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ABSTRACT

INCORPORATING DIFFERENTIAL SPEED IN COGNITIVE DIAGNOSTIC MODELS
WITH POLYTOMOUS ATTRIBUTES

By
Hope Onyinye Akaeze

The recent increase in interest for instructional relevance and fine-grained feedback from
assessments has led to a unified paradigm of educational measurement, combining cognitive
psychology with psychometrics, and thus, cognitive diagnostic assessment or CDA. CDAs are
particularly useful for identifying areas of students’ needs as well as designing individualized
instruction and learning/teaching interventions to meet those needs. However, the typical CDAs
assess coarsely defined attributes and lack information on the cognitive processes that underlie test
performance.

Cognitive processing takes time. A typical CDA is time-limited and the time an examinee
allocates to tasks can provide insight on the cognitive process underlying the response. Response
time (RT) has therefore been identified as important collateral information that can be used to
account for examinee behavior in cognitive assessment. However, the use of RT in measurement
models has, so far, been limited to approaches with the strict assumption that a test taker maintains
a constant speed over the test process. In addition, most cognitive diagnostic modeling approaches
have been directed towards classification of examinees based on their profiles on dichotomized
status on the latent skill. Classifying latent attribute status into mastery and non-mastery not only
obscures information but also ignores the fact that learning can be progressive, and respondents in
the same category (mastery/non-mastery) may possess the skill to a considerably varying degree.

These two concerns are the focus of the current study.



This study aims to develop a more adaptable and informative modeling approach for
examining and accounting for the effect of time speededness on examinees’ cognitive processing
behavior and ability in diagnostic models with polytomous attributes, thereby increasing the
diagnostic potentials of CDAs. This is achieved by integrating variable working speed and partial
mastery (polytomous attributes) into cognitive assessment model. The strengths of the model are
assessed and compared to existing models using an empirical data and a simulation study. This
new model, where applicable, allows for finer-grained feedback and flexibility in the assumed
role of RT in cognitive diagnostic assessment while providing useful supplementary information

to better understand testing strategies and behaviors.
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CHAPTER 1: INTRODUCTION

Learning, even from the best-designed instruction, can only be verified through
assessment. A well-designed assessment provides evidence to validate the expected effect of
instruction. It is, therefore, an indispensable tool in any teaching and learning process. Educational
assessments are of two broad types — summative assessment and formative assessment — depending
on the purpose. Summative assessments are comprehensive assessments administered at the end
of the course of study, as a summary evaluation of student learning. On the other hand, formative
assessments are designed to evaluate students’ learning over the study period, primarily to inform
and enhance the teaching and learning process. The feedback from formative assessments is
particularly useful for diagnosing the strengths and weaknesses of students and/or instructional
materials/approach and for determining the best improvement strategy, when necessary.

Over the past few decades, there has been an increased push for fine-grained feedback from
formative assessments; feedback that provide information, not only on examinees’ cognitive
abilities, but also on their proficiencies in the required processing skills (Leighton, Gierl, & Hunka,
2004; Sessoms & Henson, 2018; Sheehan & Mislevy, 1990) on a test. This interest has led to a
unified paradigm of educational measurement, combining cognitive psychology with
psychometrics, and thus, cognitive diagnostic assessment or CDA (Leighton & Gierl, 2007).
Cognitive diagnostic assessment is an alternative form of assessment that provides formative
information on students’ cognitive strengths and weaknesses in the targeted skills. Such
assessments are particularly useful for identifying areas of students’ needs as well as designing

individualized instruction and learning/teaching interventions to meet those needs.



Truly, CDAs provide detailed information on cognitive ability or performance level, but
the classic CDA is devoid of information regarding the cognitive processes that underlie test
performance (De Boeck & Jeon, 2019). The knowledge of whether a student got an item
right/wrong, or whether a student has mastered a skill or not, is insufficient to tell the cognitive
process that led to the answer (Tatsuoka & Tatsuoka, 1979). Process information provides an
answer to the ‘why’ and ‘how’ of a task response. Knowledge of this cognitive process has several
advantages — detection of aberrant test behaviors, better understanding and interpretation of test
scores, better calibration of tests and test items, and richer information for developing remedial
interventions.

One approach for developing theoretical information about cognitive process is using
expert knowledge of the process domain in assessment development (Rupp, Templin, & Henson,
2010). Another method is to retrospectively or concurrently review the examinees’ instructional
background (Tatsuoka & Tatsuoka, 1979) , or probe the examinees for self-report of their solution
strategies (Rupp et al., 2010); both of which can be daunting with large scale assessments.
Alternative evidence for cognitive process comes from eye tracking information (De Boeck &
Jeon, 2019; Rupp et al., 2010). Predicated on the fact that the mind follows the eye, this technique
tracks eye movement and uses location and duration of fixation to approximate the cognitive
processes of examinees. As Rupp et al. (2010) noted, this procedure can be resource-intensive. De
Boeck and Jeon (2019) identified an even more sophisticated procedure - evaluating the brain’s
electrical activity from electroencephalogram (EEG) — as another source of collateral information
for process-related measurement.

Cognitive processing, as we know it, takes time; and the time an examinee allocates to

tasks can provide insight on the cognitive process underlying the response (De Boeck & Jeon,



2019). The time taken to carry out all the operations required for a task is therefore a useful source
of information that can be put to multiple uses, including improved estimation of examinees’
performance. Moreover, with the advent of computerized testing, response time data have become
accessible for this purpose. Several research efforts have also been directed towards modeling the
relationship between response time and test performance, especially within the IRT framework
(e.g., Sen, 2012; Tatsuoka & Tatsuoka, 1979); van der Linden, 2007; Verhelst, Verstralen, &
Jansen, 1997; Wang & Hanson, 2005). A few others have also been devoted to improving cognitive
diagnostic model (CDM) estimation and inferences by integrating response time with responses
(e.g. Huang, 2019; Zhan, Jiao & Liao, 2018a; Zhan, Liao, & Bian, 2018b).
1.1 Statement of Problem
1.1.1 The Dichotomy Problem

As noted earlier, cognitive diagnostic assessments are developed to meet the need for finer-
grained feedback from educational tests and to make these tests more relevant to classroom
instruction. However, most modeling approaches have been directed towards classification of
examinees based on their profiles as dichotomized status on the latent skills — mastery/non-
mastery. Like any random variable, dichotomization leads to loss of information. Classifying latent
attribute status into mastery and non-mastery not only obscures information (Karelitz, 2008), but
it also ignores the fact that learning can be progressive (Karelitz, 2004), and respondents in the
same category (mastery/non-mastery) may possess the skill to a considerably varying degree
(Zhan, Ma, Jiao, & Ding, 2019a). On the other hand, modeling continuous attributes places
students on a continuum that is, in most cases, not informative enough for meaningful formative
and diagnostic purposes (Karelitz, 2004). To create a middle ground between these two extremes,

researchers are calling for cognitive diagnostic modeling with theoretically relevant polytomous



attributes that would allow some gradation in skills diagnosis (e.g., Hartz, 2002; Karelitz, 2004,
2008; Zhan, Wang, & Li, 2019b).
1.1.2 The Speededness Effect

Response time (RT), as a measure of cognitive process, has been identified as important
collateral information that can be used to account for examinee behavior and improve the
estimation of students’ proficiency levels in cognitive assessment (Schnipke & Scrams, 2002). A
good number of modeling approaches have therefore been proposed to explore the benefits of
response time in item response models (e.g., Sen, 2012; Simonetto, 2011; van der Linden, 2007)
and cognitive diagnostic models (e.g., Zhan et al., 2018a; Zhan et al., 2018b). These studies have
shown that incorporating response time in item response modeling can improve estimation and
classification accuracy, detect aberrant test-taking behaviors, and differentiate among different
test-taking strategies.

Gulliksen (1950) identified two unique types of tests, with respect to timing — power tests
and speed tests. Power tests are designed to measure only the knowledge level of examinees. For
these tests, examinees are allowed unlimited time and are scored based on their responses alone.
Speed tests are designed to measure cognitive processing speed and are scored based on the time
taken to answer a fixed number of items or the number of items completed within a set time
interval. Contemporary educational assessments, however, though designed to measure knowledge
only, are usually time-limited. This time constraint on a power test introduces construct irrelevant
variance into the measurement (Wollack, Cohen, & Wells, 2003; Kahraman, Cuddy, & Clauser,
2013), due to the intricate relationship between response time and accuracy/ability. This
relationship is reflected in the phenomena known as the speed-accuracy tradeoff and speed-ability

relationship. The speed-accuracy tradeoff defines a within-person negative nonlinear relationship



between accuracy and time; the faster an examinee completes a task, the lower his or her level of
accuracy on the tasks (van der Linden, 2007). At the between-person level, we can only define a
speed-ability relationship whereby examinees with higher ability take less time to complete the
test. While changes in speed are sometimes negligible (van der Linden, Breithaupt, Chuah, &
Zhang, 2007), more substantial speed changes within an examinee are frequent in time-limited
high-stakes tests. These can present unobserved dependencies in the item responses.

In cognitive assessments, RT is sometimes treated as a parallel dependent variable with
response accuracy (RA), as a covariate for RA, or as a co-dependent variable with RA to explain
local dependency (De Boeck & Jeon, 2019). While all three options for incorporating RT have
been explored in the IRT framework (e.g., ; Fox & Marianti, 2016; Molenaar, Tuerlinckx & van
der Maas, 2015; van der Linden, 2007) and cognitive diagnosis (e.g., Huang, 2019; Zhan et al.,
2018a; Zhan et al., 2018b), the use of RT in measurement models has, so far, been limited to
approaches with the assumption of constant speed. These approaches assume that a test taker
maintains a constant speed over the test period. Few exceptions to this are the works by Fox &
Marianti (2016) and Molenaar, Oberski, Vermunt, & De Boeck (2016), where response time is
incorporated into the IRT model with differential speed. To date, no similar work has been
recorded in cognitive diagnostic modeling.

Pure cognitive diagnostic models that use only the responses ignore the speededness effect
— the effect that time constraint has on responses, and subsequent ability or mastery-based
inferences. Accounting for response time with a constant speed assumption improves estimation
but only captures the between-level relationship between response time and responses. However,
this between-level relationship tells nothing about the within-level relationship and may cause the

item responses to violate the local independence assumption. In a time-limited test, an examinee



may change the speed of response due to fatigue, change in strategy, a reminder of a time limit, or
other aberrant behavior like cheating or guessing. Hence, it would be naive to impose a constant
speed assumption in modeling students’ cognitive speed of performance on a test.

If RTs are to become routinely used as supplementary information in cognitive diagnostic
modeling, more flexibility in the framework for incorporating RT is needed. Such modeling
framework would provide insight into the effect of test speededness and reveal aberrant behaviors
that could distort the ability estimates of examinees. It would also allow researchers to integrate
changes in working speed and test their specific hypotheses about the role of RT in cognitive
diagnostic models.

1.2 Purpose of the Study

The insight for this study is drawn from Fox & Marianti (2016)’s joint model for improving
IRT estimation by incorporating RT with varying speed; Zhan et al. (2018a)’s work on
incorporating RT in cognitive diagnostic models; and the need to increase the diagnostic potential
of CDMs via polytomous attributes (Chen & de la Torre, 2013; Karelitz, 2004, 2008; Zhan et al.,
2019b; Hartz, 2002). The current study provides an adaptable and informative modeling
framework to examine and account for the effect of time speededness on examinees’ cognitive
ability and processing behavior in diagnostic models. The research goal is to propose a new
approach that allows for finer-grained feedback and flexibility in the assumed role of RT in
cognitive diagnostic assessment, and to compare the performance of the approach with existing
ones, where applicable.

Karelitz, (2004) and Zhan et al. (2019b) developed two modeling frameworks to address
diagnostic measurement with polytomous attributes. Karelitz (2004) proposed an ordered category

attribute coding (OCAC) framework to model attributes with ordinal levels, each coded from 0



(for the lowest level) to the highest level. However, his approach assumes (1) invariant item
parameters, which is unrealistically restrictive, and (2) a saturated latent structural model for the
attributes, which can quickly become computationally intensive. To improve on the OCAC
framework, Zhan et al. (2019b) proposed the partial mastery, the higher-order latent structural
model for polytomous attributes. This model relaxes the OCAC constraint of common slipping
and guessing parameters across items and shows that constraining the structural model with a
higher-order latent trait model was equally good at parameter recovery and more parsimonious
and time efficient (Zhan et al., 2019b). However, these two approaches, did not recognize the lack
of local independence in responses that could be attributed to the underlying cognitive processes
students engage in while responding to tasks used in measuring these attributes.

To account for the effect of cognitive processes using response time, Fox & Marianti
(2016) proposed a joint model for responses and response times that allows for differential speed
via a latent growth model for response times. Such an extension has never been explored with
cognitive diagnostic models. On the cognitive diagnostic modeling side, Zhan et al. (2018a)
proposed joint modeling of RT and RA, with a correlational structure between the model person
and item parameters, following the hierarchical modeling framework of van der Linden (2007).
Modeling the correlational structure of parameters, with a constant speed component, accounts for
the interdependence between RT and RA but fails to account for the effect of differential test
speededness on RA.

The current study (1) extends Fox & Marianti’s (2016) work to cognitive diagnostic
models, (2) generalizes the study by Zhan et al. (2018a) to polytomous attributes and (3) permits
variable speed as examinees progress through the tasks on a test. The main objectives of this study

are to (1) propose a new flexible model for incorporating response time into cognitive diagnostic



models, with polytomous attributes and differential speed across tasks; (2) assess the performance
of the new model in terms of parameter recovery for different conditions of sample size, number
of items and correlations between RT and ability and (3) compare the performance of the new
model with that of existing models on real data, in terms of model fit and precision of parameter
estimates.
1.3 Research questions
In line with the objectives listed above, this study seeks to answer the following research
questions:
1. How does the new model compare with existing models, in terms of model fit and
precision of estimates?
2. How does the dichotomization of polytomous attributes affect correct classification
accuracies?
3. How is the recovery of item and person parameter estimates in the new model affected by
the variances of RT parameters and the correlation between RT and RA parameters?
4. How well does the new model recover person and item parameter estimates when
attributes are dichotomized?
5. How well does the new model for polytomous attributes recover person and item
parameter estimates?
1.4 Overview of Chapters
In the following chapters, cognitive diagnostic models, response time models, and their
joint models are discussed in greater detail, with emphasis on the aspects that are germane to the
objectives of the current study. Chapter 2 presents definitions of relevant concepts and

terminologies related to response time and cognitive diagnostic models. In this chapter, the study’s



rationale is established through a comprehensive literature review of existing studies related to
exploiting response time in cognitive diagnostic modeling.

Chapter 3 describes the methods used to address the research questions, including the
technical details of the proposed and existing models, model estimation and assessment
procedures, description of empirical data, and the design and implementation of the pertinent
simulation study. The results from the methods described in Chapter 3 are summarized and
presented in Chapter 4. Finally, Chapter 5 provides a discussion of the results and their implication
for cognitive diagnostic modeling. This fifth chapter concludes the study with the limitations of

the current study and recommendations for future studies.



CHAPTER 2: LITERATURE REVIEW

2.1 Cognitive Diagnostic Modeling

Cognitive diagnostic models or CDMs (de la Torre, 2009; Huebner, 2010) are
psychometric models specially designed to assess examinees’ proficiency and classify them based
on their mastery or non-mastery of postulated attributes. CDMs are also known by several other
names in literature, such as restricted latent class models (Haertel, 1989; Xu, 2017), diagnostic
classification models (Rupp et al., 2010; Sessoms & Henson, 2018), cognitive psychometric
models, multiple classification latent class models or MCLCM (Maris, 1999) structured item
response theory (SIRT) models (Rupp & Mislevy, 2007; Leighton et al., 2004), and latent response
models (Maris, 1995) (check Rupp & Templin, 2008 for more labels). These variants differ in
functional forms, assumptions, complexities, and areas of emphasis, but they all provide nuanced
information on examinees’ skills, which are then used to classify them based on their score profiles
on the skills.

The major difference between CDMs and traditional multidimensional item response
theory (IRT) or CTT models is that the former is concerned with a binary (mastery or non-mastery)
or polytomous latent variable for diagnostic and criterion-referenced purposes while the latter
provide scores on a continuously valued latent variable, mostly for norm-referenced
interpretations. The categorical nature of the latent variable is one similarity between CDMs and
conventional latent class models. However, in latent class models, subjects are classified into one
of many possible categories of a single latent variable based on their observed response pattern,

but CDM classifies subjects based on their membership to latent categories of many latent
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variables or attributes (Maris, 1999) and classification is restricted by the assumed form of
interaction among the measured attributes.

Like every other modeling tool, CDM has had its fair share of criticisms. Most of the
criticisms of CDM applications are concerned with the lack of evidence for reliability, validity,
distinctiveness of attributes, measurement invariance, and informed practical decision-making
(e.g., Sinharay & Haberman, 2009; Bradshaw, Izsak, Templin & Jacobson, 2014; Chen & de la
Torre, 2014; Henson, 2009; Jurich & Bradshaw, 2014; Ravand, 2016; Rupp & Templin, 2008). A
more overarching problem, which seems to be the source of all the other limitations, is that most
existing educational assessments are designed to align to content instead of attributes. As a result,
CDM applications employ the retrofitting procedure, with items that are coded for attributes after
the test had been developed and administered. This qualifies the utility of inference generated from
CDM s since the items were not originally developed to measure these micro-level attributes (Gierl,
Alves, & Majeau, 2010). Details of these limitations are discussed elsewhere in Roussos, Templin
& Henson (2007).

2.2 The Q-Matrix

In the cognitive diagnostic assessment framework, any skill or specific knowledge that a
student requires to perform a task is generally referred to as an attribute. For any item/task, the
combination of attributes needed for a correct response to it is known as its attribute profile. Every
examinee is also characterized and classified by attribute profile, which is his/her mastery levels
on the vector of attributes being measured. The complete list of all possible combinations of
attributes assessed in a test is called the latent attribute space (Tatsuoka, 1990). The Q matrix is a
matrix representation of the relationship between test items and the attributes of interest in a

diagnostic assessment. It is a | by K matrix with elements gik indicating the mastery level of
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attribute k required to answer item i correctly, where 1 is the number of items, and K is the number
of attributes (Karelitz, 2008; Zhan et al., 2019). The columns of the Q matrix represent the
attributes and the rows represent the items so that gjx = I-1 (I = 1...Lx) if item i requires examinees
to possess level | of attribute k (k= 1...K) for a correct response, where L is the number of mastery
levels measured for attribute k. The first mastery level of every attribute is set to 0 so that gx =0
if item i requires the lowest mastery level of attribute k for a correct response.

The Q matrix for a test with binary attributes is a special case of that described above. If
all attributes are measured at only two levels, mastery/non-mastery, then the Q matrix reduces to
a binary matrix of zeros and ones but with the same dimension. As an example, Table 1 provides
the Q-matrix for the attributes in the Numbers content domain of TIMSS 2011 eighth-grade
mathematics, adapted from Table 2 of Terzi & Sen (2019).

Table 1

Binary Q-matrix

. Attribute k
Item j

o1 0 03
1 1 1 0
2 0 1 0
4 1 0 0
5 1 1 1
15 1 1 0
16 1 1 0
18 0 0 1
30 0 0 1
31 0 0 1

Note. az — Possesses understanding of fraction equivalence and ordering; uses equivalent fractions
as a strategy to add and subtract fractions. a2 — Understands decimal notation for fractions and
compares decimal fractions; performs operations with decimals. oz — Understands ratio concepts
and uses ratio reasoning to solve problems; finds a percent of a quantity as a rate per 100.

Table 2 represents the same information on Table 1 but, for illustrative purposes only,

hypothetical entries have been assigned in the matrix to represent a hypothetical testing scenario
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for polytomous attributes. Here, the first attribute is measured at two levels and the last two at
three mastery levels (non-mastery, intermediate, and mastery).
Table 2

Polytomous Q-matrix

. Attribute k
Item j

o1 o2 o3
1 0 0 0
2 1 0 0
4 1 0 2
5 1 1 2
15 0 2 0
16 1 2 0
18 0 1 0
30 0 1 1
31 0 0 2

The Q-matrix is very similar to the loading matrix of a factor analysis model. However,
unlike the loading matrix of FA, the Q-matrix is a key input for CDMs, and its correct specification
is essential for a valid CDM-based assessment. An incorrect specification can lead to wrong
parameter estimation and incorrect classification of examinees into proficiency groups (Chiu,
Douglas, & Li, 2009; Kéhn & Chiu, 2018a). For a Q-matrix to be valid, it must be complete, which
means it should allow for all the possible proficiency profiles of examinees to be identified (e.g.,
Chiu et al., 2009).

Construction of Q-matrix is usually done by a panel of subject-matter experts, item
developers, or teachers. The results of such combined qualitative inputs can be very subjective.
Given the crucial role of Q-matrix in CDM, the subjectivity in its construction can pose severe
problems in parameter estimation and model validation. As such, several studies in the literature
have been devoted to studying the completeness, validation, and impact of misspecification of the

Q-matrix on CDM and CDM-based inferences (e.g., Kunina-Habenicht, Rupp & Wilhelm, 2012;
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Chiu, 2013; Terzi & Sen 2019; DeCarlo, 2011; de la Torre, 2008; de la Torre & Chiu, 2016; Liu
etal., 2012; Terzi & de la Torre, 2018).
2.3 The Nature of Attributes

Latent traits, skills, attributes, latent characteristics, and elements of processes are all
different labels used in literature for the categorical latent variables assessed in CDMs. The choice
of label depends on the theoretical interpretations and inferences to be made about them. The
degree of detail desired in the resulting inference determines the definitional specificity or
definitional grain size of the attributes (Rupp, et al., 2010; Hong, Wang, Lim, & Douglas, 2015).
A task with broad scope would often be operationalized with coarse-grained attributes to keep the
dimension of the corresponding CDM practicable. The more finely-defined the attributes are, the
higher the number of mastery levels for the attributes, and the more unmanageable the CDM
becomes. To overcome this limitation, most CDMs are implemented with coarsely defined
attributes for tasks that are broad in scope and finely defined attributes for tasks with smaller scope
(Rupp et al., 2010). The selection, labeling, definition, and coding instructions for attributes must
be done carefully to sufficiently represent the theoretical basis and intended use of the diagnostic
assessment and, at the same time, prevent ambiguity and high inter-rater disagreement (Rupp, et
al., 2010). For a meaningful diagnosis, the definition of grain size for an attribute must have
theoretical support for its existence and developmental levels (Karelitz, 2008)

In practice, the skills or attributes measured in a test are conceptually related. Such
relationships need to be accounted for in cognitive assessment modeling (de la Torre & Douglas,
2004) to reflect the way the attributes interact in the response process. The assumed nature of this
relationship among attributes at the item level leads to the categorization of CDM into

compensatory and non-compensatory models (Roussos, Templin, & Henson, 2007).
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Non-compensatory models assume that the solution to an item depends on a combination
of attributes. An examinee must possess of all these attributes for a correct response on that task.
Examples of such models include the DINA (deterministic input noisy and) model (Haertel, 1989);
NIDA model (Junker & Sijtsma, 2001); HYBRID model (Gitomer & Yamamoto, 1991); unified
model (UM) (DiBello, Stout, & Roussos, 1995); re-parameterized unified model (RUM) (Hartz,
2002); and the conjunctive MCLCM” (Roussos et al., 2007). These models assume that an
examinee who lacks any one of the required attributes cannot provide a correct response to the
task unless by guessing. An examinee who possess all the required attributes cannot get it wrong
unless by slipping.

Compensatory models, on the other hand, assume that the correct response to a task can be
achieved if an examinee has mastered at least one of the attributes required to perform the task.
Such models are particularly applicable in psychiatric and other medical diagnoses, where a
disease can be considered present if at least one of its symptoms is present (Roussos et al., 2007)
or in tasks for which multiple appropriate strategies (each requiring different skills) could be
applied to arrive at the correct answer. Some examples of compensatory cognitive diagnostic
models are the disjunctive MCLCM and compensatory MCLCM of Maris (1999), the DINO
(deterministic input noisy or) model of Templin and Henson (2006), and the NIDO (noisy input
deterministic or) model of Templin, Henson, and Douglas (2006) (as cited in Roussos et al.,
2007).The form of attributes’ interaction assumed in a model depends on the purpose of the
assessment and the definition of the attributes.

Whether compensatory or non-compensatory, CDMs make the fundamental assumption of
conditional independence of response vectors, like the traditional IRT and LCA models. The item

responses are independent, given an examinee’s mastery profile on the latent attributes. The latent

15



attributes, however, do not influence the responses in isolation. If the k polytomous attributes had
Lk levels, then, without any relationship or constraints imposed on the polytomous attributes, the
maximum number of possible latent profiles is € = []X_, L, where L is the number of mastery
levels for attribute k, and K is the number of the attributes measured by the assessment. In the
actual implementation of CDM, only [T¥_, L, — 1 parameters are estimated since the profiles are
mutually exclusive and collectively exhaustive. The model with all parameters estimated is the
unstructured or saturated model. For the constrained CDM, there are several approaches for
accounting for the correlation among the attributes — the higher-order (HO) latent trait model of
de la Torre & Douglas (2004), the attribute hierarchy model (AHM) of Leighton et al. (2004), and
the hierarchical diagnostic classification model (HDCM) of Templin & Bradshaw (2014). There
has been only one attempt, by Zhan, Ma, Jiao, & Ding (2019), to combine two of these approaches
in one model.
2.3.1 Higher-order Latent Trait Model

The higher-order latent trait model assumes that a continuously valued latent variable or
general ability underlies the binary latent attributes, such that a two-parameter logistic model

defines each attribute as a function of the underlying latent trait (de la Torre & Douglas, 2004):

eVok+Y1k9j

P(aj, = 1]6;) = (1D

Where 6; is the trait level of examinee j and is assumed to follow the standard normal distribution,
Yok 1S the intercept or location parameter and y, is the slope or discrimination parameter for
attribute k. The reasoning behind this approach is that an examinee with a higher value on the
latent trait is more likely to demonstrate mastery of an attribute (de la Torre & Douglas, 2004).

