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ABSTRACT

EXPLOITING IMPULSIVE INPUTS FOR STABILIZATION OF UNDERACTUATED
ROBOTIC SYSTEMS: THEORY AND EXPERIMENTS

By

Nilay Kant

Robots have become increasingly popular due to their ability to perform complex tasks and operate

in unknown and hazardous environments. Many robotic systems are underactuated i.e., they have

fewer control inputs than their degrees-of-freedom (DOF). Common examples of underactuated

robotic systems are legged robots such as bipeds, flying robots such as quadrotors, and swimming

robots. Due to limited control authority, underactuated systems are prone to instability. This work

includes impulsive inputs in the set of admissible controls to address several challenging control

problems. It has already been shown that continuous-time approximation of impulsive inputs can

be realized in physical hardware using high-gain feedback.

Stabilization of an equilibrium point is an important control problem for underactuated systems.

The ability of the system to remain stable in the presence of disturbances depends on the size of

the region of attraction of the stabilized equilibrium. The sum of squares and trajectory reversing

methods are combined to generate a large estimate of the region of attraction. This estimate is then

effectively enlarged by applying the impulse manifold method to stabilize equilibria from points

lying outside the estimated region of attraction. Simulation results are provided for a three-DOF

tiptoebot and experimental validation is carried out on a two-DOF pendubot. Impulsive inputs

are also utilized to control the underactuated inertia-wheel pendulum (IWP). When subjected to

impulsive inputs, the dynamics of the IWP can be described by algebraic equations. Optimal

sequences of inputs are designed to achieve rest-to-rest maneuvers and the results are applied to

the swing-up control problem. The novel problem of juggling a devil-stick using impulsive inputs

is also investigated. Impulsive forces are applied to the stick intermittently and the impulse of the

force and its point of application are modeled as inputs to the system. A dead-beat design for one of

the inputs simplifies the control problem and results in a discrete linear time invariant system. To



achieve symmetric juggling, linear quadratic regulator (LQR) and model predictive control (MPC)

based designs are proposed and validated through simulations.

A repetitive motion is described by closed orbits and therefore, stabilization of closed orbits is

important for many applications such as bipedal walking and steady swimming. We first investigate

the problem of energy-based orbital stabilization using continuous inputs and intermittent impulsive

braking. The orbit is a manifold where the active generalized coordinates are fixed and the total

mechanical energy of the system is equal to some desired value. Simulation and experimental

results are provided for the tiptoebot and the rotary pendulum, respectively. The problem of orbital

stabilization using virtual holonomic constraints (VHC) is also investigated. VHCs are enforced

using a continuous controller which guarantees existence of closed orbits. A Poincaré section is

constructed on the desired orbit and the orbit is stabilized using impulsive inputs which are applied

intermittently when the system trajectory crosses the Poincaré section. This approach to orbital

stabilization is general, and has lower complexity and computational cost than control designs

proposed earlier.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A few decades ago, robots were primarily used for doing repetitive tasks in manufacturing lines

and were supposed to work in risk-free and familiar environments. In recent times, there has been

an increasing interest among engineers and scientists to create robotic systems which can operate

in non-familiar environments. The applications of such robotic systems are immense as they can

be used in application where human health is at risk such as in extra-terrestrial space explorations,

rescue operations in the aftermath of disasters, construction in hostile environments such as deep

sea etc. The new-age robots must be capable of locomotion and as a result, design, control and

stability of robotic systems such as legged robots have gained popularity.

Legged robots fall under the category of underactuated systems as there is no actuation at

the ground-foot contact point. While underactuation is inherent in legged robots, it is purposely

introduced in bio-inspired models such as in the pendubot [4], acrobot [5], tiptoebot [6] etc. Several

control objectives have been studied for underactuated robotic systems such as stabilization about

an equilibrium configuration, swing-up to an equilibrium configuration corresponding to highest

potential energy and generating stable repetitive motion. Since the dynamics of such systems are

typically nonlinear, and due to the presence of fewer control inputs than their degree-of -freedom,

their control design is often very challenging. Due to this reason, it is difficult to design general

control methodologies for underactuated systems.

Impulsive inputs are theoretically modeled as Dirac-delta functions which causes discontinuous

change in the velocity of a dynamical system. Impulsive forces occur naturally in several mechanical

systems that experience impacts; for example walking [7] and hopping robots [8], juggling systems

[9] etc. Modeling of such systems have been widely investigated in the framework of hybrid

dynamical systems [10]. However, the use of impulsive inputs for control of systems, especially
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underactuated mechanical systems have been rather limited. Few works that have previously

proposed the use of impulsive inputs in control of some underactuated systems can be found

in [11,12]. Impulsive inputs can be extremely useful where sudden change in system’s configuration

is required to attain certain control objective. This work presents several control problem where

impulsive inputs are exploited to simplify the control of underactuated robotic systems; these

problems are discussed next.

1.2 Estimating and Enlarging the Region of Attraction of Equilibria

Underactuated mechanical systems typically have multiple isolated equilibria and often the

control design objective is to stabilize one of the equilibrium points that is unstable. Several methods

have been proposed for stabilizing an equilibrium point for underactuated systems. These include

the controlled Lagrangian method [13,14], the interconnection and damping assignment passivity-

based control (IDA-PBC) method [15], and the λ -method [16]. Other than these general methods,

control designs have been proposed for stabilizing equilibrium points of specific underactuated

systems such as the pendubot [17–19], acrobot [5,20], inverted pendulum on a cart [21], the reaction-

wheel pendulum [1,2], and the ball on beam system [22]. Irrespective of the control method used,

a stabilized equilibrium of an underactuated system will have a finite region of attraction since the

majority of all control designs cannot guarantee global stabilization. It is not trivial to obtain a non-

conservative estimate of the region of attraction; and with a conservative estimate, it is only possible

to guarantee stable behavior for small disturbances. To enable underactuated systems remain stable

for large disturbances, we first present a method for obtaining a non-conservative estimate of the

region of attraction. Then, the impulse manifold method (IMM) [23] is used to identify the region

that lies outside this estimate and from where the equilibrium can be stabilized. A portion of this

region may lie outside the region of attraction implying that the IMM can effectively enlarge the

estimate of the region of attraction.

For underactuated systems, the IMM [23] uses impulsive inputs to move the configuration

of the system from outside the estimated region of attraction to inside the region. Impulsive
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inputs have been used for control of underactuated systems1 [11, 12, 19, 24] and experimental

investigations [23, 25] have relied on high-gain feedback for continuous approximation of the

impulsive inputs. In an early work [26], high-gain control was used to force the trajectory of an

acrobot into the region of attraction of a stabilizing controller. The limitations of this work are

that the stabilizing controller must be pseudolinear [27] and the system cannot have more than one

input. In [23], impulsive inputs were used to move the configuration of the system from a point

lying immediately outside the region of attraction to inside the region; the boundary of the region

was found iteratively by trial and error. Since it is not possible to determine the region of attraction

for the general case, the IMM is used here in conjunction with an estimate of the region.

Both analytical and numerical methods have been used for estimating regions of attraction,

[28–30], for example. The sum of squares (SOS) method uses a polynomial approximation of the

system dynamics to maximize the estimate of the region of attraction [31–34]. It can also be used

to enlarge the region of attraction by optimizing the controller in polynomial form [35,36]. Starting

from an initial estimate, the trajectory reversing method enlarges an estimate using time-reversed

trajectories of the system, [37–40], for example. The points obtained by time-reversal of trajectories

lie on the surface of a larger estimate but it is challenging to obtain an analytical description of that

surface in the general case.

Both the SOS method and the method of trajectory reversing have been used with the IMM in

our earlier work [41, 42]. We combine the two methods in this work to enhance the applicability

of the IMM. For a given order of the controller polynomial, the SOS method is first used to obtain

the largest estimate of the region of attraction. Using this estimate as the initial estimate, a larger

estimate is obtained using trajectory reversing. The generality of the combined method is illustrated

using the example of the Tiptoebot - a three-link underactuated system with one passive joint. The

result is notable since the trajectory reversing method has been illustrated in the literature using

systems with two states only; the system considered here has six states. In addition to simulations,

experimental validation is provided by stabilizing an equilibrium of a pendubot from a point lying

1Impulsive control of underactuated systems should be differentiated from control of underac-
tuated systems subjected to impulsive disturbances.
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outside the region of attraction estimated using the SOS and trajectory reversing methods. The

impulse manifold passing through this point does not intersect the region of attraction estimated

using the SOS method alone; this illustrates the usefulness of combining the SOS and trajectory

reversing methods for application of the IMM.

1.3 Rest-to-Rest Maneuver of the Inertia Wheel Pendulum

c.m.

pendulum

motor

inertia wheel

ℓ1

ℓ2

φ

θ

g

τ

x

y

Figure 1.1: The inertia wheel pendulum.

The IWP is comprised of a simple pendulum and a motor mounted at its distal end; the motor

drives a wheel - see Fig.1.1. The torque produced by the motor can be used to accelerate the

wheel in both CW and CCW directions and the resulting reaction torque can be used to control the

pendulum angle. The IWP bears similarity to the underactuated Acrobot [5] where in place of the

the wheel, a link is driven by the motor. Since the wheel is symmetric, the angular displacement of

the wheel is not included in the state-space representation and unlike the Acrobot, the only source

of nonlinearity in the equation of motion is the gravity term. The IWP is an ideal candidate for

impulsive control since the dynamics of the system can be described by simple algebraic equations:

the effect of impulsive forces can be described by changes in the velocities of the system along the

impulse manifold [23], and conservation of energy and conservation of wheel momentum describe

the dynamics when no torque is applied by the motor.
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For the IWP, stabilization of its upright posture and swing-up to this configuration have been

investigated in the literature, [1, 2, 15, 43–46], for example. Some of the early work on the IWP

can be found in [2] where a hybrid controller comprised of separate swing-up and balancing

controllers was designed using energy methods. Swing-up and stabilization was achieved using

a single controller using the IDA-PBC method [15, 43] and a global change of coordinates that

converted the dynamics of the IWP into strict feedback form [1]. The IDA-PBC method based

controllers [15, 43] and the globally stabilizing controller [1] result in high wheel velocities and

actuator torques.

The swing-up problem of the IWP is a rest-to-rest maneuver between its lowest and highest

potential energy configurations. In this work, we address the general problem of designing rest-to-

rest maneuvers using a sequence of impulsive inputs. The use of impulsive inputs simplifies the

dynamics of the IWP and permits the design of optimal sequences under some general assumptions.

It is found that a sequence with an odd number of inputs is less optimal than the two adjacent

sequences with even number of inputs. The high wheel velocities and/or actuator torques associated

with some results in the literature [1,15,43], is explained using the analysis based on two impulsive

inputs. An optimal sequence of impulsive inputs, implemented using high-gain feedback [23],

is used for swing-up of the IWP; the simulations results show similarities with the energy-based

methods in [2]. It is shown that an optimal input sequence can be designed to accommodate torque

constraint of the actuator; this has not been discussed in earlier works.

1.4 Devil-Stick Juggling

A devil-stick is typically juggled using two hand sticks and several tricks can be performed

depending on the proficiency of the juggler. Some of the common tricks are: standard-idle,

flip-idle, airplane-spin or propeller, top-only idle, and helicopter [47]. The top-only idle is one

of the simplest tricks and is the focus of this investigation; a video tutorial for learning this trick

can be found in [48]. In top-only idle, intermittent forces are applied to the devil-stick. Since the

devil-stick is never grasped, the juggling problem can be viewed as a non-prehensile manipulation
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problem. If robots are to perform this trick, the motion of the end-effectors would have to be

coordinated and controlled to apply the correct magnitude of impulsive forces to the devil-stick at

appropriate locations. We do not focus on the end-effector motion control problem (see [49, 50]

for application to ball juggling); instead, we investigate the magnitude and location of the forces

needed to perform the top-only idle trick.

Many juggling tasks, including the top-only idle trick, involve intermittent application of

impulsive forces and several researchers [51–55] have studied the controllability and stability of

such systems. Although impulsive control of the devil-stick has not been investigated, the control

problem associated with juggling of balls and air-hockey pucks has seen several solutions [9,56–58].

In all of these solutions, the object being juggled has been modeled as a point mass and its orientation

is excluded from the dynamic model. In contrast, for devil-stick tricks such as top-only idle, the

stick is shuffled between two symmetric configurations about the vertical; therefore, the orientation

of the stick must be included in the dynamic model.

In earlier works on the devil-stick [59, 60], controllers have been designed for airplane-spin or

propeller-type motion; a single hand-stick is used to rotate the devil-stick about a virtual horizontal

axis using continuous-time inputs. The dynamics model and control design of top-only idle motion

of the devil-stick has not appeared in the literature; to the best of our knowledge, it is presented here

for the first time. It is assumed that impulsive forces are applied intermittently to the devil-stick and

the control inputs are the impulse of the force and its point of application on the stick. The control

inputs are designed to juggle the stick between two symmetric configurations about the vertical,

starting from an arbitrary initial configuration.

1.5 Energy-Based Orbital Stabilization

For underactuated mechanical systems, the problem of stabilization of an equilibrium has been

investigated widely, see [2, 13–16, 18, 21, 61], for example, and the references therein. In many

applications, such as in legged locomotion, the system is required to undergo periodic motion;

therefore, the control objective is to stabilize an orbit rather than an equilibrium. To achieve
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repetitive motion, the virtual holonomic constraint (VHC) approach [3, 62, 63] has been proposed.

The VHC imposes a set of geometric constraints on the generalized coordinates of the system

and has been demonstrated in bipedal locomotion [7, 64]. Experimental validation of orbital

stabilization using VHC can be found in [65, 66].

Orbital stabilization has also been used for swing-up control of underactuated systems with

one passive degree-of-freedom (DOF). Some examples include two-DOF systems such as the

pendubot [17], the acrobot [67], the reaction-wheel pendulum [68], inverted pendulum on a cart

[69, 70], the rotary pendulum [71], and the three-DOF gymnast robot [72]. These controllers

stabilize an orbit that include the equilibrium, which is typically unstable. The controllers are

designed to gradually pump energy in and out of the system and converge the active DOFs to their

desired configuration. Such control designs are typically based on a Lyapunov-like function that is

comprised of terms involving positions and velocities of the active DOFs and the total mechanical

energy of the system. The passivity property of the system is used to make the time derivative

of the Lyapunov-like function negative semidefinite. A stability analysis is then carried out using

LaSalle’s invariance principle [73]; this typically results in certain restrictions on controller gains

and initial conditions. In all of these prior works, the control strategies for orbital stabilization

have been designed separately for individual systems. Although the structure of the Lyapunov-like

function is identical, the stability analysis is different for each system due to the difference in the

nature of their nonlinear dynamics. Despite the effectiveness of the individual controllers, a general

methodology for energy-based orbital stabilization does not exist. We present a control strategy

for n-DOF underactuated systems with one passive DOF based on continuous time inputs and

impulsive braking.

A combination of continuous and impulsive inputs have been recently used for stabilization

of a homoclinic orbits of two-DOF underactuated systems [74]. The current work provides a

generalization of the theory to n-DOF systems and experimental validation. The main contributions

of this work are as follows:

1. The control design is applicable to a class of underactuated systems which include a majority
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of the commonly investigated underactuated systems.

2. The stability analysis is presented for the general case and it results in sufficient conditions that

are not restrictive and can be checked for a given system.

3. Experimental validation is provided.

4. Impulsive braking is accomplished using a friction brake; this eliminates the need for high-gain

feedback [23] which may result in actuator saturation.

1.6 Orbital Stabilization using Virtual Holonomic Constraints

For underactuated systems, Virtual Holonomic Constraint (VHC) based control designs have

gained popularity due to their conceptual simplicity and applicability to control of repetitive

motion. They have been used for stabilization of gaits in bipeds [64, 75–80], which undergo

impacts, and trajectory control for systems with open kinematic chains that are not subjected to

impacts [3, 62, 63, 65, 66, 81–84]. VHCs parameterize the active joint variables in terms of the

passive joint variables and confine system trajectories to a constraint manifold [62]. To enforce the

VHC, the constraint manifold has to be stabilized using feedback. Typically, a constraint manifold

contains a dense set of periodic orbits and the choice of repetitive motion determines the specific

orbit that has to be stabilized. To stabilize gaits in bipeds, for example, Grizzle et.al [64, 76, 79]

enforced the VHC and periodic loss of energy due to ground-foot interaction was exploited for

orbital stabilization.

A special class of underactuated systems are those with open kinematic chains and one passive

DOF. For such systems, Shiriaev and collaborators [3,65,66] used VHC to select the desired orbit.

For an n-DOF system, the 2n dimensional dynamics is linearized about the desired orbit; this results

in a 2n´1 dimensional system. A periodic Ricatti equation is then solved to design a time-varying

controller that stabilizes the orbit. It should be noted that the control designs in [3,65,66] stabilize

the orbit but do not enforce the VHC. A control scheme that enforces the VHC and simultaneously

stabilizes the orbit was recently proposed in [63]. The key idea is that the VHC is made time-

8



varying using a scalar parameter which is controlled via feedback. The stabilization problem

involves solving a periodic Ricatti equation; however, unlike [3,65,66], where the dimension of the

system is 2n´1, the dimension of the system in [63] is always three. For systems with more than

two DOF, the method in [63] reduces the computational complexity of control implementation.

Also, by enforcing the VHC, it improves control over transient characteristics of the trajectory [85].

Similar to [63,85], we design a continuous controller with the objective of enforcing the VHC and

stabilizing the constraint manifold. We then design impulsive inputs that work in tandem with the

continuous inputs to stabilize a desired periodic orbit on the constraint manifold. Compared to the

methods proposed earlier [3, 63, 65, 66], where periodic Ricatti equations have to be solved, our

method has lower computational cost and complexity. Since impulsive inputs are used to control the

Poincaré map, the dynamics of the closed-loop system can be described by the Impulse Controlled

Poincaré Map (ICPM). The simplicity and generality of the ICPM approach to orbital stabilization

is demonstrated using the examples of the 2-DOF cart-pendulum and the 3-DOF tiptoebot.
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CHAPTER 2

ESTIMATION OF THE REGION OF ATTRACTION OF EQUILIBRIA AND ITS
ENLARGEMENT USING IMPULSIVE INPUTS

2.1 Introduction

Stabilization of an equilibrium point is an important control problem for underactuated systems.

For a given stabilizing controller, the ability of the system to remain stable in the presence of

disturbances depends on the size of the region of attraction of the stabilized equilibrium. The

sum of squares (SOS) and trajectory reversing methods are combined together to generate a large

estimate of the region of attraction. Then, this estimate is effectively enlarged by applying the

impulse manifold method (IMM), which can stabilize equilibria from points lying outside the

estimated region of attraction. The IMM and the SOS method are reviewed in section 2.2. The

Tiptoebot is introduced in section 2.3 and the IMM is used to stabilize its equilibrium from a point

lying outside the region of attraction estimated by the SOS method. A convex hull algorithm for

estimating the region of attraction using trajectory reversing is presented in section 2.4. The benefit

of using the SOS method, the convex hull algorithm, and IMM together is illustrated using the

example of the Tiptoebot in section 2.5. Experimental results are presented in section 2.6.

2.2 Background

2.2.1 The Impulse Manifold Method

For an n degree-of-freedom dynamical system, Lagrange’s equations have the form:

Mpqq:q ` Hpq, 9qq “ T (2.2.1)

where q P Rn and T P Rn represent the vectors of generalized coordinates and generalized forces;

Mpqq P Rnˆn denotes the generalized mass matrix; and Hpq, 9qq P Rn denotes the vector of centrifu-

gal, Coriolis, gravitational and friction forces. If the system is underactuated with m active and
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pn ´ mq passive degrees-of-freedom, m ă n, (2.2.1) can be rewritten in the form:

»
—–

M11pqq M12pqq

MT
12

pqq M22pqq

fi
ffifl

»
—–

:q1

:q2

fi
ffifl`

»
—–

h1pq, 9qq

h2pq, 9qq

fi
ffifl “

»
—–

0

u

fi
ffifl (2.2.2)

where q “ pqT
1
,qT

2
qT , and q1 P Rpn´mq and q2 P Rm denote the generalized coordinates correspond-

ing to the passive and active degrees-of-freedom, respectively, and u P Rm is the vector of control

inputs.

We assume that pq, 9qq “ p0,0q is an equilibrium point of the unforced system and u “ us is

a stabilizing controller. If RA is the region of attraction of the equilibrium with u “ us, the

equilibrium cannot be stabilized from configurations that lie outside RA. However, it may be

possible to stabilize the equilibrium after moving the configuration of the system from outside RA

to inside RA using the Impulse Manifold Method (IMM) [23]. In the IMM, impulsive inputs are

applied to the active degrees-of-freedom. Ideal impulsive inputs cause no change in the generalized

coordinates but result in discontinuous changes in both active and passive generalized velocities.

These changes can be computed from the following equation which is obtained by integration of

(2.2.2) over the infinitesimal interval of time Δt, during which the impulsive inputs act [86]:
»
—–

M11 M12

MT
12

M22

fi
ffifl

»
—–
Δ 9q1

Δ 9q2

fi
ffifl “

»
—–

0

I

fi
ffifl , I fi

ż
Δt

0

udt (2.2.3)

In the above equation, I P Rm is the vector of impulses, and the velocity jumps, Δ 9q1 and Δ 9q2, are

defined as

Δ 9q1 fi p 9q`
1

´ 9q´
1

q, Δ 9q2 fi p 9q`
2

´ 9q´
2

q

where 9q´ and 9q` are the generalized velocities immediately before and after application of the

impulsive inputs. Due to the underactuated nature of the system, the discontinuous changes in

the velocities of the passive coordinates are dependent on those of the active coordinates; this

dependence is obtained from (2.2.3) as follows:

p 9q`
1

´ 9q´
1

q “ ´M´1

11
M12 p 9q`

2
´ 9q´

2
q (2.2.4)
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In the n-dimensional velocity space, the impulse manifold is the m-dimensional manifold repre-

sented by (2.2.4). It was stated earlier that the generalized coordinates do not change under the

application of an impulse. Hence, for a fixed value of q, the impulse manifold passing through the

point p 9q´
1
, 9q´

2
q is defined by the set

IMp 9q´
1
, 9q´

2
q “ t 9q`

1
, 9q`

2
| p 9q`

1
´ 9q´

1
q “ ´M´1

11
M12 p 9q`

2
´ 9q´

2
qu (2.2.5)

The IMM is explained with the help of Fig.2.1. The region of attraction RA is shown in Fig.2.1

(a). An arbitrary point outside RA is denoted by pq˚, 9q˚q. For q “ q˚, the slice of RA in the

n-dimensional velocity space is denoted by rRApq˚q and is shown in Fig.2.1 (b). Since pq˚, 9q˚q lies

outside RA, the point 9q˚ lies outside rRApq˚q. The m-dimensional impulse manifold IMp 9q˚q is

depicted by the plane in Fig.2.1 (c); its intersection with rRApq˚q is shown by the hatched region

and is mathematically defined by the set

pRApq˚, 9q˚q “ IMp 9q˚q X rRApq˚q (2.2.6)

Impulsive inputs can be applied to change the velocity of the system from 9q˚ to any other point

(desired velocity) on the impulse manifold. However, to move the configuration of the system to

a point inside RA, the desired velocity should be chosen to lie in pRApq˚, 9q˚q. For the IMM to be

applicable, pRApq˚, 9q˚q should not be a null set and the desired velocity should be chosen such that

the magnitude of the impulse I does not violate actuator constraints.

(a) (b) (c)

RA Ă R2n

pRApq˚, 9q˚q

IMp 9q˚q

9q˚
9q˚

pq˚, 9q˚q

rRApq˚q Ă Rn

Figure 2.1: (a) RA and a point pq˚, 9q˚q that lies outside RA, (b) rRApq˚q and the point 9q˚, (c)
IMp 9q˚q, rRApq˚q and pRApq˚, 9q˚q.
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Ideal impulsive inputs, which are Dirac-delta functions, cannot be implemented in real physical

systems. For an underactuated system of the form as in (2.2.2), impulsive inputs can be implemented

using high-gain feedback [23]; the control law is given by1

u “ uhg “ rCT M´1Cs´1

„
CT M´1H` 1

µ
Λ

´
9qdes
2

´ 9q2

¯
(2.2.7)

where C P Rnˆm is the matrix C “ r0 EsT , E P Rmˆm is the identity matrix, 9qdes
2

is the vector of

desired velocities of the active joints, Λ fi diag

„
λ1 λ2 ¨ ¨ ¨ λm


, where λi, i “ 1,2, ¨ ¨ ¨ ,m are

positive numbers, and µ is a small positive number.

In general, an exact determination of RA is not possible and an estimate of the region of

attraction Re
A, Re

A Ă RA, has to be used. As we replace RA with Re
A, we define rRe

A and pRe
A in the

same manner that rRA and pRA were defined in relation to RA.

From the discussion in this section it is obvious that the IMM will be more effective for larger

Re
A. When applicable, the IMM will effectively enlarge the Re

A of the equilibrium.

2.2.2 The Sum of Squares Method

The simplest way to obtain an Re
A is through linearization [73]: the dynamics of the closed-loop

underactuated system in (2.2.2) is first represented in state-space form

9x “ f rx,u “ uspxqs “ gpxq (2.2.8)

where x “ pqT , 9qT qT and uspxq is a stabilizing controller. The Re
A of the asymptotically stable

equilibrium x “ 0 can be defined with the help of the quadratic Lyapunov function V0pxq as follows

R
e
A “ tx | V0pxq ď cu fi Ωlin, V0pxq fi xT Px (2.2.9)

where P is the positive definite matrix obtained by solving the Lyapunov equation

PA ` AT P “ ´Q, A fi

„Bg

Bx



x“0

, Q “ QT ą 0

1The high-gain feedback in [23] has been modified here for its applicability to systems with
more than one active joint: the diagonal matrix Λ has been introduced to provide flexibility in
choosing different gains for the different active joints. It can be easily shown that this modification
does not affect the continuous approximation of the impulsive inputs.
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and c is the largest number that satisfies

tV0pxq ď cu Ď t 9V0pxq ď 0u

The Sum of Squares (SOS) method [31] automates the process of finding a Lyapunov function

using numerical tools from convex optimization. Subsequently, an Re
A can be obtained by solving

the following optimization problem [36]:

maximize ρ

subject to

$
’’’’’’&
’’’’’’%

V pxq is SOS

Lpxq is SOS

´ 9V pxq ` LpxqpV pxq ´ ρq is SOS

where V pxq is the Lyapunov function and Lpxq is a polynomial multiplier. The decision variables

in this optimization problem are Lpxq, V pxq and ρ . The third constraint guarantees

tV pxq ď ρu Ď t 9V pxq ď 0u

and therefore an estimate of the region of attraction is

R
e
A “ tx | V pxq ď ρu fi Ωsos (2.2.10)

In the above optimization problem, Re
A is maximized for a pre-determined stabilizing controller.

The controller can also be optimized to further enlarge Re
A. The controller upxq is introduced as

another decision variable in the third constraint of the SOS optimization problem:

9V pxq “ BV

Bx
f rx,upxqs

This non-convex optimization problem was studied in [35, 36], where the following steps are

performed sequentially and repeatedly till no further enlargement of Re
A is observed:

• V pxq is fixed; Lpxq and upxq are varied to maximize ρ

• Lpxq and upxq are fixed; V pxq is varied to maximize ρ

14



The SOS algorithm requires an initial guess of the Lyapunov function V pxq. If this initial guess

is chosen to be V0pxq in (2.2.9), we can guarantee

Ωsos Ě Ωlin

which implies that the SOS method can improve upon the Re
A obtained through linearization.

2.3 Enlarging the Region of Attraction Using SOS and IMM

2.3.1 An Illustrative Example

From our discussion in section 2.2 it is clear that an Re
A can be obtained using the SOS method

and that this estimate can be effectively enlarged using the IMM. In this section we demonstrate the

effective enlargement of the Re
A for a three-link underactuated system with two active joints and

one passive joint. A majority of articulated underactuated systems that have been considered in the

literature have two degrees-of-freedom with one passive joint; examples include the pendubot, the

(a) (b)

lower leg

upper leg

upper body

ℓ1ℓ1 ℓ1

ℓ2ℓ2

ℓ3 ℓ3

θ1

θ2

θ3

τ2

τ3

pm1,J1q

pm3, J3q

pm2, J2q

d1

d3

d2

x

y

g

Figure 2.2: (a) The Tiptoebot - a three-link underactuated system with two active joints at the hip
and knee, and one passive joint at the toe (b) a simple model of a human balancing on the tip of the
toe.

