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ABSTRACT 

MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION IN GREENHOUSE 

CONTROL FOR IMPROVED CROP YIELD AND ENERGY TRADEOFFS 

By 

José R. Llera Ortiz 

The worldwide increase in demand for fresh fruits and vegetables has led to a search for strategies to 

manage greenhouses in ways that not only meet this demand, but that are also economically viable and 

environmentally sustainable. A well-established approach for managing greenhouse microclimate is 

through the automatic control of its mechanical systems such as heaters, ventilators, and shade screens. 

Such a system is a form of closed-loop control, but only with respect to the greenhouse microclimate, 

rather than the crop being grown. In practice, conventional greenhouse control is criticized for this focus 

on climate control instead of crop production, as well as the complexity of managing these systems due to 

an excessive number of user settings [1]. A more comprehensive form of closed-loop optimal control in 

greenhouses has been proposed to provide a better degree of control by adjusting the greenhouse climate 

in response to the growth of the crop being cultivated, but it is still dependent on the external climate 

around the greenhouse and can lack acceptable alternatives due to the nonlinear nature of the interactions 

between environmental conditions and plant growth. Unfortunately, monitoring of the real-time response 

of the crop is not viable for this type of closed-loop control – what can be used instead is a rather 

sophisticated state model of crop production so that the microclimate conditions can be controlled in 

order to optimize their effects on the predicted seasonal crop production. Further, this model and the 

greenhouse microclimate model into which it is integrated must be executable in a short enough 

timeframe to allow running it thousands of times to optimize the performance of the controller for a given 

greenhouse structure and location. Having developed such a model, we propose using a form of 

evolutionary multi-objective optimization to discover a suite of user-selectable control strategies that 

balance crop productivity with the financial costs of greenhouse climate control. Each of the Pareto-

optimal controllers discovered by this approach defines a range of conditions to be maintained via 



 

specified control actions, depending upon the crop state and external environmental conditions. Due to the 

large number of candidates present as the output, the decision-making process will be aided by 

considering common user preferences as well as algorithmically examining the robustness of solutions in 

the final Pareto-optimal frontier. 
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1 Introduction 

1.1 Objectives and Scope 

The objective of this thesis is to build upon existing greenhouse models that allow the simulation of 

greenhouse and tomato plant growth dynamics, and to use evolutionary algorithms with this model in 

order to find and analyze practical control strategies that can improve upon existing strategies. Validation 

of these strategies will consist of reproducing the original results utilizing a classical control strategy and 

then comparing them to these optimized control strategies. Optimized control strategies that are found 

will be examined for economic viability as well as robustness against varying weather conditions and 

sensitivity to variations in control parameters. Resulting control strategies are designed and expected to be 

viable for validation in real greenhouses but doing so is beyond the scope of this thesis, as it would 

involve considerable time and expense. Since greenhouse parameters as well as user requirements have a 

staggering amount of variation, we are limited to only parameters currently available to us. However, the 

methodology proposed here can be applied by others by introducing their own greenhouse parameters, 

costs, and other design constraints. 

1.2 Introduction 

Worldwide, the greenhouse industry is the fastest growing sector of agricultural production, with global 

demand for fruits and vegetables having doubled in the last ten years [2]. A key factor in meeting this 

demand is employing automatic greenhouse control that adjusts the microclimate of a greenhouse based 

on sensor feedback. This demand is particularly acute in China, which has funded a team at Tongji 

University, under the leadership of Prof. Lihong Xu, to study ways in which greenhouse productivity can 

be optimized. Through a long-established research relationship with Prof. Erik Goodman of MSU, they 

have assembled a team including Prof. Erik Runkle of the Department of Horticulture, MSU; Prakarn 

Unachak, a former Ph.D. student at MSU; Chenwen Zhu, a former Ph.D. student at Tongji University and 

visiting scholar at MSU; and Dr. Yuanping Su, a graduate of Prof. Xu’s doctoral program and visiting 

scholar at MSU. The author and Prof. Goodman have made several visits to Tongji University and the 
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experimental greenhouses they have constructed, helping their understanding of the real-world facets of 

greenhouse control. The activities of this team laid the groundwork under which this work was begun by 

the author. Collaboration continues with Prof. Xu, Dr. Su, and Prof. Runkle; the others have graduated 

and moved on to other activities.  

Due to the reliance on open-loop control or on closed-loop control aimed only at maintaining preselected 

setpoints for various greenhouse microclimate variables, most commercially available conventional 

greenhouse controllers have problems providing optimal control due to the lack of an on-line feedback 

mechanism that allows the controller to make adjustments based on the current growth dynamics of the 

entire crop production system [1].  A related method, closed-loop greenhouse control, promises higher 

crop yield at lower cost by adjusting the indoor climate in accordance with the response of the crop being 

cultivated. Even so, an obstacle to acceptance of these controllers is the lack of decision freedom of the 

user, which is necessary for adapting to unexpected environmental conditions [1]. An approach that is 

more energy efficient than conventional control and provides users with the freedom to adjust controller 

behavior is needed to help meet the increasing demand for fruits and vegetables considering yield, 

quality, and production inputs. Our proposed approach incorporates a tomato crop yield model as part of 

the closed-loop control by using the model-predicted seasonal crop yield as an overall measure of fitness 

for a control strategy. Thus, this control approach requires a detailed crop growth model allowing 

prediction of the effect of microclimatic conditions at any time on the ultimate seasonal yield, by tracking 

their effects on a state model of the crop growth. This approach will yield multiple solutions that show the 

tradeoffs between crop yield and energy costs using evolutionary algorithms. 

Using multi-objective evolutionary algorithms, or MOEAs, we can obtain a set of greenhouse control 

strategies that can balance multiple conflicting objectives. For our purposes, energy consumption and 

crop production are considered as the objectives to optimize. One particular property we are interested in 

while using MOEAs is that of elitism during search, which involves preserving the fittest Pareto non-

dominated individuals from a previous generation and keeping them unchanged into the next generation. 



3 

 

This guarantees that the overall quality of solutions does not decrease from one generation to the next. In 

order to obtain the parent population for the next generation, the current generation’s parent population 

and the offspring are combined and then sorted according to the concept of non-domination. Since all the 

parent members are included, this ensures elitism is employed in the algorithm. The next generation is 

then created by adding members from the current sorted, combined population starting from the lowest 

ranked members. If all solutions from a particular rank cannot be added to the next parent population, the 

crowding operator is used to rank in order of descending crowding distance, and then the necessary 

number of members is chosen to fill the population. One example of such an algorithm is described in 

Figure 1.1. 

Energy savings are achieved by taking advantage of the crop’s ability to tolerate environmental 

fluctuations. This is known due to the effects of sub-optimal and supra-optimal instantaneous and mean 

temperatures being studied extensively for tomatoes, which has led to the development of temperature-

based growth inhibition functions for the tomato crop model [3]. This behavior allows us to relax 

controller setpoints to allow a wider range of temperatures than would normally be deemed acceptable in 

practice, as long as the control strategy itself does not trigger the negative effects of these growth 

inhibition factors. For example, it may be unnecessary to maintain a high nighttime temperature if there 

was little photosynthetic activity during the day and the outdoor temperature is low. User decision 

freedom is achieved by enabling users to choose among a set of evolved control strategies, with different 

control parameters for the lower and upper limits to allow variation, depending on the crop state and 

typical external weather conditions of the site. The behavior of the crop model’s growth inhibition factor 

is illustrated in Figure 1.2. These define an optimal range of temperatures for both instantaneous and 24-

hour mean temperatures in order to grow the crop, and subsequently play a major role in maximizing crop 

yield. Of course, these curves are only one of the components in the instantaneous photosynthesis model, 

which also depends heavily on leaf area index, level of photosynthetically active radiation (PAR), and of 

CO2 concentration in the greenhouse canopy. 



4 

 

 

Figure 1.1. Detailed illustration of the proposed method for optimizing greenhouse control strategies: NSGA-II, a multi-objective 

problem solver (a), components of the fitness function (b), and a resulting Pareto set of control strategies (c). 

 

 

Figure 1.2. The growth inhibition functions used as part of Vanthoor’s crop model [4]. The horizontal axes on the left and right 

represent instantaneous canopy temperature and 24-hour mean temperature, respectively. The solid lines represent a non-

differentiable implementation of the functions, while the dotted lines represent a differentiable version of the functions. The 

values hTcan and hTCan24 are used as scaling factors that limit the flow of carbohydrates into the tomato crop. 



5 

 

1.3 Control Strategy Optimization Methodology 

Vanthoor’s proposed approach for the greenhouse design optimization step utilizes CRS (population-

based controlled random search [5]), which is appropriate for the scope of the optimization problem 

framed originally: limited search space and single objective. Due to the introduction of crop yield as an 

objective and dramatically expanding the search space, we changed the approach by using a type of 

heuristic multi-objective search algorithm called the “Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II)” [6]. Another major difference is that the end-goal of our optimization step is the acquisition 

of novel control strategies by optimizing over a wide range of possible control parameters while using a 

fixed set of greenhouse elements; Vanthoor utilized a fixed control strategy. Environmental effects on 

attributes of the tomato crop that are associated with its quality (e.g., flavor, nutrition, etc.) are not 

considered in the economic model (described in Section 4.1.2), and it was assumed that the greenhouse 

environmental conditions produced by the evolved control strategies discussed in this thesis do not affect 

tomato quality. Instead, the output of the tomato crop yield model while using evolved control strategies 

will only differ from a classical strategy (described in Section 6.2) with regards to the amount that was 

harvested. 

The use of NSGA-II allows us to find multiple solutions consisting of the Pareto-optimal set of control 

strategies. We treat greenhouse climate control as a multi-objective problem comprising two conflicting 

objectives: resource cost (water, electricity, etc.) and crop yield. Evolutionary algorithms maintain a 

population of candidate solutions in which individuals compete with one another based on a fitness 

function. In this case, candidate solutions are greenhouse control strategies, and the fitness function is 

based on a simulation of an integrated cultivation system including a greenhouse climate state model 

combined with a tomato growth state model. As in biological evolution, new candidate solutions are 

generated via recombination and mutation of highly fit “parent” solutions. These offspring are then 

incorporated into the population, and, if highly fit themselves, compete for space in the next generation 

[7]. 
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Figure 1.1 is a detailed illustration of our approach. In Figure 1.1a, NSGA-II is used to obtain sets of 

Pareto-optimal greenhouse controllers. Each individual in the NSGA-II population is a control strategy 

that is evaluated by a fitness function to determine its survivability, as depicted in Figure 1.1b. This 

fitness function comprises three components: the objective functions being optimized, the 

greenhouse/crop yield model that is used to evaluate the control strategy, and the meteorological data 

used as input to the greenhouse model. A sample Pareto-optimal set of control strategies is shown in 

Figure 1.1c. Details regarding the individual control strategies and each component of the fitness function 

are described in more detail below. 
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2 Literature Review 

Modeling of greenhouse production of crops has been a longstanding research topic, because of the 

importance of optimizing the behavior of the greenhouse control system to maximize crop production 

while minimizing operating costs. These sometimes-conflicting objectives give the decision maker a great 

deal of freedom to choose, but also the responsibility of choosing wisely. Historically, even the earliest 

efforts [8] at automated greenhouse control recognized the importance of making the control system 

responsive to changes in external environmental conditions (including temperature, relative humidity, 

wind speed and direction, etc.). 

The majority of greenhouse optimization studies focus on control performance and climate control with 

regards to maximizing net financial gain [1], that is, combining the value of the crop produced and the 

cost of producing it. Due to the scope of these studies, components such as a crop yield model are 

typically not considered, with the focus instead being on maintaining the greenhouse microclimate in a 

state thought to be optimal for plant productivity. Part of this is due to there being a limited number of 

plants that are well enough understood to form a complete state model, as well as the lack of well-studied 

and economically viable methods to obtain real-time feedback on plant biomass increase. The later 

approaches, such as that implemented by Vanthoor [4], introduce simplified models of plant growth, 

increasing the robustness of the approach by calculating the effects on the ultimate objective, crop yield, 

rather than on an arbitrarily determined physical parameter(s) of the greenhouse. However, introduction 

of crop modeling dramatically increases the complexity of the simulation required to determine the 

benefits of a particular control algorithm, so progress on this front has partially relied on the advance in 

computational speeds before researchers have used such models.  

In order to determine the economic and crop yield effects of a specific greenhouse controller, it is 

necessary to combine several models together: a greenhouse climate (or microclimate) model, a crop 

yield model and an economic model. Of these three, finding an adequate crop yield model proves to be 

particularly challenging; even with the use of parallel computing and a relatively small number of 
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greenhouse designs to evaluate, the computational time required for applying optimization algorithms can 

be prohibitive [4]. That said, tomato currently makes for an ideal crop, as knowledge on modelling tomato 

yield is widely available [9].  

Most of the early publications approached the topic of optimal greenhouse control from the point of view 

of classical control methods, which define greenhouse environmental control as an optimal control 

problem.  For example, N. Sigrimis and N. Rerras applied a linear model for greenhouse control which 

views the greenhouse environment as a multi-input-multi-output (MIMO) system [10]. It uses as inputs 

such variables as external temperature, relative humidity, wind velocity and direction, and insolation. It 

also uses internally measured evapotranspiration rates, and state variables such as internal air temperature, 

internal air relative humidity and soil temperature to determine how various control actions should be 

modulated (heaters, window openings, exhaust fans, etc.). 

H. J. Tantau discussed the benefits of optimal control of temperature, humidity, and supplemental 

lighting, resulting in reduced overall costs, reduced growing periods and increased crop yields [11]. 

However, he also noted the importance of plant growth models, as they can provide valuable feedback to 

online control systems, and knowledge in this area was still lacking at the time. 

E. J. van Henten and J. Bontsema defined greenhouse cultivation of a lettuce crop as an optimal control 

problem to determine the ideal temperature and CO2 strategies for its cultivation, using the mean values 

of historical weather data as a method of forecasting [12].  This resulted in lower energy costs and CO2 

consumption compared to using control strategies that do not take the weather into account. While it had 

its benefits, they also noted that this method needs improvement to better cope with differences between 

predicted and actual weather. 

K. G. Arvanitis, P. N. Paraskevopoulos and A. A. Vernardos proposed an adaptive control strategy for 

greenhouse air temperature [13]. Multiple samples of the greenhouse air temperature were taken over the 

course of a predefined sampling period, which were then used to compute a constant-gain controller that 

modulates the heating system. 
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I. Seginer and R. W. McClendon compared various dynamic optimization techniques and talked about 

their drawbacks in the context of greenhouse cultivation: depending on the technique used, a grower may 

have difficulty making multiple sequential decisions during a growing season, or it may be unacceptably 

inefficient when solving problems with many state variables [14]. To address this problem, they proposed 

reducing the number of state variables in one of their approaches to reduce the computational complexity 

of the problem. Depending on which state variables were removed, the results ranged from sub-optimal 

but acceptable to more inferior results. They also used historical data from previous optimal control 

solutions to train a neural network that could produce control decisions that are appropriate for current 

environmental conditions, with good results. 

A related effort, aimed at reducing the number of state variables in the greenhouse model, was undertaken 

by the team at Tongji University, as reported in [15]. It proposed a simplified model with significantly 

reduced state variables while still describing a combined greenhouse climate and crop yield model. In 

addition, some of the state variables were simplified through curve fitting techniques. The results show 

that the reduced model was effective at producing similar results to its counterpart. Moreover, this 

research shows one method for validating these results by using already available data from a previously 

validated greenhouse microclimate-crop yield model [4]. 

Several researchers have approached the multi-objective optimization problem using the techniques of 

stochastic optimization, including particle swarm optimization and evolutionary methods. 

A. Hasni et al. test the use of genetic algorithms versus particle swarm optimization to obtain the optimal 

set of parameters for the greenhouse itself by simulating a reduced greenhouse model iteratively with the 

parameters optimized through said methods [16]. They found that their particle swarm implementation 

outperformed their genetic algorithm approach. 

Q. Zou et al. proposed a control strategy developed using model predictive control (MPC), combined with 

particle swarm optimization [17]. The proposed control strategy was able to reduce energy consumption 
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due to heating and ventilation while maintaining the same temperature ranges as their conventional 

controller. 

A. Ramírez-Arias et al. addressed the existence of multiple conflicting objectives when it comes to 

optimal greenhouse control [18]. They define three main objectives: maximizing profit, fruit quality and 

water-use efficiency. In order to find setpoints that balance these three objectives, they proposed a 

hierarchical control architecture that takes advantage of the different time scales in which greenhouse-

related processes operate. This way, optimal setpoints may be calculated for slower processes (such as 

crop growth), and then sent to the next “layer” to be adjusted when necessary for faster processes (such as 

greenhouse air temperature). The use of multiple timescales for both state and environmental variables is 

found in [19]. 

H. Hu et al. used evolutionary algorithms to address the issue of determining proportional integral and 

derivative (PID) control parameters for greenhouse climate control [20]. By defining multiple 

performance measures as objectives and using NSGA-II, an evolutionary algorithm, they were able to 

develop a tuning method for PID controllers used in greenhouses that can account for multiple conflicting 

objectives. In this sense, it is an important precursor of the work reported in this dissertation, which uses a 

genetic algorithm to optimize PID parameters of various controllers. 

M. Mahdavian, S. Sudeng, and N. Wattanapongsakorn similarly used NSGA-II, with the focus lying on 

optimizing PID controller performance with regards to temperature and light supplementation [21]. In this 

case, a crop yield model was not considered. 

Y. Su, L. Xu, and E. D. Goodman proposed an approach based on adaptive dynamic programming [22], 

which uses neural networks to estimate the value function and resulting control strategy for the 

greenhouse. While this approach yielded good results, it relied on calculating “virtual” control inputs for 

the greenhouse actuators that were not always attainable in a real setting, resulting in cases where a 

“nearly optimal” set of control inputs were used as a compromise instead. 



11 

 

A notable example utilizing multi-objective optimization methods on greenhouse problems is the use of 

multi-objective compatible control, or MOCC [23]. The method behind MOCC relies on dividing the 

optimization process into two layers: the compatible optimization level and the compatible control level. 

The former works by obtaining Pareto-optimal fronts for control variables while also obtaining additional 

sub-optimal solutions. The process of obtaining sub-optimal solutions involves relaxing the control 

variables associated with a point in the Pareto-optimal front, which makes for a useful backbone for 

creating practical solutions by providing a set of alternatives. 

The multi-objective work above, and the work reported in this dissertation all make use of evolutionary 

computation techniques. These approaches, including especially the genetic algorithm metaheuristic used 

here, date from the late 1960’s and the seminal work of John Holland [24], who first put forth the genetic 

algorithm, although it was not yet called that.  Another milestone was the book of David Goldberg [25], 

and there have been thousands of papers published since using the genetic algorithm and other derivative 

forms of evolutionary computation. In the context of multi-objective evolutionary optimization, the article 

by K. Deb et al. [6] in which NSGA-II was first presented has been cited more than 35,000 times. An 

excellent overview of the field was presented in [26]. 

The most important prior work, providing much of the modeling framework for the algorithms developed 

here, is that of Vanthoor [4]. It provides a complete mechanistic model by incorporating a tomato crop 

yield model and also addresses potential issues and design considerations when attempting to optimize 

various aspects of a greenhouse system; he also points out that multi-factorial optimization for greenhouse 

design is promising due to prior research on complex problems in other application domains.  

Part of the design process in Vanthoor’s model-based greenhouse design method involves determining the 

economic analysis and viability of a greenhouse design, along with an optimization step to improve the 

net financial gain of operating the greenhouse. As mentioned in Section 1.3, his proposed approach 

utilizes population-based controlled random search, or CRS [5]. Due to the scope of the optimization 

problem being limited to a small set of greenhouse design elements (to form different combinations with) 
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and a single objective, this was a satisfactory approach to determining an optimal solution. However, it 

was imperative that this approach be modified in order to account for our approach being a multi-

objective optimization problem with many more parameters to be determined, requiring evaluation of 

thousands of seasons of simulated greenhouse operation under a variety of climatic conditions in order to 

allow evolution of optimal and robust controller behaviors. Such simulation would have been impractical 

with Vanthoor’s greenhouse model, as that model used numerical integration methods that often reduced 

timesteps to millisecond levels to achieve numerical convergence, because of the stiffness of the 

equations used in his state model. An overview of a model-based greenhouse design method can be seen 

in Figure 2.1, along with the modification of the optimization process. 

 

Figure 2.1. In our implementation of Vanthoor’s model-based greenhouse design method [4], the optimization step, which was 

previously aimed towards greenhouse design optimization with a single objective (net financial result), is replaced with a multi-

objective optimization step that considers crop yield value and variable costs. Inputs such as the canopy temperature (TCan), 

greenhouse air CO2 concentration (CO2Air), photosynthetically active radiation flux density (RPAR), greenhouse air temperature 

(TAir), and the vapor pressure of the greenhouse air (VPAir) are used in the tomato yield model to obtain the final yield. 

Historically, one of the challenges with crop yield modeling is the complexity of their description. 

Mechanistic models, such as TOMGRO [27], define the processes that drive the tomato crop growth as a 

set of state variables whose behavior is described by differential equations. Even in its earliest, simplest 

form, TOMGRO defined 69 state variables, expanding to 574 state variables for the latest version at the 
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time [9]. This can be daunting not only from the perspective of reproducibility of results when 

implementing such a model, but also because it makes using these crop yield models to optimize 

greenhouse control impractical, if not outright impossible. These challenges have led to multiple efforts to 

simplify the models while maintaining acceptable levels of accuracy [18, 28-30]. 

Although Vanthoor’s primary goal in his work was to describe a methodology for obtaining a greenhouse 

design suitable for a given climate and locale [4], one of the advantages of his combined model 

description is that the total number of state variables is relatively small despite including the three models 

pictured in Figure 2.1 (i.e., greenhouse climate model, tomato yield model, and economic model). To 

achieve this, some assumptions and simplifications were made by Vanthoor among the three models, but 

subsequent validation studies confirmed their efficacy. In addition, having an economic model provided 

the framework for evaluating the viability of a greenhouse design by incorporating the fixed and variable 

costs of operating a greenhouse (as well as the resulting profit of the tomato crop), allowing for well-

informed decision making without relying on the crop yield’s dry weight or other physical parameters 

(such as leaf area index, or LAI) which may be obtuse for non-growers. 

Despite these advantages, some challenges remained with Vanthoor’s methodology. First, not all the 

greenhouse design elements included in the greenhouse climate model description contained the 

necessary information for reliable reproducibility of its intended behavior. Second, the inclusion of 

certain greenhouse design elements caused an excessive increase in the stiffness of the differential 

equations describing the greenhouse model, resulting in computational times that made it impractical to 

use evolutionary algorithms like NSGA-II. Finally, since detailed descriptions on greenhouse controllers 

and their behavior are not available, it presents difficulties in determining whether an improved 

greenhouse control strategy would help improve the economic viability of a design. 

Since the objective of this thesis is to find more optimal greenhouse control strategies by using 

evolutionary algorithms, these challenges were addressed by doing the following: 1) greenhouse design 

elements with insufficient information for reliable reproducibility of their behavior are omitted, 2) 
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greenhouse design elements that were found to contribute excessive stiffness to the differential equations 

describing the greenhouse model are omitted, and 3) as a baseline, a greenhouse controller based on 

Vanthoor’s description is implemented as one of the control strategies studied in this thesis, while stating 

the assumptions necessary for the controller to be functional. Due to the modularity of the greenhouse 

climate model described by Vanthoor, the omissions made of certain climate control elements (like pad 

and fan cooling, for example) do not adversely affect the efficacy of the model. Moreover, this approach 

coincides with the greenhouse design and climate model used in one of his studies. More details on these 

changes are available in Chapter 4. 
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3 Modification of a Classical Greenhouse Control Model for Evolutionary Optimization 

The contents of this chapter are partially based on our prior published work, and can be found in [31]. 

