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ABSTRACT

MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION IN GREENHOUSE
CONTROL FOR IMPROVED CROP YIELD AND ENERGY TRADEOFFS

By

José R. Llera Ortiz
The worldwide increase in demand for fresh fruits and vegetables has led to a search for strategies to
manage greenhouses in ways that not only meet this demand, but that are also economically viable and
environmentally sustainable. A well-established approach for managing greenhouse microclimate is
through the automatic control of its mechanical systems such as heaters, ventilators, and shade screens.
Such a system is a form of closed-loop control, but only with respect to the greenhouse microclimate,
rather than the crop being grown. In practice, conventional greenhouse control is criticized for this focus
on climate control instead of crop production, as well as the complexity of managing these systems due to
an excessive number of user settings [1]. A more comprehensive form of closed-loop optimal control in
greenhouses has been proposed to provide a better degree of control by adjusting the greenhouse climate
in response to the growth of the crop being cultivated, but it is still dependent on the external climate
around the greenhouse and can lack acceptable alternatives due to the nonlinear nature of the interactions
between environmental conditions and plant growth. Unfortunately, monitoring of the real-time response
of the crop is not viable for this type of closed-loop control — what can be used instead is a rather
sophisticated state model of crop production so that the microclimate conditions can be controlled in
order to optimize their effects on the predicted seasonal crop production. Further, this model and the
greenhouse microclimate model into which it is integrated must be executable in a short enough
timeframe to allow running it thousands of times to optimize the performance of the controller for a given
greenhouse structure and location. Having developed such a model, we propose using a form of
evolutionary multi-objective optimization to discover a suite of user-selectable control strategies that
balance crop productivity with the financial costs of greenhouse climate control. Each of the Pareto-

optimal controllers discovered by this approach defines a range of conditions to be maintained via



specified control actions, depending upon the crop state and external environmental conditions. Due to the
large number of candidates present as the output, the decision-making process will be aided by
considering common user preferences as well as algorithmically examining the robustness of solutions in

the final Pareto-optimal frontier.
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1 Introduction

1.1 Objectives and Scope

The objective of this thesis is to build upon existing greenhouse models that allow the simulation of
greenhouse and tomato plant growth dynamics, and to use evolutionary algorithms with this model in
order to find and analyze practical control strategies that can improve upon existing strategies. Validation
of these strategies will consist of reproducing the original results utilizing a classical control strategy and
then comparing them to these optimized control strategies. Optimized control strategies that are found
will be examined for economic viability as well as robustness against varying weather conditions and
sensitivity to variations in control parameters. Resulting control strategies are designed and expected to be
viable for validation in real greenhouses but doing so is beyond the scope of this thesis, as it would
involve considerable time and expense. Since greenhouse parameters as well as user requirements have a
staggering amount of variation, we are limited to only parameters currently available to us. However, the
methodology proposed here can be applied by others by introducing their own greenhouse parameters,

costs, and other design constraints.

1.2 Introduction

Worldwide, the greenhouse industry is the fastest growing sector of agricultural production, with global
demand for fruits and vegetables having doubled in the last ten years [2]. A key factor in meeting this
demand is employing automatic greenhouse control that adjusts the microclimate of a greenhouse based
on sensor feedback. This demand is particularly acute in China, which has funded a team at Tongji
University, under the leadership of Prof. Lihong Xu, to study ways in which greenhouse productivity can
be optimized. Through a long-established research relationship with Prof. Erik Goodman of MSU, they
have assembled a team including Prof. Erik Runkle of the Department of Horticulture, MSU; Prakarn
Unachak, a former Ph.D. student at MSU; Chenwen Zhu, a former Ph.D. student at Tongji University and
visiting scholar at MSU; and Dr. Yuanping Su, a graduate of Prof. Xu’s doctoral program and visiting

scholar at MSU. The author and Prof. Goodman have made several visits to Tongji University and the



experimental greenhouses they have constructed, helping their understanding of the real-world facets of
greenhouse control. The activities of this team laid the groundwork under which this work was begun by
the author. Collaboration continues with Prof. Xu, Dr. Su, and Prof. Runkle; the others have graduated

and moved on to other activities.

Due to the reliance on open-loop control or on closed-loop control aimed only at maintaining preselected
setpoints for various greenhouse microclimate variables, most commercially available conventional
greenhouse controllers have problems providing optimal control due to the lack of an on-line feedback
mechanism that allows the controller to make adjustments based on the current growth dynamics of the
entire crop production system [1]. A related method, closed-loop greenhouse control, promises higher
crop yield at lower cost by adjusting the indoor climate in accordance with the response of the crop being
cultivated. Even so, an obstacle to acceptance of these controllers is the lack of decision freedom of the
user, which is necessary for adapting to unexpected environmental conditions [1]. An approach that is
more energy efficient than conventional control and provides users with the freedom to adjust controller
behavior is needed to help meet the increasing demand for fruits and vegetables considering yield,
quality, and production inputs. Our proposed approach incorporates a tomato crop yield model as part of
the closed-loop control by using the model-predicted seasonal crop yield as an overall measure of fitness
for a control strategy. Thus, this control approach requires a detailed crop growth model allowing
prediction of the effect of microclimatic conditions at any time on the ultimate seasonal yield, by tracking
their effects on a state model of the crop growth. This approach will yield multiple solutions that show the

tradeoffs between crop yield and energy costs using evolutionary algorithms.

Using multi-objective evolutionary algorithms, or MOEAs, we can obtain a set of greenhouse control
strategies that can balance multiple conflicting objectives. For our purposes, energy consumption and
crop production are considered as the objectives to optimize. One particular property we are interested in
while using MOEAs is that of elitism during search, which involves preserving the fittest Pareto non-

dominated individuals from a previous generation and keeping them unchanged into the next generation.



This guarantees that the overall quality of solutions does not decrease from one generation to the next. In
order to obtain the parent population for the next generation, the current generation’s parent population
and the offspring are combined and then sorted according to the concept of non-domination. Since all the
parent members are included, this ensures elitism is employed in the algorithm. The next generation is
then created by adding members from the current sorted, combined population starting from the lowest
ranked members. If all solutions from a particular rank cannot be added to the next parent population, the
crowding operator is used to rank in order of descending crowding distance, and then the necessary
number of members is chosen to fill the population. One example of such an algorithm is described in

Figure 1.1.

Energy savings are achieved by taking advantage of the crop’s ability to tolerate environmental
fluctuations. This is known due to the effects of sub-optimal and supra-optimal instantaneous and mean
temperatures being studied extensively for tomatoes, which has led to the development of temperature-
based growth inhibition functions for the tomato crop model [3]. This behavior allows us to relax
controller setpoints to allow a wider range of temperatures than would normally be deemed acceptable in
practice, as long as the control strategy itself does not trigger the negative effects of these growth
inhibition factors. For example, it may be unnecessary to maintain a high nighttime temperature if there
was little photosynthetic activity during the day and the outdoor temperature is low. User decision
freedom is achieved by enabling users to choose among a set of evolved control strategies, with different
control parameters for the lower and upper limits to allow variation, depending on the crop state and
typical external weather conditions of the site. The behavior of the crop model’s growth inhibition factor
is illustrated in Figure 1.2. These define an optimal range of temperatures for both instantaneous and 24-
hour mean temperatures in order to grow the crop, and subsequently play a major role in maximizing crop
yield. Of course, these curves are only one of the components in the instantaneous photosynthesis model,
which also depends heavily on leaf area index, level of photosynthetically active radiation (PAR), and of

CO; concentration in the greenhouse canopy.
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Figure 1.1. Detailed illustration of the proposed method for optimizing greenhouse control strategies: NSGA-II, a multi-objective
problem solver (a), components of the fitness function (b), and a resulting Pareto set of control strategies (c).
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Figure 1.2. The growth inhibition functions used as part of Vanthoor’s crop model [4]. The horizontal axes on the lefi and right
represent instantaneous canopy temperature and 24-hour mean temperature, respectively. The solid lines represent a non-
differentiable implementation of the functions, while the dotted lines represent a differentiable version of the functions. The

values hrcan and hrcan24 are used as scaling factors that limit the flow of carbohydrates into the tomato crop.



1.3 Control Strategy Optimization Methodology

Vanthoor’s proposed approach for the greenhouse design optimization step utilizes CRS (population-
based controlled random search [5]), which is appropriate for the scope of the optimization problem
framed originally: limited search space and single objective. Due to the introduction of crop yield as an
objective and dramatically expanding the search space, we changed the approach by using a type of
heuristic multi-objective search algorithm called the “Non-dominated Sorting Genetic Algorithm-II
(NSGA-II)” [6]. Another major difference is that the end-goal of our optimization step is the acquisition
of novel control strategies by optimizing over a wide range of possible control parameters while using a
fixed set of greenhouse elements; Vanthoor utilized a fixed control strategy. Environmental effects on
attributes of the tomato crop that are associated with its quality (e.g., flavor, nutrition, etc.) are not
considered in the economic model (described in Section 4.1.2), and it was assumed that the greenhouse
environmental conditions produced by the evolved control strategies discussed in this thesis do not affect
tomato quality. Instead, the output of the tomato crop yield model while using evolved control strategies
will only differ from a classical strategy (described in Section 6.2) with regards to the amount that was

harvested.

The use of NSGA-II allows us to find multiple solutions consisting of the Pareto-optimal set of control
strategies. We treat greenhouse climate control as a multi-objective problem comprising two conflicting
objectives: resource cost (water, electricity, etc.) and crop yield. Evolutionary algorithms maintain a
population of candidate solutions in which individuals compete with one another based on a fitness
function. In this case, candidate solutions are greenhouse control strategies, and the fitness function is
based on a simulation of an integrated cultivation system including a greenhouse climate state model
combined with a tomato growth state model. As in biological evolution, new candidate solutions are
generated via recombination and mutation of highly fit “parent” solutions. These offspring are then

incorporated into the population, and, if highly fit themselves, compete for space in the next generation

[7].



Figure 1.1 is a detailed illustration of our approach. In Figure 1.1a, NSGA-II is used to obtain sets of
Pareto-optimal greenhouse controllers. Each individual in the NSGA-II population is a control strategy
that is evaluated by a fitness function to determine its survivability, as depicted in Figure 1.1b. This
fitness function comprises three components: the objective functions being optimized, the
greenhouse/crop yield model that is used to evaluate the control strategy, and the meteorological data
used as input to the greenhouse model. A sample Pareto-optimal set of control strategies is shown in
Figure 1.1c. Details regarding the individual control strategies and each component of the fitness function

are described in more detail below.



2 Literature Review

Modeling of greenhouse production of crops has been a longstanding research topic, because of the
importance of optimizing the behavior of the greenhouse control system to maximize crop production
while minimizing operating costs. These sometimes-conflicting objectives give the decision maker a great
deal of freedom to choose, but also the responsibility of choosing wisely. Historically, even the earliest
efforts [8] at automated greenhouse control recognized the importance of making the control system
responsive to changes in external environmental conditions (including temperature, relative humidity,

wind speed and direction, etc.).

The majority of greenhouse optimization studies focus on control performance and climate control with
regards to maximizing net financial gain [1], that is, combining the value of the crop produced and the
cost of producing it. Due to the scope of these studies, components such as a crop yield model are
typically not considered, with the focus instead being on maintaining the greenhouse microclimate in a
state thought to be optimal for plant productivity. Part of this is due to there being a limited number of
plants that are well enough understood to form a complete state model, as well as the lack of well-studied
and economically viable methods to obtain real-time feedback on plant biomass increase. The later
approaches, such as that implemented by Vanthoor [4], introduce simplified models of plant growth,
increasing the robustness of the approach by calculating the effects on the ultimate objective, crop yield,
rather than on an arbitrarily determined physical parameter(s) of the greenhouse. However, introduction
of crop modeling dramatically increases the complexity of the simulation required to determine the
benefits of a particular control algorithm, so progress on this front has partially relied on the advance in

computational speeds before researchers have used such models.

In order to determine the economic and crop yield effects of a specific greenhouse controller, it is
necessary to combine several models together: a greenhouse climate (or microclimate) model, a crop
yield model and an economic model. Of these three, finding an adequate crop yield model proves to be

particularly challenging; even with the use of parallel computing and a relatively small number of



greenhouse designs to evaluate, the computational time required for applying optimization algorithms can
be prohibitive [4]. That said, tomato currently makes for an ideal crop, as knowledge on modelling tomato

yield is widely available [9].

Most of the early publications approached the topic of optimal greenhouse control from the point of view
of classical control methods, which define greenhouse environmental control as an optimal control
problem. For example, N. Sigrimis and N. Rerras applied a linear model for greenhouse control which
views the greenhouse environment as a multi-input-multi-output (MIMO) system [10]. It uses as inputs
such variables as external temperature, relative humidity, wind velocity and direction, and insolation. It
also uses internally measured evapotranspiration rates, and state variables such as internal air temperature,
internal air relative humidity and soil temperature to determine how various control actions should be

modulated (heaters, window openings, exhaust fans, etc.).

H. J. Tantau discussed the benefits of optimal control of temperature, humidity, and supplemental
lighting, resulting in reduced overall costs, reduced growing periods and increased crop yields [11].
However, he also noted the importance of plant growth models, as they can provide valuable feedback to

online control systems, and knowledge in this area was still lacking at the time.

E. J. van Henten and J. Bontsema defined greenhouse cultivation of a lettuce crop as an optimal control
problem to determine the ideal temperature and CO; strategies for its cultivation, using the mean values
of historical weather data as a method of forecasting [12]. This resulted in lower energy costs and CO;
consumption compared to using control strategies that do not take the weather into account. While it had
its benefits, they also noted that this method needs improvement to better cope with differences between

predicted and actual weather.

K. G. Arvanitis, P. N. Paraskevopoulos and A. A. Vernardos proposed an adaptive control strategy for
greenhouse air temperature [13]. Multiple samples of the greenhouse air temperature were taken over the
course of a predefined sampling period, which were then used to compute a constant-gain controller that

modulates the heating system.



I. Seginer and R. W. McClendon compared various dynamic optimization techniques and talked about
their drawbacks in the context of greenhouse cultivation: depending on the technique used, a grower may
have difficulty making multiple sequential decisions during a growing season, or it may be unacceptably
inefficient when solving problems with many state variables [14]. To address this problem, they proposed
reducing the number of state variables in one of their approaches to reduce the computational complexity
of the problem. Depending on which state variables were removed, the results ranged from sub-optimal
but acceptable to more inferior results. They also used historical data from previous optimal control
solutions to train a neural network that could produce control decisions that are appropriate for current

environmental conditions, with good results.

A related effort, aimed at reducing the number of state variables in the greenhouse model, was undertaken
by the team at Tongji University, as reported in [15]. It proposed a simplified model with significantly
reduced state variables while still describing a combined greenhouse climate and crop yield model. In
addition, some of the state variables were simplified through curve fitting techniques. The results show
that the reduced model was effective at producing similar results to its counterpart. Moreover, this
research shows one method for validating these results by using already available data from a previously

validated greenhouse microclimate-crop yield model [4].

Several researchers have approached the multi-objective optimization problem using the techniques of

stochastic optimization, including particle swarm optimization and evolutionary methods.

A. Hasni et al. test the use of genetic algorithms versus particle swarm optimization to obtain the optimal
set of parameters for the greenhouse itself by simulating a reduced greenhouse model iteratively with the
parameters optimized through said methods [16]. They found that their particle swarm implementation

outperformed their genetic algorithm approach.

Q. Zou et al. proposed a control strategy developed using model predictive control (MPC), combined with

particle swarm optimization [17]. The proposed control strategy was able to reduce energy consumption



due to heating and ventilation while maintaining the same temperature ranges as their conventional

controller.

A. Ramirez-Arias et al. addressed the existence of multiple conflicting objectives when it comes to
optimal greenhouse control [18]. They define three main objectives: maximizing profit, fruit quality and
water-use efficiency. In order to find setpoints that balance these three objectives, they proposed a
hierarchical control architecture that takes advantage of the different time scales in which greenhouse-
related processes operate. This way, optimal setpoints may be calculated for slower processes (such as
crop growth), and then sent to the next “layer” to be adjusted when necessary for faster processes (such as
greenhouse air temperature). The use of multiple timescales for both state and environmental variables is

found in [19].

H. Hu et al. used evolutionary algorithms to address the issue of determining proportional integral and
derivative (PID) control parameters for greenhouse climate control [20]. By defining multiple
performance measures as objectives and using NSGA-II, an evolutionary algorithm, they were able to
develop a tuning method for PID controllers used in greenhouses that can account for multiple conflicting
objectives. In this sense, it is an important precursor of the work reported in this dissertation, which uses a

genetic algorithm to optimize PID parameters of various controllers.

M. Mahdavian, S. Sudeng, and N. Wattanapongsakorn similarly used NSGA-II, with the focus lying on
optimizing PID controller performance with regards to temperature and light supplementation [21]. In this

case, a crop yield model was not considered.

Y. Su, L. Xu, and E. D. Goodman proposed an approach based on adaptive dynamic programming [22],
which uses neural networks to estimate the value function and resulting control strategy for the
greenhouse. While this approach yielded good results, it relied on calculating “virtual” control inputs for
the greenhouse actuators that were not always attainable in a real setting, resulting in cases where a

“nearly optimal” set of control inputs were used as a compromise instead.
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A notable example utilizing multi-objective optimization methods on greenhouse problems is the use of
multi-objective compatible control, or MOCC [23]. The method behind MOCC relies on dividing the
optimization process into two layers: the compatible optimization level and the compatible control level.
The former works by obtaining Pareto-optimal fronts for control variables while also obtaining additional
sub-optimal solutions. The process of obtaining sub-optimal solutions involves relaxing the control
variables associated with a point in the Pareto-optimal front, which makes for a useful backbone for

creating practical solutions by providing a set of alternatives.

The multi-objective work above, and the work reported in this dissertation all make use of evolutionary
computation techniques. These approaches, including especially the genetic algorithm metaheuristic used
here, date from the late 1960’s and the seminal work of John Holland [24], who first put forth the genetic
algorithm, although it was not yet called that. Another milestone was the book of David Goldberg [25],
and there have been thousands of papers published since using the genetic algorithm and other derivative
forms of evolutionary computation. In the context of multi-objective evolutionary optimization, the article
by K. Deb et al. [6] in which NSGA-II was first presented has been cited more than 35,000 times. An

excellent overview of the field was presented in [26].

The most important prior work, providing much of the modeling framework for the algorithms developed
here, is that of Vanthoor [4]. It provides a complete mechanistic model by incorporating a tomato crop
yield model and also addresses potential issues and design considerations when attempting to optimize
various aspects of a greenhouse system; he also points out that multi-factorial optimization for greenhouse

design is promising due to prior research on complex problems in other application domains.

Part of the design process in Vanthoor’s model-based greenhouse design method involves determining the
economic analysis and viability of a greenhouse design, along with an optimization step to improve the
net financial gain of operating the greenhouse. As mentioned in Section 1.3, his proposed approach
utilizes population-based controlled random search, or CRS [5]. Due to the scope of the optimization

problem being limited to a small set of greenhouse design elements (to form different combinations with)
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and a single objective, this was a satisfactory approach to determining an optimal solution. However, it
was imperative that this approach be modified in order to account for our approach being a multi-
objective optimization problem with many more parameters to be determined, requiring evaluation of
thousands of seasons of simulated greenhouse operation under a variety of climatic conditions in order to
allow evolution of optimal and robust controller behaviors. Such simulation would have been impractical
with Vanthoor’s greenhouse model, as that model used numerical integration methods that often reduced
timesteps to millisecond levels to achieve numerical convergence, because of the stiffness of the
equations used in his state model. An overview of a model-based greenhouse design method can be seen

in Figure 2.1, along with the modification of the optimization process.

Outdoor climate Economic variables

Indoor climate:

Climate management | Greenhouse | L. €9.., Rz | TOmato
A g >

Crop yield Economic | Net financial result

. i T, VP, i
Gregnhouse design climate — yield model
A model Crop feedback model
| bl
Resource use: water, energy| CO:, electricity
____________________________ Investments|
Greenhouse
design

optimization

Control Parameter setting | Multiobjective[C

strategy optimization

Figure 2.1. In our implementation of Vanthoor’s model-based greenhouse design method [4], the optimization step, which was
previously aimed towards greenhouse design optimization with a single objective (net financial result), is replaced with a multi-
objective optimization step that considers crop yield value and variable costs. Inputs such as the canopy temperature (1can),
greenhouse air CO2 concentration (COz4ir), photosynthetically active radiation flux density (Rrar), greenhouse air temperature
(T4ir), and the vapor pressure of the greenhouse air (VP4ir) are used in the tomato yield model to obtain the final yield.

Historically, one of the challenges with crop yield modeling is the complexity of their description.
Mechanistic models, such as TOMGRO [27], define the processes that drive the tomato crop growth as a
set of state variables whose behavior is described by differential equations. Even in its earliest, simplest

form, TOMGRO defined 69 state variables, expanding to 574 state variables for the latest version at the
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time [9]. This can be daunting not only from the perspective of reproducibility of results when
implementing such a model, but also because it makes using these crop yield models to optimize
greenhouse control impractical, if not outright impossible. These challenges have led to multiple efforts to

simplify the models while maintaining acceptable levels of accuracy [18, 28-30].

Although Vanthoor’s primary goal in his work was to describe a methodology for obtaining a greenhouse
design suitable for a given climate and locale [4], one of the advantages of his combined model
description is that the total number of state variables is relatively small despite including the three models
pictured in Figure 2.1 (i.e., greenhouse climate model, tomato yield model, and economic model). To
achieve this, some assumptions and simplifications were made by Vanthoor among the three models, but
subsequent validation studies confirmed their efficacy. In addition, having an economic model provided
the framework for evaluating the viability of a greenhouse design by incorporating the fixed and variable
costs of operating a greenhouse (as well as the resulting profit of the tomato crop), allowing for well-
informed decision making without relying on the crop yield’s dry weight or other physical parameters

(such as leaf area index, or LAI) which may be obtuse for non-growers.

Despite these advantages, some challenges remained with Vanthoor’s methodology. First, not all the
greenhouse design elements included in the greenhouse climate model description contained the
necessary information for reliable reproducibility of its intended behavior. Second, the inclusion of
certain greenhouse design elements caused an excessive increase in the stiffness of the differential
equations describing the greenhouse model, resulting in computational times that made it impractical to
use evolutionary algorithms like NSGA-II. Finally, since detailed descriptions on greenhouse controllers
and their behavior are not available, it presents difficulties in determining whether an improved

greenhouse control strategy would help improve the economic viability of a design.

