2, 1]~ dnorm(0,1) 

  L_theta[3, 1]~ dnorm(0,1)  

  L_theta[4, 1]~ dnorm(0,1)  

  L_theta[3, 2]~ dnorm(0,1) 

  L_theta[4, 2]~ dnorm(0,1)  

  L_theta[4, 3]~ dnorm(0,1)  

  L_theta[1, 2] <- 0  

  L_theta[1, 3] <- 0  

  L_theta[1, 4] <- 0  

  L_theta[2, 3] <- 0  

  L_theta[2, 4] <- 0  

  L_theta[3, 4] <- 0  

  Sigma_theta <- L_theta %*% t(L_theta)  

  person_den[1:4, 1:4] <- inverse(Sigma_theta[1:4, 1:4]) 

   

  #Hyper priors for miu of item parameters 

  item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination 

  item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA 

  item_mu[3]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta1 is constrained to be +tive 

   

  #Identity matrix for dsn of item covariance matrix 

  R[1, 1] <- 1  

  R[2, 2] <- 1  

  R[3, 3] <- 1  

  R[1, 2] <- 0  

  R[1, 3] <- 0  

  R[2, 1] <- 0  

  R[2, 3] <- 0  

  R[3, 1] <- 0  

  R[3, 2] <- 0  

  item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix 

  Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart 

}#End of model loop. 
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