When the higher-order approach is incorporated into a CDM, it reduces the dimension of the model
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parameter space to from 2X — 1 to 2K and provides summative information on the latent trait, in
addition to the mastery levels of the latent attributes.
2.3.2 Attribute Hierarchy Model

The attribute hierarchy model of Leighton et al. (2004) is based on the assumption that the
attributes assessed on a test are the basic cognitive processes necessary to solve the task correctly,
and the performance on the test is based on a set of skills that are hierarchically organized such
that mastery of the lower-level attributes in the hierarchy is prerequisite to mastery of the higher-
level ones. A fundamental premise for the application of this framework is that the attribute
hierarchy must be determined before the test “because the hierarchical organization of attributes
must guide the development of test items” (Leighton et al., 2004). Leighton et al. (2004) identified
four distinct forms of attribute hierarchy — the linear, convergent, divergent, and unstructured
hierarchies. Two or more of these hierarchies can be combined to form a complex hierarchy, where
the complexity varies with the cognitive load of the task (Kim, 2001).

The linear attribute hierarchy organizes attributes in increasing order of cognitive load. It
requires that all attributes be mastered sequentially such that mastering attribute 1 is a prerequisite
for mastering 2; attribute 3 cannot be mastered without 2, and so on. With the linear hierarchy,
there is only one attribute at the top of the hierarchy and only one path to get from the lowest to
highest skill level. The convergent hierarchy also has only one attribute at the top of the hierarchy,
but an examinee can attain the highest skill level through multiple different paths. For instance,
attribute 1 is a prerequisite for 2 and 3; attribute 4 can be mastered if an examinee has mastered 2
or 3, and attribute 4 is a prerequisite for 5. With this structure, an examinee can attain the skill
level of 5 by mastering 1, 2, and 4 or 1, 3, and 4. The divergent and unstructured hierarchies also

start with a single prerequisite attribute, but end with multiple skills at the highest level. With the
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divergent hierarchy, we have intermediate prerequisites before reaching any of the top skills. For
the unstructured, all attributes except the single prerequisite, are at the top level so that there are
no intermediaries. Figure 1 (Leighton et al., 2004) represents a diagrammatic representation of
these hierarchy forms using six attributes.

Specifying a hierarchical relationship among attributes reduces the number of plausible
attribute profiles. For instance, suppose that a ‘1’ denotes mastery, and ‘0’ indicates non-mastery
of an attribute, then, for the linear hierarchy, it is not possible to have the profile 101111 because
skill 3 cannot be mastered without skill 2. With the linear form of hierarchy and six attributes, the
number of possible profiles reduces from 28 = 64 to 6+1 = 7. The extent of reduction depends on
the number of attributes and the form of hierarchy stipulated. Implementation of the attribute
hierarchy approach requires proper identification of the plausible attribute profiles that map onto
the specified kind of hierarchy and guarantees a complete Q-matrix (Kéhn & Chiu, 2018a;

Templin, & Bradshaw, 2014).

A B C D
Linear Convergent Divergent Unstructured

Figure 1 Forms of attribute hierarchy
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2.4 Implementation of Cognitive Diagnostic Models
CDM estimation entails estimating the item parameters (as defined by the model of choice),
structural parameters, and attribute profiles (respondent parameters). These sets of parameters may
be estimated simultaneously by joint maximum likelihood estimation (ML) or marginalized
maximum likelihood (MML) estimation using the expectation-maximization (EM) algorithms (de
la Torre, 2009; von Davier, 2005; Rupp et al., 2010). ML estimates can become computationally
complex when complex constraints are imposed on them (Rupp et al., 2010). In the MML, a
population distribution is assumed for the structural parameters, which are then treated as ‘known’
and marginalized out for the estimation of the item parameters. The estimated item parameters are
then treated as ‘known’ for the estimation of attribute profiles, and the entire process is repeated
until the stopping criterion is satisfied. Implementation of the MML for LCDM in the Mplus
(Muthen & Muthen, 2018) statistical software is outlined in Rupp et al. (2010). The MML
procedure is computationally expensive because it requires integration across the distribution of
the latent variables for each examinee variable. The EM algorithm increases in computational
intensity with increase in number of latent classes. It also requires the specification of starting
values to initialize the algorithm convergence of the algorithm. Convergence may take longer or
never be attained if these values are far from the true unknown values (Rupp et al., 2010).
Alternatively, item parameters and attribute profiles may be obtained simultaneously in
the Bayesian estimation context using a Markov Chain Monte Carlo (MCMC) estimation (e.g., de
la Torre & Douglas, 2004). This approach is especially useful when dealing with complicated
likelihood functions, for which optimization with EM algorithm is not feasible. It focuses on
determining the posterior distribution for each parameter from which specific estimates are

obtained as a summary statistic like the mean, mode, or percentile of the distribution. While this
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approach provides an alternative for cases where EM estimation is not feasible, its application is
impeded by technical details such as choice of prior, burn-in length, and occasional convergence
issues (Templin, 2004; Rupp et al., 2010).
2.4.1 Bayesian Estimation Using MCMC

In Bayesian inference, the uncertainty about parameter estimates is expressed in terms of
probability models (distributions), implying that parameters are random instead of fixed. It is
grounded in the Bayes' theorem, whereby one’s prior knowledge or belief about the unknown
parameter is combined with the data at hand to derive an updated or posterior knowledge about
the parameter. The initial knowledge is commonly specified in the form of a probability density
or the prior distribution. Information from data at hand is defined in terms of its likelihood, and
the resulting updated distribution is the posterior distribution. The algebraic expression of this
process is expressed with the Bayes’ theorem as follows:

P(Y|Q) X P(Q)
P(Y)

P(Q|Y) = (2)

Where Q is a set of unknown parameters that are of interest in the estimation, P(Q) is the prior
distribution of Q, P(Y|Q) is the likelihood of the data given Q, and P(Y) represents the marginal
likelihood of the data. Since the observed data Y is considered as fixed, P(Y) is simply a
normalizing constant to ensure that P(Y|0) x P(Q) is a true density, and can be dropped from
equation (2) to yield:
P(QlY) x P(Y|Q) x P(Q) 3)

The left-hand side of equation (3) is the posterior distribution, obtained by modifying the
prior knowledge about the parameter P(Q) by the likelihood of the observed data P(Y|Q).
Bayesian estimates of the unknown parameters are obtained as descriptive measure of the

corresponding posterior distribution — mean, median, mode, credible interval, etc.

20



With simple models, the parameter estimates can be obtained algebraically from the
posterior distribution but, when models are considerably complex, determining the exact solution
from closed form of the posterior is often impossible (Kruschke, 2014; Robert & Casella, 1999).
For instance, with the DINA model, the posterior distribution would be a complex joint distribution
of attribute profiles for all examinees as well as guessing and slipping parameters for all items.
This limitation with complex models had restricted earlier implementation of Bayesian estimation
to the use of conjugate priors — priors that are in the same distributional family as their resulting
posteriors (Robert & Casella, 1999). When making draws from posterior distributions proves
difficult, simulation methods like the Markov Chain Monte Carlo Methods (MCMC) are used to
obtain and characterize the posterior distribution.

Monte Carlo integration is a method for drawing independent samples from a required
distribution and using the sample averages in approximating the expectation of the distribution. A
Markov chain is a sequence of random variables X; with the property that the state t of the variable
only depends on the state t-1 of the random variable generated just previously. This property
ensures that estimates based on any of the MCMC methods at each iteration depend only the
iteration just preceding it (Roberts, 1996). In the MCMC estimation procedure, a Markov chain is
constructed by generating samples from the posterior distribution. This begins with some trial
initial values, followed by a series of random draws. These steps are run many times until a
stationary distribution is reached. For X, to attain a stationary distribution, the chain must be
irreducible, aperiodic, and positive recurrent. See Roberts (1996) for more details. The stationary
distribution for each parameter represents its posterior distribution (Roberts, 1996; Rupp, et al.,
2010). In the MCMC process, there are several techniques for drawing random samples from the

posterior distribution. These include the slice sampling, the Metropolis-Hastings algorithm, and
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the Gibbs sampling, among others. These sampling techniques differ in terms of the proposal
distribution chosen to construct the chain and the probability of moving between states.

The Metropolis-Hastings (or M-H) algorithm begins the sampling procedure by drawing
from a proposal distribution that depends on the current state of the Markov chain and computes
an acceptance probability to decide whether to retain the sample and move to the next state or not.
The proposal distribution is defined by a step-size, which must be adjusted (or tuned) at each step.
If a Gaussian distribution is chosen, as is commonly the case, the variance parameter is used as the
step size (Dittmar, 2013). The typical M-H algorithm proceeds as follows (Hastings, 1970):

1. Choose a random starting value X, and an arbitrary proposal distribution g(y|x;) from

which the next sample value y is drawn given the previous value, x;. The density
g (. |x;) must be a symmetric distribution so that g(y|x;) = g(x:|y).

2. Foreach iteration, draw a candidate value y from g(. |x;) and accept y with probability:

gxely)m(y) >
"glx)m(x,)

a(xy,y) = min <1

3. Ifyis accepted, set x;,, = y; otherwise, set x;,; = x;

Unlike the M-H, the Gibbs sampling algorithm uses the conditional posterior distribution
as the proposal distribution, and acceptance probability is set to 1, making Gibbs sampling a special
case of M-H algorithm. This technique requires the conditional posterior distribution for each
parameter, given the other parameters and the data, to be fully specified (Geman & Geman, 1984).
It also assumes that, if the regularity conditions are met, the joint posterior distribution is
determined by all the full conditional posterior distributions (Geman & Geman, 1984; Casella &

George, 1992). The Gibbs sampling proceeds as follows:

1. Choose random starting values for all P unknown parameters 67,62 --- 83

22



2. Given the starting values 67, 6{”) --- 8{”) , sample 65** from the conditional posterior

distribution of 6, given the data and presumably known values of the other parameters,

P(9p|Y, pl+n, g+ ---9;311),95?1,---9,9)). This step is looped through all the P

parameters in the set, replacing the already sampled parameters 6,, 85, -+ 8,1 With

(t+1) H(t+1) (t+1)
91 , 92 9p_1

their sampled values in the conditional posterior distribution.

The Gibbs sampling algorithm is feasible and straightforward when the joint distribution
is not explicitly known or is difficult to sample from directly, but the conditional distribution of
each parameter is known and is easy to sample from. In more complicated models, where the
conditional distribution cannot be directly sampled from, alternative MCMC algorithms like the
M-H algorithm or the slice sampling may be adopted for this step.

The slice sampling (Neal, 2003) is not as popular as the M-H or Gibbs algorithm but
circumvents the problem of tuning proposal distributions by adaptively adjusting the step-size to
match the local properties of the density function. The basic idea is that one can sample from a
distribution by sampling uniformly from the region under the density plot. The slice sampling
algorithm may be summarized as follows (Neal, 1997):

1. Choose a starting value x, for which f(x,) > 0, where f(x) is proportional to the

posterior density of interest

2. Draway ~ (0, f(x9)

3. Slice f(x) horizontally at y

4. Sample a point (x, y) from the line segment

5. Repeat steps 2 through 4 using the new x.

For the multivariate posterior distribution, the univariate algorithm above can be used to sample

and update each parameter in turn (Neal, 2003).
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Irrespective of the algorithm used to draw samples, the sequence of values produced in the
MCMC process are dependent since every new state depends on the previous one, making the first
set of values unrepresentative of the posterior distribution being sampled (Kim & Bolt, 2007). As
aresult, the initial set of values, also known as burn-in, are discarded before assessing the posterior
distribution. There are, therefore, some practical concerns in the implementation of MCMC
estimation. These include: (1) The length of chain; (2) The burn-in length; (3) The choice of
starting values, which may affect convergence; (4) The number of chains needed to attain
stationary posterior distributions for each parameter. While there are suggestions in literature for
each of these concerns (e.g., Roberts, 1996; Gelfand & Smith, 1990; Gelman & Rubin, 1992;
Raftery & Lewis 1992a), diagnostic checks of the Markov chain can be used to evaluate the
performance of the process before parameter estimates are extracted.

For convergence check Gelman & Rubin (1992) proposed the R statistic that is based on a
comparison of the pooled between chain variances and within chain variances for each parameter.
Stability is indicated by a ratio that is close to 1. Other diagnostic approaches have also been
recommended (e.g., Geweke, 1992; Raftery & Lewis 1992b), but there is no consensus on which
is optimal. Knowledge about whether the Markov chain has converged via convergence
diagnostics or examination of trace plots can be used to inform the decision about the required
burn-in.

2.4.2 Estimating attribute profiles

Given the class membership and class-specific response probabilities, examinees can be

scored and classified to classes based on their mastery level of the attribute vector using one of

three common approaches - via maximum likelihood estimation (MLE), maximum a posteriori
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(MAP), or expected a posterior (EAP) (Huebner & Wang, 2011). The MLE approach assigns an

examinee to the attribute pattern &,,,z that maximizes the likelihood of the responses:

I
L(X;|a) = np(xijm) )
i=1

Sometimes, prior information is available on the proportion of examinees expected in each
skill pattern, and this can be incorporated into the likelihood with the maximum a posterior (MAP)
approach. With a non-informative prior, the MLE and MAP yield the same results (Huebner &
Wang, 2011). Given C skill patterns, the prior probability can be denoted as P(e.) such
that 3:¢_, P(a.) = 1 then, each examinee is classified into the skill pattern that maximizes the
posterior probability. The posterior probability is defined by Huebner & Wang (2011), from Bayes
theorem, as:

L(Xj |ac)P(ac)
rCn=1 L(Xj |am)P(am)

P(a.|X;) = (3)

Though statistically straightforward, the MLE and MAP results may be hard to interpret
because they do not provide separate probability estimates for each attribute. Expected a posterior
(EAP) approach, on the other hand, provides probability estimates for each of the attributes for all
response patterns by taking the aggregate of probabilities across all latent classes where the specific
attribute has been mastered. EAP calculates the probabilities of mastery for each attribute and sets
up a cutoff probability at (usually) 0.5 to determine if the attribute has been mastered or not for
each examinee (Huebner & Wang, 2011; Rupp et al., 2010; Embretson & Reise, 2000).

Huebner & Wang (2011) compared all three approaches in a simulation study. Their results
show that, across all the varied conditions, MLE/MAP had a higher proportion of correctly
classified examinees on all skills, but the EAP presented a higher proportion correct classification
on total skills. They conclude that none of the methods can be judged as better than the others;
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rather, preference for classification method should be guided by the purpose of the diagnostic
assessment.
2.4.3 Assessing model fit

As with all statistical models, the results of CDMs are meaningless if the model fit is
unacceptable. Assessment of CDM fit could be in terms of absolute or relative fit. Measures of
absolute model fit include the absolute value of the deviations of Fisher-transformed correlations
and the limited information RMSEA (Houts & Cai, 2013) or RMSEA2 (Hu, Miller, Huggins-
Manley, & Chen, 2016). RMSEAZ2 values of <0.089 indicate adequate fit, while values <0.05 are
indicative of a close fit for multidimensional IRT (Maydeu-Olivares & Joe, 2014), and these values
have been adopted for CDMs as well (e.g., Hu et al., 2016).

To evaluate relative model fit, CDM researchers use relative fit indices like the Akaike
Information Criterion (AIC; Akaike, Parzen, Tanabe & Kitagawa, 1998) and Bayesian Information
Criterion (BIC; Schwarz, 1978) (Sessoms & Henson, 2018). These fit statistics are used to compare
fit among multiple competing models (e.g., de la Torre and Douglas, 2008). Kunina-Habenicht et
al. (2012) and Hu et al. (2016) compared the performances of relative fit indices in DCMs. Kunina-
Habenicht et al., (2012) studied the performance of AIC, BIC, and SABIC for the LCDM and
multidimensional IRT models under varying levels of item quality, and base rate of attribute
mastery. They found that all the indices performed well with strong-quality items but extremely
poor with medium to low-quality items. Hu et al. (2016) implemented a similar study but focused
more on the misspecification of the Q-matrix with the G-DINA model. Their study found that AIC
and BIC are sensitive to over- and under-specification of the Q-matrix. Both studies recommend
that model fit assessment should rely on multiple sources of evidence to select among non-nested

models.
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2.4.4 Response Time Models

The RT models are focused on describing the non-negative positively skewed distribution
of RT. Of these RT models, the log-normal model by van der Linden (2006) is the most popular.
This model can handle the skewness of RTs while allowing the benefits of the statistical properties
for normal distribution for the log-transformed RT. Schnipke & Scrams (1997). Fox, Klein Entink,
and van der Linden (2007) and Klein Entink, Fox, & van der Linden (2009a) extended the log-
normal model to include a slope parameter for the person speed parameter that characterizes the
differential effects of items on the speed of examinees. Klein Entink, van der Linden & Fox
(2009b) also acknowledged additional limitation of the log-normal model in handling skewness of
RT and proposed the Box-Cox normal model to provide more flexibility in characterizing RT data.
However, van der Linden, Scrams, & Schnipke (1999) have demonstrated a good model fit for RT
using the log-normal distribution. More details on this model follow in the next chapter.

Other models have also been used to characterize RT. These include the Weibull (Loeys et
al., 2011), inverse Gaussian (Lo & Andrews, 2015), Gamma (Maris, 1993), Ex-Gaussian (Ratcliff
& McKoon, 2008) and the shifted Wald (Anders, Alario, & VVan Maanen, 2016). For an overview
of these distributions, see De Boeck & Jeon (2019).

2.5 Response Time and Response Accuracy

Response time (RT), in educational testing, refers to the amount of time an examinee takes
to provide a response (correct or incorrect) to a task (item or test). Prior to the advent of computers
in educational testing, it was difficult to record RT on tests. Hence, research on RT in educational
testing gained interest only recently. The spike in interest is predicated on its relationship with
response accuracy (RA) and the need to understand examinee test-taking behaviors and the

cognitive processes that lead to correct or incorrect responses. Ignoring these behaviors can lead
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to a violation of the local independence assumption of the popular IRT models and compromised
test validity (Wang & Xu, 2015). For instance, an examinee may speed through the questions in a
high stakes test to answer all the questions. Such rapid response may contaminate the estimate of
examinee’s true ability with construct irrelevant variance, posing a severe threat to score
interpretation (Lu & Sireci, 2007).

Response time provides important person and item-level information that researchers can
use to improve the design, administration, and quality control of a test. At the person level, RT
provides insight on the working speed of the examinee and, on the item level, it gives information
on the time intensity of the item (Zhan et al., 2018b). Rapid guessing in a high-stakes test could
indicate test speededness, and rapid response in a low-stake test may suggest a lack of motivation
(Lee & Chen, 2011). Either of these examinee behaviors introduces construct irrelevant variance
and harms validity and score interpretation. Response time information on item time-intensities
can be used to improve item calibration, selection and assembly in adaptive tests and educational
tests in general (Kahraman et al., 2013; Lee & Chen, 2011; van der Linden, 2007).

Successful incorporation of RT into measurement requires an appropriate statistical model
for their distribution, and several models have been proposed to this end. De Boeck & Jeon (2019)
classified these models into four broad categories — distributional RT models (e.g., Maris, 1993;
Loeys, Rosseel, & Baten, 2011; and van der Linden, 2006), joint models of RT with other
dependent variables like accuracy (e.g., van der Linden, 2007; and Zhan et al., 2018a), local
dependency models with RT as one of two or more correlated dependent variables (e.g., Partchev
& De Boeck, 2012; Wang & Xu, 2015), and covariate models with RT as an explanatory variable

(e.g., Sen, 2012; Naumann & Goldhammer, 2017). Each of these models differs in functional form,
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flexibility, and the assumption it makes about the response process. For a review of these other
forms of RT models, see De Boeck & Jeon (2019) and Schnipke & Scrams (2002).
2.5.1 Joint Models of Response Time with Accuracy

As the name implies, these models take a multivariate approach to simultaneously analyze
response and response time, usually to improve the parameter estimates of the response model.
Several frameworks have been proposed in literature for this purpose. van der Linden (2007)
proposed a hierarchical framework for modeling speed and accuracy on test items where the
response times and responses are modeled separately at the first level. The dependency among
their respective parameters is modeled at a higher level. This framework is one of the most popular
tools to explain the relationship between response speed and accuracy and has been adapted to
several combinations of response and response time models (e.g., Klein Entink et al., 2009a; Wang
& Xu, 2015; Fox & Marianti, 2016).
2.6 Response Time in Cognitive Diagnostic Models

The need to account for cognitive process using response time has also been emphasized
and addressed in cognitive diagnostic models. For instance, Zhan et al. (2018b) proposed a joint
model for RT and the attributes in cognitive diagnosis. Their study integrated the lognormal model
for RT and the DINA model for latent attributes using the hierarchical modeling framework of van
der Linden (2007). The proposed joint model was assessed using simulated data and the PISA
2012 computer-based mathematics data. Their results showed that incorporating RT into the DINA
model improved the precision of model parameters and the classification rates of attributes and
profiles. Zhan et al. (2018b) extended the work by Zhan et al. (2018a) to a joint-testlet model to

address the issue of paired local item dependence due to testlet effects from response and response
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times. This study used simulated data and the 2015 PISA computer-based mathematics data to
demonstrate the utility and application of this extension.

The adaptive testing procedure is not left out. Huang (2019) explored a model for
improving item calibration in cognitive diagnostic computerized adaptive testing (CD-CAT) with
higher-order DINA. The study used a modified posterior-weighted Kullback-Leibler (PWKL)
method that maximizes the item information per time unit and a shadow-test method that
assembles a provisional test subject to a specified time constraint were developed. The results
showed that the incorporation of RT is associated with a lower risk of running out of time while
ensuring acceptable latent trait and speed parameter estimates.

The importance of cognitive diagnostic modeling to educational assessment is not
contestable; neither is the relevance of response time in assessing the cognitive processes that
underlie test responses. However, cognitive diagnostic modeling has been unnecessarily limited to
the simplistic configuration of attributes into mastery and non-mastery, even when the available
models can do much better. The works by Karelitz (2004) and Zhan et al. (2019a) have shown that
there are greater possibilities with cognitive diagnosis. The significance of incorporating cognitive
processing in skill diagnosis via response time has also been demonstrated, especially with item
response modeling. However, current approaches for exploiting information from response time
in cognitive diagnostic modeling have been unduly constrained to the assumption of constant
speed. Relaxing these constraints for more informative and instructionally relevant skill diagnosis

is the focus of the current study. The method used to achieve this is laid out in the next chapter.
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CHAPTER 3: METHODOLOGY

3.1 The log-normal random quadratic variable speed model
Let Tik denote the response time of person j (j =1, ..., N)onitemi (i=1, ..., I) and assume

that examinee j chooses his/her speed of response 7; at the start of the test and maintains this speed

throughout the test, van der Linden (2006) defines the log-normal distribution for RT of person j
on item i as:

O'.

f(tyiz 00 4) = t, .\/lz_nexp {_%[ai (tntyy = (4 - Tf))]z} S
ij

Which implies that the log of RT can be modeled as (van der Linden, 2016):
In(t;) =4 — 1 + &5 &j~N(0,1/0?) (5)

Where 7;e(—o0, ) is the speed of the examinee j on the test, 4; is the time intensity or time
consumingness of item i and g;e(0,0) is the discrimination parameter that captures the
contribution of item i to the precision of the estimate of examinee’s speed (van der Linden, 2016).

To be identified, the constraint 7, 7; = 0 is imposed on the speed parameters. With the
mean of the distribution being 4; — t;, this constraint equates the expected log RT over items and
persons to the average item difficulty so that person speed parameter values (z;) are estimated as
deviations from that average (van der Linden, 2006). An examinee with positive (negative) value
is working faster (slower) than the average level in the population. Note that, while this model
allows variance of log RT to be item dependent, it assumes examinee speed is constant across
items, which may not always be true.

A; in the log-normal model represents the cognitive load of an item on a time scale. The

higher the magnitude of 4;, the more time-intensive item i is. An examinee working at a higher
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speed would complete the item with a lower response time. However, the change in response time
due to change in speed may vary from item to item. To account for this possible variation, Klein
Entink et al. (2009a) and Fox (2010) introduced an item discrimination parameter into the log-
normal model. This extended the log-normal model to:

In(t;;) = 4 — ¢iTj + &5 &;~N(0,0?) (6)
Where ¢; is the time discrimination of item i and o7 is the residual variance.

Building on the log-normal RT model of van der Linden (2006, 2016) and its extended
version by Fox (2010) and Klein Entink et al. (2009a), Fox & Marianti (2016) proposed a log-
normal random quadratic variable model for RTs to account for changes in examinee’s speed
across the items on a test. To do this, they defined items in a test as the measurement occasions,
and the response time as the time between two subsequent items. In particular, X;; =
X1j,X2j ... Xj; is the time variable representing the measurement occasions of items 1 through |
for examinee j where X;; = 0 so that the speed from first item defines the intercept. The time
variable is placed on an arbitrary 0 to 1 scale by defining X;; = (X, — 1)/I where X;; is the
order in which item i is completed by examinee j and | is the number of items. By this definition,
the time scale for this model is only meaningful if respondents are not allowed to take breaks
between items or go back to review previous items. It is expected, given a typical testing situation,
that measurement occasions would not be equidistant. To address this, they assume a testing
situation where the total test time is small enough that the non-equidistance of time has little to no
effect on the results.