15



acrobot, the rotary pendulum, inverted pendulum on a cart, etc. The three-link system is purposely

chosen to demonstrate the applicability of the method to more complex systems.

Consider the three-link underactuated system2 in Fig 2.2 (a). We have christened it the Tiptoebot

since it models a human balancing on the tip of its toe - see Fig 2.2 (b). The three links are analogous

to the lower leg, the upper leg, and the upper body comprised of the torso and head. The knee

joint connecting the upper and lower legs, and the hip joint connecting the upper body and upper

leg are actuated; the torques applied by the actuators in these joints are assumed to be positive in

the counter-clockwise direction and are denoted by τ2 and τ3. The toe provides a simple point

of support and is modeled as a passive joint. The lower leg, upper leg, and upper body have

link lengths ℓ1, ℓ2 and ℓ3; their center-of-masses are located at distances d1, d2 and d3 as shown

in Fig.2.2 (a); their mass and mass moments of inertia about their individual center-of-mass are

denoted by pm1,J1q, pm2,J2q and pm3,J3q. The joint angles of the links are measured positive in

the counter-clockwise direction and are denoted by θ1, θ2 and θ3; θ1 is measured relative to the

x-axis whereas θ2 and θ3 are measured relative to the second and third links.

Table 2.1: Kinematic and Dynamic Parameters for Tiptoebot in SI units

m1 m2 m3 ℓ1 ℓ2 ℓ3

0.20 0.20 0.30 0.20 0.20 0.30

J1 J2 J3 d1 d2 d3

6.66 ˆ 10
´4

6.66 ˆ 10
´4

15.0 ˆ 10
´4

0.10 0.10 0.15

The kinematic and dynamic parameters of the Tiptoebot in Fig.2.2 are provided in Table 6.1.

For these set of parameters, the equations of motion are of the form given by (2.2.2), where n “ 3,

m “ 2 and u “ pτ2 τ3qT . The vertically upright posture or configuration pθ1,θ2,θ3,
9θ1,

9θ2,
9θ3q “

pπ{2,0,0,0,0,0q is the desired equilibrium and hence q1 “ pθ1 ´ π{2q, q2 “ pθ2 θ3qT . The

matrices M11, M12, M22, h1 and h2, which can be described as functions of θk, 9θk, k “ 1,2,3, are

2This system is a special case of the N-link system considered in [87].
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provided below:

M11 “ 0.018C23 ` 0.032C2 ` 0.018C3 ` 0.046

M12 “

»
—–

0.009C23 ` 0.016C2 ` 0.018C3 ` 0.023

0.009C23 ` 0.018C3 ` 0.009

fi
ffifl

T

M22 “

»
—–

0.018C3 ` 0.023 0.009C3 ` 0.009

0.009C3 ` 0.009 0.009

fi
ffifl

h1 “ 0.100 9θ1 ` 0.441C123 ` 0.784C12 ` 1.177C1 ´ 0.016 9θ 2
2

S2 ´ 0.009 9θ 2
3

S3

´ 0.009p 9θ2 ` 9θ3q2 S23 ´ 0.018 9θ1p 9θ2 ` 9θ3qS23 ´ 0.018p 9θ1 ` 9θ2q 9θ3 S3 ´ 0.032 9θ1
9θ2 S2

h2 fi

„
h21 h22

T

h21 “ 0.100 9θ2 ` 0.441C123 ` 0.784C12 ` 0.016 9θ 2
1

S2 ´ 0.009 9θ 2
3

S3 ` 0.009 9θ 2
1

S23

´ 0.018p 9θ1 ` 9θ2q 9θ3 S3

h22 “ 0.100 9θ3 ` 0.441C123 ` 0.009 9θ 2
1

S23 ` 0.009p 9θ1 ` 9θ2q2 S3

where Si and Ci denote sinθi and cosθi, Si j and Ci j denote sinpθi`θ jq and cospθi`θ jq, and Ci jk

denotes cospθi`θ j`θkq. We assumed the presence of viscous friction in the joints of the Tiptoebot.

This accounts for the terms linearly proportional to the angular velocities in the expressions for h1,

h21 and h22.

The stabilizing controller us in (2.2.8) was obtained through linearization by placing the poles

of the closed-loop system at -8, -3, -2, -1, -0.7, -0.4. The controller has the form us “ rτ2 τ3sT

where

τ2 “ ´10.204pθ1 ´ π{2q ´ 5.789θ2 ´ 2.140θ3 ´ 2.114 9θ1 ´ 1.144 9θ2 ´ 0.496 9θ3

τ3 “ ´7.996pθ1 ´ π{2q ´ 4.284θ2 ´ 1.878θ3 ´ 1.632 9θ1 ´ 0.974 9θ2 ´ 0.295 9θ3
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The Lyapunov function V0 was obtained using (2.2.9); the matrices P and Q are

P “

»
——————————————–

5271.9 2668.5 973.5 1054.4 626.9 241.7

2668.5 1350.7 492.7 533.75 317.3 122.3

973.55 492.80 179.8 194.73 115.7 44.65

1054.4 533.75 194.7 210.91 125.3 48.35

626.90 317.33 115.7 125.39 74.55 28.75

241.75 122.37 44.65 48.359 28.75 11.09

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, Q “ 0.01 ˆ diag

„
3 3 3 1 1 1



The estimated region of attraction Ωlin in (2.2.9) was defined by the value of c “ 0.020; this value

was determined by following the steps [73] given below:

1. Find a set of points αi, i “ 1,2, ¨ ¨ ¨ ,M, where 9V pαiq “ 0.

2. Choose c ă c̄ “ min
i

V pαiq.

The SOS method was used to improve upon the estimate Ωlin. By fixing V “ V0, L and u were

varied to maximize ρ and determine Ωsos in (2.2.10). The input u was chosen to be a first-order

polynomial of the states and the maximum value of ρ was found to be 0.044. The SOS controller

was obtained as follows:

τ2 “ ´3.866pθ1 ´ π{2q ´ 2.603θ2 ´ 1.025θ3 ´ 0.898 9θ1 ´ 0.417 9θ2 ´ 0.259 9θ3

τ3 “ 10.157pθ1 ´ π{2q ` 4.887θ2 ` 1.410θ3 ` 1.942 9θ1 ` 1.156 9θ2 ` 0.476 9θ3

2.3.2 Simulation Results

To demonstrate the enlargement of the Re
A “ Ωsos using the IMM, we consider the following initial

configuration that lies outside Ωsos:

x “
„

q˚T
9q˚T

T

“
„

0.0 0.0 0.0 0.00 0.00 0.21

T

(2.3.1)

For this configuration, it can be verified that V0pxq “ 0.48 ą ρ “ 0.044. Following the discussion

in section 2.2.1, the slices rRe
Apq˚ “ 0q corresponding to Ωlin and Ωsos can be expressed as
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rRe
A

o f Ωsos

rRe
A

o f Ωlin

IM

Figure 2.3: Slices of Ωsos and Ωlin, and their intersection with the impulse manifold, IM. A
transformed coordinate system is used for better visualization.

V0 |q“q˚“0ď c and V0 |q“q˚“0ď ρ , respectively. Both these slices are ellipsoids and are shown in

Fig.2.3; the coordinates were scaled and transformed for better visualization. The impulse manifold

IMp0,0,0.21q is a plane (two-dimensional manifold) in the three-dimensional velocity space; it is

shown in Fig.2.3 in the transformed coordinates and mathematically described by the relation:

9q1 ` 0.583 9q2 ` 0.236 9q3 ´ 0.049 “ 0 (2.3.2)

It can be seen from Fig.2.3 that the impulse manifold intersects the slice rRe
Apq˚ “ 0q “ t 9q |

V0p0, 9qq ă ρu obtained using the SOS method but not the slice rRe
Apq˚ “ 0q “ t 9q | V0p0, 9qq ă cu

obtained using linearization. Consequently, the set pRe
A in (2.2.6) obtained using the SOS method

is non-empty whereas that obtained using linearization is a null set; this illustrates the benefit of

using a larger Re
A in terms of applicability of the IMM.

The pRe
A obtained using the SOS method is an ellipse in the three-dimensional velocity space;

it is shown together with the impulse manifold IM in Fig.2.4 in the original coordinates. To take

the configuration of the Tiptoebot from outside Re
A to inside Re

A, we choose the following desired

velocity configuration that lies in the interior of pRe
A:

„
9q1 9qT

2


“
„

2.36 ´4.04 0.16


(2.3.3)
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1.0

0.0

-1.0

0.0

2.0

3.0

2.0

0.0
-2.0

-4.0

IM

pRe
A

9q2

9q1

9q3

p0,0,0.21q

p2.36,´4.04,0.16q

Figure 2.4: Intersection of the slice of Ωsos with the impulse manifold IM in the original coordi-
nates; the intersection set pRe

A is an ellipse.

The desired effect of the impulsive inputs is shown by the dotted line joining the initial and desired

velocity configurations, both of which lie on IM - see Fig.2.4. To implement the IMM, the high-

gain feedback in (2.2.7) was used with 9qdes
2

“ 9q2 in (2.3.3), µ “ 0.0004, λ1 “ 10 and λ2 “ 1; the

results are shown in Fig.2.5. Figure 2.5 plots the joint angles, their velocities, and the control inputs

with time. The high-gain controller is active over t P r0,0.004s; its effect is shown using a dilated

time scale. It can be seen that the change in the joint angles are negligible but there are significant

changes in the joint velocities. At t “ 0.004 when 9q2 « 9qdes
2

, the high-gain controller is switched

off and the stabilizing controller is switched on; at this time, the system configuration is inside Re
A

and therefore the equilibrium can be stabilized. The stabilization of the equilibrium after t ą 0.004

is shown using a normal time scale.

The high-gain feedback was based on µ “ 0.0004. The change in the joint angles were

negligible, of the order of 0.01 rad. A larger value of µ could be used to reduce the magnitude of

the control inputs but it would result in larger changes in the joint angles. The computation of pRe
A

is based on the assumption that there is no change in the joint angles and therefore a small value of

µ is necessary to ensure the applicability of the IMM.

For the general case, if δ denotes the small change in the joint angles due to high-gain feedback,
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Figure 2.5: Effective enlargement of Re
A using SOS-IMM: Plot of joint angles, their velocities,

and control inputs with time for stabilization of the Tiptoebot from the initial configuration given
by (2.3.1). The effect of high-gain feedback is shown using a dilated time scale; the effect of the
stabilizing controller is shown using a normal time scale.

we should ensure that the desired velocity 9qdes
2

, which was chosen to lie in the interior of pRApq˚, 9q˚q,

also lies in the interior of pRApq˚ ` δ , 9q˚q. To this end, the desired velocity 9qdes
2

should be chosen

sufficiently far from the boundary of pRApq˚, 9q˚q.

There is significant flexibility in the choice of the desired velocity 9qdes
2

. This choice can be

used judiciously to minimize the overall control effort or some other cost function.

It was mentioned in section 2.2.1 that the IMM will be more effective for larger Re
A. To this

end, we present an algorithm in the next section for obtaining large estimates of Re
A; the algorithm
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is based on the method of trajectory reversing [37].

2.4 Algorithm for Computing Re
A Using the Method of

Trajectory Reversing

2.4.1 Definitions

For the closed-loop system in (2.2.8), an Re
A of x “ 0 is given by Ωlin in (2.2.9) and Ωsos in

(2.2.10). The method of trajectory reversing [37] can be used to obtain a larger Re
A starting from a

conservative Re
A such as Ωlin or Ωsos. The larger Re

A is a convergent sequence of simply connected

domains generated by backward integration from a discrete set of points on the boundary of the

conservative estimate. In the literature, the method of trajectory reversing has been used to obtain

Re
A for example systems described by two state variables. Here, we present an algorithm [42] that

has been shown to provide larger estimates for the two-state systems considered in the literature;

additionally, it will be used to obtain an Re
A for the Tiptoebot, whose dynamics is described six state

variables. To the best of our knowledge, estimation of the region of attraction using the method of

trajectory reversing has not been reported in the literature for systems with more than two states.

Before we present the algorithm, we present the following definitions:

Definition 1. Convex Hull: A convex hull of a set of points S “ tx1,x2, ¨ ¨ ¨ ,xNu in Rn, denoted by

Conv(S), is the smallest convex set that contains all the points.

A convex hull can be mathematically represented by a set of equations and inequalities. In the

two-dimensional plane, a convex hull is described by line segments which can be represented by

equations of the lines and inequalities based on their lengths. For higher dimensions, the convex

hull is represented by planes/hyper-planes and inequalities. The Quick Hull Algorithm [88] in

Matlab can be used to compute the convex hull of a set of points efficiently. For a given convex

hull, the Matlab function inhull [89] can be used to determine whether an arbitrary point lies in the

interior of the hull or not.

Definition 2. Slice of a Convex Hull: The slice of a convex hull is the set obtained by intersecting
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the convex hull with a hyper-plane.

The slice of a convex hull is also convex. It can be computed using the Matlab function

intersectionhull [90].

Definition 3. Cluster: For a given set of points, a cluster is a subset where any two points in the

subset is density-reachable for some pre-defined distance metric ε .

Simply stated, two points are said to be density-reachable if there is a chain of intermediate

points and the distance between neighboring points does not exceed ε . A more formal definition

of cluster and a cluster identification algorithm can be found in [91]. A cluster of points can be

identified using the Matlab function DBSCAN [92].

2.4.2 Algorithm

We choose a discrete set of points S0 “ tx0
1
,x0

2
, ¨ ¨ ¨ ,x0

Nu on the boundary of the conservative Re
A at

time t0, where N is a sufficiently large number. The conservative Re
A, denoted by Ω0, can be Ωlin

or Ωsos, for example. Now consider the time sequence ti, i “ 0,1,2, ¨ ¨ ¨ , where tk “ t0 ` kΔt, and

Δt is some pre-defined time interval. Define the set Si “ txi
1
,xi

2
, ¨ ¨ ¨ ,xi

Nu, i “ 0,1,2, ¨ ¨ ¨ , which is

obtained by reversing the trajectories of the points in S0 for iΔt interval of time. Conv(Si) is an

enlarged Re
A if:

1. none of the points in Si`k, where k is some pre-defined positive integer, lies in the interior of

Conv(Si), and

2. the vertices of Conv(Si) form a single cluster around the origin with distance metric ε [42].

For i, j “ 0,1,2, ¨ ¨ ¨ , let m
i` j
i denote the number of points which remain in the interior of Conv(Si) at

a time ti` j and NC(Conv(Si)) represent the number of clusters formed by the vertices of Conv(Si).

The complete algorithm for obtaining a large estimate of Re
A, which we refer to as CHART (Convex

Hull Algorithm Using Reversal of Trajectories), is presented next.
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Algorithm CHART
(Convex Hull Algorithm Using Reversal of Trajectories)

Initialization: Choose a sufficiently large integer N which represents the number of points
located uniformly on the boundary of Ω0 and a sufficiently small distance metric ε .

Step 1: Select a suitable time interval Δt and sufficiently large positive integers k1 and k2,
k1 ă k2.
Step 2:
Let ℓ “ 0

For i “ 1 to k1

If ℓ “ i ´ 1

For j “ 1 to k2

If m
i` j
i “ 0 and NC(Conv(Si)) “ 1

ℓ “ i

Break (exit from the inner For loop which
checks the condition on j)

End If
End For

End If
End For
Step 3: If ℓ “ 0, repeat Steps 1 to 2 with a lower value of Δt than chosen in Step 1
Result: ConvpSℓq is the enlarged Re

A.

Parameter Selection: The choice of k1 and k2 is a trade-off between the enlargement of the Re
A

and the computation time. A few examples showing the choice of N, ε , Δt, k1, k2 are provided
in [42].

For the ease of understanding, the CHART is explained for a system with two state variables

with the help of Fig.2.6. At time t “ t0, the boundary of the conservative estimate Ω0 is discretized

into the set of points S0 “ tx0
1
,x0

2
, ¨ ¨ ¨ ,x0

Nu, where N is a large number - see Fig.2.6 (a). At time

t “ t1, it is found that some points in S1 lie in the interior of Conv(S1), i.e. m1
1

­“ 0 - see Fig.2.6

(b). However, after k intervals of time Δt, it is found that none of the points in S1`k lie in the

interior of Conv(S1), i.e. m1`k
1

“ 0. Additionally, the vertices of Conv(S1) form a single cluster, i.e.

NC(Conv(S1)) = 1. Therefore, Re
A “ ConvpS1q - see Fig.2.6 (c). The single cluster requirement

ensures that the vertices of the convex hull are sufficiently close to one another and hence the

boundary of the convex hull is a positively invariant set.
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t “ t0

S0 “ tx0
1
, ¨ ¨ ¨ ,x0

N
u

(a)

t “ t1 “ pt0 `Δtq

S1 “ tx1
1
, ¨ ¨ ¨ ,x1

Nu

(b)

t “ t1`k “ pt1 ` kΔtq

S1`k “ tx1`k
1

, ¨ ¨ ¨ ,x1`k
N

u

(c)

Ω0

p0,0qp0,0qp0,0q

Conv(S1)

Conv(S1`k)

Re
A

x0
1

x0
2

x0
3

x0
i

x0
N

x1
1x1

2

x1
3

x1
N

x1`k
1

x1`k
2

x1`k
3

x1`k
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Figure 2.6: (a) Discretization of the boundary of conservative Re
A “ Ω0 at t “ t0 yields S0, (b)

Convex hull Conv(S1) constructed at time t “ t1, (c) Enlarged Re
A obtained as Conv(S1) at time

t “ t1`k.

2.5 Enlarging the Region of Attraction Using SOS, CHART and IMM

In the last section, we presented CHART for obtaining a larger Re
A starting from a conservative

Re
A. To improve the effectiveness of the IMM, we now apply CHART to obtain an Re

A for the

Tiptoebot starting from the conservative estimate Ωsos. It should be noted that the SOS method

optimizes the stabilizing controller to obtain the largest Re
A and the CHART improves upon this

estimate further without changing the controller.

The CHART was implemented for the Tiptoebot equilibrium configuration pθ1,θ2,θ3,
9θ1,

9θ2,
9θ3q “

pπ{2,0,0,0,0,0q using the following parameter values, which were selected by trial and error:

N « 3 ˆ 10
6, ε “ 0.01, Δt “ 0.0026, k1 “ 10, k2 “ 65

The enlarged estimate Re
A, which is a convex hull in a six-dimensional space, was obtained as

Ωchart “ ConvpS4q.
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Figure 2.7: Slices of Ωchart , Ωsos and Ωlin, and their intersection with the impulse manifold, IM.
For better visualization and for ease of comparison, the same coordinate system of Fig.2.3 is used.

We now reconsider the simulation in section 2.3.2. For the initial configuration of the Tiptoebot

given by (2.3.1), the slice rRe
Apq˚ “ 0q of Ωchart is shown in Fig.2.7 together with the slices

of Ωlin and Ωsos that were previously shown in Fig.2.3. It can be seen that rRe
A of Ωchart is

significantly larger than that of Ωsos. The impulse manifold IMp0,0,0.21q described by (2.3.2),

shown previously in Fig.2.3, can be seen to intersect rRe
A of both Ωchart and Ωsos in Fig.2.7.

The pRe
A of Ωchart is a convex region on the impulse manifold and is shown in Fig.2.8 in the

original coordinates. The pRe
A of Ωsos, shown previously in Fig.2.4 and now shown in Fig.2.8, lies

in the interior of pRe
A of Ωchart . To take the configuration of the Tiptoebot from outside Re

A to

inside Re
A, we now choose the following velocity configuration that lies in the interior of pRe

A of

Ωchart : „
9q1 9qT

2


“
„

1.57 ´2.69 0.18


(2.5.1)

The desired effect of the impulsive inputs is shown by the dotted line joining the initial and desired

velocity configurations, both of which lie on IM - see Fig.2.8. To implement the IMM, the high-

gain feedback in (2.2.7) was used with 9qdes
2

“ 9q2 in (2.5.1), µ “ 0.0004, λ1 “ 10 and λ2 “ 1; the
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p1.57,´2.69,0.18q

p2.36,´4.04,0.16q

Figure 2.8: Intersection of the slices of Ωchart and Ωsos with the impulse manifold IM in the
original coordinates; the intersection set pRe

A of Ωchart is a convex region and encloses the pRe
A of

Ωsos.

results are shown in Fig.2.9. The high-gain controller is active over t P r0,0.004s; its effect is shown

using a dilated time scale. The high-gain controller is switched off and the stabilizing controller

is switched on at t “ 0.004 when the system configuration is inside Re
A. The stabilization of the

equilibrium after t ą 0.004 is shown using a normal time scale.

The desired velocity configuration in (2.5.1) was chosen to lie on the line joining the initial

velocity configuration p0.0,0.0,0.21q and the desired velocity configuration chosen for the SOS-

IMM method in section 2.3, given by (2.3.3). It can be seen from Fig.2.8 that the initial velocity

configuration is closer to the desired velocity configuration in (2.5.1) than the desired velocity

configuration in (2.3.3). Consequently, the magnitudes of the high-gain feedback for the SOS-

CHART-IMM method are less than that of the SOS-IMM method - see plots of τ2 and τ3 in

Figs.2.5 and 2.9 for t P r0.00,0.004s.

We complete this section with a second example that further illustrates the benefit of using

SOS-CHART-IMM for enlarging the Re
A over SOS-IMM. In this example, the initial configuration
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Figure 2.9: Effective enlargement of Re
A using SOS-CHART-IMM: Plot of joint angles, their ve-

locities, and control inputs with time for stabilization of the Tiptoebot from the initial configuration
given by (2.3.1).

of the Tiptoebot is chosen to be

x “
„

q˚
9q˚

T

“
„

´0.2 0.3 0.3 0.0 0.0 0.0

T

(2.5.2)

This initial configuration, shown in Fig.2.10 (a), lies outside Ωchart , and hence outside Ωsos. The

rRe
Apq˚q of Ωsos is found to be a null set and consequently pRe

Apq˚q of Ωsos is also a null set.

Therefore, the IMM cannot be used to enlarge Ωsos. However, it can be seen from Fig.2.10 (b)

that rRe
Apq˚q of Ωchart is not a null set and the IM intersects it. The pRe

A of Ωchart is a convex

region on IM and is shown in Fig.2.10 (c). To take the configuration of the Tiptoebot from outside

Re
A “Ωchart to insideΩchart , we choose the following velocity configuration that lies in the interior
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IM

IM

rRe
A of Ωchart

pRe
A of Ωchart

p0,0,0q

p2.0,´3.3,´0.3q

9q2

9q1

9q3

Figure 2.10: (a) Initial configuration of the Tiptoebot, given by (2.5.2), lies outside Ωchart , (b) rRe
A

of Ωchart (shown in transformed coorrdinates for better visualization) is a convex hull whereas rRe
A

of Ωsos is a null set, (c) intersection of the slice of Ωchart with the impulse manifold IM, shown in
the original coordinates.

of pRe
A of Ωchart : „

9q1 9qT
2


“
„

2.0 ´3.3 ´0.3


(2.5.3)

The desired effect of the impulsive inputs is shown by the dotted line joining the initial and desired

velocity configurations on the IM - see Fig.2.10 (c). To avoid repetition, the simulation results of

high-gain feedback followed by stabilization are not presented.

2.6 Experimental Verification of Enlargement of Re
A using SOS, CHART

and IMM

2.6.1 Hardware Description

Experiments were done with a two-link Pendubot system. A schematic of the pendubot is shown

in Fig.2.11. The equations of motion of the pendubot are in the form of (2.2.2) where n “ 2, m “ 1

and

q “

»
—–

q1

q2

fi
ffifl “

»
—–

θ2 ´ π

θ1

fi
ffifl , u “ τ (2.6.1)
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The equations of motion in terms of the variables q1 and q2 can be found in [23]; the lumped

parameters of the pendubot that appear therein are given in Table 2.2.

The torque τ in the shoulder joint (joint with angle q2 “ θ1) of the pendubot is applied by

a 90-volt direct-drive permanent magnet brushed DC motor3 The motor is driven by a power

amplifier4 with a maximum current limit of 25 A, operating in current mode. The motor torque

constant is 0.4 Nm/A and the amplifier gain is 11.5 A/volt. The torque constant and the current

limit together imply that the maximum torque that can be applied by the motor is 10 Nm. The

pendubot was interfaced with a dSpace DS1104 board and the controller was implemented in the

Matlab/Simulink environment for real-time control.

g

Y

X

c.m
.

c.m.

τ

ℓ1
d1

d2

ℓ2

θ1

θ2

m2, I2
m1, I1

Figure 2.11: An arbitrary configuration of the two-link pendubot.

Table 2.2: Lumped Parameters for Pendubot in SI units

β1 β2 β3 β4 β5

0.0147 0.0051 0.0046 0.1001 0.0302

3The motor manufacturer is Minnesota Electric Technology.
4The amplifier is a product of Advanced Motion Control.
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2.6.2 Design of Experiment

The equilibrium configuration chosen for stabilization was x “ pqT , 9qT qT “ 0 ñ pθ1,θ2,
9θ1,

9θ2q “

p0,π,0,0q. The SOS method was used to design a stabilizing second-order polynomial controller

uspxq; the controller is given below

τ “ ´ 14.926θ1 ´ 1.951θ1
2 ´ 17.728pθ2 ´ πq ´ 2.514pθ2 ´ πq2 ´ 4.469θ1pθ2 ´ πq ´ 1.224 9θ1

` 0.003 9θ1

2 ´ 0.105θ1
9θ1 ´ 0.121pθ2 ´ πq 9θ1 ´ 2.813 9θ2 ´ 0.055 9θ2

2 ´ 0.671θ1
9θ2

´ 0.766pθ2 ´ πq 9θ2 ´ 0.018 9θ1
9θ2 (2.6.2)

The corresponding estimated region of attraction, Ωsos in (2.2.10), was obtained as V pxq ď ρ “

0.083 where

V pq, 9qq “ 1.24q2
2 ` 3.01q1q2 ` 0.15q2 9q2 ` 0.43q2 9q1 ` 2.03q1

2 ` 0.18q1 9q2 ` 0.54q1 9q1

` 0.005 9q2
2 ` 0.026 9q1 9q2 ` 0.040 9q1

2 (2.6.3)

Subsequently, the enlarged estimated region of attraction was obtained as Ωchart “ ConvpS8q using

the following parameter values:

N “ 729000, ε “ 0.01, Δt “ 0.0035, k1 “ 10, k2 “ 18

To demonstrate the enlargement of the Re
A “ Ωchart using the IMM, we consider the following

initial configuration that lies outside Ωchart :

x “
„

q˚T
9q˚T

T

“
„

0.00 ´0.72 0.25 0.00

T

(2.6.4)

For the initial configuration of the pendubot given by (2.6.4), the slice rRe
Apq˚

1
“ 0.00,q˚

2
“ ´0.72q

of Ωchart is shown in Fig.2.12 together with the slice of Ωsos. It can be seen that rRe
A of Ωchart is

significantly larger than that of Ωsos. The impulse manifold IMp0.25,0.00q, which is line, is given

by the relation

9q1 ` p1 ´ β3{β2q 9q2 ´ 0.25 “ 0 (2.6.5)

and is found to intersect rRe
A of Ωchart but not that of Ωsos. Therefore, pRe

A of Ωchart is a line

segment of the impulse manifold (shown in Fig.2.12 using a thicker line) whereas pRe
A of Ωsos is a
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Figure 2.12: Intersection of rRe
A of Ωchart with IM; the intersection set pRe

A of Ωchart is the dark
line segment. The impulse manifold IM was determined by the initial velocity configuration
p 9q2, 9q1q “ p0.00,0.25q. The desired velocity configuration p 9q2, 9q1q “ p2.00,0.05q was chosen to
lie on pRe

A of Ωchart . A zoomed-out scale has been used to show the entire rRe
A of Ωchart ; due to

this scaling the initial and desired velocity configurations appear to be close.

null set. To take the configuration of the pendubot from outside Re
A to inside Re

A, we now choose

the following velocity configuration that lies in the interior of pRe
A of Ωchart :

„
9q1 9q2


“
„

9θ2
9θ1


“
„

0.05 2.00


(2.6.6)

Our experimental verification involved the following steps:

1. Feedback Linearization: A controller was designed using feedback linearization [73] to

fix the configuration of the first link at pq2, 9q2q “ pθ1,
9θ1q “ p´0.72,0.00q. With the first

link fixed, the second link behaves as a simple pendulum. To achieve the configuration

pq1, 9q1q “ pθ2 ´ π, 9θ2q “ p0.00,0.25q, the second link was manually taken to an angle (at

time t0) and released from rest; this angle was determined through trial and error. At time

t´
1

, the configuration in (2.6.4) is achieved - see Fig.2.13 (a), and the feedback linearizing

controller was switched off.