Since the objective of this thesis is to find more optimal greenhouse control strategies by using
evolutionary algorithms, these challenges were addressed by doing the following: 1) greenhouse design

elements with insufficient information for reliable reproducibility of their behavior are omitted, 2)
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greenhouse design elements that were found to contribute excessive stiffness to the differential equations
describing the greenhouse model are omitted, and 3) as a baseline, a greenhouse controller based on
Vanthoor’s description is implemented as one of the control strategies studied in this thesis, while stating
the assumptions necessary for the controller to be functional. Due to the modularity of the greenhouse
climate model described by Vanthoor, the omissions made of certain climate control elements (like pad
and fan cooling, for example) do not adversely affect the efficacy of the model. Moreover, this approach
coincides with the greenhouse design and climate model used in one of his studies. More details on these

changes are available in Chapter 4.
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3  Modification of a Classical Greenhouse Control Model for Evolutionary Optimization

The contents of this chapter are partially based on our prior published work, and can be found in [31].

The validation step performed by Vanthoor [4] used ordinary differential equation (ODE) solvers with
variable time steps in order to solve all model equations. Due to the stiffness of the differential equations
in these models and the high number of greenhouse season evaluations that are needed when doing
evolutionary multi-objective optimization on a more flexible control architecture, the optimization
process and model used by Vanthoor are impractical due to their excessive computational time. In order
to address this, the model has been refined such that a fixed integration timestep of 60 seconds can be
used, and a fourth-order Runge-Kutta solver is used instead of a variable-step-size solver, which

dramatically reduces the runtime of the optimization process.

Vanthoor’s climate model is defined by a set of energy and mass fluxes in the form of temperature, CO»
concentration and vapor pressure. An example of these fluxes and how they relate to state variables can
be seen in Figure 3.1. This model assumes that the air inside each compartment in the greenhouse is
completely mixed. However, even with this assumption these fluxes (or transfers) of mass and energy
between well-mixed compartments often result in high levels of stiffness of the differential equations, and
therefore unacceptably high computational costs that make it impractical to use such a model for
optimization purposes. Most notably, the fluctuations in temperature induced by using these equations
with a fixed and longer timestep are not what physical laws would predict, and the large gradient induced
would actually result in mixing between compartments that would dramatically exceed the limits of the
climate model. In order to ensure proper mixing, after each step of the ODE solver, we implemented a
mixing equation, T s-psi, for more even distribution of heat fluxes from a source state variable T, and

a destination state variable 7pg:

T __ CaPsrc * Tsrc + cappse * Tpst
Mi =
Hisrebst Capsyc + Cappst

[°C] (3.1)
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where caps,. (J*K'xm™) is the heat capacity of the source air compartment of the flux, Ts.. (°C) is the
current temperature from the source air compartment of the flux. These mixing equations conserve heat
between the compartments they are mixing and have a strong stabilizing effect on the behavior of the
greenhouse climate model. The terms capps: and Tpy are similarly defined, but for a destination air

compartment Dst.
Once Tusix srenst 1 calculated, the new heat flux, Huix srens 1s defined as:
— -2
Hytixgyepse = €CAPsre X (Tsre — TMix_ngst) [W xm™] (3.2)

where caps.. (J*xK'xm2) is the heat capacity of the source air compartment of the flux, T (°C) is the
current temperature from the source air compartment of the flux, and Ty« s-ep« 1S the mixed temperature

between the source and destination air compartments.

Lastly, the state variables are updated with the heat flux contributed by Husix sreps::

Hyix
Tore = Tope + ——25E [°C] (3.3)
Src Src CaPsre

HMix
T =T + SreDst o 3.4
Dst Dst cappst [ ] ( )
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Figure 3.1. Potential design elements used to manage the greenhouse climate. The colored arrows represent the various mass
and energy fluxes which dictate the model’s behavior [4].

3.1 Individual Control Strategies

One of the major factors in tomato crop cultivation is, under varying environmental conditions, to
properly balance temperature with the available light, so as not to waste energy maintaining optimal
temperatures while the photosynthetic light is in short supply, unless artificial lighting is available to
boost photosynthesis. This will help maximize accumulation of carbohydrates in the plant as well as
carbohydrate outflow to its various organs, which ultimately results in maximizing harvestable fruit.
Higher temperatures under lower light conditions simply raise the loss of carbohydrates to respiration,
which is higher at higher temperatures, so to expend energy to raise canopy temperature under low light
conditions is counterproductive. Based on concepts from compatible control [23], we developed an
interval controller that is designed to maintain the internal greenhouse temperature within crop-favorable
ranges, depending on environmental conditions, which can dramatically affect the energy cost/crop
production tradeoff. This controller includes switching rules for decisions about heating,
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dehumidification, ventilation, shading, and carbon dioxide injection and is supplemented with conflict-
resolving rules and provides for limited user intervention. Figure 3.2 contains an example of such an

interval controller.

We have divided the overall control strategy into two main segments: daytime and nighttime control
strategies. This allows the greenhouse to have differing temperature ranges during these times when the
presence of sunlight affects the usefulness of maintaining a specific range of temperatures. This is further
divided during daytime into morning, midday, and evening temperature intervals. In addition, switching
times between daytime and nighttime strategies are defined in order to allow the controller to pre-
emptively change strategies before sunrise or sunset so that it may accommodate the anticipated changes
in temperature and light levels and in desirable temperature and light levels. Greenhouse heating and
cooling is accomplished using PID controllers; this includes boilers, cooling pads and ventilation. Each of
these has its respective gain parameters which will also be optimized, making part of the optimization
process a parameter tuning problem. CO, injection is also assumed to be available and used by the control
strategy, and a range of CO» values is maintained by the controller. Finally, a threshold for global
radiation is defined which the controller uses to determine whether deployment of a shading screen is

necessary.

To evolve these interval controllers, individuals (i.e., sets of the optimizable parameters of the controller)
within the evolutionary algorithm comprise a set of discretized floating point numbers: daytime and
nighttime temperature intervals, PID gain parameters (for controlling boiler, cooling pad and ventilation
greenhouse elements), carbon dioxide intervals, daytime and nighttime strategy switching times, and
maximum global radiation values. During fitness evaluation, these parameters define the behavior of the

controller and how it responds to the meteorological data used as input to the greenhouse model.
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Figure 3.2. Example of an implementation of the proposed interval controller, for some arbitrary time of day. Instead of strictly
following temperature setpoints, it allows for a range of temperatures in which some control actions (or none) may be taken as

long as the temperature stays within a certain range.

3.2 Objective Functions

The two objectives being optimized are crop production (fyi.s) and resource cost (fc.s:). These objectives

are calculated following the simulation of the greenhouse/crop yield model with an individual control

strategy over a predefined time horizon ([#y, #]). Specifically, crop production is the finite integration of

the carbohydrates flowing into fruit (MCpru.) during the final development stage (n_Dev). The integral

that defines fyiws is described in Eq. (3.5).

mig .
fia = Jtu 1""I'Can(n._ner-1_‘}Fn.ﬁr(n._[)er}
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The resource costs consist of the sum of costs related to resource consumption, including water (pwaser),
electricity (peiecrricity), and supplemental CO» (pcoz) in Chinese Yuan (CNY, based on locale of the weather
data that were available for this study). The cost for each unit of these resources was constant and
supplemental lighting was not considered. The capacities associated with each actuator are based on data
provided by Vanthoor [4], and a summary of the most important values for actuators associated with
climate management can be seen in Table 3.1. Resource costs are driven by the operation of the following
actuators: boiler (ugoiter, PBoiter), pad and fan (upas, Cappad, Ppaa), 100f vents (Uroos, Proof), side vents (uside,
Psize), thermal screen (Uznermat, Priermat), €xternal shading screen (Ushading ¢» Pshading ), internal shading
screen (Ushading is Pshading i), and CO, enrichment (uco2, Capcoz). The integral that defines fco. is defined in

Eq. (3.6).

Pwater -+ (Upag “Cappg) ¥ P Electriity(peak/off pesk) * (U5 * oot T g ™ Prog
e * % o / E
Lo = LD FAug o *Pp s TAug, *Pgy FAug L FPn o tAug L P [dE

TAUG e PS]'_ad.iJ:g_i) +p(_‘0; * [:“cc:-l 4CCE‘P::«::-_\ )
(3.6)

Assuming both objectives are modeled as minimization problems, one would determine the lower bound
for each objective, or ideal point, and try to reach it. However, the tradeoff between these two objectives

determines how closely the evolved Pareto set can approach the ideal point.
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Table 3.1. Capacities and coefficients for the major greenhouse design elements associated with active climate management.
Transmission and reflection coefficients for near infrared (NIR), far infrared (FIR), and photosynthetically active radiation
(PAR) of the internal shading screen, external shading screen, and thermal screen are included.

Parameter Parameter Unit Value
Description Name/Symbol
Capacity of the CO> Capcoz mg/s 4.3x10°
enrichment system
Capacity of the air flux Caprad m?/s 50
through the pad and fan
cooling system
Capacity of the boiler heating Capsoil Megawatts (MW) 1
system
NIR reflection coefficient of PShading iNIR - 0.3
the internal shading screen
PAR reflection coefficient of PShading_iPAR - 0.3
the internal shading screen
FIR reflection coefficient of PShading iFIR - 0
the internal shading screen
NIR transmission coefficient TShading_iNIR - 0.6
of the internal shading screen
PAR transmission coefficient TShading_iPAR - 0.6
of the internal shading screen
FIR transmission coefficient of TShading_iFIR - 0.1
the internal shading screen
NIR reflection coefficient of PShading eNIR - 0.2
the external shading screen
PAR reflection coefficient of PShading ePAR - 0.2
the external shading screen
FIR reflection coefficient of PShading eFIR - 0
the external shading screen
NIR transmission coefficient TShading_eNIR - 0.7
of the external shading screen
PAR transmission coefficient TShading_cPAR - 0.7
of the external shading screen
FIR transmission coefficient of TShading_¢FIR - 0.1
the external shading screen
NIR reflection coefficient of PThermalNIR - 0.7
the thermal screen
PAR reflection coefficient of PThermalPAR - 0.7
the thermal screen
FIR reflection coefficient of PThermalFIR - 0.45
the thermal screen
NIR transmission coefficient TThermalNIR - 0.25
of the thermal screen
PAR transmission coefficient TThermalPAR - 0.25
of the thermal screen
FIR transmission coefficient of TThermalFIR - 0.11
the thermal screen

3.3 Greenhouse Model

To estimate fruit production and resource cost for an individual control strategy, we have implemented
and adapted a comprehensive greenhouse and tomato crop model [4]. The greenhouse climate is based on
an energy and mass balance model, while the tomato growth (based on Lycopersicon esculentum L. cv.
Pitenza [32]) is described by a buffer of carbohydrates that accumulates with photosynthesis, and must
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balance the distribution of these carbohydrates among all plant organs: the stems, leaves, and fruit (if fruit
set has occurred). The tomato cultivar was chosen based on the coefficients that were available to convert
from dry matter to fresh weight [32]. Although flexible enough to fit a variety of realistic greenhouses,
the model implementation is very detailed and computationally expensive, especially considering that a
new simulation is required for every unique individual encountered during evolutionary search. We
therefore performed several model simplifications, including the reduction of time resolution by forcing a
fixed time step of 60 seconds, merging of state variables (e.g., reducing overall depth considered for the
soil temperature from 5 layers to 1), and model revisions on flux calculations such as those described in
Egs. (3.1 — 3.4). Based upon sensitivity analyses in the simulation domain, these modifications appear to

have negligible impact on the overall behavior of the model and decrease computation time dramatically.

3.4 Meteorological Data Acquisition and Configuration

We used a meteorological database consisting of hourly weather data collected over six years in the
Shanghai area [33] as weather input to the greenhouse/crop yield model. A summary of the mean values
for the weather data used in this chapter is shown in Figure 3.3. The data required by the model includes
external temperature, humidity, wind speed, carbon dioxide concentration, and solar radiation. These

were extracted and linearly interpolated to a finer resolution as needed.

Considering the typical time scales of greenhouse systems, we selected 5 minutes as the constant control
interval. This provides a small enough interval for finer greenhouse control while allowing a fixed time
step of the same size. Unless otherwise specified, simulations were performed over a 300-day production
period for each individual in the population. For reproducibility of results, other simulation lengths may
be used. In addition, multiple runs with different weather inputs were used to ensure the robustness of the
final Pareto-optimal set. To avoid over-fitting of resulting control strategies, leave-one-out cross-

validation [34] was used to structure the data for training and independent validation.
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Figure 3.3. Summary of the monthly mean values for the outside air temperature (Tow), global radiation (Iib), and outside
vapor pressure (VPow) for the 2007 — 2012 years in the Shanghai region. An ambient CO: concentration of 340 ppm was
assumed.

3.5 Description of Early Evolved Results

Figure 3.4 plots the Pareto-optimal sets from three independent simulations of our evolutionary algorithm
(hollow marks, lower left). Shown here are the values of the two different objectives, resource cost and
crop production. To improve interpretation, we report the negative harvestable fresh fruit (i.e., -1xkg/m?)

such that the goal for both objectives is to minimize their respective values as much as possible. Each of
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the three replicates was trained on different weather data; Figure 3.4 shows the objective values for
weather data that were not used during training (the “left out” data) but used for this simulated season. As
shown here, productivity ranged from 5.5 to 10.5 kg/m? per year, while resource cost ranged from 62,100
to 113,000 CNY per year. Examining the parameters of the resulting individual control strategies showed
that a relatively high nighttime temperature was always preferred if high productivity was desired, around
18 degrees Celsius. This would guarantee the tomato crop would remain inside an optimal range of
temperatures that would prevent crop growth inhibition. On the other hand, low-yield points in the Pareto
set had lower resource costs due to having lower nighttime temperatures overall, around 12 — 14 degrees
Celsius. Intuitively, lower nighttime temperatures are preferred for the crop since it reduces plant
respiration and maintaining higher nighttime temperatures will result in increased heating costs without
immediate benefit to crop growth. However, the increased crop production resulting from these higher
nighttime temperatures suggests that it is beneficial to maintain these temperatures in anticipation of
daytime, allowing for the greenhouse to reach an optimal temperature for crop growth once sunlight is

available.

3.6 Result Comparison

To compare the effectiveness of the optimization process, we evaluated a classical setpoint-based
controller [4] on the same greenhouse/crop yield model and weather data. The isolated solid points in
Figure 3.4 are the objective values corresponding to this controller on the three sets of weather data.
Compared to the setpoint controller, the average evolved strategy reduced resource cost by 10.2% and
increased yield by 12.9%. Moreover, we found a 19.9% increase in yield given the same resource cost,

and a 32.5% decrease in resource cost given the same yield.

Some understanding of the differences between the evolved control strategies and the set-point controller
can be gained by examining the accumulated actuator usage for the boiler and the external shading screen.

As shown in Figure 3.4a, a randomly selected evolved controller (dotted line) used both the boiler and
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shading screen less frequently than the set-point controller (solid line), which lowered the resource cost

and increased photosynthetic activity, respectively.
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Figure 3.4. Yearly resource cost and crop yield for three independent Pareto-optimal sets on validation weather data (hollow
points). Objective values for a classical setpoint controller on the same weather data (solid points). Accumulated boiler and shade
screen usage for an evolved strategy compared to the setpoint controller (a).

3.7 Control Strategy Selection

The three Pareto sets in Figure 3.4 all share the same trend. Picking the diamond set (0) as an example, all
the solutions in this set are relatively evenly distributed throughout objective space. This leads to an
interesting question: How should a user select a strategy to control a greenhouse? While expert
knowledge plays an important role in this decision-making process, there are several approaches that can
be identified: (1) maximum fruit yield, (2) maximum affordable resource cost, (3) maximum average fruit
yield per unit of resource, (4) minimum resource input per unit fruit yield, and (5) expected economic
return. While approaches (1) and (2) do not explicitly take both objectives into account, approaches (3)

and (4), which specifically acknowledge both objectives, are likely to select a control strategy near the
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middle of the Pareto set. Approach (5) would require a more sophisticated economic analysis that goes

beyond determining energy costs of the greenhouse during a crop cycle.

3.8 Discussion

Although these results are encouraging, additional refinement of the microclimate and plant models is
necessary. Once compared with results reported by Vanthoor, it is clear that there are some drawbacks
with the model implementation in these early results: the crop yield is inadequate for the weather and the
greenhouse configuration used (which included roof and side ventilation, cooling pads and boiler
heating). Since this type of greenhouse configuration provides excellent climate control that ensures the
tomato crop can grow in near-optimal conditions, very high crop yields were expected, but not attained in
this case. Additionally, such a greenhouse configuration would be very costly to implement and would
require a proportionally large return on investment to be worthwhile. In contrast, according to Vanthoor’s
results, a simple “Parral”’-type greenhouse, which only includes manual ventilation and whitewash, could
provide more than double the yield of a “high resource cost” type solution depicted in Figure 3.4 [4]. To
address this, the greenhouse crop yield model was revisited, and improvements in the model resulted in
increased crop yield thanks to increased canopy PAR absorption which allowed us to better validate the
results. In addition, various performance measures were proposed and used in this thesis to narrow down
solutions from a large pool of candidates, as the process of control strategy selection described earlier is

still relatively vague.

First, while it is possible to find a very good solution that contains desirable trade-offs between
operational costs and yield, it is important to consider the effect of any perturbations in the decision space
of the solution. For example, it is possible that during the deployment of a candidate control strategy, the
greenhouse system is unable to strictly enforce each of the parameters inside the chromosome. This can
lead to a variety of undesirable effects; these range from a considerable reduction in fitness to a solution
becoming financially unviable (by having a negative net financial result, or NFR, covered in Section 7.2).

One of the earlier proposals to measure robustness in evolutionary algorithms can be seen in [35], which
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involves obtaining the effective fitness of an individual by calculating the mean with respect to its
neighboring individuals. Figure 3.5 shows the effect of determining mean fitness around the

neighborhood of a Pareto-optimal set of solutions.
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Figure 3.5. The image on the left portrays the effect of changing x in a single-objective problem. The image on the right shows
the effect of changing x1, x2 and x3 in a two-objective problem. [35]

The robustness of the evolutionary process is examined next. Multiple independent NSGA-II runs were
performed and the trends of the Pareto-optimal set over time were examined for consistency. If these runs
converge on a similar Pareto-optimal set over many generations, it will help confirm that NSGA-II is
appropriately exhausting the search space and approaching a global optimum set of solutions. To this end,
we used the normalized hypervolume of the Pareto-optimal set as a performance measure for multiple
independent runs. This performance metric can also be used as part of a procedure to compare different
types of evolved controllers to assess their feasibility (with respect to each other). These results are reported

in Section 7.3.

Finally, robustness against variations in weather conditions as well as control setpoints was examined. For
the former, in order for a solution to be of practical use to a decision maker, it must be able to perform
reasonably well with a variety of weather patterns. To achieve this, each individual in the population is
examined against multiple sets of weather data. The choice of which weather data sets are used depends

largely on the location and user preference. Results of this study are reported in Section 7.4. For the latter,
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we introduce perturbations on the evolved control setpoints and measure its negative impact on each
objective. We then summarize this impact by calculating the area of the enclosing polygon created from
the perturbations, which provides a straightforward method for sorting solutions based on their robustness

to these perturbations. Details on this approach, as well as the results are reported in Section 7.5.
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4 Evolution of a Classical Controller Using Improved Model

The contents of this chapter are partially based on our prior published work, and can be found in [36].

In the previous section, we detailed some of the major changes and their rationale in a modified version
we produced of the microclimate-crop yield model described in [4]. Despite the considerable performance
improvements, the difference between the results obtained and validated by Vanthoor and the simulated
crop yields from the modified model was unacceptably high, even though the dynamics of the two models
appeared quite similar. Thus, we proposed implementing the microclimate-crop-yield model largely as
Vanthoor presented it but making major modifications to the control strategies themselves after
consideration of Vanthoor’s published results. Due to the modular nature of Vanthoor’s combined model,
we were able to leave out extraneous elements that need not be included in the configurations of a
greenhouse we chose to simulate. While this approach is still significantly more computationally
expensive than our model reported in Chapter 3, these configurations are much more amenable to
optimization through evolutionary computation, as the stiffness of their underlying differential equations

does not have a large effect on the runtime of the ODE solver.

In this section we show first our attempt at replicating the behavior of a classical controller designed for
tomato crops to validate the agreement of our revised model with earlier published work. Second, we use
NSGA-II to evolve microclimate control setpoints based on an earlier model-based greenhouse design

method, which includes an economic model driven by the microclimate-crop yield model.

4.1 Combined Model Overview
All the parameters required to describe the characteristics of the greenhouse design and climate control,
including the economic parameters associated with them, were obtained from Vanthoor’s greenhouse case

study in Almeria, Spain [4].

4.1.1 Microclimate-Crop Yield Model
The microclimate-crop yield model consists of a mechanistic model that describes mass and energy flows

among the crop, greenhouse compartments, surrounding greenhouse construction elements and the
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outside weather, inducing changes over time in temperature, CO, concentration, plant weight and vapor
pressure. These flows are defined as a set of differential equations, which allows the use of ordinary
differential equation solvers. The combined model state variables and their respective differential

equations were implemented as described by Vanthoor, with minor model simplifications.

The state variables of the tomato crop yield model represent the accumulation of carbohydrates in the
plant from photosynthesis and how they are distributed to fruits, leaves, stems, and roots. Other essential
plant processes, such as maintenance and growth respiration, plant transpiration and fruit set, are modeled
as well. Irrigation and fertigation are assumed to be non-limiting and their cost is included in the
economic model. The final tomato crop yield is obtained by accumulating the amount of dry matter that is

harvested in real time after fruit set begins, and then converting it to fresh weight.

4.1.2  Economic Model
The economic model’s primary goal is to calculate the annual net financial result. Vanthoor defines the
net financial result as:

t=ty

Qnrr (tf) = —QFixea t+ f QCropYield— QVar dt (4.1)

t=t0

where Qcropyield (Exm2xyear™) is the value of the tomato crop, Qvar (Exm2xyear™") consists of the variable
costs (costs associated with the crop, resources used and labor), and Qrixed (Exm™xyear™) represents the
cost of all tangible assets that do not depend on crop growth. For consistency and ease of comparison,

euros (€) will be used as the currency for this (and subsequent) chapters.

Since Qvar and Qcropyicia both depend on state variables that change over time, they are also treated as state
variables themselves in the combined model. Market price fluctuations and tomato crop quality were not
considered, and a mean tomato price is assigned to each greenhouse design instead based on the climate

control techniques available and market prices observed by Vanthoor during the entire growing season.
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4.1.3  Greenhouse Design and Control

Ten greenhouse designs were evaluated in the economic model study by Vanthoor in [4]. A classical

control strategy was used, which supports a combination of static temperature and relative humidity

setpoints and a dynamic CO; setpoint. The CO- setpoint increases linearly with outside global radiation

and decreases linearly with respect to the current roof and side ventilation opening.

