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ABSTRACT 

CHANGING MOVEMENT PATTERNS USING REINFORCEMENT LEARNING 

By 

Tzu-Hsiang Lin 

Humans interact with the world by generating movements, which make it important to 

understand the process of motor learning. There are two aspects of motor learning: (1) 

an improvement in task performance (e.g., learning to throw farther), and (2) a change 

in the movement pattern (e.g., learning to throw with an improved coordination or 

technique even if there is no change in task performance). Most studies on motor 

learning focus on the first aspect of task performance; however, the second aspect of 

movement pattern is also important and ubiquitous in our daily life - for example, we 

learn a better movement pattern to carry heavy objects to prevent injuries or the 

patients re-learn to perform movements in the rehab setting. In this dissertation, I 

designed a learning protocol that provided reinforcement feedback to guide 

participants to learn alternative movement patterns to perform the same task. 

Reinforcement feedback provides participants with a signal to start exploring different 

movement patterns but does not provide direct information about the desired 

movement pattern. Therefore the key question of this dissertation was to address the 

issue of how to schedule the reinforcement feedback to shift participants toward an 

alternative movement pattern in tasks requiring coordination of multiple body 

segments. In experiment one, I tested how providing ‘online’ reinforcement feedback 

(i.e. feedback provided during the movement) could shift the participants to 

alternative movement patterns. In experiment two, I tested how providing ‘terminal’ 

reinforcement feedback (i.e. feedback provided at the end of the movement) could 

shift participants toward alternative movement patterns, and if an adaptive method 



that adjusts reinforcement based on prior performance had better learning outcomes. 

In summary, I found: (1) reinforcement feedback can be used to change movement 

patterns in task requiring coordination of multiple body segments, although it is less 

successful when compared to its use in simpler tasks (2) online reinforcement 

feedback resulted in quick changes toward the desired movement pattern, and the 

amount of practice was the primary factor that determined retention, and (3) terminal 

reinforcement feedback resulted in less change toward the desired movement pattern, 

and an adaptive algorithm was needed to achieve better learning outcomes. These 

results contribute to the fields of motor learning and computational motor 

neuroscience to understand how the central nervous system uses feedback to change 

movement patterns, and can be applied to the fields of skill acquisition or motor 

rehabilitation to help people learn motor skills. 
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CHAPTER 1 INTRODUCTION 

Consider the situation of a beginner learning to play tennis: not only does the learner 

have to focus on the eventual task outcome (say hitting the ball over the net), but in order to do 

so, the learner has to learn to coordinate joints and limbs to hit the ball – i.e., learn a new 

movement pattern. This problem of learning a movement pattern is further complicated by the 

fact that there are many possible movement patterns to hit the ball successfully - e.g., hitting the 

ball with an overarm or underarm movement pattern. This is the issue of motor redundancy 

where the motor system has many motor solutions to perform the same task (Bernstein, 1967). 

However, even though multiple solutions may be available to perform the task equally well in 

terms of the task outcome, some solutions may be preferred to others because they have other 

advantages (such as efficiency or injury prevention). In these cases, an external agent (e.g., a 

coach) may need to shift participants from using one solution to another. The central question 

that this dissertation addresses is how to ‘shift’ participants from one movement pattern to 

another in complex motor tasks. Understanding how to best structure practice to learn such new 

movement patterns is an important issue not only for skill acquisition, but is also a central part of 

movement rehabilitation in neurological disorders like stroke. 

Providing augmented feedback is a well-studied approach to guide the learner to specific 

movement patterns. Augmented feedback refers to feedback about the movement that is not 

intrinsic to the individual, and is usually provided by an external agent (coach, therapist, etc.) 

The learner uses this feedback as a ‘learning signal’ to modify movement patterns on future 

trials. Although previous approaches have distinguished based on the content of information (i.e. 

knowledge of results vs. knowledge of performance), a more recent distinction that has been 

made is based on the learning process itself – i.e., how behavior changes after providing different 
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types of feedback (Wolpert et al., 2011). Under this category, there are two primary types of 

feedback that guide the learner through different learning mechanisms: (1) error feedback (2) 

reinforcement feedback.  

Error feedback measures the difference between the performance and the target, and thus 

indicates both the magnitude and the direction of the error. For example, when a tennis player 

undershoots the target (and can see where the ball lands), the player can use the information to 

hit harder toward the direction of the target on the next trial. Since the magnitude and direction 

of the error are known, the learner modifies movement patterns to decrease the error trial-by-

trial. Error-based learning is useful when the error is non-zero, it directs the learner to one of the 

many movement patterns that will bring the error to zero. However, there are two limitations of 

error-based learning – (i) once the error is zero, there is no learning signal to modify movement 

patterns further, even though learning may be required to modify movement patterns in tasks 

with redundancy, and (ii) implementing error in terms of movement patterns involving lots of 

body segments can result in high-dimensional feedback that is difficult to process for the learner. 

For example, when a learner performing a tennis serve receives a vector of errors on the 

shoulder, elbow, and wrist, it is difficult to use this information to make adjustments on all three 

joints at the same time.  

An alternative to error feedback is reinforcement feedback. Reinforcement feedback 

evaluates the performance and effectively provides a ‘good’ or ‘bad’ signal. In other words, it 

provides coarse-grained information that either signals the learner to retain the movement pattern 

(if the signal is good) or change the movement pattern (if the signal is bad). Unlike the 

systematic changes observed in error-based learning where errors can be gradually reduced to 

zero, reinforcement learning is characterized by exploration because the learner does not know 
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the size or the magnitude of the error with great precision.  However, an advantage is that the 

reinforcement signal is low-dimensional (making it easy for the learner to use), and this process 

of exploration can be used to modify movement patterns even after the task error has become 

zero. 

Exploration helps to learn alternative movement patterns but here again, the challenge 

with task with multiple degrees of freedom (DOF) is that the learning process could be 

inefficient when the learner explores along the irrelevant or incorrect dimensions. Because the 

reinforcement is low-dimensional, it does not directly ‘guide’ the exploration toward the desired 

solution. Going back to the tennis serve example, telling a participant ‘bad serve’ does not 

provide sufficient information on how to change the shoulder, elbow and wrist motions.  One 

solution to this problem is through ‘shaping’ (Ferster & Skinner, 1957), – i.e. gradually 

manipulating feedback based on the learner’s behavior. In other words, the learner has a higher 

possibility to receive a ‘good’ reinforcement feedback when exploring in the right direction. 

However, how these shaping schedules should be used in multi-DOF tasks to shift participants 

from one pattern to another is not well understood. To study this question, I used a 

reinforcement-based algorithm with different shaping methods to guide participants to explore 

different solutions in an efficient way. 

Focus of dissertation 

In this dissertation, I investigated two main questions: (1) can reinforcement feedback to 

change movement patterns involving multiple degrees of freedom (DOF), and (2) how can 

different shaping methods help to change movement patterns?  
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I designed a virtual throwing task based on trunk-hand coordination to study the change 

in movement patterns. Participants were asked to learn the coordination of trunk and hand 

kinematics to meet the task goal. The redundancy in the task was based on the fact that many 

different movement patterns could be used to achieve the task, which allowed us to examine how 

reinforcement could help participants shift from one movement pattern to another. In this case, 

participants typically did not use trunk motion at the start of performing this task, and we applied 

reinforcement feedback so that a ‘punishment’ (i.e., a low score) was applied when the trunk 

movement was below a certain ‘threshold’. I manipulated this threshold during practice using 

different methods to examine how participants changed their movement pattern. Participants 

initially performed a ‘pre-test’ with no reinforcement, then practiced with reinforcement 

feedback for a training period, and then performed a ‘post-test’ with no reinforcement. This 

allowed us to examine the change in movement pattern due to the reinforcement feedback, and 

the retention of this movement pattern after it was removed.  

 In experiment one, I examined the effect of learning alternative movement patterns with 

online reinforcement feedback (i.e. feedback given during the movement). Participants were 

grouped into an ‘abrupt’ group where the threshold changed abruptly and a ‘gradual’ group 

where the threshold changed gradually. Results showed that both groups learned alternative 

movement patterns, although the abrupt group retained this movement pattern even after the 

reinforcement was removed. 

In experiment two, I examined the effect of learning new movement patterns with 

different shaping methods in a discrete task (i.e. where feedback was given only at the end of the 

movement). A key question to address was whether ‘adaptive’ shaping methods (i.e. where the 

threshold was modified according to the participants’ performance) would yield greater changes 
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in the movement pattern relative to open loop shaping methods (abrupt/gradual). Results showed 

that (i) reinforcement feedback in discrete tasks created smaller changes in the movement pattern 

(compared to the online reinforcement feedback), and that adaptive shaping methods which 

resulted in a moderate rate of reinforcement were more effective at creating changes in 

movement pattern relative to open loop methods. 

The first contribution of this dissertation is to study reinforcement learning in the context 

of redundant tasks that have multiple solutions to achieve the task goal. Our results show that 

although reinforcement learning is quite successful when it is provided during the movement, 

reinforcement learning is considerably less successful at eliciting changes in movement patterns 

in discrete tasks, when it is provided at the end of the movement. The second contribution is to 

understand how shaping methods can be used to make reinforcement learning in discrete tasks 

effective. Adaptive shaping methods, which are based on the participants’ performance, were 

found to be more effective at creating changes in movement patterns compared to open-loop 

methods. Overall, these results point to the need for further work in understanding reinforcement 

learning in real-world tasks and how they can be applied to motor learning in skill acquisition or 

rehabilitation. 
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CHAPTER 2 LITERATURE REVIEW 

The focus of the dissertation is to investigate how the change in movement patterns can 

be guided by using reinforcement feedback. In this context, I will use a theoretical framework 

from computational motor-neuroscience (Wolpert et al., 2001). This framework does not focus 

on where motor learning happens in the central nervous system but rather focuses on what kind 

of computation is implemented throughout learning (Wolpert & Flanagan, 2016). In a typical 

learning paradigm, the learners receive ‘learning signals’ and generate new movement patterns to 

perform the task (Jordan & Rumelhart, 1992). The computation happens after receiving the 

learning signal until the onset of the movement. Learning signals are the input to the nervous 

system and the movement patterns are the output (Franklin & Wolpert, 2011). In this review 

section, I discuss (i) the challenge of learning in a redundant system, and (ii) the different types 

of learning signals in motor learning in the context of learning new movement coordination 

patterns.  

Learning in a redundant motor system 

Humans have the ability to perform different movement coordination patterns to perform 

the same task. For example, one can reach for a target with the elbow flexed or the elbow 

extended. Both movement patterns are equally ‘good’ from the viewpoint of achieving the task 

goal. This many-to-one mapping, which arises because there are more degrees of freedom (DOF) 

in the motor system than that are constrained by the task, was framed as the challenge of 

redundancy in the motor system (Bernstein, 1967). Motor redundancy can be evaluated at 

different levels of the motor system (e.g., motor neurons, muscle groups, kinetics, and 

kinematics); here, I focus on the level of kinematics. For example, to reach a target, only the 
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position of the hand is constrained by the task directly. Other DOF such as elbow and shoulder 

are not directly constrained by the task, and therefore give rise to different ways of performing 

the task. This flexibility is especially useful to deal with the uncertain environments, for 

example, we can reach for an object even when there is an obstacle in the way.  

Understanding the relation between motor learning and motor redundancy is critical 

because that movement patterns can be variable while still achieving the same task outcome 

(Guigon et al., 2007; Latash, 2012; Singh et al., 2016). So, while learning results in changes in 

the task outcome, how do participants settle on a movement pattern or ‘shift’ to an alternative 

movement pattern when several movement patterns lead to the same task outcome? Before 

describing this process of learning in term of movement patterns, I briefly review methods that 

quantify movement patterns in the context of redundancy. 

Data-driven approaches to describe movement patterns 

Human movements often have many DOFs, but the important variance usually lies in a 

low-dimensional space. There are many dimensionality reduction techniques to find this lower-

dimensional space. One widely used technique is principal component analysis (PCA), the goal 

of PCA is to find the linear transformation to capture the variance of the data with fewer 

dimensions (represented by the first few principal components). The principal components that 

have high explained variance can be seen as the important dimensions that drive the movement 

(Gløersen et al., 2018; Witte et al., 2010). PCA is advantageous because it is easy to implement 

and has been successfully used to extract low-dimensional data in a variety of 

contexts. However, not all the data have linear patterns, especially human movements are 

considered nonlinear due to the anatomical constraints. 
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Another category of dimensionality reduction techniques is nonlinear methods that 

consider the nonlinearity in human movement pattern. Nonlinear methods have a better 

biological explanation than linear methods, it assumes the dynamics of human movement lies on 

a nonlinear manifold (Ficuciello et al., 2018; Jenkins & Matarić, 2004; Safonova et al., 2004; 

Wang & Suter, 2007). The nonlinear method groups the dimensions based on the balance 

between local similarity and global similarity. For example, to throw a ball, the elbow and 

shoulder are measured as local whereas the whole body is global. The results will show the 

shoulder and the elbow are grouped together to achieve the goal of reducing dimensions. There 

are two advantages of using nonlinear techniques: 1) It makes sense to apply nonlinear 

techniques to the nonlinear motor system 2) It is possible to discover the hidden dynamics in the 

data. However, a more powerful technique means that the lower dimensions are harder to 

interpret, and also the computation is complicated. Unless the linear methods cannot approximate 

the data well otherwise it is not advised to start from nonlinear methods.  

Task-driven approaches to describe movement patterns 

The above mentioned dimensionality reduction approaches describe the relation between 

different degrees of freedom, but do not address how this relation affects task performance. 

Therefore, a second class of approaches measures movement patterns in terms of how they 

achieve the task goal. For example, consider a reaching movement: although there are multiple 

joints in motion (shoulder/elbow/wrist), the important point from a task goal is whether the hand 

gets to the target or not. The Uncontrolled manifold hypothesis (Scholz & Schöner, 1999)  

adapted this concept and divided the task into two independent spaces: a “task space”, where the 

dimensions that affect task performance, and a “null space”, which is the dimension along which 
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there is no change in the task performance (Latash et al., 2002; Scholz et al., 2002). For example, 

in the reaching context, the ‘task space’ would lead to changes in hand position, whereas the 

‘null space’ would lead to no changes in hand position. This method has also been adopted for 

other methods (Cusumano & Cesari, 2006; Müller & Sternad, 2004). 

From a motor learning standpoint, the task and null spaces play very different roles. 

Because variations along the task space causes change in the outcome, learning should result in a 

reduction of the task space variability to have stable performance. However, there is no such 

constraint on the null space as, by definition, it does not influence task performance in any way. 

On the one hand, null space variability may decrease with learning as a way of being more 

consistent and finding an ‘optimal’ solution. However, the null space variability could also 

increase with learning as it provides flexibility in performing the task with different movement 

patterns. For example, if some of the solutions are riskier to cause injuries due to extreme body 

postures, the null space provides a way to ‘shift’ coordination pattern and move to a better one 

without affecting task performance. Addressing this kind of motor learning, which does not 

focus on the change of performance but rather on the change of movement patterns, is the main 

focus of the dissertation. Because this process is complex and usually takes a long time (e.g. pro 

tennis players change their stroke technique), understanding the computational aspects of motor 

learning can help to design a paradigm to change movement patterns (Neilson, 1993; Schaal & 

Schweighofer, 2005). 

Learning with external feedback 

This review section is based on the concept that the neurvous system receives external 

feedback of the task as the input, and processes this information to update the movement 
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coordination pattern (Cusumano & Cesari, 2006; Müller & Sternad, 2004). The purpose is to 

understand what types of input signals guide motor learning and how humans learn with different 

types of feedback. There are three forms of learning paradigms that provide different types of 

feedback and lead to different learning mechanisms (Wolpert et al., 2011): (1) error-based 

learning; (2) reinforcement learning; (3) use-dependent learning. 