2. High-Gain Control: To implement the IMM, the high-gain controller in (2.2.7) was switched

on at time t´
1

. For the high-gain controller, we used 9qdes
2

“ 9q2 in (2.6.6), µ “ 0.001, and

λ1 “ 1. The high-gain controller was switched off at time t`
1

when the joint velocities reached

a small neighborhood of (2.6.6) - see Fig.2.13 (b).
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Figure 2.13: Steps of experimental verification using the pendubot shown in Fig.2.11: (a) rt0, t´
1

q -

feedback linearizing control, (b) rt´
1
, t`

1
s - high-gain feedback, (c) pt`

1
, t f s - SOS stabilizing control

3. Stabilizing Control: The SOS controller in (2.6.2) was invoked at time t`
1

. The pendubot

configuration reaches the desired equilibrium at time t f - see Fig.2.13 (c).

2.6.3 Experimental Results

The experimental results are shown in Fig.2.14. Simulation results are presented in Fig.2.15 to

compare the experimental results with the ideal behavior. The total time scale is divided into

three intervals corresponding to the three steps discussed in the last section. In the experiment,

the purpose of first step was to create the initial configuration of the pendubot in (2.6.4). In

the simulation, the first step was not necessary as the pendubot was simply assumed to have this

configuration. In the experiment, at time t0, the second link was released from θ2 “ ´2.28 rad

« ´131 deg with the feedback linearizing controller active. At time t´
1

, the feedback linearizing

controller was switched off and the high-gain controller switched on since the configuration of the

pendubot was close to the desired initial configuration in (2.6.4); the pendubot configuration was

pθ1,θ2,
9θ1,

9θ2q “ p´0.72,π,0.00,0.42q - see Fig.2.14.

For both the experiment and the simulation, the high gain controller was switched on at time

t´
1

. For better visualization, the effect of high-gain control is illustrated using a dilated time scale.

Due to the initial error in the actual and desired velocities of the actuated joint, the high-gain

controller invokes a large torque at time t´
1

. Through our simulation, this torque was found to be
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Figure 2.14: Experimental verification of enlargement of Re
A of pendubot: Plot of joint angles,

their velocities, and control input with time. The effect of high-gain feedback is shown using a
dilated time scale; the effect of the stabilizing controller is shown using a normal time scale.
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Figure 2.15: Simulation results of ideal pendubot behavior for comparison with experimental
results presented in Fig.2.14.
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of the order of 20 Nm. In the ideal case, the high-gain controller remains active for a very short

interval of time and the control input decays exponentially during this interval [23]. This can be

verified from the simulation where the time interval is equal to 0.003 s. In our experiment, due to

the current limit (25 A) of the power amplifier (see section 2.6.1), the torque applied by the motor

was saturated at 10 Nm. Therefore, the high-gain controller remained active for a longer duration

of time 0.035 s and the control torque decays after remaining saturated for a significant fraction

of that interval. The high-gain torque was switched off at time t`
1

when the joint velocities were

close to the desired values in (2.6.6); these values are p 9θ1,
9θ2q “ p1.92,0.00q for our experiment and

p 9θ1,
9θ2q “ p1.96,0.05q for our simulation. The changes in the joint angles for both the simulation

and the experiment were negligible, as expected. Although small, the difference in the joint

velocities between the experiment and the simulation at time t`
1

can be attributed to several factors.

These include: (a) error between the actual and desired configuration at time t´
1

, (b) saturation

of the high-gain torque, and (c) sensitivity of the slope of the impulse manifold (line) IM to the

system parameters - see (2.6.5).

The SOS stabilizing controller was switched on at time t`
1

and the pendubot reached its

equilibrium configuration shortly thereafter. The time required for stabilization and the transient

behavior of the system are similar for both the experiment and the simulation. A video of the

experiment can be found on the weblink:

https://www.egr.msu.edu/~mukherji/RofAEnlargeStableUnstable.mp4
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CHAPTER 3

IMPULSIVE DYNAMICS AND CONTROL OF THE INERTIA-WHEEL PENDULUM

3.1 Introduction

The problem of designing rest-to-rest maneuvers for the inertia-wheel pendulum using a se-

quence of impulsive inputs is addressedṪhe use of impulsive inputs simplifies the dynamics of the

IWP and permits the design of optimal sequences under some general assumptions1. This chapter

is organized as follows: the mathematical model of the inertia-wheel pendulum and the formal

problem statement is presented in section 3.2. In section 3.3, rest-to-rest maneuver is designed us-

ing a sequence of two impulsive inputs and a generalization of this result which utilizes a sequence

of N impulsive inputs is presented in section 3.4. In section 3.4, it is also proven that a sequence

with an odd number of inputs is less optimal than the two adjacent sequences with even number

of inputs. Finally simulation results are presented in section 3.5 which provides insights into high

wheel velocity for the inertia-wheel pendulum obtained in prior works.

c.m.

pendulum

motor

inertia wheel

ℓ1

ℓ2

φ

θ

g

τ

x

y

Figure 3.1: The inertia wheel pendulum is shown in an arbitrary configuration.

1The frequently used symbols in this chapter are defined earlier - see key to symbols before
chapter 1.
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3.2 Mathematical Model and Problem Statement

3.2.1 Equations of Motion

The Inertia-Wheel Pendulum (IWP), shown in Fig.3.1, is an underactuated system comprised of

a simple pendulum and an inertia wheel. The inertia wheel, also referred to as a reaction wheel,

is driven by a motor mounted at the distal end of the pendulum. The kinetic energy T and the

potential energy V of the IWP are given by the relations:

T “ m11
9θ 2 ` m22p 9θ ` 9φq2

, V “ β sinθ (3.2.1)

m11 “
´

m1l2
1

` m2l2
2

` I1

¯
{2, m22 “ I2{2

β “ pm1l1 ` m2l2qg

Using (3.2.1), the Euler-Lagrange equation of motion of the IWP can be written as:

2pm11 ` m22q:θ ` 2m22
:φ ` β cosθ “ 0 (3.2.2a)

2m22
:θ ` 2m22

:φ “ τ (3.2.2b)

Note that the angle φ does not appear in (3.2.2a) or (3.2.2b) - this is because the wheel is symmetric

about its axis of rotation.

3.2.2 Effect of Impulsive Input and Constants of Free Motion

The application of an ideal impulsive torque τi by the motor at time ti results in discontinuous

jumps in the velocities of both the pendulum and the wheel while their angular positions remain

unchanged. By integrating (3.2.2a) with respect to time over the infinitesimal interval rt´
i , t`

i s, it

can be shown [23] that these jumps satisfy the relation:

p 9θ `
i ´ 9θ ´

i q “ ´Cp 9φ`
i ´ 9φ´

i q, C fi
m22

pm11 ` m22q (3.2.3)
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Using (3.2.2b), the jump in the pendulum velocity can be shown to be related to the angular impulse

as follows:

Ii fi

ż t`
i

t´
i

τi dt “ 2m22

”
p 9θ `

i ´ 9θ ´
i q ` p 9φ`

i ´ 9φ´
i q

ı
(3.2.4a)

ñ Ii “ ´2m11p 9θ `
i ´ 9θ ´

i q (3.2.4b)

where (3.2.4b) was obtained from (3.2.4a) using (3.2.3).

If τ “ 0, the dynamics of the IWP described by (3.2.2a) or (3.2.2b) simplifies to the form

2m11
:θ ` β cosθ “ 0 (3.2.5a)

:θ ` :φ “ 0 (3.2.5b)

The above equations are the differential forms for conservation of energy of the IWP and conser-

vation of angular momentum of the wheel, namely

m11
9θ 2 ` β sinθ “ constant (3.2.6a)

9θ ` 9φ “ constant (3.2.6b)

It can be seen from (3.2.6a) and (3.2.6b) that the dynamics of the pendulum and wheel are decoupled

and simplified when τ “ 0. For controlling the IWP, this motivates the use of impulsive torques at

discrete instants of time.

3.2.3 Problem Statement: Rest-to-Rest Maneuvers

We consider the problem of designing a set of discrete impulsive inputs over the time interval rt0, t f s

for rest-to-rest maneuvers of the IWP between two configurations where the final configuration has

higher potential energy than the initial configuration, i.e.

9θ0 “ 9φ0 “ 0 (3.2.7a)

9θ f “ 9φ f “ 0 (3.2.7b)

β psinθ f ´ sinθ0q ą 0 (3.2.7c)

38



and θ lies in the range p´3π{2,π{2s. For a given value of N, the task is to design the vector

I N “ rI1 I2 ¨ ¨ ¨ INs where

signpIkq “ ´signpIk´1q, k “ 2,3, ¨ ¨ ¨ ,N (3.2.8)

and t0 ă t1 ă t2 ă ¨¨ ¨ ă tN ă t f . The rationale for imposing the constraint in (3.2.8) will be provided

later, at the beginning of section 3.4. For the sake of simplicity, it is assumed that the time instants

ti are such that the angular velocity of the pendulum is momentarily zero, i.e.,

9θ ´
i fi 9θ pt´

i q “ 0, i “ 1,2, ¨ ¨ ¨ ,N (3.2.9)

Without loss of generality, it is assumed that the first impulsive torque is applied at time t1, where

t´
1

“ t0. Therefore,

9θ ´
1

“ 9θ0 “ 0, 9φ´
1

“ 9φ0 “ 0 (3.2.10)

Since the angular positions of the pendulum and the wheel do not change during application of an

impulsive torque, we have

θ1 “ θ0, φ1 “ φ0 (3.2.11)

3.3 Rest-to-Rest Maneuvers: Case of One and Two Impulsive Inputs

3.3.1 Case of One Impulsive Input (N “ 1)

Using (3.2.3) and (3.2.10), we can write

9θ `
1

“ ´C 9φ`
1

(3.3.1)

The main result can now be stated as follows:

Result 1: (One Impulsive Input) The rest-to-rest maneuver described by (3.2.7) cannot be accom-

plished using I 1 “ rI1s.
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Discussion: Since τ “ 0 for rt`
1
, t f s, we get from (3.2.6), and (3.2.11):

m11
9θ `
1

2

` β sinθ0 “ m11
9θ f

2 ` β sinθ f (3.3.2a)

9θ `
1

` 9φ`
1

“ 9θ f ` 9φ f (3.3.2b)

Using (3.2.7b), (3.3.2b), and (3.3.1), it can be shown that 9θ `
1

“ 0. From (3.3.2a) we now get

β psinθ f ´ sinθ0q “ 0, which violates (3.2.7c). This establishes Result 1 by contradiction.

A single impulsive torque can always be chosen to impart sufficient angular momentum to

the pendulum such that it reaches its desired configuration with zero angular velocity. However,

this impulsive torque will also cause the wheel to have a nonzero angular velocity in the inertial

reference frame. This implies that 9φ ­“ 0 when 9θ “ 0.

3.3.2 Case of Two Impulsive Inputs (N “ 2)

It is assumed that the first impulse is applied at time t1 and therefore (3.3.1) is still valid. Two

results are presented next. In the first result (Result 2), we relax the assumption in (3.2.9) and design

a more general sequence of impulses that satisfies (3.2.7). We will show that the second result

(Result 3), which is a special case of the first, automatically satisfies the assumption in (3.2.9).

Result 2: (Two Impulsive Inputs) The rest-to-rest maneuver described by (3.2.7) can be accom-

plished using I 2 “ rI1 I2s, where I2 “ ´I1.

Discussion: From (3.2.4a) and (3.2.7a) we have

I1 “ 2m22p 9θ `
1

` 9φ`
1

q

and since (3.2.6b) holds good for rt`
1
, t´

2
s, we can write

I1 “ 2m22p 9θ `
1

` 9φ`
1

q “ 2m22p 9θ ´
2

` 9φ´
2

q (3.3.3)

From (3.2.7b) we have p 9θ f ` 9φ f q “ 0 and since (3.2.6b) holds good for rt`
2
, t f s, we can write

p 9θ `
2

` 9φ`
2

q “ 0. Using (3.2.4a), we can now write

I2 “ ´2m22p 9θ ´
2

` 9φ´
2

q (3.3.4)
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It is clear from (3.3.3) and (3.3.4) that the conditions in (3.2.7b) require I2 “ ´I1.

For rt`
1
, t´

2
s and rt`

2
, t f s, the conservation laws in (3.2.6), together with (3.2.7b) and (3.2.11),

give

m11
9θ `
1

2

` β sinθ0 “ m11
9θ ´
2

2

` β sinθ2 (3.3.5a)

9θ ´
2

` 9φ´
2

“ 9θ `
1

` 9φ`
1

(3.3.5b)

m11
9θ `
2

2

` β sinθ2 “ β sinθ f (3.3.5c)

9θ `
2

` 9φ`
2

“ 9θ f ` 9φ f “ 0 (3.3.5d)

For the second impulse, the relationship between the velocity jumps can be obtained from (3.2.3)

as:

p 9θ `
2

´ 9θ ´
2

q “ ´Cp 9φ`
2

´ 9φ´
2

q (3.3.6)

By substituting the relations 9φ`
2

“ ´ 9θ `
2

from (3.3.5d) and 9φ´
2

“ 9θ `
1

` 9φ`
1

´ 9θ ´
2

from (3.3.5b) into

the right-hand side of (3.3.6) and simplifying using (3.3.1), we get

p 9θ `
2

´ 9θ ´
2

q “ ´ 9θ `
1

(3.3.7)

By combining (3.3.5a) and (3.3.5c) and substituting (3.3.7), we get

β
`
sinθ f ` sinθ0 ´ 2sinθ2

˘
“ m11

„
9θ `
2

2

` 9θ ´
2

2

´ 9θ `
1

2


“ 2m11
9θ ´
2

9θ `
2

Substituting the expressions for 9θ `
2

and 9θ ´
2

from (3.3.5a) and (3.3.5c) in the above equation and

simplifying, we get

| 9θ `
1

|“ 1

2

d
β

m11

`
sinθ f ´ sinθ0

˘
a

sinθ f ´ sinθ2

(3.3.8)

From (3.2.7c) we know that psinθ f ´ sinθ0q ą 0 and it can be seen from (3.3.5c) that psinθ f ´

sinθ2q ą 0; therefore, the above equation is well-defined. For a given pair tθ0,θ f u, (3.3.8) provides

a functional relationship between the initial angular velocity 9θ `
1

(resulting from application of the

first impulse I1) and the configuration θ2 where the second impulse (I2 “ ´I1) is applied. There
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Initial Configuration

Final Configuration

Intermediate Configuration

θ0
θ2

θ f

rt`
1
, t´

2
s

rt`
2
, t f s

x

y

Figure 3.2: An example showing the initial, intermediate, and final configuration of the IWP for
the case with two impulsive inputs (N “ 2).

are infinite solutions given by the pair t 9θ `
1
,θ2u; for each solution, the value of 9θ `

1
can be used to

compute the impulses I1 and I2 (I2 “ ´I1), using (3.3.1), (3.3.3), and (3.3.4). An example

showing the initial, intermediate, and final configuration of the IWP for the case with two impulsive

inputs is shown in Fig.3.2. The next result pertains to the particular solution that minimizes the

magnitude of the impulses.

Result 3: (Optimal Input I 2) The minimum magnitude of the impulsive inputs required for the

rest-to-rest maneuver described by (3.2.7) is

|I1 |“|I2 |“
b

2m11β
`
sinθ f ´ sinθ0

˘
(3.3.9)

Discussion: Using (3.3.1) and (3.3.3), I1 can be expressed as

I1 “ 2m22p 9θ `
1

` 9φ`
1

q “ 2m22p1 ´Cq 9θ `
1

(3.3.10)

Therefore, the magnitude of I1 can be minimized by minimizing the magnitude of 9θ `
1

. From
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(3.3.5a) it can be seen that

m11
9θ `
1

2

“ m11
9θ ´
2

2

` β psinθ2 ´ sinθ0q

If psinθ2 ´ sinθ0q ď 0, 9θ ´
2

­“ 0 but the minimum value of 9θ `
1

is equal to zero. This implies

psinθ f ´ sinθ0q “ 0 from (3.3.8), which contradicts (3.2.7c). Since psinθ2 ´ sinθ0q must be

positive, the minimum magnitude of 9θ `
1

can be obtained by choosing 9θ ´
2

“ 02; this magnitude is

equal to

| 9θ `
1

|“
d

β

m11

psinθ2 ´ sinθ0q (3.3.11)

By equating (3.3.8) and (3.3.11), we get

sinθ2 “ 1

2
psinθ0 ` sinθ f q (3.3.12)

where θ2 is the angle at which the second impulse is applied3. Substituting (3.3.12) into (3.3.10)

and (3.3.11), and comparing (3.3.3) and (3.3.4) we get

| 9θ `
1

| “
d

β

2m11

`
sinθ f ´ sinθ0

˘
(3.3.13a)

ñ | I1 | “| I2 |“
b

2m11β
`
sinθ f ´ sinθ0

˘
(3.3.13b)

This establishes Result 3.

From Result 3 it can be seen that the time instant t2 is automatically known when the magnitudes

of the individual impulses are minimized. This is different from Result 2, where the choice of t2 is

not unique and each feasible choice of t2 (alternatively θ2) uniquely determines the magnitudes of

the impulses.

2This choice automatically satisfies the assumption in (3.2.9).
3It is clear that (3.3.12) can have multiple solutions for θ2. The procedure for computing the

correct solution will be discussed in section 3.4.2. Knowing the value of θ2, it will be possible to
determine the time instant t2.
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3.4 Rest-to-Rest Maneuvers: Generalization to N Inputs

3.4.1 Revisiting the Problem Statement

We start this section with the result that justifies the rationale for imposing the constraint in (3.2.8).

Result 4: (Sum of Two Consecutive Impulses) Consider two impulses Ik and Ik`1 applied at

times tk and tk`1. The net effect of these two impulses in terms of change in the velocities of the

pendulum and wheel over the interval rt´
k
, t`

k`1
s can be achieved by a single impulse Ī at time tk

over the interval rt´
k
, t`

k
s where

Ī “ Ik `Ik`1 (3.4.1)

Discussion: From (3.2.4a) we have

Ik “ 2m22

”
p 9θ `

k
´ 9θ ´

k
q ` p 9φ`

k
´ 9φ´

k
q
ı

Ik`1 “ 2m22

”
p 9θ `

k`1
´ 9θ ´

k`1
q ` p 9φ`

k`1
´ 9φ´

k`1
q
ı

Since τ “ 0 for rt`
k
, t´

k`1
s, (3.2.6b) can be used to rewrite the above equations as follows

Ik “ 2m22

”
p 9θ ´

k`1
´ 9θ ´

k
q ` p 9φ´

k`1
´ 9φ´

k
q
ı

Ik`1 “ 2m22

”
p 9θ `

k`1
´ 9θ ´

k`1
q ` p 9φ`

k`1
´ 9φ´

k`1
q
ı

ñ Ik `Ik`1 “ 2m22

”
p 9θ `

k`1
´ 9θ ´

k
q ` p 9φ`

k`1
´ 9φ´

k
q
ı

The change in the velocities of the pendulum and wheel over the interval rt´
k
, t`

k`1
s are p 9θ `

k`1
´ 9θ ´

k
q

and p 9φ`
k`1

´ 9φ´
k

q, respectively. To achieve the same change over rt´
k
, t`

k
s, Ī must satisfy

Ī “ 2m22

”
p 9θ `

k`1
´ 9θ ´

k
q ` p 9φ`

k`1
´ 9φ´

k
q
ı

ñ Ī “ Ik `Ik`1

This establishes Result 4.

Result 4 clearly indicates that two consecutive impulses of the same sign can be replaced by a

single impulse of the same sign. This justifies the constraint imposed in our problem statement that

consecutive impulses must have opposite sign.
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An extension of Result 4 is now considered. For a rest-to-rest maneuver using two impulsive

inputs pN “ 2q, Result 4 implies that Ī “ I1 ` I2 “ 0. This is true since (3.2.6b) and (3.2.7b)

implies p 9θ `
k`1

` 9φ`
k`1

q “ p 9θ `
2

` 9φ`
2

q “ p 9θ `
f

` 9φ`
f

q “ 0, and (3.2.7a) and (3.2.10) implies p 9θ ´
k

`
9φ´
k

q “ p 9θ ´
1

` 9φ´
1

q “ 0. This is consistent with Result 2, where it was shown that I2 “ ´I1. A

generalization of this result in stated next.

Result 5: (Zero Sum of Impulses) For a rest-to-rest maneuver involving N impulsive inputs, N ě 2,

the following equation must hold.
Nÿ

i“1

Ii “ 0 (3.4.2)

Discussion: A sequence of N impulses, N ě 2, can be replaced by two impulses by applying Result

4 iteratively. For a rest-to-rest maneuver, the sum of these two impulses is zero - this follows from

our discussion above.

It is clear from the discussion above that both Result 4 and Result 5 are quite general and they

do not require the assumption in (3.2.9) to be satisfied.

With the motivation of investigating the minimum values of the magnitudes of the impulsive

torques, we investigate rest-to-rest maneuver of the IWP with I 3 and I 4. As in the cases with

I 1 and I 2, (3.3.1) holds good.

3.4.2 Rest-to-Rest Maneuvers with Even Number of Impulsive Inputs

Theorem 1. (Optimality of Even Impulse Sequence)

For a rest-to-rest maneuver of the IWP that satisfies (3.2.7) and (3.2.9) and uses 2n impulsive

inputs, n “ 1,2, ¨ ¨ ¨ , I 2n
8 is minimized by the following choice of inputs:

|Ii |“ 1?
n

b
2m11β

`
sinθ f ´ sinθ0

˘
, @ i “ 1,2, ¨ ¨ ¨ ,2n (3.4.3)

The angles where the impulsive inputs are applied satisfy the following relation

sinθi “
„

2n ´ i ` 1

2n


sinθ0 `

„
i ´ 1

2n


sinθ f i “ 1,2, ¨ ¨ ¨ ,2n (3.4.4)
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Proof: We use induction to first prove (3.4.3). Assuming that (3.4.3) is satisfied for 2m impulsive

inputs, i.e., n “ m. We express the magnitudes of the impulses for the case with p2m ` 2q inputs

using the relation

|Ii |“ ki?
m

b
2m11β

`
sinθ f ´ sinθ0

˘
, i “ 1,2, ¨ ¨ ¨ ,p2m ` 2q (3.4.5)

where ki, i “ 1,2, ¨ ¨ ¨ ,p2m ` 2q, are arbitrary positive numbers. Using (3.2.4b) and (3.2.9) we can

show

| 9θ `
i | “ ki?

m

d
β

2m11

`
sinθ f ´ sinθ0

˘
, i “ 1,2, ¨ ¨ ¨ ,p2m ` 2q (3.4.6)

Using (3.2.9), the conservation law in (3.2.6a) for the time intervals rt`
1
, t´

2
s, rt`

2
, t´

3
s, ¨ ¨ ¨ rt`

j , t
´
j`1

s,

¨ ¨ ¨ , rt`
2m`2

, t f s can be written as:

m11
9θ `
1

2

` β sinθ0 “ β sinθ2

m11
9θ `
2

2

` β sinθ2 “ β sinθ3
...

m11
9θ `
j

2

` β sinθ j “ β sinθ j`1
...

m11
9θ `2

2m`2
` β sinθ2m`2 “ β sinθ f

(3.4.7)

Addition of equations in (3.4.7) and substitution of | 9θ `
i | from (3.4.6) in the resulting equation

gives the following
2m`2ÿ

i“1

k2
i “ rk1 k2 ¨ ¨ ¨ k2m`2s2

2
“ 2m (3.4.8)

Using (3.4.8) and the property of norms it can be shown that

?
2m ` 2 rk1 k2 ¨ ¨ ¨ k2m`2s8 ě rk1 k2 ¨ ¨ ¨ k2m`2s

2

ñ rk1 k2 ¨ ¨ ¨ k2m`2s8 ě
c

m

m ` 1
(3.4.9)

It can be shown that ki “
a

m{pm ` 1q, i “ 1,2, ¨ ¨ ¨ ,p2m ` 2q, satisfy (3.4.8) and minimize

rk1 k2 ¨ ¨ ¨ k2m`2s8. Substitution of these values of ki in (3.4.5) shows that (3.4.3) is satisfied for

p2m ` 2q impulsive inputs, i.e. n “ pm ` 1q. It has been shown earlier in (3.3.9) that (3.4.3) is
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satisfied for N “ 2 (n “ 1). By induction we can now claim that (3.4.3) will be satisfied for any

even number of impulsive inputs.

The values of | 9θ `
i |, i “ 1,2, ¨ ¨ ¨ ,2n, can be obtained from (3.4.3), (3.2.4b), and (3.2.9), namely

| 9θ `
i | “ 1?

n

d
β

2m11

`
sinθ f ´ sinθ0

˘
(3.4.10)

By substituting (3.4.10) in the energy conservation laws (similar to (3.4.7)) for 2n impulses and

solving sequentially as shown below, we get the relations between the angles where the impulsive

inputs should be applied

S1 “ S0

S2 “ 1

2n
pS f ´ S0q ` S0 “

„
2n ´ 2 ` 1

2n


S0 `

„
2 ´ 1

2n


S f

S3 “ 1

2n
pS f ´ S0q ` S2 “

„
2n ´ 3 ` 1

2n


S0 `

„
3 ´ 1

2n


S f

...

Si “ 1

2n
pS f ´ S0q ` Si´1 “

„
2n ´ i ` 1

2n


S0 `

„
i ´ 1

2n


S f

(3.4.11)

where Sp “ sinθp, p “ 1,2, ¨ ¨ ¨ f . It can be seen that these angles satisfy 3.4.4.

It follows from (3.4.3) in Theorem 1 and (3.2.8) that all the 2n impulses have the same magnitude

and consecutive impulses have opposite signs. Since the pendulum and wheel are both at rest at

the initial time, it follows that each pair of consecutive impulses (starting with I1 and I2) result

in a rest-to-rest maneuver.

It follows from (3.2.4b), (3.2.8), and (3.2.9) that the velocity of the pendulum immediately

after application of an impulsive input will have opposite sign for two consecutive impulses, i.e.,

signp 9θ `
k`1

q “ ´signp 9θ `
k

q, k “ 1,2, ¨ ¨ ¨ ,p2n ´ 1q. Using this fact, the following algorithm can be

constructed to determine the unique value of θi, i “ 1,2, ¨ ¨ ¨ ,2n, from (3.4.4).

If θ f belongs to quadrant I (includes θ “ π{2) or IV, then

For m “ 1,2, ¨ ¨ ¨ ,n, compute sinθ2m using (3.4.4)
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If sinθ2m ą 0, θ2m belongs to quadrant II

Elseif sinθm ă 0, θ2m belongs to quadrant III

Else θ2m “ ´π .

For m “ 0,1, ¨ ¨ ¨ ,pn ´ 1q, compute sinθ2m`1 using (3.4.4)

If sinθ2m`1 ą 0, θ2m`1 belongs to quadrant I

If sinθ2m`1 ă 0, θ2m`1 belongs to quadrant IV

Else θ2m`1 “ 0.