The validation step performed by Vanthoor [4] used ordinary differential equation (ODE) solvers with 

variable time steps in order to solve all model equations. Due to the stiffness of the differential equations 

in these models and the high number of greenhouse season evaluations that are needed when doing 

evolutionary multi-objective optimization on a more flexible control architecture, the optimization 

process and model used by Vanthoor are impractical due to their excessive computational time. In order 

to address this, the model has been refined such that a fixed integration timestep of 60 seconds can be 

used, and a fourth-order Runge-Kutta solver is used instead of a variable-step-size solver, which 

dramatically reduces the runtime of the optimization process.  

Vanthoor’s climate model is defined by a set of energy and mass fluxes in the form of temperature, CO2 

concentration and vapor pressure. An example of these fluxes and how they relate to state variables can 

be seen in Figure 3.1. This model assumes that the air inside each compartment in the greenhouse is 

completely mixed. However, even with this assumption these fluxes (or transfers) of mass and energy 

between well-mixed compartments often result in high levels of stiffness of the differential equations, and 

therefore unacceptably high computational costs that make it impractical to use such a model for 

optimization purposes. Most notably, the fluctuations in temperature induced by using these equations 

with a fixed and longer timestep are not what physical laws would predict, and the large gradient induced 

would actually result in mixing between compartments that would dramatically exceed the limits of the 

climate model. In order to ensure proper mixing, after each step of the ODE solver, we implemented a 

mixing equation, TMix_SrcDst, for more even distribution of heat fluxes from a source state variable TSrc and 

a destination state variable TDst: 

𝑇𝑀𝑖𝑥𝑆𝑟𝑐𝐷𝑠𝑡
=

𝑐𝑎𝑝𝑆𝑟𝑐 ∙  𝑇𝑆𝑟𝑐 +  𝑐𝑎𝑝𝐷𝑠𝑡 ∙  𝑇𝐷𝑠𝑡

𝑐𝑎𝑝𝑆𝑟𝑐 +  𝑐𝑎𝑝𝐷𝑠𝑡
 [°𝐶] (3.1) 
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where capSrc (J×K-1×m-2) is the heat capacity of the source air compartment of the flux, TSrc (°C) is the 

current temperature from the source air compartment of the flux. These mixing equations conserve heat 

between the compartments they are mixing and have a strong stabilizing effect on the behavior of the 

greenhouse climate model. The terms capDst and TDst are similarly defined, but for a destination air 

compartment Dst. 

Once TMix_SrcDst is calculated, the new heat flux, HMix_SrcDst is defined as: 

𝐻𝑀𝑖𝑥𝑆𝑟𝑐𝐷𝑠𝑡
= 𝑐𝑎𝑝𝑆𝑟𝑐 × (𝑇𝑆𝑟𝑐 − 𝑇𝑀𝑖𝑥𝑆𝑟𝑐𝐷𝑠𝑡

 ) [𝑊 × 𝑚−2] (3.2) 

where capSrc (J×K-1×m-2) is the heat capacity of the source air compartment of the flux, TSrc (°C) is the 

current temperature from the source air compartment of the flux, and TMix_SrcDst is the mixed temperature 

between the source and destination air compartments. 

Lastly, the state variables are updated with the heat flux contributed by HMix_SrcDst: 

𝑇𝑆𝑟𝑐 = 𝑇𝑆𝑟𝑐 +
𝐻𝑀𝑖𝑥𝑆𝑟𝑐𝐷𝑠𝑡

𝑐𝑎𝑝𝑆𝑟𝑐
 [°𝐶] (3.3) 

 

𝑇𝐷𝑠𝑡 = 𝑇𝐷𝑠𝑡 +
𝐻𝑀𝑖𝑥𝑆𝑟𝑐𝐷𝑠𝑡

𝑐𝑎𝑝𝐷𝑠𝑡
 [°𝐶] (3.4) 
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Figure 3.1. Potential design elements used to manage the greenhouse climate. The colored arrows represent the various mass 

and energy fluxes which dictate the model’s behavior [4]. 

3.1 Individual Control Strategies 

One of the major factors in tomato crop cultivation is, under varying environmental conditions, to 

properly balance temperature with the available light, so as not to waste energy maintaining optimal 

temperatures while the photosynthetic light is in short supply, unless artificial lighting is available to 

boost photosynthesis. This will help maximize accumulation of carbohydrates in the plant as well as 

carbohydrate outflow to its various organs, which ultimately results in maximizing harvestable fruit. 

Higher temperatures under lower light conditions simply raise the loss of carbohydrates to respiration, 

which is higher at higher temperatures, so to expend energy to raise canopy temperature under low light 

conditions is counterproductive. Based on concepts from compatible control [23], we developed an 

interval controller that is designed to maintain the internal greenhouse temperature within crop-favorable 

ranges, depending on environmental conditions, which can dramatically affect the energy cost/crop 

production tradeoff. This controller includes switching rules for decisions about heating, 
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dehumidification, ventilation, shading, and carbon dioxide injection and is supplemented with conflict-

resolving rules and provides for limited user intervention. Figure 3.2 contains an example of such an 

interval controller. 

We have divided the overall control strategy into two main segments: daytime and nighttime control 

strategies. This allows the greenhouse to have differing temperature ranges during these times when the 

presence of sunlight affects the usefulness of maintaining a specific range of temperatures. This is further 

divided during daytime into morning, midday, and evening temperature intervals. In addition, switching 

times between daytime and nighttime strategies are defined in order to allow the controller to pre-

emptively change strategies before sunrise or sunset so that it may accommodate the anticipated changes 

in temperature and light levels and in desirable temperature and light levels. Greenhouse heating and 

cooling is accomplished using PID controllers; this includes boilers, cooling pads and ventilation. Each of 

these has its respective gain parameters which will also be optimized, making part of the optimization 

process a parameter tuning problem. CO2 injection is also assumed to be available and used by the control 

strategy, and a range of CO2 values is maintained by the controller. Finally, a threshold for global 

radiation is defined which the controller uses to determine whether deployment of a shading screen is 

necessary. 

To evolve these interval controllers, individuals (i.e., sets of the optimizable parameters of the controller) 

within the evolutionary algorithm comprise a set of discretized floating point numbers: daytime and 

nighttime temperature intervals, PID gain parameters (for controlling boiler, cooling pad and ventilation 

greenhouse elements), carbon dioxide intervals, daytime and nighttime strategy switching times, and 

maximum global radiation values. During fitness evaluation, these parameters define the behavior of the 

controller and how it responds to the meteorological data used as input to the greenhouse model. 
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Figure 3.2. Example of an implementation of the proposed interval controller, for some arbitrary time of day. Instead of strictly 

following temperature setpoints, it allows for a range of temperatures in which some control actions (or none) may be taken as 

long as the temperature stays within a certain range.  

3.2 Objective Functions 

The two objectives being optimized are crop production (fYield) and resource cost (fCost). These objectives 

are calculated following the simulation of the greenhouse/crop yield model with an individual control 

strategy over a predefined time horizon ([t0, tf]). Specifically, crop production is the finite integration of 

the carbohydrates flowing into fruit (MCFruit) during the final development stage (n_Dev). The integral 

that defines fYield is described in Eq. (3.5). 

(3.5)
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The resource costs consist of the sum of costs related to resource consumption, including water (pWater), 

electricity (pElectricity), and supplemental CO2 (pCO2) in Chinese Yuan (CNY, based on locale of the weather 

data that were available for this study). The cost for each unit of these resources was constant and 

supplemental lighting was not considered. The capacities associated with each actuator are based on data 

provided by Vanthoor [4], and a summary of the most important values for actuators associated with 

climate management can be seen in Table 3.1. Resource costs are driven by the operation of the following 

actuators: boiler (uBoiler, PBoiler), pad and fan (uPad, CapPad, PPad), roof vents (uRoof, PRoof), side vents (uSide, 

PSide), thermal screen (uThermal, PThermal), external shading screen  (uShading_e, PShading_e), internal shading 

screen (uShading_i, PShading_i), and CO2 enrichment (uCO2, CapCO2). The integral that defines fCost is defined in 

Eq. (3.6). 

(3.6)

 

Assuming both objectives are modeled as minimization problems, one would determine the lower bound 

for each objective, or ideal point, and try to reach it. However, the tradeoff between these two objectives 

determines how closely the evolved Pareto set can approach the ideal point. 
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Table 3.1. Capacities and coefficients for the major greenhouse design elements associated with active climate management. 

Transmission and reflection coefficients for near infrared (NIR), far infrared (FIR), and photosynthetically active radiation 

(PAR) of the internal shading screen, external shading screen, and thermal screen are included. 

Parameter 

Description 

Parameter 

Name/Symbol 

Unit Value 

Capacity of the CO2 

enrichment system 

CapCO2 mg/s 4.3×105 

Capacity of the air flux 

through the pad and fan 

cooling system 

CapPad m3/s 50 

Capacity of the boiler heating 

system 

CapBoil Megawatts (MW) 1 

NIR reflection coefficient of 

the internal shading screen 

ρShading_iNIR - 0.3 

PAR reflection coefficient of 

the internal shading screen 

ρShading_iPAR - 0.3 

FIR reflection coefficient of 

the internal shading screen 

ρShading_iFIR - 0 

NIR transmission coefficient 

of the internal shading screen 

τShading_iNIR - 0.6 

PAR transmission coefficient 

of the internal shading screen 

τShading_iPAR - 0.6 

FIR transmission coefficient of 

the internal shading screen 

τShading_iFIR - 0.1 

NIR reflection coefficient of 

the external shading screen 

ρShading_eNIR - 0.2 

PAR reflection coefficient of 

the external shading screen 

ρShading_ePAR - 0.2 

FIR reflection coefficient of 

the external shading screen 

ρShading_eFIR - 0 

NIR transmission coefficient 

of the external shading screen 

τShading_eNIR - 0.7 

PAR transmission coefficient 

of the external shading screen 

τShading_ePAR - 0.7 

FIR transmission coefficient of 

the external shading screen 

τShading_eFIR - 0.1 

NIR reflection coefficient of 

the thermal screen 

ρThermalNIR - 0.7 

PAR reflection coefficient of 

the thermal screen 

ρThermalPAR - 0.7 

FIR reflection coefficient of 

the thermal screen 

ρThermalFIR - 0.45 

NIR transmission coefficient 

of the thermal screen 

τThermalNIR - 0.25 

PAR transmission coefficient 

of the thermal screen 

τThermalPAR - 0.25 

FIR transmission coefficient of 

the thermal screen 

τThermalFIR - 0.11 

 

3.3 Greenhouse Model 

To estimate fruit production and resource cost for an individual control strategy, we have implemented 

and adapted a comprehensive greenhouse and tomato crop model [4]. The greenhouse climate is based on 

an energy and mass balance model, while the tomato growth (based on Lycopersicon esculentum L. cv. 

Pitenza [32]) is described by a buffer of carbohydrates that accumulates with photosynthesis, and must 
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balance the distribution of these carbohydrates among all plant organs: the stems, leaves, and fruit (if fruit 

set has occurred). The tomato cultivar was chosen based on the coefficients that were available to convert 

from dry matter to fresh weight [32]. Although flexible enough to fit a variety of realistic greenhouses, 

the model implementation is very detailed and computationally expensive, especially considering that a 

new simulation is required for every unique individual encountered during evolutionary search. We 

therefore performed several model simplifications, including the reduction of time resolution by forcing a 

fixed time step of 60 seconds, merging of state variables (e.g., reducing overall depth considered for the 

soil temperature from 5 layers to 1), and model revisions on flux calculations such as those described in 

Eqs. (3.1 – 3.4). Based upon sensitivity analyses in the simulation domain, these modifications appear to 

have negligible impact on the overall behavior of the model and decrease computation time dramatically. 

3.4 Meteorological Data Acquisition and Configuration 

We used a meteorological database consisting of hourly weather data collected over six years in the 

Shanghai area [33] as weather input to the greenhouse/crop yield model. A summary of the mean values 

for the weather data used in this chapter is shown in Figure 3.3. The data required by the model includes 

external temperature, humidity, wind speed, carbon dioxide concentration, and solar radiation. These 

were extracted and linearly interpolated to a finer resolution as needed. 

Considering the typical time scales of greenhouse systems, we selected 5 minutes as the constant control 

interval. This provides a small enough interval for finer greenhouse control while allowing a fixed time 

step of the same size. Unless otherwise specified, simulations were performed over a 300-day production 

period for each individual in the population. For reproducibility of results, other simulation lengths may 

be used. In addition, multiple runs with different weather inputs were used to ensure the robustness of the 

final Pareto-optimal set. To avoid over-fitting of resulting control strategies, leave-one-out cross-

validation [34] was used to structure the data for training and independent validation.  
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Figure 3.3. Summary of the monthly mean values for the outside air temperature (TOut), global radiation (IGlob), and outside 

vapor pressure (VPOut) for the 2007 – 2012 years in the Shanghai region. An ambient CO2 concentration of 340 ppm was 

assumed. 

3.5 Description of Early Evolved Results 

Figure 3.4 plots the Pareto-optimal sets from three independent simulations of our evolutionary algorithm 

(hollow marks, lower left). Shown here are the values of the two different objectives, resource cost and 

crop production. To improve interpretation, we report the negative harvestable fresh fruit (i.e., -1×kg/m2) 

such that the goal for both objectives is to minimize their respective values as much as possible. Each of 
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the three replicates was trained on different weather data; Figure 3.4 shows the objective values for 

weather data that were not used during training (the “left out” data) but used for this simulated season. As 

shown here, productivity ranged from 5.5 to 10.5 kg/m2 per year, while resource cost ranged from 62,100 

to 113,000 CNY per year. Examining the parameters of the resulting individual control strategies showed 

that a relatively high nighttime temperature was always preferred if high productivity was desired, around 

18 degrees Celsius. This would guarantee the tomato crop would remain inside an optimal range of 

temperatures that would prevent crop growth inhibition. On the other hand, low-yield points in the Pareto 

set had lower resource costs due to having lower nighttime temperatures overall, around 12 – 14 degrees 

Celsius. Intuitively, lower nighttime temperatures are preferred for the crop since it reduces plant 

respiration and maintaining higher nighttime temperatures will result in increased heating costs without 

immediate benefit to crop growth. However, the increased crop production resulting from these higher 

nighttime temperatures suggests that it is beneficial to maintain these temperatures in anticipation of 

daytime, allowing for the greenhouse to reach an optimal temperature for crop growth once sunlight is 

available. 

3.6 Result Comparison 

To compare the effectiveness of the optimization process, we evaluated a classical setpoint-based 

controller [4] on the same greenhouse/crop yield model and weather data. The isolated solid points in 

Figure 3.4 are the objective values corresponding to this controller on the three sets of weather data. 

Compared to the setpoint controller, the average evolved strategy reduced resource cost by 10.2% and 

increased yield by 12.9%. Moreover, we found a 19.9% increase in yield given the same resource cost, 

and a 32.5% decrease in resource cost given the same yield. 

Some understanding of the differences between the evolved control strategies and the set-point controller 

can be gained by examining the accumulated actuator usage for the boiler and the external shading screen. 

As shown in Figure 3.4a, a randomly selected evolved controller (dotted line) used both the boiler and 
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shading screen less frequently than the set-point controller (solid line), which lowered the resource cost 

and increased photosynthetic activity, respectively. 

 

Figure 3.4. Yearly resource cost and crop yield for three independent Pareto-optimal sets on validation weather data (hollow 

points). Objective values for a classical setpoint controller on the same weather data (solid points). Accumulated boiler and shade 

screen usage for an evolved strategy compared to the setpoint controller (a). 

3.7 Control Strategy Selection 

The three Pareto sets in Figure 3.4 all share the same trend. Picking the diamond set (◊) as an example, all 

the solutions in this set are relatively evenly distributed throughout objective space. This leads to an 

interesting question: How should a user select a strategy to control a greenhouse? While expert 

knowledge plays an important role in this decision-making process, there are several approaches that can 

be identified: (1) maximum fruit yield, (2) maximum affordable resource cost, (3) maximum average fruit 

yield per unit of resource, (4) minimum resource input per unit fruit yield, and (5) expected economic 

return. While approaches (1) and (2) do not explicitly take both objectives into account, approaches (3) 

and (4), which specifically acknowledge both objectives, are likely to select a control strategy near the 
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middle of the Pareto set. Approach (5) would require a more sophisticated economic analysis that goes 

beyond determining energy costs of the greenhouse during a crop cycle.  

3.8 Discussion 

Although these results are encouraging, additional refinement of the microclimate and plant models is 

necessary. Once compared with results reported by Vanthoor, it is clear that there are some drawbacks 

with the model implementation in these early results: the crop yield is inadequate for the weather and the 

greenhouse configuration used (which included roof and side ventilation, cooling pads and boiler 

heating). Since this type of greenhouse configuration provides excellent climate control that ensures the 

tomato crop can grow in near-optimal conditions, very high crop yields were expected, but not attained in 

this case. Additionally, such a greenhouse configuration would be very costly to implement and would 

require a proportionally large return on investment to be worthwhile. In contrast, according to Vanthoor’s 

results, a simple “Parral”-type greenhouse, which only includes manual ventilation and whitewash, could 

provide more than double the yield of a “high resource cost” type solution depicted in Figure 3.4 [4]. To 

address this, the greenhouse crop yield model was revisited, and improvements in the model resulted in 

increased crop yield thanks to increased canopy PAR absorption which allowed us to better validate the 

results. In addition, various performance measures were proposed and used in this thesis to narrow down 

solutions from a large pool of candidates, as the process of control strategy selection described earlier is 

still relatively vague. 

First, while it is possible to find a very good solution that contains desirable trade-offs between 

operational costs and yield, it is important to consider the effect of any perturbations in the decision space 

of the solution. For example, it is possible that during the deployment of a candidate control strategy, the 

greenhouse system is unable to strictly enforce each of the parameters inside the chromosome. This can 

lead to a variety of undesirable effects; these range from a considerable reduction in fitness to a solution 

becoming financially unviable (by having a negative net financial result, or NFR, covered in Section 7.2). 

One of the earlier proposals to measure robustness in evolutionary algorithms can be seen in [35], which 
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involves obtaining the effective fitness of an individual by calculating the mean with respect to its 

neighboring individuals. Figure 3.5 shows the effect of determining mean fitness around the 

neighborhood of a Pareto-optimal set of solutions.

 

Figure 3.5. The image on the left portrays the effect of changing x in a single-objective problem. The image on the right shows 

the effect of changing x1, x2 and x3 in a two-objective problem. [35] 

The robustness of the evolutionary process is examined next. Multiple independent NSGA-II runs were 

performed and the trends of the Pareto-optimal set over time were examined for consistency. If these runs 

converge on a similar Pareto-optimal set over many generations, it will help confirm that NSGA-II is 

appropriately exhausting the search space and approaching a global optimum set of solutions. To this end, 

we used the normalized hypervolume of the Pareto-optimal set as a performance measure for multiple 

independent runs. This performance metric can also be used as part of a procedure to compare different 

types of evolved controllers to assess their feasibility (with respect to each other). These results are reported 

in Section 7.3. 

Finally, robustness against variations in weather conditions as well as control setpoints was examined. For 

the former, in order for a solution to be of practical use to a decision maker, it must be able to perform 

reasonably well with a variety of weather patterns. To achieve this, each individual in the population is 

examined against multiple sets of weather data. The choice of which weather data sets are used depends 

largely on the location and user preference. Results of this study are reported in Section 7.4. For the latter, 
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we introduce perturbations on the evolved control setpoints and measure its negative impact on each 

objective. We then summarize this impact by calculating the area of the enclosing polygon created from 

the perturbations, which provides a straightforward method for sorting solutions based on their robustness 

to these perturbations. Details on this approach, as well as the results are reported in Section 7.5. 
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4 Evolution of a Classical Controller Using Improved Model 

The contents of this chapter are partially based on our prior published work, and can be found in [36]. 

In the previous section, we detailed some of the major changes and their rationale in a modified version 

we produced of the microclimate-crop yield model described in [4]. Despite the considerable performance 

improvements, the difference between the results obtained and validated by Vanthoor and the simulated 

crop yields from the modified model was unacceptably high, even though the dynamics of the two models 

appeared quite similar. Thus, we proposed implementing the microclimate-crop-yield model largely as 

Vanthoor presented it but making major modifications to the control strategies themselves after 

consideration of Vanthoor’s published results. Due to the modular nature of Vanthoor’s combined model, 

we were able to leave out extraneous elements that need not be included in the configurations of a 

greenhouse we chose to simulate. While this approach is still significantly more computationally 

expensive than our model reported in Chapter 3, these configurations are much more amenable to 

optimization through evolutionary computation, as the stiffness of their underlying differential equations 

does not have a large effect on the runtime of the ODE solver.  

In this section we show first our attempt at replicating the behavior of a classical controller designed for 

tomato crops to validate the agreement of our revised model with earlier published work. Second, we use 

NSGA-II to evolve microclimate control setpoints based on an earlier model-based greenhouse design 

method, which includes an economic model driven by the microclimate-crop yield model. 

4.1 Combined Model Overview 

All the parameters required to describe the characteristics of the greenhouse design and climate control, 

including the economic parameters associated with them, were obtained from Vanthoor’s greenhouse case 

study in Almería, Spain [4].  

4.1.1 Microclimate-Crop Yield Model  

The microclimate-crop yield model consists of a mechanistic model that describes mass and energy flows 

among the crop, greenhouse compartments, surrounding greenhouse construction elements and the 
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outside weather, inducing changes over time in temperature, CO2 concentration, plant weight and vapor 

pressure. These flows are defined as a set of differential equations, which allows the use of ordinary 

differential equation solvers.  The combined model state variables and their respective differential 

equations were implemented as described by Vanthoor, with minor model simplifications.  

The state variables of the tomato crop yield model represent the accumulation of carbohydrates in the 

plant from photosynthesis and how they are distributed to fruits, leaves, stems, and roots. Other essential 

plant processes, such as maintenance and growth respiration, plant transpiration and fruit set, are modeled 

as well. Irrigation and fertigation are assumed to be non-limiting and their cost is included in the 

economic model. The final tomato crop yield is obtained by accumulating the amount of dry matter that is 

harvested in real time after fruit set begins, and then converting it to fresh weight. 

4.1.2 Economic Model  

The economic model’s primary goal is to calculate the annual net financial result. Vanthoor defines the 

net financial result as: 

𝑄𝑁𝐹𝑅(𝑡𝑓) =  −𝑄𝐹𝑖𝑥𝑒𝑑 + ∫ 𝑄̇𝐶𝑟𝑜𝑝𝑌𝑖𝑒𝑙𝑑− 𝑄̇𝑉𝑎𝑟

𝑡=𝑡𝑓

𝑡=𝑡0

𝑑𝑡 (4.1) 

where QCropYield (€×m-2×year-1) is the value of the tomato crop, QVar (€×m-2×year-1) consists of the variable 

costs (costs associated with the crop, resources used and labor), and QFixed (€×m-2×year-1) represents the 

cost of all tangible assets that do not depend on crop growth. For consistency and ease of comparison, 

euros (€) will be used as the currency for this (and subsequent) chapters. 

Since QVar and QCropYield both depend on state variables that change over time, they are also treated as state 

variables themselves in the combined model. Market price fluctuations and tomato crop quality were not 

considered, and a mean tomato price is assigned to each greenhouse design instead based on the climate 

control techniques available and market prices observed by Vanthoor during the entire growing season. 
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4.1.3 Greenhouse Design and Control  

Ten greenhouse designs were evaluated in the economic model study by Vanthoor in [4]. A classical 

control strategy was used, which supports a combination of static temperature and relative humidity 

setpoints and a dynamic CO2 setpoint. The CO2 setpoint increases linearly with outside global radiation 

and decreases linearly with respect to the current roof and side ventilation opening. 

The available climate management techniques included roof and side ventilation, a retractable thermal 

screen, whitewash, indirect air heating, boiler heating, a fogging system, and a CO2 enrichment system. 