The available climate management techniques included roof and side ventilation, a retractable thermal

screen, whitewash, indirect air heating, boiler heating, a fogging system, and a CO, enrichment system.

Based on the layout of the greenhouse designs described by Vanthoor, the thermal screen is assumed to be

positioned between the greenhouse air compartment and top compartment. The setpoint is disabled if its

associated greenhouse construction element is not included in the design. For example, the dynamic CO»

setpoint requires a CO» enrichment system, otherwise it will remain unused. All the greenhouse designs

that were simulated in this chapter assume that the greenhouse structure is covered in a single

polyethylene (PE) layer which provides a global transmission of 57% (54% with a thermal screen

deployed), with a rectangular shape of 200 x 50 meters, resulting in a floor area of 10000 m?. Whitewash

applications vary depending on the time of year and can be either result in a 25% or 50% decrease of the

global transmission (these values were decreased further by 50% if a fogging system was present). A

summary of the important values associated with the greenhouse design elements is in Table 4.1, and

further details can be found in [4].

Table 4.1. Capacities for the major greenhouse design elements associated with active climate management.

heating system

Parameter Parameter Unit Value
Description Name/Symbol
Capacity of the CO, Drxicon mg/s 1.39x10*
enrichment system
Capacity of the fogging Droyq kg/s 1.39
system
Capacity of the indirect Capgiow Megawatts (MW) 0.50
air heating system
Capacity of the boiler Capgoil Megawatts (MW) 1.16
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4.2 Model Validation Results

Vanthoor conducted a study in which ten different types of greenhouse designs were simulated, with the
goal of finding the design with the best net financial result. These results were provided for one growing
season (2006-2007) and show a variety of useful outputs, such as the crop yield, crop economic return,
fixed costs, and variable costs. To help validate our model implementation, these results were used to

compare against ours.

Due to the limited availability of the weather data used by Vanthoor in his studies, we used software to
estimate weather data based on a given location and time of year (with additional details available on
Section 4.3.2). The average outdoor climate values in Table 4.2 show that there are some discrepancies
between the original and estimated climatic input values. Most notably, the estimated temperature mean is
significantly lower, while having greater extremes. However, the average global radiation, relative
humidity and wind velocity values are more similar, of which global radiation is particularly important

because it strongly affects both microclimate and photosynthetic rate.

Table 4.2. Average outdoor climate values provided by a) Vanthoor [4], compared with b) the estimated weather for the same
site used in this thesis.

Period Towr  Tow Tout Global RH  Vyind
<5% >95% radiation
(°C) (°C)  (°C)  (MJIxm”xday”) (%) (m/s)

a) | 2006-2007 17.7 9.1 27.4 16.9 69.7 2.9
2007-2008 17.8 10.2 27.7 17.1 67.7 3.3
2008-2009 17.2 83  28.1 17.2 679 33

b) | 2006-2007 14.4 3.7 294 16.4 584 2.6
2007-2008 155 53 294 16.9 589 2.7
2008-2009 15.8 49 315 17.7 56.7 2.8

Table 4.3 contains a summary of our economic model output compared with the original simulated
output. The outputs consist of tomato crop yield (kgxm?), crop value (€xm?xyear™), variable costs (VC,
€xm?xyear™!) and net financial result (NFR, €xmxyear) of ten greenhouse designs. Parral (P) is a type

of “low-tech” greenhouse with only roof and side ventilation. The greenhouse construction elements used
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for the different designs are as follows: a whitewash application (W), a CO, enrichment system (C), a
fogging system (F), an indirect air heating system (H_), and a boiler heating system (H). Fixed costs are
not shown, as they are identical for both cases. The main sources of discrepancy in the variable costs
come from CO- utilization being overestimated and water costs being underestimated. The CO,
enrichment system was treated as an on—off controller, which, combined with the controller update
interval of five minutes, resulted in excessive CO» utilization. This can be remedied by using a smaller
update interval for controlling the CO, enrichment system. Insufficient plant transpiration is the cause of
low water costs, as this plant process determines the amount of water that is used for irrigation. We used a
mean tomato price for the entire growing season while Vanthoor used a mean weekly tomato price, thus
conversions from crop yield to crop value will differ. Despite these discrepancies and the differences in
the estimated weather, Figure 4.1 shows the crop yield’s response to increasing technology is similar.
Ideally, matching historical weather data should be used for more accurate comparison, but such data

were not available.

Table 4.3. Simulation comparison results between a) Vanthoor [25], compared with b) our simulated results for the 2006 - 2007
season.

a) P /4 wC WF WFC WH WH  WHC WHF WHFC
Yield | 21.88 2399 25.78 2645 28.15 27.71 2835 31.89 3134 35.03
Value | 977 11.01 11.86 1233 13.15 13.65 14.89 17.22 1642 1847
yvc|1659 682 782 7.17 825 931 888 10.18 928 10.65
NFR | -025 -031 -0.84 0.15 -049 -092 -094 -0.29 -032 -0.03
b)
Yield | 22.42 2424 2525 2523 2644 29.86 33.57 36.09 3527 37.79
Value | 928 10.82 11.75 11.03 12.06 15.03 17.85 18.85 17.76 19.03
VC | 638 662 78 676 8.9 1046 9.32 10.68 952 10.98
NFR | -0.53 -0.29 -1.02 -0.74 -2.24 -0.69 158 084 0.78 0.19
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Figure 4.1. Vanthoor predicted tomato yield vs our predicted yield as a function of greenhouse technology level.
4.3  Greenhouse Simulation and Evolution Setup
4.3.1 Greenhouse Design
Out of the ten available designs, we chose the greenhouse design with the most climate management
techniques possible (i.e., “highest tech™). This provides us with the highest number of setpoints to evolve,

and therefore maximizes the search space for optimizing the originally published control strategy.

The microclimate-crop model is implemented in C++, combined with the Open BEAGLE framework for
evolutionary computation [37] that supports NSGA-II, modified to allow parallelization using the
OpenMP API [38]. To solve the differential equations that govern the microclimate-crop model, we used

a library that supports an adaptive step-size, fourth-order Runge-Kutta method [39].

4.3.2  Outdoor Climate Data

Because Vanthoor did not make available the weather data used in his research, we used a meteorological
service [40] that uses weather prediction models to approximate the climate data for a specified date and
locale—namely, Almeria, Spain, the location Vanthoor used in his thesis to evaluate his economic model.
The latitude and longitude coordinates and height above sea level were used as inputs to obtain hourly

climate data for the same time periods in 2006 — 2009. Outdoor CO; levels were obtained by interpolating
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monthly global CO, measurements provided by the National Oceanic & Atmospheric Administration

[41]. The average values of the output provided by the estimated weather is summarized in Table 4.2.

4.3.3 Control Strategy Implementation

Some assumptions were necessary for the controller implementation. Unless otherwise specified, all
actuators operate on an on-off basis, including roof and side ventilation. First, the controller has an update
interval of five minutes. Second, the boiler valve output is determined by a PID controller, with gain
parameters (not shown) evolved ahead of time using NSGA-II, to match the fuel consumption costs
reported by Vanthoor. Third, the thermal screen is retractable in two stages. Fourth, the fogging system
operates for a maximum of 120 seconds in any five-minute interval. This is based on practice [42] to
avoid wetting the leaves and potentially damaging the plants due to the salt content in the fogging

system’s water reservoir'.

4.3.4 NSGA-II Initialization

Evolution parameters can be seen in Table 4.4. The parameters were pragmatically chosen based on the
computing resources available and the size of the chromosome. Each simulation was run on a computer
with two 2.4Ghz 14-core Intel Xeon E5-2680v4 processors, for a maximum of 28 cores. Since the
simulation is parallelized by assigning one individual to each core, the population size is set to multiples
of 28 to minimize downtime from unused cores. The number of generations was determined based on the

approximate amount that can be completed in 96 hours.

Table 4.4. NSGA-II parameters used for this study.

Parameter Value
Population size 28 -84
Generations 360 - 1000

Two-point crossover probability 0.3
Uniform mutation probability 0.04

! In some cases, we may show examples of evolved control strategies that assume that the fogging system can
operate without any limitations (i.e., up to 5 minutes at a time). Such cases are only used for easier interpretation of
results and will be labeled accordingly.
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4.3.5 Chromosome Representation

The chromosome consists of values stored in an integer vector that are converted to floating point values
when used in the model. Before using a value from the chromosome, the integer value is converted to a
floating-point number using the specified range and step size. This makes the search process more
efficient by eliminating differences that are not significant in practice. Since the goal is to optimize
greenhouse control setpoints, the chromosome simply consists of a combination of static setpoint values
and the thresholds on climatic variables used to calculate the dynamic CO; setpoint. Tairvenion defines the
greenhouse air temperature above which roof and side ventilation is always open. Similarly, Taivenofr
defines the greenhouse air temperature below which roof and side ventilation is always closed. RHairventon
is the greenhouse air relative humidity threshold above which ventilation is turned on. COxairvenion 1S the
greenhouse air CO concentration below which ventilation is turned on (to replenish the greenhouse air
CO; concentration back to ambient levels). Tairoiion 1S the greenhouse air temperature below which the
boiler heating system is turned on. Tourhseron 1S the outside air temperature below which the thermal
screen is deployed. The dynamic CO; setpoint is a function of: COxaireximax, Which determines the upper
bound for the CO; setpoint, CO2airexivin, Which determines the lower bound of the CO, setpoint and
Iiobmax, Which determines the global radiation threshold above which the CO; setpoint reaches its upper
bound. Below that, the setpoint decreases linearly towards its lower bound with global radiation. The

chromosome with its range of values and desired resolution can be seen in Table 4.5.

Table 4.5. Chromosome representation. Values in this range are stored as integers after multiplication with an appropriate

factor.
Parameter Range Step Size
T airventon (OC) [10, 30] 0.1
T airventotr (°C) [10, 30] 0.1
RHaAirventon [0.1, 1] 0.01
CO2Airventon (ppm) [100, 500] 0.1
T airBoiton (°C) [10, 30] 0.1

Toutthseron (°C) [10, 30] 0.1
COzairExivax (ppm)  [500, 1000] 0.1
COnairexemin (ppm)  [100, 500] 0.1
IGiobMax (Wxm2)  [200, 1000] 0.1
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4.3.6  Fitness Function

The fitness function consists of the economic model’s output as described in Eq. (5.1), divided into two
objectives: the economic value of the crop yield and the variable costs. We use the negative of the crop
value so that both objectives are treated as minimization problems. We use three consecutive growing
seasons based on the estimated weather data in the growing periods summarized in Table 4.6, with a pair
of objective values generated for each season. To determine the final values for each objective, we choose

the worst-case objective pair of all three (i.e., the year that yields the worst net financial result).

Table 4.6. Greenhouse simulation parameters used for evolving setpoints in Almeria, Spain case study. “WHFC” denotes the use
of whitewash (W), a boiler heating system (H), a fogging system (F) and a CO: enrichment system (C).

Parameter Value

Growing periods | August 1, 2006 — July 1% 2007
August 1%, 2007 — July 1%, 2008
August 1%, 2008 — July 1* 2009

Simulation Length | 334 days

Coordinates | 36°48°N, 2°43°W

Height above sea level | 151 meters

Greenhouse design | WHFC

4.3.7 Post-Pareto Front Processing

Once a satisfactory Pareto front is obtained, the fitness of each individual in the population is recalculated
using climate data from a new weather season to test the efficacy of evolved solutions against “unknown”
weather (sometimes called a validation step). The population is also sorted based on the net financial
result, which allows us to easily prune solutions that either perform worse than the original setpoints or

otherwise fall below an acceptable threshold for net financial result.

4.4 Pareto Front, Validation Step and Sorting

4.4.1 Pareto Front

The Pareto front is shown in Figure 4.2, and it is compared with the original setpoints based on a classical
control strategy by Vanthoor [4]. Although not many solutions dominate the original setpoints, the

original is clearly not Pareto-optimal. Optimizing with a larger population size of 84 was beneficial
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despite the added computational cost per generation, as it contained a better distribution of non-dominated

solutions with the same simulation time (96 hours).
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Figure 4.2. Pareto front consisting of the evolved control setpoints compared against the original control setpoints. The worst-
case net financial result of the original setpoint and two evolved setpoints is shown.

4.4.2 Validation Step

To verify the efficacy of the evolved solutions, we test the output of the economic model when using a

new season of estimated weather data from the same locale (2009-2010). The results for all four growing

seasons are summarized in Table 4.7 and show that the evolved setpoints performed reasonably well with

“unknown” weather from the same locale.
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Table 4.7. Economic model output (€ xm~ xyear™), comparing the original setpoints vs a “low-cost” solution and a “high-value”’
solution obtained from the Pareto front in Fig. 4. Net financial results (NFR) for all four years are added up.

Low High

Original Cost Value
Period | Crop Var. NFR | Crop Var. NFR |Crop Var. NFR

Value Costs Value Costs Value Costs
2006- | 19.03 1098 0.19 |17.29 8.65 0.79 | 1939 10.88 0.66
2007
2007- | 20.69 1141 144 | 1872 9.1 176 |21.10 11.42 1.83
2008
2008- | 17.95 1097 -0.88 | 16.20 8.62 -0.27 | 1829 10.93 -0.49
2009
2009- | 18.90 1096 0.09 |17.23 8.76 0.62 |19.29 1095 0.49
2010
Total 0.85 291 2.49

4.43 Sorting Results

Table 4.8 shows a partial list of the population after it is sorted by the net financial result. The larger
population size was beneficial, as it was able to find solutions with a superior net financial result with
greater frequency. The original setpoints yielded a worst-year NFR of -0.88, so most of these results are

superior—all are superior for population size 84, which is clearly preferable.

Table 4.8. Worst-year net financial result (€xm~ xyear) of the nine best evolved solutions (in terms of NFR) in optimization
runs with different population sizes.

NFR
Pop. Size =84 Pop. Size =28
-0.28 -0.36
-0.30 -0.37
-0.31 -0.42
-0.32 -0.62
-0.32 -0.67
-0.32 -0.75
-0.32 -0.78
-0.34 -1.00
-0.34 -1.18
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Table 4.9. Original setpoints compared with setpoints of two evolved solutions: a “low-cost” solution and a “high-yield”
solution.

Parameter Original Low-Cost High Yield

TAirVentOn (OC) 23 22.5 22.5
TAirVentOff (OC) 20 26 24.6
RHairiventioff 0.90 0.70 0.82
COaair vent off (ppm) 200 171.6 164.3
Tairﬁboilfon (OC) 16 10 15.7
Tout Thser on (°C) 18 16.3 16.7
COnair Extvax (ppm) 850 508.7 585.8
COz4ir Extmin (ppm) 365 266.4 112.6
IGiobMax (Wxm™) 500 875.8 206.2

4.4.4 Decision Making

Since the worst-case measurements for the net financial result were all negative, these could all be
considered “unviable” solutions. However, these evolved setpoints still outperform the original setpoints,
and depending on the planning horizon, the grower can consider other seasons that have a positive net
financial result and assess whether the risk is worthwhile by considering the net financial result over

multiple seasons.
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Figure 4.3. High-yield solution control signals over a 24-hour period.
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Figure 4.4. High-yield solution microclimate over a 24-hour period. T _Out denotes the outside air temperature, T Air denotes
the greenhouse air temperature, CO2_Air denotes the CO:2 concentration of the greenhouse air and C_Ref denotes the current
value of the dynamic CO: setpoint.
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Figure 4.5. Low-cost solution control signals over a 24-hour period.
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Figure 4.6. Low-cost solution microclimate over a 24-hour period. T Out denotes the outside air temperature, T Air denotes the
greenhouse air temperature, CO2_Air denotes the CO2 concentration of the greenhouse air and C_Ref denotes the current value
of the dynamic CO: setpoint.

4.5 Discussion

In this chapter we showed that multi-objective evolutionary algorithms like NSGA-II can be used to aid in
the design stages of greenhouse construction by allowing optimization of the control setpoints to enter
into the evaluation of the various optional technologies to be deployed. In addition, these setpoints can be
evolved between growing seasons as new data become available and as input costs change. We found
evolved control setpoints that outperform the original setpoints in two objectives: maximizing the
economic value of the crop yield and minimizing the variable costs, even when using a new set of
weather data that was not used during the evolutionary optimization process. Using estimated weather
data as input to the microclimate-crop yield model produced outputs that were mostly similar to those
published in Vanthoor’s study, with some exceptions. Historical weather data should ideally be used for
more accurate estimates of the net financial result, but the estimated weather data were sufficient for
validating the crop yield trends with respect to increasing technology levels, thus the evolved setpoints
still provided useful information on how to improve the net financial result when considering the

tradeoffs between the two conflicting objectives. For purposes of this chapter, the search space during the
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evolution process was limited to 9 integer variables that define the setpoints for a fixed control strategy,
but later chapters will define more complex control strategies to evolve, as well as containing metrics to

evaluate their performance vis-a-vis other control strategies.
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5 Using Multi-objective Optimization to Evolve More Sophisticated Controllers

The contents of this chapter are partially based on our prior published work, and can be found in [43].

The previous chapter covered the use of evolutionary computation to optimize the setpoints of a fixed
greenhouse control strategy. Although the results show that we can evolve setpoints that dominate the
original values that were based on expert knowledge, it assumes a rigid control strategy where the only
changes possible are in the values of the setpoints themselves. This was done to limit the search space
during evolution and thus provide faster convergence towards a Pareto-optimal front, but this leaves open
the possibility of testing additional incremental changes in complexity to seek improvements in
performance. In this chapter we propose a simple change to improve the sophistication of an existing
control strategy—allowing it to adjust setpoints based on the time of day. In addition, we explore and
discuss notable features present in the evolved controllers and propose a performance metric for
comparing different evolved controller designs. NSGA-II and model implementation details remain the

same as used in Chapter 4 unless otherwise specified.

5.1 Problem Formulation

The economic model incorporates the fixed costs of greenhouse construction elements, the variable costs
associated with growing the crop and the value of the crop itself. Based on [4], the net financial result
(NFR) is defined as:

t=tf

Qunrr(tr) = —Qrixea + f Qcropyietd— Qvar dt (5.1)

tzto

where Qcropvield (Exm?xyear™) is the value of the tomato crop, Qvar (Exm™2xyear) consists of the variable
costs (costs associated with the crop, resources used and labor), and Qrixed (Exm™xyear™!) represents the

cost of all tangible assets that do not depend on crop growth.

44



The fitness function consists of the economic model’s output as described in Eq. (5.1), divided into two
objectives: the economic value of the crop yield and the variable costs, fi(x) and f>(x), respectively. We
use the negative of the crop value so that both objectives are treated as minimization problems, subject to
a penalty function for solutions that have a net financial result (NFR) that is inferior to the NFR of the
original setpoints used in the classical control strategy. In other words, solutions will not be penalized if

NFR(x) > NFRoriginal, Where NFRoriginat 1 the worst-case net financial result of the original setpoints.

In order to be able to compare with the original Vanthoor data, we evaluate control strategies over three
consecutive growing seasons, based on example estimated weather data, which results in a pair of
objective values being generated for each season. To determine the final values for each objective, we
choose the worst-case objective pair of all three (i.e., the year that yields the worst net financial result).

The optimization problem is then defined as follows:

min(fl(x),fz(x)) (5.2)
s.t. xe€X

where fi(x) = -Qcropyicld and f>(x) = Qvar as defined in (5.1). Although the optimization problem is

unconstrained, solutions with inferior NFR will be penalized according to the following penalty function:

|NFR0riginal B NFR(X)|

P(x) =
|NFR0riginal|

(5.3)

Using (5.3) as a scaling factor, the new values for the objectives are fi(x) = f1(x)/P(x) and f>(x) = f(x)
xP(x), respectively. Since f;(x) is minimizing the negative of the crop value, P(x) must be applied as a

division operation to penalize that objective.

Since the goal is to optimize greenhouse control setpoints, the chromosome simply consists of a
combination of static setpoint values and the thresholds on climatic variables used to calculate the
dynamic CO; setpoint. Tairvenion defines the greenhouse air temperature above which roof and side

ventilation is always open. Similarly, Tairvenorr defines the greenhouse air temperature below which roof
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and side ventilation is always closed. RHairvenion is the greenhouse air relative humidity threshold above
which the ventilation is turned on. COaairvenion 18 the greenhouse air CO; concentration below which the
ventilation is turned on. Taimsoiion 1S the greenhouse air temperature below which the boiler heating system
is turned on. Tourrnseron 18 the outside air temperature below which the thermal screen is deployed. The
dynamic CO; setpoint is a function of: COjaireximax, Which determines the upper bound for the CO,
setpoint, COxairExivin, Which determines the lower bound of the CO» setpoint, and Igiobmax, Which
determines the global radiation threshold above which the CO, setpoint reaches its upper bound. Below
that, the setpoint decreases linearly with global radiation towards its lower bound. The chromosome with

its range of values and desired resolution can be seen in Table 5.1.

Table 5.1. Chromosome representation. Values in this range are stored as integers after multiplying by an appropriate factor.

Parameter Range Step
Size
T airventon (°C) [10, 30] 0.1
Tairventosr (°C) [10, 30] 0.1
RHairventon [O 1 5 1 ] 0.01
CO24airventon (ppm) [ 1 00, 500] 0.1
TairBoilon (°C) [10, 30] 0.1
TouTnseron (°C) [10, 30] 0.1
CO2airExtMax [500, 0.1
(ppm) 1000]
CO2airExiMin [100, 500] | 0.1
(ppm)
IGiobMax (WXxm™2) | [200, 0.1
1000]

Using the controller discussed in Chapter 4 as a basis, we ask the following: if we would like to improve
this controller, would there be a considerable improvement in one or more objectives if we were to split
the control strategy in such a way as to allow different setpoints based on the time of day? This time
partitioning should, in theory, provide a greenhouse control strategy the ability to exploit weather patterns
present during key parts of the day. For example, dawn is a critical moment for optimizing plant growth
in greenhouses due to the transition from nighttime to daytime. Based on temperature setpoints used by

classical control strategies, as well as existing knowledge of optimal temperature ranges for the tomato

46



crop [4], ideal nighttime temperature is significantly lower than the ideal temperature for photosynthetic
activity. To exploit this, we should ideally have setpoints defined that can quickly and efficiently
transition between nighttime and daytime conditions, as well as having setpoints defined for other times

of day that can evolve separately. A summary of such an approach is shown below in Figure 5.1.