Else θ f belongs to quadrant II or III, then

For m “ 1,2, ¨ ¨ ¨ ,n, compute sinθ2m using (3.4.4)

If sinθ2m ą 0, θ2m belongs to quadrant I

Elseif sinθm ă 0, θ2m belongs to quadrant IV

Else θm “ 0.

For m “ 0,1, ¨ ¨ ¨ ,pn ´ 1q, compute sinθ2m`1 using (3.4.4)

If sinθ2m`1 ą 0, θ2m`1 belongs to quadrant II

If sinθ2m`1 ă 0, θ2m`1 belongs to quadrant III

Else θ2m`1 “ ´π .

Endif

3.4.3 Rest-to-Rest Maneuvers with Odd Number of Inputs

We generalize the result presented in Remark 4.

Theorem 2. (Lack of Optimality of Odd Impulse Sequence)

It is not possible to design an odd impulse sequence for which the magnitudes of all the impulsive

inputs are less than the optimal magnitude for the preceding and succeeding even impulse sequence.

In other words, the following inequality holds for n “ 1,2, ¨ ¨ ¨ .

I
2n`1

8 ą minI
2n

8 ą minI
2n`2

8 (3.4.12)
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Proof: It is clear from (3.4.3) that minI 2n
8 ą minI 2n`2

8. We proceed to prove the left

inequality by contradiction and therefore assume

|Ii | “ ki minI
2n

8 | ki P p0,1s

ñ | 9θ `
i | “ ki?

n

d
β

2m11

`
sinθ f ´ sinθ0

˘ (3.4.13)

From (3.2.8), (3.4.2), and (3.4.13) we can show

k1 ` k3 ` ¨¨ ¨k2n`1 “ k2 ` k4 ` ¨¨ ¨k2n (3.4.14)

Substituting the expression for 9θ `
i from (3.4.13) in the energy conservation laws (similar to (3.4.7))

for the p2n ` 1q impulses, we get

k2
1

` k2
2

` ¨¨ ¨k2
2n`1

“ 2n (3.4.15)

Since ki P p0,1s, the following inequality holds true

k2
1

` k2
2

` ¨¨ ¨k2
2n`1

ď k1 ` k2 ` k3 ¨ ¨ ¨k2n`1 (3.4.16)

Using (3.4.14), and (3.4.15) we get

k2 ` k4 ` ¨¨ ¨k2nl               jh               n
n terms

ě n (3.4.17)

The left hand side of the inequality above is equal its right hand side @ kq “ 1,q “ 2,4, ¨ ¨ ¨2n.

However, this choice of kq violates (3.4.14) and (3.4.15) to be satisfied simultaneously. Therefore,

(3.4.17) can be modified as

k2 ` k4 ` ¨¨ ¨k2nl               jh               n
n terms

ą n (3.4.18)

There exist no choice of kq such that the above inequality holds true @kq P p0,1s and thus, completes

the proof by contradiction.
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3.5 The Swing-Up Problem

3.5.1 Optimal Swing-Up Using Even Impulse Sequences

The swing-up problem is a rest-to-rest maneuver where the final pendulum angle is θ f “ π{2.

We consider special case where the initial angle of the pendulum is in the vertically downward

configuration, i.e., θ0 “ ´π{2. For swing-up using an even number of impulsive inputs, the optimal

solution can be obtained from (3.4.3). For N “ 2n, n “ 1,2, ¨ ¨ ¨ , the optimal solution is given by a

sequence of equal and opposite impulses of the following magnitude:

|Ii |“ 1?
n
I, @ i “ 1,2, ¨ ¨ ¨ ,2n, Ifi 2

a
m11β (3.5.1)

Since the magnitude of the impulses is inversely proportional to
?

n, it is clear that if the number of

impulsive inputs are increased by an even number, the magnitude of each impulse in the sequence

is reduced. This information will be useful for designing an impulse sequence that takes into

consideration actuator saturation.

3.5.2 Implementation Using High-Gain Feedback

Ideal impulsive inputs are Dirac-delta functions and cannot be generated by actuators. In real

physical systems, continuous-time implementation of impulsive inputs has be achieved using high-

gain feedback in both theory and experiments [19,23,25]. The high-gain feedback [93] for the IWP

can be obtained as

τhg “ rKT M´1Ks´1rKT M´1H ` 1

ε
p 9φ`

i ´ 9φ´
i qs (3.5.2)

M “ 2

»
—–

pm11 ` m22q m22

m22 m22

fi
ffifl , H “

»
—–

β cosθ

0

fi
ffifl

where the matrices M and H above were reconstructed from (3.2.2), K fi

„
0 1

T

, and ε ą 0 is

a small number. Implementation of impulsive inputs using high-gain feedback also enables us to

compare our results with those published in the literature. A discussion of select results in the

literature is presented next.
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3.5.3 Discussion of Results in the Literature

3.5.3.1 Globally Stabilizing Controller

We implemented the globally stabilizing controller in [1] using their kinematic and dynamic

parameter values, which are given below

m11 “ 4.83 ˆ 10
´3, m22 “ 32 ˆ 10

´6, β “ 37.9 ˆ 10
´2 (3.5.3)

Due to brevity of space, we omit complete expression of the controller used in [1]; rather, we recall

the controller’s structure which is in the form

c0 c1 µ0 ` c1 µ1 ` c2 µ2 ` c3 µ3

where µ0, µ1, µ2 and µ3 are nonlinear functions of state variables. The controller parameters were

chosen as: c0 “ ´π{10, c1 “ 13, c2 “ 16 and c3 “ 8.0; the results are shown in Fig.3.3. The

plots are slightly different from those presented in [1] but the overall trends are similar. It is clear

from the plot of θ that the control input drives the pendulum directly towards the desired value of

θ f “ π{2. There is a small overshoot beyond π{2 but the wheel velocity is extremely high, of the

-5

0

10

-0.4

0.0

0.2

-2.0

2.0

-8000

0

0.0 10.0 0.0 10.0

0.0 10.0 0.0 10.0

0.0

time (s)time (s)

τ (Nm)

9θ (rad/s)

9φ (rad/s)

θ (rad)π{2

Figure 3.3: Simulation results for the globally stabilizing controller [1] with controller parameter
values: c0 “ ´π{10, c1 “ 13, c2 “ 16 and c3 “ 8.0.
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0.0 10.0time (s)time (s)
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Figure 3.4: Simulation results for the globally stabilizing controller [1] with controller parameter
values: c0 “ ´π{10, c1 “ 13, c2 “ 16 and c3 “ 4.5.

order of 8000 rad/s. A change in the controller parameter c3 from 8.0 to 4.5 increases the overshoot

slightly but reduces the maximum wheel velocity by almost 50% - see Figs.3.3 and 3.4.

The above observation can be explained by the analysis presented in section 3.3 even though the

nature of the inputs are completely different (continuous inputs in [1] vs a pair of impulsive inputs,

N “ 2). By changing the domain of θ from p´3π{2,π{2s to p´π{2,3π{2s4 and using (3.3.1) and

(3.3.8), we get for θ f “ π{2 and θ0 “ ´π{2:

| 9φ`
1

|“ 1

C

d
β

m11p1 ´ sinθ2q (3.5.4)

It is clear from (3.5.4) that the wheel velocity immediately after application of the first impulse

depends only on the angle where the second impulse is applied, namely θ2, and tends to infinity

when θ2 “ π{2
`, i.e., when the overshoot approaches zero. While it is clear from (3.5.4) that

θ2 “ π{2
` is not a good choice for application of the second impulse, the value of θ2 that minimizes

the magnitude of the wheel velocity | 9φ`
1

| can be obtained using the energy conservation law in

4This change in the domain is necessary to ensure that the trajectory of θ is similar to that in [1]
but it does not change the analysis whatsoever.
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(3.2.6a). For the IWP to cross the upright configuration, the following inequality must be satisfied:

m11
9θ `
1

2

` β sinθ0 ą β ñ | 9φ`
1

|ą 1

C

a
2β{m11 (3.5.5)

where θ0 “ ´π{2 and (3.3.1) were used. Comparing (3.5.4) and (3.5.5), we can show that

θ2 “ p5π{6q´ minimizes | 9φ`
1

|.

A simulation was performed using the high-gain feedback law in (3.5.2) with ε “ 0.01, the

parameter values in (3.5.3), and θ2 « 3π{4 (slightly less that 5π{6); the results are shown in

Fig.3.5. After the IWP reached a neighborhood of θ f “ π{2, a linear controller was invoked for

stabilization. The linear controller was designed to place the poles of the closed loop system at

´4 ˘ 2i and ´8. The simulation results indicate that swing-up is achieved in less than 1.0 s, which

is much faster than that achieved in [1]. The maximum velocity of the wheel is still quite high

(3000 rad/s) but it is significantly lower than that in Fig.3.3. The torque required is quite high (« 13

Nm) but this can be reduced significantly by simply changing the domain of θ2, as we will show in

the next simulation.

The simulation results presented in Fig.3.5 were obtained by assuming θ P p´π{2,3π{2s; this

was motivated by the need to generate trajectories of the IWP similar to those generated in [1], for
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Figure 3.5: High-gain feedback implementation of two impulsive inputs (N “ 2) for swing-up of the
IWP. For the purpose of comparison with the results in Figs.3.3 and 3.4, the controller is designed
to keep θ in the domain p´π{2,3π{2s.
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comparison. If we switch the domain of θ back to p´3π{2,π{2s, as defined in section 3.2.3, the

maximum wheel speed and the magnitude of the maximum torque can both be reduced from their

values in Fig.3.5. Simulation results of high-gain feedback implementation of the optimal impulse

sequence based on two inputs, described by (3.4.3) and (3.4.4) with n “ 1, is shown in Fig.3.6.

The high-gain controller was implemented using ε “ 0.02 and stabilization of the equilibrium was

achieved by the same linear controller that was used in the last simulation. It can be seen from

Fig.3.6 that the second impulse is applied when θ2 « ´π rad. Similar to the results in Fig.3.5,

swing-up is achieved in less than 1.0 s, but the maximum wheel velocity is now reduced from 3000

rad/s to 2000 rad/s and magnitude of the maximum torque is reduced from « 13 Nm to « 3 Nm.

The maximum torque of « 3 Nm in Fig.3.6, although larger than those reported in the literature,

is not a significant concern because it is applied for a very short duration of time. Motors can

apply substantially larger torques5 than their maximum continuous torque over short time intervals.

The maximum torque of « 3 Nm also corresponds to the continuous-time implementation of the

optimal I 2. The magnitude of this torque, as well as the maximum velocity of the wheel, can
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Figure 3.6: High-gain feedback implementation of the sequence of two optimal impulsive inputs
(N “ 2) for swing-up of the IWP. The controller is designed to keep θ in the domain p´3π{2,π{2s.

5This is referred to a peak torque [94]; for different motors, the peak torque can be twice to ten
times larger than the maximum continuous torque.
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be easily reduced if we consider continuous-time implementation of I 2n, n “ 2,3, ¨ ¨ ¨ . This is

discussed in the next section.

Our results are not compared with those obtained using the IDA-PBC method, [15, 43], for

example, due to space constraints. Similar to the globally stabilizing controller [1], the IDA-PBC

method also takes the pendulum directly to the desired upright configuration and results in a large

continuous torque [15] or large wheel velocity [43] during swing-up.

3.5.3.2 Energy Based Controller

When the number of impulses are increased from N “ 2 to N “ 8, for example, the magnitude

of the impulsive torques are reduced by a factor of
?

4 “ 2; consequently, the magnitude of the

maximum high-gain torque and the wheel velocity are reduced proportionately - see Fig.3.7. The

trajectories of the state variables in Fig.3.7 resemble those of the energy based controllers [2, 68]

during swing-up phase of the IWP; the PFBLC + AL energy-based controller presented in [2] is

simulated here to show the similarities in the trajectories - see Fig.3.8. It can be seen from Figs.3.7

and 3.8, that, unlike the globally stabilizing controller [1] (see Fig.3.3) where the pendulum is

aggressively driven towards its desired configuration, both controllers (presented here and in [2])
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Figure 3.7: High-gain feedback implementation of the sequence of eight optimal impulsive inputs
(N “ 8) for swing-up of the IWP. The high-gain controller was implemented with ε “ 0.02.
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Figure 3.8: Simulation using the PFBLC + AL controller in [2]; the controller parameters were
chosen as ke “ 3.1ˆ10

7 and kv “ 0.1. This choice of parameters ensured that the time required for
swing-up and the magnitude of the maximum control torque in simulations matched those of the
experiments. The initial configuration was chosen to be slightly different from θ0 “ ´π{2 since
the controller is unable to swing-up from this configuration.

gradually add energy to the pendulum over several cycles of oscillation.

Table 3.1: Swing-up time and maximum magnitude of high-gain torque required for different values
of N

N 2 4 6 8 10 12

ts (s) 0.6 1.36 1.96 2.90 3.67 4.53

max
t0ďtďt f

|τhg| (Nm) 3.0 2.12 1.73 1.50 1.35 1.20

A comparison of Figs.3.7 and 3.8 indicates that the magnitude of the maximum torque required

by our method is larger than that required by the approach proposed in [2]. However, since the

torques are applied intermittently over very short intervals of time, feasibility of our approach is

determined by the peak torque rating of the actuator as opposed to the maximum continuous torque

rating, which is always lower [94]. A salient feature of our approach is that, given any actuator,

an optimal impulse sequence can be designed such that the peak torque rating of the motor is not

exceeded. A higher value of N reduces the peak torque requirement of the motor but increases the
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time time required for swing-up. The swing-up time and the magnitude of the maximum torque for

several different values of N are presented in Table 6.1.
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CHAPTER 4

IMPULSIVE CONTROL OF A DEVIL-STICK: PLANAR SYMMETRIC JUGGLING

4.1 Introduction

The problem of juggling a devil-stick is investigated. Assuming that the stick remains confined

to the vertical plane, the task is to juggle between two symmetric configurations. Impulsive forces

are applied to the stick intermittently and the impulse of the force and its point of application are

modeled as inputs to the system. The juggling problem is formally described in section 4.2. The

dynamics of the devil-stick is presented in section 4.3; it is comprised of impulsive dynamics due to

the control inputs and continuous dynamics due to torque-free motion under gravity. A coordinate

transformation is used to simplify the control problem and the dynamics is described by a nonlinear

discrete-time system. The control design is provided in section 4.4. By choosing one of the control

inputs to be dead-beat, the nonlinear system is simplified to a linear discrete-time system. For

stable juggling, the linear system is controlled using linear quadratic regulator (LQR) and model

predictive control (MPC) techniques. Simulation results are presented in section 4.5.

x

y

ℓ

θ

m,J

G ” phx,hyq

g

Figure 4.1: A three degree-of-freedom of a devil-stick.
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4.2 Problem Description

Consider the three degree-of-freedom devil-stick shown in Fig. 4.1, which can move freely

in the xy vertical plane. The stick has length ℓ, mass m, and mass moment of inertia J about its

center-of-mass G. The configuration of the stick is described by the three generalized coordinates:

pθ ,hx,hyq, where θ is the orientation of the stick with respect to the positive x axis, measured

counter-clockwise, and phx,hyq are the Cartesian coordinates of G. The objective is to juggle

the stick between two configurations that are symmetric with respect to the vertical axis. The

coordinates of the stick in these two configurations are pθ ˚,h˚
x ,h

˚
yq and pπ ´ θ ˚,´h˚

x ,h
˚
yq, where

θ ˚ P p0,π{2q - see Fig. 4.2. It is assumed that juggling is achieved by applying impulsive forces

perpendicular to the stick; they are applied only when the orientation of the stick is θ “ θ ˚ or

θ “ π ´ θ ˚. Therefore, the time of application of the impulsive force is not a part of the control

design. The control inputs are the pair pI,rq, where I, I ě 0, is the impulse of the impulsive force

and r is the distance of the point of application of the force from G. The value of r is considered to

be positive if the angular impulse of the impulsive force about G is in the positive z direction when

θ “ θ ˚, and is in the negative z direction when θ “ π ´ θ ˚. The control inputs that juggle the stick

between the symmetric configurations are denoted by the pair pI˚,r˚q.

x

y

π ´ θ˚

θ˚

p´h˚
x ,h

˚
yq ph˚

x ,h
˚
yq

g
I “ I˚ I “ I˚

r
“

r
˚r “

r ˚

Figure 4.2: Symmetric configurations of the devil-stick in Fig. 4.1.
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4.3 Dynamics of the Devil-Stick

4.3.1 Impulsive Dynamics

The dynamics of the three-DOF devil-stick is described by the six-dimensional state vector X ,

where

X “
„

θ ω hx vx hy vy

T

, ω fi 9θ , vx fi 9hx, vy fi 9hy

Let tk, k “ 1,2,3, ¨ ¨ ¨ , denote the instants of time when the impulsive inputs are applied. Further-

more, without loss of generality, let k “ p2n ´ 1q, n “ 1,2, ¨ ¨ ¨ denote the instants of time when the

impulsive inputs are applied at θ “ θ ˚, and k “ 2n, n “ 1,2, ¨ ¨ ¨ denote the instants of time when the

impulsive inputs are applied at θ “ π ´ θ ˚. If t´
k

and t`
k

denote the instants of time immediately

before and after application of the impulsive inputs, the linear and angular impulse-momentum

relationships can be used to describe the impulsive dynamics1 as follows, for k “ 1,3,5, ¨ ¨ ¨

Xpt`
k

q “ Xpt´
k

q `

»
——————————————–

0

pIk rk{Jq

0

´pIk{mqsinθ ˚

0

pIk{mqcosθ ˚

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(4.3.1)

and for k “ 2,4,6, ¨ ¨ ¨

Xpt`
k

q “ Xpt´
k

q `

»
——————————————–

0

´pIk rk{Jq

0

pIk{mqsinθ ˚

0

pIk{mqcosθ ˚

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(4.3.2)

1Impulsive inputs cause discontinuous jumps in the velocity coordinates but no change in the
position coordinates. The dynamics of underactuated systems subjected to impulsive inputs is
discussed in [6, 25, 74, 95].
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where pIk,rkq denote the control inputs at time tk. Between two consecutive impulsive inputs, the

devil-stick undergoes torque-free motion under gravity; this is discussed next.

4.3.2 Continuous-time Dynamics

Over the interval t P rt`
k
, t´

k`1
s, the devil-stick will be in flight; its center-of-mass G will undergo

projectile motion and its angular momentum will remain conserved. This dynamics is described

by the differential equation:

9X “
„

ω 0 vx 0 vy ´g

T

(4.3.3)

where the initial condition Xpt`
k

q can be obtained from ( 4.3.1) or ( 4.3.2), depending on whether

k is odd or even.

4.3.3 Poincaré Sections and Half-Return Maps

For the hybrid system, described by impulsive dynamics of section 4.3.1 and continuous dynamics

of section 4.3.2, we define two Poincaré sections2,3 [96] Sr and Sl as follows:

Sr : tX P R6 | θ “ θ ˚u

Sl : tX P R6 | θ “ π ´ θ ˚u
(4.3.4)

These Poincaré sections are chosen since the impulsive inputs are applied only when θ is equal to

θ ˚ or pπ ´ θ ˚q. Any point on Sr and Sl can be described by the vector Y , Y Ă X , where

Y “
„

ω hx vx hy vy

T

(4.3.5)

The map Pr : Sr Ñ Sl can be determined from ( 4.3.1) and ( 4.3.3) as follows:

Y pt´
k`1

q “ AY pt´
k

q ` Br (4.3.6)

2Poincaré sections have been previously used for design of gaits for bipedal robots [76, 80].
3It is assumed that the initial conditions of the devil-stick are such that its trajectory intersects

one of the two Poincaré sections before the first impulsive control input is applied.
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A fi

»
——————————–

1 0 0 0 0

0 1 δk 0 0

0 0 1 0 0

0 0 0 1 δk

0 0 0 0 1

fi
ffiffiffiffiffiffiffiffiffiffifl

, Br fi

»
——————————–

pIk rk{Jq

´pIk{mqsinθ ˚δk

´pIk{mqsinθ ˚

pIk{mqcosθ ˚δk´p1{2qgδ 2

k

pIk{mqcosθ ˚´gδk

fi
ffiffiffiffiffiffiffiffiffiffifl

where δk fi pt´
k`1

´ t´
k

q and k “ p2n ´ 1q, n “ 1,2, ¨ ¨ ¨ . Similarly, the map Pl : Sl Ñ Sr can be

determined from ( 4.3.2) and ( 4.3.3) as follows

Y pt´
k`1

q “ AY pt´
k

q ` Bl (4.3.7)

Bl fi

»
——————————–

´pIk rk{Jq

pIk{mqsinθ ˚δk

pIk{mqsinθ ˚

pIk{mqcosθ ˚δk´p1{2qgδ 2

k

pIk{mqcosθ ˚´gδk

fi
ffiffiffiffiffiffiffiffiffiffifl

where k “ 2n, n “ 1,2, ¨ ¨ ¨ . Both Pr and Pl in ( 4.3.6) and ( 4.3.7), respectively, can be viewed as

half-return maps4 since the composition of these maps are the return maps Pr ˝Pl : Sl Ñ Sl and

Pl ˝Pr : Sr Ñ Sr. In the next section we introduce a coordinate transformation to show that the map

Pl , in the transformed coordinates, is identical to Pr. This simplifies the analysis of the problem.

4.3.4 Coordinate Transformation

Consider Fig. 4.3, where z “ 0 denotes the xy plane in which the devil-stick is juggled. Typically,

the juggler will stand at a point on the positive z axis, denoted by P in Fig. 4.3 (a), and face the

z “ 0 plane. The juggler will apply a control action with the right hand when θ “ θ ˚, and with the

left hand when θ “ π ´ θ ˚, i.e., the juggler is ambidextrous. Instead of alternating between the

right and left hands, the juggler can choose to apply all control actions using the right hand only.

4Half-return maps have been used to analyze the behavior of dynamical systems such as the van
der Pol oscillator [97, 98].
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(a)

(b)

(c)

x

x

x

y

y

y

z

z

z

g

θ ˚

θ ˚

θ ˚

π´θ ˚

P

P

Q

Q

ph˚
x ,h˚

y q

ph˚
x ,h˚

y q

ph˚
x ,h˚

y q

p´h˚
x ,h˚

y q

Figure 4.3: (a) Ambidexterous juggler standing at P and applying control actions with both hands,
(b) right-handed juggler standing at P and applying control action with right hand, (c) right-handed
juggler standing at Q and applying control action with right hand.

This juggler, whom we will now refer to as the right-handed juggler, To this end, the juggler will

apply the control action standing at P when θ “ θ ˚ - see Fig. 4.3 (b), and apply the next control

action after changing location to Q (mirror image of P) and facing the z “ 0 plane when θ “ π ´θ ˚

- see Fig. 4.3 (c). When the devil stick has the orientation θ “ π ´ θ ˚, as seen by an observer at

P, it will have the orientation θ “ θ ˚ for the right-handed juggler. After applying control action at

Q, the right-handed juggler will return back to P. If xyz denotes the rotating coordinate frame of

the right-handed juggler, the change in position of this juggler can be described by the coordinate
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transformation:
»
————–

x

y

z

fi
ffiffiffiffifl

Q

“ Ry,π

»
————–

x

y

z

fi
ffiffiffiffifl

P

,

»
————–

x

y

z

fi
ffiffiffiffifl

P

“ Ry,π

»
————–

x

y

z

fi
ffiffiffiffifl

Q

where

Ry,π fi diagr´1, 1, ´1s

Since Ry,π changes the sign of the x and z coordinates and leaves the y coordinate unchanged, we

can show

YQ “ RYP, YP “ RYQ

where

R “ R´1
fi diagr´1, ´1, ´1, 1, 1s

and YP and YQ denote the vector Y as seen by the right-handed juggler standing at points P and Q,

respectively.

4.3.5 Single Return Map and Discrete-Time Model

In the reference frame of the right-handed juggler, who alternates between positions P and Q, the

two Poincaré sections Sl and Sr are identical, and equal to

S : tX P R6 | θ “ θ ˚u (4.3.8)

This follows from our discussion in section 4.3.4 as well as Figs. 4.3 (b) and (c). The half-return

maps Pr and Pl in ( 4.3.6) and ( 4.3.7) can be rewritten as follows:

YPpt´
k`1

q “ AYPpt´
k

q ` Br, k “ 1,3,5, ¨ ¨ ¨ (4.3.9a)

YPpt´
k`1

q “ AYPpt´
k

q ` Bl , k “ 2,4,6, ¨ ¨ ¨ (4.3.9b)
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to explicitly indicate the reference frame of Y . Since the right-handed juggler alternates between

positions P and Q, the half-return map Pl in ( 4.3.9b) can be transformed as follows:

RYPpt´
k`1

q “ RAYPpt´
k

q ` RBl

ñ YQpt´
k`1

q “ ARYPpt´
k

q ` RBl

ñ YQpt´
k`1

q “ AYQpt´
k

q ` Br, k “ 2,4,6, ¨ ¨ ¨ (4.3.10)

where we used the relations RA “ AR and RBl “ Br. It is clear from ( 4.3.9a) and ( 4.3.10) that

the half-return maps Pr and Pl in ( 4.3.6) and ( 4.3.7) are identical in the reference frame of the

right-handed juggler. This implies that the hybrid dynamics of the devil-stick between any two

control actions can be described by a single return map if the change in reference frame of the

right-handed juggler is incorporated in the dynamic model. This map, P : S Ñ S, can be obtained

by first rewriting the left-hand-sides of ( 4.3.6), ( 4.3.9a) and ( 4.3.10) as follows:

RYQpt´
k`1

q “ AYPpt´
k

q ` Br, k “ 1,3,5, ¨ ¨ ¨

ñ YQpt´
k`1

q “ R
“
AYPpt´

k
q ` Br

‰
, k “ 1,3,5, ¨ ¨ ¨ (4.3.11a)

RYPpt´
k`1

q “ AYQpt´
k

q ` Br, k “ 2,4,6, ¨ ¨ ¨

ñ YPpt´
k`1

q “ R
“
AYQpt´

k
q ` Br

‰
, k “ 2,4,6, ¨ ¨ ¨ (4.3.11b)

Then, by accounting for the change in reference frame of the right-handed juggler after each control

action, ( 4.3.11a) and ( 4.3.11b) can be combined into the following single equation which represents

the return map P:

Ȳ pt´
k`1

q “ R
“
AȲ pt´

k
q ` Br

‰
, k “ 1,2,3, ¨ ¨ ¨
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where Ȳ denotes the state vector Y in the reference frame of the right-handed juggler. The above

equation results in the following discrete-time equations:

ωpt´
k`1

q “ ´ωpt´
k

q ´ pIk rk{Jq (4.3.12a)

hxpt´
k`1

q “ ´hxpt´
k

q´
“
vxpt´

k
q´pIk{mqsinθ ˚‰δk (4.3.12b)

vxpt´
k`1

q “ ´vxpt´
k

q ` pIk{mqsinθ ˚ (4.3.12c)

hypt´
k`1

q “ hypt´
k

q ´ p1{2qgδ 2

k `
“
vypt´

k
q ` pIk{mqcosθ ˚‰δk (4.3.12d)

vypt´
k`1

q “ vypt´
k

q ` pIk{mqcosθ ˚´gδk (4.3.12e)

where δk fi pt´
k`1

´ t´
k

q, k “ 1,2, ¨ ¨ ¨ , is the time of flight between two consecutive control actions.

During this time duration, the devil-stick rotates by a net angle π ´ 2θ ˚. Since the angular velocity

of the stick remains constant in the interval rt`
k
, t´

k`1
s, δk is given as follows

δk “ Δθ

ωpt´
k

q ` pIk rk{Jq
, Δθ fi pπ ´ 2θ ˚q (4.3.13)

The control design for juggling is presented next.