Based on the layout of the greenhouse designs described by Vanthoor, the thermal screen is assumed to be 

positioned between the greenhouse air compartment and top compartment. The setpoint is disabled if its 

associated greenhouse construction element is not included in the design. For example, the dynamic CO2 

setpoint requires a CO2 enrichment system, otherwise it will remain unused. All the greenhouse designs 

that were simulated in this chapter assume that the greenhouse structure is covered in a single 

polyethylene (PE) layer which provides a global transmission of 57% (54% with a thermal screen 

deployed), with a rectangular shape of 200 x 50 meters, resulting in a floor area of 10000 m2. Whitewash 

applications vary depending on the time of year and can be either result in a 25% or 50% decrease of the 

global transmission (these values were decreased further by 50% if a fogging system was present). A 

summary of the important values associated with the greenhouse design elements is in Table 4.1, and 

further details can be found in [4]. 

Table 4.1. Capacities for the major greenhouse design elements associated with active climate management. 

Parameter 

Description 

Parameter 

Name/Symbol 

Unit Value 

Capacity of the CO2 

enrichment system 

ΦExtCO2 mg/s 1.39×104 

Capacity of the fogging 

system 

ΦFog kg/s 1.39 

Capacity of the indirect 

air heating system 

CapBlow Megawatts (MW) 0.50 

Capacity of the boiler 

heating system 

CapBoil Megawatts (MW) 1.16 
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4.2 Model Validation Results 

Vanthoor conducted a study in which ten different types of greenhouse designs were simulated, with the 

goal of finding the design with the best net financial result. These results were provided for one growing 

season (2006-2007) and show a variety of useful outputs, such as the crop yield, crop economic return, 

fixed costs, and variable costs. To help validate our model implementation, these results were used to 

compare against ours. 

Due to the limited availability of the weather data used by Vanthoor in his studies, we used software to 

estimate weather data based on a given location and time of year (with additional details available on 

Section 4.3.2). The average outdoor climate values in Table 4.2 show that there are some discrepancies 

between the original and estimated climatic input values. Most notably, the estimated temperature mean is 

significantly lower, while having greater extremes. However, the average global radiation, relative 

humidity and wind velocity values are more similar, of which global radiation is particularly important 

because it strongly affects both microclimate and photosynthetic rate. 

 

Table 4.2. Average outdoor climate values provided by a) Vanthoor [4], compared with b) the estimated weather for the same 

site used in this thesis. 

 
Period Tout 

 

(°C) 

Tout 

<5% 

(°C) 

Tout 

>95% 

(°C) 

Global 

radiation 

(MJ×m-2×day-1) 

RH 

 

(%) 

vwind 

 

(m/s) 

a) 2006-2007 17.7 9.1 27.4 16.9 69.7 2.9  
2007-2008 17.8 10.2 27.7 17.1 67.7 3.3  
2008-2009 17.2 8.3 28.1 17.2 67.9 3.3 

b) 2006-2007 14.4 3.7 29.4 16.4 58.4 2.6  
2007-2008 15.5 5.3 29.4 16.9 58.9 2.7  
2008-2009 15.8 4.9 31.5 17.7 56.7 2.8 

 

Table 4.3 contains a summary of our economic model output compared with the original simulated 

output. The outputs consist of tomato crop yield (kg×m-2), crop value (€×m-2×year-1), variable costs (VC, 

€×m-2×year-1) and net financial result (NFR, €×m-2×year-1) of ten greenhouse designs. Parral (P) is a type 

of “low-tech” greenhouse with only roof and side ventilation. The greenhouse construction elements used 
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for the different designs are as follows: a whitewash application (W), a CO2 enrichment system (C), a 

fogging system (F), an indirect air heating system (H_), and a boiler heating system (H). Fixed costs are 

not shown, as they are identical for both cases. The main sources of discrepancy in the variable costs 

come from CO2 utilization being overestimated and water costs being underestimated. The CO2 

enrichment system was treated as an on–off controller, which, combined with the controller update 

interval of five minutes, resulted in excessive CO2 utilization. This can be remedied by using a smaller 

update interval for controlling the CO2 enrichment system. Insufficient plant transpiration is the cause of 

low water costs, as this plant process determines the amount of water that is used for irrigation. We used a 

mean tomato price for the entire growing season while Vanthoor used a mean weekly tomato price, thus 

conversions from crop yield to crop value will differ. Despite these discrepancies and the differences in 

the estimated weather, Figure 4.1 shows the crop yield’s response to increasing technology is similar. 

Ideally, matching historical weather data should be used for more accurate comparison, but such data 

were not available. 

Table 4.3. Simulation comparison results between a) Vanthoor [25], compared with b) our simulated results for the 2006 - 2007 

season. 

a) P W WC WF WFC WH_ WH WHC WHF WHFC 

Yield 21.88 23.99 25.78 26.45 28.15 27.71 28.35 31.89 31.34 35.03 

Value 9.77 11.01 11.86 12.33 13.15 13.65 14.89 17.22 16.42 18.47 

VC 6.59 6.82 7.82 7.17 8.25 9.31 8.88 10.18 9.28 10.65 

NFR -0.25 -0.31 -0.84 0.15 -0.49 -0.92 -0.94 -0.29 -0.32 -0.03 

b) 
          

Yield 22.42 24.24 25.25 25.23 26.44 29.86 33.57 36.09 35.27 37.79 

Value 9.28 10.82 11.75 11.03 12.06 15.03 17.85 18.85 17.76 19.03 

VC 6.38 6.62 7.89 6.76 8.9 10.46 9.32 10.68 9.52 10.98 

NFR -0.53 -0.29 -1.02 -0.74 -2.24 -0.69 1.58 0.84 0.78 0.19 
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Figure 4.1. Vanthoor predicted tomato yield vs our predicted yield as a function of greenhouse technology level. 

4.3 Greenhouse Simulation and Evolution Setup 

4.3.1 Greenhouse Design  

Out of the ten available designs, we chose the greenhouse design with the most climate management 

techniques possible (i.e., “highest tech”). This provides us with the highest number of setpoints to evolve, 

and therefore maximizes the search space for optimizing the originally published control strategy. 

The microclimate-crop model is implemented in C++, combined with the Open BEAGLE framework for 

evolutionary computation [37] that supports NSGA-II, modified to allow parallelization using the 

OpenMP API [38]. To solve the differential equations that govern the microclimate-crop model, we used 

a library that supports an adaptive step-size, fourth-order Runge-Kutta method [39]. 

4.3.2 Outdoor Climate Data  

Because Vanthoor did not make available the weather data used in his research, we used a meteorological 

service [40] that uses weather prediction models to approximate the climate data for a specified date and 

locale—namely, Almería, Spain, the location Vanthoor used in his thesis to evaluate his economic model. 

The latitude and longitude coordinates and height above sea level were used as inputs to obtain hourly 

climate data for the same time periods in 2006 – 2009. Outdoor CO2 levels were obtained by interpolating 
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monthly global CO2 measurements provided by the National Oceanic & Atmospheric Administration 

[41]. The average values of the output provided by the estimated weather is summarized in Table 4.2. 

4.3.3 Control Strategy Implementation  

Some assumptions were necessary for the controller implementation. Unless otherwise specified, all 

actuators operate on an on-off basis, including roof and side ventilation. First, the controller has an update 

interval of five minutes. Second, the boiler valve output is determined by a PID controller, with gain 

parameters (not shown) evolved ahead of time using NSGA-II, to match the fuel consumption costs 

reported by Vanthoor. Third, the thermal screen is retractable in two stages. Fourth, the fogging system 

operates for a maximum of 120 seconds in any five-minute interval. This is based on practice [42] to 

avoid wetting the leaves and potentially damaging the plants due to the salt content in the fogging 

system’s water reservoir1. 

4.3.4 NSGA-II Initialization 

Evolution parameters can be seen in Table 4.4. The parameters were pragmatically chosen based on the 

computing resources available and the size of the chromosome. Each simulation was run on a computer 

with two 2.4Ghz 14-core Intel Xeon E5-2680v4 processors, for a maximum of 28 cores. Since the 

simulation is parallelized by assigning one individual to each core, the population size is set to multiples 

of 28 to minimize downtime from unused cores. The number of generations was determined based on the 

approximate amount that can be completed in 96 hours. 

Table 4.4. NSGA-II parameters used for this study. 

Parameter Value 

Population size 28 - 84 

Generations 360 - 1000 

Two-point crossover probability 0.3 

Uniform mutation probability 0.04 

 

 
1 In some cases, we may show examples of evolved control strategies that assume that the fogging system can 

operate without any limitations (i.e., up to 5 minutes at a time). Such cases are only used for easier interpretation of 

results and will be labeled accordingly. 
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4.3.5 Chromosome Representation 

The chromosome consists of values stored in an integer vector that are converted to floating point values 

when used in the model. Before using a value from the chromosome, the integer value is converted to a 

floating-point number using the specified range and step size. This makes the search process more 

efficient by eliminating differences that are not significant in practice. Since the goal is to optimize 

greenhouse control setpoints, the chromosome simply consists of a combination of static setpoint values 

and the thresholds on climatic variables used to calculate the dynamic CO2 setpoint. TAirVentOn defines the 

greenhouse air temperature above which roof and side ventilation is always open. Similarly, TAirVentOff 

defines the greenhouse air temperature below which roof and side ventilation is always closed. RHAirVentOn 

is the greenhouse air relative humidity threshold above which ventilation is turned on. CO2AirVentOn is the 

greenhouse air CO2 concentration below which ventilation is turned on (to replenish the greenhouse air 

CO2 concentration back to ambient levels). TAirBoilOn is the greenhouse air temperature below which the 

boiler heating system is turned on. TOutThScrOn is the outside air temperature below which the thermal 

screen is deployed. The dynamic CO2 setpoint is a function of: CO2AirExtMax, which determines the upper 

bound for the CO2 setpoint, CO2AirExtMin, which determines the lower bound of the CO2 setpoint and 

IGlobMax, which determines the global radiation threshold above which the CO2 setpoint reaches its upper 

bound. Below that, the setpoint decreases linearly towards its lower bound with global radiation. The 

chromosome with its range of values and desired resolution can be seen in Table 4.5.  

Table 4.5. Chromosome representation. Values in this range are stored as integers after multiplication with an appropriate 

factor. 

Parameter Range Step Size 

TAirVentOn (°C) [10, 30] 0.1 

TAirVentOff (°C) [10, 30] 0.1 

RHAirVentOn [0.1, 1] 0.01 

CO2AirVentOn (ppm) [100, 500] 0.1 

TAirBoilOn (°C) [10, 30] 0.1 

TOutThScrOn (°C) [10, 30] 0.1 

CO2AirExtMax (ppm) [500, 1000] 0.1 

CO2AirExtMin (ppm) [100, 500] 0.1 

IGlobMax (W×m-2) [200, 1000] 0.1 

 



37 

 

4.3.6 Fitness Function  

The fitness function consists of the economic model’s output as described in Eq. (5.1), divided into two 

objectives: the economic value of the crop yield and the variable costs. We use the negative of the crop 

value so that both objectives are treated as minimization problems. We use three consecutive growing 

seasons based on the estimated weather data in the growing periods summarized in Table 4.6, with a pair 

of objective values generated for each season. To determine the final values for each objective, we choose 

the worst-case objective pair of all three (i.e., the year that yields the worst net financial result). 

Table 4.6. Greenhouse simulation parameters used for evolving setpoints in Almería, Spain case study. “WHFC” denotes the use 

of whitewash (W), a boiler heating system (H), a fogging system (F) and a CO2 enrichment system (C). 

Parameter Value 

Growing periods August 1st, 2006 – July 1st
, 2007 

August 1st, 2007 – July 1st, 2008 

August 1st, 2008 – July 1st
, 2009 

Simulation Length 334 days 

Coordinates 36°48’N, 2°43’W 

Height above sea level 151 meters 

Greenhouse design WHFC 

 

4.3.7 Post-Pareto Front Processing  

Once a satisfactory Pareto front is obtained, the fitness of each individual in the population is recalculated 

using climate data from a new weather season to test the efficacy of evolved solutions against “unknown” 

weather (sometimes called a validation step). The population is also sorted based on the net financial 

result, which allows us to easily prune solutions that either perform worse than the original setpoints or 

otherwise fall below an acceptable threshold for net financial result. 

4.4 Pareto Front, Validation Step and Sorting 

4.4.1 Pareto Front  

The Pareto front is shown in Figure 4.2, and it is compared with the original setpoints based on a classical 

control strategy by Vanthoor [4]. Although not many solutions dominate the original setpoints, the 

original is clearly not Pareto-optimal. Optimizing with a larger population size of 84 was beneficial 
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despite the added computational cost per generation, as it contained a better distribution of non-dominated 

solutions with the same simulation time (96 hours). 

 

Figure 4.2. Pareto front consisting of the evolved control setpoints compared against the original control setpoints. The worst-

case net financial result of the original setpoint and two evolved setpoints is shown. 

4.4.2 Validation Step 

To verify the efficacy of the evolved solutions, we test the output of the economic model when using a 

new season of estimated weather data from the same locale (2009-2010). The results for all four growing 

seasons are summarized in Table 4.7 and show that the evolved setpoints performed reasonably well with 

“unknown” weather from the same locale. 
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Table 4.7. Economic model output (€×m-2×year-1), comparing the original setpoints vs a “low-cost” solution and a “high-value” 

solution obtained from the Pareto front in Fig. 4. Net financial results (NFR) for all four years are added up. 

 
 

Original 

  
Low 

Cost 

  
High  

Value 

 

Period Crop 

Value 

Var. 

Costs 

NFR Crop 

Value 

Var. 

Costs 

NFR Crop 

Value 

Var. 

Costs 

NFR 

2006-

2007 

19.03 10.98 0.19 17.29 8.65 0.79 19.39 10.88 0.66 

2007-

2008 

20.69 11.41 1.44 18.72 9.11 1.76 21.10 11.42 1.83 

2008-

2009 

17.95 10.97 -0.88 16.20 8.62 -0.27 18.29 10.93 -0.49 

2009-

2010 

18.90 10.96 0.09 17.23 8.76 0.62 19.29 10.95 0.49 

Total 
  

0.85 
  

2.91 
  

2.49 

 

 

4.4.3 Sorting Results 

Table 4.8 shows a partial list of the population after it is sorted by the net financial result. The larger 

population size was beneficial, as it was able to find solutions with a superior net financial result with 

greater frequency. The original setpoints yielded a worst-year NFR of -0.88, so most of these results are 

superior–all are superior for population size 84, which is clearly preferable. 

Table 4.8. Worst-year net financial result (€×m-2×year-1) of the nine best evolved solutions (in terms of NFR) in optimization 

runs with different population sizes. 

NFR 

Pop. Size = 84 Pop. Size = 28 

-0.28 -0.36 

-0.30 -0.37 

-0.31 -0.42 

-0.32 -0.62 

-0.32 -0.67 

-0.32 -0.75 

-0.32 -0.78 

-0.34 -1.00 

-0.34 -1.18 
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Table 4.9. Original setpoints compared with setpoints of two evolved solutions: a “low-cost” solution and a “high-yield” 

solution. 

Parameter Original Low-Cost High Yield 

TAirVentOn (°C) 23 22.5 22.5 

TAirVentOff (°C) 20 26 24.6 

RHair_vent_off 0.90 0.70 0.82 

CO2air_vent_off (ppm) 200 171.6 164.3 

Tair_boil_on (°C) 16 10 15.7 

Tout_ThScr_on (°C) 18 16.3 16.7 

CO2Air_ExtMax (ppm) 850 508.7 585.8 

CO2Air_ExtMin (ppm) 365 266.4 112.6 

IGlobMax (W×m-2) 500 875.8 206.2 

 

4.4.4 Decision Making 

Since the worst-case measurements for the net financial result were all negative, these could all be 

considered “unviable” solutions. However, these evolved setpoints still outperform the original setpoints, 

and depending on the planning horizon, the grower can consider other seasons that have a positive net 

financial result and assess whether the risk is worthwhile by considering the net financial result over 

multiple seasons. 

 

Figure 4.3. High-yield solution control signals over a 24-hour period. 
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Figure 4.4. High-yield solution microclimate over a 24-hour period. T_Out denotes the outside air temperature, T_Air denotes 

the greenhouse air temperature, CO2_Air denotes the CO2 concentration of the greenhouse air and C_Ref denotes the current 

value of the dynamic CO2 setpoint. 

 

Figure 4.5. Low-cost solution control signals over a 24-hour period. 



42 

 

 

Figure 4.6. Low-cost solution microclimate over a 24-hour period. T_Out denotes the outside air temperature, T_Air denotes the 

greenhouse air temperature, CO2_Air denotes the CO2 concentration of the greenhouse air and C_Ref denotes the current value 

of the dynamic CO2 setpoint. 

4.5 Discussion 

In this chapter we showed that multi-objective evolutionary algorithms like NSGA-II can be used to aid in 

the design stages of greenhouse construction by allowing optimization of the control setpoints to enter 

into the evaluation of the various optional technologies to be deployed. In addition, these setpoints can be 

evolved between growing seasons as new data become available and as input costs change. We found 

evolved control setpoints that outperform the original setpoints in two objectives: maximizing the 

economic value of the crop yield and minimizing the variable costs, even when using a new set of 

weather data that was not used during the evolutionary optimization process. Using estimated weather 

data as input to the microclimate-crop yield model produced outputs that were mostly similar to those 

published in Vanthoor’s study, with some exceptions. Historical weather data should ideally be used for 

more accurate estimates of the net financial result, but the estimated weather data were sufficient for 

validating the crop yield trends with respect to increasing technology levels, thus the evolved setpoints 

still provided useful information on how to improve the net financial result when considering the 

tradeoffs between the two conflicting objectives. For purposes of this chapter, the search space during the 



43 

 

evolution process was limited to 9 integer variables that define the setpoints for a fixed control strategy, 

but later chapters will define more complex control strategies to evolve, as well as containing metrics to 

evaluate their performance vis-a-vis other control strategies. 
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5 Using Multi-objective Optimization to Evolve More Sophisticated Controllers 

The contents of this chapter are partially based on our prior published work, and can be found in [43]. 

The previous chapter covered the use of evolutionary computation to optimize the setpoints of a fixed 

greenhouse control strategy. Although the results show that we can evolve setpoints that dominate the 

original values that were based on expert knowledge, it assumes a rigid control strategy where the only 

changes possible are in the values of the setpoints themselves. This was done to limit the search space 

during evolution and thus provide faster convergence towards a Pareto-optimal front, but this leaves open 

the possibility of testing additional incremental changes in complexity to seek improvements in 

performance. In this chapter we propose a simple change to improve the sophistication of an existing 

control strategy—allowing it to adjust setpoints based on the time of day. In addition, we explore and 

discuss notable features present in the evolved controllers and propose a performance metric for 

comparing different evolved controller designs. NSGA-II and model implementation details remain the 

same as used in Chapter 4 unless otherwise specified. 

5.1 Problem Formulation 

The economic model incorporates the fixed costs of greenhouse construction elements, the variable costs 

associated with growing the crop and the value of the crop itself. Based on [4], the net financial result 

(NFR) is defined as: 

𝑄𝑁𝐹𝑅(𝑡𝑓) =  −𝑄𝐹𝑖𝑥𝑒𝑑 + ∫ 𝑄̇𝐶𝑟𝑜𝑝𝑌𝑖𝑒𝑙𝑑− 𝑄̇𝑉𝑎𝑟

𝑡=𝑡𝑓

𝑡=𝑡0

𝑑𝑡 (5.1) 

 

where QCropYield (€×m-2×year-1) is the value of the tomato crop, QVar (€×m-2×year-1) consists of the variable 

costs (costs associated with the crop, resources used and labor), and QFixed (€×m-2×year-1) represents the 

cost of all tangible assets that do not depend on crop growth.  
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The fitness function consists of the economic model’s output as described in Eq. (5.1), divided into two 

objectives: the economic value of the crop yield and the variable costs, f1(x) and f2(x), respectively. We 

use the negative of the crop value so that both objectives are treated as minimization problems, subject to 

a penalty function for solutions that have a net financial result (NFR) that is inferior to the NFR of the 

original setpoints used in the classical control strategy. In other words, solutions will not be penalized if 

NFR(x) ≥ NFROriginal, where NFROriginal is the worst-case net financial result of the original setpoints. 

In order to be able to compare with the original Vanthoor data, we evaluate control strategies over three 

consecutive growing seasons, based on example estimated weather data, which results in a pair of 

objective values being generated for each season. To determine the final values for each objective, we 

choose the worst-case objective pair of all three (i.e., the year that yields the worst net financial result). 

The optimization problem is then defined as follows: 

min(𝑓1(𝑥), 𝑓2(𝑥)) (5.2) 

𝑠. 𝑡.    𝑥 ∈ 𝑋 

where f1(x) = -QCropYield and f2(x) = QVar as defined in (5.1).  Although the optimization problem is 

unconstrained, solutions with inferior NFR will be penalized according to the following penalty function: 

𝑃(𝑥) =
|𝑁𝐹𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −  𝑁𝐹𝑅(𝑥)|

|𝑁𝐹𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙|
+ 1 (5.3) 

Using (5.3) as a scaling factor, the new values for the objectives are f1(x) = f1(x)/P(x) and f2(x) = f2(x) 

×P(x), respectively. Since f1(x) is minimizing the negative of the crop value, P(x) must be applied as a 

division operation to penalize that objective. 

Since the goal is to optimize greenhouse control setpoints, the chromosome simply consists of a 

combination of static setpoint values and the thresholds on climatic variables used to calculate the 

dynamic CO2 setpoint. TAirVentOn defines the greenhouse air temperature above which roof and side 

ventilation is always open. Similarly, TAirVentOff defines the greenhouse air temperature below which roof 
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and side ventilation is always closed. RHAirVentOn is the greenhouse air relative humidity threshold above 

which the ventilation is turned on. CO2AirVentOn is the greenhouse air CO2 concentration below which the 

ventilation is turned on. TAirBoilOn is the greenhouse air temperature below which the boiler heating system 

is turned on. TOutThScrOn is the outside air temperature below which the thermal screen is deployed. The 

dynamic CO2 setpoint is a function of: CO2AirExtMax, which determines the upper bound for the CO2 

setpoint, CO2AirExtMin, which determines the lower bound of the CO2 setpoint, and IGlobMax, which 

determines the global radiation threshold above which the CO2 setpoint reaches its upper bound. Below 

that, the setpoint decreases linearly with global radiation towards its lower bound. The chromosome with 

its range of values and desired resolution can be seen in Table 5.1. 

Table 5.1. Chromosome representation. Values in this range are stored as integers after multiplying by an appropriate factor. 

Parameter Range 

 

Step 

Size 

TAirVentOn (°C) [10, 30] 0.1 

TAirVentOff (°C) [10, 30] 0.1 

RHAirVentOn [0.1, 1] 0.01 

CO2AirVentOn (ppm) [100, 500] 0.1 

TAirBoilOn (°C) [10, 30] 0.1 

TOutThScrOn (°C) [10, 30] 0.1 

CO2AirExtMax 

(ppm) 

[500, 

1000] 

0.1 

CO2AirExtMin 

(ppm) 

[100, 500] 0.1 

IGlobMax (W×m-2) [200, 

1000] 

0.1 

 

Using the controller discussed in Chapter 4 as a basis, we ask the following: if we would like to improve 

this controller, would there be a considerable improvement in one or more objectives if we were to split 

the control strategy in such a way as to allow different setpoints based on the time of day? This time 

partitioning should, in theory, provide a greenhouse control strategy the ability to exploit weather patterns 

present during key parts of the day. For example, dawn is a critical moment for optimizing plant growth 

in greenhouses due to the transition from nighttime to daytime. Based on temperature setpoints used by 

classical control strategies, as well as existing knowledge of optimal temperature ranges for the tomato 
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crop [4], ideal nighttime temperature is significantly lower than the ideal temperature for photosynthetic 

activity. To exploit this, we should ideally have setpoints defined that can quickly and efficiently 

transition between nighttime and daytime conditions, as well as having setpoints defined for other times 

of day that can evolve separately. A summary of such an approach is shown below in Figure 5.1. 