First, I introduce the paradigm of each learning form and describe the details about the 

mechanism. Second, I discuss the question of learning alternative movement patterns in each 

mechanism. Third, I discuss future directions in the motor learning research. I separate the 

definition of the learning paradigm and learning mechanism due to the psychological aspects of 

human learning (Jordan & Rumelhart, 1992). The learning paradigm is defined by the structure 

of the feedback, and the learning mechanism is related to how the learner responds to the 

feedback.  

Error-based learning 

The paradigm 

In the error-based learning paradigm, the environment provides a signed feedback signal 

to the learner. The learner corrects the movement based on the magnitude and the sign of the 

feedback. The magnitude shows how much to correct and the sign shows which direction to 

correct. For example, in a dart-throwing task, the position of the dart shows the direction and the 

distance to the bullseye, this error information guides movement coordination pattern in the next 

trial. Error-based learning paradigm was studied by adaptation task, e.g. reaching in force fields 

(Bhushan & Shadmehr, 1999), visuomotor rotation (Krakauer et al., 2000), and prism goggle 
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adaptation (Martin et al., 1996). The experimenters introduced perturbations to create errors to 

show how participants correct the errors. 

The mechanism 

Providing feedback with the direction and magnitude in the task space triggers an error-

based learning mechanism. After receiving the feedback, the learner compares the predicted 

outcome to the feedback to calculate the error. After certain trials of practice, the learner will be 

able to associate the movement patterns to the gradient of the error, i.e. how the error changes 

after modifying the movement patterns. The learner then modifies movement patterns based on 

the direction of the gradient to minimize the error trial-by-trial until the error approaches to zero 

(Wolpert et al., 2011). The predicted outcome is generated by the forward internal model (Jordan 

& Rumelhart, 1992; Wolpert et al., 1995). A good analogy of this process is fitting the 

parameters of the model with a least-squares algorithm. Each new trial is a new data point in the 

system, the learner runs the algorithm to update the parameter for the next prediction. Error-

based learning is a type of model-based learning (Haith & Krakauer, 2013). This mechanism is 

effective but computationally heavy due to the process of finding the gradient and minimizing 

the error. Error-based learning is not easy to implement when learning a complex movement – 

for e.g., imagine receiving errors of hip, knee, ankle, and toe when practicing a gymnastic move, 

the learner may not be able to effectively use this information to update the next movement. 

Therefore, addressing how error-based learning can be used in complex tasks remains an 

important issue in computational motor learning. 
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Experimental results 

Error-based learning mechanisms are typically studied using motor adaptation tasks. In 

this type of task, participants experienced perturbations while performing a well-developed 

motor skill. The goal is to see how participants modify movement coordination to overcome the 

perturbation. For example, in a visuomotor rotation task (Tseng et al., 2007), participants 

controlled one cursor from home to the target position under a visual rotation i.e. the visual 

feedback deviates from actual hand trajectory. To successfully reach under +45 degrees of 

rotation, the participants needed to aim (the predicted outcome from the forward model) for-45 

degrees. The error was calculated between the aiming angle and the visual feedback, participants 

adapted the aiming angle from 0 to -45 degrees trial-by-trial. By using a state-space model to 

describe trial-by-trial changing of aiming angle, the results showed the adaptation was driven by 

the prediction error, not the target error. Similar results were shown in other studies 

(Criscimagna-Hemminger et al., 2010), the error-based mechanism is robust across non-

redundant tasks. 

Optimization  

Another question that is not mentioned in error-based learning is how humans modify the 

movement coordination pattern based on the gradient of the error. Studies showed motor learning 

can be seen as an optimization process (Körding & Wolpert, 2004; Selinger et al., 2015), but 

whether humans follow specific algorithms is still unclear. One possible optimization algorithm 

in human learning is gradient descent. This is a heuristic algorithm to find the movement pattern 

that changes the performance the most. For example, to learn a tennis forehand stroke, the 

learner tries different ways to hit the ball for many trials. Then the learner found modifying 
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elbow angle brings the greatest change of the speed of the ball. With this information the learner 

focuses on modifying the elbow angle to get the best performance. This concept was shown in a 

lab experiment: participants modified the effector with artificial noise in a redundant task 

(Wolpert et al., 2011). The artificial noise created a huge change to the performance, therefore 

the participants tried to minimize the errors from this effector. 

Gradient descent provides a good framework to describe how human associate the error 

to the movement pattern. However, searching through all the possible movement patterns is not 

feasible when there are too many possible solutions. A modified version of gradient descent 

seems more probable: stochastic gradient descent (SGD). Instead of searching through the entire 

variable space, SGD only samples a portion of the variables. The learning curve of SGD looks 

similar to the human motor learning curve. Both learning curves show different variability 

structures in different stages of learning. Motor learning and optimization algorithms share 

similar research interests in memory, variability, learning rate, and learning steps. It is possible to 

use ideas from SGD research to show how humans optimize errors during motor learning 

(Körding & Wolpert, 2004).  

Summary 

Error-based learning is a simple and effective mechanism for learning new motor skills. It 

has the advantage of faster learning speed and the disadvantage of harder to reach alternative 

coordination. It has been shown that humans use this mechanism in many motor adaptation tasks. 

However, the effectiveness of error-based learning in a higher-dimensional tasks are still not 

very clear, providing errors is problematic when there are too many dimensions that need to be 

corrected. 
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Reinforcement learning 

The paradigm 

The concept of reinforcement learning paradigm stems from the research of operant 

conditioning in behavioral psychology. The theory focuses on the responses after the organism 

receives stimulus from the environment, with two types of stimuli associated with the responses- 

reinforcement and punishment (Skinner, 1938). Reinforcement can be any stimulus that 

strengthens the responses and punishment is any stimulus that weakens the responses. The 

organism learns through either maximizing future reinforcement or minimizing future 

punishment. Later on, researchers proposed different schedules and different types of 

reinforcement feedback to consolidate behavior (Reynolds, 1961). To make the concept 

approachable, reward and punishment learning is widely used to explain operant conditioning. 

With the development of machine learning and artificial intelligence, computer scientists 

designed the algorithm of reinforcement learning from the concept of interaction between the 

organism and the environment (Sutton & Barto, 2017). The concept of reinforcement learning is 

to map the state of the environment to the actions by maximizing predicted rewards. To construct 

a reinforcement learning paradigm, the environment provides unsigned feedback to the learner, 

often an overall evaluation of the performance. The feedback can be as simple as success or 

failure, or as complex as numbers from abstract math functions (Wolpert et al., 2001). Studies 

also provided graded feedback like monetary rewards to study how the brain learns through 

reward prediction (Galea et al., 2015). The reinforcement learning paradigm is a natural way to 

learn in the real world. Receiving the feedback of success or failure reinforces the behavior by 

exploring possible actions. 
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The mechanism 

In contrast to error-based learning, the learner does not receive signed feedback of the 

task. Therefore, the learner has no direction of modifying movement coordination from binary 

feedback. A successful reinforcement learning mechanism includes two aspects - exploration and 

exploitation. Exploration searches the solution space and exploitation reproduces the 

coordination once the system has found a good solution. The long-term goal is to maximize the 

possibility of getting good feedback. One challenge is the ratio between exploitation and 

exploration. Exploitation ensures that the learner maintains current performance but doesn't help 

to improve the performance. Exploration provides the chance to improve the performance but the 

learner may not explore in the correct dimension, resulting a worse performance. As a result, 

reinforcement learning is often slow because of the uncertainty in the exploration, especially 

when the learner fails to explore the correct motor solutions. Since the forward model is not 

directly involved in this process, the reinforcement learning mechanism is a type of model-free 

learning (Haith & Krakauer, 2013).  

Exploration vs. noise 

Traditionally movement variability was seen as ‘noise’, and therefore considered 

detrimental to motor learning. However, because variability can also be due to exploration, there 

is evidence to show that variability has a positive role in motor learning (Dhawale et al., 2017; 

Herzfeld & Shadmehr, 2014; Murillo et al., 2017; Newell & Corcos, 1993; Wu et al., 2014). The 

variability is task-related, because of exploration, not the noise in the motor system. When the 

learner actively explores different movement patterns, the variability will be high in both task 
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space and joint space. However, these two sources of variability are hard to identify in the 

experiment.  

One solution to separate exploration and noise is to assume that participants are rational 

in the experiment, and only explore when they receive unsatisfactory outcomes. So the 

variability after ‘good’ trials can be defined as noise, and the learning process can be modeled 

with a Kalman filter (Therrien et al., 2016). However, this assumption of a ‘rational’ learner 

becomes more difficult when participants are engaged in high-dimensional tasks, where the 

distiction between exploration and noise becomes less obvious. Moreover, traditional linearized 

metrics like variance become more difficult to interpret in higher dimensions and also ignore the 

temporal component of the variation (Stergiou & Decker, 2011). Therefore, it is critical to study 

high-dimensional tasks to fully study the relationship between variability and exploration. 

Summary 

Reinforcement learning is slower to reach the solution space but it has the potential to 

learn alternative movement coordination patterns based on the amount of exploration. 

Reinforcement learning provides a flexible paradigm where experimenters can reduce the 

information in high dimensional joint space to binary feedback, and as a result it provides a tool 

to study learning of complex movements. 
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Use-dependent learning 

The paradigm 

Use-dependent learning is a type of unsupervised learning where there is no external 

feedback provided to the learner. The learner relies on the internal feedback and experience to 

learn the way to solve the task. 

The mechanism 

Use-dependent learning is the phenomenon that humans learn by repeating the same 

movement even though there is no external feedback provided (Krakauer & Mazzoni, 2011; 

Wolpert et al., 2011). This was shown in a reaching task that participants reduced variability by 

practicing the same task many times and caused a biased angle shift when reached to neighbor 

targets (Schaal et al., 2003). Moreover, since repeating the same task is what learners do to learn 

a new motor skill, use-dependent learning mechanism can happen along with error-based 

learning (Diedrichsen et al., 2010). Use-dependent learning does not actively help to learn 

alternative movement coordination patterns. Instead, this hinders people from moving to another 

movement coordination pattern after movement coordination pattern is well developed. This 

mechanism can be seen as a form of unsupervised learning (Jordan & Rumelhart, 1992; Todorov 

& Ghahramani, 2003). When the learner does not receive an external learning signal, all the 

available information for learning is based on the sensory input. The learner builds a probability 

model from all the sensory input then selects the most probable one as the next coordination. 

When one specific coordination is reproduced more than the others, it has a higher possibility. 

Then the learner has more chances to reproduce that coordination again. This explains why 

participants repeat the movement coordination pattern in the previous trials. 
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Summary 

Use-dependent learning is not an independent mechanism from error-based or 

reinforcement-based learning. Studies showed it happens along error-based or reinforcement-

based learning (Todorov & Ghahramani, 2003). For example, when the learner experiences a 

series trials with zero error, from the error-based mechanism we should not observe much 

coordination change because zero error means there is nothing to be improved. Then use-

dependent mechanism takes over the learning process where the learner tends to stick to the 

coordination in the previous trial. Another example in reinforcement learning, after a series of 

good feedback, the learner tends to keep to the movement pattern that has the largest possibility 

to receive good feedback. Use-dependent learning is an important mechanism to consider but 

often ignored when discussing the learning process. 

How to learn alternative movement patterns 

This dissertation focuses on how to use a different movement pattern to solve the same 

task. The aforementioned three learning paradigms are all possible to guide the learners to 

change the movement patterns. However, one might be more feasible for certain tasks. 

Understanding the difference between all three paradigms from the perspective of computation 

helps to design proper learning protocol. 

Error-based learning can help the learner to approach to the solution space, but hard to 

move to alternative coordination (Wolpert et al., 2011). This is because of all of the possible 

movement patterns in the task space have similarly low error. The error gradient directs learners 

to the solution space, but not within the solution space, so the mechanism of moving to 

alternative movement patterns is weak. An alternative is to provide the learning signal directly in 
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the joint space instead of the task space. This type of learning in skill acquisition research called 

observational learning, the learner observes a “good” movement pattern and try to imitate the 

pattern. Similarly, in robotics research, imitation learning is widely applied to teach a motor 

function to the robot (Schaal et al., 2003). Imitation learning provides the learning signal on 

coordination level, therefore the learner can compare prediction outcome to the imitation signal 

to construct an error-based learning paradigm. Imitation learning is faster than other learning 

algorithms in robotics. If motor learning researchers borrow this concept to design the learning 

signal in joint space, how the brain handles error feedback in a higher-dimensional space could 

be studied.  

Reinforcement learning, on the other hand, places a big emphasis on exploration. The 

learner explores actively to maximize future reward (or minimize future punishment). But it 

might be inefficient when the learner explores the whole solution space. One way to improve 

efficiency is to implicitly inform the nervous system which end-effector is important. For 

example, researchers added artificial noise to one of the end-effectors. Consequently, participants 

modified coordination by minimizing the noise in the noisy end-effector (Mehler et al., 2017; 

Thorp et al., 2017). In another study, the experimenters designed closed-loop reinforcement 

feedback where the current feedback was defined by previous feedback (Therrien et al., 2016). 

This design makes sure participants explore the same direction to ensure the learning 

performance. It is possible to reinforce a specific coordination pattern when the feedback was 

provided on the level of joint space.  

The idea of using error-based learning to move to the solution space then use 

reinforcement learning to change the movement pattern was proposed as a hypothesis (Wolpert 

et al., 2011) – however, there is no empirical evidence to show the combination will be effective. 
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But compared to the three learning paradigms, reinforcement learning is more likely to guide the 

learner to change movement patterns due to the active exploration. The learner sees the whole 

movement pattern as one action, the goal is to find the action which brings the highest future 

rewards. Although there is no empirical evidence to support the brain is using this algorithm to 

learn new movement patterns, in machine learning reinforcement learning, had great success in 

learning complex tasks. Therefore, the main focus of my work will use reinforcement learning. 

Summary 

Studying learning new movement patterns is a complex procedure with two main steps. 

First, there is a need to select a method to reduce the dimensions of the motor system, and make 

it easier to understand the change in patterns during learning. These dimensionality methods can 

be linear or nonlinear. Second, there is a need to understand how different learning mechanisms 

guide the learner toward new movement patterns. Based on these learning mechanisms, the focus 

of this dissertation is to use reinforcement learning to alter movement patterns.
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CHAPTER 3 LEARNING ALTERNATIVE MOVEMENT PATTERNS USING 

REINFORCEMENT FEEDBACK IN A REACHING TASK 

Abstract 

One of the characteristic features of the human motor system is redundancy– i.e., the 

ability to achieve a given task outcome using multiple movement patterns. However, once 

participants settle on using a specific movement pattern, the process of learning to use a new 

alternative movement pattern to perform the same task is still poorly understood. Here, using two 

experiments, we examined this process of how participants shift from one movement pattern to 

another using different reinforcement schedules. Participants performed a virtual reaching task, 

where they moved a cursor to different targets positioned on the screen. Our goal was to make 

participants use a movement pattern with greater trunk motion, and to this end, we provided 

reinforcement by making the cursor disappear if the trunk motion during the reach did not cross a 

specified threshold value. In Experiment 1, we compared two reinforcement schedules in two 

groups of participants– an abrupt group, where the threshold was introduced immediately at the 

beginning of practice, and a gradual group, where the threshold was introduced gradually with 

practice. Results showed that both abrupt and gradual groups were effective in shifting their 

movement patterns to involve greater trunk motion, but the abrupt group showed greater 

retention when the reinforcement was removed. In Experiment 2, we examined the basis of this 

advantage in the abrupt group by using two additional control groups. Results showed that the 

advantage of the abrupt group was because of a greater number of practice trials with the desired 

movement patterns. Overall, these results show that reinforcement can be successfully used to 

shift movement patterns, which has potential in the rehabilitation of movement disorders. 
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Introduction  

Motor redundancy – the ability to perform a given motor task using different movement 

patterns - is a hallmark of the human motor system. Given the large number of degrees of 

freedom (DOF) in the body, the question of how the nervous system learns to harness this 

redundancy to produce goal-directed movement continues to be a central question in motor 

learning (Bernstein, 1967). This feature of motor redundancy (also see ‘motor abundance’, 

Latash, 2012) not only provides flexibility in performing everyday movements, but also 

underlies the phenomenon of ‘compensatory movements’ that are often observed after 

neurological injury such as stroke (Cirstea & Levin, 2000; Levin et al., 2009), where an 

alternative movement pattern is used to compensate for a specific movement deficit -e.g., using 

trunk motion during reaching to compensate for inadequate elbow extension. Therefore, from 

both theoretical and applied perspectives, it is critical to understand how participants learn to use 

motor redundancy. 