4.4 State Feedback Control Design

4.4.1 Steady-State Dynamics

From the discussion in section 4.3.5 it becomes clear that when the change of reference frame

of the juggler is taken into account, the problem of juggling between the two distinct configura-

tions pθ ˚,h˚
x ,h

˚
yq and pπ ´ θ ˚,´h˚

x ,h
˚
yq is converted to the problem of juggling between identical

configurations pθ ˚,h˚
x ,h

˚
yq and pθ ˚,h˚

x ,h
˚
yq. If the state variables at this configuration are denoted

by

Ȳ ˚
fi

„
ω˚ h˚

x v˚
x h˚

y v˚
y

T

(4.4.1)
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then Ȳ ˚ “ PpȲ ˚q is a fixed point and ( 4.3.12) and ( 4.3.13) give

ω˚ “ ´ω˚ ´ pI˚
k r˚

k{Jq (4.4.2a)

h˚
x “ ´h˚

x ´
“
v˚

x ´pI˚
k {mqsinθ ˚‰δ ˚ (4.4.2b)

v˚
x “ ´v˚

x ` pI˚
k {mqsinθ ˚ (4.4.2c)

h˚
y “ h˚

y ´ p1{2qgδ ˚2 `
”
v˚

y ` pI˚
k {mqcosθ ˚

ı
δ ˚ (4.4.2d)

v˚
y “ v˚

y ` pI˚
k {mqcosθ ˚´gδ ˚ (4.4.2e)

δ ˚ “ Δθ

ω˚ ` pI˚
k

r˚
k
{Jq (4.4.2f)

where I˚
k , r˚

k denote the steady-state values of the control inputs and δ ˚ denote the steady-state

value of the time of flight. Since h˚
y is eliminated from ( 4.4.2d), ( 4.4.2) represents six equations

in seven unknowns, namely, ω˚, h˚
x , v˚

x , v˚
y , I˚, r˚, and δ ˚. By choosing δ ˚, the remaining six

unknowns are obtained as follows:

ω˚ “ ´Δθ{δ ˚, h˚
x “ gδ ˚2

tanθ ˚{4

v˚
x “ g tanθ ˚δ ˚{2, v˚

y “ ´gδ ˚{2

I˚ “ mgδ ˚{cosθ ˚,r˚ “ 2J cosθ ˚
Δθ{pmgδ ˚2q

(4.4.3)

Since the point of application of the impulsive force must lie on the stick, r˚ in ( 4.4.3) must satisfy

0 ă r˚ ă ℓ{2. This imposes the following constraint of the value of δ ˚:

δ ˚ ą δ̄ , δ̄ fi 2

d
J cosθ ˚Δθ

mgℓ
(4.4.4)

It should be noted that for a given value of δ ˚, the value of h˚
y is not unique.

4.4.2 Error Dynamics

To converge the states to their desired values, we first define the discrete error variables:

rωpkq fi ωpt´
k

q ´ ω˚

rhxpkq fi hxpt´
k

q ´ h˚
x , rvxpkq fi vxpt´

k
q ´ v˚

x

rhypkq fi hypt´
k

q ´ h˚
y , rvypkq fi vypt´

k
q ´ v˚

y

ru1pkq fi pIkrk ´ I˚r˚q{J, ru2pkq fi pIk ´ I˚q{m

(4.4.5)
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Using ( 4.3.12) and ( 4.4.2a)-( 4.4.2e), the error dynamics can now be written as

rωpk ` 1q “ ´ rωpkq ´ ru1pkq (4.4.6a)

rhxpk ` 1q “ ´rhxpkq´δkrvxpkq ` δk sinθ ˚ ru2pkq (4.4.6b)

rvxpk ` 1q “ ´rvxpkq ` sinθ ˚ ru2pkq (4.4.6c)

rhypk ` 1q “ rhypkq ` δkrvypkq ` δk cosθ ˚ ru2pkq ` pg{2q
”
δkδ ˚

k ´ δ 2

k

ı
(4.4.6d)

rvypk ` 1q “ rvypkq ` cosθ ˚ru1pkq´g rδk ´ δ ˚
k s (4.4.6e)

where δk, defined in ( 4.3.13), can be written in terms of the error variables as follows:

δk “ Δθ δ ˚

rrωpkq ` ru1pkqsδ ˚ `Δθ
(4.4.7)

It is clear from ( 4.4.6) and ( 4.4.7) that the error dynamics is nonlinear. In the next section we

present a partial control design that converts the nonlinear system into a linear system and simplifies

the remaining control design.

4.4.3 Partial Control Design: Dead-Beat Control

The error dynamics in ( 4.4.6) involves two control inputs, namely, ru1pkq and ru2pkq. The input

ru1pkq appears only in ( 4.4.6a). To this end, we first design ru1pkq as follows:

ru1pkq “ ´rωpkq (4.4.8)

to guarantee dead-beat convergence of the error state rωpkq. Substitution of ( 4.4.8) in ( 4.4.7) yields

δk “ δ ˚. Since, δ ˚ is user-defined and is a constant, the choice of control in ( 4.4.8) is special as it
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transforms the remaining dynamics in ( 4.4.6b)-( 4.4.6e) into the linear system:

zpk ` 1q “ A zpkq `B ru2pkq

zpkq fi

„
rhxpkq rvxpkq rhypkq rvypkq

T

A fi

»
———————–

´1 ´δ ˚
0 0

0 ´1 0 0

0 0 1 δ ˚

0 0 0 1

fi
ffiffiffiffiffiffiffifl

, B fi

»
———————–

δ ˚
sinθ ˚

sinθ ˚

δ ˚
cosθ ˚

cosθ ˚

fi
ffiffiffiffiffiffiffifl

(4.4.9)

It can be verified that the pair pA ,Bq is controllable since θ ˚ P p0,π{2q and δ ˚ ą 0.

4.4.4 Residual Control Design

The error dynamics in ( 4.4.9) is linear and therefore the states can be converged to zero by simply

designing a linear controller. However, it should be noted that the control input ru2pkq determines

the value of Ik which also appears in the dead-beat control design ru1pkq - see ( 4.4.5). By using the

values of ru2pkq from ( 4.4.5) in ( 4.4.8), we get:

rk “ rI˚r˚ ´ J rωpkqs{Ik (4.4.10)

Since the point of application of impulsive force must lie of the stick, rk must satisfy ´ℓ{2 ă rk ă ℓ{2.

By imposing this condition on the value of rk in ( 4.4.10), we get the following constraints on the

input ru2pkq:
ru2pkq ą r2I˚r˚ ´ 2J rωpkq ´ I˚ℓ s{pmℓq

ru2pkq ą r´2I˚r˚ ` 2J rωpkq ´ I˚ℓ s{pmℓq
(4.4.11)

Since I˚ and r˚ are both positive, as it can be seen from ( 4.4.3), the inequalities in ( 4.4.11) can be

combined into the single inequality:

ru2pkq ą ā ` b̄ | rωpkq | (4.4.12)

ā fi p2r˚ ´ ℓqI˚{pmℓq, b̄ fi 2J{pmℓq
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Since ru1pkq is dead-beat, rωpkq “ 0,k “ 2,3 ¨ ¨ ¨ . Thus, ( 4.4.12) can also be written as

ru2pkq ą ā ` b̄ | rωpkq |, k “ 1

ru2pkq ą ā, k “ 2,3, ¨ ¨ ¨
(4.4.13)

The input ru2pkq is designed using Linear Quadratic Regulator (LQR) and Model Predictive

Control (MPC) methods. For an LQR design, the control minimizes the cost function

J “
8ÿ

k“1

”
zpkqT Qzpkq ` Rru2

2
pkq

ı
(4.4.14)

where, Q and R are constant weighting matrices that can be chosen by trial and error to satisfy the

constraints in ( 4.4.13). The closed-form solution of the control input ru2pkq can be obtained by

solving the Ricatti equation [99].

For a receding horizon MPC design, the constraint in ( 4.4.13) can be explicitly included in

the optimization problem. In the MPC design5, it is necessary to calculate the predicted output

with future control input as the adjusted variable. Since the current control input cannot affect the

output at the same time for receding horizon control, the system dynamics must be represented in

terms of the difference between the current and the predicted control input. To this end, we define

the following variables based on the augmented state-space model6 in [100]:

Δupkiq fi ru2pkiq ´ ru2pki ´ 1q

ΔUi fi

»
———————–

Δupkiq

Δupki ` 1q
...

Δupki ` Nc ´ 1q

fi
ffiffiffiffiffiffiffifl

, Zi fi

»
———————–

zpki ` 1 | kiq

zpki ` 2 | kiq
...

zpki ` Np | kiq

fi
ffiffiffiffiffiffiffifl

(4.4.15)

where ki is the current sampling instant, zpkiq is the state vector in ( 4.4.9) measured at ki, Nc is

the control horizon, Np is the prediction horizon, and zpki ` m | kiq is the predicted state variable at

ki ` m with state measurements zpkiq.
5A detailed discussion of MPC design for discrete-time systems can be found in Chapters 1-3

in [100].
6The augmented state-space model is controllable; this was verified using Theorem 1.2 in [100].
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We now construct the following N-step receding horizon optimal control problem:

minimize J “
Nÿ

i“1

”
ZT

i Zi `ΔUT
i ΔUi

ı
(4.4.16)

subject to

zpki ` 1q “ A zpkiq `B ru2pkiq

ru2pkiq ą ā ` b̄ | rωp1q |, i “ 1

ru2pkiq ą ā, i “ 2,3 ¨ ¨ ¨ ,N

(4.4.17)

In every sampling period, the optimization problem determines the best control parameter ΔUi that

attempts to converge the sequence of states in Zi to zero. AlthoughΔUi contains Nc number of future

control inputs, only the first entry is implemented as the actual control input. This optimization

process is repeated using a more recent measurement of the states. It should be emphasized that the

input constraint in ( 4.4.17), namely, ru2pkiq ą ā` b̄ | rωp1q| is imposed only in the first optimization

window. In subsequent optimization windows, the constraint is relaxed to ru2pkiq ą ā. This is

necessary for ru2 to converge to zero since ā is negative - see ( 4.4.12), whereas ā ` b̄ | rωp1q | can

assume positive values based on the initial value of rω .

Remark 1. The control input ru2pkq is obtained as the numerical solution of the optimal control

problem in ( 4.4.16) and ( 4.4.17). These inputs are applied at discrete time instants and the

optimization solver is required to compute these inputs within the sampling time interval, which is

equal to the time of flight δ ˚. Since δ ˚ is relatively large, there is sufficient time for the optimization

solver to generate the solution. This, along with the fact that the input constraint can be explicitly

considered in the problem formulation, makes MPC well-suited for this problem.
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4.5 Simulation Results

4.5.1 System Parameters and Initial Conditions

We present simulation results of both LQR- and MPC-based control designs. The physical param-

eters of the devil-stick are provided below in SI units:

m “ 0.1, ℓ “ 0.5, J “ 0.0021 (4.5.1)

Using these physical parameters and by choosing the values of θ ˚ “ π{6 rad and δ ˚ “ 0.5 sec, the

steady-state values of state variables and control inputs are obtained from ( 4.4.3) as

ω˚ “ ´4.18rad{s h˚
x “ 0.353m v˚

x “ 1.414m{s

v˚
y “ ´2.45m{s I˚ “ 0.565Ns r˚ “ 0.030m

(4.5.2)

Since h˚
y can be chosen arbitrarily, we chose

h˚
y “ 3.0m (4.5.3)

At the initial time, we assume θ “ θ ˚ “ π{6 rad and the states variables (in SI units) are

ωp0q “ 0, hxp0q “ 0.53, vxp0q “ 2.0, hyp0q“ 1.0, vyp0q“ ´2.0 (4.5.4)

For the physical parameters in ( 4.5.1), steady-state values of the states in ( 4.5.2) and ( 4.5.3), and

initial conditions in ( 4.5.4), the control ru1pkq was chosen according to ( 4.4.8). The control input

ru2pkq was designed using LQR and MPC methods and simulation results are presented next.

4.5.2 Results for the LQR-based Design

For the LQR design, the weight matrix Q for the states was chosen to be the identity matrix and the

control weight R was chosen as 0.2. The control was obtained as

ru2pkq “ Fzpkq, F “
„

´0.43 ´0.77 0.43 0.66


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Figure 4.4: State variables and total energy E of the devil-stick at sampling instants k, k “
1,2, ¨ ¨ ¨ ,10, for the LQR design.
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Figure 4.5: Control inputs for the devil-stick at sampling instants k, k “ 1,2, ¨ ¨ ¨ ,10, for the LQR
design.

The simulation results are shown in Figs. 4.47 and 4.5. It can be seen from Fig. 4.4 (a) that

the dead-beat control ru1pkq converges ωpkq to ω˚ in one sampling interval. The control ru2pkq

converges the remaining states to their steady-state values given in ( 4.5.2) in approximately k “ 10

steps - see Figs. 4.4 (c)-(f). The control inputs Ik and rk are shown in Figs. 4.5 (a) and (b). It can

7It should be noted that the state variables are shown in the reference frame of the right-handed
juggler.
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be seen that both control inputs converge to their steady-state values defined in ( 4.5.2); also the

control input rk remains well inside the constraint boundary | rk |ă ℓ{2. The convergence of both

the states and control inputs to their desired values imply that the devil-stick is juggled between

two symmetric configurations. Since the magnitudes of vx, vy, ωx, and hy are the same in the two

symmetric configurations, the total energy E (kinetic plus potential) reaches a constant value at

steady state - see Fig. 4.4(b).

Remark 2. The total energy of the devil-stick is the same at the symmetric configurations. Also,

it is conserved during the flight phase. Therefore, in steady-state, the control inputs I˚ and r˚ do

zero work on the system.

4.5.3 Results for the MPC-based Design

The control horizon, prediction horizon, and the number of steps were taken as

Nc “ 5, Np “ 10, N “ 15

The MPC problem, defined by ( 4.4.16) and ( 4.4.17) were solved using quadratic programming in

Matlab8. The state variables hxpkq, hypkq, vxpkq and vypkq and the control inputs Ik and rk are shown

in Fig. 4.6. The state variable ωpkq is not shown as it converged to its desired value in one sampling

interval by the dead-beat controller. Similar to the LQR design, the control input rk remains well

inside the constraint boundary. The trajectory of the center-of-mass of the devil stick is shown in

Fig. 4.7 (a); it starts from the initial configuration phx,hyq “ p0.53,1.00q and is eventually juggled

between the symmetric coordinates ph˚
x ,h

˚
yq “ p0.353,3.00q and p´h˚

x ,h
˚
yq “ p´0.353,3.00q in

steady state. Typically, N is chosen to be large to guarantee convergence. For our system, the

states rapidly converged to zero with N “ 15. In Fig. 4.7 (b), the devil-stick is shown at the two

symmetric configurations where θ ˚ “ π{6 and several intermediate configurations that are equal

time intervals apart.

8The quadprog Matlab function was used.
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Figure 4.6: State variables and control inputs of the devil-stick at sampling instants k, k “
1,2, ¨ ¨ ¨ ,15, for the MPC design.
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Figure 4.7: (a) Trajectory of the center-of-mass from the initial configuration to steady-state and (b)
symmetric configurations and seven intermediate configurations of the devil-stick in steady state
for the MPC design.

Remark 3. In both simulations, the stick rotates by an angle pπ ´ 2θ ˚q between two consecutive

control inputs. This corresponds to “top-only idle" juggling [47]. The controller is quite general

and the stick can be controlled to rotate by pqπ ´ 2θ ˚q, q “ 2,3, ¨ ¨ ¨ , by simply changing the
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definition of Δθ in ( 4.3.13) from Δθ “ pπ ´ 2θ ˚q to Δθ “ pqπ ´ 2θ ˚q. In other words, the stick

can be made to flip multiple times in the flight phase, if desired. The “flip-idle" in [47] corresponds

to the case where q “ 2.
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CHAPTER 5

ENERGY-BASED ORBITAL STABILIZATION USING CONTINUOUS INPUTS AND
IMPULSIVE BRAKING

5.1 Introduction

We present a controller for energy-based orbital stabilization of the class of Euler-Lagrange

systems that have one passive revolute joint. Examples of systems in this class include the pendubot,

acrobot, cart-pendulum system, rotary pendulum etc. The orbit is defined by fixed positions of

the active coordinates and a desired energy of the overall system. The controller is comprised of

continuous-time inputs and impulsive inputs for braking. At first, a general result for underactuated

systems is presented which shows that an impulsive input causes an instantaneous jump in the

mechanical energy of the system. This jump is shown to be explicitly dependent on the change in

the active velocities due to an impulsive input. This result is then used to show that impulsive braking

causes a negative jump in the mechanical energy of the system as well as the Lyapunov-like function.

Finally, using a state-dependent impulsive dynamical system model [101], we present sufficient

conditions for stabilization. To demonstrate the generality of our approach, we demonstrate orbital

stabilization for the three-DOF Tiptoebot [6] through simulations. Experimental validation of the

control design is carried out on a rotary pendulum to show the applicability of our approach in real

hardware.

5.2 Problem Statement

Consider an n degree-of-freedom underactuated system with one passive degree-of-freedom.

The generalized coordinates of the system are denoted by q, q fi
“
qT

1
q2

‰T
, where q1 P Rn´1 and

q2 P R are the coordinates associated with the active and passive degrees-of-freedom. Our control

objective is to stabilize the orbit defined by

pq1, 9q1,Eq “ p0,0,Edesq (5.2.1)
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where E is the total mechanical energy of the system and is given by the relation

Epq, 9qq “ 1

2
9qT Mpqq 9q `F pqq (5.2.2)

and Edes is the desired value of E. In (5.2.2), Mpqq P Rnˆn is the mass matrix, assumed to be

positive definite, and F pqq is the potential energy, assumed to be a smooth function of q. The mass

matrix is partitioned as

Mpqq “

»
—–

M11pqq M12pqq

MT
12

pqq M22pqq

fi
ffifl (5.2.3)

where M11 P Rpn´1qˆpn´1q and M22 P R.

Assumption 1. The mechanical energy of the system is assumed to be periodic in the passive

coordinate q2, such that Epq2 ` 2πq “ Epq2q.

Remark 4. Assumption 4 is easily satisfied if the passive degree-of-freedom is a revolute joint.

Assumption 2. The elements of the mass matrix Mpqq are bounded and the potential energy F pqq

is lower bounded. Furthermore, if q1 “ q˚
1

is constant, then

d

dq2

rkP1pq˚
1
,q2q ` P2pq˚

1
,q2qs ­“ 0

where k is any scalar constant, and

P1pq˚
1
,q2q “ 2

M22

˜„BM12

Bq2


´ 1

2

„BM22

Bq1

T

´ M12

2M22

„BM22

Bq2

¸

P2pq˚
1
,q2q “ ´P1pq˚

1
,q2qF ´ M12

M22

BF

Bq2

`
„BF

Bq1

T

Remark 5. The boundedness property of Mpqq and F pqq is satisfied for systems that have no

prismatic joints. For a given underactuated system with one passive DOF, assumption 5 can be

easily verified.
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5.3 Modeling of System Dynamics

5.3.1 Lagrangian Dynamics

For our system described in section 5.2, the equations of motion can be written as:

d

dt

ˆBL

B 9q1

˙
´
ˆBL

Bq1

˙
“ u

d

dt

ˆBL

B 9q2

˙
´
ˆBL

Bq2

˙
“ 0

(5.3.1)

where L pq, 9qq is the Lagrangian and u P Rn´1 is the vector of independent control inputs. Each

element of the vector u is a continuous function of time for all t ě 0 except at discrete instants

t “ τk, k “ 1,2, ¨ ¨ ¨ , where it is impulsive in nature. At t “ τk, the impulsive input vector has the

form upτkq “ Ik δ pt ´ τkq, where δ pt ´ τkq is the Dirac measure at time τk and Ik P Rn´1 is the

impulse of the impulsive input. The Lagrangian has the form

L pq, 9qq “ 1

2
9qT Mpqq 9q ´F pqq (5.3.2)

By substituting (5.2.3) in (5.3.2), the Lagrangian is written as

L pq, 9qq “ 1

2
9qT
1

M11 9q1 ` 1

2
M22 9q2

2
` 9qT

1
M12 9q2 ´F (5.3.3)

and by substituting (5.3.3) in (5.3.1), the equations of motion are written in the form:

M11 :q1 ` M12 :q2 ` h1pq, 9qq “ u (5.3.4a)

MT
12

:q1 ` M22 :q2 ` h2pq, 9qq “ 0 (5.3.4b)

where

h1 “ 9M11 9q1 ` 9M12 9q2 ´ 1

2

„ B
Bq1

pM11 9q1q


9q1 ´
„BpM12 9q2q

Bq1


9q1 ´ 1

2

„BM22

Bq1

T

9q2
2

`
„BF

Bq1

T

(5.3.5a)

h2 “ 9M22 9q2 ` 9qT
1

9M12 ´ 1

2
9qT
1

„BpM11 9q1q
Bq2


´ 1

2

„BM22

Bq2


9q2
2

´ 9qT
1

„BpM12 9q2q
Bq1


` BF

Bq2

(5.3.5b)
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Equations (5.3.4a) and (5.3.4b) can be rewritten in the form

:q1 “ Apq, 9qq ` Bpqqu (5.3.6a)

:q2 “ ´p1{M22q
”
MT

12
tApq, 9qq ` Bpqquu ` h2

ı
(5.3.6b)

where

Bpqq “
”
M11 ´ p1{M22qM12 MT

12

ı´1

(5.3.7)

Apq, 9qq “ p1{M22qBpqq rM12 h2 ´ h1M22s (5.3.8)

Using the properties of the mass matrix Mpqq and the Schur complement theorem [102], it can be

shown that Bpqq is well-defined, symmetric and positive-definite, i.e., Bpqq “ BT pqq ą 0.

5.3.2 Effect of Impulsive Inputs

When the control input u in (5.3.4a) is impulsive, it causes discontinuous jumps in the velocities

p 9q1, 9q2q, while the coordinates pq1,q2q remain unchanged. For the impulsive input at t “ τk, the

jump in the velocities is computed by integrating (5.3.4) as follows [86]:
»
—–

M11 M12

MT
12

M22

fi
ffifl

»
—–
Δ 9q1

Δ 9q2

fi
ffifl “

»
—–

Ik

0

fi
ffifl , Ik fi

ż t`
k

t´
k

uptkqdt

In the above equation, Δ 9q1 and Δ 9q2 are defined as

Δ 9q1 fi p 9q`
1

´ 9q´
1

q, Δ 9q2 fi p 9q`
2

´ 9q´
2

q

where 9q´
fi 9qpτ´

k
q and 9q`

fi 9qpτ`
k

q denote the generalized velocities immediately before and after

application of the impulsive inputs. Since the system is underactuated, the jump in 9q2 is dependent

on the jumps in 9q1; this dependence is described by the one-dimensional impulse manifold [23] or

impulse line, obtained from the equation above:

9q`
2

“ 9q´
2

´ p1{M22qMT
12

p 9q`
1

´ 9q´
1

q (5.3.9)
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The kinetic energy undergoes an instantaneous change due to jumps in the generalized velocities.

This change is also equal to the change in the total mechanical energy of the system since the

potential energy is only a function of the generalized coordinates. A formal statement of this result

is provided next.

Lemma 1. For the dynamical system in (5.3.4), the jump in the total mechanical energy due to

application of an impulsive input is given by

ΔE fi pE` ´ E´q “ 1

2
9q`T

1
B´1pqq 9q`

1
´ 1

2
9q´T

1
B´1pqq 9q´

1
(5.3.10)

where E´ and E` are the energies immediately before and after application of the impulsive input.

Proof: See section 5.7.1.

Remark 6. The proof of Lemma 1 is provided for the general case where the number of active and

passive degrees-of-freedom are pn ´ mq and m, respectively. This general result indicates that the

change in mechanical energy due to an impulsive input depends only on the velocities of the active

degrees-of-freedom immediately before and after application of the input. The result is analogous

to the passivity property for the continuous-time case [103], where the power input to the system

is the inner product of the velocities of the active degrees-of-freedom and control inputs. It is

important to note that results similar to Lemma 1 appeared earlier in [104].

We define impulsive braking as the process of applying impulsive inputs that result in 9q`
1

“ 0.

It follows from Lemma 1 that impulsive braking results in a loss of mechanical energy, given by

the expression

ΔE “ ´1

2
9q´T

1
B´1pqq 9q´

1
(5.3.11)

The discontinuous jumps in the generalized velocities and kinetic energy of the system also

occurs when mechanical systems experience forces due to impact. In this regard, results similar to

the ones presented above can be found in [104–106].

We now state an important result related to impulsive braking.

81



Lemma 2. Consider the scalar function

V “ 1

2

”
qT

1
Kp q1 ` 9qT

1
Kd 9q1 ` KepE ´ Edesq2

ı
(5.3.12)

where Kp and Kd are diagonal positive definite constant matrices and Ke is a positive constant.

Impulsive braking results in a discontinuous jump in the function given by

ΔV fi pV ` ´V ´q “ ´1

2
9q´T

1

„
1

4

"
Ke 9q´T

1
B´1pqq 9q´

1

*
B´1pqq ` Kd ` KepE` ´ EdesqB´1pqq


9q´
1

(5.3.13)

where V ´ and V ` are values of the function immediately before and after impulsive braking.

Furthermore, if

”
Kd ` KepE` ´ EdesqB´1pqq

ı
is positive definite, then ΔV ď 0, and ΔV “ 0 if and

only if 9q´
1

“ 0.

Proof: See section 5.7.2.

5.3.3 Hybrid Dynamical Model

For orbital stabilization of our system in (5.3.4), we propose a control strategy comprised of

continuous and impulsive inputs. The impulsive inputs will be used for impulsive braking of the

active coordinates, i.e., 9q`
1

“ 0. As a result, the change in the velocities can be obtained using

(5.3.9) as follows:

Δ 9q1 “ 0 ´ 9q´
1

“ ´ 9q´
1

Δ 9q2 “ 9q`
2

´ 9q´
2

“ p1{M22qMT
12

9q´
1

(5.3.14)

In addition to the impulsive braking inputs, we will reset the passive coordinate q2 periodically to

confine it to the compact set r´3π{2,π{2s. To describe the dynamics of our system, we adopt the

state-dependent impulsive dynamical model in [101, pg.20]:

9xptq “ fcrxptqs, xp0q “ x0, xptq R Z (5.3.15a)

Δxptq “ fdrxptqs, xptq P Z (5.3.15b)
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where Z defines the set where the impulsive inputs are applied and/or periodic resetting occurs.

For our system,

xptq fi rqT
1

q2 9qT
1

9q2
sT P D Ď R2n

Δxptq fi xpt`q ´ xpt´q

In the above expression, D is the open set where q2 P pa,bq, a ă ´3π{2, b ą π{2, and xpt´q, xpt`q

are the values of the state variables immediately before and after application of impulsive inputs or

coordinate resetting. Using (5.3.6), (5.3.9) and (5.3.14), it can be shown

fc “

»
———————–

9q1

9q2

Apq, 9qq ` Bpqqu

´p1{M22q
“
MT

12
tApq, 9qq ` Bpqquu ` h2

‰

fi
ffiffiffiffiffiffiffifl

(5.3.16)

fd “

$
’’’’’’’&
’’’’’’’%

„
0 0 ´ 9q´

1
p1{M22qMT

12
9q´
1

T

:xptq P Z1

„
0 2π 0 0

T

:xptq P Z2

„
0 ´2π 0 0

T

:xptq P Z3

(5.3.17)

Z “ Z1 Y Z2 Y Z3, Z1 is the set where impulsive braking inputs are applied (to be defined in

Theorem 2 where the control design will be presented), and Z2 fi tq2 “ ´3π{2, 9q2 ă 0u and

Z3 fi tq2 “ π{2, 9q2 ą 0u are the sets where coordinate resetting occurs.

Note that the solution xptq of (5.3.15) is left-continuous, i.e., it is continuous everywhere except

at time instants tk, k “ 1,2, ¨ ¨ ¨ , where tk’s denote the time instants when impulsive inputs are

applied or coordinate resetting occurs. Since impulsive inputs are applied at τk, k “ 1,2, ¨ ¨ ¨ ,

tτ1,τ2, ¨ ¨ ¨ u Ă tt1, t2, ¨ ¨ ¨ u. Thus, xpt`q and xpt´q, in the equation after (5.3.15), were defined
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without the time stamp, i.e.

xpt´q fi xpt´
k

q “ lim

εÑ0`
xptk ´ εq

xpt`q fi xpt´
k

q ` fdrxpt´
k

qs “ lim

εÑ0`
xptk ` εq

The well-posedness of the tk’s and the quasi-continuous dependence of the solution to (5.3.15)

with respect to initial conditions [101,104,107] will be established later in the proof of Theorem 4

where Z1 will be defined.