With these assumptions in place, Fox & Marianti (2016) defined the log-normal RT model
with a linear and quadratic trend for speed using the time variable X as:

In(Ti;) = A — pi(Tjo + 12Xy + 12X7) + &35
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Where 4; is the usual time intensity of item i, 7y, represents the initial value of speed, 7,; is the
random slope in speed and t,; is the random quadratic term to characterize the acceleration or
deceleration in speed of examinee j. The initial speed as well as the random linear and quadratic
slope terms are assumed to follow a normal distribution with mean vector of 0 and covariance
matrix X such that the expected response time for the test is still the average time intensities.
3.2 Deterministic, Input, Noisy ‘And’ Gate (DINA) Model for Polytomous Attributes

There are numerous CDMs proposed in literature and DINA is one of the most popular
choice because of its simplicity, parsimony and ease of interpretation (de la Torre, 2009; Zhang,
2015). The DINA model requires the mastery of all required attributes for an item to solve the item
correctly. Suppose a test has been designed to assess examinees on K latent attributes where each
attribute has Lk mastery levels (Lk> 2). Let aj, be the mastery level of examinee j on attribute k.
The lowest mastery level on each attribute is set to 0 so that g;;, = [ — 1 if item i requires the I"
level of mastery on attribute k for a correct response, and aj, = [ — 1 if examinee j has attained
the 1™ mastery level on attribute k.

For each item in the DINA model, an examinee is classified into one of two latent classes
— those who have attained the required mastery level on the attributes, as required by the item, and
those who have not attained the required mastery level on at least one of the attributes. Let njj
denote this latent class variable for the j* examinee on the i" item; then, n;; = 1 if examinee j is
at or above the mastery level on the attributes as required by item i for a correct response and 0

otherwise (Zhan et al., 2019). This definition assigns the same probability of success to examinees
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who lack the required mastery level on at least one of the requisite attributes for an item. Given
the examinee’s status on nj, the probability of a correct response for the DINA model is given by:
P(Y; =1n;) =1 - Si)mjgi(l_mj) 9)
Where Y;; is the response of examinee j to item i; s; is the “slipping” parameter or the
probability that an examinee who has attained the necessary mastery levels on the required
attributes for item i would answer the item incorrectly by mistake, and g; is the “guessing”
parameter or the probability that an examinee who falls short on at least one of the required
attributes for an item would answer the item correctly by guessing or using alternative strategies
that are not specified by the Q-matrix (de la Torre, 2009). These two parameters, assuming the Q
matrix has been correctly specified, incorporate the noise (Karelitz, 2004) — the reasons why an
examinee with ;; = 0 could get an item right and an examinee with n;; = 1 could answer the

item incorrectly.

(@1, @20 s @) (Gin, Giy s Gire)

Figure 2 Diagrammatic representation of the DINA model

The two parameters of the DINA model are indexed by item but not attributes; which
means the complexity of the DINA model stays the same irrespective of number of attributes

considered in the Q-matrix, keeping the model parsimonious (Zhang, 2015). The probability of a
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correct response is 1 — s; if an examinee has attained the requisite mastery levels on all the
required attributes (i.e., n;; = 1) and g; otherwise (Henson, Templin, & Willse, 2009). The

probability function of the DINA model is further constrained by the condition that (1 —s;) > g;
so that an examinee who has achieved all the required mastery levels would always have a higher
probability of correct answer to the item than one who falls short on at least one of the required
attributes. As de la Torre (2009) succinctly shows in Figure 2, the DINA model assigns two
probability values to examinees, (1 — s;) for those that have mastered required attributes and g;
to those who lack the required mastery level on at least one attribute. Partial mastery (mastery
below the required level or adequate mastery of a subset of the required attributes) is irrelevant to
the probability of correct response. This feature, though restrictive, is the reason DINA model is
considered easily estimable and interpretable.

The DINA model for binary attributes is a special case of the polytomous DINA, with L
= 2 for all attributes. With binary attributes, we are concerned with mastery/non-mastery
classification so that q;;, = 1 if item i requires attribute k for a correct response, and 0 otherwise

and a;, = 0 if examinee j has mastered attribute i and O otherwise. Also, the latent variable n;; =
1 if examinee j has mastered all the attributes required for a correct response on item i. With these
modified definitions in place, equation (9) defines the conditional probability that examinee j (with
attribute profile a;) would provide a correct response to item i.

The two parameters of the DINA model are both probabilities and hence, bounded between
0 and 1. To relax these boundaries and ease parameter estimation, DeCarlo (2011) proposed a
reparameterization of the DINA model where the slipping and guessing parameters are expressed
as functions that yield positive values within the boundaries of 0 and 1. His proposition gave rise

to the reparameterized DINA model or RDINA which is written as:
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P(Yij = 1iny;) = 8o, + 61,m1; (10)
Where §,, and &,; are the intercept and interaction parameters, respectively; and n;; is as defined
in equation (9). &y, is referred to as interaction because it reflects the difference between those
who possess the required mastery levels (n;; = 1) for an item and those who do not (n;; = 0). The
guessing and slip &, and &, ; are both logit functions of the guessing and slipping parameters and
can be used to recover g; and s; with the following conversion formulas:
8o, = logit(g:)

81; = logit(1 —s;) — logit(g;)

3.3 The Joint Differential Speed DINA (JDS-DINA) Model

Data on response time (RT) provides an additional source of information besides the task
responses on the test. Both sources of information result from the interaction of item and person
characteristics. Task responses are determined by examinee ability (mastery) level and the item
characteristics (e.qg., difficulty and discrimination) and response times are determined by
examinee speed parameters and item parameters (time intensities and discriminations). So far,
two separate models have been defined for these two sources of information, but it is important
to also model the relationships between the two models to exploit the benefits of response time
information in the estimation of item and person parameters.

From van der Linden (2016), it is understood that the primary reason for the introduction
of time discrimination parameter into the log-normal model was to achieve similarity between
the log-normal model for time and the 2PL IRT model for item responses. This similarity in
model specifications is not relevant to the objective of this study. He further argued that the

additional parameter is unnecessary and could lead to overparameterization, since the variation
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in the effect of speed on response time is already captured by the residual variance parameter of
the log-normal model such that ¢; = 1/07. As a result, this parameter is excluded from the log-

normal random quadratic variable speed model so that the model becomes:

ln(TU) = /11' - (TjO + leXij + T]ZXLZJ) + ‘c:ij; (11)
TOj 0 G‘rzo Grorl 0-‘[0‘[2 \
eiJNN(OJ (pl) and <T1j> ~N <0> ’ 2:speed =1 Ozt 0-‘[21 01,1,
T .
2 0 GTOTZ GT1T2 0-‘?2

To account for possible correlation or hierarchical structure in the skills, the higher order
latent trait approach was used, where it is assumed that a continuously valued general ability
variable 6;, underlies the attributes, such that attributes of examinee j are independent
conditional on 6;. Conventionally, 8; is assumed to follow a standard normal distribution for
model identification (Zhan et al., 2019a). The adjacent category logit model of (Zhan et al.,
2019a), is used to probability of mastery to the underlying latent trait. This model defines the

relationship between 6; and the polytomous attributes as:

exp(ZLo1v1,0 —y
P = P(aj = 1= 1]6;) = - ("ilkf Oku)
Yok exp(Ehey Y165 — Yor,)

(12)

Where Py,is the probability that examinee j attains mastery level | on attribute k; 6; is the
continuously valued latent variable for examinee j, y,, is the slope parameter for attribute k and
Yoy, 1S the intercept or location parameter for the I'" level of attribute k, with Yor, = 0 (Zhan et

al., 2019a). If 6; truly underlies the latent attributes then, given 6;, the P;,; are conditionally

independent so that the probability of an attribute profile c (c=1 ... C) for examinee j is a

product of the probabilities for the corresponding levels on individual attributes:
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K Ly
Tjc = P(a] = aclej) = nﬂpjkll(aCk=l_1) (13)
k=1 l=1

Where C is the number of permissible attribute profiles on the test; ;. is the probability that
examinee j has attribute profile ¢, a. is the entry in the C by K matrix of permissible profiles;
and I(a,, = [ — 1) = 1if the k™ attribute in e, is at the I level and 0 otherwise.

When L, = 2 for all the attributes on a test, equation (12) reduces to:

exp(v1,6; — Vo)
1+ exp(ylkej - )/Ok)

Py = P(ajx = 116;) = (14)

for the relationship between the binary attributes and the higher order latent trait, 8;; and the

probability of a response pattern in equation (13) becomes:

K
Mjc = P(aj = ac|9j) = l_lpjk“ck(l _ ij)l_“ck (15)
k=1

As noted previously, the higher-order approach to modeling correlation among attributes
provides us with summative information on the underlying latent ability for each examinee, in
addition to the mastery level for each attribute. In addition, it reduces the number of parameters
required to estimate the mastery levels from ([T¥_; Ly) — 1 to K + Y X_, (L, — 1) and thereby
reduces the complexity of the estimation process. For instance, a test with 3 attributes, each
measured at 3 mastery levels, would require 26 structural parameters but the higher order model
reduces that number to only 9. Figure 3 depicts an example of higher order model with three
attributes measured by a five-binary-item test. Here, the first attribute (Attl) is measured at three
mastery levels by all five items, the second attribute at two levels by the last four items and the

third attribute at two levels by the last two items. The horizontal lines indicate latent thresholds
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representing marginal percentage correct for items or marginal percent mastery at each level for

attributes (Rupp et al., 2010).

Iteml Item2 Item3 Item4 Item5

Figure 3 Higher order polytomous attributes model

The unequal positioning of the horizontal lines is to indicate that thresholds can vary
across items and latent attributes. When the higher order model depicted in Figure 3 is
incorporated for the structural parameters of the DINA model, we obtain the higher-order DINA
or HO-DINA.

Following the hierarchical modelling framework of (van der Linden, 2007), equations
(10) through (13) make up the separate models for response time and item response at the first
level. At the second level, two variance-covariance structures are defined to model the
dependencies among item parameters and person parameters, respectively. To define the joint
model, some local independence assumptions are required:

a. Given the person speed parameters, the log response times ln(Ti j) are conditionally
independent

b. Given the latent ability, ;,the latent attributes, aj, are conditionally independent
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c. The responses, Y;;, are conditionally independent, given the latent examinees attribute
profile, a;
d. Given the ability and speed parameters, the responses, Y;; and log response times, ln(Tl- j)
are conditionally independent.
With these local independence assumptions in place, the joint differential speed DINA
model for polytomous item is defined as:
Level 1:

a. Measurement part:
ln(TU) = Ai - (Toj + leXij + szxlzj) + gij; El’j"’N(O, 1/0-1'2)
P(Yi; = 1iny;) = 8o, + 61,145
b. Structural part:

exP(ZLﬂ Y10 — )’oku)
Z,L,il exP(ZZﬂ Y105 — Voku)

K Lg
T[jc = P(a] = aclej) = HHP].kll(ackzl—l)
k=1 l:]_

P = Py = 1 - 1|6;) =

Level 2:

a. Person parameters:

0] 1 09z, Obr, Obr,
TOJ\ ~N 3 _ 09z, ‘7120 Trors Trom
le/ Uperson» “person Ogr, Oryr, 0'121 071,
12 O0br, Oror, Oryry O-TZZ /

b. Item parameters:
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Where the person parameters are assumed to follow a multivariate normal with mean vector
Wyerson @Nd variance-covariance matrix. The items are also assumed to follow a tri-variate
normal distribution with mean p;;.,, and variance-covariance matrix Z;;.,,. Other terms in the
model are as previously defined in equations (9) through (13).

3.3.1 Model Specifications

Rupp et al. (2010) have shown that the probability of an observed response pattern in
cognitive diagnostic model, much like the latent class analysis model, is a structural equation
model with a structural component and a measurement component. Incorporation of response
time therefore entails an extension of the measurement model for relating observed response
times to latent speed variables as well as additional structural relationships between latent speed
factors to the latent attributes.

The person and item covariance matrices capture the relationship among person and item
parameters, respectively. The residual error variance, ois assumed to be independently
distributed and therefore, not modeled with the item parameters at the second level. For the
identifiability between 6; and A;, the mean and variance of 6; are set to 0 and 1 respectively,
which also follows from the higher order latent trait model of equation (12). To identify the scale
of the speed parameters, the mean vector of the speed parameters is fixed to 0, which means that
the average time intensity parameter represents the population average time it takes to complete

the item — when the speed parameters are all zeros.
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As with regular growth parameters, some form of association is expected among the
growth parameters. Fox & Marianti (2016) suggested a negative relationship, such that
examinees with high initial speed tend to slow down towards the end of the test while those with
low initial speed tend to increase their speed later to finish the test within the time limit.
However, for model identifiability, they restricted the covariances among the growth parameters
to zeros.

The higher order latent trait of de la Torre & Douglas (2004) is based on the idea that
student with higher values on the underlying latent ability should have a higher probability of
attaining a higher mastery level on an attribute. To ensure that this is the case, the slope

parameter is constrained to be positive, y;, > 0. Finally, the guessing parameter is constrained

as g; < (1 — s;) to guarantee that an examinee who has achieved all the required mastery levels
would always have a higher probability of correct answer to the item than one who falls short on
at least one of the required attributes.
3.3.2 Parameter Estimation

Estimation of the JDS-DINA model can be achieved through the fully Bayesian
estimation with MCMC procedure for higher-order DINA with polytomous items, as proposed
by (Zhan et al., 2019). In the present study, parameters of interest include item intercept and
interaction parameters, time intercept, interaction, time intensity and item time discrimination

parameters (8o, 61,4, o) and person attribute and speed parameters (aj,roj,rlj, sz). Given the

local independence assumptions a through d of the JDS-DINA above and a random sample from
the population of examinees, the joint likelihood of the observed response and response times is

given as:
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Where

f (ln(Tij)Mi,roj,rlj,‘rzj,aiz)

o; 1 2
= tijmexp {—E[ai (lntij - (/L- —To; Ty~ 1'2].)>] }
3.3.2.1 Prior distributions
The posterior distribution of the parameter space is proportional to the product of the
likelihood in (17) and all the prior distributions of the parameters. The posterior distributions
are then derived by drawing samples from the prior distributions and updating the likelihood of
the observed response times and responses. Hence, the choice of prior distributions is important
for ensure model convergence. Given the relationship among item parameters and person
parameters of the model, the following prior distributions are adopted for person and item
parameters prior distributions for the JDS-DINA.
The prior for response time residual variance, o7 is chosen as InvGamma(1,1).
Following Gelman, Carlin, Stern, Dunson, Vehtari, & Rubin (2013), the joint prior distribution

for the person parameters is set as multivariate normal

9]- / 0 /1 Ogz, Obr1, 0912\\
To; . Iol 5 | 961, oz 0 0 ||
0|’ “person —
0
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The normality assumption and mean vector of O for the person parameters follow from

2
Ogz, O Oz, 0
2
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the identifiability conditions of the higher order latent trait model of (de la Torre & Douglas,
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2004) and Fox & Marianti (2016)’s variable speed quadratic model for response time. Going by
the model identifiability constraints, the variance covariance matrix of the growth parameters is
tridimensional matrix with zeros on the off diagonals. Hence, the only covariance terms of
interest are those of ability with each of the growth parameters.

Completely specifying the covariance matrix entries would be unrealistic. Rather, the
covariance matrix is defined by hyper-priors with hyperparameters. Since some of the entries of
I, erson are fixed, the inverse-Wishart distribution is not applicable (Zhan et al., 2019).
Following the example of (Zhan et al., 2018a), X,¢,s,n is first re-parameterized in terms of its
Cholesky decomposition and priors are then placed on the entries of the resulting lower
triangular matrix. The Cholesky decomposition of X,.,.s,, IS given as:

1 0 0 0 1 0 0 0\’

5 _A A _ [ %o, Wo 0 0 Ogr, Wo 0 0
person person person Oor, ®o1 w4 0 Oor, ®o1 w4 0
Ogz, Poz P12 W2 Ogz, Po2z P12 W3

Where

2
~00790071, . —0913001,, —09t,0601,07

Po1 =T P02 = T77— P12 =
2 2 2 2
,aro—ogro 07y =0z, \/(0‘.?0—0‘510)(02?10'-?0—0‘310'51.0—0'51102?0)
_ 2 _ 2 . — |2 2 2. — |2 _ 2 _ 2 _ 2
Wo = 1/0% O0fryr W1 = \/011 Ohr, — Po1; and wy = \/O-Tz Ogr, — Poz2 — P12

The priors for the elements of A,y are set such that ¢4, @2, and ¢4, are each

assumed to follow N(0,1) while w,, w4, and w, are each Gamma(1,1) (Zhan et al., 2018a).

Similarly, following Zhan et al. (2018a), the joint prior distribution adopted for item

Ua
'u50 ] ’ 2:item>
Us,

parameters is the multivariate normal distribution:

A
Oy
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Again, the parameters for this tri-variate normal distribution were drawn from the

following hyper-priors:
pa~N(3,2)
ps,~N(—2.197,2)
ps, ~N(4.394,2)I(us, > 0)
Tiiem~invWishart(R, 3)

where R is a tridimensional identity matrix and I (s, > 0) puts a truncation on us, to satisfy the
DINA model constraint of g; < (1 — s;). The parameters of these priors are also drawn from
(Zhan et al., 2018a).

For the higher-order latent structural model, the structural parameters are assumed to be
independently distributed so that their individual priors specified as:

¥1~N(0,02)I(y, > 0)
vok~N(0,07,)

Where I(y; > 0) indicates that the distribution is truncated from below at zero, to align with the
belief that higher level of the trait is associated with higher probability of possessing a higher

mastery level on attribute k. Also, for the outcome variables in the model:

Y;i~Bernoulli ( P(Y;; = 1|n;;) ) since it is a binary outcome and In(T;; )~N ( (4; — T, .
J J J j j

j
sz)' 1/03). The latent attribute variable is a categorical variable and therefore, follows a
categorical distribution: ajk~Categorical(ij) where P is a 1 by L« vector of probabilities
for the Lk levels of attribute k.

Applying the Bayes’ theorem to the likelihood and priors defined above, the joint

posterior probability distribution for the JDS-DINA model is given as:
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P(QIY,In(T)) «x L(Y,In(T)|a, 4, 8y, 81, To, T1, T2, 62) X P(a|Q, ¥, ¥1) X P(¥o) X P(¥1)
X P(Q,70, 71,7210, Zperson) X P(Zperson) X P(4, 80, 811, Zitem) X P(Zirem)
x P(0?)
Where Q is the set of all the parameters to be estimated in the model.

Given the complex nature of the joint posterior defined above, it would be impossible to
sample directly from it. Hence, one of the MCMC algorithm described previously was employed.
Once convergence is achieved, with stationary posterior distributions for all the parameters, the
mode of the posterior distribution is treated as estimate for a;,. For the rest of the parameters, the
means of their posterior distributions was used.

3.3.3 Assessment of Model Fit

Beyond the usual model checks in the Bayesian estimation framework, additional model
assessment specific to joint cognitive diagnostic and response time models have not been
adequately studied. Hence, given convergence model checks are satisfied, further evaluation of
model fit for the JDS-DINA model would follow the example of Zhan et al. (2018a). Model fit
was evaluated separately for the response and response time outcomes.

For the responses, Zhan et al. (2018a) implemented the posterior predictive model check
of (Gelman et al., 2014) using the sum of the squared Pearson residuals (Yan, Mislevy, &
Almond, 2003) to assess the fit for item responses. This discrepancy measure is defined in (Zhan

etal., 2018a) as:

n 1
Yi: — P..
D(Vijs ey 8 8) = ) ) | ——2—|  (18)

=1i=1\ |Py(1 - Py)



Where P;; = P(Yl-j = 1|77ij) is as defined in equations (9) and (15). Values close to 0.5 are
indicative of adequate model fit (Zhan et al., 2018a).

Similarly, the fit for response times is assessed using the sum of the standardized error
function of in(T; j), appropriately modified from (Zhan et al., 2018a) to reflect the variable speed

quadratic model for response time. This modified statistic is defined as:

n I ) . 2
D (1, 2y 1y 2y ) = 3 in(T,;) - E (In(Ty))) (19)

j=1i=1

Where E (ln(Tij)) = (Ai —To; —T1; = sz) is the conditional mean of In(T;;). Values close to

0.5 are also indicative of adequate model fit for the response times (Zhan et al., 2018a).
3.4 Real data analysis

For this section of the study, two datasets are available to address the study objectives
that are related to real data applications. One is the 2012 computer-based PISA mathematics data
and the other is dataset created and kindly shared by Karelitz (2004).

The 2012 computer-based PISA mathematics test was developed to assess domain-
specific knowledge and skills in mathematics of students from 65 EU, OECD and OECD-partner
countries. Test areas include Mathematics, Reading, Science, and financial literacy OECD
(2014). However, only the computer-based Math test provides the response time data that is
relevant for this study. To keep this study comparable to that of Zhan et al. (2018a), only the data
for 1,584 students from Brazil (BRA), Germany (DEU), Shanghai-China (QCN), and the United
States of America (USA) were used. Also, for the same reason, only ten of the Mathematics test
questions were considered. These 10 questions were designed to assess seven attributes — change

and relationships (a;), quantity (a,), space and shape (a3), uncertainty and data (a,),
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occupational (as), societal (ag), and scientific (a;) (OECD, 2014; Zhan et al., 2018a). For more
details, see OECD (2014).

The second dataset is a 40-item test designed and administered to 200 University of
Illinois undergraduates by Karelitz (2004), henceforth referred to as the language rule data. The
test was designed to assess their general language proficiency using fictional grammatical rules.
The rules tested were grouped into three skills (attributes) with three to four mastery levels each.
Participants were first randomly assigned to 10 groups and taught rules, where groups differ by
the type of rule they were taught. Thereafter, questions testing all rules were developed and
administered to all participants. Responses were then scored as right or wrong. More details on
this experiment can be found in Karelitz (2004).

For model comparisons, the HO-DINA differs from the JDS-DINA and JRT-DINA
because it excludes response time. However, an additional difference is that, in both JDS-DINA
and JRT-DINA, the item parameters are also modeled at the second level to account for inter-
relationships among them. Since the objective of this study is to highlight the difference that
response time makes, it is important that every comparison model should only differ in terms of
how the response time variable is handled. To ensure this is so for comparisons that are made
with HO-DINA, a modified HO-DINA (MHO-DINA) introduced by Zhan et al. (2018a) was
used. MHO-DINA is essentially HO-DINA that includes a higher-level model for the

relationship among item parameters. The MHO-DINA model is defined as follow:

Level 1:
a. Measurement part:P(Y;; = 1|n;;) = 8o, + &1,1;;
Y1 V110~ Vora)
b. Structural part: Py = P(ay = [ — 1|6;) = — P Zuz1 1)~ Vou
p i ( Tk | ]) Z§£1exp(25=1ylk9j_)’0ku)
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K Lg
Tjc = P(a]' = ac|9j) = nnpjkll(“cﬁl—l)
k=1 =1

Level 2:
C. Person parameters: 6;~N(0,1)
601' O'égo 05,6,
d. Item parameters: s ~N | Witem> Zitem = ) (20)
1 05,6, 05,

3.4.1 Model Comparisons

This section describes how the models, estimation method, and datasets discussed so far
are employed to address the research objectives of this study that are related to real data analysis.

The availability of response time together with item responses in the PISA data makes it
appropriate for comparison of models that differ in terms of response time. Unfortunately, the Q-
matrix for this test defines only binary attributes. Hence, the first two research questions are
restricted to comparisons involving the JDS-DINA model for binary attributes.

On the other hand, the data from Karelitz (2004) concerns attributes with qualitatively
ordered mastery levels, which would have been more appropriate for the application of JDS-
DINA model for polytomous attributes. However, this data lacks information on response time.
Hence, the fourth research question in this section is a comparison between polytomous and
binary attribute specifications using the MHO-DINA model.
3.4.1.1 Research Question 1: How do the JDS-DINA, JRT-DINA, and MHO-DINA models

compare in terms of model fit?

This comparison would serve to verify the advantage of a differential speed response
time as opposed to constant speed model. All three models, JRT-DINA and MHO-DINA and

JDS-DINA with binary attributes, were compared based on model fit statistics — the deviance

49



information criterion (DIC), and the posterior predictive probability (PPP) defined in equation
(18). The standard deviation of the posterior distributions would also be used to assess and
compare precision across the three models of interest.

It is expected that the MHO-DINA would present the worst performance among the three
models. The difference between the JRT-DINA and the JDS-DINA would depend largely on
what structure of response time model is most appropriate for the data at hand. If there is no
significant change in speed among the examinees, then the JRT-DINA may present relatively
smaller standard errors because of its parsimony. The reverse would apply if there is a significant

change in speed of response among the examinees.

3.4.1.2 Research Question 2: How does dichotomization of polytomous attributes affect person
correct classification accuracy?

The aim of this question is to verify, in the absence of response time information, that
dichotomization of attributes leads to poorer model results, as suggested by previous studies
(Karelitz, 2004; Karelitz, 2008; Zhan et al., 2019; Chen & de la Torre, 2013). This comparison
would employ the language rule data by Karelitz (2004). To create the binary attributes from the
Q-matrix of this data, the lowest mastery level for each attribute was coded non-mastery (0) and
all mastery levels beyond the lowest level were coded as mastery (i.e., 1).