Evolved controller, no time partitioning

———
Parameter
Tair_vent_on (°C)
Tair_vent_orf (°C)
RHair_vent_off
CO2air_vent_off (ppm)
Tair_boil_on (°C)
Tout_thser_on (°C)
CO2zair_extmax (PPM)
CO2zair_estmin (PpmM)

Istob_max (Wxm)
——

Control Strategy

Initialization

Evolved controller, added time partitioning

Evening
Daytime
Control Strategy
Initialization
Parameter Parameter Parameter
Tair_vent_on ("C) Tair_vent_on (°C) Tair_vent_on (°C)
Tair_vent_off (°C) Tair_vent_off (°C) Tair_vent_off (°C)
RHair_vent_off RHair_vent_off RHair_vent_off
CO2zair_vent_off (PPM) CO2air_vent_oft (PPM) CO2air_vent_oft (PPM)
Tair_boil_on (°C) Tair_boil_on (°C) Tair_boil_on (°C)

Tout_Thser_on (°C) Tout_hser on (°C) Tout_hser on (°C)

COzair_extiiax (ppm)
COzair_gxtiin (PPM)
liob_max (Wxm™2)

CO2air_extviax (PpM)
CO2air_extmin (PPM)
liab_max (WXm2)

CO2air_extviax (PpM)
CO2air_extmin (PPM)
liab_max (WXm2)

Figure 5.1. Introducing time partitioning to a greenhouse control strategy.
5.2 Methodology and Results
Despite its known shortcomings, and because it is not computationally expensive for two- or three-
objective problems, we use the normalized hypervolume [44] as a performance metric for comparing
different evolved controllers, choosing a nadir point of [0, 50] based on expected worst-case values. We
apply a Mann-Whitney U test [45] with a sample size of n = 5 to determine if the time-partitioned

controller is statistically significantly higher in the hypervolume performance metric compared to a
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controller without a time-partitioning feature. Each sample consists of the resulting hypervolume of the
final population after running NSGA-II for 100 generations while starting with a randomly initialized
population. Evolved solutions were also tested by simulating a new season of estimated weather data from
the same locale. The results for all four growing seasons are summarized in Table 5.2 and show that the

evolved setpoints performed reasonably well with “unknown” weather from the same locale.

Examples of Pareto fronts from both evolved controllers are shown in Figure 5.2, and they are compared
with the performance of classical setpoints. Both evolved controllers contain solutions that dominate these
classical setpoints, and the time-partitioned controller obtained better solutions in some regions of its
Pareto front relative to the evolved controller without time partitioning. This is due to the time-partitioned
controller having a chromosome that is triple in size compared to the simpler counterpart, requiring more
function evaluations to achieve the same performance. On the other hand, we can simply take advantage
of the setpoints that the simpler controller uses to seed the time-partitioned controller, allowing us to
achieve better results without relying solely on the genetic algorithm itself (as shown in Figure 5.3). More

details are available in Section 5.4.
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Figure 5.2. Overlapped Pareto fronts consisting of the evolved control setpoints (NTP, red) and the evolved control setpoints
with time partitioning (TP, green) compared against classical control setpoints (blue).
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Figure 5.3. Example of control setpoints with time partitioning (TP, green) benefiting from seeding with evolved setpoints
without time partitioning (NTP, red). The green lower right region is no longer dominated by the “less sophisticated” control
strategy.

Table 5.3 shows a partial list of the populations of both evolved controllers after they are sorted by the net
financial result. The original setpoints yielded a worst-year NFR of -0.88; therefore, these results are
superior—a negative NFR would reflect that the greenhouse would operate at a loss for that year. In
addition, some of these solutions dominate the original setpoint (see Figure 5.2), so they are clearly

preferable.
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Table 5.2. The outputs of the economic model (€xm=xyear), comparing the original setpoints vs a “low cost” solution and a
“high value” solution obtained from the Pareto front in Fig. 2. Net financial results (NFR) for all four years are added up.

Original Low High
Cost Value
Period Crop Var. NFR Crop Var. NFR Crop Var. NFR
Value Costs Value Costs Value Costs
2006- 19.03 10.98 0.19 17.29 8.65 0.79 19.39 10.88 0.66
2007
2007- 20.69 11.41 1.44 18.72 9.11 1.76 21.10 11.42 1.83
2008
2008- 17.95 10.97 -0.88 16.20 8.62 -0.27 18.29 10.93 -0.49
2009
2009- 18.90 10.96 0.09 17.23 8.76 0.62 19.29 10.95 0.49
2010
Total 0.85 291 2.49

Table 5.3. Worst-year NFR (€xm™ xyear™) of the top eight evolved solutions (sorted by decreasing NFR), of a) the evolved
controller and b) the evolved controller with time partitioning.

Net Financial Result
a) b)
0.194 0.387
0.175 0.364
0.167 0.354
0.166 0.347
0.163 0.344
0.154 0.340
0.153 0.328
0.116 0.324

5.3 Decision Making

A grower could simply choose the top solution in a list sorted by net financial result (as seen in Table
5.3). However, by observing the tradeoffs in a Pareto front the grower has access to additional
information to make more informed decisions. For example, a grower may want to opt for solutions that
provide greater crop value (which, in this case, provide greater yield), so they can meet unusually high
demand for a crop even if the current market price does not fully compensate for the increased variable
costs. On the other hand, opting for non-dominated solutions with notably low variable costs provides the
grower with more environmentally friendly solutions that can reduce water and fossil fuel usage.

Although not shown, these variable costs may be broken down into their individual components such as
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water costs, fossil fuel costs, CO, costs and labor costs. Examples of these solutions are shown in Table

54.

Table 5.4. Original setpoints compared with setpoints of two evolved solutions: a low-cost solution and a high-yield solution.

lire St (5 min)

Figure 5.4. High-yield-solution control signals in a 24-hour period.
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Parameter Original Low-Cost High-Yield

TAirVentOn (OC) 23 22.5 22.5
T airveniofr (°C) 20 26 24.6
RHair vent_off 90 70 82
CO2air vent off (ppm) 200 171.6 164.3
Tairﬁboilion (OC) 16 10 15.7
Tout ThScr_on (OC) 18 16.3 16.7
COzair ExiMax (ppm) 850 508.7 585.8
COzAir ExtMin (ppm) 365 266.4 112.6
IGiobMax (Wxm?) 500 875.8 206.2
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Figure 5.5. High-yield-solution microclimate over an example 24-hour period. T Out is outside air temperature, T _Air is
greenhouse air temperature, CO2_Air is CO2 concentration of greenhouse air and C_Ref'is current value of the dynamic CO:

setpoint.
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Figure 5.6. Low-cost-solution control signals in a 24-hour period.
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Figure 5.7. Low-cost-solution microclimate over an example 24-hour period. T Out is outside air temperature, T_Air is
greenhouse air temperature, CO2_Air is CO: concentration of greenhouse air and C_Ref'is current value of the dynamic CO:
setpoint.
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Figure 5.8. Normalized hypervolume for the evolved, non-time-partitioned controller (red), and the evolved, time-partitioned
controller (green).

Figure 5.4 and Figure 5.5 show the control signals and greenhouse microclimate for a high-yield solution,
while Figure 5.6 and Figure 5.7 show the control signals and greenhouse microclimate for a low-yield
solution. The high-yield solution is characterized by a more aggressive CO, enrichment strategy in which
the dynamic CO; setpoint reaches its upper bound as soon as the global radiation is above 206 (in this

case). This increases the value of the crop but also increases the variable costs in the process. The low-
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cost solution has a significantly lower setpoint for turning on the boiler, Taisoilon, Which naturally reduces
fossil fuel costs. This is accompanied by a more conservative CO; enrichment setpoint caused by a much
higher value for Igiobmax, resulting in less frequent use and therefore reduced variable costs overall. Both
low-cost and high-yield solutions have a much higher value for Tairventosr, Which results in roof and side
ventilation remaining closed during hotter weather. Normally this setpoint is used to help conserve heat
by sealing the greenhouse during cold weather, but in this case the higher setpoint is used to keep the
greenhouse sealed up for longer periods of time, increasing the efficiency of CO- enrichment while
relying on the fogging system for cooling. This process of finding patterns that emerge by means of using
an optimization technique is called “innovization” [46]. Since the non-time-partitioned controller has a
much smaller feature space (9 integer values), it is relatively simple to manually “innovize” some of the
patterns present in high-yield and low-cost solutions. However, this process was not considered for the
time-partitioned controller. Automating some of the innovization process would be preferable in this case,

though it is beyond the scope of this thesis.

Since the worst-case measurements for the net financial result were all positive in Table 5.3, these could
all be considered financially viable solutions. However, even if they were negative, these evolved
setpoints can still outperform the original setpoints as long as this value is greater, and depending on the
planning horizon, the grower can consider other seasons that have a positive net financial result and
assess whether the risk is worthwhile by considering the net financial result over multiple seasons. If the
grower is obligated to pay the fixed costs for an already built greenhouse, whether or not a crop is
planted, it is still clearly advantageous to select the control setpoints that provide the best tradeoff

between the two objectives.

5.4 Performance of the Time-Partitioning Feature
The rationale for letting a controller choose setpoints based on the time of day is relatively

straightforward: ideally the control strategy should take advantage of the characteristics that correspond to
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the time of day—i.e., to evolve separate setpoints for the periods in which sunrise, midday and sunset

occur.

Figure 5.2 shows that adding this time-partitioning feature to the evolved controller improves solutions in
some regions of the Pareto front. It is trivially possible to eliminate all regions where the non-time-
partitioned controller dominated the time-partitioned controller, simply by supplying the non-time-
partitioned values to the time-partitioned controller for all the partitioned time periods. Time-partitioned
solutions dominating the non-dominated solutions were not discovered in some parts of Figure 5.2
because the expensive fitness function did not allow enough function evaluations with the triple-size
chromosome to discover those settings. Instead of adding superfluous function evaluations to reach the
same result, we took advantage of the modular nature of the time-partitioning feature: it was designed
such that, if necessary, it can behave like a controller that does not change its setpoints based on the time
of day by simply using identical sets of values for all times of day: morning, midday, and evening. An

example Pareto front that takes advantage of this property was shown in Figure 5.3.

Despite the significant increase in the search space, the time-partitioned evolved controller eventually
outperforms its counterpart based on the hypervolume performance metric, showing solutions that the
non-time-partitioned version has not produced (as seen in Figure 5.8). This improvement is also reflected
in Table 5.3, due to the presence of solutions with greater NFR compared to the other evolved controller,
and in Figure 5.2, where we can observe regions where the time-partitioning feature produces solutions
that dominate the other evolved controller. By running a Mann-Whitney’s U test, we evaluated the
statistical significance of the difference in hypervolumes that results from adding this time partitioning
feature. Results show that the two groups of hypervolume measurements differed significantly (U =0, n;

=ny =15, P<0.01, two-tailed), and the sample values are summarized in Table 5.5.

56



Table 5.5. Mann-Whitney U test results comparing groups of hypervolumes, where a) is the non-time-partitioned controller,

while b) uses time-partitioning.

Normalized Hypervolumes
a) b)
0.347626963 | 0.352650132
0.347393334 | 0.351999245
0.346688732 | 0.351094193
0.346627517 | 0.350488993
0.346103962 | 0.349433818

5.5 Discussion

We restricted our study to two objectives primarily to ease visualization, but more objectives may be
added. For example, tomato quality is a desirable characteristic that could conflict with both yield and
energy costs. Moreover, the net financial result could be added as an objective. While sorting the Pareto
front based on net financial result is a simple way to aid decision making, by not including this metric as
an additional objective, we forego one of NSGA-II’s inherent advantages, elitism. This results in
otherwise “elite” individuals (with respect to the net financial result) not being guaranteed survival to
future generations. We also limited the scope of the simulations to using estimated weather data from the
same dates and locale used in [4] (followed by an additional year). Future studies should use historical
weather data when available and examine the effects of including a larger number of growing seasons
during the evolution process as well as the efficacy of this method for different dates and locales. In
addition, other greenhouse design elements commonly used in tomato production should be included,

such as pad-and-fan cooling and supplemental lighting.

Although it is beyond the scope of this thesis, a logical extension of our proposed method is to optimize
greenhouse designs alongside their climate control setpoints. Since different greenhouse designs will have
different numbers of setpoints associated with them, an alternative multi-objective evolutionary algorithm
that supports variable length chromosomes should be used. In addition, the greenhouse setpoint
optimization problem may be replaced with a more generic control strategy optimization problem. For

example, a control strategy could be proposed in which setpoints are replaced by operating regions that
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can be evolved, similar to the concept of multi-objective compatible control [47]. Because of the
potentially staggering implications in computational time, some model reductions in the microclimate-
crop model may be necessary to make these optimization problems practical. A member of the joint
MSU-Tongji University Greenhouse Control team, Dr. Yuanping Su, has developed a control
optimization strategy using a surrogate model and is currently preparing a manuscript for publication of

this work.

We have shown in this chapter that multi-objective evolutionary algorithms like NSGA-II can be used to
aid the grower in the design stages of greenhouse construction by optimizing the control setpoints. These
setpoints can be evolved between growing seasons as new data become available and as input costs
change. We have found evolved control setpoints that outperform the original setpoints in two objectives:
(i) maximizing the economic value of the crop yield and (ii) minimizing the variable costs, even when
using a new set of weather data that was not used during the evolutionary optimization process. The non-
time-partitioned evolved controller has also been examined in more detail, showing some patterns in the
feature space that may be useful as design principles for future controller designs. In addition, evolving a
set of time-partitioned setpoints has produced non-dominated regions that are better than their
counterparts, and using their respective hypervolumes as a performance metric shows that there is a
statistically significant difference between them. Important knowledge about the optimal solutions has
also been identified and explained. Although effective for comparing two relatively simple control
strategies, additional work is needed to test the efficacy of using hypervolume as a performance metric

with more sophisticated controllers.
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6 Analyzing Genotypes of Evolved Controllers

6.1 Introduction

The goal of this chapter is to explore the behavior exhibited by the evolved versions of the control
strategies described in this thesis, discussing any notable properties displayed by these control strategies,
and finding key areas for improvement. A total of four strategies are examined, each of which was
evolved for 100 generations to obtain a population of 80 non-dominated solutions. After examining these
four, we examine key changes on the best performing controller (with respect to Pareto-optimality) when
introducing a crop value penalty for inadequate levels of relative humidity. The chapter presents in

sequence the following controllers:

Section 6.2: Evolved Vanthoor controller

Section 6.3: Evolved Vanthoor controller with setpoint partitioning based on time

Section 6.4: Evolved Vanthoor controller with partitioning based on time and fruit set occurrence
Section 6.5: Improved controller

Section 6.6: Same improved controller with crop value penalty for sub-optimal relative humidity
Controller implementation details are summarized in Table 6.1. Values that required some assumptions to
implement are denoted with an asterisk (*). More information on how greenhouse control strategies are

defined and implemented can be found in Chapters 4 and 5.
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Table 6.1. General controller implementation and ODE solver details. These values are shared among all controllers described
in this chapter unless otherwise specified.

Parameter Description Parameter Unit Range
name/symbol

Boiler heating Usoil - [0, 1]

CO; injection system Ukxico2 - [0, 1]

Fogging system Urog - [0, 0.2]*

External shading screen Ushser - [0, 1]

Semi-permanent shading Ushscrper - [0.5, 1]**

screen (whitewash)

Thermal screen Urhser - [0, 1]

Roof and side ventilation URoof, Usides Uvent - [0, 1]***

system

Controller update - Minutes 5

interval

Greenhouse climate - Seconds 10

simulation step size

(initial)

Greenhouse crop yield - Seconds 60

simulation step size

(initial)

RK4 ODE solver - - 0.01

absolute error

RK4 ODE solver - % 1

relative error

* Upper bound for Urog was assumed based on prior strategies established in literature to help reduce the
potential of burns on the crop leaves due to the salt content of the water supply [42]. This will be enforced

unless otherwise specified.

** Although modeled internally as a control variable, it is assumed that Uspscrper 1S always a whitewash
that is applied manually based on seasonal needs and the current greenhouse design. This is consistent
with Vanthoor’s description and use of this variable. Since it acts as a multiplier for the greenhouse’s

overall light transmissivity, it cannot be zero.

*#% It is assumed that both roof and side ventilation are controlled concurrently whenever ventilation is
needed to remain consistent with the description and behavior of the control strategy based on Vanthoor’s

thesis. The combined value of these window apertures will be referred to as Uvent.

60




The loci shown here are examined against only one objective (the crop yield value) for ease of
visualization. In the figures in this chapter that plot evolved setpoints and/or variables against their
corresponding crop yield values, solutions which dominate the classical Vanthoor control strategy with
default setpoints are marked in green (*). The controllers examined in this chapter are presented in order
of increasing performance unless otherwise specified, with each one consistently yielding similar Pareto-
optimal fronts when using identical NSGA-II configuration settings. Figure 6.1 contains an example of

the Pareto-optimal front that each controller type yields.
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Figure 6.1. Pareto-optimal fronts for the evolved control strategies in this chapter, with a classical strategy using default
setpoints for reference. Red circles represent the classical strategy with evolved setpoints (NTP). Green circles represent the
classical strategy with setpoint partitioning based on time (TP). Blue circles represent a similar strategy that adds setpoint
partitioning based on both time and plant development stage, but also uses sunrise and sunset calculations to transition between
nighttime and daytime strategies (TP+). Purple setpoints represent a control strategy with all the previous features, additional
control logic, additional nighttime setpoints, and PID control for fogging, heating, and ventilation systems (TP++).
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6.2 Evolved Classical Controller (No Time Partitioning)

6.2.1 Introduction

This controller is based on a classical control strategy described by Vanthoor in his thesis [4], with the
main difference being that most of the setpoints pertaining to greenhouse control are evolved. A summary
of the behavior of the control strategy is shown in Figure 6.3. Since this control strategy needs to
differentiate between daytime and nighttime to determine whether the thermal screen should be deployed,
nighttime has been defined as the absence of global radiation (i.e., Igieb = 0). The chromosome and its

range of values is given in Table 6.2.
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Figure 6.2. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also
dominate the classical Vanthoor strategy are marked in green.
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Figure 6.3. Classical control strategy example. Based on the current greenhouse air temperature, the controller will take
different actions to maintain an optimal temperature range for the crop, as influenced also by CO: concentration and relative
humidity in the greenhouse. [4]
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Table 6.2. Chromosome containing the setpoints used in the evolved classical controller. The genotype consists of 9 integer

values.

Parameter
Description

Parameter
name/symbol

Unit

Genotype
Value

Range of Real
Values

Temperature above
which ventilation
(Uyent) 1s turned on

TAirVentOn

Degrees (Celsius)

[100, 300]

[10, 30]

Temperature below
which ventilation is
turned off

TAirVentOff

Degrees (Celsius)

[100, 300]

[10, 30]

Relative humidity
above which
ventilation is turned
on

RHAirVentOn

%

[10, 100]

[10, 100]

CO; concentration
below which
ventilation is turned
on

CO24irventon

ppm

[1000, 5000]

[100, 500]

Temperature below
which the boiler
(Usoi) is turned on

T AirBoilon

Degrees (Celsius)

[100, 300]

[10, 30]

Nighttime
temperature below
which the thermal
screen (Urnser) 18
deployed

ToutThseron

Degrees (Celsius)

[100, 300]

[10, 30]

Upper bound for
dynamic CO;
setpoint*

COnairExtMax

ppm

[2000, 10000]

[200, 1000]

Lower bound for
dynamic CO;
setpoint*

COnairExtMin

ppm

[1000, 5000]

[100, 500]

Global radiation
above which the
dynamic CO;
setpoint is
maximized*

IGiobMax

W/m?

[2000, 10000]

[200, 1000]

* These variables are used for the calculation of the dynamic CO; setpoint, COzaiexion. See Eq. (6.1) for

more details.
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Figure 6.4. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open.
6.2.2  Tairventon
Figure 6.4 shows a relatively wide range of values (between 10 — 25 degrees Celsius) that still produce
non-dominated solutions. However, the temperature at which the ventilation opens unconditionally is
closely tied with its counterpart Tairveniose—in particular, Tairvenosr can override Tairvenion When the value is
large enough, creating a strategy conditionally which prevents the greenhouse from opening based on
sub-optimal levels of humidity or CO;. This is because the classical strategy normally contains a
temperature gap between Tairvenorr and Tairvenion (se€ Figure 6.3), but here, these setpoints can evolve in
such a way that the gap is eliminated. Without this gap, the greenhouse will remain sealed for longer

periods of time, allowing for CO2 injection to occur uninhibited.
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Figure 6.5. This setpoint determines the temperature below which the ventilation will always remain closed.
6.2.3  Taivenotr
The evolved values in Figure 6.5 clearly show a trend where increasing the temperature setpoint can
produce greater crop yields at the expense of increased costs. These high-temperature setpoints cause the
greenhouse to stay sealed for longer periods of time where CO; injection can continue uninterrupted,
while relying on active cooling measures (a fogging system in this case) to maintain the tomato crop
within optimal temperature ranges. Since nearly all the Pareto-optimal points are at or near 26 degrees
Celsius, it is clear that the added crop yield benefit of keeping the greenhouse closed and injecting CO»
outweighs the additional energy cost of the CO; and the cooling required. Moreover, all the solutions
which dominate the classical Vanthoor strategy are at or near 26 degrees Celsius. This makes the process
of choosing the value for Taiveniorr fairly straightforward, since the same value of 26 degrees Celsius
would be used with the notable exception of tradeoff solutions that prioritize lower variable costs (at the
expense of lower crop-yield value), but such strategies are outperformed in terms of net financial return

by the classical Vanthoor strategy.
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Figure 6.6. This setpoint determines the relative humidity above which ventilation is conditionally turned on.

6.2.4  RHairventon

This value is only used when the greenhouse air temperature is between Taivenorr and T airvenion, as shown
in Figure 6.3, and only when Tairventorr is also less than Tairvenion. We can see in Figure 6.6 that there is a
wide range of values among the non-dominated solutions. The cause for this lack of pattern is that the
setpoints Tairvenorr and Tairvenion can evolve values in some controllers on the Pareto front that are very
close to each other, or in which they are “inverted”, ultimately causing RHairvenion to become unutilized
due to the lack of the “deadband” that is normally formed between T airvenosr and T airvenion. Ordinarily, in
real-world greenhouse practice, this setpoint would be affected by checking for sub-optimal levels of
humidity, but there is clearly not enough pressure either in the crop model or in the economic model as
developed by Vanthoor to maintain optimal humidity levels. Vanthoor addressed this later by proposing
quality filters on the crop yield with the goal of describing the impact humidity has on the price and
marketability of tomatoes [4]. The effect of such a quality filter on the controller behavior is summarized

later in this chapter (see Section 6.6).
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Figure 6.7. This setpoint determines the greenhouse air CO: concentration below which ventilation is conditionally turned on.
6.2.5 COzairventon
Similar to Figure 6.6, COxairventon in Figure 6.7 contains a wide range of values among the non-dominated
solutions, and this value is similarly “deprecated” among solutions that evolve values that remove the gap
between T airventorr and Tairventon, OF invert the two. However, unlike RHairventon, the effects of CO;
concentration on the crop are described in detail in the crop model, and this setpoint is meant to be used
when the greenhouse air CO; concentration can be improved by ventilating the greenhouse with outside

air (which would be an unusual occurrence, especially when CO; injection is available).
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Figure 6.8. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating.
6.2.6  Tairpoilon
This setpoint shows a straightforward trend (in Figure 6.8) among non-dominated solutions: a higher
setpoint will increase costs while increasing the value of the crop yield. Evolved solutions do not exceed
20 degrees Celsius for the setpoint, after which those solutions are no longer non-dominated due to
excessive crop growth inhibition caused by excessive heating. Solutions which dominate the classical
Vanthoor strategy are at or near 15 — 17 degrees Celsius. The classical Vanthoor strategy uses 16 degrees

Celsius for this setpoint, suggesting that only minor adjustments were needed to achieve better results.
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Figure 6.9. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal
screen.