5.4 Hybrid Control Design

5.4.1 Main Result

For the control objective in (5.2.1), we propose a hybrid control strategy comprised of a continuous

controller and impulsive braking1. Theorem 4 provides the design of the continuous controller

and defines the set Z1, where impulsive braking is applied. The proof of Theorem 2 is based on

a Lyapunov-like function. The continuous controller is invoked as long as the derivative of the

Lyapunov-like function is negative semi-definite; when this condition is not satisfied, impulsive

braking is applied to produce negative jumps in the Lyapunov-like function. Before stating Theorem

4, we present Lemma 3 and an invariant set theorem [101, pg.38] that will be used in the proof of

Theorem 4.

Lemma 3. For the system in (5.3.4) subjected to continuous control, q2 is constant if 9q1 and 9u are

identically zero.

Proof: See section 5.7.3.

Remark 7. Lemma 3 implies that the active and passive generalized coordinates are dynamically

coupled. Due to this coupling, the active generalized coordinates cannot be held stationary by

1It is assumed that the active degrees-of-freedom will have a friction brake such that they can
be stopped instantaneously.
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constant generalized forces when the passive generalized coordinate is non-stationary. The proof

of Lemma 3 is based on assumption 5, which is satisfied when dynamical coupling exists. The

existence of such coupling has been verified for an inverted pendulum on a cart [74], pendubot,

acrobot, and reaction-wheel pendulum; in this work it is shown for the tiptoebot and the rotary

pendulum.

Theorem 3. [101, pg.38] Consider the impulsive dynamical system given by (5.3.15), assume that

Dc Ă D is a compact positively invariant set with respect (5.3.15), and assume that there exists a

continuously differentiable function W : D Ñ R such that

rBW pxq{Bxs fcpxq ď 0, x P Dc, x R Z (5.4.1a)

W px ` fdpxqq ď W pxq, x P Dc, x P Z (5.4.1b)

Let R fi tx P Dc : x R Z , rBW pxq{Bxs fcpxq “ 0u Y tx P Dc : x P Z ,W px ` fdpxqq “ W pxqu and let

M denote the largest invariant set contained in R. If x0 P Dc, then xptq Ñ M as t Ñ 8.

Remark 8. Although the invariance principle in [101] will be used (Theorem 3), the reader should

be aware of the invariance principles in [55,106,108] that can be used for analysis of non-smooth

and hybrid systems.

Theorem 4. For the impulsive dynamical system defined by (5.3.15), (5.3.16) and (5.3.17), and

x0 P D such that

´3π{2 ă q2p0q ă π{2 (5.4.2)

the following choice of control design:

u “ ´rpKd ` KcqBpqq ` Ke pE ´ Edesq Is´1
“
Kp q1 ` pKd ` KcqApq, 9qq

‰
(5.4.3a)

Z1 “ txptq | rApq, 9qq ` BpqqusT Kc 9q1 ď 0, 9q1 ­“ 0u (5.4.3b)

where I is the identity matrix and Kc is a diagonal positive-definite matrix, guarantees asymptotic

stability of the orbit in (5.2.1) if the gain matrices Kp, Kd and Ke satisfy the following conditions:
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(i)

”
Kd ` KepE ´ EdesqB´1pqq

ı
is positive definite for all q and 9q,

(ii) If q˚
1

and q˚
2

are constant values of q1 and q2, then the following system of equations:

„BF

Bq1

T

q“q˚
“ ´ Kp q˚

1

Ke rF pq˚q ´ Edess
„BF

Bq2



q“q˚
“ 0

yields a finite number of solutions with q˚
1

“ 0, and

(iii) For all possible solutions of q˚
2

obtained from (ii) and for the function V in (5.3.12), the

following inequality is satisfied

V pt “0q ă mintV | q1 “ 0, 9q1 “ 0,E P SEztEdesuu

where SE is the set of values of E evaluated at q1 “ 0, q2 “ q˚
2
, 9q “ 0.

Proof:

Consider the Lyapunov-like function V defined in (5.3.12); V is zero on the orbit defined in

(5.2.1) and positive everywhere else. The time derivative of V is

9V “ qT
1

Kp 9q1 ` :qT
1

Kd 9q1 ` KepE ´ Edesq 9E

“
”
qT

1
Kp ` :qT

1
Kd ` KepE ´ EdesquT

ı
9q1

(5.4.4)

where 9E “ uT
9q1 follows from the passivity property of underactuated Euler-Lagrange systems -

see [103]2 and proposition 2.5 of [109]. By substituting :q1 from (5.3.6a) in (5.4.4) and using the

symmetry of Bpqq, we get

9V “
”
qT

1
Kp ` AT Kd ` uT B

!
Kd ` KepE ´ EdesqB´1

)ı
9q1

(5.4.5)

The following choice of u

uT “ ´
”
qT

1
Kp ` AT Kd ` :qT

1
Kc

ı”
B

!
Kd ` KepE ´ EdesqB´1

)ı´1

, (5.4.6)

2The proof of the passivity property follows from the fact that the matrix [ 9M ´ 2C] is skew-
symmetric for our choice of generalized coordinates.
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which is well defined based on condition (i), results in

9V “ ´:qT
1

Kc 9q1 (5.4.7)

Substitution of (5.3.6a) in (5.4.6) followed by algebraic manipulation gives the expression for u in

(5.4.3a). Substitution of (5.3.6a) in (5.4.7) gives

9V “ ´rApq, 9qq ` BpqqusT Kc 9q1 (5.4.8)

Based on the expression of 9V , three cases may arise:

case (a): if rA ` BusT Kc 9q1 ą 0, then 9V ă 0,

case (b): if rA ` BusT Kc 9q1 ď 0, 9q1 ­“ 0, then x P Z1 and impulsive braking is applied - see (5.4.3b).

Since condition (i) is satisfied, Lemma 2 indicates that V undergoes a discontinuous

change ΔV , where ΔV ă 0, and

case (c): if 9q1 “ 0, then 9V “ 0.

For case (b), impulsive braking results in 9q1 “ 0 at t` and the trajectories of the system leave Z1.

If 9q1 ” 0 for all t ą t`, the trajectories of the system remain outside Z1 and 9V ” 0. If 9q1 ı 0 for

t ą t`, V decreases and the trajectories of the system move away from Z1 since (5.4.7) implies

9V pt`q “ 0, :V pt`q “ ´:qT
1

pt`qKc :q1pt`q ă 0

ñ 9V pτq ă 0, τ P pt`, t` ` εq

for some ε ą 0 since Kc is positive-definite and :q1 ­“ 0. The trajectories may re-enter Z1, but

not arbitrarily quickly. Hence Zeno phenomenon will not be observed; this is discussed in section

5.7.4. Case (c) implies that either 9q1 ” 0 ñ 9V ” 0, or 9q1 ı 0 and V continues to decrease again;

this follows from our discussion of the nature of trajectories after impulsive braking. Cases (a), (b)

and (c) imply that for t ą 0, V ptq ď V p0q fi c and therefore the set

Dc fi tV ď cu X t´3π{2 ď q2 ď π{2u
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is positively invariant.

Cases (a), (b) and (c) together satisfy the conditions in Theorem 33 with Dc defined above and

W pxq “ V pxq. Since (b) implies ΔV ă 0, tx P Dc : x P Z ,ΔV “ 0u is an empty set. Therefore,

xptq Ñ M Ă R “ tx P Dc : x R Z , 9V “ 0u as t Ñ 8. From case (c), 9V “ 0 implies 9q1 “ 0 and thus

R “ tx P Dc : 9q1 ” 0u. In R, :q1 “ 0. Substitution of :q1 “ 0 in (5.3.6a) and (5.4.6) yields

uT “ ´AT B´1 (5.4.9a)

uT BKd “ ´KepE ´ EdesquT ´ qT
1

Kp ´ AT Kd (5.4.9b)

Substitution of (5.4.9a) into (5.4.9b) gives

uT Ke pE ´ Edesq ` qT
1

Kp “ 0 (5.4.10)

The definition of R in Theorem 3 implies V is constant in R. Also, q1 is constant and 9q1 “ 0 in

R. Therefore, from the definition of V in (5.3.12), we can claim that E is constant in R. Let q˚
1

and E˚ be the constant values of q1 and E. We now discuss two cases that can arise:

case 1: If E˚ “ Edes, we have q˚
1

“ 0 from (5.4.10). This implies that M is the orbit in (5.2.1).

case 2: if E˚ ­“ Edes, we get from (5.4.10)

u fi u˚ “ ´ Kp q˚
1

KepE˚ ´ Edesq (5.4.11)

where u˚ is the constant value of the continuous control in R.

For case 2, both q1 and u are constants. Therefore, based on Lemma 3, we claim q2 “ q˚
2

is a

constant. It follows from (5.2.2) that E˚ “ F pq˚q. Using (5.3.4) and (5.3.5), we can show that the

trajectories in R satisfy
„BF

Bq1

T

q“q˚
“ u˚,

„BF

Bq2



q“q˚
“ 0

3Before we can apply Theorem 3, we must ensure that the time instants tk, k “ 1,2, ¨ ¨ ¨ , are
well-posed and the hybrid dynamical system in (5.3.15) satisfies the quasi-continuous dependence
property. The conditions for well-posedness and its proof appear in section 5.7.5. A sufficient
condition for satisfying the quasi-continuous dependence property and its proof appear in section
5.7.6.
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Substituting the expression for u˚ from (5.4.11) in the above equation along with E˚ “ F pq˚q, we

can use condition (ii) to claim q˚
1

“ 0. Using (5.3.12) and cases (a) and (b), we can claim that as

t Ñ 8, V Ñ V ˚, where

V ˚ “ 1

2
KepE˚ ´ Edesq2 ď V pt “ 0q

where E˚ P SE . Since V ˚ ď V pt “ 0q, we can claim using condition (iii) that E˚ “ Edes, i.e., V ˚ “ 0.

Thus the largest invariant set M is the orbit defined in (5.2.1). This concludes the proof. �

5.4.2 Choice of Controller Gains

It can be easily shown that condition (i) in Theorem 4 is satisfied if

p1{KeqλminpKdq ą rEdes ´ minpF qsλmaxrB´1pqqs

where λminpKdq and λmaxrB´1pqqs are the minimum and maximum eigenvalues of Kd and rB´1pqqs.

Assumption 5 implies λmaxrB´1pqqs and minpF q exist and therefore Kd and Ke can always be

chosen to satisfy condition (i).

For the choice of Ke satisfying condition (i), Kp has to be chosen to satisfy condition (ii).

Although we do not prove that condition (ii) can be simultaneously satisfied for the general case,

several combinations of gains pKp,Kd ,Keq were found to exist for the inverted pendulum on

a cart [74]. The authors have independently verified that condition (ii) can be easily satisfied

for several other underactuated mechanical systems, namely, the pendubot, the acrobot, and the

reaction-wheel pendulum. It is shown that conditions (i) and (ii) can be simultaneously satisfied

for the three-DOF Tiptoebot and the rotary pendulum. These examples indicate that condition (ii)

is not restrictive.

Once the controller gains Kp, Kd and Ke have been chosen to satisfy conditions (i) and (ii) in

Theorem 4, condition (iii) imposes no additional restrictions on the gains but simply provides an

estimate of the region of attraction of the orbit. Since Kc does not appear in conditions (i)-(iii), it

can be chosen without restriction.
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5.5 Illustrative Example - The Tiptoebot

We consider the tiptoebot example as presented in 2.3.1. Using the following definition for the

joint angles

qT
1

“ r θ2 θ3
sT , q2 “ θ1 (5.5.1)

the dynamics of the tiptoebot can be expressed in the form of (5.3.4); the components of mass

matrix in (5.2.3) are

M11 “

»
—–

α2`α3`2α5 cosθ3 α3`α5 cosθ3

α3`α5 cosθ3 α3

fi
ffifl

M12 “

»
—–

α2`α3`α4 cosθ2`2α5 cosθ3`α6 cospθ2`θ3q

α3`α5 cosθ3`α6 cospθ2`θ3q

fi
ffifl

M22 “ α1`α2`α3 ` 2 rα4 cosθ2 ` α5 cosθ3`α6 cospθ2`θ3qs

(5.5.2)

where αi, i “ 1,2, ¨ ¨ ¨ ,6, are lumped parameters, defined as follows:

α1 fi m1pℓ2
1

` ℓ2
2

` ℓ2
3
q, α2 fi pm2 ` m3qℓ2

2
, α3 fi m3ℓ

2
3
,

α4 fi m2ℓ1ℓ2 ` m3ℓ1ℓ2 α5 fi m3ℓ2ℓ3, α6 fi m3ℓ1ℓ3

(5.5.3)

The sum of Coriolis, centrifugal and gravitational force terms, h1 and h2, can be obtained using

(5.3.5), where F pqq has the expression

F “ β1 sinθ1 ` β2 sinpθ1 ` θ2q ` β3 sinpθ1 ` θ2 ` θ3q (5.5.4)

β1 fi pm1 ` m2 ` m3qℓ1 g, β2 fi pm2 ` m3qℓ2 g, β3 fi m3ℓ3 g

The control input is defined as u “ rτ2 τ3sT . In the compact set θ1 P r´3π{2,π{2s, as defined in

section 5.3.3, the upright equilibrium configuration of the tiptoebot is defined by

θ1 “ ´3π{2 or π{2,

„
θ2 θ3

9θ1
9θ2

9θ3


“
„

0 0 0 0 0



is unstable, but can be stabilized, by a linear controller, for example. The stabilized equilibrium

will typically have a finite region of attraction; therefore, to stabilize from an arbitrary initial

90



configurations, we first use the controller in section 5.3 to stabilize an orbit that intersects the region

of attraction. The obvious choice for such an orbit is the one where Edes equals the potential energy

of the system at the equilibrium. Substitution of θ1 “ ´3π{2 or π{2 and θ2 “ θ3 “ 0 in (5.5.4)

yields Edes “ β1 ` β2 ` β3. The control objective in (5.2.1) can therefore be written as

θ2 “ θ3 “ 0, 9θ2 “ 9θ3 “ 0, Edes “ pβ1 ` β2 ` β3q (5.5.5)

The feasibility of our control design is discussed next.

5.5.1 Selection of Controller Gains

The initial configuration of the tiptoebot is taken as

r θ1 θ2 θ3
9θ1

9θ2
9θ3

s “ r 0 π π 0 0 0 s (5.5.6)

In this configuration, the tiptoebot is coiled up: the first link is horizontal, the second link folds

back on the first link, and the third link folds back on the second link. The links were chosen to

have the same mass m1 “ m2 “ m3 “ 0.1 kg and the same length ℓ1 “ ℓ2 “ ℓ3 “ 0.6 m. For this

choice of mass and length parameters, the lumped parameters of the tiptoebot, defined in (5.5.3)

and (5.5.4), are provided in Table 6.1 below:

Table 5.1: Tiptoebot lumped parameters in SI units

α1 0.108 α4 0.072 β1 1.764

α2 0.072 α5 0.036 β2 1.176

α3 0.036 α6 0.036 β3 0.588

The passive joint of the tiptoebot is revolute and therefore assumption 1 holds good. Assumption

2 also holds good - this is discussed in 5.7.7.

The following choice of gains satisfy condition (i) and (ii):

Kp “

»
—–

70 0

0 70

fi
ffifl , Kd “

»
—–

2.8 0

0 2.8

fi
ffifl , Ke “ 2.2 (5.5.7)
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Condition (ii) results in θ ˚
2

“ θ ˚
3

“ 0, which upon substitution in (5.3.4b) and (5.3.5b) yields

BF

Bq2

“ 0 ñ cosθ ˚
1

“ 0 (5.5.8)

From section 5.3.3 we know that q2 lies in the compact set r´3π{2,π{2s. Thus θ1 lies in the same

compact set - see (5.5.1). In this set, the possible solutions of (5.5.8) are θ ˚
1

“ t´3π{2,´π{2,π{2u.

For θ ˚
1

“ ´3π{2 or π{2, and θ ˚
2

“ θ ˚
3

“ 0, we know that E “ Edes. Therefore, to satisfy condition

(iii), we use θ ˚
1

“ ´π{2; this results in the following inequality

V pt “ 0q ă 2Ke rEpq˚
1

“ 0,q˚
2

“ ´π{2q ´ Edess2 “ 2Kepβ1 ` β2 ` β3q2

For the initial configuration in (5.5.6), Ke in (5.5.7) satisfies the inequality above. The matrix Kc

was chosen as

Kc “

»
—–

1.2 0

0 1.2

fi
ffifl (5.5.9)

5.5.2 Simulation Results

For the initial configuration in (5.5.6) and controller gains in (5.5.7) and (5.5.9), the simulation

results are shown in Figs.5.1 and 5.2. The effect of impulsive braking can be seen in Figs.5.1 (d)

and (f), where 9θ2 and 9θ3 (the velocities of the active joints) jump to zero on multiple occasions.

Each impulsive braking also results in a negative jump in the mechanical energy (follows from

Lemma 1) which can be seen in Fig.5.1 (b). Since impulsive inputs cause no jumps in the joint

angles, there is no change in θ1, θ2 and θ3 at the time of impulsive braking - see Figs.5.1 (a), (c)

and (e). In Fig.5.1 (a), θ1 never leaves the set r´3π{2,π{2s and therefore virtual impulsive inputs

are not applied.

While impulsive brakings cause negative jumps in the total energy E, the continuous-time

controller in (5.4.3a) adds energy to the system; together, they converge the energy to the desired

values Edes - see Fig.5.1 (b). The phase portrait of the passive joint is shown in Fig.5.2 (a). The

jumps in the phase portrait (vertical drops in 9θ1, twice) is due to impulsive braking. The variation
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Figure 5.1: Plots of the joint angles θ1, θ2, θ3, error in the desired energy pE ´ Edesq, and the
active joint velocities 9θ2, 9θ3 of the Tiptoebot.
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Figure 5.2: Plots showing (a) phase portrait of passive joint angle θ1, and (b) variation of the
Lyapunov-like function V . The desired orbit is shown using dashed green line in (a).

of the Lyapunov-like function V with time is shown in Fig.5.2 (b) - it can be seen that V decreases

monotonically due to the action of the continuous-time controller and undergoes negative jumps

intermittently due to impulsive brakings. The continuous controller and impulsive brakings work

together to converge V to zero.
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The gain matrices in (5.5.7) and (5.5.9) were chosen such that convergence to the desired orbit

is fast. The simulation results indicate that the system trajectories reach a close neighborhood of

the desired orbit very quickly, at approximately 3 s. For stabilization of the equilibrium in (5.5.6),

a linear controller was designed using LQR. The matrices Q and R of the algebraic Ricatti equation

were chosen to be I6ˆ6 and 2I2ˆ2, where Ikˆk is the identity matrix of size k. The linear controller

was invoked when V ď 0.05 and | θ1 ´ π{2 |ď 0.05.

5.6 Experimental Validation

5.6.1 System Description

Experiments were done with a rotary pendulum. As shown in Fig.5.3, the system is comprised of a

horizontal arm OA of mass ma and length ℓa, which rotates about point O, and a pendulum of mass

mp and length ℓp, that rotates about point A. The center-of-mass of the horizontal arm is located

at a distance da from O and the center-of-mass of the pendulum is located at a distance dp from

A. The horizontal arm is actively controlled by an external torque τ and its angular displacement

about the z axis is denoted by φ . The pendulum is passive and its angular displacement about the εr

axis is denoted by θ . The accleration due to gravity is denoted by g. With the following definition:

rq1 q2
sT “ rφ θ sT (5.6.1)

x

y

z

O

A

B

εθ

εr

φ

τ

ℓa

ℓp

θ

g

Figure 5.3: Schematic of a rotary pendulum.
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the dynamics of the system can be expressed in the from given by (5.3.4), where u “ τ , and

M11 “ γ1 ` γ2 cos
2 θ , M12 “ γ3 sinθ , M22 “ γ2

h1 “ γ3 cosθ 9θ 2 ´ 9φ 9θγ2 sin2θ , h2 “ γ2
9φ2

sinθ cosθ ` γ4 cosθ

γ1 fi mad2
a ` mp ℓ

2
a, γ2 fi mpd2

p, γ3 fi ´mp ℓadp, γ4 fi mpgdp

(5.6.2)

The physical parameters of the experimental setup are

γ1 “ 0.0120, γ2 “ 0.0042, γ3 “ ´0.0038, γ4 “ 0.1190 (5.6.3)

The control torque was applied by a 24-Volt permanent magnet brushed DC motor4.The motor is

driven by a power amplifier5 operating in current mode. The motor torque constant is 37.7 mNm/A

and the amplifier gain is 4.4 A/volt. An electromagnetic friction brake6 was integrated to the shaft

of the DC motor. In the OFF state, the brake engages a friction pad to the shaft of the motor which

prevents the shaft from turning; in the ON state, the brake is disengaged and the motor shaft rotates

freely. For impulsive braking, the brake was kept engaged till the active velocity 9φ reached a close

neighborhood of zero. The brake was powered ON/OFF by sending command voltage signals

through an n-channel mosfet. The rotary pendulum was interfaced with a dSpace DS1104 board

and the Matlab/Simulink environment was used for real-time data acquisition and control with a

sampling rate of 1 Khz. The angular positions of the links were measured using incremental optical

encoders; the angular velocities were obtained by differentiating and low-pass filtering the position

signals.

5.6.2 Selection of Controller Gains

The total energy of the system is obtained from (5.2.2) as follows

4The motor manufacturer is Faulhaber Drive Systems. The motor has a gearbox with a reduction
ratio of 3.71 : 1.

5The amplifier is a product of Advanced Motion Control.
6The electromagnetic brake is manufactured by Anaheim Automation, model BRK-20H-480-

024. The brake can withhold torques up to 3.4 Nm.
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E “ 1

2
pγ1`γ2 cos

2 θ q 9φ2 ` 1

2
γ2

9θ 2 ` γ3 sinθ 9φ 9θ `F

F “ γ4 sinθ

(5.6.4)

For the control objective in (5.2.1), we choose Edes to be equal to the energy associated with the

homoclinic orbit that contains the upright equilibrium
„

φ θ 9φ 9θ


“
„

0 π{2 0 0


or

„
0 ´3π{2 0 0



Using (5.6.4), the energy associated with the homoclinic orbit can be written as

Edes “ γ4 (5.6.5)

The passive joint of the rotary pendulum is revolute and thus assumption 1 holds good. Assumption

5 also holds good - this is shown in 5.7.7. From (5.6.4) we know that F is only a function

of θ and therefore condition (ii) is trivially satisfied resulting in the solution φ˚ “ 0. In the

compact set r´3π{2,π{2s, the possible solutions of θ ˚ obtained from condition (ii) are θ ˚ “

t´3π{2,´π{2,π{2u. At θ ˚ “ π{2 or θ ˚ “ ´3π{2 and φ˚ “ 0, E “ Edes. Using condition (iii),

we therefore get θ ˚ “ ´π{2; this implies that Ke should be chosen to satisfy

V pt “ 0q ă 2Keγ2
4

(5.6.6)

At the lower equilibrium configuration where rφ θ 9φ 9θ s “ r0 ´π{2 0 0s, we have V “ 2Keγ2
4
. This

violates the inequality in (5.6.6). This implies that our controller cannot swing-up the pendulum

when the system is exactly at the lower equilibrium.Therefore, in experiments, a small external

perturbation was provided such that the system is not at the lower equilibrium at the initial time.

For the experimental results presented herein, the initial configuration of the system after the

perturbation was measured as
„

φp0q θ p0q 9φp0q 9θ p0q
T

“
„

0.01 ´1.42 0.05 0

T

(5.6.7)

For the initial conditions in (5.6.7) and physical parameter values in (5.6.3), the following gains

satisfied conditions (i)-(iii):

Kp “ 0.5, Kc “ 0.08, Kd “ 0.3, Ke “ 100 (5.6.8)
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For the above set of gains, the experimental results are presented next.

5.6.3 Experimental Results

The experimental results are shown in Fig.5.4. The hybrid controller for orbital stabilization

was active for the first 20 s. At the end of this period, the system trajectories reached a close

neighborhood of the upright equilibrium rφ θ 9φ 9θ s “ r0 ´ 3π{2 0 0s and the following linear

controller was invoked for stabilization:

τs “ 1.4φ ´ 20.23pθ ` 3π{2q ` 1.14 9φ ´ 1.98 9θ

The poles of the closed-loop system were located at ´37.0 ˘ 20.0 i and ´1.0 ˘ 1.2 i.
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Figure 5.4: Rotary pendulum experimental results: (a)-(d) are plots of joint angles and joint
velocities, (e) control torque, and (f) derivative of Lyapunov-like function. The brake pulses are
shown within plots (e) and (f), the peaks represent time intervals when the brakes were engaged.
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Figure 5.5: Rotary pendulum simulation results.

The pulses shown on the top of Figs.5.4 (e) and (f) correspond to the time intervals when the

brake was engaged (OFF) during orbital stabilization. The brake was disengaged (ON) when the

condition | 9φ |ď µ was satisfied; the value of µ was chosen to be small, equal to 0.1 rad/s. The time

intervals required for braking were very short (« 0.04 s, on average); this implies that the brakings

were impulsive in nature. The effect of impulsive braking can be seen in Fig.5.4 (b) where 9φ jumps

to almost zero value upon engagement of the brake on multiple occasions.

It can be seen from Fig.5.4 (c) that the amplitude of the pendulum gradually increases and

finally reaches a close neighborhood of the upright equilibrium configuration. The derivative of

the Lyapunov-like function is shown in Fig.5.4 (f). It can be seen that 9V never becomes positive;

this is because the brake is engaged every time when 9V is about to become positive7. Since 9V

is always negative, V decreases monotonically and orbital stabilization is achieved. A plot of the

motor torque is shown in Fig.5.4 (e). To minimize wear and tear of the brake, the commanded

motor torque was set to zero when the brake was engaged. A video of this experiment can be found

on the weblink: www.egr.msu.edu/~mukherji/RotaryPendulum.mp4

Simulation results for the same set of initial conditions and controller gains in (5.6.7) and

(5.6.8) are presented in Fig.5.5. A comparison of Figs.5.4 and 5.5 indicate that the joint velocities

7When | 9φ |ď µ « 0, the brake is not engaged since 9V « 0 - see (5.4.7).
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in experiments are lower than those in simulations - this can be attributed to the presence of friction

and other dissipative forces. The amplitude of the active joint φ is larger in experiments than

simulations - this is due to the fact that the controller has to overcome the dissipative losses and

additional energy is added through larger amplitude of motion. As expected, the time needed for

stabilization is less in simulations than experiments.

Remark 9. For comparison, we considered the rotary pendulum example in [71]. Taking identical

initial conditions and physical parameters of the system therein, we simulated our controller with

the gains

Kp “ 0.20, Kd “ 0.12, Ke “ 50, Kc “ 0.70

The gains were tuned such that the magnitude of the motor torque did not exceed 0.3 Nm. The

system trajectories converged to the desired orbit in approx. 30 s. The controller in [71] took

approx. 100 sec and the magnitude of the maximum torque was 8 Nm. Our controller performed

well, both in terms of motor torque requirement and speed of convergence. This better performance,

however, comes at the cost of additional brake hardware.