The appeal of Karelitz (2004)’s data is that, even though it is empirical, the truth about
examinees mastery levels is known. Hence, besides comparison of model fit indices, as in
research question la, the models with polytomous and binary attributes would also be compared
in terms of classification accuracies of attributes and attribute patterns. These two quantities are

defined as follows (Zhan et al., 2019; Chen & de la Torre, 2013):

21 Wk

ACCR,, = (21)
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Yr=1 Xj=1 [Tk=1 Wi

PCCR, = -

(22)
Where n is the number of examinees or sample size, R is the number of replications for
the pattern of interest, and W), = 1 if aj, = 6;; and 0 otherwise. For polytomous attributes,

misclassification could be of varying degrees — classification into adjacent or non-adjacent
mastery levels. To account for the degree of misclassification, Chen & de la Torre (2013)
recommend the use of weighted classification accuracy, where Wy, = 1/2|“fk‘6fk| if
|ajx — 6| < Ly — 1 and 0 otherwise.
3.5 The Simulation Study

For this section of the study, data were generated according to the JDS-DINA model for
polytomous attributes and analyzed with true model and the alternative models. Alternative
models to be considered are the JRT-DINA and the MHO-DINA of Zhan et al. (2018a). The
JRT-DINA accounts for response time in the model but assumes constant speed across the test
period. The MHO-DINA excludes response time completely, ignoring the effect of time. The
reason for using MHO-DINA instead of HO-DINA is to ensure that the item parameters are
modeled similarly across all models so that differences in model performances across these
models can only be attributed to either the grain size of the attributes, the treatment of response
time in the model, or both. Each of these models was considered with polytomous and binary
items to further assess the effect of dichotomizing attributes with respect to each model. In
summary, data were generated with one model, but six models were estimated and compared
using the simulated data.
3.5.1 Simulation design

In examining and comparing cognitive diagnostic models, previous researchers have

shown significant variation in model performance due to number of items or test length, number
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of examinees or sample size, misspecification of the Q-matrix, number of attributes, among
others. However, for the purpose of this study, these factors were held constant, to keep the study
design manageable. Sample size of 200 was considered. For the Q matrix, number of attributes,
and number of items, the specification provided in Zhan et al. (2019) was adopted. This means
the current study considered a 30-item test measuring four attributes with four mastery levels

each and a Q matrix as defined in Zhan et al. (2019) and shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 4 K x 1 Q matrix for binary attributes.

Blank means “0,” light gray means “1”, dark gray means “2” and black means “3”

To dichotomize the attributes, the Q matrix in Figure 4 is revised such that all levels
above the first are categorized as mastery (1) and the first level is classified as non-mastery (0).

This gives rise to the Q matrix in Figure 5 below for the models with binary attributes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 5 K x | Q matrix for binary attributes. Blank means “0,” light gray means “1”

The factors to be manipulated in the study are variances of speed components, and
correlation between examinee ability and the speed components. This is to evaluate the
performance of the JDS-DINA model under varying conditions of assumed variability in

speed. If speed remains constant throughout the test then, only the variance of the initial speed
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component would be significantly different from zero. The variances of the speed components
and their covariances with the ability parameter were considered at two levels each.

There are only a few studies that have considered the variable speed model in
combination with item response models. In most cases, the item response model used is an IRT
model. However, estimates from these studies provide suggestions on plausible values for the
correlation between ability and the speed components. Zhan et al. (2018a), working with the
JRT-DINA model, found a theoretically contradictory negative correlation of -0.57 between the
initial speed component and ability. Their model did not consider the variable speed components
and was based on a 10-item test for seven attributes, which is not likely to produce trustworthy
estimates. Fox & Marianti (2016), on the other hand, reported a positive correlation of
0.72 between initial speed and ability and negative correlations of -0.02 and -0.09 for the linear
and guadratic components, respectively.

Following the estimates reported in Fox & Marianti (2016), the parameters for the speed
components are set as 0.1 and 0.5 for low and high variances respectively for each of the speed
components. Also, the correlation parameters are set to (0.3, -0.05, -0.1) and (0.7, -0.1, -0.3) as
low and high correlations between ability and the initial speed, linear trend, and quadratic
components, respectively. Table 3 below shows these values.

Table 3

Design conditions — person parameters

Level 030 031 050 Oz, 0oz, Og7,
Low 0.1 0.1 0.1 0.3 -0.05 -0.1
High 0.5 0.5 0.5 0.7 -0.1 -0.3

The covariances among the parameters were determined by the correlations and variances

specified above. Unlike the person parameters, the variance of time residuals is fixed at 0.25
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and the true values of the higher-order latent trait model parameter, y,, and y,,, were specified

like in Zhan et al. (2019), as shown in Table 4 below:

Table 4

Design conditions — structural parameters

. Yo

Attribute 1z = I:éd =
a 15 -1.00 -0.50 0.00
az 15 -0.50 -0.25 0.25
as 15 -0.25 0.25 0.50
a 15 0.00 0.50 1.00

The values for the item parameters were motivated from results of real data analysis

reported by Zhan et al. (2018a) and set to

2 8o 5,

s |2 024 -—044 o025
item = | 5, —044 3.86 —2.45
5, 025 —245 250

4.30
Witem = | —2.31
3.25

The choices of variances and covariance values make a total of 64 simulation
conditions — two variances each of the speed components by two covariances each of speed

components with ability. For each condition, 60 samples were generated.

3.5.2 Data Generation

To generate the data, person and item parameters were randomly sampled from

the following multivariate normal distributions:

54



0 1 0-91'0 0-91'1 0-91'2
2
TOJ 0 _ Oz, Or, 0 0
le person 0 2 O

O—HTl O—Tl

91-2 0 0 0'32
Ai 4.30 0.24 —0.44 0.25
So; | ~N|[[-2.31],Ziem = —0.44 286 —2.45
5y 3.25 0.25 =245 25

l

Where the unknown entries of X,,...5,, are replaced by the values specified in Table 3, and
higher-order latent trait model parameters are drawn from Table 4.
Once the parameters have been generated, the attribute mastery level on each attribute for

each examinee, aj,, would be generated from a categorical distribution with probabilities

(Pik1, Pik2, Piks, Pika ), Where Py, is as defined in equation (12). The log response time would
then be randomly drawn according to equation (11), and the binary response variable is
generated with equation (10), where n;; is determined from the examinee mastery status a;; and
the Q matrix in Figure 3.

Data generation and model estimations were carried out using JAGS, automated within R
(Plummer, 2012). JAGS implements the Bayesian MCMC estimation procedure using an
adaptive sampling scheme. In other words, JAGS searches through the catalog of samplers and
chooses the sampling algorithm most appropriate for the conditional posterior distribution for
each parameter (Plummer, 2012). For each of the 60 replications, two Markov chains were
generated to improve the precision of parameter estimates (Brooks & Gelman, 1998), with
10,000 iterations per chain. Based on inspection of the trace plot, burn-in was set at 5,000.
Random starting values were used for all model parameters. Model convergence was assessed
using trace plots and the Gelman—Rubin potential scale reduction factor R, where R < 1.2

indicates approximate convergence (Brooks & Gelman, 1998).
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3.5.3 Model Evaluation
To evaluate parameter recovery, the absolute bias (AB) and the root mean square error
(RMSE) were computed. These two quantities are defined as follows:

AB() = |V —v[  (23)

Xro (0 —v)?

R (24)

RMSE(D) = \/

Where R is the number of replications (60 in this study), v is the true value of the parameter of
interest and 7, is its estimated value at the r'" replication. The commonly used relative bias was
not used in this study because some of the parameters have zeros as true value.

To evaluate item parameter recovery, the bias was averaged across all items; thus the
mean absolute bias was reported to avoid the cancellation of positive and negative bias. For the
classification accuracy, this study calculated and compared the attribute correct classification rate

(ACCR) and the pattern correct classification rate (PCCR), as defined in equations 21 and 22.

3.5.3.1 Research Question 3: How is the recovery of item and person parameter estimates in
JDS-DINA affected by variance of speed components and their correlations with person
ability?

This part of the analysis was done using multivariate analysis of variance (MANOVA)
model with eight factors. The factors to be considered are (1) variance of each initial speed
component with two levels each, (2) variance of each linear trend component with two levels, (3)
variance of each quadratic speed component with two levels, (4) covariance between initial
speed components and ability with two levels, (5) covariance between linear trend component
and ability with two levels, and (6) covariance between quadratic speed components and ability

with two levels.
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The MANOVA was carried out separately for each parameter. Outcome variables for
each parameter were the AB and standard errors of estimates. Significant effects from the

MANOVA results were probed further with univariate ANOVA and graphically.

3.5.3.2 Research Question 4: How well does the JDS-DINA for dichotomous attributes recover
person and item parameter estimates (as reflected in the bias of estimates)?

For this research question, the bias, RMSE, ACCR, and PCCR were compared across all
three models but with only the binary configuration of the attributes. The aim of this is to see
which of these models gets the closest to the truth in the presence of information loss due to
categorization of attributes. Only the model estimates with the binary attribute configuration
were compared.

The comparison between JDS-DINA and JRT-DINA should reveal the effect of ignoring
differential speededness on the accuracy of parameter estimates. The comparison between MHO-
DINA with JDS-DINA and JRT-DINA would highlight the effect of ignoring time in CDM

estimation.

3.5.3.3 Research Question 5: How well does the JDS-DINA for polytomous attributes recover
person and item parameter estimates (as reflected in the bias of estimates)?

This last question is like the previous, but with the polytomous configuration of the
attributes. All three models were compared as well. The idea is to determine how much loss, if at
all, is incurred when we fail to account for the speededness effect in modeling data that came
from a population of students with differential test speed. The model with the minimum average

bias and RMSE and the maximum ACCR and PCCR is the preferred model.
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CHAPTER 4: RESULTS

This chapter presents the results of the analyses, organized into five sections
corresponding to the five research questions posited in Chapter 1 and described in Chapter 3. The
first section summarizes the results of empirical data analysis that uses the PISA data to
determine the best-fitting model, while the second section investigates the effect imposing a
binary-attribute model on a polytomous attribute data using the higher other DINA model.
Sections 3 through 5 are based on the simulation study, beginning with model evaluation, to
assess how well the proposed differential speed DINA model for polytomous attributes, JDSP for
short, recovers parameter estimates and attribute profiles under varying data conditions. Sections
4 and 5 are concerned with model comparisons, to examine the effect of ignoring the
speededness effect as well as the effect of wrong specification of attribute categories, as implied
by the model choice.

4.1 Research Question 1

In this first study, data from the 2012 computer-based PISA mathematics test was used to
compare the three models of interest in this study — the modified higher-order (MHO) DINA, the
joint response time (JRT) DINA models and the proposed joint differential speed (JDS) DINA.
The adequacy of these three models for the PISA Mathematics data was assessed via relative
model fit statistics as well as standard error of estimates. The following two subsections
summarize the results of this study.

4.1.1 Model fit statistics
The DIC and BIC were used to assess the relative adequacy of the three models. The

model with the smallest DIC and BIC is preferred. Posterior predictive probability (PPP) was
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also used to assess the model fit for responses (PPP-Score) and response times (PPP-Time). PPP
values range from zero to one, where values close to 0 or 1 mean that observed discrepancies are
extreme values and are suggestive of model-data misfit (Almond, Mislevy, Steinberg, and
Williamson, 2015). The model with PPP value closest to 0.5 is preferred.

Table 5

Model fit statistics for the 2012 PISA computer-based mathematics test

Parameter MHO-DINA JRT-DINA JDS-DINA
DIC 67812.87 52301.180 53142.52
BIC 416972.2 150292.3 156290.4
PPP-Score 0.544 0.580 0.599
PPP-Time - 0.591 0.608
Posterior SD

8o 0.306 0.265 0.234
8, 0.369 0.324 0.304

A 1.578 0.018 0.017

0 0.339 0.629 0.630

Table 5 presents the summary information about overall model fit statistics. The deviance-
based statistics, DIC and BIC, point to the JRT-DINA model as preferred, but the PPP value
chooses the MHO-DINA. However, standard error of posterior distribution for the item and person
parameters are relatively high with MHO-DINA model, suggesting high instability in these
estimates. The JDS-DINA model, on the other hand, shows greater stability in parameter estimates.

The small item pool in this test may have favored the parsimony of the MHO-DINA,
resulting in the relatively good PPP-Score. Every other fit statistic rejects MHO-DINA in favor of
the models that account for response time. Almond et al. (2015) also noted that the PPP value can
be too conservative, failing to reject model-data misfits. Standard errors of parameter estimates are

similar for the item time intensity and higher-order ability estimates, but not for the item intercept
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and slope parameters. These values were obtained by aggregating across the ten items. The next
section takes a closer look at these items, to evaluate model fit with respect to individual items.
4.1.2 Standard error of item parameter estimates

Given the true values of these item parameters are unknown, it is impossible to tell which
of these models provide the true estimates for these items but, the standard deviations provide
some information on the reliability of these estimates. The item level estimates in Table 6 show
similarities in the parameter estimates provided by the three models, particularly between the
JRT and JDS model. Overall, the JDS-DINA provides the smallest standard errors for the item
parameter estimates.
Table 6

Estimated item parameters for the 2012 PISA computer-based mathematics items

— 8 &

Item MHO JRT JDS MHO JRT JDS
lteml  -1.102(0.831) -0.614(0.267) -583(0.225)  4.400(0.883)  3.823(0.435)  3.894(.457)
ltem2  -5.912(0.952) -5.592(0.703) -5.446(0.225) 5.933(0.963)  5.567(0.703)  5.432(.656)
ltem3  -4.001(0.418)  -4.269(0.652)  -4.089(0.648)  5.059(0.448)  5.292(0.658)  5.108(.494)
ltemd  -3.400(0.209)  -3.439(0.220)  -3.452(0.221)  3.224(0.235)  3.166(0.246)  3.165(.251)
ltem5  -0.586(0.067)  -0.601(0.069)  -.606(0.068)  2.029(0.186)  1.924(0.175)  1.919(.180)
ltem6  -2.225(0.133) -2.355(0.150) -2.377(.153)  3.088(0.195)  3.177(0.201)  3.188(.200)
ltem7  -0.913(0.076)  -0.957(0.078)  -.959(0.080)  2.344(0.176)  2.326(0.174)  2.311(.173)
ltem8  0.410(0.067)  0.375(0.071)  .375(0.071) 0.895(0.174)  0.853(0.157)  .863(.161)
ltem9  -1.934(0.123) -2.217(0.172) -2.205(.158)  2.068(0.179)  2.297(0.207)  2.302(.199)
lteml0  -2.497(0.192) -2.812(0.265) -2.766(.243)  3.041(0.250)  3.115(0.283)  3.077(.265)

The results of this study clearly exclude the MHO-DINA as a plausible model for the

PISA Mathematics data. This suggests that, subject to the sample of models considered here,

models that account for response time provide a better fit for this data. The relative model fit

statistics favor the choice of JRT DINA, but item level assessment suggests that the JDS

provides better local fit for the items on the test. The results of this study may have been limited
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by the number of items, relative to the number of attributes — ten to seven. The effect of this
limitation in item pool may vary across these models and affect their results differently.
4.2 Research Question 2

The aim of this question is to verify that, in the absence of response time information,
imposing a dichotomous-attribute model on data obtained from polytomous attributes leads to
poorer model results, as suggested by previous studies (Karelitz, 2004; Karelitz, 2008; Zhan et
al., 2019; Chen & de la Torre, 2013). This comparison used the language rule data by Karelitz
(2004), to compare two models — the higher-order DINA (HO-DINA) model and the
reparametrized partial mastery higher-order DINA (RPa-DINA) model of Zhan et al. (2019).
HO-DINA fits a binary-attribute model while the RPa-DINA models the ordered categories of
the attribute using the adjacent category logit model for the structural parameters.
4.2.1 Comparison of model fit
Table 7

Model fit statistics for the Language Rule data

Parameter HO-DINA RPa-DINA
DIC 8176.217 7753.088
Deviance 7839.987 7020.388
BIC 9621.282 10902.46
PPP Score 0.497 0.665

The deviance and DIC statistics selected the RPa-DINA over the HO-DINA model. The
BIC and PPP, however, did not favor the RPa-DINA model. It has been noted earlier that the
PPP value can be conservative in rejecting wrong models. Also, for Bayesian estimation of
cognitive diagnostic models, the DIC is preferred over the BIC (personal communication with
Dr. Peida Zhan). Hence, judging from the DIC and the deviance statistics, the RPa-DINA model

is preferred to the HO-DINA. In other words, imposing a binary-attribute model on polytomous-
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attribute data leads to poorer model fit. The next subsection further examines the effect of this
model-data mismatch on the correct classification rates.
4.2.2 Classification accuracies

The language rule data comes with true mastery level data for all 200 participants, which
means that the attribute correct classification rate (ACCR) and person correct classification rates
(PCCR) can be computed and compared for these models. Tables 8 shows the relevant results for
this comparison.
Table 8

Classification accuracy rates of attributes for the language data

Exact Weighted
Model ACCR PCCR ACCR PCCR
o1 o3 03 0l1 03 03
HO-DINA 0.020 0.185 0.675 0.000 0.426 0.507 0.838 0.169
RPa-DINA 0.660 0.400 0.660 0.205 0.889 0.789 0.830 0.579

The exact classification rate considers the exact match between estimated and true
mastery status, ignoring the degree of adjacency in the mismatch. The weighted classification
rate formula adjusts for the degree of adjacency between estimates and true values and is
therefore recommended for models with categorical attributes. As expected, the exact
classification rates are generally low for both models. From the weighted classification rates, we
see additional evidence in favor of the RPa-DINA model, especially with the first two attributes.

The PCCRs are generally low, though relatively higher with the RPA-DINA model. The
aim of this study was to assess the effect of dichotomizing polytomous attributes by imposing a
binary-attribute model on data. The DINA model has been used for this purpose, but there are
many other options that could have been considered. These low values may stem from the fact
that the assumptions of the DINA model may not have aligned well with the data, to begin with.

Nonetheless, the results of this section show that, keeping the base model constant (DINA),

62



dichotomizing polytomous attributes leads to a considerable loss in model fit and accuracy of
parameter estimates.
4.3 Research Question 3

In this section, a simulation study was conducted to evaluate the parameter recovery of
the proposed model, the joint differential speed (JDS) DINA, and to assess the effect of select
design conditions on the model. The independent variables manipulated for this simulation were
the variance of each of the speed components (two levels each) and the correlation of each speed
component with the higher-order ability, 0, also at two levels each. See Table 3 for the specific
values of these manipulated factors. Data were simulated using the JDS model with polytomous
configuration for the attributes, where each attribute had four category levels.
4.3.1 Overall parameter recovery of the JDS-DINA model
Table 9

Bias and RMSE of item and structural parameters of JDS DINA with polytomous attributes

Bias RMSE
Attributes B du B du
k |=2 1=3 |=4 k =2 =3 I=4

Al 0.119 0.100 -0.054 -0.091 0.390 0.578 0.565 0.545
A2 0.164 0.020 -0.025 -0.038 0.417 0.502 0.558 0.502
A3 0.138 0.053 -0.028 -0.033 0.406 0.470 0.541 0.529
Ad 0.071 0.021 0.048 -0.113 0.365 0.420 0.476 0.539
Item Qarameters

A 0.000 0.069

8o -0.004 0.689

8, -0.001 0.786

Table 9 presents the bias and RMSE of item and structural parameters, averaged across
all simulation conditions. In terms of bias and RMSE, the recovery of item and structural
parameters was quite good, with similar recovery of structural parameters across attributes.
ACCR ranged from 85% to 89%. The bias and RMSE values are similar to those reported in

previous studies for the same data (e.g., Zhan et al., 2018a)
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The weighted classification accuracies are generally low, but Figures 6 provides an
explanation for these low values — small sample size. The proportions within the bars represent
the average recovery rate for that profile group, while the numbers above the bars represent the
average sample size (across all conditions) for that profile group. Profiles with higher number of
test-takers are associated with higher recovery rates. A sample size of 200 test-takers implies that
some of the 256 profiles that result from the four attributes would be empty. Larger sample size
is required and, since profiles would be generated and assigned at random, sample size should be

sufficiently greater than 256 to ensure that every profile group is assigned, at least, one test taker.
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Figure 6 (cont’d)
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4.3.2 Effect of design conditions on parameter recovery

To assess the effect of simulation design variables on parameter recovery for the JDS-
DINA model, multivariate analysis of variance (MANOVA) was used to analyze the absolute
bias and standard error for each of the parameters. For results that were significant, graphical
analysis and univariate analysis of variance (ANOVA) were used to determine which of the
variables was significantly affected. Tables 10 and 11 summarize the MANOVA and ANOVA
results for the item and structural parameters, respectively. Test statistics and p-values are
reported for the MANOVA, but only p-values are reported for ANOVA.
Table 10

MANOVA and ANOVA results for item parameters

Model Parameter o2, o7, oz, Pox, Por, Por,
A
MANOVA Pillai 0.693 0.209 0.075 0.001 <0.001 0.001
p-value <0.001 <0.001 <0.001 0.331 0.760 0.304
ANOVA Bias <0.001 <0.001 0.001 0.320 0.712 0.416
(p-values) SD <0.001 <0.001 <0.001 0.272 0.518 0.187
8o
MANOVA Pillai <0.001 0.001 0.001 <0.001 <0.001 <0.001
p-value 0.459 0.363 0.185 0.446 0.553 0.613
8
MANOVA Pillai 0.001 0.001 0.001 <0.001 <0.001 <0.001
p-value 0.207 0.308 0.321 0.515 0.618 0.567

From the MANOVA results in Table 10, none of the correlation variables had effect on
the item parameters. The variance of speed components had effect on the recovery of the item
time intensity parameter, but not on the item slope and the intercept. The follow-up ANOVA
result shows that the variance components affect both the bias and standard error of A. These

results were further examined graphically, in Figures 7 through 9.
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Figure 7 Effect of o7, on absolute bias and standard error of 2
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Figure 8 Effect of o, on absolute bias and standard error of 2

A review of the graphs shows that the effect of variance of speed components is greater
on the standard error of A, and that low values of bias and standard error of A were obtained when
variance of the variances of speed components were smaller. The graphs also show that the

variance of the initial speed component t, has the strongest effect on parameter recovery. This

implies that the JDS-DINA performs better when the variability in speed components is low.
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Table 11
MANOVA and ANOVA results for attribute structural parameters
Model Parameter o2, o2, o2, Por, Por, Por,
Yoy,
MANOVA  Pillai <0.001 <0.001 0.001 0.004 0.001 0.001
p-value 0.663 0.945 0.354 <0.001 0.102 0.200
ANOVA Bias 0.867 0.849 0.206 0.879 0.308 0.107
SD 0.367 0.750 0.313 <0.001 0.126 0.231
Y0k3
MANOVA  Pillai <0.001 <0.001 0.001 0.002 <0.001 <0.001
p-value 0.684 0.498 0.065 0.011 0.919 0.811
ANOVA Bias 0.395 0.764 0.088 0.039 0.798 0.740
(p-values) SD 0.687 0.305 0.268 0.008 0.806 0.652
Yogy
MANOVA  Pillai <0.001 <0.001 <0.001 0.004 0.001 <0.001
p-value 0.570 0.979 0.787 <0.001 0.197 0.794
ANOVA Bias 0.649 0.995 0.702 0.340 0.173 0.745
SD 0.426 0.846 0.653 <0.001 0.447 0.507
Y1
MANOVA  Pillai 0.003 0.001 <0.001 0.027 <0.001 0.001
p-value 0.004 0.099 0.433 <0.001 0.959 0.227
ANOVA Bias 0.707 0.311 0.756 0.729 0.817 0.467
(p-values) o 0.005 0.397 0.432 <0.001 0.991 0.446

For the structural parameters, Table 11, only the correlation between initial speed

component and higher-order ability pg.,, had a significant effect on the recovery of all the
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attribute threshold parameters. The follow-up univariate ANOVA results show that pg., affects
the standard errors of these parameters but not their biases. Figures 10 through 14 provide a
graphical display for these significant results. The figures show that these effects, though
statistically significant, may not be practically meaningful. Further investigation is required to

obtain a more conclusive evidence for these effects.