 

Figure 5.1. Introducing time partitioning to a greenhouse control strategy. 

5.2 Methodology and Results 

Despite its known shortcomings, and because it is not computationally expensive for two- or three-

objective problems, we use the normalized hypervolume [44] as a performance metric for comparing 

different evolved controllers, choosing a nadir point of [0, 50] based on expected worst-case values. We 

apply a Mann-Whitney U test [45] with a sample size of n = 5 to determine if the time-partitioned 

controller is statistically significantly higher in the hypervolume performance metric compared to a 
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controller without a time-partitioning feature. Each sample consists of the resulting hypervolume of the 

final population after running NSGA-II for 100 generations while starting with a randomly initialized 

population. Evolved solutions were also tested by simulating a new season of estimated weather data from 

the same locale. The results for all four growing seasons are summarized in Table 5.2 and show that the 

evolved setpoints performed reasonably well with “unknown” weather from the same locale. 

Examples of Pareto fronts from both evolved controllers are shown in Figure 5.2, and they are compared 

with the performance of classical setpoints. Both evolved controllers contain solutions that dominate these 

classical setpoints, and the time-partitioned controller obtained better solutions in some regions of its 

Pareto front relative to the evolved controller without time partitioning. This is due to the time-partitioned 

controller having a chromosome that is triple in size compared to the simpler counterpart, requiring more 

function evaluations to achieve the same performance. On the other hand, we can simply take advantage 

of the setpoints that the simpler controller uses to seed the time-partitioned controller, allowing us to 

achieve better results without relying solely on the genetic algorithm itself (as shown in Figure 5.3). More 

details are available in Section 5.4. 
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Figure 5.2. Overlapped Pareto fronts consisting of the evolved control setpoints (NTP, red) and the evolved control setpoints 

with time partitioning (TP, green) compared against classical control setpoints (blue). 
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Figure 5.3. Example of control setpoints with time partitioning (TP, green) benefiting from seeding with evolved setpoints 

without time partitioning (NTP, red). The green lower right region is no longer dominated by the “less sophisticated” control 

strategy. 

Table 5.3 shows a partial list of the populations of both evolved controllers after they are sorted by the net 

financial result. The original setpoints yielded a worst-year NFR of -0.88; therefore, these results are 

superior—a negative NFR would reflect that the greenhouse would operate at a loss for that year. In 

addition, some of these solutions dominate the original setpoint (see Figure 5.2), so they are clearly 

preferable. 
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Table 5.2. The outputs of the economic model (€×m-2×year-1), comparing the original setpoints vs a “low cost” solution and a 

“high value” solution obtained from the Pareto front in Fig. 2. Net financial results (NFR) for all four years are added up. 

 Original   Low 

Cost 

  High 

Value 

  

Period Crop 

Value 

Var. 

Costs 

NFR Crop 

Value 

Var. 

Costs 

NFR Crop 

Value 

Var. 

Costs 

NFR 

2006-

2007 

19.03 10.98 0.19 17.29 8.65 0.79 19.39 10.88 0.66 

2007-

2008 

20.69 11.41 1.44 18.72 9.11 1.76 21.10 11.42 1.83 

2008-

2009 

17.95 10.97 -0.88 16.20 8.62 -0.27 18.29 10.93 -0.49 

2009-

2010 

18.90 10.96 0.09 17.23 8.76 0.62 19.29 10.95 0.49 

Total   0.85   2.91   2.49 

 

Table 5.3. Worst-year NFR (€×m-2×year-1) of the top eight evolved solutions (sorted by decreasing NFR), of a) the evolved 

controller and b) the evolved controller with time partitioning. 

Net Financial Result 

a) b) 

0.194 0.387 

0.175 0.364 

0.167 0.354 

0.166 0.347 

0.163 0.344 

0.154 0.340 

0.153 0.328 

0.116 0.324 

 

5.3 Decision Making 

A grower could simply choose the top solution in a list sorted by net financial result (as seen in Table 

5.3). However, by observing the tradeoffs in a Pareto front the grower has access to additional 

information to make more informed decisions. For example, a grower may want to opt for solutions that 

provide greater crop value (which, in this case, provide greater yield), so they can meet unusually high 

demand for a crop even if the current market price does not fully compensate for the increased variable 

costs. On the other hand, opting for non-dominated solutions with notably low variable costs provides the 

grower with more environmentally friendly solutions that can reduce water and fossil fuel usage. 

Although not shown, these variable costs may be broken down into their individual components such as 
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water costs, fossil fuel costs, CO2 costs and labor costs. Examples of these solutions are shown in Table 

5.4.  

Table 5.4. Original setpoints compared with setpoints of two evolved solutions: a low-cost solution and a high-yield solution. 

Parameter Original Low-Cost High-Yield 

TAirVentOn (°C) 23 22.5 22.5 

TAirVentOff (°C) 20 26 24.6 

RHair_vent_off 90 70 82 

CO2air_vent_off (ppm) 200 171.6 164.3 

Tair_boil_on (°C) 16 10 15.7 

Tout_ThScr_on (°C) 18 16.3 16.7 

CO2Air_ExtMax (ppm) 850 508.7 585.8 

CO2Air_ExtMin (ppm) 365 266.4 112.6 

IGlobMax (W×m-2) 500 875.8 206.2 

 

 

Figure 5.4. High-yield-solution control signals in a 24-hour period. 
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Figure 5.5. High-yield-solution microclimate over an example 24-hour period. T_Out is outside air temperature, T_Air is 

greenhouse air temperature, CO2_Air is CO2 concentration of greenhouse air and C_Ref is current value of the dynamic CO2 

setpoint. 

 

Figure 5.6. Low-cost-solution control signals in a 24-hour period. 
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Figure 5.7. Low-cost-solution microclimate over an example 24-hour period. T_Out is outside air temperature, T_Air is 

greenhouse air temperature, CO2_Air is CO2 concentration of greenhouse air and C_Ref is current value of the dynamic CO2 

setpoint. 

 

Figure 5.8. Normalized hypervolume for the evolved, non-time-partitioned controller (red), and the evolved, time-partitioned 

controller (green). 

Figure 5.4 and Figure 5.5 show the control signals and greenhouse microclimate for a high-yield solution, 

while Figure 5.6 and Figure 5.7 show the control signals and greenhouse microclimate for a low-yield 

solution. The high-yield solution is characterized by a more aggressive CO2 enrichment strategy in which 

the dynamic CO2 setpoint reaches its upper bound as soon as the global radiation is above 206 (in this 

case). This increases the value of the crop but also increases the variable costs in the process. The low-
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cost solution has a significantly lower setpoint for turning on the boiler, TAirBoilOn, which naturally reduces 

fossil fuel costs. This is accompanied by a more conservative CO2 enrichment setpoint caused by a much 

higher value for IGlobMax, resulting in less frequent use and therefore reduced variable costs overall. Both 

low-cost and high-yield solutions have a much higher value for TAirVentOff, which results in roof and side 

ventilation remaining closed during hotter weather. Normally this setpoint is used to help conserve heat 

by sealing the greenhouse during cold weather, but in this case the higher setpoint is used to keep the 

greenhouse sealed up for longer periods of time, increasing the efficiency of CO2 enrichment while 

relying on the fogging system for cooling. This process of finding patterns that emerge by means of using 

an optimization technique is called “innovization” [46]. Since the non-time-partitioned controller has a 

much smaller feature space (9 integer values), it is relatively simple to manually “innovize” some of the 

patterns present in high-yield and low-cost solutions. However, this process was not considered for the 

time-partitioned controller. Automating some of the innovization process would be preferable in this case, 

though it is beyond the scope of this thesis. 

Since the worst-case measurements for the net financial result were all positive in Table 5.3, these could 

all be considered financially viable solutions. However, even if they were negative, these evolved 

setpoints can still outperform the original setpoints as long as this value is greater, and depending on the 

planning horizon, the grower can consider other seasons that have a positive net financial result and 

assess whether the risk is worthwhile by considering the net financial result over multiple seasons. If the 

grower is obligated to pay the fixed costs for an already built greenhouse, whether or not a crop is 

planted, it is still clearly advantageous to select the control setpoints that provide the best tradeoff 

between the two objectives.  

5.4 Performance of the Time-Partitioning Feature 

The rationale for letting a controller choose setpoints based on the time of day is relatively 

straightforward: ideally the control strategy should take advantage of the characteristics that correspond to 
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the time of day—i.e., to evolve separate setpoints for the periods in which sunrise, midday and sunset 

occur.  

Figure 5.2 shows that adding this time-partitioning feature to the evolved controller improves solutions in 

some regions of the Pareto front. It is trivially possible to eliminate all regions where the non-time-

partitioned controller dominated the time-partitioned controller, simply by supplying the non-time-

partitioned values to the time-partitioned controller for all the partitioned time periods. Time-partitioned 

solutions dominating the non-dominated solutions were not discovered in some parts of Figure 5.2 

because the expensive fitness function did not allow enough function evaluations with the triple-size 

chromosome to discover those settings. Instead of adding superfluous function evaluations to reach the 

same result, we took advantage of the modular nature of the time-partitioning feature: it was designed 

such that, if necessary, it can behave like a controller that does not change its setpoints based on the time 

of day by simply using identical sets of values for all times of day: morning, midday, and evening. An 

example Pareto front that takes advantage of this property was shown in Figure 5.3.  

Despite the significant increase in the search space, the time-partitioned evolved controller eventually 

outperforms its counterpart based on the hypervolume performance metric, showing solutions that the 

non-time-partitioned version has not produced (as seen in Figure 5.8). This improvement is also reflected 

in Table 5.3, due to the presence of solutions with greater NFR compared to the other evolved controller, 

and in Figure 5.2, where we can observe regions where the time-partitioning feature produces solutions 

that dominate the other evolved controller. By running a Mann-Whitney’s U test, we evaluated the 

statistical significance of the difference in hypervolumes that results from adding this time partitioning 

feature. Results show that the two groups of hypervolume measurements differed significantly (U = 0, n1 

= n2 = 5, P < 0.01, two-tailed), and the sample values are summarized in Table 5.5.  



57 

 

Table 5.5. Mann-Whitney U test results comparing groups of hypervolumes, where a) is the non-time-partitioned controller, 

while b) uses time-partitioning. 

Normalized Hypervolumes 

a) b) 

0.347626963 0.352650132 

0.347393334 0.351999245 

0.346688732 0.351094193 

0.346627517 0.350488993 

0.346103962 0.349433818 

 

5.5 Discussion 

We restricted our study to two objectives primarily to ease visualization, but more objectives may be 

added. For example, tomato quality is a desirable characteristic that could conflict with both yield and 

energy costs. Moreover, the net financial result could be added as an objective. While sorting the Pareto 

front based on net financial result is a simple way to aid decision making, by not including this metric as 

an additional objective, we forego one of NSGA-II’s inherent advantages, elitism. This results in 

otherwise “elite” individuals (with respect to the net financial result) not being guaranteed survival to 

future generations. We also limited the scope of the simulations to using estimated weather data from the 

same dates and locale used in [4] (followed by an additional year). Future studies should use historical 

weather data when available and examine the effects of including a larger number of growing seasons 

during the evolution process as well as the efficacy of this method for different dates and locales. In 

addition, other greenhouse design elements commonly used in tomato production should be included, 

such as pad-and-fan cooling and supplemental lighting.  

Although it is beyond the scope of this thesis, a logical extension of our proposed method is to optimize 

greenhouse designs alongside their climate control setpoints. Since different greenhouse designs will have 

different numbers of setpoints associated with them, an alternative multi-objective evolutionary algorithm 

that supports variable length chromosomes should be used. In addition, the greenhouse setpoint 

optimization problem may be replaced with a more generic control strategy optimization problem. For 

example, a control strategy could be proposed in which setpoints are replaced by operating regions that 
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can be evolved, similar to the concept of multi-objective compatible control [47]. Because of the 

potentially staggering implications in computational time, some model reductions in the microclimate-

crop model may be necessary to make these optimization problems practical. A member of the joint 

MSU-Tongji University Greenhouse Control team, Dr. Yuanping Su, has developed a control 

optimization strategy using a surrogate model and is currently preparing a manuscript for publication of 

this work. 

We have shown in this chapter that multi-objective evolutionary algorithms like NSGA-II can be used to 

aid the grower in the design stages of greenhouse construction by optimizing the control setpoints. These 

setpoints can be evolved between growing seasons as new data become available and as input costs 

change. We have found evolved control setpoints that outperform the original setpoints in two objectives: 

(i) maximizing the economic value of the crop yield and (ii) minimizing the variable costs, even when 

using a new set of weather data that was not used during the evolutionary optimization process. The non-

time-partitioned evolved controller has also been examined in more detail, showing some patterns in the 

feature space that may be useful as design principles for future controller designs. In addition, evolving a 

set of time-partitioned setpoints has produced non-dominated regions that are better than their 

counterparts, and using their respective hypervolumes as a performance metric shows that there is a 

statistically significant difference between them. Important knowledge about the optimal solutions has 

also been identified and explained. Although effective for comparing two relatively simple control 

strategies, additional work is needed to test the efficacy of using hypervolume as a performance metric 

with more sophisticated controllers. 
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6 Analyzing Genotypes of Evolved Controllers 

6.1 Introduction 

The goal of this chapter is to explore the behavior exhibited by the evolved versions of the control 

strategies described in this thesis, discussing any notable properties displayed by these control strategies, 

and finding key areas for improvement. A total of four strategies are examined, each of which was 

evolved for 100 generations to obtain a population of 80 non-dominated solutions. After examining these 

four, we examine key changes on the best performing controller (with respect to Pareto-optimality) when 

introducing a crop value penalty for inadequate levels of relative humidity.  The chapter presents in 

sequence the following controllers: 

Section 6.2:  Evolved Vanthoor controller 

Section 6.3:  Evolved Vanthoor controller with setpoint partitioning based on time 

Section 6.4:  Evolved Vanthoor controller with partitioning based on time and fruit set occurrence 

Section 6.5:  Improved controller 

Section 6.6:  Same improved controller with crop value penalty for sub-optimal relative humidity 

Controller implementation details are summarized in Table 6.1. Values that required some assumptions to 

implement are denoted with an asterisk (*). More information on how greenhouse control strategies are 

defined and implemented can be found in Chapters 4 and 5. 
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Table 6.1. General controller implementation and ODE solver details. These values are shared among all controllers described 

in this chapter unless otherwise specified. 

Parameter Description Parameter 

name/symbol 

Unit Range 

Boiler heating UBoil - [0, 1] 

CO2 injection system UExtCO2 - [0, 1] 

Fogging system UFog - [0, 0.2]* 

External shading screen UShScr - [0, 1] 

Semi-permanent shading 

screen (whitewash) 

UShScrPer - [0.5, 1]** 

Thermal screen UThScr - [0, 1] 

Roof and side ventilation 

system 

URoof, USide, UVent - [0, 1]*** 

Controller update 

interval 

- Minutes 5 

Greenhouse climate 

simulation step size 

(initial) 

- Seconds 10 

Greenhouse crop yield 

simulation step size 

(initial) 

- Seconds 60 

RK4 ODE solver 

absolute error 

- - 0.01 

RK4 ODE solver 

relative error 

- % 1 

 

* Upper bound for UFog was assumed based on prior strategies established in literature to help reduce the 

potential of burns on the crop leaves due to the salt content of the water supply [42]. This will be enforced 

unless otherwise specified. 

** Although modeled internally as a control variable, it is assumed that UShScrPer is always a whitewash 

that is applied manually based on seasonal needs and the current greenhouse design. This is consistent 

with Vanthoor’s description and use of this variable. Since it acts as a multiplier for the greenhouse’s 

overall light transmissivity, it cannot be zero. 

*** It is assumed that both roof and side ventilation are controlled concurrently whenever ventilation is 

needed to remain consistent with the description and behavior of the control strategy based on Vanthoor’s 

thesis. The combined value of these window apertures will be referred to as UVent. 
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The loci shown here are examined against only one objective (the crop yield value) for ease of 

visualization. In the figures in this chapter that plot evolved setpoints and/or variables against their 

corresponding crop yield values, solutions which dominate the classical Vanthoor control strategy with 

default setpoints are marked in green (*). The controllers examined in this chapter are presented in order 

of increasing performance unless otherwise specified, with each one consistently yielding similar Pareto-

optimal fronts when using identical NSGA-II configuration settings. Figure 6.1 contains an example of 

the Pareto-optimal front that each controller type yields. 

 

Figure 6.1. Pareto-optimal fronts for the evolved control strategies in this chapter, with a classical strategy using default 

setpoints for reference. Red circles represent the classical strategy with evolved setpoints (NTP). Green circles represent the 

classical strategy with setpoint partitioning based on time (TP). Blue circles represent a similar strategy that adds setpoint 

partitioning based on both time and plant development stage, but also uses sunrise and sunset calculations to transition between 

nighttime and daytime strategies (TP+). Purple setpoints represent a control strategy with all the previous features, additional 

control logic, additional nighttime setpoints, and PID control for fogging, heating, and ventilation systems (TP++). 
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6.2 Evolved Classical Controller (No Time Partitioning) 

6.2.1 Introduction  

This controller is based on a classical control strategy described by Vanthoor in his thesis [4], with the 

main difference being that most of the setpoints pertaining to greenhouse control are evolved. A summary 

of the behavior of the control strategy is shown in Figure 6.3. Since this control strategy needs to 

differentiate between daytime and nighttime to determine whether the thermal screen should be deployed, 

nighttime has been defined as the absence of global radiation (i.e., IGlob = 0). The chromosome and its 

range of values is given in Table 6.2. 

 

Figure 6.2. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also 

dominate the classical Vanthoor strategy are marked in green. 
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Figure 6.3. Classical control strategy example. Based on the current greenhouse air temperature, the controller will take 

different actions to maintain an optimal temperature range for the crop, as influenced also by CO2 concentration and relative 

humidity in the greenhouse. [4] 
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Table 6.2. Chromosome containing the setpoints used in the evolved classical controller. The genotype consists of 9 integer 

values. 

Parameter 

Description 

Parameter 

name/symbol 

Unit Genotype 

Value 

Range of Real 

Values 

Temperature above 

which ventilation 

(Uvent) is turned on 

TAirVentOn Degrees (Celsius) [100, 300] [10, 30] 

Temperature below 

which ventilation is 

turned off 

TAirVentOff Degrees (Celsius) [100, 300] [10, 30] 

Relative humidity 

above which 

ventilation is turned 

on 

RHAirVentOn % [10, 100] [10, 100] 

CO2 concentration 

below which 

ventilation is turned 

on 

CO2AirVentOn ppm [1000, 5000] [100, 500] 

Temperature below 

which the boiler 

(UBoil) is turned on 

TAirBoilOn Degrees (Celsius) [100, 300] [10, 30] 

Nighttime 

temperature below 

which the thermal 

screen (UThScr) is 

deployed 

TOutThScrOn Degrees (Celsius) [100, 300] [10, 30] 

Upper bound for 

dynamic CO2 

setpoint* 

CO2AirExtMax ppm [2000, 10000] [200, 1000] 

Lower bound for 

dynamic CO2 

setpoint* 

CO2AirExtMin ppm [1000, 5000] [100, 500] 

Global radiation 

above which the 

dynamic CO2 

setpoint is 

maximized* 

IGlobMax W/m2 [2000, 10000] [200, 1000] 

 

* These variables are used for the calculation of the dynamic CO2 setpoint, CO2AirExtOn. See Eq. (6.1) for 

more details. 
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Figure 6.4. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open. 

6.2.2 TAirVentOn 

Figure 6.4 shows a relatively wide range of values (between 10 – 25 degrees Celsius) that still produce 

non-dominated solutions. However, the temperature at which the ventilation opens unconditionally is 

closely tied with its counterpart TAirVentOff—in particular, TAirVentOff can override TAirVentOn when the value is 

large enough, creating a strategy conditionally which prevents the greenhouse from opening based on 

sub-optimal levels of humidity or CO2. This is because the classical strategy normally contains a 

temperature gap between TAirVentOff and TAirVentOn (see Figure 6.3), but here, these setpoints can evolve in 

such a way that the gap is eliminated. Without this gap, the greenhouse will remain sealed for longer 

periods of time, allowing for CO2 injection to occur uninhibited. 
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Figure 6.5. This setpoint determines the temperature below which the ventilation will always remain closed. 

6.2.3 TAirVentOff 

The evolved values in Figure 6.5 clearly show a trend where increasing the temperature setpoint can 

produce greater crop yields at the expense of increased costs. These high-temperature setpoints cause the 

greenhouse to stay sealed for longer periods of time where CO2 injection can continue uninterrupted, 

while relying on active cooling measures (a fogging system in this case) to maintain the tomato crop 

within optimal temperature ranges. Since nearly all the Pareto-optimal points are at or near 26 degrees 

Celsius, it is clear that the added crop yield benefit of keeping the greenhouse closed and injecting CO2 

outweighs the additional energy cost of the CO2 and the cooling required. Moreover, all the solutions 

which dominate the classical Vanthoor strategy are at or near 26 degrees Celsius. This makes the process 

of choosing the value for TAirVentOff fairly straightforward, since the same value of 26 degrees Celsius 

would be used with the notable exception of tradeoff solutions that prioritize lower variable costs (at the 

expense of lower crop-yield value), but such strategies are outperformed in terms of net financial return 

by the classical Vanthoor strategy. 
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Figure 6.6. This setpoint determines the relative humidity above which ventilation is conditionally turned on. 

6.2.4 RHAirVentOn 

This value is only used when the greenhouse air temperature is between TAirVentOff and TAirVentOn, as shown 

in Figure 6.3, and only when TAirVentOff is also less than TAirVentOn. We can see in Figure 6.6 that there is a 

wide range of values among the non-dominated solutions. The cause for this lack of pattern is that the 

setpoints TAirVentOff and TAirVentOn can evolve values in some controllers on the Pareto front that are very 

close to each other, or in which they are “inverted”, ultimately causing RHAirVentOn to become unutilized 

due to the lack of the “deadband” that is normally formed between TAirVentOff and TAirVentOn. Ordinarily, in 

real-world greenhouse practice, this setpoint would be affected by checking for sub-optimal levels of 

humidity, but there is clearly not enough pressure either in the crop model or in the economic model as 

developed by Vanthoor to maintain optimal humidity levels. Vanthoor addressed this later by proposing 

quality filters on the crop yield with the goal of describing the impact humidity has on the price and 

marketability of tomatoes [4]. The effect of such a quality filter on the controller behavior is summarized 

later in this chapter (see Section 6.6). 
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Figure 6.7. This setpoint determines the greenhouse air CO2 concentration below which ventilation is conditionally turned on. 

6.2.5 CO2AirVentOn 

Similar to Figure 6.6, CO2AirVentOn in Figure 6.7 contains a wide range of values among the non-dominated 

solutions, and this value is similarly “deprecated” among solutions that evolve values that remove the gap 

between TAirVentOff and TAirVentOn, or invert the two. However, unlike RHAirVentOn, the effects of CO2 

concentration on the crop are described in detail in the crop model, and this setpoint is meant to be used 

when the greenhouse air CO2 concentration can be improved by ventilating the greenhouse with outside 

air (which would be an unusual occurrence, especially when CO2 injection is available). 

  



69 

 

 

Figure 6.8. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating. 

6.2.6 TAirBoilOn 

This setpoint shows a straightforward trend (in Figure 6.8) among non-dominated solutions: a higher 

setpoint will increase costs while increasing the value of the crop yield. Evolved solutions do not exceed 

20 degrees Celsius for the setpoint, after which those solutions are no longer non-dominated due to 

excessive crop growth inhibition caused by excessive heating. Solutions which dominate the classical 

Vanthoor strategy are at or near 15 – 17 degrees Celsius. The classical Vanthoor strategy uses 16 degrees 

Celsius for this setpoint, suggesting that only minor adjustments were needed to achieve better results. 
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Figure 6.9. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal 

screen. 