5.7 Proofs and Additional Discussions

5.7.1 Proof of Lemma 1

The proof of Lemma 1 is provided here for the general case where the underactuated system has

m passive and n ´ m active generalized coordinates, i.e. q1 P Rn´m, q2 P Rm and u P Rn´m. The

Euler-Lagrange equation has the same form as in (5.3.4) with M11 P Rpn´mqˆpn´mq, M22 P Rmˆm,

h1 P Rpn´mq, and h2 P Rm. The change in the total energy due to application of an impulsive input

is equal to the change in the kinetic energy:

ΔE “ 1

2
9q`T

Mpqq 9q` ´ 1

2
9q´T

Mpqq 9q´

“ 1

2

„
9q`T

1
M11 9q`

1
´ 9q´T

1
M11 9q´

1


` 1

2

„
9q`T

2
M22 9q`

2
´ 9q´T

2
M22 9q´

2



` 9q`T

1
M12 9q`

2
´ 9q´T

1
M12 9q´

2
(A.1)
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The impulse manifold, given in (5.3.9) for m “ 1, is

9q`
2

“ 9q´
2

´ M´1

22
MT

12
p 9q`

1
´ 9q´

1
q (A.2)

Substitution of 9q`
2

from (A.2) into (A.1) yields

ΔE “ 1

2

„
9q`T

1
M11 9q`

1
´ 9q´T

1
M11 9q´

1


` 1

2

”
9q´
2

´ M´1

22
MT

12
p 9q`

1
´ 9q´

1
q
ıT

M22

”
9q´
2

´ M´1

22
MT

12
p 9q`

1
´ 9q´

1
q
ı

´ 1

2
9q´T

2
M22 9q´

2
´ 9q´T

1
M12 9q´

2
` 9q`T

1
M12

”
9q´
2

´ M´1

22
MT

12
p 9q`

1
´ 9q´

1
q
ı

Expanding, canceling, and regrouping the terms on the right-hand side of the above equation yields

ΔE “ 1

2
9q`T

1

”
M11 ´ M12M´1

22
MT

12

ı
9q`
1

´ 1

2
9q´T

1

”
M11 ´ M12M´1

22
MT

12

ı
9q´
1

(A.3)

Similar to (5.3.7), Bpqq is defined for the general case as follows

Bpqq “
”
M11 ´ M12M´1

22
MT

12

ı´1

(A.4)

From the properties of the mass matrix Mpqq, it can be shown that Bpqq is well-defined; also, it

is symmetric and positive-definite, i.e., Bpqq “ BT pqq ą 0. Substitution of (A.4) into (A.3) gives

(5.3.10). �

5.7.2 Proof of Lemma 2

Impulsive inputs result in no change in the generalized coordinates. Additionally, impulsive braking

results in 9q`
1

“ 0. Therefore, from the definition of V in (5.3.12), ΔV for impulsive braking can be

expressed as

ΔV “ 1

2

„
KepE`´ Edesq2 ´ KepE´´ Edesq2 ´ 9q´T

1
Kd 9q´

1



“ 1

2

„
KepE`` E´´ 2EdesqΔE ´ 9q´T

1
Kd 9q´

1



“ 1

2

„
Kep2E`´ΔE ´ 2EdesqΔE ´ 9q´T

1
Kd 9q´

1


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where ΔE is defined in (5.3.10). Substitution of ΔE from (5.3.11) in the equation above yields

ΔV “ ´1

2

„
p 9q´T

1
B´1

9q´
1

qKetE`´ Edes ` 1

4
9q´T

1
B´1

9q´
1

u ` 9q´T

1
Kd 9q´

1



“ ´1

2
9q´T

1

„
KetE`´ Edes ` 1

4
9q´T

1
B´1

9q´
1

uB´1 ` Kd


9q´
1

“ ´1

2
9q´T

1

„
1

4

"
Ke 9q´T

1
B´1

9q´
1

*
B´1 ` Kd ` KepE` ´ EdesqB´1


9q´
1

which is the same as in (5.3.13). Since B, defined in (A.4), is positive-definite, tKe 9q´T

1
B´1

9q´
1

uB´1

is positive-definite. Therefore, if
”
Kd ` KepE` ´ EdesqB´1pqq

ı
is positive-definite, ΔV ď 0 and

ΔV “ 0 iff 9q´
1

“ 0. �

5.7.3 Proof of Lemma 3

Let q˚
1

and u˚ denote the constant values of q1 and u, respectively. From the passivity property of

underactuated Euler-Lagrange systems [103,109], it follows that 9E “ uT
9q1 “ 0. Let E˚ denote the

constant value of E. Since 9q1 ” 0, using (5.3.4) and (5.3.5), we get the following

M12 :q2 `
„BM12

Bq2


9q2
2

´ 1

2

„BM22

Bq1

T

9q2
2

`
„BF

Bq1

T

“ u˚ (A.5a)

M22 :q2 ` 1

2

„BM22

Bq2


9q2
2

` BF

Bq2

“ 0 (A.5b)

Eliminating :q2 using (A.5a) and (A.5b), we get

˜„BM12

Bq2


´ 1

2

„BM22

Bq1

T

´ M12

2M22

„BM22

Bq2

¸
9q2
2

´ M12

M22

BF

Bq2

`
„BF

Bq1

T

“ u˚ (A.6)

Since E “ E˚ is constant and 9q1 “ 0, (5.2.2) gives

9q2
2

“ 2pE˚ ´F q
M22

(A.7)

Substitution of 9q2
2

from (A.7) in (A.6) yields

E˚ P1pq˚
1
,q2q ` P2pq˚

1
,q2q “ u˚ (A.8)
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where P1pq˚
1
,q2q, P2pq˚

1
,q2q are defined in assumption 5. Differentiation of the above equation

with respect to time results in

d

dq2

rkP1pq˚
1
,q2q ` P2pq˚

1
,q2qs 9q2 “ 0

Using assumption 5, we claim q2 is constant. �

5.7.4 Nonoccurrence of Zeno Phenomenon

Impulsive braking results in 9q1pt`q “ 0 and the time derivative of p5.4.7) yields:

:V pt`q “ ´:qT
1

pt`qKc :q1pt`q ă 0 (A.9)

since Kc is positive-definite and :q1pt`q ­“ 0. If ε denotes the time for the trajectories to re-enter

Z1, we can write

9V pt`` εq “ 9V pt`q `
ż t``ε

t`
:V pτqdτ (A.10)

Since, 9V pt`` εq “ 9V pt`q “ 0, and :V pt`q ­“ 0, :V must change sign in t P pt`, t`` εq. If ε is a

small number, then the continuity of :V in the interval rt`, t`` εs implies:

| :V pt`q |“ Opεq (A.11)

Using (A.9) and (A.11), we get

}:q1pt`q} ď
d

| :V pt`q |
λminpKcq “ Opε1{2q (A.12)

where λminpKcq is the smallest eigenvalue of Kc. Integrating :q1 with respect to time and using

(A.12), we get

} 9q1pt`` εq} ď
ż t``ε

t`
}:q1pτq}dτ “ Opε3{2q (A.13)

Let us now assume that Zeno phenomenon occurs. Then, the time interval between consecutive

impulsive inputs, which is equal to ε , converges to zero and the trajectory of the system at time

t “ pt`` εq lies in the set Z1, where 9q1pt` ` εq ­“ 0. Since ε3{2 converges to zero faster than ε

converges to zero, (A.13) implies that 9q1pt`` εq also converges to zero faster than ε converges

to zero. This implies that the trajectory of the system does not lie in Z1 at t “ pt`` εq, and, by

contradiction, proves the nonoccurence of the Zeno phenomenon.
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5.7.5 Well-posedness of Switching Times

5.7.5.1 Background

Let ψpt,0,x0q denote the solution of the continuous-time dynamics in (5.3.15a) for 0 ď t ď t´
1

starting from the initial condition xp0q “ x0 at time t “ 0. If and when the trajectory reaches

Z at t1, the states are instantaneously transferred to xpt`
1

q “ xpt´
1

q ` fdrxpt´
1

qs, according to the

resetting in (5.3.17). The trajectory xptq, t`
1

ď t ď t´
2

, is then given by ψpt, t`
1
,xpt`

1
qq, and so on.

The resetting times are well-posed if the following conditions are satisfied [101, pg.13]:

1. If xptq P Z̄ zZ , then there exists ε ą 0 such that, for all 0 ă δ ă ε ,

ψpt ` δ , t,xptqq R Z

2. If xpt´
k

q P BZ XZ , then there exists ε ą 0 such that, for all 0 ď δ ă ε ,

ψpt`
k

` δ , t`
k
,xpt´

k
q ` fdrxpt´

k
qsq R Z

Condition (1) ensures that when the system trajectory reaches the closure of the set Z , the trajectory

must be directed away from Z . Condition (2) ensures that when the trajectory intersects Z , it

instantaneously exists Z .

5.7.5.2 Proof

Consider the set Z1 defined in (5.4.3b). If xptq P Z̄1zZ1, then 9q1ptq “ 0, which implies 9V ptq “ 0.

Differentiating (5.4.7) with respect to time and substituting 9q1ptq “ 0, we get :V ptq “ ´:qT
1

ptqKc :q1ptq ă

0. Since 9V ptq “ 0 and :V ptq ă 0, it follows limεÑ0` 9V pt `εq ă 0. Using (5.4.8), rA ` BusT Kc 9q1pt `

εq ą 0, the trajectory of the system is directed away from Z1 after it reaches the closure of Z1.

This implies condition (1) is satisfied for Z1. It can be shown that

BZ1 XZ1 “ trApq, 9qq ` BpqqusT Kc 9q1 “ 0, 9q1 ­“ 0u
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If xpt´
k

q P BZ1 X Z1, impulsive braking is applied. This results in 9q1pt`
k

q “ 0, which implies

xpt`
k

q R Z1. Thus the trajectory instantaneously exists Z1 after intersecting Z1 and condition (2)

is satisfied for Z1.

Now consider the set Z2 fi tq2 “ ´3π{2, 9q2 ă 0u, which was defined after (5.3.17). If xptq P

Z̄2zZ2 i.e., xptq P tq2 “ ´3π{2, 9q2 “ 0u. Then, if limεÑ0` 9q2pt ` εq ě 0, then it follows from

the definition of Z2 that xpt ` εq R Z2. Alternatively, if limεÑ0` 9q2pt ` εq ă 0, then coordinate

resetting occurs and q2pt ` εq “ π{2 Ñ xpt ` εq R Z2. Thus condition (1) is satisfied for Z2.

Condition (2) is trivially satisfied for Z2 since BZ2 XZ2 is an empty set.

Similar to the set Z2, it can be shown that conditions (1) and (2) are satisfied for the set

Z3 fi tq2 “ π{2, 9q2 ą 0u. Since conditions (1) and (2) are satisfied individually for Z1, Z2, Z3,

they are satisfied for Z “ Z1 YZ2 YZ3. �

5.7.6 Quasi-Continuous Dependence Property

5.7.6.1 Background

Let spt,0,x0q denote the solution of the hybrid dynamical system in (5.3.15a) and (5.3.15b) for t ě 0

starting from the initial condition xp0q “ x0 at time t “ 0. Let Tx0
fi r0,8qztt1px0q, t2px0q, ¨ ¨ ¨ u

denote all times except the discrete instants at which impulsive inputs are applied or coordinate

resetting occurs. We now state the following assumption [101, Assumption 2.1, pg.27]:

Assumption 3. Consider the hybrid dynamical system in (5.3.15). For every x0 P D and for

every ε ą 0 and t P Tx0
, there exists δ pε,x0, tq ą 0 such that if }x0 ´ y} ă δ pε,x0, tq, y P D , then

}spt,0,x0q ´ spt,0,yq} ă ε .

The above assumption is a generalization of the standard continuous dependence property for

dynamical systems with continuous flows to dynamical systems with left-continuous flows. We now

state a proposition that provides sufficient conditions for satisfying Assumption 3 [101, Proposition

2.1, pg.32]:
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Proposition 1. Consider the hybrid dynamical system in (5.3.15) and suppose that conditions (1)

and (2) in section 5.7.5.1 are satisfied; then the system in (5.3.15) satisfies Assumption 3 if for all

x0 P D , 0 ď t1px0q ă 8, t1px0q is continuous, and limkÑ8 tkpx0q Ñ 8.

5.7.6.2 Proof

Our domain D was defined in section 5.3.3 as the open set where q2 P pa,bq, a ă ´3π{2, b ą π{2.

If q2p0q P pa,´3π{2s Y rπ{2,bq, we can reset q2 to satisfy (5.4.2) since q2 corresponds to a

revolute joint. From (5.3.15) we know that x0 R Z . This implies that t1px0q ą 0. Furthermore,

t1px0q is a continuous function of x0 since the system is described by continuous-time dynamics

(ordinary differential equations) over the interval t P r0, t1q. Also, as shown in section 5.7.4, Zeno

phenomenon does not occur. Thus limkÑ8 tkpx0q Ñ 8. �

5.7.7 Verification of Assumption 2 for Tiptoebot and Rotary Pendulum

Tiptoebot: It can be seen from (5.5.2) and (5.5.4) that all elements of the mass matrix are bounded

and the potential energy is lower bounded. It can also be seen from (5.5.2) that M12 and M22 are

only functions of q1. Therefore P1 in (A.8), defined earlier in assumption 5, is not a function of

q2. Since F in (5.5.4) is a function of both q1 and q2, it can be easily shown that pdP2{dq2q ­“ 0.

Thus assumption 5 holds.

Rotary Pendulum: It can be seen from (5.6.2) and (5.6.4) that all elements of the mass matrix are

bounded and the potential energy is lower bounded. It can also be seen from (5.6.2) and (5.6.4)

that the mass matrix and potential energy are independent of q1 “ φ . Therefore

d

dθ
rkP1pθ q ` P2pθ qs

“ d

dθ

„
γ3

γ2

cosθ p2E˚ ´ 3γ4 sinθ q


­“ 0

Thus assumption 5 holds.
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CHAPTER 6

ORBITAL STABILIZATION USING VIRTUAL HOLONOMIC CONSTRAINTS AND
IMPULSE CONTROLLED POINCARÉ MAPS

6.1 Introduction

The problem of orbital stabilization of underactuated mechanical systems with one passive

degree-of-freedom (DOF) is revisited in this chapter. The system dynamics is presented in section

6.2 and the results in [62] are utilized to design a continuous controller that can enforce the

VHC such that the resulting zero dynamics is Euler-Lagrange. A periodic orbit is selected on the

constraint manifold and a method for orbital stabilization is presented in section 6.3. To stabilize

the orbit, a Poincaré section is defined at a point on the orbit and the return map is linearized about

the fixed point; this results in a 2n´1 dimensional discrete linear time-invariant (LTI) system. To

control this system and stabilize the orbit, impulsive inputs are applied when the system trajectory

crosses the Poincaré section. The controllability of the orbit can be verified by simply checking

the controllability of the linear system. This is simpler than the approach in [3, 65, 66] where

controllability is verified numerically along the orbit for most systems. Since the system is LTI,

the control design involves constant gains that can be computed off-line. Compared to the methods

proposed earlier [3, 63, 65, 66], where periodic Ricatti equations have to be solved, our method

has lower computational cost and complexity. Since impulsive inputs are used to control the

Poincaré map, the dynamics of the closed-loop system can be described by the Impulse Controlled

Poincaré Map (ICPM). The simplicity and generality of the ICPM approach to orbital stabilization

is demonstrated using the examples of the 2-DOF cart-pendulum in section 6.4 and the 3-DOF

tiptoebot in section 6.5.
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6.2 Problem Formulation

6.2.1 System Dynamics

Consider an n DOF underactuated system with one passive DOF, where the passive DOF is a

revolute joint. Let q, q fi
“
qT

1
q2

‰T
, denote the generalized coordinates, where q1 P Rn´1 and

q2 P S1, S1 “ R modulo 2π , are the coordinates of the active and passive DOFs. The configuration

space of the system is denoted byQn,Qn P Rn´1 ˆS1. The Lagrangian of the system can be written

as

Lpq, 9qq “ 1

2
9qT Mpqq 9q `F pqq

In the equation above, Mpqq P Rnˆn denotes the symmetric, positive-definite mass matrix, parti-

tioned as

Mpqq “

»
—–

M11pqq M12pqq

MT
12

pqq M22pqq

fi
ffifl

where M11 P Rpn´1qˆpn´1q, M22 P R and F pqq is the potential energy of the system. The Euler-

Lagrange equation of motion can be written as follows

M11pqq :q1 ` M12pqq :q2 ` h1pq, 9qq “ u (6.2.1a)

MT
12

pqq :q1 ` M22pqq :q2 ` h2pq, 9qq “ 0 (6.2.1b)

where u P Rn´1 is the control input, and rhT
1
,h2sT is the vector of Coriolis, centrifugal and gravity

forces. In compact form, (6.2.1a) and (6.2.1b) can be rewritten as

:q1 “ Apq, 9qq ` Bpqqu (6.2.2a)

:q2 “ Cpq, 9qq ` Dpqqu (6.2.2b)

where,

Bpqq “
”
M11 ´ p1{M22qM12 MT

12

ı´1

, Apq, 9qq “ p1{M22qBpqq rM12 h2 ´ h1M22s

Dpqq “ ´p1{M22qMT
12

Bpqq, Cpq, 9qq “ ´p1{M22q
”
MT

12
Apq, 9qq ` h2

ı (6.2.3)

Similar to [62], we make the following assumption:
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Assumption 4. For some q̄ fi rq̄T
1
, q̄2sT PQn, the mass matrix Mpqq and the potential energy F pqq

are even with respect to q̄, i.e.,

Mpq̄ ` qq “ Mpq̄ ´ qq, F pq̄ ` qq “ F pq̄ ´ qq

6.2.2 Imposing Virtual Holonomic Constraints (VHC)

A holonomic constraint enforced by feedback is referred to as VHC. The current and the next

subsection summarizes relevant results from [62]. For a wide class of mechanical systems, a

comprehensive discussion on VHC can be found in [62], [85].

A VHC for (6.2.1) is described by the relation ρpqq “ 0 where, ρ : Qn Ñ Rn´1 is smooth and

rankrJqpρqs “ n´1 for all q P ρ´1p0q. Here, Jqpρq is the Jacobian of ρ with respect to q. The

VHC is stabilizable if there exists a smooth feedback ucpq, 9qq that asymptotically stabilizes the set

C “ tpq, 9qq : ρpqq “ 0, Jqpρq 9q “ 0u (6.2.4)

The set C , which is referred to as the constraint manifold, is controlled invariant [62]. For the

system described by (6.2.1), the set C is the tangent bundle of ρ´1p0q, which is a closed embedded

submanifold of Qn of codimension pn ´ 1q [110, Def. 4.2].

An important goal of this work is to generate repetitive motion, which can be described by closed

orbits. Consequently, ρ´1p0q must be a smooth and closed curve without any self-intersection.

The VHC can be described as

ρpqq “ q1 ´Φpq2q “ 0 (6.2.5)

where Φ : S1 Ñ Rn´1 is a smooth vector-valued function. The constraint manifold C in (6.2.4) can

be expressed as:

C “
"

pq, 9qq : q1 “ Φpq2q, 9q1 “
„ BΦ

Bq2


9q2

*
(6.2.6)

It should be noted that since q2 P S1, Φpq2 ` 2πq “ Φpq2q and ρ´1p0q is closed. Following the

notion of odd VHC [62], we make another assumption.
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Assumption 5. For q̄ which satisfies Assumption 4, Φpq2q is odd with respect to q̄2, i.e.,

Φpq̄2 ` q2q “ ´Φpq̄2 ´ q2q

To stabilize C , we investigate the dynamics of ρpqq; differentiating ρpqq twice with respect to

time, we get

:ρ “ :q1 ´
„ BΦ

Bq2


:q2 ´

«
B2
Φ

Bq2
2

ff
9q2
2

(6.2.7)

Substitution of :q1 and :q2 from (6.2.2a) and (6.2.2b) in (6.2.7) yields

:ρ “ A ´
«

B2
Φ

Bq2
2

ff
9q2
2

´
„ BΦ

Bq2


C `

„
B ´

„ BΦ
Bq2


D


u (6.2.8)

The following choice of linearizing control

uc “
„

B ´
„ BΦ

Bq2


D

´1
«

´A `
«

B2
Φ

Bq2
2

ff
9q2
2

`
„ BΦ

Bq2


C ´ kpρ ´ kd 9ρ

ff
(6.2.9)

where kp and kd are positive definite matrices, results in

:ρ ` kd 9ρ ` kp ρ “ 0 (6.2.10)

This implies that limtÑ8 ρptq Ñ 0 exponentially and uc in (6.2.9) stabilizes the VHC in (6.2.5). If

the initial conditions are chosen such that ρp0q “ 9ρp0q “ 0, uc in (6.2.9) enforces the VHC and the

constraint manifold C is controlled invariant.

Remark 10. For uc in (6.2.9) to be well-defined, the matrix rB ´ pBΦ{Bq2qDs must be invertible.

It can be shown that rB ´ pBΦ{Bq2qDs is invertible iff MT
12

pBΦ{Bq2q ` M22 ‰ 0. This is also a

necessary and sufficient condition for the VHC in (6.2.5) to be regular; since the VHC in (6.2.5) is

in parametric form, this is also a necessary and sufficient condition for C to be stabilizable - see

proposition 3.2 of [62].

6.2.3 Zero Dynamics and Periodic Orbits

On the constraint manifold C , the dynamics of the system satisfies ρpqq ” 0; this implies

q1 “ Φpq2q, 9q1 “
„ BΦ

Bq2


9q2, :q1 “

«
B2
Φ

Bq2
2

ff
9q2
2

`
„ BΦ

Bq2


:q2 (6.2.11)
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Substitution of q1, 9q1 and :q1 from (6.2.11) in (6.2.1b) provides the zero dynamics, which can be

expressed in the following form

:q2 “ α1pq2q ` α2pq2q 9q2
2

(6.2.12)

It was shown in [3, 62, 83, 84] that the equation above has an integral of motion of the form

Epq2, 9q2q “ p1{2qM pq2q 9q2
2

`Ppq2q

M pq2q “exp

ˆ
´2

ż q2

0

α2pτqdτ

˙
, Ppq2q “ ´

ż q2

0

α1pτqM pτqdτ
(6.2.13)

where M pq2q represents the mass and Ppq2q represents the potential energy of the reduced

system in (6.2.12). Since both Assumption 4 and 5 are satisfied, the zero dynamics represents an

Euler-Lagrange system with the Lagrangian1 equal to p1{2qM pq2q 9q2
2

´Ppq2q.

Since Assumptions 1 and 2 hold, the zero dynamics in (6.2.12) is similar to the dynamics of

a simple pendulum [62] and its qualitative properties can be described by the potential energy

Ppq2q. Let Pmin and Pmax denote the minimum and maximum values of P . If an energy level

set is denoted by Epq2, 9q2q “ c, then c P pPmin,Pmaxq corresponds to a periodic orbit where the

sign of 9q2 changes periodically and c ą Pmax corresponds to an orbit where the sign of 9q2 does

not change [62].

6.2.4 Problem Statement

Since the zero dynamics in (6.2.12) has an Euler-Lagrange structure, there cannot exist any non-

trivial isolated periodic orbit - this follows from the Poincaré-Lyapunov-Liouville-Arnol’d theorem

[62, 85, 111]. A direct implication of this theorem is that the reduced dynamics possesses a dense

set of closed orbits that are stable, but not asymptotically stable. For a desired repetitive motion, the

corresponding orbit must be stabilized. Consider the desired closed orbit Od , defined as follows:

Od “ tq, 9q P C : Epq2, 9q2q “ cdu, cd ą Pmin (6.2.14)

1Assumptions 4 and 5 provide necessary and sufficient conditions for the reduced system to be
Euler-Lagrange - the proof of this result can be found in [62, 85].
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Let x, x fi rqT , 9qT sT , denote the states of the system in (6.2.1). We define an ε-neighborhood of

Od by

Uε “ tx P Qn ˆ Rn
: distpx,Odq ă εu

distpx,Odq fi inf
yPOd

}x ´ y}

We now define stability of the orbit Od from [112].

Definition 1. The orbit Od in (6.2.14) is

• stable, if for every ε ą 0, there is a δ ą 0 such that xp0q P Uδ ùñ xptq P Uε , @t ě 0.

• asymptotically stable if it is stable and δ can be chosen such that limtÑ8 distpxptq,Odq “ 0.

The control uc in (6.2.9) asymptotically stabilizes C but does not asymptotically stabilize Od .

If q, 9q P Od , uc enforces the VHC and trajectories stay on Od ; however, a perturbation of the states

will cause the trajectories to converge to a different orbit on C . The objective of this work is to

utilize the control uc in (6.2.9), which was designed to stabilize C , together with impulsive inputs

to stabilize Od directly, that lies on C .

6.3 Main Result: Stabilization of Od

6.3.1 Poincaré Map

The system in (6.2.1) with u “ uc defined in (6.2.9), has the state-space representation

9x “ f pxq (6.3.1)

The stability characteristics of periodic orbits can be studied using Poincaré maps [113]. To this

end, we define the Poincaré section Σ of Od as follows2:

Σ “ tx P Qn ˆ Rn
: q2 “ q˚

2
, 9q2 ě 0u (6.3.2)

2Since the periodic orbit Od can pass through q2 “ q˚
2

with both positive and negative velocity
9q2, the condition 9q2 ě 0 implicitly assumes that Σ intersects the periodic orbit Od at a single point.
In the definition of Σ in (6.3.2), 9q2 ě 0 can be replaced with 9q2 ď 0 without any loss of generality.
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where q˚
2

is a constant. Let z, z fi rqT
1
, 9qT sT P Rp2n´1q, denote the states of the system on Σ. The

Poincaré map P : Σ Ñ Σ is obtained by following trajectories of z from one intersection with Σ to

the next. Let tk, k “ 1,2, ¨ ¨ ¨ denote the time of the k-th intersection and zpkq “ zptkq. Then, zpk `1q

can be described with the help of the map P

zpk ` 1q “ Przpkqs (6.3.3)

The point of intersection of Σ and Od is the fixed point of P denoted by z˚; it satisfies the following

relation

z˚ “ Ppz˚q (6.3.4)

The stability characteristics of the orbit Od can be studied by investigating the stability properties

of z˚, which is an equilibrium point of the discrete-time system in (6.3.3); this can be done by

linearizing the map P about z˚. For zpkq “ z˚ ` ν , where }ν} is a small number, we can write

zpk ` 1q “ Ppz˚ ` νq “ Ppz˚q ` r∇zPpzqsz“z˚ rzpkq ´ z˚s ` Op}ν}2q (6.3.5)

Using Ppz˚q “ z˚ from (6.3.4) and neglecting higher-order terms in }ν}, the above equation can be

written as

epk ` 1q “A epkq

epkq fi zpkq ´ z˚, A fi r∇zPpzqsz“z˚ (6.3.6)

The stability properties of z˚ is governed by the eigenvalues of A , which are referred to as

the Floquet multipliers of Od [113]. If the Floquet multipliers lie inside the unit circle, Od is

exponentially stable - see Theorem 7.3 of [112]. From our discussion in section 6.2.4 we know

that the desired orbit Od is not asymptotically stable, i.e., not all eigenvalues of A lie inside the

unit circle. To asymptotically stabilize the orbit, i.e., to asymptotically stabilize z˚, we design an

impulsive controller in the next subsection.
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6.3.2 Impulse Controlled Poincaré Map (ICPM)

To asymptotically stabilize the desired orbit Od , our controller in (6.2.9) is modified as follows

u “ uc ` uI (6.3.7)

where uI is an impulsive input which is applied only when xptq P Σ. The dynamics of the system,

with uI as the new input, can be written as

M11pqq :q1 ` M12pqq :q2 ` h̄1pq, 9qq “ uI (6.3.8a)

MT
12

pqq :q1 ` M22pqq :q2 ` h2pq, 9qq “ 0 (6.3.8b)

where h̄1 fi ph1 ´ ucq. Impulsive inputs cause discontinuous changes in the generalized velocities

while there is no change in the generalized coordinates. On the Poincaré section Σ, the jump in

velocities can be computed by integrating (6.3.8) as follows [86]:
»
—–

M11 M12

MT
12

M22

fi
ffifl

»
—–
Δ 9q1

Δ 9q2

fi
ffifl “

»
—–

I

0

fi
ffifl , I fi

ż
Δt

0

uI dt (6.3.9)

In the above equation, Δt is the infinitesimal interval of time for which uI is active, I P Rn´1 is

the impulse of the impulsive input, and Δ 9q1 and Δ 9q2 are defined as

Δ 9q1 fi p 9q`
1

´ 9q´
1

q, Δ 9q2 fi p 9q`
2

´ 9q´
2

q (6.3.10)

where 9q´ and 9q` are the velocities immediately before and after application of uI . Since the

system is underactuated, the jump in the passive velocity 9q2 is dependent on the jumps in the active

velocity 9q1; this relationship is described by the pn´1q dimensional impulse manifold [6,23], which

can be obtained from (6.3.9):

IM “ t 9q`
1
, 9q`

2
| Δ 9q2 “ ´p1{M22qMT

12
Δ 9q1u (6.3.11)

Since impulsive inputs can cause the system states to move on Σ, we exploit this property to design

a feedback law that asymptotically stabilizes z˚, i.e., asymptotically stabilizes Od . The control
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input applied at tk is denoted by I pkq3. The dynamics of the impulse controlled system in (6.3.3)

can be described by the map

zpk ` 1q “ Przpkq,I pkqs (6.3.12)

where I pkq “ 0 if zpkq “ z˚
4. By linearizing the above map about the fixed point z “ z˚ and I “ 0,

we get

epk ` 1q “ A epkq `BI pkq

A fi

”
∇zPpz,I q

ı
z“z ,̊I “0

, B fi

”
∇I Ppz,I q

ı
z“z ,̊I “0

(6.3.13)

where A P Rp2n´1qˆp2n´1q and B P Rp2n´1qˆpn´1q can be obtained numerically. Since A is not

Hurwitz (see discussion in the last sub-section), we make the following proposition to exponentially

stabilize Od :

Proposition 2. If the pair tA ,Bu is stabilizable, the orbit Od can be exponentially stabilized

locally using the discrete impulsive feedback

I pkq “ K epkq (6.3.14)

where the matrix K is chosen such that pA `BK q is Hurwitz.