Absolute Bias in Gamma0_2 Standard Error of Gamma0_2

7 DBLWES J0 J0J/3 PIEPUBIS 7 OBLLUES) Ul SBIE 8IN[0SqY

Figure 10 Effect of py., on absolute bias and standard error of y,, ,
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£ QBLLUES Jo J0L3 PIEPUBIS € OBLILIED Ul SBIG 8}N0SQY

Figure 11 Effect of pg., on absolute bias and standard error of y,, ,
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4.4 Research Question 4

This fourth study was focused on comparing the JDS-DINA model to existing models,
specifically, the MHO-DINA and JRT-DINA model. MHO-DINA ignores response time in
modeling test responses, while JRT-DINA accounts for response time with the assumption of
constant speed. The importance of this study is to highlight the importance of response time
information in cognitive diagnostic model estimation as well as the effect of imposing a wrong
attribute configuration on polytomous attribute data. Data for this comparison were generated
using the JDS DINA model with polytomous attribute configuration, but all the models used here
were fit with the binary attribute configuration. The idea is to understand which of these models
comes closest to the truth, given that the wrong attribute configuration has been imposed on the

data by the model choice

72



Table 12

Bias and RMSE of §, by simulation design conditions — binary attributes

Bias RMSE
MHOB JRTB JDSB MHOB JRTB JDSB

2 2 2
Cond GTO 0-1:1 61:2 Pero pOTZ pe‘tz

1 0.05 -0.1 0.335 0.347 0.344 1.041 1.030 1.030
2 0.3 e -0.3 0.348 0.356  0.359 1.005 1.001 1.005
3 ' 010 -0.1 0.330 0.341  0.337 0.989 0.984  0.983
4 01 ' -0.3 0.354 0.362  0.358 1.021 1.006  1.005
5 ' 005 -0.1 0.323 0.335 0.335 0.977 0.968  0.968
6 0.7 -0.3 0.329 0.344  0.343 0.989 0.988  0.988
7 010 -0.1 0.353 0.361  0.360 1.003 0.997  0.996
8 01 -0.3 0.366 0376  0.371 1.055 1.045  1.046
9 005 -0.1 0.342 0.347  0.346 0.966 0.952  0.952
10 0.3 ' -0.3 0.337 0.349  0.346 1.013 1.006  1.006
11 ' 010 -0.1 0.316 0.329 0.328 0.996 0.987  0.986
12 05 -0.3 0.368 0.374 0.370 1.039 1.031  1.030
13 ' 0.0 -0.1 0.353 0.372  0.370 1.062 1.056  1.053
14 0.7 0.05 -0.3 0.342 0.357  0.355 0.988 0.982 0.984
15 ' 010 -0.1 0.332 0.350  0.350 0.987 0.981 0.981
16 ' -0.3 0.346 0.361  0.360 1.005 1.003  1.004
17 01 005 -0.1 0.339 0.349  0.347 1.020 1.010 1.012
18 0.3 -0.3 0.338 0.343  0.346 0.981 0.967  0.969
19 ' 010 -0.1 0.359 0.366  0.366 1.054 1.045  1.046
20 01 ' -0.3 0.331 0.342 0.341 0.990 0.985  0.985
21 0.05 -0.1 0.341 0.357 0.355 1.002 0.990 0.989
22 0.7 -0.3 0.343 0.356  0.356 0.997 0.984  0.986
23 010 -0.1 0.325 0.334 0.333 1.032 1.018 1.015
24 -0.3 0.399 0.406 0.404 1.058 1.049  1.048
25 05 0.0 -0.1 0.327 0.338  0.338 1.007 1.001 1.002
26 0.3 0.05 -0.3 0.368 0.379  0.376 1.020 1.013 1.011
27 ' 010 -0.1 0.379 0.386  0.383 1.048 1.042  1.039
28 -0.3 0.357 0.369  0.369 1.011 1.006  1.007
29 05 0.0 -0.1 0.311 0.324 0.323 0.981 0.974 0.976
30 0.05 -0.3 0.340 0.350  0.350 1.028 1.017 1.016
31 07 0.10 -0.1 0.352 0.361  0.360 1.004 1.001  0.999
32 e -0.3 0.321 0.331 0.330 1.007 0.995 0.996
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Table 12 (cont’d)

Cond | 62 o2 o g Po Po _Bias RMSE

oot Tm o 2 “  MHOP JRTP JDSP MHOP JRTP JDSP

33 005 |01 0348 0.358  0.358  1.061 1.051  1.051
34 03 0.3 |0.324 0.328 0.326  1.006 0.992  0.995
35 010 |01 | o320 0.335 0335 1.025 1.014  1.016
36 o1 0.3 | 0.305 0.320 0318 0.998 0.982  0.980
37 005 |01 | o3 0.382 0385 1.022 1.016  1.019
38 07 0.3 |0.344 0.358  0.359  1.046 1.040  1.041
39 010 |01 0377 0.386 0.387 1.046 1.037  1.039
40 o1 0.3 | 0.347 0.369 0370 1.014 1.023  1.022
41 005 | 01 |o316 0329 0325 0978 0.967  0.968
42 03 ' -0.3 | 0.303 0.318 0321 1.028 1.026  1.026
43 ' 010 |01 0328 0.335 0335 0987 0.981  0.980
44 05 0.3 | 0.346 0.357 0356 1.027 1.021  1.019
45 005 |01 0331 0.350 0349 1.014 1.003  1.003
46 07 -0.3 | 0.358 0373 0370 1.021 1.012  1.010
47 010 |01 |o34 0.352 0352 1.010 0.996  0.997
8| s 0.3 | 0.336 0.345 0342 0.998 0.992  0.989
49 005 |01 0316 0.334 0332 0987 0.969  0.965
50 03 0.3 | 0.363 0.371 0369 1.061 1.053  1.052
51 010 |01 |0317 0.330 0332 0987 0.980  0.980
52 o1 0.3 | 0.364 0.370 0374 1.080 1.073  1.075
53 005 |01 | o350 0375 0374 1.041 1.036  1.035
54 07 0.3 | 0.337 0.360 0.358 1.010 1.006  1.006
55 010 |01 0320 0.343 0346 0.996 0.990  0.992
56 05 0.3 | 0.320 0.332 0333 0955 0.943  0.942
57 005 | 01 |o316 0323 0320 1.024 1.007  1.007
58 03 ' -0.3 | 0.349 0.358 0357 1.021 1.011  1.011
59 ' 010 |01 | o360 0372 0373 1.056 1.051  1.052
60 05 0.3 | 0.345 0.351 0352 1.019 1.010  1.010
61 005 |01 | 0347 0.366 0.366 1.025 1.016  1.016
62 07 0.3 | 0.347 0.363 0.366 1.035 1.019  1.024
63 010 |01 | o330 0.355 0.355 1.053 1.051  1.054
64 0.3 | 0.298 0.308  0.304 1.003 0.986  0.985
Mean | 0.340 0.352 0352 1.016 1.007  1.007

through 64 in the first column. The next six columns define these conditions. For instance,

Table 12 shows the bias and RMSE for §, . The design conditions are numbered, 1

condition 1 has 6%, = 0.5, 07, = 0.1, 02, = 0.1, pg, = 0.3, per, = —0.05and pg,, = —0.1,
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and so on. For each row, the bias and RMSE were averaged across the 60 replications for each of
the comparison models.

The results show that MHO-DINA has the worst performance, which is not surprising
since data were generated from the JDS-DINA with polytomous attributes. However, JDS-DINA
and JRT-DINA have very similar results. The reason may be that, given the values that have
been chosen for the speed components, the relatively low parsimony of the JDS model trumps its
ability to extract additional information from the differential speed component of the model.
Similar result tables are available for all the item and structural parameters in the appendix. All
parameters show similar results as with &, shown here.

Graphical analysis was used to further examine and compare the results from these three
models. Figures 15 through 20 display the results for the item parameters. Each of these graphs
showed evidence that the JRT-DINA and JDS-DINA are indistinguishable in performance, but
the MHO -DINA model was consistently poor performing.

Of note is the step or shift observed in the graphs for the item time intensity parameter, A.
This occurs right after condition 32. The first 32 conditions all have one thing in common -

oz, = 0.1. This suggests that the JRT and JDS DINA models perform better (lower bias and
RMSE) at o7, = 0.1, compared to o7, = 0.5. In other words, high variability in initial speed is

associated with poorer parameter recovery. This further highlights the need to account for this

variance in cognitive diagnostic model estimation.
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Figure 16 RMSE of A across simulation conditions
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Figure 21 Bias of y,, across simulation conditions

The bias and RMSE values for structural parameters were similar across models. While this

would suggest that the most parsimonious model, MHO-DINA is appropriate, it is also important to

remember that the results here are subject to the values that have been chosen for the speed components in

the simulation. These results may be different for other values of speed components. Moreover, the

primary aim of a cognitive diagnostic test is to estimate attribute profile, and the importance of model

performance with respect to classification cannot be overemphasized. Table 13 below compares the

attribute and person classification accuracies across these three models.

Tablel3

Exact and weighted classification accuracy rates

Exact Weighted
ACCR ACCR
Model PCCR PCCR
o1 o2 o3 Ol4 o1 o2 o3 o4
MHOB 0.192 0.220 0.268 0.252 0.025 0.438 0469 0510 0.489 0.107
JRTB 0.253 0.348 0425 0468 0.094 0511 0578 0.634 0.673 0.214
JDSB 0.253 0.348 0425 0468 0.094 0511 0578 0.634 0.673 0.214

The classification accuracies are generally low across models. This is expected since all three

models were estimated with binary attribute configuration, but data was generated with polytomous
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configuration. Given the wrong attribute configuration, the relatively higher accuracy rates for the JDS-
DINA and JRT-DINA underscores the importance of response time.

Taken together, the results from this study show that, while JDS and JRT DINA outperform
MHO-DINA and are similar in item and structural parameters, the additional complexity introduced by
JDS-DINA in accounting for speededness has no added benefit for correct classification accuracy rates. In
other words, accounting for speededness makes no difference if the wrong attribute configuration has

been imposed by the model.
4.5 Research question 5

This last study is like the previous, but with the correct attribute configuration. Data was
generated with the JDS-DINA for polytomous attributes, and all three models are once again estimated
and compared as before. For all three models, the results with this polytomous attribute configuration are
better than with binary configurations. However, the patterns observed in the estimates and among models
remain the same. The JRT and JDS DINA models remain considerably indistinguishable, while MHO-
DINA still shows poor performance, as expected.

Table 14 shows the results for §,. The tables and figures for other item and structural

parameters are also available in the appendix.
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Figure 22 Bias of §, across simulation conditions — polytomous attribute configuration
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Table 14

Bias and RMSE of §, by simulation design conditions — polytomous attributes

cond o2 o o p o o Bias RMSE

v Tu T Pen Fen Fenopuop  JRTP JDSP MHOP  JRTP  JDSP
1 005 |L0-L ] 0001 0013 0015 0746 0735 0.732
2 03 ' 03 | -0046 -0026 -0024 0695 0.677 0.680
3 “ | oqo 01 ] 0030 0015 -0008 0719 0708 0.702
4 01 ' 03 | -0044 -0033 -0025 0685 0.670 0.665
5 : o005 | 0-L | 0028 -0006 -0004 0660 0645 0.643
6 07 ' 03 | -0030 -0011 -0016 0712  0.695 0.697
7 | g0 01| 0014 0023 0021 0676 0668 0.667
8 01 ' 03 | -0009 -0004 -0001 0721 0708 0.709
9 : o005 | 0L | 0004 0018 0016 0662 0644 0.650
10 03 ' 03 | -0019 0004 0001 0708 0.691 0.694
11 “ | g0 01| 0042 0023 0021 0730 0715 0715
12 05 ' 03 | -0032 -0017 -0020 0703 0.683 0.685
13 : o005 |01 | 0028 0012 -0017 0700 0687 0.688
14 07 ' 03 | -0030 -0010 -0.014 0681 0.663 0.664
15 " | g0 01 ] -0023 0006 -0.003 0676 0660 0.664
16 | g4 ' 03 | -0022 -0011 -0013 069  0.683 0.682
17 : 005 |01 | 0003 0015 0016 0688 0680 0.678
18 03 ' 03 | 0003 0011 0014 0685  0.668 0.668
19 “ | g0 01 ] -0003 0012 0012 0715 0699 0702
20 01 ' 03 | 0035 -0020 -0023 0697 0.690 0.690
21 : o005 |01 | 0001 0013 0010 0680 0670 0672
22 07 ' 03 | -0027 -0005 -0008 0702 0.681 0.680
23 | g0 01| 0047 0027 0034 0737 0721 0723
24 05 ' 03 | 0025 0034 0040 0738 0718 0.716
25 : o005 0L | 0004 0011 0011 0682 0675 0676
26 03 ' 03 | -0025 -0011 -0011 068  0.679 0683
27 “ | oqo 01 ] -0012 0005 0006 0713 069  0.690
28 05 ' 03 | -0003 0013 0008 0715 0714 0.716
29 : 005 | 0-L | 0060 -0048 -0052 0686  0.687 0.685
30 07 ' 03 | -0008 0010 0007 0725 0709 0.707
31 " | g0 01| -0006 0004 0003 0682 0667 0.669
32 ' 03 | -0059 -0043 -0042 0704 0691 0.688
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Table 14 (cont’d)

cond | 62 o2 o p 0 0 Bias RMSE

o Tt T Pt o1z 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 005 |01 [-0021 0000 0004 0732 0707 0.706
34 03 : 03 |-0004 0019 0016 0688 0682 0.682
35 : 010 |01 |-0020 0001 -0003 0714 0686 0.685
36 01 : 03 |-0048  -0.020 -0.029 0709  0.692  0.694
37 : 005 | 0-L |o0.003 0031 0035 0718 0681 0.685
38 07 : 0.3 | 0.000 0.024 0022 0718 0706 0.703
39 : 010 |0:L | o0.000 0.020 0015 0708  0.697  0.697
40 01 : 03 |-0008 0011 0009 0708 0706  0.709
41 : 005 | 0L |-0040 0028 -0029 0682 0649 0653
42 03 : 03 |-0037 -0021 -0023 0730 0705 0.708
43 : o010 |01 |-0000 0002 0004 0679 0684 0683
44 05 : 03 |-0033 -0024 -0029 0697 0.687 0.690
45 : 005 |01 |-006 0011 0009 0712 0685 0688
46 07 : 03 |-0007 0010 0008 0680 0.660 0.657
47 : 010 |01 |-000 0009 0008 0717 0692 0602
8| o: : 03 |-0026 -0015 -0.017 0699 0671 0671
49 : 005 |01 |-0.047 0020 -0028 0690 0670 0672
50 03 : 0.3 | 0.008 0.027 0028 0742 0728 0.731
51 : 010 |01 |-0.025 0005 -0014 0700 0691  0.699
52 01 : 0.3 | 0.002 0.018 0016 0714 0718 0.714
53 : 005 |01 |-0018 0006 -0006 0714 0693  0.696
54 07 : 03 |-0016  -0.006 -0.006 0.664 0.650 0.654
55 : o010 |01 |-0044 0017 -0021 0698 0667 0.669
56 05 : 03 |-0001 0014 0014 0657 0632 0.630
57 : 005 | 0L |-0040 0023 -0022 0713 0685 0683
58 03 : 03 |-0014 0001 0001 0705 0.689 0.691
59 : o010 0L |-0017 0001 0004 0730 0716 0.718
60 05 : 0.3 | 0.007 0015 0015 0730 0716 0.718
61 : 005 |01 |-006  -0004 -0001 0725 0705 0.704
62 07 : 03 |-0048  -0022 -0025 0707 0.679 0.678
63 : o010 |01 |-0043 0020 -0020 0768 0750 0.749
64 : 03 |-0053 -0037 -003 0716 0704 0.705
Mean | -0.020  -0.003 -0.004 0.704 0688 0.689
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Figure 23 RMSE of §, across simulation conditions — polytomous attribute configuration

Table 15

Exact and weighted classification accuracy rates with polytomous attributes

Exact Weighted
ACCR ACCR
Model PCCR PCCR
o1 o2 o3 O4 oy o2 o3 o4
MHOP 0.165 0.181 0.213 0.201 0.012 0494 0479 0483 0441 0.095
JRTP 0.466 0.515 0.570 0.644 0.782 0.466 0515 0570 0.644 0.170
JDSP 0.464 0.514 0.569 0.644 0.169 0.848 0.862 0.869 0.887 0.580

The classification accuracies, in Table 15, improved considerably from the previous
section, but the JDS-DINA shows considerably better values, as expected. The PCCR for the
JDS model, though higher than others, is also low. This is unexpected since it is the true model.
One possible reason could be the sample size used in the study. Given the complexity of the JDS
model, larger sample size rapidly increases the computational burden. It is worth investigating

further, to see if sample size alone explains the low PCCR that was observed in this study.
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CHAPTER 5: DISCUSSION AND CONCLUSION

5.1 Summary of Findings

The aim of this study was multi-faceted. First, it proposed a new model that allows partial
mastery and greater flexibility in incorporating response time in cognitive diagnostic models.
Second, it assessed the performance of the new model under varying data conditions and compared
it with existing models. Third, the study examined the effect of dichotomizing polytomous
attributes using empirical and simulated data. From the simulated and real data analyses, several
key findings were drawn.
5.1.1 Dichotomization

The dichotomization of polytomous attributes has implications for the accuracy of
parameter estimates and skills diagnosis. The result showed very low classification accuracies
when a binary classification model was imposed on polytomous attribute data. While binary
classification models are relatively straightforward and easy to implement, this study, together
with those from Karelitz (2004) and Zhan et al. (2019), has shown that dichotomizing attributes
could lead to misleading results and wrong skills diagnosis. If attributes are meaningfully binary,
artificially increasing their categorical levels to implement a polytomous attribute model would
also be wrong. This study argues that if a set of attributes are meaningfully defined as polytomous,
appropriate models that account for the ordinal category levels should be used.
5.1.2 Response time

Response time provides crucial supplementary information that can improve parameter
estimation and classification accuracies. The real data analysis of the PISA computer-based data

compared models with and without response time. The models with response time, though less
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parsimonious, showed better model fits and standard error of parameter estimates than the model
that ignores response time. From the simulation study, results also showed that ignoring response
time leads to poorer model performance. The typical testing situation imposes limited test time,
even on supposedly power tests. This time limit introduces a new source of dependence in observed
responses that are not accounted for in the traditional cognitive or item response models. This also
means the all-important assumption of conditional independence is not satisfied with these data.
The results of this study have shown that it is indeed important to account for time effect in
modeling responses to tests for item calibration or for skills profile estimation.
5.1.3 Variable speed

The comparison between the JRT DINA with constant speed and the proposed JDS DINA
with variable speed showed that both models performed equally well in recovering item and
structural parameter estimates. In particular, the JRT-DINA recovered model parameter well, even
when data was generated with a differential speed model. However, the effect of ignoring the
differential speed is seen in the classification accuracies. This suggests that the flexibility provided
by JDS DINA may be particularly important for correct classification, which is indeed the aim of
cognitive diagnostic modeling. This result, however, is limited to the few data conditions that were
explored. The influence on the item and structural parameters may be more pronounced with much
higher or lower values for the variance of speed components.
5.1.4 Supplementary RT information

The results obtained from the 2012 computer-based Math test analysis showed that the
data was more suited to a joint response time with constant speed (JRT DINA). As previously
noted, this result is severely limited by the length of the test. The shortness of the test may not

support a variable speed model, especially with a non-high-stakes test like PISA. It is very
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possible that students would keep a regulated speed of response through such a short test. That
said, implementation of the variable speed model not only provides comparable parameter
estimates with the constant speed model, but it also supplies additional information that could
give insight to possible differences in test-taking behaviors and strategies. Figure 24 is a

graphical depiction of what might be possible with the information obtained from a JDS model.

* low * medium * high

Figure 24 Relationships among person parameters from PISA computer-based Math test

In generating the figure above, only the data for the country of the USA was used.
Observed patterns are similar across all the other countries in the data. The ability estimates were
crudely split into three groups - low, medium, and high ability groups. The patterns show that the
relationship among the person parameters differ across the three ability groups. This could

indicate different test-taking strategies across these groups. For instance, panels A and B of
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Figure 24 suggest that the high ability students are slow starters but increase speed very quickly,
while the low to medium ability students start and proceed quickly through the test. Given PISA
is not a high-stakes test, the observed pattern may be indicative of low motivation and (perhaps)
guessing of answers among the low ability test-takers. Analysis of these patterns is beyond the
scope of the current study. However, a detailed examination of this additional information could
provide essential data to enhance skills diagnosis as well as item development and calibration for
diagnostic purposes.
5.2 Limitations and future research

This section briefly discusses some limitations of the study while also offering directions
for future research.
5.2.1 Test length

Research question 1 used the PISA data to examine the consequence of ignoring response
time and the speededness effect. The result suggested that response time was important but not
speededness effect. The item pool severely limited the results of this study. There were ten items
used to assess seven attributes. By default, the associated Q-matrix is incomplete (Kéhn & Chiu,
2018b), which may have affected the results. The nature of the test may have also played a role
in the results. The PISA test a not a high-stakes test, and students are probably not highly
motivated to finish the test. As such, the change in speed may not be very informative for skills
diagnosis since the ability is further confounded with motivation. The findings, nonetheless, are
interesting and promising. Future research should explore similar comparisons with a larger item

pool to verify the findings of this study further.
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5.2.2 Parameter values

The simulation study was used to address the last three questions of this study. Due to the
limited number of studies on the relationship between speededness and cognitive ability, prior
information on plausible values for the correlation between speed components and cognitive
ability was not readily available. The empirical data available were not adequate to furnish
reliable values either. The results of the current study may have been limited by the choice of the
variance and correlation values used. A large item pool with response time information could be
used to re-estimate these models and obtain more realistic true values for these parameters.

5.2.3 Simulation conditions

To reduce computational burden, a sample size of 200 was used in the simulation study.
For a typical latent variable model, this is considered a small sample size. However, the study
was kept at this sample size because of the computational burden of the JDS model. The number
of iterations was also kept at 10,000 for the same reason. With 10,000 iterations, convergence for
the person speed parameters in the variable speed model was relatively poor across the design
conditions, with convergence rates between 73% and 84% for 7,,; 21% and 33% for 7,, and
between 26% and 43% for t,.

The rest of the parameters had a convergence rate of at least 94%, except for A, which
had between 69% and 100% convergence rates. For this reason, all model comparisons were
restricted to item and structural parameters only. However, the poor convergence for these few
parameters may have affected the classification accuracy rates obtained for the differential speed
model. Given the low convergence for the person speed parameters, future studies would need to

significantly increase the number of iterations to improve mixing for these parameters, taking
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note of the associated cost in computation time. Larger sample sizes should also be explored to
understand the large sample behavior the variable speed model parameters.
5.2.4 Computational burden

Although the JDS-DINA offers more flexibility in the use of response time, the model, as
defined in this study, is computationally intensive. In assessing these computation times, the
JAGS estimation procedure was programmed to track all parameters and estimates in the model.
Hence, the differences in estimation times are expected, especially because some of the
additional estimates in the JDS model are incidental, increasing with sample size.

The current study was carried out using multiple computers with different specifications,
and hence, estimation time across models could not be meaningfully compared. To show what is
possible, the estimation time for one replication was obtained for each model using a computer
with four cores, a base speed of 1.99GHz, and eight processors. Table 16 displays the
computation times observed for one replication of the first design condition in the study. As
expected, the polytomous configuration requires more time than binary attribute configuration,
and computation time is very similar between MHO-DINA and JRT-DINA.

Table 16

Computation times (in minutes) for study models

MHO-DINA JRT-DINA JDS-DINA
Binary 7.32 7.77 192.77
Polytomous 11.62 10.58 202.60

However, with JDS-DINA, there is a substantial increase in computation time. The
computer-based PISA Mathematics data required 95.65 minutes to estimate the JDS-DINA

model with 7 binary attributes, ten items, and 1,584 students. In the simulation study, sample size
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was reduced to 200, the number of attributes also dropped to 4, but the number of items
increased from 10 to 30. These changes doubled the estimation time for the model with binary
configuration. Hence, with a large item pool, the use of the variable speed model may be
prohibitive.

Researchers should carefully consider the tradeoff between the flexibility and
supplementary information offered by the differential speed model and the computational burden
associated with its implementation, especially for large-scale assessment data. Alternative model
specifications that offer the same amount of information and flexibility, but with lower time cost,
could be explored. For instance, instead of a hierarchical model to relate response time to ability,
one could use response time as a covariate for the ability level estimation via latent speed.

5.3 Summary

Literature is replete with studies that have proposed new models for analyzing cognitive
diagnostic assessments. The call for transparency and accountability makes these research efforts
expedient for enhancing the significance of educational assessments. However, most of the
models in the literature have focused on the development of new diagnostic models to better
reflect one or more specific test theories underlying a set of test responses. Only a few of these
have investigated improving the outcome from these models by exploring information from
response time.

This study explored a new model that expands existing models to incorporate response
time and graded mastery levels in skills diagnosis. The examination of the model proved to be
computationally demanding, but feasible. Comparison with existing models showed that
incorporating response time with at least a constant speed is essential for item calibration.

Extending response time to reflect variable speed may not significantly improve model
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parameter estimation, but it does improve attribute classification accuracy, which is the crux of
diagnostic assessment.