6.2.7 TOutThScrOn 

As seen in Figure 6.9, most non-dominated solutions settle with this setpoint between 17 – 17.5 degrees 

Celsius, so values close to the value used in the classical Vanthoor strategy (18 degrees Celsius). Since 

the purpose of the thermal screen is to conserve heat during the nighttime, the ideal value for this setpoint 

must strike a balance between a) keeping the plants warm enough to stay close to the ideal instantaneous 

and 24-hour mean temperature ranges set by the plant growth model and b) minimizing maintenance 

respiration caused by said warm temperatures.  
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Figure 6.10. This variable determines the upper bound for the dynamic CO2 setpoint used during CO2 injection. 

6.2.8 CO2AirExtMax 

Figure 6.10 shows a wide variety of values among the non-dominated solutions. There is some clustering 

near the lower and upper bounds defined for this value, which allow for low-cost and high-yield solutions, 

respectively. This value is part of the calculation for the variable CO2 setpoint defined by Vanthoor [4], 

and is shown in Eq. (6.1) below:  

𝐶𝑂2𝐴𝑖𝑟𝐸𝑥𝑡𝑂𝑛 =  𝑓(𝐼𝐺𝑙𝑜𝑏) ∙ 𝑔(𝑈𝑉𝑒𝑛𝑡) ∙ (𝐶𝑂2𝐴𝑖𝑟𝐸𝑥𝑡𝑀𝑎𝑥 − 𝐶𝑂2𝐴𝑖𝑟𝐸𝑥𝑡𝑀𝑖𝑛)+𝐶𝑂2𝐴𝑖𝑟𝐸𝑥𝑡𝑀𝑖𝑛 (6.1) 

Eq. (6.1) shows how the setpoint for opening vents to bring in atmospheric CO2 is calculated, as a 

function of the incident global radiation and the current positioning of the vents. Functions f and g assume 

their maximum values (at 1.0) when global radiation is at the maximum value for photosynthetic yield 

and the UVent is fully closed. At that point, the setpoint CO2AirExtOn assumes the value CO2AirExtMax, which 

maximally inhibits the opening of the air vents (which would move the CO2 concentration toward 

atmospheric values). This makes sense because if global radiation is low, there is no need to supply more 

CO2 even if it is relatively low in the greenhouse, and if the vents are mostly closed (so g is near 1), then 

supplementary CO2 can be added to greater effect than opening the vents would produce, so the threshold 

for opening the vents to admit CO2 should be raised. Thus, the setpoint for CO2AirExtOn increases with 
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higher global radiation (IGlob) and lower ventilation opening (UVent). CO2AirExtMax defines the upper bound 

for the setpoint (as the difference between itself and CO2AirExtMin), and CO2AirExtMax defines the lower 

bound. Therefore, it logically follows that increasing this value will increase the value of the crop yield at 

the expense of increased costs due to additional CO2 injection, since raising it keeps the greenhouse 

closed more of the time, requiring CO2 addition in order to increase crop value. 

 

Figure 6.11. This variable determines the lower bound for the dynamic CO2 setpoint used during CO2 injection. 

6.2.9 CO2AirExtMin 

With some exceptions, most values in Figure 6.11 form a cluster near the lower bound, keeping it 

consistently low, while CO2AirExtMax and IGlobMax define whether the strategy is tailored towards a low-cost 

or high-yield solution. Based on Eq. (6.1), this value ensures that CO2 injection does not occur in 

conditions where it would be wasteful to do so. Specifically, in cases where evolved values of CO2AirExtMin 

are low enough to result in a CO2 setpoint (i.e., CO2AirExtOn) that is below ambient levels, it will lead to 

CO2 injection being disabled. 
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Figure 6.12. This variable determines how quickly 𝑓(𝐼𝐺𝑙𝑜𝑏) is maximized, and subsequently contributes to how quickly the 

dynamic CO2 setpoint (CO2AirExtOn) is maximized. 

6.2.10 IGlobMax 

Similar to CO2AirExtMax, there are a wide range of solutions for IGlobMax in Figure 6.12 that cluster near the 

lower and upper bounds defined for this value, which also define whether the control strategy is tailored 

towards a low-cost or high-yield solution: a low-cost solution would have a higher IGlobMax, and a high-

yield solution would have a low IGlobMax. Solutions that dominate the classical Vanthoor strategy use a 

value for IGlobMax that ranges from 250 – 600 W/m2 (compared to the classical Vanthoor strategy which 

uses 500 W/m2), suggesting that it is generally more optimal to use a lower value for IGlobMax, causing the 

dynamic CO2 setpoint to be maximized with less global radiation. 

6.2.11 Discussion 

Overall, the solutions that dominate the classical unevolved strategy do not form a set pattern other than 

being located near the “knee points” of the classical evolved strategy. This much is expected, as the 

fitness values for the unevolved strategy are also located near that region (see Figure 6.1). The values for 

CO2AirVentOn and RHAirVentOn did not form a clear pattern as they were typically not used (due to the 

presence of many evolved solutions where TAirVentOn is less than TAirVentOff). Similarly, TAirVentOn contained a 
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wide range of values that yielded non-dominated solutions without a clear pattern due to TAirVentOff being 

greater, a situation that results in TAirVentOn being largely unused by the control logic. Increasing TAirBoilOn 

increased the value of the crop yield as expected, but also formed an interesting cut-off point right below 

20 °C; increasing the temperature further did not provide any non-dominated solutions. Finally, the values 

that determine the dynamic CO2 setpoint show that a grower who wants to calibrate the rate of CO2 

injection towards low-cost solutions should lower CO2AirExtMax and increase IGlobMax, while the converse is 

true for high-yield solutions. With some exceptions, CO2AirExtMin remained consistently very low, which 

helps minimize costs by preventing wasteful CO2 injection. Based on the controller logic, CO2 injection is 

never actually disabled; the setpoint is simply adjusted at every time step to determine if CO2 injection 

occurs. Since Eq. (6.1) is reduced to CO2AirExtMin under the worst conditions (i.e., no global radiation, UVent 

> 0.1), the value for CO2AirExtMin should ideally be low enough that it would never trigger CO2 injection 

under these conditions. Pragmatically speaking, the values for CO2AirExtMin were all significantly below 

atmospheric levels to avoid wasteful CO2 injection (atmospheric CO2 values in Almería, Spain exceed 

380ppm for the period simulated in this thesis [48]). 
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6.3 Evolved Classical Controller (Added Time Partitioning) 

6.3.1 Introduction 

 

Figure 6.13. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also 

dominate the classical Vanthoor strategy are marked in green. 

This controller is based on a classical control strategy described by Vanthoor in his thesis [4], with the 

main differences being that most of the setpoints pertaining to greenhouse control are evolved. In 

addition, two additional copies of these setpoints are generated to be used in different time periods each 

day, yielding a total of three: morning (M), midday (D), and evening (E). The names of each variable or 

setpoint with these types of copies will have the abbreviations for these time periods appended to them 

(e.g. TAirVentOn becomes TAirVentOnD for the midday copy of this setpoint). A summary of the chromosome 

and its range of values is in Table 6.3. 

With the addition of the three distinct daytime periods, there are now a total of four time periods 

(including nighttime). The daytime periods will begin and end at fixed points as defined in Table 6.4, 
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based on the number of hours that have passed by since midnight for each day. Nighttime is still defined 

as the absence of global radiation for purposes of this control strategy (i.e., IGlob = 0). Since the thermal 

screen is the only greenhouse design element with distinct nighttime setpoints, and the greenhouse 

controller still needs to check whether boiler heating, fogging or ventilation is needed during nighttime, 

the greenhouse controller will simply choose the setpoints that are needed based on the current time (e.g., 

if the current time is 22:30 and the greenhouse controller is checking whether boiler heating is necessary, 

TAirBoilOnE, the “evening” value will be used). 
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Table 6.3. Chromosome containing the setpoints used in the evolved classical controller with setpoint partitioning based on time 

of day. The genotype consists of 27 integer values. 

Parameter 

Description 

Parameter 

name/symbol 

Unit Genotype 

Value 

Range of Real 

Values 

Temperature above 

which ventilation 

(Uvent) is turned on 

TAirVentOnM, 

TAirVentOnD, TAirVentOnE 

Degrees (Celsius) [100, 300] [10, 30] 

Temperature below 

which ventilation is 

turned off 

TAirVentOffM, 

TAirVentOffD, TAirVentOffE 

Degrees (Celsius) [100, 300] [10, 30] 

Relative humidity 

above which 

ventilation is turned 

on 

RHAirVentOnM, 

RHAirVentOnD, 

RHAirVentOnE 

% [10, 100] [10, 100] 

CO2 concentration 

below which 

ventilation is turned 

on 

CO2AirVentOnM, 

CO2AirVentOnD, 

CO2AirVentOnE 

ppm [1000, 5000] [100, 500] 

Temperature below 

which the boiler 

(UBoil) is turned on 

TAirBoilOnM, TAirBoilOnD, 

TAirBoilOnE 

Degrees (Celsius) [100, 300] [10, 30] 

Nighttime 

temperature below 

which the thermal 

screen (UThScr) is 

deployed 

TOutThScrOnM, 

TOutThScrOnD, 

TOutThScrOnE 

Degrees (Celsius) [100, 300] [10, 30] 

Upper bound for 

dynamic CO2 

setpoint 

CO2AirExtMaxM, 

CO2AirExtMaxD, 

CO2AirExtMaxE 

ppm [2000, 10000] [200, 1000] 

Lower bound for 

dynamic CO2 

setpoint 

CO2AirExtMinM, 

CO2AirExtMinD, 

CO2AirExtMinE 

ppm [1000, 5000] [100, 500] 

Global radiation 

above which the 

dynamic CO2 

setpoint is 

maximized 

IGlobMaxM, IGlobMaxD, 

IGlobMaxE 

W/m2 [2000, 10000] [200, 1000] 
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Table 6.4. Different times of day as defined in the greenhouse controller logic in this section. If the greenhouse controller detects 

nighttime due to lack of global radiation (i.e., IGlob = 0), either morning or evening setpoints will be used (depending on the 

current time). 

Parameter Description Subscript TIME 

MORNING PERIOD M 00:00 – 08:59 

MIDDAY PERIOD D 09:00 – 16:59 

EVENING PERIOD E 17:00 – 23:59 

 

 

Figure 6.14. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open. 
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6.3.2 TAirVentOn 

Figure 6.14 contains a relatively wide range of values (between 10 – 28 degrees Celsius, depending on the 

time of day) that produce non-dominated solutions. Similar to the controller described in Section 6.2, the 

temperature at which the ventilation opens unconditionally is closely tied with its counterpart, TAirVentOff 

(due to its ability to override TAirVentOn in cases where it evolves to be greater). However, there is a bias 

towards lower temperatures during daytime which was not present without the time-partitioning feature. 

Many of these are overridden by TAirVentOff, but most low-cost, low-crop-yield solutions will use a very 

low value for TAirVentOnD to ventilate the greenhouse when solar radiation is known to be at its highest 

(therefore contributing to higher greenhouse air temperatures which may require cooling). 
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Figure 6.15. This setpoint determines the temperature below which the ventilation will always remain closed. 

6.3.3 TAirVentOff 

The evolved values in Figure 6.15 clearly show a trend where increasing the temperature setpoint can 

produce greater crop yields at the expense of increased cooling costs. Moreover, the addition of the time-

partitioning feature allowed for the evolved setpoints to better exploit the times of day where solar 

radiation is at its peak. Values for TAirVentOff corresponding to high-crop-yield solutions peak at a higher 

temperature during the daytime (TAirVentOffD), while also peaking at lower temperatures during the evening 
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(TAirVentOffE), helping reduce plant respiration. Lastly, evolved solutions which dominate the classical 

Vanthoor strategy all prioritize higher temperatures. 

 

Figure 6.16. This setpoint determines the relative humidity above which ventilation is conditionally turned on. 

6.3.4 RHAirVentOn 

Figure 6.16 shows that, much like with the previous controller in Section 6.2, a wide range of values work 

reasonably well for both low-cost and high-crop-value control strategies. The addition of the time-

partitioning did not change this tendency, suggesting that Vanthoor’s crop yield model does not 
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sufficiently penalize inadequate levels of relative humidity, since we know that, in practice, humidity 

control is important: if values for RHAir are too low, the high vapor pressure deficit (VPD) associated with 

it can induce high stomatal resistance and plant water stress (PWS), while excessively high values for 

RHAir and low VPD may reduce growth due to low transpiration (that can lead to physiological disorders), 

as well as disease if condensation occurs [49]. 

 

Figure 6.17. This setpoint determines the greenhouse air CO2 concentration below which ventilation is conditionally turned on. 
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6.3.5 CO2AirVentOn 

Figure 6.17 shows a wide range of values that yield both low-cost and high-crop-value solutions, although 

this value ends up mostly unused (similar to RHAirVentOn), due to the evolved values for TAirVentOff discussed 

in Section 6.3.3 being greater than TAirVentOn in most cases, resulting in evolved control strategies that 

disable the logic that checks for this value (see Figure 6.3). 

 

Figure 6.18. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating. 
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6.3.6 TAirBoilOn 

The evolved setpoints in Figure 6.18 show a similar trend to that of TAirBoilOn in Section 6.2.6, although 

there is a clear difference in the upper bound for high-crop yield solutions depending on the time of day. 

Morning setpoints are significantly lower and do not exceed 16 degrees Celsius. Daytime setpoints are 

higher and reach almost 26 degrees Celsius. Evening setpoints are also higher, reaching almost 24 degrees 

Celsius. These trends show that it is advantageous to change the boiler setpoint based on different times 

of day (as defined in Table 6.4) if higher yields are desired. Moreover, solutions that dominate the 

classical Vanthoor strategy have a significantly lower value for this setpoint during the morning and 

daytime periods (nearing as low as 10 degrees Celsius). 



85 

 

 

Figure 6.19. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal 

screen. 

6.3.7 TOutThScrOn 

For simulation purposes, nighttime is defined by the absence of solar radiation (i.e. IGlob = 0) so it is 

possible, though very unlikely, for this setpoint to be used during the day. The values during the morning 

and evening time periods in Figure 6.19 are very similar to those discussed in Section 6.2.7. However, the 

values during the midday (D) period are significantly different and predominantly random due to this 

setpoint having no impact on greenhouse control unless it is nighttime. 



86 

 

 

Figure 6.20. This variable determines the upper bound for the dynamic CO2 setpoint used during CO2 injection. 

6.3.8 CO2AirExtMax 

Figure 6.20 shows the evolved values for this variable are largely similar to those discussed in Section 

6.2.8. However, there is a marginal increase in the upper bound for CO2AirExtMax during the daytime and 

evening, indicating that it is advantageous to change the upper bound for the dynamic CO2 setpoint 

(CO2AirExtOn) based on the time of day. 
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Figure 6.21. This variable determines the lower bound for the dynamic CO2 setpoint used during CO2 injection. 

6.3.9 CO2AirExtMin 

Figure 6.21 shows the evolved values for this variable are largely similar to those discussed in Section 

6.2.9. However, daytime values for CO2AirExtMin are marginally higher for high-crop-yield solutions, 

indicating that it is advantageous to change the lower bound for the dynamic CO2 setpoint (CO2AirExtOn) 

based on the time of day. 
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Figure 6.22. This variable determines how quickly 𝑓(𝐼𝐺𝑙𝑜𝑏) is maximized, and subsequently contributes to how quickly the 

dynamic CO2 setpoint is maximized. 

6.3.10 IGlobMax 

Figure 6.22 shows the evolved values for this variable are largely similar to those discussed in Section 

6.2.10, with daytime values for IGlobMax being overall higher for high-crop-yield solutions. Since 

increasing IGlobMax will cause the dynamic CO2 setpoint (CO2AirExtOn) to be maximized more slowly (see 

Eq. 6.1), it will reduce the benefits of CO2 injection on crop yield. This can be counterproductive for 

high-crop yield solutions in some cases. However, since the overall crop-yield values are higher, and the 
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overall variable costs are lower (compared to the evolved classical strategy without time-partitioning), 

which is more indicative of a control strategy that is producing higher crop yields through other means 

(i.e., better control of optimal temperature ranges, longer periods of time where CO2 injection is available 

due to closed ventilation, etc.), rather than a potentially sub-optimal CO2 setpoint. 

6.3.11 Discussion 

There is a clear advantage to introducing the time-partitioning feature to the classical controller. The 

resulting Pareto-optimal front is consistently superior, particularly when taking advantage of seeding (as 

seen in Figure 5.3), and the loci themselves show some interesting patterns that emerged from this 

feature. The main benefit provided by time-partitioning is the ability for the greenhouse controller to 

apply various methods for saving energy without sacrificing crop yield, particularly when it comes to 

transitions from nighttime to daytime and vice versa. For example: the boiler setpoint, TAirBoilOn, the 

temperature below which the boiler is turned on, is much higher during the daytime period when 

examining high-crop-yield solutions. This results in increased heating costs for that period, but it better 

exploits the high levels of solar radiation (IGlob) that are typically present during that time. Conversely, 

morning and evening values are much lower, since photosynthetic activity is typically lower during these 

times, and maintaining optimal temperatures during that period is not as beneficial in comparison. 

Without time-partitioning, the greenhouse controller is forced to use a single setpoint that is adequate for 

all times of day, thus limiting its usefulness. Some setpoints proved to be redundant with the addition of 

time-partitioning (i.e., TOutThScrOn). 

One notable limitation for this controller is that the time of day is static (see definitions for morning, 

daytime, and evening in Table 6.4). This leads to evolved controllers that are unable to account for the 

changes in sunrise and sunset times throughout the year, which can limit their ability to accurately 

transition to daytime and nighttime strategies, respectively. Subsequent controllers in this chapter take 

this into account by calculating times for sunrise and sunset as transition points for the controller. Finally, 

while there are clear benefits to adding the time-partitioning feature, this is not just due to exploiting the 
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presence of climate patterns that emerge on a day-to-day basis; it is clearly advantageous to evolve as 

many copies of a setpoint as possible (as long as it is computationally feasible). To this end, the next 

section discusses a controller that also contains setpoints and variables which are evolved separately for 

two major stages of tomato crop development; namely, before and after fruit set has occurred. 

6.4 Evolved Controller (Additional Features) 

6.4.1 Introduction 

This controller is similarly based on a classical control strategy described by Vanthoor in his thesis [4], 

with the main differences being that most of the setpoints pertaining to greenhouse control are evolved. In 

addition, the following features have been added: 

1. Setpoint partitioning based on time of day 

2. Setpoint partitioning based on fruit set occurrence 

3. Nighttime period is determined by sunrise and sunset calculations 

4. Adjustable time offset to determine transition point between nighttime and daytime strategies 

(e.g., the thermal screen, TOutThScrOn, is only used during nighttime) 

Due to the added features, the figures in this section will display up to six copies of one setpoint, 

depending on the time of day and whether or not fruit set has occurred. In addition, morning and evening 

periods will be dynamic: 1) for the morning (M), the current time for sunrise will determine the start of 

this period, and 2) for the evening (E), the current time for sunset will determine the end of this period. 

The midday (D) period remains static. Figure 6.24 shows an example of how a typical 24-hour period is 

partitioned using this method. If a setpoint or variable contains a copy to be used after fruit set, the 

corresponding abbreviation (_fr) will be appended to the end of the name, in addition to the abbreviations 

used to denote the time period (e.g. TAirVentOn becomes TAirVentOnM_fr to denote the morning, post-fruit-set 

copy of this setpoint). The time offsets (sr_offset, and ss_offset, respectively) allow the controller to 

adjust the period in which a nighttime strategy is applied. A flowchart showing how these variables are 
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used can be seen in Figure 6.26. Lastly, a summary of the chromosome containing these changes can be 

seen in Table 6.5. 

 

Figure 6.23. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also 

dominate the classical Vanthoor strategy are marked in green. 
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Figure 6.24. The greenhouse controller differentiates between daytime and nighttime to determine whether the thermal screen 

should be deployed, which is only used during nighttime. Both sr_offset and ss_offset are evolved values which will modify the 

overall length of both nighttime and daytime control strategies. These offsets remain fixed for each control strategy, while sunrise 

and sunset times (shaded region) change over the course of the year. 

 

Figure 6.25. Sunrise/sunset times and average outside air temperatures calculated for the Almería, Spain location in 2006. 

 



93 

 

 

Figure 6.26. Flowchart describing the process for determining whether daytime or nighttime strategies are used.  
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Table 6.5. Chromosome containing the setpoints used in the evolved classical controller, with additional features. The total size 

of the genotype consists of 58 integer values. 

Parameter 

Description 

Parameter 

name/symbol 

Unit Genotype 

Value 

Range of Real 

Values 
Temperature above which 

ventilation (Uvent) is on 

TAirVentOnM, TAirVentOnD, 

TAirVentOnE, TAirVentOnM_fr, 

TAirVentOnD_fr, TAirVentOnE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Temperature below which 

ventilation is off 

TAirVentOffM, TAirVentOffD, 

TAirVentOffE, TAirVentOffM_fr, 

TAirVentOffD_fr, TAirVentOffE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Relative humidity above 

which ventilation is on 

RHAirVentOnM, RHAirVentOnD, 

RHAirVentOnE, RHAirVentOnM_fr, 

RHAirVentOnD_fr, 

RHAirVentOnE_fr 

% [10, 100] [10, 100] 

CO2 concentration below 

which ventilation is on 

CO2AirVentOnM, CO2AirVentOnD, 

CO2AirVentOnE, 

CO2AirVentOnM_fr, 

CO2AirVentOnD_fr, 

CO2AirVentOnE_fr 

ppm [1000, 5000] [100, 500] 

Temperature below which 

the boiler (UBoil) is on 

TAirBoilOnM, TAirBoilOnD, 

TAirBoilOnE, TAirBoilOnM_fr, 

TAirBoilOnD_fr, TAirBoilOnE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Nighttime temperature 

below which the thermal 

screen (UThScr) is deployed 

TOutThScrOnM, TOutThScrOnD, 

TOutThScrOnE, TOutThScrOnM_fr, 

TOutThScrOnD_fr, TOutThScrOnE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Upper bound for dynamic 

CO2 setpoint 

CO2AirExtMaxM, CO2AirExtMaxD, 

CO2AirExtMaxE, 

CO2AirExtMaxM_fr, 

CO2AirExtMaxD_fr, 

CO2AirExtMaxE_fr 

ppm [2000, 10000] [200, 1000] 

Lower bound for dynamic 

CO2 setpoint 

CO2AirExtMinM, CO2AirExtMinD, 

CO2AirExtMinE, 

CO2AirExtMinM_fr, 

CO2AirExtMinD_fr, 

CO2AirExtMinE_fr 

ppm [1000, 5000] [100, 500] 

Global radiation above 

which the dynamic CO2 

setpoint is maximized 

IGlobMaxM, IGlobMaxD, IGlobMaxE, 

IGlobMaxM_fr, IGlobMaxD_fr, 

IGlobMaxE_fr 

W/m2 [2000, 10000] [200, 1000] 

Amount to subtract from 

calculated sunrise time 

sr_offset, sr_offset_fr Minutes [0, 30] [0, 150] 

Amount to subtract from 

calculated sunset time 

ss_offset, ss_offset_fr Minutes [0, 30] [0, 150] 
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Figure 6.27. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open. 

6.4.2 TAirVentOn 

Figure 6.27 shows a relatively wide range of values, depending on the time of day and whether fruit set 

has occurred (the first three graphs from left to right show solutions for before fruit set, while the last 

three graphs show solutions for after fruit set has occurred). As previously discussed, the temperature at 

which the ventilation opens unconditionally is closely tied with its counterpart, TAirVentOff (due to its ability 

to override TAirVentOn in cases where it evolves to be greater). However, the addition of distinct setpoints to 
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be used before and after fruit set has allowed for more values to be evolved that still retain a gap between 

TAirVentOff and TAirVentOn. Although this allows RHAirVentOn and CO2AirVentOn to have more of an impact in 

greenhouse control (since they will be checked when the greenhouse air temperature falls within this gap), 

these results do not suggest that those values themselves are particularly important; rather, it is indicative 

of a strategy that “wants” to occasionally open greenhouse ventilation for purposes of temperature 

control. 