Remark 11. The matrices A and B depend on the continuous controller in (6.2.9), and hence on

the choice of controller gains kp and kd . Thus, the stabilizability of the pair tA ,Bu depends on

the choice of kp and kd .

The above approach to stabilization, which we refer to as the impulse controlled Poincaré map

(ICPM) approach, is explained with the help of the schematic in Fig.6.1. The desired orbit Od is

shown in red and it intersects the Poincaré section Σ at the fixed point z˚. A trajectory starting from

an arbitrary initial condition, shown by the point 1 , intersects Σ at 2 . The impulsive input in

3As long as Δt is sufficiently small, the effect of the impulsive input uI depends solely on the
value of I - see (6.3.9). Thus I can be viewed as the control input.

4If the system trajectory is passing through z˚, the trajectory is evolving on Od , which lies on C .
Since I “ 0, the invariance of Od is guaranteed solely by the continuous controller uc in (6.2.9).
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Σ

IM

z˚

12

3 4

Od

Figure 6.1: Schematic of ICPM approach to orbital stabilization.

(6.3.14) moves the configuration of the system from 2 to 3 along the impulse manifold IM. The

point 3 lies on Σ since impulsive inputs cause no change in the position coordinates and q2 “ q˚
2

is maintained during the transition from 2 to 3 along IM. Furthermore, the condition 9q`
2

ě 0

is satisfied since the impulsive controller in (6.3.14) is designed using linearization and 3 lies in

some small neighborhood of z˚ on Σ. Hereafter, the altered system trajectory evolves under the

continuous control uc and 4 denotes its next intersection with Σ. A series of ICPMs, similar to

the map 2 Ñ 4 exponentially converge the intersection point of the trajectory on Σ to z˚.

Remark 12. By stabilizing the constraint manifold C , the continuous controller keeps the system

trajectory close to C . By stabilizing the fixed point, the impulsive controller works in tandem with

the continuous controller to converge the system trajectory to Od , which lies on C . Although the

impulsive control inputs perturb the system trajectory intermittently, the trajectory converges to

Od on C due to the vanishing nature of the perturbations. While global exponential stability of

C guarantees that C remains exponentially stable despite the perturbations, the magnitudes of

the perturbations exponentially converge to zero as the intersection point of the trajectory with the

Poincaré section converges to the fixed point.

115



Remark 13. In the ICPM approach, impulsive inputs create discontinuous jumps in the states of the

system. Although the subsequent continuous-time dynamics remains unchanged, the discontinuous

jumps in the states result in a change in the Poincaré map. This is different from the well-known

OGY method of chaos control [114] where the continuous-time dynamics is altered by discretely

changing system parameters on a Poincaré section. The OGY method has been utilized in control

of dynamical systems described by Poincaré maps; examples include bipeds [115] and hopping

robots [8].

6.3.3 Implementation of Control Design

6.3.3.1 Numerical Computation of A and B matrices

Let δi, i “ 1,2, ¨ ¨ ¨ ,2n´1, denote the i-th column of ε1Ip2n´1q, where ε1 is a small number and

Ip2n´1q is the identity matrix of size p2n´1q. If Ai denotes the i-th column of A , then Ai can be

numerically computed as follows:

Ai “ 1

ε1

rPpz˚ ` δiq ´ z˚s (6.3.15)

Let Q P Rnˆpn´1q and S P Rpn´1q be defined as follows:

Q fi

»
—–

Ipn´1q

01ˆpn´1q

fi
ffifl , S fi

»
—–

0pn´1qˆ1

Mpqq´1ηi

fi
ffifl

where 0iˆ j is a matrix of zeros of dimension iˆ j, and ηi, i “ 1,2, ¨ ¨ ¨ ,n´1, denote the i-th column

of ε2Q, where ε2 is a small number. If Bi denotes the i-th column of B, then Bi can be numerically

computed as follows:

Bi “ 1

ε2

 
rPpz ` Sqsz“z˚ ´ z˚( (6.3.16)

The above expression has been obtained using (6.3.9).

Remark 14. Numerical computation of A and B matrices is sensitive to the choice of ε1 and

ε2. While ε1 and ε2 should be small, excessively small values can lead to numerical errors. For
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example, the eigenvalues of A may be found to lie inside the unit circle, which cannot be the case

since orbits on C are not asymptotically stable.

6.3.3.2 Impulsive Input using High-Gain Feedback

Impulsive inputs are Dirac-delta functions and cannot be realized in real physical systems. Using

singular perturbation theory [116], it was shown that continuous-time approximation of impulsive

inputs can be carried out using high-gain feedback [23]; this has allowed implementation of

impulsive control in physical systems using standard hardware [6,25]. To obtain the expression for

the high-gain feedback, we substitute (6.3.14) in (6.3.9) to get

Δ 9q1pkq “ BI pkq “ BK epkq (6.3.17)

where B is defined in (6.2.3) and is evaluated at tk; Δ 9q1pkq is the jump in the active velocities

generated by the input I pkq. From (6.3.10) and (6.3.17), the desired active joint velocities at tk is

9qdes
1

pkq “ 9q1pkq ` BK epkq (6.3.18)

where 9q1pkq “ 9q1ptkq. To reach the desired velocities in a very short period of time, we use the

high-gain feedback [6]

uhg “ B´1

„
1

µ
Λ

´
9qdes
1

pkq ´ 9q1

¯
´ Ā


(6.3.19)

which remains active for as along as } 9qdes
1

pkq ´ 9q1} ě ε3, where ε3 is a small number. In (6.3.19),

9qdes
1

is obtained from (6.3.18) and Ā is obtained from the expression for A in (6.2.3) by replacing

h1 with h̄1. Furthermore, Λ fi diagrλ1 λ2 ¨ ¨ ¨ λn´1
s, where λi, i “ 1,2, ¨ ¨ ¨ ,n´1 are positive

numbers, and µ ą 0 is a small number.

6.4 Illustrative Example: Cart-Pendulum

6.4.1 System Dynamics and VHC

Consider the frictionless cart-pendulum system in Fig.6.2. The masses of the cart and pendulum

are denoted by mc and mp, ℓ denotes the length of the pendulum, and g is the acceleration due to

117



x

u

θ

mp

ℓ

mc

g

Figure 6.2: Inverted pendulum on a cart.

gravity. The control input u is the horizontal force applied on the cart. The cart position is denoted

by x, x P R, and the angular displacement of the pendulum, measured clock-clockwise with respect

to the vertical, is denoted by θ , θ P S1. We consider physical parameters of the system to be the

same as those in [3]: mp “ mc “ ℓ “ 1. With the following definition

q “ rq1 q2
sT “ rx θ sT (6.4.1)

and the potential energy of the system, given by

F “ cosθ (6.4.2)

the equations of motion can be obtained as
»
—–

2 cosθ

cosθ 1

fi
ffifl

»
—–

:x

:θ

fi
ffifl´

»
—–

sinθ 9θ 2

gsinθ

fi
ffifl “

»
—–

u

0

fi
ffifl (6.4.3)

which is of the form in (6.2.1). The VHC in (6.2.5) is chosen as

ρ “ x ` 1.5 sinθ “ 0 (6.4.4)

which is identical to that considered in [3]. It can be verified that the mass matrix in (6.4.3) and

the choice of VHC in (6.4.4) satisfy Assumptions 4 and 5 for q̄ “ p0, 0q. For the VHC in (6.4.4) to

be stabilizable, Remark 10 provides the following condition that needs to be satisfied:

1 ´ 1.5cos
2 θ ‰ 0 ñ θ ­“ ˘0.61 rad (6.4.5)
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Clearly, the VHC in (6.4.4) is not regular and the corresponding constraint manifold is therefore

not stabilizable. Since our control design requires the VHC to be regular, we cannot use the VHC

in (6.4.4) with θ P S1. However, by restricting the domain of θ to be p´0.61,0.61q, it is possible to

compare the performance of our control design with that presented in [3]. Through trial and error,

the controller gains are chosen such that θ lies in the interval p´0.61,0.61q.

6.4.2 Stabilization of VHC and Od

The ICPM approach relies on stabilization of both the constraint manifold C , and the orbit Od

on C . This is a distinctive difference between our approach and the approach in [3] where Od is

stabilized without stabilizing C , i.e., without enforcing the VHC. With the objective of enforcing

the VHC, the gains kp and kd in (6.2.9) are chosen as follows:

kp “ 2, kd “ 1 (6.4.6)

We choose the desired orbit Od to pass through the point:

px, θ , 9x, 9θ q “ p0.0, 0.0, ´0.675, 0.450q (6.4.7)

which is approximately the desired orbit in [3] - see Fig.2 therein. For exponential stabilization of

Od , we define the Poinacaré section

Σ “ tx P Q2 ˆ R2
: θ “ 0, 9θ ě 0u (6.4.8)

The states of the system on Σ are

z “ rx 9x 9θ sT

Since z˚ lies on Od , using (6.4.7) and (6.4.8) we get

z˚ “ r0.0 ´0.675 0.450sT
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Using the values of ε1 “ 0.02 and ε2 “ 0.01, the matrices A and B in (6.3.15) and (6.3.16) are

obtained as

A “

»
————–

0.115 0.435 0.600

´0.510 ´0.640 ´2.465

´0.145 0.215 1.325

fi
ffiffiffiffifl
, B “

»
————–

´0.06

1.80

´1.09

fi
ffiffiffiffifl

It can be verified that all eigenvalues of A do not lie inside the unit circle but the pair tA ,Bu

is controllable and satisfy Proposition 2. Using LQR design, the gain matrix K in (6.3.14) was

obtained as

K “ r 0.163 0.288 1.198 s (6.4.9)

The eigenvalues of pA `BK q are located at 0.13 and ´0.06˘0.48i; thus, the impulsive feedback

in (6.3.14) exponentially stabilizes the desired orbit Od .

6.4.3 Simulation Results

The initial configuration of the system is taken from [3]:

rx θ 9x 9θ s “ r0.1 0.4 ´0.1 ´0.2s

For the controller gains in (6.4.6) and (6.4.9), simulation results for the ICPM are shown in Fig.6.3;

ρ is plotted with time in Fig.6.3 (a) and the phase portrait of the pendulum is shown in Fig.6.3

(b). To show the convergence of system trajectories to Od , }epkq}2 is plotted with respect to k in

Fig.6.3 (c). It can be seen from Fig.6.3 (a) that the system trajectories converge to the constraint

manifold. To stabilize Od on C , the impulsive controller in (6.3.14) is implemented using the

high-gain feedback in (6.3.19) with Λ “ 1 and µ “ 0.005. It can be seen from the phase portrait in

Fig.6.3 (b) that the pendulum trajectory converges exponentially to Od , shown in red. The effect of

discrete impulsive feedback can be seen in Fig.6.3 (b) where 9θ jumps when trajectories cross the

Poincaré section Σ defined in (6.4.8). The system trajectories reach a close neighborhood of Od in

approximately 10 sec; this is comparable to the results in [3]. We now consider the following initial
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Figure 6.3: Orbital stabilization for the cart-pendulum system for the initial conditions in [3]: (a)
plot of ρ with respect to time, (b) phase portrait of the pendulum, (c) plot of the norm of the error
of the discrete-time system.

condition that lies far away from Od :

rx θ 9x 9θ s “ r0.0 0.0 0.0 0.0s (6.4.10)

We used the same controller gains as that used in the previous simulation. It can be seen from the

results in Fig.6.4 that Od is asymptotically stabilized. For the same initial conditions in (6.4.10),

the control design in [3] fails to converge the pendulum trajectory to Od . Several other initial

conditions yielded similar results. While this may be indicative of a larger region of attraction

of Od with the ICPM approach than with the approach in [3], the region of attraction has to be

estimated for both designs and compared before any conclusion can be drawn. To demonstrate the

generality of the ICPM approach, we consider the three DOF tiptoebot, which is presented next.
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Figure 6.4: Orbital stabilization for the cart-pendulum system for the initial conditions in (6.4.10):
(a) plot of ρ with respect to time, (b) phase portrait of the pendulum; Od is shown in red, (c) plot
of the norm of the error of the discrete-time system.

6.5 Illustrative Example - The Tiptoebot

6.5.1 System Description

Consider the three DOF tiptoebot [6]. Using the following definition for the joint angles and control

inputs

qT
1

“ r θ2 θ3
sT , q2 “ θ1, u “ rτ2 τ3sT (6.5.1)

Table 6.1: Tiptoebot lumped parameters in SI units

α1 0.386 α4 0.065 β1 4.307

α2 0.217 α5 0.054 β2 1.102

α3 0.247 α6 0.104 β3 1.764
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where θ1 P S1, θ2,θ3 P R, the dynamics of the tiptoebot can be expressed in the form given in

(2.2.1), where the components of the mass matrix and the potential energy are:

M11 “

»
—–

α2`α3`2α5 cosθ3 α3`α5 cosθ3

α3`α5 cosθ3 α3

fi
ffifl

M12 “

»
—–

α2`α3`α4 cosθ2`2α5 cosθ3`α6 cospθ2`θ3q

α3`α5 cosθ3`α6 cospθ2`θ3q

fi
ffifl

M22 “ α1`α2`α3 ` 2 rα4 cosθ2 ` α5 cosθ3`α6 cospθ2`θ3qs

F “ β1 cosθ1 ` β2 cospθ1 ` θ2q ` β3 cospθ1 ` θ2 ` θ3q

(6.5.2)

where αi, i “ 1,2, ¨ ¨ ¨ ,6, and βi, i “ 1,2,3 are lumped physical parameters; their values are given

in Table 6.1. It can be verified that Assumption 4 is satisfied for q̄ “ p0 0 0qT .

6.5.2 Imposing VHC and Selection of Od

The VHC in (6.2.5) is chosen as

ρ “

»
—–

ρ1

ρ2

fi
ffifl “

»
—–

θ2 ` 2.0θ1

θ3 ´ 0.1θ1

fi
ffifl “

»
—–

0

0

fi
ffifl (6.5.3)

which satisfies Assumption 5 for q̄ “ p0 0 0qT . Also, it is stabilizable as it satisfies the condition in

Remark 10. With the objective of enforcing the VHC, the gain matrices in (6.2.9) were chosen as

kp “

»
—–

1.0 0.0

0.0 1.0

fi
ffifl , kd “

»
—–

0.1 0.0

0.0 0.1

fi
ffifl (6.5.4)

The phase portrait of the zero dynamics in (6.2.12) is shown in Fig.6.5. It can be seen that the

equilibrium pθ1,
9θ1q “ p0,0q is a center, surrounded by a dense set of closed orbits. We choose the

desired orbit Od to be the one that passes through pθ1,
9θ1q “ p0.0,3.0q.
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Figure 6.5: Phase portrait of tiptoebot zero dynamics. The desired orbit Od is shown in red.

6.5.3 Stabilization of Od

We define the Poincaré section of Od as follows

Σ “ tx P Q3 ˆ R3
: θ1 “ 0, 9θ1 ě 0u (6.5.5)

The states on Σ are

z “ rθ2 θ3
9θ1

9θ2
9θ3

sT

Substituting pθ1,
9θ1q “ p0.0,3.0q in (6.5.3) and its derivative gives

z˚ “ r0.0 0.0 3.0 ´6.0 0.3sT (6.5.6)

Using the values of ε1 “ 0.01 and ε2 “ 0.004, the matrices A and B in (6.3.15) and (6.3.16) were

obtained as

A “

»
——————————–

´0.380 ´0.080 1.530 0.800 0.050

0.000 ´0.460 ´0.080 ´0.003 0.730

1.230 1.890 6.120 2.770 4.050

´3.210 ´3.770 ´13.360 ´6.090 ´8.100

0.120 ´0.560 0.670 0.280 0.100

fi
ffiffiffiffiffiffiffiffiffiffifl

B “

»
—–

1.525 ´3.700 ´17.700 34.325 0.875

4.875 ´8.650 22.650 ´43.850 ´0.325

fi
ffifl

T
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All eigenvalues of A do not lie inside the unit circle but the pair tA ,Bu is controllable and satisfy

Proposition 2. Using LQR, the gain matrix K in (6.3.14) is obtained as

K “

»
—–

0.028 0.024 0.197 0.094 0.138

´0.034 ´0.051 0.116 ´0.049 ´0.055

fi
ffifl (6.5.7)

The eigenvalues of pA ` BK q are located at 0.14, ´0.47 ˘ 0.73i and ´0.12 ˘ 0.56i; thus Od is

exponentially stable under the impulsive feedback.

6.5.4 Simulation Results

The initial configuration of the tiptoebot is taken as

rθ1 θ2 θ3
9θ1

9θ2
9θ3

s “ r´0.1 0.2 0.05 3.3 ´6.0 0.4s

For the controller gains in (6.5.4) and (6.5.7), simulation results of the ICPM approach are shown

in Fig.6.6. The plots of ρ1, ρ2, 9ρ1 and 9ρ2 with time are shown in Figs.6.6 (a)-(d); it can be seen

that the continuous controller uc in (6.2.9) stabilizes the constraint manifold C . The phase portrait

of the passive joint θ1 is shown in Fig.6.6 (e) for 0 ď t ď 20 s and Fig.6.6 (f) for t ą 20 s. To

asymptotically stabilize the desired orbit Od , shown in red in both Figs.6.6 (e) and (f), the impulsive

controller in (6.3.14) is implemented using the high-gain feedback in (6.3.19); Λ was chosen to be

an identity matrix and µ was chosen as 0.0001. To show the convergence of system trajectories

to Od , }epkq}2 is plotted with respect to k in Fig.6.6 (e). It can be seen that for large values of k,

}epkq}2 Ñ 0; this implies that Od is exponentially stable.
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Figure 6.6: Orbital stabilization for the tiptoebot using ICPM: (a) and (b) provide plots of ρ1 and
ρ2, (c) and (d) provide plots of 9ρ1 and 9ρ2, (e) and (f) provide the phase portrait of the passive joint,
(g) provides the norm of the error for the discrete-time system.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work we investigated several problems where impulsive inputs were exploited to stabilize

equlibria and orbits of underactuated robotic systems. In chapter 2, using both simulations and

experiments, we demonstrated a method for stabilizing the equilibria of underactuated systems

from configurations lying outside the estimate of their region of attraction. The method, known

as the IMM, uses impulsive inputs to force the configuration of the system to move inside the

region of attraction along a manifold of dimension equal to the number of active degrees-of-

freedom. Justified by singular perturbation theory [23], the impulsive inputs were implemented

using high-gain feedback. In the general case, the region of attraction is not known and the

IMM requires an estimate of the region, which is computed off-line. If the initial configuration

of the system is outside this estimate, the IMM can be used if the impulse manifold intersects

this region. The likelihood of intersection improves if the size of the estimated region is large,

and therefore, a procedure for obtaining large estimates was developed by combining the SOS

and trajectory reversing methods. For a fixed order of the stabilizing controller, the SOS method

maximizes the estimate of the region of attraction and this estimate is further enlarged using an

algorithm (CHART) based on the method of trajectory reversing. The advantage of combining the

two methods was demonstrated in simulations using a three-link underactuated system (Tiptoebot)

and in experiments with a pendubot. For both systems, it was shown that the impulse manifold

may intersect the enlarged estimate but not the estimate obtained using the SOS method, implying

that the CHART enhances the utility of the IMM. In another simulation with the Tiptoebot, it was

shown that the combination of SOS, CHART and IMM requires a lower magnitude of the impulsive

input compared to the combination of SOS and IMM. In addition to providing a large estimate, the

CHART makes it possible to generalize the results to higher-dimensional systems. In the literature,

several algorithms have been proposed for estimating the region of attraction using trajectory

reversing, but the CHART is the only algorithm that has been demonstrated for a system with as

127



many as six states. Earlier experimental results [23] relied on finding the boundary of the region of

attraction through trial and error and used the IMM to move the configuration of the system from a

point lying immediately outside the region to inside the region. The experimental results presented

here are more meaningful and practical as they are based on an estimate of the region of attraction

and points chosen outside this region are not very close to the boundary. Experimental results of

stabilization from two different initial conditions using the SOS, CHART and IMM were presented.

In one of the experiments, through trial and error, the initial condition was purposely chosen to

lie outside the region of attraction; it was shown that the equilibrium could not be stabilized with

the SOS controller alone but was stabilized by the combination of SOS, CHART and IMM. Future

work will investigate the possibility of extending the approach to multiple impulsive inputs. This

will be useful in situations where the impulse manifold does not intersect the estimated region of

attraction: a first impulsive input may be used to take the configuration closer to the boundary of

the estimate and additional impulses may be applied to move the system configuration inside the

region in future time. Of course, this would require real-time computation of the intersection of

the impulse manifold with the boundary of the estimated region. Compared to the SOS method,

which provides an analytical representation of the estimate of the region of attraction, the trajectory

reversing method provides a numerical representation and will involve higher computational cost.

Considering the fact that the trajectory reversing method provides the opportunity to enlarge the

estimate, it is necessary to investigate the trade-off between computational cost and size of the

estimate for real-time applications.

In chapter 3, rest-to-rest maneuvers of the inertia-wheel pendulum was studied in the framework

of impulsive control. Assuming a set of discrete impulsive inputs, optimal sequences were designed

to minimize their infinity-norm. It was shown analytically that a sequence with an odd number

of inputs is less optimal than the two adjacent sequences with even number of inputs. Analytical

and simulation results with two inputs were used to explain the high wheel velocities and large

continuous torques associated with methods that attempt to take the pendulum directly to its

desired configuration and minimize overshoot. Implementation of impulsive control using high-
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gain feedback also results in large torques but they act over short intervals of time; therefore,

feasibility of impulsive control is determined by the peak torque rating of the actuator, which is

always larger than the continuous torque rating. It was shown that the number of impulsive inputs

can be increased to not exceed the peak torque rating of the actuator; this, of-course, increases

the time required for swing-up. Simulation results for swing-up showed similarities between the

optimal trajectories and the trajectories obtained using the energy-based controllers. Future work

will investigate the possibility of extending the method presented here to other underactuated

systems.

Using impulsive forces only, the problem of juggling a devil-stick was presented in chapter

4. Impulsive forces were applied intermittently for juggling the stick between two symmetric

configurations. A dynamic model of the devil-stick and a control design for the juggling task was

presented for the first time. The control inputs are the impulse of the impulsive force and its point of

application on the stick. The control action is event-based and the inputs are applied only when the

stick has the orientation of one of the two symmetric configurations. The dynamics of the devilstick

due to the control action and torque-free motion under gravity is described by two Poincaré sections;

the symmetric configurations are fixed points of these sections. A coordinate transformation is

used to exploit the symmetry and convert the problem into that of stabilization of a single fixed

point. A dead-beat controller is designed to convert the nonlinear system into a controllable linear

discrete-time system with input constraints. LQR and MPC methods are used to design the control

inputs and achieve symmetric juggling. The LQR method has a closed-form solution and is easier

to implement but requires trial and error to satisfy the input constraints. The MPC method has no

closed-form solution as it is obtained by solving an optimization problem online. However, the

optimization problem directly takes into account the input constraint. The computational cost of the

MPC method, which can be a concern for many problems, is not a concern for the juggling problem

since the time between consecutive control actions is relatively large.Simulation results validate

both control designs and demonstrate non-prehensile manipulation solely using impulsive forces.

Our future work will focus on robotic juggling; this includes design of experimental hardware,
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feedback compensation of energy losses due to inelastic collisions between the devil-stick and hand

sticks, and motion planning and control of the robot end-effector for generating the impulsive forces

designed by the control algorithms.

In chapter 5, a hybrid control strategy was presented for orbital stabilization of underactuated

systems with one passive DOF. The orbit is defined with the help of a Lyapunov-like function

that has been commonly used in the literature. Unlike existing energy-based methods, that have

relied on continuous control inputs alone, our control strategy uses continuous control inputs and

intermittent impulsive brakings. The continuous control is designed to make the time derivative

of the Lyapunov-like function negative semi-definite. When this condition cannot be enforced, the

impulsive inputs are invoked. This results in negative jumps in the Lyapunov-like function and

guarantees its negative semi-definiteness under continuous control for some finite time interval.

Thus, a combination of continuous and impulsive inputs guarantees monotonic convergence of

the system trajectories to the desired orbit, which can be periodic, or non-periodic as in the case

of homoclinic orbits, depending on the choice of desired energy. More importantly, it allows

us to develop a general framework for energy-based orbital stabilization, which is an important

contribution of this work. A set of conditions, that impose constraints on the choice of controller

gains, have to be satisfied for applicability of the control strategy. These conditions are easily

satisfied by systems commonly studied in the literature such as the pendubot, acrobot, inertia-wheel

pendulum, and pendulum on a cart. In this work, the hybrid control strategy was demonstrated

in a three-DOF underactuated system using simulations and the two-DOF rotary pendulum using

experiments. In experiments, impulsive brakings were not applied by the motor; instead, they

were applied by a friction brake mounted co-axially with the motor shaft. This requires additional

hardware but there are two important advantages of using the brake. In physical systems, impulsive

inputs are implemented using high-gain feedback, which can result in actuator saturation. Since our

impulsive control strategy requires the active velocities to be reduced to zero, a brake is a natural

choice and it eliminates the possibility of motor torque saturation. The advantage of using a brake

is also manifested in the time required for orbital stabilization. A comparison of our approach with
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an approach in the literature shows significant reduction in the time for convergence for the same

set of initial conditions.

Finally, the control design for stabilization of VHC based orbits was presented in chapter 6.

Repetitive motion in underactuated systems are typically designed using VHCs. A VHC results

in a family of periodic orbits and stabilization of a desired orbit is an important problem. A

hybrid control design is presented to stabilize a VHC-generated periodic orbit for underactuated

systems with one passive DOF. A continuous controller is first designed to enforce the VHC and

stabilize the corresponding constraint manifold. The desired orbit on the constraint manifold is

exponentially stabilized by applying the continuous inputs together with impulsive inputs that are

periodically applied on a Poincaré section. The impulsive inputs alter the Poincaré map and this

impulse controlled Poincaré map (ICPM) is described by a discrete LTI system. The problem of

orbital stabilization is thus simplified to exponential stabilization of the fixed point of the ICPM. The

controllability of the system can be easily verified and the control design can be easily carried out

using standard techniques such as pole-placement and LQR. The identification of the linear system

and computation of the controller gains are performed off-line. The complexity and computational

cost of the ICPM approach is less than existing methods as it eliminates the need for on-line solution

of a periodic Ricatti equation. The ICPM approach is demonstrated using standard cart-pendulum

system; its applicability to higher-dimensional systems is demonstrated using the tiptoebot. Future

work will focus on gait stabilization of legged robots and experimental validation.
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