6.2.7  ToutThscron

As seen in Figure 6.9, most non-dominated solutions settle with this setpoint between 17 — 17.5 degrees
Celsius, so values close to the value used in the classical Vanthoor strategy (18 degrees Celsius). Since
the purpose of the thermal screen is to conserve heat during the nighttime, the ideal value for this setpoint
must strike a balance between a) keeping the plants warm enough to stay close to the ideal instantaneous
and 24-hour mean temperature ranges set by the plant growth model and b) minimizing maintenance

respiration caused by said warm temperatures.
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Figure 6.10. This variable determines the upper bound for the dynamic CO: setpoint used during CO: injection.
6.2.8  COzairExtMax
Figure 6.10 shows a wide variety of values among the non-dominated solutions. There is some clustering
near the lower and upper bounds defined for this value, which allow for low-cost and high-yield solutions,
respectively. This value is part of the calculation for the variable CO, setpoint defined by Vanthoor [4],

and is shown in Eq. (6.1) below:

COzairexton = fUgion) * 9WUyent) * (COpirgxtmax — CO2airExtmin) T CO2airExtmin (6.1)

Eq. (6.1) shows how the setpoint for opening vents to bring in atmospheric CO; is calculated, as a
function of the incident global radiation and the current positioning of the vents. Functions fand g assume
their maximum values (at 1.0) when global radiation is at the maximum value for photosynthetic yield
and the Uy is fully closed. At that point, the setpoint CO.4irexi0n assumes the value COz4irgxivax, Which
maximally inhibits the opening of the air vents (which would move the CO; concentration toward
atmospheric values). This makes sense because if global radiation is low, there is no need to supply more
CO; even if it is relatively low in the greenhouse, and if the vents are mostly closed (so g is near 1), then
supplementary CO, can be added to greater effect than opening the vents would produce, so the threshold
for opening the vents to admit CO; should be raised. Thus, the setpoint for COzairexion increases with
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higher global radiation (Igiob) and lower ventilation opening (Uvent). CO2airexemax defines the upper bound
for the setpoint (as the difference between itself and COxairexemin), and COzairexvax defines the lower
bound. Therefore, it logically follows that increasing this value will increase the value of the crop yield at
the expense of increased costs due to additional CO> injection, since raising it keeps the greenhouse

closed more of the time, requiring CO, addition in order to increase crop value.
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Figure 6.11. This variable determines the lower bound for the dynamic CO: setpoint used during CO:3 injection.

6.2.9  COzairExtMin

With some exceptions, most values in Figure 6.11 form a cluster near the lower bound, keeping it
consistently low, while COzairexivax and Igiobmax define whether the strategy is tailored towards a low-cost
or high-yield solution. Based on Eq. (6.1), this value ensures that CO; injection does not occur in
conditions where it would be wasteful to do so. Specifically, in cases where evolved values of COxaiExmin
are low enough to result in a CO; setpoint (i.e., COzairExion) that is below ambient levels, it will lead to

CO; injection being disabled.
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Figure 6.12. This variable determines how quickly f(I1op) is maximized, and subsequently contributes to how quickly the
dynamic CO: setpoint (COz4irexion) is maximized.

6.2.10 IGiobMax

Similar to COnairexeMax, there are a wide range of solutions for Igiebmax in Figure 6.12 that cluster near the
lower and upper bounds defined for this value, which also define whether the control strategy is tailored
towards a low-cost or high-yield solution: a low-cost solution would have a higher Igiobmax, and a high-
yield solution would have a low Igiobmax. Solutions that dominate the classical Vanthoor strategy use a
value for Igismax that ranges from 250 — 600 W/m? (compared to the classical Vanthoor strategy which
uses 500 W/m?), suggesting that it is generally more optimal to use a lower value for Igiobmax, causing the

dynamic CO; setpoint to be maximized with less global radiation.

6.2.11 Discussion

Overall, the solutions that dominate the classical unevolved strategy do not form a set pattern other than
being located near the “knee points” of the classical evolved strategy. This much is expected, as the
fitness values for the unevolved strategy are also located near that region (see Figure 6.1). The values for
COzairventon and RHaivenion did not form a clear pattern as they were typically not used (due to the

presence of many evolved solutions where Tairventon is less than T airvenior). Similarly, Tairventon contained a
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wide range of values that yielded non-dominated solutions without a clear pattern due to Tairventorr being
greater, a situation that results in Tairvenion being largely unused by the control logic. Increasing T airoiion
increased the value of the crop yield as expected, but also formed an interesting cut-off point right below
20 °C; increasing the temperature further did not provide any non-dominated solutions. Finally, the values
that determine the dynamic CO; setpoint show that a grower who wants to calibrate the rate of CO»
injection towards low-cost solutions should lower COxairexivax and increase Iiobmax, While the converse is
true for high-yield solutions. With some exceptions, COzaieximin remained consistently very low, which
helps minimize costs by preventing wasteful CO, injection. Based on the controller logic, CO; injection is
never actually disabled; the setpoint is simply adjusted at every time step to determine if CO, injection
occurs. Since Eq. (6.1) is reduced to COzaireximin under the worst conditions (i.e., no global radiation, Uven
> (.1), the value for COzairexmin should ideally be low enough that it would never trigger CO, injection
under these conditions. Pragmatically speaking, the values for COsaieximin Were all significantly below
atmospheric levels to avoid wasteful CO; injection (atmospheric CO; values in Almeria, Spain exceed

380ppm for the period simulated in this thesis [48]).
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6.3 Evolved Classical Controller (Added Time Partitioning)

6.3.1 Introduction
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Figure 6.13. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also
dominate the classical Vanthoor strategy are marked in green.

This controller is based on a classical control strategy described by Vanthoor in his thesis [4], with the
main differences being that most of the setpoints pertaining to greenhouse control are evolved. In
addition, two additional copies of these setpoints are generated to be used in different time periods each
day, yielding a total of three: morning (M), midday (D), and evening (E). The names of each variable or
setpoint with these types of copies will have the abbreviations for these time periods appended to them
(e.g. Tairventon becomes T airventonp for the midday copy of this setpoint). A summary of the chromosome

and its range of values is in Table 6.3.

With the addition of the three distinct daytime periods, there are now a total of four time periods

(including nighttime). The daytime periods will begin and end at fixed points as defined in Table 6.4,
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based on the number of hours that have passed by since midnight for each day. Nighttime is still defined
as the absence of global radiation for purposes of this control strategy (i.e., Igiob = 0). Since the thermal
screen is the only greenhouse design element with distinct nighttime setpoints, and the greenhouse
controller still needs to check whether boiler heating, fogging or ventilation is needed during nighttime,
the greenhouse controller will simply choose the setpoints that are needed based on the current time (e.g.,
if the current time is 22:30 and the greenhouse controller is checking whether boiler heating is necessary,

TaimoilonE, the “evening” value will be used).
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Table 6.3. Chromosome containing the setpoints used in the evolved classical controller with setpoint partitioning based on time
of day. The genotype consists of 27 integer values.

Parameter Parameter Unit Genotype Range of Real
Description name/symbol Value Values
Temperature above T Airventonm, Degrees (Celsius) [100, 300] [10, 30]
which ventilation T Airventond, T AirventonE
(Uveny) is turned on
Temperature below Tairventosim, Degrees (Celsius) [100, 300] [10, 30]
which ventilation is | Tairventos, TAirventose
turned off
Relative humldlty RHAirVentOnM, % [1 Oa 1 OO] [ 103 100]
above which RHAirVentOnD,
ventilation is turned RHAirventonE
on
CO; concentration COzairventonM, ppm [1000, 5000] [100, 500]
below which COzairventonp,
ventilation is turned COnairventonE
on
Temperature below | TaiBoilonm, Tairsoitonp, | Degrees (Celsius) [100, 300] [10, 30]
which the boiler T AirBoilonE
(Usoil) is turned on
Nighttime ToutThscronM, Degrees (Celsius) [100, 300] [10, 30]
temperature below ToutTnseronp,
which the thermal Toutrhscrone
screen (Urnser) 18
deployed
Upper bound for COzairExtvaxm, ppm [2000, 10000] [200, 1000]
dynamic CO; COzairExtMaxD,
setpoint COzairExtMaxE
Lower bound for COnairExtminm, ppm [1000, 5000] [100, 500]
dynamic CO, CO2airExtMinD,
setpoint COnairExtMinE
Global radiation IGiobMaxm, IGlobMaxD, W/m? [2000, 10000] [200, 1000]
above which the IGiobMaxE
dynamic CO;

setpoint is
maximized




Table 6.4. Different times of day as defined in the greenhouse controller logic in this section. If the greenhouse controller detects
nighttime due to lack of global radiation (i.e., Iciop = 0), either morning or evening setpoints will be used (depending on the
current time).
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Figure 6.14. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open.
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6.3.2  Tairventon

Figure 6.14 contains a relatively wide range of values (between 10 — 28 degrees Celsius, depending on the
time of day) that produce non-dominated solutions. Similar to the controller described in Section 6.2, the
temperature at which the ventilation opens unconditionally is closely tied with its counterpart, T airvencofr
(due to its ability to override Tairvenion in cases where it evolves to be greater). However, there is a bias
towards lower temperatures during daytime which was not present without the time-partitioning feature.
Many of these are overridden by Tairveniofr, but most low-cost, low-crop-yield solutions will use a very
low value for Tairvenionp to ventilate the greenhouse when solar radiation is known to be at its highest

(therefore contributing to higher greenhouse air temperatures which may require cooling).
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Figure 6.15. This setpoint determines the temperature below which the ventilation will always remain closed.
6.3.3  Taivenotr
The evolved values in Figure 6.15 clearly show a trend where increasing the temperature setpoint can
produce greater crop yields at the expense of increased cooling costs. Moreover, the addition of the time-
partitioning feature allowed for the evolved setpoints to better exploit the times of day where solar
radiation is at its peak. Values for Taivenofr corresponding to high-crop-yield solutions peak at a higher

temperature during the daytime (Taivenorp), While also peaking at lower temperatures during the evening
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(Tairventorte), helping reduce plant respiration. Lastly, evolved solutions which dominate the classical

Vanthoor strategy all prioritize higher temperatures.
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Figure 6.16. This setpoint determines the relative humidity above which ventilation is conditionally turned on.

Figure 6.16 shows that, much like with the previous controller in Section 6.2, a wide range of values work

reasonably well for both low-cost and high-crop-value control strategies. The addition of the time-

partitioning did not change this tendency, suggesting that Vanthoor’s crop yield model does not
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sufficiently penalize inadequate levels of relative humidity, since we know that, in practice, humidity
control is important: if values for RHa;: are too low, the high vapor pressure deficit (VPD) associated with
it can induce high stomatal resistance and plant water stress (PWS), while excessively high values for
RHair and low VPD may reduce growth due to low transpiration (that can lead to physiological disorders),

as well as disease if condensation occurs [49].
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Figure 6.17. This setpoint determines the greenhouse air CO: concentration below which ventilation is conditionally turned on.
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6.3.5 COzairventon

Figure 6.17 shows a wide range of values that yield both low-cost and high-crop-value solutions, although
this value ends up mostly unused (similar to RHairvenion), due to the evolved values for Tairvenor discussed
in Section 6.3.3 being greater than Tairvenion in most cases, resulting in evolved control strategies that

disable the logic that checks for this value (see Figure 6.3).
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Figure 6.18. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating.
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6.3.6  TaiBoilon

The evolved setpoints in Figure 6.18 show a similar trend to that of Taimseilon in Section 6.2.6, although
there is a clear difference in the upper bound for high-crop yield solutions depending on the time of day.
Morning setpoints are significantly lower and do not exceed 16 degrees Celsius. Daytime setpoints are
higher and reach almost 26 degrees Celsius. Evening setpoints are also higher, reaching almost 24 degrees
Celsius. These trends show that it is advantageous to change the boiler setpoint based on different times
of day (as defined in Table 6.4) if higher yields are desired. Moreover, solutions that dominate the
classical Vanthoor strategy have a significantly lower value for this setpoint during the morning and

daytime periods (nearing as low as 10 degrees Celsius).
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Figure 6.19. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal
screen.

6.3.7  ToutThscron

For simulation purposes, nighttime is defined by the absence of solar radiation (i.e. Igiob = 0) so it is
possible, though very unlikely, for this setpoint to be used during the day. The values during the morning
and evening time periods in Figure 6.19 are very similar to those discussed in Section 6.2.7. However, the
values during the midday (D) period are significantly different and predominantly random due to this

setpoint having no impact on greenhouse control unless it is nighttime.
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Figure 6.20. This variable determines the upper bound for the dynamic CO: setpoint used during CO: injection.

6.3.8

COnAirExtMax

Figure 6.20 shows the evolved values for this variable are largely similar to those discussed in Section

6.2.8. However, there is a marginal increase in the upper bound for COzajexvax during the daytime and

evening, indicating that it is advantageous to change the upper bound for the dynamic CO, setpoint

(COzairexion) based on the time of day.
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Figure 6.21. This variable determines the lower bound for the dynamic CO: setpoint used during CO: injection.

6.3.9  CO2aiExtMin

Figure 6.21 shows the evolved values for this variable are largely similar to those discussed in Section
6.2.9. However, daytime values for COxaiexivin are marginally higher for high-crop-yield solutions,
indicating that it is advantageous to change the lower bound for the dynamic CO; setpoint (CO2airExion)

based on the time of day.
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Figure 6.22. This variable determines how quickly f (Igiop) is maximized, and subsequently contributes to how quickly the
dynamic CO: setpoint is maximized.

6.3.10 IGiobMax

Figure 6.22 shows the evolved values for this variable are largely similar to those discussed in Section
6.2.10, with daytime values for I[giobmax being overall higher for high-crop-yield solutions. Since
increasing Igioomax Will cause the dynamic CO; setpoint (COzairexion) to be maximized more slowly (see
Eq. 6.1), it will reduce the benefits of CO> injection on crop yield. This can be counterproductive for

high-crop yield solutions in some cases. However, since the overall crop-yield values are higher, and the
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overall variable costs are lower (compared to the evolved classical strategy without time-partitioning),
which is more indicative of a control strategy that is producing higher crop yields through other means
(i.e., better control of optimal temperature ranges, longer periods of time where CO; injection is available

due to closed ventilation, etc.), rather than a potentially sub-optimal CO; setpoint.

6.3.11 Discussion

There is a clear advantage to introducing the time-partitioning feature to the classical controller. The
resulting Pareto-optimal front is consistently superior, particularly when taking advantage of seeding (as
seen in Figure 5.3), and the loci themselves show some interesting patterns that emerged from this
feature. The main benefit provided by time-partitioning is the ability for the greenhouse controller to
apply various methods for saving energy without sacrificing crop yield, particularly when it comes to
transitions from nighttime to daytime and vice versa. For example: the boiler setpoint, T airoiion, the
temperature below which the boiler is turned on, is much higher during the daytime period when
examining high-crop-yield solutions. This results in increased heating costs for that period, but it better
exploits the high levels of solar radiation (Igib) that are typically present during that time. Conversely,
morning and evening values are much lower, since photosynthetic activity is typically lower during these
times, and maintaining optimal temperatures during that period is not as beneficial in comparison.
Without time-partitioning, the greenhouse controller is forced to use a single setpoint that is adequate for
all times of day, thus limiting its usefulness. Some setpoints proved to be redundant with the addition of

time-partitioning (i.e., TouThScron)-

One notable limitation for this controller is that the time of day is static (see definitions for morning,
daytime, and evening in Table 6.4). This leads to evolved controllers that are unable to account for the
changes in sunrise and sunset times throughout the year, which can limit their ability to accurately
transition to daytime and nighttime strategies, respectively. Subsequent controllers in this chapter take
this into account by calculating times for sunrise and sunset as transition points for the controller. Finally,

while there are clear benefits to adding the time-partitioning feature, this is not just due to exploiting the
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presence of climate patterns that emerge on a day-to-day basis; it is clearly advantageous to evolve as
many copies of a setpoint as possible (as long as it is computationally feasible). To this end, the next
section discusses a controller that also contains setpoints and variables which are evolved separately for

two major stages of tomato crop development; namely, before and after fruit set has occurred.

6.4 Evolved Controller (Additional Features)

6.4.1 Introduction

This controller is similarly based on a classical control strategy described by Vanthoor in his thesis [4],
with the main differences being that most of the setpoints pertaining to greenhouse control are evolved. In

addition, the following features have been added:

1. Setpoint partitioning based on time of day

2. Setpoint partitioning based on fruit set occurrence

3. Nighttime period is determined by sunrise and sunset calculations

4. Adjustable time offset to determine transition point between nighttime and daytime strategies

(e.g., the thermal screen, Touthscron, 1S only used during nighttime)

Due to the added features, the figures in this section will display up to six copies of one setpoint,
depending on the time of day and whether or not fruit set has occurred. In addition, morning and evening
periods will be dynamic: 1) for the morning (M), the current time for sunrise will determine the start of
this period, and 2) for the evening (E), the current time for sunset will determine the end of this period.
The midday (D) period remains static. Figure 6.24 shows an example of how a typical 24-hour period is
partitioned using this method. If a setpoint or variable contains a copy to be used after fruit set, the
corresponding abbreviation (_fr) will be appended to the end of the name, in addition to the abbreviations
used to denote the time period (e.g. Tairvenion becomes T airvenionm_ i to denote the morning, post-fruit-set
copy of this setpoint). The time offsets (sr_offset, and ss_offset, respectively) allow the controller to

adjust the period in which a nighttime strategy is applied. A flowchart showing how these variables are
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used can be seen in Figure 6.26. Lastly, a summary of the chromosome containing these changes can be

seen in Table 6.5.
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Figure 6.23. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also
dominate the classical Vanthoor strategy are marked in green.
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Figure 6.25. Sunrise/sunset times and average outside air temperatures calculated for the Almeria, Spain location in 2006.
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Table 6.5. Chromosome containing the setpoints used in the evolved classical controller, with additional features. The total size

of the genotype consists of 58 integer values.

Parameter Parameter Unit Genotype Range of Real
Description name/symbol Value Values
Temperature above which TairventonM, T Airventonp, Degrees (Celsius) [100, 300] [10, 30]
ventilation (Uvent) 1S on Tairventonk, TAirventonMm _fr,
T AirventonD fr, T AirVentOnE fr
Temperature below which Tairventottm, TAirventoftn, Degrees (Celsius) [100, 300] [10, 30]
ventilation is off Tairventofte, T AirventofiM_fr,
TAirVentOfﬂ)ifr, TAirVentOﬁ‘Eifr
Relative humidity above RHairventonm, RHairventonp, % [10, 100] [10, 100]
which ventilation is on RHairventone, RHairventonMm fr,
RHAirVentOnDifr,
RHairventonE fr
COz concentration below CO2airventonm, CO2Airventonb, ppm [1000, 5000] [100, 500]
which ventilation is on CO2AirventOnE,
COZAirVentOnMifr,
COZAiermOnDifr,
COZAirVentOnEifr
Temperature below which T AirBoitonm, T AirBoilonD, Degrees (Celsius) [100, 300] [10, 30]
the boiler (Usoil) is on T airBoilonE, T AirBoilonM_fr,
TAirBoilOnD fr, TAirBoilOnE fr
Nighttime temperature Toutthseronm, ToutThseronD, Degrees (Celsius) [100, 300] [10, 30]
below which the thermal ToutThScronE, ToutThScronM _fr,
screen (Utnser) is deployed | Tourrhserond f, ToutThScronE fr
Upper bound for dynamic COnairExtMaxM, CO2AitExtMaxD, ppm [2000, 10000] [200, 1000]
COsz setpoint CO2aitExtMaxE,
CO2AirExtMaxM _fr,
COZAirExIMaxDifr,
COZAirExIMaxE fr
Lower bound for dynamic CO2airExtminM, CO2AirExtMinD, ppm [1000, 5000] [100, 500]
CO:z setpoint CO2AirExtMinE,
CO2AiExtMinM_fr,
CO2AiExtMinD_fr,
CO2AiExMinE_fr
Global radiation above IGiobMaxMm, IGlobMaxD, IGiobMaxE, W/m? [2000, 10000] [200, 1000]
which the dynamic CO» IGiobMaxM_fr, [GlobMaxD fr,
setpoint is maximized IGlobMaxE_fr
Amount to subtract from sr_offset, sr_offset fr Minutes [0, 30] [0, 150]
calculated sunrise time
Amount to subtract from ss_offset, ss_offset fr Minutes [0, 30] [0, 150]

calculated sunset time
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Figure 6.27. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open.
6.4.2  Tairventon
Figure 6.27 shows a relatively wide range of values, depending on the time of day and whether fruit set
has occurred (the first three graphs from left to right show solutions for before fruit set, while the last
three graphs show solutions for after fruit set has occurred). As previously discussed, the temperature at
which the ventilation opens unconditionally is closely tied with its counterpart, Taivenorr (due to its ability

to override Tairventon In cases where it evolves to be greater). However, the addition of distinct setpoints to
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be used before and after fruit set has allowed for more values to be evolved that still retain a gap between
Tairvenorrand Tairvenion. Although this allows RHairvenion and COnairvenion to have more of an impact in
greenhouse control (since they will be checked when the greenhouse air temperature falls within this gap),
these results do not suggest that those values themselves are particularly important; rather, it is indicative

of a strategy that “wants” to occasionally open greenhouse ventilation for purposes of temperature

control.
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Figure 6.28. This setpoint determines the temperature below which the ventilation will always remain closed.
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6.4.3  Tairvenotr

The values in Figure 6.28 show similar trends to those discussed in Section 6.3.3, the addition of the time-
partitioning feature allowed the evolved setpoints to better exploit the times of day where solar radiation
is at its peak. However, the way in which this strategy does so differs significantly before and after fruit
set: before, the daytime value (i.e., Tairvenior), has a higher overall value while also being lower than its
counterpart, Tairventonn. This results in the gap present in the classical Vanthoor strategy where the
greenhouse is opened conditionally (see Figure 6.3). After fruit set (i.e., Tairvenosp_and Tairvenosie ), We
can observe the same overall strategy discussed in Section 6.3.3, which prioritizes eliminating the gap
normally present between T airventorr and Tairvenion by having a value of Tairveniorr - that is greater than
Tairventon_r. Values for Tairvenorr  corresponding to high-crop yield solutions peak at a higher temperature
during the daytime (Tairventofio_ 1), While also peaking at lower temperatures during the evening
(Tairventorte_tr), helping reduce plant respiration. Lastly, evolved solutions which dominate the classical

Vanthoor strategy all prioritize higher temperatures, but only after fruit set has occurred.
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Figure 6.29. This setpoint determines the relative humidity above which ventilation is conditionally turned on.