 

Figure 6.28. This setpoint determines the temperature below which the ventilation will always remain closed. 
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6.4.3 TAirVentOff 

The values in Figure 6.28 show similar trends to those discussed in Section 6.3.3, the addition of the time-

partitioning feature allowed the evolved setpoints to better exploit the times of day where solar radiation 

is at its peak. However, the way in which this strategy does so differs significantly before and after fruit 

set: before, the daytime value (i.e., TAirVentOffD), has a higher overall value while also being lower than its 

counterpart, TAirVentOnD. This results in the gap present in the classical Vanthoor strategy where the 

greenhouse is opened conditionally (see Figure 6.3). After fruit set (i.e., TAirVentOffD_fr and TAirVentOffE_fr), we 

can observe the same overall strategy discussed in Section 6.3.3, which prioritizes eliminating the gap 

normally present between TAirVentOff and TAirVentOn by having a value of TAirVentOff_fr that is greater than 

TAirVentOn_fr. Values for TAirVentOff_fr corresponding to high-crop yield solutions peak at a higher temperature 

during the daytime (TAirVentOffD_fr), while also peaking at lower temperatures during the evening 

(TAirVentOffE_fr), helping reduce plant respiration. Lastly, evolved solutions which dominate the classical 

Vanthoor strategy all prioritize higher temperatures, but only after fruit set has occurred. 
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Figure 6.29. This setpoint determines the relative humidity above which ventilation is conditionally turned on. 

6.4.4 RHAirVentOn 

Similar to the trends discussed in Section 6.3.4, we see in Figure 6.29 that the addition of the time-

partitioning (and now distinct setpoints before and after fruit set) did not change the fact that this setpoint 

has little impact. This further suggests that the crop yield model does not sufficiently penalize inadequate 

levels of relative humidity, since we know that, in practice, humidity control is important [49]. 
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Figure 6.30. This setpoint determines the greenhouse air CO2 concentration below which ventilation is conditionally turned on. 

6.4.5 CO2AirVentOn 

Similar to the trends discussed in Section 6.3.5, the range of values among the non-dominated solutions is 

fairly wide despite the addition of time partitioning (and now the distinct setpoints before and after fruit 

set), suggesting that this setpoint still has little impact overall. 
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Figure 6.31. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating. 

6.4.6 TAirBoilOn 

The evolved setpoints in Figure 6.31 only show a similar trend to those discussed in Section 6.3.6 after 

fruit set has occurred (particularly TAirBoilOnD_fr and TAirBoilOnE_fr). Before fruit set, there is a wide variety of 

values for this setpoint that yield both low-cost and high-crop-value solutions, although the morning 

values (i.e., TAirBoilOnD) have a cluster of solutions that dominate the classical Vanthoor strategy at around 

16 – 19 degrees Celsius. These results suggest that much of the reason for the trends discussed in Section 
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6.3.6 were due to major changes that only occur after fruit set; namely, the crop-yield model’s 

requirements for optimal tomato crop growth, and the outside weather. Thus, there is significant benefit to 

having setpoints evolved separately for this stage of plant development. 

 

 

Figure 6.32. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal 

screen. 
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6.4.7 TOutThScrOn 

Figure 6.32 shows trends that are similar to those discussed in Section 6.3.7, where the values are 

predominantly random when global radiation is present due to this setpoint having no impact on 

greenhouse control unless it is nighttime. Moreover, before fruit set occurs, we can clearly see that the 

evolved values for this setpoint did not converge as readily towards 18 degrees Celsius (corresponding to 

the classical Vanthoor strategy). However, the expected values for TOutThScrOn are clearly present in 

TOutThScrOnD_fr and TOutThScrOnE_fr, respectively. Due to how the nighttime period is defined with this 

controller (i.e., beginning at sunset and ending at sunrise), the static definition for the midday time period 

(i.e., after 9am), and the time of year where fruit set typically occurs, TOutThScrOnD_fr was pressured to 

evolve values that are associated with nighttime deployment of the thermal screen. In other words, the 

later times for sunrise typically associated with fall and winter made “proper” values for TOutThScrOnD more 

important. 



103 

 

 

Figure 6.33. This variable determines the upper bound for the dynamic CO2 setpoint used during CO2 injection. 

6.4.8 CO2AirExtMax 

The evolved values shown in Figure 6.33 show trends that are largely similar to those discussed in 

Section 6.3.8. However, before fruit set, there is a marginal decrease in the upper bound of the dynamic 

CO2 setpoint during the daytime (i.e., decreasing CO2AirExtMaxD which is then used in CO2AirExtOn), 

indicating that there is some benefit to changing this upper bound based on both time of day and plant 

development stage (in this case, to help reduce costs from CO2 injection). 
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Figure 6.34. This variable determines the lower bound for the dynamic CO2 setpoint used during CO2 injection. 

6.4.9 CO2AirExtMin 

Figure 6.34 shows trends that are largely similar to those discussed in Section 6.3.9. However, daytime 

values for CO2AirExtMin are marginally higher for high-crop-yield solutions, particularly after fruit set. 

Moreover, the evening setpoint after fruit set (i.e., CO2AirExtMinE_fr) heavily favors values near 260 ppm, 

which is overall higher compared to its counterpart before fruit set occurs. 
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Figure 6.35. This variable determines how quickly 𝑓(𝐼𝐺𝑙𝑜𝑏) is maximized, and subsequently contributes to how quickly the 

dynamic CO2 setpoint is maximized. 

6.4.10 IGlobMax 

Figure 6.35 shows trends that are largely similar to those discussed in Section 6.3.10, with some notable 

exceptions. In particular, the morning value before fruit set occurs (i.e., IGlobMaxM) has a significantly 

higher lower bound, suggesting that it is advantageous to have a much less aggressive CO2 injection 

strategy before fruit set has occurred (since increasing IGlobMax will cause the dynamic CO2 setpoint to be 

maximized more slowly). In contrast, once fruit set has occurred, we can clearly see that a more 
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aggressive CO2 injection strategy is preferred (with IGlobMaxD_fr having the lowest values for high-crop-

yield solutions), suggesting there is a clear benefit to a more straightforward CO2 injection strategy that 

aims for a high setpoint for CO2AirExtOn, rather than a middling value that is used more frequently by 

keeping the greenhouse sealed for longer periods of time. 

 

Figure 6.36. The copies of sr_offset and ss_offset are used to subtract from the current calculated time for sunrise and sunset, 

respectively. 
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6.4.11 Sunrise and Sunset Offsets (sr_offset, ss_offset) 

Here in Section 6.4, we have introduced sunrise and sunset calculations to more accurately determine 

when the greenhouse controller should transition to daytime and nighttime strategies, respectively. In 

addition, we have evolved offsets to be used for both sunrise and sunset to help the controller determine 

how long before sunrise and sunset these transitions in control strategy should occur. That is, how long in 

advance of sunrise the “morning” period begins is a value evolved with the other parameters of the 

controller, and similarly for the sunset offset and the evening period. 

Before fruit set occurs, Figure 6.36 shows there are a wide range of acceptable values for sr_offset that 

yield both low-cost and high-crop-value solutions. This is mainly due to a combination of the warm 

temperatures present at the start of the growing season (August), as well as the current plant development 

stage (i.e., before fruit set). Normally, one would expect this offset to prioritize either a relatively “large” 

or “small” value, since this would indicate that there is an advantage to prolonging or shortening the 

period in which a daytime strategy is applied, respectively. However, the variety of solutions indicates 

that there is little impact in this case. In contrast, sr_offset_fr heavily prioritizes smaller values. In typical 

cases, by October, fruit set has occurred (and thus harvesting begins). Around this time, sunrise begins to 

occur later, outside air temperatures begin to drop, and the daytime periods are shorter (see Figure 6.25). 

Most of the evolved values for sr_offset_fr reflect strategies that try to conserve heat as much as possible 

by extending the time period in which the thermal screen is used (since it is only deployed as part of the 

nighttime strategy). Clearly, the benefits of doing so outweigh the reduction in photosynthetic activity due 

to the thermal screen itself reducing the photosynthetically active radiation available to the plant during 

early hours, as well as the reduced amount of CO2 injection. 

Most of the evolved values for ss_offset are 95 minutes; thus, nighttime control strategies will begin 95 

minutes before the current calculated time for sunset. This is the case for both low-cost and high-crop-

yield value solutions. This suggests that, at least before fruit set occurs, it is not worth spending too much 

energy on maximizing the rate of photosynthesis of the crop as sunset is approaching, even if there is 
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some sunlight remaining. In the case of ss_offset_fr, most values are at 150 minutes, therefore signaling 

an even earlier shift to a nighttime control strategy as sunset approaches. Overall, it shows a similar trend 

to that of ss_offset, except the values are larger overall due to an increased need to conserve heat by using 

the thermal screen for longer periods of time during the fall and winter seasons, which coincide with the 

post-fruit-set timeframe. 

6.4.12 Discussion 

Clearly, the features introduced in this controller yielded some improvements over its predecessor (as 

seen in Figure 6.1). By introducing distinct setpoints to be used before and after fruit set, we have allowed 

the controller to evolve values that are better suited for the needs of the crop in a specific development 

stage and time of year. For example, the pre-fruit-set values used for the dynamic CO2 setpoint (i.e., 

CO2AirExtMax, CO2AirExtMin, and IGlobMax) produce a less aggressive CO2 injection strategy overall compared 

to the previous controllers described in this chapter. In contrast, the post-fruiting values (i.e., 

CO2AirExtMax_fr, CO2AirExtMin_fr, and IGlobMax_fr), generally produce more a more aggressive CO2 injection 

strategy. The pre-fruit-set values for ventilation-related setpoints (i.e., TAirVentOff and TAirVentOn) do not 

prioritize maintaining the greenhouse sealed as much as the prior controllers; they instead allow for the 

greenhouse to be opened conditionally more often by having a gap between TAirVentOff and TAirVentOn (as 

shown in Figure 6.3). In contrast, the post-fruiting values prioritize maintaining the greenhouse sealed for 

longer periods of time. This is especially apparent in TAirVentOffD_fr, where the value of the crop yield 

increases with higher values on this setpoint, which is typical of control strategies that use a combination 

of active cooling and heating to maintain optimal temperature ranges while keeping the greenhouse sealed 

(even in cases where ventilation would be a viable method of cooling the greenhouse). 

It was also clearly beneficial to use sunrise and sunset times to transition between nighttime and daytime 

control strategies (and vice-versa). This feature allows the length of the daytime strategy periods to 

change dynamically, thus providing finer control. In addition, both sunrise and sunset times (decremented 

by their respective offsets) provide a useful reference point: we know these times change daily, which 
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ultimately affects multiple environmental variables (e.g., the available sunlight, the length of the day, 

outside air temperature, etc.). However, this distinction between nighttime and daytime control could be 

better exploited, as the only control action that occurs during nighttime is whether the thermal screen 

(TOutThScrOn) is deployed or not. 

Some evolved setpoints, such as RHAirVentOn and CO2AirVentOn, had little impact on the performance of the 

controller. In practice, we know that humidity control is important to avoid the onset of disease on the 

tomato crop, and that low levels of CO2 concentration in the greenhouse air would also adversely affect 

the growth of the crop. Since it is unlikely that evolving these values further would yield more useful 

information, subsequent controllers will use default values for these setpoints that are known to be 

effective in practice, and in the case of the control strategy discussed in Section 6.6, we also introduce a 

penalty for sub-optimal levels of relative humidity in the greenhouse air. 

6.5 Improved Controller without Penalty for Inadequate Relative Humidity 

6.5.1 Introduction 

This controller uses a combination of the features from the previous controllers, and makes additional 

changes based on areas where the results from the previous evolved controllers suggested there was room 

for improvement: 

1. If TAirVentOff > TAirVentOn, additional logic is added to the greenhouse controller to improve the 

handling of this special case (See Figure 6.38). 

2. Ventilation, boiler, and fogging systems are all assumed to be PID controlled, and their respective 

gain values are all evolved. 

3. TAirVentOn, TAirVentOff, and TAirBoilOn now contain additional copies to be used specifically during the 

nighttime period. 

4. Changes in the greenhouse ventilation (UVent) caused by PID control will use the mean value of 

TAirVentOn and TAirVentOff. 
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5. Setpoints and/or variables that were previously evolved, and subsequently found to have little 

impact on either objective were either removed or had their number of copies reduced. For 

example: RHAirVentOn and CO2AirVentOn have been removed entirely from the chromosome and 

default values found in literature are used instead, with RHAirVentOn = 0.9 and CO2AirVentOn = 200 

ppm [4]. Setpoints like TOutThScrOn showed no tangible benefit from having additional copies based 

on the time of day, so the number of copies has been reduced to two (i.e., one copy is used before 

fruit set and one after fruit set). 

 

Figure 6.37. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also 

dominate the classical Vanthoor strategy are marked in green. 
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Figure 6.38. Simple flowchart describing the handling of the special case of TAirVentOff > TAirVentOn.  

 



112 

 

Table 6.6. Chromosome containing the setpoints used in this controller, with additional features. The total size of the genotype 

consists of 54 integer values. 

Parameter 

Description 

Parameter 

name/symbol 

Unit Genotype 

Value 

Range of Real 

Values 
Temperature above which 

ventilation (Uvent) is on 

TAirVentOnN, TAirVentOnM, 

TAirVentOnD, TAirVentOnE, 

TAirVentOnN_fr, TAirVentOnM_fr, 

TAirVentOnD_fr, TAirVentOnE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Temperature below which 

ventilation is off 

TAirVentOffN, TAirVentOffM, 

TAirVentOffD, TAirVentOffE, 

TAirVentOffN_fr, TAirVentOffM_fr, 

TAirVentOffD_fr, TAirVentOffE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Temperature below which 

the boiler (UBoil) is on 

TAirBoilOnN, TAirBoilOnM, 

TAirBoilOnD, TAirBoilOnE, 

TAirBoilOnN_fr, TAirBoilOnM_fr, 

TAirBoilOnD_fr, TAirBoilOnE_fr 

Degrees (Celsius) [100, 300] [10, 30] 

Nighttime temperature 

below which the thermal 

screen (UThScr) is deployed 

TOutThScrOn, TOutThScrOn_fr Degrees (Celsius) [100, 300] [10, 30] 

Proportional, integral and 

derivative gain values for 

boiler control 

PIDBoilP, PIDBoilI, PIDBoilD, 

PIDBoilP_fr, PIDBoilI_fr, 

PIDBoilD_fr 

(1×105) [10, 100] [10-5, 10-4] 

Proportional, integral and 

derivative gain values for 

fogging system control 

PIDFogP, PIDFogI, PIDFogD, 

PIDFogP_fr, PIDFogI_fr, PIDFogD_fr 

(1×105) [10, 100] [10-5, 10-4] 

Proportional, integral and 

derivative gain values for 

ventilation control 

PIDventP, PIDVentI, PIDVentD, 

PIDVentP_fr, PIDVentI_fr, 

PIDBoilD_fr 

(1×105) [10, 100] [10-5, 10-4] 

Upper bound for dynamic 

CO2 setpoint 

CO2AirExtMax, CO2AirExtMax_fr ppm [2000, 10000] [200, 1000] 

Lower bound for dynamic 

CO2 setpoint 

CO2AirExtMin, CO2AirExtMin_fr ppm [1000, 5000] [100, 500] 

Amount to subtract from 

calculated sunrise time 

sr_offset, sr_offset_fr Minutes [0, 30] [0, 150] 

Amount to subtract from 

calculated sunset time 

ss_offset, ss_offset_fr Minutes [0, 30] [0, 150] 

Global radiation above 

which the dynamic CO2 

setpoint is maximized 

IGlobMax, IGlobMax_fr W/m2 [2000, 10000] [200, 1000] 
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Figure 6.39. This setpoint determines the temperature above which the greenhouse controller will keep the ventilation open. 

6.5.2 TAirVentOn 

Figure 6.39 shows that, compared to the previous controllers covered in this chapter, there are two 

additional copies of this setpoint to account for the nighttime period: TAirVentOnN and TAirVentOnN_fr. While 

TAirVentOnN clearly has a wide range of acceptable values that produce both low-cost and high-crop-value 

solutions, TAirVentOnN_fr prioritizes values at or near 16 degrees Celsius. This value is close to temperatures 

below which a greenhouse would be heated up in practice, so immediately ventilating a greenhouse above 
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such a temperature would not be ideal. However, the corresponding values of TAirVentOffN_fr in the next 

section are slightly greater and thus override TAirVentOnN_fr. However, even in cases where a copy of 

TAirVentOn is overridden by TAirVentOff, it still meaningfully contributes to Pareto-optimal solutions because 

of its use when calculating the reference temperature for the PID-controller-operated ventilation. 

 

Figure 6.40. This setpoint determines the temperature below which the ventilation will always remain closed. 
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6.5.3 TAirVentOff 

Similarly, Figure 6.40 shows there are two new copies of this setpoint: TAirVentOffN and TAirVentOffN_fr. Of 

these two, TAirVentOffN_fr (i.e., the nighttime, post-fruiting setpoint for TAirVentOff) is noteworthy due to all the 

solutions being at or slightly above 18 degrees Celsius. Almost all these values are higher than 

TAirVentOnN_fr in the previous section, creating a control strategy where the greenhouse remains 

unconditionally sealed until the air temperature exceeds the current value of TAirVentOffN_fr. In addition, 

values for TOutThScrOn_fr (covered below in Section 6.5.5) are mostly centered around 17.5 degrees Celsius, 

which overall shows an emphasis on maintaining nighttime greenhouse temperatures at around this range. 

Finally, TAirVentOffM_fr and TAirVentOffD_fr both show a clear trend in which increasing the value of these 

setpoints leads to increased crop yield value. This is consistent with control strategies that prioritize 

keeping the greenhouse sealed at the expense of increased variable costs (from additional cooling, 

heating, and CO2 injection). 
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Figure 6.41. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating. 

6.5.4 TAirBoilOn 

Figure 6.41 shows that the values for this setpoint are largely random before fruit set, although the 

nighttime copy, TAirBoilOnN, has a relatively narrow range of values (mostly between 10 – 18 degrees 

Celsius). Naturally, lower temperatures are preferred during nighttime to reduce plant respiration (as long 

as these temperatures are not low enough to damage the crop). After fruit set, TAirBoilOnN_fr, TAirBoilOnM_fr, 

and TAirBoilOnD_fr all show a clear trend in which higher values for this setpoint lead to higher crop yield 
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values (at the expense of higher variable costs). In the case of TAirBoilOnN_fr, any boiler heating that occurs 

because of this setpoint will be during the nighttime control strategy period, and thus very little to no 

photosynthesis occurs during this time. Therefore, this setpoint contributes to the value of the crop yield 

more indirectly: that is, it is reducing crop growth inhibition due to sub-optimal temperatures, rather than 

helping to maximize the rate of photosynthesis during the daytime. 

 

Figure 6.42. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal 

screen. 

6.5.5 TOutThScrOn 

Figure 6.42 shows that evolved values for TOutThScrOn and TOutThScrOn_fr are largely consistent with those 

from previous controllers discussed in this chapter, with most values being near 18 degrees Celsius. 
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Figure 6.43. PID gain parameters for boiler heating control. 

6.5.6 PIDBoiler 

Figure 6.43 shows that before fruit set, the gain parameters for boiler heating have a wide range of values 

that yield both low-cost and high-crop-value solutions. Notably, the integral gain before fruit set 

(PIDBoilerI) remained consistently low, with most control strategies relying on the proportional gain 

(PIDBoilerP) to provide an initial value that sufficiently heats the greenhouse air. In contrast, the integral 

gain after fruit set (PIDBoilerI_fr) follows a clear trend where higher integral gain results in higher crop yield 
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value. In other words, a high integral gain causes the boiler heating value, UBoil, to reach its maximum 

very quickly. Naturally, this will maximize the output of the boiler heating at the expense of increased 

variable costs. 

 

Figure 6.44. PID gain parameters for fogging system control. 

6.5.7 PIDFog 

Similarly, Figure 6.44 shows that there are a wide range of values for the fogging system’s gain 

parameters which yield both low-cost and high-crop-value solutions. Unlike the boiler and ventilation 
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systems, the restrictions placed on the output of the fogging system force it to operate for limited time 

periods. This translates to many combinations of PID gain parameters being sufficient to meet or exceed 

that limit. If we could operate the fogging system uninterrupted for longer periods of time, the evolved 

gain parameters might show clear patterns. Despite the small effect of these fogging system PID 

parameters, it is well known that excessively high levels of humidity can lead to disease in the crop [49], 

and salt content in the fogging system’s water reservoir can cause burns on the leaves of the crop [42]. 

However, since these adverse effects are not implemented in the combined microclimate-crop-yield 

model, it is preferable to maintain best practices that aim to avoid these problems altogether. 
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Figure 6.45. PID gain parameters for greenhouse ventilation control. 

6.5.8 PIDVent 

Once again, Figure 6.45 shows that there are a wide range of values for the ventilation system’s gain 

parameters which yield both low-cost and high-crop-value solutions. However, most values for PIDVentI_fr 

are on the lower end (with 10 being the lowest possible value), suggesting that at least after fruit set 

occurs there is some benefit to lowering the integral gain, thus somewhat slowing down the rate at which 

the greenhouse ventilation fully opens. Since most of the post-fruit-set period takes place during the 
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winter and spring seasons (with accompanying colder outside air temperatures), it stands to reason that 

there is an advantage to controlling greenhouse ventilation openings more carefully. 

 

Figure 6.46. The copies of sr_offset and ss_offset are used to subtract from the current calculated time for sunrise and sunset, 

respectively. 

6.5.9 Sunrise and Sunset Offsets (sr_offset, ss_offset) 

Figure 6.46 shows values that follow largely similar trends to those discussed in Section 6.4.11. The 

offset applied to the current sunrise time (sr_offset) is largely random, while its post-fruit-set counterpart 

(sr_offset_fr) is heavily biased towards 0.The offset applied to the current sunset time (ss_offset) has 
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many values at or near 75 minutes, while its post-fruit-set counterpart has most of its values at or near 150 

minutes. Despite there being three additional setpoints with distinct nighttime values compared to 

previous controllers (i.e., TAirVentOnN, TAirVentOffN, TAirBoilOnN), the trends shown by these offsets still reflect 

an overall strategy that aims to conserve heat as much as possible by extending the time period in which 

the thermal screen is used (since it is only used during nighttime).  

Unlike the previous controller in Section 6.4.11, sr_offset_fr and ss_offset_fr show clusters of extreme 

values at 85 minutes and 75 minutes, respectively. Both offsets would serve to extend the total duration of 

the daytime control strategy period relative to the other non-dominated solutions. Naturally, extending the 

time period in which a daytime strategy is applied will result in increased variable costs (particularly 

when prioritizing crop yield value), since more active cooling and/or heating measures, as well as CO2 

injection, are expected to take place to maximize the rate of photosynthesis of the crop. 

 

Figure 6.47. This variable determines the upper bound for the dynamic CO2 setpoint used during CO2 injection. 

6.5.10 CO2AirExtMax 

Figure 6.47 shows that, while CO2AirExtMax has a wide range of values with no clear pattern, CO2AirExtMax_fr 

clearly shows a pattern of increasing crop yield value as it also increases. This shows that the dynamic 

CO2 setpoint, CO2AirExtOn, is being reached many times during the post-fruit-set period and that its upper 
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bound, CO2AirExtMax_fr, has a significant impact on the crop yield value. Since most of the post-fruit-set 

period takes place during the fall and winter seasons, the accompanying lower temperatures (as well as 

proper evolved values for setpoints pertaining to temperature control) allow the greenhouse to remain 

sealed, allowing for CO2 injection to occur uninhibited. 