However, in spite of the extensive focus on redundancy at several levels of the motor 

system in the literature (Dingwell et al., 2010; Latash, 2012; Müller & Sternad, 2004; Todorov & 

Jordan, 2002), there has actually been surprisingly little attention in understanding how 

participants learn a new alternative movement pattern to perform the same task by reorganizing 

the DOFs. On the one hand, there is evidence that there is significant reorganization of DOFs 

during motor learning of novel tasks (Konczak et al., 2009; Newell, 1986; Vereijken et al., 1992) 

- however these studies typically do not address the issue of whether the new movement patterns 

that emerge with learning are ‘alternatives’ to the initial movement pattern (i.e. whether they 

could be used to produce the same task outcome). On the other hand, several studies have shown 

that participants can quickly change to alternative movement patterns to maintain the same task 
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outcome (Diedrichsen, 2007; Martin et al., 2011) – however these studies have typically 

employed already well-learned tasks such as reaching and force production. Therefore, in order 

to bridge this gap, we need to understand the acquisition of a new movement pattern in a task 

which is an ‘alternative’ to a pre-existing movement pattern (i.e. both can produce the same task 

outcome), and relatedly, how these changes in movement patterns can be elicited using 

augmented feedback. 

Here, we explored the use of reinforcement feedback as a tool, and tested different 

reinforcement schedules to alter movement patterns with multiple degrees of freedom. 

Reinforcement feedback, often summarized as ‘reward and punishment’ (Sutton & Barto, 2017; 

Wolpert et al., 2001), provides a scalar feedback about the movement, without providing precise 

error information. The goal of the participants is therefore to simply act in a way that maximizes 

the reward (or minimizes the punishment). It is important to note that the term ‘reinforcement’ 

used in this context is related but somewhat distinct from that used in the classic psychology 

literature (Ferster & Skinner, 1957) in that it can refer to both reward or punishment-like 

feedback. The rationale behind using reinforcement learning is that it is particularly well suited 

to the learning of novel movement patterns both from theoretical and practical viewpoints. From 

a theoretical viewpoint, it is different from error-dependent learning (Wolpert et al., 2011) in that 

there is no indication of the error magnitude, and therefore requires exploration to find the 

optimal solution. From a practical viewpoint, reinforcement feedback is often much simpler to 

provide in multi-DOF tasks because it is a simple scalar whereas in contrast, error-dependent 

feedback would have to be multidimensional since feedback would have to be provided on both 

the magnitude and direction of the error. However, it is unclear how reinforcement feedback is 

best utilized to elicit changes to coordination, so we examined how the reinforcement schedule 



24	

(abrupt vs. gradual) influenced the learning of a new movement pattern. Although several studies 

on motor adaptation (based on error-dependent learning), show greater retention (as measured by 

the ‘after-effects’ of adaptation) in the gradual reinforcement schedule (Kagerer et al., 1997; 

Shadmehr et al., 2010), we aimed to examine this relation in a reinforcement learning of a novel 

movement pattern. 

In this study, we examined the trunk-arm coordination during reaching. This is a system 

with redundancy because the position of the hand in space is influenced both by configuration of 

the arm, as well as the configuration of the trunk. Although several previous studies have 

examined how participants exploit the redundancy in multiple degrees of freedom during 

reaching, we focused on making participants shift from a ‘typical’ reaching motion to learning a 

‘compensatory’ reaching motion. Typical reaching motions in unimpaired individuals involve 

little to no trunk motion for targets within arm length, whereas ‘compensatory’ movement 

patterns (similar to that seen after stroke) involved reaching with greater trunk motion (Cirstea & 

Levin, 2000). We hypothesized that (i) reinforcement feedback can shift movement pattern 

during reaching, and (ii) participants would show greater retention of the compensatory 

movement pattern in the gradual group compared to the abrupt group.  

Methods- Experiment 1 

Participants 

Twenty-four college students (Mean age ± SD: 21 ± 1 years, 16 Female, 4 left-handed) 

with no history of neurological or musculoskeletal injury participated in the experiment for extra 

course credit. Participants provided informed consent and all procedures were approved by 

Institutional Review Board at Michigan State University. 
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Apparatus 

Participants sat in front of a desk facing a 50” (127 cm) television screen (Figure 3.1A). 

A motion capture system was used to record kinematics at a sampling rate of 120 Hz (Motion 

Analysis Corporation, Santa Rosa, CA). Ten retro-reflective markers were attached to the body - 

forehead, sternum, and bilaterally at the shoulder, elbow, wrist, and hand (third 

metacarpophalangeal joint). An additional eleventh marker was placed on the left side of the 

chest to distinguish left and right sides of the body. 

Task 

The task was a virtual reaching task where participants moved their right hand and 

attempted to move a cursor on a screen to specific targets. A MATLAB program was designed to 

receive (x,y,z) coordinates from motion capture system, and we mapped the (x,y) coordinates 

(corresponding to horizontal plane)  of the right hand to a cursor on the screen. Six virtual targets 

were placed in three different directions (0, +45°, -45°) and two distances (near targets: 160 mm 

and far targets: 320 mm) from the starting position (Figure 3.1B). Targets were fixed at the same 

distances for all participants (i.e. they were not scaled to participant height or arm length). 

Participants were instructed to move the cursor from home position to the target to perform a 

virtual reaching task as fast as possible. Each trial ended when the cursor entered the specified 

target (and stayed inside the target for 500 ms).  To keep the participants motivated throughout 

the experiment we provided additional feedback - if they reached the target within a target 

movement time (movement time had to be below 800 ms), the target was highlighted in yellow 

and they heard a rewarding tone, otherwise the target was highlighted in red.  
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Figure 3.1. Schematic of experimental setup (A) Participants sat in front of TV screen and 
their kinematics were recorded using a motion capture system. (B) Participants performed 
“virtual reaching” movements where they had to move the cursor on the screen to one of six 
different targets shown (three near and three far). The cursor position was controlled by the x-y 
coordinates of the marker on the right hand. 

Procedure 

There were a total of 7 blocks in the experiment - a pre-test, 5 blocks of training, and a 

post-test (Figure 3.2C). Participants performed 60 trials in each block (10 trials to each target), 

for a total of 420 trials in the entire experiment. In the pre-test and post-test blocks, there was no 

reinforcement feedback, which meant that participants could perform the reaching task with any 

movement pattern. In the training blocks, we introduced reinforcement feedback to constrain the 

participants to use a compensatory movement pattern (see Groups and reinforcement schedules 

section below for how this was implemented). Each trial consisted of a single outward reach 

from the home target to one of the six peripheral targets. The order of target presentation was 

randomized with the constraint that all six targets had to be presented before a target could 

repeat. Each experiment lasted for about 40 minutes. 

Providing Reinforcement feedback  

To make participants learn an alternative movement pattern – i.e., to use more trunk 

motion during the reach, we provided binary reinforcement feedback by manipulating the vision 
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of the cursor. First, we defined the movement to be compensatory by comparing the trunk-hand 

distance (i.e. the distance between the sternum and hand marker measured along the horizontal 

plane) to a specified threshold value (Figure 3.2A). Using this threshold, we manipulated the 

visual feedback such that the cursor was visible as long as the trunk-hand distance was smaller 

than threshold (i.e. greater trunk motion), but the cursor disappeared when the trunk-hand 

distance was larger than the threshold (Figure 3.2B). Depending on the trunk-hand distance, the 

cursor could appear and disappear multiple times during a single trial, and a trial could be 

completed only if the cursor was visible when it was inside the target. 

The instructions given to the participants were as follows: During the pre-test, 

participants were only given the instructions related to the task itself (i.e. moving the cursor to 

the targets as fast as possible). During the reinforcement blocks, participants were told that the 

cursor might occasionally disappear, and when this happened, they were simply instructed to 

explore different ways of moving their body until the cursor reappeared on screen. It is important 

to note that the instruction to ‘explore’ was meant only to prevent participants from stopping 

when the cursor disappeared - no explicit instruction was given about moving the trunk. Prior to 

the start of the post-test, participants were not explicitly told that the reinforcement feedback had 

been removed. 

The disappearance of the cursor served as reinforcement feedback because participants 

effectively knew when they made an “error” (the error in this context was defined as not using 

sufficient trunk motion during the reach), but did not have any precise information about how 

much this error was, or how much more trunk motion was needed to make in order to get the 

cursor back. Participants could also not ignore this feedback because they could not complete the 

trial without visual feedback of the cursor. 
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Figure 3.2. Reinforcement feedback and experimental protocol (A) Reinforcement feedback 
was provided based on the trunk-hand distance to elicit a movement pattern with greater trunk 
motion. (B) The cursor on the screen was visible as long as the trunk-hand distance was smaller 
than a specified threshold, but became invisible when the trunk-hand distance exceeded the 
threshold. (C) Participants performed 60 trials for each block and total of 7 blocks. Pre-test and 
post-test block had no reinforcement feedback. Blocks 1-5 (B1-B5) had reinforcement feedback. 

Groups and Reinforcement schedules 

We tested two types of reinforcement feedback schedules - abrupt, and gradual by 

assigning participants into one of two groups (n = 12/group). In the abrupt group, the threshold 

was immediately reduced from 600 to 360 mm in block 1, and raised back up to 600 mm in the 

post-test (Figure 3.3A). In contrast, in the gradual group, the threshold was gradually reduced 

over a set of 60 trials (a decrease of 48mm every 12 trials) so that the threshold was 360 mm 

only in block 2 (Figure 3.3B). Also, the threshold was raised back up gradually starting in block 

5 so that the threshold was back to 600 mm by the end of block 5. 

The rationale for the specific values of 600 mm and 360mm were as follows - the 600 

mm was essentially large enough to be a “no threshold” condition - i.e., the trunk-hand distance 
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did not cross this threshold during typical reaching movements, and participants could reach all 

targets using their typical movement pattern. However, when the threshold was set to 360 mm, 

the feedback depended on whether participants reached for the far or near targets. For the three 

far targets, making typical reaching movements crossed this threshold (i.e. the cursor would 

disappear), and therefore participants were required to reorganize their movements to these 

targets. However for the three near targets, the threshold was still large enough that participants 

could use the typical reaching movements, and therefore no reorganization was required for the 

near targets. It is important to note that because we used fixed target distances, the thresholds 

mentioned above were also fixed (i.e., not body-scaled) but they were set so that most 

participants would have to reorganize their movement pattern when the threshold was set to 

360mm. 

Data Analysis 

Trunk-hand distance 

To examine changes in trunk-arm coordination, we computed the distance between 

sternum and right hand at the instant when the participants reached the target. This was the same 

variable that was used to control the reinforcement feedback. Since the hand had to travel the 

same distance, a longer trunk-hand distance meant lesser trunk movement, and a shorter distance 

meant more trunk movement.   

Path length 

To examine the temporal coordination between the trunk and the hand (i.e. whether the 

trunk and the hand moved simultaneously or sequentially), we used the path length. First we 

plotted the hand displacement (projected in the direction of the target) against the sternum 

displacement (also projected in the direction of the target). The path length was normalized by 
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dividing the actual path length by the shortest length between the start and end of the reach. 

Higher values indicated greater exploration, whereas lower values (closer to 1) represent a 

coordinated strategy with simultaneous motion of the trunk and hand.  

Statistical Analysis 

Trunk-hand Distance 

Because our threshold required compensatory movements to the far targets, but not the 

near targets, we separated the analysis of the far and near targets. For each of these, we were 

specifically interested in three different comparisons:  First, to examine if reinforcement 

feedback had an effect on the coordination (i.e. the manipulation check), we compared the pre-

test block and the first ‘full threshold’ block where the threshold was set at 360 mm (i.e. block 1 

for the Abrupt group, and block 2 for the Gradual group). Second, to compare how participants 

adapted to the reinforcement feedback, we compared the first full threshold block (block 1 for 

Abrupt, block 2 for Gradual) to the last full threshold block (block 5 for Abrupt, block 4 for 

Gradual). Third, to examine retention of the pattern after the threshold was removed, we 

compared the pre-test block to the post-test block. The analyses were subject to a block (2) x 

group (2) repeated measures ANOVA with block as the within-subjects factor, and group as the 

between-subjects factor. The significance level was set at .05.  

Path length 

Because the path length was a measure of exploration (i.e. how participants reorganized 

the motion of their DOFs), we were primarily interested only in the phase when the 

reinforcement feedback was on. We compared the path length between the first full threshold 

block and the last threshold block to show how participants developed strategies to perform the 
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task. We ran a block (2) x group (2) repeated measures ANOVA with block as the within-

subjects factor, and group as the between-subjects factor. The significance level was set as .05. 

Results 

Trunk-hand distance - Far targets 

The trunk-hand distance for the far targets is shown for the abrupt (Figure 3.3C) and the 

gradual group (Figure 3.3D). The average change between the groups is shown in Figure 3.4A. 

Effect of reinforcement feedback.  There was a significant decrease in the trunk-hand distance 

from the pre-test to the first full threshold block (main effect of block: F(1,22) = 278.09, p < 

.001). In addition, the abrupt group showed a lower trunk-hand distance than the gradual group 

(main effect of group: F(1,22) = 5.17, p = .033). There was no significant Block x Group 

interaction (F(1,22) = 0.92, p = .347). 

Adaptation to reinforcement. There was a significant decrease in the trunk-hand distance from 

the first full threshold block to the last threshold block (main effect of block: F(1,22) = 9.62, p = 

.005). In addition, the abrupt group showed a lower trunk-hand distance (main effect of group: 

F(1,22) = 7.65, p = .011). There was no significant Block x Group interaction (F(1,22) = 4.17, p 

= .053). 

Post-test Retention. There was a significant decrease in the trunk-hand distance from the pre-test 

block to the post-test block (main effect of block: F(1,22) = 44.40, p  < .001). In addition, the 

abrupt group showed a lower trunk-hand distance (main effect of group: F(1,22) = 8.62, p = 

.007), which was mediated by a significant Block x Group interaction (F(1,22) = 6.59, p = .018). 

Post hoc analysis showed there was no difference for both groups in pre-test (p = .467), but 

abrupt group had smaller trunk-hand distance in post-test (p = .023). 
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Trunk-hand distance - Near targets 

The trunk-hand distance for the near targets is shown for the abrupt (Figure 3.3E) and the 

gradual group (Figure 3.3F). The average change between the groups is shown in Figure 3.4B. 

For the near targets, there was no ‘requirement’ to change movement coordination since the 

targets were close enough that the trunk-hand distance would be under the 360 mm threshold. 

This is also seen in Figure 3.4C, which shows the proportion of time that the cursor was visible 

during the trial – there was a drop in the proportion for far targets initially in block 1 (indicating 

that the trunk-hand distance had exceeded the threshold), whereas the near targets were almost 

always visible. 

Effect of reinforcement feedback. There was as significant decrease in the trunk-hand distance 

from the pre-test to the first full threshold block (main effect of block: F(1,22) = 51.04, p < .001). 

There was no main effect of group (F(1,22) = 4.02, p = .058), and no Block x Group interaction 

(F(1,22) = 0.15, p = .702). 

Adaptation to reinforcement. There was no main effect of block (F(1,22) = 0.12, p = .735), and 

no main effect of group (F(1,22) = 2.54, p = .125), and no Group x Block interaction (F(1,22) = 

0.82, p = .374). 