644 RHAirVentOn

Similar to the trends discussed in Section 6.3.4, we see in Figure 6.29 that the addition of the time-

partitioning (and now distinct setpoints before and after fruit set) did not change the fact that this setpoint

has little impact. This further suggests that the crop yield model does not sufficiently penalize inadequate

levels of relative humidity, since we know that, in practice, humidity control is important [49].
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Figure 6.30. This setpoint determines the greenhouse air CO: concentration below which ventilation is conditionally turned on.

6.4.5 COZAirVentOn
Similar to the trends discussed in Section 6.3.5, the range of values among the non-dominated solutions is
fairly wide despite the addition of time partitioning (and now the distinct setpoints before and after fruit

set), suggesting that this setpoint still has little impact overall.
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Figure 6.31. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating.
6.4.6  Taioilon
The evolved setpoints in Figure 6.31 only show a similar trend to those discussed in Section 6.3.6 after
fruit set has occurred (particularly Tairsoitonp and Taireiione ). Before fruit set, there is a wide variety of
values for this setpoint that yield both low-cost and high-crop-value solutions, although the morning
values (i.e., Tairsoilonn) have a cluster of solutions that dominate the classical Vanthoor strategy at around

16 — 19 degrees Celsius. These results suggest that much of the reason for the trends discussed in Section
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6.3.6 were due to major changes that only occur after fruit set; namely, the crop-yield model’s
requirements for optimal tomato crop growth, and the outside weather. Thus, there is significant benefit to

having setpoints evolved separately for this stage of plant development.
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Figure 6.32. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal
screen.
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6.4.7  Tourthseron

Figure 6.32 shows trends that are similar to those discussed in Section 6.3.7, where the values are
predominantly random when global radiation is present due to this setpoint having no impact on
greenhouse control unless it is nighttime. Moreover, before fruit set occurs, we can clearly see that the
evolved values for this setpoint did not converge as readily towards 18 degrees Celsius (corresponding to
the classical Vanthoor strategy). However, the expected values for Tourhscron are clearly present in
Toutthscronp_fr and Touthseronk_fr, respectively. Due to how the nighttime period is defined with this
controller (i.e., beginning at sunset and ending at sunrise), the static definition for the midday time period
(i.e., after 9am), and the time of year where fruit set typically occurs, Touthscronp  Was pressured to
evolve values that are associated with nighttime deployment of the thermal screen. In other words, the
later times for sunrise typically associated with fall and winter made “proper” values for Touithscronp more

important.
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Figure 6.33. This variable determines the upper bound for the dynamic CO: setpoint used during CO: injection.

6.4.8  COspirExtMax

The evolved values shown in Figure 6.33 show trends that are largely similar to those discussed in
Section 6.3.8. However, before fruit set, there is a marginal decrease in the upper bound of the dynamic
CO; setpoint during the daytime (i.e., decreasing COzaireximaxp Which is then used in COzairexion),
indicating that there is some benefit to changing this upper bound based on both time of day and plant

development stage (in this case, to help reduce costs from CO; injection).
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Figure 6.34. This variable determines the lower bound for the dynamic CO: setpoint used during CO: injection.
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Figure 6.34 shows trends that are largely similar to those discussed in Section 6.3.9. However, daytime

values for CO2ajexivin are marginally higher for high-crop-yield solutions, particularly after fruit set.

Moreover, the evening setpoint after fruit set (i.e., COzaieximing ) heavily favors values near 260 ppm,

which is overall higher compared to its counterpart before fruit set occurs.
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Figure 6.35. This variable determines how quickly f(Igiop) is maximized, and subsequently contributes to how quickly the
dynamic CO: setpoint is maximized.

6.4.10 IGiobMax

Figure 6.35 shows trends that are largely similar to those discussed in Section 6.3.10, with some notable

exceptions. In particular, the morning value before fruit set occurs (i.e., lgiobmaxv) has a significantly

higher lower bound, suggesting that it is advantageous to have a much less aggressive CO, injection

strategy before fruit set has occurred (since increasing Igiobmax Will cause the dynamic CO; setpoint to be

maximized more slowly). In contrast, once fruit set has occurred, we can clearly see that a more
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aggressive CO» injection strategy is preferred (with Igioomaxp  having the lowest values for high-crop-
yield solutions), suggesting there is a clear benefit to a more straightforward CO, injection strategy that
aims for a high setpoint for COxairexion, rather than a middling value that is used more frequently by

keeping the greenhouse sealed for longer periods of time.
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Figure 6.36. The copies of sr_offset and ss_offset are used to subtract from the current calculated time for sunrise and sunset,
respectively.
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6.4.11 Sunrise and Sunset Offsets (sr_offset, ss_offset)

Here in Section 6.4, we have introduced sunrise and sunset calculations to more accurately determine
when the greenhouse controller should transition to daytime and nighttime strategies, respectively. In
addition, we have evolved offsets to be used for both sunrise and sunset to help the controller determine
how long before sunrise and sunset these transitions in control strategy should occur. That is, how long in
advance of sunrise the “morning” period begins is a value evolved with the other parameters of the

controller, and similarly for the sunset offset and the evening period.

Before fruit set occurs, Figure 6.36 shows there are a wide range of acceptable values for sr_offset that
yield both low-cost and high-crop-value solutions. This is mainly due to a combination of the warm
temperatures present at the start of the growing season (August), as well as the current plant development
stage (i.e., before fruit set). Normally, one would expect this offset to prioritize either a relatively “large”
or “small” value, since this would indicate that there is an advantage to prolonging or shortening the
period in which a daytime strategy is applied, respectively. However, the variety of solutions indicates
that there is little impact in this case. In contrast, sr_offset fr heavily prioritizes smaller values. In typical
cases, by October, fruit set has occurred (and thus harvesting begins). Around this time, sunrise begins to
occur later, outside air temperatures begin to drop, and the daytime periods are shorter (see Figure 6.25).
Most of the evolved values for sr_offset fr reflect strategies that try to conserve heat as much as possible
by extending the time period in which the thermal screen is used (since it is only deployed as part of the
nighttime strategy). Clearly, the benefits of doing so outweigh the reduction in photosynthetic activity due
to the thermal screen itself reducing the photosynthetically active radiation available to the plant during

early hours, as well as the reduced amount of CO> injection.

Most of the evolved values for ss_offset are 95 minutes; thus, nighttime control strategies will begin 95
minutes before the current calculated time for sunset. This is the case for both low-cost and high-crop-
yield value solutions. This suggests that, at least before fruit set occurs, it is not worth spending too much

energy on maximizing the rate of photosynthesis of the crop as sunset is approaching, even if there is
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some sunlight remaining. In the case of ss_offset fr, most values are at 150 minutes, therefore signaling
an even earlier shift to a nighttime control strategy as sunset approaches. Overall, it shows a similar trend
to that of ss_offset, except the values are larger overall due to an increased need to conserve heat by using
the thermal screen for longer periods of time during the fall and winter seasons, which coincide with the

post-fruit-set timeframe.

6.4.12 Discussion

Clearly, the features introduced in this controller yielded some improvements over its predecessor (as
seen in Figure 6.1). By introducing distinct setpoints to be used before and after fruit set, we have allowed
the controller to evolve values that are better suited for the needs of the crop in a specific development
stage and time of year. For example, the pre-fruit-set values used for the dynamic CO; setpoint (i.e.,
COzairEximaxs COnairEximin, and Igiobmax) produce a less aggressive CO; injection strategy overall compared
to the previous controllers described in this chapter. In contrast, the post-fruiting values (i.e.,
COnairExtMax_fr, CO2airExemin_fr, and Igiobmax_fr), generally produce more a more aggressive CO; injection
strategy. The pre-fruit-set values for ventilation-related setpoints (i.e., Tairvenorrand Tairvenion) do not
prioritize maintaining the greenhouse sealed as much as the prior controllers; they instead allow for the
greenhouse to be opened conditionally more often by having a gap between T airvenosr and Tairvenion (as
shown in Figure 6.3). In contrast, the post-fruiting values prioritize maintaining the greenhouse sealed for
longer periods of time. This is especially apparent in Taivenosp_f, Where the value of the crop yield
increases with higher values on this setpoint, which is typical of control strategies that use a combination
of active cooling and heating to maintain optimal temperature ranges while keeping the greenhouse sealed

(even in cases where ventilation would be a viable method of cooling the greenhouse).

It was also clearly beneficial to use sunrise and sunset times to transition between nighttime and daytime
control strategies (and vice-versa). This feature allows the length of the daytime strategy periods to
change dynamically, thus providing finer control. In addition, both sunrise and sunset times (decremented

by their respective offsets) provide a useful reference point: we know these times change daily, which
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ultimately affects multiple environmental variables (e.g., the available sunlight, the length of the day,
outside air temperature, etc.). However, this distinction between nighttime and daytime control could be
better exploited, as the only control action that occurs during nighttime is whether the thermal screen

(Tourthseron) is deployed or not.

Some evolved setpoints, such as RHairventon and COxairventon, had little impact on the performance of the
controller. In practice, we know that humidity control is important to avoid the onset of disease on the
tomato crop, and that low levels of CO, concentration in the greenhouse air would also adversely affect
the growth of the crop. Since it is unlikely that evolving these values further would yield more useful
information, subsequent controllers will use default values for these setpoints that are known to be
effective in practice, and in the case of the control strategy discussed in Section 6.6, we also introduce a

penalty for sub-optimal levels of relative humidity in the greenhouse air.

6.5 Improved Controller without Penalty for Inadequate Relative Humidity

6.5.1 Introduction

This controller uses a combination of the features from the previous controllers, and makes additional
changes based on areas where the results from the previous evolved controllers suggested there was room

for improvement:

1. If Tairventost > Tairvenion, additional logic is added to the greenhouse controller to improve the
handling of this special case (See Figure 6.38).

2. Ventilation, boiler, and fogging systems are all assumed to be PID controlled, and their respective
gain values are all evolved.

3. Tairventon, Tairvenoss, and Tairsoilon NOW contain additional copies to be used specifically during the
nighttime period.

4. Changes in the greenhouse ventilation (Uven) caused by PID control will use the mean value of

TAirVemOn and TAirVentOff-
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5. Setpoints and/or variables that were previously evolved, and subsequently found to have little
impact on either objective were either removed or had their number of copies reduced. For
example: RHairvenion and COzairvenion have been removed entirely from the chromosome and
default values found in literature are used instead, with RHaiventon = 0.9 and COxairventon = 200
ppm [4]. Setpoints like Tourhscron showed no tangible benefit from having additional copies based
on the time of day, so the number of copies has been reduced to two (i.e., one copy is used before

fruit set and one after fruit set).
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Figure 6.37. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also
dominate the classical Vanthoor strategy are marked in green.
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Figure 6.38. Simple flowchart describing the handling of the special case of Tairvenof > Tairventon.
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Table 6.6. Chromosome containing the setpoints used in this controller, with additional features. The total size of the genotype
consists of 54 integer values.

Parameter Parameter Unit Genotype Range of Real
Description name/symbol Value Values

Temperature above which TairventonN, TAirventonm, Degrees (Celsius) [100, 300] [10, 30]
ventilation (Uvent) 1S on T airventon, T Airventonk,

TairventonN_fr, TAirventonM fr,

TAirVentOnDifr, TAirVentOnEifr
Temperature below which TairventoftN, TAirventoftm, Degrees (Celsius) [100, 300] [10, 30]
ventilation is off T airventostn, T AirventofiE,

TAirVentOffer, TAirVentOﬁMifr,

T AirventoftD_fr, T AirVentOffE _fr
Temperature below which T AirBoilonN, T AirBoilonM, Degrees (Celsius) [100, 300] [10, 30]
the boiler (Usoil) is on T airBoitonD, T AirBoilonE,

T AirBoilOnN_fr, TAirBoilOnM _fr,

TAirBoilOnDifr, TAirBoi]OnEifr
Nighttime temperature Touethscron, ToutThseron_fr Degrees (Celsius) [100, 300] [10,30]
below which the thermal
screen (Urnser) is deployed
Proportional, integral and PIDgoitp, PIDgoitr, PIDgoilp, (1x10%) [10, 100] [107, 104
derivative gain values for PIDgoitp_fr, PIDBoilr fr,
boiler control PIDgoilD_fr
Proportional, integral and PIDFogp, PIDFogt, PIDFogD, (1x10%) [10, 100] [107, 104
derivative gain values for PIDrogp fr, PIDFogt fr, PIDFogD fr
fogging system control
Proportional, integral and PIDventp, PIDvent, PIDven, (1x10%) [10, 100] [107, 104
derivative gain values for PIDventp_fr, PIDvent_fr,
ventilation control PIDsoilp
Upper bound for dynamic CO2airExtMax, CO2AirExtMax_fr ppm [2000, 10000] [200, 1000]
COz setpoint
Lower bound for dynamic COnairExtMin, CO2AirExtMin_fr ppm [1000, 5000] [100, 500]
CO:; setpoint
Amount to subtract from sr_offset, sr_offset fr Minutes [0, 30] [0, 150]
calculated sunrise time
Amount to subtract from ss_offset, ss_offset fr Minutes [0, 30] [0, 150]
calculated sunset time
Global radiation above IGlobMax, IGiobMax_fr W/m? [2000, 10000] [200, 1000]

which the dynamic CO»
setpoint is maximized
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Figure 6.39. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open.
6.5.2  Tairventon
Figure 6.39 shows that, compared to the previous controllers covered in this chapter, there are two
additional copies of this setpoint to account for the nighttime period: Tairvenionn and Tairvenionn . While
Taiventon clearly has a wide range of acceptable values that produce both low-cost and high-crop-value
solutions, Tairventonn_fr prioritizes values at or near 16 degrees Celsius. This value is close to temperatures

below which a greenhouse would be heated up in practice, so immediately ventilating a greenhouse above
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such a temperature would not be ideal. However, the corresponding values of Taiveniomn fin the next

section are slightly greater and thus override Tairvenionn . However, even in cases where a copy of

Tairventon 18 overridden by Taiveniors, it still meaningfully contributes to Pareto-optimal solutions because

of its use when calculating the reference temperature for the PID-controller-operated ventilation.
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Figure 6.40. This setpoint determines the temperature below which the ventilation will always remain closed.
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6.5.3  Taivenotr

Similarly, Figure 6.40 shows there are two new copies of this setpoint: Tairveniorin and TairvenomN . OF
these two, Tairvenionn # (1.€., the nighttime, post-fruiting setpoint for Tairvenofr) 1S noteworthy due to all the
solutions being at or slightly above 18 degrees Celsius. Almost all these values are higher than
TairventonN_t+ In the previous section, creating a control strategy where the greenhouse remains
unconditionally sealed until the air temperature exceeds the current value of Tairveniomn s In addition,
values for Touthseron_fr (covered below in Section 6.5.5) are mostly centered around 17.5 degrees Celsius,
which overall shows an emphasis on maintaining nighttime greenhouse temperatures at around this range.
Finally, Tairvenormv - and Tairveniorp - both show a clear trend in which increasing the value of these
setpoints leads to increased crop yield value. This is consistent with control strategies that prioritize
keeping the greenhouse sealed at the expense of increased variable costs (from additional cooling,

heating, and CO, injection).
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Figure 6.41. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating.
6.5.4  TaimBoilon
Figure 6.41 shows that the values for this setpoint are largely random before fruit set, although the
nighttime copy, Taisoilonn, has a relatively narrow range of values (mostly between 10 — 18 degrees
Celsius). Naturally, lower temperatures are preferred during nighttime to reduce plant respiration (as long
as these temperatures are not low enough to damage the crop). After fruit set, TaiBoilonN fr, T AirBoilOnM_frs

and Taimoilonp_f all show a clear trend in which higher values for this setpoint lead to higher crop yield
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values (at the expense of higher variable costs). In the case of TairsoiionN_f, any boiler heating that occurs
because of this setpoint will be during the nighttime control strategy period, and thus very little to no
photosynthesis occurs during this time. Therefore, this setpoint contributes to the value of the crop yield
more indirectly: that is, it is reducing crop growth inhibition due to sub-optimal temperatures, rather than

helping to maximize the rate of photosynthesis during the daytime.
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Figure 6.42. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal
screen.

6.5.5  ToutThscron
Figure 6.42 shows that evolved values for Tourhscron and Tourhscron  are largely consistent with those

from previous controllers discussed in this chapter, with most values being near 18 degrees Celsius.
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Figure 6.43. PID gain parameters for boiler heating control.

6.5.6  PIDgoiler

Figure 6.43 shows that before fruit set, the gain parameters for boiler heating have a wide range of values
that yield both low-cost and high-crop-value solutions. Notably, the integral gain before fruit set
(PIDgoilert) remained consistently low, with most control strategies relying on the proportional gain
(PIDgoiterp) to provide an initial value that sufficiently heats the greenhouse air. In contrast, the integral

gain after fruit set (PIDgoiter 1) follows a clear trend where higher integral gain results in higher crop yield
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value. In other words, a high integral gain causes the boiler heating value, Ug,i, to reach its maximum

very quickly. Naturally, this will maximize the output of the boiler heating at the expense of increased

variable costs.
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Figure 6.44. PID gain parameters for fogging system control.
6.5.7  PIDrog

Similarly, Figure 6.44 shows that there are a wide range of values for the fogging system’s gain

parameters which yield both low-cost and high-crop-value solutions. Unlike the boiler and ventilation
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systems, the restrictions placed on the output of the fogging system force it to operate for limited time
periods. This translates to many combinations of PID gain parameters being sufficient to meet or exceed
that limit. If we could operate the fogging system uninterrupted for longer periods of time, the evolved
gain parameters might show clear patterns. Despite the small effect of these fogging system PID
parameters, it is well known that excessively high levels of humidity can lead to disease in the crop [49],
and salt content in the fogging system’s water reservoir can cause burns on the leaves of the crop [42].
However, since these adverse effects are not implemented in the combined microclimate-crop-yield

model, it is preferable to maintain best practices that aim to avoid these problems altogether.
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Figure 6.45. PID gain parameters for greenhouse ventilation control.
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Once again, Figure 6.45 shows that there are a wide range of values for the ventilation system’s gain

parameters which yield both low-cost and high-crop-value solutions. However, most values for PIDvent #

are on the lower end (with 10 being the lowest possible value), suggesting that at least after fruit set

occurs there is some benefit to lowering the integral gain, thus somewhat slowing down the rate at which

the greenhouse ventilation fully opens. Since most of the post-fruit-set period takes place during the



winter and spring seasons (with accompanying colder outside air temperatures), it stands to reason that

there is an advantage to controlling greenhouse ventilation openings more carefully.
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Figure 6.46. The copies of sr_offset and ss_offset are used to subtract from the current calculated time for sunrise and sunset,
respectively.

6.5.9 Sunrise and Sunset Offsets (sr_offset, ss_offset)

Figure 6.46 shows values that follow largely similar trends to those discussed in Section 6.4.11. The
offset applied to the current sunrise time (sr_offset) is largely random, while its post-fruit-set counterpart
(sr_offset fr) is heavily biased towards 0.The offset applied to the current sunset time (ss_offset) has
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many values at or near 75 minutes, while its post-fruit-set counterpart has most of its values at or near 150
minutes. Despite there being three additional setpoints with distinct nighttime values compared to
previous controllers (i.€., TairventonN, TairvenofiN, TairBoilonn), the trends shown by these offsets still reflect
an overall strategy that aims to conserve heat as much as possible by extending the time period in which

the thermal screen is used (since it is only used during nighttime).

Unlike the previous controller in Section 6.4.11, sr_offset fr and ss_offset fr show clusters of extreme
values at 85 minutes and 75 minutes, respectively. Both offsets would serve to extend the total duration of
the daytime control strategy period relative to the other non-dominated solutions. Naturally, extending the
time period in which a daytime strategy is applied will result in increased variable costs (particularly
when prioritizing crop yield value), since more active cooling and/or heating measures, as well as CO,

injection, are expected to take place to maximize the rate of photosynthesis of the crop.

-12 T T T T -12 T T T T
£ -4 % N * 14 [ .
E w * 3
i - E ]
= - * - - 16 - = * -
*3 l& - :* l& ; .
- ¥
LT . 18 ; i
= » - . u - -
:-f 11| ' E N . 20 5* ' g ﬁ
2 T " : } B * ’ :
= 2 b LI 4 2 b i il
) gl * *
¥
~ 4 LN I i I W * ¥ 4 I I *) *
500 GO0 700 &00 Q00 1000 500 A00 700 E00 Q00 1000
CO2pirExiMaxPPm) CO2pirExiMax fr{PPm)

Figure 6.47. This variable determines the upper bound for the dynamic CO: setpoint used during CO: injection.

6.5.10 COZAirExtMaX
Figure 6.47 shows that, while COxairexivax has a wide range of values with no clear pattern, COzaiExivax
clearly shows a pattern of increasing crop yield value as it also increases. This shows that the dynamic

CO; setpoint, CO2aiExion, 1S being reached many times during the post-fruit-set period and that its upper
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bound, COzairEximax_fr» has a significant impact on the crop yield value. Since most of the post-fruit-set
period takes place during the fall and winter seasons, the accompanying lower temperatures (as well as
proper evolved values for setpoints pertaining to temperature control) allow the greenhouse to remain

sealed, allowing for CO; injection to occur uninhibited.
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Figure 6.48. This variable determines the lower bound for the dynamic CO: setpoint used during CO:> injection.
6.5.11 COzairExtMin
Similar to COzairexemax in Section 6.5.10, COzairExemin in Figure 6.48 shows a wide range of values with no
clear pattern before fruit set. After fruit set occurs, the crop yield generally increases with increasing

COnairExtMin_fr-
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Figure 6.49. This variable determines how quickly f(Ig10p) is maximized, and subsequently contributes to how quickly the
dynamic CO: setpoint is maximized.

6.5.12  IGiobMax

Figure 6.49 shows that Igispmax contains a relatively wide range of values that yield both low-cost and
high-crop-value solutions, although most are within the 600 — 900 W/m? range. Even though a higher
value for Igioomax Will cause f(Igop) to be maximized more slowly (thus causing the dynamic CO, setpoint
to be maximized more slowly), one would normally expect a relatively high value of Igobmax to translate to
lower crop yield value and/or lower variable costs due to the reduction in CO; injection. However, CO»
injection does not have enough of an impact on the crop yield value before fruit set occurs, which results

in the wide range of values of Igiobmax that yield solutions with both low and high crop yield values.