 

Figure 6.48. This variable determines the lower bound for the dynamic CO2 setpoint used during CO2 injection. 

6.5.11 CO2AirExtMin 

Similar to CO2AirExtMax in Section 6.5.10, CO2AirExtMin in Figure 6.48 shows a wide range of values with no 

clear pattern before fruit set. After fruit set occurs, the crop yield generally increases with increasing 

CO2AirExtMin_fr. 
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Figure 6.49. This variable determines how quickly 𝑓(𝐼𝐺𝑙𝑜𝑏) is maximized, and subsequently contributes to how quickly the 

dynamic CO2 setpoint is maximized. 

6.5.12 IGlobMax 

Figure 6.49 shows that IGlobMax contains a relatively wide range of values that yield both low-cost and 

high-crop-value solutions, although most are within the 600 – 900 W/m2 range. Even though a higher 

value for IGlobMax will cause f(IGlob) to be maximized more slowly (thus causing the dynamic CO2 setpoint 

to be maximized more slowly), one would normally expect a relatively high value of IGobMax to translate to 

lower crop yield value and/or lower variable costs due to the reduction in CO2 injection. However, CO2 

injection does not have enough of an impact on the crop yield value before fruit set occurs, which results 

in the wide range of values of IGlobMax that yield solutions with both low and high crop yield values. 

After fruit set occurs, most solutions of IGlobMax_fr follow a trend where a decrease in this variable tends to 

increase the crop yield value. This is consistent with the other evolved variables used to calculate the 

dynamic CO2 setpoint in this section (CO2AirExtMax and CO2AirExtMin), in that changing these variables to 

increase the dynamic CO2 setpoint will tend to increase the value of the crop yield at the expense of 

increased variable costs. 
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6.5.13 Discussion 

One of the main disadvantages of the previous controllers was the lack of distinct setpoints for a 

nighttime strategy, resulting in situations where morning (M) and evening (E) copies of a setpoint needed 

to contain values that were appropriate for both the time period it was defined for, as well as for a portion 

of what would be considered nighttime for purposes of deploying the thermal screen. This is due to how 

the morning and evening periods are defined (see Table 6.4) and the controller still requiring setpoints to 

be defined for typical greenhouse control purposes during nighttime (e.g., using boiler heating to heat up 

the greenhouse). Thus, introducing distinct nighttime copies for each setpoint where this occurred “freed 

up” these setpoints to be used strictly for the time period for which they were defined, leading to overall 

better results. 

The most notable effect of introducing distinct nighttime setpoints (where applicable) could be observed 

after fruit set, where TAirVentOnN_fr, TAirVentOffN_fr, TAirBoilOnN_fr and TOutThScrOn_fr formed many sets of values 

centered around maintaining temperatures near the TOutThScrOn_fr setpoint. In most cases, for a given value 

of TOutThScrOn_fr, there is an accompanying pair of values of TAirVentOnN_fr and TAirVentOffN_fr that are slightly 

greater, as well as a value of TAirBoilOnN_fr that is lower. This is consistent with the nighttime temperatures 

that the classical Vanthoor strategy aims to maintain, as well as the setpoint values used to achieve these 

results. 

The addition of PID control to greenhouse ventilation had some benefits. In particular the post-fruit-set 

integral gain (PIDVentI_fr) is overall lower compared to its pre-fruit-set counterpart (PIDVentI), indicating 

that there is some benefit to slowing down the rate at which the ventilation fully opens after fruit set 

occurs. While it was not detrimental, a PID-controlled fogging system did not seem to provide a tangible 

benefit, mainly due to the restrictions present to prevent the overuse that is known to cause adverse effects 

in practice. In the case of boiler heating, it was always PID controlled (with gain parameters pre-

determined to approximate the fuel consumption of the classical Vanthoor strategy), thus the main change 

was in allowing its gain parameters to be evolved. The pre-fruit-set integral gain (PIDBoilerI) prioritized 
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lower values overall, thus slowing down the rate at which the boiler heating is maximized for most 

solutions. In contrast, the post-fruit-set integral gain (PIDBoilerI_fr) followed a trend where higher values for 

this gain result in increased crop yield value (at the expense of increased variable costs due to the more 

aggressive heating that results). 

One of the disadvantages observed in previous sections was the lack of penalties on either crop growth or 

crop yield value due to inadequate levels of relative humidity. This is most apparent in the evolved values 

for the TAirVentOn and TAirVentOff setpoints. In the classical Vanthoor strategy, most of the humidity control 

occurs when greenhouse air temperatures are between TAirVentOn and TAirVentOff, ventilating the greenhouse 

when the greenhouse air is above a relative humidity threshold. However, when these values are evolved, 

the gap that allows for this check to occur is typically eliminated. The next section will cover the same 

control strategy discussed in this section except that, importantly, a crop value penalty for sub-optimal 

levels of relative humidity is added. 

6.6 Same Improved Controller with Penalty for Inadequate Relative Humidity 

6.6.1 Introduction 

This control strategy is identical to the one described in Section 6.5, but a penalty has been introduced for 

sub-optimal levels of relative humidity in the greenhouse air. This aims to reflect the real-world valuation 

of tomato crops, in which tomato growth and development, fungal contamination, and other problems are 

associated with sub-optimal relative humidity. The penalty consists of two trapezoid functions [4]. The 

first function determines the fraction of first-class tomatoes based on the 24-hour mean value of the vapor 

pressure deficit (VPD24) between the canopy and the greenhouse air. The second function determines the 

fraction of marketable tomatoes based on the 48-hour mean value of the relative humidity (RH48) of the 

greenhouse air. This only impacts the resulting crop yield value, and therefore has no effect on the 

microclimate-crop yield model. However, this still induces significant changes in evolved control 

strategies: if a hypothetical greenhouse controller were to fail to maintain an acceptable range for either 

VPD24 or RH48, the entire crop could end up having no monetary value. It is expected that 1) using the 
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same evolved solutions as the previous section will yield sub-optimal results, and 2) evolving setpoints 

once more under a modified economic model should mitigate the effects of the penalty introduced in this 

section. Therefore, the main goal of this section is to observe and discuss notable changes in the overall 

behavior of the evolved controller, rather than examining the change in magnitude for each objective. 

Figure 6.50 contains the Pareto-optimal front that results from adding this penalty, with the classical 

Vanthoor strategy also being subject to said penalty. 

 

Figure 6.50. Pareto-optimal front for the control strategy discussed in this section. Solutions from this Pareto front which also 

dominate the classical Vanthoor strategy are marked in green. 

6.6.2 TAirVentOn and TAirVentOff 

The addition of a crop value penalty changed the range of values considerably for both TAirVentOn and 

TAirVentOff. In this section, these setpoints will be plotted together to show the overall change in these pairs 

of values before and after introducing the crop value penalty. Due to the large number of control 

strategies contained in each Pareto-optimal front, we will only examine solutions which dominate the 

classical Vanthoor strategy (see Figure 6.50). In addition, since the behavior of the controller changes 



129 

 

significantly depending on which of these two values are greater (i.e., whether TAirVentOn > TAirVentOff or 

TAirVentOff > TAirVentOn), they will be marked accordingly in Figure 6.51, Figure 6.52, Figure 6.53, and 

Figure 6.54. 

 

Figure 6.51. Evolved nighttime setpoints for TAirVentOn and TAirVentOff. The effects of adding a crop value penalty on the resulting 

evolved setpoints are examined (right) and compared with the same setpoints without the crop value penalty (left). Red values are 

cases when TAirVentOn is greater than TAirVentOff. 

6.6.2.1 Nighttime Setpoints 

Figure 6.51 shows that, with the addition of a crop value penalty, the average temperature of the nighttime 

setpoints (TAirVentOn and TAirVentOff) lowered significantly. In addition, there are significantly more instances 

in which TAirVentOn is greater than TAirVentOff (red pairs of values on the upper right). Many of these pairs of 

values have relatively large temperature gaps between them which allow the control strategy to open 

ventilation conditionally for purposes of humidity control. Based on the classical Vanthoor strategy, a 

temperature gap of 3 degrees Celsius is typical (TAirVentOn = 23, TAirVentOff = 20), and many of these evolved 

pairs form similarly sized gaps, with some exceptions. 

After fruit set occurs, the addition of a crop value penalty causes the average temperature of the nighttime 

setpoints (TAirVentOn_fr and TAirVentOff_Fr) to increase significantly. Moreover, most solutions develop 
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instances in which TAirVentOn is greater than TAirVentOff (as seen in Figure 6.51, red pairs of values on the 

lower right).  

Overall, the addition of a crop value penalty produced nighttime setpoints which emphasize ventilating 

the greenhouse for purposes of reducing the relative humidity of the greenhouse air. TAirVentOn and 

TAirVentOff had lower average temperatures which resulted in a control strategy that would ventilate the 

greenhouse quite often, especially during August where the outside air temperature is much warmer (see 

Figure 6.25). After fruit set, TAirVentOnN_fr and TAirVentOffN_fr both emphasize ventilation for purposes of 

relative humidity control, although the average temperatures are higher. By the time this stage of plant 

development is reached (typically around October), average outside air temperatures will have dropped 

significantly, and thus ventilating the greenhouse will rapidly cool the greenhouse air to sub-optimal 

temperature ranges for plant growth. 

 

Figure 6.52. Evolved morning setpoints for TAirVentOn and TAirVentOff. The effects of adding a crop value penalty on the resulting 

evolved setpoints are examined (right) and compared with the same setpoints without the crop value penalty (left). Red values are 

cases when TAirVentOn is greater than TAirVentOff. 
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6.6.2.2 Morning Setpoints 

Figure 6.52 shows that, before fruit set, the addition of a crop value penalty increased the both the average 

temperature and the occurrence of setpoints in which TAirVentOffM is greater than TAirVentOnM, thus resulting 

in most control strategies not ventilating the greenhouse for purposes of humidity control. There clearly is 

not enough of an incentive to decrease relative humidity during this time period, and the benefits of 

maintaining the greenhouse closed to take advantage of CO2 injection in the presence of global radiation 

outweigh the crop value penalties from sub-optimal levels of relative humidity. This can be further 

exacerbated when outside air temperatures are low enough during this period that using the fogging 

system is mostly unnecessary for cooling down the greenhouse. 

After fruit set, the addition of a crop value penalty increased the average temperature, with most control 

strategies containing values in which TAirVentOnM_fr is greater than TAirVentOffM_fr. This results in most of the 

control strategies ventilating the greenhouse often for purposes of humidity control. In addition, the 

values for many pairs of TAirVentOnM_fr and TAirVentoffM_fr mirror those of the classical Vanthoor strategy (i.e., 

TAirVentOn = 23 and TAirVentOff = 20), indicating that, at least for this time period, these values are effective 

for both high-crop-value and low-cost solutions. 
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Figure 6.53. Evolved midday setpoints for TAirVentOn and TAirVentOff. The effects of adding a crop value penalty on the resulting 

evolved setpoints are examined (right) and compared with the same setpoints without the crop value penalty (left). Red values are 

cases when TAirVentOn is greater than TAirVentOff. 

6.6.2.3 Midday Setpoints 

Figure 6.53 shows that, before fruit set, the addition of a crop value penalty increased the average 

temperatures for both TAirVentOnD and TAirVentOffD, with most pairs of values allowing ventilation of the 

greenhouse for humidity control. Pairs of values which did not allow this kind of humidity control had 

lower temperature setpoints overall, suggesting that in the absence of the ability to open the greenhouse 

ventilation conditionally based on humidity levels, a lower temperature setpoint for opening the 

greenhouse ventilation unconditionally can work as an alternative. 

After fruit set, the addition of a crop value penalty decreased the average temperatures for both 

TAirVentOnD_fr and TAirVentOffD_fr. Most of these pairs of values do not allow ventilating the greenhouse for 

humidity control, instead opting for opening (and closing) greenhouse ventilation unconditionally at a 

relatively low setpoint of around 17 degrees Celsius. Despite the cooler outside temperatures present after 

fruit set occurs, this results in some ventilation during the midday period (particularly when global 

radiation is at its peak), while keeping the greenhouse sealed and its air temperature as close to 17 degrees 

Celsius as possible otherwise. At a setpoint of around 17 degrees Celsius, this is slightly below the 



133 

 

optimal 24-hour mean canopy temperature range for the crop, which is 18 – 22 degrees Celsius [4]. 

However, due to the higher average temperature setpoints during the nighttime, morning, and evening 

periods (coming up in Section 6.6.2.4), the 24-hour mean canopy temperature remains at or above 18 

degrees Celsius, helping prevent tomato crop growth inhibition. 

 

Figure 6.54. Evolved evening setpoints for TAirVentOn and TAirVentOff. The effects of adding a crop value penalty on the resulting 

evolved setpoints are examined (right) and compared with the same setpoints without the crop value penalty (left). Red values are 

cases when TAirVentOn is greater than TAirVentOff. 

6.6.2.4 Evening Setpoints 

Figure 6.54 shows that, before fruit set, the addition of a crop value penalty significantly increased the 

instances in which these setpoints allowed ventilation of the greenhouse for purposes of humidity control. 

Most of these setpoints allow the controller to open the greenhouse ventilation unconditionally at a lower 

temperature compared to its midday counterpart (i.e., TAirVentOnD and TAirVentOffD) which suggests that, in 

most cases, it is beneficial to open the greenhouse ventilation more frequently once the levels of 

photosynthetically active radiation and outside air temperatures begin to drop (since the costs associated 

with CO2 injection and managing higher canopy temperatures for maximizing photosynthesis become an 

unacceptable tradeoff). 
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After fruit set, the addition of a crop value penalty also significantly increased the instances in which 

greenhouse ventilation occurs for purposes of humidity control. However, most of these setpoints form a 

narrow temperature range that allows for this to occur, around 17 – 18 degrees Celsius. In contrast, the 

values for its midday counterpart (i.e., TAirVentOnD_fr and TAirVentOffD_fr) only allow for the greenhouse 

ventilation to unconditionally open and close when above and below 17 degrees Celsius, respectively, in 

most cases. This suggests that, once the evening period begins during the post-fruit-set period, it is 

beneficial to start reducing the frequency with which a control strategy opens the greenhouse ventilation, 

albeit by a very slight amount. Based on the post-fruit-set nighttime setpoints displayed in Figure 6.51 we 

can see that this culminates in an evening-to-nighttime transition during which these nighttime 

temperature setpoints (i.e., TAirVentOnN_fr and TAirVentOffN_fr) increase significantly to conserve heat by 

reducing overall ventilation, while  still maintaining a temperature range in which ventilation can still 

occur for purposes of humidity control. 
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Figure 6.55. This setpoint determines the temperature below which the greenhouse controller will turn on the boiler heating. 

6.6.3 TAirBoilOn 

Figure 6.55 shows that, before fruit set, the evolved values for this setpoint did not change considerably 

with the addition of a crop value penalty, with a wide range of values producing both high-crop-value and 

low-cost solutions. Most notably, the midday setpoint (i.e., TAirBoilOnD), has a narrower range of around 16 

– 24 degrees Celsius compared to these same setpoints evolved without the crop value penalty (around 10 

– 28 degrees Celsius). Due to the high average outside air temperatures present before fruit set (see Figure 
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6.25), even a relatively high setpoint for the boiler was not correlated with increased crop yield value 

and/or variable costs. 

After fruit set, the evolved values for this setpoint show largely similar trends to those discussed in 

Section 6.5.4: that is, increasing the nighttime, morning, and midday setpoints also tends to increase the 

value of the crop yield (at the expense of increased variable costs), suggesting that introducing the crop 

value penalty did not significantly alter the role of this setpoint overall. 

 

Figure 6.56. This setpoint determines the outside temperature below which the greenhouse controller will deploy the thermal 

screen. 

6.6.4 TOutThScrOn 

Figure 6.56 shows that the evolved values for TOutThScrOn and TOutThScrOn_fr are largely consistent with those 

from previous controllers discussed in this chapter, although TOutThScrOn contains values which are lower 

on average compared to those discussed in Section 6.5.5. 
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Figure 6.57. PID gain parameters for boiler heating control. 

6.6.5 PIDBoiler 

Figure 6.57 shows that, before fruit set, the gain parameters for boiler heating show largely similar trends, 

except for the integral gain (i.e., PIDBoilerI) which contains much larger values on average compared to its 

counterpart in Section 6.5.6. While the introduction of a crop value penalty did not affect the overall 

“intent” behind the evolved gain parameters, this difference in the integral gain values suggest that a 

wider range of values for the integral gain were acceptable when in conjunction with the evolved values 
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for TAirVentOn and TAirVentOff discussed earlier in Section 6.6.2 (since changes in the setpoints for greenhouse 

ventilation will also affect the frequency and output necessary for the boiler heating to maintain optimal 

temperature ranges for the tomato crop). 

After fruit set, most control strategies favor a stronger proportional response compared to its counterpart 

without the crop value penalty (see Section 6.5.6). This is especially true for solutions which dominate the 

classical Vanthoor strategy, with very few control strategies using a value of PIDBoilerP_fr that is below 50. 

The integral gain (i.e., PIDBoilerI_fr) follows a largely similar trend even with the introduction of a crop 

value penalty, indicating that increasing the rate at which the output of the boiler is maximized also 

increases the value of the crop yield (at the expense of increased variable costs). 
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Figure 6.58. PID gain parameters for fogging system control. 

6.6.6 PIDFog 

Figure 6.58 shows that, before fruit set, the gain parameters for the fogging system show largely similar 

trends to their counterparts without the crop value penalty in Section 6.5.7, with the exception of the 

proportional gain (i.e., PIDFogP). Most of these proportional gain values became significantly lower with 

the introduction of a crop value penalty, indicating that in many cases, a slower initial response from the 

fogging system was needed as a result. 
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After fruit set, both proportional and integral gain (i.e., PIDFogP_fr and PIDFogI_fr) increased overall with the 

introduction of a crop value penalty; therefore, a control strategy in which the fogging system maximizes 

its output very quickly is preferred. 

 

Figure 6.59. PID gain parameters for greenhouse ventilation control. 

6.6.7 PIDVent 

Figure 6.59 shows that, before fruit set, the introduction of a crop value penalty significantly increased 

both proportional and integral gain parameters (i.e., PIDVentP and PIDVentI) on average. This results in 
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control strategies which maximize the greenhouse ventilation openings almost immediately, and that such 

behavior is preferred now indicates that the crop value penalty introduced a need for much more frequent 

ventilation for purposes of humidity control. 

After fruit set, the gain values show largely similar trends, with the integral gain (i.e., PIDVentI_fr) showing 

a more narrow range of values (around 15 – 45) compared to its counterpart without the crop value 

penalty in Section 6.5.8 (around 10 – 70). Similarly, it shows that most control strategies favor a slower 

rate at which ventilation openings are maximized. 
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Figure 6.60. The copies of sr_offset and ss_offset are used to subtract from the current calculated time for sunrise and sunset, 

respectively. 

6.6.8 Sunrise and Sunset Offsets (sr_offset, ss_offset) 

Figure 6.60 shows that, before fruit set, most of the evolved values for sr_offset and ss_offset contain 

similar trends to those discussed in Section 6.5.9, where there are a wide range of values which produce 

both high-crop-yield and low-cost solutions. However, some of these values do not “settle” in the same 

regions (e.g., ss_offset with the crop value penalty has a large number of values near 30 minutes, while 

ss_offset without said penalty does not), suggesting that the crop value penalty’s effect on the overall 
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control strategy (i.e., setpoints for TAirVentOn and TAirVentOff that prioritize humidity control) required these 

offsets to change to some extent to maximize their efficacy. 

After fruit set, the evolved values for sr_offset_fr and ss_offset_fr show trends that are nearly identical to 

those discussed in Section 6.5.9 even with the introduction of a crop value penalty, suggesting that the 

overall strategy of reducing the time in which morning and evening setpoints are used remains efficient 

for this stage of plant development. Moreover, reducing the value of ss_offset_fr to as low 95 minutes can 

result in a marginal increase in crop yield (at the expense of increased variable costs). 

 

 Figure 6.61. This variable determines the upper bound for the dynamic CO2 setpoint used during CO2 injection.  

6.6.9 CO2AirExtMax 

Figure 6.61 shows that, before fruit set, the evolved values for CO2AirExtMax did not change significantly 

with the addition of the crop value penalty and shows a wide range of values that produce both high-crop-

value and low-cost solutions. This trend is expected, as most of the strategies discussed in earlier sections 

did not typically meet the upper bound for the CO2 setpoint due to the frequency in which ventilation is 

needed during this warmer period. The introduction of a crop value penalty only reinforces this trend due 

to the additional ventilation that occurs for purposes of humidity control. 
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After fruit set, the evolved values for CO2AirExtMax_fr show a similar trend to the one described in Section 

6.5.10, where an increase in this value also tends to increase the value of the crop yield. However, this 

trend is much less pronounced, and suggests that the increase in ventilation that occurred thanks to the 

crop value penalty limits the ability of the greenhouse controller to find the right conditions to enable CO2 

injection, as well as reaching the upper bound of the CO2 setpoint defined by CO2AirExtMax_fr when CO2 

injection does occur.  

 

Figure 6.62. This variable determines the lower bound for the dynamic CO2 setpoint used during CO2 injection. 

6.6.10 CO2AirExtMin 

Figure 6.62 shows that the evolved values for this variable are consistent with those of previous 

controllers discussed in this chapter. After fruit set occurs, CO2AirExtMin_fr shows a significantly less 

pronounced trend of increasing as the value of the crop yield also increases, similar to CO2AirExtMax_fr as 

described in Section 6.6.9. 
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Figure 6.63. This variable determines how quickly 𝑓(𝐼𝐺𝑙𝑜𝑏) is maximized, and subsequently contributes to how quickly the 

dynamic CO2 setpoint is maximized. 

6.6.11 IGlobMax 

Figure 6.63 shows that, before fruit set, the addition of a crop value penalty significantly reduced the 

evolved values for IGlobMax, with most of them being at or near 350 W/m2. This indicates that, in the 

presence of increased ventilation requirements for humidity control (and subsequently, a reduction in the 

frequency in which CO2 injection is possible), maximizing the dynamic CO2 setpoint (i.e., CO2AirExtOn) at 

lower levels of global radiation is preferable.  

After fruit set, the evolved values for IGlobMax_fr reflect nearly identical trends to those described in Section 

6.5.12, where a decrease in this variable tends to increase the crop yield value (at the expense of increased 

variable costs). 

6.6.12 Discussion 

Overall, a crop value penalty resulted in some major differences in the genotypes of the evolved control 

strategies, especially after fruit set occurs. Most of these differences translated into control strategies that 

prioritize opening the greenhouse ventilation conditionally based on supra-optimal levels of relative 

humidity. Some time periods did not evolve setpoints that provide as much humidity control as one would 
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normally expect (e.g., TAirVentOnD_fr and TAirVentOffD_fr), and instead rely on the other time periods to perform 

more aggressive humidity control to compensate. This provides an opportunity for the greenhouse to 

remain sealed more often during the midday period, thus providing more chances for CO2 injection to 

occur uninhibited in times where global radiation is expected to be at its peak. Other genotype values 

evolved to accommodate the overall increase in ventilation required for producing Pareto-optimal 

solutions (e.g., IGlobMax evolved values that are overall lower).  

Based on the crop value penalty that was introduced, there were distinct changes that were observed in the 

control strategies discussed in Section 6.6. Relative humidity management became a lot more important, 

although the results show that evolved control strategies did not always need to check for sub-optimal 

levels of relative humidity to do so: it is also possible to simply choose temperature setpoints that are low 

enough that the greenhouse ventilation will open unconditionally. In addition, given the current model for 

crop value penalty, there were control strategies that simply allow some of the midday periods to have 

sub-optimal levels of relative humidity in exchange for a higher rate of photosynthesis (by keeping the 

greenhouse sealed and injecting CO2), and only doing tighter relative humidity control during the 

nighttime, morning or evening periods.  