Post-test Retention. There was as significant decrease in the trunk-hand distance from the pre-

test block to post-test block (main effect of block: F(1,22) = 18.16, p < .001). In addition, the 

abrupt group showed a smaller trunk-hand distance (main effect of group: F(1,22) = 5.73, p = 

.026). There was no Block x Group interaction (F(1,22) = 1.38, p = .252). 
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Figure 3.3. Variation of thresholds and actual trunk-hand distances (A) Threshold of abrupt 
group. (B) Threshold of gradual group. (C) Abrupt group at far targets. (D) Gradual group at far 
targets. (E) Abrupt group at near targets. (F) Gradual group at near targets. In panels (C-F), each 
line represents a single participant in that group. There was a marked decrease in the trunk-hand 
distance when the reinforcement feedback was provided (B1-B5). 
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Figure 3.4. Mean trunk- hand distance in far and near targets (A) Mean trunk- hand distance 
of all participants in abrupt and gradual groups when reaching to far targets. (B) Mean trunk- 
hand distance of all participants in gradual group when reaching to near targets. (C)(D) Mean 
proportion of time that cursor was visible when reaching to far and near targets. Error bars 
represent 1 SEM (between-participant). The gradual group showed poorer retention of the new 
movement pattern compared to the abrupt group in the post-test. 

Path Length - Far targets 

A sample trial from a single participant in each of four blocks of learning is shown in 

Figures 3.5A-D. The path length for the far targets is shown in Figure 3.5E. 

Adaptation to reinforcement. There was a significant decrease in path length from the first full 

threshold block to the last full threshold block (main effect of block: F(1,22) = 17.71, p < .001). 

There was no main effect of group (F(1,22) = 0.09, p = .771), but there was a significant 

interaction effect between group and block (F(1,22) = 4.87, p = .038). Post hoc tests showed both 
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groups had no difference in the first full threshold block (p = .200), but that the abrupt group had 

smaller path length in last full threshold block (p = .015). 

Path Length - Near targets 

The path length for the near targets is shown in Figure 3.5F. 

Adaptation to reinforcement. There was no main effect of block (F(1,22) = 2.13, p = .159), and 

no main effect of group (F(1,22) = 0.04, p = .845), and no interaction effect (F(1,22) = 0.01, p = 

.937). 

 

Figure 3.5. Schematic of path length (A) Pre-test block – the participant showed a ‘typical’ 
reaching motion with very little trunk movement. (B) First block with full threshold – participant 
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showed an exploratory strategy with increase in trunk movement. (C) Last block with full 
threshold – participant showed lower exploration and simultaneous movement of hand and trunk. 
(D) Post-test block, without the reinforcement feedback participant still reached the target with 
more trunk movement compared to the pre-test block. (E) Normalized path length at far targets 
for the abrupt and gradual groups. (F) Normalized path length at the near targets for the abrupt 
and gradual groups. Error bars in E and F represent one SEM (between-participant). Both abrupt 
and gradual groups show initial increases in path length during reinforcement feedback 
(indicating greater exploration), which decreases with further practice (indicating lesser 
exploration and simultaneous movement of the hand and trunk). 

Discussion of Experiment 1 and rationale for Experiment 2 

The results of Experiment 1 showed reinforcement feedback helped to shift coordination 

in the reaching movement, and that the abrupt group had greater retention of trunk movement 

during post-test. This was seen both in the trunk-hand distance in the post-test (both far and near 

targets) as well as the smaller exploration index in the last full threshold block (indicating they 

had a more coordinated strategy).   

We examined two hypotheses that could potentially explain the greater retention of the 

new movement pattern in the abrupt group in this task. First, we hypothesized that the abrupt 

group had greater retention because it had more full threshold trials with reinforcement feedback 

compared to the gradual group (300 trials compared to 180 trials). Secondly, we hypothesized 

the gradual ‘ramp up’ phase (trials 300-360) of the gradual group resulted in participants 

becoming aware that the threshold had been removed prior to the post-test, which could have 

caused them to revert to the typical reaching motion faster.  

We added two new groups in Experiment 2 to test these hypotheses - (a) a ‘short abrupt’ 

group that had the same number of full threshold trials as the gradual group (i.e. 180 trials), and 

(b) a ‘gradual with abrupt return’ group where the threshold was introduced gradually, but 

removed abruptly (Figure 3.6D).  
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Methods – Experiment 2 

All procedures were identical to that mentioned in Experiment 1. We recruited 24 

additional healthy college students (Mean age ± SD = 21 ± 1 years, 14 Female, 1 left-handed). 

None of the participants in Experiment 2 were part of Experiment 1. Participants were randomly 

assigned to one of two groups (n=12/group): a short abrupt group (Figure 3.6A), or a gradual 

with abrupt return group (Figure 3.6B). 

Statistical Analysis 

We compared the two new groups to the gradual group separately to show the differences 

of trunk-hand distance and path length. A group (2) x block (2) mixed design was performed in 

each of the two comparisons (short abrupt vs. gradual, and gradual with abrupt return vs. 

gradual). Because the two groups in Experiment 2 were designed in order to examine hypotheses 

related to the greater retention of the abrupt group in the post-test, we were also only interested 

in comparing the groups at the post-test (i.e., post-test retention). 

Results 

Trunk-hand distance - Far targets 

The trunk-hand distance for the far targets is shown for the short-abrupt (Figure 3.6C) 

and the gradual with abrupt return group (Figure 3.6D). The average change between the groups 

is shown in Figure 3.7A. 

Post-test Retention (Gradual vs. Short abrupt). There was as significant decrease in the trunk-

hand distance from pre-test block to post-test block (main effect of block: F(1,22) = 15.26, p < 

.001). However, there was no main effect of group (F(1,22) = 0.02, p = .877), and no Block x 

Group interaction (F(1,22) = 0.01, p = .934). 
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Post-test Retention (Gradual vs. Gradual with abrupt return).There was a significant reduction in 

the trunk-hand distance from the pre-test block to post-test block (main effect of block: F(1,22) = 

16.38, p < .001). There was no main effect of group (F(1,22) = 0.56, p = .462), and no Block x 

Group interaction (F(1,22) = 0.63, p = .437). 

 

Figure 3.6. Variation of thresholds and actual trunk-hand distances (A) Threshold of short 
abrupt group. (B) Threshold of gradual with abrupt return group. (C) Short abrupt group at far 
targets. (D) Gradual with abrupt return group at far targets. (E) Short abrupt group at near 
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targets. (F) Gradual with abrupt return group at near targets. In panels (C-F), each line represents 
a single participant in that group. Again, similar to Experiment 1, both groups show decreases in 
trunk-hand distance when reinforcement feedback is provided. 
 

 

Figure 3.7. Group mean trunk- hand distance (A) Mean trunk- hand distance of all 
participants in the gradual group (from Experiment 1) and the short abrupt group, and gradual 
with abrupt return groups (from Experiment 2) when reaching to far targets. (B) Mean trunk- 
hand distance of all participants in the gradual group (from Experiment 1) and the short abrupt 
group, and gradual with abrupt return groups (from Experiment 2) when reaching to near targets 
Error bars represent 1 SEM (between-participant). There was no significant difference between 
either the gradual and the short-abrupt group, or the gradual and the gradual with abrupt return 
group in the post-test. 

Trunk-hand distance - Near targets 

The trunk-hand distance for the near targets is shown for the short-abrupt (Figure 3.6E) 

and the gradual with abrupt return group (Figure 3.6F). The average change between the groups 

is shown in Figure 3.7B. 

Post-test Retention (Gradual vs. Short abrupt). There was a significant decrease in the trunk-hand 

distance from pre-test block to post-test block (main effect of block: F(1,22) = 9.25, p = .005). 

However, there was no main effect of group (F(1,22) = 0.04, p = .847), and no Block x Group 

interaction (F(1,22) = 0.11, p = .739). 
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Post-test Retention (Gradual vs. Gradual with abrupt return). There was a significant reduction in 

the trunk-hand distance from the pre-test block to post-test block (main effect of block: F(1,22) = 

7.56, p = .011). However, there was no main effect of group (F(1,22) = 1.80, p = .192), and no 

Block x Group interaction (F(1,22) = 0.08, p = .781). 

 Discussion of Experiment 2 

The results of Experiment 2 showed that (i) the short abrupt group did not show greater 

retention compared to the gradual group, and (ii) the gradual with abrupt return group did not 

show greater retention compared to the gradual group. These results support the idea that rather 

than the way the threshold was introduced, the number of trials practiced with reinforcement 

feedback of the desired movement pattern (which was determined by the number of full 

threshold trials in the current paradigm) determined the retention of the new movement pattern.  

General Discussion 

We examined the use of reinforcement to shift participants from using one coordination 

solution to another in a redundant task. Reinforcement in our task was provided by removing 

vision of the cursor if there was insufficient trunk motion during the reach, as defined by a 

threshold value. We examined two schedules of introducing the threshold - either abruptly or 

gradually to examine if there were any differences in retention of the new movement pattern 

after the threshold was removed.  

Regarding our first hypothesis, the results of Experiment 1 showed that both gradual and 

abrupt schedules of reinforcement were successful in creating changes in coordination from pre-

test to post-test. Although the post-test showed signs of a return back to the pre-test movement 

pattern, it was still significantly different from the movement pattern in the pre-test even after 60 
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trials of reaching. Regarding our second hypothesis, we found that contrary to our expectation 

from adaptation studies, the abrupt group showed greater retention of the movement pattern 

compared to the gradual group. This was seen not only in terms of greater trunk motion (as 

indicated by the smaller trunk-hand distance), but also a more simultaneous coordinated 

movement between the trunk and the hand (as indicated by the path length). Experiment 2 further 

showed that the greater retention of the abrupt group was likely due to the greater number of 

trials practiced at full threshold, and not due to any specific differences between introducing the 

threshold in an abrupt or gradual manner. It is important to note that even though we statistically 

compared two groups from Experiment 2 to a group from Experiment 1 (i.e. they were not 

prospectively randomized), we are confident in the interpretations of these tests because the 

participants in these groups were highly similar both from a demographic standpoint, as well as 

their performance on the pre-test. 

These results support the idea of using reinforcement feedback to elicit changes in 

coordination. Previous studies on reinforcement learning have shown differences in motor 

adaptation tasks (Izawa & Shadmehr, 2011; Nikooyan & Ahmed, 2015). However as mentioned 

in the Introduction, these paradigms typically do not generally deal with the issue of learning a 

novel movement pattern requiring the reorganization of degrees of freedom. In contrast to 

smooth, exponential changes with practice that is typical of error-driven learning, reinforcement 

learning resulted in exploration where participants had to ‘break out’ of the typical movement 

pattern and employ search strategies to discover a new solution. Once this solution was learned, 

participants still refined the solution by decreasing the path length to produce a more coordinated 

movement between the trunk and the hand. Our results, along with other recent studies (Mehler 

et al., 2017; Thorp et al., 2017), show the potential of reinforcement feedback in understanding 
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learning and coordination in systems with motor redundancy, which could also be extended to 

rehabilitation of compensatory movements in movement disorders (Michaelsen et al., 2006; 

Ranganathan et al., 2017).  

When comparing abrupt and gradual schedules, we found results that are in general 

counter to the majority of the literature on motor adaptation (Huang & Shadmehr, 2009; Kagerer 

et al., 1997; Klassen et al., 2005). In our case, the abrupt schedule produced greater retention 

after the feedback was removed compared to the gradual group. Closer examination of this result 

in Experiment 2 suggested that the abrupt group had better performance not because of any 

conscious but because they had greater amounts of specific practice with the required movement 

pattern (which was determined by the number of full threshold trials). There are two critical 

differences between the previous studies and the current one. First, the advantage of the gradual 

group in adaptation studies is attributed to the size of the error signal (Criscimagna-Hemminger 

et al., 2010). It is hypothesized that smaller errors affect the credit assignment problem, which 

results in attributing more error to our body than to the environment (Berniker & Kording, 2008). 

In our study however, we used reinforcement feedback where participants only received binary 

feedback with no information about the magnitude of error. This difference between the 

experimental paradigms could explain why the gradual group did not show any advantages, and 

instead the number of trials at full threshold became the more critical factor. Second, the abrupt 

group showed a large amount of exploration for a short period of time very early in learning, 

which was followed by a period of stabilization of the new movement pattern (as indicated by 

the decrease in path length). In contrast, the gradual group (where the threshold was changed) 

had to explore by a smaller amount, but over a larger time period. This prolonged exploration 

meant that they had a smaller time to stabilize the new movement pattern, which potentially 
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affected retention. Consistent with this hypothesis, when the number of trials was reduced in the 

abrupt condition in Experiment 2 (for the short abrupt group), there was poorer retention. Further 

experiments are warranted to fully examine this hypothesis of how gradual vs. abrupt schedules 

affect stabilization of movement patterns in reinforcement learning. 

Finally, we also investigated the generalization of learning the new movement pattern by 

examining the movements to the near targets. As mentioned earlier, the near targets were 

positioned close enough that the reinforcement feedback had no influence when reaching to these 

targets (i.e. the cursor never disappeared when reaching to these targets). Therefore there was no 

requirement for participants to change their movement pattern when reaching to these targets. 

Yet, when practicing these near targets in combination with the far targets, participants changed 

their coordination even for the near targets by using greater trunk motion. These results clearly 

show that participants were “reusing” the same movement pattern for all targets, even though 

this is likely more energy inefficient from a metabolic energy standpoint (given the mass of trunk 

is much larger than the arm). These results support previous studies which found that in tasks 

requiring the learning of novel movement patterns, the computational cost of changing a solution 

may be more critical than metabolic cost in determining the movement pattern (Ganesh et al., 

2010; Rosenbaum & Jorgensen, 1992). 

In summary, we found that reinforcement feedback was capable of causing a change in 

movement pattern used to perform a redundant task. Although participants moved back closer to 

the original movement pattern once the feedback was removed (indicating that the effects seen 

here were more reflective of short-term adaptation than long-term learning), we were able to 

identify clear changes that persisted over many trials, and across different schedules of training. 

Understanding how the nervous system organizes and reorganizes movement coordination still 



44	

remains a significant challenge in motor learning research and the current results highlight the 

potential of using reinforcement feedback for changing movement patterns both in healthy and 

neurologically impaired populations.
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CHAPTER 4 SHAPING REINFORCEMENT FEEDBACK TO INDUCE CHANGES IN 

MOVEMENT PATTERNS IN A THROWING TASK 

Abstract 

Reinforcement learning has been used to facilitate motor learning, but its applicability in 

multiple degree of freedom (DOF) tasks with redundancy is not fully understood. A critical issue 

that arises in such tasks is how to use reinforcement to guide exploration in a high-dimensional 

space toward the desired movement patterns. Here, using two experiments, we examined the use 

of reinforcement feedback and different shaping techniques to change movement patterns in a 

multi-DOF task with redundancy. 70 college-aged participants performed a virtual throwing task 

where the goal was to throw a ball toward a target, and we introduced redundancy by making the 

ball velocity a linear combination of trunk and hand velocity. The goal of the participants was to 

use reinforcement feedback, provided as a score after each trial, to shift their movement pattern 

toward a higher trunk velocity. We used different shaping techniques to manipulate the threshold 

of trunk velocity below which participants received ‘punishment’ (i.e. a bad score) and examined 

the change in the trunk velocity with practice. In experiment 1, we compared three shaping 

techniques (abrupt, gradual and adaptive) that manipulated the threshold in different ways. In 

experiment 2, we compared four adaptive shaping techniques to further examine what 

characteristics of adaptive feedback. We found that: (i) reinforcement feedback in multi-DOF 

task was less successful in changing movement patterns compared to previous studies using 

single DOF tasks, (ii) adaptive shaping techniques, that incorporated the participant’s current 

level of performance, were more successful in changing movement patterns. These results 

highlight the potential of adaptive shaping techniques for learning complex motor skills.  
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Introduction 

Motor redundancy (or alternatively motor abundance (Latash, 2012)) , which arises due 

to the large number of degrees of freedom (DOF) in the human body, allows humans to perform 

most motor tasks with multiple movement patterns (Bernstein, 1967).  This redundancy is 

present at several levels of analysis (trajectories, joints, muscles etc.), and understanding the 

organization of these DOFs with practice has been one of the central questions in motor learning 

(Martin et al., 2011; Müller & Sternad, 2004; Newell, 1986; Newell et al., 2003; Newell & 

Vaillancourt, 2001; J. P. Scholz & Schöner, 1999; Vereijken et al., 1992; Yang & Scholz, 2005). 