The unavailability of cognitive diagnostic assessments for determining population
parameter values qualified the outcome of this study. This is because most assessments are not
designed for cognitive assessments, and current modeling attempts are restricted to retrofitting.
More research efforts should be directed towards test construction and item calibration for
diagnostic purposes to improve the modeling outcomes for these tests. Nonetheless, the results of
the current study demonstrate great possibilities for using readily available response time to
inform and enhance parameter estimation and classification accuracy in cognitive diagnostic
modeling. Additional information supplied by this model can also provide insight into test

behaviors that may compromise predicating test theory if ignored.
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APPENDIX A: SUPPLEMENTARY MATERIALS FOR RESEARCH QUESTION 4

Table A1

Bias and RMSE of 4 by simulation design conditions — binary attributes

cond | 62 o o2 p o o Bias RMSE
w "u T P Pen Fen \pop JRTB JDSBT MHOB  JRTB  JDSB
1 005 |01 - -0.006  -0.005 - 0.055  0.055
2 03 ' 0.3 - 0.000  0.000 - 0.057  0.057
3 : 0.1 - 0.005  0.005 - 0.057  0.058
2 0.10 5 - -
o1 : 0.000  0.000 0.056  0.056
5 005 |01 - 0.003  0.002 - 0.056  0.056
6 07 : 0.3 - 0.005  0.006 - 0.059  0.059
7 " g0 01 - -0.003  -0.004 - 0.055  0.056
8 01 0.3 - 0.000  0.001 - 0.057  0.058
9 005 |01 - 0.001  0.002 - 0.060  0.061
10 03 : 0.3 - 0.006  0.006 - 0.063  0.063
11 | 010 0L - 0.004  0.006 - 0.061  0.061
12 05 : 0.3 - -0.002  0.000 - 0.060  0.059
13 : 005 |01 - 0.007  0.007 - 0.060  0.060
14 07 : 0.3 - -0.003  -0.003 - 0.060  0.060
15 | 010 0L - 0.003  0.003 - 0.063  0.063
16 | o1 : 0.3 - 0.000  0.000 - 0.058  0.059
17 005 |01 - 0.001  0.003 - 0.064  0.063
18 03 : 0.3 - -0.002  0.001 - 0.061  0.061
19 | 010 0L - 0.010  0.009 - 0.065  0.066
20 01 : 0.3 - -0.001  -0.002 - 0.060  0.060
21 : 005 |01 - -0.005  -0.004 - 0.062  0.064
22 07 : 0.3 - 0.011  0.013 - 0.064  0.065
23 | 010 0L - 0.008  0.007 - 0.061  0.061
24 05 : 0.3 - -0.004  -0.003 - 0.062  0.063
25 : 005 |01 - 0.009  0.009 - 0.068  0.068
26 03 : 0.3 - 0.002  0.001 - 0.067 0.067
27 | 010 0L - 0.006  0.008 - 0.066  0.068
28 05 : 0.3 - 0.003  0.004 - 0.067  0.067
29 : 005 |01 - 0.002  0.002 - 0.065  0.065
30 07 : 0.3 - 0.006  0.005 - 0.066  0.066
32 | 010 0L - -0.004  -0.002 - 0.063  0.063
32 : 0.3 - -0.001  0.000 - 0.064  0.065
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Table Al (cont’d)

Cond | 62 o o p 0 0 Bias RMSE

o Tt Tm P otz 2 MHOB JRTB JDSB MHOB JRTP JDSB

33 005 0L - -0.010 -0.006 - 0.073  0.075
34 03 ' 0.3 - 0.006  0.005 - 0.073  0.076
35 : 010 |01 - -0.008 -0.007 - 0.074  0.077
36 01 ' 0.3 - 0.002  0.004 - 0.068  0.072
37 : 005 |01 - 0.007  0.009 - 0.068  0.070
38 07 ' 0.3 - 0.018  0.017 - 0.072  0.072
39 : 010 |01 - 0.000  0.000 - 0.070  0.075
40 01 ' 0.3 - 0.012  0.009 - 0.068  0.069
41 : 005 |01 - 0.009  0.010 - 0.070  0.071
42 03 ' 0.3 - 0.001  -0.001 - 0.075 0.076
43 : 010 |01 - 0.005  0.007 - 0.075  0.079
44 05 ' 0.3 - 0.011 0.011 - 0.069  0.071
45 : 005 |01 - 0.009  0.008 - 0.078  0.079
46 07 ' 0.3 - 0.006  0.009 - 0.074  0.076
47 : 010 |01 - 0.008  0.008 - 0.076  0.077
8 | o ' 0.3 - -0.001  0.000 - 0.074  0.072
49 : 005 |01 - 0.011 0.011 - 0.074  0.076
50 03 ' 0.3 - 0.007  0.007 - 0.070  0.075
51 : 010 |01 - 0.006  0.002 - 0.083  0.081
52 01 ' 0.3 - 0.002  0.009 - 0.073  0.074
53 : 005 |01 - -0.007 -0.004 - 0.073  0.076
54 07 ' 0.3 - 0.003  0.004 - 0.080  0.079
55 : 010 |01 - 0.002  0.003 - 0.081  0.079
56 05 ' 0.3 - 0.008  0.013 - 0.078  0.077
57 : 005 |01 - 0.002  0.009 - 0.084  0.085
58 03 ' 0.3 - 0.006  0.006 - 0.072  0.073
59 : 010 0L - 0.004  0.009 - 0.083  0.086
60 05 ' 0.3 - -0.002 -0.003 - 0.082  0.090
61 : 005 |01 - 0.014  0.013 - 0.078  0.078
62 07 ' 0.3 - -0.004 -0.005 - 0.078  0.079
63 : 010 0L - 0.000  0.004 - 0.076  0.078
64 ' 0.3 - 0.008  0.008 - 0.080  0.081
Mean - 0.003  0.004 - 0.068  0.069
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Table A2

Bias and RMSE of §, by simulation design conditions — binary attributes

Cond |62 o o p o o Bias RMSE

v "u  Tr Pew  Fen P Mo JRTB JDSBT MHOB - JRTB JDSB
1 005 | 0-L [-0862 0875 0874 1322 1.325 1.326
2 03 ' 03 |-0830  -0838 -0.841 1.265 1271 1.275
3 : 010 |01 |-0849 0860 -0.856 1275 1.284  1.282
4 01 ' 03 |-0849 -0858 -0.855 1.281 1.281  1.279
5 : 005 | 0L |-0822 0832 -0833 1241 1.242  1.243
6 07 ' 03 |-0837 -0851 -0.850 1.262 1.269  1.269
7 : o010 |01 |-0882 0892 0891 1288 1.293  1.292
8 01 ' 03 |-0881 -0891 -0.887 1.331 1.331  1.330
9 : 005 | 0L |-0.880 0889 -0.889 1291 1.294  1.294
10 03 ' 03 |-0833 -0846 -0.844 1.270 1.279  1.277
11 : o010 |01 |-0832 0847 -0846 1258 1.265  1.265
12 05 ' 03 |-0885  -0.893 -0.890 1.303 1.306  1.306
13 : 005 | 0L |-0848 0864 -0.863 1300 1.305  1.304
14 07 ' 03 |-0816 -0831 -0.829 1.242 1.247  1.246
15 : o010 | 0L |-0872 0887 -0.887 1285 1.292  1.293
T ' 03 |-0862 -0876 -0.874 1.310 1.315 1.314
17 : 005 | 0:L |-0.856  -0.868 -0.865 1300 1.304  1.304
18 03 ' 03 |-0847 -0854 -0.857 1.267 1.268 1.271
19 : o010 | 0L |-0863 0872 -0872 1314 1.316  1.317
20 01 ' 03 |-0840 -0851 -0.850 1.279 1.284  1.285
21 : 005 | 0L |-0851 0867 -0.865 1271 1.274  1.274
22 07 ' 03 |-0853 -0.868 -0.867 1.263 1.265  1.266
23 : o010 | 0L |-0833 0843 0843 1282 1.283  1.282
24 05 ' 03 |-0896  -0.903 -0.904 1.334 1.337  1.338
25 : 005 | 0L |-0829 0842 -0840 1273 1.280 1.281
26 03 ' 03 |-0859 -0870 -0.869 1.289 1.294  1.292
27 : 010 | 0L |-0857 0866 -0.865 1302 1.307  1.306
28 05 ' 03 |-0846 -0860 -0.860 1.280 1.287  1.288
29 : 005 | 0L |-0842 085 -0.852 1260 1.267  1.268
30 07 ' 03 |-0842 -0853 -0.853 1.305 1.310  1.310
31 : o010 | 0L |-0854 0863 -0.862 1273 1.279  1.277
32 ' 03 |-0853 -0.864 -0.865 1.292 1.295  1.297
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Table A2 (cont’d).

cond o2 o o p 0 0 Bias RMSE

o Tu T Fen Fen Fen \pop JRTB JDSBT MHOB - JRTB JDSB

33 o005 | 01| 0828 0840 -0840 1205 1299 1298
34 03 ' 03| -0829 -0835 -0832 1283 1284 1283
35 o1 01| 0811 0824 -0824 1266 1267 1269
36 01 ' 03| -0837 -0853 -0852 1285 1290 1.289
37 : o005 | 01| 0865 0800 0802 1205 1302 1303
38 07 ' 03| -0853 -0868 -0.869 1297 1304 1.305
39 "l o1 01| 0873 0881 0882 1208 1295 1297
40 01 ' 03| -0872 -0889 -0890 1305 1323 1323
41 : o005 | 01| 0836 0849 0845 1271 1273 1273
42 03 ' 03| -0798 -0811 -0814 1273 1281 1282
43 [ o1 01| 0842 0849 -0848 1288 1201 1291
44 05 ' 03| -0850 -0863 -0.863 1296 1303 1.302
45 : o005 | 01| 0834 082 -0852 1278 1280 1280
46 07 ' 03| -0867 -0880 -0878 1294 1208 1297
47 "l o1 01| 0850 0859 -0859 1278 1277 1278
8 | ' 03| -0842 -0849 -0848 1267 1268 1267
49 : o005 | 01| 0844 0863 -0861 1284 1286 1284
50 03 ' 03| -0843 -0852 -0852 1293 1295 1296
51 [ o1 [ 0L] 0815 0828 -0829 1261 1267 1268
52 01 ' 03| -0883 -0890 -0895 1323 1327 1331
53 : o005 | 01| 087 0879 -0878 1303 1312 1311
54 07 ' 03| -083 -0855 -0853 1276 1284 1283
55 "l o1 01| 0850 0867 -0868 1278 1282 1282
56 05 ' 03| -0816 -0827 -0828 1248 1246 1246
57 : o005 | 01| 0808 -0817 -0815 1253 1251 1251
58 03 ' 03| -089 -0879 -0879 1298 1301 1.302
59 [ o1 01| 0848 0861 -0862 1310 1319 1320
60 05 ' 03| -0815 -0823 -0824 1270 1272 1272
61 : o005 | 01| 0845 0862 -0861 1271 1277 1279
62 07 ' 03| -080 -0874 -0875 1305 1305 1.308
63 [ o1 01| 0857 0878 -0877 1327 1338 1341
64 ' 03| -0813 -0823 -0821 1253 1252 1251
Mean | -0.847 -0.859 -0.859  1.285  1.289 1.289
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Table A3

Bias and RMSE of y,;, by simulation design conditions — binary attributes

Cond o o o p Do Do Bias RMSE

o T T o 2 2 MHOB JRTB JDSB MHOB JRTB JDSB
1 005 -0.1 | -0.069 -0.066  -0.072 0.208 0.206  0.205
2 03 ' -0.3 | -0.061 -0.063 -0.055 0.217 0.215  0.217
3 ' 010 -0.1 | -0.106 -0.107 -0.114 0.221 0.221 0.221
4 01 ' -0.3 | -0.088 -0.096 -0.095 0.213 0.213  0.212
5 ' 005 -0.1 | -0.090 -0.092 -0.094 0.219 0.221  0.222
6 0.7 ' -0.3 | -0.057 -0.052 -0.048 0.223 0.219  0.218
7 ' 010 -0.1 | -0.147 -0.157 -0.147 0.235 0.232  0.235
8 01 ' -0.3 | -0.081 -0.086 -0.083 0.209 0.209  0.208
9 ' 0.05 -0.1 | -0.122 -0.130  -0.134 0.220 0.219  0.217
10 03 ' -0.3 | -0.018 -0.018 -0.020 0.248 0.248  0.247
11 ' 010 -0.1 | -0.085 -0.083 -0.080 0.231 0.228  0.228
12 05 ' -0.3 | -0.067 -0.072 -0.078 0.224 0.225  0.223
13 ' 005 -0.1 | -0.057 -0.048 -0.046 0.229 0.224  0.223
14 0.7 ' -0.3 | -0.069 -0.067 -0.063 0.227 0.228  0.227
15 ' 010 -0.1 | -0.057 -0.048 -0.041 0.217 0.217  0.220
16 01 ' -0.3 | -0.122 -0.116  -0.107 0.211 0.212  0.215
17 ' 005 -0.1 | -0.104 -0.110 -0.102 0.213 0.212  0.213
18 03 ' -0.3 | -0.091 -0.095 -0.089 0.218 0.216  0.215
19 ' 010 -0.1 | -0.152 -0.156  -0.150 0.222 0.221 0.221
20 01 ' -0.3 | -0.085 -0.079  -0.084 0.209 0.211 0.211
21 ' 005 -0.1 | -0.096 -0.101  -0.099 0.231 0.229  0.230
22 0.7 ' -0.3 | -0.111 -0.116  -0.109 0.225 0.225 0.225
23 ' 010 -0.1 | -0.058 -0.060 -0.058 0.238 0.237  0.237
24 05 ' -0.3 | -0.096 -0.105 -0.108 0.227 0.225 0.225
25 ' 005 -0.1 | -0.100 -0.098 -0.101 0.229 0.226  0.228
26 03 ' -0.3 | -0.074 -0.077 -0.070 0.231 0.232  0.230
27 ' 010 -0.1 | -0.041 -0.048 -0.040 0.233 0.233 0.231
28 05 ' -0.3 | -0.064 -0.067 -0.062 0.226 0.226  0.225
29 ' 005 -0.1 | -0.177 -0.175 -0.169 0.232 0.231 0.231
30 0.7 ' -0.3 | -0.094 -0.101  -0.095 0.223 0.223  0.222
31 ' 010 -0.1 | -0.018 -0.021 -0.016 0.226 0.226  0.226
32 ' -0.3 | -0.098 -0.103  -0.102 0.213 0.212  0.213
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Table A3 (cont’d)

Cond | 6%, 0% 6% Poy, Per, Per —Blas RMSE_

o u Om 0 2 2 MHOB JRTB JDSB MHOB JRTB JDSB

33 005 |01 0141 0144 0128 0247 0244 0244
34 03 ' 03 |-0139 -0150 -0.148 0225 0225 0.226
35 “ | oo |01 |-0003 0084 -0082 023 0234 0235
36 o1 ' 03 |-0134 -0144 -0131 0215 0215 0213
37 ' 005 |0l |-0196 0182 0167 0233 0225 0227
38 07 03 |-0088 -0.089 -0.084 0228 0226 0227
39 " | o0 |01 |-0049 0059 0049 0202 0205 0206
40 - 03 |-0128 -0.109 -0.126 0208 0208 0.208
41 ' 005 |01 |-0165 0162 0150 0219 0218 0217
42 03 ' 03 |-0197 -0190 -0.189 0232 0229 0231
43 “ | oo |01 |-0089 0001 -008 0216 0215 0216
44 05 03 |-0001 -0.006 -0.005 0222 0222 0224
45 ' 005 |01 |-0.149 0147 0154 0212 0212 0208
46 07 03 |-0076 -0077 -0071 0218 0216 0.217
47 " | oo 01 |-0145 0138 0141 0223 0228 0228
48 | & ' 03 |-0071  -0.067 -0.067 0230 0229 0.226
49 ' 005 |0l |-0072 0071 0067 0221 0219 0218
50 03 ' 03 |-0089 -0088 -0.088 0227 0226 0.224
51 “ | oo |01 |-0064 0060 0048 0223 0225 0224
52 o1 03 |-008  -0097 -0078 0234 0231 0231
53 ' 005 |01 |-008 0083 -0081 0229 0224 0225
54 07 ' 03 |-0069 -0.069 -0.065 0218 0215 0.214
55 " | oo 01 |-0112 0009 0001 0221 0223 0223
56 05 ' 03 |-0121 -0123 -0.104 0219 0219 0219
57 ' 005 |01 |-0128 0137 0143 0226 0226 0228
58 03 03 |-0100 -0.097 -0.097 0206 0207 0.206
59 “ | g0 0L ]-0003 0004 -0088 0210 0211 0211
60 05 ' 03 |0014 0011 0014 0231 0231 0232
61 ' 005 |01 |-0137 0133 0126 0224 0221 0218
62 07 ' 03 |-0215 -0218 -0209 0227 0227 0.227
63 "l oo 01 |-0122 0121 0113 0224 0224 0230
64 03 |-0160 -0.164 -0.169 0229 0227 0.229
Mean | -0.098  -0.099 -0.095 0223 0222 0222
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APPENDIX B: SUPPLEMENTARY MATERIALS FOR RESEARCH QUESTION 5

Table B1

Bias and RMSE of 4 by simulation design conditions — polytomous attributes

Cond | 63, ©% % p P P 2 R

W o "m Tm Pnw Tm Pm  mHOP  JRTP_ JDSP_ MHOP__ JRTP__JDSP

1 005 |01 - -0.007  -0.007 - 0.055  0.055
T2 03 |03 - 0.000  0.001 - 0.057  0.058
3 " o0 0L - 0.004  0.003 - 0.057  0.057
4 - T 03 - -0.001  -0.001 - 0.056  0.057
5 ' 005 0L - 0.001  0.000 - 0.056  0.056
6 07 | 103 - 0.003  0.003 - 0.058  0.059
7 | oo 01 - -0.006  -0.006 - 0.055  0.056
8 0.1 [ -03 - -0.002  -0.003 - 0.057  0.058
9 005 |01 - 0.000  0.002 - 0.060  0.060
10 03 | | 03 - 0.004  0.005 - 0.063  0.063
11 P - 0.004  0.004 - 0.061  0.061
12 05 [ -03 - -0.002  -0.003 - 0.059  0.060
13 ' 005 |01 - 0.005  0.004 - 0.060  0.060
14 07 | |03 - -0.005  -0.005 - 0.060  0.060
15 1 o0 0L - -0.001  0.002 - 0.062  0.062
16 | o1 [ -03 - -0.002  -0.001 - 0.059  0.058
17 005 |01 - 0.001  0.003 - 0.063  0.064
18 03 | | 03 - -0.004  -0.001 - 0.062  0.062
19 | o0 0L - 0.009 0011 - 0.065  0.066
20 o1 [ -03 - -0.002  -0.001 - 0.060  0.060
21 ' 005 |01 - -0.008  -0.007 - 0.063  0.063
22 07 | |03 - 0.009  0.010 - 0.064  0.064
23 1 o0 0L - 0.006  0.005 - 0.061  0.062
24 05 [ -03 - -0.007  -0.007 - 0.063  0.063
25 - 005 |01 - 0.008  0.007 - 0.068  0.068
26 03 | | 03 - 0.002  0.002 - 0.066  0.067
27 | o0 0L - 0.006  0.005 - 0.066  0.067
28 05 [ -03 - 0.004  0.003 - 0.067  0.068
29 ' 005 |01 - 0.000  0.002 - 0.064  0.066
30 07 | |03 - 0.004  0.003 - 0.066  0.066
32 1 o0 0L - -0.006  -0.006 - 0.063  0.064
32 [ 03 - -0.002__ -0.001 - 0.064 _ 0.064
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Table B1 (cont’d)

Cond | 63, o2 o2, p p p _Bias__ RMSE

o Tu Tz P o1z 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 005 0L — 0011 -0.011 — 0.072 0.074
34 03 ' 03 - 0.003  0.005 — 0.074  0.074
35 S| 010 0L - 0013 -0.011 — 0.076  0.078
36 01 ' 03 - 0.000  0.001 — 0.069  0.070
37 ' 005 0L - 0.001  0.001 — 0.069  0.069
38 07 ' 03 - 0.006  0.006 — 0.071  0.074
39 | 010 0L - -0.008 -0.004 — 0.070  0.073
40 01 ' 03 - 0.003  0.005 — 0.066  0.069
41 ' 005 0L - 0.007  0.004 — 0.071  0.072
42 03 ' 03 - -0.003 -0.001 — 0.075  0.075
43 S| 010 0L - 0.005 0.003 - 0.076  0.077
44 05 : 03 - 0.008  0.009 - 0.068  0.069
45 ' 005 0L - 0.002  0.002 - 0.079  0.077
46 07 : 03 - 0.001  0.002 - 0.072  0.073
47 | 010 0L - 0.001 -0.001 - 0.075  0.073
8| e : 03 - -0.006 -0.006 - 0.072  0.073
49 ' 005 0L - 0.008  0.011 - 0.071  0.074
50 03 : 03 - 0.005 0.001 - 0.072  0.073
51 S| 010 0L - 0.003  0.006 - 0.082  0.084
52 01 : 03 - 0.003  0.003 - 0.073  0.073
53 ' 005 0L - -0.015 -0.013 - 0.076  0.077
54 07 : 03 - -0.005 -0.003 - 0.078  0.079
55 | 010 0L - -0.007 -0.004 - 0.080  0.079
56 05 : 03 - 0.000 -0.002 - 0.076  0.079
57 ' 005 0L - 0.001  0.002 - 0.084  0.083
58 03 ' 03 - 0.004  0.003 - 0.071  0.075
59 | 010 0L - 0.004  0.005 - 0.084  0.086
60 05 ' 03 - -0.004 -0.008 - 0.083  0.084
61 ' 005 0L - 0.010  0.008 - 0.076  0.077
62 07 ' 03 - -0.010 -0.011 - 0.080  0.082
63 | 010 0L - -0.007 -0.004 - 0.078  0.076
64 ' 03 - -0.001  0.000 - 0.081  0.083
Mean - 0.000  0.000 - 0.068  0.069
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Table B2

Bias and RMSE of §, by simulation design conditions — polytomous attributes

Cond o o o po Pe Do Bias RMSE

0 1 2 0 2 2 MHOP JRTP JDSP MHOP JRTP JDSP
1 005 -0.1 | -0.006 -0.024 -0.025 0.842 0.834 0.831
2 03 ' -0.3 | 0.046 0.024  0.023 0.795 0.781  0.785
3 ' 010 -0.1 | 0.033 0.016  0.010 0.815 0.810  0.806
4 01 ' -0.3 | 0.046 0.030  0.023 0.797 0.786  0.782
5 ' 005 -0.1 | 0.024 0.000  -0.001 0.743 0.732  0.731
6 0.7 ' -0.3 | 0.015 -0.007 -0.001 0.799 0.786  0.788
7 ' 010 -0.1 | -0.009 -0.019 -0.017 0.764 0.756  0.755
8 01 ' -0.3 | 0.006 -0.003  -0.005 0.805 0.795  0.795
9 ' 005 -0.1 | -0.020 -0.039  -0.038 0.764 0.751  0.757
10 03 ' -0.3 | -0.001 -0.026  -0.023 0.792 0.781 0.784
11 ' 010 -0.1 | 0.026 0.004  0.002 0.815 0.806  0.806
12 05 ' -0.3 | 0.026 0.010 0.012 0.791 0.778  0.779
13 ' 005 -0.1 | 0.016 -0.004 0.001 0.801 0.788  0.790
14 0.7 ' -0.3 | 0.048 0.026  0.030 0.773 0.758  0.759
15 ' 010 -0.1 | 0.029 0.010 0.009 0.767 0.761  0.763
16 01 ' -0.3 | 0.020 0.006  0.007 0.810 0.801 0.801
17 ' 005 -0.1 | -0.001 -0.022  -0.022 0.799 0.793  0.792
18 03 ' -0.3 | 0.015 0.003  0.000 0.776 0.767  0.767
19 ' 010 -0.1 | -0.001 -0.019 -0.019 0.815 0.805  0.808
20 01 ' -0.3 | 0.020 0.001  0.004 0.794 0.793  0.793
21 ' 005 -0.1 | 0.018 0.005  0.007 0.775 0.773 0.774
22 0.7 ' -0.3 | 0.044 0.020 0.021 0.785 0.769  0.769
23 ' 010 -0.1 | 0.027 0.005 0.012 0.821 0.809 0.810
24 05 ' -0.3 | -0.027 -0.040  -0.043 0.828 0.815 0.814
25 ' 005 -0.1 | 0.000 -0.016 -0.016 0.775 0.771 0771
26 03 ' -0.3 | 0.017 0.000  -0.001 0.778 0.773  0.779
27 ' 010 -0.1 | 0.020 0.001  0.001 0.816 0.807 0.801
28 05 ' -0.3 | -0.002 -0.020 -0.015 0.814 0.818 0.820
29 ' 005 -0.1 | 0.050 0.035 0.038 0.780 0.781  0.780
30 0.7 ' -0.3 | -0.002 -0.024 -0.021 0.816 0.811  0.809
31 ' 010 -0.1 | 0.021 0.007  0.008 0.782 0.773  0.776
32 ' -0.3 | 0.036 0.018 0.018 0.795 0.790  0.787
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Table B2 (cont’d)

Cond o% ©% 0% Peyy, Por, Per —Dlas_ RMSE_

o “u Om 0 2 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 005 | 0L] 0025 0001 0003 0811 0791 0790
34 03 ' 03 | -0007 -0032 -0028 0784 0783 0.783
35 | o0 0L 0032 0010 0011 0801 0779 0779
36 o1 ' 03| 0032 0004 0011 0803 0793 0.795
37 ' 005 0L 0012 0039 -0043 0811 0780 0.784
38 07 03| -0004 -0031 -0028 0788 0780 0.778
39 | o1 | 01| 0016 -0041 0036 0795 0784 0783
40 o1 03| -0004 -0022 -0019 0801 0801 0.804
41 ' 005 0L 0039 0025 0027 0784 0759 0762
42 03 ' 03| 0042 0023 0024 0820 0798 0.801
43 | o1 01| 0014 0000 0004 0781 0787 0787
44 05 03| 0029 0017 0022 0794 0787 0.789
45 ' 005 | 01| 0028 0002 -0002 0803 0782 0.783
46 07 03 | -0004 -0022 -0020 0781 0768 0.767
47 " o0 01| 0003 0018 0016 0797 0777 0777
8| s ' 03| 0027 0015 0016 0792 0769 0.768
49 ' 005 0L 0055 0032 003 078 0774 075
50 03 ' 03| -0017 -0039 -0041 0818 0811 0.813
51 “ | o1 01| 0010 0003 0005 07% 0792 0799
52 o1 03| -0015 -0033 -0031 0798 0804 0.802
53 ' 005 01| 0010 0004 0003 0810 0794 0797
54 07 ' 03 | 0008 -0002 -0001 0762 0756 0.760
55 | o0 |01 0033 0006 0010 078 0763 0764
56 05 ' 03| 0010 -0005 -0.005 0766 0745 0.744
57 ' 005 | 01| 0044 0026 0025 0791 0770 0.768
58 03 03| 0001 -0014 -0016 078 0776 0.778
59 | oo 01| 0021 0002 0001 0802 0794 079
60 05 ' 03 | 0003 -0008 -0009 0817 0806 0.809
61 ' 005 0L 0030 0015 0013 0806 0795 0793
62 07 ' 03| 0044 0018 0020 079 0770 0.770
63 ] o0 01| 0043 0016 0015 0853 0839 0839
64 03| 0052 0033 0032 0817 0810 0812
Mean | 0.017 -0.002 -0.001 0.796 0.785 0.786