6.7 Conclusions 

The goal of this chapter was fulfilled, which is to explore the behavior exhibited by the evolved control 

strategies described in this thesis, as well as to obtain useful information from the evolved genotypes. The 

control strategies described in this section are initially based on the classical Vanthoor strategy described 

in his thesis [4], with each iteration adding complexity to the controller logic itself. This iterative process 

was valuable in determining the effects and overall efficacy of certain features (e.g., time-based 

partitioning). 

Using the classical Vanthoor strategy as reference, evolving the setpoints instead of using the default 

values yielded some improvements. This much is expected, as this classical Vanthoor strategy is not 

presented as an optimal strategy; rather, it is a control strategy that would be typical of the locale that was 
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chosen (Almería, Spain) that worked sufficiently well for their study involving the optimization of 

greenhouse design elements, rather than greenhouse operating parameters. Without making any changes 

to the controller logic itself, this essentially serves as a method to recalibrate setpoints based on historical 

weather data. While this clearly has its benefits, it is also extremely computationally intensive, as it 

requires around 24 hours to optimize these setpoints for 100 generations using the currently available 

resources, which allows us to run 40 instances of the microclimate-crop-yield model in parallel. This 

makes it impractical to use in an online setting (i.e., for optimizing setpoints in an already deployed 

greenhouse). Therefore, this is better suited for greenhouse control optimization to aid the grower in early 

stages of planning before committing to making significant financial investments. 

Allowing for setpoints to change based on the time of day was clearly beneficial. Although ideal 

conditions for the tomato crop are a well-studied subject, obtaining a greenhouse control strategy that can 

efficiently reach and maintain these conditions is still extremely difficult, and is further exacerbated by 

the unpredictability of the weather. By dividing the setpoints into several distinct copies based on the time 

of day, we allow these setpoints to evolve into values which are better suited for these time periods. 

Despite the unpredictability of the weather, we can still surmise that there are several major time periods 

in which we can expect a shift in control strategy: nighttime, morning, midday, and evening. The results 

in Figure 6.1 show that adding this time-partitioning feature yields superior Pareto-optimal solutions 

overall compared to control strategies without that feature. 

Allowing distinct setpoints based on two main stages of plant development (i.e., before and after fruit set) 

provided significant benefits. Before fruit set, some of the main requirements of the tomato crop include 

maintaining an acceptable level for the 24-hour mean canopy temperature and reaching the temperature 

sum threshold for fruit set to occur. After fruit set, the greenhouse controller must maintain acceptable 

levels for both instantaneous and 24-hour mean canopy temperatures, as well as increasing the canopy 

temperature sum up to a maximum amount (after which the rate of fruit growth will be maximized). 

Failure to meet these canopy temperature requirements will result in complete crop growth inhibition in 
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extreme cases (by halting all carbohydrate generation from photosynthesis). Although these requirements 

are similar before and after fruit set, the addition of sub-optimal instantaneous canopy temperatures as a 

source of crop growth inhibition after fruit set (as well as seasonal weather differences) still create distinct 

enough conditions that evolving separate values for this stage of plant development was justifiable. 

Introducing sunrise and sunset calculations, as well as offsets for each of these calculations, was also 

beneficial. The less complex controllers discussed in this chapter used fixed transition points between 

nighttime and daytime (and vice versa) and could not account for basic weather patterns that could 

normally be exploited. Ideally, these offsets should have the ability to be dynamic as well (based on 

current environmental conditions or other properties of the greenhouse controller), but these offsets were 

still beneficial in their current state due to allowing for control strategies to adjust the overall duration of 

nighttime and daytime control strategies. 

Prior to adding to the controllers the capability to evolve boiler PID gain values, the boiler would operate 

under fixed, predetermined gain values in order to approximate the fuel consumption of the classical 

Vanthoor strategy. When allowed to evolve, many control strategies had gain values which provided a 

noticeable improvement in the boiler’s ability to maintain optimal temperature ranges for the crop, thus 

improving the value of the crop yield. This naturally comes with a respective increase in variable costs 

(associated with fuel consumption) but creating distinct copies of these values based on whether fruit set 

has occurred or not helped to minimize the impact of this variable cost increase. 

By introducing PID-controlled behavior to both ventilation and fogging systems, we observed significant 

differences in the overall behavior compared to their original operating modes (i.e., fully on or fully off). 

In addition, having distinct copies of these values based on whether fruit set has occurred or not allowed 

for the behavior of these systems to be “customized” to better suit the current season and plant 

development stage. However, since the benefits were not as substantial when compared to evolving the 

boiler control’s PID gain values, future studies including both fixed and variable costs associated with 

adding this PID-controlled functionality may affect its economic viability. 
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It was clearly beneficial to adjust the transition points of nighttime control strategies to daytime strategies 

(and vice versa) based on sunrise and sunset times. Further improvements could likely be achieved by 

allowing the other transition points (i.e., morning to midday, and midday to evening) to be dynamic as 

well. Lastly, much like the dynamic CO2 setpoint (CO2AirExtOn) described in Eq. (6.1), other setpoints may 

be improved by allowing them to change dynamically based on current environmental conditions. The 

overall behavior displayed by the evolved control strategies in this chapter can be a useful starting point 

to determine their development, although caution is still needed to make sure any novel control strategies 

do not violate known best practices for humidity control during all stages of plant growth. 
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7 Metrics for Decision Making 

7.1 Introduction 

The goal of this chapter is to briefly summarize various performance metrics for narrowing down the 

number of control strategies that may suit the needs of a grower. Due to the multi-objective optimization 

approach used in this thesis, the number of solutions available can be unwieldy and challenging to 

interpret, so various methods are proposed for narrowing the choices down among a set of Pareto-optimal 

solutions. In addition, we briefly discuss a method for comparing the performance of newly developed 

control strategies against other ones by calculating their hypervolumes.  

For purposes of this chapter, the crop value penalty described in Section 6.6 is not included in the 

economic model output, since it does not affect the methodology behind the performance metrics 

described in the following sections. The sections are presented as follows: 

Section 7.2: Net Financial Result (NFR) 

Section 7.3: Normalized Hypervolume Between Controllers 

Section 7.4: Robustness Against Unknown Weather Data 

Section 7.5: Robustness Against Genotype Perturbations 
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Figure 7.1. Example Pareto fronts of all the control strategies described in this thesis, compared with the classical Vanthoor 

strategy. All control strategies were evolved for 100 generations. 

7.2 Net Financial Result (NFR) 

The most straightforward method to filter out results from a Pareto front for this problem is to use a 

scalarization that aggregates the results of the two objectives into a single number, net financial result 

(NFR). Defined in Eq. (5.1), this consists of the sum of the fixed costs and the two objectives used for 

multi-objective optimization throughout this thesis (i.e., the variable costs and crop yield value/crop yield 

economic return).  

Table 7.1. Economic model output for the four main greenhouse controller types described in this thesis. 

Control 

Strategy Type 

Mean NFR 

(euros/m2×year) 

Median NFR Standard 

Deviation 

Highest 

NFR 

Lowest 

NFR 
NTP -1.351 -1.125 0.235 -1.059 -1.948 

TP -1.183 -1.162 0.324 -0.786 -1.891 

TP+ -0.584 -0.424 0.5 -0.089 -1.947 

TP++ 0.055 0.407 0.747 0.783 -1.853 
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Based on Table 7.1, it is clear that the last control strategy (TP++) is preferable: most of the available 

solutions will be profitable, and solutions with the same NFR as less complex controllers will provide 

better tradeoffs between the two main objectives; that is, for a given NFR, the more complex controller 

can provide higher crop value yield or lower variable costs, as seen in Figure 7.1.  

There are some clear drawbacks to this method. Since the two objectives are “flattened” into a single 

objective, useful information can be lost in the process. Broadly speaking, it can be beneficial to consider 

whether the resulting NFR is due to control strategies producing an exceptionally high crop yield value at 

the expense of increased variable costs (or, conversely, exceptionally low variable costs while sacrificing 

some crop yield value). This economic model also does not consider constraints a grower might encounter 

in practice. For example, minimum (or maximum) crop yield requirements for meeting current demands 

are not considered, and it is assumed that any quantity/quality of crop yield is acceptable (unless the crop 

value penalty in Section 6.6 is used, in which case a percentage of the crop yield will be rendered 

unmarketable if relative humidity control is inadequate). All other factors that contribute to variable costs, 

such as fossil fuel, CO2, water, and labor are also not limited. It would be possible to break these factors 

apart and make this a many-objective optimization problem; it would also be possible to do a sensitivity 

analysis of how these factors influence the crop yield value/variable cost tradeoffs. However, both are 

beyond the scope of the current work. 

Despite these drawbacks, a grower could circumvent them with sufficient knowledge of the available 

resources to invest in a greenhouse. This way, constraints can be defined for all components that make up 

the variable costs and/or crop yield value can be included in the economic model. Since much of the 

information necessary to apply these constraints will be highly dependent on the location, greenhouse 

design, as well as myriad other factors, a more generic approach was presented here instead. 
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7.3 Normalized Hypervolume Between Controller Types 

 

Figure 7.2. Example of normalized hypervolumes for each evolved controller described in this thesis, calculated every 

generation. 

Given a theoretical ideal point and anti-ideal (or nadir) point, we can calculate the hypervolume for a 

given Pareto front: for two objectives, it is the area of the two-dimensional polygon created between a 

Pareto front and the nadir point. This provides a method to summarize the overall efficacy of a population 

of evolved control strategies. However, this can have similar drawbacks to relying on NFR like in Section 

7.2, and unlike NFR, it does not provide a value that can easily tell a decision maker whether a particular 

control strategy is viable or not. That said, this can still be a valuable tool for comparing different types of 

greenhouse controllers, particularly to determine whether or not a feature introduced in a novel controller 

is currently outperforming (or can eventually outperform) older and/or simpler controllers. It is one means 

of quantifying the differences between two Pareto fronts—i.e., comparing their hypervolumes. 
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Figure 7.2 shows one instance in which each controller type in this thesis is evolved for 100 generations. 

The hypervolume is computed after each generation of evolution and appears as the vertical axis. Clearly, 

TP++ shows the best performance overall by this metric, and the rate at which the hypervolume increases 

for each controller slows down considerably long before 100 generations are reached. Sometimes, 

evolved controllers whose logic is less complex and which are known to be outperformed can still appear 

to be superior initially (as seen in earlier chapters in Figure 5.8) due to all populations of control strategies 

being initialized with random values. This underscores the importance of allowing each controller to 

evolve for many generations, as well as having a large enough sample size to observe a statistically 

significant difference in hypervolume. In Section 5.4, a Mann-Whitney’s U test showed that a sample size 

of 5 with 100 generations each was sufficient to show a statistically significant difference in hypervolume 

between the NTP and TP controller types. 

If a novel controller is unable to produce hypervolumes that are on-par with or superior to other 

controllers within 100 generations, it may indicate that it is currently unviable. This is especially true if 

computational resources are limited, and significantly increasing the number of generations in which a 

controller is evolved is prohibitively expensive. As an alternative to changing a seemingly unviable 

controller, other NSGA-II configuration parameters, as well as other MOEAs, may be explored to obtain 

better results with a similar investment in computational time.  
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7.4 Robustness Against Unknown Weather Data 

Table 7.2. Example of economic model output (euros×m-2×year-1), comparing the classical Vanthoor strategy with the same 

strategy with evolved setpoints. Weather data for the 2009 – 2010 season was only used to evaluate control strategies after the 

optimization step was completed. The fogging system is assumed to have no restrictions in this example to illustrate how some 

weather seasons can be economically unviable (due to negative NFR), but still have an overall positive result if multiple weather 

seasons are considered. 

 
 

Original 

  
Low 

Cost 

  
High 

Value 

 

Period Crop 

Value 

Var. 

Costs 

NFR Crop 

Value 

Var. 

Costs 

NFR Crop 

Value 

Var. 

Costs 

NFR 

2006-

2007 

19.03 10.98 0.19 17.29 8.65 0.79 19.39 10.88 0.66 

2007-

2008 

20.69 11.41 1.44 18.72 9.11 1.76 21.10 11.42 1.83 

2008-

2009 

17.95 10.97 -0.88 16.20 8.62 -0.27 18.29 10.93 -0.49 

2009-

2010 

18.90 10.96 0.09 17.23 8.76 0.62 19.29 10.95 0.49 

Total 
  

0.85 
  

2.91 
  

2.49 

 

One approach to narrow down potential solutions is to simply test evolved control strategies against 

unknown weather data. By using multiple seasons of weather data, we evolved control strategies that 

adapt to more general weather patterns associated with the locale. To test the efficacy of these evolved 

controllers, a new weather season was used to measure their fitness. This approach was covered earlier in 

Chapter 5, and an example of the outputs of said approach is in Table 7.2. Naturally, control strategies 

that provide the highest NFR against unknown weather data would be preferred in these cases and are 

considered “robust” to unknown weather in this respect. 

One drawback is that simulating additional weather seasons adds considerable computational cost. While 

it is not as costly to add multiple unknown weather seasons as a post-optimization step, each additional 

weather season added during the optimization process as part of the fitness calculation can be 

prohibitively expensive. Moreover, it is possible that too many seasons of weather data will cause an 

“overfitting” effect and end up underperforming when tested against unknown weather data. This creates 

a challenging problem in and of itself, since the “ideal” number of weather seasons that should be used 

for evolving control strategies will depend on many factors, including but not limited to: the available 
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computational resources, the weather patterns in a locale, and the availability of historical weather data. 

Such a study is beyond the scope of this thesis, and it was assumed that three weather seasons was 

sufficient for evolving control strategies (with one additional, unknown weather season as a post-

optimization step to help filter results). 

7.5 Robustness Against Genotype Perturbations 

The goal in this section is to present a method to examine the robustness of a control strategy against 

perturbations of its genotype. This may be used for obtaining solutions that are also “robust” in practice, 

but modeling such perturbations (e.g., inaccurate readings in temperature sensors) would require 

extensive knowledge specific to a greenhouse implementation, such as the tolerance values pertaining to 

the greenhouse sensors, how they are deployed inside such a greenhouse, weather conditions, and myriad 

other factors. In this case, we used a simple model to generate these perturbations to show how this metric 

can be used to filter out undesirable control strategies from a Pareto front, as the effect of systematic 

biases in sensors can mimic the effect of a non-optimal setting of an evolved setpoint. 

One of the earliest examples bringing attention to the issue of robustness in MOEAs was described by 

Deb et al. [46], noting that in practice a decision maker may not always be interested in a global optimal 

solution; rather, solutions that are robust to small perturbations in its genotype may be preferred. Based 

on this study, we propose using the following variation: 

1. All the values in a genotype have perturbations applied to them for every sample. 

2. For each original solution in the Pareto front, every locus L at index i of its genotype will have 

perturbations applied to it, assuming a normal distribution with a mean μ = Li, and variance σ2 = 

0.1×Li. 

- 100 samples are generated for each original solution, and their fitness functions are 

calculated. 

3. Each original solution is assigned a value based on the area of the convex hull created by the 

outer points among all the samples. 
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- Original solutions with smaller convex hull area are considered more robust. 

Based on this method, the output provides a single value that can be easily sorted to quantify the 

sensitivity of each solution. While this procedure has similar drawbacks to that of NFR in Section 7.2, it 

provides additional information that NFR does not provide, and the convex hulls themselves can be easily 

visualized to better interpret these results (see Figure 7.3). 

 

Figure 7.3. Example output of the proposed metric. A solution from the original Pareto front (black) is sampled 100 times with 

random perturbations, and their fitness function is calculated for each new sample (red). The outer points of these new solutions 

are used to obtain the convex hull (red shaded region). 
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Figure 7.4. Example Pareto front showing the effects of adding perturbations to each solution. The grey region shows the union 

of all the polygons generated by the perturbed samples of the Pareto front. The least sensitive solutions tend to be low-variable-

cost solutions (blue region), while high-crop-value solutions can be extremely sensitive (green region). 

Table 7.3. Partial list of evolved solutions sorted by increasing convex hull area. 

Convex Hull Area Crop Yield Value 

(euros×m-2×year-1) 

Variable Costs 

(euros×m-2×year-1) 

Original NFR 

(euros×m-2×year-1) 

Mean NFR 

(euros×m-2×year-1) 

0.589 16.441 8.449 0.141 -0.153 

0.826 14.747 8.078 -1.181 -1.181 

0.908 17.034 8.733 0.451 0.199 

0.986 15.493 8.225 -0.582 -0.814 

1.226 17.109 8.853 0.406 0.092 

1.439 16.563 8.506 0.206 -0.064 

1.473 17.334 9.029 0.454 0.067 

1.971 18.133 9.807 0.476 0.133 

2.051 17.442 9.166 0.426 0.057 

2.064 17.695 9.369 0.476 0.181 

 

Based on Table 7.3, we can see that a small convex hull area associated with a solution does not 

guarantee that the mean and/or original NFR will be positive. However, it is still a useful tool to filter out 
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undesirable results, as an excessively high convex hull area will lead to unviable NFR values that are, on 

average, far inferior to the classical Vanthoor strategy (e.g., the green shaded region in Figure 7.4 is 

partially dominated by the classical strategy). In addition, based on the results we can see a tendency for 

high-crop-value solutions to be highly sensitive to genotype perturbations. If robust solutions are desired 

that are viable with respect to having a positive NFR, solutions near the low-variable-cost region of the 

Pareto front are superior. Solutions that provide good values on both objectives are slightly more sensitive 

(e.g., the red shaded region in Figure 7.4), but can still provide positive mean NFR values despite the 

perturbations. In addition, these types of solutions dominate the classical Vanthoor strategy, with their 

perturbed versions becoming non-dominated only in their worst cases, and, of course, that is when 

comparing them to an unperturbed classical Vanthoor strategy. 
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8 Summary and Conclusions 

In this chapter we will briefly summarize the results in this thesis, discuss some of the challenges 

encountered during research, as well as possible directions this research could continue to further improve 

existing methods for optimizing greenhouse control. 

Based on the results and discussion from the previous chapters, the goal of this thesis was fulfilled. We 

used an existing microclimate-crop-yield model [4], which was originally developed with greenhouse 

design optimization in mind. We then modified this methodology for optimizing and developing control 

strategies instead, using MOEAs as the primary tool for doing so. Using a classical control strategy as a 

basis, we developed three new versions, each of which improved upon the previous controller by 

providing better tradeoffs between the two main objectives: maximizing crop yield value and minimizing 

variable costs. In addition, we were able to observe some interesting properties in these evolved 

controllers which provided valuable information on how to iteratively improve control strategies, as well 

as identified potential limitations of the microclimate-crop-yield model. 

One of the biggest challenges was overcoming the large amount of computational resources required to 

apply MOEAs for this type of optimization problem. Early attempts at addressing this issue included 

modifying the differential equations that describe the microclimate-crop-yield model (see Chapter 3) in 

order to reduce the stiffness of these equations (and thus improve the overall speed of the ODE solver by 

allowing larger simulation step sizes that are still within acceptable margins of error). This approach 

showed some promise, but it ultimately proved to have considerable challenges for validation of results, 

including providing insufficient crop yields to match those reported in existing literature.  

As an alternate solution to the previous problem, implementing a subset of the microclimate-crop-yield 

model described by Vanthoor (as described in Chapter 4) was sufficient to achieve the main goal of this 

thesis. This model was originally developed to be modular in nature, considering the possibility of many 

different greenhouse design configurations, which made this approach possible. This subset of the 

microclimate-crop-yield model describes a relatively complex greenhouse design while still having 
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acceptable simulation times, which allowed us to adequately explore and optimize challenging 

greenhouse control problems. However, there is clear room for improvement in this regard, as there are 

many greenhouse design elements that were not considered, including but not limited to: retractable 

shading screens, supplemental lighting, passive greenhouse heating, mechanical/pad and fan cooling, 

direct air heating, etc. Such greenhouse design elements should ideally be considered in future studies for 

greenhouse control optimization as this would improve the practicality of our optimization method, but 

doing so requires examining existing models that incorporate these greenhouse design elements, and 

potentially modifying these models to improve simulation speeds to the extent that optimization with 

MOEAs can still remain feasible. Moreover, these model modifications would require independently 

validating the results obtained in a real greenhouse to verify their efficacy and/or make corrections to the 

model, as needed, which is beyond the scope of what we could attempt here. 

Despite introducing various distinct controller types in this thesis (in Chapters 5 and 6), each with 

increasing complexity, we did not reach a point where the computational resources were the primary 

bottleneck when developing and evolving more complex control strategies. This is mostly due to the 

focus of this thesis being on iteratively improving existing controller types (as seen in Chapter 6): using 

the classical greenhouse control strategy as a starting point, we gradually increased its complexity, 

observed the overall behavior these new control strategies produced, and subsequently used those results 

to find useful properties to improve further (or features that were detrimental and therefore removed). 

While it would be trivial to present a control strategy whose genotype takes considerably longer to 

evolve, meaningfully interpreting the results of such a controller would take considerable time without 

additional techniques to aid in this process. Ideally, this should be streamlined by at least partially 

automating the process with which key properties, rules, and/or design principles can be extracted from 

the Pareto fronts generated by each new controller type that is introduced. Multi-objective optimization 

problems are uniquely suited for this kind of discovery process (coined as “innovization”), and multiple 

attempts have been made in the past to present viable approaches for automated innovization [50, 51]. 
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The results in Section 6.6 show that while the current microclimate-crop-yield model is adequate for 

simulating tomato crop growth in a greenhouse setting, inadequate humidity control is not sufficiently 

penalized in cases where a model-based optimization approach is used to improve control strategies (e.g., 

this dissertation). The trapezoid functions that make up the crop value penalty primarily affect the post-

fruit-set stage of plant growth, since these penalties are only applied after harvest begins. This penalty 

still has an effect on the overall behavior of the control strategy before fruit set, due to maintaining a 24-

hour mean value of the vapor pressure deficit (VPD24) between the canopy and the greenhouse air, as well 

as a 48-hour mean value of the relative humidity (RH48) of the greenhouse air. However, this would have 

a marginal effect overall before fruit set, since the pre-fruit-set control strategy only needs to yield an 

acceptable range of both VPD24 and RH48 shortly before fruit set begins. Values like RH48 were proposed 

to model the effect of the onset of the fungus Botrytis cinerea on the crop, but this type of fungal infection 

is not limited to affecting the yield of marketable tomatoes, and can infect all the plant tissue [52]. Ideally, 

the microclimate-crop yield model should penalize sub-optimal levels of relative humidity at all stages of 

plant growth to better reflect the real-world effects of fungal infections and other diseases on the tomato 

crop. 

It was assumed that no additional costs would be incurred from the implementation of these control 

strategies (other than the costs of any resources they utilize), and that the features described in each 

controller in this section would already be available to use. Although an effort was made to avoid major 

greenhouse design changes, both fixed and variable costs associated with the development of additional 

controller logic and upgrades to greenhouse design elements should be included (when applicable). 

Depending on their real-world cost, these may affect the viability of more complex control strategies.  

Both objectives, the variable costs and crop yield value, may also be divided into individual components 

that can be treated as their own separate objectives (thus turning this into a many-objective optimization 

problem, as opposed to two-objective). Assuming that the appropriate computational resources are 
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available, doing so can provide more insight on the tradeoffs that occur for the “subobjectives” that 

comprise the variable costs and crop yield value, which may be of interest to a decision maker in practice. 

Finally, the metrics for decision making presented in Chapter 7 allow a user to significantly narrow down 

solutions that may be of interest. When using both net financial result (NFR) and the convex hull area (as 

seen in Section 7.5) as performance metrics, we are able to narrow down potential solutions quickly while 

visualizing the overall robustness (with respect to genotype perturbations) when picking a specific 

solution. The method proposed for measuring robustness against genotype perturbations assumes that 

these perturbations can be modeled using a simple normal distribution, and as such does not reflect the 

inconsistencies that one would encounter in practice. However, such a method could still be applied if 

there is sufficient knowledge of a greenhouse implementation to model these perturbations, providing a 

valuable tool for assessing the overall “risk” associated with an evolved control strategy. 
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