The phenomenon of motor redundancy raises an important issue from a motor learning 

standpoint. Specifically, although most studies of motor learning focus on a change in the task 

performance (e.g., increasing speed or decreasing variability) the fact that movement patterns 

and task outcomes do not have a one-to-one relation means that motor learning could involve 

changes in movement pattern without creating associated changes in the movement outcome 

(Latash et al., 2002). This aspect of motor learning is especially critical in situations when the 

movement pattern (rather than task performance) is the primary target of the intervention. For 

example, a golfer may want to alter their swing to reduce the risk of injury even if it does not 

result in any benefits in terms of their golf score. Similarly, in rehabilitation, stroke survivors are 

often guided away from the use of atypical compensatory movement patterns because they may 

impact long-term rehabilitation (Levin et al., 2009). Thus, the question of how to effectively 

create such changes in movement patterns in complex tasks with multi-DOF movements is still 

poorly understood. 

One of the challenges in using standard ‘prescriptive’ motor learning techniques (such as 

feedback and instructions etc.) to create changes in multi-DOF movements is the problem of 
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which information to specify. Because complex tasks involve the coordination of several DOFs, 

it is a challenge to get the learner to understand how to change each DOF simultaneously. For 

example, even a simple reaching motion involves motion at 7 DOFs (3 at the shoulder, 2 at the 

wrist, 1 at the elbow and 1 at the forearm). Therefore, trying to provide precise feedback or 

instructions on how to change each of these 7 DOFs after a given trial is likely not effective 

because it creates an ‘information overload’ for the learner (Wulf & Weigelt, 1997). Other 

techniques, such as visual demonstrations, help participants get a general idea of the intended 

movement pattern, but again, correcting specific errors at each DOF is difficult with such 

approaches. 

A potential solution to get around this problem is through reinforcement feedback. 

Reinforcement feedback is a signal that evaluates the whole performance then provides a 

simplified signal (either a binary or a scalar) to the learners (Wolpert et al., 2001). Because the 

feedback is not provided at the level of each DOF, participants typically engage in ‘exploration’ 

to learn alternative movement patterns (Dhawale et al., 2017). By exploring different movement 

patterns, participants could eventually learn the desired movement pattern that returns good 

feedback. Several studies of motor learning have shown that reinforcement feedback can be used 

to effectively modify movement patterns (Chen et al., 2018; Gläscher et al., 2010; Izawa & 

Shadmehr, 2011; Therrien et al., 2016).  

However, a key limitation of these studies is that they used simple tasks with limited or 

no redundancy. In redundant tasks with multiple DOFs, the exploration process is more complex 

because of the need to explore a higher dimensional space. Moreover, because these tasks require 

coordination of multiple degrees of freedom, there may be a greater possibility for ‘preferred’ 

coordination patterns that are more resistant to change (Schoner & Kelso, 1988). Therefore, there 
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is a need to examine ‘adaptive shaping techniques’ that can be used to guide exploration more 

effectively. Prior work has shown that adaptive reinforcement can be successfully used in 

modifying movement patterns in low dimensional tasks (Therrien et al., 2016). Here, we 

examine the use of different shaping techniques (Skinner, 1938) to change movement patterns in 

multi-DOF tasks. 

In this study, we performed two experiments where we used reinforcement feedback to 

guide participants to change to an alternative movement pattern in a multi-DOF task.  The task 

was a virtual throwing task requiring coordination of the trunk and hand velocities. Typically, 

participants perform this task primarily with the hand (i.e. large hand velocity and small trunk 

velocity) – so our goal was to examine if we could get participants to increase their trunk 

velocity when throwing the ball by providing reinforcement feedback based on setting a 

threshold for the trunk velocity. We then compared the change in movement patterns between 

different shaping techniques that modified how this threshold across practice. In experiment 1, 

we compared three shaping techniques (abrupt, gradual and adaptive). While the abrupt and 

gradual groups changed the threshold in an ‘open-loop’ manner (i.e. the same way regardless of 

the participant performance), the adaptive schedule changed the threshold based on the 

participants’ prior performance (Therrien et al., 2016). In experiment 2, we compared four 

adaptive shaping techniques to further examine what characteristics of an adaptive schedule were 

most effective in facilitating a greater change of movement patterns. 
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Methods: experiment 1 

Participants 

Thirty healthy college students (age range: 18-21 years, 20 females) with no upper body 

injuries were recruited to participate in the experiment for extra course credit. All participants 

provided informed written consent and all procedures were approved by the Institutional Review 

Board at Michigan State University. 

Apparatus 

Participants sat comfortably with both arms resting on the desk and faced a 50” (125 cm) 

television screen. The virtual throwing task was implemented with a 120 Hz Motion Capture 

system (Motion Analysis Corporation, Santa Rosa, CA), and a MATLAB program. Participants 

wore 11 retro-reflective markers (forehead, sternum, right chest, and bilaterally at the shoulder, 

elbow, wrist, and the third metatarsophalangeal joint) (Fig. 4.1) 

 

Figure 4.1. Experimental setup. Participants wore 11 retro-reflective markers. The ball on the 
screen was controlled by the right hand marker. The task was to glide the right hand through the 
line and maximize the score. There was no visual feedback on the screen except the score. 
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Task 

Participants were instructed to glide their right hand on the desk to throw a virtual ball to 

a target. The MATLAB program received the (x, y, z) coordinates of the retro-reflective markers 

from the motion capture system and mapped the (x, y) coordinates (corresponding to the plane of 

the desk) of the right metatarsophalangeal marker to a ball on the screen. Participants controlled 

the ball by the right hand and glided the right hand through a line on the screen. When the right 

hand passed this line, the ball was ‘released’ and the program computed the instantaneous 

velocity of y-direction (moving forward toward the screen) of the right metatarsophalangeal 

marker (to approximate hand velocity) and the sternum marker (to approximate trunk velocity). 

The ball velocity was then calculated based on the following equation: 

!!"## = 4 ∗  !!"#$% +  !!!"# 

The goal for the participants was to throw the ball with a velocity of 1100 mm/s. This task is 

redundant because the same ball velocity can be achieved with different hand and trunk 

velocities. The trunk velocity was scaled up by 4 times based on pilot testing to make the 

variation in trunk velocity comparable to the variation in the hand velocity.  

Score feedback 

Participants did not see the target displayed on the screen, instead the only feedback they 

received after each throw was a score that reflected their performance. The score was calculated 

based on the following equation (Figure 4.2A):  

!"#$% = 100− 90
(1+ 5!!!.!"#!)! 

Where x is the absolute error in the ball velocity (i.e. the absolute difference between the actual 

ball velocity and the target velocity of 1100 mm/s) 
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The maximum score was 100 and the minimum was 10. Participants were not informed about 

how the score was computed. They were only instructed to try different movement patterns to 

maximize the score. 

 

Figure 4.2. Mechanism of providing reinforcement feedback (A) Each blue point represents 
the combination of trunk and hand velocity. The Euclidean distance between the point and the 
solution manifold was mapped to the score function to calculate the score. The minimum score is 
0, and the maximum score is 100. Different points could have the same score. (B) Reinforcement 
feedback was provided by adding a punishment zone to the state space. Participants received 0 
score in the punishment zone even they were on the solution manifold. The size of the 
punishment zone was set by the trunk velocity threshold. 

Providing reinforcement feedback 

The goal was to examine how reinforcement feedback could be used to shift participants 

to use a higher trunk velocity when throwing the ball. The desired trunk velocity was set at 100 

mm/s based on pilot testing – this number was high enough that participants could perceive this 

change as a different coordination pattern, but not so high to be uncomfortable for participants. 

Reinforcement was provided based on a trunk velocity threshold (Fig. 4.2B) and how this 

threshold was changed with practice differed based on the group participants were assigned to. 

When the trunk velocity was larger than the threshold, the score was calculated from the 

equation. When the trunk velocity was smaller than the threshold, the score was zero. It is 

important to note that because the score also reflected their performance on the task (i.e. how 
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close the throwing velocity was close to 1100 m/s), we used the “0-score” to signal that 

participants that they did something incorrectly (the minimum score otherwise was 10). The 

reinforcement feedback acted as punishment – i.e., we expected participants to increase the trunk 

velocity to avoid the 0 scores (Figure 4.2B). 

Procedures  

Each participant performed 8 blocks of 30 throws for a total of 240 trials in the 

experiment. Participants started from a pre-test block without reinforcement feedback (30 trials). 

Subsequently, they practiced 6 training blocks with reinforcement feedback (6 x 30 = 180 trials). 

Lastly, they performed a post-test block without reinforcement feedback (30 trials). In the pre-

test and post-test, participants received normal score feedback. In the training blocks, we added 

one additional constraint to the score function to construct the reinforcement feedback. 

Participants were not informed about the onset and offset of the reinforcement feedback.  

Groups 

Reinforcement feedback was introduced in the training blocks with three shaping 

methods that varied in how the threshold was set for the trunk velocity across practice: abrupt, 

gradual, and adaptive.  

In the abrupt group, the threshold was increased to 100 mm/s in the first training block 

and remained constant until the last training block. In the gradual group, the threshold started 

from 0 mm/s in the first training block and linearly increased to 100 mm/s in the last training 

block. In the adaptive group, the threshold was calculated from the past performance of the 

participant. We took the average trunk velocity of the previous 6 trials to set the current 

threshold. Furthermore, to avoid overshooting the desired trunk velocity, the program set the 
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threshold as 100 mm/s when the average trunk velocity of the previous 6 trials exceeded 100 

mm/s (Figure 4.3).  

 

Figure 4.3. Design of shaping methods. Abrupt group had huge rate of change of the threshold 
after pre-test, the threshold was fixed in the rest of the training. Gradual group had a positive 
linear change trial-by-trial in the training. The rate of change of threshold in Adaptive group was 
set by the average of previous 6 trials of the participant. Each participant in the Adaptive group 
had their own unique schedule depending on their performance. 

Data analysis 

Score 

The score feedback at the end of each trial was our measure of task performance, with 

higher scores indicating better task performance (i.e. the ball velocity was closer to 1100 m/s). In 

pre-test and post-test, there was no reinforcement feedback (max score was 100 and min score 

was 10). In the training blocks (B1 to B6), when the participants received reinforcement 

feedback, the score was 0, when participants did not receive reinforcement, the maximum score 

was 100, and the minimum was 10.  

Punishment rate per block 

The punishment rate in a block was the number of total trials where the participant was 

punished (i.e. received a score of zero because the trunk velocity was under the threshold) 

divided by the total number of trials in that block. A reduction in the punishment rate indicated 
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that participants increased their trunk velocity above the threshold. Because the pre-test and post-

test did not have reinforcement, the punishment rate was computed only for the training blocks. 

Trunk and hand velocity 

The trunk and hand velocity were measured at the instant where the ball was released.   

Because the trunk velocity was multiplied by four to compute ball velocity, we report this value 

as the “standardized trunk velocity”. All the trunk velocities in the result section are standardized 

trunk velocity. 

Task and null space variability 

The exploration during the task was captured using the movement variability. In a 

redundant system, the movement variability can be separated into task space variability and null 

space variability (Latash et al., 2002; Mussa-Ivaldi et al., 2011; Ranganathan et al., 2014; Scholz 

& Schöner, 1999). The task space is the direction that is orthogonal to the solution space, where 

variability is detrimental to task performance. On the other hand, the null space is along the 

direction of the solution space, where variability does not affect task performance (Figure 4.4). 

 

Figure 4.4. Definition of task space and null space. Task space is the purple arrow, it is 
orthogonal to the solution manifold. Null space is the green arrow, it is parallel to the solution 
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manifold. To calculate the variability, the data were projected to both spaces to calculated the 
variance of all the projected points on each space. 

Statistical analysis 

We had two main research questions of interest – (i) in the training phase, how did 

reinforcement feedback affect movement for the different groups, and (ii) in the test phase, was 

the effect of reinforcement feedback present after the feedback was removed? To analyze this, 

we separated our analysis on the training phase and test phases. We used R (3.5.1) to run RM-

ANOVA for all the dependent variables, and the alpha value was set as .05. 

Training phase 

First, we compared the change between the first block with reinforcement feedback (B1) 

and the last block with reinforcement feedback (B6) to investigate how participants reacted to the 

reinforcement feedback. We ran a block (2) X group (3) RM-ANOVA with block as the within-

subject factor, and the group as the between-subject factor.  

Test phase 

Second, we compared the change between pre-test and post-test to investigate the overall 

change of practicing with different shaping methods. We ran a block (2) X group (3) RM-

ANOVA with block as the within-subject factor, and the group as the between-subject factor.  

Results: experiment 1 

To screen for outliers at the trial level, we used the Mahalanobis Distance (De 

Maesschalck et al., 2000). Approximately 3% of trials were removed based on this criterion 

before running the statistical tests. At the participant level, we also screened for high trunk 

velocities at the pre-test using a boxplot (because the goal of the study was to examine an 
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increase in trunk velocity). One participant in abrupt group and one participant from adaptive 

group were removed based on this criterion.   

Score 

Training phase 

There was a significant main effect by group (F(2,25) = 8.35, p = .002), and group x 

block interaction (F(2,25) = 7.03, p = .004). The main effect by block was not significant 

(F(1,25) = 4.0, p = .06). Analysis of the group x block interaction revealed that the gradual group 

decreased the scores from B1 to B6; the change in other two groups was not significant (Figure 

4.5). 

Test phase 

There was no significant main effect by block (F(1,25) = .28, p = .76),  group  (F(2, 25) = 

0.14, p = .71) or group x block interaction (F(2, 25) = 1.70, p = .20) (Figure 4.5). 

 

Figure 4.5. Change in mean score. The score dropped dramatically after reinforcement 
feedback was introduced because participants received punishment based on their trunk velocity. 
There was no reinforcement in the post-test so the average score increased back to the level of 
pre-test. Error bars indicate 1 SE (between-participants). 
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Punishment rate 

Training phase 

There was a significant main effects by block (F(1,25) = 10.27, p=.004), group (F(2,25) = 

25.07, p  < .001, and a group x block interaction (F(2, 25) = 17.37, p < .001). The analysis of the 

interaction revealed that in block B1, all three groups were significantly different from each 

other (with abrupt having the highest punishment rate, and gradual the lowest punishment rate). 

In block B6, the punishment rate in the abrupt group was higher than the adaptive group (Figure 

4.6). 

 

Figure 4.6. Change in mean punishment rate. Abrupt group had constant high punishment rate 
throughout the experiment. Gradual group did not receive punishment at the beginning then 
gradually received more punishment toward the end of the experiment. Adaptive group had 
constant moderate punishment rate throughout the experiment.  

Trunk velocity 

Training phase 
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There was a significant main effect by block (F(1, 25) = 10.58, p = .003), with higher 

trunk velocities in B6 compared to B1. There was no significant main effect by group (F(2, 25), 

p = .44) or group x block interaction (F(2, 25) = 0.73, p = .49) (Figure 4.7A). 

Test phase 

There was a significant main effect by block (F(1, 25) = 23.47, p < .001), with higher 

trunk velocity in post-test compared to pre-test. There was no significant main effect by group 

(F(2, 25) = 1, p = .38). There was a significant group x block interaction effect (F(2, 25) = 5.80, 

p = .009). Trunk velocities increased from pre- to post-test but the interaction revealed that in the 

pre-test, there were no significant differences between groups; however in the post-test, the 

adaptive group had higher trunk velocities compared to the abrupt and gradual groups. (Figure 

4.7A). 

 

Figure 4.7. Change in standardized trunk velocity and hand velocity (A) Compare pre-test 
and post-test standardized trunk velocity had the trend to go up in all three groups. Adaptive 
group had the largest increment in the post-test. (B) Hand velocity did not change much between 
pre-test and post-test. 