104



Table B3

Bias and RMSE of y,;, by simulation design conditions — polytomous attributes

Cond o o o pe Pe Pe Bias RMSE

0 1 2 o 2 2 MHOP JRTP JDSP MHOP JRTP JDSP
1 005 -0.1 | 0.075 0.077 0.072 0.160 0.164  0.163
2 03 ' -0.3 | 0.066 0.072 0.071 0.173 0.173  0.174
3 ' 010 -0.1 | 0.103 0.112 0104 0.176 0.176  0.176
4 01 ' -0.3 | 0.012 0.017 0.014 0.162 0.161  0.163
5 ' 005 -0.1 | 0.087 0.085 0.088 0.185 0.185 0.185
6 0.7 ' -0.3 | 0.083 0.082 0.080 0.196 0.197 0.198
7 ' 010 -0.1 | 0.002 0.007 0.012 0.179 0.179  0.178
8 01 ' -0.3 | 0.077 0.089 0.082 0.181 0.181 0.182
9 ' 005 -0.1 | 0.073 0.074 0.080 0.180 0.179  0.176
10 03 ' -0.3 | 0.072 0.076  0.078  0.188 0.186  0.187
11 ' 010 -0.1 | 0.045 0.052  0.057 0.181 0.182  0.182
12 05 ' -0.3 | -0.033 -0.033 -0.028 0.180 0.178 0.181
13 ' 005 -0.1 | 0.021 0.025 0.028 0.195 0.190 0.196
14 0.7 ' -0.3 | 0.026 0.029 0.035 0.187 0.182  0.184
15 ' 010 -0.1 | 0.055 0.053  0.057 0.175 0.172 0.171
16 01 ' -0.3 ] 0.018 0.018 0.016  0.182 0.179  0.182
17 ' 005 -0.1 ] 0.033 0.037 0.045 0.173 0.173  0.174
18 03 ' -0.3 | 0.057 0.064 0.068 0.172 0.167  0.168
19 ' 010 -0.1 | 0.041 0.048 0.045 0.174 0.172  0.172
20 01 ' -0.3 | 0.047 0.046  0.045 0.195 0.194  0.195
21 ' 005 -0.1 | 0.023 0.019 0.020 0.175 0.177  0.179
22 0.7 ' -0.3 | 0.087 0.092 0.089 0.196 0.193  0.193
23 ' 010 -0.1 | 0.075 0.079  0.083 0.181 0.180 0.182
24 05 ' -0.3 |-0.014 -0.012 -0.018 0.168 0.166  0.169
25 ' 005 -0.1 | 0.032 0.043 0.049 0.177 0.177  0.176
26 03 ' -0.3 | 0.022 0.025 0.025 0.190 0.187  0.187
27 ' 010 -0.1 | -0.012 -0.013 -0.016 0.193 0.193  0.195
28 05 ' -0.3 | 0.048 0.036 0.041 0.181 0.183  0.187
29 ' 005 -0.1 | 0.031 0.039 0.043 0.182 0.183  0.183
30 0.7 ' -0.3 | 0.059 0.062 0.059 0.174 0.171  0.175
31 ' 010 -0.1 | 0.071 0.073 0.072 0.191 0.187  0.185
32 ' -0.3 | 0.029 0.033 0.045 0.184 0.182  0.185
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Table B3 (cont’d)

Cond o2 o o2 0 0 0 Bias RMSE

o Tu  Tw P otz 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 005 |01 [0026 0027 0028 0195 0193 0.19
34 03 : 03 | 0068 0070 0071 0182 0182 0.186
35 : o010 01 |-0001 0007 0004 0170 0167 0.168
36 01 : 03 | 0073 0078 0073 0190 0194 0.197
37 : o005 |01 |oo018 0017 0013 0178 0177 0.8l
38 07 : 03 | 0055 0069 0071 0179 0179  0.180
39 : o010 01 |oo017 0.013 0019 0.189  0.185 0.188
40 01 : 03 | 0046 0044 0049 0187 0181 0.182
41 : 005 |01 |0000 0010 0006 0181 0181 0.81
42 03 : 03 | 0043 0044 0042 0191 0187 0.192
43 : o010 |01 | o067 0073 0081 0172 0170 0.171
44 05 : 03 | 0041 0035 0023 0185 0189 0.186
45 : 005 |01 |0059 0063 0060 0173 0180 0.7
46 07 : 03 | 0069 0067 0069 0176 0176 0.174
47 : o010 |01 |0053 0069 0060 0169 0172 0.169
8 | o : 03 | 0030 0043 0040 0194 0193 0.193
49 : o005 |01 |0073 0078 0082 0163 0161 0.163
50 03 : 03 | 0043 0058 0059 0196  0.190 0.190
51 : o010 |01 |oo0s0 0068 0067 0175 0174 0.177
52 01 : 03 | 0055 0050 0055 0177 0181 0.182
53 : 005 |01 o022 0.014 0019 0.18  0.185 0.186
54 07 : 0.3 | 0.062 0.047 0047 0176  0.176 0.177
55 : o010 |01 |o0023 0022 0027 0180 0175 0.76
56 05 : 03 | 0039 003 0034 0171 0163 0.162
57 : o005 |01 |olo1 0097 0104 0179 0178 0.78
58 03 : 0.3 | 0.052 0051 0054 0182  0.183 0.185
59 : o010 |01 |0056 0046 0050 0190 0189 0.188
60 05 : 03 | 0105 0.105 0107 0184 0185 0.186
61 : 005 |01 |-0005 0007 -0.006 0191 0189 0.187
62 07 : 0.3 | 0.047 0.048 0043 0182  0.178 0.178
63 : o010 |01 |0031 002 0031 0176 0175 0.78
64 : 03 | 0076 0075 0077 0178 0174 0.173
Mean [ 0.046  0.047 0048 0181 0180 0.181
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Table B4

Bias and RMSE of y,;3 by simulation design conditions — polytomous attributes

Cond o2 o2 o pe Pe Do Bias RMSE

0 1 2 o 2 2 MHOP JRTP JDSP MHOP JRTP JDSP
1 005 -0.1 | -0.037 -0.039  -0.041 0.201 0.202  0.204
2 03 ' -0.3 | -0.011 -0.013  -0.010 0.185 0.185  0.190
3 ' 010 -0.1 | -0.023 -0.023  -0.027 0.190 0.189  0.190
4 01 ' -0.3 | -0.009 -0.012  -0.010 0.195 0.198  0.197
5 ' 005 -0.1 | 0.030 0.034 0.032  0.205 0.206  0.209
6 0.7 ' -0.3 | -0.070 -0.063  -0.063 0.197 0.192  0.192
7 ' 010 -0.1 | -0.013 -0.017  -0.027 0.201 0.202  0.204
8 01 ' -0.3 | -0.062 -0.070  -0.074 0.183 0.185 0.183
9 ' 0.05 -0.1 | -0.029 -0.031  -0.028 0.207 0.204  0.204
10 03 ' -0.3 ] 0.032 0.024 0.029  0.203 0.199  0.200
11 ' 010 -0.1 | -0.013 -0.007  0.000 0.196 0.199  0.197
12 05 ' -0.3 ] 0.019 0.022 0.015 0.189 0.189 0.191
13 ' 005 -0.1 | 0.047 0.058 0.055  0.205 0.207  0.208
14 0.7 ' -0.3 | -0.046 -0.052  -0.048 0.189 0.191  0.189
15 ' 010 -0.1 | 0.043 0.050 0.047  0.204 0.202  0.202
16 01 ' -0.3 | 0.026 0.020 0.031  0.209 0.212 0.211
17 ' 005 -0.1 | -0.003 -0.010  -0.004 0.184 0.182  0.185
18 03 ' -0.3 | 0.003 0.003 0.005 0.204 0.203  0.203
19 ' 010 -0.1 | 0.013 0.016 0.026  0.199 0.201  0.199
20 01 ' -0.3 | -0.030 -0.022  -0.025 0.215 0.216  0.218
21 ' 005 -0.1 | 0.023 0.030 0.036  0.197 0.197  0.197
22 0.7 ' -0.3 | -0.016 -0.016  -0.018 0.191 0.192  0.192
23 ' 010 -0.1 | -0.006 0.000 -0.005 0.181 0.181 0.181
24 05 ' -0.3 | 0.020 0.026 0.018  0.190 0.191  0.192
25 ' 005 -0.1 | -0.010 -0.011  -0.004 0.196 0.195  0.197
26 03 ' -0.3 | -0.037 -0.034  -0.042 0.204 0.201  0.200
27 ' 010 -0.1 | 0.023 0.023 0.024 0.201 0.202  0.199
28 05 ' -0.3 | -0.019 -0.013  -0.010 0.198 0.198 0.201
29 ' 005 -0.1 | -0.027 -0.033  -0.026 0.184 0.183  0.186
30 0.7 ' -0.3 | -0.039 -0.034  -0.037 0.198 0.201 0.201
31 ' 010 -0.1 | -0.008 -0.008  -0.009 0.190 0.187  0.185
32 ' -0.3 | -0.009 -0.009  -0.003 0.180 0.181  0.183
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Table B4 (cont’d)

Cond o2, o%2 o2 »p p p _ Bias RMSE _

o Tu T P P 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 005 0L [-0055 0085 0052 0212 0212 0211
34 03 ' 03 |-0014 -0016 -0017 0.185  0.188 0.187
35 “ | 010 |01 Jo004 0003 0000 0191  0.87  0.187
36 01 ' 03 |-0054 -0049 -0050 0.193  0.192 0.193
37 ' 005 |01 |-006L 0049 0049 0187  0.83 0.184
38 07 ' 03 |003 0024 0023 0190 0.188 0.186
39 " | o10 |01 |-0009 0013 0012 0183 0180 0.179
40 01 ' 03 |-003 -0030 -0026 0190 0.191 0.192
41 : 005 |01 |-0040 0041 0051 0181  0.85 0.191
42 03 ' 03 |-0027 -0024 -0024 0193 0192 0.191
43 “ | o1 |01 J0022 0020 0033 0204 0199 0.0
44 05 ' 03 |-0006 -0011 -0017 0207 0209 0.209
45 ' 005 |0l |-0064 0062 -0062 0184  0.81 0.181
46 07 ' 03 |-0038 -0030 -0035 0205 0202 0.204
47 " | 010 |01 Jo000 0008 0002 0199 0195 0.194
8 | e ' 03 | 0006 0010 0004 0198  0.199 0.200
49 ' 005 |01 |-0015 0014 0010 0199  0.97 0.198
50 03 ' 03 |-0077 -0079 -0071 0.188  0.189 0.188
51 “ | o1 |01 ]-0057 0049 0047 0179  0.178 0.79
52 01 ' 03 |-0013 -0008 -0.009 0202 0201 0.201
53 ' 005 0L |-0008 0019 -0009 0185  0.87 0.9
54 07 ' 03 |-0021 -0011 -0010 0.185  0.183 0.181
55 " | o10 |01 ]0033 0024 0029 0208 0204 0.203
56 05 ' 03 |-0012 -0019 -0017 0210 0202 0.201
57 ' 005 0L |0075 0073 0072 0205 0203 0.206
58 03 ' 03 |0014 0012 0008 0.194  0.194 0.195
59 “ | o1 |01 |-008 0083 0078 0205 0202 0.205
60 05 ' 03 |-0012 -0010 -0005 0.199  0.199 0.199
61 ' 005 |01 0032 0035 0027 0209 0207 0207
62 07 ' 03 |-0080 -0080 -0077 0.187  0.186 0.187
63 " | o1 |01 ]-00% 0025 0027 0195 0196 0.198
64 ' 03 |-0058 -0057 -0.050 0.195  0.197 0.195
Mean | -0.016  -0.015 -0015 0.196  0.195 0.196
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Table B5

Bias and RMSE of y,;4 by simulation design conditions — polytomous attributes

Cond | 6%, 0% 0%, Po Po Po _Bias RMSE

0 1 2 0 2 2 MHOP JRTP JDSP MHOP JRTP JDSP
1 .0.05 -0.1 10.041 0.042 0.040 0.195 0.193  0.190
2 03 ' -0.3 | -0.087 -0.085 -0.073 0.194 0.196 0.197
3 ' 2010 -0.1 | -0.087 -0.093 -0.092 0.187 0.185 0.186
4 01 ' -0.3 | -0.092 -0.092 -0.092 0.201 0.202 0.201
5 ' -0.05 -0.1 | -0.132 -0.134  -0.128 0.193 0.196 0.197
6 0.7 ' -0.3 | -0.042 -0.044  -0.041 0.178 0.180 0.178
7 ' -0.10 -0.1 | -0.057 -0.057  -0.051 0.191 0.194 0.194
8 01 ' -0.3 | -0.075 -0.080 -0.081 0.175 0.177 0.178
9 ' -0.05 -0.1 ] -0.003 -0.007  -0.007 0.192 0.192 0.194
10 03 ' -0.3 | -0.086 -0.079  -0.077 0.170 0.170 0.171
11 ' -0.10 -0.1 | -0.092 -0.105 -0.089 0.192 0.193  0.192
12 05 ' -0.3 | -0.036 -0.034 -0.034 0.184 0.188  0.190
13 ' -0.05 -0.1 ]-0.111 -0.130 -0.128 0.197 0.196 0.198
14 0.7 ' -0.3 | -0.092 -0.099  -0.093 0.202 0.203  0.205
15 ' -0.10 -0.1 ] -0.020 -0.019 -0.006 0.194 0.190 0.191
16 01 ' -0.3 | -0.094 -0.094  -0.096 0.207 0.205 0.206
17 ' -0.05 -0.1 | -0.060 -0.053  -0.054 0.206 0.203  0.205
18 03 ' -0.3 | -0.034 -0.046  -0.037 0.203 0.205 0.202
19 ' -0.10 -0.1 ] -0.149 -0.151  -0.148 0.185 0.185 0.186
20 01 ' -0.3 | -0.028 -0.033 -0.038 0.186 0.192 0.189
21 ' -0.05 -0.1 | -0.054 -0.063 -0.061 0.183 0.183 0.186
22 0.7 ' -0.3 | -0.057 -0.055  -0.057 0.206 0.208 0.210
23 ' -0.10 -0.1 | -0.051 -0.055 -0.056 0.185 0.188 0.187
24 05 ' -0.3 | -0.073 -0.088 -0.084 0.200 0.201  0.203
25 ' -0.05 -0.1 | -0.044 -0.051  -0.052 0.199 0.205 0.205
26 03 ' -0.3 | -0.026 -0.026  -0.024 0.180 0.179  0.179
27 ' -0.10 -0.1 | -0.066 -0.068 -0.064 0.177 0.178 0.175
28 05 ' -0.3 | -0.025 -0.025 -0.017 0.185 0.186 0.186
29 ' -0.05 -0.1 | -0.128 -0.139 -0.130 0.211 0210 0.211
30 0.7 ' -0.3 | -0.093 -0.104 -0.103 0.187 0.190 0.187
31 ' -0.10 -0.1 ] -0.021 -0.030 -0.024 0.197 0.193  0.193
32 ' -0.3 ] -0.090 -0.095 -0.085 0.169 0.171  0.168
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Table B5 (cont’d)

cond | 62 o2 o2 0 0 0 Bias RMSE

o Tu  Tw P otz 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 o005 |01 [-0101 0103 -0.094 0180 0179 0487
34 03 : 03 |-0145 -0141 -0.143 0183 0184 0.506
35 : o010 |01 |-0078 0084 -0076 0202 0201 0559
36 01 : 03 |-0073 -0070 -0.071 0191 0193 0524
37 : o005 |01 |-0072 0058 -0054 0177 0178  0.490
38 07 : 03 |-0077 -0082 -0.079 0195 0200 0.556
39 : o010 |01 |-0069 0080 -0084 0183 0183 0.489
40 01 : 03 |-0011 -0015 -0.007 0191 0199 0544
41 : 005 |01 |-0050 0046 -0048 0202 0207 0561
42 03 : 03 |-0.140 -0.148 -0.147 0187 0190 0515
43 : o010 |01 |-0083 0052 -0054 0189 0189 0522
44 05 : 03 |-0045 -0045 -0.053 0197 0196 0.535
45 : 005 |01 |-0085 0048 -0047 0187 0194 0537
46 07 : 03 |-0058 -0068 -0.065 0181 0179 0.503
47 : o010 01 |-0127 0123 0125 0202 0199 0550
8 | o : 03 |-0070 -0074 -0.077 0202 0202 0558
49 : o005 |01 |-0023 0026 -0025 0194 0195 0532
50 03 : 03 |-0105 -0.102 -0.104 0199 0192 0539
51 : o010 |01 |-0051 005 -0051 0188 0189 0520
52 01 : 03 |-0.108 -0112 -0113 0181 0182 0.500
53 : o005 |01 |-0041 0051 -0050 0210 0210 0571
54 07 : 03 |-0091 -0085 -0.090 0201 0202 0555
55 : o010 |01 |-0085 0020 -0027 0184 0182 0498
56 05 : 03 |-0017 -0011 -0.016 0187  0.188 0525
57 : o005 |01 |-008L 0081 -0079 0200 0198 0557
58 03 : 03 |-0095 -0.091 -0.096 0193 0193 0.539
59 : 010 |01 |-0009 0003 -0000 0191 0190 0522
60 05 : 03 |-0041 -0043 -0.043 0192 0193 0529
61 : 005 |01 |-0001 0093 -0095 0200 0201 0551
62 07 : 03 |-0145 -0136 -0.132 0201 0200 0.551
63 : o010 |01 |-0026 0045 -0036 0194 0195 0535
64 : 03 |-0054 -0058 -0.056 0198 0193 0528
Mean [ -0.069  -0.071 -0.069 0192 0192 0.193
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Table B6

Bias and RMSE of y; by simulation design conditions — polytomous attributes

Cond | 6%, ©%f ©F, Pe Po Po _DBias_ RMSE

0 1 2 0 2 2 MHOP JRTP JDSP MHOP JRTP JDSP
1 .0.05 -0.1 ] 0.188 0.195 0.200 0.162 0.163 0.166
2 03 ' -0.3 ] 0.139 0.145 0.156 0.137 0.138 0.142
3 ' 2010 -0.1 | 0.064 0.061 0.076 0.137 0.138 0.144
4 01 ' -0.3 ] 0.103 0.107  0.118 0.145 0.145 0.148
5 ' -0.05 -0.1 ] 0.119 0.119 0.126 0.141 0.142 0.143
6 0.7 ' -0.3 ] 0.168 0.170  0.180 0.147 0.144 0.147
7 ' -0.10 -0.1 ] 0.140 0.138  0.143 0.146 0.146  0.149
8 01 ' -0.3 ] 0.076 0.072 0.081 0.138 0.141 0.142
9 ' -0.05 -0.1 ] 0.140 0.141 0.146 0.152 0.151 0.156
10 03 ' -0.3 ] 0.092 0.098 0.099 0.134 0.136  0.135
11 ' -0.10 -0.1 ] 0.099 0.098 0.108 0.144 0.142 0.147
12 05 ' -0.3 ] 0.099 0.099 0.108 0.142 0.143 0.144
13 ' -0.05 -0.1 ] 0.146 0.146  0.149 0.154 0.151  0.152
14 0.7 ' -0.3 ] 0.121 0.122 0.129 0.145 0.148  0.152
15 ' -0.10 -0.1 ]0.134 0.134 0.145 0.138 0.135 0.139
16 01 ' -0.3 ] 0.088 0.087 0.093 0.142 0.139 0.142
17 ' -0.05 -0.1 | 0.107 0.115 0.120 0.137 0.139 0.143
18 03 ' -0.3 ]0.131 0.131  0.140 0.143 0.143 0.146
19 ' -0.10 -0.1 ] 0.086 0.087  0.097 0.140 0.137 0.141
20 01 ' -0.3 ] 0.112 0.119 0.118 0.138 0.140 0.141
21 ' -0.05 -0.1 | 0.078 0.075 0.079 0.128 0.127 0.131
22 0.7 ' -0.3 | 0.100 0.100 0.106 0.139 0.139  0.140
23 ' -0.10 -0.1 ] 0.130 0.133 0.130 0.138 0.141 0.143
24 05 ' -0.3 ] 0.126 0.123  0.131 0.140 0.141 0.143
25 ' -0.05 -0.1 | 0.137 0.139  0.141 0.139 0.139 0.141
26 03 ' -0.3 ] 0.132 0.136  0.140 0.143 0.146  0.147
27 ' -0.10 -0.1 | 0.102 0.108 0.110 0.135 0.136  0.138
28 05 ' -0.3 | 0.143 0.147  0.152 0.145 0.145 0.150
29 ' -0.05 -0.1 | 0.065 0.064  0.077 0.130 0.127  0.132
30 0.7 ' -0.3 ] 0.118 0.124  0.125 0.137 0.138  0.137
31 ' -0.10 -0.1 | 0.146 0.144  0.154 0.144 0.143 0.148
32 ' -0.3 | 0.095 0.101 0.104 0.131 0.131  0.133
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Table B6 (cont’d)

Cond o2 o o2 o 0 0 Bias RMSE

o Tu Tm Pt o1z 2 MHOP JRTP JDSP MHOP JRTP JDSP

33 005 |01 Jo121 0.125 0.136 0.128  0.130 0.132
34 03 ' 0.3 | 0.095 0.104 0108 0.135  0.135 0.140
35 : o010 |01 ]o0136 0141 0146 0.162  0.163 0.163
36 01 ' 0.3 | 0.097 0100 0.103 0.135 0134 0.134
37 : 005 | 0:L ] 0108 0105 0.116 0.146  0.143  0.147
38 07 ' 0.3 |o0.108 0.106 0.107 0.143  0.140 0.140
39 : 010 |01 ] 0156 0153 0155 0.151  0.148 0.149
40 01 ' 03 |0154 0148 0151 0144 0147 0.148
41 : 005 |01 ] o0.108 0114 0115 0.144  0.148 0.148
42 03 ' 0.3 | 0073 0.075 0.080 0.139  0.141 0.141
43 : o010 0L ]0125 0127 0133 0.142  0.145 0.146
44 05 ' 0.3 | 0.1209 0113 0113 0.144  0.142 0.145
45 : 005 | 0L 0094 0091 0104 0141 0144 0.49
46 07 ' 03 |o0.131 0125 0129 0.141  0.139 0.141
47 : o010 | 0L 0134 0136 0139 0144 0143 0.142
8| ' 0.3 |0.155 0150 0.148 0.150  0.150 0.150
49 : 005 | 0L ] 0095 0.099 0102 0.139  0.141 0.142
50 03 ' 03 |0.125 0132 0133 0.142  0.141 0.142
51 : o010 |01 ]o0123 0131 0132 0.147  0.149 0.151
52 01 ' 03 |0.122 0125 0122 0.143  0.143 0.141
53 : 005 |01 ] 0100 0.095 0.103 0.147  0.148 0.150
54 07 ' 0.3 |0.105 0105 0.111 0.138  0.136 0.141
55 : o010 |01 ]0125 0127 0126 0.137  0.138 0.137
56 05 ' 03 |o0.111 0117 0122 0.141  0.142 0.146
57 : 005 |01 ] 0151 0150 0.157 0.146  0.145 0.151
58 03 ' 0.3 | 0.093 0.099 0101 0136  0.134 0.140
59 : o010 |01 ]o112 0115 0.125 0.144  0.140 0.143
60 05 ' 03 |0.142 0.143 0147 0141  0.141 0.142
61 : 005 |01 ] 0122 0119 0.124 0.142  0.135 0.137
62 07 ' 0.3 | 0.068 0.077 0087 0.146  0.149 0.152
63 : 010 | 0L 0094 0091 0098 0146 0146 0.149
64 ' 03 |o0.128 0133 0138 0.146  0.146 0.147
Mean 0.116 0.118 0.123 0.142  0.142 0.144
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Figure B4 RMSE of yy, across simulation conditions — polytomous attribute configuration
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Figure B5 Bias of y,3 across simulation conditions — polytomous attribute configuration
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Figure B6 RMSE of y3 across simulation conditions — polytomous attribute configuration
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Figure B7 Bias of y,4 across simulation conditions — polytomous attribute configuration

~& JDSP = JRTP = MHOP

0.21-

0.20-

RM SE of voua
=
=

0.18-

017~

1234567 8 9101112131415 1617 18192021 2223 24 2526 27 2829 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Condtions

Figure B8 RMSE of y4 across simulation conditions — polytomous attribute configuration
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Figure B10 RMSE of y, across simulation conditions — polytomous attribute configuration

117



JOgP = JRTP

0010~ l

|
0005 ' \

< 0000- /

s}

0]

by

® g0s-

)

010~

015

12345678 010MI2B3UW BT B 00123040 2627282093031323334303637 3830 4041 4243 44 45 45 47 48 4950 5152 53 54 55 56 57 58 59 60 61 62 63 64
Condtions

Figure B11 Bias of A across simulation conditions — polytomous attribute configuration
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APPENDIX C: JAGS CODES FOR STUDY MODELS