After fruit set occurs, most solutions of Igiobmax i follow a trend where a decrease in this variable tends to
increase the crop yield value. This is consistent with the other evolved variables used to calculate the
dynamic CO; setpoint in this section (COzaireximax and COnaiexivin), in that changing these variables to
increase the dynamic CO; setpoint will tend to increase the value of the crop yield at the expense of

increased variable costs.
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6.5.13 Discussion

One of the main disadvantages of the previous controllers was the lack of distinct setpoints for a
nighttime strategy, resulting in situations where morning (M) and evening (E) copies of a setpoint needed
to contain values that were appropriate for both the time period it was defined for, as well as for a portion
of what would be considered nighttime for purposes of deploying the thermal screen. This is due to how
the morning and evening periods are defined (see Table 6.4) and the controller still requiring setpoints to
be defined for typical greenhouse control purposes during nighttime (e.g., using boiler heating to heat up
the greenhouse). Thus, introducing distinct nighttime copies for each setpoint where this occurred “freed
up” these setpoints to be used strictly for the time period for which they were defined, leading to overall

better results.

The most notable effect of introducing distinct nighttime setpoints (where applicable) could be observed
after fruit set, where TairventonN fr, TairventofiN_fr, T airBoitonN_fr and Tourthseron_ formed many sets of values
centered around maintaining temperatures near the Tourhscron_fr S€tpoint. In most cases, for a given value
of Tourthseron_ i, there is an accompanying pair of values of TairvenionN i+ and Tairveniosn_ g that are slightly
greater, as well as a value of Taisoilonn_# that is lower. This is consistent with the nighttime temperatures
that the classical Vanthoor strategy aims to maintain, as well as the setpoint values used to achieve these

results.

The addition of PID control to greenhouse ventilation had some benefits. In particular the post-fruit-set
integral gain (PIDvena 1) is overall lower compared to its pre-fruit-set counterpart (PIDvena), indicating
that there is some benefit to slowing down the rate at which the ventilation fully opens after fruit set
occurs. While it was not detrimental, a PID-controlled fogging system did not seem to provide a tangible
benefit, mainly due to the restrictions present to prevent the overuse that is known to cause adverse effects
in practice. In the case of boiler heating, it was always PID controlled (with gain parameters pre-
determined to approximate the fuel consumption of the classical Vanthoor strategy), thus the main change

was in allowing its gain parameters to be evolved. The pre-fruit-set integral gain (PIDgoiler) prioritized
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lower values overall, thus slowing down the rate at which the boiler heating is maximized for most
solutions. In contrast, the post-fruit-set integral gain (PIDgoin ) followed a trend where higher values for
this gain result in increased crop yield value (at the expense of increased variable costs due to the more

aggressive heating that results).

One of the disadvantages observed in previous sections was the lack of penalties on either crop growth or
crop yield value due to inadequate levels of relative humidity. This is most apparent in the evolved values
for the Tairventon and Tairvencosr setpoints. In the classical Vanthoor strategy, most of the humidity control
occurs when greenhouse air temperatures are between Tairvenion and Tairventorr, ventilating the greenhouse
when the greenhouse air is above a relative humidity threshold. However, when these values are evolved,
the gap that allows for this check to occur is typically eliminated. The next section will cover the same
control strategy discussed in this section except that, importantly, a crop value penalty for sub-optimal

levels of relative humidity is added.

6.6 Same Improved Controller with Penalty for Inadequate Relative Humidity

6.6.1 Introduction

This control strategy is identical to the one described in Section 6.5, but a penalty has been introduced for
sub-optimal levels of relative humidity in the greenhouse air. This aims to reflect the real-world valuation
of tomato crops, in which tomato growth and development, fungal contamination, and other problems are
associated with sub-optimal relative humidity. The penalty consists of two trapezoid functions [4]. The
first function determines the fraction of first-class tomatoes based on the 24-hour mean value of the vapor
pressure deficit (VPD2s) between the canopy and the greenhouse air. The second function determines the
fraction of marketable tomatoes based on the 48-hour mean value of the relative humidity (RHas) of the
greenhouse air. This only impacts the resulting crop yield value, and therefore has no effect on the
microclimate-crop yield model. However, this still induces significant changes in evolved control
strategies: if a hypothetical greenhouse controller were to fail to maintain an acceptable range for either

VPDy4 or RHas, the entire crop could end up having no monetary value. It is expected that 1) using the
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same evolved solutions as the previous section will yield sub-optimal results, and 2) evolving setpoints
once more under a modified economic model should mitigate the effects of the penalty introduced in this
section. Therefore, the main goal of this section is to observe and discuss notable changes in the overall
behavior of the evolved controller, rather than examining the change in magnitude for each objective.
Figure 6.50 contains the Pareto-optimal front that results from adding this penalty, with the classical

Vanthoor strategy also being subject to said penalty.
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Figure 6.50. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also
dominate the classical Vanthoor strategy are marked in green.
6.6.2  Taivenon and Tairventort
The addition of a crop value penalty changed the range of values considerably for both T airvenion and
Tairvenofr. In this section, these setpoints will be plotted together to show the overall change in these pairs
of values before and after introducing the crop value penalty. Due to the large number of control
strategies contained in each Pareto-optimal front, we will only examine solutions which dominate the

classical Vanthoor strategy (see Figure 6.50). In addition, since the behavior of the controller changes
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significantly depending on which of these two values are greater (i.e., whether Tairventon > Tairventost OF

Tairventofr > Tairventon), they will be marked accordingly in Figure 6.51, Figure 6.52, Figure 6.53, and

Figure 6.54.
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Figure 6.51. Evolved nighttime setpoints for Taivenon and Taiveniof: The effects of adding a crop value penalty on the resulting
evolved setpoints are examined (vight) and compared with the same setpoints without the crop value penalty (left). Red values are
cases when Tirvenion is greater than Tairvenof:

6.6.2.1 Nighttime Setpoints

Figure 6.51 shows that, with the addition of a crop value penalty, the average temperature of the nighttime
setpoints (Tairventon and Tairventorr) lowered significantly. In addition, there are significantly more instances
in which Tairvenion 1s greater than Tairvenorr (red pairs of values on the upper right). Many of these pairs of
values have relatively large temperature gaps between them which allow the control strategy to open
ventilation conditionally for purposes of humidity control. Based on the classical Vanthoor strategy, a
temperature gap of 3 degrees Celsius is typical (Tairvenion = 23, Tairveniosr = 20), and many of these evolved

pairs form similarly sized gaps, with some exceptions.

After fruit set occurs, the addition of a crop value penalty causes the average temperature of the nighttime

setpoints (Tairvenon s and Tairventofr Fr) to increase significantly. Moreover, most solutions develop
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instances in which Tairventon is greater than Taivenorr (as seen in Figure 6.51, red pairs of values on the

lower right).

Overall, the addition of a crop value penalty produced nighttime setpoints which emphasize ventilating
the greenhouse for purposes of reducing the relative humidity of the greenhouse air. Tairventon and
Tairventofr had lower average temperatures which resulted in a control strategy that would ventilate the
greenhouse quite often, especially during August where the outside air temperature is much warmer (see
Figure 6.25). After fruit set, Tairventonn_fr and Tairveniorn_ i both emphasize ventilation for purposes of
relative humidity control, although the average temperatures are higher. By the time this stage of plant
development is reached (typically around October), average outside air temperatures will have dropped
significantly, and thus ventilating the greenhouse will rapidly cool the greenhouse air to sub-optimal

temperature ranges for plant growth.
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6.6.2.2 Morning Setpoints

Figure 6.52 shows that, before fruit set, the addition of a crop value penalty increased the both the average
temperature and the occurrence of setpoints in which Tairvenormv is greater than Tairvenionm, thus resulting
in most control strategies not ventilating the greenhouse for purposes of humidity control. There clearly is
not enough of an incentive to decrease relative humidity during this time period, and the benefits of
maintaining the greenhouse closed to take advantage of CO; injection in the presence of global radiation
outweigh the crop value penalties from sub-optimal levels of relative humidity. This can be further
exacerbated when outside air temperatures are low enough during this period that using the fogging

system is mostly unnecessary for cooling down the greenhouse.

After fruit set, the addition of a crop value penalty increased the average temperature, with most control
strategies containing values in which Tairvenionm 18 greater than Tairvenorm . This results in most of the
control strategies ventilating the greenhouse often for purposes of humidity control. In addition, the
values for many pairs of Tairvenionm_ and Tairventotiv_fr mirror those of the classical Vanthoor strategy (i.e.,
Tairvenion = 23 and Tairveniosr = 20), indicating that, at least for this time period, these values are effective

for both high-crop-value and low-cost solutions.
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6.6.2.3 Midday Setpoints

Figure 6.53 shows that, before fruit set, the addition of a crop value penalty increased the average
temperatures for both Tairvenionp and Tairvenorm, With most pairs of values allowing ventilation of the
greenhouse for humidity control. Pairs of values which did not allow this kind of humidity control had
lower temperature setpoints overall, suggesting that in the absence of the ability to open the greenhouse
ventilation conditionally based on humidity levels, a lower temperature setpoint for opening the

greenhouse ventilation unconditionally can work as an alternative.

After fruit set, the addition of a crop value penalty decreased the average temperatures for both
Tairventonp_fr and Tairvenoso_. Most of these pairs of values do not allow ventilating the greenhouse for
humidity control, instead opting for opening (and closing) greenhouse ventilation unconditionally at a
relatively low setpoint of around 17 degrees Celsius. Despite the cooler outside temperatures present after
fruit set occurs, this results in some ventilation during the midday period (particularly when global
radiation is at its peak), while keeping the greenhouse sealed and its air temperature as close to 17 degrees

Celsius as possible otherwise. At a setpoint of around 17 degrees Celsius, this is slightly below the
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optimal 24-hour mean canopy temperature range for the crop, which is 18 — 22 degrees Celsius [4].
However, due to the higher average temperature setpoints during the nighttime, morning, and evening
periods (coming up in Section 6.6.2.4), the 24-hour mean canopy temperature remains at or above 18

degrees Celsius, helping prevent tomato crop growth inhibition.

I18.5 T T T T T T T T T T T T T T 16 T T T T T T T T T T T T T T T T T
PR SN On>Off ¢ 165 b o L
-19 e Off >On %~ e - o«
= el
i, 17 - — E
— e —— K 5
5 = - e —
19 EE] S E—S E
== ————— :
20 - e T —5 -18 - —=
=}
— o 7 L T NE— |
~ 205F 2 4 2 cI8s Ry ]
=T = g or = -
O Y 1 =
- — = o195 - |
S 2215 1 Il 1 Il Il 1 1 1 1 1 Il 1 Il 1 Il 1 1 1 1 E 220 1 Il 1 Il Il 1 1 1 1 1 Il 1 Il 1 Il 1 1 1 1
*5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 :;E 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
=z TairventonEs TairvVenofrE(Celsius) g TairventonEs TairvVenofrE(Celsius)
¢
] z
‘né-lﬂ 5 T T T T T T T T T T g -l6 T T T T T T T T T
—_— g
g = - .
§ 19 = 7 iy T &;[6 - —o
i VIS S S S T 217 = .
=195 - 4
193 AN 2175 - = .
- & =2
? 20 - = 18 — a -
S P S S ——] =
I - A 2185k =
205 - 4 =
— o,
— 2 .19 - eﬁ .
a1 b . = o1
! b —————— < -19.5 - : e @ .
215 1 Il 1 Il 1 1 1 1 1 1 Il Il Il 220 1 Il 1 Il 1 1 1 1 Il Il Il 1 1 1 1 1 Il Il Il
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
TairVentOnE._fr TAirVem0fE_f{Celsius) Tairventonk_fr. TArVentOfE_iH{ Celsius)

Figure 6.54. Evolved evening setpoints for Tairvemon and Tairvemof: The effects of adding a crop value penalty on the resulting
evolved setpoints are examined (vight) and compared with the same setpoints without the crop value penalty (left). Red values are
cases when T irvenion is greater than Tairvenof:

6.6.2.4 Evening Setpoints

Figure 6.54 shows that, before fruit set, the addition of a crop value penalty significantly increased the
instances in which these setpoints allowed ventilation of the greenhouse for purposes of humidity control.
Most of these setpoints allow the controller to open the greenhouse ventilation unconditionally at a lower
temperature compared to its midday counterpart (i.e., Tairvenionp and Tairveniormm) Which suggests that, in
most cases, it is beneficial to open the greenhouse ventilation more frequently once the levels of
photosynthetically active radiation and outside air temperatures begin to drop (since the costs associated
with CO; injection and managing higher canopy temperatures for maximizing photosynthesis become an

unacceptable tradeoft).
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After fruit set, the addition of a crop value penalty also significantly increased the instances in which
greenhouse ventilation occurs for purposes of humidity control. However, most of these setpoints form a
narrow temperature range that allows for this to occur, around 17 — 18 degrees Celsius. In contrast, the
values for its midday counterpart (i.e., Taivenond & and Tairveniorm ) only allow for the greenhouse
ventilation to unconditionally open and close when above and below 17 degrees Celsius, respectively, in
most cases. This suggests that, once the evening period begins during the post-fruit-set period, it is
beneficial to start reducing the frequency with which a control strategy opens the greenhouse ventilation,
albeit by a very slight amount. Based on the post-fruit-set nighttime setpoints displayed in Figure 6.51 we
can see that this culminates in an evening-to-nighttime transition during which these nighttime
temperature setpoints (i.e., TairvenonN_r and Tairveniostn_ ) increase significantly to conserve heat by
reducing overall ventilation, while still maintaining a temperature range in which ventilation can still

occur for purposes of humidity control.
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Figure 6.55. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating.

6.6.3  TaimBoilon

Figure 6.55 shows that, before fruit set, the evolved values for this setpoint did not change considerably
with the addition of a crop value penalty, with a wide range of values producing both high-crop-value and
low-cost solutions. Most notably, the midday setpoint (i.e., TaimBoilonn), has a narrower range of around 16
— 24 degrees Celsius compared to these same setpoints evolved without the crop value penalty (around 10

— 28 degrees Celsius). Due to the high average outside air temperatures present before fruit set (see Figure
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6.25), even a relatively high setpoint for the boiler was not correlated with increased crop yield value

and/or variable costs.

After fruit set, the evolved values for this setpoint show largely similar trends to those discussed in
Section 6.5.4: that is, increasing the nighttime, morning, and midday setpoints also tends to increase the
value of the crop yield (at the expense of increased variable costs), suggesting that introducing the crop

value penalty did not significantly alter the role of this setpoint overall.
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Figure 6.56. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal
screen.

6.6.4 TOutThScrOn
Figure 6.56 shows that the evolved values for Tourhscron and TouThseron + are largely consistent with those
from previous controllers discussed in this chapter, although Tourhscron contains values which are lower

on average compared to those discussed in Section 6.5.5.
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Figure 6.57. PID gain parameters for boiler heating control.
6.6.5 PIDBoiler

Figure 6.57 shows that, before fruit set, the gain parameters for boiler heating show largely similar trends,
except for the integral gain (i.e., PIDgoile1) Which contains much larger values on average compared to its
counterpart in Section 6.5.6. While the introduction of a crop value penalty did not affect the overall
“intent” behind the evolved gain parameters, this difference in the integral gain values suggest that a

wider range of values for the integral gain were acceptable when in conjunction with the evolved values
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for Tairventon and Taiveniorr discussed earlier in Section 6.6.2 (since changes in the setpoints for greenhouse
ventilation will also affect the frequency and output necessary for the boiler heating to maintain optimal

temperature ranges for the tomato crop).

After fruit set, most control strategies favor a stronger proportional response compared to its counterpart
without the crop value penalty (see Section 6.5.6). This is especially true for solutions which dominate the
classical Vanthoor strategy, with very few control strategies using a value of PIDggilerp - that is below 50.
The integral gain (i.e., PIDgoiler1 1) follows a largely similar trend even with the introduction of a crop
value penalty, indicating that increasing the rate at which the output of the boiler is maximized also

increases the value of the crop yield (at the expense of increased variable costs).
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Figure 6.58. PID gain parameters for fogging system control.
6.6.6  PIDgo,

Figure 6.58 shows that, before fruit set, the gain parameters for the fogging system show largely similar
trends to their counterparts without the crop value penalty in Section 6.5.7, with the exception of the

proportional gain (i.e., PIDrogp). Most of these proportional gain values became significantly lower with
the introduction of a crop value penalty, indicating that in many cases, a slower initial response from the

fogging system was needed as a result.
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After fruit set, both proportional and integral gain (i.e., PIDrogp fr and PIDrog #) increased overall with the

introduction of a crop value penalty; therefore, a control strategy in which the fogging system maximizes

its output very quickly is preferred.
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Figure 6.59. PID gain parameters for greenhouse ventilation control.

90 100

Figure 6.59 shows that, before fruit set, the introduction of a crop value penalty significantly increased

both proportional and integral gain parameters (i.e., PIDvene and PIDven) on average. This results in
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control strategies which maximize the greenhouse ventilation openings almost immediately, and that such
behavior is preferred now indicates that the crop value penalty introduced a need for much more frequent

ventilation for purposes of humidity control.

After fruit set, the gain values show largely similar trends, with the integral gain (i.e., PIDvena ) showing
a more narrow range of values (around 15 — 45) compared to its counterpart without the crop value
penalty in Section 6.5.8 (around 10 — 70). Similarly, it shows that most control strategies favor a slower

rate at which ventilation openings are maximized.
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Figure 6.60. The copies of sr_offset and ss_offset are used to subtract from the current calculated time for sunrise and sunset,
respectively.

6.6.8  Sunrise and Sunset Offsets (sr_offset, ss_offset)

Figure 6.60 shows that, before fruit set, most of the evolved values for sr_offset and ss_offset contain
similar trends to those discussed in Section 6.5.9, where there are a wide range of values which produce
both high-crop-yield and low-cost solutions. However, some of these values do not “settle” in the same

regions (e.g., ss_offset with the crop value penalty has a large number of values near 30 minutes, while

ss_offset without said penalty does not), suggesting that the crop value penalty’s effect on the overall
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control strategy (i.e., setpoints for Tairvenion and Tairveniotr that prioritize humidity control) required these

offsets to change to some extent to maximize their efficacy.

After fruit set, the evolved values for sr_offset fr and ss_offset fr show trends that are nearly identical to
those discussed in Section 6.5.9 even with the introduction of a crop value penalty, suggesting that the
overall strategy of reducing the time in which morning and evening setpoints are used remains efficient
for this stage of plant development. Moreover, reducing the value of ss_offset_fr to as low 95 minutes can

result in a marginal increase in crop yield (at the expense of increased variable costs).
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Figure 6.61. This variable determines the upper bound for the dynamic CO: setpoint used during CO: injection.

6.6.9  COzairExiMax

Figure 6.61 shows that, before fruit set, the evolved values for COzaireximax did not change significantly
with the addition of the crop value penalty and shows a wide range of values that produce both high-crop-
value and low-cost solutions. This trend is expected, as most of the strategies discussed in earlier sections
did not typically meet the upper bound for the CO; setpoint due to the frequency in which ventilation is
needed during this warmer period. The introduction of a crop value penalty only reinforces this trend due

to the additional ventilation that occurs for purposes of humidity control.
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After fruit set, the evolved values for COzaireximax i Show a similar trend to the one described in Section
6.5.10, where an increase in this value also tends to increase the value of the crop yield. However, this
trend is much less pronounced, and suggests that the increase in ventilation that occurred thanks to the
crop value penalty limits the ability of the greenhouse controller to find the right conditions to enable CO,
injection, as well as reaching the upper bound of the CO, setpoint defined by COnaiexemax i When CO»

injection does occur.
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Figure 6.62. This variable determines the lower bound for the dynamic CO: setpoint used during CO: injection.

6.6.10 COzairExiMin

Figure 6.62 shows that the evolved values for this variable are consistent with those of previous
controllers discussed in this chapter. After fruit set occurs, COxaireximin_- Shows a significantly less
pronounced trend of increasing as the value of the crop yield also increases, similar to COzaiExivax fr @S

described in Section 6.6.9.
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Figure 6.63. This variable determines how quickly f(Ig10p) is maximized, and subsequently contributes to how quickly the
dynamic CO: setpoint is maximized.

6.6.11 IGiobMax

Figure 6.63 shows that, before fruit set, the addition of a crop value penalty significantly reduced the
evolved values for Igobmax, With most of them being at or near 350 W/m?. This indicates that, in the
presence of increased ventilation requirements for humidity control (and subsequently, a reduction in the
frequency in which CO; injection is possible), maximizing the dynamic CO, setpoint (i.e., COzairexion) at

lower levels of global radiation is preferable.

After fruit set, the evolved values for Igiobmax - reflect nearly identical trends to those described in Section
6.5.12, where a decrease in this variable tends to increase the crop yield value (at the expense of increased

variable costs).

6.6.12 Discussion

Overall, a crop value penalty resulted in some major differences in the genotypes of the evolved control
strategies, especially after fruit set occurs. Most of these differences translated into control strategies that
prioritize opening the greenhouse ventilation conditionally based on supra-optimal levels of relative

humidity. Some time periods did not evolve setpoints that provide as much humidity control as one would
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normally expect (e.g., Tairvenionp_rand Taivenorm ), and instead rely on the other time periods to perform
more aggressive humidity control to compensate. This provides an opportunity for the greenhouse to
remain sealed more often during the midday period, thus providing more chances for CO, injection to
occur uninhibited in times where global radiation is expected to be at its peak. Other genotype values
evolved to accommodate the overall increase in ventilation required for producing Pareto-optimal

solutions (e.g., Igiobmax €volved values that are overall lower).

Based on the crop value penalty that was introduced, there were distinct changes that were observed in the
control strategies discussed in Section 6.6. Relative humidity management became a lot more important,
although the results show that evolved control strategies did not always need to check for sub-optimal
levels of relative humidity to do so: it is also possible to simply choose temperature setpoints that are low
enough that the greenhouse ventilation will open unconditionally. In addition, given the current model for
crop value penalty, there were control strategies that simply allow some of the midday periods to have
sub-optimal levels of relative humidity in exchange for a higher rate of photosynthesis (by keeping the
greenhouse sealed and injecting COy), and only doing tighter relative humidity control during the

nighttime, morning or evening periods.

6.7 Conclusions

The goal of this chapter was fulfilled, which is to explore the behavior exhibited by the evolved control
strategies described in this thesis, as well as to obtain useful information from the evolved genotypes. The
control strategies described in this section are initially based on the classical Vanthoor strategy described
in his thesis [4], with each iteration adding complexity to the controller logic itself. This iterative process
was valuable in determining the effects and overall efficacy of certain features (e.g., time-based

partitioning).