Hand velocity 

Training phase 
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There was no significant main effect by group (F(2, 25) =1.74, p = .20), no significant 

main effect by block (F(1, 25) = 0.87, p = .36), and no significant group x block interaction 

effect (F(2, 25) = 1.48, p = .25) (Figure 4.7B). 

Test phase 

There was a significant main effect by block (F(1, 25) = 4.55, p = .04), with a decrease in 

hand velocity in the post-test relative to the pre-test. There was no significant main effect by 

group (F(2, 25) = 1.96, p = .16) and no significant group x block interaction (F(2, 25) = 0.02, p = 

.98) (Figure 4.7B). 

Task space variability 

Training phase 

There was a significant main effect by block (F(1, 25) = 7.32, p = .01), the task space 

variability increased in B6 compared to B1. There was no significant main effect by group (F(2, 

25) = 1.68, p = .21) and no significant group x block interaction (F(2, 25) = 0.78, p = .47) (Figure 

4.8B). 

Test phase 

There was a significant main effect by block (F(1, 25) = 12.95, p=.001), the task space 

variability increased in B6 compared to B1. There was no significant main effect by group (F(2, 

25) = 2.02, p = .15). There was a significant group x block interaction effect (F(2, 25) = 4.98, p = 

.002). The interaction showed there was no difference in the pre-test, but in the post-test, 

adaptive group had higher task space variability than the other two groups (Figure 4.8B).    
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Figure 4.8. Change in task and null space variability (A) Task space variability of abrupt and 
gradual group remained similar throughout the experiment. Task space variability increased in 
adaptive group. (B) Null space variability decreased in all three groups. 
 

Null space variability 

Training phase 

There was no significant main effect by group (F(2, 25) =1.39, p = .27), no significant main 

effect by block (F(1, 25) = 2.80, p = .11), and no significant interaction effect (F(2, 25) = 1.51, p 

= .24) (Figure 4.8B). 

Test phase 

There was a significant main effect by block (F(1, 25) = 7.32, p = .01), null space variability was 

lower in the post-test compared to pre-test. There was no significant main effect by group and no 

significant main effect by group (F(2, 25) = 1.68, p = .21) group x block interaction (F(2, 25)= 

0.78, p = .47) (Figure 4.8B).  
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Summary of experiment 1 

We investigated how to use reinforcement feedback with shaping to guide participants to 

change their movement pattern in a redundant task. Participants performed a virtual throwing 

task involving the coordination of the hand and trunk where reinforcement was provided to 

increase trunk velocity using different schedules (abrupt, gradual and adaptive). The main results 

showed that (i) exploration in all schedules were somewhat suboptimal as reflected by the high 

punishment rates at the end of learning (upwards of 50%), and (ii) although all groups increased 

their trunk velocity with practice, the adaptive group had the greatest change in trunk velocity 

from the pre- to the post-test.  

Rationale for Experiment 2  

Our results found that the adaptive group had the greatest change in trunk velocity from 

pre- to post- test. Our adaptive algorithm was based on a simple average of the previous 6 trials – 

so we examined if modifying the parameters of the adaptive algorithm would have further 

benefits. We considered two parameters  – memory (i.e. how many trials the adaptive algorithm 

acts over), and momentum (whether the adaptive algorithm uses the trend in those trials). We 

anticipated that this would provide further understanding regarding why the adaptive algorithm 

was more successful. 

Methods- experiment 2  

Experiment 2 had four groups and shared the same procedure and data analysis with experiment 

1. None of the participants in Experiment 2 had participated in Experiment 1. Given the 

relatively poor response to reinforcement in Experiment 1, we made two modifications to the 

experimental procedure in Experiment 2 - the score feedback and the instructions to the 
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participant. The rationale for modifying the score feedback was as follows: in experiment 1, the 

lowest score available without reinforcement was 10 while trials that received punishment got a 

score of zero. Given that punishment rates did not decrease with practice, we thought that this 

difference of “10 points” might have been too small for participants to perceive as punishment. 

So in Experiment 2, we increased this difference to be 200 points (with a maximum score of 

1000 points). The rationale for changing the instructions was to examine if the exploration in 

Experiment 1 was suboptimal because participants did not know what body segments contributed 

to the task performance. As a result, we instructed the participants to focus on movements of the 

right hand and the trunk to examine if this would improve the exploration.  

Participants 

Forty healthy college students (age range: 18-24, 28 females, 4 left-handed) were 

recruited to participate in the experiment for earning extra credits. Left-handed participants also 

performed the task with their right hand. Because the focus of the task was only on generating a 

given velocity at release (and not trajectory or steady-state control), we did not expect 

handedness to play a major role. All participants signed the consent form and the consent process 

was approved by the Institutional Review Board at Michigan State University. 

Apparatus and task 

The experimental setting of experiment 2 was identical to experiment 1, with only the 

score feedback modified as shown below: 

!!"## = 4 ∗  !!"#$% +  !!!"# 

!"#$% = 1000−  800
(1+ 5!!!.!"#!)! 

Where x is the absolute difference of ball velocity and target velocity (=1100 mm/s) 
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The maximum score is 1000 and the minimum score is 200. (Figure 4.9A). 

During the training blocks, the reinforcement feedback was provided as the punishment of a 

score of zero. When the trunk velocity was smaller than the threshld, the partcipants received a 

zero. When the trunk velocity is larger than the threshold, the score was calculated by the 

equation where the maximum is 1000 and the minimum is 200. This made the zero score a 

punishment indicating something needed to be corrected. 

 

Figure 4.9. Schematic of scoring with and without reinforcement feedback (A) The score is 
1000 when on the solution manifold (the purple line). When off the manifold the score was 
calculated by the distance between the point and the manifold, closer to the line the score is 
higher. (B) Adding a punishment zone to the state space. The punishment zone was defined by 
the trunk velocity. When the trunk velocity was smaller than then threshold the score would be 0 
no matter how far to the solution manifold. 

Grouping and shaping methods 

We manipulated two parameters, memory and momentum in a crossed fashion, resulting 

in 4 groups. The memory parameter was changed by controlling the number of trials involved in 

the moving average. The momentum parameter was changed by using (or ignoring) the trend of 

how the velocities changed in that time window. This resulted in the following groups: 1) 

adaptive 2) long-adaptive 3) momentum 4) long-momentum. The adaptive group was the same 

as in the previous study, where a moving average of six prior trials was used to calculate the 

threshold of the next trial. In the Long-adaptive group, we increased the window size to ten prior 
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trials. In both groups, the threshold was computed using a moving average meaning that no 

trends in the data were used. In the Momentum group, we aimed to increase the speed of 

adjusting the threshold by using a linear regression over the prior six trials to predict the 

threshold on the next trial. Finally, in the Long-momentum group, we used the same strategy as 

the Momentum group but used a linear regression that included the previous 10 trials to predict 

the next threshold (Figure 4.10). 

 

Figure 4.10. Deign of reinforcement schedules (A) In the adaptive group in experiment 1, the 
threshold was the average of the previous six trials. (B) Long-adaptive group, increasing the 
window size (memory) of the average to 10, this shows how participants use delayed feedback to 
adjust motor behavior. (C) Momentum group, use a function to predict the threshold, so we can 
keep the momentum and create a smooth change. (D) The long-momentum group manipulates 
both window size and momentum 
 

Data analysis 

We kept the same dependent variables and ran the same statistical analyses as in 

experiment 1. Additionally, we showed how the threshold changed in different shaping methods.  
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Results: experiment 2 

Following the same procedure as in experiment 1, we removed the participants who had 

high trunk velocity in the pre-test. There was 1 participant removed from each group. Then we 

used Mahalanobis Distance to remove the outliers before running the statistical test (De 

Maesschalck, Jouan-Rimbaud, & Massart, 2000). There were around the 5 % of trials got 

removed.  

Threshold 

Training phase 

All four groups increased the threshold in the training phase. There was a significant main effect 

by block (F(1, 32) = 11.68, p = .002), indicating that the threshold increased from B1 to B6. 

There was no significant main effect by group (F(3, 32) = 1.87, p = .15) and no significant group 

x block interaction effect (F(3, 22) = 0.36, p = .78) (Figure 4.11). 

 

Figure 4.11. Change in trunk velocity threshold. All the groups have higher threshold at the 
last training block but there was no significant group difference.  

Score 

Training phase 
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There was no significant main effect by block (F(1,32) = 2.61, p = .12), there was no significant 

main effect by group (F(3, 32) = 0.41, p = .75), and no significant group x block interaction 

effect (F(3,32) = 0.61, p = .61) (Figure 4.12). 

Test phase  

There was no significant main effect by block (F(1,32) = 0.69, p = .41), no significant main 

effect by group (F(3,32) = 0.18, p = .91), and no significant group x block interaction effect 

(F(3,32) = 0.48, p = .70) (Figure 4.12). 

 

Figure 4.12. Change in mean score. In the pre-test and post-test, there was no difference 
between the four groups.  

Punishment rate 

Training phase 

There was no significant main effect by block (F(1,32) = 1.50, p = .23), there was no significant 

main effect by group (F(3, 32) = 1.90, p = .15), and no significant group x block 

interaction(F(1,32) = 0.69, p = .41) (Figure 4.13). 
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Figure 4.13. Change in punishment rate. Adaptive group (blue) had the highest overall 
punishment rate. Long adaptive group (red) had the lowest overall punishment rate. Momentum 
group (black) and long momentum (brown) were in between where long momentum had higher 
average. 

Trunk velocity 

Training phase 

There was no significant main efffect by block (F(1,32) = 2.50, p = .07), no significant main 

effect by group (F(3, 32) = 2.08, p = .12) and no significant group x block interaction (F(3, 32) = 

0.72, p = .67) (Figure 4.14A). 

Test phase 

There was a significant main effect by block (F(1,32) = 18.74, p < 0.001), trunk velocity was 

higher in the post-test. There was no significant main effect by group (F(3,32) = 0.70, p = .56) 

and no significant grouop x block interaction effect (F(3,32)=0.91, p = .45) (Figure 4.14A). 
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Figure 4.14. Change in standardized trunk velocity and hand velocity (A) Mean standardized 
trunk velocity over trials. After pre-test all four groups increased the trunk velocity. (B) Mean 
hand velocity over trials. There was no trend in hand velocity. 

Hand velocity 

Training phase 

There was no significant main effect by block (F(1,32) = 0.41, p = .53), no significant main 

effect by group (F(3, 32) = 0.37, p = .78), and no significant group x block interaction (F(3, 32) = 

0.37, p = 0.78) (Figure 4.14B).   

Test phase 

There was no significant main  effect by block (F(1,32) = 4.74, p = .04), no significant main 

effect by group (F(3, 32) = 1.28, p = .30), and no significant group x block interaction (F(3, 32) = 

0.21, p = .89) (Figure 4.14B). 

F. Task space variability 

Training phase 
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There was no significant main effect by block (F(1,32) = 1.55, p = .22), no significant main 

effect by group (F(3, 32) = 2.23, p = .10), and no significant group x block interaction (F(3, 32) = 

0.64, p = .60) (Figure 4.15A). 

Test phase 

There was a signnificant main effect by block (F(3, 32) = 19.43, p < .001), task space variability 

was higher in the post-test compared to pre-test. There was no significant main effect by group 

(F(3,32) = 0.41, p = .74) and no significaant group x block interaction (F(3,32)=1.23, p = .31) 

(Figure 4.15A). 

Figure 4.15. Change in task and null space variability (A) Task space variability in each 
block. Task space variability increased after pre-test. An inverse u shape showed participants 
explored less in the later phase of the training. (B) Null space variability in each block. The null 
space did not change much through the learning. 

Null space variability 

Training phase 
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There was a significaant main effect by block (F(1, 32) = 5.66, p = .02), null space variability 

was lower in B6 compared to B1. There was no significant main effect by group (F(1,32) = 0.88, 

p = 0.6) and no significant group x block interaction (F(3, 32) = 1.44, p = .25) (Figure 4.15B). 

Test phase 

There was a significant main effect by block (F(1, 32) = 5.51, p = .03), null space variability was 

lower in post-test compared to pre-test. There was no significant main effect by group (F(1,32) = 

0.75, p = .53) and no significant group x block interaction (F(3, 32) = 1.12, p = .44) (Figure 

4.15B). 

Summary of experiment 2 

In Experiment 2, we added three variations of adaptive shaping to aim for a greater 

change of movement pattern. First, we modified the factor of memory in the algorithm, we 

wanted to see how participants reacted when including more previous trials in moving average 

(long adaptive group). Second, we used linear regression to calculate the thresholds, we wanted 

to see how exploration was performed with a wider search range (momentum group). Third, we 

modified both factors of memory and momentum together to see if both effects add up (long 

momentum group). The main findings that (i) all groups showed increased trunk velocity in the 

post-test, and (ii) although there were no statistical differences between the groups, the long-

adaptive group seemed to perform the best relative to the adaptive group.  

General Discussion 

The overall goal of this study was to examine the use of reinforcement feedback to 

change movement patterns in a complex motor skill with multiple degrees of freedom. We found 

two main results across both experiments – (i) reinforcement feedback in multi-DOF tasks was 



71	

not as effective as previously reported in adaptation experiments with no redundancy, and (ii) an 

adaptive schedule outperformed open-loop schedules, with evidence that a more conservative 

strategy for setting the threshold performed the best. 

Reinforcement in multi-DOF tasks 

Our first question addressed the issue of whether reinforcement learning would be 

successful in altering movement patterns in multi-DOF tasks. We found that reinforcement 

learning (across all the groups used here with different shaping schedules) was only partly 

successful with punishment rates ranging from 30-80%. In prior studies with motor adaptation 

tasks, reinforcement learning show reward rates of 100% (i.e. equivalent to a punishment rate of 

0% in our case), indicating that participants were able to clearly use reinforcement feedback to 

modify their movement pattern to the desired level. However, as mentioned before, a critical 

limitation of these tasks is that they mostly used single DOF reaching tasks where the only 

exploration was along the angle of the reach.  

The key challenge of reinforcement learning in multi-DOF tasks is exploration. When the 

exploration space is extremely small (as in single DOF tasks) reinforcement can easily guide the 

learner toward the solution, although there is some evidence that even in these tasks, there is a 

small proportion of individuals who fail to adapt (Chen et al., 2018). However, in the current 

task, with just 1 extra DOF, the two-dimensional DOF space was large enough that exploration 

was extremely difficult for participants. Moreover, even though the task was two dimensional, 

the exploration space could have been even higher dimensional. Experimental observations 

showed many participants exploring other body segments (such as the head or the other hand), 

indicating that participants were exploring a much higher dimensional space than what was 

specified in the task. Under these conditions, reinforcement learning, even with adaptive shaping 
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may not be sufficient to shift participants toward the desired movement pattern. Combining 

reinforcement feedback with other methods (such as demonstrations or attentional cues) may be 

necessary to improve exploration in high dimensional spaces. 

Shaping schedules 

To increase the efficiency of exploration in high dimensional spaces, shaping has been 

used in reinforcement learning (Ferster & Skinner, 1957). Shaping refers to providing additional 

rewards for making progress toward the desired solution and has been shown to be effective in 

animal experiments and also studies in artificial intelligence (Knox & Stone, 2009). Here we 

examined different shaping schedules in the context of altering movement patterns. 

Abrupt vs. Gradual 

In Experiment 1, we first compared two open-loop schedules - abrupt and gradual. The 

abrupt schedule, where the threshold is instantaneously raised to the desired level, is equivalent 

to no shaping (since there is no change in feedback until the desired movement pattern is 

reached), whereas the gradual group uses shaping (since small incremental changes in trunk 

velocity receive changes in feedback). Interestingly, although these two methods have had 

different effects on learning in a number of adaptation studies (Kagerer et al., 1997; Ludolph et 

al., 2017; Milner et al., 2018), we found that the abrupt and gradual group were not 

distinguishable in terms of the change of trunk velocity. However, the punishment rate suggested 

that they had two different routes to learning – the abrupt group, as expected, had high 

punishment rates throughout practice, indicating that exploration was not successful in 

determining the correct solution. However, the gradual group started off with low punishment 

rates but this rate kept increasing as the threshold increased, indicating a lack of ability to adapt 

to the feedback. One potential reason is that because the threshold in the gradual group increases 
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in an open-loop manner, once participants initially failed to adapt to the changing threshold, 

subsequent changes in threshold were even further away making it almost similar to the abrupt 

condition. These results suggest that open-loop shaping schedules are suboptimal in multi-DOF 

tasks because when exploration is slow and inefficient, even small changes in the threshold over 

trials can quickly become difficult to overcome. 