C1. HO DINA model

HO.DINA <- function(){
##Partial mastery higher order model
for (nin 1:N) {#examinee
for (k in 1:K) {#attribute
for (1 in L:L[K]){#level within attribute
core[n, k,1] <- beta[k]*theta[n]-delta[k,I] #ltm for level | of attribute k
sum.core[n,k,l]<-sum(core[n,k,1:1])#in parenthesis of numerator
exp.sum.core[n,k,l]<-exp(sum.core[n,k,I])#numerator
prob.a[n,k,I]<-exp.sum.core[n,k,I]/sum(exp.sum.core[n,k,1:L[K]])#probability of level |
Htlevel within attribute
alpha.star[n,k]~dcat(prob.a[n,k,1:L[K]])
alpha[n,k] <- alpha.star[n,k]-1
}#end of attribute
Ttend of examinee loop
##Measurement model
for (nin 1:N){
for (i in 1:1){
for (kin 1:K){
w[n,i,k]<-step(alpha[n,k]-Q[i,K])}
eta[n,i]<-prod(w[n,i,])
prob[n,i]<-g[i]+(1-s[i]-g[i])*eta[n,i]
Score[n,i]~dbern(prob[n,i]) } }
#Priors of the latent structural parameters
for (kin 1:K){
delta[k,1]<-0
for (I in 2:L[K]){delta[k,I]~dnorm(0,0.5)}
beta[k]~dnorm(0,0.5)%_%T(0,) }
#prior of higher-order ability
for (nin 1:N){
theta[n]~dnorm(0,1)

#Priors of item parameters
for (iin 1:1){
s[i]~dbeta(1,1)
g[i]~dbeta(1,1)%_%T(0,1-s[i])
}H#End of model loop

C2. HO-RPa DINA model

RPA.DINA <- function(){
##Partial master higher order model
for (n in 1:N) {#examinee
for (k in 1:K) {#attribute
for (1 in L:L[K]){#level within attribute
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core[n, k,1] <- beta[k]*theta[n]-delta[k,I] #ltm for level | of attribute k
sum.core[n,k,l]<-sum(core[n,k,1:1])#in parenthesis of numerator
exp.sum.core[n,k,I]<-exp(sum.core[n,k,I])#numerator
prob.a[n,k,1]<-exp.sum.core[n,k,I]/sum(exp.sum.core[n,k,1:L[K]])#probability of level |
THlevel within attribute
alpha.star[n,k]~dcat(prob.a[n,k,1:L[Kk]])
alpha[n,k] <- alpha.star[n,k]-1
Tend of attribute
}#end of examinee loop
##Measurement model
for (nin 1:N){
for (i in 1:1){
for (kin 1:K){
w[n,i,K]<-step(alpha[n,k]-Q[i,k])}
eta[n,i]<-prod(w[n,i,])
prob[n,i]<-g[i]+(1-s[i]-g[i])*eta[n,i]
Score[n,i]~dbern(prob[n,i]) } }
#Priors of the latent structural parameters
for (kin 1:K){
delta[k,1]<-0
for (I in 2:L[K]){delta[k,I]~dnorm(0,0.5) }
beta[k]~dnorm(0,0.5)%_ %T(0,)}
#prior of higher-order ability
for (nin 1:N){
theta[n]~dnorm(0,1)
}
#Priors of item parameters
for (iin 1:1){
s[i]~dbeta(1,1)
g[i]~dbeta(1,1)%_%T(0,1-s[i])
}H#End of model loop

C3. MHO DINA for binary attribute configuration

MHOB <- function(){
##Partial mastery higher order model
for (nn in 1:N) {#examinee
for (k in 1:K) {#attribute
for (I in 1:Lb[K]){#level within attribute
core[nn, k1] <- gam.1[k]*theta[nn]-gam.O[k,I] #ltm for level | of attribute k
sum.core[nn,k,I]<-sum(core[nn,k,1:1])#in parenthesis of numerator
exp.sum.core[nn,k,I]<-exp(sum.core[nn,k,I])#numerator
prob.a[nn,k,l]<-exp.sum.core[nn,k,I]/sum(exp.sum.core[nn,k,1:Lb[K]])#probability of level |
}#level within attribute
att.star[nn,k]~dcat(prob.a[nn,k,1:Lb[K]])
att[nn,k] <- att.star[nn,k]-1
}#end of attribute
Hend of examinee loop

##Measurement model
for (nnin L:N){
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for (i in 1:1){
for (kin 1:K){
w[nn,i,k]<-step(att[nn,k]-Q.bin[i,k])}
eta[nn,i]<-prod(w[nn,i,])
logit(prob[nn, i]) <- deltaO[i] + deltal[i] * eta[nn,iJ#DINA model
Score[nn,i]~dbern(prob[nn,i]) } }
#Priors of the latent structural parameters
for (kin 1:K){
gam.0[k,1]<-0
for (Iin 2:Lb[k]){ gam.O[k,I]~dnorm(0,0.5)}
gam.1[k]~dnorm(0,0.5)% %T(0,) }
##Person parameters from joint distribution of response time and responses
for (nnin 1:N) {
person_parameter[nn]~ dnorm(person_mu, person_den)
theta[nn] <- person_parameter[nn] }
##ltem parameters from joint distribution of response time and responses
for (iin 1:1) {
item_parameter[i, 1:2]~ dmnorm(item_mu[1:2], item_den[1:2, 1:2])
deltaO[i]<-item_parameter i, 1] #ltem intercept from reparameterized DINA model
deltal[i]<-item_parameter i, 2] #Item interaction from reparameterized DINA model
logit(g[i])<-deltaO[i] #Item guessing parameter
logit(ns[i])<-deltaQ[i] + deltal[i]J#Solving for slipping parameter
s[i] <- 1 -ns[i] #ltem slipping parameter
}
person_mu <- 0 #mean ability
L_theta<-1
Sigma_theta <- L_theta
person_den <- Sigma_theta

#Hyper priors for miu of item parameters
item_mu[1]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA
item_mu[2]~dnorm(4.394,0.5)% _%T(0,)#hyperprior of miu_delta is constrained to be +tive

#ldentity matrix for dsn of item covariance matrix

R[1,1]<-1

R[2,2]<-1

R[1,2]<-0

R[2,1]<-0

item_den[1:2,1:2]~dwish(R[1:2,1:2],2) #hyper prior for Item covariance matrix

Sigma_item[1:2,1:2]<-inverse(item_den[1:2,1:2])#Trasforming to inverse Wishart
HEnd of model loop

C4. MHO DINA for polytomous attribute configuration

MHOP <- function(){
##Partial mastery higher order model
for (nn in 1:N) {#examinee
for (k in 1:K) {#attribute
for (I in 1:L[K]){#level within attribute
core[nn, k,I] <- gam.1[k]*theta[nn]-gam.O[k,I] #ltm for level | of attribute k
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sum.core[nn,k,I]<-sum(core[nn,k,1:1])#in parenthesis of numerator
exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,I])#numerator
prob.a[nn,k,l]<-exp.sum.core[nn,k,I]/sum(exp.sum.core[nn,k,1:L[k]])#probability of level |

THlevel within attribute

att.star[nn,k]~dcat(prob.a[nn,k,1:L[K]])

att[nn,k] <- att.star[nn,k]-1

Tend of attribute
Htend of examinee loop

##Measurement model
for (nnin L:N){
for (i in 1:1){
for (k in 1:K){ w[nn,i k]<-step(att[nn,k]-Q.poly[i,k])}
eta[nn,i]<-prod(w[nn,i,])
logit(prob[nn, i]) <- deltaO[i] + deltal[i] * eta[nn,i]#DINA model
Score[nn,i]~dbern(prob[nn,i]) } }
#Priors of the latent structural parameters
for (kin 1:K){
gam.0[k,1]<-0
for (Iin 2:L[k]){ gam.O[k,I]~dnorm(0,0.5) }
gam.1[k]~dnorm(0,0.5)% %T(0,) }
##Person parameters from joint distribution of response time and responses
for (nnin 1:N) {
person_parameter[nn]~ dnorm(person_mu, person_den)
theta[nn] <- person_parameter[nn] }
##ltem parameters from joint distribution of response time and responses
for (iin 1:1) {
item_parameter[i, 1:2]~ dmnorm(item_mu[1:2], item_den[1:2, 1:2])
deltaO[i]<-item_parameter i, 1] #Item intercept from reparameterized DINA model
deltal[i]<-item_parameter i, 2] #Item interaction from reparameterized DINA model
logit(g[i])<-deltaO[i] #Item guessing parameter
logit(ns[i])<-deltaQ[i] + deltal[i]#Solving for slipping parameter
s[i] <- 1 - ns[i] #ltem slipping parameter
}
person_mu <- 0 #mean ability
L_theta<-1
Sigma_theta <- L_theta
person_den <- Sigma_theta

#Hyper priors for miu of item parameters
item_mu[1]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA
item_mu[2]~dnorm(4.394,0.5)%_%T(0,)#hyperprior of miu_delta is constrained to be +tive

#ldentity matrix for dsn of item covariance matrix

R[1,1]<-1

R[2,2] <-1

R[1, 2] <-0

R[2, 1] <-0

item_den[1:2,1:2]~dwish(R[1:2,1:2],2) #hyper prior for Item covariance matrix

Sigma_item[1:2,1:2]<-inverse(item_den[1:2,1:2])#Trasforming to inverse Wishart
HEnd of model loop
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C5. JRT DINA for binary attribute configuration

JRTB <- function(){
##Partial mastery higher order model
for (nn in 1:N) {#examinee
for (k in 1:K) {#attribute
for (1 in 1:Lb[K]){#level within attribute
core[nn, k,I] <- gam.1[Kk]*theta[nn]-gam.O[k,I] #ltm for level | of attribute k
sum.core[nn,k,l]<-sum(core[nn,k,1:1])#in parenthesis of numerator
exp.sum.core[nn,k,I]<-exp(sum.core[nn,k,])#numerator
prob.a[nn,k,l]<-exp.sum.core[nn,k,I]/sum(exp.sum.core[nn,k,1:Lb[K]])#probability of level |
H#level within attribute
att.star[nn,k]~dcat(prob.a[nn,k,1:Lb[K]])
att[nn,k]<-att.star[nn,k]-1
}#end of attribute
}#end of examinee loop

##Measurement model
for (nnin L:N){
for (i in 1:1){
for (kin 1:K){
w[nn,i,k]<-step(att[nn,k]-Q.bin[i,k])}
eta[nn,i]<-prod(w[nn,i,])
logit(prob[nn,i])<-deltaO[i]+deltal[i]*eta[nn,i]#DINA model
Score[nn,i]~dbern(prob[nn,i])
logT[nn,i]~dnorm(lambda[i]-tO[nn],den_epsilon[i])#Draw resp time 4 item i & person nn
1}
#Priors of the latent structural parameters
for (kin 1:K){
gam.0[k,1]<-0
for (I in 2:Lb[k]){gam.O[k,I]~dnorm(0,0.5) }
gam.1[k]~dnorm(0,0.5)%_%T(0,) }
##Person parameters from joint distribution of response time and responses
for (nnin 1:N) {
person_parameter[nn, 1:2]~ dmnorm(person_mu[1:2], person_den[1:2, 1:2])
theta[nn] <- person_parameter[nn, 1]
t0[nn] <- person_parameter[nn, 2] }
##1tem parameters from joint distribution of response time and responses
for (iin L:1) {
item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])
lambda[i]<-item_parameter[i, 1] #ltem time intensity from response time model
deltaO[i]<-item_parameter i, 2] #ltem intercept from reparameterized DINA model
deltal[i]<-item_parameter i, 3] #ltem interaction from reparameterized DINA model
logit(g[i])<-deltaO[i] #Item guessing parameter
logit(ns[i])<-deltaO[i] + deltal[i]#Solving for slipping parameter
s[i] <- 1 - ns[i] #ltem slipping parameter
den_epsilon[i]~ dgamma(1, 1) #Error term from response time model
Sigma_epsilon[i] <- 1/den_epsilon[i] #ltem time discrimination parameter

person_mu[1] <- 0 #mean ability
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person_mu[2] <- 0 #mean initial speed

L_theta[1, 1] <-1

L_theta[2, 2]~ dgamma(1, 1)

L_theta[2, 1]~ dnorm(0,1)

L theta[l, 2] <-0

Sigma_theta <- L_theta %*% t(L_theta)
person_den[1:2, 1:2] <- inverse(Sigma_theta[1:2, 1:2])

#Hyper priors for miu of item parameters

item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination
item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA
item_mu[3]~dnorm(4.394,0.5)% _%T(0,)#hyperprior of miu_delta is constrained to be +tive

#ldentity matrix for dsn of item covariance matrix

R[1,1]<-1

R[2,2]<-1

R[3,3]<-1

R[1,2]<-0

R[1,3]<-0

R[2,1]<-0

R[2,3]<-0

R[3,1] <-0

R[3,2]<-0

item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix
Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart
HEnd of model loop

C6. JRT DINA for polytomous attribute configuration

JRTP<-function(){
##Partial mastery higher order model
for (nn in 1:N) {#examinee
for (k in 1:K) {#attribute
for (I in 1:L[K]){#level within attribute
core[nn, k1] <- gam.1[k]*theta[nn]-gam.O[k,I] #ltm for level | of attribute k
sum.core[nn,k,l]<-sum(core[nn,k,1:1])#in parenthesis of numerator
exp.sum.core[nn,k,I]<-exp(sum.core[nn,k,])#numerator
prob.a[nn,k,l]<-exp.sum.core[nn,k,I]/sum(exp.sum.core[nn,k,1:L[Kk]])#probability of level |
}#level within attribute
att.star[nn,k]~dcat(prob.a[nn,k,1:L[K]])
att[nn k] <- att.star[nn,k]-1
}#end of attribute
}#end of examinee loop

##Measurement model
for (nnin L:N){
for (i in 1:1){
for (k in 1:K){
w[nn,i,k]<-step(att[nn,k]-Q.poly[i,k])}
eta[nn,i]<-prod(w[nn,i,])
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logit(prob[nn, i]) <- deltaO[i] + deltal[i] * eta[nn,i]#DINA model
Score[nn,i]~dbern(prob[nn,i])
logT[nn,i]~dnorm(lambda[i]-tO[nn],den_epsilon[i])#Draw resp time 4 item i & person nn}}

#Priors of the latent structural parameters
for (kin 1:K){
gam.0[k,1]<-0
for (1'in 2:L[K]){
gam.O[k,l]~dnorm(0,0.5) }
gam.1[k]~dnorm(0,0.5)%_%T(0,) }
##Person parameters from joint distribution of response time and responses
for (nnin 1:N) {
person_parameter[nn, 1:2]~ dmnorm(person_mu[1:2], person_den[1:2, 1:2])
theta[nn] <- person_parameter[nn, 1]
t0[nn] <- person_parameter[nn, 2] }
##ltem parameters from joint distribution of response time and responses
for (iin 1:1) {
item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])
lambda[i]<-item_parameter[i, 1] #ltem time intensity from response time model
deltaO[i]<-item_parameter i, 2] #ltem intercept from reparameterized DINA model
deltal[i]<-item_parameter[i, 3] #ltem interaction from reparameterized DINA model
logit(g[i])<-deltaO[i] #Item guessing parameter
logit(ns[i])<-deltaO[i] + deltal[i]#Solving for slipping parameter
s[i] <- 1 - ns[i] #ltem slipping parameter
den_epsilon[i]~ dgamma(1, 1) #Error term from response time model
Sigma_epsilon[i] <- 1/den_epsilon[i] #ltem time discrimination parameter

person_mu[1] <- 0 #mean ability

person_mu[2] <- 0 #mean initial speed

L_theta[1, 1] <-1

L _theta[2, 2]~ dgamma(1, 1)

L_theta[2, 1]~ dnorm(0,1)

L _theta[l, 2] <-0

Sigma_theta <- L_theta %*% t(L_theta)
person_den[1:2, 1:2] <- inverse(Sigma_theta[1:2, 1:2])

#Hyper priors for miu of item parameters

item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination
item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA
item_mu[3]~dnorm(4.394,0.5)% _%T(0,)#hyperprior of miu_delta is constrained to be +tive

#ldentity matrix for dsn of item covariance matrix
R[1,1]<-1
R[2,2] <-1
R[3,3]<-1
R[1, 2] <-0
R[1,3]<-0
R[2, 1] <-0
R[2,3]<-0
R[3,1] <-0
R[3,2]<-0
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item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix
Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart
HEnd of model loop

C7. JDS DINA for binary attribute configuration

JDSB <- function(){
##Partial mastery higher order model
for (nn in 1:N) {#examinee
for (k in 1:K) {#attribute
for (I in 1:Lb[K]){#level within attribute
core[nn, k,I] <- gam.1[Kk]*theta[nn]-gam.O[k,I] #ltm for level | of attribute k
sum.core[nn,k,I]<-sum(core[nn,k,1:1])#in parenthesis of numerator
exp.sum.core[nn,k,I]<-exp(sum.core[nn,k,])#numerator
prob.a[nn,k,l]<-exp.sum.core[nn,k,l]/sum(exp.sum.core[nn,k,1:Lb[K]])#probability of level |
Htlevel within attribute
att.star[nn,k]~dcat(prob.a[nn,k,1:Lb[K]])
att[nn,k] <- att.star[nn,k]-1
}#end of attribute
Ttend of examinee loop

##Measurement model
for (nnin L:N){
for (i in 1:1){
for (k in 1:K){w[nn,ik]<-step(att[nn,k]-Q.bin[i,k])}
eta[nn,i]<-prod(w[nn,i,])
logit(prob[nn, i]) <- deltaO[i] + deltal[i] * eta[nn,i]#DINA model
Score[nn,i]~dbern(prob[nn,i])
logT[nn,i]~dnorm(lambda[i]-speed[nn,1]-speed[nn,2]-speed[nn,3],den_epsilon[i])#Draw resp time 4
item i & person nn
1}
#Priors of the latent structural parameters
for (kin 1:K){
gam.0[k,1]<-0
for (1'in 2:Lb[K]){
gam.O[k,l]~dnorm(0,0.5)

gam.1[k]~dnorm(0,0.5)%_%T(0,)
}
##Person parameters from joint distribution of response time and responses
for (nnin 1:N) {

person_parameter[nn, 1:4]~ dmnorm(person_mu[1:4], person_den[1:4, 1:4])

theta[nn] <- person_parameter[nn, 1]

t0[nn] <- person_parameter[nn, 2]

tl[nn] <- person_parameter[nn, 3]

t2[nn] <- person_parameter[nn, 4] }
speed<-person_parameter[,2:4]%*%t(Xn)

##ltem parameters from joint distribution of response time and responses
for (iin 1:1) {
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item_parameter[i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])
lambda[i]<-item_parameter[i, 1] #ltem time intensity from response time model
deltaO[i]<-item_parameter[i, 2] #ltem intercept from reparameterized DINA model
deltal[i]<-item_parameter i, 3] #Item interaction from reparameterized DINA model
logit(g[i])<-deltaO[i] #Item guessing parameter
logit(ns[i])<-deltaO[i] + deltal[i]#Solving for slipping parameter
s[i] <- 1 - ns[i] #ltem slipping parameter
den_epsilon[i]~ dgamma(1, 1) #Error term from response time model
Sigma_epsilon[i] <- 1/den_epsilon[i] #ltem time discrimination parameter

}

person_mu[1] <- 0 #mean ability

person_mu[2] <- 0 #mean initial speed

person_mu[3] <- 0 #mean slope

person_mu[4] <- 0 #mean quadratic term

L theta[l, 1] <-1

L_theta[2, 2]~ dgamma(1, 1)

L_theta[3, 3]~ dgamma(l, 1)

L _theta[4, 4]~ dgamma(1, 1)

L_theta[2, 1]~ dnorm(0,1)

L_theta[3, 1]~ dnorm(0,1)

L_theta[4, 1]~ dnorm(0,1)

L_theta[3, 2]~ dnorm(0,1)

L_theta[4, 2]~ dnorm(0,1)

L_theta[4, 3]~ dnorm(0,1)

L theta[l, 2] <-0

L _theta[l, 3] <-0

L _theta[l, 4] <-0

L _theta[2, 3] <-0

L _theta[2, 4] <-0

L_theta[3, 4] <-0

Sigma_theta <- L_theta %*% t(L_theta)

person_den[1:4, 1:4] <- inverse(Sigma_theta[1:4, 1:4])

#Hyper priors for miu of item parameters

item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination
item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA
item_mu[3]~dnorm(4.394,0.5)% _%T(0,)#hyperprior of miu_deltal is constrained to be +tive

#ldentity matrix for dsn of item covariance matrix

R[1,1]<-1

R[2,2] <-1

R[3,3]<-1

R[1, 2] <-0

R[1,3]<-0

R[2, 1] <-0

R[2,3]<-0

R[3,1]<-0

R[3,2]<-0

item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix

Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart
HEnd of model loop
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C8. JDS DINA for polytomous attributes
JDSP <- function(){
##Partial mastery higher order model
for (nn in 1:N) {#examinee
for (k in 1:K) {#attribute
for (1 in L:L[K]){#level within attribute
core[nn, k,I] <- gam.1[K]*theta[nn]-gam.O[Kk,I] #ltm for level | of attribute k
sum.core[nn,k,l]<-sum(core[nn,k,1:1])#in parenthesis of numerator
exp.sum.core[nn,k,l]<-exp(sum.core[nn,k,I])#numerator
prob.a[nn,k,l]<-exp.sum.core[nn,k,I]/sum(exp.sum.core[nn,k,1:L[K]])#probability of level |
}#level within attribute
att.star[nn,k]~dcat(prob.a[nn,k,1:L[K]])
att[nn,k] <- att.star[nn,k]-1
Tend of attribute
}#end of examinee loop

##Measurement model
for (nnin L:N){
for (i in 1:1){
for (k in 1:K){w[nn,i,k]<-step(att[nn,k]-Q.poly[i,k])}
eta[nn,i]<-prod(w[nn,i,])
logit(prob[nn, i]) <- deltaO[i] + deltal[i] * eta[nn,i]#DINA model
Score[nn,i]~dbern(prob[nn,i])
logT[nn,i]~dnorm(lambda][i]-speed[nn,1]-speed[nn,2]-speed[nn,3],den_epsilon[i])#Draw resp time 4
item i & person nn
1}
#Priors of the latent structural parameters
for (kin 1:K){
gam.0[k,1]<-0
for (1'in 2:L[K]){
gam.O[k,l]~dnorm(0,0.5)}
gam.1[k]~dnorm(0,0.5)%_%T(0,)}

##Person parameters from joint distribution of response time and responses
for (nnin 1:N) {

person_parameter[nn, 1:4]~ dmnorm(person_mu[1:4], person_den[1:4, 1:4])

theta[nn] <- person_parameter[nn, 1]

t0[nn] <- person_parameter[nn, 2]

t1[nn] <- person_parameter[nn, 3]

t2[nn] <- person_parameter[nn, 4] }
speed<-person_parameter[,2:4]%*%t(Xn)

##ltem parameters from joint distribution of response time and responses

for (iin 1:1) {
item_parameter i, 1:3]~ dmnorm(item_mu[1:3], item_den[1:3, 1:3])
lambda[i]<-item_parameter[i, 1] #ltem time intensity from response time model
deltaO[i]<-item_parameter[i, 2] #ltem intercept from reparameterized DINA model
deltal[i]<-item_parameter i, 3] #ltem interaction from reparameterized DINA model
logit(g[i])<-deltaO[i] #ltem guessing parameter
logit(ns[i])<-deltaO[i] + deltal[i]#Solving for slipping parameter
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s[i] <- 1 - ns[i] #ltem slipping parameter
den_epsilon[i]~ dgamma(1, 1) #Error term from response time model
Sigma_epsilon[i] <- 1/den_epsilon[i] #ltem time discrimination parameter

person_mu[1] <- 0 #mean ability
person_mu[2] <- 0 #mean initial speed
person_mu[3] <- 0 #mean slope
person_mu[4] <- 0 #mean quadratic term
L_theta[1, 1] <-1

L_theta[2, 2]~ dgamma(1, 1)

L _theta[3, 3]~ dgamma(l, 1)

L_theta[4, 4]~ dgamma(1, 1)

L_theta[2, 1]~ dnorm(0,1)

L_theta[3, 1]~ dnorm(0,1)

L_theta[4, 1]~ dnorm(0,1)

L_theta[3, 2]~ dnorm(0,1)

L_theta[4, 2]~ dnorm(0,1)

L_theta[4, 3]~ dnorm(0,1)

L _theta[l, 2] <-0

L _theta[l, 3] <-0

L theta[l, 4] <-0

L _theta[2, 3] <-0

L _theta[2, 4] <-0

L theta[3, 4] <-0

Sigma_theta <- L_theta %*% t(L_theta)
person_den[1:4, 1:4] <- inverse(Sigma_theta[1:4, 1:4])

#Hyper priors for miu of item parameters

item_mu[1]~dnorm(3,0.5)# hyperprior of miu_lambda; item time discrimination
item_mu[2]~dnorm(-2.197, 0.5)#hyperprior of miu_delta0; item intercept for RDINA
item_mu[3]~dnorm(4.394,0.5)% %T(0,)#hyperprior of miu_deltal is constrained to be +tive

#ldentity matrix for dsn of item covariance matrix

R[1,1]<-1

R[2,2] <-1

R[3,3]<-1

R[1,2]<-0

R[1,3]<-0

R[2,1]<-0

R[2,3]<-0

R[3, 1] <-0

R[3,2]<-0

item_den[1:3, 1:3]~ dwish(R[1:3, 1:3], 3) #hyper prior for Item covariance matrix

Sigma_item[1:3, 1:3] <- inverse(item_den[1:3, 1:3])#Trasforming to inverse Wishart
HEnd of model loop.
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