Using the classical Vanthoor strategy as reference, evolving the setpoints instead of using the default
values yielded some improvements. This much is expected, as this classical Vanthoor strategy is not

presented as an optimal strategy; rather, it is a control strategy that would be typical of the locale that was
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chosen (Almeria, Spain) that worked sufficiently well for their study involving the optimization of
greenhouse design elements, rather than greenhouse operating parameters. Without making any changes
to the controller logic itself, this essentially serves as a method to recalibrate setpoints based on historical
weather data. While this clearly has its benefits, it is also extremely computationally intensive, as it
requires around 24 hours to optimize these setpoints for 100 generations using the currently available
resources, which allows us to run 40 instances of the microclimate-crop-yield model in parallel. This
makes it impractical to use in an online setting (i.e., for optimizing setpoints in an already deployed
greenhouse). Therefore, this is better suited for greenhouse control optimization to aid the grower in early

stages of planning before committing to making significant financial investments.

Allowing for setpoints to change based on the time of day was clearly beneficial. Although ideal
conditions for the tomato crop are a well-studied subject, obtaining a greenhouse control strategy that can
efficiently reach and maintain these conditions is still extremely difficult, and is further exacerbated by
the unpredictability of the weather. By dividing the setpoints into several distinct copies based on the time
of day, we allow these setpoints to evolve into values which are better suited for these time periods.
Despite the unpredictability of the weather, we can still surmise that there are several major time periods
in which we can expect a shift in control strategy: nighttime, morning, midday, and evening. The results
in Figure 6.1 show that adding this time-partitioning feature yields superior Pareto-optimal solutions

overall compared to control strategies without that feature.

Allowing distinct setpoints based on two main stages of plant development (i.e., before and after fruit set)
provided significant benefits. Before fruit set, some of the main requirements of the tomato crop include
maintaining an acceptable level for the 24-hour mean canopy temperature and reaching the temperature
sum threshold for fruit set to occur. After fruit set, the greenhouse controller must maintain acceptable
levels for both instantaneous and 24-hour mean canopy temperatures, as well as increasing the canopy
temperature sum up to a maximum amount (after which the rate of fruit growth will be maximized).

Failure to meet these canopy temperature requirements will result in complete crop growth inhibition in
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extreme cases (by halting all carbohydrate generation from photosynthesis). Although these requirements
are similar before and after fruit set, the addition of sub-optimal instantaneous canopy temperatures as a
source of crop growth inhibition after fruit set (as well as seasonal weather differences) still create distinct

enough conditions that evolving separate values for this stage of plant development was justifiable.

Introducing sunrise and sunset calculations, as well as offsets for each of these calculations, was also
beneficial. The less complex controllers discussed in this chapter used fixed transition points between
nighttime and daytime (and vice versa) and could not account for basic weather patterns that could
normally be exploited. Ideally, these offsets should have the ability to be dynamic as well (based on
current environmental conditions or other properties of the greenhouse controller), but these offsets were
still beneficial in their current state due to allowing for control strategies to adjust the overall duration of

nighttime and daytime control strategies.

Prior to adding to the controllers the capability to evolve boiler PID gain values, the boiler would operate
under fixed, predetermined gain values in order to approximate the fuel consumption of the classical
Vanthoor strategy. When allowed to evolve, many control strategies had gain values which provided a
noticeable improvement in the boiler’s ability to maintain optimal temperature ranges for the crop, thus
improving the value of the crop yield. This naturally comes with a respective increase in variable costs
(associated with fuel consumption) but creating distinct copies of these values based on whether fruit set

has occurred or not helped to minimize the impact of this variable cost increase.

By introducing PID-controlled behavior to both ventilation and fogging systems, we observed significant
differences in the overall behavior compared to their original operating modes (i.e., fully on or fully off).
In addition, having distinct copies of these values based on whether fruit set has occurred or not allowed
for the behavior of these systems to be “customized” to better suit the current season and plant
development stage. However, since the benefits were not as substantial when compared to evolving the
boiler control’s PID gain values, future studies including both fixed and variable costs associated with

adding this PID-controlled functionality may affect its economic viability.
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It was clearly beneficial to adjust the transition points of nighttime control strategies to daytime strategies
(and vice versa) based on sunrise and sunset times. Further improvements could likely be achieved by
allowing the other transition points (i.e., morning to midday, and midday to evening) to be dynamic as
well. Lastly, much like the dynamic CO; setpoint (COaaixion) described in Eq. (6.1), other setpoints may
be improved by allowing them to change dynamically based on current environmental conditions. The
overall behavior displayed by the evolved control strategies in this chapter can be a useful starting point
to determine their development, although caution is still needed to make sure any novel control strategies

do not violate known best practices for humidity control during all stages of plant growth.
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7  Metrics for Decision Making

7.1  Introduction

The goal of this chapter is to briefly summarize various performance metrics for narrowing down the
number of control strategies that may suit the needs of a grower. Due to the multi-objective optimization
approach used in this thesis, the number of solutions available can be unwieldy and challenging to
interpret, so various methods are proposed for narrowing the choices down among a set of Pareto-optimal
solutions. In addition, we briefly discuss a method for comparing the performance of newly developed

control strategies against other ones by calculating their hypervolumes.

For purposes of this chapter, the crop value penalty described in Section 6.6 is not included in the
economic model output, since it does not affect the methodology behind the performance metrics

described in the following sections. The sections are presented as follows:
Section 7.2: Net Financial Result (NFR)

Section 7.3: Normalized Hypervolume Between Controllers

Section 7.4: Robustness Against Unknown Weather Data

Section 7.5: Robustness Against Genotype Perturbations
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Figure 7.1. Example Pareto fronts of all the control strategies described in this thesis, compared with the classical Vanthoor
strategy. All control strategies were evolved for 100 generations.

7.2 Net Financial Result (NFR)

The most straightforward method to filter out results from a Pareto front for this problem is to use a
scalarization that aggregates the results of the two objectives into a single number, net financial result
(NFR). Defined in Eq. (5.1), this consists of the sum of the fixed costs and the two objectives used for
multi-objective optimization throughout this thesis (i.e., the variable costs and crop yield value/crop yield

economic return).

Table 7.1. Economic model output for the four main greenhouse controller types described in this thesis.

Control Mean NFR Median NFR Standard Highest Lowest
Strategy Type (euros/m*xyear) Deviation NFR NFR
NTP -1.351 -1.125 0.235 -1.059 -1.948
TP -1.183 -1.162 0.324 -0.786 -1.891
TP+ -0.584 -0.424 0.5 -0.089 -1.947
TP++ 0.055 0.407 0.747 0.783 -1.853
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Based on Table 7.1, it is clear that the last control strategy (TP++) is preferable: most of the available
solutions will be profitable, and solutions with the same NFR as less complex controllers will provide
better tradeoffs between the two main objectives; that is, for a given NFR, the more complex controller

can provide higher crop value yield or lower variable costs, as seen in Figure 7.1.

There are some clear drawbacks to this method. Since the two objectives are “flattened” into a single
objective, useful information can be lost in the process. Broadly speaking, it can be beneficial to consider
whether the resulting NFR is due to control strategies producing an exceptionally high crop yield value at
the expense of increased variable costs (or, conversely, exceptionally low variable costs while sacrificing
some crop yield value). This economic model also does not consider constraints a grower might encounter
in practice. For example, minimum (or maximum) crop yield requirements for meeting current demands
are not considered, and it is assumed that any quantity/quality of crop yield is acceptable (unless the crop
value penalty in Section 6.6 is used, in which case a percentage of the crop yield will be rendered
unmarketable if relative humidity control is inadequate). All other factors that contribute to variable costs,
such as fossil fuel, CO,, water, and labor are also not limited. It would be possible to break these factors
apart and make this a many-objective optimization problem; it would also be possible to do a sensitivity
analysis of how these factors influence the crop yield value/variable cost tradeoffs. However, both are

beyond the scope of the current work.

Despite these drawbacks, a grower could circumvent them with sufficient knowledge of the available
resources to invest in a greenhouse. This way, constraints can be defined for all components that make up
the variable costs and/or crop yield value can be included in the economic model. Since much of the
information necessary to apply these constraints will be highly dependent on the location, greenhouse

design, as well as myriad other factors, a more generic approach was presented here instead.
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7.3 Normalized Hypervolume Between Controller Types
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Figure 7.2. Example of normalized hypervolumes for each evolved controller described in this thesis, calculated every
generation.

Given a theoretical ideal point and anti-ideal (or nadir) point, we can calculate the hypervolume for a
given Pareto front: for two objectives, it is the area of the two-dimensional polygon created between a
Pareto front and the nadir point. This provides a method to summarize the overall efficacy of a population
of evolved control strategies. However, this can have similar drawbacks to relying on NFR like in Section
7.2, and unlike NFR, it does not provide a value that can easily tell a decision maker whether a particular
control strategy is viable or not. That said, this can still be a valuable tool for comparing different types of
greenhouse controllers, particularly to determine whether or not a feature introduced in a novel controller
is currently outperforming (or can eventually outperform) older and/or simpler controllers. It is one means

of quantifying the differences between two Pareto fronts—i.e., comparing their hypervolumes.
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Figure 7.2 shows one instance in which each controller type in this thesis is evolved for 100 generations.
The hypervolume is computed after each generation of evolution and appears as the vertical axis. Clearly,
TP++ shows the best performance overall by this metric, and the rate at which the hypervolume increases
for each controller slows down considerably long before 100 generations are reached. Sometimes,
evolved controllers whose logic is less complex and which are known to be outperformed can still appear
to be superior initially (as seen in earlier chapters in Figure 5.8) due to all populations of control strategies
being initialized with random values. This underscores the importance of allowing each controller to
evolve for many generations, as well as having a large enough sample size to observe a statistically
significant difference in hypervolume. In Section 5.4, a Mann-Whitney’s U test showed that a sample size
of 5 with 100 generations each was sufficient to show a statistically significant difference in hypervolume

between the NTP and TP controller types.

If a novel controller is unable to produce hypervolumes that are on-par with or superior to other
controllers within 100 generations, it may indicate that it is currently unviable. This is especially true if
computational resources are limited, and significantly increasing the number of generations in which a
controller is evolved is prohibitively expensive. As an alternative to changing a seemingly unviable
controller, other NSGA-II configuration parameters, as well as other MOEAs, may be explored to obtain

better results with a similar investment in computational time.
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7.4 Robustness Against Unknown Weather Data

Table 7.2. Example of economic model output (euros xmxyear), comparing the classical Vanthoor strategy with the same
strategy with evolved setpoints. Weather data for the 2009 — 2010 season was only used to evaluate control strategies after the
optimization step was completed. The fogging system is assumed to have no restrictions in this example to illustrate how some

weather seasons can be economically unviable (due to negative NFR), but still have an overall positive result if multiple weather
seasons are considered.

Low High

Original Cost Value
Period | Crop Var. NFR | Crop Var. NFR | Crop Var. NFR

Value Costs Value Costs Value Costs
2006- 19.03 1098 0.19 | 17.29 865 0.79 | 19.39 10.88 0.66
2007
2007- 20.69 1141 144 | 1872 9.11 176 | 21.10 11.42 1.83
2008
2008- 17.95 1097 -0.88 | 16.20 8.62 -0.27 | 18.29 10.93 -0.49
2009
2009- 18.90 1096 0.09 | 17.23 876 0.62 | 19.29 1095 0.49
2010
Total 0.85 291 2.49

One approach to narrow down potential solutions is to simply test evolved control strategies against
unknown weather data. By using multiple seasons of weather data, we evolved control strategies that
adapt to more general weather patterns associated with the locale. To test the efficacy of these evolved
controllers, a new weather season was used to measure their fitness. This approach was covered earlier in
Chapter 5, and an example of the outputs of said approach is in Table 7.2. Naturally, control strategies
that provide the highest NFR against unknown weather data would be preferred in these cases and are

considered “robust” to unknown weather in this respect.

One drawback is that simulating additional weather seasons adds considerable computational cost. While
it is not as costly to add multiple unknown weather seasons as a post-optimization step, each additional
weather season added during the optimization process as part of the fitness calculation can be
prohibitively expensive. Moreover, it is possible that too many seasons of weather data will cause an
“overfitting” effect and end up underperforming when tested against unknown weather data. This creates
a challenging problem in and of itself, since the “ideal” number of weather seasons that should be used

for evolving control strategies will depend on many factors, including but not limited to: the available
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computational resources, the weather patterns in a locale, and the availability of historical weather data.
Such a study is beyond the scope of this thesis, and it was assumed that three weather seasons was
sufficient for evolving control strategies (with one additional, unknown weather season as a post-

optimization step to help filter results).

7.5 Robustness Against Genotype Perturbations

The goal in this section is to present a method to examine the robustness of a control strategy against
perturbations of its genotype. This may be used for obtaining solutions that are also “robust” in practice,
but modeling such perturbations (e.g., inaccurate readings in temperature sensors) would require
extensive knowledge specific to a greenhouse implementation, such as the tolerance values pertaining to
the greenhouse sensors, how they are deployed inside such a greenhouse, weather conditions, and myriad
other factors. In this case, we used a simple model to generate these perturbations to show how this metric
can be used to filter out undesirable control strategies from a Pareto front, as the effect of systematic

biases in sensors can mimic the effect of a non-optimal setting of an evolved setpoint.

One of the earliest examples bringing attention to the issue of robustness in MOEAs was described by
Deb et al. [46], noting that in practice a decision maker may not always be interested in a global optimal
solution; rather, solutions that are robust to small perturbations in its genotype may be preferred. Based

on this study, we propose using the following variation:

1. All the values in a genotype have perturbations applied to them for every sample.

2. For each original solution in the Pareto front, every locus L at index 7 of its genotype will have
perturbations applied to it, assuming a normal distribution with a mean p = L;, and variance 6> =
0.1xL;.

- 100 samples are generated for each original solution, and their fitness functions are
calculated.

3. Each original solution is assigned a value based on the area of the convex hull created by the

outer points among all the samples.
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- Original solutions with smaller convex hull area are considered more robust.

Based on this method, the output provides a single value that can be easily sorted to quantify the
sensitivity of each solution. While this procedure has similar drawbacks to that of NFR in Section 7.2, it
provides additional information that NFR does not provide, and the convex hulls themselves can be easily

visualized to better interpret these results (see Figure 7.3).
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Figure 7.3. Example output of the proposed metric. A solution from the original Pareto front (black) is sampled 100 times with
random perturbations, and their fitness function is calculated for each new sample (red). The outer points of these new solutions
are used to obtain the convex hull (red shaded region).
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Figure 7.4. Example Pareto front showing the effects of adding perturbations to each solution. The grey region shows the union
of all the polygons generated by the perturbed samples of the Pareto front. The least sensitive solutions tend to be low-variable-
cost solutions (blue region), while high-crop-value solutions can be extremely sensitive (green region).

Table 7.3. Partial list of evolved solutions sorted by increasing convex hull area.

Convex Hull Area Crop Yield Value Variable Costs Original NFR Mean NFR
(eurosxm>xyear!) | (eurosxm?xyear') | (eurosxm?xyear?!) | (eurosxm?xyear?)
0.589 16.441 8.449 0.141 -0.153
0.826 14.747 8.078 -1.181 -1.181
0.908 17.034 8.733 0.451 0.199
0.986 15.493 8.225 -0.582 -0.814
1.226 17.109 8.853 0.406 0.092
1.439 16.563 8.506 0.206 -0.064
1.473 17.334 9.029 0.454 0.067
1.971 18.133 9.807 0.476 0.133
2.051 17.442 9.166 0.426 0.057
2.064 17.695 9.369 0.476 0.181

Based on Table 7.3, we can see that a small convex hull area associated with a solution does not

guarantee that the mean and/or original NFR will be positive. However, it is still a useful tool to filter out
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undesirable results, as an excessively high convex hull area will lead to unviable NFR values that are, on
average, far inferior to the classical Vanthoor strategy (e.g., the green shaded region in Figure 7.4 is
partially dominated by the classical strategy). In addition, based on the results we can see a tendency for
high-crop-value solutions to be highly sensitive to genotype perturbations. If robust solutions are desired
that are viable with respect to having a positive NFR, solutions near the low-variable-cost region of the
Pareto front are superior. Solutions that provide good values on both objectives are slightly more sensitive
(e.g., the red shaded region in Figure 7.4), but can still provide positive mean NFR values despite the
perturbations. In addition, these types of solutions dominate the classical Vanthoor strategy, with their
perturbed versions becoming non-dominated only in their worst cases, and, of course, that is when

comparing them to an unperturbed classical Vanthoor strategy.
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8 Summary and Conclusions
In this chapter we will briefly summarize the results in this thesis, discuss some of the challenges
encountered during research, as well as possible directions this research could continue to further improve

existing methods for optimizing greenhouse control.

Based on the results and discussion from the previous chapters, the goal of this thesis was fulfilled. We
used an existing microclimate-crop-yield model [4], which was originally developed with greenhouse
design optimization in mind. We then modified this methodology for optimizing and developing control
strategies instead, using MOEAs as the primary tool for doing so. Using a classical control strategy as a
basis, we developed three new versions, each of which improved upon the previous controller by
providing better tradeoffs between the two main objectives: maximizing crop yield value and minimizing
variable costs. In addition, we were able to observe some interesting properties in these evolved
controllers which provided valuable information on how to iteratively improve control strategies, as well

as identified potential limitations of the microclimate-crop-yield model.

One of the biggest challenges was overcoming the large amount of computational resources required to
apply MOEAs for this type of optimization problem. Early attempts at addressing this issue included
modifying the differential equations that describe the microclimate-crop-yield model (see Chapter 3) in
order to reduce the stiffness of these equations (and thus improve the overall speed of the ODE solver by
allowing larger simulation step sizes that are still within acceptable margins of error). This approach
showed some promise, but it ultimately proved to have considerable challenges for validation of results,

including providing insufficient crop yields to match those reported in existing literature.

As an alternate solution to the previous problem, implementing a subset of the microclimate-crop-yield
model described by Vanthoor (as described in Chapter 4) was sufficient to achieve the main goal of this
thesis. This model was originally developed to be modular in nature, considering the possibility of many
different greenhouse design configurations, which made this approach possible. This subset of the

microclimate-crop-yield model describes a relatively complex greenhouse design while still having
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acceptable simulation times, which allowed us to adequately explore and optimize challenging
greenhouse control problems. However, there is clear room for improvement in this regard, as there are
many greenhouse design elements that were not considered, including but not limited to: retractable
shading screens, supplemental lighting, passive greenhouse heating, mechanical/pad and fan cooling,
direct air heating, etc. Such greenhouse design elements should ideally be considered in future studies for
greenhouse control optimization as this would improve the practicality of our optimization method, but
doing so requires examining existing models that incorporate these greenhouse design elements, and
potentially modifying these models to improve simulation speeds to the extent that optimization with
MOEAs can still remain feasible. Moreover, these model modifications would require independently
validating the results obtained in a real greenhouse to verify their efficacy and/or make corrections to the

model, as needed, which is beyond the scope of what we could attempt here.

Despite introducing various distinct controller types in this thesis (in Chapters 5 and 6), each with
increasing complexity, we did not reach a point where the computational resources were the primary
bottleneck when developing and evolving more complex control strategies. This is mostly due to the
focus of this thesis being on iteratively improving existing controller types (as seen in Chapter 6): using
the classical greenhouse control strategy as a starting point, we gradually increased its complexity,
observed the overall behavior these new control strategies produced, and subsequently used those results
to find useful properties to improve further (or features that were detrimental and therefore removed).
While it would be trivial to present a control strategy whose genotype takes considerably longer to
evolve, meaningfully interpreting the results of such a controller would take considerable time without
additional techniques to aid in this process. Ideally, this should be streamlined by at least partially
automating the process with which key properties, rules, and/or design principles can be extracted from
the Pareto fronts generated by each new controller type that is introduced. Multi-objective optimization
problems are uniquely suited for this kind of discovery process (coined as “innovization’), and multiple

attempts have been made in the past to present viable approaches for automated innovization [50, 51].
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The results in Section 6.6 show that while the current microclimate-crop-yield model is adequate for
simulating tomato crop growth in a greenhouse setting, inadequate humidity control is not sufficiently
penalized in cases where a model-based optimization approach is used to improve control strategies (e.g.,
this dissertation). The trapezoid functions that make up the crop value penalty primarily affect the post-
fruit-set stage of plant growth, since these penalties are only applied affer harvest begins. This penalty
still has an effect on the overall behavior of the control strategy before fruit set, due to maintaining a 24-
hour mean value of the vapor pressure deficit (VPD,4) between the canopy and the greenhouse air, as well
as a 48-hour mean value of the relative humidity (RH4g) of the greenhouse air. However, this would have
a marginal effect overall before fruit set, since the pre-fruit-set control strategy only needs to yield an
acceptable range of both VPD»4 and RHas shortly before fruit set begins. Values like RHas were proposed
to model the effect of the onset of the fungus Botrytis cinerea on the crop, but this type of fungal infection
is not limited to affecting the yield of marketable tomatoes, and can infect all the plant tissue [52]. Ideally,
the microclimate-crop yield model should penalize sub-optimal levels of relative humidity at all stages of
plant growth to better reflect the real-world effects of fungal infections and other diseases on the tomato

crop.

It was assumed that no additional costs would be incurred from the implementation of these control
strategies (other than the costs of any resources they utilize), and that the features described in each
controller in this section would already be available to use. Although an effort was made to avoid major
greenhouse design changes, both fixed and variable costs associated with the development of additional
controller logic and upgrades to greenhouse design elements should be included (when applicable).

Depending on their real-world cost, these may affect the viability of more complex control strategies.

Both objectives, the variable costs and crop yield value, may also be divided into individual components
that can be treated as their own separate objectives (thus turning this into a many-objective optimization

problem, as opposed to two-objective). Assuming that the appropriate computational resources are
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available, doing so can provide more insight on the tradeoffs that occur for the “subobjectives” that

comprise the variable costs and crop yield value, which may be of interest to a decision maker in practice.

Finally, the metrics for decision making presented in Chapter 7 allow a user to significantly narrow down
solutions that may be of interest. When using both net financial result (NFR) and the convex hull area (as
seen in Section 7.5) as performance metrics, we are able to narrow down potential solutions quickly while
visualizing the overall robustness (with respect to genotype perturbations) when picking a specific
solution. The method proposed for measuring robustness against genotype perturbations assumes that
these perturbations can be modeled using a simple normal distribution, and as such does not reflect the
inconsistencies that one would encounter in practice. However, such a method could still be applied if
there is sufficient knowledge of a greenhouse implementation to model these perturbations, providing a

valuable tool for assessing the overall “risk” associated with an evolved control strategy.
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