Adaptive schedules 

To overcome this limitation of open-loop schedules, we also tested an adaptive group, 

where the threshold was based on the participants’ performance. The punishment rate in this 

group was maintained around 50% throughout practice and was associated with the greatest 

increase in trunk velocity. These results support prior studies using adaptive schedules in motor 

adaptation (Therrien et al., 2018; Verstynen & Sabes, 2011) and suggest that the adaptive 

schedule created a condition where the exploration was at least moderately successful even in a 

multi-DOF task.  

In Experiment 2, we further examined the by manipulating two other factors – memory 

and momentum. Both factors essentially varied the aggressiveness with which the threshold 

changed over practice. Increasing memory to include more past information made the threshold 

estimate more conservative, whereas increasing the momentum to examine the trend across the 

past information made the estimate more aggressive. From the results, we found that the best 

learning results were found for the conservative threshold estimate, as seen by the lower 

punishment rate and the higher trunk velocity in the post-test. These results suggest that a more 

conservative estimate gave participants some time to explore and settle into a new movement 

pattern.  
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The success of the more conservative method is likely tied to that in our task, participants 

had to move away from their ‘preferred’ coordination pattern which involved mostly hand 

motion. Again, unlike prior adaptation studies where the only change required is the angle of 

reach (which does not have strong preferred directions), the task in the current experiment 

resembles real-life contexts (such as changing a golf swing or rehabilitation of a movement 

pattern) where there is a strong preference for an existing coordination pattern. These highlight 

the importance of considering the dynamical systems view of coordination where coordination 

patterns do not exist on a ‘blank slate’, but have different stability properties (Schoner & Kelso, 

1988; Sternad, 1998). Overall, our results suggest that in such cases, reinforcement feedback 

with conservative adaptive are most likely to result in better learning outcomes.  

In summary, we found that reinforcement feedback can be used to change the movement 

patterns in a multi-DOF task. Adaptive schedules that modified reinforcement feedback based on 

participant performance had the greatest chance of modifying coordination patterns, especially 

when they were slow to create change. These results highlight the potential of reinforcement 

feedback in multi-DOF tasks and suggest that future work on adaptive schedules is needed to 

accelerate learning while still allowing participants to explore the space of possible solution.
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CHAPTER 5 GENERAL DISCUSSION 

Overall scope 

The overall aim of this dissertation is to investigate how to guide participants to use 

alternative movement patterns to perform the same task by using reinforcement learning. Motor 

learning studies have mainly focused on the change of the task performance, with little focus on 

the change of movement patterns. However, studying the change of movement patterns is critical 

in contexts where different movement patterns can be used, but there may be advantages to using 

certain specific movement patterns. For example, in movement rehabilitation, the individuals 

with movement disabilities learn the correct way to perform the task to prevent further injuries. 

The process of learning different movement patterns is long and challenging because humans 

tend to use habitual movement patterns regardless of the pattern is optimal or not (De Rugy et 

al., 2012).  

To approach this question, I used reinforcement feedback to guide participants to learn 

alternative movement patterns. Reinforcement learning is the theoretical framework that 

connects three experiments in this dissertation. In motor adaptation research, reinforcement 

learning was used as a form of reward and punishment learning. The learners either changed the 

movement patterns to pursued the rewards or prevent the punishments. Given that prior work on 

reinforcement has used tasks that only require small manipulations of well-learned movement 

patterns (e.g. changing the direction of a reach), an important contribution of the current work is 

to examine how these reinforcement paradigms generalize to tasks involving the coordination of 

multiple DOFs.  

For all the three experiments, I used trunk-hand coordination as the multi-DOF task. 

Trunk-hand coordination is ubiquitous in our daily life, for example, when we reach, when we 



76	

throw, etc. The participants controlled the kinematics of the trunk and the hand to perform the 

task. With two degree of freedom in the system, there are many combinations of trunk and hand 

kinematics to solve the task. This setup provides the redundancy to study learning different 

movement patterns to perform the same task. Moreover, unlike bimanual movements where there 

are strong tendencies toward symmetry, using the trunk and the hand provided an opportunity to 

explore a larger range of coordination patterns. 

Contributions of the dissertation 

The first contribution of this dissertation is to investigate the reinforcement learning 

protocol in multi-DOF tasks. Given that human movement requires coordination of large number 

of DOFs (such as joints and muscles), I extended methods that have been used mainly for 

adaptation studies (where there is no change in the underlying coordination) to tasks requiring 

coordination of multiple DOFs. Increasing the number of DOFs is both theoretically relevant (as 

it now creates possibilities for multiple movement patterns to perform the task) and practically 

relevant (as it relates to common motor learning contexts like learning a golf swing or learning to 

reach after a stroke). I provided a series of experiments to approach the problem of learning 

multi-DOF tasks with the focus on changing movement patterns.  

The second contribution is to apply the concept of reinforcement learning and shaping to 

learn alternative movement patterns. The concept of shaping (or adapting reinforcement 

feedback based on individual performance) is widely used in many contexts of motor learning. 

For example, a coach adjusts the difficulty of the task based on the performance level of the 

athletes. Despite a general acceptance that such adaptive learning is a good strategy, how exactly 

shaping improve learning is not clear. My studies provide a systematic perspective to show how 

changing the parameters in shaping algorithm affects learning outcomes.  
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Online feedback vs delayed feedback 

One issue that I investigated in this dissertation concerns the timing of the feedback and 

how it affects learning of new coordination patterns. In experiment one, the reinforcement 

feedback was provided online during reaching. The participants got punished instantaneously if 

the trunk movement was smaller than the threshold. The experimental design showed 

reinforcement feedback successfully changed the movement patterns. However, such online 

feedback is limited in two ways – (a) it can only be used in slow positioning tasks where 

participants can react to the feedback during the movement, and (ii) it creates a confound in 

understanding the role of feedback because different participants receive different amounts of 

feedback (depending on how long they take to do the movement and how many errors they 

make).  

To better quantify the reinforcement feedback, in experiment two I used a discrete task 

that participants received one feedback after each trial. This allows this paradigm to be used in 

fast movements and also allows for controlling the total amount of feedback during training. 

With this design, I could calculate the rate of receiving feedback to show how reinforcement rate 

related to exploration. Providing offline feedback solved the problem of comparing across 

participants but increased the difficulty of the task. The feedback was given after the whole trial 

so the participants did not have much opportunity to map the feedback to the movement pattern. 

Especially the participants did not know the feedback was generated only by trunk velocity so 

they needed more trials to understand the feedback.  

Moreover, I used the reinforcement rate to discuss the exploration-exploitation tradeoff. 

Exploration- exploitation tradeoff is a fundamental problem to solve during learning. Providing 

online feedback worked better with the abrupt change of the threshold. The participants explored 
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extensively until they found the good solution. After this point, they exploit what they had 

learned to keep the good performance. On the contrary, providing offline feedback worked better 

with the change in the threshold was adaptive to the performance level of the learner. The 

exploration-exploitation ratio maintained at a certain level through the learning. The results 

showed that it is important to provide the task at a certain difficulty to have a good balance of 

exploration- exploitation ratio in learning. 

In sum, providing online feedback was a possible protocol to change movement patterns 

but it had the limitation to show how the amount of feedback guided the exploration. Providing 

offline feedback provided a fair comparison between participants so how exploration guided 

learning was clearer.  

Shaping reward/punishment during reinforcement 

Shaping is a common method to make sure the participants do not lose motivation and 

keep exploring, this term is from the early research of conditioning (Ferster & Skinner, 1957). 

The concept was also used in machine learning to help the agent to explore. There are two 

different ways to design shaping methods: 1) manipulating the task difficulty 2) manipulating the 

way to generate feedback. In the first type, the difficulty of the task changed during learning. For 

example, the algorithm lowers the difficulty of the task when the participants had trouble to 

receive the reward to help participants. In the visual-motor rotation tasks, participants receive the 

reward when they had the correct direction is an example of changing the actual task difficulty 

(Therrien et al., 2018).  

The second type, participants received different feedback based on their behavior 

(Coltman et al., 2019). For example, providing graded reinforcement feedback so participants got 

different degrees of reward. The two types seem similar on the behavior level, but they 
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interpretation could be very different from how the central nervous system learns the task. The 

main difference between the two types is whether the brain learns the cost function of the task or 

not (Körding & Wolpert, 2004). If the task difficulty is changing, that means the brain needs to 

learn different cost functions trial by trial. This mechanism leads to model-free reinforcement 

learning (Haith & Krakauer, 2013). For the second type, the task difficulty remains the same, the 

brain can actually learn the cost function, and this is a form of model-based reinforcement 

learning. My experiments followed the second type where the actual task difficulty did not 

change whereas I manipulated the protocol to provide feedback. However, the theoretical 

framework explains the behavior well, there is still no empirical evidence to show the difference 

between these two types to provide shaping, especially in multi-DOF tasks. My experiment is a 

step toward answering this question. 

These also raise many other interesting questions. There are many hyperparameters to 

play around to investigate how humans react to different shaping methods. For example, linear 

regression and moving average are both parametric methods to estimate the state of the 

participants. Non-parametric models like Gaussian Process (Nguyen-Tuong et al., 2009) can be 

used to fit the data. Changing the fitting model does not only have the chance to get different 

results in terms of the outcome but also provide a window into the learning mechanism. 

Limitation and future direction 

One limitation of this dissertation is the lack of methods to show how the variability 

plays the role in reinforcement learning in multi-DOF tasks. Reinforcement learning is n open 

paradigm where the learners are encouraged to explore. More exploration often leads to higher 

variance both on the performance and movement pattern level. This type of variability is 

essential to learn new movement patterns. However, exploration causes outliers in the data and 
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conventional linear method is not robust when estimating variance with outliers. Running outlier 

detection is not always a possibility since these outliers can potentially have important 

information. This problem becomes more serious when the tasks have more DOFs that the 

learner needs to explore more to find the solution. Finding a good method that provides 

consistent estimation of the variance across different types of exploration pattern is critical to 

describe this type of learning. One proposed solution for future studies is to use probabilistic 

modeling to model the distribution of the whole landscape then estimate the expected value and 

variance. Now the “outliers” are weighted by the probability, i.e., higher probability means the 

learner followed a pattern. This gives us more flexibility to accommodate the sparsity of the data 

and returns a better estimation of the variability. After having a reliable estimation of variability, 

the next challenge is to separate motor noise and exploration from variability. In a single-DOF 

task, this could be done by assuming participants did not change their strategy if they did not 

receive reinforcement feedback, then all the variability was motor noise and the changes after 

receiving reinforcement feedback was exploration. With this assumption, a stochastic process 

such as particle filter (Therrien et al., 2016) was applied to separate exploration and noise. 

However, this assumption could be problematic in multi-DOF tasks due to exploration can 

happen on all the dimensions, it is difficult to quantify exploration when multiple dimensions are 

involved. The future direction of this line of research will be to develop some methods to capture 

the “exploration” in multi-DOF tasks so the link between reinforcement learning and exploration 

can be further shown in motor learning.    

Conclusion 

Motor learning was mostly studied from the perspective of the change of performance but 

seldom focused on the change of movement patterns. Studying the change of movement patterns 
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provides additional information to describe how motor learning is implemented in the human 

nervous system. I used reinforcement learning as the theoretical framework to investigate how to 

guide participants using alternative movement patterns. In summary, this dissertation showed 

three main findings: 1) Reinforcement learning protocol could be applied to guide participants to 

use alternative movement patterns in a multi-DOF task. 2) Shaping outperformed non-shaping 

methods in shifting movement patterns in reinforcement learning protocol. 3) Changing 

parameters in shaping changed the performance of learning the alternative movement patterns. 

  



82	

REFERENCES



83	

REFERENCES 

Berniker, M., & Kording, K. (2008). Estimating the sources of motor errors for adaptation and 
generalization. Nature Neuroscience, 11(12), 1454–1461. https://doi.org/10.1038/nn.2229 

Bernstein, N. A. (1967). The Co-ordination and regulation of movements. Pergamon Press Ltd. 

Bhushan, N., & Shadmehr, R. (1999). Computational nature of human adaptive control during 
learning of reaching movements in force fields. Biological Cybernetics, 81, 39–60. 

Chen, X., Holland, P., & Galea, J. M. (2018). The effects of reward and punishment on motor 
skill learning. Current Opinion in Behavioral Sciences, 20, 83–88. 
https://doi.org/10.1016/j.cobeha.2017.11.011 

Cirstea, M. C., & Levin, M. F. (2000). Compensatory strategies for reaching in stroke. Brain, 
123(5), 940–953. https://doi.org/10.1093/brain/123.5.940 

Coltman, S. K., Cashaback, J. G. A., & Gribble, P. L. (2019). Both fast and slow learning 
processes contribute to savings following sensorimotor adaptation. Journal of 
Neurophysiology, 121(4), 1575–1583. https://doi.org/10.1152/jn.00794.2018 

Criscimagna-Hemminger, S. E., Bastian, A. J., & Shadmehr, R. (2010). Size of Error Affects 
Cerebellar Contributions to Motor Learning. Journal of Neurophysiology, 103(4), 2275–
2284. https://doi.org/10.1152/jn.00822.2009 

Cusumano, J. P., & Cesari, P. (2006). Body-goal Variability Mapping in an Aiming Task. 
Biological Cybernetics, 94(5), 367–379. https://doi.org/10.1007/s00422-006-0052-1 

De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance. 
Chemometrics and Intelligent Laboratory Systems, 50(1), 1–18. 
https://doi.org/10.1016/S0169-7439(99)00047-7 

De Rugy, A., Loeb, G. E., & Carroll, T. J. (2012). Muscle Coordination Is Habitual Rather than 
Optimal. Journal of Neuroscience, 32(21), 7384–7391. 
https://doi.org/10.1523/JNEUROSCI.5792-11.2012 

Dhawale, A. K., Smith, M. A., & Ölveczky, B. P. (2017). The Role of Variability in Motor 
Learning. Annual Review of Neuroscience, 40(1), 479–498. 
https://doi.org/10.1146/annurev-neuro-072116-031548 

Diedrichsen, J. (2007). Optimal Task-Dependent Changes of Bimanual Feedback Control and 
Adaptation. Current Biology, 17(19), 1675–1679. 
https://doi.org/10.1016/j.cub.2007.08.051 



84	

Diedrichsen, J., Shadmehr, R., & Ivry, R. B. (2010). The coordination of movement: Optimal 
feedback control and beyond. Trends in Cognitive Sciences, 14(1), 31–39. 
https://doi.org/10.1016/j.tics.2009.11.004 

Dingwell, J. B., John, J., & Cusumano, J. P. (2010). Do Humans Optimally Exploit Redundancy 
to Control Step Variability in Walking? PLoS Computational Biology, 6(7), e1000856. 
https://doi.org/10.1371/journal.pcbi.1000856 

Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. Appleton-Century-Crofts. 
https://doi.org/10.1037/10627-000 

Ficuciello, F., Falco, P., & Calinon, S. (2018). A Brief Survey on the Role of Dimensionality 
Reduction in Manipulation Learning and Control. IEEE Robotics and Automation Letters, 
3(3), 2608–2615. https://doi.org/10.1109/LRA.2018.2818933 

Franklin, D. W., & Wolpert, D. M. (2011). Computational Mechanisms of Sensorimotor Control. 
Neuron, 72(3), 425–442. https://doi.org/10.1016/j.neuron.2011.10.006 

Galea, J. M., Mallia, E., Rothwell, J., & Diedrichsen, J. (2015). The dissociable effects of 
punishment and reward on motor learning. Nature Neuroscience, 18(4), 597–602. 
https://doi.org/10.1038/nn.3956 

Ganesh, G., Haruno, M., Kawato, M., & Burdet, E. (2010). Motor Memory and Local 
Minimization of Error and Effort, Not Global Optimization, Determine Motor Behavior. 
Journal of Neurophysiology, 104(1), 382–390. https://doi.org/10.1152/jn.01058.2009 

Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus Rewards: Dissociable 
Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement 
Learning. Neuron, 66(4), 585–595. https://doi.org/10.1016/j.neuron.2010.04.016 

Gløersen, Ø., Myklebust, H., Hallén, J., & Federolf, P. (2018). Technique analysis in elite 
athletes using principal component analysis. Journal of Sports Sciences, 36(2), 229–237. 
https://doi.org/10.1080/02640414.2017.1298826 

Guigon, E., Baraduc, P., & Desmurget, M. (2007). Computational Motor Control: Redundancy 
and Invariance. Journal of Neurophysiology, 97(1), 331–347. 
https://doi.org/10.1152/jn.00290.2006 

Haith, A. M., & Krakauer, J. W. (2013). Model-Based and Model-Free Mechanisms of Human 
Motor Learning. In M. J. Richardson, M. A. Riley, & K. Shockley (Eds.), Progress in 
Motor Control (Vol. 782, pp. 1–21). Springer New York. https://doi.org/10.1007/978-1-
4614-5465-6_1 

Herzfeld, D. J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning 
mill. Nature Neuroscience, 17(2), 149–150. https://doi.org/10.1038/nn.3633 



85	

Huang, V. S., & Shadmehr, R. (2009). Persistence of Motor Memories Reflects Statistics of the 
Learning Event. Journal of Neurophysiology, 102(2), 931–940. 
https://doi.org/10.1152/jn.00237.2009 

Izawa, J., & Shadmehr, R. (2011). Learning from Sensory and Reward Prediction Errors during 
Motor Adaptation. PLoS Computational Biology, 7(3), e1002012. 
https://doi.org/10.1371/journal.pcbi.1002012 

Jenkins, O. C., & Matarić, M. J. (2004). A spatio-temporal extension to Isomap nonlinear 
dimension reduction. Twenty-First International Conference on Machine Learning  - 
ICML ’04, 56. https://doi.org/10.1145/1015330.1015357 

Jordan, M. I., & Rumelhart, D. E. (1992). Forward Models: Supervised Learning with a Distal 
Teacher. Cognitive Science, 16(3), 307–354. 
https://doi.org/10.1207/s15516709cog1603_1 

Kagerer, F. A., Contreras-Vidal, J. L., & Stelmach, G. E. (1997). Adaptation to gradual as 
compared with sudden visuo-motor distortions. Experimental Brain Research, 115(3), 
557–561. 

Klassen, J., Tong, C., & Flanagan, J. R. (2005). Learning and recall of incremental kinematic and 
dynamic sensorimotor transformations. Experimental Brain Research, 164(2), 250–259. 
https://doi.org/10.1007/s00221-005-2247-4 

Knox, W. B., & Stone, P. (2009). Interactively shaping agents via human reinforcement: The 
TAMER framework. Proceedings of the Fifth International Conference on Knowledge 
Capture - K-CAP ’09, 9. https://doi.org/10.1145/1597735.1597738 

Konczak, J., vander Velden, H., & Jaeger, L. (2009). Learning to Play the Violin: Motor Control 
by Freezing, Not Freeing Degrees of Freedom. Journal of Motor Behavior, 41(3), 243–
252. https://doi.org/10.3200/JMBR.41.3.243-252 

Körding, K. P., & Wolpert, D. M. (2004). The loss function of sensorimotor learning. 
Proceedings of the National Academy of Sciences of the United States of America, 
101(26), 9839–9842. 

Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and 
beyond. Current Opinion in Neurobiology, 21(4), 636–644. 
https://doi.org/10.1016/j.conb.2011.06.012 

Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., & Ghez, C. (2000). Learning of Visuomotor 
Transformations for Vectorial Planning of Reaching Trajectories. Journal of 
Neuroscience, 20(23), 8916–8924. 



86	

Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). 
Experimental Brain Research, 217(1), 1–5. https://doi.org/10.1007/s00221-012-3000-4 

Latash, M. L., Scholz, J. P., & Schöner, G. (2002). Motor control strategies revealed in the 
structure of motor variability. Exercise and Sport Sciences Reviews, 30(1), 26–31. 

Levin, M. F., Kleim, J. A., & Wolf, S. L. (2009). What Do Motor “Recovery” and 
“Compensation” Mean in Patients Following Stroke? Neurorehabilitation and Neural 
Repair, 23(4), 313–319. https://doi.org/10.1177/1545968308328727 

Ludolph, N., Giese, M. A., & Ilg, W. (2017). Interacting Learning Processes during Skill 
Acquisition: Learning to control with gradually changing system dynamics. Scientific 
Reports, 7(1). https://doi.org/10.1038/s41598-017-13510-0 

Martin, J. R., Zatsiorsky, V. M., & Latash, M. L. (2011). Multi-finger interaction during 
involuntary and voluntary single finger force changes. Experimental Brain Research, 
208(3), 423–435. https://doi.org/10.1007/s00221-010-2492-z 

Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing 
while looking through prisms: I. Focal olivocerebellar lesions impair adaptation. Brain, 
119(4), 1183–1198. https://doi.org/10.1093/brain/119.4.1183 

Mehler, D. M. A., Reichenbach, A., Klein, J., & Diedrichsen, J. (2017). Minimizing endpoint 
variability through reinforcement learning during reaching movements involving 
shoulder, elbow and wrist. PLOS ONE, 12(7), e0180803. 
https://doi.org/10.1371/journal.pone.0180803 

Michaelsen, S. M., Dannenbaum, R., & Levin, M. F. (2006). Task-Specific Training With Trunk 
Restraint on Arm Recovery in Stroke: Randomized Control Trial. Stroke, 37(1), 186–192. 
https://doi.org/10.1161/01.STR.0000196940.20446.c9 

Milner, T. E., Firouzimehr, Z., Babadi, S., & Ostry, D. J. (2018). Different adaptation rates to 
abrupt and gradual changes in environmental dynamics. Experimental Brain Research, 
236(11), 2923–2933. https://doi.org/10.1007/s00221-018-5348-6 

Müller, H., & Sternad, D. (2004). Decomposition of Variability in the Execution of Goal-
Oriented Tasks: Three Components of Skill Improvement. Journal of Experimental 
Psychology: Human Perception and Performance, 30(1), 212–233. 
https://doi.org/10.1037/0096-1523.30.1.212 

Murillo, D. B., Sánchez, C. C., Moreside, J., Vera-García, F. J., & Moreno, F. J. (2017). Can the 
structure of motor variability predict learning rate? Journal of Experimental Psychology: 
Human Perception and Performance, 43(3), 596–607. 
https://doi.org/10.1037/xhp0000303 



87	

Mussa-Ivaldi, F. A., Casadio, M., Danziger, Z. C., Mosier, K. M., & Scheidt, R. A. (2011). 
Sensory motor remapping of space in human–machine interfaces. In Progress in Brain 
Research (Vol. 191, pp. 45–64). Elsevier. https://doi.org/10.1016/B978-0-444-53752-
2.00014-X 

Neilson, P. D. (1993). The problem of redundancy in movement control: The adaptive model 
theory approach. Psychological Research, 55(2), 99–106. 
https://doi.org/10.1007/BF00419640 

Newell, K. M. (1986). Constraints on the development of coordination. Motor Development in 
Children: Aspects of Coordination and Control. 

Newell, K. M., Broderick, M. P., Deutsch, K. M., & Slifkin, A. B. (2003). Task goals and change 
in dynamical degrees of freedom with motor learning. Journal of Experimental 
Psychology: Human Perception and Performance, 29(2), 379–387. 
https://doi.org/10.1037/0096-1523.29.2.379 

Newell, K. M., & Corcos, D. M. (1993). Variability and Motor Control. Human Kinetics 
Publishers. 

Newell, K. M., & Vaillancourt, D. E. (2001). Dimensional change in motor learning. Human 
Movement Science, 20(4–5), 695–715. https://doi.org/10.1016/S0167-9457(01)00073-2 

Nguyen-Tuong, D., Seeger, M., & Peters, J. (2009). Model Learning with Local Gaussian 
Process Regression. Advanced Robotics, 23(15), 2015–2034. 
https://doi.org/10.1163/016918609X12529286896877 

Nikooyan, A. A., & Ahmed, A. A. (2015). Reward feedback accelerates motor learning. Journal 
of Neurophysiology, 113(2), 633–646. https://doi.org/10.1152/jn.00032.2014 

Ranganathan, R., Wieser, J., Mosier, K. M., Mussa-Ivaldi, F. A., & Scheidt, R. A. (2014). 
Learning Redundant Motor Tasks with and without Overlapping Dimensions: Facilitation 
and Interference Effects. Journal of Neuroscience, 34(24), 8289–8299. 
https://doi.org/10.1523/JNEUROSCI.4455-13.2014 

Ranganathan, R., Wang, R., Gebara, R., & Biswas, S. (2017). Detecting Compensatory Trunk 
Movements in Stroke Survivors using a Wearable System. Proceedings of the 2017 
Workshop on Wearable Systems and Applications  - WearSys ’17, 29–32. 
https://doi.org/10.1145/3089351.3089353 

Reynolds, G. S. (1961). Relativity of response rate and reinforcement frequency in a multiple 
schedule. Journal of the Experimental Analysis of Behavior, 4(2), 179–184. 



88	

Rosenbaum, D. A., & Jorgensen, M. J. (1992). Planning macroscopic aspects of manual control. 
Human Movement Science, 11(1–2), 61–69. https://doi.org/10.1016/0167-
9457(92)90050-L 

Safonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human 
motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 
(ToG), 23(3), 514-521. 

 Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to motor learning by 
imitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 
358(1431), 537–547. https://doi.org/10.1098/rstb.2002.1258 

Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. 
Current Opinion in Neurobiology, 15(6), 675–682. 
https://doi.org/10.1016/j.conb.2005.10.009 

Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control 
variables for a functional task. Experimental Brain Research, 126(3), 289–306. 
https://doi.org/10.1007/s002210050738 

Scholz, J.P., Danion, F., Latash, M. L., & SchoÈner, G. (2002). Understanding finger 
coordination through analysis of the structure of force variability. Biological Cybernetics, 
86(1), 29–39. 

Schoner, G., & Kelso, J. (1988). Dynamic pattern generation in behavioral and neural systems. 
Science, 239(4847), 1513–1520. https://doi.org/10.1126/science.3281253 

Selinger, J. C., O’Connor, S. M., Wong, J. D., & Donelan, J. M. (2015). Humans Can 
Continuously Optimize Energetic Cost during Walking. Current Biology, 25(18), 2452–
2456. https://doi.org/10.1016/j.cub.2015.08.016 

Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error Correction, Sensory Prediction, 
and Adaptation in Motor Control. Annual Review of Neuroscience, 33(1), 89–108. 
https://doi.org/10.1146/annurev-neuro-060909-153135 

Singh, P., Jana, S., Ghosal, A., & Murthy, A. (2016). Exploration of joint redundancy but not 
task space variability facilitates supervised motor learning. Proceedings of the National 
Academy of Sciences, 113(50), 14414–14419. https://doi.org/10.1073/pnas.1613383113 

Skinner, B. F. (1938). The Behavior of Organisms. Appleton-Century-Crofts. New York. 

Stergiou, N., & Decker, L. M. (2011). Human movement variability, nonlinear dynamics, and 
pathology: Is there a connection? Human Movement Science, 30(5), 869–888. 
https://doi.org/10.1016/j.humov.2011.06.002 



89	

Sternad, D. (1998). Hot Topics in Motor Control and Learning: A Dynamic Systems Perspective 
to Perception and Action. Research Quarterly for Exercise and Sport, 69(4), 319–325. 
https://doi.org/10.1080/02701367.1998.10607705 

Sutton, R. S., & Barto, A. G. (2017). Reinforcement Learning: An Introduction (2nd ed.). The 
MIT Press. 

Therrien, A. S., Wolpert, D. M., & Bastian, A. J. (2016). Effective reinforcement learning 
following cerebellar damage requires a balance between exploration and motor noise. 
Brain, 139(1), 101–114. https://doi.org/10.1093/brain/awv329 

Therrien, A. S., Wolpert, D. M., & Bastian, A. J. (2018). Increasing Motor Noise Impairs 
Reinforcement Learning in Healthy Individuals. Eneuro, 5(3), ENEURO.0050-18.2018. 
https://doi.org/10.1523/ENEURO.0050-18.2018 

Thorp, E. B., Kording, K. P., & Mussa-Ivaldi, F. A. (2017). Using noise to shape motor learning. 
Journal of Neurophysiology, 117(2), 728–737. https://doi.org/10.1152/jn.00493.2016 

Todorov, E., & Ghahramani, Z. (2003). Unsupervised learning of sensory-motor primitives. 
Proceedings of the 25th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (IEEE Cat. No.03CH37439), 1750–1753. 
https://doi.org/10.1109/IEMBS.2003.1279744 

Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. 
Nature Neuroscience, 5(11), 1226–1235. https://doi.org/10.1038/nn963 

Tseng, Y., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007). Sensory 
Prediction Errors Drive Cerebellum-Dependent Adaptation of Reaching. Journal of 
Neurophysiology, 98(1), 54–62. https://doi.org/10.1152/jn.00266.2007 

Vereijken, B., Emmerik, R. E. A. van, Whiting, H. T. A., & Newell, K. M. (1992). Free(z)ing 
Degrees of Freedom in Skill Acquisition. Journal of Motor Behavior, 24(1), 133–142. 
https://doi.org/10.1080/00222895.1992.9941608 

Verstynen, T., & Sabes, P. N. (2011). How Each Movement Changes the Next: An Experimental 
and Theoretical Study of Fast Adaptive Priors in Reaching. Journal of Neuroscience, 
31(27), 10050–10059. https://doi.org/10.1523/JNEUROSCI.6525-10.2011 

Wang, L., & Suter, D. (2007). Learning and Matching of Dynamic Shape Manifolds for Human 
Action Recognition. IEEE Transactions on Image Processing, 16(6), 1646–1661. 
https://doi.org/10.1109/TIP.2007.896661 

Witte, K., Ganter, N., Baumgart, C., & Peham, C. (2010). Applying a principal component 
analysis to movement coordination in sport. Mathematical and Computer Modelling of 
Dynamical Systems, 16(5), 477–488. https://doi.org/10.1080/13873954.2010.507079 



90	

Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. 
Nature Reviews Neuroscience, 12(12), 739. https://doi.org/10.1038/nrn3112 

Wolpert, D. M., & Flanagan, J. R. (2016). Computations underlying sensorimotor learning. 
Current Opinion in Neurobiology, 37, 7–11. https://doi.org/10.1016/j.conb.2015.12.003 

Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor 
learning. Trends in Cognitive Sciences, 5(11), 487–494. https://doi.org/10.1016/S1364-
6613(00)01773-3 

Wolpert, D. M., Ghahramani, Z., & Jordan, M. (1995). An internal model for sensorimotor 
integration. Science, 269(5232), 1880–1882. https://doi.org/10.1126/science.7569931 

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). 
Temporal structure of motor variability is dynamically regulated and predicts motor 
learning ability. Nature Neuroscience, 17(2), 312–321. https://doi.org/10.1038/nn.3616 

Wulf, G., & Weigelt, C. (1997). Instructions about Physical Principles in Learning a Complex 
Motor Skill: To Tell or Not to Tell…. Research Quarterly for Exercise and Sport, 68(4), 
362–367. https://doi.org/10.1080/02701367.1997.10608018 

Yang, J., & Scholz, J. P. (2005). Learning a throwing task is associated with differential changes 
in the use of motor abundance. Experimental Brain Research, 163(2), 137–158. 
https://doi.org/10.1007/s00221-004-2149-x 

 


